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Abstract

This thesis is devoted to the study of functional and transportation inequalities
connected to the concentration of measure phenomenon.

In the first part, we work in the classical setting of smooth functions and
are interested in the concentration between the exponential and Gaussian
levels. We prove that a probability measure which satisfies a Beckner-type
inequality of Latała and Oleszkiewicz, also satisfies a modified log-Sobolev
inequality. As a corollary, we obtain improved (dimension-free) two-level
concentration for products of such measures.

The second, more extensive, part is concerned with concentration of
measure for convex functions. Our main tool, used throughout, is the theory
of weak transportation inequalities introduced recently by Gozlan, Roberto,
Samson, and Tetali. We start by presenting a characterization of probability
measures on the real line which satisfy the convex log-Sobolev inequality.
This allows us to give concentration estimates of the lower and upper tails of
convex Lipschitz functions (the latter were not known before).

We then prove that a probability measure on Rn which satisfies the convex
Poincaré inequality also satisfies a Bobkov–Ledoux modified log-Sobolev
inequality, extending results obtained by other authors for measures on R.

We also present refined concentration of measure inequalities, which
are consequences of weak transportation inequalities (or, equivalently, their
dual formulations: convex infimum convolution inequalities). This includes
applications to concentration for non-Lipschitz convex functions.

Our last result concerns convex infimum convolution inequalities with
optimal cost functions for measures with log-concave tails. As a corollary,
we obtain comparison of weak and strong moments of random vectors with
independent coordinates with log-concave tails.

2010 Mathematics Subject Classification. Primary: 60E15. Sec-
ondary: 26A51, 26B25, 26D10.

Keywords and phrases. Concentration of measure, convex functions, in-
fimum convolution, log-Sobolev inequality, Poincaré inequality, transportation
inequalities.
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Streszczenie

Niniejsza rozprawa poświęcona jest nierównościom funkcyjnym i transporto-
wym związanym ze zjawiskiem koncentracji miary.

W pierwszej części zajmujemy się koncentracją dla funkcji gładkich. Do-
wodzimy, że miara probabilistyczna, która spełnia pochodzącą od Latały
i Oleszkiewicza nierówność typu Becknera, spełnia także odpowiednią zmo-
dyfikowaną nierówność logarytmiczną Sobolewa. Jako wniosek dostajemy
wzmocnioną dwupoziomową koncentrację dla produktów takich miar.

Druga część jest obszerniejsza i dotyczy koncentracji dla funkcji wypukłych.
Naszym głównym narzędziem technicznym jest teoria słabych nierówności
transportowych wprowadzonych niedawno przez Gozlana, Roberta, Samsona
i Tetaliego. Najpierw przedstawiamy charakteryzację miar probabilistycz-
nych, które spełniają wypukłą nierówność logarytmiczną Sobolewa na prostej.
Pozwala nam to wyprowadzić oszacowania koncentracyjne dla górnego i dol-
nego ogona lipszycowskich funkcji wypukłych (wcześniej znane były jedynie
oszacowania dla górnego ogona).

Następnie dowodzimy, że miara probabilistyczna na Rn, spełniająca wy-
pukłą nierówność Poincarégo, spełnia także pochodzącą od Bobkova i Ledoux
zmodyfikowaną nierówność logarytmiczną Sobolewa. Wzmacnia to wyniki
otrzymane przez innych autorów w przypadku miar na prostej.

Opisujemy także, jakie ogólne nierówności koncentracyjne wynikają ze sła-
bych nierówności transportowych (równoważnie: z ich dualnych sformułowań,
czyli wypukłych nierówności splotu infimum). Obejmuje to także wyniki dla
nielipszycowskich funkcji wypukłych.

Ostatni wynik dotyczy wypukłych nierówności splotu infimum z opty-
malnymi funkcjami kosztu dla miar o log-wklęsłych ogonach. Jako wniosek
otrzymujemy porównywanie słabych i silnych momentów wektorów losowych
o niezależnych współrzędnych z log-wklęsłymi ogonami.

Klasyfikacja tematyczna. 60E15; 26A51, 26B25, 26D10.
Słowa kluczowe. Funkcje wypukłe, koncentracja miary, nierówność

logarytmiczna Sobolewa, nierówność Poincarégo, nierówności transportowe,
splot infimum.
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Chapter 1

A brief introduction

1.1 The concentration of measure phenomenon
on the sphere

The classical isoperimetric problem on the sphere Sn−1 ⊂ Rn (endowed
with the uniform, rotation invariant probabilistic measure σn−1) was solved
independently by Lévy [53] and Schmidt [71, 70, 72]. It turns out, that if B
is a spherical cap (the geodesic ball) and A ⊂ Sn−1 is a measurable set with
σn−1(A) = σn−1(B), then

σn−1({x ∈ Sn−1 : d(x,A) < t}) ≥ σn−1({x ∈ Sn−1 : d(x,B) < t}),

where d is the geodesic metric on Sn−1.
In the case when B is a half-sphere it is easy to explicitly compute the

measure of the spherical cap {x ∈ Sn−1 : d(x,B) < t}. The above inequality
implies that for any set A with measure 1/2 we have

σn−1({x ∈ Sn−1 : d(x,A) < t}c) ≤ e−(n−2)t2/2.

Therefore the measure of the set {x ∈ Sn−1 : d(x,A) < t}c decays very fast
as t grows. Moreover, by taking A to be a half-sphere, we see that—speaking
informally—the measure σn−1 is concentrated around the equator (any of the
equators) of Sn−1.

We can restate this in the following language: if f : Sn−1 → R is an
L-Lipschitz function, then

σn−1({x ∈ Sn−1 : |f(x)−Medσn−1(f)| ≥ t}) ≤ e−(n−2)t2/(2L2),

where

Medσn−1(f) := inf
{
s ∈ R : σn−1({x ∈ Sn−1 : f(x) ≤ s}) ≥ 1/2

}
1



is the median of f . This means that functions on high-dimensional spheres
with small local oscillations are essentially constant—they are concentrated
around their median (or mean value).

