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Abstract

In this thesis we develop theories of quantum curves, topological recursion and quantum Airy
structures. These notions and various partition functions that they compute are intricately related
with each other. They enable computation of various interesting invariants in mathematics and
physics. Two main aspects of this thesis are the following: mathematically rigorous treatment of
the quantum curves and generalisation of these notions to the supersymmetric case.

We start our considerations by studying the relationship between Virasoro singular vectors and
quantum curves. This association, recently introduced in the context of random matrices and
related to the topological recursion, was subsequently examined by me and my collaborators from
the point of view of Conformal Field Theory (CFT). A mathematical language of CFT is the
theory of Vertex Operator Algebras (VOAs). In this thesis we conduct a mathematically rigorous
construction of the quantum curves originating from singular vectors using VOAs. We define wave
functions using operators intertwining between three modules over VOA. Action of the Virasoro
algebra on the wave functions is defined using the action of this algebra on one of the modules.
This action is used to derive the representation of the Virasoro algebra on the space of generalised
wave functions, which is a one parameter deformation of the representation derived using CFT
methods. Using our definitions we prove Schrödinger equations coming from singular vectors.

Supersymmetric extensions of CFT can be divided into Neveu-Schwarz sector and Ramond sector,
equipped with corresponding super extensions of the Virasoro algebra and admitting singular vec-
tors. Having discussed the bosonic (non-supersymmetric) relation between quantum curves and
singular vectors, in this thesis we present a supersymmetric extension of the correspondence be-
tween singular vectors and quantum curves. This includes cases of the Neveu-Schwarz and Ramond
algebras. Here we present CFT approach.

Motivated by the study of quantum curves, their relation to the topological recursion, as well as the
supersymmetric extension, we devote the last part of the thesis to supersymmetric generalisation
of quantum Airy structures, which provide a reformulation and extension (at least in the non-
supersymmetric case) of the topological recursion. In this formalism one considers a family of
quadratic Hamiltonians forming closed algebra under the Poisson bracket. After quantising them
the differential operators are obtained, giving rise to the differential equations annihilating the
partition function. These operators form a Lie algebra under the usual commutator. We extend
the definition of the quantum Airy structures by including Grassman odd variables, defining super
quantum Airy structures (SQASs). We prove the theorem about existence and uniqueness of the
free energies, being solutions to the equations coming from SQASs. To this aim we use a super
analog of the Poincaré lemma. We also present recursion relations on free energies as well as
the constrains on the tensors defining the SQASs coming from the Lie superalgebra constraints.
QAS can be also examined as symplectic representations of the underlying Lie algebra with some
additional structure. We develop theory originating in the decomposition of those representations
into weight spaces. We study examples.
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Streszczenie

W pracy tej rozwijamy teorie krzywych kwantowych, topologicznej rekurencji i kwantowych struk-
tur Airy. Pozwalają one na obliczenia różnych niezmienników w matematyce oraz fizyce, za-
kodowanych w funkcjach partycji. Pojęcia te oraz wspomniane funkcje partycji są pomiędzy sobą
misternie powiązane. Dwa główne aspekty tej pracy są następujące: pierwszym jest matematycznie
ścisłe wyprowadzenie wyników dotyczących krzywych kwantowych, drugim natomiast supersym-
metryczne uogólnienie wspomnianych pojęć.

Nasze rozważania rozpoczynamy od związku pomiędzy wektorami osobliwymi algebry Virasoro oraz
krzywymi kwantowymi. Związek ten, wprowadzony pierwotnie w kontekście macierzy losowych i
związany z topologiczną rekurencją, był następnie przedstawiony przeze mnie oraz moich współpra-
cowników z punktu widzenia konforemnej teorii pola (CFT). Matematycznym językiem CFT jest
teoria algebr operatorów wierzchołkowych (VOAs). W pracy tej przeprowadzamy matematycznie
ścisłą konstrukcję krzywych kwantowych pochodzących z wektorów osobliwych używając VOAs.
Definiujemy funkcje falowe używając operatorów przeplatających pomiędzy trzema modułami nad
VOAs. Działanie algebry Virasoro na funkcji falowej jest zdefiniowane za pomocą działania tej alge-
bry na wektorach jednego z modułów. Jest ono następnie wykorzystane do wyprowadzenia reprezen-
tacji algebry Virasoro na przestrzeni uogólnionych funkcji falowych. Reprezentacja ta stanowi
jednoparametrową deformację reprezentacji otrzymanej przy wykorzystaniu metod CFT. Posługu-
jąc się tymi definicjami dowodzimy pochodzącego z wektorów osobliwych równania Schrödingera.

Supersymetryczne rozszerzenia CFT można podzielić na sektor Neveu-Schwarza oraz sektor Ra-
monda, wyposażone w odpowiednie super rozszerzenia algebry Virasoro oraz posiadające własne
wektory osobliwe. W pracy tej prezentujemy supersymetryczną wersję odpowiedniości pomiędzy
wektorami osobliwymi oraz krzywymi kwantowymi. Dokonujemy tego zarówno w sektorze Neveu-
Schwarza, jak i w sektorze Ramonda. Ograniczamy się tutaj do podejścia w języku CFT.

Zmotywowani badaniami krzywych kwantowych, ich związku z topologiczną rekurencją, a także
rozszerzeniem supersymmetrycznym, ostatnią część tej pracy poświęcamy supersymetrycznemu
uogólnieniu kwantowych struktur Airy, które stanowią przeformułowanie oraz uogólnienie (przy-
najmniej w przypadku nie supersymetrycznym) topologicznej rekurencji. W formalizmie kwan-
towych struktur Airy rozważana jest rodzina kwadratowych Hamiltonianów stanowiąca algebrę ze
względu na nawias Poissona. Po skwantowaniu otrzymujemy operatory różniczkowe oraz zadane
przez nie równania różniczkowe anihilujące funkcję partycji. Operatory te tworzą algebrę Liego ze
względu na standardowy komutator. Rozszerzamy definicję kwantowych struktur Airy wprowadza-
jąc nieparzyste zmienne Grassmana, co prowadzi nas do definicji super kwantowych struktur
Airy (SQASs). Dowodzimy twierdznie o istnieniu i jednoznaczności wolnych enegrii, które są
rozwiązaniem równań zadanych przez SQASs. W tym celu wykorzystujemy super analog lematu
Poincaré. Prezentujemy także równania rekurencyjne na swobodne energie oraz więzy na tensory
definiujęce SQASs pochodzące od warunków wynikająch z aksjomatów superalgebr Liego. Kwan-
towe struktury Airy mogą być także badane jako symplektyczne reprezentacje algebry Liego z
pewną dodatkową strukturą. Poprzez rozkład tych reprezentacji na przestrzenie wag rozwijamy
teorię tych struktur. Rozważania ilustrujemy odpowiednimi przykładami.
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Chapter 1

Introduction

This PhD thesis is devoted to the study of various concepts originating in string theory. String
theory is a candidate for a theory unifying all known forces in modern physics: electromagnetic
interactions, weak and strong interactions and gravitational interactions. However string theory
became also a source of inspiration and conjectures in mathematics. Quantities appearing in physics
or mathematics can be encoded in the generating series, such as partition functions. Various
techniques have been developed in order to compute coefficients of those series. In this thesis we
study interrelated theories of quantum curves, topological recursion and quantum Airy structures
and various partition functions that they compute.

Topological recursion [25,26] is a procedure which associates recursively to a given spectral curve (a
complex curve with a pair of meromorphic functions) a family of invariants. Those invariants are
meromorphic symmetric differential forms ωg,n on the base curve, indexed by two natural numbers
g and n. They are defined recursively by the formula (2.20). Topological recursion was applied in a
variety of problems. Originally it first appeared in the study of the matrix models. Subsequently it
turned out that it computes various invariants in string theory and enumerative geometry, such as
Gromov-Witten invariants, Hurwitz numbers or volumes of the moduli spaces of curves. It is also
conjectured that it can be used to compute knot invariants. Such a broad scope of applications of
topological recursion is very surprising and motivates a vivid research in this area.

Quantum Airy structures (QASs) [23], [43] provide a reformulation and generalisation of the topo-
logical recursion. In this formalism one considers a family of quadratic Hamiltonians forming a
closed algebra under the Poisson bracket. After quantising them differential operators are ob-
tained, giving rise to the differential equations annihilating the partition function. These operators
form a Lie algebra under the usual commutator. Particular choice of the QASs, based on the
Virasoro algebra, has been shown to compute the invariants encoded in the differential forms ωg,n
coming from the topological recursion.

Quantum curves are objects which arise as a quantisation of complex curves. This can be under-
stood as a passage from the ring of complex functions on the curve to its noncommutative version
depending on an additional parameter ~. If the curve is a zero of a certain polynomial P (x, y) then
a quantum curve is a differential operator P̂ (x, ~ ∂

∂x). The wave function ψ̂(x), which is a solution
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to the Schödinger equation P̂ ψ̂(x) = 0, encodes the quantities which we are looking for. Among
applications of the quantum curves let us mention Hitchin systems [20], [21], Gromov-Witten in-
variants (of P1 in [22]) and knot theory [30]. There exists a conjecture which relates topological
recursion with the quantum curves [30]. This relation is given by a formula using which one can
compute solution of the quantum curve equations using solution of the topological recursion. It
was proven under certain conditions in [11]. In the section 2.5.1 we discuss this conjecture in more
detail.

Quantum curves can be also associated with the singular vectors in the Verma modules over the
Virasoro algebra. Singular vectors appear in the degenerate Verma modules and are a source of
the BPZ equations [5], which are differential equations on the correlation functions. In this thesis
we analyze the relation between singular vectors and quantum curves form a mathematical point
of view. Moreover, we present a generalisation of this relation to the supersymmetric case.

QFT, CFT and string theory

Contemporary accepted physical models of the reality, such as standard model, are examples of
quantum field theories (QFTs). Those theories are composed of quantum fields, which are respon-
sible for the creation or annihilation of the particles. They tell us how to compute correlation
functions, which integrated over the spacetime allow for computation of the transition amplitudes,
measured in the accelerators. An important ingredients of such theories are symmetries. In classical
mechanics Noether theorem relates to a symmetry a quantity, which is conserved during the evolu-
tion of the system. Quantum analog of Noether theorem are Ward identities, which are differential
equations satisfied by correlation functions.

Conformal field theory (CFT) is a particular kind of QFT, whose symmetry group is composed of
the conformal transformation of the spacetime. Exceptionally rich structure in CFT appears when
the dimension of the underlying spacetime equals 2. In this case the spacetime is a holomorphic
curve and all holomorphic maps are conformal. It follows that the Witt algebra, the algebra of
local conformal transformations, is infinite dimensional. In quantum setting we are interested in
projective representations, which correspond to the representations of the central extension of the
Witt algebra, called Virasoro algebra. Richness of 2-dimensional conformal symmetry, through
Ward identities, gives rise to strong constraints on the correlation functions. Major applications
of CFT are string theory and phase transitions in statistical mechanics. String theory replaces
particles by tiny vibrating 1-dimensional strings, which as they move through the spacetime trace
2-dimensional surfaces. Transition amplitudes in string theory can be expressed via correlation
functions on this surface. Moreover physics of the strings described by the Polyakov action is
invariant under conformal transformations of this surface. This is how CFT arises in string theory.
In order to obtain perturbative approximation of the correlation functions in QFT one considers
sums of terms indexed by Feynman diagrams. In string theory such sum is replaced by an integral
over the moduli space of curves Mg,n, where g stands for the genus of the curve and n for the
number of punctures on the curve.

Correlation functions in CFT are related with the random matrices, i.e. sets of matrices with a
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probability distribution. Such matrices are used as toy models in physics: they can be thought of
as QFT based on spacetime of dimension 0. They arise also in different dualities. One can also
mention the relation of the matrix integrals with the intersection numbers on the moduli spaces of
curvesMg,n [42].

Mathematics of CFT

Although experimentally successful, QFTs lacks solid mathematical foundations. On the other
hand string theory cannot be currently checked in accelerators, but CFT can be introduced in a
mathematically promising way. One of the notions used in this aim are vertex operator algebras
(VOAs). Heuristically they can be described as algebras for which multiplication depends on a
(formal) parameter z. Therefore product of any two vectors gives a formal power series with
coefficients belonging to the algebra. Alternatively we can think of this product as a map which
maps any vector v to an endomorphism of the algebra defined by multiplying by v (depending on a
formal/complex parameter z): Y (v, z)w = v ·w. Those objects were first introduced by Borcherds
in his proof of the Monstrous Moonshine [8]. Physically speaking the word vertex comes from
the vertices in the Feynman diagrams, representing points, where localised interaction between
particles takes place. In string theory such vertex is replaced by a punctured sphere. If we consider
three punctures 0, z and ∞ the vertex operator Y (v, z) will tell us how the state incoming at 0
is evolving into an outgoing state at ∞, depending on the intermediate state v at z. Those states
belong to vector spaces associated with each puncture, which are modules over VOA. When those
modules are different from the vacuum module, we call the vertex operator also an intertwining
operator.

Interactions between other QFTs and mathematics were also fruitful, stimulating research in such
areas as knot invariants or the theory of invariants of manifolds: Casson invariant, Donaldson
invariant, Floer homology. Let us cite Yi-Zhi Huang [34] from 2016:

“Quantum field theory has become an active research area in mathematics in the last forty years.
Among all the quantum field theories, topological quantum field theory is the most successful in
mathematics mainly because the state space of a topological quantum field theory is typically
finite dimensional. Compared with topological quantum field theory, nontopological quantum field
theories and the deep mathematical conjectures derived from these theories are much more difficult
and are still quite distant from a complete mathematical understanding.

One of the most famous but also one of the most difficult problems on nontopological quantum field
theories is the existence of four-dimensional quantum Yang-Mills theory and the mass gap problem.
On the other hand, two-dimensional conformal field theory as the best understood nontopological
quantum field theory has in fact been greatly developed and has also directly provided ideas and
methods for the successful solutions of mathematical conjectures and problems. The study of
two-dimensional conformal field theory will certainly also shed light on the other more difficult
nontopological quantum field theories such as the four-dimensional Yang-Mills theory.

In a program of constructing and studying two-dimensional conformal field theories using the
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representation theory of vertex operator algebras, the mathematical foundation of two-dimensional
conformal field theory has been essentially established.”

However, as the author of the above excerpt states later in his note, the construction of 2d CFT
satisfying the axioms of Kontsevich, Segal, Moore and Seiberg is an open problem. The genus zero
and genus one correlation functions can be obtained from VOAs, however “the construction of the
higher-genus correlation functions is the main unsolved problem. If the axioms for conformal field
theories are assumed, one can see that if a conformal field theory is constructed, then higher-genus
correlation functions can be expanded as series obtained using intertwining operators. Since we
have not constructed conformal field theories satisfying all the axioms, even though we can still
write down these series using intertwining operators, we cannot use the axioms for conformal field
theories to derive the convergence of these series.”

Quantum Curves

Quantum curves can be associated with the singular vectors in the Verma modules over the Virasoro
algebra [44]. This relation originally developed from the point of view of matrix models, was later
studied from the point of view of CFT. In this thesis we are going to perform a mathematically
rigorous construction of the quantum curves originating from such vectors. To this aim we use
mathematical language of CFT, namely VOAs. This approach can be motivated also by the
following fact: quantum curves are related with the BPZ equations and in fact reduce to them
for a special choices of the wave functions. On the other hand BPZ equations were mathematically
tracked with a use of VOAs and intertwining operators (see [32]).

Matrix models

In [44] a relation between quantum curves and CFT was found. This relation allowed for an
extension of the original concept of the quantum curves beyond the operators of the level 2. This
correspondence was introduced in the context of β-deformed random matrix integrals. Let us
describe it here briefly. Let V (∆) be the Virasoro Verma module with central charge c and conformal
dimension ∆. A singular vector vs ∈ V (∆) is an element linearly independent from the highest
weight vector |∆ 〉 ∈ V , which satisfies equations Lnvs = 0 for n > 0. Every such vector can be
expressed using the Virasoro creation operators L−n, n > 0 acting on the vector |∆ 〉:

vs = A({L−n}n>0) |∆ 〉 ,

where A is a polynomial depending on the Virasoro creation operators and constants c and ∆.
There exists representation of the Virasoro creation operators in the space of differential operators
in the variables x and {ti}i≥1 which takes the following form

L̂MM
−1 = ∂x, L̂MM

−n = 1
~2(n− 2)!

(1
4∂

n−2
x (W ′(x))2 + Q~

2 ∂nxW (x) + ∂n−2
x f̂f (x)

)
for n ≥ 2, (1.1)

where f̂t(x) = ~2∑∞
n=0 x

n∑∞
m=n+2mtm∂tm−n−2 andW (x) =

∑∞
i=1 tix

i, ~ being a formal parameter.
Quantum curves are obtained, where the operator A is expressed in this representation, giving a
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differential operator Â. This operator acts on the wave function

ψ̂α(x) =
∫

∆(z1, . . . , zN )2β
N∏
i=1

(zi − x)−
2α
√
β

~ e−
√
β

~
∑N

i=1W (zi)dz1 . . . dzN ,

where ∆(z1, . . . , zN ) =
∏
i<j(zi − zj) is the Vandermonde determinant. The above expression is

a generalisation of the expectation value of the characteristic polynomial in the random matrix
model. It is also called α/β-deformed matrix integral. Singular vectors in the Virasoro Verma
module exists only for a specific value of the parameter α:

αr,s = r − 1
2
√
β
− s− 1

2
√
β,

where r and s are positive integers. For those values of the parameter and for ∆ = α(Q − α),
where Q = 1√

β
−
√
β quantum curves annihilate the wave function, giving rise to the Schrödinger

equations
Â(∆(αr,s))ψ̂αr,s(x) = 0.

Those equations were checked in [44] up to the order 5 of the level of the singular vectors. The
representation (1.1) was also derived there.

CFT

The correspondence between quantum curves and singular vectors correspondence was revisited
from a more formal point of view in [14]. The whole construction was performed using the vertex
operators from CFT and their correlation functions. Vertex operators used here are given by the
formulas

I(|α 〉 , x) = uα exp
(
2α

∞∑
j=1

xj

j
a−j

)
exp

(
− 2α

∞∑
j=1

x−j

j
aj
)
x2αa0 , (1.2)

where aj are generators of the Heisenberg algebra. It has been shown in [14] that the wave function
introduced in the previous section can be expressed using the product of these vertex operators:

ψ̂α(x) =
∫
〈V |I(|α 〉 , x)

N∏
i=1

I
( ∣∣∣−√β 〉 , zi) | 0 〉 dz1 . . . dzN , (1.3)

where 〈V | is an appropriately chosen closing state. The action of the Virasoro algebra is defined
in the following way

L−n · ψ̂α(x) =
∫
〈V |L−n · I(|α 〉 , x)

N∏
i=1

I
( ∣∣∣−√β 〉 , zi) | 0 〉 dz1 . . . dzN ,

where
L−n · I(|α 〉 , x) = 1

2π
√
−1

∫
C(x)

1
(y − x)n−1T (y)I(|α 〉 , x)dy,

integration is performed over a small circle C(x) around the point x ∈ C and T (y) =
∑
n∈Z y

nL−n−2
is the stress-energy tensor. After tedious calculations this definition gives rise to the representation
(1.1). Important ingredient of the construction was a map Sα,Q : V (∆) → F(α) from the Verma
module to the Fock module. This map has the property that it maps singular vectors 0: Sα,Q(vs) =
0. A special attention should be paid here to the passage from the interpretation of x as a formal
parameter to the interpretation as a point on the complex plane.

15



VOAs

One of the tasks, which the author of this thesis tried to accomplish, was to present the relation
between the Virasoro singular vectors and the quantum curves in a mathematically rigorous way.
As we explained in the previous section, a good candidate for a mathematical formulation of
CFT are VOAs. Henceforth we are going to use them to reach our aim. Roughly the idea of
the application of the VOAs to quantum curves is to replace “vertex operators” appearing in the
definition of the wave functions in [14] with the intertwining operators. In fact, particular example
of the intertwining operator evaluated at the highest weight vector gives us the vertex operator
(1.2) [32]. Therefore our notation is consistent. Moreover, we can generalise wave functions by the
formula:

ψ̂α(v, x) '
∫
〈V |I(v, x)

N∏
i=1

I
( ∣∣∣−√β 〉 , zi) | 0 〉dz1 . . . dzN ,

where I(·, z) : M1 → Hom(M2,M3) ⊗ C{z} are intertwining operators between Fock modules
(Mi = F(η) for various values of η) and v ∈ F(α) is any vector. An issue necessary for a precise
mathematical definition is the specification of an appropriate integration cycle. Such a cycle was
constructed in [54]. This result was more briefly presented in [38], which is our direct reference.
The cycle Γ we use is included in the definition of the screening operator, roughly given by:

ΣN,β,b '
∫

Γ

N∏
i=1

I
( ∣∣∣−√β 〉 , zi)dz1 . . . dzN .

The precise definition of the generalised wave function is given by the following formula:

ψ̂α(v, x) = Φ~
α−N
√
β
ΣN,β,bI(v, x) | 0 〉 , (1.4)

where Φ~
α−N
√
β
is appropriate homomorphism playing the rôle of the closing state 〈V |, v ∈ F(α)

is any vector and α = Q + N
√
β + b 1√

β
. Let Wα be the space of the generalised wave functions.

Extended domain of the generalised wave functions allows a different definition of the action of the
Virasoro algebra. Namely we set

L̂n · ψ̂α(x)(v) = ψ̂α(x)(Lnv). (1.5)

Let Sα,Q : V (∆)→ F(α) be the map from the CFT approach, whose kernel consists of the singular
vectors. From our construction it is clear that the generalised wave function evaluated at Sα,Q(vs) =
0 gives ψ̂α(x)(Sα,Q(vs)) = 0. The only difficulty lies in the derivation of the representation. This
representation is obtained with the help of two lemmas, where the following representation of the
Virasoro algebra is derived:1

I(L−1v, z) = ∂xI(v, z),

I(L−nv, x) = 1
(n− 2)! : ∂n−2

x T (x)I(v, x) : . (1.6)

1First of these equalities follows from the definition of the intertwining operator, hence first lemma is a check
whether chosen I is such an operator. It is not know to the author if the second lemma also follows from general
definition of the intertwining operators.

16



One can use then the results (1.6) applied to the definitions (1.4) and (1.5) to obtain Schrödinger
equations (Theorem 4.2.2). As an outcome we obtain a more general representation (Theorem
4.2.1) that the one presented in [14]. If we denote by L̂CFT−n the representation obtained using CFT
methods (equal to the representation L̂MM

−n from the matrix models 1.1) than our representation
takes the following form:

L̂−n = L̂CFT−n + γ
∞∑

m=n−2

(
m

n− 2

)
(m+ 2)tm+2x

m−n+2,

where γ = ~(α − N
√
β) is a deformation parameter. As a corollary we obtain a combinatorial

identity (Proposition 4.3.1):
k−2−a∑
n=b

(
k − n− 2

a

)(
n

b

)
(2n− k + 2) = (b− a)

(
k

a+ b+ 2

)
.

for a, b, k > 0 positive integers and k ≥ a + b + 2. Moreover, approach using VOAs has several
other advantages, which we would like to list here:

• We define not only action of the Virasoro algebra, but also a compatible action of the Heisen-
berg algebra.

• This construction is mathematically clearer and does not need additional physical arguments
and assumptions.

• We show in a clear way that the the building blocks are the correct form of the representation
of the Virasoro creation operators acting not only on the wave function but also on its
descendants. This means that we can apply those building blocks several times one after
another. Hence we can apply them to any polynomial expression in the Virasoro creation
operators.

• The computation of the building blocks, assuming (1.6) is simpler.

The author believes that the approach using VOAs can be further applied to other algebras with
singular vectors, for example W-algebras.

Let us discuss shortly the relation with the BPZ equations. In those equations certain differential
operators (coming from the singular vectors) annihilate the correlation of the form

〈w1 | I(|α 〉 , x)
N∏
i=1

I
( ∣∣∣−√β 〉 , zi) |w2 〉 ,

which is very similar to the definition of the wave function ψ̂α(|α 〉 , x). However the representation
one obtains in this case is different from the representation stated in the Theorem 4.2.1.

Super Quantum Curves

Supersymmetry is a concept in theoretical physics, which anticipates a duality between elementary
particles. In order to be consistent, string theory puts strong constraints on the number of the
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dimensions of the spacetime. In the purely bosonic case this number is 26. Supersymmetry allows
reductions of this dimension to 10. One of the major applications of string theory to mathematics
is mirror symmetry, which comes from including supersymmetry. This symmetry postulates du-
ality between varieties, which are 3 complex-dimensional Calabi-Yau manifolds complementary to
the macroscopic 4 dimensions of the spacetime. Mathematical description of the supersymmetry
includes coordinates, which are anti-commuting. They are called fermionic coordinates, whereas
the commuting ones are called bosonic. In the spirit of the non-commutative geometry this means
that one is considering ring with anticommutation property, but the underlying space does not
necessarily make sense. The real spacetime comes from the bosonic part of the coordinate ring.

Supersymmetric extension of the relation between quantum curves and singular vectors was per-
formed in [50] and [14]. There are various possibilities for such an extension, depending on the
super algebra we are considering. In particular there are two N = 1 super extensions of the Vi-
rasoro algebra: Neveu-Schwarz algebra and Ramond algebra. In the paper [50] the first case was
considered from the point of view of the super eigenvalue integrals. In [14] Ramond algebra was
introduced into those consideration with the help of CFT formalism.

The author tried to extend the VOAs approach to the quantum curves in the supersymmetric
setting, as in the bosonic case. However including fermions turned out to be more difficult task. This
difficulty can be exemplified with a no-go theorem (Proposition 5.3.7) which excludes possibility
of a certain straightforward approach. Nevertheless we will present in this thesis results from [14]
concerning super quantum curves.

Super quantum Airy structures

There are various attempts at defining supersymmetric version of the topological recursion. As an
example one can mention works in the context of super eigenvalue models: [12], [48]. Here we follow
a different approach: since QASs are a reformulation of the topological recursion, we generalise
them to super quantum Airy structures (SQAS). As was already mentioned QASs consists of the
differential operators. They take the following form:

L̂i = ~∂xi −
1
2
∑
a,b∈I

Aia,bxaxb − ~
∑
a,b∈I

Bi
a,bxa∂xb −

1
2~

2 ∑
a,b∈I

Cia,b∂xa∂xb − ~Di (1.7)

where i ∈ I. They give rise to the differential equations annihilating the partition function L̂ieF = 0,
where:

F =
∑

g≥0,n≥1

~g−1

n!
∑

i1,...,in∈I
Fg,n(i1, . . . , in)xi1 · · ·xin .

The operators L̂i form a Lie algebra g under the usual commutator:

[L̂i, L̂j ] = ~
∑
k

fki,jL̂k (1.8)

for some constants fkij ∈ C. Partition function encodes invariants, which one can compute using
the topological recursion.
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The idea of SQASs is the following: the definitions (1.7) and (1.8) stay the same, however a different
meaning is given to the symbols. In (1.7) we allow xa to be Grassman odd anticommuting variables,
and in (1.8) we replace the usual commutator with a super commutator. The algebra g becomes a
super Lie algebra. The partition function annihilated by those operators is required to be of even
grading. Existence and uniqueness of the partition function also holds for the SQASs (Theorem
6.1.1). Its proof uses a supersymmetric version of the Poincaré lemma for the 1-forms (Lemma
6.1.1). One advantage, which differentiate SQASs from the even quantum Airy structures is the
possibility of introducing supplementary fermionic variable without corresponding operator [10].
This extension allows construction of various examples, for example those based on Neveu-Schwarz
algebra. In the section 6.1.4 we present the relations on the tensors A,B,C and D coming from
the condition (1.8) and in the section 6.1.3 recursion equations on the coefficients Fg,n coming from
the condition L̂ieF = 0 [10].

QASs can be examined from the point of view of the representation theory. As it has been shown
in [23] a classical limit of a QAS corresponds to a symplectic representations ρ : g → End(W ) of
the underlying Lie algebra with a Lagrangian embedding j : g → W satisfying certain condition.
We develop theory originating in the decomposition of W into weight spaces. Together with the
assumption that g is semi-simple this allows us to prove several lemmas (Lemmas 6.2.4, 6.2.5,
6.2.6, 6.2.3). We use this technique to study classical Airy structures based on the Lie algebra
sl(2)⊕ sl(2). We construct two such structures. Because they are finite-dimensional, they both can
be quantised. In [23] an initial step towards classification of the QASs based on simple Lie algebras
was done, and many cases of algebras were excluded. The author’s intuition was that theory of
QASs based on semi-simple Lie algebras is richer than theory based just on simple Lie algebras.
In particular, as shown in the example of sl(2) ⊕ sl(2), there are more examples than just direct
sums of the representations of the simple Lie algebras. Heuristically the reason is that semi-simple
algebras are “more abelian”, meaning that the constraints (1.8) are easier to satisfy (for an abelian
algebra one can always construct QAS). Study of the QASs based on sl(2)⊕ sl(2) is also an initial
step towards study of the SQASs based on the algebra osp(3|2). Richness of the QASs based on
semi-simple Lie algebras was recently confirmed in [31].

Finally we also study SQASs based on the osp(1|2) algebra. We decompose irreducible representa-
tion of such algebra into weight spaces. By dimensional considerations we show that they cannot
support SQAS without additional fermionic degree of freedom. With this addition such SQAS can
be constructed, as has been shown in [10].

There are several possibilities, where SAQSs could be applied, besides attempts to define super
topological recursion. One idea is the study of the Gromov-Witten invariants of the manifold
X with the non vanishing odd cohomologies. Presence of such cohomologies requires fermionic
variables to encode GW invariants into generating series. Constraints on such series were derived
in [46] in the case where X is a curve. Indeed, we obtain differential operators spanning super Lie
algebra. However those operators do not constitute a SQAS, because the number of variables is
higher than the number of operators. In particular they do not fix the partition function uniquely.
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Organisation of the thesis

This thesis presents results form the papers [14], [15] and [10], as well as the author’s results
unpublished before. Moreover it presents theories and results known previously, which serves as an
introduction to the reader new into this field of research. This thesis is organised as follows:

• In the chapter 2, which serves as a motivation to what follows, we present known results
about random matrix models, topological recursion and quantum curves.

• In the chapter 3 we discuss certain class of Lie algebras, with focus on the Heisenberg and Vi-
rasoro algebra. We also introduce Vertex Operator Algebras. Those results are also standard
knowledge. Lemma (3.2.3) was proved by the author.

• In the chapter 4 we define wave functions using intertwining operators and screening charges
and prove the main result about the construction of quantum curves, which includes deformed
representation of the Virasoro algebra. We also obtain certain combinatorial identity. These
are author’s results and are going to be published separately [49].

• In the chapter 5 we introduce the concept of supersymmetry and extend the topics of the
chapter 3 by including fermionic degrees of freedom. This material is also standard. Moreover,
we present the results of [14]. The new contribution of the author is Theorem 5.3.7 and Section
5.2.2.

