
UNIVERSITY OF WARSAW
FACULTY OF MATHEMATICS, INFORMATICS AND MECHANICS

Michał Zając
Institute of Informatics

EFFECTIVE CRYPTOGRAPHIC PROTOCOLS
WITH LIMITED COMPUTATIONAL POWER

AND MEMORY

PhD dissertation

supervisor:
dr hab. Stefan Dziembowski

Institute of Informatics

The author was supported by the National Science Centre grant PRELUDIUM 7 no. UMO-2014/13/N/ST6/03029.

Author’s declaration:

aware of legal responsibility I hereby declare that I have written this dissertation myself
and all the contents of the dissertation have been obtained by legal means.

Supervisor’s declaration:

the dissertation is ready to be reviewed.

2

Abstract

One of the most important and powerful leakage resiliency model, the Bounded Retrieval
Model (BRM) [Dzi06, DCLW06, ADN+10] comes with inevitable space inefficiency caused
by a requirement on a cryptographic secret key to be huge, multiple times larger than
a leakage bound. Since practical applications demand amount of leakage to be counted
in gigabytes, the secret key has to be that large as well. A cryptographic key is usually a
long bitstring taken from a uniform distribution. This bitstring occupies gigabytes of disk
space and has no other than cryptographic application whatsoever. Although sacrificing
such a big amount of memory for sake of security is acceptable for computers, it is usually
too much for mobile devices, like tablets or smartphones.
In this thesis we show how to omit this obstacle by deriving a secure cryptographic

key in BRM directly from a random variable picked from a non-uniform distribution. We
claim that user’s private data can be viewed as such random variable. More precisely, we
derive a secure cryptographic key from data the user already store on her device. This
approach comes with a great advantage — (almost) no additional space is needed to keep
the key. Moreover, we ensure that the data remains private in a very strong sense. That is,
even someone equipped with the derived key, can say nothing about the underlying data,
except information she learnt through leakage. We claim that the delivered procedure fits
many known BRM schemes with no modification to the scheme at all.
We call our primitive key derivation function (kdf), exactly as in Dodis et al. [DY13].

However, we point out that kdf-s as proposed in [DY13] allow only to construct a key from
non-uniform data, but do not ensure data privacy, what is the major contribution of this
thesis.
We show an exemplary instantiation of kdf based on disperser graphs (hence we call our

function Disperse). The proposed function has an important additional property, called
locality. Since a BRM key is large, BRM primitives usually do not use the entirety of it, but
some (randomly) picked parts, cf. [Dzi06]. To assure efficiency of our function, we designed
it in a way that allows to compute only some required part of the key. Furthermore, to
compute a part of the key, it is enough to use only a part of the disk data.
Having kdf proposed, we show some of its applications. We deliver identification and

signature schemes based on Merkle trees. Although constructions based on Merkle trees
are well known, we show that they remain secure even under leakage. We point out
here that the proposed schemes have to fulfill two requirements. Firstly, they have to
be asymmetric. In symmetric primitives, all parties participating in the protocol have to
share with each other secret keys. Since BRM keys are a few gigabytes large, that would
mean a huge disk-space inefficiency. Secondly, even if we use asymmetric scheme, we have
to guarantee that public keys are short compared to secret keys. Otherwise, the problem
with disk space arises again, because the parties has to keep each others large public keys.
We show in this work that the proposed schemes fulfill both requirements.
Part of this thesis (definition of Disperse and its properties) is based on article Bounded-

Retrieval Model with Keys Derived from Private Data [DDK+16] by Konrad Durnoga,

3

Stefan Dziembowski, Tomasz Kazana, Michał Zając, and Maciej Zdanowicz.

Key words: cryptography, leakage-resilient cryptography, key derivation schemes, key
evolution, time-memory trade-off.

AMS Classification: 94A60, 68P25.

4

Streszczenie

Jednym z najbardziej rozpowszechnionych i zarazem najmocniejszych modeli w krypto-
grafii odpornej na wycieki jest tzw. Bounded Retrieval Model (BRM) [Dzi06, DCLW06,
ADN+10]. Niestety, zastosowanie BRM wymaga poświęcenia dużej przestrzeni dyskowej
na samo przechowywanie klucza kryptograficznego. Ze względów bezpieczeństwa, tajny
klucz w tym modelu musi by większy niż przyjęty parametr wycieku (tj. górne ogranicze-
nie ilości informacji jakie przeciwnik może pozyskać na temat klucza). Chcąc zastosować
model BRM w praktyce, parametr ten musi być rzędu kilku gigabajtów. Zazwyczaj klucz
kryptograficzny to losowy ciąg binarny, który nie ma innego, poza kryptografią, zasto-
sowania. Oczywiście, można stwierdzić, że przeznaczenie kilku gigabajtów przestrzeni
dyskowej w celu zapewnienia bezpieczeństwa nie stanowi większego problemu dla współ-
czesnych komputerów. Z drugiej jednak strony, kilka gigabajtów wolnej przestrzeni jest
ilością bardzo dużą dla urządzeń mobilnych, takich jak smartfony czy tablety.
W tej pracy pokazujemy jak można obejść tę przeszkodę poprzez wygenerowanie bez-

piecznego klucza BRM-owego ze zmiennej losowej o niejednostajnym rozkładzie. Pokazu-
jemy również, że taką zmienną losową mogą być dane przechowywane przez użytkownika
urządzenia. W pracy pokazujemy jak pozyskać bezpieczny klucz kryptograficzny (w mo-
delu BRM) z danych użytkownika takich jak zdjęcia z wakacji, nagrane filmy, czy przecho-
wywane dokumenty. Takie podejście ma zasadniczą zaletę – nie musimy już przeznaczać
gigabajtów przestrzeni dyskowej na klucz kryptograficzny, możemy go wygenerować z tego,
co i tak przechowujemy na dysku. Przedstawiona w pracy procedura pozyskiwania klucza
zapewnia prywatność danych w bardzo mocnym sensie. Pokazujemy, że nawet ktoś, kto
zna cały klucz, nie może powiedzieć nic o danych, które posłużyły do jego wygenerowania
(poza informacjami pozyskanymi w ramach wycieku).
Ponadto, zaproponowana procedura działa dla wielu schematów w modelu BRM poprzez

zwykłe podmienienie jednostajnego klucza na klucz pozyskany za pomocą kdf. Oczywiście,
klucz pozyskany z danych niejednostajnych nie jest tak bezpieczny jak klucz pozyskany
z rozkładu jednostajnego. Pokazujemy jednak, że strata bezpieczeństwa jest zaniedby-
walna (w stosunku do parametru bezpieczeństwa).
Podobnie jak w [DY13], nazywamy naszą procedurę key derivation function (kdf). W od-

różnieniu jednak od [DY13], zapewniamy nie tylko bezpieczny klucz kryptograficzny z nie-
jednostajnej zmiennej losowej, ale także prywatność danych służących do jego wygenero-
wania. Możliwość generowania klucza z danych prywatnych jest zasadniczym wkładem
przedstawianej pracy.
W pracy pokazujemy konkretny przykład kdf oparty na grafach tzw. disperserach

(w związku z tym nazywamy naszą funkcję Disperse). Zaproponowana funkcja posiada
bardzo istotną własność, mianowicie jest lokalna. Protokoły kryptograficzne w modelu
BRM zwykle nie używają całego dostępnego klucza. Ponieważ jest on bardzo duży, próba
operowania na jego całości byłaby skazana na całkowitą porażkę z punktu widzenia
wydajności. W zamian, za każdym razem, kiedy klucz jest potrzebny, losowana jest
pewna jego część, która zostaje następnie użyta. W celu zapewnienia funkcji Disperse

5

wydajności, zaprojektowana została ona w sposób, który pozwala na obliczenie tylko
wybranego fragmentu klucza, bez potrzeby generowania go w całości. Ponadto, obliczenie
części klucza nie wymaga dostępu do całości danych dyskowych a tylko pewnego ich
fragmentu.
Po zaproponowaniu przykładu funkcji kdf, pokazujemy pewne jej zastosowania prak-

tyczne. Pokazujemy protokoły uwierzytelniania i podpisu cyfrowego oparte na tzw. drze-
wach Merkla. Choć protokoły te są znane od dłuższego czasu, dowodzimy, że są one
bezpieczne nawet w obecności wycieku. Zaznaczmy, protokoły, które nadają się do stoso-
wania w modelu BRM z funkcją kdf muszą spełnić pewne warunki. Po pierwsze, protokół
musi działać w modelu kryptografii asymetrycznej. W przypadku protokołu symetrycz-
nego, każda z osób biorąca udział w obliczeniach musi współdzielić prywatny klucz z
każdą inną osobą. Ponieważ prywatne klucze w modelu BRM mają wielkość kilku gi-
gabajtów, oznacza to, że każda ze stron musi przechowywać wiele kilkugigabajtowych
kluczy. Niewydajność pamięciowa takiego rozwiązania skazuje go na porażkę. Po drugie,
w przypadku kryptografii klucza publicznego, klucz publiczny musi być istotnie mniejszy
od klucza prywatnego. Wynika to z tego, że w protokole asymetrycznym każda ze stron
biorąca udział w obliczeniach musi przechowywać wszystkie klucze publiczne. Jeśli są one
duże, schemat jest pamięciowo niewydajny i skazany na porażkę. W pracy pokazujemy,
że zaproponowane schematy zapewniają obie własności.
Część rozprawy (definicja i własności funkcji Disperse) powstała na podstawie pracy

autorstwa Konrada Durnogi, Stefana Dziembowskiego, Tomasza Kazany, Michała Za-
jąca i Macieja Zdanowicza Bounded-Retrieval Model with Keys Derived from Private Data
[DDK+16].

Słowa kluczowe: kryptografia, kryptografia odporna na wycieki, schematy tworzenia
klucza, ewolucja klucza, złożoność czasowa a pamięciowa.

Klasyfikacja AMS: 94A60, 68P25.

6

Podziękowania Dziękuję wszystkim tym, dzięki którym powstała ta praca.
W pierwszej kolejności mojemu promotorowi dr. hab. Stefanowi Dziembowskiemu
i moim współautorom: Konradowi Durnodze, Tomaszowi Kazanie i Maciejowi
Emilianowi Zdanowiczowi. Szczególne podziękowania składam także Luizie Za-
jąc i Filipowi Mazowieckiemu za długie dyskusje o sensie życia i przychodzenie
w sukurs. Dziękuję ponadto Helgerowi Lipmaa za okazane wsparcie i możliwość
współpracy z nim w Tartu.

7

CONTENTS

1. Introduction 13
1.1. A way to modern cryptography . 13
1.2. Security as a game . 14
1.3. Motivation for leakage-resilient cryptography 16

1.3.1. Side-channel attacks . 16
1.3.2. Modeling side-channel attacks . 19
1.3.3. Bounded Retrieval Model . 20

1.4. Results . 22
1.4.1. Security from private data . 22
1.4.2. Overcoming weak expectations . 25
1.4.3. Key Derivation Functions (kdf) . 26
1.4.4. Disperse as an example of kdf . 28
1.4.5. Identification and signature scheme on kdf 29
1.4.6. Key refreshing . 30

1.5. Trivial solutions . 30
1.6. Organization of the thesis . 31

2. Preliminaries 33
2.1. Security games . 33
2.2. Real world vs ideal world . 36
2.3. Random Oracle Model . 38
2.4. Leakage-resilient cryptography . 39
2.5. Various notions of entropy . 40
2.6. Identification scheme . 43

2.6.1. Making identification non-interactive, Fiat-Shamir paradigm 44
2.7. Signature schemes . 44
2.8. From identification schemes to signature schemes 45
2.9. Identification and signature schemes in the Bounded Retrieval Model 46
2.10. Bounded number of executions . 48
2.11. Basic properties of disperser graphs . 49

9

3. Disperse as a Key Derivation Function 55
3.1. Key Derivation Function (kdf) . 55

3.1.1. Privacy of key derivation functions 55
3.1.2. Security of key derivation functions 57

3.2. Disperse graph . 58
3.3. Guessing game . 60
3.4. One-wayness of Disperse . 62
3.5. Privacy of Disperse . 65
3.6. Security of Disperse . 68
3.7. Efficiency of Disperse . 72
3.8. Determining real life parameters . 73

4. kdf in identification and signature schemes 77
4.1. Identification in the Bounded Retrieval Model 77
4.2. Construction overview . 79
4.3. Merkle tree . 80
4.4. Identification on a Merkle tree . 82
4.5. Non-interactive identification based on a Merkle-tree 90
4.6. Efficiency . 90
4.7. Signature scheme from kdf and a Merkle tree 92
4.8. Public key updates . 92

5. Open problems 97

A. Additional proofs 109
A.1. Theorem 5.1 from [ADW09] . 109

10

LIST OF FIGURES

1.1. Adversary divided into two parts. 21
1.2. Cryptographic key derivation from private data. 23
1.3. An exemplary DisperseGσ ,H(D) built on a 3-regular right disperser Gσ. . . . 29

2.1. Execution procedure . 34
2.2. IDn - identification security game . 44
2.3. Non-interactive Fiat-Shamir proof system compared to 3-message public-

coin proof of argument. 45
2.4. ExUGn; unforgeability game for signature scheme 46
2.5. IDλ,n; leakage-resilient identification scheme security game 48
2.6. EUGλ,n; leakage-resilient signature scheme security game 48
2.7. IDλ,n,ζ(n); ζ(n)-bounded leakage-resilient identification scheme security game. 49
2.8. EUGλ,n,ζ(n), ζ(n)-bounded leakage-resilient signature scheme security game 50

3.1. Intuitions behind the definition of privacy. 57
3.2. Implementation of Disperse function. 59
3.3. An exemplary DisperseGσ ,H(D) built on a 3-regular right disperser Gσ. . . . 60
3.4. Definition of Guessing game . 61
3.5. One-wayness of Disperse. Implementation of a player PA. 64
3.6. Privacy. Implementation of the simulator. 67
3.7. Implementation of A . 69
3.8. Intuitions for the proof of Theorem 13 . 70
3.9. Leakage 1GB, 256-bit long output of a hash function 75
3.10. Leakage 1GB, 512-bit long output of a hash function 75
3.11. Leakage 2GB, 256-bit long output of a hash function 76
3.12. Leakage 2GB, 512-bit long output of a hash function 76

4.1. An exemplary full Merkle tree . 81
4.2. Building a Merkle tree from data blocks . 81
4.3. Algorithm getPath obtains a path from a leaf of index k up to the root c of

tree T (`). 83
4.4. An exemplary identification path on a Merkle tree. 83

11

4.5. Algorithm checkPath checks whether the given path p is a correct path from
the leaf of index k up to the root c. 84

4.6. Merkle tree identification protocol . 85
4.7. Exemplary execution of a few rounds of the identification protocol. 87
4.8. Adversary A needs to find such a value of vl, vr that H(vl, vr) = v. By the

assumption, vr and v are known to A. 88
4.9. Exemplary non-interactive Merkle tree identification protocol 91
4.10. Key update procedure . 94
4.11. Implementation of the modified Disperse function. 95

A.1. Reduction from a Σ-adversary to a Π-adversary. 110

12

CHAPTER 1

INTRODUCTION

1.1. A way to modern cryptography

The problem of private messages exchange bothers people from ages and it can be traced
back up to ancient Greeks and Romans. Herodotus in Histories [HerBC] tells two stories
how Greeks used primitive yet effective steganography. However, the first widely used
cipher is known due to the conquerors of Greece, Romans. The so-called Caesar cipher is
a shift cipher where every plaintext letter is substituted by a letter lying a fixed number
of positions apart (cyclically). This fixed number is called a key for the scheme.
There is an important connection between the Caesar cipher and modern cryptographic

schemes. Both are based on a rule formulated in the late XIXth century by a Dutch
cryptographer Auguste Kerckhoffs in [Ker83]. This rule, henceforth called the Kerckhoffs’
principle, states that the security of the system cannot rely on secrecy of the scheme itself
(known as security by obscurity), which should remain public, but on some secret key.1
Under this principle we could say that the Caesar cipher is modern. There is no hidden
scheme involved, the only secret is the key.
Kerckhoffs’ principle lies underneath the most popular cryptographic schemes which are

used world-widely every day by billions of people, like introduced in the 1978 RSA [RSA78],
developed in 1985 El Gamal [EG85], announced in 1997 AES [Nat01], and others. Both
RSA and El Gamal security has been proven by a reduction from a computationally hard
problem. The former introduced so-called RSA problem, which can be solved if one can
efficiently factorize complex numbers, but no other general method is known (moreover,
it has been shown that in the generic group model factorizing and solving RSA problem
can be reduced to each other [AM16]). For the latter, one can show a reduction from the

1We should emphasize here that probably many military used cryptographic tools rely on both secrecy
of the scheme and the key.

13

discrete logarithm problem, which (along with its multiple variations) is one of the most
commonly used problems to show the security of a cryptographic scheme.
Although almost every secure Internet connection uses at least one of the aforementioned

schemes, there are usually no proofs that any of them remains secure when the key is not
uniform (i.e. taken from a non-uniform distribution) or when a malicious adversary learned
some information about it, see e.g. [NSS+17]. Furthermore, the most famous asymmetric
encryption scheme, i.e. RSA, in one of its variation that has been proposed to improve
efficiency of a scheme, is absolutely insecure if a malicious party focused on breaking the
scheme can introduce a slight error in computations [GGOQ98]. We will address the
problem of key non-uniformity later.

1.2. Security as a game

We used above several times words like secure and break, here we introduce informally some
hints about their meaning. Usually, modern cryptography proves the security of a scheme
by defining a game, here called a security game (for formalization of a security game see
Section 2.1), played between a malicious party, called adversary A and another party,
called challenger, that answers A’s questions and requests. For example in identification
schemes where A tries to impersonate a legitimate user, prover P, communication goes
between adversary A and verifier V that verifies whether a party she is talking to is who the
party claims to be2. In another case, this counterparty may be an oracle that encrypts
plaintexts chosen by the other party, etc. In this work we define a number of security
games, usually between the adversary and the verifier (e.g. see Figures 2.2, 2.4, 2.5 and
2.6).

To give an illustration how security games look like, we provide a simple example of
a game used to prove that an encryption scheme is secure. Encryption scheme is a triple of
algorithms: (KeyGen,Enc,Dec). First, KeyGen takes as input security parameter n written
unary (denoted by 1n) and randomness R, then outputs a key k from some distribution K.
Latter algorithms, Enc and Dec, handle encryption and decryption operations. Algorithm
Enc is probabilistic, while Dec is deterministic. For message m drawn from a set of all
possible messages MsgSpace we have m = Deck(Enck(m)).3

The security of an encryption scheme is often defined as follows: the adversary, even
equipped with an access to the encrypting oracle, learns nothing about the plaintext.
Hence for every random variable M over MsgSpace, M and EncK(M) are independent
from the adversary’s point of view. We say that an encryption scheme is perfectly secure
if, M and EncK(M) are just independent random variables. However, we usually require4

that they only look independent for some PPT (see Definition 4) adversary A.
2Usually, the verifier is not a party that answers questions, but she responds on identification requests
with challenges.

3See, this description fits also to asymmetric encryption scheme, in such m = Decsk(Encpk(m)).
4Perfectly secure encryption schemes are quite inconvenient since they require secret key of length equal
messages.

14

This property can be formalized by a game described below. There are two parties,
adversary A and encryption oracle E . The latter, responds on adversary’s query m with
Enck(m) for some k picked uniformly random. The number of queries the adversary can
submit is bounded by some polynomial function poly(n), where n is a security parameter.

Remark. In this thesis we often use expressions like polynomially many (e.g. polynomially
many queries to an oracle, see Example 1 below) or negligibly (e.g. negligible function, see
explanation below Example 1). In all these cases we think about functions in the security
parameter n. That is, the adversary which asks polynomially many queries can ask up to
poly(n) queries for some polynomial function poly and security parameter n. Similarly, in
the other case, function ε is negligible for security parameter n.

Example 1 (Security game for an encryption scheme). The game goes as follows:

1. Setup stage: Let Enc,Dec be encryption, decryption algorithms. Key k

comes from KeyGen run on 1n for security parameter n and uniformly random
R. By Ek we denote the encryption oracle, which on input m responds with
Enck(m). Both Ek and adversary A are given k and other public parameters
of the scheme.

2. Learning stage: Adversary A submits polynomially many messages mi and
gets answers Enck(mi) from Ek. A can pick her messages adaptively, that is,
decide on mi after seeing (mj ,Enck(mj)), for j < i.

3. Test stage: Next, A chooses a pair of messages m0, m1 and sends it to
Ek. Oracle Ek chooses at random bit b and responses with Enck(mb). This is
followed by adversary A that outputs bit b′.

We say that the adversary wins the game if b = b′.

Remark. The example above works also for asymmetric encryption schemes. In the asym-
metric encryption scheme KeyGen produces a pair of keys (pk, sk). The former is called
public key and used for encryption, the latter is called secret key and used to decrypt
messages. To adjust the example above to an asymmetric encryption scheme we should
parametrize the encrypting oracle E by a public key pk not secret key k.

We say that an encryption scheme is secure5 if the adversary wins the game (i.e. she
breaks the security) described in Example 1 with only negligible (we say that a function
f : N → [0, 1] is negligible iff f(x) = O(x−c) for every constant c > 0, see Definition 3)
probability over 1

2 . Note that the adversary can always guess randomly, in such case she
guesses correct bit with probability 1/2.

5This notion of security of an encryption scheme is called CPA-security, where CPA stands for Chosen
Plaintext Attack.

15

As said before, many security proofs do not hold if the key is not uniformly random or
the adversary has some additional knowledge about it (usually information like key length
is public, unlike information on number of ’1’ in it or value of a particular bit). Thus,
the discussion on the crucial assumption of key randomness uniformity and key secrecy is
a must. This leads us directly to the next part of this thesis.

1.3. Motivation for leakage-resilient cryptography

In this part we explain why the assumption of the unreservedly secret private key may
be a little too optimistic. Moreover, we present main ideas on preventing the adversary
from breaking schemes while the above-mentioned assumption does not hold and she can
get some side information on the secret key. In such case, we say that the adversary
leaks information or that there is leakage, see Section 2.4 for formal definitions of leakage-
resilient cryptography.

1.3.1. Side-channel attacks

Although a proof of the security for a cryptographic scheme may be perfectly correct on the
paper, it may not fit well to the real-world applications. Main problems arise because of
three factors: the scheme is implemented and may contain implementation failures, it is run
on some operation system, which can be attacked by malicious software, and it is executed
on a hardware device. Faulty implementations, radiation from electronics, memory leaks
make some side-channel information about secrets processed on a device achievable for
a malicious user. Here we mention just a few issues that have to be considered while using
cryptography:

Malicious software A group of possible attacks comes with the omnipresence of the
Internet. Almost every modern electronic appliance is connected to the network inevitably
being exposed to thousands of viruses, trojans and others. Once a device is infected with
such malicious software or has been taken over by a hacker, we cannot preserve faith in
effectiveness of cryptography run therein. Here we present two simple, yet based on the
real life, examples of how malicious software can cause a security risk.

Example 2 (Malicious software and cryptography [SJB+14]). Assume that a virus
Avirus, created by some malicious Acreator and residing on a machine C, has access
to any part of device’s memory. Especially these parts where cryptographic keys
are stored. Then Avirus can do the following:

1. find a part of C’s memory that contains a secret key k used to authenticate
bank transfers;

2. connect to a bank server using k;

16

3. request a transfer of all funds directly to an account managed by Acreator
6.

In the Example 2 any kind of cryptography is useless. If a virus or a hacker are present,
they can proceed on behalf of the legitimate user and learn all user’s cryptographic keys.
This example is motivated by a real-life attack performed by Silver et al. [SJB+14].

The researchers have shown a method to retrieve passwords stored in a password wallet
by manipulating user’s browser to navigate, without notifying the user, to a malicious
webpage.
The second example, Example 3, is a little different. We assume that the user does

not store keys and passwords locally, but inputs them every time when it is necessary.
Thus, there is no place on a disk where secrets are stored permanently. However, since
software that records every keyboard stroke exists (so-called key-loggers), we show that
this countermeasure can be circumvented as well [Spr16].

Example 3 (Malicious software and cryptography (2) [Spr16]). We assume that
virus Avirus, created by some Acreator and residing on machine C is able to record
keystrokes input by the legitimate machine user. Then Avirus can do the following:

1. wait till the legitimate user wants to log into a bank account;

2. during logging, record keys pressed retrieving user’s login login and password
password,

3. upload a (login, password)-pair to a bulletin board.

Then creator Acreator finds both login and password and is able to identify to a
bank on behalf of the legitimate user.

However, in the presented examples we can run some cryptographic countermeasures if
we only assume that the hacker or the virus can upload some limited amount of information
and from time to time the machine is virus-free. The idea for defence is simple – make
sensitive information so huge that no one can upload them unsuspiciously. This approach
will be elaborated later.

Attacks on hardware The next source of threats is a device which runs cryptographic
schemes. Real-world scenarios forces us to assume that the adversary has physical access
to the mentioned device. Hence, we have to take into consideration that some additional
information may be leaked, e.g. by measuring such processes like:

electro-magnetic radiation Modern cryptographic hardware uses electric current. Thus,
they emit electro-magnetic radiation that can be measured by a number of more

6In this scenario we do not care whether the perpetrator is easily identifiable or not; we can assume that
even if this is the case, she is out of our reach.

17

or less sophisticated probes. These measurements may reveal information about
underlying computation since the radiation reveals information about the charac-
teristics of the current. Countermeasures taken to prevent the adversary from prob-
ing radiation may be based on e.g. shielding, i.e. covering the device by a layer
of radiation-absorbing material or putting defended machine into a Faraday cage.
Another countermeasure is to design the circuit in such a way that the radiation
of separate wires cancel each other (so-called twisted-pair cables invented by Bell
[Bel81]). Although these countermeasures may be efficient against some adversaries,
they are usually very expensive and cannot be used on a wide scale. Below we show
a real-life example of how radiation measurements affect the security.

