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Main topics of the dissertation

In the thesis we discuss several topics connected to compensated compactness and DiPerna-
Majda measures. The thesis is divided into chapters, most of which are based on the articles
written by the author exclusively or under co-authorship.

The first chapter briefly provides an overview of the discussed topics. We discuss the main
motivations for taking on the chosen topics, as well as sketch the history of related research.

Chapter 2 is based on the joint paper written with Agnieszka Kałamajska [1]. We study
geometric conditions for integrand f to define lower semicontinuous functional of the form
If (u) =

∫
Ω
f(u)dx, where u satisfiesthe conservation law Pu = 0, P = (P1, P2, P3) and

P1v =
∂v1

∂y
, P2v =

∂v2

∂x
, P3v =

∂v3

∂x
− ∂v3

∂y
.

Of our particular interest is tetrahedral convexity condition introduced Kałamajska in 2003,
in connection of the study of the quasiconvexity condition in Calculus of Variation, which is
the variant of maximum principle expressed on tetrahedrons, and the new condition which
we call tetrahedral polyconvexity. We prove that second condition is sufficient but it is not
necessary for lower semicontinuity of If , tetrahedral polyconvexity condition is non-local and
both conditions are not equivalent. Problems we discuss are strongly connected with the
rank–one conjecture of Morrey known in the multidimensional calculus of variations.

Chapter 3 is based on the author’s own papers [4, 5]. In the first part, based on [5] we
present a constructive proof of the fact, that for any subset A ⊆ Rm and countable family
F of bounded functions f : A → R there exists a compactification A ′ ⊂ `2 of A such that
every function f ∈ F possesses a continuous extension to a function f̄ : A ′ → R. However
related to more classical theorems, our result is direct and hence applicable in Calculus of
Variations. Our construction is then used to represent limits of weakly convergent sequences
{f(uν)} via DiPerna-Majda measures methods. In particular, as our main application, we
generalise the known Representation Theorem from the Calculus of Variations. In the second
part of the chapter we focus our attention on the example of a non-supported measure given
in [4], which explains the importance of metrizability of the compactification constructed
in [5].

Chapter 4 is based on two joint works with Elvira Zappale. In the first part of the chapter,
based on [2], we get in the realm of 3D − 2D dimensional reduction problems. We prove
that, up to an extraction, it is possible to decompose a sequence (un), whose ‘scaled gradients’(
∇αun,

1
εn
∇3un

)
are bounded in LΦ(ω × (−1, 1),R3×3) for a suitable Orlicz function Φ, as

un = vn+zn, such that vn describes the oscillations,
(

Φ
(∣∣∣∇αvn,

1
εn
∇3vn

∣∣∣)), is equi-integrable
and the ‘remainder’ zn, accounting for concentration effects, converges to zero in measure.
The second part, based on [3], is an application of the results from [2] to the optimal design
problem. In particular, as the tickness of the film tends to zero, the Γ− lim of the sequence
of optimal design functionals is computed.
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Notations

The following notations are used consequently throughout the dissertation.
The function f , with the domain D and target space T will be denoted by f : D → T,

while a multifunction (in other words – set-valued function) F will be denoted by F : D ⇒ T .
For any Banach space X and an element x ∈ X, the norm of x in X is denoted by ||x||X .
For any subset T ⊆ X the convex hull of T will be denoted by CH T. Analogously, the

closed convex hull of T will be denoted by CH T.
For any function f : Rn → R the convex envelope of f will be denoted by Cf. Similarly,

for f : Rn×m → R the quasiconvex envelope will be denoted by Qf.
For any topological space X, by C(X) we denote the space of all continuous, real-valued

functions on X. Analogously, by C0(X) denote the space of all compactly supported, contin-
uous, real-valued functions on X.

The space of all signed measures with finite variation on X will be denoted by M(X).
The subspace of all probabilistic measures (i.e. positive and of variation equal to 1) will be
denoted by P(X).

For any measured set M , the Lebesgue space of functions u : M → X, integrable with
power p, will be denoted by Lp(M,X). The corresponding Sobolev space will be denoted by
W 1,p(M,X). We will omit X in the notation in case X = R.

Similarly, the Orlicz space with the Orlicz function Φ will be denoted by LΦ(M,X). The
corresponding Sobolev-Orlicz space will be denoted by W 1,Φ(M,X). Again, we will omit X
in the notation in case X = R.

The set of functions of bounded variation u : M → T will be denoted by BV (M,T ). The
perimeter of a subset N ⊆M will be denoted by P (N,M).
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Chapter 1

An overview of the thesis

1.1 Compensated compactness

1.1.1 The historical overview

One of the most significant problems in the calculus of variations is the lower semicontinuity
of variational functionals. For open and bounded domain Ω ⊂ Rn and the function f :
Rm×n → R, we define the functional

If (u)
def
==

∫
Ω

f(Du)dx, (1.1)

on the proper space X(Ω) of mappings defined on Ω with values in Rm. One investigates,
under what conditions the functional is sequentially lower semicontinuous with respect to the
given topology, i.e. when it satisfies the condition

uν ⇀ u⇒ If (u) ≤ lim inf If (u
ν), (1.2)

where uν ⇀ u denotes convergence in weak topology on X(Ω) (shortly lsc property). Ap-
plication of Direct Methods of Calculus of Variations shows that lsc-property is one of the
sufficient conditions for existence of minimisers of the functional If . Usually X is a Sobolev
space, it is however also common to consider Orlicz-Sobolev or BV. Having in mind, that
physical models often introduce a convex energy f , it seems that Orlicz-Sobolev spaces are
a reasonable choice for the investigated space. This is a path we follow in Chapter 4.

In 1952 [127] Morrey proved that the lower semicontinuity of If , in case of X(Ω) consisting
of Lipschitz functions, is equivalent to quasiconvexity of the function f, i.e. the following
property

∀Φ ∈ C∞0 (Ω,Rm) ∀A ∈Mm×n =⇒ f(A) ≤ 1

|Ω|

∫
Ω

f(A+DΦ)dx.

Unfortunately, the quasiconvexity condition is usually very hard, or even impossible, to
verify. This was the reason to look for some other conditions, which would be more clear

8
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geometrically and easier to verify. Several of them appeared, however the equivalence between
them and quasiconvexity is obtained only in case of u depending on one variable or having
values in R. What is more, they are equivalent to standard notion of convexity in that case.

One of the main is rank-one convexity of f : for any matrix A ∈ Mm×n and any matrix
B ∈Mm×n of rank one the following condition holds

function t 7→ f(A+ tB) is convex.

In 1952 in [127] C. B. Morrey stated the conjecture on equivalence between rank-one convexity
and quasiconvexity. The statement was disproved by Vladimı́r Šverák in 1992 in paper
[146], but only in case when m ≥ 3, n ≥ 3. His counterexample doesn’t work in case when
n = m = 2.

A certain generalization of functional (1.1) reads as

If (u)
def
==

∫
Ω

f(u)dx, (1.3)

where u lies in the kernel of some differential operator P of constant coefficients. For example,
in the classical case, one may consider gradients as functions lying in the kernel of curl
operator. Similarly as in the case of the classical variational questions, one asks about
conditions for lower semicontinuity of If , but functions u might not be only gradients.

Compensated compactness has found so far a wide spectrum of analytical and geometric
applications, and furthermore seems a successful tool in investigation of conservation laws.

Dependently on satisfying the constant rank condition (the algebraic condition given on a
constant rank of the characteristic matrix of the system Pu = 0), the functional If defined on
kerP can posses various properties. The constant rank condition was introduced by Fonseca
and Müller in 1999 in [63].

For P satisfying constant rank condition the geometric conditions equivalent to lower
semicontinuity has been obtained [61].

There are no known equivalent conditions in the other cases, that is when the operator
P disobeys the constant rank condition. Let us consider for example

P = (P1, P2, P3) = (
∂u1

∂x2

,
∂u2

∂x1

,
∂u3

∂x1

− ∂u3

∂x2

). (1.4)

We will refer to P as the operator of the type (2, 3). The operator acts on functions u : Ω→
R3,Ω ⊆ R2 and does not satisfy the constant rank condition. There are no known conditions
equivalent to the lower semicontinuity of the functional If on L∞(Ω,R3) ∩ kerP.

The work over quasiconvexity condition is considered one of the most important in func-
tional analysis. It requires a variety of methods (like for example elliptic regularity and coer-
civity, as in [7]), benefiting often with some inequalities with optimal constants. These inves-
tigations were kept by such great mathematicians as Kari Astala [12, 13], John Ball [17, 18],
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Tadeusz Iwaniec [13, 77, 78], Jan Kristensen [109], Pablo Pedregal [135–138]. In the Pol-
ish group, however not directly but related research, is provided by Krzysztof Chełmiński,
Agnieszka Kałamajska or Adam Osękowski. The notion of quasiconvexity has also many
applications in non-linear elasticity theory.

Also the theory of compensated compactness was used in such important and hard
branches of mathematics like geometric optics, conservation laws and elasticity. What is
also vital, the theory seems to be a good tool to investigate the Morrey conjecture. Such
approaches were already made by the likes of Irene Fonseca [61,63], Francois Murat [18,130],
Jeffrey Rauch [79,80] or Luc Tartar [148–150].

It is worth mentioning, that related solved problem in the field of compensated com-
pactness due to the young authors Guido De Philippis and Filip Rindler [46] was recently
published in the most prestigious mathematical journal Annals of Mathematics.

1.1.2 A brief explanation of the contribution to the discipline

In Chapter 2, based on [90], we investigate the particular problem of sequential weak-? lower
semicontinuity of functionals described in (1.3), defined not on the whole L∞(Ω), but only
on the kernel of the (2, 3) operator. The main goal is to look for some new convexity-type
conditions on f, which would explain the lower semicontinuity of If in some geometric way.
In particular, basing on brilliant ideas coming from [79] and developing achievements raised
in [37,84], we investigate functionals defined on the kernel of the operator P defined in (1.4),
being the prototype of compensated compactness theory for operators which do not satisfy
constant rank condition.

In Chapter 2, the condition of tetrahedral polyconvexity is proposed and its properties are
considered. The condition is geometrically clear. It is proven to be sufficient for sequential
lower semicontinuity of the functional described by (1.3), but defined on the kernel of P
(see (1.4)). Also, certain Carathéodory type theorem for tetrahedral polyconvexity is proven.
As its consequence, the locality of this condition is proven to fail, exactly as it happens for
quasiconvexity in the classical case. Introducing this condition does not succeed however in
closing the main research topic. An easy modification of a function proposed by Alibert and
Dacorogna in [7] shows that the condition is not necessary.

1.2 Control of the discontinuous integrands

The work on the control of weak convergence of bounded sequences composed with discontin-
uous functions was inspired by the construction of measures of DiPerna and Majda, proposed
in [49]. Agnieszka Kałamajska proved the Representation Theorem in [86] and her work was
continued in [85,89,103].
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1.2.1 The Representation Theorem

We briefly describe the Representation Theorem 3.2.11, originally proven in [86]. Let Ω be
open and bounded domain in Rn and uν : Ω → Rm. Moreover, assume Rm is equipped in a
certain compactification, i.e.

Rm = A1 ∪ . . . ∪ Ak
and for every i the Borel set Ai is mapped homeomorphically and densely (by Φi) into the
compact subset of RNi , denoted by γAi. Define also on Rm the density function g such that
gi
def
== g|Ai ∈ C(Ai) and gi(λ) ≥ α > 0 for every λ ∈ Ai ∩ ∂Ai. Let for every i

f̃i
def
== (f/gi) ◦ Φ−1 ∈ C(γAi), (1.5)

(i.e. (f/gi) ◦ Φ−1, which is a continuous function on Φ(Ai), is extendable into a continuous
function on γAi). Then (up to some technical details) for any bounded sequence {uν} there
exist a subsequence {uj}, measures on Ω m̄i,mi (with some additional properties), families
of probabilistic measures {µx}x∈Ω on Rm, {νix}x∈Ω on the remainder γAi \Φ(Ai) and {ν̄ix}x∈Ω

on ∂Ai ∩ Ai such that in the space of measures {f(uj(x))dx} converges weakly-? to

k∑
i=1

(∫
intAi

f(λ)µx(dλ)µ(dx) +∫
∂Ai∩Ai

f(λ)ν̄ix(dλ)m̄i(dx) +∫
γAi\Φ(Ai)

f̃i(λ)νix(dλ)mi(dx)

)
,

Furthermore, the obtained measures do not depend on a choice of a function f satisfying
(1.5).

The above theorem gives us some sort of control of weak-? convergence of sequences
composed with discontinuous functions. It is worth noting that whenever we assume uν(x)→
u(x) almost everywhere, then the formula for such limits is given by the Convergence Theorem
3.2.12 (see [14]). In that case the set of cluster points of uν(x) is precisely {u(x)}. We don’t
know about more subtle investigations involving precise analysis of the support of the involved
measures.

The Young measures generated by gradients were investigated by David Kinderlehrer and
Pablo Pedregal [95–97] and then Irene Fonseca, Stefan Müller and Pablo Pedregal in [64].
The full classification is obtained. The characterization of the measures of DiPerna and
Majda controlled by the continuous functions and generated by gradients of functions from
Sobolev space was obtained by Agnieszka Kałamajska and Martin Kružik in [92]. To my
best knowledge, general results for control of gradients by discontinuous functions have not
been obtained so far.
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1.2.2 The problem of compatifications

The problem caused by the formulation of the Representation Theorem, which we will pay
much attention to, reads as follows. Given a subset A ⊆ Rm and a continuous function
f : A → R we would like to find a metric compactification γA of A and a dense embedding
ϕ : A ↪→ γA such that the function f ◦ ϕ−1 : ϕ(A) → R possesses a continuous extension
f̄ : γA → R. The existence of such γA is indicated by the assumption in numerous papers
in the field, for example [85–89, 92]. A verification of whether this assumption may be
satisfied seems to be not entirely taken. To be more precise – the question of whether such
compactification can be metrizable remains untaken.

Let us explain the troubles hidden deeper with a natural example. A very classic solution
to the problem of compactification seems to be the well-recognized Čech-Stone compactifica-
tion βA. Indeed, every continuous function f : A→ R possesses an extension to a continuous
function f̄ : βA → R. Unfortunately, taking a very simple A = {1 − 1

n
: n ∈ N} ⊂ [0, 1] we

are delivered a compactification βA non-metrizable, non-second countable and of cardinality
22N (see [53, Corollary 3.6.12] for details). This shows that a more specific construction is
needed to obtain a compactification with metric and visible geometric structure. The original
formulation of the Representation theorem by Kałamajska [86] requires γA to be a subset of
an Euclidean space, but a careful analysis of the proof shows that this requirement can be
relaxed. Nevertheless, metrizability of γA, as well as its embedding into a locally compact
vector space (required for the Reschetnyak slicing argument [139]) are needed. There are sev-
eral approaches towards this problem, due to Gelfand and Naimark [68,69], Engelking [53] or
discussed by Keesling [93], which we will review in Section 3.5. Unfortunately, none of these
delivers a rewarding answer.

1.2.3 A brief description of the own contribution

The main purpose of the Chapter 3 is to give a complete and positive answer to the com-
pactification problem described above. We present a constructive proof of the fact, that for
any subset A ⊆ Rm and a countable family F of bounded functions f : A→ R there exists
a compactification κA ⊂ `2 of A such that every function f ∈ F possesses a continuous
extension to a function f̄ : κA→ R. However related to a number of classical theorems, our
result is direct and, in this way, new. By direct, we mean that the method of constructing the
compactification is geometrically clear and gives us a straight formula on both the shape of
κA and the dense embedding ϕ : A→ κA. Furthermore, κA is naturally embedded into the
Tychonoff’s cube in `2. Let us remind, that the Tychonoff’s cube in space `p, 1 ≤ p ≤ +∞ is
the compact set

T
def
==

∞∏
i=0

[0, 2−i] = [0, 1]× [0,
1

2
]× [0,

1

4
]× . . . .

Our construction is then used to represent limits of weakly convergent sequences {f(uν)}
via methods related to DiPerna-Majda measures. In particular, as our main application, we
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generalise the aforementioned Representation Theorem from [86] to the case of the integrand
f dependent on u and x. Without the careful analysis of the compactification problem, the
study of the functionals

∫
Ω
f(x, u)dx was not possible for discontinuous f .

In the final part of the chapter we present arguments showing that the standard notion
of the support of a probabilistic Borel measure is not well defined in every topological space.
We stress that the notion of the support played an essential role in the proof of Theorem
3.4.3.

Our goal is to create a ”very inseparable” space and to show the existence of a family of
closed sets such that each of them is of full measure, but their intersection is empty. The
presented classic construction is credited to Jean Dieudonné and dates back to 1939. We
also propose certain, up to our best knowledge, new simplifications. The example is a good
illustration of what may happen, if we abandon the assumptions on regularity of γA. The
problems arise then not only in the proof of the Representation Theorem. In fact, some of
the Theorem’s statements, like inclusions of the supports, become meaningless, when the
support of a probabilistic measure may not be well defined.

1.3 An application of Young and DiPerna-Majda the-
ory

1.3.1 An overview on the commonly used methods

In the same spirit of seeking conditions related to sequential lower semicontinuity of (1.1)
as above, one of the aims of my studies is that of determining the asymptotic behaviour of
families of problems as in (1.1), arising from applications in Material Science, Elasticity, par-
ticularly related to Optimal Design, Modelling of Thin Structures. In fact, in the framework
of Elasticity, given a family of functionals {Ifν}ν , defined as

Ifν (u)
def
==

∫
Ω

fν(Du)dx, (1.6)

where Ω is the reference configuration, u is the deformation (or displacement), and fν the
stored energy density, under suitable boundary conditions and given loads, the minimal
configurations uν , if any, represent the equilibrium states.

Clearly, if there is a lack of lower semicontinuity in (1.6), these equilibria may not exist
but it is useful for applications to understand if the family of almost minimizers {uν} admits
some cluster points u, with respect to a suitable topology. Moreover, one wants to determine
which minimum problem u solves, namely one wants to detect a suitable functional Ifν such
that

uν ⇀ u⇒ Ifν (u) ≤ lim inf Ifν (u
ν). (1.7)
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In principle, given certain convergences, the functional Ifν may not even exist, or it may not
be of integral type (see [28, Theorem 4.3.2]) and not even related to any pointwise limit f of
fν (even in case fν is a constant sequence, as it is shown in [108]).

Here we would like to stress that the main role in the technical parts of the proofs of re-
lated relaxation results is played by variants of decomposition lemma, which seems to be the
mostly applied tool when dealing with the notion of equiintegrability. In all the proofs of De-
composition Lemma the classical Young Theorem is exploited (see for example [23,24,26,64]
or [104] in the Orlicz setting). The lemma has been sharpened in the literature (see [89]) with
the use of more general, DiPerna-Majda measures. Also, the control of concentration effects
was proposed in [64]. On the other hand, the key role in the formulation of the result is played
by the notion of quasiconvexity and quasiconvexifications, which were investigated in Chap-
ter 2. As energies coming from elasticity (also in the context of compensated compactness)
are very often convex, Orlicz spaces seem to be a natural habitat for such considerations.

1.3.2 The Optimal Design Problem

The model I will focus on is the following optimal design problem

inf
v∈W 1,M (Ω(ε);R3)

χE(ε)∈BV (Ω(ε);{0,1})

{
1
ε

( ∫
Ω(ε)

(
χE(ε)W1 + (1− χE(ε))W2

)
(∇v)dx−

∫
Ω(ε)

f̂ · v dx

+αP (E(ε); Ω(ε))
)

: v = 0 on ∂ω × (−ε, ε), 1
L3(Ω(ε))

∫
Ω(ε)

χE(ε) dx = λ
}
,

(1.8)
where

β′ (M(|ξ|)− 1) ≤ Wi(ξ) ≤ β(1 +M(|ξ|)) ∀ξ ∈ R3×3, i = 1, 2, for suitable β ≥ β′ > 0.
(1.9)

where M is an Orlicz convex function, which, for some technical reasons, satisfies the ∇2 and
∆2 conditions (see (4.6) and (4.5) respectively). E (ε) ⊂ Ω (ε) is a measurable subset of Ω(ε)
with finite perimeter. We assume that

P (E(ε); Ω(ε))
def
== sup

{∫
E(ε)

divϕdx : ϕ ∈ C1
c (Ω(ε);R3), ‖ϕ‖L∞ ≤ 1

}
< +∞, (1.10)

and the load f̂ ∈ LM
∗
(Ω(ε);R3), where M∗ is the complementary (conjugate) Orlicz N -

function of M .
In order to study the asymptotic behaviour we first rescale the problem in a fixed 3D

domain and then we perform Γ−convergence with respect to the pair (deformation, design
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region). Thus one performs 1
ε
−dilation in the transverse direction x3. Set

Ω
def
== ω × (−1, 1), Eε

def
== {(x1, x2, x3) ∈ Ω : (x1, x2, εx3) ∈ E(ε)} ,

u(x1, x2, x3)
def
== v(x1, x2, εx3), f (x1, x2, x3)

def
== f̂(x1, x2, εx3),

χEε (x1, x2, x3)
def
== χE (ε)(x1, x2, εx3), (1.11)

where v is any admissible field for (1.8).
In the sequel we will denote xα

def
== (x1, x2), dxα

def
== dx1dx2 and ∇α and Dα will be

identified with the pair (∇1,∇2) , (D1, D2) , respectively.
Note that by (1.10) and by the definition of total variation,

P (E (ε) ; Ω (ε)) =
∣∣DχE(ε)

∣∣ (Ω (ε)) .

By the change of variables y3
def
== εx3 and yα

def
== xα we have

1

ε

∣∣DχE(ε)

∣∣ (Ω(ε)) =

∣∣∣∣(Dαχε

∣∣∣∣1εD3χε

)∣∣∣∣ (Ω),

where χEε denotes the characteristic function of Eε, that in the sequel we will denote simply
by χε. Hence we are lead to a rescaled minimum problem that, up to a dilation of 1

ε
can be

studied, introducing the functional in(1.12) below.
For every ε > 0, let Jε : L1(Ω; {0, 1})×Lp(Ω;R3)→ [0,+∞] be the functional defined as

follows

Jε(χ, u)
def
==


∫

Ω

(
χW1

(
∇αu

∣∣1
ε
∇3u

)
+ (1− χ)W2

(
∇αu

∣∣1
ε
∇3u

))
dx

−
∫

Ω

f · udx+ α

∣∣∣∣(Dαχ

∣∣∣∣1εD3χ

)∣∣∣∣ (Ω) in BV (Ω; {0, 1})×W 1,M(Ω;R3),

+∞ otherwise.
(1.12)

I emphasize that if the constant α is = 0 (i.e. no penalization of the interfaces) then the
asymptotic analysis will be very different, and the weak-? convergence in the sense of measures
for χ′s will be replaced by a the weak-? convergence in L∞ with limit θ ∈ L∞(Ω; [0, 1]) and
not anymore a BV function.

Such models were considered in the contexts of conductivity, chemotaxis or elasticity by
several marvellous mathematicians, including Irene Fonseca [59,60], Robert Kohn [101,119],
Pablo Pedregal [60] or Elvira Zappale [34, 35,105], to name a few.

The general Orlicz growth was considered in [114–116], where the non-power growth was
considered, but still in case of a function M satisfying ∆2 and ∇2 conditions. They studied
lower weak semicontinuity of variational functionals. In [104, 105] we managed to retrieve
certain representation formula for Γ-limit from [34] in similar setting, that is for energy
densities of the Orlicz growth. We believe however, that even this required conditions for
growth (namely ∆2) may be still weakened.
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We stress that the notion of quasiconvexification, one of the main topics in Chapter 2,
naturally rises in the definition of the functional J0 (see (4.28)), which happens to be the
Γ− lim of Jε, as it is proven in Theorem 4.4.2.



Chapter 2

Tetrahedral polyconvexity

2.1 Introduction

One of the most challenging problems in the modern multidimensional calculus of variations
is the so-called rank-one conjecture of Morrey which reads as follows. Let us consider the
classical functional of the calculus of variations:

If̃ (u) =

∫
Ω

f(Du)dx,

where Ω ⊆ Rn, u : Ω → Rm, u = (u1, . . . , um), ui ∈ W 1,∞(Ω), i = 1, . . . ,m, Du =
(∇u1, . . . ,∇um) ∈ Rn×m. One asks about the characterization of the space of admitted
functions f such that the functional If is sequentially lower semicontinuous with respect to
the sequential weak-? convergence of its arguments (gradients) in L∞(Ω,Rn×m) (to abbrevi-
ate let us call this property shortly sw ?−lsc). In the paper [127] Morrey proved that If is
sw?− lsc if and only if it satisfies the following condition called the quasiconvexity condition:

1

|Q|

∫
Q

f(A+Dφ)dx ≥ f(A), (2.1)

whenever φ ∈ C∞0 (Ω,Rm), A ∈ Rn×m is an arbitrary matrix and Q is an arbitrary cube in
Rn. The quasiconvexity condition seems to be impossible to be verified in practice. There-
fore it is natural to ask if there are some geometric conditions which are equivalent to the
quasiconvexity condition (2.1). It was proven by Morrey in 1952 [127] that every quasiconvex
function is convex in the directions of rank-one matrices and this property is called nowa-
days rank-one property. He conjectured (to be more precise he had expressed his doubts)
that rank-one property is equivalent to the quasiconvexity condition. Since that time this
conjecture is called rank one conjecture of Morrey. It required 40 years when this conjecture
was disproved by Šverák [146] in cases m ≥ 3, n ≥ 2, while up to nowadays the conjecture is
open in the remaining cases, which reduce to m = n = 2.

17
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Many famous authors contributed further to that challenging question, like, among others,
Alibert [7], Ball [17], Murat [18], Dacorogna [41–44], Kristensen [108, 109], Marcelini [120],
Morrey [127, 128], Müller [131, 132], Pedregal [135, 136, 138] and Šverák [138, 144–146]. We
also refer to e.g. [13,36,55,72,110,133,143,153,154]. Iwaniec in [77] has pointed out the strong
relation between Morrey’s conjecture and some important open problems in the theory of
quasiconformal mappings (see also the paper by Astala [12]). Šverák has shown in [147] that
quasiconvexity is strongly related to compactness properties of approximate solutions of the
system Du ∈ K.

We are interested in geometric conditions which could be helpful for better understanding
the quasiconvexity condition.
For this, we consider the case m = n = 2 and the special subset in the space of gradients,
namely, denoting z = (x, y)

u(z) = ξ1R(ξ1 · z) + ξ2S(ξ2 · z) + ξ3T (ξ3 · z) =: u1(z) + u2(z) + u3(z), where

ξ1 = (1, 0), ξ2 = (0, 1), ξ3 = (1, 1)

and R, S, T : R→ R are Lipschitz functions, R
′
= r, S

′
= s, T

′
= t. We observe that

Du(z) =
3∑
i=1

Dui(z) = r(x)

[
1 0
0 0

]
+ s(y)

[
0 0
0 1

]
+ t(x+ y)

[
1 1
1 1

]
∼ (r(x), s(y), t(x+ y)).

This way the function tildef defined on 2× 2 symmetric matrices can be identified with the
function f defined on R3 and our original functional reduces to the simpler one

If (v) =

∫
Q

f̃
(
v1(x), v2(y), v3(x+ y)

)
dxdy (2.2)

(here v1 = r, v2 = s, v3 = t). Note that the function v(x, y) = (v1(x), v2(y), v3(x+ y)) belongs
to the kernel of differential operator P = (P1, P2, P3), i. e. Pv = 0, where

P1v =
∂v1

∂y
, P2v =

∂v2

∂x
, P3v =

∂v3

∂x
− ∂v3

∂y
. (2.3)

In particular this reduction step links the problem of quasiconvexity with the problem in
the compensated compactness theory (originated by the pioneering works by Murat [130]
anrd Tatar [149], see also [150]), where one investigates the sw ?−lsc-property of functionals
defined on functions which lie in the kernel of the given differential operator P . In the special
case when P is the rotation operator one deals with gradients. The rather well understood
case is the case when operator P satisfies the so-called constant rank condition (we refer
to Braides, Fonseca and Leoni [25], Fonseca and Kinderlehrer [61], Fonseca and Müller [63].
For the cases when the constant rank condition might not be satisfied we refer to [79, 80]
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and their further extensions (involving many applications), like [82, 83] by Kałamajska. For
recent works in this direction we refer also to [10,140] and to references enclosed therein. We
emphasize that our operator P given by (2.3) does not satisfy constant rank condition, i.e.
it deals with the case which is less understood.

Let us skip this general approach and concentrate on the very special functional given by
(2.2) which will be called the functional of the type (2, 3). Integrands which define sw ?−lsc
functional well be called (2, 3) quasiconvex.

As there are no constraints on the involved functions v1, v2, v3 in (2.2), we thought that
similarly as in the case of the classical unconstrained functional, one could expect that the
sw ? −lsc property of this functional can be expressed by the purely geometric constraints.
The candidate for such geometric condition was found by first author in the paper [84]
(Theorem 3.1, see also [37, 137] for the related issues). The condition has to be verified on
three dimensional oriented simplex’es (oriented tetrahedrons) by the purely geometric means.
To be more precise, in Theorem 3.1 in [84] it was shown that if f̃ defines the functional (2.2)
with the sw?−lsc property then it necessarily must satisfy the two conditions and one of the
conditions has purely geometric interpretation. We omit the formulation of the second one,
which is not that directly geometric, and focus on first one only. It says the following. Having
given an arbitrary tetrahedronD ⊆ R3 with three edges paralel to the axis and the polynomial
Pf from seven dimensional space of polynomials A = span{1, x1, x2, x3, x1x2, x1x3, x2x3} such
that f = Pf in every corner of D and its three neighbours (we omit their definition, such Pf
is defined uniquely), one has

f ≤ Pf inside D.

This property serves as the version of the maximum principle for f . We will call this condition
weak tetrahedral convexity condition.

We address the following questions:

Question A Is the weak tetrahedral convexity condition equivalent to the (2, 3) quasicon-
vexity condition, i.e. lower semicontinuity of the related functional?

Question B Are there some other simple geometric conditions which guarantee sw ? −lsc
property of the related functional (2.2), i.e. (2, 3) quasiconvexity?

In this chapter we try to approach them. We did not succeed in answering Question A.
However, when looking for some other simple geometric conditions, we have introduced an-
other geometric condition called tetrahedral polyconvexity condition, similarly as one deals
with polyconvexity condition in the calculus of variations [17]. Trying to approach both
questions, we have shown that tetrahedral polyconvexity condition is not equivalent to (2, 3)
quasiconvexity. For this we use the tool known in the calculus of variations, namely fourth
order polynomial constructed by Alibert and Dacorogna in [7] and embedding of our special
functions v in (2.2) into the space of gradients. Main statement in this direction, where
we compared several convexity type conditions useful for understanding Question A, is for-
mulated in Theorem 2.3.3. Moreover, we have shown that weak tetrahedral polyconvexity
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condition is the non-local one, i.e. it cannot be expressed by conditions which hold in an
arbitrary small neighbourhoods of points. This is done by adapting to our setting the tech-
nique of Kristensen from [109], which is known in the calculus of variations, showing that
polyconvexity is not the local condition. The adaptation required perhaps not so automatic
modification of the Carathéodory Theorem (Theorem 2.4.4). Main statement about the
non-locality is formulated as Theorem 2.5.2.

We hope that the presented issue will contribute to the discussion of the quasiconvex-
ity condition in the calculus of variations, as well as will indicate on some new interesting
questions in pure geometry.

The chapter is based on the joint work with Agnieszka Kałamajska [90]. The part delivered
solely by the author contains proofs, as well as the whole section devoted to Carathéodory
type theorem. The estimated contribution is 70%.

2.2 Preliminaries and basic notation

2.2.1 Functions of the type (2,3)

In this section we will be dealing with the following set of functions.

Definition 2.2.1 (Function of the type (2, 3)). Let Ω be an arbitrary open subset of Rn.
Function u : Ω→ R3 having the form

u(z) =

(
r
(
z · ξ1

)
, s
(
z · ξ2

)
, t
(
z · ξ3

))
,

where (ξi)
3
i=1 is a triple of vectors from Rn which is pairwise independent, but dependent

as a triple, a · b stays for a standard scalar product of the vectors a, b and r, s, t are scalar
functions of one variable, will be called function of the type (2,3) defined on Ω.

Justification of this notion comes from the fact that we deal with two variables (z may
be here a vector from Rn, however a function is dependent only on its projection to a two
dimensional plane: span {ξ1, ξ2, ξ3}) and three functions. As an example of such function we
may consider function

v(x, y) =

(
r(x), s(y), t(x+ y)

)
, where (x, y) ∈ Ω ⊆ R2.

Functions of the form v(x, y) = (r(x), s(y), t(x + y)) and Ω ⊆ R2 will be called a special
(2,3) functions.

However not defined so far, functions of that type appear in several papers in calculus of
variations as a tool to investigate quasiconvexity condition ( [37, 135]).

In our considerations we will use the fact that functions of the type (2, 3) can be canoni-
cally embedded into the space of symmetric gradients. Let us explain how it is done.
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For this we will use the convention:

Dv =


∂v1

∂x1
. . . ∂v1

∂xn
... . . . ...

∂vm
∂x1

. . . ∂vm
∂xn


where v = (v1, . . . , vm) : Ω→ Rm is vector-valued function and Ω ⊆ Rn.

Let r, s, t : R → R be given scalar one-variable bounded functions and R, S, T be their
absolutely continuous primitives (so Lipschitz), i.e. R′ = r, S ′ = s, T ′ = t. Consider u : Ω→
Rn such that for any z ∈ Ω

u(z) = ξ1R(ξ1 · z) + ξ2S(ξ2 · z) + ξ3T (ξ3 · z) =: u1(z) + u2(z) + u3(z).

