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Abstract

The optimization of complex processes plays a critical role in several do-
mains, including engineering, traffic control, and finance. However, the inher-
ent complexity and nonlinearity of these processes pose significant challenges
to traditional optimization techniques. This thesis proposes and examines a
technique based on the integration of computer simulations, metaheuristics
(i.e., high-level optimization algorithms that explore large spaces of candi-
date solutions), and surrogate models (i.e., mathematical approximations of
more complex models) to address this problem.
First, the thesis outlines the motivation behind the proposed research

and summarizes its objectives. The main objective of this research was to
gain a deeper understanding of the nature of complex processes and to take
a step towards the development of universal, scalable methods for analyz-
ing and optimizing complex processes using metaheuristics. This was done
in the presented research on the basis of considering two complex processes,
but some general and theoretical considerations regarding complex processes
are included in this thesis too. The first and main complex process studied
was urban road traffic controlled by traffic signals. The aim was to optimize
selected important traffic characteristics using metaheuristics and to investi-
gate which of them give the best performance in terms of quality of solutions
and scalability, including time of computations. The second complex process
studied was cancer evolution under radiotherapy treatment. The goal was to
minimize the number of cancer cells after treatment by controlling the size
and timing of the radiotherapy doses.
After the introduction, the thesis summarizes related works, including the

state of the art in understanding, modeling, and optimizing complex systems
and processes. The main metaheuristics that were used in the experiments
described in this thesis are also presented along with their pseudocodes.
Next, the thesis discusses the author’s original contribution, including the

Traffic Simulation Framework software (TSF), which was one of the main
tools used in the experiments, as well as the general methodology for opti-
mizing complex processes using metaheuristics, computer simulations, and
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surrogate models based on machine learning.
The thesis contains theoretical considerations (including the introduction

of several new formalisms and definitions) as well as descriptions of exper-
iments aimed at testing the proposed methods in practice. Many series of
experiments are described, they were carried out with different metaheuris-
tics, surrogate models, and configurations for the two main use cases (traffic
signal control and optimization of radiotherapy for cancer treatment). The
thesis includes the descriptions of the setup of the experiments, as well as
the presentations and discussions of their results. This is followed by a dis-
cussion of the identified limitations of the introduced method, potential ways
to overcome them, and possible extensions to enable real-world applications
of the developed techniques and tools.
Finally, the conclusions of the thesis summarize the achieved results and

confront them with the initial research objectives. It turned out that the
combination of population-based metaheuristics with surrogate models based
on machine learning (especially techniques based on LightGBM and proposed
architectures of sparse graph neural networks) gave the best results in the
experiments conducted, and the method developed and tested by the author
of this thesis proved successful for both studied complex processes.
Although there are still many obstacles on the way to a successful applica-

tion of the developed methods in real-world scenarios, the achieved results are
promising. It was possible to overcome the initial computational challenges,
and the achieved results opened many new research directions, which led
to the establishment of a research group TensorCell. Moreover, the research
covered in this thesis has been summarized and published in 25 research
publications and awarded with several prestigious prizes. There are already
ongoing discussions about the applications of the considered method in real
traffic management systems and the use of the Traffic Simulation Framework
in the recently established SmartCity Lab in Chełm (Poland). Since the TSF
software has been developed using the road network and traffic data from the
measurements in Warsaw, there is also a potential to run some pilot projects
and plan the possible implementations in this city. There is also interest
from other scientists to test the developed method for optimizing complex
processes in a new field - materials science.
Most of the datasets and some programs used in the experiments have

been made publicly available to facilitate further studies.
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Streszczenie

Optymalizacja procesów złożonych odgrywa kluczową rolę w wielu dziedzi-
nach, w tym w inżynierii, kontroli ruchu i finansach. Nieodłączna złożoność,
jak sama nazwa wskazuje, i nieliniowość tych procesów stanowi poważne
wyzwanie dla tradycyjnych technik optymalizacji. W celu rozwiązania tego
problemu w niniejszej pracy zaproponowano i zbadano technikę opartą na
integracji symulacji komputerowych, metaheurystyk (algorytmów optymali-
zacji przeszukujących duże przestrzenie potencjalnych rozwiązań) i modeli
surogatywnych (matematycznych przybliżeń bardziej złożonych modeli).
Początek pracy przedstawia motywację proponowanych badań i podsu-

mowuje ich cele, m.in. głębsze zrozumienie natury procesów złożonych oraz
opracowanie uniwersalnych, skalowalnych metod ich analizy i optymalizacji z
wykorzystaniem metaheurystyk. W badaniach skupiono się na dwóch proce-
sach złożonych, ale w niniejszej pracy zawarte są również bardziej ogólne
rozważania dotyczące procesów złożonych. Pierwszym badanym procesem
złożonym był ruch drogowy w mieście sterowany sygnalizacją świetlną, a
celem była optymalizacja niektórych ważnych charakterystyk ruchu z wyko-
rzystaniem metaheurystyk i zbadanie, które z nich są najlepsze pod względem
jakości rozwiązań i skalowalności, w tym czasu obliczeń. Drugim badanym
procesem złożonym była ewolucja nowotworu podczas radioterapii, a celem
było zminimalizowanie liczby komórek nowotworowych po leczeniu poprzez
kontrolowanie wielkości dawek i czasu podawania radioterapii.
Po wprowadzeniu praca podsumowuje stan wiedzy w powiązanych z roz-

prawą obszarach, w szczególności w obszarze modelowania i optymalizacji
procesów złożonych. Przedstawione są również główne metaheurystyki, które
zostały użyte w prezentowanych w tej pracy eksperymentach, wraz z ich
pseudokodem.
Następnie w pracy przedstawiono oryginalny wkład autora, w tym opro-

gramowanie Traffic Simulation Framework (TSF), które było jednym z głów-
nych narzędzi wykorzystywanych w eksperymentach, oraz ogólną metodologię
optymalizacji procesów złożonych z wykorzystaniem symulacji komputero-
wych, metaheurystyk i modeli surogatywnych bazujących na uczeniu maszyno-
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wym.
W pracy zawarte są zarówno rozważania teoretyczne, m.in. wprowadzenie

kilku nowych formalizmów i definicji, jak i opisy eksperymentów mających
na celu sprawdzenie jakości proponowanych metod w praktyce. Opisano wiele
serii eksperymentów z różnymi metaheurystykami, modelami surogatywnymi
i konfiguracjami dla dwóch głównych przypadków użycia, tzn. sterowania syg-
nalizacją świetlną i optymalizacji radioterapii w leczeniu nowotworu. Praca
zawiera opisy konfiguracji eksperymentów, a także przedstawia i omawia ich
wyniki. Następnie przedstawione są zidentyfikowane ograniczenia opracow-
anych metod, a także potencjalne sposoby ich pokonania oraz możliwe rozsz-
erzenia tych metod zmierzające do ich praktyczne zastosowania.
W podsumowaniu pracy uzyskane wyniki skonfrontowane są z celami

badawczymi. Okazało się, że połączenie metaheurystyk populacyjnych z mod-
elami surogatywnymi bazującymi na uczeniu maszynowym, przede wszys-
tkim modelami LightGBM oraz nowymi architekturami rzadkich grafowych
sieci neuronowych zaproponowanych w ramach badań, dało najlepsze wyniki
w przeprowadzonych eksperymentach. Ponadto, opracowana i przetestowana
przez autora pracy metoda okazała się skuteczna dla obu badanych procesów
złożonych.
Chociaż wciąż istnieje wiele przeszkód na drodze do pomyślnego zas-

tosowania opracowanej metody w rzeczywistych scenariuszach, osiągnięte
wyniki są obiecujące. Udało się przezwyciężyć początkowe wyzwania obli-
czeniowe, a uzyskane wyniki otworzyły wiele nowych kierunków badawczych,
co doprowadziło m.in. do powstania grupy badawczej TensorCell. Ponadto,
badania omówione w niniejszej rozprawie zostały podsumowane i opublikowa-
ne łącznie w 25 artykułach naukowych i nagrodzone kilkoma prestiżowymi
wyróżnieniami. Trwają też już dyskusje na temat zastosowań opracowanych
w ramach przedstawionych badań metod w rzeczywistych systemach zarządza-
nia ruchem oraz wykorzystania programu Traffic Simulation Framework w
niedawno powstałym SmartCity Lab w Chełmie. Ponieważ oprogramowanie
TSF zostało opracowane na podstawie sieci drogowej i danych o ruchu z
pomiarów w Warszawie, istnieje również potencjał do przeprowadzenia pi-
lotażowych projektów i zaplanowania możliwych wdrożeń w tym mieście. Po-
jawiło się też zainteresowanie ze strony innych naukowców przetestowaniem
opracowanej metody w zupełnie nowym obszarze - inżynierii materiałowej.
Większość zbiorów danych i niektóre programy użyte w eksperymen-

tach zostały udostępnione publicznie, aby zapewnić odtwarzalność wyników
i ułatwić dalsze badania.
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Chapter 1

Introduction

1.1 Research motivation

The study of complex systems in a unified framework has become recognized
as a new, interdisciplinary scientific discipline [16, 305]. It deals with systems
composed of many interacting objects (generating processes), hardly sepa-
rated from the environment. These objects and their interaction give rise to
dynamic, complicated, non-linear, and often chaotic behavior. Such systems
are also referred to as complex systems, while their evolution over time is
referred to as complex processes.
As stated in [251]:

Complex systems science changes the way we think about sci-
ence and its role in society. It goes beyond the traditional, re-
ductionist approach of focusing on the parts of a system, to inte-
grating the network of relationships within and between systems.
These relationships produce the “emergent” behaviors we see in
all physical, biological, social, economic and technological systems.
This approach allows researchers to address questions once con-
sidered to be outside the reach of science, including human be-
havior, social interactions and the consequences of policies and
decisions of our society.

The concept of complex systems and processes can include abstract struc-
tures (e.g., cellular automata) as well as physical structures that can occur in
many domains, from the microscopic (describing the state of each individual
object) to the macroscopic (describing the global state of the system) level
[95]. Obtaining a comprehensive understanding of the functioning of a com-
plex process and identifying methods to optimize its evolution can be highly
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beneficial. However, it is usually extremely difficult to control the behavior
of such systems because of the number of components and the nature of
the interactions, which introduce properties such as non-linearity, sensitive
dependence on initial conditions, and computational irreducibility. In addi-
tion, the openness of the system allows interactions with other objects, which
can lead to non-determinism. The presence of such features usually indicates
that the behavior of the corresponding system may be unpredictable and
difficult to understand and control. At the same time, the control of complex
processes is very important from a practical point of view. Therefore, it is
important to study this area and to try to develop universal methods for the
analysis and optimization of complex processes.
The difficulty of analysis and optimization of complex processes have been

well characterized by Fredericks Brooks [43]:

Mathematics and the physical sciences made great strides for
several centuries by constructing simplified models of complex phe-
nomena, deriving properties from the models, and verifying those
properties experimentally. This worked because the complexities
ignored in the models were not the essential properties of the phe-
nomena. It does not work when the complexities are the essence.

As presented in Section 2.1, there are already several approaches aiming
to optimize complex processes. In this dissertation, the focus is mainly on ex-
ploring one of them - the use of metaheuristics (embedded in abstract space).
Metaheuristics are high-level problem-independent strategies that guide the
process of searching for good solutions to optimization problems, their goal is
to efficiently explore the search space in order to find near-optimal solutions
[314]. This term was coined by Fred Glover in 1986 and is also often used
to refer to a problem-specific implementation of a heuristic optimization al-
gorithm according to the guidelines expressed in a metaheuristic framework
[314].
As explained in Section 1.2, one of the goals of this research is to develop

universal methods for optimizing complex processes. However, in spite of
many similarities, there are fundamental differences between different com-
plex systems, and the general mathematical apparatus is not mature enough
to study all possible systems at once. Thus, this thesis focuses on 2 complex
processes:

1. Vehicular traffic in cities (described in Section 4.2): a process composed
of many cars/drivers aiming to reach a destination safely and as soon
as possible. Cars have to share infrastructure, so they interact, which
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may lead to traffic jams or traffic accidents. There exist many ways to
optimize traffic, but this thesis focuses on traffic signal control.

2. The process of cancer evolution under radiotherapy treatment (de-
scribed in Section 4.3). In this case, living cells interact according to
specific rules, and some of them may become cancer cells. Radiother-
apy can affect this process and, eventually, reduce the number of cancer
cells.

Optimizing both processes is very important for society and can help
solve major economic and civilizational problems such as traffic congestion,
car accidents, as well as suffering and death from cancer.
Inefficiency in transport can cause travel delays, stress for drivers, noise,

increased air pollution, fuel, and energy consumption, problems in organizing
public transport and detours, etc. It is estimated that drivers in the 7 largest
Polish cities lose about 3.3 billion PLN a year due to traffic jams [75]. The
situation is similar in other countries, e.g., drivers in the USA lose 5.5 billion
hours and 2.9 billion gallons of fuel every year [265], and it is predicted
that the cost of traffic jams will amount to 293.1 billion USD by 2030 (an
almost 50% increase compared to 2013) [50]. In addition, air pollution is
estimated to reduce life expectancy by more than 1 year [9], and road traffic
is a major contributor to air pollution in cities where a large proportion of
the population lives [91].
It is estimated that proper traffic signal control can lead to a reduction in

traffic delays of 15−40%, a reduction in travel time of up to 25%, a reduction
in stops of 10 − 40%, a reduction in fuel consumption of up to 10% and a
reduction in harmful emissions (carbon monoxide, nitrogen oxides, volatile
organic compounds) of up to 22% [189].
It is therefore important to conduct research to understand the phe-

nomenon of congestion and how to improve traffic flow. There can be many
reasons for traffic jams, but in principle, they always occur when the de-
mand for road infrastructure is greater than the supply, i.e., when there are
too many vehicles compared to the capacity of the roads.
There exist many ways of reducing demand and increasing supply. In

the case of reducing the demand for road infrastructure, scientists, traf-
fic engineers, and urban planners consider approaches such as car-sharing,
bike-sharing, and van-pooling services, organizing public transport, building
bicycle paths, introducing charges for parking and entering some areas, or
banning access to some areas. All of these approaches can reduce the use of
private cars and road infrastructure, but they all have some drawbacks, e.g.,
in some cases, travel times or costs may be higher.
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That is why it is also important to look at how the supply side can be
improved. The natural and one of the most appealing methods is to build
more roads or increase the capacity of existing roads. It is reasonable and
important to build new road infrastructure, but the Braess paradox [40] shows
that in some cases it can have the opposite effect. Also, the Lewis-Mogridge
position implies that as more roads are built, more traffic will consequently
fill these roads [201, 240].
Another way to improve the supply side and increase throughput is to

optimize traffic signal timing. This is the approach investigated in this thesis.
It also has some drawbacks, e.g., similar to the Lewis-Mogridge position
[201, 240], improving throughput at some junctions may lead in the long run
to more travelers wanting to use that junction. Similarly, the very presence of
traffic signals, although important from the road safety and synchronization
perspective, can lead to inefficiencies, for example where demand is relatively
low. Interestingly, there are ideas that, at some point in the future, traffic
signals may no longer be needed, as traffic synchronization could be achieved
thanks to wireless communication between autonomous vehicles [323]. At
the moment, however, it does not look like traffic signals will be replaced by
other means of traffic synchronization in the near future. On the contrary,
more and more intelligent traffic management systems are being installed
around the world, and more and more research is being done in the field of
traffic signal control. Traffic signal control is also one of the means of traffic
management that can be directly adapted to the current traffic situation and
at the same time have a direct and immediate effect on traffic. It also has a
direct effect on some traffic characteristics, such as delays, travel times, or
waiting times at red signals, and can be carried out after travelers have made
decisions about departure times, means of transport, and routes. Hence, the
optimization of the complex process of urban traffic has been selected as the
primary research topic for this thesis, with a focus on the control of traffic
signals.
In terms of traffic optimization, an interesting and important question

is: “What exactly should be optimized?”. Many traffic characteristics could
be considered, such as travel time, delay, waiting time at red signals, num-
ber of waiting vehicles, throughput, etc. These metrics only relate to traffic
efficiency, but another important factor that could be considered is traffic
safety. Indeed, the interaction of road users can lead not only to congestion
but also to road accidents. It is estimated that every year around 1.3 million
people die and more than 20 million are injured worldwide as a result of traf-
fic crashes [359]. It is also estimated that car accidents cost the US economy
340 billion USD each year [28]. Therefore, researchers also think about how
to reduce the number of accidents and their negative effects to move society
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towards “Vision Zero” [341] in which there are no victims of road accidents
at all. The introduction of connected and autonomous vehicles (CAVs) is one
of the expected ways to get closer to this goal. Co-operating CAVs will also
form a complex system that can be optimized for performance and safety
by manipulating the parameter values of their driving and communication
algorithms. However, even though the author of this thesis has also carried
out some research into traffic modeling of CAVs and their impact on traffic
safety and efficiency under different conditions [132, 128], these aspects re-
main beyond the scope of this dissertation. Instead, the focus was on solving
the so-called Traffic Signal Setting problem (defined in Section 8.1) in which
the primary optimized metric was the total time of waiting at red signals in a
given urban area during a certain period. The selection of such a metric was
motivated by the fact that it is directly influenced by the settings of traffic
signals, contrary to other popular metrics like travel times or delays that are
also influenced by the speeds of travel between intersections with signals.
Another complex process that was investigated in this dissertation is the

process of cancer evolution using radiotherapy treatment. According to the
World Health Organization (WHO), cancer is a leading cause of death world-
wide, accounting for nearly 10 million deaths in 2020, or nearly one in six
deaths [358]. In addition, many cancers are curable if detected early and
treated effectively. One of the most common treatments for cancer is radio-
therapy. As the interactions between cells in the living organism and the
effects of radiotherapy doses on them are complex, the process of cancer de-
velopment in the presence of radiotherapy can also be considered a complex
process that can be optimized.
As presented in Chapter 8, the study’s optimization problems can be de-

fined as combinatorial optimization problems. For such problems (especially
NP-hard), one of the natural approaches is applying metaheuristics [30],
which do not guarantee that the optimal solution will be found, but have
the potential to find near-optimal solutions. However, contrary to typical
combinatorial optimization problems, like the Traveling Salesman Problem
[198], in the case of complex processes, the evolution of qualities of possi-
ble solutions can be time-consuming, due to the aforementioned property of
complex systems, computational irreducibility [163], which implies that it is
impossible to obtain the exact future state of a complex system in a simpler
way than by observing the evolution of the system or by running an exact
simulation. It is especially hindering for metaheuristics which usually require
the evaluation of a significant number of different candidates in order to find
suitable solutions.
In some preliminary studies by the author of this thesis on solving the

Traffic Signal Setting problem (defined in Section 8.1), metaheuristics (espe-
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cially genetic algorithms) gave promising results [121], but the time of com-
putations was significant, ruling out traffic signal control in real-time, and
even severely hindering the process of running experiments and validating
different metaheuristics with different settings. This motivated the author of
the thesis to further investigate how metaheuristics can be applied to solve
the Traffic Signal Setting problem and, potentially, optimize other complex
processes, in a reasonable computational time. The primary focus was still
on the Traffic Signal Setting problem using metaheuristics, but the natural
research objective was to develop techniques that could be universal enough
to be applied to the optimization of many other complex processes.
Distributing computations on high-performance computing (HPC) clus-

ters and running experiments in cloud infrastructure did not provide sufficient
acceleration, so it was necessary to look for other techniques. Eventually, the
author of the thesis overcame the computational issues by constructing an
optimization method based on the combination of metaheuristics with sur-
rogate modeling using machine learning models. This led to the emergence
of several new research questions, such as:

1. Which machine learning models are the best surrogate models for mi-
croscopic traffic simulations?

2. Which metaheuristics will produce the best results and are the most
efficient in solving the Traffic Signal Setting problem when combined
with surrogate models based on machine learning?

3. Is this technique universal enough to be applied to the optimization
of other complex processes? If so, what are the best surrogate models
and metaheuristics for a given complex process? Does it depend on the
nature of the complex process?

Therefore, the author of this thesis tried to answer these questions and
conducted many series of experiments that demonstrated the performance
of various surrogate models and metaheuristics in solving the Traffic Signal
Setting problem, and later later validated the introduced methodology for
optimizing another complex process: cancer evolution under radiotherapy
treatment.

1.2 Research objectives

The main objective of this research was to gain a deeper understanding of
the nature of complex processes and to make a step toward developing uni-

20



Chapter 1: Introduction

versal, scalable methods for the analysis and optimization of complex pro-
cesses using metaheuristics. This was done on the basis of considering two
complex processes, but some more general and theoretical deliberations re-
garding complex processes are also included in this thesis (cf. Chapters 3
and 7). The first and primary complex process studied was urban road traf-
fic controlled by traffic signals, and the aim was to optimize some important
traffic characteristics (mainly the total waiting time of vehicles at red signals
in a given area and time period) using metaheuristics and investigate which
of them give the best performance in terms of the quality of solutions and
scalability, including time of computations. The second studied complex pro-
cess was the cancer evolution under radiotherapy treatment, where the goal
was to minimize the number of cancer cells after treatment by controlling
the size and timing of the radiotherapy doses.
The initial experiments showed that combining metaheuristics with simu-

lation models can result in approaches that produce reasonably good settings
but are computationally expensive due to the need to evaluate a large number
of candidate solutions using simulation models. The time complexity made it
impossible to control the traffic lights in real-time. In fact, it made it very dif-
ficult to run experiments and validate different metaheuristics with different
settings, even when the computations were run on a cluster of many CPUs.
The large computational complexity of realistic simulations, their validation,
and their use as evaluators of fitness functions for metaheuristics became a
serious challenge for the author of the thesis that had to be solved in order
to test many optimization algorithms with different settings.
Therefore, the next research objective was to investigate whether meta-

heuristics can be applied to optimize complex processes in a reasonable com-
putational time. The efforts to speed up computations led to the development
of an optimization methodology based on the combination of metaheuristics
and surrogate modeling using machine learning.
This method gave promising results in solving the Traffic Signal Setting

problem, so the next research objective was to investigate which machine
learning models are the best surrogate models for microscopic traffic simu-
lations, and which metaheuristics can produce the best results and are the
most efficient in solving the Traffic Signal Setting problem when combined
with surrogate models based on machine learning.
The developed method seemed to be universal enough to be applied to the

optimization of other complex processes, so the next research objective was to
test it for another use case: optimizing cancer evolution under radiotherapy
treatment, where the goal is to minimize the number of cancer cells after
treatment by controlling the size and timing of the radiotherapy doses.
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1.3 Research methodology

The methods for studying the optimization of complex processes developed
within the presented research were investigated using simulation environ-
ments, the so-called “digital twins” of the considered complex processes.
For traffic signal control, the primary tool was the Traffic Simulation

Framework (TSF) software developed by the author of this thesis. The un-
derlying traffic model was also proposed by the author as an extension of the
Nagel-Schreckenberg model [246] to the case of realistic road networks. Both
the model and its implementation are described in [125, 123] and in Chapter
5 of this thesis.
For cancer growth, another simulation tool was developed based on a

model described in [7]. Its efficient implementation was proposed, designed,
also supervised by the author of this dissertation, but carried out by a group
of students within their Bachelor thesis project [15].
Later in the study, these simulation tools for investigated complex pro-

cesses were applied as evaluators of the objective functions: values of some
simulation parameters were passed as the input, and the simulators com-
puted the value of the objective function corresponding to the given metrics
(e.g., the total times of waiting at red signals, the total times of travel, the
total number of cancer cells, etc.). Then, the selected metrics were evaluated
in the investigated optimization algorithms, including metaheuristics.
Several metaheuristics were studied in the research presented in this the-

sis, e.g., genetic algorithms, particle swarm optimization, simulated anneal-
ing, tabu search, covariance matrix adaptation evolution strategy (CMA-ES),
memetic algorithms, and Bayesian optimization. All these algorithms are de-
scribed in Chapter 6.
Due to significant computational problems and the long time needed to

evaluate the quality of control settings of complex processes, it was neces-
sary to find a way to speed up the computations. This was done using surro-
gate models based on machine learning techniques, mostly neural networks
and gradient-boosted decision trees. However, some other surrogate models
based on other machine learning techniques (like support vector machines
[64]) and classical approaches like mesoscopic models (intermediate models
between microscopic and macroscopic models, cf. Section 4.2.1.1.2) were also
considered in preliminary experiments.
Overall, the combination of simulation tools, their surrogate models based

on machine learning, and metaheuristics resulted in the approach that pro-
duced the best and most promising (in terms of future research and potential
applications) results and performance so far. This methodology is described

22



Chapter 1: Introduction

in detail in Chapter 7. However, as discussed in Chapter 9, some other ap-
proaches such as reinforcement learning have been and are still being studied
by the author of this thesis.

1.4 Research outcomes and original contribu-
tions

The research carried out and presented in this dissertation resulted in the
following scientific contributions:

1. Development over the years of the initial Traffic Simulation Framework
software [125] into a tool evaluating the qualities of different traffic
signal settings using a microscopic traffic model. It can be considered
a “digital twin” of real-world city traffic evaluating the qualities of
different traffic control settings.

2. The development of new software for simulating cancer growth and
evaluating the qualities of radiotherapy protocols. The software was
developed by a group of students coordinated by the author of the thesis
[15] based on the model described in [7], and significantly outperforms
the previous implementations in terms of speed. It can be considered
a “digital twin” of living tissue with cancer cells and treatment using
radiotherapy.

3. New definitions of complex systems, complex processes, and their mod-
els, built based on analysis of some other definitions existing in the
scientific literature.

4. A general methodology for optimizing complex processes based on com-
bining computer simulations, metaheuristics, and surrogate modeling
(described in Chapter 7).

5. The application of machine learning models as surrogate models that
approximate the results of time-consuming computer simulations. To
the author’s knowledge, this was the first application of such machine
learning models as surrogate models to simulate road traffic with traffic
signal control and cancer evolution under radiotherapy treatment. This
methodology solved computational challenges encountered during the
research and enabled exploring a broad spectrum of metaheuristics in
various settings. The idea was invented by the author of this thesis, but
the implementation and experiments were carried out in collaboration
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with a group of researchers from the TensorCell research group founded
and led by the author of this thesis [325]. A large number of different
surrogate models have been studied to determine their performance
depending on many factors.

6. The development of a new architecture of a sparse graph neural net-
work in which the topology of connections is based on the topology of
a considered road network. This architecture is expected to find ap-
plications in other tasks related to road traffic and graph problems.
The architecture was initially proposed by one of the members of the
TensorCell research group, Łukasz Skowronek, but the author of this
thesis coordinated the entire research and experiments.

7. A comprehensive evaluation of several metaheuristics as optimizers of
combinatorial optimization problems related to two complex processes:
road traffic in cities and cancer evolution.

8. A number of large datasets generated using simulators of road traffic
and cancer evolution were developed during the work on this thesis
(cf. Appendix A). These datasets have been made publicly available to
facilitate further research on these topics by the scientific community.

Also, one of the outcomes of the presented research works was the foun-
dation of the research group TensorCell [325] - it is an independent research
group founded by the author of this thesis in 2017 to facilitate and accel-
erate research on the optimization of complex processes. Although it is not
a scientific result, it can be considered a valuable outcome, as several team
members have got interested in the domain of optimizing complex processes
using AI, the team has produced several valuable scientific publications, and
there is a potential for further scientific contributions.

1.5 Outline of the thesis

The rest of the thesis is structured as follows:

• Chapter 2 contains a comprehensive review of the existing literature
and knowledge in fields most relevant to the research methodologies
and approaches presented in this thesis.

• Chapter 3 focuses on explaining the concept of complex systems and
complex processes and examines their underlying principles, character-
istics, and behaviors.
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• Chapter 4 contains a comprehensive review of methods of modeling
complex processes relevant from the point of view of the thesis.

• Chapter 5 contains a presentation of the Traffic Simulation Framework
which was one of the tools that were developed during the research by
the author of this thesis and is one of the outcomes of the presented
study.

• Chapter 6 presents an explanation of the concept of metaheuristics
and a review of some of the most popular metaheuristic algorithms
that were later used in experiments described in the thesis.

• Chapter 7 contains the general methodology for optimizing complex
processes using metaheuristics and surrogate models that are proposed
in this thesis.

• Chapter 8 presents the main experiments carried out within the re-
search with a discussion of their results.

• Chapter 9 contains a discussion of the identified limitations of the in-
troduced method, possible ways to overcome them, as well as potential
extensions and future research directions that may lead to real-world
applications.

• Chapter 10 concludes the thesis.

These chapters are followed by the Bibliography and the Appendix listing
the datasets (Appendix A) and computer programs (Appendix B) used in
experiments that have been made publicly available.

25



Chapter 1: Introduction

26



Chapter 2

Related works

In this chapter, a review of the existing literature and knowledge in fields most
relevant to the research methodologies and approaches presented in this thesis
is provided. This synthesis aims to establish a foundation for understanding
the context and relevance of the subsequent work and findings. This review
is divided into 4 parts:

• Section 2.1 reviews approaches related to optimization of complex pro-
cesses.

• Section 2.2 reviews approaches to surrogate modeling.

• Section 2.3 reviews approaches to traffic signal control.

• Section 2.4 reviews approaches to optimizing cancer treatment.

Finally, Section 2.5 discusses the identified limitations of the existing
methods for optimizing complex processes, while Section 2.6 summarizes the
author’s contributions in the context of related works.

2.1 Optimization of complex processes

Optimizing complex processes is a critical aspect of many industries, includ-
ing manufacturing, healthcare, transportation, and logistics. By streamlining
operations, businesses and public institutions can increase productivity, re-
duce costs, and improve user satisfaction.
In order to apply some optimization techniques, it is necessary to have a

mathematical model of a complex process. As explained in Chapter 4, there
are many approaches to modeling complex processes and usually, there is
no universal method that is always best. All models have advantages and
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disadvantages, so selecting the best models should depend on the intended
goal of modeling and the application of the model. Chapter 4 contains a
review of the most important aspects of modeling complex processes and
presents examples of models focusing on the complex processes studied in
this thesis: road traffic in cities (Section 4.2) and cancer growth with the
presence of radiotherapy (Section 4.3).
Once the model of the complex process is available, it can be used to

estimate the values of the objective function that should be optimized. Opti-
mization problems arising from complex processes are usually of non-convex
nature and they often exhibit many local minima. There have already been
many studies on the optimization of complex processes (e.g., [48, 272]). How-
ever, most of these studies focus on specific complex processes and it is still an
open question whether there exist universal, efficient techniques to optimize
all kinds of (or a broad range of) complex processes.
One of the popular techniques that can be considered rather universal

are metaheuristics like genetic algorithms or particle swarm optimization.
They do not guarantee to find the optimal solution, but they are capable
of finding near-optimal solutions within a reasonable amount of time. In the
context of complex processes, metaheuristics can be used to find good values
of parameters controlling the evolution of a complex process, and there have
already been some studies in this field, e.g., [79]. Many metaheuristics are
already widely studied, and a review of the most popular metaheuristics that
are also considered in this thesis is included in Chapter 6. Sections 2.3 and
2.4 review the applications of metaheuristics in the context of traffic signal
control and cancer treatment, respectively.
With the recent advances in machine learning, it is also natural to try op-

timization techniques based on its subfield, reinforcement learning (RL) [321].
RL is a type of machine learning where an agent interacts with its environ-
ment by observing its current state, taking actions, and receiving feedback
based on them in the form of a reward or penalty. The agent then uses this
feedback to adjust its policy (a mapping from states of the environment to
actions) and make better decisions in the future. Its goal is to learn a policy
that maximizes the cumulative reward it receives over time. The agent learns
this policy through trial and error, exploring the environment and adjusting
its actions based on the feedback it receives.
RL has many real-world applications, especially in environments that

are dynamic and uncertain. Thus, it has found applications in fields like
robotics [137, 175, 187], playing games [306, 44, 340, 25], finance [212], and
autonomous vehicle control [346, 56]. It is also used to train large language
models for natural language processing [13].
RL algorithms can also be used to optimize complex processes by dy-
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namically adjusting their control parameters and taking actions in real-time
depending on the current state of the process. This can potentially help in
solving many challenges of complex processes, like sensitive dependence on
initial conditions or computational irreducibility.
However, there are also weaknesses in the RL approach. The training is

relatively slow and requires huge computational power. Its reproducibility is
often a challenge and it also usually requires a large amount of data. This is
because the algorithm learns through trial and error, and requires many itera-
tions to converge to a good policy. There is also the exploration vs exploitation
tradeoff: too much exploration (exploring new options in the search space)
can lead to inefficient learning, while too much exploitation (refinement of
already known options) can lead to suboptimal policies. Nevertheless, there
are already approaches to optimize and control complex processes using RL
(e.g., [11, 84, 244]). It can be expected that with the further development
of RL methods and increasing accessibility to large computational power,
these techniques can become state-of-the-art in future traffic signal control
systems. As in the case of metaheuristics, Sections 2.3 and 2.4 review the ap-
plications of RL in the context of traffic signal control and cancer treatment,
respectively.
Another approach to modeling and optimization of complex processes is

based on the Interactive Granular Computing (IGrC) [168] described in Sec-
tion 4.4. It is an approach to knowledge discovery and decision-making that
is based on the principles of granular computing [18], which is a branch of
computer science that deals with the representation, processing, and manip-
ulation of information at different levels of granularity (the levels of detail
at which the system is modeled). IGrC aims to help humans interact with
complex and uncertain data. One of the main advantages of IGrC is its abil-
ity to handle uncertainty and ambiguity in the data. By creating granular
structures that can capture different levels of detail and abstraction, IGrC is
able to represent and process data that is incomplete or imprecise.
IGrC can be also used to optimize complex processes, e.g., to create a

granular structure that captures the important features of the process and
allows for the exploration of different scenarios and trade-offs. For example,
in a manufacturing process, there may be many factors that affect the quality
of the product, such as temperature, humidity, and pressure. These factors
may interact in complex ways, making it difficult to predict the optimal
conditions for the process. IGrC can also incorporate human expertise into
the optimization process. By allowing humans to interact with the data and
provide feedback, IGrC can help to identify important factors and constraints
that may not be immediately apparent from the data alone.
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2.2 Surrogate models

Surrogate modeling (metamodeling) is a technique used to build a computa-
tionally efficient approximation of a complex function [280]. It is used when
an outcome of interest is difficult to be obtained, e.g., due to high compu-
tational complexity. Such applications are especially common in the case of
black-box optimization (optimization that takes advantage only of inputs
and outputs of a computer simulation or physical experimentation and does
not use any other knowledge or assumptions, in particular: is derivative-free),
in which it is quite often necessary to run multiple simulations in order to
evaluate many different input settings. Particularly, in the research presented
in this thesis, surrogate models were applied to approximate the outcomes
of time-consuming computer simulations. Popular surrogate modeling ap-
proaches are:

• Response surfaces;

• Kriging, gradient-enhanced kriging (GEK);

• Bayesian approaches;

• Machine learning models.

Response surface methodology is a statistical method introduced by George
E.P. Box and K.B. Wilson in 1951 [37]. It involves creating a mathemat-
ical model of the relationship between the input variables and the output
response of a process. The model can be represented as Y = F (X)+ ϵ, where
Y is the response variable, X is a vector of input variables, F is a mathe-
matical function that describes the relationship between the input variables
and the response (usually a polynomial function is selected, e.g., it can be
Chebyshev polynomials [89], B-spline Polynomials [88], or minimal polyno-
mials [29]), and ϵ is the random error term. To build the response surface
model, experiments are conducted to collect data on the process response for
different values of the input variables. The data is used to estimate the coef-
ficients of the function F using techniques such as the least squares method
or maximum likelihood estimation.
Kriging, also known as Gaussian process regression, is also a statistical

technique developed by D.G. Krige [192]. Its idea is to estimate the value of a
variable at an unobserved location as a linear combination of observed values
at nearby locations. The weights of the linear combination are determined
using a statistical model of the spatial autocorrelation of the variable to
minimize the variance of the prediction error, subject to the constraint that
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the sum of the weights to 1. The kriging model assumes that the variable
being modeled is a random function with a mean and a spatial covariance
structure. The mean can be estimated using a simple average of the observed
values, while the spatial covariance structure can be estimated using a covari-
ance function. One of the extensions of kriging is Gradient-enhanced kriging
which uses the gradient of the performance metric (estimating how good the
surrogate model is, e.g., mean squared error) with respect to the input vari-
ables to enhance the kriging model [335]. The gradient provides additional
information about the behavior of the performance metric in the vicinity of
the observed data points, thanks to which it can improve the accuracy of
predictions. This can be particularly beneficial in regions where the perfor-
mance metric is highly nonlinear or exhibits sharp gradients. The gradient
model can be represented as a linear combination of basis functions, with
coefficients estimated using techniques such as the least squares method or
maximum likelihood estimation.
Bayesian approaches are also statistical methods. They use probabilistic

methods to build models that capture the underlying structure of the data
and to represent uncertainty in the model, which is then updated based on
new data using Bayesian inference to update the probability distributions and
generate new predictions. This allows the model to become more accurate
over time, as more data become available. An example is Bayesian Neural
Networks (BNNs) [49] which use Bayesian inference to estimate the weights
and biases of the network.
BNNs are also considered an example of surrogate modeling based on

machine learning, in which the idea is to generate a large dataset of relations
between the inputs and the outputs of the approximated functions and use
this dataset to train machine learning models. Artificial neural networks are
considered as one of the good approximators of continuous functions, which
is a consequence of the Universal Approximation Theorem [70] explained
in Section 7. Other popular models are Support Vector Machines [64] (and
Support Vector Regressors for regression tasks [302]) and gradient boosting
decision trees [6].
The aforementioned techniques are rather general approaches to surrogate

modeling (they are also called “functional metamodels” [263]). Therefore,
they may be useful for building universal methods for optimizing complex
processes. It is also worth mentioning that in some cases it may be possible to
develop surrogate models that are specific to a given complex process (such
metamodels are also called “physical metamodels” [263]). For example, as
presented in Section 4.2, in the case of road traffic in cities there are different
models, ranging from macroscopic to microscopic or even nanoscopic. They
may have different conformance to real traffic, different evaluation times,
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and different granularity (the levels of detail at which they model a given
system). Therefore, it may turn out that some models can be considered
surrogate models for some other models. However, more universal surrogate
models can also be applied to the phenomenon of road traffic. One of the
first such surrogate models was presented in [263], and it combined a general-
purpose component (a quadratic polynomial), which provided a detailed local
approximation, with a physical component (the analytical queueing network
model), which provided tractable analytical and global information.
A more comprehensive review of surrogate modeling and its application

to optimization tasks can be found in [97] and in [363].

2.3 Optimization of road traffic in cities

As presented in Section 1.1, there are many approaches to optimizing road
traffic in cities, ranging from the approaches aiming to reduce the demand for
using the road infrastructure (e.g., organizing public transport, introducing
fees for entering some areas, etc.) to the approaches aiming to improve the
supply (e.g., building more roads or optimizing traffic signal settings). In this
thesis, in the domain of optimization of road traffic in cities, the focus is only
on the traffic signal control approach.
Some cities have already installed traffic signal control systems such as

SCATS [217], SCOOT [42], RHODES [145], OPAC [102], MARLIN [84] (a
comprehensive review of existing traffic management systems can be found
in [332]). In many cases their quality is good and they are able to improve
the traffic, at least in typical, repeatable, and predictable conditions, as well
as in the case of low travel demand and a low number of cars. They are
usually not as good in the case of heavy demand or atypical conditions, such
as sudden road blockage (e.g., caused by a car accident), changes in traffic
organization (e.g., because of mass events or roadworks), and bad weather
conditions. The following weaknesses of existing traffic management systems
were identified:

• reactiveness, but not proactiveness: reacting to past and present traffic
conditions (which might be sufficient for regular, smooth, repeatable
traffic, but may not be sufficient when major changes happen - the
reaction might be inappropriate or just too late to prevent the occur-
rence of a large traffic jam), but not anticipating and not preventing
undesired traffic states;

• lack of accurate evaluation of changes introduced to the traffic control
system;
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• limited adaptation to the changing environment, relatively small space
of possible modifications to the traffic signal settings;

• questionable efficiency in the case of large road networks.

Similar approaches to the one proposed in this thesis are used in theoret-
ical works [60] or are implemented in traffic management systems SCOOT
[42] and MOTION [277]. They use simulation models or surrogate models to
evaluate traffic signal control strategies. However, contrary to the approach
presented in this thesis, these approaches do not use surrogate models based
on machine learning.
On the other hand, there are ongoing research works on applications

of machine learning techniques to traffic signal control, and with the fur-
ther development of AI, it can be expected that more and more traffic con-
trol systems will have some elements of machine learning control included.
Metaheuristics are particularly popular in research on traffic signal control.
A review of applications of metaheuristics to traffic signal control can be
found, e.g., in [165]. There are already works applying genetic algorithms
[202, 324, 54], particle swarm optimization [215, 51, 54], ant colony opti-
mization [283, 138, 54], and memetic algorithms [292]. These approaches may
differ in many aspects, like the road network structure, traffic conditions, rep-
resentation of traffic signal control parameters, methods for evaluating the
quality of settings, etc. However, most of these works are quite recent in-
dicating that the research work on applications of metaheuristics to traffic
signal control is modern and progressive. The research presented in this the-
sis was one of the first such approaches to comprehensively investigating and
comparing many different metaheuristics.
Another area of research on traffic signal control that has gained popu-

larity in recent years and appears to be very promising is the application of
reinforcement learning [321], which was introduced in Section 2.1. In the case
of traffic signal control, the environment can be represented as a computer
simulation (like the one described in Chapter 5). The states may correspond
to the states of traffic (e.g., numbers of cars or average speeds on road seg-
ments), and the actions may correspond to the durations of the phases or
to the decisions on whether to change the traffic signal control phase or not.
The rewards may correspond to delays, throughputs, or other traffic charac-
teristics. There are even frameworks for developing and comparing RL-based
traffic signal controllers. For example, RESCO [11] includes the implemen-
tation of state-of-the-art deep-RL algorithms for signal control along with
benchmark control problems that are based on realistic traffic scenarios. One
of the first and most successful approaches to using reinforcement learning
is the MARLIN-ATSC system, which stands for Multi-Agent Reinforcement

33



Chapter 2: Related works

Learning for Integrated Network of Adaptive Traffic Signal Controllers [84].
The system uses a combination of microsimulation modeling and reinforce-
ment learning to determine optimal traffic signal actions based on the state
and actions of linked traffic signals. More recent approaches to applying re-
inforcement learning to traffic signal control employ some latest machine
learning techniques and architectures of neural networks based on attention
mechanisms [337]. For example, the CoLight system [350] uses graph at-
tentional networks (GAT) [338] to facilitate communication. Specifically, for
a target intersection in a network, CoLight incorporates the temporal and
spatial influences of neighboring intersections to the target intersection and
builds up index-free modeling of neighboring intersections.
A similar approach based on GAT was presented in [343]. By utilizing

meta-learning techniques, these networks can learn to adapt to new scenarios
quickly and effectively. These techniques have been gaining the attention
of researchers in recent years because graph-based models (like GAT) can
capture complex spatio-temporal relationships in data, thanks to which they
have the potential to outperform other solutions. As mentioned in Chapter
8.6, the author of this thesis has also run with his research team initial
experiments aiming to use GAT as surrogate models of a traffic simulator,
but they did not show any advantage over sparse graph neural networks
introduced in this these (cf. Section 8.3.1.9). However, the results were at
the same level, which indicates that there might be potential to explore such
GAT architectures further.

2.4 Optimization of cancer evolution under
radiotherapy treatment

Cancer is a disease that results from the abnormal growth and division of
cells in the body. These cells can invade nearby tissues and organs and spread
to other parts of the body through the bloodstream or lymphatic system.
Cancer can develop in any part of the body and can take many different forms
depending on the type of cells involved. The process by which normal cells
become cancerous is complex and multifactorial, involving genetic mutations,
environmental exposures, and other factors [224].
Cancer can be treated in various ways, depending on its type and stage,

as well as the patient’s overall health and preferences. According to [224],
there are several ways of cancer treatment:

• Surgery: It involves removing cancerous tumors and surrounding tis-
sues. Surgery is often the primary treatment for solid tumors.
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• Radiotherapy (RT): It uses high-energy radiation, such as X-rays or
proton beams, to kill cancer cells. RT can be used to shrink tumors,
prevent recurrence after surgery, or relieve symptoms.

• Chemotherapy: It uses drugs to kill cancer cells. It can be given orally
or intravenously and is often used to treat cancers that have spread
throughout the body.

• Immunotherapy: It uses drugs or other substances to stimulate the
body’s immune system to recognize and attack cancer cells.

• Targeted therapy: It involves drugs that specifically target the can-
cer cells’ unique characteristics, such as gene mutations or proteins.
Targeted therapy is often used to treat cancers that have specific mu-
tations.

• Hormone therapy: It is used to treat cancers that are hormone-sensitive.
Hormone therapy involves blocking or removing the hormones that fuel
the cancer cells’ growth.

• Stem cell transplant: It is a treatment that replaces damaged or de-
stroyed bone marrow with healthy stem cells. Stem cell transplant is
often used to treat blood cancers.

• Photodynamic therapy: It is a treatment that uses special drugs, called
photosensitizing agents, along with light to kill cancer cells. The drugs
only work after they have been activated by certain kinds of light.

Usually, these methods can be optimized in various ways. Combining
therapies and using more than one cancer treatment method at the same
time is one of the simplest and most frequently used strategies. Another
method is personalized medicine: tailoring cancer treatment to a patient’s
individual needs based on their genetics and other factors. Advancements
in technology, including next-generation sequencing, have made it feasible
to detect particular genetic mutations in cancer cells, enabling the use of
precision medicine to target these mutations accurately. The development
of improved drug delivery systems (like nanoparticles or liposomes) can en-
hance the effectiveness of cancer treatment by targeting cancer cells more
precisely and reducing side effects. Another method, that was also employed
in the research presented in this thesis, is optimizing treatment plans. There
are approaches to the optimization of cancer treatment using game theory
[317], genetic algorithms [7], Markov decision processes [182], or reinforce-
ment learning [81, 244]. Typically, the parameters that are optimized relate
to radiotherapy and chemotherapy.
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There are several objective functions that are frequently used in cancer
treatment optimization [21, 136]:

• Tumor control probability (TCP): It is a measure of the probability
that a given treatment will successfully control the growth and spread
of the tumor. TCP is often used in radiation therapy optimization,
where the goal is to deliver a sufficient dose of radiation to the tumor
while minimizing damage to surrounding healthy tissues.

• Normal tissue complication probability (NTCP): It is a measure of
the probability that a given treatment will cause damage to healthy
tissues surrounding the tumor. NTCP is often used in radiation therapy
optimization to minimize the risk of radiation-induced side effects such
as nausea, fatigue, and skin irritation.

• Overall survival (OS): It is a measure of the length of time that a
patient survives after receiving a given treatment. The objective of OS
optimization is to maximize the patient’s overall survival time while
minimizing the risk of cancer recurrence and side effects.

• Quality of life (QoL): It is a measure of the patient’s overall well-being
and includes factors such as physical functioning, emotional well-being,
and social functioning. The objective of QoL optimization is to maxi-
mize the patient’s QoL while minimizing the risk of treatment-related
side effects.

• Cost-effectiveness: It is a measure of the value of a given treatment in
terms of its cost and its impact on patient outcomes. The objective of
cost-effectiveness optimization is to find the treatment plan that pro-
vides the best possible outcomes for the patient at the lowest possible
cost.

The control parameters that are typically optimized depend on the spe-
cific treatment approach being used [169]. In radiation therapy, the control
parameters usually include the radiation dose, the size and shape of the radia-
tion field, and the number and timing of treatment sessions. In chemotherapy,
the control parameters usually include the type and dose of chemotherapy
drugs, the timing and frequency of treatments, and the duration of treatment
cycles [301]. In immunotherapy, the control parameters usually include the
type of immunotherapy agent used, the dosage and timing of treatments, and
the length of treatment cycles [211]. In targeted therapy, the control param-
eters usually include the choice of targeted therapy agent, the dosage and
timing of treatments, and the duration of treatment cycles [370].
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In the research described in this thesis, the focus is on optimizing proto-
cols (doses and times of their administration) of RT, which is widely consid-
ered to be a cost-effective tool in the treatment of many types of cancer, with
40-50% of cancer patients receiving some form of RT during their treatment
[327].
Despite the fact that there are numerous types of cancer with varying

pathologies and locations in the human body, clinical treatment protocols
for radiation therapy tend to be very similar in practice. The most com-
monly used protocol in recent decades has been to administer a radiation
dose of 2 Gy per day [264]. Due to the significant cost, risk of testing new
methods on patients, and long delays associated with obtaining reliable clin-
ical evidence for potential treatment protocols, it is essential to prioritize
preclinical screening and identification of promising candidate protocols to
ensure that clinical trials focus on the most effective alternatives. Therefore,
it is natural to explore how metaheuristics can help in finding promising RT
protocols.
The research on this topic was carried out by S. Angus and M. Piotrowska

in [7] where they applied genetic algorithms and their approach was further
extended during the research presented in this thesis. They used a simulator
of the stochastic EMT6/Ro model of cancer growth under the RT treatment
(discussed in Section 4.3) to evaluate the quality of protocols.
The original approach was computational-demanding, so was difficult to

scale, there was also limited adaptation to the changing environment. On
the other hand, it was proactive as it was based on evaluating the long-term
impact of RT protocols.
In the research presented in this thesis, it was possible to significantly ac-

celerate the simulations and train surrogate models based on machine learn-
ing to approximate the simulation outcomes which gave the ability to find
better RT protocols.

2.5 Identified limitations of the existing tech-
niques

Section 2.3 outlined the identified weaknesses of existing traffic management
systems, including reactivity (but not proactivity), lack of accurate evalua-
tion of changes introduced, questionable efficiency on a large scale, limited
adaptation to the changing environment, and relatively small space of pos-
sible modifications. Existing techniques for cancer treatment have similar
limitations.
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The identified methods for optimization of other complex processes usu-
ally have similar limitations, e.g., the method for finding good radiotherapy
protocols for cancer treatment discussed in Section 2.4 was computationally
intensive, thus difficult to scale, and there was also limited adaptation to the
changing environment.

In general, metaheuristics are usually able to find near-optimal solutions
to specific optimization problems related to complex processes or, in practice,
to the mathematical models of complex processes. As discussed in Chapters
4 and 7, the results that are good according to the mathematical model do
not have to be equally good in the real world, since the models (or surrogate
models) of complex processes are only their simplified representations. How-
ever, even for metaheuristics, operating on a large scale can be challenging
due to the large space of possible options. Also, evaluating the qualities of
the candidate solutions considered can be computationally demanding. By
default, they also have limited adaptation to the changing environment, and
usually, the solutions found for certain settings had to be further adjusted
once the conditions became too different.

Reinforcement learning methods can be used to find good strategies for
responding to changing conditions, because by design they can be used to
teach agents controlling complex processes what actions to take in certain
states. However, they are also computationally expensive, especially when
the space of possible actions is large. As discussed in Chapter 9, the author
believes that methods based on reinforcement learning are very promising,
and he has already started to investigate these techniques for the optimiza-
tion of both complex processes considered in this thesis. However, the field
of reinforcement learning was not as advanced as it is today when he started
to work on the optimization of complex processes, so the focus of this thesis
is on metaheuristics and their combination with surrogate models that ap-
proximate computationally expensive simulations to evaluate the qualities of
control settings, which is also a relatively new and promising approach, as
discussed in Section 2.6.