The importance of this elementary, yet non-trivial, observation was first
emphasized by Milman, who used it in his proof of Dvoretzky’s theorem [57].
The concentration phenomenon has become one of the main themes of high
dimensional probability and geometric analysis, with many applications to,
e.g., limit theorems (see Ledoux’s and Talagrand’s book [52]), non-asymptotic
confidence bounds or random constructions of geometric objects with extremal
properties (consult the monographs [58] and [10]).

1.2 Gaussian concentration
Another, classical example for the concentration of measure phenomenon is
provided by the standard Gaussian measure γn on Rn which has the density
(2π)−n/2 exp(−|x|2/2), x ∈ Rn (for which the isoperimetric problem is also
solved [22, 76]). If f : Rn → R is 1-Lipschitz, then

γn
({
x ∈ Rn : |f(x)−

∫
Rn
fdγn| ≥ t

})
≤ 2e−t

2/2, t > 0,

or, in probabilistic notation,

P(|f(G)− E f(G)| ≥ t) ≤ 2e−t
2/2, t > 0,

where G is a random vector with law γn. Here we restricted our attention to
1-Lipschitz functions, but clearly the general result for L-Lipschitz functions
follows just by scaling. Also, we stated the results in terms of concentration
around the mean not the median (but it should be intuitively clear, that if
a function ‘concentrates’ around some number, then this number has to be
‘close’ both to the median and to the mean of this function).

Note that here the concentration is dimension-free, that is, the dimension
n does not appear on the right-hand side. The constant 1/2 in the exponent
on the right-hand side is optimal (as standard estimates of the Gaussian tail
on the real line show), but—with possibly worse numerical constants—the
result can be derived in various ways, some of which we shall discuss below.

1.3 Functional and transport–entropy inequali-
ties

Luckily, concentration inequalities can be obtained without solving the iso-
perimetric problem for the underlying probability distribution. Let us recall
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three classical tools which are nicely suited to deriving concentration inequali-
ties: the log-Sobolev inequality, the T2 inequality, and the Poincaré inequality.
The picture sketched below is by no means complete and we refer to, e.g., the
monographs [51] and [23] for a thorough introduction to the topic and a vast
overview of the field.

Let µ be a Borel probability measure on Rn and let | · | stand for the
standard Euclidean norm on Rn.

We say that µ satisfies the log-Sobolev inequality if there exists a constant
CLS such that for every smooth function f : Rn → R,

Entµ(f 2) ≤ CLS

∫
Rn
|∇f |2dµ. (1.3.1)

Here Entµ(g) denotes the usual entropy of a non-negative function g, i.e.,

Entµ(g) :=

∫
Rn
g ln(g)dµ−

∫
Rn
gdµ ln

(∫
Rn
gdµ

)
(1.3.2)

if
∫
Rn g ln(g)dµ < ∞ and Entµ(g) = ∞ otherwise. This inequality was first

introduced by Gross [41]. By substituting ef/2 in place of f it can be rewritten
in the form

Entµ(ef ) ≤ CLS
4

∫
Rn
|∇f |2efdµ,

which is sometimes more convenient.
We say that µ satisfies Talagrand’s T2 inequality if there exists a constant

CT such that for every probability measure ν on Rn,

T2(µ, ν) ≤ CTH(ν|µ), (1.3.3)

where
T2(µ, ν) := inf

π

∫
Rn×Rn

|x− y|2π(dx, dy),

is the usual quadratic transport cost considered in the Monge–Kantorovich
transport problem (the infimum is taken over all couplings of µ and ν, i.e.,
over all probability measures π on (Rn)2 such that π(dx × Rn) = µ(dx),
π(Rn × dy) = ν(dy)) and H(ν|µ) stands for the relative entropy of ν with
respect to µ, given by the formula

H(ν|µ) =

∫
Rn

log
(dν
dµ

)
dν ∈ [0,+∞] (1.3.4)

if ν is absolutely continuous with respect to µ; otherwise one sets H(ν|µ) =
+∞. This inequality was introduced by Talagrand in [79] and subsequently

3



widely studied (see, e.g., [80] for a complete and detailed presentation). It is
also called the transport–entropy inequality, due to the terms appearing in
(1.3.3).

We say that µ satisfies the Poincaré inequality with constant CP > 0 if
for all smooth functions f : Rn → R we have

Varµ(f) ≤ CP

∫
Rn
|∇f |2dµ. (1.3.5)

Remark 1.3.1. Suppose that X is a random vector with values in Rn. Slightly
abusing the terminology we will say that it satisfies the log-Sobolev, Tala-
grand’s, or the Poincaré inequality whenever its law satisfies the respective
inequality. Also, when convenient, we will use probabilistic notation. Thus,
e.g., we shall write (1.3.1) and (1.3.5) as

Ent(f(X)) := E f(X) ln f(X)− E f(X) lnE f(X)

≤ CLS E |∇f(X)|2,
Var(f(X)) ≤ CP E |∇f(X)|2,

respectively. We shall act similarly with other inequalities.

All three inequalities mentioned above have a dimension-free tensorization
property: if a measure satisfies one of the inequalities, then its products also
satisfy that inequality and the constant with which the inequality holds does
not increase.

The standard Gaussian measure is a flagship example of a measure which
satisfies the log-Sobolev and T2 inequalities. Both of those inequalities imply
subgaussian dimension-free concentration: if a measure µ satisfies one of them,
then for every positive integer N and every 1-Lipschitz function f : RNn → R,
one has

µ⊗N
(∣∣f − ∫

RNn
fdµ⊗N

∣∣ ≥ t
)
≤ 2 exp(−Kt2), (1.3.6)

where K = 1/CLS in case of the log-Sobolev inequality and K = 1/CT in
case of Talagrand’s inequality.