• In the chapter 6 we discuss super quantum Airy structures. This chapter is based on [10], but
also presents some other unpublished results of the author (presented in the Sections 6.2.2
and 6.2.3, with the exception of the case of osp(1|2), already discussed in [10]).
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Chapter 2

Random matrices

In this chapter we give a short overview of the theory of random matrices (also called theory of
matrix models). Random matrices serves as an introduction or illustration of the content of this
thesis. More precisely our attention will focus on formal random matrix integrals.

In the section 2.1 we give a simple example, thought as motivation for what follows. It is based on
Catalan numbers.

In the section 2.2 we give definitions of the perturbative expansions of random matrix integral, as
well as of its β and α/β deformations. We discuss loop equations, which are Ward identities for
matrix integrals, and at the same time Virasoro constraints. We also define spectral curves.

In the section 2.3 we study matrix integrals from the point of view of the enumerative geometry.
This includes expansion of the random matrix partition function in terms of the graphs and appli-
cation of those functions in the computation of the intersection numbers on the moduli spaces of
curves.

In the section 2.4 we define topological recursion for any spectral curve and show how it can be
used to compute correlation functions of random matrices.

In the section 2.5 we briefly discuss quantisations of the spectral curves, which are quantum curves.
We also present a conjecture relating quantum curves with topological recursion.

2.1 Simple example

Let us start with a simple example. Throughout this work the notion of formal power series
reappears. These series provide us a method to collect in one object families of invariants. They
often appear as asymptotic expansions of some functions. As an easy example we can consider
Laplace transform of a real random variable X:

ϕX(t) = EetX .
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Under certain assumptions on X, asymptotic expansion of this function at 0 encodes in a formal
power series all momenta of our variable:

ϕX(t) '
∞∑
t=0

tk

k!EX
k.

Let us specialise to the case of X distributed according to the measure defined using the equation
dρ(x) = 2

π

√
1− x21|x|≤1dλ(x), where dλ(x) is Lebesgue measure. This is the limit of the distribu-

tions of eigenvalues of Hermitian random matrices of size n×n. Then it is known that its moments
are given by the Catalan numbers: ∫

x2mdρ(x) = 2−2mCm, (2.1)

where
Cm = 1

m+ 1

(
2m
m

)
. (2.2)

These numbers can be characterised in various combinatorial ways. Let us write down their gener-
ating function in a form:

z(x) =
∞∑
m=0

Cmx
−2m−1. (2.3)

It can be shown that this function satisfies algebraic equation [21]:

x = z(x) + 1
z(x) . (2.4)

Therefore if we write down the asymptotic expansion of the inverse function to x(z): z(x) =
1
2(x−

√
x2 − 4) we would recover Catalan numbers. What can be seen in this example is the interplay

of the theory of random matrices (2.1), combinatorics (2.2), analysis (2.3) and algebraic geometry
(2.4). Geometric notions contain information about combinatorial (or enumerative) invariants.
Later on we will encounter other examples of such interplay.

2.2 Definitions and basic results

Let us introduce basic definitions and results concerning matrix integrals.

2.2.1 Hermitian matrix model

In this section we consider the following matrix integral∫
E
eTrV (X)−Tr(X2)dX,

where V (x) =
∑∞
m=1 tmx

m is called potential, ti’s are called times, E ⊂ Mat(N) is a subset of the
space of complex N×N matrices and ~ ∈ C. We assume that this subset is measurable with respect
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to the Lebesgue measure dX on Mat(N). Convergence of this integral depends on the values of
ti ∈ C. However one can treat ti’s as formal variables and the integral as a formal power series –
an element of the ring R = C[[t1, t2, . . . ]]. In the physics nomenclature expansions in power series
with respect to the small parameter of deformation (for example 1

N for large matrices, where N is
the size of the matrix) is called perturbative approach. We adopt this name here. We will call such
an integral partition function.

Definition 2.2.1 A formal random matrix partition function Z ∈ R for an ensemble E ⊂ Mat(N)
is defined as:

Z =
∞∑
n=0

∑
k1,...,kn≥1

F (k1, . . . , kn)tk1
1 . . . tknn ,

F (k1, . . . , kn) = 1
k1! · · · kn!

∫
E

Tr(Xk1) · · ·Tr(Xkn)e−Tr(X2)dX. (2.5)

Note that integral appearing in the equation (2.5) is always convergent, as any polynomial growth
of the product of traces is suppressed by the Gaussian decay of the term e−Tr(X2).

For any measurable function f : E → C, assuming convergence, we introduce its expectation value
Ef(X) = 〈f(X)〉:

〈f(X)〉 =
∫
E
f(X)eTrV (X)−Tr(X2)dX

=
∞∑
n=0

∑
k1,...,kn≥1

tk1
1 . . . tknn
k1! · · · kn!

∫
E
f(X)Tr(Xk1) · · ·Tr(Xkn)e−Tr(X2)dX

Solving a matrix model means computing all of these correlators 〈Tr(Xk1) · · ·Tr(Xkn〉. Note that
these quantities are encoded in Z, and can be obtained by taking appropriate derivatives of Z with
respect to the times.

2.2.2 β-generalisation

On the space Mat(N) we have an action ρ of the unitary group U(N), defined as U ·X = UXU−1

for U ∈ U(N). Assume that the ensemble E is invariant under this action. Moreover let us assume
that all of the elements X ∈ E are diagonalisable. Then, because the integrand in (2.5) is invariant
under the action ρ, one can integrate along the U(N)-orbits. This means that we can map the
matrix X to the set of its eigenvalues Λ = (λ1, . . . , λN ) ∈ RN . They are real, since X is hermitian.
The orbital (or angular) part contribute through the Jacobian, which in this case takes form of the
Vandermonde determinant ∆(Λ) =

∏
i 6=j(λi − λj). Let C = E/U(N). We obtain:

F (k1, . . . , kn) = 1
k1! · · · kn!

∫
C

n∏
i=1

(λki1 + · · ·+ λkiN )∆(Λ)e−λ2
1−···−λ

2
Ndλ1 · · · dλN . (2.6)

This is the starting point for the β-deformation.
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Definition 2.2.2 Let β ∈ C. β-deformed matrix model partition function Zβ ∈ R is defined as

Zβ =
∞∑
n=0

∑
k1,...,kn≥1

F β(k1, . . . , kn)tk1
1 . . . tknn ,

F β(k1, . . . , kn) = 1
k1! · · · kn!

∫
Γ

n∏
i=1

(λki1 + · · ·+ λkiN )∆(Λ)βe−
√
β(λ2

1−···−λ
2
N )dλ1 · · · dλN , (2.7)

where Γ is an appropriately chosen integration cycle (section 2.2.3).

Let us note that for specific values of β this is the integral over other sets of random matrices: for
β = 1

2 we are integrating over real symmetric matrices and for β = 2 over quaternionic Hermitian
matrices. This kind of β-generalisation is relevant from the point of view of the conformal field
theory. It gives rise to systems with more generic central charge than the standard matrix model.
Another generalisation was introduced in [44] under the name of α/β deformed matrix model.

Definition 2.2.3 For any α, β ∈ C the wave function ψα,β(x) ∈ R(x) is defined as

ψα,β(x) =
∞∑
n=0

∑
k1,...,kn≥1

Fα,β(k1, . . . , kn)tk1
1 . . . tknn , (2.8)

Fα,β(k1, . . . , kn) = 1
k1! · · · kn!

∫
Γ

n∏
i=1

(x− λi)α(λki1 + · · ·+ λkiN )∆(Λ)βe−
√
β(λ2

1−···−λ
2
N )dλ1 · · · dλN .

When β = 1 this expression can be rewritten as expectation value of the α-power of the character-
istic polynomial: ψα,1(x) = Edet(x−X)α. Let us note that the remark concerning the integration
cycle Γ holds also in this case.

2.2.3 Twisted cycles

The functions, which are to be integrated, appearing in the expressions (2.7) and (2.8), are multi-
valued. Therefore to make the integrals meaningful we need to choose correct integration cycles.
They belong to the twisted homology spaces, which we are now going to define. We follow here [1].

Let ψ be a multi-valued function on an open set U ⊂ Cn. We define vector spaces Cp(U,ψ) to be
freely generated by the expressions

σ ⊗ ψ|σ,

where σ : ∆p → U is a continuous map from a n-dimensional simplex, such that on the image
σ(∆p) one can choose a single branch of ψ and ψ|σ is a choice of such a branch. We have naturally
defined boundary map

∂pψ : Cp(U,ψ) → Cp−1(U,ψ)
∂pψ(σ ⊗ ψ|σ) = ∂(σ)⊗ ψ|∂(σ),
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which allows us to define twisted homology groups:

Hp(U,ψ) =
ker(∂pψ)

im(∂p+1
ψ )

.

Following [1] we can define integration over twisted cycles. If σ ⊗ ψ|σ ∈ Cp(U,ψ) for any smooth
differential n-form ω we set: ∫

σ⊗ψ|σ
ψ · ω =

∫
σ
ψσ · ω.

LetH be the space of differentials of the form F (β; z1, . . . , zN )f(z1, . . . , zN )dz1 · · · dzN , where f ∈ L.
The objects we would like to integrate are forms ω ∈ H ⊗R, where R is typically a ring of formal
power series in infinite number of variables. In such case we extend the integration by defining∫ (∑

i ωi ⊗ ri
)

=
∑
i

( ∫
ωi
)
⊗ ri.

2.2.4 Loop equations

In analysing (formal) matrix integrals one of the crucial tools are the loop equations. They are
differential equations specified by a family of differential operators satisfying commutations relations
of the positive part of the Virasoro algebra. For this reason they are called Virasoro constraints.

Proposition 2.2.1 Let β ∈ N. The formal power series Zβ(t1, t2, . . . ) satisfies an infinite family
of equations lnZβ = 0 for n ≥ −1, where:

ln = ~(
√
β − 1√

β
)(n+ 1)∂tn + ~2

n∑
k=0

∂tk∂tn−k +
∞∑
k=1

ktk∂tn+k . (2.9)

Moreover those differential operators satisfy commutation relations: [ln, lm] = (n−m)ln+m.

Remark. Although ∂t−1 seems to appear in the above expression, it is multiplied by 0. This
expression seems to give an example of an Airy structure 6.1.2. However in the last summand ~ is
missing.

Proof. Consider vector fields on RN defined as Xn(z1, . . . , zN ) = −
∑N
a=1 z

n+1
a

∂
∂za

for n ≥ −1.

Let us denote differential N -form ω = ∆(z1, . . . , zN )βe−
√
β

~
∑N

a=1 V (za)dz1 ∧ · · · ∧ dzN . From the

Stokes theorem and the fact that the function ∆(z1, . . . , zN )βe−
√
β

~
∑N

a=1 z
2
a vanishes exponentially

fast when |(z1, . . . , zN )| → ∞ we deduce that:∫
RN

d
(
ιXnω

)
= 0, (2.10)

where ιXNω is a N − 1 form defined as ιXNω(v2, . . . , vN ) = ω(X, v2, . . . , vN ). In what follows we
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use the notation 〈f〉 =
∫
RN fω. Equation (2.10) can be expanded into:

0 =
N∑
a=1

〈
(n+ 1)zna + 2β

∑
b 6=a

zn+1
a

zb − za
−
√
β

~
zn+1
a

∂V (za)
∂za

〉

=
〈

(n+ 1)
N∑
a=1

zna + β
∑
a6=b

n∑
k=0

zkaz
n−k
b −

√
β

~

N∑
a=1

zn+1
a

∂V (za)
∂za

〉

=
〈

(n+ 1)(1− β)
N∑
a=1

zna + β
N∑

a,b=1

n∑
k=0

zkaz
n−k
b −

√
β

~

N∑
a=1

∞∑
k=0

ktkz
k+n
a

〉
. (2.11)

Note that for any function f we have

〈
f(z1, . . . , zN )

N∑
a=1

zka

〉
= − ~√

β
∂tk〈f(z1, . . . , zN )〉.

Therefore the equation (2.11) can be rewritten as a differential equation lnZβ = 0 with ln given by
(2.9). The commutation relations [ln, lm] = (n−m)ln+m can be checked by direct computation. �

Remark. Notice that we have an analogous relation for the introduced vector fields:

[Xn, Xm] = (n−m)Xn+m.

It follows that we have corresponding relation on Lie derivatives: [LXn ,LXm ] = (n − m)LXn+m ,
where LX = dιX + ιXd. Notice that

∫
RN d

(
ιXnω

)
=
∫
RN LXnω, because dω = 0. This however

does not seem enough to prove the relevant commutation relations.

The identities (2.11) can be also rewritten in a single equation, with a help of a formal variable x:

〈( N∑
a=1

1
(x− za)2 − β

∑
1≤a<b≤N

1
(x− za)(x− zb)

−
√
β

~

N∑
a=1

V ′(za)
x− za

〉
= 0.

This equation is called Ward identity.

2.2.5 Spectral curve

In this section let us consider non-formal models, for which V (x) is a polynomial function (that
means ti ∈ C vanish for sufficiently large i).

Let X ∈ Mat(N) and let {λ1, . . . , λN} be the set of its eigenvalues. We can introduce spectral
measure:

LX = 1
N

N∑
i=1

δλi ,

where δx is the Dirac measure concentrated at x ∈ C. In other words LX(A) = |{λi : λi ∈ A}| for
any measurable set A ⊂ R. If X is a random matrix, LX becomes a random measure. Interesting
property of this measure is that (under some assumptions) it becomes deterministic in the limit
N → ∞. A question one may ask is the following: what is this limit? A simple answer can be
given for the Hermitian matrix model, that is if in (2.5) we put V = 0.
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Theorem 2.2.1 Define a Borel measure ρ on R with the following density with respect to the
Lebesgue measure λ on R:

dρ(x) = 2
π

√
1− x21|x|≤1dλ(x).

Let X be a random matrix distributed according to the measure e−Tr(X2)dX. Then the measure
LX tends weakly to the measure ρ with probability 1. In other words for any continuous, compactly
supported function f : R→ R we have

lim
N→∞

∫
R
fdLX =

∫
R
f(x)dρ(x),

which happens for almost all X ∈ Mat(N).

We can rewrite density of the measure ρ in the form 2
πy(x)1|x|≤1, where

y(x)2 + x2 = 1.

This is an example of a spectral curve. Theorem 2.2.1 justifies this name. We would like to pass to
a more general case of random matrices.

Definition 2.2.4 A spectral curve for a matrix model with potential V (x) is given by the equation:

y2 − V ′(x)y + P (x) = 0, (2.12)

where x, y ∈ C and P (x) is a function defined as

P (x) = lim
n→∞

1
N

〈 n∑
i=1

V ′(x)− V ′(zi)
x− zi

〉
. (2.13)

The equation (2.12) can be considered over R or over C. We will put more attention to the second
case, as it will be relevant for the topological recursion. There the importance of the spectral curves
will be revealed. We can also rewrite the spectral curve in another variables. New form will be
more suitable for us, when we will be considering quantum curves. Let

u(x) = 2y(x)− V ′(x).

With the help of the new variable equation (2.12) transforms into:

A(x, y) = u(x)2 − V ′(x)2 + 4P (x) = 0. (2.14)

2.3 Enumerative geometry

2.3.1 Graph expansion

The correlators introduced in (2.5) can be expressed as a sums over graphs. This gives us a
combinatorial interpretation of the matrix integral. Because of the connections to the quantum
field theory they are called Feynman graphs. In order to obtain such an expansion one can apply
Isserlis theorem (known also as Wick rule) :
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Proposition 2.3.1 [39] Let (X1, . . . , X2n) be a zero-mean normal random vector in R2n. Then

E(X1 · · ·X2n) =
∑

P∈P(2n)

∏
p∈P

E(Xp1Xp2),

where P(2n) is the set of pairings of the set {1, . . . , 2n} and each pairing p = (p1, p2).

Applying Isserlis theorem we can identify the summation set with a set of suitable graphs.

Definition 2.3.1 A ribbon graph is a finite graph with a cyclic ordering of half-edges adjacent to
each vertex.

A natural way of obtaining such ordering is by drawing our graph on an oriented Riemann surface
(complex curve). Then half-edges adjacent to any vertex have a cyclic ordering given by going
around this vertex clockwise, in such a way that vectors tangent to the two consecutive half-edges
and pointing from the vertex form a positively oriented basis of the tangent space at this vertex.
Such graphs can be also visualized as fatgraphs. Draw a ribbon graph on a surface and take an
ε-neighborhood of it. Its edges are “stripes” glued at vertices:

Figure 2.1: Fatgraph

For any ribbon graph Γ let us denote the set of its vertices by Γ0, the set of its edges by Γ1 and
by Γ2 the set of its faces (the plaquettes completing the fatgraph to the Riemann surface on which
the graph is drawn). From the equation for the Euler characteristic we can deduce genus of the
surface:

g = 1− 1
2(|Γ0| − |Γ1|+ |Γ2|).

Let us denote by G(k1, . . . , kn) set of ribbon graphs with n vertices of valencies k1, . . . , kn. For each
graph Γ ∈ G(k1, . . . , kn) let Aut(Γ) be the set of automorphisms of Γ (maps from the set of vertices
to itself preserving edge-connectedness).
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Proposition 2.3.2 [7] The following expression for the coefficients appearing in (2.5) holds:

F (k1, . . . , kn) =
∑

Γ∈G(k1,...,kn)

1
|Aut(Γ)|N

|Γ2|. (2.15)

Let us explain how to obtain the above formula. In the expression for F (k1, . . . , kn) we can expand
each trace as

TrXka =
∑

ia1 ,i
a
2 ,...,i

a
ka

∈{1,...,N}

Xia1 i
a
2
Xia2 i

a
3
· · ·Xia

ka
ia1
,

obtaining:

F (k1, . . . , kn) =
∑

A=1,...,n

∑
B=1,...,kA

∑
iAB∈{1,...,N}

E
( n∏
a=1

ka∏
b=1

Xia
b
,ia
b+1

)
, (2.16)

where we always set ka + 1 = 1 for the indices b and B. Let us apply Proposition 2.3.1 to the
above expression, exchanging the expectation value of the product with a sum over pairings of
expectation values of two variables. Those pairings have a nice combinatorial interpretation.

Figure 2.2: Association of pairs of indices (iab , iab+1) to half-edges and pairing.

We associate pair of indices (iab , iab+1) with a half-edge, as in the figure above. We get n vertices
with valencies k1, . . . , kn. Each pairing of double indices ((ia1

b1
, ia1
b1+1), (ia2

b2
, ia2
b2+1)) gives us a way

to glue corresponding halfedges. Therefore each pairing of all indices gives rise to an element
of G(k1, . . . , kn) and each such gluing gives rise to a pairing. Since Xij are independent and
identically distributed Gaussian variables, it follows that E(Xi

a1
b1
,i
a1
b1+1

Xi
a2
b2
,i
a2
b2+1

) = δia1
b1
,i
a2
b2
δia1
b1+1,i

a2
b2+1

.
This means that performing summation over all indices we get contractions: for each loop in the
obtained fatgraph we are left with one free index. Therefore the number of the contributions from
a given graph is multiplied by N for any plaquette in Γ2: it equals to N |Γ2|. Factor 1

|Aut(Γ)| comes
from the symmetry considerations, as explained in [7].
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Definition 2.3.2 Connected correlators are defined as

F (k1, . . . , kn)c =
∑

Γ∈G(k1,...,kn)c

1
|Aut(Γ)|N

|Γ2|, (2.17)

where G(k1, . . . , kn)c is the set of connected ribbon graphs with prescribed valencies.

2.3.2 Intersection theory

One of the most influential results in the theory of formal random matrices was found by Maxim
Kontsevich [42], earlier conjectured by Edward Witten [58]. Identifying two models for 2 dimen-
sional quantum gravity he showed that asymptotic expansion of a suitable matrix integral computes
intersection numbers of the moduli spaces of curves. The latter numbers play a crucial role in enu-
merative geometry. This section is an illustration of the application of the theory of random
matrices. Therefore we will give an outline, without introducing formal definitions, which are quite
involving. Let Mg,n be the compactification of the moduli space of stable Riemann surfaces of
genus g and n marked points. This space is an orbifold, whose complex highest dimension of strata
is 3g − 3 + n. The intersection numbers (called also Gromov-Witten invariants of a point) are
defined by:

〈τd1 · · · τdn〉g,n =
∫

[Mg,n]vir

n∏
i=1

ψdii , (2.18)

where ψi are first Chern classes of bundles Li defined as follows. Fiber of this bundle at any curve
C is the fiber of the cotangent bundle of C at ith marked point: Li|C = T ∗C|pi . The cycle over
which the integral is performed [Mg,n]vir is the virtual fundamental class [17]. In order to ensure
matching of the dimensions we need to take g such that 3g− 3 + n =

∑n
i=1 di. Those numbers can

be collected in a formal power series, called free energy:

ZGW (t∗) =
∑
di≥0∑
di=d

〈τd1 · · · τdn〉
∏ tkii

ki!

Kontsevich considered following matrix model:

ZKM =
∫
E

exp
( i

6TrX3 − 1
2Tr(X2Λ)

)
cΛdX, (2.19)

where dX is Lebesgue measure on the set E of Hermitian N×N matrices, and cΛ is a normalisation
constant: c−1

Λ =
∫

exp(−1
2Tr(X2Λ))dX. ZKM depends on a matrix Λ, and we can restrict to

the case when this matrix is diagonal. Using Proposition 2.3.1 its asymptotic expansion can be
expressed as sum over 3-valent ribbon graphs with labeled set of faces. Let us denote the later set
by G. For any Γ ∈ G let Γ0 be the set of vertices, Γ1 set of edges and Γ2 set of faces. Suppose that
|Γ2| = n and genus of Γ equals g. Labelling means that we have an identification Γ2 ' {1, . . . , n},
which also identifies any function λ : Γ2 → C with a vector (λ1, . . . , λn) ∈ Cn. For any edge e ∈ Γ1
denote two faces adjacent to is as e1 and e2. One can show that asymptotic expansion of (2.19) is
given by the formula:

ZKM =
∑

Γ∈GN

(√
−1

2

)|Γ0|

|AutΓ|
∏
e∈Γ1

2
λ(e1) + λ(e2) ,
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where GN is the set of equivalence classes of connected nonempty 3-valent ribbon graphs together
with coloring maps Γ2 → {1, . . . , N}.

Identification of the two partition functions ZGW and ZKM is possible using main identity proved
by Kontsevich:

∑
di≥0∑
di=d

〈τd1 · · · τdn〉
n∏
i=1

(2di − 1)!!
λ2di+1
i

=
∑

Γ∈Gg,n

2−|Γ0|

|AutΓ|
∏
e∈Γ1

2
λ(e) + λ(se) .

and the substitution ti = −(2i − 1)!!Tr(Λ−2i−1). The idea of the proof of the above equality is
following. Construct a combinatorial model Mcomb

g,n for the space Mg,n as well as for the vector
bundles Li and its Chern classes ψi. This model is found with the help of the Strebel differentials.
After performing Laplace transform of the generating function for the intersection numbers of
combinatorial classes we obtain expressions arising as asymptotic expansions of Kontsevich matrix
integral. This is done by identifying ribbon graphs in the matrix integral with a triangulation of
the spaceMcomb

g,n .

2.4 Topological recursion

In order to introduce topological recursion [25, 26] let us first give an abstract definition of the
spectral curve.

Definition 2.4.1 A spectral curve is an algebraic curve Σ equipped with two meromorphic func-
tions x, y : Σ→ P1 such that the zeros of dx are disjoint from the zeros of dy.

It follows from the definition that for a spectral curve (Σ, x, y) the function (x, y) : Σ→ P1 × P1 is
an immersion. Suppose that its image is given as a zero set of a polynomial P (x, y). This gives an
algebraic characterisation of a spectral curve.

Examples of spectral curves appear in various areas of mathematics and physics. Apart from matrix
models there are: A-polynomials in knot theory, spectral curves of Hitchin systems, Seiberg-Witten
curves, mirror curves in string theory.

Let R be the ramification divisor of the map x (zeros of dx). We will restrict ourselves to the case
when all of the zeros are simple (the second derivative of x does not vanish at R). Then there
exists a local coordinate zr on a neighborhood Ur of any r ∈ R such that x(z) = xzr + 1

2z
2
r on

Ur. This enables us to define an involution map σr : Ur → Ur as σr(z) = −z, which preserves
x: x(σr(z)) = x(z). Consider the nth Cartesian product Σn = Σ × · · · × Σ equipped with the
projections into the ith factors πi : Σn → Σ. Denote by KΣ the canonical bundle of Σ and let
KΣ(R) = KΣ ⊗OΣ(R). Topological recursion says how to any spectral curve associate a family of
invariants, called correlators:

ωg,n ∈ H0(Σn, π∗1KΣ(R)⊗Sym · · · ⊗Sym π∗nKΣ(R)),

31



where g, n ≥ 0 and 2g+n ≥ 2. More precisely we are only interested in the behavior of ωg,n on the
neighborhoods of the ramification points. We will therefore restrict the definition to the section of
the above bundle defined on the set (

⋃
r∈R Ur)n ⊂ Σn. This allows us to trivialise the bundles as

well, provided that Ur are sufficiently small.

To define the recursion we make a choice of initial conditions, for which we take ω0,1 = ydx ∈
H0(Σ,KΣ(R)), and ω0,2 = BΣ is the Bergman kernel. It is an element of H0(Σ2, π∗1KΣ(R) ⊗Sym
π∗2KΣ(R)), which satisfies the following conditions:

• it has a pole on the diagonal of the form dz1dz2
(z1−z2)2 +O(1)dz1dz2,

• it is symmetric.

This form is not unique, however its arbitrariness does not affect the outcome of the recursion.
Define the recursion kernel:

Kr(z1, z) = −1
2

1
y(z)dx(z)− y(σr(z))dx(σr(z))

⊗
∫ z

σr(z)
ω0,2(z1, ·),

which is a section of K−1
Σ ⊗KΣ defined over Ur × Σ. Then the correlators are defined recursively

via the formula:

ωg,n+1(z1, zS) =
∑
r∈R

Res
z=r

Kr(z1, z)
(
ωg−1,n+2(z, σr(z), zS)

+
o∑

g1+g2=g,
ItJ=S

ωg1,1+|I|(z, zI)ωg2,1+|J |(σr(z), zJ)
)
, (2.20)

equation where the o above the sum means that we are excluding the cases with either g1 = 0,
g2 = 0, I = ‰ or J = ‰. This guarantees that the recursion can be computed, since for any
ωg,n+1 only correlators ωh,m with Euler characteristic χ = 2h− 2 +m < 2g − 2 + n+ 1 appear on
the right hand side. This also explains the name topological.

Importance of the topological recursion lies in the fact that for specific choices of the spectral curves
correlators ωg,n encode answers to various problems in mathematics and physics. Let us give a few
examples:

• Airy curve (P1, x(z) = 1
2z

2, y(z) = z) computes intersection numbers of the moduli space of
stable curves with marked pointsMg,n,

• Hurwitz numbers,

• correlators in random matrices (see the next section).

Other curves are conjectured to solve more problems:

• Given a knot K ⊂ S3 its A-polynomial should compute colored Jones polynomials of K,

• Computation of the Gromow-Witten invariants of complex varieties X (specifically toric
Calabi-Yau manifolds of complex dimension 3), generalising (2.18), which are Gromow-Witten
invariants of a point.
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2.4.1 Topological recursion and random matrices

Let us introduce connected correlators, as functions in variables xi’s:

Wn(x1, . . . , xn) =
〈 N∏
i=1

Tr
( 1
xi −X

)〉c
, (2.21)

where we are using coefficients (2.17) instead of those appearing in (2.5). To make a connection
between random matrices and topological recursion we need to introduce topological expansion
of such correlators. Let us recall that in the formula (2.17) we have expressed coefficients of the
partition function F (k1, . . . , kn)c as functions of the size of the random matrices N . This is the
starting point for the topological expansion. We define Wg,n via the formula:

Wn(x1, . . . , xn) =
∞∑
g=0

N2−2g−nWg,n(x1, . . . , xn).

Next, let us introduce associated differential forms:

ωg,n(x1, . . . , xn) =
(
Wg,n(x1, . . . , xn) + δg=0δn=2

1
(x1 − x2)2

)
dx1 . . . dxn. (2.22)

Theorem 2.4.1 [24] The symmetric differential forms (2.22) satisfy topological recursion with
the spectral curve specified by the equation (2.12):

Σ = {(x, y) ∈ C2 : y2 − V ′(x)y + P (x) = 0},

and x, y : Σ→ P1 are projections onto the first and the second coordinate respectively.

2.5 Quantisation

In this short section let us explain what we mean by quantising algebraic equation like (2.14).
Let A(x, y) be an element of R = C[x, y]. In this commutative ring relation xy = yx holds.
Quantisation procedure replaces such ring with a family of rings, parametrized by a parameter ~
(formal or complex), denoted by R~. Moreover we would like to recover the initial ring R as a
limit of R~, when ~ tends to zero. This limit should be precisely defined, but for our purpose one
example is sufficient. More precisely we take Weyl algebra as quantisation of R:

R~ = C〈x, y〉/I,

where C〈x, y〉 is a unital algebra freely generated by elements x and y over C and I = 〈xy−yx−~〉
is an ideal generated by a single element. It follows that in R~ the relation [x, y] = ~ holds. One
can represent this algebra faithfully as a subalgebra of differential operators on the line acting on
smooth functions. Element x becomes multiplication by x operator and y becomes differentiation
~ d

dx operator.
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2.5.1 Quantum curves and topological recursion

Let P (x, y) be a polynomial function and consider a curve Σ = {(x, y) ∈ C2 : P (x, y) = 0}. Let
P̂ (x̂, ŷ) be a differential operator, called quantum curve, with ŷ = ~ ∂

∂x and x̂ a multiplication by x
operator. It arises as a quatisation of the curve Σ, so that in the semi-classical limit ~→ 0, ŷ → y

it reproduces the polynomial P :

P̂ (x̂, ŷ) = P (x̂, ŷ) +
N∑
n=1

~nPn(x̂, ŷ).

In the above equation we assume that each expression Pn(x̂, ŷ), as well as P (x̂, ŷ), is normally
ordered: all operators ŷ appear on the left hand side of x̂. This ordering allows separation of
different terms with respect to the power of the parameter ~. Moreover, we have assumed that
P̂ (x̂, ŷ) is a polynomial expression in the operators ŷ and x̂. Choice of the ordering is an important
problem in the process of quantisation of the curve Σ.

Consider the equation
P̂ (x̂, ŷ)ψ(p, ~) = 0, (2.23)

where
ψ(p, ~) = exp(~−1S0(p) + S1(p) + ~S2(p) + . . . ). (2.24)

The equation (2.23), called Schrödinger equation, should be understood as a family of equations
for the functions Sk : Σ → C. The conjectural relation between the topological recursion and the
quantum curves is the following.

Conjecture. Let (Σ, x, y) be a spectral curve given by a polynomial equation P (x, y) = 0. Let ωg,n
be a family of meromorphic symmetric differentials computed by the topological recursion (2.20).
Define a wave function using the formula 2.24 with the coefficients given by:

Sk(p) =
∑

2g−1+n=k

1
n!

∫ p

· · ·
∫ p

ωg,n(p1, . . . , pn).

Then the conjecture states that there exists a quantisation P̂ (x̂, ŷ) of the polynomial P (x, y), which
satisfies the Schrödinger equation (2.23).

