
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Miron Bartosz Kursa

Robust and e�cient approach to
feature selection with machine

learning

PhD dissertation

Supervisor

prof. dr hab. Marek Niezgódka
Interdisciplinary Centre for Mathematical and Computational Modelling

University of Warsaw

September 2016



Author’s declaration:
aware of legal responsibility I hereby declare that I have written this dissertation
myself and all the contents of the dissertation have been obtained by legal means.

September 14, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Miron Kursa

Supervisor’s declaration:
the dissertation is ready to be reviewed.

September 14, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
prof. dr hab. Marek Niezgódka



Streszczenie

Most statistical analyses or modelling studies must deal with the discrepancy
between the measured aspects of analysed phenomenona and their true nature.
Hence, they are often preceded by a step of altering the data representation into
somehow optimal for the following methods.

This thesis deals with feature selection, a narrow yet important subset of
representation altering methodologies. Feature selection is applied to an informa-
tion system, i.e., data existing in a tabular form, as a group of objects characterised
by values of some set of attributes (also called features or variables), and is defined
as a process of finding a strict subset of them which fulfills some criterion.

There are two essential classes of feature selection methods: minimal optimal,
which aim to find the smallest subset of features that optimise accuracy of certain
modelling methods, and all relevant, which aim to find the entire set of features
potentially usable for modelling. The first class is mostly used in practice, as
it adheres to a well known optimisation problem and has a direct connection
to the final model performance. However, I argue that there exists a wide and
significant class of applications in which only all relevant approaches may yield
usable results, while minimal optimal methods are not only ine�ective but even
can lead to wrong conclusions. Moreover, all relevant class substantially overlaps
with the set of actual research problems in which feature selection is an important
result on its own, sometimes even more important than the finally resulting black-
box model. In particular this applies to the p� n problems, i.e., those for which
the number of attributes is large and substantially exceeds the number of objects;
for instance, such data is produced by high-throughput biological experiments
which currently serve as the most powerful tool of molecular biology and a
fundament of the arising individualised medicine.

In the main part of the thesis I present Boruta, a heuristic, all relevant feature
selection method. It is based on the concept of shadows, by-design random at-
tributes incorporated into the information system as a reference for the relevance
of original features in the context of whole structure of the analysed data. The
variable importance on its own is assessed using the Random Forest method, a
popular ensemble classifier.

As the performance of the Boruta method turns out insatisfactory for some
important applications, the following chapters of the thesis are devoted to Random
Ferns, an ensemble classifier with the structure similar to Random Forest, but of a



substantially higher computational e�ciency. In the thesis, I propose a substantial
generalisation of this method, capable of training on generic data and calculating
feature importance scores.

Finally, I assess both the Boruta method and its Random Ferns-based deri-
vative on a series of p � n problems of a biological origin. In particular, I
focus on the stability of feature selection; I propose a novel methodology based
on bootstrap and self-consistency. The results I obtain empirically confirm the
validity of aforementioned e�ects characteristic to minimal optimal selection, as
well as the e�ciency of proposed heuristics for all relevant selection.

The thesis is completed with a study of the applicability of Random Ferns
in musical information retrieval, showing the usefulness of this method in other
contexts and proposing its generalisation for multi-label classification problems.

Keywords: Feature selection, random forests, random ferns, data mining, ma-
chine learning

ACM Computer Classification System: Computing methodologies→Feature se-
lection, Computing methodologies→Ensemble methods



Streszczenie

W większości zagadnień statystycznego modelowania istnieje problem niedosto-
sowania zebranych danych do natury badanego zjawiska; co za tym idzie, analiza
danych jest zazwyczaj poprzedzona zmianą ich surowej formy w optymalną dla
dalej stosowanych metod.

W rozprawie zajmuję się selekcją cech, jedną z klas zabiegów zmiany formy
danych. Dotyczy ona systemów informacyjnych, czyli danych dających się przed-
stawić w formie tabelarycznej jako zbiór obiektów opisanych przez wartości zbioru
atrybutów (nazywanych też cechami), oraz jest zdefiniowana jako proces wydzie-
lenia w jakimś sensie optymalnego podzbioru atrybutów.

Wyróżnia się dwie zasadnicze grupy metod selekcji cech: poszukujących moż-
liwie małego podzbioru cech zapewniającego możliwie dobrą dokładność jakiejś
metody modelowania (minimal optimal) oraz poszukujących podzbioru wszyst-
kich cech, które niosą istotną informację i przez to są potencjalnie użyteczne
dla jakiejś metody modelowania (all relevant). Tradycyjnie stosuje się prawie wy-
łącznie metody minimal optimal, sprowadzają się one bowiem w prosty sposób
do znanego problemu optymalizacji i mają bezpośredni związek z efektywno-
ścią finalnego modelu. W rozprawie argumentuję jednak, że istnieje szeroka
i istotna klasa problemów, w których tylko metody all relevant pozwalają uzy-
skać użyteczne wyniki, a metody minimal optimal są nie tylko nieefektywne ale
często prowadzą do mylnych wniosków. Co więcej, wspomniana klasa pokrywa
się też w dużej mierze ze zbiorem faktycznych problemów w których selekcja
cech jest sama w sobie użytecznym wynikiem, nierzadko ważniejszym nawet od
uzyskanego modelu. W szczególności chodzi tu o zbiory klasy p � n, to jest
takie w których liczba atrybutów w systemie informacyjnym jest duża i znacząco
przekracza liczbę obiektów; dane takie powszechnie występują chociażby w wy-
sokoprzepustowych badaniach biologicznych, będących obecnie najpotężniejszym
narzędziem analitycznym biologii molekularnej jak i fundamentem rodzącej się
zindywidualizowanej medycyny.

W zasadniczej części rozprawy prezentuję metodę Boruta, heurystyczną me-
todę selekcji zmiennych. Jest ona oparta o koncepcję rozszerzania systemu in-
formacyjnego o cienie, z definicji nieistotne atrybuty wytworzone z oryginalnych
cech przez losową permutację wartości, które są wykorzystywane jako odniesienie



dla oceny istotności oryginalnych atrybutów w kontekście pełnej struktury anali-
zowanych danych. Do oceny ważności cech metoda wykorzystuje algorytm lasu
losowego (Random Forest), popularny klasyfikator zespołowy.

Ponieważ wydajność obliczeniowa metody Boruta może być niewystarczająca
dla pewnych istotnych zastosowań, w dalszej części rozprawy zajmuję się algo-
rytmem paproci losowych, klasyfikatorem zespołowym zbliżonym strukturą do
algorytmu lasu losowego, lecz oferującym znacząco lepszą wydajność oblicze-
niową. Proponuję uogólnienie tej metody, zdolne do treningu na generycznych
systemach informacyjnych oraz do obliczania miary ważności atrybutów.

Zarówno metodę Boruta jak i jej modyfikację wykorzystującą paprocie losowe
poddaję w rozprawie wyczerpującej analizie na szeregu zbiorów klasy p � n

pochodzenia biologicznego. W szczególności rozważam tu stabilność selekcji; w
tym celu formułuję nową metodę oceny opartą o podejście resamplingowe i sa-
mozgodność wyników. Wyniki przeprowadzonych eksperymentów potwierdzają
empirycznie zasadność wspomnianych wcześniej problemów związanych z selek-
cją minimal optimal, jak również zasadność przyjętych heurystyk dla selekcji all
relevant.

Rozprawę dopełnia studium stosowalności algorytmu paproci losowych w
problemie rozpoznawania instrumentów muzycznych w nagraniach, ilustrujące
przydatność tej metody w innych kontekstach i proponujące jej uogólnienie na
klasyfikację wieloetykietową.

Słowa kluczowe: Selekcja cech, las losowy, paprocie losowe, eksploracja danych,
maszyny uczące się

Klasyfikacja według ACM: Computing methodologies→Feature selection, Com-
puting methodologies→Ensemble methods



Rozdział 1

Overview

1.1 Introduction

Both statistical analysis and modelling are usually preceded by a step of altering
the representation of the input data from their raw state, mostly defined by the
way in which they have been acquired. This process may take various forms and
serve many di�erent purposes [5]; in a most trivial case it may be a technical
adaptation to the requirements of a certain method upstream, like encoding or
normalization.

Altering representation can be also used to incorporate expert knowledge
about the problem, in order to emphasise potentially important aspects of the
data. For instance, one may apply transformations known to enhance desirable
variations within data or attempt to identify a priori known patterns.

Finally, one may want to remove superfluous information or noise, or even
just to reduce the size of the input to manageable values. This aim has also
a deeper significance: as the saturation of information in data increases, the
problem may become more explicit, consequently easier to be modelled.

One should note, however, that altering representation may equally well be
harmful as beneficial; it has a potential to emphasise false patterns and asso-
ciations arisen at random, rather than truly relevant ones, on the same time
removing useful information or diminishing the impact of extreme or rare values.
Consequently, one has to ensure that the new representation is not only optimal
for the modelling method used later, but also proves robust, i.e., immune to the
aforementioned false associations and retaining possibly highest fraction of the
original information. The latter quest is the main motivation for this thesis.
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For simplicity, this thesis is limited to feature selection, a narrow subset of
representation altering methods, yet very often used in practice [6]. Feature
selection assumes that the data are already represented in a tabular form by
a set of features (also called variables, attributes or predictors), and is defined
as a method to select strictly a subset of them — as opposed to more general
dimensionality reduction methods which can also produce new features. Feature
selection methods can be divided into two groups according to the problem they
are applied to [11]. Methods of the first group, called minimal optimal, attempt
to find a smallest subset of features on which certain classification or regression
methods achieves optimal performance. The second group is called all relevant
and collects methods which attempt to remove features irrelevant to the problem,
consequently retaining those features which may be useful for modelling.

In this thesis, I will argue that despite minimal optimal selection is so vastly
more popular than all relevant selection that it is even often treated synonymously
to feature selection, it is not only less useful for understanding the problem under
consideration, but also has a significant potential to devastate the robustness of
the whole analysis due to noise and spurious interactions arising at random.

Furthermore, I will present a simple yet powerful heuristic all relevant se-
lection method, Boruta, built around the idea of comparing the original features
with shadows, irrelevant by design features artificially injected into the data [9].
For sake of this comparison, the Boruta method relies on variable importance me-
asures (VIM), a feature of certain machine learning models which, in addition to
training the model, can assess each feature’s usefulness and express it in a form of
score or ranking. By default, Random Forest method is used to this purpose, as it
can explore complex interactions between features, works stochastically allowing
less important variables to obtain fair assessment, finally is known to produce
robust models and requires little or no hyper-parameter tuning.

Finally, I will address the consequences of the computational load imposed
by the Boruta method, which may hinder its applicability in certain areas. To
overcome this deficiency I have created a specialised version of Random Ferns, a
deeply stochastic ensemble machine learning method introduced as an e�cient
replacement of Random Forest in machine vision tasks [15]. In contrast to the
original incarnation of Random Ferns, my specific version is tailored towards
general machine learning tasks, namely applicable in a same scope of problems
as Random Forest and capable of producing variable importance scores. As a
complementary topic I also present an alternative use for Random Ferns, namely
an e�cient recognition of instruments in sound recordings.
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1.2 Approaches to feature selection

Aside the minimal optimal — all relevant classification, feature selection algo-
rithms can be also classified according to their technical nature within filters,
wrappers and embedded methods, which I describe here following the review by
Saeys et al. [14].

1.2.1 Filters

Filter methods are defined as those which do not use any modelling method to
assess features, rather use some measurement of feature relation like correlation
or mutual information, usually to assess how strongly each feature is related to
the decision attribute. In this formulation, filters are an all relevant methods,
yet very strict; by design they are not considering any interactions between
variables, so cannot solve more complex problems [13]. Their main advantages
are fast processing speed and robustness — it is basically impossible to yield an
overfitted model due to such selection, provided that correlation measure is not
cherry-picked and a statistically sound, multiple-testing aware cuto� is applied to
the raw correlation scores.

There are also some other formulation of filters; for instance they are me-
thods which try to collapse clusters of similar features to remove redundancy, or
greedily collecting attributes which bring novel information about the outcome
with respect to this carried by those already selected, often also utilising some
redundancy penalties. While such forms will randomly remove redundant but re-
levant features, those are actually a minimal optimal approaches targeted towards
modelling methods which are not robust to highly correlated attributes.

The other substantial modification is to maintain exhaustive search yet go
beyond pairwise interactions and analyse relations within groups of n ≥ 2 featu-
res; those methods can detect more complex structures in the data, but require
vastly more comparisons which seriously limit their applicability and statistical
power and computational e�ciency.

1.2.2 Wrappers

Wrapper methods search the space of all possible feature selections by apply-
ing certain model and analysing its performance. Most often, wrappers aim at
minimising prediction error, and thus are typical minimal optimal methods; few
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approaches use more sophisticated criteria, though, also allowing for all relevant
selection.

The search may be either exhaustive, implemented by some optimisation
method or directed by a feedback from the model like VIM. Regardless, many
iterations of the model building are usually required, often multiplied by a ne-
sted hyper-parameter optimisation and elaborated accuracy assessment like cross-
validation; this way wrappers tend to be very time consuming. Depending on an
optimised model, wrappers can detect arbitrarily complex interactions, at a cost
of higher risk of overfitting.

1.2.3 Embedded methods

Embedded feature selection methods are basically machine learning training algo-
rithms which produce selection of features as a side e�ect of building the model.
In the most basic version, embedded selection may be just a subset of features
which were used in the model, in a sense that had a non-zero weight (in case of
SVM, generalised regression or artificial neural network) or was a base for a split
or rule (in case of a decision trees and logic-based methods). Unfortunately, in
practice it is extremely rare that some attribute, even irrelevant, is never utilised,
especially in case of complex models.

This is usually solved by a feature space regularization, namely by applying a
penalty for incorporating each new attribute into the model. The strength of the
penalty is often controlled by an additional hyper-parameter which must be opti-
mised, contributing substantially to the training time. Obviously, regularisation-
based feature selection is a minimal optimal approach, as selecting two features
which are relevant but contributing the same information will have a higher cost
than selecting just one of them.

The other way is to allow potentially redundant features into the model struc-
ture, yet try to quantify their actual impact on the final performance, i.e., con-
struct a fuzzy version of a feature presence in the model. This can be implemen-
ted for instance by analysing weight values, individual split or rule performance,
even applying a kind of permutation test to estimate individual feature impact
on global model statistics. Naturally, this way one obtains only usability scores;
an additional knowledge (for instance of the expected distribution of irrelevant
attributes’ scores) is required to convert it into a feature selection. To this end,
some methods built in this spirit return just the raw score, and this way are VIM
providers rather than feature selectors. Still, this approach allows one to explore
the feature space in an all relevant sense.
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1.2.4 The Boruta method

The Boruta method is fully described in Chapter 2, here I will present it briefly.
It based on two ideas, following both the embedded method and wrapper appro-
aches. The method uses an arbitrary VIM as a base for selection; the threshold
importance is estimated as the highest importance within shadows, attributes ir-
relevant by design, made by permuting the order of values in the original features
and incorporated into the training set.

Still, the selection is done gradually, like in a wrapper; the comparison with
shadows is done iteratively, and each feature that is above threshold is assigned a
hit. For an irrelevant attribute, we assume a null hypothesis that it should receive
a hit in half of iterations; only when the number of hits of some feature becomes
significantly di�erent from this assumption an action is made: attributes with
more hits than expected are claimed confirmed, while those with less hits than
expected are claimed rejected and removed from the data set for sake of further
iterations. The algorithm stops when all remaining attributes are confirmed, or
when a pre-set limit of iterations is exhausted.

Such structure allows the method to benefit from higher stability characteristic
to a wrapper, without relaying on an optimisation of classifier error, which is
prone to overfitting and enforces minimal optimal result. The selection of the
Boruta method will be all relevant provided that the VIM used fairly scans the
entire feature space, i.e., is not using regularization; the accuracy of the selection
depends predominantly on the quality of the importance measure, mainly its
capability of analysing non-trivial, multivariate relations.

Unfortunately, the Boruta method also inherits high computational demand
characteristic to wrappers: a single run of the Boruta method requires numerous
runs of the underlying classifier, mostly on a substantially enlarged information
system, which also contributes to a high memory footprint; also each iteration
strictly depends on the result of the previous one, making the method virtually
impossible to parallelize.

1.3 Specificity of p� n data sets

The robustness of feature selection is essential in context of p � n data sets,
i.e., those for which the number of variables substantially outgrows the number
of objects [4]. To prove that, I have performed a simple case study in which a
simple minimal optimal method was applied on a data sets composed entirely
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of random noise, so that the only associations present there would be spurious.
Consequently, the result of feature selection on this data should be an empty set
of features, or at least a set which does not amplify the spurious associations
mentioned earlier.

For a sake of this experiment, feature selection is performed with a simple,
greedy hill-climbing approach, implemented as follows. First, the data are split
in half by objects into a training and testing set. The method maintains a record
of a current subset of features under consideration, Q, which is initialised to the
whole set of features. At each iteration, Q is randomly modified, yielding a new
subset, Q+. Precisely, two random features are included into Q and then 10% of
randomly selected attributes present in Q are removed.