The Poincaré inequality is satisfied, e.g., by the symmetric exponential
distribution. If a measure µ satisfies the Poincaré inequality, then for every
positive integer N and every 1-Lipschitz function f : RNn → R, one has

µ⊗N
(∣∣f − ∫

RNn
fdµ⊗N

∣∣ ≥ t
)
≤ 2 exp(−t/

√
CP ). (1.3.7)

There are deep and important connections between the concentration of
measure phenomenon and the log-Sobolev inequality, the transport–entropy
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inequality, and the Poincaré inequality (and infimum convolution inequali-
ties which we shall introduce in Section 1.4 below). Otto and Villani [60]
established the implication chain

log-Sobolev inequality =⇒ T2 inequality =⇒ Poincaré inequality.

(A simpler proof, based on the Hamilton-Jacobi partial differential equation,
was given by Bobkov, Gentil, and Ledoux in [18], cf. [61].) These implications
are strict; the fact that the log-Sobolev inequality can be distinguished from
Talagrand’s T2 inequality was proved by Cattiaux and Guillin [24] (see also
Section 4.3 of [35] for a nice discussion of other counterexamples in a more
general setting).

Moreover, as shown by Gozlan [33], dimension-free subgaussian concen-
tration is in fact equivalent to Talagrand’s inequality being satisfied. An-
other result of Gozlan, Roberto, and Samson [37], asserts that any kind of
dimension-free concentration implies dimension-free concentration with—at
least—an exponential rate (which was already noticed by Talagrand in [77])
and moreover the Poincaré inequality.

1.4 Infimum convolution inequalities
We shall now recall the definition of another inequality which will play an
important role throughout the paper. Let µ be a probability measure on Rn

and let ϕ : Rn → [0,∞] be a measurable function. We say that the pair (µ, ϕ)
satisfies the infimum convolution inequality if for every bounded measurable
function f : Rn → R, ∫

Rn
ef�ϕdµ

∫
Rn
e−fdµ ≤ 1,

where f�ϕ denotes the infimum convolution of f and ϕ defined as

f�ϕ(x) = inf{f(y) + ϕ(x− y) : y ∈ Rn} (1.4.1)

for x ∈ Rn. This inequality was introduced by Maurey in [54] and is also
known under the name property (τ). It behaves nicely under tensorization
and it implies the following type of concentration: for every positive integer
N , every Borel set A ⊂ RnN and any t > 0,

µ⊗N
((
A+

{
(x1, . . . , xN) ∈ (Rn)N :

n∑
i=1

ϕ(xi) < t
})c) ≤ (µ⊗N(A))−1e−t

(here + stands for the Minkowski addition). Other properties of the infimum
convolution inequality will be discussed later on.

We end this introduction be recalling one more, truly seminal result.

5



1.5 Concentration for convex functions

While initial results on concentration of measure concerned mostly deviation
bounds for Lipschitz functions of highly regular random variables, the work
by Talagrand [77, 78] has revealed that if one restricts attention to convex
Lipschitz functions, dimension-free concentration of measure holds under
much weaker conditions. Namely, suppose that X1, . . . , Xn are independent
random variables, such that |Xi| ≤ 1 for i ∈ {1, . . . , n}, and ϕ : Rn → R is a
convex 1-Lipschitz function. Then, for t ≥ 0,

P(|ϕ(X1, . . . , Xn)−Medϕ(X1, . . . , Xn)| ≥ t) ≤ 4 exp(−t2/16).

We stress that apart from boundedness and independence no further assump-
tions are placed on the random variables Xi.

Talagrand’s approach relied on his celebrated convex distance inequality
related to the analysis of isoperimetric problems for product measures. As
we shall discuss in detail in Chapter 3 below, in subsequent papers other
authors adapted tools from the classical concentration of measure theory,
such as Poincaré and log-Sobolev inequalities or transportation and infimum
convolution inequalities for proving tail inequalities for convex functions. Also,
a characterization of convex dimension-free concentration in terms of the
convex Poincaré inequality has been established in [37].

This glimpse at the theory of concentration of measure and functional
inequalities related to it shall serve us as a basis to introduce other concepts
and present our results. In the following chapters we will revisit and explain
in more detail some of the results mentioned above.

1.6 Scope of the thesis, overview of the follow-
ing chapters

Broadly speaking, this thesis is devoted to the study of functional and trans-
portation inequalities connected to the concentration of measure phenomenon.
In a higher resolution, the contents of this thesis is the following.

In Chapter 2 we explore connections between some inequalities that give
concentration between the exponential and Gaussian levels. This chapter is
based on chronologically most recent results obtained while the author was
staying in Toulouse, France, and working under the supervision of Franck
Barthe. The results of Chapter 2 (of which Franck Barthe should be considered
a co-author) are part of a project which at the time of writing is still in
progress.
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Starting with Chapter 3, we shift our attention to concentration of measure
for convex functions (and the related weak transport–entropy inequalities).
The introductory Chapter 3 contains a historical overview and necessary
preliminary results.

In Chapter 4 we investigate (modified) log-Sobolev inequalities for convex
functions and provide a characterization on the real line. This chapter is
based on joint work with Yan Shu [74].

The next two chapters, are based on joint work with Radosław Adamczak
[6]. In Chapter 5 we study the Poincaré inequality for convex functions and
extend to Rn results obtained by other authors for probability measures on the
real line. In Chapter 6 we present refined concentration of measure inequali-
ties, which are consequences of weak transportation inequalities and convex
infimum convolution inequalities, including applications to concentration for
non-Lipschitz convex functions.

In Chapter 7 we discuss the results obtained with Marta Strzelecka and
Tomasz Tkocz [75] about the optimal cost function with which, for a given
measure on the real line, the convex infimum convolution inequality can hold.

