
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

mikołaj fejzer

M I N I N G S O F T WA R E R E P O S I T O R I E S F O R C O D E Q U A L I T Y

PhD dissertation

supervisor:

prof. dr hab. Krzysztof Stencel
Institute of Informatics,

University of Warsaw

auxiliary supervisor:

dr Piotr Przymus
Faculty of Mathematics and Computer Science,

Nicolaus Copernicus University

Toruń, April 2020

Author’s declaration: aware of legal responsibility I hereby declare that I have written
this dissertation myself and all the contents of the dissertation have been obtained by legal
means.

Mikołaj Fejzer,
27th April 2020

Supervisor’s declaration: the dissertation is ready to be reviewed.

prof. dr hab. Krzysztof Stencel,
27th April 2020

Auxiliary Supervisor’s declaration: the dissertation is ready to be reviewed.

dr Piotr Przymus,
27th April 2020

A B S T R A C T

This dissertation covers a series of code quality topics utilizing mining of software repos-
itories. We focus on code review support and software bugs detection. The code review is
proof-reading of proposed code change, accepted as an industry standard. The reviewers
find common shortcomings such as lacking test coverage, misused design patterns, or logic
errors and provide feedback to the author of changes. Quality of review depends on correct
selection of reviewers. Most software is shipped with various kinds of defects. Fixing those
defects is one of most common activities in software development. Bug localization is a
process of finding specific defects in project source code, based on user supplied reports.

First, we analyze open source projects to gather insights on contributor activities and
bug prevalence, with the goal of helping bug detection during code review. We use topic
modeling on change comments to elect core developers to be involved in the code review.
Additionally, we examine both commit comments and issue topics per each month to assess
the popularity of bug fixing. Consequently, due to the fact that over half of all comments
are related to bugs, we focus on improving code review by introducing change classifier.
The classifier indicates potentially buggy changes during code review.

Second, we present a new method of recommending code reviewers, utilizing profiles
of individual contributors. For each developer we maintain a corresponding profile, based
on a multiset of all file path segments from commits reviewed by him/her. The profile is
updated after participation in the new review. We employ a similarity function between
such profiles and change proposals to be reviewed. The contributor whose profile is the
most similar becomes the recommended reviewer. We performed an experimental com-
parison of our method against state-of-the-art techniques using four large open-source
projects. We obtained improved results in terms of classification metrics (precision, recall
and F-measure) and performance (we have lower time and space complexity).

Third, we propose adaptive method to localize bugs based on bug reports. Upon receiv-
ing a new bug report, developers need to find its cause in the source code. Bug localization
can be supported by a tool that ranks all source files according to how likely they include
the bug. Consequently, we introduce new feature weighting approaches and an adaptive
selection algorithm. We evaluate localization method on publicly available datasets, with
competitive results and performance compared to state–of–the–art.

keywords : Bug localization, Code review, Mining software repositories, Reviewer recommendation

acm computing classification : Computing methodologies~Feature selection, Computing meth-

odologies~Learning to rank, Information systems~Clustering and classification, Information systems~Recom-

mender systems, Information systems~Structured text search, Software and its engineering~Collaboration in

software development, Software and its engineering~Software defect analysis

iii

S T R E S Z C Z E N I E

Niniejsza rozprawa obejmuje szereg zagadnień związanych z jakością kodu bazując na
eksploracji repozytoriów. Koncentrujemy się na wsparciu inspekcji kodu i wykrywaniu
błędów programistycznych. Inspekcja kodu jest techniką standardowo stosowaną w prze-
myśle. Polega na badaniu zaproponowanych zmian w kodzie źródłowym przez innych pro-
gramistów. Recenzenci znajdują typowe niedociągnięcia i przekazują informacje zwrotne
autorowi zmian. Jakość recenzji zależy od właściwego doboru recenzentów. Większość
oprogramowania jest dostarczana z różnego rodzaju defektami. Naprawa tych wad jest jed-
nym z najczęstszych działań w tworzeniu oprogramowania. Lokalizacja błędów to proces
znajdowania określonych defektów w kodzie źródłowym projektu na podstawie raportów
dostarczonych przez użytkownika.

Pierwszym rozważanym zagadnieniem jest analiza projektów open source, aby zaobser-
wować zachowanie kontrybutorów i występowanie błędów. Używamy modelowania tema-
tów na treści komentarzy do zestawów zmian, żeby znaleźć głównych programistów dla
każdego badanego projektu. Ponadto badamy tematy zgłoszeń użytkowników jak i zesta-
wów zmian, aby ocenić popularność naprawiania błędów w skali miesięcy. Na podstawie
powyższych analiz skupiamy się na ulepszeniu inspekcji kodu poprzez dodanie klasyfika-
tora zmian, ponieważ ponad połowa wszystkich komentarzy dotyczy błędów. Klasyfikator
wskazuje potencjalnie błędne zmiany podczas inspekcji.

Jako drugie poruszane zagadnienie przedstawiamy nową metodę rekomendacji recen-
zentów kodu wykorzystującą profile poszczególnych kontrybutorów. Dla każdego progra-
misty utrzymujemy odpowiedni profil oparty o wielozbiór wszystkich segmentów ścieżek
recenzowanych dotychczas plików. Profil jest aktualizowany po przygotowaniu nowej re-
cenzji. Stosujemy funkcję podobieństwa między takimi profilami i propozycjami zmian
wymagających inspekcji. Kontrybutor, którego profil jest najbardziej podobny, zostaje reko-
mendowanym recenzentem. Przeprowadziliśmy eksperymenty w celu porównania naszej
metody z najnowocześniejszymi technikami, wykorzystując cztery duże projekty open so-
urce. Uzyskaliśmy lepsze wyniki pod względem miar jakości klasyfikacji oraz wydajności.

Trzecim zagadnieniem jest nowa, adaptacyjna metoda lokalizacji błędów na podstawie
zgłaszanych raportów. Po otrzymaniu nowego raportu programiści muszą znaleźć przy-
czynę błędu w kodzie źródłowym. Proponujemy narzędzie wspierające lokalizację błędów
za pomocą określenia prawdopodobieństwa zawierania usterki przez pliki w projekcie.
Nasza metoda bazuje na nowych sposobach ważenia cech i adaptacyjnych algorytmach
selekcji. Uzyskaliśmy konkurencyjne wyniki i wydajność w porównaniu do najnowocze-
śniejszych technik na publicznie dostępnych zestawach danych.

słowa kluczowe : Lokalizacja błędów, Inspekcja kodu źródłowego, Eksploaracja repozytoriów opro-

gramowania, Rekomendowanie recenzentów

v

A C K N O W L E D G E M E N T S

I want to thank my supervisors, dr Piotr Przymus and prof. dr hab. Krzysztof Stencel, for
their encouragement, guidance, patience and support without which this thesis would not
have been possible.
I would also like to thank all my other co-authors: dr Jakub Narębski, dr Marta Burzańska,
dr hab. Piotr Wiśniewski and Michał Wojtyna, for all I have learned while working with
them.

Finally, I wish to express my gratitude to my family for their support and patience.

vii

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Problem statement 2

1.3 Dissertation outline 3

2 preliminaries 5

2.1 Software engineering 5

2.2 Information retrieval 7

2.3 Learning 8

2.4 Mining software repositories 11

3 preliminary studies on open source data 15

3.1 Introduction 15

3.2 Related work 15

3.3 Contribution analysis 18

3.4 Bug detection based on commit similarity 20

3.5 Concluding Remarks 22

4 recommendation of code reviewers 25

4.1 Introduction 25

4.2 Related work 25

4.3 Problem statement 29

4.4 The proposed method 30

4.5 Evaluation Results 35

4.6 Discussion 43

4.7 Concluding Remarks 44

5 adaptive bug localization based on bug reports 45

5.1 Introduction 45

5.2 Related work 46

5.3 Problem statement 49

5.4 Feature engineering 49

5.5 Proposed solution 51

5.6 Evaluation Results 56

5.7 Discussion 60

5.8 Concluding Remarks 65

6 conclusions 67

6.1 Future work 67

7 appendix : replication and datasets 69

7.1 Replication repository 69

7.2 Preliminary studies datasets 69

bibliography 75

ix

L I S T O F F I G U R E S

Figure 3.1 History limit tests 23

Figure 4.1 Evaluated projects insights 38

Figure 4.2 Metrics comparison 39

Figure 4.3 Recommended reviewers in Top-1 Tversky No Ext without tie-breaking 41

Figure 4.4 Performance difference between methods 43

Figure 5.1 Bug localization improvement graph 47

Figure 5.2 The block schema of a general learning to rank approach in bug
localization. 52

Figure 5.3 Fine grained dataset [165] Accuracy@k results 58

Figure 5.4 Adaptive scoring MAP for different scoring functions 63

Figure 5.5 Adaptive Regression regularization 63

Figure 5.6 Adaptive Regression MAP Distribution 64

x

L I S T O F TA B L E S

Table 3.1 Statistics of commit commenter groups 19

Table 3.2 Core contributors 19

Table 3.3 Preliminary tests 22

Table 3.4 History length groups 22

Table 3.5 History length tests 23

Table 4.1 Example repository and assignment of reviewers. 31

Table 4.2 Profile model operations 33

Table 4.3 Profile model modified operations 34

Table 4.4 Statistics of processed projects 36

Table 4.5 The recall and MRR for all methods and four projects 40

Table 4.6 The recall and MRR of Tversky No Ext without tie-breaking. 41

Table 4.7 Results of the performance evaluation 42

Table 4.8 Memory footprint of Tversky No Ext (in MB) 43

Table 5.1 Bug localization related work 46

Table 5.2 Used features 50

Table 5.3 Learning to rank bug localization methods comparison 53

Table 5.4 Scoring functions and weight schemata 54

Table 5.5 Datasets used in this chapter 56

Table 5.6 Fine grained dataset [165] MAP and MRR results 59

Table 5.7 BugLocator dataset [172] results 60

Table 5.8 Adaptive method performance on Ye et al. dataset [165] 61

Table 7.1 Contributors 70

Table 7.2 Bug prevalence 71

Table 7.3 Bug detection - small repositories 72

Table 7.4 Bug detection - medium repositories 72

Table 7.5 Bug detection - large repositories 73

Table 7.6 Bug detection - XL repositories 73

xi

1
I N T R O D U C T I O N

Contents
1.1 Motivation 1

1.2 Problem statement 2

1.3 Dissertation outline 3

1.1 motivation

Mining of Software Repositories is a subfield of Software Engineering that studies and de-
velops instruments useful for analyzing the rich data that are produced during software
evolution [62]. Evolution of software was studied extensively [81, 157], with various models
applied to quality measurement [94] or code decay detection [31]. Only relatively recent ad-
vances in information retrieval and machine learning enabled large scale data mining and
knowledge extraction in this area [15, 47, 48, 64]. Consequently, new research trends arose,
with the goal of software quality improvement via applying MSR [62, 124]. The most crucial
applications of MSR in terms of software quality are bug prevention and localization [25,
67, 119, 139]. Among other important usages we may list code review enhancement [96],
contribution detection and team dynamics analysis, with a focus on developer interactions
and the social side of programming [130]. The software architecture is also studied via code
reuse pattern discovery, coupling detection, architecture management and refactorisation
support [47].

The data analyzed by MSR is stored in version control systems, bug/issue trackers, pro-
ject management software, communication archives and code review systems [62]. Intuit-
ively, we can divide available data sources into two groups: user supplied unstructured
text and source code artifacts, with the former obtained from specific revision from project
version control repository [1] and the later from other sources. Both groups are usually
cross-linked, to represent coocuring changes of different project artifacts [63]. Examples
of such links are issue tracker ticket identification numbers present in commit metadata
message, repository tags joining branches to specific release, code comments referencing
external sources and developers emails containing commit references. Depending on scope
of research question and applied methodology either each commit is investigated or vari-
ous commits are aggregated for further processing as specific versions of analyzed soft-
ware [62]. Advent of decentralized version control systems, such as git, introduced unique
advantages over centralized systems, for example metadata locality, possibility of reposit-
ory conversion with intact history and improvements to line content tracking [15]. Con-
sequently, hosting sites like GitHub or Bitbucket provide a valuable and complete source
of data on many open source projects and their contributors [64].

In this dissertation we focus on ensuring software quality via applying MSR to various
aspects of modern software development. In particular, we propose methods to select ap-

1

2 introduction

propriate code reviewers, detect new bugs similar to already solved ones and localize bugs
based on user submitted reports.

The practice of peer code reviews is one of standards both within industry and open
source communities. Thanks to code review, new contributors to the project are able to
learn the domain quicker and receive constant feedback about their progress [108]. Other
advantages of the code review process are better adjusted test coverage and lower num-
ber of bugs per each release [96]. Additionally, it enforces consistent adherence to both
language standards and specific project guidelines of new code submissions [108]. Never-
theless, code review can be a time consuming activity, requiring cooperation and mutual
understanding between code author and reviewer. To do the review properly potential re-
viewer candidates need to know specific project areas related to the changes. Long time de-
velopers tend to "take ownership" of specific modules or features, and maintain them [101],
which includes review participation. The reviews without pre-assigned reviewers tend to
either be abandoned or wait longer than others for any kind of activity [29, 57]. Further-
more incorrect assignment (beyond expertise of the reviewer) might cause the review to
suffer from Parkinson’s law of triviality. According to it, such reviewers would focus on
unimportant details [124]. This demonstrates that finding competent reviewers quickly is
an important problem. Consequently, we focus on the automation of the code reviewer
recommendation. Before a change is merged into the destination branch within the repos-
itory, it is usually checked via build automation tools. These tools evaluate if changes pass
compilation, unit and integration tests. Additional tools based on static code analysis are
optionally included to provide more insight for reviewers. We propose another source of
insight for reviewers, based on the history of already fixed bugs, suggesting if changed
files are similar to those requiring fixes in the past.

Most of the software projects are delivered containing bugs, with more than one third of
software development costs being spent on bug removal [39, 170]. Software users submit
bug reports to bug trackers, such reports are one of the main sources of information about
bugs [62]. Each report is managed by project maintainers, who triage, prioritize, remove
duplicated issues, conduct replication and resolve bugs. The bug localization is the process
of finding appropriate, defective source files within the project. Due to varying quality of
bug reports, omitted data, nonstandard conditions occurring in the program and size of
the project, the selection of relevant files may be a non-trivial task. Moreover, the developer
must understand the architecture of the program and the domain of specific use cases to
localize the correct source code successfully. We introduce adaptive method for automated
bug localization, with the goal of decreasing time spent by developers on bug fixing activity,
and consequently reducing costs of software creation and maintenance.

1.2 problem statement

The subject of this PhD dissertation is to improve the overall code quality using defect
prevention and localization utilizing information retrieval and machine learning. The main
objectives were the following:

• to recommend the code reviewers [34]

• to localize buggy files based on user report [33]

Additionally, we include preliminary studies on open source projects, gathering insights
on contributor roles and bug detection [35, 36].

1.3 dissertation outline 3

1.3 dissertation outline

The dissertation consists of six main chapters and appendix.

• In Chapter 2 we introduce information retrieval and machine learning methods we
use throughout the dissertation, along with software engineering datasources.

• In Chapter 3 we present groundwork studies [35, 36].

• In Chapter 4 we describe code reviewer recommendation algorithm [34].

• In Chapter 5 we introduce adaptive bug localization algorithm based on bug re-
ports [33].

• In Chapter 6 we summarize our main findings and highlight some possible future
work.

• In Appendix Chapter 7 we present replication repository and additional details of
selected datasets used in this dissertation.

references

[33] Mikolaj Fejzer, Jakub Narebski, Piotr Przymus and Krzysztof Stencel. “Tracking
Buggy Files: New Efficient Adaptive Bug Localization Method”. 2020. Manuscript.

[34] Mikolaj Fejzer, Piotr Przymus and Krzysztof Stencel. “Profile based recommend-
ation of code reviewers”. In: Journal of Intelligent Information Systems 50.3 (2018),
pp. 597–619. doi: 10.1007/s10844-017-0484-1.

[35] Mikolaj Fejzer, Michal Wojtyna, Marta Burzanska, Piotr Wisniewski and Krzysztof
Stencel. “Open Source Is a Continual Bugfixing by a Few”. In: Advances in Databases
and Information Systems - 18th East European Conference, ADBIS 2014, Ohrid, Macedonia,
September 7-10, 2014. Proceedings. Ed. by Yannis Manolopoulos, Goce Trajcevski and
Margita Kon-Popovska. Vol. 8716. Lecture Notes in Computer Science. Springer,
2014, pp. 153–162. isbn: 978-3-319-10932-9. doi: 10.1007/978-3-319-10933-6_12.

[36] Mikolaj Fejzer, Michal Wojtyna, Marta Burzanska, Piotr Wisniewski and Krzysztof
Stencel. “Supporting Code Review by Automatic Detection of Potentially Buggy
Changes”. In: Beyond Databases, Architectures and Structures - 11th International Con-
ference, BDAS 2015, Ustroń, Poland, May 26-29, 2015, Proceedings. Ed. by Stanislaw
Kozielski, Dariusz Mrozek, Pawel Kasprowski, Bozena Malysiak-Mrozek and Daniel
Kostrzewa. Vol. 521. Communications in Computer and Information Science. Springer,
2015, pp. 473–482. isbn: 978-3-319-18421-0. doi: 10.1007/978-3-319-18422-7_42.

https://doi.org/10.1007/s10844-017-0484-1
https://doi.org/10.1007/978-3-319-10933-6_12
https://doi.org/10.1007/978-3-319-18422-7_42

2
P R E L I M I N A R I E S

Contents
2.1 Software engineering 5

2.2 Information retrieval 7

2.3 Learning 8

2.4 Mining software repositories 11

In this chapter, we introduce common software engineering processes serving as a data-
source for MSR purposes. Then, we describe Information retrieval and Machine learn-
ing methods used to analyze the data present in software repositories. In particular, we
present related supervised learning algorithms, as well as learning to rank approaches.
Consequently, we present evaluation metrics used to assess the model performance. Addi-
tionally, chapter specific notation is introduced in Section 4.3.1 and Section 5.3.1

2.1 software engineering

The Software engineering is a systematic approach to construct and support software. Es-
sential software attributes are [138]:

• maintainability - the software should be written in a way that enables future changes
due to changing requirements,

• dependability - the software should not cause damage in case of failure,

• efficiency - the software should not waste computing resources,

• acceptability - the software needs to be usable by users and compatible with other
systems in the shared environment.

Creation of software consists of basic process activities such as specification, development,
validation, and maintenance. Those activities are organized differently depending on used
development methodology. If the methodology is plan driven, such as waterfall, the process
activities are sequential, with each activity working on artifacts created previously, when
the preceding activity is finished. In case of agile development, the activities are interleaved,
and usually coordinated to develop part of a specific feature, with the goal of quickly
gathering feedback and changing direction of the project if required. Each activity is a
source of various kinds of heterogeneous data for MSR purposes [62].

2.1.1 Specification and design

During the specification activity stakeholders, architects and developers tend to work on
various kinds of requirements and design documentation. The documentation is composed
of natural language text describing use cases and structured documents, for instance UML

5

6 preliminaries

diagrams, interface description language specifications and protocol descriptions. Intuit-
ively, such data is stored in issue tracking and project management systems. Note that the
same systems are often used for bug tracking purposes, with bug reports uploaded by
users[170].

2.1.2 Development and quality

To ensure the dependability of the developed software programmers utilize build auto-
mation tools, which handle the compilation and dependency management. Automatic test
execution is usually included in configuration of such a tool, verifying if project code passes
the unit and integration tests. Additional utilities such as static code analyzers, linters and
coverage checkers might be also incorporated. The results are presented to the developers
in the form of automatically generated text reports. The other kinds of data generated
during the development activity are abstract semantic graphs and abstract syntax trees,
representing the used syntax constructs and underlying structure of the project in ques-
tion. The presence of ASTs enables computation of software metrics, such as cyclomatic
complexity and code coverage by tests.

Version control

Version control is a system that preserves changes to a set of files with a set of metadata,
enabling users to recall specific versions. The common definitions in modern distributed
version control, such as git, are:

repository storage of changes of all project source files along with metadata

cloning creation of local repository based on other repository, containing the same
changes

commit record of changes to the files, with unique identifier, on specific branch, with
connection to parent commit and metadata such as author, time of creation and
message

branch list of successive commits, enabling parallel different changes to the same files

master main branch in the repository

merge act of combining two or more branches applying all changes to the files

conflict occurs during merge when two or more changes are modifying the same part
of specific file, might be resolved automatically or by explicit user input

push sending the changes from selected branch of local repository to chosen remote
repository

fetch downloading changes from remote repository to local repository

pull downloading changes from remote repository to local repository and merging
those changes

tag additional annotation on specific commit

2.2 information retrieval 7

Code review

The peer code reviews have been practiced since the 1970s [16, 32], recent studies show
that modern code review is more lightweight and less formal than in the past [123, 127],
while offering similar software quality benefits [96]. The previous technique, code in-
spections [32] fell to disuse due to required time constraints and formalized processes
including synchronized inspection meetings. Consequently, the rise of the internet en-
abled developers to conduct reviews by email, based on patches sent to mailing lists [127].
Manual, error prone workload and lack of process caused development of code review
systems [127].

The modern standard for both industry and open source projects is tool based review.
During the code review the reviewers provide comments to the changed files, and decide
if changes are ready to be merged with the codebase or need additional work. This ap-
proach utilizes the lightweight process with defined, adjustable rules, enforced by a code
review system. Such rules can include a number of required approvals, specific ownership
of changes and code passing build automation. Note that the pull-request model is a vari-
ant of tool based review. Benefits of code review include educating new contributors to the
project, upholding standards such as chosen formatting style, high test coverage and dis-
covery of bugs [123]. The comments and results of the review are stored in the code review
system database, with corresponding changes metadata saved in the project repository.

2.1.3 Release management, deployment and maintenance

The release process consists of building a selected version of the project, testing and deploy-
ment of this version to the target production system in a repeatable manner. This process
utilizes the same built automation tools as the development phase, but prepared artifacts,
such as compiled packages, are made available to the end users [138]. The public announce-
ments of new version, such as published change logs or email messages are the text data
describing this phase. After deployment users interacting with the new version encounter
the software bugs and report those to the maintainers.

2.2 information retrieval

Information retrieval is the task of finding documents that are relevant to a selected user’s
query [126]. For each query the IR system needs to prepare a result set, composed of
documents relevant to the query from the corpus of all available documents. Document
ranking, defined as sorting documents in order of likely relevance, is a main problem in
IR [88].

Bag-of-words model In this model, a text is represented as orderless representation - the
multiset [70] of its words. It omits the grammar structure of a document or sentence, but
retains words multiplicity [126]. This model is commonly used to prepare set of features
for other algorithms.

Vector space model A vector of terms represents a text in this model. As each term becomes
an independent dimension in high dimensional vector space. Typically terms are words,
phrases or index identifiers [135]. When a term is present in a text, it gets a non-zero value
in the vector, depending on weight scheme.

8 preliminaries

TF-IDF The term frequency - inverse document frequency is a commonly used weight
scheme model, representing documents as vectors of weighted terms [126], given an equa-
tion:

tf-idf(t,d,D) = tf(t,d)× idf(t,D).

The term frequency tf(t,d) is number of occurrence of term t in document d. The inverse
document frequency represents how common is given term t in whole corpus D, following
equation

idf(t,D) = log
|D|

|{d : t ∈ d}|
, (1)

where |D| is the number of documents in the corpus and |{d : t ∈ d}| is the number of
documents containing term t.

Topic model The topic model represents a document as a series of probabilistically gen-
erated topics [53]. A Latent Dirichlet Allocation [17] is a three-level hierarchical Bayesian
topic model. Each document is modeled as a finite mixture over an underlying set of topics,
and each topic is modeled as an infinite mixture over an underlying set of topic probabilit-
ies [17]. The probabilities of topics provide a document representation. This model works
under assumption that topic distribution has sparse Dirichlet prior, corresponding to intu-
ition that documents encompass only a small set of topics and that topics use only a small
set of words.

Similarity measure The similarity measure is a function defined on two objects in specific
domain, with codomain of real numbers. Many similarity measures have been proposed,
including inverse of various distance metrics, information content, mutual information,
Dice coefficient, cosine coefficient and feature contrast model [86]. Most of those meas-
ures increase with commonality and decrease with difference of objects in question, under
the assumptions that the more commonality objects share the more similar they are. The
maximum similarity between two objects is 1, and is reached when objects are identical.

2.3 learning

An agent is an entity that can be viewed as perceiving its environment and acting upon
that environment. The behavior of the agent is defined as agent function. Consequently, a
learning agent improves performance on future actions after observing the results. We may
distinguish between several kinds of learning, based on feedback usage or lack of thereof.
Those kinds are unsupervised learning, reinforcement learning, supervised learning and
semi-supervised learning [126]. In this dissertation we focus on supervised learning and
learning to rank applications as described in the following sections.

2.3.1 Supervised learning

Supervised learning is the machine learning task of learning a function that maps an in-
put to an output based on example input-output pairs [126]. Given a training set of |N|

examples, (x1,y1), (x2,y2)..., (xN,yN) where xi denotes input, and yj was computed by an
unknown function f such that yj = f(xj), the task of supervised learning is to find a hypo-
thesis function h, which approximates f [126]. To verify h a separate testing set is used. If

2.3 learning 9

yj belongs to a finite set of discrete values the learning task is classification, identifying to
which of a set of categories a new observation xj belongs. On the other hand the regression
is a problem of estimating continuous variable yj by independent variables of observation
xj.

Linear regression Let xj be m element vector. The hypothesis function takes form

hw(xj) = w0 +

m∑
i=1

wi ∗ xi,j,

where w is a weight vector. To find optimal hypothesis function the w vector needs to be
changed according to the selected learning approach, based on results on the training set.
Let squared loss function be

L2(hw) =

N∑
j=1

(yj − hw(xj))
2.

Given N training examples, the sum of the individual losses for each example needs to be
minimized. The best set of weights is

w∗ = arg min
w

N∑
j=1

L2(yj,hw(xj)).

Thus each weight can be updated according to equation:

wi ← wi +α

N∑
j=1

xj,i ∗ (yj − hw(xj)),

where α is the learning rate, until minimum loss is found.
Logistic regression To utilize regression for classification problems logistic regression can

be binomial, multinomial or ordinal, depending on possible yj values. Intuitively, for bi-
nomial logistic regression yj ∈ 0, 1, multinomial logistic regression deals with situations
where yj can have three or more possible types that are not ordered. In case of ordinal
regression dependent variables are ordered. Let

l(z) =
1

1+ e−z

be the logistic function. The hypothesis function is then defined as

hw(xj) = l(w ∗ xj) =
1

1+ e−w∗xj
.

Support-vector machine A Support-vector machine model is a representation of the train-
ing set as points in space, and dividing them by maximum margin separator hyperplane,
which is a decision boundary with the largest possible distance to training points [126]. Test
set is mapped into the same space, with predictions based on the side of the hyperplane of
each point.

For yj ∈ 1,−1 the hyperplane is defined as

w ∗ xj − b = yj,

10 preliminaries

where weights vector w is normal vector of hyperplane, and b is the intercept parameter.
The hypothesis function is defined as

hw,b(xj) =

1 if w ∗ xj + b > 0

−1 otherwise
.

To find the separator hyperplane the following equation is solved [126]:

arg min
w,b

(1/2 ∗w ∗w+

N∑
j=1

(max{0, 1− yj ∗ (w ∗ xj + b)})).

This model was adapted for text categorization due to the fact that it is both able to
work efficiently with high dimensional input space and sparse vectors representing docu-
ments [59].

2.3.2 Learning to rank

Learning to rank is the process of applying machine learning to the ranking problem in
information retrieval systems. The approaches to learning to rank can be divided according
to hypothesis function domain and codomain into three main approaches [89].

In the pointwise approach the hypothesis function is defined on feature vectors rep-
resenting single documents. The corresponding output is the relevance degree of a given
single document [89]. Thus the hypothesis function can be modeled as regression, classific-
ation, or ordinal regression, with corresponding loss function checking the prediction for
each single document.n of the ground truth label for each single document.

The domain of hypothesis function in the pairwise approach are the pairs of feature vec-
tors representing documents. The result is the pairwise preference +1,−1 of order between
documents. Such ranking is modeled as a classification task, with loss defined as classific-
ation loss [89].

For the listwise approach the hypothesis function is defined on sets of documents related
to the query, with output being permutation of documents [89]. The corresponding loss
function is defined with respect to all the documents associated for a given query.

2.3.3 Model performance metrics

The following are common metrics used in most studies to assess performance [54, 57, 79].
Let actual(n) be the actual relevant n documents for specific query and top(n) be the

top n documents retrieved for the same query. Precision@k represents an estimation of how
many documents are correctly recommended for specific query within given top k. It is
also known as positive predictive value. It is computed as follows:

Precision@k =
|top(n)∩ actual(n)|

|top(n)|
. (2)

Recall@k estimates how many documents are correctly recommended within given top k
over the actually relevant documents. It is also known as true positive value. It is computed
as follows:

Recall@k =
|top(n)∩ actual(n)|

|actual(n)|
. (3)

2.4 mining software repositories 11

F1 score is the weighted harmonic mean of precision and recall for given k. It is also known
as F-Measure.

F1 = 2 ∗ Precision× Recall
Precision+ Recall

. (4)

Accuracy@k, also known as likelihood, measures the percentage of queries for which the
model predicted at least one correct recommendation in the top k ranked documents and
is defined as:

Top K = # at least one correct in top k, Accuracy@k =
Top K
|Q|

. (5)

Mean Average Precision for a set of queries is the mean of the average precision scores for
each query, given an equation:

MAP =
∑
q∈Q

AvgP(q)
|Q|

(6)

where the average precision AvgP score defined as

AvgP =
∑
k∈K

Precision@k
|K|

.