This conjecture was proved in several cases. For example in [11] it has been shown to be true if
the Newton polygon of the polynomial P (x, y) contains no interior points.
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Chapter 3

Vertex operators and conformal
symmetry

In this chapter we introduce mathematical structures related to conformal field theory. It is spit
into two parts. The first part (sections from 3.1.1 to 3.1.5) discusses special class of Lie algebras and
their representation theory. It is based mainly on the book [38]. In the second part (sections from
3.2.1 to 3.2.6) we introduce vertex operator algebras. It is based on the books [38], [28], article [32]
(definition of the intertwining operators in the Fock modules: equation 3.24) and computations of
the author (Lemmas 3.2.2 and 3.2.3). A nice introduction to CFT from a physical point of view
is [53].

In the section 3.1.1 we introduce special class of Lie algebras, which we call Lie Z-algebras. Two
most important examples are Virasoro algebra and Heisenberg algebra. We study basics of their
representation theory, including definitions of the Fock and Verma modules.

In the section 3.1.2 we introduce bilinear forms (called Shapovalov form) and determinants (includ-
ing Kac determinant).

In the section 3.1.3 we introduce special vectors in the Fock/Verma modules, called singular vectors.

In the section 3.1.4 we also discuss a particular homomorphism between Fock and Verma module,
denoted by Sα,Q. In this part we follow mainly [38].

In the section 3.1.5 we discuss duality between Fock modules F(α) and F(Q − α), as well as
cosingular vectors.

In the section 3.2.1 we define vertex algebras and normal ordering of fields. We also recall important
results such as Goddard’s uniqueness theorem and strong reconstruction theorem.

In the section 3.2.2 we introduce operator product expansion, a notion important in CFT.

In the section 3.2.3 we define Vertex Operator Algebras (VOAs), which are vertex algebras equipped
with a suitable action of the Virasoro algebra.
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In the section 3.2.4 we give two examples of the VOAs.

In the section 3.2.5 we define modules over VOAs and intertwining operators which one can associate
to any triple of such modules.

In the section 3.2.6 we discuss intertwining operators between Fock modules, which are most im-
portant for us. We prove lemmas related to the action of the Virasoro algebra on the intertwining
operators, which we are going to use in the following chapter.

In the section 3.2.7 we discuss some topics not directly related to the main topic of this dissertation,
such as Fusion algebra, Verlinde formula and Monstrous Moonshine.

3.1 Lie Z-algebras

3.1.1 Definitions

Definition 3.1.1 Define a category C of Lie Z-algebras. Objects of this category are Z-graded Lie
algebras g =

⊕
n∈Z g

n such that h = g0 is the Cartan subalgebra and such that [gm, gn] ⊂ gm+n.
Morphisms are homomorphism of Lie algebras, which preserve the grading.

For an element v ∈ gn we will write its grading as |v| = n. From the definition it follows that
the following subspaces: g+ =

⊕
n>0 g

n, g≥ =
⊕

n≥0 g
n, g− =

⊕
n<0 g

n and g≤ =
⊕

n≤0 g
n are

subalgebras of g. Let us give examples of the Lie Z-algebras, which will be most relevant for us.

Examples. A Virasoro algebra is a graded vector space V =
⊕

n∈ZCLn ⊕ Cc (c is in grading 0)
equipped with a Lie bracket:

[Ln, Lm] = (n−m)Ln+m + c

12m(m2 − 1)δn,−m, [c,V] = 0. (3.1)

It is a unique up to isomorphism central extension of the Witt algebra W = C[z, z−1] ∂∂z with the
commutator as a Lie bracket. It is algebra of meromorphic vector fields on CP 1, with poles only
at 0 and ∞ .

A Heisenberg algebra is a graded vector space H =
⊕

n∈ZCan ⊕ Ck (k is in grading 0) with a Lie
bracket defined as:

[an, am] = 1
2nδn,−mk, [k,H] = 0.

Remark. In the literature one can meet different normalisations of the bracket of the Heisenberg
algebra, for example [an, am] = mδn,−mk. Isomorphisms between such defined algebras can be
obtained by rescaling the element k. In the chapter 5 we will use different normalisation.

Definition 3.1.2 A module over a Lie Z-algebra g is a Z-graded module over the Lie algebra g,
which satisfies gn ·Mm ⊂ Mn+m and is diagonalisable over g0. Homomorphism between modules
is a Lie homomorphism, which preserves the gradings.
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Because g0 ·Mn ⊂Mn it follows that the diagonal decomposition is compatible with the Z-grading,
in the sense that both can be combined into Z× (g0)∗-grading. Let us introduce a special class of
such modules. We denote the universal enveloping algebra of a Lie algebra g by U(g).

Definition 3.1.3 A weight module over g with the weight λ ∈ h∗ is a module M , such that there
exists a vector vλ ∈M satisfying: ρ(g+)vλ = 0, U(g≤)vλ = M and h · vλ = λ(h)v for any h ∈ h.

An example of a weight module is the Verma module. Its definition uses a unique one dimensional
module Cλ over g≥ defined for any λ ∈ h∗ which satisfies g+Cλ = 0 and h · v = λ(h)v for h ∈ h.

Definition 3.1.4 Let p ⊂ g be a Lie sublagebra and let M be a p-module. For this data we define
an induced g-module:

Indg
pM = U(g)⊗U(p) M

Definition 3.1.5 For any λ ∈ h∗ define Verma module as M(λ) = Indg
g≥
Cλ.

Let us denote the weight vector of such Verma module 1 ⊗ 1 as |λ 〉. One can describe Verma
module for the algebras V and H by giving explicitly its basis. The basis can be then written as:

L−i1 · · ·L−ik |∆ 〉 in the case of V, (3.2)
a−i1 · · · a−ik |α 〉 in the case of H, (3.3)

where i1 ≥ i2 ≥ · · · ≥ ik > 0 are integers. Those bases are moreover graded-homogeneous, with the
above vectors belonging to the subspaces of the grading i1 + · · ·+ ik. Action of an operator (an or
Ln) on this basis element can be obtained by writing the corresponding operator on the left hand
side and commuting it with the operators Liq (or a−iq) until we are left with a linear combination
of the basis elements. In this manner matrix elements of the corresponding operators in this basis
can be computed.

The specification of the basis above allows us to compute dimensions of the subspaces of a fixed
grading in the Verma modules over Virasoro and Heisenberg algebra. Let us introduce a function
p : Zn>0 → Zn>0 which computes the number of partitions of a given positive integer into sum of
integers:

p(n) =
n∑
k=1
|{(i1, . . . , ik) ∈ Zk>0 : i1 ≥ i2 ≥ · · · ≥ ik, i1 + · · ·+ ik = n}|. (3.4)

This function can be also described using a generating function:
∞∑
n=0

p(n)xn =
∞∏
k=1

1
1− xk .

Proposition 3.1.1 The dimensions of the subspaces of a fixed grading of the Verma modules over
Virasoro and Heisenberg algebra aee given by dimM(∆)n = dimM(α)n = p(n).
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Verma modules posses the following universal property (Proposition 1.6 [38]):

Proposition 3.1.2 1. For any weight module M with a weight λ ∈ h∗ there exists a surjective
homomorphism of modules M(λ)→M specified by sending the vector vλ to a weight vector of the
module M .
2. There exists a unique Z × h∗-graded submodule J(λ) such that L(λ) = M(λ)/J(λ) is a simple
graded g-module. It is moreover irreducible lowest weight module with lowest weight λ.

As we will see Verma module over H admits also an action of V. In this context we call it Fock
module.

Theorem 3.1.1 Verma module over H is irreducible.

Proof. Suppose that V ⊂ M(α) is a nonzero submodule of the Verma module over H. We
need to show that V = M(α). Let v ∈ V be any nonzero element. It is a linear combination
of the basis vectors v =

∑
i1,...,ik

ci1,...,ika−i1 · · · a−ik |α 〉 and at least one cj1,...,jl 6= 0. Because
V is a submodule it follows that aj1 · · · ajlv ∈ V . Notice that aj1 · · · ajla−i1 · · · a−ik |α 〉 = 0 if
{j1, . . . , jl} 6= {i1 . . . , ik}. We want to show that aj1 · · · ajla−j1 · · · a−jl |α 〉 ∈ C |α 〉 is nonzero.
If there are no repetitions among the indices {j1, . . . , jl}, one can easily compute by applying
Heisenberg commutation relations and the condition an |α 〉 = 0 for n > 0 that:

aj1 · · · ajla−j1 · · · a−jl |α 〉 = 2−l
( l∏
a=1

ja
)
|α 〉 . (3.5)

If there are repetitions commutation relations will generate another terms, which are however
always positive. Therefore the coefficient in front of |α 〉 will be no less then α = 2−l

∏l
a=1 ja, hence

nonzero. It follows that |α 〉 ∈M(α), so that V = M(α). �

Abusing the notation we denote elements of the space of weights of the Virasoro algebra (V0)∗ ' C2

by (∆, c), and of the Heisenberg algebra (H0)∗ ' C2 by (η, k). Hence we denote by M(∆, c) the
Verma module over V and by F (η) and the Verma module over H of lowest weight (η, 1). The value
of c in any representation is called central charge of this representation. We denote corresponding
weight states by |∆ 〉 and | η 〉.

One can also define similar representation of the algebra V. Let c ∈ C and let Cc be a one
dimensional representation of V≥−1 =

⊕
n≥−1 CL−1 ⊕ Cc defined as Ln · 1 = 0 for n ≥ −1 and

c · 1 = c. We define new representation as

Vic = IndVV≥−1Cc. (3.6)

Let | 0 〉 = 1⊗ 1. This vector satisfies relations Ln | 0 〉 = 0 for n ≥ −1. This representation will be
used in the second section in this chapter to define Virasoro vertex operator algebra.
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3.1.2 Shapovalov form and determinants

Definition 3.1.6 Let g be a Z-graded Lie algebra. An anti-involution map σ : g → g is a linear
map which inverses grading σ(gn) ⊂ g−n, σ2 = Id and for any X,Y ∈ g we have σ([X,Y ]) =
−[σ(X), σ(Y )].

Since any anti-involution σ : g → g is a Lie algebra homomorphism, we can extend its action to
the enveloping algebra U(g) by using the equation σ(XY ) = σ(Y )σ(X).

Example 3.1.1 In the case of the algebra V we can define an anti-involution map by σV(Ln) = L−n
and σV(c) = c. In the case of the algebra H we have an anti-involution defined by σH(an) = a−n
and σH(k) = k. The last example can be generalised to a family of inti-involutions σQ by redefining
its action by: σQ(a0) = Q− a0 for any Q ∈ C. In particular σ0 = σH.

Definition 3.1.7 Let M be a module over a Lie Z-algebra equipped with an anti-involution map
σ : g → g. A bilinear form (·, ·) : M ×M → C is called Shapovalov form if for any X ∈ g and
x, y ∈M we have (X · x, y) = (x, σ(X) · y).

Proposition 3.1.3 Given the module M(∆, c) and anti-involution σV there exists a unique Shapo-
valov form (·, ·)∆,c : M(∆, c)×M(∆, c)→ C satisfying (v∆,c, v∆,c)∆,c = 1.

There is also unique Shapovalov form on the Verma module over H: (·, ·)α : F(α) × F(α) →
C corresponding to the anti-involution σH and satisfying (vα, vα)α = 1. This bilinear form is
nondegenerate, i.e. for any nonzero w ∈ F(α) there exists w̄ ∈ F(α) such that (w, w̄)α > 0.
Moreover the basis (3.3) is orthogonal.

Proof. To prove the proposition it is enough to determine the value of the Shapovalov form on the
basis vectors. In the case of the Virasoro algebra this means we would like to determine the value
of the expressions of the form:

(L−i1 · · ·L−ik |∆ 〉 , L−j1 · · ·L−jl |∆ 〉)∆,c = (|∆ 〉 , Lik · · ·Li1L−j1 · · ·L−jl |∆ 〉)∆,c.

If i1+· · ·+ik > j1+. . . jl then the above expression is equal to 0, since Lik · · ·Li1L−j1 · · ·L−jl |∆ 〉 =
0. If i1 + · · · + ik < j1 + . . . jl then we arrive at the same conclusion by the symmetry. If
i1 + · · · + ik = j1 + . . . jl we can apply Virasoro commutation relations, reducing the expression
Lik · · ·Li1L−j1 · · ·L−jl |∆ 〉 to a multiple value of |∆ 〉. Then the condition (v∆,c, v∆,c)∆,c = 1 fixes
the Shapovalov form.

The proof of the uniqueness for the Heisenberg algebra is analogous. In order to prove the or-
thogonality relation notice that if two sets of indices (with repetitions allowed) {i1, . . . , ik} and
{j1, . . . , jl} are different, when applying the commutation relations while computing the expression

aik . . . ai1a−j1 . . . a−jl |α 〉 ,
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some of the operators among aik , . . . , ai1 will always hit |α 〉, giving zero. Therefore in such a case

(a−i1 . . . a−ik |α 〉 , a−j1 . . . a−jl |α 〉)α = 0.

Nondegenerancy follows from the fact that for basis vectors we have

(a−i1 · · · a−ik |α 〉 , a−i1 · · · a−ik |α 〉)α = (|α 〉 , aik · · · a−i1 |α 〉 , a−i1 · · · a−ik |α 〉)α > 2−l
k∏
a=1

ia > 0,

where we have used equation (3.5) and following it remark. For a combination of the basis vectors
w =

∑
i ciwi with ci ∈ C we have (w, w̄)α =

∑
i |ci|2(wi, wi)α > 0 ,where w̄ =

∑
i c̄iwi and c̄i is a

complex conjugate of ci. �

As follows from the above proof, the decomposition of the Verma moduleM(∆, c) =
⊕

n∈ZM(∆, c)n

according to the grading is orthogonal with respect to the Shapovalov form. Notice also that this
subspaces correspond to the operator’s L0 eigenspacesM(∆, c)n = {v ∈M(∆, c) : L0·v = (n+∆)v}.

Definition 3.1.8 For any n ∈ N let det(c,∆)n be the discriminant of the Shapovalov form re-
stricted to the subspace M(∆, c)n ×M(∆, c)n. It is called Kac determinant.

Theorem 3.1.2 [38] The Kac determinant has the following form

det(c,∆)n '
∏

r,s∈Z>0
r≥s

1≤rs≤n

Φr,s(c,∆)p(n−rs), (3.7)

where

Φr,s(c,∆) =



(
∆ + 1

24(r2 − 1)(c− 13) + 1
2(rs− 1)

)
×(

∆ + 1
24(s2 − 1)(c− 13) + 1

2(rs− 1)
)

+ 1
16(r2 − s2)2 if r 6= s,

∆ + 1
24(r2 − 1)(c− 13) + 1

2(r2 − 1) if r = s.

Idea of the proof is to show that corresponding factors (with appropriate powers) divide the Kac
determinant. Then one shows equality of the degrees of the Kac determinant and the right hand
side of equation (3.7), as polynomials in ∆. To prove the first step one shows the existence of
appropriate singular vectors.

3.1.3 Singular vectors

Definition 3.1.9 Let M be a module over a Lie Z-algebra. A vector v ∈M−{0} is called singular
vector if X · v = 0 for any X ∈ g+ and the corresponding submodule U(g)v ⊂M is not equal to M
(in other words – proper). It is called null vector if it is orthogonal to any vector with respect to
the Shapovalov form.
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Existence of a singular vector implies reducibility of the representation. Moreover from the Propo-
sition 3.1.2 it follows that any singular vector in the Verma module M(λ) must belong to the
submodule J(λ).

Any singular vector is automatically a null vector. There exist a null vector in M(∆, c)n if and
only if det(c,∆)n = 0. Note that the descendant of any null vector v is again a null vector:

(L−nv, w) = (v, Lnw) = 0,

for any w ∈M . This is not true in general for the singular vectors.

When talking about singular vectors in the Fock module F(α) we need to be more careful. Since two
algebras are acting on this space we can consider V-singular vectors and H-singular vectors. From
the Proposition 3.1.3 it follows that the second set is empty (Shapovalov form is nondegenerate,
hence there are no null vectors and in consequence no singular vectors). Therefore we consider only
V-singular vectors and this assumption will be implicit.

Example 3.1.2 Consider the Verma module with ∆ = 0 (called vacuum module). Then v1 =
L−1 | 0 〉 is a singular vector. Clearly Lnv1 = 0 for n ≥ 2. Moreover

L1(L−1 | 0 〉) = L−1L1 | 0 〉+ [L1, L−1] | 0 〉 = 2L0 | 0 〉 = 0.

Second example is more interesting. Let v2 = (aL−2 +L2
−1) |∆ 〉, where a ∈ C is a parameter. Then

Lnv2 = 0 for n ≥ 3, whereas

L1(v2) = a[L1, L−2] |∆ 〉+ aL−1[L1, L−1] |∆ 〉+ [L1, L−1]L−1 |∆ 〉

=
(
3aL−1 + 2L0L−1 + 2L−1L0

)
|∆ 〉

=
(
3a+ 2(2∆ + 1)

)
|∆ 〉

and

L2(v2) = a[L2, L−2] |∆ 〉+ L−1[L2, L−1] |∆ 〉+ [L2, L−1]L−1 |∆ 〉

=
(
4aL0 + a

c

2 + 3L1L−1
)
|∆ 〉

=
(
4a∆ + a

c

2 + 6∆
)
|∆ 〉 .

It follows that for a = −2
3(2∆ + 1) and c = 18∆

2∆+1 − 8∆ vector v2 is singular.

Theorem 3.1.3 (Corollary 5.2, [38]) Consider a Verma module M(∆(β), c(β)) for the Virasoro
algebra, where

c(β) = 1− 6(β − 1)2

β
, ∆(β) = (rβ − s)2 − (β − s)2

4β ,

r, s ∈ Z and β ∈ C∗. Then there exists a unique (up to rescaling) singular vector in M(∆(β), c(β)),
whose grading is n = rs.
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As a consequence from this theorem we obtain vanishing of the corresponding Kac determinant
det(c(β),∆(β))m in gradings m ≥ n. This vanishing follows from the existence of the null vectors
in those this gradings.

In general any singular (and homogeneous) vector vs ∈ M(∆, c)n can be written in a unique way
in the basis of the module:

vs = Ar,s(L) |∆ 〉 =
∑

k1>···>km>0
k1+···+km=n

ck1,...,kmL−k1 . . . L−km |∆ 〉 , (3.8)

where Ar,s(L) ∈ U(V−). Computing the exact expressions for the coefficients ck1,...,km ∈ C of this
decomposition is in general an open problem. It was solved if s = 1 (or r = 1), in which case the
answer is [6]:

Ar,1 =
∑

p1+p2+···+pk=r

(r − 1)!2∏k−1
i=1

(∑i
j=1 pj

)(
r −

∑i
j=1 pj

)b2(r−k)L−p1L−p2 . . . L−pk . (3.9)

Proposition 3.1.4 Let g be a Lie Z-algebra and assume that φ : M1 → M2 is a homomorphism
of the weight g-modules. Suppose that the image of the lowest weight vector v ∈ M1 is nonzero.
Then if the weights for M1 and M2 are equal it is a weight vector. Otherwise it is a singular vector.
Moreover nonzero image of a singular vector is again a singular vector or a weight vector.

Proof. Let v ∈ M1 be a weight vector. Observe that X · φ(v) = φ(X · v) = 0 for any X ∈ g+.
Therefore, if nonzero, φ(v) is again a singular vectors or a weight vector. Since for any H ∈ h we
have H · φ(v) = φ(H · v) = λ(H)φ(v), if the weights of the modules M1 and M2 coincides φ(v) is a
weight vector. Statement of the proposition for the singular vectors follows then from the fact that
a singular vector is a weight vector for a module, which it generates. �

Proposition 3.1.5 (Proposition 5.2, [38]) Let β ∈ C. Then there exists element An ∈ U(V≤)−n,
called Shapovalov element, such that An |∆(β) 〉 is a singular vector in the module M(∆(β), c(β)).

3.1.4 Homomorphism Sα,Q

The Fock module admits also an action of the Virasoro algebra, which we are now going to describe.
Let Q ∈ R be a parameter. We also assume in this section that α ∈ R. Then we can define following
representation of V on F(α), for which the Virasoro operators take form:

L0(Q) = 2
∞∑
n=1

a−nan + a0(a0 −Q),

Lm(Q) =
∑

n6=0,m
am−nan + (2a0 − (m+ 1)Q)am form 6= 0, (3.10)

c(Q) = 1− 6Q2.

Although the sums above are infinite, for any given v ∈ F(α) only finitely many terms contribute
to the value of Lm(Q)v. Therefore operators (3.10) are well defined elements of End(F(α)).
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Lemma 3.1.1 The action of V on F(α) is compatible with the anti-involutions σV and σQ, i.e.
σH(Li(Q)) = L−i(Q).

Proof. We know that σQ(a0) = Q− a0 and σQ(an) = a−n for n 6= 0. It follows that (n 6= 0):

σQ(L0(Q)) =
∞∑
n=1

a−nan + (Q− a0)(−a0) = L0(Q)

σQ(Lm(Q)) =
∑

n6=0,m
a−na−m+n + (2Q− 2a0 − (m+ 1)Q)a−m = L−m(Q) �

Let |α 〉 ∈ F(α) be the weight state. We can consider a weight module over V defined using the
representation (3.10) by the equation N(α,Q) = U(V≤) |α 〉 ⊂ F(α). From the universal property
(3.1.2) it follows that for c = 1− 6Q2 and ∆ = α(α −Q) there exists a surjective homomorphism
of modules Sα,Q : M(∆, c)→ N(α,Q).

Proposition 3.1.6 Let c = 1− 6Q2 and ∆ = α(α−Q) where α,Q ∈ R. Then the homomorphism
Sα,Q enjoys the following properties:

• Sα,Q preserves the gradings,

• Sα,Q preserves the bilinear forms,

• kernel of Sα,Q is the subspace of all null vectors in M(∆, c).

Therefore N(α,Q) = J(c,∆) is the irreducible weight module from the Proposition 3.1.2.

Proof. The first assertion follows from the definition of the operator Sα,Q. To simplify notation let
S = Sα,Q. First let us now proof that

(v, w)∆,c = (Sv, Sw)α (3.11)

for any v, w ∈ M(∆, c). We will prove by the induction of the (equal) grading of v and w. If the
gradings are different, both sides vanishes. If they are weight vectors the premise follows from the
defining equation (v∆,c, v∆,c)∆,c = (vα, vα)α. We pass to the induction step. We assume that the
statement is true for any v and w for which |v| = |w| ≤ n. Let v′, w′ ∈M(∆)n+1. Then there exist
i ∈ Z>0 and v ∈ M(∆)n+1−i such that we can write v′ = L−iv. Let From Lemma 3.1.1 and the
definition of the form (·, ·)α it follows that:

(Li(Q)ξ, η)α = (ξ, σH(Li(Q))η)α = (ξ, L−i(Q)η)α

for any ξ, η ∈ F(α). Because Li(Q)(Sα,Qv) = Sα,Q(Liv), using the induction hypothesis, we
conclude that

(v′, w′)∆,c = (L−iv, w′)∆,c = (v, Liw′)∆,c = (Sα,Qv, Sα,QLiw′)α
= (Sα,Qv, Li(Q)Sα,Qw′)α = (L−i(Q)Sα,Qv, Sα,Qw′)α
= (Sα,QL−iv, Sα,Qw′)α = (Sα,Qv′, Sα,Qw′)α.
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This gives us the induction step.

To prove the third assertion suppose that v ∈ M(∆, c) is a null vector. Then from the equation
(3.11) it follow that (Sv, Sw)α = 0 for any w ∈M(∆, c). Because the coefficients α and Q are real,
the matrix of the operator S in the bases (3.3) and (3.2) has real coefficients (it can be calculated
using the equations (3.10)). Therefore (Sv, S(v̄))α = (Sv, Sv)α = 0. By Proposition (3.1.3) this
can only happen when Sv = 0, hence v belongs to the kernel of S. In the other direction, if Sv = 0
then for any w ∈M(∆, c) we have (v, w)∆,c = (Sv, Sw)α = 0, so v is a null vector. �

Let us now consider the case of Verma modules containing singular vectors. In such a case the map
Sα,Q is defined for c = 1 − 6Q2, ∆ = αr,s(αr,s − Q) and αr,s = r−1

2 β−
1
2 − s−1

2 β
1
2 , where r, s ∈ Z.

Therefore from Proposition 3.1.6, using the representation of the singular vector (3.8), we obtain
directly:

Corollary 3.1.1 In Fock module F(αr,s) the relation Ar,s(L(αr,s)) |αr,s 〉 = 0 holds.

3.1.5 Duality

Let us notice that for α′ = Q−α we have ∆ = α′(α′−Q) = α(α−Q). This means that the Verma
module M(∆, c) is the domain of the two homomorphisms: Sα,Q and SQ−α,Q. In particular from
Corollary 3.1.1 we conclude that any singular vector gives rise to two different equations in the two
modules: F(α) and F(Q− α). Moreover these two modules are dual to each other in the sense of
the following definition.

Definition 3.1.10 Let g be a Lie Z-algebra and let M =
⊕
n∈ZM

n be a module over g (cf. Def-
inition 3.1.2) for which for any n ≥ 0 we have dim(Mn) < ∞ and for n < 0 we have Mn = {0}.
We define contragradient dual module as M∗ =

⊕
n≥0(Mn)∗, where (Mn)∗ is a vector space dual

to Mn. The grading is defined as (M∗)n = (Mn)∗.

Example 3.1.3 Modules F(α) and F(Q− α) are contragradient dual to each other.

Notion dual to the singular vector is the cosingular vector.

Definition 3.1.11 Let M be a module over Lie Z-algebra g with a weight vector v0 (here we does
not assume that v0 spans M). We say that v ∈ M is a cosingular vector if it does not belong to
U(g)v0.

Proposition 3.1.7 There exists a consigular vector in F(α) if and only if relation
n∑
k=1

∑
i1+···+ik=n

ai1,...,ikL−i1 · · ·L−ik |α 〉 = 0, (3.12)

holds for some nonzero collection of the coefficients ai1,...,ik .
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Proof. Let us consider Fock module over V. It is Z-graded F(α) =
⊕

n∈ZF(α)n. Suppose that there
exists a cosingular vector v ∈ F(α). If we can decompose v into homogeneous parts with respect to
this grading at least one homogeneous component need to be consingular as well. Therefore without
loss of generality we can assume that v is homogeneous. Let p(n) be the number of the partitions of
n, as defined in (3.4). Then dim(F(α)n) = p(n) = dim(U(V)n) = p(n). Existence of the cosingular
vector implies that dim(U(V)n |α 〉) < dim(U(V)n). Therefore vectors L−i1 · · ·L−ik |α 〉 span a
vector space of dimension lower then p(n) and cannot be linearly independent. Hence a linear
relation of the form

n∑
k=1

∑
i1+···+ik=n

ai1,...,ikL−i1 · · ·L−ik |α 〉 = 0,

for some nonzero collection of the coefficients ai1,...,ik must hold.

On the other hand suppose that the relation (3.12) holds. It follows that dim(U(V)nv0) <

dim(U(V)n), so there exists a cosingular vector in grading n. �

From Corollary 3.1.1 we conclude that there exist cosingular vectors in the modules F(αr,s).

3.2 Vertex algebras

3.2.1 Basic definitions and properties

Let us start with fixing some notation. For any vector space V we denote by V [[z, z−1]] the vector
space of formal power series with coefficients in V , i.e. expressions of the form:∑

i∈Z
Aiz

i, Ai ∈ V,

whereas by V ((z)) its subspace consisting of expressions such that there exists N ∈ Z for which for
all i < N we have Ai = 0. This subspace is an algebra under the usual multiplication:(∑

i∈Z
Aiz

i
)(∑

j∈Z
Bjz

j
)

=
∑
n∈Z

( ∑
i+j=n

AiBj
)
zn,

where because of the vanishing of the coefficients with sufficiently small indices, the sum in the
bracket in the right hand side of the above equation is finite, and the whole result belongs to V ((z)).
Similarly we define formal powers series in several variables V [[z1, z

−1
1 , . . . , zk, z

−1
k ]]:∑

i1,...,ik∈Z
Ai1,...,ikz

i1
1 · · · z

ik
1 , Ai1,...,ik ∈ V,

Moreover we use the following convention: V ((z))((w)) =
(
V ((z))

)
((w)).

An example of a formal power series in two variables is the delta distribution δz−w =
∑
n∈Z z

−n−1wn.
We can also define operation

ιz,w : V [[(z − w)±1]]→ V [[z±1, w±1]]
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by expanding the rational functions like 1
z−w in the domain |z| > |w|:

1
z − w

=
∞∑
n=0

z−n−1wn.

In what follows we will lso use more general power series:

C{z} =
{∑
r∈C

arz
r : only countably many of ar ∈ C are nonzero

}
.

Let us define a few operations on this set. For any element f(z) =
∑
n∈C fnz

n of C{z} we set
Res
z
f(z) = f−1 and define its derivative: ∂f(z) =

∑
n∈C nfnz

n−1. Clearly we have a relation
Res
z
∂f(z) = 0. For f ∈ V [[z±1]] we define its annihilation part: f(z)a =

∑
n<0 fnz

n and the
creation part f(z)c =

∑
n≥0 fnz

n. Those operations commute with taking the derivative: ∂f(z)a =
(∂f(z))a and ∂f(z)c = (∂f(z))c. We also denote the commutator as [a, b] = ab− ba.

Suppose that V =
⊕
n∈Z is a Z-graded vector space. We say that φ ∈ EndV has degree n if

φ(V m) ⊂ V n+m for any m ∈ Z. In such case we write deg(φ) = n.

Definition 3.2.1 Let V be a vector space. An operator-valued formal power series

A(z) ∈ EndV [[z, z−1]]

is called a field on V if for any v ∈ V we have A(z)v ∈ V ((z)). We denote the space of fields
in V by F(V ). Two fields A(z) and B(w) are mutually local if there exists N ∈ N such that
(z − w)N [A(z), B(w)] = 0.

Definition 3.2.2 A Vertex algebra consists of a Z-graded vector space V =
⊕

m∈Z V
m, an element

| 0 〉 ∈ V 0 (called vacuum), and a linear map Y : V → End(V )[[z, z−1]], such that for any v ∈ V
the expression Y (v, z) =

∑
n∈Z v(n)z

−n−1 is a field, satisfying the following set of axioms:

• (translation covariance) [T, Y (v, z)] = ∂Y (v, z), where T (v) = v(−2) | 0 〉,

• (vacuum) Y (| 0 〉 , z) = IdV , Y (v, z) | 0 〉 ∈ V [[z]] and Y (v, z) | 0 〉 |z=0 = v,

• (locality) ∀v,w∈V the fields Y (v, z) and Y (w, z′) are mutually local.

Moreover for any a ∈ V m we have deg(a(n)) = −n+m− 1. In particular deg(T ) = 1.

Remark 3.2.1 There are different variants of the definition of vertex algebras in the literature.
The above version follows [28]. In other places Z-gradation is not required (for example in [38]).