Then we obtain

Du(z) = ξ1 ⊗ ξ1r(ξ1 · z) + ξ2 ⊗ ξ2s(ξ2 · z) + ξ3 ⊗ ξ3t(ξ3 · z) =
3∑
i=1

Dui(z). (2.4)

Taking n = 2 and

ξ1 = (1, 0), ξ2 = (0, 1), ξ3 = (1, 1),

we may consider the special subsets in the space of gradients:

Du = Du1 +Du2 +Du3, where

u1(x, y)
def
== (R(x), 0), u2(x, y) := (0, S(y)), u3(x, y) := (T (x+ y), T (x+ y)), (2.5)

Du = r(x)

[
1 0
0 0

]
+ s(y)

[
0 0
0 1

]
+ t(x+ y)

[
1 1
1 1

]
. (2.6)

∼
(
r(x), s(y), t(x+ y)

)
.

In particular, function of the type (2, 3) is embedded into the space of symmetric gradients.
We arrive at a following observation.

Proposition 2.2.2. Any special function of the type (2, 3) may be uniquely identified with a
gradient of a certain function u : Ω → R3, u = u1 + u2 + u3 defined by (2.5) via expression
(2.6).

We will consider r, s, t ∈ L∞(R), so that R, S, T are Lipschitz. In fact, for the definition
of a function of a type (2, 3) we only need to know the values on projections of Ω into three
lines along ξ1, ξ2, ξ3 respectively. Note that any Lipschitz function defined on a closed subset
may be extended to a Lipschitz function on whole RN with no change of Lipschitz constant
by the Kirszbraun theorem (see [2] or [98] in German).
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2.2.2 Functionals of the type (2,3)

We start with recalling the definition of special functionals from [84].

Definition 2.2.3 (Functional of the type (2, 3)). Let Ω be an open subset of Rn, ξ = (ξi)
3
i=1

be a triple of vectors belonging to Rn which are linearly dependent and pairwise independent.
Let

v(z) =

(
r
(
z · ξ1

)
, s
(
z · ξ2

)
, t
(
z · ξ3

))
be given function of the type (2, 3).

A functional of the form

If (v, ξ) =

∫
Ω

f
(
r(z · ξ1), s(z · ξ2), t(z · ξ3)

)
dz

will be called a functional of the type (2,3), while a functional of the form

If (v) =

∫
Ω

f
(
r(x), s(y), t(x+ y)

)
dxdy, where (x, y) ∈ Ω ⊆ R2

will be called the special functional of the type (2,3).

A crucial problem for us is the investigation of lower semicontinuity property of such
functionals with respect to weak-? convergence of v′s in L∞(Ω,R3). For this we use the
following definition.

Definition 2.2.4 (weak-? lower semicontinuity, weak-? continuity).

(i) A functional of the type (2, 3) is lower semicontinuous with respect to the sequential
weak-? convergence in L∞(Ω,R3) whenever for any sequence vν ?

⇀ v (i.e. vν weak-?
converges to v in L∞(Ω,R3)) of the functions of the type (2, 3) we have

lim inf
ν→+∞

If (v
ν , ξ) ≥ If (v, ξ).

To abbreviate we will call this condition the (2,3) LSC property. Those integrands
which define functionals having the (2, 3) LSC property will be referred as (2,3)
quasiconvex.

(ii) If lim inf
ν→+∞

If (v
ν , ξ) = If (v, ξ) whenever vν ?

⇀ v, we say that If is weakly-? continuous

with respect to the sequential weak-? convergence in L∞(Ω,R3) of the functions of the
type (2, 3). Integrands defining such functionals will be referred as (2,3) quasiaffine.

The weak-? convergence of the vν ’s is equivalent to convergence of functions building their
coordinates: rν , sν , tν with respect to weak-? convergence in L∞ on the respective projections
of set Ω onto the lines. Moreover, the limiting function v is also of the type (2, 3).
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Let us note that the non-abstract description of set of (2, 3) quasiconvex functions has
not been systematically investigated.

From the following fact stated below, it follows that the lower semicontinuity of any
functional of the type (2, 3) reduces to the case of Ω = [0, 1]2 and ξ1 = (1, 0), ξ2 = (0, 1), ξ3 =
(1, 1).

Fact 2.2.5 (Lemma 2.2 in [84]). Let f be a continuous function f : R3 → R. The following
conditions are equivalent.

i) For Q = [0, 1]2 the special functional

If (v) =

∫
Q

f
(
r(x), s(y), t(x+ y)

)
dxdy (2.7)

is lower semicontinuous with respect to weak-? convergence of r, s, t in L∞(R).

ii) For any domain Ω ⊂ RN and arbitrary triple of vectors ξ = (ξi)
3
i=1 which are pairwise

independent, but linearly dependent as a triple, the functional If (v, ξ) is lower semicon-
tinuous with respect to weak-? convergence of r, s, t in L∞(R).

In formulation of part (i) Lemma 2.2 in [84] one dealt with a fixed cube, however an easy
translation and dilation argument shows that the statement in the lemma is equivalent to
the one above.

According to Proposition 2.2.2 an arbitrary special functional of the type (2, 3) can be
uniquely identified with certain functional defined on the subset of gradients given by (2.6):

If (v) =

∫
Ω

f(r(x), s(y), t(x+ y))dxdy =

∫
Ω

f̃(Du1 +Du2 +Du3),

where the ui’s were defined in (2.5) and

f(r, s, t) = f̃

(
r

[
1 0
0 0

]
+ s

[
0 0
0 1

]
+ t

[
1 1
1 1

])
def
=: f̃

([
r + t t
t s+ t

])
, (2.8)

f̃ is defined on span
{[

1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 1
1 1

]}
= M2×2

sym

and we use the standard notation M2×2 ∼= R4 to denote 2× 2 matrices and M2×2
sym to denote

symmetric 2× 2 matrices.

2.2.3 Convexity-type conditions

It is not obvious whether there is a geometric interpretation of (2, 3) quasiconvex functions.
To understand it better we discuss here several convexity-type conditions of geometric type
for functions f : R3 → R.

For this we will start with introducing some geometric and algebraic objects we will deal
with.
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Definition 2.2.6 (Regular symplex). Let p be a point in R3 and {ti}3
i=1 be nonzero real

numbers and (ei)
3
i=1 the standard R3 basis. We will call a symplex D regular, whenever D

is the convex hull of four points: p, {p+ tiei}3
i=1, for some p, {ti}3

i=1.

Such a D is obviously a tetrahedron with vertices p, {p + tiei}3
i=1, having three edges

parallel to the axis.
Every regular symplex D defines a cuboid, which has eight vertices, i.e. p, {p + tiei}3

i=1,
{p+ tiei + tjej}i 6=j, p+

∑
tiei. For any vertex q of that cuboid let us define the neighbours

of q - that is those vertices which are linked with q by a single edge.
We introduce the seven dimensional subspace of polynomials

A def
== span {1, r, s, t, rs, rt, st}.

Folowing [84], having given regular symplex D, we define the projection operator PD :
C(R3)→ A by choosing for any continuous function f such PDf ∈ A that the equality

PDf(r, s, t) = f(r, s, t),

holds in every vertex in D and all its neighbours.
Note that vertices p, {p + tiei}3

i=1 and their neighbours {p + tiei + tjej}i 6=j form a set
of seven points - vertices of the cuboid defined by D apart from p +

∑3
i=1 tiei. As A is

seven-dimensional and those seven points are affinely independent, Kronecker-Capelli theo-
rem shows that PDf is uniquely defined.

We will deal with the following convexity-type conditions, which contribute to the under-
standing of (2,3) quasiconvexity condition.

Definition 2.2.7 (Convexity-type conditions). The function f : R3 → R will be called

(i) tetraaffine, whenever f is a polynomial belonging to the linear space A;

(ii) weakly tetrahedrally convex, whenever the inequality

f(r, s, t) ≤ PDf(r, s, t)

holds for every point (r, s, t) ∈ D and any regular symplex D.

(iii) tetrahedrally polyconvex if there exists convex function g : R6 → R such that

f((x1, x2, x3)) = g ◦ e((x1, x2, x3))

where e : R3 → R6 is an embedding given by

e((x1, x2, x3)) = (x1, x2, x3, x1x2, x1x3, x2x3);
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(iv) reduced polyconvex if there exists convex function g : R4 → R such that

f((x1, x2, x3)) = g ◦ i((x1, x2, x3))

where i : R3 → R4 is an embedding given by

i((x1, x2, x3)) =

(
x1, x2, x3, det

[
x1 + x3 x3

x3 x2 + x3

])
.

For any convexity type condition C a class of C−affine functions is understood as functions
f such that both f and −f satisfy C. This way we will deal with weakly tetrahedrally affine,
tetrahedrally polyaffine and reduced polyaffine functions, respectively.

The following remark is in order.

Remark 2.2.8.

(i) Tetraaffine functions have appeared in the paper [84]. The following Proposition has
been obtained there.

Proposition 2.2.9. [84, Corollary 3.4] The function f : R3 → R is tetraaffine if and
only if it is (2, 3) quasiaffine.

(ii) The weak tetrahedral convexity was one of the two conditions established in [84], which
together were called ”tetrahedral convexity”. That is the motivation of adding the
word ”weak” in the above definition. The following statement follows from Theorem
3.2 obtained in [84]. In the formulation we omit the second condition obtained there.

Proposition 2.2.10. If f is (2, 3) quasiconvex then f is weakly tetrahedrally convex.

(iii) The notions of tetrahedral polyconvexity and reduced polyconvexity are related to the
classical notion of polyconvexity condition due to Ball [17]. In case of functions defined
on 2 × 2 matrices, function F is called polyconvex, if there exist the convex function
G : M2×2 × R → R such that F = G ◦ E and E(X) = (X, detX) for any matrix
X ∈M2×2.

Define I : R3 →M2×2
sym be the isomorphism given by

I(x1, x2, x3) =

(
x1

[
1 0
0 0

]
+ x2

[
0 0
0 1

]
+ x3

[
1 1
1 1

])
=

[
x1 + x3 x3

x3 x2 + x3

]
.

Let us now define another isomorphism J : M2×2
sym × R→ R4 by

J

([
r + t t
t s+ t

]
, x

)
= (r, s, t, x).
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For any symmetric matrix M and real number x we have

J(M,x) = (I−1(M), x) and J ◦ E ◦ I(r, s, t) = i(r, s, t).

Therefore, when f is reduced polyconvex, we have f(r, s, t) =

g ◦ i(r, s, t) = (g ◦ J) ◦ E ◦
(
I(r, s, t)

)
= G ◦ E

(
I(r, s, t)

)
= F ◦ I(r, s, t),

involving convex function g, where G = g ◦ J is convex and F = G ◦E is polyconvex in
the classical sense. As I was a linear isomorphism between R3 and M2×2

sym, f is identified
through I with the classical polyconvex function reduced to the space of symmetric
matrices.

(iv) The equality

det

[
r + t t
t s+ t

]
= rs+ rt+ st (2.9)

shows that det ◦I is a tetraaffine function. It is also a reduced polyaffine function,
i.e. such function f that both f and −f are reduced polyconvex.

The following proposition characterises tetrahedrally polyconvex functions as supremas of
tetraaffine polynomials. Note that this is a similar concept to convexity (resp. polyconvexity)
- that is being a supremum of some family of affine (resp. quasiaffine) functions.

Proposition 2.2.11. Function f is tetrahedrally polyconvex if and only if it is equal to
supremum of some family of tetraaffine functions.

Proof. Let F be a family of tetraaffine functions such that

∀(r, s, t) ∈ R3, sup
p∈F

p(r, s, t) < +∞.

Then P (r, s, t) = sup
p∈F

p(r, s, t)

is tetrahedrally polyconvex. It’s easy to check, as the function

g(r, s, t, x, y, z) = sup
p∈F

(a0 + a1r + a2s+ a3t+ a4x+ a5y + a6z)

(where coefficients (ai)
6
i=0 are such that (a0 + a1r + a2s + a3t + a4rs + a5rt + a6st) ∈ A) is

convex (because g is a supremum of the affine functions) and P = g ◦ e (obvious from the
definition of g and e).

For the inverse notice that the function g from the tetrahedral polyconvexity definition,
as a convex function, always needs to be supremum of affine functions (in 6 coordinates) and
thus, after embedding e, any tetrahedrally polyconvex function needs to be a supremum of
tetraaffine functions.
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Our next statement compares the introduced convexity conditions.

Lemma 2.2.12. Let f : R3 → R be the given continuous function. Then the following
implications hold:

f is reduced polyconvex
(1)⇒ f is tetrahedrally polyconvex

(2)⇒ f is (2, 3) quasiconvex
(3)⇒ f is weakly tetrahedrally convex

(4)⇒ f is convex along the axis.

Moreover, the inverse implications to (1) and (4) do not hold.

In the following section we will show that the inverse implication to (2) also does not
hold.

Proof.

”
(1)⇒” Assume there exists a convex function G : M2×2

sym×R→ R such that, under the notation
from Remark 2.2.8 we have

G(A, detA) = G ◦ E(A) = F (A) and f = F ◦ I.

We construct the projection π : R3 × R3 →M2×2
sym × R by

π([r, s, t], [x, y, z])
def
=

([
r + t t
t s+ t

]
, x+ y + z

)
.

Function π is affine and π ◦ e(r, s, t) =

π(r, s, t, rs, rt, st) =

([
r + t t
t s+ t

]
, det

[
r + t t
t s+ t

])
= E ◦ I(r, s, t),

because of (2.9). Thus g := G ◦ π is a convex function and

g ◦ e = G ◦ π ◦ e = G ◦ E ◦ I = F ◦ I = f,

as required for tetrahedral polyconvexity.

”
(1)

6⇐” Let f(r, s, t) = rs. To verify tetrahedral polyconvexity condition for f it is sufficient
to consider g(r, s, t, x, y, z) := x. Then g is convex and g ◦ e(r, s, t) = rs = f(r, s, t).
However f is not reduced polyconvex. We will proceed with a contradiction. Assume
there exists a convex function G : R4 → R such that G◦E = f. Therefore G(r, s, t, rs+
rt+st) = rs. As G is convex, it is bounded from below by an affine function h : R4 → R,

h(r, s, t, x) = h0 + h1r + h2s+ h3t+ h4x.
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We have then for every r, s, t, that

h ◦ E(r, s, t) = h(r, s, t, rs+ rt+ st) ≤ rs = G ◦ E(r, s, t) = f(r, s, t).

in particular we have that h(r, 0, t, rt) = h0 + h1r + h3t + h4rt ≤ rs. Taking r = 0,
from arbitrariness of t it follows that h0 ≤ 0, h3 = 0. Furthermore, h(r, s, 0, rs) =
h0 + h1r+ h2s+ h4rs ≤ rs. Taking s = 0 shows that h1 = 0. Analogously taking r = 0
shows that h2 = 0. We obtain now that h0 + h4rs ≤ rs for any r, s and thus h4 = 1.
So, if there exists such a function h, it is h(r, s, t, x) = h0 + x for some nonpositive h0.
Thus

h ◦ E(r, s, t) = h0 + rs+ rt+ st ≤ rs

for any r, s, t. Taking now however r = s = t we obtain h0 + 3r2 ≤ r2 which obviously
doesn’t hold for any h0.

”
(2)⇒” It’s easy to check that if {fj}j∈J is a family (2, 3) quasiconvex functions, then sup

j∈J
fj

is also (2, 3) quasiconvex. From Proposition 2.2.11 any tetrahedrally polyconvex is a
supremum of some family {pj}j∈J of tetraaffine functions. As any tetraaffine function
pj is (2, 3) quasiconvex, the proof is done.

”
(3)⇒” This implication is just Proposition 2.2.10.

”
(4)⇒” For simplicity let us show the convexity of weakly tetrahedrally convex function f along

the axis e1. Let p1 = (r1, s, t), p2 = (r2, s, t) be two point spanning the line parallel to
e1 axis. Let us prescribe any regular symplex D on the segment connecting points pi.
Now we obtain f ≤ PDf in D, so also on the segment. As PDf is affine along every
axis, we have shown that f is subaffine along e1.

”
(4)

6⇐” Note that the function f(r, s, t) = rst is indeed convex along every axis. It is not
however weakly tetrahedrally convex. To prove that, take simplex D with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) and note that PDf ≡ 0, however p = (1

4
, 1

4
, 1

4
) ∈ D

and f(p) = 1
64
> 0.

More precise statement holds for respective affinity conditions.

Theorem 2.2.13. Let f : R3 → R be the given continuous function. Then the following
implications hold:

f is reduced polyaffine
(1)⇒ f is tetrahedrally polyaffine

(2)⇐⇒ f is (2, 3) quasiaffine
(3)⇐⇒ f is weakly tetrahedrally affine

(4)⇒ f is affine along the axis.

Moreover, the inverse implications to (1) and (4) do not hold.
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Remark 2.2.14. Theorem 2.2.13 shows that the classes of tetrahedrally polyaffine, (2, 3)
quasiaffine and weakly tetrahedrally affine functions are the same and equal to the class of
tetraaffine functions.

Proof of Theorem 2.2.13. Implications to the right are already proven in Lemma 2.2.12. Also
the inverse to (1) is contradicted. Let us here remind that the class of (2, 3) quasiaffine
functions coincide with the class of tetraaffine functions (see Proposition 2.2.9). We will
prove the following implications.

”
(2)⇐” Tetraaffine functions are tetrahedrally polyaffine because any p ∈ A satisfies p = g ◦ e

for certain affine g.

”
(3)⇐” We will prove that a weakly tetrahedrally affine function f must be equal to certain

tetraaffine p on every regular symplex D. This is the case indeed, because on such D we
have f ≤ PDf and −f ≤ −PDf. This however finishes the proof because two tetraaffine
functions equal on any open set are equal in every point.

”
(4)

6⇐” Consider f(r, s, t) = rst. It is affine in the directions of the axis and not tetraaffine.

2.3 Tetrahedral polyconvexity 6⇐ (2,3) quasiconvexity

In our analysis we are interested in functions defined on R3 and the respective integrands,
which define functionals of the type (2, 3). We are now to prove that the inverse implication
to (2) in Lemma 2.2.12 does not hold. For that we benefit from the well-known result
in calculus of variations due to Alibert and Dacorogna [7] (see also [13] for related results).
This is possible due to the canonical embedding of functions of the type (2, 3) into the special
subspace of gradients - see Proposition 2.2.2.

The authors of [7] have introduced the following function f̃γ : M2×2 → R, defined by

f̃γ(A) = |A|2(|A|2 − 2γ detA), (2.10)

where |A| stays for the Euclidean norm of A, i. e.
∣∣∣∣[ a b

c d

]∣∣∣∣2 = a2 + b2 + c2 + d2.

The following theorem holds.

Theorem 2.3.1 (Alibert, Dacorogna [7]). The following statements hold.

a) Function f̃γ defined in (2.10) is convex ⇐⇒ |γ| ≤ 2
3

√
2.

b) Function f̃γ defined in (2.10) is polyconvex ⇐⇒ |γ| ≤ 1 (see Remark 2.2.8 point (iii)).

c) Function f̃γ defined in (2.10) is rank-one convex (i.e. the function t 7→ f̃γ(A + tB) is
convex for any matrix A and any rank-one matrix B) ⇐⇒ |γ| ≤ 2√

3
.
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d) There exists ε > 0 such that If̃γ is lower semicontinuous with respect to the sequential weak-

? convergence of gradients of Lipschitz functions in L∞(Ω,R2)

(
i. e. it has the property:

when {uν} ⊆ W 1,∞(Ω,R2) is a bounded sequence and Duν ?
⇀ Du in L∞(Ω,M2×2), uν → u

in L1(Ω,R2) then lim inf
ν→+∞

If̃γ (Du
ν) ≥ If̃γ (Du)

)
⇐⇒ |γ| ≤ 1 + ε.

Defining A(r, s, t) =

[
r + t t
t s+ t

]
and using identification (2.8) and (2.10) we obtain

fγ(r, s, t) := f̃γ(A(r, s, t)) =(
r2 + s2 + 4t2 + 2(r + s)t

)(
r2 + s2 + 4t2 + 2(r + s)t− 2γ(rs+ rt+ st)

)
.

We will investigate tetrahedral polyconvexity condition for function fγ : R3 → R.

Theorem 2.3.2. Function fγ(r, s, t), is tetrahedrally polyconvex if and only if |γ| ≤ 1.

Proof.

”⇐ ” At first we note that fγ is reduced polyconvex for |γ| ≤ 1 as we have f̃γ = G ◦E under
the notation of Remark 2.2.8 point (iii), where G is convex. We have then that

fγ = G ◦ E ◦ I = G ◦ J−1 ◦ J ◦ E ◦ I =
(
G ◦ J−1

)
◦ i =: G̃ ◦ i,

where G̃ is convex. As reduced polyconvexity implies tetrahedral polyconvexity (see
Lemma 2.2.12) the proof is done.

”⇒ ” Assume on the contrary that there exists γ such that |γ| > 1 and fγ is tetrahedrally
polyconvex. Then there exists an affine function p : R6 → R,

p(r, s, t, x, y, z) := p0 + v · (r, s, t, x, y, z),

where (v1, v2, v3, v4, v5, v6) ∈ R6 is a constant vector and p is such that fγ(r, s, t) ≥
p ◦ e(r, s, t) for any r, s, t. We compute that

fγ(r, cr, 0) = r4(1 + 2c2 + c4 − 2γ(c+ c3)),

p(r, cr, 0, cr2, 0, 0) = p0 + v1r + cv2r + cv4r
2.

This implies the inequality

r4(1 + 2c2 + c4 − 2γ(c+ c3)) ≥ p0 + (v1 + cv2)r + cv4r
2,

holding for every r, c ∈ R. We obviously need a coefficient κγ(c) := (1+2c2 +c4−2γ(c+
c3)) to be nonegative for every c. For γ > 1 we obtain that κγ(1) = 4− 4γ < 0, for γ <
−1 we get κγ(−1) = 4 + 4γ < 0. Therefore fγ cannot be tetrahedrally polyconvex.
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We end up with the following statement, which is the main result in this section.

Theorem 2.3.3. Let f : R3 → R be the given continuous function. Then the following
implications hold:

f is reduced polyconvex
(1)⇒ f is tetrahedrally polyconvex

(2)⇒ f is (2, 3) quasiconvex
(3)⇒ f is weakly tetrahedrally convex

(4)⇒ f is convex along the axis.

Moreover, the inverse implications to (1), (2), (4) do not hold.

Proof. Implications
(1)⇒, (2)⇒, (3)⇒, (4)⇒, as well as

(1)

6⇐ and
(4)

6⇐ have been already established in

Lemma 2.2.12. For the proof of the property
(2)

6⇐ we have to show that there exists a (2, 3)
quasiconvex function that is not tetrahedrally polyconvex. Let γ = 1 + ε as in point d) of
Theorem 2.3.1. Now fγ is (2, 3) quasiconvex due to embedding (2.6). Theorem 2.3.2 shows
however, that fγ is not tetrahedrally polyconvex.

We address the following problem.

Open Problem 2.3.4. We do not know whether the inverse implication to (3) holds.

However the problem is open, let us note that the case is much simpler with bilinear
forms.

Fact 2.3.5. A bilinear form P is convex along each axis if and only if P is tetrahedrally
polyconvex.

Proof. Of course we only need to prove to prove the implication ”⇒”. Let x = (x1, x2, x3) ∈
R3 and P (x) =

∑3
i=1 aix

2
i +

∑
i<j aijxixj =: Q + T be convex along the axis. As T is affine

along the axis, it follows that Q must be convex along the axis. It shows that ai ≥ 0 for any
1 ≤ i ≤ 3. Thus P is equal to the sum of tetrahedrally polyaffine form T and convex form Q.
It is obvious that any convex function is tetrahedrally polyconvex and thus P is tetrahedrally
polyconvex.

2.4 Carathéodory type theorem

Our goal now is to obtain a variant of Carathéodory theorem for tetrahedrally polyconvex
functions. This statement will be needed later to discus the locality properties of tetrahedral
polyconvexity condition. For our analysis we have to define and investigate the tetrahedral
polyconvex envelope of the given function f .

Let us start by recalling the definitions of convex hulls of sets, as well as the classical
Carathéodory theorem.
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Definition 2.4.1 (Convex hull, convex envelope). For any subset X of a linear space V we
define convex hull of X as

CH X
def
=
⋂
{C | C is convex and X ⊆ C}.

For any function f : V → R ∪ {+∞} we define convex envelope of f as

Cf
def
= sup{g(x) | g is convex and g ≤ f}.

We use the convention that sup ∅ = −∞.

Theorem 2.4.2 (Carathéodory Theorem, 1911, [33]). Let X be a subset of Rn and f : Rn →
R ∪ {+∞}. Then

i) CH X = {x ∈ Rn | x =
∑n+1

i=1 λixi, xi ∈ X,
∑n+1

i=1 λi = 1, λi ∈ [0, 1]},

ii) Cf(x) = inf
{∑n+1

i=1 λif(xi) |
∑n+1

i=1 λixi = x,
∑n+1

i=1 λi = 1, λi ∈ [0, 1]
}
.

To proceed further we require the following definition.

Definition 2.4.3 (Tetrahedral polyconvex envelope). For the function f : R3 → R we define
tetrahedral polyconvex envelope via

TPEf(r, s, t)
def
= sup{g(r, s, t) | g is tetrahedrally polyconvex and g ≤ f}.

It is clear that if TPEf 6= −∞, it is then a tetrahedrally polyconvex function. This is
because at the same time TPEf(·, ·, ·) is a supremum of tetraaffine functions.

We are now to prove the variant of part ii) in Carathéodory theorem dealing with tetrahe-
dral polyconvex envelopes of functions. Our arguments are based on variants of Carathéodory
Theorem similar as presented in [41], Chapter 5. For readers convenience we present the proof
in detail, as it contains not so trivial arguments.

Theorem 2.4.4 (Carathéodory Theorem with tetrahedrally polyconvex envelope). Let f :
R3 → R be a given function. Then the following statements hold.

i) The function gf : R6 → R ∪ {−∞} given by

gf (r, s, t, x, y, z)
def
= inf

{
7∑
i=1

λif(ri, si, ti) |
7∑
i=1

λie(ri, si, ti) = (r, s, t, x, y, z)

where {λi}7
i=1 : such that

7∑
i=1

λi = 1, λi ∈ [0, 1]

}
,

is well defined and convex.
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ii) If f is tetrahedrally polyconvex, then

f(r, s, t) = gf (e(r, s, t)) for any (r, s, t) ∈ R3.

Moreover, for any f we have

gf ◦ e(r, s, t) = gf (r, s, t, rs, rt, st) = TPEf.

Proof. ”Part i):”
We begin with constructing desired convex function gf . For integers N ≥ 7 we define

gfN(r, s, t, x, y, z)
def
= inf SN(r, s, t, x, y, z), where we set

SN =

{
N∑
i=1

λif(ri, si, ti) |
N∑
i=1

λie(ri, si, ti) = (r, s, t, x, y, z), λi ∈ [0, 1],
N∑
i=1

λi = 1

}
.

We divide the proof into steps.

Step 1. We show that
CH e(R3) = R6.

Step 2. We prove that gf7 is well defined (and thus also gfN whenever N ≥ 7) and for any
N ≥ 7 we have gfN = gf7

def
= gf .

Step 3. We prove that gf is convex.

Proof of Step 1: Assume than CH e(R3) 6= R6. Thus CH e(R3), as a convex set, lies in some
halfspace of the form

H = {v ∈ R6 | α · v < β}

for some nonzero α ∈ (R6)∗ ∼= R6 and real β. Now e(R3) ⊆ CH e(R3) ⊆ H. To show a
contradiction we will find a triple (r, s, t) such that α · (r, s, t, rs, rt, st) is not less then β. Let
α = (αi)

6
i=1 and i0 be the smallest index i such that αi 6= 0. Assume first that i0 ≤ 3. Let then

(r̄, s̄, t̄) be equal to the ith0 vector of the standard basis of R3. Now e(r̄, s̄, t̄) = (ei0 , 0, 0, 0)
(which is the ith0 vector of the standard basis of R6) and for (r, s, t) = ( β

αi0
(r̄, s̄, t̄)) we arrive

at
α · e(r, s, t) = β,

which contradicts the inclusion e(R3) ⊆ H. For the case where i0 = 4 take (r, s, t) = β
α4

(1, 1, 0)
(so that α and e(r, s, t) meet only in fourth place). Similar reasoning holds for i0 = 5, 6, which
finishes the proof of Step 1.
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Proof of Step 2: To begin let us note that from Carathéodory Theorem (Theorem 2.4.2)
and Step 1 we see that

CH e(R3) = {
7∑
i=1

λie(ri, si, ti),
7∑
i=1

λi = 1, λi ∈ [0, 1]} = R6

and thus gf7 is well defined, that is S7 6= ∅.
Now let us introduce two substeps.
Substep 2A: We prove that for N ≥ 8 we have SN = S8.
Let us recall the definition of the epigraph of a function f :

epif
def
= {(r, s, t, x) ∈ R4 | f(r, s, t) ≤ x}

and define
ê(epif)

def
= {(e(r, s, t), x) | f(r, s, t) ≤ x} ⊆ R7.

Note that (e(r, s, t), f(r, s, t)) ∈ ê(epif), therefore any convex combination of such points
belongs to CH ê(epif).

As ê(epif) ⊆ R7, from Carathéodory Theorem (Theorem 2.4.2) it follows that

CH ê(epif) =

{
8∑
i=1

λi(e(ri, si, ti), f(ri, si, ti) | λi ∈ [0, 1],
8∑
i=1

λi = 1

}
.

It implies that SN ⊆ S8. Indeed, let f̄ =
∑N

i=1 λif(ri, si, ti) ∈ SN(r, s, t, x, y, z) i.e.

N∑
i=1

λie(ri, si, ti) = (r, s, t, x, y, z), λi ∈ [0, 1],
N∑
i=1

λi = 1.

Hence
N∑
i=1

λi(e(ri, si, ti), f(ri, si, ti)) ∈ CH ê(epif).

Therefore there exist {λ̄i}8
i=1 and {(r̄i, s̄i, t̄i)}8

i=1 such that

8∑
i=1

λ̄i(e(r̄i, s̄i, t̄i), f(r̄i, s̄i, t̄i)) =
N∑
i=1

λi(e(ri, si, ti), f(ri, si, ti)).

We obtain f̄ ∈ S8. As sequence of sets SN is nondecreasing, we see that for N ≥ 8 we have
SN = S8. As gfN(r, s, t, x, y, z) = inf SN(r, s, t, x, y, z), we establish gfN = gf8 for any N ≥ 8.

Substep 2B: We show that gf = gf7 = gf8 . It suffices to prove gf7 ≤ gf8 .
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Take any v ∈ R6 = CH e(R3), a sequence {αi}8
i=1 satisfying αi ∈ [0, 1],

∑8
i=1 αi = 1 and

points {(ri, si, ti)}8
i=1 such that

8∑
i=1

αie(ri, si, ti) = v.

From Carathéodory Theorem (Theorem 2.4.2) applied to the set {(ri, si, ti)}8
i=1, there exists

a sequence {βi}8
i=1 satisfying βi ∈ [0, 1],

∑8
i=1 βi = 1 such that at least one of βi vanishes and

8∑
i=1

βie(ri, si, ti) = v.

To finish the proof of this substep it suffices to show that

8∑
i=1

αif(ri, si, ti) ≥
8∑
i=1

βif(ri, si, ti). (2.11)

We may assume that all αis are positive, as otherwise we could take {βi}8
i=1 = {αi}8

i=1.
Assume that this inequality does not hold, i. e.

8∑
i=1

αif(ri, si, ti) <
8∑
i=1

βif(ri, si, ti). (2.12)

In particular the set C := {i ∈ {1, 2, . . . , 8} | βi > αi} is nonempty, because {αi} and {βi}
are two different sequences with equal sum of coefficients. Set now

γ
def
= min

i∈C

{
αi

βi − αi

}
.

Note that γ is positive from the definition of C. Moreover, let

λi
def
= αi + γ(αi − βi).

We have now
8∑
i=1

λi =
8∑
i=1

αi + γ
8∑
i=1

(αi − βi) = 1

and from the definition of γ we have λi ≥ 0 for every i. It follows that every λi ≤ 1 for every
i ∈ {1, . . . , 8}. From the definition of γ it also follows that there exists i such that λi = 0 -
this is exactly index i on which we obtain a minimum in the definition of γ. Furthermore,

8∑
i=1

λie(ri, si, ti) = (1 + γ)v − γv = v, and
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8∑
i=1

λif(ri, si, ti) =
8∑
i=1

αif(ri, si, ti) + γ(
8∑
i=1

(αi − βi)f(ri, si, ti))
(2.12)
<

8∑
i=1

αif(ri, si, ti),

because we assumed
∑

(αi − βi)f(ri, si, ti) < 0 and dealt positive γ. We have shown that
when the inequality (2.11) did not hold with coefficients {βi}, it holds with coefficient {λi}.
This finishes Step 2.

Proof of Step 3: From Step 2 we already know gf = gf7 . We are now to show that for
λ ∈ [0, 1] and any vectors v, w ∈ R6 we have inequality

λgf (v) + (1− λ)gf (w) ≥ gf (λv + (1− λ)w).

From the definition of gf we have that for any ε > 0 there exist (µi)
7
i=1, (νi)

7
i=1 satisfying

µi, νi ∈ [0, 1],
∑7

i=1 µi =
∑7

i=1 νi = 1 and (ri, si, ti)
7
i=1, (r̄i, s̄i, t̄i)

7
i=1 such that

7∑
i=1

µie(ri, si, ti) = v,

7∑
i=1

νie(r̄i, s̄i, t̄i) = w, and

λgf (v) + (1− λ)gf (w) + ε ≥ λ
7∑
i=1

µif(ri, si, ti) + (1− λ)
7∑
i=1

νif(r̄i, s̄i, t̄i).

Defining new sequence as
λi
def
= λµi, λ7+i

def
= (1− λ)νi,

and new points as

(ri, si, ti)
def
= (ri, si, ti), (r7+i, s7+i, t7+i)

def
= (r̄i, s̄i, t̄i), where i = 1, . . . , 7,

we arrive at

λgf (v) + (1− λ)gf (w) + ε ≥
14∑
i=1

λif(ri, si, ti), where

14∑
i=1

λie(ri, si, ti) = λv + (1− λ)w.

