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Abstract

Serverless computing changes the way we use, operate, and think about cloud
computing. Instead of using conventional Virtual Machines or containers,
with Function as a Service (FaaS), cloud customers define a function: es-
sentially a code snippet. Then, a FaaS system executes the function in an
isolated environment in response to incoming events. This paradigm frees the
cloud customer from the responsibility of provisioning and maintaining the
underlying software stack. At the same time, FaaS workload is less opaque
for the cloud provider, compared to VMs or containers – the design of FaaS
and the (relatively) small size of functions allow more accurate estimation of
function resource usage or execution times. The provider may use this knowl-
edge to improve provisioning execution environments or change the order in
the schedule.

In this dissertation, we analyze three aspects of resource management
in FaaS. First, we study function composition: a function call may form a
chain or, in general, a DAG. Knowing the internal structure of composition,
the cloud provider can schedule these future invocations, prepare required
execution environments in advance and optimize resource usage.

Second, we analyze scheduling and load balancing from the cluster per-
spective. We introduce a model connecting these aspects, where the resource
manager is responsible for both scaling the number of instances (e.g., function
execution environments) and distributing the workload between them.

Third, we focus on scheduling performed on a single node of a cluster. We
specify possible enhancements and propose heuristics that benefit from infor-
mation gathered locally on a node: recorded call frequencies and durations
of previous function calls.

Our results show that the characteristic properties of FaaS allow for sig-
nificant improvements in resource utilization, and the proposed solutions will
bring benefits to both the cloud provider and the customers.

Keywords: Function as a Service, scheduling, workflow, serverless, cloud



Streszczenie

Obliczenia bezserwerowe zmieniają sposób użytkowania, zarządzania, a na-
wet myślenia o przetwarzaniu w chmurze obliczeniowej. W odróżnieniu od
klasycznych maszyn wirtualnych bądź kontenerów, Funkcja jako serwis (Func-
tion as a Service, FaaS) pozwala klientom chmury na zadeklarowanie funk-
cji : fragmentu kodu wykonywanego w izolowanym środowisku w odpowiedzi
na przychodzące zdarzenia. Paradygmat ten uwalnia klienta od konieczno-
ści tworzenia i zarządzania środowiskami obliczeniowymi. Jednocześnie ob-
liczenia w modelu FaaS są bardziej przejrzyste w porównaniu z maszynami
wirtualnymi lub kontenerami – pozwalają więc na dokładniejsze oszacowanie
czasu przetwarzania oraz zasobów niezbędnych do jej wykonania. Korzysta-
jąc z tej wiedzy, dostawca chmury może usprawnić harmonogram tworzenia
środowisk uruchomieniowych lub zmienić kolejność wywołań.

W rozprawie analizujemy trzy aspekty alokacji zasobów dla FaaS. Pierw-
szym zagadnieniem jest kompozycja funkcji: wywołania funkcji mogą kształ-
tować się w łańcuch lub, w ogólnym przypadku, graf acykliczny (DAG).
Znajomość struktury grafu wywołań pozwala dostawcy chmury szeregować
przyszłe wywołania, przygotować wymagane środowiska uruchomieniowe z
wyprzedzeniem i optymalizować zużycie zasobów.

Drugim aspektem są problemy szeregowania oraz równoważenia obciąże-
nia z perspektywy klastra. Wprowadzamy model łączący oba te aspekty, w
którym zarządca zasobów odpowiada zarówno za skalowanie liczby instancji
(np. środowisk uruchomieniowych funkcji) oraz za rozkładanie przychodzą-
cego obciążenia między utworzone instancje.

Trzecią analizowaną kwestią jest szeregowanie wywołań funkcji na pozio-
mie węzła wykonawczego. Analizujemy możliwe usprawnienia oraz proponu-
jemy heurystyki wykorzystujące informacje rejestrowane na poziomie węzła:
odnotowaną częstotliwość wywołań funkcji oraz czasy działania poprzednich
wywołań.

Uzyskane wyniki wskazują, iż charakterystyczne cechy FaaS pozwalają
na wprowadzenie usprawnień w mechanizmach zarządzania zasobami, które
przyniosą korzyści dostawcy chmury oraz użytkownikom.

Słowa kluczowe: Function as a Service, szeregowanie, workflow, przetwa-
rzanie bezserwerowe, chmura obliczeniowa
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Chapter 1

Introduction

1.1 FaaS: A high-level abstraction layer in the
cloud computing stack

Nowadays, clouds and supercomputers have a wide range of applications and
we often do not even realize that we are using the effects of their work. We
use their help when there is a need to parallelize calculations or to process
large amounts of data that cannot fit in the memory of a single computer or
a smartphone. In many situations, it is necessary to use many machines –
for instance, in large-scale numerical calculations, such as weather forecasts
or models of physical phenomena. Another use of cloud computing is the
need to ensure the availability of Internet services. In that case, the cloud
customer may launch multiple application instances and divide incoming
traffic between them. That occurs, for example, in online services like search
engines or social networking sites.

Supercomputers and clouds are composed of thousands of nodes – for
instance, a typical cell in the Google cloud includes 12 000 machines [1]. An-
other example is the Okeanos supercomputer at the Interdisciplinary Center
for Mathematical and Computational Modeling of the University of War-
saw, built from 1084 nodes [2]. The cloud provider can optimize the use
of available resources, as well as reduce the cost of constructing and oper-
ating a data center (which includes, among others, the cost of electricity,
network connection, maintenance of the building or cooling) [3], by sharing
the equipment between multiple customers. Cloud computing also brings
numerous advantages for cloud customers compared to dedicated infrastruc-
ture. In particular, the cloud customer often does not know about the actual
resource demand, or the requirements may change due to external factors.
Thus, it can be challenging to estimate the required size of the on-premise
infrastructure. In contrast, cloud customers can flexibly change the amount
of allocated resources.

As cloud computing has gradually gained mainstream adoption, different
usage models emerged over the years. With the evolution of support for
virtualization in modern CPUs, the cloud providers started offering access
to computing platforms in IaaS (Infrastructure as a Service) model. In this
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model, customers can run a dedicated virtual machine (VM ) in the cloud en-
vironment. This approach however brings several disadvantages: running an
application in a dedicated VM requires more resources, compared to running
it natively on a host, and brings performance penalty [4].

These issues led to growth in the popularity of containers (“lightweight
Virtual Machines”) — a method of creating separate environments which
share only the operating system kernel (and the underlying hardware). On
a larger scale, container deployment and management can be automated
by using one of the orchestration platforms like Kubernetes [5] or Docker
Swarm [6]. Nonetheless, the cloud customer is responsible for the environ-
ment inside the container: installation of required packages, configuration,
and selection of which program to execute at container creation.

PaaS (Platform as a Service) model enables cloud customers to deploy
and manage their applications without the need to set up the underlying
infrastructure on their own. While the cloud customers do not manage in-
ternal cloud components like Virtual Machines, databases, or storage, they
may be able to change the configuration parameters of the application en-
vironment [7]. Internally PaaS offerings often use containers as a standard
interface for providing applications. However, although PaaS hides the com-
plexity of the configuration of the underlying infrastructure, the management
of autoscaling is still a complex task [8].

The trend of shifting from monolith applications to microservices and
the widespread adoption of containers lead to the increasing popularity of
serverless computing paradigm [8]. Notably, this paradigm introduces FaaS
(Function as a Service) computational model. In this model, cloud customers
(developers) declare functions – relatively small, stateless code fragments ex-
ecuted in response to incoming events (e.g., HTTP requests). The cloud
provider manages FaaS infrastructure – the cloud customers (developers) do
not have to maintain execution environments and scale them. At the same
time, the cloud operators gain a better view of the characteristics of the
application (consisting of many small functions), which opens up new oppor-
tunities for optimizing resource allocation. For example, the cloud provider
can measure processing time and use these measurements to estimate the
duration of incoming calls. This knowledge can be used to change the order
of execution of the calls and improve end-user experience. Moreover, as the
lifespan of the execution environment is under cloud providers’ control, all
environments might be removed if a reduction of used memory is needed.
However, a lack of an available execution environment may lead to degrada-
tion of QoS, as the end-user has to wait longer for a response due to the time
required to create an environment.
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FaaS is not perfect, tough [9]. In general, FaaS is stateless — as the
execution environment may be removed at any time, data has to be persisted
on external storage (like a network file system, object storage, or a database).
Moreover, FaaS execution is not transactional – if a function is interrupted
in the middle of the execution (e.g., due to reaching the resource limit), all
changes done in remote object storage will remain.

Currently, FaaS implementations differ between cloud providers. They
offer different predefined environments and impose different resource limits,
e.g., maximum request processing times. Some implementations (like Mi-
crosoft Azure) introduce a concept of application – a set of functions deployed
and running together. Nevertheless, all implementations share common prin-
ciples: cloud users can define a function by selecting one of the supported
languages; a function is executed in an environment isolated from other users’
function environments; and the number of currently running environments is
controlled by the cloud provider.

1.2 Related work

Serverless computing is a rapidly evolving cloud computing model with a
wide range of possible applications. In this section, we present a general
view of the current state of research on serverless computing, its applications
and related problems. Additionally, in further chapters, we provide references
to works directly related to analyzed topics.

An insightful analysis of benefits and current challenges in serverless com-
puting is presented in [10]. Authors believe that serverless differs to a great
extent from previous cloud computing models. They indicate that in server-
less computing, cloud customers are not required to manage resource allo-
cation on their own. Also, cloud customers can use serverless computing
without expert knowledge of cloud architecture. As the cloud provider scales
automatically, the end-user experience can improve, compared to a scenario
when an application is running on a fixed number of instances or scaling takes
significant time. Moreover, cloud users are billed for actually used resources.
This approach can lead to potential cost savings, especially if a function is
invoked only occasionally. Authors also note that serverless applications are
usually written in a high-level language (like Python or JavaScript), which
allows the cloud provider to use different CPU architectures interchangeably.

However, in some applications, serverless computing is still inefficient.
Prominent examples include HPC workloads [11], like large-scale linear al-
gebra computations. Also, serverless computing often suffers from latency
problems — for example, in the FaaS model the data has to be retrieved
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from external storage (e.g., object storage). Further analysis of performance
challenges connected with FaaS is presented in [12].

Another issue is connected with a potential vendor lock-in — while all
major cloud providers have a serverless offering, the offered services differ
significantly so the deployed applications have to be adapted to a particular
cloud provider. A recent overview [8] predicts that a common standard will
be established as the serverless model becomes more popular.

While serverless computing is a relatively new paradigm (e.g., AWS Lambda
was initially released in 2014), this is an active research area — a recent sur-
vey [13] analyses 275 papers. In the remainder of the short survey here,
we focus on papers that optimize resource management and address prob-
lems with the adaptation of serverless computing. To improve readability,
we propose a classification based on the core topic they focus on.

Adopting existing systems to the FaaS model. While the FaaS model
enables rapid prototyping and development of new applications, the existing
cloud applications require adaptation before they can be executed in this
model. There is ongoing work to ease the migration process: M2FaaS [14]
demonstrates FaaSification — automated porting of existing Node.js mono-
lith applications to the Function as a Service model. Therefore, some of
the mature systems can instantly benefit from the scaling and pricing model
provided by FaaS model.

Nevertheless, as the FaaS model significantly differs from the “classic”
cloud computing models, not all cloud computing use cases can be easily
formulated in the FaaS model. Migration process may require careful manual
porting to ensure that all requirements are fullfilled. In [15] authors present
FaaS implementation of coordination service providing the same consistency
guarantees and interface as ZooKeeper [16]. ZooKeeper is used by distributed
applications for synchronization and configuration management. Serverless
adaptations of services like ZooKeeper enable complex systems to be ported
to the serverless computation model.

Executed functions may interact with the environment by modifying the
shared state. In current FaaS platforms, interruption of a function call may
result in an inconsistent state. [17] presents a shim enabling fault-tolerance
and benchmarks its impact on the performance. Despite being a primarily
cloud computing model, FaaS can be also used on classic supercomputers.
In [11] authors study the benefits of using serverless computing for MPI-based
high-performance applications.
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Assigning calls to nodes. In a typical FaaS architecture, incoming invo-
cations are dispatched onto worker nodes – each function call is assigned to a
single worker node. Then, this worker node is responsible for managing the
execution of a call, including the creation of the required environment (when
there is none available). The process of assigning a call to a worker node is
one of the key points in the FaaS processing pipeline where optimizations are
applied.

In [18], a central scheduler assigns requests to individual cores (rather
than nodes, as in the standard OpenWhisk [19]). FaaSRank [20] optimizes
the assignment of the invoker to a function call through a neural-network
approach. Further optimizations are possible for complex FaaS invocations
(in which a function calls another function forming a chain of invocations).
Fifer [21] optimizes the execution of such chains while avoiding coldstarts by
reactive scaling. Fifer implements its prediction model for incoming invoca-
tions using LSTM. [22] analyzes DAGs and shows a decentralized scheduler
reducing DAG processing time. Faastlane [23] speeds up the processing of
workflows by executing multiple steps within a single executor in parallel
while providing isolation between steps through Intel Memory Protection
Keys (MPK).

Reducing cold starts. Creating an environment can be a resource- and
time-consuming process, especially when compared to execution of a single
call. During environment initialization, system resources have to be acquired
and, on the first run, required files and data might have to be downloaded.
As systems resources are limited, unused environments often have to be re-
moved. Therefore, the reduction of cold start duration is an important issue.
[24] reduces cold start time by restoring a function instance from a prede-
fined state (authors present an implementation based on Google gVisior [25]
sandbox). Particle [26] identifies network provisioning as an important factor
influencing startup time in platforms using containers. To address this issue,
the proposed solution decouples the creation of a network from the container
creation process and uses a pool of ephemeral IPs. SEUSS [27] uses unikernel
snapshots to reduce the time of initialization by over an order of magnitude
and additionally saves memory by sharing pages between instances. [28] de-
couples libraries and other dependencies from function packages; libraries are
cached on worker nodes, and the scheduler is aware of the packages available
on a node. Such an approach leads to the reduction of startup time as large
libraries do not have to be downloaded multiple times. [29] analyzes functions
with similar dependencies — this allows a function call to use an environment
dedicated for another, related function. [30] uses reinforcement learning to
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identify function call patterns and start containers in advance. Another ap-
proach [31] uses WebAssembly as a function runtime engine reducing cold
start latency by up to 99.5%. All these approaches require provider-side
modifications. In contrast, [32] proposes customer level middleware to be
deployed with function code that can trigger container creation in advance.

Reducing resource requirements. As node resources are limited, a lim-
ited number of environments can co-exist on a single node. Thus, reduc-
ing the resource requirements of each environment can lead to overall per-
formance improvements. Photons [33] share context (runtime, libraries,
etc.) between multiple concurrent calls, thus reducing the memory foot-
print. OFC [34] uses ML to predict the true memory usage of an invocation;
and then overcommits the rest to act as a cache for a remote data store.
SAND [35] distinguishes between applications and functions; multiple func-
tions of the same application share a common container. [36] extends FaaS to
handle stateful functions natively, rather than through a remote data store.

Node level scheduling. While the FaaS cluster is built of dozens to thou-
sands of nodes, some optimizations can be implemented on the level of a single
node. As these methods do not involve inter-node communication, they do
not impact nor depend on the data center network. ETAS [37] proposes a
queuing policy similar to EECT proposed in Chapter 5. Although this pol-
icy is also implemented in OpenWhisk, the impact of OS-level preemptions
is diminished, and thus the potential of reducing their number is untapped.
In contrast, we propose container-management methods that address this
issue. In [37], the policy is tested in an underloaded system against a set of
4 custom functions (and no I/O-bounded functions), rather than a standard
benchmark we used. Also, no fairness of function executions is considered
(in contrast to our FC policy presented in Chapter 6).

SFS [38] addresses the impact of OS preemption on function execution.
The proposed solution changes Linux scheduling class of function processes
from standard CFS scheduler to FIFO (preventing preemption) for limited
time. This way, short function calls may finish without interruption, while
long calls will not block a CPU core for too long.

Models of resource management In the search for the FaaS resource
management model, we adopt classic, ubiquitous models used in resource
allocation-related problems, such as bin packing or scheduling.

In the bin packing problem [39], a set of items of given sizes has to be
placed into a finite number of fixed-size bins. The objective is to minimize
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the number of used bins. There are numerous variants of this problem. For
instance, in vector bin packing [40] the bins and objects can have multiple
dimensions. In the online bin packing [41] items are not known in advance
and have to be placed as they arrive. In a stochastic variant [42] of bin
packing, sizes of items are described by a distribution and the probability
of overflow bin’s capacity is considered. In FaaS model, placement of the
function environments can be represented as the multi-dimensional, online
bin-packing – as the FaaS system process incoming load, we become aware
of required environments that have to be created on available machines. In
Chapter 3 we further explore the problem of packing function environments.

The scheduling problem [43] considers a set of jobs and a list of machines.
The goal is to produce a schedule – an assignment of jobs to machines, which
satisfies given restrictions. Fundamentally, a machine cannot process more
than one job at a time. Additionally, we may require that a job has to be
processed on a particular subset of machines or cannot be started before its
release time [44]. The scheduling theory considers a number of scheduling
problem types. The variants applicable to FaaS include scheduling with setup
times [45] (preparation time required for machine setup before a new type
of task can be processed), parallel machines [46] (every machine can process
every job), and scheduling with precedence constraints [47]. Moreover, in
FaaS we can also consider both preemptive (when job execution may be
paused and resumed later) and non-preemptive cases. A book [48] presents
a comprehensive comparison and classification of scheduling problems. A
survey [49] analyses multiple variants of scheduling problems with setup times
or costs. Furthermore, in Chapter 3 we consider scheduling with setup times
and precedence constraints and present a comprehensive analysis of papers
related to this model.

In the divisible load [50] scheduling model the workload can be divided
into parts that can be processed in parallel. Thus, our goal is to minimize
processing time, by splitting load onto multiple parallel processors and opti-
mizing the usage of available computing power. There are multiple variants
of this model, e.g. loads may be arbitriaily divisible or modularly divisible
if there are constraints on resulting partial loads. This model is straightfor-
wardly applicable to FaaS computations: in the FaaS model, the invocations
(“load”) are triggered in response to incoming events (e.g. HTTP requests).
Then, the invocations are scheduled onto function execution environments
running on worker machines. Moreover, this pattern is similar to other sce-
narios in cloud computing, in which we distinguish two components: (1) a
(horizontal) autoscaler (e.g. [51]) that adds or removes application instances
in response to long-term changes; and (2) a load balancer (e.g. [52]) that
dynamically assigns incoming requests to running instances.
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1.3 Dissertation structure and results

As Function as a Service is a relatively new paradigm, there are many as-
pects of possible optimizations. In this work, we focus on improvements in
scheduling and resource management. Our goal is not to lead to (yet an-
other) FaaS interface, but to indicate improvements that can be applied to
existing systems. We model existing systems — both from the cloud provider
and cloud user perspective – and we aim to ensure that proposed changes
can be applied without the need to re-design the cloud infrastructure or the
deployed applications. While computing models change over time, the cur-
rent data center architecture is the result of years of development [53]. Thus,
we assume that limitations resulting from the data center architecture are
well-justified.

In the following chapters, we analyze possible optimizations. Internally,
chapters keep a consistent structure – we start with the definition of the
scheduling model and conclude by discussing related work and summarizing
the main results.

In Chapter 3 we analyze a recent addition to FaaS – the ability to com-
pose functions: a function may call other functions, which, in turn, may
call yet another function – forming a directed acyclic graph (DAG) of calls.
From the perspective of the infrastructure, a composed function is less opaque
than a virtual machine or a container. We show that this additional informa-
tion about the internal structure of the function enables the infrastructure
provider to reduce the response latency. In particular, knowing the successors
of a function in a DAG, the infrastructure can schedule these future invo-
cations along with the necessary preparation of environments, thus reducing
the impact of cold starts. We model resource management in composite FaaS
as a scheduling problem combining: (1) sequencing of invocations; (2) de-
ploying execution environments on machines; and (3) allocating invocations
to deployed environments. For each aspect, we propose heuristics that em-
ploy FaaS-specific features. We explore their performance by simulation on
a range of synthetic workloads and on workloads derived from a trace from
Microsoft Azure. Our results show that if the setup times are long compared
to invocation times, algorithms that use information about the composition
of functions and their setup times consistently outperform greedy, myopic
algorithms, leading to a decrease in the average response latency by at least
a factor of two.

In Chapter 4 we analyze a model that captures (semi)-flexibility of cloud
resource management. Cloud resource management is often modeled by two-
dimensional bin packing with a set of items that correspond to tasks hav-
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ing fixed CPU and memory requirements. However, applications running in
clouds are much more flexible: modern frameworks allow to (horizontally)
scale a single application to dozens, even hundreds of instances; and then
the load balancer can precisely divide the workload between them. This is
particularly convenient for the FaaS model, as the cloud customers specify
only the code and environments and the cloud provider is entirely responsi-
ble for scaling environments and load balancing incoming calls. Each cloud
application (function environment) is characterized by its memory footprint
and its momentary CPU load. Combining the scheduler and the load bal-
ancer, the resource manager decides how many instances of each application
will be created and how the CPU load will be balanced between them. In
contrast to the divisible load model, each instance of the application requires
a certain amount of memory, independent of the number of instances. Thus,
the resource manager effectively trades additional memory for a more evenly
balanced load. We study two objectives: the bin-packing-like minimization
of the number of machines used; and the makespan-like minimization of the
maximum load among all the machines. We prove NP-hardness of the general
problems, but also propose polynomial-time exact algorithms for boundary
special cases. Notably, we show that (semi)-flexibility may result in reducing
the required number of machines by a tight factor of 2 − ε. For the gen-
eral case, we propose heuristics that we validate by simulation on instances
derived from the Azure trace.

In Chapter 5 we take the perspective of a single node in a FaaS cluster.
We assume that all the execution environments for a set of functions assigned
to this node have been already installed. Our goal is to schedule individual
invocations of functions, passed by a load balancer, to minimize response time
and related metrics. Deployed functions are usually executed repeatedly in
response to multiple invocations made by end-users. Thus, our scheduling
decisions are based on the information gathered locally: the recorded call
frequencies and execution times. We propose a number of heuristics, and
we also adapt some theoretically-grounded ones like SEPT or SERPT. By
simulations, we show that, compared to the baseline FIFO or round-robin,
our data-driven scheduling decisions significantly improve the performance.

In Chapter 6 we take a system perspective on scheduling on a single
worker node. Inspired by results obtained from simulations in Chapter 5,
we extend OpenWhisk, an open-source FaaS system, and implement new
scheduling algorithms. We measure the efficiency of the proposed solutions
by experiments using workload from SeBS [54] benchmark. In a loaded sys-
tem, our method decreases the average response time by a factor of 4. The
improvement is even higher for shorter requests, as the average stretch is
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decreased by a factor of 18. This leads us to show that we can provide better
response-time statistics with 3 machines compared to a 4-machine baseline.

1.4 Papers covered in the Thesis

The preliminary results were published in the following papers:

• P. Żuk and K. Rzadca, “Scheduling Methods to Reduce Response La-
tency of Function as a Service”, in 32nd IEEE International Symposium
on Computer Architecture and High Performance Computing, SBAC-
PAD 2020, Porto, Portugal, IEEE, 2020, pp. 132–140 (results in Chap-
ter 3)

• P. Żuk and K. Rzadca, “Reducing response latency of composite functions-
as-a-service through scheduling”, Journal of Parallel and Distributed
Computing, vol. 167, pp. 18–30, 2022 (results in Chapter 3)

• B. Przybylski, P. Żuk, and K. Rzadca, “Data-driven scheduling in
serverless computing to reduce response time”, in IEEE/ACM 21st
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), 2021, pp. 206–216 (results in Chapter 5)

• B. Przybylski, P. Żuk, and K. Rzadca, “Divide (CPU Load) and Con-
quer: Semi-Flexible Cloud Resource Allocation”, in 2022 22nd IEEE
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), IEEE, 2022, pp. 129–139 (results in Chapter 4)

• P. Żuk, B. Przybylski, and K. Rzadca, “Call Scheduling to Reduce
Response Time of a FaaS System”, in IEEE Cluster, IEEE, 2022 (results
in Chapter 6)
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Chapter 2

Preliminaries
In this chapter, we introduce common concepts of the Function as a Service
model. As in this work we analyze multiple aspects of resource allocation and
possible optimizations, in Section 2.1, we introduce commonly used symbols
and notation. In Section 2.2, we describe Apache OpenWhisk — an open-
source serverless platform that we use as a inspiration for our theoretical
models and a core build block in our experiments.