Then, some classifier is trained on the training data clipped to Q+, and its
accuracy on the hold-out test set is collected. In case accuracy has improved
since the last iteration, Q ← Q+, and the algorithm moves to a next iteration.
This loop ends when a pre-defined number of iterations (104) is exhausted; Q is
returned as a final result.

Such algorithm is repeated over a di�erent realizations of the random input
set, so that its variance can be observed; 30 iterations is used as it is a su�cient
number to yield a stable output. The overall analysis scans data sets with various,
representative numbers of features (50, 100, 500, 1000 and 5000), cases (20, 50,
100 and 200) and using 3 di�erent classification methods, sophisticated Random
Forest and linear SVM, and a simple, not pruned decision tree.

The results from this study are presented on Figure 1.1; one can see that while
all methods in all cases yield on average a random-guessing level of accuracy on
a full data, the application of feature selection had led to a substantial overfitting.
One should notice that this happened despite the fact that the target of optimi-
sation was an accuracy on an test set, fully independent from the data used for
training. It shows that even a single number of feedback is enough for feature
selection to inflate a spurious, non-existent e�ect into a significant one, which
only di�ers from true interactions in the fact that it is not stable, and will be
replaced in a di�erent realization of input by an another, completely di�erent
accidental correlation. The e�ect is naturally most pronounced for small number
of objects, but can be sustained on a substantial level by the increase in the num-
ber of features. Consequently, it becomes clear that the robustness of the feature
selection method is a key quality for the ability of the whole analysis pipeline to
produce an useful model and meaningful insights, especially in a p� n setting;
and a quality only all relevant selection may provide.

It is obvious that spurious correlations arising at random may also happen to
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Rysunek 1.1: The result of applying a simple hill climbing wrapper feature
selection to a completely random nonsense data set. Each boxplot shows the
distribution of model accuracy on a test set over 30 replications; the results
are shown for di�erent dataset sizes and before and after feature selection was
applied. RF denotes random forest, SVM denotes support vector machine and
CT denotes not pruned classification tree. Note that even for a large number of
objects the procedure has created a seemingly significantly accurate model by
utilizing spurious correlations arisen from random fluctuations.
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be stronger than true ones, which shows that AR is not ideally reliable. Still, when
many independent analyses of the same phenomenon are considered together
during re-analyses, only all relevant selections can significantly contribute to its
full understanding.

Iconic examples of p � n problems are the results of high-throughput bio-
logical experiments, [3] especially the analysis of the connection between the
cell phenotype and the expression level of all its genes, acquired using the RNA
microarray technology.

By casting the minimal optimal problem on a ground of gene selection one
essentially gets a problem of identifying small, non-redundant set of genes which
can e�ectively be used for diagnosing some state or disease (such genes are
often called markers), which is the aim of the most works regarding this topic.
Yet the gene selection may be also performed with an all relevant method, thus
becoming a task of finding all genes required to reconstruct the mechanism of
the investigated condition, consequently a way to understand it rather than only
detect. The latter approach is truly novel because the search for relevant genes is
most often performed using only simple correlation tests.

Further discussion of p � n-related e�ects in this context is o�ered in
Chapter 4, along with a benchmark study comparing the robustness of the Boruta
method, two other wrappers, minimal optimal RFE and all relevant ACE, as well
as an example embedded method, referred to as Regularised Random Forest. I
also expand the topic of how deceiving assessment of feature selection via model
accuracy can be, and show that using self-consistency of selection is a much
more e�ective approach.

1.4 Ensemble providers of variable importance

As mentioned in Section 1.2.3, there is a deep link between VIM and embedded
feature selection. In this section, I will focus on VIMs stem from the seminar
works of Leo Breiman on the ensemble classification, in particular on the Random
Forest method [1].

The idea behind Random Forest VIM is relatively straightforward, claiming
that an attribute which is important should be more useful for model building
than its random permutation. Usefulness is assessed as a di�erence in accuracy
between a model using the original and permuted version of an investigated
attribute. While the Random Forest is a bagging ensemble, each decision tree has
a subset of objects not used in its training (called out-of-bag, OOB). Only those
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subsets are used in importance calculation, leading to a better reliability of the
final scores.

It is tempting to assume that such VIM for an irrelevant variable should follow
normal distribution with an expected value of zero and deviation estimable from
the spread over ensemble members, consequently that it can be directly used to
judge feature relevance. Unfortunately such assumption proves false in practice
[12], and so VIM should only be used to construct a feature ranking or as an
element of some more sophisticated feature selection approach.

As Random Forest is an ensemble of decision trees which has been trained
using recursive optimisation of the decision impurity, many implementations o�er
a second, alternative VIM — overall decrease of decision impurity due to all splits
performed on an investigated attribute. While the usually used impurity score is
the Gini index, it is often called Gini importance [2]. This measure is slightly
less computationally demanding than the default VIM, yet is less understood and
portable only over methods in which impurity optimisation is used for training.
In practice, scores from both sources are highly correlated; I show in Chapter 4
that in context of the Boruta method they lead to indistinguishable outcomes and
very similar computing times.

Unfortunately, the complexity of models produced by the Random Forest al-
gorithm and the overhead required to compute the VIM makes it infeasible or
impractical for certain applications, like the usage within the Boruta method ap-
plied to a huge data set. Researchers in a very di�erent domain, computer vision,
have stumbled upon a similar performance problem when trying to incorporate
Random Forest into a real-time image analysis pipelines. While working on this
problem, M. Özuysal, P. Fua and V. Lepetit proposed a simpler and more e�cient
variation of Random Forest, which they have called Random Ferns [15]. Inspired
by their work, I have decided to generalise Random Ferns method and enrich it
with VIM, so to evaluate the usefulness of that algorithm as a faster alternative to
Random Forest in a role of feature importance provider.

Random ferns classifier is an ensemble of K ferns, simple base classifiers
equivalent to a constrained decision tree. Namely, the depth of a fern (D) is
fixed and the splitting criteria on a given tree level are identical, as shown on
Figure 1.2. This way, a fern has 2D leaves and directs object x into a leaf number

F(x) = 1+
D∑
i=1

2i−1σi(x) ∈ 1..2D,

where σi(x) is an indicator variable for a result of the i-th splitting criterion.
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Rysunek 1.2: A fern of a depth D = 3 shown in a form of a decision tree
(left) and an example of a general decision tree (right). Consecutive capital letters
denote di�erent splitting criteria.

The original Random Ferns were only dealing with binary features, thus the
construction of splits was trivial. My version, rFerns, generates splitting criteria
entirely at random, i.e., randomly selects both a feature on which the split will
be done and the threshold value. Also, it builds a bagging ensemble of ferns,
i.e., each fern, say k-th, is not directly built on a whole set of objects but only
on a bag Bk, a multiset of training objects created by random sampling with
replacement of the same number of objects as in the original training set.

The leaves of ferns are populated with scores Sk(x, y), indicating the confi-
dence of a fern k that an object x falling into a certain leaf Fk(x) belongs to the
class y. The scores are generated based on a training dataset Xt = {xt1, x

t
2, . . .},

and are defined as

Sk(x, y) = log
1+ |Lk(x) ∩ Yk(y)|

C+ |Lk(x)|
− log

1+ |Yk(y)|

C+ |Bk|
, (1.1)

where Lk(x) = {xt ∈ Bk : Fk(x) = Fk(x
t)} is a multiset of training objects from

a bag in the same leaf as a given object and Yk = {xt ∈ Bk : y ∈ Y(xt)} is a
multiset of training objects from a bag that belong to a class y. Y(x) denotes the
true class of an object x; C is the number of all classes. The prediction of the
whole ensemble for an object x is

Yp(x) = argmax
y

K∑
k=1

Sk(x, y). (1.2)

Random Ferns VIM is based on the same idea as permutation VIM in Random
Forest, namely that the removal of the information carried by a certain feature
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should decrease the overall performance of the classifier proportionally to the
relevance of that feature. Similar as in Random Forest, the feature information
removal is implemented by permuting this particular feature and the performance
loss is estimated using the OOB objects; yet not as the fraction of correctly
predicted features, but the decrease of score of the correct class. Formally, the
VIM of an attribute a is defined as

Ia =
1

|A(a)|

∑
k∈A(a)

1

|B∗k|

∑
x∈B∗

k

(
Sk(x, Y(x)) − S

p
j (x, Y(x))

)
, (1.3)

where A(a) is a set of ferns that incorporate feature a and B∗k is a set of OOB
objects for a fern k. Spk(x, y) is defined as Sk(x, y), but estimated on a permuted
training set in which values of attribute a have been shu�ed.

Random Ferns and rFerns are further described in Chapter 3, while the usa-
bility of Random Ferns VIM for feature selection in a demanding, real world
application is analysed in Chapter 4. Furthermore, a simple structure of Random
Ferns should also contribute to a better prediction speed; I have decided to verify
this hypothesis in a real-world scenario, namely for the problem of classifying
musical instruments playing in a certain musical piece. I have already explored
this problem earlier [10, 8, 7]; during this research, an e�ective methodology based
on the Random Forest classifier have been formulated.

To go into more detail, this methodology assumes prediction over a small
(40ms) running window by a battery of binary classifiers, each devoted to a
detection of a single instrument; this way the method can detect few instruments
playing at the same time and does not depend on a precise segmentation of
music. The sound is converted into a set of continuous attributes using an
optimised collection of descriptors based on the mpeg-7 standard. The training is
performed on artificial, random mixes of instrument sound samples for increased
accuracy and better robustness to noise.

I have shown that even a trivial exchange of Random Forest with Random
Ferns in this methods yields substantial speed-up without significant di�erence
in accuracy. Moreover, the flexibility of Random Ferns allowed me to re-formulate
them as a multilabel classifier, which lead to even greater reduction of compu-
tational load in this problem. This work is described in two papers forming
Chapter 5.
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1.5 Conclusions

In this thesis I argue that the traditional aim of feature selection, to find a minimal
set of attributes yielding best accuracy, is not resilient to the spurious interactions
arising at random due to dataset dimensionality. Consequently, it cannot lead to
robust models and substantially limits the depth of the insight into a problem
that modelling can provide. Sill, those issues can be avoided by using all relevant
feature selection, for instance the Boruta method.

While the Boruta method proves to be e�ective in this context, it is also
computationally intensive which may potentially limit its applicability, especially
for a huge datasets. One of the solutions to this problem may be an use of a VIM
source as reliable but faster than this provided by Random Forest. To this end, I
have created a version of the Random Ferns classifier which can perform learning
on a general data sets and for which I have formulated a VIM algorithm. I show
that the use of this method allows one to execute the Boruta method on a large,
real data sets in a reasonable time.

Finally, I also show that the aforementioned Random Ferns version is e�ective
in a music information retrieval context.
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ron, and Z. Raś, editors, Foundations of Intelligent Systems, pages 1–10. Berlin
Heidelberg, 2011.

[8] M.B. Kursa, E. Kubera, W.R. Rudnicki, and A.A. Wieczorkowska. Random
Musical Bands Playing in Random Forests. In M. Szczuka, M. Kryszkiewicz,
S. Ramanna, R. Jensen, and Q. Hu, editors, Rough Sets and Current Trends in
Computing, pages 580–589. Berlin, Heidelberg, 2010.

[9] M.B. Kursa and W.R. Rudnicki. Feature Selection with the Boruta Package.
Journal of Statistical Software, 36(11), 2010.

[10] M.B. Kursa, W.R. Rudnicki, A.A. Wieczorkowska, and A. Kubik-Komar. Musical
Instruments in Random Forest. In J. Rauch, Z.W. Raś, P. Berka, and T. Elomaa,
editors, Foundations of Intelligent Systems, volume 5722 of Lecture Notes in
Computer Science, pages 281–290. Springer, Berlin, Heidelberg, 2009.

[11] R. Nilsson, J.M. Peña, J. Björkegren, and J. Tegnér. Consistent feature selection
for pattern recognition in polynomial time. Journal of Machine Learning
Research, 8:612, 2007.

[12] W. R. Rudnicki, M. Kierczak, J. Koronacki, and J. Komorowski. A statistical
method for determining importance of variables in an information system.
In S. Greco, Hata Y, S. Hirano, M. Inuiguchi, S. Miyamoto, H. S. Nguyen, and
R. Slowinski, editors, Rough Sets and Current Trends in Computing, 5th Interna-
tional Conference, RSCTC 2006, Kobe, Japan, November 6-8, 2006, Proceedings,
volume 4259 of Lecture Notes in Computer Science, pages 557–566. Springer,
2006.

[13] Y. Saeys, T. Abeel, and Y. Van de Peer. Robust Feature Selection Using
Ensemble Feature Selection Techniques. In W. Daelemans, B. Goethals, and
K. Morik, editors, Machine Learning and Knowledge Discovery in Databases,
number 5212 in Lecture Notes in Computer Science, pages 313–325. Springer
Berlin Heidelberg, 2008.

13



[14] Y. Saeys, I. Inza, and P. Larranaga. A review of feature selection techniques
in bioinformatics. Bioinformatics, 23(19):2507–2517, 2007.

[15] M. Özuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recognition
using random ferns. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 32(3):448–461, 2010.

14



Rozdział 2

The Boruta method

15



JSS Journal of Statistical Software
September 2010, Volume 36, Issue 11. http://www.jstatsoft.org/

Feature Selection with the Boruta Package

Miron B. Kursa
University of Warsaw

Witold R. Rudnicki
University of Warsaw

Abstract

This article describes a R package Boruta, implementing a novel feature selection
algorithm for finding all relevant variables. The algorithm is designed as a wrapper around
a Random Forest classification algorithm. It iteratively removes the features which are
proved by a statistical test to be less relevant than random probes. The Boruta package
provides a convenient interface to the algorithm. The short description of the algorithm
and examples of its application are presented.

Keywords: feature selection, feature ranking, random forest.

1. Introduction

Feature selection is often an important step in applications of machine learning methods
and there are good reasons for this. Modern data sets are often described with far too
many variables for practical model building. Usually most of these variables are irrelevant to
the classification, and obviously their relevance is not known in advance. There are several
disadvantages of dealing with overlarge feature sets. One is purely technical — dealing with
large feature sets slows down algorithms, takes too many resources and is simply inconvenient.
Another is even more important — many machine learning algorithms exhibit a decrease of
accuracy when the number of variables is significantly higher than optimal (Kohavi and John
1997). Therefore selection of the small (possibly minimal) feature set giving best possible
classification results is desirable for practical reasons. This problem, known as minimal-
optimal problem (Nilsson, Peña, Björkegren, and Tegnér 2007), has been intensively studied
and there are plenty of algorithms which were developed to reduce feature set to a manageable
size.

Nevertheless, this very practical goal shadows another very interesting problem — the identifi-
cation of all attributes which are in some circumstances relevant for classification, the so-called
all-relevant problem. Finding all relevant attributes, instead of only the non-redundant ones,
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may be very useful in itself. In particular, this is necessary when one is interested in under-
standing mechanisms related to the subject of interest, instead of merely building a black box
predictive model. For example, when dealing with results of gene expression measurements
in context of cancer, identification of all genes which are related to cancer is necessary for
complete understanding of the process, whereas a minimal-optimal set of genes might be more
useful as genetic markers. A good discussion outlining why finding all relevant attributes is
important is given by Nilsson et al. (2007).

The all-relevant problem of feature selection is more difficult than usual minimal-optimal one.
One reason is that we cannot rely on the classification accuracy as the criterion for selecting
the feature as important (or rejecting it as unimportant). The degradation of the classification
accuracy, upon removal of the feature from the feature set, is sufficient to declare the feature
important, but lack of this effect is not sufficient to declare it unimportant. One therefore
needs another criterion for declaring variables important or unimportant. Moreover, one
cannot use filtering methods, because the lack of direct correlation between a given feature
and the decision is not a proof that this feature is not important in conjunction with the other
features (Guyon and Elisseeff 2003). One is therefore restricted to wrapper algorithms, which
are computationally more demanding than filters.

In a wrapper method the classifier is used as a black box returning a feature ranking, therefore
one can use any classifier which can provide the ranking of features. For practical reasons, a
classifier used in this problem should be both computationally efficient and simple, possibly
without user defined parameters.

The current paper presents an implementation of the algorithm for finding all relevant features
in the information system in a R (R Development Core Team 2010) package Boruta (avail-
able from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=
Boruta). The algorithm uses a wrapper approach built around a random forest (Breiman
2001) classifier (Boruta is a god of the forest in the Slavic mythology). The algorithm is an
extension of the idea introduced by Stoppiglia, Dreyfus, Dubois, and Oussar (2003) to deter-
mine relevance by comparing the relevance of the real features to that of the random probes.
Originally this idea was proposed in the context of filtering, whereas here it is used in the
wrapper algorithm. In the remaining sections of this article firstly a short description of the
algorithm is given, followed by the examples of its application on a real-world and artificial
data set.

