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Abstract
Commutative images (Parikh images) are extensively studied for languages of finite automata
and context-free grammars over finite alphabets. Parikh’s theorem is a well-known fundamental
result stating that Parikh images of finite automata and context-free languages are equal, and
coincide with semi-linear sets of vectors. In this thesis, we explore Parikh images for a widely
studied extension of finite automata, non-deterministic register automata, which in contrast to a
finite automata, input words over infinite alphabets. Our main objective is establishing to what
extent Parikh’s theorem keeps holding true when one extends the setting from finite alphabets
to infinite ones.

As the first step, we demonstrate that semi-linear sets (suitably extended to infinite alpha-
bets) are not sufficient even for capturing Parikh images of one-register automata, and propose
a larger class of rational sets (also suitably extended to infinite alphabets) in place thereof. This
is motivated by the fact that in finite-alphabet case, semi-linear sets and rational sets of vec-
tors coincide. As our main result we obtain a version of Parikh’s theorem for non-deterministic
one-register automata: Parikh images of their languages are always rational. Building on this
result, we prove rationality of languages of hierarchical register automata, a syntactic subclass
of non-deterministic register automata strictly extending one-register automata. Furthermore,
also building on the main result, we show that the language of every one-register context-free
grammar has rational Parikh image, and is therefore Parikh-equivalent to the language of some
non-deterministic (and even hierarchical) register automaton.

All the above-mentioned results may be seen as a partial confirmation of validity of Parikh’s
theorem in the setting of infinite alphabets. Nevertheless, it still remains open if Parikh images
of languages of all non-deterministic register automata are rational. Likewise, we do not know
if the same property holds for languages of all context-free grammars. If this property holds, it
would yield the full generalisation of Parikh’s theorem to infinite alphabets.

Keywords : automaton, Parikh image, commutative image, register automaton,
register context-free language, rational set, rational language.

i



Streszczenie
Obrazy przemienne (obrazy Parikha) języków regularnych, językow bezkontekstowych i innych
klas języków, są od zarania informatyki obiektem intensywnych badań. Szeroko znane i często
stosowane twierdzenie Parikha to fundamentalny wynik o równości obrazów przemiennych jęyków
bezkontekstowych i regularnych. Ponadto obrazy te są zawsze zbiorami semiliniowymi. W
niniejszej rozprawie badamy własności obrazów przemienne języków rozpoznawanych przez au-
tomaty rejestrowe, stanowiące rozszerzenie automatów skończonych do alfabetów nieskończonych.
Głównym celem rozprawy jest ustalenie, w jakim stopniu twierdzenie Parikha pozostaje prawdziwe
dla alfabetów nieskończonych.

Jako pierwszy krok pokazujemy, że zbiory semiliniowe (w wersji odpowiednio rozszerzonej do
alfabetów nieskończonych) nie są wystarczające, mianowicie obrazy przemienne języków rozpoz-
nawanych przez automaty rejestrowe mogą nie być semiliniowe. W związku z tym proponu-
jemy inny formalizm, w przypadku alfabetów skończonych równoważny zbiorom semiliniowym,
mianowicie zbiory regularne (ang. rational), czyli zbiory definiowalne za pomocą wyrażeń reg-
ularnych, znów w wersji odpowiednio rozszerzonej do alfabetów nieskończonych. Centralnym i
najtrudniejszym wynikiem rozprawy jest wersja twierdzenia Parikha dla automatów z jednym
rejestrem: obrazy przemienne języków rozpoznawanych przez te automaty są zawsze regularne.
Opierając się na tym zaskakująco trudnym do uzyskania wyniku pokazujemy dodatkowo, że
obrazy przemienne języków rozpoznawanych przez większą klasę automatów rejestrowych, mi-
anowicie przez tzw. hierarchiczne automaty rejestrowe, są również regularne. Ponadto, znów
wykorzystując powyższy centralny wynik pokazujemy, że obrazy przemienne języków bezkon-
tekstowych z jednym rejestrem (języki generowane przez gramatyki bezkontekstowe z jednym
rejestrem) są także regularne, a zatem przemiennie równoważne automatom rejestowym (a nawet
hierarchicznym).

Powyższe wyniki stanowią częściowe potwierdzenie prawdziwości twierdzenia Parikha dla
alfabetów nieskończonych. Wciąż jednak nie wiemy, czy twierdzenie to jest prawdziwe dla au-
tomatów z dowolną liczbą rejestrów, które nie są hierarchiczne. Nie wiemy także, czy podobną
własność mają języki bezkontekstowe z dowolną liczbą rejestrów. W rozprawa stawiamy hipotezę,
że tak w rzeczywistości jest.

Słowa kluczowe : automat skonczony, obraz Parikha, obraz przemienny, automat
rejestrowy, rejestrowa gramatyka bezkontekstowa, wyrażenia regularne, języki reg-
ularne.
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1. Register automata

1 Register automata

Non-deterministic finite automata (NFA) are devices that accept/reject input words over some
finite alphabet. An extension for infinite alphabets, register automata was introduced over 25
years ago by Francez and Kaminski1.

The model is also known under the name of finite-memory automata2. These are non-
deterministic finite-state devices equipped with a finite number of registers that can store data
values from an infinite domain. We call this infinite domain atoms or data and we denote it
by A. A string over data is called a data word, and a data language is a set of data words. A
(non-deterministic) register automaton (NRA) accepts/rejects input data words and recognizes a
data language. An important property of this model is that data languages which are recognized
are always closed under permutations of data, and that state spaces are formally infinite, but
essentially finite, namely finite up to permutations of atoms (data).

Figure 1.1: A deterministic 1-register automaton.

Example 1.1.1. We illustrate syntax and semantics of this model with the help of deter-
ministic one-register automaton shown in Figure 1.1. Let the input alphabet of the automaton
be the set of all atoms, denoted by A. The automaton has three locations and three transition
rules. The left-most (red) location is the only initial one, and the right-most (green) location is
the only accepting one. The variables x and x′ denote the values of the register before and after
each transition. The variable y denotes the value of an input letter, an atom. Each transition
rule is labelled with a Boolean combination of equalities and inequalities over those variables.

The automaton in Figure 1.1 works as follows. From the initial location, it reads an atom
and stores it in the register (y = x′). The transitions in the two remaining locations likewise
store the input atom in the register, but also ensure that the next data is different from the
previous one by the constraint x ̸= y. This automaton recognizes the data language of words of
even length, where every two consecutive letters are distinct:

L = {a1a2 . . . an ∈ A∗ : a1 ̸= a2 ̸= . . . an−1 ̸= an, n even}.

Register automata lack most of the properties known from the classical theory of finite au-
tomata, like determinization or closure under complement, while they are closed under some
standard operations on languages, like union or intersection. Unlike standard finite automata,

1Francez and Kaminski, 1994.
2Overview of results on automata over infinite alphabets can be found e.g. in Neven, Schwentick, and Vianu,

2004, Segoufin, 2006 and Bojańczyk, 2019.

9



Chapter 1. Outline

register automata do not admit equivalent characterizations, like monoid recognisability or ratio-
nal expressions (regular expressions). Monoid recognisability is weaker than register automata3,
and the proposals of rational expressions for register automata either apply to a restricted
subclass of the model, or go beyond the monoid of data words and introduce involved syntax
significantly extending the classical concept of regular expressions4. It thus seems that there is
no satisfactory extension of Kleene theorem to infinite alphabet. The data language recognised
by the automaton in the Figure 1.1 is a known hard language for developing the setting of
rational expressions.

2 Register context-free grammars

Likewise, one extends classical context-free grammars to infinite alphabets. They are first intro-
duced by Cheng and Kaminski5 (and studied recently in the setting of sets with atoms6), who
also show the equivalence of register grammars and register pushdown automata, in analogy to
the finite alphabet case.

Example 1.2.1. As in the previous example, we consider the input alphabet A. For
illustration, consider the following one-register context-free grammar, consisting of non-terminals
Q = { , }, the initial non-terminal , and production rules

(x) x ̸=y=y′
−−−−−→ y (y′) (x) x=y=y′

−−−−−→ (y) y′ (x) −→ ε.

By (x) we denote, intuitively speaking, a nonterminal with the value x in the register. Thus
from (x) the grammar generates a word starting with some data y, where y ̸= x, and the rest
of the word is generated from (y) (as y′ = y). From (y) the grammar generates a word ending
with y (as y′ = y), and the rest of this word is generated from (y). By repeating this process
a number of times, the grammar generates all palindrome-like words of the following form

{a1a2 . . . an an . . . a2a1 ∈ A∗ : a1 ̸= a2 ̸= . . . ̸= an}.

3 Commutative images

A finite multiset of atoms is called a data vector. For a given data word w, we define its
commutative image, also known as Parikh image, as a data vector Par(w) that counts the
number of occurrences of each letters in the word w. The notion of commutative image is
extended to data languages in a standard way. We call two data languages Parikh-equivalent if
they have same Parikh images.

3Bojańczyk, 2011.
4Bojańczyk, 2020, Libkin, Tan, and Vrgoc, 2015, Kurz, Suzuki, and Tuosto, 2012, Kaminski and Tan, 2006.
5Cheng and Kaminski, 1998.
6Bojańczyk, Klin, and Lasota, 2014, Clemente and Lasota, 2015a.
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3. Commutative images

In this thesis, we advocate a natural extension of rational sets, namely sets definable by an
extension of rational expressions, where we allow for sums which are infinite but finite up to
permutations of data. As our main research task we attempt to develop a connection between sets
definable by the extension of rational expressions and Parikh images of data languages recognised
by register automata and register context-free grammars. We consider languages definable by
the above mentioned extension of rational expressions (called rational data languages), but most
importantly sets of data vectors definable by the extension of rational expressions (called rational
sets of data vectors). As one of our main results, we prove that Parikh images of languages of
one-register automata are rational sets of data vectors. As another main result, we prove that
languages of one-register context-free grammars are Parikh-equivalent to languages of register
automata. Intuitively speaking, this latter result can be seen as a commutative variant of Kleene
theorem.

Example 1.3.1. In order to illustrate the notion of rational expressions we work with, and
the intuitive idea behind our approach towards proving the above-mentioned result, consider
the following data language:

L′ = {a1a2 . . . an ∈ A∗ : a1 ̸= a2 ∧ a3 ̸= a4 ∧ . . . , n even}.

Thus L′ relaxes the language L from Example 1.1.1 by requiring only every second pair of
consecutive letters to be distinct, namely only pairs (ai, ai + 1) where i is odd. Unline L, this
data language can be easily described by a rational expression as follows:

L′ =

 ⋃
a,b∈A, a ̸=b

ab

∗

.

Note that the union is indexed by an infinite set which, up to permutations of atoms, intuitively,
consists just of a single pair (a, b) of atoms, where a ̸= b.

Every w ∈ L′ can be transformed, by swapping letters, to a word in the data language L. Let
w = a1a2 . . . an. If a2 = a3 we swap non-equal letters a3 and a4 thus achieving a1 ̸= a2 ̸= a3 ̸= a4.
Next, if a4 = a5 we swap analogously a5 and a6, and so on. Continuing in this way we finally
arrive at a word in L. Therefore the two languages are equal up to rearranging, i.e., they are
Parikh-equivalent. In consequence, as L′ is defined by a rational expression, its Parikh image is
also rational, and hence Parikh image of L is rational too.

Example 1.3.2. As an illustration of Parikh-equivalence of a context-free language and the
language of a register automaton, we note that the language of the grammar from Example 1.2.1
is Parikh-equivalent to the following variation on the language L from Example 1.1.1:

{a1a1 a2a2 . . . anan ∈ A∗ : a1 ̸= a2 ̸= . . . ̸= an−1 ̸= an},

which is also recognisable by a deterministic one-register automaton.

11



Chapter 1. Outline

4 Contributions of the thesis

4.1 Parikh images of register automata and context-free grammars

The above examples of register automata and register context-free grammars raise the following
natural questions:

(1) Are Parikh images of languages of non-deterministic register automata always semi-linear?
This question requires a suitable extension of classical semi-linear sets with unions which
are infinite but finite up to permutations of data.

(2) Are Parikh images of languages of non-deterministic register automata always rational
sets? This question also requires a suitable extension of classical rational sets with unions
which are infinite but finite up to permutations of data.

(3) Does (2) hold for register context-free languages?

(4) Are Parikh images of register automata and register context-free languages the same?

In this thesis, we attempt to answer these questions. Question (1) is answered negatively -
as one of the first main result we show that semi-linear sets (naturally extended as mentioned
above) are not sufficient, even for one-register deterministic automata7.

Theorem 5.3.1: (Semi-linear sets are not sufficiently expressive)

Parikh images of languages of deterministic one-register automata are not always semi-
linear.

The proof is based on a surprisingly subtle analysis of certain ratio values in Parikh images
of words, when the length of words tends towards infinity.

The next main result applies to languages of one-register automata, which are a strict sub-
class of languages of all register automata.

Theorem 6.1.1: (Parikh images of one-register automata)

Parikh images of languages of non-deterministic one-register automata are rational.

This gives a partial answer to question (2). The crucial part of the proof resorts to a
graph-theoretical characterisation of these Parikh images, and uses a sufficient condition for a
Hamiltonian cycle in directed graphs.

We use the above theorem to prove its strengthening, which partially answers question (3),
namely in case of one-register context-free grammars, whose languages are also a strict subclass
of languages of all register context-free grammars.

7Juzepczuk, 2013
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4. Contributions of the thesis

Theorem 8.1.1: (Parikh images of one-register grammars)

Parikh images of one-register context-free languages are rational.

The result is obtained by a novel type of transformations of derivation trees.
We conjecture that the restriction on the number of registers in Theorems 6.1.1 and 8.1.1

can be dropped; the combinatoric complexity we have encountered already in one-register case
makes it however difficult to envisage a generalisation of our approach to the general case.

As we show in Theorem 5.3.1, one-register automata and grammars fail to have semi-linear
Parikh images in general. Nevertheless, in the classical finite alphabet setting semi-linear sets
coincide with the a priori larger class of rational sets of vectors8. Therefore, Theorems 6.1.1 and
8.1.1 can be considered as faithful extensions of Parikh theorem to one-register automata and
grammars. Furthermore, as a corollary of the above two results one derives one-register context-
free grammars are Parikh-equivalent to register automata, but not necessarily to one-register
automata (see also Theorem 8.6.1 below):

Theorem 1.4.1: (1-CFG are Parikh-equivalent to NRA)

Every one-register context-free language is Parikh-equivalent to the language of some non-
deterministic register automaton.

This gives a partial answer to question (4).

4.2 New model - hierarchical register automata

In attempt to generalise Theorem 6.1.1, we identify a syntactic subclass of register automata.
We call this subclass hierarchical register automata (HRA). Unlike classical register automata
in which registers are unordered, in HRA registers are ordered. A transition rule changing the
value of register i does not affect lower registers, but it may alter higher ones. Another way
to see this restriction is that the register values are in a stack in the order of registers. If the
value of register i has to be updated, the stack is popped down to register i before register i is
updated according to a transition rule. Then arbitrarily chosen (fresh) values are pushed as the
new contents of the popped registers.

As an example, consider the two-register HRA (2-HRA) shown in Figure 1.2. It has three
locations. The left one is both the initial and the acccepting location. The variables x1 and
x2 denote the value of the first and second register before a transition. Similarly x′

1 and x′
2

denote the values of registers after a transition. The variable y denotes the input letter. The
transition rule from the initial state checks that the input atom is different than contents of
registers. Furthermore, the contents of registers are preserved. The next transition rule checks
whether the input atom equals the second register. The last transition rule checks whether the

8Eilenberg and Schützenberger, 1969.
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input atom equals the first register, and updated both registers with fresh atoms (as suggested
by its annotation, which does not specify any constraint on new values x′

1 and x′
2).

Figure 1.2: 2-HRA accepting blocks of 3 different atoms.

The language of this automaton is similar to the language L′ from Example 1.3.1, except
that blocks of length 3 are considered instead of blocks of length 2.

{a1a2 . . . an ∈ A∗ : a1 ̸= a2 ̸= a3 ̸= a1 ∧ a4 ̸= a5 ̸= a6 ̸= a4 ∧ . . . , n divisible by 3}.

Figure 1.3 below shows a run of the automaton in Figure 1.2. The orange arrow shows the
’stack’ order of the registers. The transitions reading a3 and a6 updates both the registers to
fresh values different than the input atom, other transitions preserve both the registers (but
compare an input atoms against them).

Figure 1.3: An accepting run of the 2-HRA from Figure 1.2.

HRA are strictly more expressive than 1-NRA, both with respect to the class of data lan-
guages they recognise, and with respect to Parikh images thereof. Additionally, the languages
of HRA are strictly contained in the languages of NRA.

For HRA, we obtain the following result:

Theorem 7.1.1: (Parikh images of hierarchical register automata)

Parikh images of languages of hierarchical register automata are rational.

These result is a step towards the ultimate (but still unreachable) goal: generalise Theo-
rem 6.1.1 the languages of all non-deterministic register automata.

We also show that every rational language of data words is recognised by an HRA:

Theorem 7.5.1

Rational data languages are recognised by HRA.

14



5. Organisation of the thesis

This, together with Theorem 8.1.1, implies (a strengthening of) Theorem 1.4.1:

Theorem 8.6.1: (1-CFG are Parikh-equivalent to HRA)

Everry one-register context-free language is Parikh-equivalent to the languages of some
hierarchical register automaton.

As a corollary, we deduce that an NRA language has rational Parikh image if, and only if it
is Parikh-equivalent to some HRA (with, possibly, more registers). In consequence, the ultimate
goal can be equivalently achieved by proving that the language of every non-deterministic register
automaton is Parikh-equivalent to the language a hierarchical one.

Finally, we believe that the subclass of HRA is interesting on its own, as it seems to be
equally well-behaved as one-register automata.

5 Organisation of the thesis

(a) In Chapter 2, we provide the necessary preliminaries about set with atoms.

(b) In Chapter 3, we define data words, data languages and Parikh images. Then we define
our main objects of interest, register automata and register context-free grammars. We
also provide some examples, recall some fundamental results known in the literature, and
overview the most popular variants of register automata.

(c) In Chapter 4, we introduce the concept of rational set of data words (rational data lan-
guages) and rational set of data vectors, and discuss their relationship. We essentially
follow the classical definition of rational sets, except that we allow for unions which are
infinite but finite up to permutations of data. We also discuss properties of rational sets,
in particular substitution lemma which is a core tool in later chapters.

(d) In Chapter 5, we extend the classical semi-linear sets to semi-linear sets with unions that
are infinite but finite up to permutations of data. First, we show that they are a subclass
of rational sets of data vectors. In the second part, we demonstrate that the inclusion is
strict, by proving Theorem 5.3.1: semi-linear sets are not expressive enough to capture
Parikh images of one-register automata.

(e) In Chapter 6, we prove Theorem 6.1.1. This chapter contains three parts. The first part
contains an adaptation of a classical technique of proving Kleene’s theorem, to Parikh
images of one-register automata. In the second part, we use the closure of rational sets
under substitutions recursively, to reduce rationality of Parikh images of one-register au-
tomata to rationality of languages over some extended alphabets. In the third part, using
a sufficient condition for Hamiltonian cycle in a directed graph, we obtain the required
result.
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Chapter 1. Outline

(f) In Chapter 7, we introduce hierarchical register automata and prove Theorem 7.1.1. We
start by defining the model, and by exploring its expressiveness in comparison to non-
deterministic register automata. Next we show that all rational languages are recognised
by hierarchial register automata (Theorem 7.5.1). Finally we show that Parikh images of
hierarchical register automata are rational (Theorem 7.1.1), crucially applying Theorem
6.1.1.

(g) In Chapter 8, we prove Theorem 8.1.1. This proof relies on a novel kind of cut-and-
paste transformations of derivation trees of one-register context-free grammars. After
introducing necessary definitions related to derivation, we show that every such tree can
be transformed to a tree of smaller width by preserving Parikh images, as long as the width
is above a specified constant bound. In the later part we show that languages generated by
derivation trees of bounded width have rational Parikh images, again crucially applying
Theorem 6.1.1. Using the fact that all rational languages are recognised by hierarchial
register automata (Theorem 7.5.1), which implies, together with Theorem 8.1.1, that one-
register grammars are Parikh-equivalent to hierarchical register automata (Theorem 8.6.1).

(h) In Chapter 9, we summarise the main results of the thesis and end with some open problem
associated with rational sets and Parikh images of register automata.

6 Sources

This thesis is based on the results of the following articles:

• Piotr Hofman, Marta Juzepczuk, Sławomir Lasota, Mohnish Pattathurajan, Parikh’s the-
orem for infinite alphabets, Proc. LICS 2021:1-13;

• Sławomir Lasota, Mohnish Pattathurajan, Parikh images of register automata, Proc. FSTTCS
2021, 50:1-50:14.

The content of Chapters 4, 5, 6 and 8 is build on the results of the first article, while the content
of Chapter 7 is built on the results of the latter one.
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Chapter 2
Preliminaries on set with atoms

In this chapter we introduce the fundamentals of set with atoms and orbit-finite sets.
We also recall some basic closure properties of these sets.

Objective

Contents
1 Set with atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Orbit-finite sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Closure properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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Chapter 2. Preliminaries on set with atoms

1 Set with atoms

In this thesis, atoms are indivisible objects, and we assume an infinite countable set of them. If
we can only check whether two atoms are equal or not, we call this structure equality atoms - this
most basic case is studied most extensively in the literature. There are other possible choices
for the structure of atoms, for instance ordered atoms, which are rational numbers with their
natural order. In forthcoming sections, we formally define atoms and other derived structures
that are built from atoms. Using these, we define our main objects of interest, register automata,
register grammars, data vectors and so on. In this chapter, we rely on the definitions used in
the "atom book"1 which is commonly referred to in the literature2.

Definition 2.1.1: (Logical structure)

A logical structure is a pair A = (A, σ1, . . . , σk), where A is a set and σ1, . . . , σk is a
collection of functions and relations on A.

Definition 2.1.2: (Atoms)

In the following we always fix a logical structure A, and call its elements atoms. We use
the symbol A also for the carrier set of the structure, which should not lead to confusion.

Example 2.1.3. (Equality Atoms) In this thesis, we focus mainly on equality atoms:

A = (N,=).

In this structure, we are only allowed to compare two atoms for equality. We denote a1, a2, · · ·
to refer to individual atoms.

Example 2.1.4. (Ordered atoms) The structure (Q,≤) of rational numbers with the usual
order we call ordered atoms.

We define the cumulative hierarchy over A, a hierarchy of sets indexed by ordinal ranks. The
only set of rank 0 is the empty set. For an ordinal number α > 0, a set of rank at most α is any
set whose every element is either an atom, or a set of rank strictly smaller than α.

Definition 2.1.5: (Cumulative hierarchy)

The cumulative hierarchy (Hα)α over atoms A is an increasing collection of sets indexed

1Bojańczyk, 2019, Sect. 3.
2See for instance Bojańczyk, Klin, and Lasota, 2011; Bojańczyk, Klin, and Lasota, 2014; Clemente and Lasota,

2015a; Bojańczyk, Klin, and Moerman, 2021; Klin, Lasota, and Toruńczyk, 2021.
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2. Orbit-finite sets

by ordinals α, defined inductively as follows:

1. H0 = {∅},

2. For an ordinal number α > 0,

Hα = P
(
A ∪

⋃
β<α

Hβ

)
.

The rank of a set X is the smallest ordinal number α such that X ∈ Hα.

Example 2.1.6. The set of all atoms A, as well as the singleton {a} for any a ∈ A, have rank
1, i.e. they belong to H1. The set {{a1, a2}, a3} has rank 2.

2 Orbit-finite sets

We are not going to investigate all set in the cumulative hierarchy. We focus only on sets that
are finite under renaming or permutations of atoms. In more formal terms, our desired sets are
the ones that are finite up to atom automorphisms. The formal definitions follow.

Definition 2.2.1: (Atom automorphism)

An atom automorphism is any permutation of the universe of A that preserves the relations
and functions of that structure.

Example 2.2.2. (Atom automorphisms)

1. In case of equality atoms, atom automorphisms are all permutations N → N.

2. In case of ordered atoms, atom automorphisms are monotone bijective maps Q → Q.

Let x be a set in the cumulative hierarchy and π be an automorphism. The action of π on
x, denoted by π(x), is a set obtained from x by applying π inductively from atoms, that is

π(x) = { π(y) : y ∈ x }.