2.1 Common definitions and notation

A function is a code snippet along with a specification of a required execution
environment (required compiler or interpreter, libraries, etc.). By a function
call we understand a single execution of the function code. Functions do not
have state – while it is technically possible to store data in the environment
(e.g., by creating a file), developers must not rely on this possibility as envi-
ronments may be created and destroyed between the calls. Therefore FaaS
in the cloud is often used with other services providing a persistence layer,
such as an object storage service or a database.

A typical FaaS system is composed of many worker nodes and a controller
(which may be replicated to ensure high availability). The controller receives
incoming events (e.g., HTTP requests), maps them to the appropriate func-
tion and schedules their execution.

A worker node is responsible for spawning and maintaining execution
environments. If a function call triggers the creation of a new environment,
we call such event a cold start. Creating a new environment usually takes a
non-negligible amount of time ([60] reports at least 500 ms) and should be
avoided. However, unused environments still consume resources (e.g., RAM,
disk storage), thus creating a new environment may require an eviction of
the existing one.

This work draws from a scheduling theory. A single call of function maps
to a job, and a single CPU core is represented as a processor. In this work,
we consider both the clairvoyant model (when the scheduler has complete
information about the arrival time of executed jobs, their processing times,
and resource requirements) and models with limited clairvoyance. Similarly,
the scheduling algorithms can be split into offline and online – the former
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has access to the whole input at the beginning (all jobs to be scheduled
are known), while the latter group has a limited view (e.g., the new jobs
arrive over time). Our notation follows the standard of Brucker [48]. We
consider uniform worker nodes with m number of parallel processors/cores:
P1, P2, . . . , Pm. We denote a set of n stateless functions as f1, f2, . . . , fn.
Each function fj can be executed multiple times. For i-th call, we denote
the moment of the call by r(i), completion time by c(i), processing time by
p(i), and setup time by s(i) [61], [62].

2.2 An architectural overview of Apache
OpenWhisk, an open source FaaS system

While popular cloud providers have serverless platforms in their offer, there
are also notable examples of open-source platforms. These platforms are par-
ticularly interesting from a cloud researcher’s perspective, as their internal
components can be modified, which is essential in experimental evaluation.
In this section, we describe from the resource management perspective a rep-
resentative implementation of a serverless cloud platform, the open-source
Apache OpenWhisk [63]. We focus on Apache OpenWhisk as it is mature,
actively-developed software also offered commercially (IBM Cloud Functions,
Adobe I/O Runtime). OpenWhisk features include support for chaining func-
tions and multiple parameters that can be tuned (like per-function time lim-
its). OpenWhisk alternatives include OpenLambda [64] and Fission [65].
OpenLambda uses containers to provide a runtime environment for func-
tions. Fission is designed for Kubernetes [5]; it can be deployed on existing
cluster among other applications, which ease its introduction.

OpenWhisk allows a cloud customer to upload functions’ code and spec-
ify Docker image to be used to create environments. OpenWhisk executes
stateless functions (also called actions) in response to events triggered by
HTTP requests, fixed alarms or other functions. OpenWhisk isolates func-
tion by invoking a call in a container initialized with a runtime environment
specific to a programming language in which the function was defined (a
function can also request a customized Docker image). One of the key roles
of OpenWhisk is to manage the calls and the containers as the load of the
deployed functions may dynamically change.

Before the first execution of a function, the environment must be initial-
ized (e.g., setting up the container, compiling function code, or installing
dependencies). This initialization can take a considerable amount of time
and we call it later the setup time. An environment is specific to a function
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Figure 2.1: Core architecture of OpenWhisk

— after setup, a particular environment is not reused by different functions.
However, subsequent invocations of the same function may reuse the same
environment without the need to re-initialize it, thus, without the increased
latency caused by the setup time. By default, in OpenWhisk each environ-
ment executes at most a single invocation at any given moment (there is no
parallelism inside an environment). However, multiple independent invoca-
tions can be processed in parallel by multiple environments.

OpenWhisk also allows composing of several functions into a chain (a
sequence). After one function finishes, its result are passed to the next func-
tion; the last function responds to the end-user. While sequences are natively
supported, in order to spawn two or more functions in parallel (resulting in a
DAG), the developer may use an additional OpenWhisk Composer module or
call the OpenWhisk API from the function code. These composed functions
are now relatively uncommon. However, we argue that their introduction
follows the standard trend in software engineering of refactoring large func-
tions into a series of smaller ones; or from monolith applications to meshes
of microservices. FaaS is still a new paradigm and we assume that soon this
trend will follow.

Figure 2.1 presents a high-level overview of OpenWhisk internal modules.
From our perspective, the key components are the controller, the invokers,
and the action containers. Internally, OpenWhisk is written in Scala [66]
with the usage of Akka [67] toolkit. The system uses actor-based concur-
rency, and most of the processing is event-driven. Separation of the compo-
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nents enables scalability of the system – in particular, invokers may be added
to increase cluster computing capacity. The controller and invoker compo-
nents use a publish-subscribe system (Apache Kafka) to discovery and com-
municate. Communication between all remaining components uses HTTP,
following the standard client-server pattern.

The invoker is an agent running on a single worker node and acting as its
node-level resource manager. The invoker is responsible for executing actions
scheduled on the managed node. Each invoker has a unique identifier and it
announces itself to the controller while starting. A node hosts multiple action
containers, which in turn execute function calls and return the results.

The invoker is also responsible for assigning a function call to a specific
action container. In the standard scenario, when a new request arrives to the
invoker and there are any pending requests, the request is added to the queue.
Otherwise, the invoker tries to arrange a container on which the request
can be executed immediately. First, the invoker tries to locate a free pool
container matching the request. A free pool container is a container that is
initialized with the execution environment and the requested function. Such
containers can usually be found if a particular function is executed repeatedly.
If a free pool container is not available, the invoker tries to find a prewarm
pool container. A prewarm pool container is initialized with the execution
environment suitable for a group of functions (e.g., all Python functions),
but the specific function has not yet been initialized. If no free or prewarm
containers match the request, the invoker tries to create a new container.
This may be impossible if there is not enough free memory: in such a case,
some non-matching free pool containers may be removed (evicted). Finally,
if there are not enough free pool containers to be evicted, the action call is
queued in a FIFO (First-In, First-Out) queue.

The controller acts as a scheduler handling incoming events and attempts
to balance load across nodes by routing each function invocation to a con-
crete invoker. The controller also monitors the status of workers and the
currently executing invocations. In the standard OpenWhisk, the default al-
gorithm selects for each function the initial worker node based on a hash of
the workspace name and the function name. Similarly, the algorithm picks
for each function another number, called the step size (a number co-prime
with the count of worker nodes). Each time a function is invoked, the con-
troller attempts to schedule the invocation on its initial worker. If a worker
doesn’t have sufficient resources immediately available, the controller tries to
schedule the invocation on the next node (increased by the step size). If the
invocation cannot be immediately scheduled on any node, it is queued on a
randomly chosen node.
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Although simple to implement, balancing the load in this method is more
static, as the decision to execute a request at a certain invoker cannot be
easily reversed (and, if the invoker fails, the assigned requests are lost). To
counteract that, OpenWhisk is currently gradually switching to a new ac-
tion assignment model [68] based on global queues. In this new model, the
controller does not decide which invokers will be responsible for executing
actions. Instead, each invoker pulls requests from common Kafka queues:
each function has its own global queue, and the invoker pulls requests from
queues matching its free pool containers. However, the controller still decides
what kinds of containers will be created by specific invokers.
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Chapter 3

Scheduling composite functions
While FaaS is gaining wide adoption, a recent new element is still relatively
unexplored — the composition of functions [69]. During an invocation of a
composed FaaS initiated by a single incoming event (e.g., an HTTP request),
a function calls another function, that, in turn, may call yet another function
and so on. If these invocations are all synchronous, the call structure is a
chain; if some are asynchronous, it is a DAG.

The existing open-source FaaS systems (OpenWhisk, Fission Workflows)
do not use information about the structure of the function compositions.
Each invocation in a composition (in a chain or a DAG) is treated indepen-
dently. However, once the first function is invoked, the scheduler knows that
the functions that follow in a DAG will be eventually called too — thus, the
scheduler can prepare their execution environments in advance. Moreover,
information about current system state can be used to perform optimizations
by changing order of execution of incoming invocations.

This chapter is structured as follows:

• We describe and analyze the model of scheduling in FaaS as a combi-
nation of the multiple knapsack problem, scheduling with dependencies
and with setup times (Section 3.1).

• We propose a number of heuristics for each aspect (Section 3.2). These
heuristics derive from classic approaches, but we adjust them to the
FaaS model.

• By simulations, we show that heuristics examining the composition
structure lead to lower response latencies (Section 3.3).

• We analyze related work with focus on function composition (Sec-
tion 3.4).

• We summarize our work and discuss results (Section 3.5).

3.1 A scheduling model of FaaS composition

In this section we define the optimization model for the composite FaaS
resource management problem. The aim of this model is to have the simplest
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possible (yet still realistic) approximation of a FaaS system that enables us
to show that explicitly considering FaaS compositions allows optimizations.
We thus deliberately do not take into account some factors that we argue are
orthogonal for this work.

We use the standard notation from [48]. In this chapter extend the nota-
tion described in Section 2.1 as follows. A single end-user request corresponds
to a job Ji. A job is composed of one or more tasks (calls) Oi,k, each corre-
sponding to a single FaaS invocation. The request is responded to (the job
completes) at time C(i) when the last task completes, C(i) = maxk c(i, k)
(where c(i, k) denotes the completion time of task Oi,k). Tasks have de-
pendencies resulting from, e.g., before-after relationships in the code. We
denote set of task’s Oi,k dependencies (predecessors) by Pi,k, i.e., task Oi,k

may start (at time σi,k) only after all its predecessors ∀j∈Pi,kOi,j complete,
σi,k ≥ maxj∈Pi,k

c(i, j).
We assume that individual functions are repeatedly executed (modeling

similar requests from many end-users but also shared modules like autho-
rization). We model such grouping by mapping each call Oi,k to exactly one
function f(Oi,k) (obviously, two tasks Oi,k and Oi,l from a job Ji might belong
to different functions). All tasks of a function f require the same environ-
ment E(f), have the same execution time (duration) p(f) and require the
same amount of resources q(f).

A call Oi,k of a function f(Oi,k) is executed on exactly one machine in
an environment (OS container) E(f(i)). E(f(i)) requires set-up time s(f(i))
(initialization of the environment) before executing the first task. Subsequent
calls executed in this environment do not require set-up times. Typically, s(f)
is non-negligible and much longer than the task’s duration, s(f) > p(f) but
we don’t assume this in our optimization model, i.e. there is no restriction
on the relation between s(f) and p(f).

A machine commonly hosts many environments, thus supporting parallel
execution of tasks. Our machine corresponds to a single OpenWhisk worker
node, thus it may be a VM running on an IaaS cloud or a bare-metal node.
Since the moment the environment’s preparation starts — and until it is
removed — each environment E(f) uses q(f) of the machine’s resources
(e.g., bytes of memory) whether a task executes or not. The number of
simultaneously hosted environments is limited by the capacity of the machine
Q (e.g. total amount of available memory;

∑
q(f) ≤ Q). We consider only

a single dimension of the resource requests as OpenWhisk, as well as Google
Cloud Functions and AWS Lambda, allow customers to specify only the
memory requirement — the amount of CPU power is determined by memory
limit. However, it should be relatively easy to extend our model to (multi-
dimensional) vector packing [70].
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In this model we do not consider the cost of the communication between
tasks, as the dependent functions exchange negligible amount of data, com-
pared to a high-throughput, low-latency network of a modern datacenter.
We also assume that the machines are homogeneous (machine resources Q
and execution times p(f) are the same). If a FaaS system is deployed on
VMs rented from an IaaS cloud, it is natural to use a Managed Instance
Group (MIG) that requires all VMs to have the same instance type. If FaaS
is deployed on a bare-metal data-center, the amount of machines having the
same hardware configuration should be higher that other scalability limits
(e.g. in a Google data-center, 98% of machines from a 10,000-machine cluster
belong to one of just 4 hardware configurations [71]).

We assume that jobs have no release times, i.e., the first tasks of all the
jobs are ready to be scheduled at time 0. This assumption approximates
a system under peak load, when we observe temporary, rapid growth of
incoming requests — there is a queue of pending requests to be scheduled at
approximately the same time. Note that in contrast to jobs, individual tasks
that follow the first task of a job cannot be scheduled at time 0, resulting
from inter-task dependencies.

Our model is clairvoyant. A FaaS system repeatedly (thousands of times)
executes individual functions. Thus, once a particular family is known for
some time, q(f), p(f) and the function structure should be easy to estimate
using standard statistical methods — and before that, the system can use
conservative upper bounds (e.g., defaults used by OpenWhisk). [51] shows
that even simple methods estimate precisely memory and CPU requirements
for long-running containers, which, in principle, is harder than estimating for
FaaS systems, as functions in FaaS systems are shorter, thus repeated much
more frequently.

The system optimizes the average response latency. As all N jobs are
ready at time 0, this metric corresponds to 1

N

∑N
i=1 C(i).

To summarize, the scheduling problem consists of finding for each task
Oi,k a machine and a start time σi,k so that:

1. at σi,k, there is a prepared environment for f(Oi,k) on that machine and
this environment does not execute any other task during [σi,k, σi,k +
p(f)) (a scheduling constraint);

2. Oi,k starts after all its predecessors complete: σi,k ≥ c(i, j),∀j ∈ Pi,k (a
dependency constraint);

3. at any time, for each machine, the sum of requirements of the installed
environments is smaller than the machine capacity (a knapsack-like
constraint).
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Algorithm 1 Framework scheduling algorithm.
function schedulingStep(t, queue, wait, policy)

▷ policy ∈ {default, start}, wait ∈ {true, false}
for task ∈ finishedTasks(t) do

if policy == default then
queueDependentTasks(task, t)

for task ∈ order(queue) do
e← FindUnusedEnvironment(task)
if e is nil and wait then

e← FindEnvironmentToWait(task)
if e is nil then

e← PlaceNewEnvironment(task)
if e is nil then

e← RemoveAndPlaceEnvironment(task)
if e is not nil then

assignTask(c, task,releaseTime(task))
removeFromQueue(task)
if policy == start then

p← duration(task)
queueDependentTasks(task, t+ p)

This problem is NP-hard, as generalizing several NP-hard problems (bin-pa-
cking [72], P2|DAG|

∑
C(i) [48]). A bin-packing instance can be encoded as

an instance of our problem with items to pack corresponding to 1-task jobs
(each from a distinct family, and the task size q(f) equal to the size of the
item to pack). With all the processing times p(f) = 1, if the instance can be
scheduled on m machines so that all tasks finish at time 1, this corresponds
to packing items on m bins. Similarly P2|DAG|

∑
C(i) can be encoded by

setting q(f) all to 1; capacity of both (m = 2) machines to 1 (Q = q(f))
(so that a machine always has at most one environment); and having each
tasks in a separate family, all setup times eual to 0, and processing times
p(f) equal to processing times of tasks in the P2|DAG|

∑
C(i) instance.

3.2 Heuristics for scheduling invocations

In this section we describe heuristics to schedule FaaS invocations. We de-
compose the FaaS scheduling problem into three aspects: sequencing of invo-
cations; deployment of execution environments on machines; and allocation of
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invocations to deployed environments. We start with a framework algorithm
(Algorithm 1) to show how these aspects are combined to build a schedule;
we then describe for each of the aspects several specific heuristics. Sequencing
corresponds to the ordering policy (Section 3.2.1) and the awareness of task
dependencies (Section 3.2.4). Deployment corresponds to the removal policy
(Section 3.2.2). Allocation corresponds to the waiting/non-waiting variants
(Section 3.2.3).

The framework algorithm is a standard scheduling loop executing schedul-
ingStep at time t when at least one task completes. The algorithm maintains
a queue of tasks [Oi,k] to schedule and proceeds as follows:

1. Queue the successors of tasks completed at t ({Oi,k : σi,k+p(f) = t}) if
all their dependencies are already scheduled (thus completion times of
all dependencies are known), along with their release time (queueDe-
pendentTasks). We maintain information about a task’s release time
during scheduling process to ensure that dependency constraints are
met (in particular the task may wait for completion of its dependencies
after being assigned to the environment – we describe this case later in
Section 3.2.4).

2. Apply a scheduling policy to the queued tasks (Order). We describe
policies for this step in Section 3.2.1.

3. Try to find an environment e for each queued task. Our goal is to
avoid unnecessary setup of environments, therefore we take the follow-
ing steps:

(a) Try to claim an initialized environment of the required type (Find-
UnusedEnvironment, and — if wait — FindEnvironmentToWait).
In this step we iterate over all machines and take the first match-
ing unused environment. Section 3.2.3 describes action taken in
the wait variant.

(b) If (a) fails, try to create a new environment without removing any
existing one (PlaceNewEnvironment). As above, we use the first
machine that fits.

(c) If (b) fails, try to find a machine with sufficient capacity for e
that is currently claimed by environments that do not execute
any task; remove these idle environments, and install e (Remove-
AndPlaceEnvironment).

(d) If (c) fails, the task remains in the queue.
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4. If an environment e is found, assign the task (AssignTask); otherwise
(3.a-c all fail) the task remains in the queue.

After each iteration of the main loop, the time t is shifted to the lowest
completion time of the running tasks (in an implementation in a runtime
system, the loop would block until the next task completes). AssignTask
starts a task on an environment as follows. Each environment has a queue
of assigned tasks. Immediately after creating an environment, it is initial-
ized (which takes time s(f)). Then, the environment starts to execute tasks
sequentially from its queue. If the head task is not ready (waiting for de-
pendencies), the environment waits (no backfilling). This may happen in the
start policy (see Section 3.2.4).

In the following, we propose concrete variants for these functions. We de-
note the full scheduling policy by a tuple (A,B,C,D) where A denotes the
tasks’ ordering policy, B denotes the environments’ removal policy, C indi-
cates if variant is waiting and D describes whether the variant is dependency-
aware, e.g., (FIFO,LRU,wait, start).

3.2.1 Ordering policy (Order)

We compare the baseline FIFO and SJF policies with four policies taking
into account the compositions and setup times:

• FIFO (First Come First Served): use the order in which the tasks were
added.

• SJF (Shortest Jobs First): order by increasing tasks’ durations p(f).

• EF (Existing First): partition the tasks into two groups: (1) there is at
least one idle, initialized environment e of matching type E(f(Oi,k));
(2) the rest. Schedule the first group before the second group. The
relative order of the tasks in both groups remains stable (FIFO). For
example, if queue contains five tasks [Oi1,k1 , Oi2,k2 , Oi3,k3 , Oi4,k4 , Oi5,k5 ],
there is only one environment e that is idle and only tasks Oi1,k1 , Oi3,k3 ,
Oi4,k4 require environment with type matching e, the resulting order is
[Oi1,k1 , Oi3,k3 , Oi4,k4 , Oi2,k2 , Oi5,k5 ].

• SW (Smallest Work): order by increasing remaining sum of work of the
task and its successors. This extends the SJF principle by taking into
account the whole remaining work to be processed for the job, rather
than just the ready task.
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• SP (Smallest Work on Critical Path): order by increasing remaining
sum of work of the task and its successors on critical path (the longest
path between the current state of each job and its completion). This
extends the SW principle by taking into account the structure of the
job: jobs with higher degree of parallelism will be favored.

• RT (Release Time): order by the time the task’s predecessors are com-
pleted.

3.2.2 Removal policy

When choosing an idle environment to remove, RemoveAndPlaceEnviron-
ment removes environments according to either a baseline LRU policy, or
one of policies considering either initialization time s(f) or the environment
popularity:

• LRU: remove the least recently used (LRU) environment(s) from the
first machine having enough space to be freed.

• min time removal: remove the environment(s) with the smallest setup
time s(f) (if more than one, select a single machine having environ-
ments with the smallest total s(f)).

• min family removal: remove the idle environment(s) from the family
with the highest number of currently initialized environments. As it
may be needed to remove more than one environment, choose a machine
to minimize the resulting number of families without any environment.

3.2.3 Greedy environment creation

If there is no unused environment of the required type E(f), a greedy algo-
rithm just attempts to create a new one. However, when setup times s(f) are
longer than task’s duration p(f), it might be faster just to wait until one of
currently initialized environments completes its assigned task. We implement
this policy by setting wait to true in Algorithm 1. When no idle environment
is available, function FindEnvironmentToWait computes for each initialized
environment e of type E(f) the time C(e) the last task currently assigned
to this environment completes. If an environment e∗ is available sooner than
the time needed to set up a new environment (minC(e) ≤ t+ s(f)), the task
is assigned to e∗. This variant use the (limited) clairvoyance of the scheduler
by taking into account the knowledge of tasks’ durations and setup times of
their execution environments.
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The waiting variant is analogous to scheduling tasks in Heterogeneous
Earliest Finish Time (HEFT [73], [74]) that places a task on a processor that
will finish the task as the earliest.

3.2.4 Awareness of task dependencies

A myopic (default) scheduler queues just the tasks that are currently ready
to execute: Oi,0 (the first tasks in the jobs), or the tasks for which the
predecessors completed {Oi,k : ∀j∈Pi,k

c(i, j) ≤ t}. However, when a task’s
Oi,k predecessors complete, it might happen that there is no idle environment
E(f(Oi,k)), and thus Oi,k must still wait s(f) until a new environment is
initialized.

We propose two policies, start and start with break (stbr), that use the
structure of the job to prepare environments in advance. Assume Oi,l is the
currently-scheduled task. These policies queue successors of Oi,l when all
predecessors completion time can be estimated. Of course, these successors
are not yet ready to be executed (as their predecessors have not yet com-
pleted). We thus introduce the notion of the release time for each successor.
These release times can be easily computed: as for each task we know its
processing time p(f), the release time for each of the task’s successors can
be computed by the maximum completion time among its predecessors.

Note that start and stbr may result in an environment that is (temporar-
ily) blocked: e.g., if an empty system schedules a chain of two tasks, the
second task from the chain is added to the queue immediately after schedul-
ing the first task; this second task will be assigned to its environment, but
cannot be started until the first task is completed. In start variant, after
schedulingStep completes and new tasks were added to queue, scheduler tries
placing them following the same procedure. Compared with start, stbr im-
mediately after adding Oi,k successor reorders tasks in the queue according
to the scheduling policy and restarts the placement (for clarity, stbr is not
presented in Algorithm 1).

3.3 Evaluation

We evaluate our algorithms with a calibrated simulator. We use a simulator
rather than modify the OpenWhisk scheduler for the following reasons. First,
a discrete-time simulator enables us to execute much more test scenarios and
on a considerably larger scale (we simulate 1440 test instances each on 15 dif-
ferent machine environments; Section 3.3.1 gives details on how we generate
them). Second, as our results will show, to schedule tasks more efficiently, the
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OpenWhisk controller (the central scheduler) should take over some of the de-
cisions currently made by the invokers (agents residing on worker machines).
For example, min family removal needs to know which family has the highest
number of installed environments in the whole cluster — thus, the state of
the whole cluster (note that this policy can be implemented in a distributed
way: the cluster state can be broadcasted to the invokers). To ensure that
our simulator’s results can be generalized to an OpenWhisk installation, in
Section 3.3.2 we compare the performance of an actual OpenWhisk system
with its simulation. We observe high Pearson correlation coefficient and a
high coefficient of determination, confirming the realism of our simulation.

3.3.1 Method

We tested the performance of our algorithms on two kinds of test instances.
First, we use synthetic test instances with a wide range of parameter values
to test the general trends. Second, in Section 3.3.9, we adopt a recently-
published Microsoft Azure Trace [75] to our model: there, we generate ran-
domly only the data missing in the trace (such as the setup times).

Many parameters of test instances have a relative, rather than absolute,
effect on the result. For example, multiplying by a constant both Q, the
machine capacity, and q(f), the size of the task, results in a test instance
that has very similar scheduling properties. There is a similar relationship
between setup times s(f) and durations p(f); and between the total number
of tasks n and the number of tasks in a job l. We thus fix one parameter
from each pair to a constant (or a small range); and vary the other.

In each simulation we use m machines of capacity Q. We have n = 1000
tasks assigned to nf families. p(f) is generated by the uniform distribution
over integers p(f) ∼ U [1, 10]; similarly q(f) ∼ U [1, 10]. The remaining
parameters have ranges:

• family count nf : 10, 20, 50, 100, 200, 500;

• setup times s(f): [0, 0], [10, 20], [100, 200], [1000, 2000];

• number of tasks in a job (size of a job) l: [2, 10], [10, 20], [50, 100];

• machine count m: 2, 5, 10, 20, 50;

• machine capacities Q: 10, 20, 50.