Definition 3.2.3 A homomorphism of vertex algebras (V, | 0 〉 , T, Y ) → (V ′, | 0 〉′ , T ′, Y ′) is a lin-
ear map ρ : V → V ′ such that ρT = T ′ρ, ρ(| 0 〉) = | 0 〉′ and

ρ(Y (v, z)w) = Y ′(ρ(v), z)ρ(w)

for any v, w ∈ V .
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Definition 3.2.4 To any vertex algebra V we can associate a group of its automorphisms Aut(V ),
defined as the group of isomorphism φ : V → V .

From the vacuum axiom we know that the map v → Y (v, z) is injective. Its image is described by
the following theorem.

Theorem 3.2.1 (Goddard’s uniqueness theorem) Let (V, | 0 〉 , T, Y ) be a vertex algebra and
let a ∈ V . Assume also that A(z) is a field on V such that:

1. A(z) | 0 〉 ∈ V [[z]] and A(z) | 0 〉 |z=0 = a,

2. ∂zA(z) | 0 〉 = TA(z) | 0 〉,

3. A(z) is mutually local with Y (b, w) for any b ∈ V .

Then A(z) = Y (a, z).

Proof. Consider the following two conditions for an element of b(z) ∈ V [[z]]: b(0) = a and ∂zb(z) =
Tb. They fix b(z) uniquely, as we can compute its coefficients iteratively (in fact b(z) = eTza) and
are satisfied by both A(z) | 0 〉 and Y (a, z) | 0 〉. It follows that A(z) | 0 〉 = Y (a, z) | 0 〉. Let now
v ∈ V be any element. For large enough N we can write

(z − w)NA(z)Y (v, w) | 0 〉 = (z − w)NY (v, w)A(z) | 0 〉
= (z − w)NY (v, w)Y (a, z) | 0 〉
= (z − w)NY (a, z)Y (v, w) | 0 〉

Since Y (v, w) | 0 〉 is well defined at w = 0, evaluating at this point we get zNA(z)v = zNY (a, z)v.
Multiplying both sides by z−N , and since v was arbitrary, we get the desired result. �

Theorem 3.2.2 (Associativity) Let a, b, c ∈ V . The following three elements are expansions of
the same element of V [[z, w]][z−1, w−1, (z − w)−1]:

• Y (a, z)Y (b, w)c ∈ V ((z))((w)),

• Y (b, w)Y (a, z)c ∈ V ((w))((z)),

• Y (Y (a, z − w)b, w)c ∈ V ((w))((z − w)).

To understand this theorem let us see how these elements look in the spaces appearing above:

• in V ((z))((w)): Y (a, z)Y (b, w)c =
∑∞
k=k0

∑∞
l=l0(k0) a(−1−l)b(−k−1)cz

lwk,

• in V ((w))((z)): Y (b, w)Y (a, z)c =
∑∞
l=l0

∑∞
k=k0(l0) b(−k−1)a(−1−l)cz

lwk,
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• in V ((w))((z − w)): Y (Y (a, z − w)b, w)c =
∑∞
l=l0

∑∞
k=k0(l0)

(
a(−1−l)b

)
(−k−1)

c(z − w)lwk.

We see that in the first case arbitrarily low powers of z can appear, whereas in the second and in
the third cases arbitrarily low powers of w.

Definition 3.2.5 We define normal ordered product of two fields A(z) and B(w) by

: A(z)B(w) := A(z)cB(w) +B(w)A(z)a.

For more than two fields we set:

: A1(z1) · · ·An(zn) :=: A1(z1)(: A2(z2) : · · · : An−1(zn−1)An(zn) :) · · · :) : .

More explicit formula is:

: A(z)B(w) :=
∑
n∈Z

( ∑
m<0

B(n)A(m)z
−m−1 +

∑
m≥0

A(m)B(n)z
−m−1

)
w−n−1

One can check that the operation of the normally ordered product in general is not associative
neither commutative. For example for φ(x) =

∑
n∈Z anz

−n−1 we have:

:
(

: φ(z)φ(z) :
)
φ(z) :=: φ(z)

(
: φ(z)φ(z) :

)
: + ∂2

∂z2φ(z).

This gives a counterexample to the Remark 2.2.6 in [28].

Remark 3.2.2 A generatisation of this example of non-associativity will be important afterwards,
when we consider action of V on the space of intertwining operators.

Definition 3.2.6 Let V be a vertex algebra and let A = {ai(z)}i∈I be a family of mutually local
fields on V . We say that V is strongly generated by the family A if every field of V can be expressed
as normally ordered product in the derivatives of the fields ai(z):

: ∂j1−1ai1(z) · · · ∂jn−1aik(z) : .

Equivalently V is spanned as a vector space by the monomials in ai(n) (i ∈ I, n ∈ Z).

Remark. In this notation under the normal ordering sign each derivative acts only on the operator
to which it is adjacent.

The following theorem gives sufficient conditions for a family of fields {ai(z)}i∈I to give rise to a
vertex algebra.

Theorem 3.2.3 (Strong reconstruction theorem) Given a vector space V , a distinguished
vector | 0 〉 ∈ V , an operator T ∈ EndV , a countable family of mutually local fields {ai(z)}i∈I
satisfying:
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• ai(z) | 0 〉 = ai +O(z) for some vectors ai ∈ V ,

• T | 0 〉 = 0 and [T, ai(z)] = ∂za
i(z),

• V is spanned by the vectors ai1(−j1) . . . a
ik
(−jk) | 0 〉, ja > 0,

one can define a unique vertex algebra structure on V such that Y (ai, z) = ai(z) by setting:

Y (ai1(−j1) . . . a
ik
(−jk) | 0 〉 , z) = 1

(j1 − 1)! · · · (jk − 1)! : ∂j1−1ai1(z) · · · ∂jn−1aik(z) : . (3.13)

Locality of the fields (3.13) follows from the following lemma.

Lemma 3.2.1 (Lemma 2.3.4, [28]) Let a(z), b(z) and c(z) be mutually local fields. Then the fields
: a(z)b(z) : and c(z) are mutually local as well.

3.2.2 Operator product expansion

One of the important concepts in CFT is the operator product expansion. This notion was intro-
duced in [56] as a tool to deal with ill-defined product of two quantum fields φ1(z1)φ2(z2). In this
approach one considers singularities in φ1(z1)φ2(z2), which appear when y tends to x:

φ1(z1)φ2(z2) ∼
N−1∑
j=0

Cj12(z2)
(z1 − z2)j+1

Operator product expansion equips a vertex algebra with a sort of multiplication. This multi-
plication can be applied to compute correlators of the theory. This can be done by successively
multiplying the fields appearing in the correlators:

〈φ1(z1)φ2(z2) . . . φn(zn)〉 =
N−1∑
j=0

1
(z1 − z2)j+1

〈
Cj12(z2)φ3(z3) . . . φn(zn)

〉
and henceforth reducing the number of fields appearing therein. The iteration procedure stops
since the two-point and the three-point correlators are heavily fixed by the conformal symmetry.
Operator product expansion leads also to the bootstrap approach, which we are not going to discuss
here.

Proposition 3.2.1 [38] Let A(z), B(w) ∈ F(V ) be two fields. Then the following statements are
equivalent:

• A(z) and B(w) are mutually local,

• There exists fields Cj(w), j = 0, 1, . . . N − 1 such that

[A(z), B(w)] =
N−1∑
j=0

Cj(w)∂(j)
w δz−w,
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• A(z)B(w) has an expression

N−1∑
j=0

ιz,w
Cj(w)

(z − w)j+1 + : A(z)B(w) :,

and B(w)A(z) has an expression:

N−1∑
j=0

ιw,z
Cj(w)

(z − w)j+1 + : A(z)B(w) :,

• A(z)B(w) converges to the above formula in the domain |z| > |w| and B(w)A(z) does so in
the domain |w| > |z|.

In a situation like in the proposition above we write

A(z)B(w) ∼
N−1∑
j=0

Cj(w)
(z − w)j+1

and call it operator product expansion, or OPE. The way in which right hand side should be
expanded is implicit in the order of fields on the left hand side: if A(z) is applied after B(w) we
should make the expansion in the domain |z| > |w|. The physical interpretation is that |z|, |w|
correspond to times of applying our operators, which should be consistent with the order of the
application of the operators.

3.2.3 Conformal symmetry

In this section we make a link with the first part of the chapter. We introduce Virasoro algebra
action on the vertex algebras.

Definition 3.2.7 Vertex operator algebra is a Z-graded vertex algebra with a distinguished con-
formal vector ω ∈ V such that Y (ω, z) =

∑
n∈Z L

V
n z
−n−2 satisfies:

• Operators LVn form a representation of the Virasoro algebra for some value of central charge
cV ,

• LV−1 = T and LV0 |Vn = nIdVn for n ∈ Z.

Therefore the underlying vector space of the Vertex operator algebra is a module over V. The field
Y (ω, z) is called energy-momentum tensor of the vertex algebra V and usually denoted also by
T (z) (which should not be confused with the operator T ). The operator LV0 can be interpreted
as Hamiltonian and in physical models we demand that the set of its eigenvalues (or spectrum)
is real and bounded from below. In Proposition 2.9 this operator was related to the vector field
−
∑
a za

∂
∂za

, which generates dilations. If we interpret log|z| as time, those are time translations,
which correspond to the Hamiltonian action.
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Definition 3.2.8 Let Im(Y ) ⊂ End(V )[[z]] be the image of Y . One can define action of V on this
space transporting it from the action on V :

Lk · Y (v, z) = Y (LVk v, z). (3.14)

This definition is well defined, since the field Y (v, z), through property Y (v, z) | 0 〉 |z=0 = v from
the Definition 3.2.2, indicates the vector v uniquely. Note that this action is not the composition
of the field with a linear operator.

3.2.4 Examples

Virasoro vertex algebra

First we equip the representation Virc defined in (3.6) with the structure of the vertex operator
algebra. We already have defined vacuum | 0 〉 ∈ Virc and we set T = L−1, so that T | 0 〉 = 0.
We would like to use Theorem 3.2.3 applied to the field T (z) =

∑
n∈Z z

−n−2Ln. Let us check
the axioms. Clearly the space Virc is spanned by vectors of the form T(−j1) . . . T(−jk) | 0 〉, where
T(−i) = L−i−1. Since we have only one field, the locality condition is void. Moreover we have

[T, T (z)] =
∑
n∈Z

z−n−2[L−1, Ln] =
∑
n∈Z

z−n−2(−1− n)Ln−1 = ∂T (z).

Finally T (z) | 0 〉 = L−2 | 0 〉 + zL−3 | 0 〉 + O(z2) is of the desired form. Hence all the assumptions
of the Theorem 3.2.3 are satisfied and the equation (3.13) defines a structure of a vertex algebra.

Free boson algebra

Another example is given by the Fock space representation F(0). As before vacuum vector | 0 〉 = v0
is already defined, we set T = 2

∑∞
n=0 a−n−1an and define a field φ(z) =

∑
n∈Z anz

−n−1. Those
objects have following properties:

• T | 0 〉 = 0 since an | 0 〉 = 0 for n ≥ 0,

• [T, φ(z)] = ∂φ(z) follows from the direct computation (by using the relation [ab, c] = a[b, c] +
[a, c]b),

• the space F(0) is spanned by vectors of the form a−j1 . . . a−jk | 0 〉, since it is a weight module
over H,

• φ(z) | 0 〉 = a−1 | 0 〉+ za−2 | 0 〉+ . . . is of the desired form.
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Therefore from Theorem 3.2.3 the four (F(0), Y, T, | 0 〉) with Y given by the equation (3.13) has
the structure of the vertex algebra. Moreover define for Q ∈ C a representation of V:

L
F(0)
0 = 2

∞∑
n=1

a−nan, (3.15)

LF(0)
m =

∑
n6=0,m

am−nan − (m+ 1)Qam form 6= 0. (3.16)

One can check that those are the modes of the vector ω = 1
2a

2
−1 +Qa−2. If we choose this vector as

the conformal vector we get the structure of the vertex operator algebra called free boson algebra.
In this case the energy-momentum tensor can be also expressed shortly as:

T (z) = Y (ω, z) =
∑
n∈Z

LF(0)
n z−n−2 =: φ(z)φ(z) : +Q∂φ(z).

3.2.5 Modules and intertwining operators

Definition 3.2.9 A module over a vertex operator algebra V is a vector space W and a linear
map YW : V → EndW [[z, z−1]] such that:

• YW (| 0 〉 , z) = IdW ,

• modes of YW (ω, z) =
∑
n∈Z L

W
n z
−n−2 satisfy the commutation relations of the Virasoro algebra

with the central charge cV ,

• for any v ∈ V we have YW (Tv, z) = ∂zYW (v, z),

• for any a, b ∈ V the fields YW (a, z) and YW (b, w) are mutually local.

Example 3.2.1 The space W = F(α) can be equipped with the structure of a module over the free
boson vertex algebra F(0) in the following way. We define

YW (| 0 〉 , z) = IdW , (3.17)
YW (a−1 | 0 〉 , z) =

∑
n∈Z

anz
−n−1, (3.18)

YW (a−i1 · · · a−in | 0 〉 , z) = : Di1−1YW (a−1 | 0 〉 , z) · · ·Din−1YW (a−1 | 0 〉 , z) : . (3.19)

The conformal vector ω = 1
2a

2
−1 +Qa−2 ∈ F(0) is mapped to:

YW (ω, z) =
∑
n∈Z

LF(α)
n z−n−2, (3.20)

L
F(α)
0 = 2

∞∑
n=1

a−nan + α(α−Q), (3.21)

LF(α)
m =

∑
n 6=0,m

am−nan + (2α− (m+ 1)Q)am form 6= 0. (3.22)
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Let us check the axioms of the definition (3.2.9). The first one is obvious. The second one is a
result of direct computation. It is sufficient to check the third axiom for v = a−i1 · · · a−in | 0 〉. In
such a case we have:

Tv = 2
∞∑
k=0

a−k−1aka−i1 · · · a−in | 0 〉 =
n∑
a=1

iaa−i1 · · · â−i1a−1−ia · · · a−in | 0 〉 ,

where â−i1 means omission of the corresponding term. Applying the equation (3.19) we get formula
YW (Tv, z) = ∂zYW (v, z) (this is very similar computation as in the Lemma 3.2.2, hence we skip
the details). The locality axiom follows from the Dong’s lemma (3.2.1).

Definition 3.2.10 A vertex operator algebra V is called rational if every V -module is completely
reducible.

Definition 3.2.11 A vertex operator algebra V is called C2-cofinite if the quotient vector space
V/linC{a(−2)b : a, b ∈ V } is of finite dimension.

Definition 3.2.12 Let M1, M2 and M3 be modules over a vertex operator algebra V . An inter-
twining operator is a linear map

I(·, z) : M1 → Hom(M2,M3)⊗C C{z},

satisfying I(LM1
−1 v, z) = ∂

∂z I(v, z) as well as the following intertwining property:

Res
z−w

(
I(YM1(a, z − w)v, w)(z − w)mιw,z−w((z − w) + w)n

)
= Res

z
(YM3(a, z)I(v, w)ιz,w(z − w)mzn)− Res

z
(I(v, w)YM2(a, z)ιw,z(z − w)mzn),

for any a ∈ V , v ∈M1 and m,n ∈ Z. Here Hom denotes the space of linear maps. We will denote
the set of such intertwining operators by Int(M1,M2,M3).

Definition 3.2.13 We can define an action of V on the space of intertwining operators in a fashion
similar to the one given by the equation (3.14):

(Lk · I)(v, z) = I(LM1
k v, z). (3.23)

3.2.6 Free boson intertwining operator

We now define intertwining operators which are crucial for defining quantum curves. In this section
we use the notation Dn = 1

n!
∂n

∂xn .

Let us takeM1 = F(α),M2 = F(β) andM3 = F(α+β) and define an element of Hom(M2,M3)⊗C
C{z}:

I(|α 〉 , x) = uα exp
(
2α

∞∑
j=1

xj

j
a−j

)
exp

(
− 2α

∞∑
j=1

x−j

j
aj
)
x2αa0 ,
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where uα : F(β) → F(α + β) is a mapping such that uα(|β 〉) = |α+ β 〉, [uα, an] = 0 for n 6= 0
and [a0, u

α] = αuα. For descendant states, following [32], we define:

I(a−j1 . . . a−jn |α 〉 , x) =: Dj1−1φ(x) · · ·Djn−1φ(x)I(|α 〉 , x) :, (3.24)

where as before φ(z) =
∑
n∈Z anz

−n−1. Note that although I(|α 〉 , x) can have complex non integer
powers of z normal ordering makes sense: I(|α 〉 , x) appears in (3.24) on the right and therefore
we are not splitting it into creation and annihilation parts. Let us recall that normal ordering
operation is implicitly nested from the right.

Remark 3.2.3 We need to check that the definition (3.24) is well defined. The right hand side
of the equation (3.24) is not linearly independent: since the operators {a−i}i>0 commute, any
permutation of the sequence (a−j1 , . . . , a−jn) does not change the left hand side of this equation.
However the right hand side is also permutation-invariant, since all the operators appearing in the
expression : Dj1−1φ(x) · · ·Djn−1φ(x)I(|α 〉 , x) : are normally ordered (creation operators are put
on the left and annihilation operators are put on the right). This ordering does not depend on the
order of the sequence (j1, . . . , jn).

More explicitly, using ez =
∑∞
n=0

1
n!z

n and expanding the powers of infinite sums we can write

I(|α 〉 , x) =
∑
M∈Z

uαxαa0+M
∞∑

k,l=0

(−1)l

k!l! (2α)k+l

·
∑

j1+···+jk=
M+m1+···+ml

j•,m•>0

1
j1 · · · jkm1 · · ·ml

a−j1 . . . a−jkam1 . . . aml . (3.25)

equation In a shorter way one can also write I(|α 〉 , x) =: e2α
∫
φ(z)dx :, where the integration

constant is understood as “1
2 log(u)”. The following remark will be useful later.

Remark 3.2.4 Notice that we have

I(|α 〉 , x) | 0 〉 = exp
(
2α

∞∑
j=1

xj

j
a−j

)
|α 〉

Therefore it is a power series with strictly positive powers of x and the coefficient at x = 0 of the
vector I(|α 〉 , x) | 0 〉 equals to |α 〉. Higher coefficients can be expressed using character polynomials
Pn(y1, y2, . . . ) of the irreducible representations (with one row Young diagram of length n) of the
group GL(N,C), defined using the relation

exp(
∞∑
n=1

xnyl) =
∞∑
l=0

Pn(y1, y2, . . . )xl.

We are not going to check whether I(v, x) defined above satisfies both axioms of the intertwining
operators, as this will be not relevant to the construction of the quantum curves. We will check
just the first axiom.
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Lemma 3.2.2 For any v ∈ F(α) we have I(LF(α)
−1 v, x) = ∂

∂xI(v, x).

Proof. We know that:
L
F(α)
−1 = 2

∑
n>0

a−1−nan + 2a−1a0.

It is enough to check the statement of the lemma for basis vectors v ∈ F(α), which can be written
in the form v =

∏k
j=1 a−ij |α 〉. Let us examine how L

F(α)
−1 acts on such v. We have:

2
∑
n>0

a−1−nan

k∏
j=1

a−ij |α 〉 = 2
∑
n>0

[a−1−nan,
k∏
j=1

a−ij ] |α 〉 =

=
k∑
j=1

ija−i1 . . . â−ija−1−ij . . . a−ik |α 〉 ,

where â−ij means the omission of the corresponding term. The above formula follows from the
facts that an |α 〉 = 0 for n > 0 that the operators a−1−nan and a−ij commute among themselves,
unless n− ij = 0, whence [a−1−nan, a−ij ] = 1

2 ija−ij−1. Hence each occurrence of a−ij is substituted
with ija−ij−1, giving rise to a term in the above sum.

On the other hand we have

∂

∂x
I(

k∏
j=1

a−ij |α 〉 , x) = ∂

∂x
: Di1−1φ(x) · · ·Dik−1φ(x)I(|α 〉 , x) :=

= 1
(i1 − 1)! · · · (ik − 1)!

k∑
j=1

: ∂i1−1φ(x) · · · ∂ijφ(z) · · · ∂ik−1φ(x)I(|α 〉 , x) :

+ : Di1−1φ(x) · · ·Dik−1φ(x) ∂
∂x
I(|α 〉 , x) : .

We see that the first therm above corresponds exactly to the application of the definition of the
operator I to the vector

∑k
j=1 ija−i1 . . . â−ija−1−ij . . . a−ik |α 〉.

We are left with the other part of the operator LF(α)
−1 , namely 2a−1a0, and with the term involving

∂
∂z I(|α 〉 , x). This equality corresponds exactly to the statement of the Lemma in the case of
v = |α 〉. Since we know that I(|α 〉 , x) =: e2α

∫
φ(x) :, it follows that:

I(2a0a−1 |α 〉 , x) = 2α : φ(x)I(|α 〉 , x) := ∂

∂x
: e2α

∫
φ(x)dx := ∂

∂x
I(|α 〉 , x),

where the first equation follows from the definition of I and the way in which the operator a0 acts.
�

The following lemma was motivated by the equation (2.2.7) from [53] and expansions of the product
of the fields like in Proposition 3.2.1 from [38].

Lemma 3.2.3 For n ≥ 2 the following formula holds:

I(L−nv, x) = 1
(n− 2)! : ∂n−2

x T (x)I(v, x) :

= 1
(n− 2)!

(
∂n−2
x T3(x)cI(v, x) + I(v, x)∂n−2

x T2(x)a
)
. (3.26)
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Proof. Notice first that it is enough to prove the statement for n = 2. For higher values of this
parameter the conclusion can be than deduced inductively form the commutation relations of the
Virasoro algebra. Indeed, for n > 1 we have

L−n−1 = 1
n− 1[L−1, L−n].

Therefore, using the fact that I(L−1v, x) = ∂xI(v, x) we get:

I(L−n−1v, x) = 1
n− 1I(L−1L−nv, x)− 1

n− 1I(L−nL−1v, x)

= 1
n− 1∂x

1
(n− 2)! : ∂n−2

x T (x)I(v, x) : − 1
n− 1

1
(n− 2)! : ∂n−2

x T (x)∂xI(v, x) :

= 1
(n− 1)! : ∂n−1

x T (x)I(v, x) : .

Notice that we are using here the following Leibniz rule property of the normal ordering:

∂x : a(x)b(x) :=: ∂xa(x)b(x) : + : a(x)∂xb(x) :,

which follows from the fact that taking creation (respectively annihilation) part commutes with
derivating a field, as was mentioned in the section 3.1.5.

Let us consider now the case of

L−2 = 2
∞∑
n=1

a−n−2an + 2a−2a0 + a2
−1 +Qa−2.

Therefore from the definition of I(v, x) (equation (3.24)) for v = a−i1 · · · a−ik |α 〉 and the commu-
tation relations of the Heisenberg algebra we get:

I(L−2a−i1 · · · a−ik |α 〉 , x) =
k∑
j=1

ijI(a−i1 · · · a−ij−2â−ij · · · a−ik |α 〉 , x) (3.27)

+ (2α+Q) : ∂φ(x)I(v, x) : + : φ(x) : φ(x)I(v, x) :: .

To prove the lemma we need to show that the above formula equals

: T (x)I(v, x) : = :
(

: φ(x)φ(x) : +Q∂φ(x)
)
I(v, x) : .

First let us notice that the Q-dependent parts match. Hence we can restrict ourselves to the case
Q = 0. We need to show that the expression

X =:
(

: φ(x)φ(x) :
)
I(v, x) : − : φ(x) : φ(x)I(v, x) :: (3.28)

exactly equals to the first two terms (for Q = 0) appearing on the right hand side of (3.27). The
expression (3.28) can be computed using the Heisenberg algebra commutation relations, although
the computation is a little tedious. We have:

:
(

: φ(x)φ(x) :
)
I(v, x) :=

(
: φ(x)φ(x) :

)
c
I(v, x) + I(v, x)

(
: φ(x)φ(x) :

)
a
, (3.29)
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where (
: φ(x)φ(x) :

)
c

=
∑
n<0

∑
m≤−n−2

anamx
−n−m−2 +

∑
n≥0

∑
m≤−n−2

amanx
−n−m−2 (3.30)

(
: φ(x)φ(x) :

)
a

=
∑
n<0

∑
m>−n−2

anamx
−n−m−2 +

∑
n≥0

∑
m>−n−2

amanx
−n−m−2.

We see that not all the terms appearing in (3.29) are normally ordered, contrary to : φ(x) :
φ(x)I(v, x) ::. Moreover, this change of ordering is the only difference between both expressions.
The difference can be computed by keeping track of the additional terms, which appears while
we would be computing terms appearing in (3.29), while trying to normal order them (moving
annihilation operators to the right and creation operators to the left). We only need to compute
annihilation operators an, n ≥ 0, appearing in (: φ(x)φ(x) :)c and the creation operators an, n < 0,
appearing in (: φ(x)φ(x) :)a. Other terms will be skipped by writing . . . . We have:

(
: φ(x)φ(x) :

)
c

=
∑
n<0

−n−2∑
m=0

a−namx
−n−m−2 +

∑
m≥0

∑
n≤−m−2

anamx
−n−m−2 + . . .

=
∞∑
n=1

n−2∑
m=0

a−namx
n−m−2 +

∑
m≥0

∑
n≥m+2

a−namx
n−m−2 + . . .

=
∞∑
n=2

n−2∑
m=0

a−namx
n−m−2 +

∞∑
n=2

n−2∑
m=0

a−namx
n−m−2 + . . .

= 2
∞∑
n=2

n−2∑
m=0

a−namx
n−m−2 + . . .

(
: φ(x)φ(x) :

)
a

=
∞∑
n=1

∞∑
m=n−1

a−namx
n−m−2 +

∞∑
n=0

−1∑
m=−n−1

amanx
−m−n−2 + . . .

=
∞∑
m=1

∞∑
n=m−1

a−manx
m−n−2 +

∞∑
n=0

n+1∑
m=1

a−manx
m−n−2 + . . .

= 2
∞∑
n=0

n+1∑
m=1

a−manx
m−n−2 + . . .

From the two above expressions we get two terms: X = A + B, one from moving annihilation
operators appearing in

(
: φ(x)φ(x) :

)
c
and the second from moving creation operators appearing

in
(

: φ(x)φ(x) :
)
a
:

A = 2
∞∑
n=2

n−2∑
m=0

a−n[am, I(v, x)]xn−m−2, B = 2
∞∑
n=0

n+1∑
m=1

[I(v, x), a−m]anxm−n−2.

Let us apply the defining equation (3.24) of the operator I, form which it follows that:

I(v, x) = : Di1−1φ(x) : Di2−1φ(x) · · · : Dik−1φ(x)I(|α 〉 , x) : · · · :

=
∑

n1,...,nk∈Z
: an1 · · · ankI(|α 〉 , x) :

k∏
j=1

x−nj−ij
(−nj − 1)(ij−1)

(ij − 1)! ,
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where where (x)(j) = x(x− 1)(x− 2) · · · (x− j+ 1) is the Pochhammer symbol. From the above we
infer that while moving operators an we can get contribution of two types: either it will “hit” another
ak or I(|α 〉 , x). According to this we can make corresponding further splittings A = A1 +A2 and
B = B1 +B2. We get:

A1 =
∑

j∈{i1,...,ik}

∞∑
n=2

a−nSjx
n−2−j 1

(j − 1)!

n−2∑
m=1

m(m− 1)(j−1)

B1 =
∑

j∈{i1,...,ik}

∞∑
n=0

Sjanx
−n−2−j 1

(j − 1)!

n+1∑
m=1

m(−m− 1)(j−1),

where
Sj =

∑
n1,...,n̂j ,...,nk∈Z

: an1 · · · ânj · · · ankI(|α 〉 , x) :
∏
s 6=j

(−ns − 1)(is)
is!

x−ns−1.

In computing the combinatorial sums we will use the following identities [19]:
n∑

m=0
(m)(j) = 1

j + 1(n+ 1)(j+1),
n∑

m=0
(−m)(j) = (−1)j

j + 1 (n+ j)(j+1).

Since m(m− 1)(j−1) = (m)(j) and m(−m− 1)(j−1) = −(−m)(j) we obtain:

A1 =
∑

j∈{i1,...,ik}

∞∑
n=2

a−nSjx
n−2−j j

(j + 1)!(n− 1)(j+1)

=
∑

j∈{i1,...,ik}

∑
n≤−2

anSjx
−n−2−j j

(j + 1)!(−n− 1)(j+1)

B1 =
∑

j∈{i1,...,ik}

∞∑
n=0

Sjanx
−n−2−j (−1)j+1j

(j + 1)! (n+ j + 1)(j+1)

=
∑

j∈{i1,...,ik}

∞∑
n=0

Sjanx
−n−2−j j

(j + 1)!(−n− 1)(j+1)

Summing the above two terms we get the right hand side of the equation:

ijI(a−i1 · · · a−ij−2â−ij · · · a−ik |α 〉 , x) = (3.31)
= ij : Di1−1φ(x) : Di2−1φ(x) · · · : Dij+1φ(x) · · · : Dik−1φ(x)I(|α 〉 , x) : · · · :

=
∑

n1,...,nk∈Z
: an1 · · · ankI(|α 〉 , x) :

(−nj − 1)(ij+1)ij

(ij + 1)! x−nj−ij−2 ∏
s 6=j

(−ns − 1)(is−1)
(is − 1)! x−ns−is .

multiplied and summed over j ∈ {1, . . . , k}, which should be compared with (3.27), as desired.

Let us move to A2 and B2. First we compute commutators for m > 0:

[am, I(|α 〉 , x)] =
[
am, 2α

∫
φ(x)dx

]
I(|α 〉 , x) = m

2
(
2αx

m

m

)
I(|α 〉 , x) = αxmI(|α 〉 , x)

and

[I(|α 〉 , x), a−m] = I(|α 〉 , x)
[
2α
∫
φ(x)dx, a−m

]
= −m2

(
2αx

−m

m

)
I(|α 〉 , x) = −αx−mI(|α 〉 , x),
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whereas since [a0, u
α] = αuα we get [a0, I(|α 〉 , x)] = αI(|α 〉 , x). Therefore we get (for readability

we introduce weighted summation operation sign
∑
N =

∑
n1,...,nk∈Z

∏k
j=1 x

−nj−ij (−nj − 1)(ij−1)):

A2 = 2
∑
N

∞∑
n=2

n−2∑
m=0

a−nx
n−m−2xm : an1 · · · ank [am, I(|α 〉 , x)] :

= 2α
∑
N

∞∑
n=2

(n− 1)a−nxn−2 : an1 · · · ankI(|α 〉 , x) :

= 2α
∑
n≤−1

(−n− 1)x−n−2anI(v, x) = 2α
∞∑

n≤−1

( ∂
∂x
x−n−1

)
anI(v, x)

B2 = 2
∑
N

∞∑
n=0

n+1∑
m=1

: an1 · · · ank [I(|α 〉 , x), a−m] : anxm−n−2x−m

= −2α
∑
N

∞∑
n=0

(n+ 1) : an1 · · · ankI(|α 〉 , x) : anx−n−2

= 2α
∞∑
n=0

(−n− 1)x−n−2I(v, x)an = 2α
∞∑
n=0

( ∂
∂x
x−n−1

)
I(v, x)an.