All techniques applied to the optimization of complex processes usually
have some strengths and weaknesses and aim to find a balance between differ-
ent aspects. For example, increasing the quality of evaluation of introduced
changes or increasing the size of possible actions usually leads to higher com-
putational costs. Therefore, there is still a need to study and develop these
techniques further.
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2.6 The dissertation’s contributions in the con-
text of related works

As presented in this chapter, there are already many approaches to the op-
timization of complex processes (including traffic signal control and the op-
timization of cancer treatment) as well as to surrogate modeling existing in
the scientific literature. The methods used for the optimization of complex
processes that can be considered rather universal range from metaheuristics
[79, 165] and reinforcement learning [321, 11, 84] to Interactive Granular
Computing [168], while in the case of surrogate modeling, the most popular
techniques are response surfaces [37], kriging [193], Bayesian approaches [49],
and machine learning models [64, 6].
Based on the review of the state of the art, the author of this thesis

concluded that the problem of optimizing complex processes can still be
considered an open problem for which new solutions are highly desired by
the scientific and engineering community. There are still limitations of the
existing techniques and the research presented in this thesis is a step toward
developing better, efficient, scalable and universal methods.
To the best of the author’s knowledge, the approach based on using ma-

chine learning models to approximate the outcomes of traffic simulations
described in the thesis is the first such approach for the purpose of traffic
signal control, especially in combination with metaheuristics. This idea was
first presented in 2016 at the “NIPS 2016 Workshop on Nonconvex Optimiza-
tion for Machine Learning: Theory and Practice” [129] and even the reviewers
emphasized that it is worth exploring the application of neural networks as
surrogate models in this context. It is possible that this was also one of the
first such approaches in the whole field of traffic engineering. The sparse
graph neural networks introduced as surrogate models of traffic simulations
are also a completely new architecture in this context.
In terms of using metaheuristics, the research works on their applications

to traffic signal control or cancer treatment are also modern and progressive.
The research presented in this thesis was one of the first such approaches to
comprehensively investigating and comparing many different metaheuristics
for traffic signal control. A similar study (but with only 3 metaheuristics,
with a very simple and less realistic traffic model) was presented in [54].
As presented in Chapter 4, there are already many approaches to mod-

eling complex processes, including road traffic and cancer growth, but the
Traffic Simulation Frawemwork which was one of the main tools used in this
study, was also one of the first solutions applying microscopic traffic models
on the scale of large cities. The author’s extension of the Nagel-Schreckenberg

39



Chapter 2: Related works

model [246] allowed to perform quite efficient traffic simulations on a real-
istic road network of Warsaw, which was a significant achievement at the
time when the tool was created. This is also one of the reasons why this tool
became popular and found applications in many research works, as discussed
in Chapter 5.
The application of surrogate models to approximate the outcomes of can-

cer growth simulations for the purpose of optimizing the radiotherapy treat-
ment using metaheuristics seems to be a novel approach too. In the case of
the cancer growth simulation model used in this thesis (cf. Section 4.3), the
development of a new simulation tool based on GPU also gave a significant
advantage and allowed the investigation of more optimization algorithms and
radiotherapy protocols.
Last but not least, the author’s approach of studying 2 complex pro-

cesses from (apparently) completely different fields (traffic engineering and
medicine) and trying to build universal methods capable of optimizing com-
plex processes from many different domains is also quite unique. Researchers
working in transportation or medicine rarely have sufficient knowledge and
perspective to view the processes they study as specific use cases of some
more general phenomena. It is more natural for researchers working in the
field of complex systems, but even they usually find it challenging to combine
knowledge and techniques from several different domains (such as cellular au-
tomata, computer simulation, machine learning, and metaheuristics).
In the context of the identified limitations of the existing techniques for

the optimization of complex processes, the methods presented in this thesis
aim to reduce the computational cost while ensuring proactiveness and the
ability to accurately evaluate the impact of the introduced settings. They
are still not directly adaptive to the changing environment, so for a good
adaptation some other techniques should be applied and this is also one of the
reasons why the author of this thesis studies the applications of reinforcement
learning in addition to metaheuristics and surrogate modeling.
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Complex systems and
complexity science

“I think the next century will be the century of complexity”, Stephen Hawk-
ing, January 2000, [143].

This chapter explores the area of complex systems, which is an interest-
ing and relatively new area of science. Its goal is to fulfill one of the main
objectives of the presented research (cf. Section 1.2, i.e., to gain a deeper
understanding of the nature of complex processes).
The meanings of complexity, complex systems, and complex processes are

explained. In addition, complex systems and processes that are particularly
important for engineering purposes and in this dissertation are indicated.
It is often said in colloquial speech that some systems, structures, pro-

cesses, or phenomena are complex, to express that they possess some kind of
complexity. Usually, it means that something involves many related parts, or
that something is difficult and non-trivial. But how can complexity be under-
stood from the scientific point of view? Can we precisely and mathematically
define what a complex process or system is and if so, can we give a computa-
tional procedure that measures complexity or answers whether something is
complex or not? This chapter present an outline concerning these questions.

3.1 What is complexity?

According to the etymology dictionary [90], the English word complex means
composed of parts and originates from the Latin word complexus, past partici-
ple of complectere (to embrace), which derives from com (with) and plectere
(to weave, to braid, to twine, to entwine).
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The concept of complexity is used in many disciplines and it is often pre-
cisely, mathematically defined. In computational complexity theory, scientists
study the amount of resources (e.g., time and memory) required for the ex-
ecution of an algorithm - the more resources the algorithm needs to solve
a given task, the more complex it is [66]. There are computational classes,
such as P, NP, or NPC, which, in some sense, measure the complexity of a
problem, since they classify problems by the amount of resources required to
solve their instances [66]. There is no absolute set of problems that are com-
plex or not, but the complexity is comparable and is linked to the nature of
considered problems. Nowadays, it is possible to measure the complexity of
many algorithmic problems, or at least its lower or upper bounds. However,
there are still some open questions in the computational complexity theory,
such as the famous P versus NP problem [66].
In algorithmic information theory, Kolmogorov complexity of a string of

characters is the length of the shortest program that outputs that string
[188, 203]. It depends on the description language, but the effect of changing
description languages is bounded by a constant (dependent only on the de-
scription languages), according to the Invariance theorem [203], so this com-
plexity turns out to be absolute. However, there is no program that could
compute Kolmogorov’s complexity for every string, which is a consequence
of the halting problem and Gödel’s incompleteness theorem [68].
In mathematics, Krohn - Rhodes complexity is a topic in the study of

finite semigroups and automata, for any finite semigroup S it measures the
least number of groups in a wreath product of finite groups and finite aperi-
odic semigroups of which S is a divisor [193, 284].
In software engineering there exist different measures of programming

complexity, e.g.:

• Cyclomatic complexity measures the number of linearly independent
paths through the source code - program’s control graph [225]. It is
equal to e-n+p, where e is the number of edges, n is the number of
vertices and p is the number of connected parts in the program’s control
graph.

• Halstead complexity metrics [139] measure different values, e.g., pro-
gram’s length, difficulty, effort, and time required to code it. All mea-
sures can be expressed in terms of the number of operators/operands
and distinct operators/operands in the program.

• Software structure metrics based on information flow between system
components [150]. Experiments showed those metrics are strongly cor-
related with the occurrence of changes in the code.
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In finite model theory and computational complexity theory, descriptive
complexity characterizes complexity classes by the type of logic needed to
express the languages in them [159], e.g., nondeterministic polynomial class
(NP) is a set of languages expressible by the existential second-order logic
[93], second-order logic with a least fixed point operator gives problems solv-
able in exponential time - EXPTIME class [159].
It can be concluded that the concept of complexity is relative and domain-

specific, i.e., it may have different meanings in different domains. In fact,
S. Lloyd in his paper [214] provides a non-exhaustive list of 42 definitions or,
more precisely, ways of measuring complexity. Apparently, there is no uni-
versal complexity into which every other complexity could be transformed.
However, there are already some known correlations, e.g., descriptive com-
plexity demonstrates that the computational complexity of a problem can be
understood as the richness of a language needed to specify the problem. Fur-
thermore, all approaches to defining complexity try to answer the following
questions about the thing under study [214]:

1. How hard is it to describe?

2. How hard is it to create?

3. What is its degree of organization?

In all aforementioned cases, there exists a property that can be quantified
to indicate the level of difficulty or intricacy regarding description, genera-
tion/computation, or organization. Therefore, it is reasonable to introduce
the concept of complexity. It is often possible to compare degrees of complex-
ity and determine if something is more complex, but there are rarely strict
border points that determine if something is complex or not.
If there are so many different complexities with no single comprehensive

and useful definition, is it meaningful to study a general complexity sci-
ence instead of all different areas separately? It turns out that there is an
interesting scientific area of complex systems in which systems from many to-
tally different fields are studied in order to discover certain general laws and
learn how interactions between many parts give rise to unexpected properties
[16, 305].

3.2 Complex systems

The complexity studied in the area of complex systems refers to many entities
(potentially abstract) which interact according to simple rules leading to

43



Chapter 3: Complex systems and complexity science

emergent properties, which are difficult to be derived from the properties
of the interacting entities [171, 194, 16]. Complexity science is the study
of such emergent system behavior and seeks to understand how the complex
behavior of a whole system arises from its interacting parts. Scientists named
such interacting entities a complex system.

Definition 3.1 A complex system is a set of many components (physical
or abstract) which interact leading to emergent properties which are difficult
to be derived from the properties of the components.

A complex system has, in every moment of time, a state, which is the
configuration of its components. Based on that, the evolution of a complex
system in time can be defined as a complex process :

Definition 3.2 A complex process is the evolution of a complex system
in time.

The presented definition of a complex system is based on similar defini-
tions that appear extensively in the literature [307, 237, 221, 104, 194, 171,
286], e.g.:

• “Roughly, by a complex system I mean one made up of a large number
of parts that interact in a nonsimple way. In such systems, the whole
is more than the sum of the parts, not in an ultimate, metaphysical
sense, but in the important pragmatic sense that, given the properties
of the parts and the laws of their interaction, it is not a trivial matter
to infer the properties of the whole.” [307]

• “A complex system is a group or organization which is made up of
many interacting parts. (...) In such systems, the individual parts called
“components” or “agents” and the interactions between them often lead
to large-scale behaviors which are not easily predicted from a knowledge
only of the behavior of the individual agents.” [237]

• “Complex system - a system with numerous components and intercon-
nections, interactions or interdependencies that are difficult to describe,
understand, predict, manage, design, and/or change.” [221]

• “Still, we can say that a system is complex if it consists of several
interacting elements so that the behavior of the system will be diffi-
cult to deduce from the behavior of the parts. This occurs when there
are many parts, and/or when there are many interactions between the
parts.” [104]
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• “A complex system is an ensemble of many similar elements, which are
interacting in a disordered way, resulting in robust organization and
memory.” [194]

• “Complexity Science can be seen as the study of the phenomena which
emerge from a collection of interacting objects,” [171]

• “A complex system is literally one in which there are multiple interac-
tions between many different components.” [286]

• “Complex system: the elements are difficult to separate. This difficulty
arises from the interactions between elements. Without interactions,
elements can be separated. But when interactions are relevant, elements
co-determine their future states. Thus, the future state of an element
cannot be determined in isolation, as it co-depends on the states of
other elements, precisely of those interacting with it.” [105]

There are also other, essentially different, definitions of complex systems,
existing in scientific publications, e.g.:

• “In one characterization, a complex system is one whose evolution is
very sensitive to initial conditions or to small perturbations, one in
which the number of independent interacting components is large, or
one in which there are multiple pathways by which the system can
evolve. Analytical descriptions of such systems typically require nonlin-
ear differential equations. A second characterization is more informal;
that is, the system is “complicated” by some subjective judgment and
is not amenable to exact description, analytical or otherwise.” [352]

• “Complex system describes phenomena, structure, aggregates, organ-
isms or problems that share some common theme: (i) They are inher-
ently complicated or intricate [...]; (ii) they are rarely completely deter-
ministic; (iii) mathematical models of the system are usually complex
and involve non-linear, ill-posed, or chaotic behavior; (iv) the systems
are predisposed to unexpected outcomes (so-called emergent behav-
ior).” [96]

• “Common to all studies on complexity are systems with multiple ele-
ments adapting or reacting to the pattern these elements create.” [10]

• “In a general sense, the adjective “complex” describes a system or com-
ponent that by design or function or both is difficult to understand and
verify. (. . . ) complexity is determined by such factors as the number
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of components and the intricacy of the interfaces between them, the
number and intricacy of conditional branches, the degree of nesting,
and the types of data structures.” [351]

• “Whether living or nonliving, complex systems are open, ordered, nonequi-
librated structures that acquire, store, and express energy.” [52]

There are also works that try to give a general definition of complexity :

• “To us complexity means that we have structure with variations.” [116]

• “That property of a language expression which makes it difficult to
formulate its overall behavior, even when given almost complete infor-
mation about its atomic components and their inter-relations.” [82]

• “Complexity theory indicates that large populations of units can self-
organize into aggregations that generate pattern, store information, and
engage in collective decision making.” [268]

Such a large number of different definitions and viewpoints shows that
the area of complex systems and complexity science is still at an early stage
of development and there are different perspectives and viewpoints.
The definition 3.1, adopted in the dissertation, is relatively simple and

based on the most common definitions. However, such a simple definition
needs more elaboration since it is still vague, e.g., it does not explain how
many entities we need, how many of them should interact and how, what it
means that emergent properties are “difficult to be derived”, what exactly is
interaction, should components be of the same type or not, etc. The reason
for such vagueness is that complex systems occur in so many disciplines and
the concept concerns so many systems, that it is still difficult to give a single,
precise definition. In contrast to the complexities discussed in mathematics
and theoretical computer science, we still know too little about complex sys-
tems, and the terminology is not mature and developed enough to provide a
rigorous, non-vague, mathematical definition of complex systems, on which
all scientists would agree [171, 194]. In fact, there are cases where it is diffi-
cult to answer whether a given system is a complex system or not (another
interesting question is whether it is justified to classify systems as complex or
not, but as presented in Section 3.2.1, complex systems usually share some
important properties that can give insight into a considered system, poten-
tially also help in its analysis and optimization). It is possible that progress
in the discipline will lead to more precise definitions. It is also possible that
there will be no strict definition, simply because the concept covers so many
different systems that seem to share some common features and could be
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commonly defined as complex but are essentially too different. This is natu-
ral in the real world and vagueness exists in science and is often acceptable
and desired for communication purposes [179]. For example, it is difficult to
define precisely what a “mountain” is and to give its borders, or to precisely
define “traffic jams”, or to say what the precise borders of being “small”
or “tall” are, but everyone knows intuitively what those concepts mean. In
order to simplify communication our language just developed and evolved in
a way to give common names to concepts (e.g., objects, properties, actions)
that share some common features, while disregarding details that are not
necessarily common. In the case of complex systems, this may lead to major
issues:

• Complex systems are differently understood by different people and
the definition of complex systems is not straightforward and scientists
often define it differently.

• Vague definitions of complex systems are usually not useful for engi-
neering and analytical purposes for which it is required to apply precise,
domain-specific definitions of particular complex systems.

Luckily, the studies of the area of complex systems are much better de-
veloped, and in the literature, the given definition 3.1 (or similar definitions)
is often clarified, not applied directly. The clarification is usually done in
two ways that are described in detail in the next two subsections (3.2.1 and
3.2.2):

1. By giving examples of systems that are considered to be complex [237,
14, 171].

2. By indicating additional features that should be common to most stud-
ied complex systems [171, 194].

Despite vagueness, Definition 3.1 already brings important scientific and
philosophical consequences: it does not follow the “classical” or Cartesian
mode of scientific thinking, which is expressed most explicitly in the New-
tonian mechanics, that dominated the science before the 20th century. Ac-
cording to [104], classical science before the 20th century was characterized
by the following properties:

• Reductionism: to fully understand a system, one should decompose it
into its constituent elements and study their fundamental properties.

• Determinism: every change can be represented as a trajectory of the
system through (state) space, i.e., a sequence of states, following fixed
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laws of nature. These laws completely determine the trajectory towards
the future (predictability) as well as towards the past (reversibility).

• Dualism: the ultimate constituents of any system are particles, i.e.,
pieces of matter. Since matter is already completely determined by
mechanistic laws, leaving no freedom for intervention or interpretation,
the only way we can include human agency in the theory is by intro-
ducing the independent category of mind.

• Correspondence theory of knowledge: through observation, an agent can
in principle gather complete knowledge about any system, creating an
internal representation whose components correspond to the compo-
nents of the external system. This establishes a single, true, objective
mapping from the realm of matter (the system) to the realm of mind
(the representation).

• Rationality : given such complete knowledge, in its interaction with the
system, an agent will always choose the option that maximizes its util-
ity function. Thus, the actions of the mind become as determined or
predictable as the movements of matter.

Thus, in classical science, the representation of systems is based on the
paradigm that all changes can somehow be reduced to the motion of separate,
rigid objects in space, following trajectories completely determined by phys-
ical laws [152]. The evolution of such systems is causal, deterministic, and
reversible. Its representation is supposed to be objective, i.e., independent
of the observer. According to Laplace, if we had complete knowledge about
such systems, i.e., positions of all elements and forces acting on them, and
enough power to analyze those data, perfect prediction would be possible:

We may regard the present state of the universe as the effect of
its past and the cause of its future. An intellect that at a certain
moment would know all forces that set nature in motion, and all
positions of all items of which nature is composed, if this intellect
were also vast enough to submit these data to analysis, it would
embrace in a single formula the movements of the greatest bodies
of the universe and those of the tiniest atom; for such an intellect
nothing would be uncertain and the future just like the past would
be present before its eyes.[197]

However, even the definition of a complex system (Definition 3.1) is op-
posed to reductionism, since understanding the properties of the components
of the system may not be sufficient to understand the whole system, i.e., its
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emergent properties. Other theories which do not follow the classical scientific
approach are for example quantum mechanics (for which the mathematical
formalism contains non-determinism) or relativity (there is no objective map-
ping from the observed system to its representation).
The inconsistency with the classical scientific approach in the case of

complex systems may suggest that we deal with some kind of a new scientific
domain for which new tools are required. A similar scientific revolution hap-
pened at the beginning of the 20th century when fundamentals of quantum
mechanics and relativity theory were established. Indeed, many scientists be-
lieve we are witnessing the birth of a new scientific domain and the studies
of complexity and complex systems will be of utmost importance in the 21st
century [357, 147, 171].

3.2.1 Examples of complex systems

The definition of complex systems is often clarified in the literature by giv-
ing examples of systems that are considered as complex. The term complex
systems usually encompasses such structures as:

• Society: Interactions between people lead to many emerging phenomena
that are often difficult to predict (e.g., wars and conflicts, epidemics,
friendships) [14]; groups of people who interact by sharing knowledge
and combining skills may achieve goals (e.g., invent new ideas) that
could not be achieved by a smaller subgroup or even by the same group
without interactions (just by summing knowledge and skills of all mem-
bers, but without interactions) [349];

• Vehicular traffic: Cars and their drivers moving on the road network
according to specific rules, their interaction may give rise to traffic
jams and car accidents [14, 171]; CAVs can also interact by sharing
knowledge about traffic conditions, which can result in safer and more
efficient traffic;

• Traffic management system: Such systems are usually composed of
many sensors, servers, and controllers which interact by communica-
tion and are therefore able to manage traffic efficiently [14];

• Human genome: It consists of 23 pairs of chromosomes containing thou-
sands of genes interacting with other genes in a decentralized way
through genetic regulatory networks. This interaction is believed to
be a significant factor responsible for all human complexity [17, 195];
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• Ant colony: Ants interact (cooperate) in order to achieve some common
goals, e.g., to build an anthill or bring food to the anthill [221, 237];

• Financial market: people and organizations trade items at prices that
reflect supply and demand, interactions may cause market crashes,
speculative bubbles, etc; [14]

• Flock of birds or school of fishes: Interaction between animals (e.g.,
birds, fishes) leads to specific patterns of collective movement, they
keep moving as a large, compact group, just by following a few simple
rules of interaction [14];

• Living human organism: Cells, tissues, organs are connected and inter-
act forming more sophisticated structures and sustaining life [221];

• Neurons in brain / nervous system: Neurons interact giving rise to
intelligence, consciousness, emotions [221];

• Global climate: Different parts of the atmosphere and Earth’s surface
interact giving rise to different weather conditions, short-term and long-
term climate changes [221], [237];

• Cellular automaton: Cells may have a state and transition rules that
steer their behavior: each cell “perceives” states of other cells and sets
the proper value for the next iteration (cells interact by passing infor-
mation about their state) [357];

• Machines constructed by humans, e.g., cars, computers, airplanes: many
parts are connected and interact resulting in many complex actions
(cars drive, airplanes fly, computers perform computations, etc), such
systems, developed by humans, are also considered as Engineering sys-
tems [221];

• Chemical substances: Chemical substances react and create new sub-
stances, sometimes also producing side effects (e.g., energy); it is pre-
sumed that life emerged (and may emerge) from interactions in complex
chemical systems through the process of abiogenesis [232, 261]. Studies
in the area of complex chemical systems resulted in the Nobel Prize in
Chemistry in 2013 [176];

• Planetary system (n-bodies system): Planets, stars, black holes, and
other celestial objects interact by gravitational forces which determine
their motion [221];
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• Entangled particles: In quantum mechanics, quantum entanglement of
particles is a phenomenon that occurs when particles interact with
each other in such a way that the state of a single particle cannot
be described independently, instead, a system of particles exists as a
whole [83].

The diverse structures encompassed by the definition of complex systems
originate from a wide array of disciplines, making it challenging to anticipate
any shared physical properties. Intriguingly, real-world systems conforming
to the definition 3.1 and classified as complex systems often exhibit a re-
markable degree of commonality, despite their seemingly unrelated fields.
This observation suggests the existence of underlying, yet-to-be-uncovered
natural laws governing these systems. The subsequent subsection introduces
characteristics that researchers generally regard as prevalent among complex
systems.

3.2.2 Features of complex systems

In the second type of clarification of the definition of complex systems, the
following properties are universally considered as common features of most
complex systems [194, 171]:

1. The system contains a collection of many components or “agents”.
These components and their interactions are usually similar and simple.

2. Emergent behavior: The system exhibits emergent phenomena which
arise because of interaction between components, in the absence of any
“invisible hand” or central controller. The emerging phenomena can
be surprising and difficult to deduce from the behavior of individual
components.

3. Sensitive dependence on initial conditions (known also as the “butterfly
effect”: A small change in one state of a (deterministic) system can
result in large differences in a later state.

4. Nonlinearity: The superposition of two solutions of the equations that
describe the system does not produce another solution. Cause and effect
may not be proportional, causing counter-intuitive behaviors.

5. Hierarchical structure: Complexity manifests itself across multiple lev-
els within the hierarchical structure of complex systems. In particle
physics, the Standard Model elucidates the behavior of elementary
particles, such as quarks and leptons, and their interactions via weak,
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electromagnetic, and strong nuclear forces. These particles constitute
atoms, which achieve stability through electromagnetic interactions, al-
though unstable ions and isotopes may also exist. Under specific condi-
tions, atoms combine to form chemical compounds, which are stabilized
by the same interactions. At a higher level, these chemical compounds
can assemble into more intricate structures, such as living cells. Sim-
pler prokaryotic cells evolved into more complex eukaryotic cells. These
complex cells constitute tissues, which in turn compose organs, eventu-
ally forming highly complex organisms, including plants, animals, and
humans. Humans themselves are complex systems, and even a group of
two individuals exhibits complex behavior, as described in the previ-
ous subsection. Furthermore, groups of people can form societies with
intricate structures, organizations, and processes.

6. Order and disorder: Complex systems display a sophisticated interplay
between ordered and disordered behaviors, whereby order can emerge
from interactions among seemingly disordered components and sub-
sequently vanish. Consequently, complex systems are regarded as an
intermediate between simple, ordered systems—where phenomena can
be effortlessly described or calculated (e.g., the motion of a few billiard
balls)—and vast, unstructured, chaotic systems that can be examined
using statistical approaches (e.g., the motion of gas particles).

7. Openness: The system is typically “open”, it may be affected by the
environment or there is no strict border between the system and the
environment [53].

8. Computational difficulties / computational irreducibility: Inability to
abbreviate a system (or program) or describe its behavior in a simpler
way. This concept was introduced by Stephen Wolfram [357].

3.3 Complex adaptive systems

It is also worth mentioning a special class of complex systems called com-
plex adaptive systems (CAS), in which the individual and collective behavior
mutate and self-organize as a response to some events [233]. An example is
road traffic - if there are some unexpected events, like road closures due to
car accidents and road works, the traffic participants may adapt their routes
and, as a consequence, traffic jams may appear in other areas of the city.
Living organisms, cells, ecosystems, and societies are also considered CAS.
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Besides the general features of complex systems presented in Section 3.2.2,
in the case of CAS there might be additional typical features like adaptation
to environment, evolution, and self-organization.
One of the first mathematical approaches to study CAS was a model of

cultural evolution (developed in 1968 by Walter Buckley [46]) which regards
psychological and socio-cultural systems as analogous to biological species.
In the modern context, complex adaptive systems are sometimes linked to
memetics [308]. An interesting approach to studying CAS was recently pre-
sented in [155], in which CAS is characterized by hierarchical arrangements of
boundaries and signals. The author developed a framework for comparing and
steering CAS through the mechanisms that generate their signal/boundary
hierarchies.

3.4 Conclusions

This chapter has provided a comprehensive introduction to the concept of
complex systems, exploring their defining characteristics, diverse manifes-
tations across various disciplines, and the intricate interplay between order
and disorder that underlies their behavior. It also introduced relatively sim-
ple definitions of a complex system (3.1) and a complex process (3.2) based
on some common definitions and explanations found in the literature.
Complex systems emerge through the organization and interaction of nu-

merous components, often giving rise to unexpected patterns, structures, and
behaviors that challenge traditional scientific approaches. As we have seen,
complex systems can be found at multiple levels of organization, from sub-
atomic particles and molecular structures to ecological systems and human
societies. This ubiquity highlights the importance of understanding the fun-
damental principles governing complex systems, as it holds the potential to
unlock new insights and advances across a broad range of scientific fields.
As our knowledge of complex systems continues to grow, researchers are

developing novel methodologies, models, and computational techniques to
better understand, predict, and manage these systems. By building on the
foundational concepts introduced in this chapter, future studies can delve
deeper into the intricacies of complex systems, uncovering the hidden laws
that govern their behavior and furthering our understanding of the world
around us. The motivation of the author of this thesis to further explore
the realm of complex systems and develop universal optimization methods
for complex processes is rooted in this enhanced understanding. To achieve
this objective, a thorough comprehension of how complex processes can be
modeled is crucial, and a summary of this topic is provided in Chapter 4.
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Chapter 4

Modeling of complex systems

“Everything should be made as simple as possible, but not simpler.” A.
Einstein

4.1 Introduction

Amodel of a complex system is its simplified representation. The goal of mod-
eling is, in general, obtaining information about a system and its evolution.
This information can be used for a variety of purposes, such as improving
decision-making or optimizing a complex system and its associated complex
process.
There are many approaches to modeling complex systems and usually,

there is no universal method that is always best. All models usually have
some advantages and disadvantages, so selecting the best models should de-
pend on the intended goal of modeling and the application of the model. As
G.E.P. Box said: “Essentially, all models are wrong, but some are useful”
[36].
Various approaches to modeling complex processes exist. However, they

can be categorized based on shared criteria or characteristics. For vehicular
traffic, S. Hoogendoorn proposed a classification scheme for models [156]
that appears to possess universal applicability and could potentially extend
to other complex systems as well:

• approach to model generation (deductive, inductive, intermediate);

• level of detail (submicroscopic, microscopic, mesoscopic, macroscopic);

• scale of independent variables (continuous, discrete, semi-discrete);

• representation of the process (stochastic, deterministic);
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• operationalization (analytical, simulation);

• scale of application (networks, stretches, links, and intersections).

For several centuries, significant advancements in mathematics and the
physical sciences have been achieved by developing simplified models of intri-
cate phenomena, extracting properties from these models, and subsequently
validating those properties through experimental means [43].
In this chapter, the approaches to modeling complex processes are ex-

plained with two examples. Section 4.2.1 presents a description of modeling
one of the popular complex processes which is also a primary object of study
in this thesis - road traffic in cities. To ensure a comprehensive approach
from the perspective of traffic engineering, it is essential to situate urban
traffic modeling within the broader context of transportation modeling (Sec-
tion 4.2). Section 4.3 provides a description of modeling another complex
process investigated in this dissertation - cancer growth in the presence of
radiotherapy. Section 4.4 summarizes one of the recent approaches to devel-
oping mathematical tools for modeling and dealing with complex processes
- Interactive Granular Computing (IGrC).

4.2 Transport modeling

The goal of transport modeling is to simulate and analyze various aspects of
transportation systems, such as land use, travel demand, network design, road
traffic, and policy evaluation. Transport models are used to forecast future
travel patterns and assess the impact of different transportation policies and
investments.
Transport modeling research is an established field of science, with its

roots in the 1920s. One of the first important contributions was made by
Frank Knight in 1924 [186], who highlighted the complexities and potential
pitfalls in assessing the social costs associated with transportation projects,
emphasizing the need for a careful and thorough analysis of costs and ben-
efits. This work contributed to the development of cost-benefit analysis as
a tool for evaluating transportation projects, which later became an essen-
tial component of transportation planning. While Knight made important
contributions to transport economics, it was John Glen Wardrop who in-
troduced the concept of traffic equilibrium in 1952, formulating Wardrop’s
principles [347]. These principles are a transport-specific counterpart to the
game-theoretic Nash equilibrium, which was proposed by John Nash around
the same time, and are related to traffic assignments discussed later in this
section.
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Depending on the required level of detail, accuracy, the forecast period,
and available input data, different mathematical approaches can be used
to model transport. Generally, transport models consist of demand models
(modeling the process of selecting origins, destinations, routes, departure
times, and modes of transport by travelers) and traffic models (modeling the
dynamics of traffic flow).
For demand modeling, historically, an aggregate methodology referred to

as the 4-step model has been mostly used [226]. It is an established method-
ology for urban, regional, and national demand modeling [262]. The model
comprises four steps related to travel choices:

1. Trip generation.

2. Trip distribution.

3. Mode choice.

4. Traffic assignment.

Trip generation answers the question of how many trips originate in or
are destined for a particular zone and determines the frequency of origins
or destinations of trips in each zone. Zones usually correspond to areas that
are homogeneous in terms of land use, population, occupation/employment
characteristics, and travel patterns.
The trip distribution step matches trip origins with destinations and an-

swers the question of where the trips go. This is done by weighting the attrac-
tiveness of the potential destination and the effort required to get there such
as road distance, travel time, and toll/cost. Depending on the segmentation
of the model, multiple distribution matrices may be generated, e.g., by trip
purpose or mode of transport. The output of this step is the so-called origin-
destination matrix, which is typically a two-dimensional table with rows and
columns representing origins and destinations, respectively. The cells of the
matrix contain the number of trips or the portion of traffic that originates
from each row and travels to each column.
In the mode choice process, trips between zones are allocated to different

transportation modes. Which mode of transport people are using depends
on their preferences and aspects of their household or person such as car
ownership. The output of this step can be represented as a set of origin-
destination matrices, each matrix of which represents a particular mode.
Traffic assignment allocates trips between an origin and destination to

specific routes in the transportation network. There might be different route
assignment procedures for different transport modes, such as private cars,
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public transit, walking, or cycling. Regardless of the mode, the traffic assign-
ment process is guided by theoretical concepts such as the aforementioned
Wardrop’s principles [347], which provide a framework for understanding
how travelers choose their routes. Wardrop’s principles propose that trav-
elers choose the routes that minimize their individual travel costs, such as
travel time or distance. In Wardrop’s equilibrium state, no traveler can re-
duce their travel cost by switching to another route, and the travel times on
all used routes between an origin-destination pair are equal. Unused routes
have travel times equal to or greater than the used routes.
The 4-step model is broadly used in practice, but recently, more de-

tailed approaches referred to as activity-based models or agent-based models
(ABM) have been implemented in many locations [174, 367].
There are several elements in ABM:

• Agents represent people who have characteristics, goals, and behavioral
rules. The actions of agents depend on the environment they inhabit.

• The environment provides a space where agents live. The environment
is shaped by the actions of agents.

• Interaction rules describe how agents and the environment interact.

ABM evolve on their own once these micro-level elements are specified,
and macro-level properties emerge from such evolution.

4.2.1 Modeling of vehicular traffic

Traffic modeling is a subfield of transport modeling that focuses specifically
on simulating the flow of vehicles (or transit, or pedestrians) on road net-
works. It can be said that the outputs derived from demand models, especially
the traffic assignment step, serve as inputs to traffic models in transportation
analysis. Traffic models take into account factors such as roadway capacity,
travel times, and congestion levels, providing a more detailed representation
of the transportation system’s performance. Traffic models are used to predict
traffic congestion, travel times, and the capacity of roads and intersections.
They are also used to evaluate the impact of different traffic control measures
and to design intelligent transportation systems.

4.2.1.1 History and state of the art

“Learn from yesterday, live for today, hope for tomorrow.” A. Einstein
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The first traffic models developed in the 1920s and 1930s were based
on empirical observations of traffic. These models sought to describe the
relationship between traffic density (the number of vehicles on the road) and
speed. The goal was to understand how traffic flow changes as the number of
vehicles on the road increases. One of the earliest models was the Greenshields
model developed in 1935 [135]. The model made the underlying assumption
that, in the absence of interruptions or congestion, the speed of vehicles and
the density of traffic are linearly related to each other, i.e., v = A − B ∗ k,
where v represents the speed of vehicles, and k denotes the density of traffic.
The constants A and B are determined through empirical observations.
In 1955, British mathematicians, Lighthill and Whitham, developed a

model based on analogy to fluid dynamics [208]. In 1956, P.I. Richards ex-
tended the idea by introducing “shock-waves on the highway”, completing
the so-called LWR model [285].
Since then, the mathematical description of traffic flow has been the sub-

ject of extensive research, which resulted in a broad scope of models de-
scribing different aspects of traffic flow operations. According to [156], these
models could be classified according to criteria presented in Section 4.1, which
are discussed in the following subsections.

4.2.1.1.1 Classification according to the approach to model gen-
eration

M. Papageorgiou distinguishes the following approaches to traffic model gen-
eration ([266], [156]):

• deductive - known accurate physical laws are applied by analogy to
describe traffic (based on analogy to fluid dynamics and kinetic gas
theory, they are described in detail in Section 4.2.1.1.2)

• inductive - available input/output data from real systems are used to fit
generic mathematical structures, e.g., ARIMA models, polynomial ap-
proximations, neural networks (examples are machine learning models
applied to predict traffic characteristics [220]).

• intermediate - basic mathematical model-structures are developed and
later fitted using real data (examples are mesoscopic models described
in Section 4.2.1.1.2)

4.2.1.1.2 Classification according to the level of detail

This categorization distinguishes models according to the description level of
entities (e.g., cars) in the respective flow models:
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• Macroscopic models : describing traffic from the viewpoint of the col-
lective vehicular flow;

• Mesoscopic models : describing traffic flow at an intermediate level of de-
tail between microscopic and macroscopic models. Vehicles and driver
behavior can be represented in groups, or they can still be described
individually, but in more aggregate terms (in particular, they are in-
distinguishable);

• Microscopic models : considering the time-space behavior of individual
drivers under the influence of vehicles in their proximity;

• Nanoscopic models : high-level description of vehicles’ subunits, and
their interaction (internal and with their surroundings).

Macroscopic models Macroscopic models do not distinguish between
the constituent parts of the flow, i.e., individual vehicles and their behavior,
but instead describe traffic in terms of aggregated values such as speed, flow
rate (number of vehicles passing a given segment of road in a given time), and
density (number of vehicles occupying a given segment of the road). These
models are usually based on (or derived from) partial differential equations
and analogies to other well-known physical phenomena, such as fluid dynam-
ics and kinetic gas theory.
The first significant and scientifically recognized macroscopic model was

the Lighthill-Whitham model based on an analogy to fluid dynamics [208]. It
describes the relationship between density and flow rate (given by functions of
space x and time t: ρ(x, t), and q(x, t), respectively) by an equation derived
from the conservation law (represented using an equation ∂t

∫ b
a ρ(x, t)dx =

q(a, t)− q(b, t), which can be interpreted as the number of cars is conserved
between any 2 points a, b - if there are no entrances or exits, the density in
a small element of length changes at a rate equal to the difference between
the inflow and the outflow):

∂ρ(x, t)
∂t

+
∂q(x, t)
∂x

= 0. (4.1)

The equation is an analogy to the continuity equation from fluid dynam-
ics or the Maxwell equation from electromagnetism. Whitham and Lighthill
additionally assumed that the flow rate is a function of density,

q(x, t) = q(ρ(x, t)), (4.2)

which gives
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∂ρ

∂t
+
∂q

∂ρ
× ∂ρ
∂x
= 0. (4.3)

However, for a more realistic description, an additional equation, an ana-
log of the Navier-Stokes equation for fluids, describing the time-dependence
of speeds has to be considered instead of the simple Lighthill-Whitham as-
sumption [293].
The model has been used to analyze a number of traffic flow problems,

e.g., to explain the existence of “shock-waves” as in the work of Richards
[285] which introduced “shock-waves on the highway”, completing the so-
called LWR model. However, it also has some limitations. It does not take
into account inertial effects, which implies that vehicles adjust their speed
instantaneously, it also does not contain diffusive effects, which would model
the ability of drivers to look ahead and adjust to changes in traffic conditions.
Another drawback is that the equation does not have a unique continuous
solution [156]. Also, real traffic is not a single stream, but it is composed of
several substreams (e.g., a few traffic lanes), and intersections with traffic sig-
nals, signs, and turns. All these differences imply that a standard Lighthill-
Whitham approach may be useful in the case of one-lane, straight roads,
without intersections, traffic lights, and disturbances (e.g., long segments of
highways), but may not be appropriate in the case of more complex trans-
portation systems, e.g., urban road network.
Another interesting class of macroscopic models are so-called Payne-type

models [156, 270] in which Equation 4.2 is replaced by an equation describing
dynamics of speed V (x, t). One of the most important properties of a Payne-
type model is that in certain density areas, the model is metastable, i.e.,
small variations in the traffic density will yield regions of increasing traffic
densities, leading to occurrences of start-stop waves or localized traffic jams
[156]. Indeed, this property can be observed in real traffic on straight lines
(e.g., highways). However, similarly to the Lighthill-Whitham model, it is
not sufficient to model traffic in urban areas.
Another class of macroscopic models are Helbing-type models [156, 148],

which are extensions of Payne-type models. They are derived from gas-kinetic
equations and consist of conservation of vehicles equation, speed dynamics
equations (similarly as in the Payne-type models), and an equation describing
the dynamics of the speed variance.
All these models are continuous, i.e., relations between density, speed, and

flow are continuous functions. However, there exist also macroscopic models
which are discrete or semi-discrete [156]. Most of these approaches are estab-
lished by the application of a finite difference scheme to the continuous model
equations, involving numerical approximation in the spatial direction, tem-
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poral direction, or both, preserving the essential characteristics of the under-
lying continuous model. As a consequence, there are discrete versions of the
LWR model as well as discrete and semi-discrete versions of the Payne-type
models. The most popular and successful approach is the Cell Transmission
Model (CTM) developed by C. Daganzo [71]. It is a numerical method to
solve the wave equation proposed by Lighthill and Whitham (Equation 4.1).
In the method, the road is divided into homogenous sections (cells), and flow
and density are evaluated at a finite number of intermediate points between
cells. The length of the cell is chosen such that it is equal to the distance trav-
eled by free-flow traffic in one evaluation time step. CTM produces results
consistent with the continuous kinematic wave equation (Equation 4.1) and
reproduces many phenomena (e.g., shock waves) predicted by that equation
(in fact, in 1996 Lebacque showed that CTM is the so-called Godunov scheme
for the wave equation [156, 115, 200], which has a nice interpretation that the
flow out of a cell is locally defined by the smallest of 2 quantities: local traffic
demand and supply [156]). In 1999, Daganzo extended CTM and introduced
Lagged Cell Transmission Model (LCTM), which is even more accurate [72].
Besides accuracy, an important property of CTM (and LCTM) is that sim-
ulation results do not depend on the order in which the cells are evaluated
because the flow entering a cell is dependent only on the current conditions
within the cell and is unrelated to the flow exiting the cell. Thus, CTM can
be applied for the analysis of networks more complex than highways (e.g.,
urban networks). In such a case, an interesting extension is the Link Trans-
mission Model (LTM), which just assumes that a given road network link is
just a single cell, and thus it can speed up simulations [364].
One of the main advantages of macroscopic traffic models is their ability

to capture overall traffic trends and patterns. These models are also com-
putationally efficient, allowing for quick analysis and evaluation of different
traffic scenarios. They typically have a small number of parameters and may
be easier to calibrate than other types of models. However, macroscopic traf-
fic models have some limitations and weaknesses. They are unable to capture
individual vehicle behavior and interactions, which can result in inaccuracies
in predicting traffic flow under certain scenarios.
It is also good to emphasize that macroscopic models can be used not

only to model relations between traffic characteristics for road segments but
also for urban areas [210, 170]. Examples of simulation tools implementing
macroscopic models for urban areas are OTM-MPI [118] and VISUM [151].

Mesoscopic models Mesoscopic traffic models describe traffic flow at
a medium detail level. Vehicles and driver behavior can be represented in
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groups, or they can still be described individually, but in more aggregate
terms (in particular, they are indistinguishable). Three well-known types of
mesoscopic flow models are the so-called headway distribution models, cluster
models, and the gas-kinetic continuous models [156].
Headway distribution models focus on directed to the statistical prop-

erties of time headways (time gaps between successive vehicles in a traffic
stream), or, alternatively, of vehicle spacing. Starting from an empirical ob-
servation of the distribution of time headways and assuming that they are
independent and identically distributed (i.i.d.) random variables, headway
distribution models are based on the definition of suitable probability density
functions for such distributions [94]. It is important to note that the assump-
tion of independence and identical distribution of headways may not always
be true in real-world traffic situations, as factors like traffic conditions, driver
behavior, and vehicle types can lead to correlated or non-identical headway
distributions. Despite this limitation, the i.i.d. assumption often serves as a
useful starting point for modeling headway distributions in traffic flow stud-
ies. Examples of headway distribution models are presented in [45] and [41].
Cluster models aim to capture the dynamics of the traffic flow by repre-

senting the formation of vehicle groupings, or clusters, which exhibit shared
attributes. Clusters are often treated as homogeneous entities, with the as-
sumption that the internal characteristics of vehicles within a cluster, such
as headways or speed differentials, are not explicitly considered. The size of a
cluster is typically dynamic, subject to fluctuations as a result of factors such
as changes in driving directions at intersections. Cluster models primarily fo-
cus on the principles governing cluster formation, the circumstances leading
to the emergence of clusters, and the properties defining these clusters. Ex-
amples of cluster models are presented in [94].
Gas-kinetic traffic flow models characterize the dynamics of the traffic

flow by focusing on the evolution of speed distribution functions rather than
examining the behavior of individual vehicles. These models draw inspiration
from gas-kinetic theory and provide a macroscopic perspective on traffic flow
dynamics by considering the statistical properties of vehicle speed distribu-
tions. In these models, some concepts of statistical physics are introduced,
such as the reduced phase-space density, which is related to the expected
number of vehicles present in an infinitesimal region, traveling with a speed
defined on the basis of a probability distribution function. Such a concept can
be seen as the mesoscopic version of the macroscopic traffic density. The first
such model was developed by I. Prigogine and R. Herman in 1971 [276]. It is
based on the kinetic theory of gases and aims to describe the transition from
molecular to macroscopic scales of gas behavior. The model incorporates the
principles of non-equilibrium thermodynamics developed by Prigogine to de-
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scribe the evolution of a system away from thermodynamic equilibrium. An
improvement of this approach was introduced in the Paveri-Fontana model
that considers the phase-space density [269]. Later, Helbing [149] presented
a gas-kinetic model for multilane traffic flow operations, which is a simi-
lar approach to the Paveri-Fontana model, but lane-changing is explicitly
considered thanks to adding three additional terms: the speed diffusion term
(taking into account the individual fluctuations of the speed due to imperfect
driving), the lane-changing term (modeling dynamic changes due to vehicles
changing lanes), and the rate of vehicles entering and leaving the roadway.
Mesoscopic traffic models are computationally more efficient than micro-

scopic models while providing a better representation of traffic dynamics and
individual travel behavior than their macroscopic counterparts. The limited
level of detail in mesoscopic models may result in less accurate predictions
compared to microscopic models, so they may not be suitable for studying
the behavior of individual vehicles and the interactions between them, which
is better accounted for by microscopic models.
Examples of traffic simulation tools that use mesoscopic models are Dy-

naMIT [23] and Aimsun [320, 257].

Microscopic model In microscopic models, each traffic participant is
modeled as a separate agent. In each time step, the vehicle’s position, speed,
and acceleration are calculated based on the characteristics of vehicles (usu-
ally those that are in front of the given vehicle) in the previous time step.
Such models can be also based on, e.g., differential equations or cellular au-
tomata.
One of the first important microscopic models is the Wiedemann car-

following model developed in 1974 [353]. It uses thresholds to define differ-
ent regimes of the car-following, distinguishes constrained and unconstrained
driving by considering perception thresholds, and incorporates lane-changing
and overtaking. In 1999, it was updated (by modifying the perceptual thresh-
old, maximum acceleration, and deceleration rates) to better model freeway
traffic [177].
The next popular car-following model is the Gipps model [108]. It analyzes

the behavior and response of the following vehicle based on the preceding
vehicle driver’s actions. The model is defined by a set of constraints that
include the driver’s desired speed and the vehicle’s acceleration constraints,
assuming that drivers would estimate their speed based on the vehicle in front
to be able to come to full speed and stop safely if needed. The Gipps model
has been implemented as a microscopic model in one of the most popular
traffic simulation tools - Aimsun [320, 257].
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Another important microscopic model is the Krauss model [313]. It is
based on the assumption that drivers always try to maintain a minimum safe
distance behind the vehicle in front of them and adjust their speed accord-
ingly to maintain a safe following distance between vehicles. The model was
implemented in a popular open-source microscopic traffic simulation package,
SUMO [313].
Another notable car-following model is the Intelligent Driver Model (IDM)

[333]. It is based on differential equations in which the speed of a vehicle, its
distance from the vehicle in front, and the relative speed between the two
vehicles, as well as some parameters (like the desired speed and the minimum
spacing), are used as an input to determine the vehicle’s dynamics.
Among the microscopic simulation models based on cellular automata,

one of the simplest yet popular models is the Rule 184 automaton, which
is a one-dimensional binary cellular automaton [153]. In this model, each
cell contains a binary value (0 or 1), and cells with the state 1 represent
cells occupied by vehicles. The locations of vehicles evolve in discrete steps
according to the automaton’s rule. The vehicles move in a single direction,
stopping and starting depending on the vehicles in front of them.
One of the most notable examples of a microscopic simulation model

based on a cellular automaton is the Nagel-Schreckenberg (NaSch) model
developed in 1992 [246]. The NaSch model emulates single-lane traffic. The
road is represented as a tape divided into cells. Space, time, and speeds are
discrete. All cells have the same size (set to 7.5m by default). At any time,
each cell may be empty or occupied by a single vehicle. The state of a single
cell is the speed of the car occupying the cell (or null if the cell is empty).
The speed of the car i (denoted as vi) is also considered as an internal state
of car i and can take a value from the finite set {0, 1, ..., vmax}, where vmax is
common to all cars (usually vmax = 5). The state of the automaton at time
t + 1 is obtained from the state at time t by applying at the same time the
following 4 rules to all cars:

1. Acceleration: vi(t+ 1) := min(vi(t) + 1, vmax).

2. Braking: vi(t+1) := min(vi(t+1), di(t)), where di(t) is the number of
empty cells in front of the car i.

3. Randomness: with probability p: vi(t+ 1) := max(0, vi(t+ 1)− 1).

4. Movement: car i moves forward vi(t+ 1) cells.

The first step models the assumption that each driver wants to drive as
fast as possible. The second step indicates that drivers reduce their speed to
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avoid crashes (overtaking is impossible since the road has only one lane). The
third step introduces randomization into the model. It simulates that drivers
sometimes spontaneously reduce the vehicle’s speed due to, e.g., weather
conditions or psychological aspects. The fourth step is the actual movement
of the car. All steps are crucial and cannot be removed in order to maintain
correspondence with the real traffic on highways. Figure 4.1 visualizes an
exemplary state of the Nagel-Schreckenberg model.

Figure 4.1: An exemplary cellular automaton corresponding to the situation
on a single-lane road in the Nagel-Schreckenberg model.

One of the reasons why the NaSch model became popular is the fact that
according to experiments, it is able to simulate real single-lane highway traffic
with satisfactory accuracy [246]. Another reason is that the model is relatively
simple, easy to implement, and implementation can be also computationally
efficient. As in the case of most models based on cellular automata, there is a
possibility to accelerate computations using GPU. Also, it has been already
extensively studied [293] and implemented in professional traffic simulators
[331] and transportation systems [339].
These were also the reasons why the NaSch model was selected by the

author of this thesis for further investigation and extension to the case of
realistic urban traffic scenarios, as discussed in Chapter 5. There had been
other extensions of the NaSch model in the past, but to the best of the
author’s knowledge, this was the first extension of the NaSch model to the
urban scenarios with realistic road networks (taken from the OpenStreetMap
service [259]), traffic signals, multiple lanes, diverse road types, and various
vehicle categories.
It is also worth mentioning one of the first extensions of the NaSch model

- the Chowdhury-Schadschneider model developed in 1999 [63]. In this model,
the road network is represented as a grid composed of N horizontal streets
and N vertical streets. Every horizontal street intersects every vertical street,
so there are N2 intersections. On the streets, traffic moves in one direction.
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Without loss of generality, it can be assumed that traffic moves to the right
on horizontal streets and upwards on vertical streets. There are also traffic
lights at every intersection. The lights for horizontal traffic are synchronized
with each other (they have the same state at all times), similarly the lights in
the vertical direction. In road sections between intersections, traffic follows
the NaSch model.
Another notable microscopic model based on cellular automaton is the

Biham–Middleton–Levine (BML) traffic model [27]. In this model, cars are
represented by points on a lattice with random starting positions. Each car
may move only downwards or only to the right (in this sense, it is similar
to the Chowdhury-Schadschneider model). These two types of cars move in
turns. On each turn, all cars of the corresponding type move one step forward
if they are not blocked by another car. The BML model is considered to be
the simplest system exhibiting phase transitions and self-organization.

Nanoscopic models Nanoscopic traffic models are even more detailed
than microscopic models and can consider the cognitive processes within
the driver or the mechanics of the vehicle [253]. In terms of the cognitive
processes, they can take into account, e.g., the personal reaction time of
the driver, the speed desired by the driver, as well as their changes in time.
In terms of the mechanics of the vehicle, they can consider the mechanical
structure of the vehicle (motor, gear, damping, steering), variation of vehicle’s
weight due to reduced weight of the tank, etc. They are especially useful for
modeling the drive of autonomous or semi-autonomous vehicles but less for
traffic signal control. However, optimizing control parameters of drivers or
autonomous programs steering vehicles may also lead to traffic optimization
[124].

4.2.1.1.3 Classification according to the scale of the independent
variables

[156] distinguishes two time scales: continuous and discrete. In continuous
models, the state of the transportation system changes continuously over
time in response to continuous stimuli. An example is the Lighthill-Whitham
model [208]. Discrete models assume that state changes occur at discrete time
instants. An example is the Nagel-Schreckenberg model [246]. Besides time,
other independent variables (e.g., position, speed, desired speed) can be also
described in a continuous or discrete way. There also exist mixed models,
e.g., based on the PDDL+ approach introduced in [336].
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4.2.1.1.4 Classification according to the representation of the pro-
cesses

This classification corresponds to the determinism of the model. Mathemat-
ical models of complex processes could be either deterministic or stochastic.
An example of a deterministic model is the Lighthill-Whitham model [208],
while an example of a stochastic model is the Nagel-Schreckenberg model
[246].

4.2.1.1.5 Classification according to the operationalization

Models can be operationalized as analytical solutions of sets of equations, or
as simulation models. Most traffic models are quite advanced and usually,
simulation models are used in practice. However, in some cases and sim-
plified versions, analytical solutions can be obtained. The examples are the
Greenshield’s model [135] and simplified versions of the LWR model [285].

4.2.1.1.6 Classification according to the scale of application

Models can describe traffic on a single road segment, a corridor, an intersec-
tion, a highway, an entire city, etc.