Mean Reciprocal Rank is the metric commonly used in the information retrieval ranking
problems [152]. It aids evaluating any process that produces a list of possible responses to
a series of queries, ordered by the probability of their correctness. This measure computes
the mean value of the position of the first relevant document in the recommended ranked
list:

MRR =
1

|Q|

∑
q∈Q

1

rank
(
first(q)

) , (7)

where rank(first(q)) is the position of the first relevant document in the ranked list for
query q.

2.4 mining software repositories

In this section we provide examples of MSR corresponding to selected phases of software
engineering. One of the main MSR goals is enabling architects, programmers and coordinat-
ors to make informed decisions about developed projects, based on the available historical
data, without a need to depend only on their intuition [47]. Depending on the required
usage, the information retrieval and machine learning algorithms need to be applied on
the cross linked data, with results presented as feedback to potential users [62]. On the
other hand, various repetitive or time consuming development activities can be automated,
enabling contributors to focus on other work.

2.4.1 Augmenting feature specification

Defect detection might be hampered by misclassification of features as bugs [71]. Tools like
ReLink[160] and Linkster[8] help to create links between bug reports and commits, either
automatically or manually.

12 preliminaries

Ray et al. [121] investigated software quality of 729 open source projects hosted on
GitHub. The authors checked the impact of language on quality using features such as
procedural/functional/scripting paradigm, strong/weak type system, static/dynamic typ-
ing, managed/unmanaged memory model and scripting/compiled model. Moreover, they
used regression on specific project features, like size, project history, number of contribut-
ors to estimate the number of defects per project. In addition to that both projects and de-
fects were also clustered to find relations between defect types and languages. The authors
concluded that functional languages have smaller relation to defects than other paradigms,
some languages are more associated with defects and kinds of present defects are strongly
associated with the used language.

Marcus [93] attempts to find similarities between user queries and source code by using
concepts obtained via Latent Semantic Indexing. The method is trained on corpus pre-
pared from source code of Mosaic web browser and set of artificially created queries, and
evaluated against "grep" like tool, with better results in terms of recall.

Bajracharya [9] proposes the method to find examples of api usage by utilizing similarity
between api implementations using Structural Semantic Indexing.

2.4.2 Automated development

Kim et al. [65] proposed a patch generation tool named "Pattern-based Automatic program
Repair". This approach is based on application of fix templates to suspicious code, found
by fault localization algorithms. Each generated program variant is evaluated using fitness
function computing the number of passing unit tests. Authors manually prepared generic
fix templates based on 62656 human written patches of Eclipse JDT project. During eval-
uation the tool was able to prepare fixes for 27 out of 119 from six open source projects:
Mozilla Rhino, AspectJ, Apache Log4j, Apache Commons subprojects Math, Lang and Col-
lections.

Jia et al[58] introduce higher order mutants by applying mutation operators more than
once as an extension to mutation testing. Authors tested four approaches (fitness function,
greedy algorithm, genetic algorithm and hill climbing algorithm) on six test programs
written in C. Best results were obtained using hill climbing algorithm.

Balog et al [11] use neural network to compose programs solving programming competi-
tion problems. The network composes programs from available functions and higher order
functions (map, filter, reduce) to pass the competition criteria.

2.4.3 Code review enhancement

Modern tool based code review already utilizes feedback generated by compilation and
unit test results. Analysis of code review results, addition of new sources of feedback and
further automation of reviewer activities is an area of study within MSR. We analyse in de-
tail state-of-the-art reviewer recommendation approaches [10, 145, 167, 168] in Section 4.2.

Rigby et al. [122] analyzed convergent contemporary peer review practices across Mi-
crosoft, AMD, Google and Lucent. Majority of reviews involve two reviewers. The modern
code review tools improve traceability and information sharing over traditional review
processes and are widely adopted in industry.

2.4 mining software repositories 13

Paixao et al [114] introduced the Code Review Open Platform, the curated repository
linking review data with source code snapshots, mined from 8 open source projects using
the Gerrit code review system.

2.4.4 Bug reports handling

Duplicate bug reports cause developers to waste time. Li et al. [85] proposed to detect
duplicate pull requests on GitHub via information retrieval model. The method is based on
computation of cosine similarity on textual descriptions of each pull request, represented
by Vector Space Model.

Different approach was proposed by Lazar et al. [76]. The authors evaluated algorithms
available in scikit learn (K-Nearest Neighbours, Linear SVM, RBF SVM, Decision Tree,
Random Forest and Naïve Bayes) and LibSVM with a goal of binary classification (du-
plicate/non duplicate) on bug reports of 3 open source projects Eclipse, Open Office, and
Mozilla. Features were obtained by TakeLab. Best results were returned by LibSVM and
K-Nearest Neighbours.

2.4.5 Defect fighting

Bhattacharya et al. [13] conducted an empirical analysis of the bug fixing process in 24

open source Android applications and Android platform itself. The authors used Bugzilla
instances of public Google Code repositories, choosing applications with more than 200

bug reports and more than 100000 downloads. The gathered data was used to measure the
bug report quality, distribution of report statuses, developer teamwork and required time
to prepare a fix per each project. The negative correlation was discovered between features
describing report description length and time to fix within months, which led the authors
to the conclusion that length is a good predictor of report quality. The average bug fixing
time is less than 1.5 months, and developer communities start work within one day from
new report creation, mostly by adding comments.

We can distinguish two main approaches to detection of bugs, one based on a specific
single version of source code such as selected release and the other utilizing repository
data for project history[25].

Moreover, such detection can be performed on different levels of granularity. Spectrum-
based fault localization[139] and Probabilistic fault localisation [75] both assign a degree of
suspicion to each source code line. Savant [77] tool selects methods most likely to contain
defects. Those methods with sub-file granularity level are based on execution traces, often
gathered from test suites from selected single version of code. Network Analysis on Depend-
ency Graphs by Zimmermann et al. [173], Static Code Attributes by Menzies et al. [99] and
the Ant colony optimization model by Vandecruys et al.[149] all detect defects on component
or module level, utilizing different methods. Arisholm et al[5] assessed how different mod-
eling techniques can affect fault prediction algorithms. They investigated feature engender-
ing based on various object oriented and process metrics, model selection and evaluation
criteria compared against each other using cost-effectiveness. The features based on object
oriented metrics do not yield good results when compared with others. The differences
introduced by various modeling techniques are insignificant.

14 preliminaries

The replicability of research results is one of the main concerns in this field, as only 31%
of fault detection papers published before 2009 used public datasets according to Catal et
al. [19] survey.

2.4.6 Bug localization

Various models were proposed to localize a known bug, depending on the user supplied
report [2, 22, 104, 109, 128, 131, 158, 165, 172]. Some of the previously mentioned bug local-
ization methods use various learning-to-rank algorithms; thus, we present the application
details. The Random Forests and MART algorithms from RankLib [27] evaluated by Shi et
al. [131] are examples of pointwise learning-to-rank applications. Ye et al. [164, 165] use of
SVMrank is the example of pairwise approach. Shi et al. [131] tested some pairwise algorithms:
RankNet, RankBoost and LambdaMART. Listwise ranking algorithms were utilized in Am-
aLgam+ [155] and CoordinateAscent used by Shi et al. [131]. In Section 5.2 we provide a
detailed description of those state-of-the-art approaches.

Lee et al [78] conducted replicability study on BugLocator, BRTracer, BLUiR, AmaLgam,
BLIA and Locus bug localization algorithms [128, 156, 158, 166, 172], preparing new dataset
containing 9459 bug reports 46 projects of Apache, Spring and Jboss. Surprisingly, duplic-
ate bug reports present in the dataset help with obtaining better accuracy by inclusion
of additional tokens complementing the main bug report and none of the six evaluated
methods is able to outperform the others.

Bird et al. [14] analyzed bug fix datasets in terms of bug feature bias and commit feature
bias. The authors used source code of AspectJ and Eclipse together with iBugs dataset
linking changes to bugs to train BugLocator [172]. Evaluation results show that a large
number of less severe bugs present in datasets cause localization algorithms to better find
such bugs than critical or blocking ones. When training only on a specific kind of bug, the
algorithm works well for the selected kind, but has worse results for others.

3
P R E L I M I N A RY S T U D I E S O N O P E N S O U R C E D ATA

Contents
3.1 Introduction 15

3.2 Related work 15

3.3 Contribution analysis 18

3.4 Bug detection based on commit similarity 20

3.5 Concluding Remarks 22

3.1 introduction

In this chapter, we describe the results of preliminary studies conducted on GitHub open
source projects. In particular, we investigated developer roles, their participation scope,
maintenance work management and method for bug detection for code under review. Dur-
ing the normal development process some contributors leave the project, and new arrive,
resulting in a shift of domain knowledge. Thus, we analyzed commits of open source pro-
jects using topic modeling to capture roles of developers and scope of their work. To this
end, we utilized a subset of the GHTorrent dataset [41]. Consequently, we identified bug
fixing as one of the most prevalent activities. Therefore, inspired by Kim et al. [67] we
prepared a code review bug classifier to help project maintainers.

This chapter is based on ideas from our two published conference papers [35, 36]. The
contributions are as follows:

• we conduct an open source contribution analysis on 42 projects and define developer
groups responsible for most of the work;

• we prepare a classifier detecting bugs during code review in git repositories, and
evaluate it on 64 projects.

3.2 related work

In this section we introduce publications related to open source contributions and detection
of software bugs.

3.2.1 Developer collaboration

Mockus et al. [101] analyzed development and maintenance of major OSS projects: the
Apache server and Mozilla by mining email archives. They investigated the processes used
to develop projects, percentage of people per role within the project, if work is evenly
split and the defect density. The Apache server development is guided by a set of "core
developers" volunteers also known as Apache Group who contributed to the project for

15

16 preliminary studies on open source data

an extended period of time. Those "core developers" identify work to be done, such as
missing features or defects, and orchestrate it. There is no defined development process,
but new changes are reviewed by Apache Group who have implicit ownership of parts
of the codebase. Developers communicate mostly by mailing lists. Usually one of the core
team prepares a release. In the time of the study core team had 25 developers compared
with 400 non core team contributors. The Mozilla also has 12 core staff members, most
of the work is delegated to 500 volunteers. Core staff are designating module owners
from volunteers, who have a blocking right during code reviews. The releases are also
coordinated by core staff. Both new features and defects are reported on Bugzilla. Based
on both projects authors formulate hypotheses that open source projects have a core team
responsible for 80% of the new functionality.

Scialdone et al [130] investigated Free/libre Open Source Software teamwork behaviors,
distinguishing between core and peripheral members. They studied the development of
two instant messaging clients: Gaim and Fire using 45 months of public email archives.
Each message was converted to Group Maintenance Indicators such as "Encouraging par-
ticipation", "Formal verbiage", "Expressing agreement" divided into 3 categories: Emo-
tional Expressions, Positive Politeness and Negative Politeness. Indicators per each group
(core/peripheral developers) were compared using Mann-Whitney U test. Positive polite-
ness behaviors were more common in Gaim, while negative politeness was more common
in the Fire community. The core developers of both projects more commonly expressed a
sense of belonging within their groups.

Breu [18] analyzed bug reports in terms of reporters and programmers collaboration.
The authors suggest creating interactive tools like community driven portals engaging both
developers and users. The goal is to help with unanswered questions on both sides like
missing replication data or status updates on fix.

Murphy-Hill et al.[105] analyzed Microsoft developers work during fixing activity by
interviews (40 participants) and questionnaires (362 participants). Answers show that de-
velopers tend to create fixes with as few lines as possible, with maintaining the original
design and backwards compatibility.

3.2.2 Bug detection

The history of bug fixes can be used to train defect detection models that try to predict
which files are buggy based on their contents and history. Zhang et al. [169] aimed to create
a universal defect detection model. Micro Integration Metrics [80] and Change Bursts[106]
try to capture developer interaction with source code files. Palomba et al. [115] added
code smell features with JCodeOdor tool. In the work of Moser et al. [104] the goal was to
find which type of metrics are best suited to detect defects. Jaafar et al. [56] analyzed the
relationship between defects and anti patterns. Ostrand et al. [111] aimed to predict which
source code files have the highest number of defects.

Localization via code similarity

Pan et al.[116] analyzed patterns in software defects in 7 large Java projects (ArgoUML,
Columba, Eclipse, JEdit, Lucene, MegaMek, Scarab), categorizing them into 27 kinds of
bugs. The author notices that most frequent patterns (like "method call with different para-
meter values" or "change in if conditional") have similar frequency across projects.

3.2 related work 17

Livshits et al [91] proposed the DynaMine tool to discover method usage patterns and vi-
olations of those patterns. For example chained methods used to setup network connection
constitute such a pattern. The source code is mined using Apriori algorithm to find associ-
ation rules between source entities. The tool was evaluated on two large Java applications
Eclipse and jEdit and found 250 pattern violations.

Couto et al[24] prepared visualization tool based on Granger Test results to localize
defects. The method is based on a time series of twelve source code metrics calculated on
class level. The tool was tested on Equinox Framework and Eclipse JDT Core open source
projects.

A related problem is considered by the authors of DebugAdvisor[7], who proposed a
search tool able to find already solved bugs similar to the currently modified code. This
tool is able to search several sources like bug databases, software repositories and program
traces via converting content to "typed documents" consisting of bags of terms, ordered
lists of terms, weighted terms and key-value pairs. Retrieval of appropriate documents
is based on weighted TF-IDF. The tool was evaluated by questionnaire on 100 Microsoft
employees.

Kim et al. [69] proposed to identify bug-introducing repository changes using annotation
graphs consisting of multiple commits instead utilizing only annotations of the removed
lines as in the Śliwerski algorithm [136]. The algorithm was evaluated on Columba email
client and Eclipse jdt.core against the previous state-of-the-art removing 48% of false posit-
ives.

In the following paper Kim et al. [67] introduces change classification as a method to
find latent bugs. The authors trained the SVM classifier on defect commit data, using
seven groups of features: added delta, deleted delta, changed file paths, change log, new
files, commit metadata and complexity metrics, obtaining multiple changes from single
revision. The method was evaluated using accuracy, precision, recall, and F1 score against a
dummy classifier on 12 open source projects, using 500 and 250 last revisions for training,
with better results.

Lewis et al [84] interviewed 19 Google developers if they found bug localization tools
FixCache and Rahman useful. Both tools are used within Google to mark bug-prone files
during code review. Although tools are correctly detecting such files according to the de-
velopers feedback, some programmers complain that there is no suggestion how to fix such
files.

Shivaji [133] utilizes feature selection techniques on source code datasets [66] consisting
of code metrics, code metadata and source code converted to bags-of-words to find the
best features to train the SVM classifier and Naïve Bayes. From the history of 11 projects as
much as 3125 defect changes and 9294 non-defect changes are extracted with total 183054

features. Methods using feature selection outperformed Kim [66] in terms of precision, recall
and F1 score.

Shin et al. [132] conducted an empirical study to predict faults using calling structure
information. Authors used 30 releases of industrial projects to evaluate several negative
binomial regression models. Used features were based on file level using history, code
attributes and calling structure (callers and callees of each method). Addition of calling
structure provided marginal improvement. Models using only history features obtained
better results than others.

Ostrand et al. [112] conducted a study on 16 releases of industrial software system in
order to find if inclusion of authorship information features can improve defect predictions

18 preliminary studies on open source data

of metrics based model. The defect prediction is based on negative binomial regression
trained on features such as source file age, logarithm of number of lines. The source code
of this 35 years old industrial system is not available, nor is the source code of the method.
The authors conclude that inclusion of authorship information improves sightly prediction
results. The method was able to select 20% of files responsible for 75% of faults during
evaluation.

Linares-Vasquez et al. [150] propose to select maintainers to triage incoming changes
based on code authorship information. For a given change request, the authors use Lat-
ent Semantic Indexing to find related classes from a single version of the analyzed project.
Then the maintainers are selected utilizing authorship information present in class source
comments, with authors ranked by occurrence frequency among found files. The method
was evaluated on ArgoUML, jEdit, and MuCommander open source projects using preci-
sion and recall metrics against Anvik et al. [4] approach and xFinder method, and was able
to outperform other methods on jEdit and MuCommander projects.

Similar problem was investigated by Anvik et al. [4], with the goal of bug report assign-
ment to a developer, based on specific knowledge and history of already solved reports per
developer. The method is based on training multiple classifiers, each for selected developer.
The authors tested SVM, decision tree and Naïve Bayes using normalized feature vectors
indicating the frequency of the terms in the bug report text, choosing SVM using precision
and recall metrics. The training was done using two open source projects: Eclipse IDE and
Firefox browser, with evaluation on gcc.

Localization utilizing test execution

Jones et al. [61] compares the Tarantula fault-localization tool with localization via set union,
set intersection, nearest neighbor and cause transitions techniques on Siemens test suite,
with better results for Tarantula.

Wong et al. [159] proposed to use a radial basis neural network to localize defects. The
network is trained on test coverage information and test result (success or failure) and
returns suspiciousness score per each code statement. Authors used four C programs for
evaluation: Unix Suite, Space, Make, Grep and one Java program Ant. Faulty versions of
programs were created by usage of mutation testing.

To find bugs Liu [87] proposed a probability based method which analyses boolean
predicates in run traces. Faulty executions are observed to have different distributions of
predicate values than non faulty ones. The tool was evaluated on a Siemens suite of 130

bugs against methods CT and Liblit05 with better results.

3.3 contribution analysis

In our experiments we focused on investigation of commits contributed to open source
projects. We used the GHTorrent dataset [41], which contains data of 90 GitHub projects
and their forks, out of which we choose 42 projects containing enough issues and com-
mit comments for our purposes. The dataset details are shown in Appendix Section 7.2 in
Table 7.1 and Table 7.2. To discover areas of interest we selected the Latent Dirichlet Alloc-
ation implementation from Mallet topic modeling toolkit [95]. Consequently, we extracted
topics separately for issues and commit comments per each project. Each issue or comment

3.3 contribution analysis 19

Table 3.1: Statistics of commit commenter groups

Definition
Commenters

Commiters
Specialists Generalists Both Other Total

Total 77 412 73 1065 1481 14775

Average per project 1.83 9.81 1.74 25.36 35.26 351.79

Table 3.2: Core contributors

Project Team on web page Both Generalists

django 26 8 15

jekyll 7 4 4

jquery 107 9 14

libgit2 74 3 7

scala 27 4 10

was treated as a single document. Due to the prevalence of sentences like ”thank you” we
adjusted stop words to rule those out.

3.3.1 Core team detection

In order to understand contributor roles within open source projects we investigated the
commit commentary topics aggregated per commenter. Our goal was to gather insight on
code review activity. We define two main kinds of commenters - specialist and generalist.
A specialist is a contributor, whose number of comments matching a specific topic is larger
than half of the maximum number of comments to the most popular topic of a project. A
generalist is a contributor, whose number of comments matching multiple topics is larger
than the average number of topics per committer. Note that it is possible for one contributor
to belong to both groups simultaneously.

Work is not distributed evenly, and only 13.21% of contributors provide comments on
the work of others, as shown in Table 3.1. The smallest group of specialists only comment
on the most significant topics. Almost all of the specialists are also generalists, providing
comments to a number of topics. We investigated web pages of 5 selected projects to check
if generalists are mentioned on the project team web page. As shown in Table 3.2 our
approach is able to find a raw estimate of which contributors are team members responsible
with reviews, based on their comments.

3.3.2 Defect prevalence

Investigation of contributors leads us to question if the bug fixing activity is common
in analyzed projects. We considered a topic related to this activity wherever it contained
words "bug", "fix" or "solve". In order to assess distribution of bug related topics we utilized
aggregation per month for both issues and commit comments.

The analyzed projects had issues matching the bug fixing topic present in 96% of ana-
lyzed months. For those months 91% of issues matched at least one of bug related topics.

20 preliminary studies on open source data

In case of commit comments, the bug topic was present on average during 64% of analyzed
months across all projects, with 54% comments matching at least one of bug topics.

3.4 bug detection based on commit similarity

Based on previous results, showing that most contributors do not provide comments to
commits and that defects are common, we decided to focus on preventing introduction
of buggy changes on code review level. To integrate code changes with the destination
branch on the remote repository developer typically creates a separate branch for code
review purposes. This branch is handled by a code review system, which displays the dif-
ference between changed files and destination branch to reviewers, and allows reviewers to
add comments, based on their knowledge and past experience with the project. Reviewers
notice suspicious changes, introducing bugs or bad practices, but some might be omitted
due to time constraints or lack of knowledge about project history. Within legacy projects
the original authors tend to be not available as reviewers.

3.4.1 Proposed solution

For each opened review in the code review system our method assesses each modified file
using a classifier trained on past defects. Following Kim et al. [67] proposition to classify
changes we use SVM classifier [59], and provide results to reviewers as comments. The
main differences between our approach and Kim et al. are reduced number of features,
marking the whole commit as buggy/non buggy without splitting into separate files and
weighting scheme balancing disproportion between classes in the training set. We train the
algorithm only on data already present in the repository, without querying outside sources.

Model training

Kim et al. [67] change classifier utilizes features based on change metadata, change log
messages, source complexity metrics, changed file paths and code delta (difference). We
decided to use only a subset of features corresponding to data directly available to the
reviewer, the source code delta, focusing on the problematic code, not on its metadata such
as an author or time of creation. Additionally, we do not treat the commit as multiple
changes per each file. To prepare a dataset for training we parse results of git commands
using parser combinators [102]. Consequently, we convert the commit changed delta to
“bag of words” model.

Note that, to train algorithm we require information about fixed bugs. For this pur-
pose we use the same approach as Kim et al. The Śliwierski-Zimmerman-Zeller algorithm
(SZZ) [136] is an MSR information retrieval technique for annotating bug commits via find-
ing fixing commits. It searches commit messages for keywords such as "bug", "fixes" or
external bug report system id. Such commits are considered fixes, and commits changing
the same lines as fixes are considered buggy. Intuitively, we use the SZZ approach to mark
a selected number of commits for model training purposes. In particular, we denote this
number as the history limit. We do not adjust the keywords manually per project.

In order to train the SVM classifier we utilize the Sequential Minimal Optimization im-
plementation provided by Weka toolkit [44]. Due to an imbalance between buggy and non

3.4 bug detection based on commit similarity 21

buggy data in the training dataset, depending on SZZ algorithm results, we adjust the
weights of instances, so both classes have the same total weight.

Model usage

The resulting classifier is used in the future when new commits are under review. Each
change the classifier is applied to the corresponding “bag of words” of commit delta. Res-
ults are sent to the review system as comments. We provided integration with the Gerrit
code review system.

3.4.2 Evaluation Results

In this section we present the empirical evaluation of the utilized model. The Kim et al. [67]
implementation working with cvs repositories and corresponding dataset are not available.
Consequently, we prepared our own dataset containing selected open source git repositor-
ies. We calculated the accuracy, precision, recall and F1 score metrics per each class (buggy,
non-buggy) in order to examine our model, according to the definitions as in Section 2.3.3.

We established our selection of projects based on the number of commits, length of de-
velopment history and used language, with the goal to have a diverse dataset of nontrivial,
actively developed applications. We divided our experimental evaluation into following
three groups of tests:

1. preliminary tests, conducted on 10 GitHub repositories, using last 500 commits,

2. history length tests, run on 63 GitHub repositories and converted Subversion reposit-
ory, using different history limits,

3. additional history limit tests, conducted on 10 large GitHub repositories.

Preliminary investigation

Our goal was to investigate the method utilizing reduced number of features compared
to Kim et al. approach [67]. In order to test the versatility of the proposed approach we
selected ten projects based on available history length. We investigated the recent changes
to the repositories, and retrieved changes for evaluation from the last 500 commits. Eval-
uation changes are split into 400 commit training set and 100 commit testing set. Results
presented in Table 3.3 show that the method is able to achieve good results without manual
tuning per project.

Project history analysis

We applied the method to the selection of open source GitHub projects, using history limits
of 500, 1000 and 1500 last commits respectively, using training size of 80% in each case. In
this experiment we focused on the relation between length of project history and method
ability to detect bugs, as more mature projects tend to have more maintenance or bug-
fixing changes, affecting the training set construction. To this end we divided projects into
4 size groups using a number of commits, as presented in Table 3.4. Additional details of
project groups are available in Tables 7.3, 7.4, 7.5 and 7.6 of Appendix Chapter 7.

The metrics results per each group shown in Table 3.5 show that higher history limit
results in better detection of bugs, corresponding to F1 score for buggy class.

22 preliminary studies on open source data

Table 3.3: The statistics of preliminary tests as trained on recent changes

Project Accuracy
Buggy Non Buggy

Precision Recall F1 Precision Recall F1

flockdb 0.85 0.941 0.533 0.681 0.831 0.986 0.902

gizzard 0.89 0.733 0.611 0.667 0.918 0.951 0.934

hiphop-php 0.83 0.818 0.375 0.514 0.831 0.974 0.897

jquery 0.66 0.727 0.678 0.702 0.578 0.634 0.605

sbt 0.83 0.733 0.458 0.564 0.847 0.947 0.894

libgit2 0.83 0.571 0.222 0.32 0.849 0.963 0.903

akka 0.77 0.588 0.385 0.465 0.807 0.905 0.854

django 0.77 0.795 0.674 0.729 0.754 0.852 0.8

cakephp 0.76 0.455 0.217 0.294 0.798 0.922 0.855

mono 0.70 0.357 0.192 0.25 0.756 0.878 0.813

Table 3.4: Groups of GitHub projects by history length

Group name Number of Commits

min max avg

Small 740 2005 1344

Medium 3084 6421 4450

Large 7198 21529 11273

XL 24045 120396 49871

To further investigate the impact of history limit on training results, we conducted de-
tailed evaluation on 10 projects, two from medium history length group, four from large
and four from xl groups respectively. The history of all projects in question is longer than
5000 commits. We selected additional history limits of 2500 and 5000, using the same pro-
portions between training data and testing data as before. For largest projects utilizing
higher history limits such as 5000 or 2500 returns the better results in terms of F1 score, as
shown on Figure 3.1.

3.5 concluding remarks

Based on contributor comment analysis we discovered that most contributors are not in-
volved in comments exchange related to commits. Furthermore, our method is able to select
the main contributors per project. According to topic aggregation per date the majority of
reported GitHub issues are bugs, and more than half commit comments are related to bug
fixing.

Our evaluation of bug detection method shows that the approach is generally applicable
to projects of various history length and different programming languages. The algorithm
is able to achieve good results using change delta features, and the same set of bug detec-
tion patterns for SZZ algorithm across all investigated projects. The results are not directly

3.5 concluding remarks 23

Table 3.5: Average metrics observed in each repository size group

Group name History limit Accuracy
Buggy Non Buggy

Precision Recall F1 Precision Recall F1

Small
500 0.728 0.552 0.355 0.425 0.751 0.871 0.806

1000 0.710 0.679 0.456 0.541 0.713 0.846 0.773

1500 0.708 0.672 0.477 0.553 0.704 0.829 0.76

Medium
500 0.772 0.535 0.319 0.394 0.79 0.902 0.842

1000 0.742 0.616 0.411 0.484 0.76 0.863 0.807

1500 0.724 0.612 0.415 0.487 0.723 0.844 0.778

Large
500 0.818 0.55 0.276 0.361 0.843 0.939 0.888

1000 0.789 0.507 0.271 0.351 0.819 0.928 0.869

1500 0.765 0.534 0.313 0.393 0.796 0.907 0.848

XL
500 0.838 0.461 0.219 0.284 0.862 0.945 0.901

1000 0.810 0.522 0.244 0.327 0.833 0.943 0.884

1500 0.789 0.51 0.264 0.347 0.813 0.927 0.866

On average
500 0.788 0.528 0.296 0.371 0.811 0.914 0.859

1000 0.762 0.58 0.345 0.426 0.779 0.894 0.831

1500 0.744 0.582 0.367 0.444 0.758 0.876 0.812

kn
itr

re
qu

es
ts

bo
to sb
t

re
dd

it

re
di

s

Co
de

Ig
ni

te
r

lib
gi

t2

ca
ke

ph
p

ra
ils

Project

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1
 b

ug
gy

500
1000
1500
2500
5000

Figure 3.1: The F1 score results for buggy class with history limit set to 500, 1000, 1500, 2500 and
5000

comparable with Kim et al. [67], due to the usage of different dataset, consisting of a larger
number of projects and disparate treatment of code changes in corresponding repositories.

24 preliminary studies on open source data

However, while our approach obtains a lower average F1 score than Kim et al. [67], it is able
to achieve a comparable average accuracy of 0.788 on all projects for the history limit 500.
Further increase of the history limit according to the relative project history causes better
detection of defects, based on higher F1 score for the buggy class.

4
R E C O M M E N D AT I O N O F C O D E R E V I E W E R S

Contents
4.1 Introduction 25

4.2 Related work 25

4.3 Problem statement 29

4.4 The proposed method 30

4.5 Evaluation Results 35

4.6 Discussion 43

4.7 Concluding Remarks 44

4.1 introduction

In this chapter, we focus on the automation of the code reviewer recommendation. This
problem has been intensively studied, with various algorithms being proposed. Thongtanunam
et al. [145] introduced the Revfinder tool, measuring the similarity of commit file paths to
already done reviews. Balachandran proposed to use repository authorship information
on file level to select reviewers, creating Review Bot [10]. Yue Yu et al. utilizes both text
similarity and traversal of developers interaction graph to assign reviewers [167, 168].

We propose a novel algorithm, working without disadvantages of previous methods,
such as high computational complexity of file path comparison in Revfinder and low ac-
curacy in Review Bot. This chapter is based on a published journal article [34]. Our contri-
butions are as follows:

• we propose a novel method to select reviewers in the code reviewing process;

• we perform thorough experimental evaluation of this method;

• we compare this method with state-of-the-art techniques to prove its quality.

4.2 related work

In this section we present an overview of literature directly related to the problem of
assigning reviewers. As this problem was first under consideration without software de-
velopment context we present several historical approaches to select reviewers for research
papers.