Definition 2.2.3: (Support)

Let x be in the cumulative hierarchy, S ⊆ A, and π be an atom automorphism. We say
that x is supported by S if the following implication

(∀a ∈ S π(a) = a) =⇒ π(x) = x (2.1)
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Chapter 2. Preliminaries on set with atoms

holds for every atom automorphism π. We also say that S is a support of x, or x is supported
by S. If S is finite, we say that x is finitely supported and if S is empty, we say the set x
is equivariant. In case of equality or ordered atoms, each finitely supported set x has the
least support with respect to set inclusiona; this least support we denote by supp(x) and
call the support of X.

aPitts, 2013.

Definition 2.2.4: (S-atom automorphisms)

An atom automorphism that satisfies the premise of (2.1), i.e., which fixes all elements in
S, we call S-atom automorphism.

Except for some examples in this section that use ordered atoms, in this thesis we work with
equality atoms only. Therefore, we may silently assume that each finitely supported set has the
least support.

Example 2.2.5. (Supports) Let A be equality atoms. The set A is equivariant. Consider
the subset of A that excludes a1 and a5,

X = {a ∈ A : a ̸= a1, a ̸= a5}.

This set is supported by the excluded set {a1, a5}, which is its (least) support {a1, a5} =
supp(X), but, accoding to the above definition, the set X is also supported by any superset of
{a1, a5}.

Remark 2.2.6. (Historical note) Historically, sets with atoms were developed as a model
of set theory that violates the axiom of choice. It was originated from the work of Frankel
(1922) and later developed by Mostowski (in 1930s). In computer science it was introduced as
a formalism for name binding by Pitts and Gabbay (2002)3 under the name of nominal sets.
The concept identical to nominal sets was also independently discovered by Ugo Montanari and
Marco Pistore4, and then investigated from the process calculi perspective. Most recently, sets
with atoms have been rediscovered when investigating infinite-state automata5.

Example 2.2.7. (Non-finitely supported sets) Consider equality atoms. As an example of
a set that is not finitely supported, take an arbitrary subset X ⊂ A such that both X and A\X
are infinite, for instance the set of atoms that have even index in some enumeration a0, a1, a2, . . .

of atoms. Suppose there is finite support S ⊆ A of X. Since X = {a0, a2, . . .} is infinite and S

is finite, for some k all atoms a2k, a2k+1, . . . are outside of S. Then any S-atom automorphism
3Gabbay and Pitts, 2002.
4Montanari and Pistore, 1999.
5Bojańczyk, Klin, and Lasota, 2011; Bojańczyk, Klin, and Lasota, 2014.
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π that swaps a2k and a2k+1 does not preserve X, that is π(X) ̸= X, and in consequence S is
not a support of X.

Here are sets in the cumulative hierarchy which are of interest to us:

Definition 2.2.8: (Set with atoms)

A set with atoms over A is any set x in the cumulative hierarchy which is hereditarily
finitely supported: the set itself is finitely supported, all its elements are finitely supported
and so on, till the very atoms are reached.

Unless stated otherwise, all sets mentioned in this thesis are implicitely assumed to be
hereditarily finitely supported.

Example 2.2.9. (Set with atoms) Over equality atoms, the set from Example 2.2.5 is
hereditarily finitely supported, i.e., is a set with atoms. Over ordered atoms, considered the
following set,

{{c ∈ A : a < c < b} ⊆ A : a, b ∈ A ∧ a < 0 < b}

containing all the open intervals of Q that contain 0. The set is hereditarily finitely supported:
the set itself is supported by the singleton set {0}, and any its element is supported by its ends,
for instance

{c : −1.4 < c < 1}

is supported by {−1.4, 1}.

Observe that, in particular, all pure (atomless) sets are automatically hereditarily finitely
supported (and even hereditarily equivariant), i.e., are sets with atoms.

Example 2.2.10. (Encoding tuples) We can encode an ordered pair (a, b) as a set in
cumulative hierarchy with help of Kuratowski paring method as

{a, {a, b}}.

Using the encoding of pairs, one encodes naturally tuples of any fixed length; in this way words
and sets of words (languages) can be also represented as sets in the hierarchy.

Example 2.2.11. Over equality atoms, consider the set A∗ containing all words over A.
Each word, encoded using Kuratowski pairs, has a finite rank, while the rank of A∗ is ω. The
set A∗ is equivariant and it is a set with atoms, as all its elements (words) are finitely supported
(but the support size is not bounded).

Example 2.2.12. Over ordered atoms (Q,≤), consider the set of all ”increasing” words in
Q∗, i.e. words where each next letter is greater or equal to the previous one:

L = {a1a2 . . . an ∈ A∗ : a1 ≤ a2 ∧ a2 ≤ a3 . . . an−1 ≤ an}.
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This set is equivariant.

We denote by A(k) the set of all k-tuples of atoms that are pairwise distinct:

A(k) = {(a1, . . . , ak) ∈ Ak : ai ̸= aj for i ̸= j}.

When working in sets with atoms, we encode all mathematical objects as sets. For instance,
a function f : X → Y is supported by S if its graph {⟨x, f(x)⟩ : x ∈ X} is so. According to the
definition of support, functions supported by S are exactly those commuting with all S-atom
automorphisms:

Lemma 2.2.13: (Finitely supported functions)

Suppose X is supported by S. A function f : X → Y is supported by S if, and only if for
every S-atom automorphism π and x ∈ X, we havea

f(π(x)) = π(f(x)).
aBojańczyk, 2019

Over equality atoms, consider the set X =
(A

2
)

of all two-element subsets of atoms. This set
is equivariant, and each its element is finitely supported by itself. This set is infinite but, up to
atom automorphisms, it has only one equivalence class: each element is mapped to each other
by applying some atom automorphism. Therefore, the set X can be considered as a singleton,
up to atom automorphisms. More generally, some sets in the cumulative hierarchy are finite up
to atom automorphisms, but some are not. For instance, the sets in Examples 2.2.11 and 2.2.12
consists of infinitely many equivalence classes, as atom automorphisms preserve the lenght of a
word. In order to develop computational models and algorithms for such models, we focus only
on those sets which are finite in the above sense. The formal definition follows.

Definition 2.2.14: (Orbits)

Let X and Y be two sets with atoms and let S ⊆ A be a finite set of atoms. We say that
X and Y are S-equivalent if there is an S-atom automorphism π such that π(X) = Y .
The equivalence classes of this relation are called S-orbits. When S is empty we speak of
equivariant orbits.

When the set S is clear from the context or is irrelevant, we speak of an orbit instead
of S-orbit.

Example 2.2.15. (Orbits) Consider equality atoms. The set of atoms A is one equivariant
orbit, and the set from Example 2.2.5 is one {a1, a5}-orbit.

Consider ordered atoms (Q,≤). The set Q2 of ordered pairs of atoms splits into the following
three equivariant orbits as shown in the Figure 2.1: the upper region (shown in blue) depicts
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the equivariant orbit {(x, y) ∈ Q2 : y > x}; symmetrically, the bottom region (shown in green)
depicts the equivariant orbit {(x, y) ∈ Q2 : y < x}; and the diagonal line (shown in white)
depicts the equivariant orbit {(x, y) ∈ Q2 : x = y}.

Figure 2.1: Ordered atoms (Q,≤). Three equivariant orbits in Q2.

Definition 2.2.16: (Orbit-finite sets)

A set with atom X is orbit-finite if it is a finite union of S-orbits, for some finite S ⊆ A.

It is known that orbit-finiteness does not depend on the choice of S, as long as the structure
of atoms is well-behaved (oligomorphic), cf. Theorem 2.2.19 below. Both equality and ordered
atoms are oligomorphic.

Example 2.2.17. (Orbit-finite sets) Over equality or ordered atoms, all sets mentioned in
Examples 2.2.5 and 2.2.15 are orbit-finite, while the set of all words A∗ from Example 2.2.10 is
not orbit-finite.

Example 2.2.18. (Orbit refinement) Consider the set of words of length three (A3)
over equality atoms. It is an equivariant orbit-finite set that splits into five equivariant orbits,
according to the "equality type" of tuples:

O1 = {(a, b, c) ∈ A3 : a = b = c},

O2 = {(a, b, c) ∈ A3 : a ̸= b ̸= c ̸= a} = A(3),

O3 = {(a, b, c) ∈ A3 : a ̸= b = c},

O4 = {(a, b, c) ∈ A3 : a = b ̸= c},

O5 = {(a, b, c) ∈ A3 : a = c ̸= b}.

If we add an atom d to the support, the set splits into fifteen {d}-orbits: the orbit O1 splits into
two {d}-orbits

O1 = {(a, b, c) ∈ (A \ {d})3 : a = b = c} ∪ {(d, d, d)},

the orbit O2 into four {d}-orbits depending on which of a, b, c, if any, equals d, and similarly
each of the remaining three orbits splits into three {d}-orbits. In general, for the words of length
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k, Ak over equality atoms, the number of equivariant orbits, according to the equality type is
equal to the number of partitions of the set {1, . . . , k}.

In general, given a finite union X of S-orbit, increasing the support S results in increasing
of the number of orbits X splits into, but finiteness of the number of orbits is preserved. This
justifies existential quantification over S in Definition 2.2.16.

The following fact shows that the orbit-finite property is retained irrespectively of the size
of the support.

Theorem 2.2.19: (Orbit refinement)

Over equality or ordered atoms, A finite union of S-orbits is also a finite union of S′-orbits
for every S′ such that S ⊆ S′.a

aThis follows directly from Theorem 3.16 in Bojańczyk, 2019.

3 Closure properties

Our objective is to build orbit-finite mathematical objects in addition to finite objects, and
investigate their properties. In this part, we discuss some of the closure properties that will be
helpful in developing these objects in later sections.

Due to Theorem 2.2.19 we easily show:

Proposition 2.3.1: (Closure properties)

Orbit-finite sets are closed under union, intersection, Cartesian product and projectionsa.
aBojańczyk, 2019

Example 2.3.2. (Closure properties) Over equality atoms A = {a1, a2, . . .}, consider the
following two finitely supported subsets of A:

X1 = {a ∈ A : a ̸= a1 ∧ a ̸= a2}

X2 = {a ∈ A : a ̸= a2 ∧ a ̸= a3}.

Thus X1 is one {a1, a2}-orbit, and likewise X2 is one {a2, a3}-orbit, as shown by green dots in
Figures 2.2 and 2.3. The union X1 ∪X2 contains all atoms that are not a2 and the intersection

Figure 2.2: The set X1. Figure 2.3: The set X2.
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Figure 2.4: X1 ∪X2. Figure 2.5: X1 ∩X2.

X1 ∩ X2 contains all atoms that are not a1, a2 and a3, as shown in Figures 2.4 and 2.5. The
latter one is just one {a1, a2, a3}-orbit, while the former one splits into three {a1, a2, a3}-orbits.

Example 2.3.3. (Closure properties, cont.) Continuing the previous example, Figure 2.6
illustrates Cartesian product X1 × X2 as all black dots at intersection of two green lines. This
set splits into four {a1, a2, a3}-orbits, as depicted in the figure by different colors.

Figure 2.6: Cartesian product X1 ×X2.

Proposition 2.3.1 deals with finite unions and intersections. It is meaningful to ask what
happens if we allow unions to be orbit-finite but not finite. Consider a function f that maps
each element of an orbit-finite set X to some set with atoms. In general, the union

⋃
x∈X

f(x) (2.2)

needs not be finitely supported. As an example, in equality atoms A = {a1, a2, . . .}, consider
the function f : A → P(A) that maps each ai to {a2i}. In this case, the union ⋃a∈A f(a) =
{a0, a2, a4, . . .} is not finitely supported. However, if we restrict the function f to be finitely
supported, the orbit-finite union becomes a meaningful operation, namely the resulting set is
always finitely supported; indeed, due to Lemma 2.2.13 applied to the equivariant mapping

f 7→
⋃

x∈X

f(x),

we know that if S supports f then it also supports the union (2.2). Furthermore, the resulting
set is orbit-finite whenever all sets f(x) are so:

Proposition 2.3.4: (Orbit-finite unions)

Let X be an orbit-finite set and f be a finitely supported function that maps each element
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Chapter 2. Preliminaries on set with atoms

x ∈ X to an orbit-finite set f(x). Then the union

⋃
x∈X

f(x)

is orbit-finitea.
aBojańczyk, 2019, Excercise 62.

Notice that every finite union is a special case of orbit-finite union.

Remark 2.3.5. (Equality atoms) In the following chapters we work exclusively with equality
atoms.

So far, we introduced set with atoms and associated definitions. In the next chap-
ter we will define an automaton model that extends finite automata to orbit-finite
alphabets. We also extend likewise classical context-free grammars.

Summary
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Chapter 3
Register automata and register grammars

This chapter introduces data languages, their Parikh images, register automata and
register context-free grammars. We also recall some known results on these models.
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Chapter 3. Register automata and register grammars

1 Data words, data languages and their Parikh images

Building on the fundamentals developed in the previous section, we extend the notions of words,
languages and vectors to the orbit-finite setting.

Definition 3.1.1: (Data words and data languages)

Fix an orbit-finite alphabet Σ. A data word w ∈ Σ∗ is a string over Σ. A data language
L ⊆ Σ∗ is any set of such strings. From now on we mostly consider input alphabets of the
form Σ = H × A, where H is a finite pure (atomless) set.

Definition 3.1.2: (Data vectors)

A data vector over Σ is a finite multiset over Σ. Alternatively, a data vector may be seen
as a function v : Σ → N such that v(σ) = 0 for all except finitely many letters σ ∈ Σ.

In particular, the zero (empty) multiset 0 satisfies 0(a) = 0 for every a ∈ Σ. A singleton,
written {a}, maps a to 1 and all other letters to 0.

Definition 3.1.3: (Size of data vector and length of data word)

For a data vector v, we define the domain of v as dom(v) = {a ∈ Σ : v(a) > 0} and the
size of v as |v| = ∑

a∈dom(v) v(a). We also write |w| for the length of a data word w, which
should not lead to confusion.

Definition 3.1.4: (Multiset ordering and operations)

We order multisets pointwise: v ⊑ v′ if v(a) ≤ v′(a) for all a ∈ Σ. Addition of multisets is
pointwise: (v+ v′)(a) = v(a) + v′(a) for every a ∈ Σ. Likewise we define subtraction v− v′,
for v′ ⊑ v.

Example 3.1.5. In this example we consider equality atoms A, and the alphabet is just A.
For future use we define the data language of words in which the first letter appears again:

L1 = {a1a2 . . . an ∈ A∗ : a1 = ai for some i ∈ {2, . . . , n}};
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1. Data words, data languages and their Parikh images

the data language of words, in which some letter appears twice:

L2 = {a1a2 . . . an ∈ A∗ : ai = aj for some distinct i, j ∈ {1, . . . , n}};

and its complement – the data language of words, in which no letter appears twice:

L3 = {a1a2 . . . an ∈ A∗ : ai ̸= aj for all distinct i, j ∈ {1, . . . , n}} =
⋃

n∈N
A(n).

Definition 3.1.6: (Parikh image)

The Parikh image (commutative image) of a word w ∈ Σ∗ is the multiset Par(w) : Σ → N,
where Par(w)(a) is the number of appearances of a letter a ∈ Σ in w. For a language
L ⊆ Σ∗, its Parikh image is Par(L) = {Par(w) : w ∈ L}.

Example 3.1.7. (Parikh images) Consider the data language L1 from Example 3.1.5. The
Parikh image Par(L1) is the set of all data vectors (multisets) in which some atom is mapped
to a number equal or greater than 2. Par(L1) = Par(L2). Parikh image of the complement
L3 of L2, Par(L3), is the complement of Par(L2), i.e., contains all data vectors not present in
Par(L2). In general, Parikh image does not commute with complement; it does exactly when
the language (and in consequence its complement) is closed under permutations of letters in a
word.

Definition 3.1.8: (Parikh-equivalence)

Two languages L,L′ ⊆ Σ∗ are Parikh-equivalent if they have the same Parikh images:
Par(L) = Par(L′).

Example 3.1.9. (Parikh-equivalent languages) The data languages L1 and L2 from
Example 3.1.5 are Parikh-equivalent.

Parikh images are widely studied for finite automata and context-free grammars. The well-
known Parikh’s theorem1 characterizes Parikh images of context-free grammars by semi-linear
sets2 and implies coincidence of Parikh images of grammars and finite automata:

Theorem 3.1.10: (Parikh’s theorem)

Over finite alphabets, every context-free language has semi-linear Parikh image, and is

1Parikh, 1966.
2We define a generalisation of semi-linear sets to orbit-finite alphabets in Chapter 5.
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therefore Parikh-equivalent to some regular language.

Example 3.1.11. Palindromes over Σ = {σ, δ} are Parikh-equivalent to the following regular
language:

L =
(
σσ + δδ

)∗(
ϵ ∪ Σ

)
.

We recall that all sets mentioned in this thesis are implicitely assumed to be hereditarily
finitely supported. Orbit-finite sets of data words, or data vectors, are characterised by the
following lemma:

Lemma 3.1.12: (Orbit-finite data languages)

A set X of data words, or data vectors, over an orbit-finite alphabet Σ is orbit-finite if,
and only if {|v| : v ∈ X} ⊆ N is bounded.

Proof. Fix an orbit-finite set Σ. The ’only if’ implication is immediate, as the length (or size)
is invariant inside an orbit. Towards the ’if’ implication for data languages, we observe that
the set Σn of words of length n is orbit-finite, for every n ∈ N, as Cartesian products preserve
orbit-finiteness. Therefore a finitely supported language X ⊆ Σ∗ satisfying |v| ≤ n for v ∈ X, is
a subset of a finite union of orbit-finite sets and hence orbit-finite itself. In consequence, Par(X)
is is also orbit-finite, as the image of X under an equivariant function, which proves the claim
for sets of data vectors.

2 Register automata

After having introduced fundamentals of set with atoms, data words, data vectors, and data
languages, in this section we define an extension of finite automata that accept/reject data
words, known as register automata. Register automata are also known under the name of finite-
memory automata, and were introduced over 25 years ago by Francez and Kaminski3. These are
non-deterministic finite-state devices equipped with a finite number of registers that can store
data values (atoms) that are read from input. As input alphabet, one can consider in principle
any orbit-finite set Σ. In this thesis, we focus on the model of register automata, as originally
defined by Francez and Kaminski, that inputs letters from Σ = H×A, for some pure (atom-less)
finite set H. On reading an input letter, the automaton compares the letter’s atom with atoms
stored in the registers and fires a transition if the input and register values satisfy the constraints
described by a transition rule. As a result, the register values can be also modified, based on the
constraints of transition rule. This section is devoted to formal definition of register automata,
and to discussion of some of the fundamental results of this model.

3Francez and Kaminski, 1994.
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2. Register automata

Definition 3.2.1: (Non-deterministic register automata)

A non-deterministic k-register automaton (k-NRA) A consists of: a finite set H (finite
component of input alphabet), a finite set of control locationsa Q, subsets I, F ⊆ Q of
initial resp. accepting locations, and a finite set ∆ of transition rules of the form

(q(x1, x2 . . . xk), ⟨h, y⟩, φ, q′(x′
1, x

′
2 . . . x

′
k)) (3.1)

where q, q′ ∈ Q, h ∈ H, and the transition constraint φ(x1, x2 . . . xk, y, x
′
1, x

′
2 . . . x

′
k) is a

Boolean combination of equalities involving the variables x1, x2 . . . xk, y, x
′
1, x

′
2 . . . x

′
k.

aLocations can be also called control states, or just states.

Implicitely, the input alphabet of a k-register automaton is H ×A, and its states (called config-
urations below) are of the form Q× A(k) and thus consist of a control location and a valuation
of registers. A valuation is a tuple of k pairwise distinct atoms. Both the alphabet and config-
urations are in general infinite, but orbit-finite. The constraint φ in (3.1) specifies all possible
relations between the register pre-values (denoted by x1, x2 . . . xk), input atom (denoted by y),
and register post-values (denoted by x′

1, x
′
2 . . . x

′
k) resulting from a transition. If φ entails the

equality xi = x′
i, we say that the ith register is preserved by the transition rule; otherwise we

say that the ith register is updated.

Example 3.2.2. (Register automaton) Consider a register automaton with locations Q =
{ , }, as shown in Figure 3.1. In this and all the following examples in this section, we assume
that H is a singleton (it is thus omitted in the figures). The initial location is (the left one),
and both locations are accepting.

Figure 3.1: A deterministic one-register automaton.

The automaton is deterministic in the sense that transition rules determine uniquely the next
configuration (control location and the value of the register), given a previous configuration and
an input letter (atom).

Definition 3.2.3: (Configuration)

A configuration ⟨q, (a1a2 . . . ak)⟩ ∈ Q× A(k) of A, written briefly

q(a1a2 . . . ak),
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Chapter 3. Register automata and register grammars

consists of a control location q ∈ Q and a tuple of pairwise distincta register values ai ∈ A,
for 1 ≤ i ≤ k. A configuration is initial if q ∈ I and it is accepting if q ∈ F (irrespectively
of register values).

aDistinctness of register values is not relevant for expressiveness of register automata.

For each tuple r = (a1a2 . . . ak) ∈ A(k), atom b ∈ A, and tuple r′ = (a′
1a

′
2 . . . a

′
k) ∈ A(k)

that satisfy the transition constraint, i.e., (a1a2 . . . ak, b, a
′
1a

′
2 . . . a

′
k) |= φ, a rule (3.1) induces a

transition
q(a1a2 . . . ak) ⟨h,b⟩−−−→ q′(a′

1a
′
2 . . . a

′
k)

labeled by ⟨h, b⟩ from the configuration q(a1a2 . . . ak) to q′(a′
1a

′
2 . . . a

′
k). The semantics of k-NRA

is defined as in case of classical finite automata, with configurations considered as states and
Σ = H × A as an alphabet.

Definition 3.2.4: (Run of a register automaton)

A run of A over a data word w = ⟨h1, b1⟩⟨h2, b2⟩ . . . ⟨hn, bn⟩ ∈ Σ∗ is any sequence of
configurations q0(r0), q1(r1), . . . , qn(rn), related by transitions labeled by consecutive letters
of w:

q0(r0) ⟨h1,b1⟩−−−−→ q1(r1) ⟨h2,b2⟩−−−−→ . . .
⟨hn,bn⟩−−−−→ qn(rn), (3.2)

where q0(r0) is an initial configuration (i.e., q0 ∈ I). Note that the initial values of registers
r0 are chosen arbitrarily (we say informally that they are guessed)a. A run is accepting if
the ending configuration qn(rn) is accepting (i.e., qn ∈ F ). A data word w is accepted by
A if A has an accepting run over w.

aThis is not the unique nor the most often used possibility, but this definitional choice seems most
convenient technically in our later developments. In the literature, it is most often assumed that all registers
are initially undefined (see for example Bojańczyk, 2019). These minor variations of the definition do not
affect the expressive power of the model.

Example 3.2.5. (Run of a register automaton) Consider a run of the automaton from
Example 3.2.2 over a word a1a2a3 ∈ A(3), as shown in Figure 3.2 below. In the figure, each circle
with a letter represents a configuration. For example, the left most one (initial configuration)
denotes the configuration (a0). As mentioned above, the initial register values are guessed.
Then the automaton reads and stores a1 in its register (thus forgetting the initial value a0) and
goes to . From there, it reads a2 different from a1 (according to the transition rule) and goes
again to , and then likewise the automaton proceeds with a3. The run is accepting since is
accepting.
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2. Register automata

Figure 3.2: A run of a register automaton.

Definition 3.2.6: (Language recognised by a register automaton)

Let Lq(r) q′(r′)(A) be the set of data words having an accepting run (3.2) that starts in
q0(r0) = q(r) and ends in qn(rn) = q′(r′). The language L(A) recognised by A is defined
as:

L(A) =
⋃

q∈I,q′∈F,r,r′∈A(k)

Lq(r) q′(r′)(A). (3.3)

Example 3.2.7. (Language recongnised by a register automaton) The automaton
described in Example 3.2.2 recognises the language containing all words in which each two
consecutive letters are different:

L = {a1a2 . . . an ∈ Σ∗ : a1 ̸= a2 ̸= · · · ≠ an}.

Example 3.2.8. (2-NRA) We define a two-register automaton with three locations, where the
red (left-most) location is the only initial one, and all locations are accepting.

Figure 3.3: A (deterministic) 2-register automaton: each three consecutive letters are pairwise
different.