4.3 Modeling of cancer growth

Another complex process that was investigated in this thesis was the process
of cancer evolution under radiotherapy treatment. In this case, living cells
interact according to specific rules, and some of them may become cancer
cells. Radiotherapy can affect this process and, eventually, reduce the number
of cancer cells.
The cancer growth itself, even without radiotherapy or other external

factors, can be considered a complex process as well. Numerous methods exist
for modeling cancer growth, and they can be broadly classified according to
their representation of tumor tissues as either discrete (cell-based) models or
continuous models [216].
In discrete modeling, each individual cell is monitored and modified based

on a distinct set of biophysical principles, and there are 2 main types of dis-
crete models: lattice-based and lattice-free. The first approach represents the
behavior of distinct tumor cells as automata on a grid, with their states
controlled by deterministic or probabilistic rules, so cellular automata are
natural mathematical tools for these models. The second type characterizes
the activities of individual cells located anywhere and their corresponding
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interactions, they are usually modeled using agent-based modeling. Discrete
methods rely on a set of rules for each cell, allowing for the translation of
intricate biological processes (e.g., mutation pathways, cell-cycle events) into
model rules. However, the computational expense escalates quickly as the
number of cells in the model increases, constraining the spatial and temporal
scales that can be achieved. Moreover, while these models can describe bio-
physical processes in considerable detail, obtaining reliable measurements of
model parameters through experiments that can capture the necessary detail
at the cellular scale may not be straightforward [216].
In the context of larger-scale systems, employing continuous methods

that conceptualize tumors as aggregations of tissues, with cellular densities
or volume fractions as descriptive measures, presents a viable modeling al-
ternative [216]. These models utilize reaction-diffusion equations to represent
tumor cell density, the extracellular matrix, matrix-degrading enzymes, and
the concentration of cellular substrates like glucose, oxygen, as well as growth
factors and inhibitors. They are usually based on ordinary and partial differ-
ential equations.
There also exist hybrid, discrete-continuous methods that can be divided

into two groups: composite models in which tumors are depicted as an aggre-
gation of discrete elements, such as cells, while cellular substrates, including
nutrients and growth or other chemical factors, are represented as continuous
variables, and hybrid models that incorporate different modeling approaches
to capture multiple scales and aspects of cancer growth [5].
Besides the general models of cancer growth, some models take into ac-

count the impact of various treatment methods, like radiotherapy [274, 287,
85], which can lead to direct cell killing, damage to the vasculature, and al-
terations in the tumor microenvironment. Depending on the chosen model,
including radiotherapy can be done by adding terms that represent radiation-
induced cell death, modifying cell proliferation and migration rates, or alter-
ing parameters related to nutrient and oxygen availability.
In the research described in this thesis, a model of breast cancer intro-

duced in [7] was employed to evaluate the quality of radiotherapy strategies.
It is a model of EMT6/Ro cell line derived from the EMT6 (Experimental
Mammary Tumour-6) cell line that was isolated from the breast of a mouse
with a mammary tumor. The model is an extension of the MCS stochas-
tic asynchronous cellular automata model of EMT6/Ro dynamics that was
earlier introduced in [273] by adding a calibrated multi-fraction irradiation
module. Thanks to that, the model can be used not only to study various
aspects of tumor biology, such as tumor growth and formation of the necrotic
core but also as a response to radiotherapy. The model was calibrated and
its performance was validated by taking into account various tumor charac-
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teristics such as the number of cells, saturation size, tumor volume, doubling
time, the thickness of the proliferating rim, cell phase population fraction,
onset and progression of necrosis, and the effective dose resulting from multi-
fraction irradiation. The details can be found in [264, 7] and in Section 8.2.2.

4.4 Interactive Granular Computing

The classical models of complex processes can already be very useful in var-
ious applications ranging from analysis and prediction to optimization and
real-time management of a complex process. As we have already cited (cf.
Section 1.1), they work especially well when the complexities ignored in the
models (in order to make simplifications) are not the essential properties
of the phenomena, but do not work when the ignored complexities are the
essence [43, 105].
One of the notable examples of the recent approaches to developing math-

ematical tools for dealing with complex processes is the Interactive Granular
Computing (IGrC) [168, 80, 167]. It is an approach to knowledge discovery
and decision-making by intelligent systems that aim to help humans interact
with complex and uncertain data. IGrC is based on the principles of granular
computing, which is a branch of computer science that deals with the repre-
sentation, processing, and manipulation of information at different levels of
granularity [18]. The key idea behind IGrC is to create a collaborative envi-
ronment where humans and machines (as well as other physical objects like
robots, sensors, actuators, and cellular networks) can work together to solve
complex problems. In this environment, humans provide the context and the
domain knowledge, while physical objects provide the computational power
and the ability to process large amounts of data and perceive them. The basic
objects in the IGrC-based modeling are the so-called informational granules
(ic-granules) linking abstract and physical objects. Control of granules trans-
forms the current configuration of such ic-granules (used for perceiving the
current situation) into a new one. IGrC involves several stages of knowledge
discovery, starting with the creation of a granular structure to represent the
data. This structure is then used to extract patterns and relationships from
the data and to create a knowledge base that can be used for decision-making.
One of the main advantages of IGrC is its ability to handle uncertainty

and ambiguity in the data. By creating granular structures that can capture
different levels of detail and abstraction, IGrC is able to represent and process
data that is incomplete or imprecise.
As presented in Section 2.1, IGrC can be also used to optimize complex

processes.
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4.5 Conclusions

There are numerous approaches to modeling complex processes, reflecting
the ongoing and evolving nature of this field. As new tools, techniques, and
data sources emerge, it becomes increasingly important to represent real-
world phenomena accurately and efficiently, while calibrating and validating
the developed models. However, it is crucial to acknowledge that no model is
perfect - they merely serve as approximations of the studied real-world phe-
nomena. Consequently, the selection of a particular model should be driven
by the specific goals of the complex process modeling endeavor.
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Chapter 5

Traffic Simulation Framework

“New directions in science are launched by new tools much more often than
by new concepts. The effect of a concept-driven revolution is to explain old
things in new ways. The effect of a tool-driven revolution is to discover new
things that have to be explained.” F. Dyson

5.1 Introduction

This chapter introduces the Traffic Simulation Framework software (TSF)
- a comprehensive tool for simulating traffic in urban areas which was de-
veloped over many years by the author of this thesis. It can be considered
as a “digital twin” of real-world traffic in cities evaluating the qualities of
different traffic control settings. In particular, this framework facilitates the
evaluation of traffic signal settings and the generation of datasets for further
traffic optimization purposes.
The work on this tool was initiated by the author of this thesis in 2008 but

is still ongoing and many new features were added during the work on this
dissertation (it is also worth mentioning that the work on TSF was preceded
in 2007 by the work on the Urban Transport Control System [38] which was
intended to be an intelligent navigation system taking into account real-time
traffic conditions). TSF already found numerous scientific applications, some
of which are also discussed within this chapter (Section 5.7). As it is one of
the outcomes of the research presented in this thesis and played a crucial role
in producing other outcomes, it is essential to describe it in detail.
TSF includes implementations of the classical 4-step travel demand model

(described in Section 4.2) as well as 2 traffic models:

• a microscopic traffic model extending the well-known Nagel-Schreckenberg
model (NS model) described in Section 4.2.1,
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• a mesoscopic model based on simple assumptions.

The travel demand model implemented in TSF is described in Section
5.2. Section 5.3 presents the underlying microscopic model, while Section
5.4 outlines the mesoscopic model. Then, 5.5 presents the implementation of
TSF tool and its functionalities. Section 5.6 discusses how the software was
calibrated. Finally, Section 5.7 describes some of the existing and potential
future applications of TSF.

5.2 Travel demand model

TSF implements the classical 4-step travel demand model (described in Sec-
tion 4.2) composed of trip generation, trip distribution, mode choice, and
route assignment.
Trip generation determines the frequency of origins or destinations of

trips in each zone. By default, TSF uses a map of Warsaw taken from
the OpenStreetMap (OSM) service [259], covering an area of about 30 km
per 30 km (from longitude 20.830078125 to 21.26953125 and from latitude
52.106505190756316 to 52.375599176659101) that is divided into 40×40 grid
representing 1600 zones. However, it is also possible to use 2 other divisions
into zones designed based on a traffic study in Warsaw done in 2005. They
contain 399 and 774 zones, respectively, and were kindly shared by the ad-
ministration of urban roads in Warsaw (Biuro Drogownictwa i Komunikacji)
in 2015 [58]. In these cases, the zones are not regular but correspond to more
natural borders between districts (like roads, parks, etc.).
Regardless of the type of division, the frequency of origins or destinations

can be determined for each zone separately by the user, they can be also read
from configuration files. The road network graph contains nodes and edges
inherited from OSM, so each zone contains some number of nodes. Nodes are
points at which trips can start or end. In TSF, it is assumed that within each
zone, the locations of the starts of trips are uniformly distributed between
all nodes in the given zone. Similarly, the locations of destination points are
uniformly distributed between all nodes in a given zone. Therefore, in the
trip generation step, TSF first selects the origin zone based on the defined
distribution (frequencies of origins for each zone) and then it selects the origin
point from the chosen origin zone with a uniform distribution.
Then, trip distribution matches origins with destinations. For each origin

point, TSF first selects the destination zone. In TSF, it can be done in 2 ways.
The first option is a random selection based on the distributions of frequencies
of destination zones. The second option is using the origin-destination matrix
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(OD matrix) loaded from a configuration file. The main difference is that in
the first option, for each origin zone the distribution of destination zones is
the same, while with the OD matrix, there might be different distributions of
destination zones for each origin zone. After the destination zone is selected,
TSF selects a node from that zone based on a uniform distribution.
The mode choice step is currently trivial, as there is only one available

option now: private cars. However, there are plans to include other modes of
transport too. For example, as part of the research carried out by the author
of this thesis, microscopic traffic models for connected and autonomous vehi-
cles (CAVs) were extensively studied, which resulted in 2 scientific publica-
tions [132], [128], and several popular-science presentations. Also, the author
carried out research on public transportation, as well as shared mobility op-
tions (like van-pooling, bike-sharing, scooters, cargo bike sharing, and pedes-
trian traffic), during his work in some external research projects. However,
at the moment of writing this thesis, no other modes of transportation are
implemented in TSF. When such modes become available in the future, it is
planned to implement the mode choice step using the logit model [2].
Route assignment allocates trips between origin and destination by a

particular mode to a route. In TSF, a single route is a path (sequence of
nodes) in the road network graph. The first element on the path is always
an origin point and the last element is a destination point. The paths can
be read from an input file, so they can be specified by the user arbitrarily.
However, TSF makes it possible to calculate any number of routes before the
start of the simulation and save them to a file to read them later as input.
The routes calculated by TSF are, by default, the optimal routes in terms

of minimizing the sum of weights assigned to edges. Optimality of routes can
be defined in many ways, e.g., in some cases, it is necessary to calculate the
shortest path, in other cases - the fastest path or the cheapest path (in terms
of fuel consumption), etc. Therefore, the weights can be assigned differently,
depending on the specific application. One of the interesting features of TSF
is that it is possible to specify different types of road segments (edges), such
as highways, primary roads, secondary roads, or residential roads, and assign
to them specific attributes that can be used to calculate the weights.
By default, TSF assumes that drivers choose routes that are optimal in

terms of the time required to reach a destination point. The corresponding
weights of edges can be calculated based on the length of the edge and a
default speed according to the type of road segment or traffic condition data
collected from real-world traffic. The optimal path (in terms of the sum of
weights assigned to edges) can be computed in several ways, but in TSF, the
default algorithm is the A* algorithm [142].
After the routes are generated, it is possible to run simulations according
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to the traffic model.

5.3 Microscopic traffic model

The microscopic model in TSF is a probabilistic cellular automaton that
inherits some foundations from the well-known Nagel-Schreckenberg model
(NaSch model) described in Section 4.2.1.1.2, but introduces important ex-
tensions to emulate real road traffic in large urban areas. For example, it
takes into account traffic signals, multiple lanes on a road, distinguishability
of drivers, different starting and destination points, and the possibility of
turning at an intersection and overtaking another vehicle. The main proper-
ties of the TSF model:

• Time is discrete. The model evolves in time steps.

• The model is multi-agent and microscopic: each vehicle is represented
as a separate agent taking decisions independently.

• The road network is represented as a directed graph G = (V,E), where
V is the set of vertices (nodes) and E is the set of edges connecting
nodes. Vehicles move between the graph’s nodes and the actual move-
ment takes place on the edges of the graph.

• Some intersections have traffic signals at their entries. The traffic signals
located at the same intersection are synchronized. Note that intersec-
tions are not the same as nodes of the road network graph. Some large
intersections can be composed of many nodes and the traffic signals
can be located only in the nodes. On the other hand, nodes can be also
located on straight road segments without intersections.

• Every vehicle has its own starting point and destination point. Starting
points and destination points are randomly selected from a specific dis-
tribution based on an origin-destination matrix which may be derived
from real-world data (the details are described in Section 5.2).

• For each vehicle, the route is selected by routing algorithms (e.g., Di-
jkstra algorithm [77] or A* algorithm [142]) aiming to find the best
route based on weights assigned to edges. The weights can correspond
to specific parameters that can be specified by the user, e.g., the edge’s
length or estimated time of travel.

• Every vehicle has a parameter that indicates a time step (from the start
of the simulation) in which the vehicle should start its drive.
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• Vehicles that reach their destination points no longer take part in the
simulation.

• The set of roads (edges) is divided into several classes. Roads from
the same class are indistinguishable in terms of the number of lanes
and distribution of the vehicles’ speed. There are currently 4 classes of
road segments: freeways, primary roads, secondary roads, and residen-
tial roads, but it is possible to define more types (in OSM, there are
more available types, but in TSF, they have been grouped together for
simplicity).

• Every edge of the graph G may consist of several lanes. The number of
lanes depends on the class of a road segment.

• Each lane is divided into cells just like in the NaSch model. All cells on
the same edge have the same size.

• Every cell of the graph G may be occupied by at most one vehicle, just
like in the NaSch model.

• Vehicle’s speed does not need to be discrete, unlike in the NaSch model.
This means that vehicles can also have positions within a cell.

• Vehicles are distinguishable. Every driver has their own profile which
influences their behavior on the road, unlike in the NaSch model.

• Drivers always tend to increase their speed (but not to exceed maximal
speed), just like in the first step of the NaSch model.

• Drivers reduce vehicle’s speed before an intersection. The reduction
may depend on the action the driver intends to take (turn at the inter-
section or not).

• Vehicles can change lanes if there is more than one lane on the road.

• When there is no possibility to change lanes, drivers have to decelerate
due to other vehicles in front of them, just like in the second step of
the NaSch model.

• Drivers may randomly reduce their speed, just like in the third step
of the NaSch model (however, this option can be disabled to simplify
computations).

• When the vehicle’s speed is established, it moves just like in the fourth
step of the NaSch model.
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A random reduction of the speed could be potentially disabled in some
experiments to simplify and accelerate computations. The reason is that in
the case of stochastic models, in order to obtain statistically significant re-
sults, it is often necessary to run multiple simulations and calculate statistical
values, like the average, median, or standard deviation of the considered val-
ues. In the case of a deterministic model, it is sufficient to run an evaluation
just once. Of course, a natural question is whether removing the stochastic
component is reasonable and will still lead to valid results. It may depend
on the goal of using such a model, but as discussed in Section 8.2.1, in the
case of traffic signal control such a simplification is reasonable.

5.3.1 Transition between states in the TSF model

This section presents a procedure for transitioning between states of the
cellular automaton at time t and time t+ 1.
Let t ∈ T be a given step, CARS is the set of all cars participating

in the simulation, and CARSt is the set of all cars involved in the traffic
at time t (the cars that started moving before step t but have not finished
yet). The parameters turnParameter and intersectionParameter are given,
which affect the behavior of the driver when turning at an intersection and
when passing an intersection, respectively. There is also an additional param-
eter prob, which introduces randomization into the driver’s behavior, just like
in the NaSch model.
The general procedure for transitioning between states of the cellular

automaton at time t and time t+ 1 is presented in Algorithm 5.3.1.
The algorithm can be explained as follows:

• Every driver tends to increase the vehicle’s speed up to the speed limit.
It is modeled in the procedure increaseSpeed(car, t). The speed limit
depends on the driver’s profile and type of the road.

• Check if the vehicle reaches the intersection with the traffic signal with
the red phase (it is done in the procedure stopAtSignal(car, t)). If the
vehicle has to stop, then the procedure reduceSpeedAtSignal(car, t)
reduces the driver’s speed in order to stop just before that intersection.

• If the vehicle does not have to stop at the red signal, but reaches
the intersection (intersection(car, t) returns True) and turns on it
(turnAtIntersection(car, t) returns True), then the vehicle’s speed is
reduced in the reduceSpeed(car, t, turnParameter) procedure accord-
ing to the value of the turnParameter.
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Algorithm 1 Algorithm TSF-move: Move of a single car at time t
Require: t ∈ T , car ∈ CARSt, turnParameter, intersectionParameter,
prob
increaseSpeed(car, t);
if stopAtSignal(car, t) then
reduceSpeedAtSignal(car, t)
else
if intersection(car, t) then
if turnAtIntersection(car, t) then
reduceSpeed(car, t, turnParameter);
else
reduceSpeed(car, t, intersectionParameter);
end if
end if
end if
if shouldChangeLane(car, t) then
changeLane(car, t);
end if
safeReduceSpeed(car, t)
with probability prob: reduceSpeed(car, t);
makeMove(car, t);

• If the vehicle reaches the intersection (intersection(car, t) returns True),
but does not turn at it, then its speed is reduced in the procedure
reduceSpeed(car, t, intersectionParameter).

• Until now, the vehicle’s speed was calculated when there were no other
vehicles on the road. However, the interaction between vehicles should
be also considered. If there is another vehicle in front of the consid-
ered vehicle at a close distance, then the driver may decide to change
lanes. The procedure shouldChangeLane(car, t) checks if it is possible
to change lanes. If yes, then the vehicle changes lanes in the procedure
changeLane(car, t).

• It is still possible that the vehicle is too close to another vehicle that is
in front of it, so the procedure safeReduceSpeed(car, t) checks this and
possibly reduces the speed to maintain a safe distance between cars.

• The algorithm takes into account that some random factors (e.g., weather,
psychological aspects) may result in a slight reduction of the vehicle’s
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speed, so with probability prob the vehicle’s speed is reduced by a con-
stant value in the procedure reduceSpeed(car, t).

• Finally, the vehicle moves forward in the procedure makeMove(car, t).

It is important to notice that the presented procedure is still general. Some
of its internal subprocedures (i.e., shouldChangeLane, safeReduceSpeed)
can be implemented in many ways and with various assumptions. In addi-
tion, input parameters can also influence the model. The only way to check
the model’s correctness is to compare the results (data) produced by a spe-
cific implementation with data collected from real traffic. However, in the
case of a microscopic simulation model, it requires collecting data about the
locations of many cars with a high frequency. Also, since driver behavior and
traffic regulations vary from country to country (and sometimes even from
city to city within a given country), the calibration process may need to be
performed independently for each study area.
More details about the TSF and its microscopic traffic model were pre-

sented by the author of this thesis in [123] and [125].

5.3.2 Strengths and weaknesses of the model

One of the strengths of the presented microscopic model is that it is based on
the well-known and comprehensively studied NaSch model. It just extends
the NaSch model to the case of large-scale urban areas. Another strength is
its simplicity. As in the case of the NaSch model, its extension to large urban
areas is also relatively simple as well as easy to understand and implement
compared to many other models. One of the consequences of simplicity and
using a cellular automaton is a relatively low computational cost. Moreover,
it is well known that the simulation of cellular automata can be also accel-
erated using Graphical Processing Units (GPUs), which gives the possibility
of further accelerations in the future.
However, as presented in Chapter 7, the approach for optimizing traf-

fic signal settings using metaheuristics requires running a large number of
evaluations of traffic signal setting qualities (and similarly for optimizing
other complex processes). One of the consequences is that in order to find
near-optimal settings, the time required to run a single evaluation should
be reasonably small. Even though evaluation of the presented microscopic
model is relatively fast, it may still be too slow for real-time applications of
metaheuristics or for running multiple experiments (simulating 10 minutes of
traffic on the whole road network of Warsaw with 42000 vehicles takes about

80



Chapter 5: Traffic Simulation Framework

30 seconds on standard machines 1). Consequently, an avenue worth exploring
was the development of a model that balances computational efficiency and
accuracy. This approach culminated in the creation of a mesoscopic model
described in Section 5.4.

5.4 Mesoscopic traffic model

The mesoscopic model in TSF was designed and implemented for the purpose
of building a surrogate model approximating outcomes of the microscopic
model presented in Section 5.3. The model is not time-based, but event-
based, which means that it does not specify the positions and speeds of
cars at each time step. Instead, it estimates the time of drive (TEST ) on the
road between 2 neighboring nodes on the path, based on the geographical
distance between nodes (D) and the default maximum speed on this road
segment (VMAX): TEST = a · D

VMAX
, where a is a parameter that should be

set based on comparison to real traffic data or outcomes of another reference
model. Then, if a car has to wait at a red signal, the total time of drive is
increased by the time to the next switch from the red signal state to the
green signal state. Based on the description in Section 4.2.1.1.2, the model is
closest to cluster models, as all cars traveling through the same road segment
have the same speed.
This is a relatively simple mesoscopic model, it does not take into account

a speed reduction caused by large traffic density (in fact, it is not straight-
forward to estimate traffic density on every road segment at an arbitrary
moment of time) or queuing models (queue formation and dissolution). As
explained in Section 8.3.1.2 and in [131], this mesoscopic model is not able
to provide sufficiently accurate estimations of outcomes of the microscopic
model 5.3 to consider it as a sufficient surrogate model, but there is a poten-
tial for further improvements and developing somewhat more complex and
more accurate (but probably slower to evaluate) mesoscopic models.

5.5 Implementation of the models

The traffic simulation model described in Sections 5.3 and 5.4 were imple-
mented in the tool named Traffic Simulation Framework (TSF).
It allows the simulation of the motion of about 106 vehicles on realistic

urban networks in real-time using standard computing machines.

1Processor Intel(R) Core(TM) i7-4702MQ CPU @ 2.20GHz, 32GB RAM
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The system was developed in C# language using .NET technology and
can be run on computers with installed .NET Framework [229] in version 2.0
or higher (on Windows systems) or Mono.NET [242] in version 2.0 or higher
(on Linux systems or macOS). Maps and road network descriptions come
from the OpenStreetMap project [259]. By default, TSF allows to simulate
traffic on the road network of Warsaw, but it is relatively easy to adapt the
system to any other real road network, it requires substituting the maps and
road network description, as well as calibrating the traffic model using real
traffic data (the traffic model or TSF’s implementation do not have to be
changed).

5.5.1 Functionalities of the TSF

In this subsection, the following features of the TSF system are briefly pre-
sented:

• Graphical User Interface (Section 5.5.1.1);

• Simulating vehicular traffic (Section 5.5.1.2);

• Generating routes for drivers (Section 5.5.1.3);

• Editing settings of traffic signals (Section 5.5.1.4);

• Editing distributions of start points and destination points (Section
5.5.1.5);

• Specifying monitored streets and areas (Section 5.5.1.6);

• Saving simulation data (Section 5.5.1.7).

5.5.1.1 Graphical User Interface

One of the most characteristic features of the TSF system is a comprehensive
Graphical User Interface (GUI). The main window of the application contains
a city map that can be zoomed in, zoomed out, and moved around (Figure
5.1).
In addition, the user may specify elements displayed on the map. It is

possible to display the following information:

• Locations and speeds of cars;

• Locations and states of traffic signals;

• All streets and all types of roads;
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Figure 5.1: The main window of the TSF system with monitoring traffic
simulation.

• All nodes of the road network;

• Average speeds of cars on every street;

• Distributions of start and destination points;

• Streets and regions monitored during simulations.

5.5.1.2 Simulating vehicular traffic

The main functionality of TSF is simulating realistic vehicular traffic. A
simulation process is based on the TSF model described in section 5.3. Cur-
rently, the system is capable of simulating the movement of approximately
106 vehicles in real-time on standard machines.
Before the start of the simulation, the user may specify the initial number

of cars, the length of a single time step, the number of cars that start driving
after a specified number of steps, and some additional parameters related to
the driver’s behavior (i.e., turningParameter and intersectionParameter
which are used in the TSF model) and other parameters. These values can
be set using a dedicated window (Figure 5.2).
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Figure 5.2: The window for specifying values of simulation parameters.

During the simulation, it is possible to monitor traffic conditions and the
locations of all cars. Vehicles are represented as dots on the map and their
colors correspond to their current speeds (Figure 5.1). It is also possible to
monitor the current statistics like average speed for all road segments. More
detailed statistics can be saved to external files that can be later analyzed
after the simulation is finished.

5.5.1.3 Generating routes for drivers

All vehicles that participate in the simulation have specified default routes.
A single route is a path (represented as a sequence of nodes) in the road
network represented as a directed graph G = (V,E). The first element of
that sequence is always a start point and the last element is a destination
point. The process of selecting these points is explained in the trip generation
and trip distribution steps of the transport model described in Section 5.2.
The user is able to calculate any number of routes before the start of the

simulation. It is also possible to save calculated routes and read them later
from external files.
TSF assumes by default that drivers generally choose routes that are

optimal in terms of the time required to reach a destination point. Every
edge in graph G represents some real-world street (or part of a street) which
is characterized by a distance and type. Each type of road has its own default
maximal speed (which can also be modified by the users), so it is possible
to calculate the default time required to cover any street. Thanks to that,
calculating routes can be reduced to finding a default fastest path between 2
nodes in the graph and it could be calculated in many ways. In TSF, the A∗

algorithm with a heuristic related to the real-world distance between nodes
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is implemented.
It is also worth noting that TSF has an implemented option to take

into account not default travel times, but realistic travel times that are the
outcomes of simulations. This can be particularly useful in cases where routes
are generated dynamically, on the fly, during the simulation. However, this
option was not used in the experiments performed for the purpose of this
thesis.

5.5.1.4 Editing settings of traffic signals

Traffic signals are very important in the TSF model and have also a great
impact on real traffic. The TSF’s input files contain information about the
locations of traffic signals and their settings. The locations can be obtained
from the OSM data. The default settings are loaded from a configuration file
(prepared by a user) at the start of the simulation but can be later modified
from the GUI’s level.
In TSF, all traffic signals are characterized by the following attributes:

• duration of the green phase (in simulation steps),

• duration of the red phase (in simulation steps),

• initial phase (red/green),

• offset - number of simulation steps to switch a phase.

TSF provides tools for adding, modifying, and deleting traffic signals on
the city map. All these actions can be performed just by clicking on a map
and providing attributes, like in Figure 5.3.

Figure 5.3: A form to provide traffic signal settings.

5.5.1.5 Editing distributions of start points and destination points

As discussed in Section 5.2, TSF divides the entire city map into zones. The
trip generation and trip distribution steps can be performed using the OD

85



Chapter 5: Traffic Simulation Framework

matrices read from the configuration files, but the zones can also be defined
differently. For example, in the case of Warsaw, these are by default 40× 40
square regions, each representing a 500m × 500m real-world square. In the
default setting, each zone has attributes rankstart and rankdestination that
take values from the set {0, 1, 2, 3, 4}. The rankstart parameter determines
the probability that the zone will be selected as the start zone for a newly
generated trip. Similarly, values of the parameter rankdestination implicate the
probability that the zone will be selected as the destination zone.
The probability that a zone z will be selected as a start zone is equal to
rankstart(z)∑
w∈Z rankstart(w)

, where Z is a set of zones. By analogy, the probability that a

zone z will be selected as a destination zone is equal to rankdestination(z)∑
w∈Z rankdestination(w)

.

The values of these parameters can be read from configuration files, but it
is also possible to edit them manually from the GUI level by marking chosen
zones on a map, as presented in Figure 5.4.
When generating new routes for cars, after selecting a zone as an origin

zone, TSF selects a node from that zone, giving all nodes in that zone the
same probability of being selected. The same procedure is used to select a
destination node from the selected destination zone.

Figure 5.4: A module for specifying the distribution of start zones in TSF.
The darker the color of the zone border, the higher the probability of selecting
a point from that zone as the starting point.
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5.5.1.6 Specifying monitored streets and areas

TSF provides the ability to select edges of a road network to be monitored
during the simulation. Then, in each simulation step, some data from these
edges can be collected and potentially saved to external files.
It is possible to select any single edge in the graph by marking its end

nodes on a map. The user can also select all edges from a larger area by
marking an appropriate rectangle on a map. The simulator’s GUI allows the
users to modify selected areas, give them names, display them on a map, or
delete them from the set of monitored regions. Figure 5.5 shows an example
set of monitored edges specified using TSF’s GUI.

Figure 5.5: An example set of monitored edges visible in the TSF’s GUI.

5.5.1.7 Saving simulation data

The main purpose of monitoring parts of the road network is to collect data
from simulated traffic. Specified data is stored in files and can be processed
later by external tools.
TSF can output information about “static” elements of the road net-

work (graph description, initial synchronization of traffic signals) as well as
information about the motion of all cars within the monitored regions. In
every simulation step and for every car from selected areas, TSF can save
the following information to external files:
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• Time: the current simulation step;

• CarID: the vehicle’s identifier;

• EdgeID: identifier of the edge (road) where the car is located;

• LaneID: identifier of the lane of edge EdgeID where the car is located;

• Location: distance between the car and the beginning of the edge
EdgeID;

• Speed: the current speed of the car.

5.6 Compatibility with real-world traffic

In order to ensure compatibility with real-world traffic, both the travel de-
mand model and the traffic model need to be built based on real-world data
and need to be calibrated in order to correspond well to real-world conditions.
TSF expects to load road network descriptions from the OpenStreetMap
[259], which provides a geographic database of the Earth (including road
networks) that can be road networks) that can be edited through open col-
laboration. Even though it is not fully consistent with the real road network,
and in some areas (especially underdeveloped areas) a lot of information is
missing, it gives a fairly good approximation of the real road network, es-
pecially in urban areas of developed countries. The current road network of
Warsaw in OpenStreetMap is already well-developed, but the road network
version that was used in experiments was downloaded and prepared in 2009,
so some inconsistencies exist.
The default trip generation configuration was built in 2009 for the divi-

sion into 40× 40 zones and was based on statistical data collected from GUS
[114]. In the initial trip distribution it was assumed that the number of trips
between a pair of zones is proportional to the frequency scores assigned to
both zones based on the trip generation output. For trip assignment (imple-
mented using the A* algorithm) and the traffic model, there was no analysis
of compatibility with real-world traffic performed, as there was no such data
(like traffic volume measurements and real trajectories of drive in Warsaw)
available to the author of the thesis at the time of building the initial model.
It cannot be definitively asserted that the initial version of TSF generates
realistic traffic data, as there is no empirical evidence to support this claim.
However, feedback from Warsaw residents who frequently drive in the city
indicated that the TSF accurately replicates traffic congestion patterns and
is consistent with observed traffic conditions in real-world locations [355].
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The later works on TSF carried out in collaboration with W. Chmiel
([58]) introduced zones compatible with the zones used in traffic analysis by
road authorities in Warsaw that were designed based on the results of the
traffic study carried out in Warsaw in 2005. These designs were shared by
urban road authorities in Warsaw with the author of TSF along with OD
matrices from 2005 and 2010 and traffic volume measurements from 2012
and 2013. Thanks to that, it was possible to carry out calibration of the OD
matrices to mimic traffic conditions based on traffic volume measurements
from 2012 and 2013. As a result, it was possible to achieve values of the GEH
statistic (which is a measure used in the field of transportation planning and
traffic engineering to compare observed traffic counts with model-estimated
traffic flows [334]) below 5 for the 85th percentile of measurement points[58].
It was also concluded that the main sources of differences were the outdated
OSM data and the lack of the trip matrix and traffic volume data from the
same year.

It is important to acknowledge that the results obtained from research
conducted using TSF may not be directly applicable to real-world situa-
tions. However, this is the case for all existing traffic models as none of them
can reproduce real traffic with 100% accuracy. All results of experiments per-
formed with traffic models need to be carefully analyzed before implications
for real-world traffic scenarios can be drawn.

However, the primary objective of this thesis is to develop novel, universal
methodologies for optimizing complex processes, such as urban road traffic,
rather than identifying specific traffic signal settings or algorithms for im-
mediate real-world implementation. It is essential that the models employed
in these experiments exhibit a reasonable degree of accuracy, allowing the
developed methods to be applied to real-world scenarios following appropri-
ate calibration and availability of high-quality data. The current stage of
TSF’s development appears to fulfill these criteria, as the underlying models
are informed by existing knowledge in transportation and traffic modeling
and engineering. Additionally, the fundamental traffic model is based on a
cellular automaton, which is also a complex system. Moreover, in TSF, it
is possible to edit the road network structure or traffic signals on order to
simulate different traffic conditions and changes in the road network (e.g.,
caused by car accidents or road works). Consequently, it was assumed that
the state of TSF was adequate for conducting experiments aimed at devising
new algorithms for optimizing complex processes.
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5.7 Applications of TSF

It is important to note that despite TSF’s limited compatibility with real-
world traffic data, it has found applications beyond the scope of the research
conducted for this thesis. One contributing factor is that existing microscopic
or mesoscopic simulators often exhibit high complexity, are challenging to
use, and are designed for general traffic engineering purposes, requiring cali-
bration due to the multitude of parameters involved (and usually, the more
complex the tool is, the more parameters are involved and the more difficult
it is to calibrate the model). These tools are suitable for typical, engineer-
ing applications, but adapting these tools for atypical applications can be
difficult.
In contrast, TSF’s code was readily available to its author, making it

relatively straightforward to modify the tool to meet specific requirements
in various research projects aiming to investigate atypical scenarios and in-
novative ideas. This is also one of the reasons why TSF has found several
applications in research works carried out by the TSF’s author and other
scientists.
This section highlights a selection of TSF’s past applications in which

the author was directly involved and can provide an accurate description
of the use cases (it is important to mention that a demo version of TSF is
publicly available, which could potentially result in its application to other
use cases beyond the knowledge of TSF’s author, cf. Appendix B). Given that
the development of TSF is a by-product of the research associated with this
dissertation, it is relevant to discuss its current applications and potential
future uses.

5.7.1 Traffic Prediction Contest

“The best way to predict the future is to create it” A. Kay

One of the first applications of TSF was generating large data sets for
the contest on traffic prediction: IEEE ICDM 2010 Contest TomTom Traffic
Prediction for Intelligent GPS Navigation [355]. The contest was organized
in 2010 by researchers from the University of Warsaw and TunedIT Solutions
(with the support of TomTom International BV) as a side event of the Inter-
national Conference on Data Mining 2010 [162]. The challenge was organized
in the form of an interactive online competition consisting of three distinct
tasks:

1. Traffic congestion prediction, in an elementary setup of time series fore-
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casting: a series of measurements from 10 selected road segments were
given and the goal was to make short-term predictions of future values
based on historical ones.

2. Modeling the process of traffic jam formation during the morning peak
in the presence of roadworks, based on initial information about jams
broadcasted by radio stations. Input data contained identifiers of road
segments closed due to roadwork, accompanied by a sequence of seg-
ments where the first jams occurred. The algorithms had to predict
a sequence of segments where the next jams will occur in the nearest
future.

3. Traffic reconstruction and prediction based on real-time information
from individual drivers. Input data consisted of a stream of notifica-
tions from 1% of vehicles about their current locations in the city road
network, sent every 10 seconds. The algorithm received this stream
and had to predict the traffic congestion on selected road segments for
the next 30 minutes. Large volumes of data were involved in this task,
requiring the use of scalable data mining methods.

Competition datasets were generated by TSF which was run for many
hours to generate gigabytes of traffic data.
The contest attracted 575 participants (both teams and individuals), of

whom over 100 submitted solutions, most of them several times: the total
number of solutions was nearly 5000. Best algorithms achieved nearly 3-
fold improvement over baseline solutions in predicting traffic congestion and
jams. As tasks were independent, anyone could participate in all of them or
in a chosen one. The winning solutions were summarized in research papers
and presented at a workshop organized during the ICDM 2010 conference in
Sydney [162]. The contest was summarized in [355].

5.7.2 Acquisition of traffic-related knowledge by inter-
action with domain experts

In 2013-2015, TSF was used to acquire traffic-related knowledge by interac-
tion with domain experts. The goal of this research was to learn conceptual
levels of traffic congestion and a concept of a traffic jam at a single intersec-
tion by means of a dialog with experts.
First, 51 traffic simulations corresponding to different traffic situations

close to the intersection of streets “Banacha”, “Grójecka”, “Bitwy Warsza-
wskiej 1920 r.” were prepared using TSF (the area under investigation is
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Figure 5.6: Visualization of the investigated intersection in the TSF system.

presented in Figure 5.6, it is a place where large traffic congestion occurs
very often).
All scenarios represented 10-minute traffic simulations, with some pa-

rameters held constant across all scenarios. However, the scenarios varied in
terms of the following parameters:

1. Initial number of cars (NrOfCars parameter);

2. Number of new cars that start driving in each simulation step (NewCars
parameter);

3. Start and destination points distributions.

Five different distributions of start points (“From East”, “From West”,
“From North”, “From South”, “Uniform”), 5 different distributions of desti-
nation points (“To East”, “To West”, “To North”, “To South”, “Uniform”),
and 3 different values of the NewCars parameter (1, 3, 5) gave 75 possi-
ble simulation scenarios. 48 of them were selected for experiments assum-
ing NrOfCars = 100. In addition, for NrOfCars = 1000 and a uniform
distribution of start points and destination points, 3 more situations were
generated with 3 different values of the NewCars parameter. It gave in total
51 traffic situations that were later simulated using TSF.
Every simulation was “recorded” - TSF logged to the output files the

following data:
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Figure 5.7: Window shown to experts after every video.

• Timestamp (simulation step);

• Current car’s position (link in the road network, position within the
link, geographical longitude and latitude);

• Current car’s speed (in km/h).

The acquired information enabled the reconstruction of traffic scenarios,
which were then presented as short “visualizations” (videos) to experts as-
sessing traffic conditions. It was assumed that a single traffic signal cycle had
a constant duration of 2 minutes for all signals. Therefore, each 10-minute
scenario was composed of five parts, each lasting 2 minutes and corresponding
to a single traffic signal cycle. In total, it gave 255 traffic cases. Each of them
was evaluated by domain experts and their task was to provide information
about the traffic state in the area close to the considered intersection (in
this context, a domain expert could be anyone with experience in observing
or participating in Warsaw city traffic). 1 of 51 situations was analyzed by
all experts, while every situation from the remaining 50 was analyzed by 3
experts. After the presentation of a particular video, TSF displayed the ques-
tion:What was the traffic congestion?. Experts were prompted to respond to
the question by selecting one of five available options: Small, Medium, Large,
Traffic jam, I don’t know. The answer was given by experts using the window
presented in Figure 5.7. If the experts selected I don’t know response in the
first window, the system asked for checking the closest options by displaying
the window presented in Figure 5.8. Subsequently, the system prompted ex-
perts to provide a justification for their response in natural language. Upon
verifying the chosen answer and submitting the justification, the next video
was presented to the expert.
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Figure 5.8: Window for submitting two closest options.

The acquired answers from experts were later evaluated in 2 ways: expert-
oriented and case-oriented. In the expert-oriented evaluation, the consistency
of decisions made by a given expert was checked: from every situation, 2 cases
were selected to be labeled by an expert twice. In the case-oriented evaluation,
it was analyzed how a given case is labeled by different experts. For this
purpose, each case was labeled by 3 different experts. Also, justifications
of experts provided in natural language were analyzed and some additional
traffic properties (used by experts to make decisions) were identified. These
properties were later used to design a new series of experiments.
The experts’ answers as well as the results of the evaluation of their

consistency could be later used to assign proper labels regarding how different
traffic situations are perceived by travelers, which can find application in,
e.g., traffic information systems [354]. In addition, machine learning methods
detecting high-level traffic states (e.g., traffic jam) based on low-level traffic
data can also be used to trigger the process of reconfiguring traffic signal
settings (e.g., using metaheuristics). The details of this research can be found
in [133] and [345].

5.7.3 Modeling mobility and visualizing people’s flow
patterns in rural areas for future infrastructure
development

TSF was also used in a cross-border mobility study conducted in support
of the infrastructure development efforts of local authorities and NGOs in
the area over the Kayanga-Geba River, at the border between Senegal and
Guinea Bissau (visualized in Figure 5.9). A mobility model based on the 4-
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Figure 5.9: GUI of TSF applied to modeling mobility in the studies area at
the border between Senegal and Guinea Bissau.

step model was built for the considered area and implemented in TSF, which
was later used to calculate origin-destination matrices for the studied regions
in two cases: with and without cross-border mobility.
During the research, there was no access to information about possible

modes of transport or the exact routes (there was no such data even in Open-
StreetMap or Google Maps). Consequently, the decision was made to model
mobility using only the initial two steps of the four-step model, which facili-
tated the construction of origin-destination matrices for the study area uti-
lizing the gravity model [87, 55]. Nonetheless, with information on potential
routes available, it would be feasible to calculate travel distances consider-
ing both scenarios, with and without cross-border mobility. This could aid
in identifying optimal locations for new infrastructure development, such as
schools, hospitals, or bridges.
The details of this research can be found in [34].

5.7.4 Alternative and Prospective Future Applications

Even though TSF is still under development and its correspondence with
real traffic can be still improved, it has already found applications in various
domains.
Besides the aforementioned application of TSF, the tool has been al-

ready used in several other research works carried out by other scientists.
For example, datasets generated by TSF were used to evaluate various traffic
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prediction algorithms [291] or to detect traffic states [330]. Previous attempts
have been made to apply TSF to logistics optimization tasks, such as solving
the Vehicle Routing Problem [73] and its variants. Furthermore, there have
been efforts to simulate traffic involving connected and autonomous vehi-
cles (CAVs) and to determine optimal driving strategies for such vehicles.
However, the results of these research works have not been published yet.
In future applications, TSF could be utilized to examine the impact of

CAVs on real-world traffic or to identify optimal locations for parking or elec-
tric vehicle charging stations. Broadly, TSF has the potential to contribute
to urban design, as well as address planning and management challenges that
urban and traffic engineers currently face or will need to tackle in the near
future, particularly in the era of connected, autonomous, electric, and shared
transportation [122, 124].
The relevance of TSF is expected to increase, especially on a large scale

and in the context of CAVs, as it is easier to ensure high compatibility with
real-world traffic when vehicles are controlled by computer programs that
can be accurately simulated. Additionally, the efficient implementation of a
relatively simple traffic model in TSF allows for effective large-scale traffic
simulations using a microscopic model. Given the anticipated rise in demand
for new traffic analyses to optimize traffic management and transportation
infrastructure in the era of CAVs and electric/shared mobility, it is expected
that there might be more real-world applications of TSF. There are also
ongoing discussions and design works aiming to incorporate TSF as one of
the tools within the Polish laboratory for intelligent transportation systems,
SmartCity Lab, established in Chełm (in Poland) in March 2023 [312].
It is also worth mentioning that the research work aimed at developing

the Traffic Simulation Framework and its underlying microscopic model was
awarded the “LIDER ITS 2015” prize for the best R&D work in the field of
Intelligent Transportation Systems in Poland in 2015 [205].
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Chapter 6

Metaheuristics and other
optimization algorithms

This chapter presents an overview of metaheuristics and other popular opti-
mization algorithms, specifically emphasizing the ones employed in the exper-
iments described in this thesis. The focus is on the categorization of meta-
heuristics and the description of specific algorithms, including their pseu-
docode, hyperparameters, and applications, especially in optimizing complex
real-world processes.

6.1 Introduction

There already exist many approaches to solving optimization problems, rang-
ing from algorithms finding the exact solutions to approaches focusing on
finding near-optimal solutions. Some of the existing optimization techniques
are linear programming, quadratic programming, interior-point method, trust-
region method, conjugate-gradient methods, AI-based techniques, heuristics,
and metaheuristics [92]. All of them possess advantages and disadvantages
and the suitability of particular techniques usually depends on the particular
optimization problem, its complexity, the size of its instances, as well as con-
straints related to computational power and other resources. As explained
in Section 1.1, in the case of complex processes, the evolution of qualities of
possible solutions can be time-consuming, due to the complex systems prop-
erty of computational irreducibility, so finding the exact solution is usually
time-consuming. In addition, due to the limited accuracy of mathematical
models of real-world processes, sometimes it does not make sense to search
for the exact solution, as the solution that is optimal in a mathematical model
does not have to be optimal in the real-world setting. Therefore, applying

97



Chapter 6: Metaheuristics and other optimization algorithms

heuristics to optimize complex processes seems to be a natural approach.
As stated in [267], heuristics bring a balance of good solutions (relatively

close to global optimum) and affordable time and cost and have proven to be a
comprehensive tool to solve hard optimization problems. However, heuristics
are usually based on specific characteristics of the considered problem, which
means that they cannot be considered a universal tool, and their adaptabil-
ity to other problems is limited. Metaheuristics were designed to overcome
this drawback. They are problem-agnostic algorithms but can be adapted to
incorporate problem-specific knowledge.
Metaheuristics are optimization algorithms used to find near-optimal so-

lutions to complex optimization problems [218, 103]. Unlike traditional opti-
mization algorithms, which rely on mathematical formulas to find the optimal
solution, metaheuristics use heuristics to guide their search for solutions. This
makes them well-suited for solving problems in which the optimal solution
is difficult or impossible to determine using classical mathematical models.
Metaheuristics are also often used when the optimization problem has too
large size or is too complex to be solved by exact methods in a reasonable
time.
In order to formally formulate a metaheuristic, it is necessary to con-

sider a fitness (objective) function F evaluating the quality of solutions, a
stopping criterion C that determines when the algorithm should stop search-
ing for a better solution (e.g., a maximum number of iterations, a minimum
improvement threshold) and a transition rule mechanism T that guides the
search from the current solution to a new solution, e.g., using randomness or
adaptive techniques to balance exploration and exploitation.
The aforementioned exploration and exploitation are two fundamental

concepts in the context of metaheuristics [218]. Exploration refers to the
process of searching the solution space in a global and broad manner, focusing
on discovering new regions that have not been visited before. Exploitation, on
the other hand, refers to the process of intensively searching within a specific
region of the solution space, focusing on refining and improving the current
best solutions. Too much exploration may lead to an inefficient search, as the
algorithm may not sufficiently focus on promising regions. On the other hand,
too much exploitation may cause the algorithm to get stuck in local optima,
preventing it from finding better solutions in other regions of the search
space. Therefore, a good metaheuristic algorithm should strike a balance
between exploration and exploitation to ensure that it can effectively search
the solution space and find high-quality solutions.
Algorithm 2 presents a general description of a metaheuristic algorithm.
There is a wide variety of metaheuristics and a number of properties

by which they can be classified. The following subsections contain examples
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Algorithm 2 General Metaheuristic Algorithm
Require: Fitness function F ; stopping criterion C; transition rule T ;
1: Initialize the search space S and the objective function F ;
2: Generate the set of initial solutions X ⊂ S;
3: Evaluate the objective function F on elements from X;
4: Set xbest to the best solution (with respect to F ) from X;
5: while stopping criterion C is not met do
6: Generate a set of new candidate solutions X ′ using the transition rule
T from the current set of solution X;

7: Evaluate the objective function F on elements from X ′;
8: Replace the current set of solutions X with X ′;
9: if X contains a better solution than xbest then
10: Update xbest;
11: end if
12: end while
13: return xbest;

of popular classifications of metaheuristics (based on [30], [362]). They are
then followed by sections summarizing some important metaheuristics and
optimization algorithms that were applied in the research presented in this
thesis. Each section contains a description of the algorithm and presents
its pseudocode and hyperparameters (tunable parameters used to control
the algorithms and set before their execution). A comprehensive overview of
metaheuristics can be also found in, e.g., [92, 267, 218, 61].

6.1.1 Local search vs. global search

Local search algorithms aim to improve a solution incrementally by making
small changes to it. The algorithm moves from one solution to another in
the vicinity of the current solution in the hope of finding a better one. An
example of local search algorithms is Hill Climbing (Section 6.8).
On the other hand, global search algorithms aim to find the global op-

timum by exploring a large region of the search space. Genetic Algorithms
(Section 6.2), CMA-ES (Section 6.6) and Particle Swarm Optimization (Sec-
tion 6.3) are examples of global search algorithms.
The choice between local search and global search algorithms depends on

the nature of the optimization problem being solved. In general, local search
algorithms are well suited for problems where the solution space is smooth
and unimodal (i.e., there is only one solution that provides the best possible
outcome for the given problem, and all other solutions are relatively inferior),
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while global search algorithms are better for problems with multimodal solu-
tion spaces (in which there are multiple optimal solutions) or a high degree
of randomness.

6.1.2 Individual-based vs. population-based

Individual-based metaheuristics work with a single candidate solution at a
time and update this solution to improve it [30]. The algorithms typically use
local search methods to incrementally improve the candidate solution. These
approaches can be more efficient in finding the optimal solution (compared
to population-based approaches), but they may be limited in their ability to
explore the solution space and find multiple, potentially optimal solutions.
Examples of individual-based metaheuristics are Hill Climbing (Section 6.8)
and Simulated Annealing (Section 6.5).
On the other hand, population-based metaheuristics, maintain a set of

candidate solutions (population) and use this population to guide the search
for the optimal solution [30]. The population can be evolved over time through
various operations, such as selection, crossover, and mutation, to generate
new candidate solutions. The population-based approach allows for the ex-
ploration of the solution space and enables the algorithms to find multiple,
potentially optimal solutions. Examples of population-based metaheuristics
are Genetic Algorithms (Section 6.2), CMA-ES (Section 6.6), and Particle
Swarm Optimization (Section 6.3).
Population-based metaheuristics are more suitable for problems with com-

plex, multimodal solution spaces, while individual-based metaheuristics are
more appropriate for problems with simple, smooth solution spaces.

6.1.3 Deterministic vs. stochastic

Deterministic metaheuristics are algorithms that always produce the same
result given the same input and conditions, whereas stochastic metaheuristics
are algorithms that involve a random component and may produce different
results each time they are run with the same input and conditions.
Stochastic metaheuristics are often preferred for solving optimization

problems because they are able to escape local optima and find the global
optimum more efficiently than deterministic metaheuristics. Some commonly
used stochastic metaheuristics are Genetic Algorithms (Section 6.2) and Sim-
ulated Annealing (Section 6.5).
On the other hand, deterministic metaheuristics are generally simpler

and easier to understand, and they can often be used as building blocks for
more complex algorithms. A commonly used deterministic metaheuristic is
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Hill Climbing (Section 6.8) assuming that the initial state is given. How-
ever, in this case, the initial states are often generated randomly which can
significantly impact the outcome.

6.1.4 Dynamic vs. static objective function

Usually, metaheuristics keep the objective function given in the problem rep-
resentation static (“as it is”), but some algorithms, like Guided Local Search
[342] modify the objective function during the search [30]. The motivation be-
hind this approach is to escape from local minima and plateaus by modifying
the search landscape. Accordingly, during the search, the objective function
can be dynamically altered by trying to incorporate information collected
during the search process.

6.1.5 Single-objective vs. multi-objective

Single-objective optimization involves finding the optimal solution for a single
objective or criterion, such as minimizing the cost of a project, maximizing
the profit, and minimizing the time of travel [362].
On the other hand, multi-objective optimization involves finding the op-

timal solution for multiple, often conflicting, objectives [362]. The goal is
to find a set of solutions that are optimal with respect to multiple criteria,
such as minimizing cost and maximizing profit. In multi-objective optimiza-
tion, there is usually no single solution that is optimal for all objectives, and
the optimization process results in a set of trade-off solutions that represent
different compromises between the objectives.
Multi-objective optimization algorithms can be further classified into two

categories: Pareto-based and non-Pareto-based [12]. Pareto-based algorithms
aim to find the Pareto front, which is a set of non-dominated solutions in
which no objective can be improved without negatively affecting other ob-
jectives. Non-Pareto-based algorithms aim to find a single solution that is
a compromise between the objectives, e.g., by using a function that maps
multiple objectives to a single scalar value.

6.1.6 Continuous optimization vs. discrete optimiza-
tion

Continuous optimization and discrete optimization refer to the type of vari-
ables being optimized in a problem [103]. In continuous optimization, the
variables are real numbers and the solution space is continuous. In discrete
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optimization, the variables are discrete, meaning they can only take certain
values from a finite or countable set [103].
For continuous optimization, some popular metaheuristics include Parti-

cle Swarm Optimization (Section 6.3) and CMA-ES (Section 6.6).
For discrete optimization, some popular metaheuristics are Simulated An-

nealing (Section 6.5) and Genetic Algorithms (Section 6.2).
In the case of complex systems considered in this dissertation, optimiza-

tion problems are usually defined as discrete optimization problems, but due
to applications of surrogate models (which are continuous), continuous opti-
mization is applied as well.

6.2 Genetic algorithms

6.2.1 Algorithm’s description

Genetic algorithms (GAs) are metaheuristics based on the mechanisms of
natural selection and genetics [236]. They are often used for solving discrete
optimization problems in different fields of computer science and engineer-
ing, from scheduling and routing problems to design and parameter tuning
problems.
The basic idea behind GAs is to encode potential solutions to a prob-

lem as chromosomes in a population and to evolve this population over time
through the application of genetic operators: selection, crossover, and muta-
tion. These operators (and their hyperparameters), together with the size of
the population and stopping criterion, are considered as hyperparameters of
GAs.

6.2.2 Algorithm’s hyperparameters

The key hyperparameters of GAs are [236, 74]:

• The size of the initial population: It determines how many chromo-
somes (encoding potential solutions) should be considered in a single
population/iteration of the algorithm.

• Stopping criterion: It determines when the genetic algorithm should be
stopped. It can be based on, e.g., the number of iterations, the quality
of the found solution, or the pace of convergence.

• Selection operator: It specifies the process of choosing the best chro-
mosomes from the current population to serve as parents for the next
generation.
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• Crossover operator: It specifies the process of combining the genetic
information of two parent chromosomes (chosen from the chromosomes
selected from the previous population using a selection operator) to
create new offspring chromosomes.

• Mutation operator: It specifies the process of randomly changing the
genetic information of a chromosome.

• Elitism: The number of top-performing solutions that are preserved
from one generation to the next. This hyperparameter controls the
trade-off between exploration and exploitation in GAs. By preserving
the best solutions, elitism ensures that the algorithm does not lose sight
of promising regions of the solution space, while still allowing for the
exploration and improvement of candidate solutions.