Example 4 (Van Eck phreaking). Van Eck showed that using a $100 appara-
tus one can eavesdrop CRT display from hundreds of meters [Hig87]. Although
the attack was presented in 1988, it was known to the military before. Even
though CRT displays are no longer popular, the same attack works on LCD
screens.

computation time A seminal paper by Kocher [Koc96] drew attention to another prob-
lem with security hardware and implementations. The paper shows that a naïve
implementation of systems like RSA or Diffie-Hellmann can be vulnerable because
of differences in computing time depending on a value of the private key.

Example 5 (Computation time of RSA). It was shown in [Koc96] that if
a number of RSA ciphertexts can be submitted to decryption, an attacker can
reveal the secret key completely by observing only computation time.

memory probing In this kind of attack we assume that there is a way to obtain values of
some bits stored in a device’s memory. Out of plethora of memory attacks we give
one as an example.

Example 6 (Halderman et al. attack). Halderman et al. [HSH+08] shown
that it is feasible to retrieve a considerable part of computer’s DRAM memory
(or other volatile memory) by powering it off and freezing the device. Such
a procedure allows to read information directly from the DRAM unit, what
can reveal the secret key if it has been transferred to the volatile memory
during computation like decrypting, signing, etc.

To conclude, a huge amount of side-channel attacks are possible due to electromagnetic
and heating radiation or computation time measurements. Such vulnerabilities can be

18

limited by, e.g. redesigning the hardware to reduce radiation. However, that usually
demands more materials used and more complicated circuits. Furthermore, a device can
be stored in a special box, which reduce the possibility of leakage even more. This approach
make hardware much more expensive and inevitably much more complicated and harder
to analyze. Thus, these solutions are not widespread but used only by users like military
forces. See [Sta10, BMV05] for detailed information on hardware side-channel attacks and
countermeasures.

Implementation failures Using low-level programming language like C comes with po-
tential security dangers caused by the huge flexibility in managing memory of a device
(see [CW07, HL02, MM05]). This feature forces a programmer to consider attacks like
buffer overflow and similar. Just to mention a recent example, the Heartbleed attack
[Cod14, Sch14], which allowed a malicious user to obtain a secret key used in standardised
X.509 certificates from a TLS/SSL session. This attack was particularly devastating since
the TLS/SSL protocol was supposed to secure internet connection and is world-widely
used in online banking and shopping. The heartbleed bug can be described in a simple
attack scenario.

Example 7 (Heartbleed). Let C be a client and S a server. Suppose that C checks
whether S is still connected, then:

• If client C is honest, she asks the server question like: If you are there,
send me these 5 letters: ’BREAD’.
Server answers BREAD.

• On the other side, if client C is malicious, she can change a question a bit: If
you are there, send me these 500 letters: ’BREAD’.
Server answers BREAD and 495 following characters as requested.

C gets from S the requested number of letters despite of the length of the word
she asked. Along these additional letters malicious client C may obtain the value of
server’s password and other sensitive information.

This particular example was possible due to the high flexibility that C gives. Even
though many modern high-level languages like Java are free from buffer overflow attacks,
we can not assume that programs written in these languages are safe.

1.3.2. Modeling side-channel attacks

Engineering approach to side-channel attacks issues relies on protecting hardware units
by techniques like, e.g. aforementioned shielding or implementation modifications, leaving
the underlying cryptographic scheme as it was. The main drawback of such an approach

19

is impossibility of anticipating all possible attacks on a device. A slightly different tech-
nique of measuring radiation can make all conceived security useless. Furthermore, more
and more accurate probing devices are developed, making protection of sensitive data
respectively more difficult.
We employ a different approach to provide the security under side-channel attacks. We

model mathematically capabilities of the adversary and design schemes provably secure in
the considered model like in [Dzi06, Pie09, FKPR10, DP08, ADN+10, DORS08]. The list
below presents some popular approaches on modelling leaky devices and implementations.

Only computation leaks information This model, presented e.g. in
[GR15, GR10, DDN15], assumes that the adversary does not have
access to the whole secret, but only to a part being currently used in computation.
A scheme secure in this model is resilient to the attack described in Example 5.

Memory leakage On the other hand, there is the memory leakage model (see [BKKV10,
DLWW11, DHLW10, KKS11]), where the attention is paid not to computation but
to memory of a device. Example 6 illustrates an attack covered by this model.

Relative and absolute leakage In these models the adversary has access to the whole
device, both memory and parts used in computation. However, information she can
obtain is limited by some constant number of bits λ. These models fit especially
well to cover attacks described in Example 3. Furthermore, the attacks described in
Example 5 and 6 would also be pushed back. This thesis is done according to the
absolute leakage model, more precisely the Bounded Retrieval Model. We elaborate
more on this particular approach below and in Section 2.4.

1.3.3. Bounded Retrieval Model

In the world of hackers, Internet and malicious software spread therein a powerful model of
leakage is strongly demanded. Consider a scenario when a given device is infected by some
virus. We should assume that the virus has almost unlimited access to device’s disk data
and memory. Especially, it is granted access to any cryptographic keys stored therein. In
such case, the virus can authenticate bank transfers (cf. Example 2), retrieve passwords
(cf. Example 3), decrypt private letters, etc. All of this on behalf of the legitimate user
without any obstacles or suspicions. Unfortunately, it is not possible to provide any
(provable) security in such case.

On the other hand, we can assume that the virus can be detected and removed by some
antivirus software, hacker can log out and so on. We can assume that there is a period of
time, when the machine is virus-free. We provide a scheme that is secure in the following
sense.

• Divide adversary A into two instances, internal Aint with unlimited access to ma-
chine’s resources and another, external Aext, that retrieves information from Aint
and makes use of them. We could interpret the pair of the adversaries as follows

20

– Aint is malicious software residing on the machine and Aext is its creator. See
Figure 1.1 for an illustration of such an adversary.

• Define a security game Game (cf. Definition 1) that will be played by Aext.

• Assume information that Aint can pass to Aext is limited.

• Any information that Aint can pass does not help Aext win Game with non-negligible
probability over 0 or 1

2 (depending on Game).

The assumption on the limited amount of information that Aint can pass Aext can be
justified as follows. Let this amount be measured in gigabytes of data, then it is impossible
for Aint to sent such amount of data unsuspiciously. That is, we expect that a user notices
such a great leak and stop it by, e.g. disconnecting the machine from the Internet.

CPU

GPU

HDD

Aint leakage

Aext

Figure 1.1.: Adversary divided into two parts.

Consider for example a signature scheme. The simplest method to achieve the security
of the scheme in the setting presented above is to make any sensitive information huge.
Instead of a few kilobytes long keys, which can be uploaded to the Internet in no time,
keys could be made huge, a few gigabytes long. Our goal is to show that even if the
adversary learn gigabytes of information it does not help her to break the security of the
scheme.
This solution, called the Bounded Retrieval Model, has been proposed in parallel in

[Dzi06] and [DCLW06] and thereafter developed in many works like [ADN+10, ADW09,
DS05, DP08, DKW11, NS12, DP07, FPS12, FKPR10, BKR16], where authors provided
cryptographic primitives like encryption, identification, signature and secret sharing secure
in this model. Since BRM gives the adversary a great power, this thesis is done according
to it.
We model knowledge the adversary can learn by leakage queries. These queries can be

described as functions of secret data. The adversary submits them to a leakage oracle that
computes values of these functions taking secrets as an argument. The adversary learns
outputs of the functions if they are (cumulatively) shorter than a leakage parameter,

21

which is set to prevent the adversary from learning too much (e.g. the whole secret). See
Section 2.4 for more information and precise model description.

Drawbacks of BRM

Despite of obvious advantages of the leakage-resilient cryptography (especially BRM) over
the traditional approach to security, there are a few drawbacks of a great importance
which cause leakage-resilient cryptography still unpopular and absent in the real-world
cryptographic implementations. (However, papers like [FPS12] provides some ideas how
to make leakage resilient practical). Here we mention only these, which are relevant to
the technical point of view.

Memory inefficiency Since a key in BRM is usually a few gigabytes long it is incomparable
larger than keys used in RSA or El Gamal schemes which occupy only a few kilobytes
of device’s memory.

Running time increase Memory inefficiency goes along with another drawback. That is,
increase of a running time of a scheme. This is caused by either a must of picking
successive bits of a cryptographic key from much larger memory space, or inevitable
bigger algorithmic complexity of a scheme.

Regarding the first obstacle, users are forced to sacrifice a large amount of memory just
to store a giant cryptographic key that is otherwise useless. This makes BRM not practical
for mobile devices. Although personal computers have usually great computational power
and hardware underneath can be easily upgraded, RAM made faster, HDD space added,
smartphones and tablets are much less accessible and less upgradeable devices. In this
work we show how to circumvent this obstacle.
The second drawback can be circumvented by using only a randomly chosen part of the

key (see [Dzi06]), what limits computation complexity significantly. Instead of running
computation on the whole key, considered as a long sequence of random bits, only a relative
short subsequence of it is used. This subsequence is chosen randomly for every single use
of the key. Assuming that countermeasures against the second obstacle are sufficient, we
focus on how to circumvent the first obstacle.

1.4. Results

1.4.1. Security from private data

The main result of this thesis is a key derivation function, which provides a secure cryp-
tographic key in the bounded retrieval model from private, non-uniform data. Obtaining
cryptographic keys from non-uniform data is a well-known problem, elaborated in a num-
ber of papers, see Section 1.4.2 below for references. The true novelty this thesis brings
is use of private data for that purpose. Here we discuss benefits that come with this

22

approach. We also point obstacles that had to be circumvented to make use of private
data possible. Finally, we discuss which data we consider private and which we do not.
Figure 1.2 illustrates general idea of a key derivation process from user’s data.

key K disk data

family photos

video from a party

holiday video

my puppy photos

recorded lecture

some photos

0x301
20120

0x011
00120

0x121
21021

BRM protocol P,
which requires some
parts of the key.

(a) (b) (c)

Figure 1.2.: Cryptographic key derivation from private data. Picture (a) shows a BRM
protocol that needs to use some parts of a secret key K, cf. Picture (b). The
key is derived from disk data, which consist of music, images and videos stored
by the user on a disk as shown on Picture (c).

Private data, benefits and obstacles As mentioned before, the novelty of our approach
is to employ user’s private data to generate a cryptographic key secure in BRM. This
makes BRM-based cryptography available for mobile devices, which dispose only limited
amount of disk space. Instead of sacrificing pricey memory to store a huge block of random
bits that is useful only for cryptographic purposes and otherwise useless, we use data that
has been already stored on a device.
Such an approach forces us to assure that the data we use remain private. This is

especially important in BRM, which allows an adversary to learn information about the
key by queries to a leakage oracle. Furthermore, in this model we (sometimes) allow partial
disclosure of the key, e.g. if the key is used to identification, then the verifier could learn
some parts of it during the protocol execution. Motivated to make our key derivation

23

procedure as universal as possible, we have to consider such threats. Here, we employ
very conservative approach. We show that the adversary learns nothing (except allowed
leakage) about the underlying data even if she is given the whole derived key.
This thesis shows techniques allowing to enhance security of mobile devices considerably

and at low cost. The device will remain secure even if the adversary learns parts of the
cryptographic key. The cost is a little slower cryptographic operations, since the key parts
are generated every time the key is used. On the other hand, we address this drawback
also. The user could simply generate some parts of the key before the protocol starts and
store them. However, this limits benefits of the proposed solution – stored parts look like
random bits and does not have non-cryptographic application. This is a trade-off. The
user can decide how much of free space she may utilize to store the key and compute
as many parts of the key as she wants. Furthermore, she can change her mind at any
time and either precompute more parts, making further cryptographic operations faster,
or remove them to obtain more free space.

Which data are private? We have to address a question: which data stored on our
devices could be used in key derivation? The answer is not as straight-forward as it may
seem. For example, if we store on a device episodes of a beloved TV show, could we
use them? Unfortunately, the answer is usually negative here. Suppose that we want to
use a certain episode of Better call Saul TV series. Then the adversary, who is equipped
with access to the leakage oracle could just query it for the title, the number of series
and episode. This information are usually not secret and provided, e.g. in file metadata.
Furthermore, almost every episode of a (popular) TV-show is recognizable by its hash
value7. Thus, the adversary easily learns which file was used consuming only few bits of
leakage. She could then download the file from the Internet obtaining some non-trivial
information about the derived key.
Of course, we could argue that there are many versions of the file on the Internet.

However, we take here a conservative stance and claim that the number of versions is too
limited to consider using publicly available multimedia files to derive a key.
On the other hand, we believe that some uncertainty of a multimedia file can be pre-

served in some cases. Suppose that the user stores movies on a PC and before she transfers
them to a mobile device she converts them to a mobile-friendly format (e.g. losses some
quality, changes file format). Such a conversion, with a great probability, will make recog-
nition of file by its hash value impossible. However, we should still be careful, since some
data may be read from metadata. It is also hard to predict how much the converted file
would differ from the original one.
Another countermeasure that could be taken to make publicly obtainable files useful

to key derivation is personalization. Of course, we cannot demand from the user to,
e.g. change colours of a movie, add scenes there or add tracks to a music file. Here, by
personalization we mean including in file some data specific and unique to user’s device.

7This fact is widely used in video players that recognize file and download subtitles tailored for it.

24

For example, if a certain block of data from a movie is used in key derivation, we could
add the number of a disk sector it occupies. We believe that even if the adversary easily
(and cheaply, in terms of leakage) learns which movie file was used, it would cost her much
more to obtain all disk sector indices also.

Ideally, we would like to assume that multimedia created by the user and stored on
a device are not available anywhere else. Unfortunately, in times of social media we cannot
do so. Thus, we have to address the following question: what if a file (say, a picture)
used in a key derivation procedure was also uploaded to some social media website, like
Facebook? Here we argue twofold. Firstly, on sites like Facebook media are converted and
compressed during upload, because of limited capacities of servers. Thus, the file which
occurs on the site differs from the file from the device. Secondly, we put trust in user’s
security and privacy routine. We assume that private pictures will not be shared with all
of the world but only inside a bounded (however potentially big) group of friends. We
claim that both arguments make possibility of obtaining an exact copy of the file stored
on the device considerably reduced.
This discussion boils down to a conclusion. Because of security reasons, we argue that

files used in a key derivation procedure should not be easily obtainable and identifiable
on the Internet. Contrary, they should be produced by the user herself or, at least,
personalized by her, e.g. by adding disk-specific information to them as mentioned above.
One could ask whether users produce enough content to even consider deriving crypto-

graphic keys from created data. Here we claim that this is the case. We support this claim
by two statistics: every minute 300 hours of movies is uploaded to Youtube [Bra16] and
1.8 billion photos is shared on Facebook, Snapchat, Instagram every day [Eve15]. This
shows how creative people are and how much data they produce.

1.4.2. Overcoming weak expectations

Classical cryptographic schemes have the security based on randomness taken from a uni-
form distribution, which is not easily achievable in the real world. Hence, a lot of effort has
been put to deliver schemes which do not depend on such rare and fugitive primitive and
retain comparable level of security. This line of research has been proposed by Barak et
al. in [BDK+11]. The paper proved renowned Leftover Hash Lemma stating that a family
of hash functions constitute good randomness extractors. Research has been continued
and developed in e.g. [DY13] and [YL13].
On the other hand, there are plenty of papers on obtaining randomness close to uniform

from sources like (a) nature, e.g. from biometric data [DORS08, BDK+05], (b) hardware
[BH05, BST03], (c) samples from close distributions [DKK+12], (d) repeating condensing
[RSW06], (e) random group element [CFPZ09], (f) different modes of encryption operation
[DGH+04].

These solutions work in two different settings. In papers like [BH05, BST03, CFPZ09,
DGH+04] authors prove that indistinguishability of a perpetrated and uniform random-
ness holds only if A is computationally bounded, i.e. there is some constant T such that

25

A cannot perform more than T operations (e.g. in terms of Turing machines, no more
than T transitions). On the other hand, [DORS08, BDK+05, DKK+12, RSW06] do not
make use of that assumption and provide results based on information theory. This thesis
employs the information-theory setting. However, results obtained here work for compu-
tationally bounded adversaries also.8

1.4.3. Key Derivation Functions (kdf)

Key Derivation Functions are where above-mentioned problems of BRM space inefficiency
and derivation of cryptographic key from non-uniform source of randomness meet. A num-
ber of authors proposed solutions for both of them, especially for the latter one. Up to our
knowledge, we are the first who produce efficiently computable BRM key from imperfect
sources of randomness like private data already stored on a device. Provided solution is
secure and private, it does not give an adversary any (non-negligible) additional power
and preserves privacy of used data.
The idea of Key Derivation Functions comes directly from [DY13], where the authors

have shown a concept of a new class of functions kdf that for source D ∈ {0, 1}m of min-
entropy at least κ (see Definition 10 for definition) outputs a cryptographically secure
secret key K ∈ {0, 1}n. Here we enhance this concept by showing how to use kdf in BRM.
We also define security of kdf in this model. Moreover, due to our application and fact
that a min-entropy source D may be sensible information itself, we introduce a concept of
private kdf, which hides information about D. Last but not least, we provide a working
example of kdf which is described later.

Key derivation vs randomness derivation BRM schemes usually consists of a key gen-
eration subroutine KeyGen that on input (1n, R), where n is a security parameter and R is
a random variable of uniform distribution, produces a secret key for the scheme. Our kdf
could be used to produce fake randomness R′ that is not uniformly distributed, yet has
some min-entropy (for definition of min-entropy check Definition 10). That is, for given
non-uniform D, we run KeyGen procedure on some R′ ← kdf(n,D). More precisely, the
key for the scheme is produced by KeyGen(1n, kdf(n,D)).
However, in most cases we will consider really simple KeyGen functions that on input

(1n, R), return just R. That is the reason why we call our primitive key derivation function,
not randomness derivation function.

However, asymmetric cryptography requires a key divided into two parts – one public pk
and another private sk. In such setting we set sk = R and compute pk as a deterministic
function on sk. When referring to key, we talk about sk.
Having this remark in mind, we later write KeyGen(1n, R) if the uniformly random key

is generated given uniformly random R and kdf(1n, D) if the key is derived by kdf on some
8Note, it is not straight-forward that information-theoretic results work for computationally bounded
adversaries also. In principle in the former setting proofs may use techniques unachievable for proofs
in the latter setting, like computationally unbounded simulators.

26

D that may not have full min-entropy.

Security of kdf The main property of kdf is security meant as a gap between the security
of a scheme working under uniformly random key and the same scheme where the key was
derived by kdf.
Suppose that a BRM scheme Prot is ε(n)-secure in terms of the corresponding security

game Game (see Definition 1). We assume that Prot contains as a subroutine function
KeyGen that given security parameter n and access to randomness R, that is uniformly
distributed, returns a key K. Consider another scheme Prot′ that differs to Prot in one
detail only – while Prot uses KeyGen, Prot′ produces the key using kdf on randomness D,
provided that D has high min-entropy. We say that kdf is ε′(n)-secure if scheme Prot′ is
(ε(n) + ε′(n))-secure.
Example 8 contains simple yet illustrative example of this property. We show how

security of kdf affects the security of an encryption scheme. Delivered solution has a minor
overhead on the amount of side-information the adversary obtains. To keep example
simple, we did not equip the adversary with access to a leakage oracle.

Example 8 (Encryption scheme with a key derived from kdf). Recall a game de-
scribed in Example 1. We say that an encryption scheme is ε(n)-secure if the
adversary wins a game described in Example 1 with probability 1/2+ε(n), for some
negligible ε. In the example, we assumed that a pair of keys (pk, sk) comes from
a KeyGen function run on a uniformly random R and 1n. More precisely, sk is
uniformly random and pk is obtained deterministically given sk.
Here, instead of a KeyGen subroutine, we use kdf run on a random variable D.

The scheme that obtains sk from kdf(1n, D) is (ε(n) + ε′(n))-secure in terms of
a security game described in Example 1.

What is crucial in this definition is that it fits to any BRM scheme with the security
defined by a game and key generation procedure that can be run by the party indepen-
dently.9 It does not redefine the security for a scheme, but describes the security gap
between a uniform and a non-uniform key.

Privacy of kdf Using private data to derive cryptographic key in BRM comes with
additional vulnerability. Many BRM protocols allow partial disclosure of the key during
identification, signing, encrypting and other cryptographic operations. Furthermore, some
of them assume that all parties are given access to it. All of this call under question the idea
of using private data. The proposed solution assures that private data remains private.

The idea of the definition of privacy goes as follows. Suppose that algorithm A on input
K derived from private data D (where private data D stands for a realization of a random

9As an example for a BRM protocol that does not this property recall [ADW09], where the users of the
protocol require master update key that is common for all of them and is not prone to leakage.

27

variable with distribution corresponding to the distribution of disk data) retrieves some
information about D. We construct a machine called the simulator (see Section 2.2 for
definition and intuitions on simulators and their role in the provable security), denoted by
S, which gets A as input, i.e. A is described as a Turing machine and given to S. However,
S is not given access to the key K or other A inputs. We say that data D remain private
if the output of S on A has distribution indistinguishable from the distribution of the
output of A with K on the input, even conditioned on particular value of data D.

An exemplary measure of the indistinguishability of two distributions is a statistical
distance (denoted by ∆), defined as follows:

∆(X,Y) = 1
2

∑
a∈supp(X)∪supp(Y)

| Pr(X = a)− Pr(Y = a) | .

Indistinguishability of the aforementioned distributions can be formally written as:

∆((Output(A(K)), D), (Output(S(A)), D)) 6 ε(n) ,

for negligible ε. We write Output to emphasize that we consider only outputs of A and
S, and we do not compare distributions of algorithms.

The conclusion from the presented formula is following: since the output of any algo-
rithm A can be simulated by an algorithm with no access to K, no algorithm A obtains
any non-trivial information on D from K. However, it does not mean that the adversary
remains absolutely oblivious to data D. Since she is equipped with leakage, she can obtain
information using it. However, that is the only way she can learn something about data
D.
Note that this property allows us to use a key derived by kdf also in symmetric BRM

schemes. More precisely, since the key reveals nothing about the underlying data a party
that derived it can share it with another party, without putting privacy of data at risk.

1.4.4. Disperse as an example of kdf

As an example of a key derivation function we describe a function Disperse that transforms
any input D to a secure and private BRM key, where parameters for security and privacy
depends on the allowed amount of adversarial leakage and min-entropy of D. Function
Disperse is built on a d-regular disperser graph Gσ (see Section 2.11 for more information
about disperser graph) along with a random oracleH (see Section 2.3 for more information
about random oracles and how they can be instantiated in practice by hash functions).
Exemplary constructions are shown on Figure 3.3. Here Di stands for consecutive blocks
of the sample of random variable D. When a block of key D′i is demanded, one compute
D′i = H(i,Dσ(i,1), . . . , Dσ(i,d)) for Dσ(i,j) being left nodes and σ a function describing graph
Gσ. We assume that disperser graph Gσ is publicly known.

28

D1

D2

D3

D`−2

D`−1

D`

D′1

D′2

D′3

D′`−2

D′`−1

D′`

Gσ

. . .

Figure 1.3.: An exemplary DisperseGσ ,H(D) built on a 3-regular right disperser Gσ.

One-wayness One of the main properties of our construction that implies both security
and privacy is one-wayness of Disperse. Informally, we define it by saying that if adversary
A

• has access to all nodes D′i on the right side of graph Gσ,

• has no access to left nodes Dσ(i,j),

• is given access to a leakage oracle OD,Hλ limited by the leakage parameter λ,

• can submit up to q(n) queries to a random oracle H.

then the number of queries to H equal
(
i,Dσ(i,1), . . . , Dσ(i,d)

)
is strictly limited beside

negligible probability.
This property is crucial in the presented work, we believe it could be useful anywhere

where is a demand for a function that no one can obtain any useful information on the
input from the function’s output even under leakage. This property could be described as
a stronger notion of one-wayness known from one-way function [KL07].

1.4.5. Identification and signature scheme on kdf

Except a concrete instantiation of a kdf function, we provide examples of identification
and signature schemes that fit kdfs well. Both are based on a structure called Merkle
tree [Mer79], which is often used in identification schemes because of its simplicity and
very short public key. The signature scheme is delivered directly from the identification
protocol by the Fiat-Shamir heuristic [FS87, FFS88].

29

1.4.6. Key refreshing

As mentioned before, one motivation for this work was to make a practical BRM scheme
that can be run on devices with limited resources. Here, we derive the key from data
already stored on the device. This approach comes with a major drawback. The key
changes every time when the underlying data is modified. Since allowing user to modify
data is a must, an efficient protocol that updates the key when data change is necessary
too. The thesis delivers a solution for this problem that is simple and has communicational
and computational complexity of a single identification.

1.5. Trivial solutions

In this part we briefly describe some naïve solution to the problem stated above.

Extractors We start with solution based on extractors [TV00, Tre01, Rao09]. We say
that random variable X has average min-entropy greater than κ conditioned on variable L
and write H̃∞(X | L) > κ if κ < − log

(
El∈supp(L) maxx Pr(X = x | L = l)

)
(see Section 2.5

for more information about various notions of entropy). A (κ, ε)-extractor is a function
such that for some uniformly random R over {0, 1}d, and input X ∈ {0, 1}n outputs
Ext(X,R) ∈ {0, 1}m, a random variable such that (Ext(X,R), R, L) is ε-close (in terms
of statistical distance) to (Ud, R, L) if H̃∞(X | L) > κ, Ud denote a random variable of
uniform distribution over {0, 1}d and L is some additional information on X. Since the
output of an extractor is close to the uniform and use of such a function does not require
any additional assumptions it seems a good idea to use them instead of more complex
construction of dispersers and random oracle. Unfortunately, it is not. Here we mention
two important arguments against such a solution:

• In our solution we do not assume that there are some data on the device hidden
to the adversary, she has an access to everything the legitimate user has. Thus,
extractor randomness R is available to A as well and it cannot be prevented that
the adversary granted with access to a leakage oracle gets some information on R and
perform leakage operations on X depending of obtained information. This makes
X and R (possibly) dependent. Unfortunately, aforementioned extractor definition
does not consider such a possibility.

• Due to the size of stored data, BRM schemes make use only of some constant (in
terms of key size) number of bits of key. Thus fast computation of a part of key
is a must. Unfortunately, solution based on extractors usually do not provide such
a feature and outputs the whole key even if only a small part of it is demanded.
This makes solution based on extractors impractical, because of big computation
overhead.