For each combination of the parameters (or ranges) nf , s(f), l, we generate
20 random test instances, resulting in 1440 test instances. We evaluate each
test instance on each of the 15 possible machine environments.
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These ranges of parameters are wide. As we experiment on synthetic
data, one of our goals is to explore trends — characterize test instances for
which our proposed method works better (or worse) than the current base-
line. In particular, jobs larger than 10 (l > 10) may have longer critical
path than what we suspect is the current FaaS usage. On the other hand,
it is not a lot compared with a call graph depth in any non-trivial software.
At this point of FaaS evolution it is difficult to foresee the degree of com-
partmentalization future FaaS software will have — and DAGs larger than
10 invocations represent fine-grained decomposition (similar to the modern
non-FaaS software).

We consider two sets of test instances: DAGs and chains. While DAGs
fully express function compositions, we consider chains as an important case
as they are directly supported by OpenWhisk platform — therefore results
of our research can be applied to a real system. Moreover, chains enable us
to validate our simulator against OpenWhisk (Section 3.3.2).

In FaaS system a single function is able to spawn an arbitrary number
of other functions by connecting directly to the platform API. In general,
executing DAGs by appending to each function code invoking successors
using the platform’s API hides the structure of the DAG from the scheduler.
While spawning a new function using the API is straightforward, defining a
function that has more than one predecessor without direct platform support
is more sophisticated, as it requires e.g., to store information about which
of the predecessors completed their execution. In our analysis we assume
that scheduler has information about defined DAGs and we analyze platform
supporting function compositions that all forms of DAGs.

We generate a chain test instance as follows. Given nf , [smin, smax], [lmin, lmax],
for each of nf , we set s(f) ∼ U [smin, smax] and p(f) ∼ U [1, 10]. For each of
n = 1000 tasks, we set its family f to U [1, nf ]. We then chain tasks to
jobs. Until all tasks are assigned, we are creating jobs by, first, setting the
number of tasks in a job to l ∼ U [lmin, lmax] (the last created job could be
smaller, taking the remaining tasks); and then choosing l unassigned tasks
and putting them in a random sequence.

We generate DAGs similarly, but we change the algorithm to determine
the dependencies. Given l tasks for a job, we first randomly permute them;
then, for each k-th task in the permutation (except the first task), we generate
the number of its predecessors χ from the uniform distribution, χ = |Pi,k| =
U [1, k − 1]; and then select these χ predecessors as a random subset of size
χ of the set {Oi,1, . . . , Oi,k−1}.

For each experiment, our simulator computes the average response la-
tency, (1/n)

∑
C(i). We omit results on tail, 95%-ile latency – the 95%-ile
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Figure 3.1: Average latency on OpenWhisk system (Y axis) and simulated
OW policy (X axis) with linear regression model fit. 1 unit is 10ms. Each
point corresponds to a single test instance executed on both OpenWhisk and
simulator. Translucent bands indicate the 95% confidence interval.

results are analogous to the averages(unsurprisingly, the ranges are larger
than for the averages).

In addition to testing variants of Algorithm 1, we simulate the current,
round-robin behavior of the OpenWhisk scheduler (Section 2.2) with an al-
gorithm OW. OW randomly selects for each family f the initial machine
mf and the step size kf , an integer co-prime with the number of machines
m. When scheduling a task Oi,k in family f , OW checks machines mf ,
mf + kf , mf + 2kf , . . . (all additions modulo m), stopping at the first ma-
chine that has either the environment E(f) ready to process, or q(f) free
resources (including unused environments that could be removed) to install
a new environment E(f). If there is no such machine, Oi,k is queued on a
randomly-chosen machine.

3.3.2 Validation of the simulator against OpenWhisk

To compare the results of our simulator with OpenWhisk, we developed a
customized OpenWhisk execution environment that emulates a function with
a certain setup time s(f), execution time p(f) and resource requirement q(f).
We chose 10ms as the time unit to reduce impact of possible fluctuations of
VM or network parameters in the datacenter (we performed some early ex-
periments with 1ms and this noise was significant; and with a longer time unit
tests take unreasonable time). This environment emulates initialization by
sleeping for s(f)∗10ms; and it emulates execution by sleeping for p(f)∗10ms.
While sleeping does not use the requested memory (q(f)∗128MB), the mem-
ory is blocked and therefore cannot be simultaneously used by other environ-
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Table 3.1: The 5th percentiles, medians and 95th percentiles of R2 across
obtained 1000 scores to verify the quality of the linear regression fit in Fig. 3.1

Group 5th percentile median 95th percentile
Fig 3.1(a) 0.86 0.93 0.97
Fig 3.1(b) 0.29 0.67 0.84
Fig 3.1(c) 0.997 0.998 0.9995

ments. We emulate a single test instance from our simulator by creating, for
each job Ji, an equivalent sequence of invocations in OpenWhisk. To avoid
caching of results in OpenWhisk, we ensure that each invocation is executed
with a distinct set of parameters. We deployed an OpenWhisk cluster (1
controller and m = 10 invokers) on 11 VMs in Google Cloud Engine (GCE)
in the us-central-1a zone. All machines have 2 vCPU and 16GB RAM, and
were running Ubuntu 18.04 LTS. We further restrict the memory OpenWhisk
can use on machines to 1280MB (equivalent to Q = 10). In order to reduce
impact of cloud storage on system performance, we used a ramdisk to store
OpenWhisk accounting database. We also extended limits (maximum du-
ration and sequence length) and changed the default log level to WARN.
To reduce the impact of brief performance changes, we executed each test
instance thrice and reported the median.

In Figure 3.1 we compare the average response latency in OpenWhisk
and in our simulator varying chain lengths, the number of families and the
ranges of setup times. For consistency, OpenWhisk results are rescaled to
the simulator time unit (divided by 10). We use standard Pearson corre-
lation coefficient [76] to validate correlation between results obtained from
simulator and OpenWhisk. In particular, we compute the coefficient between
X, the vector of average latencies as computed by our simulator for the OW
policy, and Y, the vector of average latencies measured on OpenWhisk (a sin-
gle element of these vectors corresponds with the measurement for a single
instance). The Pearson correlation coefficient between OpenWhisk and sim-
ulator is very high (between 0.86 when varying family count, Fig. 3.1.b, and
0.999 when varying the setup time, Fig. 3.1.c). To further test our claim, we
compute the coefficients of determination (R2) scores [77] to verify the qual-
ity of the linear regression fit. We use the standard 5-fold cross-validation
and repeat cross-validation 200 times (randomly permuting the data for each
repetition). The 5th percentiles, medians and 95th percentiles of R2 across
obtained 1000 results are presented in Table 3.1. Thus, the R2 scores are
approximately equal to the squares of the Pearson correlation coefficients.
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Figure 3.2: Comparison of resulting average latency under: different schedul-
ing policies (a), removal policies (b) and variants of dependency–awareness
(c). For (b) and (c) results are normalized as in a), but for different re-
moval policies (b) and for different dependency-aware variants (c), rather
than scheduling policies. Here and in all following box plots, the box height
indicates the first and the third quartile, the line inside the box indicates the
median, and the whiskers extend to the most extreme data point within 1.5
times Inter-Quantile Range (IQR).

There is, however, an additive factor in OpenWhisk noticeable espe-
cially in smaller test instances in Fig. 3.1.(a) and Fig. 3.1.(b): the range
of OpenWhisk results in [5000, 9000], while the range of simulated results is
in [550, 1600]; on larger test instances, as in Fig. 3.1.(c), this constant factor
is less noticeable. This additive factor is caused by an additional system
overhead added to every function execution: each invocation stores data in
a database and requires internal communication. We conclude that the high
correlation between the simulator and the OpenWhisk results validates our
simulator – that the differences between algorithms observed in the simulator
are transferable to the results in OpenWhisk. In the remaining sections we
analyze results obtained from the simulator.

3.3.3 Relative Performance of Policies

We first analyze the impact of each policy by analyzing their relative per-
formance. For each variant (A, B, C, D), on each test instance, we compute
the relative performance of the policy we measure by finding the minimal
average latency across all variants of the measured policy while keeping the
rest of the variants the same. For example, when measuring the effect of
the scheduling policy (A), on a test instance, we find the minimum average
latency from the 5 variants of the scheduling policy: (EF, b, c, d), (FIFO,
b, c, d), (RT, b, c, d), (SJF, b, c, d), (SW, b, c, d), (SP, b, c, d) (keeping
b, c, d the same); and then we divide all 5 by this value. The goal of this
analysis is to narrow down our focus to the aspects of the problem that are
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crucial for the performance. Using this method, we show that, e.g., all re-
moval policies result in very similar outcomes. Figure 3.2 shows the results.
Each box corresponds to a statistics over experiments with all the removal
policies (both in waiting non-waiting variant) and all dependency-awareness
variants (def, start, stbr), performed on all test instances and all possible
machine environments (over 300k individual data points).

Ordering : EF policy dominates other ordering policies, confirming that
it is better to avoid environment setup by reusing existing environments. Its
median is similar to RT (and lower than other algorithms), and the range of
values (including the third quartile) is the lowest.

Eviction: Unlike scheduling policies, all the removal policies result in vir-
tually the same schedule length: the range of Y axis is 1.035; thus outliers are
only 3.5% worse than the minimal schedule found in the alternative methods.

Dependency awareness : Both start and stbr result in similar performance.
We confirmed this result by looking at individual test instances: the perfor-
mance of start and stbr were similar.

To improve the readability in the remainder, given that the removal poli-
cies have little effect on the schedule length (Figure 3.2), we show only the
results for LRU. Similarly, we skip results for SJF and RT orderings: RT is
close to FIFO and SJF is clearly dominated by other variants. SW and SP
give similar results, thus we show only SP. Finally, as the difference between
start and stbr variants is small, we show results only for start.

3.3.4 Impact of the number of tasks in a job
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Figure 3.3: Influence of the number of tasks in a job. For all test instances
nf = 50, m = 20, Q = 10 with setup times 10-20.

In the rest of the experimental section, we analyze the sensitivity of the
policies to various parameters of the test instance, starting with the number
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of tasks in a job. While we explore a wide range of parameters, presenting
all resulting figures would be impractical. Our goal is to present trends, thus
in the rest of the experimental section we present figures with representative
case and conclusions from all the experiments.

In Figure 3.3, in all test instances nf = 50, s(f) ∈ [10, 20], m = 20,
Q = 10 – we carried out experiments for all sets of parameters, but as the
trends are similar, for practical reasons we show only results for these. All
scheduling algorithms using EF as the ordering policy significantly reduce la-
tency compared to the baseline OW (1.06-2.65x), with larger reductions for
smaller jobs. The start dependency-aware variant further reduces latency,
especially for jobs with more tasks ([50− 100]), and also for other scheduling
methods (FIFO). Therefore, for deployments with large (50 tasks and above)
jobs, at least 100 families, setup times 100 (and larger) with at least 20 ma-
chines of capacity 10 (or more), implementing dependency-aware scheduler
can provide measurable benefits.

3.3.5 Impact of the number of families

Figure 3.4 compares results as a function of the number of task families in
the system. When the number of task families is small (up to 20), variants
without dependency awareness (def ) and with wait can give better results
than dependency-aware variants. In such cases, variants using EF method
are slightly better than their equivalents using FIFO. The same applies to the
removal method: wait variants give better results than their equivalents using
plain LRU. The higher the number of families, the higher the probability
that the required type of environment is missing. With at least nf = 100
families (Fig. 3.4.c, similar results for s(f) ≥ 100, l ≥ 50, m ≥ 20, Q ≥
10 omitted to improve overall readability), dependency awareness plays a
crucial role – variants using start outperforms def regardless of the used
scheduling algorithm and removal policy. Thus, in case of high variability of
functions (i.e., requiring different environments), taking into account tasks’
dependencies can significantly reduce the serving latency.

3.3.6 Impact of the setup time

Figure 3.5 compares results as a function of different setup time ranges. In
the edge case with no setup times, s(f) = 0, we see no difference between
the waiting and the non-waiting variants, as there is no additional penalty
for inefficient environment re-creation. Similarly, there are no differences
between EF and FIFO. For non-zero setup times, dependency awareness
(start) reduces the latency. However, with no setup time, start latencies are
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(b) 50 families
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(c) 100 families
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Figure 3.4: Influence of the different number of families. To show general
trend, we present results for 10, 50, 100 and 200 families. For all test instances
m = 20, Q = 10, s(f) ∈ [100, 200], l ∈ [50, 100]

longer. This behavior is caused by adding tasks with future release time
to the queue (see Section 3.2.4). Consider two jobs each of two tasks: 1. a
long job with task A (duration 10) followed by task B (duration 1); 2. a
short job with task C (duration 1), followed by task B (duration 1). EF
and FIFO using start variants may assign the second task from the long
job to the environment of type B immediately after assigning the first task.
This might block the second task from the short job until t = 11; while the
optimal schedule starts this task at t = 1. For the same reason, start has
worse results when there are more jobs (i.e., smaller jobs) and the systems
are smaller (less machines, smaller capacities).
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(b) setup time 10-20
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(c) setup time 100-200
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Figure 3.5: Influence of the setup time. For all test instances nf = 50,
m = 10, Q = 10, l ∈ [50, 100].

We further investigate for which test instance parameters the dependency-
aware start dominates the myopic def, assuming non-negligible setup times
s(f) ≥ 100. We aggregate results by all simulation parameters (count of
families nf , machines m, machine capacities Q, range of job sizes l, range
of setup times s(f) and used algorithm variant) and compute the median
average latency among 20 test instances. Then we analyze in how many
of resulting cases changing def to start improves performance. For large
jobs (l ≥ 50), many task families (nF > 100), and many machines (m ≥
10), changing the default (def ) variant to dependency-aware one improves
performance in all cases.

3.3.7 Impact of machine capacity

Figure 3.6 compares results as a function of the number of machines and
their capacity. For all test instances nf = 50, l ∈ [10, 20], s(f) ∈ [10, 20].
To show a general trend and ensure clarity, out of 15 considered machine
configurations, we present results only for test instances with (m,Q) ∈
{(5, 20), (20, 20), (50, 10), (50, 50)}. For cases up to (m,Q) = (5, 20), the only
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(a) 5 machines, capacity 20
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(b) 20 machines, capacity 20
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(c) 50 machines, capacity 10
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(d) 50 machines, capacity 50

Figure 3.6: Influence of the machine environment. For all test instances
fn = 50, l ∈ [10, 20], s(f) ∈ [10, 20]

non-negligible differences between the plain and dependency-aware variants
are for SW and SP scheduling policies. Due to large number of jobs (job
sizes are in range 10-20), when dependent tasks are added to the queue
earlier, environments may get blocked as described in Section 3.3.6, there-
fore there is no additional benefit of dependency-awareness. For capacities
up to (m,Q) = (50, 10), using wait variants outperform the default (def)
variants using the same scheduling algorithm and with the same setting of
dependency-awareness. In all presented cases, for FIFO and EF schedul-
ing policies, variants using wait with start have one of the lowest average
latency. The improvement on overall system performance is most visible in
the case of highly-overloaded machines. Therefore, our methods could be
used to improve handling of situation when datacenter has to handle rapid
increase (peak) of requests.

3.3.8 Differences between DAGs and chains

We also performed analysis analogous to Section 3.3.6, Section 3.3.4 and
Section 3.3.7, but for chains, instead of DAGs. Chains are particularly inter-
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(b) setup time 10-20
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(c) setup time 100-200
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(d) setup time 1000-2000

Figure 3.7: Influence of the setup time for instances with chains. For all
instances nf = 50, m = 10, Q = 10, l ∈ [50, 100].

esting case as they are the simplest form of function compositions and they
are sufficient to show the benefits resulting from better scheduling.

In general, obtained results are similar: if we compare behavior for differ-
ent setup times (Figure 3.7 and Figure 3.5), we can observe that for non-zero
setup times our algorithms perform better than baseline (OW). In both DAGs
(Figure 3.6) and chains (Figure 3.8) only for the largest processing capacity
(50 machines of capacity 50) there is observable fundamental improvement
of dependency-aware (start) variants over def. Moreover, for all machine
configurations except the largest one (50 machines of capacity 50), wait vari-
ants performed better than the default (non-waiting) variants using the same
scheduling method and with the same setting of dependency-awareness.

Nevertheless, there are observable differences. Increasing l, the number
of tasks in a job, increases average latency more significantly for chains (Fig-
ure 3.9) than for DAGs (Figure 3.3). For the same number of tasks in a
job, a chain has less available concurrency than a DAG (i.e., longer critical
path). This also impacts differences observed in a comparison of dataset
with different setup times (and constant job size) – for chains (Figure 3.7)
we observe higher difference between variants without (def ) and with depen-
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(a) 5 machines, size 20
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(b) 20 machines, size 20
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(c) 50 machines, size 10
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(d) 50 machines, size 50

Figure 3.8: Influence of the machine environment for instances with chains.
For all instances fn = 50, l ∈ [10, 20], sf ∈ [10, 20]
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Figure 3.9: Influence of the length of the chain. For all instances nf = 50,
m = 20, Q = 10 with setup times 10-20.

dency awareness (start) than for DAGs (Figure 3.5). For similar reasons, for
datasets with more families, our algorithms for DAGs (Figure 3.4) – as well
as for chains (Figure 3.10)– provide lower average latencies than OW, but
difference between the best schedule and the baseline for DAGs is noticeably
smaller.

Overall, the results are similar, proving the robustness of our proposed
algorithms. In all analyzed cases with non-zero setup times, our proposed
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Figure 3.10: Influence of the different number of families for instances with
chains. To show general trend, we present results for 10, 50 and 200 families.
For all instances m = 20, Q = 10, sf ∈ [100, 200], l ∈ [50, 100]

algorithms – the EF scheduling policy with LRU replacement and waiting
environment creation – outperform the OW baseline.

3.3.9 Experiments with a FaaS Trace

To the best of our knowledge, there is no publicly available FaaS trace con-
taining information about tasks with dependencies, setup times and tasks
families (types or applications). However, based on an existing trace, we can
generate a dataset making some rational assumptions about missing data.
Thus, we can verify how such dataset-like workload would behave if exe-
cuted in the analyzed model.

The Microsoft Azure Trace [75] contains information about sizes, dura-
tions and invocations patterns in Azure Functions. Memory usage is provided
only for first 12 days of the trace, thus we limit our analysis to this range (as
we will use memory data to generate q(f), the size of the environment).

Functions in trace are organized in groups called apps which share com-
mon execution environment. As our model requires separate environments
per function, we further narrow down our analysis to apps containing only
one function. We map each app to a function family.

We set the environment size q(f) to the maximum allocated memory
(100th percentile of the average allocated memory column of Azure trace) as
the environment should be large enough to handle all the invocations. We
then normalize q(f) to range {1, . . . , 10} to have similar range of values as
our synthetic test instances. We set the execution time p(f) to the average
execution time (Average column in the trace).

Similarly to synthetic datasets described in Section 3.3.1, we generate
datasets for a wide range of remaining parameters: the number of families
in the system nf and setup times s(f). Setup time of a family is, in princi-
ple, independent of this family’s execution time; yet, we need to control the
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relation of the mean setup time to the mean execution time (this relation is
a parameter of our experiment). We thus compute the mean execution time
p(f) across nf families in the test instance; and then generate setup times
s(f) from p(f) U [Smin, Smax].

For each configuration, we generate a test instance containing n = 1000
tasks. For each test instance, we select nf families generated from app data
which have the largest invocation count within the considered 12-day period.
We use information about app invocation counts to reflect invocation pattern
within our sample: for each invocation we select its family randomly, but
with weights proportional to the total number of invocation in the original
trace. Then we generate DAGs (jobs) following the same procedure as in
Section 3.3.1.

Figure 3.11 shows the impact of different job sizes. All datasets have
50 families and setup times are 100-200 times larger than average family
duration. In all cases enabling waiting improves performance. However, for
small jobs (lower than 50 tasks), the start variant gives no additional benefit.

Figure 3.12 shows the impact of different setup times. Similarly to syn-
thetic test instances, for configurations with negligible setup time, enabling
dependency-awareness decreases performance. With considerable setup times
(at least 100 times larger than the average duration), EF and FIFO with
waiting and dependency-awareness (start) have one of the lowest average
latencies.

In Figure 3.13 shows the impact of the number of families. Variants
with waiting and enabled dependency-awareness give better results than their
non-waiting or not dependency aware equivalents. Moreover, when there
are many families (200), dependency-awareness plays a crucial role – start
variants overtake their def equivalents.

While generated samples have higher value of average latency than our
synthetic datasets (as we don’t normalize durations), we observe in all cases
that enabling waiting reduces the latency. Analogously to results obtained
for synthetic datasets, for non-negligible setup times, FIFO and EF vari-
ants with waiting and enable dependency-awareness (start) give significant
improvement over baseline (OW ).

3.4 Related work

Our model of FaaS resource management combines scheduling (with setup
times and dependencies) [78] with bin packing (when environments of differ-
ent sizes must fit into machines). Our simulation results show that all these
aspects have to be taken into account by the scheduler (the baseline OW is
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(c) 50-100 tasks

Figure 3.11: Comparison of different job sizes. In each case dataset contains
50 families generated from Azure trace. Setup times 100-200 times larger
than average duration observed over all families, 10 machines of capacity 20.

consistently dominated by our policies). Individually, these are classic prob-
lems in combinatorial optimization. Allahverdi [78] performs a comprehen-
sive review of about 500 papers on scheduling with setup times. Brucker [48]
reviews scheduling results. We start by describing the closest related combi-
natorial optimization approaches (these approaches are mostly theoretical or
based on simulation). We then follow by a discussion on other systems-based
approaches to optimization in FaaS.

Quadratic programming: We proposed heuristics, rather than generic
solvers or metaheuristics. Initially, we considered encoding our problem as
an (integer) quadratic programming. Nevertheless, Gurobi [79] was unable
to find an optimal schedule in 15 minutes (on a reasonable desktop machine)
even for a small test instance with N = 20 jobs each of nl = 20 tasks. Sched-
ulers in production systems need to respond in seconds, thus an approach
based on a generic solver is probably not sufficient.

Bin packing with setup times: With no dependencies, our problem reduces
to bin packing with sequence independent setup times. Weng et al. [80] study
similar problem of minimizing mean weighted completion time for tasks with
sequence dependent setup times. [81] presents dynamic algorithms address-
ing scheduling with setup times with objective of minimal weighted flow time.

Workflow scheduling: With no setup times (s(f) = 0) and task sizes
equal to machine capacities q(f) = Q, our problem reduces to workflow
scheduling. [82] surveys workflow scheduling in the cloud. [83] measures how
inaccurate runtime estimates influence the schedules which complements our
study, as we assumed that estimates are known. [84] analyzes possible per-
formance benefits of resource interleaving across the parallel stages. [85]
proposes Balanced Minimum Completion Time, an algorithm for scheduling
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(b) setup time 10-20x avg. family duration
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Figure 3.12: Comparison of impact of setup times. In each case, setup times
are obtained by multiplying average duration across all families by random
value from given range. All datasets contains 50 families and 1000 tasks in
jobs of 50-100 tasks generated from Azure trace. Experiments were run on
10 machines of capacity 20

tasks with dependencies (and without setup times) on heterogeneous systems.
[61] schedules workflows with setup times using branch-and-bound. The eval-
uation in that paper considered small instances (up to N ∗nl = 100 task and
m = 4 machines); their method required 100s time limit for execution. Such
long running times make this method unusable in data-center schedulers. [62]
analyzes scheduling tasks with sequence-dependent setup times, precedence
constraints, release dates on unrelated machines with resource constraints
and machine eligibility. Two algorithms are analyzed: based on genetic algo-
rithm and based on an artificial immune system. Their largest instances had
60 tasks and 8 machines and needed 25 minutes (on the average) to solve,
again rendering these methods unusable for FaaS.

Systems approaches in Serverless Computing: Serverless is currently rapidly
evolving with multiple ongoing efforts to analyze and extend it. In our work
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Figure 3.13: Comparison of different count of families generated from Azure
trace. In all cases setup times are in range 100-200x average duration across
all families. We present results for 10 machines of capacity 20, jobs containing
50-100 tasks (note: except last generated one)

we explore possible performance improvements by considering the composi-
tion of functions. [21], [22] also consider composed functions. [21] analyzes
function chains and attempts to reduce the number of used containers while
keeping response time below a predefined limit. Their implementations use
Brigade running on top of Kubernetes. [22] analyzes function DAGs and
possible benefits of storing intermediate results inside executors.