4.2.1 Reviewer Assignment Problem

The selection of appropriate reviewers, known as Reviewer Assignment Problem has been
intensively studied [153]. Various models, based on information retrieval, natural language

25

26 recommendation of code reviewers

processing, graph analysis, recommender systems, supervised learning and clustering had
been proposed in this research area [23, 153].

Dumais et al [30] proposed to use Latent Semantic Indexing to match documents with
potential reviewer biographies.

Yarowsky [163] experimented with several methods to route conference papers to review-
ers and area committees. The first of those models is the cosine similarity on normalized
tf-idf word vectors. The vectors are obtained from papers published by reviewers and from
the paper under review. The second is Naïve Bayes classifier, trained on the same data. The
third and fourth methods are utilizing transitive bibliographical similarity, defined on pa-
per citations features. In both cases similarity function is based on the number of common
citations, either between all paper coauthors and potential reviewers for the third model, or
between corresponding authors and reviewers for the fourth. All methods were evaluated
against four human judges on a dataset of 92 real research papers. The author-reviewers
transitive bibliographical similarity obtained the most agreement with human judges, with
cosine similarity as a second best method.

Conry et al. [23] proposed latent factor collaborative filtering to suggest conference paper
reviewers. In this model each paper or reviewer is characterized as vectors in space, and
interaction (act of review) is defined by the inner product in that space. The authors utilize
reviewer to reviewer similarity defined as number of same coauthors and paper to paper
similarity obtained from the cosine similarity of abstract word vectors. The method was
evaluated on 529 papers and 203 reviewers against the Taylor affinity graph model [142],
with better results.

Toronto Paper Matching System [20] is a reviewer suggestion system used for machine
learning and computer vision conferences. The selection of reviewers is based on similarity
between reviewer profile, constructed from reviewers previously published papers and
paper under review. The authors construct profiles either from normalized word vectors,
or from topics obtained via Latent Dirichlet Allocation. The similarity score is then used
to train a supervised prediction model. Available models are: Linear Regression (with or
without shared parameters), Probabilistic Matrix Factorization and Restricted Boltzmann
Machine. This system was evaluated on two datasets: NIPS 2010 containing 1251 papers
and 48, ICML-12 containing 857 papers and 431 reviewers. The Linear Regression with
shared parameters trained on word vectors profiles obtained lowest Root Mean Square
Error on both datasets.

Xie et al. [161] prepared a mathematical model formalizing the reviewer selection process.
The model is used to assess the number of required reviewers reviews per paper in four
conference tiers (low, medium, prestigious and starting/unknown) based on distribution
of estimated intrinsic quality of paper. The authors estimate at least three required reviews
per paper for medium tier conference, and at least seven for prestigious one.

Tang et al. [141] proposed to select research paper reviewers based on an expertise graph.
In this method the reviewer assignment problem is transformed to find convex cost flow.
The nodes in the graph represent queries and domain experts, edge weights are calcu-
lated from topics common to both query and expert. The topics are obtained from Latent
Dirichlet Allocation. The authors evaluated the graph walk method on KDD’09 dataset
containing 338 papers and 354 reviewers against the Greedy algorithm as a baseline, with
better results.

Liu et al. [90] introduced a traversal of expertise graph using Random Walk with Restart.
The graph is prepared using information about expertise, authority and diversity. Similar

4.2 related work 27

to Tabg et al. [141] the graph nodes represent queries and domain experts, with weights
calculated using cosine similarity on topics prepared via Latent Dirichlet Allocation. The
method is evaluated against text similarity, topic similarity and Random Walk without
Restart using precision@k metric, and outperforms them.

Our code review recommendation method is not inspired directly by any of those ap-
proaches. However, we build our proposal from well-known elements (like reviewer and
document profiles) and adapt them to new contexts.

4.2.2 Code review reviewer assignment

Rigby et al [124] analyzed the patch review process within the open source community via
mailing lists of 5 large projects. Authors randomly sampled and manually analyzed email
archives of Apache HTTP, Subversion, FreeBSD kernel, Linux kernel and KDE desktop en-
vironment. Typical review consists of two reviewers, who are long-standing committers in
specific areas of the project. Paper describes both positive and negative reviewer attitudes
and how a well structured patch helps to determine if change is worth reviewing. Ignored
patches fail to generate interest within the core development team. Situations with too
much involved reviewers usually lead to unproductive discussion.

Review Bot [10] is a reviewer recommendation tool based on review history of the source
code. Each line in each file is inspected, and corresponding line reviewers are assigned
points, with most recent reviews being scored higher. The reviewer recommendation list is
created using summed points. The tool recommends reviewers who already participated
in reviews of selected files. Consequently, it is unable to select reviewers for changes con-
sisting only of new files. Additionally, Review Bot adds static analysts comments to review.
The author also introduced the RevHistRECO algorithm, which uses file author history in-
stead of review history as a baseline. Both algorithms were evaluated on VMware projects
using accuracy at k, with Review Bot having better results.

Thongtanunam et al. [145] proposed the Revfinder tool to recommend reviewers utilizing
previously reviewed file paths. This tool uses four string comparison functions to compute
file path similarity between current review and past reviews: Longest Common Prefix,
Longest Common Suffix, Longest Common Substring, and Longest Common Subsequence.
The Borda count is used to create a single unified list of reviewers out of string comparison
function results. Authors evaluated this tool against Review Bot [10] using recall and Mean
Reciprocal Rank on Hamasaki dataset [45] expanded to include LibreOffice. The Revfinder
outperformed Review Bot on all projects.

The authors of “Automatically Prioritizing Pull Requests” [151] propose PRioritizer tool.
The tool examines open pull requests and sorts them using priority inbox approach. Pull
requests are using a 1 day time window, within each window the machine learning model
is trained to predict if the selected pull request will receive user action the next day. The au-
thors evaluated Logistic Regression, Naïve Bayes and Random Forests using precision and
accuracy on 475 GitHub projects, with Random Forests having best results. Additionally,
they conducted a survey if the tool is useful among core contributors dataset projects, and
received 12 positive feedback out of 21 responses total.

Hannebauer et al [46] provides a comparison of reviewer recommendation algorithms
on four large open source projects (Firefox, AOSP, OpenStack, Qt). Authors evaluated File
Path Similarity [144], Weighted Review Count, and six algorithms based on modification

28 recommendation of code reviewers

expertise using Top-k accuracy. Algorithms based on review expertise yield better recom-
mendations than those based on modification expertise (code authorship).

Yu et al. [167] propose to recommend pull request reviewers using both textual similarity
of requests and social interactions between coders. The authors use a vector space model
to represent text of pull request, and calculate similarity via cosine distance with already
merged requests. In addition to text similarity, Yu et al. introduce project specific comment
network graph, with graph nodes representing developers, and edges act of providing
comments to pull requests. The weights of edges represent time decaying factor calculated
as difference between relative dates of past comments timestamp and current pull request.
The reviewers are selected through Breadth-First Search starting with pull request author.
Both text similarity and graph travel results are combined to prepare a top-k reviewer
list. In the follow-up paper [168], the authors evaluated the comment network approach
against state-of-the-art file location based recommendation algorithm [145], cosine distance
similarity recommendation and SVM used for multilabel classification. All algorithms were
tested as standalone and with results combined with a comment network. The evaluation
was done using precision, recall and F1 score on 5 large open source projects: rails written in
Ruby, cocos2d-x in C++, ipython in Python, zf2 in PHP and netty in Java. The comment net-
work obtained results similar to state-of-the-art file location recommendation as standalone
method, with mixed approaches outperforming state-of-the-art.

4.2.3 Code understandability

Fowkes et al. [37] proposed a tool to automatically hide non-essential, less informative
fragments of source code, such as Java "getter/setter" methods. This code summarization
tool utilities topic model to detect fragments of AST. The authors conducted a developer
study on 6 Java developers, which preferred automatic summarization results to raw source
code.

Hindle et al. [51] seek to help software maintainers by introducing tags to project history.
Tags are significant words from Latent Dirichlet Allocation topics, corresponding to non
functional requirements.

Begel et al. [12] prepared graph data structures capturing interactions between developers
and software artifacts within Microsoft corporation. Graph is used by two tools: "Hoozizat"
and "Deep Intellisense" Visual Studio add in. The "Hoozizat" can be used for finding arti-
fact ownership and code reuse outside teams. The "Deep Intellisense" provides a complete
history of programmer activity such as code changes, creation of bug reports and forum
activity related to specific code artifacts.

Antoniol et al. [3] proposed to detect features present in different applications, by dis-
covery of feature microarchitectures. The method generates Abstract Object Language rep-
resentation of the analyzed program and uses feature-relevant traces to detect code imple-
menting a given feature. The authors conducted an evaluation on Mozilla family of web
browsers and were able to detect save bookmark functionality across different program-
ming languages.

Trockman et al. [148] analyzed results of Scalabrino et al[129] survey of 46 Java de-
velopers. The survey used source code of Spring Roo and Weka with questions if the
developer understands the given code snippet. The authors analyzed features using Prin-
cipal Component Analysis and found that no individual feature obtained from the survey
was strongly correlated with understandability, and trained LASSO regression to identify

4.3 problem statement 29

factors that correlate with it. The results show that the most important features for predict-
ing understanding per developer are: textual coherence, is professional (binary value), is
Java professional (binary value), number of method parameters, number of periods, meth-
ods internal documentation quality and max. line length.

4.3 problem statement

The code review system manages a list of commits to be reviewed, either in separate
branches or as pull requests. Usually there are many potential reviewers for each review in
industrial or open source projects. The code review system can present all available com-
mits/pull requests to all candidates, but this approach has several disadvantages. Some
commits might be omitted [151] or wait unnecessarily long, while the other changes are
approved by people who do not possess required domain knowledge, resulting in defects
or anti-patterns.

The reviewer recommendation system decreases the time of review, assigning reviewers
according to the field of expertise of each candidate. The recommendation can be based
on either human input, or on a self learning model, which examines the preferences of
developers and their knowledge, based on history of reviews. In this chapter we focus on
automatic reviewer recommendation systems.

In the system for each not yet reviewed pull request/commit and each prospective can-
didate a matching score is computed. This score is used to assess candidates, with higher
value denoting better reviewer. After the changes are reviewed, the system includes the
changes in the reviewer’s past work.

An automatic reviewer section system, being the subject of our research, nominates re-
viewers for incoming commits using the information on the reviewers’ past work and on
the commit itself.

4.3.1 Notation

Let C be a stream of commits, ordered by time, corresponding to the version control repos-
itory branch. By Ct we denote the commit that appears at the time t in the commit stream
C. Each commit consists of metadata and source code diff. We are interested only in the
list of names of modified files. By f(Ct) = [ft1, ft2, . . . , ftlt] we will denote the list, where
fti is the name of the i-th file modified by the commit Ct for i = 1, . . . , lt, where lt is the
number of files in the commit Ct. More precisely, fti is a path, i.e. the string representing
the file location in the operating system. This string will also be considered as a sequence
of words separated by a special character depending on the underlying operating system.
Additionally, let R = [R1, . . . ,Rn] be the list of candidate reviewers.

Let h(t) be the set of commits up to time t. Additionally, let us put hr(t) as the set of
commits that at the time t have already been reviewed, and hr(t,Rj) as a set of commits
that at the time t have already been reviewed by the reviewer Rj.

h(t) := {Ci : i < t}

hr(t) := {Ci : i < t∧Ci is already reviewed at t}

hr(t,Rj) := {Ci : i < t∧Ci ∈ hr(t)∧Ci is reviewed by Rj at time t}

30 recommendation of code reviewers

We assume that a commit is represented by the list of modified files, and that at any
given time t for a reviewer Rk the set of his/her past reviews hr(t,Rk) is available.

Our goal is to construct a similarity function s : C× 2C → R. This function for a commit
Ct+1 and a candidate review history hr(t,Ri) quantifies how this commit matches this
candidate’s history. A larger value of s

(
Ct+1,hr (t,Ri)

)
indicates a better match.

The similarity function must be practically computable even for large repositories with
abundant streams of incoming commits for the system to work efficiently.

4.4 the proposed method

Each time new review arrives, the reviewer recommendation system has to designate the
best reviewer candidates. Current state-of-the-art systems [10, 145] load and process the
whole repository history. Note that, this approach is impractical, as it consumes too much
system resources and time. For specific commit Ct+1 we have to read and process |h(t)| = t
historical commits. Consequently, up to the time t+1 the reviewer recommendation system
has to process O(|h(t)|2) = O(t2) commits in total. Retrieval of all history data each time
a new review arrives requires a worthwhile effort. Moreover, the required computation
need is further multiplied by the number of present branches and repositories, and could
become a serious issue for hosting companies like GitHub or bitbucket.

We propose a recommendation model based on profiles of reviewers as a means to solve
the history retrieval problem. For each reviewer Ri ∈ R we create his/her profile Pi ∈ P,
where P is set of all available profiles. The profile Pi will be updated each time the reviewer
Ri comments on a commit. Therefore, each time a new commit Ct+1 is reviewed in the
system, it will be added to the reviewer’s profile.

Consequently, instead of the similarity function mentioned in Section 4.3.1, we rather
use a similarity function s : C × P → R that for a commit Ct+1 and a reviewer profile
Pi quantifies how this commit matches this reviewer’s history. In order to find the best
candidate to review a commit Ct+1 from a set of reviewers R, we compute the value of this
function for each candidate profile. Therefore, we have to process |P| reviewer’s profiles but
not t commits. At time t+ 1, such a system needs to process O(|P| · |h(t)|) commits. This is
a significant improvement as number of potential reviewers |P| is usually notably smaller
than |C|. It holds that |P| < 0.02 · |C| for large open-source projects that we have evaluated,
see Section 4.5 Table 4.4.

Therefore, to make the whole method feasible, we need (1) a data structure to store
reviewers’ profiles that has small memory footprint, (2) a suitable similarity function s

that can be effectively computed, and (3) a fast profile updating mechanism to be applied
whenever a reviewer comments on a commit. Fast updates of reviewer profiles are required
as such system at time t+ 1 will have to perform O(|h(t)|) = O(t) profile updates1. The
remainder of this section is devoted to addressing those challenges.

4.4.1 The reviewer profile

In Section 4.3.1 we have introduced the notion of a commit as the list of modified files
f(Ct) = [ft1, ft2, . . . , ftlt], where lt is the number of modified files in this commit. Each
modified file path fti ∈ f(Ct) in a commit Ct is a string representing file location in the

1 This will be usually close to t as most often there is only one review per commit, see Table 4.4 in Section 4.5.

4.4 the proposed method 31

project. The file path consists of an ordered sequence of words separated by a special
character. We omit the order of the sequence and treat it as a multiset of words, also
known as a bag of words. We follow the semantics of multisets from [70, 134].

We denote the mapping that converts a file path fti into the multiset of words (path
segments) that occurs in fti as m(fti). Let m(Ct) be the multiset-theoretic union of m(fti)

for all paths in f(Ct):
m(Ct) =

⋃
fti∈f(Ct)

m(fti)

We will utilize m(Ct) as the representation of the commit Ct used to construct the re-
viewers’ profiles. We define the profile Pi for the reviewer Ri at the time t as the multiset-
theoretic union of m for all commits previously reviewed by Ri, i.e.:

Pi(t) =
⋃

Ck∈hr(t,Ri)

m(Ck)

In order to illustrate the above procedure, assume a repository containing commits C1, C2

and C3 and an assignment of reviewers RA and RB as shown in Table 4.1.

Table 4.1: Example repository and assignment of reviewers.

Commit List of reviewers Paths (modified files)

C1 RA

"src/main/java/package1/SomeClass.java"

"src/main/java/package2/DifferentClass.java"

"src/test/java/package1/SomeClassTest.java"

C2 RA,RB
"src/main/java/package2/DifferentClass.java"

"src/test/java/package2/DifferentClassTest.java"

C3 RB

"src/main/java/package1/SomeClass.java"

"src/main/java/package2/DifferentClass.java"

"src/test/java/package1/SomeClassTest.java"

The commit C1 has the following representation as the multiset m(C1):

m(C1) =


(java : 3), (main : 2), (package1 : 2), (package2 : 1), (src : 3),

(test : 1), (SomeClass.java : 1), (DifferentClass.java : 1),

(someClassTest.java : 1)


Since the commit C1 is the first reviewed by RA, m(C1) becomes the profile PA of the
reviewer RA at time t = 1 as:

PA(1) =


(java : 3), (main : 2), (package1 : 2), (package2 : 1), (src : 3),

(test : 1), (SomeClass.java : 1), (DifferentClass.java : 1),

(someClassTest.java : 1)


After the commit C2 (at the time t = 2) this reviewer’s profile PA becomes m(C1)∪m(C2):

PA(2) =


(java : 5), (main : 3), (package1 : 2), (package2 : 3), (src : 5),

(test : 2), (SomeClass.java : 1), (DifferentClass.java : 1),

(someClassTest.java : 1)

 .

32 recommendation of code reviewers

4.4.2 The implementation of the reviewers’ profiles

The proposed method is based on calculation of similarity between reviewers’ profiles and
reviewed commits. Consequently, the multiset data structures representing profiles must
be efficiently implemented. Therefore, we have chosen hash tables, due to average constant
time of both insertions and lookups. Each world (file path part) in a profile is mapped to its
occurrence multiplicity via hash function. The hash tables are implemented in most popu-
lar programming languages. As a means to create the multiset-based representation m(Ct)

of a commit Ct, (1) all file paths modified in Ct are retrieved; (2) these paths are tokenized
into words; and eventually (3) added to the hash table (by incrementing the occurrence
counter). The calculation of m(Ct) requires |K| hash table lookups, where K is the number
of words (path segments) in the f(Ct) Note that the expected lookup time isO(1), hence the
complexity of calculation m(Ct) is O(K) The second most frequently performed operation
in our method is an update of a reviewer’s profile. Whenever a reviewer comments on a
specific commit, the multiset representation of this commit is appended to his/her profile.
Such operation is implemented as an iteration over items present in commit multiset. For
each file path word present in commit, we increment the corresponding number of occur-
rences in the profile. The profile update requires |S| hash lookups where S is the number of
words in the multiset commit representation. Due to fact that the expected time of a hash
lookup is O(1), the time-complexity complexity of profile update is O(S).

A reviewer profile can contain only the words that are path segments (names of dir-
ectories and files) in the repository. Thus, a profile cannot be larger than a tree repres-
entation of all file paths in the directory structure of the repository. Table 4.8 in Section
4.5 shows memory footprint of such repository structures of analyzed projects. There are
47233 unique words for Android, 60521 for LibreOffice, 9759 for Open stack and 98897 for
Qt. Therefore, the actual sizes of reviewer profiles are relatively small, making the whole
algorithm applicable in practice.

4.4.3 Computing the similarity between a profile and a pending commit

For each new commit arriving in the repository, our method compares multiset representa-
tion of this commit and all reviewer profiles to grade review candidates. Various functions
are generally used to measure the similarity between source code entities [143]. Most of
those functions domains are not source code entities, hence the need of source transforma-
tion to fit the specific function domain.

We use two functions defined on sets, the Jaccard coefficient and the Tversky index.
The Jaccard coefficient is one of the most widely adopted similarity functions. It is

defined for two sets X and Y as

J(X, Y) =
|X∩ Y|
|X∪ Y|

It computes the fraction of overlapping items in the two sets.
The Tversky index is a generalized form of Tanimoto coefficient and is used to compare

a variant to a prototype utilizing weights. For two sets X and Y it is defined as:

T(X, Y) =
|X∩ Y|

|X∪ Y|−α|X− Y|−β|Y −X|

4.4 the proposed method 33

where α corresponds to weight of a prototype and β corresponds to the weight of variant.
The weights needs to be adjusted for specific application, for our method adjustment is
described in Section 4.5.

We adapted both functions to work on multisets, by replacing set operations such as
union, intersection and relative complement to those defined on multisets [70, 118, 134].

We decided to use the Tversky index as the main similarity function, because the im-
portance ratio between profile and review can be adjusted. Additionally, we use Jaccard
coefficient as a baseline multiset similarity function, in order to verify if our assumptions
are correct.

Both functions can be efficiently implemented using hash tables. For the multisets X and
Y of sizeM andN respectively, the calculation of union, difference and intersection requires
at most O(M+N) hash lookups which leads to the overall average time-complexity O(M+

N).

4.4.4 The reviewer recommendation model

In the proposed method, a new commit Ct+1 waiting for review is mapped to its multiset-
based representation m(Ct+1) and compared to profiles of reviewers P. To this end, the
similarity score between m(Ct+1) and each Pi ∈ P is calculated using similarity function s
(currently either Tversky index or Jaccard coefficient). Table 4.2 summarizes the semantics
of all necessary operations.

Table 4.2: Profile model operations

Function Definition Description

Pi(t)
⋃
Ck∈hr(t,Ri)m(Ck) Construction of a profile

m(Ct)
⋃
fti∈f(Ct)

m(fti) Creation of multiset-based representation

s(Ct+1,Pi(t)) T(Pi(t),m(Ct+1)) Tversky index as the similarity function

s(Ct+1,Pi(t)) J(Pi(t),m(Ct+1)) Jaccard coefficient as the similarity function

top(Ct+1,n) 〈Ri1,Ri2, . . . ,Rin〉 Computation of top-n

We order reviewers according to obtained commit to profile similarity score (the highest
first). Our assumption is that a higher score corresponds to better review proficiency for
pending commits. Note that we calculate similarity for all profiles, hence we obtain the
similarity score for all available reviewers. Consequently, we select only top n best fitting
reviewers from ordered list. In case of several reviewers with the same similarity score, we
break the ties using corresponding dates of the last review. A reviewer who did the most
recent review takes precedence.

4.4.5 Extensions to reviewer recommendation model

Development of a software project, during its lifetime, is affected by team dynamics and
the varying scope of each contributor’s participation over time. Note that, some program-
mers might leave project, others increase their efforts, giving the most recent reviews more

34 recommendation of code reviewers

importance. As an extension to the algorithm presented in the previous Subsection 4.4.4,
we address this issue by introducing old review extinguishing in reviewer profiles.

Extinguishing is done by multiplying frequencies of words in profiles by an adjustable,
lesser than one factor. Specific projects needs, such as focus of recent changes or enforcing
involvement of first contributors can be obtained by adjusting the factor.

Although we were inspired by time-decaying Bloom filters [21], our approach to factor
calculation and underlying data structure are unalike. Some authors researched evolution-
ary rules in the context of membrane computing, and used multiset extinguishing to de-
crease the factor of such rule activation [6].

The extinguishing factor for a number of days (or the number of commits in between) d
is computed by the formula:

ex(d) = (
l
√
f)d

where f is the decaying factor and l the number of days (commits) for which the decaying
factor is to be fully employed. Let id(Ct) and date(Ct) denote respectively the sequence
number of the commit Ct and the number of day between commits C1 and Ct. Note that,
if f = 1

2 and l = 180, then after half a year (or after 180 commits) each item in a reviewer
profile is halved. The adjustment of both parameters is discussed in Section 4.5.

As an alternative method to select top n candidates, we consider an approach not break-
ing ties for profiles with the same similarity score. In the non tie-breaking version of the
algorithm we use the function

ntop(Ct+1,n) = 〈〈R1,1, . . . ,R1,m1
〉, . . . , 〈Rn,1, . . . ,Rn,mn〉〉

, where all reviewers on a single sublist (e.g. 〈R1,1, . . . ,R1,m1
〉) have the same similarity to

the commit. In particular, preceding lists contain reviewers with higher similarity to the
commit than the consecutive ones.

Table 4.3: Profile model modified operations

Function Definition Description

Pid
i (t)

⋃
Ck∈hr(t,Ri)

m(Ck) · ex(id(Ck) − id(Ck−1)) Construction of pro-
file extinguished by
id

Pdate
i (t)

⋃
Ck∈hr(t,Ri)

m(Ck) · ex(date(Ck) − date(Ck−1)) Construction of pro-
file extinguished by
date

s(Ct+1,Pid
i (t)) T(Pid

i (t),m(Ct+1)) Similarity extin-
guished by id

s(Ct+1,Pdate
i (t)) T(Pdate

i (t),m(Ct+1)) Similarity extin-
guished by date

ntop(Ct+1,n) 〈〈R1,1, . . . ,R1,m1
〉, . . . , 〈Rn,1, . . . ,Rn,mn〉〉 Non tie-breaking top

n computation

4.4.6 Possible extensions to profile creation

Our method utilizes only a subset of the available features from project history, namely
the reviewed file paths. Different features procured from additional views on the same

4.5 evaluation results 35

repository can be used to enhance the reviewer profiles. Either such features are already
present in a given repository or can be computed by an additional algorithm. In particular,
the authorship of each line belongs to the former category, and topic model of commit
message to the later. Depending on selected features, pre-processing can also be adjusted
to match the requirements of a specific project. Analysis of maintenance commits might
cause unnecessary noise for some projects, but the other projects can benefit from it.

During development of a typical software project, the same developers constitute both
reviewer and code authors groups. Therefore, authorship profiles can be prepared by ag-
gregating code appropriate features. Consequently each developer would be assigned two
distinct profiles, i.e. his/her reviewer profile and authorship profile.

Given these two profiles, we can consider at least the four following scenarios to use
them: (1) recommendation via reviewer profile only, (2) recommendation via authorship
profile only, (3) combining the similarity score from both profiles, (4) combining both pro-
files into one author/reviewer profile.

In order to combine scores to one unified list as in the third scenario, we would need
to introduce different similarity functions for each kind of profile and additional post-
processing of similarity scores. The fourth scenario can be implemented via using author-
ship information on file path level via introduction of those file paths to existing reviewer
profiles. It seems easier to implement, on the other hand it lacks the flexibility of the third
scenario.

Unfortunately we did not have a dataset with authorship information. Consequently, we
implemented only the first scenario. However, we hope to analyze authorship features in
the future work.

4.5 evaluation results

In this section we detailed the empirical evaluation of the proposed method. In particular,
we examined its accuracy, performance and memory footprint. We used the Thongtanunam
dataset [145] that is based on mature and well-known open-source projects with long devel-
opment history (see Table 4.4). We compared the obtained results with the state-of-the-art
methods, i.e. ReviewBot [10] and Revfinder [145]. Moreover, we wanted to compute more
quality metrics of their results than they had published. They showed only the recall, while
we needed also the precision and F-measure. Unfortunately, the original implementation of
Revfinder is not available. To this end we have reimplemented Revfinder, our implementa-
tion will be referenced as Revfinder∗. Furthermore, we also wanted to assess the efficiency
of their method that had not been mentioned in their article. We did not create a reimple-
mentation of ReviewBot, since its quality had been verified to be inferior to Revfinder.

4.5.1 The experimental setup

We have conducted all experiments on a computer with two Six-Core AMD Opteron™
processors, 32 GB RAM, Intel® RAID Controller RS2BL040 set in RAID5, 4 drives Seagate
Constellation ES ST2000NM0011 2000 GB. There was no other load on this machine during
the experiments.

We measured time consumption using Python’s timeit module. In particular, we took the
average of 10 runs of our method on each project. In case of Revfinder∗ (for LibreOffice,
OpenStack and Android), we also executed 10 runs and took their average execution time.

36 recommendation of code reviewers

For Revfinder∗ on Qt we performed only one run, since the run-time exceeded 5 days and
consumed excessive memory.

The memory footprint was measured using Python’s psutil for the whole program. Ad-
ditionally, selected data structures such as lists of reviewer profiles and arrays containing
all distances were measured via Python sys.getsizeof function. Our sequential reimplement-
ation of Revfinder had lower memory consumption than the parallel version. However, it
was more time and CPU consuming.

4.5.2 Experimental dataset

We used the Thongtanunam dataset [145] that contains data on code reviews of the follow-
ing projects: Android (a mobile operating system), LibreOffice (an office suite), OpenStack
(a cloud computing platform) and Qt (an application framework). A summary of this data-
set is presented in Table 4.4. This dataset contains contributors’ activity recorded by the
Gerrit code review systems. The features of each review are its unique identifier, the list of
reviewers, the list of files, the creation date, the completion date, the name of the project
and the information whether this code review has been merged.

Gerrit works with Git repositories. On default settings Gerrit allows a commit to be
merged with the main repository only if this commit has not been blocked by any reviewer,
and has at least one positive review.

Table 4.4: Statistics of processed projects

Projects

Statistic Android LibreOffice OpenStack Qt

Commits 5126 6523 6586 23810

(duplicated) 0 1 0 1

Reviewers 94 63 82 202

(only one review) 7 10 1 7

Reviews 5467 6593 9499 25487

First review 2010-07-13 2012-03-06 2011-07-18 2011-05-18

Last review 2012-01-27 2014-06-17 2012-05-30 2012-05-25

Average review distance

seconds 9492 11032 4160 1354

ids 5.951814 1.499617 1.207865 1.140529

Sample size (MB) 3.8 5.5 4.2 19

Note that it is impossible to obtain 100% accurate reviewer recommendations, due to the
fact that the authors of some reviews have no previous review history. In particular, the
highest possible accuracy of recommendation are: 98% (Android) and 99% (LibreOffice,
OpenStack and Qt).

4.5 evaluation results 37

Reviewers activity

In order to understand the Thongtanunam dataset [145] better, we analyzed the reviewers’
activity.

The left column of Figure 4.1 shows the number of reviews per a single reviewer. For all
four projects the diagram conforms to an exponential distribution. Most reviewers create
less than 20 reviews for Android and LibreOffice and less than 60 reviews for OpenStack
and Qt. In our opinion, these numbers result from a reviewer’s focus on a specific bug or
a feature request.

The middle column of Figure 4.1 shows the durations of individual reviewers’ activity.
In the case of Android and LibreOffice they are significantly longer than for Qt and Open-
Stack. It is probably caused by designated maintainers working for companies contributing
to these projects.