2. Boruta algorithm

Boruta algorithm is a wrapper built around the random forest classification algorithm im-
plemented in the R package randomForest (Liaw and Wiener 2002). The random forest
classification algorithm is relatively quick, can usually be run without tuning of parameters
and it gives a numerical estimate of the feature importance. It is an ensemble method in
which classification is performed by voting of multiple unbiased weak classifiers — decision
trees. These trees are independently developed on different bagging samples of the training
set. The importance measure of an attribute is obtained as the loss of accuracy of classifica-
tion caused by the random permutation of attribute values between objects. It is computed
separately for all trees in the forest which use a given attribute for classification. Then the
average and standard deviation of the accuracy loss are computed. Alternatively, the Z score
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computed by dividing the average loss by its standard deviation can be used as the impor-
tance measure. Unfortunately the Z score is not directly related to the statistical significance
of the feature importance returned by the random forest algorithm, since its distribution is
not N(0, 1) (Rudnicki, Kierczak, Koronacki, and Komorowski 2006). Nevertheless, in Boruta
we use Z score as the importance measure since it takes into account the fluctuations of the
mean accuracy loss among trees in the forest.

Since we cannot use Z score directly to measure importance, we need some external reference
to decide whether the importance of any given attribute is significant, that is, whether it
is discernible from importance which may arise from random fluctuations. To this end we
have extended the information system with attributes that are random by design. For each
attribute we create a corresponding ‘shadow’ attribute, whose values are obtained by shuffling
values of the original attribute across objects. We then perform a classification using all
attributes of this extended system and compute the importance of all attributes.

The importance of a shadow attribute can be nonzero only due to random fluctuations. Thus
the set of importances of shadow attributes is used as a reference for deciding which attributes
are truly important.

The importance measure itself varies due to stochasticity of the random forest classifier. Ad-
ditionally it is sensitive to the presence of non important attributes in the information system
(also the shadow ones). Moreover it is dependent on the particular realization of shadow
attributes. Therefore we need to repeat the re-shuffling procedure to obtain statistically valid
results.

In short, Boruta is based on the same idea which forms the foundation of the random forest
classifier, namely, that by adding randomness to the system and collecting results from the
ensemble of randomized samples one can reduce the misleading impact of random fluctuations
and correlations. Here, this extra randomness shall provide us with a clearer view of which
attributes are really important.

The Boruta algorithm consists of following steps:

1. Extend the information system by adding copies of all variables (the information system
is always extended by at least 5 shadow attributes, even if the number of attributes in
the original set is lower than 5).

2. Shuffle the added attributes to remove their correlations with the response.

3. Run a random forest classifier on the extended information system and gather the
Z scores computed.

4. Find the maximum Z score among shadow attributes (MZSA), and then assign a hit to
every attribute that scored better than MZSA.

5. For each attribute with undetermined importance perform a two-sided test of equality
with the MZSA.

6. Deem the attributes which have importance significantly lower than MZSA as ‘unim-
portant’ and permanently remove them from the information system.

7. Deem the attributes which have importance significantly higher than MZSA as ‘impor-
tant’.
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8. Remove all shadow attributes.

9. Repeat the procedure until the importance is assigned for all the attributes, or the
algorithm has reached the previously set limit of the random forest runs.

In practice this algorithm is preceded with three start-up rounds, with less restrictive impor-
tance criteria. The startup rounds are introduced to cope with high fluctuations of Z scores
when the number of attributes is large at the beginning of the procedure. During these ini-
tial rounds, attributes are compared respectively to the fifth, third and second best shadow
attribute; the test for rejection is performed only at the end of each initial round, while the
test for confirmation is not performed at all.

The time complexity of the procedure described above in realistic cases is approximately
O(P ·N), where P and N are respectively the numbers of attributes and objects. That may
be time consuming for large data sets; still, this effort is essential to produce a statistically
significant selection of relevant features.

To illustrate the scaling properties of Boruta algorithm we performed following experiment
using Madalon data set. It is an artificial data set, which was one of the NIPS2003 problems.
(Guyon, Gunn, Ben-Hur, and Dror 2005) The data set contains 2000 objects described with
500 attributes. We generated subsamples of Madelon set containing 250, 500, 750, . . . , 2000
objects. Then for each subsample we created seven extended sets containing respectively 500,
1000, . . . , 3500 superficial attributes obtained as a uniform random noise. Then we performed
standard feature selection with Boruta on each of 64 test sets and measured the execution
time. The results of the experiment are displayed in Figure 1. One may see almost perfect
linear scaling for the increasing number of attributes. On the other hand execution times
grow faster than the number of objects, but the difference is not very big and it seems to
converge to linear scaling for large number of objects.

The timings are reported in CPU hours. Using the values from the largest data set, one can
estimate the time required to complete Boruta run on a single core of modern CPU to be one
hour per one million (attribute × objects).

One should notice that in many cases, in particular for a biomedical problems, the com-
putation time is a small fraction of the time required to collect the data. One should also
note, that the prime reason for running the ’all-relevant’ feature selection algorithm is not
the reduction of computation time (altough it can be achieved if the data set pruned from
non-informative attributes will be subsequently analysed numerous times). The main reason
is to find all attributes for which their correlation with decision is higher than that of the ran-
dom attributes. Moreover, while Boruta is generally a sequential algorithm, the underlying
random forest classifier is a trivially parallel task and thus Boruta can be distributed even
over a hundreds of cores, provided that a parallel version of the random forest algorithm is
used.

3. Using the Boruta package

The Boruta algorithm is implemented in Boruta package.

R> library("Boruta")
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Figure 1: The scaling properties of Boruta with respect to the number of attributes (left) and
number of objects (right). Each line on the left panel corresponds to the set with identical
number of objects and on the right panel it corresponds to the set with identical number of
attributes. One may notice that scaling is linear with respect to number of attributes and
not far from linear with respect to the number of objects.

The ozone data from UCI Machine Learning Repository (Asuncion and Newman 2007) and
available in mlbench package (Leisch and Dimitriadou 2010) is used as the first example:

R> library("mlbench")

R> data("Ozone")

R> Ozone <- na.omit(Ozone)

The algorithm is performed by the Boruta function. For its arguments, one should specify the
model, either using a formula or predictor data frame with a response vector; the confidence
level (which is recommended to be left default) and the maximal number of random forest
runs.

One can also provide values of mtry and ntree parameters, which will be passed to
randomForest function. Normally default randomForest parameters are used, they will be
sufficient in most cases since random forest performance has rather a weak dependence on its
parameters. If it is not the case, one should try to find mtry and ntree for which random
forest classifier achieves convergence at minimal value of the OOB error.

Setting doTrace argument to 1 or 2 makes Boruta report the progress of the process; version
2 is a little more verbose, namely it shows attribute decisions as soon as they are cleared.

R> set.seed(1)

R> Boruta.Ozone <- Boruta(V4 ~ ., data = Ozone, doTrace = 2, ntree = 500)
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Initial round 1: ..........

1 attributes rejected after this test: V2

Initial round 2: ..........

1 attributes rejected after this test: V3

Initial round 3: ..........

Final round: ..........

8 attributes confirmed after this test: V1 V5 V7 V8 V9 V10 V11 V12

....

1 attributes confirmed after this test: V13

....

1 attributes rejected after this test: V6

R> Boruta.Ozone

Boruta performed 48 randomForest runs in 2.540633 mins.

9 attributes confirmed important: V1 V5 V7 V8 V9 V10 V11 V12 V13

3 attributes confirmed unimportant: V2 V3 V6

The Ozone set consists of 12 attributes; three of them are rejected, two after the initial
round 2, and one during the final round. The remaining attributes are indicated as confirmed.
Figure 2 shows the Z scores variability among attributes during the Boruta run. It can be
easily generated using the plot method of Boruta object:

R> plot(Boruta.Ozone)

One can see that Z score of the most important shadow attribute clearly separates important
and non important attributes.

Moreover, it is clearly evident that attributes which consistently receive high importance
scores in the individual random forest runs are selected as important. On the other hand, one
can observe quite sizeable variability of individual scores. The highest score of a random at-
tribute in a single run is higher than the highest importance score of two important attributes,
and the lowest importance score of five important attributes. It clearly shows that the results
of Boruta are generally more stable than those produced by feature selection methods based
on a single random forest run, and this is why several iterations are required.

Due to the fact that the number of random forest runs during Boruta is limited by the maxRuns
argument, the calculation can be forced to stop prematurely, when there are still attributes
which are judged neither to be confirmed nor rejected — and thus finally marked tentative.
For instance1:

R> set.seed(1)

R> Boruta.Short <- Boruta(V4 ~ ., data = Ozone, maxRuns = 12)

1The number of steps and the seed were intentionally selected to show this effect in the familiar data
set. Due to slight differences between Windows and Linux versions of randomForest package, which probably
arise due to compilation, the actual results of the procedure described above might differ slightly from the
results shown here (these were obtained in R version 2.10.0 and randomForest version 4.5-33 on x86-64 Linux
workstation).



Journal of Statistical Software 7

●

●●
●●

●●
●

●
ra

nd
M

in V
2

V
3

ra
nd

M
ea

n

V
6

ra
nd

M
ax V
5

V
13

V
10 V

7

V
11 V

1

V
12 V

8

V
9

−
5

0
5

10
15

20

Attributes

Z
−

S
co

re
s

Figure 2: Boruta result plot for ozone data. Blue boxplots correspond to minimal, average
and maximum Z score of a shadow attribute. Red and green boxplots represent Z scores of
respectively rejected and confirmed attributes.

R> Boruta.Short

Boruta performed 42 randomForest runs in 2.3612 mins.

8 attributes confirmed important: V1 V5 V7 V8 V9 V10 V11 V12

2 attributes confirmed unimportant: V2 V3

2 tentative attributes left: V6 V13

One should consider increasing the maxRuns parameter if tentative attributes are left. Nev-
ertheless, there may be attributes with importance so close to MZSA that Boruta won’t be
able to make a decision with the desired confidence in realistic number of random forest runs.
Therefore Boruta package contains a TentativeRoughFix function which can be used to fill
missing decisions by simple comparison of the median attribute Z score with the median
Z score of the most important shadow attribute:

R> TentativeRoughFix(Boruta.Short)

Boruta performed 42 randomForest runs in 2.3612 mins.

Tentatives roughfixed over 12 last randomForest runs.

9 attributes confirmed important: V1 V5 V7 V8 V9 V10 V11 V12 V13

3 attributes confirmed unimportant: V2 V3 V6
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One can obviously treat such attributes manually.

For easy transfer of Boruta results to other classifiers and tools, the Boruta package con-
tains functions that extract the results and convert them into a convenient form. The
getConfirmedFormula and getNonRejectedFormula create a formula object that defines
a model based respectively only on confirmed or on confirmed and tentative attributes:

R> getConfirmedFormula(Boruta.Ozone)

V4 ~ V1 + V5 + V7 + V8 + V9 + V10 + V11 + V12 + V13

The attStats function creates a data frame containing each attribute’s Z score statistics and
the fraction of random forest runs in which this attribute was more important than the most
important shadow one:

R> attStats(Boruta.Ozone)

meanZ medianZ minZ maxZ normHits decision

V1 13.3911279 13.6373356 10.505555 15.1610346 1.0000000 Confirmed

V2 -2.0475252 -1.5112547 -4.741706 -0.6750894 0.0000000 Rejected

V3 -1.2097874 -1.4335204 -2.202290 0.5520193 0.0000000 Rejected

V5 6.9889240 6.8839769 5.552918 8.8074357 0.9166667 Confirmed

V6 0.5866514 0.6179196 -1.491181 2.2507610 0.1250000 Rejected

V7 9.4355872 9.8092537 6.244625 12.0112148 0.9791667 Confirmed

V8 17.3302697 17.1651707 16.186920 18.8550455 1.0000000 Confirmed

V9 20.3332547 20.2826539 18.530345 21.8499295 1.0000000 Confirmed

V10 8.7124127 8.9674981 6.391154 10.7939586 0.9791667 Confirmed

V11 10.0848916 10.4122110 6.179540 12.8348468 0.9583333 Confirmed

V12 13.9761395 14.1462836 11.335510 15.5130497 1.0000000 Confirmed

V13 7.1691008 7.3218887 4.561458 9.0149381 0.9166667 Confirmed

4. Example: Madelon data

Madelon is an artificial data set, which was one of the NIPS2003 problems. (Guyon et al.
2005) The data set contains 2000 objects corresponding to points located in 32 vertices of a
5-dimensional hypercube. Each vertex is randomly assigned one of two classes: −1 or +1,
and the decision of each object is a class of its vertex. 500 attributes are constructed in the
following way: 5 of them are randomly jittered coordinates of points; 15 others are random
linear combinations of the first 5; finally the rest of the system is a uniform random noise.
The task is to extract 20 important attributes from the system.

Madelon data is available from UCI Machine Learning Repository (Asuncion and Newman
2007) (loading of this data set may take several minutes):

R> root <-

+ "http://archive.ics.uci.edu/ml/machine-learning-databases/madelon/MADELON/"

R> predictors <- read.table(paste(root, "madelon_train.data", sep = ""))

R> decision <- read.table(paste(root, "madelon_train.labels", sep = ""))

R> Madelon <- data.frame(predictors, decision = factor(decision[, 1]))
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Figure 3: Z score evolution during Boruta run. Green lines correspond to confirmed at-
tributes, red to rejected ones and blue to respectively minimal, average and maximal shadow
attribute importance. Gray lines separate rounds.

Running Boruta (execution may take a few hours):

R> set.seed(7777)

R> Boruta.Madelon <- Boruta(decision ~ ., data = Madelon)

R> Boruta.Madelon

Boruta performed 51 randomForest runs in 1.861855 hours.

20 attributes confirmed important: V29 V49 V65 V106 V129 V154 V242

V282 V319 V337 V339 V379 V434 V443 V452 V454 V456 V473 V476 V494

480 attributes confirmed unimportant: V1 V2 V3 V4 V5 V6 V7 V8 V9

V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28

(the rest of the output was omitted)

One can see that we have obtained 20 confirmed attributes. The plotZScore function visu-
alizes the evolution of attributes’ Z scores during a Boruta run:

R> plotZHistory(Boruta.Madelon)
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The result can be seen on Figure 3. One may notice that consecutive removal of random
noise increases the Z score of important attributes and improves their separation from the
unimportant ones; one of them is even ‘pulled’ out of the group of unimportant attributes just
after the first initial round. Also, on certain occasions, unimportant attributes may achieve
a higher Z score than the most important shadow attribute, and this is the reason why we
need multiple random forest runs to arrive at a statistically significant decision.

The reduction of attribute number is considerable (96%). One can expect that the increase
of accuracy of a random forest classifier can be obtained on the reduced data set due to the
elimination of noise.

It is known that feature selection procedure can introduce significant bias in resulting models.
For example Ambroise and McLachlan (2002) have shown that, with the help of feature
selection procedure, one can obtain a classifier, which is using only non-informative attributes
and is 100% accurate on the training set. Obviously such classifier is useless and is returning
random answers on the test set.

Therefore it is necessary to check whether Boruta is resistant to this type of error. It is
achieved with the help of cross-validation procedure. The part of the data is set aside as a
test set. Then the complete feature selection procedure is performed on the remaining data
set – a training set. Finally the classifier obtained on the training set is used to classify objects
from the test set to obtain classification error. The procedure is repeated several times, to
obtain estimate of the variability of results.

Boruta performs several random forest runs to obtain statistically significant division between
important and irrelevant attributes. One should expect that ranking obtained in the single
RF run should be quite similar to that obtained from Boruta. We can check if this is the
case, taking advantage of the cross-validation procedure described above.

Madelon data was split ten times into train and test sets containing respectively 90% and
10% of objects. Than, Boruta was run on each train set. Also, three random forest classifiers
were generated on each train set: first using all attributes, the second one using only these
attributes that were selected by Boruta, and the third one using the same number of attributes
as found by Boruta, but selected as a top important by the first random forest trained on all
attributes. Finally, the OOB error estimate on a train set and the error on a test set for all
classifiers was collected.

The results are shown in the Table 1. One can see that both the OOB error as well as the
error on the test set is consistently smaller for random forest runs performed on the reduced
set of attributes. This observation is verified by a t test:

R> t.test(CV.Boruta$"Test conf.", CV.Boruta$"Test all", paired = TRUE)

Paired t-test

data: CV.Boruta$"Test conf." and CV.Boruta$"Test all"

t = -24.2727, df = 9, p-value = 1.636e-09

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.198962 -0.165038

sample estimates:
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OOB all OOB conf. OOB RF Test all Test conf. Test RF Agreement

1 0.32 0.11 0.11 0.27 0.12 0.11 0.91
2 0.29 0.11 0.11 0.30 0.14 0.13 0.83
3 0.29 0.11 0.11 0.34 0.14 0.14 0.90
4 0.32 0.11 0.12 0.24 0.07 0.07 1.00
5 0.30 0.11 0.11 0.27 0.12 0.12 0.83
6 0.29 0.12 0.11 0.26 0.07 0.07 1.00
7 0.30 0.11 0.11 0.32 0.12 0.12 1.00
8 0.30 0.12 0.11 0.28 0.08 0.08 1.00
9 0.30 0.11 0.11 0.32 0.10 0.12 0.91

10 0.30 0.11 0.11 0.28 0.08 0.10 1.00

Table 1: Cross-validation of the error reduction due to limiting the information system to
attributes claimed confirmed by Boruta.

mean of the differences

-0.182

As one may expect, the feature ranking provided by plain random forest agrees fairly well
with Boruta results. This explains why the simple heuristic feature selection procedure in
random forest, namely selecting a dozen or so top scoring attributes, works well for obtaining
good classification results. Nevertheless, this will not necessarily be a case when dealing with
larger and more complex sets, where stochastic effects increase the variability of the random
forest importance measure and thus destabilize the feature ranking.