Selection is the process of choosing the best chromosomes from the current
population to serve as parents for the next generation. The best chromosomes
are typically chosen based on their fitness, which is a measure of how well
they solve the problem at hand. The most popular selection operators used
in GAs and in this dissertation are:

• Roulette wheel selection (or fitness proportional selection): This oper-
ator assigns a probability to each chromosome based on its fitness, and
a chromosome is then selected based on this probability. The chromo-
somes with higher fitness have a higher probability of being selected.

• Tournament selection: This operator involves running several “tourna-
ments” among a few chromosomes chosen at random from the popu-
lation. The winner of each tournament is selected for crossover. There
might be several ways of selecting the winner. It can be the one with the
best value of the fitness function or the decision can be non-deterministic,
e.g., based on the roulette wheel selection. Another option is to order
the chromosomes into a ranking according to their fitness function and
select the chromosome from the position rank as a winner with a prob-
ability (1− P )rank−1 × P , for a given probability P ∈ (0, 1).

• Rank selection: The chromosomes in the population are sorted accord-
ing to their fitness, and assigned a rank based on their position in the
sorted list. Chromosomes are then selected based on their rank, with
higher-ranked chromosomes having a greater probability of selection.

• N -best selection: selecting N best chromosomes sorted according to
their fitness.
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Crossover is the process of combining the genetic information of two par-
ent chromosomes (chosen from the chromosomes selected from the previous
population using a selection operator) to create new offspring chromosomes.
The most popular crossover operators that are also used in this dissertation
are:

• Single point crossover: This operator selects a single point in the chro-
mosomes and exchanges the genetic information of the parent chromo-
somes beyond that point to create two offspring chromosomes.

• Two-point crossover: This operator selects two points in the chromo-
somes and exchanges the genetic information of the parent chromo-
somes between those two points to create two offspring chromosomes.

• Uniform crossover: This operator randomly selects bits or elements from
two parent chromosomes to create the offspring chromosomes (typically,
each bit is chosen from either parent with equal probability and the
operator produces two child chromosomes). This results in a mix of
genetic information from both parent chromosomes in the offspring.

Mutation is the process of randomly changing the genetic information of
a chromosome. This allows for the exploration of new solutions and helps
prevent the population from becoming stuck in a local optimum. Here are
some common mutation operators used in genetic algorithms:

• Uniform mutation: Randomly selecting an element in a chromosome
and replacing it with a random value.

• Gaussian mutation: Adding a random value generated from a Gaussian
distribution to an element in a chromosome.

• Scramble mutation: Randomly rearranging the elements in a portion
of a chromosome.

• Inversion mutation: Reversing the order of elements in a portion of a
chromosome.

• Swap mutation: Swapping the positions of two randomly selected ele-
ments in a chromosome.

6.2.3 Algorithm’s pseudocode

Algorithm 3 presents a pseudocode of the Genetic Algorithm.
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Algorithm 3 Pseudocode of the Genetic Algorithm
Require: Fitness function F ; stopping criterion C; selection, crossover, mu-
tation operators;

1: Initialize the population of candidate solutions P ;
2: Evaluate the fitness F (x) of each candidate solution x ∈ P ;
3: while C is not met do
4: Select a subset of the current population using a selection method for
further reproduction (optionally, preserve some of the best-performing
chromosomes);

5: Apply crossover and mutation to generate a new population R;
6: Replace the old population with R;
7: Evaluate the fitness F (x) of each new candidate solution x from the
current population;

8: end while
9: return the best candidate solution from the final population;

6.3 Particle Swarm Optimization

6.3.1 Algorithm’s description

Particle Swarm Optimization (PSO) is a heuristic optimization algorithm
inspired by the social behavior of bird flocking or fish schooling [180]. It
is a population-based optimization algorithm that seeks to find the global
optimum of a search space by updating the positions of a set of particles.
Each particle represents a candidate solution to the optimization problem.
In PSO, each particle has a position in the search space and a velocity

that reflects its movement from one position to another. The velocity of each
particle is updated based on its own best-known position (pbest) and the
best-known position of all particles in the swarm (gbest). The new velocity
and position of a particle are then updated using a weighted combination
of its current velocity, pbest, and gbest. This process is repeated iteratively
until a stopping criterion is met.
There are 2 types of updating the positions and velocities of particles [86]:

• Global-best (each particle updates its velocity and position based on
the best position found by any particle in the swarm so far);

• Local-best (each particle updates its velocity and position based on
the best position it has found so far as well as the global best position
found in a group of particles that are local for that particle).
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In the case of the global-best update, the velocity of each particle i at
time t+ 1 is given by:

vi(t+ 1) = w · vi(t) + c1 · r1 · (besti − xi(t)) + c2 · r2 · (gbest − xi(t)), (6.1)

where:

• vi(t) is the velocity of particle i at time t;

• w is the inertia weight, which determines how much the particle’s ve-
locity is affected by its previous velocity;

• c1 is the cognitive acceleration coefficient;

• c2 is the social acceleration coefficient;

• r1 and r2 are random numbers generated between 0 and 1;

• besti is the particle’s own best position found so far;

• xi(t) is the current position of particle i at time t;

• gbest is the global best position found by the entire swarm.

In the case of the local-best update, the update formula for the velocity
of each particle i at time t+ 1 is given by:

vi(t+ 1) = w · vi(t) + c1 · r1 · (besti − xi(t)) + c2 · r2 · (lbest − xi(t)), (6.2)

where lbest is the local best position found by a group of particles, while the
other symbols have the same meaning as for the global-best update.
In both cases, the updated position of each particle i at time t+1 is given

by:
xi(t+ 1) = xi(t) + vi(t+ 1). (6.3)

PSO is simple to implement, computationally efficient, and has been
shown to be effective for a wide range of optimization problems, including
continuous optimization, combinatorial optimization, and multi-objective op-
timization. However, PSO can be sensitive to the choice of parameters and
may converge to suboptimal solutions if the parameters are not properly set.
Selecting PSO parameters that yield good performance has therefore been
the subject of extensive research [304].
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6.3.2 Algorithm’s hyperparameters

The key hyperparameters of the PSO algorithm are [180, 304, 368]:

• Swarm size (denoted in this thesis as n): The number of particles in
the swarm.

• Termination criterion: It defines when the optimization process should
stop.

• Cognitive acceleration coefficient (denoted in this thesis as c1): It con-
trols the particle’s tendency to follow its best historical position.

• Social acceleration coefficient (denoted in this thesis as c2): It controls
the particle’s tendency to follow the swarm’s global best position.

• Inertia weight (denoted in this thesis as w): It determines how much
the particle’s velocity is affected by its previous velocity.

• Way of updating a particle’s position in the search space: Global-best
or local-best PSO [86].

• Number of neighbors to be considered (denoted in this thesis as k) in
the case of the local − best approach.

• Amethod for computing distance between particles (used only for local-
best): It can be, e.g., L2 (Euclidean distance) or L1 (Manhattan dis-
tance).

• Maximum velocity: It sets an upper limit on the particle’s velocity.

6.3.3 Algorithm’s pseudocode

Algorithm 4 presents a pseudocode of the PSO algorithm.

6.4 Tabu search

6.4.1 Algorithm’s description

Tabu Search is a metaheuristic optimization algorithm that is used to find
the global optimum solution for combinatorial optimization problems. It was
first proposed by Fred W. Glover in 1986 [111] and formalized in 1989 [112].
The algorithm works by maintaining a list of “tabu” or forbidden solu-

tions, which helps to prevent the algorithm from getting trapped in a local
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Algorithm 4 Pseudocode of the Particle Swarm Optimization algorithm
Require: Fitness function F ; stopping criterion C;
1: Initialize the particle positions and velocities xi and vi;
2: Initialize the best individual positions besti;
3: Initialize the global best position gbest;
4: while C is not met do
5: for each particle i do
6: Update the velocity vi using equation 6.1 (or 6.2);
7: Update the position xi using equation 6.3;
8: if F (xi) is better than F (besti) then
9: Update the best individual position besti ← xi;
10: end if
11: if F (xi) is better than F (gbest) then
12: Update the global best position gbest ← xi;
13: end if
14: end for
15: end while
16: return the global best position gbest;

optimum. The idea is to encourage the algorithm to explore new solutions
and move toward the global optimum.
Tabu Search operates in iterations, where at each iteration a set of new

solutions is generated based on the current solution and the tabu list. The
new solutions are then evaluated and the best of them that was not in the
tabu list becomes the new current solution and is added to the tabu list.
Also, if it is better than the best solution found so far, the best solution is
updated too. Even if the new solution is not better than the current solution,
it still becomes the new current solution, allowing the algorithm to escape
from a local optimum. Tabu lists are usually implemented as finite, but they
can also be considered infinite. Also, in addition to the points added to the
tabu list, the points from their neighborhood can also be added to the tabu
list. If the tabu list is too large, the oldest candidate solution is removed and
it is no longer tabu and can be reconsidered.
The key elements of Tabu Search are the method of generating new can-

didate solutions, the way of updating the tabu list, and the mechanism for
accepting new solutions. The performance of Tabu Search depends on these
elements and their implementation, as well as the size of the tabu list and
the criteria for updating it.
There are many variants of the basic tabu search algorithm that have

been developed over the years. Some of the most commonly used variants:
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• Short-Term Memory Tabu Search (STM-TS) [243]: In this variant, the
tabu list is updated after each iteration, with the length of the tabu list
being kept short to allow the algorithm to adapt quickly to changing
conditions in the search space.

• Long-Term Memory Tabu Search (LTM-TS) [344]: In this variant, the
tabu list is updated less frequently, and the length of the tabu list is
longer than in STM-TS. Thanks to that, the algorithm can better ex-
ploit the knowledge gained during the search process, enhancing its
ability to escape local optima and explore different areas of the solu-
tion space. Long-term memory can be also combined with short-term
memory (as in STM-TS). This variant is typically used for optimization
problems where the search space is large and the optimum solution is
likely to be far from the starting point.

• Scatter Tabu Search (STS) [241]: In this variant, Tabu Search is com-
bined with scatter search [223], a population-based optimization algo-
rithm, to create a hybrid optimization algorithm that balances explo-
ration and exploitation. The basic idea behind STS is to maintain mul-
tiple solution candidates called “elite solutions” throughout the search
process. These elite solutions represent diverse areas of the search space
and help in exploring different regions of the problem.

• Reactive Tabu Search (RTS) [19]: In this variant, the length of the tabu
list is updated dynamically during the optimization process, allowing
the algorithm to adapt to changing conditions in the search space.

• Adaptive Memory Tabu Search (AMTS) [113]: In this variant, the size
and content of the tabu list are adapted dynamically during the op-
timization process, allowing the algorithm to balance exploration and
exploitation.

6.4.2 Algorithm’s hyperparameters

Based on [111, 112], the key hyperparameters of the Tabu Search algorithm
are:

• Tabu list length: determines the number of previously visited solutions
that are marked as “tabu”.

• Tabu tenure: the number of iterations that a move stays in the Tabu
List.
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• The method for generating new candidate solutions: determines the set
of candidate solutions that are generated from the current solution.

• Aspiration criteria: it is an optional hyperparameter which allows spe-
cific tabu moves to be accepted if they lead to improvements that exceed
a certain threshold.

• Maximum number of iterations: determines the maximum number of
iterations that the algorithm should run before terminating.

6.4.3 Algorithm’s pseudocode

Algorithm 5 presents a pseudocode of the Tabu Search algorithm.

Algorithm 5 Pseudocode of the Tabu Search algorithm
Require: Fitness function F ; stopping criterion C; method for generating a
set of candidate solutions G; Desired maximum tabu list length L;

1: Initialize the current solution x;
2: Initialize the best solution best as x;
3: Initialize the tabu list T as a list containing x;
4: while C is not met do
5: Generate a set of candidate solutions N from x using G;
6: Evaluate the fitness function F for each candidate solution in N ;
7: Identify the best candidate solution S that is not in the tabu list T ;
8: if S is better than the best solution best then
9: best← S;
10: end if
11: Update the tabu list T by adding S and removing the oldest element

if the maximum length was achieved;
12: end while
13: return the best solution best;
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6.5 Simulated annealing

6.5.1 Algorithm’s description

Simulated Annealing (SA) is a probabilistic optimization technique inspired
by the annealing process in metallurgy, where a metal is slowly cooled to
reduce its defects and increase its stability. Similarly, in SA the algorithm
slowly reduces the temperature to allow the solution to converge to an opti-
mum [185].
SA is commonly used when the solution space is large or when the func-

tion being optimized has many local minima. Unlike other optimization tech-
niques that can get stuck in local minima, SA has a chance of jumping out
of a local minimum and finding the global minimum.
The algorithm works by randomly perturbing the current solution and

evaluating the cost of the new solution. If the cost of the new solution is better
than the current solution, the new solution becomes the current solution.
If the cost of the new solution is worse, it is still accepted with a certain
probability that depends on the temperature. As the temperature decreases,
the probability of accepting worse solutions also decreases.
The temperature schedule used in SA is crucial to the success of the

optimization. If the temperature decreases too quickly, the algorithm may
converge to a local minimum before reaching the optimum. If the temperature
decreases too slowly, the algorithm may not converge at all.
SA is widely used in various fields, such as machine learning, computer

graphics, logistics, and engineering design.

6.5.2 Algorithm’s hyperparameters

The key hyperparameters of SA are [185, 319]:

• Initial temperature: It determines the initial level of exploration. A
high initial temperature results in a higher acceptance rate of worse
solutions, allowing the algorithm to explore more of the solution space.
A low initial temperature results in a lower acceptance rate of worse
solutions, leading to faster convergence.

• Stopping criterion: It determines when the algorithm should stop. Com-
mon stopping criteria include reaching a certain temperature, reaching
a maximum number of iterations, or reaching a desired level of accu-
racy.
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• Final temperature (if used in a stopping criterion): It determines the
final level of exploration, i.e., how much the optimization process will
converge to a minimum solution. A lower final temperature leads to
faster convergence. However, setting the final temperature too low may
result in premature convergence to a suboptimal solution.

• Cooling schedule: It determines how the temperature decreases over
time. A fast cooling schedule results in faster convergence but can cause
the algorithm to get stuck in a local minimum. A slow cooling schedule
results in a higher probability of finding the global minimum but can
be computationally expensive. The cooling schedule can be, e.g., a geo-
metric cooling (Tk+1 = α∗Tk, where α is a cooling rate and Tk, Tk+1 are
temperatures in consecutive steps), or a linear cooling (Tk+1 = Tk−δT ,
where δT is a positive constant value).

• Acceptance function: It determines the probability of accepting a worse
solution. The most common acceptance function used in SA is the
Boltzmann acceptance function [185], which takes into account both
the current temperature (T ) and the difference in cost between the
current solution and the new solution (∆E): P (accept) = exp

(
−∆E
T

)
.

• Neighborhood function: The neighborhood function defines how the
solution space is sampled.

• Number of different starting points: different starting points may lead
to totally different solutions, so it is good to run simulated annealing
several times starting from different points.

6.5.3 Algorithm’s pseudocode

Algorithm 6 presents a pseudocode of the Simulated Annealing:
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Algorithm 6 Pseudocode of the Simulated Annealing algorithm
Require: Initial solution x; initial temperature T ; cooling schedule S; stop-
ping criterion C; number of iterations N ; fitness function F ; function G
returning a neighbourhood G(x) of a given solution x;

1: best← x;
2: k ← 0;
3: while C is not met and k < N do
4: Select a new solution x′ from (G(x));
5: Calculate ∆E = F (x′)− F (x);
6: if ∆E < 0 then
7: x← x′;
8: if F (x) < F (best) then
9: best← x;
10: end if
11: else
12: p← exp(−∆E/T );
13: Randomly generate r ∈ [0, 1];
14: if r < p then
15: x← x′;
16: end if
17: end if
18: update T according to the cooling schedule S;
19: k ← k + 1;
20: end while
21: return best;

6.6 Covariance Matrix Adaptation Evolution
Strategy

6.6.1 Algorithm’s description

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a population-
based optimization algorithm that is commonly used for solving high-dimen-
sional, non-linear, and non-convex optimization problems [141]. It is a type of
evolutionary algorithm that is based on the principles of evolution and nat-
ural selection, similar to genetic algorithms (Section 6.2). The algorithm is
well suited for problems where the objective function is expensive to evaluate,
as it requires relatively few function evaluations to find a good solution.
CMA-ES works by generating a population of candidate solutions and
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iteratively improving them based on their fitness. The algorithm maintains
a covariance matrix that describes the distribution of the solutions in the
population and uses this matrix to generate new solutions in each iteration.
The covariance matrix is updated in each iteration based on the results of
the objective function evaluations, allowing the algorithm to adapt to the
underlying structure of the problem and effectively search for a global opti-
mum.
CMA-ES has several key features that make it well-suited for many opti-

mization problems. One of the key advantages of the algorithm is that it can
effectively handle problems in which the parameter space has a high degree of
correlation between the parameters. The algorithm can also handle problems
with noisy objective functions, as it is robust to the presence of measure-
ment noise. Additionally, CMA-ES is highly scalable, making it well-suited
for large-scale optimization problems.
A more detailed description of CMA-ES can be found in, e.g., [141, 140].

6.6.2 Algorithm’s hyperparameters

The key hyperparameters of the CMA-ES algorithm are:

• Population Size: It determines the number of candidate solutions that
are generated in each iteration of the optimization. Larger population
size can lead to better exploration of the search space but also requires
more computational resources.

• Stopping Criterion: It specifies the conditions under which the opti-
mization process will terminate. Common termination criteria include
reaching a certain tolerance, achieving a specific value for the cost func-
tion, or reaching a maximum number of iterations.

• Initial Covariance Matrix: It is a user-defined matrix that determines
the initial distribution of candidate solutions in the population. The
choice of the initial covariance matrix can have a significant impact on
the performance of the optimization.

• Initial Mean Vector: Represents the starting point of the search in the
solution space.

• Offspring Size: The number of selected points from the population that
will be used to update the mean and covariance matrix.

• Step Size: It determines the scale of the mutations that are applied to
the candidate solutions in each iteration. A larger step size can lead
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to faster convergence but may also result in premature convergence to
suboptimal solutions.

• c1: Learning rate for the rank-one update of the covariance matrix
update - It is used to control the step size of the rank-one update [204]
of the covariance matrix and determines how much the rank-one update
contributes to the overall covariance matrix update.

• cµ: Learning rate for the rank−µ update [191] of the covariance matrix
update.

6.6.3 Algorithm’s pseudocode

Algorithm 7 presents a pseudocode of the CMA-ES algorithm.

Algorithm 7 Pseudocode of the CMA-ES algorithm
Require: Fitness function F ; stopping criterion C; population size λ; selec-
tion size µ; initial mean vector m; initial covariance matrix CM ; initial
step size σ;

1: while C is not met do
2: for i = 1, 2, . . . , λ do
3: Sample zi ∼ N (0, CM);
4: Compute xi = m+ σzi;
5: end for
6: for i = 1, 2, . . . , λ do
7: Evaluate fitness F (xi);
8: end for
9: Sort offspring by fitness and select top µ points x1:µ;
10: Update mean m = 1

µ

∑µ
i=1 xi;

11: Update covariance matrix C;
12: Update step size σ;
13: end while
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6.7 Memetic Algorithms

6.7.1 Algorithm’s description

Memetic Algorithms are a class of optimization algorithms that combine
genetic algorithms and local search methods [67]. They are called “memetic”
because the algorithms work by maintaining a population of solutions, similar
to Genetic Algorithms, while also allowing individual solutions to be refined
through local search methods, similar to a cultural evolution process where
new knowledge and techniques are passed down through generations.
A Memetic Algorithm typically consists of the following steps:

• Initialization: A population of possible solutions is generated, typically
using random sampling or a heuristic method.

• Fitness Evaluation: The “fitness” of each solution in the population is
evaluated.

• Selection: A subset of the fittest solutions is selected for further refine-
ment.

• Local Search: The selected solutions are refined using a local search
method, such as gradient descent or simulated annealing.

• Mutation: New solutions are generated by mutating the refined solu-
tions or by combining solutions from the population through a crossover.

• Repeat: The process of fitness evaluation, selection, local search, and
mutation is repeated until a stopping criterion is met, such as a maxi-
mum number of iterations or a desired level of performance.

The key advantage of Memetic Algorithms over traditional Genetic Algo-
rithms is the ability to perform local searches on individual solutions, allowing
for more effective exploration and exploitation of the search space. This can
result in faster convergence to the optimal solution and improved solution
quality.

6.7.2 Algorithm’s hyperparameters

The key hyperparameters of the Memetic Algorithm are [67, 248]:

• Population size: The number of potential solutions in the population.
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• Selection mechanism: The method used to choose individuals for repro-
duction, such as tournament selection, roulette wheel selection, etc.

• Crossover operator: The method used to combine parent solutions to
generate offspring, such as one-point crossover, uniform crossover, etc.

• Mutation operator: The method used to modify offspring solutions
(similar to genetic algorithms), such as uniform mutation, or swap mu-
tation.

• Mutation probability: The probability of applying the mutation oper-
ator to modify an offspring solution.

• Local search heuristic: The specific local search method used to improve
individual solutions, such as hill climbing, simulated annealing, or tabu
search.

• Elitism: The number of top-performing solutions that are preserved
from one generation to the next. This hyperparameter controls the
trade-off between exploration and exploitation in memetic algorithms.
By preserving the best solutions, elitism ensures that the algorithm
does not lose sight of promising regions of the solution space, while still
allowing for the exploration and improvement of candidate solutions.

• Stopping criterion: The conditions determine when the algorithm should
stop.

6.7.3 Algorithm’s pseudocode

Algorithm 8 presents a pseudocode of the Memetic Algorithm.

6.8 Hill Climbing

6.8.1 Algorithm’s description

The Hill Climbing algorithm belongs to the family of local search algorithms.
It starts with an arbitrary solution to a problem and then attempts to find a
better solution by making an incremental change to the solution. The algo-
rithm employs a greedy approach, which means that the movement through
the space of solutions always occurs in the sense of improving the value of
the objective function [290].
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Algorithm 8 Pseudocode of the Memetic Algorithm
Require: Fitness function F ; stopping criterion C; selection, crossover, mu-
tation operators, local search heuristic;

1: Initialize the population of candidate solutions P ;
2: Evaluate the fitness F (x) of each candidate solution x ∈ P ;
3: while C is not met do
4: Select a subset of the current population using a selection method for
further reproduction (optionally, preserve some of the best-performing
chromosomes);

5: Apply crossover and mutation operators to generate a new population;
6: Perform local search on representatives of the new population to im-
prove their quality and obtain a new population R;

7: Evaluate the fitness F (x) of each new candidate solution x from the
current population R;

8: end while
9: return the best solution found;

6.8.2 Algorithm’s hyperparameters

The performance of the Hill Climbing algorithm can be affected by the choice
of the starting point of the algorithm. That is why it is often recommended
to repeat the algorithm multiple times with different starting points. One can
also impose a limit on the number of iterations in order to find a suboptimal
solution within a certain time limit.

6.8.3 Algorithm’s pseudocode

Algorithm 9 presents a pseudocode of the Hill Climbing algorithm.

6.9 Quantum metaheuristics

Besides classical metaheuristics, it is also good to mention the emerging field
of quantum metaheuristics that combines principles from quantum comput-
ing with metaheuristic algorithms. In order to process information, quantum
computing uses qubits which can exist in multiple states simultaneously, and
computations can be performed thanks to taking advantage of quantum me-
chanical phenomena such as superposition or quantum entanglement. Even
though contemporary quantum computers are still relatively small and noisy
and their current and potential advantage over classical computers is still
questionable, it is expected that they could solve some classes of problems
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Algorithm 9 Pseudocode of the Hill Climbing algorithm
Require: Stopping criterion C; fitness function F that should be optimized;
initial candidate solution x;
while C is not met do
x′ ← neighbor of x with the best value of F ;
if F (x′) is better than F (x) then
x← x′;
else
return x;
end if
end while
return x;

faster or better than classical computers. Among examples of such applica-
tions, one can distinguish factorization, simulating chemical reactions and
quantum mechanical phenomena, sampling from certain distributions, and
solving combinatorial optimization problems. The last class of problems is
the one in which quantum metaheuristics are being especially explored. There
are already quantum (or hybrid: quantum-classical) variants of many classi-
cal algorithms, like Quantum Particle Swarm Optimization [213], Quantum
Ant Colony Optimization [107], Quantum Genetic Algorithms [360].
There is also the Quantum Annealing approach which can be also consid-

ered a metaheuristic [173]. The core idea is to map an optimization problem
onto the physical architecture, which consists of physical qubits arranged in a
lattice and interacting through couplers. The optimization problem must be
encoded in the form of an Ising Hamiltonian, which describes the energy land-
scape of the optimization problem, and the goal is to find the ground state of
this Hamiltonian, corresponding to the optimal solution. The Ising Hamilto-
nian corresponds to the mathematical formulation called QUBO (Quadratic
Unconstrained Binary Optimization), which expresses the objective function
of the optimization problem as a quadratic polynomial in the binary vari-
ables. When an optimization problem can be represented as a QUBO, it
is possible to map it onto the physical architecture of a quantum anneal-
ing machine, where the energy of the quantum system composed of qubits
corresponds to an Ising Hamiltonian formulation.
The Quantum Annealing process starts with the qubits initialized in a

simple quantum state (e.g., superposition of all possible states), which can
be considered an initial solution. Then, the Hamiltonian of the quantum
system is gradually changed (by modifying the strength of the magnetic
field) from an initial, simple Hamiltonian, to the Ising Hamiltonian encoding
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the optimization problem. This gradual change is controlled by a parameter
called the annealing schedule, which starts at a large value favoring the initial
Hamiltonian and gradually decreases to a smaller value favoring the Ising
Hamiltonian.
During the annealing process, the algorithm leverages quantum tunnel-

ing, superposition, and entanglement to explore the energy landscape of the
optimization problem. Quantum tunneling enables the system to escape lo-
cal minima and explore different regions of the energy landscape. Through
superposition, Quantum Annealing can explore multiple potential solutions
simultaneously. Entanglement further enhances this exploration by establish-
ing correlations between qubits, enabling them to collectively contribute to
the search process.
Upon completion of the annealing process, the solution can be read out by

measuring the qubits in their final state. In theory, the read solution should
correspond to the ground state (optimal solution) of the Ising Hamiltonian
and the solution of the optimization problem. However, in practice, achieving
the ground state is challenging due to specific requirements on the annealing
process that are difficult to fulfill. For example, the annealing process needs
to be slow enough to allow the system to adiabatically evolve and stay close to
the ground state. Nevertheless, there are time constraints and the annealing
process is often faster than ideal, which can result in the system getting
trapped in local minima or excited states. Also, quantum annealing machines
are highly sensitive to external noise and imperfections, which can introduce
errors in the computation and affect the coherence of the qubits. Decoherence
can cause the system to deviate from the ground state, leading to suboptimal
solutions.
As a consequence, Quantum Annealing often results in suboptimal solu-

tions, which is why it is considered a metaheuristic rather than an exact al-
gorithm. Nonetheless, Quantum Annealing can still provide valuable insights
and solutions for various optimization problems, especially when combined
with other optimization methods.
Even though there are still open discussions regarding the capabilities of

the existing quantum annealers (like the D-Wave’s machine [196]), it is good
to emphasize that there are already theoretical works and experiments show-
ing how it could be applied to solve combinatorial optimization problems
related to complex processes, e.g., in transportation. For example, in 2017,
researchers from D-Wave and Volkswagen showed how to apply quantum an-
nealing to optimize the route assignment for a fleet of taxis and reduce traffic
jams, as a consequence [250]. There are also many research works on applying
Quantum Annealing to solve the Travelling Salesman Problem, the Vehicle
Routing Problem and its variants, and a team of researchers led by the au-
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thor of this thesis also contributed to that field by proposing new quantum
and hybrid (quantum-classical) algorithms based on Quantum Annealing to
solve those optimization problems [32]. There is also a publication from 2021
showing how Quantum Annealing can be used to optimize traffic signal set-
tings [160], which is the main study problem in this thesis. However, this
technique is applied to simplified models of road networks, traffic signals,
and traffic flow, so it cannot be directly applied in practice, but it shows that
Quantum Annealing can be already considered an interesting metaheuristic
that is worth further exploration.

6.10 Bayesian Optimization

6.10.1 Algorithm’s description

Bayesian Optimization (BO) is a probabilistic model-based method for opti-
mizing a function that is expensive or difficult to evaluate [101]. It is suitable
for the global optimization of black-box functions that do not assume any
functional forms. It is also effective for optimizing functions with complex
structures, such as functions with multiple local optima. BO is widely used
in hyperparameter tuning and global optimization problems [239]. Addition-
ally, BO is computationally efficient, and it can quickly converge to the best
solutions, even when dealing with high-dimensional parameter spaces. One
important note is that Bayesian optimization is not considered a metaheuris-
tic, but it was used for comparison in some experiments presented in this
thesis, so it is also explained in this section.
The key idea behind BO is to build a probabilistic model (PM) of the

objective function (OF), which can be used to make informed decisions about
where to evaluate the OF next. This allows the algorithm to efficiently ex-
plore the search space and avoid evaluating the function in regions where the
function value is likely to be poor.
The process of BO can be divided into 2 main steps: model building and

acquisition function optimization.
In the model-building step, the PM of the OF is constructed based on

the available OF evaluations. PM takes into account the uncertainty in the
OF value and can be updated as more OF evaluations are obtained.
In the acquisition function optimization step, an acquisition function (AF)

is used to balance the trade-off between exploration and exploitation. AF is
a measure of the expected improvement in the OF value at a given point,
and it is optimized to determine the next point at which to evaluate the OF.
In BO, AF is used in combination with a PM to guide the search for the next
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set of sample points to evaluate. The PM is updated after each evaluation
of the sample points, and the next set of points to evaluate is chosen by
maximizing AF based on the updated PM. This process is repeated until a
stopping criterion is met.
BO can be computationally expensive, and the choice of PM and AF can

have a significant impact on the performance of the algorithm.

6.10.2 Algorithm’s hyperparameters

The key hyperparameters of the BO algorithm are [101, 98]:

• PM: It influences the accuracy of the predictions and the speed of con-
vergence. Gaussian Process (GP) is a popular choice, but other models,
such as random forests, may be used as well.

• AF: it determines the trade-off between exploration and exploitation
in the search for the best solutions. Common choices include Expected
Improvement (EI), Probability of Improvement (PI), and Upper Con-
fidence Bound (UCB).

• Initial design: The number of initial points and their selection method
(e.g., random sampling, Latin Hypercube Sampling, or Sobol sequences).
These initial points are used to build the initial PM.

• Number of evaluations: It determines the total number of evaluations
of the sample points that will be performed during the BO process, and
the computational cost of the optimization process, as a consequence.

• Stopping criterion: It determines when the optimization process should
stop, either because a satisfactory set of candidate solutions has been
found, or because a maximum number of evaluations has been reached.

• Batch size: It determines the number of sample points that are eval-
uated at each iteration of the optimization process. Larger batch size
can reduce the computational cost but may also lead to reduced explo-
ration.

6.10.2.1 Model Building

Popular models used in Bayesian Optimization include Gaussian Process,
Random Forest, Extra Trees, and Gradient Boosted Trees [101, 98, 239].
The Gaussian Process (GP) model takes the previous observations of the

OF as input and predicts the mean and variance of the OF at any new input
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point. Then, this information can be used by AF to decide where to sample
the OF next.
The GP model provides a probabilistic estimate of the OF, which allows

the AF to balance the trade-off between exploration and exploitation. By ex-
ploring regions where the OF value is uncertain, the algorithm can efficiently
search the search space and identify the global optimum.
One of the strengths of GP in BO is its ability to handle noisy and

heterogeneous data, which is common in many optimization problems. GP
models the noise as an additional source of uncertainty, which allows the
algorithm to take into account the noise level when making decisions about
where to evaluate the OF next. Additionally, GP provides a natural way to
incorporate prior knowledge about the OF into the model. This can be useful
in cases where the OF has known constraints or other structural properties.
Random Forest is a widely-used machine learning algorithm that is used

for both regression and classification tasks. It is an ensemble learning method
that creates a set of decision trees and combines their predictions to make
a final prediction. The key idea behind Random Forest is to create multiple
trees, each of which is trained on a random subset of the data and a random
subset of the features, and then average the predictions of all trees to get a
final prediction.
Extra Trees (Extremely Randomized Trees) is an extension of the Ran-

dom Forest approach. The primary difference between the two is that Extra
Trees adds more randomization to the process of building decision trees, re-
sulting in a more diverse and robust model. Extra Trees approach works by
creating an ensemble of decision trees, each of which is grown using a random
subset of the features and a random subset of the training data. The final
prediction is made by averaging the predictions of all trees in the ensem-
ble. The randomized nature of Extra Trees helps to mitigate overfitting, a
common problem in traditional decision trees.
Gradient Boosted Trees (GBTs) is also an ensemble learning method that

creates a set of decision trees and combines their predictions to make a final
prediction. The key idea behind GBTs is to iteratively add decision trees to
the model, where each new tree is trained to correct the errors made by the
previous trees. GBTs work by fitting simple decision trees to the negative
gradient of the loss function (which represents the discrepancy between the
predicted values and the true values of the OF) with respect to the predic-
tions. This means that each new tree focuses on the errors made by the pre-
vious trees, and tries to correct them. The final prediction is made by adding
up the predictions of all trees in the model. One of the main advantages of
GBTs is that they can handle complex non-linear relationships between the
inputs and outputs of the OF. They also have the ability to handle missing
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data and outliers and can be used with a variety of loss functions.
When using GBTs (or Extra Trees or Random Forest) in BO, the model

is trained using different sample points, and the performance of the PM is
evaluated using a performance metric, such as mean squared error. The PM
is then updated based on the results of these evaluations, and the process is
repeated until the best points are found.

6.10.2.2 Acquisition Function

Common AFs include Probability of Improvement (PoI), Expected Improve-
ment (EI), and Upper Confidence Bound (UCB) [101, 98, 239].
PoI is defined as the probability that the next set of sample points will

contain a better point than the current best solution. Using the trained PM,
the mean and standard deviation of the predicted OF values are computed
for each sample point in the batch, and then the PoI value for each point
is calculated by considering the difference between the current best solution
and the predicted mean, normalized by the standard deviation. The next set
of sample points to evaluate is chosen by maximizing the PoI.
EI is defined as the expected improvement over the current best solution.

Its idea is similar to PoI, but EI considers both the probability and the
magnitude of improvement. It quantifies the expected improvement over the
current best solution, taking into account the uncertainty of the PM. EI
calculates the weighted average improvement by incorporating the predicted
mean and standard deviation of the PM. It assigns higher values to points
that not only have a higher probability of improvement but also exhibit larger
potential improvements.
The key idea behind using EI as the AF is to favor candidate solutions

that have the potential to make a significant improvement over the current
best solution. This helps to avoid getting stuck in a local minimum and to
ensure that the search for the best solution is comprehensive and efficient.
Compared to PoI, EI can lead to more exploitation and faster convergence

to the best solution. However, it may also lead to over-exploitation and a lack
of exploration, especially in high-dimensional parameter spaces.
The UCB acquisition function is based on the idea of balancing explo-

ration and exploitation by adding a term that represents the uncertainty
of the PM’s predictions. The UCB for a given point is calculated as the
mean of the PM’s predictions plus a term that depends on the uncertainty
of the prediction (e.g., standard deviation). It can be written as UCB =
Mean+(β ·Uncertainty), where β is a parameter that controls the trade-off
between exploration and exploitation. The higher the value of β, the more
emphasis is placed on exploration. The term representing the uncertainty
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of the PM’s predictions is designed to increase as the uncertainty of the
prediction increases. This encourages exploration in areas where the model
is uncertain, helping to avoid over-exploitation and ensure a comprehensive
search for the best candidate solutions. Similar to PoI and EI, the next set
of points to evaluate is selected by maximizing the UCB.

6.10.3 Algorithm’s pseudocode

Algorithm 10 presents a pseudocode of the BO algorithm.

Algorithm 10 Pseudocode of the Bayesian Optimization algorithm
Require: Objective function OF ; stopping criterion C; probabilistic model
PM ; acquisition function AF ;

1: Initialize PM with an initial design of points;
2: Evaluate the performance of the points using OF ;
3: Update PM with the new information;
4: while C is not met do
5: Select the next point using the acquisition function AF ;
6: Evaluate the performance of the selected point using OF ;
7: Update PM with the new information;
8: end while
9: return the set of points with the best performance;

6.11 Gradient Descent

6.11.1 Algorithm’s description

Gradient Descent is an optimization method in which the search directions
are defined by the gradient (or approximate gradient) of the differentiable
objective function at the current point. The idea is to take repeated steps
in the opposite direction of the gradient (or approximate gradient) of the
objective function at the current point (or the average of gradients at many
points in a batch) since this is the direction of the steepest descent. There
might be different variants of the Gradient Descent algorithm, e.g.: Stochastic
Gradient Descent (SGD) [35], Momentum [289], AdaGrad [289], Nesterov
[249], RMSProp [289], Adam [183]. The Gradient Descent algorithm relies
on an explicit formulation of the optimization function and its gradients, so
it is generally not considered a metaheuristic, but since it is one of the most
popular optimization algorithms, it was decided to investigate it in several
experiments for comparison.
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6.11.2 Algorithm’s hyperparameters

Hyperparameters of the Gradient Descent algorithm depend on its variant.
Some of the most common hyperparameters:

• Number of iterations: number of steps of the gradient descent algo-
rithm.

• Learning rate: It controls how much the model’s parameters are up-
dated during each iteration and determines how much the parameters
should be adjusted at each iteration of the optimization process [289].
A smaller learning rate may lead to slower convergence but higher ac-
curacy, while a larger learning rate may result in faster convergence but
lower accuracy or even divergence.

• Momentum: In some gradient descent algorithms (e.g., Adam) it con-
trols the extent to which the previous parameter update influences the
current update.

• Batch size: In some variants (like SGD), the batch size determines the
number of sample points used to estimate the gradient at each iteration.
A larger batch size may lead to more accurate gradient estimates and
smoother convergence, while a smaller batch size may result in faster
training and better exploration of the optimization landscape.

• ϵ: Used for numerical stability and to prevent division by zero for some
algorithms like RMSProp or Adam [289].

• γ: The decay rate of the average of the squared gradient, used in some
algorithms like RMSProp [289].

• β1 and β2: Initial decay rates used in Adam ([183]) for estimating the
first and second moments of the gradient.

It is also important to note that outcome of the Gradient Descent algo-
rithm may strongly depend on the selected initial point, so very often this
algorithm is repeated many times starting from different initial points.

6.11.3 Algorithm’s pseudocode

Algorithm 11 presents a pseudocode of the Gradient Descent algorithm.
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Algorithm 11 Pseudocode of the Gradient Descent algorithm
Require: Objective function OF ; learning rate α; number of iterations T ;
initial candidate solution x;

1: i← 0;
2: while i < T do
3: Compute the gradient of the cost function ∇xOF (x);
4: Update the candidate solution: x← x− α∇xOF (x);
5: i← i+ 1;
6: end while
7: return x;

6.12 Limitations and drawbacks of metaheuris-
tics

Although metaheuristics are a powerful tool for solving complex optimization
problems, they also have some limitations and drawbacks that need to be
taken into account when using them [61]:

• No guarantee of finding the optimal solution: Metaheuristics are de-
signed to find a good solution, but there is no guarantee that they will
find the optimal solution. The quality of the found solution depends
on the specific parameters, the problem complexity, and the charac-
teristics of the solution space. However, as explained in Section 6.1,
this limitation is less severe in the case of dynamically evolving com-
plex processes, for which only approximate mathematical models can
be built, so sometimes it might be even difficult to correctly define what
optimality actually means.

• High computational cost: Metaheuristics typically require many itera-
tions to explore the solution space, which can be computationally ex-
pensive. Therefore, metaheuristics are generally slow to converge to an
optimal solution. An additional difficulty arises when the time required
to evolve the quality of the solutions is significant, and this can be the
case for many complex processes, as discussed in Chapter 4.

• Dependence on parameters: Metaheuristics usually have many hyper-
parameters that need to be tuned, so finding good values can add com-
putational overhead.

• Dependence on initial settings: The performance of metaheuristics may
also depend on the selection of initial settings, like the initial popula-
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tion in Genetic Algorithms. Therefore, in some cases, it is necessary
to ensure the correct selection of those initial settings, e.g., through
randomness or taking into account the characteristics of the solution
space. Sometimes, it might be necessary to run multiple experiments
starting from different initial settings, which can add computational
overhead.
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Methodology

Let us consider a complex system CS and its evolution in time as a complex
process CP (cf. Definitions 3.1 and 3.2). In general, the process CP might
exist only for a specific time period T . In this context, T can be considered as
the time domain of the complex process CP . For the purpose of this thesis,
relativistic effects are neglected so time can be considered as a classical,
scalar quantity. Therefore, it can be assumed that T is a connected subset of
R containing 0, which serves as a reference point in time for a given observer.
Let CP (t) be the state of CP at time t ∈ T . Here we abstract from a

formal definition of what exactly the state of CP is and how to define it,
because for different complex processes, it may be something completely dif-
ferent. For example, in the case of the evolution of abstract complex processes
like a cellular automaton, it may be just a set of states of all the cells that
make up that automaton. In the case of physical complex processes, it can be
more complicated because it should be considered more as a state of physical
reality. For road traffic in cities, it can be the current locations, speeds, and
other important characteristics of vehicles, but also the “states” of drivers
(including their minds making decisions about how to drive), the states of
traffic signals (including the states of their physical components), etc. An
important note is that the state of a complex process is also not the same
as the result of observing it, since the result of observation may be different
for different observers/detectors - for some observers some features of CP (t)
may not be measurable, for other observers the features may be observable
but with limited accuracy. Nevertheless, building a mathematical model of a
complex process requires modeling its “states” at different points in time.
Let us call M a model of the complex process CP defined on a time

domain T ′ ⊂ R if for each t ∈ T ′ ∩ T , M can provide a mathematical repre-
sentation of the state CP (t). Note that T and T ′ do not have to be the same
sets: there might be a reasonable model that is defined only for some points
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in time (e.g., it could be a discrete model of a continuous process). On the
other hand, it is possible that the model might be able to provide a repre-
sentation of the process CP even outside of its time domain T . Usually, in
order for the model to be useful, it should be able to provide an accurate rep-
resentation of CP for many points in time. However, different processes and
applications may require different levels of accuracy for the model to be con-
sidered useful, and not always the most accurate models are the most useful
ones (and usually some other factors, like the time of the model’s evaluation,
are also important to consider the model as useful). Therefore, the require-
ment regarding the model’s accuracy is rather intuitive and not formal. Also,
calculating the accuracy of a model requires comparing the model outcomes
with the results of observing the complex process CP , and these results may
depend on the observer and the quality of detectors. Therefore, the concept
of accuracy is formally not included in the definition of the model (Definition
7.1), but intuitively, useful models should be of satisfactory quality.
The model can be deterministic or stochastic, so, in general, it can be

assumed that for a timestep t ∈ T ′,M can provide a distribution over possible
states of the model. If the model is deterministic, the distribution would be
just a Dirac delta [78].
In the case of optimizing the complex processes CP , it is necessary to

define the objective function that should be optimized as well as the control
parameters that can be used to steer the evolution of CP . The optimization
of a complex process can be performed directly on that process, controlling
its behavior in real-time, but usually, in order to design proper optimization
strategies and algorithms, it is necessary to investigate the optimization of a
realistic, accurate model of a complex process, and this is the approach and
assumption for the rest of this chapter.
Therefore, control parameters can be considered as variables of the model

M (being a mathematical representation of the complex process CP ) that
influence its evolution. Examples of control parameters are settings of traffic
signals (in the case of optimizing road traffic), protocols (doses and times of
their administration) of radiotherapy, etc.
A model of a complex process can be therefore defined as follows:

Definition 7.1 A modelM of a complex process CP is a tuple < S,C, V, T, F >,
where:

• S is a set of states of the model being mathematical representations of
possible states of the process CP ,

• C is a set of control parameters (in practical applications, C is always
a finite set),
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• V is a set of possible assignments of values of control parameters C
(i.e., for v ∈ V and c ∈ C, v(c) can be considered as a value of the
control parameter c for assignment v),

• T is a time domain,

• F is a function that for a given v ∈ V and a timestep t ∈ T returns a
distribution over states S, so F : V × T → (P(S)), where P(S) is the
set of probability measures over S.

The objective function that has to be optimized, denoted as OF , should
be defined on the set of possible assignments of values of the control pa-
rameters (V ) and provide a value from a set Y in which an order is defined
(hence, OF : V → Y ). For simplicity, it will be assumed that this is a linear
order, but partial orders could be also considered in some cases. In the case of
complex processes which are usually computationally irreducible [357], cal-
culating the exact value of the objective function usually requires evaluating
the model M over many time steps (cf. Section 3.2.2).
Let us now give some examples:

• For vehicular traffic in cities in which the control parameters are set-
tings of traffic signals, the modelM could be based on any of the traffic
simulation models producing a representation of traffic for each possi-
ble traffic state (cf. Section 4.2.1 for a review of traffic models) and a
considered time. For discrete traffic models, T can be represented as
N, for continuous traffic models, T can be represented as R. The set
S could be a set of possible representations of traffic states that could
be generated by the given traffic model. For example, in the case of
microscopic traffic simulation models, S could be a set of all possible
positions and speeds of all vehicles that can take part in the simula-
tion, as well as potential values of control parameters, at any possible
timestep from the set T . The set of control parameters C could be com-
posed of modifiable settings of traffic signals (e.g., offsets) in a given
simulation area (e.g., a city district), so the assignments of their values
(elements from V ) can be represented as vectors with integer values
representing, e.g., values of offset and durations of signal phases at all
considered intersections. The function F can be considered as a func-
tion that for the given assignment of traffic signal settings and a given
time step returns the distribution over possible states (e.g., positions
and speeds of all vehicles). The values of F can be computed, e.g., by
evaluating the selected traffic simulation model. The objective function
OF could take as an input an assignment of values of signal settings
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(elements from the set V ) and return some traffic characteristics, e.g.,
the total time of waiting at red signals (or the total delay) of all vehi-
cles in a given area at time TMAX ∈ T , aggregated from the reference
point in time, T0. The considered traffic characteristics (values of OF )
can be calculated by the function F based on the traffic model and its
control parameters.

• For cancer growth and the model described in Section 4.3, S is the set
of possible states of the cellular automaton modeling cancer. In this
model, time is discrete, so T is equivalent to the steps in which can-
cer can be simulated (the time domain can be represented as N). The
control parameters C could be variables indicating doses at all possible
time steps of the radiation administration. Therefore, values of V can
be represented as functions that return doses for each time step (of
potential dose administration). Elements of V can also be represented
as sets of pairs (d, t), where d are administered doses and t are times of
their application. F is a function that for a given assignment of control
parameters (interpreted as a radiotherapy protocol) and time step re-
turns the distribution over possible cancer states, calculated based on
the considered simulation model, which is a stochastic cellular automa-
ton. The objective function OF could take as an input an assignment
of control parameters (interpreted as a radiotherapy protocol) and re-
turn the estimated expected value of the number of cancer cells after
10 days of the treatment process, corresponding to 144000 simulation
steps (each simulation step corresponds to 6 seconds, as described in
[15] and Section 4.3). This estimation could be done by running a suf-
ficient number of simulations and averaging the outcomes.

The essential characteristic of an objective function is its computational
efficiency, meaning that it should be possible to calculate the function’s value
within a reasonable time frame. For example, in the case of stochastic models,
like stochastic cellular automata that are a base of the model for cancer
growth that is used in this thesis (Section 4.3), it might be intractable to
accurately calculate the expected value. In such cases, the objective function
should rather estimate the exact value. Also, even in the case of deterministic
models, it may turn out that their evaluations using simulations take a very
long time due to computational irreducibility. In such cases, it might be also
better to choose as the objective function an approximation (e.g., a surrogate
model) of the model’s output that can be evaluated fast.
Nevertheless, even if the objective function is computationally efficient,

discovering the optimal value may still prove to be time-consuming or com-
putationally challenging. For example, in the case of road traffic, even for a
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very simple mathematical model based on cellular automata, in which traffic
signal settings are control parameters, the problem of finding the optimal
setting is proven to be NP-hard, highlighting the complexity of the task [54].
For some NP-hard problems, it is very important to find the exact, opti-

mal solutions, even if finding such solutions is computationally demanding.
For example, one can think about the Traveling Salesman Problem (TSP)
[198] in which the goal is to find the route visiting all specified locations in
the order that minimizes the cost. Similarly, its extension, the Vehicle Rout-
ing Problem (VRP) [73], involves multiple vehicles that must originate and
terminate at a depot while visiting all locations at the lowest possible cost.
In the case of such problems, on a grand scale, with thousands of vehicles
operating for a long time and visiting many locations, the ability to find
the optimal, exact solutions becomes critical, because it may save significant
costs for logistics companies.
However, the definitions of TSP and VRP assume simplifications of real-

world conditions, e.g., they do not consider varying travel times or dynamic
changes in logistics requirements, they assume having perfect knowledge
about road conditions, etc. That is why the solutions that are optimal in
simplified theoretical models do not have to lead to the best possible solu-
tions in the real world. As a consequence, in practice, it is usually sufficient
to find near-optimal solutions that might be slightly worse than the optimal
solutions in the theoretical model but can be found relatively fast. Moreover,
it may not be reasonable to search at all costs for the exact solutions to
problems defined with simplified models, because the near-optimal solutions
(which can be found much faster) may even turn out to be better in the real
world.
In such cases, when the goal is not to find the optimal solution (which

might be computationally intractable), but a near-optimal solution, the effec-
tive and universal tools are metaheuristics, explained in detail in Chapter 6.
They are algorithms that guide the process of searching for near-optimal solu-
tions (usually in very large spaces) and are not problem-specific which means
that they can be applied to all sorts of optimization problems (however, for
some optimization problems some better techniques may exist).
One of the properties of metaheuristics is that as they guide the process

of searching for good solutions, they need to have the ability to efficiently
assess the values of the objective function for different points in the search
space. The ideal situation is when the values of the objective function can be
calculated explicitly relatively fast. However, in the case of stochastic models
or even deterministic models, it can be intractable to calculate the exact
outcomes of the model for given control parameters, so it can be intractable
to calculate the values of the objective function OF using that model. A
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natural question is whether it is possible to calculate, or at least estimate,
the outcomes of OF faster, without evaluating the simulation model.
In such cases, one can think about using another model, the so-called

surrogate model [6], as a substitution for the original model in the process of
calculating the values of the objective function. Therefore, instead of calcu-
lating the exact values of OF , another function can be used that employs a
surrogate model to approximate the exact values of OF . Let’s denote such
an approximator based on a surrogate model as SM .
In this context, several aspects should be considered:

1. The accuracy of approximation should be good enough to consider SM
as a good substitution for OF in further calculations aiming to optimize
OF . It means that the values SM(v) should be relatively close toOF (v)
for v ∈ V .

2. The time of computing SM(v) should be short enough to ensure that
the surrogate model could be used to evaluate a large number of possible
assignments using metaheuristics.