The right column of Figure 4.1 depicts the durations of individual reviews. For all pro-
jects the majority of the reviews are completed up to three days for LibreOffice and Open-
Stack projects, up to two days for Qt and up to six days for Android. The longest review
time and existence of outliers in case of Android suggests that a reviewer recommendation
system can aid prioritizing the process [167].

4.5.3 Applied metrics

We computed the precision, recall and F1 score in order to assess the quality of our solution.
We follow the metrics definitions as in Section 2.3.3.

The authors of Revfinder compared their tool to ReviewBot [10, 145] using only top-n
recall and the Mean Reciprocal Rank (MRR). We compare their results to ours with respect to
those metrics.

4.5.4 Parameter selection

As mentioned before in Section 4.4.3, the Tversky index requires two parameters α and β.
Those parameters are importance weights of the multiset differences. Consequently, the α
is applied to weight the difference between a profile and a commit, and β to the reverse
difference We conducted an exhaustive search for both weights, under condition α+β = 1,
with values in range between 0 and 1, We used 10% of the dataset for this purpose, and
found out that α = 0 and β = 1 gave the best results. Therefore we utilize only the commit-
to-profile difference, the intersection of a profile and a commit and their union, as the
profile-to-commit difference is weighted 0.

In order to determine the best parameters for extensions of base algorithm (see Sec-
tion 4.4.5), we further analyzed the dataset. We assumed that the impact of a review is
halved after half a year. Thus, we put l = 183, f = 0.5 when extinguishing profiles’ con-
tent by date. For the extinguishing of profiles’ content by number of review, we utilized
l = 2500, f = 0.5. The number 2500 is slightly less than half the number of reviews for
Android, LibreOffice and OpenStack. Unfortunately, when using extinguishing we did not
obtain significant improvement over base method. On the OpenStack and Qt projects, the
extinguishing by number of reviews is able to obtain a higher Mean Reciprocal Rank than
the base method. Intuitively, those projects have the larger number of reviews and smallest

38 recommendation of code reviewers

(a) Android insights

(b) LibreOffice insights

(c) OpenStack insights

(d) Qt insights

Figure 4.1: Evaluated projects insights

average time between their submission (see Table 4.4), therefore older reviews are more
likely to have significant impact.

4.5.5 Recommendation system accuracy

In our experiments we evaluated the method presented in Section 4.4 on the dataset de-
scribed in Section 4.5.2 against state-of-the-art methods [10, 145].

We conducted experiments using four variants of our method and our replication of state-
of-the-art [145], denoted as Revfinder∗. The differences in our methods variants lay in profile
construction and used similarity functions. Three of them use the Tversky index. The first,
denoted as Tversky No Ext utilizes standard profile construction, without extinguishing.
The other two, denoted as Tversky Ext id and Tversky Ext date, use extinguishing by number
of commits and number of days respectively. The last variant, denoted as Jaccard is based on
Jaccard coefficient as the similarity function and standard profile construction mechanism.

4.5 evaluation results 39

In the tables we also present the results of Revfinder and ReviewBot as published in [10, 145]
for reference.

Figure 4.2 presents our experimental results. The Tversky No Ext achieves better precision-
to-recall ratio and higher F-measure compared to all other methods.

The results demonstrated in Table 4.5 show a detailed comparison of the methods lis-
ted above and reference state-of-the-art [10, 145]. Based on results obtained using top-n
recall for n ∈ {1, 3, 5, 10} and the Mean Reciprocal Rank we conclude that the Tversky No Ext
outperforms other methods.

Consequently we have investigated if the observed improvements over state-of-the-art
are statistically significant. Let |top(Ct+1,n)∩ actual(Ct+1,n)| denote the ratio of successful
recommendations to all recommendations., where actual(Ct+1,n) is the actual n reviewers
of the commit Ct+1. We calculated this ratio using results of top-n for all methods, all four
projects and all n ∈ {1, 2, ..., 10}. Afterward we utilized the Levene test for equality of vari-
ances [83] to check that the variance of the results is not equal. Following that we employed
the Kruskal-Wallis H-test [73] with null hypothesis “Median coefficients specified for each
method are equal.”, and p-value threshold equal to 0.05. Consequently we were able to
reject this hypothesis for all tests. Next we used Student’s t-test for independent samples
with the hypothesis “Two method results have the same average values” with the same
p-value threshold. We were able to reject this hypothesis for most pairs of results, namely
362 out of 400. The exceptions were (1) Tversky No Ext and Revfinder∗ on OpenStack for
n ∈ {6, 7, 8, 9, 10}, (2) Tversky Ext id and Tversky Ext date for Android and LibreOffice for all
n.

Therefore we conclude that, in the majority of cases, our methods proposed in this
chapter show statistically significant improvement over state-of-the-art for used metrics.

1 2 3 4 5 6 7 8 9 10
Top­N

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A
ve

ra
ge

 F
­M

ea
su

re

F­Measure

Tversky No Ext Tversky Ext id Tversky Ext date Jaccard Revfinder*

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Average Precision

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

 R
ec

al
l

Precision vs Recall

Figure 4.2: Metrics comparison

Non tie-breaking approach

The experiments presented above concern a tie-breaking version of the proposed model
(see Section 4.4.5). However, the non-tie-breaking version is an interesting alternative. If

40 recommendation of code reviewers

Table 4.5: The recall and MRR for all methods and four projects

Recall MRR

Method Top1 Top3 Top5 Top10

A
nd

ro
id

Tversky No Ext 0.5492 0.8034 0.8591 0.9066 0.7301

Tversky Ext id0.51380.74670.80040.84690.7290

Tversky Ext date 0.4684 0.7315 0.7913 0.8460 0.6985

Jaccard 0.0788 0.1859 0.2544 0.3798 0.4070

Revfinder∗ 0.4686 0.7218 0.8098 0.8898 0.6640

Revfinder 0.46 0.71 0.79 0.86 0.60

ReviewBot 0.21 0.29 0.29 0.29 0.25

Li
br

eO
ffi

ce

Tversky No Ext 0.3353 0.5390 0.6571 0.8106 0.5799

Tversky Ext id0.32250.5216 0.6329 0.78720.5763

Tversky Ext date 0.2692 0.4917 0.6097 0.7748 0.5340

Jaccard 0.0239 0.0524 0.0747 0.1367 0.3559

Revfinder∗ 0.2816 0.51830.64280.7972 0.5417

Revfinder 0.24 0.47 0.59 0.74 0.40

ReviewBot 0.06 0.09 0.09 0.10 0.07

O
pe

nS
ta

ck

Tversky No Ext 0.4177 0.6985 0.7967 0.88920.5500

Tversky Ext id 0.2916 0.4829 0.5537 0.6157 0.5530

Tversky Ext date 0.2260 0.4360 0.5176 0.6055 0.4924

Jaccard 0.0835 0.1937 0.2609 0.3884 0.3931

Revfinder∗0.39870.68460.79030.8854 0.5390

Revfinder 0.38 0.66 0.77 0.87 0.55

ReviewBot 0.23 0.35 0.39 0.41 0.30

Q
t

Tversky No Ext 0.3655 0.6351 0.7480 0.85400.5973

Tversky Ext id0.34790.60140.70240.7962 0.6054

Tversky Ext date 0.2720 0.5586 0.6746 0.7771 0.5500

Jaccard 0.0226 0.0530 0.0785 0.1154 0.3926

Revfinder∗ 0.1899 0.3403 0.4184 0.5356 0.5290

Revfinder 0.2 0.34 0.41 0.69 0.31

ReviewBot 0.19 0.26 0.27 0.28 0.22

we consider top-n groups of reviewers with the same score, we can observe the following.
Figure 4.3 shows histograms of group size for non-tie-breaking Tversky No Ext top-1. For
all projects singleton groups dominate. The number of smaller groups gradually decreases.
This indicates that our methods usually find a small number of matching reviewers. Thus, a

4.5 evaluation results 41

valid question arises: Do we really need to break the ties? For large and long-term projects
it may be fairly common that more than one person is responsible for specific parts of
the project. Therefore, more than one reviewer has appropriate knowledge to perform a
review. Under that assumption we investigate the predictive performance of this solution.
We observe that top-n groups yield notably high recall rates. Table 4.6 shows the recall of
top-n groups for several values of n. We conclude that this approach is also applicable,
especially when a project’s maintenance is naturally divided among working groups. It
happens in e.g. subsystems in Linux kernel and FreeBSD operating system [124]. In such
projects, having the high accuracy of group based recommendation may be desirable.

Figure 4.3: The number of recommended reviewers in Top-1 Tversky No Ext without tie-breaking.
The horizontal axis shows the number of reviewers recommended. The vertical axis
presents the number of commits for which this number of reviewers was recommended
by this method.

Table 4.6: The recall and MRR of Tversky No Ext without tie-breaking.

Recall MRR

Project Top1 Top3 Top5 Top10

Android 0.7052 0.9058 0.9243 0.9317 0.8499

LibreOffice 0.4486 0.8013 0.8896 0.9402 0.6706

OpenStack 0.7486 0.9140 0.9417 0.9589 0.8289

Qt 0.6078 0.8798 0.9339 0.9633 0.7618

4.5.6 Performance

We measured the efficiency of three implementations, namely Tversky No Ext, Jaccard and
Revfinder∗. We split the processing into three phases corresponding to operations in our
model (see Table 4.2). They are the transformation of a commit into a multiset, the actual
update of a profile and the similarity calculation in order to recommend the reviewers.
Table 4.7 presents the results. The times for the three phases are total running times for all

42 recommendation of code reviewers

operations per single project. The rightmost column presents average processing time per
a review in a project.

The results presented in Table 4.7 are averages of running times for a number of exe-
cutions. We executed 10 consecutive runs of the sequential version of our algorithm, both
Tversky No Ext and Jaccard. In case of Revfinder∗, we used 10 consecutive runs only on An-
droid, LibreOffice and OpenStack. We decided to evaluate Revfinder∗ on Qt using only 1

run. This is due to the excessive consumption of resources for that project. One run took
five days to compute. In all tests our method was faster by an order of magnitude. The
coefficient of variation did not exceed 1% for all repeated runs. We used Mann-Whitney U
two-sample test n1 = n2 = 10,U = 100,p < 0.05 with null hypothesis “Median execution
time for Tversky No Ext and Revfinder∗ are equal on the same project.” on Android, Lib-
reOffice and Openstack projects. Median times of 10 consecutive runs for Tversky No Ext
on those projects were 248.84, 713.79 and 105.50 respectively. Median times of 10 consecut-
ive runs for Revfinder∗ on those projects were 15770.17, 24875.84 and 17235.29 respectively.
We rejected the null hypothesis on all tested projects.

The memory footprint of profiles created by our algorithm is smaller than Revfinder∗

(which uses 10 GB of RAM for Android, 12 GB for LibreOffice, 11 GB for OpenStack, and
more than 32 GB for Qt). It is evidenced in Table 4.8.

This experimental observations confirm that our method uses significantly less comput-
ing power and memory than state-of-the-art methods. Thus, it is feasible to apply our
methods in large repositories such as GitHub.

Table 4.7: Results of the performance evaluation

Total time (in seconds) Average

Project Method Multiset Profile Similarity single

transf- update calculation review

ormation processing

Android Tversky No Ext 0.4232 5.3811 241.8630 0.0483

Android Jaccard 0.4147 5.7651 132.3110 0.0270

Android Revfinder∗ - 0.0181 15797.9000 3.0819

LibreOffice Tversky No Ext 0.6813 39.9458 668.6240 0.1087

LibreOffice Jaccard 0.6741 39.9517 356.9950 0.0610

LibreOffice Revfinder∗ - 0.0249 24875.2000 3.8135

OpenStack Tversky No Ext 0.3989 3.3080 101.1660 0.0159

OpenStack Jaccard 0.3964 3.3920 56.6723 0.0092

OpenStack Revfinder∗ - 0.0254 17227.2000 2.6157

Qt Tversky No Ext 2.3738 68.4784 4795.6800 0.2044

Qt Jaccard 2.3844 68.2125 2651.9200 0.1143

Qt Revfinder∗ - 2.0000 432000.0000 18.1437

4.6 discussion 43

0 5 k 10 k 15 k 20 k 25 k 30 k

Qt

OpenStack

LibreOffice

Android

420 k 425 k 430 k 435 k 440 k

Revfinder*
Tversky No Ext

Cumulative time (in seconds)

Figure 4.4: Performance difference between methods

Table 4.8: Memory footprint of Tversky No Ext (in MB)

Multiset profile size

Project Virtual memory All Average

Android 396.6328 3.2235 0.0343

LibreOffice 411.6172 5.2938 0.0840

OpenStack 400.1172 1.8546 0.0226

Qt 530.0469 12.5634 0.0622

4.6 discussion

In this section we interpret our results and their significance when compared with state-of-
the-art.

4.6.1 The methodology

We proposed a new algorithm solving the reviewer recommendation problem. To this end,
we defined two distinct phases: (1) the aggregation of reviews into profiles, and (2) the cal-
culation of profile-to-review similarity. A closer inspection of the typical repository reveals
a disproportion of the number of occurrences between these two phases. Consequently, we
decided to lower the cost of computing the second phase by doing more work in the first
phase. Note that in the case of both state-of-the-art methods (Revfinder and Review Bot),
the opposite is true. They do more processing in the second phase, and the first one is not
utilized.

4.6.2 Complexity comparison

We accelerated the calculation of similarity in an analogous manner as a database index
enables more efficient access to records. However, a database index adds storage and pro-
cessing penalty. According to Amdahl law, improving performance of the most common
and costly operation shall give us better improvement. Note that the number of review
candidates is significantly lower than the number of commits/reviews. Thus the similarity

44 recommendation of code reviewers

computation is going to be done significantly more often. Consequently it determines the
complexity of the whole method. As shown in Table 4.7 the computation of similarity is
more expensive than other phases. Therefore, it attests to our assumptions about the overall
complexity.

4.6.3 Empirical comparison

The split to two distinct phases enabled us to evaluate different similarity functions, without
the need to recompute all historical data. We tested Jaccard coefficient and the Tversky in-
dex with the goal of maximizing the similarity between aggregated profiles and reviews.
This led to obtaining varying results and expanded our understanding of the dataset. By
conducting experiments on adjustment of Tversky index weights we found that the most
important feature for calculating similarity was the difference between multisets of a com-
mit and a profile. Distinct aggregation phase allowed addition of optimizations, for ex-
ample extinguishing of older reviews. We obtained statistically significant improvements
for all metrics using Tversky index against state-of-the-art method Revfinder. Moreover, we
were able to attain significantly lower time complexity. Although the extinguishing meth-
ods did not improve further our results, we have proven that those methods are comparable
with the state-of-the-art (see Table 4.5).

4.6.4 Profile construction

We utilize only reviewed file paths as features for profile construction. The previous stud-
ies [145] had shown that such features can be used to obtain better results than code au-
thorship. Furthermore, we were limited in our experiments due to the fact that the dataset
does not contain detailed and complete authorship information. Note that it is possible to
expand our model to work with authorship features, redefining profile construction and
similarity usage as described in Subsection 4.4.6.

4.7 concluding remarks

Selection of appropriate reviewers in large projects is a difficult task. Moreover, an auto-
matic reviewer recommendation system needs to work in an environment restricted by the
available processing power and memory. In this chapter we introduced reviewers’ profiles
that aggregate their knowledge. We have shown a novel method to select code reviewers
via usage of profiles. Our method achieved statistically significant advantage over state-
of-the-art methods in terms of precision, recall and F1 score. In addition, the computational
complexity of our method is also lower than the state-of-the-art. Intuitively, the presented
experimental evaluation shows that profile based reviewer recommendation can be applied
in large industrial systems.

5
A D A P T I V E B U G L O C A L I Z AT I O N B A S E D O N B U G R E P O RT S

Contents
5.1 Introduction 45

5.2 Related work 46

5.3 Problem statement 49

5.4 Feature engineering 49

5.5 Proposed solution 51

5.6 Evaluation Results 56

5.7 Discussion 60

5.8 Concluding Remarks 65

5.1 introduction

In this chapter we focus on bug localization using user reports. The bug localization can
be seen as a specific form of information retrieval process, where we treat bug reports
and software repository as queries and collection of documents respectively. In this setting
files are ranked according to their relevance to specific bug report. Various models were
proposed to automate this process [2, 22, 104, 109, 128, 131, 158, 165, 172].

Information about bugs and source code is present in multiple structured data sources,
such as bug reports and repository change logs. Bug tracking systems and repositories
are usually separate systems, only connected via messages present in commit metadata,
containing identification number. Both of these resources are rich data sets for information
retrieval purposes [62].

There are some challenges in the field of automated bug localization. One one hand, there
exists a difference between the natural language used in bug reports and programming
language employed in the source code. Therefore, utilization of simple lexical matching
scores might cause suboptimal performance. To avoid this, a set of specialised, domain
knowledge based features is often used [164, 165]. On the other hand, only a small fraction
of files present in the project are buggy. Thus, both model, training data and used positive
examples require careful selection. Consequently, one of the common shortcomings is the
imbalance of positive examples and false positives generated by files closely related to
bugs, such as files that are mentioned in the stack trace.

One of the earliest models in the field of bug localization checked presence of API calls
in reported stack traces [2] or outliers in source code metrics [22, 104]. Current state-of-
the-art methods benefit from information retrieval and machine learning algorithms, using
features from multiple datasources. One source of such features is text data obtained from
both bug reports and source code, with text similarity used to nominate suspect files [109,
172]. Abstract Syntax Tree (AST) of the compiled code is the other possible source, contain-
ing more fine-grained information, like names of classes, methods, variables, and source
code comments [128]. Extracted stack-traces constitute another set of features [158]. Some

45

46 adaptive bug localization based on bug reports

algorithms use composition of other methods, either utilizing linear combination of rank-
ing scores [155, 156, 166] or learning to rank trained on a combined set of features [131,
165].

Ye et al. [165] presented notable results, preparing a new set of features and new learn-
to-rank method. Furthermore, the authors proposed a new fine-grained dataset that better
reflects practical applications than commonly used benchmark datasets [172]. Both method
and dataset were an important step in this research field.

This chapter is based on a journal article under review [33]. Our contributions are as
follows:

• we propose a novel, adaptive method to localize bugs;

• we publish an extension to the data set [165], that contains: intermediate data and
final features, a variant of this data set that fixes missing bug report data, a corrected
and enhanced feature, namely the API enriched lexical similarity, and last but not
least the complete source code of our method;

• we provide a survey of existing state-of-the-art approaches.

5.2 related work

We present several recent approaches to bug localization. The problem of bug localization
has been thoroughly examined by numerous scientists. Their results are summarized in
Table 5.1 and related to each other in Fig. 5.1. Below we elaborate on the state-of-the-art in
detail.

Table 5.1: A summary of the related work on the bug localization. Top N and Accuracy@k metrics
are exchangeable.

Name Date Dataset Metrics

BugScout [109] 2011 ArgoUML, AspectJ, Eclipse, Jazz accuracy, Top 10

BugCache [68, 120] 2011 Apache, Evolution, GIMP, Lucene, Nautilus precision, recall, AUCEC

BugLocator [172] 2012 AspectJ, Eclipse, SWT, ZXing Top N, MAP, MRR

BLUiR [128] 2013 BugLocator dataset [172] Top N, MAP, MRR

two-phase [66, 109] 2013 8 modules from Firefox and Core in Mozilla accuracy, precision, recall

Shivaji [133] 2013 11 projects accuracy, precision, recall, f-score

BRTracer [158] 2014 AspectJ, Eclipse, SWT (from BugLocator [172]) Top N, MAP, MRR

AmaLgam [156] 2014 BugLocator dataset [172] Top N, MAP, MRR

Ye et al. [164] 2014 AspectJ, BIRT, Eclipse, JDT, SWT, Tomcat Top N, MAP, MRR

Zhang et al. [169] 2014 Eclipse, Equinox, JDT, Lucene, Mylyn precision, recall, f-score, AUC

HyLoc [74] 2015 Ye et al. dataset [164] Top N, MAP, MRR

AmaLgam+ [155] 2016 BugLocator dataset [172] Top N, MAP, MRR

Ye et al.+ [165] 2016 Ye et al. dataset [164] Top N, MAP, MRR

ConCodeSe [28] 2016 AspectJ, ArgoUML, Eclipse, SWT, Tomcat, ZXing Top N, MAP, MRR

NP-CNN [55] 2016 AspectJ, Eclipse, JDT, PDE Top N, MAP, AUC

BLIA [166] 2017 BugLocator dataset [172] Top N, MAP, MRR

Shi et al. [131] 2018 Eclipse, SWT, ZXing (from BugLocator [172]) Top N, MAP, MRR

5.2 related work 47

2016-2018

2014-2015

2013

2011-2012

Shi et al.

AmaLgam

BLUiR

BLIA

BRTracer

BugLocator

NP-CNN

two-phase

HyLoc baseline CNN*

ConCodeSe

BugScout

Ye et al.

Ye et al.+

UsualSuspects*

AmaLgam+

Shivaji

Figure 5.1: A graph representation of improvements in the related work. Solid arrows point from an
improving work to the improved one, dashed arrows represent a partial improvement
or similar results, while dotted arrows show an improvement but comparison for only a
few projects. Some papers compare to naïve baseline methods that are marked with * on
the plot. BRTracer [158] improves on BLUiR [128] except SWT project. Shi et al. [131] rep-
licated the AmaLgam [156] and BLUiR [128], but were unable to obtain results reported
with original papers. ConCodeSe [28] compared only Tomcat project with Ye et al. [164].

BugScout is a localization tool proposed by Nguyen et al. [109]. The tool is based on a
modified Latent Dirichlet Allocation (LDA) topic modeling algorithm and Gibs Sampling
method. BugScout uses two separate topic models, prepared for bug reports and source
code files respectively. The models are connected utilizing links between bug reports and
fixes. The algorithm estimates matching topic for new bug reports, and attempts to find
files related to corresponding topics, using cosine distance as a similarity measure. Bug-
Scout was evaluated on 4 Java projects: Jazz, Eclipse, AspectJ and ArgoUML against SVM
and LDA based approaches, with each project history split into 10 folds, using accuracy
and Top 10 recommended files metrics. It outperformed other approaches, but was not
tested against external algorithms.

Zhou et al. proposed BugLocator [172]. This localization model is based on the textual
similarity between a bug report and the source code. The authors introduced a modification
to the VSM model to not penalize larger source files via TF-IDF, as such files contain on
average more bugs. They also prepared a dataset from bug reports of 4 open source projects:
AspectJ, Eclipse, SWT and ZXing. An evaluation based on Top N file selection, MAP (Mean
Average Precision) and MRR (Mean Reciprocal Rank) was done against VSM, LDA, SUM
and LSI algorithms. BugLocator outperformed all of them.

BLUiR [128] was introduced as a bug localization algorithm finding similarity between
AST entities and bug reports. The class names, method names, variable names and com-
ments are obtained via AST parsing. This tool uses TF-IDF to select files that are most
similar to the bug report summary and description. BLUiR was evaluated against BugLoc-
ator [172], using the same projects (AspectJ, Eclipse, SWT and ZXing) and metrics (Top N,
MAP, MRR) and it achieved better results.

BRTracer [158] localizes bugs using segmentation of source code files and stack traces,
with the goal to reduce the noise from larger files within the project. In this method the
segment is created from one line of source file. The algorithm calculates the similarity
between segments and bug reports using VSM, using only the segment most similar to bug
report for further analysis. BRTracer utilizes an additional boost score calculated for files
present on the stack trace. The authors evaluated BRTracer using Top N, MAP, and MRR
metrics on 3 projects (AspectJ, Eclipse, SWT) against BugLocator [172] and BLUiR [128].
BRTracer outperformed BugLocator, and showed comparable results to BLUiR.

48 adaptive bug localization based on bug reports

Ye et al. proposed bug localization using the Learning to Rank model [164]. The uses
features based on text similarity measures on source code, including an enriched API hier-
archy, class name similarity, collaborative filtering, bug fixing recency and frequency. The
SVMRank package was used to provide the Learning to Rank model. The authors evalu-
ated this method on 6 open source projects (AspectJ, Birt, Eclipse Platform UI, Eclipse JDT,
Eclipse SWT, Tomcat) using Accuracy@k, MAP and MRR against BugScout [109] with better
results.

Ye et al. further extended the base model [164] in following publication [165]. The exten-
ded version utilizes additional features obtained from AST parsing similarly to BLUiR [128],
and retrieved from the class dependency graph. The method was evaluated using Accur-
acy@k, MAP and MRR against reimplemented BugLocator [172] and two baseline methods
(Usual Suspects and VSM) and it outperformed BugLocator. The authors furhter tested
their approach against BugScout [109], BLUiR [128], and BugLocator [172] on the datasets
used in related publications, and got better results.

AmaLgam [156] bug localization tool combines BugLocator [172] and BLUiR [128] with
repository data. This method utilizes weighted sum of other approaches scoring functions,
with weights determined by experimental results per each project. The authors evaluated
AmaLgam on the BugLocator dataset (AspectJ, Eclipse, SWT and ZXing) using Top N,
MAP and MRR metrics against BugLocator and BLUiR and got better results. Wang et al.
proposed an extended AmaLgam+ [155] by adding BRTracer [158] stack trace analysis as
additional method, and changing weights preparation method to the genetic algorithm.
AmaLgam+ obtained better results than AmaLgam [156], BRTracer [158], BLUiR [128] and
BugLocator [172] on the same dataset.

The BLIA tool proposed by Youm et al. [166] localizes bugs on the file and method levels.
The authors utilized the revision history, file contents, bug reports with comments and
stack traces to find suspicious files. Methods present in each suspicious file are analyzed
in terms of the similarity to bug reports. The similarity score between a file and a report
is based on BLUiR [128]. The total weighted sum score is adapted from AmaLgam [156]
with best weights obtained from experiments. The authors evaluated BLIA on the Bug-
Locator dataset, using three projects (Aspectj, SWT, ZXing) with Top N, MAP and MRR
metrics. BLIA got better results than AmaLgam [156], BugLocator [172], BLUiR [128] and
BRTracer [158].

ConCodeSe [28] aims at improving the bug localization without depending on features
from project history. The tool is based on a probability score and a lexical score implemen-
ted in Apache Lucene search engine. The authors customized Lucene’s Standard-Analyzer
to tokenize bug reports. ConCodeSe was evaluated against BugScout [109], BLUiR [128], Ye
et al. learning to rank [164], and AmaLgam [156] using Top N, MAP, MRR on AspectJ, Ec-
lipse, SWT, ZXing, Tomcat and ArgoUML. The tool is able to outperform BugLocator [172]
on all projects, AmaLgam [156] on four projects, BLUiR [128] on three projects and Learn-
ing to rank [164] on one project (Tomcat).

Shi et al. [131] tested various learning to rank models, to find the one best suited for bug
localization. The authors used algorithms implemented in the RankLib [27] library: Ran-
dom Forests, MART, RankNet, RankBoost, LambdaMart, ListNet, AdaRank, CoordinateAs-
cent. The features used were similarity scores between bug report summaries/descriptions
with class names, methods, variables and comments, stack traces, version history per each
file, dependence graphs, and report to report similarities. The best tested learning to rank
method, CoordinateAscent, was evaluated against AmaLgam and BLUiR [128], using 3

5.3 problem statement 49

open source projects (Eclipse, SWT, ZXing) from BugLocator dataset [172] and Top N,
MAP, MRR metrics with better results on Eclipse and SWT.

The two-phase method proposed by Kim [66] aims to find files relevant to a specific bug
report by training Naïve Bayes on a bag-of-word features obtained from previous bugs. The
authors use the probability per each file to select top k files related to bug report. In order
to enhance the performance, a separate grading classifier was trained on already solved
bug reports. This is used to filter out bug reports without enough information provided
to predict files. The method was evaluated against Usual Suspects and BugScout [109] in
terms of likelihood (accuracy), precision and recall. It outperformed both approaches with
statistical significance.

Huo et al. [55] propose NP-CNN method based on Convolutional Neural Network to
locate buggy files, with the goal of utilizing program structure and natural language pro-
cessing simultaneously. The authors define an additional cost function for misclassification
due to the unbalanced nature of defect to non-defect ratio. CNN was evaluated on 4 open
source project: AspectJ, Eclipse JDT, Eclipse Platform and Eclipse PDE against BugLoc-
ator [172], the two-phase method [66], HyLoc [74] and baseline CNN without adjustments
for programming language structure encoding, with metrics like Area Under Curve (AUC),
MAP and Top N. NP-CNN outperformed previous models, with statistical significance on
all projects, except JDT, where it was the second best after the other method based on CNN.

HyLoc [74] is based on combining deep neural networks with textual similarity models.
It uses a neural network to find pairs of related terms between reports and source code files.
HyLoc was evaluated on the Ye et al dataset [164] using Top N, MAP, MRR metrics against
BugLocator [172], Ye et al. [164] and Kim et al. [66] with better results on all projects.

5.3 problem statement

Typical bug fixing process requires a software user, who encounters a bug to report it to
the bug tracking system. After that the developer who chooses or is chosen to fix the bug
needs to localize appropriate source files within the project and modify them.

5.3.1 Notation

Let B be a stream of bug reports, ordered by time. By bt we denote the bug report fixed
at time t. Each bug report contains the title text and description text. Let C be a stream
of commits, ordered by time, corresponding to the version control repository branch. Let
ct−1 be the state of project before applying fix for bt, corresponding to specific commit.
Let St be the set of files present in repository for commit ct−1, and S set of all file states.
Let sti be one source file in St.

Our goal is to construct a ranking function r : B× S→ R. This function for a bug report
bt and file sti ranks how this file is related to a bug report. The ranking function must be
practically computable even for large repositories.