The automaton has three transition rules. The first two rules check that the input atom
equals the initially guessed value of the first (respectively, the second) register. Note that these
two values are necessarily different. The third rule loops from green to green location, checks
that the input atom is different from both registers, shifts the value of the second register to
the first one, and updates the second register with the input atom. Therefore, the language
L accepted by the automaton consists of all words in which each three consecutive letters are
pairwise different (instead of each two consecutive letters, as in Example 3.2.7):

L = { a1a2 . . . an ∈ A∗ : ̸= (a1, a2, a3) ∧ ̸= (a2, a3, a4) ∧ · · · ∧ ≠ (an−2 , an−1, an)},

where the shorthand ̸= (a1, a2, a3) is to say that a1, a2 and a3 are pairwise distinct: a1 ̸= a2 ̸=
a3 ̸= a1.
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Remark 3.2.9. (Guessing) Our definition of register automata allows for guessing4, i.e.,
when firing a transition rule an automaton may non-deterministically choose, and store in its
register, an atom not yet seen in the input, besides atoms stored in registers before firing the
transition.

In this thesis we mostly consider register automata with guessing. The literature considers
both register automata with guessing as well as register automata without this feature. In our
setting, one can enforce a syntactical restriction on transition constraints that corresponds to
automata without guessing: each constraint should entail equality of each post (primed) variable
x′

i either to some pre (non-primed) variable xj , or to input variable y, and initial value of each
register should be updated before being tested in constraints.

Remark 3.2.10. (Initial values and distinct values in the registers) As we discussed
already above, initial register values are guessed. Furthermore, in each configuration the au-
tomaton is restricted to store distinct vales in its registers. These decisions are not the unique
possible ones, and alternative variants often appear in the literature. For instance, initial values
of registers may be undefined, and become defined at first update5; then, depending on a vari-
ant of definition, a defined register stays defined forever during all subsequent updates, or may
become again undefined due to firing a specified transition rule. There are also variants allowing
for storing the same atom in multiple registers. All these variants have the same espressive
power.

Unlike finite automata, where most of the well-known variations are expressively equivalent,
many variations of register automata are not equivalent to each other. For instance, guessing is
a critical feature, and it gives additional expressiveness to the model. Here is an example:

Example 3.2.11. (1-NRA with guessing) The automaton in Figure 3.4 recognises all the
three letter words, in which all the three letters are pairwise distinct. The red location is the
only initial one, and the green one is the only accepting one.

Figure 3.4: Automaton recognising pairwise distinct triples.

The automaton uses one register. The first transition loads the input atom to the register.
The second transition inputs an atom different than the atom stored in the register, and updates
the register with a (guessed) fresh atom different from both. The last transition inputs the atom
which is stored in the register.

Proposition 3.2.12: (Guessing is more powerful)

The language L from Example 3.2.11, while being recognised by a 1-NRA with guessing, as

4Segoufin, 2006; Neven, Schwentick, and Vianu, 2004.
5Bojańczyk, 2019.
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well as by a 2-NRA without guessing, is not recognised by any 1-NRA without guessing.

Remark 3.2.13. (Deterministic register automata) We can distinguish a subclass of
deterministic register automata, by requiring that

• transition rules determine uniquely the next configuration (location and register values),
given a previous configuration and an input letter, and

• initial register values are irrelevant, i.e. no register is tested before its first update.

We do not detail this definition, as in this thesis we concentrate on properties of non-deterministic
register automata.

2.1 Closure properties

Regular languages admit several closure, like closure under union, intersection, and complemen-
tation. We point in this section to the fact that NRA display some of these closure properties,
but fail to satisfy some others.

Proposition 3.2.14: (Unions and intersections)

Languages of NRA are closed under finite unions and intersectionsa.
aFrancez and Kaminski, 1994, Theorem 3.

What about complements of NRA languages? The following example answers that question
negatively.

Example 3.2.15. (Complementation) Consider the 1-NRA shown in Figure 3.5. The red
locations is initial and the green one is accepting. The transition rule going from red to yellow
location non-deterministically chooses an input letter to reappear later, and stores it in the
register. If the letter again appears, then the automaton reaches the accepting location. This
automaton recognizes the language L2 from Example 3.1.5.

Figure 3.5: Automaton recognising language L2 from Example 3.1.5.

The complement of the language L2 is L3 from the Example 3.1.5.
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Proposition 3.2.16: (No closure under complementation)

The language L3 from Example 3.1.5 is not recognised by any NRA.

Proof. Suppose such a k-NRA A exists. Consider a word w of length k + 2 such that all k + 2
letters are pairwise different, and an accepting run of A over w. After reading the first k + 1
letters, at least one of letters read so far, say ai, is not stored in any of registers. Then the word
w with ai replaced by ak+2 is also accepted, yielding a contradiction.

Remark 3.2.17. (Complementation) As languages of deterministic register automata are
closed under complement we deduce that non-deterministic register automata are strictly more
expressive than deterministic ones. Surprisingly, it has been recently shown that if both data
language L and its complement Lc are recognized by NRA without guessing then both the
languages are recognized by deterministic ones6.

2.2 Decision problems

In this part, we discuss some of the widely studied decision problems for register automata.

2.3 Emptiness

The emptiness problem asks, given a non-deterministic register automaton A, if the language
L(A) = ∅. For finite automata the problem is decidable in polynomial time. The following
theorem gives the complexity for register automata:

Theorem 3.2.18: (Emptiness)

Emptiness problem is PSPACE-complete for NRA that can store duplicates in their regis-
tersa.

aFrancez and Kaminski, 1994, Theorem 1, Demri and Lazic, 2009, Theorem 5.1.

For our model, NRA that do not store duplicates in their registers, the complexity significantly
reduces. The following theorem provides the complexity:

Theorem 3.2.19: (Emptiness)

Emptiness problem is NP-complete for NRA that do not store duplicates in their registers

6Klin, Lasota, and Toruńczyk, 2021.
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(as in our definition)a.
aSakamoto and Ikeda, 2000, Theorem 4.

2.4 Universality

The universality problem asks, given a non-deterministic register automaton A, if the language
L(A) = Σ∗. The problem is unfortunately undecidable:

Theorem 3.2.20: (Universality)

Universality problem is undecidable for NRAa.
aNeven, Schwentick, and Vianu, 2004.

The proof consists of a reduction from the Post correspondence problem (PCP). As a corollary
we get the following:

Corollary 3.2.21: (Equivalence and inclusion)

Equivalence and inclusion problems for languages of NRA are undecidable.

Remark 3.2.22. (Alternating register automata) Undecidability proof works for 2-NRA
without guessing, and also for 1-NRA with guessing. On the other hand, the universality problem
is decidable for alternating one-register automata without guessing7. Since 1-NRA are a special
case of alternating register automata where all states are existential, the universality problem
is also decidable for 1-NRA without guessing. The proof relies on a well-quasi order on the
reachable sets of configurations.

Remark 3.2.23. (Unambiguous register automata) A non-deterministic register automa-
ton is unambiguous if every data word admits at most one accepting run (in consequence, every
accepted word admits exactly one accepting run). Unambiguous register automata are strictly
more expressive than deterministic ones. For example, the reverse of the language L1 from
Example 3.1.5:

L = {a1a2 . . . an ∈ A∗ : an = ai for some i ∈ {1, 2, . . . , n− 1}},

is not recognised by any deterministic register automata but is recognised by an unambiguous
one.

7Demri and Lazic, 2009.
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Universality for this model was first shown decidable in 2-ExpSpace8, then the complexity
was improved to 2-ExpTime9, and finally to ExpTime10.

2.5 Variants of register automata

In this part, we mention some variants of the model of register automata, and discuss the
relationship between expressive power of these variants.

2.5.1 Orbit-finite automata

The definition of orbit-finite automaton is obtained in a very natural way, namely by allowing in a
classical definition of non-deterministic finite automaton (NFA) orbit-finite state spaces in place
of finite ones11. In this setting the input alphabet of an automaton, as well as its state-space and
its transition relation, are all arbitrary orbit-finite sets. This elegant model is a generalization of
non-deterministic register automata to arbitrary orbit-finite alphabets. However, this model is
not more powerful than register automata on alphabets of the form H × A, where H is finite12.

Example 3.2.24. (Orbit-finite automaton) Let Σ = A(2). The following language of
"paths" is recognised by an orbit-finite automaton:

L = {⟨a1, b1⟩⟨a2, b2⟩ . . . ⟨an, bn⟩ ∈ Σ∗ : b1 = a2 ∧ b2 = a3 ∧ . . . ∧ bn−1 = an}.

2.5.2 Alternating register automata

In alternating register automata, control locations are partitioned into existential and universal
ones, and acceptance of a word is determined by the means of an acceptance game between the
existential and universal player. The alternating model is strictly more expressive than non-
deterministic one. As mentioned in Remark 3.2.22, alternating one-register automata without
guessing have decidable emptiness and henceforth decidable universality13.

2.5.3 Two-way register automata

All variants discussed so far are one-way. One can allow however a register automaton to go
back and forth along the input string. In case of finite automata, this extension does not increase
expressiveness. The situation is different in case of register automata: two-way model is strictly
more expressive than one-way model, both in the case of deterministic and non-deterministic

8Mottet and Quaas, 2019.
9Barloy and Clemente, 2021.

10Bojańczyk, Klin, and Moerman, 2021.
11Bojańczyk, 2019.
12Bojańczyk, Klin, and Lasota, 2014.
13Demri and Lazic, 2009.
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register automata14. For instance, this model is able to recognize the language

L3 = {a1a2 . . . an ∈ A∗ : ai ̸= aj for all distinct i, j ∈ {1, . . . , n}} (3.4)

in Example 3.1.5, which is not recognized by any one-way non-deterministic register automata.
Furthermore, the emptiness problem becomes undecidable for two-way register automata15.

2.5.4 Single-use deterministic register automata

The model of single-use deterministic register automata is obtained by imposing a restriction:
each register value may be testes only once, and it "disappears" as a result of a test. This subclass
of deterministic register automata has been recently introduced by Bojańczyk and Stefański16.
The paper provides a number of good properties of single-use deterministic register automata. In
particular, the two-way model is expressively equivalent to one-way model. Single-use determin-
istic register automata recognize exactly data languages recognisable by orbit-finite monoids17,
and also languages definable in a variant of monadic second-order logic called guarded-MSO18.
The single-use model is, on the other hand, strictly weaker than unrestricted deterministic reg-
ister automata. For instance, the model is not able to recognise the language

L1 = {a1a2 . . . an ∈ A∗ : a1 = ai for some i ∈ {2, . . . , n}}

in Example 3.1.5, which is recognised by a deterministic one-register automaton.

2.5.5 Mutual relationships

The relationships (inclusions, non-empty intersections, etc.) between the classes of languages
recognized by the models discusses above are shown in Figure 3.619:

14Bojańczyk, 2019.
15Neven, Schwentick, and Vianu, 2004.
16Bojańczyk and Stefański, 2020.
17Bojańczyk, 2011.
18Colcombet, Ley, and Puppis, 2015.
19Bojańczyk, 2019.
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Chapter 3. Register automata and register grammars

Figure 3.6: Relationships between various models of register automata.

We show languages that separate some of the models. Consider the language L where last
letter never appears before:

L = {a1a2 . . . an ∈ A∗ : an ̸= ai for all 1 ≤ i < n}

This language is recognised by a non-deterministic register automaton but not by any deter-
ministic one. The language L3 (3.4) from Example 3.1.5 is recognised by a two-way automaton
and not by any one-way model. In fact all the regions in Figure 3.6 are non-empty and contain
some language20.

There are numerous other variations on the model of register automata studied in the liter-
ature, to mention just a few: fresh-register automata21, and history-register automata22. There
are also models of different nature, still recognizing data languages, for instance data automata23

and class automata24.

3 Register context-free grammars

Similarly like non-deterministic register automata are an extension of non-deterministic finite
automata with registers, register context-free grammars are an extension of classical context-free
grammars. For the sake of this thesis we provide the definition of context-free grammars with
one register only.

20Bojańczyk, 2019, Excercise 28.
21Tzevelekos, 2011.
22Grigore and Tzevelekos, 2016.
23Bojańczyk, David, Muscholl, et al., 2011.
24Bojańczyk and Lasota, 2010.
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Definition 3.3.1: (one-register context-free grammars)

A one-register context-free grammar (1-CFG) G consists of: two finite sets H and Q of
terminals and nonterminals respectively, an initial nonterminal q0 ∈ Q, and two finite sets
∆2 and ∆0 of binary and nullary production rules, of the forms

q(x) φ−→ p(y) p′(y′) ∈ ∆2,

q(x) −→ ε ∈ ∆0,
(3.5)

where q ∈ Q, p, p′ ∈ Q∪H, and φ(x, y, y′) is a Boolean combination of equalities involving
only the variables x, y, y′.

Similarly as before, a configuration ⟨q, (a)⟩ ∈ Q × A of G, written also as q(a), consists of a
non-terminal q ∈ Q and a register value a ∈ A. Elements of Σ = H×A we denote either as h(a)
or as ⟨h, a⟩. Production rules (3.5) induce productions

q(a) −→ p(b) p′(b′),
q(a) −→ ε,

(3.6)

the former one under the condition (a, b, b′) |= φ. We denote by Π2 and Π0, respectively, the
(infinite) sets of productions induced by the rules from ∆2 and ∆0.

The semantics of a 1-CFG is defined as for classical context-free grammars, with configura-
tions considered as non-terminals, input alphabet Σ = H × A, and productions Π2 ∪ Π0 (all
these sets are in general infinite, but orbit-finite). Derivation trees T of G are labeled by con-
figurations, alphabet letters ⟨h, a⟩ = h(a) ∈ Σ, or the empty word ε, in a way consistent with
productions (3.6):

Figure 3.7: Pieces of derivation trees corresponding to the productions (3.6).

Complete derivation trees have all leaves labeled by elements of Σ ∪ {ε}. We use below a
similar notation as for NRA. We write Lq(a)(G) ⊆ Σ∗ for the language of yields of all complete
derivation trees T with root labeled by q(a), as usual, where yield(T ) ∈ Σ∗ is obtained as
concatenation of labels of all the leaves of T , from left to right. The language L(G) ⊆ Σ∗

generated by G is defined as the union (as in case of k-NRA, the initial register value is guessed
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Chapter 3. Register automata and register grammars

non-deterministically):
L(G) =

⋃
a∈A

Lq0(a)(G).

Remark 3.3.2. (Context-free languages) Context-free languages (with registers) over
infinite alphabets were first introduced by Cheng and Kaminski25. They also showed the equiv-
alence of register-grammars and register pushdown automata, as in the finite-alphabet case.
Later this equivalence was generalized to arbitrary orbit-finite grammars and orbit-finite push-
down automata, over an arbitrary orbit-finite alphabet26. Orbit-finite pushdown automata, as
well as their variant, timed pushdown automata, have been extensively studied recently27, in
order to show decidability of the reachability (emptiness) problem for these automata, and effec-
tive computability of the reachability sets. As in the finite case it is possible to extend register
pushdown automata to orbit-finite Turing machines 28. This model is interesting on its own,
and has often different properties than the classical one. For example, it has been shown that
non-deterministic orbit-finite Turing machines are more powerful than deterministic ones.

Example 3.3.3. (1-CFG) As an illustration, consider the 1-CFG consisting of non-terminals
Q = { , }, terminals H = { , }, initial non-terminal , and rules

(x) x ̸=y=y′
−−−−−→ ⟨ , y⟩ (y′) (x) x=y=y′

−−−−−→ (y)⟨ , y′⟩ (x) −→ ε.

The first rule rewrites a non-terminal into a terminal and a non-terminal , both with the
same value of register which is arbitrary but different than the initial register value of . Then,
the second rule rewrites non-terminal back into a non-terminal and a terminal , both with
the same register value as . Therefore the application of the two rules may rewrite (a), where
a ∈ A, into

⟨ , b⟩ (b) ⟨ , b⟩

for any atom b ̸= a. Derivation continues in this way until the non-terminal disappears, using
the third production rule. The grammar generates therefore palindrome-like words of the form

⟨ , a1⟩⟨ , a2⟩ . . . ⟨ , an⟩ ⟨ , an⟩ . . . ⟨ , a2⟩⟨ , a1⟩

where n ≥ 0 and a1 ̸= a2 ̸= . . . ̸= an. For instance, Figure 3.8 shows a derivation tree generating
the string ⟨ , b⟩⟨ , a⟩⟨ , a⟩⟨ , b⟩.

25Cheng and Kaminski, 1998.
26Bojańczyk, Klin, and Lasota, 2014.
27Clemente and Lasota, 2015a, Clemente and Lasota, 2015b, Clemente, Lasota, Lazic, and Mazowiecki, 2017,

Murawski, Ramsay, and Tzevelekos, 2017, Clemente and Lasota, 2018, Clemente, Lasota, Lazic, and Mazowiecki,
2019, Clemente and Lasota, 2021.

28The model, under the name of Turing machines with atoms, has been introduced by Bojańczyk, Klin, Lasota,
and Toruńczyk, 2013.
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Figure 3.8: A derivation tree.

Remark 3.3.4. (Arity of production rules) According to our definition, production rules
of register context-free grammars are of arity 2 (binary rules) or 0 (mullary rules). Other arities
can be simulated easily: unary rules (arity 1) are simulated by a binary rule followed by a nullary
one, while rules of arity higher than 2 are simulated by a sequence of binary rules (this may
require increasing of the number of registers in general).

Remark 3.3.5. (One register) In the rest of this thesis, we focus mostly on automata and
context-free grammars with one register, except for only Chapter 7 in which we introduce and
investigate a subclass of NRA that extends 1-NRA.

We introduced register automata and register grammars. In forthcoming chapters,
our main objective is to study Parikh images of their languages. Our main task is
to check to what extent Parikh’s Theorem (cf. Theorem 3.1.10) lifts to the setting
of infinite (but orbit-finite) alphabets.

Summary
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Chapter 4
Rational sets over orbit-finite alphabets

In the previous chapter, we have seen that languages of non-deterministic register
automata do not satisfy certain standard properties like closure under complementa-
tion. This chapter starts by introducing a natural extension of rational expressions to
orbit-finite alphabets, and showing that it is not expressive enough to define all the
languages of NRA (not even the languages of deterministic one-register automata).
Then, we focus on Parikh images of languages of register automata (alternatively,
one can think of commutative closures of languages of register automata). We rein-
terpret rational expressions from languages to their Parikh images, obtaining rational
set of data vectors. Then we discuss some of the properties of these rational sets.
Finally, we motivate with examples that rational sets may be a suitable formalism
for characterising Parikh images of the languages of NRA.

Objective

Contents
1 Rational data languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2 Rational sets of data vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3 Closure properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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1. Rational data languages

1 Rational data languages

Languages recognised by finite automata (regular languages) are characterised by rational (reg-
ular) expressions. We can naturally ask if a similar characterisation exists for the languages of
register automata. All the proposals of rational expressions for register automata appearing in
the literature either apply to a restricted subclass of the model, or go beyond the monoid of
data words and introduce involved syntax significantly extending the classical concept of regular
expressions1. It thus seems that none of these proposal may be considered as fully satisfactory.

In this thesis we propose and investigate a different but very natural approach, where we
stick to the monoid of data words, and replace finite unions by orbit-finite ones. Our main
objective is to prove that so obtained rational expressions, while not capturing languages of
NRA, do capture their commutative images.

In this chapter we consider orbit-finite unions of sets of data vectors, or, formally speaking,
unions of families of sets of data vectors indexed by an orbit-finite set. Given a finitely supported
function f that maps each element of an orbit-finite set X (the domain of f) – an index – to a
(hereditarily) finitely supported set of data vectors, the union

⋃
x∈X

f(x)

is a (hereditarily) finitely supported set of data vectors as well. In particular, the support of f
always supports the union, by Lemma 2.2.13.

Below we consider sets of data words (data languages), and later also sets of data vectors,
over a fixed orbit-finite alphabet Σ.

Definition 4.1.1: (Rational data languages)

We define concatenation of two data languages LL′ = {ww′ : w ∈ L,w′ ∈ L′}, and the
Kleene star (iteration): L∗ = {w1 . . . wn : n ≥ 0, w1, . . . , wn ∈ L}, as usual. Let rational
data languages be the smallest class of data languages that contains all singleton languages
{a}, for a single-letter word a ∈ Σ, and is closed under concatenation, Kleene star, and
orbit-finite unions.

In particular, the empty language ∅ is rational, as s sum of the empty family of sets. Moreover,
the singleton of the empty word, {ε}, is a rational language definable as ∅∗. Using concatenation,
we deduce that every singleton {w}, for w ∈ Σ∗, is a rational language. Therefore, using finite
(resp. orbit-finite) unions we may derive all finite (resp. orbit-finite) languages, and hence all
these languages are rational, as expected.

Similarly as in the case of rational (regular) languages over finite alphabets, we will write
down rational data languages using rational expressions that denote derivations of rational
languages according to Definition 4.1.1.

1Bojańczyk, 2020, Libkin, Tan, and Vrgoc, 2015, Kurz, Suzuki, and Tuosto, 2012, Kaminski and Tan, 2006.
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Chapter 4. Rational sets over orbit-finite alphabets

Example 4.1.2. (Rational expressions) Let the alphabet be Σ = A. The language A(3)

from Example 3.2.11 is expressed by the following rational expression:

⋃
(a,b,c)∈A(3)

{a}{b}{c}.

As a convention, in order to simplify the expressions we omit the brackets of singletons. For
instance, we write down the above rational expression as follows:

⋃
(a,b,c)∈A(3)

abc.

The language L2 from Example 3.2.15 is expressed by the following rational expression:

⋃
a∈A

A∗ aA∗ aA∗,

where A (slightly overloading the notation) stand for the language of all data words of length 1:

A =
⋃

a∈A
a.

For finite alphabets Σ we obtain the classical rational (regular) sets of words or vectors.
As expected, without the Kleene star we obtain exactly sets of words of bounded length, or
equivalently, due to Lemma 3.1.12, orbit-finite languages.

The natural question is to ask if the languages of all NRA are rational. The following
proposition provides a negative answer:

Proposition 4.1.3: (Non-rational language)

Let Σ = A. The language L from Example 3.2.7:

L = {a1a2 . . . an ∈ Σ∗ : a1 ̸= a2 ̸= · · · ̸= an}

is not rational.

Proof. Indeed, towards contradiction suppose L is rational, and hence generated by a rational
expression R. Consider the sublanguage L′ ⊂ L containing words in which all atoms are dif-
ferent. The language L′ is orbit-infinite and hence it cannot be generated without star; indeed,
concatenation and orbit-finite sums preserve orbit-finiteness of languages. Therefore, there must
be a star subexpression R′ of R such that the number of iterations of R′ is unbounded in gener-
ation of words in L′. In other words, for every n ∈ N there is a word w ∈ L′ whose some infix u
is generated by at least n iterations of R′. Thus w = w′uw′′, the infix u splits into u = u1 . . . un,
and each of factors ui is generated by R′. Choose n sufficiently large, namely n > 2 · |supp(R′)|
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2. Rational sets of data vectors

(considering union operations as atom-binding constructs, the support of a rational expression
R′ consists of those atoms appearing in R′ which are not bounded by any union). As no atom
repeats twice in words in L′, some of words ui are fresh for R′, i.e., supp(u) ∩ supp(R′) = ∅,
and ui is either preceded or succeeded in w by an atom a /∈ supp(R′). Consider w.l.o.g. the first
case, and let a′ be the first atom in ui. Necessarily a ̸= a′. As R′ is invariant under the swap
a′ ↔ a, applying this swap to ui yields a word u′ still generated by R′. Replacing ui by u′ in w

yields a word w′ still generated by R, but w′ /∈ L as it contains two consecutive atoms a. The
contradiction completes the proof.

Remark 4.1.4. (Other proposals of rational expressions) Kaminski and Tan intro-
duced regular expressions for infinite alphabets by extending classical regular expressions, and
proved their equivalence to a subclass of non-deterministic register automata2. Later, different
extensions of regular expressions suitable for infinite alphabets were studied by process calculus
community and automata community. In particular, regular expressions with name binders were
introduced and shown expressively equivalent to non-deterministic register automata3, and reg-
ular expressions with finite memory were developed and shown equivalent to non-deterministic
register automata as well4. Lately, regular expressions with atom automorphisms were proposed
and shown equivalent to NRA5.