Using the definition of gf and the fact that gf = gf14 we get

λgf (v) + (1− λ)gf (w) + ε ≥ gf (λv + (1− λ)w)

and arbitrariness of ε finishes the proof of Step 3 and of Part i).
”Part ii):”
At first we will show that if f is tetrahedrally polyconvex, then f = gf ◦ e.
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For this let us consider a convex function g : R6 → R such that g ◦ e = f. As g is convex we
have that for any choice of points vi ∈ R6

7∑
i=1

λig(vi) ≥ g

(
7∑
i=1

λivi

)
,

where λi ∈ [0, 1] and
∑7

i=1 λi = 1. Taking {λi}7
i=1 and {(ri, si, ti)}7

i=1 such that

7∑
i=1

λie(ri, si, ti) = e

( 7∑
i=1

λi(ri, si, ti)

)
= e(r, s, t) (2.13)

shows that
7∑
i=1

λif(ri, si, ti) ≥ f

(
7∑
i=1

λi(ri, si, ti)

)
= f(r, s, t). (2.14)

Taking infimum over all possible coefficients {λi}7
i=1 and points {(ri, si, ti)}7

i=1 satisfying
(2.13), (2.14) and using the definition of gf we obtain gf (e(r, s, t)) ≥ f(r, s, t). As we obvi-
ously have gf (e(r, s, t)) ≤ f(r, s, t), we obtain gf ◦ e = f.

To prove the second statement note that gf ◦ e is tetrahedrally polyconvex, because gf

is convex. What is left is to establish that gf = TPEf. From the definition of TPEf and
tetrahedral polyconvexity of gf ◦ e, we have that gf ◦ e ≤ TPEf, because gf ◦ e ≤ f. Observe
that the following monotonicity property holds: when h ≤ f we have gh ≤ gf . Moreover,
from the already established first statement in this part, h 7→ gh ◦ e is a projection onto
tetrahedrally polyconvex functions. Therefore we have h = gh ◦ e ≤ gf ◦ e, whenever h ≤ f
and h is tetrahedrally polyconvex. Taking h = TPEf finishes the proof.

We end this section with the following characterisation of tetrahedrally polyconvex func-
tions, which is the consequence of the Theorem 2.4.4.

Corollary 2.4.5. Let f : R3 → R be the given function. The following conditions are
equivalent:

a) f is tetrahedrally polyconvex;

b) for any (r, s, t) ∈ R3, any coefficients {λi}7
i=1 such that

∑7
i=1 λi = 1,

λi ∈ [0, 1] and any triples of real numbers {(ri, si, ti)}7
i=1 such that∑7

i=1 λie(ri, si, ti) = e(r, s, t) the following Jensen-type inequality holds:

f(r, s, t) ≤
7∑
i=1

λif(ri, si, ti).

Proof.
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”a)⇒ b)” We proceed exactly like in the proof of Part ii) of Theorem 2.4.4.

”a)⇐ b)” Having a function f satisfying b), from the definition of the gf in Theorem 2.4.4, Part
i), we see that gf ◦ e = f (while we always have gf ◦ e ≤ f and the converse inequality
follows from b)). As a function gf is convex (see Theorem 2.4.4, Part i), Step 3) the
proof is done.

2.5 Non-locality of tetrahedral polyconvexity

In this section we are going to prove, that there exist no local condition for tetrahedral
polyconvexity. We proceed in a similar way to Kristensen in [109]. We begin with some
definitions, useful in the reasoning.

For f - a function of class C2(R3;R) recall the Taylor formula

f(z + w) = f(z) +Df(z)w +
1

2
D2f(z)(w;w) + ρ(z, w),

where ρ(z, w) is given by

ρ(z, w) =

∫ 1

0

(1− t)
(
D2f(z + tw)(w;w)−D2f(z)(w;w)

)
dt.

We also define function

Λ(r, s) = sup{|D2f(z + w)−D2f(z)| : |z| ≤ r, |w| ≤ s}. (2.15)

The function Λ is defined in such a way that we obtain an obvious estimate, for |z| ≤ r and
any w we have

|ρ(z, w)| ≤ 1

2
Λ(r, |w|)|w|2. (2.16)

We start with the following result.

Lemma 2.5.1. Let f be any function of class C2(R3;R) such that D2f(z)(w;w) ≥ 0 for
any z, w such that |z| ≤ r and w is parallel to one of the axis. Take any ε > 0 and define

δ
def
= 1

2
sup{t ∈ (0, r) : ε ≥ Λ(r, t)}. Then there exists a tetrahedrally polyconvex function g

such that
g(z) = f(z) + ε|z|2 for |z| < δ.

Proof. Define
fε(z) = f(z) + ε|z|2,
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G(z) :=

{
fε(z) for |z| ≤ δ.
sup|w|<δ

(
fε(w) +Dfε(w)(z − w) + 1

2
D2fε(w)(z − w; z − w)

)
for |z| > δ

and g = TPE(G). It’s now obvious that g is tetrahedrally polyconvex and that g ≤ fε for
|z| < δ. To check that g = fε for |z| < δ take any z such that |z| ≤ δ. By Theorem 2.4.4 for
any σ we may choose a convex combination {λjzj}7

i=1 of z such that

e(z) =
∑

λje(zj) (2.17)

and

g(z) + σ >

7∑
j=1

λjG(zj).

From the definition of G it follows that

g(z) + σ >
∑
|zj |≤δ

λjfε(zj) +
∑
|zj |>δ

λj

(
fε(z) +Dfε(z)(zj − z) +

1

2
D2fε(z)(zj − z; zj − z)

)
=
∑
|zj |≤δ

. . .+
∑
|zj |>δ

. . . =: A+B.

Applying Taylor’s formula to fε(zj) in A yields

A =
∑
|zj |≤δ

λjfε(z) +
∑
|zj |≤δ

λjDfε(z)(zj − z)

+
1

2

∑
|zj |≤δ

λjD
2fε(z)(zj − z; zj − z) +

∑
|zj |≤δ

λjρ(z, zj − z),

hence

g(z) + σ >
∑
|zj |≤δ

λjρ(z, zj − z)

+
∑
j

λj

(
fε(z) +Dfε(z)(zj − z) +

1

2
D2fε(z)(zj − z; zj − z)

)
.

From linearity of Df(z) and the fact that z =
∑
λjzj we obtain

g(z) + σ >
∑
|zj |≤δ

λjρ(z, zj − z) + fε(z) +
∑
j

λj

(
1

2
D2fε(z)(zj − z; zj − z)

)
=
∑
|zj |≤δ

. . .+ fε(z) +
∑
j

. . . =: C + fε(z) +D. (2.18)
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Having in mind (2.16) we have

|ρ(z; zj − z)| ≤ 1

2
Λ(r, |zj − z|)|zj − z|2.

Note that for |zj| ≤ δ

|zj − z| ≤ |z|+ |zj|
|z|<δ
< 2δ = sup{t ∈ (0, r) : ε ≥ Λ(r, t)}

and therefore |zj − z| ∈ {t ∈ (0, r) : ε ≥ Λ(r, t)}. Consequently Λ(r, |zj − z|) ≤ ε and
ρ(z; |zj − z|) ≥ −1

2
ε|zj − z|2. It follows that

C ≥ − ε
2

∑
|zj |≤δ

λj|zj − z|2 ≥ −
ε

2

∑
j

λj|zj − z|2.

We also notice that D2fε(z) = D2f(z) + 2εId and so

D =
∑
j

λj

(
1

2
D2f(z)(zj − z; zj − z)

)
+ ε
∑
j

λj|zj − z|2.

Therefore

C +D ≥
∑
j

λj

(
1

2
D2f(z)(zj − z; zj − z)

)
+
ε

2

∑
j

λj|zj − z|2.

What we need is to show that C +D ≥ 0, so that from (2.18) we get

g(z) + σ > fε(z).

Take now any bilinear symmetric form P and note that P (x−y;x−y) = P (x;x) +P (y; y)−
2P (x; y). This shows however that∑

j

λj

(
1

2
D2f(z)(zj − z; zj − z)

)
=
∑
j

λj

(
1

2
D2f(z)(zj; zj)

)
+
∑
j

λj

(
1

2
D2f(z)(z; z)

)
− 2

∑
j

λj

(
1

2
D2f(z)(zj; z)

)
=
∑
j

λj

(
1

2
D2f(z)(zj; zj)

)
+

1

2
D2f(z)(z; z)−D2f(z)(z; z)

=
∑
j

λj

(
1

2
D2f(z)(zj; zj)

)
− 1

2
D2f(z)(z; z).
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From our assumptions P (v) = D2f(z)(v; v) is the bilinear form convex along each axis.
Therefore, from the Fact 2.3.5, it is tetrahedrally polyconvex. According to Corollary 2.4.5
and (2.17) we get the following Jensen-type inequality∑

j

λj
(
D2f(z)(zj; zj)

)
=
∑
j

λjP (zj) ≥ P (
∑
j

λjzj) = P (z) = D2f(z)(z; z),

which concludes the proof.

We end this section with the following result.

Theorem 2.5.2. There exists a function that is not tetrahedrally polyconvex such that its
restriction to any ball of radius one may be extended to a tetrahedrally polyconvex function.

Proof. Let h(r, s, t) = −rst : R3 → R. We note that h is not tetrahedrally polyconvex,
but convex in the direction of each axis (see Lemma 2.2.12). Take now two functions α, β :
[0,∞)→ R, α, β ∈ C1(0,∞) such that

α(t) =


1 for t < 4,
cos2

(
(t− 4)π

2

)
for t ∈ [4, 5]

0 for t > 5,

β(t) =

{
0 for t < 3, 5
(t− 7

2
)2 for t ≥ 3, 5

We consider trunk function ϕδ(t) = δ−1ϕ( t
δ
), where ϕ ∈ C∞0 (R), 0 ≤ ϕ ≤ 1,

∫
ϕ = 1, ϕ ≡ 1

in some neighbourhood of 0 and supp ϕ ⊆ [−1, 1]. Then we set αδ := α ∗ ϕδ, βδ := β ∗ ϕδ.
It is easy to check that there exist k > 0, δ ∈ (0, 1

2
) such that the function g given by

g(z)
def
= h(z)αδ(|z|) + kβδ(|z|)

is smooth and convex in the direction of each axis. It is not tetrahedrally polyconvex. To
confirm that, we use the argument from paper by Šverák [146] and substitute the sequence
uν(x, y) = (cos(2πxν), cos(2πyν), cos(2π(x + y)ν)), Ω = [0, 1]2. Applying the Riemann-
Lebesgue Lemma (see [41], Theorem 1.5) we see immediately that uν ⇀ u = 0 weakly-? in
L∞(Ω,R3). However, a direct computation shows that

lim inf
ν→∞

Ig(u
ν) = −1

4
< Ig(u) = 0, (2.19)

which shows that h is not (2, 3) quasiconvex and consequently it is not tetrahedrally poly-
convex as well. Furthermore, we may find ε > 0 such that

gε(z) = g(z) + ε|z|2
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is not tetrahedrally polyconvex because of minor modification of (2.19). Take now Λ defined
in (2.15) for function f = gε. As gε is smooth and its third derivative has a compact support,
we get that

| ∂2

∂zi∂zj
gε(z + w)− ∂2

∂zi∂zj
gε(z)| = |

∫ 1

0

∇ ∂2

∂zi∂zj
gε(z + θw) · wdθ| ≤ ||∇3gε||∞|w|

and it follows that there exists a constant C such that Λ(r, t) ≤ Ct, where C is independent
on r. In particular, ε ≥ Λ(r, ε

C
) and so for any r

ε

2C
≤ 1

2
sup{t ∈ (0, r) : ε ≥ Λ(r, t)}.

We claim that for fixed z0 there exists a tetrahedrally polyconvex extension of gε from
a ball with center in z0 and of radius ε

2C
. Note that the radius does not depend on z0. The

existence of such extension follows from Lemma 2.5.1, when we substitute gε by a shifted
function

gz0ε (z)
def
= gε(z0 + z),

so that we extend the function gz0ε from the ball centred at 0. Defining now

f(z)
def
= gz0ε (

2C

ε
z)

provides the radius 1 in the extension property and finishes the proof of existence of the
function which is not tetrahedrally polyconvex, having however a tetrahedrally polyconvex
extension from any ball of radius 1.



Chapter 3

Compactifications in DiPerna-Majda
measure Theory

3.1 Introduction

In modern Calculus of Variations a notion of compactification of an Euclidean spaces Rm

gathered a certain weight. We recall that a compactification is a dense embedding into a
compact space. One of the most natural examples is the use of so-called recession function
in relaxing functionals of linear growth, see for example [20,22,35,62]. Let us recall that for
a function f : Rm → R, by its recession function we mean

f∞ : Sm−1 → R; f∞(ϑ)
def
== lim

t→+∞

f(tϑ)

t
.

The existence of the computed limits, as well as the continuity of f∞, typically requires to
be assumed. In other words, Rm – the domain of the integrand f , is compactified precisely
with a unit ball by adding a sphere to Rm. Furthermore, the compactification is designed in

such a way, that
f(u)

1 + |u|
may be extended to a continuous function on a closed unit ball.

Compactifications appear also naturally in the field of DiPerna-Majda measures [86, 92,
111]. Papers dealing with DiPerna-Majda measures at most times assume directly, that
some compactification exists and more – it is metric and separable, as these properties are
often vital for further results. Of course, there also exist several papers in the field of
DiPerna-Majda measures, dealing with the aforementioned compactification by a unit ball,
for example [6, 49].

The following problem appears. Given a subset A ⊆ Rm and a continuous function
f : A → R we need to find a compactification A ′ of A and a dense embedding ϕ : A ↪→ A ′

such that the function f ◦ ϕ−1 : ϕ(A )→ R possesses a continuous extension f̄ : A ′ → R. A
very natural solution to that problem seems to be the classical Čech-Stone compactification
βA . Indeed, every continuous function f : A → R possesses an extension to a continuous

43
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function f̄ : βA → R. Unfortunately, taking a very simple A = {1− 1
n

: n ∈ N} ⊂ [0, 1] we
are delivered a compactification βA non-metrizable, non-second countable and of cardinality
22N (see [53, Corollary 3.6.12] for details). This shows that a more modest construction is
needed to obtain a compactification with metric and visible geometric structure. There are
several approaches towards this problem, due to Gelfand and Naimark [68,69], Engelking [53]
or discussed by Keesling [93], which we will review in Section 3.5.

All the known earlier attitudes require only that A is a subset of an arbitrary Tychonoff’s
space X (see Definition 3.2.2 for the details), which is not necessarily an Euclidean space.
They use abstract arguments, which do not benefit from any knowledge of special properties
of X. We present a variant of a solution to the problem stated above, as well as an easy and
constructive proof in the particular case X = Rm, which is the first of our main results. The
precise formulation is given in Theorem 3.3.2. What is here also some additional quality is a
direct construction of the desired compact space, as well as of a homeomorphic embedding
ϕ : A → A ′. In our case A ′ is proved to be a compact subset of Rm+1 for any single function
f .

In the next step we can consider a countable family F of functions f : A → R and
construct a compactification A ′ ⊂ `2 such that f ◦ ϕ−1 possesses a continuous extension for
every f ∈ F . In particular, our compact space A ′ is metric and separable, as it inherits these
properties from `2. Hence every measure on this set possesses a well-defined support, which
is in general not always the case (see [102]). This important feature was not guaranteed by
the classical methods, which we explain in Section 3.5. A precise and direct construction was
needed for particular applications in Calculus of Variations we had in mind.

To motivate the second of our main results, let us discuss two theorems which may cause
some interest in the field of Calculus of Variations. The first is a variant of Young (DiPerna-
Majda) Theorem for discontinuous integrands – Theorem 3.2.11 due to Kałamajska [86],
see also [85, 87–89] for related results. The theorem shows a representation formula for the
weak-? limit for the sequences of compositions {f(uν)dµ}, where f : Rm → R is a continuous
function on every set Ai, i = 1, . . . , k. It is assumed that the sets {Ai}ki=1 form a partition of
Rm and every Borel set Ai is compactified by some γAi ⊂ RN for some N . The representation
of the limit, given in (3.1), requires an integration of f with respect to some measure over the
remainder γAi \ ϕi(Ai), where ϕi : Ai → γAi is a homeomorphic embedding. In particular,
the Theorem requires a knowledge about the shape of the set γAi, as well as a construction
of an embedding ϕi. Without that we are unable to compute the aforementioned limit of
{f(uν)dµ}. The proof of the Representation Theorem 3.2.11 exploits a distance function on
γAi, while one of other assertions of the statement uses a support of the certain DiPerna-
Majda measure defined on γAi. For purposes of Representation Theorem 3.2.11, we need to
know the precise shape of the compactification, construction of homeomorphic embeddings
ϕi and warranty that γAi are metric spaces. The classical methods are hence not helpful.

Several questions appear around the Representation Theorem from [86]. First doubt is
whether the assumption γAi ⊆ RN decreases the class of integrands f compatible with the
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Representation Theorem. We remind that in Representation Theorem 3.2.11 it is required
for f to be continuously extendable to a function on γAi. In Lemma 3.3.1 we answer that
this assumption may be satisfied by any integrand f and a proper γAi and one may take
N = m+ 1 for Ai ⊂ Rm.

Another question is whether these methods let us investigate a non-studied class of func-
tionals, namely once of the type

∫
Ω
f(x, u(x))dx, i.e. such that the integrand depends not

only on the values of the function u(x), but also on x. In this case we would look for a weak-?
limit of {f(x, uν)dµ}. To proceed with such tasks we require a compactification γRm of Rm –
a target space for functions uν – such that every function ix : p 7→ f(x, p) ∈ R is continuously
extendable to function defined on γRm and the space γRm is independent of x. However, in
further analysis it is required that γRm is metric, separable space (see [85, 87–89, 92]). Ar-
ranging the compactification for every function ix separately it too näıve for that purposes.

In this chapter we present Theorem 3.4.3 – a generalisation of the Representation Theorem
3.2.11, dealing with integrands dependent on x, as well as some sufficient conditions for
integrand f = f(x, u) to admit a proper compactification. This is the second of our main
results.

Let us note that Representation Theorem is related to the classical Convergence Theorem
from Set-valued Analysis – Theorem 3.2.12 [14, Theorem 7.2.1]. The Convergence Theorem
can be used to describe in terms of inclusions the limits of f(uν(x)), where f can be possibly
discontinuous. It assumes that uν is converging almost everywhere to u and f(uν) is weakly
convergent in L1(Ω). It is clear from the proof given in [14, p. 271] that some variants of
Convergence Theorem may be deduced from the Representation Theorem from [86]. For more
precise information see Remarks in [85, p. 4], [86, p. 2], [87, p. 4]. Letting uν(x) converge
strongly to u(x) in Representation Theorem gives us a variant of Convergence Theorem 3.2.12.
This way, contrary to the formulation of Convergence Theorem, we obtain a precise integral
formula instead of an inclusion. In Representation Theorem 3.2.11 only weak convergence
is needed. In Theorem 3.2.11 however we assume some special properties on integrand f ,
while in Theorem 3.2.12 such assumption is not mandatory. It becomes natural to ask for a
theorem working in possibly general setting, so that both Representatrion Theorem 3.2.11 and
Convergence Theorem 3.2.12 become its special cases. Such a generalisation may contribute
to both Calculus of Variations and Set-valued Analysis. This is our desired future application
of the result.

3.2 Preliminaries

3.2.1 Notation

In the chapter we will use several notions and notations. For any subset D of a normed vector
space by conv(D) we will mean the convex hull of D and by conv(D) we will mean the closed
convex hull, that is the closure of conv(D). The function f with the domain D and values in
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T will be denoted by f : D → T. Following [14] and analogously to the previous notation the
function F with the domain D and values in 2T (that is – subsets of T ) will be denoted by
F : D ⇒ T and referred as a multifunction. The space of continuous, real-valued functions
on D will be denoted by C(D). By C0(D) we will mean the subspace of C(D) consisting of
compactly supported functions.

For any topological space T , by M(T ) we will mean the space of finite, signed, Borel
measures defined on T . We recall that the variation of a measure m ∈ M(T ) is a measure
on T defined for any subset S ⊂ T via

|m|(S) = sup
{v∈C(T ),|v|≤1}

∫
S

v(x)m(dx).

Let us recall that the space M(T ) is a normed space with the total variation norm, that
is ||m|| = |m|(T ). For any m ∈ M(T ), by the support of a measure m we will mean the
smallest closed set C ⊆ T such that |m|(T \ C) = 0. The support of a measure m will be
denoted by suppm. The subspace ofM(T ) consisting of positive, probabilistic measures will
be denoted by P(T ).

Let us now recall the standard Lebesgue spaces. Let m ∈ M(T ) and p ∈ [1,+∞). We
will say that the function f : T → R belongs to Lp(T,m) whenever

∫
T

(
f(x)

)p|m|(dx) < +∞
and that f belongs to L∞(T,m), whenever there exist a value v such that |m|({x ∈ T :
f(x) > v}) = 0. We stress that, even when m is a signed measure, the definitions of spaces
and natural norms provided by them are dependent only on the variation measure |m|, which
is a positive measure.

For every m ∈ M(D) and any subset of an Euclidean space D we will say that the
mapping {νx} : D → M(T ), x 7→ νx is weakly-? measureable with respect to m, whenever
for every v ∈ C0(T ) the mapping D → R, x 7→

∫
T
v(λ)νx(dλ) is measureable in the usual

sense; we will write then {νx} ∈ M(D,T,m). Whenever measures νx belong to P(D) for
almost every x, we will write {νx} ∈ P(D,T,m); For any sequence of subsets of an Euclidean
space Dn, we recall the notions of set limits, that is

lim supDn
def
==

⋂
N∈N

⋃
n>N

Dn and lim inf Dn
def
==

⋃
N∈N

⋂
n>N

Dn.

3.2.2 Basic properties of compactifications

In this section we will present basic notions needed to deal with compactifications.

Definition 3.2.1. Let X be a topological space. We say that a topological space γX is a
compactification of X, whenever γX is compact, there exists a homeomorphism ϕ : X→
ϕ(X) ⊆ γX and ϕ(X) is dense in γX.

The sets ϕ(X) and X are often identified in the literature. In this thesis, however, we will
directly distinguish between them to strengthen the role of the embedding ϕ.

Let us now recall the classic definitions of Hausdorff’s and Tychonoff’s spaces.
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Definition 3.2.2. Let X be a topological space. We will say that X is a Hausdorff’s space,
whenever for any pair of points x 6= x′, there exist disjoint open sets U,U ′ such that x ∈ U
and x′ ∈ U ′.

We will say that X is Tychonoff’s space whenever for any closed set F ⊆ X and a point
x ∈ X\F there exists a continuous function f : X→ R such that ∀y∈Ff(y) = 0 and f(x) = 1.

It is clear that any Tychonoff’s space is Hausdorff, while the converse does not hold
(see [53, Example 1.5.6]). The classes are however equivalent in the category of compact
spaces.

Fact 3.2.3 (Theorem 3.1.9 in [53]). Let X be a compact, Hausdorff space. Then X is Ty-
chonoff’s.

Proof. First let us notice that it is sufficient to prove that for every pair of disjoint, closed
sets A,B ⊂ X there exist disjoint open sets U, V such that A ⊂ U,B ⊂ V. Indeed, from Tietz
Theorem [53, Theorem 1.5.11] follows at once, that every space satisfying the mentioned
property is Tychonoff’s.

Let us now fix a ∈ A, b ∈ B and from Hausdorff property let us find open, disjoint sets
Ua,b, Va,b such that a ∈ Ua,b and b ∈ Va,b. Executing this procedure for every a ∈ A gives
us a cover of set A by family

{
Ua,b
}
a∈A. As A is compact, we may choose a finite subcover

and get A ⊂ Ua1,b ∪ Ua2,b ∪ . . . ∪ Uan,b. Define now Ub
def
== Ua1,b ∪ Ua2,b ∪ . . . ∪ Uan,b, Vb

def
==

Va1,b∩Va2,b∩ . . .∩Van,b. This way we obtain disjoint open sets Ub, Vb such that A ⊂ Ub, b ∈ Vb.
Similarly we may execute this procedure for every b ∈ B and choose a finite subcover,
getting B ⊂ Vb1 ∪ Vb2 ∪ . . . Vbk . Keeping in mind that A ⊂ Ub for any b ∈ B, we obtain that
A ⊂ Ub1 ∩Ub2 ∩ . . .∩Ubk . Taking now U

def
== Ub1 ∩Ub2 ∩ . . .∩Ubk and V def

== Ub1 ∩Ub2 ∩ . . .∩Ubk
finishes the proof.

Definition 3.2.4. Let X,Y be topological spaces and f : X → Y – a continuous function.
Let γX be certain compactification of X defined via homeomorphism ϕ : X → ϕ(X) ⊆ γX.
We will say that the function f is admissible for compactification γX, whenever there exists
a continuous function f̄ : γX→ Y such that f̄(x) =

(
f ◦ ϕ−1

)
(x) for every x ∈ ϕ(X).

From the definition of compactification it follows that, whenever f is admissible, the
function f̄ is uniquely determined by f. We will often refer to f̄ as extension of f .

From now on, we will focus our interest in admissibility of real-valued functions, that is
– we take Y = R in the Definition 3.2.4. It is easily visible in that case, that a necessary
condition for admissibility of such function is its boundedness. Keeping that in mind, let us
recall the two useful notions dealing with real-valued functions.

Definition 3.2.5. Let F be a set of continuous real-valued functions on a topological space
X. We say that F forms a ring of continuous functions whenever the function z ≡ 0
belongs to F and for any f, g ∈ F we have f ± g, f · g ∈ F .
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We will often deal with rings consisting only of bounded functions. Such a ring will be
referred as ring of bounded continuous functions.

Let us note, that the ring of continuous functions needs not to be not unital, that is –
may not possess the ‘1’ element. The examples of such a non-unital ring considered most
often are continuous functions on Rn vanishing at infinity, or compactly supported. This
circumstance changes in case of the following notion.

Definition 3.2.6. Let F be a ring of continuous functions on a Tychonoff’s space X. We
will say that the ring F is complete whenever

(a) every constant function belongs to F ,

(b) for any closed set F ⊆ X and a point x ∈ X \ F there exists function f ∈ F such that
∀y∈Ff(y) = 0 and f(x) = 1 (in other words – F separates closed sets from points outside
of them),

(c) F is closed with respect to uniform convergence.

Due to condition (a), every complete ring of functions contains a constant function equal
to one – the ‘1’ element in the ring. From that and Kuratowski-Zorn Lemma one may
prove that there exist maximal ideals in the ring, which happens to be a crucial feature for
purposes of the Engelking’s statement, which we discus later. Let us focus on some properties
of compacifications and functions, which are admissible for them.

Proposition 3.2.7 (Properties of the class of admissible functions). Let X be Tychonoff’s
space and γX – its compactification. Let F be the set of all functions, which are admissible
for this compactification. Then F is a ring of bounded continuous functions. Furthermore, it
satisfies conditions (a), (c) from the Definition 3.2.6. If X is Hausdorff’s, also (b) is satisfied.

Proof. Conditions for the ring, as well as boundedness and (a) from Definition 3.2.6 do not
reuire explanation. To prove (c), let us assume that the sequence fi converges uniformly on
X to f . We will prove that the extensions of fi’s – f̄i – form a Cauchy sequence in the space
of continuous functions on γX with the supremum norm. Indeed, as ϕ(X) is dense in γ(X),
we have

sup
y∈γ(X)

|f̄n(y)− f̄k(y)| = sup
y∈ϕ(X)

|f̄n(y)− f̄k(y)| = sup
x∈X
|fn(x)− fk(x)|

and from the uniform convergence of fi’s on X we see that for n, k large enough the right-hand
side of the above equality is bounded by ε. We have shown that f̄i forms a Cauchy sequence,
and, as C(γ(X)) is complete, this sequence has a continuous limit f̄ . Checking that f̄ is an
extension of f is straightforward.

For the proof of (b) let us remind that from Fact 3.2.3 it follows that γX is Tychonoff’s,
whenever it is Hausdorff. Let us consider now any closed F ⊂ X and x ∈ X \ F and assume
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that γX is a compactification of X via homeomorphism ϕ : X → γX. As ϕ(F ) is closed in
ϕ(X), from the definition of inherited (so-called trace) topology it follows that there exists
a set K ⊂ γX which is closed in X and its intersection with ϕ(X) is precisely ϕ(F ). Hence,
ϕ(x) 6∈ K. From the definition of Tychonoff’s space – there exist then a continuous function
g on γX such that g ≡ 0 on K and g

(
ϕ(x)

)
= 1. Now the desired admissible function is

precisely f = g|ϕ(X) ◦ ϕ.

3.2.3 Engelking’s statement on compactifications

We are in position to state the Engelking’s Theorem. However based on ideas from [69,
Lemma 1], it was Engelking who formulated the statement this way.

Theorem 3.2.8 (Engelking in [53], p. 240). Let F be a complete ring of bounded continuous
functions on Tychonoff’s space X. Then there exists a topological space ΣX, which is a
compacification of X and satisfies

(a) every function f ∈ F is admissible for compactification ΣX,

(b) every function, which is admissible for compactification ΣX, belongs to F .

Remark 3.2.9. Theorem 3.2.8 is commonly quoted and well-known. Up to our knowledge
its proof has not been written so far. In [53] it is given as an exercise. The hinted proof of
the entire statement requires introducing the topology on the set of ideals of the ring F , it
is hence technically complicated and unnecessarily demanding if in our mind only the case
X ⊆ Rm is needed. The stronger assumption on X allows a different proof, using essentially
less advanced tools and geometrically clear, non-abstract ideas.

Some further information about the other, less direct methods of creating compactifica-
tions are given in Section 3.5.

3.2.4 The Representation Theorem from [86] and the Convergence
Theorem

We begin with the Classical Young Theorem, highly inspired by [16]. We present a variant
similar to the one in [75].

Theorem 3.2.10 (The Classical Young Theorem). Let Ω ⊂ Rn be a bounded and measureable
set with respect to certain Borel measure µ. Assume that K ⊆ Rm is closed and uν : Ω→ Rm

is a sequence of functions such that for every open U ⊇ K we have

lim
ν→+∞

|{x ∈ Ω : uν(x) 6∈ U}| = 0 and lim
M→+∞

sup
ν
|{x ∈ Ω : |uν(x)| > M}| = 0.
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Then there exists a subsequence (still denoted by {uν}) and a mapping {νx} ∈ P(Ω,Rm, µ)
such that supp νx ⊆ K for almost every x ∈ Ω and for every Carathéodory function f :
Ω× Rm → R such that the sequence {f(·, uν(·)} is uniformly integrable we have

f
(
·, uν(·)

)
⇀ < νx, f >

def
==

∫
Rm

f(x, λ)νx(dλ) in L1(Ω, µ).

In order to recall the Representation Theorem from [86], let us form a set of assumptions
and notations used in the sequel. We deal with the following assumptions.

(H1) Ω is a open and bounded domain in Rn equipped with measure µ.

(H2) Sets A1, A2, . . . , Ak form a partition of Rm.

(H3) Function g : Rm → [0,+∞) satisfies gi
def
== g|Ai ∈ C(Ai) and gi(λ) ≥ α > 0 for every

λ ∈ Ai ∩ ∂Ai and some α.

(H4) For every i = 1, 2, . . . , k and some N a space γAi ⊂ RN is a compactification of Ai.

(H5) F is the class of functions f : Rm → R such that the function fi
def
== f|Ai/gi is admissible

for compactification γAi for every i = 1, 2, . . . , k.

We present the Representation Theorem due to Kałamajska [86], which will be generalised
by Theorem 3.4.3 with the help of Theorem 3.3.2.

Theorem 3.2.11. [86, Representation Theorem 3.1] Under assumptions (H1-5) let the
sequence {uν} of µ-measureable functions uν : Ω→ Rm satisfy

(T) lim supν µ
(
{x ∈ Ω : |uν(x)| ≥ r}

) r→+∞
−−−→ 0,

(D) supν
∫

Ω
g(uν)µ(dx) <∞.

Then there exist

(a) a subsequence of {uν}, denoted by the same expression,

(b) measures m̄i,mi on Ω, such that m̄i is absolutely continuous with respect to µ and
suppmi ⊆ suppµ for any i = 1, 2, . . . , k,

(c) a family of probability measures {µx}x∈Ω defined on Rm and such that the function x 7→ µx
is weakly-? measureable with respect to µ (to abbreviate we just denote it by {µx}x∈Ω ∈
P(Ω,Rm, µ)),

(d) families {ν̄ix} ∈ P(Ω, ∂Ai ∩ Ai, µ) and {νix} ∈ P(Ω, γAi \ Φi(Ai),m
i)



CHAPTER 3. COMPACTIFICATIONS IN DIPERNA-MAJDA MEASURE THEORY 51

such that for every f ∈ F the subsequence {f(uν(x))µ(dx)} converges weakly-? in the space
of signed measures to the signed measure represented by

k∑
i=1

(∫
intAi

f(λ)µix(dλ)µ(dx) +∫
∂Ai∩Ai

f(λ)ν̄ix(dλ)m̄i(dx) +∫
γAi\Φi(Ai)

f̃i(λ)νix(dλ)mi(dx)

)
. (3.1)

Moreover, {µx}x∈Ω is the classical Young Measure generated by the sequence {uν}, as in
Theorem 3.2.10.

Now we switch our attention to the classical Convergence Theorem from [14], which plays
an important role in Set-Valued analysis.

Theorem 3.2.12. [14, Theorem 7.2.1] Let n ∈ N and Fn : Rk ⇒ Rm be such multifunctions,
that for every x ∈ Rk there exist an open neighbourhood V such that

⋃
n∈N Fn(V ) is bounded.

We denote the graph of Fn as Gn. Assume further, that Ω is an open subset of Rn and
xj : Ω→ Rk, yj : Ω→ Rm – measureable functions such that

a) xj converges to x almost everywhere;

b) yj ∈ L1(Ω,Rm) is weakly convergent in L1 to y;

c) for almost every w ∈ Ω and every U – open neighbourhood of 0 in Rk ×Rm there exist K
such that ∀k>K(xk(w), yk(w)) ∈ Gk + U.