One should note that the Boruta is a heuristic procedure designed to find all relevant at-
tributes, including weakly relevant attributes. Following Nilsson et al. (2007), we say that
attribute is weakly important when one can find a subset of attributes among which this
attribute is not redundant. The heuristic used in Boruta implies that the attributes which
are significantly correlated with the decision variables are relevant, and the significance here
means that correlation is higher than that of the randomly generated attributes. Obviously
the set of all relevant attributes may contain highly correlated but still redundant variables.
Also, the correlation of the attribute with the decision does not imply causative relation; it
may arise when both decision attribute and descriptive attribute are independently corre-
lated with some other variable. An illustrative example of such situation was given by Strobl,
Hothorn, and Zeileis (2009). Users interested in finding a set of highly relevant and uncor-
related attributes within the result returned by Boruta may use for example package party
(Strobl et al. 2009), caret (Kuhn 2008; Kuhn, Wing, Weston, Williams, Keefer, and Engel-
hardt 2010), varSelRF (Diaz-Uriarte 2007, 2010) or FSelector (Romanski 2009) for further
refinement.

5. Summary

We have developed Boruta, a novel random forest based feature selection method, which
provides unbiased and stable selection of important and non-important attributes from an
information system. Due to the iterative construction, our method can deal both with the
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fluctuating nature of a random forest importance measure and the interactions between at-
tributes. We have also demonstrated its usefulness on an artificial data set. The method is
available as an R package.
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Abstract

Random ferns is a very simple yet powerful classification method originally introduced
for specific computer vision tasks. In this paper, I show that this algorithm may be
considered as a constrained decision tree ensemble and use this interpretation to introduce
a series of modifications allowing one to use Random ferns in a general machine learning
problems. Moreover, I extend the method with internal error approximation and attribute
importance measure based on a corresponding features of the Random forest algorithm.

I also present the R package rFerns containing an efficient implementation of such
modified version of Random ferns.

Keywords: machine learning, Random ferns, classification, R.

1. Introduction

Random ferns is a machine learning algorithm proposed by Özuysal, Fua, and Lepetit (2007)
for matching same elements between two images of the same scene, allowing one to recognise
certain objects or trace them on videos. The original motivation behind this method was
to create a simple and efficient algorithm by extending the Näıve Bayes classifier; still the
authors acknowledged its strong connection to the decision tree ensembles like the Random
forest (Breiman 2001) algorithm.

Since introduction, Random ferns have been applied in numerous computer vision applica-
tion, like image recognition (Bosch, Zisserman, and Munoz 2007), action recognition (Oshin,
Gilbert, Illingworth, and Bowden 2009) or augmented reality (Wagner, Reitmayr, Mulloni,
Drummond, and Schmalstieg 2010). However, it has not gathered attention outside this field;
thus, this work aims to bring this algorithm to a much wider spectrum of applications. In
order to do that, I propose a generalised version of the algorithm, implemented as an R (R
Development Core Team 2010) package rFerns.
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The paper is organised as follows. Section 2 briefly recalls the Bayesian derivation of the
original version of Random ferns, presents the decision tree ensemble interpretation of the al-
gorithm and lists modifications leading to the rFerns variant. Next, in the Section 3, I present
the rFerns package and discuss the Random ferns incarnation of a two important features of
the Random forest, internal error approximation and attribute importance measure. Section 4
contains the assessment of rFerns in a several well known machine learning problems. The
results and computational performance of the algorithm are compared with Random forest
implementation contained in the randomForest package (Liaw and Wiener 2002). The paper
is concluded in the Section 5.

2. Random ferns algorithm

Following the original derivation, let’s consider a classification problem based on an dataset
(Xi,j , Yi) with p binary attributes X·,j and n objects Xi,· equally distributed over C dis-
joint classes (those assumptions will be relaxed in the further part the paper). The generic
Maximum a Posteriori (MAP) Bayes classifier classifies the object Xi,· as

Y p
i = arg max

y
P (Yi = y|Xi,1, Xi,2, . . . , Xi,p); (1)

according to the Bayes theorem, it is equal to

Y p
i = arg max

y
P (Xi,1, Xi,2, . . . , Xi,p|Yi = y). (2)

Although this formula is strict, it is not practically usable due to a huge (2p) number of
possible Xi,· value combinations, most likely much larger than available number of training
objects n and thus making reliable estimation of probability impossible.

The simplest solution to this problem is to assume complete independence of the attributes,
what brings us to the Näıve Bayes classification where

Y p
i = arg max

y

∏

j

P (Xi,j |Yi = y). (3)

The original Random ferns classifier (Özuysal et al. 2007) is an in-between solution defining a
series of K random selections of D features (~jk ∈ {1..P}D, k = 1, . . . ,K) treated using a corre-
sponding series of simple exact classifiers (ferns), which predictions are assumed independent
and thus combined in a näıve way, i.e.,

Y p
i = arg max

y

∏

k

P (Xi,~jk
|Yi = y), (4)

where Xi,~jk
denotes Xi,j1

k
, Xi,j2

k
, . . . , Xi,jD

k
. This way one can still represent more complex

interactions in the data, possibly achieving better accuracy than in purely näıve case. On the
other hand, such defined fern is still very simple and manageable for a range of D values.

The training of the Random ferns classifier is performed through estimating probabilities
P (Xi,~jk

|Yi = y) with empirical probabilities calculated from a training dataset (Xt
i,j , Y

t
i ) of a

size nt× p. Namely, one uses frequencies of each class in each subspace of the attribute space
defined by ~jk assuming a Dirichlet prior, i.e.,

P̂ (Xi,~jk
|Yi = y) =

1

#Li,~jk + C

(
1 + #

{
m ∈ Li,~jk : Y t

m = y
})

, (5)
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Figure 1: D = 3 fern shown in a form of a decision tree (left) and an example of a general
decision tree (right). Consecutive letters mark different splitting criteria.

where # denotes the number of elements in a set and

Li,~jk =
{
l ∈ {1..nt} : ∀d∈1..DX

t
l,jd

k
= Xi,jd

k

}
(6)

is the set of training objects in the same leaf of fern k as object i.

2.1. Ensemble of decision trees interpretation

A fern implements a partition of feature space into regions corresponding to all possible
combinations of values of attributes ~jk. This way it is equivalent to a binary decision tree of
a depth D for which all splitting criteria on a tree level d are identical and split according
to an attribute of index jd, as shown on the Figure 1. Consequently, because the attribute
subsets~jk are generated randomly, the whole Random ferns classifier is equivalent to a random
subspace (Ho 1998) ensemble of K constrained decision trees.

Most ensemble classifiers combine predictions of its members through majority voting; it is
also the case for Random ferns when one consideres scores Si,~jk(y) defined as

Si,~jk(y) = log P̂ (Xi,~jk
|Yi = y) + logC. (7)

This mapping effectively converts the MAP rule into majority voting

Y p
i = arg max

y

∑

k

Si,~jk(y). (8)

Addition of logC causes that a fern that has no knowledge about the probability of classes
for some object will give it a vector of scores equal zero.

2.2. Introduction of bagging

Using the ensemble of trees interpretation, in the rFerns implementation I was able to ad-
ditionally combine random subspace with bagging, as it was shown to improve the accuracy
of a similar ensemble classifiers (Friedman 2002; Breiman 2001; Panov and Džeroski 2007).
This method restricts training of each fern to bag, a collection of objects selected randomly
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by sampling with replacement nt objects from an original training dataset, thus changing
Equation 6 into

Li,~jk =
{
l ∈ Bk : ∀d∈1..DX

t
l,jd

k
= Xi,jd

k

}
(9)

where Bk is a vector of indexes of the objects in the k-th fern’s bag.

In such a set-up, the probability that a certain object won’t be included in a bag is (1−1/nt)n
t
,

thus each fern has a set of on average nt(1− 1/nt)n
t

(nte−1 ≈ 0.368nt for a large nt) objects
which were not used to build it. They form out-of-bag (OOB) subsets which will be denoted
here as B∗k.

2.3. Generalisation beyond binary attributes

As the original version of the Random ferns algorithm was formulated for datasets containing
only binary attributes, the rFerns implementation had to introduce a way to also cope with
continuous and categorical ones. In the Bayesian classification view, this issue should be
resolved by postulating and fitting some probability distribution over each attribute. How-
ever, this approach introduces additional assumptions and possible problems connected to the
reliability of fitting.

In the decision tree ensemble view, each non-terminal tree node maps certain attribute to a
binary split using some criterion function, which is usually a greater-than comparison with
some threshold value ξ in case of continuous attributes (i.e., fξ : x → (x > ξ)) and test
whether it belongs to some subset of possible categories Ξ in case of categorical attributes
(i.e., fΞ : x→ (x ∈ Ξ)).

In most Classification And Regression Trees (CART) and CART-based algorithms (including
Random forest) the ξ and Ξ parameters of those functions are greedily optimised based on the
training data to maximise the ‘effectiveness’ of the split, usually measured by the information
gain in decision it provides. However, in order to retain the stochastic nature of Random ferns
the rFerns implementation generates them at random, similar to the Extra-trees algorithm
by Geurts, Ernst, and Wehenkel (2006). Namely, when a continuous attribute is selected for
creation of a fern level a threshold ξ is generated as a mean of two randomly selected values
of it. Correspondingly, for a categorical attribute Ξ is set to a random one of all possible
subsets of all categories of this attribute, except of two containing respectively all and none
of the categories.

Obviously, completely random generation of splits can be less effective than optimising them
in terms of the accuracy of a final classifier; the gains in computational efficiency may also by
minor due to a fact that it does not change the complexity of the split building. However, this
way the classifier can escape certain overfitting scenarios and unveil more subtle interaction.
This and the more even usage of attributes may be beneficial both for the robustness of the
model and the accuracy of the importance measure it provides.

While in this generalisation the scores depend on thresholds ξ and Ξ, from now on I will
denote them as Si,Fk

where Fk contains ~jk and necessary thresholds.

2.4. Unbalanced classes case

When the distribution of the classes in the training decision vector becomes less uniform, its
contribution to the final predictions of a Bayes classifier increases, biasing learning towards the
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recognition of larger classes. Moreover, the imbalance may reach the point where it prevails
the impact of attributes, making the whole classifier always vote on a largest class.

The original Random ferns algorithm was developed under assumption that the classes are
equal, however such a case is very rare in a general machine learning and so the rFerns
implementation has to cope with that problem as well. Thus, it is internally enforcing balance
of class’ impacts by dividing the counts of objects of a certain class in a current leaf by the
fraction of objects of that class in the bag of the current fern — this is equivalent to a standard
procedure of oversampling under-represented classes so that the amounts of objects of each
class are equal within bag.

Obviously there exist exceptional use cases when such a heuristic may be undesired, for
instance when the cost of misclassification is not uniform. Then, it might be reversed or
replaced with other prior by modifying the raw scores before the voting is applied.

3. rFerns package

The training of a Random ferns model is performed by the rFerns function; it requires two
parameters, the number of ferns K and the depth of each one D, which should be passed via
ferns and depth arguments respectively. If not given, K = 1000 and D = 5 are assumed.
The current version of the package supports depths in range 1..15. The training set can be
given either explicitly by passing predictor data frame and the decision vector, or via usual
formula interface:

R> model <- rFerns(Species ~ ., data = iris, ferns = 1000, depth = 5)

R> model <- rFerns(iris[, -5], iris[, 5])

The results is a S3 object of a class rFerns, containing the ferns’ structures Fk and fitted
scores’ vectors for all leaves.

To classify new data, one should use the predict method of the rFerns class. It will pull the
dataset down each fern assigning each object with score vector from the leaf it ended in, sum
the scores over the ensemble and finds the predicted classes.

For instance, let’s set aside the even objects of iris data as a test set and train the model
on the rest:

R> trainSet <- iris[c(TRUE, FALSE), ]

R> testSet <- iris[c(FALSE, TRUE), ]

R> model <- rFerns(Species ~ ., data = trainSet)

Then, the confusion matrix of predictions on a test set can be obtained by:

R> table(Prediction = predict(model, testSet), Truth = testSet[["Species"]])

Truth

Prediction setosa versicolor virginica

setosa 25 0 0

versicolor 0 24 1

virginica 0 1 24
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Adding scores=TRUE to the predict call makes it return raw class scores. The following code
will extract scores of first three objects of each class in the test set:

R> testScores <- predict(model, testSet, scores = TRUE)

R> cbind(testScores, trueClass = testSet[["Species"]])[c(1:3, 26:28,

+ 51:53), ]

setosa versicolor virginica trueClass

1 1.74543537 0.2915608 -0.3682728 setosa

2 1.80431460 0.1976254 -0.4093910 setosa

3 1.76267113 0.2315390 -0.3745874 setosa

26 -0.21145596 1.4080100 0.8778824 versicolor

27 0.06618366 1.6927377 0.3457880 versicolor

28 -0.07718183 1.6179364 0.4912833 versicolor

51 -0.45516039 1.0327408 1.4675218 virginica

52 -0.57120522 0.8661121 1.5842504 virginica

53 -0.46393543 0.4538223 1.7992854 virginica

3.1. Error estimate

By design, machine learning methods usually produce a highly biased results when tested on
the training data; to this end, one needs to perform external validation to reliably assess its
accuracy. However, in a bagging ensemble we can perform a sort of internal cross-validation
in which each train set object prediction is built by voting of only those of base classifiers
which did not used this object for their training, i.e., which had it in their OOB subsets. This
idea has been originally used in the Random forest algorithm, and can be trivially transferred
on any bagging ensemble, including rFerns version of Random ferns. In this case the OOB
predictions Y ∗i will be given by

Y ∗i = arg max
y

∑

k:i∈B∗
k

Si,Fk
(y) (10)

and can be compared with the true classes Yi to calculate the OOB approximation of the
overall error.

On the R level, OOB predictions are always calculated when training an rFerns model; when
its corresponding object is printed, the overall OOB error and confusion matrix are shown,
along with the training parameters:

R> print(model)

Forest of 1000 ferns of a depth 5.

OOB error 5.33%; OOB confusion matrix:

True

Predicted setosa versicolor virginica

setosa 25 0 0

versicolor 0 24 3

virginica 0 1 22
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One can also access raw OOB predictions and scores by executing the predict method without
providing new data to be classified:

R> oobPreds <- predict(model)

R> oobScores <- predict(model, scores = TRUE)

R> cbind(oobScores, oobClass = oobPreds, trueClass = trainSet$Species)[c(1:3,

+ 26:28, 51:53), ]

setosa versicolor virginica oobClass trueClass

1 670.50335 -15.27274 -210.0263 setosa setosa

2 678.36040 22.75157 -133.4086 setosa setosa

3 734.39882 -21.79690 -218.4694 setosa setosa

26 -11.56696 478.05559 342.3010 versicolor versicolor

27 -140.63475 479.39569 458.0692 versicolor versicolor

28 -157.66986 509.43238 346.3931 versicolor versicolor

51 -59.63600 160.36110 600.2247 virginica virginica

52 -158.97148 189.38453 647.9649 virginica virginica

53 -192.84502 188.11138 627.4730 virginica virginica

Note that for a very small values of K some objects may manage to appear in every bag and
thus get an undefined OOB prediction.

3.2. Importance measure

In addition to the error approximation, Random forest also uses the OOB objects to calculate
the attribute importance. It is defined as a difference in the accuracy on the original OOB
subset and OOB subset with the values of a certain attribute permuted, averaged over all
trees in the ensemble.

Such a measure can also be grafted on any bagging ensemble, including rFerns; moreover, one
can make use of scores and replace the difference in accuracy with mean difference in score of
the correct class, this way extracting importance information even from the OOB objects that
are misclassified. Precisely, such defined Random ferns importance of an attribute a equals

Ia =
1

#A(a)

∑

k∈A(a)

1

#B∗k

∑

i∈B∗
k

(
Si,Fk

(Yi)− Spi,Fk
(Yi)

)
, (11)

where A(a) = {k : a ∈ ~jk} is a set of ferns that use attribute a and Spi,Fk
is Si,Fk

estimated

on a permuted Xt in which values of attribute a have been shuffled.

One should also note that the fully stochastic nature of selecting attributes for building
individual ferns guarantees that the attribute space is evenly sampled and thus all, even
marginally relevant attributes are included in the model for a large enough ensemble.

Calculation of the variable importance can be triggered by adding importance=TRUE to the
call to rFerns; then, the necessary calculations will be performed during the training process
and the obtained importance scores placed into importance element of the rFerns object.

R> model <- rFerns(Species ~ ., data = iris, importance = TRUE)

R> model[["importance"]]
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MeanScoreLoss SdScoreLoss

Sepal.Length 0.1748790 0.006270534

Sepal.Width 0.1578244 0.005121205

Petal.Length 0.3195912 0.010456676

Petal.Width 0.2796645 0.010555186

4. Assessment

I have tested rFerns on 7 classification problems from the R’s mlbench (Leisch and Dimitriadou
2010) package, namely DNA (dna), Ionosphere (ion), Pima Indian Diabetes (pim), Satellite
(sat), Sonar (son), Vehicle (veh) and Vowel (vow).