2 Rational sets of data vectors

Recall that a data vector is a finite multiset of letters from some orbit-finite alphabet Σ, or a
function Σ → N that maps almost all elements of Σ to 0. Each finite subset of Σ is a special
case of a multiset, as hence can be seen as a data vector that maps each its element to 1 and
all other elements of Σ to 0. In particular, each singleton {σ}, for σ ∈ Σ, can be also seen as a
data vector.

Recall also that Parikh image of a data word w is a data vector that counts the number
of occurrences of each letter in w. For example, the data word w = a1a2a1 has Parikh image
{a1 → 2, a2 → 1}. We can naturally extend this definition to any data language L: Parikh
image of L is a set of those data vectors which are Parikh images of words in L.

In the sequel, we consider sets of data vectors over a fixed orbit-finite alphabet Σ. We define
a class of sets of data vectors, which we call rational sets, and investigate their basic properties.

Recall that addition of data vectors (seen as functions Σ → N) is pointwise. Let addition of
two such sets X,Y of data vectors be defined by Minkowski sum

X + Y = {x+ y : x ∈ X, y ∈ Y },
2Kaminski and Tan, 2006.
3Kurz, Suzuki, and Tuosto, 2012.
4Libkin, Tan, and Vrgoc, 2015.
5Bojańczyk, 2020.
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and let the Kleene star X∗ of X contain all finite sums of elements of X:

X∗ = {x1 + . . .+ xn : n ≥ 0, x1, . . . , xn ∈ X}.

In particular, X∗ always contains the empty (zero) vector.

Definition 4.2.1: (Rational sets of data vectors)

Consider a fixed orbit-finite alphabet Σ. We define rational sets of data vectors over Σ as
the smallest class of sets of data vectors that contains all singletons {σ}, for σ ∈ Σ, and is
closed under Minkowski sum, Kleene star, and orbit-finite unions. In particular, the empty
set, all finite sets and all orbit-finite sets of data vectors are rational.

By the very definition, Parikh image of a rational language is a rational set of data vectors
(cf. Lemma 4.2.4 below). Let us see few examples to get acquainted with rational sets. As in
case of rational languages, we rely on the concept of rational expression that denote derivations
of rationals sets according to Definition 4.2.1.

Example 4.2.2. (Rational sets of data vectors) Let the alphabet be Σ = A. Consider
the language in Example 4.1.2 (recall the convention to omit brackets of singleton sets):

L =
⋃

(a,b,c)∈A(3)

abc.

Parikh image of this language consists of all vectors that contain three different atoms, each
occurring exactly once (we write a ∈ Σ to denote a data vector that maps a to 1 and all other
alphabet letters to 0, and keep omitting brackets of singleton sets):

Par(L) =
⋃

(a,b,c)∈A(3)

a+ b+ c.

Example 4.2.3. (Parikh-equivalence to a rational language) Consider a variant of the
language in Example 3.2.7 consisting of those words of even length where each two consecutive
letters are different:

L1 = {a1a2 . . . an ∈ Σ∗ : n even, a1 ̸= a2 ̸= · · · ≠ an}.

The language is Parikh-equivalent to a larger language L2, where the non-equality constraint is
imposed at every second position only:

L2 = {a1a2 . . . an ∈ A∗ : n even, a1 ̸= a2, a3 ̸= a4, . . .},
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which is rational, as it is definable by the following rational expression:

L2 =
( ⋃

(a,b)∈A(2)

ab
)∗
. (4.1)

Indeed, every w ∈ L2 can be transformed, by swapping letters, to a word in L1. Let w =
a1a2 . . . an. If a2 = a3 we swap non-equal letters a3 and a4 thus achieving a1 ̸= a2 ̸= a3 ̸= a4.
Next, if a4 = a5 we swap analogously a5 and a6, and so on. Continuing in this way we finally
arrive at a word in L1.

Parikh image of the rational language L2 is necessarily rational, and hence so is Parikh image
of L2:

Par(L1) = Par(L2) =
( ⋃

(a,b)∈A(2)

a+ b
)∗
.

The following two facts describe the relationship between rational data languages and rational
set of data vectors.

Lemma 4.2.4: (Rational sets and rational languages)

Rational sets of data vectors are exactly Parikh images of rational data languages.

Proof. In one direction, let L be a rational language, i.e. L is defined by a rational expression.
In order to show that Parikh image of L is rational, we construct a rational expression defining
Par(L) by replacing each singleton language {a}, where a ∈ Σ, by the corresponding singleton
set of data vectors {a}, and replacing each concatenation · of languages by addition + of data
vectors. In the opposite direction, given a rational expression defining a set X of data vectors,
we do the reverse replacement, thus obtaining a rational expression defining a language L. Thus
L is rational and Par(L) = X as required. (Note that in general, the language L so obtained is
not the unique one satisfying Par(L) = X.)

In the sequel we will often refer implicitly to the following corollary of Lemma 4.2.4:

Corollary 4.2.5: (Rationality of Parikh image)

Par(L) is rational if, and only if, L is Parikh-equivalent to a rational data language.
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3 Closure properties

Consider a language L over an orbit-finite alphabet Σ and an indexed family of languages
K = (Kσ)σ∈Σ over an alphabet Γ, indexed by Σ. We typically use the anonymous function
notation

σ 7→ Kσ.

The substitution L(K) is the language over Γ containing all words obtained from some word
σ1σ2 . . . σn ∈ L, by replacing every letter σi by some word from Kσi :

L(K) =
⋃

σ1σ2...σn∈L

Kσ1Kσ2 . . .Kσn .

We note that the sum above is not orbit-finite in general.

Example 4.3.1. (Substitution) As usual we use the shorthand L+ = L∗L. Let Σ = Γ = A,
and consider the language L1 from Example 4.2.2. By the equivariant substitution Ka = (aa)+,
or

a 7→ (aa)+,

we obtain the language L1(K) =
(⋃

a∈A aa
)+ containing words, where all maximal constant

infixes have even length.

Lemma 4.3.2: (Substitution Lemma)

If L ⊆ Σ∗ and all languages Kσ, for σ ∈ Σ, have rational Parikh images (resp. are rational)
then the substitution L(K) has also rational Parikh image (resp. is rational).

Proof. Intuitively speaking, it is enough to replace syntactically, in the rational expression
defining Par(L) (resp. L), every appearance of a letter σ by an expression defining Par(Kσ)
(resp. Kσ).

Formally, suppose L and all languages Kσ have rational Parikh images. By Lemma 4.2.4 we
assume, w.l.o.g., that languages L and Kσ are rational. We proceed by structural induction on
a rational expression defining L and prove that L(K) is rational too. If L = {σ} is a singleton,
for some σ ∈ Σ, then L(K) = Kσ and hence is rational. The cases of L = L1 · L2, or L = (L′)∗,
are both immediate, as both the operations commute with substitutions:

(L1 · L2)(K) = L1(K) · L2(K) (L′)∗(K) = (L′(K))∗,

and preserve rationality, and L1(K), L2(K) and L′(K) are rational by induction assumption.
Finally, when L = ⋃

x∈X Lx, by induction assumption we know rationality of the languages
Lx(K) for x ∈ X. As

L(K) =
⋃

x∈X

Lx(K)
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and the mapping x 7→ Lx(K) is supported by the union of the supports of x 7→ Lx and σ 7→ Kσ,
we deduce that L(K) is an orbit-finite union of rational languages and hence rational.

Substitution Lemma is intensively used in the proofs in the following chapters.
The next result shows that rationality is preserved when the alphabet is restricted to its

subset:

Lemma 4.3.3: (Closure under restriction)

If a language L ⊆ Σ∗ has rational Parikh image (resp. is rational) and Γ ⊆ Σ, then the
restriction L ∩ Γ∗ has also rational Parikh image (resp. is also rational).

Proof. Intutively speaking, it is enough to syntactically remove, in the rational expression defin-
ing Par(L), every appearance of a letter σ ∈ Σ − Γ.

Formally, we proceed by induction on a derivation of L. By Lemma 4.2.4, we assume that
the language L is rational. The induction base: when L = {σ} is singleton, σ ∈ Σ, then

L ∩ Γ∗ =

L if σ ∈ Σ

∅ otherwise

and in each case, L ∩ Γ∗ is rational. The induction step follows immediately, as restriction
commutes with all the operations involved:

(LK) ∩ Γ∗ = (L ∩ Γ∗)(K ∩ Γ∗)
L∗ ∩ Γ∗ = (L ∩ Γ∗)∗(⋃

i∈I

Li

)
∩ Γ∗ =

(⋃
i∈I

Li ∩ Γ∗
)

In this chapter we proposed a natural extension of rational expressions to orbit-finite
alphabets. Then, we introduced rational sets of data vectors and, using a small
example, we motivated rational sets as a good candidate to express Parikh images
of languages of register automata. Finally, we proved the substitution property of
rational sets that will be intensively used in forthcoming chapters. In the following
chapters we will work with rational sets of data vectors which can be obtained as
Parikh images of languages of non-deterministic one-register automata, and one-
register context-free grammars.

Summary
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Chapter 5
Semilinear sets over orbit-finite alphabets

Previously, we saw that the natural extension of rational (regular) expressions does
not capture languages of register automata, and introduced rational sets of data vec-
tors which seem to be a natural candidate to characterise Parikh images of languages
of register automata. This chapter explores semilinear sets, naturally adapted to the
orbit-finite setting, and its relationship with register automata and rational sets.

Objective

Contents
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3 Semilinear sets are not sufficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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1 Semilinear sets with orbit-finite unions

We propose the following natural lifting of the notion of semi-linear set1 to the setting of orbit-
finite alphabets. Recall the Kleene star operation on sets of data vectors: given such a set X,
the set X∗ contains all finite sums of elements of X:

X∗ = {x1 + . . .+ xn : n ≥ 0, x1, . . . , xn ∈ X}.

Definition 5.1.1: (Semi-linear set)

Consider data vectors over a fixed orbit-finite alphabet Σ. A linear set is then any set of
the form

N = {g} + P ∗,

for a data vector g (a base vector) and an orbit-finite set P of data vectors (periods). We
omit brackets and write simply g+ P ∗. A semi-linear set is any orbit-finite union of linear
sets:

⋃
i∈I

Ni =
⋃
i∈I

gi + Pi
∗, (5.1)

for a finitely supported mapping i 7→ Ni, where i ∈ I ranges over an orbit-finite indexing
set I.

Example 5.1.2. Parikh image of the language L1 from Example 3.1.5,

L1 = {a1a2 . . . an ∈ A∗ : a1 = ai for some i ∈ {2, . . . , n}},

over the input alphabet Σ = A, is the set of all data vectors where some atoms appears at least
twice, and is hence semi-linear:

I =
⋃

a∈A
a = A, ga = a+ a, Pa =

⋃
b∈A

b = A.

Above, a+ a denotes a data vector that maps a to 2 and all other atoms to 0. As all sets Pi are
equal, this set can be also written as:( ⋃

a∈A
a+ a

)
+
( ⋃

b∈A
b
)∗
.

This is an instance of a hybrid linear2 set, i.e., of a set of the form

B + P ∗,

1Parikh, 1966, Chistikov and Haase, 2016.
2This terminology is used for instance in Chistikov and Haase, 2016.
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Chapter 5. Semilinear sets over orbit-finite alphabets

for orbit-finite sets B and P .

2 Semilinear sets are strictly contained in rational sets

As we demonstrate below, semi-linear sets are exactly as expressive as rational sets of star-height
1, where star-height of a set X of data vectors is defined, similarly as for finite alphabets, as the
smallest depth of nesting of the Kleene star operation in a rational expression defining X.

Theorem 5.2.1: (Semilinear sets)

Semi-linear sets of data vectors are exactly rational sets of star-height at most 1.

Proof. Every semilinear set is, by definition, a rational set of star-heigth at most 1. For the
converse inclusion we use a distributive law of Minkowski sum over orbit finite unions:

Lemma 5.2.2: (Distributive law)

⋃
i∈I

Li +
⋃
j∈J

Kj =
⋃

⟨i,j⟩∈I×J

Li +Kj .

Note that the Cartesian product I × J of orbit-finite sets I and J is necessarily orbit-finite3.
Consider a rational set X of data vectors of star-height h ≤ 1. If h = 0, by the repetitive

use of the distributive law (from left to right) we deduce that the set X is orbit-finite and hence
vacuously semi-linear. If h = 1, by the distributive law we similarly deduce that, for every star
subexpression Y ∗, the set Y is orbit-finite. Moreover, again using the distributive law, we obtain
that the set X is an orbit-finite union

X =
⋃
i∈I

Xi, (5.2)

where each Xi is a sum of star subexpressions Y ∗ and orbit-finite sets. As Minkowski sum is
commutative, preserves orbit-finiteness, and admits merging of stars:

Y ∗ + Z∗ =
(
Y ∪ Z

)∗
,

each of sets Xi is of the form
Z + Y ∗

where Y and Z are both obit-finite. Therefore each Xi is hybrid linear, and hence semi-linear.
In consequence, the orbit-finite union (5.2) is semi-linear too.

3cf. Bojańczyk, 2019, Sect. 3.
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3 Semilinear sets are not sufficient

As the main result of this chapter we prove that semi-linear sets do not capture Parikh images of
languages of register automata, which excludes possibility of a straightforward generalisation of
Parikh theorem to register automata. The idea of the proof comes from Masters thesis of Marta
Juzepczuk4, where non-semi-linearity has been shown for one-register context-free grammars.
We improve the construction and show that Parikh images need not be semi-linear already for
(deterministic) one-register automata.

Theorem 5.3.1

Parikh images of languages of 1-NRA are not always semilinear.

This negative result motivates consideration of rational sets, instead of only semi-linear ones,
in forthcoming chapters. Recall that semi-linear and rational sets of vectors coincide for finite
alphabets5, and therefore both semi-linear and rational sets are equally good candidates to be
considered for generalisation of Parikh theorem to orbit-finite alphabets.

3.1 Proof of Theorem 5.3.1

We demonstrate that Parikh images of 1-NRA languages are not semi-linear in general. As a
counterexample we take the following language L ⊆ A∗ over the alphabet Σ = A. For a ∈ A, let

Ka =
⋃

b∈A\{a}
b = A \ {a}; La = aa

(
aKa

)∗
. (5.3)

Let L be the language obtained from

L1 = {a1a2 . . . an ∈ Σ∗ : n ≥ 1, a1 ̸= a2 ̸= . . . ̸= an}

by the substitution:

a 7→ La. (5.4)

The language is clearly rational, and recognised by a (deterministic) one-register automaton
depicted below in Figure 5.1. Here the red and green locations are initial and accepting, respec-
tively.

4Juzepczuk, 2013.
5Eilenberg and Schützenberger, 1969.
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Chapter 5. Semilinear sets over orbit-finite alphabets

Figure 5.1: A deterministic one-register automaton recognising L.

Remark 5.3.2. (Segments and pairs) Each word w ∈ L is obtained from some word
a1a2 . . . an ∈ L1 by the substitution (5.4), and hence splits into n segments, each segment being
an infix of w that belongs to La for some a ∈ A. Furthermore, each word in La consists of a
number of pairs of atoms, where the first pair is aa and each consecutive one is of the form ab

where b ̸= a.

As we show, its Parikh image is not semi-linear:

Lemma 5.3.3: (Non-semilinearity)

Par(L) is not semi-linear.

Proof. We start with some preparatory definitions and their properties. For a data vector
p : A → N, let Sing(p) = |{a ∈ A : p(a) = 1}| denote the number of atoms appearing exactly
once in p (such atoms we call singular). We will often rely on the fact that the function Sing(_)
is sub-additive with respect to addition of data vectors:

Claim 5.3.4

Sing(v + w) ≤ Sing(v) + Sing(w).

Our argument relies on a careful analysis of the limit value of the singularity ratio Sing(p)
|p| ,

for p ∈ Par(L), when |p| tends to infinity. We will exploit the fact that the singularity ratio is
non-increasing with respect to addition of data vectors:

Claim 5.3.5

Sing(v + w)
|v + w|

≤ max
{Sing(v)

|v|
,
Sing(w)

|w|

}
.

For every a ∈ A and p ∈ Par(La), we have Sing(p) < 1
2 |p|. Indeed, the first pair aa

introduces no singular atom, and each consecutive pair introduces at most one singluar atom.
As Sing(_) is sub-additive with respect to addition of data vectors, we immediately deduce:
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3. Semilinear sets are not sufficient

Claim 5.3.6

Every p ∈ Par(L) satisfies Sing(p) < 1
2 |p|.

Using an analogous argument one obtains:

Claim 5.3.7

Every p ∈ Par(L) satisfies dom(p) ≤ 1
2 |p|.

Towards contradiction, suppose Par(L) is semilinear:

Par(L) =
⋃
i∈I

gi + Pi
∗.

For a data vector p : A → N and S ⊆ A, we denote by p− S the data vector obtained from
p by removing all occurrences of atoms from S:

(p− S)(a) =

p(a) if a /∈ S

0 otherwise.

Let Si = supp(Pi). As a consequence of Claim 5.3.6, we get:

Claim 5.3.8

Every p ∈ Pi (i ∈ I) satisfies Sing(p− Si) ≤ 1
2 |p|.

Proof. Towards contradiction, suppose Sing(p− Si) > 1
2 |p| for some p ∈ Pi. Let S′ = dom(p−

Si). For an arbitrary permutation of atoms π ∈ Perm such that π(a) = a for all a ∈ Si, we
have π(p) ∈ Pi. Consider such permutations π1, . . . , πn ∈ Perm, such that πk(S′) and πl(S′)
are disjoint for k ̸= l. This guarantees that singular atoms in π1(p), . . . , πn(p) are distinct. As
|gi| is fixed, for sufficiently large n the data vector

v = π1(p) + . . .+ πn(p)

satisfies Sing(v) ≥ Sing(v − Si) ≥ 1
2 |v| + 3

2 |gi|, and in consequence

Sing(gi + v) ≥ Sing(v) − |gi| ≥ 1
2 |gi + v|.

Therefore, the data vector
gi + v ∈ Par(L)
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Chapter 5. Semilinear sets over orbit-finite alphabets

contradicts Claim 5.3.6. This completes the proof.

We call a data vector p : A → N non-singular if p(a) > 1 for some a ∈ A. Claim 5.3.8 can
be strengthened as long as non-singular data vectors are considered:

Claim 5.3.9

Every p ∈ Pi (i ∈ I) such that p− Si is non-singular, satisfies Sing(p− Si) < 1
2 |p|.

Proof. Indeed, suppose Sing(p − Si) ≥ 1
2 |p| for some p ∈ Pi, and hence dom(p − Si) > 1

2 |p|
due to non-singularity of p − Si. Considering similar permutations of p as in the argument for
Claim 5.3.8, we contradict Claim 5.3.7.

Let k = max{|Si| : i ∈ I} be the maximal size of the support of Pi; note that k is well defined
as the family of sets {Pi}i∈I is orbit-finite, and the size of the support is invariant inside an orbit.
Likewise, let t = max{|gi| : i ∈ I} be the maximal size of a base (t is well-defined due to Lemma
3.1.12, as the set of orbits {gi : i ∈ I} is orbit-finite) and let s = max{|p| : p ∈

⋃
i Pi} be the

maximal size of a period (s is likewise well-defined as ⋃i Pi is orbit-finite, cf. Lemma 2.3.4).
Let Z = {a0, . . . , ak} ⊆ A be some fixed k+1 atoms. A word v ∈ La (cf. (5.3)) we call varied

if all atoms different than a appear at most once in v. For every m ∈ N choose some arbitrary
but fixed word wm ∈ L of the form:

wm = v0 v1 . . . vk ∈ La0 La1 . . . Lak
, (5.5)

where each vi ∈ Lai is a varied word of length 2m and no atom appears in two distinct words
vai , vaj , for i ̸= j. Thus each atom ai ∈ Z appears m + 1 times in wm. Let qm = Par(wm).
Hence |wm| = |qm| = 2m(k + 1). As Sing(qm) = (m− 1)(k + 1), in the limit we have:

lim
m→∞

Sing(qm)
|qm|

= lim
m→∞

(m− 1)(k + 1)
2m(k + 1) = 1

2 , (5.6)

irrespectively of the choice of the words wm. For every m ∈ N, let gim +Pim
∗ (im ∈ I) be a linear

set to which qm belongs. Thus
qm = gim + pm,

for pm ∈ Pim
∗. Recalling (5.5), for every m ∈ N choose ajm ∈ Z (jm ∈ {0, . . . , k}) so that

ajm /∈ Sim (such ajm exists as |Sim | ≤ k). We split pm as follows:

qm = (gim + pm,0) + pm,1 + pm,>1, (5.7)

where pm,1 is a sum of vectors from Pim that contain exactly one appearance of ajm ; pm,>1

is a sum of vectors from Pim that contain more than one appearance of ajm ; and pm,0 is a
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sum of vectors from Pim that contain no appearance of ajm at all. Applying Claim 5.3.6 to
gim + pm,0 ∈ Par(L), we obtain:

lim sup
m→∞

Sing(gim + pm,0)
|gim + pm,0|

≤ 1
2 . (5.8)

Observe that the sum of the last two data vectors in (5.7) contains all m+ 1 occurrences of
ajm in qm except for at most |gim | of them possibly appearing in the base gim . As

m = 1
2(k + 1) |qm|,

the size of pm,1 + pm,>1 plus the size of gim constitutes at least 1
2(k+1) fraction of the whole size

|qm|:

1
2(k + 1) |qm| − |gim | < |pm,1 + pm,>1|. (5.9)

We are going to prove the following strict inequality:

lim sup
m→∞

Sing(pm,1 + pm,>1)
|pm,1 + pm,>1|

<
1
2 . (5.10)

Before providing its proof, we notice that this inequality, together with inequalities (5.8) and (5.9),
contradicts the equality (5.6) and thus completes the proof of Lemma 5.3.3. Indeed, since
|pm,1 + pm,>1| constitutes a constant fraction of |qm| and the singularity ratio of pm,1 + pm,>1

is strictly below 1
2 , while the singularity ratio of the remaining part of qm is at most 1

2 , by
sub-additivity of Sing(_) with respect to addition of data vectors we deduce:

lim sup
m→∞

Sing(qm)
|qm|

<
1
2 .

From now on we concentrate on proving the inequality (5.10). Call pm,1 non-trivial if it is
a sum of at least two vectors from Pm. When pm,1 is trivial, |pm,1| ≤ s is bounded and hence
pm,1 can be ignored in (5.10). We split the inequality (5.10) into two separate ones

lim sup
m→∞

Sing(pm,1)
|pm,1|

<
1
2 lim sup

m→∞

Sing(pm,>1)
|pm,>1|

<
1
2 (5.11)

and prove the first one assuming that pm,1 is non-trivial for infinitely many m, and the second
one unconditionally. This is enough to derive (5.10), again relying on sub-additivity of Sing(_)
with respect to addition of data vectors.

Concerning the first inequality, we observe that the atom ajm /∈ Sim is counted in Sing(v −
Sim) for every data vector v ∈ Pim contributing to the sum pm,1, but if there are more than one
of these data vectors v, then the atom ajm is no more counted in Sing(pm,1 − Sim). Thus the
singularity ratio of pm,1 − Sim loses, intuitively speaking, at least the 1

s fraction (recall that s
is the maximal size of a period) of the maximal possible value 1

2 |pm,1| according to Claim 5.3.8.
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This allows us to deduce:

Sing(pm,1 − Sim)
|pm,1|

≤ 1
2 ·
(
1 − 1

s

)
<

1
2

which implies, in the limit, the first inequality in (5.11), as |Sim | is bounded (by k).
Concerning the second inequality, let’s put

r = max{Sing(v − Si)
|v|

: i ∈ I, v ∈ Pi, v − Si is non-singular}.

As before, r is well defined. Indeed, the value of

Sing(v − Si)
|v|

(5.12)

is invariant inside every Si-orbit included in Pi, and hence each period set Pi admits a bounded
number of these values. Furthermore, for two i, i′ ∈ I in the same orbit, the period sets Pi and
Pi′ admit the same values of (5.12), and hence the total number of these values admitted by all
the period sets Pi, i ∈ I, is bounded.

Furthermore, r < 1
2 by Claim 5.3.9. A crucial observation is that by a multiple application

of the fact that singularity ratio is non-increasing (cf. Claim 5.3.5) we get:

Sing(pm,>1 − Sim)
|pm,>1|

≤ Sing(v − Sim)
|v|

for some v ∈ Pim that contributes to the sum pm,>1, and hence

Sing(pm,>1 − Sim)
|pm,>1|

≤ r <
1
2 .