Then for almost every w ∈ Ω we have y(w) ∈ CHF#(x(w)), where F# is such multifunction,
that its graph is equal to lim supGn.

3.3 Compactification of an arbitrary subset of an Eu-
clidean space

3.3.1 The proof in the chosen case

In this section we present our construction of compactification of an arbitrary subset of Rm

and show some of its properties. In the sequel the construction will be exploited to generalise
Representation Theorem 3.2.11.

We will use the letter A for an arbitrary subset of Rm.
The key role in our construction is the following, simpler version of Theorem 3.3.2.
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Lemma 3.3.1 (Finitely many functions case). Let A be a subset of Rm and f1, f2, . . . , fk :
A → R be continuous and bounded functions. Then there exists a compactification κA ⊆
Rm+k such that every fi can be continuously extended to f̄i : κA → R.

Proof. We will divide it into steps.

Step 1 We observe that without a loss of generality we may assume, that A is bounded.
Indeed, we may apply diffeomorphism φ : A → Rm, φ(x)

def
== x

1+|x| , so that a homeo-

morphic copy of A is a subset of the open unit ball and φ−1(y) =
y

1− |y|
. It is now

sufficient to show the thesis for functions f̃ def== f ◦ φ−1 defined on the bounded copy
of A .

Step 2 Since A is assumed to be a bounded subset of Rm, the closure of A is compact. We
use now the classical homeomorphism between a domain and a graph of a continuous
function. Namely, we set ϕ : A → A × Rk;ϕ(x)

def
==

(
x, f1(x), f2(x), . . . fk(x)

)
and

observe that the image ϕ(A ) is homeomorphic to A .

Step 3 We define κA def
== ϕ(A ). Note that κA is indeed compact, as A was a bounded set

in Rm and fi were assumed to be bounded functions. Thus the set ϕ(A ) is bounded
in Rm+k and its closure is compact. Obviously, ϕ(A ) is a homeomorphic copy of A
and it is dense in κA . We get that κA is a compactification of A

Step 4 Now, for any i we set f̄i : κ(A ) → R, f̄(x, y1, y2, . . . , yk)
def
== yi. Such defined f̄i is

obviously continuous. Also it satisfies f̄i|ϕ(A ) = f ◦ ϕ−1, which finishes the proof.

The situation becomes more involved, when the given family of admissible functions is
not finite, like in Lemma 3.3.1, but countable. The following statement is one of our main
results in this chapter.

Theorem 3.3.2 (Countably many functions case). Let A be a bounded subset of Rm and
f1, f2 . . . : A → R be continuous and bounded, functions. Then there exists a compactification
κA ⊆ `2 such that for any index i the function fi can be continuously extended to f̄i : κA →
R.

Proof. Let us assume that fi 6≡ 0 for any i. This way we obtain, that for any i,

0 < sup
x∈A
|fi(x)| < +∞.

For simplicity, supx∈A |fi(x)| we will denote by sup |fi|.
As previously, we may assume that A is bounded and thus ||x||2 ≤ M for every x ∈ A ,

where ||x||2 stays for the standard Euclidean norm. Let us now define the embedding ϕ :
A → `2 via

ϕ(x)
def
==

(
x, 2−1(sup |f1|)−1f1(x), 2−2(sup |f2|)−1f2(x), . . . , 2−j(sup |fj|)−1fj(x), . . .

)
. (3.2)
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Note that the image of ϕ is a subset of the set

{(xi) ∈ `2 : ||(x1, x2, . . . , xm)||2 ≤M, |xm+j| ≤ 2−j},

which is compact by the standard argument used for Tychonoff’s cube. Of course ϕ−1 is
continuous, as it is a projection. Obviously ϕ is bijective. What is non-trivial is the continuity
of ϕ itself.

To that end let us first note that it is enough to check continuity in `1. Indeed, if for any
xk → x in A we will show that ϕ(xk)→ ϕ(x) in `1, then such a convergence in `2 also follows.
Indeed, let us take ||x||1 as a Manhattan norm, that is ||(x1, x2, . . .)||1 = |x1| + |x2| + . . . .
From Hölder inequality, ||ϕ(xk)−ϕ(x)||2 ≤ ||ϕ(xk)−ϕ(x)||1||(1, 1, . . .)||∞ = ||ϕ(xk)−ϕ(x)||1.
It follows, that it is sufficient to check convergence in `1, where the calculations are less
involving. We remind that the assumption ||x||2 ≤ M implies by Hölder inequality in Rm,
that ||x||1 ≤M

√
m, so we may still consider a bounded A .

Our aim now is to show that for arbitrary x ∈ A and a sequence xk → x we have

∞∑
i=1

|fi(xk)− fi(x)|
sup |fi|2i

→ 0 with k → +∞.

For simplicity of notation let us take functions vi
def
== fi/ sup |fi|. Such defined functions

satisfy the condition |vi| ≤ 1 and we need to check that

∆k
def
==

∞∑
i=1

|vi(x)− vi(xk)|2−i → 0 with k → +∞.

Note that |vi(x)− vi(xk)| ≤ 2 and thus the investigated sum is no bigger than 2.
For the proof that ∆k → 0 we assume on the contrary that

lim sup
k→+∞

∆k = δ > 0.

As δ is finite, let us take N such that∑
i>N

2 · 2−i < δ/4

and then k0 such big that for i ≤ N and k > k0 we have

|vi(x)− vi(xk)| < δ/4.

Take now any k > k0. We have that

∆k =
N∑
i=1

|vi(x)− vi(xk)|2−i +
∑
i>N

|vi(x)− vi(xk)|2−i < δ/4 + δ/4 = δ/2.
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This contradicts however the assumption on the lim sup ∆k, as it holds for every k big enough.
Regarding continuity of ϕ and its aforementioned properties, we obtain that ϕ is a home-

omorphism A ↪→ `2. We may thus take for κA the closure of the image of ϕ and define

f̄i(x, y1, y2, . . .)
def
== sup |fi|2iyi,

which completes the proof.

Remark 3.3.3. In the theorem above we chose the compactification to be a subset of the
Banach space `2, because we wanted this target space to be an infinite dimensional variant of
an Euclidean space. As the Euclidean metric is analogous to the `2 norm, the choice seems to
be natural. The proof shows however, that one may in fact take `1 instead of `2. Furthermore,
having in mind that the canonical embedding `1 ↪→ `p is a contraction on the Tychonoff’s
cube for every p ∈ [1,+∞], the statement would be correct for every space `p, p ∈ [1,+∞].

In fact, in the spirit of the classical Banach-Mazur Theorem [19], the choice of the space
`1 is very natural as well. Let us briefly remind that the Theorem proves, that any separable
Banach space is a continuous image of the space `1.

3.3.2 Properties of the compactification κ

We will follow by some observations regarding the compactification κA described in Lemma
3.3.1 and Theorem 3.3.2.

Remark 3.3.4 (Non-minimality of the class of admissible functions). Compactification κA
does not satisfy any natural condition similar to point b) of Theorem 3.2.8. Indeed, let us
consider A = (0, 2π) and functions f1(x) = sinx, f2(x) = cosx. Such a set of functions
separates points of the space A . Application of the construction described in Lemma 3.3.1
gives a compact space homeomorphic to the closed interval [0, 2π]. The function f : A →
R, f(x) = x is admissible for κA . This function however does not belong to the complete
ring of functions generated by f1, f2, as it is immediate to see that any function in that ring
will posses equal limits in x = 0 and x = 2π.

Remark 3.3.5 (Uniformly continuous functions). An easy generalisation of the previous
reasoning shows the following. Let us take any at most countable set of real-valued, bounded
functions fi on A – a bounded subset of Rm. Let κA be the compactification generated by
these functions via method from Theorem 3.3.2. Let f : A → R be any uniformly continuous
and bounded function. Then f is admissible for κA .

Indeed, as f is uniformly continuous on a bounded set A , it possesses limits lim
x→x0

f(x)

for every x0 ∈ A . Thus we may define f̄(x0, y1, y2, . . .)
def
== lim

x→x0

f(x).

It is worth noticing that this is not the case for unbounded A . To check this, let us take
A = [1,+∞) and compacitfication generated by f(x) = e−x via method from Lemma 3.3.1.
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Applying Step 1. from the proof gives us the new space φ(A ) = [1
2
, 1) and (f ◦ φ−1)(y) =

e−y/(1−|y|). Again we see that when x approaches infinity (and thus y approaches 1), function f
vanishes. Thus, κA is homeomorphic [1

2
, 1]. Let us now investigate the function sin : A → R.

Obviously sin ◦φ−1 does not possess a limit at 1, so it is not admissible for κA . The condition
of uniform continuity is then not sufficient for admissibility.

3.4 Generalisation of the Representation Theorem

3.4.1 Representation Theorem for discontinuous integrand

We will construct here a certain application of Lemma 3.3.1 and Theorem 3.3.2 to the the-
ory of measures of DiPerna-Majda. We begin with generalising Representation Theorem
established in [86].

It is possibly worth noting that we have proven what was supposed to be an assumption
in Representation Theorem 3.2.11. The assumption stated that every brick Ai possesses a
compactification γAi ⊂ RN such that a continuous and bounded function fi/gi is admissi-
ble. Our elementary reasoning presented in Lemma 3.3.1 shows that for any Ai ⊆ Rm and
continuous and bounded f : Ai → R we have the compactification κAi ⊆ Rm+1, for which
the function f is admissible. In particular, from the embedding of κAi into an Euclidean
space it follows that the space κAi is separable and metric. Thus the support of an arbitrary
measure on κAi exists, which is not the case in the general setting: see for example [21, page
68, Example 7.1.3 and page 73, Proposition 7.2.5 points (i) and (iii)] or [102]. Let us stress
here that a certain part of the further analysis is based on the behaviour of the support of
certain measures. Its existence is essential for the theory.

Our aim is to generalise Representation Theorem 3.2.11 to a certain class of the integrands
of the type f(x, u), in other words such one that is dependent not only of a value of a function
u, but also on particular x ∈ Ω, where the value u(x) is taken. We begin with the following
remark.

Remark 3.4.1. Let us assume that for open and bounded Ω ⊂ Rn we have f : Ω×Rm → R
defined by f(x, u) = f1(x)f2(u) and f is bounded. We further assume that f1 is continuous
and bounded, while f2 – continuous and bounded on certain bricks Ai. In this situation
we may choose any x0 ∈ Ω such that f1(x0) 6= 0 and apply the compactification procedure
shown in Lemma 3.3.1 for function v 7→ f(x0, u), obtaining the compactifications κAi. Let us
now note that the for any x the function u 7→ f(x, u) is admissible for this compactification.

Indeed, f(x, u) = f(x0, u)
f1(x)

f1(x0)
, and the statement follows from the fact that the admissible

functions form an algebra and f(x0, u) is admissible.

In fact, the above remark can be generalised. Let us then assume that for an open
and bounded Ω ⊂ Rn we have f : Ω × Rm → R. We further assume that f is bounded,
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continuous with respect to x and continuous with respect to v on given bricks Ai. Our aim
is to construct a compactification of Ai on which the function f(x, v) is continuous for every
x ∈ Ω. For that purpose let us first fix countable, dense subset O = {xi} in Ω. Let us then
take fi(u)

def
== f(xi, u) and apply Theorem 3.3.2 for created sequence fi, obtaining compact

space κAi on which every function fi is admissible. Let us define then function f̄ : Ω× κAi
in the following way. For fixed x ∈ Ω let us choose a sequence xi ∈ O converging to x. We
define

f̄(x, u)
def
== lim

i→∞
f̄i(u).

Of course, such definition is in general not proper, but from the assumption of the continuity
of f with respect to x it follows that indeed f̄(x, u) is independent of the choice of the
sequence xi. It is however not enough to establish continuity of f̄ on bricks Ai. This will be
satisfied under the following assumption:

sup
u∈Ai
|f(xn, u)− f(x, u)| → 0, as xn → x. (3.3)

The assumption reads as: f(x, ·) is a uniform limit of functions f(xn, ·) whenever xn → x.
In particular it gives us continuity of f(x, ·) for every x ∈ Ω. As a consequence, we obtain
continuity of f̃ . Indeed, let us fix (x, u) and take (xn, un)→ (x, u). We have

|f̄(x, u)− f̃(xn, un)| ≤ |f̄(x, u)− f̄(x, un)|+ |f̄(x, un)− f̄(xn, un)|.

Now first term goes to 0 from the continuity of f̄(x, ·), while the second vanishes thanks to
the property (3.3). Altogether, the following lemma is established.

Lemma 3.4.2. Let Ω be an open and bounded set in Rn. Set A1, A2, . . . , Ak to be a partition
of Rm and assume that f : Ω × Rm → R is a bounded function, continuous on Ω × Ai, i =
1, 2, . . . , k and satisfying (3.3). Then, for every i there exists a compctification κAi of the set
Ai such that the function f(x, ·) is admissible for every x ∈ Ω. Furthermore, the extension
f̄ : Ω× κAi is continuous.

Let us also notice that the class of functions f = f(x, u) satisfying (3.3) covers all functions
of the type f(x, u) = f1(x)f2(u) described by Remark 3.4.1. This is exactly why the following,
generalised version of the Theorem 3.2.11 uses only observations covered by the more general
Lemma 3.4.2.

Before stating the theorem, let us introduce one new assumption, that is

(H5’) F is the class of functions f : Ω × Rm → R such that the function fi(x, ·)
def
==

f(x, ·)|Ω×Ai/gi(·) is continuous and bounded on Ai for every i = 1, 2, . . . , k, every x ∈ Ω
and satisfy (3.3), that is

sup
u∈Ai
|f(xn, u)− f(x, u)| → 0, as xn → x. (3.4)
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Theorem 3.4.3. Assume (H1-3), (H5’) and let f ∈ F . Then, for every i = 1, 2, . . . , k there
exist κAi – compact subsets of `2, which are compactifications of Ai (with embeddings ϕi) and
such that fi(x, u)/gi(u) is extendable to a continuous function f̄ : Ω× κAi → R.

Take any sequence {uν} of µ-measureable functions uν : Ω→ Rm satisfying

(T) lim supν µ
(
{x ∈ Ω : |uν(x)| ≥ r}

) r→+∞
−−−→ 0,

(D) supν
∫

Ω
g(uν)µ(dx) <∞.

Then there exist

(a) a subsequence of {uν}, denoted by the same expression,

(b) measures m̄i,mi on Ω, such that m̄i is absolutely continuous with respect to µ and
suppmi ⊆ suppµ for any i = 1, 2, . . . , k.

(c) a family of probability measures {µx}x∈Ω defined on Rm and such that the function x 7→ µx
is weakly-? measureable with respect to µ (to abbreviate we just denote it by {µx}x∈Ω ∈
P(Ω,Rm, µ)).

(d) families {ν̄ix} ∈ P(Ω, ∂Ai ∩ Ai, µ) and {νix} ∈ P(Ω, κAi \ ϕi(Ai),mi).

such that for every function f ∈ F , which is admissible for compactification κAi, there exists
a subsequence {f(x, uν(x))µ(dx)} converging weakly-? in the space of signed measures to the
signed measure represented by

k∑
i=1

(∫
intAi

f(x, λ)µix(dλ)µ(dx) +∫
∂Ai∩Ai

f(x, λ)ν̄ix(dλ)m̄i(dx) +∫
κAi\ϕi(Ai)

f̄i(x, λ)νix(dλ)mi(dx)

)
.

Moreover, {µx}x∈Ω is a classical Young Measure generated by the sequence {uν}, as in The-
orem 3.2.10.

We stress here, that, due to Lemma 3.3.1, Theorem 3.4.3 recovers Representation Theorem
3.2.11, whenever the integrand f does not depend on x.

Remark 3.4.4. Let us mention, that the condition (D) is trivial when µ(Ω) < +∞ and g is
bounded. Indeed, in this case

sup
ν

∫
Ω

g(uν)µ(dx) ≤ (sup g)µ(Ω).
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On the other hand, whenever g(v)→ +∞, as |v| → +∞, the condition (D) implies (T ). To
see that, take M = supν

∫
Ω
g(uν)µ(dx) and for an arbitrary ε take such L, that g(v) > Mε−1

whenever |v| > L. We see now that

µ
(
{x ∈ Ω : |uν(x)| ≥ L}

)
≤ µ

(
{x ∈ Ω : g(uν(x)) ≥Mε−1}

)
.

As µ
(
{x ∈ Ω : g(uν(x)) ≥Mε−1}

)
(Mε−1) ≤

∫
Ω
g(uν)µ(dx), we see that

µ
(
{x ∈ Ω : g(uν(x)) ≥Mε−1}

)
≤ εM−1

∫
Ω

g(uν)µ(dx) ≤ ε.

Before the proof, we will formulate and prove the following Lemma. It is just a very minor
modification of [86, Lemma 3.3], but we will present the proof for reader’s convenience.

Lemma 3.4.5. Let Ω ⊂ Rn be the compact set equipped with a Radon measure µ and A ⊂ Rm

be Borel, compactified by metrizable γA with an embedding ϕ. Moreover, let us assume that
g ∈ C(A) is non-negative and a sequence {uν} : Ω→ Rm satisfies

sup
ν

∫
{x∈Ω:uν(x)∈A}

g(uν)µ(dx) < +∞

and generates Young measure {µx}x∈Ω.
Let us define a sequence of measures {Lν} on Ω × γA via the condition, that for any

F ∈ C(Ω× γA) we have

(F,Lν)
def
==

∫
{x∈Ω:uν(x)∈A}

F (x, ϕ(uν(x))g(uν(x))µ(dx). (3.5)

Then, up to a choice of certain subsequence (without any change in notation), there exist
measures L on Ω× γA, m̃ on Ω and {ν̃x} ∈ P(Ω, γA, m̃) such that

Lν
?
⇀ L in M(Ω× γA),

(F,L) =

∫
Ω

∫
γA

F (x, λ)ν̃x(dλ)m̃(dx), (3.6)

supp m̃ ⊆ suppµ.

Moreover, let m̃ = p(x)µ+ m̃s be the Radon-Nikodym decomposition of m̃ with respect to µ.
If γA \ ϕ(A) 6= ∅, then ν̃x(γA \ ϕ(A)) = 1 for m̃s-almost every x, while for γA \ ϕ(A) = ∅
we have m̃s ≡ 0.

If we further take U
def
== intA and U0 def== ϕ(U) and assume that f ∈ C(Ω× γA) is such

that the function F (x, λ)
def
== f(x, ϕ(λ))g(λ) is continuous on Ω×A, as well as satisfies (3.3)

on A, vanishes on Ω × ∂A and have 0 limits when the second coordinate tends to infinity,
then

intUf(x, ϕ(λ))g(λ)µx(dλ) = p(x)

∫
U0

f(x, λ)ν̃x(dλ) (3.7)

for µ-almost every x ∈ Ω, where µx is a standard Young measure generated by uν .
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Proof. As we assumed γA to be metrizable, we see that C(Ω × γA) is separable and hence
from Banach-Alaouglu Theorem, measures on (Ω× γA) are weakly-? compact. This proves
the existence of measure L.

Let us now define m̃ via the condition, that

(h, m̃) =

∫
Ω×γA

h(x)L(dx, dλ) for every h ∈ C(Ω).

Applying the classical slicing measure argument from [139], we obtain the existence of the
family of positive measures {ν̃x}x∈Ω ∈ L∞(Ω,M(γA), m̃) such that (3.6) holds.

We will check that for m̃-almost every x, measures ν̃x are probabilistic. Take any l ∈ C(Ω).
Taking F = l in (3.6), we get

(l, m̃) =

∫
Ω

l(x)
( ∫

γA

ν̃x(dλ)
)
m̃(dx).

We see that ν̃x(γA)m̃(dx) = m̃(dx) as measures on Ω, hence ν̃x are probabilistic m̃-almost
everywhere.

We will split the remaining part of the reasoning into two cases. At first we will deal with
the situation when γA \ ϕ(A) 6= ∅. The alternative case will be considered separately.

Let us now assume that γA \ ϕ(A) 6= ∅. We consider the function D(λ) = dist(λ, γ(A) \
ϕ(A)), i.e. the distance from the point λ ∈ γA to the remainder of the compactification.
As γA was assumed to be metrizable, the function is well-defined, bounded and continuous.
We define hν(x)

def
== D(ϕ(uν))g(uν)χ{z∈Ω:uν(z)∈A}(x). We will show, that the sequence hν is

uniformly integrable in L1(Ω, µ). To that end, let us define Aε
def
== {λ ∈ A : dist(ϕ(λ), γA \

ϕ(A)) < ε}, set M > 0 and observe that ∫
{x∈Ω:hν(x)>M}

hν(x)µ(dx) =∫
{x:hν(x)>M,uν(x)∈Aε}

hν(x)µ(dx) +

∫
{x:hν(x)>M,uν(x)∈A\Aε}

hν(x)µ(dx).

The first term of the line below is bounded by ε
∫
{x:uν(x)∈A} g(uν(x))µ(dx). To deal with the

second, let us observe that ϕ(A \Aε) is compact. We will show that its complement is open.
The complement of ϕ(A \ Aε) equals {λ ∈ γA : dist(λ, γA \ A) < ε} end hence it is open.
The compactness of ϕ(A \ Aε), together with the continuity of g ◦ ϕ−1 on ϕ(A \ Aε) shows
that the second term vanishes, when M is big enough.

From uniform integrability we get that there exist h ∈ L1(Ω, µ) such that hνµ ?
⇀ hµ in

measures. We have, however, that for arbitrary ψ ∈ C(Ω)∫
Ω

ψhνµ(dx) = (ψD,Lν)→ (ψD,L) =

∫
Ω

ψhµ(dx) =

∫
Ω

ψ(x)

∫
γA

D(λ)ν̃x(dλ)m̃(dx).
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Using Radon-Nikodym decomposition h = p(x)µ+ m̃s and setting F(x)
def
==

∫
γA
D(λ)ν̃x(dλ)

we finally get ∫
Ω

ψhµ(dx) =

∫
Ω

ψFpµ(dx) +

∫
Ω

ψFm̃s(dx).

Having in mind, that hνµ ?
⇀ hµ, we see that the second term vanishes, so F(x) = 0 for m̃s-

almost every x ∈ Ω. As D is strictly positive on ϕ(A), we get that ν̃x(ϕ(A)) = 0 m̃s-almost
everywhere.

In the second case, that is when γA \ A = ∅, we observe that A is compact and for any
F ∈ C(γA) the sequence hν(x)

def
== F (ϕ(uν(x))g(uν(x))χ{x:uν∈A} is uniformly bounded, hence

uniformly integrable. Knowing that hνµ ?
⇀ hµ we calculate again that∫

Ω

ψhνµ(dx)→
∫

Ω

ψFpµ(dx) +

∫
Ω

ψFm̃s(dx) =

∫
Ω

ψhµ(dx).

We see that the second term vanishes. Plugging F ≡ 1, having in mind that νx are proba-
bilistic we obtain that m̃s = 0.

For the last part of the Lemma assume that f ∈ C(Ω × γA) is such that F (x, λ)
def
==

f(x, ϕ(λ))g(λ) belongs to C(Ω × A) and satisfies (3.3) on A, vanishes on Ω × ∂A and has
0 limits when the second coordinate tends to infinity. In particular, the function F can be
extended to a function defined on the whole Rm and vanishing in the infinity. This lets us
apply the classical Young Theorem 3.2.10 to see that

F (x, uν(x)) ⇀ F (x)
def
==

∫
Rm

F (x, λ)µx(dλ) =

∫
intA

f(x, ϕ(λ))g(λ)µx(dλ) in L1(Ω, µ).

We have then Fµ = (f, ν̃x)m̃ = (f, ν̃x)p(x)µ+ (f, ν̃x)m̃s. As f vanishes on γA \ ϕ(A), from
the already proved parts of the lemma it follows that (f, ν̃x)m̃s ≡ 0.

Proof of the Theorem 3.4.3. The existence of appropriate spaces κAi follows readily from
Theorem 3.3.2 and Lemma 3.4.2. The remaining part of the proof is a slight modification of
the proof of [86, Theorem 3.1], but we will present it for completeness.

Using additivity of the integral, we may assume that f vanishes on every brick except for
one Ai, which will be referred as A. For F (x, λ)

def
== f(x, ϕ−1(λ))/g(ϕ−1(λ)) and uν(x) ∈ A

we see that
f(x, uν(x)) = (f/g)g = F (x, ϕ(uν(x))g(uν(x)).

Hence, from Lemma 3.4.5, we get

f(x, uν(x))µ(dx)
?
⇀

∫
κA

F (x, λ)ν̃x(dλ)m̃(dx) =∫
κA

F (x, λ)ν̃x(dλ)p(x)µ(dx) +

∫
κA

F (x, λ)ν̃x(dλ)m̃s(dx).
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By Lemma 3.4.5 we know, that the second term is in fact an integral over κA\ϕ(A). Splitting
the first integral into two pieces and applying (3.7), we get

f(x, uν(x))µ(dx)
?
⇀

∫
intA

f(x, λ)µx(dλ)µ(dx) +∫
κA\ϕ(intA)

F (x, λ)ν̃x(dλ)p(x)µ(dx) +

∫
κA\ϕ(A)

F (x, λ)ν̃x(dλ)m̃s(dx) = a+ b+ c.

Noting that κA \ ϕ(intA) = (κA \ ϕ(A)) ∪ ϕ(∂A ∩ A) lets us write

b+ c =

∫
ϕ(∂A∩A)

F (x, λ)ν̃x(dλ)p(x)µ(dx) +

∫
κA\ϕ(A)

F (x, λ)ν̃x(dλ)m̃(dx) = d+ e.

Consider a function h(x)
def
== ν̃x(κA \ ϕ(A)) and set Ω′

def
== {x ∈ Ω : h(x) 6= 0}. Choose

any y ∈ κA \ ϕ(A). Let us define measures m def
== hm̃ and νx by the condition, that for any

G ∈ C(κA \ ϕ(A)) we have

(G, νx) =

{
1/h(x)

∫
κA\ϕ(A)

G(λ)ν̃x(dλ) for x ∈ Ω′,

G(y) for x 6∈ Ω′.

Notice that
e =

∫
κA\ϕ(A)

F (x, λ)νx(dλ)m(dx).

To deal with d, we introduce a function

w(x)
def
==

∫
ϕ(∂A∩A)

1/g(ϕ−1(λ))ν̃x(dλ).

Choose an arbitrary a ∈ ∂A ∩ A, set Ω′′
def
== {x ∈ Ω : ν̃x(ϕ(∂A ∩ A)) > 0} and define ν̄x by

the condition, that for any G ∈ C(∂A ∩ A) we have

(G, ν̄x) =

{
1/w(x)

∫
ϕ(∂A∩A)

G/g(ϕ−1(λ))ν̃x(dλ) for x ∈ Ω′′,

G(a) for x 6∈ Ω′′

and see that now
d =

∫
∂A∩A

f(x, λ)ν̄x(dλ)w(x)p(x)µ(dx).

Setting m̄ def
== w(x)p(x)µ finishes the proof.
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3.4.2 Examples

For the first application we deal with the following, very simple situation.

Example 3.4.6 (Discontinuity on a hyperplane). Let us take an open and bounded set
Ω ⊂ Rn equipped with Lebesgue measure L n, functions u = (u1, u2, . . . , um) : Ω → Rm

and f(x, u) = a1(x)χ(−∞,0)(u1) + a2(x)χ{0}(u1) + a3(x)χ(0,+∞)(u1), where ai are arbitrary
continuous and bounded functions on Ω.

Let us set H def
== {u ∈ Rm : u1 = 0} and analogously H+ def

== {u ∈ Rm : u1 > 0},
H−

def
== {u ∈ Rm : u1 < 0}.

We take bricks A1 = H−, A2 = H,A3 = H+, and set functions gi ≡ 1, i = 1, 2, 3.
We will explain that the function f satisfies the assumptions of Theorem 3.4.3. Indeed,
condition (H5’) is satisfied. Let us take fi

def
== f|Ai for i = 1, 2, 3. Every function fi/gi = ai is

continuous on Ω× Ai. Furthermore, we easily see that for any sequence xn ∈ Ω, xn → x we
have fi(xn, u) ≡ ai(xn) → ai(x) ≡ fi(x, u). As functions ai are independent of u, the above
convergence is the uniform convergence of functions dependent on u, which is exactly what
was required in condition (3.3).

Let us know explain the shape of κAi’s in this situation. For brick A1 we start by a
homeomorphism φ : u 7→ u

1 + |u|
= v, which maps H− into an open semiball, i.e. B−

def
==

{v ∈ Rm : |v| < 1, v1 < 0}. Our function f1 : Ω × H−, f1(x, u) = a1(x) is now formally
transformed to f b1 : Ω×B−, f b1(x, v)

def
== f1(x, φ−1(v)) = a1(x).

We take any countable and dense subset O = {x1, x2, . . . , } of Ω and use procedure
described in Lemma 3.4.2. Since then we obtain a sequence of functions fi(v)

def
== f1(xi, v) =

a1(xi) and use Theorem 3.3.2 to construct κA1. The embedding ϕ : B− → `2 defined in (3.2)
for such f ′is reads as

ϕ(v) = (v, 2−1, 2−2, 2−3, . . .).

As we see, the image of ϕ is actually a semiball B− ⊂ Rm naturally embedded in `2 via
x 7→ (x, 0, 0, . . .) and then shifted by a vector (0, . . . , 0︸ ︷︷ ︸

m

, 2−1, 2−2, 2−3, . . .). Its closure – κA1 –

is then a closure of B− shifted in the same way. It is homeomorphic (and, up to an equivalent
disturbance of metric in `2, isometric) with B− = {v ∈ Rm : |v| ≤ 1, v1 ≤ 0}. For simplicity
we may thus take κA1 = B−.

The construction of κA3 is perfectly analogous. We leave to the reader to check that
κA3 = B+ = {v ∈ Rm : |v| ≤ 1, v1 ≥ 0}. A very similar reasoning also shows that κA2 =
Bm−1 = {v ∈ Rm : |v| ≤ 1, v1 = 0}, i.e. it is a closed unit ball of dimension (m− 1).

Having κAi’s constructed, we may take any tight (i.e. satisfying condition (T) in Theorem
3.4.3) sequence uν : Ω → Rm and from the Theorem 3.4.3 it follows that the measure
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f(x, uν)L n converges weakly-? to a measure described by

a1(x)

∫
H−

µ1
x(dv)dx+ a1(x)

∫
∂B−\B−

ν1
x(dv)m1(dx) +

a2(x)

∫
H

ν̄2
x(dv)m̄2(dx) + a2(x)

∫
{v∈Rm:v1=0,|v|=1}

ν2
x(dv)m2(dx) +

a3(x)

∫
H+

µ3
x(dv)dx+ a3(x)

∫
∂B+\B+

ν3
x(dv)m3(dx),

where measures µ1
x, µ

3
x, ν̄

2
x, m̄

2, ν1
x,m

1, ν2
x,m

2, ν3
x,m

3 are like in Theorem 3.4.3.

Example 3.4.7 (Single brick case). Let us assume that f : Ω × Rm is continuous and
bounded, satisfying (3.3). In this situation we deal with one brick A1 = Rm and obtain that,
under assumptions of Theorem 3.4.3, there exist a subsequence of the sequence f(x, uν)dx
converging weakly-? to∫

Rm
f(x, λ)µx(dλ)dx+

∫
κRm\Rm

f(x, λ)νx(dλ)m(dx),

retrieving the classic DiPerna-Majda Theorem from [49, Theorem 1].

Now we move to the more involving reasoning, which generalises [86, Theorem 4.2] to the
situation of the integrand dependent on x, which was not considered so far.

Example 3.4.8 (Finitely many points of discontinuity). Let us take open and bounded
Ω ⊂ Rn, equipped with an arbitrary Borel measure µ and an arbitrary bounded function
f̂ : Ω× Rm → R such that f̂ is continuous with respect to x. We further require that

f̂ ∈ C
(
Ω× (Rm \ {P1, P2, . . . , Pk})

)
and satisfies there (3.3). Our aim is to derive a representation formulae for the weak-? limit
of f̂(x, uν).

First let us note that, as the number of points Pi is finite, we may find such a radius r > 0
that balls centred in Pi’s and of radius r are disjoint. For such a fixed r, let us define the
set A0

def
== {u ∈ Rm : dist(u, Pi) > r/2 for every i}. Now the stets A0, B(Pi, r), i = 1, 2, . . . , k

form an open covering of Rm, to which we may find a subordinate covering of unity – ψi. Now,
in spite of deriving representation formulae for an arbitrary f̂ , we will work with ψif̂ = f, –
a function supported on Ω× A0 or Ω×B(Pi, r) for one particular i = 1, 2, . . . , k.

Let us begin with the case where f is supported on Ω×A0. In this situation it is enough
to deal with the previous example, as we may extend function f by 0 to the whole domain
Ω \ Rm.

In the latter case we may decompose Rm into three bricks, that is A1 = Rm \ B(Pi, r),
A2 = B(Pi, r) \ {Pi}, A3 = {Pi}, where radius r is precisely the same as before. Note that in
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this case, from the construction of the unit partition ψi, we have f ≡ 0 on Ω×A1, as well as
f ≡ 0 on the sufficiently small neighbourhood of Ω× ∂B(Pi, r).

This observations show that the representation formulae will meet a null ingredient when
dealing with the brick A1. Also, if we use hemoeomorphism β : A2 → R

def
== B(0, r+1)\B(0, 1)

given by β : u 7→ u − Pi +
u− Pi
|u− Pi|

we see that the function f̌ : Ω × R → R, f̌(x, v)
def
==

f(x, β−1(v)) vanishes on ∂B(r + 1, 0).
Since then, the limit measure given by Theorem 3.4.3 will have a form M = M1+M2+M3,

where M1 = 0, M3 = f(x, Pi)m̄dx and

M2 =

∫
A2

f(x, v)µx(dv)µ(dx) +

∫
κR\ϕ(R)

f(x, v)νx(dv)m(dx),

and if we divide the remainder set κR \ ϕ(R) into parts

R1
def
== {(v1, v2, . . .) ∈ `2 : (v1, . . . , vm) ∈ ∂B(0, 1)},

R2
def
== {(v1, v2, . . .) ∈ `2 : (v1, . . . , vm) ∈ ∂B(0, r + 1)}

we may write

M2 =

∫
A2

f(x, v)µx(dv)µ(dx) +

∫
R1

f(x, v)νx(dv)m(dx).