Our simulation results show that the scheduling matters especially when
setup times of new environments are high. Reducing setup times has received
considerable attention. [86] proposes checkpointing and then restoring envi-
ronments. Catalyzer [24] reuses the environment state. Particle [26] identifies
environment network configuration as an important contributor to the setup
time in container-based platforms, including OpenWhisk; and proposes how
to decouple that from environment creation.

Another key parameter is the size of the environment q(f): the smaller
the environments are, the more can run currently on a machine, thus pack-
ing and evictions become less crucial. The following approaches reduce the
memory footprint of environments. [87] proposes new isolation abstraction
reducing memory requirements. Photons [33] reduces overall memory con-
sumption by running multiple concurrent invocations within a single envi-
ronment (without impacting reliability). ENSURE [88] improves resource
efficiency by adapting the resource usage of environments running on a sin-
gle invoker and concentrating workloads to minimize number of concurrently
running environments.

An orthogonal approach to reduction of the serving latency is to directly
reduce p(f), the function’s processing time. As in the classic FaaS model,
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Q
m 10 20 50
2 2.96 2.92 3.89
5 3.46 4.10 3.73
10 4.44 4.12 3.52
20 4.41 3.89 3.18
50 4.15 3.61 3.12

(a) s(f) ≥ 100

Q
m 10 20 50
2 1.40 1.30 1.23
5 1.33 1.23 1.24
10 1.27 1.22 1.26
20 1.26 1.28 1.30
50 1.33 1.35 1.36

(b) s(f) < 100

Table 3.2: Average relative improvement in the average response latency of
(·, ·, wait, start) over the OW baseline

the functions are stateless, getting the state from external storage takes time.
Cloudburst [36] demonstrates and analyzes usability of stateful serverless
computing. [89] presents framework for building stateful and fault-tolerant
serverless-based applications, running on top of existing platforms.

3.5 Summary and discussion

In the FaaS model, the time needed to create an environment for an incom-
ing function invocation in most cases cannot be neglected. We predict that
the growing popularity of FaaS systems will result in more complex appli-
cations being created in this model. As we show in this chapter, the cloud
provider can significantly optimize FaaS performance knowing the structure
of the compositions used in the workload. Our framework algorithm could
be implemented in FaaS systems, however some changes in the architecture
might be required, e.g., the Apache OpenWhisk controller would need to as-
sign invocations directly to containers running on invoker nodes and also to
directly create and evict the environments.

In our experiments, we identified the three policies in our framework
algorithm that lead to largest improvements. Taken together, they consider
the structure of the functions and thus they can install environments in
advance. The start variant adds successors of each task to the queue so
that the scheduler then knows what environments should be prepared in
advance. The waiting variant, rather than greedily creating an environment
for each task, binds a task to the existing, currently busy environment if
such environment will be available to process the task earlier than a newly-
created one. Finally, the EF ordering prioritizes tasks that can be started
using already prepared environments.
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We conclude the experiments over DAGs by presenting averages improve-
ments of (·, ·, wait, start) variants over OW baselines (Table 3.2). For each
test instance on each particular machine configuration, we simulate each vari-
ant (·, ·, wait, start), compute the resulting average latency

∑
C(i); and then

divide it by the latency of the OW baseline. We then average these relative
improvements across all variants and all test instances (including all possible
machine configurations): this gives us the average impact of (·, ·, wait, start),
regardless of the sequencing method. Thus, a number in Table 3.2 is an av-
erage over 12960 simulations: 3 (number of tasks in a job) times 6 (family
count) times 2 (starting times settings) times 20 (repetitions) times 6 (or-
dering policies) times 3 (removal policies).

For non-negligible setup times (i.e., at least 100) in all machine config-
urations when the scheduler is dependency- and startup-times aware (·, ·,
wait, start) the average response latencies are reduced at least by the factor
of two.

Thus, our results indicate that dependency- and startup-times aware
scheduling is more efficient when the load of the system is high. Our meth-
ods can be used to mitigate the impact of the increased demand in the short
term. If the demand increase is longer-term, the underlying infrastructure
will be eventually scaled out by, e.g., adding new VMs. However, such scale-
out takes considerably longer time (minutes); meanwhile, the load has to be
handled.

Although our experiments were offline, the waiting variant and the start
variant can be easily implemented in the existing FaaS schedulers (con-
trollers). Our results show that waiting and start variants are beneficial
even with the standard FIFO ordering. Changing the invocation order (as
in SJF and EF variants) is less straightforward, as when new jobs arrive on-
line, existing jobs might be starved: these policies would additionally need
to consider fairness.

Finally, while composition in FaaS model is the main motivation of this
work, these ideas can be applied also in other systems executing workflows
on shared machines (a machine executing multiple tasks in parallel), such as
Apache Beam.
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Chapter 4

Semi-Flexible Cloud Resource
Allocation

In Function as a Service (FaaS) model, incoming load (events triggering par-
ticular function calls) is scheduled onto function execution environments run-
ning on worker machines. Cloud resource manager has to balance global effi-
ciency — packing the machines as densely as possible — and serving quality
— ensuring that individual machines are rarely, if ever, overloaded. This
problem can be generalized to a wide range of cloud applications and cloud
resource managers (like Borg [1], [71] and Resource Central [90]). In a gen-
eral scenario, a typical cloud application uses two additional layers: (1) a
(horizontal) autoscaler (e.g., [51]) that adds or removes instances in response
to long-term changes in the application load; and (2) a load balancer (e.g.,
[52]) that dynamically assigns end-user queries to instances for a shorter-
term balance. These two layers typically issue requests to, rather than fully
coordinate with, the resource manager.

In this chapter, we show that in such a general scenario — by integrating
the autoscaler, the resource manager (scheduler) and the load balancer —
the cloud resources may be used more efficiently. In particular, we coordinate
setting the number of instances (autoscaling), their placement on machines
(scheduling) and the allocation of load to individual instances. Unlike the
standard load balancing, our proposed method balances the load taking into
account all the machine’s assigned instances (and thus, all the applications).

The contemporary cloud software stack has enormous engineering com-
plexity. Thus, to show the impact of our ideas, instead of a system study
which would most probably be infeasible, we take a formal, algorithmic ap-
proach based on classic scheduling (which we additionally complement with
simulations). This formal approach enables us to show trends and qualitative
differences, but it requires some reasonable modeling of the problem.

As in Google’s Borg [1], we focus on two key resources: the operational
memory (RAM) and the computational power (CPU). We model a system
hosting multiple applications, each processing a certain load. This load is
distributed between the application’s instances. For example, in Function as
a Service (FaaS), a single function corresponds to our application. The set
of end-user-driven invocations of this function (a stream of HTTP requests)
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is the application’s load. Any invocation can be processed by any machine
that has initialized this function’s environment. As another example, our ap-
plication corresponds to a single serving job in Google’s Borg model [1], [71];
its instances correspond to the job’s tasks; and a cluster-level load balancer
assigns queries to these tasks. Finally, to derive tangible formal results, we
assume that the memory requirement of an instance does not depend on the
load processed by this instance. While we have no data to back up this as-
sumption, various application classes should behave according to that model,
with the memory requirements dominated by the software stack (libraries,
etc.), pre-loaded datasets, or static data structures. We stress that this is
not a core assumption (as it could be easily extended to, e.g., a linear func-
tion) but rather a standard modeling step that allows us to demonstrate
qualitative results.

In this model, we analyze two natural combinatorial optimization prob-
lems: (1) bin-packing-like minimization of the number of used machines;
(2) makespan-like minimization of the maximum load of any machine. Bin-
packing models applications’ requirements as hard constraints. This corre-
sponds to, e.g. packing high-priority jobs by their limits in Borg; or, in
an IaaS provider, packing VMs by their sizes (as requested by customers)
and maintaining strict SLOs with no overcommitment. In contrast, the
makespan-like approach explores the different nature of these resources. A
memory requirement of an application cannot be (easily) compressed or
throttled (cloud providers do not swap memory to disk [71]). Unlike memory,
the CPU is compressible — it can be dynamically throttled. Of course, when
throttled, the application slows down, which is tolerable for batch, while it
should be avoided for serving applications. Thus, the makespan-like approach
minimizes the load of the maximally-loaded machine, corresponding to the
minimization of the maximal throttling. (The “makespan” is a metaphor: we
assume that applications are executed concurrently.)

This chapter is structured as follows:

• We present a combinatorial optimization model of cloud application
allocation with load balancing and fixed memory requirements. We
formulate two general optimization problems: packing and balancing
(Section 4.1).

• We prove NP-Hardness for both models in the general case. We also
show optimal polynomial algorithms for equal requirements. (Sec-
tion 4.2–4.3).

• We propose heuristics for the packing problem that take into account
applications’ semi-flexibility (Section 4.4).
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• We simulate heuristics with instances based on Azure Public Dataset
V2 [90] (Section 4.5).

• We present work related to semi-flexible cloud resource allocation (Sec-
tion 4.6).

• We summarize our work and discuss results (Section 4.7).

4.1 A scheduling model of semi-flexible
allocation

In this section, we formally define the optimization problem of cloud appli-
cation allocation with memory requirements and CPU load balancing as a
general integer linear program (ILP). We follow the classic scheduling nota-
tion [48] and extend notation presented in 2.1.

Let us be given m identical machines, each having a memory capacity of
Q ∈ Z+ (measured in, e.g., bytes) and the CPU capacity of P ∈ Z+ (mea-
sured in, e.g., vCPUs or Borg’s Normalized CPUs [1], [71]). We assume the
machines are identical as cloud providers usually manage a few large groups
of homogeneous machines (e.g., 4 machine types cover 98% of machines of
a Google’s over 12,000-machine cluster [91] — we thus solve a separate in-
stance for each of these 4 large groups). Similarly, if a system uses VMs
rented from an IaaS provider, it is natural to use a Managed Instance Group
that requires all VMs to have the same instance type.

Let us also be given n applications. Contemporary cloud applications
are usually horizontally-scalable: multiple instances of the same application,
placed on multiple machines, jointly process the load of the application (e.g.,
for serving applications, each instance processes a fraction of the stream of
incoming requests). In cloud, this mechanism is additionally used to increase
reliability (e.g.: 3 or 5 always-on instances). While such lower bounds on
the number of active instances can be easily incorporated into our approach,
they are mostly orthogonal to our results (so we do not discuss them further).

There is a cost of maintaining multiple instances, however: each instance
of the i-th application has its own integer memory demand of 0 < qi ≤ Q
(measured in the same unit as the memory capacity). For example, if the i-th
application is placed on two machines, it uses a total of 2qi units of memory:
qi units on the first and qi units on the second machine. We assume that, for
the i-th application, qi is constant — in particular, unrelated to the load as-
signed to the instance. This corresponds to memory requirements dominated
by the software stack (libraries etc.), or the dataset, rather than dynamically
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changing with the processing load. Our model can be extended to memory
requirement being a (perhaps linear) function of the load assigned, but we
prefer to keep our model simple and the memory requirements constant in
order to prove formal results and show qualitative conclusions.

One of our goals is to illustrate how much we can improve the utilization
of the whole cluster by maintaining multiple instances. We will test our
multi-instanced models against the standard scheduling models, later called
single-instanced.

Moreover, we know pi, the total load that needs to be processed by appli-
cation i. The load pi > 0 is expressed as the number vCPUs it requires (we
use the same metric for the load and the capacity following Borg [1], [71]).
In the single-instanced model, pi units of the vCPU capacity on a single ma-
chine need to be reserved for the sole instance. In the multi-instanced model,
the load balancer freely divides pi between the application’s instances as long
as the reserved CPU capacity sums up to at least pi. The amount of com-
putation assigned to a particular instance may be fractional, too. For many
serving applications, the load consists of a huge number of relatively tiny
requests (single API calls or FaaS invocations). If the total QPS is in thou-
sands, load balancer decisions can be reasonably approximated by fractional
assignments.

We assume a classic, off-line and clairvoyant model with pi and qi known
in advance, a common approach in cloud resource management research.
The load pi does not correspond to processing time, but to the total load
of the i-th application. When customers deploy their applications in cloud,
they are commonly required to upper-bound the total number of vCPUs
and memory — and their application is then allocated based on these given
upper-bounds. Additionally, serving applications are usually long-running:
steady-state vCPU and memory requirements can be precisely estimated
based on relatively simple models using historical trends [51].

Our aim is to assign applications to machines in such a way that all the
incoming requests can be processed and that memory used on each machine
does not exceed its capacity. As—in this model—it makes no sense to place
two instances of the same application on the same machine (if such two
instances were merged, they would process the same load using half the
memory), we will use a 0-1 variable xij to determine whether the instance
of the i-th application is placed on the j-th machine, or not. If positive,
the pij variable will determine the total vCPU capacity reserved for the i-
th application on the j-th machine. Furthermore, pij/pi corresponds to the
share of the whole traffic of the i-th application routed by a load balancer
to the j-th machine. We thus always want the following constraints to be
satisfied:
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• As we do not overcommit memory on any machine, the memory uti-
lization of all the instances placed on the j-th machine does not exceed
machine’s capacity Q, i.e.∑

i

xijqi ≤ Q, for each j; (4.1)

• The total vCPU capacity reserved for the i-th application is greater or
equal to the application’s load pi, i.e.∑

j

xijpij ≥ pi, for each i; (4.2)

• Assignments xij are binary, i.e.

xij ∈ {0, 1}, for each pair of i and j. (4.3)

In Figure 4.1, we present an example allocation of three applications,
{⋆,♦,▼}, to one machine. Total memory used by these three instances is
equal to q⋆ + q♦ + q▼ ≤ Q, so the constraint (4.1) is not violated on this
machine. At the same time, the total CPU used slightly exceeds the value
of P , i.e., p⋆j + p♦j + p▼j > P (so far we have not introduced machine-level
constraints on the vCPU load). In fact, applications ⋆ and ▼ are assigned as
much vCPU capacity as they require, i.e., p⋆j = p⋆ and p▼j = p▼. However,
the vCPU capacity assigned to application ♦ is strictly less than its whole
demand, i.e., p♦j < p♦. Thus, another instance of application ♦ has to be
allocated on at least one other machine, as otherwise constraint (4.2) will
not be satisfied.

We consider two natural optimization objectives. First, given a fixed pool
of homogenous machines, we assign applications and workloads to machines
in such a way that the maximum vCPU usage among all the machines is
minimized:

minmax
j

∑
i

xijpij. (4.4)

This objective models a cloud resource manager such as a single BorgPrime ([1],
[71]) that allocates load on a single cluster of physical machines.

Second, given a set of applications and a constraint on the maximum
vCPU usage on each machine, we minimize the number of used machines.
This models a large customer minimizing the number of rented VMs while
maintaining applications’ SLOs. As formalization of this objective needs
additional notation, we defer it to Sec. 4.3.
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Figure 4.1: An example assignment of three applications to a single machine
j in the multi-instanced model. Memory capacity Q (solid horizontal line)
cannot be exceeded due to constraint (4.1), while vCPU capacity P (dotted
vertical line) can.

4.2 Optimal Balancing: Minimizing the
Maximum CPU usage

In the optimal balancing problem, minmaxj
∑

i xijpij, we start by analyzing
polynomially-solvable special cases of common CPU and memory require-
ments; we then proceed to prove NP-hardness for arbitrary CPU require-
ments (with unit memory requirements); and arbitrary memory requirements
(with unit CPU requirements).

4.2.1 Common CPU and memory requirements

We now assume that all applications have the same CPU requirement of p
and the same memory requirement of q. Although it would seem that it
makes no sense to have multiple instances of any application, especially if
additionally p = 1, it is not true, as the following example shows.

Example 1. Let us consider a two-machine environment (m = 2) where Q =
2, and three different applications such that pi = qi = 1 for i ∈ {⋆,♦,▼}.
If one assigns applications ⋆ and ♦ to the first machine and application ▼
to the second machine, then maxj

∑
i xijpij = 2 (the maximum is reached on

the first machine, see Figure 4.2(a)). However, if one assigns application ⋆
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(a) All the applications have a single instance
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(b) Application 2 has two instances

Figure 4.2: Example assignment of three applications to two machines

to the first machine, application ▼ to the second machine, and application ♦
to both the first and the second machine in such a way that p⋆1 = p⋆2 = 0.5,
then maxj

∑
i xijpij = 1.5 (see Figure 4.2(b)) which is the lower bound on

the maximum CPU usage (as
∑

i pi/m = 1.5).

Algorithm 2 shows how to solve this problem for any q and Q. To simplify
its description, we assume now that q = 1 (it can be done without loss of
generality). Notice that m ·Q ≥ n · q = n must hold (at least one instance of
each application must be placed on some machine). Otherwise, there would
exist no feasible assignment of applications to machines. As m, n and Q are
integers, it must also hold that Q ≥ ⌈n/m⌉. In this special case we assume
that each application requires a total of p CPU units. If n mod m = 0, then
the optimal solution can be obtained by assigning any n/m applications
to each of the machines, without adding multiple instances. This solution
leads to the optimal value of maxj

∑
i xijpij = pn/m. Now, assume that

n mod m > 0 (which entails ⌈n/m⌉ > n/m > ⌊n/m⌋). If Q > ⌈n/m⌉,
then at least ⌊n/m⌋ + 2 instances can be placed on each machine. If so,
the optimal solution with maxj

∑
i xijpij = pn/m can be obtained with the

McNaughton’s algorithm [92]. However, if Q = ⌈n/m⌉, the things get a
little complicated, as a single machine can be assigned at most ⌊n/m⌋ + 1
instances. The actual maximum CPU usage strongly depends on the value
of n mod m, which we assumed is strictly greater than 0. For example, if
n mod m > m/2, then there exists an optimal schedule in which at least one
machine will be assigned ⌈n/m⌉ instances, none of which will be duplicated
on any other machine. Thus, the optimal value of maxj

∑
i xijpij must be

equal to p·⌈n/m⌉ = p·(⌊n/m⌋+1). On the other hand, if n mod m = 1, then
this single additional instance can be placed on each machine and the load
can be evenly divided between all its instances leading to maxj

∑
i xijpij =

p · (⌊n/m⌋ + 1/m). In general, if Q = ⌈n/m⌉ and n mod m > 0, then the
optimal value of p ·(⌊n/m⌋+r) can be reached where r = 1/⌊m/(n mod m)⌋.
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The latter results require some justification. Let us observe that in
the considered case (Q = ⌈n/m⌉ and n mod m > 0) there always exists
an optimal assignment in which each machine hosts at least ⌊n/m⌋ single-
instances applications and at most one of the remaining n mod m. Thus,
let n′ = n mod m, which implies 0 < n′ < m. The exact value of r can be
derived by answering the following question: what is the optimal CPU usage
for m machines and n′ applications, if each machine can host only one appli-
cation? If n′ divides m, then one can split each application into exactly m/n′

identical instances, one per machine. Optimally, every instance would then
process exactly 1/(m/n′) of the load p. In general, it may be not possible
to split each application into exactly m/n′ identical instances. As we want
to maximize the minimum number of instances, in the optimal assignment
some applications will have ⌊m/n′⌋ instances, while some (zero, if n′ divides
m) will have ⌊m/n′⌋ + 1 instances. Thus, the minimal achievable fraction
of load processed by a single instance will be 1/⌊m/(n mod m)⌋ of p, as the
fewer instances, the more load each of them needs to process.

4.2.2 Arbitrary CPU or memory requirements

If either CPU or memory requirements are arbitrary (i.e., application-dependent),
then the problem becomes NP-Hard.

Lemma 1. Minimizing the maximum CPU usage is NP-Hard:

1. for unit CPU requirements (∀i : pi = 1) and arbitrary memory require-
ments;

2. for unit memory requirements (∀i : qi = 1) and arbitrary CPU require-
ments.

Proof. We show that 3-Partition (where we need to split a set of 3m val-
ues into m threes in such a way that the sum of each three is the same)
reduces to these special cases. Let us be given a set of 3m positive integers
a1, a2, . . . , a3m (with their sum being a multiple of m). We create an instance
of the balancing problem with n = 3m applications such that, depending on
the case:

1. pi = 1 and qi = ai,

2. qi = 1 and pi = ai,

for each i ∈ {1, 2, . . . , 3m}. We are also given m machines such that, de-
pending on the case:
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Algorithm 2 Constructing the assignment that guarantees the minimal
maximum vCPU usage if pi = p and qi = q. For a fixed value of m, this
algorithm works in O(n).
Q← q · (Q÷ q) ▷ Make Q a multiple of q
A ← a stack of all the applications

▷ Each application requires a total of p CPU units and q memory.
for j ← 1, 2, . . . ,m do

for k ← 1, 2, . . . , ⌊n/m⌋ do
J ← Pop(A)
Assign p units of vCPU load of application J

to the j-th machine
r ← 0
if |A| > 0 then ▷ There are still applications left

if Q > q · ⌈n/m⌉ then ▷ Use McNaughton’s algorithm
r ← p · (n/m− ⌊n/m⌋) ▷ Available machine load
i← 1 ▷ Index of the considered machine
rr ← r ▷ Disposable load on the machine
while i < m do

J ← Pop(A)
Assign rr units of CPU load of

application J to the i-th machine
i← i+ 1 ▷ Move to the next machine
Assign p− rr units of CPU load of

application J to the i-th machine
rr ← r − (p− rr)

else ▷ Assign applications unevenly
r ← p/⌊m/(n mod m)⌋ ▷ Available machine load
i← 1 ▷ Index of the considered machine
rp← 0 ▷ Disposable load of an application
while i ≤ m do

if rp = 0 then
if Empty(A) then

end while
J ← Pop(A)
rp← p

Assign min{rp, r} units of CPU load of
application J to the i-th machine

rp← r −min{rp, r} ▷ Load left for app. J
i← i+ 1
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1. Q = 1
m

∑3m
i=1 qi,

2. Q = 3.

The question is, depending on the case, does there exist an assignment of
instances to machines such that :

1. maxj
∑

i xijpij ≤ 3?,

2. maxj
∑

i xijpij ≤ 1
m

∑3m
i=1 pi?.

Note that any 3-Partition instance is a yes-instance if and only if the cor-
responding instance of our problem is a yes-instance. As the transformation
can be performed in polynomial time, the NP-Hardness follows.

4.3 Minimizing the number of machines used

In the bin-packing variant of the problem, we minimize the number of used
machines with an additional constraint on the maximum vCPU utilization
on any machine, P . In the ILP formulation, we introduce an indicator binary
variable yj ∈ {0, 1} that marks a machine that is used (that is assigned some
load). We also add a constraint:∑

i

xijpij ≤ Pyj. (4.5)

The number of machines (hence, the number of yj variables) is upper bounded
by

∑n
i=1⌈pi/P ⌉, corresponding to an allocation in which each machine is

assigned at most one instance of some application, with the vCPU capacity
of P , until all the CPU requirements are met. The goal is thus:

min
∑
j

yj.

We analyze special cases of: (1) unit; (2) common; and (3) arbitrary CPU
or memory requirements.

4.3.1 Unit CPU and memory requirements

This special case is simple. Consider a machine for which the values of P and
Q are given. Note that both the P and Q values are assumed to be integers.
In a single-instanced model, exactly min{P,Q} applications are allocated on
each machine j. Surprisingly, having multiple instances does not decrease
the number of used machines, as the following lemma shows.
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Lemma 2. If pi = qi = 1 for each i, then there exists an optimal assignment
of instances to machines where all applications have exactly one instance.

Proof. Let us consider any optimal assignment in which an application has
more than one instance. For each machine j, let us denote by Ij the set of
all applications i placed on that machine (xij = 1), but only with partial
load (pij < 1). Thus, there must exist at least two machines, j and k, for
which |Ij| > 0 and |Ik| > 0. In consequence, the set I =

⋃
j Ij is not empty.

Notice that the total CPU usage of the applications in I is |I|, and that the
total memory usage of these applications is

∑
j |Ij| ≥ 2|I|.

We now reassign applications to machines in such a way that the number
of used machines does not increase, but all the applications have exactly one
instance. Let all the applications from I be removed from all the machines.
Now, consider any machine j that was affected by this operation. If one
assigns to this machine as many complete (pij = 1) applications i from the
I set as possible, the total CPU load on machine j will be not lower than
the initial load. If this is so for all the machines, the lemma follows. Notice
that the statement might be not true only if the number of applications left
to be assigned is lower than the capacity of the selected machine. However,
in such a case the lemma also follows, as the limit of P is not achieved.