4.1. Accuracy

Set dna ion pim sat

Set size 3186× 180 351× 34 392× 8 6435× 36

O
O

B
[%

] Ferns 5 6.03± 0.18 7.32± 0.23 24.69± 0.48 18.40± 0.13
Ferns 10 6.56± 0.11 7.35± 0.22 27.93± 0.30 15.46± 0.06
Ferns Db 6.03± 0.18 7.07± 0.40 23.95± 0.31 14.33± 0.05

Forest 4.13± 0.09 6.55± 0.00 21.76± 0.36 7.87± 0.06

C
V

[%
] Ferns 5 6.52± 1.66 7.78± 3.41 24.50± 6.75 18.60± 1.32

Ferns 10 6.96± 1.30 8.61± 3.81 29.50± 6.10 15.92± 1.30
Ferns Db 5.92± 1.41 5.00± 3.88 24.00± 6.99 14.32± 0.88

Forest 4.20± 0.99 6.11± 4.68 21.00± 3.94 7.75± 1.54

Db 5 3 7 15

Set son veh vow

Set size 208× 60 846× 18 990× 10

O
O

B
[%

] Ferns 5 19.71± 0.60 31.17± 0.49 13.70± 0.52
Ferns 10 14.18± 1.12 29.52± 0.23 4.42± 0.26
Ferns Db 13.13± 0.64 28.83± 0.49 2.41± 0.19

Forest 15.38± 0.64 25.48± 0.18 2.13± 0.11

C
V

[%
] Ferns 5 22.38± 6.37 32.94± 4.15 17.07± 3.10

Ferns 10 14.29± 5.94 29.41± 7.48 5.25± 1.64
Ferns Db 18.10± 4.92 28.71± 5.69 2.22± 1.77

Forest 19.52± 8.53 22.35± 4.33 2.22± 1.70

Db 12 15 15

Table 1: OOB and cross-validation error of the Random ferns classifier for 5000 ferns of
a depth equal to 5, 10 and optimal over {1..15}, Db. Those results are compared to the
accuracy of a Random forest classifier composed of 5000 trees. Prediction errors are given as
a mean and standard deviation over 10 repetitions of training for OOB and 10 iterations for
cross-validation.

For each of the testing sets, I have built 10 Random ferns models for each of the depths in
range {1..15} and number of ferns equal to 5000 and collected the OOB error approximations.
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Next, I have used those results to find optimal depths for each set (Db) — for simplicity I
selected value for which the mean OOB error from all iterations was minimal.

Finally, I have verified the error approximation by running 10-fold stochastic cross-validation.
Namely, the set was randomly slit into test and training subsets, composed respectively of 10%
and 90% of objects; the classifier was then trained on a training subset and its performance
was assessed using the test set. Such procedure has been repeated ten times.

As a comparison, I have also built and cross-validated 10 Random forest models with 5000
trees. The ensemble size was selected so that both algorithm would manage to converge for
all problems.

The results of those tests are collected in the Table 1. One can see that as in case of Random
forest, OOB error approximation is a good estimate of the final classifier error. It is also well
serves as an optimisation target for the fern depth selection — only in case of the Sonar data
the näıve selection of the depth giving minimal OOB error led to a suboptimal final classifier,
however one should note that the minimum was not significant in this case.

Based on the OOB approximations, forest outperforms ferns in all but one case; yet the
results of cross-validation show that those differences are in practice masked by the natural
variability of both classifiers. Only in case of the Satellite data Random forest clearly achieves
almost two times smaller error.

4.2. Importance

To test importance measure, I have used two sets for which importance of attributes should
follow certain pattern.

Each objects in the DNA set (Noordewier, Towell, and Shavlik 1991) represent 60-residue
DNA sequence in a way so that each consecutive triplet of attributes encodes one residue.
Some of the sequences contain a boundary between exon and intron (or intron and exon1)
regions of the sequence — the objective is to recognise and classify those sequences. All
sequences were aligned in a way that the boundary always lies between 30th and 31st residue;
while the biological process of recognition is local, the most important attributes should be
those describing residues in the vicinity of the boundary.

Objects in the Sonar set (Gorman and Sejnowski 1988) correspond to echoes of a sonar signal
bounced off either a rock or a metal cylinder (a model of a mine). They are represented
as power spectra, thus each next attribute value corresponds to the signal power contained
within a consecutive frequency interval. This way one may expect that there are frequency
bands in which echoes significantly differ between classes, what would manifest as a set of
peaks in the importance measure vector.

For both of this sets, I have calculated the importance measure using 1000 ferns of a depth
10. As a baseline, I have used importance calculated using Random forest algorithm with
1000 trees.

The results are presented on Figure 2 and Figure 3. The importance measures obtained is
both cases are consistent with the expectations based on the sets’ structures — for DNA,
one can notice a maximum around attributes 90–96, corresponding the actual cleavage site
location. For Sonar, the importance scores reveal a band structure which likely corresponds
to the actual frequency intervals in which the echoes differ between stone and metal.

1The direction of a DNA sequence is significant, so those are separate classes.
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Figure 2: Attribute importance for DNA data, generated by Random ferns (top) and,
for comparison, by Random forest (bottom). Note that the importance peaks around 90th
attribute, corresponding to an actual splicing site.

Both results are also qualitatively in agreement with those obtained from Random forest mod-
els. Quantitative difference comes form the completely different formulations of both measures
and possibly the higher sensitivity of ferns resulting from its fully stochastic construction.

4.3. Computational performance

In order to compare training times of rFerns and randomForest codes, I have trained both
models on all 7 benchmark sets for 5000 ferns/trees, and, in case of ferns, depths 10 and Db.
Than I have repeated this procedure, this time making both algorithms calculate importance
measure during training.

I have repeated both tests 10 times to stabilise the results and collected the mean execution
times; the results are collected in the Table 2. The results show that the usage of rFerns may
result is significant speedups in certain applications; best speedups are achieved for the sets
with larger number of objects, which is caused by the fact that Random ferns’ training time
scales linearly with the number of objects, while Random forest’s ∼ n log n.

Also the importance can be calculated significantly faster by rFerns than by randomForest,
and the gain increases with the size of the set.

rFerns is least effective for sets which require large depths of the fern — in case of Vowel and
Vehicle sets it was even slower than Random forest. However, one should note that while
the complexity of Random ferns ∼ 2D, its accuracy usually decreases much less dramatically
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Figure 3: Importance measure for Sonar data, generated by Random ferns (top right) and,
for comparison, by Random forest (bottom right). Those two measures are compared on a
scatterplot (left).

Set Forest [s] Ferns 10 [s] Speedup Ferns Db [s] Speedup Db

J
u
st

tr
ai

n
in

g

dna 30.13 1.96 15.41 0.65 46.28 5
ion 3.41 0.81 4.21 0.06 55.35 3
pim 2.45 0.97 2.53 0.24 10.29 7
sat 136.91 4.08 33.55 75.55 1.81 15
son 3.40 0.78 4.37 2.95 1.15 12
veh 8.00 1.67 4.80 46.04 0.17 15
vow 93.92 4.77 19.69 140.26 0.67 15

W
it

h
im

p
or

ta
n
ce dna 456.16 4.37 104.38 1.87 244.31 5

ion 7.34 1.46 5.02 0.25 29.32 3
pim 3.53 1.06 3.34 0.35 10.17 7
sat 289.26 8.77 32.98 82.80 3.49 15
son 4.83 0.93 5.18 3.13 1.54 12
veh 17.26 2.22 7.77 47.00 0.37 15
vow 99.26 5.40 18.39 141.13 0.70 15

Table 2: Training times of the rFerns and randomForest models made for 5000 base classifiers,
with and without importance calculation. Times are given as a mean over 10 repetitions.
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when decreasing D from its optimal value — this way one may expect an effective trade-off
between speed and accuracy.

5. Conclusions

In this paper, I have presented rFerns, a general-purpose implementation of the Random ferns,
a fast, ensemble-based classification method. Slight modifications of the original algorithm
allowed me to additionally implement OOB error approximation and attribute importance
measure.

Presented benchmarks showed that such algorithm can achieve accuracies comparable to
Random forest algorithm while usually being much faster, especially for large datasets.

Also the importance measure proposed in this paper can be calculated very quickly and proved
to behave in a desired way and be in agreement with the results of Random forest; however
the in-depth assessment of its quality and usability for feature selection and similar problems
requires further research.
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Abstract

Background: Gene selection is an important part of microarray data analysis because it provides information that
can lead to a better mechanistic understanding of an investigated phenomenon. At the same time, gene selection is
very difficult because of the noisy nature of microarray data. As a consequence, gene selection is often performed
with machine learning methods. The Random Forest method is particularly well suited for this purpose. In this work,
four state-of-the-art Random Forest-based feature selection methods were compared in a gene selection context. The
analysis focused on the stability of selection because, although it is necessary for determining the significance of
results, it is often ignored in similar studies.

Results: The comparison of post-selection accuracy of a validation of Random Forest classifiers revealed that all
investigated methods were equivalent in this context. However, the methods substantially differed with respect to
the number of selected genes and the stability of selection. Of the analysed methods, the Boruta algorithm predicted
the most genes as potentially important.

Conclusions: The post-selection classifier error rate, which is a frequently used measure, was found to be a
potentially deceptive measure of gene selection quality. When the number of consistently selected genes was
considered, the Boruta algorithm was clearly the best. Although it was also the most computationally intensive
method, the Boruta algorithm’s computational demands could be reduced to levels comparable to those of other
algorithms by replacing the Random Forest importance with a comparable measure from Random Ferns (a similar but
simplified classifier). Despite their design assumptions, the minimal optimal selection methods, were found to select a
high fraction of false positives.

Background
DNA microarrays, with their ability to capture a substan-
tial fraction of a cell state, are one of the most powerful
tools in the molecular biology. From a machine learning
point of view, standard microarray experiments generate
an information system in which each object (measure-
ment) is described by a vector of features corresponding
to expression levels of a large number of genes (often
approaching full set of the identified genes for a certain
organism). Additionally, microarray experiments generate
a decision corresponding to the investigated state, such
as the presence of a disease, the application of a certain
stimulation, the state of the organism, the tissue, etc.

Because the number of investigated genes is always
much larger than the number of measurements in a DNA

Correspondence: M.Kursa@icm.edu.pl
Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland

microarray experiment, gene selection with these data
belongs to the p � n-class of problems, which is known
to promote a number of issues related to the stability,
statistical power and feasibility of certain methods. More-
over, because a measured set of genes is almost always not
specifically targeted for a certain decision (in the machine
learning sense), these data will contain a large number of
redundant features.

For these reasons, it is usally desired to reduce the
dimensionality of a microarray dataset. Dimension reduc-
tion is often achieved by feature selection (i.e., the removal
of unnecessary features) because it is the only method
that maintains a direct relationship between a feature and
a gene [1]; this is why this process is often called gene
selection in the context of microarray data.

It is often assumed that gene selection both provides
meaningful insight into the data (e.g., by providing a list of
genes relevant to the investigated condition) and serves as

© 2014 Kursa; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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a pre-processing step that optimises next methods in the
analysis pipeline.

However, this assumption is wrong [2] and fature selec-
tion may only have one of two aims that require differ-
ent approaches and tools: finding the minimal optimal
subset of features that is the smallest that will allow a
given classifier to achieve maximal accuracy, or fiding the
all relevant subset, that is of all features relevant to the
analysed phenomenon.

This is because the goal of the minimal optimal selec-
tion is to optimise certain classifier, thus it will be affected
by inherent biases of that method. For example, it may
favour genes with expression levels that have certain char-
acteristics, like follow a specific distribution. Also, in
p � n datasets, false associations that are equal to or
stronger than the true association are very likely to arise
at random. While minimal optimal selection will greed-
ily reduce blocks of redundant features, such artefacts can
displace relevant genes from the final selection and lower
the stability and recall of the method.

Unfortunately, only the minimal optimal problem is
traditionally tackled because both its application and
assessment (in terms of post-selection accuracy) are
straightforward. Yet only the solution to the all relevant
problem can enable deeper insight in mechanics of an
analysed phenomenon that go beyond just identifying the
brightest signs of its occurrence.

The Random Forest algorithm is popular in the life sci-
ences because it supports p � n datasets, is robust to
large amounts of noise, requires little parameter tuning
and requires no predictor transformation [3-6]. Random
Forest also natively produces a feature-importance mea-
sure that directly expresses the role of a feature in all
interactions utilised in the model, including weak and
multivariate ones. These characteristics make Random
Forest a promising classification algorithm for gene selec-
tion tasks [4].

To this end, a number of Random Forest-based fea-
ture selection methods have been proposed for gene
selection. In this work, four state-of-art methods of this
class are analysed: the Artificial Contrasts with Ensem-
bles (RF-ACE) [7,8] and Boruta [9] methods, which are
all relevant approaches, and the Recursive Feature Elimi-
nation (RFE) and Regularised Random Forest (RRF) [10]
methods, which are minimal optimal approaches.

Whenever possible, methods were re-evaluated with all
three feature importance measures provided by the Ran-
dom Forest algorithm as well as the importance scores
provided by the Random Ferns [11] algorithm, which is
similar to a Random Forest but relies on a simpler and
more stochastic base classifier.

Because all machine learning algorithms are heuristic
methods, the correctness and optimality of their solutions
cannot be guaranteed. Consequently, any methodology

implementing these approaches must properly validate
the results. In particular, if only a single application of a
machine learning algorithm is applied to an entire dataset,
subtle errors with very serious consequences may be
introduced [12,13]. To avoid this limitation, the work pre-
sented here employed bootstrap [14], method where each
selection procedure was re-applied 30 times on resamples
of the original dataset. Moreover, apart from performing
the usual analysis of post-selection classification accuracy,
a novel self-consistency-based approach for assessing the
stability and robustness of a gene selection method was
developed and applied.

Because the sole aim of this work was to investigate the
characteristics of various gene selection methods, all tests
were performed on four standard pre-processed microar-
ray datasets: Colon, Leukemia, SRBCT and Prostate.
Moreover, for clarity, no additional sources of informa-
tion about the datasets, such as temporal context, gene
ontology or microarray calibration techniques (e.g., RNA
spike-ins) [15] were considered.

Results and discussion
Post-selection classification accuracy
The most common method for the assessment and tun-
ing of feature selection methods is to perform an error
analysis on a classifier trained on a set containing only the
selected features. This method is motivated by the seem-
ingly obvious assumption that because the presence of
noise and redundant features decrease classification accu-
racy, minimal error will be achieved with a set lacking
these artefacts.

Following this approach, each set of gene selections
over bootstrap iterations was used to build a corre-
sponding set of Random Forest validation models that
were tested on objects not present in the corresponding
resamples, and thus not used in feature selection or in
the model training step. These results are presented in
Figure 1.

It is clear that, with the exception of the RRF method,
all investigated methods produced nearly indistinguish-
able post-selection errors. Due to high variability in the
results, however, even the result of the RRF method for
the SRBCT and Prostate sets were not significantly differ-
ent from the results of the best performing method in each
respective set.

This results also suggests the selection of the Random
Ferns’ depth and the Random Forest importance source
did not influence the post-selection error.

Consequently, although an analysis based on post-
selection error will obviously detect the removal of a
significant amount of non-redundant information that
is usable for the classifier, it is clear that its resolu-
tion is too low to serve as a reliable assessment of
gene selection quality. Because the post-selection error
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Figure 1 Post-selection error rates. Post-selection errors of a Random Forest classifier over bootstrap iterations, presented directly and as
boxplots. Colour is used for clarity.

is also a highly variable statistic, one should never rely
on a single estimate of its value. In the most strik-
ing example from this analysis, the application of the
RFE method to the Colon dataset produced a range of
error values over all iterations sampled that varied by
almost 50% (producing random guesses as well as perfect
classification).

On the other hand, no significant improvement over
the models built from an entire dataset was observed.
This result demonstrates the established fact that, due
to its ensemble construction, the Random Forest method
can handle a large number of noisy features without a
significant increase in error.

Self-consistency
Gene selection quality was assessed by comparing the
sets of genes selected by a given method over the 30
bootstrap iterations. From these data, genes that were
selected in more iterations of the bootstrap than would be
expected to occur at random were identified as significant

selections; these genes are referred to as significantly
self-consistent selections (SCSs) in this paper.

Table 1 summarises the average number of self-
consistent and all selected genes as well as their ratios
for all investigated sets and methods. It is clear that the
RF-ACE algorithm selected the most genes for all sets,
with values ranging from 62% to 99% of all present genes
in a set. However, in the case of the Colon and SRBCT
sets, the fraction SCSs was negligible, while in the case
of the Leukaemia and Prostate datasets, it reached only
approximately 20%. These results suggest that this method
produces a large number of false positives that overwhelm
the signal.