30

Block by block hashing Another potential solution is to process data block by block.
Consider a random oracle H and consecutive blocks of data D1, . . . , D`. The obtained key
equals D′1 = H(1, D1), . . . , D′` = H(`,D`). Our solution proposed in Chapter 3 assumes
only some amount of min-entropy in D and it does not demand equal distribution of min-
entropy among blocks D1, . . . , D`. Hence, a situation where some blocks are determined,
e.g. they correspond to some fixed part of files like headers, is allowed, what gives an
additional information for the adversary. Furthermore, some blocks may equal each other,
what allows the adversary to get information about two parts of the output key covering
the cost of leaking a value of a single block only. Thus, it seems reasonable to deliver
a solution where every part of the output depends on many blocks of input data to make
sure that dependencies between the key blocks are not straight-forward. This is indeed
the case in the proposed solution.

1.6. Organization of the thesis

Chapter 2 is dedicated to preliminaries on security games, Random Oracle Model and
leakage-resilient cryptography. Furthermore, we introduce various notions of entropy and
point out important properties of conditional min-entropy. We also discuss the difference
between the real world and the ideal world and recall the notion of simulator. Next,
we recall some basic cryptographic primitives like signature and identification schemes.
We define these notions for a leakage-resilient setting. Last but not least, we show basic
properties of disperser graphs that are an important building block in this thesis.
Chapter 3, contains the main result of this thesis and presents a key derivation function.

Even though kdfs have been proposed in [DY13], we present there a new definition for this
class of functions. This approach is justified by introducing a new requirement on kdfs,
that is, privacy. The chapter also presents an exemplary kdf function called Disperse. We
show that obtained function fulfils our requirements, i.e. is both private and secure. In
this chapter we also define a game Guessing and shows one-wayness of Disperse function
that may be interesting of their own.
Chapter 4 provides potential use cases for Disperse function and shows examples of

identification and signature schemes. Both schemes are based on a well-known primitive
called Merkle tree. However, we are probably the first who shown that these constructions
are secure in the Bounded Retrieval Model. In this chapter we also propose a method to
overcome the problem of modifying data used to produce the key.
Chapter 5 states some open problems due to the further work. Appendix A contains

proofs omitted in the main part of the thesis.

31

CHAPTER 2

PRELIMINARIES

The following chapter contains a short description of a computational model and presents
cryptographic primitives which are used in this thesis. It also introduces some basic cryp-
tographic notions and provides short but essential information on min-entropy as a security
measure. Furthermore, it provides elementary facts on bipartite disperser graphs, which
properties are extensively used in this thesis.

2.1. Security games

Security of cryptography schemes are usually proven by defining a game, called from now
on a security game, played between two interactive algorithms – one called an adversary,
denoted by A, and another called a challenger, denoted by C. The adversary is an algo-
rithm that tries to break the security of a scheme, while the challenger is a counterpart
that interacts with her. We point out that such an interaction is crucial since it models
that the adversary can learn something from observing scheme executions. We say that
the adversary wins the game if she makes the challenger to output Accept. Otherwise, A
loses and C outputs Reject. We say that the adversary breaks the security of the game if
she wins the corresponding security game with

• non-negligible probability, or

• probability non-negligibly greater than 1/2.

The case depends on the game played. For the former see the game on Fig. 2.2. For the
latter, see Ex. 1. Below we formalize the notion of a security game.

33

Definition 1 (Security game1). A security game with randomness R against interactive
algorithm A is a tuple

Game = (C,ParamGen,KeyGen,SetupC ,SetupA,Execute)

consisting of an interactive algorithm C, called the challenger, together with a randomized
public parameters generation procedure ParamGen, key generation function KeyGen, a pair
of setup procedures SetupC , SetupA and an execution procedure Execute which given an
interactive algorithm A operates as described in Figure 2.1.

Execution procedure Execute of
Game = (C,ParamGen,KeyGen, SetupC , SetupA,Execute).

1. System parameters are generated params← ParamGen(1n), for security param-
eter n.

2. The key is initialized by K ← KeyGen(1n;R), for randomness R. Then the
input tapes of A and C are set to SetupA(K, params) and SetupC(K, params)
respectively.

Execution phase:

3. The following loop is conducted:

Algorithm 1: Main loop
1 msgC7→A = ⊥ /* first message is empty */
2 while stateC 6∈ {Accept, Reject} do
3 A : (stateA, msgC7→A) (state′A, msgA7→C)
4 C : (stateC , msgA7→C) (state′C , msgC7→A)
5 end

Output: The final state stateC ∈ {Accept, Reject} of the challenger C.

Figure 2.1.: Execution procedure

For an interactive machines X ,Y, such that X ,Y ∈ {A, C} and X 6= Y, we use nota-
tion X : (stateX , msgY7→X) (state′X , msg′X 7→Y), which indicates that the interactive
machines X resumes in state stateX given an input message msgY7→X from a machine
Y and transits to state state′ with an output message msg′X 7→Y to Y. Given all the pa-
rameters, we denote the execution of the game by Game[A � C,K ← KeyGen(1n;R)],
where � stands for a communication between parties A and C. Note, we will usually

1The definition in the presented form originated in [DDK+16]. However, it may be seen as a version of
the definition from [GW11].

34

skip the second argument of KeyGen, i.e. the randomness if it is taken from the uniform
distribution. Note also, that in the latter part of the thesis we assume KeyGen(1n, R) = R,
see discussion in Section 1.4.3.
Intuitively, the operation of Game[A� C,K ← KeyGen(1n;R)] boils down to an adap-

tive, sequential (numbered by round) exchange of messages between interactive machines
A and C initialized by the values SetupA(K, params) and SetupC(K, params) respectively,
which ends up in the last state of the algorithm C. Having defined what a security game
is, we define what does it mean that adversary A wins it and a game security notion.

Definition 2 (Game security2). Let TM be some collection of Turing machines. We say
that Game ← (C,ParamGen,KeyGen,SetupC , SetupA,Execute) based on randomness K is
(ε(n),TM)-secure, for some security parameter n, iff for every A ∈ TM the probability
that execution of C ends in Accept satisfies

Pr(Game[A� C,K ← KeyGen(1n;R)] = Accept) 6 ε(n) , (2.1)

where the probability is taken over R and all random choices of C and A.

We usually require that ε given above is a negligible function or ε(n) = 1
2 + ε′(n) for

a negligible ε′.

Definition 3 (Negligible function, see [KL07]). We call a function ε : N → R negligible,
if for every polynomial function poly there exists N ∈ N such that for every n > N holds
ε(n) < 1

poly(n) .

Recall Ex. 1 for an example of a security game. This particular game is an indistin-
guishability game, i.e. we say that the adversary wins the game if she is able to distinguish
between two worlds with probability non-negligibly better than 1/2. On the other hand
we have another example, see Figure 2.4, of a game where the adversary wins the game
if she come up with a valid signature on a message with non-negligible probability. The
definition above covers both cases.

Remark. Recall that for every secret key k from Ex. 1 there is a machine A such that A
wins the game always. E.g. if k is a part of A’s code, then A can simply decrypt mes-
sage Enck(mb) and tell whether it contains encryption of m0 or m1. However, probability
that such “well-fitted” k is picked is 1/|KeySpace|, which is negligible. Thus, Eq. 2.1
should be interpret as follows: pick adversary A and set public parameters params. Fi-
nally, run KeyGen algorithm and obtain secret key K (uniformly random over predefined
KeySpace).

Usually we require that the challenger is a probabilistic polynomial time (PPT) Turing
machine:

2The definition in the presented form originated in [DDK+16]. However, it may be seen as a version of
the definition from [GW11].

35

Definition 4 (Probabilistic polynomial time Turing machine (PPT), see [KL07]). We say
that Turing machine A is PPT iff A have access to an auxiliary tape with random input
R and on input x machine A outputs A(x;R) in time polynomial in |x|.

2.2. Real world vs ideal world

One of the methods for proving security of a cryptographic primitive is to show that
an adversary who observes primitive’s behaviour cannot learn anything important (from
the security point of view) on its internals and inputs. This idea has been formalized
by introducing concepts of ideal and real world. In the ideal world we assume that the
adversary (by definition) learns nothing valuable from an interaction with the primitive.
On the other hand, we have the real world, were we do not make such an assumption
and have to take into consideration that the adversary may be able to learn something.
If both worlds are indistinguishable, we conclude that our real-world primitive is secure –
since the distinguisher cannot distinguish the ideal world where she learns nothing from
the other, the real world, it means she learns nothing in the real world as well.
Of course, distinguishing algorithm can always toss a coin and guess randomly. Thus,

we demand that no algorithm can distinguish with probability non-negligibly better than
1
2 .
For example consider semantic security of an encryption scheme (see, e.g. [Gol04,

GM84]). In the ideal world the adversary that submits plaintext learns corresponding
ciphertext and nothing more. On the other hand, in the real world situation may be
a little different. Suppose that the adversary may be able to come up with a probability
ensemble (Xn)n∈N of plaintexts that allows her to learn some information about a plain-
text from the corresponding ciphertext. In such case the distinguisher, which also have
this information, is able to distinguish the worlds, because in the ideal world she learns
nothing by the definition. To show that distinguishing the worlds is not possible we in-
troduce a machine, called henceforth a simulator and denoted by S, that given access to
the primitive in the ideal world simulates everything the distinguisher may see.
Since both the adversary and the simulator are Turing machines, we can equip the latter

with adversary’s code (as an additional tape). However, we do not equip the simulator
with auxiliary tapes given to the adversary, like tape with adversary’s randomness or
adversary’s input. In case of an encryption scheme, the simulator has an oracle access to
the encryption scheme, can query it with plaintexts and get corresponding ciphertexts.
Simulator does not have access to any internal secrets of the scheme, like a secret key, and
it (usually) does not have any special power over the adversary. Since it does not know the
adversary’s queries or responses from the oracle, (since the simulator does not know A’s
randomness and input) the simulator provides encryption of some garbage, like encryption
of 0|Xn|, instead of encryption of Xn. If the simulator succeeds and the distinguisher
does not distinguish encryption of Xn from encryption of 0|Xn| we can conclude that the
adversary learns nothing from encryption of (Xn)n∈N.

36

We mentioned that no machine can distinguish the ideal and the real world and the
best she can do is to guess which world she interacts with. That means we allow the
distinguisher to guess with a slightly better probability over 1

2 only if her advantage over
random guess is negligible.
Below we define what does it mean that two probability ensembles are computationally

indistinguishable.

Definition 5 (Computational indistinguishability, see [Lin17]). Let
X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N be probability
ensembles indexed by two variables a ∈ {0, 1}∗ and n ∈ N. We say that X and Y are
computationally indistinguishable if for every non-uniform probabilistic polynomial time
algorithm D there exists negligible function ε such that for every a ∈ {0, 1}∗ and every
n ∈ N:

|Pr(D(X(a, n)) = 1)− Pr(D(Y (a, n)) = 1)| 6 ε(n) .

Regarding secure computation, index a can be interpreted as system parameters and n as
a security parameter. We allow a to be different for every n. Regarding aforementioned
example of encryption scheme security we can illustrate this definition by stating that
distribution X has been delivered by adversaryA communicating with a real world scheme,
while the other distribution Y has been produced by simulator S equipped with access to
the functionality in the ideal world.
We also introduce a stronger notion of indistinguishability here – statistical indistin-

guishability. It allows the adversary to be computationally unbounded (in fact, computa-
tional power of the adversary is not important here at all).

Definition 6 (Statistical indistinguishability, see [Lin17]). Let X = {X(a, n)}a∈{0,1}∗,n∈N
and Y = {Y (a, n)}a∈{0,1}∗,n∈N be probability ensembles indexed by two variables a ∈
{0, 1}∗ and n ∈ N. We say that X and Y are statistically indistinguishable if for some
negligible function ε and every a ∈ {0, 1}∗ and every n ∈ N:

∆(X(a, n), Y (a, n)) 6 ε(n) .

Simulation in leakage-resilient cryptography In case of leakage, we give the simulator
additional power of making leakage queries as the adversary does. However, it may be
difficult for the simulator to do its job being as restricted as the adversary is. Thus,
we allow the simulator to have a slightly bigger leakage Λ(λ), for a leakage parameter
λ. We denote simulator’s overhead (Λ(λ) − λ) by ∆λ. This gap between simulator’s
and adversary’s power makes our proofs less tight. That is, equipped with the simulator
allowed to make leakage of size Λ(λ) we can only proof security of a scheme against
adversaries allowed to make leakage of size at most λ. Hence, we care for ∆λ to be as
small as possible.

37

2.3. Random Oracle Model

Many years of cryptographic research have shown that a vast number of proofs (and
henceforth cryptographic schemes) would become much (conceptually) simpler if we were
equipped with oracle access to a machine that takes some arbitrary, yet well defined,
input and gives some random, unpredictable output. Furthermore, some proofs and con-
structions were shown impossible to achieve if no such oracle exists. We require that the
machine behaves as a function – queried twice with the same input, outputs the same
result. Existence of such machine has been formalized as the Random Oracle Model
(ROM).
Random Oracle Model, introduced in [BR93], allows every algorithm in the protocol

to have access to an interactive Turing machine ΩX,Y (called henceforth random oracle)
containing a function H : X→ Y picked uniformly at random from a class of all functions
mapping X to Y, where X,Y are finite sets, i.e. it is a random function. Every algorithm
can query machine ΩX,Y on input x ∈ X and obtain H(x) ∈ Y. (For simplicity, we
will usually say that machine queries function H itself.) Access to Ω is black-box. More
precisely, a machine with access to Ω can send queries x and learn the corresponding
output H(x). However, it cannot observe how the oracle works.
In this model we (sometimes) do not limit adversary’s computational power or available

memory space. Instead we assume that the number of queries the adversary can submit
to the oracle is bounded by some function q(n). This thesis has been done in such setting.

Impossibility of a random oracle It is necessary to emphasize that no deterministic
function can be a random oracle. This has been proven by Canetti et al. in [CGH04] and
independently by Nielsen in [Nie02] by showing that a random oracle yields properties
impossible to achieve in the standard model. However, using a random oracle is well
motivated by commonly substituting it by a hash function (like SHA-3, SHA-2 nowadays
or MD5 in the past) in software and, more recently, hardware implementations.
There is an ongoing discussion on using a random oracle in cryptographic proofs. On

the one hand, the standard model is assumed to fit the real world better. Furthermore,
this model needs less assumptions and usually less assumptions is better.
On the other hand, there are rational arguments on the opposite point of view. As

pointed by Menezes and Koblitz in [KM15], proofs that a random oracle cannot be se-
curely instantiated by a hash function uses unnatural constructions with no practical
application whatsoever. Furthermore, the authors state that replacing schemes secure in
ROM by much more complicated schemes in the standard model leads to inevitable more
tangled implementation, which is more vulnerable to implementation-based attacks and
less efficient. Another argument provided by the authors points that the random oracle
assumption is often replaced by another assumption, less known and understood, making
the security model even less realistic.

38

2.4. Leakage-resilient cryptography

The way we use cryptographic schemes in the real world sometimes does not fit to an
idealized usability predicted by the scheme inventors. A number of real-world attacks on
cryptographic primitives were possible due to their faulty implementation or additional
knowledge an adversary obtained by measuring physical features (like electro-magnetic
radiation). These attacks have shown that an idealized model that assumes an adversary,
which has no knowledge whatsoever of secrets used in a scheme, is not enough and more
sophisticated model is necessary.

In leakage-resilient cryptography we allow adversary A to learn some leaked information
on secret X. This knowledge is formalized by equipping A with black-box access to
a leakage oracle OXλ . Oracle OXλ contains X as an additional parameter. This parameter
is not known by A. Queries to O made by the adversary are descriptions of functions
{fi}i∈[N], such that fi : {0, 1}|X| → {0, 1}λi , for some N ∈ N and λi ∈ N. The size of the
description of fi is irrelevant here (it can be even exponential in |X|). Obviously this only
makes our model stronger. The oracle answers on adversary’s query fi with fi(X) if, and
only if ∑j≤i λj 6 λ. We call λ a leakage parameter or a leakage bound. We will usually
write just OX instead of OXλ , when λ is clear from the context.

We denote by A ∈ TMOX ,H
λ,q(n) a Turing machine A granted with an oracle access to

• a leakage oracle OX with leakage bounded by λ and

• up to q(n) queries to a random oracle H, for the security parameter n.

Relative leakage We say that a protocol is secure in the relative leakage model if the
leakage parameter λ of adversary A is bounded by some function p : N \ {0} → N with
property p(x) < x. Leakage parameter λ depends on the length of a secret key. This
model has a straightforward motivation. It covers well attacks based on imperfect reading
of devices’ memory, like the cold-boot attacks described in [HSH+08]. Note that in the
relative leakage model there is no need for large secret keys. Assume a scheme secure
against leakage λ such that λ 6 |sk|. The scheme is secure in a case where sk is a few
kilobytes long, as well as in a case when sk is really large.

Absolute leakage, Bounded Retrieval Model We assume that the upper bound of leak-
age λ is given from the outside, as a system parameter. It is absolute and independent
from the key length. The bound is given once for the lifetime of the system. Contrary to
the relative leakage, we set here a length of a key according to λ. Thus, a huge leakage
parameter yields a huge secret key.
However, a huge secret key usually implies computational inefficiency of a scheme,

hence in the BRM scheme’s computational and communication complexity depends at
most polylogarithmically on λ. In this thesis we employed this model of leakage.

39

2.5. Various notions of entropy

Suppose that adversary A is a probabilistic polynomial time machine. Security proof
against such an adversary is usually based on a reduction from a well-known security
assumption, called hardness assumption, to breaking the scheme. A hardness assumption
is a computational or a decisional problem that is considered hard, i.e. it has not known
solution that works in polynomial time.3 For example RSA assumption, factorization,
discrete logarithm problem, just to name a few. By presenting the reduction, we prove
that the assumption is at most as hard to break as the presented scheme.
On the other hand, we have information-theoretic model of security that does not rely

on hardness assumptions. In this model no computational limitations of adversary’s power
have place. Instead, proofs use sophisticated methods taken directly from the probability
theory. While computational security shows that some function (like extracting secret key
from a public one) is hard to compute, information theoretic proofs show that despite of
computational effort, the output of a desired function preserves its uncertainty. The mea-
sures for aforementioned uncertainty are different notions of entropy, which are presented
below.

Shannon entropy In his seminal work [Sha48] Shannon introduced a definition of entropy
of a random variable, a measure determining variable’s uncertainty. That put the ground
for a whole new field of computer science, i.e. information theory.

Remark. Every logarithm in this work has base 2.

Definition 7 (Shannon entropy, see [CT91]). Shannon entropy of a random variable X,
denoted by H(X) is defined by

H(X) = −
∑
x

Pr(X = x) log Pr(X = x) ,

where x ∈ supp(X). We assume that log Pr(X = x) = 0 for Pr(X = x) = 0.

This definition expands nicely to joint and conditional distributions of random variables:

Definition 8 (Joint entropy, see [CT91]). The joint entropy of random variables
X1, . . . , Xn is expressed by:

H(X1, . . . , Xn) =
∑
x1

. . .
∑
xn

Pr(X1 = x1, . . . , Xn = xn) log(Pr(X1 = x1, . . . , Xn = xn)) ,

where x1 ∈ supp(X1), . . . , xn ∈ supp(Xn).

3Note that usually we cannot provide a proof that a cryptographic problem is NP-hard. Furthermore in
cryptography we require problems that are hard on average not in the worst case only.

40

Definition 9 (Conditional entropy, see [CT91]). The conditional entropy of random vari-
ables X,Y equals

H(X | Y) =
∑

y∈supp(Y)
Pr(Y = y) H(X | Y = y) =

−
∑

y∈supp(Y)

∑
x∈supp(X)

Pr(X = x, Y = y) log Pr(X = x | Y = y) .

From the aforementioned definitions we conclude the following useful property of entropy
which expresses joint entropy of two random variables in terms of entropy and conditional
entropy:

Theorem 1 (Chain rule, see [CT91]).

H(X,Y) = H(X) + H(Y | X) .

Proof. The proof can be found in [CT91].

Min-entropy Despite of significant role Shannon entropy plays in computer science, this
particular notion of uncertainty is not very useful in cryptography. An illustrative example
below shows how delusive may be relying on it:

Example 9. Consider an encryption scheme, which takes a message m from a
message space MsgSpace, applies a block-cipher function f with key distribution
K over KeySpace = {0, 1}n. We assume that such a scheme is secure for K of
uniformly random distribution, but what if K is not uniformly distributed? For
instance let Pr(K = 1n) = 1

2 and Pr(K = k | k 6= 1n) = 1
2(2n−1) . Obviously, if we

take the key from such distribution, we cannot claim that our encryption is secure.
The adversary may just guess the key with high probability. However, according to
Shannon’s definition of entropy,

H(K) =−
∑

k∈supp(K)
Pr(K = k) log Pr(K = k) =

= −
(1

2 · (−1) + (2n − 1) 1
2(2n − 1) ·

(
log 1

2(2n − 1)

))
>

>
1
2 −

1
2 ·
(

log 1
2n+1

)
= 1

2 −
1
2 · (−n− 1) = 1

2 + (n+ 1)
2 .

Despite the fact that K has cryptographically useless distribution, it has still high
entropy. Thus, another notion of randomness is necessary.

Definition 10 (Min-entropy, see [DORS08]). Min-entropy of random variable X, denoted

41

by H∞(X), is defined by

H∞(X) = min
x∈supp(X)

(− log Pr(X = x)) = − log(max
x∈supp(X)

Pr(X = x)) .

Simple yet illustrative explanation of the idea of min-entropy is to tangle the measure
of uncertainty of a random variable with the probability of its most probable output.
Since the adversary can tune her strategy to win in the most probable case, this notion of
randomness fits well to cryptographic purposes.
Recall the example with an useless distribution K of high (Shannon) entropy. We

compute its min-entropy now.

H∞(K) = − log max
k∈supp(K)

Pr(K = k) = − log 1
2 = 1 .

Note, the min-entropy is tiny and the gap between entropy and min-entropy is noticeable.

Conditional min-entropy As stated before, in any model where the adversary is granted
leakage, she can obtain some additional information about the secret. In the last part
we argued that min-entropy is a proper measure to check whether a random variable has
some uncertainty or not. Thus, it seems a natural idea to introduce a notion of conditional
min-entropy, which can give us an insight how uncertainty of a random variable behaves if
someone obtained a partial information on it. This notion has been introduced by Dodis
et al. [DORS08] and is defined below.

Definition 11 (Conditional min-entropy, [DORS08]). Conditional min-entropy of a ran-
dom variable X given Y , denoted by H̃∞(X | Y) is defined as:

H̃∞(X | Y) = − log
(
Ey∈supp(Y)2−H∞(X|Y=y)

)
. (2.2)

This definition turns out to preserve the natural interpretation of min-entropy as the
opposite to the logarithm of maximal probability of success in guessing X given Y . That
is, given value y of a random variable Y the probability that the value of X is guessed is
at most

max
x∈supp(X)

Pr(X = x | Y = y).

Thus, on average (depending of Y) probability that X is guessed is at most

Ey∈supp(Y)

(
max

x∈supp(X)
Pr(X = x | Y = y)

)
= Ey∈supp(Y)

(
2−H∞(X|Y=y)

)
= 2−H̃∞(X|Y) .

(2.3)

We found very useful to have inequalities describing dependencies between min-entropy
and conditional min-entropy. Especially, the following inequalities implying lower bounds
for min-entropy given conditional min-entropy have been employed in the following parts

42

of this thesis.

Lemma 2 (Lemma 2.2 in Dodis et al. [DORS08]). Let X,Y, Z be random variables. Then

a) For any δ > 0, the conditional entropy H∞(X | Y = y) is at least H̃∞(X | Y)−log(1/δ)
with probability at least 1− δ over the choice of y.

b) If Y has at most 2λ possible values, then H̃∞(X | (Y,Z)) > H̃∞((X,Y) | Z) − λ >
H̃∞(X | Z)− λ. In particular, H̃∞(X | Y) > H∞(X,Y)− λ > H∞(X)− λ.

2.6. Identification scheme

One of the most important cryptographic primitives are identification schemes. These
schemes allow one party to identify to another remote party. Without identification
schemes no internet banking, privacy of emails or any social media like Facebook are
possible. An effective and secure identification scheme is necessary to any secure internet
connection.
We define a 3-round identification scheme along with a security game for it. Such

a scheme consists of two parties, a prover P and a verifier V.

Definition 12 (Identification scheme, see [KL07]). Identification scheme
Π = (ParamGen,KeyGen,Prove,Verify) is an interactive protocol between two Turing
machines, prover P and verifier V, with the following subroutines:

Setup stage: params← ParamGen(1n) for the security parameter n, params contains de-
scription of a message space MsgSpace, challenge space ChlSpace and response
space RspSpace; the keys are generated as (pk, sk) ← KeyGen(1n;R) for random-
ness R; prover P gets a triple (pk, sk, params) and verifier V gets a pair (pk, params).

Challenge: Prover P sends a message a ∈ MsgSpace, which is followed by verifier’s
challenge c ∈ ChlSpace. On this challenge, P replies with z ← Prove(sk; a, c) ∈
RspSpace.

Verification: Verifier V runs Verify(pk; a, c, z) and outputs Accept if Verify(pk; a, c, z) does
so and Reject in the other case. Intuitively, Verify(pk; a, c, z) accepts iff z has been
computed honestly, accordingly to message a, challenge c and the prover’s secret key
sk.

Below we define the security of an identification scheme.

Definition 13 (Security of an identification scheme, see [ADW09]). We say that an iden-
tification scheme Π is (ε(n),TM)-secure if for every adversary A, a Turing machine from
TM, the probability of winning the game described at Figure 2.2 is at most ε(n). The
adversary wins if verifier V accepts the conversation taking place during the imperson-
ation stage. We will omit the second parameter in the security definition if the class the

43

Identification scheme security game
Parameters: n – security parameter.

1. Setup stage: params ← ParamGen(1n); (pk, sk) ← KeyGen(1n;R); A gets
(pk, params).

2. Test stage: In this stage, AP(pk,sk) has an oracle access to P(pk, sk). The
adversary submits to the oracle at most polynomially many queries.

3. Impersonation stage: Having lost access to P(pk, sk), adversary A tries
to identify herself as a legitimate prover P to verifier V. The verifier outputs
Accept if the adversary succeeds and Reject otherwise.