Appendix A gathers some facts connected to Hamilton–Jacobi equations,
which are used in the proofs.
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Chapter 2

Beckner-type inequalities and
modified log-Sobolev inequalities

2.1 Introduction: a tale of two inequalities
Throughout this chapter we always assume that r ∈ (1, 2) and q ∈ (2,∞)
satisfy 1/r + 1/q = 1. By µr we denote the probability measure on the real
line with density

dµr(t) =
e−|t|

r
dt

2Γ(1 + 1/r)
, t ∈ R.

This measure has heavier tails than the standard Gaussian measure and
thus cannot satisfy the classical log-Sobolev inequality (1.3.1). In order to
prove concentration results for (the products) of the measure µr or other
measures with similar behavior various variants of the log-Sobolev inequality
have been introduced in the literature. To present our motivation and goals
we shall recall the definition and some properties of two of those inequalities:
Beckner-type inequalities of Latała and Oleszkiewicz from [44] and modified
log-Sobolev inequalities introduced by Gentil, Guillin, and Miclo in [31].

We shall say that a probability measure µ on Rd satisfies the Latała–
Oleszkiewicz inequality if there exists a constant CLO <∞ such that for every
smooth f : Rd → R one has

sup
p∈(1,2)

∫
Rd f

2dµ−
(∫

Rd |f |
pdµ
)2/p

(2− p)2(1−1/r)
≤ CLO

∫
Rd
|∇f |2dµ. (2.1.1)

(Formally, we should refer to this inequality as, say, the “Latała–Oleszkiewicz
inequality with parameter r”, but for brevity we suppress the dependence on r
in the terminology. In other words, the numbers r ∈ (1, 2) and q = r/(r − 1)

8



can be regarded as fixed throughout the chapter. We apply this convention
also to other inequalities considered below.) Inequalities of this type, with
µ being the standard Gaussian measure and r = 2, were first considered by
Beckner in [16].

Latała and Oleszkiewicz [44] proved that this inequality has the tensoriza-
tion property and that whenever µ satisfies the inequality (2.1.1), then for
any positive integer n and every 1-Lipschitz function f : Rdn → R, one has

µ⊗n
(∣∣f − ∫

Rdn
fdµ⊗n

∣∣ ≥ t
√
CLO

)
≤ 2 exp(−K min{t2, tr}) (2.1.2)

(their proof yields K = 1/3; see also [82] and Section 6 of [12] for an extension
to a more general setting). Moreover they showed that the measure µr satisfies
the inequality (2.1.1) (in this case d = 1).

Let us stress here that most of the information is encoded in the speed
at which (2− p)2(1−1/r) vanishes as p→ 2− (by omitting the supremum on
the left-hand side of (2.1.1) and only considering a fixed p ∈ (1, 2) one gets
a significantly weaker inequality).

Another approach was suggested by Gentil, Guillin, and Miclo [31]. We
say that a probability measure µ on Rd satisfies the modified log-Sobolev
inequality if there exists a constant CmLS < ∞ such that for every smooth
function f : Rd → (0,∞) one has

Entµ(f 2) ≤ CmLS

∫
Rd
Hq

( |∇f |
f

)
f 2dµ, (2.1.3)

where Hq(t) := max{t2, |t|q} for t ∈ R (recall that q = r/(r − 1)). Just for
the record, µr satisfies (2.1.3).

This inequality also tensorizes: if µ satisfies (2.1.3), then for any positive
integer n and every smooth function f : Rdn → (0,∞) one has

Entµ⊗n(f 2) ≤ CmLS

∫
Rdn

n∑
i=1

Hq

( |∇if |
f

)
f 2dµ⊗n,

where ∇if denotes the partial gradient with respect to the i-th d-tuple of
coordinates of Rdn. A modification of Herbst’s argument implies that for any
f : Rdn → R,

µ⊗n
(∣∣f − ∫

Rdn
fdµ⊗n

∣∣ ≥ t
)

≤ 2 exp
(
−K min

{ t2

CmLS sup |∇f(x)|2
,

tr

Cr−1
mLS sup |(|∇if(x)|)ni=1|rq

})
(2.1.4)
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(one can take K = 3/8, see the proof of Corollary 2.2.2 below). Here | · |q
denotes the `q-norm of a vector in Rn and the suprema are taken over all
x ∈ Rdn.

The inequality (2.1.4) is—up to constants—better than the inequal-
ity (2.1.2): tr is divided by a smaller number, i.e., supx∈Rdn |(|∇if(x)|)ni=1|rq
instead of supx∈Rdn |∇f(x)|r. This difference makes it possible to recover—
again up to constants—the tail behavior from the Central Limit Theorem.
Namely, if for example d = 1 and we consider the function

f(x) = fn(x) =
x1 + · · ·+ xn√

n
, x = (x1, . . . , xn) ∈ Rn,

then |∇f(x)| = 1, but |∇f(x)|rq = nr/2−1, and inequality (2.1.4) reads

µ⊗n
(∣∣fn − ∫

Rdn
fndµ

⊗n∣∣ ≥ t
)
≤ 2 exp

(
−K min

{ t2

CmLS
,
n1−r/2tr

Cr−1
mLS

})
(note that n1−r/2 →∞ since r < 2).

Recall that Bobkov and Ledoux [17] proved that if a probability measure
µ on Rd satisfies the Poincaré inequality with constant CP (to which inequal-
ity (2.1.1) reduces in the limit case r = 1, q =∞), then it satisfies a modified
log-Sobolev inequality:

Entµ(eg) ≤ CBL

∫
Rd
|∇g|2egdµ

for all smooth g : Rd → R with |∇g(x)| ≤ c < 2/
√
CP for all x ∈ Rd (with

CBL depending on CP and c only). This inequality can be regarded as the
limit version of inequality (2.1.3) for r = 1, q =∞: formally we replaced Hq

by

H∞,c(t) := lim
q→∞

Hq(t/c) =

{
t2/c2 if |t| ≤ c,

∞ if |t| > c

and substituted f 2 = eg.
It is natural to conjecture, that similarly the Latała–Oleszkiewicz in-

equality implies the modified log-Sobolev inequality (and therefore improved
two-level concentration), cf. Remark 21 in [15]. Before presenting our main
result, which essentially states that this is indeed the case, let us recall two
other results.