3. The benefits of obtaining SM should be significant to compensate for
the process of building the surrogate model.

A noteworthy observation is that the first condition can be somewhat
relaxed. In fact, in order to ensure that SM can be used as a substitute
for OF in optimization algorithms, it is sufficient to ensure that SM ap-
proximates OF monotonically, i.e., if OF (v1) > OF (v2) for v1, v2 ∈ V ,
then SM(v1) > SM(v2). For numerous optimization algorithms, particularly
metaheuristics, understanding the relations between objective function val-
ues across all possible pairs of points within the domain (rather than knowing
the precise values at these points) is sufficient for discovering near-optimal
solutions.
If a model satisfying the aforementioned conditions can be built, it could

be used as the objective function (assessing values of the original objective
function) for different points in the search space. However, in many cases, it
might be very difficult to build such a surrogate model.
For instance, one could consider employing a simplified model that omits

certain computationally intensive details but meets the necessary conditions
to consider the model good enough (e.g., is able to approximate the origi-
nal model or the real-world process with satisfactory accuracy). In the con-
text of traffic simulation models, macroscopic or mesoscopic models could be
computationally more efficient than many microscopic models. However, ex-
periments conducted in 2015 demonstrated that the differences in outcomes
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between a newly designed mesoscopic model and a microscopic model imple-
mented in the TSF software (described in Chapter 5) can be substantial (cf.
Section 8.3.1.2 and [131]). As a result, a mesoscopic model cannot directly
replace TSF.
Also, in general, it is difficult to construct accurate enough surrogate

models (like mesoscopic or macroscopic models, as in the case of road traffic)
manually, just by analyzing the complex process. Therefore, it is desirable to
develop another universal methodology.
Research advancements in artificial intelligence, especially machine learn-

ing, led the author of this thesis to consider that machine learning models,
like neural networks, can be potentially used as surrogate models for com-
plex processes. They can be trained to approximate the outcomes of models
of complex processes on a dataset composed of pairs (v,OF (v)) for v ∈ V ,
where the goal of training is to approximate OF (v) for a given v. There is
even a theoretical premise suggesting that neural networks could be good
surrogate models in such cases, at least for some complex processes. In 1989,
Cybenko proved that any continuous function defined on a compact subset
of Rn can be approximated with an arbitrary accuracy using neural networks
with only 1 hidden layer with sigmoid activation function [70]. Currently, this
result is known as the Universal Approximation Theorem, and there are also
results extending it to, e.g., non-Euclidean spaces [190] or other architectures
of neural networks, like convolutional neural networks [369], neural networks
with ReLU activation function ([146]) or neural networks with a bounded
number of hidden layers and a limited number of neurons in each layer [222].
The precise number of neurons, the best architecture, the optimal dataset

size, the best training method, and the training time required may vary across
different functions. Identifying suitable architectures and training methods
to achieve adequate accuracy and efficiency is a critical step (notably, the
training set size should be relatively small to ensure a relatively short and
cost-effective generation process, and the surrogate model training process
should also be relatively brief). However, the Universal Approximation The-
orem implies that neural networks have the potential to be effective approx-
imators of the objective function OF , so they are worth exploring in this
context.
The experiments conducted in Chapter 8 proved the hypothesis that ma-

chine learning models can be efficient approximators of objective functions
that are computationally demanding and, after training, can be used to eval-
uate the qualities of points from the domain of the objective function that
are explored by metaheuristics. Of course, it is important to validate that
the candidate solutions found in this process are really good not only ac-
cording to the objective function using a surrogate model but also according
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to the original objective function. The conducted experiments demonstrated
that some machine learning models perform better in this context, while
other machine learning models give worse results. Also, some metaheuristics
proved to be more efficient.
Figure 7.1 visualizes the whole methodology for optimizing complex pro-

cesses using metaheuristics that was developed and validated within the re-
search presented in this thesis.
Experiments conducted to validate this methodology were carried out on

two complex processes: optimizing urban road traffic through traffic signal
control and optimizing cancer treatment via radiotherapy. While the method
still exhibits some limitations and requires further validation (cf. Section 9),
these initial results have demonstrated its merit for further investigation.

Figure 7.1: Visualization of the methodology for optimizing complex pro-
cesses using metaheuristics that was developed and validated within the re-
search presented in this thesis.
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Experiments

This chapter presents the most important (milestone) experiments carried
out during the work on this thesis - their design, results and conclusions. It
is worth emphasizing that it is less than 50% of all experiments performed
during the research, as this chapter does not include many preliminary exper-
iments aimed at validating some new ideas or determining reasonable settings
of hyperparameters. It is also important to note that all these experiments
were designed and coordinated by the author of this thesis, who also ana-
lyzed the results, but in some cases the implementation and actual running
of the experiments were done by other collaborators (usually members of
the TensorCell group [325]), who were also coauthors of the research articles
summarizing some experiments.
Section 8.1 contains the definitions and descriptions of the two main prob-

lems studied in this thesis: the Traffic Signal Setting problem, and the prob-
lem of optimizing radiotherapy for cancer treatment. Section 8.2 presents
the the most important aspects of designs of experiments. However, for par-
ticular experiments, more detailed description of their design is included in
corresponding subsections of the Section 8.3, along with the description of
experiments, their results and conclusions. Section 8.4 presents a brief discus-
sion about computational complexity of the introduced methodology. Finally,
Section 8.6 presents the author’s conclusions after the completion of all ex-
periments.

8.1 Optimization problems

The introduced methodology was experimentally tested on 2 optimization
problems, related to 2 complex processes:

1. Traffic Signal Setting problem (defined in Section 8.1.1).
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2. The problem of optimizing radiotherapy for cancer treatment (defined
in Section 8.1.2).

Based on their definitions presented in Sections 8.1.1 and 8.1.2, both
problems can be considered combinatorial optimization problems.

8.1.1 Traffic Signal Setting problem

Definition 8.1 The Traffic Signal Setting problem (or TSS problem,
in short) is defined as follows:

• Given is a directed graph of a road network with traffic signals located
at some vertices.

• Traffic signals are objects with attributes: duration of the red signal
phase (TR), duration of the green signal phase (TG), offset (TO) -
values of these attributes are from finite sets and may be modified.

• Traffic Signal Setting (TSS) - set of values (TG, TR, TO) for all
signals in the road network.

• Given is a virtual traffic model: cars with initial speeds, positions in
some vertices of the road network graph, static routes, and rules of
drive on edges.

• Given is an objective function OF which calculates the quality of a
traffic signal setting.

• Goal: Find a traffic signal setting for which the value of OF is optimal.

The formal Definition 8.1 comes from [129] and was proposed by the
author of the thesis, but for some particular traffic models the problem was
studied earlier and in some cases was proven to be NP-hard [54].
In the context of the notation introduced in Chapter 7, the directed graph

of the road network with traffic signals at some vertices, their representation
with attributes as well as the representation of cars with speeds, positions,
static routes and rules of drive, are parts of the model of a complex system.
The initial positions and speeds of cars correspond to the model’s state at
time 0. The objective function OF can correspond to traffic characteristics
like:

• the total time of travel,
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• the average delay of all cars (where the delay of a car corresponds to
the ratio between the maximum possible speed and the average speed
of the considered car),

• the total time of waiting at red signals,

• the average speed,

• the total time of driving at low speed,

• the total throughput (the number of cars that complete driving within
a given time).

All those traffic characteristics can be computed for all or only some vehi-
cles in the given region and within a certain time period. Sometimes there
can be many types of vehicles and the vehicles can be prioritized, so that
their speeds, travel times, delays, or other attributes can contribute to the
aggregated value (corresponding to the OF value) with a given weight.
In this context, TSS represents the parameters of the selected OF .

8.1.2 The problem of optimizing radiotherapy for can-
cer treatment

Definition 8.2 The problem of optimizing radiotherapy for cancer
treatment is defined as follows:

• Given is a virtual model of cancer growth (e.g., EMT6/Ro model [7]).

• Radiotherapy protocol is a sequence of pairs (dose of radiotherapy, time
of dose administration). Both the doses and the times of their admin-
istration can take a finite number of different values.

• Given is an objective function OF which calculates the quality of a
radiotherapy protocol (the quality can be considered as, e.g., the number
of cancer cells after applying the radiotherapy or the likelihood that
cancer will be completely cured).

• Goal: Find a radiotherapy protocol for which the value of OF is opti-
mal.

This definition has not been introduced earlier in scientific articles, but
it is a formalization of the problem that was solved in, e.g., [7] and [264].
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8.2 Design of experiments

This Section contains the design of the most important (milestone) experi-
ments carried out during the work on this thesis that are included further
in Section 8.3. Section 8.2.1 contains the design of experiments related to
the Traffic Signal Setting problems, while Section 8.2.2 contains the design
of experiments related to optimizing radiotherapy for cancer treatment.
Since the models of both studied processes (road traffic in cities con-

trolled by traffic signals and cancer growth under radiotherapy treatment)
were based on cellular automata (and some cellular automata are Turing-
complete [282, 65]), the author of this thesis came up with an idea to in-
vestigate how hard it is to approximate the outcomes of cellular automata.
However, for simplicity of presentation, the design of these experiments is
presented in Section 8.3.3, together with their results and conclusions.

8.2.1 Traffic Signal Setting problem

In the case of the TSS problem, the following experiments are considered in
this dissertation:

1. Experiments with genetic algorithms and TSF (Section 8.3.1.1).

2. Experiments with genetic algorithms and a mesoscopic model (Section
8.3.1.2).

3. Training feed-forward fully connected neural networks as surrogate
models for TSF (Section 8.3.1.3).

4. Investigating different neural network models and strategies of their
training (Section 8.3.1.4).

5. Applying feed-forward fully connected neural network models to opti-
mize traffic signal settings (Section 8.3.1.5).

6. Investigating performance of neural networks and gradient boosting
models as surrogate models (Section 8.3.1.6).

7. Traffic signal settings optimization using gradient descent (Section 8.3.1.7).

8. Testing various metaheuristics and surrogate models (Section 8.3.1.8).

9. Experiments with graph neural networks as surrogate models (Section
8.3.1.9).
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10. Final experiments with various metaheuristics and surrogate models
(Section 8.3.1.10).

The order in which the experiments are presented corresponds to the order
in which they were performed (some experiments, however, were performed
more or less simultaneously), so the conclusions of some earlier experiments
tended to influence the design of subsequent ones.
All the experiments were carried out on a realistic road network of Warsaw

taken from the OpenStreetMap service [259]. The main traffic model was the
microscopic model described in Section 5.3, implemented in the TSF software
presented in Section 5.5. In the experiment described in Section 8.3.1.2, the
mesoscopic model presented in Section 5.4 was applied too.
TSF was partially calibrated using real-world data for Warsaw in order to

simulate conditions of real traffic in Warsaw during a weekday morning rush
hour. In all experiments, the same traffic conditions were assumed (i.e., the
number of cars, times of their dispatch, and their routes were constant), and
the values of some crucial simulation parameters are summarized in Table
8.1.

Table 8.1: Simulation parameters of TSF’s microscopic model (cf. Section 5.3
used in experiments.

Name of the
parameter

Description Value

Step Simulated time of a single simulation step 1 second
NrOfCars Initial number of cars 30000
TimeGap Time after which new cars start driving 1 second
NewCars Number of cars that start driving after

each TimeGap seconds
20

Steps Time of a single simulation 600 steps
Acceleration Maximal increase of cars’ speed in a single

step
10km
h

Crossroad
penalty

Parameter responsible for reducing speed
before crossing intersection

0.25

Turning
penalty

Parameter responsible for reducing speed
when turning

0.5

These parameters were set as constants in all experiments so they were
non-modifiable control parameters. The only modifiable control parameters
corresponded to the traffic signal settings.
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As defined in Section 8.1.1, each traffic signal setting is characterized by 3
modifiable attributes: duration of the red signal phase (TR), duration of the
green signal phase (TG), and the offset (TO). Offsets are defined as times
(in seconds) from a reference point in time (selected as the beginning of the
simulation) to the first switch from the red signal state to the green signal
state.
In all experiments with metaheuristics, it was assumed that the values

TR, TG, and TO are set at the beginning of the simulation (evaluation of the
model) and they cannot be changed during the simulation. Therefore, they
can be considered values of control parameters that are passed as input to
the objective function to calculate the output. Also, in all experiments with
metaheuristics, it was assumed that there are no other control parameters,
so the values of all other possible settings, including the traffic model, initial
locations of vehicles and their rules of drive, the road network structure, etc,
were not modifiable.
In most experiments, the durations of the red and green signal phases were

also assumed to be constant, set to 62 seconds and 58 seconds, respectively,
so were not modifiable. In the first experiment described in Section 8.3.1.1
both values were set to 60 seconds, but in later experiments, these values
were adjusted to ensure traffic safety, and the so-called “all-red clearance
interval” lasting 2 seconds was introduced after each phase switch from the
green signal state to the red signal state before releasing conflicting traffic
(this is also visualized in Figure 8.2).
In the case of constant values of duration of green and red signal phases,

the offsets were the only modifiable parameters and it was assumed that
they can take only integer values from the set {0, 1, . . . , TG + TR − 1} =
{0, 1, . . . , 119}, which means that for each traffic signal, there were 120 pos-
sible values of the offset.
Intersections may have many entries with traffic signals (usually 4), but

all these signals must be synchronized in order to prevent car accidents, so
it was assumed that the values of the settings of all traffic signals at the
intersection should be determined by the values of any single traffic signal
at this intersection. In particular, it was assumed that if the state of a single
traffic signal changes from red to green, the state of the traffic signal at the
opposite entry to the same intersection should also change to green, while the
signals at the other (perpendicular) entries should turn to red or be already
red to ensure safety. In the case of red signals lasting 62 seconds and green
lasting 58 seconds, it was assumed that for all switches between the red signal
state to the green signal state, there should be a 2-second long overlap of red
signals at all entries.
To give an example, Figure 8.1 visualizes (in TSF’s GUI) phases and
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entries at the intersection of Banacha and Grójecka streets in Warsaw, while
Figure 8.2 presents offsets as well as red and green signal phases for that
example intersection.
The assumed representations mean that it is sufficient to specify the set-

tings of a single traffic signal at a given intersection and the settings of other
signals at that intersection should be determined. Therefore, since there are
only 3 modifiable control parameters (TR, TG, and TO) for each intersec-
tion, or 1 (TO) in the cases when TR and TG are set as constant values, all
the controllable parameters can be represented as 3×N(or N)-dimensional
vectors with integer values of seconds (where N is the number of intersec-
tions). These vectors were inputs to the models evaluating traffic conditions
in all experiments.
The outputs corresponded to the following traffic characteristics:

• Time0: The total time of waiting at red signals;

• Time20: The total time of driving slowly (below 20 km/h).

Of course, there can be many other traffic characteristics indicating traf-
fic quality and performance of traffic signal control, like delays, average
speed/time of travel, throughput, etc. However, the author observed that
these 2 metrics (especially Time0 which was the primary metric and was
used in all experiments) are the traffic characteristics on which traffic signal
control has a big impact, compared to other characteristics, for which other
factors, like the interaction between vehicles, may play a significant role too.
In some experiments, these outputs corresponded to aggregated values

for all vehicles (on the whole road network of Warsaw), in others, only for
vehicles in a selected region. In some experiments, these outputs were cal-
culated using the original, stochastic microscopic model in TSF (described
in Section 5.3), but in some other experiments, the stochastic component,
inherited from the Nagel-Schreckenberg (NaSch) model [246], was removed
to simplify computations. The reason is that the NaSch model was primar-
ily designed to model freeway traffic, without intersections or traffic signals,
and its stochastic component is crucial to model the spontaneous formation
of traffic jams. However, in urban areas, with dense road networks with mul-
tiple intersections and traffic signals, as well as frequent lane changing, traffic
jams are usually caused by other factors. Of course, the random behavior of
drivers may lead to accidents and other atypical situations, but they are not
considered in the NaSch model and in the TSF’s microscopic model anyway.
Therefore, removing the stochastic component should not have a significant
impact on the considered metrics (especially on Time0 which was a crucial
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metric and was used in all experiments), while it could significantly accelerate
computations, so this setting was applied in some experiments.

Figure 8.1: Visualization in TSF’s GUI of phases and entries at the intersec-
tion of Banacha and Grójecka streets in Warsaw.

The real road network of Warsaw contains around 800 intersections with
traffic signals [366], but at the time of preparing the simulation tool, only
some of them had locations available in the OpenStreetMap service. Some
locations of signals were also manually added using the TSF’s GUI based on
the knowledge of the author of this thesis. In total, only 292 signal groups
were considered. Signal groups are clusters of traffic signals that are synchro-
nized in such a way that assigning settings (offsets and durations of phases)
to a single traffic signal from that group determines the settings for all other
signals in that group in order to ensure safety. Usually, signal groups are just
intersections, but sometimes intersections might be quite complex, e.g., there
can be several intersections located close to each other, so it is reasonable to
ensure their synchronization.
Even though the number of intersections with traffic signals was smaller

than in the case of a real road network in Warsaw, it was sufficient for re-
search purposes. In some cases, it was assumed that most of the intersections
had constant settings, while only some of them were modifiable. For these
purposes, 3 scenarios were prepared corresponding to regions of 3 districts
in Warsaw: Centrum, Stara Ochota, and Mokotów (therefore, these regions
are called in the thesis “Centrum”, “Ochota”, and “Mokotów”, respectively).
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Figure 8.2: Scheme presenting offsets, red and green signal phases for the
example intersection in Figure 8.1.

These scenarios contained 11, 21, and 42 signal groups with controllable traf-
fic signal settings. For some experiments, a subset of signal groups from the
“Ochota” region, with 15 signal groups, was also considered.

8.2.2 The problem of optimizing radiotherapy for can-
cer treatment

In the case of the problem of optimizing radiotherapy for cancer treatment,
the following experiments are considered in this thesis:

1. Experiments with a simulator of cancer growth and genetic algorithms.
(Section 8.3.2.1)

2. Experiments with surrogate models and metaheuristics. (Section 8.3.2.2)

The concept of experimenting on this particular use case arose from the
author’s consideration that the general framework developed and tested on
the use case of traffic signal setting optimization could potentially be applied
to use cases related to complex processes in various other domains. Since the
Traffic Simulation Framework that was used in traffic signal control experi-
ments is based on cellular automata which are generally considered universal
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tools for modeling complex processes, it was natural to look for other com-
plex processes for which a model based on a cellular automaton exists, while
the evaluation of the model is time-consuming. During this exploration, the
thesis author learned about research carried out by M. Piotrowska and S.
Angus [7] in which a model of EMT6/Ro cell line (derived from the Exper-
imental Mammary Tumor-6 cell line that was isolated from the breast of a
mouse with a mammary tumor) based on a cellular automaton was applied
in combination with genetic algorithms to find good radiotherapy protocols
for the given 10 test tumors. The model was an extension of the MCS asyn-
chronous stochastic cellular automata model of EMT6/Ro dynamics that was
earlier introduced in [273] by adding a calibrated multi-fraction irradiation
module. Since the model is stochastic, the authors of [7] decided to evaluate
all considered protocols across a multi-tumor case library consisting of ten
10-day-old tumors developed in-silico as described in [8]. The radiotherapy
protocols were also represented as pairs of doses and times of their appli-
cation. The outcome of the simulation for each initial tumor was the state
of each cancer at the end of the 10-day growth period. It was also assumed
that radiotherapy can be applied only during the first 5 days of treatment
to consider the long-term impact of the treatment. The optimized value cor-
responding to the objective function was the average number of cancer cells
after the 10-day growth period. The optimization was carried out using ge-
netic algorithms, but due to significant time complexity, it was possible to
run a relatively small number of experiments and evaluate a relatively small
number of candidate treatment protocols. However, the results indicated that
it is possible to find reasonably good protocols and there might be potential
for further improvements. Hence, it turned out that this could be a good use
case to evaluate the developed methodology.
The initial model based on cellular automata was implemented in MAT-

LAB and it turned out the implementation can be highly optimized thanks to
using C++ and GPUs. The optimization was performed by a team of students
supervised by the author of this thesis [15] and resulted in a c. 717-fold ac-
celeration of candidate protocol evaluation times. It gave the opportunity to
run many more experiments, evaluate the quality of optimization algorithms
much faster, test new algorithms, and find better radiotherapy protocols, as
a consequence.

8.3 Experiments and their results

This section contains the descriptions, designs, results and conclusions from
all most important experiments related to the Traffic Signal Setting prob-
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lem (Section 8.3.1) and the problem of optimizing radiotherapy for cancer
treatment (Section 8.3.2).

8.3.1 Traffic Signal Setting problem

8.3.1.1 Experiments with genetic algorithms and TSF

The initial experiments were carried out using genetic algorithms and the
TSF software (presented in Section 5.5) as a tool for evaluating the quality
of traffic signal settings using a microscopic model. They were also described
in [120] and [121].
These experiments were conducted before the main methodology based

on the use of surrogate models (presented in Chapter 7) was invented to
see if the use of metaheuristics, such as genetic algorithms, could be a good
approach, and to assess whether it was worth further study.

8.3.1.1.1 Setup of experiments

The goal of the experiments was to find good settings for traffic signals
on a road network in Warsaw with 292 intersections. All experiments were
conducted with a microscopic model implemented in TSF (cf. Section 5.3),
using its stochastic version, and simulation parameters listed in Table 8.1.
Due to the fact that the results of a single evaluation of a traffic signal
setting were non-deterministic, each signal setting was evaluated 5 times and
the results (values of the fitness function) were averaged.
The only setting that distinguished simulations was the traffic signal set-

ting. A green phase duration and a red phase duration of a single signalization
were constant and set to 60 seconds, so the total cycle duration was set to
60 + 60 = 120 seconds. The only parameter that distinguished traffic sig-
nal settings was the offset. The allowed values of offsets were from the set
O = {0, 1, . . . , 119}, so the feasible solutions were encoded as points from the
set O292 (as mentioned in Section 8.2.1, it is sufficient to encode a setting of
only a single traffic signal from the given signal group and the settings of the
other signals at that intersection are determined in order to ensure traffic
safety). These 292−dimensional vectors were encoded as chromosomes for
genetic algorithms, where each position in a vector (gene) corresponded to
the offset of a single signal group.
The first batch of experiments was run with the following settings:

1. Fitness functions:
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• Time20: The total time when cars have a speed lower than 20
km/h computed using a stochastic version of the microscopic model
in TSF (cf. Section 5.3). Each signal setting was evaluated 5 times
and the results were averaged.

• Time0: The total time when cars have a speed of 0 km/h computed
using a stochastic version of the microscopic model in TSF (cf.
Section 5.3). Each signal setting was evaluated 5 times and the
results were averaged.

2. Size of the initial population: 100 (randomly generated) chromosomes.

3. Selection operator: Square-root selection - taking
√
N best chromo-

somes from the population of N chromosomes.

4. Crossover operator: Uniform crossover - all selected
√
N chromosomes

cross with each other and form new N chromosomes.

5. Mutation operator: Uniform mutation - for each gene (offset), with
a given probability (p = 0.05) a randomly selected (from a uniform
distribution) offset value is assigned.

8.3.1.1.2 Results of experiments

Table 8.2 presents the results of these experiments: values of fitness functions
for the best individuals in consecutive iterations for 2 considered metrics.

Table 8.2: The best values of fitness functions in consecutive iterations
Step of the evolution Time0 Time20

1 5937535 8381108
2 5897720 8350837
3 5884938 8328534
4 5855378 8292620
5 5840454 8292925
6 5811827 8242777
7 5794758 8228153
8 5780861 8234131
9 5752666 8228039

Due to high computational complexity, it was possible to conduct only
9 steps of evolution (for both fitness functions independently). Still, the re-
sults indicated that the progress in values of the fitness functions may appear
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in consecutive iterations. In the case of the fitness function Time0, the im-
provement was 3.11%, and in the case of the fitness function Time20, the
improvement was 1.82%.

8.3.1.1.3 Conclusions from experiments and follow-up experiments

One of the conclusions from these experiments was that it can be possible
to find better traffic signal settings using genetic algorithms. However, an-
other conclusion was that the method may be too slow to optimize signal
settings in a reasonable time. The method can already help find relatively
good default signal settings for typical, repeatable traffic conditions when it
is not necessary to operate in real-time, but even for the purpose of running
the experiments necessary for this thesis, high computational complexity was
problematic and it was difficult to run multiple experiments testing many dif-
ferent metaheuristics in many different settings. The analysis of performance
led to the conclusion that the most expensive component of computations is
related to running traffic simulations in a microscopic model. For example,
evaluating a single traffic signal setting for the whole road network of War-
saw took about 2 minutes on standard machines in a computer laboratory
available to the author of this thesis at that time. In the summarized experi-
ments, a genetic algorithm had to evaluate 900 settings for each fitness func-
tion. Evaluations of settings in a single iteration of the genetic algorithm can
be potentially parallelized but it requires greater computational power and
might be expensive and technically difficult to scale. Later, such approaches
were tested too and it was possible to parallelize the process of running mul-
tiple simulations within the same iteration at the same time within a single
iteration of the genetic algorithm using tools such as Apache Spark [299]
and a multi-cloud infrastructure governed by the MELODIC platform [158].
However, due to the construction of the genetic algorithm, parallelization is
limited because usually evaluation of chromosomes from the next iteration
can be started only after the evaluation of chromosomes from the previous it-
eration is completed. Hence, even in the case of the complete population-level
parallelization, the running time is proportional to the number of iterations
× time of running a single evaluation. In addition, in the case of other meta-
heuristics, it might be necessary to run even more iterations than in the case
of genetic algorithms.
Therefore, it was concluded that it is reasonable to investigate how eval-

uating a single signal setting can be accelerated. One of the options could be
accelerating the simulation of the microscopic model. After optimizing the
implementation of the model, it was possible to speed up the evaluation of a
single traffic signal setting a few times. In 2022, it took about 30 seconds on
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a machine with Processor Intel(R) Core(TM) i7-4702MQ CPU @ 2.20GHz,
32GB RAM (which was already faster than the machines used for experi-
ments several years earlier), but it was still quite slow taking into account
that at least several iterations of the genetic algorithms are necessary.
Since the model is based on cellular automata, the next idea was that

it could be accelerated using GPUs or multithreading. However, it turned
out that due to the complexity of the model and the interactions between
cars, this is technically complicated and may not bring the expected advan-
tage. The implemented microscopic model is still relatively simple, but it
may turn out that for other complex processes, the underlying simulation
models are much more difficult to parallelize. Since the goal of this research
was to develop a universal methodology that could be applied to other com-
plex processes, it was concluded that it is better to think about some other
approaches.
Further research on traffic modeling led to the conclusion that it might be

reasonable to implement another traffic model that approximates the original
microscopic model but could be evaluated faster. The considered microscopic
model is already relatively simple, so it was not expected that any other
reasonable microscopic agent-based model, that computes the positions and
speeds of each vehicle at each step could be evaluated significantly faster. On
the other hand, macroscopic models (described in Section 4.2.1.1.2) are good
at capturing relationships between aggregated traffic characteristics such as
flow, density, and speed, but it is more difficult for them to capture the effects
of traffic signals. Also, the existing macroscopic models usually concern traf-
fic on straight road segments, but developing good macroscopic models for
urban areas and realistic road networks with many intersections and interac-
tions between vehicles is more challenging. On the other hand, implementing
an intermediate, mesoscopic model (cf. Section 4.2.1.1.2) seemed to be a rea-
sonable approach, so this was the next step in the considered experiments.
Another conclusion was that it might be reasonable to reduce the size of

the space of possible traffic signal settings. This could be done in 2 ways:

1. By reducing the number of possible values of signal offsets;

2. By considering smaller regions, with fewer intersections.

In general, for N intersections with traffic signals and V possible settings
of a single signal, the size of the space of possible settings is V N . Exponential
functions grow faster than polynomial functions, so reducing the number of
considered intersections could reduce the size of the space more than the
analogous reduction of the number of intersections. Intuitively, this gives
more benefits, but it may be difficult to build a good solution for a larger
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area from a good solution for a smaller area while reducing the number of
possible offsets may still allow finding good solutions, so it is good to consider
both options.
The number of possible settings for a single intersection can be reduced,

e.g., by assuming higher granularity: instead of considering values of offsets
from the set {0, 1, 2, . . . , 119}, one can consider only values from the set
{0, 5, 10, 15, . . . , 110, 115}. This can help, but it is not a scalable solution:
setting the granularity too low can lead to overlooking promising regions of
the explored space.
In the case of considering smaller regions, it might be necessary to merge

the solutions for smaller regions into solutions for larger regions. However, in
the case of developing a method that could do this efficiently, this approach
may be scalable and transferable to other larger regions. Also, in traffic en-
gineering practice, it is typical to consider traffic signal control in smaller
regions (e.g., major corridors) rather than in the entire metropolitan area
[134].
In further experiments, values of offsets from smaller sets were considered

(e.g., {0, 5, 10, 15, . . . , 110, 115}, {0, 10, . . . , 110}), but this change did not
result in significantly better performance of genetic algorithms (in terms of
finding better solutions in the same time), so in the next experiments, the
focus was rather on considering smaller regions, “Centrum”, “Ochota”, and
“Mokotów”, with 11, 21, and 42 intersections, respectively. However, the
approaches based on reducing granularity should be also investigated further
in combination with other techniques, as presented in Section 9.1.

8.3.1.2 Experiments with genetic algorithms and a mesoscopic
model

As justified in Section 8.3.1.1.3, since evaluating traffic signal settings is time-
consuming, it was natural to build some other models that could be evaluated
faster. In these experiments, genetic algorithms were combined with a meso-
scopic model introduced in Section 5.4.
Before the main experiments with genetic algorithms, some initial exper-

iments were run to compare the microscopic model described in Section 5.3
and the mesoscopic model. The time required to evaluate a single signal set-
ting on the same machine was about 30 seconds for a microscopic model and
about 1.5 seconds for a mesoscopic model. Taking into account that using
the stochastic variant of the microscopic model may require running multiple
simulations and averaging results, the time reduction was already significant.
However, due to the simplicity of the mesoscopic model, the differences in
the results of evaluations (Time0) were too big to consider the mesoscopic
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model a sufficiently good surrogate model for the microscopic model. The
relative difference was usually in the range 10 − 30%, and depended on the
signal settings and the considered region for computing Time0. As a conse-
quence, the settings that are considered as good according to the microscopic
model do not have to be good according to the mesoscopic model and vice
versa. However, building a more accurate mesoscopic surrogate model may
also lead to a longer time for evaluating signal settings.
One of the conclusions was that it might be reasonable to look for another

approach to building surrogate models of microscopic simulation models.
This is motivated not only by the significant difference between the results
of simulations using microscopic and mesoscopic models, but also by the fact
that building a mesoscopic model for complex processes is not always an easy
task.
On the other hand, both models are only approximations of the real-world

process and even though the microscopic model seems to be more detailed, it
does not mean that its results are always closer to real-world traffic outcomes.
Therefore, it was reasonable to analyze how the simple mesoscopic model
performs in combination with genetic algorithms.
These experiments and their results were also described in [131].

8.3.1.2.1 Setup of experiments

These experiments were carried out on 2 regions:

• The whole road network of Warsaw (region A);

• “Ochota” region in Warsaw (region B).

In the case of the “Ochota” region, a slightly smaller region than the
default one (a subset) was selected - it had 15 signal groups. The whole
road network of Warsaw was also adjusted somewhat - 2 signal groups (rep-
resenting 2 close intersections) were merged into a single group to ensure
additional synchronization of signals ensuring traffic safety, so there were
291 signal groups considered. Modification of traffic signal settings (TSS) in
one region and computation of the fitness function for another region was
also considered (in the case of modifying signals in region B, the remaining
signals were set to constant, default values).
Similarly as in experiments described in Section 8.3.1.1, only signal offsets

were modifiable. However, this time 2 possible differences between consecu-
tive values of offsets were considered, 1 and 10, giving 2 sets of possible
offsets: {0, 1, 2, . . . , 119} (set S1) and {0, 10, 20, . . . , 110} (set S2).
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The durations of green signal phases and red signal phases were set to 58
and 62 seconds, respectively (following the scheme presented in Figure 8.2).
This time, the considered model evaluating traffic signal settings was

the simple mesoscopic model introduced in Section 5.4. The main fitness
function considered in experiments was Time0 - the total time of waiting at
red signals during 10 minutes of simulated traffic in the considered region.
Time20 metric that was used in the previous experiments (Section 8.3.1.1)
is not calculable in the mesoscopic model, so the focus was on Time0.
Most of the simulation settings were the same as in the experiment de-

scribed in Section 8.3.1.1. However, besides the default initial number of ve-
hicles (30000), in some experiments, 3 other values were considered: 10000,
50000, 70000. Also, the number of vehicles starting to drive in each step was
set to 10. For the same number of vehicles, the routes were always the same.
In terms of genetic algorithms, similar settings as in Section 8.3.1.1 were

used. As a selection operator, the square-root operator was chosen. The rea-
son for that was to get rid of poor traffic signal settings as soon as possible
and enhance signal settings that are better and may lead to better solutions.
As a crossover operator, the uniform crossover was chosen:

√
N chromosomes

were crossed with each other to obtain a new set of N chromosomes, and for
each pair of crossing chromosomes and each gene, the offset value was se-
lected from the corresponding gene in the randomly chosen chromosome. As
a mutation operator, the uniform mutation was chosen: for each gene, with
a given probability the value was set to the value selected randomly (with a
uniform distribution) from the set of possible values. This time, 3 values of
probability were considered: 1100 ,

1
20 , and

1
5 . Two sizes of the initial population

were considered: 100 and 400 individuals. Each run of the genetic algorithm
had 50 iterations.
In total, 4 batches of experiments were considered:

1. TSS modified in region A, Time0 computed using the mesoscopic model
in region A.

2. TSS modified in region A, Time0 computed using the mesoscopic model
in region B.

3. TSS modified in region B, Time0 computed using the mesoscopic model
in region A.

4. TSS modified in region B, Time0 computed using the mesoscopic model
in region B.

In total, there were 192 runs of the genetic algorithm, 48 for each batch.
Table 8.3 summarizes considered values of the most important parameters.
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Table 8.3: Simulation parameters and their values used in experiments
Name of the parameter Possible values
Duration of traffic simulation 600 seconds
Initial number of cars in the simu-
lation

10000, 30000, 50000, 70000

Number of cars that start driving
at each step

10

Interval between possible values of
offsets

1 (Set S1), 10 (Set S10)

Optimized value Time0
Number of iterations 50
Population size 100, 400
The region in which traffic signal
settings are modified

A (the whole road network), B (a
smaller region, “Ochota”)

The region in which fitness function
is computed

A (the whole road network), B (a
smaller region, “Ochota”)

Selection operator Square-root selection
Crossover operator Uniform crossover
Mutation operator Uniform mutation
Probability of mutating a single
gene

0.01, 0.05, 0.2

This time, the experiments were run on a high-performance computing
cluster at the University of Rzeszów1.

8.3.1.2.2 Results of experiments

When signals are modified in a smaller region (B) and the fitness function is
calculated over the entire road network (region A), the improvement is small,
in the range 0.4657%−0.7182%. One of the possible reasons is that changing
traffic signal offsets in small regions have usually relatively little effect on
global traffic characteristics.
When signals are modified in a smaller region (B) and the fitness function

is computed in a smaller region (B), the improvement is significant, in the
range 6.8567%−15.5888%, depending on the values of the other parameters.

1The cluster consisted of 40 computational nodes with 2 processors (INTEL Xeon
E5-2620, 6 cores, 2:0 GHz, 15MB cache) per node. The computational power is 7.5 Ter-
aFLOPS, 1032GB RAM (258x 4GB DDR3 1333MHz)
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When signals are modified over the whole road network (region A) and
the fitness function is computed over the whole road network (A), the im-
provement is also significant, in the range 5.7101% − 18.1204%, depending
on the values of parameters.
When signals are modified over the whole road network (A) and the

fitness function is computed in region B, the improvement is in the range of
26.6716% − 51.4472% (much better than in the case of reconfiguring traffic
signals only in region B). However, it may cause larger delays on the rest of
the road network, thus this method alone cannot be applied but should be
further investigated.

8.3.1.2.3 Conclusions from experiments

The conducted experiments proved that genetic algorithms can be successful
in finding better traffic signal settings also in the case of the mesoscopic
model. The exact improvement may depend on many factors, including the
region of modifying signal settings and the region of computing the fitness
function, but the behavior is as expected.
The mesoscopic model can evaluate the traffic signal settings much faster

than the microscopic model, but for some complex processes building good
mesoscopic models can be difficult - it may depend on the specific complex
process, so this approach is not universal. However, building microscopic
models can also be challenging, and even though the microscopic models are
more detailed and seemingly should produce results closer to the real world,
investigating the mesoscopic models can be also considered an interesting
research area to improve the optimization of complex processes.
In the case of the road traffic in cities, the error of approximating the

microscopic model using a simple mesoscopic model was too big compared
to the improvements achieved using genetic algorithms, so in the next exper-
iments, the focus was on building surrogate models using machine learning
techniques, that seem to be more universal and gave very good results in
initial experiments.

8.3.1.3 Training feed-forward fully connected neural networks as
surrogate models

As mentioned in Section 8.3.1.2, applying mesoscopic (or macroscopic) mod-
els may lead to a much faster evaluation (or approximation) of the objective
function but this method has at least 2 weaknesses:

• For some complex systems it might be difficult to develop mesoscopic
or macroscopic models that could be evaluated sufficiently fast.
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• Mesoscopic or macroscopic models do not have to give sufficient accu-
racy in approximating the values of the objective function.

Therefore, it was reasonable to think about an alternative approach that
could be universal and applicable to a broad range of complex processes. As
discussed in Chapter 7, a good approach could be based on neural networks
that are known to be good universal approximations of continuous functions
on compact subsets of Rn (and even though the space of traffic signal settings
is discrete, it can be extended to a continuous function on a compact subset
of Rn, so the universal approximation theorem holds).
However, as discussed in Chapter 7, this theoretical property does not

imply that using neural networks to approximate outcomes of simulating
traffic using a microscopic model is efficient enough, as the required size of
the training set or time of training might be huge. Hence, the goal of the
next experiment was to validate how efficient in approximating outcomes of
traffic simulations neural networks can be.

8.3.1.3.1 Setup of experiments

The experiments were performed on a dataset generated by simulating 600
seconds of realistic traffic using a deterministic variant of TSF’s microscopic
model in a setting with 42000 vehicles (30000 cars starting at the beginning
and 20 new cars starting every second). In each simulation, the same traffic
scenario was simulated, with routes generated based on the same origin-
destination matrix. The only setting that was different in each simulation was
a traffic signal setting in the “Ochota” region (a part of the Stara Ochota
district in Warsaw, covering 15 signal groups with traffic signals). In the
experiment, the only modifiable component of the signal setting was its offset
- the durations of the red and green signal phases were set as constants: 62
and 58 seconds, respectively. For all other intersections, the values of the
phase durations were the same, while the offsets were also set as constants
(10 seconds for the representative signal at each intersection - the offsets for
other signals at the same intersection had to be determined to ensure traffic
safety, as discussed in Section 8.2.1).
Therefore, each traffic signal setting in the studied region can be repre-

sented as a vector of 15 offsets - integers between 0 and 119, which were later
the features of trained models.
In order to generate training and test sets, a large number of traffic simu-

lations were run using TSF’s microscopic model described in Section 5.3. In
each simulation, the value of the objective function was calculated - it was
the total time of waiting at red signals (time spent with a speed of 0 km/h)
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in the considered region during the whole simulation, summed up over all
vehicles.
First, 117033 traffic signal settings were randomly selected (for each of the

15 offsets, the value was selected from the set {0, 1, . . . , 119} with a uniform
distribution). The values of the objective function were computed for all of
them by using TSF’s microscopic simulation model.
In this batch of experiments, 12 configurations of feed-forward fully con-

nected neural networks were considered, with 3 different values of the learn-
ing rate (0.001, 0.01, 0.1) and 4 different configurations of neurons: [100,
100] [100, 100, 100], [200, 200], [200], where the configuration [x1, x2, . . . , xn]
means that the neural network has n hidden layers, x1 units in the first
layer, x2 inputs in the second layer, and so on. In each case, the input layer
was composed of 15 units (corresponding to traffic signal settings) and the
output layer consisted of 1 unit. For all neurons, the activation function was
ReLU [110]. It is worth noting that before determining these 4 configurations,
many preliminary experiments were conducted to determine lower and upper
bounds on the values of the number of layers and the number of neurons that
were worthy of further study.
For each configuration, 5-fold cross-validation was applied. Each time, the

generated dataset was randomly divided into a training set (93626 settings,
i.e., about 80% of all settings) and a test set (23406 settings, i.e., about 20%
of all settings). The neural networks were trained using Adam optimizer [183]
with a batch size of 100. The loss function was the mean squared error (MSE)
[26], while the metrics used for evaluation on the test set were MAPE (mean
absolute percentage error) and MAXAPE (maximum absolute percentage
error) defined as:

MAPE =
1
n

n∑
i=1

∣∣∣∣Ai − FiAi

∣∣∣∣× 100% (8.1)

MAXAPE = max
i∈{1,...,n}

∣∣∣∣Ai − FiAi

∣∣∣∣× 100% (8.2)

Here, n is the number of data points, Ai is the actual value at the i-th
data point, and Fi is the forecasted value at the i-th data point.
These experiments were performed using the Torch library [328].

8.3.1.3.2 Results of experiments

In the best scenario, for the learning rate equal to 0.01, neurons = [100, 100, 100],
MAPE= 1.56%, and MAXAPE= 9.18% were achieved. A similar result was
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achieved for the learning rate equal to 0.1 and neurons = [100, 100, 100]:
MAPE= 1.74% and MAXAPE=8.47%.
The complete results are presented in Tables 8.4, 8.5 and 8.6.

Table 8.4: Results of experiments for the learning rate 0.001.
Metrics [100, 100, 100] [100, 100] [200, 200] [200]
MAPE 2.03% 2.39% 1.75% 4.44%
MAXAPE 10.08% 13.61% 8.89% 22.78%

Table 8.5: Results of experiments for the learning rate 0.01.
Metrics [100, 100, 100] [100, 100] [200, 200] [200]
MAPE 1.56% 2.28% 2.11% 3.98%
MAXAPE 9.18% 11.72% 10.8% 20.06%

Table 8.6: Results of experiments for the learning rate 0.1.
Metrics [100, 100, 100] [100, 100] [200, 200] [200]
MAPE 1.74% 2.62% 2.01% 3.76%
MAXAPE 8.47% 13.31% 11.31% 18.64%

The time required for training using standard GPUs was relatively short
(from about 15 minutes to a few hours, depending on the experiment and
settings) and after training, the time required for the inference to get the
value (approximated simulation outcome) for a given traffic signal setting
was below 1 millisecond, which is a few orders of magnitude faster than in
the case of running traffic simulations.

8.3.1.3.3 Conclusions from experiments

The first experiments with feed-forward fully connected neural networks were
preliminary but confirmed that relatively small neural networks are sufficient
to approximate some outcomes of microscopic traffic simulations (the total
times spent while waiting at red signals with speed 0km

h
in a given area)

with relatively good accuracy. Also, the time required for the inference to
get the value (approximated simulation outcome) for a given traffic signal
setting was below 1 millisecond, a few orders of magnitude faster than in the
case of running traffic simulations. Of course, the time required for training
the neural network as well as the time necessary to generate the training
set were significantly longer, so their reduction was also one of the goals of
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the next experiments. However, these processes have to be performed only
once and after that, the trained neural network can be used multiple times in
many experiments related to traffic optimization using metaheuristics which
significantly accelerates experiments.
More information about these experiments can be found in [129].

8.3.1.4 Investigating different neural network models and strate-
gies of their training

In the next batch of experiments, the goal was to investigate different neural
network models and strategies of their training and to answer the following
research questions:

• What is the impact of the size of the training set?

• What is the impact of the number of layers?

• What is the impact of the number of neurons?

• What is the impact of the learning rate?

• What is the impact of the dropout technique?

In order to answer these questions and analyze the impact on the accuracy
(MAPE and MAXAPE) of the trained models and the training time, different
sizes of training sets, different numbers of neurons and layers, and different
values of dropout and learning rates were taken into account.

8.3.1.4.1 Setup of experiments

The experiments were conducted on the same dataset as experiments de-
scribed in Section 8.3.1.3. However, this time, the dataset was organized
differently. First, it was randomly divided into a training set (intended to be
used to train different models of neural networks), consisting of 81920 cases,
and a validation set (intended to help in selecting the best model of neural
network from a set of investigated models), consisting of 20479 cases. The
remaining 14634 cases were intended to be a test set for later evaluation.
This time, one of the investigated factors was how the size of the training
set influences the process of training neural networks (e.g., final accuracy,
speed of learning), so in some cases, 2 smaller training sets were used too:
these were subsets of the whole training set, with 10240 and 30720 elements,
respectively.
The following hyperparameters were considered:
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1. Size of the training set - 3 values were considered: 81920, 30720, and
10240.

2. Configurations of neurons in hidden layers - 6 settings were investi-
gated: [100, 100, 100], [100, 200, 100], [200, 300, 200], [300, 400, 300],
[100, 150, 200, 150, 100], [50, 100, 200, 300, 200, 100, 50]. Each neural
network architecture was a feed-forward fully connected neural net-
work. All units had a ReLU activation function. In each case, the input
layer was composed of 15 units (corresponding to traffic signal settings)
and the output layer consisted of 1 unit.

3. Learning rate in the training process - 4 values were investigated: 0.1,
0.01, 0.001, 0.0001.

4. Dropout technique (randomly removing some units to prevent overfit-
ting [316]) - 4 values of the dropout probability were investigated: 0.05,
0.1, 0.15, 0.2.

In total, there were 3×6×4×4 = 288 models of training neural networks.
To train all these models, a standard grid search method considering all pos-
sible combinations of settings was applied. As in the previous experiments
(Section 8.3.1.3, [129]), some preliminary experiments were run aiming to
determine which parameters and values should be chosen for further investi-
gation.
In order to run the experiments, a Python tool was prepared based on

the TensorFlow library [326] (thus, the tool was called: TensorTraffic).
All experiments were run on an NVIDIA server with 4× P100 PCIe,

some on NC6 machines in a Microsoft Azure cloud with a GPU K80 [228].
The loss function was again the mean squared error (MSE) [26]. Training of
neural networks was performed on GPU by DNNRegressor evaluator from
TensorFlow library, using Adam optimizer [183] with a batch size 10240.
To analyze and compare the trained neural networks, MAPE and MAXAPE

metrics (defined in Section 8.3.1.3) were calculated on the validation set or
the test set, depending on the objective.
Neural networks were trained for 106 steps (a single step was a training

performed on a single batch set, consisting of 10240 elements from the train-
ing set), but to finish training when MAPE on the validation set was not im-
proving, an early stopping mechanism was introduced. To check the progress
of the training and to stop the training if the MAPE did not decrease, the
neural networks were evaluated after every 10000 steps on a validation set
consisting of 20479 cases.
After the training was finished, the trained neural network was evaluated

on the test set and MAPE and MAXAPE were computed.
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8.3.1.4.2 Results of experiments

Tables 8.7 - 8.10 present dependencies of results on values of parameters used
in the training process: the size of the training set (Table 8.7), neural network
architecture (Table 8.8), learning rate (Table 8.9) and dropout (Table 8.10).
Each table has 4 columns: the first column contains considered values of a
given parameter, while the second, third, and fourth columns contain infor-
mation about the average and maximum errors obtained on the test set, and
about the training time (number of steps used for training - the maximum
possible number of steps or the number of steps to trigger the early stopping
mechanism), respectively. The errors considered here are MAPE (for average
errors) and MAXAPE (for maximum errors), as defined in Section 8.3.1.3.
Each row contains information about the average, median, best, and worst

values, obtained for all possible models of training with a corresponding value
of a given parameter. For instance, the second column of the second row of
Table 8.7 contains the average MAPE, the median MAPE, the best MAPE,
and the worst MAPE, among all errors obtained on the test set for all neural
network models (96 models, in total) trained using the training set with 81920
elements. Table 8.11 presents the top 5 results according to MAPE obtained
on the test set, while Table 8.12 presents the top 5 results according to
MAXAPE on the test set.

Table 8.7: Dependence of the results on the size of the training set.

Size of the training set

Avg MAPE
Med MAPE
Best MAPE
Worst MAPE

Avg MAXAPE
Med MAXAPE
Best MAXAPE
Worst MAXAPE

Avg nr of steps
Med nr of step
Best nr of steps
Worst nr of steps

81920

3.13%
1.91%
1.18%
15.51%

14.49%
10.85%
7.09%
31.48%

66907
40000
20000
250000

30720

3.1%
1.76%
1.26%
15.59%

14.11%
10.29%
7.55%
31.11%

65258
40000
20000
220000

10240

3.26%
1.81%
1.24%
13.7%

14.94%
6.8%
10.5%
39.24%

73936
40000
20000
270000
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Table 8.8: Dependence of the results on the neural network structure.

Neural network structure

Avg MAPE
Med MAPE
Best MAPE
Worst MAPE

Avg MAXAPE
Med MAXAPE
Best MAXAPE
Worst MAXAPE

Avg nr of steps
Med nr of step
Best nr of steps
Worst nr of steps

[100, 100, 100]

2.55%
1.8%
1.32%
7.64%

13.1%
9.88%
6.8%
31.09%

87200
60000
20000
270000

[100, 200, 100]

2.48%
1.65%
1.18%
7.64%

12.86%
9.27%
7.09%
13.14%

86417
60000
20000
260000

[200, 300, 200]

2.62%
1.51%
1.3%
7.64%

13.86%
9.2%
7.84%
37.95%

77872
40000
20000
240000

[300, 400, 300]

2.21%
1.58%
1.3%
5.53%

12.65%
9.29%
7.33%
30.97%

75000
40000
20000
210000

[100, 150, 200, 150, 100]

3.76%
2.03%
1.42%
8.48%

15.73%
7.53%
11.26%
39.24%

47292
30000
20000
180000

[50, 100, 200, 300, 200, 100, 50]

5.37%
2.96%
1.97%
15.59%

18.86%
15.83%
9.07%
31.13%

37872
30000
20000
90000

8.3.1.4.3 Conclusions from experiments

According to Table 8.7, the size of the training set does not influence final
results significantly. An important conclusion is that a smaller training set,
consisting of 10240 elements, can be sufficient to achieve acceptable accuracy
of approximation in this case. Since generating a training set is the most
costly and time-consuming part of the whole approach (the training set is
generated using microscopic simulations), it gives the opportunity to signifi-
cantly reduce the time and cost of that process. This may help in generating
training sets in real time and help in many engineering applications. One of
the drawbacks is that the average training time is slightly longer in the case
of a set consisting of 10240 elements, but the difference is not significant (the
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Table 8.9: Dependence of the results on the learning rate value.

Learning rate

Avg MAPE
Med MAPE
Best MAPE
Worst MAPE

Avg MAXAPE
Med MAXAPE
Best MAXAPE
Worst MAXAPE

Avg nr of steps
Med nr of step
Best nr of steps
Worst nr of steps

0.1

5.8%
5.69%
2.63%
7.64%

26.61%
29.42%
12.79%
39.24%

25493
20000
20000
60000

0.01

1.84%
1.71%
1.24%
3.42%

10.61%
10.17%
7.09%
18.73%

36806
30000
20000
80000

0.001

2.43%
1.62%
1.18%
12.11%

10.15%
9.4%
6.8%
19.94%

59577
60000
20000
180000

0.0001

2.58%
1.61%
1.31%
15.6%

10.68%
9.27%
7.27%
25.69%

149730
180000
20000
270000

median and the minimum number of steps are identical as in the case of the
training set with 81920 elements).
According to Table 8.8, adding new layers and neurons does not improve

the approximation accuracy significantly. Moreover, in the case of 5 or 7
layers, the average and maximum errors may not be acceptable for practical
applications. Architectures with 3 layers usually perform better, which can
be also seen in Tables 8.11 and 8.12. In the case of all networks with 3
layers, accuracy (MAPE and MAXAPE) and required training times do not
differ significantly. The architecture [100, 200, 100] gave the best MAPE and
quite good average MAPE as well as significantly better performance for
the worst cases (Worst MAXAPE) than other models, while the architecture
[300, 400, 300] gave also very good MAPE and the best average MAXAPE,
so these 2 architectures seem to be best.
According to Table 8.9, in terms of accuracy, the best values of the learn-

ing rate parameter are 0.01 and 0.001. This is also supported by results in
Tables 8.11 and 8.12. In addition, the required training time significantly in-
creases with decreasing learning rate, which implies that the value 0.01 might
be the best choice.
According to Table 8.10, the best values of the dropout parameter are
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Table 8.10: Dependence of the results on the dropout probability.