Figure 2.2.: IDn - identification security game, cf. [ADW09].

adversary belongs to is clear from the context. Usually we pick TM to be a class of PPT
machines. We say that an identification scheme is secure if it is (ε(n),TM)-secure for
some negligible ε(n) and TM clear from the context.

2.6.1. Making identification non-interactive, Fiat-Shamir paradigm

In the random oracle model, an interactive 3-round identification scheme can be easily
made non-interactive by so-called Fiat-Shamir paradigm [FS87]. Suppose that identifica-
tion protocol consists of three messages (a, c,Prove(sk; a, c)), where the first comes from
the prover, the second comes from the verifier and the third is prover’s response to veri-
fier’s challenge c that also depends on the first message a. An identification protocol that
allows to publish verifier’s random choices, here the challenge, is called public-coin.
Fiat-Shamir approach transforms any such public-coin 3-message argument system into

a non-interactive argument by using a random oracle, see Figure 2.3. The main argument
here is as follows. Assume that some set of challenges C fits a malicious prover P∗, who
does not know sk, well. That is, if a challenge comes from C then P∗ can answer it. Since
H(a) does not reveal any information on a, malicious prover has only negligible chances
of coming up with such message a that H(a) ∈ C.

However, to use Fiat-Shamir paradigm we need to assume that the verifier picks her
challenge uniformly at random. Assume the opposite, identification scheme verifier is
not honest, deviates from the protocol and picks her challenges from some non-uniform
distribution. Clearly, challenges from such malicious verifier cannot be substituted by
oracle answers since they are taken from a uniform distribution.

2.7. Signature schemes

Another important primitive crucial to modern day communication are signature schemes.
As the name suggests, signature schemes allow a party to sign a message. That is, provide

44

P V
a ∈MsgSpace

c ∈ ChlSpace

Prove(sk; a, c)

P Va ∈MsgSpace
H(a) ∈ ChlSpace
Prove(sk; a,H(a))

Figure 2.3.: Non-interactive Fiat-Shamir proof system compared to 3-message public-coin
proof of argument.

a proof that the signer confirmed the content of the signed document. Importantly, this
primitive assures the integrity of the message, since any change in the text implies a change
in the output signature (with overwhelming probability). We call the party who signs a
prover P, and another which verifies signature, a verifier V.

Definition 14 (Signature scheme, see [KL07]). Signature scheme
Σ = (ParamGen,KeyGen,Sign,Verify) is an interactive protocol between two
Turing machines a prover P and a verifier V with the following subroutines:

Setup phase: params ← ParamGen(1n) defines system parameters and message space
MsgSpace getting security parameter n as input. Algorithm KeyGen(1n;R) outputs
signature and verification keys (sigk, verk) for randomness R.

Signing: P runs Sign(sigk;m), takes signature key sigk output by KeyGen, message
m ∈MsgSpace and returns signature σ.

Verification: V runs Verify(verk;σ,m), takes verification key, message m, string σ and
outputs Accept if σ is a correct signature on message m under key sigk.

Security of a signature scheme is defined by the following game:

Definition 15 (Existential unforgeability, see [ADW09]). We say that a signature scheme
(ParamGen,KeyGen,Sign,Verify) is (ε(n),TM)-existentially unforgeable if every adversary
A ∈ TM makes V output Accept in the game described on Figure 2.4 with probability at
most ε(n). We say that a signature scheme is existentially unforgeable if it is (ε(n),TM)-
existentially unforgeable for some negligible ε(n). In such case, we assume that the class
TM is clear from the context.

2.8. From identification schemes to signature schemes

Out of plethora of signature schemes, we provide an example that is derived directly from
an identification scheme. Assume that identification scheme Π consists of three messages:
statement a sent by the prover, challenge c provided by the verifier, followed by answer
z ← Prove(sk; a, c) for a secret key sk. Assume that Π was made non-interactive by
Fiat-Shamir paradigm, i.e. the verifier is honest and the challenge is H(a). Then the

45

Existential unforgeability of a signature scheme

Initialization System parameters and keys get set by params ← ParamGen(1n) and
(sigk, verk)← KeyGen(1n;R). Parameters params are publicly known. Signing
oracle S is parametrized by key sigk. Ssigk on input m ∈MsgSpace outputs
signature σ such that Verify(verk;σ,m) accepts. The adversary gets oracle
access to Ssigk. The verifier gets public parameters along with a verification
key verk.

Signing queries Adversary ASsigk performs up to polynomially many signing queries
to oracle Ssigk thus learns up to polynomially many message-signature pairs.

Signing stage Adversary ASsigk outputs a message, signature pair (m,σ) for a mes-
sage m not queried before. Verifier V outputs Accept if Verify(verk;σ,m) ac-
cepts.

Figure 2.4.: ExUGn; unforgeability game for signature scheme, see [ADW09].

following signature scheme Σ is an existentially unforgeable signature scheme for any
message m ∈MsgSpace under the random oracle assumption:

Setup phase: Σ.ParamGen(1n) gets params ← Π.ParamGen(1n) and returns
Π.KeyGen(1n;R), i.e. (sigk, verk) = (sk, pk).

Signing: Prover P picks message m and some a and computes H(m, a), for a random
oracle H, and returns signature

σ ← Σ.Sign(sigk;m) = ((m, a),H(m, a),Π.Prove(sk; (m, a),H(m, a))) .

Verification: Σ.Verify takes (identification scheme) verification key pk as verification
key verk, string σ parsed as ((m, a),H(m′, a′), z), message m, and outputs
Π.Verify(pk; (m, a),H(m′, a′), z).

The intuition behind the security reduction for this scheme is: if the adversary is able
(with non-negligible probability) to break the security of the aforementioned scheme and
sign a message m, i.e. produce valid triple ((m, a),H(m, a),Π.Prove(sk; (m, a),H(m, a)))
then she can also break the security of the identification scheme by setting (m, a) as a state-
ment and responding to challengeH(m, a) with a proper z ← Π.Prove(sk; (m, a),H(m, a)).

2.9. Identification and signature schemes in the Bounded
Retrieval Model

Because BRM allows the adversary to perform computation using users’ data or secret keys
(like sk for identification and sigk for signatures schemes), it is not possible to achieve

46

existential unforgeability. In a (well justified) case, where a signature is much shorter
than the leakage, the adversary can simply leak a signature for a particular message
of her choice. That was a motivation for Alwen et al. who introduced in [ADW09] so-
called entropic unforgeability, a notion allowing to handle security properties of signatures
exposed to a leakage, which has been described in Definition 18.

Definition 16 (Leakage-resilient identification scheme; see [ADW09]). We say that iden-
tification scheme (ParamGen,KeyGen,Prove,Verify) is (ε(n),TMOsk

λ)-leakage-resilient with
leakage parameter λ if any adversary A ∈ TMOsk

λ has probability of winning IDλ,n game
(for security parameter n) described in Figure 2.5 not greater than ε(n).

Definition 17 (Entropic adversary; from [ADW09]). For adversary A = (A1,A2), let
ViewA1 be a random variable describing the view of AO

sk
λ ,S

sigk

1 including her input, random
coins, communication she observed and responses from both signing Ssigk and leakage Osk

λ

oracles.
Let MA2 be a random variable describing the message output by A2 in EUGλ,n,ζ(n) (see

Figure 2.8). We say that adversary A = (A1,A2) is n-entropic if H̃∞(MA2 | ViewA1) > n,
for security parameter n.

Remark. Given security parameter n we say that the adversary is entropic if she is n-
entropic.

Definition 18 (Unforgeable sign. scheme under leakage; from [ADW09]).

1. We say that a signature scheme (ParamGen,KeyGen,Sign,Verify) is (ε(n),TM)-
existentially-unforgeable with leakage parameter λ if for any adversary
A = (A1,A2) ∈ TM in the game EUGλ,n (see Figure 2.6 4) is at most ε(n).

2. We say that the signature scheme is entropically-unforgeable with leakage parameter
λ if the above holds only for all n-entropic adversaries A.

Similarly to a non-leakage setting, a leakage-resilient identification scheme can be used
to get a leakage-resilient signature. The construction is the same as presented in Sec-
tion 2.8. The security of the new scheme has been proven by Alwen et al. [ADW09,
Theorem 5.1] as below. The full proof of the theorem is given in Appendix A. We present
the theorem with a proof (copied from the original paper, with small changes to make it
consistent with the notation in this thesis), since we it will be used later in Corollary 4.

Theorem 3 (Theorem 5.1 from [ADW09]). Let Π = (ParamGen,KeyGen,Prove,Verify)
by a public coins identification scheme consisting of three rounds of interaction initiated
by the prover. Let Σ = (ParamGen,KeyGen,Sign,Verify) be the signature scheme produced
by the Fiat-Shamir paradigm applied to Π. If Π allows leakage λ, then Σ is entropically-
unforgeable with leakage λ.

4This figure was presented accordingly to [ADW09].

47

Leakage-resilient identification scheme security game
Parameters: n – security parameter, λ – leakage parameter.

Setup stage: params ← ParamGen(1n); (pk, sk) ← KeyGen(1n;R); A gets
pk, params

Test stage: In this stage, AOsk
λ ,P(pk,sk) has oracle access to P(pk, sk) and submits

there at most polynomially many proofs of identity. Furthermore, the adversary
has access to the leakage oracle Osk

λ .

Impersonation stage: Having lost an access to P(pk, sk) and Osk
λ , adversary A tries

to identify herself as prover P to verifier V. The verifier outputs Accept if the
adversary succeeds and Reject otherwise.

Figure 2.5.: IDλ,n; leakage-resilient identification scheme security game, cf. [ADW09].

Leakage-resilient signature scheme entropic unforgeability security game
Parameters: n – security parameter, λ – leakage parameter.

Initialization System parameters and keys get set by params ← ParamGen(1n)
and (sigk, verk) ← KeyGen(1n;R). Parameters params are publicly known.
There are signing oracle S parametrized by key sigk and leakage oracle Osk

λ .
The signing oracle on input m ∈ MsgSpace outputs signature σ such that
Verify(verk;σ,m) accepts. The verifier gets public parameters along with the
verification key verk.

Signing and leakage queries AdversaryAO
sk
λ ,S

sigk

1 is given access to the signing oracle
Ssigk and leakage oracle Osk

λ . A1 outputs an arbitrary hint v ∈ {0, 1}∗.

Post-leakage Entropic adversary ASsigk

2 is given the hint v and access to the signing
oracle Ssigk. The output of A2 is parsed as a message, signature pair (m,σ).
Verifier V outputs Accept if Verify(verk;σ,m) accepts.

Figure 2.6.: EUGλ,n; leakage-resilient signature scheme security game, cf. [ADW09].

2.10. Bounded number of executions

Our construction of an identification and a signature scheme in the BRM described later
in Chapter 4 is based on a Merkle signature scheme [Mer79] which inherently works for
a bounded number of executions between necessary key refreshing. We claim, that it
is not a major problem in terms of usability, since for the real world parameters the
upper bound for the number of executions ζ(n) can be as big as e.g. 100,000. That,
for 10 identifications or signatures per day, gives a life-span of a particular key over 27
years. Considering security in such a long time, we can easily point out more important
cryptographic problems than a must of a single key refreshing, especially if the refreshing
procedure is simple and efficient (what will be shown later).

48

Leakage-resilient identification scheme security game
Parameters: n – security parameter, λ – leakage parameter.

Setup stage: params← ParamGen(1n); (pk, sk)← KeyGen(1n;R); A gets pk, params

Test stage: In this stage, AOsk
λ ,P(pk,sk) has oracle access to P(pk, sk) and learns at

ζ(n) proofs of identity. Furthermore, the adversary has access to the leakage
oracle Osk

λ .

Impersonation stage: Having lost access to P(pk, sk) and Osk
λ , adversary A tries to

identify herself as prover P to verifier V. The verifier outputs Accept if the
adversary succeeds and Reject otherwise.

Figure 2.7.: IDλ,n,ζ(n); ζ(n)-bounded leakage-resilient identification scheme security game.

Hence, we introduce here new notions of security, ζ(n)-bounded leakage-resilient identifi-
cation and signature schemes, as stated on Figures 2.7 and 2.8. Furthermore, Definition 18
from the section above takes a new, slightly modified, form:

Definition 19 (Entropic unforgeability for a limited number of executions). We say that
a signature scheme (ParamGen,KeyGen,Sign,Verify) is (ε(n),TM)-entropically-unforgeable
with leakage parameter λ and number of executions bounded by ζ(n) if the advantage of
any entropic adversary A = (A1,A2) ∈ TMOsk

λ in the game EUGλ,n,ζ(n) (see Figure 2.8)
is not greater than ε(n).

Similarly to a setting where the adversary can make polynomially many queries to
a signature or an identification oracle, when the number of queries is bounded by ζ(n),
signature scheme can be constructed from an identification scheme. Below we formulate
a corollary of Theorem 3 that shows security of the construction.

Corollary 4. Let Π = (ParamGen,KeyGen,Prove,Verify) by a public coins ζ(n)-bounded
secure identification scheme consisting of three rounds of interaction initiated by the
prover. Let Σ = (ParamGen,KeyGen, Sign,Verify) be the signature scheme produced by
the Fiat-Shamir paradigm applied to Π. If Π allows leakage λ, then Σ is ζ(n)-bounded
secure entropically-unforgeable with leakage λ.

Proof. The proof goes as the proof of Theorem 3, see Appendix A. For every signature
oracle query from adversary A there is a corresponding identification oracle query from
B. Thus both adversaries are bounded by the same parameter ζ(n).

2.11. Basic properties of disperser graphs

Let cryptographic key be divided into blocks, called henceforth key blocks. Similarly,
say that data used to derive the key is divided into blocks also. Every block in the key

49

Leakage-resilient signature scheme entropic unforgeability security game
Parameters: n – security parameter, λ – leakage parameter.

Initialization System parameters and keys get set by params ← ParamGen(1n) and
(sigk, verk) ← KeyGen(1n;R). Parameters params are publicly known. There
is signing oracle S parametrized by key sigk and leakage oracleOsk

λ . The signing
oracle on inputm ∈MsgSpace outputs signature σ such that Verify(verk;σ,m)
accepts. The verifier gets public parameters along with verification key verk.
The signing oracle answers up to ζ(n) queries.

Signing and leakage queries AdversaryAO
sk
λ ,S

sigk

1 is given access to the signing oracle
Ssigk and leakage oracle Osk

λ . A1 outputs an arbitrary hint v ∈ {0, 1}∗.

Post-leakage Entropic adversary ASsigk

2 is given the hint v and access to the signing
oracle Ssigk. The output of A2 is parsed as a message, signature pair (m,σ).
Verifier V outputs Accept if Verify(verk;σ,m) accepts.

Figure 2.8.: EUGλ,n,ζ(n), ζ(n)-bounded leakage-resilient signature scheme security game

depends on a number of chosen data blocks. We claim that even if the adversary learns
a part of data blocks it does not help her predicting the value of a particular key block.
This holds since the number of data blocks needed to produce a single key block is big.
Furthermore, there is negligible probability that a small number of the learnt data blocks
gives any valuable knowledge on a considerable number of key blocks. These claims are
supported by the following property of our scheme: to learn a considerable number of key
blocks, one has to learn many, almost all, data blocks.
Functions that have the properties expressed above can be delivered from disperser

graphs that are described in this section. Informally, we can describe a disperser as
a bipartite graph where every small (but big enough) set of vertices from one side has
a neighborhood consistent of almost all vertices on the other.
We do not claim originality of the upcoming considerations – for instance, similar argu-

ments appear in [HLW06] or Vadhan’s survey [Vad12]. Despite this, we were not able to
find the results of presented below Corollary 8 in literature. In the following UN describes
a random variable of uniform distribution over {0, 1}N .
Before we proceed with disperser graphs, we recall a few elementary definitions from

the graph theory.

Definition 20 (Neighborhood, see [BCN89]). Let G = (V,E) be an undirected graph
with a set of vertices V and edges E. For a subset S ⊂ V we denote by N(S) set
{w ∈ V : ∃s ∈ S, (s, w) ∈ E}, i.e. the set of all neighbors of S, and call it neighborhood of
set S in graph G.

Since disperser is a bipartite graph, we introduce the following definitions.

Definition 21 (Bipartite graph, see [Die12]). We call a graph G = (V,E) bipartite if

50

there exist two subsets V0 tV1 = V such that for each v ∈ Vb, b ∈ {0, 1} holds:

(v, w) ∈ E =⇒ w ∈ V1−b;

i.e. every node in V0 shares edges only with nodes from V1 and vice-versa. We call set
V0 left nodes, and V1 right nodes.

Definition 22 (Bipartite graph regularity, see [Die12]). We say that a bipartite graph
G = (V0 tV1,E) is right d-regular if all vertices in V1 have the same degree d.

Definition 23 ((κ, ε)-extractor, see [AB09]). We say that a function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m is an (κ, ε)-extractor if for any random variable X of min-entropy
H∞(X) > κ and S uniformly distributed over {0, 1}d we have ∆(Ext(X,S), Um) 6 ε.

Definition 24 (Expander graph, see [Ta-02]). A bipartite graph G = (V0 t V1,E) is
a right (K,L)-expander if for every set S ⊂ V1 such that |S| = K the neighbourhood
N(S) satisfies

|N(S)| > L,

i.e. the sets of size K expands into sets of size at least L.

We shall use the following simple lemma which describes expansion properties of bipar-
tite expander graphs.

Lemma 5. Let G = (V0tV1,E) be a bipartite right (K,L)-expander. Then for every set
S ⊂ V1 such that |S| > K and every subset T ⊂ V0 of size |T| < L the set N(S) is not
contained in T.

Proof. This is a direct counting. Take S′ ⊂ S of size equal to K. The size of N(S) then
satisfies:

|N(S)| > |N(S′)| > L.

which finishes the proof.

A special case of expander graphs are dispersers, which are defined as below.

Definition 25 (Disperser graph, see [Ta-02]). A bipartite graph G = (V0 t V1,E) is
a right (K, η)-disperser if for every set S ⊂ V1 such that |S| = K the neighbourhood
N(S) satisfies

|N(S)| > (1− η)|V0|,

i.e. the sets of size K expands into sets of size at least (1− η)|V0|.

In order to instantiate the above considerations, we will use the following correspondence
between dispersers and randomness extractors. Observe that every function f : {0, 1}n ×
{0, 1}m → {0, 1}n corresponds to a right 2m-regular bipartite graph Gf = (Vf ,Ef) defined

51

by:

Vf = V0
f tV1

f for V0
f = V1

f = {0, 1}n (2.4)
Ef = {(v0, v1) : ∃e ∈ {0, 1}m, f(v1, e) = v0} . (2.5)

It is worth reminding that a graph defined this way is in fact a multigraph, i.e. a graph
that two vertices can be connected by more than one edge. It turns out that randomness
dispersing properties of f are closely related to the vertex expansion of Gf . Namely, the
following theorem holds.

Theorem 6. (see [Vad12], Proposition 6.20) Let D : {0, 1}n × {0, 1}s → {0, 1}n be
a function such that for any random variable X ∈ {0, 1}n of min-entropy H∞(X) > δn and
E distributed uniformly on {0, 1}s, the statistical distance ∆(D(X,E), Un) is less than or
equal to ε. Then for every S, a subset of right side of a bipartite graph GD = (V0

DtV1
D,ED)

of size 2δn the neighbourhood N(S) satisfies

|N(S)| > (1− ε) · 2n,

i.e. the graph GD is a right 2s-regular
(
2δn, ε

)
-disperser.

Proof. Take S a subset of {0, 1}n of size 2δn, XS a random variable distributed uniformly
on S and E distributed uniformly on {0, 1}s. Observe that H∞(XS) > δn and therefore, by
assumptions concerning D, the inequality ∆(D(XS, E), Un) 6 ε holds. Moreover, we see
that Pr(D(XS, E) = S) 6= 0 exactly for S ∈ N(S), so ∆(D(XS, E), Un) > (2n−|N(S)|)· 1

2n .
Combining these two inequalities we obtain

ε > ∆(D(XS, E), Un) > (2n − |N(S)|) · 1
2n ,

which is equivalent to the proposition.

The existence of an efficiently computable function Ext (we require efficient computabil-
ity in order to instantiate GExt effectively), satisfying the assumptions of Theorem 6 follows
from the result proven in [GUV09]:

Theorem 7 (Theorem 1.5 in [GUV09]). For every constant α > 0 and all positive integers
n, k and all ε > 0, there is an explicit construction of a (k, ε)-extractor Ext : {0, 1}n ×
{0, 1}s → {0, 1}m with s = O(logn+ log(1/ε)) and m > (1− α)k.

More precisely, for any η > 0 we take an (n(1 + η), ε)-extractor Ext : {0, 1}(1+γ+η)n ×
{0, 1}s → {0, 1}n which corresponds to the choice α = η

1+η in above Theorem 7, and
interpret it as a function Ẽxt : {0, 1}n×{0, 1}(γ+η)n+s → {0, 1}n. Then, takingX ∈ {0, 1}n
of min-entropy H∞(X) > (1−γ)n we see that ∆(Ẽxt(X,U(γ+η)n+s), Un) 6 ε and therefore
we may apply Theorem 6 to obtain a 2(γ+η)n+s-regular (2(1−γ)n, ε)-disperser. As η might
be chosen arbitrarily and s = O(logn+ log(1/ε)) we obtain:

52

Corollary 8. For any ε > 0 and c > 0, there exists nc ∈ N such that for n > nc and
(d, k) such that d · k > 2(1+c)n, there exists an effectively computable bipartite right d-
regular graph which is a right (k, ε)-disperser. In particular, for any α > 1

2 and ` = 2n
sufficiently large there exists a bipartite right `α-regular (

√
`, ε)-disperser.

Proof. Apply Theorem 6 and the above discussion after Theorem 7.

53

CHAPTER 3

DISPERSE AS A KEY DERIVATION FUNCTION

In this chapter we present the main result of the thesis. As stated in Section 1.3.2, one
of the main drawbacks of the Bounded Retrieval Model is its inevitable space inefficiency.
This particular obstacle is especially pinching when a BRM scheme is to be run on devices
with limited memory like smartphones or tablets, devices where storage is usually filled
with multimedia like photos, videos, music and applications and that do not have enough
spare space.

Our main idea is to retreat from storing a separate large BRM key in favour of deriving
it from data already stored on a device on the fly. We recall a cryptographic primitive,
key derivation function, kdf originally introduced in [DY13], that produces a secure cryp-
tographic key for a BRM protocol from a source of imperfect randomness. We claim that
any BRM protocol Prot, with a key generated by some KeyGen that can be evaluated by
P internally, can be transformed into space-efficient protocol Prot′. The modified pro-
tocol would be such that its secret key comes from kdf. Furthermore, the security and
complexity parameters of Prot′ and Prot differ only negligibly.

3.1. Key Derivation Function (kdf)

Given defined in Section 2.1 security games, we are ready to formulate precise definitions
for privacy and security we impose on our key derivation function.

3.1.1. Privacy of key derivation functions

The following definition captures privacy of kdf. This property is the main difference from
an original proposal of kdfs formulated in [DY13], where the authors did not considered
such functionality. Privacy is crucial for our idea of deriving a key from user’s data,

55

because a solution which compromises user’s privacy cannot be accepted. Moreover, we
point out that some BRM protocols allow third parties to learn a part of the key. We can
only imagine what could happened if we use non-private kdf on personal data allowing
third parties to learn our secrets.
The definition of privacy can be explained as follows: we have two worlds – ideal and

real. In the latter, there is an adversary who is given a real key K produced by kdf.
In the former, there is a simulator who does not have any access to the key, but knows
adversary’s code (as a Turing machine). Both parties are equipped with a number of
queries to a random and a leakage oracle. We observe outputs from both parties and are
given D (i.e. private data) that has been used to produce the key by kdf.

Definition of privacy states that if both worlds are indistinguishable even given D then
kdf is private. As in Section 2.2 we argue that this definition is meaningful since it implies
that a machine without access to the key, here the simulator, can perform as well as
a machine equipped with it, here the adversary. Thus, having access to the key does
not give the adversary anything about data D that could not be simulated given public
parameters and access to random and leakage oracles. This intuitions were illustrated on
Figure 3.1.
Using simulators to show (different flavours of) privacy is well motivated in the crypto-

graphic literature. First of all, an example from Section 2.2 shows how to use simulators
to claim the security of an encryption scheme. We show there that the simulator is able
to produce a number of encrypted messages of some random text that are indistinguish-
able from encryption of messages prepared by the adversary. Thus, we conclude that the
encryption scheme is secure, since it hides plaintexts well.
Another example how simulation is used to provide privacy is zero knowledge (see,

e.g. [Gro06, Gro04]). In zero knowledge proofs a prover is given x belonging to some NP
language L and the corresponding witness w. The prover prepares a proof π showing that
x ∈ L without revealing w. On the other side there is a verifier that equipped only with
x that verifies proof π. An honest prover convinces an honest verifier with probability
1. The zero knowledge property ensures that even if the verifier is malicious, she does
not learn any information about w from proof π. To show that a proof is zero-knowledge
we construct a simulator that for a given statement x produce a valid proof π′ without
knowing the corresponding witness w. The claim is (as usual): if the adversary cannot
distinguish whether proof she is given comes from the simulator or the real prover then she
learns nothing about the witness from the given proof. See Section 2.2 for more detailed
explanation on the ideal and the real world.

Definition 26 (Privacy of a key derivation function). We say that a randomized function
kdfH : N × {0, 1}N → {0, 1}M is (Λ(λ), q(n), ε(n))-private for sources of min-entropy at
least κ if there exists simulator S ∈ TMOD,H

Λ(λ),q(n) such that for every random variable
D ∈ {0, 1}N of min-entropy H∞(D) > κ and every adversary A ∈ TMOD,H,H

λ,q(n) operating

56

A
K

S

D

kdf

D leakage leakage

Figure 3.1.: Intuitions behind the definition of privacy. On the right, key K is produced
by kdf and given to adversary A. Wavy arrows denote outputs of algorithms.
We claim that these outputs are indistinguishable even if D is known for the
distinguisher.

on K ← kdfH(1n, D), the output distributions satisfy:

∆((Output(A(K)), D), (Output(S(A)), D)) 6 ε(n).