Altogether, we get that

M =

∫
A2

f(x, v)µx(dv)µ(dx) +

∫
R1

f(x, v)νx(dv)m(dx) + f(x, Pi)m̄dx.

Moreover, as the sequence {f(x, uν)} is bounded, we see that the measures m, m̄ are
absolutely continuous with respect to µ. This results in

M =

∫
A2

f(x, v)µx(dv)µ(dx) +

∫
R1

f(x, v)νx(dv)p(x)µ(dx) + f(x, Pi)q(x)µ(dx).

If we take now any function h = h(v) continuous on Rm, supported in B(Pi, r) and f ≡ 1
in the neighbourhood of Pi, we see that it is admissible for compactifications κAi and its
extension is constantly equal to 1 on R1. Hence we have

h(uν)µ
?
⇀

∫
B(Pi,r)\{Pi}

(h(v)µx(dv) + p(x) + q(x))µ(dx).

On the other hand, the Young Theorem 3.2.10 yields

h(uν)µ(dx)
?
⇀

∫
B(Pi,r)

h(v)µx(dv)µ(dx).

Since then, we see that p(x) + q(x) =
∫
Pi
h(v)µx(dv) and, in general,

p(x) + q(x) =

∫
Pi

f(x, v)µx(dv).
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3.5 The information about the existing methods

Engelking Theorem

In the book by Engleking [53], chapter 3.12.22(e), page 240, there is given an exercise leading
to the formulation of Theorem [53]. The exercise shows that for every complete ring of
continuous, bounded functions F on a Tychonoff’s space X there exists a compactification
ΣX such that the class of admissible functions is precisely F . The solution of the exercise
is however not given. The statement is well-known and broadly quoted in papers dealing
with DiPerna-Majda measures theory. The proof hinted by Engelking requires introducing
topology on the set of ideals of the ring of continuous real valued functions defined on a space
X, which is meant to be compactified. From the proof it does not follow whether the resulting
compact set can be embedded into any well-understood Banach space. On the other hand,
the set X is only assumed to be Tychonoff regular, which, in some cases, is unnecessarily
general for applications.

The idea of the hinted proof is to define space ΣX as the set of all maximal ideals in the
ring F . We introduce there the topology by defining its basis. For that purpose for any
f ∈ F , we define Uf – the set of all ideals m in the ring F such that f 6∈ m. The basis for
topology of ΣX is now precisely the family {Uf}f∈F .

Such construction gives us a valuable information – whenever a ring F is separable (as
a space of continuous functions with topology of uniform convergence), we may extract from
the family {Uf}f∈F a countable basis of topology. Precisely, we take a dense set {fi}i∈N ⊂ F
and notice that the family {Ufi}i∈N forms a countable basis of topology in ΣX.

Existence of a countable basis of topology, the so-called second-countablity of the space,
is equivalent to metrizability in the class of Hausdorff compact spaces. To see that second-
countability implies metrizability we need first to recall [53, Theorem 2.3.23]. The Theorem
says that any second-countable Tychonoff’s space (so, by fact 3.2.3, in particular any compact
Hausdorff space) may be homeomorphically embedded into Tychonoff’s cube of countable
weight, that is [0, 1]× [0, 1]× . . .. This space is however homeomorphic to [−1, 1]× [−1

2
, 1

2
]×

[−1
22 ,

1
22 ]× . . . ⊂ `2, which is metric. After all, any second-countable Hausdorff compact space

is homeomorophic to a subspace of a metric space, hence it is metric.
To see that any metric compact space K is second-countable, it is enough to take, for

fixed n, a particular cover of K – {B(x, 1/n)}x∈K – and choose a finite subcover Un. Now
the the family of open sets chosen in at least one of the subcovers Un, that is

⋃
n∈N Un forms

a countable basis of topology.
Therefore we see that whenever the ring F is separable, the space ΣX is metrizable and

may be described as a compact subset of Banach space `2. This fact gives us an informa-
tion on the topological structure of that space. Nevertheless, the sketched reasoning is not
constructive, as we cannot precisely determine the image of the embedding of ΣX into `2.
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The Gelfand-Naimark Theorem

Another source of knowledge about compactifications, which seems very natural for specialists
in analysis, but is not mentioned in the literature around Calculus of Variations, is the
classical Gelfand-Naimark Theorem, see [69, Theorem 1]. The most useful for our purposes
variant of the theorem reads as follows [11, Theorem 1.1.1]: Every commutative C? algebra
A with “1” is isometric to the C? algebra of continuous, complex-valued functions on some
compact space ΦA.

The compact set ΦA is precisely identified as a subset of the dual space to A consisting
of such non-zero linear functionals φ : A → C that are also multiplicative (the so-called
characters). The topology of ΦA is an inherited weak-? topology from the dual space to A.

Let us explain how the statement of the Gelfand-Naimark Theorem contributes to un-
derstanding of the problem of compactifications. Take any locally compact and Hausdorff
space X. Let us choose any A – a complete ring (see Definition 3.2.6) of bounded, real-valued
functions on X. Obviously, A forms a C? algebra with the identity ? operation. The space
ΦA is then a compactification of X and the space of continuous functions C(ΦA) = A. The
last equality can be understood in the following manner. The set of continuous functions
on X, which can be continuously extended to continuous functions on ΦA, is precisely A.
Surprisingly, a careful analysis, see the proof of [69, Lemma 1 and III on p. 1] and [68, Satz
2], shows that the space ΦA is homeomorphic to the Engelking’s compactification of X. In-
deed, assigning to every character its kernel is a homeomorphism between ΦA and ΣX. Let
us however note that the set ΦA is identified with a certain subset of the dual space to A,
which is a Banach space.

In general case, the compactness of ΦA holds only for weak-? topology of the dual of A.
Nevertheless, ΦA happens to be compact in strong, and hence metric, topology whenever A
is a countably generated algebra. Furthermore, every continuous function on ΦA with weak-?
topology is automatically continuous in strong topology (the converse is false). It follows that
in case when A is countably generated, ΦA with metric topology is a compactification of X
such that every function from A possesses a continuous extension to a function on ΦA. The
existence of such metric compactification was not visible from the Engelking’s construction.
Unfortunately, the shape of ΦA is hard to determine.

The embedding into a long product due to Keesling

The last idea we would like to consider, and seems to be a little noticed, is presented by
Keesling in [93]. The author explains there a construction of the compactification analogous
to the one by Engelking in more geometric fashion. Let us brief this construction here.
Take the set F of functions on X (an arbitrary Tychonoff’s space), which are expected
to be extendable to continuous functions on compactification. We then use an embedding
i : Ω →

∏
{f∈F}R, i(x)

def
==

(
f(x)

)
{f∈F}. The compactification is then the closure of the

image of i. It is worth explaining here that injectivity of i is guaranteed by the structure
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of the set F , while compactness follows from boundedness of every single function f ∈ F
and Tychonoff’s Theorem. However the construction is essentially less demanding for non-
specialists, the problem of metrizability remains untaken.

3.6 An example of a non-supported measure

Apart from its applications, the construction presented in the Theorem 3.3.2 shows several
regularity properties of the abstract compactification κA of an arbitrary A used in Theorem
3.4.3. Much effort is taken to guarantee the metrizability of κA . One may wonder whether
the result wouldn’t hold unbothered if we relaxed our expectations in this direction. Of course
the first answer is that the proof of Lemma 3.4.5 exploits the advantages of metrizability.
This could be however overridden by some other, more abstract assumption on the regularity
of κA , which could possibly be more general than metrizability. This would possibly let us
use compactifications constructed in the shape described by Keesling (see section 3.5 in the
previous chapter).

The purpose of this section is to present a supercalifragilisticexpialidocious example due
to Dieudonne [48], showing that measures defined on non-metrizable topological spaces, es-
pecially non-second countable ones, happen to deny some essential properties of the Borel
measures known from the Euclidean space.

It is worth stressing that the richness of the Čech-Stone compactification forces us to
look very carefully on spaces much less intuitive than subsets of an Euclidean space. In fact,
even the set of natural numbers possesses a Čech-Stone compactification of cardinality 2c

and weight (in other words – the minimal cardinality of the basis of topology) c [53, Corol-
lary 3.6.12], which gives a brief of how involved is the space. Furthermore, the Parovičenko
Theorem [134] states that every compact Hausdorff space of weight no bigger than ℵ1 is a
continuous image of the remainder βN\N. Analogous statement to the Parovičenko Theorem
holds for the real half-line [0,+∞) as well [51, Theorem 1]. This shows that even for easy
subsets of Euclidean space, there exists a compact subset of their Čech-Stone compactifica-
tion, which can be mapped onto ω1. This, in the spirit of the example presented below, may
be found disturbing.

3.6.1 Introduction

Let us consider an arbitrary Borel measure defined on a topological space. Intuitively, one
would expect such a measure to possess a support, where by the support it is meant the
smallest closed set of full measure. For example, let µ be a Lebesgue measure on a cube
[0, 1]2 in a plane. Then the support of µ is the entire cube, because otherwise one would
need some non-empty open set of a zero measure. However, it appears that measures not
possessing a support do exist.



CHAPTER 3. COMPACTIFICATIONS IN DIPERNA-MAJDA MEASURE THEORY 68

The purpose of this section is to present the construction of the so-called Dieudonné
measure – a Borel measure possessing no support, as well as giving a simplified, up to our
best knowledge unknown so far, example. The measure possessing no support was found by
Jean Dieudonné in 1939 (see [48]). It appears that his ingenious and enlightening example
is not difficult to explain to a non-specialist. For his construction, Dieudonné used tools
that were already known in the very beginning of the XXth century, introduced by Gerhard
Hessenberg in 1906 (see [73]). By now the notions given by Hessenberg have become classical
tools in set theory. The Dieudonné discovery ignited several deep investigation topics that
have resulted in completely new discoveries, not only in measure theory, but also in set
theory. This example has contributed to the understanding of the concept of a measureable
cardinal number given by Ulam in [151]. A great development of measure theory on abstract
topological spaces was made since then by, among others, Alexandroff [3–5], Rohlin [142]
and Marczewski [121–123]. The most notable development was the notion of τ -additivity
of measures and its detailed study in series of papers by Alexandroff [3–5], which are being
considered as a milestone in the field of abstract measure theory. This seems to be widely
inspired by the construction given by Dieudonné.

However, the construction may be found in a variety of places after Dieudonné’s paper,
as for example in [21, Example 7.1.3], the existing presentations are hard to follow for non-
specialists in set theory or abstract analysis. Perhaps this is the reason why this beautiful
construction is not as commonly known as it deserves to be. It was the author’s aim to
present a possibly self-contained proof, which would be widely accessible for non-specialists.
We also present another example of a non-supported measure, which is based on Dieudonné’s
ideas, but the new construction allows to simplify it. Contrary to the classical examples,
the measure we present is not finite. On the other hand, the construction is essentially
simpler. To our best knowledge, infinite measures constructed on ordinal numbers have
not been considered to far. The analysis of supports of Borel measures is visible in recent
papers dealing with DiPerna-Majda measures, which are modern tools in the Calculus of
Variations [85, 92, 113], seem influential in PDEs [6, 40] and applied mathematics, like the
analysis of microstructures [112] or fluid mechanics [49].

Especially in [85], dealing with DiPerna-Majda measures, one may observe that the prob-
lem of the existence of the support of a measure seems to be an important topic for formulating
essential assumptions on the main theorem. It was puzzling to the author if a violation of this
assumption could lead to a construction experiencing similar phenomena. Such consideration
could possibly weaken the standard assumptions in the field. This led to the surprising idea
of connecting Calculus of Variations – in fact very applicable for engineering – with very
abstract measure theory. It appears that these theories meet when looking for conditions
guaranteeing the existence of the support of a Borel measure.

The section begins with recalling some introductory information about the notions we deal
with. Throughout the process, we introduce measure-theoretic and set-theoretic notions and
prove needed properties. In the last part, the desired example comes easily as a consequence
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of presented considerations, as well as the new simplification is given. Although the section
is intended to be self-contained, some technical details are left to the reader to figure out.
Even then, we refer to some outer sources where the facts are directly established.

3.6.2 Auxiliary measure- and set-theoretic definitions

Classical measure-theoretic notions

We start by recalling some measure-theoretic definitions and begin studying measures pos-
sessing support in a wide class of spaces, containing most classical examples.

Definition 3.6.1 (Measure, see Definition 1.3.2 in [21]). Let Ω be any set and F – any
σ-field of subsets of Ω. By a measure on Ω (measuring elements of F) we mean a function

µ : F → [0,+∞]

which vanishes on ∅ and for any countable family of subsets {Ai}i∈N of F such that i 6= j ⇒
Ai ∩ Aj = ∅, we have

µ

(⋃
i

Ai

)
=
∑
i

µ(Ai).

Definition 3.6.2 (Support of a measure, just above Proposition 7.2.9 in [21]). By a support
of measure µ we mean a closed set C def

== suppµ such that

i) µ(Ω \ C) = 0;

ii) if C1 is closed and µ(Ω \ C1) = 0, then C ⊆ C1.

We may thus interpret support as the smallest closed set which has a µ-“almost empty”
complement. In particular, if a support exists, it must be equal to the intersection of all
closed sets whose complements have the measure 0.

The question on the existence of a support of measure µ is very simple in typical situations
- for example every Borel measure defined on a metric, separable space possesses a support.
Even more generally, the following proposition holds.

Proposition 3.6.3. Let Ω be a topological space with a countable basis of topology and µ be
a Borel measure. Then the support of the measure µ is well-defined.

Proof. Let us take a family C of all closed subsets C of Ω such that µ(Ω \ C) = 0. We show
that the following equality holds

S
def
==

⋂
C∈C

C = suppµ.
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It is clear that S is closed. It is also convenient, that if C is closed and µ(Ω \ C) = 0, then
S ⊆ C, because C ∈ C . From that point we know that it is the smallest closed set in the
family C ∪ {S}.

It remains to check, however, that µ(Ω \S) = 0, i.e. S ∈ C . To that end, let us denote
the countable basis of topology on Ω as U

def
== {Ui}i∈N. Notice then, that for any closed

C ⊆ Ω the set Ω \ C is open and thus it may be written as a sum of some sets Ui ∈ U . For
every closed C ⊆ Ω let us define

I(C)
def
== {i ∈ N : Ui ⊆ Ω \ C}.

In this way, for every closed C ⊆ Ω we have

Ω \ C =
⋃

i∈I(C)

Ui.

Notice that for every C ∈ C and every i ∈ I(C) we have µ(Ui) = 0. Hence we have

Ω \S =
⋃
C∈C

Ω \ C =
⋃
C∈C

⋃
i∈I(C)

Ui =
⋃

{i∈N: ∃C∈C i∈I(C)}

Ui.

The set {i ∈ N : ∃C∈C i ∈ I(C)} is of course countable, because it is a subset of N. Thus
Ω \S is a countable union of sets of measure 0 and thus it is of measure 0.

Remark 3.6.4. Note that any metric separable space has a countable basis of topology. For
the proof it is enough to take balls centred in the dense countable subset with rational radii.
On the other hand, any space with a countable basis of topology is separable – for the proof
one takes a single point from every open set of the countable basis.

Remark 3.6.5. The proposition above, shown for example in [21, Proposition 7.2.2 (iv)], is
a special case of some deeper theorems, such as [21, Proposition 7.2.9].

Ordinal numbers

We move to recalling the definition of ordinal numbers and some basic facts about them. We
will apply them to create a certain ”very inseparable” topological space where our desired
non-supported measure will lie. Let us also recall that by a well-ordered set we mean a set
with such a relation of ordering, where every subset possesses its smallest element.

We begin with defining ordinal numbers in a non-standard, but very compact manner.
The interested reader is welcome to compare this notion with [129, Excersices 12.2-12.4].

Definition 3.6.6 (Ordinal numbers). We define ordinal numbers by the procedure of trans-
finite induction. Take

(i) 0
def
== ∅;
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(ii) for any ordinal number α we define α + 1
def
== α ∪ {α};

(iii) for any set of ordinals {αt}t∈T , where T is any set of indices, we define the ordinal
number sup{αt}t∈T

def
==

⋃
t∈T αt.

Remark 3.6.7. It is worth noting that simultaneously we have α ∈ α + 1 and α ⊂ α + 1.

Example 3.6.8. Having 0 = ∅ already defined, note that step (ii) gives us

1 = ∅ ∪ {∅} = {∅} = {0}.

We then have
2 = 1 ∪ {1} = {∅} ∪

{
{∅}
}

=
{
∅, {∅}

}
= {0, 1}.

Following this procedure we obtain the set of natural numbers (understood as the set of all
finite ordinal numbers), having in mind that for any natural number n we have

n+ 1 = {0, 1, 2, . . . , n}.

Note now that this is the moment when, for every already defined ordinal number n, the
ordinal number n + 1 is also defined and thus we may not use step (ii) for defining new
ordinal numbers. Applying step (iii) to the set of natural numbers defined in this way we get
the first infinite ordinal number

ω0 =
⋃
n∈N

n =
⋃
n∈N

{0, 1, 2, . . . , n− 1} = {0, 1, 2, . . .},

which is a supremum of all natural numbers. After that, step (ii) defines the ordinal number
ω0 + 1 = {0, 1, 2, . . . , ω0}. Continuing analogously, we will get the ordinal number ω0 +
n = {0, 1, . . . , ω0, ω0 + 1, . . . ω0 + (n − 1)} and then applying step (iii) one gets ω0 + ω0 =
{0, 1, . . . , ω0, ω0 + 1, . . . }. We will denote this number as 2× ω0.

Proceeding further, we will then obtain 2× ω0 + n = {0, 1, . . . ω0, ω0 + 1, . . . , 2× ω0, 2×
ω0 +1, . . . , ω0 +(n−1)} and applying step (iii) again, 3×ω0. Similarly, we will obtain ordinal
numbers 4× ω0, 5× ω0 and, as the supremum of numbers n× ω0, arrive at ω0 × ω0.

From the definition it follows that every ordinal number α is defined as a set consisting of
all ordinal numbers previously defined. Furthermore, for any two ordinal numbers α 6= β we
confirm that exactly one of the relations α ( β, β ( α holds. Note also that α ∈ β ⇐⇒ α (
β. We may thus define ordering α ≺ β

def⇐⇒ α ∈ β. Any ordinal number γ is a well-ordered
set with such ordering, which seems visible, but is quite demanding from the technical side.
Also, for any well-ordered set T (with order <) there exists precisely one ordinal number ϑ
(with order ≺) and bijection ϕ : T → ϑ such that t1 < t2 ⇐⇒ ϕ(t1) ≺ ϕ(t2). The interested
reader could find many details for example in [129, Chapter 12]. In particular, a precise proof
of the well-ordering of ordinal numbers is given in [129, Theorem 12.15].
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Definition 3.6.9 (Successor, compare to 12.2 in [129]). The number α is called a successor
(of β), if there exists an ordinal number β such that β + 1 = α.

Successors are precisely the numbers which (as sets) possess the largest element. Other
numbers, i. e. those not possessing its biggest element, are called limit numbers.

Example 3.6.10. Every non-zero natural number n is, of course, a successor because n =
(n− 1) + 1. On the other hand, ω0 is a limit number. For every n 6= 0, however, ω0 + n is a
successor and 2× ω0 is again a limit number.

We continue with defining certain symbols. By ω0 we will mean the first non-empty limit
ordinal number, as in Example 3.6.8.
By ω1 we will mean the first ordinal number which is non-bijective (as a set) with ω0.
Then by the transfinite induction let us set ωα to be the first ordinal number which is non-
bijective with ωβ for every β < α.

It is probably worth explaining how the transfinite induction works in the particular
situation of defining numbers ωα. The induction is made with respect to the indices. The
first point is then to define number ω0 and this is done with natural numbers, i.e. the number
ω0 coincides with the first infinite ordinal number. Then, having defined ωβ we may define a
number ωβ+1 as the first ordinal number non-bijective with ωβ. What is left to explain is the
limit step. Having defined ωβ for every number β < α we may define number ωα as the first
ordinal number which is non-bijective with any of numbers ωβ.

It is not visible at the first glance that the procedure of defining ordinal numbers ωα does
not stop, i.e. one may wonder if there exists some ’untouchable’ ordinal number δ such that
there exists no ωδ. The following observation shows that this is not the case.

Proposition 3.6.11 (Existence of ordinal numbers, 12.29 in [129]). For any ordinal number
α there exists the ordinal number ωα.

Proof. Zermelo’s Theorem [129, Theorem 8.9] states that any set may be well-ordered. Let
us also recall Cantor’s Theorem [129, Theorem 2.21], stating that the set P (T ) of all subsets
of a set T has more elements than the set T itself (in the sense that there exists no bijection
between these sets, while obviously there exists a one-to-one function from T to P (T ) –
namely t 7→ {t}).

Suppose then that there exists an ordinal number α such that ωα does not exist. From
the procedure of the transfinite induction it follows that for any β > α the number ωβ also
does not exist.

We may assume then that every ordinal number γ, such that there exists ωγ, is bounded
from above by α, hence these numbers γ form an ordinal number which is a subset of α. Let us
call this number Γ. Note that Γ 6∈ Γ, so specifically there exists no ωΓ. Take Γ′ = supγ∈Γ ωγ.
Then the set P (Γ′) has more elements than any of the sets ωγ. Via Zermelo’s Theorem this
set may be well-ordered, so there exists an ordinal number bijective to P (Γ′). It follows that
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there exists an ordinal number which has more elements than any of the numbers ωγ for
γ ∈ Γ.

We will show that there exists a number ωΓ, which provides a contradiction. Indeed, we
have shown that there exists an ordinal number (let’s call it ϑ) which has more elements than
ωγ for any γ ∈ Γ. Note now that ϑ ∈ ϑ+1. The set of those elements of ϑ+1, which have more
elements than ωγ for any γ ∈ Γ is thus non-empty and hence possesses its smallest element.
From the very definition, this element is precisely ωΓ, thus ωΓ exists – a contradiction.

Definition 3.6.12 (Cardinal numbers, 12.26 in [129]). The class of such ordinals α that there
exists an ordinal number β such that α = ωβ will be called the class of cardinal numbers.
We will say that a set T is of cardinality κ whenever κ is such a cardinal number that T is
bijective with κ and denote |T | = κ.

Note that any cardinal number is a limit ordinal number. This is because of the bijection
between numbers α and α + 1, which holds whenever α is infinite.

Having the notion of the cardinality of a set, it is necessary to mention the classical
and deep Hessenberg Theorem, which is attributed to the German mathematician Gerhard
Hessenberg and dates back to 1906. The first proof of the result was presented by Hessenberg
in [73]. To find a proof in English in any outer source, the author recommends [129, Lemma
9.15]. We will present the proof only in the case of a countable set T , because this is the
only case we will use and the proof is significantly simpler.

Theorem 3.6.13 (Hessenberg in [73], 1906). Let T be an infinite set. Then |T | = |T × T |.

Proof – only in case of T countable. First we prove that whenever sets T, T ′ satisfy |T | =
|T ′|, then also |T × T | = |T ′ × T ′|. For that it is enough to check that whenever φ : T → T ′

is a bijection, so is φ̃ : T × T → T ′ × T ′ defined via φ̃[(t1, t2)] =
(
φ(t1), φ(t2)

)
, which is

standard.
It follows that it is sufficient to check that |N| = |N×N|, as by the assumption there exists

a bijection φ : N → T. This is done by a standard diagonal procedure, which is presented
below for completeness.

Let us define the ordering ≺ on the set N × N as follows. We say (n,m) ≺ (n′,m′)
whenever either n + m < n′ + m′ or n + m = n′ + m′ and n < n′. It is obvious that ≺ is a
well-ordering of N×N and thus, there exists an ordinal number α and bijection ψ : N×N→ α
such that (n,m) ≺ (n′,m′) ⇐⇒ ψ[(n,m)] < ψ[(n′,m′)]. Of course the set N× N is infinite,

nevertheless for any pair (n,m) there exist less than
1

2
(n + m + 1)2 (so finitely many) pairs

(n′,m′) such that (n′,m′) ≺ (n,m). Note that if ω0 ∈ α, then there exist infinitely many
β ∈ α = ψ[N× N] such that β < ω0. Hence ω0 6∈ ψ[N× N] and α is either finite or equal to
ω0. As the first option is not the case, we see that N×N is bijective with ω0, which completes
the proof of |N| = |N× N|.
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Remark 3.6.14. In particular from the Hessenberg Theorem it is simple to deduce, that
whenever sets Ti are countable, then

⋃
i∈N Ti also is. Hence, ω1 is not a supremum of any

countable family of its elements. We will use this fact in the sequel.

Let us skip to the ordinal topology, that is to the way we define the topology on ordinal
sets. For that purpose we reformulate [21, Example 6.1.21] to a form more accurate for our
purposes.

Definition 3.6.15 (Ordinal topology, compare to 12.24 in [129]). We say that subset C of
the ordinal α is closed in α, if for any set T and the choice of elements ct ∈ C, where t ∈ T ,
the ordinal number c defined via

c
def
==

⋃
t∈T

ct

belongs to C, whenever it belongs to α.

Example 3.6.16. It follows straightforwardly from the definition of ordinal topology, that
for any γ < α the set Cγ = {β ∈ α : β > γ} is closed in α. It is also unbounded in the
following sense: there is no such δ < α (or equivalently δ ∈ α) such that β ∈ Cγ ⇒ β ≤ δ. In
the sequel we will often refer to these two properties, namely to closeness and unboundedness.
In the literature, closed and unbounded sets are often called clubs.

Definition 3.6.17 (Bounded and unbounded sets). Let α be an ordinal number. We say
that the set T ⊂ α is bounded in α, whenever there exists τ ∈ α such that for each t ∈ T
the inequality t < τ holds.

Remark 3.6.18. Notice that for any limit number α and its unbounded subset C (for
example C = α) the sum of the elements of C is precisely α and thus does not belong to α as
its element. This is the reason for the “whenever it belongs to α” condition in the definition
of ordinal topology and actually the only case when it is used.

Remark 3.6.19. Such defined topology is somehow comparable to the typical ”trace topol-
ogy” of a subspace of a certain topological space. Note, however, that the interval [0, 1)
is not closed in R (here we consider R with standard metric topology), but closed in the
trace topology inherited from the interval (−1, 1). The same way the set M of all countable
ordinals is closed and unbounded in ω1 (because it actually coincides with ω1) but in ω1 + 1
it is neither closed nor unbounded (because its supremum – ω1 – belongs to ω1 + 1 and does
not belong to M ).

The ordinal ω0 can be homeomorphically embedded into [0, 1] via 0 7→ 0 and for n ≥ 1
n 7→ 1− 1

n+1
. This homeomorphism (onto the image) preserves order. It is worth observing

that every point in ω0 is open, so we experience no problems with continuity. Similarly, one
defines a map ω0 + 1 = ω0 ∪ {ω0} → [0, 1] via n 7→ 1 − 1

n+1
, ω0 7→ 1. Intuitively, such

defined function is continuous because the supremum of n’s is mapped into the supremum of
(1− 1

n+1
)’s.



CHAPTER 3. COMPACTIFICATIONS IN DIPERNA-MAJDA MEASURE THEORY 75

Further set-theoretical tools

The next proposition establishes an important feature of clubs, that is closed and unbounded
sets. It will be crucial for the construction of the desired measure.

Proposition 3.6.20 (Compare to Lemma 3.4 in [76]). Let C be a countable family whose
elements are closed and unbounded sets in ω1. Then the set

⋂
C∈C C is closed and unbounded

in ω1.

Proof. As the intersection of closed sets is always closed, it is sufficient to prove the un-
boundedness. Take then any γ < ω1. Let us also enumerate sets C by natural numbers, so
that C = {Ci}i∈N. We will construct by induction a particular sequence {ξi}i∈N of ordinals
smaller then ω1. Let ξ1 = γ. Assuming now that for a certain i that ξi is well defined, let us
define ordinal numbers ϑi,j for any j ∈ N. For that purpose we take any ϑi,j ∈ Cj such that
ϑi,j > ξi. It is possible for every j, as every Cj is unbounded in ω1. Let

ξi+1 = sup
j∈N

ϑi,j.

Now, by Remark 3.6.14, ξi+1 ∈ ω1 because it is a supremum of a countable family of elements
of ω1. Therefore, the sequence {ξi}i∈N is properly defined.

Let us take δ = sup ξi and note again that δ ∈ ω1. Observe that for any fixed j one has
ξi ≺ ϑi,j ≺ ξi+1, and hence δ is also a supremum of elements of Cj. As a result, and from the
closeness of Cj, we obtain that δ ∈ Cj for every j. Thus δ belongs to the intersection of Cj.
In particular, the intersection of C ′js possesses an element bigger than γ. As γ was arbitrary,
the unboundedness is established.

Now we are ready to define the σ-field of measurable sets for the Dieudonné measure. Let
us take

B
def
== {A ⊆ ω1 | there exists a closed and unbounded set C in ω1 such that either

C ⊆ A or C ⊆ A{}.

We will now make some observations regarding the family B, using Remark 3.6.14 and
Proposition 3.6.20.

Corollary 3.6.21. The following conditions hold

i) B is a σ − field. Furthermore, every Borel set belongs to B.

ii) Sets

B1
def
== {A ⊆ ω1|there exists a closed and unbounded set C in ω1 st. C ⊆ A},

B2
def
== {A ⊆ ω1|there exists a closed and unbounded set C in ω1 st. C ⊆ A{}

are disjoint.
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iii) If for every i ∈ N the set Ai ∈ B2, then
⋃
i∈NAi ∈ B2.

Proof. First, let us note that whenever C1, C2 are closed and unbounded, the set C1∩C2 is also
closed and unbounded, so in particular is non-empty. On the other hand, if C1 ⊆ A,C2 ⊆ A{,
then C1 ∩ C2 is empty. Thus, A is an element of at most one of sets B1,B2. This finishes
the proof of part ii).

Obviously ∅ ⊆ ω1 and ω1 is closed and unbounded, so taking C = ω1 in the definition of
B shows that both ∅ and ω1 of them belong to B.

From Proposition 3.6.20 it readily follows, that whenever for every i ∈ N one has Ci ⊆ Ai,
then

⋂
Ci is closed and unbounded and

⋂
Ci ⊆

⋂
Ai. In addition, whenever A1 is such that

C1 ⊆ A{1 and Ai ∈ B for any i, then C1 ⊆ A{1 ⊆
(⋂

Ai

){
. We have shown then that a

countable intersection of sets from B belongs to B.
Finally – whenever A is an element of particular Bi, the set A{ is an element of the

other one. In fact this is straightforward because
(
A{
){

= A. We have established that the
complements of sets from B belong to B and thus, in view of the two previous paragraphs,
proved that B is a σ-field.

It is left for us to observe that any closed set K is either unbounded (and thus belong
to B, because K ⊆ K) or bounded by some γ < ω1. In the latter case note that the set
Cγ = {β ∈ α : β > γ} is closed and unbounded, so there exists a closed and unbounded set
C such that C ⊆ K{. Since then every closed set belongs to B. Knowing that B is a σ-field,
we conclude that any Borel set belongs to B and establish point i).

Point iii) is already established throughout the proof of ii), but it seems necessary for the
sequel and thus we will formulate and prove it separately. Take closed and unbounded sets
Ci such that Ci ⊆ A{i . From Proposition 3.6.20 it follows that

⋂
Ci is closed and unbounded.

Thus one gets
⋂
Ci ⊆

⋂
A{i =

(⋃
Ai

){
.

Remark 3.6.22. It is worth to stress, that whenever C is a closed and unbounded set, it
obviously belongs to B1.

3.6.3 An example of a Borel measure with no support

Let us now construct the non-supported measure on the topological space ω1. For any S ⊆ ω1

such that S ∈ B we define measure

D(S) =

{
1 whenever S ∈ B1

0 whenever S ∈ B2.

Proposition 3.6.23. With such defined D we have

i) D is a Borel measure on Ω;
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ii) for every element β ∈ Ω there exists a closed set Cβ of measure 1 such that β 6∈ Cβ. In
particular, the intersection of all closed sets with complements of measure 0 is empty.

Proof.

i) First let us check that the measure is properly defined. As sets B1 and B2 are disjoint,
every set has been assigned with precisely one measure. The measure of empty set is 0,
so we need to check additivity on at most countable families of disjoint sets. As Corollary
3.6.21 part iii) shows, a countable sum of sets with a measure 0 has a measure 0. On
the other hand, from Proposition 3.6.20 we see that any at most countable family of sets
of measure 1 has a non-empty intersection (even of measure 1), hence the sets are not
disjoint. It easily follows then, that D is a well-defined measure. From 3.6.21 part i) it
follows that this measure is Borel.

ii) Indeed, for any β take Cβ = {γ ∈ Ω | γ > β} as in Example 3.6.16. Every set Cβ is
closed and unbounded, thus of measure 1. Its complement is hence of measure 0. As
β 6∈ Cβ, in particular β 6∈

⋂
α∈Ω1

Cα. Arbitrariness of β shows that
⋂
α∈Ω1

Cα = ∅.

The Dieudonné example is in fact an inspiration for plenty of other, just slightly more
involving, examples. Let us mention that a technical modification of Proposition 3.6.20 reads
as follows.

Proposition 3.6.24. Let α be any non-zero, non-limit ordinal number and C – a countable
family whose elements are closed and unbounded sets in ωα. Then the set

⋂
C∈C C is closed

and unbounded in ωα.

This statement may still be improved by the use of the notion of cofinality, however we do
not intend to introduce it. Proposition 3.6.24 shows in fact, that whenever α is a non-limit
ordinal number, a variant of Dieudonné measure may by found on ωα. Namely, we define

B1
def
== {A ⊆ ωα | there exists a closed and unbounded set C in ωα such that C ⊆ A},

B2
def
== {A ⊆ ωα | there exists a closed and unbounded set C in ωα such that C ⊆ A{}

and set

Dα(S) =

{
1 whenever S ∈ B1;
0 whenever S ∈ B2.