As |Sim | is bounded, the last inequality implies, in the limit, the second inequality in (5.11).
Both the inequalities (5.11) are thus proved.

Remark 5.3.10. (Semi-linear sets are a strict subclass of rational ones) As a con-
sequence of Theorem 5.3.1 (Parikh images of 1-NRA languages are not always semi-linear),
together with the results of the next section, namely Theorem 6.1.1 (Parikh images of 1-NRA
languages are always rational), semi-linear sets are strictly contained in rational sets of data
vectors. Furthermore, the proof of Lemma 5.3.3 applies also to a larger language

L′ =
( ⋃

a∈A
La

)∗

which shows not only that semi-linear sets are a strict subset of rational sets, but also of rational
sets of star-height 2 (as the languages La have star-height 1).
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In this chapter, we lifted semi-linear sets to the setting of orbit-finite alphabets,
and investigated possibility of likewise lifting of Parikh’s theorem. Our findings are
negative: we provided a counter-example language, recognized by a deterministic
one-register automaton, whose Parikh image is not semi-linear. Therefore semi-linear
sets are not sufficient to capture Parikh images of languages of register automata,
even of 1-NRA, which sharply distinguishes register automata from finite automata.
On the other hand, Parikh image of the counter-example language is a rational set
(as defined in the previous chapter). This opens up the question if all languages of
register automata have rational Parikh images. We explore, and partially answer
this question in the following chapters.

Summary
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Chapter 6
Parikh images of nondeterministic
one-register automata

In previous chapters we showed that semilinear sets are not expressive enough to
capture Parikh images of NRA, and proposed rational sets instead. In this chapter
we positively verify this choice for 1-NRA.

Objective
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1. Overview

1 Overview

The principal content of this chapter is the proof of the fact that Parikh images of languages of
non-deterministic one-register automata are rational:

Theorem 6.1.1: (Rationality)

Parikh images of 1-NRA languages are rational.

This is the most involved proof of this thesis.
For technical convenience, we actually prove a refined version of Theorem 6.1.1 stated in

Lemma 6.1.2 below which, due to Definition 3.2.6, implies Theorem 6.1.1. For two configurations
q(a) and q′(a′) of a automaton A, we define the language Lq(a) q′(a′)(A) as the set of all data
words in which A starts at q(a) and end at q′(a′).

Lemma 6.1.2: (Rationality of 1-NRA)

For every 1-NRA A, the languages Lq(a) q′(a′)(A) have rational Parikh images.

After preparatory Sections 2 and 3, we proceed in three major steps. As the first major
step, in Sections 4–5 we do the first simplification step due to adapting a classical transition-
elimination technique of proving Kleene’s theorem to the setting of Parikh images of 1-NRA.
As the second major step, in Sections 6–9 we repeatedly simplify the problem further, thus
reducing the question of rationality of Parikh images of 1-NRA languages to rationality of certain
canonical languages, over extended alphabets. As the last step, in Section 10 we apply some
known graph-theoretic tools to achieve our goal.

In a more fine-grained description, the proof of Lemma 6.1.2 proceeds by a sequence of
simplifying steps, as stated in consecutive Lemmas 6.4.3, 6.5.2, 6.6.2, 6.7.5, 6.8.2 and 6.9.3 in
the forthcoming sections, that ends in the two final lemmas based on graph-theoretic insights,
namely Lemmas 6.10.10 and 6.10.14. Instead of only considering Parikh images of input words,
in the proof we investigate Parikh images of runs, mostly concentrating on alternations of register
value along a run. This leads us to consider, besides languages over the alphabet H × A of an
1-NRA, also languages over richer alphabets:

• languages of altering paths over the alphabet (Q× A ×Q) ∪ (H × A) in Lemma 6.4.3;

• languages of altering loops over the alphabet A2 × A in Lemma 6.5.2;

• languages of anti-paths and anti-cycles over A × P2(A) in Lemmas 6.6.2, 6.7.5, 6.8.2 and
6.9.3.
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The intuitive idea underlying the final, most technical steps (Lemmas 6.6.2–6.9.3) is, roughly
speaking, that the set of words

⟨a1, b1⟩ ⟨a2, b2⟩ . . . ⟨an, bn⟩

over A2, satisfying bi ̸= ai+1 for all i = 1, . . . , n− 1, has rational Parikh image. Notably, this is
not true for paths, where one requires bi = ai+1 instead.

In the proof of the two final lemmas, Lemma 6.10.10 and 6.10.14, we use a known result
providing sufficient conditions for Hamiltonian cycles in directed graphs.

2 Normal form

In the sequel we assume that the constraint in every transition rule of 1-NRA defines exactly
one orbit in A3.

Definition 6.2.1: (Normal form of 1-NRA)

A 1-NRA is in normal form if the constraint in every transition rule is one of the following
five formulas (cf. Example 2.2.18):

(1) φ1 ≡ x = x′ = y,

(2) φ2 ≡ x = x′ ̸= y,

(3) φ3 ≡ x ̸= y = x′,

(4) φ4 ≡ x = y ̸= x′,

(5) φ5 ≡ x ̸= y ̸= x′ ̸= x.

The constraints (1)-(2) are called register-preserving and the constraints (3)-(5) are called
register-updating.

Note that the transition constraint φ3 updates the register by the input atom, while the
transition constraints φ4 and φ5 update the register by a fresh value different from the current
register value and the input atom. Note also the symmetry between φ3 and φ4.

Proposition 6.2.2: (Normal form of 1-NRA)

Every 1-NRA can be transformed to an equivalent 1-NRA in normal form.

Indeed, it is enough to split each transition rule into finitely many ones whose constraints are
of the form φ1 - φ5.
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3. Rationality for register-preserving transition rules

Example 6.2.3. The 1-NRA from Example 3.2.2 in Chapter 3

is transformed into the following one in normal form:

3 Rationality for register-preserving transition rules

Consider a fixed 1-NRA, A = ⟨H,Q, I, F,∆⟩. For locations q, p ∈ Q of A and a ∈ A, let Lqap be
the language of all data words read by a run from configuration q(a) to p(a) that use register-
preserving transitions only (thus the register stores a along the whole run). The following lemma
shows the rationality of the language Lqap. Intuitively, these are essentially languages of finite
automata, since the register values are not updated.

Lemma 6.3.1

The languages Lqap are rational.

Proof. We only need to consider register-preserving transitions. Define the finite alphabet ∆ =
H×{φ1, φ2} and consider every transition rule (q(x), ⟨h, y⟩, φ, q′(x′)) to be labeled by ⟨h, φ⟩ ∈ ∆.

Fix q, a and p and let Eqp be the classical regular expression over ∆ defining the labels of all
those runs from q to p that only use transitions of types (1) and (2). Then the language Lqap is
defined by the expression Eqap obtained from Eqp by replacing (h, φ1) with ⟨h, a⟩ and replacing
⟨h, φ2⟩ with

Le, ̸=a =
⋃

b∈A−{a}
⟨h, b⟩.

Thus Lqap is a rational data language.

4 Altering paths

In the previous section we dealt with register-preserving transition rules only. We now introduce
the language of altering paths which is an important tool in dealing with 1-NRA with register-
updating transitions.

65



Chapter 6. Parikh images of nondeterministic one-register automata

Definition 6.4.1: (Altering paths)

Define the language P over the alphabet (Q× A ×Q) ∪ (H × A) containing words of the
form (n ≥ 1):

⟨q1, a1, p1⟩⟨h1, b1⟩⟨q2, a2, p2⟩⟨h2, b2⟩ . . . ⟨qn, an, pn⟩ (6.1)

such that pi(ai)
⟨hi,bi⟩−−−−→ qi+1(ai+1) is a register-updating transition for i = 1, . . . , n − 1 (in

particular ai ̸= ai+1 for i = 1, . . . , n− 1). Words in P we call altering paths.

Furthermore, define the subsets Pq(a) q′(a′) ⊆ P of those altering paths as in (6.1) where
q(a) = q1(a1) and q′(a′) = pn(an), for configurations q(a) and q′(a′).

Example 6.4.2. (Altering paths) Intuitively, an altering path p ∈ Pq(a) q′(a′), represents a
run of A from configuration q(a) to q′(a′) by emphasizing register-updating transitions. Consider
the automaton depicted in Example 6.2.3. An example of an altering path for that automaton
is:

⟨ , a1, ⟩ ⟨a2⟩ ⟨ , a2, ⟩ ⟨a3⟩ ⟨ , a3, ⟩

where a1 ̸= a2 and a2 ̸= a3. Altering paths are a generalisation of the language L in Exam-

ple 3.2.7 in Chapter 3:

L = {a1a2 . . . an ∈ Σ∗ : a1 ̸= a2 ̸= · · · ̸= an}.

We now state the central lemma that generalises the reasoning given in Example 3.2.7:

Lemma 6.4.3: (Rationality of altering paths)

Altering path languages Pq(a) q′(a′) have rational Parikh images.

Its proof is complicated, and consists of a sequence of steps in the forthcoming sections. Once
we have Lemmas 6.3.1 and 6.4.3, we are able to prove the main technical result of this chapter,
Lemma 6.1.2:

Proof of Lemma 6.1.2. Indeed, Lq(a) q′(a′)(A) is obtained from the altering path language Pq(a) q′(a′)

using the equivariant substitution (q, p range over locations and a, b over A):

⟨q, a, p⟩ 7→ Lqap ⟨h, b⟩ 7→ ⟨h, b⟩.

As a substitution by languages with rational Parikh images preserves rationality of Parikh image,
cf. Substitution Lemma (Lemma 4.3.2), by Lemmas 6.3.1 and 6.4.3 we deduce that the languages
Lq(a) q′(a′)(A) have rational Parikh images, as required.
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In the rest of this chapter we focus on proving Lemma 6.4.3. We proceed by a sequence of
simplification steps in Sections 5–9, and provide the final argument in Section 10. We intensively
use Substitution Lemma without explicitly referring to it.

5 Altering loops

As the first step of proving Lemma 6.4.3 that speaks of altering paths, we reduce it to Lemma
6.5.2, stated below, that speaks of altering loops.

Definition 6.5.1: (Altering loops)

We define, for a register-updating transition constraint φ ∈ {φ4, φ5} and (not necessarily
distinct) atoms a′, b, a ∈ A, the language L(a′,b)φa over the alphabet A2 × A as follows: let
L(a′

0,b0)φan+1 contain all (possibly empty) words of the form

⟨⟨a1, a
′
1⟩, b1⟩ ⟨⟨a2, a

′
2⟩, b2⟩ . . . ⟨⟨an, a

′
n⟩, bn⟩ (6.2)

such that (a′
i, bi, ai+1) |= φ for i = 0, . . . , n. We omit the case φ = φ3 as it is can be treated

symmetrically to the case φ = φ4. Words in L(a′
0,b0)φan+1 we call altering loops.

Intuitively, a letter ⟨⟨d, d′⟩, e⟩ ∈ A2 × A represents, for some fixed locations p′, p and h ∈ H, an
altering path from p(d) to p′(d′) followed by a register-updating transition that inputs ⟨h, e⟩ and
returns from location p′ to p.

We state the main result about altering loops:

Lemma 6.5.2: (Rationality of altering loops)

Altering loop languages L(a′,b)φa have rational Parikh images.

The proof of Lemma 6.5.2 is provided in the next section. In the remaining part of this
section we show how Lemma 6.5.2 implies Lemma 6.4.3:

Proof of Lemma 6.4.3. We mimic the standard proof of Kleene’s theorem, exploiting altering
loops to capture all iterations along loops in A. We proceed by induction on the number of
register-updating transition rules in A. If there is no such transition rules, we have trivial (and
obviously rational) altering path languages

Pq(a) q′(a′) =

{⟨q, a, q′⟩} if a = a′,

∅ otherwise.
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Otherwise, remove an arbitrary register-updating transition rule

t = (p′(x), ⟨h, y⟩, φ, p(x′))

from A (if φ = φ3 consider the inverse of A and φ = φ4 instead), and use the induction
assumption for the so obtained automaton A′ to get altering path languages Kq(a) q′(a′) for
every locations q, q′ and atoms a, a′, with rational Parikh images. Let L(c′,b)hφc be the language
obtained from the altering loop language L(c′,b)φc by the equivariant substitution (d, d′, e range
over A)

⟨⟨d, d′⟩, e⟩ 7→ Kp(d) p′(d′) ⟨h, e⟩. (6.3)

Rationality of Parikh images of the altering path languages Pq(a) q′(a′) of A follows by the
fact that Pq(a) q′(a′) is equal to the union of Kq(a) q′(a′) and the following set

⋃
c′,b,c∈A

Kq(a) p′(c′) ⟨h, b⟩L(c′,b)hφcKp(c) q′(a′). (6.4)

To show the equality, we observe that Kq(a) a′(q′) contains all altering paths in A that do not
use t, and claim that the set (6.4) contains those altering paths in A that do use t. Specifically,
as ε ∈ L(c′,b)hφc, we obtain altering paths using t exactly once, as shown in Figure 6.1 (dotted
arrow depict altering paths in A′),

Figure 6.1: Kleene type argument.

or more than once (for instance twice, as shown in Figure 6.2):

Figure 6.2: Kleene type arguument, cont.
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In general, a word in (6.4) factorises into a prefix before the first use of t (an altering path
from q(a) to p′(c′)), the suffix after the last use of t (an altering path from p(c) to q′(a′)), and
the infix leading from p′(c′) to p(c). The infix starts with the letter ⟨h, b⟩ input by the first
traversal of t, and then contains alternately altering paths that do not use t (from p(d) to p′(d′),
for some d, d′ ∈ A) and traversals of t (a letter ⟨h, e⟩ for some e ∈ A), cf. the substitution (6.3).
Therefore, by the definition (6.2) of altering loops L(a′,b)φa, the set (6.4) contains exactly those
altering paths in A that do use t, as claimed.

6 Anti-paths

It remains to demonstrate Lemma 6.5.2 only. As the first step, we reduce this lemma to a
slightly simplified one, namely Lemma 6.6.2 stated below.

We concentrate on the hardest case φ = φ5 (all the three atoms involved in φ are pairwise
distinct). The remaining case φ = φ4 is obtained then using the substitution

⟨⟨a, a′⟩, b⟩ 7→ ⟨⟨a, b⟩, b⟩.

We need to show that the altering loop languages L(c,b)φ5a have rational Parikh images. Recall
that L(c0,b0)φ5an+1 contains all words over A2 × A of the form

⟨⟨a1, c1⟩, b1⟩ ⟨⟨a2, c2⟩, b2⟩ . . . ⟨⟨an, cn⟩, bn⟩ (6.5)

such that ci, bi, ai+1 are pairwise different for i = 0, . . . , n.
Relying on the observation that, in case of φ = φ5, atoms bi and ci play entirely symmetric

roles in (6.5) and are forcedly distinct, we rearrange words (6.5) into words over the alphabet
Γ = A × P2(A) as follows:

⟨a1, {b1, c1}⟩ ⟨a2, {b2, c2}⟩ . . . ⟨an, {bn, cn}⟩. (6.6)

Now we are ready to define anti-paths, which are required to show rationality of Parikh images
of altering loop languages of Lemma 6.5.2.

Definition 6.6.1: (Anti-paths)

Let P{b0,c0}an+1 ⊆ Γ∗ denote the language of all nonempty words of the form (6.6) subject
to the same constraints as in (6.5), namely ai+1 /∈ {bi, ci} for i = 0, . . . , n; these words we
call anti-paths.

Note that ai ∈ {bi, ci} is allowed. We state the main result of this section, which is helpful to
prove the rationality of the altering loops:
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Lemma 6.6.2: (Rationality of anti-paths)

The anti-path languages P{b,c}a ⊆ Γ∗ have rational Parikh images.

Before proving Lemma 6.6.2 in the next section, we use it now to prove Lemma 6.5.2:

Proof of Lemma 6.5.2. We observe that L(c,b)φ5a is obtained from P{b,c}a using the equivariant
substitution

⟨d, {e, f}⟩ 7→ ⟨d, e⟩ f ∪ ⟨d, f⟩ e,

and adding the empty word. Therefore the language L(c,b)φ5a has rational Parikh image assuming
P{b,c}a has so, and Lemma 6.5.2 is implied.

From now on we focus on proving Lemma 6.6.2.

7 Anti-cycles

In order to show rationality of Parikh images of anti-path languages, we focus on a specific kind
anti-path, called anti-cycles.

Definition 6.7.1: (Source and target)

Let Γ = A × P2(A). For a letter α = ⟨a, {b, c}⟩ ∈ Γ we call the atom a its source, and
the two-element set {b, c} its target, denoted a = src(α) and {b, c} = trg(α), respectively.
For a word w = α1 . . . αn ∈ Γ∗ we denote by src(w) = src(α1) the first source, and by
trg(w) = trg(αn) the last target.

Definition 6.7.2: (Anti-cycles)

An anti-path w is called an anti-cycle if src(w) /∈ trg(w) (the first source does not belong
to the last target).

Anti-cycles are closed under cyclic shifts, and hence we use the cyclic order when speaking
about precedence of letters in anti-cycles. Denote the set of all anti-cycles by C. We build
on a simple but crucial observation: anti-paths P{b,c}a are exactly those words w ∈ Γ∗ which,
prolonged with a single letter w ⟨a, {b, c}⟩ ∈ Γ, form an anti-cycle:

Claim 6.7.3
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P{b,c}a = {w ∈ Γ∗ : w ⟨a, {b, c}⟩ ∈ C}.

Next we show a technical lemma, that is used later to prove Lemma 6.6.2. Roughly speaking,
this lemma says that rationality of a language is preserved if we were to drop a fixed letter that
appears at the end of the word.

Lemma 6.7.4

If L ⊆ Γ∗ is rational and α ∈ Γ then the language L ◁ α = {w ∈ Γ∗ : wα ∈ L} is rational
too.

Proof. We transform a rational expression E defining a language L ⊆ Γ∗ into a rational expres-
sion Ẽ defining L ◁ α. We proceed by structural induction on E. In case of orbit-finite union
the transformation is distributive:

⋃̃
i∈I

Ei :=
⋃
i∈I

Ẽi.

In case of concatenation, the transformation is applied to the second component only:

Ẽ1 E2 := E1 Ẽ2.

In case of iteration, the transformation is applied to the single last iteration (which forces at
least one iteration and hence rules out the vacuous generation of the empty data word ε due to
0 iterations):

Ẽ∗ := E∗ Ẽ .

Finally, the induction base, for a singleton {β}, is given by:

β̃ :=

0 if β = α

∅ otherwise.

Lemma 6.7.5: (Rationality of anti-cycles)

C has rational Parikh image.

As before, we postpone the proof of Lemma 6.7.5 to the next section, but we use it to prove
rationality of Parikh images of anti-path languages:
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Proof of Lemma 6.6.2. Indeed, let L ⊆ Γ∗ be rational and Parikh-equivalent to C. By Claim 6.7.3,
P{b,c}a is Parikh-equivalent to L ◁ ⟨a, {b, c}⟩, which is rational by Lemma 6.7.4. Thus, in order
to complete the whole proof of Lemma 6.1.2 it suffices to prove Lemma 6.7.5.

8 Anti-cycles over a restricted alphabet

For a word w = α1 . . . αn ∈ Γ∗ we denote by srces(w) the sequence src(α1) . . . src(αn) of
sources. For a finite subset X ⊂ A and a regular language K ⊆ X∗ we define:

CK
a = {w ∈ Γ∗ : srces(w) ∈ K, a /∈ trg(w)}.

Lemma 6.8.1

For every finite set X ⊂ A and regular language K ⊆ X∗, the languages CK
a are rational.

Proof. Consider the finite set ∆ = (X ∪ {a})2 as an alphabet, and the regular language P ⊆ ∆∗

of all {K, a}-paths, i.e., all nonempty sequences

⟨d1, d2⟩ ⟨d2, d3⟩ . . . ⟨dn, dn+1⟩ ∈ ∆∗

such that d1d2 . . . dn ∈ K and dn+1 = a. The language CX
a is obtained from P by the substitution

⟨d, e⟩ 7→
⋃

{e′,e”}∈P2(A−{e})
⟨d, {e′, e”}⟩

and is thus rational.

We mostly focus on a special but central case of Lemma 6.7.5, namely we restrict to the
sub-alphabet

Σ = {α ∈ Γ : src(α) /∈ {b, c}} ⊆ Γ.

Lemma 6.8.2: (Rationality of anti-cycles over Σ)

The language D = C ∩ Σ∗ has rational Parikh image.

As before, we postpone the proof of this lemma to the next section. Before that, we use
Lemma 6.8.2 to prove Lemma 6.7.5, by reducing rationality of anti-cycles to rationality of anti-
cycles over Σ.
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Proof of Lemma 6.7.5. We show that rationality of Par(D) implies rationality of Par(C). To
this aim we define, for distinct atoms b, c ∈ A, the language

Kbc := Cb{b,c}∗

b ⟨b, {b, c}⟩ ∪ Cb{b,c}∗
c ⟨c, {b, c}⟩

of all anti-paths where the last target is {b, c}, all sources are in {b, c}, and the first one is b.
Languages Kbc are rational, due to Lemma 6.8.1. Further, for pairwise distinct atoms a, b, c we
define the following rational language

Ka{b,c} := ⟨a, {b, c}⟩ ∪
⋃

b′,c′∈A−{b}
⟨a, {b′, c′}⟩Kbc.

Note that the source of the first letter in every word in Ka{b,c} is a, and the target of the last
letter is {b, c}. Lemma 6.7.5 follows once we show the following claim:

Claim 6.8.3

Par(C) is obtained from Par(D) by applying twice the substitution

⟨d, {e, f}⟩ 7→ Kd{e,f}.

(We consider Parikh images of C and D, instead of the languages themselves, only because we
reason below up to cyclic shifts.) From now on we concentrate on the proof of the claim. Let
D̃ denote the set of data vectors obtained from Par(D) by applying twice the above-defined
substitution. By the very definition, D̃ ⊆ Par(C). For the converse inclusion, we prove that
every data vector v ∈ Par(C) belongs to D̃.

If v contains no unwanted letters from Γ − Σ then v ∈ Par(D), and the claim follows due
to Par(D) ⊆ D̃.

Otherwise, choose an anti-cycle w ∈ C with v = Par(w) and consider the last appearance of
an unwanted letter (b, {b, c}) ∈ Γ − Σ in w. Applying a cyclic shift (→) we can assume, w.l.o.g.,
that the letter is the last one in w. Let u be the maximal suffix of w that belongs to Kbc (or,
symmetrically, to Kcb):

w = w′ u.

We observe that w′ ̸= ε; indeed, as src(u) = b ∈ trg(u) = {b, c}, the word u itself is not an
anti-cycle.

Let w′ = w”⟨a, {b′, c′}⟩; since w is an anti-chain we have b /∈ {b′, c′}, and by maximality of u
we have a /∈ {b, c}. Then u′ = ⟨a, {b′, c′}⟩u ∈ Ka,{b,c}. Replace the suffix u′ by ⟨a, {b, c}⟩, thus
obtaining a data word w̃ = w”⟨a, {b, c}⟩ with smaller number of occurrences of unwanted letters.
We continue in the same way with w̃ untill all occurences of letters from Γ−Σ are eliminated. A
crucial observation is that during elimination of all letters, except for possibly the very last one,
the total sum of cyclic shifts (→) performed does not exceed the full cyclic shift of w. Therefore,
Parikh image of the word obtained by elimination of all unwanted letters except for the last one,
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belongs to the result of application the substitution once to D. In consequence, the final word
belongs to the result of applying the substitution twice, as required.

9 Anti-cycles of (un)bounded order

In this section we define tools that are needed for proving Lemma 6.8.2, by reducing it to
Lemma 6.9.3 stated below.

Definition 6.9.1: (Order of a data vector)

The number of different sources of letters appearing in a data vector v : Σ → N, i.e., the
size of the set

Vv = {src(α) : α ∈ dom(v)}, (6.7)

we denote by ord(v) and call the order of v (clearly, an atom can be the source of more
than one letter in dom(v)). The order of a data word w ∈ Σ∗ is defined naturally as
ord(w) = ord(Par(w)).

We write D<n (resp. D≥n) for the subsets of D containing anti-cycles of order smaller than
n (resp. at least n). Anti-cycles of bounded order can be easily dealt with separately:

Lemma 6.9.2: (Rationality of anti-cycles over Σ of bounded order)

For every n ∈ N, the language D<n is rational.