The privacy definition tracks down the amount of additional leakage (Λ(λ) − λ) (de-
noted by ∆λ) that is necessary to construct S capable of simulating the behaviour of any
adversary A ∈ TMOD,H,H

λ,q(n) (cf. Section 2.4 for the formal specification of this class of al-
gorithms) operating on the key generated by the dispersing procedure. Observe that any
algorithm A is provided with access to an oracle H, i.e. she can query a random function,
and moreover she can issue a sequence of leakage queries OD,H(fi), which may also depend
on the oracle H, thus can learn some information concerning D depending on the same
random function H.

3.1.2. Security of key derivation functions

The next definition explains the meaning of security in terms of kdf. Let us have some
BRM protocol Prot with security defined by a security game. Assume Prot is (ε(n),TM)-
secure for a security parameter n and function ε, for a key taken uniformly at random.
Then Prot is (ε(n) + ε′(n),TM′)-secure, for some function ε′ and key derived by a kdf. In
such a case we say that kdf is (ε′(n),TM′)-secure.

The general aim of the security definition is to grasp the intuitive expectation that
an adversary playing against key derived from sensitive data should not gain any non-
negligible advantage comparing to the case of using a truly random key.

57

Definition 27 (Security of key derivation function). We say that a randomized function
kdfH : N × {0, 1}N → {0, 1}M is (Λ(λ), q(n), ε′(n))-secure for sources of min-entropy at
least κ if for any

(
ε(n),TMOK,H,H

λ,q(n)

)
-secure game

Game = (C, params← ParamGen(1n),K ← KeyGen(1n;R),SetupC ,SetupA,Execute)

for randomness R of uniform distribution over {0, 1}N and random variable D of length
N and min-entropy at least κ, the game

GameDisk = (C, params← ParamGen(1n),K ′ ← kdfH(1n, D),SetupC ,SetupA,Execute)
(3.1)

based on randomness (D,H) is
(
ε′(n) + ε(n),TMOD,H,H

Λ(λ),q(n)

)
-secure.

Note that in the definition below we change the adversary. More precisely, the adversary
for the original game Game leaks only from key K and oracle H, while the adversary for
GameDisk can also leak from disk data. Since the data determine the key, the adversary
that can leak from the data, can leak from the key also. Unfortunately, the leakage
parameter changes slightly from λ to some smaller Λ(λ).

From now on, D is a random variable representing disk data, D is divided into ` blocks
each of length n. λ denotes the number of bits the adversary can leak and p is the ratio
of actual min-entropy H∞(D) and the length of D, i.e. p = H∞(D)

n`

3.2. Disperse graph

With kdfs defined, we build a concrete example of a key derivation function. It is based on
bipartite disperser graphs. Throughout the whole construction we make use of bipartite
right d-regular graph Gσ identified with function

σ : [|V1|]× [|E|]→ [|V0|]

by the following recipe. By Gσ we denote a bipartite graph Gσ = (V0 tV1,E) with the
sets of vertices equal to two disjoint sets V0,V1 and set of edges E going from i ∈ V1 to
σ(i, j) ∈ V0 for any j ∈ [|E|].
We often make use of explicit `δ-regular (`e, η)-disperser. We implicitly assume that the

numbers δ, e satisfy δ < 1, e < 1 and δ + e > 1. For shorter notation we take d = `δ. For
more details on dispersers and further definitions see Section 2.11.

Disperse function takes as parameters Gσ and H. The former is a bipartite graph defined
by function σ as above. The latter is a random oracle H : {0, 1}dn+log ` → {0, 1}n. While
function σ can be passed to Disperse explicitly as a set of argument-value pairs, domain
and range size of oracle H are too large (2dn+log `+2n elements together) to be handled the
same way. Thus, we assume that Disperse has an oracle access to H and time needed to

58

compute H(x) for given x is constant and does not affect overall computational complexity
of Disperse.

The function takes as input a bitstring of length n` and outputs a bitstring of the same
length. According to our application we identify the input with user’s private data that
are used to derive cryptographic key. Having parameters and input specified, Disperse
works as described in Figure 3.2. An exemplary Disperse function is shown in Figure 3.3.

Implementation of DisperseGσ ,H(D).
Parameters:

1. d-regular bipartite right (`e, η)-disperser Gσ = (V0 t V1,E) defined by function
σ : [|V1|]× [|E|]→ [|V0|], such that |V0| = |V1| = ` and |E| = d`.

2. random oracle H : {0, 1}dn+log ` → {0, 1}n.

Input: Bitstring D of length n`.
Output: Key D′ = D′1, . . . , D

′
` ∈ {0, 1}n`.

Execution:

1. Input D ∈ {0, 1}n` is divided into `, n-bit long strings: D1, . . . , D`.

2. Output of Disperse is divided into blocks as well. We denote these blocks as
D′1, . . . , D

′
`.

3. For i = 1, . . . , `: output block D′i, gets value H(i,Dσ(i,1), . . . , Dσ(i,d)),

4. Disperse returns D′ = D′1 . . . D
′
`.

Figure 3.2.: Implementation of Disperse function.

We now state our main result that for an appropriately chosen graph Gσ the function
DisperseGσ ,H is in fact private and secure for reasonable parameters.

Theorem 9. Let Gσ be a d-regular (`e, η)-right disperser, D ∈ {0, 1}n` a random variable
and H a random oracle. Then, the function DisperseGσ ,H is:

• (Λ(λ) = λ+`e(log q(n)+log `), q(n) = 2o(`1−e)n, ε(n) = 2−n((p−η)`)+λ+`e(log q(n)+log `))-
private

• (Λ(λ) = λ − `e(log q(n) + n), q(n) = 2o(`1−e)n, ε(n) = 2−n((p−η)`)+λ+`e(log q(n)+log `))-
secure,

for η 6 p and H∞(D) > pn`.

Since the proof of this theorem is long, it is divided into several parts. At the beginning
it is shown that even under the presence of leakage, function Disperse effectively hides

59

D1

D2

D3

D`−2

D`−1

D`

D′1

D′2

D′3

D′`−2

D′`−1

D′`

Gσ

. . .

Figure 3.3.: An exemplary DisperseGσ ,H(D) built on a 3-regular right disperser Gσ.

the data underneath. Then, using this result, privacy property is proven. Later, we
proceed with showing security. At the end, we elaborate shortly about the efficiency of
DisperseGσ ,H.

Before proceeding to actual proofs we shortly discuss the bounds on parameters.

Remark (Efficiency of DisperseGσ ,H). It is important to note that in order to obtain a single
bit of a derived key one need to process d blocks of disk data. Therefore, this constitutes
a leakage–efficiency trade-off for the operation of our function. More precisely, reduction
of d allows to compute a single bit (and consequently a block) of the key quicker at a cost
of an decreased parameter λ proportionally to `e (recall that d · `e > `).

Remark (Bounds on parameters). The bound η 6 p express natural requirements that the
quality of disperser η should be superior to the entropy reserve represented by p. The
bound on q(n) = 2o(`1−e)n corresponds to a robust, exponential bound on the random
oracle query based complexity of the adversary.

3.3. Guessing game

We start with the definition of a Guessing game which is tailored to be used in the proof
of Lemma 11. The idea for the game comes from [DKW11]. In that paper the authors
shown similar yet much simpler game. More precisely, they assumed that Xi are pairwise
independent random variables with values from {0, 1}. Here we consider Xi from much
bigger set {0, 1}n and the player additionally equipped with leakage. Informally, this game

60

shows an upper bound for probability of guessing a value of random oracle H output for
a particular input given some leakage and a number of (x,H(x)) pairs.

Definition 28 (Guessing game). Let X : {0, 1}n` → {0, 1}n`,H : {0, 1}dn+log ` → {0, 1}n
be random variables. Let H∞(X) = pn` for some 0 < p 6 1. GuessingX,H(p, k1, k2, λLeak)
game against adversary A consists of the steps described in Figure 3.4.

GuessingX,H(p, k1, k2, λLeak) game for adversary A.

Input: random variables (X,H), where X = (X1, . . . , X`) ∈ {0, 1}`n and H =
(Hv1 , . . . ,HvN) ∈ {0, 1}Nn for some parameters `,N and labels vi ∈ {0, 1}n. (The
values of Xi should be considered as certain H labels.) Furthermore, we declare k1, k2,
leakage parameter λLeak and p such that X has min-entropy at least p`n.

Leakage phase:

1. A issues a leakage query Leak(X1, . . . , X`,H) of length λLeak and learns corre-
sponding values.

First phase:

2. A adaptively queries H by submitting a label v and receiving Hv.

3. A chooses a subset of indices S1 ⊂ [`] of size k1 along with the guesses for all
values {Xj | j ∈ S1}.

Second phase:

4. A receives all values of {Xi | i /∈ S1}; that is all blocks that she did not try to
guess.

5. A outputs a subset of labels S2 ⊂ {vi}i=1,...,N of size k2 which were not
previously (i.e., in the first phase) queried along with guesses for all values
{Hv | v ∈ S2}.

Figure 3.4.: Definition of Guessing game

Lemma 10. Let (X1, . . . , X`,H) be a random variable such that:

1. (X1, . . . , X`) and H are independent,

2. H is a vector of random independent N = 2dn+log ` blocks of length n,

3. each Xi is n bits long,

4. H∞(X1, . . . , X`) = p`n for some p ∈ (0, 1] .

61

Let A be a randomized algorithm playing Guessing game with leakage λLeak. Then, the
probability that A outputs all correct guesses in both phases is at most

2−n(k1+k2−(1−p)`)+λLeak ,

for k1 > (1− p)`.

Proof. Suppose there exists algorithm A winning the game with probability α. This
implies that α 6 2λLeak · β, where β is an upper bound for probability of winning for any
non-leakage algorithm B. The inequality holds since B can simply guess λLeak bits of
leakage. Algorithm B does so with probability at least 2−λLeak , thus if α > 2λLeak · β then
B could come up with a strategy that gives better probability of winning. It would just
run A and guess her leakage. This strategy would give B probability of winning at least
α · 2−λLeak > β and contradicts the assumption that B wins with probability at most β.
Suppose that β1 is probability of guessing k1 values from S1 for some non-leakage

algorithm B. The probability of guessing the whole X is at least β1 ·2−(`−k1)n, since B can
guess the missing bits. On the other hand, by definition of min-entropy, this probability
is not greater than 2−H∞(X), thus

β1 · 2−(`−k1)n 6 2−pn`

β1 6 2−n(p`−`+k1) .

Probability β2 of guessing the second phase of the game by an algorithm B can be bounded
by the same inequality, so

β2 6 2−nk2 .

Since X and H are independent, the probability β that B wins both phases, is not greater
than 2−n(p`−`+k1+k2). As it was stated before, leakage λLeak can be simple guessed and
α 6 2λLeak · β, hence

α 6 2−n(k1+k2−(1−p)`)+λLeak .

3.4. One-wayness of Disperse

The Disperse function possesses a certain one-wayness property expressed in Lemma 11.
This property is crucial for both security and privacy of the function since it shows that no
meaningful information on function’s input can be retrieved from the output. We precede
the definition of one-wayness introducing bad queries:

Definition 29 (Bad query). Given a random variable D, a bipartite right d-regular graph
Gσ and a random oracle H we say that a random oracle query H(b), submitted by an
algorithm A, is bad if the argument b equals (i,Dσ(i,1), Dσ(i,2), . . . , Dσ(i,d)) for some i ∈

62

{1, . . . , `}, i.e. the argument of a random oracle query equals one of the arguments defined
by graph Gσ and a random variable D.

By BadA we denote the set of all bad queries submitted by A. By indicesA we denote
a list of all pairs (k, ik) of indices k ∈ {1, . . . , q(n)} and ik ∈ {1, . . . , `} such that k is the
smallest index of a bad query submitted by A equal to

(
ik, Dσ(ik,1) . . . Dσ(ik,d)

)
. Since the

total number of queries is bounded by q(n) and Gσ has 2` vertices, we can describe the
list indicesA using |indicesA| · (log `+ log q(n)) bits.

Lemma 11 (One-wayness of Disperse). Let Gσ be a d-regular (`e, η)-right disperser and
D = (D1, . . . , D`) ∈ {0, 1}n` be a random variable of min-entropy p`n. Then, the proba-
bility that an algorithm A(DisperseGσ ,H(D)) ∈ TMOD,H,H

λ,q(n) makes at least `e different bad
queries satisfies:

Pr(|indicesA| > `e) 6 2−n((p−η)`)+λ+`e(log q(n)+log `)

for η 6 p.

Proof. The general idea of the proof goes as follows. Assume adversary A such that
her associated list indicesA is longer or equal to `e with probability greater than
ξ(n) = 2−n((p−η)`)+λ+`e(log q(n)+log `). With such A we construct a player PA in game
Guessing(X1,...,X`),H (p, k1, k2, λLeak) for

(X1, . . . , X`) = (D1, . . . , D`);
k1 = (1− η)`
k2 = `

λLeak = λ+ `n+ `e(log q(n) + log `),

winning with probability greater 2−n(k1+k2−(1−p)`)+λLeak , what gives a contradiction to
the bound shown in Lemma 10. The detailed construction of PA is described in Figure 3.5.

The first step is to show that player PA follows the rules of the game:

Guessing(D1,...,D`),H (p, (1− η) · `, `, λ+ `n+ `e(log q(n) + log `)) .

For this sake, we show that:

• The length of hint λLeak = |Leak(D1, . . . , D`,H)| is not greater than leakage λ of
adversary A along with n` bits needed to feed A and `e(log q(n) + log `) to handle
bad queries. Indeed, λLeak = λ+ `n+ `e(log q(n) + log `).

• Rules of the game requires that k1 > (1− p)`, which follows from the assumptions.

Now, we need to show that player PA guesses correctly:

(a) (1− η)` elements in the first phase with probability greater than ξ(n) and

63

Implementation of player PA.

Learning phase:

Player PA :

1. Initiates two sets S′1 ← ∅ and S′2 ← ∅, which will define elements to guess in the
first and the second phase of the Guessing game.

2. Leaks ` values(
D′1, . . . , D

′
`

)
=
(
H(1, Dσ(1,1) . . . Dσ(1,d)), . . . ,H(`,Dσ(`,1) . . . Dσ(`,d))

)
,

each of length n, from a leakage oracle OD,H.

3. Initializes adversary A ∈ TMOD,H,H
λ,q(n) ; feeds her with D′1, . . . , D′`, then submits her

to the leakage oracle Oa to get a hint Leak(D,H) containing:
• results of all leakage queries performed by A (bounded by the leakage param-

eter λ)
• list indices′A of `e first items from indicesA (bounded by
`e (log q(n) + log `)).

Game phase:

Adversary A is now executed with the following recipe for answering to leakage and
oracle queries:

Leakage phase PA answers to leakage queries using learned Leak(D,H).

First phase
Querying H. PA queries H only when A wants to do so. PA follows the rules

below:
• PA answers to random oracle queries honestly. That is, if A submits
x and asks for H(x), PA passes x to oracle H, learns the result and gives
it to A. The only exception are queries equal

(
j,Dσ(j,1) . . . Dσ(j,d)

)
, for

j = 1, . . . , `, which were learnt as part of the leakage Leak(D,H). In
such case PA passes to A value D′j .

• Every time A issues a bad oracle query x =
(
ik, Dσ(ik,1), . . . , Dσ(ik,d)

)
which index k appears on the list indices′A, player PA adds elements
Dσ(ik,j) to her list of guesses S′1.

Choosing a subset to guess. PA guesses values from set S′1.

Second phase • Elements of D that were not guessed in the first phase are revealed.
• PA sets S′2 ←

{(
1, Dσ(1,1) . . . Dσ(1,d)

)
, . . . ,

(
`,Dσ(`,1) . . . Dσ(`,d)

)}
.

• PA guesses values from set S′2.
asubmitting A(D′1, . . . , D′`) to O means that OD,H gets a description of Turing machine realising A
along with input tape containing D′1, . . . , D′`.

Figure 3.5.: Implementation of a player PA64

(b) ` elements in the second phase.

In order to prove (a) we use the fact that every bad query reveals d associated values
Dσ(i,j) and use the properties of dispersers. More precisely, by the assumptions on A, the
length of indicesA is at least `e with probability greater than 2−n((p−η)`)+λ+`e(log q(n)+log `).
We denote by indices′A list indicesA truncated to the first `e entries. The neighbourhood
of vertices labeled with indices′A consists of at least (1 − η)` elements. These elements
were revealed by A making a bad query, thus they are known to PA, who collects them
in set S′1. (PA handles A queries, thus she knows what A is asking about).
The claim (b) follows directly from the definition of Leak(D,H). Namely,

Leak(D,H) contains the values of H
(
i,Dσ(i,1) . . . Dσ(i,d)

)
, for i = 1, . . . , `, which

are explicitly prohibited from being queried (Item 2 of the Game phase) and
therefore can be guessed in the second phase of operation of PA. More precisely,
PA sets S′2 =

{(
1, Dσ(1,1) . . . Dσ(1,d)

)
, . . . ,

(
`,Dσ(`,1) . . . Dσ(`,d)

)}
. Note that values(

i,Dσ(i,1) . . . Dσ(i,d)
)
are known since they were revealed in the first step of the second

phase of the game.
Thus, player PA wins the first phase of the Guessing game with probability greater than

2−n((p−η)`)+λ+`e(log q(n)+log `) and the second with probability 1. These bounds give overall
winning probability greater than 2−n((p−η)`)+λ+`e(log q(n)+log `), breaking the upper bound
from Lemma 10.

3.5. Privacy of Disperse

In this section we show that Disperse is in fact a private key derivation function. The main
idea of the proof is application of the one-wayness property together with a careful design
of leakage queries. It is important to note that we extensively use our computational
model, where we can submit queries that are not computable in polynomial time. On the
other hand, we submit such queries for a polynomially unbounded adversary only. More
precisely, we submit queries that are as complex as the adversary is. That is, we allow the
simulator to submit the adversary (represented as a Turing machine) as a leakage query.
Before we proceed to the main theorem in this part, we define a twisted function. This

concept clarifies how a random oracle in our scheme is programmed.

Definition 30 (Twisted function). Let f be a function and L = ((arg1, v1), . . . , (argk, vk))
be a list of pairs of an argument argi together with a potential value vi. We define a twisted
function f{L} to be function whose operation is described as follows:

f{L}(q) =

vi if q = argi for some i
f(q) otherwise.

In particular, given a random variable D, a random oracle H and a random
variable K = (K1, . . . ,K`) ∈ {0, 1}`n, by H{D Gσ−→ K} we denote a random oracle

65

H
{(
Dσ(1,i) . . . Dσ(deg(Gσ),i),Ki

)
i=1,...,`

}
. Observe that if K is uniformly random over

{0, 1}n` and independent of H then the distributions of H{D Gσ−→ K} and H are the
same.

Theorem 12 (Privacy). Let Gσ be a d-regular (`e, η)-right disperser and
D = (D1, . . . , D`) ∈ {0, 1}n` be a random variable of min-entropy at least p`n. Then,
there exists simulator S ∈ TMOD,H,H

λ+`e(log q(n)+log `),q(n) such that for every adversary
A ∈ TMOD,H,H

λ,q(n) operating on the key K ← DisperseGσ ,H(D), the output distributions
satisfy:

∆((Output(A(K)), D), (Output(S(A)), D)) 6 ε(n)

for ε(n) = 2−n((p−η)`)+λ+`e(log q(n)+log `), q(n) = 2o(`1−e)n and any η 6 p.

In order to give a proof of this theorem, we shall construct a machine S such that
for any adversary A(K) ∈ TMOD,H,H

λ,q(n) the result of S(A) is indistinguishable from A(K)
conditioned on D.

Construction of the simulator The operation of S(A), based on the description of A,
consists of the steps described in Figure 3.6.

Before giving a formal proof of statistical indistinguishability of output distributions,
we give some clarifying remarks about consecutive steps of the construction. Firstly, we
should emphasize that in Step (2) we crucially use the properties of our leakage model
by querying leakage oracle with potentially non-polynomial function simulating whole
behaviour of A. Secondly, observe that in Step (2) the simulator leaks only the indices of
queries, not their actual arguments as those can be observed during Step (3) of simulation.
Thirdly, note that in Step (3a) we do not need to perform any additional leakage apart
from the value of f , as f{D Gσ−→ K} can be obtained inside the leakage query as in Step
(2). Therefore the leakage excess consists merely of the list indicesA and consequently the
additional leakage the simulator has to be equipped with to be able to simulate correctly
is ∆λ = |indicesA|(log q(n) + log `).

Proof of Theorem 12 (Privacy). We shall now argue that simulator S constructed in Fig-
ure 3.6 satisfies the requirements of Theorem 12 for any adversary A ∈ TMOD,H,H

λ,q(n) . Con-
cretely, we prove that S perfectly simulates the execution of any adversary A, unless
|indicesA| > `e. Therefore, for any adversary A the output’s distribution of S(A) satis-
fies:

∆((Output(A(K)), D), (Output(S(A)), D)) 6 ε(n),

where ε(n) = Pr(|indicesA| > `e).
Firstly, note that the execution of A inside the leakage function ind (see Step (2)) is

perfectly equivalent to an honest execution of A as H{D Gσ−→ K} is distributed equally to

66

Implementation of simulator S.

1. Simulator S initializes a random oracle H and draws a random variable K =
K1, . . . ,K` of uniform distribution over {0, 1}n`.

2. S initializes the random tape of A to a fixed sequence of uniformly random bits
and then queries the leakage oracle with the Turing machine ind : {0, 1}n` →
{0, 1}∗ which operates as follows:

Operation of ind:

Description of the function Simulate the execution of A(K) step by step
with random oracle queries H substituted with H{D Gσ−→ K}. Every
time the adversary A issues a leakage oracle query given by a Turing
machine f , simulator S provides her with a result of a twisted leakage
function f{D Gσ−→ K}, i.e., a Turing machine with all random oracle
queries substituted with H{D Gσ−→ K}.

Result The list indicesA. Returns indicesA if its length satisfies
|indicesA| < `e, or ⊥ otherwise.

Complexity Leakage: upper-bounded by |indicesA|(log q(n) + log `)

3. S executes A(K) with a previously initialized (see Step (2)) random tape and
H sampled above (see Step (1)), and then runs it step by step with the following
exceptions:

a) When A issues a leakage query given by a Turing machine f , simulator
S substitutes it with a twisted leakage function f{D Gσ−→ K}.

b) S keeps track of the number k of random oracle queries issued to H and
every time it appears in a pair (k, ik) ∈ indicesA, replaces the value
returned by H with Kik . Moreover, it stores the arguments ak of queries
appearing in the list indicesA and substitutes the value of H with Kik

every time ak appears as an argument.

Figure 3.6.: Implementation of the simulator

67

H. Consequently, the actual simulation given in Step (3) differs from a perfect simulation
only by the condition on |indicesA|, as it is perfectly equivalent to the one performed
during the simulator’s leakage phase. This condition forces the return of ⊥ instead of ap-
propriate indicesA with probability Pr(|indicesA| > `e) 6 ε(n). Consequently, we bound
ε(n) by a factor negligible in the security parameters. Directly by applying Lemma 11 for
adversary A we see that:

ε(n) = Pr(|indicesA| > `e) 6 2−n((p−η)`)+λ+`e(log q(n)+log `).

This completes the proof.

3.6. Security of Disperse

Again, based on the one-wayness of Disperse we prove that our function satisfies the
security requirements. We have the following:

Theorem 13 (Security). Let

Game = (C,ParamGen,KeyGen(1n;K),SetupC ,SetupA,Execute)

be an (ε(n),TMOK,H,H
λ,q(n))-secure game based on uniformly random K, then for every d-

regular (`e, η)-disperser Gσ, η 6 p and q(n) = 2o(`1−e)n, the game

GameDisk = (C,ParamGen,DisperseGσ ,H(D),SetupC ,SetupA,Execute)

based on randomness D of min-entropy at least pn` and random oracle H is(
ε(n) + 2−n((p−η)`)+λ+`e(log q(n)+log `),TMOD,H,H

λ−∆λ,2o(`1−e)

)
-secure ,

for ∆λ = `e(log q(n) + n).

Before we continue to the formal proof of the theorem, we show some intuitions be-
hind it. We show the theorem by contradiction. Assume there exists adversary A′
that breaks the security of the game GameDisk with probability greater than ε(n) +
2−n((p−η)`)+λ+`e(log q(n)+log `). We construct adversary A that uses A′ as a subroutine to
break ε-security of the game Game. The idea of the construction is following. Adversary
A will pick a mock randomness DMock of the same distribution as D and claim that K
is a key output by DisperseGσ ,H(DMock). Recall, that is not true with a great probability.
Next, A will run A′ on DMock. For this construction to be successful we need to carry
A′’s bad queries carefully. More precisely, we will answer the bad queries such with values
of the real key K. To do that we will need to reprogram the random oracle H to make it
return elements of K on A′’s bad queries. We show that since A′ is successful in breaking
the security of GameDisk, she will be also successful when run on the mock randomness

Implementation of A.

Input: The adversarial data SetupA′(params,K) on K uniformly distributed over {0, 1}n`
(cf. Step (2) in Figure 2.1).

Setup phase:
1. A simulated random variable DMock is sampled from the distribution D. An efficient

data structure OracleQueryList for the on-the-fly storage of random oracle H
queries is prepared.

2. An internal version A′ of GameDisk adversary is initialized and given

SetupA′(params,K) = SetupA′
(

params,Disperse
Gσ ,H{DMock

Gσ−→K}
(DMock)

)

as input (as in Game
[
A′ � C,K = Disperse

Gσ ,H{DMock
Gσ−→K}

(DMock)
]
).

Execution phase:
3. Every time A is provided with a new message msgA (including the one initialized

with the 0-th message ⊥), she performs the following steps:
a) performs getIndices leakage:

getIndices leakage

Result The list indicesA′ containing pairs (i, vi) of an index i and a result vi of
A′’s bad random oracle query (cf. Definition 29) conducted during her op-
eration in Game

[
A′ � C,K = Disperse

Gσ ,H{DMock
Gσ−→K}

(DMock)
]
when pro-

vided with msgA before sending the next message.

Description of the function Simulate the behaviour of A′ and check whether
random oracle queries are bad or not.