Summing both terms above we get 2α : ∂φ(x)I(v, x) :, obtaining the remaining term of the right
hand side of the equation (3.27). �

3.2.7 Additional topics

A goal of this section is to present interesting and nontrivial notions and results related to the
theory of vertex algebras. They also provide a link of the topics discussed here with the author’s
Master Thesis [13]. This section, being a digression form the main topic of the dissertation, is
sketchy.

Fusion algebra

Let V be a vertex operator algebra and let Rep(V ) be the category of its modules. On this
category, under some conditions, there exists a (categorical) tensor product ⊗ such that (V,⊗)
becomes braided monoidal tensor category. This product differs from the usual tensor product of
representations, and is called fusion product. One difference is that in standard tensor product of
representation of V the central charges would add. Here the central charge of a product equals to
(the same) central charge of both modules. Let Wi and Wj be two modules. One can write the
decomposition:

Wi ⊗Wj =
⊕
k

Nk
ijWk,

where Wk ∈ Rep(V ). The coefficients Nk
ij (the structure constants of the Grothendieck ring of

this category) are called fusion rules. Those coefficients are equal to the dimension of the space
of the corresponding intertwining operators. In determining fusion rules singular vectors play an
important rôle.
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Verlinde formula

For any module W over V one can define its character χW (τ) = TrW (q(τ)L0−c/24), where q(τ) =
e2π
√
−1τ . Under certain conditions on V (rationality and C2-cofinitnes) this character turns out to

be a holomorphic function on the upper half plane H = {τ ∈ C : Im(τ) > 0} [59]. For example for
the Verma module V∆ over the Virasoro VOA one has:

χV∆(τ) = q(τ)∆−c/24
∞∏
n=1

( 1
1− q(τ)n

)
.

The vector space spanned by characters of the given V , under certain assumptions, is invariant
under the natural action of the group SL(2,Z) and for rational VOA also of finite dimension [59].
This group is generated by two elements T and S and the action is given by T (τ) = τ + 1 and
S(τ) = − 1

τ . We clearly have S2 = id. Consider the matrix of the map S defined by the relation:

χWi

(
− 1
τ

)
=
∑
j

SijχWj (τ).

Form the physical perspective Z(τ) =
∑
i χWi(τ) is the partition function of CFT on a torus with

the spectrum {Wi}i∈I and τ has an interpretation as the modular parameter.

The famous Verlinde formula relates the S-matrix with the fusion rules [55]:

Nk
ij =

∑
l

SilSjl(S−1)kl
S0l

,

where 0 corresponds to the vacuum moduleW0 (V being a module over itself). For example putting
in this formula i = 0 one can see that W0 is the unit of the fusion product: Nk

0j = δj,k. Verlinde
formula has many applications. For example Edward Witten has used it to propose a formula for
the volume of the moduli space of flat connections on a Riemann surface [57], see also [13].

Monstrous moonshine

We want to mention another application of the theory presented in this chapter. Recall that forto
any vertex algebra we have associated a group of its automorphism. One can construct a vertex
algebra V \, for which Aut(V \) is the Monster groupM (the largest sporadic finite simple group) [29].
Monstrous moonshine asserts that its character is related to the modular j-function:

χV \(τ) = j(τ)− 744 = 1728 g2(τ)3

g2(τ)3 − 27g3(τ)2 − 744,

where

g2(τ) = 60
∑

(m,n)∈Z2−(0,0)

1
(m+ nτ)4 ,

g3(τ) = 140
∑

(m,n)∈Z2−(0,0)

1
(m+ nτ)6 .

Monstrous moonshine was conjectured in [16] and proved by Borcherds in [8].
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W-algebras

Let us finish this chapter with a definition of algebras, which extend the conformal symmetry.
Instead of only one field, the stress-energy tensor T (z), which strongly generate the vertex algebra,
they can possess finite family of such fields.

Definition 3.2.14 A vertex algebra V is called W-algebra if it possesses a minimal finite set of
fields {wi(z)}i∈I , which strongly generate V . If the fields wi(z) have conformal weights ∆i, where
V is called W-algebra of type W (∆1, . . . ,∆n).
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Chapter 4

Quantum curves

In this chapter we present the construction of the quantum curves from the singular vectors. The
main ingredient is the derivation of the appropriate representation of the Virasoro algebra. This
representation is a generalisation of the representation derived in [14]. Quantum curves act on
the wave function, which are build from the intertwining operators. Algebraic manipulation shows
that the wave function corresponds to the α/β-deformed matrix model (Definition 2.2.3). Therefore
wave functions join topics from the Chapter 2 and the Chapter 3.

In the section 4.1 we define the wave function. Our approach is based on the one presented in
the paper [14], but uses mathematical notions. We also relate the wave functions with the matrix
integral (α/β-deformed model). We choose an integration contour, whose existence is showed in [54]
(see also our direct source: [38]).

In the section 4.2 we derive the representation necessary for the construction of the quantum curves.
The derivation relies on the Lemmas 3.2.2 and 3.2.3 from the previous Chapter. As an outcome
we obtain a one parameter deformation of the representation from [14]. We also give examples of
the quantum curves for the lowest degree singular vectors.

In the section 4.3 we investigate a direct proof of the fact that the operators derived in the Theorem
4.2.1 are a representation of the Virasoro algebra. As an outcome we obtain also a combinatorial
identity (Proposition 4.3.1) as well as a procedure of obtaining new representations of the Virasoro
algebra (Proposition 4.3.2).

4.1 Wave function

First we will introduce some vector spaces, to which the wave functions would belong and on which
quantum curves would act. Since we work with objects defined perturbatively, those are spaces of
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formal power series. Let

R = C[[t0, t1, . . . ]],
R~ = C[[t0, t1, . . . ]]⊗ C[~±1],

R~(x) = C[[t0, t1, . . . ]]⊗ C[~±1]⊗ C{x},

where as before C{z} = {
∑
r∈C arz

r : only countably many of ar ∈ C are nonzero}. Spaces R and
R~ are algebras, whereas R~(x) is a module over both of them. It is not an algebra, since we cannot
multiply elements of C{x}. On R we have a family of representations ρα of H parametrised by
α ∈ C and defined by

a−i · f = i

2~ tif, ai · f = ~
∂

∂ti
f for i > 0, a0 · f = αf,

for f ∈ C[[t0, t1, . . . ]]. If V is any other vector space over C then we can extend this representation
to R⊗ V in a standard way: ai(f ⊗ v) = (aif)⊗ v. We also introduce a homomorphism:

Φ~
α : F(α)→ R~

defined on the basis via

Φ~
α(a−i1 · · · a−ik |α 〉) = (2~)−ki1ti1 · · · iktik .

Similarly we extend it to the tensor product with an arbitrary C-vector space V :

Φ~
α,V : F(α)⊗C V → R~ ⊗C V

by Φ~
α,V (a ⊗ b) = Φ~

α(a) ⊗ b. By abuse of the notation we will use the same symbol for all V :
Φ~
α,V = Φ~

α. Those homomorphisms are equivariant with respect to the representations ρα.

Secondly, definition of the wave function requires integration of the multi-valued functions such as

F (β; z1, . . . , zN ) = ∆(z1, · · · , zN )2β
N∏
j=1

z
−β(N−1)
i =

∏
i 6=j

(
1− zi

zj

)β
.

In order to perform such integration we need to consider twisted cycles, defined in the Section 2.2.3.

Define a manifold
MN = {(z1, . . . , zN ) ∈ (C∗)N : zi 6= zj for i 6= j}.

In order to simplify the expressions we will use the notation Ψβ = F (β; z1, . . . , zN ). Let us also
define a set

ΩN = {x ∈ C : ∀d=1,...,N−1 d(d+ 1)x /∈ Z, d(N − d)x /∈ Z}.

Theorem 4.1.1 (Theorem 8.4, [38]) Let L be the algebra of Laurent polynomials f(z1, . . . , zN ),
which are invariant under permutation of zi’s. Then there exists a cycle Γ ∈ HN (MN ,Ψβ) such
that for any f ∈ L, m ∈ Z≥0 and β ∈ ΩN the integral∫

Γ
F (β; z1, . . . , zN )f(z1, . . . , zN )dz1 · · · dzN
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is well defined and defines a nontrivial linear mapping φΓ(m,β) : L → C. Moreover for any
b1, . . . , bN ∈ Z

φΓ(m,β)(zb11 · · · z
bN
N ) = 0

unless b1 + · · ·+ bN = −N .

The cycle from the above theorem can be used to construct a homomorphism of the Fock modules.

Proposition 4.1.1 (Lemma 8.10, [38]) Assume that1

α = Q+N
√
β + b

1√
β
,

where N ∈ Z>0, β ∈ C and b ∈ Z. Then there exists a map ΣN,β,b : F(α) → F(α −N
√
β), which

is a Virasoro homomorphism:

[Lm,ΣN,β,b] = 0 for m < 0.

Moreover this map is given by the formula

ΣN,β,b =
∫

Γ
Kβ(z1, . . . , zN )

N∏
i=1

z−b−1
i dz1 . . . dzN ,

where

Kβ(z1, . . . , zN ) = Eβ(z1) . . . Eβ(zN )
N∏
i=1

z
−2α
√
β−(N−1)β

i ,

Eβ(zi) = I
( ∣∣−√β 〉 , zi) and Γ ∈ HN (MN ,Ψβ) is a twisted cycle.

Remark 4.1.1 Assume that α 6= 0. Then using the Proposition 4.1.1 we infer that ΣN,β,b | 0 〉,
if nontrivial, is a singular vector. In fact ΣN,β,b | 0 〉 is more than just a singular vector: it is
annihilated also by the vectors L0 and L−1, just as the vector | 0 〉.

Definition 4.1.1 The wave function is an element of R~(x) defined as

ψ̂α(x) = Φ~
α−N
√
β
ΣN,β,bI(|α 〉 , x) | 0 〉 ,

where b = (α − Q)
√
β − Nβ. Here and in what follows we skip the parameters N ∈ Z>0, β ∈ C

and b ∈ Z from the notation of the wave function. More generally we can define a wave function
for any v ∈ F(α):

ψ̂α(v, x) = Φ~
α−N
√
β
ΣN,β,bI(v, x) | 0 〉 .

We will denote the subspace of R~(x) spanned by wave functions ψ̂α(v, x) for v ∈ F(α) by Wα.
1Notice that comparing to [38] we use a different notation, differences can be summarised as follows: µ = −

√
2β,

a = N , λ = Q√
2 , F

η = F( η√
2 ).
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Let us not check under which notation we know that ψ̂α(x) is nontrivial.

Remark 4.1.2 If β ∈ ΩN , then the homomorphism ΣN,β,b is nontrivial (section 8.4.3, [38]). Let
us look ae the coefficient of x = 0 of the formal power series I(|α 〉 , x). From Remark 3.2.4 we
know that coefficient of x = 0 of I(|α 〉 , x) | 0 〉 equals |α 〉. Henceforth the coefficient of x = 0 of
ψ̂α(x) equals Φ~

α−N
√
β
ΣN,β,b |α 〉. Assume additionally that b > 0. Using Corollary 8.1 from [38]

we conclude that ΣN,β,b |α 〉 is a nonzero (singular) vector. Moreover, from Remark 3.2.4 we see
that ψ̂α(x) is a power series with strictly positive powers of x.

The case b < 0 is more difficult. In order to use Corollary 8.1 from [38] we need to see that one
of the coefficients of the series I(|α 〉 , x) | 0 〉 is a cosingular vector. To this aim one can check the
construction of this vector in [54].

One can also consider interesting case N = 0, when ψ̂α(x) = exp(α~
∑∞
n=1 tnx

n). For such series
quantum curves give relations on the character polynomials of the representations of GL(N,C) (see
Remark 3.2.4).

Integral representation

In this section we will present a representation of the wave function, making a connection with the
topics discussed in the Chapter 2. This section is not fully rigorous. Recall that the wave function
was defined as

ψ̂α(x) = Φ~
α−N
√
β
ΣN,β,bI(|α 〉 , x) | 0 〉 .

In order to make a connection of the above expression with the matrix integral recall that:

ΣN,β,b =
∫

Γ
Kβ(z1, . . . , zN )

N∏
i=1

z−b−1
i dz1 . . . dzN .

The parameter b depends on the parameter α in the following form: b = (α−Q)
√
β−Nβ. We can

put the field I(|α 〉 , x) inside the integral sign, obtaining:

ψ̂α(x) = Φ~
α−N
√
β

∫
Γ
Kβ(z1, . . . , zN )I(|α 〉 , x) | 0 〉

N∏
i=1

z−b−1
i dz1 . . . dzN .

We can normally order those terms getting:

Kβ(z1, . . . , zN )I(|α 〉 , x) = ∆(z1, . . . , zN )2β
N∏
i=1

(zi − x)−2α
√
β : Kβ(z1, . . . , zN )I(|α 〉 , x) : .

Note that:

: Kβ(z1, . . . , zN )I(|α 〉 , x) : | 0 〉

= exp
(
2α

∞∑
n=1

a−n
n
xn
) N∏
i=1

exp
(
− 2

√
β
∞∑
n=1

a−n
n
zni

) ∣∣∣α−N√β 〉
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Applying the homomorphism Φ~
α−N
√
β
we get:

Φ~
α−N
√
β

(
: Kβ(z1, . . . , zN )I(|α 〉 , x) : | 0 〉

)
exp

(α
~

∞∑
n=1

tnx
n
) N∏
i=1

exp
(
−
√
β

~

∞∑
n=1

tnz
n
i

)
.

Combining the above expressions, and using the notation W (z) =
∑∞
n=1 tnz

n, we get integral
representation of the wave function:

ψ̂α(x) = exp
(
− α

~

∞∑
n=1

tnx
n
) ∫

Γ
∆(z1, . . . , zN )2β

N∏
i=1

(zi − x)−2α
√
β
N∏
i=1

z−b−1
i

·
N∏
i=1

exp
(
−
√
β

~

∞∑
n=1

tnz
n
i

)
dz1 . . . dzN ,

which can be compared with (2.8).

4.2 Main construction

We are now ready to pass to the main construction of the quantum curves. Recall that V≤ is
the subalgebra of V generated by L0, L−1, L−2, . . . . The first theorem gives formulas for those
generators in a suitable representation, which are constituting building blocks for the quantum
curves. What is important, is that the form of the operators L̂−n below does not depend on the
vector v.

Theorem 4.2.1 Assume that N ∈ Z>0, β ∈ C and b ∈ Z. There exists a representation ρ of V<
on the space Wα such that

L̂kψ̂α(v, x) = ψ̂α(L−kv, x), (4.1)

where L̂k = ρ(Lk) and k < 0. This representation can be expressed using the following formulae:

L̂−1 = ∂x, and for n ≥ 2 : (4.2)

L̂−n = 1
~2(n− 2)!∂

n−2
x

(1
4(W ′(x))2 + Q~

2 W ′′(x) + f̂t(x) + (α−N
√
β)d̂(x)

)
,

where f̂t(x) = ~2∑∞
n=0 x

n∑∞
m=n+2mtm∂tm−n−2 and d̂(x) = ~

∑∞
m=0(m+ 2)tm+2x

m.

Remark 4.2.1 The above representation is a one-parameter deformation of the representation
L̂CFT−n presented in [14]. This deformation comes from the additional term d̂(x):

L̂−n = L̂CFT−n + γ
∞∑

m=n−2

(
m

n− 2

)
(m+ 2)tm+2x

m−n+2,

where γ is an arbitrary deformation parameter.
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Proof of the theorem. The case of the operator L̂−1 follows from the Lemma 3.2.2, whereas the
case of the operator L̂0 from the fact that vectors of homogeneous grading are eigenvectors of L0
and the linearity of I. Let us examine the cases when n ≥ 2. We have:

I(L−nv, x) = 1
(n− 2)! : ∂n−2T (x)I(v, x) := Dn−2T (x)cI(v, x) + I(v, x)Dn−2T (x)a. (4.3)

Therefore

ψ̂α(L−nv, x) = 1
(n− 2)!Φ

~
α−N
√
β
ΣN,β,b

(
∂n−2T (x)cI(v, x) + I(v, x)∂n−2T (x)a

)
| 0 〉 .

Using the formulas T (x)a | 0 〉 = 0 and [ΣN,β,b, ∂
n−2T (x)c] = 0 we infer that

ψ̂α(L−nv, x) = 1
(n− 2)!Φ

~
α−N
√
β
∂n−2T (x)cΣN,β,bI(v, x) | 0 〉 (4.4)

We concentrate on the case n = 2, the more general case n > 2 follows by taking commutators with
L̂−1. Let us now look more closely on the field T (x)c =

∑∞
n=0 x

nL−n−2. Since from the equation
(3.10)

L−m = 2
∞∑
k=1

a−k−mak +
m−1∑
l=1

a−m+la−l + (2a0 + (m− 1)Q)a−m,

we have Φ~
α−N
√
β
L−m = L̃−mΦ~

α−N
√
β
, where

L̃−m =
∞∑
k=1

(k +m)tk+m
∂

∂tk
+ 1

4~2

m−1∑
l=1

(m− l)ltm−ltl + 1
2~(2α− 2N

√
β + (m− 1)Q)mtm,

so taking the sum we get:

L̂−2 = Φ~
α(T (x)c) =

∞∑
m=0

xm
( ∞∑
k=1

(k +m+ 2)tk+m+2
∂

∂tk
+ 1

2~(2α− 2N
√
β)(m+ 2)tm+2

+ 1
4~2

m+1∑
l=1

(m+ 2− l)ltm+2−ltl + 1
2~(m+ 1)Q(m+ 2)tm+2

)
. (4.5)

Notice that for W (x) =
∑∞
i=1 tix

i we have

(
W ′(x)

)2
=

∞∑
m=0

m+1∑
l=1

(m+ 2− l)ltm+2−ltlx
m,

W ′′(x) =
∞∑
m=0

(m+ 1)(m+ 2)tm+2x
m,

which are (up to rescaling) correspondingly the second and the third ingredients appearing in the
sum (4.5). The first line of (4.5) corresponds to

f̂t(x) + (α−N
√
β)d̂(x) = ~2

∞∑
n=0

xn
∞∑

m=n+2
mtm∂tm−n−2 + ~(α−N

√
β)

∞∑
m=0

(m+ 2)tm+2x
m.

Therefore it follows that

L̂−2 = 1
4~2

(
W ′(x)

)2
+ Q

2~W
′′(x) + 1

~2 f̂t(x) + (α−N
√
β)

~2 d̂(x).
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To obtain formulas for L̂−n with n > 2 notice that it is sufficient to commute the operator L̂−2
sufficiently many times with the operator L̂−1. The fact that formulas (4.2) form a representation
of the Virasoro algebra follows straightforwardly from their definition. We need to check that

[L̂i, L̂j ]ψ̂α(v, x) = (i− j)L̂i+jψ̂α(v, x)

for any v ∈ F(α). To this aim we use the relation

[Li, Lj ] = LiLj − LjLi = (i− j)Li+j

from which it follows that

[L̂i, L̂j ]ψ̂α(v, x) = ψ̂α([Li, Lj ]v, x) = ψ̂α((i− j)Li+jv, x) = (i− j)L̂i+jψ̂α(v, x). (4.6)

�

Now we proceed to the theorem about quantum curves.

Theorem 4.2.2 Assume that vs = Ar,s |∆ 〉 is a singular vectors, where ∆ = αr,s(Q − αr,s),
Q = 1√

β
−
√
β, β ∈ R>0 and

αr,s = r − 1
2

1√
β
− s− 1

2
√
β.

Let us take α = Q − αr,s. If we assume that 2N = s − 1 and 2b = 1 − r (N and b are implicit
parameters of the wave function), then using the representation (4.2) we arrive at the following
equation, called quantum curve:

Âr,sψ̂α(|α 〉 , x) = 0.

Proof. Let vs = Ar,s |∆ 〉 be a singular vector. Then from Proposition 3.1.6 we know that
SQ−αr,s,Q(vs) = 0 in F(Q − αr,s) = F(α). Recall that ∆(α) = ∆(Q − α) (see section 3.1.5).
It follows that

ψ̂α(SQ−αr,s,Q(vs), x) = 0

On the other hand, since SQ−αr,s,Q(vs) = SQ−αr,s,Q(Ar,s |∆ 〉) = Ar,s |α 〉. In order to use Theorem
4.2.1 we need to check that α = N−1

2
√
β + b+1

2
1√
β
, where N ∈ Z>0 and b ∈ Z. From the condition

α = Q− αr,s we obtain the following relations on the parameters:

2N = s− 1, 2b = 1− r.

Therefore we can iteratively move the Virasoro generators appearing in Ar,s outside the wave
function, obtaining the expression

Âr,sψ̂α(|α 〉 , x) = 0.

Here Âr,s is a differential equation obtained from the universal formula for the Virasoro singular
vectors in the representation 4.2. �

68



Example 4.2.1 Using the known expressions for the singular vectors one can produce exact for-
mulae for quantum curves in low levels. The first nontrivial examples are

Â2 = ∂2
x −

α

~4

(
(W ′(x))2 + 2Q~W ′′(x) + 4f̂t(x))

)
,

Â3 = ∂3
x − 4α

2

~2 ∂xL̂−2 + 2~−4α2
(
2α(2α+Q~)− ~2

)
L̂−3,

where one needs to substitute using any of the values α = αr,s, where r+s = 2 for Â2 and r+s = 3
for Â3.

4.3 Combinatorial identity

One could ask if it is possible to prove that (4.2) form a representation of the Virasoro algebra
directly. In [44] it has been shown that

L̂CFT−n = 1
~2(n− 2)!∂

n−2
x

(1
4(W ′(x))2 + Q~

2 W ′′(x) + f̂t(x)
)

L̂CFT−1 = ∂x (4.7)

is a representation of the Virasoro algebra. Therefore we would get a positive answer to our question
if the following identity would hold

[L̂CFT−n + d̂m(x), L̂CFT−n + d̂n(x)] = (m− n)L̂CFT−n−m + (m− n)d̂n+m(x),

where d̂n(x) = 1
~2(n−2)!∂

n−2
x d̂(x). From the above equation, using the fact that L̂CFT−n is a represen-

tation of the Virasoro algebra, we get a condition for a deformation of an algebra:

[L̂CFT−n , d̂m(x)]− [L̂CFT−m , d̂n(x)] = (m− n)d̂n+m(x).

This condition can be further simplified. Only the operators f̂t(x) from the terms in L̂CFT−n con-
tribute to the commutators above. Hence we have[ 1

~2(n− 2)!∂
n−2
x f̂t(x), d̂m(x)

]
−
[ 1
~2(m− 2)!∂

m−2
x f̂t(x), d̂n(x)

]
= (m− n)d̂n+m(x).

Plugging the definitions of the operators f̂t(x) and d̂n(x) we arrive at the following condition:

∞∑
n=a

∞∑
m=b

xn+m−a−btn+m+4(n+m+ 4)
(
n

a

)(
m

b

)
(m− n)

= b− a
(a+ b+ 2)!

∞∑
k=a+b+2

(k + 2)tk+2
k!

(k − a− b− 2)!x
k−a−b−2. (4.8)

Comparing the coefficients of the powers of x, the above identity is equivalent to the collection of
identities:

k−2−a∑
n=b

(
k − n− 2

a

)(
n

b

)
(2n− k + 2) = (b− a)

(
k

a+ b+ 2

)
.

69



Let us argue now why (4.8) is true. We can repeat the reasoning leading to it with a single change:
all the operators will be acting on ψ̂α(x). Since from the equation (4.6) we know that:

[L̂−n, L̂−m]ψ̂α(x) = (m− n)L̂−n−mψ̂α(x)

we infer that the following identity is true:
∞∑
n=a

∞∑
m=b

xn+m−a−btn+m+4(n+m+ 4)
(
n

a

)(
m

b

)
(m− n)ψ̂α(x)

= b− a
(a+ b+ 2)!

∞∑
k=a+b+2

(k + 2)tk+2
k!

(k − a− b− 2)!x
k−a−b−2ψ̂α(x). (4.9)

From the Remark 4.1.2, taking N = 0, ψ̂α(x) is a nonzero formal power series with only positive
powers of x. In general the algebra of formal power series is not an integral domain. However, in
this case all the series have only positive powers, hence we can divide by ψ̂α(x). Therefore we have
proved the following proposition.

Proposition 4.3.1 Assume that a, b, k > 0 are positive integers and k ≥ a + b + 2. Then the
following identity holds:

k−2−a∑
n=b

(
k − n− 2

a

)(
n

b

)
(2n− k + 2) = (b− a)

(
k

a+ b+ 2

)
.

As a corollary we get:

Proposition 4.3.2 Assume that a collection of operators L−n for n > 0 forms a representation of
the negative part of the Virasoro algebra: [L−n, L−m] = (m−n)L−n−m. Then a set of the operator
series L̂−n = 1

(n−2)!∂
n−2
x T (x)c for n > 0, where T (x)c =

∑∞
m=0 x

mL−m−2 is the creation part of the
stress-energy tensor, and L̂−1 = ∂x, also forms a representation of the negative part of the Virasoro
algebra.

Proof. We have

L̂−a−2 =
∞∑
n=a

(
n

a

)
xn−aL−n−2,

from which it follows that

[L̂−a−2, L̂−b−2] =
∞∑
n=a

∞∑
m=b

(
n

a

)(
m

b

)
xm+n−b−a[L−n−a, L−m−2]

=
∞∑
n=a

∞∑
m=b

(
n

a

)(
m

b

)
xm+n−b−a(m− n)L−n−m−4.

We would like this expression to be equal to

(b− a)L̂−a−b−4 = (b− a)
∞∑

k=a+b+2

(
k

a+ b+ 2

)
xk−a−b−2L−k−2.
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Comparing the terms corresponding to the power xk−a−b−2 we get an identity:

k−2−a∑
n=b

(
k − n− 2

a

)(
n

b

)
(2n− k + 2) = (b− a)

(
k

a+ b+ 2

)
,

which is true by Proposition 4.3.1. �
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Chapter 5

Supersymmetry

The aim of this chapter is the presentation of the supersymmetric analog of the quantum curves
discussed in the previous chapter. Such an extension was presented in the paper from the point
of view of the matrix models [50] and in [14] from the point of view of CFT. The initial idea of
the author was to present a derivation of the super quantum curves using vertex operator super
algebras (VOSAs). This task was unfortunately unaccomplished, and the outcome was a no-go
theorem 5.3.7. Therefore, after introducing supersymmetry and presenting super extension of the
concepts from the chapter 3, we briefly explain the construction of the quantum curves from [14].
However, we introduce the language of the twisted modules in this context, using which the structure
of the super quantum curves is clearer.

In the section 5.1 basic notions are discussed: super vector spaces, super algebras and integration.

In the section 5.2 we define super eigenvalue integrals. The content of the section 5.2.2 is due to
the author.

In the section 5.3 we introduce super extensions of the Virasoro and the Heisenberg algebras and we
study their representations. We also define VOSAs, their modules and the intertwining operators.
We also define twisted modules and twisted intertwining operators. Twisting is related with an
automorphism of the VOSA. Ramond sector arises as module twisted by the parity automorphism.
Finally we introduce intertwining operators with the Grasmann odd variable and prove Theorem
5.3.7, responsible for the difficulties of the derivation of the super quantum curves using VOSAs.

In the section 5.4 we discuss more physical approach to the super quantum curves. Three cases
are considered, which correspond to various choices of the twisting of the modules between which
intertwining operators act. This section is an excerpt from [14].

5.1 Super spaces

In the first section of this chapter we explain what supersymmetry is and how it can be mathemat-
ically axiomatised. A good reference for this subject is [45] and [27].
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5.1.1 Super vector spaces

Definition 5.1.1 A super vector space is a Z2-graded vector space V = V0 ⊕ V1. Elements of the
subspaces V0 and V1 are called homogeneous and for such elements we define their degree: |v| = i

if v ∈ Vi, i ∈ {0, 1}. Elements of degree 0 will be called even and of those of degree 1 will be called
odd.

If dim(V ) <∞ we say that a super vector space V = V0⊕V1 is of dimension dim(V0)|dim(V1). An
example of a super vector space of dimension n|m is Cn|m = Cn ⊕ Cm, that is (Cn|m)0 = Cn and
(Cn|m)1 = Cm. For τ ∈ Z2 we will use shorter notation Cτ = Cτ+1|τ .

If V and W are super vector spaces, a natural structure of a superspace can be defined on
Hom(V,W ). We set Hom(V,W ) = Hom(V,W )0 ⊕ Hom(V,W )1, where Hom(V,W )0 are those
maps, which preserves parity (maps even elements to even elements and odd elements to odd el-
ements) and Hom(V,W )1 those which exchange parity. We will also call the first one even maps
and the second odd maps.

The tensor product of two super vector spaces V = V0 ⊕ V1 and W = W0 ⊕W1 has a structure of
a super vector space defined via

(V ⊗W )0 = (V0 ⊗W0)⊕ (V1 ⊗W1)
(V ⊗W )1 = (V0 ⊗W1)⊕ (V1 ⊗W0).

5.1.2 Superalgebras

Definition 5.1.2 Let A be an algebra, which is also a super vector space. We say that A is
supercommutative if for any homogeneous a, b ∈ A we have

ab = (−1)|a||b|ba.

We say that it is anti-supercommutative if for such a, b ∈ A

ab = −(−1)|a||b|ba.

Example 5.1.1 Let V be a vector space and let Ak(V ) = ΛkV . Then A(V ) =
⊕∞
k=0A

k(V ) is the
exterior algebra. It is a superspace with A(V )0 =

⊕∞
k=0 Λ2kV and A(V )1 =

⊕∞
k=0 Λ2k+1V . Because

for ω ∈ Ak(V ) and η ∈ Al(V ) we have ω ∧ η = (−1)klη ∧ ω, it is a supercommutative algebra. In
what follows we will subtract the symbol ∧ from the notation of the multiplication in this algebra.
Therefore, if θ1, . . . , θn is a basis of V , elements of the algebra A will be denoted as

n∑
k=0

n∑
i1,...,ik=1

ai1,...,ikθi1 · · · θik ,

where ai1,...,ik ∈ C. Elements of V , as generators of A(V ), will be called fermionic variables.
Algebra of n fermionic variables will be denoted by A(Cn).
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Definition 5.1.3 A super Lie algebra g is an anti-supercommutative algebra, for which graded
version of the Jacobi rule holds:

[a, [b, c]] + (−1)|a|(|b|+|c|)[b, [c, a]] + (−1)|c|(|a|+|b|)[c, [a, b]] = 0

for a, b, c ∈ g.

As an example we can consider super Lie algebra osp(1|2) = spanC{e, f, h, b+, b−}, where e, f, h are
even elements and b+, b− are odd elements. Lie super bracket is then defined as:

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f, [h, b±] = ±b±,
[b−, b+] = h, [b+, b+] = 4e, [b−, b−] = −4f.

As we can notice even part of this super Lie algebra osp(1|2)0 is isomorphic to sl(2).

For any super algebra we can introduce a super Lie bracket by the formula:

[a, b] = ab− (−1)|a||b|ba. (5.1)

This definition satisfies super Jacobi rule. In the physical literature commutator of odd elements
a, b is called anti-commutator and denoted by {a, b}. For the super Lie bracket (5.1) we have
{a, b} = ab+ ba.