Proof. For a finite subset X ⊆ A the language

CX = C ∩ {α ∈ Γ : src(α) ∈ X}∗.

is rational, due to Lemma 6.8.1, as it equals

⋃
a∈X

CaX∗
a ,

and hence so is its restriction DX = CX ∩ Σ∗. The language D<n, being the union of all the
rational languages DX for subsets X ⊆ A of cardinality < n, is thus rational as well.

Therefore, in the rest of the proof we need to concentrate only on anti-cycles or order at
least n, for a sufficiently large n ∈ N.
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Lemma 6.9.3: (Rationality of anti-cycles over Σ of unbounded order)

For sufficiently large n, the language D≥n is rational.

We prove the lemma in the next section. Here, having Lemmas 6.9.2 and 6.9.3, we easily
complete the proof of Lemma 6.8.2:

Proof of Lemma 6.8.2. For n ∈ N sufficiently large for Lemma 6.9.3 to hold, we decompose
Parikh images of anti-cycles into

Par(D) = Par(D<n) ∪ Par(D≥n),

both of them rational by Lemmas 6.9.2 and 6.9.3, respectively. Lemma 6.8.2 is thus proved.

10 Anti-cycles of unbounded order and non-degenerate data
vectors

This last section is devoted entirely to the proof of Lemma 6.9.3.
For the proof, we take a graph-theoretic view on Parikh images of anti-paths, and build on

some known graph-theoretic tools. In the sequel we consider directed graphs without self-loops
or parallel edges, but possibly containing tight two-vertex cycles.

Definition 6.10.1: (Source graphs)

Let v : Σ → N be a fixed data vector. Guided by the crucial property of anti-paths that
the source of every letter does not belong to the target of the preceding letter, we define
the directed graph Gv = (Vv, Ev), called source graph induced by v: let the vertices Vv of
Gv be the sources of all letters appearing in v, as defined in (6.7), and let (d, e) ∈ Ev be an
edge if, and only if

∃α ∈ dom(v) : d = src(α), e /∈ trg(α).

Whenever (d, e) /∈ Ev, for distinct atoms d ̸= e, we say that d excludes e (or call (d, e) an
excluded edge); equivalently, e belongs to the target of every letter in dom(v) with source
d:

∀α ∈ dom(v) : d = src(α) =⇒ e ∈ trg(α).

Note that an atom never excludes itself, due to restriction to Σ, and that Gv depends only
on the set dom(v) ⊆ Σ of letters appearing in v, and not on cardinalities of letters in v.

Example 6.10.2. (Source graph) Let v : Σ → Γ be the Parikh image of the word
⟨a, {d, c}⟩⟨d, {e, f}⟩⟨b, {d, f}⟩ ∈ Γ∗. The following figure depicts the source graph of v:
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The nodes {a, b, d} are sources of letters in v. Atoms a and b exclude the atom d.

Let in(e) = {d ∈ Vv : (d, e) ∈ Ev} denote the set of in-neighbours of a vertex e, and let
in-deg(e) = |in(e)| denote the in-degree of e. Symmetrically we define out-neighbours out(e)
and out-degree out-deg(e). Clearly, an atom may exclude at most two other atoms, and hence
(let n = ord(v)):

Claim 6.10.3

out-deg(d) ≥ n− 3 for every vertex d ∈ Vv.

Since every vertex can exclude 2 other vertices in a source graph and there are n vertices,
we obtain the following:

Corollary 6.10.4

There are at most 2n excluded edges.

In the sequel we rely on Claim 6.10.3 and Corollary 6.10.4 according to which Gv is not much
different from the full directed clique.

Let v : Σ → N be a data vector. For A ⊆ dom(v), let v|A denote the restriction of v to A:
v|A(α) = v(α) if α ∈ A, and v|A(α) = 0 otherwise.

Lemma 6.10.5

For every simple cycle π = a1a2 . . . an in Gv there exists an anti-cycle w with Par(w) = v|A

where A = {α ∈ dom(v) : src(α) ∈ {a1, a2, . . . , an}}.

Proof. We arrange the letters into an anti-path w by taking first all a1-sourced letters in a
consecutive block, then all a2-sourced ones in a consecutive block, etc. The order of ai-sourced
letters inside a block (including repetitions of equal letters) is irrelevant as long as the last one,
say α, satisfies ai+1 /∈ trg(α) (where n+ 1 is identified cyclically with 1).
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Theorem 6.10.6: (Hamilton cycle)

Let G be a strongly connected directed graph with n vertices such that for every two vertices
d, d′, in-deg(d) + out-deg(d′) ≥ n. Then G contains a Hamiltonian cycle a.

aGhouila-Houri, 1960, cf. also Thm. 1 in Kühn and Osthus, 2012.

The tool will be applicable due to the following observation:

Lemma 6.10.7

For sufficiently large n, a directed graph with n vertices such that in-deg(d) ≥ 3 and
out-deg(d) ≥ n− 3 for every vertex d, is necessarily strongly connected.

Proof. Consider the decomposition of the graph into strongly connected components. As the
first step we observe that there may be no singleton components {d}. Indeed, by the assumption
we have in-deg(d)+out-deg(d) ≥ n, and hence d forms a tight 2-vertex cycle with some other
vertex d′.

In the sequel we use Corollary 6.10.4. As the second step we argue that for sufficiently large
n, a component {d, e} of size 2 is impossible (and, in consequence, a component of size n − 2
is impossible too). Towards contradiction, suppose {d, e} is a strongly connected component
(hence the two vertices form a tight cycle). In consequence, (a) the sets Vd = out(d) − {e} and
Ve = in(e)−{d} are disjoint, and (b) there is no edge from Vd to Ve ∪{d, e}. As out-deg(d) ≥ 3
and in-deg(e) ≥ 3, we have |Vd| ≥ n − 4 and |Ve| ≥ 2. By (a) we deduce |Vd| = n − 4 and
|Ve| = 2. By (b), all 4(n − 4) edges from Vd to Ve ∪ {d, e} are excluded. This is impossible as
long as 4(n− 4) > 2n.

Likewise one argues that there may be no component of size strictly between 2 and n − 2.
Indeed, supposing there is a component C of size k, for 2 < k < n− 2, no vertex in C may form
a tight cycle with other vertex outside of C, and hence at least k(n−k) edges are excluded. This
is impossible as long as k(n− k) > 2n. As k(n− k) reaches its minimum for k = 3 or k = n− 3,
there may be no component of size strictly between 2 and n− 2 as long as 3(n− 3) > 2n.

Let pre(d) = {α ∈ dom(v) : d ̸= src(α), d /∈ trg(α)} denote the set of letters that
can precede a d-sourced letter and have themselves source different than d. We now aim at
characterising data vectors in the Parikh image of anti-cycles with unbounded order. The
following example illustrates our approach.

Example 6.10.8. Consider the following words over Σ:

⟨a, {b, c}⟩ ⟨d, {a, c}⟩ ⟨e, {g, a}⟩

⟨a, {g, c}⟩ ⟨b, {f, e}⟩ ⟨g, {a, b}⟩ ⟨f, {a, b}⟩

⟨a, {b, e}⟩ ⟨b, {a, g}⟩ ⟨a, {h, b}⟩ ⟨l, {m,n}⟩
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It can be easily seen that none of the words can be rearranged to an anti-cycle. The first word
can not because the node a has no in-neighbours in the source graph of its Parikh image v:
in(a) = ∅. The second one can not because two nodes a, b in the source graph of v are mutually
their only in-neighbours: in(a) = {b} and in(b) = {a}, and hence in(a) ∪ in(b) = {a, b}. The
last words can not because its Parikh image v contains only one letter that can precede a or b:
pre(a) = pre(b) = ⟨l, {m,n}⟩, and |v|pre(a)∪pre(b)| = 1. Below we argue that these are the only
reasons why a data vector is not a Parikh image of an anti-cycle of sufficiently large order.

Definition 6.10.9: (Non-degenerate vectors)

A data vector v : Σ → N is called non-degenerate if its source graph satisfies the following:

(1) in(d) ̸= ∅ for every d ∈ Vv,

(2) in(d) ∪ in(e) ̸⊆ {d, e} for every non-equal d, e ∈ Vv,

(3) |v|pre(d)∪pre(e)| ≥ 2 for every non-equal d, e ∈ Vv.

(1) excludes vertices of in-degree 0;

(2) excludes pairs of vertices d, e with in(d) = {e} and in(e) = {d};

(3) excludes the case when there is only one letter α ∈ dom(v) that can precede d- or e-sourced
letters, and moreover v(α) = 1.

The following result characterises the anti-cycles with unbounded order using the notion the
non-degenerate vectors:

Lemma 6.10.10

For data vectors v : Σ → N of sufficiently large order, v ∈ Par(D) if, and only if v is
non-degenerate.

Proof. Let Gv = (Vv, Ev) be the source graph and n = ord(v).
The ’only if’ implication is immediate for data vectors of order at least 3. Indeed, suppose

v = Par(w) for an anti-cycle w ∈ D. By the definition of anti-cycles, in(d) ̸= ∅ for every d ∈ Vv

and hence (1) forcedly holds. The other two conditions are easily shown by contradiction.
Indeed, if (2) fails for some d, e ∈ Vv then every d- or e-sourced letter would be preceded in w

by a d- or e-sourced one, which is impossible as long as ord(v) ≥ 3. Finally, if (3) fails then
there are letters a and b which can be only preceded by the same letter α, as a consequence, w
fails to be an anti-cycle (see the last word in Example 6.10.8 which fails to satisfy (3)).
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For the ’if’ implication, we assume that v is non-degenerate ((1)–(3) hold) and prove that
v = Par(w) for some w ∈ D.

Let k = 9. Due to Corollary 6.10.4 we can assume n to be large enough so that:

Claim 6.10.11

At most two atoms in Vv have in-degree < k.

In other words, this means that there are no 3 atoms excluded by at least n − k vertices.
Therefore, relying on Corollary 6.10.4 it is enough to assume 3(n− k) > 2n, i.e., n > 3k.

Let a1, a2 ∈ V be the vertices with the smallest in-degrees. By assumption, in-deg(a1) ≥
1, in-deg(a2) ≥ 1, and by Claim 6.10.11 we have:

Claim 6.10.12

Every d ∈ Vv − {a1, a2} satisfies in-deg(d) ≥ k.

We construct a cycle π in Gv that satisfies the following condition:

(◦) its first vertex d, as well as vertices d not contained in π, satisfy in-deg(d) ≥ k.

Due to (1), it suffices to consider the following cases:

Case 1. |in(a1) ∪ in(a2)| ≥ 2

Relying on (1), choose in Vv −{a1, a2} two distinct atoms d ̸= d′ with d ∈ in(a1) and d′ ∈ in(a2).
Due to (2) the atoms can be chosen so that d ̸= a2 or d′ ̸= a1. By symmetry we assume
w.l.o.g. that d ̸= a2. If d′ = a1 we take the following simple path π in Gv satisfying (◦):

d // a1 // a2

Otherwise, suppose d′ ̸= a1 either. By Claim 6.10.12, in-deg(d) ≥ k and in-deg(d′) ≥ k.
Choose in V − {d, a1, d

′, a2} any atom e with e ∈ in(d′) ∩ out(a1) (since in-deg(d′) ≥ k, such
e exists as a1 excludes at most two atoms, as long as k ≥ 7). This yields the following simple
path π in Gv satisfying (◦):

d // a1 // e // d′ // a2

Case 2. in(a1) = in(a2) = {d} for some d ∈ Vv−{a1, a2}

Take some two letters α1, α2 appearing in v such that a1 /∈ trg(α1) and a2 /∈ trg(α2). Due to
(3) we can assume that either α1 ̸= α2, or α1 = α2 but v(α1) ≥ 2 (their cardinality in v is at
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Chapter 6. Parikh images of nondeterministic one-register automata

least 2). Note that src(α1) = src(α2) = d, and by Claim 6.10.12, in-deg(d) ≥ k. Choose in
V − {d, a1, a2} any atom e with e ∈ in(d) ∩ out(a1) (similarly as before, such e exists as long
as k ≥ 6). This yields the non-simple path π in Gv satisfying (◦):

d // a1 // e // d // a2

We have thus constructed a path π from d to a2. If a2 /∈ in(d), append at the end of π any
vertex c such that c ∈ out(a2) ∩ in(d). As before, such a vertex exists since a2 excludes at most
2 atoms and in-deg(d) ≥ k, as long as k ≥ 8. Therefore the last vertex c of π satisfies c ∈ in(d),
which means that π is a cycle as required.

In Case 1 we transform π, using Lemma 6.10.5, into an anti-cycle w̄. In Case 2 we proceed
similarly, except that the vertex d appears twice in π; this exception is treated by splitting all
d-sourced letters into two disjoint blocks (cf. the proof of Lemma 6.10.5), containing α1 and α2,
respectively.

We now remove, intuitively speaking, the anti-cycle w̄ from v thus obtaining a smaller data
vector v′ to which we apply Theorem 6.10.6 and Lemma 6.10.5. We remove from v all letters
appearing in w̄, and add a single letter β = ⟨src(w̄),trg(w̄)⟩ ∈ Σ. This yields a data vector v′.
As the length of π is at most 6, the in-degree of a node e in the graph Gv′ may be smaller by at
most 6 than in the graph Gv. Thus in-deg(e) ≥ 3 in Gv′ as k ≥ 9. Moreover out-deg(e) ≥ n′−3
in Gv′ , where n′ is the number of nodes of Gv′ , by Corollary 6.10.4. Therefore the graph Gv′ ,
assuming n to be sufficiently large, satisfies assumptions of Lemma 6.10.7, by which Gv′ is
strongly connected. In consequence, Gv′ satisfies assumptions of Theorem 6.10.6, by which we
derive a Hamiltonian cycle C in G. The Hamiltonian cycle is turned, using Lemma 6.10.5, into
an anti-cycle in w′ with Par(w′) = v′. Finally, replacing the letter β in w′ by w̄, yields an
anti-cycle w with Par(w) = v, as required.

Lemma 6.10.10 is thus proved.

Let N denote the set of all non-degenerate data vectors, and N≥n = {v ∈ N : ord(v) ≥ n}.
In these terms, Lemma 6.10.10 claims N≥n = Par(D≥n), for sufficiently large n.

Claim 6.10.13

For sufficiently large n, N≥n = Par(D≥n).

Therefore we will complete the proof of rationality of anti-cycles of bounded order (Lemma 6.9.3)
once we prove the following:

Lemma 6.10.14: (Rationality of non-degenerate data vectors)

N≥n is rational, for sufficiently large n ∈ N.
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10. Anti-cycles of unbounded order and non-degenerate data vectors

Proof. Fix n ≥ 6. We define the kernel of a data vector v : Σ → N as the intersection of all
targets in v:

ker(v) =
⋂

α∈dom(v)
trg(α).

The size of the kernel is 0, 1 or 2. For X ⊆ A of size at most 2, let

NX,≥n = {v ∈ N≥n : ker(v) = X}.

As N≥n = ⋃
X NX,≥n, it is enough to show that the sets NX,≥n are rational. This, in turn, is

implied by the following decomposition property of sets NX,≥n:

NX,≥n = NX,n + Par(ΣX
∗), (6.8)

where NX,n = {v ∈ N : ord(v) = n ∧ ker(v) = X} and ΣX = {α ∈ Σ : X ⊆ trg(α)}, as
the two sets are rational for every n and X.

Now we prove the decomposition (6.8), and later we argue that the sets appearing on the
right-hand side are rational.

Towards showing the decomposition, we prove that kernel-preserving extensions by one letter
α ∈ Σ preserve membership in N:

v ∈ N, ker(v) = ker(v + α) =⇒ v + α ∈ N; (6.9)

and also that there always exists a letter α that one can remove from a vector in N≥n+1,
preserving kernel and membership in N:

v ∈ N≥n+1 =⇒ ∃α ∈ dom(v) : ker(v) = ker(v − α),
v − α ∈ N.

Concerning the first property, suppose v ∈ N and ker(v) = ker(v+α). We thus know that
v satisfies conditions (1)–(3) and that d = src(α) /∈ ker(v) since d /∈ trg(α). This implies that
v+ α satisfies (1). For conditions (2)–(3) we consider two separate cases. If d ∈ Vv then adding
α may only increase in-neighbour sets in(_) and preceeding-letter sets pre(_), and hence v+α

satisfies (2)–(3). Otherwise, suppose d /∈ Vv is a fresh source. We reason by contradiction. If
v + α violates (2) for d and some e ∈ Vv, then v necessarily violates (1) due to in(e) = ∅. If
v + α violates (3) for d and some e ∈ Vv, then all β ∈ dom(v), except for exactly one, satisfy
trg(β) = {d, e} and hence forcedly src(β) ̸= e. Therefore there is exactly one e-sourced letter
in v and in(e) = ∅, and hence v violates (1) again.

We now concentrate on the second property. Removal of a letter from v may only increase
(inclusion-wise) the kernel, say from X to X ′, but this only happens if v(α) = 1, X ′ ̸⊆ trg(α),
and X ′ ⊆ trg(β) for all β ∈ dom(v) − {α}. By inspection of possible sizes 1, 2 of X ′, one
deduces that v may contain at most two such kernel-increasing letters. This eliminates at most
2 potential sources src(α).

Non-degeneracy can be only violated by vertices in the source graph of in-degree below 2.
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Chapter 6. Parikh images of nondeterministic one-register automata

Therefore non-degeneracy of v − α is guaranteed if removal of α does not decrease in-degree of
any vertex below 2, i.e., src(α) does not belong to in(d) for d ∈ Vv of in-degree in-deg(d) ≤ 2.
For sufficiently large n, similarly as in Claim 6.10.12, there are at most 2 such vertices d in Vv.
This eliminates at most 4 potential sources src(α).

In total, at most 6 potential sources src(α) are eliminated. Therefore, as long as ord(v) > 6,
there is α ∈ dom(v) such that ker(v) = ker(v − α) and v − α ∈ N.

The decomposition (6.8) is thus proved.
We now argue that the sets appearing on the right-hand side of (6.8) are rational indeed.

Fix X ⊆ A of size at most 2. The set ΣX is orbit-finite and hence the language ΣX
∗ as well as

its Parikh image are necessarily rational. For showing rationality of NX,n we define

NX,{a1,...,an} = {v ∈ NX,n : Vv = {a1, . . . , an}}

(non-degenerate data vectors where sources are exactly n atoms {a1, . . . , an}, and all targets
include X) and observe that:

NX,n =
⋃

a1...an∈(A−X)(n)

NX,{a1,...,an}.

It is thus sufficient to show rationality of NX,{a1,...,an} for a fixed set {a1, . . . , an} ⊆ A. Let
Σ{a1,...,an}

X = {α ∈ ΣX : src(α) ∈ {a1, . . . , an}}. For a set of data vectors S, let min(S) ⊆ S

be the set of vectors that are minimal with respect to the point wise multiset ordering (see
Definition 3.1.4). We observe that

NX,{a1,...,an} = min
(
NX,{a1,...,an}) + Par(Σ{a1,...,an}∗

X ),

i.e., each vector in NX,{a1,...,an} is obtained from a minimal such vector by adding arbitrary
letters from Σ{a1,...,an}

X – this follows by (6.9), since adding letters from Σ{a1,...,an}
X is kernel-

preserving. As Σ{a1,...,an}
X is orbit-finite, it is enough to argue that the set min

(
NX,{a1,...,an})

is rational. Towards this claim, we calculate a rough upper bound on the size of data vectors
belonging to this set. By inspecting the definition of non-degenerate data vectors we observe
that the condition (1) requires a witnessing letter for each of n sources a1, . . . , an, condition (2)
requires a witnessing letter for each pair or sources, and condition (3) requires two witnessing
letters for each pair or sources. In consequence, the size of data vectors in min

(
NX,{a1,...,an}) is

bounded by 3n2 + n, and therefore the set min
(
NX,{a1,...,an}) is orbit-finite (as n is fixed). The

set is thus rational.
This completes the proof of Lemma 6.10.14.

Claim 6.10.13 together with Lemma 6.10.14 imply Lemma 6.9.3.
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10. Anti-cycles of unbounded order and non-degenerate data vectors

In this chapter, we studied Parikh images of 1-NRA and showed that they are ra-
tional sets. Our techniques heavily exploit the assumption that there is only one
register, and we don’t know if these techniques can be lifted to automata with more
registers. On the positive side, we are able to use the above-shown rationality of
Parikh images of 1-NRA languages to study Parikh images of one-register context-
free languages, and a also languages of a larger non-trivial class of non-deterministic
register automata. These results are discussed in the next two chapters.

Summary
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Chapter 7
Parikh images of hierarchical register
automata

We showed that Parikh images of 1-NRA are rational, but we still do not know if
all NRA have rational Parikh images. In this chapter, we slightly generalize the
results of Chapter 6 on 1-NRA to a nontrivially larger subclass of NRA which we call
hierarchical register automata. This model also provides another potential approach
to solving the general question, whether all NRA have rational Parikh images(as
opposed to generalising techniques from Chapter 4).

Objective
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1. Summary of results

1 Summary of results

In this chapter, we identify a syntactic fragment of NRA which we call hierarchical register
automata (HRA). Initially, we show it is more expressive than 1-NRA. The main result of this
chapter is the following:

Theorem 7.1.1: (Rationality of HRA)

Parikh images of HRA are rational.

Recall that two languages are Parikh-equivalent if they have same Parikh images. As the
converse of Theorem 7.1.1 easily holds, namely every rational set of data vectors is Parikh image
of some language of a HRA (which is an immediate consequence of Theorem 7.5.1), by the above
result we can deduce that the language of a non-deterministic register automaton has rational
Parikh image if, and only if the automaton is Parikh-equivalent to some hierarchical register
automata.

This chapter is structured in the following way. In the first section, we introduce the model
of hierarchical register automaton and provide some examples. In the second section, we show
that the class of languages recognized by this model is strictly contained in the NRA languages.
The remaining sections are dedicated to proving Theorem 7.1.1.

2 Hierarchical register automata

We define a syntactical subclass of NRA by restricting transition constraints. The idea is to
update registers in a hierarchical manner: if a transition rule does not preserve ith register, pre-
and post-values of every larger register (jth register, for j > i) are unspecified.

Definition 7.2.1: (Hierarchical register automata)

Formally, a HRA is a NRA where each transition constraint φ has the following form:

φ ≡ ψ(x1, x2, . . . , xi, y, x
′
i) ∧

∧
1≤j<i

xj = x′
j , (7.1)

for some i ∈ {1, . . . , k}.

The sub-formula ψ describes how the post-value of ith register (x′
i) depends on the relation

between the input atom (y) and the pre-values of ith register and smaller ones (x1, x2, . . . , xi).
Note that all smaller registers are preserved, and larger ones are not mentioned in φ (and
hence their pre- and post-values are unspecified, which means that any pre- and post-values are
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Chapter 7. Parikh images of hierarchical register automata

allowed). Note also that the constraint φ allows for updating ith register (according to the sub-
constraint ψ) as well as every larger register (arbitrarily); the former we call specified update,
and the latter one we call unspecified one. The number i we call the level of the transition
constraint, or of the transition (rule) it appears in. As extreme examples, the following all-
registers-preserving constraint

∧
1≤j≤k

xj = x′
j ̸= y, (7.2)

as well as the most liberal constraint true satisfied by any pre- and post-values of registers and
any input atom, both are in the syntactic form (7.1), at level k and 1, respectively.

Example 7.2.2. Let Σ = A. Consider the following 2-HRA, with control locations Q =
{q1, q2, q3}, and the single initial and accepting one I = F = {q3}. The automaton has the
following three transition rules:

(q3(x1, x2), y, x1 = x′
1 ̸= y ∧ x2 = x′

2 ̸= y, q2(x′
1, x

′
2)),

(q2(x1, x2), y, x1 = x′
1 ∧ x2 = x′

2 = y, q1(x′
1, x

′
2)),

(q1(x1, x2), y, x1 = y, q3(x′
1, x

′
2)).

the first two at level 2 and the last one at level 1. Indeed, the first two transition rules preserve
values of both registers; the first one checks that the input is fresh, while the other one checks
that that input equals to the second register. The last transition rule requires that the input
equals to the first register, and updates both registers arbitrarily. The following figure shows
the automaton described above:

Figure 7.1: A 2-HRA: consecutive blocks of 3 different atoms.