In our closing remarks we intend to present one more, slightly easier example. To be
more precise – one without any of the tools described in subsection 3.6.2. The notion of
a measureable number, which was introduced by Ulam in [151], dealt with probabilistic
measures. This is probably the reason why such examples as the one below were hardly
ever considered. Despite making an effort, the author has not found such a simplification
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of Dieudonné construction in the existing literature. Let us define a simplified Dieudonné
measure on ω1 via

E D(S) =

{
+∞ if it unbounded in ω1

0 otherwise.

To check that E D is a measure it is sufficient to note that set S is bounded in ω1 if and only
if it is at most countable. As we have proven, the countable union of countable sets stays
countable, hence a countable sum of sets of E D-measure 0 is still of measure 0. On the other
hand, a support of this measure does not exist, as the identical reasoning has shown in case
of D-measure.

We have presented this example to show that the Dieudonné construction may be simpli-
fied. It is, however, vital to observe, that the +∞ substitution in the definition is necessary.
To see it, let us take two unbounded sets. Let A be the set of all limit ordinal numbers in ω1

and B be defined via B def
== {α+1 : α ∈ A}. Of course A consists only of limit numbers, while

B – only of successors. In particular, they are disjoint. It shows that having any real number
R instead of +∞ in the definition of E D would lead to an improper definition. Realizing
this allows us once again appreciate the elegance of the construction given in [48].



Chapter 4

Thin structures in Orlicz-Sobolev
spaces

4.1 Introduction

In the study of thin structures, i.e. when the structure’s size along one or more dimensions
is much smaller than along the others, say of order ε << 1, rigorous analysis via dimensional
reduction proves to be an useful tool to deduce properties of thin domains starting from
thicker models. In this analysis, one deals with sequences of functions defined on cylindri-
cal sets, which are ‘thin’ (ε sized) in some dimensions. In the 3D setting, thin films are
modelled as ω × (−ε, ε) with ω ⊂ R2 being a bounded open set. In order to perform an
asymptotic analysis as ε → 0, with the aim of deducing a theory settled in ω, functions are
usually rescaled to an ε-independent reference configuration, so that a new sequence (uε)
is constructed, satisfying, in the standard Sobolev setting, some ’degenerate’ bounds of the
form ∫

ω×(−1,1)

(
|∇αuε|p +

1

εp
|∇3uε|p

)
dx ≤ C < +∞ (4.1)

if the sequence of unscaled gradients (∇wε) satisfied some corresponding Lp bound on the
unscaled domain ω × (−ε, ε).

Above and in the sequel ∇α represents the gradient with respect to the unscaled coordi-
nates (denoted by xα) and ∇3 represents the gradient with respect to the ‘thin’ coordinate
direction denoted by x3. In particular, Ω := ω× (−1, 1) = {(xα, x3) : (xα, εx3) ∈ ω× (−ε, ε)}
and wε(xα, εx3)

def
== uε(xα, x3).

Bocea and Fonseca in [23] (see also Braides and Zeppieri in [26] for any dimension) proved
an equi-integrability Lemma for scaled gradients satisfying a bound as (4.1). Indeed they
generalized the Fonseca, Mueller and Pedregal’s result (see [64, Lemma 1.2]) which allows
to substitute a sequence (un), whose gradients (∇un) are bounded in Lp, by a sequence
(vn) with (|∇vn|p) equi-integrable, such that the two sequences are equal except on a set of

79
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vanishing measure. The purpose of such a result is due to the fact that when applying the
direct methods of the Calculus of Variations, or some Γ-convergence argument, it is very
convenient to replace a given sequence with one having better regularity and integrability
properties.

In this chapter of the thesis we extend Braides and Fonseca results, namely [23, Theorem
1.1, Corollary 1.2], to the Orlicz-Sobolev setting. See Section 4.2 for details and proper-
ties about Orlicz spaces LΦ and Orlicz-Sobolev ones W 1,Φ. Indeed, via Young measures
techniques, we prove the following Theorem.

Theorem 4.1.1. Let ω ⊂ R2 be a bounded open set with Lipschitz boundary and Ω
def
==

ω × (−1, 1). Let Φ : [0,+∞) → [0,+∞) be an Orlicz function satisfying conditions ∆2 and
∇2 (see (4.5) and (4.6) respectively). Let (un) ⊂ W 1,Φ(Ω;R3). Assume that (εn) is a sequence
of numbers converging to 0, such that

sup
n

∫
Ω

(Φ(|∇αun,
1
εn
∇3un|))dx = C < +∞. (4.2)

Then there exists a (non-relabelled) subsequence (un) and a sequence (vn) ⊂ W 1,Φ(Ω;R3)
such that

(i) sequence (Φ(|∇αvn,
1
εn
∇3vn|)) is equi-integrable,

(ii) vn ⇀ u0 in W 1,Φ(Ω;R3), where u0 is the weak limit of (un) in W 1,Φ(Ω;R3),

(iii) |{x ∈ Ω : un 6= vn or ∇un 6= ∇vn}| → 0, as n→ +∞,

(iv) vn|∂ω×(−1,1) = u0.

We stress that the above result holds for any sequence of scaled gradients appearing in
any dimensional reduction problem, besides the proof is presented for the total number of
dimensions N = 3 and the number of fixed-size dimensions K = 2.

Having in mind the equilibrium problems related to membranes, where the total energy
of the thin film under a deformation wε : ω × (−ε, ε)→ R3 is given by

Eε(wε)
def
==

∫
ω×(−ε,ε)

W (∇wε(y))dy −
∫
ω×(−ε,ε)

f ε(y) · wε(y)dy,

with f ε ∈ LΨ(ω × (−ε, ε),R3) – an appropriate dead loading body force density (we refer
to [114] for the asymptotic analysis of the above energy), it is important to prove the existence
of an ‘attaining’ sequence for the limit density, which is Φ-equi-integrable. Indeed, the
following result holds. We stress that it is a natural generalisation of [24, Remark 3.3], but
formulated for Orlicz spaces instead of classical Lebesgue. It is worth observing that the
result deals with the notion of quasiconvexification, which was one of the investigated points
in Chapter 2.
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Theorem 4.1.2. Let Ω and Φ be as in Theorem 4.1.1. Let u0 ∈ W 1,Φ(ω,R3) be an affine
mapping with gradient ξ0 ∈ R3×2 and let W : R3×3 → R be a continuous function satisfying

βΦ(|ξ|)− c ≤ W (ξ) ≤ β′Φ(|ξ|) + C for every ξ ∈ R3×3, (4.3)

for suitable constant 0 < β ≤ β′, c, C > 0.
For any matrix ξ ∈ R3×2 and a vector z ∈ R3 let (ξ|z) be a 3 × 3 matrix, whose first

and second column ale columns from the matrix ξ, while the third column of (ξ|z) coincides
with z. Given any sequence (εn) of positive real numbers converging to zero, there exist a
subsequence (not relabelled) of (εn), and a sequence of functions (uεn) ⊂ W 1,Φ(Ω,R3) such
that

(i) lim
n→+∞

1
|Ω|

∫
Ω
W
(
∇αuεn ,

1
εn
∇3uεn

)
dx = QW (ξ0), where W (ξ0) = minz∈R3 W (ξ0|z) and

QW denotes the quasiconvex envelope of W , namely

QW (ξ0) = inf
ϕ∈W 1,∞

0 (Qb,R3)

{
|Qb|−1

∫
Qb

W (ξ0 +∇αϕ(xα))dxα

}
(4.4)

for any cube Qb ⊆ ω,

(ii) lim
n→+∞

‖uεn − u0‖LΦ(Ω;R3) = 0,

(iii) uεn |∂ω×(−1,1) = u0.

(iv) Φ
(∣∣∣∇αuεn ,

1
εn
∇3uεn

∣∣∣) is equi-integrable.

It is worth to observe that such a result can be seen as a counterpart of the characterization
of the Young measures generated by scaled gradients in the Orlicz-Sobolev setting. Indeed,
formula (i) is entirely analogous to one proposed in [96] (the formula just before (1.16)).

The proof of Theorem 4.1.1 develops first by proving a Decomposition Lemma for stan-
dard gradients (see Theorem 4.3.2) which relies on properties of maximal functions, and
exploits the Fundamental Theorem of Young measures (see Theorem 4.2.6). Then the proof
of Theorem 4.1.1 follows as a consequence making use of the fine homogenization technique
introduced in [26]. These are the subject of Section 4.3, while all the preliminary results,
together with properties of Hardy maximal operator are contained in Section 4.2.

4.2 Notations and Preliminaries

We will use the following notations:

? |A| denotes the Lebesgue measure of a set A ⊆ RN for N ≥ 2, or an Euclidean norm
of the vector or matrix A, it will be clear from the context;
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? the symbol dx will also be used to denote integration with respect to the Lebesgue
measure LN , while the symbol dxα will be used to denote integration with respect to
the Lebesgue measure L2;

? the symbol ∇αu denotes the derivatives with respect to xα
def
== (x1, x2) of a given field

u;

? a matrix ξ ∈ R3×3, will be often written as (ξα, ξ3) where ξα stands for the first two
columns and ξ3 represents the third;

? a sequence (fn) is said to be Φ-equi-integrable whenever the sequence (Φ(|fn|)) is equi-
integrable.

? C represents a generic positive constant that may change from line to line;

We say that Φ : [0,+∞) → [0,+∞) is an Orlicz function whenever it is continuous,
strictly increasing, convex, vanishes only at 0 and limt→0+ Φ(t)/t = 0; limt→+∞Φ(t)/t = +∞.
This statement is equivalent to demanding that Φ(t) =

∫ t
0
φ(s)ds for some right-continuous,

non-decreasing φ s.t. φ(t) = 0 ⇐⇒ t = 0 and limt→+∞ φ(t) = +∞.
We say that Φ satisfies ∆2 (denoted by Φ ∈ ∆2) condition whenever

there exists C > 0 and t ≥ t0 such that Φ(2t) < CΦ(t) for all t ≥ t0. (4.5)

Orlicz functions Φ possess the complementary Orlicz function Ψ(s)
def
== Φ?(s), where the

latter denotes the standard Fenchel’s conjugate of Φ, i.e.

Ψ(s)
def
== sup

t≥0
{st− Φ(t)}, s ≥ 0,

and, it results that Ψ(s) =
∫ s

0
φ−1(τ)dτ, where φ−1 stands for right inverse function of φ.

Clearly Ψ? = (Φ?)? = Φ.

If Ψ ∈ ∆2 then (see [106, Theorem 4.2]) its conjugate Φ satisfies

there exists C > 0 and t0 ≥ 0 such that Φ(t) ≤ 1/(2C)Φ(Ct) for any t > t0. (4.6)

The condition (4.6) is often referred to as ∇2 condition, i.e. Φ ∈ ∇2.
Given two Orlicz functions Φ and Φ1, we say that Φ dominates Φ1 near infinity (Φ1 ≺ Φ

or Φ � Φ1 in symbols) if there exists C > 1 and t0 > 0 such that Φ1(t) ≤ Φ(Ct) for all t > t0.
We say that Orlicz functions Φ,Φ1 are equivalent whenever Φ ≺ Φ1 ≺ Φ.

Remark 4.2.1. In the literature, often a different formulation of the definition of dominance
is considered. Namely, it is being stated that Φ dominates Φ1, whenever there exist C > 1,
D > 0 and t0 > 0 such that Φ1(t) ≤ DΦ(Ct) for all t > t0. This notion is however equivalent
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to the notion of dominance introduced by us. To see that, first observe that one of the
implications is trivial and it is enogh to take D = 1. For the other implication it is sufficient
to prove that for every Orlicz function Φ and any constants C,D there exists a constant C ′

such that
L(t)

def
== DΦ(Ct) ≤ R(t)

def
== Φ(C ′t).

Indeed, let us observe that L(0) = R(0) = 0 and, as both functions are absolutely continuous,

L(t) =

∫ t

0

DCφ(Ct)ds

R(t) =

∫ t

0

C ′φ(C ′t)ds,

where by φ we mean the pointwise derivative, defined almost everywhere. Taking now

C ′ ≥ C max(1, D)

ensures that C ′ ≥ DC, while the fact that φ is increasing shows that φ(C ′t) ≥ φ(Ct). Putting
that together, we obtain that R(t) ≥ L(t).

For an arbitrary set of positive Lebesgue measure E ⊂ RN we define the Orlicz class
LΦ(E) of functions u on E as functions satisfying inequality∫

E

Φ(|u|)dx < +∞

In general the class LΦ(E) is not a linear space, and the Orlicz space LΦ(E) is defined as
the linear hull of LΦ(E). It is easy to check that (see [106, Theorem 8.2]) Orlicz class LΦ(E)
coincides with its Orlicz space LΦ(E) if and only if Φ ∈ ∆2.

Orlicz spaces are equipped with Luxemburg norm, namely

||u||LΦ(E) = inf
k>0

∫
E

Φ(|u|/k) ≤ 1 (4.7)

and are complete (see [106, Theorems 9.2 and 9.5]).

The following properties hold.

Lemma 4.2.2. Let Φ be an Orlicz function satisfying ∆2 condition (4.5) and let E be a
bounded open set in RN . Then

(i) C∞c (E) is dense in LΦ(E);

(ii) LΦ(E) is separable and it is reflexive when Φ satisfies (4.6);
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(iii) the dual of LΦ(E) is identified with LΨ(E), (Ψ = Φ?) and the dual norm on LΨ(E) is
equivalent to ‖ · ‖LΨ;

(iv) given u ∈ LΦ(E) and v ∈ LΨ(E), then u · v ∈ L1(E) and the following generalized
Hölder inequality holds ∣∣∣∣∫

E

u · vdx
∣∣∣∣ ≤ 4‖u‖Lφ · ‖v‖LΨ ;

(v) for every v ∈ LΦ(E) the linear functional Lv on LΨ(E) defined as

Lv(u)
def
==

∫
E

u(x)v(x)dx

belongs to the dual of LΨ(E) with ‖v‖LΦ ≤ ‖Lv‖[LΨ(E)]′ ≤ 2‖v‖LΦ

(vi) given Φ and Φ̃, the continuous embedding LΦ(E) ↪→ LΦ̃(E) holds iff Φ � Φ̃ near
infinity;

(vii) in particular, in view of (vi), we have LΦ(E) ↪→ L1(E) ↪→ L1
loc(E) ↪→ D′(E);

(viii) the product of d identical copies of LΦ(E), (LΦ(E))d
def
== LΦ(E)× · · ·×LΦ(E) endowed

with the norm ‖v‖(LΦ(E))d
def
==

∑d
i=1 ‖vi‖LΦ(E) is an Orlicz space, i.e. the norm is

equivalent to the LΦ(td1E) norm, where t stays for sum of disjoint copies of the set.

Proof. The point (i) is Theorem 1 in [70]. The separability stated in point (ii), is proven
in [106, point 4 at page 85], while the reflexivity under the condition ∇2 and point (iii) are
stated in [106, Theorem 14.2]. The point (iv) follows from [106, Theorem 9.3] and formula
(9.24) therein. The same formula, together with [106, Theorem 9.5] gives (v). The point (vi)
coincides with [106, Theorem 8.1] and (vii) immediately follows from (vi). The proof of the
point (viii) is standard.

The proofs of chosen facts stated above are presented in Section 4.6.

Sobolev-Orlicz spaces W 1,Φ(E) are defined via

W 1,Φ(E)
def
== {u ∈ D′(E) : u ∈ LΦ(E),∇u ∈ (LΦ(E))N}

and endowed with the norm

||u||W 1,Φ(E)
def
== ||u||LΦ(E) + ||∇u||(LΦ(E))N .

Identifying the elements of W 1,Φ(E) with the couples (u,∇u), we see them as a closed sub-
space of LΦ(E)

N+1
, thus W 1,Φ(E) is a Banach space.
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The Sobolev-Orlicz space W 1,Φ(E;Rd), d ∈ N is defined as the Banach space of Rd valued
functions u ∈ LΦ(E;Rd) with distributional derivative ∇u ∈ LΦ(E;RN×d), equipped with
the norm

‖u‖W 1,Φ(E;Rd)
def
== ‖u‖LΦ(E;Rd) + ‖∇u‖LΦ(E;RN×d),

where the meaning of the norm ‖ · ‖LΦ(E;R·) is easily understood from (viii) in Lemma 4.2.2.
On the other hand, all the other properties in Lemma 4.2.2 extend with obvious meaning to
the vectorial setting.

Remark 4.2.3. As shown in [70, Theorem 1], whenever Φ ∈ ∆2, smooth functions are dense
in the space W 1,Φ(E) and thus W 1,Φ(E) is separable. Without the assumption of Φ ∈ ∆2

separability is not valid.

If E has Lipschitz boundary, then the embedding

W 1,Φ(E;Rd) ↪→ LΦ(E;Rd) (4.8)

is compact (see [1] and [67, Theorems 2.2 and Proposition 2.1]).
For Sobolev-Orlicz space W 1,Φ

0 (E), where E has a Lipschitz boundary, we have a Poicaré
inequality (see [50, Theorem 3.4 (a)])

||u||LΦ(E) ≤ C||∇u||LΦ(E) for some constant C = C(E,Φ) > 0

and if Φ ∈ ∆2, there exists a linear continuous trace operator Tr : W 1,Φ(E) → LΦ(∂E) [91,
Theorem 3.13].

Let M be a (centred) Hardy maximal operator, i.e. for any f ∈ L1
loc(E) ∩ LΦ(E) let

Mf(x)
def
== sup

r
|B(x, r)|−1

∫
B(x,r)∩E

|f(y)|dy. (4.9)

The following result, an easy corollary from [94, Theorem 1], will be exploited in the
sequel.

Proposition 4.2.4 (Weak estimate for Hardy maximal operator). Let Φ be an Orlicz function
satisfying (4.5) and (4.6). For any f ∈ LΦ(E) there exists a constant C = C

(
E,Φ

)
such

that
|{Mf > t}| ≤ C

Φ(t)

∫
E

Φ(|f |)dx, (4.10)

for every t > 0.

The proof of the Proposition is presented with Theorem 4.6.5
We quote the Fundamental Theorem on Young measures, which will be invoked in the

proof of our main results. We refer to the classical presentation in [16]. Our formulation is
however kept in the spirit of the one given in [118]. For details regarding Young measures
generated by gradients we refer to [95,97].

We start by recalling a classical definition, which can be found for example in [141, 14(8)
and Definition 14.27].



CHAPTER 4. THIN STRUCTURES IN ORLICZ-SOBOLEV SPACES 86

Definition 4.2.5. Let f : E×RN → R∪{+∞} be a mapping. By the epigraphical mapping
of f we will mean the multifunction Sf : E ⇒ RN × R defined by

Sf (x)
def
== {(ξ, α) ∈ RN × R : f(x, ξ) ≤ α}.

We will say, that an integrand f is normal, whenever the mapping Sf is closed-valued and
measureable.

Theorem 4.2.6. Let E ⊂ RN be a measurable set of finite measure and let (zn) be a sequence
of measurable functions, zn : E → Rm. Then there exists a subsequence (znk) and a weak-?
measurable map ν : E →M(Rm) such that the following hold:

(i) νx ≥ 0, ‖νx‖M(Rd) =
∫
Rd dνx ≤ 1 for a.e. x ∈ E;

(ii) one has (i’) ‖νx‖M = 1 for a.e. x ∈ E if and only if the so-called tightness condition
is satisfied, i.e.

lim
R→+∞

sup
k
|{|znk | ≥ R}| = 0

(iii) if K ⊂ Rm is a compact subset and dist(znk , K)→ 0 in measure, then suppνx ⊂ K for
a.e. x ∈ E;

(iv) if (i’) holds, then in (iii) one may replace ’if ’ with ’if and only if ’;

(v) if f : E × Rd → R is a normal integrand, bounded from below, then

lim inf
n→+∞

∫
E

f(x, znk(x))dx ≥
∫
E

∫
Rd
f(x, y)dνx(y)dx

(vi) if (i’) holds and if f : E × Rm → R is Carathéodory and bounded from below, then

lim
n→+∞

∫
E

f(x, znk(x))dx =

∫
E

∫
Rd
f(x, y)dνx(y)dx

if and only if (f(x, znk(x))) is equi-integrable. In this case

f(x, znk(x)) ⇀

∫
Rd
f(x, y)dνx(y) in L1(E).

The map ν : E →M(Rm) is called the Young measure generated by (znk).
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4.3 Proofs of the Theorems 4.1.1 and 4.1.2

This section is devoted to the proof of our main result.
We start by proving a Lemma which generalizes the result of Fonseca and Leoni [118,

Lemma 8.13] to the Orlicz setting. The Lemma is needed to achieve a good control of the
behaviour of truncations of the functions from the Orlicz space.

Lemma 4.3.1. Let Φ be an Orlicz function satisfying (4.5) and (4.6). Let E ⊂ RN be a
Lebesgue measurable set of finite measure and let (un) be a uniformly bounded sequence in
LΦ(E;Rm). For any r define the standard truncature operators τr : R→ R as

τr(t)
def
==

{
t, whenever |t| ≤ r,
r t
|t| otherwise. (4.11)

Then there exist a (non-relabeled) subsequence (un) and an increasing sequence of numbers
rn → +∞ such that τrn ◦ un are Φ−equi-integrable and the set |{x ∈ E : τrn ◦ un 6= un}| → 0.

Proof. By (i) in Theorem 4.2.6, we may assume that (un) generates the Young measure νx.
The uniform boundedness of the sequence (un), together with (iii) therein, guarantees that∫

E

∫
Rm

Φ(|z|)dνx(z)dx < +∞.

So we have

lim
r→+∞

lim
n→∞

∫
E

Φ(|τr ◦ un|)dx = lim
r→+∞

∫
E

∫
Rm

Φ
(
|τr(z)|

)
dνx(z)dx =

∫
E

∫
Rm

Φ(|z|)dνx(z)dx.

where the first equality relies on (vi) of Theorem 4.2.6, and the second one on Lebesgue
Monotone Convergence theorem. Take rn such that

lim
n→+∞

∫
E

Φ(|τrn ◦ un|)dx =

∫
E

∫
R

Φ(|z|)dνx(z)dx.

As rn → +∞ and (un) is bounded, one has

|{x ∈ E : τrn ◦ un 6= un}| → 0.

Thus, we can conclude that (τrn ◦ un) generates the same Young measure as (un) (see [118,
Corollary 8.7]).

Finally (vi) in Theorem 4.2.6 ensures Φ−equi-integrability of (τrn ◦ un).

Now we prove a Decomposition Lemma for gradients. In the sequel we will extend this
result to the scaled ones.
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Theorem 4.3.2. Let E ⊂ RN be a bounded open set with Lipschitz boundary. Let Φ be
an Orlicz function satisfying ∆2 and ∇2 conditions (see (4.5) and (4.6) respectively), and
let (un) ⊂ W 1,Φ(E;Rd) be a sequence of functions converging to u0 weakly in W 1,Φ(E;Rd).
Then there exists a subsequence (unk) and a sequence (vk) ⊂ W 1,∞(RN ;Rd) such that (vk)
converges to u0 weakly in W 1,Φ(E;Rd),

|{x ∈ E : vk(x) 6= unk(x) or ∇unk(x) 6= ∇vk(x)}| → 0 as k → +∞

and (Φ(|∇vk|)) is equi-integrable.

Proof. Since
sup
n
‖un‖W 1,Φ(E;Rd) ≤ C

and Φ ∈ ∆2, we have

sup
n

{∫
E

(Φ(|un|) + Φ(|∇un|))dx
}
≤ C.

It follows from the continuity of the maximal operator (see [66, Theorem 2.1] for the original
source or Theorem 4.6.8 in the Section 4.6), that

sup
n

{∫
RN

Φ(M(|un|+ |∇un|)χE)dx

}
≤ C,

where M((|un| + |∇un|)χE) is the maximal function of (|un| + |∇un|)χE. By Lemma 4.3.1,
there exists an increasing sequence tn → +∞ such that (Φ(|τtn ◦ (M((|un|+ |∇un|)χE))|)) is
equi-integrable, where τtn is defined in (4.11).

Define
An

def
== {x ∈ E : |M

(
(|un|+ |∇un|)χE

)
| > tn}. (4.12)

By [118, Theorem 4.32], there exists (vn) ⊂ W 1,∞(RN ;Rd) such that

‖vn‖W 1,∞ ≤ Ctn, (4.13)

where C depends on E and N , and such that vn = un almost everywhere in the sense of LN
on E \ An and by (4.10)

|An| ≤
C

Φ(tn)

∫
RN

Φ(|un|+ |∇un|)dx.

In order to show that (Φ(|∇vn|)) is equi-integrable we observe that for LN a.e. x in E\An

|∇vn| = |∇un| ≤ M((|un|+ |∇un|)χE) = |τtn ◦M((|un|+ |∇un|)χE)|

while if x ∈ An then

|∇vn| ≤ Ctn ≤ C|τtn ◦M((|un|+ |∇un|)χE)|.
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It remains to prove the weak convergence of (vn) to u0 in W 1,Φ(E;Rd). To this end, first
we observe that (4.13) and (4.10) ensure∫

E
Φ(|vn|+ |∇vn|)dx =

∫
E\An Φ(|un|+ |∇un|)dx+

∫
An

Φ(|vn|+ |∇vn|)dx

≤
∫
E\An Φ(|un|+ |∇un|)dx+ Φ(Ctn)|An|

≤ C
∫
E

Φ(|un|+ |∇un|)dx.

Next the reflexivity of W 1,Φ(E;Rd) under (4.5),(4.6) (see Lemma 4.2.2) and the Banach-
Alaoglu-Bourbaki theorem ensure that, up to the choice of a non-relabelled subsequence,
vn ⇀ v0 in W 1,Φ(E;Rd). Thus, since |{x ∈ E : vn 6= un or ∇un 6= vn}| → 0 as n → +∞ we
can conclude, via the compact imbedding (see (4.8)) that v0 = u0 LN - a.e. in E.

Proof of Theorem 4.1.1. The proof of the claims (i) and (iii) follows line by line as in [26,
Theorem 3.1]. Namely, we define ūn

def
== un(x1, x2,

2x3−εn
εn

) (so it is a shifted and scaled version
of un, and it is defined on ω × (0, εn)) and observe that

sup
n

∫
ω×(0,εn)

Φ(|∇ūn|)dx = C, where C is exactly like in (4.2).

We now extend ūn by reflection to ω × (−εn, εn) and then produce its periodic extension, û,
to ω × (−1, 1).

For such constructed sequence ûn one can obtain the uniform bound of its norm in
W 1,Φ

(
ω × (−1, 1)

)
as in [26, formula (3.6)]. Thus, we apply Theorem 4.3.2 and obtain a se-

quence (v̂n) with (∇v̂n) Φ-equi-integrable. The use of de la Vallée Poussin Criterion (see [118,
Theorem 2.29]) and the ingenious computation due to Braides and Zeppieri (see [26, formula
(3.7)]) gives us the sequence (v̄n) satisfying claim (i) and (iii).

The presentation of the aforementioned computation held in [26] is less clear then in our
case. That is because we deal with the fixed dimension x = (x1, x2, x3) and only the third
dimension is scaled. Braides and Zeppieri worked with x = (xα, xβ) and xα ∈ Rn−k, xβ ∈ Rk.
Taking the number of scaled dimensions k = 1, as in our case, doesn’t change the proof,
but significantly simplifies the notation and makes the presentation simpler to read. For this
reason we present it with details. A reader familiar with Braides’ and Zeppieri’s paper is
invited to skip this part of the proof and move instantly to the proof of the claim (iv) below.

We are at the point, when the use of Theorem 4.3.2 gave us the sequence (v̂n) such that
Φ(|∇v̂n|) (or equivalently Φ(|∇αv̂n|) + Φ(|∇3v̂n|)) is equi-integrable on ω × (−1, 1) and

L 3
(
({v̂n 6= ûn or ∇v̂n 6= ∇ûn}) ∩ (ω × (−1, 1))

)
→ 0.

De la Vallée Poussin Criterion guarantees, that there exists a positive Borel function f : R→
R such that

lim
t→+∞

f(t)

t
= +∞ and sup

n

∫
ω×(−1,1)

f
(
Φ(|∇αv̂n|) + Φ(|∇3v̂n|)

)
< +∞.
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Let brc be the integer part of the real number r, i.e. the biggest integer not exceeding r.
Obviously, b1/εncεn ≤ 1 and hence positivity of f and monotonicity of L 3 yield∫

ω×(−b1/εncεn,b1/εncεn)

f
(
Φ(|∇αv̂n|) + Φ(|∇3v̂n|)

)
≤
∫
ω×(−1,1)

f
(
Φ(|∇αv̂n|) + Φ(|∇3v̂n|)

)
.

and

L 3
(
({v̂n 6= ûn or ∇v̂n 6= ∇ûn}) ∩ (ω × (−b1/εncεn, b1/εncεn))

)
≤

L 3
(
({v̂n 6= ûn or ∇v̂n 6= ∇ûn}) ∩ (ω × (−1, 1))

)
.

Let us set the notation

Mn
def
==

∫
ω×(−1,1)

f
(
Φ(|∇αv̂n|) + Φ(|∇3v̂n|)

)
;

mn
def
== L 3

(
({v̂n 6= ûn or ∇v̂n 6= ∇ûn}) ∩ (ω × (−1, 1))

)
and remind that

sup
n
Mn < +∞; mn → 0. (4.14)

Having in mind, that (−b1/εncεn, b1/εncεn) =
b1/εnc−1⋃
i=−b1/εnc

(iεn + (0, εn)) we see that

b1/εnc−1∑
i=−b1/εnc

∫
ω×(iεn+(0,εn))

f
(
Φ(|∇αv̂n|) + Φ(|∇3v̂n|)

)
< Mn (4.15)

b1/εnc−1∑
i=−b1/εnc

L 3
(
({v̂n 6= ûn or ∇v̂n 6= ∇ûn}) ∩ (iεn + (0, εn))

)
< mn. (4.16)

Now, for fixed n,, let us consider only intervals (iεn + (0, εn)) with i being an even integer,
i.e. i = 2h for some h ∈ In

def
== Z∩ [−1/2b1/εnc, 1/2(b1/εnc−1)]. What is worth mentioning

now is that on such intervals the extended function ûn coincides with its ’mother function’
ūn shifted by the vector (0, 0, 2hεn).

Of course, positivity of f, together with monotonicity of L 3, let us immediately conclude
from (4.15) and (4.16) that∑

h∈In

∫
ω×(2hεn+(0,εn))

f
(
Φ(|∇αv̂n|) + Φ(|∇3v̂n|)

)
≤Mn (4.17)∑

h∈In

L 3
(
({v̂n 6= ûn or ∇v̂n 6= ∇ûn}) ∩ (2hεn + (0, εn))

)
≤ mn. (4.18)
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We claim that for at least b1/2#Inc indices h ∈ In, we have∫
ω×(2hεn+(0,εn))

f
(
Φ(|∇αv̂n|) + Φ(|∇3v̂n|)

)
≤ (#In − b1/2(#In)c+ 1)−1Mn. (4.19)

To check the claim, let us set I ′
n
def
== {h ∈ In : (4.19) does not hold } and assume that

#I ′
n ≥ (#In − b1/2(#In)c+ 1). We easily compute, that∑

h∈In

∫
ω×(2hεn+(0,εn))

f
(
Φ(|∇αv̂n|) + Φ(|∇3v̂n|)

)
≥

∑
h∈I ′n

∫
ω×(2hεn+(0,εn))

f
(
Φ(|∇αv̂n|) + Φ(|∇3v̂n|)

)
≥

#I ′
n(#In − b1/2(#In)c+ 1)Mn,

which contradicts (4.17). An easy computation shows, that #In = 2b1/2(1/εn − 1)c + 2,
hence for sufficiently large n one has

#In − b1/2#Inc+ 1 > 1/(4εn).

That, together with (4.19) gives us that for at least b1/2#Inc indices h ∈ In, we have∫
ω×(2hεn+(0,εn))

f
(
Φ(|∇αv̂n|) + Φ(|∇3v̂n|)

)
≤ 4εnMn (4.20)

for n large enough. An averaging procedure shows that, among the indices satisfying (4.20)
we can find one that satisfies

L 3
(
({v̂n 6= ûn or ∇v̂n 6= ∇ûn}) ∩ (2hεn + (0, εn))

)
≤

b1/2#Inc−1mn < 4εnmn. (4.21)

Let us take an index satisfying (4.20) and (4.21) simultaneously and name it h?. To simplify
the notation, with no loss of generality, we assume that h? = 0. We focus our attention on
the new function zn – the restriction of the function v̂n to the chosen piece of Ω, that is
ω × 2h?εn + (0, εn). We will construct the function v̄n from zn by unscaling. Let us set

v̄n(x)
def
== zn(x1, x2, (εn(x3 + 1)/2).

The function v̄n ∈ W 1,Φ(ω × (−1, 1);Rm) By virtue of (4.20) we have∫
ω×(−1,1)

f
(
Φ(|∇αv̄n|) + Φ(1/εn|∇3v̄n|)

)
≤ 4Mn
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and de la Vallée Poussin Criterion yields equi-integrability of Φ(|∇αv̄n|) + Φ(1/εn|∇3v̄n|).
This shows that the sequence v̄n satisfies claim (i) of the Theorem 4.1.1. By (4.21) we deduce

L 3
(
({v̄n 6= ûn or ∇v̄n 6= ∇ûn}) ∩ (2hεn + (0, εn))

)
≤ 4mj.

Having in mind (4.14), we get claim (iii). Up to an extraction of a subsequence one may
immediately deduce claim (ii).