Complexity Leakage: |indicesA′ | · (log q(n) + n), time: the same as A′ opera-
tion. (For the whole execution.)

b) simulates the behaviour of A′ with the following recipe
for answering leakage and random oracle queries:

Replying to leakage and random oracle queries

Random oracle queries If the index i appears in one of the pairs in the list
indicesA′ leaked above then return vi otherwise look up OracleQueryList
and answer with a value from there or a random element drawn from Un.
In any case, add the whole query to OracleQueryList.

Leakage queries We answer a leakage oracle query f described by a cir-
cuit containing oracle ODMock,H queries by the same circuit containing
ODMock,H{DMock

Gσ−→K} instead. Note that in order to substitute all bad
queries of H by H{DMock

Gσ−→ K}), we just need to access DMock, H and
OK which are all given to A.

Complexity Leakage: same as A′’s, bounded by λ − `e(log q(n) + n). Time:
same as A′’s up to time necessary for OracleQueryList look ups.

c) if the total leakage equal to λ − `e(log q(n) + n) + |indicesA′ | · (log q(n) + n)
exceeds λ then terminate with ⊥;

d) returns the message prepared by A′.

Figure 3.7.: Implementation of A

C

K

AA′

DMock

leakage
leakage

Figure 3.8.: Adversary A creates fake disk data DMock and runs kdf-adversary A′, which
can leak from DMock and the key built on it. A pretends that key K is given
by kdf run on DMock. Thus, when A′ leaks from the kdf key, she in fact leaks
from the real key K. When A′ makes a bad query, A leaks from K and reveals
the corresponding key block.

and reprogrammed random oracle. Then A will be successful in breaking the security of
Game. These intuitions were illustrated on Figure 3.8.

Proof. The proof is based on reduction. For sake of contradiction, we assume that there
exists an efficiently sampleable random distribution D of min-entropy pn` and a GameDisk-
adversary A′ ∈ TMOD,H,H

λ−∆λ,q(n) such that:

Pr
D←D

(GameDisk
[
A′ � C,DisperseGσ ,H(D)

]
= Accept) > ε′(n)

= ε(n) + Pr(|indicesA′ | > `e).

Using A′ as a component, we construct adversary A ∈ TMOK,H,H
λ,q(n) contradicting(

ε(n),TMOK,H,H
λ,q(n)

)
-security of Game based on randomness K. Description of A is given

in Figure 3.7. Note that we shall freely use the twisted random oracles defined in
Definition 30.
To finish the proof we need the following claims.

Claim 1 (Simulation). The execution of

G def= Game [A� C,KeyGen(1n;K)]

based on randomness K is in fact a simulation of

G′ def= Game
[
A′ � C,Disperse

Gσ ,H{DMock
Gσ−→K}

(DMock)
]
,

since K = Disperse
Gσ ,H{DMock

Gσ−→K}
(DMock) executed on mock randomness (DMock,H).

Proof. Firstly, observe that the key K is equal to Disperse
Gσ ,H{DMock

Gσ−→K}
(DMock)

(by definition of H{DMock
Gσ−→ K}) and therefore the input of C in G is equal to

70

SetupC
(

params,Disperse
Gσ ,H{DMock

Gσ−→K}
(DMock)

)
, for params← ParamGen(1n) as in G′.

Moreover, all the messages send by A are in fact produced by game G′ adversary A′
and therefore the only difference is that the leakage and random oracle queries of A′ are
not processed honestly but simulated by means of leakage of A described in Steps (3a)
and (3b) in Figure 3.7.

Claim 2 (Simulation correctness). The simulation above is faithful (i.e., A works the
same as corresponding A′) unless ⊥ is returned in Step (3c) of simulation. This oc-
curs with probability at most Pr(|indicesA′ | > `e) which is upper bounded by ξ(n) =
2−n((p−η)`)+λ+`e(log q(n)+log `) and therefore

Pr(A′ is faithfully simulated) = 1− Pr(|indicesA′ | > `e) > 1− ξ(n).

Proof. The first part concerning simulation correctness is clear from the construction.
More precisely, the difference between messages of honest A′ and A occurs only if the
restriction λ on the size of leakage (see Step (3c)) intervenes. Therefore we are left
to prove that Pr(⊥ is returned in (Step 3c)) 6 ξ(n). This follows directly by applying
Lemma 11 for A′.

Claim 3 (Leakage bound). The total leakage of A during the execution of G does not
exceed λ bits and consequently A belongs to TMOK,H,H

λ,q(n) .

Proof. In Step (3c) in Figure 3.7 we explicitly stated that A is terminated if the leakage
she makes, that is λ− `e · (log q(n) + n) + |indices| · (log q(n) + n), is greater that λ.

All above claims prove that A is an efficient adversary for Game which succeeds with
probability:

Pr(G = Accept) > Pr(G′ = Accept and A′ is faithfully simulated) (3.2)
> Pr(G′ = Accept) + Pr(A′ is faithfully simulated)− 1 (3.3)
> ε′(n) + (1− ξ(n))− 1 = ε′(n)− ξ(n) > ε(n), (3.4)

where in line (3.2) we used (Simulation) claim and in (3.4) we used the fact that the
distributions (D,H) and (DMock,H{DMock

Gσ−→ K}) are the same and therefore

Pr(G′ = Accept) = Pr(Game[A′ � C,DisperseGσ ,H(D)] = Accept) > ε′(n),

and moreover that Pr(A′ is correctly simulated) > 1 − ξ(n) by Claim (Simulation’s cor-
rectness).
This contradicts the

(
ε(n),TMOK,H,H

λ,q(n)

)
-security of Game and conse-

quently gives a proof of the theorem as by Lemma 11 the probability
Pr(|indicesA′ | > `e) 6 2−n((p−η)`)+λ+`e(log q(n)+log `).

71

3.7. Efficiency of Disperse

Since we defined kdf as an efficiently computable function, the following lemma is necessary
to show that cost of computing Disperse is not exaggerated.

Theorem 14 (Complexity of the DisperseGσ ,H(D) procedure). Let H be a random oracle,
D ∈ {0, 1}n` and Gσ a d-regular right bipartite graph of ` vertices in each part. By
K = (Ki)n`i=1, where Ki ∈ {0, 1}, we denote a key obtained by running DisperseGσ ,H(D).
Then for any i ∈ {1, . . . , n`} there is needed

• read d blocks of D to obtain Ki,

• read 2d blocks of D to obtain (Ki, . . . ,Ki+n−1 mod n`).

Proof. For any i ∈ 1, . . . , n` a vertex D′i ∈ D′ is a neighbour to exactly d vertices from D.
Hence, according to Figure 3.2, computing Ki requires to read d blocks of D demanded
by the first step of execution of the Disperse function. This finishes the proof of the first
part of the statement, the second goes similarly from the observation that any sequence
of n consecutive bits from K consists of bits from values assigned to at most two upper
vertices of Gσ.

Remark. Assume the key is divided into ` blocks of length n each. Then the number of
read disk blocks required to obtain the whole key block is d (as in the case of obtaining a
single bit of the key).

In signature and identification schemes that are described later, the verifier asks the
prover to provide her k(n) blocks of the derived key K. Below we analyse efficiency of
such procedure. Note, that we expect efficiency much better than just k(n) · d blocks to
read as it could be concluded from the remark above. This holds, since computation of a
number of blocks will reuse some queries with high probability.

Theorem 15. Let H be a random oracle, D ∈ {0, 1}n` and Gσ a d-regular bipartite graph
of ` vertices in each party. By K = (Ki)n`i=1, where Ki ∈ {0, 1}, we denote a key obtained
by running DisperseGσ ,H(D). Let the key be divided into ` parts of length n each. The
expected value of the number of disk blocks read needed to compute k(n) blocks of the key
is

`

(
1−

(
1− d

`

)k(n))
.

Proof. The probability that in k(n) trials a particular block of D is not chosen is
(1− d/`)k(n). Thus the expected value of the number of blocks that were not chosen
is ` · (1− d/`)k(n). Thus, the expected value of the number of chosen blocks is
`
(
1− (1− d/`)k(n)

)
.

72

3.8. Determining real life parameters

Presented function depends on multiple parameters and may be hard to analyse. Below
we show a number of plots to provide intuitions about how random disk data and qual-
ity disperser should be to provide acceptable level of security. We made the following
assumptions.

leakage parameter As usually in BRM, we should start with stating how much data
information the adversary can leak. Since we assumed that the data is stored on
a mobile device, we argue that this leakage bound could be relatively small. Here,
we present two results – first, the adversary is able to leak up to 1GB of data
information (see Fig. 3.9, 3.10); second, she is allowed to learn at most 2GB (see
Fig. 3.11, 3.12).

acceptable security We assume that acceptable security level is 2−128. More precisely, in
case of privacy, statistical distance between the simulator’s output and the adver-
sary’s one is at most 2−128. In case of security, the security loss between protocol
run on a truly random key and a key provided by kdf is also bounded by 2−128.

hash function output size In practice, we instantiate a random oracle by a hash function.
Since the security parameter equals to the output length of a random oracle, the
same holds for a hash function. That is, we set the security parameter to be equal
to the hash function output.
The most common hash functions give output of length either 256 or 512 bits. We
analyse both cases. We bound the number of hash function queries the adversary
can do to 280. This bound does not restrict adversary much. Single iteration of a
hash function takes roughly 12 cycles of the processor [Ber12]. For a hash function
output length of 64 bytes and a computer with a 2GHz processor the adversary can
make roughly 2604 hashes per second. That may sound like a lot, yet time needed
to compute 280 hashes is still over 1013 years.

data size Given leakage parameter we set data size. With data size and leakage parameter
set we show how good the data and disperser have to be. Recall, random variable D
has min-entropy pn`, we say that D is good if p is close to 1. We show the results
for a several data sizes.

disperser regularity and quality We need to describe the quality of the disperser. Dis-
perser is defined by two parameters, i.e we called a graph (k, η)-disperser if every
set of k nodes on one side is connected with at least (1 − η) fraction of nodes on
the other. Good dispersers have small k and η. Recall, that η can be any number
bigger than 0 (however, small η requires bigger number of nodes in the graph). As
Corollary 8 suggests, for a (k, η)-disperser of regularity d and ` nodes on both sides,
it holds k · d > `. Thus, the bigger parameter k is, the smaller regularity d could be.
Smaller d gives better efficiency, since it means that fewer values of hash function

73

have to be computed and fewer block data accessed. On the other hand, we cannot
set d arbitrary small, since it would make the whole construction insecure.

On the following figures we show how big the difference between the data randomness
fraction p and the disperser parameter η, i.e. (p − η) (see the vertical axle) should be,
given the graph regularity d (see the horizontal axle). Every figure contains a number
of plots. Each plot refers to a particular size of disk data. The bigger the data are, the
worse quality they could be to achieve desired security level. For given leakage parameter
λ (recall, we show results for λ equals 1GB and 2GB), we consider disk data of size from
1.1λ (obviously, disk data have to be larger than the leakage) to almost 4λ.
The conclusions from the plots can be delivered as follows.

• The bigger data, the worse quality they could have to deliver desired security.

• Required (p − η) quickly emerges to λ
|D| , usually it is enough to set d around 10 to

achieve that.

• Size of the output of the hash function (between 256 and 512) does not change the
results much and matters for graphs of small regularity only.

Remark. In case this thesis is printed on a black and white printer. In every figure each
label corresponds to the presented plots as follows: the top entry corresponds to the top
line, the second to the top corresponds to the second line, etc.

74

Figure 3.9.: Leakage 1GB, 256-bit long output of a hash function

Figure 3.10.: Leakage 1GB, 512-bit long output of a hash function

75

Figure 3.11.: Leakage 2GB, 256-bit long output of a hash function

Figure 3.12.: Leakage 2GB, 512-bit long output of a hash function

76

CHAPTER 4

KDF IN IDENTIFICATION AND SIGNATURE SCHEMES

In the previous parts of this work we emphasized that the main practical application
of the presented primitive focuses on making BRM schemes usable on mobile devices.
One of the fundamental cryptographic operation performed on such devices is authenti-
cation, which allows remote machines to establish a secure connection between each other.
With no exaggeration one may claim that secure Internet browsing depends on effective
identification schemes.

Identification is a must for such vulnerable applications like these which manage user’s
bank account or email, where any failure can cause irretrievable damages. In modern days,
we identify ourselves almost every time we request access to any remote resources, even
the simplest one: application that manages our emails on a smartphone identify every
time it checks whether new messages arrived, social media applications identify and check
whether new posts were published, etc.
In this part of the thesis, we present a BRM identification scheme depending on a key

obtained by kdf on the fly from disk data, instead of a key permanently resident in device’s
memory. Furthermore, we present a simple yet effective signature scheme based on iden-
tification scheme and Fiat-Shamir paradigm. The approach described here is well known
in the cryptographic community. However, we show it in a new setting and prove security
for much more powerful adversaries equipped with access to a leakage oracle. Finally, we
analyse its usefulness to the problem described in the thesis.

4.1. Identification in the Bounded Retrieval Model

As stated before, BRM comes with an inevitable use of huge keys. This obstacle forces
us to use asymmetric cryptography primitives, where machines taking part in the com-
munication do not need to store a separate, huge cryptographic key for every other party.

77

However, naïve use of asymmetric cryptography is not a straight forward solution, either.
If both public and private keys are large, the communication in a bigger network is also
merely possible. The problem comes from the fact that each computer in the network has
to store a, potentially huge, public key of every other machine. This obstacle forces us
to use asymmetric cryptography, but in a setting, where public keys are short compared
to private ones. A huge private key is possessed by a single party only, while others have
a short public key that can be used to verify identification requests or validate signatures.
Note that only private keys are prone to leakage, since public ones are known.
Due to a huge size of a BRM key we cannot use the entirety of it during the compu-

tations, because of large computation overhead. Popular approach solves this problem
by using some randomly picked parts of the key and building a session key from them.
However, this usually means that the session key changes every time, what rises another
problem.
Consider a BRM identification protocol. In the first session an identifying party, the

prover, uses randomness r0 on a BRM key K that gives a short session key K0. The prover
usesK0 to prepare her challenge response Prove. For the next session randomness changes,
it is r1 now what gives key K1 out of the same BRM key K. How can the verifier check
that both K0 and K1 comes from the same entity, from the same BRM key K? Maybe
there is another party that picked some other K ′1 maliciously and claim it as a legitimate
key obtained from K? Compare this to an identification done by using some public-key
scheme like RSA. Here a pair of keys (pk, sk) remains the same during the whole life of
the protocol. For every pk there is exactly one sk and vice versa. In the BRM setting we
would like to have multiple secret keys sk0, sk1, . . . (possibly one for each identification)
but still a single public key pk.
The identification scheme defined in Definition 12 consists of subroutines

(ParamGen,KeyGen,Prove,Verify). Here, we point out two algorithms for Prove that
makes identification possible even for a constantly changing session key:

• First, algorithm GetSK(K; r), returns a session key Kr from the BRM key K and
given randomness.

• Second, algorithm ProveSK(K,Kr), that on a session key Kr produces an argument
π which can be submitted to the verifier to convince him that Kr is a legitimate
session key obtained from K.

We would like these subroutines to have the following properties:

Completeness An honest prover is able to produce argument π that is acceptable by an
honest verifier with overwhelming probability. That is,

• for every uniformly random r,

• session key Kr ← GetSK(K; r), and

• π ← ProveSK(K,Kr),

78

Verify(pk;π; r) returns Accept.

Soundness We say that Verify procedure is sound if the probability that it returns Accept
on some π′ such that there is no valid session keyKr′ for which π′ ← ProveSK(K,Kr′)
is negligible.

In this part of the thesis we will provide a scheme that from a BRM key K builds
session key K ′ and proves that K ′ was obtained honestly. In other words, we show here
a concrete example of functions GetSK and ProveSK.

4.2. Construction overview

Assume that we have obtained a BRM key K. The method how the key was obtained is
not relevant now, it can be either a truly random key or a key output by the proposed kdf.
In this part we will show how to extract a session key K ′ from K and propose a simple yet
efficient function GetSK. Furthermore, we show a protocol ProveSK that run on some key
K ′ identifies the user by arguing that K ′ was produced out of key K (with overwhelming
probability).
Here we focus on identification functionality where a user (client) needs to assure an-

other user (server) that she is legitimated to perform certain operations. However, means
proposed here can be used in other purposes, like signature schemes, with little change.
In the proposed setting, the identifying client asks for a random r that determines which

part of the key she is going to use. This random r can be either sent by the server, e.g.
through secure channel, posted on a bulletin board, obtained from an external but trusted
common source of randomness, or just computed by the client and the server jointly.
Because of security reasons, the client cannot pick r herself. In such case the adversary
who learnt some part of the client’s key could just decide to build a session key using this
leaked part. Thus, uncertainty which key parts will be picked is a must.
Recall that in our model, the adversary learns leakage before she tries to identify as a

legitimate user. Hence, we can safely assume that the server publishes random r on some
sort of publicly available and verifiable bulletin board. Even if the adversary learns r she
cannot adjust her leakage to it. However, it may happen that picked r fits her well. On
the other hand, we will show that such an event occurs with a small, bounded probability.

Function GetSK. For given r, the client builds session key Kr by calling GetSK(K; r).
In our proposal GetSK function is really simple. Suppose that the BRM key is divided
into ` disjoint parts K[1], . . . ,K[`]. Session key GetSK(K; r) = Kr is created by assigning
to it K[r mod `]. Here, the client and the server need to keep track of r used as no key
Kr can be used twice. Thus, if the server asks for creating Kr for some r that has been
used previously, such a demand must be rejected. In the next part it will be explained
why using the same key twice is not secure. We assume that since random values r are
publicly known, the server sends a new, fresh r′ every time.

79

Function ProveSK. Function ProveSK is based on the following idea: a legitimate user is
able to show a sequence of transformations of the session key such that in the end these
transformations result in a public key pk. Furthermore, no one without a knowledge of
the session key can do the same (with non-negligible probability).
Let T be a binary tree that has leaves labeled by the consecutive blocks of key K,

i.e. first leaf stores K[1], second stores K[2], etc. and stores pk as a label of the root.
Function ProveSK will return a path from a leave to the root. To provide security of such
a construction, we will use Merkle trees. This assures that the adversary who returns
acceptable ProveSK(K ′; r) has access to the key K with overwhelming probability.

4.3. Merkle tree

The ProveSK function is based on a construction called Merkle tree [Mer88] (cf. Figure 4.1).
This structure is a binary tree with a hash function h : {0, 1}2n → {0, 1}n from a collision
resistant hash function family (see Def. 31). Tree nodes have assigned values according to
the following rule: every leaf a is labeled by some number a.label in {0, 1}n. Since we
do not store in nodes any other values, we identify value of a node with a value stored
in its label. Thus, we will omit “.label” part further on and sometimes abuse notation
writing that at node xij we store value xij . If a node c has two children a, b, then c gets
value h(a, b).

Definition 31 (Collision resistant hash function family, see [KL07]). Let H be a family
of functions hK : KeySpace× {0, 1}2n → {0, 1}n. We say that H is collision resistant if
for any PPT adversary A

Pr(K ← KeySpace, (m,m′)← A(K) : m 6= m′ ∧ hK(m) = hK(m′))

is negligible.

For sake of brevity, we will write h instead of hK , as if the function was not keyed.
Similarly, we will write that h maps {0, 1}2n to {0, 1}n and omit set KeySpace. In our
case we will use random oracle H as function h. The description of a Merkle tree can be
formalized as:

Definition 32 (Merkle tree for hash function h, [Mer88]). Let T (`) denote a full binary
tree of ` leaves and height log `, let x0

i (for i ∈ {0, . . . , ` − 1}) be leaves in T (`) and
x0
i ∈ {0, 1}n be a value stored in x0

i . For every node xji ∈ T (`) that is not a leaf we denote
by xj−1

2i and xj−1
2i+1 the direct ancestors of node xji . We call such tree T (`) Merkle tree for

function h : {0, 1}2n → {0, 1}n, if holds:

xji = h
(
xj−1

2i , xj−1
2i+1

)
, for j > 0 and some x0

0, x
0
1, . . . , x

0
`−1 .

Remark. Note that we defined Merkle tree regarding to a collision-resistant hash function
h. However, to show some properties of this primitive we will substitute h by a random

80

oracle H.
An illustrative example of a Merkle tree is given on Figure 4.1. On Figure 4.2 we provide

an exemplary implementation of such a structure. The idea of the implementation is simple
and goes as follows. Let ` be the number of leaves and a power of 2. We represent the tree
as a one-dimensional array of length 2`− 1. First ` entries are occupied by labels stored
in the leaves while the others remain empty. Then going from left to right we pair given
values and store the hash of the pair in the first empty cell.

x0
0 x0

1 x0
2 x0

3 x0
4 x0

5 x0
6 x0

7

x1
0 x1

1 x1
2 x1

3

x2
0 x2

1

x3
0 x3

0 = h(x2
0, x

2
1)

x2
0 = h(x1

0, x
1
1), x2

1 = h(x1
2, x

1
3)

x1
0 = h(x0

0, x
0
1), x1

1 = h(x0
2, x

0
3)

x1
2 = h(x0

4, x
0
5), x1

3 = h(x0
6, x

0
7)

Figure 4.1.: An exemplary full Merkle tree

Implementation of makeTree.
Input: One-dimensional array Q of length 2` − 1 and ` values x0, . . . , x`−1 ∈
{0, 1}n to be stored at leaves of a tree; hash function h : {0, 1}2n → {0, 1}n.
Output: Merkle tree T (`) represented by a one-dimensional array.

Algorithm 2: makeTree(Q, x0, . . . , x`−1)
1 length← `
2 length.last← `
3 length.last.prev← 0
4 while length ≥ 2 do
5 for i = 0, . . . , length/2− 1 do
6 Q[i+ length.last]←

h(Q[length.last.prev + 2i], Q[length.last.prev + 2i+ 1])
7 end
8 length.last.prev← length.last
9 length← length/2

10 length.last← length.last + length
11 end

Figure 4.2.: Building a Merkle tree from data blocks

Merkle tree is a construction widely used in cryptography, since it straightforwardly
gives a hash function able to obtain an input of arbitrary length, say `n, given only hash

81

function h : {0, 1}2n → {0, 1}n in log ` steps. Furthermore, it gives a simple identification
protocols as described in Section 4.4.
In the next definition we will describe an identification path for a leaf i in a Merkle

tree. This definition will be crucial for understanding properties of ProveSK algorithm.
Informally, an identification path is a sequence of all nodes laying on the path from the
leaf to the root along with all their sibling nodes.

Definition 33 (Identification path in a Merkle tree, see [Mer79]). Let T (`) be a Merkle
tree of height log ` with leaves x0, . . . , x`−1 ∈ {0, 1}n and hash function h : {0, 1}2n →
{0, 1}n, the sequence p = (x0

0, x
0
1, x

1
0, x

1
1, . . . , x

log `−1
0 , xlog `−1

1 , x) ∈ ({0, 1}n)2 log `+1 is called
an identification path from leaf xi if

• x0
0 = xi if i even and x0

1 = xi otherwise;

• let~b = b0, b1, . . . , blog `−1 such that i = b0+2·b1+. . .+2log `−1blog `−1, where bj ∈ {0, 1}
then the following holds

for bj = 0 xj0 = h
(
xj−1

0 , xj−1
1

)
; (4.1)

for bj = 1 xj1 = h
(
xj−1

0 , xj−1
1

)
; (4.2)

where 0 < j < log `; and

• x = h
(
xlog `−1

0 , xlog `−1
1

)
.

Node v ∈ p such that Eq. (4.1) or (4.2) holds is called a path node, otherwise we
call it a sibling node. The set of all path nodes is denoted by Pth and the set of all
siblings node is denoted by Sbl.

Figure 4.3 shows an exemplary implementation of an algorithm that returns the identi-
fication path for the required node. Since we include in the identification path also siblings
of nodes we can verify it easily, see Figure 4.5.

4.4. Identification on a Merkle tree

Identification by using Merkle tree is a well-known technique. It allows the prover to
identify using logarithmically long (in numbers of leaves) proof, while the only element
needed to be known by the verifier is the value at the root of the tree. Despite popularity
of the scheme, all security proofs were done according to a model where leakage does not
occur and under assumption that values stored at leaves are uniformly random.
Here, we modify the identification protocol to make sure that even the adversary who

learnt some information about the tree cannot break the soundness of the identification.
More precisely, we will prove security of the identification scheme by showing that no

82

Implementation of getPath
Input: Full Merkle tree T (`), with ` leaves x0

0, . . . , x
0
`−1 and root c, each of which

labeled by a number from {0, 1}n, leaf index k written binary as b0b1 . . . blog `.
Output: Path p =

(
y0

0, y
0
1, y

1
0, y

1
1, . . . , y

log `−1
0 , ylog `−1

1 , y
)
∈ ({0, 1}n)2 log `+1, such

that for i ∈ {0, . . . , log `− 1}

• (yi0, yi1) =

h

(
xib k

2i
c, x

i
b k

2i
c+1

)
, if bi = 0,

h

(
xib k

2i
c−1, x

i
b k

2i
c

)
, if bi = 1

• y = xlog `
0

Figure 4.3.: Algorithm getPath obtains a path from a leaf of index k up to the root c of
tree T (`).

x0
0 x0

1 x0
2 x0

3 x0
4 x0

5 x0
6 x0

7 x0
8 x0

9 x0
10 x0

11 x0
12 x0

13 x0
14 x0

15

x1
0 x1

1 x1
2 x1

3 x1
4 x1

5 x1
6 x1

7

x2
0 x2

1 x2
2 x2

3

x3
0 x3

1

x4
0

Figure 4.4.: An exemplary identification path on a Merkle tree. The highlighting denotes
nodes on the identification path.

adversary A equipped with q(n) queries to the random oracle and leakage λ has non-
negligible probability of making verifier V accept A on behalf of a legitimate prover P.
This identification scheme allows the verifier to learn some small, yet non-negligible, part
of the key. A direct consequence of this fact is that the prover cannot use this scheme as
long as she wish and at some moment both private and public keys need to be refreshed.
This problem is addressed later. For now, we assume that the prover is able to identify
up to ζ(n) times.