Dropout probability

Avg MAPE
Med MAPE
Best MAPE
Worst MAPE

Avg MAXAPE
Med MAXAPE
Best MAXAPE
Worst MAXAPE

Avg nr of steps
Med nr of step
Best nr of steps
Worst nr of steps

0.05

4.06%
2.42%
1.18%
15.6%

14.72%
11.61%
6.8%
31.13%

64167
40000
20000
270000

0.1

2.81%
1.61%
1.3%
11.53%

14.06%
9.63%
7.53%
31.48%

77568
60000
20000
260000

0.15

2.73%
1.74%
1.34%
7.63%

13.89%
10.29%
7.33%
33.94%

65278
40000
20000
220000

0.2

3.06%
1.89%
1.39%
7.64%

15.37%
10.6%
7.85%
39.24%

67286
40000
20000
230000

0.1 and 0.15, on average. However, Tables 8.11 and 8.12 show that the best
results were achieved for the value of 0.05. The reason is that for the value
of 0.05 smaller architectures perform very well, but in general, the value of
0.05 performs worse and usually is not the best choice. However, for practical
applications, the best network is needed, so it is reasonable to apply the value
of 0.05 with some small architectures which usually give good results. Also,
the value 0.05 seems to give the best number of training steps, but this time
the difference is not significant compared to 0.15 or 0.2.
Tables 8.11 and 8.12 are important, because for practical applications

only the best parameters and networks, giving the best accuracy and training
time, are interesting. However, dropout introduces some non-determinism to
the training process, so the best results may be slightly different for different
runs of training even with the same parameters (e.g., parameters which are
the best according to Tables 8.11 and 8.12, turned out not to be the best
in some other runs). Also, Tables 8.11 and 8.12 present the best-performing
models on the (randomly generated) validation set, so it is possible that the
order of the models might be different for another set (e.g., composed of
points that are not randomly selected, but are close to local optima found
using optimization algorithms). Thus, the average results presented in Tables
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Table 8.11: Top 5 results according to MAPE.
Training set size NN structure Learning rate Dropout MAPE

81920 [100, 200, 100] 0.001 0.05 1.18%
10240 [100, 200, 100] 0.001 0.05 1.24%
81920 [100, 200, 100] 0.01 0.05 1.24%
30720 [100, 200, 100] 0.001 0.05 1.26%
81920 [300, 400, 300] 0.001 0.1 1.3%

Table 8.12: Top 5 results according to MAXAPE.
Training set size NN structure Learning rate Dropout MAXAPE

10240 [100, 100, 100] 0.001 0.05 6.8%
81920 [100, 200, 100] 0.01 0.05 7.09%
10240 [100, 200, 100] 0.0001 0.05 7.27%
81920 [300, 400, 300] 0.001 0.15 7.33%
10240 [100, 100, 100] 0.01 0.05 7.37%

8.7-8.10 are also important because they show general trends in a larger set of
models, and consequently they should also be considered when determining
the best hyperparameter settings to use in the training process.
It might seem that the models with the architecture [100, 200, 100],

trained on a set of 10240 elements, with a dropout of 0.05 and a learning
rate of 0.01, composed of hyperparameter values that seem to be one of the
best after averaging over multiple trained models, should give relatively good
accuracy, time of training, and time of generating the training set. However,
in the conducted experiments, the model with these values of hyperparame-
ters (10240, [100, 200, 100], 0.01, 0.05) gave MAPE of 1.34% and MAXAPE
of 10.52%, which did not place it in top 5 in terms of the average and max-
imum error on the test set. However, dropout introduces some noise and
non-determinism, so the models that are best after just a single training do
not have to best as good in the next training with exactly the same param-
eters. Since training a single model takes a significant amount of time on
the used machine with a GPU (at least 10 minutes), it is not practical to
train each model many times and observe their average performance. How-
ever, some promising models were trained a few times and then evaluated
on the test set. The configuration (81920, [100, 200, 100], 0.001, 0.05), which
gave the best average accuracy in the previous experiment, turned out not
to be as good this time, most likely due to non-determinism introduced by
dropout (in one case, MAPE increased to 1.7% and MAXAPE to 9.3%). On
the other hand, the configuration (10240, [100, 200, 100], 0.01, 0.05) reached
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MAPE 1.2% and MAXAPE 6.8% (also, this model has quite a good training
time and time required to generate the training set). It does not mean that
this model would be best after performing multiple training procedures and
averaging the results. Nevertheless, this model was chosen as the surrogate
model for the next experiments with genetic algorithms aimed at solving the
Traffic Signal Setting problem (Section 8.3.1.5).

8.3.1.5 Applying feed-forward fully connected neural network mod-
els to optimize traffic signal settings

In this experiment, one of the best-performing feed-forward fully connected
neural networks in experiments described in Section 8.3.1.4 was selected as
a surrogate model to evaluate traffic signal settings explored by a genetic
algorithm aiming to find good signal settings and solve the Traffic Signal
Setting problem.

8.3.1.5.1 Setup of experiments

First, a neural network with the architecture [100, 200, 100] was trained on a
training set of size 10240 (a subset of the dataset used in the experiments de-
scribed in Section 8.3.1.4), with a learning rate 0.01 and dropout 0.05, which,
according to Section 8.3.1.4, turned out to be one of the best models for prac-
tical applications. It gave MAPE of 1.2% and MAXAPE of 6.8% on the test
set (described in Section 8.3.1.4). The training process took approximately
700 seconds on the NVIDIA server with the P100 GPU [254].
Then, a single run of a genetic algorithm was performed with the trained

neural network applied to evaluate the quality of traffic signal settings. The
representation of offsets of traffic signal settings as chromosomes was the
same as in the experiment described in Section 8.3.1.1. The crossover op-
erator was also the same - a uniform crossover. However, the selection and
mutation operators of the genetic algorithm were different. As a selection
operator, the tournament selection described in Section 6.2.2 was applied.
As a mutation operator, the swap mutation described in Section 6.2.2 was
applied. The number of iterations and the number of chromosomes in the
initial population were also different, i.e., there were 100 iterations with 30
chromosomes (signal settings) in each iteration. Also, this time, only 1 fitness
function was investigated - the total time of waiting at red signals with speed
0km
h
. All the other settings had default values based on the implementation of

an external Python’s library that was used for experiments - Pyevolve [278].
In the end, the result of the genetic algorithm run was compared with the

best setting from a set of 107 randomly generated signal settings evaluated
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using the same neural network.

8.3.1.5.2 Results of experiments

The genetic algorithm found a traffic signal setting with a total waiting time
of 34926 seconds (it was the setting [118, 118, 50, 39, 88, 25, 115, 109, 118,
118, 50, 117, 0, 103, 25]). It took about 800 seconds because it was done using
an external Python library, Pyevolve [278], that did not work with the GPU
available on the virtual machine at the time of running the experiments, so
did not take advantage of it (using GPU, the whole process can be poten-
tially accelerated even more than 1000 times, depending on the number of
chromosomes in a single population).
Then, 107 settings were randomly selected from the set of 12015 possible

settings and evaluated using the same neural network in 650 seconds on the
same machine, without external libraries, but using P100 GPU (thus, it took
advantage of the accelerated inference provided by GPU). The best setting
([115, 116, 26, 43, 92, 40, 115, 75, 103, 112, 51, 112, 14, 58, 8]) gave the
total time of waiting (total time with speed 0km

h
) 35718, which is more than

2% worse than for the best setting found after only 3000 evaluations of the
fitness function using a genetic algorithm.

8.3.1.5.3 Conclusions from the experiment

This experiment showed that integrating the trained feed-forward fully con-
nected neural networks as surrogate models that evolve the quality of traffic
signal settings can significantly accelerate the execution of genetic algorithm
experiments and the search for near-optimal traffic signal settings.
It was also shown that the genetic algorithm integrated with a surrogate

model can have a better performance than the random search algorithm in
terms of the quality of the traffic signal setting it can return and the time
required to do so. However, the evaluations were performed using the surro-
gate model, so it is not certain that the traffic signal settings that are good
according to the trained model are also good according to the traffic simu-
lation. It may turn out that the approximation error close to local minima
found using a genetic algorithm increases. The next batch of experiments
was designed to investigate it.

8.3.1.6 Investigating performance of neural networks and gradient
boosting models as surrogate models

The goal of this batch of experiments was to investigate the accuracy of the
trained surrogate models applied to traffic optimization as fitness functions
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of genetic algorithms, especially in points close to local optima.
This time, in addition to feed-forward fully connected neural networks,

gradient boosting models (LightGBM [178]) were also investigated, as some
preliminary experiments indicated that such models can also give good results
in approximating the results of microscopic traffic simulations.
Gradient boosting models belong to the family of machine learning algo-

rithms. The main idea assumes that weak predictive models become better
with subsequent iterations, through learning from mistakes made by previ-
ous models. In these experiments, weak learners were represented by decision
tree regressors. The most widely used implementations of this algorithm are
XGBoost [57] and LightGBM [178]. The LightGBM algorithm is a gradient-
boosting framework that uses tree-based learning algorithms. Unlike other
tree-based algorithms that use level-wise tree growth, LightGBM grows trees
vertically. LightGBM has been shown to outperform XGBoost in terms of
memory consumption and computational speed [178], which agrees with the
outcomes of experiments. These factors are vitally important in the con-
ducted research, as the execution time of the surrogate model should be as
short as possible. On top of that, preliminary experiments indicated slightly
better accuracy of LightGBM compared to XGBoost, hence the choice was
to base further experiments upon this gradient boosting algorithm.

8.3.1.6.1 Setup of experiments

For this experiment, a new dataset was generated using TSF, this time for a
slightly larger region - the whole “Ochota” region with 21 signal groups. The
dataset was generated for 105336 traffic signal settings. Each signal setting
was represented as a vector of 21 elements corresponding to traffic signal
offsets (which are integers from the set {0, 1, ..., 119}) for one of 21 selected
signal groups. For each setting, TSF computed the total time of waiting at red
signals in the selected region using a deterministic variant of its microscopic
model. For the purpose of training surrogate models, this dataset was divided
into a training set (consisting of the first 85336 elements) and a test set (the
remaining 20000 elements). This dataset consisting of the evaluated signal
settings was made available publicly to enable further research on this topic
(cf. Appendix A.2).
LightGBM has many parameters, a core set of hyperparameters was ini-

tially selected and their optimal values (presented in Table 8.13) were found
through training and validating the model on the training set, with 80%/20%
split into training/validation sets. In order to find good values of hyperpa-
rameters, the Tree-structured Parzen Estimator (TPE) was used, which is an
efficient and robust hyperparameter optimization technique [24]. Compared
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to other popular methods like grid search and random search, TPE strives
to improve the overall result with every iteration by taking distributions of
prior results as a baseline. This fluid approach produces similar results to
Random Search, but in a much faster manner.

Table 8.13: Optimal values of core parameters of the LightGBM algorithm
found using the Tree-structured Parzen Estimator.
Name of a parameter Value
colsample (fraction of columns randomly sampled for each tree) 0.88
learning rate (determines the impact of each tree) 0.1
max depth (maximum depth of a tree) 5
n estimators (number of decision trees) 2500
subsample (fraction of data randomly sampled for each tree) 0.67
min data in leaf (minimum number of the records in a leaf) 10
lambda l1 (L1 regularization) 0.1
lambda l2 (L2 regularization) 0.2

The optimized values of these core hyperparameters were kept and further
experiments aimed to optimize some other important parameters: number of
leaves, regression technique, and boosting technique. Since LightGBM uses
a leaf-wise growth algorithm, the number of leaves (num leaves parame-
ter) controls its complexity. 2 values of this parameter were considered in
experiments: 31 and 63. In terms of regression techniques, Regression l1,
Regression l2, and Poisson evaluated models based on the mean absolute
error, root mean squared error, and negative log-likelihood, respectively, as
evaluation metrics [207]. In terms of boosting technique, apart from the tradi-
tional Gradient Boosting Decision Tree (GBDT) [57] method, Dropouts meet
Multiple Additive Regression Trees (DART) [281] method was also included
in the experiments. Different values of num leaves, regression, and boosting
techniques influence results strongly, so it was decided to test various values
of these parameters, train multiple models and select the best 8 models -
they are presented in Table 8.14.
In the case of surrogate models based on neural networks, multiple feed-

forward fully connected neural network architectures were tested with differ-
ent layers and numbers of neurons, different activation functions (ReLU [110]
and TANH [109]), presence of residual connections (True/False) and values
of the weight of the L2 regularization. All models were trained using the
RMSProp optimizer [289] for 200 epochs with a batch size of 128 and mean
squared error (MSE) as the loss function. In order to normalize the input
data and capture its periodic properties, each offset input x was transformed
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Table 8.14: 8 best LightGBM models selected for tests.
Boosting Regression Num leaves MAPE MAXAPE
GBDT regression l2 63 1.78% 10.02%
GBDT regression l2 31 1.79% 9.46%
GBDT poisson 63 1.93% 12.16%
GBDT poisson 31 1.94% 11.09%
GBDT regression l1 63 2.08% 13.27%
GBDT regression l1 31 2.09% 12.50%
DART regression l2 63 2.28% 12.52%
DART regression l2 31 2.29% 12.64%

into a pair
(
cos 2πx120 , sin

2πx
120

)
which changed the input size from 21 to 42. In

total, 216 models were trained with different values of regularization rates,
number of layers and neurons, activation functions, etc. Finally, 8 models
were selected (from the set of 30 best models with the lowest relative error
rates) that had good diversity in terms of hyperparameter values. All models
were trained using Keras [59] package with TensorFlow [326] backend. The
parameters of the chosen models are presented in Table 8.15.

Table 8.15: Neural network models selected for tests. Architecture (N, ) ∗ L
refers to a model with L hidden layers with N neurons each. Architecture
(N1, N2, N3) refers to a model with 3 hidden layers with N1, N2 and N3
neurons, respectively. Activation specifies the activation function in neurons.
L2 specifies the parameter of the L2 regularization. Residual indicates if
residual connections were applied.
Architecture Activation L2 Residual MAPE MAXAPE
(200, ) ∗ 3 TANH 10e− 4 True 1.77% 8.34%
(200, ) ∗ 3 TANH 10e− 4 False 1.78% 9.2%
(350, ) ∗ 2 TANH 10e− 4 True 1.8% 10.56%
(500, ) ∗ 5 ReLU 10e− 3 True 1.8% 9.5%
(350, 500, 350) ReLU 10e− 4 False 1.8% 10.17%
(200, 300, 200) ReLU 10e− 3 False 1.81% 10.95%
(200, 300, 200) TANH 10e− 4 False 1.81% 9.36%
(100, 200, 100) ReLU 10e− 4 False 1.84% 10.95%

For conducting experiments using genetic algorithms, a dedicated Python
library was developed. Thanks to that, it was possible to test 288 configu-
rations of hyperparameters, all of them are described in Tables 8.16, 8.17,
8.18. In this batch of experiments, the size of the population was constant
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- each population contained 120 chromosomes. It was also assumed that
for each run there are 100 iterations. 3 selection operators were considered:
rank selection, roulette wheel selection and tournament selection, they are
described in Section 6.2.2. Roulette wheel selection and rank selection where
combined into a single operator called combined selection: there was a param-
eter NBest corresponding to the number of the best chromosomes (ordered
according to their fitness function) to be selected deterministically as parents
for the next population, and the remaining (SelectN−NBest) chromosomes
were selected from the rest of the population with probability proportional to
individuals’ fitness. SelectN was a parameter specifying the number of chro-
mosomes to be selected as parents to generate the next population - it was
a parameter of both selection operators: tournament selection and combined
selection.
Tournament selection had also 3 additional parameters that were an-

alyzed in these experiments: TournamentSize, RankingPr and Ps. Tourna-
mentSize is the size of a single tournament. RankingPr determines the method
for the calculation of selection probability in the case of tournaments. If the
value is True, the selection probability depends on the individual’s place in
the ranking and is calculated as follows: (1− Ps)(rank−1) × Ps, where rank is
an individual’s place in the ranking and Ps determines the decrease rate of
selection probability calculated proportionally to the place in the ranking. If
the value of RankingPr is False, the selection probability is proportional to
the individual’s fitness, which corresponds to the roulette wheel selection.
Two crossover operators were considered: single point crossover and uni-

form crossover, both operators are described in Section 6.2.2. In the case
of the single point crossover operator, the algorithm randomly selects one
point in the parents’ chromosomes and swaps the tails. In the case of the uni-
form crossover, the algorithm randomly selects genes from the corresponding
positions in both parent chromosomes.
Two mutation operators were considered: swap mutation and uniform

mutation. The mut swap parameter specified the probability of swapping
two adjacent genes in a chromosome (compared to the standard swap muta-
tion operator, this time swapping only adjacent genes was considered). The
mut random parameter specified the probability of randomly changing the
value of the considered gene to another value chosen at random with a uni-
form distribution from the set of possible values. In total, there were 504
configurations: 432 configurations with the tournament selection operator
and 72 configurations for the combined selection operator.
For each configuration, experiments were run for each of the selected 16

models, 5 times per model (each run started from a random initial population,
so different initial settings were tested), giving 2520 runs for each model.
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Table 8.16: Hyperparameters of genetic algorithms tested in experiments.
Description of the parameter Tested values

Size of the population 120
Number of iterations 100

SelectN - Number of chromosomes
to be selected as parents population

30, 60

Crossover operator

• Single point crossover - the
algorithm randomly selects one
point in the parents’
chromosomes and swaps the tails

• Uniform crossover - the algorithm
randomly selects genes from the first or
the second parent

mut swap: Probability of swapping
2 adjacent genes in a chromosome

(in swap mutation)
0.01, 0.05, 0.1

mut random: Probability that
the uniform mutation randomly
changes the gene’s value

0.01, 0.05, 0.1

Determines how the parents’
population is chosen

• Combined selection - selects
NBest best chromosomes and draws
(SelectN −NBest) chromosomes
with a probability proportional
to individuals’ fitness

• Tournament selection -
randomly divides the whole population
into groups(tournaments) of size
TournamentSize and draws one
chromosome from each with the
probability proportional to individuals’
fitness or to the place in the ranking

8.3.1.6.2 Results of experiments

The average value of the fitness function (computed using TSF) in the train-
ing set was about 48923, but the genetic algorithms were able to find points
with a value at level 32000-33000 according to the surrogate model. However,
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Table 8.17: Hyperparameters of genetic algorithms applicable only to the
combined selection.

Description of the parameter Tested values
NBest - Number of the best chromosomes

to be selected deterministically
15, 30

Table 8.18: Hyperparameters of genetic algorithms applicable only to the
tournament selection.
Description of the parameter Tested values

TournamentSize
- the size of tournaments

2, 3, 4

RankingPr - the method
for calculation

of selection probability

• True - the selection probability
depends on the individual’s place
in the ranking (rank) and is
calculated as follows:
(1− Ps)(rank−1) × Ps
• False - the selection probability
is proportional to the individual’s
fitness (roulette wheel)

Ps - it determines the decrease rate
of selection probability calculated
proportionally to the place

in the ranking
(only if RankingPr is True)

0.7, 0.85, 1

the goal of this experiment was to investigate the accuracy of approximations
using surrogate models near local optima, so for some traffic signal settings
produced by a genetic algorithm, the true value of the simulations was cal-
culated using TSF. Each run of the genetic algorithm produced about 12000
settings (120 (number of settings in a population) × 100 (number of iter-
ations)). In some cases, this number was lower because some settings were
shared among different populations, but since evaluating signal settings us-
ing TSF takes a considerable amount of time, it was important to carefully
select which settings to evaluate with TSF.
For each of the 16 surrogate models, 2520 genetic algorithm runs were

sorted based on the final best setting (according to the surrogate model)
found in a given run. From the 10 best runs and from 10 runs randomly
selected from 90 runs on positions 11-100, the best signal settings from each
of the 100 iterations were selected for evaluation using TSF. In total, there
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were 2000 evaluated settings per model.

Figures 8.3 and 8.4 present distributions of the mean relative error on
the test set (composed of randomly selected settings) for surrogate models
based on neural networks and LightGBM, respectively. It can be seen that
the distributions are similar to the normal distribution and in most cases,
the errors are relatively small (below 5%).

On the other hand, Figure 8.5 presents distributions of the mean relative
error for settings found using genetic algorithms for all 16 surrogate models.
It can be seen that these distributions are not regular and the errors can
be high (the errors above 5% are quite common). In most cases, surrogate
models underestimate the results of simulations, and usually, the error of
approximation is larger than the average error of a given model on a ran-
domly generated test set (which is at the level 1.7%− 2%) and it can reach
12.9%. The same increase can be observed for the maximum error too - it can
reach 21.5%. It can be also observed that in the case of neural networks, the
activation function may significantly change the distribution of the relative
error. For ReLU, neural networks almost always underestimate the results
of simulations. For TANH, the error is more symmetric. This result is also
visible in Figure 8.6 which presents relations between approximations and
true values returned by TSF for traffic signal settings found using genetic
algorithms.

By analyzing errors for traffic signal settings from trajectories of genetic
algorithms (Figure 8.7), it can be confirmed that, in general, errors of ap-
proximations increase toward underestimating the outcomes of simulations.
Furthermore, the errors produced by LightGBM tend to surpass the errors
produced by NN, i.e., the simulation results are underestimated more in the
case of LightGBM. Another important observation is that despite increasing
errors, genetic algorithms are still able to find better settings than in the
initial populations.

The principal component analysis (PCA) [271]) was also run on settings
from trajectories and it turned out that depending on the surrogate model,
genetic algorithms may converge to different regions in the space of traffic
signal settings (Figure 8.8).
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Figure 8.3: Distributions of the mean relative error on the test set for neural
networks. The figure is from [130].
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Figure 8.4: Distributions of the mean relative error on the test set for Light-
GBM models. The figure is from [130].
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Figure 8.5: Distributions of the mean relative error for settings found using
genetic algorithms for all 16 surrogate models. The figure is from [130].
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Figure 8.6: Comparison of the results of model predictions and the results
of simulations for traffic signal settings with the lowest predictions (100 best
settings for 20 genetic algorithm runs) for all 16 surrogate models. The figure
is from [130].
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Figure 8.7: Results of approximations (for 3 types of metamodels: LightGBM,
neural networks with TANH activation, neural networks with ReLU activa-
tion) for best settings from genetic algorithms. The last 20 points from each
GA run are marked as orange. The figure is from [130].

Figure 8.8: Principal component analysis performed on best settings from
different populations in GA, for LightGBM models and neural network mod-
els with TANH and ReLU activation functions. The figure is from [130].

8.3.1.6.3 Conclusions from experiments

It turned out that MAPE for traffic signal settings close to local optima
can be significantly greater than for typical traffic signal settings randomly
selected from the large space of possible settings.
For traffic signal settings found by genetic algorithms, errors of approx-

imations increase close to points considered (by a surrogate model) as local
minima and the phenomenon is universal - it can be observed in the case of
many different surrogate models (neural networks, LightGBM), but its scale
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and properties may differ depending on some parameters, e.g., activation
function in the case of neural networks.
Two potential reasons for this phenomenon were identified:

• Underrepresentation of points close to local minima (found by genetic
algorithms) in the training set. As a consequence, it is difficult for
surrogate models to generalize properly.

• Genetic algorithms search for settings with low values according to
the surrogate model. Therefore, among the settings where the values
according to the surrogate model are low, they find the settings that
are farther from the real simulation results (the points that are closer
to the real simulation values and, as a consequence, have greater values,
have a lower chance of being found, as they might be considered worse
by a surrogate model than points for which the surrogate model has
a larger error). This could also explain why the surrogate models tend
to underestimate the points found by genetic algorithms after many
iterations.

Moreover, the principal component analysis showed that genetic algo-
rithms may converge to different areas of the search space, depending on the
surrogate model.
One of the interesting research questions at this point was: “Does the

phenomenon of increasing error of approximation depend on the optimization
algorithm?”. The identified potential reasons for this phenomenon suggested
that it should not depend on the optimization strategy, but only genetic
algorithms had been investigated, so the goal of the next batch of experiments
was to check other optimization techniques too, starting from the gradient
descent (Section 8.3.1.7).

8.3.1.7 Traffic signal settings optimization using gradient descent

The goal of these experiments was to investigate the performance of gradient
descent optimization applied to the Traffic Signal Setting problem with neural
networks used as surrogate models evaluating the quality of signal settings.
This time the focus was on comparing the performance of the gradient descent
method with genetic algorithms in terms of the quality of the found signal
settings and the accuracy of approximation at these signal settings.
Gradient descent is an iterative optimization algorithm for finding a local

minimum of a differentiable function. The idea is to take repeated steps in the
direction opposite to the gradient (or approximate gradient) of the function
at the current point, since this is the direction of the steepest descent. In this
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case, the differentiable functions to be optimized were the neural networks
trained on the dataset introduced in Section 8.3.1.4 (consisting of 85336 traf-
fic signal settings) to be surrogate models approximating microscopic traffic
simulations of TSF. They took a traffic signal setting as input and returned
the (approximated) total waiting time at red signals in a given region (Time0
metric defined in Section 8.2.1). Neural networks are typically trained using
the backpropagation algorithm, which calculates the gradient descent over
the space of weights of connections between neurons to minimize the (dif-
ferentiable) loss function that compares the neural network output with the
ground truth value (the correct values according to the training set entries).
In the case of optimization, the gradient descent can be computed over the in-
put space instead. An apparent problem here is that the traffic signal settings
used in the experiments (e.g. the settings in the dataset used) are represented
as vectors of integer values from a finite set ({0, 1, . . . , 119}), and the ground
truth values computed using TSF (the total waiting times at red signals) are
also integers. However, the domain can be extended to a continuous domain
because the neural networks can take arbitrary values (in practice, the values
that can be represented in a given computer program) as input. If the acti-
vation functions are continuous and differentiable, the function computed by
the whole neural network is also continuous and differentiable. Therefore, it
is possible to calculate the gradients of the objective function evaluated by
a neural network in the input space and use them to optimize that function.
It is also worth noting that a similar approach is used to find adversarial

examples. After training the neural network, the weights are kept constant,
but the inputs to the network are modified using gradient descent to maxi-
mize the loss function [166].
Also, it is good to emphasize that in the case of LightGBM models such

gradient descent optimization is not feasible as the optimized function is not
differentiable, so in these experiments, only neural networks were tested.

8.3.1.7.1 Setup of experiments

The dataset and 8 neural network models used in these experiments were
the same as in experiments described in Section 8.3.1.6. The results of traffic
signal settings optimization using genetic algorithms from those experiments
were also used this time, they were just compared with the results of opti-
mization using gradient descent. The optimization processes were run using
4 variants of gradient descent (with appropriately tuned values of hyperpa-
rameters):

• stochastic gradient descent (SGD) [35] with a learning rate 0.1;
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• Nesterov [249] with a learning rate 0.1 and momentum 0.9;

• RMSProp [289] with a learning rate 1.0;

• Adam [183] with a learning rate 0.5.

For each method and each of 8 metamodels, 1000 gradient descent ex-
periments (each with 100 iterations) were run and 20 best runs (with the
lowest predicted values according to the surrogate model) were chosen. This
resulted in 160 trajectories per optimization method. Although setting a high
learning rate for both Adam and RMSProp is believed to harm the training
process in the case of neural networks [183], it turned out that in this case,
lower values of the learning rate slowed down the training process and made
it stuck at local minima, whereas higher values made the optimization pro-
cess unstable. In the case of RMSProp - the proposed value of the learning
rate helped solve these problems. Unfortunately, even careful fine-tuning of
optimizer hyperparameters did not work sufficiently well for Adam.

8.3.1.7.2 Results of experiments

In order to compare the results of different optimization methods (4 based
on gradient descent and 1 genetic algorithm), values predicted by surrogate
models, values returned by traffic simulations for the same traffic signal set-
tings, as well as errors of approximation for each model were analyzed in
points found by the optimization algorithms. For this, the best points from
the last 20 iterations of optimization algorithm trajectories were selected for
evaluation using TSF. Analysis of the values showed that before this phase
(i.e., before the 80th iteration) optimization algorithms had already con-
verged, so these points represented areas close to minima to which a given
optimization process converged.
The following measure of discrepancy between the results of optimization

methods was introduced:

∆(A | B) =
∑

X∈res(A)
min

Y ∈res(B)
δ(X, Y )/|res(A)|, (8.3)

where A and B are different optimization methods, res(M) is the set of all
160 trajectories (which are represented as sets of best traffic signal settings
obtained in the last 20 steps of the optimization process, for each of the 8
considered models) generated by method M , and δ is a Euclidean distance
between 2 trajectories given by:

δ(X, Y ) = min
x∈X,y∈Y

||x− y||2. (8.4)
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So, the ∆-discrepancy between methods A and B is given by a mean
distance of trajectories (δ) obtained by method A from trajectories obtained
by method B. This discrepancy measure is not symmetric, so it was computed
for all possible 20 tuples of the used methods and the results are presented
in Figure 8.9.

Figure 8.9: Distribution of ∆-discrepancy between all 20 possible tuples of dif-
ferent optimization methods used in experiments (Genetic Algorithm, SGD,
Nesterov, RMSProp, and Adam). The figure is from [245].

The values of ∆-discrepancy applied to all pairs of methods varied be-
tween 0.08 and 3.28 with a mean value equal to 1.8 and a standard deviation
0.84.
Thus, a hypothesis was formulated that all methods (both gradient-based

and genetic algorithms) produce traffic signal settings from roughly the same
regions of the input space. In such a case, the values of simulations using
TSF, predictions and errors on the traffic signal settings from the generated
trajectories should be similar too. The reason is that in the TSF model that
was used in experiments, the differences in the total times of waiting should
be relatively small for signal settings that are close.
The collected outcomes of simulations evaluating traffic signal settings

found by the optimization methods using the deterministic variant of the
TSF’s microscopic model (Table 8.19) and errors of approximations (Table
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Figure 8.10: Distribution of the δ distance between randomly sampled sets
of trajectories (N = 1000 pairs were sampled). The figure is from [245].

8.20) confirm that for various optimization methods, the results are simi-
lar. Further analysis (presented in [245]) of outcomes for various methods
confirmed that the distributions of simulation results and errors of approxi-
mations are quite similar.

Table 8.19: Simulation results across different optimization methods.
Metric Genetic SGD Adam RMSProp Nesterov

Min 32620 32565 32406 32383 33026
Max 38320 39143 38062 38015 37602
Mean 34439 34682 34891 34731 34598
Median 34216 34420 34831 34490 34354
Std 1008 1095 817 1060 986

The errors (differences between predictions of models and values from
simulations) and absolute errors of approximations of surrogate models for
points from trajectories close to local minima are presented in Table 8.20. In
terms of the mean and the median absolute error, it seems that the Nesterov
method is the most accurate. The second best approach with respect to errors

184



Chapter 8: Experiments

is the genetic algorithm, which also suffers the least from extreme positive
errors. Other gradient methods (RMSProp, Adam, and SGD) have similar
mean and standard deviation for both, errors and absolute (ABS) errors.

Table 8.20: Comparison of errors (differences between predictions of models
and values from simulations) across different optimization methods. ABS
means absolute error.

Metric Genetic SGD Adam RMSProp Nesterov

Min -1573 -1688 -731 -1549 -1826
Max 3326 4041 3657 3834 3814
Mean 1112 1363 1442 1432 905
Median 1206 1388 1435 1600 1010
Std 1033 1066 934 1018 1079
Min ABS 20 1 1 4 1
Max ABS 3326 4041 3657 3834 3814
Mean ABS 1294 1470 1460 1508 1171
Median ABS 1239 1393 1435 1600 1115
Std ABS 792 912 905 899 782

It was also found that for a given surrogate model, gradient descent and
genetic algorithms tend to converge to roughly the same regions of input
space, which is visualized in Figure 8.11 using PCA dimensionality reduc-
tion. One may notice that there are three main regions to which algorithms
converge. Two on the left have rather small errors. They also have a small
PCA reconstruction error (which refers to the difference between the original
data and the approximated data after being transformed and reconstructed
using PCA) which suggests that they lie close in the space of signal settings.
The region on the right seems to have a much steeper structure of the error
values. A greater reconstruction error suggests that this region lies far away
from two regions on the center-right and is underrepresented in the trajectory
space.
Further analysis showed that the most important factor that made the op-

timization trajectories different was the activation function of the surrogate
model. This is also consistent with the results obtained in previous experi-
ments with genetic algorithms (Section 8.3.1.6). The results of experiments
that used models with the same activation (ReLU or TANH) were similar
(even if a different optimization method was used) whereas different activa-
tions usually resulted in different minima (Figure 8.11). Only models based
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on TANH activation explored the less frequent region in the input space.
Although the TANH-based models have lower mean and median absolute
errors, the possibility of reaching poor local minima is greater which is con-
firmed by higher maximum value and standard deviation of simulation values
(Table 8.21).

Figure 8.11: PCA visualization of points obtained in the last 20 iterations for
different types of optimization algorithms. Most of the points concentrate in
roughly the same input region. In regions on the left of the image, the error is
smaller, whereas the minima on the right have a much steeper structure of the
error values. The PCA reconstruction error suggests that these trajectories
might be outliers. The figure is from [245].

8.3.1.7.3 Conclusions from experiments

It was discovered that all considered optimization methods (based on ge-
netic algorithms and gradient descent) produce similar results and shown
that the accuracy of neural networks, minima reached and errors, depend on
the activation function of the surrogate models based on neural networks.
The impact of the optimization technique is not that significant. Gradient
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Table 8.21: Simulation results and errors of approximation for ReLU and
TANH activation functions.

Metric
ReLU
Sim.

TANH
Sim.

ReLU
Error

TANH
Error

ReLU
ABS
Error

TANH
ABS
Error

Min Value 32620 32383 -246 -1826 7 1
Max Value 36787 38320 3834 3198 3834 3198
Mean Value 34464 34883 1872 603 1872 866
Median 34416 34526 1887 524 1887 660
Std 546 1237 683 946 682 713

optimization has to check fewer signal settings, so it gives good results a few
times faster than GA which makes it a natural candidate for the optimization
procedure in future experiments (on the other hand, genetic algorithms have
the potential to explore more regions of the traffic signal settings space and
can be combined with other surrogate models, e.g., based on LightGBM).
However, the errors obtained using different optimization methods and dif-
ferent surrogate models may differ. These results were also a motivation for
further experiments in which other optimization algorithms (Section 8.3.1.8)
and other surrogate models (Section 8.3.1.9) were applied.

8.3.1.8 Testing various metaheuristics and surrogate models

The goal of these experiments was to test various metaheuristics for solving
the Traffic Signal Setting Problem with surrogate models based on neural
networks and LightGBM as evaluators of the fitness function.

8.3.1.8.1 Setup of experiments

For this experiment, the same dataset as in experiments described in Section
8.3.1.6 was used and the division into the training and test set was the same.
This time, a new neural network model and a new LightGBM model were
trained.
The neural network model was a feed-forward fully connected neural net-

work with 4 hidden fully connected layers, with 375, 750, 750, and 375 neu-
rons, respectively. The final output was a linear unit applied to the last of
the hidden layers. For all neurons, the activation function was ReLU.
In the training process, the L2 regularization with a weight penalty of

0.0001 was used. Also, dropout [316] with the rate of 0.2 was applied. The
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neural network was trained using a loss function which was a linear combina-
tion of the mean squared error (with a weight of 0.9) and the mean absolute
error (with a weight of 0.1). The network was trained using SGD [35] with
Nesterov [249] momentum of 0.8 and a learning rate of 0.2. The reducing
learning rate schedule [144] was applied with the learning rate cut by a fac-
tor of 0.7 after every 20 epochs without any improvement of training. The
training lasted 1000 epochs with a batch size of 128. The input data was
scaled by a factor of 120 whereas the output was scaled to have a mean 0
and a unit variance.
After training, this surrogate model hadMAPE = 1.96% andMAXAPE =

10.95%. The average time of a single evaluation was 0.8 ms.
In order to find the best settings of hyperparameters for LightGBM, the

Tree-structured Parzen Estimator (TPE) was used [24]. The found values of
core hyperparameters are presented in Table 8.22.

Table 8.22: Optimal values of some core parameters of the LightGBM al-
gorithm found using the Tree-structured Parzen Estimator. The meaning of
parameters is the same as in Section 8.3.1.6.

Name of a parameter Value
boosting GBDT
regression regression L2
colsample 0.8384
learning rate 0.0970
max depth 5
n estimators 2408
subsample 0.7711
min data in leaf 10
lambda l1 0.96
num leaves 63
lambda l2 0.2

This LightGBMmodel with the optimal values of hyperparameters achieved
on the test setMAPE = 1.72% andMAXAPE = 10.83%. The average time
of a single evaluation was 0.4 ms.
The trained models were later integrated with several metaheuristics to

serve as surrogate models evaluating the quality of traffic signal settings. The
following metaheuristics were tested in this batch of experiments:

• genetic algorithms (explained in Section 6.2);

• particle swarm optimization (explained in Section 6.3);
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• simulated annealing (explained in Section 6.5);

• tabu search (explained in Section 6.4);

• Bayesian optimization (explained in Section 6.10).

For each metaheuristic, a grid search was performed to find good values
for several hyperparameters, exploring all possible combinations of values
from the considered sets. For each configuration of hyperparameters, there
were 5 runs and the results were averaged to reduce the impact of random
initialization and other stochastic effects.
For genetic algorithms, the same hyperparameters and operators were

tested as in experiments described in Section 8.3.1.6 (Tables 8.16, 8.17, and
8.18). The only differences were: the number of iterations (300), the sizes
of the population (3 values were considered: 40, 120, 160), the values of the
SelectN parameter specifying the number of chromosomes to be selected
as parents population (6 values were considered: 10, 20, 30, 40, 60, 80),
and the values of the NBest parameter specifying the number of the best
chromosomes to be selected deterministically (7 values were considered: 0, 5,
10, 15, 20, 30, 40). In total, there were 2538 combinations of hyperparameters
for each surrogate model: 648 for the tournamentselection and 1980 for
the combinedselection (note that for the combinedselection only feasible
combinations of the NBest and SelectN parameters were tested). A grid
search technique was run with all combinations of hyperparameter values.
For simulated annealing, the following hyperparameters were tested:

• Initial temperature (IT): Temperature from which the annealing algo-
rithm starts (considered values: 20000, 100000);

• Final temperature (FT): Temperature at which annealing algorithm
stops (considered values: 250, 2.5);

• State change (SC): Step of a single (randomly chosen out of 21) signal
offset change, by which a given state is decreased/increased after each
step of the algorithm (considered values: 10, 5, 1);

• Offset upper limit (UL): Upper bound for each of the 21 signal offsets
(considered values: 119, 110);

• Offset lower limit (LL): Lower bound for each of the 21 signal offsets
(considered values: 0, 10);

• Underlying model (UM): Model type used to predict the total time of
waiting based on 21 signal offsets (considered values: LG for LightGBM
and NN for neural nets).
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Each run of simulated annealing consisted of 50000 iterations.
For particle swarm optimization, the following hyperparameters were

tested:

• n: The number of particles in the swarm, considered values: 5, 10, 20,
30, 40;

• c1: Cognitive parameter (following personal best), considered values: 0,
1, 2, 3, 4, 5, 6;

• c2: Social parameter (following the swarm’s global best position), con-
sidered values: 0, 1, 2, 3, 4, 5, 6;

• w: The inertia of the swarm’s movement, considered values: 0, 1, 2, 3;

• k: The number of neighbors to be considered (used only for local-best),
considered values: 1, 2, 3, 4, 5.

In addition, for the local-best approach, L1 distance (Manhattan dis-
tance) was used as the method for computing the distance between particles.
In the case of tabu search, in order to find better results and prevent

the algorithm from forming cycles, a Reactive Tabu Search (RTS) [19] was
used which is an extended version of tabu search, equipped with a long-
term memory structure and an escape procedure. RTS enables finding the
points that are often a temporary solution and increase or decrease the short-
term memory if specific criteria are satisfied [20]. For RTS, the following
hyperparameters were analyzed:

• Neighborhood structure: it determines the set of solutions that are con-
sidered neighbors of the current solution. Several variants of moves
were tested and finally, it was decided to generate the neighborhood of
a point x by combining two types of moves:

– 2-element permutations of TSS elements of x,

– increasing values of randomly chosen TSS elements of x by 1,

in such a way that the number of permutations and the number of
the increased TSS elements were equal to the size of the neighborhood
(SIZE). Considered values of SIZE were from the set {2, 10, 20};

• Short-term memory (STM): it determines for how many iterations a
given element should belong to the Tabu List (is considered as taboo).
Considered values: {1, 5, 10};
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• Aspiration criteria: it determines the number of times (NR) the ele-
ment must be added to the Tabu List to apply the escape procedure
and consider that element as a candidate solution again. Considered
values: {5, 20};

• Nmax: the number of iterations after which the algorithm is stopped.
Considered values: 1000 and 10000.

Another metaheuristic that was tested in experiments was Bayesian op-
timization. It is a well-known technique for the optimization of black-box
functions without derivatives [239]. In this case, the function was evaluated
using a deterministic variant of TSF’s microscopic model (cf. Section 5.3). It
took as input traffic settings and computed the total time of waiting at red
signals in a given region (the Time0 metric).
The optimization strategy in Bayesian optimization is to use some surro-

gate model which approximates the true function and is cheap to evaluate,
then find a minimum of the surrogate model, sample the original function
at this point and, based on that, update the surrogate model. As mentioned
in Section 6.10.2.1, the usual surrogate used in practice in Bayesian opti-
mization is a Gaussian Process. However, it is slow and requires a lot of
memory, while in the considered case, the original function can be easily
sampled thousands of times, making this model not useful. Therefore, 3 re-
gressors based on trees were tested instead: Extra Trees, Random Forest, and
Gradient Boosted Trees (GBT). They are all described in detail in Section
6.10.2.1.
In addition to the surrogate model, Bayesian optimization also requires an

acquisition function to evaluate how likely it is that a true function has a lower
value at a given point. It should use the surrogate model and approximate
profit from various sample points. In turn, the acquisition function should
balance between exploration and exploitation - search both in points with
low estimated value and with high variance. As an acquisition function, 3
options were considered (all of them are described in Section 6.10.2.2):

• Probability of Improvement, PI(x) = Pr(f̂(x) < f ∗);

• Expected Improvement, EI(x) = E(max(f ∗ − f̂(x), 0));

• Lower Confidence Bound, LCB(x) = Ef̂(x)− k · V arf̂(x);

where f̂ is a surrogate model, f ∗ is a current minimum, k is a parameter
that controls the trade-off between exploration and exploitation, V ar is the
function’s variance, while for evaluating probability, a normal distribution
was used. The first 10000 points were randomly sampled (using the original
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function). Next, for each setting, the most promising point according to the
acquisition function was sampled 1000 times. For experiments, the Scikit-
Optimize library was used [297]. Since the best result was achieved for Extra
Trees and Expected Improvement, 5000 extra points were evaluated with
these settings getting the best result.
Although this approach is simple and cheap, it has one disadvantage -

even if a good point is found, the probability that the model randomly takes
again a point close to it is very small. Consequently, the found minimum does
not even have to be a local minimum.
Also, Bayesian optimization does not use surrogate models trained on

the datasets generated by traffic simulations, so it is also not a realization of
the main methodology presented in this thesis. In addition, it is not gener-
ally considered a metaheuristic. However, it was worth studying with other
approaches just for comparison.

8.3.1.8.2 Results of experiments

By comparing the results for various settings of genetic algorithms, it was
concluded that Population size, Crossover type, Swap mutation, Uniform mu-
tation, Tournament size, NBest and SelectN, did not significantly influence
the results, but for values of SelectN over 20 the results were usually better.
Also, it was observed that the combined selection operator usually returns
better values than tournament selection operator.
By comparing the applications of LightGBM and neural networks as sur-

rogate models, the obtained results (the best total times of waiting at red
signals in the “Ochota” region according to the surrogate model) were better
for LightGBM (according to both, LightGBM and simulations) (cf. Table
8.23) and calculations were two times faster. Also, LightGBM had a rela-
tively small error and a positive correlation with the results of microscopic
simulations using TSF when results were higher than around 32000 seconds.
On the other hand, the model had also much bigger errors and a negative
correlation with simulations when the LightGBM results were lower than
32000 (cf. Table 8.23).
For neural networks, the results according to the surrogate model were

much higher than in the case of LightGBM and the errors of approximating
the outcomes of microscopic simulations in TSF were lower but were still
significant (above 10%). However, the best signal settings were slightly worse
according to simulations than in the case of LightGBM.
In addition, after evaluating all the best results of genetic algorithms runs

using TSF’s microscopic model it turned out that in some cases the found
signal settings are really good, and the best results can be found near the
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Table 8.23: The best results for genetic algorithms according to the surrogate
model. The first 5 rows contain the best results for runs in which LightGBM
was used as a fitness function, the next 5 rows contain the best results for
runs in which neural networks were used as a fitness function.

Surrogate model
(SM) used in GA

Best result
for SM

Simulation result
for the best result
according to SM

LightGBM 25318 37693
LightGBM 25602 36346
LightGBM 25668 36848
LightGBM 25684 36754
LightGBM 25843 34885
Neural networks 31890 37179
Neural networks 31899 37448
Neural networks 31906 36953
Neural networks 31907 36461
Neural networks 31908 37351

value of 32000, but such good settings are produced by using LightGBM
and not neural networks (cf. Table 8.24). In such cases, there was also a very
small error in approximating TSF’s simulations using LightGBM (e.g., 31049
by LightGBM and 31735 by simulation). Thus, it was concluded that some
local minima of LightGBM can be also quite good settings according to the
simulator, so in general, it might be a better surrogate model in this use case.

In the case of simulated annealing, the best 5 results for both surrogate
models are presented in Table 8.25. Grid search results show that a small
stage change (SC) of 1 unit does not provide good results. Therefore, only
SC ∈ {5, 10} appears in the best results. As expected, decreasing the upper
bound and increasing the lower bound does not give any advantage to the
number of steps considered, since the extreme values for these bounds may
be needed to achieve better results. Moreover, both the best predictions and
the best simulation results are for traffic settings found by the LightGBM
model, which confirms that this surrogate model might be better than neural
networks, similar to genetic algorithms.

The results of experiments with tabu search are presented in Table 8.26.
In some initial experiments, it was observed that there is no difference be-
tween the results obtained for Nmax = 1000 and Nmax = 10000, so in the
final experiments Nmax = 1000 was assumed to reduce the time of running
computations. Therefore, this parameter is not considered in Table 8.26.
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Table 8.24: The best results according to the simulation (using a deterministic
variant of the TSF’s microscopic model) applied to the best results from all
runs of GA. Columns 2 and 3 contain the results of evaluation according to
the surrogate models based on LightGBM and a neural network, respectively.

Result for
simulation

Result for
LightGBM

Result for
neural network

31735 31049 38899
31915 32404 39524
31964 32087 37349
32015 32267 37208
32102 32187 37327

In general, the results of RTS were relatively poor, the algorithm was
able to find traffic signal settings better than the average, but they were still
worse than the results of other algorithms. At the same time, the error of
approximating the outcomes of TSF’s microscopic model was still significant.
For particle swarm optimization, the results are presented in Table 8.27.

It was observed that LightGBM was generally able to find better settings
according to model and simulation, although the best setting according to
simulation was found by a neural network model.
In the case of the Bayesian optimization, the results are presented in

Table 8.28. For Extra Trees and Random Forest, the best value was achieved
for the Expected Improvement (EI) acquisition function (36692 and 37582,
respectively). For Gradient Boosting Trees, the best value was for the Lower
Confidence Bound (LCB) function (37351).
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Table 8.25: 5 best results of experiments with simulated annealing for the 2
considered surrogate models: LightGBM and a neural network. The models
were selected based on the best average of 5 evaluations of the best traffic
signal settings found using simulated annealing with the given parameters
(MIN column). IT is the initial temperature; FT is the final temperature;
UL and LL are upper limits and lower limits for the offsets, respectively; SC
is the step change; UM is the underlying model (LG = LightGBM, NN =
neural network); MIN is the average value of 5 evaluations of the best traffic
signal settings found using simulated annealing with the given parameters;
SIM is the average value of 5 evaluations using a TSF’s microscopic model
of best settings found using simulated annealing with the given settings.

IT FT UL LL SC UM MIN SIM
100000 2.5 119 0 5 LG 32377 35335
20000 2.5 119 0 5 LG 32671 34092
20000 2.5 119 0 10 LG 32990 34864
100000 2.5 119 0 10 LG 33006 35530
100000 250 119 0 10 LG 33136 35694
100000 2.5 119 0 10 NN 33949 37362
20000 2.5 119 0 10 NN 34050 37089
100000 250 119 0 5 NN 34076 35736
100000 2.5 119 0 5 NN 34143 36950
100000 250 119 0 10 NN 34342 36156

8.3.1.8.3 Conclusions from experiments

Based on these experiments, a comparison of the best results achieved by
all studied optimization algorithms was generated and presented in Table
8.29. It contains the best results found by the considered algorithms in all
experiments for both studied surrogate models (Neural Network - NN, and
LightGBM - LGBM), results of simulations using the microscopic model
of TSF for these found settings, as well as the best results according to
the simulations after evaluation of all candidate solutions (the best settings)
found in all runs of the given algorithm.
It can be concluded that genetic algorithms give the best results in this

case: they are able to find the best traffic signal settings within a few seconds.
It also turned out that LightGBM produces better traffic signal settings than
neural networks and evaluates them about twice as fast. However, one of the
drawbacks of using genetic algorithms with a LightGBM evaluation is that
the algorithm sometimes ends up at points with very low values returned
by LightGBM, while the true values (returned by the simulation) are larger
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Table 8.26: Minima found by Reactive Tabu Search depending on hyper-
parameters. SIZE is the size of the neighborhood; STM is the size of the
short-term memory; NR is the parameter of the aspiration criteria (the num-
ber of times (NR) the element must be added to the tabu list to apply the
escape procedure and consider that element as a candidate solution again);
The next columns contain values found using LightGBM and neural network
evaluations as well as corresponding results of evaluations using the deter-
ministic variant of TSF’s microscopic model.

SIZE STM NR
Best
LGBM

Simulation
LGBM

Best
NN

Simulation
NN

2 1 5 42143 48534 43038 45534
2 1 20 42147 49723 43018 48362
2 5 5 41634 49827 42983 54395
2 5 20 41245 53184 42736 49734
2 10 5 41757 48394 42616 48392
2 10 20 41463 49274 42753 48375
10 1 5 40956 48742 41473 47248
10 1 20 41095 48394 41273 48364
10 5 5 40647 47384 40873 44864
10 5 20 40937 47387 40972 44747
10 10 5 42274 50873 41277 49573
10 10 20 42885 50463 41936 48735
20 1 5 41080 50483 41204 46237
20 1 20 41082 49937 41184 46147
20 5 5 41183 45795 40937 48472
20 5 20 40847 44853 41038 48264
20 10 5 40834 49374 40937 49264
20 10 20 40842 47382 40956 46247

196



Chapter 8: Experiments

Table 8.27: The best five settings of the PSO algorithm evaluated using
LightGBM model and a neural network model.

Algorithm
PSO
variant n c1 c2 w k

Mean
score
model

Mean
score

simulation
LGBM local-best 30 2 1 1 3 41356 43989
LGBM global-best 40 5 6 4 1 41695 41607
LGBM global-best 30 5 4 5 3 42212 42449
LGBM global-best 20 5 1 2 1 42826 42512
NN local-best 30 5 2 1 3 41938 44332
NN global-best 20 5 1 2 1 42317 41431
NN global-best 30 5 6 6 1 42931 43386
NN global-best 40 5 6 4 1 43222 43833
NN local-best 30 6 4 1 2 43295 47070

Table 8.28: The best results found using different surrogate models and dif-
ferent acquisition functions in case of Bayesian optimization.

EI PoI LCB
Extra Trees 36692 37067 37689
Random Forest 37583 37692 37760

Gradient Boosted Trees 38132 37861 37351

so that the approximation error close to local optima is too large to make
further exploration reasonable. From this perspective, neural networks might
be a better option for the next experiments.
Still, one of the problems is the lack of sufficient generalizability of the

surrogate models and larger errors near local optima, so the next research
works were aimed at solving this problem.

8.3.1.9 Applying graph neural networks as surrogate models

In these experiments, a family of sparsely connected neural networks with
connectivity determined by the adjacency matrix of a road network graph
was applied to solve the TSS problem. In the rest of the dissertation, they
are called graph neural networks (or GNN, in short). The presented GNN
architectures were initially proposed by one of the members of the TensorCell
research group, Łukasz Skowronek, but the entire group’s research works and
presented experiments were coordinated by the author of this thesis, and their
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Table 8.29: Comparison of the best results found by all algorithms.
Algorithm Best

result
[LGBM]

Simulation
for the
best result
[LGBM]

Best
result
[NN]

Simulation
for the
best re-
sult [NN]

Best result
according
to simula-
tion

Genetic
algorithm

25318 37693 31890 37179 31735

Simulated
annealing

31910 33860 32681 35885 33217

Tabu Search 40647 47384 40873 44864 44747
PSO 41356 43989 41938 44332 41431
Bayesian N/A N/A N/A N/A 36692
optimization

summary is also published in [310] and [311].

8.3.1.9.1 Introduction of the graph neural networks

The key idea in defining the sparse graph-based neural network architecture
was an intuitively compelling rule that information should propagate locally
between the layers of the neural network. The locality in this context means
the presence of only those connections between neurons that have a non-zero
entry in the adjacency matrix of the corresponding graph (i.e., the signal
groups are connected in the road network graph, so that the flow of informa-
tion in GNN correspond to the flow of vehicles in the road network). In the
case of the road network, in order to implement such a rule, the neurons in
the successive layers of the neural network should be linked to the neurons
corresponding to vertices and/or edges of the underlying road network graph.
This leads to the following general ways to build GNN:

1. Neurons in the even-numbered layers, starting from the input layer as
layer 0, correspond to graph vertices with traffic signals (in this case
- road intersections). Neurons in the odd-numbered layers correspond
to graph edges (in this case - road segments, routes between intersec-
tions with traffic signals). An exception should be the output layer with
just one neuron. Connections from a vertex-localized layer to an edge-
localized layer should be present if and only if a given vertex is one
of the ends of a given edge in the corresponding road network graph.
There are exactly two such connections for every edge neuron. Con-
nections from an edge-localized layer to a vertex-localized layer should
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only be present if the edge has the vertex as its end in the correspond-
ing road network graph.

or

2. Neurons in all layers, with the exception of the output layer, corre-
spond to road network graph vertices. Connections from a neuron in
one layer to a neuron in the next one should only be present if the
corresponding vertices are neighbors in the road network graph. The
number of connections for the vertex node is equal to the number of
the vertex neighbors. It is also important to note that although the
road network is a directed graph, the underlying graph should be its
indirect counterpart since both vertices at the end of a road segment
can influence each other. However, GNN structures based on a directed
graph can also be examined.