In the case when µ is a probability measure on the real line one can
prove criteria for the Latała–Oleszkiewicz inequality (2.1.1) and the modified
log-Sobolev inequality (2.1.3). Denote by m the median of µ and by n the

10



density of its absolutely continuous part. Barthe and Roberto [14] proved
that µ satisfies the Latała–Oleszkiewicz inequality (2.1.1) if and only if
max{B+

LO, B
−
LO} <∞, where

B+
LO := sup

x>m
µ([x,∞)) log2/q

(
1 +

1

2µ([x,∞))

)∫ x

m

1

n(t)
dt (2.1.5)

and B−LO is defined similarly but with x < m. Moreover the best possible
constant CLO in (2.1.1) is up to numerical constants (not depending on r)
comparable to max{B+

LO, B
−
LO}.

A similar characterization, also due to Barthe and Roberto [15], is likewise
available in the case of the modified log-Sobolev inequality (2.1.3) but the
picture is more involved. If µ satisfies the Poincaré inequality with constant
CP and max{B+

mLS, B
−
mLS} <∞, where

B+
mLS := sup

x>m
µ([x,∞)) log

( 1

µ([x,∞))

)(∫ x

m

1

n(t)1/(q−1)
dt
)q−1

and B−mLS is defined similarly but with x < m, then µ satisfies the modified
log-Sobolev inequality (2.1.3) with constant

CmLS ≤ 235CP + 2q+1 max{B+
mLS, B

−
mLS}.

Under some mild technical assumptions on the density n this implication can
be reversed: if µ satisfies the modified log-Sobolev inequality (2.1.3), then

max{B+
mLS, B

−
mLS} <∞

(and this quantity can be estimated in terms of the constant CmLS up to
constants depending on q and a number ε which appears in the additional
hypotheses about n).

To the best of our knowledge, it is unknown whether in the above cri-
terion for the modified log-Sobolev inequality one can remove the technical
assumption about n. It also does not seem to be possible to find a simple
argument which would allow us to deduce the modified log-Sobolev inequality
from the Latała–Oleszkiewicz inequality (for measures on the real line) at
the level of those characterizations. On the other hand, if one assumes for
example that dµ(x) = exp(−V (x))dx, x ∈ R, where V is symmetric, of class
C2, lim infx→∞ V

′(x) > 0, and

lim
x→∞

V ′′(x)

V ′(x)2
= 0,

11



then the Latała–Oleszkiewicz inequality (2.1.1) is equivalent to the modified
log-Sobolev inequality (2.1.3) and furthermore to the condition

lim sup
x→∞

V (x)

V ′(x)q
<∞ (2.1.6)

(by Theorem 12 in [15] and Proposition 15 in [14]).

2.2 Results and organization of the chapter
We are ready to state our main result. We would like to stress that it is not
restricted to measures on the real line and that the dimension d does not
enter into the dependence of constants.

Theorem 2.2.1. Let µ be a probability measure on Rd which satisfies the
Latała–Oleszkiewicz inequality (2.1.1) with constant CLO. Then µ satisfies
the modified log-Sobolev inequality (2.1.3) with a constant CmLS depending
only on CLO and r.

For x = (x1, . . . , xn) ∈ (Rd)n and p ∈ (1,∞) denote

‖x‖p,2 :=
( n∑
i=1

|xi|p
)1/p

(here | · | stands for the `2 norm on Rd; in the notation we suppress the roles
of d and n, but they will always be clear from the context).1

We immediately obtain the following corollary, which improves upon
inequality (2.1.2) in the manner explained above, during the discussion of
consequences of inequality (2.1.4).

Corollary 2.2.2. Let µ be a probability measure on Rd which satisfies the
Latała–Oleszkiewicz inequality (2.1.1) with constant CLO. Then there exists
a constant K > 0, depending only on CLO and r, such that for any positive
integer n and any smooth f : Rdn → R,

µ⊗n
(∣∣f − ∫

Rdn
fdµ⊗n

∣∣ ≥ t
)

≤ 2 exp
(
−K min

{ t2

supx∈Rdn |∇f(x)|2
,

tr

supx∈(Rd)n ‖∇f(x)‖rq,2

})
1While ‖·‖`p(`2) would be perhaps more self-explanatory (and would not have misleading

associations with Lorentz spaces), we favor this more compact notation.
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One can take K = 3
8

min{1/CmLS, 1/Cr−1
mLS}, where CmLS = CmLS(CLO, r) is

the constant with which, by Theorem 2.2.1, the modified log-Sobolev inequality
holds for µ.

Using standard smoothing arguments one can also obtain a result for not
necessarily smooth functions, expressed in terms of their Lipschitz constants.

Corollary 2.2.3. Let µ be a probability measure on Rd which satisfies the
Latała–Oleszkiewicz inequality (2.1.1) with constant CLO. Then there exists
a constant K > 0, depending only on CLO and r, such that for any positive
integer n the following holds: if f : Rdn → R satisfies

|f(x)− f(y)| ≤ L2|x− y|,
|f(x)− f(y)| ≤ Lr,2‖x− y‖r,2,

for all x, y ∈ (Rd)n, then

µ⊗n
(∣∣f − ∫

Rdn
fdµ⊗n

∣∣ ≥ t
)
≤ 2 exp

(
−K min

{ t2
L2

2

,
tr

Lrr,2

})
.

One can take K = 3
8

min{1/CmLS, 1/Cr−1
mLS}, where CmLS = CmLS(CLO, r) is

the constant with which, by Theorem 2.2.1, the modified log-Sobolev inequality
holds for µ.