The identification protocol is simple and goes as follows. We assume that the prover
stores her cryptographic key (which can be computed from her private data) divided into
` blocks along with Merkle tree T (`) built on top of the key (i.e. with blocks of the key
assigned to the tree leaves values). The verifier gets as public key pk the value stored in
the root of tree T . Both parties hold states, i.e. they remember what randomness they
used in the past, what messages they received etc.

The identification starts with the verifier sending k(n) different random numbers ri ∈

83

Implementation of checkPath.
Input: p =

(
y0

0, y
0
1, . . . , y

log `−1
0 , ylog `−1

1 , y
)
∈ ({0, 1}n)2 log `+1, an index k and a value

c of the root of T (`).
Output: TRUE iff p is a correct path from kth leaf up to the root c and FALSE
otherwise.

Algorithm 3: checkPath(p, k, c)
1 Let blog ` . . . b1b0 be a binary representation of k. Then:
2 for i = 1, . . . , log `− 1 do
3 if yi

0 6= h
(
yi−1

0 , yi−1
1
)
, for bi = 0 then

4 Return FALSE
5 end
6 if yi

1 6= h
(
yi−1

0 , yi−1
1
)
, for bi = 1 then

7 Return FALSE
8 end
9 end

10 if y 6= h
(
ylog `−1

0 , ylog `−1
1

)
then

11 Return FALSE
12 end
13 if y 6= c then
14 Return FALSE
15 end
16 Return TRUE

Figure 4.5.: Algorithm checkPath checks whether the given path p is a correct path from
the leaf of index k up to the root c.

{0, . . . , `− 1} that were not used before. On every ri the prover responds with a path in
T (`) that connects ri-th leaf with the root along with siblings of every node on the path.
See Definition 33 and Figure 4.3 for an algorithm that returns required path. The last
step in the protocol is done by the verifier who checks correctness of the given paths (see
Figure 4.5) and outputs Accept if all paths were computed correctly and Reject if this is
not the case. The detailed description of the identification protocol appears on Figure 4.6.
We claim that such identification scheme is secure even if the adversary is allowed to

learn some part of the secret key. The proof idea goes as follows. The key is divided
into blocks and, due to the construction of the key, these blocks are independent of each
other. Recall, this property holds for a uniformly random key and a key produced by
Disperse alike. The adversary submits leakage queries of overall length not exceeding λ.
Such queries reduces min-entropy of the key by at most λ. We conclude that some of
key blocks have now entropy reduced to some small value, while entropy of other blocks
remains (mostly) unaffected. During the identification, the verifier asks for paths to
k(n) leaves. We argue, that if among these k(n) paths there is at least one leaf with
high min-entropy, then the adversary wins only with negligible probability. Then we show

84

Merkle tree identification protocol

Setup phase:

ParamGen :
Both parties, a prover P and a verifier V, set S ← ∅ and keep independent
copies SV and SP of S.

KeyGen: Prover P picks sk = x0, . . . , x` randomly from {0, 1}n`, computes T –
a Merkle tree with x0, . . . , x`−1 ∈ {0, 1}n` as values at leaves. Then, she com-
putes pk, the value of the root of tree T and sends it to verifier V.

Challenge:

Verifier V picks at random vector ~v = (v[1], v[2], . . . , v[k(n)]) ∈ {0, . . . , `− 1}k(n),
such that for i = 1, . . . , k(n),

• v[i]← {0, . . . , `− 1} \ SV ;
• for j 6= i,

– v[i] 6= v[j],
– v[i] 6= v[j] + (−1)v[j]

and sends the chosen vector to P;
SV ← SV ∪

{
v[i], v[i] + (−1)v[i]

}
i=1,...,k(n)

(where i + (−1)i is an index of i’s
sibling leaf).

Prove : For i = 1, . . . , k(n), prover P
• checks whether v[i] ∈ SP and aborts if this is the case, otherwise sets

SP ← SP ∪ {v[i], v[i] + (−1)v[i]}i=1,...,k(n).
• computes values lying on the path from skv[i] up to pk along with values

at sibling nodes, i.e. runs

pv[i] ← getPath(T , v[i])

and sends pv[i] to V.

Verification:

Verify : Verifier V checks whether for each i in 1, . . . , k(n) on obtained values pv[i]
holds

checkPath(pv[i], v[i], pk)

If this is the case, the verifier outputs Accept, if not, Reject.

Figure 4.6.: Merkle tree identification protocol

85

that with overwhelming probability among k(n) random leaves there is a leaf of high
min-entropy.

Theorem 16 (Identification security). For any A ∈ TMOK,H,H
λ,q(n) probability that A wins

in a ζ(n)-bounded leakage-resilient identification scheme security game described on Fig-
ure 2.7 for identification on Merkle tree (see Figure 4.6), for key K picked uniformly at
random from {0, 1}n`, ζ(n) < `/2k(n) and λ 6 1

c · (`− 2k(n)ζ(n))(n− log(q(n)r(n))), is
not greater than (1

c

)k(n)
+ 1
r(n)− 1 ,

for any r(n) > 1, c > 1.

Before we proceed with the proof, we present some intuitions behind the theorem. The
bound on the number of executions ζ(n) comes from the number of available paths in
a Merkle tree with ` leaves (each leaf is a block of a key). Every identification reduces
the number of available paths by 2k(n). More precisely, in every identification execution,
the verifier asks for k(n) paths and because of path verification algorithm, sibling leaves
share the same identification path, thus every path query excludes two leaves.

We say that a block has small min-entropy if the random variable describing values the
node can take has min-entropy smaller than log(q(n)r(n)) after the adversary’s leakage
queries. We say that a block has high min-entropy if it does not have small min-entropy.
We assume that the adversary knows all blocks with small min-entropy. That is, every
block has min-entropy either at least log(q(n)r(n)) or 0. Since the min-entropy of each
block before the leakage is n, adversary A has to use at least n − log(q(n)r(n)) of her
leakage to make a block have small min-entropy. We show later that the probability of
the adversary guessing correctly value of a block of high min-entropy is negligible.
The adversary can make her leakage queries before any of ζ(n) runs of the identification

protocol. In such a protocol, the verifier requires the prover to provide him a number
of identification paths from the key blocks up to the root of the tree. In some round of
identification the adversary decides to end Test stage and go to Impersonation stage, see
Figure 2.7.
The bound on the leakage comes from the following. We allow the adversary to leak as

much as she wants, providing that the number of blocks with high min-entropy remains
big enough to have overwhelming probability that the verifier picks such a block in her
identification challenge.
Let us comment on the probability of breaking security of the scheme. The first ingre-

dient c−k(n) is negligible for k(n), if c > 1. The second; although the proof works for any
r(n) > 1, 1/r(n) has to be negligible in n for α to be negligible also. Below we continue
with a proof of Thm 16.

Proof of Thm. 16. Let T0 =
(
x0

1, . . . , x
0
` , x

1
0, . . . , x

1
`/2, . . . , x

log `
0

)
denote the Merkle tree

build upon the key K = x0
1, . . . , x

0
` and T1 denote T0 with leaves truncated, i.e. T1 =(

x1
0, . . . , x

1
`/2, . . . , x

log `
0

)
. We will prove a stronger theorem by supplying the adversary

86

Round 1: A’s leakage:

Leaves picked by V:

Round 2: A’s leakage:

Leaves picked by V:

Round 3: A’s leakage:

Leaves picked by V:

Round 4: A’s leakage:

Leaves picked by V:

Figure 4.7.: Exemplary execution of a few rounds of the identification protocol. Before
each round adversary A picks leaves she wants to learn (blocks filled with
slanted lines), then verifier V picks (independently) leaves for the identification
(blocks filled with dots). We show here very lucky adversary whose leakage
queries have empty intersection with challenges sent by the verifier.

with additional knowledge. More precisely, the values from the truncated tree T1. That
is, the adversary is given all possible paths from the bottom to the top of a tree T0 except
the values at the leaves.
Suppose that adversary A plays a ζ(n)-security game of the identification scheme. The

identification procedure is executed up to ζ(n) times. At some moment adversary A de-
cides to identify. (goes from the Test stage to the Impersonation stage). We say that A
wins if she successfully identify to verifier V. We consider two complementary events:

• E – in the k(n) paths requested by the verifier there is at least one path pointing
to a leaf with min-entropy at least log(q(n)r(n)). Recall, we say that a leaf v has
small min-entropy if H∞(V) 6 log(q(n)r(n)), for V a random variable describing
possible values of v. As mentioned above, we assume that all leaves with small min-
entropy are known to the adversary. That is, leaves has either min-entropy at least

87

log(q(n)r(n)) or 0.

• E′ – is an event complementary to E. That is, E′ occurs when verifier V requests
paths to leaves that are all known to adversary A.

Now, the probability of winning (in Figure 2.7) can be expressed as

Pr(A wins) = Pr(A wins | E) Pr(E) + Pr(A wins | E′) Pr(E′) .

The proof will show that both Pr(A wins | E) and Pr(E′) are bounded by 1/(r(n) − 1)
and c−k(n) respectively.
We start by showing that Pr(A wins | E) 6 1/(r(n)−1). Consider the verifier’s request

on some path ended in a leaf vl. For sake of simplicity we assume that it is the left sibling,
we will denote the right sibling by vr. Denote by v the parent of vl and vr. Since the
adversary is equipped with T0, the only thing she has to compute before she can answer
the verifier’s request is a value on vl, vr such that H(vl, vr) = v. Without losing the
generality, assume that H∞(Vl) > log(q(n)r(n)) and vr is known to A.

targeted
node v

vl vr

Figure 4.8.: Adversary A needs to find such a value of vl, vr that H(vl, vr) = v. By the
assumption, vr and v are known to A.

Because of the random oracle properties, the adversary equipped with a single query to
oracle H has the probability of guessing value of vl bounded by 1/(q(n)r(n)). Since the
adversary is equipped with q(n) queries, the probability of a correct guess in the i-th query
is 1/(q(n)r(n)− i). Finally, the probability that A guesses the value of v after q(n)-th
query is 1/q(n)(r(n)−1). Since the adversary wins if she makes a correct guess in at least
one query and by the union bound on probability we have

Pr(A guesses the value of vl) 6
1

q(n)r(n) + 1
q(n)r(n)− 1 . . .+

1
q(n)(r(n)− 1)︸ ︷︷ ︸

q(n) times

6
1

r(n)− 1 .

The next step is to show that probability that all leaves pointed by the chosen k(n)
paths have min-entropy smaller than log q(n)r(n) is bounded by c−k(n). Denote by T
a set of all leaves with min-entropy not greater than log(q(n)r(n)). Because values of
all leaves are taken randomly from {0, 1}n and amount of leakage does not exceed λ,

88

therefore |T| 6 λ/(n− log(q(n)r(n))). For round i denote by Ti all nodes known to
the adversary after she makes her leakage queries. Recall, that the adversary cannot
make leakage queries during the identification protocol execution, but can make them in
between executions. Suppose, the adversary leaks λi bits of information right before the
i-th identification execution. It holds that |Ti| 6 (λ1 + . . .+ λi)/(n− log(q(n)r(n))).

The adversary picks which round she will try to identify. Say she decided on round i.
The probability that the adversary wins in round i is bounded by

(|Ti|
`− 2k(n)i

)k(n)
, (4.3)

which holds since in round i (a) there are at most |Ti| nodes of small min-entropy; (b) in
the beginning of that round there is exactly ` − 2k(n)(i − 1) nodes left; (c) the verifier
picks (independently) k(n) nodes; (d) the probability that the verifier pick the j-th node
in the i-th round from the set of nodes known to the adversary is at most

|Ti|
`− 2k(n)(i− 1)− 2j + 2 6

|T|
`− 2k(n)i .

For λ 6 1
c (`− 2k(n)ζ(n))(n− log(q(n)r(n))) Eq. (4.3) is bounded by c−k(n) for some

c > 1. Putting both parts together, we obtain the requested bound(1
c

)k(n)
+ 1
r(n)− 1 .

That finishes the proof.

The theorem can be illustrated by the following corollary:

Corollary 17. For r(n) > 2256, c = 2 and k(n) = 256, any A ∈ TMOK,H,H
λ,q(n) ,

probability that A wins in a ζ(n)-bounded leakage-resilient identification scheme
security game described on Figure 2.7 for identification on Merkle tree (see
Figure 4.6), for key K picked uniformly at random from {0, 1}n`, ζ(n) < `/512 and
λ 6 1

2 · (`− 512ζ(n))(n− log q(n)− 256), is not greater than 2−128.

Note, the proof above assumed that the key K is uniformly random. However, we could
substitute K by a key prepared by a secure kdf with only negligible loss in security. We
conclude the discussion with the following corollary.

Corollary 18. For any A ∈ TMOD,H,H
λ,q(n) probability that A wins in a ζ(n)-bounded leakage-

resilient identification scheme security game described on Figure 2.7 for an identification
on a Merkle tree (see Figure 4.6), for key of length {0, 1}n` produced by a (Λ(λ), q(n), ε(n))-
secure kdf, ζ(n) < `/2k(n) and λ 6 1

c · (`− 2k(n)ζ(n))(n− log(q(n)r(n))) is not greater
than (1

c

)k(n)
+ 1
r(n)− 1 + ε(n) ,

89

for any r(n) > 1, c > 1.

Proof. Bound on probability α comes directly from Theorem 16 and a security gap between
running the protocol on a BRM key generated uniformly at random and a key derived by
the kdf.

If we use described in Chapter 3, DisperseGσ ,H as kdf, we get the following parameters.

Corollary 19. For any A ∈ TMOD,H,H
λ−`e(log q(n)+n),2o(`1−e) probability that A wins in a ζ(n)-

bounded leakage-resilient identification scheme security game described on Figure 2.7 for
an identification on a Merkle tree (see Figure 4.6), for key of length {0, 1}n` produced by
a DisperseGσ ,H on data D such that H∞(D) > pn` and Gσ a d-regular (`e, η)-right disperser
is not greater than(1

c

)k(n)
+ 1
r(n)− 1 + 2−n((p−η)`)+λ+`e(log q(n)+log `) ,

for any r(n) > 1, c > 1.

4.5. Non-interactive identification based on a Merkle-tree

The aforementioned scheme can be easily made non-interactive by using the Fiat-Shamir
paradigm. A non-interactive scheme allows prover P to send a single message, which fully
identifies her without any interaction with the verifier.
Similarly to the construction described in Section 4.4, a non-interactive scheme con-

sists of three messages. However, instead of a challenge picked by the verifier, the second
message comes from querying the random oracle on some one-time, publicly known ran-
domness r picked by the prover, see Figure 2.3. The detailed construction of a scheme
can be found on Figure 4.9.
Before we proceed, we assume that there exists a random oracle H[k(n)], which on query

r produces a binary string H[k(n)](r) of length `, such that the Hamming weight of a binary
representation of H[k(n)] is exactly k(n). Exemplary construction of such random oracle
can be given according to [HJK+16].

4.6. Efficiency

In this section we would like to give some estimation on cost of operations that a prover
has to perform to identify to a verifier. We will also show bounds on the number of bits
that has to be sent from P to V.

For given parameter k(n), the identifying prover has to reply on k(n) verifier’s queries.
That is, she has to compute k(n) blocks of the key, each of which requires to query a
random oracle on d blocks of data, for d regularity of the disperser. With high probability,
some of these blocks will overlap. However, the upper bound for the number of accessed

90

Non-interactive Merkle tree identification protocol.

Setup phase:

ParamGen : Prover P: T – Merkle tree on leaf-values x1, . . . , x`. Both parties set
S← ∅ and keep independent copies SV and SP of S. Set R denotes all random
values that has been used so far, protocol begins with R ← ∅.

KeyGen: Prover P computes pk, the value of the root of tree T and sends it to
verifier V.

Challenge:

Prove: Prover P
• takes at random r ← Dom(H[k(n)]) \R;
• sets R ← R ∪ {r};
• query oracle H[k(n)] on r obtaining H[k(n)](r), let h0h1 . . . h`−1 be a binary

representation of H[k(n)](r), set K← ∅;
• if for all hi, i = 0, . . . , `− 1, where hi = 1, holds that i 6∈ SP , then

– for i = 0, . . . , `− 1, if hi = 1, set K← K ∪ {i} and SP ← SP ∪ {i};
• else, if there is some i such that hi = 1 and i ∈ SP , prover P restarts and

chooses another r.
• for every i ∈ K computes a path pi from root to ith leaf, i.e. runs pi ←

getPath(T , i);

• sends V a triple
(
r,H[k(n)](r), (pi)i∈K

)
.

Verification:

Verify : On triple
(
r,H[k(n)](r′), (pi)i∈K

)
verifier V checks

• whether r′ ∈ RV or H[k(n)](r′) 6= H[k(n)](r) if this happens V outputs
Reject.

• For every i ∈ K, V check whether:
– i /∈ SV , SV ← SV ∪ {i};
– checkPath(pi, r′, pk).

If this is a case, the verifier outputs Accept, if not, Reject.

Figure 4.9.: Exemplary non-interactive Merkle tree identification protocol

91

blocks of disk data is k(n) · d. Since every block is n bit long, it gives k(n) · d · n bits that
have to be read.
On the other hand, recall Theorem 15. According to it, the expected value of the

number of data blocks that are read to get k(n) key blocks from a disperser of regularity
d is

`

(
1−

(
1− d

`

)k(n))
.

Identification requires P to send identification paths that correspond to the picked k(n)
key elements. Assuming that the key is built from ` blocks, a single path from the block
to the tree root has length roughly log `. Every node contains a value from {0, 1}n, thus
the prover has to transmit 2 · k(n) · log ` · n bits, where the factor 2 comes from the fact
that for every node on the path, we also send its sibling.
Analysing Corollary 18, we can estimate the number above as follows: We pick a security

parameter n equal 512 and k(n) = 256, for disk data of length 4GB, we have ` ≈ 8, 4 · 103

and log ` = 23. Altogether, the number of bits send in a single identification query is
roughly 2 · 256 · 23 · 512 = 6 029 312.

4.7. Signature scheme from kdf and a Merkle tree

A signature scheme based on a Merkle tree works analogously to a non-interactive
identification scheme. The only difference is an additional randomizer r,
that works twofold: it prevents the scheme from repetition attacks and
allows to sign the same message twice. Thus, for σ being a signature we get
σ ←

(
(m, r),H[k(n)](m, r),Prove(sigk; (m, r),H[k(n)](m, r))

)
for message m and

randomizer r. After i identifications/signatures 2k(n)i paths are known, thus we need
to assure that the paths pointed by H[k(n)](m, r) have not been used before. We denote
such an event by E(m, r). If this is not a case, we pick another randomizer r′ and check
paths for H[k(n)](m; r′). New randomizers are checked until a value r′, such that E(m, r′)
occurs. Since in the single trial the probability of E(m, r′) is at least `−2k(n)i

` , the
expected number of trials before all picked paths were not used before is 2`

`−2k(n)i . That
is, the probability that no suitable randomizer r is found in polynomial time is negligible.
thus the probability that trying different randomness does not end in polynomial time is
negligible. The security of the scheme is due to Corollary 4.

4.8. Public key updates

The scheme, as presented above, has a minor utility drawback. That is, it cannot be used
with an unchanged key forever. After a few thousands of executions (depending on the
parameters), when the number of identifications performed exceeds ζ(n), the scheme is no
longer secure and a new key is necessary.
Another case which demands key refreshing comes from the nature of underlying data

92

D. As mentioned in the introduction, this research was inspired by the idea of using
meaningful private data instead of a huge random sequences of bits to generate secure
cryptographic keys. Since we do not want to limit functionality of these data, we have to
allow their owner to deal with them as usual, i.e. add, remove, replace or modify them.
However, properties of the proposed Disperse procedure makes these operations (despite
addition) impossible. Every change in the data makes Disperse produce a different secret
key, which yields a different public key.
Thus, to provide reliability and robustness, a protocol that allows the scheme to operate

uninterruptedly is a must. Here we present a protocol that allows the user to update her
public key when the old one was used too many times or it was changed due to changes in
the underlying disk data. We show that the cost of updating the scheme is small. More
precisely, it requires only a single authenticated message consisted of the new public key
The key updating procedure consists of two subroutines. Firstly, the new public key

is computed. Secondly, it is legalized, that is, the user who updates the key has to prove
that she is legitimized to do so, she is a legitimate user.
Below we present aforementioned two subroutines. The key updating procedure is

presented on Figure 4.10. It needs a little modified Disperse algorithm, since the algorithm
presented in Figure 3.2 does not include enumerator ch ∈ {0, 1}log ` that shows how many
times the public key has been changed. For data Dch, graph Gσ, and oracle H we denote
the modified algorithm by DisperseGσ ,H(Dch, ch) and the obtained key D′ch. The algorithm
has been presented in Figure 4.11.

Obtaining a new public key As shown on Figure 3.2, secret key sk = D′1, . . . , D
′
` is

derived by DisperseGσ ,H(D) procedure. The consecutive D′i are obtained as follows:

D′i ← H
(
i,Dσ(i,1), . . . , Dσ(i,d)

)
,

for Di being disk data and i = 0, . . . , `− 1. Then the public key pk is obtained as a root
of a Merkle tree with values assigned to leaves equal D′1, . . . , D′`.
We change this procedure and introduce a new enumerator ch that keeps tracks on

how many times the secret key was changes. That is, the key is obtained now a modified
procedure DisperseGσ ,H(Dch, ch), where each of secret key blocks D′ch,i is computed as
below:

D′i ← H
(
i+ ` · ch, Dch,σ(i,1), . . . , Dch,σ(i,d)

)
,

for Dch,i being potentially changed disk data and i = 1, . . . , `. We start with ch set to 0.
In such case we have

DisperseGσ ,H(D0, 0) = DisperseGσ ,H(D) .

According to the properties of random oracle, for j, j′ ∈ N and j 6= j′:

H
(
i+ j`,Dj,σ(i,1), . . . , Dj,σ(i,d)

)`
i=1

and H
(
i+ j′ · `,Dj′,σ(i,1), . . . , Dj′,σ(i,d)

)`
i=1

93

Key update procedure

Input: Two sets of data Dch−1,0, . . . , Dch−1,`−1 and Dch,0, . . . , Dch,`−1. We interpret
the former as old data and the later as new data. The prover keeps enumerator
ch ∈ {0, 1}log ` that shows how many times the public key has been changed. The
enumerator is incremented every time data change. The prover is also equipped with
a secret key D′ch−1 obtained from Disperse function ran on Dch−1,0, . . . , Dch−1,`−1 and
the corresponding public key pkch−1.
Output: A new public key pkch ∈ {0, 1}n.

Obtaining a new key

Run DisperseGσ ,H(Dch, ch) as in Figure 4.11, assign the output to D′ch =
(D′ch,0, . . . , D

′
ch,`−1) ∈ {0, 1}n`.

Legalizing a new public key

Create a new public key Compute a new public key pkch by running makeTree(D′ch)
algorithm (see Figure 4.2). Public key pkch gets the value of the root of com-
puted tree.

Confirm a public key Run non-interactive signature scheme on a Merkle tree defined
in Figure 4.9 on message pkch and secret key D′ch−1.

Figure 4.10.: Key update procedure

are independent random variables for probability taken over the choice of D.
Denote by Dch−1 disk data that are subject to change and by D′ch−1, pkch−1 the corre-

sponding secret and public keys. Let Dch denote the new data and D′ch be the key derived
from it. The new public key is obtained by computing the root c of a Merkle tree with
D′ch as values at leaves. The public key is set to pkch = c.

Legalizing a new public key Legalizing a new key is done by broadcasting it along with
a signature that confirms its authenticity. That is, we use the non-interactive signature
scheme presented in Section 4.7. In this scheme, instead of triple(

(m, r),H[k(n)](m, r), (pi)i∈K
)
,

prover P sends
σ =

(
(pkch, r),H[k(n)](pkch, r), (pi)i∈K

)
,

along with pkch, where pkch is the new public key. What is worth emphasizing is fact that
the signature for pkch is derived from the old keyD′ch−1. Analogously, σ is verified by using
pkch−1. Security of the new public key follows directly from the security of the signature
scheme. Obtaining and legalisation of the new public key is described in Figure 4.10.

94

Implementation of DisperseGσ ,H(Dch, ch).

Parameters:

1. d-regular bipartite (`e, η) disperser Gσ = (V0tV1,E) defined by function σ : [|V1|]×
[|E|]→ [|V0|], such that |V0| = |V1| = ` and |E| = d`.

2. random oracle H : {0, 1}dn+log ` → {0, 1}n.

Input: Bitstring Dch of length n`, enumerator ch.
Output: Key D′ch = D′ch,1 . . . D

′
ch,` ∈ {0, 1}n`.

Execution:

1. Input Dch ∈ {0, 1}n` is divided into `, n-bit long strings: Dch,1, . . . , Dch,`.

2. Output of Disperse is divided into blocks as well. We denote these blocks as
D′ch,1, . . . , D

′
ch,`.

3. For i = 1, . . . , `: output blockD′ch,i, gets valueH
(
i+ ` · ch, Dch,σ(i,1), . . . , Dch,σ(i,d)

)
,

4. Disperse returns D′ch = D′ch,1 . . . D
′
ch,`.

Figure 4.11.: Implementation of the modified Disperse function.

Storing old data Another issue which is worth to point out is additional memory demand
during establishing a new public key after modification of data Dch−1 (denote the modified
data by Dch). This follows from inevitable use of Dch−1 for committing public key for
Dch. A simple, yet not very efficient, solution would be to store Dch−1 along with Dch

unless the new key is legalised.
On the other hand, we can assume that Dch and Dch−1 shares a lot of information,

i.e. we suppose that modification of the data comes in parts and it is being changed
definitely rarely. To illustrate this assumption by a real-world example we can say that it
is much more probable that a single file is deleted than a whole disk is erased. That is, for
Dch−1 = (Dch−1,i)`i=1 and Dch = (Dch,i)`i=1, Dch−1 and Dch differ only on small number
of indices i. Suppose that I is a set that contains all such indices. The user who modified
data does not need to store the whole Dch−1 along with Dch, but can simply store Dch

along with (Dch−1,i)i∈I. Note, that (Dch−1,i)i∈I can be removed after the new public key
is broadcast.