We will say more about super Lie algebras in the Chapter 6, where discussion about their repre-
sentations is placed.

Definition 5.1.4 Let A be a super algebra. A linear homogeneous map φ ∈ Hom(A,A) is a super
derivation if it satisfies the following condition:

φ(ab) = φ(a)b+ (−1)|a||φ|aφ(b),

where |φ| ∈ Z2 is the parity of the derivation.

Let A be a supercommutative algebra. Then any odd element a ∈ A satisfies a2 = 0. We can
evaluate any analytic function f(z) =

∑∞
n=0 fnz

2 (or even formal power series) on a: since the
series will stop after two steps, we do not need to care for convergence:

f(a) = f(0) + f ′(0)a. (5.2)

5.1.3 Integration

In order to define matrix models involving fermionic variables we need to define what does integra-
tion with respect to such variables means.
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Definition 5.1.5 Let V be a vector space of dimension n and let A(V ) be its exterior algebra.
Choose a basis θ1, . . . , θn of V . We define integration functional

∫
dθ : A→ C as a map∫ ( n∑

k=0

n∑
i1,...,ik=1

ai1,...,ikθi1 · · · θik
)
dθ = a1,2,...,n,

where ai1,...,ik ∈ C and
∑n
k=0

∑n
i1,...,ik=1 ai1,...,ikθi1 · · · θik is any element of A.

Remark 5.1.1 If we choose different basis the integration functional will differ by a multiplicative
constant, as follows from the properties of the wedge product.

We can extend this definition in a natural way to any algebra of the form A⊗R.

5.2 Super matrix models

5.2.1 Definitions

The definition of the random matrices can be extended to include fermionic variables. This can
be done in the eigenvalue picture. There are several models one can consider, which are related to
various super extensions of the Virasoro algebra. Therefore one can consider Neveu-Schwarz super
eigenvalue model or Ramond super eigenvalue model. Difference between those models is most
clearly visible in the different forms of the following extensions of the Vandermonde determinant.
More precisely, they take following forms:

∆NS =
∏
i 6=j

(zi − zj − θiθj), (5.3)

∆R =
∏
i 6=j

(
zi − zj − θiθj

√
zj
zi

)
. (5.4)

Those expressions are elements of specific algebras: ∆NS ∈ k[z1, . . . , zN ] ⊗ A(CN ) and ∆R ∈
k[z±

1
2

1 , . . . , z
± 1

2
N ]⊗A(CN ).

Definition 5.2.1 β-deformed matrix model partition function in the Neveu-Schwarz sector Zβ,NS
for β ∈ C is defined as

Zβ,NS =
∞∑
n=0

∑
k1,...,kn≥1
l1,...,lm≥1

tk1
1 . . . tknn
k1! · · · kn!

ξl11+ 1
2
. . . ξlm

m+ 1
2

l1! · · · lm! F βNS(k1, . . . , kn, l1, . . . , lm),

F βNS(k1, . . . , kn, l1, . . . , lm) =
∫
C

n∏
i=1

(zki1 + · · ·+ zkiN )
m∏
j=1

(zlj1 θ1 + · · ·+ z
lj
NθN )∆NS(z, θ)β (5.5)

×e−
√
β(z2

1+···+z2
N )dz1 · · · dzNdθ1 · · · dθN . (5.6)
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In a completely parallel way we define Ramond model partition function.

Definition 5.2.2 β-deformed matrix model partition function in the Ramond sector Zβ,R for
β ∈ C is defined as

Zβ,R =
∞∑
n=0

∑
k1,...,kn≥1
l1,...,lm≥1

tk1
1 . . . tknn
k1! · · · kn!

ξl11+ 1
2
. . . ξlm

m+ 1
2

l1! · · · lm! F βR(k1, . . . , kn, l1, . . . , lm),

F βR(k1, . . . , kn, l1, . . . , ln) =
∫
C

n∏
i=1

(zki1 + · · ·+ zkiN )
m∏
j=1

(zlj1 θ1 + · · ·+ z
lj
NθN )∆R(z, θ)β (5.7)

×e−
√
β(z2

1+···+z2
N )dz1 · · · dzNdθ1 · · · dθN . (5.8)

Remark 5.2.1 Unlike in the purely bosonic case those expressions for β = 2 cannot be given
representation using the integration over random super matrices [51].

5.2.2 Integrating out fermionic variables

One can ask following interesting question: what would happen if we would integrate out the
fermionic variables, specifying to the case of trivial fermionic potential ξi = 0 for any i ∈ Z + 1

2 .
This section is a digression, as we will not use the results below in the following part of this thesis.

Let Λ = {λij}i,j=1,...,n be an antisymmetric matrix. Notice the following identity:

∏
i 6=j

(1 + λijθiθj) =
( ∑
P∈P(2n)

∏
p∈P

λpipj

)
θ1 · · · θ2n + . . . ,

where P(2n) is the set of pairings of the set {1, . . . , 2n} and each pairing p = (p1, p2), while dots
corresponds to the term vanishing under integral. Therefore we have:∫ ∏

i 6=j
(1 + λijθiθj)dθ1 · · · dθ2n =

∑
P∈P(2n)

∏
p∈P

λpipj .

This reminds us of the Isserlis Theorem (2.3.1), using which we conclude that:∫
exp

(∑
i 6=j

λijθiθj
)
dθ1 · · · dθ2n =

∫ ∏
i 6=j

(1 + λijθiθj)dθ1 · · · dθ2n = E(X1 · · ·X2n),

where Xi are zero-mean Gaussian variables with the correlation matrix given by:

E(XiXj) =


λij i < j,

−λij i > j,

fi i = j,

where fi are any sufficiently large functions of (z1, . . . , zn). This largeness condition is necessary
to make the matrix Λ positively defined, which guarantees the existence of the Gaussian variables
with prescribed covariance matrix as above.
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This result can be extended to the case of a general fermionic potential W (z) =
∑∞
n=0 ξnz

n. Notice
that

exp
(∑

k

θkW (zk)
)

=
∏
k

(
1 + θkW (zk)

)
.

Therefore the partition function takes the form

Z(Λ) =
∫ ∏

i 6=j

(
1 + λijθiθj

)∏
k

(
1 + θkW (zk)

)
dθ1 . . . dθn.

One can expand the second product into the following sum:∏
k

(
1 + θkW (zk)

)
=

∑
m∈M(n)

m(θ1, . . . , θn)m(W (z1), . . . ,W (zn)),

whereM(n) is the set of all the monomials in n variables of degree less or equal to n. For each term
in the above sum one needs to find all terms in the expansion of

∏
i 6=j

(
1 + λijθiθj

)
composed of

fermionic variables complementary to those appearing in the corresponding monomial. Therefore
one obtains:

Z(Λ) =
∑

I⊂{1,...,n}

∑
P∈P({1,...,n}−I)

∏
p∈P

λp1p2

∏
i∈I

W (zi).

The form of the matrix Λ, which is a function of the variables (z1, . . . , zn), depends on the specific
model. This can be rewritten further in the form:

Z(Λ) =
∑

I⊂{1,...,n}
E
( ∏
j∈{1,...,n}−I

Xj

∏
i∈I

W (zi)
)

= E
( ∑
I⊂{1,...,n}

∏
j∈{1,...,n}−I

Xj

∏
i∈I

W (zi)
)

= E
( ∏
i∈{1,...,n}

(Xi +W (zi))
)

= E
∏

i∈{1,...,n}
X̃i(zi)

Now X̃i are Gaussian variables such that E(X̃i) = W (zi) and

Cov(Xi, Xj) =


λij i < j,

−λij i > j,

fi i = j.

As before, this matrix is positively defined, hence such random variables exist.

5.3 Super CFT

This section is parallel to the sections 3.1 and 3.2. Many results are rewritten without much change,
hence we skip proofs.
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5.3.1 Super Lie algebras

Many notions and statements presented in the Chapter 3 can be extended to the supersymmetric
realm. In this section we follow [36, 37], where modules over supersymmetric extensions of the
Virasoro are introduced and studied. Intertwining operators are also defined there as maps between
those modules (but not the intertwining fields, which are z-dependent).

Let us start with the Lie algebras. We will consider super Lie algebras with a 1
2Z-gradation:

g =
⊕
k∈ 1

2Z
gk, where as before [gn, gm] ⊂ gn+m and g0 is the Cartan subalgebra. Moreover we set

g+ =
⊕
n>0 g

n, g≥ =
⊕
n≥0 g

n, g− =
⊕
n<0 g

n and g≤ =
⊕
n≤0 g

n.

Definition 5.3.1 A lowest module over g with the lowest weight λ ∈ h∗ is a representation ρ :
g → End(M), such that there exists a vector vλ ∈ M satisfying: ρ(g+)vλ = 0, U(g≤)vλ = M and
h · vλ = λ(h)v for h ∈ h.

As before we will also use notation |λ 〉 for the weight vector vλ.

There are two versions of the super Heisenberg algebra: in the Neveu-Schwarz sector we get the
algebraH 1

2
and in the Ramond sector we getH0. In what follows we will often use common notation

for both sectors, distinguished by value of ε ∈ {0, 1}. Super Heisenberg algebras are defined as a
super vector spaces:

Hε =
⊕
k∈Z+ε

Cψk ⊕ Ck ⊕
⊕
n∈Z

Can,

where ψk are odd generators and an and K are even generators. The super Lie bracket is defined
as:

[ψk, ψl] = δk,−l, [ψk, an] = 0, [an, am] = nδn+m, [k, ψk] = [k, an] = 0.

Let us introduce analogs of the Fock and Verma modules for those algebras. There is one difference
for both sectors, caused by the presence of operator φ0 in the Ramond sector. Its presence makes
the vacuum degenerate, i.e. there are two zero energy vectors: | 0 〉 and φ0 | 0 〉. This is why we
need to define fermionic modules in both sectors separately.

We start with the Neveu-Schwarz case. Define a one dimensional module C 1
2
over (H 1

2
)≥0 on which

generators act as follows:

ψk |α 〉 = 0, an |α 〉 = δn,0α |α 〉 , k · |α 〉 = |α 〉 .

Fock module is defined as
FNS(α) = Ind

(H 1
2

)≥0

H 1
2

C 1
2
.

Its basis consists of the vectors of the form:

a−j1 · · · a−jlψ−i1 · · ·ψ−ik |α 〉 ,

where i•, j• > 0.
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In the Ramond case we define first two dimensional module C0 = C⊕ C with the action

ψk · v = 0 for k > 0, anv = δn,0αv ψ0 · (a, b) = ( 1√
2
b, a), k · v = v.

We will use also another basis of C0: | 0,+ 〉 = 1
2(| 0 〉+ ψ0 | 0 〉) and | 0,−〉 = 1

2(| 0 〉 − ψ0 | 0 〉). The
Ramond Fock module is then defined as

FR(α) = IndH0
(H0)≥0

C0.

Its basis consists of the vectors of the form:

a−j1 · · · a−jlψ−i1 · · ·ψ−ikψ−i0 |α 〉 ,

where i•, j• > 0 and i0 ≥ 0.

There are two supersymmetric extensions of the Virasoro algebra: Neveu-Schwarz algebra V 1
2
and

Ramond algebra V0. There are equipped with additional set of generators Gk, where k ∈ Z in the
Ramond case and r ∈ 1

2 + Z in the Neveu-Schwarz case:

Vε =
⊕
n∈Z

CLn ⊕ Cc⊕
⊕
k∈Z+ε

CGk,

where the first two summands give the even part (Vε)0 and the last summands give the odd part
(Vε)1. Moreover, gradation is specified by: Ln ∈ (Vε)n, Gk ∈ (Vε)k and c ∈ (Vε)0. The super Lie
bracket is defined by:

[Ln, Gk] = (n2 − k)Gn+k, [Gk, Gr] = 2Lk+r + c

3(k2 − 1
4)δk=−r, (5.9)

[Ln, Lm] = (n−m)Ln+m + c

12m(m2 − 1)δn,−m.

In both cases the Cartan subalgebra is h = Cc⊕ CL0.

Let us introduce Verma module for those algebras. To this aim, as before, we introduce one
dimensional representations of (Vε)≥. Fix λ ∈ h∗ and τ ∈ Z2 and define C 1

2 ,V
(λ, τ) = Cτ , with the

action
Gk · v = Lk · v = 0 for k > 0, L0 · v = λ(L0)v, c · v = λ(c)v.

For the Ramond sector we set

C0,V (λ, τ) =

Cτ if λ(c) = 24λ(L0),
Cτ ⊕ Cτ+1 in the other case,

with the action

Gk · v = Lk · v = 0 for k > 0, L0 · v = λ(L0)v, c · v = λ(c)v

and G0v = 0 if λ(c) = 24λ(L0) and G0(a, b) = ((λ(L0)− λ(c)
24 )b, a) otherwise. (This formula follows

from the commutation relations, which imply that G2
0 = L0 − 1

24c.) The first will be called special
Ramond case, while the second generic Ramond case.

The Verma module is defined as

Mε(λ, τ) = IndVε(Vε)≥0
Cε,V (λ, τ).
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Proposition 5.3.1 [36] 1. For any weight module M with the weight λ ∈ h∗ there exists a
surjective homomorphism of modules M(λ)→M

2. There exists a unique Z × h∗-graded submodule J(λ) such that L(λ) = M(λ)/J(λ) is a simple
graded g-module. It is moreover irreducible lowest weight module with lowest weight λ.

Shapovalov form and determinants

Definition 5.3.2 Define an anti-involution map σ : Vε → Vε via the following properties: σ(Ln) =
L−n, σ(Gk) = G−k, σ(c) = c and σ(XY ) = σ(Y )σ(X). Such a map is unique.

Proposition 5.3.2 There exists a unique bilinear form (·, ·) : M(∆, c) ×M(∆, c) → C satisfying
(vc,h, vc,h) = 1 and for any X ∈ U(V) and x, y ∈M(∆, c) we have (X · x, y) = (x, σ(X) · y).

We have following decomposition of the Verma module M(∆, c) =
⊕
n∈ZM(∆, c)n+∆, where

M(∆, c)n+∆ = {v ∈ M(∆, c) : L0 · v = (n + ∆)v} are the eigenspaces of the operator L0. This
decomposition is orthogonal with respect to the Shapovalov form.

Definition 5.3.3 For any n ∈ N let det(c,∆)n be the discriminant of the Shapovalov form re-
stricted to the subspace M(∆, c)n+∆ ×M(∆, c)n+∆. It is also called Kac determinant.

Theorem 5.3.1 [36] Let n ∈ (1 − ε)Z>0. The supersymmetric Fock space determinant has the
following form

1. In the special Ramond case we have

det0(c,∆)n ∝
∏

r,s∈Z≥0
1≤rs≤2n

r−s∈1−2ε+2Z≥0

Ψr,s(c,∆)p0(n− 1
2 rs),

where
Φr,s(c,∆) = rsc+ 3

2(2r − s)(r − 2s).

2. In the Neveu-Schwarz case (ε = 1
2), as well as in the generic Ramond case (ε = 0) we have

detε(c,∆)n ∝
(
∆− 1

24c
)δεp0(n) ∏

r,s∈Z≥0
1≤rs≤2n

r−s∈1−2ε+2Z≥0

Φr,s,ε(c,∆)pε(n−
1
2 rs),

where

Φr,s,ε(c,∆) =



(
∆ + 1

24(r2 − 1)(c− 15
2 ) + 1

4(rs− 1)− 1
8(1

2 − ε)
)
×(

∆ + 1
24(s2 − 1)(c− 15

2 ) + 1
4(rs− 1)− 1

8(1
2 − ε)

)
+

1
64(r2 − s2)2 if r 6= s,

∆ + 1
24(r2 − 1)(c− 3

2) if r = s.

Here pε = (1
2 + ε)dimU((Vε)−)n.
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There is a corresponding bilinear form on the Fock module (·, ·) : F(α) × F(α) → C satisfying
(vα, vα) = 1 and for any X ∈ U(H) and x, y ∈ F(α) we have (X ·x, y) = (x, σ(X) ·y). This bilinear
form is nondegenerate.

Singular vectors

Definition 5.3.4 Let M be a module over the algebra Vε. A vector ξ ∈M −{0} is called singular
vector if (Vε)>0ξ = 0. It is called null vector if it is orthogonal to any nonzero vector with respect
to the Shapovalov form.

Any singular vector is also a null vector. There exists a null vector in M(∆, c)n+∆ if and only if
det(c,∆)n = 0. From the Theorem 5.3.1 we infer existence of null vectors in Verma modules.

Note that the descendant of any null vector vn is again a null vector:

(L−nvn, w) = (vn, Lnw) = 0,

for any w ∈M . This is however not true for singular vectors.

Proposition 5.3.3 [38] There exists An ∈ U(g≤)−n, called Shapovalov element, such that An | 0 〉
is a singular vector.

Proposition 5.3.4 Assume that φ : M1 →M2 is a homomorphism of V-modules. Then the image
of the weight vector is either 0, a weight vector or a singular vector.

Homomorphism Sα,Q

As in the bosonic case fermionic Fock modules admit action of the corresponding extensions of the
Virasoro algebra. For the algebra Vε this action is given by the following definitions:

L0 =
∞∑
m=1

a−mam +
∑

k∈Z>0−ε
kψ−kψk + 1

2α(α−Q) + δε,0
1
16 ,

Ln = 1
2
∑

m 6=0,n
an−mam + 1

2
∑

k∈Z+ε
kψn−kψk + 1

2(2α− (n+ 1)Q)an for n 6= 0, (5.10)

Gk =
∑
m6=0

amψk−m + (α− (k + 1
2)Q)ψk for k ∈ Z + ε.

Let |α 〉 ∈ F(α) be the weight state. We can consider weight module over V defined using the
above representation by N(α,Q) = U(V≤) |α 〉 ⊂ F(α). From the universal property (5.3.1) it
follows that for c = 1− 6Q2 and ∆ = α(α−Q) there exists a surjective homomorphism of modules
Sα,Q : M(∆, c)→ N(α,Q).

Proposition 5.3.5 The homomorphism Sα,Q enjoys following properties:
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• Sα,Q preserves the bilinear forms,

• kernel of Sα,Q is the subspace of all null vectors in M(∆, c),

Therefore N(α,Q) = L(c, h) is the irreducible lowest weight module from Proposition 5.3.1.

Note however that it need not be surjective, since F(α) is not necessarily a weight module over
V. Indeed, for specific values of α this is the case. This follows from the fact that the map Sα,Q
can have nontrivial kernel and its restriction Snα,Q : M(1 − 6Q2, α(Q − α))n → F(α)n is a linear
mapping between spaces of the same dimension. Therefore it cannot be surjective and hence F(α)
cannot be a weight module over V.

Examples of singular vectors

Using this representation quantum curves can be obtained from the following operators producing
singular vectors. Below are examples for the Ramond sector. First examples of those operators in
the grading −1 are:

Â 1
(·|1) = 4α(2α−Q)G−1 − 8L−1G0,

Â 1
(1|0) = 4(2α+Q)L−1G0 − (2α−Q)G−1,

Â 1
(·|1,0) = 8αG−1G0 − 2(2α−Q)L−1,

Â 1
(1|·) = 2(2α−Q)(2α+Q)L−1 − 4G−1G0,

(5.11)

where we need to specialise α ∈ {1
2Q,

1
2
√
β,− 1

2
√
β
}. In the grading −2, using above operators, we

can construct examples:

Â 2
(1,1|·) = L−1

((
α+ 3

2Q
)
Â 1

(1|·) + 3
2Â

1
(·|1,0)

)
−G−1

(
9
2Â

1
(1|0) +

(
α+ 3

2Q
)
Â 1

(·|1)

)
,

Â 2
(2|·) = G−1

(
3
2αÂ

1
(1|0) +

(
α2 + 3

2Qα−
3
4

)
Â 1

(·|1)

)
− L−1

(
3
2Â

1
(1|·) + 2αÂ 1

(·|1,0)

)
,

Â 2
(1|1,0) = G−1

(
3αÂ 1

(1|0) + 3
2Â

1
(·|1)

)
− L−1

(
3
2Â

1
(1|·) + 2αÂ 1

(·|1,0)

)
,

Â 2
(·|2,0) = L−1

(
αÂ 1

(1|·) +
(
2α2 +Qα− 3

2

)
Â 1

(·|1,0)

)
−G−1

(
2α2Â 1

(1|0) + αÂ 1
(·|1)

)
,

we need to specialise α ∈ {1
2Q,

1
2
√
β,− 1

2
√
β
, 3

2
√
β,− 3

2
√
β
}.

5.3.2 Super vertex algebras

The super vertex algebras can be defined in a similar way as their bosonic counterparts, where
more attention has to be put to signs [28,38,41].

Recall that for a super vector space V there exists a structure of a super vector space of End(V ).
Considering the ring C[[z±1]] as being purely even, we get a super vector space End(V )[[z±1]] =
End(V ) ⊗ C[[z±1]]. In other words even operators are those which preserve the grading and odd
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operators are those, which reverse the grading. A field φ(x) =
∑
n∈Z φnz

n is even (odd) is all of its
coefficients φn are even (odd).

By [, ] we denote the super commutator (5.1) of the operators. Normal ordering should also be
considered with grading. For graded-homogeneous fields φ1(x) and φ2(x) we have:

: φ1(x)φ2(x) := φ2(x)cφ1(x) + (−1)|φ1||φ2|φ1(x)φ2(x)a.

Definition 5.3.5 Let V be a vector super space. Two super fields A(z) and B(z′) on V are called
mutually local if ∃N>0 such that (z − z′)N [A(z), B(z′)] = 0.

Definition 5.3.6 A vertex superalgebra is a super vector space V = V0⊕V1, with a 1
2Z-gradation

V =
⊕
k∈ 1

2Z
V k for which

⊕
k∈Z+ 1

2
V k ⊂ V1, with a distinguished vector | 0 〉 ∈ V0, and two linear

even maps: T : V → V and Y : V → End(V )[[z±1]] satisfying the following set of axioms:

• (translation covariance) [T, Y (v, z)] = ∂Y (v, z), where T (v) = v(−2) | 0 〉,

• (vacuum) Y (| 0 〉 , z) = IdV , Y (v, z) | 0 〉 ∈ V [[z]] and Y (v, z) | 0 〉 |z=0 = v,

• (locality) ∀v,w∈V the fields Y (v, z) and Y (w, z′) are mutually local.

Moreover for any a ∈ V m we have deg(a(n)) = −n+m− 1. In particular deg(T ) = 1.

As in the bosonic case the operator product expansion holds also for vertex super algebras.

Proposition 5.3.6 [38] Let A(z) and B(w) be two fields. Then the following statements are
equivalent:

1. A(z) and B(w) are mutually local,

2. There exist fields Cj(w), j = 0, 1, . . . N1 such that

[A(z), B(w)] =
N−1∑
j=0

Cj(w)∂(j)
w δz−w,

where δz−w =
∑
n∈Z z

−n−1wn,

3. A(z)B(w) has an expression
N−1∑
j=0

ιz,w
Cj(w)

(z − w)j+1 + : A(z)B(w) :,

and (−1)|B||A|B(w)A(z) has an expression:
N−1∑
j=0

ιw,z
Cj(w)

(z − w)j+1 + : A(z)B(w) :,

where ιz,w means that we expand rational functions like 1
z−w in the domain |z| > |w|, and

likewise for ιw,z,
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4. A(z)B(w) converges to the above formula in the domain |z| > |w| and (−1)|B||A|B(w)A(z)
does so in the domain |w| > |z|.

Super conformal structure

Super conformal structure of a vertex super algebra is given by two vectors ω, τ ∈ V , for which the
modes of the corresponding fields satisfy commutation relations of the appropriate super extension
of the Virasoro algebra.

Definition 5.3.7 Vertex operator super algebra (VOSA) is a 1
2Z-graded vertex super algebra with

distinguished conformal vectors ω, τ ∈ V such that Y (ω, z) =
∑
n∈Z L

V
n z
−n−2 and Y (τ, z) =∑

k∈Z+εG
V
k z
−k− 3

2 satisfy:

• Operators LVn , GVk form a representation of the Vε algebra for some value of central charge
cV ,

• LV−1 = T and LV0 |Vn = nIdVn for n ∈ Z.

Definition 5.3.8 A module over vertex operator super algebra V is a super vector space W and
an even linear map YW : V → EndW [[z, z−1]] such that:

• YW (| 0 〉 , z) = IdW ,

• modes of YW (ω, z) =
∑
n∈Z L

W
n z
−n−2 and YW (τ, z) =

∑
k∈Z+ 1

2
GWk z

−n− 3
2 satisfy the commu-

tation relations of the algebra Vε with the central charge cV ,

• for any v ∈ V we have YW (Tv, z) = ∂zY (v, z),

• for any a, b ∈ V the fields YW (a, z) and YW (b, w) are mutually local.

Examples. As in the bosonic case we can define the structure of a VOSA on the fermionic
Fock module FNS(0). We set | 0 〉 = v0, T =

∑∞
n=0 a−n−1an +

∑∞
k= 1

2
kψ−1−kψk and let φ(z) =∑

n∈Z anz
−n−1 ∈ EndFNS(0)[[z, z−1]] and ψ(z) =

∑
k∈Z+ 1

2
ψkz

−k− 1
2 be fields. The map Y is

defined via:

Y (a−j1 · · · a−jlψ−i1 · · ·ψ−ik | 0 〉) =: Dj1−1φ(z) · · ·Djl−1φ(z)Di1− 1
2ψ(z) · · ·Dil− 1

2ψ(z) : .

Moreover using equations (5.10), for any Q ∈ C we can define structure of a VOSA on the fermionic
NS Fock module. In this case the super tensors can be also expressed as:

T (x) = 1
2 : φ(x)φ(x) : +1

2 : ∂ψ(x)ψ(x) : +1
2Q∂φ(x), (5.12)

S(x) = ψ(x)φ(x) +Q∂ψ(x). (5.13)
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Notice that in the above definition we do not need to normal order terms appearing in the field
S(x), since operators an and ψk commute.

The Ramond sector does not arise as a separate VOSA, but rather as a twisted module over the
fermionic NS VOSA.

Definition 5.3.9 Let V be a VOA and σ ∈ End(V ) be an automorphism of V of order N (so that
σN = IdV ). We define σ-twisted module over V as a vector space Mσ with an operation

YMσ : V → End(Mσ)[[z±
1
N ]]

YMσ(v, z
1
N ) =

∑
n∈ 1

N
Z

vM
σ

(n) z
−n−1,

which satisfies following conditions:

• YMσ(| 0 〉 , z
1
N ) = IdMσ ,

• for any v ∈ V if σ(v) = e
2πim
N v then vMσ

(n) = 0 unless n ∈ m
N + Z,

• for v ∈ V and w ∈M we have vMσ

(n) w = 0 for n sufficiently large,

• Jacobi identity [3].

For any VOSA we have a parity automorphism: p(v) = (−1)|v|v.

Example 5.3.1 The Ramond Fock module FR(α) carries the structure of a p-twisted module over
FNS(0) VOSA with the corresponding operation defined as (here YR = YFR(α)p):

YR(a−j1 · · · a−jlψ−i1 · · ·ψ−ik | 0 〉) =: Dj1−1φ(z) · · ·Djl−1φ(z)Di1− 1
2ψR(z) · · ·Dil− 1

2ψR(z) :,

where ψR(z) =
∑
n∈Z ψnz

−n− 1
2 .

5.3.3 Twisted intertwining operators

Here we consider intertwining operators for the fermionic Fock modules. There are two ways one
can approach this problem. First option is to extend the operator I(v, x) from the bosonic sector
to the fermionic one, that is to allow v ∈ FNS(α) or v ∈ FR(α):

I(·, z) : M1 → Hom(M2,M3)[[z, z−1]]⊗C linC{zα1 , . . . , zαn},

where αi ∈ C and Mi ∈ {FNS(α),FR(α)}. Its action on the weight vector is

I(|α 〉 , x, θ) = uα exp
(
α
∞∑
j=1

xj

j
a−j

)
exp

(
− α

∞∑
j=1

x−j

j
aj
)
zαa0 ,

85



where uα : F•(β) → F•(α + β) is a mapping such that uα(|β 〉) = |α+ β 〉, [uα, an] = 0 for n 6= 0
and [a0, u

α] = αuα. For descendant states we define

I(a−j1 · · · a−jlψ−i1 · · ·ψ−ik | 0 〉 , x, θ) =
: Dj1−1φ(x) · · ·Djl−1φ(x)Di1− 1

2ψ(x) · · ·Dil− 1
2ψ(x)I(|α 〉 , x, θ) :, (5.14)

where as before φ(z) =
∑
n∈Z anz

−n−1. More explicitly we can write

I(|α 〉 , x) =
∑
M∈Z

uαxαa0+M
∞∑

k,l=0

∑
j1+···+jk=

M+m1+···+ml
j•,m•>0

1
j1 · · · jkm1 · · ·ml

a−j1 . . . a−jkam1 . . . aml . (5.15)

In a shorter way one can also write I(|α 〉 , x) =: eα
∫
φ(x)dx :, where the integration constant is

understood as “α log(u)”.

We can define action of Vε on the space of intertwining operators in a fashion similar to the previous
one:

(Ln · I)(v, z) = I(LM1
n v, z) (Gk · I)(v, z) = I(GM1

k v, z)

Important is the following restriction on the possible combination of the modules Mi:

Theorem 5.3.2 ( [33], Theorem 4.7) Let I be an intertwining operator between twisted modules
W1, W2 and W3 over VOA V of twistings σ1, σ2 and σ3 respectively. Then if V is simple and
I 6= 0 we must have σ1 = σ3σ2.

The above theorem gives us restrictions on the possible intertwining operators between Ramond
and Neveu-Schwarz sectors. More precisely, since p2 = Id, we can have following cases:

• untwisted Neveu-Schwarz case: σ1 = σ2 = σ3 = Id, i.e. all three modules lie in the
Neveu-Shwarz sector,

• twisted Neveu-Schwarz case: σ1 = Id, σ2 = σ3 = p. In this case we again have Neveu-
Schwarz quantum curves,

• Ramond case: σ1 = p, σ2 = p and σ3 = Id or σ2 = Id and σ3 = p: in this case we get
Ramond quantum curves.

Although both the second and the third cases correspond to the twisted modules over the Neveu-
Schwarz VOSA, the special rôle of the module M1 in the definition of the intertwining operators,
which it plays in the construction of the quantum curves, justifies our notation. In [14] those cases
are called respectively: Neveu-Schwarz case, Ramond-NS case and Ramond-R case.

Note that the structure of the quantum curves will come from the structure of the singular vectors
in the module M1. Therefore only in the Ramond case, when M1 is twisted, we do get Ramond
quantum curves.

86



5.3.4 Intertwining operators with Grassman odd variable

Second extension of the definition of the intertwining operators to the fermionic realm uses addi-
tional Grassman odd variable [2, 35]. Those are objects of the type:

Φ(·, x, θ) : M1 → Hom(M2,M3)[[z±1]]⊗A(C)⊗ linC{zα1 , . . . , zαn},

where θ is the Grassman odd generator of the super algebra A(C). Let us note that following this
approach one can also define super vertex algebras with Grassman odd variables [4].