One can also express concentration in terms of enlargements of sets.
Below Bdn

2 and Bdn
r stand for the unit balls in the `2 and `r-norms on Rdn,

respectively. Also, let

Bn,d
r,2 :=

{
(x1, . . . , xn) ∈ (Rd)n :

( n∑
i=1

|xi|r
)1/r ≤ 1

}
be the unit ball in the norm ‖ · ‖r,2.
Remark 2.2.4. For r ∈ (1, 2),

d1/2−1/rBn,d
r,2 ⊂ Bdn

r ⊂ Bn,d
r,2 ⊂ Bdn

2 ⊂ n1/r−1/2Bn,d
r,2 .

Corollary 2.2.5. Let µ be a probability measure on Rd which satisfies the
Latała–Oleszkiewicz inequality (2.1.1) with constant CLO. Then there exists
a constant K > 0, depending only on CLO and r, such that for any positive
integer n and any set A ⊂ Rdn with µ⊗n(A) ≥ 1/2,

µ⊗n
(
A+

{
(x1, . . . , xn) ∈ (Rd)n :

n∑
i=1

min{|xi|2, |xi|r} ≤ t
})
≥ 1− e−Kt.
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In particular,
µ⊗n

(
A+
√
tBdn

2 + t1/rBn,d
r,2

)
≥ 1− e−Kt. (2.2.1)

One can take K = 3
128

min{1/CmLS, 1/Cr−1
mLS}, where CmLS = CmLS(CLO, r) is

the constant with which, by Theorem 2.2.1, the modified log-Sobolev inequality
holds for µ.

This corollary should be compared with the results obtained by Gozlan
[34], who considered a family of spectral gap inequalities where the length of
the gradient is defined with respect to different metrics than the standard
Euclidean distance. He proved that if a probability measure µ on Rd satisfies
the Latała–Oleszkiewicz inequality, then it satisfies an appropriate spectral
gap inequality with a non-standard length of the gradient (see Corollary 5.17 in
[34],), which in turn implies a slightly different type of two-level concentration
(see Proposition 2.4 and Proposition 1.2 in [34]). However, unlike in the above
two corollaries, the constants which appear in his formulations do depend on
the dimension d of the underlying space (even though they do not depend on
n). Namely, if we denote xi = (x1

i , . . . , x
d
i ) ∈ Rd for i = 1, . . . , n, then there

exists a constant K > 0 (depending only on CLO and r) such that for any
positive integer n and any set A ⊂ Rdn with µ⊗n(A) ≥ 1/2,

µ⊗n
(
A+

{
(x1, . . . , xn) ∈ (Rd)n :

n∑
i=1

d∑
j=1

min
{∣∣∣xji

d

∣∣∣2, ∣∣∣xji
d

∣∣∣r} ≤ t
})

≥ 1− e−Kt/d

(the d in the denominator on the left-hand side comes from Corollary 5.17
of [34] and the d on the right-hand side—from Proposition 2.4 therein). In
particular, we get

µ⊗n
(
A+ d3/2

√
tBdn

2 + d1+1/rt1/rBdn
r

)
≥ 1− e−Kt.

In terms of the dependence on d this is weaker than (2.2.1), since

Bn,d
r,2 ⊂ d1/r−1/2Bdn

r ⊂ d1+1/rBdn
r

(the inclusions are strict for d ≥ 2).
The organization of the rest of the chapter is the following. In Section 2.3

we introduce some further preliminary results, which we then use in Sec-
tion 2.4 to prove a proposition essentially equivalent to our main theorem. In
Section 2.5 we prove the main result and Corollaries 2.2.2 and 2.2.5. Finally,
in Section 2.6 we present some additional remarks on weighted log-Sobolev
inequalities connected to (2.1.3).
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2.3 Preliminaries: a few more inequalities
We start with the following observation.

Lemma 2.3.1. Suppose that a probability measure µ on Rd satisfies the
Latała–Oleszkiewicz inequality (2.1.1) with constant CLO. Then it satisfies
the Poincaré inequality (1.3.5) with constant CP = CLO.

Proof. By taking p→ 1+ in (2.1.1) we see that (1.3.5) holds for all positive
smooth functions (with constant CLO). Since the variance is translation
invariant, we conclude that (1.3.5) holds for all smooth functions bounded
from below. The general case follows by approximation.

Remark 2.3.2. Alternatively, one can deduce the Poincaré inequality from
the fact that inequality (2.1.1) implies dimension-free concentration and the
results of [37].

Let us now recall another, equivalent form of the Latała–Oleszkiewicz
inequality. For q > 2 denote

Fq(t) = log2/q(1 + t)− log2/q(2), t ≥ 0.

We say that a probability measure µ on Rd satisfies an Fq-Sobolev inequality
if there exists C such that for every smooth g : Rd → R,∫

Rd
g2Fq

( g2∫
Rd g

2dµ

)
dµ ≤ C

∫
Rd
|∇g|2dµ. (2.3.1)

This inequality is tight, i.e., we have equality for constant functions (if f is
constant and equal to zero on its support, then the expression 0/0 should be
interpreted as 0 here and in inequality (2.3.5) below). We say that µ on Rd

satisfies a defective Fq-Sobolev inequality if there exists B and C such that
for every smooth g : Rd → R,∫

Rd
g2Fq

( g2∫
Rd g

2dµ

)
dµ ≤ B

∫
Rd
g2dµ+ C

∫
Rd
|∇g|2dµ. (2.3.2)

In [12] Barthe, Cattiaux, and Roberto provided capacity criteria for,
among others, the Latała–Oleszkiewicz and Fq-Sobolev inequalities. We refer
to Section 5 of [12] for a thorough overview of the topic. The following
theorem is a direct corollary of the results contained therein (and also in
Wang’s independent paper [82]).