5.4 feature engineering

Bug localization models operate on a set of features that captures relationships between
files and bug reports. A large number of features was proposed over time (see e.g. [164,

50 adaptive bug localization based on bug reports

165] and references therein). Each pair of a bug report and a source file (b, s) is represented
as a vector of k features: ˘(b, s) = [φi(b, s)]16i6k. We use the same set of 19 features as
the authors of [165], following their naming and numbering, as listed in Table 5.2, except
φ2, which we replaced. We slightly adjusted formal definitions of these features to make
it simpler and more accurately reflect their meaning. The features are normalized using
standard min–max scaler φi−minnφi

maxnφi−minnφi
, with φi(b, s) values from current fold n that are

below or above values from the previous fold, that is minnφi and maxnφi, set to 0 or 1,
respectively.

Table 5.2: Features used in ranking model, proposed by Ye et al. [164, 165]. sim is the cosine similar-
ity. Slight notation changes for features φ2, φ3, φ5 are marked in bold. We use φ∗2 feature
instead of φ2, see Section 5.4 for rationale. Query dependent features are those that depend
on both the bug report r and the source code s.

Feature Description Formula Query dep?

φ1 Surface lexical similarity φ1(b, s) = max
(
{sim(b, s)}∪ { sim(b,m) | m ∈ s }

)
Yes

φ2 API-enriched lexical similarity φ2(b, s) = max
(
{sim(b, s.api)}∪ { sim(b,m.api) | m ∈ s }

)
Yes

φ3 Collaborative filtering score φ3(b, s) = sim
(
b, concat({b.summary | b ∈ br(b, s) })

)
Yes

φ4 Class name similarity φ4(b, s) = |s.main_class| · 1[s.main_class ∈ s.summary] Yes

φ5 Bug-fixing recency φ5(b, s) =
(
(b.date − last(b, s).date).months + 1

)−1 Yes (Timestamp)

φ6 Bug-fixing frequency φ6(b, s) = |br(b, s)| Yes (Timestamp)

φ7 Summary–class names similarity φ7(b, s) = sim(b.summary, s.class) Yes

φ8 Summary–method names similarity φ8(b, s) = sim(b.summary, s.method) Yes

φ9 Summary–variable names similarity φ9(b, s) = sim(b.summary, s.variable) Yes

φ10 Summary–comments similarity φ10(b, s) = sim(b.summary, s.comment) Yes

φ11 Description–class names similarity φ11(b, s) = sim(b.description, s.class) Yes

φ12 Description–method names similarity φ12(b, s) = sim(b.description, s.method) Yes

φ13 Description–variable names similarity φ13(b, s) = sim(b.description, s.variable) Yes

φ14 Description–comments similarity φ14(b, s) = sim(b.description, s.comment) Yes

φ15 In-links = # of file dependencies of s φ15(b, s) = s.inLinks No

φ16 Out-links = # of files that depend on s φ16(b, s) = s.outLinks No

φ17 PageRank score φ17(b, s) = PageRank(s) No

φ18 Authority score (HITS) φ18(b, s) = auth(s) No

φ19 Hub score (HITS) φ19(b, s) = hub(s) No

φ∗
2 full API–enriched lexical similarity φ∗2(b, s) = max

(
{sim(b, s.api∗)}∪ { sim(b,m.api∗) | m ∈ s }

)
Yes

We reimplement Ye et al. [164, 165] feature extraction using Python and Java (for ASTParser).
To construct the features we used Pandas [97], Sklearn [117], Numpy [110], NetworkX [43],
Natural Language Toolkit (NLTK) [92] and Eclipse JDT ASTParser. The file dependency
graph was created by parsing all Java source files using the Eclipse JDT ASTParser and
inferring the file dependencies.

Main differences compared to [165] are new φ∗2 feature and other TF-IDF weight scheme1.
We publish feature engineering code and the values of resulting features as a supplement
to the dataset [164, 165].

New feature φ∗2 rationale

The original φ2 feature proposed in [164, 165] is constructed based on API description ex-
tracted from the project documentation. While this feature can enhance the overall process
of bug localization, the way it is constructed in [164, 165] poses two problems. First, it may

1 Read Section 5.6 to see how this impacts the results.

5.5 proposed solution 51

leak information as it is based on snapshots of documentation, thus some bug reports may
be evaluated against the documentation not available at the time of the report. Based on
the API URLs present in the published dataset, the documentation was gathered from In-
digo (2011) and Kepler (2013) versions of Eclipse projects. The earliest bug reports are from
2001. Second, it does not contain all entries available in the documentation. For instance
the main class for plugin development UIPlugin from Eclipse Platform UI is not included
in the snapshot.

We propose new feature φ∗2 that solves mentioned problems. This feature is based purely
on the API derived from AST of the source code available before the bug report was repor-
ted, s.api∗. More computational effort is required compared to original φ2, but it does not
leak information, and is not subjective to the initial API selection.

Text processing differences

Small differences exist between the paper [164] and the feature extraction code we received
from its authors. Implementation uses WordNet lemmatizer, and manually adjusted stop
words per each project which was not described in the paper [164]. We follow procedure
from the publication [164].

As for the TF-IDF weighting scheme, we decided to use an established scheme used in
the scikit-learn library[117] and in the Apache Lucene search engine. This scheme differs
from Equation 1 by defining:

idf (t,D) = log
1+ |D|

1+ |{d : t ∈ d}|
+ 1,

where t is term and D set of all documents.

5.5 proposed solution

For each new bug report, our method localizes related files by calculating likelihood score
per each file present in the repository at the moment of bug report creation. Files more
probable to be the cause of the bug will get the higher score than others.

We train the algorithm on the dataset containing both bug reports, and related commits
fixing them. Our assumption is that there is some history of project development and bug
reporting present in the repository and bug tracker. We consider it as an important aspect,
therefore, we designed the model so it could adapt to the project over time. Similarly to
other approaches we treat ordered bug reports as a time series with a sliding window [165].
This window splits reports into folds of constant size. Due to ongoing development inter-
twined with bug fixing commits and changes by participating developers, each fold can
have different characteristics. Consequently, we train our method on fold n to localize
bugs for fold n+ 1. Thus, we adapt our model to the latest fold characteristics, rather than
utilizing the characteristics of a bug report, like in[103].

Note that, our goal is to find the best method and parameters, without usage of any fea-
tures not present in either bug tracker or repository. Therefore we set all parameters auto-
matically, without the need for separate parameter fitting stage [165] or manual parameter
fitting [128, 172]. If some weights are to be established, we avoid setting them manually,
and have the algorithm adjust them. Given a bug report, the algorithm performs the bug
localization by computing the likelihood score for each file present in the repository at the

52 adaptive bug localization based on bug reports

time of the bug report creation. Then, it uses this score to present files more likely to be a
cause of the bug. More probable files will get a higher score.

Using learning to rank approach in the context of bug localization requires a special
setup. The main challenge is the huge imbalance between relevant and irrelevant files for a
given bug report. For example, 4 largest projects from dataset[165] have between 4000 and
6000 files, while the median of relevant files for a bug report is between 1 and 3. Therefore,
a certain data preparation is required in order to mitigate the imbalance problem.

Based on related works we generalized the typical setup used in this case (see Fig. 5.2
and Table 5.3).

Figure 5.2: The block schema of a general learning to rank approach in bug localization.

The initial ranking selection is a preliminary step used either in the imbalance handling
method or for establishing the training target. The examples of such initial rankings are: the
feature φ1 in Ye et al.+ [165], results of BLUiR [128] algorithm used in Shi et al. [131],
and a random order for the genetic algorithm AmaLgam+ [155]. We propose a custom
approach, described in Section 5.5.1, where we use a score based on (per–fold) adaptive
feature weights approach. Then, there is the imbalance handling method which cuts off
most of the irrelevant files making the training set more balanced. In [131, 165] all but
top 200 of irrelevant files based on the initial ranking are excluded from the training set.
In AmaLgam+ [155] there is no imbalance handling. We use a two step approach where
we first cut using the feature φ2 as the ranking and use the top 200 irrelevant files. Then
we proceed with an adaptive cut-off which utilizes the initial ranking to further reduce
the number of files. Finally, there is the training target, that will be used in the training
process. The authors of AmaLgam+ [155] maximize the function eMAP+MRR on results
of a genetic algorithm selecting weights on randomly selected 5% of the dataset. Shi et
al. maximize the MAP metric [131]. In [165] a simple training target is used, based on a
binary relation ie. +1 for relevant files and −1 for irrelevant files. On the other hand, we use
more sophisticated mechanism based on an ameliorated score. This leads to a fine-grained
ranking that induces a linear order.

5.5.1 Initial ranking

This method is based on constructing the relevancy score per each file, to be used for point-
wise learn-to-rank training target construction. We were inspired by feature importance
analysis.

To create ranking we propose several scoring functions, consisting of various statistical
tests, classification methods or information theory measures. Each one of those functions
is linear combination of features pi(b, s) =

∑
kwk · φk(b, s), where weights wi are set

heuristically, based on several proposed criteria. Scoring functions are evaluated on each

5.5 proposed solution 53

Table 5.3: Comparison of selected learning to rank bug localization methods. In learning to rank all
refers to pointwise, pairwise, listwise.

Ye et al.+ [165] Shi et al. [131] AmaLgam+ [155] Proposed method

Initial ranking (�IR) feature φ1 BLUiR [128] random φ∗
2 and adaptive scoring, Section 5.5.1

Training target relevant
files: +1,
irrelevant
files: −1

maxMAP max eMAP+MRR ameliorated score, Section 5.5.2

Imbalance handling top 200 irrelevant
files
based on �IR

none described adaptive cut-off of irrelevant files,
Section 5.5.3
Initial cut: top 200 irrelevant files
based on feature φ∗2, proceeded by
Adaptive Cut: adaptive bottom %
of selected files based on �IR.

Learning to Rank SVMrank [60] Coordinate
Ascent
RankLib [27]

JGAP [98] adaptive SGD regression, Section 5.5.4

pairwise listwise listwise pointwise

training sample for the fold, which is the same as the training subset for the fold in Ye et
al. [165].

Weights heuristics are based on estimation of how well each feature φi can distinguish
between relevant and irrelevant files.

Our intuition is that weights are to be used to rank each feature importance akin to
how they are used for feature selection [42]. We present all used functions and weights in
Table 5.4 Weights are scaled by sum of all features φi for given scoring criteria.

We based the first group of heuristics on statistical tests. In particular we split each
feature into relevant and irrelevant groups and then use relevant statistics as a measure of
corresponding feature importance. That said we utilize Kruskal-Wallis H-test [73] to test
whether the population median are equal, the T-test for independent samples [107] to check
if means are significantly different, chi-square test [107] to find out features independent
of relevancy class, and Levene test for equality of variances [82] to assess the equality of
variances between relevant and irrelevant groups.

In the second group we have various classification methods that are used for their fea-
ture importance estimators. Each classifier is trained to predict fix and non-fix files. We
use AdaBoost tree classifier [38, 49], an Extremely Randomized Trees classifier [40] and
Gradient Boosting regression [50] to obtain feature importance estimates.

In the last group, we have heuristics based on the index of dispersion [107], maximum
absolute deviation [107], and mutual information [125].

The use of index of dispersions is motivated by the idea that better distinguishing fea-
tures have it different for relevant and irrelevant files. We also check the maximum absolute
deviation variances calculated on relevant files features to capture the characteristics spe-
cific to only those files. Mutual information is used to check for the most discriminating
features in the context of the target variable.

The simplest heuristic is based on a constant set of weights, where wi = 0.5.

54 adaptive bug localization based on bug reports

Table 5.4: Scoring functions and weight schemata used in the adaptive scoring phase, where φi - all
values for feature i, φfixi - values for feature i restricted to files used in fix, φirri - values
for feature i restricted to irrelevant files, Y - true/false values for each file, true if file is a
fix, else false

Based on Weights

W statistics from Levene test for equality of
variances with median as center function [82]

wi =Wφi/
∑n
j=1Wφj

H statistics from Kruskal-Wallis H-test [73] wi = Hφi/
∑n
j=1Hφj

T statistics from T-test for independent
samples [107]

wi = Tφi/
∑n
j=1 Tφj

χ2 statistics from chi-square test [107] wi = χφi/
∑n
j=1 χφj

Features weights computed by AdaBoost
SAMME.R Classifier [38, 49]

model specific

Features weights computed by Extremely ran-
domized trees classifier[40]

model specific

Features weights computed by Gradient Boost-
ing regression [50]

model specific

Mutual Information between Discrete and Con-
tinuous Data Sets [125] denoted as I

wi = I(φi, Y)/
∑n
j=1 I(φj, Y)

Index of dispersion [107] wi = D
φfix
i
/D

φirr
i

where Dφi = σ2φi/µφi

Maximum absolute deviation variances [107] wi = mean (|φfixi − maxφfixi |)

Predefined set of weights wi = 0.5

Adaptation: selection of the best scoring function

In order to select the best set of normalized feature weights wi (see Fig. 5.2), we evaluate
weights from each scoring function under Mean Average Precision (MAP) metric, defined as
in Section 2.3.3. In particular, we utilize two-way cross validation for this purpose. Each
training fold of 500 bug reports is split into two equal sized disjoint datasets. We use each
one of those datasets to find the weights for each scoring function, and the corresponding
other to compute metrics. Consequently we obtain the metrics on the whole training fold,
and utilize them to select the best weights and scoring function. To create one set of weights
for the training fold we combine best scoring weights from two cross-validation datasets.

As mentioned before, the process is repeated per each training fold, allowing for various
models to be selected. We decided to use adaptation as training folds tend to change their
characteristics. Note that the scoring function p can be used as standalone ranking function
r.

5.5 proposed solution 55

5.5.2 Training target: ameliorated score

Based on Shi et.al. [131] findings usage of pointwise learning-to-rank setup to bug localiz-
ation can result in suboptimal performance, when utilizing coarse–grained binary relation
as a training target. Because of that, it is essential that the training target is fine-grained
and linearly ordered.

Our training target is based on the following ameliorated score function. We add the
maximum of feature values to the score of relevant files.

p∗(b, s) =
n∑
i=1

wi ·φi(b, s) + 1[s∈fixes(r)] · max
i=1..n

φi(b, s),

where fixes(b) is a set of fixed files for a given bug report b. This modification establish
proper training order, by ensuring that all fixed files have greater p∗ score than non–fixes.
Both p and p∗ are fine-grained and of linear order for files under a given bug report.

5.5.3 Imbalance handling: adaptive cut–off

The files not related to a bug report severely outnumber the buggy files. To be able to
correctly train regression models we need to create a training set with appropriate ratio of
bug related and unrelated files (i.e. all files with bugs, and small sample of other files). We
want the sizes of created classes to be of similar magnitude. First we narrow the files by
taking top 200 irrelevant files based on the φ∗2 feature, similarly to [131, 165].

We narrow the training set with the cutoff function,

tf(b) = fixes(b)∪ {s /∈ fixes(b) | 0 < p∗(b, s) 6 cf(b)},

which selects non-defect (irrelevant) files for the training set. It takes source files with the
lowest score per bug report, up to a given fraction of f% of the number of defect (relevant)
files. The cutoff value is defined as

cf(b) = max
{
p∗(b, s) | s ∈ P|fixes(b)|∗f

}
,

where Pn be the set of n smallest elements of set of scores P, that is the maximum score
in the set smallest scores with the cardinality of f% of the set of relevant files. We evaluate
each variation of regression models with a cutoff function using 5%, 10%, 15%, 20%, 25%
and 30% of previously chosen irrelevant files per bug report.

5.5.4 Pointwise learning to rank method

The starting point for this method are scores generated by selected best performing scor-
ing method p(b, s). Having an initial score enables us to train pointwise learning-to-rank
algorithms. The goal is to train a regression model based on an ameliorated scoring of the
training dataset.

Likewise to the selection of scoring weights, we evaluate several regression models. In
particular we use variants of Stochastic Gradient Descent regression [171], with follow-
ing loss functions: ordinary least squares [171], Huber [113], epsilon insensitive [137] and
squared epsilon insensitive [137] and no regularization or regularization via L1 norm, L2

norm, or Elastic Net.

56 adaptive bug localization based on bug reports

Adaptation: selection of the best model

Similarly to scoring, the regression model is also trained and evaluated using 2-way cross
validation. The models search space consists of Cartesian product of all possible variants
of training models and cutoff thresholds. We train each model after applying the cutoff
function on training data. The winning model is selected based on Mean Average Precision
(MAP) of bug files that it selects.

5.6 evaluation results

In this section we detailed the empirical evaluation of the proposed adaptive methods. We
compare the state-of-the-art [165] results to ours on the same fine grained dataset [165].
Note that most of related work utilizes older dataset, introduced by authors of Buglocator
method [172], as shown in Section 5.2. For completeness we include the comparison using
the Buglocator dataset. Furthermore, we assess the performance of our proposal.

Table 5.5: Publicly available benchmark datasets used in this chapter.

Dataset Project # of bugs appr. # files Missing desc.

Ye
et

al
.

AspectJ 593 4439 21%

BIRT 4178 6841 28%

Eclipse UI 6495 3454 19%

JDT 6274 8184 15%

SWT 4151 2056 21%

Tomcat 1056 1552 50%

Bu
gL

oc
at

or

AspectJ 286 6485

Eclipse 3.1 3075 12863

SWT 3.1 98 484

ZXing 20 391

5.6.1 Applied metrics

We computed the Accuracy@k, the Mean Average Precision and Mean Reciprocal Rank order
to assess the quality of our solution, following the metrics definitions as in Section 2.3.3.
Consequently, we compare the state-of-the-art and previous works results to ours with
respect to those metrics.

5.6 evaluation results 57

5.6.2 Fine grained dataset

This dataset was proposed by Ye et. al. [164, 165], and is publicly accessible2. It contains
six open-source Java projects: AspectJ, BIRT (Business Intelligence and Reporting Tools),
Eclipse Platform UI, JDT (Java Development Toolkit), SWT (Standard Widget Toolkit), and
Tomcat. All of these projects use Bugzilla as the bug tracking system and Git as the version
control system. This dataset closely resembles real life use cases; thus it should be preferred
over commonly used BugLocator dataset [172].

The connection between bug report and commit was created by searching commit mes-
sages for special phrases such as “bug 31946” or “fix for 31946” according to the heuristics
proposed in [26]. Only closed bug reports with clear corresponding fixed files were con-
sidered. As in [164, 165], the version of the corresponding software package just right
before fix was used as the substitute of the exact version for which the bug was reported.

During investigation of the dataset we discovered that some of the bug reports do
not contain the description, while it is present in the related Bugzilla. The percentages
of missing descriptions per project are presented in Table 5.5. We contacted the dataset
authors [164, 165] about this deficiency, unfortunately they are uncertain whether it was
introduced during the construction of the dataset or during the preparation of the pub-
lic version. Thus, it remains unknown if the fine-grained dataset authors were using bug
reports with or without the missing descriptions in their experiments. To overcome this
problem we decided to evaluate our method on both versions of the fine-grained dataset.
For further analysis of missing descriptions impact see Section 5.7.

5.6.3 Results for fine grained dataset

We utilize the same data split into training and testing subsets as Ye et al. [165], using equal
sized folds of 500 bug reports, where consecutive folds are used for training and evaluation.
This gives us two folds for AspectJ and Tomcat, eight folds for BIRT and SWT and twelve
folds for Eclipse UI and JDT.

All the results are presented in Table 5.6 and on Fig. 5.3. Compared to results reported
in Ye et al. [165], for the pointwise learning to rank method we obtain better results in
terms of Accuracy@1, MAP (Equation (6)) and MRR (Equation (7)). Results for the rest
of Accuracy@k (Equation (5)) are comparable (i.e. slightly worse or better). We signific-
antly improve results on AspectJ and BIRT projects. Adding missing descriptions yields
better results in terms of Accuracy@k and MAP for AspectJ, Eclipse UI and Tomcat, while
for other projects results are lower by about 1% on Accuracy@k. We outperform baseline
methods BugLocator, VSM and UsualSuspect as reported in [165], both with and without
missing description.

5.6.4 BugLocator dataset

This dataset [172] is commonly used by variety of the state-of-the-art methods, that can be
found as part of Bug Center project3. There are four open source projects in this dataset:
AspectJ, Eclipse 3.1, SWT 3.1, and ZXing. We evaluated our method on part of this dataset

2 http://dx.doi.org/10.6084/m9.figshare.951967

3 https://code.google.com/archive/p/bugcenter/

http://dx.doi.org/10.6084/m9.figshare.951967
https://code.google.com/archive/p/bugcenter/

58 adaptive bug localization based on bug reports

Ye et al Adaptive regression Adaptive regression with desc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(a) AspectJ Accuracy@k per method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

(b) BIRT Accuracy@k per method
Ye et al Adaptive regression Adaptive regression with desc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(c) Eclipse UI Accuracy@k per method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(d) JDT Accuracy@k per method
Ye et al Adaptive regression Adaptive regression with desc

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(e) SWT Accuracy@k per method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(f) Tomcat Accuracy@k per method

Figure 5.3: Accuracy@k (see Equation (5)) evaluation on fine-grained Ye et al. dataset [165] including
results as reported in source publication [165]. Our method is able to outperform Ye et
al. on Accuracy@1 on all projects. Results for Ye et al. were acquired by digitalizing
Accuracy@k diagrams from [165] (as authors do not provide exact results). We omitted
other commonly evaluated methods, BugLocator, VSM and UsualSuspect as they are
outperformed by presented methods (see [165]).

5.6 evaluation results 59

Table 5.6: MAP (see Equation (6)) and MRR (see Equation (7)) evaluation on fine-grained Ye et al.
dataset [165], including results reported therein. Our method is able to outperform Ye et
al. on all projects. We do not present BugLocator, VSM and Usual Suspects as both Ye et
al. outperform these methods. The best and second best results are underlined with solid
line and dotted line respectively. We denote the version "with desc" on the dataset with
restored missing bug report descriptions.

MAP MRR

Method A
sp

ec
tJ

BI
R

T

Ec
lip

se

JD
T

SW
T

To
m

ca
t

A
sp

ec
tJ

BI
R

T

Ec
lip

se

JD
T

SW
T

To
m

ca
t

Adaptive regression0.45 0.210.44 0.40 0.420.500.53 0.27 0.52 0.48 0.480.56

Adaptive regression with desc 0.460.19 0.450.390.41 0.54 0.540.25 0.520.47 0.48 0.61

Ye et al.+ [165] 0.37 0.160.440.39 0.40 0.49 0.44 0.210.510.470.46 0.55

for completeness, as it has several disadvantages compared to the fine grained dataset. Bu-
gLocator dataset is based on a single version of project sources connected to multiple fixed
bug reports, and contains fewer bug reports than the fine grained dataset. The authors
did not include feature values, which necessities additional preprocessing. The repository
history is not present, nor explicit bug fix connection using commit SHA identifier, only
the fix commit date. In the case of the Eclipse 3.1 project the single version of source code
is not based on repository, but on a prepared development package which includes par-
tial source code. Furthermore, bug reports of this project are related to multiple existing
Eclipse repositories such as Eclipse Platform UI or Eclipse JDT UI. Note, that this leads to
misaligned file paths between bug reports and related repositories, hence it might affect
performance of algorithms trained on the dataset. Moreover, Ye et al. [165] examined the
BugLocator dataset and found files included in bug reports, but not present in single ver-
sion of source code, as those files were deleted between fixing commit and single version
preparation.

Similarly to Ye et al. [165], we use Eclipse 3.1, as other projects are too small to split
them into folds. Then, as in [165], we split the data into six consecutive folds with 500 bug
reports in each. We use fold n to train the n+ 1 fold, except for the first fold, for which the
second fold is used for training.

5.6.5 Results for BugLocator dataset

For completeness we include results reported by other projects on this dataset, such as
BugLocator [172], BRTTracer [158], BLUiR [128], Ye et al.+ [165], AmaLgam+ [155], Con-
CodeSe [28] and Shi et al. [131] 4. It should be noted that Shi et al. [131] replicated results
of BLUiR [128] and AmaLgam+ [155] on the BugLocator dataset, with lower results than
original authors, nevertheless we cite original findings. We obtained compelling results,
and outperformed other approaches, with the exception of Accuracy@10 for Shi et al. [131].
Results are gathered in Table 5.7, with highest results highlighted. The results were taken
directly from the corresponding publication. Due to the fact that this dataset contains a
single version, we did not use the past history of the repository when constructing φ2.

4 For papers that reported top-n the conversion was made to Accuracy@k. For Ye et al. [165] we only report
results from their extended work as they improve initial results.

60 adaptive bug localization based on bug reports

Some experiments differ in experiment setup, thus are not directly comparable [172] [131,
158] (see Table 5.7), we include them for completeness.

Table 5.7: Method evaluation on Eclipse 3.1 project from single version BugLocator dataset [172],
including results of other methods using the same dataset as in corresponding source
publications. The best and second best results are highlighted in grey and light grey
respectively. Setup differences: † training of randomly selected 5% reports, ‡ manually
adjusted weights, ‡‡ usage of 30 folds, 100 bug reports each.

Method Acc@1 Acc@5 Acc@10 MAP MRR

BugLocator [172] 0.291 0.538 0.626 0.3 0.41

BRTTracer [158] 0.326 0.559 0.652 0.33 0.43

BLUiR [128] 0.329 0.562 0.654 0.33 0.44

Ye et al.+ [165] 0.34 0.57 0.66 0.34 0.45

AmaLgam+ [155]† 0.357 0.603 0.691 0.36 0.47

ConCodeSe [28]‡0.376 0.612 0.6990.370.57

Shi et al. [131]‡‡ 0.2970.664 0.85 0.306 0.399

Adaptive regression 0.7 0.7520.785 0.6 0.728

5.6.6 Performance

We have conducted all experiments on two computers with different hardware setup.

• Evaluation Setup: 2 Ten-Core Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz processors,
62 GB RAM.

• Dataset Setup: 2 Six-Core AMD Opteron TM processors 2431 @ 2.40GHz, 32 GB RAM.

The results are gathered in Table 5.8. During experiments there was no other load on both
machines.

On the Evaluation Setup we measured training time for our methods including all steps
described in Section 4.4. The provided times include additional steps for parameter adapt-
ation. Training times for proposed methods are below the main competitor method [165],
but were achieved using more recent hardware. The feature computation time was meas-
ured on the Dataset Setup and is comparable to Ye et al. [165] in terms of average time
per bug report. The Dataset Setup is similar to hardware used by Ye et al. [165]. Note that
the feature computation time for both our method and Ye et al. [165] is the most time
consuming step, and respective times are in our opinion acceptable for the intended use.

5.7 discussion

In this section we provide a detailed explanation of our findings. In particular we investig-
ate the used learning to rank approach, explain how construction of training set affects the
results, illustrate the parameter adaptation process and show threats to validity.

5.7 discussion 61

Table 5.8: Times are reported for fine-grained Ye et al. dataset [165]. Measurements are done using
Python’s timeit module. Training: Average time in seconds per bug report and per file,
using 10 runs on each project, standard deviation lower than 0.01; done on hardware Eval-
uation Setup. Feature computation: Summary feature computation time per bug reported;
done on hardware Dataset Setup.Results <(±0.01)

Time per AspectJ BIRT Eclipse UI JDT SWT Tomcat

Tr
ai

ni
ng Regr.

bug rep. 0.321 0.338 0.345 0.353 0.328 0.330

file 0.018 0.017 0.019 0.018 0.031 0.020

Presc.
bug rep. 0.079 0.080 0.081 0.082 0.080 0.080

file 0.004 0.004 0.004 0.004 0.008 0.005

Feat comp. bug rep. 39.16 74.69 42.61 68.03 46.05 23.64

5.7.1 Learn to rank approaches and training target construction

The usefulness of pointwise, pairwise and listwise approaches in bug localization depends
heavily on the training target function. Ye et al. [165] used relevant and irrelevant files as
a pairwise training target for SVMrank. Such formulation is sufficient for pairwise and
listwise approaches but does not fit well the pointwise approach. Shi et al. [131] evaluated
all available learning to rank algorithms from RankLib [27]. The authors concluded that
Coordinate Ascent being a listwise approach, which optimizes the MAP metric is the best
suited method. They also noted poor performance of algorithms based on the pointwise
principle, due to the formulation of the training target function. The AmaLgam+ [155] uses
a genetic algorithm from the JGAP [98] library to find feature weights. Due to the fact that
eMAP+MRR is optimized on all results, it is a listwise approach.

In our method we propose a custom training target function that better suits pointwise
approaches. This target function is based on a score that assigns a value from the continu-
ous range [0, 1], which we then ameliorate to ensure that relevant files are on top of the list.
Thus all relevant files have higher scores than irrelevant files, and the training target is in
linear order. The reformulation of the training function allowed us to successfully apply
pointwise learning to rank approach.

5.7.2 Imbalance handling

Both the ratio between defect and non-defect (irrelevant) files, and selection of which files
are included in the training set affects learning performance. In particular, the training set
needs to contain all defect files, and some subset of non-defect ones, to be able to generalize
properly during the training process. Ye et al. [165] choose the training set irrelevant files
similar to the bug report. The files are selected with the highest value of cosine similarity of
file content and text of the report. They have found that using up to around 200 irrelevant
files per bug report improves MAP metric.

The authors of BLUiR [128] use whole AspectJ project from BugLocator dataset [172] as
a training set to establish weights for their method. Shi et al. [131] selected irrelevant files
for training utilizing BLUiR [128]. The ConCodeSe [28] uses randomly selected 2.2% of bug

62 adaptive bug localization based on bug reports

reports as a training set to adjust text similarity weights. The Authors of AmaLgam+ [155]
method randomly sampled the whole dataset to find 5% bug reports for training.

Our model selects a portion of dissimilar irrelevant files. In particular we apply cutoff
function to maximize training results (with adaptive cutoff), under the constraint that de-
fect files make up the majority of the training set.