Definition 5.3.10 [35] Given intertwining operator I(v, x) between fermionic Fock modules as in
the section 5.3.3 one can define intertwining operator with Grassman odd variable:

Φ(v, x, θ) = I(v, x) + θI(G− 1
2
, x).

This definition satisfies following properties:

• Φ(G− 1
2
v, x, θ) =

(
∂
∂θ + θ ∂

∂x

)
Φ(v, x, θ),

• Φ(L−1v, x, θ) = ∂
∂xΦ(v, x, θ),

• skew symmetry and Jacobi identity [35].

Using the definition 5.3.10 and taking I(v, x) as in the equation (5.14) we get

Φ(|α 〉 , x, θ) = (1 + θαψ(x))I(|α 〉 , x).

Moreover we assume that the relation
ψθ = −θψ (5.16)

holds.

Unfortunately the following no-go theorem holds: there do not exist intertwining operators sat-
isfying certain conditions. On the other hand those are conditions, which are required for the
construction of the super quantum curves. Therefore the straightforward generalization of the
method used in the purely bosonic case is not possible after incorporating fermions. The corre-
sponding definitions should be given with a more subtle approach. For example we can restrict the
domain of the intertwining operator Φ.

Proposition 5.3.7 The following set of those conditions:

Φ(|α 〉 , x, θ) = (1 + θαψ(x))I(|α 〉 , x)
Φ(L−1v, x, θ) = ∂xΦ(v, x, θ)

Φ(G− 1
2
|α 〉 , x, θ) = (∂θ − θ∂x)Φ(|α 〉 , x, θ) (5.17)

Φ(G− 3
2
|α 〉 , x, θ) = : S(x)Φ(|α 〉 , x, θ) :

is contradictory.
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Proof. Let us recall that
S(x) = ψ(x)φ(x) +Q∂xψ(x).

On the other hand:
G− 3

2
|α 〉 = a−1ψ− 1

2
|α 〉+ (α+Q)ψ− 3

2
|α 〉 .

Hence the fourth relation in (5.17), being valid for any Q ∈ C, gives rise to the two equations:

Φ(a−1ψ− 1
2
|α 〉 , x, θ) = : (ψ(x)φ(x)− α∂xψ(x))Φ(|α 〉 , x, θ) :,

Φ(ψ− 3
2
|α 〉 , x, θ) = : ∂xψ(x)Φ(|α 〉 , x, θ) : . (5.18)

Now let us notice the following identity, coming from the relations (5.10):

[L−1, ψ− 1
2
] = ψ− 3

2
,

so that
L−1ψ− 1

2
|α 〉 = ψ− 1

2
L−1 |α 〉+ ψ− 3

2
|α 〉 .

Moreover applying the definition (5.10) we deduce that

L−1 |α 〉 = ψ− 3
2
ψ 1

2
|α 〉+ αa−1 |α 〉 = αa−1 |α 〉 .

Hence combining the above two results we get

L−1ψ− 1
2
|α 〉 = αa−1ψ− 1

2
|α 〉+ ψ− 3

2
|α 〉 .

We can now apply the relations (5.17), (5.18) and G− 1
2
|α 〉 = αψ− 1

2
|α 〉, obtaining:

1
α
∂x(∂θ − θ∂x)Φ(|α 〉 , x, θ) = 1

α
Φ(L−1G− 1

2
|α 〉 , x, θ) = Φ(αa−1ψ− 1

2
|α 〉) + Φ(ψ− 3

2
, |α 〉 , x, θ)

= α : (ψ(x)φ(x)− α∂xψ(x))Φ(|α 〉 , x, θ) : + : ∂xψ(x)Φ(|α 〉 , x, θ) :

We will show that this equation cannot be true. Let XL denote left hand side of the above equation
and XR the right hand side. Recall that

Φ(|α 〉 , x, θ) = (1 + θαψ(x))I(|α 〉 , x).

Therefore
1
α

(∂θ − θ∂x)Φ(|α 〉 , x, θ) = ψ(x)I(|α 〉 , x)− θ : φ(x)I(|α 〉 , x) :,

where we have used the fact that ∂xI(|α 〉 , x) = α : φ(x)I(|α 〉 , x) :. It follows that

XL = ∂xψ(x)I(|α 〉 , x) + αψ(x) : φ(x)I(|α 〉 , x) : −θ : ∂xφ(x)I(|α 〉 , x) : −αθ : φ(x)2I(|α 〉 , x) : .

We need to compare it with

XR = α : (ψ(x)φ(x)− α∂xψ(x))Φ(|α 〉 , x, θ) : + : ∂xψ(x)Φ(|α 〉 , x, θ) :
= α : ψ(x)φ(x)I(|α 〉 , x) : +(1− α2) : ∂xψ(x)I(|α 〉 , x) :
+ (1− α3) : ∂xψ(x)ψ(x)I(|α 〉 , x) : θ.

88



Let us restrict to the case α = 0. Note that I(| 0 〉 , x) = 1. Then we have:

XL −XR =: ∂ψψ : θ + ∂φθ,

which is different from zero. Therefore we have arrived at contradiction. �

Question: Do there exist values of α for which the equations (5.17) are not contradictory? Are
those values related to the existence of the singular vectors?

We should address here one more question: does one need to consider intertwining operators with
Grassman odd variables? Cannot we construct wave function and prove the Schrödinger equations
using only operators I(|α 〉 , x)? Indeed one can define the wave function in the following way:

ψ̂α(x) =
∫
ψ(z1)I(| γ 〉 , z1) . . . ψ(zN )I(| γ 〉 , zN ) | 0 〉 dz1 . . . dzN ,

where γ = −
√
β. Here we have integrated out fermionic variables from the standard definition.

However, in this case it is not clear how to proceed with the proof of the Schrödinger equations.

5.4 Super quantum curves

In this section we are going to present some of the results from [14]. We are not planning to
be complete, but rather to give an outline of the construction of the super quantum curves from
the point of view of CFT. Although it is probably possible, we do not present an analog of the
construction using Vertex Operator Superalgebras.

We split our discussion into three parts, corresponding to the untwisted Neveu-Schwarz case, twisted
Neveu-Schwarz case and the Ramond case.

This part is written with less mathematical rigour.

5.4.1 Untwisted Neveu-Schwarz

Recall the definition of the super intertwining operator with the Grassman odd variable:

Φu(|α 〉 , x, θ) = (1 + θαψu(x))I(|α 〉 , x).

Normally ordering intertwining fields we get:

Φu(|α 〉 , x, θ)Φu(
∣∣α′ 〉 , x′, θ′) = (x− x′ − θθ′)αα′ : Φ(|α 〉 , x, θ)Φ(

∣∣α′ 〉 , x′, θ′) : (5.19)

Those super intertwining operators satisfy following commutation relations:

[Lm,Φu(|α 〉 , x, θ)] = xm
(
x
∂

∂x
+ (m+ 1)(∆α + 1

2θ
∂

∂θ

)
Φu(|α 〉 , x, θ),

[Gk,Φu(|α 〉 , x, θ)] = αxk−
1
2
(
θ(x ∂

∂x
+ 2∆α(k + 1

2))− x ∂
∂θ

)
Φu(|α 〉 , x, θ).
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where k ∈ Z+ 1
2 in the untwisted case and k ∈ Z in the twisted case. Let us look on the creation and

annihilation parts of the tensors (here instead of subscripts a and c we use + and − respectively):

T u+(x) =
∞∑

m=−1
x−m−2Lm, T u−(x) =

∞∑
m=2

xm−2L−m,

Su+(x) =
∞∑

k=− 1
2

x−k−
3
2Gk, Su−(x) =

∞∑
k= 3

2

xk−
3
2G−k.

Those fields satisfy:
T u+(x) | 0 〉 = 0, Su+(x) | 0 〉 = 0.

Moreover it follows that the following commutation relations hold:

[T+(y),Φu(|α 〉 , x, θ)] =
∆α + 1

2θ
∂
∂θ

(y − x)2 Φ(|α 〉 , x, θ) + 1
y − x

∂

∂x
Φu(|α 〉 , x, θ)

[S+(y),Φu(|α 〉 , x, θ)] = 2∆αθ

(y − x)2 + 1
y − x

(
θ
∂

∂x
− ∂

∂θ

)
Φu(|α 〉 , x, θ).

Let us pass now to the definition of the super wave function. First we introduce notation

Kβ,u(~z, ~θ) = Φu(|β 〉 , z1, θ1) · · ·Φu(|β 〉 , zN , θN ),

where to shorten the formulas we used the notation ~z = (z1, . . . , zN ) and ~θ = (θ1, . . . , θN ). From
the relation (5.19) it follows that:

Kβ,u(~z, ~θ) = ∆NS(~z, ~θ)β : Φu(|β 〉 , z1, θ1) · · ·Φu(|β 〉 , zN , θN ) :

where we introduced supersymmetric versions of the Vandermond determinants respectively in the
untwisted and twisted sectors:

∆u
NS(~z, ~θ) =

∏
a<b

(za − zb − θaθb).

Those commutation relations allow us to introduce the integrands of the wave functions as well:

Φu(|α 〉 , x, θ)Kβ,u(~z, ~θ) = ∆NS(~z, ~θ)β
N∏
i=1

(x− zi − θθi)−
α
√
β

~

: Φu(|α 〉 , x, θ)Φu(|β 〉 , z1, θ1) · · ·Φu(|β 〉 , zN , θN ) : .

We introduce super wave function in the untwisted Neveu-Schwarz sector using the formula

χ̂(x, θ) =
∫

Φu(|α 〉 , x, θ)Kβ,u(~z, ~θ) | 0 〉 d~zd~θ. (5.20)

On this function we define action of the Neveu-Schwarz algebra

L̂−n · χ̂(x, θ) =
∫
C(x)

dy
2πi

1
(y − x)n−1

∫
T u(y)Φu(|α 〉 , x, θ)Kβ,u(~z, ~θ) | 0 〉 d~zd~θ (5.21)

Ĝ−k · χ̂(x, θ) =
∫
C(x)

dy
2πi

1
(y − x)k−

1
2

∫
Su(x)Φu(|α 〉 , x, θ)Kβ,u(~z, ~θ) | 0 〉 d~zd~θ (5.22)
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Theorem 5.4.1 [14] The representation of the Neveu-Schwarz algebra is given by the following
differential operators:

L̂0 = ∆α
~

+ 1
2θ∂θ, L̂−1 = ∂x,

L̂−n = 1
2~2(n− 2)!

(
∂n−2
x

(
W ′B(x)

)2 + ∂n−2
x

(
W ′F (x)WF (x)

)
+Q~∂nxWB(x) + 2∂n−2

x f̂(x)
)
,

and

Ĝ 1
2

= 2θ∆α
~
, Ĝ− 1

2
= θ∂x − ∂θ,

Ĝ−k = 1
~2
(
k − 3

2

)
!

(
∂
k− 3

2
x

(
WF (x)W ′B(x)

)
+Q~∂k−

1
2

x WF (x) + ∂
k− 3

2
x ĥ(x)

)
.

Those operators can be used to construct super quantum curves. To this aim one should express
the Neveu-Schwarz singular vectors in this representation.

5.4.2 Twisted Neveu-Schwarz

Twisted Neveu-Schwarz intertwining operator takes form

Φt(|α 〉 , x, θ) = (1 + αψt(x)θ)I(|α 〉 , x), (5.23)

where ψt(x) =
∑
k∈Z ψkx

−k− 1
2 . Normally ordering intertwining fields we get in the twisted sector:

Φt(|α 〉 , x, θ)Φt(
∣∣α′ 〉 , x′, θ′) =

(
x− x′ − θθ′

√
x′

x

)αα′
: Φ(|α 〉 , x, θ)Φ(

∣∣α′ 〉 , x′, θ′) :

Twisted Neveu-Schwarz intertwining operators satisfy commutation relations

[Lm,Φt(|α 〉 , x, θ)] = xm
(
x
∂

∂x
+ (m+ 1)(∆α + 1

2θ
∂

∂θ

)
Φt(|α 〉 , x, θ),

[Gk,Φt(|α 〉 , x, θ)] = αxk−
1
2
(
θ(x ∂

∂x
+ 2∆α(k + 1

2))− x ∂
∂θ

)
Φt(|α 〉 , x, θ).

We define tensors:

T t+(x) =
∞∑
m=0

x−m−2Lm, T t−(x) =
∞∑
m=1

xm−2L−m,

St+(x) =
∞∑
k=0

x−k−
3
2Gk, St−(x) =

∞∑
k=1

xk−
3
2G−k.

Note that here the splitting is different than that into creation and annihilation parts. This is the
reason why we use different notation. These fields satisfy:

T+(x) | 0,±〉 = 1
16x

−2 | 0,±〉 , S+(x) | 0,±〉 = − 1
2
√

2
Q | 0,∓〉 .
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The following commutation relations hold:

[T t+(y),Φ(|α 〉 , x, θ)] =
∆α + 1

2θ
∂
∂θ

(y − x)2 Φ(|α 〉 , x, θ) + ∂

∂x

( 1
(y − x) −

1
y

)
Φ(|α 〉 , x, θ)

[St+(y),Φ(|α 〉 , x, θ)] =
(∆α − 1

2)(x+ y)θ
√
xy(y − x)2 Φ(|α 〉 , x, θ) +

(
θ
∂

∂x
− ∂

∂θ

) √
x

√
y(y − x)Φ(|α 〉 , x, θ).

In order to define wave function in the twisted sector we introduce notation:

Kβ,t(~z, ~θ) = Φt(|β 〉 , z1, θ1) · · ·Φt(|β 〉 , zN , θN ),

where to shorten the formulas we used the notation ~z = (z1, . . . , zN ) and ~θ = (θ1, . . . , θN ). From
the commutation relations it follows that:

Kβ,u(~z, ~θ) = ∆NS(~z, ~θ)β : Φt(|β 〉 , z1, θ1) · · ·Φt(|β 〉 , zN , θN ) :,

where we introduced supersymmetric versions of the Vandermonde determinant in the twisted
sector:

∆t
NS(~z, ~θ) =

∏
a<b

(
za − zb − θaθb

√
zb
za

)
.

Those commutation relations allow us to introduce the integrands of the wave functions as well:

It(|α 〉 , x, θ)Kβ,u(~z, ~θ) = ∆NS(~z, ~θ)β
N∏
i=1

(x− zi − θθi
√
zi
x

)−
α
√
β

~

: It(|α 〉 , x, θ)Φt(|β 〉 , z1, θ1) · · ·Φt(|β 〉 , zN , θN ) : .

We introduce super wave function in the untwisted Neveu-Schwarz sector using the formula

χ̂(x, θ) =
∫

Φt(|α 〉 , x, θ)Kβ,u(~z, ~θ) | 0 〉 d~zd~θ. (5.24)

On this function we define action of the Neveu-Schwarz algebra

L̂−n · χ̂(x, θ) =
∫
C(x)

dy
2πi

1
(y − x)n−1

∫
T t(y)Φt(|α 〉 , x, θ)Kβ,u(~z, ~θ) | 0 〉 d~zd~θ (5.25)

Ĝ−k · χ̂(x, θ) =
∫
C(x)

dy
2πi

1
(y − x)k−

1
2

∫
St(x)Φt(|α 〉 , x, θ)Kβ,u(~z, ~θ) | 0 〉d~zd~θ (5.26)

Theorem 5.4.2 In the twisted case representation of the Neveu-Schwarz algebra takes form:

Ĝ 1
2

= 2∆ α
~
θ, Ĝ− 1

2
= θ∂x − ∂θ

Ĝ− 3
2

=
∆ α

~
θ

4x2 −
1

2x (θ∂x − ∂θ) + x−1/2

~2

((
W ′B(x)− Q~

2x

)(
WF (x)− 1

2~
2∂ξ0

)
+Q~W ′F (x) + ĥ(x)

)
L̂0 = ∆ α

~
+ 1

2θ∂θ L̂−1 = ∂x,

L̂−2 = 1
16x2 −

1
x
∂x + 1

~2

{
1
x
f̂(x) + 1

2

(
(W ′B(x))2 +Q~W ′′B(x) + 1

x
W ′F (x)

(
WF (x)− ~2

2 ∂ξ0

))}
.
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5.4.3 Ramond

In this case the quantum curves have the structure of the Ramond singular vectors. We restrict
our attention to the case, where intertwiners map twisted module to the untwisted module (and
not the other way round). Since we have two linearly independent vectors of the lowest conformal
dimension in the Ramond Fock module, we can define two intertwining operators:

R±(|α 〉 , x) = I(|α,±〉 , x) = Eα(x)σ±(x),

where σ±(x) is the chiral spin field. Its definition using operator product expansion was recalled
in [14]. The wave function for the Penner potential is defined as an expression

χR
α(x, ξ) = x1/8(x− w)−

αγ

~2 e
− γξη

~2

√
x√

w(x−w)

∫
dNzdNθΨ(x, ξ, z, θ), (5.27)

where
Ψ(x, ξ, z, θ) = Ψ+(x, z, θ) +

√
2
~
e
iπ
4 ξΨ−(x, z, θ). (5.28)

and

Ψ±(x, x, θ) = 〈α0 |R
α
~
±(x)Φ

γ
~ (w, η)

N∏
a=1

Φ−
√
β(za, θa) |σ+ 〉 ,

α+ γ

~
−N

√
β = Q− α0

~
. (5.29)

The action of the Ramond operators is defined by

Ĝmχ̂
R
±,α(x) =

∫
dNz dNθ 〈α0 |Gm · R

α
~
±(x)Φ

γ
~ (w, η)

N∏
a=1

Φ−
√
β(za, θa) |σ+ 〉 , (5.30)

where
S(y)Rα±(x) =

∑
m∈Z

1
(y − x)m+ 3

2
Gm · Rα±(x). (5.31)

The expression
α

~

(2α
~
−Q

)
G−1 − 2L−1G0, (5.32)

for α = ~Q
2 , α = ~

√
β

2 , and α = − ~
2
√
β
gives null vectors. Using it we obtain differential equations

(
∂

∂x
+ 1

8x

)
χ̂R

+,α(x) = −e
iπ
4
α

~

√
2w

x(x− w)

( ∆ γ
~
η x

w(x− w) + η∂w − ∂η

)
χ̂R
−,α(x), (5.33)

(
∂

∂x
+ 1

8x −
Qα

~x

)
χ̂R
−,α(x) = e−

iπ
4
α

~

√
2w

x(x− w)

( ∆ γ
~
η x

w(x− w) + η∂w − ∂η

)
χ̂R

+,α(x),

which are valid for α = ~
2
√
β or − ~

2
√
β
.
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Chapter 6

Super quantum Airy structures

In this part of our dissertation we return to the concept introduced in the beginning: topological
recursion. Recently it has been shown that topological recursion can be reformulated in the language
of quadratic differential operators [23,43]. Those operators are required to form a closed Lie algebra
under the commutator as the Lie bracket. They annihilate a unique partition function. Coefficients
of this function can be related with the differential forms ωg,n computed using the topological
recursion. Notion of quantum Airy structures is however more general: there are examples which
do not arise from the spectral curves.

There are various attempts to derive supersymmetric version of the topological recursion. In the
context of super eigenvalue models such study was done in [12] and [48]. In this chapter we
pursue a different approach: we generalise quantum Airy structures (QASs) to super quantum
Airy structures (SQASs). Question about the relation of this new concept with the super spectral
curves remains open. However, as was show in [30] quantum curves and topological recursion are
related with each other. As QASs are a reformulation and generalisation of topological recursion
we hope that QSAs (or SQASs) defined in this thesis would allow to express in this language the
theory of quantum curves.

Let us also note that in the context of string theory quantisation of quadratic Hamiltonians appeared
even earlier in the work of Givental, in the context of topological recursion for example in [18,47].

In the section 6.1 we define SQAS and its solution (free energy). We also prove existence and
uniqueness result, derive relations on the tensors defining SQAS and write down recursion relations
on the coefficients of the free energy. We give also two examples of the infinite dimensional SQASs.

In the section 6.2 we discuss classical limit and its connection with the symplectic representations.
We show how they can be used as obstructions to the existence of the SQAS. We also sketch a
method based on the weight spaces, which can be used in analysing classical Airy structures. We
illustrate those considerations in examples.

94



6.1 Definitions and Theorem

6.1.1 Definitions

Let V = V0⊕V1 be a super vector space over a field k of characteristic 0. We also use the notation
Ṽ = V ⊕ k0|1 (here k0|1 is a vector super space over k of dimension 0|1), W = V ⊕ V ∗ and
W̃ = Ṽ ⊕ Ṽ ∗.

Definition 6.1.1 Given a vector super space V we define its Weyl algebra as a quotient of the
tensor algebra tensored with polynomials in a formal variable ~:

W(V ) =
(
T (V ⊕ V ∗)/I

)
⊗ k[~],

where the ideal I ⊂ T (V ⊕ V ∗) is generated by the elements

y ⊗ x− x⊗ y − (−1)|x||y|~y(x)
x1 ⊗ x2 − (−1)|x1||x2|x2 ⊗ x1

y1 ⊗ y2 − (−1)|y1||y2|y2 ⊗ y1

for x, x1, x2 ∈ V and y, y1, y2 ∈ V ∗.

Let us choose a basis {xi}i∈I of V and let {yi}i∈I be a dual set (this means that yj(xi) = δi,j).
We assume that the basis elements are homogeneous elements with respect to the grading on the
vector super space V . We denote the images of those elements in the Weyl algebra WV using
symbols xi and ~ ∂

∂xj
respectively. Hence, in this notation we have a usual commutation relation

[~ ∂
∂xj

, xi] = ~δi,j .

Let us denote by A the subalgebra of WV generated by the set {xi}i∈I and the identity 1.

Definition 6.1.2 Let V be a vector super space and let {xi}i∈I be its basis. Assume that V ∗ has a
super Lie algebra structure and let {yi}i∈I be a dual set. A super quantum Airy structure (SQAS)
based on V is an even homomorphism of super Lie algebras

L̂ : V ∗ →W(V ), (6.1)

such that operators L̂i = L̂(yi) satisfy following conditions:

• L̂i have the from:

L̂i = ~∂xi −
1
2
∑
a,b∈I

Aia,bxaxb − ~
∑
a,b∈I

Bi
a,bxa∂xb −

1
2~

2 ∑
a,b∈I

Cia,b∂xa∂xb − ~Di, (6.2)

for some Aia,b, Bi
a,b, C

i
a,b, D

i ∈ k (coefficients of the tensors A, B, C and D).

• Those operators are required to span a vector super space, which equipped with the super
commutator is a super Lie algebra. In other words there exist coefficients fki,j ∈ k such that
[L̂i, L̂j ] = ~

∑
k f

k
i,jL̂k. for any i, j ∈ I.
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This definition can be extended to the one containing also an additional fermionic variable. More
precisely the extended SQAS is a map

L̂ : V ∗ →W(Ṽ ).

Notice that this is not the simple change of V for Ṽ , since the domain of the map L̂ stays the same.
This remark is an important observation, as it allows constructions of new examples. In particular
we will see that the superalgebra osp(1|2) cannot be a domain of a SQAS without this additional
fermionic variable. One can also make a further extension of the definition, including for example
operators of higher degree that 2. This extension however will not be relevant for us.

Definition 6.1.3 We define free energy as an even element F ∈ A[[~]]. We can expand it in the
following way

F =
∑

g≥0,n≥1

~g−1

n!
∑

i1,...,in∈I
Fg,n(i1, . . . , in)xi1 · · ·xin ,

where Fg,n(i1, . . . , in) ∈ k are the coefficients. Note that the sums∑
i1,...,in∈I

Fg,n(i1, . . . , in)xi1 · · ·xin

are always finite, from the definition of the algebra A.

We are interested in the solutions to the equations L̂ieF = 0, where F is the free energy. This form
of the equation is however not very convenient: due to the presence of ~−1 the expression eF is
ill-defined. One can however proceed in a different way, defining an automorphism of the algebra
WV associated with the free energy F .

Definition 6.1.4 For any F ∈ A[[~]] define an automorphism TF :WV →WV given on generators
by xi → xi and ~ ∂

∂xi
→ ~ ∂

∂xi
+ ~ ∂

∂xi
(F ).

The map T : A[[~]]→ Aut(WV ) is a homomorphism of groups, where group structure on A[[~]] is
given by addition. Its kernel is equal to k[[~]]. Every operator TF preserves Lie bracket in WV ,
hence is maps sub-Lie algebras to sub-Lie algebras.

Now we arrive at the definition of the solution to the equations L̂ieF = 0.

Definition 6.1.5 We say that Z = exp(F ) is a solution to the system of equations L̂iZ = 0 if
TF (L̂i)(1) = 0 for all i ∈ I.

In what follows we also use the following technical assumption. It is always satisfied if the dimension
of V is finite, but includes also infinite dimensional cases.

Definition 6.1.6 We say that SQAS {L̂i}i∈I is of finite type if for any polynomial f ∈ ~−1A⊗C[~]
in the variables xa and ~±1 the expression Tf (L̂i)1 is also a polynomial for any i ∈ I and it is
nonzero only for a finite set of indices i (where this finite set of indices depends on f).
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6.1.2 Existence and uniqueness theorem

In this section we prove that a solution to SQAS of finite type always exists.

Theorem 6.1.1 Suppose that operators L̂i form a SQAS of finite type. Then there exists exactly
one collection of elements Fg,n ∈ A, which satisfy equations L̂i exp(

∑
g≥0

∑
n≥1 ~g−1Fg,n) = 0 in

the sense of the Definition 6.1.5 and such that F0,2 = 0.

Here we give a proof in the finite dimensional case. For more general case see [10].

Lemma 6.1.1 Suppose that H1, . . . ,Hn ∈ A satisfy relations ∂
∂xi
Hj = (−1)|i||j| ∂∂xjHi. Then there

exists an element S ∈ A such that for all i we have ∂
∂xi
S = Hi.

Proof. It is sufficient to give a proof in the case in which all Hi are homogeneous polynomials of
the same degree, which we denote by m. Define S = 1

m+1
∑n
i=1 x

iHi.

We use the fact that the operator
∑
j xj

∂
∂xj

acts on homogeneous polynomials by multiplication by
the degree. To see this it is enough to consider its action on the monomials. For any occurrence of
xj in a monomial axjb we have

xj
∂

∂xj

(
axjb

)
= xj(−1)|j||a|ab+ · · · = (−1)2|j||a|axjb+ · · · = axjb+ . . .

Here the dots represent action of the derivative on other occurrences. It follows that the operator∑
j xj

∂
∂xj

acts by multiplying by the number of any occurrences of any variable, which is the degree.
Hence, using the assumption ∂

∂xi
Hj = (−1)|i||j| ∂∂xjHi we can write

(m+ 1) ∂

∂xi
S = Hi +

∑
j

xj(−1)|i||j| ∂
∂xi

Hj = Hi +
∑
j

xj(−1)2|j||i| ∂

∂xj
Hi

= Hi +
∑
j

xj
∂

∂xj
Hi = (m+ 1)Hi.

This completes the proof. �

Proof of the theorem. Uniqueness follows from the explicit recursion relations shown in the Section
6.1.3. To show the existence we can proceed by induction as in the proof of the Theorem 2.4.2 in
[KS].

First let us introduce some notation. We say that a monomial in variables xa of degree m and
multiplied by ~g is of type (m, g). We can introduce lexicographic order on the set of types: we say
that (m, g) < (m′, g′) if g < g′ or g = g′ andm < m′. Let us split the free energy with respect to the
types: F =

∑
g,n Fg,n. We construct the summands Fg,n of type (n, g − 1) inductively. Recall that

the operator TF acts on the generators in the following way: xi → xi and ~ ∂
∂xi
→ ~ ∂

∂xi
+ ~ ∂

∂xi
(F ).

The proof is inductive. The induction starts with the trivial F0,2 = 0, as assumed in the statement
of the theorem. The induction step goes as follows: suppose that we have constructed solution up
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to the element of type (n, g − 1):

Sg,n =
∑

g′<g,n′

Fg′,n′ +
∑
n′≤n

Fg,n′ .

In the inductive step we want to construct next term Fg,n+1. We achieve this by looking on the
equations coming from TF (L̂i)1 = 0, which it must satisfy. Let us denote Rg,n = F − Sg,n the
hypothetical rest of the solution (not yet constructed). Using this notation we can write

TF (L̂i)1 = ~∂i
(
Sg,n +Rg,n

)
− 1

2A
i
a,bx

axb − ~Bi
a,bx

a
(
∂xbSg,n + ∂xbRg,n

)
−1

2~
2Cia,b

(
∂xaSg,n + ∂xaRg,n + ∂xa

)(
∂xbSg,n + ∂xbRg,n

)
1. (6.3)

Let us note that the rest Rg,n gives contribution to terms appearing on the right hand side of the
above equation of which lowest type is (n, g). This lowest type term comes only from ~∂iFg,n+1. On
the other hand Sg,n contributes also to the terms of lower type. However, since we have assumed
that it is a partial solution, those terms must vanish. Let us denote the term of type (n, g) coming
from Sg,n by ~gHi(g, n). From (6.3) in the type (n, g) we obtain the following equation:

~g∂iFg,n+1 + ~gHi(g, n) = 0. (6.4)

In order to solve it we use Lemma 6.1.1. We need to check that functionsHi(g, n) satisfy appropriate
condition. Notice that

TSg,n(L̂i) = ~
∂

∂xi
+ ~gHi(g, n)− ~Bi

a,bx
a∂xb −

1
2~

2Cia,b∂xa∂xb − ~2Cia,b∂xaSg,n∂xb + . . . , (6.5)

where dots represent terms of type higher than (n, g). The operation TSg,n preserves commutator
of the operators, hence we can write:

[TSg,n(L̂i), TSg,n(L̂j)] · 1 = ~
∑
k

fki,jTSg,n(L̂k) · 1.

Since Sg,n is a partial solution on the right hand side of the above formula there do not appear
terms of type (n−1, g+1) or lower, but on the left hand side a priori there are such term. Therefore
they must vanish and we obtain the following equation:

∂

∂xi
Hj(g, n)− (−1)|i||j| ∂

∂xj
Hi(g, n) = 0.

Those are equations necessary in order to use Lemma 6.1.1. Hence we arrive at the conclusion
that there exist Fg,n+1 satisfying equation (6.4). This gives us next term in our inductive step
(g, n) → (g, n + 1). Moreover if Sg,n was a polynomial, since our SQAS is of finite type, Fg,n+1 is
again a polynomial (because only finitely many of functions Hi(g, n) are nonzero).

To finish the proof we also need to show how to obtain a term with a higher power g of the parameter
~. Notice that adding a constant to the free energy does not change the equations TF (L̂i)1 = 0,
since it does not change the transformation TF . Therefore we can always add term of type (0, g)
to our solution, rising the power of ~ appearing in the free energy. �

Remark 6.1.1 From the theorem and lemma we also get different version of the recursion for
Fg,n: Fg,n+1 = 1

n+1
∑
i xiHi(g, n), where Sg,n =

∑
(m,h)≤(n,g) Fm,h.
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6.1.3 Recursion

In this section we are going to rewrite the equations L̂ieF = 0 using the coefficients Fg,n of the free
energy. We will see that those differential equations are equivalent to the recursions relations for
those coefficients. Those relations shows that the free energies are unique.