To get (iv) we argue as in [23, Corollary 1.2]. We define sets

ωj
def
== {x ∈ ω : dist(x, ∂ω) < 1/j} (4.22)

and cut-off functions θj ∈ C∞0 (ω, [0, 1]), equal to 1 on ω \ ωj, vanishing in a neighborhood

of ∂ω, and such that |∇θj| < Cj for some constant C. We set then vn,j
def
== u0 + θj v̄n. Via

compact imbedding (see (4.8)) and the diagonal argument we may find such a function n(j)
that

||vn(j),j − u0||LΦ(Ω;R3) → 0 and ||vn(j),j||LΦ(Ω;R3) <
1

j2
.

To obtain (iv), it suffices to define vj
def
== vn(j),j. It remains to deduce (i)-(iii) for this latter

sequence. To prove (iii) we just observe that

|{x ∈ Ω : uj 6= vj or ∇uj 6= ∇vj}|
≤ |{x ∈ Ω : uj 6= v̄j or ∇uj 6= ∇v̄j}|+ |{x ∈ Ω : v̄j 6= vj or ∇uj 6= ∇v̄j}|,

and the claim follows from the control of the latter two sets. For (i), it suffices to exploit the
definition of uj and the Φ-equi-integrability of vj, (see also [23, formula (4.8)]). Up to the
extraction of the subsequence we deduce (ii).

Proof of Theorem 4.1.2. It can be deduced from [23, Corollary 1.2]. We sketch the main
points for the reader’s convenience. First let us observe that from density of smooth functions
and properties of quasiconvex envelope and definition of W it can be easily proven that

inf
ε,u|∂ω×(−1,1)≡u0

1

|Ω|

∫
Ω

W (∇αu,
1

ε
∇3u)dx = QW (∇u0). (4.23)

Now let us assume that ω is a square (−c/2, c/2)2. Let (wn, Ln) be the infimizing sequence
of the left-hand side in (4.23). We may thus assume that, up to a reflection and then
a periodic extension, functions (wn − u0) are already defined on R2 × (−1, 1). We define
wn,j(x)

def
== εjLn(wn − u0)(

(
εjLn)−1xα, x3

)
and observe that

lim
n→∞

lim
j→∞

wn,j = 0 weakly in W 1,Φ(Ω;R3)

and
lim
n→∞

lim
j→∞

1

|Ω|

∫
Ω

W
(
∇αu0 +∇αwn,j,

1

εj
∇3wn,j

)
= QW (∇u0).
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By a diagonal procedure and (4.8) we may choose j(n) such that (denoting wn,j(n) as w̃n and
εj(n) as ε̃n), lim w̃n = 0 strongly in LΦ(Ω), and

lim
n→∞

1

|Ω|

∫
Ω

W (∇αu0 +∇αw̃n,
1

ε̃
∇3w̃n)dx = QW (∇u0).

The latter equality, together with (4.2) gives us bound on the norm of w̃n in W 1,Φ(Ω;R3).
Up to an extraction of the subsequence (not relabelled) we may still assume that w̃n ⇀ 0 in
W 1,Φ(Ω;R3).

Applying Theorem 4.1.1 we obtain a sequence (vn) satisfying (ii), (iii) and (iv). The point
(i) follows from triangle inequality, Φ-equi-integrability of (vn), point (iii) of the Theorem
4.1.1 and the fact that |ωj| → 0 (see (4.22)).

To generalize the result to ω with Lipschitz boundary, the standard, but technically
involving glueing procedure is used. For the detailed presentation we refer to the second step
of the proof of [23, Corollary 1.2].

4.4 The Γ-convergence of energies in thin structures
setting

Optimal design problems, devoted to find the minimal energy configurations of a mixture of
two conductive (or elastic) materials, have requested much attention in the past years starting
with the pioneering papers [101]. It is well known that, given a container Ω and prescribing
only the volume fraction of the material where it is expected to have a certain conductivity,
an optimal configuration might not exist. To overcome this difficulty, Ambrosio and Buttazzo
in [8] imposed a perimeter penalization on the interface of the two materials. In [34, formula
(2)] the same perimeter term has been added in order to deal with the model proposed in [59]
and [24] in the framework of thin structures in the non-linear elasticity setting.

Here we are considering an analogous problem, where the continuous energy densities
Wi : R3×3 → R, i = 1, 2, do not satisfy growth conditions of order p but are of the type

β(Φ(|F |)− 1) ≤ Wi(F ) ≤ β′(1 + Φ(|F |)) (4.24)

for every F ∈ R3×3 and Φ – an Orlicz function (see section 4.2) with 0 < β ≤ β′. We refer
to [114,115] for related results in the framework of dimensional reduction problems casted in
the Orlicz-Sobolev setting.

Let ε > 0 and consider Ω(ε) := ω × (−ε, ε), where ω is a bounded domain of R2, with
Lipschitz boundary. Assume that Ω(ε) is clamped on its lateral boundary, and suppose that
Ω(ε) is filled with two materials of respective energy densities Wi, i = 1, 2 as above, satisfying
(4.24).
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We study the following problem of minimization with respect to the couple (v, E(ε))

inf
v ∈ W 1,Φ(Ω(ε);R3)

χE(ε) ∈ BV (Ω(ε); {0, 1})

{
1
ε

∫
Ω(ε)

[(χE(ε)W1 + (1− χE(ε))W2)(∇v)− f · v]dx

+1
ε
P (E(ε); Ω(ε)) : vb∂ω×(−ε,ε)= 0, 1

|Ω(ε)|

∫
Ω(ε)

χE(ε) dx = λ

}
,

(4.25)

where E (ε) ⊂ Ω (ε) is a measurable set with finite perimeter (see Section 4.6 for more
details) and f̄ ∈ LΦ∗ (Ω(ε);R3), where Φ∗ is the Legandre conjugate of Φ (see section 4.2)
and λ ∈ (0, 1) is the volume fraction.

In order to study the asymptotic behaviour of (4.25) we first rescale the problem in a fixed
3D domain and then we perform Γ-convergence (see Definition 4.6.21) with respect to the
pair (deformation, design region) as in [34]. We introduce a curious reader to see Section4.6
for more details. The definition of this notion reads as follows.

Definition 4.4.1 (Γ-convergence). Let X be a topological space and Fn : X → R be a
sequence of functionals. We will say that F = Γ − lim

n→+∞
Fn, whenever for every x ∈ X the

following two conditions hold.

(LB) for any xn → x we have lim inf Fn(xn) ≥ F (x);

(UB) there exists such xn → x that lim supFn(xn) ≤ F (x).

In the literature, the conditions (LB) and (UB) are often referred as ’the lower bound’ and
’the upper bound’ respectively. The natural generalisation of the Definition to the families
of functionals is given in Definition 4.6.22.

We refer to [28–31,45] for Γ-convergence theory. A very brief view of the essential theorems
is given in Section 4.6. We consider a 1

ε
−dilation in the transverse direction x3. Set Ω :=

ω × (−1, 1) ,

Eε
def
== {(xα, x3) ∈ Ω : (xα, εx3) ∈ E (ε)} , u (xα, x3)

def
== v (xα, εx3) ,

f (xα, x3)
def
== f (xα, εx3) , χEε (xα, x3)

def
== χE(ε) (xα, εx3) ,

(4.26)

where v is any admissible field for (4.25).
In the sequel we will denote dxα

def
== dx1dx2 and ∇α and Dα will be identified with the

pair (∇1,∇2) (D1, D2) , respectively.
By the definition of total variation, P (E (ε) ; Ω (ε)) =

∣∣DχE(ε)

∣∣ (Ω (ε)), and the change of
variables in (4.26) ensures that 1

ε

∣∣DχE(ε)

∣∣ (Ω(ε)) =
∣∣(Dαχε,

1
ε
D3χε

)∣∣ (Ω), where χEε denotes
the characteristic function of Eε, that in the sequel we will indicate simply by χε. We refer
to [9] for sets of finite perimeter and BV functions.
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For every ε > 0, let Jε : L1(Ω; {0, 1})×LΦ(Ω;R3)→ [0,+∞] be the functional defined as
follows

Jε(χ, u)
def
==


∫

Ω
(χW1 + (1− χ)W2)

(
∇αu

∣∣1
ε
∇3u

)
dx−

∫
Ω
f · udx

+
∣∣(Dαχ

∣∣1
ε
D3χ

)∣∣ (Ω) in BV (Ω; {0, 1})×W 1,Φ(Ω;R3),

+∞ otherwise.

(4.27)

Analogously, consider the functional J0 : L1(Ω; {0, 1})× LΦ(Ω;R3)→ [0,+∞] as

J0(χ, u)
def
==


2
∫
ω
QV (χ,∇αu)dxα −

∫ 1

−1

∫
ω
f · udxαdx3

+2|Dχ|(ω), in BV (ω; {0, 1})×W 1,Φ(ω;R3),

+∞ otherwise,

(4.28)

where V : {0, 1} × R3×3 → [0,+∞) is given by

V (d, F )
def
== dW1(F ) + (1− d)W2(F ), (4.29)

with W1 and W2 satisfying (4.24), V : {0, 1} × R3×2 → [0,+∞) is given by

V
(
d, F

) def
== dW 1

(
F
)

+ (1− d)W 2

(
F
)
, (4.30)

with W i(F )
def
== infc∈R3 Wi

(
F |c
)
, F ∈ R3×2, i = 1, 2, and QV stands for the quasiconvexifica-

tion of V in the second variable (compare with (2.1)). Namely, for every (d, F ) ∈ {0, 1}×R3×2

QV
(
d, F

) def
== inf

{∫
Q′
V
(
d, F +∇αϕ(xα)

)
dxα : ϕ ∈ C∞0

(
Q′;R3

)}
, (4.31)

where Q′ ⊂ R2 denotes the unit cube.
We will prove that problems (4.25) Γ-converge, as ε→ 0+, to the problem

inf
u ∈ W 1,Φ

0 (ω;R3)
χ ∈ BV (ω; {0, 1})
1
|ω|

∫
ω
χdxα = 1

2
λ

{
2

∫
ω

QV (χ,∇αu)dxα −
∫ 1

−1

∫
ω

f · udx+ 2|Dχ|(ω)

}
.

In fact, the above convergence relies on the following theorem that will be proven in
Section 4.5. We underline that the strategy of the proof is similar to the analogous result
in [34], but it requires to introduce ad hoc tools in the Orlicz-Sobolev setting. It is worth
observing that the result deals with the notion of quasiconvexification, which was one of the
investigated points in Chapter 2.
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Theorem 4.4.2 (The Γ-convergence result). Let Ω = ω × (−1, 1) be a bounded open set,
ω ⊆ R2 open and bounded with Lipschitz boundary and let Wi : Ω → [0,+∞), i = 1, 2, be
continuous functions satisfying (4.24). Let (Jε) be the family of functionals defined in (4.27).
Then (Jε) Γ-converges, with respect to the strong topology of L1(Ω; {0, 1})×LΦ(Ω;R3), to J0

in (4.28), as ε→ 0+.

Indeed, for what concerns the volume constraint and the boundary conditions, it is enough
to observe that the strong convergence in L1(Ω; {0, 1}) × LΦ(Ω;R3) (and, by compactness
arguments, weak-?-BV (Ω; {0, 1})× weak-W 1,Φ(Ω;R3)), of the rescaled sequence (χε, uε) of
almost minimizers of (4.25) to (χ, u) ∈ BV (ω; {0, 1}) × W 1,Φ

0 (ω;R3), guarantees that the
volume fraction

1

|(Ω(ε)|

∫
Ω(ε)

χE(ε)dx =
1

|Ω|

∫
Ω

χεdx = λ

is kept in the limit. The continuity of the trace operator [91, Theorem] entails that u ∈
W 1,Φ

0 (ω;R3).

4.5 Proof of the Γ-convergence result

The following result, whose proof is immediate, will be exploited in the sequel.

Proposition 4.5.1. Let V be as in (4.30) . Then V is continuous and satisfies

β′
(
Φ(
∣∣F ∣∣)− 1

)
≤ V

(
χ, F

)
≤ β

(
1 + Φ(

∣∣F ∣∣)) , (4.32)

where β′ and β are the constants in (4.24) . Moreover,∣∣V (χ, F)− V (χ′, F )
∣∣ ≤ 2β |χ− χ′| (1 + Φ(|F |)).

Furthermore, the function QV in (4.31) is continuous and satisfies (4.32), and

|QV (χ, F )−QV (χ′, F )| ≤ C|χ′ − χ|(1 + Φ(|F |)). (4.33)

We will also use the following, classical integral representation theorem due to Buttazzo
and Dal Maso ( [28, Theorem 4.3.2] or [45, Theorem 20.1]).

Theorem 4.5.2 (The Integral Representation Theorem). Let A be a set of all open subsets of
ω ⊂ Rn and Φ be an Orlicz function satysfying the ∆2 condition (4.5). Let G : LΦ(ω)×A →
[0,+∞] be an increasing functional satisfying the following properties:

(i) G(u,A) = G(v,A) whenever u = v, a.e. on ω,

(ii) G(u, ·) is the restriction of a finite non-negative Radon measure on A(ω),
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(iii) there exist b ∈ R and a ∈ L1
loc(ω) such that

0 < G(u,A) <

∫
A

(
a(x) + bΦ(|Du(x)|)

)
dx

for every u ∈ W 1,Φ(ω) and every A ∈ A,

(iv) G(u+ c, A) = G(u,A) for any c ∈ R,

(v) G is lower semicontinuous.

Then there exists a Borel function W : ω × Rn → [0,+∞) such that

(i) for every u ∈ LΦ(ω) and for every A ∈ A such that u|A ∈ W 1,Φ
loc we have

G(u,A) =

∫
A

W (x,Du(x))dx,

(ii) for almost every x ∈ ω, the function W (x, ·) is convex on Rn,

(iii) for almost every x ∈ ω we have

0 ≤ W (x, ξ) ≤ a(x) + bΦ(ξ)

for every ξ ∈ Rn.

However the Theorem is stated in the original sources for Sobolev spaces, result holds
without any substantial modifications in our Sobolev-Orlicz setting. In particular, all the cru-
cial steps (like ’Zig-Zag’ lemma or the passage through affine and piecewise affine functions)
can be repeated word by word. Also, wee emphasize that the approximation of functions in
Sobolev-Orlicz spaces (with Orlicz function Φ ∈ ∆2) by piecewise constant functions holds
as originally stated in [52, Proposition 2.8].

We start by motivating the choice of the topology in Theorem 4.4.2. We claim that energy
bounded sequences (χε, uε) ∈ BV (Ω; {0, 1})×W 1,Φ(Ω;R3), admissible for the rescaled version
of (4.25), i.e. such that there exists C > 0 :∣∣∣ ∫

Ω

[(χεW1 + (1− χε)W2)
(
∇αuε,

1
ε
∇3uε

)
− f · uε]dx+

∣∣(Dαχε,
1
ε
D3χε

)∣∣ (Ω)
∣∣∣ ≤ C, (4.34)

with uε clamped on ∂ω × (−1, 1) and 1
|Ω|

∫
Ω
χεdx = λ, are compact in space L1(Ω; {0, 1}) ×

LΦ(Ω;R3) and with limit in BV (ω; {0, 1})×W 1,Φ(ω;R3). Indeed, let (χε, uε) be a sequence
such that (4.34) holds, then there exists C ′ ∈ R+ such that

‖uε‖W 1,Φ ≤ C ′,

∥∥∥∥1

ε
∇3uε

∥∥∥∥
LΦ

≤ C ′,

∣∣∣∣(Dαχε,
1

ε
D3χε

)∣∣∣∣ (Ω) ≤ C ′. (4.35)
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Then, standard arguments in dimensional reduction (i.e. the application of [117, Lemma 3]),
entail that every cluster point u ∈ W 1,Φ(Ω;R3) of the sequence (uε) is such that ∇3u ≡ 0,
and so u can be identified with a function (still denoted in the same way, cf. [124, Theorem
1 in Section 1.1.3]) u ∈ W 1,Φ(ω;R3). Analogous considerations hold for the limit of χε. Thus
there exists a subsequence, not relabelled, (χε, uε) such that uε ⇀ u in W 1,Φ(Ω;R3), and a
measurable set E ⊂ Ω such that χε

?
⇀ χE and D3χE ≡ 0. Hence, there exists E ′ ⊂ ω, with

|DχE|(Ω) = 2|DχE′ |(ω), (4.36)

where E = E ′ × (−1, 1). In the sequel we will identify the set E with the set E ′ and denote
χE′ by χ. We stress that the doubling coefficient in (4.36) comes from the fact that Ω = ω×I,
where the length of the interval I equals 2.

We observe that Theorem 4.4.2 still holds without the coercivity assumption (4.24), pro-
vided the admissible sequences satisfy (4.35).

Proof of Theorem 4.4.2. For every ε > 0, let Jε be the functional in (4.27). Let us remind
that, as Φ satisfies the ∆2 condition (4.5), Proposition 4.2.2 point (ii) shows that LΦ(Ω,R3)
is separable. Consequently, the metric space L1(Ω; {0, 1}) × LΦ(Ω;R3) is separable. That
ensures that for each sequence (ε) there exists a subsequence, still denoted by (ε), such that
Γ− limε→0+ Jε with respect to the strong topology of L1(Ω; {0, 1})× LΦ(Ω;R3) exists.
For every (χ, u) ∈ L1(Ω; {0, 1})×LΦ(Ω;R3), let J (χ, u) be this Γ-limit. By Urysohn property,
it suffices to prove that any sequence (Jε) admits a further subsequence whose Γ-limit, J(χ, u),
coincides with J0(χ, u) in (4.28).

It is easily seen that

J(χ, u) = +∞ for every (χ, u) ∈ (L1(Ω; {0, 1})×LΦ(Ω;R3))\ (BV (ω; {0, 1})×W 1,Φ(ω;R3)).

Indeed, if this is not the case, from the condition J(χ, u) < +∞, we would get the existence
of a sequence (χε, uε) converging to (χ, u) such that Jε(χε, uε) < +∞ and this would imply
(χ, u) ∈ BV (ω; {0, 1})×W 1,Φ(ω;R3) – a contradiction.

The remaining part of the proof is divided into two steps. First we show the lower bound,
then we prove the upper bound (compare with Definition 4.6.21).

Lower bound: We claim that for every (χ, u) ∈ BV (ω; {0, 1})×W 1,Φ(ω;R3)

J (χ, u) ≥ J0(χ, u) = 2
∫
ω
QV (χ (xα) ,∇αu (xα)) dxα

−
∫ 1

−1

∫
ω
f (xα, x3)u (xα) dxαdx3

+2 |Dχ| (ω) ,

(4.37)

where the terms of the right-hand side of the inequality can be referred as bulk term, forces
and perimeter respectively.

To prove the claim, let (χε, uε) ⊂ L1(Ω; {0, 1}) × LΦ(Ω;R3) be a sequence converging
to (χ, u) ∈ BV (ω; {0, 1}) × W 1,Φ(ω;R3). For the forces, the strong convergence in LΦ,
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together with continuity of the linear term with respect to strong topology, show the claim,
i.e. show that lim inf

ε→0+
−
∫

Ω
fuεdx ≥ −

∫ 1

−1

∫
ω
f (xα, x3)u (xα) dxαdx3, so that the forces term

of the original family of functionals is bounded from below by the forces term of our limit
candidate.

For the perimeter, the lower bound for the proper terms follows by the lower semiconti-
nuity of the total variation (see Proposition 4.6.25 or [9, Remark 3.5]), i.e. χε → χ strongly
in L1 ⇒ lim inf ||Dχε|| ≥ ||Dχ||, and an analogous reasoning to (4.36). Namely,

lim inf
ε→0+

|(Dαχε|
1

ε
D3χε)|(Ω)

(1)

≥ lim inf
ε→0+

|(Dαχε|D3χε)|(Ω)
(2)

≥

|(Dαχ|D3χ)|(Ω)
(3)
== |(Dαχ|0)|(Ω)

(4)
= 2|Dχ|(ω),

where (1) follows by ε < 1, (2) by the lower semicontinuity of the total variation, (3) by the
fact that χ ∈ BV (ω, ; {0, 1}) (so that D3χ = 0) and (4) by Ω = ω × (−1, 1).

For what concerns the bulk energy, by Theorem 4.1.1, there exist (wε) and (Aε), such that
Aε ⊂ Ω, wε converges in LΦ(Ω;R3) to u ∈ W 1,Φ(ω;R3), the scaled gradients (∇αwε,

1
ε
∇3wε)

are Φ-equi-integrable, Aε ⊆ Ω and uε ≡ wε in Aε and |Ω \ Aε| → 0 as ε→ 0+. Denoting the
bulk energy density of Jε by V as in (4.29), one obtains

lim inf
ε→0+

∫
Ω

V

(
χε,

(
∇αuε

1

ε
∇3uε

))
dx

(1)

≥

lim inf
ε→0+

∫
Aε

V

(
χε,

(
∇αwε,

1

ε
∇3wε

))
dx

−β lim sup
ε→0+

∫
Ω\Aε

(1 + Φ(

∣∣∣∣(∇αwε,
1

ε
∇3wε)

∣∣∣∣))dx (2)

≥

lim inf
ε→0+

∫
Ω

V

(
χε,

(
∇αwε,

1

ε
∇3wε

))
dx

(3)

≥

lim inf
ε→0+

∫
Ω

V (χε,∇αwε) dx
(4)

≥

lim inf
ε→0+

∫
Ω

QV (χε,∇αwε) dx, (4.38)

where the inequality (1) follows by (4.24), (2) by Φ-equiintegrability of wε and |Ω \Aε| → 0,
while (3) and (4) are straightforward consequences of the definitions of the densities V and
QV , given in (4.30) and (4.31) respectively.

Observe that, by (4.33), for a.e. x ∈ Ω.∫
Ω

|QV (χε,∇αwε)−QV (χ,∇αwε) | dx ≤ C

∫
Ω

|χε − χ|(1 + Φ(|∇αwε|)) dx.
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Thus, the Φ-equi-integrability of (∇αwε
∣∣1
ε
∇3wε ) ensures that, as ε→ 0+, χε can be replaced

by χ in the right-hand side of (4.38).
From [70, Theorem 1] it follows that smooth functions are dense in W 1,Φ(E) providing Φ

satisfies (4.6) and the argument exploited in [117, Proposition 6] ensures that QV (χ(xα), ·)
is quasiconvex also in R3×3. Thus, by the growth condition of QV ,(4.32), and [58, Theorem
3.1] the functional v ∈ W 1,Φ(Ω;R3) 7−→

∫
Ω
QV (χ(xα),∇αv(x))dx is sequentially weakly lower

semicontinuous with respect to W 1,Φ-weak topology (and, by (4.8), strongly in LΦ). Hence,

lim inf
ε→0+

∫
Ω

QV (χ,∇αwε)dx ≥ 2

∫
ω

QV (χ,∇αu)dxα.

By the superadditivity of the lim inf and an arbitrary choice of (χε, uε)→ (χ, u) we achieve
the claim.

Upper bound: To prove the claim, that is that for every (χ, u) ∈ BV (ω; {0, 1}) ×
W 1,Φ(ω;R3), we have J(χ, u) ≤ J0(χ, u), let us start by observing that for every χ ∈
BV (ω; {0, 1}),

J(χ, u) ≤ lim inf
ε→0+

Jε(χ, uε) for every uε → u in LΦ(Ω;R3).

Having χ fixed, we observe that the perimeter term (see (4.37)) in Jε coincides with the
perimeter term of J0. Thus, we can reduce to study the asymptotic behaviour with respect
to the W 1,Φ-weak convergence of∫

Ω

(
χW1

(
∇αuε,

1
ε
∇3uε

)
+ (1− χ)W2

(
∇αuε,

1
ε
∇3uε

))
dx−

∫
Ω

f · uεdx. (4.39)

Since χ is fixed, we can rewrite χW1(·) + (1 − χ)W2(·) as a new function with explicit
dependence on xα.

Denoting
W (xα, F )

def
== V (χ(xα), F ),

it results that W is a Carathéodory function satisfying a growth condition of the type (4.24),
i.e. 1

C
Φ(|F |) − C ≤ W (xα, F ) ≤ C(1 + Φ(|F |)) for a suitable constant C ∈ R+, for a.e.

xα ∈ ω and for all F ∈ R3×3.
Next, we argue as in [24, Theorem 2.5] and [15, Lemma 2.5]. LetA(ω) be the set of all open

subsets A ⊆ ω. We define the sequence of functionals (Gε), where Gε : LΦ(Ω;R3)×A(ω)→
[0,+∞) is given by

Gε(u,A) =

{ ∫
A×(−1,1)

W
(
xα,
(
∇αu,

1
ε
∇3u

))
dx−

∫
A×(−1,1)

f · udx if u ∈ W 1,Φ(Ω;R3),

+∞ otherwise,

and we claim that

lim sup
ε→0+

Gε(u, ω) ≤
∫
ω

W (xα,∇αu)dxα −
∫ 1

−1

∫
ω

f · udxαdx3,
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where W : ω × R3×2 is defined by

W (xα, F )
def
==

inf
{

1
2

∫
Q×(−1,1)

W (xα, F +∇αϕ(yα, y3), λ∇3ϕ(yα, y3))dyαdy3 :

ϕ ∈ W 1,Φ
0 (Q′ × (−1, 1)), ϕ = 0 on ∂Q′ × (−1, 1), λ > 0

}
.

(4.40)

To this end, we observe that there exists a subsequence of (Gε) which Γ-converges to some
lower semicontinuous functional (for example take one converging to Γ− lim inf), which will
be referred to as G, i.e.

G
def
== Γ− lim

ε→0+
Gε.

With straightforward modifications to the long and technical argument of [24, Step 3.
and Step 4. Theorem 2.5] (which can be adapted to W 1,Φ setting) one proves that for every
u ∈ W 1,Φ(ω,R3), the set function G(u, ·) : A(ω)→ R satisfies

(i) G(u,A) = G(v;A) whenever u = v, a.e. on R2,

(ii) G(u, ·) is the restriction of a finite non-negative Radon measure on A(ω),

(iii) G(u,A) ≤ 2β
∫
A

(1 + Φ(|Dαu|))dx,

(iv) G(u+ c;A) = G(u,A)−
∫ 1

−1

∫
A
f · cdxα for any c ∈ R3.

This proves that the bulk term of the functionalG staisfies the assumptions of The Integral
Representation Theorem 4.5.2. The existence of an energy density W̃ : ω × R3×2 → R such
that G(u,A) =

∫
A
W̃ (x,∇αu)dxα −

∫ 1

−1

∫
A
f · udxα is thus guaranteed. Finally, applying [15,

Lemma 2.5], whose proof can be repeated word by word in Sobolev-Orlicz setting instead
of the classical Sobolev case, entails that W̃ (xα, F ) ≤ W (xα, F ), for a.e. xα ∈ ω and every
F ∈ R3×2, where W is the density in (4.40).

Next, we introduce for every F ∈ R3×2, W (xα, F )
def
== infc∈R3 W (xα, (F |c)), and denote by

QW the quasiconvexification of W with respect to the second variable, according to (4.31).
Finally, applying Theorem 4.1.2 point (i), we get that for a.e. xα ∈ ω and every F ∈

R3×2 we have W (xα, F ) ≤ QW (xα, F ), while the inverse inequality follows straight from the
definitions of these densities. As a result, we see that for a.e. xα ∈ ω and every F ∈ R3×2 we
get W (xα, F ) = QW (xα, F )

The proof is concluded with observing that by (4.30) and the definitions of W i below, we
have

W (xα, F ) = χ(xα)W1(F ) + (1− χ(xα))W2(F ) = V (χ(xα), F )

and QW (xα, F ) = QV (χ(xα), F ) for every (xα, F ) ∈ ω × R3×2.
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4.6 Some additional information on the tools used

In this section we give a brief remainder of the tools used in the chapter. We also sketch the
chosen proofs of some used facts from the Orlicz spaces theory. The tools described in the
first subsection, dealing with Orlicz spaces, played an essential role in the proof of Theorem
4.1.1. The second subsection is devoted to the Theory of the Γ-convergence, which is the
main notion used in Theorem 4.4.2. The third section is a brief presentation of the theory of
BV spaces and sets of finite perimeter. These theories were exploited in the definition of the
functionals Jε (4.27) and J0 (4.28), as well as in describing the topology hidden behind the
notion of the Γ-convergence presented in Theorem 4.4.2.

4.6.1 Selected facts about Orlicz spaces

We begin with the following, easy fact, connecting the inequalities on Orlicz functions with
inequalities on their conjugates.

Theorem 4.6.1. [106, Theorem 2.1] Let Φ,Φ1 be Orlicz functions and Ψ,Ψ1 – their conju-
gate functions respectively. Suppose that, for t > t0, we have Φ(t) < Φ1(t). Then, tor s > s0,
we have Ψ1(s) < Ψ(s).

Proof. Assume now that φ1, ψ1 are the right derivatives of Φ1 and Ψ1 respectively. Take
s0 = φ1(t0). From monotonicity, it follows that ψ1(s) ≥ t0 whenever φ1(t0) ≤ s. Having in
mind that

ψ1(s)s = Φ1(ψ1(s)) + Ψ1(s),

we also see that by the Young inequality

ψ1(s)s ≤ Φ(ψ1(s)) + Ψ(s).

In the result,
Φ1(ψ1(s)) + Ψ1(s) ≤ Φ(ψ1(s)) + Ψ(s)

and since Φ(ψ1(s)) < Φ1(ψ1(s)), Ψ1(s) < Ψ(s) follows.

Now we present another fact, which lets us rescale the Orlicz function and compute the
conjugate after the rescaling.

Lemma 4.6.2. Let Φ,Ψ be conjugate Orlicz functions and φ, ψ – their densities respectively.
Set Φ1(t)

def
== AΦ(bt). Then, the conjugate function to Φ1 is

Ψ1(s)
def
== AΨ

( s
Ab

)
. (4.41)
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Proof. Let us assume that Ψ1 is the conjugate to Φ1 and prove the equality (4.41). The right
derivative of Φ1 is

φ1(t) = Abφ(bt)

and hence the right derivative of Ψ1 is its right inverse, i.e.

ψ1 =
1

b
ψ
( s
Ab

)
.

Since then, we compute

Ψ1(s) =

∫ s

0

ψ1(σ)dσ =
1

b

∫ s

0

ψ
( σ
Ab

)
dσ = A

∫ s
Ab

0

ψ(σ)dσ,

which shows (4.41).

The two above statements were required to prove the relation between the classical ∆2

and ∇2 conditions ((4.5) and (4.6) respectively).

Theorem 4.6.3. [106, Theorem 4.2] Let Φ and Ψ be the conjugate Orlicz functions. Then
Φ satisfies (4.5) if and only if Ψ satisfies (4.6).

Proof. First, let as assume that Ψ satisfies (4.6), i.e.

there exists C > 0 and s0 ≥ 0 such that Ψ(s) ≤ 1/(2C)Ψ(Cs) for any s > s0.

Let us take then
Ψ1(s)

def
== 1/(2C)Ψ(Cs),

so that the (4.6) condition is rewritten in the form Ψ(s) < Ψ1(s) for s > s0. In the virtue of
Theorem 4.6.1, Φ1(t) < Φ(t) follows for sufficiently big t, where Φ1 is the conjugate function
to Ψ1. By Lemma 4.6.2 we may calculate that Φ1(t) = 1/(2C)Φ(2t). Hence, for sufficiently
big t, we get Φ(2t) < 2CΦ(t) and condition (4.5) is established.

The inverse implication is proven in the analogous way.

Another variant of the ∆2 condition (4.5) is given in the following result.

Theorem 4.6.4. [106, Theorem 4.1] Let Φ be an Orlicz function and φ be its density. Then
Φ satisfies (4.5) if and only if the inequality

tφ(t)

Φ(t)
< α

holds for sufficiently big t and some finite α.
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Proof. Assume first, that
tφ(t)

Φ(t)
< α for t > t0 and some α. Then∫ 2t

t

φ(τ)

Φ(τ)
dτ <

∫ 2t

t

α

τ
dτ = α ln 2.

Hence ln Φ(2t) − ln Φ(t) < α ln 2 and consequently Φ(2t) < 2αΦ(t), which shows that (4.5)
holds.

On the other hand, under (4.5), we have

CΦ(t) > Φ(2t) =

∫ 2t

0

φ(τ)dτ >

∫ 2t

t

φ(τ)dτ > tφ(t),

where the last inequality follows from the fact that φ is non-decreasing. This shows that

tφ(t)

Φ(t)
< C

and finishes the proof.

Next, we will focus on the properties of the Hardy maximal operator. As it was already
seen, the Hardy maximal operator is an essential tool in the proof of the Decomposition
Lemma. For that reason, we want to present some of its properties more carefully and in a
self-contained way.

The definition of the Hardy maximal operator, which was already given in (4.9), reads as
follows. Let f : E → R be a scalar function, E ⊂ Rn and B(x, r) be a ball in Rn, centred at
x and of the radius r.

Mf(x)
def
== sup

r
|B(x, r)|−1

∫
B(x,r)∩E

|f(y)|dy.

Theorem 4.6.5. Let Φ be an Orlicz function satisfying (4.5). For any f ∈ LΦ(E) there
exists a constant C = C

(
E,Φ

)
such that

|{Mf > t}| ≤ C

Φ(t)

∫
E

Φ(|f |)dx,

for every t > 0.

We present a very simplified and well-known proof. In the original [105] paper the proof
based on the reasoning held in [94]. It is worth mentioning that Kerman and Torchinsky dealt
with weighted setting and for that reason, the requirement of (4.6) appeared. In isotropic
setting, however, the result is well-known and straightforward.

Before the proof, we will recall the classical Five Covering Lemma, which will be soon
used. The result was obtained by Giuseppe Vitali in [152] and hence is often referred in
literature as Vitali Covering Lemma. For the proof in English, we recommend [54, Theorem
1 in Section 1.5].
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Theorem 4.6.6 (The Five Covering Lemma). Let X be a separable metric space and F be a
family of open balls with bounded diameter. Then F has a countable subfamily F ′ consisting
of disjoint balls such that ⋃

B∈F

B ⊆
⋃
B∈F ′

5B,

where 5B is B with 5 times radius.

We are ready to prove Theorem 4.6.5

Proof of Theorem 4.6.5. Consider the set of points x such thatMf > t. For every such point
x there exists a ball Bx centred at x, such that

|Bx|−1

∫
Bx

|f |dx > t.