The language accepted by the automaton can be easily described by a rational expression as
follows:

L′ =

 ⋃
a,b,c∈A, a ̸=b ̸=c ̸=a

abc

∗

.

Definition 7.2.3: (Runs with fixed register values)

For 1 ≤ i ≤ k and a tuple of atoms r ∈ A(i), we may define a refined semantics of a k-HRA,A
as the language of words accepted by a run where the values of the first (smallest) i registers
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3. Normal form

are continuously r and hence never change. We denote such a language by Lr(A).

3 Normal form

As in the previous chapter, we may assume that the constraints in all transition rules of k-HRA
are in normal form defined below. Let Φi denote the formula

Φi ≡
∧

1≤j<i

xj = x′
j

that says that registers x1 . . . xi−1 are preserved by a transition.

Definition 7.3.1: (Normal form of k-HRA)

A k-HRA is in normal form if the constraint in every transition rule is in one of the
following five forms, for some 1 ≤ j ≤ i ≤ k. Below, we write x1 . . . xi ̸= y instead of
x1 ̸= y ∧ . . . ∧ xi ̸= y, and likewise x1 . . . xi ̸= x′

i instead of x1 ̸= x′
i ∧ . . . ∧ xi ̸= x′

i.

(1) Φi ∧ xj = y ∧ xi = x′
i,

(2) Φi ∧ x1 . . . xi ̸= y ∧ xi = x′
i,

(3) Φi ∧ x1 . . . xi ̸= y ∧ y = x′
i,

(4) Φi ∧ xj = y ∧ x1 . . . xi ̸= x′
i,

(5) Φi ∧ x1 . . . xi ̸= y ∧ y ̸= x′
i ∧ x1 . . . xi ̸= x′

i.

Similarly as before, the constraints (1)-(2) may be called register-preserving and the con-
straints (3)-(5) may be called register-updating. The level of constraints (1)-(5) is i.

The five forms of constraints defined above are like in case of 1-NRA, with the difference
that registers x1 . . . xi−1 are additionally taken into account when testing the input atom y. All
constraints require that registers x1 . . . xi−1 are preserved. The transition constraint (3) updates
the register xi by the input atom, while the transition constraints (4) and (5) update the register
xi by a fresh value different from the current values of registers x1 . . . xi and the input atom. The
constraints (1) and (4) require that the input atom y is equal to the content of some register xj ,
for j ≤ i, while the other constraints require that the atom y is fresh, i.e, not currently stored
in registers x1, . . . , xk. Finally, all constraints leave completely unspecified contents of registers
xm for m > i.
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Chapter 7. Parikh images of hierarchical register automata

Proposition 7.3.2: (Normal form of HRA)

Every HRA can be transformed to an equivalent HRA in normal form.

4 HRA are strictly between NRA and 1-NRA

We claim that the expressive power of HRA is strictly weaker than that of NRA, but strictly
stronger than that of 1-NRA.

Let the alphabet be Σ = A. Consider the 2-NRA with four states shown in Figure 7.2.

Figure 7.2: A language recognized by a 2-NRA.

Starting from the initial red location, the automaton repeatedly checks that the input letter is
equal to the first and the second register, in an alternating manner. After each two successful
checks, the automaton reaches the green location: the first two checks go from red to green
location, each consecutive two checks execute the yellow-green loop. In addition, in the green
location the automaton can, besides continuing the yellow-green loop, execute the green-blue
loop which enforces repetition of the last seen atom as the next input letter, shifting of the
value of the second register to the first one, a non-deterministic guessing of the new value of the
second register, and then checking that this guessed value (which is forcedly different than the
new value of the second register, but could be equal to the previous value of the first register)
appears as the consecutive input letter. If we choose the green location as the only accepting
one, the language L accepted by the automaton consists of all words of the following form:

(a1b1)+(a2b2)+ . . . (anbn)+ ∈ A∗ (7.3)

where n ≥ 1, ai ̸= bi for every i = 1 . . . n, and ai+1 = bi for every i = 1 . . . n− 1.

Theorem 7.4.1

The language L defined above is not recognised by any HRA.

Before proving the above fact, we build some preparatory tools that is used in the proof.
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4. HRA are strictly between NRA and 1-NRA

Definition 7.4.2: (Seperated sequence)

Consider a finite sequence h = h1h2 . . . hl of positive integers. We say that h has order
k > 0 if hi ∈ {1, 2, . . . , k} for every i = 1, . . . , l. We call the sequence separated if for every
distinct indices i < j satisfying hi = hj , there is an index m strictly in-between, i < m < j,
such that hm ≤ hi.

In particular, each two consecutive elements of a separated sequence are forcedly distinct.
In the sequel we use the recursive sequence defined by:

f1 = 1 fi+1 = 2fi + 1.

Lemma 7.4.3

The length of a separated sequence of order k is at most fk.

Proof. We prove this lemma by induction on the order k. For base case k = 1, the only separated
sequence is 1, whose length is f1 = 1.

For induction step, assume that the length of every separated sequence of order k is at most
fk, and consider an arbitrary separated sequence h of order k + 1. If we remove all occurrences
of k+ 1 from h, we get a sub sequence h′ of order k which, by induction assumption, has length
l ≤ fk. We observe that between every two appeartances of k + 1 in h, there is at least one
element from h′. Therefore the maximum possible number of occurrences of k + 1 in h is l + 1.
In consequence, the length of h is at most 2l + 1 ≤ 2fk + 1 = fk+1, as required.

Proof of Theorem 7.4.1. Suppose, towards contradiction, that a k-HRA A recognises L. Con-
sider the following word w ∈ L:

w = (a1a2)3(a2a3)3 . . . (anan+1)3

where ai ̸= aj for every i ̸= j, and n > fk. Consider also an arbitrary accepting run π of A over
w.

For every ai appearing in the word w, we define the region of ai, denoted πai , as the set of
positions in the run π strictly between the first and the last appearance of ai in w. We also think
of a region as of a sequence of configurations that appear therein. The region of ai, for 1 < i < n,
consists, as depicted below, of the blue-colored configurations c1, c2, . . . , c9 that appear in the
run between the two red-colored appearances of ai:

· · · ai−1−−−→ ai−→ c1
ai−1−−−→ c2

ai−→ c3
ai−1−−−→ c4

ai−→ c5
ai−→ c6

ai+1−−−→ c7
ai−→ c8

ai+1−−−→ c9
ai−→ ai+1−−−→ · · ·

89



Chapter 7. Parikh images of hierarchical register automata

The regions of a1 and an are smaller. For any two consecutive atoms ai and ai+1, their corre-
sponding regions intersect.

Claim 7.4.4

Let i ∈ {1, . . . , n}. In every configuration in the region πai , the atom ai is stored in some
register. Moreover, ai is stored in the same register in all these configurations.

Proof of Claim 7.4.4. When reading ai for the first time, the automaton A has to store ai in
some register, and ai must be in some register until the end of its region. Indeed, suppose ai is
not stored in any register at some position in the region πai . The word w′ obtained by replacing
all the consecutive appearances of ai by some fresh atom b is still accepted by A (using the run
π where ai is renamed to b from the considered position on), while w′ /∈ L – a contradiction.

Let hi ∈ {1, . . . , k} be the index of register in which ai is stored by the run π after its
first appearance. We now argue that ai is never moved to other register inside the region πai .
If ai was moved to a different register by a transition that reads input atom stored currently
in some register (transition rule of type (4) in Definition 7.3.1), the new value of all registers
updated by this transition are necessarily guessed, and we get a contradiction, similarly as
above, by renaming ai to some fresh b. Likewise, if ai was moved to some other register by a
transition that reads an input atom not currently stored in registers (transition rule of type (3)
or (5) in Definition 7.3.1), i.e. ai is either given as input (3) or guessed (5), we again obtain a
contradiction by renaming ai to some fresh atom b in π from this position on. as a subword,
which is a contradiction.

Inside the whole region πai , atom ai is thus stored in the unique hi-th register (we also say:
register of index hi). We intuitively think of this register as active. As consecutive (and only
consecutive) regions overlap, there is always (except the first and last configuration of π) one or
two active registers.

Claim 7.4.5

Transitions inside the region πai do not update register of index hi or any lower one (do
not update jth register, for j ≤ hi).

Proof of Claim 7.4.5. By Claim 7.4.4 the atom ai is in hi-th register in the configuration
before and after the transition. If the level of the transition is ≥ hi, the claim is proved.
Otherwise, suppose the level of the transition is < hi. This means that the hi-th register is
updated unconditionally by the transition, which allows us to obtain a contradiction similarly
as in the proof of Claim 7.4.4, by renaming a to a fresh atom in π from this transition on.
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5. HRA recognize all rational languages

We have defined a sequence h = h1 . . . hn of order k, since A has k registers, and length
n. We observe that for every i < n, hi ̸= hi+1, as the two simultaneously active registers
are necessarily different. We now state the crucial observation: hi = hj is only possible if the
sequence h falls below hi on positions between i and j. Formally:

Claim 7.4.6

If i < j and for all m strictly between i and j we have hm > hi, then hi ̸= hj .

Proof of Claim 7.4.6. Indeed, by the assumptions, inside regions πai . . . πaj−1 there is always
some active register of index at least hi. Therefore, by Claim 7.4.5 the register of index hi

is never updated inside regions πai . . . πaj−1 . Since the two consecutive regions πaj−1 and πaj

overlap, in the starting configuration of region πaj , the register of index hi still contains ai ̸= aj

and hence hi ̸= hj , as required.

The above claim immediately implies:

Claim 7.4.7

If i < j and hi = hj then for some m strictly in between i and j we have hm ≤ hi.

In other words, the sequence h is separated. By Lemma 7.4.3 its length n ≤ fk, which is in
contradiction with our assumption that n > fk. This completes the proof of Theorem 7.4.1.

5 HRA recognize all rational languages

Theorem 7.5.1

Rational data languages are recognised by HRA.

Proof. We proceed by induction on rational expression of a rational language. For convenience
we assume, w.l.o.g., that each orbit-finite sum is indexed by a subset of I ⊆ A(n) of non-repeating
n-tuples of atoms, for some n ∈ N. Indeed, every orbit-finite union can be split into a finite
union of single-orbit unions, and every single-orbit set J is the image of an equivariant function
f from such a set I1, J = f(I), hence

⋃
j∈J

Lj =
⋃
i∈I

Lf(i) =
⋃
i∈I

Ki

1cf. Bojańczyk, 2019, Sect. 3.2.
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where Ki = Lf(i). Under this simplifying assumption we prove, by induction on rational expres-
sion of a rational language, the following claim (for conciseness, we say that a tuple s ∈ A(n)

supports x if the set of n atoms appearing in s does so):

Claim 7.5.2

For every rational language L over an alphabet of the form Σ = H × A, and every tuple s
supporting its rational expression, there is a HRA A such that Ls(A) = L.

We emphasise that we consider supports of rational expressions of rational languages, defined
as well-founded trees, instead of supports of languages themselves. Clearly, a tuple supporting
a rational expression of a language also support the language itself.

The induction base, for L = {ε} or L = {σ} where σ ∈ Σ, is straightforward. The induction
step splits into three cases.

Case 1: L = L1 L2. Let s be a tuple of atoms supporting the rational expression of L, and
hence also the rational expressions of L1 and L2. Let A1 and A2 be the HRA which, due to the
induction assumption, recognize Ls(A1) = L1 and Ls(A2) = L2. Let the automaton A initially
run A1, and from each accepting location of A1 non-deterministically choose either to continue
inside A1, or to run A2. We have Ls(A) = L, as required.

Case 2: L = K∗. This case is dealt with similarly to the previous one.

Case 3: L = ⋃
i∈I Li. Let s be a tuple of atoms supporting the rational expression of L,

and hence also the set I and the mapping i 7→ Li. Thus the concatenated tuple si supports Li

(recall that i is assumed for convenience to be a tuple of atoms). For an s-orbit J in I, let

LJ =
⋃
j∈J

Lj ⊆ L.

Consider an arbitrary s-orbit J in I (each orbit is treated separately). Fix an arbitrary element
i ∈ J and an automaton B such that, due to the induction assumption, recognizes Lsi(B) = Li.
Therefore, for every j = π(i) ∈ J , where π is an s-automorphism, the same automaton B
recognizes Lsj(B) = Lj . Let the automaton AJ initially guess i ∈ J and put it into the smallest
registers not occupied by s, and then run B. We have Ls(AJ) = LJ . The language L is the
union of finitely many languages LJ , and hence L is recognized by a HRA that initially chooses
an s-orbit J in I and then runs AJ .

6 Parikh images of HRA are rational

This section contains the proof of Theorem 7.1.1: Parikh images of languages of HRA are rational.
The proof proceeds by induction on the number of registers.
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Induction base. The induction base, i.e., rationality of Parikh images of 1-HRA languages,
follows immediately by Theorem 6.1.1 proved in Chapter 6.

Altering paths. Before proceeding to the induction step we recall the concept of altering
paths introduced in Chapter 6, but slightly adapted to the framework of HRA instead of 1-NRA
only. Given a k-HRA A = ⟨H,Q, I, F,∆⟩, we define the language PA of altering paths, over the
alphabet(Q× A ×Q) ∪ (H × A) containing words of the form:

⟨q1, a1, p1⟩⟨h1, b1⟩⟨q2, a2, p2⟩⟨h2, b2⟩ . . . ⟨qn−1, an−1, pn−1⟩⟨hn−1, bn−1⟩⟨qn, an, pn⟩ (7.4)

(n ≥ 1) such that, for i = 1, . . . , n− 1, it holds ai ̸= ai+1 and

pi(air) ⟨hi,bi⟩−−−−→ qi+1(ai+1r′) (7.5)

is a transition of A at level 1 for some tuples r, r′ ∈ A(k−1), and such that q1 ∈ I and pn ∈ F .
The atoms ai and ai+1 are here pre- and post-values of the first register, and r, r′ are pre- and
post-values of the remaining k − 1 registers. Intuitively, a letter ⟨q, a, p⟩ represents a run of
A starting from a configuration q(ar′) and ending in p(ar), for some r, r′ ∈ A(k−1), such that
the first register contains a and is preserved along the run until the automaton reaches the
configuration p(ar), from which the automaton finally updates the first register. Along this run
other registers may be updated.

We observe that the altering path language of a k-HRA A is the same as the altering path
language of a 1-HRA A′ obtained from A by removing all registers except the first (smallest)
one, and all transition rules of level greater than 1. Therefore, as an immediate corollary of the
proof of Lemma 6.4.3 in Chapter 6 we get:

Claim 7.6.1

For every k ≥ 1, the altering path language PA of k-HRA A has rational Parikh image.

Induction step. We now proceed to the induction step. To this aim we fix k > 1 and
assume that languages of HRA with less than k registers have rational Parikh images. We
consider a fixed k-HRA A = ⟨H,Q, I, F,∆⟩ and aim at showing that Parikh image of L(A) is
rational. W.l.o.g. we assume that A is in normal form (Proposition 7.3.2). Let Σ = H × A
denote the input alphabet.

We construct a k-HRA Aqp by removing from A all transition rules that update (i.e., do
not preserve) the first register, and by taking q as the only initial location and p as the only
accepting one. Intuitively speaking, the first register is frozen in Aqp, in the sense that it is
never updated and thus keeps its initial value a along the whole run. For a ∈ A, we denote by

La(Aqp) =
⋃

r,s∈A(k−1)

Lq(ar) p(as)(Aqp) ⊆ L(Aqp)
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the subset of L(Aqp) consisting of words accepted by Aqp by a run where the value of the first
register is (continuously) a. We need to deduce from the induction assumption the following
claim:

Claim 7.6.2

The languages La(Aqp) have rational Parikh images.

Before proving the lemma we use it to complete the proof Theorem 7.1.1. Consider the language
K = PA(S) obtained by applying the following substitution S to the language PA:

⟨q, a, p⟩ 7→ La(Aqp) ⟨h, b⟩ 7→ {⟨h, b⟩}.

In words, triples ⟨q, a, p⟩ are replaced by any word accepted by Aqp by a run where the value of
the first register is continuously a, while pairs ⟨h, b⟩ are preserved.

Claim 7.6.3

L(A) = K.

We argue that both inclusions hold. The inclusion L(A) ⊆ K is shown by factorising each
accepting run of A by transitions that update the first register, of the form (7.5), so that each
word w ∈ L(A) factorizes into:

w = w1 ⟨h1, b1⟩w2 ⟨h2, b2⟩ . . . wn−1 ⟨hn−1, bn−1⟩wn, (7.6)

for wi ∈ Lai(Aqipi) for some atom ai and control locations qi, pi, and therefore w ∈ K. For
the reverse inclusion K ⊆ L(A) consider a word w ∈ K, necessarily of the form (7.6), due
to an altering path as in (7.4) and accepting runs πi of Aqipi over words wi, where the first
register is continuously equal ai along πi. By concatenating these runs (considered as sequences
of configurations) one gets an accepting run π = π1π2 . . . πn of A over the word w, as required.
The transitions (7.5) confirm that π is a run since A is hierarchical: all these transitions are all
at level 1 and may perform (unspecified) updates of all other registers.

Having Claims 7.6.1, 7.6.2, and 7.6.3, one easily completes the proof of Theorem 7.1.1.
Indeed, Parikh image of K = PA(S) is rational due to Lemma 4.3.2, as Parikh images of PA

and all languages La(Aqp) are so due to Claims 7.6.1 and 7.6.2, respectively, and therefore the
same holds for L(A), due to Claim 7.6.3.

Proof of Claim 7.6.2. For every q, p ∈ Q we define a new (k−1)-HRA A′
qp that behaves exactly

as Aqp except that the first register is removed. The removal of the register is compensated by
an additional bit in the finite component of the alphabet of A′

qp that informs the automaton
whether the input atom is equal to the (removed) first register or not.
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6. Parikh images of HRA are rational

Formally, the new automaton is A′
qp = ⟨{=, ̸=} × H,Q, {q}, {p},∆′⟩, where the transition

rules ∆′ are defined as follows. Due to the assumption that A is in normal form (and hence so are
all automata Aqp), its every transition constraint (7.1) at level i, say, either entails the equality
y = x1, or the inequality y ̸= x1. The transition rules ∆′ are obtained from the transition rules
of Aqp (i.e., from transition rules of A at level greater than 1) by transforming each transition
rule

(q(x1, x2 . . . xk), ⟨h, y⟩, φ, q′(x′
1, x

′
2 . . . x

′
k))

of Aqp to the following one:

(q(x1, x2 . . . xk), ⟨(∼, h), y⟩, φ′, q′(x′
1, x

′
2 . . . x

′
k))

where ∼∈ {=, ̸=} is chosen so that φ entails y ∼ x1, and φ′ is obtained from φ by removing all
(in)equalities referring to the first register.

By induction assumption we know that Parikh image of A′
qp is rational, for every q, p ∈ Q.

For a ∈ A, consider the following sub-alphabet (that fixes, intuitively, the value of the first
register to be a):

Σa = {⟨(=, h), a⟩ : h ∈ H} ∪ {⟨( ̸=, h), b⟩ : h ∈ H, b ∈ A − {a}} ⊆ Σ,

and define the languages Lqap as the restriction of L(A′
qp) to the sub-alphabet Σa:

Lqap := L(A′
qp) ∩ (Σa)∗.

By Lemma 4.3.3 from chapter 4 we have:

Claim 7.6.4

Parikh images of the languages Lqap are rational.

Finally, we observe that La(Aqp) is obtained from Lqap by applying the substitution (actually,
the projection):

⟨(∼, h), b⟩ 7→ {⟨h, b⟩}

and therefore also has rational Parikh image, as required. This completes the proof of Lemma 7.6.2,
and hence also the proof of Theorem 7.1.1.

As a consequence of Theorems 7.1.1 and 7.5.1, we get the following:

Corollary 7.6.5: (Parikh equivalence of HRA and rational languages)

Parikh images of HRA languages are exactlty rational sets of data vectors.
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Chapter 7. Parikh images of hierarchical register automata

The above result also provides another potential approach to the quest of rationality of
Parikh images of general NRA:

Corollary 7.6.6: (Rationality of NRA/CFG)

The language of a NRA (CFG) has rational Parikh image if, and only if, it is Parikh-
equivalent to some HRA.

In this chapter, we introduced a syntactic subclass of register automata, called hier-
archical register automata. We showed that they are strictly more expressive than
one-register automata, strictly less expressive than unrestricted non-deterministic
register automata, recognize all rational languages, and their languages are Parikh-
equivalent to rational languages. In consequence, the language of a non-deterministic
register automaton has rational Parikh image if, and only if the language is Parikh-
equivalent to the language of some hierarchical register automaton. It remains open
if this characterisation may be helpful for proving rationality of Parikh images of
languages of unrestricted non-deterministic register automata.

Summary
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Chapter 8
Parikh images of one-register context-free
languages

In the previous chapters we showed that Parikh images of 1-NRA languages are ratio-
nal, and then slightly generalized this result to HRA. In this chapter we investigate
further into one-register context-free grammars, and extend the results of Chapter 6
to this model.

Objective
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Chapter 8. Parikh images of one-register context-free languages

1 Summary of results

The main objective of this section is to prove following result:

Theorem 8.1.1: (Rationality)

Parikh images of one-register context-free languages are rational.

As a corollary, we deduce that the language of every 1-CFG is Parikh-equivalent to the
language of an NRA. The number of registers of the NRA may be larger than one.

We proceed in four steps. In Section 2, by a Ramsey type argument, we prove that a
sufficiently large set of productions contains a compatible pair (Lemma 8.2.3). Then in Section
3, we define traversals and side-effects which will be useful in further sections. In Section 4,
we define width of derivation trees. Then, in Section 5 we show that for a sufficiently large
constant n ∈ N, every derivation tree can be transformed into a tree of width at most n while
preserving the Parikh image of its yield (Lemma 8.5.2). The cut-and-paste transformation relies
on compatibility of productions in a tree. Finally, also in Section 5, we argue that Parikh image
of the set of words generated by derivation trees of width bounded by n is rational, for every
fixed n ∈ N (Lemma 8.5.7). Lemmas 8.5.2 and 8.5.7 imply Theorem 8.1.1.

2 Compatibility

The equality type of a tuple ⟨a1, . . . , ak⟩ ∈ Ak is defined as the set {⟨i, j⟩ : 1 ≤ i < j ≤ k, ai =
aj}. Intuitively speaking, tuples of the same equality type admit the same equalities between
their coordinates.

Definition 8.2.1: (Compatible tuples)

Two tuples α = ⟨a1, . . . , ak⟩ and β = ⟨b1, . . . , bk⟩ we call compatible if they have the same
equality type, and for every coordinate i ∈ {1, . . . , k} one of two conditions holds: either (1)
ai = bi; or (2) ai ̸= bi and both ai and bi do not appear in the other tuple: ai /∈ {b1, . . . , bk},
bi /∈ {a1, . . . , ak}.

In particular, two equal k-tuples are always compatible, but also two disjoint tuples are
always compatible.

Let us see few examples to get acquainted with the definition of compatibility.

Example 8.2.2. Consider the two 4-tuples in Figure 8.1. In the first component of both
vectors we have a ̸= c, and a is not present in the second vector and c is not present in the first
vector. This condition holds also for both third and fourth component. Both vectors have d in
the second component. This fulfills the conditions of compatibility. Therefore these two tuples
are compatible.
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Figure 8.1: Two compatible tuples.

As another example, consider the two 4-tuples in Figure 8.2. These two tuples are of the same
equality type, but are not compatible. The first component of both vectors are not the same,
but the atom c is equal to fourth component of the first vector, which violates the defining
condition of compatibility.

Figure 8.2: Two non-compatible tuples.

Lemma 8.2.3: (Compatible pairs)

For every k ∈ N there is some l = f(k) ∈ N such that every finite multiset of k-tuples of
atoms A : Ak → N of size at least l contains two compatible k-tuples.

Proof. Let k ∈ N be fixed. If A contains two equal tuples, they are compatible. Thus we can
assume A to be a set. We take l = f(k) large enough to satisfy the constraint (8.1) below.