Lemma 2 leads us to the following greedy approach. Determine the critical
capacity min{P,Q} of a machine. Then, until there are no applications left
to be assigned, place as many as possible complete (pij = 1) instances of
applications on a new machine.

The above argument generalizes to any case in which p | P and q | Q.
Indeed, if q | Q then the memory requirements can be scaled to q = 1 with
Q changed to Q÷ q (the same argument holds for p).

4.3.2 Common CPU and memory requirements

As seen in the previous section, when p | P and q | Q, there exists an optimal
assignment of applications to machines such that no application uses more
than one instance. If q ∤ Q, then without the loss of generality, we can reduce
Q to q · (Q ÷ q) (as no application would fit into the remaining capacity Q
mod q anyhow). Notice that q | q · (Q ÷ q). In other words, we can always
assume—without the loss of generality—that q | Q and, equivalently, that
q = 1.

However, if p ∤ P , then Lemma 2 is not true anymore, as the following
example shows.

54



Q = 2
Machine 1

F

H

3

Machine 2

�

H

3

Figure 4.3: When ▼ has more instances, the allocation uses just two machines
(while a single-instanced allocation uses three).

Example 2. Assume Q = 2 and P = 3, and that we are given three appli-
cations, {⋆,♦,▼}, with qi = 1 and pi = 2 (p ∤ P ). In the single-instanced
model, the optimal solution allocates each application to a separate machine,
with m = 3. A multi-instanced model allows us to split one of the applica-
tions as in Figure 4.3, and in consequence use just two machines.

Applications using multiple instances can reduce the number of used ma-
chines by the factor of almost two, as proved by the following lemma.

Lemma 3. Let m be the optimal number of machines for the single-instanced
model; and let m′ be the optimal number of machines for the multi-instanced
model. (1) For any instance, m/m′ < 2; (2) for any given real ε > 0, there
exists an instance such that 2(1− ε) < m/m′ < 2.

Proof. We first show by contradiction that for any instance m/m′ < 2. Notice
that m ≥ m′ and that m = 1 if and only if m′ = 1. Thus, assume that m′ > 1,
m ≥ 2m′, and that the values of Q, P , q and p are arbitrary. Consider the
single-instanced model (which requires q ≤ Q and p ≤ P ). Let L be the
maximum CPU load among all the machines. As applications have common
requirements, in any optimal solution, applications can be relocated in such
a way that on the first m−1 machines the load is equal to L, and on the m-th
machine the load L′ is positive, yet not greater than L. Now, consider the
multi-instanced model. As m ≥ 2m′ and m′ > 1, there must exist at least
one machine for which the total CPU load H meets the condition H ≥ L+L′.
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This is so, as the average load on m′ machines is equal to:

(m− 1)L+ L′

m′ ≥ (m− 1)L+ L′

m/2
=

=

(
2− 2

m

)
L+

2

m
L′ =

= L+

(
1− 2

m

)
L+

2

m
L′ ≥

≥ L+

(
1− 2

m

)
L′ +

2

m
L′ =

= L+ L′.

However, by the above, the number of applications assigned to this ma-
chine is at least (L + L′)/p. Thus, Q ÷ q ≥ (L + L′)/p and P ≥ L + L′.
Consequently, in the single-instanced model, machines m − 1 and m could
be merged — which means m is not optimal, leading to a contradiction.

Now, let us show that, for any ε > 0, there exists an instance such that
2(1− ε) < m/m′. Let n > 2 be the number of different applications, and let
qi = 1 for each i ∈ {1, 2, . . . , n}. Let also Q = 3, p = n and P = 2n − 1. If
we consider a single-instanced model, the optimal number of machines, m,
is equal to n. On the other hand, the total load processed by n applications
is n2 and each of the machines is capable of processing the load of size
2n − 1. As a consequence, the lower bound on the number of machines m′

for the multi-instanced model is ⌈n2/(2n−1)⌉. An optimal assignment using
exactly ⌈n2/(2n − 1)⌉ machines, where at most three different applications
are assigned to each machine, can be found by assigning jobs to machines
greedily, one machine after another. Thus,

m

m′ =
n

⌈n2/(2n− 1)⌉

>
n

n2/(2n− 1) + 1
=

2n2 − n

n2 + 2n− 1
−−−→
n→∞

2−.

In order to find an optimal assignment in polynomial time, we observe
that:

1. on any machine, we can allocate min{P ÷p,Q÷ q} whole applications;

2. it is suboptimal to allocate many instances of applications to a single
machine if a single instance of the application could be assigned instead
(cf. Lemma. 2);
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3. if the optimal load (minmaxj
∑

i xijpij) is known, we can compare it
to P to see whether additional machines are necessary.

Thus, the general idea of the algorithm is as follows (Algorithm 3). Given the
lower mL and the upper mU bounds on the possible number m of machines,
we test—based on binary search procedure and Section 4.2.1—whether the
optimal maximum CPU load exceeds P . Depending on the answer, we limit
the range of m. Note that Algorithm 3 works for the case of p | P , too.
Also note that, given the optimal number of machines m, one can assign
applications to machines based on the Algorithm 2.

Algorithm 3 Finding the minimal number of machines if pi = p and qi = q

mL ← ⌈max{n/(Q÷ q), n · p/P}⌉ ▷ Lower bound on the number of
machines
mU ← n · ⌈p/P ⌉
while mU > mL do

m← (mL +mU)÷ 2
if n mod m = 0 or Q÷ q > ⌈n/m⌉ then

P ′ ← p · n/m
else

P ′ ← p · (⌊n/m⌋+ 1/⌊m/(n mod m)⌋)
if P ′ > P then

mL ← m+ 1
else

mU ← m

return mL

4.3.3 Arbitrary CPU or memory requirements

Analogically to the load balancing problem (Section 4.2.2), if either CPU or
memory requirements are arbitrary (i.e. application-dependent), then the
problem becomes NP-Hard.

Lemma 4. Minimizing the number of machines used is NP-Hard:

1. for unit CPU requirements (∀i : pi = 1) and arbitrary memory require-
ments;

2. for unit memory requirements (∀i : qi = 1) and arbitrary CPU require-
ments.
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Proof. We show that 3-Partition reduces to these special cases. Let us be
given a set of 3m positive integers a1, a2, . . . , a3m (with their sum being a
multiple of m). We create an instance of our problem with 3m applications
such that, depending on the case:

1. pi = 1 and qi = ai,

2. qi = 1 and pi = ai,

for each i ∈ {1, 2, . . . , 3m}. We are also given m machines such that, de-
pending on the case:

1. Q = 1
m

∑3m
i=1 qi and P = 3,

2. P = 1
m

∑3m
i=1 pi and Q = 3.

The question is: does there exist an assignment of instances to machines such
that

∑
j yj ≤ m? Note that any 3-Partition instance is a yes-instance if

and only if the corresponding instance of our problem is a yes-instance. As
the transformation can be performed in polynomial time, the NP-Hardness
follows.

4.4 Heuristics

As with arbitrary requirements both the balancing and the bin-packing prob-
lems are NP-hard, in this section we propose a number of heuristics. We fo-
cus on bin-packing (minimizing the number of used machines), because this
problem is perhaps more applicable of the two (as the machine’s CPU ca-
pacity should not be exceeded in the steady state). We start with baselines:
heuristics packing single-instanced applications. Then, we extend them for
the multi-instanced model.

A cloud cluster usually consists of large groups of similar machines. For
each of these machines, the CPU capacity and memory size is known in
advance. Moreover, usage limits can be set on these resources. For example,
on a single machine, one may not want to exceed 95% of memory capacity
and 80% of the total CPU capacity. These thresholds directly translate to
values of P and Q.

Before we introduce our heuristics, we discuss the limits on the values of
pi and qi. Let us consider an i-th application. It must hold that qi ≤ Q as
otherwise an instance of this application could not be placed on any machine.
However, our baselines for single-instanced model force us to assume that for
each i-th application pi ≤ P . In general, one could assume that if there exists
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(b) Optimal assignment

Figure 4.4: Example assignment of three applications to two machines. On
the top, we assume that an application for which pi > P is assigned a dedi-
cated machine. On the bottom, we present an optimal assignment.

an application for which pi > P , then this application could be assigned —
in advance — to pi ÷ P dedicated machines. Then, the remaining pi mod P
units of load could be assigned to some other machine based on the considered
heuristic. This approach may not lead, in general, to optimal solutions, as
Example 3 shows. Thus, we cannot introduce it in our baselines.

Example 3. Let us consider a multi-machine environment where P = 5,
Q = 3, and three different applications, {⋆,♦,▼}, such that p⋆ = p♦ =
q⋆ = q♦ = 2, p▼ = 6 and q▼ = 1. If P units of application’s ▼ load will be
assigned to a dedicated machine, then the total number of machines required
to process all the load will be equal to 3 (Figure 4.4(a)) while the optimal
number is equal to 2 (Figure 4.4(b)).

4.4.1 Baselines for the single-instanced model

As the baselines, we use standard list heuristics parametrized on two levels:
(1) for a specific application, how to choose the machine; and (2) the order
in which the applications are processed. We consider the following rules:
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First-Fit Find the first machine on which the application i fits (the ma-
chine’s free CPU is at least pi; and the machine’s free memory is at least
qi).

Next-Fit Find the next machine on which the application i fits (in a cyclic
way: after reaching the last opened machine, we start with the first one).

Worst-Fit Find the machine for which, after the application i is placed, the
remaining free memory is largest. Each of these rules opens a new machine if
the application does not fit on any machine. Also note that we use worst-fit,
rather than best-fit, in order to leave as much free memory on a machine as
possible for the coming applications.

We consider the following application orders:

Mem-Increasing / Mem-Decreasing Choose the application with the
largest/lowest memory requirement.

CPU-Increasing / CPU-Decreasing Choose the application with the
largest/lowest CPU requirement.

Ratio-Increasing / Ratio-Decreasing Choose the application with the
largest/lowest value of pi/qi, i.e., the ratio of CPU and memory requirements.

Random Choose applications in random order.

4.4.2 Heuristics for the multi-instanced model

Our heuristics are based on the binary search (Algorithm 3). We explore
the range of possible numbers of machines [mL,mU ]. For a tested m, we
apply one of the heuristics below and check whether the assignment does not
exceed P on any used machine. We consider the following heuristics:

CPU-Oriented This heuristic is based on the following assumption: we
want to add instances to applications that have the highest CPU require-
ments. The whole applications are placed on machines based on the First-
Fit/Next-Fit/Worst-Fit rule, starting from the applications with the
lowest CPU requirements. It may happen that at some point none of the
remaining applications will fit any of the machines without adding instances.
Then, one application after another, starting from the one with the largest
memory requirements, we greedily fill the machines with as large instances
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as possible. We do it based on the First-Fit/Next-Fit/Worst-Fit rule,
and taking into account the limits of P and Q.

Mem-Oriented This heuristic is based on the following assumption: we
want to add instances to applications that have the lowest memory require-
ments. The whole applications are greedily placed on machines based on the
First-Fit/Next-Fit/Worst-Fit rule, starting from the applications with
the largest memory requirements. It may happen that at some point none
of the remaining applications will fit any of the machines without adding
instances. Then, one application after another, we greedily fill the machines
with as large instances as possible. We do it based on the same rule, and
taking into account the limits of P and Q.

4.5 Experiments

Although the theoretical results of Lemma 3 are promising, they do not take
into account the peculiarities of load processed in clouds. For this reason,
we evaluate our heuristics using instances generated from the Azure Public
Dataset V2 (VM Trace).

4.5.1 Data preprocessing

The Azure Public Dataset V2 (VM Trace) provides information about Azure
VM workload collected over 30 consecutive days in 2019. The requirements of
each VM are bucketed by their memory usage (0-2 GB, 2-4 GB, 4-8 GB, 8-32
GB, 32-64 GB or more than 64 GB) and core count (0-2, 2-4, 4-8, 8-12, 12-24,
and more than 24). The VMs in the trace are grouped into deployments —
sets of virtual machines deployed and managed together by a single client.
We map each deployment to a separate application. We also filter out 513
out of 16,977 deployments which use buckets with indefinite upper bounds.

We map qi to the maximum upper end-point of the memory buckets
assigned to all VMs from the deployment. In 72% of the deployments, all
VMs are in the same memory buckets; and in further 14%, they belong to
exactly two buckets.

To derive pi, we sum the average (fractional) usage of the vCPU cores
over VMs in the deployment. As the trace defines only the range of vCPUs
used by a VM, we use the upper end of the VM’s CPU bucket. For example,
if a VM is assigned a bucket of 8-12 cores, and its average CPU usage is 0.6,
then we map that to 12 · 0.6 = 7.2 virtual cores.
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We thus use the application’s memory limits (upper bounds) for memory
requirements, but the application’s CPU actual usage for the load. This is so
as the CPU — a compressible resource — is easier to vertically-scale without
much disruption to the running VM, so the CPU limit should be closer to
the (perhaps high percentile of) CPU usage.

In our experiments, we use machines with P = 32 virtual cores and
varying capacity Q of RAM: 64, 96, 128, 256, 512 and 1024 GB (we use Q
as a parameter of the experiment). In an appendix [93], we present results
for additional configurations. We start with 64 GB, as 99.6% of VMs in the
trace have at most 64GB of RAM. We stop at 1024 GB, because, as we later
show, memory ceases to be a critical resource from roughly this value (thus,
a rational cloud provider would not have machines larger than this size). We
also restrict instances to applications with the total vCPU requirement of
at least 1 (VMs that use less than 1 vCPUs share it with other VMs which
impacts the quality of service) and at most 32 (otherwise, in configurations
with 64 GB machines, some machines would host just a single VM, regardless
of the algorithm used).

After this mapping, in the 16,464 applications the median pi is 5.0 and
the mean is 8.4; the median qi is 8 GB and the mean qi is 14 GB. Thus, a
32-core machine accepts roughly 6 “median” applications when considering
only the CPU requirements; and between 6 (for 64 GB of RAM) and 128 (for
1024 GB of RAM) “median” applications when considering only the memory
requirements.

We generate 50 instances. Each instance has 100 applications selected
randomly from the base set (without replacement). We simulate each heuris-
tic on each instance and each machine configuration. We measure the number
of used machines which directly corresponds with the average utilization (the
lower the number of machines, the higher the utilization). To meaningfully
compare results between different instances that can have different loads, we
normalize the number of machines by the classic lower bound of the aver-
age load (in our CPU/memory case, the bound is extended by the average
memory requirement): max (⌈

∑
i pi/P ⌉, ⌈

∑
i qi/Q⌉). Figure 4.5 shows the

results.

4.5.2 Results

With enough memory (512-1024 GB, see Figure 4.5(ef)), our heuristics gener-
ate results equal to the lower bounds. The reason is that for large amounts of
memory, memory is no longer a scarce commodity, thus the cost of maintain-
ing multiple instances is negligible. Thus, one can easily obtain the lower-
bound of ⌈

∑
i pi/P ⌉. This holds regardless of the algorithm used, which
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Figure 4.5: Comparison of performance of the algorithms for machines with
32 vCPUs and varying amount of memory. Each boxplot shows statistics
over 50 individual experiments. The line inside the box corresponds to the
median and the height of the box indicates the first and the third quartile.
The whiskers extend to the most extreme data point within 1.5 × IQR (inter-
quartile range).
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shows that simply having multiple instances is more important than how
precisely we create them. On the other hand, baseline heuristics perform
similarly, as the machines can be almost fully utilized when no application
is split.

When the amount of memory is low (64 GB, see Figure 4.5(a)), adding
instances is costly. Moreover, the number of instances that may be main-
tained by a single machine is small. Thus, algorithm performance strongly
depends on the choice of the applications that have multiple instances. In
Figure 4.5(a), both single-instanced and mutli-instanced heuristics perform
poorly (at least 10% worse) compared to an optimistic lower-bound. How-
ever, the differences between methods are notable. The Mem-Oriented+
Worst-Fit rule provides the best results (roughly 10% over the lower bound).

In the intermediate configurations (96-256 GB, see Figure 4.5(bcd)), multi-
instanced heuristics show a significant improvement over single-instanced ap-
proaches, often leading to solutions achieving the lower bound. However, it
still matters which applications have multiple instances: while in the case of
96 GB or RAM, Mem-Oriented+Worst-Fit is optimal, other heuristics
are not — and the differences diminish with the increased memory capacity.

4.6 Related Work

Below, we review related work in combinatorial optimization and in VM
placement. We refer to [94] for a survey on a broader topic of VM placement
in the cloud datacenter.

The divisible load [50] scheduling model is related to our approach: the
difference is that the divisible load does not consider the memory require-
ments.

When single-instanced applications of size qi need to be placed on infinitely-
efficient machines of capacity Q in order to minimize the number of machines
used, our problem reduces to Bin-packing. Some heuristics solving opti-
mally more than 95% of analyzed instances of the Bin-packing problem
are known [95]. The key difference between our approach and the multi-
dimensional bin-packing [40] is that in multi-dimensional bin-packing all re-
quirements are fixed.

A related problem is also the one-dimensional Fractional Bin-packing:
objects can be split across multiple bins (which is a linear programming re-
laxation of the Bin-packing problem). Variants in which the share of each
object assigned to a single bin must be the same [96], or in which packing
together two or more items make them use less resources than the sum of
their individual requirements [97] are considered.
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We consider the more general case of two-dimensional bin-packing in the
multi-instanced model for which one dimension is always constant while the
other one can change. Thus, we now focus on selected results that are related
to these characteristics. In [98] bin-packing problem and the multiprocessor
scheduling problem are connected: they minimize the number of workers or
days required to produce certain amounts of goods. [99] analyzes how vir-
tual machines with dynamic workload can be managed when the amount of
resources required by them changes in time. They extend the typical load
balancing with live migration to keep all the virtual machines in a limited
number of active nodes. [100] also studies VM placement with live migra-
tions.

VM placement with bin-packing (and its variants) are considered in [101]–
[109]. Specifically, [108] shows improved approximation factors when load
prediction is available. [107] analyzes heuristics for bin-packing taking into
account the power-efficiency of the host. [109] analyzes VM placement with
memory sharing (e.g. common libraries).

[110]–[114] are closest to our results as they map to special cases of our
model. [110], [111] assume qi = 1 and find any feasible assignment. [112]
shows a (3/2)-approximation algorithm for qi = 1 and Q = 2; and (7/5)-
approximation for an arbitrary Q; [113] shows a PTAS for each of these cases.
[114] analyzes qi = 1 and arbitrary pi on perhaps-failing machines (with high
probability the assignment must fulfill the demand of each application). In
contrast, our theoretical results solve optimally in polynomial time a special
case with qi = q and pi = p, i.e., equal memory and processing requirements.

4.7 Summary and discussion

We study a two-dimensional resource management problem with applica-
tions having multiple instances. While instances of an application have the
same memory requirements, the CPU load can be freely balanced between
them. From systems perspective, this approach integrates the scheduler, the
autoscaler and the load balancer.

We present a number of theoretical results. We consider two related objec-
tives: (1) minimization of the maximum load processed by a single machine;
(2) minimization of the number of machines used. We demonstrate that both
are NP-Hard in general, even when one of the dimensions of the problem is
unit-sized. We also show polynomial algorithms that solve special cases with
applications having equal requirements. We also provide strong theoretical
motivation for having multiple instances: when bin-packing, replication may
reduce the number of machines by a tight factor of 2− ε.
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For the general case of the bin-packing problem, we propose heuristics.
We simulate them on instances derived from the Azure Public Dataset. In
the intermediate cases of 96-256 GB of RAM, compared with various single-
instanced baselines, our heuristics reduce the number of used machines often
achieving the lower bound.
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Chapter 5

Scheduling methods for
independent calls on single node

When an end-user invokes a function, this invocation is processed on the
infrastructure managed by the FaaS provider. The cluster load balancer
dispatches the incoming requests to worker nodes. As the worker can process
multiple requests simultaneously, numerous ways exist to assign them the
required resources. In this chapter, we analyze node-level scheduling methods
which take advantage of characteristics of FaaS workload.

The FaaS system has to operate with varying loads. A recent study of
the Azure Functions trace [75], a major public provider of FaaS, shows that
the rate of requests is uneven, with peaks of short duration. Even though
these peak loads are short (minutes rather than hours), the performance of
the service under peak load drives resource allocation in the steady state,
because end-user serving workloads are often optimized for the tail (95th or
99th percentile) response latency [115]. Adding a new worker node to a FaaS
cluster (horizontal autoscaling) does not address this problem, as it takes at
least dozens of seconds [116]. Thus, currently, the only way to handle peak
loads without compromising the tail latency is to heavily over-provision: to
run the services at low average CPU utilization (20%-50%), so that any peak
can be handled gracefully on nodes. We address this issue by proposing
algorithms that improve performance when the node load is high.

In FaaS, each function can be invoked numerous times, e.g. in response
to repeated HTTP requests coming from various end-users. Thus, the local
(node) scheduler can make online decisions on how to assign these invocations
to available CPU cores based on invocations from the past. The information
used may include, among others, the frequency of invocations and their ob-
served past execution times. For this reason, theoretical lower bounds for the
competitiveness of online strategies such as SPT or SRPT (see, e.g., [117]–
[119]) can be too conservative.

These local scheduling decisions can be made implicitly by the kernel
scheduler (at the operating system level). However, the kernel has a low-
level perspective on the scheduling problem. In particular, the kernel is not
aware of how individual FaaS invocations map to threads, so, in the context of
FaaS, it cannot make dynamic, function-related decisions. As a consequence,
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the kernel is forced to using variants of the round-robin approach, where
individual invocations are processed in turns and thus repeatedly preempted.

In this chapter, we consider optimizations that can be done on node-level.
We consider a set of functions that have already been loaded into the mem-
ory of a single node in a large cluster. We intentionally omit the process of
the function-to-node assignment to show that the performance of the whole
cluster can be improved on the node-level too. Such an improvement is or-
thogonal to improvements in function placement [18], [88], load-balancing [88]
or auto-scaling of the clusters [120],

We state that in practice one rarely deals with extreme generality (as in
the theoretical, worst-case results) and that better decisions can be made by
taking into account information readily available on a local FaaS node. This
is so independent of whether the information is known a priori or is guessed
(predicted) based on historical data. We show that the overall performance of
the system can be increased by implementing other reasonable heuristics on
the local scheduler level with no significant computational or memory cost—
as long as we can use the information about how the individual invocations
link to the functions. We validate this claim with computational experiments
using the real-life data recently published as the Azure Functions Trace [75].

This chapter is structured as follows:

• We define a theoretical model of node-level scheduling for FaaS (Sec-
tion 5.1). We adapt the real-life data from the Azure Function Trace
to reflect our model (Section 5.2–5.3).

• We propose a number of theoretically-grounded heuristics and a new
one, Fair Choice, that can be used by the local scheduler to make
decisions online. We also show that these heuristics can be implemented
without a significant increase of auxiliary computations (Section 5.4).

• By simulations, we show that applying heuristics based on past in-
formation leads to a reduction in latency-related objectives, compared
to the preemptive round-robin (corresponding to standard scheduling
used by the operating system, Section 5.5).

• We present work related to node-level scheduling opimisations (Sec-
tion 5.6).

• We summarize our work and discuss results (Section 5.7).

In Chapter 6 we present our implementation of methods introduced in
this chapter in OpenWhisk, an open source FaaS platform.
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5.1 A scheduling model of node-level FaaS
execution

In this section, we define the optimization problem of minimizing latency-
related objectives in the FaaS environment. The aim of this problem is to be
simply defined, yet realistic enough to address dilemmas encountered in the
serverless practice. Our notation follows the standard of Brucker [48] and
common definitions from Section 2.1.

We consider a single physical machine with m parallel processors/cores
P1, P2, . . . , Pm (a processor is a standard scheduling term; our processor maps
to a single core on the machine). This machine has been assigned a set of n
stateless functions, f1, f2, . . . , fn, that can be invoked multiple times, without
a significant startup time (i.e., they are already loaded into memory). The
functions are stateless, so one processor can execute one function at a time,
but at any moment invocations of the same function can be independently
processed on different processors. Each invocation (call) corresponds to a
single end-user request. The actual execution time of fj differs between calls,
and we model it as a random variable with the Pj distribution. We consider
both a preemptive and a non-preemptive case. In the preemptive case, a
process executing a function can be suspended by the operating system, and
later restored on the same or on another processor. In the non-preemptive
case, a process executing a function—once started—occupies the processor
until the function finishes and the result is ready to be returned to the end
user.