5.7.3 Adaptation process

Ye et al. [165] conducted manual grid search on one training fold to find optimal parameters
for evaluation. Shi et al. [131] used default parameters present in RankLib [27] for all
tested algorithms, with an additional manual grid search conducted on the first fold for
Eclipse 3.1. The authors adjusted restarts and iterations parameters of Coordinate Ascent
algorithm, choosing 5 and 25 to be used for the rest of the project. The AmaLgam+ [155]
computes weights using genetic algorithm optimizing eMAP+MRR on train data, using
default parameters of JGAP library [98]. Due to the fact that the characteristics of a project
may change over time, models with predefined parameters may have suboptimal results
or degrade during industrial usage. Our method is able to efficiently adapt the parameters
over time from a predefined set of parameters. The used scoring functions and regression
parameters are selected on the training fold (fold n) and then used on the testing fold (fold
n+ 1).

Fold size is set the same way as in Ye et. al. [165] (500 bug reports) for comparison
reasons. We investigated how different fold size can affect adaptation and training. In those
additional experiments we used fold sizes of 100 and 250 bug reports on 4 large projects
(Birt, Eclipse UI, JDT and SWT) from fine-grained dataset [165], and achieved comparable
results of our method in terms of all metrics as with default size.

5.7.4 Selected parameters

Depending on the dataset different parameters are selected. For the fine grained dataset,
our algorithm selects Levene test for scoring function (see Fig. 5.4) and Huber loss func-
tion [113] with cutoff factor of 5% (see Fig. 5.6). The dominant regularization function was
L1 norm as seen on Fig. 5.5. The best cutoff factor for irrelevant files is 5% when training
on the same data. For single version dataset our algorithm selects chi-square test for one
fold and Levene test for remaining folds as scoring function. For corresponding regression
model training the algorithm chooses Huber loss function and cutoff factor of 5%.

5.7.5 Impact of feature construction differences

To examine this impact we evaluated the replication code for [165] on different variants
of features. These experiments were confined to AspectJ, SWT and Tomcat. The proposed
feature φ∗2 does not leak future data which might cause lower results. We compared φ∗2
and φ2, using the same replication code. For SWT and Tomcat, using φ∗2 resulted with
lower results on all metrics (on average 6% and 7%). For AspectJ the results are higher: 1%
for Accuracy@k on average and 3% on MAP, MRR difference below 1%. We did a similar
experiment to assess impact of TF-IDF weighting schemes and tokenization. Our approach

5.7 discussion 63

0.1 0.2 0.3 0.4 0.5 0.6
Mean Average Precision

levene median
kruskal

ttest
2

AdaBoost
ExtraTrees

GradientBoosting
mutual info

Idx. of disperrsion
max abs deviation

const

Sc
or

in
g

Figure 5.4: Mean Average Precision distribution on all training folds for all projects for different
scoring functions. Distribution presented with letter-value plots [52], actual measure-
ments shown as dots.

0 5 10 15 20 25 30
folds

l2
l1

elasticnet
none

Figure 5.5: Adaptation of regression model regularization across all training folds on fine-grained
Ye et al. dataset [165]

decreased replication results by 1%-2% for Tomcat and SWT projects across all metrics and
improved them by 8% on AspectJ.

5.7.6 Adaptive scoring

Note that the initial ranking can be used as a standalone ranking algorithm. It is able to
outperform Ye et al. [165] on AspectJ, Birt, JDT and SWT, with MAP of 0.45, 0.21, 0.40 and
0.41 respectively on Ye et al. [165] dataset with missing descriptions. For Eclipse Platform
UI and Tomcat it obtains MAP of 0.43 and 0.48, slightly below [165]. Similarly the adapt-
ive scoring is able to outperform other state–of–the–art approaches on BugLocator data-
set [172], with MAP of 0.58 on Eclipse 3.1, slightly below the adaptive regression method.

5.7.7 Threats to validity

Missing bug report descriptions. All projects in the fine-grained dataset [165] are missing
some of the bug report descriptions (see Section 5.6.2) that were present in Bugzilla. We
have investigated the impact of missing descriptions by preparing a replication of Ye et

64 adaptive bug localization based on bug reports

0.2 0.3 0.4 0.5 0.6
Mean Average Precision

sq
ua

re
d

hu
be

r
-in

se
ns

iti
ve

2 -i
ns

en
sit

iv
e

Lo
ss

05 10 15 20 25 30Cutoff

Figure 5.6: Distribution of Mean Average Precision for Adaptive Regression model. Evaluated on
all training folds for each combination of loss function (Y-axis) and cutoff factor as %
(cutoff’s factors are grouped by loss, colours in groups are the in the same order as in
legend). Distribution presented with letter-value plots [52], actual measurements shown
as dots.

al. [165] based on the source code the authors sent us. We evaluated replication results

5.8 concluding remarks 65

on AspectJ and Tomcat, and obtained results lower by 8%-12% for the dataset variant
with missing descriptions. However using all descriptions produces similar results as Ye et
al. [165] within a 1-4% absolute error margin, on all metrics.

Projects homogeneity. Most of the research in this topic (see Table 5.1) was conducted
using two datasets [120, 165], which are based on mature open source Java projects. The
majority of analyzed projects are maintained by the Eclipse Foundation and use the same
instance of Bugzilla bug tracker, and similar practices of code review. The question is how
this impacts existing methods. Therefore, this is a valid argument that a more diverse
dataset is needed. Such a dataset should include projects created in different languages
and using varying development practices.

Potential biases in dataset. We investigated the fine-grained dataset [165] for biases, such
as bug reports which are wrongly classified or are already localized (ie. filename present in
summary or description) [72, 100]. First, we found individual cases of bug reports pointing
to the wrong project due to an incorrect bug id in the commit message. Excluding them
does not have impact on the overall results. Secondly, Kochar et. al. [72] found that in some
projects even 50% of bug reports may be already localized. This is not the case for used
fine-grained dataset [165], as around 70% of bug reports include at least one filename, but
only 25% of them may be localized that way.

Retrospective study. Without prospective evaluation, involving new bug reports and real
developers it is hard to judge the usefulness of the proposed method. Unfortunately, pro-
spective studies are hard to conduct in real life, and it may be difficult to compare results. A
prospective study was presented in [154], where 58 students evaluated bug localization on
fixed bugs in SWT. The data was gathered by surveying participants in the DebugRecorder
IDE plugin. In contrast, all presented papers in Section 5.2 focus on retrospective analysis
of bug localization. This allows comparable and replicable results. Thus our evaluation is
done the same way.

5.8 concluding remarks

The bug localization system needs to recommend several likely files among all within the
software project [62]. In our opinion, the learning–to–rank approach is a good solution to
this ranking problem [131, 155, 164, 165], although different algorithms can also be used,
for instance classification models [139]. In this study we propose a generalized view on
a building block for such methods in the context of bug localization. Then, we propose a
new adaptive method based on the pointwise principle.

We propose a new initial ranking scheme that facilitates the construction of a more ro-
bust training target function, which eventually allows successfully applying the pointwise
learning to rank algorithm. Our method is designed in such a way that it will adapt its para-
meters to the characteristics of a project, without the need for separate parameters fitting
procedures. Furthermore, it will adapt over time to changes in project characteristics.

In our experiments on two datasets we had shown that adaptive method is competitive
with state-of-the-art [165]. In particular, we improve Accuracy@1, MAP and MRR metrics
on all evaluated projects.

6
C O N C L U S I O N S

In this dissertation we examined several software engineering approaches based on Mining
of Software Repositories in order to improve project quality. Our preliminary research on
open source contributions and bug detection, shown in Chapter 3, inspired us to focus on
code review and bug localization.

In particular, in Chapter 4 we have presented a novel profile based code reviewer re-
commendation method. We have shown improvements in both accuracy and performance
over state-of-the-art, proposed by Thongtanunam et al. [145]. Consequently, the proposed
method can be applied to large repositories of open source and industrial systems. Addi-
tionally, the presented approach is extensible, enabling the possibility of further improve-
ments.

As presented in Chapter 5 we proposed adaptive bug localization approach using bug
reports, which select best method without any manual tuning of the algorithm. We demon-
strated the significance of our findings on two datasets [164, 172] commonly used in this
area of research. Consequently, we obtained better results than the current state-of-the-art
Ye et al. [165] method.

Finally, to support all our findings we use either publicly available datasources or we
release computed features as replication data. Furthermore, we published source code of
all our methods to simplify reproduction of our results.

6.1 future work

There are several possible future areas of research related to each research topic discussed
in this dissertation. Moreover, recent advances in machine learning inspired us to seek
applications of multi view approach in context on MSR.

In case of Chapter 3 we mainly see area to improve in dataset construction for bug
detection method. By introducing alternatives to the SZZ algorithm, such as the tagging
approach proposed by Treude et al. [147], different commits can be marked as defective
further improving training quality. Another possible alternative to SZZ was proposed by
Tian et al. [146] utilizing an ensemble of supervised SVM and semi-supervised "Learning
from Positive and Unlabeled Examples" approach to find fixing commits.

For recommendation of code reviewers introduced in Chapter 4 we can propose the
following improvements. Firstly, the currently used Thongtanunam dataset [145] can be
further extended by adding the whole project repository. The source code and commit
metadata from such repositories would enable creation of richer profiles. Secondly, profile
data structure can be optimized, for example using locality-sensitive hashing can yield
additional performance improvements. Thirdly, our results still are worth improving, for
instance by using the results of other methods as ensemble. In our opinion collaborative
filtering may lead to improvements of prediction accuracy. We did not use it in the current
method due to the small number of developers compared to the quantity of file paths in
all commits. Recent Yu et al. papers [167, 168] show that fusion and ensemble methods can
achieve similar performance to the state-of-the-art. By introducing the social factors to our

67

68 conclusions

method as a reviewer ordering mechanism we should be able to confirm or disprove this
fact.

Concerning Chapter 5 we plan to expand adaptation possibilities of our bug localization
approaches. Intuitively our method is extensible for additional scoring functions and re-
gression models in respective steps. Additionally, the dataset can be further improved by
preparation of new features and the addition of new projects. Such features can be based
on cyclomatic complexity metrics, stack traces present in bug reports or natural language
processing techniques such as n-grams obtained from both source code and report text. In
case of evaluated projects, we would like to evaluate those written in different languages
than Java.

As a possible direction of future research we recognize applying multi-view learning to
MSR purposes. For every considered problem we used data from a single source, which
corresponds to a single view on software repository and related artifacts. While such an
approach was sufficient for our purposes, the underlying multiple sources of information
can be treated utilizing multi-view machine learning in a semi-supervised manner. In such
a case, each view can be handled by a separate algorithm, with correct results encountered
by one algorithm being passed to others, reinforcing advance to optimal solution [140, 162].

7
A P P E N D I X : R E P L I C AT I O N A N D D ATA S E T S

7.1 replication repository

The required source code to replicate the findings presented in this dissertation can be
downloaded from http://www-users.mat.umk.pl/~mfejzer/phd_replication. Alternatively,
please use https://github.com/mfejzer/phd_replication or contact me directly using
the following email address: mfejzer@mat.umk.pl.

The repository contains four directories:

• contribution_analysis - replication of experiments from Section 3.3 based on [35]

• review_bug_detection - replication of experiments from Section 3.4 based on [36]

• reviewer_recommendation - replication of experiments from Chapter 4 based on [34]

• tracking_buggy_files - replication of experiments from Chapter 5 based on [33]

In each directory there is a README.md file which describes the project, required de-
pendencies, compilation process and how to conduct the experiments. Please consult the
LICENSE.txt file in each directory for licensing details for source code and provided data-
sets.

7.2 preliminary studies datasets

In this section we present datasets for Chapter 3:

• 42 selected projects of GHTorrent dataset [41] used for contribution analysis,

• 63 GitHub repositories and migrated Subversion repository utilized for bug detection.

69

http://www-users.mat.umk.pl/~mfejzer/phd_replication
https://github.com/mfejzer/phd_replication
mfejzer@mat.umk.pl

70 appendix : replication and datasets

Table 7.1: Contributor groups according to comment aggregation by author

Project
Commenters

Commiters
Specialists Generalists Both Other Total

bitcoin 2 5 2 9 14 133

boto 1 32 1 0 32 396

cakephp 1 9 1 16 25 291

CodeIgniter 1 5 1 22 27 308

compass 3 3 3 13 16 196

CraftBukkit 3 11 3 38 49 289

d3 1 1 1 1 2 58

devise 1 3 1 20 23 345

diaspora 4 19 4 47 66 401

django 2 18 2 23 41 417

django-cms 3 8 3 12 20 261

elasticsearch 1 2 1 10 12 124

facebook-android-sdk 3 10 3 0 10 39

foundation 3 4 3 33 37 359

gitlabhq 1 11 1 29 40 481

homebrew 2 17 2 92 109 3192

html5-boilerplate 3 5 3 29 34 267

jekyll 3 3 2 13 17 195

jquery 2 15 2 50 65 316

libgit2 2 7 2 9 16 147

libuv 1 3 1 6 9 107

MaNGOS 1 53 1 99 152 567

mongo 2 12 2 16 28 226

netty 2 2 2 10 12 117

node 1 16 1 48 64 590

openFrameworks 1 3 1 10 13 134

paperclip 2 4 2 26 30 255

phantomjs 2 4 2 10 14 115

php-sdk 1 4 1 4 8 38

phpunit 1 3 1 5 8 95

rails 3 8 3 12 20 2060

redis 1 1 1 4 5 120

requests 1 4 1 26 30 333

sbt 1 2 1 3 5 70

scala 3 9 2 22 32 142

Sick-Beard 1 3 1 21 24 183

SignalR 4 3 2 5 10 52

symfony 1 10 1 36 46 74

xphere-forks/symfony 1 4 1 26 30 731

three.js 1 4 1 21 25 258

tornado 1 1 1 9 10 149

TrinityCore 1 49 1 148 197 485

xbmc 3 26 3 58 84 390

7.2 preliminary studies datasets 71

Table 7.2: Bug prevalence according to topic aggregation by comment or issue month

Project
Commit comments Issues

Months Number Months Number

All Bug related All Bug related All Bug related All Bug related

bitcoin 22 9 32 10 35 35 846 825

boto 29 11 25 12 39 39 545 508

cakephp 35 27 116 55 38 38 563 543

CodeIgniter 25 17 82 38 27 27 446 391

compass 31 13 38 20 53 53 721 705

CraftBukkit 32 32 336 219 34 34 470 402

d3 25 6 14 6 38 38 710 658

devise 34 22 62 33 44 44 1039 1015

diaspora 35 33 388 231 38 38 825 813

django 26 20 102 56 19 19 411 339

django-cms 31 12 38 16 55 55 891 890

elasticsearch 28 9 34 11 45 45 1066 1055

facebook-android-sdk 13 13 13 13 18 11 18 11

foundation 16 13 72 29 24 24 795 795

gitlabhq 24 20 135 56 25 25 845 845

homebrew 34 34 308 232 52 52 1694 1694

html5-boilerplate 33 27 139 86 44 44 756 754

jekyll 20 5 27 6 55 55 760 738

jquery 46 46 362 252 38 38 614 588

libgit2 35 19 73 32 37 37 652 639

libuv 28 24 93 48 31 31 455 423

MaNGOS 53 52 624 449 15 7 19 8

mongo 34 13 38 17 36 35 196 144

netty 24 22 163 68 36 36 569 563

node 50 42 321 173 39 39 729 700

openFrameworks 28 21 87 43 48 48 893 893

paperclip 40 31 76 41 54 53 679 612

phantomjs 16 6 17 6 34 34 563 533

php-sdk 12 6 11 6 21 4 18 6

phpunit 24 7 16 8 40 40 586 545

rails 31 11 32 16 55 55 893 892

redis 37 17 41 20 40 40 511 471

requests 25 11 52 18 33 33 652 613

sbt 22 1 3 1 34 34 444 435

scala 22 14 101 35 23 23 537 526

Sick-Beard 34 22 71 32 38 38 286 247

SignalR 19 6 28 8 28 28 664 655

symfony 41 40 254 162 38 38 1358 1358

three.js 36 32 237 132 42 42 1146 1146

tornado 26 11 25 12 49 49 537 489

TrinityCore 35 35 1122 1023 34 34 470 413

xbmc 38 38 476 379 34 34 808 803

72 appendix : replication and datasets

Table 7.3: Small GitHub repositories used for bug detection

Name History length Revision
F1 for history limit

500 1000 1500

buggy non buggy buggy non buggy buggy non buggy

flockdb 740 d0e72e8 0.681 0.902 0.545 0.844 0.545 0.844

beanstalkd 816 0fcf38b 0.394 0.667 0.657 0.726 0.657 0.726

octopress 857 5717a50 0.182 0.769 0.459 0.802 0.459 0.802

httpie 1112 fc497da 0.4 0.826 0.602 0.823 0.574 0.814

kestrel 1146 cc280ec 0.583 0.766 0.623 0.762 0.623 0.762

plupload 1181 03f6911 0.222 0.829 0.381 0.835 0.393 0.783

facebook-android-sdk 1234 f808e2ea 0.118 0.918 0.636 0.867 0.612 0.832

chosen 1282 0035be8 0.235 0.843 0.495 0.797 0.495 0.797

mosh 1368 b1da700 0.375 0.803 0.463 0.801 0.647 0.788

gizzard 1392 9b843254 0.667 0.934 0.447 0.851 0.467 0.845

ActionBarSherlock 1480 2c71339e 0.48 0.926 0.514 0.897 0.318 0.831

memcached 1566 1939cf9 0.727 0.786 0.68 0.69 0.717 0.688

RestSharp 1607 a8a9f34 0.647 0.633 0.704 0.523 0.752 0.484

html5-boilerplate 1740 ceb4620 0.453 0.803 0.511 0.734 0.432 0.667

paperclip 1970 6661480 0.279 0.803 0.432 0.742 0.619 0.795

ccv 2005 dbeaced7 0.364 0.687 0.5 0.68 0.537 0.71

Table 7.4: Medium GitHub repositories used for bug detection

Name History length Revision
F1 for history limit

500 1000 1500

buggy non buggy buggy non buggy buggy non buggy

hiphop-php 3084 ae00e6e 0.514 0.897 0.556 0.731 0.653 0.686

clojure 3290 653b8465 0.261 0.904 0.35 0.928 0.321 0.894

scalatra 3353 54edddc7 0.414 0.901 0.427 0.836 0.432 0.814

compass 3536 4de01475 0.24 0.891 0.457 0.885 0.345 0.843

devise 3620 f48b6f16 0.121 0.826 0.255 0.881 0.168 0.844

flask 3762 a3f07829 0.407 0.752 0.623 0.764 0.61 0.769

Slim 3894 a24fac2f 0.609 0.794 0.611 0.781 0.612 0.755

d3 4195 171a607e 0 0.947 0.556 0.871 0.642 0.838

libuv 4423 ae12376d 0.581 0.812 0.578 0.785 0.567 0.725

shiny 4484 89bd7e90 0.368 0.852 0.383 0.751 0.563 0.783

SignalR 4673 61c1a688 0.557 0.806 0.531 0.739 0.576 0.711

SparkleShare 4678 cf446c00 0.44 0.813 0.649 0.86 0.503 0.775

knitr 5758 11ddfc6e 0.16 0.88 0.267 0.941 0.178 0.933

requests 5917 fab1fd10 0.571 0.968 0.333 0.922 0.319 0.874

egit 6111 576ac49ae 0.364 0.821 0.416 0.735 0.523 0.689

jquery 6421 1b74660f 0.702 0.605 0.758 0.504 0.776 0.516

7.2 preliminary studies datasets 73

Table 7.5: Large GitHub repositories used for bug detection

Name History length Revision
F1 for history limit

500 1000 1500

buggy non buggy buggy non buggy buggy non buggy

boto 7198 91ba037e 0.4 0.951 0.204 0.889 0.323 0.866

sbt 7563 f72990123 0.564 0.894 0.522 0.9 0.525 0.906

folly 7644 b2955150 0.261 0.904 0.349 0.878 0.404 0.868

reddit 7956 753b17407 0.296 0.89 0.416 0.861 0.403 0.828

jEdit 8007 0cf98ba05 0.613 0.768 0.488 0.86 0.482 0.802

redis 8387 758b39be 0.489 0.852 0.404 0.83 0.551 0.827

netty 9523 d8b1a2d93f 0.294 0.855 0.464 0.792 0.461 0.722

CodeIgniter 10024 00df649ef 0.286 0.946 0.235 0.888 0.319 0.874

storm 10124 6afaa369 0.391 0.818 0.417 0.75 0.577 0.798

jekyll 10642 edc8f6b70 0.5 0.979 0.091 0.947 0.231 0.927

ServiceStack 10842 a3bd50229 0.444 0.913 0.269 0.891 0.263 0.893

phpunit 12521 4d2e3f801 0.194 0.852 0.421 0.904 0.336 0.856

libgit2 12685 0ec0b2bbd 0.32 0.903 0.361 0.833 0.493 0.837

django-cms 15808 3b5df9569 0.222 0.829 0.357 0.829 0.403 0.794

diaspora 19915 995f3394a 0.1 0.9 0.316 0.928 0.341 0.896

bitcoin 21529 a689c1190 0.4 0.951 0.308 0.925 0.175 0.873

Table 7.6: XL GitHub repositories and Subversion repository used for bug detection

Name History length Revision
F1 for history limit

500 1000 1500

buggy non buggy buggy non buggy buggy non buggy

akka 24045 619f821e8d 0.465 0.854 0.396 0.822 0.455 0.79

zendframework 27058 8cc99f76cc 0.154 0.874 0.296 0.89 0.264 0.868

django 27387 103a6f4307 0.729 0.8 0.544 0.765 0.448 0.652

node 28235 344c5c454d 0.444 0.913 0.361 0.885 0.324 0.857

three.js 30122 04965b15d 0.5 0.944 0.314 0.9 0.442 0.907

httpd 31567 91fd63d927 0.25 0.935 0.375 0.915 0.418 0.896

scala 33843 238a16a058 0.2 0.958 0.375 0.915 0.349 0.891

cakephp 37201 448f30918f 0.294 0.855 0.192 0.82 0.378 0.805

symfony 44619 d7e5dd120b 0.417 0.92 0.302 0.893 0.409 0.892

elasticsearch 48388 72a59d41111 0.111 0.912 0.348 0.915 0.341 0.887

mongo 48496 ac796463d5 0.125 0.924 0.2 0.911 0.348 0.915

subversion 55865 837425 0.326 0.815 0.51 0.832 0.544 0.866

legacy-homebrew 63882 c092d647a 0 0.985 0.5 0.995 0 0.988

rails 74711 4ea7769044 0.286 0.946 0.065 0.921 0.239 0.904

gitlabhq 102122 de2ae315 0 0.964 0 0.916 0.19 0.905

mono 120396 d8040ba8652 0.25 0.813 0.462 0.841 0.403 0.828

B I B L I O G R A P H Y

[1] Miltiadis Allamanis and Charles A. Sutton. “Mining source code repositories at
massive scale using language modeling”. In: Proceedings of the 10th Working Con-
ference on Mining Software Repositories, MSR ’13, San Francisco, CA, USA, May 18-19,
2013. Ed. by Thomas Zimmermann, Massimiliano Di Penta and Sunghun Kim. IEEE
Computer Society, 2013, pp. 207–216. isbn: 978-1-4673-2936-1. doi: 10.1109/MSR.
2013.6624029.

[2] Giuliano Antoniol and Yann-Gaël Guéhéneuc. “Feature Identification: A Novel Ap-
proach and a Case Study”. In: 21st IEEE International Conference on Software Mainten-
ance (ICSM 2005), 25-30 September 2005, Budapest, Hungary. IEEE Computer Society,
2005, pp. 357–366. isbn: 0-7695-2368-4. doi: 10.1109/ICSM.2005.48.

[3] Giuliano Antoniol and Yann-Gaël Guéhéneuc. “Feature Identification: An Epi-
demiological Metaphor”. In: IEEE Transactions on Software Engineering 32.9 (2006),
pp. 627–641. doi: 10.1109/TSE.2006.88.

[4] John Anvik, Lyndon Hiew and Gail C. Murphy. “Who should fix this bug?” In: 28th
International Conference on Software Engineering (ICSE 2006), Shanghai, China, May 20-
28, 2006. Ed. by Leon J. Osterweil, H. Dieter Rombach and Mary Lou Soffa. ACM,
2006, pp. 361–370. isbn: 1-59593-375-1. doi: 10.1145/1134285.1134336.

[5] Erik Arisholm, Lionel C. Briand and Eivind B. Johannessen. “A systematic and com-
prehensive investigation of methods to build and evaluate fault prediction models”.
In: Journal of Systems and Software 83.1 (2010), pp. 2–17. doi: 10.1016/j.jss.2009.
06.055.

[6] Alberto Arteta, Nuria Gómez Blas and Luis Fernando de Mingo López. “Solving
complex problems with a bioinspired model”. In: Engineering Applications of Artificial
Intelligence 24.6 (2011), pp. 919–927. doi: 10.1016/j.engappai.2011.03.007.

[7] B. Ashok et al. “DebugAdvisor: a recommender system for debugging”. In: Pro-
ceedings of the 7th joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2009,
Amsterdam, The Netherlands, August 24-28, 2009. Ed. by Hans van Vliet and Valérie
Issarny. ACM, 2009, pp. 373–382. isbn: 978-1-60558-001-2. doi: 10.1145/1595696.
1595766.

[8] Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar T. Devanbu and
Abraham Bernstein. “The missing links: bugs and bug-fix commits”. In: Proceed-
ings of the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010. 2010, pp. 97–106. doi:
10.1145/1882291.1882308.

[9] Sushil Krishna Bajracharya, Joel Ossher and Cristina Videira Lopes. “Leveraging
usage similarity for effective retrieval of examples in code repositories”. In: Pro-
ceedings of the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010. 2010, pp. 157–166. doi:
10.1145/1882291.1882316.

75

https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1109/ICSM.2005.48
https://doi.org/10.1109/TSE.2006.88
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1016/j.jss.2009.06.055
https://doi.org/10.1016/j.jss.2009.06.055
https://doi.org/10.1016/j.engappai.2011.03.007
https://doi.org/10.1145/1595696.1595766
https://doi.org/10.1145/1595696.1595766
https://doi.org/10.1145/1882291.1882308
https://doi.org/10.1145/1882291.1882316

76 bibliography

[10] Vipin Balachandran. “Reducing human effort and improving quality in peer code
reviews using automatic static analysis and reviewer recommendation”. In: 35th
International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA,
May 18-26, 2013. Ed. by David Notkin, Betty H. C. Cheng and Klaus Pohl. IEEE
Computer Society, 2013, pp. 931–940. isbn: 978-1-4673-3076-3.

[11] Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin and Daniel
Tarlow. “DeepCoder: Learning to Write Programs”. In: 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[12] Andrew Begel, Yit Phang Khoo and Thomas Zimmermann. “Codebook: discovering
and exploiting relationships in software repositories”. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010. Ed. by Jeff Kramer, Judith Bishop, Premkumar T.
Devanbu and Sebastián Uchitel. ACM, 2010, pp. 125–134. isbn: 978-1-60558-719-6.
doi: 10.1145/1806799.1806821.

[13] Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu and Sai Charan Koduru.
“An Empirical Analysis of Bug Reports and Bug Fixing in Open Source Android
Apps”. In: 17th European Conference on Software Maintenance and Reengineering, CSMR
2013, Genova, Italy, March 5-8, 2013. Ed. by Anthony Cleve, Filippo Ricca and Maura
Cerioli. IEEE Computer Society, 2013, pp. 133–143. isbn: 978-1-4673-5833-0. doi:
10.1109/CSMR.2013.23.

[14] Christian Bird et al. “Fair and balanced?: bias in bug-fix datasets”. In: Proceedings of
the 7th joint meeting of the European Software Engineering Conference and the ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, 2009, Amster-
dam, The Netherlands, August 24-28, 2009. Ed. by Hans van Vliet and Valérie Issarny.
ACM, 2009, pp. 121–130. isbn: 978-1-60558-001-2. doi: 10.1145/1595696.1595716.

[15] Christian Bird et al. “The promises and perils of mining git”. In: Proceedings of
the 6th International Working Conference on Mining Software Repositories, MSR 2009
(Co-located with ICSE), Vancouver, BC, Canada, May 16-17, 2009, Proceedings. Ed. by
Michael W. Godfrey and Jim Whitehead. IEEE Computer Society, 2009, pp. 1–10.
isbn: 978-1-4244-3493-0. doi: 10.1109/MSR.2009.5069475.

[16] David B. Bisant and James R. Lyle. “A Two-Person Inspection Method to Improve
Programming Productivity”. In: IEEE Transactions on Software Engineering 15.10

(1989), pp. 1294–1304. doi: 10.1109/TSE.1989.559782.

[17] David M. Blei, Andrew Y. Ng and Michael I. Jordan. “Latent Dirichlet Allocation”.
In: Journal of Machine Learning Research 3 (2003), pp. 993–1022.

[18] Silvia Breu, Rahul Premraj, Jonathan Sillito and Thomas Zimmermann. “Informa-
tion needs in bug reports: improving cooperation between developers and users”.
In: Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work,
CSCW 2010, Savannah, Georgia, USA, February 6-10, 2010. Ed. by Kori Inkpen Quinn,
Carl Gutwin and John C. Tang. ACM, 2010, pp. 301–310. isbn: 978-1-60558-795-0.
doi: 10.1145/1718918.1718973.

[19] Cagatay Catal and Banu Diri. “A systematic review of software fault prediction
studies”. In: Expert Systems with Applications 36.4 (2009), pp. 7346–7354. doi: 10.
1016/j.eswa.2008.10.027.

https://doi.org/10.1145/1806799.1806821
https://doi.org/10.1109/CSMR.2013.23
https://doi.org/10.1145/1595696.1595716
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1109/TSE.1989.559782
https://doi.org/10.1145/1718918.1718973
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027

bibliography 77

[20] Laurent Charlin and Richard Zemel. “The Toronto paper matching system: an auto-
mated paper-reviewer assignment system”. In: ICML Workshop on Peer Reviewing
and Publishing Models. 2013.