Using formulas, the graph neural network architecture of type 1 uses the
following propagation rule:

L0 = In (8.5)

L2i+1 = φ
(
W T2i+1L2i + C2i+1

)
(8.6)

L2i+2 = φ (W2i+2L2i+1 +B2i+2) (8.7)
Out = V TLn +D (8.8)

where φ is an activation function, n is the number of layers, In corresponds
to input N×1 vector, L2i is a vertex-localized N×1 vector (output from the
2i-th layer and input to the 2i + 1-th layer) and L2i+1 is an edge-localized
M × 1 vector (output from the 2i + 1-th layer and input to the 2i + 2-th
layer), where N is the number of nodes and M is the number of edges in
the considered road network graph. The core elements of the propagation
rule are the trainable weight matrices Wj of shape N ×M , which fulfill the
property:

(Wj)kl ̸= 0⇔ vertex k is one of the two ends of the edge l. (8.9)

Additionally, Bj and Cj are trainable bias vectors, and there is a weight
and bias pair (V,D) for the output layer. Figure 8.12 shows an exemplary
road network and the corresponding matrix W structure (rows correspond
to vertices and columns to edges of the underlying graph).
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1
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3

4

5

6

a

b

c

d

e

f

a b c d e f



w1a 0 w1c 0 0 0 1
w2a w2b 0 w2d 0 0 2
0 w3b 0 0 0 0 3
0 0 0 w4d w4e w4f 4
0 0 w5c 0 w5e 0 5
0 0 0 0 0 w6f 6

Figure 8.12: An exemplary road network and the corresponding matrix W .
Crossroads are denoted by numbers from 1 to 6 and edges by letters from a
to f . The figure is from [311].

For the architecture of type 2, the propagation rule is even simpler:

L0 = In (8.10)
Li = φ (AiLi−1 +Bi) (8.11)
Out = V TLn +D (8.12)

where all Li’s are now N×1 vectors and the Ai’s are trainable N×N weight
matrices that fulfill the property

(Ai)kl ̸= 0⇔ vertex k is adjacent to vertex l. (8.13)

The meaning of Bi, V and D is the same as in equations 8.5-8.8. Figure 8.13
shows the corresponding matrix A for the graph structure from Figure 8.12.
One can also consider variants in which the neurons corresponding to the

same vertices in successive layers are connected. However, later experiments
did not show that this approach gives any advantage in terms of accuracy or
the time of training.
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1 2 3 4 5 6



0 a12 0 0 a15 0 1
a21 0 a23 a24 0 0 2
0 a32 0 0 0 0 3
0 a42 0 0 a45 a46 4
a51 0 0 a54 0 0 5
0 0 0 a64 0 0 6

Figure 8.13: An exemplary road network and the corresponding matrix A.
Crossroads are denoted by numbers from 1 to 6.

The presented definition covers only cases with a single feature/channel
per edge/vertex. However, GNN can have multiple channels at each edge/vertex
neuron and the analogous formulas for an arbitrary number of features can
be found in [311].
One may notice a similarity between the GNN architecture of type 2

and the graph neural networks proposed by Thomas Kipf [184]. However,
in the case of GNN presented in this thesis, the weights are not shared,
as the aim is to focus on local patterns connected to roads/intersections.
Theoretically, some weight sharing in the ’edge’ layers of GNN of type 1
could be introduced, but initial experiments using this approach led to highly
disappointing results.
In typical machine learning literature terminology, the presented GNN

should likely be called “neural networks with a fixed sparse connectivity
mask”. In the case of multi-channel networks, sparsity is applied in the spa-
cial, but not in the channel dimension.

8.3.1.9.2 Setup of experiments

In the presented experiments, only the architecture of type 1 was used and it
was always assumed that the number of channels is constant across the hidden
layers of the neural network and is a hyperparameter. However, preliminary
experiments with the architecture of type 2 and other settings gave similar
results.
The datasets for experiments were generated using the TSF software

[125] for 3 regions in Warsaw: “Centrum”, “Ochota” and “Mokotów”. For
“Ochota”, the dataset was the same as in the previous experiments (Sections
8.3.1.6 - 8.3.1.8), it had 21 signal groups. For “Centrum” and “Mokotów”,
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new datasets consisting of about 105 traffic signal settings were generated,
with 11 and 42 signal groups, respectively. All these datasets are publicly
available to enable further research (cf. Appendix A.2).
Each position in the input vector represented the offset of the traffic

signal on the corresponding intersection, and for each position in the input
vector values from the set {0, 1, . . . , 119} were sampled independently from
the uniform distribution. The TSF’s output in each case was the total waiting
time at red signals, summed for all the cars participating in the simulation
in the considered region. Each simulation lasted 10 minutes and consisted
of 42000 cars on the whole road network of Warsaw and the evaluation was
performed using the deterministic variant of the TSF’s microscopic model
(described in Section 5.3).
Output values were roughly in the range from 38000 to 60000 for “Ochota”,

285000− 330000 for “Mokotów”, and 67000− 85000 for “Centrum”. The ex-
act distributions of outputs in the three datasets are shown in Figures 8.14,
8.15, and 8.16. The minimum simulator outputs in the datasets are 37838
for “Ochota”, 285483 for “Mokotów”, and 66742 for “Centrum”. These val-
ues are important because the optimization algorithms applied to the TSS
problem (such as gradient descent) had the goal to find traffic signal settings
(inputs to the simulator) minimizing the TSF’s output.

Figure 8.14: The percentage of the TSF’s output values greater than the
given value for the dataset generated for the “Ochota” region. Volume cor-
responding to near-optimal parameter settings is extremely low.
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Figure 8.15: The percentage of the TSF’s output values greater than the
given value for the dataset generated for the “Mokotów” region. Volume
corresponding to near-optimal parameter settings is extremely low.

Figure 8.16: The percentage of the TSF’s output values greater than the
given value for the dataset generated for the “Centrum” region. Volume cor-
responding to near-optimal parameter settings is extremely low.

Before training, the values at positions in the input vectors were scaled to
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[−1, 1]. The values in each input vector were transformed by x 7→ sin (2πx/120)
and x 7→ cos (2πx/120) mapping, thus doubling the input size (actually, in-
creasing its number of channels to 2 in the case of GNN). This is motivated
by the periodicity of the signal settings - it turned out that thanks to such
a transformation, the neural network may learn that the offsets are periodic
and values 0 and 120 correspond to the same setting, while 0 and 119 are
neighboring offsets (otherwise, the surrogate model may treat these values as
very distant and its performance can be worse). For the output, a standard
scaler was used that divides the data by its standard deviation and shifts the
mean to zero.
The tensors Wj and Aj (cf. description in Section 8.3.1.9) were initialized

using Glorot initialization [109].
For each of the 3 considered road networks, 9 different GNN architectures

were tested. In addition, 9 fully-connected neural network (FCNN) architec-
tures were tested for comparison.
The 9 selected GNN architectures corresponded to all the possible com-

binations of values from the following two sets of hyperparameters:

• number of hidden GNN layers: 2, 3, 4 (not counting input and output
layers);

• number of channels per layer: 3, 4, 5.

For comparison, 9 different FCNN architectures were tested, covering all
the possible combinations of values from the following two parameter sets:

• number of hidden layers: 2, 3, 4;

• number of neurons per layer: 20, 40, 100.

For both families of neural networks, the activation function was TANH,
indicated as superior to ReLU in preliminary experiments, as well as in pre-
vious works on this problem [130, 245]. The number of neurons per layer, as
well as other hyperparameters (like learning rate or batch size), were chosen
based on the results of preliminary experiments.
For each of the 3 datasets, the 90%/10% split into the training set, and

the test set was used for each of the considered 18 hyperparameter settings
(9 GNN architectures and 9 FCNN architectures). The following procedure
was applied for each of the considered architectures:

1. Train a model on the training set for about 1100 epochs using Adam
optimizer [183] and a learning rate of 0.0035.
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2. Evaluate the trained model on the test set using MAPE with respect
to the original outputs (before normalization and scaling) as the core
metric.

3. Generate 100 gradient descent trajectories (for 3000 steps) of the trained
model output with respect to its inputs in the original input space (be-
fore the sin/cos transformation). Gradients were evaluated at inputs
rounded in the original parameter space (the applied traffic simulator
(TSF) accepts only integer values of offsets). The Nesterov variant of
gradient descent [249] with a learning rate of 0.01 and momentum of
0.9 was used. This is similar to the approach used in Section 8.3.1.7
and in [245].

4. Every 30 step, transform the current trajectory point to the original
parameter space, round it, and send it to the TSF simulator. Save the
inputs and the simulator outputs to a new simulation test set.

5. Evaluate the trained model on the simulation test set using various
metrics (cf. the discussion in Section 8.3.1.9.3).

An important note is that the “test set” did not play the typical role
of a test set in machine learning experiments. Instead, it was used only to
define an order on the considered GNN and FCNN architectures, for use in
tables 8.30-8.34 and plots 8.17-8.19. The actual testing was performed using
the simulation test set (cf. point 5 of the procedure described earlier). These
datasets were different for each model, as gradient descent trajectories were
also different.
All the experiments were run on virtual machines in the Azure cloud

(NC6 with NVIDIA Tesla K80 [227]).
The core dataset has been made publicly available to enable further re-

search in this domain (cf. Appendix A.2).

8.3.1.9.3 Results of experiments

The key results of experiments with GNN are shown in Tables 8.30–8.34 , as
well as in Figures 8.17–8.19.
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Table 8.30: Core results for the three best GNN and the three best FCNN
architectures according to the accuracy (MAPE) on the test set (i.e., gradient
descent results did not affect the selection of these models).
Measure Model Ochota Mokotów Centrum
Minimum MAPE GNN 1.33% 0.76% 0.80%
on the test set FCNN 1.71% 0.94% 0.87%

Minimum simulation GNN 32,205 265,129 63,606
output FCNN 32,587 266,237 63,553

Avg MAPE on the lowest GNN 1.26% 0.53% 0.76%
5% simulation outputs FCNN 5.35% 3.04% 2.49%

Avg MAPE on the lowest GNN 1.75% 0.84% 1.22%
10% simulation outputs FCNN 4.53% 2.74% 2.25%

Avg MAPE on the lowest GNN 1.51% 1.00% 1.11%
15% simulation outputs FCNN 4.65% 2.56% 2.04%

Table 8.30 shows a summary of core performance measures, calculated
for three top GNN and three top FCNN, ranked based on the average accu-
racy (Mean Absolute Percentage Error - MAPE) on the test set. The core
presented measures are:

• Minimum MAPE on the test set: This number can be obtained be-
fore performing gradient descent. The minimum was taken among the
three top-ranked GNN or FCNN (according to the row description).
Because of the model selection criterion used for Table 8.30, this min-
imum is global within the respective 9-element model universe (GNN
or FCNN).

• Minimum simulation output obtained on selected points explored
by gradient descent.

• Average MAPE at x% (for x = 5, 10, 15) gradient descent trajectory
ends, selected according to the corresponding simulator output value
(sorted lowest first). To arrive at the values presented in rows 5-10 of
Table 8.30, an average was taken over the three models selected, GNN
or FCNN, according to the row description.

The results presented in Table 8.30 show a better performance of GNN
compared to FCNN, particularly in terms of minimum MAPE on the test
set and average MAPE on the lowest points from the gradient descent tra-
jectory according to the simulation. The improvement is visible for all 3 road
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networks (from “Ochota”, “Mokotów”, “Centrum” regions) and all the five
core measures (with the exception of the minimum simulation output value
obtained for “Centrum”, where one FCNN turned out to yield slightly lower
result than all the GNN).
To summarize, the core improvements are:

• Much lower error on the test set.

• Lower minimum simulator output value obtained when doing the gra-
dient descent (except for “Centrum”, for which the results are similar).

• Much lower approximation error obtained on the trajectory ends cor-
responding to 5%, 10%, and 15% lowest simulator output values.

For performance measure calculations in Table 8.30, 3 GNN and the 3
FCNN that yielded the best test set performance were selected for each of
the three considered road networks (“Centrum”, “Ochota”, “Mokotów”). It
is natural to ask if the conclusions are robust against choosing a different
number of the best-performing models. The demonstration of robustness is
included in Tables 8.31-8.34. These tables were prepared using one, two, five,
and nine (i.e., all) best-performing GNN and FCNN according to the test set
performance. The minimum average test set error is not shown, because, by
construction, it would be the same in all these tables and in Table 8.30. It is
easily seen that the conclusions are upheld.

Table 8.31: Core results for the best GNN and the best FCNN according to
test set accuracy.
Measure Model Ochota Mokotów Centrum
Minimal simulation GNN 32,299 265,129 63,606
output FCNN 33,098 266,237 63,941

Avg MAPE on the lowest GNN 0.51% 0.41% 1.69%
5% simulation outputs FCNN 1.90% 3.18% 2.07%

Avg MAPE on the lowest GNN 0.71% 0.66% 1.33%
10% simulation outputs FCNN 1.75% 3.20% 1.72%

Avg MAPE on the lowest GNN 0.87% 0.76% 1.29%
15% simulation outputs FCNN 1.78% 2.93% 1.77%
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Table 8.32: Core results for two best GNN and two best FCNN according to
test set accuracy.
Measure Model Ochota Mokotów Centrum
Minimum simulation GNN 32,288 265,129 63,606
output FCNN 32,587 266,237 63,553

Avg MAPE on the lowest GNN 1.85% 1.10% 0.29%
5% simulation outputs FCNN 2.28% 5.05% 1.52%

Avg MAPE on the lowest GNN 1.42% 1.02% 0.29%
10% simulation outputs FCNN 2.15% 4.19% 1.63%

Avg MAPE on the lowest GNN 1.33% 1.13% 0.36%
15% simulation outputs FCNN 2.03% 3.88% 1.53%

Table 8.33: Core results for five best GNN and five best FCNN according to
test set accuracy.
Measure Model Ochota Mokotów Centrum
Minimum simulation GNN 32,205 265,129 63,606
output FCNN 32,587 266,237 63,553

Avg MAPE on the lowest GNN 0.99% 0.35% 0.58%
5% simulation outputs FCNN 8.59% 1.89% 1.92%

Avg MAPE on the lowest GNN 0.98% 0.44% 0.88%
10% simulation outputs FCNN 8.59% 1.30% 1.92%

Avg MAPE on the lowest GNN 0.92% 0.37% 1.01%
15% simulation outputs FCNN 8.54% 1.01% 1.92%

Table 8.34: Core results for all the considered GNN and FCNN.
Measure Model Ochota Mokotów Centrum
Minimum simulation GNN 32,205 265,129 63,606
output FCNN 32,587 266,237 63,553

Avg MAPE on the lowest GNN 0.87% 1.12% 1.39%
5% simulation outputs FCNN 4.63% 2.27% 1.60%

Avg MAPE on the lowest GNN 0.87% 1.73% 0.88%
10% simulation outputs FCNN 4.44% 2.71% 1.79%

Avg MAPE on the lowest GNN 0.84% 1.87% 0.88%
15% simulation outputs FCNN 4.30% 3.03% 1.39%
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Figures 8.17–8.19 show the density of gradient descent trajectory points
as heatmap plots for 3 best GNN/FCNN models for each district.

Figure 8.17: Gradient descent trajectory density plots for “Ochota” for the 3
best GNN and FCNN models (charts on the left correspond to GNN, charts
on the right to FCNN). The horizontal axis corresponds to the trajectory
point number (recorded every 30 steps), vertical axis to the simulator output
value. The more points in some regions, the brighter the color. The figure is
from [311].
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Figure 8.18: Gradient descent trajectory density plots for “Mokotów” for the
3 best GNN and FCNN models (charts on the left correspond to GNN, charts
on the right to FCNN). The horizontal axis corresponds to the trajectory
point number (recorded every 30 steps), vertical axis to the simulator output
value. The more points in some regions, the brighter the color. The figure is
from [311].
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Figure 8.19: Gradient descent trajectory density plots for “Centrum” for the 3
best GNN and FCNN models (charts on the left correspond to GNN, charts
on the right to FCNN). The horizontal axis corresponds to the trajectory
point number (recorded every 30 steps), vertical axis to the simulator output
value. The more points in some regions, the brighter the color. The figure is
from [311].
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The horizontal axes correspond to gradient descent trajectory point num-
bers (each trajectory had 3000 steps, but points were recorded every 30
steps), and the vertical axes correspond to respective simulator output val-
ues. The plots simply show a heatmap plot of these points on the (point
number, simulator output) plane. Thus, the more points in the given region,
the brighter the color. Also, if one architecture happened to reach a lower
minimum than another, the resulting heatmap is taller.
Besides confirming some of the quantitative conclusions from Tables 8.30-

8.34, the heatmap plots also show that in many cases, the gradient descent
is less “noisy” for GNN, suggesting a smoother function surface, less prone
to overfit noise.

8.3.1.9.4 Consistency checks

The presented findings call for some careful consistency checks before reach-
ing final conclusions. In particular, it is not fully clear that the actual adja-
cency matrix brings any value. Perhaps, using any similar sparse graph, even
not related to the problem at hand, could result in similar performance.
Therefore, it was decided to run some additional experiments where the

original graph topology was perturbed (either by turning some edges to non-
edges and vice versa, or by permuting graph vertex labels). The other steps
of the model fitting procedure were kept exactly the same as before. The
achieved results indicate that the mean squared error obtained on the (fixed)
test set grows approximately monotonically as a function of the distance
(symmetric difference between edge sets) of the graph used (to build the
neural network) to the actual instance of the road network graph for which
the dataset was generated (cf. Figure 8.20-8.25). This implies that the infor-
mation about the actual graph topology was important for achieving better
accuracy in the main batch of experiments.
In detail, the procedure was performed as follows. First, it was decided

to fix the number of layers to 3 and the number of channels to 4 per layer
(for GNN of type 1). Then, the neural networks were built using random
graphs with various degrees of resemblance to the original problem graph.
This process was repeated for all three road networks considered in this batch
of experiments. As a measure of graph similarity, the symmetric difference
between the sets of graph edges was used. The random graphs were generated
in two ways. The first method (later referred to as “Edge/Non-edge switch-
ing”) used random edge insertions and deletions, keeping the desired value
of the symmetric difference fixed. The second method (later called “Vertex
label permutation”) used random permutations of vertex labels while keep-
ing the connection graph structure exactly the same. Graphs generated by
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this method were isomorphic, but not identical to the original.
It is worth noting that although the first method generates truly random

graphs similar to the original, the new graph may not represent a plausible
road network. The second method, on the other hand, always maintains the
same realistic road network graph structure but provides false insights to the
training algorithm by swapping intersections.

Figure 8.20: Mean relative error achieved by a GNN on the test set for
“Ochota” after roughly 330 epochs of training, plotted as a function of the
distance of a random graph to the true one. Edge/non-edge switching was
used to generate random graphs. Error bars correspond to 5% sample quan-
tiles. Red dots denote the median result. The figure is from [311].

The results obtained by these two methods are shown in Figures 8.20-
8.25, corresponding to “Ochota”, “Mokotów”, and “Centrum” datasets, re-
spectively. The plots show the mean relative error achieved on the test sets
by neural nets based on random graphs, after roughly 330 epochs of training
(in all the initial experiments the training and test errors after 100 − 200
epochs had already been stable, so the number of epochs was chosen with
some security margin). The values on the horizontal axis correspond to the
distance of the graph used for constructing the network to the actual road
network graph. The distance was measured using the symmetric difference
between the two graphs’ edge sets. For each training run, the same train/test
split of the respective dataset was used: 90%/10%. However, the weights of
neural networks were initialized randomly. It can be seen that the median of
the mean relative error, denoted with a red dot, grows almost monotonically
as a function of the distance between the graph used to build a GNN and
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Figure 8.21: Mean relative error achieved by a GNN on the test set for
“Mokotów” after roughly 330 epochs of training, plotted as a function of
the distance of a random graph to the true one. Edge/non-edge switching
was used to generate random graphs. Error bars correspond to 5% sample
quantiles. Red dots denote the median result. The figure is from [311].

Figure 8.22: Mean relative error achieved by a GNN on the test set for “Cen-
trum” after roughly 330 epochs of training, plotted as a function of the dis-
tance of a random graph to the true one. Edge/non-edge switching was used
to generate random graphs. Error bars correspond to 5% sample quantiles.
Red dots denote the median result. The figure is from [311].
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the actual problem graph. This is visible for both graph sampling methods.
The minimum average relative error attained for a particular value of the
distance also grows, perhaps with slightly more noise.

Figure 8.23: Mean relative error achieved by a GNN on the test set for
“Ochota” after roughly 330 epochs of training, plotted as a function of the
distance of a random graph to the true one. Vertex label permutation was
used to generate random graphs. Error bars correspond to 5% sample quan-
tiles. Red dots denote the median result. The figure is from [311].

8.3.1.9.5 Conclusions from experiments

Based on the presented evidence, the following conclusions were drawn re-
garding the introduced sparse graph-based neural networks:

• They outperform FCNN on the original fixed test sets better for the
three considered road networks (“Ochota”, “Mokotów”, and “Centrum”
regions).

• They generalize significantly better than FCNN near unseen optimiza-
tion target function minima.

• They make it easier to find inputs that correspond to small simulator
outputs. Most of the time, the values obtained are also lower than those
obtained with the help of FCNN.

• They produce smoother gradient descent trajectories that are less prone
to overfitting, for multiple hyperparameter settings. By using randomly
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Figure 8.24: Mean relative error achieved by a GNN on the test set for
“Mokotów” after roughly 330 epochs of training, plotted as a function of
the distance of a random graph to the true one. Vertex label permutation
was used to generate random graphs. Error bars correspond to 5% sample
quantiles. Red dots denote the median result. The figure is from [311].

Figure 8.25: Mean relative error achieved by a GNN on the test set for “Cen-
trum” after roughly 330 epochs of training, plotted as a function of the dis-
tance of a random graph to the true one. Vertex label permutation was used
to generate random graphs. Error bars correspond to 5% sample quantiles.
Red dots denote the median result. The figure is from [311].
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perturbed graphs, it was also shown that the choice of the proper graph
when constructing a GNN is important for achieving good results on a
test set.

It is also worth mentioning that the simulator output values obtained
when doing the gradient descent runs are significantly lower than ones that
could likely be obtained by random search algorithms. In the training datasets
(of sizes approximately equal 100k), the minimum simulator output values
were around 38000, 285000 and 67000 for “Ochota”, “Mokotów”, and “Cen-
trum”, respectively (with the mean values of approximately 49000, 308000,
76000, cf., Figures 8.14-8.16) whereas the gradient descent method steadily
achieved (based on 5%, 10% and 15% percentiles), results below 33000,
270000 and 65000, respectively (with acceptable average relative errors: 1.65%,
0.64% and 1.68%, respectively).
The kind of NN sparsity considered, where only some of the connections

are allowed, may be regarded as a kind of regularizer based on the problem
graph. It is similar to the L1 regularization as it keeps only some weights
non-zero in the trained model. The resulting networks have far fewer pa-
rameters than analogous fully connected networks and turn out to generalize
significantly better than any architecture considered so far for solving the
TSS problem.
Also, sparsity implies that there are fewer parameters to tune and it is

easier to train such neural networks than FCNN. In addition, thanks to the
fact that the neurons correspond to road network intersections (with traf-
fic signals) or connections between them, it could be possible to investigate
the impact of settings at each intersection. Therefore, it can be suspected
that analyzing the behavior of these neural networks may also bring a better
understanding of urban road traffic and the spatiotemporal impact of traf-
fic conditions on various intersections. In fact, this observation has already
triggered further research on the explainability of the introduced GNN, as
discussed in Section 9.1.

8.3.1.10 Final experiments with various metaheuristics and sur-
rogate models

In this final batch of experiments related to the Traffic Signal Setting prob-
lem and metaheuristics, the goal was to compare the performance of 7 op-
timization algorithms (CMA-ES, tabu search, genetic algorithms, memetic
algorithms, particle swarm optimization, simulated annealing, gradient de-
scent) in combination with surrogate models based on GNN and LightGBM.
The experiments were similar to those described in Section 8.3.1.8, but there
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were more optimization algorithms tested, the GNN models introduced in
Section 8.3.1.9 were used instead of feed-forward fully connected networks,
there were road networks from 3 different regions tested, and the experiments
were more systematic.

8.3.1.10.1 Setup of experiments

The same datasets as in Section 8.3.1.9 were used (trigonometric transforma-
tion on the inputs, as described in Section 8.3.1.9), and the same 90%/10%
split on training/test sets was used. Then, several GNN and LightGBM mod-
els were trained with various parameters, and 5 best GNN and LightGBM
(according to MAPE on the test sets) were selected for further experiments.
The selected models are presented in Tables 8.35 and 8.36.
Then, the selected models were applied as surrogate models evaluating

the qualities of traffic signal settings in experiments with 7 optimization
algorithms (6 metaheuristics and gradient descent):

1. Genetic Algorithms (described in Section 6.2);

2. Particle Swarm Optimization (described in Section 6.3);

3. Tabu Search (described in Section 6.4);

4. Simulated Annealing (described in Section 6.5);

5. CMA-ES (described in Section 6.6);

6. Memetic Algorithms (described in Section 6.7);

7. Gradient Descent (described in Section 6.11).

For each surrogate model, each optimization algorithm was run 100 times
starting from different initial solutions (before that, a hyperparameter opti-
mization was performed using Optuna [260] for each optimization algorithm
to identify the best configurations of hyperparameters). Hence, for both types
of surrogate models (GNN and LightGBM), there were 500 runs for each op-
timization algorithm, but the exception was gradient descent because it is
not possible to run it for LightGBM. The following metrics were collected:

• Minimum, maximum and mean values of the fitness function (the total
time of waiting at red signals in the given region) for best settings
according to the applied surrogate model among 500 runs;
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• Minimum, maximum and mean values of the fitness function for the
best settings among 500 runs computed using the deterministic variant
of the TSF’s microscopic model;

• Minimum, maximum, mean MAPE for best settings among 500 runs;

• Minimum, maximum, mean number of evaluations (calls of the surro-
gate model) before the stopping criterion is achieved;

The most important metrics seem to be those providing the mean values.
Minimum and maximum values are not as relevant because there might be
outliers due to the randomness. However, it is also good to know what the
best or the worst performance can be.
CMA-ES and gradient descent are suitable for continuous problems but

the Traffic Signal Setting problem (as defined in Section 8.1.1) is discrete, so
it was necessary to incorporate mapping to the discrete target domain (in
this case: the set {0, 1, . . . , 119}) before evaluating the candidate solution.
For all algorithms, the key hyperparameters were explored using the Op-

tuna framework [260] independently for each model and each region.
In the case of CMA-ES, there were no observed stable improvements,

so the default values for the population size, c1, and cµ (cf. Section 6.6)
recommended in [141] were applied.
In the case of tabu search, the focus was on Scatter Tabu Search (cf.

Section 6.4) in which some best solutions found so far and some best solutions
found in the last step were used as the “elite solutions” to generate new
candidate solutions. Three hyperparameters were explored: the maximum
number of the historical best solutions that can be used as generators, the
maximum number of the best solutions from the previous step that can be
used as generators, and the size of the tabu list. The best number of the
historical “elite solutions” was always in the range [31, 203], the number of
the best points from the previous step was in the range [16, 56], the best size
of the tabu list was in the range [24, 162].
In the case of genetic algorithms, 5 different sizes of populations were

considered (40, 120, 160, 300, 500), 3 numbers of iterations (100, 300, 500),
2 selection methods (tournament selection and roulette wheel selection), 3
crossover methods (one-point crossover, two-point crossover, uniform crossover),
and 2 mutation operators (swap mutation and uniform mutation). These hy-
perparameters were analyzed independently for each model and each region.
Their semantics is explained in Section 6.2.
Memetic algorithms 6.7 were combinations of genetic algorithms and hill

climbing. The following hyperparameters were tested:
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• Size of the population (considered values: {20, 40, 120, 200});

• Percentage of the best individuals that took part in the crossover phase
(considered values: {10%, 20%, 40%, 60%});

• Percentage of children that take part in the mutation phase (considered
values: {10%, 40%});

• Type of the local search algorithm (considered types: hill climbing,
stochastic hill climbing);

• Number of dimensions used for a single operation of the hill climbing
algorithm (considered values: {1, 3, 6, 10});

• Value of a single step for each dimension in the hill climbing algorithm
(considered values: {1, 6, 12, 20});

• Number of hill climbing algorithm steps for every individual during one
iteration (considered values: {1, 5, 10, 60, 120}).

For PSO, the following hyperparameters were considered (cf. Section 6.3
for their description):

• Optimizer (considered options: global-best and local-best);

• Number of particles (considered values: {10, 11, . . . , 40});

• c1 (considered values: range [1, 10] with a step 0.1);

• c2 (considered values: range [1, 10] with a step 0.1);

• w (considered values: range [1, 10] with a step 0.1);

• Number of neighbors (considered values: {1, 2, 3, . . . , 20});

• Distance metric (considered options: L1, L2).

For simulated annealing, the following hyperparameters were tuned (cf.
Section 6.5 for their description):

• Initial temperature (considered values: range [1000, 100000]);

• Final temperature used for the stopping criterion (considered values
[1, 250]);
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• Neighbourhood function: contrary to the experiments described in Sec-
tion 8.3.1.8, this time another approach to generating candidate solu-
tions was tested: Multi-signal change - all traffic signals’ settings had
a 50% chance to remain the same, 25% chance of an increase by a
single step value and 25% chance of decrease by the same single step
value. It was assumed that the single step value can be from the set:
{1, 2, 3, . . . , 119}, and this is a hyperparameter that was tuned.

For the initial and final temperatures, the optimal values were selected by
Optuna with a log uniform distribution. In addition, the number of different
starting points was 500, while the cooling schedule was exponential cooling:

T (step) = Tmaxe−ln(Tmax/Tmin)×step/50000 = Tmax · (
Tmin
Tmax
)(step/50000), (8.14)

For gradient descent, 4 algorithms were considered: Momentum [289],
Nesterov [249], RMSProp [289], Adam [183]. Their parameters are explained
in Section 6.11.
For Momentum, 2 hyperparameters were considered: learning rate (with

considered values in the range [10−5, 0.1]) and momentum (considered values
in the range [0.01, 1]). The same hyperparameters and their values were con-
sidered for Nesterov. Also, the same values of the learning rate parameter
were considered for RMSProp and Adam. In addition, RMSProp and Adam
considered different values of the ϵ parameter within the range [10−10, 10−5].
RMSProp considered also values of the γ parameter in the range [0.01, 1],
while Adam considered values of β1 and β2 in the range [0.7, 1].
For all algorithms tested in this batch of experiments, the stopping crite-

rion was initially based on checking convergence. The fitness function value
of the best signal setting in a given iteration was compared with the value of
the best signal setting some number of iterations behind. If the improvement
of the fitness function value was below a certain threshold and the offsets for
each signal group were changed by less than 2 seconds, it was determined
that there is a convergence. The threshold and the number of iterations to
look behind were also the hyperparameters. The best values of the number of
iterations to look behind were between 10 and 200, while for the threshold, it
was between 0.1 and 30. The exact best value depended on the optimization
algorithm, surrogate model, the considered region, and the values of other
hyperparameters.
The only exception was simulated annealing, in which the convergence

strongly depends on the cooling schedule, as well as maximum and minimum
temperatures. These hyperparameters had to be set at the beginning of each
algorithm’s run, so it was decided (based on some initial experiments) to set
the number of iterations to 50000.
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8.3.1.10.2 Results of experiments

Tables 8.35 and 8.36 present the selected graph neural networks and Light-
GBM models that were used in experiments. They display the key model
parameters as well as maximum and mean MAPE on the test set. Further-
more, Tables 8.37-8.43 present the results of experiments with optimization
algorithms. Each table contains the results for the respective type of model
(graph neural networks - GNN, and LightGBM - LGBM) and all 3 regions.
The calculated metrics are described in Section 8.3.1.10.1. One important
note is that in the case of mean values, the numbers were rounded to inte-
gers for simplicity.

Table 8.35: Graph neural network models used in experiments and their
MAPE on the test set.

Region
Nr of
layers

Nr of
channels

Max MAPE Mean MAPE

Ochota 4 5 1.96% 1.33%
Ochota 2 5 1.91% 1.52%
Ochota 4 4 2.27% 1.39%
Ochota 3 4 2.26% 1.49%
Ochota 3 3 2.07% 1.60%
Centrum 4 5 0.94% 0.79%
Centrum 3 5 0.82% 0.81%
Centrum 3 4 0.86% 0.79%
Centrum 4 4 1.3% 0.84%
Centrum 2 3 0.95% 0.77%
Mokotów 3 4 1.74% 0.77%
Mokotów 2 5 1.36% 0.76%
Mokotów 3 3 2.81% 0.8%
Mokotów 2 3 1.04% 0.77%
Mokotów 2 4 1.31% 0.77%

Table 8.44 contains the best results for each type of surrogate model and
for each region. It includes the lowest values of corresponding metrics for all
optimization algorithms as well as the name of the algorithm that gives the
lowest values. Also, in order to compare the performance of GNN-based and
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Table 8.36: LightGBM models used in experiments and their MAPE on the
test set.
Region Boosting No of trees Regular. Max MAPE Mean MAPE
Ochota GBDT 5000 L1 4.40% 0.92%
Ochota GBDT 2500 L2 3.91% 0.87%
Ochota DART 5000 L2 4.08% 0.82%
Ochota GBDT 1000 L2 4.39% 0.91%
Ochota GBDT 5000 L2 3.97% 0.86%
Centrum GBDT 2500 L2 6.07% 0.82%
Centrum GBDT 1000 L2 6.04% 0.84%
Centrum DART 5000 L2 6.12% 0.82%
Centrum GBDT 5000 L1 6.98% 0.87%
Centrum GBDT 5000 L2 6.83% 0.82%
Mokotów DART 2500 L2 8.21% 1.78%
Mokotów GBDT 1000 L2 9.69% 1.89%
Mokotów GBDT 5000 L2 9.40% 1.77%
Mokotów DART 5000 L2 8.30% 1.58%
Mokotów GBDT 5000 L1 10.18% 1.94%

LGBM-based models, the better (lower) values are bolded for each of the 3
considered regions (“Centrum”, “Ochota”, and “Mokotów”).
It can be seen that in terms of the results evaluated by the surrogate

model (that was used to evaluate candidate solutions by the optimization al-
gorithm), the best performance is achieved by population-based metaheuris-
tics, mostly Memetic Algorithms, and CMA-ES. In some cases, Genetic Al-
gorithms were also able to produce the best solution.
In the case of the error of approximation (MAPE) on the set of best signal

settings produced by metaheuristics, it was always possible to achieve almost
ideal accuracy by at least one algorithm. The maximum and mean errors can
be higher, but always at least one algorithm was able to achieve very good
accuracy on the whole dataset.
Importantly, CMA-ES and Memetic Algorithms were able to find not only

very good settings according to the surrogate models but also according to
the microscopic simulation model of TSF. In their case, the error of approx-
imation was usually quite low, even in the worst cases. Genetic algorithms
usually also achieved small errors of approximation but sometimes the max-
imum errors were quite large, which means that the signal settings found
using genetic algorithms do not have to be good according to the simulator,
even when the graph neural network models are used. Another observation
was that the highest MAPE was usually for the “Ochota” region, for which
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Table 8.37: Results of experiments for Genetic Algorithms.
Min/max/mean
result for the
best settings
among 500 runs
(model)

Min/max/mean
result for the
best settings
among 500 runs
(simulator)

Min/max/mean
MAPE for 500
best settings

Min/max/mean
number of
evaluations
(model calls)

GNN
Centrum

65142
66801
65712

65484
67088
65980

0%
12.65%
1.78%

10500
30500
18050

LGBM
Centrum

64074
66930
65239

65268
67432
65996

0%
10.63%
1.86%

10500
35500
22550

GNN
Ochota

32232
36135
33677

33382
44624
36244

0.01%
26.96%
4.92%

10500
45500
27470

LGBM
Ochota

30325
38530
33218

32839
34495
33825

0.02%
28.35%
6.99%

5500
55500
33520

GNN
Mokotów

262717
270940
266515

265674
269618
267530

0.01%
5.54%
1.38%

25500
85500
49420

LGBM
Mokotów

264002
280502
271879

264262
276658
269825

0.01%
5.14%
1.24%

30500
130500
59680

the values of the fitness function were the lowest, while the smallest errors
were for “Mokotów”, for which the values of the fitness function were the
highest. This phenomenon can be observed for both types of surrogate mod-
els, so the hypothesis is that this might be caused by the way the input and
output data in the training set are transformed into inputs to the trained
models. The selected loss function (MSE) may also have an impact. Finally,
it is possible that this phenomenon is also related to the structure of the
road network and the simulated traffic. This hypothesis can be investigated
in future experiments.
In terms of the number of evaluations (calls of the surrogate model),

the convergence was fastest in the case of the gradient descent algorithm.
However, contrary to metaheuristics, this algorithm cannot be used with the
LightGBM models, so for those surrogate models CMA-ES had to use the
least number of evaluations.
The quality of traffic signal settings found using gradient descent was usu-

ally slightly worse than in the case of Memetic Algorithms or CMA-ES, but
the differences were not significant. In the case of Memetic Algorithms, the
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Table 8.38: Results of experiments for PSO.
Min/max/mean
result for the
best settings
among 500 runs
(model)

Min/max/mean
result for the
best settings
among 500 runs
(simulator)

Min/max/mean
MAPE for 500
best settings

Min/max/mean
number of
evaluations
(model calls)

GNN
Centrum

66171
69230
68079

64999
70963
68029

0%
4.07%
0.85%

33066
90222
49915

LGBM
Centrum

66307
70517
68391

65682
71662
68239

0.01%
4.33%
0.95%

27081
78016
42360

GNN
Ochota

36679
39638
38322

35558
41094
38248

0%
6.52%
1.69%

31062
131960
59131

LGBM
Ochota

37000
40694
39260

35903
41953
38856

0%
7.17%
2.16%

27054
83880
46683

GNN
Mokotów

284411
294871
289886

278147
305936
289948

0%
4.79%
0.73%

30060
89799
44198

LGBM
Mokotów

286976
294212
291456

280120
308343
289730

0.01%
6.04%
1.05%

19038
117440
47752

number of evaluations required for convergence was a few orders of magni-
tude larger, but even before the convergence this algorithm was able to find
relatively good candidate solutions quite fast and it was similar for other
metaheuristics that needed many evaluations to converge.
Tabu search and Particle Swarm Optimization were also able to find rel-

atively good settings in terms of the results of the surrogate models and
the microscopic model of TSF. However, they also required relatively large
number of evaluations to reach convergence. The worst results were achieved
for simulated annealing. The results of evaluations using surrogate models
were relatively good, but the evaluations using the TSF’s microscopic model
and MAPE showed that the found settings are not acceptable. Perhaps some
other values of hyperparameters should be considered in the next experiments
(e.g., one of the reasons for poor performance could also be the application
of the multi-signal change technique for generating candidate solutions that
was described in Section 8.3.1.10.1).
Another interesting observation is that it cannot be concluded which of

the considered 2 types of surrogate models (graph neural networks and Light-
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Table 8.39: Results of experiments for Tabu Search.
Min/max/mean
result for the
best settings
among 500 runs
(model)

Min/max/mean
result for the
best settings
among 500 runs
(simulator)

Min/max/mean
MAPE for 500
best settings

Min/max/mean
number of
evaluations
(model calls)

GNN
Centrum

65532
68329
66500

63946
69329
66459

0%
3.48%
0.85%

74278
297858
127397

LGBM
Centrum

64943
68144
66082

64068
68932
66281

0%
3.56%
0.98%

157880
237521
174825

GNN
Ochota

33174
38272
35696

32484
38602
35746

0%
6.03%
0.84%

98862
575749
223655

LGBM
Ochota

33263
38386
36517

33234
40385
36682

0%
9.46%
2.5%

98641
316194
181638

GNN
Mokotów

273370
285363
279248

272357
298953
280517

0%
7.89%
1.75%

321807
712818
415614

LGBM
Mokotów

276653
289365
284115

270375
292172
283170

0.01%
3.41%
0.9%

425310
753915
480095

GBM) are better. In some cases (e.g., “Ochota”) the models based on Light-
GBM performed better, in other cases (e.g., “Mokotów”) the models based
on graph neural networks were able to produce better results according to
the TSF’s microscopic simulation. The evaluation times of both models were
also similar. One potential advantage of graph neural networks is that they
can be used in combination with gradient descent algorithms which are able
to find relatively good solutions with very few evaluations using a surrogate
model.

8.3.1.10.3 Conclusions from experiments

After running a significant number of experiments for different regions, with
different surrogate models, different optimization algorithms, and different
values of hyperparameters, it cannot be unequivocally concluded which con-
figurations are the best for the Traffic Signal Setting problem.
Graph neural networks and LightGBM models seem to perform similarly

in terms of quality as surrogate models. One of the advantages of graph neural
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Table 8.40: Results of experiments for Simulated Annealing.
Min/max/mean
result for the
best settings
among 500
runs (model)

Min/max/mean
result for the
best settings
among 500

runs (simulator)

Min/max/mean
MAPE for
500

best settings

Min/max/mean
number of
evaluations
(model calls)

GNN
Centrum

66076
69961
68047

69320
83956
76307

1.80%
18.33%
10.74%

50000
50000
50000

LGBM
Centrum

66218
68878
67596

68660
87235
76307

1.08%
22.79%
11.31%

50000
50000
50000

GNN
Ochota

36301
39698
38341

42048
58928
49440

8.99%
34.94%
22.16%

50000
50000
50000

LGBM
Ochota

36151
40135
38637

41124
59379
49379

5.36%
36.42%
21.39%

50000
50000
50000

GNN
Mokotów

286517
292580
289780

292637
327125
308657

1.41%
11.63%
6.08%

50000
50000
50000

LGBM
Mokotów

287547
295117
292666

293963
326077
309035

0.34%
10.63%
5.26%

50000
50000
50000

networks is that they can be used in combination with the gradient descent
method which is relatively fast and requires the smallest number of calls to
a surrogate model to converge. However, gradient descent usually converges
to a local optimum, so the solutions found using this method are worse than
the solutions found using population-based metaheuristics like CMA-ES or
Memetic Algorithms. These algorithms need more evaluations to converge
but eventually are able to find slightly better (according to the TSF’s mi-
croscopic model) traffic signal settings. On the other hand, the differences in
qualities of the solutions found by the best algorithms are not significant, but
it might be also caused by the properties of the optimized fitness functions
and their minima in the considered space of possible solutions.
In these experiments, the worst performance was observed in the case of

PSO, but one of the reasons may be a different approach to generating can-
didate solutions (compared to the experiments presented in Section 8.3.1.8).
All in all, most of the tested optimization algorithms achieved quite good

results, and found traffic signal settings much better than the best settings
in the training datasets (cf. Figures 8.14 - 8.15) in a reasonable time, so it
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Table 8.41: Results of experiments for CMA-ES.
Min/max/mean
result for the
best settings
among 500 runs
(model)

Min/max/mean
result for the
best settings
among 500 runs
(simulator)

Min/max/mean
MAPE for 500
best settings

Min/max/mean
number of
evaluations
(model calls)

GNN
Centrum

64447
74577
65564

66107
72746
66263

0.02%
3.1%
0.89%

1067
11000
1886

LGBM
Centrum

65112
74327
66701

66395
72112
66533

0.08%
3.34%
1.05%

1100
11000
1746

GNN
Ochota

30618
45619
32537

33496
36047
33556

0.02%
4.9%
1.62%

2262
7111
3960

LGBM
Ochota

32339
35094
33423

33104
36362
33268

0.04%
8.07%
3.12%

2119
7982
2975

GNN
Mokotów

265895
273529
270789

272712
279814
273196

0.02%
3.1%
0.89%

4515
11910
6546

LGBM
Mokotów

263429
300598
268209

271254
276542
271489

0.01%
2.74%
1.05%

4605
9045
6226

seems that the general methodology is valid. The recommendations regarding
the usage of specific surrogate models and metaheuristics may depend on the
specific use case and priorities because usually, it will be a trade-off between
the quality of the desired solutions and the time needed to find them.
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Table 8.42: Results of experiments for Memetic Algorithms.
Min/max/mean
result for the
best settings
among 500 runs
(model)

Min/max/mean
result for the
best settings
among 500 runs
(simulator)

Min/max/mean
MAPE for 500
best settings

Min/max/mean
number of
evaluations
(model calls)

GNN
Centrum

65120
65878
65514

63811
67970
65596

0%
3.34%
0.77%

85745
267344
137914

LGBM
Centrum

63857
65536
64620

63741
67095
65264

0.04%
3.14%
1.21%

81532
254859
128366

GNN
Ochota

32126
34018
32617

32340
35348
33440

0.02%
6.9%
2.52%

191751
683676
284723

LGBM
Ochota

30000
34530
32457

31928
36572
34064

0%
14.3%
5.4%

190344
797580
263963

GNN
Mokotów

262639
268458
265228

261960
278921
268152

0%
4.34%
1.21%

363888
2090718
780221

LGBM
Mokotów

263528
276823
269663

263388
282267
270862

0%
4.27%
1.22%

474138
1843716
725135

Table 8.43: Results of experiments for Gradient Descent.
Min/max/mean
result for the
best settings
among 500 runs
(model)

Min/max/mean
result for the
best settings
among 500 runs
(simulator)

Min/max/mean
MAPE for 500
best settings

Min/max/mean
number of
evaluations
(model calls)

GNN
Centrum

65118
67626
65875

64394
68744
66068

0.01%
3.48%
0.71%

69
409
159

GNN
Ochota

32112
35180
33011

32389
36456
33832

0.01%
11.45%
2.51%

82
316
143

GNN
Mokotów

265606
273310
269620

264892
281048
272990

0.01%
3.5%
1.28%

95
1040
219
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Table 8.44: Best (lowest) results for all optimization algorithms and the type
of the algorithm by which they were achieved. GNN and LGBM indicate
all GNN and LightGBM models, respectively, for the corresponding region
(“Centrum”, “Ochota”, “Mokotów”). CMA means CMA-ES, MA - memetic
algorithms, SA - Simulated Annealing, GA - Genetic Algorithms, TS - Tabu
Search, PSO - Particle Swarm Optimization, GD - Gradient Descent. The
best results for a given region are bolded.

Min/max/mean
result for the
best settings
among 500 runs
(model)

Min/max/mean
result for the
best settings
among 500 runs
(simulator)

Min/max/mean
MAPE for 500
best settings

Min/max/mean
number of
evaluations
(model calls)

GNN
Centrum

64447 (CMA)
65878 (MA)
65514 (MA)

63811 (MA)
66263 (CMA)
65596 (MA)

0% (GA,MA,TS,PSO)
3.1% (CMA)
0.71% (GD)

69 (GD)
409 (GD)
159 (GD)

LGBM
Centrum

63857 (MA)
65536 (MA)
64620 (MA)

63741 (MA)
66533 (CMA)
65264 (MA)

0% (GA, TS)
3.14% (MA)
0.95% (PSO)

1100 (CMA)
11000 (CMA)
1746 (CMA)

GNN
Ochota

30618 (CMA)
34018 (MA)
32537 (CMA)

32340 (MA)
35348 (MA)
33440 (MA)

0% (PSO, TS)
4.9% (CMA)
0.84% (TS)

95 (GD)
1040 (GD)
219 (GD)

LGBM
Ochota

30000 (MA)
34530 (MA)
32457 (MA)

31928 (MA)
34495 (GA)
33268 (CMA)

0% (TS, MA, PSO)
7.17% (PSO)
2.16% (PSO)

2119 (CMA)
7982 (CMA)
2975 (CMA)

GNN
Mokotów

262639 (MA)
268458 (MA)
265228 (MA)

261960 (MA)
269618 (GA)
267530 (GA)

0% (MA, TS, PSO)
3.1% (CMA)
0.73% (PSO)

95 (GD)
1040 (GD)
219 (GD)

LGBM
Mokotów

263429 (CMA)
276823 (MA)
268209 (CMA)

263388 (MA)
276542 (CMA)
269825 (GA)

0% (MA)
2.74% (CMA)
0.9% (TS)

4605 (CMA)
9045 (CMA)
6226 (CMA)

8.3.2 The problem of optimizing radiotherapy for can-
cer treatment

8.3.2.1 Experiments with a simulator of cancer growth and ge-
netic algorithms

The goal of this experiment was to discover good radiotherapy protocols
(doses and times of applying them) using genetic algorithms for given con-
straints, as well as to explore whether genetic algorithms can find better pro-
tocols thanks to using the accelerated implementation of the cancer growth
simulation model described briefly in Sections 4.3 and 8.2.2, and with more
details in [7] and [15].
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8.3.2.1.1 Setup of experiments

The experiment assumed delivering up to 10 Gy total irradiation in multi-
fractions, over a 5-day period. This limit was set to restrict the total amount
of radiation exposure to a reasonable level while considering the potential
negative impact on health [288]. Each radiotherapy protocol was evaluated
by simulating the cancer growth using the applied model for 10 days (5 days
of treatment and 5 additional days) to consider the long-term impact of
the treatment. Each evaluation was performed using the EMT6/Ro model
described in Sections 4.3 and 8.2.2, and in [7, 264, 15].
The fitness function used for the evaluation of protocols was defined as:

f(p) = 1500− n, (8.15)

where p denotes the considered protocol, 1500 is the maximal number of sites
possibly occupied by cancer, and n denotes the number of sites occupied by
cancer at day 10 of treatment using the given protocol. In order to obtain the
value of f , the treatment protocol was evaluated on 10 different tumors (but
developed from the same initial seed population of 200 cancer cells) from
the available library [8]. This evaluation was performed using the simulation
tool (a C++ implementation of the model described in Section 8.2.2 and
in [264, 15]) that was run on 2 GPUs. For each tumor, the protocol was
evaluated 4 times per GPU. This enabled the calculation of 80 samples for
every treatment protocol. The fitness for the evaluated protocol was averaged
over the fitness of all 80 evaluations. Such a fitness function was used as an
objective function for genetic algorithms.
As defined in Section 8.1.2, the radiotherapy protocols are sequences of

pairs (dose value, time of dose administration), so the goal of optimization
for genetic algorithms can be defined as:

max
p∈P
f(p), such that

k∑
i=1

di ¬ 10.

where f is the fitness function (as defined in formula 8.15), p represents a
protocol, i.e., a sequence (d1, t1), (d2, t2), . . . , (dk, tk), where k is the number
of pairs, while di and ti are dose values and times (in hours from a reference
time) of their administration, respectively. If the total irradiation sum is less
than 10 Gy, it is always possible to increase the irradiation and increase or
at the very least maintain the current level of quality (e.g., value of a fitness
function) of the given protocol. However, when two protocols possess similar
qualities radiologists may prefer the protocol with a lower sum of dose values.
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Therefore, the search space should also include protocols with a sum of doses
that are lower than 10 Gy.
Following the work presented in [7], this experiment focused on 2 clinically

relevant benchmark protocols, both delivering 10 Gy total irradiation:

• Benchmark I (BMI): two doses of 1.25 Gy each, given daily at 9 am
and 3 pm, with a time interval of 6 hours during the day and 18 hours
overnight. This benchmark protocol can be also represented as a se-
quence ((1.25, 9), (1.25, 15), (1.25, 33), (1.25, 39), (1.25, 57), (1.25, 63),
(1.25, 81), (1.25, 87)).

• Benchmark II (BMII): one dose of 2 Gy per day, doses are given every
24 h e.g. at 9 am. This benchmark protocol can be also represented as
a sequence ((2.0, 0), (2.0, 24), (2.0, 48), (2.0, 72), (2.0, 96)).