We assume that the f1, f2, . . . , fn functions, assigned to the machine,
have been selected by the controller. In the case of cloud clusters, where
thousands of physical machines work simultaneously, this process may take
into account complex placement policies (balancing the overall load, affinity
to reduce cluster network load, anti-affinity to increase reliability by placing
instances executing the same function on different nodes or racks). In this
chapter, we focus on the micro-scale of a single node in such a cluster.

We consider a time frame of [0, T ) where T is a positive integer. Each
function fj can be executed multiple times in response to numerous calls
incoming in this time frame. Thus, the instance of the considered problem
can be described as a sequence of an unknown number of invocations (calls)
in time. Let the i-th call be represented by a pair of values: the moment
of call r(i) and a reference f(i) to the invoked function. Of course, 0 ≤
r(i− 1) ≤ r(i) < T for all i > 1.

Once the i-th invocation is finished (e.g., the result is returned to the end-
user), we know the moment of its completion c(i), and the total processing
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time p(i) that the invocation required. Note that it is possible that c(i) ≥ T .
We use two base metrics to measure the performance of handling a call.
The flow time F (i), i.e. c(i)− r(i), corresponds to the server-side processing
delay of the query. The stretch (also called the slowdown) S(i), i.e. F (i)/p(i),
weights the flow time by the processing time.

For any instance of our problem, processes executing functions need to be
continuously assigned to processors in response to incoming calls. We deter-
mine the quality of the obtained schedule based on the following performance
metrics that aggregate flow times or stretches across all the calls.

• Average flow time (AF),
∑

i F (i)/#{i}, where #{i} is a total number
of invocations. It is a standard performance metric considered for over
four decades in various industrial applications [121]. It corresponds to
the average response time.

• Average stretch (AS),
∑

i S(i)/#{i}, which takes into account the
actual execution time of a call [117], and thus responds to the obser-
vation that it is less noticeable that a 2-second call is delayed by 40
milliseconds (with the stretch of 2.04/2 = 1.02) than it would be in
case of a 10-millisecond call (resulting in the stretch of 50/10 = 5).

• 99th percentile of flow time (F99), x : P(F (i) < x) = 0.99, and

• 99th percentile of stretch (S99), x : P (S(i) < x) = 0.99, which are
less fragile variants of the maximum performance metrics [117]. As in
this chapter we analyse on impact of different scheduling methods on
end-user experience, we state that these metrics are more appropriate
than maximum-defined metrics, as if the flow time or stretch of a call
exceeds a perceptual threshold accepted by the end-user, the call is can-
celed and the function is called again (e.g., by refreshing a webpage).
This perceptual threshold reduces the number of calls with an unac-
ceptably high flow time that have a significant impact on the overall
performance [122]. Our robust variants, measuring the 99th percentile,
return a value x such that 99% of all invocations have stretch (or flow
time) smaller than x.

• Average function-aggregated flow time (FF),

1

n

n∑
j=1

∑
{i : f(i)=j} F (i)

#{i : f(i) = j}
,

where #{i : f(i) = j} is the number of all fj calls, and
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• Average function-aggregated stretch (FS),

1

n

n∑
j=1

∑
{i : f(i)=j} F (i)∑
{i : f(i)=j} p(i)

,

which we propose as new metrics specific for the FaaS environment.
Our aim is to measure the fairness of a schedule based on the average
values of the flow time or stretch within the sets of invocations of the
same functions. These metrics take into account that functions devel-
oped by different users may require different amounts of resources (i.e.,
time) and that the performance of an invocation should not depend
significantly on the set of functions that share the same machine.

As the actual processing times of invocations are random variables, we
solve a set of online stochastic scheduling problems. Using the extended
three-field notation [48], we denote these problems as: Pm|on-line, r(i), p(i) ∼
Pf(i)|E[σ] and Pm|on-line, pmtn, r(i), p(i) ∼ Pf(i)|E[σ] where σ ∈ {AF,AS,
F99, S99,FF,FS}.

Proposition 1. The Pm|pmtn, r(i)|FF and 1|r(i)|FF problems are strongly
NP-Hard. The 1|r(i)|FS problem is NP-Hard.

Proof. Consider special cases of the above problems in which each function is
invoked exactly once. Then, the FF metric becomes equivalent to the

∑
i c(i)

metric. The Pm|pmtn, r(i)|
∑

i c(i) [123] and 1|r(i)|
∑

i c(i) [124] problems
are strongly NP-Hard. Similarly, the FS metric becomes equivalent to the∑

i S(i) metric. It is known that the 1|r(i)|
∑

i S(i) problem is NP-Hard
[125].

5.2 Measuring invocations in the Azure
dataset

The recently published Azure Function Trace [75] provides information about
function invocations collected over a continuous 14-day period between July
15th and July 28th, 2019. For each day within this period, the trace presents
a number of invocations of each of the monitored functions during each
minute of the day (24 · 60 = 1440 separate measurements). We denote the
number of invocations of the fj function within the k-th minute of the trace
as λk

j . The trace distinguishes between different invocation sources, e.g. in-
coming HTTP requests or periodic executions (cron tasks). In this chapter,
we consider HTTP requests only, as they are less predictable. Additionally,

71



0.0 0.2 0.4 0.6 0.8 1.0
relative difference

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 5.1: CDF of the relative difference ∆k
j of the number of invocations

compared to the previous one-minute interval over 10 000 randomly sampled
interval-function pairs (k, j), where at least one of the λk

j and λk−1
j values is

non-zero.

the trace shows the distribution of the execution times for each function dur-
ing each day (based on weighted averages from 30-second intervals). For each
function, the trace provides values of the 0th, 1st, 25th, 50th, 75th, 99th and
the 100th percentile of this approximate distribution.

Some of the scheduling algorithms presented in Section 5.4 use the ex-
pected number of invocations in the k-th interval, λk

j , to make decisions
online. The most straightforward way to estimate the unknown λk

j is to
use the number of invocations in the previous interval, λk−1

j . We analyzed
how the actual number of invocations differed between two consecutive one-
minute intervals. In particular, we define the relative difference between λk

j

and λk−1
j as

∆k
j =

0 if λk
j = λk−1

j = 0 or λk−1
j not known

|λk
j−λk−1

j |
λk
j+λk−1

j

otherwise

We calculated relative differences ∆k
j for all the recorded functions fj and

minutes k. We found out that 85% of these were equal to zero (meaning that
the number of invocations did not change): for 93% of these cases (and 79%
of all) there were no invocations in both the minutes (λk

j = λk−1
j = 0). Next,

we studied in detail the cases for which λk
j +λk−1

j > 0. We randomly sampled
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Figure 5.2: Relative differences for numbers of invocations compared to the
previous one-minute interval. Each point shows one of 10 000 randomly sam-
pled interval-function pairs (k, j), where at least one of the λk

j and λk−1
j values

is non-zero. Red line represents linear regression fit to the visible data. Bands
around the line indicate 90% confidence interval.

10 000 pairs (k, j) for which λk
j +λk−1

j > 0, and calculated the corresponding
relative differences. Fig. 5.1 shows the CDF of the obtained ∆k

j values. In
29% of the cases the number of invocations did not change; but for roughly
51% the relative difference was 1.0, denoting cases in which either λk

j or λk−1
j

was 0. Fig. 5.2 shows ∆k
j as a function of λk

j (for clarity of the presentation,
the x-axis is cut at the 99th percentile of all λk

j values). We see that the
relative difference decreases with the increased number of invocations per
minute.

In further sections we present algorithms taking advantage of this knowl-
edge to predict number of invocations to come. However, our algorithms
additionally rely on the p(i) values, the execution times of invocations. The
analysis of p(i) in the trace is presented in [75] (Section 3.4), thus we do not
repeat it in this chapter.
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5.3 Mapping the Azure dataset to our model

The theoretical model introduced in Section 5.1 is an on-line scheduling prob-
lem with release times and stochastic processing times. In this section, we
show that monitoring data from Azure, a real-world FaaS system, is sufficient
to fulfill the assumptions we take in the model (e.g., that the processing times
are generated by an arbitrary distribution). The main issue is that when the
number of events (e.g. function invocations) is large, it can be monitored
only in aggregation—as in the case of the number of invocations and func-
tion execution times in the Azure dataset. Thus, we need to extrapolate
these aggregations. Below, we describe how we acquire two sets of param-
eters required by our theoretical model: invocation times and the random
distribution of processing times.

5.3.1 Invocation times

The Azure dataset does not give us the exact moments of invocation of each
function. However, the total number λk

j of invocations of each function fj
is known for every k-th monitored minute. Thus, we assume that T , the
duration of the considered time frame, is a multiple of 60 000 (number of
milliseconds in a minute; our base unit is a millisecond because the processing
times are given in milliseconds). The number of invocations, λk

j , may change
in the [0, T ) interval as, for example, some functions are called intensively in
the morning and rarely during the night. In order to model such changes,
we divide the [0, T ) time frame into K = T/60 000 consecutive, one-minute
intervals vk:

v1 = [0, 60 000),
v2 = [60 000, 120 000),
. . .
vK = [(K − 1) · 60 000, T ).

We use the values of λk
j obtained directly from the Azure dataset to gener-

ate invocation times of function fj in these intervals. Following a standard
queueing theory, we assume that in the interval vk, each function fj is called
based on the Poisson point process with rate λk

j/60 000. Thus, the time (in
milliseconds) between consecutive calls of function fj in the vk interval is a
random variable with the Exp(λk

j/60 000) distribution. Our scheduling model
does not rely on this assumption—we use r(i) values, the realizations of the
random variables. However, some of our scheduling algorithms estimate λk

j

for better scheduling decisions.
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5.3.2 Processing times

Precise information on p(i) values, the execution times of single invocations,
is not provided in the Azure dataset. Our model assumes the existence of
the distribution Pj (of execution times of a function fj) in its exact form.
However, the Azure dataset only shows selected percentiles of the empirical
cumulative distribution function (p0, percentile 0, p1, the 1st percentile, p25,
p50, p75, and p100). We thus approximate Fj, the CDF of Pj, by a piecewise-
linear interpolation of these percentiles. For example, if x ∈ (p1, p25], then

Fj(x) = 0.01 + 0.24 · x− p1
(p25 − p1)

.

The actual processing time of each invocation is generated from Fj.

5.4 Scheduling algorithms

Within the mapping described in the previous section, we apply both the
well-known and theoretically-grounded strategies, and new approaches. In
particular, we consider the following strategies.

• FIFO (First In, First Out, for a non-preemptive case) — all invocations
are queued in the order in which they were received. When a processor
is available, it is assigned the invocation with the lowest value of r(i).

• SEPT (Shortest Expected Processing Time, for a non-preemptive case)
— when a processor is available, it is assigned the invocation with the
shortest expected processing time.

• FC# (Fair Choice based on the number of invocations, for a preemp-
tive and a non-preemptive case) — when a processor is available, it
is assigned the invocation which is the most unexpected. In fact, we
want functions that are called occasionally to have larger priority than
the frequently-invoked ones. At any point t ∈ vk, the most unexpected
invocation is the one with the lowest value of max{λk

j ,#{i : r(i) ∈
vk and f(i) = j}}. The priority is thus determined based on the max-
imum of the expected number of invocations in the considered period
and the actual number of these invocations.

• FCP (Fair Choice based on the total processing time, for a preemp-
tive and a non-preemptive case) — when a processor is available, it
is assigned the invocation related to the least demanding function in
total. In fact, we want functions that use limited resources to have
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larger priority than the burdening ones. At any point t ∈ vk, the least
demanding invocation is the one with the lowest value of

max

λk
j · E[X ∼ Pj],

∑
{i : r(i)∈vk and f(i)=fj}

p(i)

 .

The priority is thus determined based on the maximum of the expected
total processing times of invocations in the considered one-minute in-
terval and the actual value of this amount.

• RR (Round-robin, for a preemptive case) — all invocations that have
not been completed are queued. When a processor is available, it is
assigned the first invocation from the queue. If the execution does not
complete by a fixed period of time is it preempted and moved to the
end of the queue. We consider periods of the length of 10, 100 and
1000 milliseconds. As this strategy is used as a reference, we assume
that all the invocations have the same priority.

• SERPT (Shortest Expected Remaining Processing Time, for a preemp-
tive case) — when a processor is available, it is assigned the invocation
with the shortest expected remaining processing time. The strategy is
applied only when an invocation is finished or a new call is received,
even if all the processors are busy. Such a restriction is introduced
because otherwise executions of functions with increasing expected re-
maining processing times could be preempted an arbitrarily large num-
ber of times.

In all cases, if the rule is unambiguous, we select the invocation with the
lowest value of r(i). The expected (remaining) processing times and the val-
ues of λk

j are estimated based on previous invocations. For each of SEPT,
SERPT, FC# and FCP strategies, we introduce two methods: Position
and Update. The first method returns the position of an invocation in the
execution queue. For example, in case of SEPT, it returns the expected pro-
cessing time of a function. The Update method is called after the execution
of the invocation ends, and it updates auxiliary data structures that are used
by the Position method. The framework algorithm (Alg. 4) for the above
strategies is based on a standard scheduling loop. In this loop, we prioritize
calls and choose the one with the lowest position.

The positions of invocations are calculated differently for different strate-
gies. We present pseudocodes for two of them, a non-preemptive SEPT and
a preemptive SERPT, as FC# and FCP are similar. Alg. 5 defines the Posi-
tion and Update methods for the case of the SEPT strategy. As the invoked

76



Algorithm 4 A framework scheduling algorithm
1: Q← {} ▷ A queue of incoming invocations
2: A← {} ▷ A set of acknowledged invocations
3: E ← {} ▷ A set of invocations being processed
4: preemptive ∈ {true, false} ▷ Is the strategy preemptive?
5: while true do
6: wait until (a processor is free and (|A|+ |Q| > 0)) \

or (preemptive and |Q| > 0)
7: for each i-th call in E that has been finished do
8: Update(f(i), p(i))
9: Remove i from E

10: Move all the invocations from Q to A
11: if preemptive then
12: Move all the invocations from E to A
13: while |A| > 0 and there are free processors do
14: i′ ← argmini∈A Position(f(i), p(i))
15: ▷ Here, p(i) is a partial processing time
16: Assign the i′-th call to any free processor
17: Move i′ from A to E

function is known at the moment of the call, the methods are similar for all
the functions, but the auxiliary data structures are function-dependent. At
any point in time, we store two values for each function fj: the total pro-
cessing time (TPTj) of all its previous invocations and the number of these
invocations (NOCj). The expected processing time is approximated using a
standard estimator, the average execution time TPTj/NOCj.

Similarly, Alg. 6 provides the same methods for the SERPT strategy.
For each function fj, we store execution times of its previous invocations in
the PTj vector. In general, this vector can be arbitrarily long. However, to
reduce the memory footprint of the algorithm, we might want to limit its size.
In such a case, the oldest values can be replaced with the newest ones. This
approach has two main advantages: (1) if the distribution of processing times
changes in time, it can be reflected within the algorithm, (2) the memory is
saved. On the other hand, if the number of remembered values is limited,
the accuracy of the estimation of the expected remaining processing time
(ERPT) is limited too. For clarity of the presentation, we omit most of the
implementation details. For example, one can use binary search or priority
queues to improve the complexity of the presented approach.

In order to determine the ERPT of a call of fj after p milliseconds, we
select from PTj the execution times that were equal to or exceeded p. We
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Algorithm 5 SEPT
1: for j ∈ {1, 2, . . . , n} do ▷ Set initial values
2: TPTj,NOCj ← 0, 0

3: procedure Position(j, p) ▷ p is always 0
4: if NOCj > 0 then return TPTj/NOCj

5: else if
∑

j NOCj = 0 then return 0
6: else return

∑
j TPTj/

∑
j NOCj

7: procedure Update(j, p)
8: TPTj ← TPTj + p
9: NOCj ← NOCj + 1

then estimate the expected processing time of the current invocation based
on the standard estimator, similar to the one presented in the case of SEPT.

5.5 Evaluation

We evaluate and compare our algorithms using discrete-time simulations,
as this method enables us to perform evaluations on a large scale. We im-
plemented the simulator and all the algorithms in C++ and validated its
functionality using unit tests and a close-up, manual inspection of results on
small instances. In this section, we present the results of performed evalu-
ations. In Section 5.5.1, we present estimation models used with the algo-
rithms. To make sure that our input data matches real-world scenarios, we
generate test instances based on the Azure Functions Trace, with mapping
indicated in Section 5.3. In Section 5.5.2, we describe data preprocessing,
and in Section 5.5.3 we describe how we create inputs for our simulator. Fi-
nally, in Section 5.5.4–5.5.5, we analyse the results of the simulations and
the behavior of the tested algorithms.

5.5.1 Estimations and baselines

Our algorithms rely heavily on probabilistic estimations of parameters (e.g.,
the processing time p(i)); these in turn depend on estimations of parameters
of the generating distributions (e.g., E[X ∼ Pj]). The methods we use are
simple. To measure how much we loose with this simplicity, we compare our
methods with the ground truth on two different levels.

First, we compare our probabilistic methods with exact clairvoyant al-
gorithms that rely on the knowledge of the true execution time (that the
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Algorithm 6 SERPT
1: for j ∈ {1, 2, . . . , n} do ▷ Set initial values
2: PTj ← {} ▷ A set of previous processing times
3: procedure Position(j, p)
4: pp, pc← 0, 0
5: for pt ∈ {x ∈ PTj : x− p ≥ 0} do
6: pp← pp+ (pt− p)
7: pc← pc+ 1

8: if pc > 0 then return pp/pc
9: else

10: for pt ∈ {x ∈ ∪jPTj : x− p ≥ 0} do
11: pp← pp+ (pt− p)
12: pc← pc+ 1

13: if pc > 0 then return pp/pc
14: else return 0
15: procedure Update(j, p)
16: Add p to PTj

real-world scheduler clearly does not have): the SPT (Shortest Processing
Time) strategy in the non-preemptive case and the SRPT (Shortest Remain-
ing Processing Time) strategy in the preemptive case. These two non-real
strategies are based on full knowledge of the actual execution time of invoca-
tions that are not yet finished. This way we can analyze how strategies based
on expectations approach these standard theoretically-grounded strategies
for fixed processing times—and thus the limits of how much the algorithms
can further gain from better estimates.

Second, our probabilistic methods estimate the parameters of distribu-
tions. For each invocation of function fj, algorithms presented in Section 5.4
may require information about its expected (remaining) processing time or
the expected number of invocations of function fj in the current one-minute
interval. As we want to measure the influence of the imperfection of such esti-
mations, some of the algorithms are compared in three different variants: the
reactionary one (RE), a limited reactionary one (RE-LIM), and the foresight
one (FOR).

In the reactionary variant, the EPT, ERPT and λk
j values for the fj

function are not known and thus are estimated based on all the previous
invocations of the function fj. The λk

j values in the reactionary model are
predicted a priori based on the actual number of invocations in the previous
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one-minute interval vk−1, i.e.

λk
j =

{
1 if k = 1

#{i : f(i) = j and r(i) ∈ vk−1} if k > 1

The EPT and ERPT values are estimated as shown in Alg. 5–6. In particular,
if it is not possible to estimate any of these values (e.g., there were no previous
calls of a particular function), an arbitrary default value is used. For example,
SEPT uses the average processing time of all previous invocations.

Although the storage needed to estimate the expected processing time of
an invocation (see Alg. 5) does not depend on the number of invocations,
this is not a case when the ERPT value is calculated (see Alg. 6). In a real
system, keeping information about all the previous calls of any function fj is
not practical. Therefore, we introduce limited reactionary variants (RE-LIM)
of some algorithms, in which we keep information about at most 1 000 last
invocations of each function fj. (We state that maintaining this additional
information on modern computers has a negligible impact on computational
capability. We also tested RE-LIM limited to 10 and to 100 executions which
resulted in significantly worse performance.)

In order to check how better estimators would impact the performance
of algorithms, we compare the algorithms against foresight (FOR) variants
which use actual parameters of the distributions used to generate the in-
stance. These parameters correspond to the perfect, clairvoyant estimations.
More formally, in the foresight variants we assume that for each function fj
the values of E[X ∼ Pj] (expected processing times), E[X ∼ Pj|X ≥ p] − p
(expected remaining processing times) and λk

j are estimated a priori based
on the whole instance. However, the algorithms are still probabilistic, e.g.,
for a just-released job we know its expected processing time, E[X ∼ Pj], but
not the actual processing time p(j).

5.5.2 Preprocessing of the trace data

We pre-processed the Azure dataset as follows. First, we filtered out 38 func-
tions having multiple records per day, leaving 671 404 out of 671 080 records
from all the 14 days. Then, as indicated in Section 5.2, we removed all the
records that were not related to HTTP invocations, which further narrowed
the dataset to 200 194 records. We were particularly interested in functions
invoked by HTTP requests, as they are less regular and their invocation pat-
terns are harder to predict and optimize — contrary to functions triggered
by internal events (e.g. cron tasks). Finally, we omitted functions contain-
ing missing data (i.e., missing information about execution times), which
resulted in 199 524 records of data on 30 325 individual functions.
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Algorithm 7 Instance generation (based on Azure)
1: function Fill(T1, T2, m, χ, ε)
2: F ← {1, 2, . . . , n}
3: I ← {} ▷ Generated instance
4: L← 0 ▷ Total load
5: do
6: j ← Random(F )
7: Ij ← seq. of invocation of the fj function
8: Lj ← total load of Ij
9: if L+ Lj ≤ (1 + ε) · χ ·m · (T2 − T1) then

10: S ← S ∪ {j}
11: L← L+ Lj

12: I ← I ∪ Ij

13: F ← F \ {j}
14: while L < χ ·m · (T2 − T1) ∧ |F | > 0
15: return I

In general, functions in FaaS system may perform I/O operations. As
the trace did not provide any information on either the I/O-intensiveness
of individual functions, or the characteristics of I/O devices used in clusters,
we assumed that functions are CPU-intensive. The given function processing
times include the time needed to perform all the I/O operations. Thus, in our
simulations, a processor remains busy during I/O phases. However, on the
kernel level, the job performing the I/O would change its state to “waiting”
(“not ready”) and another ready job would be assigned to the processor. As a
consequence, our simulation results provide upper-bounds for what we could
expect in the case of I/O-intensive functions.

5.5.3 Generating instances

The performance of the scheduling algorithms was tested for various configu-
rations. Each configuration specified the number of available processors (10,
20, 50 or 100), their desired average load (70%, 80%, 90% or 100%) and the
time frame duration T (30, 60 or 100 min).

For each configuration we generated 20 independent instances (each box
shows statistics over 20 instances). For each instance, we randomly selected
a window [T1, T2) of length T within one of 14 days of the trace. This way,
each instance was generated based on the data coming from a consistent
interval in the trace. From within the [T1, T2) window, we randomly selected
a subset of functions so the average load χ is achieved for the given number
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m of processors. Alg. 7 describes this process. First, we pick all functions
having any invocation in the [T1, T2) window (for clarity, we denote these
functions by 1, 2, . . . , n). Then, we randomly select functions from this set
until the load of the generated instance is in the [χ, (1 + ε)χ] range (with
ε = 2%) or the set of available functions becomes empty. For a selected
function fj, we generate a sequence of its invocations using the provided
information about the number of calls within each minute of the [T1, T2)
time frame and the percentiles of average execution times of its invocations
during the day. This process is fully consistent with the mapping described in
Section 5.3. The invocations of the fj function are included into the generated
instance if the total load after such inclusion does not exceed (1+ ε)χ of the
total available CPU time. From this point on, we map [T1, T2) to [0, T ).
The generated instance contains all the information required to evaluate the
proposed algorithms – for the i-th invocation we provide: the moment of call
r(i), a reference f(i) to the invoked function and the true processing time
p(i). We stress that the p(i) value is not revealed to the reactionary variants
of the proposed algorithms, so they are required to estimate them online.

5.5.4 Comparison of different algorithms

Fig. 5.3 presents the comparison of different metrics (formally defined in
Section 5.1) for configuration of 20 processors, 90% average load and a 30-
minute time frame T .

We split results into two groups: preemptive algorithms (left side of fig-
ures) and non-preemptive algorithms (right side). To mitigate the impact
of the variability of results between instances, for each instance we normal-
ize the performance metric (e.g., the average flow time) by the performance
of a baseline algorithm. Results for preemptive algorithms are normalized
to round-robin with a 10-millisecond period (denoted by RR-10), i.e., metric
values for each test case are divided by corresponding results for RR-10. (We
also tested round-robin variants with periods of 100 and 1 000 milliseconds,
but they had worse results than RR-10 for all tested metrics, thus we skip
them). Similarly, results for non-preemptive algorithms are normalized to
FIFO. As RR-10 and FIFO always have normalized performance equal to 1,
they are not shown on graphs.