95

CHAPTER 5

OPEN PROBLEMS

Weaker adversary, better parameters Security proofs in this thesis highly relied on the
Guessing game described in Figure 3.4. Recall, in that game we allow an adversary to leak
from both random variables X and H. The first one could be interpreted as a secret key,
while the other corresponds to a random oracle.
An interesting research question would be to provide better security parameters for

a setting that does not give the adversary so much power. More precisely, the adversary
should be able to leak from the secret key, however it is quite unusual that the adversary
is allowed to leak from the random oracle also. In the proposed setting, the adversary
could, for example, ask the following question: “reveal x, such that H(x) = y”. In the
real world, getting answer on that would be highly improbable. On the other hand, our
model allows the adversary to learn such x. The change of model would require a change
in the Guessing game itself what seems like a non-trivial task, taking into account how
important the game is for security proofs in this work.

Random Oracle Although it is possible to replace a random oracle by a collision-resistant
hash function in any implementation of the proposed protocols, such a replacement does
not provide provable security of derived scheme.

In the recent paper, Lindell [Lin15] used a model where all parties are provided with
access to a random oracle, yet the oracle is not programmable. The model, originally
proposed by Nielsen in [Nie02] is stronger than the standard model, but weaker than
ROM. It assumes that no simulator can arbitrarily change an output for an oracle query,
the oracle is publicly available. Recall, in this thesis we use programmability of the random
oracle to show the security of Disperse function. Along with a non-programmable random
oracle, Lindell uses programmable Common Reference String, a standard model tool of
achieving common randomness.

97

The first—and the most important objective from a theoretical point of view—is to
provide a BRM-secure key derivation function kdf working in non-programmable ROM
without major losses in efficiency and security.

Alternate traversal of a Merkle tree In this work we used the original trespassing al-
gorithm for a Merkle tree. However, there are known other ways to move from a leave to
the root, which are more space-efficient and faster, e.g. [JLMS03, Szy04]. Since compu-
tational complexity is of the great interest in this work and these traversal methods are
not proven to be secure in any leakage-resilient model of operation, future development
should consider alternative trespassing of a tree and their security in the BRM.

Secrecy refreshing Merkle tree identification and signature schemes come with inevitable
limited number of possible executions. However this obstacle is not a problem since any
refreshing needs a single message only. On the other hand, solution deriving a BRM key
independent from disk modifications and which does not need public keys updates should
be delivered to meet more sophisticated expectations.

Prover-verifier effort balance Proposed solution put almost all effort on the side of the
prover: private key is huge compared to very short public key, she is obliged to conduct
much more computations than the verifier. We believe that this model suits the real world
well—server stores myriads public keys for myriads users each of which stores huge but
only one secret key. However, we can picture a situation where more balanced distribution
is needed. A scheme allowing arbitrary balancing between length of public and secret key
seems an interesting question for further work.

98

BIBLIOGRAPHY

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and
Daniel Wichs. Public-key encryption in the bounded-retrieval model. In
Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Com-
puter Science, pages 113–134. Springer, 2010.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key
cryptography in the bounded-retrieval model. In Shai Halevi, editor, Advances
in Cryptology - CRYPTO 2009, 29th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume
5677 of Lecture Notes in Computer Science, pages 36–54. Springer, 2009.

[AM16] Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to
factoring. IEEE Trans. Information Theory, 62(11):6251–6259, 2016.

[BCN89] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-regular graphs. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. Springer, 1989.

[BDK+05] Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam
Smith. Secure remote authentication using biometric data. In Ronald Cramer,
editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of
Lecture Notes in Computer Science, pages 147–163. Springer, 2005.

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof
Pietrzak François-Xavier Standaert, and Yu Yu. Leftover hash lemma, re-
visited. In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011
- 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2011.

99

[Bel81] Alexander Graham Bell. US244426 (a) - telephone circuit, 1881.

[Ber12] Daniel J. Bernstein. Optimization failures in SHA-3 software. http://cr.
yp.to/hash/sha3opt-20120104.pdf, 2012.

[BH05] Boaz Barak and Shai Halevi. A model and architecture for pseudo-random
generation with applications to /dev/random. In Vijay Atluri, Catherine
Meadows, and Ari Juels, editors, Proceedings of the 12th ACM Conference on
Computer and Communications Security, CCS 2005, Alexandria, VA, USA,
November 7-11, 2005, pages 203–212. ACM, 2005.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikun-
tanathan. Overcoming the hole in the bucket: Public-key cryptography re-
silient to continual memory leakage. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las
Vegas, Nevada, USA, pages 501–510. IEEE Computer Society, 2010.

[BKR16] Mihir Bellare, Daniel Kane, and Phillip Rogaway. Big-key symmetric encryp-
tion: Resisting key exfiltration. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Pro-
ceedings, Part I, volume 9814 of Lecture Notes in Computer Science, pages
373–402. Springer, 2016.

[BMV05] Lejla Batina, Nele Mentens, and Ingrid Verbauwhede. Side-channel issues
for designing secure hardware implementations. In 11th IEEE International
On-Line Testing Symposium (IOLTS 2005), 6-8 July 2005, Saint Raphael,
France, pages 118–121. IEEE Computer Society, 2005.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS ’93, pages 62–73, New York,
NY, USA, 1993. ACM.

[Bra16] Statistic Brain. Youtube company statistics. http://www.statisticbrain.
com/youtube-statistics/, 2016.

[BST03] Boaz Barak, Ronen Shaltiel, and Eran Tromer. True random number genera-
tors secure in a changing environment. In Colin D. Walter, Çetin Kaya Koç,
and Christof Paar, editors, Cryptographic Hardware and Embedded Systems
- CHES 2003, 5th International Workshop, Cologne, Germany, September 8-
10, 2003, Proceedings, volume 2779 of Lecture Notes in Computer Science,
pages 166–180. Springer, 2003.

100

http://cr.yp.to/hash/sha3opt-20120104.pdf
http://cr.yp.to/hash/sha3opt-20120104.pdf
http://www.statisticbrain.com/youtube-statistics/
http://www.statisticbrain.com/youtube-statistics/

[CFPZ09] Céline Chevalier, Pierre-Alain Fouque, David Pointcheval, and Sébastien Zim-
mer. Optimal randomness extraction from a Diffie-Hellman element. In An-
toine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479
of Lecture Notes in Computer Science, pages 572–589. Springer, 2009.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited. J. ACM, 51(4):557–594, 2004.

[Cod14] Codenomicon. The heartbleed bug. http://heartbleed.com, 2014.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley-Interscience, New York, NY, USA, 1991.

[CW07] Brian Chess and Jacob West. Secure Programming with Static Analysis.
Addison-Wesley Professional, first edition, 2007.

[DCLW06] Giovanni Di Crescenzo, Richard Lipton, and Shabsi Walfish. Perfectly secure
password protocols in the bounded retrieval model. In Proceedings of the
Third Conference on Theory of Cryptography, TCC’06, pages 225–244, Berlin,
Heidelberg, 2006. Springer-Verlag.

[DDK+16] Konrad Durnoga, Stefan Dziembowski, Tomasz Kazana, Michal Zajac, and
Maciej Zdanowicz. Bounded-retrieval model with keys derived from private
data. In Kefei Chen, Dongdai Lin, and Moti Yung, editors, Information Secu-
rity and Cryptology - 12th International Conference, Inscrypt 2016, Beijing,
China, November 4-6, 2016, Revised Selected Papers, volume 10143 of Lecture
Notes in Computer Science, pages 273–290. Springer, 2016.

[DDN15] Ivan Damgård, Frédéric Dupuis, and Jesper Buus Nielsen. On the orthogonal
vector problem and the feasibility of unconditionally secure leakage-resilient
computation. In Anja Lehmann and Stefan Wolf, editors, Information Theo-
retic Security - 8th International Conference, ICITS 2015, Lugano, Switzer-
land, May 2-5, 2015. Proceedings, volume 9063 of Lecture Notes in Computer
Science, pages 87–104. Springer, 2015.

[DGH+04] Yevgeniy Dodis, Rosario Gennaro, Johan Håstad, Hugo Krawczyk, and Tal
Rabin. Randomness extraction and key derivation using the cbc, cascade
and HMAC modes. In Matthew K. Franklin, editor, Advances in Cryptology
- CRYPTO 2004, 24th Annual International CryptologyConference, Santa
Barbara, California, USA, August 15-19, 2004, Proceedings, volume 3152 of
Lecture Notes in Computer Science, pages 494–510. Springer, 2004.

[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel
Wichs. Cryptography against continuous memory attacks. In 51th Annual

101

http://heartbleed.com

IEEE Symposium on Foundations of Computer Science, FOCS 2010, Octo-
ber 23-26, 2010, Las Vegas, Nevada, USA, pages 511–520. IEEE Computer
Society, 2010.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012.

[DKK+12] Yevgeniy Dodis, Bhavana Kanukurthi, Jonathan Katz, Leonid Reyzin, and
Adam Smith. Robust fuzzy extractors and authenticated key agreement from
close secrets. IEEE Transactions on Information Theory, 58(9):6207–6222,
2012.

[DKW11] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. Key-evolution
schemes resilient to space-bounded leakage. In Phillip Rogaway, editor,
CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 335–
353. Springer, 2011.

[DLWW11] Yevgeniy Dodis, Allison B. Lewko, Brent Waters, and Daniel Wichs. Storing
secrets on continually leaky devices. In Rafail Ostrovsky, editor, IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, pages 688–697. IEEE Computer
Society, 2011.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy data.
SIAM J. Comput., 38(1):97–139, 2008.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret shar-
ing. In 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings, pages
227–237. IEEE Computer Society, 2007.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography.
In FOCS, pages 293–302. IEEE Computer Society, 2008.

[DS05] Yevgeniy Dodis and Adam Smith. Entropic security and the encryption of
high entropy messages. In Joe Kilian, editor, TCC, volume 3378 of Lecture
Notes in Computer Science, pages 556–577. Springer, 2005.

[DY13] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In Amit Sahai,
editor, Theory of Cryptography - 10th Theory of Cryptography Conference,
TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, volume 7785 of Lec-
ture Notes in Computer Science, pages 1–22. Springer, 2013.

[Dzi06] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In
Shai Halevi and Tal Rabin, editors, TCC, volume 3876 of Lecture Notes in
Computer Science, pages 207–224. Springer, 2006.

102

[EG85] Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Proceedings of CRYPTO 84 on Advances in Cryp-
tology, pages 10–18, New York, NY, USA, 1985. Springer-Verlag New York,
Inc.

[Eve15] Rose Eveleth. How many photographs of you are out there in the
world? https://www.theatlantic.com/technology/archive/2015/11/
how-many-photographs-of-you-are-out-there-in-the-world/413389/,
2015.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity.
J. Cryptology, 1(2):77–94, 1988.

[FKPR10] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum.
Leakage-resilient signatures. In Daniele Micciancio, editor, Theory of Cryptog-
raphy, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzer-
land, February 9-11, 2010. Proceedings, volume 5978 of Lecture Notes in Com-
puter Science, pages 343–360. Springer, 2010.

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-
resilient symmetric cryptography. In Emmanuel Prouff and Patrick Schau-
mont, editors, Cryptographic Hardware and Embedded Systems - CHES 2012
- 14th International Workshop, Leuven, Belgium, September 9-12, 2012. Pro-
ceedings, volume 7428 of Lecture Notes in Computer Science, pages 213–232.
Springer, 2012.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. pages 186–194. Springer-Verlag, 1987.

[GGOQ98] Henri Gilbert, Dipankar Gupta, Andrew M. Odlyzko, and Jean-Jacques
Quisquater. Attacks on Shamir’s "RSA for paranoids". Inf. Process. Lett.,
68(4):197–199, 1998.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Appli-
cations. Cambridge University Press, 2004.

[GR10] Shafi Goldwasser and Guy N. Rothblum. Securing computation against con-
tinuous leakage. In Tal Rabin, editor, Advances in Cryptology - CRYPTO
2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August
15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer Science,
pages 59–79. Springer, 2010.

103

https://www.theatlantic.com/technology/archive/2015/11/how-many-photographs-of-you-are-out-there-in-the-world/413389/
https://www.theatlantic.com/technology/archive/2015/11/how-many-photographs-of-you-are-out-there-in-the-world/413389/

[GR15] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of
leakage. SIAM J. Comput., 44(5):1480–1549, 2015.

[Gro04] Jens Groth. Honest Verifier Zero-Knowledge Arguments Applied. PhD thesis,
University of Århus, Denmark, October 2004.

[Gro06] Jens Groth. Simulation-Sound NIZK Proofs for a Practical Language and
Constant Size Group Signatures. In Xuejia Lai and Kefei Chen, editors, ASI-
ACRYPT 2006, volume 4284, pages 444–459, Shanghai, China, December 3–7,
2006. Springer, Heidelberg.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbal-
anced expanders and randomness extractors from Parvaresh–Vardy codes. J.
ACM, 56(4), 2009.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive argu-
ments from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan,
editors, Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 99–108. ACM, 2011.

[HerBC] Herodotus. Histories. 450-420BC.

[Hig87] Harold Joseph Highland. Tempest over leaking computers. Computers &
Security, 6(6):457–458, 1987.

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters,
and Mark Zhandry. How to generate and use universal samplers. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Pro-
ceedings, Part II, volume 10032 of Lecture Notes in Computer Science, pages
715–744, 2016.

[HL02] Michael Howard and David E. Leblanc. Writing Secure Code. Microsoft Press,
Redmond, WA, USA, 2nd edition, 2002.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their
applications. Bull. Amer. Math. Soc. (N.S), 43:439–561, 2006.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: Cold boot attacks on encryption
keys. In Paul C. van Oorschot, editor, Proceedings of the 17th USENIX Secu-
rity Symposium, July 28-August 1, 2008, San Jose, CA, USA, pages 45–60.
USENIX Association, 2008.

104

[JLMS03] Markus Jakobsson, Frank Thomson Leighton, Silvio Micali, and Michael
Szydlo. Fractal merkle tree representation and traversal. In Marc Joye, editor,
Topics in Cryptology - CT-RSA 2003, The Cryptographers’ Track at the RSA
Conference 2003, San Francisco, CA, USA, April 13-17, 2003, Proceedings,
volume 2612 of Lecture Notes in Computer Science, pages 314–326. Springer,
2003.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences mili-
taires, IX:5–83, 1883.

[KKS11] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography
with tamperable and leaky memory. In Phillip Rogaway, editor, Advances
in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture
Notes in Computer Science, pages 373–390. Springer, 2011.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Series). Chapman
& Hall/CRC, 2007.

[KM15] Neal Koblitz and Alfred J. Menezes. The random oracle model: a twenty-year
retrospective. Des. Codes Cryptography, 77(2-3):587–610, 2015.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in Cryptology - CRYPTO ’96, 16th An-
nual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 1996, Proceedings, pages 104–113, 1996.

[Lin15] Yehuda Lindell. An efficient transform from sigma protocols to NIZK with
a CRS and non-programmable random oracle. In Yevgeniy Dodis and Jes-
per Buus Nielsen, editors, Theory of Cryptography - 12th Theory of Cryp-
tography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Pro-
ceedings, Part I, volume 9014 of Lecture Notes in Computer Science, pages
93–109. Springer, 2015.

[Lin17] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof tech-
nique. Electronic Colloquium on Computational Complexity (ECCC), 24:112,
2017.

[Mer79] Ralph Charles Merkle. Secrecy, Authentication, and Public Key Systems. PhD
thesis, Stanford, CA, USA, 1979. AAI8001972.

[Mer88] Ralph Charles Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, Advances in Cryptology — CRYPTO ’87,
volume 293 of Lecture Notes in Computer Science, pages 369–378. Springer
Berlin Heidelberg, 1988.

105

[MM05] Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof
for Probabilistic Systems. Monographs in Computer Science. Springer Sci-
ence+Business Media, Inc., 2005.

[Nat01] National Institute of Standards and Technology. Announcing the Advanced
Encryption Standard (AES). Defense Technical Information Center, 2001.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity the-
oretic proofs: The non-committing encryption case. In Moti Yung, editor,
Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 18-22, 2002, Pro-
ceedings, volume 2442 of Lecture Notes in Computer Science, pages 111–126.
Springer, 2002.

[NS12] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage.
SIAM J. Comput., 41(4):772–814, 2012.

[NSS+17] Matús Nemec, Marek Sýs, Petr Svenda, Dusan Klinec, and Vashek Matyas.
The return of coppersmith’s attack: Practical factorization of widely used
RSA moduli. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, Oc-
tober 30 - November 03, 2017, pages 1631–1648. ACM, 2017.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux,
editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of
Lecture Notes in Computer Science, pages 462–482. Springer, 2009.

[Rao09] Anup Rao. Extractors for a constant number of polynomially small min-
entropy independent sources. SIAM J. Comput., 39(1):168–194, 2009.

[RSA78] Ron Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–
126, February 1978.

[RSW06] Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness
via repeated condensing. SIAM J. Comput., 35(5):1185–1209, 2006.

[Sch14] Bruce Schneier. Heartbleed. https://www.schneier.com/blog/archives/
2014/04/heartbleed.html, 2014.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, The, pages 379–423, 1948.

106

https://www.schneier.com/blog/archives/2014/04/heartbleed.html
https://www.schneier.com/blog/archives/2014/04/heartbleed.html

[SJB+14] David Silver, Suman Jana, Dan Boneh, Eric Yawei Chen, and Collin Jackson.
Password managers: Attacks and defenses. In Kevin Fu and Jaeyeon Jung,
editors, Proceedings of the 23rd USENIX Security Symposium, San Diego,
CA, USA, August 20-22, 2014., pages 449–464. USENIX Association, 2014.

[Spr16] Tom Spring. Web-based keylogger used to steal credit
card data from popular sites. https://threatpost.com/
web-based-keylogger-used-to-steal-credit-card-data-from-popular-sites/
121141/, 2016.

[Sta10] François-Xavier Standaert. Introduction to side-channel attacks. In In-
grid M.R. Verbauwhede, editor, Secure Integrated Circuits and Systems, In-
tegrated Circuits and Systems, pages 27–42. Springer US, 2010.

[Szy04] Michael Szydlo. Merkle tree traversal in log space and time. In Christian
Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT
2004, International Conference on the Theory and Applications of Crypto-
graphic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, vol-
ume 3027 of Lecture Notes in Computer Science, pages 541–554. Springer,
2004.

[Ta-02] Amnon Ta-Shma. Almost optimal dispersers. Combinatorica, 22(1):123–145,
2002.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–
879, July 2001.

[TV00] Luca Trevisan and Salil Vadhan. Extracting randomness from samplable
distributions. In Proceedings of the 41st Annual Symposium on Foundations
of Computer Science, FOCS ’00, pages 32–42, Washington, DC, USA, 2000.
IEEE Computer Society.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 7(1-3):1–336, 2012.

[YL13] Yanqing Yao and Zhoujun Li. Overcoming weak expectations via the Rényi
entropy and the expanded computational entropy. In Carles Padró, editor,
Information Theoretic Security - 7th International Conference, ICITS 2013,
Singapore, November 28-30, 2013, Proceedings, volume 8317 of Lecture Notes
in Computer Science, pages 162–178. Springer, 2013.

107

https://threatpost.com/web-based-keylogger-used-to-steal-credit-card-data-from-popular-sites/121141/
https://threatpost.com/web-based-keylogger-used-to-steal-credit-card-data-from-popular-sites/121141/
https://threatpost.com/web-based-keylogger-used-to-steal-credit-card-data-from-popular-sites/121141/

APPENDIX A

ADDITIONAL PROOFS

A.1. Theorem 5.1 from [ADW09]

Proof of Theorem 3 . The proof goes by contradiction. Given an s-entropic adversary
A = (A1,A2) which has advantage ε(n) in EUGλ,n (see: Figure 2.6) we construct a Π
scheme attacker B (see Figure A.1) which has probability polynomial in ε(n) at breaking
the security of the Π scheme (see Figure 2.5). That is, we show that the probability
that B convinces verifier V during the impersonation stage is polynomially related to the
advantage of A.
For an execution of A let S be the event that A outputs a signature (ã, c̃, z̃) of a new

message m. Then by definition, for a random execution we have that Pr(S) = ε(n) is
exactly the probability of A winning in the signature attack game.
Let S1 (occurring with probability ε1(n)) be the event that S occurs and, at some point,
A queries the random oracle on x̃ = (ã,m). Suppose event S occurs but event S1 does
not, then with overwhelming probability the conversation (ã,H(x̃), z̃) is not an accepting
conversation since otherwise A could be used to break the soundness of the Π scheme. (In
particular A, on input only the public key, could generate a valid third flow message for
a first flow of it’s choosing without even seeing the challenge from the verifier.) Therefore
we have that ε1(n) 6 ε(n)− η(n) for some negligible function η.

In an execution where S1 occurs let ρ′ be the index of the first random oracle query of
the form (·,m). Consider an execution of A emulated exactly as in the real world except
that B first guesses ρ ← [q(n)]. Let S2 (occurring with probability ε2(n)) be the event
that S1 occurs and B guesses ρ = ρ′. Since the view of A is independent of the value of ρ
which is chosen uniformly we have that ε2(n) = ε1(n)/q(n) = ε(n)−η(n)

q(n) .
Now consider an execution of A emulated by B as described in Figure A.1. Let S3

(occurring with probability ε3(n)) be the event that S2 occurs and B does not output

109

Reduction B

The attacker B gets input (params, pk) and oracle access to the leakage oracle O and
to a prover P(pk, sk). Her goal is to win the IDλ,n game (see Definition 13).

1. Let q(n) be an upper bound on the number random oracle queries made by A. B
selects a random index ρ ← [q(n)]. B interacts with P(pk, sk) using uniformly
random challenges ci to obtain a larger number of conversations of the form
(ai, ci, zi). After this point there is no more interaction between B and P. B
initializes A1 with input (params, pk). Eventually B also passes the hint hint
from A1 to A2.

2. B simulates the oracles Ssk,Osk
λ as well as the random oracle H for A as follows:

Random Oracle Queries (except query ρ) For each random oracle query x if
H(x) has already been defined, output it. Otherwise interpret x = (m, a)
and see if list of conversations includes one of the form (a, cj , zj). If so
then define H(x) def= cj , associate the conversation (a, cj , zj) with x and
remove it from the list. Output cj . If no conversation matches a then
select a random response c, define H(x) def= c and output c.

Signature Queries On input m take the next conversation (a, c, z) from the list
and check if H(m, a) is defined. If so there must be a conversation (a, c′, z′)
associated with (m, a). Respond with signature (a, z′). Otherwise define
H(m, a) def= c, associate conversation (a, c, z) with (m, a), remove (a, c, z)
from the list and output signature (a, c, z).

Random Oracle Query ρ When the ρ-th random oracle query x = (a,m) is
made, if H(x) has already been defined then B outputs abort1 and ter-
minates. Otherwise B enters the impersonation stage of Π attack game ID
and loses access to the leakage oracle. It starts a fresh interaction with the
honest verifier V(pk). B interprets x as x = (a,m) and sends a to V(pk)
receiving c in response which it outputs as the response to it’s ρ-th query.

Leakage Queries Queries If a leakage query is made after the ρ-th random
oracle query then B outputs abort1 and terminates. Otherwise it forwards
the leakage query to it’s leakage oracle and outputs the response.

3. Eventually A2 outputs a message m and signature (a, c, z). If the signature is
valid and (m, a) was the ρ-th random oracle query then B sends z to V(pk) and
terminates.

Figure A.1.: Reduction from a Σ-adversary to a Π-adversary.

110

abort1 and let S′3 be the event that S2 occurs but B does output abort1. Then Pr(S2) =
Pr (S2 ∧ S3) + Pr (S2 ∧ S′3) = Pr (S3) + Pr (S′3). If event S3 occurs then the ρ-th query
must have been made by A1 since A2 can not make leakage queries. Because A is an
s-entropic adversary this can happen with at most probability 2−s. Thus we have that we
have ε2(n) 6 ε3(n) + 2−s.

Further we argue that in such an emulation, conditioned on event S3 occurring, the
view of an adversary A is identically distributed to a real world execution. This follows
from two observations. First, all random oracle queries in the emulation are answered
consistently with uniformly random and independent responses. Further these are also
consistent with the responses to the signature oracle. The second observation is that the
responses to A’s signature queries have the same distribution as in a real world execution.
In particular the values of a and z used in the signatures are selected independently of
the message and according to the honest prover’s algorithm for a fresh random challenge.
Therefore we can conclude that A behaves exactly as in real world executions which

implies ε3(n) > ε2(n)− 2−s = ε1(n)
q(n) − 2−s = (ε(n)− η(n)) q(n)− 2−s which is polynomial

related to ε(n) for s > n. Note that emulated executions where event S3 occurs correspond
exactly to the executions of B when it convinces V during the impersonation stage of the Π
attack game. Thus the proof for security with pre-impersonation leakage is complete.

111

	Introduction
	A way to modern cryptography
	Security as a game
	Motivation for leakage-resilient cryptography
	Side-channel attacks
	Modeling side-channel attacks
	Bounded Retrieval Model

	Results
	Security from private data
	Overcoming weak expectations
	Key Derivation Functions (kdf)
	Disperse as an example of kdf
	Identification and signature scheme on kdf
	Key refreshing

	Trivial solutions
	Organization of the thesis
	Preliminaries
	Security games
	Real world vs ideal world
	Random Oracle Model
	Leakage-resilient cryptography
	Various notions of entropy
	Identification scheme
	Making identification non-interactive, Fiat-Shamir paradigm

	Signature schemes
	From identification schemes to signature schemes
	Identification and signature schemes in the Bounded Retrieval Model
	Bounded number of executions
	Basic properties of disperser graphs

	Disperse as a Key Derivation Function
	Key Derivation Function (kdf)
	Privacy of key derivation functions
	Security of key derivation functions

	Disperse graph
	Guessing game
	One-wayness of Disperse
	Privacy of Disperse
	Security of Disperse
	Efficiency of Disperse
	Determining real life parameters

	kdf in identification and signature schemes
	Identification in the Bounded Retrieval Model
	Construction overview
	Merkle tree
	Identification on a Merkle tree
	Non-interactive identification based on a Merkle-tree
	Efficiency
	Signature scheme from kdf and a Merkle tree
	Public key updates

	Open problems
	Additional proofs
	Theorem 5.1 from DBLP:conf/crypto/AlwenDW09