Before proceeding let us change a little bit the perspective and instead of considering the numbers
Fg,n(i1, . . . , in) consider F gn,m(I|J). They appear if we make a segregation of the coefficients with
respect to the grading. We assume that indices in the set I correspond to the even variables (which
we denote by x’s) and the indices in the set J to the odd variables (which we denote by θ’s). We
also segregate the operators: we assume that Li are even operators and that Gj are the odd ones.
We also need to split the tensors A,B,C and D. New tensors arise as coefficients in the following
equations:

Gi = ~∂θi +
∑

a∈I,b∈J
P ia,bθaxb + ~

∑
a∈I,b∈J

Qia,bxa∂θb + ~
∑

a∈J,b∈I
Ria,bθa∂xb + ~2 ∑

a∈I,b∈J
Sia,b∂xa∂θb

and

Li = ~∂xi −
1
2
∑
a,b∈I

Aia,bxaxb − ~
∑
a,b∈I

Bi
a,bxa∂xb −

1
2~

2 ∑
a,b∈I

Cia,b∂xa∂xb − ~Di

− 1
2
∑
a,b∈J

Eia,bθaθb − ~
∑
a,b∈J

Ki
a,bθa∂θb −

1
2~

2 ∑
a,b∈J

H i
a,b∂θa∂θb .

Remark 6.1.2 Note that the tensors A,B,C and D here have a different meaning comparing to
the definition 6.1.2.

We define free energy as a formal power series in the variables xi and θj :

F =
∑
g>0
m,n>0

~g−1

(2m)!n!
∑

i1,...,in∈I
j1,...,j2m∈J

F gn,2m(i1, . . . , in|j1, . . . , j2m)xii · · ·xinθj1 · · · θj2m .

From the equation ĜiZ = 0 we get the following recursion relations on the coefficients of the free
energy (for any sets of indices N ⊂ In and M ⊂ Jm−1):

F gn,m(N |i,M) = −
n∑
k=1

∑
ik∈N,a∈J

Qiik,aF
g
n−1,m(N − ik|a,M)

−
m−1∑
k=1

∑
ik∈M,a∈I

Riik,aF
g
n+1,m−2(a,N |M − ik) +

∑
a∈I,b∈J

Sia,b

(
F g−1
n+1,m(a,N |b,M)

+
∗∑

g1+g2=g
{a}∪N1∪N2=N
{b}∪M1∪M2=M

F g1
|I1|+1,|J1|(a,N1|M1)F g2

|N2|,|M2|+1(N2|b,M2)
)
. (6.6)
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Form the equations L̂ieF = 0 we infer that (for any sets of indices N ⊂ In−1 and M ⊂ Jm):

F gn,m(i,N |M) =
n−1∑
k=1

∑
ik∈N,a∈I

Bi
ik,a

F gn−1,m(a,N − ik|M)

+
m∑
k=1

∑
ik∈M,a∈I

Ki
ik,a

F gn−1,m(N |a,M − ik) + 1
2
∑
a,b∈I

Cia,b

(
F g−1
n+1,m(a, b,N |M)

+
∗∑

g1+g2=g
{a}∪N1∪N2=N
{b}∪M1∪M2=M

F g1
1+|N1|,|M1|(a,N1|M1)F g2

1+|N2|,|M2|(b,N2|M2)
)

(6.7)

+ 1
2
∑
a,b∈J

H i
a,b

(
F g−1
n−1,m+2(N |b, a,M)

+
∗∑

g1+g2=g
{a}∪N1∪N2=N
{b}∪M1∪M2=M

F g1
|N1|,1+|M1|(N1|a,M1)F g2

|N2|,1+|M2|(N2|b,M2)
)
.

Sign
∑∗ means, that from the summation two cases are excluded: (g1 = 0, I1 = ∅, J1 = ∅) and

(g2 = 0, I2 = ∅, J2 = ∅). Moreover we get the following relations in low Euler characteristic:

F 0
3,0(i, j, k|−) = Aij,k, F 1

1,0(i|−) = Di, (6.8)
F 0

1,2(i|j, k) = Eij,k = −P ik,j .

We see that the above equations give recursion with respect to the Euler characteristic e = 2g −
2 +n+m with the initial conditions given by tensors A, D and E ∼ −P . However it is not obvious
that coefficients satisfying those equation exists and are symmetric/antisymmetric.

6.1.4 Tensor relations

The condition of the closing of the super Lie algebra generated by the operators L̂i’s and Ĝj ’s can
be also rewritten as specific relations on the tensors defining those operators. Here we suppose that
the dimension of V is finite. Closing of the superalgebra requires that:

{
Ĝi, Ĝj

}
= ~gkijL̂k. This

gives us relations (here and below we use Einstein summation convention, meaning that the sum
over repeating indices is implicit):

P ij,a + P ji,a = 0

Rij,a +Rji,a = gai,j

P iabQ
j
ca + P iacQ

j
ba −R

i
jkA

k
bc = −(i↔ j)

QibaR
j
ac + P iabS

j
ca −RijkBk

bc = −(i↔ j)
RiabS

j
ca +RiacS

j
ba −R

i
jkC

k
bc = −(i↔ j)

P icaR
j
ba − P

i
baR

j
ca +RijkE

k
bc = −(i↔ j)

QiacR
j
ba − P

i
baS

j
ac +RijkK

k
bc = −(i↔ j)

QiacS
j
ab −Q

i
abS

j
ac +RijkH

k
bc = −(i↔ j)

P iabS
j
ba −R

i
jkDk = = −(i↔ j)
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Here and below the symbol (i ↔ j) means the left hand side of the respective equation with a
substitution i for j and vice versa. From the condition

[
L̂i, L̂j

]
= ~fkijL̂k we get the relations from

the paper [23] for tensors A, B and C, as well as additional relations:

−EiabKj
ca − EiacK

j
ba +Bi

jkE
k
cb = (i↔ j)

EiabH
j
ca −Ki

baK
j
ac +Bi

jkK
k
bc = (i↔ j)

Ki
abH

j
ac +Ki

acH
j
ba +Bi

jkH
k
bc = (i↔ j)

The condition for the D vector gets modified comparing to [23]:

1
2E

i
abH

j
ab +Bi

jkD
k + 1

2C
i
abA

j
ab = (i↔ j)

Finally the commutation relation [Li, Gj ] = ~hkijGk gives us the relations:

hkij = Qjik +Ki
jk

0 = P jai + Eija

hkijP
k
cb = RjcaA

i
ab + EiacQ

j
ba −K

i
caP

j
ab −B

i
baP

j
ca

hkijS
k
bd = Bi

abS
j
ad − C

i
baQ

j
ad +Ki

adS
j
ba +H i

adR
j
ab

Hk
ijR

k
cb = Bi

abR
j
ca − CibaP jca + EiacS

j
ba −K

i
caR

j
ab

hkijQ
k
cb = AicaS

j
ab −B

i
caQ

j
ab +Ki

abQ
j
ca +H i

abP
j
ac (6.9)

Remark 6.1.3 In [10] it has been shown that these relations can be used in order to prove existence
of the free energy solving the SQASs equations. That proof is computational and it shows that
recursion relations (6.6,6.7) define coefficients that are graded-symmetric.

6.1.5 Examples

In this section we present two examples of the SQASs based on the Virasoro algebra or its super-
symmetric extension. Those are examples of infinite dimension and consists of operators, which
do not fit in the definition 6.1.2. They require considering a completion Ŵ(V ) of the space W(V ).
Details can be found in [10].

Virasoro algebra

The first one is an important example of a purely bosonic SQAS, whose free energies count inter-
section numbers on the moduli space of curves [9]. It is based on a vector space spanned by the
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elements x0, x1, x2, . . . and the corresponding operators have the form:

L̂0 = ~
∂

∂x0
− 1

2x
2
0 −

∞∑
k=0

~xk
∂

∂xk+1
,

L̂1 = ~
∂

∂x1
− ~

∞∑
k=0

2k + 1
3 xk

∂

∂xk
− 1

24~, (6.10)

L̂i = ~
∂

∂xi
− ~

∞∑
k=0

(2i+ 2k − 1)!!(2k + 1)
(2i+ 1)!!(2j + 1)!! xk

∂

∂xi+k−1

− 1
2~

2
i−2∑
k=0

(i− k − 2)!!(2k + 1)!!
(2k + 1)!!

∂

∂xk

∂

∂xi−2−k
for i ≥ 2.

Those operators satisfy ~-deformed Virasoro algebra:

[L̂i, L̂j ] = ~(i− j)L̂i+j .

The free energies are given by Fg,n(d1, . . . , dn) = ~g−1〈τd1 · · · τdn〉g,n, where the intersection numbers
〈τd1 · · · τdn〉g,n were defined in (2.18).

Neveu-Schwarz algebra

The next example of a SQAS is based on Neveu-Schwarz algebra. It is an example coming from a
Vertex Operator Super Algebra [10]. Here we consider one particular case of such SQAS presented
in an explicit form. The generators are given by the equations:

L̂i = ~
∂

∂xi
+ ~2

2

i∑
k=0

∂

∂xk

∂

∂xi−k
+ ~

∞∑
k=i+1

(k − i)xk−i
∂

∂xk
+ ~

2

∞∑
r= 1

2

(r + i

2)θr+ 1
2

∂

∂θi+r+ 1
2

+ 1
2~

2
i− 1

2∑
r= 1

2

∂

∂θr+ 1
2

∂

∂θi−r+ 1
2

+ 1
2~

∞∑
r=i+ 1

2

(−r + i

2)θr−i+ 1
2

∂

∂θr+ 1
2

+ ~Dδi=0,

Ĝr = ~
∂

∂θr+ 1
2

+ 1
2~

2
r− 1

2∑
m=0

∂

∂θr+ 1
2−m

∂

∂xm
+ 1

2~
∞∑
m=1

xm
∂

∂θr+ 1
2 +m

+ 1
2~

∞∑
m=r+ 1

2

θm−r+ 1
2

∂

∂xm
,

with gradings |L̂i| = 0 and |Ĝr| = 1, |xi| = 0 and |θr| = 1, where the indices i ∈ Z≥0, r ∈ Z≥0 + 1
2

and D ∈ C is a parameter. Those operators satisfy the following super commutation relations:

[L̂i, L̂j ] = ~(i− j)L̂i+j ,

[L̂i, Ĝr] = ~(1
2 i− r)Ĝi+r,

{Ĝr, Ĝq} = 2~L̂r+q.
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6.2 Super Airy structures and representations

In the paper [23] another view on classical Airy structures was presented using the theory of the
representations of the Lie algebras, which we are going to present here. Let V be a vector super
space, such that V ∗ = g has a structure of a super Lie algebra. We also use notation W = V ⊕V ∗.

Definition 6.2.1 Let L̂ : g → WV be a SQAS. We define its classical limit L : g → k[W ] as a
composition of L̂ with a map WV →WV /~WV ' k[V ⊕ V ∗], where we identify variables yi on V ∗

with the images of ~ ∂
∂xi

and xi’s goes to xi’s.

The classical limit can be expressed in the following form:

Li = yi −
1
2
∑
a,b∈I

Aia,bxaxb −
∑
a,b∈I

Bi
a,bxayb −

1
2
∑
a,b∈I

Cia,byayb. (6.11)

The space W carries a natural symplectic structure defined as:

ω(x1, x2) = 0 forx1, x2 ∈ V,
ω(y1, y2) = 0 for y1, y2 ∈ V ∗, (6.12)
ω(x, y) = y(x) forx ∈ V, y ∈ V ∗.

Therefore the ring k[W ] can be equipped with a Poisson bracket {·, ·}. If ei is a basis of g then we
obtain a relation

{L(ei), L(ej)} =
∑
k

fki,jL(ek),

where fki,j are the structure constants of the algebra g: [ei, ej ] =
∑
k f

k
i,jek. Therefore classical Airy

structure is a homomorphism of the Lie algebras, where the structure of a super Lie algebra on
k[V ⊕ V ∗] is given by the super Poisson bracket.

Let us assume that the collection of the operators L̂i for i = 1, . . . , n forms a SQAS based on a
vector space V and such that the structure constants fkij define a super Lie algebra g. Let Li ∈ k[W ]
be its classical limit. With this limit we can associate a representation of the super Lie algebra g

on the vector space W .

Recall that a SQAS is a map L̂ : g → WV (6.1). Using this map we can consider the adjoint
representation ad : g → End(WV ) defined as ad(v) = ~−1[L̂(v), ·]. Recall that the image of the
map L̂ consists only of the operators of degree at most two. Super-commutator of two operators of
degree at most two is again of such degree. Therefore the representation ad preserves the subspace
W≤2
V ⊂ WV . We can make a further splitting:

W≤2
V =W0

V ⊕W1
V ⊕W2

V

according to the degree of the operator, where W0
V ' C are the constants and W1

V ' g⊕ g∗. From
a similar argumentation as before it follows that ad restricts also to a representation

φ : g→ End(W0
V ⊕W1

V ).
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Let us compose this map with the projection onto the second summand π :W0
V ⊕W1

V →W1
V and

injection ι :W1
V →W0

V ⊕W1
V , obtaining

ϕ(·) = π ◦ φ(·) ◦ ι : g→ End(W1
V ).

We can examine this map in more detail by looking how it acts on the basis of End(W1
V ). Using

the explicit form (6.2) we have:

[L̂i, xc] = ~δi,c − ~Bi
a,cx

a − ~2Cia,c∂xa ,

[L̂i, ~∂xc ] = ~Aia,cxa + ~2Bi
c,b∂xb .

Using the above equations we conclude that the matrix of the map ϕ(ei) (where ei is the basis
element of g such that ρ(ei) = L̂i) has the following form:

ϕ(ei) =
[
−Bi Ai

−Ci (Bi)t

]
. (6.13)

Let us notice that all of the operators ϕ(ei) are infinitesimal symplectomorphisms with respect to
the symplectic structure (6.12), i.e. they satisfy relation

ω(ϕ(ei)v1, v2) + ω(v1, ϕ(ei)v2) = 0

for any v1, v2 ∈ W1
V .

Proposition 6.2.1 The map ϕ is a representation of the super Lie algebra g.

Proof. The conclusion of the proposition follows if the following conditions are satisfied:

[ϕ(ei), ϕ(ej)] = ϕ([ei, ej ]) =
∑
k

fki,jϕ(ek),

where the second equation is a property of the Lie algebra g. Let us notice that

[ϕ(ei), ϕ(ej)] = ϕ(ei)ϕ(ej)− ϕ(ei)ϕ(ej)
= πφ(ei)ιπφ(ej)ι− πφ(ei)ιπφ(ej)ι

= π
(
φ(ei)ιπφ(ej)− φ(ei)ιπφ(ej)

)
ι

= π
(
φ(ei)φ(ej)− φ(ei)φ(ej)]

)
ι

= π[φ(ei), φ(ej)]ι =
∑
k

fki,jπφ(ek)ι =
∑
k

fki,jϕ(ek),

where in the forth equality we have used the fact that ϕ = πφ differs from φ by elements of W0
V ,

which lie in the kernel of φ (supercommute with any other element of WV ). Therefore it is enough
to show that φ is a representation of g. This is clear since φ is a subrepresentation of ad. �

Note that representation ϕ can be also obtained from the classical limit (Definition 6.2.1). Let
Lclg → k[g ⊕ g∗] be such a classical limit of SQAS L̂. Then we define representation θ : g →
End(g⊕ g∗) using the Poisson bracket:

θ(v)w = {Lcl(v), w}.
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One can check that indeed θ = ϕ.

Another important map arising from a quantum Airy structure is a Lagrangian embedding j : g→
W1
V . In fact, as shown in [23], there is a one-to-one correspondence between pairs of symplec-

tic representations ϕ as described above and Lagrangian embeddings which satisfy the following
relation:

ϕ(v1)j(v2)− ϕ(v2)j(v1) = j([v1, v2]) (6.14)

for v1, v2 ∈ g. This embedding is simply given by the map

j(ei) = ~
∂

∂xi
.

Existence of (super) symplectic representation of dimension twice that of the underlying super
Lie algebra is therefore a necessary condition for the existence of the SQAS without additional
fermionic variable. As we will see this condition gives obstruction for existence of such structures
for certain algebras. With additional fermionic variable we can add one more dimension.

6.2.1 Relation between super and even Airy structures

Let g = g0 ⊕ g1 be a super Lie algebra. Let us denote W = g ⊕ g∗, which is a vector super space
W = W0 ⊕W1. In particular W0 = g0 ⊕ g∗0.

Proposition 6.2.2 Given any super classical Airy structure Lcl : g → k[W ], one can always
produce a bosonic one based on g0.

Proof Consider a restriction of this map to Lcl
0 : g0 → k[W ]. Since Lcl is even, so is its restriction.

Therefore image of Lcl
0 consists of even elements. Those elements are linear combinations of mono-

mials, which can be of two types: either have no fermionic variables or have an even number of them.
Observe that both of these subsets are closed under the Poisson bracket. Let π0 : k[W ] → k[W0]
be the projection onto the subspace spanned by those elements which have no fermionic variables.
We define a bosonic Airy structure as a composition Lcl,b = π0 ◦ Lcl

0 : g0 → k[W0]. The subspace
spanned by those monomials in k[W ], which have even and nonzero number of fermionic variables,
is a left ideal with respect to the Poisson bracket. Therefore the condition {Lcl

i , L
cl
j } = ~

∑
k f

k
ijL

cl
k ,

for some fkij ∈ k[W ], implies that {Lcl,b
i , Lcl,b

j } = ~
∑
k π0(fkij)L

cl,b
k . This proves that Lcl,b is a

classical Airy structure. �

A generalisation of the above proposition is the following lemma.

Lemma 6.2.1 Suppose that L : g → End(g ⊕ g∗) is a symplectic representation giving rise to a
classical Airy structure. Let j ⊂ g be a subalgebra such that ρ(j)(j⊕ j∗) ⊂ j⊕ j∗. Then L restricted
to j gives rise to a classical Airy structure.

Proof. Quadratic Lagrangians (6.11) corresponding to the the vectors in j can be decomposed as
L(v) = Lj(v)+R(v), where Lj depends only on j⊕j∗ andRv only on some coordinates complementary
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to the first part. We assume that this splitting of the coordinates is compatible with the symplectic
structure. This is possible by the assumption ρ(j)(j ⊕ j∗) ⊂ j ⊕ j∗. Mixed terms in L(v) cannot
appear, since such terms after acting on elements of j⊕j∗ would give something outside j⊕j∗ (recall
that this action is given by the Poisson commutation). The two ingredients of the decomposition
Poisson-commute, hence it follows that they both give a separate representations of j. �

As a corollary we get:

Proposition 6.2.3 If we have a representation g → End(W ) coming from classical super Airy
structure, then it can be restricted to a representation g0 → End(W0) corresponding to an even
classical Airy structure.

Proof. We need to check the condition ρ(g0)(g0 ⊕ g∗0) ⊂ g0 ⊕ g∗0. This condition follows from the
fact that the action of the subalgebra g0 preserves the Z2 decomposition of the space W . �

From this criteria it follows that if we want to construct a classical super Airy structure of g, its
even part should be an even classical Airy ctructure of g0, and the super symplectic representation
of g should be an extension of the symplectic representation of g0. List of possible Airy sStructures
on simple Lie algebras is given in Proposition 6.9 in [23].

6.2.2 Airy structures and weight space decompositions.

In this section we study what are the consequences of an existence of an Airy structure for a given
representation of a semisimple Lie algebra from the point of view of weight space decomposition of
the space W . We restrict ourselves to the even Airy structures of finite dimension. By h we denote
the Cartan subalgebra of g. For any Lie superagebra g we denote by g0 and g1 even and odd part
correspondingly. We also decompose our vector space into even and odd part: W = W 0 ⊕W 1.

Definition 6.2.2 An Airy structure is called (semi) simple if the underlying Lie algebra is (semi)
simple.

In this note we study finite dimensional (semi)simple (super) Airy structures. Let us recall the
Whitehead lemma 1.

Lemma 6.2.2 (Whitehead lemma) [40] Assume that g is a semi-simple Lie algebra of finite
dimension, α : g → End(M) a finite-dimensional module and β : g → M a map satisfying the
condition

α(v1)β(v2)− α(v2)β(v1) = β([v1, v2])

for any v1, v2 ∈ g. Then there exists an element m ∈M such that β(v) = α(v)m for any v ∈ g.
1Relevance of the Whitehead lemma in the context of quantum Airy structures was noted by Błażej Ruba.
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Using the above lemma, recalling the that classical Airy structure is a pair consisting of the sym-
plectic representation and a Lagrangian embedding j satisfying the equation (6.14), we conclude
that semisimple classical Airy structure is a symplectic representation ρ : g→ End(W ) and a choice
of a vector Ω ∈W such that j(·) = ρ(·)Ω is an embedding onto a Lagrangian subspace. Note that
such definition of j always satisfies the condition (6.14).

Let us introduce a few useful notions. We say that a nonzero vector v ∈W is a weight vector if it
is an eigenvector for all ρ(h), h ∈ h. (Note that this notation differs from the notion of the weight
vector in the Chapter 3.) For any weight vector v ∈ W we denote by λv ∈ h∗ the corresponding
weight, i.e. we have ρ(h)v = λv(h)v for any h ∈ h. We say that a, b ∈ W are conjugated if
ω(a, b) 6= 0. We say that σ : W →W is a symplectic involution if for any v ∈W vectors v and σ(v)
are conjugated. A weight diagram is a graph, whose nodes represent weight vectors in W forming
a basis and arrows represent the action of some basis of g. We also denote by Λ ⊂ h∗ the weight
lattice of the representation ρ i.e. the set of all weights.

Lemma 6.2.3 Suppose that a, b ∈W are weight vectors which are conjugate. Then λa = −λb.

Proof. For any h ∈ h we have λa(h)ω(a, b) = ω(ρ(h)a, b) = −ω(a, ρ(h)b) = −λb(h)ω(a, b).

This lemma gives a strong constraint for the possible symplectic structures. Since ω is nonde-
generate, it follows that Λ is symmetric, i.e. −Λ = Λ. Let W =

⊕
λ∈Λ Vλ be the weight space

decomposition, and denote by ωλ the restriction of the symplectic form to Vλ ⊕ V−λ (or V0 for
λ = 0). It is again a symplectic form and we have ω =

∑
λ∈Λ+ ωλ + ω0, where Λ+ is the set of

positive weights.

Using the decomposition ofW into weight spaces we can write a unique decomposition of the vector
generating Lagrangian subspace Ω =

∑
λ∈Λ Ωλ, where Ωλ ∈ Vλ.

Lemma 6.2.4 The set X = {λ ∈ Λ : Ωλ 6= 0} spans h∗.

Proof. Since the map j(x) = ρ(x)Ω is an embedding, it must also be an embedding when restricted
to h. Using the weight space decomposition Ω =

∑
λ∈Λ Ωλ =

∑
λ∈X Ωλ this embedding can be

expressed as
j(h) = ρ(x)Ω =

∑
λ∈X

ρ(h)Ωλ =
∑
λ∈X

λ(h)Ωλ.

If there would be a covector µ ∈ h∗ linearly independent from λ ∈ X we could find a nonzero h ∈ h

such that µ(h) 6= 0 and λ(h) = 0 for all λ ∈ X. In that case j(h) = 0, which is a contradiction
with the fact that j is an embedding. �

This lemma means in particular that we must have at least dim(h∗) = dim(h) elements in the
decomposition of Ω. Therefore Ω can be a weight vector only if dim(h) = 1.

Lemma 6.2.5 For any x, y ∈ g the vectors Ω and ρ(x)ρ(y)Ω cannot be conjugate, as well as Ω
and ρ(x)Ω.
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Proof. This follows directly from the definition of the Lagrangian subspace: for any x, y ∈ g we have
0 = ω(ρ(x)Ω, ρ(y)Ω) = −ω(Ω, ρ(x)ρ(y)Ω). The second statement follows from the semisimplicity:
any x ∈ g can be represented as x = [y1, y2] and we can use the relation ρ(x) = ρ(y1)ρ(y2) −
ρ(y2)ρ(y1).

Graphically this Lemma means that Ω cannot lie on the “border” of the Lagrangian.

Lemma 6.2.6 Suppose that a, b ∈ W are conjugate and there exists a path in the weight diagram
connecting a and b, whose arrows represent pairwise commuting operators. Then the length of this
path is odd.

Proof. Let E1, . . . , Ek be the operators as in the statement of the lemma and let b = E1 · · ·Eka.
Then

ω(a, b) = ω(a,E1 · · ·Eka) = (−1)kω(Ek · · ·E1a, a) = (−1)kω(E1 · · ·Eka, a)
= (−1)kω(b, a) = (−1)k+1ω(a, b).

Since ω(a, b) 6= 0, we arrive at the conclusion. �

The above lemma is useful for the description of the Airy structure of a direct sum of two algebras
g1 ⊕ g2. Any representation of such a sum decomposes into direct sum of the tensor products of
the corresponding representations of g1 and g2: V =

⊕
Vi ⊕ Vj . If we take any X ∈ g1 and Y ∈ g2

then any word in X and Y gives us a path in the weight diagram. Since X and Y commute, we
can apply the lemma.

6.2.3 Examples

Let us pass to the examples illustrating above considerations. We discuss only algebras of finite
dimension.

Case of osp(1|2)

Let us recall that super Lie algebra osp(1|2) has five dimensional basis e, f, h, b+, b− subject to the
relations:

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f, [h, b±] = ±b±,
{b−, b+} = h, {b+, b+} = 4e, {b−, b−} = −4f.

Following [52] we describe irreducible representations of osp(1|2). Since sl(2) ⊂ osp(1|2) is a
subalgebra, any representation of osp(1|2) splits into direct sum of irreducible representations of
sl(2). If we assume that representation of osp(1|2) is irreducible, then two representations can
appear in the decomposition and the weight diagram have the form:
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• • •

• • • •

e

e e

b+ b+ b+b+ b+

The two rows correspond to the two irreducible representations of sl(2). Each node represents
one dimensional subspace, which is an eigenspace of the operator h spanning Cartan subalgebra.
Each left arrow represents an action of the element e and should be paired with a right arrow
representing f , going in opposite direction. Also for any b+ we have an arrow going in opposite
direction representing b−. The diagram is commutative up to a scalar multiplication.

Proposition 6.2.4 The algebra osp(1|2) does not support a SQAS without an additional fermionic
variable.

Proof. We show that there does not exist a classical Airy structure for osp(1|2) without an additional
fermionic variable. In order to construct such a structure we need a 10 dimensional representation.
Since the even part osp(1|2)0 ' sl(2), using the Proposition 6.2.2 we would get a classical Airy
structure of sl(2) as one of the components. From [23] we know that such structure must be a
6-dimensional irreducible representation. In the diagram as above this could be the lower or the
upper row. However in both cases the minimal dimension of the representation of osp(1|2) is 11.
Therefore we can not get a 10 dimensional representation, hence no representation fits into the
SQAS formalism. �

Remark 6.2.1 SQAS based on osp(1|2) exists if one adds additional fermionic variable, as has
been shown in [10]. In this case we have a 11 dimensional representation.

Case of sl(2)⊕ sl(2)

The next natural choice for a SQAS would be the algebra osp(3|2). Its even part is a direct
sum sl(2) ⊕ sl(2). Therefore if we are looking for a SQAS based on osp(3|2) we can first classify
Airy structures for sl(2) ⊕ sl(2). Such a classification is interesting also because it shows that
considering semisimple Lie algebras gives us more freedom for the existence of Airy structures
then restricting to the simple algebras. This is intuitively clear: semisimple algebras are “more
abelian” – “higher percentage” of the commutators vanish – hence there are “less constraints” for
the operators defining Airy structures. Another reason for considering semisimple Lie algebras is
that it gives nice illustration for application of the method presented in the Section 6.2.2.

Any finite dimensional representation of the algebra sl(2)⊕ sl(2) decomposes as W =
⊕
i,j Vi ⊗ Vj ,

where Vi is the i’th dimensional irreducible representation of sl(2).

Remark 6.2.2 From the Lemma 6.2.6 it follows that if Vi ⊗ Vj is a symplectic submodule of W ,
then i+ j must be odd (weight diagram is rectangular, from Lemma 2 diagonal opposite nodes are
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conjugate (since they correspond to the maximal and minimal weights) and the length of the path
connecting them is i+ j − 2). From the symplecticity i · j must be even, so we can conclude that i
is odd and j is even or the other way round.

Using this statements we can exclude some cases in the decomposition of W . In what follows we
assume that each submodule Vi ⊗ Vj in the decomposition is symplectic. It follows that L must
have nontrivial intersection with each of the spaces in the decomposition. Let us first assume there
are two ingredients. The dimensions of the possible decompositions are: 0 + 12, 2 + 10, 4 + 8 and
6 + 6.

• 0+12. Because of the Remark 6.2.2 we must have W ' V3⊗V4 or V1⊗V12. The second one
can be excluded, because the map j(·) = ϕ(·)Ω : h → W cannot give an embedding for any
Ω ∈ W (the action of the first summand of sl(2) ⊕ sl(2) is trivial). The first case is left for
further study.

• 2+10. In this case let v1 and v2 be two basis weight vectors in the space V2 ⊗ V1. We can
assume that Ω = c1v1 + c2v2 + ε, where c1, c2 ∈ C and ε ∈ V1 ⊗ V10. Let us notice that the
first summand in sl(2)⊕ sl(2), when acting on Ω kills the vector ε. It follows that the space
ρ(sl(2) ⊕ 0)Ω is a subspace of V2 ⊗ V1, hence can have at most dimension 2. Therefore the
map j(·) = ρ(·)Ω cannot be in such case an embedding. This case if excluded.

• 4+8. From the Remark 6.2.2 in this situation the only possible case is V8⊗V1+V1⊗V4, which
can be excluded because Lemma 1 implies that it would give an Airy structure of dimension
4 for sl(2).

• 6+6. Because of the Remark 6.2.2 possible options are: V1⊗V6 +V6⊗V1, V1⊗V6 +V2⊗V3,
V1 ⊗ V6 + V3 ⊗ V2, V2 ⊗ V3 + V2 ⊗ V3 or V2 ⊗ V3 + V3 ⊗ V2.

A. Trivial example is V1 ⊗ V6 + V6 ⊗ V1, which is a direct sum of two sl(2) Airy structures.

B. More interesting one is V2⊗V3 +V3⊗V2. The weight diagram in this case takes the form:

• • • • •

• • • • •

• •

e e e

e e e

e

x

x

x

x

x x x

The vector corresponding to (i, j)th node will be denoted by vij for the left part of the diagram
and by wij for the right part. The symplectic form is given by

ω = dv11 ∧ dv31 − dv21 ∧ dv22 + dv31 ∧ dv13 +
dw12 ∧ dw23 − dw12 ∧ dw22 + dw13 ∧ dw21,

and Ω = v12 + w21. The subspace ρ(g)Ω = lin({v11, v12, v22, w11, w12, w22}) is clearly a
Lagrangian with respect to ω. The condition (6.14) is automatically satisfied.
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Remark 6.2.3 As has been shown in [43] every finite dimensional classical Airy structure
can be quantised. Therefore we have shown existence of two QASs based on the Lie algebra
sl(2)⊕ sl(2).
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