For all considered performance metrics, our proposed SERPT and SEPT
algorithms significantly improve the results compared to the baselines, round-
robin and FIFO. The smallest improvements are in flow-time related metrics
for preemptive case (Fig. 5.3, (a) and (c), left)—but, as SERPT is close to the
clairvoyant SRPT, we see that there is not much space for improvement. In
the non-preemptive variants (Fig. 5.3, (a) and (c), right), the improvements
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Figure 5.3: Comparison of different metrics. Each box shows statistics over
20 independent instances. Each instance has 20 processors, 30-minute time
frame and 90% load. The red line indicates the baseline algorithm. (Contin-
uation on the next page.)
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(f) Average function-aggregated stretch

Figure 5.3: (Continued.) Comparison of different metrics. Each box shows
statistics over 20 independent instances. Each instance has 20 processors,
30-minute time frame and 90% load. The red line indicates the baseline
algorithm.
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in the average flow time are almost an order of magnitude. The reduction in
stretch (Fig. 5.3, (b) and (d)) is larger: in non-preemptive variants by two
orders of magnitude; in preemptive variants from 2-times for the average and
to more than an order of magnitude for the 99th percentile. For all these
metrics, SERPT in reactionary and foresight variants are close to SRPT,
even though SRPT is clairvoyant while SERPT relies on estimates. This
proves that our simple estimates of processing times are sufficient. However,
in non-preemptive cases, the difference between SEPT and the clairvoyant
SPT is larger: here, the impact of a wrong processing time estimate is harder
to correct. SERPT limited to 1000 last executions (SERPT-RE-LIM) per-
formed similarly to SERPT-RE for all tested metrics, which is promising, as
that variant requires less memory when implemented in a real-world sched-
uler. For our fair, function-aggregated metrics (Fig. 5.3, (e) and (f)), FCP
dominates other variants including FC# (which we skip from other figures
as it was always dominated by FCP)— with the exception of average stretch
in the clairvoyant variant, where FCP performance is similar to SERPT.

5.5.5 Impact of instance parameters

To make sure that the obtained results are valid for a wide range of scenarios,
we verified the impact of changing average loads, processor counts and time
window lengths.

Fig. 5.4 presents the 99th percentile of stretch (S99) with different loads.
We chose this metric as it is the most sensitive to the density of function
calls. First, for all loads SRPT results are close to the optimal 1, demon-
strating that in all cases it is feasible to pack invocations almost optimally.
Second, stretch increases with load for all other algorithms—however, both
the increase and the absolute numbers are larger for the baselines FIFO and
RR, compared with SERPT. Fig. 5.5 reinforces this observation: the higher
the load, the better is the performance of our algorithms compared to the
baselines.

We also analyzed how results change when the number of processors
changes, with up to 100 processors (as the largest C2 instance in AWS has
96). Fig. 5.6 shows that with the increase in the number of processors, it is
easier to schedule invocations almost optimally even with simple heuristics,
as it is less and less probable that all processors will be blocked on processing
long invocations—thus, the impact of better scheduling methods diminishes.
This is confirmed by smaller relative gains of the SRPT in the preemptive
case (Fig. 5.6, (f)).

Finally, we verified whether 30-minute time frame is reasonable by pro-
viding results that can be extrapolated on larger time windows. In Fig. 5.7
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Figure 5.4: 99th percentile of stretch when varying the average load. 30-
minute time frame, 20 processors.

we present representative results on samples generated with different time
frame durations. All the results are comparable, which indicates that our
algorithms provide similar results for longer time spans.

5.6 Related Work

Scheduling with fixed processing times A number of theoretical re-
search papers on scheduling with release dates was focused on fixed job ex-
ecution times. As the release date of each job, ri, is schedule-independent,
the total flow-time objective,

∑
(Ci − ri), becomes equivalent to the total

completion time,
∑

Ci. It was shown that although the Pm||
∑

Ci prob-
lem is polynomially-solvable [126], the Pm|pmtn, rj|

∑
Ci [123], [127] and

even 1|ri|
∑

Ci [124] problems are strongly NP-Hard. For these general
problems, some online algorithms were analyzed. The modified version of
the delayed SPT strategy [128]) was shown to provide a 2-competitive ra-
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Figure 5.5: Relative performance when varying the average load. 30 min
time frame, 20 processors.
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Figure 5.6: Relative performance when varying the number of processors.
30-minute time frame and 90% load.

tio for the Pm|on-line, rj|
∑

Ci problem [129]. The same competitive ra-
tio can be achieved for the Pm|on-line, pmtn, rj|

∑
wiCi problem [119], but

only a 2.62-competitive algorithm is known for the non-preemptive case
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Figure 5.7: Comparison of the algorithms with different time frame durations.
20 processors and 90% load.

[130]. These results were extended in [131] where it was proven that, for
P = pmax/pmin being the ratio of the maximum to the minimum job execu-
tion time, SRPT is a O(log(min{ n

m
, P}))-approximation offline algorithm for

the Pm|pmtn, rj|
∑

Ci problem.
In the case of the total stretch (

∑
Si) objective, the results are even less

promising. It was shown that the SRPT strategy is 14-competitive for the
Pm|on-line, pmtn, rj|

∑
Si problem [118]. In [132], it was shown that there

exists a strategy with a constant-factor competitive ratio for a uniprocessor
machine even if the processing times are known only to be within a constant
factor of accuracy. There was also shown a PTAS for the offline version of
the 1|pmtn, rj|

∑
Si problem [132].

The maximum-defined objectives, such as max{Ci−ri} (Fmax) and max{(
Ci − ri)/pi} (Smax), were also discussed. A number of results were shown in
[117]. In particular, it was proven that for the Pm|on-line, ri|Fmax problem,
FIFO is a (3− 2/m)-competitive strategy, and this bound is tight. It is also
known that the offline version of the 1|ri|Smax problem cannot be approx-
imated in polynomial time to within a factor of O(n1−ε), unless P = NP
[117]. Finally, it is shown that for P = pmax/pmin, every online algorithm
for the Pm|on-line, pmtn, ri|Smax problem is Ω(P 1/3)-competitive for three or
more job sizes.
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Stochastic approaches to scheduling The results for fixed job process-
ing times provide us lower bounds for the expected performance in case
of the corresponding stochastic problems. In practice, stochastic problems
are more complex. For example, it was shown that the performance guar-
antee for the Pm|on-line, rj|E[

∑
wiCi] problem can be upper-bounded by

5+
√
5

2
− 1/(2m), if the expected remaining processing time of any job is a

function decreasing in time [133], compared to a 2.62-competitive ratio in
case of a non-stochastic variant [130]. A good review of research papers
considering stochastic scheduling problems, mostly non-preemptive, can be
found in [134], [135]. It can be observed that most results are related to the∑

wiCi objective.
To the best of our knowledge, there is only a limited number of papers

on preemptive stochastic scheduling (e.g., [136], [137]). However, perfor-
mance guarantees are shown only for specific distributions of processing times
(i.e., discrete ones). Moreover, we found no theoretical papers on stochastic
scheduling with average or maximum stretch as performance metrics.

5.7 Summary and discussion

The analyzed problem was driven by real-world data provided in the Azure
Function Trace. We studied various non-clairvoyant, online scheduling strate-
gies for a single node in a large FaaS cluster. Our aim was to improve per-
formance measured with metrics related to response time or stretch of the
function invocations. To estimate the values of the expected processing time
or the expected remaining processing time of an invocation, we took advan-
tage of the fact that the same function is usually invoked multiple times.
This way, we were able to adapt SEPT and SERPT strategies with no signif-
icant increase in the consumption of memory or computational power. For
our newly-introduced fair metrics, the function-aggregated stretch and flow
time, we proposed two new heuristics, called Fair Choice. There, decisions
are made based on an additional estimation of the expected number of func-
tion calls in the next monitoring interval.

Compared to round-robin and FIFO baselines, in the base case of our
simulations, our proposed SEPT and SERPT strategies reduce the average
flow time by a factor of 1.4 (preemptive) to 6 (non-preemptive); and the
average stretch by a factor of 2.6 (preemptive) to 50 (non-preemptive). Gains
over FIFO and round-robin increase with increased pressure of the workload
on the system: with the lower number of processors and the higher average
load. For the fair, function-aggregated metrics, our newly introduced Fair
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Choice strategies clearly outperform other implementable algorithms when
measuring the flow time (while the gain is smaller for stretch).

SEPT, SERPT and Fair Choice can be easily implemented in the node-
level component of the FaaS scheduling stack (e.g., the Invoker module in
OpenWhisk). We further explore these possibilities in the following chapter.
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Chapter 6

System perspective on scheduling
on a single node

In the approach introduced in Chapter 5, we reduce the response latency
in a loaded FaaS system by optimizing the ordering of requests on a single
worker node. We benefit from a feature of FaaS workloads: functions are
short-lived (seconds) but called repeatedly. Thus, our scheduling strategies
use estimates of the frequency and execution time of a call.

Our simulation results (Sections 5.5.4–5.5.5) show performance improve-
ments and indicate which modifications are worth applying into the FaaS
scheduler. In this chapter, we take one step closer to the function call schedul-
ing in a FaaS system. First, we adapt selected algorithms from Chapter 5.
Then, as from system’s perspective it is crucial to ensure fairness between
users, we propose two additional algorithms focusing on this issue, which still
rely on information that can be gathered on a single node.

We implement our methods in the Apache OpenWhisk platform and eval-
uate them experimentally using FaaS workload derived from SeBS bench-
mark [54]. In contrast to unmodified OpenWhisk, in this approach, we do
not rely on OS-level preemption in FaaS, as one of our goals is to avoid over-
subscribing CPUs. Therefore, we set each executing container’s CPU limit
to a single core and we ensure that number of parallel calls does not exceed
the number of available CPUs.

From the system’s perspective, our approach has two main advantages.
First, as our results show, with our node-level scheduling strategies, each
worker node handles higher loads with significantly lower response time than
the baseline method. Thus, our approach does not require so much CPU
buffer to handle peak loads, so the amount of resources in the steady state
can be reduced, resulting in lower infrastructure costs without compromising
the latency. Second, we do not modify the other two resource managers of a
typical FaaS installation: the controller (receiving the requests) and the load
balancer (allocating individual invocations). Our method is thus orthogonal
— and can be applied in addition to — the many recent optimization efforts
that concentrated on these elements of FaaS infrastructure: function place-
ment [18], load balancing [88], autoscaling [120], or choosing the appropriate
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repertoire of warm containers through predicting future calls and setting up
containers in advance [75].

Although our scheduling strategies rely on estimates of the frequency and
execution time of a call measured locally, we do not limit our analysis to a
single node. By experiments, we show that these improvements naturally
translate to a reduction of response-related metrics in a multi-node cluster.

This chapter is organized as follows:

• We present a scheduling model of OpenWhisk invoker (Section 6.1)

• We adapt method of node-level container management from Chapter 5
and introduce a number of scheduling policies that are based on locally-
gathered historical data on function calls (Section 6.2).

• We implement our policies in Apache OpenWhisk. We conduct ex-
periments on a FaaS benchmark SeBS [54], that we extend to handle
OpenWhisk (Section 6.3).

• We analyze impact of cold starts and evictions on observed response
times and system stability (Section 6.4). We show that this method
reduces the number of preemptions (compared to interactive systems)
and cold starts (compared to the baseline Apache OpenWhisk).

• We show that our policies improve response time metrics on the node
(Section 6.5) and infrastructure (Section 6.6) level. In particular, com-
pared to the baseline using 4 machines, our solution produces shorter
response latencies running on just 3 machines.

• We summarize obtained results (Section 6.7).

As this work shows the systems’ perspective on the model presented in
Chapter 5, we present related work (from both theoretical and system view)
in Section 5.6.

6.1 A scheduling model of an OpenWhisk
invoker

Our node-level scheduling problem is formulated similarly to model in Sec-
tion 5.1. In this chapter, we focus on heavy loads, i.e. we assume that in
a small time window, the total number of function calls, |I|, exceeds the
standard throughput of the node.
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When user invokes a function call, the generated request has to pass
through all system layers: the load balancer, the controller, internal message
passing and the invoker. This takes non-negligible time – the r̂(i) denote the
moment the request was generated by the end-user, ĉ(i) indicate the moment
when the results were obtained by the end-client. Previously, in Section 5.1
we defined r(i) as the moment of arrival of the call at FaaS system, an c(i)
as the call’s completion time.

The system is on-line and non-clairvoyant: a call is unknown until r(i)
when it arrives at FaaS system. Similarly, its processing time p̂(i) is known
only when the execution ends and result is returned to the end-user.

Our goal is to minimize performance metrics related to response time in
such an uncertain environment. A single call’s response time (measured on
client-side, contrary to flow time analyzed in Chapter 5) is R̂(i) = ĉ(i)− r̂(i).
This takes into account that both the request and the response are transferred
through a potentially latent network (as opposed to measuring the flow time
F (i) = c(i)−r(i) just at the node level). We additionally measure the client-
side stretch defined as Ŝ(i) = R̂(i)/p̂(i), i.e. response time expressed in units
of the processing time.

To measure the system performance, we aggregate R̂(i) across all the calls.
We will report the standard statistics: the average client-side response time∑

i R̂(i)/|I|, a metric widely used in operational research and systems [121];
the average client-side stretch

∑
i Ŝ(i)/|I|; as well as order statistics: medians

and quartiles.
Additionally, the processing time p̂(i) depends on (although it is not fully

determined by) the function f(i) being called, we will show aggregations of
response time across all calls of the function f(i). We do so to make sure
that our methods do not discriminate against a certain class of function —
short, long, often- or rarely-called.

6.2 Node-level scheduling policies

In Section 2.2 we described resource management in OpenWhisk. In our work
we use the current default OpenWhisk policy as the baseline. However, the
new action assignment (described at the end of Section 2.2) model, where
controller is not responsible for selecting node to process request, is orthog-
onal to the node-level scheduling policies we present later in this chapter —
our policies can be still used once this new model is fully implemented.

Our main goal is to improve the actual performance of a single FaaS node,
and thus — by the rule of scaling — of a whole FaaS cluster. We replace
the current approach (that uses free pool containers and FIFO queues) with
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more sophisticated — yet still greedy — scheduling policies, which are im-
plemented using priority queues. The priority of an incoming action call may
be determined by various environmental factors such as the actual processing
times of similar actions performed in the past. We adapt approach presented
in Chapter 5 and estimate the expected processing time of an action by the
average processing time of at most 10 recent executions of the same action.
Moreover, the processing time is estimated on the node-level and thus is not
affected by network latency. Once a priority of a particular action call is
computed, it does not change. Using the expected processing time as the
action priority can starve some actions (if there is always a longer/shorter
request waiting to be processed). It is not crucial for our strategies to not
lead to starvation, as we consider only a short interval in which the system
is overloaded. However, some of our strategies explicitly prevent starvation,
because we determine the priorities based on the expected completion time
or the total processing time from the past and calls are processed in increas-
ing order of their priority value. Therefore, we introduce the three following
strategies based on algorithms from Section 5.4:

• First-In, First-Out (FIFO), in which the action priority is the time
r(i) ≥ r̂(i) the action call is received by the invoker (pulled from a
queue);

• Shortest Expected Processing Time (SEPT), in which the action priority
is the expected processing time of the action, E(p(i)). As in Section 5.4,
we estimate E(p(i)) as the average processing time p̄(j) over last 10
finished calls of the same function f(i);

• Fair-Choice (FC), in which we prioritize actions based on the esti-
mation of the processing time other of calls of the same function re-
cently concluded. Namely, we define the priority of the i-th action as
#(f(i),−T ) ·E(p(i)), where #(f(i),−T ) is the number of calls of func-
tion f(i) during last T seconds, for T being a long time interval, e.g.
60 seconds. FC is related to FCP presented in Section 5.4.

We also introduce two new strategies preventing starvation:

• Earliest Expected Completion Time (EECT), in which the action prior-
ity is r(i) + E(p(i)); this corresponds to the expected completion time
of an action if a processor is immediately available;

• Recent Expected Completion Time (RECT), in which the priority is
r′(i) + E(p(i)), where r′(i) is the moment when the previous call of
function f(i) was received;
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For EECT, consider two actions, i-th and j-th. If r(j) > r(i) + E(p(i)),
then the j-th call will be executed after the i-th one. For this reason, it is
impossible for the i-th call to wait infinitely long for being executed. The
same reasoning can be applied to RECT, as the value of r′(i) is increasing in
time.

We stress that our scheduler dynamically estimates the expected process-
ing time E(p(i)) based on at most 10 most recent processing times of the
same function f(i) on the worker node. To present the results on stretch,
we also use the run-time estimates based on off-line benchmarking of f(i)
(which we present in Table 6.1), but these off-line results are never used to
make any scheduling decisions. This way, our approach remains valid for
other functions, with processing times known a posteriori.

6.2.1 Towards non-preemptive function execution in
OpenWhisk

OpenWhisk limits the number of busy containers (action containers that
execute actions at any given moment) run by single node by the amount of
available operational memory. One large container can be exchanged for a
few smaller ones. By default, OpenWhisk assigns to each container a CPU
share that is nearly linearly proportional to its memory requirement. Thus,
it may occur that a container is assigned only a fraction of CPU time.

This policy leads to OS-level preemption. If the number of concurrently
executed actions is greater than the number of CPU cores, then multiple
context switches might be performed by the OS. Such context switching can
have a significant negative impact on the response time.

As the theoretical variants of the strategies listed earlier are non-preemptive,
we want to discourage the operating system from preempting currently exe-
cuted actions. To achieve that, we drastically change the default approach:

• We limit the number of busy containers with the number of available
CPU cores.

• We replace CPU limits based on memory requirements with fixed ones:
a single container is always assigned a CPU limit of exactly one core.

As a direct consequence of such a change, we can state what follows. If
the limit of busy containers is less or equal to the number of available CPU
cores, we get close to a non-preemptive model. If the limit of busy contain-
ers is greater than the number of available CPU cores, then preemption is
introduced by the operating system natively.
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Using a limit on busy containers equal to the number of CPU cores seems
more reasonable when one assumes that the executed actions are CPU-
intensive. Otherwise, i.e. for I/O-intensive actions, some CPU cores may
stay idle, although they could execute another function. As in the SeBS
benchmark [54] we find both CPU- and I/O-intensive functions, we will ver-
ify the impact of that experimentally.

6.2.2 Implementation overview

We modified the source code of Apache OpenWhisk in order to implement the
changes described above1. We stress that these modifications are orthogonal
to the currently-developed changes in the action scheduling model [68].

Our policies need data on recent invocations of action calls. We gather
this data by extending the invoker’s processing pipeline. We log the moment
a request is pulled from Kafka by the invoker to calculate the release time
r(i) (required by FC, EECT, and RECT). Then, when the invoker gets the
response from the action container, we store the processing time in a per-
function fixed-size buffer. We also replace the invoker’s simple queue by a
priority queue. The priorities are computed based on the scheduling policy
(Section 6.2) selected at the start of each experiment (based on a new config-
uration option we added to OpenWhisk). The selected policy uses the data
collected as above. For functions that were not executed yet, we estimate
their execution time by zero.

To implement the CPU limits (Section 6.2.1), we changed the parameters
of the docker run command used to create each action container. In our
implementation, each container is always assigned a whole CPU core. More-
over, we modified the invoker’s behavior, so there are no more concurrent
calls than the number of available CPU cores.

6.3 Experimental setup

The goal of our experiments is to quantify the impact of the improved node-
level scheduling policies. We thus use at least two separate OpenWhisk ma-
chines (physical in the on-premises experiments; virtual in the multi-machine
experiments) — one for the controller, and at least one for the invoker with
its action containers. Figure 6.1 shows a flow of a single request in our setup,
for a single invoker.

1At the time of development, the most recent code available in OpenWhisk repository
was commit 3802374d
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Figure 6.1: A flow of a single request generated by Gatling during our ex-
periments.

We use functions from the SeBS [54] benchmark. Roughly half of these
functions are computationally-intensive, while others strain I/O and network.
SeBS is designed to measure commercial cloud services providers such as AWS
Lambda or Microsoft Azure Serverless. We extend SeBS by designing and
implementing wrappers allowing us to deploy SeBS on OpenWhisk.

We simulate end-clients by generating requests with the Gatling [138]
load testing tool (to reduce network noise, Gatling is deployed on the same
node as the OpenWhisk controller). We define test scenarios as sequences
of function requests (see Section 6.3.1). Gatling executes such scenarios in
a controlled and monitored manner. In contrast to other load testing tools,
like Apache JMeter [139], Gatling allows us to use Scala to create, manage
and execute multiple tests.

Our on-premises experiments use two machines: each machine has 256 GB
of RAM and two Intel Xeon Silver 4210R CPUs @ 2.40GHz with 20 hyper-
threaded cores. Our setup runs Ubuntu 20.04 (Linux kernel 5.11.0-34-generic)
with Docker 20.10.7. We changed the default CPU frequency governors of
both machines to performance to avoid CPU frequency scaling during exper-
iments. We store Docker images and containers on NVMe. Our preliminary
experiments used SSDs and the default 5.4.0-88-generic kernel, but we no-
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ticed Docker stability issues, especially for the OpenWhisk baseline, high load
and 128 GB of OpenWhisk memory pool.

All FaaS requests are considered to be blocking, i.e. the request is sent
over an HTTP connection which remains open until the result is returned to
the client. If the system is overloaded, this time may increase significantly
— by default OpenWhisk will return an error if it takes more than approx.
60s to execute the action. Thus, in an overloaded node with standard time
limits, the “result” of a scheduling strategy is a tuple — response times and
the number of failed requests. However, to be able to compare strategies
directly, we strongly prefer to have a single measure. We thus decided to
increase the time limits high enough to have zero time-outs. We claim this
is fair as these increased limits have the same influence on all the measured
strategies. Additionally, different FaaS providers set different timeouts on
function duration (9 minutes in GCP and 15 minutes in AWS, while Azure
Premium and Azure AppService allows arbitrary large timeouts). Moreover,
not every function has to produce a response that is directly delivered to the
end-user – in which case short timeouts are pointless.

6.3.1 The structure of an experiment

Our goal is to measure and compare the effectiveness of different scheduling
policies fairly. The general structure of a single experiment is as follows.

First, we warm up the action containers by issuing a certain number
of function calls. These calls initialize the action containers, thus reducing
the influence of cold starts on the results (see Section 6.4 for a detailed
discussion). If the number of available CPU cores is equal to c, then at most
c containers for each function can be used simultaneously. This is so as the
number of busy containers is limited by the number of available CPU cores
(c.f. Section 6.2.1). Thus, we issue c parallel calls for each function. Note
that we do not measure the response times of these warm-up calls. After the
containers are warmed-up, we are ready to start the actual experiment.

We generate the measured load as a burst of requests that are all uni-
formly issued in a 60-second time window. These 60 seconds simulate a
“difficult” overload scenario. With shorter (e.g. 10-second) bursts, schedul-
ing inefficiencies will have a short-term influence on the response time and
thus will not be that noticeable by the end-user. Conversely, longer bursts
are best handled by a horizontal autoscaler adding more nodes. However, it
takes at least dozens of seconds to set up a new, cold worker node — and
then seconds to warm up the action containers.
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After 60 seconds, no new requests are issued. Otherwise, e.g., if the
intensity decreased gradually, it would be harder to measure the influence of
the precise load intensity on the performance of the scheduling strategies.

After sending the last call to the OpenWhisk controller, Gatling waits
until all the responses are returned. We report response times as measured
by Gatling. We monitor the response errors to make sure that no (or very
few) response errors are generated. In our initial experiments, such errors
generally hinted to various system-level problems (e.g.: I/O bottlenecks on
an SSD or Docker’s inability to maintain many containers).

We use functions from SeBS [54], Table 6.1. We considered all the func-
tions defined in the benchmark except the 3 Node.js implementations (we
use their Python alternatives) and the network microbenchmarks (as they
measure network latency). For each function, we defined a separate address
of the HTTP endpoint used to invoke it, and specified its call parameters.
To approximate function’s processing time p(i) for stretch-related metrics,
we benchmarked each function in an idle on-premises setup: we warmed up
the corresponding containers, and then we called this function 50 times. In
our experiments, we do not want to measure the latency of the network, but
the capacity of the FaaS node. On the other hand, we are unable to di-
rectly measure the duration of the execution of an action call on the invoker
level. Thus, in our stretch metrics, instead of the processing time (denoted
by p(i)), we use the median response time p̂(i) measured on the level of the
Gatling client (see Table 6.1). Although it lets us compare the performance
of the system in the context of different functions, such a change may result
in stretch values that are less than 1.