Overall, the highest number of SCSs were produced
by the Boruta method; in the best cases, the SCSs cov-
ered 56–64% of all selections and approximately 55% on
average. While more SCSs were found in all sets using
the Random Ferns importance measure than with any of
the Random Forest-based measures, the difference was
noticeable only in the case of the Prostate set. Moreover,
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Table 1 Selection consistency analysis

Method Colon Leukemia SRBCT Prostate

c f c/f c f c/f c f c/f c f c/f

RF-ACE 0.0 1354.2 0% 398.0 1946.1 20% 0.0 1569.1 0% 1356.0 7778.6 17%

Bor. Ferns 1 91.8 176.6 52% 228.9 391.9 58% 336.8 567.8 59% 480.3 757.3 63%

Bor. Ferns 2 93.0 182.8 51% 249.0 423.3 59% 354.5 652.2 54% 520.7 840.4 62%

Bor. Ferns 3 104.9 192.2 55% 247.5 439.6 56% 375.0 720.2 52% 582.1 916.6 64%

Bor. Ferns 4 118.8 210.8 56% 252.9 453.0 56% 383.6 786.7 49% 621.9 986.5 63%

Bor. Ferns 5 120.6 227.2 53% 270.9 482.7 56% 396.2 864.2 46% 670.3 1046.3 64%

Bor. Ferns 6 135.9 246.8 55% 275.3 513.2 54% 395.8 959.4 41% 692.1 1077.3 64%

Bor. Ferns 7 145.0 277.9 52% 296.4 550.1 54% 357.0 1058.3 34% 705.8 1104.5 64%

Bor. RF Gini 77.2 137.8 56% 230.2 407.6 56% 358.4 626.7 57% 267.2 462.1 58%

Bor. RF Raw 116.9 214.7 54% 256.9 446.2 58% 403.9 807.6 50% 422.7 728.0 58%

Bor. RF Norm. 103.3 199.1 52% 237.5 403.3 59% 400.8 839.2 48% 301.5 529.9 57%

RFE Ferns 1 23.2 95.5 24% 4.4 8.5 51% 39.0 72.8 54% 28.9 503.9 6%

RFE Ferns 2 18.6 55.2 34% 4.4 8.0 55% 36.6 75.2 49% 73.8 854.0 9%

RFE Ferns 3 23.1 88.5 26% 4.3 8.3 52% 30.6 78.1 39% 47.2 125.9 38%

RFE Ferns 4 18.0 77.3 23% 3.9 8.5 46% 38.6 70.9 54% 34.9 402.9 9%

RFE Ferns 5 18.6 52.5 35% 4.9 9.1 54% 38.0 104.3 36% 99.5 321.1 31%

RFE Ferns 6 18.5 58.7 32% 5.1 9.6 53% 33.1 52.5 63% 75.6 280.8 27%

RFE Ferns 7 13.8 70.9 19% 5.0 9.6 52% 32.8 49.1 67% 36.6 81.3 45%

RFE RF Gini 17.7 110.1 16% 4.8 8.5 57% 26.5 38.9 68% 71.7 163.2 44%

RFE RF Raw 18.6 51.2 36% 4.8 8.3 58% 31.3 46.9 67% 43.6 274.9 16%

RFE RF Norm. 11.9 32.5 37% 4.3 8.0 53% 28.1 43.7 64% 34.6 60.0 58%

RRF 1.4 15.9 9% 0.0 3.8 0% 1.9 8.3 22% 1.1 19.2 6%

No. features 2000 3051 1586 12533

The average number of significantly self-consistent and all selected genes by a given method in one bootstrap iteration. c – the average number of significantly
self-consistent genes, f – the average number of selected genes.

the use of both algorithms led to very similar SCS ratios.
Out of the Random Forest-based importance measures,
there was no measure that was clearly the best, but the
raw importance measure seemed to be the most reliable
choice. The increase in the Random Ferns depth parame-
ter consistently contributed to an increase in the number
of genes found by the Boruta method. For the Colon,
Leukemia and Prostate datasets this effect was accompa-
nied by a proportional increase in the number of SCSs,
which caused the SCS ratio to be approximately constant.
This was not the case for the SRBCT set, however. In the
SRBCT set, the number of SCSs did not increase and,
therefore, its ratio dropped with the fern depth. Still, the
overall performance of the Boruta method was surpris-
ingly stable across the investigated importance sources,
and it is unlikely that an incorrect set-up will substantially
diminish its performance.

As expected for a minimal-optimal method, the RFE
algorithm selected a much smaller number of genes than
the RF-ACE or Boruta methods (selecting, on average,

from 0.2–3.9% of all genes in a set). Except in case
of Prostate set, the number of SCSs was fairly stable
and was approximately an order of magnitude smaller
than when the Boruta method was used. However, the
number of found genes varied in an inconsistent man-
ner across different importance sources. While the SCS
ratios in the Leukemia and SRBCT sets were reasonably
stable and reached 58% and 68%, respectively, the SCS
ratios were less than 40% in the Colon set and ranged
from 6% to 58% in the Prostate set (with an average
of 28%). Therefore, it is likely that the minimal opti-
mal sets still contained a significant fraction of irrele-
vant genes (although in much smaller numbers than that
produced by the all relevant methods). Moreover, RFE’s
results can be significantly altered by the importance
source.

The RRF algorithm selected the least number of genes
from all sets, ranging from 4 to 20 (or 0.1% to 0.8%, respec-
tively, of all genes in a set). Moreover, the results from
the RRF algorithm were very inconsistent. The largest
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SCS ratio achieved by the RRF algorithm was 22% in the
SRBCT set, while the number of SCSs found by the RRF
algorithm never exceeded 2.

Execution time
The average execution time of the selected algorithms
is provided in the Table 2. The slowest method was the
Boruta algorithm using the Random Forest importance
measure, with computational training time ranged from
hours to days, especially for larger sets. The RF-ACE and
RRF algorithms required far less execution time, which
never exceeded 1 hour for the Colon, Leukemia and
SRBCT sets or 2.5 hours for the much larger Prostate set.

However, while the difference in the computational time
of the Boruta algorithm was minor for Random Forest
importance sources, the employment of Random Ferns
resulted in significant increases in speed that ranged
from 20 to 200 times faster. Consequently, the execution
time of the Boruta algorithm was comparable to or even
shorter than that of RF-ACE and RRF. In the case of RFE,
the gain from using Random Ferns was much smaller
because this algorithm also relies on Random Forest for
assessing the classifier accuracy from the current subset
of genes.

Conclusions
As far as post-selection classification accuracy is con-
cerned, all investigated methods were effectively equiva-
lent. This proves that assessing gene selection algorithms
in this way may be deceiving or inconclusive and,

Table 2 Execution time

Method Colon Leukemia SRBCT Prostate

RF-ACE 40’ 24’ 57’ 2 h 47’

Boruta Ferns depth 1 01’ 01’ 01’ 03’

Boruta Ferns depth 7 05’ 05’ 11’ 09’

Boruta RF Gini 2 h 27’ 2 h 19’ 10 h 52’ 30 h 48’

Boruta RF Raw 3 h 30’ 2 h 43’ 14 h 35’ 40 h 23’

Boruta RF Norm. 3 h 28’ 2 h 34’ 16 h 04’ 35 h 27’

RFE Ferns depth 1 10’ 08’ 15’ 6 h 43’

RFE Ferns depth 7 10’ 08’ 16’ 7 h 24’

RFE RF Gini 21’ 16’ 31’ 13 h 34’

RFE RF Raw 21’ 16’ 33’ 13 h 49’

RFE RF Norm. 22’ 17’ 32’ 13 h 17’

RRF 03’ 02’ 04’ 1 h 04’

No. features 2000 3051 1586 12533

No. objects 62 38 83 102

The execution time of selected algorithms, represented as the mean over 30
bootstrap iterations. All algorithms investigated in this study were run
single-threaded.

therefore, calls for deep and careful investigation of the
significance of the observed accuracy differences.

Out of all the analysed methods, the Boruta algorithm
found the most genes predicted to be important and, at
the same time, achieved the highest ratio of self-consistent
selections in its results. Although it remains unknown
how many of these novel genes are biologically relevant,
these results provide strong justification that the selec-
tions generated by this method are promising candidates
that should be explored further to identify more sub-
tle aspects of the phenomena investigated via microarray
experiments.

Despite the fact that Boruta requires an impractical
amount of computation time in its default set-up, using
the importance source produced by the Random Ferns
algorithm decreased its running time to levels compara-
ble with other investigated methods without sacrificing or
improving the selection quality.

As expected, the minimal optimal RFE and RRF meth-
ods selected a much smaller subset of genes than the all
relevant methods. However, the RFE and RRF methods
achieved a similar level of selection stability and, thus,
also generated a substantial amount of false positives. This
result suggests that, even when focused on the most pro-
nounced associations, it is important to be aware of the
effects of the p � n issues that are inherent to microarray
data.

Methods
Feature selection algorithms
Both the RF-ACE [7,8] and Boruta [9] algorithms are
based on the idea first introduced by [16]. That is, they
extend the information system with shadows, which are
artificial features created by permuting the order of values
in the original data, and then using shadows’ importance
scores to judge the significance of the scores obtained by
the actual features.

The algorithms differ in the testing scheme used, how-
ever. RF-ACE performs a predefined number of iterations
(the default value used in this study is 20) and, at each
step, collects the importance of real features and the mean
importance of all shadows. For each feature, Student’s
t-test is applied to check whether its mean importance
is significantly larger than the mean importance of the
shadow attributes. Features with p-values less than 0.05
are returned as relevant.

On the other hand, Boruta checks which features in
an iteration achieved higher importance than the best
shadow; such events are counted for each feature until
their number becomes either significantly higher or lower
than what is expected at random, using a default p-value
cut-off of 0.01. In the first case, the feature is deemed rel-
evant and in the latter case, it is deemed irrelevant, which
leads to the removal of the feature and its shadow from
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the information system. This procedure is repeated until
the status of all features is decided or until a previously set
limit of iterations is exhausted, in which case, the status
of some features may be undecided. To make fair com-
parisons with methods that perform only a relevance test,
in this work, all undecided features are assumed to be
irrelevant.

Both RF-ACE and Boruta re-shuffle shadow features
after every iteration.

Recursive Feature Elimination (RFE) is a group of meth-
ods where selection is performed by iterative stripping
of less important features from the set until the classifier
error becomes minimal. There are many implementa-
tions of this method that differ in the importance source
used, the stripping criterion and the accuracy assess-
ment method. In this study, the following algorithm was
adapted from the R caret [17] package. First, the accuracy
is assessed via 10 iterations of bootstrap validation of a
50000-tree Random Forest classifier and stored along with
the current list of features. Then, the arbitrary importance
source is applied to a set. This result is used to remove
the least important features so that the number of features
will decrease to the highest power of 2 that is lower than
the current number. This procedure is repeated until the
number of features drops to 4. Finally, the list of features
for which the error was minimal is returned as the final
selection.

Regularised Random Forest (RRF) is a modification
of a Random Forest that incorporates regularisation
into the tree growing algorithm [10,18]. Specifically,
RRF establishes a penalty for the use of a feature that
was not previously used in a current tree construction.
This penalty is proportional to the potential information
gain from building a split on this feature, so that only
features with significant information that is not redun-
dant with respect to already built splits will be included
in the model. Obviously, this approach leads to a sit-
uation where only a subset of all features is actually
used in the ensemble. This subset represents the final
result produced when RRF is used as a feature selection
algorithm.

Importance sources
For the importance source, I have used the three impor-
tance measures produced by the Random Forest [19] as

well as the importance score produced by the Random
Ferns algorithm, which is a variation of the Random
Forest.

The first Random Forest importance measure is the
overall decrease in node impurity due to splits performed
on certain features, which is expressed as the Gini index
(RF Gini). The second measure is calculated in a per-
tree manner by finding the difference between a tree’s
accuracy on an original out-of-bag (OOB) subset and its
version with randomly permuted objects within the anal-
ysed feature. These values are then averaged. Because
this measure was the only one mentioned in the origi-
nal Random Forest paper [5], I refer to it here as the raw
importance (RF Raw). The third measure is the raw impor-
tance normalised by the standard deviation of accuracy
differences over the trees (RF Norm).

The Random Ferns [20] is a simplified variation of the
Random Forest algorithm that is an ensemble of ferns,
which are modified decision trees with a fixed depth
(which is a parameter of the algorithm) and that have
the same splitting criterion for all splits at the same level.
While a regular classification tree stores the majority
classes in its leaves, a fern stores vectors of class prob-
abilities; to this end, ensemble voting is achieved by a
maximum a-posteriori rule instead of by selecting the
class with the most votes. The Random Ferns implemen-
tation used in this study, rFerns [11], produces fern splits
at random (i.e., based on a randomly selected feature and
a randomly selected threshold).

The original Random Ferns does not produce feature
importance. The one used in this study is native to the
rFerns implementation, and is similar to the raw impor-
tance of Random Forest, except rFerns considers differ-
ences in OOB probabilities for a correct class rather than
differences in the number of correct votes. In this work, I
have assessed the importance of rFerns independently for
fern depths that range from 1 to 7.

While both methods scan the space of features ran-
domly, it is crucial to build ensembles large enough to
ensure all features will have an equal chance to participate
in the model and generate a stable importance score.

Datasets
The testing of all methods enumerated in the previ-
ous sections used four well known microarray datasets

Table 3 Datasets

Dataset Reference Genes Objects Classification target Objects per class

Colon Alon et al [21] 2000 62 Normal/tumor colon tissue 40:22

Leukemia Golub et al [22] 3051 38 ALL/AML leukemia type 27:11

SRBCT Khan et al [23] 1586 83 4 SRBCT types 11:29:18:25

Prostate Singh et al [24] 12533 102 Normal/tumor prostate tissue 50:52

The microarray datasets used in this study.



Kursa BMC Bioinformatics 2014, 15:8 Page 7 of 8
http://www.biomedcentral.com/1471-2105/15/8

obtained from actual experiments. The summary and
characteristics of these data are provided in Table 3.

Testing and assessment of the results
First, to perform the bootstrap estimation, each dataset
was used to create 30 resampled sets that were obtained
by sampling with replacement an equal number of objects
as was present in the original set.

Then, each method of gene selection was executed on
all resampled sets, and the results were used to identify
SCSs. The expected distribution of the number of selec-
tions of each gene over bootstrap iterations was estimated
as a binomial distribution with parameter p estimated as
the mean fraction of features selected by a certain method
on a given set. This distribution was then used to find
genes with a number of selections significantly higher
than would be expected by random chance with a p-value
of 0.01. The Holm-Bonferroni [25] correction was applied
to remove the effect of multiple testing. These selections
were then identified as significantly self-consistent and
their count was averaged over all iterations.

Next, all investigated methods were tested by the analy-
sis of post-selection error made by a classifier trained on
a set reduced to the selected genes. For this purpose, for
each bootstrap iteration, a Random Forest model com-
posed of 50000 trees was trained on a set reduced to
objects belonging to the respective resampled set as well
as features that were selected by the given method; then,
this model was tested on the remaining objects that were
not used in its training. The obtained predictions were
also used to assess the significance of the accuracy dif-
ferences between methods. This was accomplished using
a paired one-sided Holm-Bonferroni-corrected Mann-
Whitney-Wilcoxon test with a p-value of 0.01 to compare
the errors from each bootstrap iteration of a given method
to the errors from the best performing method on a par-
ticular dataset. The use of a non-parametric test was
required because of the non-normal distribution of the
errors across the iterations.

Finally, the running times of all executed algorithms
were collected. In order to make comparison meaningful,
all calculations were performed on a homogeneous cluster
of AMD Opteron 835X x86_64 Linux machines, using R
2.15.0 [26], randomForest 4.6-6, rFerns 0.3.1, RRF 1.2 and
RF-ACE 1.1.0. Moreover, each algorithm was run single-
threaded. The complete, raw results are collected in the
Additional file 1.

Additional file

Additional file 1: Results of all gene selections. This a zip archive
containing textual tables containing the results. The format is described in
detail in the README file included in the archive.
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Abstract. In this paper, we first apply random ferns for classification of
real music recordings of a jazz band. No initial segmentation of audio data
is assumed, i.e., no onset, offset, nor pitch data are needed. The notion
of random ferns is described in the paper, to familiarize the reader with
this classification algorithm, which was introduced quite recently and
applied so far in image recognition tasks. The performance of random
ferns is compared with random forests for the same data. The results of
experiments are presented in the paper, and conclusions are drawn.

Keywords: Music Information Retrieval, Random Ferns, Random
Forest.

1 Introduction

The pleasure of listening to music can be very enjoyable, especially if our favorite
instruments are playing in the piece of music we are listening to. Therefore, it
is desirable to have a tool to find melodies played by a specified instrument.
The task of automatic identification of an instrument, playing in a given audio
segment, lies within the area of interest of Music Information Retrieval. This
area has been broadly explored last years [19], [22], and as a result we can
enjoy finding pieces of music through query-by-humming [14], and identify music
through query-by-example, including excerpts replayed on mobile devices [21],
[24]. However, recognition of instruments in real polyphonic recordings is still a
challenging task (see e.g. [4], [6], [7]).

In this paper, we address the recognition of plural instruments in real music
recordings of a jazz band, and our goal is to identify possibly all instruments
playing in each audio frame; polyphony in these recordings reaches 4 instruments.
Identification of instruments is performed in short frames, with no assumption
on onset (start) nor offset (end) time, nor pitch etc., which is often the case

L. Chen et al. (Eds.): ISMIS 2012, LNAI 7661, pp. 208–217, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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in similar research, thus our methodology requires no preprocessing nor initial
segmentation of the data, and the computation can be fast.