The number of different equality types Ek is finite and equal to the number of partitions of
the coordinates set {1, . . . , k} (the kth Bell number). By the pigeonhole principle, for l = |A|
large enough, there is a subset A′ ⊆ A of size l′ = |A′| = l

Ek
whose elements have all the same

equality type.
We now consider an undirected clique of size l′ with vertices A′, where the edge between

vertices α = ⟨a1, . . . , ak⟩ and β = ⟨b1, . . . , bk⟩ is labeled (coloured) by the set Dαβ = {i ∈
{1, . . . , k} : ai ̸= bi}. Intuitively, the colour describes the coordinates on which α and β

disagree. The number of colours is at most 2k. By Ramsey’s theorem, for l′ large enough the
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graph contains a monochromatic clique A” of size l” = k2 + 1; indeed, it suffices to take

l′ ≥ R(l”, l”, . . . , l”︸ ︷︷ ︸
2k

). (8.1)

Thus every two elements of A” disagree on the same coordinates D ⊆ {1, . . . , k}, and hence also
agree on the same coordinates {1, . . . , k} −D.

Take any α = ⟨a1, . . . , ak⟩ ∈ A”. For every coordinate i ∈ D, all tuples β ∈ A” are pairwise
different on that coordinate. Therefore, at most k tuples β = ⟨b1, . . . , bk⟩ ∈ A” may satisfy

bi ∈ {a1, . . . , ak}, (8.2)

i.e., bi appears in α. As |D| ≤ k, at most k2 tuples (including α itself) may satisfy the condi-
tion (8.2) for some coordinate i ∈ D. Therefore taking any of the remaining tuples, say β, we
obtain a compatible pair α, β.

3 Traversals and side-effects

Recall the definition of 1-CFG in Chapter 3. Its configurations are of the form q(a) ∈ Q × A,
and its input alphabet is Σ = H × A.

Like in Proposition 6.2.2 in Chapter 6, we assume in the sequel that each production rule
of 1-CFG defines one orbit in A3. We naturally adopt the definition of normal form of 1-NRA
(cf. Definition 6.2.1) to 1-CFG:

Proposition 8.3.1: (Normal form of 1-CFG)

Similarly as in the case of 1-NRA, we may assume that every constraint in production rules
of 1-CFG describes one orbit in A3, i.e., is one of φ1 - φ5 from Definition 6.2.1.

Definition 8.3.2: (Arity, tree order and paths)

The number of children of a node x in a derivation tree T we call arity of x (leaves are
nodes of arity 0, other nodes have arity 2). Let ⪯ denote the partial tree order (x ⪯ y

if x is an ancestor of y). A path from a node x to a node y, assuming x ⪯ y, is the set
{z ∈ T : x ⪯ z ⪯ y} of all nodes z appearing between the nodes x and y, including x and
y.

Consider an arbitrary derivation tree T of G, and recall from Chapter 3 that Π2 denotes the
set of productions derived from ∆2 which have arity 2. We distinguish two ways of traversing a
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production (a) −→ (b) (b′) ∈ Π2 appearing in T by a path, namely left and right traversal as
shown in Figure 8.3:

Figure 8.3: Left and right traversal.

Definition 8.3.3: (Side-effects)

Once left or right traversal is chosen, say the right one, a production q(a) −→ p(b) p′(b′) ∈ Π2

resembles a transition of 1-NRA (over the extended input alphabet Γ = (Q∪H) ×A) from
q(a) to p′(b′) which inputs the label of the remaining node, namely p(b). We call the pair
p(b) ∈ Γ the side-effect of the right traversal; symmetrically we call p′(b′) the side-effect of
the left traversal.

For example, the following left-traversal:

can be interpreted as the transition of an 1-NRA:

For two configurations q(a) and p(b) of G, we denote by Sq(a) p(b) ⊆ Γ∗ the set of all sequences
of side-effects that may appear along a path from a node labeled by q(a) to a node labeled by
p(b) in a derivation tree of G.

Example 8.3.4. The figure below shows side-effects of left and right traversals:
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The path in the above derivation tree

has the following side-effect sequence:

As a corollary of Lemma 6.1.2 we get:

Lemma 8.3.5: (Rationality of side-effects)

Languages Sq(a) p(b) have rational Parikh images.

Proof. Indeed, the claim follows immediately by Lemma 6.1.2, if production traversals are con-
sidered as transitions of a 1-NRA over the input alphabet Γ = (Q ∪H) × A, and the side-effect
of a traversal is considered as input of a transition.

4 Height, width, and rank

In this section we provide some technical definitions regarding derivation trees that will be useful
in the next section.

Definition 8.4.1: (Traversals)

Similarly as for 1-NRA, the right traversal of a production q(a) −→ p(b) p′(b′) ∈ Π2 is called
register-preserving if a = b′, and register-updating if a ̸= b′; likewise for the left traversal.

Definition 8.4.2: (Length of a path)

We define the length of a path in a derivation tree T as the number of register-updating
production traversals along the path, and the height of a node x in T as the maximal length
of a path from x to a leaf. The height of a tree is the height of its root.

Example 8.4.3. In the following derivation tree, consider the path from root to the node
labelled by atom e:
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The register is updated twice along this path, once from a to b and once from b to e, therefore
the length of this path is 2. Consider the yellow node labelled by atom b. There are three paths
starting in this node and ending in some leaf. Each of the paths has length 1, therefore the
height of the node is 1. The height of the tree is 2.

Definition 8.4.4: (Cut)

A cut in T is a set of nodes which are pairwise incomparable with respect to the tree
ordering. A cut is called n-cut if its size is at least n and the height of every node in the
cut is at least n.

Definition 8.4.5: (Width)

The width of a derivation tree T is the maximal n for which T contains some n-cut.

Definition 8.4.6: (Rank of a derivation tree)

The rank of a derivation tree is defined as the multiset of lengths of all paths from the root
to some leaf.

Example 8.4.7. Consider the derivation tree in Figure 8.4 below. As every other derivation
tree, it admits a 0-cut consisting of all leaves (highlighted by grey boxes). The cut {d, e} is a 1-
cut, and the width of the tree is 1, as it admits no 2-cuts. The rank of the tree is {1, 2, 3, 3, 3, 1},
the 6-element multiset containing lengths of all the 6 paths from root to leaves.
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Figure 8.4: Cuts in a derivation tree.

For a finite multiset r : N → N of natural numbers, let the diagram of r be the unique
non-increasing sequence w ∈ N∗ such that Par(w) = r. We define the order on ranks as follows:
r ≤ r′ if the diagram of r is lexicographically smaller than the diagram of r′. For instance,
{7, 5, 2, 2} < {7, 7, 3}.

5 Bounded width

Definition 8.5.1: (Parikh-equivalent derivation trees)

We call two derivation trees T , T ′ Parikh-equivalent if

Par(yield(T )) = Par(yield(T ′)).

In this last section we formulate and prove main ingredients necessary for the proof of
Theorem 8.1.1: Lemma 8.5.2 states that derivation trees of a 1-CFG are Parikh-equivalent to
derivation trees of bounded width, and Lemma 8.5.7 says that the languages generated by
derivation trees of bounded width have always rational Parikh images. These two lemmas
immediately imply Theorem 8.1.1.

Lemma 8.5.2: (Small width trees)

Consider a fixed 1-CFG. For a sufficiently large constant n, every derivation tree is Parikh-
equivalent to a derivation tree of width smaller than n.

Proof. Let m = |∆2| be the number of production rules of arity 2. Fix an arbitrary n ≥ f(6)·2m,
for f given by Lemma 8.2.3. We show:
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5. Bounded width

Claim 8.5.3

For every derivation tree T of G of width ≥ n there exists a Parikh-equivalent derivation
tree T ′ of rank strictly larger than T , but of the same size (= the number of nodes) as T .

The claim is sufficient for proving Lemma 8.5.2. Indeed, as the transformation preserves the size,
the rank can increase only finitely many times. Therefore, by iterating the transformation we
ultimately arrive at a derivation tree T ′ whose rank can not be further increased. By Claim 8.5.3,
the width of T ′ is forcedly smaller than n, as required in Lemma 8.5.2.

From now on we concentrate on proving Claim 8.5.3. Let T be a derivation tree of width
≥ n. Consider some fixed n-cut {x1, . . . , xn} and disjoint paths π1, . . . , πn in T of length ≥ n,
each path πi going from xi to some leaf.

Consider a fixed path πi. It contains ≥ n register-updating production traversals, and
therefore by the pigeonhole principle the same production rule q φ−→ p p′ ∈ ∆2 and the same (say
left) register-updating traversal repeats at least n′ = n

2m times along πi. We apply Lemma 8.2.3
for k = 3 to deduce that, as n′ ≥ f(6) ≥ f(3), some two of these traversals, as depicted in the
figure below,

Figure 8.5: Traversals in a derivation tree.

are compatible, by which we mean that their underlying 3-tuples ⟨a, b, b′⟩ and ⟨c, d, d′⟩ are so.
Thus each path πi traverses a pair of compatible productions δi, σi which agree on the production
rule and (left or right) traversal.

We now repeat a similar argument for paths. As before, by the pigeonhole principle in at
least n′ paths πi, the same production rule and the same traversal was used in productions δi

and σi derived in the above reasoning. We now apply Lemma 8.2.3 for k = 6 to deal with pairs
⟨δi, σi⟩ of productions, where a pair ⟨δi, σi⟩ induces a 6-tuple obtained by concatenating two
underlying 3-tuples of δi and σi. Since n′ ≥ f(6), according to the lemma some two of these
pairs, say ⟨δi, σi⟩ and ⟨δj , σj⟩, are compatible (by which we mean that the two induced 6-tuples
are so, similarly as above).

We have thus four productions δ, σ, δ̄, σ̄, traversed by two disjoint paths in T (we do not
depict non-terminals from now on, as all the four productions are induced by the same rule) as
shown in Figure 8.6.
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Figure 8.6: Repeating derivations.

Claim 8.5.4

The four underlying triples ⟨a, b, b′⟩, ⟨c, d, d′⟩, ⟨ā, b̄, b̄′⟩ and ⟨c̄, d̄, d̄′⟩ are pairwise compatible.

Proof of Claim 8.5.4. By the construction we have compatibility of ⟨a, b, b′⟩ and ⟨c, d, d′⟩, ⟨a, b, b′⟩
and ⟨ā, b̄, b̄′⟩, and of 6-tuples ⟨a, b, b′, c, d, d′⟩ and ⟨ā, b̄, b̄′, c̄, d̄, d̄′⟩. It only remains to prove com-
patibility of ⟨a, b, b′⟩ and ⟨c̄, d̄, d̄′⟩, and of ⟨c, d, d′⟩ and ⟨ā, b̄, b̄′⟩. We concentrate of the former
pair, as the other one is dealt with similarly.

The equality types of triples ⟨a, b, b′⟩ and ⟨c̄, d̄, d̄′⟩ are the same, since so are the equality
types of ⟨a, b, b′⟩ and ⟨c, d, d′⟩, and of ⟨c, d, d′⟩ and ⟨c̄, d̄, d̄′⟩. We concern the first coordinate of
the triples. If a = c̄, compatibility condition is satisfied on this coordinate. Otherwise, supposing
a ̸= c̄, we derive a /∈ {c̄, d̄, d̄′}: if a ̸= ā then this follows due to compatibility of the two 6-tuples,
and if a = ā then this follows due to compatibility of ⟨ā, b̄, b̄′⟩ and ⟨c̄, d̄, d̄′⟩; symmetrically we
derive c̄ /∈ {a, b, b′}. The two remaining coordinates are dealt with similarly.

We are now prepared to cutting and pasting in T . For convenience we use below atoms a, b,
etc. to identify respective nodes (keeping in mind potential equalities between these atoms).

Definition 8.5.5: (Relevance)

Define the relevance of a node x in T as the maximal length of a path from the root of T
to a leaf that traverses x.

Recall that all the four traversals of Claim 8.5.4 are register-updating, and hence a ̸= b, and
likewise for other tuples. We distinguish three cases, depending on the relation of b′ to a and b.
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5. Bounded width

Case 1 b′ = a. By symmetry assume, w.l.o.g., that the relevance r̄ of the node b̄ is larger
or equal to the relevance r of the node b. We cut the segment of T starting from the edge a −→ b

and ending with the edge c −→ d, and paste this segment between the nodes ā and b̄ as depicted
in the figure 8.7:

Figure 8.7: Case 1: Before cutting and pasting.

By Claim 8.5.4 the tree T ′ so obtained is still a derivation tree:

Figure 8.8: Case 1: After cutting and pasting.

Indeed, d ̸= a (because either d = b or d does not appear elsewhere) and hence q(a) −→
p(d) p′(b′) ∈ Π2 is a production; likewise for the two remaining productions above.

Furthermore, we claim that rank of T ′ is strictly larger than rank of T . To this aim we
analyse the effect of cut and paste on the lengths of the paths from the root to a leaf in T .
First of all, paths not traversing b or b̄ remain untouched. Concerning the cut, the lengths of
all paths from the root to a leaf in T traversing the nodes b and d decrease, and the lengths of
paths traversing b but not d change arbitrarily. Concerning the paste, the lengths of all paths
traversing b̄ strictly increase. Thus some paths of length r̄ in T get prolonged, and all other
affected paths in T have lengths at most r ≤ r̄. Therefore the rank of T ′ is strictly larger than
the rank of T .
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Case 2 b′ = b. By symmetry assume, w.l.o.g., that the relevance r̄ of the node ā is larger
or equal to the relevance r of the node a. We cut the segment of T starting from the edge a −→ b

and ending with edges c −→ d and c −→ d′, and paste this segment between the node ā and the
nodes b̄, b̄′, and moreover cut the subtree rooted in b′ and paste it in place of the subtree rooted
in b̄′, as depicted in Figure 8.9.

Figure 8.9: Case 2: Before cutting and pasting.

By Claim 8.5.4 the tree T ′ obtained is a derivation tree, as shown in Figure 8.10.

Figure 8.10: Case 2: After cutting and pasting.

Similarly as before, we claim that the rank of T ′ is strictly larger than the rank of T . First
of all, paths from the root to a leaf in T not traversing a or ā remain untouched. Furthermore,
the lengths of all paths from the root to a leaf that traverse ā strictly increase, and the lengths
of all paths traversing a either decrease or change arbitrarily. Thus some paths of length r̄ in T
get prolonged, and all other affected paths in T have lengths at most r ≤ r̄. Therefore the rank
strictly increases.

Case 3 b′ /∈ {a, b}. In this case one can use any of the two cut-and-paste schemes described
above.

The proof of Claim 8.5.3 is thus completed, and hence so is the proof of Lemma 8.5.2.
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Given a 1-CFG G, recall that Lq(a)(G) ⊆ Σ∗ stands for the language of yields of all complete
derivation trees T with root labeled by q(a). We denote by Hq(a),n ⊆ Lq(a)(G) the subset of
words generated by a derivation tree of height at most n, and by Wn ⊆ L(G) the subset of words
generated by a derivation tree of width at most n. We now prove, for every n ∈ N, rationality of
the languages Hq(a),n, and then use it to derive rationality of the Parikh image of the language
Wn.

Lemma 8.5.6: (Bounded height trees)

Consider a fixed 1-CFG. For every n ∈ N, the languages Hq(a),n have rational Parikh images.

Proof. We use Substitution Lemma (Lemma 4.3.2 in Chapter 4) several times.
For a nonterminal q ∈ Q and an atom a ∈ A, consider the set of derivation trees of G

with root labeled by q(a), which use only productions with the left-hand side in Q× {a} (thus
every non-leaf in such a tree belongs to Q× {a}), and where every leaf belongs either to H ×A
or to Q × (A − {a}). Intuitively, we stop derivation at a terminal, or at a configuration with
register value different than a (i.e., at first register update along every path). The language
Kq(a) generated by such trees is obtained by applying a substitution to a classical context-free
language (with the finite set Q× {a} of nonterminals), and thus has rational Parikh image.

The proof of Lemma 8.5.6 is by induction on n. In case n = 0, we observe that Hq(a),0 is the
restriction of Kq(a) to terminals H × {a}:

Hq(a),0 = Lq(a) ∩ (H × {a})∗

and thus is itself a classical context-free language (with the finite set Q × {a} of nonterminals
and the finite set H × {a} of terminals); in consequence, it has rational Parikh image.

For the induction step we assume rationality of languages Hq(a),n, and observe that Hq(a),n+1

is obtained by applying to the language Kq(a) the substitution:

p(b) 7→ Hp(b),n ⟨h, b⟩ 7→ ⟨h, b⟩,

where p ∈ Q, h ∈ H, and b ∈ A. Indeed, intuitively speaking, Kq(a) allows for exactly one register
update, while Hp(b),n allows for ≤n additional register updates along every path. Therefore
Hq(a),n+1 has rational Parikh image, as required.

Lemma 8.5.7: (Bounded width tree)

Consider a fixed 1-CFG. For every n ∈ N, the language Wn has rational Parikh image.
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Proof. For a fixed n ∈ N, consider an arbitrary fixed derivation tree T of width at most n, and
the subset H ⊆ T of those nodes which have height at least n + 1. The set H is closed under
ancestors and is thus itself a tree; contrarily to T whose non-leaf nodes have arity 2, the tree H
may contain nodes of arity 1. Notably, as a special case H may be empty.

By assumption, width of T is at most n, and hence it may contain n-cuts but no (n+1)-cuts.
This implies that the largest cut in H has size n. In consequence:

Claim 8.5.8

H has at most n leaves, and hence at most n− 1 nodes of arity 2.

Let L denote the finite multiset (of size at most n) of configurations q(a) labelling leaves of
H.

Any maximal path in H consisting of nodes of arity 1 we call a segment. Thus H decomposes
uniquely into leaves, nodes of arity 2, and segments. An example tree shown in Figure 8.11 has
n = 4 leaves, 3 nodes of arity 2 and 4 segments (depicted by blue areas) of size 3, 2, 2 and 1,
respectively.

Figure 8.11: Segments.

Using Claim 8.5.8 we deduce:

Claim 8.5.9

H contains at most 2n− 1 segments.

We again rely below on Substitution Lemma (Lemma 4.3.2 in Chapter 4).
Let S denote the finite multiset (of size at most 2n− 1) of pairs of configurations ⟨q(a), p(b)⟩

labelling ends of segments. Let S̃q(a) p(b) be obtained from the side-effect language Sq(a) p(b) by
the equivariant substitution (for q′ ∈ Q):

q′(c) 7→ Hq′(c),n;
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by Lemmas 8.5.6 and 8.3.5 languages S̃q(a) p(b) have thus rational Parikh images. Let’s define
(∏ denotes concatenation)

LL,S =
( ∏

q(a)∈L
Hq(a),n

) ( ∏
⟨q(a),p(b)⟩∈S

S̃q(a) p(b)
)

as the concatenation of two concatenations, one of them ranging over L and the other one over
S. By the very definition of the language LL,S we have

Claim 8.5.10

Par(yield(T )) ∈ Par(LL,S).

Claim 8.5.11

The languages Wn and K = ⋃
L,S LL,S are Parikh-equivalent, where L,S range over all

possible sets arising from all derivation trees T of G of width at most n.

Proof of Claim 8.5.11. The inclusion Par(Wn) ⊆ Par(K) we deduce by Claim 8.5.10. For
the converse inclusion Par(K) ⊆ Par(Wn) we should prove: for every L,S arising from some
derivation tree T of width at most n, the language LL,S is included in Wn. Indeed, given T
and H used to derive sets L,S, we observe that every word w ∈ LL,S is Parikh-equivalent to the
yield of a derivation tree T ′ of width at most n, obtained from H by replacing each leaf labelled
by q(a) with a tree of height ≤ n with root labeled by q(a), and replacing each segment with
a sequence of productions, where every side-effect q(a) is replaced by a tree of height ≤ n with
root labeled by q(a). Thus Par(w) ∈ Par(Wn).

Finally, we derive rationality of Par(K). By Lemmas 8.5.6 and 8.3.5 the languages LL,S

have rational Parikh images. Due to the bounds on the size of L and S (cf. Claim 8.5.8 and
Claim 8.5.9), by Lemma 3.1.12 the set of all possible pairs L,S is orbit-finite. Therefore K, as
an orbit-finite union of languages with rational Parikh images, has a rational Parikh image too.

The proof of Lemma 8.5.7 is thus complete.

Remark 8.5.12. (Possible generalisations) We suppose that the method developed in this
section can be extended to prove rationality of Parikh images of languages of one-register context-
free grammars of any arity. Furthermore, we suppose also that the method can be extended to
show that every context-free grammar (with arbitrarily many registers) is Parikh-equivalent to
a non-deterministic register automaton (with possibly more registers).
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6 HRA and 1-CFG

By Theorem 8.1.1, languages of 1-CFG have rational Parikh images, and by Corollary 7.6.5,
Parikh images of HRA are exactly all rational sets of data vectors. Therefore we can conclude
the following:

Theorem 8.6.1: (Parikh’s equivalence of 1-CFG and HRA)

Every one-register context-free language is Parikh-equivalent to the language of some hier-
archical register automaton.

In this chapter, we applied rationality of Parikh images of non-deterministic one-
register automata to reason about Parikh images of one-register context-free lan-
guages. We designed a transformation of derivation trees that decreases width, and
used it to show that one-register context-free languages have rational Parikh images.

Summary
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Chapter 9
Conclusions

In this final chapter we give a brief outline on the state of the art of our knowledge
on Parikh images of register automata and context-free grammars, and discuss open
problems, conjectures, and possible fuerther research directions.

Objective
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1 Summary

In Chapter 1 we posed the following four questions:

(1) Are Parikh images of languages of non-deterministic register automata always semi-linear?

(2) Are Parikh images of languages of non-deterministic register automata always rational
sets?

(3) Does (2) hold for register context-free languages?

(4) Are Parikh images of register automata and register context-free languages the same?

We provided the negative answer to question (1) in Chapter 5: we proved that languages
of a deterministic one-register automata need not be semi-linear, under a suitable extension of
classical semi-linear sets allowing orbit-infinite unions instead of finite ones. However, Parikh
image of this language is rational, again under a likewise extesions of classical rational sets.
We introduced concepts of orbit-finite rational languages and rational sets in Chapter 4, and
discussed some of the properties like Substitution Lemma – one of the core tools in the subsequent
proofs.

We provided a partial answer to question (2) in Chapter 6 for nondeterministic one-register
automata. The crucial parts of the proof resorts to a Kleene type technique of transition
elimination, and to a necessary condition for a Hamiltonian cycles in directed graphs. Using the
rationality of Parikh images of nondeterministic one-register automata, we were able to show
the main result of Chapter 8, namely Parikh images of one-register context-free languages are
rational. This provides a partial answer to question (3), but also to question (4): one-register
context-free grammars are Parikh-equivalent to register automata (with possibly more than one
register).

In attempt to fully answer (2), we identified a new strict subclass of register automata
(in terms of languages recognized), which we call hierarchical register automata, in Chapter 7.
This model is strictly more expressive than one-register automata in terms of both languages
recognized, as well as in terms of Parikh images thereof. In the same chapter, we proved that
hierarchical automata recognize all rational languages, and their Parikh images are rational sets
of data vectors. As an outcome of these results, in order to show that some language of register
automaton or register grammar has rational Parikh image, it is enough to provide a hierarchical
register automaton with the same Parikh image. In particular, by the results of Chapter 6, one-
register context-free grammars are Parikh-equivalent to hierarchical register automata (with
possibly more than one register).

2 Open questions

Our main techniques of Chapter 6 heavily exploit the assumption that an automaton (or gram-
mar) has only one register, and we don’t know if these techniques can be lifted to automata (or
grammars) with more registers. But we have strong evidences to believe that the whole class of
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languages of register automata as well as register context-free grammars have rational Parikh
images. However, the long sequence of proofs in Chapter 6 demonstrates that proving rationality
of Parikh image may be surprisingly difficult, even for languages recognized by simple NRA.

3 Conjectures

We end up the thesis with the hypotheses we came up with during our investigations. The
proofs of rationality of Parikh images of 1-NRA languages, as well as the likewise proof for the
hard language from Chapter 7, make us believe that Theorems 6.1.1 and 8.1.1 can be extended
to higher numbers of registers:

Conjecture 9.3.1: (Parikh images of NRA and CFG)

Parikh images of languages of all nondeterministic register automata and all register context-
free grammars are rational.

Furthermore, we believe that rational sets of data vectors, as introduced in this thesis, can
be efficiently manipulated. We tend to believe that the most fundamental algorithmic problems
about these sets are decidable. For instance, we believe that one can decide non-emptiness of
intersection of these sets, or inclusion of these sets. We are thus tempted by formulating the
following general conjecture:

Conjecture 9.3.2: (Algorithmic problems on rational sets)

Basic algorithmic problems are decidable for rational sets of data vectors.
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