6.3.2 Parameters: load intensity and CPU cores

Two configuration options significantly influence the results: (1) the available
resources — in our case, the number of available CPU cores; (2) the load
— in our case, the amount of requests issued during the 60-second window.
Roughly, by doubling the amount of resources (e.g., increasing the number of
cores from 10 to 20), the system should double the load it can handle. Thus,
to meaningfully compare the impact of increased resources with constant
load — or increased load with constant resources — we introduce the notion
of intensity of a scenario: a multiplicative factor regulating the load (keeping
the available resources constant).

Our experiments are designed so that each action is called the same num-
ber of times in a 60-second window. As we consider 11 functions, we want
the total number of calls to be a multiple of 11. Thus, in a scenario of inten-
sity v, we generate exactly 1.1 · c · v requests, where c is the number of CPU
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Table 6.1: Functions from the SeBS benchmark tool measured on the client
side, on-premises setup. The measurements include ca. 10 ms Kafka over-
head.

Response time

Function name 5th perc. Median 95th perc.

dna-visualisation 8 415ms 8 552ms 8 847ms
sleep (1000ms) 1 020ms 1 022ms 1 026ms
compression 793ms 807ms 832ms
video-processing 586ms 593ms 605ms
uploader 184ms 192ms 405ms
image-recognition 117ms 121ms 237ms
thumbnailer 112ms 118ms 124ms
dynamic-html 18ms 19ms 22ms
graph-pagerank 11ms 12ms 15ms
graph-bfs 11ms 12ms 13ms
graph-mst 11ms 12ms 13ms

cores for action containers. For example, if there are 20 CPU cores and the
intensity is 30, we generate a total of 660 requests distributed uniformly in
the 60-second window.

The average response time for the function selected uniformly from Ta-
ble 6.1 is ∼ 1.042s. Thus, we state that for intensity 30, the CPU executes the
function calls for roughly 50% of the time. Consequently, higher intensities
correspond to higher actual utilization, and progressively more overloaded
systems. Intensity 40 should make the processor execute the functions for
65% of time, and we additionally consider the intensity of 60 (and, in the
appendix [140], intensities 90 and 120). Our estimations of CPU utilization
do not take into account overheads of container creation and management.
In fact, intensity 30 may result in full utilization of the processor if managing
the container executing the function requires more time, on average per call,
than executing the function itself.

Even with the same intensity, the number of CPU cores may still impact
the performance. For example, some strategies may behave more flexibly
when 660 requests are executed on 20 cores compared to when 330 requests
are executed on 10 cores, although in both cases the intensity is equal to 30.
With the increasing number of cores, we observe the effects of the regression
to the mean utilization on a single core, i.e., the load can be balanced between
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cores more efficiently. For this reason, we perform our experiments on 10 and
20 cores. In the appendix [140], we also present the results on 5 cores.

For each pair of hyperparameters: numbers of CPUs and intensity, we
generate 5 different random sequences of calls.

As the baseline, we use OpenWhisk with a single configuration change,
the extended time limit. We set the same CPU and memory limits on the
baseline workers as on our variants.

6.4 Cold starts, evictions and the impact on
the response time

Theoretical considerations on scheduling policies often assume that the func-
tions can be executed exactly when needed (cf. Chapter 5). Unfortunately,
this is not always a case in practice. Although some requests are processed by
idle containers that were already initialized (warm start), others may — and
sometimes even must — be served by a new container (cold start). It takes
500ms on the average [60] (and, in our measurements, up to 2 s) to fully ini-
tialize a new container, and thus the response time of a cold started request
is always longer than a warm started one. On the other hand, reducing the
total processing time by maintaining an unlimited number of containers is
impossible due to limited memory, so it is profitable to evict (remove) unused
containers.

Decisions on which containers to create and which to remove significantly
impact the response time. However, these are orthogonal to what we measure
in this paper — the impact of the scheduling policy on the response times
of individual requests. With evictions, even small, quasi-random changes in
the scheduling policies can be randomly amplified by evictions, which would
introduce noise to our results. We decided to diminish this effect by reducing
the number of evictions (and thus, cold starts) to zero or almost zero.

Our policies upper-bound the maximum number of containers in use by
the number of functions and the CPU cores. Thus, we expect that with
increasing memory capacity, the number of evictions will eventually approach
zero, and thus the number of measured cold starts will be almost zero (as we
pre-warm the containers before the experiment starts). On the other hand,
Apache OpenWhisk is greedy: a pending request that has no free, warm
container will trigger initialization of a new container. Thus, we expect that
with increasing memory capacity, the number of cold starts will decrease,
but only slowly.

101



We verified these intuitions experimentally. We measured the number of
cold starts for different load intensities and for increasing memory (following
the setup as in Section 6.3.1). The results are presented in Figure 6.2. For the
original approach, Figure 6.2(a), the number of cold starts strongly depends
on the intensity, but less so on the memory. In fact, for load intensity 120,
the node processes 1 320 requests, and the number of cold starts exceeds
1 100 with almost no dependency on the amount of available memory. This
means that over 80% of requests were processed on newly-created containers,
each with the cold start overhead of almost 2 seconds. Moreover, for 128 GB
of RAM, the number of concurrently-running containers was so large that
Docker had problems running them — and OpenWhisk responded with a
barrage of errors.

In contrast, in our FIFO policy, Figure 6.2(b), starting from 32 GB, the
number of cold starts does not change — which suggests that RAM is no
longer a constraint, and thus almost no evictions happen.

Our goal was to determine the memory threshold starting from which
evictions can be neglected — and then run the rest of our experiments with
this setup. Based on the above, we perform all further experiments with the
OpenWhisk memory pool restricted to 32 GB.

6.5 Influence of scheduling policies

We start with an aggregated view over all considered load intensities and
CPU cores count (Section 6.5.1). We then analyze the influence of the in-
creasing load intensities (Section 6.5.2) and CPU cores (Section 6.5.3). Fi-
nally, we change the relative call frequencies to highlight the fairness pro-
vided by the Fair-Choice (FC) strategy (Section 6.5.4). Results presented
here and in the following section aggregate over 5 repetitions with differ-
ent call sequences (the variance between repetitions is small); our on-line
appendix [140] shows results for each of the 5 experiments.

Figures 6.3 and 6.4 aggregate response times and stretches from all 5
experiments related to each combination of CPU cores and load intensity.
Each row shows results for the same number of cores; each column — for the
same intensity. To calculate stretch, we used the median response time of an
idle system (Table 6.1). Thus, the stretch can be smaller than 1.

6.5.1 Influence of our strategies

We start by comparing the five proposed scheduling strategies against each
other and against the baseline approach of OpenWhisk by computing the
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(a) OpenWhisk baseline node-level scheduling
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(b) our approach to node-level scheduling (FIFO variant)

Figure 6.2: Comparison of the number of cold starts on 10 CPU cores de-
pending on intensity and amount of available memory.

baseline-to-us ratio, i.e., the relative improvement of a given metric (response
time, stretch or the completion time) that comes from applying a given strat-
egy — and this over all considered CPU counts and load intensities (unless
otherwise noted).

We start by analyzing our FIFO policy. In FIFO, the sequencing of calls
is similar to the baseline OpenWhisk — but our FIFO effectively eliminates
preemption (see Section 6.2.1 for details) and limits cold starts (Section 6.4).
This impact can be best measured by comparing the time needed to process
all the requests. Each test case processes exactly the same (base) load — thus,
the differences in observed completion time are mostly caused by context
switches and cold starts. Table 6.2 shows that our FIFO always reduces the
completion time when there are 20 CPU cores involved; the improvement
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(f) 20 CPU cores, intensity 60

Figure 6.3: Response time for different scheduling policies, the number
of CPU cores available for action containers (rows), and load intensity
(columns). On-premise infrastructure. Here and in remaining plots, unless
noted otherwise, each box aggregates results from all individual calls from all
5 sequences of calls. Thus, e.g., in (l), each box shows statistics over 5 · 2640
individual calls.

varies from 22% (intensity 30) to 45% (intensity 120). For 10 CPU cores, the
improvement varies from -28% (which is actually a deterioration) to 34%.

We continue by aggregating the response time statistics of Figures 6.3
and 6.4. Comparing FIFO to baseline, the average relative improvement
of the average response time is 1.39. However, this improvement strongly
depends on both the number of cores and load intensity, increasing with
both parameters — with 10 CPUs, the improvement factor varies from 0.41
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Figure 6.4: Stretch for different scheduling policies, the number of CPU
cores available for action containers (rows), and load intensity (columns).
On-premise infrastructure. Average stretch presented as a green triangle.

for intensity of 30 (i.e., an increase of the response time by the factor of over
2), to 1.21 for intensity of 60. With 20 CPUs, however, the improvement
ranges from 1.79 to 1.98. For stretch, the relative improvements are almost
the same (ranging from 0.26 to 1.22 for 10 CPUs, and from 1.82 to 2.05 for
20 CPUs). When it comes to the response time tails, these values are also
decreased — the improvement factor for 10 CPUs varies between 1.02 and
1.41 for the 95th percentile of the response time, and between 0.98 and 1.44
for the 99th percentile. In case of 20 CPUs, these values range between 1.85
and 2.02, and 1.70 and 1.90, respectively.

105



Our remaining strategies show the additional benefit of smarter queuing.
Overall, both SEPT and Fair-Choice improve upon FIFO in all experiments:
the average relative response time improvement of SEPT is 3.59 and of FC
is 4.10; while the average relative stretch improvement of SEPT is 14.89
and of FC is 18.02. Although one can see a relative degradation of the
99th percentile of response time compared to FIFO, there is still a visible
improvement compared to the baseline: the average improvement factor for
SEPT is 1.16, and FC is 1.40. EECT and RECT also show an advantage
over FIFO (with the average relative response time improvement of 2.88).
However, both these strategies prevent calls from starving.

6.5.2 Influence of the intensity

With the same number of CPU cores available for action containers, when
load intensity increases, the queue of action calls waiting to be processed
gets longer. Thus, the choice of the sequencing strategy is expected to have
a more significant impact. We thus anticipate that the advantage of SEPT
and FC over FIFO will increase with increasing load intensity.

Even with intensity 30, the advantage of SEPT and FC over FIFO, EECT
and RECT can be clearly seen both for response time and for stretch. SEPT,
FC, EECT and RECT perform better than FIFO in terms of the average re-
sponse time (with the ratio of FIFO-to-other varying from 2.5 to 4.8) and the
stretch (ratio from 3.9 to 22.6). Improvements further increase for intensities
above 60 [140].

Consider the case of 10 CPU cores. For the intensity of 30, the average
response time from our FIFO and SEPT strategies is 36.42 s and 12.52 s
(with a ratio of 2.9). For intensity 40, these values are equal to 58.29 s and
17.01 s (with a ratio of 3.4); and for intensity 60, to 101.76 s and 25.14s (with
a ratio of 4.0). At the same time, the FIFO-to-SEPT ratio of the median

Table 6.2: Maximum request completion times. For each pair of parameters
(CPU cores/intensity) we show FIFO to baseline ratios (over 5 experiments).
Configurations for which our method improves upon FIFO in each experiment
in bold.

int. →
cores ↓ 30 40 60 90 120

5 1.14–1.20 1.10–1.13 0.98–1.05 0.97–1.02 0.90–0.98
10 1.11–1.28 0.76–0.90 0.74–0.90 0.92–1.04 0.66–0.70
20 0.67–0.78 0.59–0.66 0.60–0.64 0.57–0.60 0.55–0.58
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response time varies from 22.0, through 38.7, to 95.9. This quick growth
can be explained as follows: for large load intensity, we may almost freely
choose short functions from the queue. This drastically reduces the median
response time. Similarly, when it comes to stretch and intensity 30, the
averages provided by our FIFO and SEPT strategies are 1000 and 104 (with
a ratio of 9.6). For intensity 40, it is 1647 and 130 (with a ratio of 12.6), and
for intensity 60, it is 2959 and 164 (with a ratio of 18.0), respectively. At the
same time, the FIFO-to-SEPT ratio of median stretch increases from 19.3,
through 33.7, to 68.0. This phenomenon can be explained in the same way.

The significant influence of the scheduling strategy can be concluded from
the fact that the difference between the baseline approach and our approaches
remains stable in terms of the order of magnitude. For 20 CPU cores and for
intensities 30, 40, 60, 90 and 120, the ratio of average response time obtained
for the baseline and for our FIFO implementation is 1.8, 2.0, 1.8, 1.8 and 1.9,
respectively. Similarly, the ratio of average stretch obtained for the baseline
and for our FIFO implementation is 1.9, 2.0, 1.8, 1.8 and 1.9.

6.5.3 Influence of the number of CPU cores

When the number of CPU cores available for action containers increases
while the intensity remains the same, the load — although the same, on av-
erage, for each core — can be better balanced between cores. On the other
hand, higher load is processed on more cores that share parts of their caches.
Thus, we expect that with the increase of CPU cores, the improvements of
our strategies will change slowly. On the other hand, we expect the baseline
approach to behave worse for a higher number of CPU cores due to its con-
tainer management policies. Our results confirm this intuition, especially for
higher intensities.

Consider the intermediate load intensity 40. If 10 CPU cores are used, the
average response times for our FIFO and SEPT implementations are 58.29 s
and 17.01 s, with their ratio equal to 3.4. When the number of CPU is 20,
however, the average values for FIFO and SEPT are 123.64s and 33.92s, with
their ratio equal to 3.6. At the same time, the baseline-to-FIFO ratio of the
average response time increases, from 1.1 to 2.0.

The same observations can be made for stretch. For 10 CPU cores, the
average stretches for our FIFO and SEPT implementations are 1647.40 and
130.87, with their ratio equal to 12.6. When the number of CPU cores is 20,
these values are 3538.65 and 220.89. As expected, the ratio of the average
stretch for the baseline and for our FIFO implementation increases, from 1.1
to 2.0.
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Figure 6.5: Comparison of aggregated stretch for different scheduling ap-
proaches and functions, 10 CPU cores and intensity 90. The graph-bfs
function is short (12ms) and thus we expect larger values of stretch com-
pared to the long (8 552ms) dna-visualisation function.

For FIFO and with fixed intensity (40 or more), the median response
time (and thus, also stretch) increases almost linearly with the increase of
the number of CPU cores (we confirmed that by analyzing additional results
for 5 CPU cores [140]). If we increase the number of cores twice, the median
response time and stretch will double. Our experiments thus show that
the system overheads (related to container management) have a significant
impact on the overall performance. At the same time, in the case of the
baseline, doubling the number of cores triples the medians. Surprisingly, for
the same core-level intensity, the best performance is presented by nodes that
have lower numbers of cores.

6.5.4 Function-level metrics

The SEPT strategy will always prioritize short calls, independently of how
often corresponding functions are called. As a consequence, if a long func-
tion is called relatively rare, it will be discriminated against. In Section 6.2,
we proposed the Fair-Choice (FC) strategy which prioritizes calls based on
the total resource consumption in a moving window. In order to quantify
the fairness of the FC strategy, we performed 5 additional groups of exper-
iments for the intermediate configuration with 10 CPU cores and intensity
90. In these experiments, exactly 10 calls corresponded to the relatively-
long dna-visualisation function. Other calls were uniformly distributed
among other functions, including a very short graph-bfs function. In con-
trast to our previous experiments, this time we made no assumptions on
partial-uniformity of the call distribution. Figure 6.5 presents the aggregated
stretch.

In Figure 6.5(a) we observe the distribution of stretch among all the
calls. Although the call frequencies differ, Figure 6.5(a) is almost identical

108



to Figure 6.4(c). The fairness of FC is apparent when we show just the
results of the infrequent, long dna-visualisation function, Figure 6.5(b).
FC reduces the average stretch from 5.3 (SEPT) to 2.1; the median stretch
is reduced from 5.2 (SEPT) to 1.6, which hints that often the call is started
almost immediately. These gains are not for free, though, Figure 6.5(c): FC
increases the average stretch for a short, often-called graph-bfs function to
25.8 (compared with SEPT’s 22.2).

6.6 Multiple worker nodes

Encouraged by our single-node results, we evaluate our approach in a multi-
node environment. We measure the performance of a setup in which up
to 4 workers operate in parallel. To do so, we created 5 virtual machines in
our on-premises cloud running under Proxmox 7.1 [141] on physical machines
equipped with AMD EPYC 7402P CPUs @ 2.80GHz with 24 hyper-threaded
cores and 128 GB or RAM. Our controller is running on a VM limited to 4
CPU cores and 16 GB of RAM. Each of the four VMs executing OpenWhisk
workers were assigned 20 CPU cores and 40 GB of RAM. The software setup
of these workers is similar to the on-premises setup: two cores are reserved
for system and invoker processes, while 18 were reserved for the action con-
tainers.

In each multi-node experiment, we send the same sequence of 2376 re-
quests uniformly during a 60-second time-window. With 4 workers, 18-CPU
nodes, 2376 corresponds to the core-level intensity of 30. We test the base-
line and FC, but in different runs we reduce the number of available worker
nodes from 4 up to 1. With 3 workers operating in parallel, 2376 requests
correspond to the core-level intensity of 40; 2 workers correspond to the in-
tensity of 60; and 1 worker to 120. As in the previous section, we repeated
the experiment 5 times with different request sequences. Figure 6.6 shows
the results.

With 3 machines, our FC strategy provides better quality of service than
the baseline using 4 machines. For the baseline on 4 VMs, the average re-
sponse time is 240 seconds (with the 75th percentile of 406 seconds, the 95th
percentile of 600 seconds, and the 99th percentile of 649 seconds). Although
our FC strategy processed the same load on just 3 VMs, we reduce the aver-
age response time to 68 seconds (71% less than the baseline on 4 VMs), its
75th percentile of 54 seconds (97% less), the 95th percentile of 443 seconds
(26% less), and even the 99th percentile of 638 seconds (2% less).

Surprisingly, even on 2 VMs, some metrics are still better for our FC
strategy compared to the baseline operating on 4 VMs. FC reduces the
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Figure 6.6: Response times in a multi-node environment. Each configuration
processes the same sequence of 2376 requests. △ is the average; ⋄ the 95th
percentile; ▽ the 99th percentile.

average response time by 58% and its 75th percentile by 93%. Although FC
worsens the 95th percentile by 21% and the 99th percentile by 32%, we argue
that 95th percentile response time during a load peak corresponds to a much
higher percentile in a longer time window.

6.7 Summary and discussion

In this chapter, we extended our methods of allocating computational re-
sources on a single FaaS node from Chapter 5. Our aim was to reduce the
response time and the stretch in a temporarily overloaded system. We mod-
ified Apache OpenWhisk and introduced a number of sequencing policies.
We took advantage of the fact that in FaaS, each function is usually called
repeatedly. This way, we were able to implement strategies that make use
of historical data on the executions of a specific function. These strategies
include adaptations of FIFO and SEPT, together with three new policies:
EECT, RECT, and FC. In the case of these new policies, we made use of
both the expected processing time of a function call and the frequency of
calls of the same function in the recent past.

Compared to the baseline approach, the current version of OpenWhisk,
our proposed algorithms show numerous advantages. For 20 CPUs our algo-
rithms improve the average response time for all considered load intensities.
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Compared to other analyzed strategies, SEPT and FC significantly decrease
the response time — median, average, and the tail percentiles. At the same
time, the FC strategy prioritizes jobs based on their previous usage, intro-
ducing inter-function fairness in the system. We also showed that all the
response-time metrics for our implementation of the FC strategy are better
on 3 VMs compared to the baseline running on 4 VMs. This means that our
solution allows us to reduce the number of machines by a factor of at least
25% without decreasing the quality of the service.
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Chapter 7

Conclusions
In this thesis, we analyzed a modern cloud computing model – Function as a
Service. This model differs significantly from other cloud computing models
by introducing the concept of a stateless function and thus freeing the cloud
customers from the responsibility of maintaining cloud environments. At the
same time, the properties of FaaS workloads open up new opportunities for
optimization. We analyzed in detail three problems directly stemming from
the FaaS computation model.

As we show in Chapter 3, the cloud provider can significantly optimize
FaaS performance when they know the structure of the compositions used in
the workload. Such knowledge enables the cloud provider to provision execu-
tion environments in advance and to improve scheduling. While we perform
evaluation by simulations, presented algorithms could be implemented in
FaaS systems and we discussed changes in the architecture that might be
required. Our simulation results show that for non-negligible setup times
(i.e., at least 20 times longer than the average task duration) in all evalu-
ated machine configurations when the scheduling algorithm is aware of task
dependencies and startup times, the average improvement of the response
latency is at least by the factor of two. In practice, setup times can take
hundreds of milliseconds [60], while the function may complete processing
within several milliseconds [54].

In Chapter 4, we analyzed a two-dimensional resource management prob-
lem with applications having multiple instances. The analysed model maps to
cloud applications where particular instances (function environments, Docker
containers, Virtual Machines) can be replicated, and each instance is assigned
the same amount of resources (memory). Then, incoming requests can be
balanced between multiple instances. Such an approach integrates separate
components: the scheduler, the autoscaler, and the load balancer. We present
a number of theoretical results and polynomial algorithms that solve special
cases with applications having equal requirements. For the general case, we
propose heuristics and identify the cases where we significantly reduce the
number of used machines, often achieving the lower bound.

Nevertheless, the characteristics of future load often cannot be predicted
precisely – in particular, we are not aware of task release times, and after
the tasks are scheduled it may occur that some of them would use more
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resources (e.g., CPU time) than expected. Thus, in Chapter 5, we studied
various non-clairvoyant scheduling strategies for a single node in a large FaaS
cluster. We focused on improving end-user experience, thus we analyzed
metrics related to response time or stretch. Our heuristics rely on information
gathered locally on a single node, such as past call durations and frequency
of the calls. We analyzed both preemptive and non-preemptive variants of
our algorithms. In both cases, we observed significant improvement over
the baselines. In particular, SERPT (in the preemptive variant) reduces
the average flow time by a factor of 1.4 and SEPT (in the non-preemptive
variant) reduces the average flow time by a factor of 6. We also indicate
that our newly introduced Fair Choice strategies, which outperform other
algorithms when measuring the flow time for function-aggregated metrics,
can be effectively applied to the FaaS system.

We further investigated this approach from the system perspective. In
Chapter 6, we adapt methods of allocating computational resources on a sin-
gle FaaS node introduced in Chapter 5. We modified Apache OpenWhisk
and we implemented strategies that make use of historical data of the execu-
tions of a specific function. These strategies include adaptations of policies
analyzed in Chapter 5 together with the new policies: EECT and RECT.
We extended OpenWhisk implementation to record information about func-
tion calls and provide estimations used in proposed strategies. We show that
the proposed algorithms provide the largest improvements over the current
version of OpenWhisk in scenarios with the highest request intensities and
a large number of CPUs. In particular, SEPT and FC policies provide a
significant decrease in response time. Moreover, FC strategy makes fair de-
cisions based on the total CPU consumption of functions in the past. These
decisions prioritize longer functions that are called rarely and decrease their
stretch when compared to shorter yet regularly-called functions.

Improvements analyzed in this thesis do not require significant modifica-
tions in the FaaS cloud architecture. As we do not change the interfaces for
declaring and managing the FaaS workload, our proposed solutions could be
adapted without requiring any modifications in deployed applications. There
is also no need to perform changes in the data center infrastructure, thus our
proposed changes do not require any (potentially costly) modifications in the
cloud provider’s internal hardware stack. Moreover, as some of the proposed
solutions require changes only on the worker node management software,
they can be introduced in a rolling scheme, allowing to verify the correctness
of the setup and measuring benefits without risking the stability of the whole
system. In addition, the proposed methods can be combined with each other
to improve overall performance.
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With FaaS, the cloud provider is able to gain more information about
executed applications – as functions are short and executed in a repeatable
manner, it is possible to estimate the requirements of the functions. More-
over, cloud users can provide more information about FaaS workloads, such
as limits, dependencies or the structure of composite FaaS functions. Our
analysis of the FaaS model indicates that characteristics of the FaaS work-
load enable the cloud provider to perform more accurate scheduling decisions
compared to applications built and deployed with other mature technologies,
such as containers or Virtual Machines. We believe that with the increasing
popularity of serverless computing, scheduling methods designed to benefit
from FaaS attributes will play an important role in modern cloud computing
platforms.
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