From monotonicity and convexity of Φ, with the help of Jensen inequality, we obtain that

|Bx|−1

∫
Bx

Φ(|f |)dx ≥ Φ
(
|Bx|−1

∫
Bx

|f |dx
)
> Φ(t).

In particular, for any ball Bx like above, we have∫
Bx

Φ(|f |)
Φ(t)

dx > |Bx|.

By the Five Covering Lemma, from the family of all such balls we exclude a countable
subfamily of disjoint balls Bj, such that⋃

j

5Bj ⊇
⋃

Bx.

Since then,

|{x :Mf > t}| ≤
∑
j

|5Bj| = 5n
∑
j

|Bj| ≤ 5n
∑
j

∫
Bj

Φ(|f |)
Φ(t)

dx.

It is worth to observe that the result holds with the same proof in the vectorial case.
Our aim now is to characterise Orlicz spaces, for which the Hardy maximal operator is

continuous. For that result we will exploit the following, straightforward fact.

Fact 4.6.7. Let Φ be the Orlicz function and let Ψ be its conjugate Orlicz function. Let φ, ψ
be their densities respectively. Then Ψ satifies (4.5) if and only if

β
def
== inf

t>0

tφ(t)

Φ(t)
> 1.
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The above fact is well known. The proof of this result is straightforward, but quite
computational and technical. We refer to [106, Theorem 4.3] or [66, Proposition 1.4]. The
interpretation of the constant β is very instructing. We invite the curious reader to see [57]
for details.

We are ready to prove the classical result due to Diego Gallardo [66]. A similar result,
but dealing with different domain and target Orlicz spaces for the operatorM, was obtained
by Kita [99,100]. It seems hat Kita didn’t know the Gallardo’s paper. The statement of the
main Theorems is essentially broader and the technique of the proof is significantly different.

We follow the idea of the proof due to Gallardo. The proof given in [66] is quite hard to
follow. Several non-obvious computational steps are left to the reader and the whole structure
of the proof is not clear. Our presentation was intended to require less concentration from the
reader. For a clear presentation of the result in Lebesgue spaces we recommend [47, Theorem
7.19].

Theorem 4.6.8. [66, Theorem 2.1] Let E be a measurable subset of Rn. The Hardy maximal
operatror M : LΦ(E)→ LΦ(Rn) satisfies

||Mf ||LΦ(Rn) ≤ D||f ||LΦ(E)

if and only if Φ satisfies (4.6).

Proof. In order to prove the claim, we will use the following, technical condition.

(?) For every f in LΦ(E) there exist positive constants A and B such that∫
Rn

Φ(BMf)dx ≤ A

∫
E

Φ(|f |)dx.

The proof will be divided into three steps. In Step 1, we prove that the (?) condition
implies the continuity of the Maximal Operator. In Step 2, we show that the continuity of
the Maximal Operator implies that Φ satisfies the ∇2 condition (4.6). In Step 3, it is proven
that the condition (4.6) implies that the (?) condition holds.

Step 1. We prove that the (?) condition implies that for every f ∈ LΦ(E) we have
||Mf ||LΦ(Rn) ≤ C||f ||LΦ(E). Indeed, as f ∈ LΦ(E), for some λ we have λf ∈ LΦ(E) (let
us remind that LΦ stays for the Orlicz class, which is not a linear space under violation of
(4.5)). Since then, from (?) we get that λBMf ∈ LΦ(Rn), and hence BMf ∈ LΦ(Rn).
Furthermore, from (?) applied to f/||f ||LΦ(E) and the definition of the Luxemburg norm∫

Rn
Φ
( BMf

max(1, A)||f ||LΦ(E)

)
dx < Amax(1, A)−1

∫
E

Φ
( |f |
||f ||LΦ(E)

)
dx ≤ 1.

This shows that
||Mf ||LΦ(Rn) ≤ B−1 max(1, A)||f ||LΦ(E).
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Step 2. We show that whenever

||Mf ||LΦ(Rn) ≤ D||f ||LΦ(E)

holds, the function Φ needs to satisfy (4.6). Let us then take Ψ – the conjugate function to
Φ and remind that Φ satisfying (4.6) is equivalent to Ψ satisfying (4.5).

We use the standard notation B(x, r) for a ball centred at x and of radius r. Let αn be
the measure of the unit ball. For any pair (v, s), v > 0, s > 1 we consider balls S(v, s) =

B(0, (αnvs)
− 1
n ), L(v) = B(0, (αnv)−

1
n ).

For any point x outside S(v, s) we see that S(v, s) ⊆ B(x, 2|x|) and hence

MχS(v,s)(x) ≥ |S(v, s)|
|B(x, 2|x|)|

= (2nαnvs|x|)−1.

Let us take
g
def
== Ψ−1(v)χL(v) ∈ LΨ(Rn),

where Ψ−1 stays for the inverse function to Ψ. We observe that∫
Rn

Ψ(|g|)dx = v|L(v)| = 1.

This shows, that ||g||LΦ(Rn) ≤ 1. Hence, we compute

||MχS(v,s)||LΦ
? (Rn) ≥ Ψ−1(v)

∫
L(v)

MχS(v,s)dx

≥ (2nαnvs)
−1Ψ−1(v)

∫
L(v)\S(v,s)

|x|−ndx = (2nαnvs)
−1Ψ−1(v) ln s,

where || · ||LΦ
?

is the operator norm for Orlicz space, i.e.

||f ||LΦ
?

def
== sup

||g||
LΨ≤1

∫
fg.

We remind that the operator norm is equivalent to the Luxemburg norm.
Having in mind, that

||χS(v,s)||LΦ
? (Rn) = (vs)−1Ψ−1(vs),

from the continuity of Hardy operator it follows that

2−nΨ−1(v) ln s ≤ DΨ−1(vs).

Taking ln s = 2n+1D gives
2Ψ−1(v) ≤ Ψ−1(ve2n+1D).
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Taking now t = Ψ−1(v) and putting Ψ on both sides shows that

Ψ(2t) ≤ ve2n+1D = Ψ(t)e2n+1D,

which proves that Ψ satisfies (4.5).

Step 3. What is left to do is to show that whenever Ψ satisfies (4.6), the (?) condition
is satisfied. For that, let us first notice that the weak estimate established previously holds
also for Φ(t) = t. Having that in mind, let us observe that the following properties hold.

(i) |{x ∈ Rn :Mf(x) > λ}| ≤ Cλ−1
∫
E
|f |dx;

(ii) ||Mf ||L∞(Rn) ≤ ||f ||L∞(E);

(iii) |M(f + g)| ≤ (|Mf |+ |Mg|),

where the constant C comes from Theorem 4.6.5.
Let us now set fλ def== fχ{x∈E:|f(x)|>λ}. We claim that

|{x :Mf(x) > 2λ}| < |{x :Mfλ(x) > λ}|. (4.42)

To prove the claim, let y ∈ {x :Mf(x) > 2λ}. Hence,

2λ <Mf(y)
(iii)
≤ Mfλ(y) +M(f − fλ)(y),

but (f − fλ)(x) ≤ λ for every x ∈ E and, from (ii), also M(f − fλ)(x) < λ for a.e.
x ∈ E. This shows that Mfλ(y) > s and hence y ∈ {x : Mfλ(x) > λ}. All in all,
{x :Mf(x) > 2λ} ⊆ {x :Mfλ(x) > λ}, which proves the claim.

We have then∫
Rn

Φ(Mf) =

∫ +∞

0

φ(λ)|{x :Mf(x) > λ}|dλ
(4.42)
≤
∫ +∞

0

φ(λ)|{x :Mfλ(x) >
λ

2
}|dλ

(i)

≤ 2C

∫ +∞

0

φ(λ)λ−1

∫
E

|fλ(x)|dx dλ = 2C

∫
E

|f(x)|(
∫ |f(x)|

0

λ−1φ(λ)dλ)dx,(4.43)

where φ is the density of Φ.
With the integration by parts, we discover that for every positive s∫ s

0

λ−1φ(λ)dλ = s−1Φ(s) +

∫ s

0

λ−2Φ(λ)dλ. (4.44)

Under the assumption (4.6) on Φ, we remind that from the Fact 4.6.7 it follows that there
exists β > 1 such that for any positive s

βΦ(s) < sφ(s).
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After rewriting it to the form
β

s
<
φ(s)

Φ(s)
,

we may integrate both sides from λ to 1, getting

−β lnλ < ln
(
Φ(1)

)
− ln

(
Φ(λ)

)
and consequently

λβ >
Φ(λ)

Φ(s)

for every λ ∈ (0, 1). Since, then
Φ(λ) < Φ(1)λβ.

Multiplying the above by λ−2, we get that the second ingredient of the right hand side in
(4.44) is finite and ∫ s

0

λ−1φ(λ)dλ <
β

β − 1
s−1Φ(s).

Plugging it to (4.43) with s = f(x) we show that∫
Rn

Φ(Mf)dx < 2C
β

β − 1

∫
E

Φ(|f |)dx

what finishes the proof.

4.6.2 Γ-convergence and its application to the thin structures set-
ting

In the study of thin structures, i.e. when the studied domain is much smaller in one or some
directions than in the others, say of order ε << 1, rigorous analysis via dimensional reduction
proves to be a useful tool to deduce properties of thin domains starting from thicker models.
In this analysis one deals with sequences of functions defined on cylindrical sets with some
”thin” (ε sized) dimension. In the 3D setting, thin films are modelled as ω × (−ε, ε) with
ω ⊂ R2 a bounded open set.

The standard way to deal with such problems is to search for Γ-limit with respect to the
scaling factor. The essential feature of Γ-limits is that every functional, which is the Γ− lim
of any sequence of functionals, is always lower semicontinuous. In particular, if F is not lower
semicontinuous, then Γ− limF 6= F.

The purpose of this section is to briefly present the notion of Γ-convergence and explain
the way we use it to deal with our optimal design problem.

To abbreviate, the compact topological space R ∪ {−∞,+∞} (the real line with both
ends, a two-point compactification of R) will be referred as R. The classic definition, as
in [45, Definition 4.1], reads as follows.
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Definition 4.6.9. [Γ-convergence] Let X be a topological space and Fn : X → R be func-
tionals. Let U (x) be the family of all open neighbourhood of a point x ∈ X. The Γ-lower
limit and the Γ-upper limit are defined respectively as

(LL) (Γ− lim inf Fn)(x)
def
== sup

U∈U (x)

lim inf
n→+∞

inf
y∈U

Fn(y);

(UL) (Γ− lim supFn)(x)
def
== sup

U∈U (x)

lim sup
n→+∞

inf
y∈U

Fn(y).

The function F : X → R is referred as the Γ − limFn, whenever it coincides with both
Γ− lim inf Fn and Γ− lim supFn.

The notion of the Γ-convergence gives us a very good control on the behaviour of the
minimizers of the functionals. We will present a few of essential facts showing how the
information about the minimizers of Fn is transferred to Γ− limFn and its own minimizers.
Some of the proofs are quite technical and so we omit them. We invite the curious reader to
look for more details in [45, Chapter 7].

From now on we assume that X is a topological space and K ⊆ X.

Definition 4.6.10. The set K is called countably compact, whenever every sequence xn ∈ K
possesses a cluster point in K.

Proposition 4.6.11. [45, Proposition 7.2] Let K be a countably compact subset of X. Then

min
x∈K

(Γ− lim inf Fn)(x) ≤ lim inf
n→+∞

inf
x∈K

Fn(x).

Proof. Since Γ−lim inf Fn is lower semicontinuous and K is countably compact, Γ−lim inf Fn
attains its minimum on K. Let us take a sequence (nk) such that

lim inf
n→+∞

inf
x∈K

Fn(x) = lim
n→+∞

inf
x∈K

Fnk(x)

and a sequence (yk) ∈ K such that

lim
n→+∞

inf
x∈K

Fnk(x) = lim
n→+∞

Fnk(yk).

Let y ∈ K be a cluster point of the sequence yk. For every U ∈ U (y) and every m there
exists k > m such that yk ∈ U and hence

inf
x∈U

Fnk(x) ≤ Fnk(yk).

Since then,

lim inf
n→+∞

inf
x∈U

Fn(x) ≤ lim inf
n→+∞

inf
x∈U

Fnk(x) ≤ lim
n→+∞

Fnk(yk) =

lim
n→+∞

inf
x∈K

Fnk(x) = lim inf
n→+∞

inf
x∈K

Fn(x).
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Taking supremum over U ∈ U (y) in the above inequality, we arrive with

(Γ− lim inf Fn)(y) ≤ lim inf
n→+∞

inf
x∈K

Fn(x),

while min
x∈K

(Γ− lim inf Fn)(x) ≤ (Γ− lim inf Fn)(y), because y ∈ K.

Proposition 4.6.12. [45, Theorem 7.4] Assume there exist a countably compact set K ⊆ X
such that for every n ∈ N

inf
x∈K

Fn(x) = inf
x∈X

Fn(x).

Then Γ− lim inf Fn attains its minimum on X and

min
x∈X

(Γ− lim inf Fn)(x) = lim inf
n→+∞

inf
x∈X

Fn(x).

If, in addition, Fn Γ-converges to F, then

min
x∈X

F (x) = lim
n→+∞

inf
x∈X

Fn(x).

Proof. From the Definition 4.6.9 point (LL) it follows, that

inf
x∈X

(Γ− lim inf Fn)(x) ≥ lim inf
n→+∞

inf
x∈X

Fn(x).

Having in mind the previous Proposition, we see that

inf
x∈X

(Γ− lim inf Fn)(x) ≤ min
x∈K

(Γ− lim inf Fn)(x) ≤ lim inf
n→+∞

inf
x∈X

Fn(x),

hence
inf
x∈X

(Γ− lim inf Fn)(x) = min
x∈K

(Γ− lim inf Fn)(x) = lim inf
n→+∞

inf
x∈X

Fn(x).

In case when the sequence Fn Γ-converges, we see that the above equality, together with

inf
x∈X

(Γ− lim inf Fn)(x) ≥ lim sup
n→+∞

inf
x∈X

Fn(x),

finish the proof.

Definition 4.6.13 (Coercivity & Equicoercivity). We say that the functional F : X → R
is coercive, whenever for every t ∈ R there exist closed and countably compact set Kt such
that {x ∈ X : F (x) ≤ t} ⊆ Kt.

We say that the sequence of functionals Fn : X → R is equicoercive, whenever for every
t ∈ R there exist closed and countably compact set Kt such that for every n, {x ∈ X : Fn(x) ≤
t} ⊆ Kt.
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Proposition 4.6.14. [45, Theorem 7.8] Assume that the sequence of functionals Fn : X→ R
is equicoercive. Then Γ− lim inf Fn and Γ− lim supFn are coercive and

min
x∈X

(Γ− lim inf Fn)(x) = lim inf
n→+∞

inf
x∈X

Fn(x).

Moreover, in Fn Γ-converges to F, then

min
x∈X

F (x) = lim
n→+∞

inf
x∈X

Fn(x).

Definition 4.6.15 (ε-minimizer). Let F : X → R be a functional and let ε > 0. We say
that a point xε ∈ X is an ε-minimizer of F, whenever

F (xε) ≤ max
(

inf
x∈X

F (x) + ε,
−1

ε

)
.

In opposition to a minimizer, an ε-minimizer always exists. Let us also note that if
inf
x∈X

F (x) > −∞ and ε is sufficiently small, we can use just infx∈X F (x) + ε instead of

max
(

infx∈X F (x) + ε,
−1

ε

)
.

Proposition 4.6.16. [45, Corollary 7.17] Let Fn : X → R be a sequence of functionals.
For every n ∈ N let xn be an εn-minimizer of Fn, where εn is a sequence of non-negative real
numbers converging to 0. If xn → x in X, then x is a minimizer of both Γ − lim inf Fn and
Γ− lim supFn and

(Γ− lim inf Fn)(x) = lim inf
n→+∞

Fn(xn); (Γ− lim supFn)(x) = lim sup
n→+∞

Fn(xn).

Proposition 4.6.17. [45, Corollary 7.20] Let Fn : X→ R be a sequence of functionals and
F – its Γ− lim. For every n ∈ N let xn be an εn-minimizer of Fn, where εn is a sequence of
non-negative real numbers converging to 0. If x is a cluster point of xn, then x is a minimizer
of F and

F (x) = lim sup
n→+∞

Fn(xn).

If furthermore xn → x in X, then

F (x) = lim
n→+∞

Fn(xn).

Proposition 4.6.18. [45, Corollary 7.24] Let Fn : X → R be an equicoercive sequence of
functionals and F – its Γ − lim. Assume F possesses an unique minimizer x0. For every
n ∈ N let xn be an εn-minimizer of Fn, where εn is a sequence of non-negative real numbers
converging to 0. Then xn → x0 and Fn(xn)→ F (x0).
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Now we focus our attention on translating the topologically involved definition of Γ-
convergence into the language of converging sequences. For that purpose we introduce the
so-called first axiom of countability of a space X. The definition reads as follows.

Definition 4.6.19 (The first axiom of countability). Let X be a topological space. Let U (x)
be the set of all open neighbourhoods of x. We will say that X satisfies the first axiom of
countability, whenever for every x ∈ X there exist a sequence of neighbourhoods Un ∈ U (x)
such that for every U ∈ U (x) there exists i ∈ N such that Ui ⊆ U .

Proposition 4.6.20. [45, Proposition 8.1] Assume that X satisfies the first axiom of count-
ability. Assume that Fn : X → R is a sequence of functionals. Then F = (Γ − lim inf Fn) if
and only if the following two conditions hold.

(a) For every x ∈ X and every xn → x we have

F (x) ≤ lim inf
n→+∞

Fn(xn).

(b) For every x ∈ X there exists xn → x such that

F (x) ≥ lim inf
n→+∞

Fn(xn).

Analogously, F = (Γ− lim supFn) if and only if the following two conditions hold.

(c) For every x ∈ X and every xn → x we have

F (x) ≤ lim sup
n→+∞

Fn(xn).

(d) For every x ∈ X there exists xn → x such that

F (x) ≥ lim sup
n→+∞

Fn(xn).

Under the assumption of the first axiom of countability, having in mind the above Propo-
sition, we see that the definition given below is equivalent to the classic one, i.e. Definition
4.6.9.

Definition 4.6.21 (Γ-convergence in spaces satisfying the first axiom of countability). Let
X be a topological space satisfying the first axiom of countability and Fn : X → R be a
sequence of functionals. We will say that F = Γ − lim

n→+∞
Fn, whenever for every x ∈ X the

following two conditions hold.

(LB) for any xn → x we have lim inf Fn(xn) ≥ F (x);
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(UB) there exists such xn → x that lim supFn(xn) ≤ F (x).

In the literature, the conditions (LB) and (UB) are often referred as ’the lower bound’
and ’the upper bound’ respectively. We naturally extend this definition to the families of
functionals.

Definition 4.6.22. Given a family of functionals Fr : X→ R, we say that (Fr) Γ-converges
to the functional F , as r →∞, if for every (rn)→ +∞ the sequence (Frn) Γ-converges to F .

Let us close this part of the section with a very useful fact, describing the possibility to
use the sequential variant of Γ-convergence in the case of Banach spaces with weak topology.

Proposition 4.6.23. [45, Proposition 8.7] Assume that X is a Banach space and its dual X?

is separable. Then there exists a metric d on X such that the topology induced by d coincides
with the weak topology on every norm-bounded subset of X.

The above Proposition shows that every norm-bounded set in X with the weak topology
is in fact a metric space. Every metric space satisfies the first axiom of countability (for any
point x it is sufficient to take balls with positive, rational radia, centred at x). Since then,
the Definitions 4.6.9 and 4.6.21 are equivalent on them. Having in mind, that every weakly
convergent sequence in Banach space is norm-bounded, the aforementioned equivalence in
fact holds on the whole Banach spaces with weak topology, because the sequences xn ⇀ x
from the Definition 4.6.21 belong to a fixed norm-bounded set in X.

We remind that an easy variant of Banach-Alaoglu Theorem guarantees that the weak
compactness of closed balls in X is provided by separability of X?. As an easy example of
the space L1([0, 1]) shows, the assumption of separability of X? is not negligible.

What is left to explain is how the notion of Γ-convergence is used in the thin structures
setting. This is in fact non-trivial because performing the Γ-convergence directly is impossi-
ble. The visible obstacle is that X in the definition of the Γ− lim is a fixed topological space,
while we want to perform it with respect to the topology of LΨ(Ω(ε)). Our topological space
depends on the parameter of convergence (ε), which is not permitted in the Γ-convergence.
To fix this problem, a certain scaling operation is required.

Instead of working with functions v(xα, x3) defined Ω(ε) = ω × (−ε,+ε), we will use
scaling u(xα, x3)

def
== v(xα, εx3), where u is now defined on Ω(1) = Ω.

4.6.3 The BV spaces and sets of finite perimeter

We present the chosen definitions and facts about BV spaces. We follow the classical pre-
sentation given in [9, Chapter 3]. The presented theory is classical and hence we omit the
proofs. Each of them can be found in [9].

In what below, Ω ⊂ Rn is open and of finite measure, that is L n(Ω) < +∞. The real-
valued function φ belongs to C1

c (Ω), which means that it is at least once differentiable and
supported in a compact subset of Ω.

We begin with the definition of the space BV (Ω).
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Definition 4.6.24. Let u ∈ L1(Ω). We say that u is a function of a bounded variation,
whenever there exist finite, Rn-valued Radon measures D1u,D2u, . . . , Dnu such that∫

Ω

u
∂φ

∂xi
dx = −

∫
Ω

φdDiu ∀φ∈C1
c (Ω).

The set of all functions of bounded variations will be called the BV space and denoted BV (Ω).

As it is easily seen, it contains W 1,1(Ω) and the inclusion is strict. To see that, it
is sufficient to take Ω = (−1, 2) and u = χ(0,1). We introduce the norm on BV (Ω) as

||u||BV (Ω)
def
== ||u||L1(Ω) + |Du|(Ω), where by |µ|(A) we mean the variation of the measure, i.e.

sup{
∫

Ω

div φdµ : φ ∈ C1
c (Ω), φ ≤ 1}.

Such defined BV (Ω) is a Banach space.
We introduce an essential property of the variation of the measure |Du|.

Proposition 4.6.25 (Remark 3.5 in [9]). . The mapping L1(Ω) 3 u 7→ |Du|(Ω) is lower
semicontinuous with respect to the strong topology of L1(Ω).

In other words, the above Proposition shows that whenever uj → u in L1(Ω), then
lim infj |Duj|(Ω) ≥ |Du|(Ω).

The fact below shows however that the norm topology in BV (Ω) is too strict for some
statements to hold.

Theorem 4.6.26 (Theorem 3.9 in [9]). Let u ∈ L1(Ω). Then u ∈ BV (Ω) if and only if there
exists a sequence φj ∈ C1

c (Ω) such that

φj
L1(Ω)−→ u and V

def
== sup

j

∫
Ω

|∇φj|dx < +∞.

Furthermore, the least possible V in the formula above is |Du|(Ω).

Knowing that the smooth functions are dense in Sobolev spaces, it is visible that the
above Theorem may not be naturally sharpened. To be more precise, one cannot expect that
the gradients of φj will converge strongly in L1(Ω) to Du because Du needs not to be an
element of L1(Ω). However, the following Proposition explains that some weaker notion of
convergence appears.

Proposition 4.6.27 (Proposition 3.13 in [9]). Assume that the sequence uj ∈ BV (Ω) is

norm-bounded in BV (Ω) and uj
L1(Ω)−→ u ∈ BV (Ω) Then Duj

?
⇀ Du in the space M(Ω).

The two facts above show that another notion of convergence is worth considering.
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Definition 4.6.28. Let uj, u ∈ BV (Ω). We say that uj converges BV -weakly-? to u,

whenever uj
L1(Ω)−→ u and Duj

?
⇀ Du in M(Ω).

Now we would like to distinguish a certain class of domains Ω.

Definition 4.6.29. We say that Ω is an extension domain, whenever there exists an oper-
ator T : BV (Ω)→ BV (Rn) such that

(i) Tu ≡ 0 on Rn \ Ω for every u ∈ BV (Ω);

(ii) |DTu|(∂Ω) = 0 for every u ∈ BV (Ω);

(iii) for every p ∈ [1,+∞] the operator T , restricted to W 1,p(Ω), induces a linear map

T̃ : W 1,p(Ω)→ W 1,p(Rn).

A typical example of an extension domain is Ω with Lipschitz boundary (see [9, Proposi-
tion 3.21]). For extension domains, several natural facts hold.

Theorem 4.6.30 (Theorem 3.23 in [9]). Every norm-bounded sequence uj in BV (Ω) admits

a subsequence (still denoted by uj) such that uj
L1(Ω)−→ u for some u ∈ L1(Ω).

If Ω is an extension domain, we may take u ∈ BV (Ω) and uj converges BV -weakly-?.

We introduce the notation uΩ
def
==

1

|Ω|
∫

Ω
u(x)dx and present a typical Poincaré inequality

for BV spaces.

Theorem 4.6.31 (Theorem 3.44 in [9]). Let Ω be a connected extension domain. Then, there
exists a constant C such that ∫

Ω

|u− uΩ| < C|Du|(Ω).

As usual, from the Poicaré inequality, one may deduce an embedding Theorem.

Theorem 4.6.32 (Corollary 3.49 in [9]). Let p ∈ [1,
n

n− 1
]. Let Ω be a connected extension

domain. Then every norm-bounded subset of the space BV (Ω) is a bounded subset of Lp(Ω).

Furthermore, if p <
n

n− 1
, the closed and norm-bounded subsets of BV (Ω) are compact in

Lp(Ω).

Let us now focus our attention on the particular case of characteristic functions. We
assume that E is a measureable subset of Rn. We present a natural definition of a set of
finite perimeter.
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Definition 4.6.33. For any open domain Ω ⊂ Rn we define the perimeter of E in Ω as

P (E,Ω)
def
== |DχE|(Ω).

We say that the set E is of finite perimeter in Ω, whenever P (E,Ω) is finite.

When dealing with the sets of finite perimeter, we will use the notion of convergence in
measure. Namely, for any two sets A,B we define A∆B

def
== (A \ B) ∪ (B \ A) and say that

Ej → E in measure if and only if |Ej∆E| → 0. Of course, such a convergence is equivalent
to the strong convergence of χEj in L1(Rn).

We close the Chapter with the essential result due to Federer [56, Theorem 4.5.11]. Before
we state the Theorem, let us introduce few definitions dealing with a concept of a boundary
of a measureable set E. As usual, the closure of E will be denoted by E and a ball centred
at x and of radius r will be denoted by B(x, r).

Definition 4.6.34. Let E be a set of finite perimeter in Ω. The reduced boundary of E,
denoted by FE, is defined as the collection of all x ∈ Ω ∩ E such that

νE(x)
def
== lim

ε→0+

DχE(B(x, ε))

|DχE|(B(x, ε))

exists in Rn and satisfies |νE(x)| = 1.
The function νE : FE → ∂B(0, 1) will be called the generalised inner normal to E.
For t ∈ [0, 1] and x ∈ Rn we say that the point x is of density t in E, whenever

lim
ε→0+

|B(x, ε) ∩ E|
|B(x, ε)|

= t.

The set of such points will be denoted by Et.
We define the essential boundary of E as ∂?E def

== Rn \ (E0 ∪ E1).

Let us set one more notation, namely the k-dimensional Hausdorff measure will be denoted
by Hk. Now we are ready to formulate the classical Federer Theorem [56, Theorem 4.5.11].

Theorem 4.6.35 (Theorem 4.5.11 in [56]). . Let E be a set of finite perimeter in Ω. Then

FE ∩ Ω ⊂ E1/2 ⊂ ∂?E

and
Hn−1

(
Ω \ (FE ∪ E0 ∪ E1)

)
= 0.

At the end, we present a partial statement of the Federer Theorem, just dealing with the
part of our applications, i.e. we restrict our attention to the topological boundary.

Corollary 4.6.36 (Proposition 3.62 in [9]). . Let E be open and Hn−1(∂E) < +∞. Then E
has a finite perimeter and |DχE| = f(x)Hn−1

|∂E , where the latter stays for the measure Hn−1

cut to ∂E and f(x) ≤ 1 almost everywhere in the sense of Hn−1
|∂E . Moreover, whenever E has

a Lipschitz boundary, we have f(x) ≡ 1 a.e. in the sense of Hn−1
|∂E .
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[61] I. Fonseca and M. Kruž́ik, Oscillations and concentrations generated by A-free
mappings and weak lower semicontinuity of integral functionals, ESAIM Control Optim.
Calc. Var. 16 (2010), no. 2, pp. 472–502.

[62] I. Fonseca and S. Müller, Relaxation of quasiconvex functional in BV(ω, Rp)
for integrands f(x, u,∇u), Archive for Rational Mechanics and Analysis, 123 (1993),
pp. 1–49.

[63] I. Fonseca, S. Müller, A-quasiconvexity, lower semicontinuity, and Young mea-
sures, SIAM J. Math. Anal. 30 (1999), pp. 1355–1390.

[64] I. Fonseca, S. Müller, and P. Pedregal, Analysis of concentration and oscil-
lation effects generated by gradients, SIAM J. Math. Anal., 29 (1998), pp. 736–756
(electronic).

[65] J. Fotso Tachago and H. Nnang, Two-scale convergence of integral functionals
with convex, periodic and nonstandard growth integrands, Acta Applicandae Mathe-
maticae, 121 (2012), pp. 175–196.

[66] D. Gallardo, Orlicz spaces for which the Hardy-Littlewood maximal operator is
bounded, Publicacions Matemátiques, 32 (1988), pp. 261–266.



BIBLIOGRAPHY 124
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[76] K. Hrbàček and T. Jech, Introduction to Set Theory, CRC Press, third edition,
revised and expanded ed., 1999.

[77] T. Iwaniec, Nonlinear Cauchy-Riemann operators in Rn, Trans. Amer. Math. Soc.
354 (2002), no. 5, pp. 1961–1995.

[78] T. Iwaniec and A. Lutoborski, Polyconvex functionals for nearly conformal de-
formations, Siam. J. Math. Anal. 27, (1996), No. 3, pp. 609–619.

[79] J.-L. Joly, G. Metivier, and J. Rauch, Trilinear compensated compactness and
nonlinear geometric optics, Ann. of Math. 142 (1995), pp. 121–169.

[80] J.-L. Joly, G. Métivier, and J. Rauch, Diffractive nonlinear geometric optics
with rectification, Indiana Univ. Math. J. 47 (1998), no. 4, pp. 1167–1241.



BIBLIOGRAPHY 125

[81] F.-H. Lin and R. Kohn, Partial regularity for optimal design problems involving both
bulk and surface energies, Chin. Ann. Math. Series B, 20 (1999), pp. 137–158.

[82] A. Kałamajska, On the condition of Λ –convexity in some problems of weak conti-
nuity and weak lower semicontinuity, Colloq. Math. 89 (2001), pp. 43–78.

[83] A. Kałamajska, On Λ–convexity conditions in the theory of lower semicontinuous
functionals, J. Conv. Anal. 10 (2003), Number 2, pp. 419–436.

[84] A. Kałamajska, On new geometric conditions for some weakly lower semicontinuous
functionals with applications to the rank-one conjecture of Morrey, Proc. Roy. Soc.
Edinburgh 133(A) (2003), pp. 1361–1377.

[85] A. Kałamajska, On one generalization of a theorem by DiPerna and Majda, Math-
ematical Methods in Applied Sciences, 29 (2006), pp. 1307–1325.

[86] A. Kałamajska, On Young measures controlling discontinuous functions, Journal of
Convex Analysis, 13 (2006), pp. 177–192.

[87] A. Kałamajska, Oscillation and concentration effects described by Young measures
which control discontinuous functions, Topological Methods in Nonlinear Analysis, 31
(2008), pp. 111–138.

[88] A. Kałamajska, On one method of improving weakly converging sequence of gradients,
Asymptotic Analysis, 62 (2009), pp. 107–123.

[89] A. Kałamajska, On one extension of Decomposition Lemma dealing with weakly
converging sequences of gradients with application to nonconvex variational problems,
Journal of Convex Analysis, 20 (2013), pp. 545–571.

[90] A. Kałamajska and P. A. Kozarzewski, On the condition of tetrahedral polycon-
vexity, arising from calculus of variations, ESAIM: COCV, 23 (2017), pp. 475–495.

[91] A. Kałamajska and M. Krbec, Traces of Orlicz-Sobolev functions under general
growth restrictions, Mathematische Nachrichten, 286 (2013), pp. 730–742.
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[98] M. Kirszbraun, Über die zusammenziehende und Lipschitzsche Transformationen,
Fund. Math. 22: (1934), pp. 77–108.

[99] H. Kita, Inequalities with weights for maximal functions in Orlicz spaces, Acta Math.
Hungar. 72 (4) (1996), 291–305.

[100] H. Kita, A reverse weighted inequality for the Hardy-Littlewood maximal function in
Orlicz spaces, Acta Math. Hungar. 98 (1-2) (2003), 85–101.

[101] R. V. Kohn and G. Strang, Optimal design and relaxation of variational problems,
I, II, III, Comm. Pure and Appl. Math., (1986), pp. 113–137, 139–182, 353–377.

[102] P. A. Kozarzewski, On existence of the support of a Borel measure, Demonstratio
Mathematica, 76 (2018), pp. 76–84.

[103] P. A. Kozarzewski, On certain compactification of an arbitrary subset of Rm and
its applications to DiPerna-Majda measures theory, submitted, (2020).

[104] P. A. Kozarzewski and E. Zappale, Orlicz equi-integrability for scaled gradients,
Journal of Elliptic and Parabolic equations, 3 (2017), pp. 1–10.

[105] P. A. Kozarzewski and E. Zappale, A note on optimal design for thin structures in
the Orlicz–Sobolev setting, in Integral Methods in Science and Engineering, Volume 1:
Theoretical Techniques, C. Constanda, M. Dalla Riva, P. D. Lamberti, and P. Musolino,
eds., Springer International Publishing, Cham, 2017, pp. 161–171.
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