For these experiments, it was assumed that the potential irradiation doses
can be multiples of 0.25 Gy, starting from 0.25 Gy up to a given maximal dose,
dmax, which was a parameter and its value (from the range 1.25Gy− 4.5Gy)
depended on the goals of the given experiment.
In the first batch of experiments, for BMI, dmax was set to 1.25 Gy,

while for BMII, dmax was set to 2 Gy because such maximum doses were
also used in the previous experiments described in [7], so the goal was to
determine the impact of accelerating simulations, running more experiments,
and investigating more protocols.
In the next batch of experiments, the maximum dose was incrementally

increased beyond 2.0 Gy, in 0.5 Gy steps towards 4.5 Gy.
Different time delays between consecutive doses were explored as well

with 30-minute gradations. There were 2 batches of experiments carried out
to compare the results with both baselines separately. For BMI, a time-delay
from 4h up to 26h was allowed: {4, 4.5, . . . , 25.5, 26}. For BMII, the allowed
time delays were from the set {10, 10.5, . . . , 31.5, 32}.
It was assumed that doses should be administered in multiples of 30

minutes (starting from the beginning of the simulation), as smaller intervals
between fractions may prove difficult to administer in a clinical setting. The
total treatment time was set to 120 hours, which implies that each protocol
should have applied irradiation treatment over 240 time steps. To simplify
computations, each protocol was represented as a sparse vector of 240 doses.
Each position in the vector corresponded to a specific point in time, with a
zero value indicating the absence of dose at that time and a non-zero value
indicating the fractional dose to be delivered. This representation ensured
that each protocol was of equal length.
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In each genetic algorithm run, each population consisted of 40 protocols.
In the selection operator, 10% (i.e., 4) of the best protocols in a given popu-
lation were copied to the next generation without modifications and retained
in the genetic pool. Next, 40% of the best protocols (i.e., 16) were selected
to become parents. Then, in the crossover step, 2 from the selected protocols
were randomly sampled for reproduction and for generating 2 new protocols
to which mutation operators were later applied. This procedure was repeated
18 times, so in total, 36 child protocols were generated and added to the ini-
tially copied 4 protocols to create the new generation.
The selection was performed using one of the following operators: roulette

wheel selection, tournament selection, and N-best selection. The crossover
used one of the following operators: single-point crossover, two-point crossover,
or uniform crossover. All these operators are standard selection/crossover
operators frequently used in genetic algorithms and are explained in Section
6.2.2. However, due to the restrictions on the irradiation level (the sum of the
doses administered during 5 days should not exceed 10 Gy), it was necessary
to check if the new protocols were feasible. If not, the crossover was repeated.
The mutation used one of the following operators: swap mutation, split

mutation, dose time mutation, or dose value mutation. Swap mutation swaps
the positions of two randomly selected elements in a vector representing
the protocol. Split mutation splits a large dose into 2 smaller doses. Dose
time mutation changes the time of administering the given dose to another,
randomly selected time. Dose value mutation changes the dose to another
allowed value. Application of several mutation operators in the same ex-
periment was allowed, but as in the case of the crossover operators, it was
important to ensure that mutation does not lead to unfeasible protocols.
All of these operators are also explained in detail in [264]. The particular

type of selection, crossover and mutation operators used were set in the
configuration file of a given experiment.
The experiments were run using 4 NVIDIA V100 GPUs [255] and with the

C++ implementation. An average speed of 80000 simulations per hour was
achieved, which is c. 717 faster than the previous implementation in Matlab
run on 13 10-core CPUs. The details of the implementation, its calibration,
and fidelity verification are described in [264].

8.3.2.1.2 Results of experiments

For BMI, the average value of the fitness function was 1118.95 with a standard
deviation of 40.45. In the previous experiments described in [7], assuming
that the maximum dose is 1.25 Gy, the best protocol found using genetic
algorithms had an average value of 1139.26 with a standard deviation of
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33.28. In these experiments, the best protocol had an average value of 1153.62
and a standard deviation of 34.56.
For BMII, the average value of the fitness function was 1144.83 with a

standard deviation of 37.69. In the previous experiments described in [7],
assuming that the maximum dose is 2 Gy, the best protocol found using
genetic algorithms had an average value of 1158.54 with a standard deviation
of 43.68. In these experiments, the best protocol had an average value of
1173.96 and a standard deviation of 37.80.
In the next batch of experiments, when the maximum dose was incremen-

tally increased to 4.5 Gy, for the best protocol found, ((2.5, 19), (3.75, 24.5),
(3.75, 75.5)), the average fitness value was 1273.7 with a standard deviation
64.75.
The details can be found in [264].

8.3.2.1.3 Conclusions from experiments

The experiments showed that thanks to accelerating simulations, running
more experiments with the genetic algorithm, with more settings and oper-
ators, it was possible to find better protocols for radiotherapy. Therefore, it
was natural to check if applying the introduced methodology and training
surrogate models based on machine learning can help in finding even better
protocols (or protocols of similar quality).

8.3.2.2 Experiments with surrogate models and metaheuristics

The goal of these experiments was to test whether the methodology intro-
duced in this thesis can give an advantage in finding good radiotherapy pro-
tocols compared to the standard use of genetic algorithms combined with
computer simulations. For this purpose, the simulator of cancer growth un-
der radiotherapy treatment that was used in experiments described in Section
8.3.2.1, was used this time to generate a dataset on which several machine
learning models were trained to approximate the outcomes of the simulator.
Then, experiments with genetic algorithms were run with the same settings
and combinations of hyperparameters as in the previous batch (cf. Section
8.3.2.1) with surrogate models used instead of the simulator to evaluate the
quality of radiotherapy protocols.

8.3.2.2.1 Setup of experiments

The first step was to generate a dataset using the simulator of the EMT6/Ro
model that was also used in experiments described in Section 8.3.2.1. The
dataset consisted of 200000 radiotherapy protocols. For each of them, the

234



Chapter 8: Experiments

simulator was used 100 times using GPUs, and the results of the fitness
function (defined according to formula 8.15 as the number of sites not oc-
cupied by cancer cells after testing at day 10 of treatment using the given
protocol) were averaged. The protocols assumed that radiotherapy doses can
be administered only during the 5 days of treatment, each dose can be a
multiple of 0.125 Gy between 0.5 Gy and 4.5 Gy, and the sum of all doses
can be up to 10 Gy. It was also assumed that doses should be administered
in multiples of 10 minutes (starting from the beginning of the simulation).
This dataset was generated by students from the University of Warsaw

during their work on a student project which was proposed and supervised
by the author of this thesis [15, 117]. The dataset has been made publicly
available to facilitate further research on this topic (cf. Appendix A.4).
Later, several machine learning models were trained on this dataset to

approximate the outcomes of simulations. The training was performed by
a member of the TensorCell team, Anna Warno, and the results were later
summarized in her M.Sc. thesis [348], for which the idea was proposed by the
author of this thesis. She split the dataset into training, validation, and test
sets with a proportion 80% : 10% : 10%, and tested the following methods:

• LightGBM (LGBM) [178] (tuned using the Tree Parzen Estimator [24]);

• Fully Connected Neural Networks (FCNN): several variants were tested
with 2 − 3 hidden layers and 16 − 512 neurons per layer, with Leaky
ReLU activation function [181], trained for 150 epochs using the Adam
optimizer ([183]) with the MAE loss function;

• Convolutional Neural Networks (CNN) [199]: several variants were tested,
with different sizes of kernels, strides, and dilatation. In some variants,
CNNs were combined with the attention mechanism [337];

• Temporal Fusion Transformer (TFT) [209]: several variants were tested
with different values of parameters.

In some experiments, ensemble methods were used, in which several sur-
rogate models were combined to generate a better surrogate model. Finally,
the ensemble model was combined with the Margin Ranking Loss (MRL)
[247] which is a loss function suitable for regression tasks in which it is re-
quired to preserve the order of elements. As explained in Chapter 7, this is
exactly the case of training surrogate models for the purpose of evaluating
candidate solutions in optimization tasks. Formally, MRL can be defined as
follows:
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Definition 8.3 Let x1 and x2 be two points from the input space (in this
case, radiotherapy protocols) for which the ground truth values (in this case:
mean outcomes of situations) are y1, y2. Let z1, z2 be the values predicted by
the trained model for x1 and x2, respectively. Then, Margin Ranking Loss
(MRL) is defined as follows:

MRL(y1, y2, z1, z2) = max(0,−a · (z1 − z2) +margin) (8.16)

where

a =

1 if y1 > y2
−1 otherwise

(8.17)

and margin is a fixed margin.

Later, the best-performing surrogate model was integrated with genetic
algorithms to verify if using such a surrogate model gives an advantage over
using the simulator. For these experiments, the same settings of genetic al-
gorithms were used as in experiments described in Section 8.3.2.1.

8.3.2.2.2 Results of experiments

In the experiments conducted by A. Warno [348], the best performance was
initially achieved by CNN with attention mechanism: MAPE on the set was
at the level 1.26%. Later, the best architecture was trained in an ensemble
learning setup in which 3 networks were trained with 3 different loss functions
(mean absolute error, mean squared error, and Huber loss [164]), and their
average was trained with MAE loss. This approach reduced MAPE to 1.21%.
Adding MRL to the ensemble model reduced MAPE further to 1.15%. In
addition, evaluating a single radiotherapy protocol using this surrogate model
is about 4000 faster than evaluation using the simulator. Also, in the case
of using GPUs and evaluating 256 protocols at once, the speedup is about
150000-fold. The details can be found in [348].
Later, the author of this thesis integrated the best surrogate model with

genetic algorithms used in experiments described in Section 8.3.2.1. After
running experiments with the same settings, it turned out that the genetic
algorithm was able to find an even better radiotherapy protocol in the best
run: ((1.0, 70.5), (4.5, 93), (4.5, 118.5)). For that protocol, the evaluation using
the trained surrogate model returned 1279, while the evaluation using the
simulator gave 1282. In general, the results were similar as in the case of
genetic algorithms with evaluating protocols using the simulator, but the
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time required to carry out the computations was a few orders of magnitude
lower.

8.3.2.2.3 Conclusions from experiments

This batch of experiments showed that the simulator of cancer growth under
radiotherapy treatment can be successfully substituted by surrogate models
based on machine learning in the task of finding good radiotherapy protocols
using genetic algorithms. Not only are the results of the same quality, but
the times for running the experiments are several orders of magnitude faster.
Of course, a significant amount of time was required earlier to generate the
dataset and train the models. However, once the surrogate model is ready,
it gives the opportunity to explore an even larger set of candidate protocols.
Therefore, the methodology proposed in this thesis seems to be quite useful.
Another interesting conclusion is that ensemble learning techniques as

well as combining neural networks with the attention mechanism and con-
sidering the Margin Ranking Loss as the loss function can also improve the
accuracy of surrogate models. These techniques can potentially lead to de-
signing even better surrogate models in the future, which is also emphasized
in Chapter 9.
Since the introduced methodology proved to be useful in finding good

control setting not only for road traffic in cities but also for another com-
plex process, it was natural to investigate whether the same methodology
can be used in the case of other complex processes and whether there are
any limitations of this methodology. This was one of the goals of the next
experiments, described in Section 8.3.3, and a comprehensive discussion of
identified limitations and ways to overcome them is also included in Section
9.1.

8.3.3 Approximating cellular automata

In both use cases studied in this thesis, the approximated models of complex
processes were based on cellular automata and the trained surrogate models
based on machine learning were able to approximate the model outcomes
with very good accuracy and with relatively small datasets and training
times. Achieving good approximation accuracy is guaranteed by the Univer-
sal Approximation Theorem [70], but whether and under what circumstances
it can be done efficiently is an open question. Therefore, it was natural to
consider in which cases cellular automata can be easily approximated us-
ing machine learning models. The topic is especially interesting when one
considers the fact that some cellular automata are Turing-complete which
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means that they have the ability to perform any computation that a Turing
machine can perform. One of the most notable examples of Turing-complete
cellular automata is the famous “Game of Life” automaton proposed by
J. Conway [100, 282]. The simplest cellular automaton that is known to be
Turing-complete is “Rule 110” [357, 65].
The author of this thesis decided to investigate how hard it is to train

neural networks to predict the states of “Rule 110”, “Game of Life”, as well
as the original Nagel-Schreckenberg model. The experiments were carried
out by the students of the University of Warsaw under the supervision of the
author of this thesis and their results are summarized in [275].
It is important to note that there are already research papers investigat-

ing how neural networks can learn to predict the future states of cellular
automata. One of the first works on this topic was presented in [361] where
a neural network was used to imitate 1D and 2D binary cellular automata
with chaotic or complex dynamics. However, there are not many papers in-
vestigating how difficult it is to predict future states of cellular automata,
e.g., depending on Turing-completeness, the size of cellular automata, the
complexity of the transition rules or other factors. The article that is proba-
bly the closest to the study carried out by the author of this thesis and his
team is presented in [315], where it was concluded that the size of the neural
networks required to learn the input/output function represented by many
steps of “Game of Life” is often significantly larger than the minimal network
required to implement the function. However, this article was published a few
years later than the the experiments presented in this section were carried
out.

8.3.3.1 Design of experiments

“Rule 110” was considered for a tape with 10, 32, and 50 cells. “Game of
Life” was considered for the board 10× 10, 16× 16, and 50× 50. The Nagel-
Schreckenerg (NaSch) model was considered (in its deterministic variant) for
the board with 50, 200, and 1000 cells. For each case, the datasets were
generated using simulations that were run for 1000 steps for 105 different
initial configurations, and they were later divided into training and test sets
(with 80%/20% split).
Different architectures of neural networks were considered, e.g., feed-

forward fully connected networks, convolutional neural networks [199], long
short-term memory networks (LSTM) [154], bidirectional recurrent neural
networks (BRNN) [296], etc.
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8.3.3.2 Results of experiments

It turned out that recurrent architectures achieved the best performance.
For “Rule 110”, the MAPE of predicting binary states of cells 15 steps in
advance was 98.86%, while for 63.87% cases, the entire state of the tape
was perfectly predicted (without any mistake). For the “Game of Life”, the
MAPE of predicting binary states of cells 10 steps in advance was at the level
of 89.72%, while for 24.54% cases, the entire state of the board was perfectly
predicted. For the NaSch model, the MAPE of predicting binary states of
cells 50 steps in advance was at the level of 99.99%, while for 99.86% cases,
the entire state of the tape was perfectly predicted. The details can be found
in [275].

8.3.3.3 Conclusions from experiments

It seems that for Turing-complete automata (“Rule 110” and “Game of Life”)
predicting future states is more difficult than for the NaSch model. Also,
considering that such cellular automata can be efficiently implemented and
accelerated using GPUs, there is not much advantage in terms of the inference
time for such a small number of steps, while for predicting the results for
more steps in advance, the accuracy is worse. For example, in the task of
predicting the states of “Rule 110”, 30 steps in advance, the best MAPE was
at the level of 74.57%, while only for 0.31% of the cases it was possible to
accurately predict the entire state of the tape.

This is in line with some other recent results published in [315], where it
was concluded that, in general, it is difficult to predict the future steps of
the “Game of Life” using neural networks.

However, it seems that this interesting topic has hardly been studied,
and there is potential for further research on approximating the evolution of
cellular automata. The author of this thesis suspects that further research
on this topic may lead to experimental as well as theoretical (e.g., related
to automata theory) results showing the hardness of approximating states of
various cellular automata (especially Turing-complete) using machine learn-
ing models, which may also have an impact on the potential applicability of
the methodology introduced in this thesis. On the other hand, it also seems
that for some cellular automata (e.g., the deterministic variant of the Nagel-
Schreckenberg model or its extension in the TSF tool), it may be easier to
predict some characteristics of the automata’s evolution.
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8.4 Discussion about the computational effi-
ciency and hardware

The conducted experiments showed that the methodology proposed in this
thesis can be very useful in finding good control settings for both investigated
complex processes. However, besides the quality of solutions to the optimiza-
tion problem, it is also important to discuss the computational complexity
of the method.
For both considered cases, the most time-demanding part was related to

generating the datasets (training, validation, and test sets), as it required
running a large number of simulations. Indeed, this process took many hours
and required significant computational power. The process of training surro-
gate models was much faster, as training a single model usually took about
10− 60 minutes on a machine with a single GPU. After training, evaluating
the models was very fast, so the time required to run optimization algorithms
was negligible compared to the previous steps. One can ask if the significant
amount of time required to generate the datasets and train surrogate models
is worth the benefits.
From the perspective of running systematic experiments for the purpose

of this thesis, training surrogate models based on machine learning was indis-
pensable and significantly reduced the time of computations. After generating
the datasets, it was possible to test many different metaheuristics with differ-
ent settings. Carrying out similar experiments with original simulators would
require, in total, much more time and computational power. As discussed in
Sections 8.3.1.1 and 8.3.2.1, running experiments only with simulators may
already lead to finding relatively good solutions. However, as demonstrated
in Section 8.3.2.2, combining metaheuristics with surrogate models may help
in finding even better solutions. Also, in the case of the Traffic Signal Settings
problem, running only a few iterations of genetic algorithms did not give a
significant advantage compared to the best solution in a randomly generated
population (cf. Section 8.3.1.1). On the other hand, as demonstrated in Sec-
tion 8.3.1.10, running more evaluations of surrogate models in optimization
algorithms may result in finding better traffic signal settings, much better
than the best settings in randomly generated training sets (cf. Tables 8.14 -
8.16).
In addition, the process of generating the datasets can be easily paral-

lelized, so that even millions of computer simulations can be run in a rea-
sonable amount of time, given access to sufficient computing power. Also, as
demonstrated in Section 8.3.1.6, there is a potential to decrease the size of
the training sets up to a certain point and still get a useful accuracy of the
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surrogate model. On the other hand, it is much more difficult to parallelize
optimization algorithms. For some algorithms, such as gradient descent or
hill climbing, candidate solutions must be evaluated sequentially because the
next candidate to be evaluated cannot be known until the previous itera-
tion has been completed. For other algorithms, such as genetic algorithms
or particle swarm optimization, some degree of parallelization can be im-
plemented, but candidate solutions from successive iterations must also be
evaluated sequentially, so the ability to speed up computation is limited.

From the perspective of real-world applications, it is not so certain that
generating a large dataset and training surrogate models will bring signif-
icant benefits, but as experiments have shown, exploring more candidates
can lead to finding better solutions. Considering that finding even slightly
better options for traffic signal control can lead to huge savings in the long
run, while even a small increase in the chances that patients will be cured
of cancer can be priceless, generating a training set to be able to quickly
evaluate more reasonable options seems to be a valuable option.

Moreover, having machine learning based surrogate models gives the op-
portunity to explore transfer learning approaches to adapt the surrogate
models and the found solutions to slightly different conditions (e.g., different
initial traffic conditions or different initial cancer states). It is also likely that
training the surrogate models with inputs that take into account the initial
states of the process can lead to even better adaptive properties.

These and other possible extensions of the presented methodology that
may lead to applicability in real-world scenarios are discussed in Chapter 9.

Finally, it is important to mention the computational infrastructure used.
Despite initial difficulties, the author was able to perform many series of ex-
periments and witnessed how technological advances in regions such as high-
performance computing, cloud computing, and machine learning can help
overcome computational challenges and make it easy to perform experiments
that were very difficult to perform just a few years earlier.

The initial experiments were carried out on the personal computer of the
author of this thesis and on several computers in the computer laboratory
of the University of Warsaw. Later, the author was awarded several compu-
tational grants, e.g., the “AI for Earth” [230], “AWS Cloud Credits for Re-
search” [4], “Google Cloud Research Credits” [119] and computational grants
from ICM [161]. Some experiments were also carried out using “PEGAZ”
computing cluster at the Interdisciplinary Centre for Computer Modelling at
the University of Rzeszów, or using an NVIDIA server.
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8.5 Discussion about the role of the author
and other contributors

As mentioned in the previous sections, some of the experiments described in
this chapter were performed by research collaborators of the author of this
thesis, so it is important to clarify the exact role of the author. In all cases
described (with a few exceptions where it is explicitly stated in the text), the
author proposed the main idea, designed the experiments, and coordinated
the entire research, from building the necessary research team to analyzing
and disseminating the results. In some cases, the code was implemented and
the experiments were conducted by other team members, but in all such
cases, the author personally analyzed all results and reviewed most of the
code used.

8.6 Final conclusions

The conducted experiments showed that the introduced methodology and the
substitution of computationally expensive simulations by surrogate models
can be very useful and, after integration with optimization algorithms, can
lead not only to a significant acceleration of experiments, testing more algo-
rithms, hyperparameters, and candidate solutions, but also to finding better
solutions, as a consequence. The experiments tested many different machine
learning models, metaheuristics, and their settings over many series of exper-
iments, where new batches of experiments were designed based on the results
of the previous experiments. Importantly, the methodology proved successful
for both studied real-world complex processes (vehicular traffic in cities and
cancer growth under radiotherapy treatment).
However, it is also important to analyze the limitations of this methodol-

ogy, as well as approaches to overcome them, and to discuss possible exten-
sions that may lead to applicability in real-world scenarios. These consider-
ations are presented in Chapter 9.
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Possible extensions and
real-world applications

9.1 Identified limitations and ways to miti-
gate them

The introduced method proved to be successful in the optimization of 2 stud-
ied complex processes improving the efficiency of computations and giving
an opportunity to find better solutions in a reasonable time. However, it
is important to discuss its limitations and its potential applicability to the
optimization of real-world complex processes.
There are 3 main limitations that have been identified:

1. The mathematical models of complex processes are only approxima-
tions of real-world phenomena (such as real traffic in cities), so the
solutions found by metaheuristics that are good according to the mod-
els (or surrogate models) may not be good in the real world.

2. The solutions are usually found for certain conditions, e.g., assuming
constant durations of signal phases, certain road traffic conditions, and
known routes, but a natural question is whether the introduced meth-
ods can be extended to adapt the found solutions to other conditions,
and thereby avoiding expensive computations of the solutions in new
settings from scratch.

3. Training machine learning models as surrogates requires a sufficiently
large training set and significant computational power.

The first limitation does not result directly from the methodology intro-
duced, but rather from the limitations of the underlying mathematical models
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of complex processes [43]. One of the possible mitigations can be to ensure
that the mathematical models are as accurate and consistent with real-world
data as possible. However, this is very difficult to achieve, and there are also
challenges such as access to the results of real-world data (accurate measure-
ments of the real-world complex processes) needed to calibrate and validate
the models. The cost of collecting and storing a sufficient amount of data
can be huge and may not be affordable. Moreover, even if the models are
good for some conditions, they do not have to be accurate enough for other
conditions that are not represented in historical data. Therefore, it would
be reasonable to accept that in some cases the models are just not accurate
enough, so it is necessary to consider using some other techniques, e.g., the
classical techniques that are used nowadays for optimizing specific processes.
In some cases, however, it may be worth investing in the collection of large

amounts of data to achieve remarkable results. Recent advances in artificial
intelligence and data science, and the tremendous success of machine learning
models such as computer vision methods, AlphaFold [172] or GPT-4 [258],
show that investing in the collection and processing of large amounts of
data can pay off and produce amazing results that are difficult to achieve
with fewer data. It is possible that with further technological advancement
and development of AI, Internet of Things (IoT), cloud computing, graphical
processing units (GPU), tensor processing units (TPU), quantum computing,
and other domains, as well as with new methods for collecting, storing, and
processing huge amounts of data (Big Data), it will be easier, cheaper, and
faster to build very accurate mathematical models of complex processes.
One of the possible approaches in this direction could be to train machine

learning models to simulate the complex processes directly so that they could
be considered direct models rather than surrogate models. This approach
may also require the acquisition of large amounts of data from observations
of real-world processes, but there are several premises that suggest this ap-
proach can be successful. First, generative machine learning models that are
able to dynamically generate output after training have been very success-
ful recently. Large language models, such as GPT-4 [258], LLaMa [329], or
PALM-2 [62], are just a few notable examples that show that generative mod-
els trained on a large set of data can achieve breakthrough performance and
are already assisting humans in many tasks, like searching for information on
the Internet, creating art, and coding. It is natural to suspect that further
progress in this field, accelerated thanks to the already developed foundation
models, can bring further advances, and there may appear new foundation
models that could be pre-trained on large amounts of data coming from the
real-world observations of complex processes and re-trained on data from a
new instance of a given model.

244



Chapter 9: Possible extensions and real-world applications

Such a transfer learning approach [371] can also help in solving the limi-
tation 2, as existing models (or surrogate models) of a complex process can
potentially be trained on new data (but a smaller amount than used for the
initial training) to adapt to changing conditions that cannot be fully pre-
dicted due to the sensitive dependence on initial conditions and openness of
complex systems and the potential impact of external factors. This will not
mitigate the third limitation, because the demand for computational power
and a large amount of data may increase, but it is possible that a large
amount of data and extensive training of machine learning models would be
required only once, offline, and then the models could be additionally trained
using much smaller datasets related to a given instance of the complex pro-
cess and using much smaller computational power. Also, based on the history
of advances in computing device technology and ongoing research, it is ex-
pected that the availability of sufficient computing power will not be an issue,
especially considering the current computing capabilities of centers training
large machine learning models. It is also expected that the evolution of ma-
chine learning will lead to the development of much smaller architectures with
similar capabilities to state-of-the-art techniques. In fact, the development of
sparse graph neural networks presented in this thesis (Section 8.3.1.9) is also
a step in this direction, and in some experiments presented in this thesis (e.g.,
Section 8.3.1.5), the impact of training machine learning models on smaller
datasets was investigated and the results turned out to be promising.
On the other hand, some approaches aim to solve the limitation 2 in the

opposite way, building larger machine learning models that consider more
settings. In the experiments conducted, a relatively small set of settings was
considered - traffic signal offsets (in the case of the Traffic Signal Setting
problem) and radiotherapy protocols (in the case of cancer treatment opti-
mization), the other settings were set as constants. However, there are many
more settings that could be controlled in order to optimize the considered
processes. In the case of traffic signal control, one can consider not only sig-
nal offsets but also signal phase durations and traffic conditions, which could
be represented by origin-destination matrices. In addition to traffic signal
control, some other approaches to traffic optimization can be applied, such
as optimizing routes of fleets, which could be especially useful in the world
with connected autonomous vehicles that can communicate with each other
and with the road infrastructure in order to find the best routes that op-
timize the entire traffic (and not only routes of individual vehicles). In the
case of cancer treatment, radiotherapy can be enhanced using other treat-
ment methods like chemotherapy or hormonal therapy, so the protocols for
their application could also be considered. Such extensions may also result
in much larger spaces of possible solutions, so from an optimization point of
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view, the problems may become even more challenging. However, it can be
expected that also in such cases metaheuristics would be able to find reason-
ably good solutions. In the conducted experiments, metaheuristics already
had to explore very large spaces of possible solutions and evaluate only a
very tiny fraction of the available options, but many metaheuristics (such as
genetic algorithms) managed to return quite good solutions. However, from
the perspective of training surrogate models based on machine learning, the
difficulty is more severe. Adding more input features may mean that the
training set should be larger and the model architectures should have more
parameters.
The author of this thesis has already conducted preliminary experiments

with this approach and considered the Traffic Signal Setting problem with 2
additional parameters per signal group - they corresponded to durations of
green signal phases in 2 (conflicting) directions. It was assumed that these
durations can be taken from the set {20, 21, . . . , 80}, while the offsets can
be taken from the set 0, 1, 2, . . . ,MAX, where MAX depends on the sum
of the durations of the green signal phases in both directions to ensure traf-
fic safety. The new dataset (generated using the deterministic variant of the
TSF’s microscopic model) consisted of 1470972 different signal settings for
21 signal groups in the “Ochota” region (used in other experiments too) and
is publicly available to facilitate further research (cf. Section A.3). 80% of
this dataset was used as the training set and the remaining 20% was the
test set. In the experiments conducted by the author of this thesis together
with the members of the TensorCell team, the standard BERT (Bidirectional
Encoder Representations from Transformer) language model (BERT-base-
uncased) [76] from the Hugging Face library [356] was used as the starting
point for training, and then it was trained on the generated dataset using
the Adam optimizer [183], with a batch size of 64, a learning rate of 5 · 10−5,
and a training time of 12 epochs. It turned out that the new model can
give MAPE at the level of 1.99% and MAXAPE=17.79%. The MAPE seems
to be low enough to consider the trained model as a good surrogate mode.
The MAXAPE is quite high, but further analysis revealed that MAXAPE99
(maximum absolute percentage error among the best 99% results - 99-th
percentile) was at the level of 6.64%, so the model performs quite well in
most of the cases (however, some outliers exist). Moreover, the performance
was much better than in the case of surrogate models based on LightGBM,
FCNN, graph convolutional neural networks introduced in [184] or sparse
graph neural networks introduced in Section 8.3.1.9, which did not give sat-
isfactory results in this case. The details were published in a scientific paper
coauthored by the author of this thesis and published at a workshop of the
NeurIPS 2020 conference [322].
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These results showed the potential of language models and architectures
based on transformers, so this potential was further explored in the next ex-
periments trying to combine graph neural networks with the attention mecha-
nism in the form of graph attention networks (GAT) proposed in [338]. Initial
experiments on the dataset for the “Ochota” region with 21 signal groups
did not show any advantage over sparse graph neural networks introduced in
Section 8.3.1.9, but the results were at the same level, which indicates that
there might be potential to explore such architectures further.
Another important issue related to the limitation 1 is a consequence of

the fact that all measurements of physical devices are subject to errors, and
the sensitive dependence on initial conditions can lead to increasing errors
of the models over time. This issue was partially addressed in Section 2.4,
where 10 (similar) tumors developed from an initial seed population of 200
cancer cells were considered. A similar approach based on considering several
initial states (close to the result of the measurement) can be applied to other
complex processes, but its efficiency should be investigated further.
Also, one can think about more adaptive approaches, in which default so-

lutions found offline are adjusted to dynamically changing conditions. There
are also many ways to implement them, ranging from designing problem-
specific rules on how to act in certain situations (and this is a standard ap-
proach in classical traffic signal control with adaptive controllers [256, 106]),
to more general approaches like reinforcement learning, where an agent (or
agents) controlling a complex process at hand is trained to make good de-
cisions based on the observed state of the process. This approach has also
been investigated by the author of this thesis in collaboration with the mem-
bers of the TensorCell group and researchers from the Technical University
of Melaka (in the case of traffic signal control and solving routing problems),
the University of Warsaw and ETH Zurich (in the case of optimizing cancer
treatment), with very promising results. In the context of adaptive traffic
signal control, it is discussed in detail in Section 9.2.1.
Another issue related to the limitation 1 is caused by the fact that the

optima of the optimized functions are usually underrepresented in the train-
ing set for surrogate models based on machine learning, so the errors of the
surrogate model approximations close to the optima may be too large. This
issue was identified and described in Section 8.3.1.6 and in the case of the
traffic signal use case was mitigated using the introduced graph neural net-
works 8.3.1.9. Another way to improve these results could be to use the active
learning approach [298] and to retrain the trained models online, during the
optimization process, based on the results of evaluations close to local optima.
However, this can lead to an increase in the required computational time of
the optimization algorithms, and in some preliminary experiments did not
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give any observable advantage. Nevertheless, active learning is still a rela-
tively new concept, so it is possible that with advances in machine learning,
these techniques may provide better results. If the number of good solutions
(found using metaheuristics) to a given optimization problem is large, using
them in the future training of surrogate models may lead to better perfor-
mance. And if the machine learning models are used directly as models of
complex processes, and not only as surrogate models, there may be potential
for even more efficient training based on points close to local optima.
Some improvement in terms of reducing the size of the required training

set and increasing accuracy near local optima (limitation 1 and 3) could
potentially be achieved by using better quasi-random number generators like
Sobol sequence and there have already been research papers dealing with this
topic and showing a potential advantage [234].
In terms of metaheuristics, there are still many approaches and variants

of classical metaheuristics that could be explored to improve the quality
of solutions and reduce the computation time. For example, in the case of
genetic algorithms and other population-based metaheuristics, one can think
about applying island models [309] in which multiple subpopulations evolve in
parallel in isolation. Some promising individuals, called migrants, periodically
move from their islands to others according to a predefined communication
topology. This approach has been tested by the author of the thesis in the
case of genetic algorithms applied to the Traffic Signal Setting problem, in
combination with the graph neural networks introduced in Section 8.3.1.9. It
did not bring observable improvements in terms of the quality of the found
solutions, but there is a potential for improvement in terms of performance
by parallelizing computations.
Another approach that could be further investigated is the development

of domain-specific operators of metaheuristics. This will not fulfill the goal
of building universal methods for optimizing complex processes, but it can
potentially improve the performance of metaheuristics in some cases. For
example, in the case of the Traffic Signal Setting problem, one can think
of crossover or mutation operators based on the proximity of signal groups.
Intuitively, signal groups that are geographically close should have more in-
fluence on each other than signal groups that are distant. Therefore, good
coordination of close signal groups seems to be more important, and traf-
fic engineering practices like creating “green waves” seem to assume it too.
Based on this, the author of the thesis investigated the idea of clustering
signal groups that are geographically close, assuming that in the crossover
process, signal settings belonging to the same cluster are not exchanged. In
this approach, for signal groups belonging to the same cluster, the new chro-
mosomes may possess settings inherited from only one parent. To build the
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clusters, one can also think about taking into account other factors than just
geographic proximity. Intuitively, the number of internal connections between
signal groups within each cluster should be large, while the number of ex-
ternal connections between different clusters should be small. Therefore, it
might be useful to consider some metrics that measure how good the clus-
tering is in terms of the number of intra-cluster connections and inter-cluster
connections. One such metric is the Cheeger constant, which measures the
balance between intra-cluster and inter-cluster connections [279] and has al-
ready found applications in clustering urban road networks [39]. Similarly,
mutation operators can be also domain-specific, and in the case of the Traffic
Signal Settings problem, a variant of swap mutation can take into account
the proximity of signal groups. The author of this thesis has run initial ex-
periments with such proximity-based crossover and mutation operators used
in genetic algorithms applied to solving the Traffic Signal Setting problem.
They did not yield observable improvements in terms of the quality of the
found solutions or speed, but it is possible that combining such operators
with other approaches and techniques, like memetic algorithms, can give
some improvements, so it is considered an area for further studies.
A similar conclusion holds for the mesoscopic models. The difference be-

tween the outcomes of a simple mesoscopic model introduced in Section 5.4
and the microscopic model implemented in TSF (Section 5.3) was too large
to consider this model as a good surrogate model, and the time of its evalua-
tion was still significantly longer compared to the surrogate models based on
machine learning. Also, designing good mesoscopic models for some complex
processes might be challenging, so this method cannot be considered as a
universal approach. However, as explained in Section 8.3.1.2, it is still worth
considering mesoscopic models for the evaluation of complex processes, as
for some complex processes their correspondence with real-world data can
be acceptable, and with the increase in computational power, their usage
could be valuable. An undisputable advantage of mesoscopic models is that
after calibration they do not require as large datasets as surrogate models
based on machine learning do.
In addition, it might be also worth to study combinations of the presented

approach with interaction with the domain experts, e.g., as in the case of the
IGrC approach presented in Section 4.4. Potentially, IGrC can be also applied
to build surrogate models [69]. In this thesis, the focus was on the application
of metaheuristics and the interaction between the optimization algorithms
(like metaheuristics) or a mathematical model of a complex process and
the human expert was beyond its scope, but can be an interesting area of
future research. Nevertheless, some elements of including the human expert’s
domain knowledge in the computational model have been already studied in
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the case of the graph-based neural networks introduced in Section 8.3.1.9.
The interaction with domain experts was also considered in the research
on the acquisition of traffic-related knowledge is described in Section 5.7.2.
The goal of that research was to learn conceptual levels of traffic congestion
and a concept of a traffic jam at a single crossroad by means of a dialog
with experts. Such learned high-level concepts and their approximation from
low-level traffic data using machine learning models can be also used to
infer high-level traffic states (e.g., traffic jams) from low-level sensory data
and to trigger the process of reconfiguring traffic signal settings (e.g., using
metaheuristics).
In the case of surrogate models based on machine learning, there are

also potential areas for improvement. For example, another way to mitigate
the limitation 1 is to ensure that the surrogate models used to evaluate
settings are monotonic in the sense that if one setting is better than another
in the real world, the surrogate models should preserve this relation. This
can be done using the Margin Ranking Loss [247] that was already used in
experiments presented in Section 8.3.2.2. These experiments also showed that
constructing ensembles that integrate and average the outcomes of several
surrogate models may also lead to better results. Besides MRL, it might be
also worth studying other loss functions and potentially even designing new
loss functions tailored to the proposed applications.
Another improvement may potentially come thanks to applying explain-

ability techniques to the trained models. One of the advantages of the micro-
scopic or mesoscopic models over surrogate models based on machine learning
is that it is relatively easy to understand and explain the process of their eval-
uation in terms of certain traffic characteristics, in particular, it is possible
to monitor (and often even visualize) traffic states. In the case of machine
learning models, it is more difficult, but explainable AI (XAI) techniques can
help get some useful insights. The author of this thesis has conducted sev-
eral experiments in collaboration with the members of the TensorCell group,
in which two XAI techniques were applied to sparse graph neural networks
introduced in Section 8.3.1.9 to understand the importance of signal groups
and their impact on the times of waiting at red signals in the considered re-
gions in Warsaw. The first technique was SHAP [219], which is based on the
Shapley value, a concept from cooperative game theory that measures the
contribution of each player to a game. The method assigns a value to a given
player (in this case: input feature to the machine learning model) in the all-
player-coalition based on the contribution it would make by joining a coalition
of other players, averaging over all possible other-player-collaborations. This
method was used to assess the importance of input features (in this case:
offsets of traffic signal settings) in deriving the final prediction of the model.
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An individual feature (offset) was treated as a player joining the coalition
of features and was assigned the Shapley value. The second method was the
Zorro method [99], which uses a hard mask to identify important features. It
sets certain features as constant and perturbs the values of other features to
calculate the change in the outcomes of the surrogate model. The assump-
tion is that if a feature has low importance, changing its value with a random
noise from input space should change the prediction less compared to a fea-
ture with high importance. For the experiments XAI and testing both tech-
niques, 5 GNN models were selected for each of the 3 districts based on their
performance on the test set in the experiments described in Section 8.3.1.9,
resulting in 15 models in total. Although the investigated techniques (Zorro
method and calculating the Shapley value) are different measures of feature
importance, their conclusions were similar and they identified the same sig-
nal groups as important. The results of this analysis will be published soon
in [127].
Explainability techniques are becoming very popular and important for

machine learning but instead of using surrogate models based on machine
learning, one can also think about using totally different surrogate models,
e.g., the techniques presented in Section 2.2.
Another potential improvement in optimization algorithms is related to

the concept of hyper-heuristics [47]. These techniques use AI to automat-
ically generate (meta)heuristics instead of manually designing them. They
typically work by searching a space of candidate heuristics using machine
learning methods to evaluate their performance and identify promising ones.
They can then generate new heuristics by combining or modifying the best-
performing ones, or by using machine learning techniques to create entirely
new approaches.
In general, most of the introduced methods have also the potential for

linear acceleration thanks to parallelization, and with access to more and
cheaper computing power, the proposed methods can be run much faster. Fi-
nally, significant benefits can be expected from new computational paradigms
such as:

1. Quantum computing: It assumes performing computations using quantum-
mechanical phenomena such as superposition and entanglement. As
mentioned in Section 6.9, there already exist quantum computing ap-
proaches and algorithms to optimize some complex processes like road
traffic in cities.

2. Neuromorphic computing: This approach is inspired by the structure
and function of the human brain. It uses systems that physically im-
plement artificial neural networks to perform computations [295].

251



Chapter 9: Possible extensions and real-world applications

3. DNA computing [1]: It uses the properties of DNA molecules to perform
computations.

4. Edge computing [303]: In this approach, data is processed by the con-
trolled device itself or by a local computer or server, rather than being
transmitted to a data center. For example, one can think about a traffic
signal control system in which computations are performed in a dis-
tributed fashion directly by controllers and detectors, or by computers
installed in vehicles participating in traffic.

9.2 Potential applications and impact of the
introduced methodology

Since the introduced methodology gave relatively good results in experi-
ments, it is natural to consider if and under which conditions it can be applied
to optimize complex real-world processes. Therefore, Section 9.2.1 discusses
the potential applications in traffic management, while Section 9.2.2 discusses
the potential applications in cancer treatment.

9.2.1 Traffic management

As discussed in Section 2.3, there are already many approaches to traffic
signal control, and many traffic management systems have been implemented,
but they still have some drawbacks, so it is worth considering new approaches.
Despite the presented limitations of the introduced methodology (cf. Sec-

tion 9.1), it can already be used to find default traffic signal settings for
typical, repeatable traffic conditions. In such cases, traffic engineers can col-
lect real-world traffic data using detectors like inductive loops, radars, cam-
eras, floating car data from mobile devices, or using vehicle-to-infrastructure
communication, and calibrate accurate traffic simulation models that can be
used in further experiments. However, real-world data can be usually col-
lected only for those traffic signal settings that are implemented in the traffic
control system. Therefore, in order to evaluate the quality of other settings,
traffic simulations must be run using the calibrated model. Since this opera-
tion can be performed offline, it would be possible to generate a large dataset
in an acceptable time and use it to train surrogate models based on machine
learning. These surrogate models can then be used to evaluate the quality
of traffic signal settings to find sufficiently good solutions, according to the
introduced methodology.
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This procedure can be applied to all typical repeatable traffic conditions.
However, even in such cases, the traffic data collected on a particular day
will differ from the data from the analogous period in the past. For example,
traffic in a single time period of a given day of a week, like Monday morning
rush hours, has some similarities to traffic on other Monday mornings. People
travel for the same purposes (e.g., to work or to school), from the same
areas, to the same areas, using the same modes of transport, they depart at
similar times, etc., so that traffic data reveals some repeatable patterns [3].
However, there is always some randomness and unpredictability, as people
usually do not depart at exactly the same time, sometimes they use other
modes of transport, sometimes they decide to stay at home because they are
sick or work remotely, etc. Therefore, like many complex systems, traffic is a
combination of some typical patterns and fluctuations, so the first step should
be to identify the patterns, neglect the fluctuations and noise, and then train
the machine learning models and find good traffic signal control settings for
the identified typical, repeatable patterns. Since the newly encountered traffic
will include fluctuations, the traffic control system should adapt to these new
conditions. This can potentially be implemented in several ways:

1. Using classical adaptation techniques (e.g., the ones presented in [256]
or [106]) that use mathematical formulas and calculations to deter-
mine the appropriate signal timings, taking into account factors such
as traffic volumes, signal phasing, and cycle lengths;

2. Using transfer learning approaches [371] to improve the existing surro-
gate models and then run the metaheuristics again;

3. Using reinforcement learning to train AI agents how to adapt the de-
fault signal settings to changing traffic conditions.

The first option is the default one and similar approaches are already used
in some adaptive traffic signal control systems (e.g., [217]). The second ap-
proach is similar to the main methodology presented in this thesis. However,
unlike the method used to find good settings for default traffic conditions
offline, this time the algorithm should operate in real-time. Therefore, gener-
ating large datasets, training the model, and running metaheuristics may be
too time-consuming. Perhaps instead of training the surrogate model, traf-
fic simulation could be used explicitly in combination with metaheuristics
to evaluate explored traffic signal settings. This would require considerable
computing power, but should be technically feasible.
However, the third approach seems to be even more promising. As dis-

cussed in Section 2.3, applications of reinforcement learning to traffic man-
agement systems are already being considered, mostly in research papers and
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pilot projects, but it is likely that with further advances in the development
of AI and with greater availability of computational power, these techniques
may become more and more popular in practice. The author of this thesis has
also started to investigate this approach in collaboration with students from
the University of Warsaw [33], members of the TensorCell research group,
and scientists from the Technical University of Melaka in Malaysia, who de-
veloped a microscopic traffic simulation model based on measurements from
cameras installed at several intersections in Melaka. The model was later
implemented in the simulation framework SUMO [22] and integrated with a
RESCO framework for benchmarking reinforcement learning algorithms for
traffic signal control [11]. The initial experiments carried out using popular
reinforcement learning methods like PPO [294] or DQN [238] show that it is
possible to outperform classical methods like the Webster method [256] which
was the main benchmark algorithm. Therefore, it seems that reinforcement
learning can potentially lead to better traffic signal control systems, while
its integration with metaheuristics and the methodology introduced in this
thesis can potentially reduce the size of the space of possible actions, and
improve the control’s performance.
On the other hand, if the traffic data suggest that conditions are far from

any typical patterns, the system should try to find good signal settings again
using metaheuristics, and retrain the surrogate models, if necessary.
The schema of the idea for the traffic management system taking advan-

tage of the introduced methodology is shown in Figure 9.1.

Figure 9.1: Schema presenting the idea for the traffic management system
taking advantage of the introduced methodology.
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In addition to the use case in Melaka, there are ongoing discussions with
leading providers of traffic signal controllers in Poland regarding the im-
plementation of a pilot project. There is also an interest to use the Traffic
Simulation Framework and the methodology introduced in this thesis in the
SmartCity Lab, currently under development in Chełm (in Poland) [312].
Finally, since the TSF software has been developed using the road network
and traffic data from the measurements in Warsaw, there is also a potential
to run some pilot projects and plan the possible implementations in this city.

9.2.2 Cancer treatment

The application of the presented methodology in the practice of cancer treat-
ment is much further away from implementation. The reason is that the
mathematical model of cancer growth has not been validated in the case
of human cancer. It is a model of the EMT6/Ro cell line isolated from the
breast of a mouse with a mammary tumor. Also, the model only takes into
account radiotherapy, but some initial contacts with professional radiologists
revealed that in medical practice, radiotherapy is usually combined with other
treatment methods, so it is not possible to measure the true impact of radio-
therapy in isolation. As a result, it is currently difficult to develop a reliable
method for evaluating the quality of treatment protocols.
One of the possible approaches to overcome these difficulties is to test the

developed technique first in an environment similar to the one in which the
EMT6/Ro model was developed, i.e. in mammary tumor mice. However, it
hard to assess whether transferring the results to people would be possible.
Perhaps one can think about testing on mice exactly the same treatment
methods as those that are used for people (e.g., radiotherapy in combination
with chemotherapy). However, it is not certain that the conclusions that can
be drawn from such experiments would be sufficient to test these techniques
on humans. In any case, further experiments leading to the possible real
applications should be consulted with specialists: radiologists and experts in
clinical trials.
However, it is expected that in the future, with greater availability of

medical data, new treatment methods can potentially be developed and the
methodology introduced in this thesis may become useful.
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Conclusions

The objectives specified at the start of the research presented in this thesis
(outlined in Section 1.2) turned out to be challenging. The author gained
a deeper understanding of the nature of complex processes and complexity
science and summarized his studies in Chapters 3 and 4. He also gained
knowledge and experience in other scientific domains such as metaheuristics,
machine learning, intelligent transportation systems, mathematical modeling,
scientific computing, combinatorial optimization, and quantum computing.
These new knowledge and skills have already paid off in the research summa-
rized in this thesis as well as in other research projects in which the author
has been involved.
One of the outcomes was proposing a universal method for optimizing

complex processes by combining computer simulations, metaheuristics, and
surrogate models based on machine learning, which was the second goal of the
presented research (see section 1.2). The method was advantageous in terms
of computational speed and quality of the solutions found. It was possible
to test this method for two use cases from (apparently) completely different
domains: traffic signal control for vehicular traffic in cities, and optimization
of radiotherapy for cancer treatment.
Several metaheuristics were studied and compared with other optimiza-

tion algorithms, and it turned out that, in general, population-based meta-
heuristics (genetic algorithms, memetic algorithms, and CMA-ES) give the
best results, but some other algorithms (e.g., gradient descent) are also good.
Several surrogate models based on neural networks and LightGBM were

also investigated, and a new architecture of sparse graph neural networks
was proposed, which turned out to be quite a good approximation of the
traffic simulation results. To approximate the results of cancer growth under
radiotherapy treatment, LightGBM also proved to be quite suitable, but
even better results were obtained for convolutional neural networks with
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an attention mechanism. Further improvement was achieved by using an
ensemble of several models and a new loss function (Margin Ranking Loss).
Despite initial computational difficulties, the author managed to develop

and study the method and perform many series of experiments. Most of the
generated datasets and some software tools and source codes have been made
publicly available to facilitate further work on this topic.
Finally, Chapter 9 discusses the identified limitations of the presented

method and some ways to overcome them and to further extend this method
in order to apply it in practice.
It is worth emphasizing that there are already ongoing discussions about

the applications of the considered method in real traffic management systems
and the use of the Traffic Simulation Framework in the recently established
SmartCity Lab in Chełm (Poland). Since the TSF software has been de-
veloped using the road network and traffic data from the measurements in
Warsaw, there is also a potential to run some pilot projects and plan the pos-
sible implementations in this city. There is also interest from other scientists
to test the developed method in a new field - materials science.
The author of this thesis has already established a research group Ten-

sorCell [325], which aims to apply AI-based techniques to optimize complex
processes and solve combinatorial optimization problems. This group, led
by the author of this thesis, has already prepared several research papers
and presented them at top transportation and AI conferences (e.g., MT-ITS,
NIPS / NeurIPS workshops).
In total, the research covered in this thesis has been summarized and

published in 25 research publications and awarded with several prestigious
awards, including “LIDER ITS” award for the best R&D work in Intelligent
Transportation Systems in Poland in 2015 and 2017 [205, 206], “Top 10 Polish
Talents” by MIT Technology Review [235], and “New Europe 100” [252].
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Datasets

During the work on this thesis, many datasets were generated to conduct
experiments, and the most important datasets have been released to facilitate
further work on the presented topics.

A.1 The dataset for Ochota (initial experi-
ments)

The dataset for experiments described in Sections 8.3.1.3-8.3.1.5 can be found
at https://tinyurl.com/pgphdochota15. Each row contains a traffic signal
setting for 15 signal groups, followed by the result of evaluating that setting
using the deterministic version of the TSF’s microscopic model. The result
is the total time of waiting at red signals in a given area during 10 minutes
of a simulation using TSF. For each traffic signal setting, the same scenario
(with the same vehicles and the same routes) was simulated.
This dataset was generated by the author of this thesis using the TSF

software [125].

A.2 The datasets for Ochota, Centrum, and
Mokotów

The following datasets were used in experiments described in Sections 8.3.1.6-
8.3.1.10 to train surrogate models based on machine learning:

• The dataset with traffic signal settings for Ochota: https://tinyurl.
com/pgphdochota;
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• The dataset with traffic signal settings for Centrum: https://tinyurl.
com/pgphdcentrum;

• The dataset with traffic signal settings for Mokotów: https://tinyurl.
com/pgphdmokotow.

In each file, each row contains a single traffic signal setting (as defined
in Section 8.1.1) represented as N offsets corresponding to N signal groups
(where N is equal to 21 for Ochota, 11 for Centrum, and 42 for Mokotów)
with values from the set {0, 1, . . . , 119}, followed by the result of evaluating
that setting using the deterministic version of the TSF’s microscopic model.
The result is the total time of waiting at red signals in a given area during
10 minutes of a simulation using TSF (with the given traffic signal setting).
For each traffic signal setting, the same scenario (with the same vehicles and
the same routes) was simulated.
These datasets were generated by the author of this thesis using the TSF

software [125].

A.3 The dataset for experiments with various
durations of signal phases

This is the largest dataset that was used to test several architectures of
neural networks in additional experiments described in Chapter 9 and in
[322]: https://tinyurl.com/pgphdbert.
Each row contains a traffic signal setting for the Ochota region with 21

signal groups. However, this time there are 3 values for each signal group:
offsets and durations of green signal phases in 2 directions. These durations
(green1 and green2) are from the set {20, 21, . . . , 79, 80}, while offsets are
from the set {0, 1, 2, . . . , green1 + green2 + 3}. In each row, a traffic signal
setting consisting of 63 values is followed by the result of evaluating that
setting using the deterministic version of the TSF’s microscopic model. The
result is the total time of waiting at red signals in a given area during 10
minutes of a simulation using TSF. For each traffic signal setting, the same
scenario (with the same vehicles and the same routes) was simulated.
This dataset was generated by the author of this thesis using the TSF

software [125].
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A.4 The dataset used in experiments with
cancer treatment

This is the dataset that was used to train surrogate models in experiments
with cancer treatment optimization described in Section 8.3.2.2: https:
//tinyurl.com/pgphdcto. It consists of radiotherapy protocols and the re-
sults of their evaluation using the simulator of cancer evolution (presented in
[264]). The dataset was generated by a group of students supervised by the
author of this thesis [15, 117].
Each row contains a description of a single protocol followed by the results

of its evaluation using the simulator of cancer evolution under radiotherapy
treatment. A single dose should be greater than 0.5 Gy, while the sum of all
doses cannot exceed 10 Gy. Therefore, there can be at most 20 doses, which
gives 20 slots for the doses and 20 slots for the times of their administration.
Thus, each protocol can be represented using 40 values (20 pairs (dose, time
of their administration)), so in each row, there are 40 slots for the protocol’s
representation. They are preceded by the protocol’s ID and are followed by
the results of the protocol’s evaluation (the average number of cancer cells
at the end of the treatment).
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Software tools and codes

The demo version of the Traffic Simulation Framework software used by the
author of this thesis to generate datasets for most of the presented experi-
ments can be found at https://tinyurl.com/pgphdtsf.
The code used in experiments with graph neural networks (cf. Section

8.3.1.9) can be found at https://tinyurl.com/pgphdgnn. The code was
prepared by members of the TensorCell research group led by the author of
this thesis and was released with the first publication on using the sparse
graph neural networks as surrogate models for traffic simulations [310].
The codes used in experiments aiming to optimize cancer treatment (Sec-

tion 8.3.2.1) can be found in a repository of Rafał Banaś (one of the authors
of the newest version of the simulator of cancer evolution under radiother-
apy treatment): https://tinyurl.com/pgphdemt6ro. The code was made
publicly available together with a research publication in which the tool was
used [264].
The code used by a member of the TensorCell group, Anna Warno, to

train surrogate models substituting the simulator of cancer evolution under
radiotherapy treatment can be found in her Github repository: https://
tinyurl.com/pgphdsmcto. These models were later used by the author of
this thesis in experiments described in Section 8.3.2.2.
The other codes used in the experiments presented in this thesis have

not been made publicly available yet but can be made available to interested
readers upon request (in such a case please contact the author of this thesis
directly at p.gora@mimuw.edu.pl).
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