Random ferns are classifiers introduced in 2007 [17] and named as such in
2008 [18]. This classification method combines features of decision trees and
Bayesian classifiers. Random ferns have been applied so far in image classifica-
tion tasks, including video data [1], [16], and they have also been adjusted to be
used on low-end embedded platforms, such as mobile phones [25]. Since many
audio applications are used in mobile environment, it is advisable to consider
such platforms as well. This is why we decided to use random ferns. Additionally,
we would like to compare the performance of Random Ferns (RFe) with Random
Forests (RFo), which yielded quite good results in our previous research [7], [8],
[9]. RFe are simpler and more computationally efficient than RFo [10]. We want
to use a simpler algorithm because, as more computationally efficient, it can
possibly be applied to be used on mobile devices, with limited computational
power (utilizing slower CPUs and working on battery power). We hope that the
accuracy of RFe is not much worse, and therefore it is worth using them and pos-
sibly implement on mobile devices, to get quick results without communication
with a cloud for cloud computing (which is an option which can be chosen for
low-end platforms), thus achieving low latency. Also, such a method would be
useful for massive calculations for indexing purposes, e.g. in archives, to achieve
fast computation and get quick results which are a good approximation of the
results that would be obtained using more computationally expensive search.

2 Classifiers

The classifiers applied in our research include random ferns and random forests.
RFo performed quite well in the research on instrument identification we per-
formed before [7], but their training is time consuming, whereas the training
of RFe is faster. The computational complexity of classification performed us-
ing the pre-trained classifiers is similar (linearly proportional to the number of
trees/ferns and to their average height), but in the case of ferns there is less
branching and memory accesses which should yield faster classification.

2.1 Random Forests

RFo is a classifier consisting of a set of weak, weakly correlated and non-biased
decision trees, constructed using a procedure minimizing bias and correlations
between individual trees [2]. Each tree is built using a different N -element boot-
strap sample of the training N -element set. The elements of the bootstrap sample
are drawn with replacement from the original set, so roughly 1/3 (called out-of-
bag) of the training data are not used in the bootstrap sample for any given tree.
For a P -element feature vector, K attributes (features) are randomly selected
at each stage of tree building, i.e. for each node of any particular tree in RFo
(K < P , often K =

√
P ). Gini impurity criterion (GIC) is applied to find the

best split on these K attributes. GIC measures how often an element would be
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incorrectly labeled if randomly labeled according to the distribution of labels in
the subset; the best split minimizes GIC.

Each tree is grown to the largest extent possible, without pruning. By repeat-
ing this randomized procedure Nt times, a collection of Nt trees is obtained,
constituting a RFo. Classification of an object is done by simple voting of all
trees. In this work, the RFo implementation from the R [13] package random-
Forest [11] was used.

The computational complexity CtFo of training a RFo is

CtFo = Nt ·No · logNo ·K , (1)

where No is the number of objects, K is the number of attributes tested for each
split and Nt is the number of trees in the forest; the computational complexity

CcFo = Nt · ht (2)

where ht is the average height of a tree in the forest.

2.2 Random Ferns

A fern is defined as a simplified binary decision tree of a fixed height D (called
a depth of a fern) and with a requirement that all splitting criteria at a cer-
tain depth i (Ci) are the same. Each leaf node of a fern stores the distribution
of classes over objects that are directed to this node. This way a fern can be
perceived as a D-dimensional array of distributions, indexed by a vector of D
splitting criteria values, see Figure 1.

c1

c2 c2 c2

c1

#class A
#class B

Fig. 1. An example of a fern of depth 2 trained on a binary classification problem
(left). Splits on each level are based on the same criterion (Ci), thus the fern tree is
equivalent to a 2-dim array (right). The leaf nodes contain the counts of objects of
each class instead of just the names of dominating classes, as in classic decision trees.

The fern forest is a collection of Nf ferns. When classifying a new object,
each fern in a forest returns a vector of probabilities that this object belongs
to particular decision classes. Ferns are treated as independent, thus all those
vectors are combined by simple multiplication and the final classification results
for the forest is a class which gets the highest probability, see Figure 2.



A Comparison of Random Forests and Ferns on Recognition of Instruments 211

Fig. 2. Training and classification using a fern forest for a binary classification problem.
Bags are drawn from the training data, and used for building individual ferns, repre-
sented here as cubes (left). When a new object (represented as an ellipse) is classified,
each fern in the forest returns a vector of class probabilities; they are combined by a
simple multiplication and the class scoring maximal probability is returned (right).

While the original RFe implementation [17,18] was written for a problem of
object detection in images, we use the RFe generalization implemented in the R
[13] package rFerns [10]; it trains the fern forest model in the following way.

First, N intermediate training sets called bags are created by drawing objects
with replacement from the training set, each bag being of the same size as the
original set. Next, each bag is used to train a fern. All D splits are created purely
at random; an attribute is randomly selected and then the splitting threshold is
set as a mean of two randomly selected values of this attribute1. The distributions
of classes in leafs are calculated on a bag with adding 1 for each class (i.e.
with a Dirichlet prior); this way the problem of undefined distributions in leafs
containing no objects is resolved.

The computational complexity CtFe of training a Rfe model is

CtFe = 2D ·Nf ·No , (3)

where D — depth of ferns, No — number of objects, Nf — number of ferns; the
computational complexity CcFe of classifying one sample is

CcFe = D ·Nf . (4)

3 Sound Parameterization

The identification of musical instruments is performed for short frames of audio
data, which are parametrized before applying classifiers for training or testing.
No assumptions on audio data segmentation or pitch extraction have been made.
Therefore, no multi-pitch extraction is needed, thus avoiding possible errors re-
garding labeling particular sounds in polyphonic recording with the appropriate
pitches. The feature vector consists of basic features, describing properties of an

1 In this work we have used only numerical descriptors of sound, thus the description
of treating ordinal and categorical attributes is omitted.
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audio frame of 40 ms, and additionally difference features, calculated as the dif-
ference between the given feature but calculated for a 30 ms sub-frame starting
from the beginning of the frame and a 30 ms sub-frame starting 10 ms later.
Identification of instruments is performed frame by frame, for consequent frames,
with 10 ms hop size. Fourier transform was used to calculate spectral features,
with Hamming window. Most of the features we applied represent MPEG-7 low-
level audio descriptors, which are often used in audio research [5]. Our feature
vector consists of the following 91 parameters [7]:

– Audio Spectrum Flatness, flat1, . . . , flat25 — a multidimensional parameter
describing the flatness property of the power spectrum within a frequency
bin for selected bins; 25 out of 32 frequency bands were used;

– Audio Spectrum Centroid — the power weighted average of the frequency
bins in the power spectrum; coefficients are scaled to an octave scale anchored
at 1 kHz [5];

– Audio Spectrum Spread — RMS (root mean square) value of the deviation
of the log frequency power spectrum wrt. Audio Spectrum Centroid [5];

– Energy — energy (in log scale) of the spectrum of the parametrized sound;
– MFCC — a vector of 13 mel frequency cepstral coefficients. The cepstrum

was calculated as the logarithm of the magnitude of the spectral coefficients,
and then transformed to the mel scale, to better reflect properties of the
human perception of frequency. 24 mel filters were applied, and the obtained
results were transformed to 12 coefficients. The 13th coefficient is the 0-order
coefficient of MFCC, corresponding to the logarithm of the energy [12];

– Zero Crossing Rate; a zero-crossing is a point where the sign of the time-
domain representation of the sound wave changes;

– Roll Off — the frequency below which an experimentally chosen percentage
equal to 85% of the accumulated magnitudes of the spectrum is concen-
trated; parameter originating from speech recognition, where it is applied to
distinguish between voiced and unvoiced speech;

– NonMPEG7 - Audio Spectrum Centroid — a linear scale version of Audio
Spectrum Centroid ;

– NonMPEG7 - Audio Spectrum Spread — a linear scale version of Audio
Spectrum Spread ;

– changes (measured as differences) of the above features for a 30 ms sub-
frame of the given 40 ms frame (starting from the beginning of this frame)
and the next 30 ms sub-frame (starting with 10 ms shift), calculated for all
the features shown above;

– Flux — the sum of squared differences between the magnitudes of the DFT
points calculated for the starting and ending 30 ms sub-frames within the
main 40 ms frame; this feature by definition describes changes of magnitude
spectrum, thus it is not calculated in a static version.

Mixes of the left and right channel were taken if the audio signal was stereo-
phonic. Since the recognition of instruments is performed on frame-by-frame
basis, no parameters describing the entire sound are present in our feature vec-
tor. This feature set was already used for instrument identification purposes
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using RFo, requiring no feature selection [7], and yielded good results, so we
decided to use this feature set in both RFo and RFe classification.

3.1 Audio Data

The audio data we used for both training and testing represent recordings in
44.1kHz/16-bit format. Training was based on three repositories of single, iso-
lated sounds of musical instruments, namely McGill University Master Samples
[15], The University of Iowa Musical Instrument Samples [23], and RWC Musical
Instrument Sound Database [3]. Clarinet, trombone, and trumpet sounds were
taken from these repositories. Additionally, we used sousaphone sounds, recorded
by R. Rudnicki in one of his recording sessions [20], since no sousaphone sounds
were available in the above mentioned repositories. Training data were in mono
format in the case of RWC data and sousaphone, and stereo for the rest of the
data. The testing data originate from jazz band stereo recordings by R. Rudnicki
[20], and include the following pieces played by clarinet, trombone, trumpet, and
sousaphone (i.e., our target instruments):

– Mandeville by Paul Motian,
– Washington Post March by John Philip Sousa, arranged by Matthew Postle,
– Stars and Stripes Forever by John Philip Sousa, semi-arranged by Matthew

Postle — Movement no. 2 and Movement no. 3.

To prepare our classifiers to work on larger instrument sets, training data also
included sounds of 5 other instruments that can be encountered in jazz record-
ings: double bass, piano, tuba, saxophone, and harmonica. These sounds were
added as additional sounds in training mixes with the target instruments.

4 Methodology of Training of the Classifiers

The goal of training of our classifiers is to identify plural classes, each repre-
senting one instrument. We use a set of binary classifiers (RFe or RFo), where
each set (which we call a battery) is trained to identify whether a target in-
strument is playing in an audio frame or not. The target classes are clarinet,
trombone, trumpet, and sousaphone, i.e. instruments playing in the analyzed
jazz band recordings. The classifiers are trained to identify target instruments
when they are accompanied by other instruments, and this is why we use mixes
of instrument sounds as input data in training.

When preparing training data, we start with single isolated sounds of each
target instrument. After removing starting and ending silence [7], each file rep-
resenting the whole single sound is normalized so that the RMS value equals
one. Then we perform parameterization, and train a classifier to identify each
instrument — even when accompanied by other sound. Therefore, we perform
training on 40 ms frames of instrument sound mixes, mixing from 1 to 4 ran-
domly chosen instruments with random weights and then we normalize it again
to get the RMS value equal to one.
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The battery of one-instrument sensitive RFo or RFe classifiers is then trained.
3,000 mixes containing any sound of a given instrument are fed as positive exam-
ples, and 3,000 mixes containing no sound of this instrument are fed as negative
examples. For N instruments we need N binary classifiers (N=4), each one trained
to identify 1 instrument. For RFe models, we have been training 1000 ferns of a
depth of 10; for RFo, there were 1000 trees and K was set to the default floor
of square root of the number of attributes, namely 9.

5 Experiments and Results

The RFo and RFe classifiers, according to the procedure delineated in Section 4,
were next used to identify instruments playing in jazz recordings, described in
Section 3.1. Ground-truth data were prepared through careful manual labelling
[7], based on initial recordings of each instrument track separately.

The accuracy was assessed via precision and recall scores. These measures were
weighted by the RMS of a given frame (differently than in our previous work
[7], where RMS was calculated for frames taken from instrument channels), in
order to diminish the impact of softer frames, which are very hard to perform
reasonable identification of instruments, because their loudness is near the noise
level. For this reason, our true positive score Tp for an instrument i is a sum
of RMS of frames which are both annotated and classified as i. Precision is
calculated by dividing Tp by the sum of RMS of frames which are classified as
i; respectively, recall is calculated by dividing Tp by the sum of RMS of frames
which are annotated as i. As a general accuracy measure we have used F-score,
defined as a harmonic mean of such precision and recall.

Table 1. Precision, recall and F-score of the classifiers for jazz band recordings. Each
M ±S data entry represents mean M and standard deviation S over 10 replications of
training and testing, accumulated over all target band instruments.

Algorithm Precision [%] Recall [%] F-score [%]

Mandeville

RFe 88.4±0.6 67±1 76.4±0.6
RFo 92.7±0.2 63±1 75.2±0.7

Washington Post

RFe 82.36±0.2 73±2 77±1
RFo 87.76±0.3 69±1 77.3±0.5

Stars & Stripes 2

RFe 79.8±0.4 72±1 76±1
RFo 91±2 68±1 78±1

Stars & Stripes 3

RFe 94.5±0.2 77±1 84.8±0.7
RFo 94.4±0.3 74±1 83.1±0.9
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While in this initial phase of the research we have used PC implementations of
the classification algorithms, the timings have been performed on a single core
of a Xeon E5620 Linux workstation. R version 2.15.0, rFerns version 0.3 and
randomForest version 4.6-6 were used.

Both RFo and RFe are stochastic algorithms, so is the process of creating
training sets for the battery. Thus, to assess the stability of the results and make
a fair comparison of methods, the whole procedure of creating training sets,
training RFe and RFo batteries and testing them on a real recordings has been
repeated 10 times.

5.1 Comparison of Random Forests and Random Ferns

The results of performance analysis of RFe and RFo models are given in Table 1.
As one can see, for three pieces RFo had superior precision over that of RFe;
on the other hand, ferns tend to provide better recall. However, the overall
performance of both classifiers measured with the F-score is similar for all pieces.

The detailed comparison of performance analysis of RFe and RFo models for
particular instruments is given in Table 2. Sousaphone and trumpet are always
quite precisely identified, whereas trombone usually yields lower precision in
all pieces, and clarinet in one piece. Recall is lower than precision, but still
much improved comparing to our previous results [7]. Again, quite high recall
is obtained for sousaphone and is rather good for trumpet, whereas the worst
recall is scored by RFo for trombone samples.

Table 2. Precision and recall of both methods on real music; data shown for each
instrument independently. The symbol M ±S denotes that given number has mean M
and standard deviation S over 10 replications of training.

Precision [%] Recall [%]

clarinet sousaphone trombone trumpet clarinet sousaphone trombone trumpet

Mandeville

RFe 91.5±0.2 98.3±0.2 76±2 89.0±0.2 70±2 67±1 71±2 59±2
RFo 91.4±0.2 98.6±0.3 87.3±0.6 90.8±0.2 65±4 80±2 46±2 58±2

Washington Post

RFe 80.9±0.4 92.2±0.7 63.6±0.4 92.5±0.5 79±3 76±3 61±2 73±2
RFo 85±1 93.2±0.7 70.3±0.8 96.4±0.6 67±4 88±1 46±2 72±3

Stars & Stripes 2

RFe 48.4±0.4 99.4±0.1 78±2 97.8±0.3 81±2 70±4 58±2 77±2
RFo 62±6 99.4±0.1 91±2 99.9±0.1 53±5 94±1 31±3 67±3

Stars & Stripes 3

RFe 96.9±0.6 99.2±0.2 88.6±0.6 94.7±0.2 92±2 62±4 61±2 88±1
RFo 95.4±0.4 99.7±0.1 87.8±0.7 94.7±0.1 80±5 83±4 50±2 88±1

On average, RFe and RFo perform classification respectively 25x and 8x faster
than the actual music speed; this means RFe offer over 3x speed-up in comparison
to RFo, see Table 3.
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Table 3. Time taken by each battery of classifiers to annotate the whole testing piece

Piece
Classification time [s]

Piece length [s]
Random Ferns Random Forest

Mandeville 5.7 17.6 139.95
Washington Post 6.0 19.0 148.45
Stars & Stripes 2 2.8 8.3 68.95
Stars & Stripes 3 1.0 3.6 26.2

6 Summary and Conclusions

Experiments presented in this paper show that identification of all instruments
playing in real music recordings is possible using both RFo- and RFe-based
classifiers, yielding quite good results. We observed improved recall comparing
to our previous research [7]; we improved here the RMS weighting, which was
previously calculated for separate instrument channels, and in this work, the
RMS of all channels together was used for weighting. Our results still are worth
improving, but the obtained recall (and precision) are satisfactory, because the
task of identification of all instruments playing in a short segment is difficult,
and is challenging also for human listeners.

The measured classification speed of RFe suggests that it is a promising
method for performing real time annotation, even on low performance devices.
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Abstract. In this paper we introduce multi-label ferns, and apply this
technique for automatic classification of musical instruments in audio
recordings. We compare the performance of our proposed method to a
set of binary random ferns, using jazz recordings as input data. Our main
result is obtaining much faster classification and higher F-score. We also
achieve substantial reduction of the model size.