[21] Kai Cheng, Limin Xiang, Mizuho Iwaihara, Haiyan Xu and Mukesh K. Mohania.
“Time-Decaying Bloom Filters for Data Streams with Skewed Distributions”. In:
15th International Workshop on Research Issues in Data Engineering (RIDE-SDMA 2005),
Stream Data Mining and Applications, 3-7 April 2005, Tokyo, Japan. IEEE Computer
Society, 2005, pp. 63–69. isbn: 0-7695-2390-0. doi: 10.1109/RIDE.2005.15.

[22] Shyam R. Chidamber and Chris F. Kemerer. “A Metrics Suite for Object Oriented
Design”. In: IEEE Transactions on Software Engineering 20.6 (1994), pp. 476–493. doi:
10.1109/32.295895.

[23] Don Conry, Yehuda Koren and Naren Ramakrishnan. “Recommender systems
for the conference paper assignment problem”. In: Proceedings of the 2009 ACM
Conference on Recommender Systems, RecSys 2009, New York, NY, USA, October 23-25,
2009. Ed. by Lawrence D. Bergman, Alexander Tuzhilin, Robin D. Burke, Alexander
Felfernig and Lars Schmidt-Thieme. ACM, 2009, pp. 357–360. isbn: 978-1-60558-
435-5. doi: 10.1145/1639714.1639787.

[24] Cesar Couto et al. “BugMaps-Granger: a tool for visualizing and predicting bugs
using Granger causality tests”. In: Journal of Software Engineering Research and Devel-
opment 2 (2014), p. 1. doi: 10.1186/2195-1721-2-1.

[25] Marco D’Ambros, Michele Lanza and Romain Robbes. “An extensive comparison of
bug prediction approaches”. In: Proceedings of the 7th International Working Conference
on Mining Software Repositories, MSR 2010 (Co-located with ICSE), Cape Town, South
Africa, May 2-3, 2010, Proceedings. Ed. by Jim Whitehead and Thomas Zimmermann.
IEEE Computer Society, 2010, pp. 31–41. isbn: 978-1-4244-6803-4. doi: 10.1109/
MSR.2010.5463279.

[26] Valentin Dallmeier and Thomas Zimmermann. “Extraction of Bug Localization
Benchmarks from History”. In: Proceedings of the Twenty-second IEEE/ACM Interna-
tional Conference on Automated Software Engineering. ASE ’07. Atlanta, Georgia, USA:
ACM, 2007, pp. 433–436. isbn: 978-1-59593-882-4. doi: 10.1145/1321631.1321702.

[27] Van Dang. The Lemur Project - Wiki - RankLib. https://sourceforge.net/p/lemur/
wiki/RankLib/. The Lemur Project, [Online]. 2012. (Visited on 24/03/2020).

[28] Tezcan Dilshener, Michel Wermelinger and Yijun Yu. “Locating bugs without look-
ing back”. In: Proceedings of the 13th International Conference on Mining Software Repos-
itories, MSR 2016, Austin, TX, USA, May 14-22, 2016. Ed. by Miryung Kim, Romain
Robbes and Christian Bird. ACM, 2016, pp. 286–290. isbn: 978-1-4503-4186-8. doi:
10.1145/2901739.2901775.

[29] Janet Drake, Vahid Mashayekhi, John Riedl and Wei-Tek Tsai. “‘A Distributed Col-
laborative Software Inspection Tool: Design, Prototype, and Early Trial”. In: Proceed-
ings of the 30th Aerospace Sciences Conference. 1991.

[30] Susan T. Dumais and Jakob Nielsen. “Automating the Assignment of Submitted
Manuscripts to Reviewers”. In: Proceedings of the 15th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. Copenhagen,
Denmark, June 21-24, 1992. Ed. by Nicholas J. Belkin, Peter Ingwersen and Annelise

https://doi.org/10.1109/RIDE.2005.15
https://doi.org/10.1109/32.295895
https://doi.org/10.1145/1639714.1639787
https://doi.org/10.1186/2195-1721-2-1
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1145/1321631.1321702
https://sourceforge.net/p/lemur/wiki/RankLib/
https://sourceforge.net/p/lemur/wiki/RankLib/
https://doi.org/10.1145/2901739.2901775

78 bibliography

Mark Pejtersen. ACM, 1992, pp. 233–244. isbn: 0-89791-523-2. doi: 10.1145/133160.
133205.

[31] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron and Audris Mockus.
“Does Code Decay? Assessing the Evidence from Change Management Data”. In:
IEEE Transactions on Software Engineering 27.1 (2001), pp. 1–12. doi: 10.1109/32.
895984.

[32] Michael E. Fagan. “Design and Code Inspections to Reduce Errors in Program
Development”. In: IBM Systems Journal 15.3 (1976), pp. 182–211. doi: 10.1147/sj.
153.0182.

[33] Mikolaj Fejzer, Jakub Narebski, Piotr Przymus and Krzysztof Stencel. “Tracking
Buggy Files: New Efficient Adaptive Bug Localization Method”. 2020. Manuscript.

[34] Mikolaj Fejzer, Piotr Przymus and Krzysztof Stencel. “Profile based recommend-
ation of code reviewers”. In: Journal of Intelligent Information Systems 50.3 (2018),
pp. 597–619. doi: 10.1007/s10844-017-0484-1.

[35] Mikolaj Fejzer, Michal Wojtyna, Marta Burzanska, Piotr Wisniewski and Krzysztof
Stencel. “Open Source Is a Continual Bugfixing by a Few”. In: Advances in Databases
and Information Systems - 18th East European Conference, ADBIS 2014, Ohrid, Macedonia,
September 7-10, 2014. Proceedings. Ed. by Yannis Manolopoulos, Goce Trajcevski and
Margita Kon-Popovska. Vol. 8716. Lecture Notes in Computer Science. Springer,
2014, pp. 153–162. isbn: 978-3-319-10932-9. doi: 10.1007/978-3-319-10933-6_12.

[36] Mikolaj Fejzer, Michal Wojtyna, Marta Burzanska, Piotr Wisniewski and Krzysztof
Stencel. “Supporting Code Review by Automatic Detection of Potentially Buggy
Changes”. In: Beyond Databases, Architectures and Structures - 11th International Con-
ference, BDAS 2015, Ustroń, Poland, May 26-29, 2015, Proceedings. Ed. by Stanislaw
Kozielski, Dariusz Mrozek, Pawel Kasprowski, Bozena Malysiak-Mrozek and Daniel
Kostrzewa. Vol. 521. Communications in Computer and Information Science. Springer,
2015, pp. 473–482. isbn: 978-3-319-18421-0. doi: 10.1007/978-3-319-18422-7_42.

[37] Jaroslav M. Fowkes et al. “Autofolding for Source Code Summarization”. In: IEEE
Transactions on Software Engineering 43.12 (2017), pp. 1095–1109. doi: 10.1109/TSE.
2017.2664836.

[38] Yoav Freund and Robert E. Schapire. “A decision-theoretic generalization of on-line
learning and an application to boosting”. In: Computational Learning Theory, Second
European Conference, EuroCOLT ’95, Barcelona, Spain, March 13-15, 1995, Proceedings.
Ed. by Paul M. B. Vitányi. Vol. 904. Lecture Notes in Computer Science. Springer,
1995, pp. 23–37. isbn: 3-540-59119-2. doi: 10.1007/3-540-59119-2_166.

[39] Simson Garfinkel. History’s worst software bugs. https://www.wired.com/2005/11/

historys-worst-software-bugs/. Accessed: 2019-10-26. 2005.

[40] Pierre Geurts, Damien Ernst and Louis Wehenkel. “Extremely randomized trees”.
In: Machine Learning 63.1 (2006), pp. 3–42. doi: 10.1007/s10994-006-6226-1.

[41] Georgios Gousios. “The GHTorent dataset and tool suite”. In: Proceedings of the
10th Working Conference on Mining Software Repositories, MSR ’13, San Francisco, CA,
USA, May 18-19, 2013. Ed. by Thomas Zimmermann, Massimiliano Di Penta and
Sunghun Kim. IEEE Computer Society, 2013, pp. 233–236. isbn: 978-1-4673-2936-1.
doi: 10.1109/MSR.2013.6624034.

https://doi.org/10.1145/133160.133205
https://doi.org/10.1145/133160.133205
https://doi.org/10.1109/32.895984
https://doi.org/10.1109/32.895984
https://doi.org/10.1147/sj.153.0182
https://doi.org/10.1147/sj.153.0182
https://doi.org/10.1007/s10844-017-0484-1
https://doi.org/10.1007/978-3-319-10933-6_12
https://doi.org/10.1007/978-3-319-18422-7_42
https://doi.org/10.1109/TSE.2017.2664836
https://doi.org/10.1109/TSE.2017.2664836
https://doi.org/10.1007/3-540-59119-2_166
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://www.wired.com/2005/11/historys-worst-software-bugs/
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1109/MSR.2013.6624034

bibliography 79

[42] Isabelle Guyon and André Elisseeff. “An Introduction to Variable and Feature Se-
lection”. In: Journal of Machine Learning Research 3 (2003), pp. 1157–1182.

[43] Aric Hagberg, Pieter Swart and Daniel S Chult. Exploring network structure, dynamics,
and function using NetworkX. Tech. rep. Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

[44] Mark A. Hall et al. “The WEKA data mining software: an update”. In: SIGKDD
Explorations 11.1 (2009). https://www.cs.waikato.ac.nz/ml/weka/, pp. 10–18. doi:
10.1145/1656274.1656278.

[45] Kazuki Hamasaki et al. “Who does what during a code review? datasets of OSS
peer review repositories”. In: Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013. Ed. by
Thomas Zimmermann, Massimiliano Di Penta and Sunghun Kim. IEEE Computer
Society, 2013, pp. 49–52. isbn: 978-1-4673-2936-1. doi: 10.1109/MSR.2013.6624003.

[46] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel and Volker Gruhn. “Auto-
matically recommending code reviewers based on their expertise: an empirical com-
parison”. In: Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, Singapore, September 3-7, 2016. Ed. by David Lo, Sven
Apel and Sarfraz Khurshid. ACM, 2016, pp. 99–110. isbn: 978-1-4503-3845-5. doi:
10.1145/2970276.2970306.

[47] Ahmed E Hassan. “The road ahead for mining software repositories”. In: Frontiers
of Software Maintenance, 2008. FoSM 2008. IEEE. 2008, pp. 48–57.

[48] Ahmed E. Hassan and Tao Xie. “Software intelligence: the future of mining software
engineering data”. In: Proceedings of the Workshop on Future of Software Engineering
Research, FoSER 2010, at the 18th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010. Ed. by
Gruia-Catalin Roman and Kevin J. Sullivan. ACM, 2010, pp. 161–166. isbn: 978-1-
4503-0427-6. doi: 10.1145/1882362.1882397.

[49] Trevor Hastie, Saharon Rosset, Ji Zhu and Hui Zou. “Multi-class adaboost”. In:
Statistics and its Interface 2.3 (2009), pp. 349–360.

[50] Trevor Hastie, Robert Tibshirani and Jerome H. Friedman. The elements of statistical
learning: data mining, inference, and prediction, 2nd Edition. Springer series in statistics.
Springer, 2009. isbn: 9780387848570.

[51] Abram Hindle, Neil A. Ernst, Michael W. Godfrey and John Mylopoulos. “Auto-
mated topic naming to support cross-project analysis of software maintenance activ-
ities”. In: Proceedings of the 8th International Working Conference on Mining Software
Repositories, MSR 2011 (Co-located with ICSE), Waikiki, Honolulu, HI, USA, May 21-28,
2011, Proceedings. Ed. by Arie van Deursen, Tao Xie and Thomas Zimmermann.
ACM, 2011, pp. 163–172. isbn: 978-1-4503-0574-7. doi: 10.1145/1985441.1985466.

[52] Heike Hofmann, Hadley Wickham and Karen Kafadar. “Letter-Value Plots: Box-
plots for Large Data”. In: Journal of Computational and Graphical Statistics 26.3 (2017),
pp. 469–477. doi: 10.1080/10618600.2017.1305277.

https://www.cs.waikato.ac.nz/ml/weka/
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1109/MSR.2013.6624003
https://doi.org/10.1145/2970276.2970306
https://doi.org/10.1145/1882362.1882397
https://doi.org/10.1145/1985441.1985466
https://doi.org/10.1080/10618600.2017.1305277

80 bibliography

[53] Thomas Hofmann. “Probabilistic Latent Semantic Indexing”. In: SIGIR ’99: Proceed-
ings of the 22nd Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, August 15-19, 1999, Berkeley, CA, USA. Ed. by Fredric C.
Gey, Marti A. Hearst and Richard M. Tong. ACM, 1999, pp. 50–57. isbn: 1-58113-
096-1. doi: 10.1145/312624.312649.

[54] George Hripcsak and Adam S. Rothschild. “Technical Brief: Agreement, the F-
Measure, and Reliability in Information Retrieval”. In: Journal of the American Medical
Informatics Association 12.3 (2005), pp. 296–298. doi: 10.1197/jamia.M1733.

[55] Xuan Huo, Ming Li and Zhi-Hua Zhou. “Learning Unified Features from Natural
and Programming Languages for Locating Buggy Source Code”. In: Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016. Ed. by Subbarao Kambhampati. IJCAI/AAAI Press,
2016, pp. 1606–1612. isbn: 978-1-57735-770-4.

[56] Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel and Foutse Khomh. “Mining
the relationship between anti-patterns dependencies and fault-proneness”. In: 20th
Working Conference on Reverse Engineering, WCRE 2013, Koblenz, Germany, October 14-
17, 2013. Ed. by Ralf Lämmel, Rocco Oliveto and Romain Robbes. IEEE Computer
Society, 2013, pp. 351–360. isbn: 978-1-4799-2931-3. doi: 10.1109/WCRE.2013.
6671310.

[57] Gaeul Jeong, Sunghun Kim, Thomas Zimmermann and Kwangkeun Yi. “Improving
code review by predicting reviewers and acceptance of patches”. In: Research on
Software Analysis for Error-free Computing Center Tech-Memo (ROSAEC MEMO 2009-
006) (2009), pp. 1–18.

[58] Yue Jia and Mark Harman. “Constructing Subtle Faults Using Higher Order Muta-
tion Testing”. In: Eighth IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM 2008), 28-29 September 2008, Beijing, China. IEEE Computer
Society, 2008, pp. 249–258. isbn: 978-0-7695-3353-7. doi: 10.1109/SCAM.2008.36.

[59] Thorsten Joachims. “Text Categorization with Support Vector Machines: Learning
with Many Relevant Features”. In: Machine Learning: ECML-98, 10th European Con-
ference on Machine Learning, Chemnitz, Germany, April 21-23, 1998, Proceedings. Ed. by
Claire Nedellec and Céline Rouveirol. Vol. 1398. Lecture Notes in Computer Science.
Springer, 1998, pp. 137–142. isbn: 3-540-64417-2. doi: 10.1007/BFb0026683.

[60] Thorsten Joachims. “Training linear SVMs in linear time”. In: Proceedings of the
Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Philadelphia, PA, USA, August 20-23, 2006. Ed. by Tina Eliassi-Rad, Lyle H. Ungar,
Mark Craven and Dimitrios Gunopulos. ACM, 2006, pp. 217–226. isbn: 1-59593-
339-5. doi: 10.1145/1150402.1150429.

[61] James A. Jones and Mary Jean Harrold. “Empirical evaluation of the tarantula
automatic fault-localization technique”. In: 20th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2005), November 7-11, 2005, Long Beach, CA,
USA. Ed. by David F. Redmiles, Thomas Ellman and Andrea Zisman. ACM, 2005,
pp. 273–282. isbn: 1-58113-993-4. doi: 10.1145/1101908.1101949.

https://doi.org/10.1145/312624.312649
https://doi.org/10.1197/jamia.M1733
https://doi.org/10.1109/WCRE.2013.6671310
https://doi.org/10.1109/WCRE.2013.6671310
https://doi.org/10.1109/SCAM.2008.36
https://doi.org/10.1007/BFb0026683
https://doi.org/10.1145/1150402.1150429
https://doi.org/10.1145/1101908.1101949

bibliography 81

[62] Huzefa H. Kagdi, Michael L. Collard and Jonathan I. Maletic. “A survey and tax-
onomy of approaches for mining software repositories in the context of software
evolution”. In: Journal of Software Maintenance 19.2 (2007), pp. 77–131. doi: 10.1002/
smr.344.

[63] Huzefa H. Kagdi, Jonathan I. Maletic and Bonita Sharif. “Mining Software Repos-
itories for Traceability Links”. In: 15th International Conference on Program Compre-
hension (ICPC 2007), June 26-29, 2007, Banff, Alberta, Canada. IEEE Computer Society,
2007, pp. 145–154. isbn: 0-7695-2860-0. doi: 10.1109/ICPC.2007.28.

[64] Eirini Kalliamvakou et al. “The promises and perils of mining GitHub”. In: 11th
Working Conference on Mining Software Repositories, MSR 2014, Proceedings, May 31 -
June 1, 2014, Hyderabad, India. Ed. by Premkumar T. Devanbu, Sung Kim and Martin
Pinzger. ACM, 2014, pp. 92–101. isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.
2597074.

[65] Dongsun Kim, Jaechang Nam, Jaewoo Song and Sunghun Kim. “Automatic patch
generation learned from human-written patches”. In: 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013. Ed. by
David Notkin, Betty H. C. Cheng and Klaus Pohl. IEEE Computer Society, 2013,
pp. 802–811. isbn: 978-1-4673-3076-3. doi: 10.1109/ICSE.2013.6606626.

[66] Dongsun Kim, Yida Tao, Sunghun Kim and Andreas Zeller. “Where Should We Fix
This Bug? A Two-Phase Recommendation Model”. In: IEEE Transactions on Software
Engineering 39.11 (2013), pp. 1597–1610. doi: 10.1109/TSE.2013.24.

[67] Sunghun Kim, E. James Whitehead Jr. and Yi Zhang. “Classifying Software Changes:
Clean or Buggy?” In: IEEE Transactions on Software Engineering 34.2 (2008), pp. 181–
196. doi: 10.1109/TSE.2007.70773.

[68] Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr. and Andreas Zeller.
“Predicting Faults from Cached History”. In: 29th International Conference on Software
Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007. IEEE Computer
Society, 2007, pp. 489–498. isbn: 0-7695-2828-7. doi: 10.1109/ICSE.2007.66.

[69] Sunghun Kim, Thomas Zimmermann, Kai Pan and E. James Whitehead Jr. “Auto-
matic Identification of Bug-Introducing Changes”. In: 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE 2006), 18-22 September 2006, Tokyo,
Japan. IEEE Computer Society, 2006, pp. 81–90. isbn: 0-7695-2579-2. doi: 10.1109/
ASE.2006.23.

[70] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Al-
gorithms, 2nd Edition. Addison-Wesley, 1981. isbn: 0-201-03822-6.

[71] Pavneet Singh Kochhar, Tien-Duy B. Le and David Lo. “It’s not a bug, it’s a feature:
does misclassification affect bug localization?” In: 11th Working Conference on Mining
Software Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014, Hyderabad, India.
Ed. by Premkumar T. Devanbu, Sung Kim and Martin Pinzger. ACM, 2014, pp. 296–
299. isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.2597105.

[72] Pavneet Singh Kochhar, Yuan Tian and David Lo. “Potential biases in bug localiza-
tion: do they matter?” In: ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, Vasteras, Sweden, 2014. Ed. by Ivica Crnkovic, Marsha Chechik
and Paul Grünbacher. ACM, 2014. doi: 10.1145/2642937.2642997.

https://doi.org/10.1002/smr.344
https://doi.org/10.1002/smr.344
https://doi.org/10.1109/ICPC.2007.28
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1109/TSE.2013.24
https://doi.org/10.1109/TSE.2007.70773
https://doi.org/10.1109/ICSE.2007.66
https://doi.org/10.1109/ASE.2006.23
https://doi.org/10.1109/ASE.2006.23
https://doi.org/10.1145/2597073.2597105
https://doi.org/10.1145/2642937.2642997

82 bibliography

[73] William H Kruskal and W Allen Wallis. “Use of ranks in one-criterion variance
analysis”. In: Journal of the American statistical Association 47.260 (1952), pp. 583–621.

[74] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen and Tien N. Nguyen. “Com-
bining Deep Learning with Information Retrieval to Localize Buggy Files for Bug
Reports (N)”. In: 30th IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. Ed. by Myra B. Cohen,
Lars Grunske and Michael Whalen. IEEE Computer Society, 2015, pp. 476–481. isbn:
978-1-5090-0025-8. doi: 10.1109/ASE.2015.73.

[75] David Landsberg, Hana Chockler and Daniel Kroening. “Probabilistic Fault Local-
isation”. In: Hardware and Software: Verification and Testing - 12th International Haifa
Verification Conference, HVC 2016, Haifa, Israel, November 14-17, 2016, Proceedings. Ed.
by Roderick Bloem and Eli Arbel. Vol. 10028. Lecture Notes in Computer Science.
2016, pp. 65–81. isbn: 978-3-319-49051-9. doi: 10.1007/978-3-319-49052-6_5.

[76] Alina Lazar, Sarah Ritchey and Bonita Sharif. “Improving the accuracy of duplicate
bug report detection using textual similarity measures”. In: 11th Working Conference
on Mining Software Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014, Hydera-
bad, India. Ed. by Premkumar T. Devanbu, Sung Kim and Martin Pinzger. ACM,
2014, pp. 308–311. isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.2597088.

[77] Tien-Duy B. Le, David Lo, Claire Le Goues and Lars Grunske. “A learning-to-
rank based fault localization approach using likely invariants”. In: Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken,
Germany, July 18-20, 2016. Ed. by Andreas Zeller and Abhik Roychoudhury. ACM,
2016, pp. 177–188. isbn: 978-1-4503-4390-9. doi: 10.1145/2931037.2931049.

[78] Jaekwon Lee, Dongsun Kim, Tegawendé F. Bissyandé, Woosung Jung and Yves Le
Traon. “Bench4BL: reproducibility study on the performance of IR-based bug loc-
alization”. In: Proceedings of the 27th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018.
Ed. by Frank Tip and Eric Bodden. ACM, 2018, pp. 61–72. doi: 10.1145/3213846.
3213856.

[79] John Boaz Lee, Akinori Ihara, Akito Monden and Ken-ichi Matsumoto. “Patch Re-
viewer Recommendation in OSS Projects”. In: 20th Asia-Pacific Software Engineering
Conference, APSEC 2013, Ratchathewi, Bangkok, Thailand, December 2-5, 2013 - Volume
2. Ed. by Pornsiri Muenchaisri and Gregg Rothermel. IEEE Computer Society, 2013,
pp. 1–6. isbn: 978-1-4799-2143-0. doi: 10.1109/APSEC.2013.103.

[80] Taek Lee, Jaechang Nam, DongGyun Han, Sunghun Kim and Hoh Peter In. “Mi-
cro interaction metrics for defect prediction”. In: SIGSOFT/FSE’11 19th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11:
13th European Software Engineering Conference (ESEC-13), Szeged, Hungary, September
5-9, 2011. Ed. by Tibor Gyimóthy and Andreas Zeller. ACM, 2011, pp. 311–321.
isbn: 978-1-4503-0443-6. doi: 10.1145/2025113.2025156.

[81] Meir M. Lehman. “On understanding laws, evolution, and conservation in the large-
program life cycle”. In: Journal of Systems and Software 1 (1980), pp. 213–221. doi:
10.1016/0164-1212(79)90022-0.

[82] Howard Levene. “Contributions to probability and statistics”. In: Essays in honor of
Harold Hotelling (1960), pp. 278–292.

https://doi.org/10.1109/ASE.2015.73
https://doi.org/10.1007/978-3-319-49052-6_5
https://doi.org/10.1145/2597073.2597088
https://doi.org/10.1145/2931037.2931049
https://doi.org/10.1145/3213846.3213856
https://doi.org/10.1145/3213846.3213856
https://doi.org/10.1109/APSEC.2013.103
https://doi.org/10.1145/2025113.2025156
https://doi.org/10.1016/0164-1212(79)90022-0

bibliography 83

[83] Howard Levene. “Robust tests for equality of variances1”. In: Contributions to prob-
ability and statistics: Essays in honor of Harold Hotelling 2 (1960), pp. 278–292.

[84] Chris Lewis et al. “Does bug prediction support human developers? findings from a
google case study”. In: 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013. Ed. by David Notkin, Betty H. C. Cheng
and Klaus Pohl. IEEE Computer Society, 2013, pp. 372–381. isbn: 978-1-4673-3076-3.
doi: 10.1109/ICSE.2013.6606583.

[85] Zhixing Li, Gang Yin, Yue Yu, Tao Wang and Huaimin Wang. “Detecting Duplicate
Pull-requests in GitHub”. In: Proceedings of the 9th Asia-Pacific Symposium on Inter-
netware, Internetware 2017, Shanghai, China, September 23 - 23, 2017. Ed. by Hong Mei,
Jian Lyu, Zhi Jin and Wenyun Zhao. ACM, 2017, 20:1–20:6. isbn: 978-1-4503-5313-7.
doi: 10.1145/3131704.3131725.

[86] Dekang Lin. “An Information-Theoretic Definition of Similarity”. In: Proceedings
of the Fifteenth International Conference on Machine Learning (ICML 1998), Madison,
Wisconsin, USA, July 24-27, 1998. Ed. by Jude W. Shavlik. Morgan Kaufmann, 1998,
pp. 296–304. isbn: 1-55860-556-8.

[87] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han and Samuel P. Midkiff. “SOBER: stat-
istical model-based bug localization”. In: Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005. Ed.
by Michel Wermelinger and Harald C. Gall. ACM, 2005, pp. 286–295. isbn: 1-59593-
014-0. doi: 10.1145/1081706.1081753.

[88] Tie-Yan Liu. “Learning to Rank for Information Retrieval”. In: Foundations and
Trends in Information Retrieval 3.3 (2009), pp. 225–331. doi: 10.1561/1500000016.

[89] Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer, 2011. isbn: 978-3-
642-14266-6. doi: 10.1007/978-3-642-14267-3.

[90] Xiang Liu, Torsten Suel and Nasir D. Memon. “A robust model for paper reviewer
assignment”. In: Eighth ACM Conference on Recommender Systems, RecSys ’14, Foster
City, Silicon Valley, CA, USA - October 06 - 10, 2014. Ed. by Alfred Kobsa, Michelle X.
Zhou, Martin Ester and Yehuda Koren. ACM, 2014, pp. 25–32. isbn: 978-1-4503-
2668-1. doi: 10.1145/2645710.2645749.

[91] V. Benjamin Livshits and Thomas Zimmermann. “DynaMine: finding common error
patterns by mining software revision histories”. In: Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9,
2005. Ed. by Michel Wermelinger and Harald C. Gall. ACM, 2005, pp. 296–305.
isbn: 1-59593-014-0. doi: 10.1145/1081706.1081754.

[92] Edward Loper and Steven Bird. “NLTK: the natural language toolkit”. In: arXiv
preprint cs/0205028 (2002). https://www.nltk.org/.

[93] Andrian Marcus, Andrey Sergeyev, Václav Rajlich and Jonathan I. Maletic. “An
Information Retrieval Approach to Concept Location in Source Code”. In: 11th
Working Conference on Reverse Engineering, WCRE 2004, Delft, The Netherlands, Novem-
ber 8-12, 2004. IEEE Computer Society, 2004, pp. 214–223. isbn: 0-7695-2243-2. doi:
10.1109/WCRE.2004.10.

https://doi.org/10.1109/ICSE.2013.6606583
https://doi.org/10.1145/3131704.3131725
https://doi.org/10.1145/1081706.1081753
https://doi.org/10.1561/1500000016
https://doi.org/10.1007/978-3-642-14267-3
https://doi.org/10.1145/2645710.2645749
https://doi.org/10.1145/1081706.1081754
https://www.nltk.org/
https://doi.org/10.1109/WCRE.2004.10

84 bibliography

[94] Thomas J. McCabe. “A Complexity Measure”. In: IEEE Transactions on Software
Engineering 2.4 (1976), pp. 308–320. doi: 10.1109/TSE.1976.233837.

[95] Andrew Kachites McCallum. “MALLET: A Machine Learning for Language Toolkit”.
http://mallet.cs.umass.edu. 2002.

[96] Shane McIntosh, Yasutaka Kamei, Bram Adams and Ahmed E. Hassan. “The impact
of code review coverage and code review participation on software quality: a case
study of the qt, VTK, and ITK projects”. In: 11th Working Conference on Mining
Software Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014, Hyderabad, India.
Ed. by Premkumar T. Devanbu, Sung Kim and Martin Pinzger. ACM, 2014, pp. 192–
201. isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.2597076.

[97] Wes McKinney. “pandas: a foundational Python library for data analysis and stat-
istics”. In: Python for High Performance and Scientific Computing 14 (2011). https:
//pandas.pydata.org/.

[98] Klaus Meffert. The JGAP library. https://sourceforge.net/projects/jgap/.
[Online]. 2015. (Visited on 24/03/2020).

[99] Tim Menzies, Jeremy Greenwald and Art Frank. “Data Mining Static Code Attrib-
utes to Learn Defect Predictors”. In: IEEE Transactions on Software Engineering 33.1
(2007), pp. 2–13. doi: 10.1109/TSE.2007.256941.

[100] Chris Mills, Jevgenija Pantiuchina, Esteban Parra, Gabriele Bavota and Sonia Haiduc.
“Are Bug Reports Enough for Text Retrieval-Based Bug Localization?” In: 2018 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2018, Madrid,
Spain, 2018. IEEE Computer Society, 2018. doi: 10.1109/ICSME.2018.00046.

[101] Audris Mockus, Roy T. Fielding and James D. Herbsleb. “Two case studies of open
source software development: Apache and Mozilla”. In: ACM Transactions on Soft-
ware Engineering and Methodology 11.3 (2002), pp. 309–346. doi: 10.1145/567793.
567795.