Theorem 2.3.3. For an absolutely continuous probability measure µ on Rd

the following conditions are equivalent.
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1. There exists a constants CLO such that the measure µ satisfies the
Latała–Oleszkiewicz inequality (2.1.1) (with parameter r ∈ (1, 2)).

2. There exists a constants C such that the measure µ satisfies the (tight)
Fq-Sobolev inequality (2.3.1) (with q = r/(r − 1) ∈ (2,∞)).

In the implications, the constant in the conclusion depends only on the constant
in the premise and on the parameter r.

This formulation is sufficient for our purposes, but the above list of
equivalent conditions can be extended to include, e.g., the aforementioned
capacity criterion or a super Poincaré inequality with an appropriately chosen
rate function (see Corollary 1.2 in [82]). Let us only comment that super
Poincaré inequalities were initially introduced by Wang in [81].

For the convenience of the reader we provide an outline of the proof of
Theorem 2.3.3. We shall use the nice diagram on page 1041 of [12] as our
road map.

Sketch of proof of Theorem 2.3.3. We only prove the implication 1. =⇒ 2.,
as this is the one we will actually need. Fix r ∈ (1, 2), q = r/(r− 1) ∈ (2,∞),
and denote T (s) := s2(1−1/r). Recall the following definition of capacity: for
Borel sets A ⊂ Ω ⊂ Rd, we define

Capµ(A,Ω) := inf
{∫

Rd
|∇f |2dµ : f|A ≥ 1 and f|Ωc = 0

}
= inf

{∫
Rd
|∇f |2dµ : 1A ≤ f ≤ 1Ω}

(the infimum is taken over all locally Lipschitz functions; the equality follows
from an easy truncation). We furthermore set

Capµ(A) := inf
{

Capµ(A,Ω) : A ⊂ Ω and µ(Ω) ≤ 1/2
}

= inf
{

Capµ(A,Ω) : A ⊂ Ω and µ(Ω) = 1/2
}

(the equality follows from absolute continuity of µ and monotonicity of
Capµ(A,Ω) in Ω).

Theorem 18 and Lemma 19 from [12] imply that if µ satisfies the Latała–
Oleszkiewicz inequality (2.1.1) with some constant CLO, then

µ(A)
1

T ( 1
log(1+1/µ(A))

)
= µ(A) log2(1−1/r)

(
1 + 1/µ(A)

)
≤ D1 Capµ(A) (2.3.3)

for every A ⊂ Rd with µ(A) < 1/2. Here one can take D1 = 6CLO.
Denote ϕ(x) = log2(1−1/r)(1 + x/2) for x > 0. This is a concave, non-

decreasing function on (0,∞) with ϕ(8) = log2(1−1/r)(5) ≥ 1 > 0. Moreover,
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xϕ′(x) ≤ γ for some γ = γ(r) as can be checked by a direct calculation. Also,
ϕ(xy) ≤M +ϕ(x) +ϕ(y) for some M (one can take, e.g., M = log2(1−1/r)(4),
since ϕ(xy) ≤ log2(1−1/r)(4(1 + x

2
)(1 + y

2
)) ≤ log2(1−1/r)(4) + ϕ(x) + ϕ(y)).

Since inequality (2.3.3) implies that

µ(A)ϕ(2/µ(A)) ≤ D1 Capµ(A)

for every A ⊂ Rd with µ(A) < 1/4, it follows from Theorem 26 of [12] that
for every smooth function f : Rd → R,∫

Rd
f 2ϕ(f 2)dµ−

∫
Rd
f 2dµϕ

( ∫
Rd
f 2dµ

)
≤ D2

∫
Rd
|∇f |2dµ, (2.3.4)

where D2 = D2(CLO, r) = 18γCP + 24(1 +M/ϕ(8))D1.2
It remains to substitute f 2 = 2g2/

∫
Rd g

2dµ and recall the definition of Fq,
to arrive at (2.3.1) (with C = D2).

Remark 2.3.4. If µ satisfies the Latała–Oleszkiewicz inequality, but is not
necessarily absolutely continuous, then it also satisfies the Fq-Sobolev in-
equality. To see this we shall use an approximation argument. Let γε be
a Gaussian measure on Rd with covariance matrix ε Id. For small enough
ε > 0, γε satisfies the Latała–Oleszkiewicz inequality with the same constant
as µ and hence, by tensorization, so does µ ⊗ γε. Testing the inequality
with the function (x, y) 7→ f(x − y), we conclude that µ ∗ γε also satisfies
the Latała–Oleszkiewicz inequality (with a constant which tends to CLO as
ε → 0). Thus, by Theorem 2.3.3, µ ∗ γε satisfies the Fq-Sobolev inequality.
We fix a bounded smooth Lipschitz function, take ε→ 0, and arrive at the
conclusion that µ satisfies the Fq-Sobolev inequality for all bounded smooth
Lipschitz functions (we have pointwise convergence and since the function
is Lipschitz and bounded we can use the dominated convergence theorem).
Now if f is an arbitrary smooth function such that

∫
Rd |∇f |

2dµ <∞, then it
suffices to consider functions fn = Ψn(f), where Ψn : R→ R is, say, an odd
and non-decreasing function defined by

Ψn(t) =


Ψn(−t) for t < 0,

t for t ∈ [0, n),

Ψn(t) = n+ ψ(t) for t ∈ [n, n+ 2],

Ψn(t) = n+ 1 for t > n+ 2,

2Let us stress that this is the point where the assumption about absolute continuity of
µ comes into play. This is related to the fact that the proof of Theorem 26 in [12] relies
on a decomposition of Rd into level sets {f2 > ρk}, for some appropriately chosen ρk (cf.
proof of Theorem 20 in [12]), and one needs to know that the sets {f2 = ρk} ∩ {|∇f | 6= 0}
are negligible.
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and ψ : [0, 2]→ [0, 1] is smooth and increasing on (0, 2), such that ψ(0) = 0,
ψ(2) = 1, ψ′(0+) = 1, ψ′(2−) = 0, ψ(t) ≤ t for t ∈ [0, 2]. We then use
dominated convergence on the right-hand side and monotone convergence on
the left-hand side (note that by the Poincaré inequality f is square-integrable).