1 Introduction

Music Information Retrieval (MIR) is a hot research topic last years [23], [26],
with quite a successful solving of such problems as automatic song identification
through query-by-example, also using mobile devices [25], [28], and finding mu-
sic works through query-by-humming [18]. Still, one of the unattainable goals of
MIR research is automatic score extraction from audio recordings, which is espe-
cially difficult for polyphonic data [8], [12]. Multi-pitch tracking combined with
assignment of the extracted notes to particular voices (instruments) is a way to
approach score extraction. Therefore, identification of instruments can be used
to assign each note in a polyphonic and polytimbral sound to the appropriate
instrument. However, the recognition of all playing instruments from recordings
in polyphonic environment is still a challenging and unsolved task, related to
multi-label classification of audio data representing a mixture of sounds.

In our work, the target is to recognize all instruments playing in the an-
alyzed audio segment. No initial segmentation nor providing external pitch is
required. The instruments identification is performed on short sound frames,
without multi-pitch tracking. In our previous works, we were using sets (which
we called batteries) of binary classifiers to solve the multi-label problem [13], [30]
of identification of instruments in polyphonic environment. Random forests [2]
and ferns [21], [22] were applied as classification tools. Recently, we have shown
that random ferns are a good replacement for random forests in music anno-
tation tasks, as this technique offers similar accuracy while being much more
computationally efficient [15]. In this paper we propose a generalized version of
random ferns, which can natively perform multi-label classification. Using real
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musical recording data, we will show that our approach outperforms a battery
of binary random ferns classifiers in every respect: in terms of accuracy, model
size and prediction speed.

1.1 Background

The difficulty level of automatic instrument recognition in audio data depends
on the polyphony level, and on the preprocessing performed. The simplest poly-
phonic research case is instrument identification in duets (2 instruments) [4], [10],
[29], and the most complex one for symphonies, with high polyphony level (i.e.
high number of instrument sounds played together). Since the sound waves of
instruments overlap, so harmonic spectral components (partials) do, to a certain
— sometimes large — extent. For single isolated sounds the instrument identifi-
cation can even reach 100% for a few classes, but it decreases to about 40% for
30 or more classes [8]). For polyphonic input even labeling of ground truth data
is difficult, so mixes and single sounds are commonly applied to facilitate the re-
search on polyphonic audio data. The identification of instruments in polyphony
is often supported with external provision of pitch data, but automatic multi-
pitch tracking problem is addressed too [7]. Another simplified approach aims at
the identification of a predominant instrument [1]. Multi-target identification of
multiple instruments is performed as well, although this research is done on vari-
ous sets of data, so the results cannot be directly compared. This section presents
a general view of methods and results obtained in the research addressing this
subject.

Audio data are usually parameterized before further processing in the classi-
fication procedure, and pure data representing amplitude changes of a complex
audio wave are rarely used. Preprocessing usually consists in calculation of pa-
rameters describing audio signal, or (more often) spectral features. Still, direct
spectrum/template matching can be also applied to instrument identification,
without feature extraction [10], [11]. This approach can result in good accuracy;
in [11], 88% was obtained for the polyphony of 3 instruments: flute, violin and
piano, supported with integrating musical context into the system.

The higher the polyphony level and number of instruments considered in the
recognition procedure, the lower usually accuracy of instrument identification
is. In [12], 84.1% was obtained for duets, 77.6% for trios, and 72.3% for quar-
tets, using LDA (Linear Discriminant Analysis) based approach. In [31], LDA
yielded 60% average precision for instrument pairs (300 pairs, 25 instruments),
and much a higher recall of 86–100%. Other techniques used in multiple in-
strument identification include SVM (Support Vector Machine), decision trees,
and k-NN (k-Nearest Neighbor) classifiers [5], [16]. For the polyphony of up to
four jazz instruments, the average accuracy of 53% was obtained in [5], whereas
[17] obtained 46% recall and 56% precision for the polyphony of up to 4 notes
for 6 instruments, based on spectral clustering, and PCA (Principal Compo-
nent Analysis). The problematic overlapping partials are sometimes omitting in
the instrument identification process [4], resulting in about 60% accuracy using
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GMM (Gaussian Mixture Models) for duets from 5-instrument set. Another in-
teresting approach to multiple-instrument recognition is presented in [3]; their
approach was inspired by non-negative matrix factorization, with an explicit
sparsity control.

The research on instrument identification is often incorporated in studies ad-
dressing automatic score extraction. The experiments described in [17] aimed at
sound separation, which is usually performed as an intermediate step in auto-
matic music transcription, and then each separated sound can be independently
labeled. Semi-automatic music transcription is addressed in [32] through shift-
variant non-negative matrix deconvolution (svNMD) and k-means clustering;
the accuracy dropped below 40% for 5 instruments, analyzed in form of mixes.
However, we should be aware that music transcription is a very difficult problem,
and such results are not surprising.

2 Data

The data we used originate from various recordings, all recorded at 44.1kHz/16-
bit, or converted to this format. Testing was performed on recordings as well,
not on mixes of single sounds, as often happens in similar research. This was
possible because we used recordings especially prepared for research purposes,
the original tracks for each instruments were available, and thus ground truth
labeling was facilitated. Both training and testing data were used as mono input,
although some of them were originally recorded in mono or stereo format. In the
case of stereo data, mixes of the left and right channel (i.e. the average value of
samples in both channels) were taken.

Sound parametrization was performed as a preprocessing in our research, for
40-ms frames. Spectrum was calculated first, using FFT (Fast Fourier Transform)
with Hamming window, and various spectral features were extracted. No pitch
tracking was performed nor required as preprocessing. Both training and testing
data were labeled with instruments playing in a given segment. In the testing
phase, the identification of instruments was performed on frame by frame basis,
for consequent 40-ms frames, with 75% overlap (10 ms hop size).

2.1 Feature Set

The feature vector consists of parameters describing properties of a 40-ms audio
frame, and differences of the same parameters but calculated between for a
30 ms sub-frame starting from the beginning of the frame and a 30 ms sub-
frame with 10 ms offset. The features we used are mainly MPEG-7 low-level
audio descriptors, are often used in audio research [9], and other features applied
in instrument recognition research. The following 91 parameters constitute our
feature set [13], [30]:

– Audio Spectrum Centroid — the power weighted average of the frequency
bins in the power spectrum, with coefficients scaled to an octave scale an-
chored at 1 kHz [9];
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– Audio Spectrum Flatness, flat1, . . . , flat25 — features parameter describing
the flatness property of the power spectrum within a frequency bin for se-
lected bins; we used 25 out of 32 frequency bands;

– Audio Spectrum Spread — RMS (root mean square) of the deviation of the
log frequency power spectrum wrt. Audio Spectrum Centroid [9];

– Energy — energy of the spectrum, in log scale;
– MFCC — 13 mel frequency cepstral coefficients. The cepstrum was calcu-

lated as the logarithm of the magnitude of the spectral coefficients, and then
transformed to the mel scale, reflecting properties of the human perception
of frequency. 24 mel filters were applied, and the results were transformed to
12 coefficients, and the logarithm of the energy was taken as 13th coefficient
(0-order coefficient of MFCC) [19];

– NonMPEG7 - Audio Spectrum Centroid — a linear scale version of Audio
Spectrum Centroid ;

– NonMPEG7 - Audio Spectrum Spread — a linear scale version of Audio
Spectrum Spread ;

– Roll Off — the frequency below which an experimentally chosen percentage
(85%) of the accumulated magnitudes of the spectrum is concentrated; pa-
rameter originating from speech recognition, applied to distinguish between
voiced and unvoiced speech;

– Zero Crossing Rate, where zero-crossing is a point where the sign of the
sound wave in time domain changes;

– changes (differences) of the above features for a 30 ms sub-frame of the given
40 ms frame (starting from the beginning of this frame) and the next 30 ms
sub-frame (starting with 10 ms offset);

– Flux — the sum of squared differences between the magnitudes of the DFT
points calculated for the starting and ending 30 ms sub-frames within the
main 40 ms frame; this feature works on spectrum directly, not on its pa-
rameters.

2.2 Audio Data

In our experiments we focused on wind instruments, typically used in jazz mu-
sic. Training data for clarinet, trombone, and trumpet were taken from three
repositories of single, isolated sounds of musical instruments: McGill University
Master Samples (MUMS) [20], The University of Iowa Musical Instrument Sam-
ples (IOWA) [27], and RWC Musical Instrument Sound Database [6]. Since no
sousaphone sounds were available in these sets, we additionally used sousaphone
sounds recorded by R. Rudnicki [24]. Training data were in mono format in RWC
data and for sousaphone, and in stereo for the rest of the data. Training was
performed on single sounds and mixes. Our classifiers were trained to work on
larger instrument sets, so additionally sounds of 5 other instruments were used
in the training. These were instruments also typical for jazz recordings: double
bass, piano, tuba, saxophone, and harmonica. RWC, IOWA and MUMS repos-
itories were used to collect these sounds. The testing data were taken from the
following jazz band stereo recordings by R. Rudnicki [13], [24]:
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– Mandeville by Paul Motian,
– Washington Post March by John Philip Sousa, arranged by Matthew Postle,
– Stars and Stripes Forever by John Philip Sousa, semi-arranged by Matthew

Postle — Movement no. 2 and Movement no. 3.

These recordings contain pieces played by clarinet, trombone, trumpet, and
sousaphone, which are our target instruments.

3 Classification

In the previous works, we have been solving the multi-label problem of recogniz-
ing instruments with the standard binary relevance approach. Namely, we were
building a battery of binary models, each capable of detecting the presence or
absence of a single instrument; for prediction, we were applying all the models
to the sample and combining their predictions.

Unfortunately, this approach is not computationally effective, ignores the in-
formation about instrument-instrument interactions and requires sub-sampling
of the training data to make balanced training sets for each battery member.
Thus, we attempted to modify the random ferns classifier used in our method-
ology to natively support multi-label classification.

3.1 Multi-label Random Ferns

Random ferns classifier is an ensemble of K ferns, simple base classifiers equiva-
lent to a constrained decision tree. Namely, the depth of a fern (D) is fixed and
the splitting criteria on a given tree level are identical. This way, a fern has 2D

leaves and directs object x into a leaf number F (x) = 1+
∑D

i=1 2i−1σi(x) ∈ 1..2D,
where σi(x) is an indicator variable for a result of the i-th splitting criterion. We
use the rFerns implementation of random ferns [14] which generates splitting cri-
teria entirely at random, i.e. randomly selects both a feature on which the split
will be done and the threshold value. Also, rFerns builds a bagging ensemble of
ferns, i.e. each fern, say k-th, is not directly build on a whole set of objects but
on a bag Bk, a multiset of training objects created by random sampling with
replacement the same number of objects as in the original training set.

The leaves of ferns are populated with scores Sk(x, y), indicating the confi-
dence of a fern k that an object x falling into a certain leaf Fk(x) belongs to the
class y. The scores are generated based on a training dataset Xt = {xt1, xt2, . . .},
and are defined as

Sk(x, y) = log
1 + |Lk(x) ∩ Yk(y)|

C + |Lk(x)| − log
1 + |Yk(y)|
C + |Bk|

, (1)

where Lk(x) = {xt ∈ Bk : Fk(x) = Fk(xt)} is a multiset of training objects from
a bag in the same leaf as a given object and Yk = {xt ∈ Bk : y ∈ Y (xt)} is a
multiset of training objects from a bag that belong to a class y. Y (x) denotes
a set of true classes of an object x, and is assumed to always contain a single
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element in a many-classes case; C is the number of all classes. The prediction of
the whole ensemble for an object x is Y p(x) = arg maxy

∑K
k=1 Sk(x, y).

Our proposed generalization of random ferns for multi-label classification is
based on the observation that while the fern structures are not optimized to a
given problem, the same set of Fk functions can serve all classes rather than
being re-created for each one of them. In the battery classification, we create
virtual not-class classes to get a baseline score value used to decide whether
class of a certain score value should be reported as present or absent. With multi-
class random ferns, however, we can incorporate this idea as a normalization of
scores so that the sign of their value will become meaningful indicator of a class
presence. We call such normalized scores score quotients Qk(x, y), and define
them as

Qk(x, y) = log
1 + |Lk(x) ∩ Yk(y)|
1 + |Lk(x) \ Yk(y)| − log

1 + |Yk(y)|
1 + |Bk \ Yk(y)| . (2)

The prediction of the whole ensemble for an object x naturally becomes Y p(x) =
{y : Qk(x, y) > 0}.

4 Experiments

When preparing training data, we start with single isolated sounds of each target
instrument. After removing starting and ending silence [13], each file representing
the whole single sound is normalized so that the RMS value equals one. Then, we
create the training set of sounds by mixing random 40 ms frames extracted from
the recordings of 1 to 4 randomly chosen instruments; the mixing is done with
random weights and the result is normalized again to get the RMS value equal to
one. Finally, we convert the sound into a vector of features by applying previously
described sound descriptors. The multi-label decision for such an object is a set
of instruments which sounds were used to create the mix. We have repeated this
procedure 100 000 times to prepare our training set.

This set is used directly to generate the model with the multi-label random
ferns approach. When creating the battery of random ferns, we are splitting this
data into a set of binary problems. Each one is devoted to one instrument and
contains 3000 positive examples where this instrument contributed to the mix
and 3000 negative when it was absent.

In both cases, we usedK = 1000 ferns and scanned depthsD = 5, 7, 10, 11, 12.
As the random ferns is a stochastic algorithm, we have replicated training and
testing procedure 10 times.

Both models are tested on real jazz recordings described in Section 2.2 and
their predictions assessed with respect to the annotation performed by an expert.
The accuracy was assessed via precision and recall scores; these measures were
weighted by the RMS of a given frame, in order to diminish the impact of softer
frames which cannot be reasonably identified as their loudness approaches the
noise level. Our true positive score Tp for an instrument i is a sum of RMS of
frames which are both annotated and classified as i. Precision is calculated by
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dividing Tp by the sum of RMS of frames which are classified as i; respectively,
recall is calculated by dividing Tp by the sum of RMS of frames which are
annotated as i.

As a general accuracy measure we have used F-score, defined as a harmonic
mean of such generalised precision and recall.

5 Results

The results of accuracy analysis are presented in Figure 1. One can see that for
fern depth greater than 7 the multi-label ferns achieved both significantly better
precision and recall that the battery classifier; obviously this also corresponds
to a higher F-score. The precision of both methods seems to stabilize for greater
depth, while the recall and so F-score of multi-class ferns raise steadily and
may be likely further improved. The variation of the results is also substantially
smaller for multi-class ferns, showing that the output of this approach is more
stable and thus more predictable.

Table 1 collects the sizes of created models and the speed with which they
managed to predict the investigated jazz pieces. One can see that the utilization
of multi-label ferns results in substantially greater prediction speed, on average
7 times better than the speed achieved by the battery of binary ferns. Theoreti-
cally, this factor should be equal to the number of classes because each object is
predicted by a single classifier instead of a battery of them, so should be equal
to 9 in our case. The difference is caused by a more subtle effects connected to a
higher sophistication of multi-label code and should diminish with an increasing
number of classes.

The difference between model sizes is less pronounced, with multi-label mod-
els being on average two times smaller than battery models. This is because
the multi-label ferns model mainly consists of 2DCK scores quotients, while the
ferns battery 2D+1CK score quotients (the models are binary but there is C of
them).

There is a negative correlation between the achieved F-score and both pre-
diction speed and model size, though, with the fern depth controlling the speed-
quality trade-off. However, this way a user may utilize this parameter to flexibly
adjust the model to the constraints of the intended implementation.

6 Summary and Conclusions

In this paper we introduce multi-label random ferns as a tool for automatic
identification of musical instruments in polyphonic recordings of a jazz band.
The comparison of performance of multi-label random ferns and sets of binary
ferns shows that the proposed multi-label ferns outperform the sets of binary
ferns in every respect. Multi-label ferns are much faster, achieve higher F-score,
and the model size increase with increasing complexity also compares favorably
with the set of binary random ferns. Therefore, we conclude that multi-label
random ferns can be recommended as a classification tools in many applications,
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Fig. 1. Overall precision, recall and F-score for all the investigated jazz recordings and
all the instruments for a battery of binary random ferns and for multi-label ferns.

Table 1. Comparison of model size and prediction speed for a random ferns battery
and multi-label random ferns. The speed is expressed as the total playing time of all
investigated jazz recordings divided by the CPU time required to classify them.

Model size Prediction speed
Fern depth Battery Multi-label Battery Multi-label

5 5MB 2MB 54× 359×
7 19MB 9MB 42× 301×
10 149MB 74MB 33× 238×
11 297MB 148MB 30× 216×
12 592MB 295MB 26× 204×
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not only for instrument identification, and this technique can also be applied on
resource-sensitive devices, e.g. mobile devices.
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Rozdział 6

Outlook

The work behind this thesis has led to a development of a complete, e�cient
framework for all relevant feature selection. Since its introduction in 2010, the
Boruta method paper gathered quite an attention (gathered over 90 citations),
including 50 published applications, spanning molecular biology, ecology, medi-
cine, remote sensing, geophysics and computer vision. Due to the introduction
of the Random Ferns, the whole solution can reliably handle even the hardest
challenges of feature selection including genome-wide genetic analyses, scaling
up to 106 and more variables.
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