[102] Adriaan Moors, Frank Piessens and Martin Odersky. “Parser combinators in Scala”.
In: CW Reports (2008). https://lirias.kuleuven.be/retrieve/13262.

[103] Laura Moreno et al. “Query-based configuration of text retrieval solutions for soft-
ware engineering tasks”. In: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, 2015. Ed. by Elisabetta Di
Nitto, Mark Harman and Patrick Heymans. ACM, 2015. doi: 10.1145/2786805.
2786859.

[104] Raimund Moser, Witold Pedrycz and Giancarlo Succi. “A comparative analysis of
the efficiency of change metrics and static code attributes for defect prediction”. In:
30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008. Ed. by Wilhelm Schäfer, Matthew B. Dwyer and Volker Gruhn.
ACM, 2008, pp. 181–190. isbn: 978-1-60558-079-1. doi: 10.1145/1368088.1368114.

[105] Emerson R. Murphy-Hill, Thomas Zimmermann, Christian Bird and Nachiappan
Nagappan. “The design of bug fixes”. In: 35th International Conference on Software
Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013. Ed. by David Notkin,
Betty H. C. Cheng and Klaus Pohl. IEEE Computer Society, 2013, pp. 332–341. isbn:
978-1-4673-3076-3. doi: 10.1109/ICSE.2013.6606579.

https://doi.org/10.1109/TSE.1976.233837
http://mallet.cs.umass.edu
https://doi.org/10.1145/2597073.2597076
https://pandas.pydata.org/
https://pandas.pydata.org/
https://sourceforge.net/projects/jgap/
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1145/567793.567795
https://doi.org/10.1145/567793.567795
https://lirias.kuleuven.be/retrieve/13262
https://doi.org/10.1145/2786805.2786859
https://doi.org/10.1145/2786805.2786859
https://doi.org/10.1145/1368088.1368114
https://doi.org/10.1109/ICSE.2013.6606579

bibliography 85

[106] Nachiappan Nagappan, Andreas Zeller, Thomas Zimmermann, Kim Herzig and
Brendan Murphy. “Change Bursts as Defect Predictors”. In: IEEE 21st International
Symposium on Software Reliability Engineering, ISSRE 2010, San Jose, CA, USA, 1-4
November 2010. IEEE Computer Society, 2010, pp. 309–318. isbn: 978-0-7695-4255-3.
doi: 10.1109/ISSRE.2010.25.

[107] Maliha S. Nash. “Handbook of Parametric and Nonparametric Statistical Proced-
ures”. In: Technometrics 43.3 (2001), p. 374. doi: 10.1198/tech.2001.s629.

[108] Stacy D. Nelson and Johann Schumann. “What Makes a Code Review Trustworthy?”
In: 37th Hawaii International Conference on System Sciences (HICSS-37 2004), CD-ROM
/ Abstracts Proceedings, 5-8 January 2004, Big Island, HI, USA. IEEE Computer Society,
2004. isbn: 0-7695-2056-1. doi: 10.1109/HICSS.2004.1265711.

[109] Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar M. Al-Kofahi, Hung Viet Nguyen
and Tien N. Nguyen. “A topic-based approach for narrowing the search space
of buggy files from a bug report”. In: 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011.
Ed. by Perry Alexander, Corina S. Pasareanu and John G. Hosking. IEEE Computer
Society, 2011, pp. 263–272. isbn: 978-1-4577-1638-6. doi: 10 . 1109 / ASE . 2011 .

6100062.

[110] Travis E Oliphant. A guide to NumPy. Vol. 1. https://numpy.org/. Trelgol Publishing
USA, 2006.

[111] Thomas J. Ostrand, Elaine J. Weyuker and Robert M. Bell. “Predicting the Location
and Number of Faults in Large Software Systems”. In: IEEE Transactions on Software
Engineering 31.4 (2005), pp. 340–355. doi: 10.1109/TSE.2005.49.

[112] Thomas J. Ostrand, Elaine J. Weyuker and Robert M. Bell. “Programmer-based fault
prediction”. In: Proceedings of the 6th International Conference on Predictive Models in
Software Engineering, PROMISE 2010, Timisoara, Romania, September 12-13, 2010. Ed.
by Tim Menzies and Günes Koru. ACM, 2010, p. 19. isbn: 978-1-4503-0404-7. doi:
10.1145/1868328.1868357.

[113] Art B Owen. “A robust hybrid of lasso and ridge regression”. In: Contemporary
Mathematics 443.7 (2007), pp. 59–72.

[114] Matheus Paixão, Jens Krinke, DongGyun Han and Mark Harman. “CROP: linking
code reviews to source code changes”. In: Proceedings of the 15th International Confer-
ence on Mining Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018.
Ed. by Andy Zaidman, Yasutaka Kamei and Emily Hill. ACM, 2018, pp. 46–49. doi:
10.1145/3196398.3196466.

[115] Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea De Lucia and
Rocco Oliveto. “Smells Like Teen Spirit: Improving Bug Prediction Performance Us-
ing the Intensity of Code Smells”. In: 2016 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7, 2016. IEEE
Computer Society, 2016, pp. 244–255. isbn: 978-1-5090-3806-0. doi: 10.1109/ICSME.
2016.27.

[116] Kai Pan, Sunghun Kim and E. James Whitehead Jr. “Toward an understanding of
bug fix patterns”. In: Empirical Software Engineering 14.3 (2009), pp. 286–315. doi:
10.1007/s10664-008-9077-5.

https://doi.org/10.1109/ISSRE.2010.25
https://doi.org/10.1198/tech.2001.s629
https://doi.org/10.1109/HICSS.2004.1265711
https://doi.org/10.1109/ASE.2011.6100062
https://doi.org/10.1109/ASE.2011.6100062
https://numpy.org/
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1145/1868328.1868357
https://doi.org/10.1145/3196398.3196466
https://doi.org/10.1109/ICSME.2016.27
https://doi.org/10.1109/ICSME.2016.27
https://doi.org/10.1007/s10664-008-9077-5

86 bibliography

[117] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011). https://scikit-learn.org/, pp. 2825–2830.

[118] Alexey B Petrovsky. “An axiomatic approach to metrization of multiset space”. In:
Multiple Criteria Decision Making: Proceedings of the Tenth International Conference: Ex-
pand and Enrich the Domains of Thinking and Application. Springer Science & Business
Media. 2012, p. 129.

[119] Danijel Radjenovic, Marjan Hericko, Richard Torkar and Ales Zivkovic. “Software
fault prediction metrics: A systematic literature review”. In: Information & Software
Technology 55.8 (2013), pp. 1397–1418. doi: 10.1016/j.infsof.2013.02.009.

[120] Foyzur Rahman, Daryl Posnett, Abram Hindle, Earl T. Barr and Premkumar T.
Devanbu. “BugCache for inspections: hit or miss?” In: SIGSOFT/FSE’11 19th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11:
13th European Software Engineering Conference (ESEC-13), Szeged, Hungary, September
5-9, 2011. Ed. by Tibor Gyimóthy and Andreas Zeller. ACM, 2011, pp. 322–331.
isbn: 978-1-4503-0443-6. doi: 10.1145/2025113.2025157.

[121] Baishakhi Ray, Daryl Posnett, Vladimir Filkov and Premkumar T. Devanbu. “A
large scale study of programming languages and code quality in github”. In: Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014. Ed. by Shing-Chi
Cheung, Alessandro Orso and Margaret-Anne D. Storey. ACM, 2014, pp. 155–165.
isbn: 978-1-4503-3056-5. doi: 10.1145/2635868.2635922.

[122] Peter C. Rigby and Christian Bird. “Convergent contemporary software peer review
practices”. In: Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE’13,
Saint Petersburg, Russian Federation, August 18-26, 2013. Ed. by Bertrand Meyer, Lu-
ciano Baresi and Mira Mezini. ACM, 2013, pp. 202–212. isbn: 978-1-4503-2237-9.
doi: 10.1145/2491411.2491444.

[123] Peter C. Rigby, Daniel M. Germán and Margaret-Anne D. Storey. “Open source
software peer review practices: a case study of the apache server”. In: 30th Inter-
national Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18,
2008. Ed. by Wilhelm Schäfer, Matthew B. Dwyer and Volker Gruhn. ACM, 2008,
pp. 541–550. isbn: 978-1-60558-079-1. doi: 10.1145/1368088.1368162.

[124] Peter C. Rigby and Margaret-Anne D. Storey. “Understanding broadcast based peer
review on open source software projects”. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-
28, 2011. Ed. by Richard N. Taylor, Harald C. Gall and Nenad Medvidovic. ACM,
2011, pp. 541–550. isbn: 978-1-4503-0445-0. doi: 10.1145/1985793.1985867.

[125] Brian C Ross. “Mutual information between discrete and continuous data sets”. In:
PloS one 9.2 (2014), e87357. doi: 10.1371/journal.pone.0087357.

[126] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach, Third
International Edition. Pearson Education, 2010. isbn: 978-0-13-207148-2.

https://scikit-learn.org/
https://doi.org/10.1016/j.infsof.2013.02.009
https://doi.org/10.1145/2025113.2025157
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1145/1368088.1368162
https://doi.org/10.1145/1985793.1985867
https://doi.org/10.1371/journal.pone.0087357

bibliography 87

[127] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko and Alberto Bac-
chelli. “Modern code review: a case study at google”. In: Proceedings of the 40th
International Conference on Software Engineering: Software Engineering in Practice, ICSE
(SEIP) 2018, Gothenburg, Sweden, May 27 - June 03, 2018. Ed. by Frances Paulisch and
Jan Bosch. ACM, 2018, pp. 181–190. isbn: 978-1-4503-5659-6. doi: 10.1145/3183519.
3183525.

[128] Ripon K. Saha, Matthew Lease, Sarfraz Khurshid and Dewayne E. Perry. “Im-
proving bug localization using structured information retrieval”. In: 2013 28th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2013, Sil-
icon Valley, CA, USA, November 11-15, 2013. Ed. by Ewen Denney, Tevfik Bultan and
Andreas Zeller. IEEE, 2013, pp. 345–355. doi: 10.1109/ASE.2013.6693093.

[129] Simone Scalabrino et al. “Automatically assessing code understandability: how far
are we?” In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017. Ed.
by Grigore Rosu, Massimiliano Di Penta and Tien N. Nguyen. IEEE Computer
Society, 2017, pp. 417–427. isbn: 978-1-5386-2684-9. doi: 10 . 1109 / ASE . 2017 .

8115654.

[130] Michael J. Scialdone, Na Li, Robert Heckman and Kevin Crowston. “Group Main-
tenance Behaviors of Core and Peripherial Members of Free/Libre Open Source
Software Teams”. In: Open Source Ecosystems: Diverse Communities Interacting, 5th
IFIP WG 2.13 International Conference on Open Source Systems, OSS 2009, Skövde,
Sweden, June 3-6, 2009. Proceedings. Ed. by Cornelia Boldyreff, Kevin Crowston, Björn
Lundell and Anthony I. Wasserman. Vol. 299. IFIP Advances in Information and
Communication Technology. Springer, 2009, pp. 298–309. isbn: 978-3-642-02031-5.
doi: 10.1007/978-3-642-02032-2_26.

[131] Zhendong Shi, Jacky Keung, Kwabena Ebo Bennin and Xingjun Zhang. “Comparing
learning to rank techniques in hybrid bug localization”. In: Applied Soft Computing
62 (2018), pp. 636–648. doi: 10.1016/j.asoc.2017.10.048.

[132] Yonghee Shin, Robert M. Bell, Thomas J. Ostrand and Elaine J. Weyuker. “Does call-
ing structure information improve the accuracy of fault prediction?” In: Proceedings
of the 6th International Working Conference on Mining Software Repositories, MSR 2009
(Co-located with ICSE), Vancouver, BC, Canada, May 16-17, 2009, Proceedings. Ed. by
Michael W. Godfrey and Jim Whitehead. IEEE Computer Society, 2009, pp. 61–70.
isbn: 978-1-4244-3493-0. doi: 10.1109/MSR.2009.5069481.

[133] Shivkumar Shivaji, E. James Whitehead Jr., Ram Akella and Sunghun Kim. “Redu-
cing Features to Improve Code Change-Based Bug Prediction”. In: IEEE Transactions
on Software Engineering 39.4 (2013), pp. 552–569. doi: 10.1109/TSE.2012.43.

[134] D Singh, A Ibrahim, T Yohanna and J Singh. “An overview of the applications of
multisets”. In: Novi Sad Journal of Mathematics 37.3 (2007), pp. 73–92.

[135] Amit Singhal. “Modern Information Retrieval: A Brief Overview”. In: IEEE Data
Engineering Bulletin 24.4 (2001). http : / / sites . computer . org / debull / A01DEC -

CD.pdf, pp. 35–43.

https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1109/ASE.2017.8115654
https://doi.org/10.1109/ASE.2017.8115654
https://doi.org/10.1007/978-3-642-02032-2_26
https://doi.org/10.1016/j.asoc.2017.10.048
https://doi.org/10.1109/MSR.2009.5069481
https://doi.org/10.1109/TSE.2012.43
http://sites.computer.org/debull/A01DEC-CD.pdf
http://sites.computer.org/debull/A01DEC-CD.pdf

88 bibliography

[136] Jacek Sliwerski, Thomas Zimmermann and Andreas Zeller. “When do changes
induce fixes?” In: Proceedings of the 2005 International Workshop on Mining Software
Repositories, MSR 2005, Saint Louis, Missouri, USA, May 17, 2005. ACM, 2005. isbn:
1-59593-123-6. doi: 10.1145/1083142.1083147.

[137] Alexander J. Smola and Bernhard Schölkopf. “A tutorial on support vector re-
gression”. In: Statistics and Computing 14.3 (2004), pp. 199–222. doi: 10.1023/B:
STCO.0000035301.49549.88.

[138] Ian Sommerville. Software engineering, 8th Edition. International computer science
series. Addison-Wesley, 2007. isbn: 9780321313799.

[139] Higor Amario de Souza, Marcos Lordello Chaim and Fabio Kon. “Spectrum-based
Software Fault Localization: A Survey of Techniques, Advances, and Challenges”.
In: CoRR abs/1607.04347 (2016). arXiv: 1607.04347.

[140] Shiliang Sun. “A survey of multi-view machine learning”. In: Neural Computing and
Applications 23.7-8 (2013), pp. 2031–2038. doi: 10.1007/s00521-013-1362-6.

[141] Wenbin Tang, Jie Tang and Chenhao Tan. “Expertise Matching via Constraint-Based
Optimization”. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence,
WI 2010, Toronto, Canada, August 31 - September 3, 2010, Main Conference Proceedings.
Ed. by Jimmy Xiangji Huang, Irwin King, Vijay V. Raghavan and Stefan Rueger.
IEEE Computer Society, 2010, pp. 34–41. isbn: 978-0-7695-4191-4. doi: 10.1109/WI-
IAT.2010.133.

[142] Camillo J Taylor. “On the optimal assignment of conference papers to reviewers”. In:
University of Pennsylvania Department of Computer and Information Science Tech-
nical Report No. MS-CIS-08-30 (2008). https://www.seas.upenn.edu/~cjtaylor/
PUBLICATIONS/pdfs/TaylorTR08.pdf.

[143] Ricardo Terra et al. “Measuring the Structural Similarity between Source Code En-
tities (S)”. In: The 25th International Conference on Software Engineering and Knowledge
Engineering, Boston, MA, USA, June 27-29, 2013. Knowledge Systems Institute Gradu-
ate School, 2013, pp. 753–758.

[144] Patanamon Thongtanunam, Raula Gaikovina Kula, Ana Erika Camargo Cruz, Nori-
hiro Yoshida and Hajimu Iida. “Improving code review effectiveness through re-
viewer recommendations”. In: Proceedings of the 7th International Workshop on Cooper-
ative and Human Aspects of Software Engineering, CHASE 2014, Hyderabad, India, June
2-3, 2014. Ed. by Helen Sharp, Rafael Prikladnicki, Andrew Begel and Cleidson R. B.
de Souza. ACM, 2014, pp. 119–122. isbn: 978-1-4503-2860-9. doi: 10.1145/2593702.
2593705.

[145] Patanamon Thongtanunam et al. “Who should review my code? A file location-
based code-reviewer recommendation approach for Modern Code Review”. In:
22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering,
SANER 2015, Montreal, QC, Canada, March 2-6, 2015. Ed. by Yann-Gaël Guéhéneuc,
Bram Adams and Alexander Serebrenik. IEEE, 2015, pp. 141–150. isbn: 978-1-4799-
8469-5. doi: 10.1109/SANER.2015.7081824.

https://doi.org/10.1145/1083142.1083147
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/B:STCO.0000035301.49549.88
http://arxiv.org/abs/1607.04347
https://doi.org/10.1007/s00521-013-1362-6
https://doi.org/10.1109/WI-IAT.2010.133
https://doi.org/10.1109/WI-IAT.2010.133
https://www.seas.upenn.edu/~cjtaylor/PUBLICATIONS/pdfs/TaylorTR08.pdf
https://www.seas.upenn.edu/~cjtaylor/PUBLICATIONS/pdfs/TaylorTR08.pdf
https://doi.org/10.1145/2593702.2593705
https://doi.org/10.1145/2593702.2593705
https://doi.org/10.1109/SANER.2015.7081824

bibliography 89

[146] Yuan Tian, Julia L. Lawall and David Lo. “Identifying Linux bug fixing patches”.
In: 34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland. Ed. by Martin Glinz, Gail C. Murphy and Mauro Pezzè. IEEE
Computer Society, 2012, pp. 386–396. isbn: 978-1-4673-1067-3. doi: 10.1109/ICSE.
2012.6227176.

[147] Christoph Treude and Margaret-Anne D. Storey. “Work Item Tagging: Communic-
ating Concerns in Collaborative Software Development”. In: IEEE Transactions on
Software Engineering 38.1 (2012), pp. 19–34. doi: 10.1109/TSE.2010.91.

[148] Asher Trockman et al. “"Automatically assessing code understandability" reana-
lyzed: combined metrics matter”. In: Proceedings of the 15th International Conference
on Mining Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018. Ed.
by Andy Zaidman, Yasutaka Kamei and Emily Hill. ACM, 2018, pp. 314–318. doi:
10.1145/3196398.3196441.

[149] Olivier Vandecruys et al. “Mining software repositories for comprehensible soft-
ware fault prediction models”. In: Journal of Systems and Software 81.5 (2008), pp. 823–
839. doi: 10.1016/j.jss.2007.07.034.

[150] Mario Linares Vásquez et al. “Triaging incoming change requests: Bug or commit
history, or code authorship?” In: 28th IEEE International Conference on Software Main-
tenance, ICSM 2012, Trento, Italy, September 23-28, 2012. IEEE Computer Society, 2012,
pp. 451–460. isbn: 978-1-4673-2313-0. doi: 10.1109/ICSM.2012.6405306.

[151] Erik van der Veen, Georgios Gousios and Andy Zaidman. “Automatically Prior-
itizing Pull Requests”. In: 12th IEEE/ACM Working Conference on Mining Software
Repositories, MSR 2015, Florence, Italy, May 16-17, 2015. IEEE, 2015, pp. 357–361.
isbn: 978-0-7695-5594-2. doi: 10.1109/MSR.2015.40.

[152] Ellen M. Voorhees. “The TREC-8 Question Answering Track Report”. In: Proceed-
ings of The Eighth Text REtrieval Conference, TREC 1999, Gaithersburg, Maryland, USA,
November 17-19, 1999. Ed. by Ellen M. Voorhees and Donna K. Harman. Vol. Special
Publication 500-246. National Institute of Standards and Technology (NIST), 1999.

[153] Fan Wang, Ben Chen and Zhaowei Miao. “A Survey on Reviewer Assignment
Problem”. In: New Frontiers in Applied Artificial Intelligence, 21st International Con-
ference on Industrial, Engineering and Other Applications of Applied Intelligent Systems,
IEA/AIE 2008, Wroclaw, Poland, June 18-20, 2008, Proceedings. Ed. by Ngoc Thanh
Nguyen, Leszek Borzemski, Adam Grzech and Moonis Ali. Vol. 5027. Lecture
Notes in Computer Science. Springer, 2008, pp. 718–727. isbn: 978-3-540-69045-0.
doi: 10.1007/978-3-540-69052-8_75.

[154] Qianqian Wang, Chris Parnin and Alessandro Orso. “Evaluating the usefulness
of IR-based fault localization techniques”. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA, July
12-17, 2015. Ed. by Michal Young and Tao Xie. ACM, 2015. doi: 10.1145/2771783.
2771797.

[155] Shaowei Wang and David Lo. “AmaLgam+: Composing Rich Information Sources
for Accurate Bug Localization”. In: Journal of Software: Evolution and Process 28.10

(2016), pp. 921–942. doi: 10.1002/smr.1801.

https://doi.org/10.1109/ICSE.2012.6227176
https://doi.org/10.1109/ICSE.2012.6227176
https://doi.org/10.1109/TSE.2010.91
https://doi.org/10.1145/3196398.3196441
https://doi.org/10.1016/j.jss.2007.07.034
https://doi.org/10.1109/ICSM.2012.6405306
https://doi.org/10.1109/MSR.2015.40
https://doi.org/10.1007/978-3-540-69052-8_75
https://doi.org/10.1145/2771783.2771797
https://doi.org/10.1145/2771783.2771797
https://doi.org/10.1002/smr.1801

90 bibliography

[156] Shaowei Wang and David Lo. “Version history, similar report, and structure: putting
them together for improved bug localization”. In: 22nd International Conference on
Program Comprehension, ICPC 2014, Hyderabad, India, June 2-3, 2014. Ed. by Chanchal
K. Roy, Andrew Begel and Leon Moonen. ACM, 2014, pp. 53–63. isbn: 978-1-4503-
2879-1. doi: 10.1145/2597008.2597148.

[157] David M. Weiss and Victor R. Basili. “Evaluating Software Development by Ana-
lysis of Changes: Some Data from the Software Engineering Laboratory”. In: IEEE
Transactions on Software Engineering 11.2 (1985), pp. 157–168. doi: 10.1109/TSE.1985.
232190.

[158] Chu-Pan Wong et al. “Boosting Bug-Report-Oriented Fault Localization with Seg-
mentation and Stack-Trace Analysis”. In: 30th IEEE International Conference on Soft-
ware Maintenance and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014.
IEEE Computer Society, 2014, pp. 181–190. isbn: 978-0-7695-5303-0. doi: 10.1109/
ICSME.2014.40.

[159] W. Eric Wong, Vidroha Debroy, Richard Golden, Xiaofeng Xu and Bhavani M. Thurais-
ingham. “Effective Software Fault Localization Using an RBF Neural Network”. In:
IEEE Transactions on Reliability 61.1 (2012), pp. 149–169. doi: 10.1109/TR.2011.
2172031.

[160] Rongxin Wu, Hongyu Zhang, Sunghun Kim and Shing-Chi Cheung. “ReLink: re-
covering links between bugs and changes”. In: SIGSOFT/FSE’11 19th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11:
13th European Software Engineering Conference (ESEC-13), Szeged, Hungary, September
5-9, 2011. Ed. by Tibor Gyimóthy and Andreas Zeller. ACM, 2011, pp. 15–25. isbn:
978-1-4503-0443-6. doi: 10.1145/2025113.2025120.

[161] Hong Xie and John C. S. Lui. “Mathematical Modeling of Competitive Group
Recommendation Systems with Application to Peer Review Systems”. In: CoRR
abs/1204.1832 (2012). arXiv: 1204.1832.

[162] Chang Xu, Dacheng Tao and Chao Xu. “A Survey on Multi-view Learning”. In:
CoRR abs/1304.5634 (2013). arXiv: 1304.5634.

[163] David Yarowsky and Radu Florian. “Taking the load off the conference chairs:
towards a digital paper-routing assistant”. In: 1999 Joint SIGDAT Conference on Em-
pirical Methods in Natural Language Processing and Very Large Corpora. https://www.

aclweb.org/anthology/W99-0627. Citeseer, 1999.

[164] Xin Ye, Razvan C. Bunescu and Chang Liu. “Learning to rank relevant files for
bug reports using domain knowledge”. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong,
China, November 16 - 22, 2014. Ed. by Shing-Chi Cheung, Alessandro Orso and
Margaret-Anne D. Storey. ACM, 2014, pp. 689–699. isbn: 978-1-4503-3056-5. doi:
10.1145/2635868.2635874.

[165] Xin Ye, Razvan C. Bunescu and Chang Liu. “Mapping Bug Reports to Relevant
Files: A Ranking Model, a Fine-Grained Benchmark, and Feature Evaluation”. In:
IEEE Transactions on Software Engineering 42.4 (2016), pp. 379–402. doi: 10.1109/TSE.
2015.2479232.

https://doi.org/10.1145/2597008.2597148
https://doi.org/10.1109/TSE.1985.232190
https://doi.org/10.1109/TSE.1985.232190
https://doi.org/10.1109/ICSME.2014.40
https://doi.org/10.1109/ICSME.2014.40
https://doi.org/10.1109/TR.2011.2172031
https://doi.org/10.1109/TR.2011.2172031
https://doi.org/10.1145/2025113.2025120
http://arxiv.org/abs/1204.1832
http://arxiv.org/abs/1304.5634
https://www.aclweb.org/anthology/W99-0627
https://www.aclweb.org/anthology/W99-0627
https://doi.org/10.1145/2635868.2635874
https://doi.org/10.1109/TSE.2015.2479232
https://doi.org/10.1109/TSE.2015.2479232

bibliography 91

[166] Klaus Changsun Youm, June Ahn and Eunseok Lee. “Improved bug localization
based on code change histories and bug reports”. In: Information & Software Techno-
logy 82 (2017), pp. 177–192. doi: 10.1016/j.infsof.2016.11.002.

[167] Yue Yu, Huaimin Wang, Gang Yin and Charles X. Ling. “Reviewer Recommender
of Pull-Requests in GitHub”. In: 30th IEEE International Conference on Software Main-
tenance and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014. IEEE Com-
puter Society, 2014, pp. 609–612. isbn: 978-0-7695-5303-0. doi: 10.1109/ICSME.2014.
107.

[168] Yue Yu, Huaimin Wang, Gang Yin and Tao Wang. “Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and bug assignment?”
In: Information & Software Technology 74 (2016), pp. 204–218. doi: 10.1016/j.infsof.
2016.01.004.

[169] Feng Zhang, Audris Mockus, Iman Keivanloo and Ying Zou. “Towards building a
universal defect prediction model”. In: 11th Working Conference on Mining Software
Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014, Hyderabad, India. Ed. by
Premkumar T. Devanbu, Sung Kim and Martin Pinzger. ACM, 2014, pp. 182–191.
isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.2597078.

[170] Jie Zhang et al. “A survey on bug-report analysis”. In: SCIENCE CHINA Information
Sciences 58.2 (2015), pp. 1–24. doi: 10.1007/s11432-014-5241-2.

[171] Tong Zhang. “Solving large scale linear prediction problems using stochastic gradi-
ent descent algorithms”. In: Machine Learning, Proceedings of the Twenty-first Interna-
tional Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004. Ed. by Carla E.
Brodley. Vol. 69. ACM International Conference Proceeding Series. ACM, 2004. doi:
10.1145/1015330.1015332.

[172] Jian Zhou, Hongyu Zhang and David Lo. “Where should the bugs be fixed? More
accurate information retrieval-based bug localization based on bug reports”. In:
34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich,
Switzerland. Ed. by Martin Glinz, Gail C. Murphy and Mauro Pezzè. IEEE Computer
Society, 2012, pp. 14–24. isbn: 978-1-4673-1067-3. doi: 10.1109/ICSE.2012.6227210.

[173] Thomas Zimmermann and Nachiappan Nagappan. “Predicting defects using net-
work analysis on dependency graphs”. In: 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008. Ed. by Wilhelm Schäfer,
Matthew B. Dwyer and Volker Gruhn. ACM, 2008, pp. 531–540. isbn: 978-1-60558-
079-1. doi: 10.1145/1368088.1368161.

https://doi.org/10.1016/j.infsof.2016.11.002
https://doi.org/10.1109/ICSME.2014.107
https://doi.org/10.1109/ICSME.2014.107
https://doi.org/10.1016/j.infsof.2016.01.004
https://doi.org/10.1016/j.infsof.2016.01.004
https://doi.org/10.1145/2597073.2597078
https://doi.org/10.1007/s11432-014-5241-2
https://doi.org/10.1145/1015330.1015332
https://doi.org/10.1109/ICSE.2012.6227210
https://doi.org/10.1145/1368088.1368161

colophon

This document was typeset using the typographical look-and-feel classicthesis developed
by André Miede. The style was inspired by Robert Bringhurst’s seminal book on typo-
graphy “The Elements of Typographic Style”. classicthesis is available for both LATEX and
LYX:

http://code.google.com/p/classicthesis/

http://code.google.com/p/classicthesis/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Dissertation outline

	2 Preliminaries
	2.1 Software engineering
	2.2 Information retrieval
	2.3 Learning
	2.4 Mining software repositories

	3 Preliminary studies on open source data
	3.1 Introduction
	3.2 Related work
	3.3 Contribution analysis
	3.4 Bug detection based on commit similarity
	3.5 Concluding Remarks

	4 Recommendation of code reviewers
	4.1 Introduction
	4.2 Related work
	4.3 Problem statement
	4.4 The proposed method
	4.5 Evaluation Results
	4.6 Discussion
	4.7 Concluding Remarks

	5 Adaptive bug localization based on bug reports
	5.1 Introduction
	5.2 Related work
	5.3 Problem statement
	5.4 Feature engineering
	5.5 Proposed solution
	5.6 Evaluation Results
	5.7 Discussion
	5.8 Concluding Remarks

	6 Conclusions
	6.1 Future work

	7 Appendix: Replication and datasets
	7.1 Replication repository
	7.2 Preliminary studies datasets

	Bibliography
	Colophon