Finally, we need another inequality introduced by Barthe and Kolesnikov
in [13]. We say that a probability measure µ on Rd satisfies the inequality
I(2/q) if there exists B1 and C1 such that for every smooth f : Rd → R,

Entµ(f 2) ≤ B1

∫
Rd
f 2dµ+ C1

∫
Rd
|∇f |2 log1−2/q

(
e+

f 2∫
Rd f

2dµ

)
dµ. (2.3.5)

Barthe and Kolesnikov proved that if µ satisfies the inequality I(2/q), then it
satisfies a defective Fq-Sobolev inequality and a defective modified log-Sobolev
inequality. Moreover they developed techniques—extensions of the classical
Rothaus lemma [66]—which allow to transfer such defective inequalities into
tight ones by means of a Poincaré inequality.

2.4 From Fq-Sobolev to I(τ ) and modified log-
Sobolev

The results of this section are our main contribution. We stress that here the
assumption of absolute continuity of µ is not needed. Recall that q ∈ (2,∞).

Proposition 2.4.1. Assume that a probability measure µ on Rd satisfies
the defective Fq-Sobolev inequality (2.3.2) with constants B and C. Then µ
satisfies the I(2/q) inequality (2.3.5) with some constants B1 and C1 which
depend only on B, C, and q.

Using Theorem 4.1 from [13] we immediately obtain the following corollary.

Corollary 2.4.2. Assume that a probability measure µ on Rd satisfies the
defective Fq-Sobolev inequality (2.3.2) with constants B and C. Then µ
satisfies the following defective modified log-Sobolev inequality: there exists
B2, C2 (depending only on B, C, and q) such that for every smooth f : Rd →
(0,∞),

Entµ(f 2) ≤ B2

∫
Rd
f 2dµ+ C2

∫
Rd
Hq

( |∇f |
f

)
f 2dµ,

where Hq(x) = max{x2, |x|q}.
Moreover, if µ satisfies the Poincaré inequality, then one can take B2 = 0

(C2 will depend on the Poincaré constant).
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Proof of Proposition 2.4.1. We will reverse the reasoning from the proof of
Theorem 4.1 in [13]. Fix a smooth function f such that the right-hand side
of (2.3.5) is finite. We may and do assume that

∫
Rd f

2| ln(f 2)|dµ < ∞.3
Consider the function

Φ(x) = x2 log1−2/q(e+ x2), x ∈ R,

(which is convex since the function t 7→ t log1−2/q(e+t) is convex and increasing
for t > 0). Denote by L the Luxemburg norm of f related to Φ:

L = inf
{
λ > 0 :

∫
Rd

Φ(f/λ)dµ ≤ 1
}
.

Note that L < ∞,
∫
Rd Φ(f/L)dµ = 1 (by the definition of L), and L2 ≥∫

Rd f
2dµ (since Φ(x) ≥ x2).

Set g :=
√

Φ(f/L). We have
∫
Rd g

2dµ = 1 and (2.3.2) reads∫
Rd
g2
(
log2/q(1 + g2)− log2/q(2)

)
dµ ≤ B

∫
Rd
g2dµ+ C

∫
Rd
|∇g|2dµ. (2.4.1)

Let us first express the right-hand side of this inequality in terms of f . For
x ∈ R denote ϕ(x) := x log1/2−1/q(e+ x2). Then

0 ≤ ϕ′(x) = log1/2−1/q(e+ x2) + (1/2− 1/q)
2x2

e+ x2
log−1/2−1/q(e+ x2)

≤ 2 log1/2−1/q(e+ x2)

and thus

|∇g|2 =
|∇f |2

L2

(
ϕ′(f/L)

)2 ≤ 4
|∇f |2

L2
log1−2/q(e+ f 2/L2)

≤ 4
|∇f |2

L2
log1−2/q

(
e+

f 2∫
Rd f

2dµ

)
.

3Indeed, like above let us define odd and non-decreasing functions Ψn : R → R by
putting Ψn(t) = t for t ∈ [0, n), Ψn(t) = n + 1 for t > n + 2; for t ∈ [n, n + 2] let us
take Ψn(t) = n + ψ(t), where ψ : [0, 2] → [0, 1] is smooth and increasing on (0, 2), and
satisfies ψ(0) = 0, ψ(2) = 1, ψ′(0+) = 1, ψ′(2−) = 0, ψ(t) ≤ t. Then the functions
fn = Ψn(f) are smooth, bounded (and hence

∫
Rd f

2
n| ln(f2n)|dµ < ∞) and converge to

f pointwise. After proving that (2.3.5) holds for fn, we obtain the assertion for f by
taking n→∞ and using monotone convergence on the left-hand side and the Lebesgue
dominated convergence theorem on the right-hand side (note that we know that f and fn
are square-integrable, |∇fn| is up to a constant smaller than |∇f |, fn = f if |f | ∈ [0, n],
|fn| ≤ |f | if |f | ∈ [n, n+ 2], and if |f | > n+ 2, then ∇fn = 0).
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Hence

B

∫
Rd
g2dµ+ C

∫
Rd
|∇g|2dµ ≤ B + 4C

∫
Rd

|∇f |2

L2
log1−2/q

(
e+

f 2∫
Rd f

2dµ

)
dµ.

(2.4.2)
As for the left-hand side of (2.4.1), it is easy to see that there exists

κ1 = κ1(q) > 0 such that, for y > 0,

y log1−2/q(e+ y)
(

log2/q(1 + y log1−2/q(e+ y))− log2/q(2)
)
≥ y log(y)− κ1.

Applying this inequality with y = f 2/L2, we arrive at∫
Rd
g2
(
log2/q(1 + g2)− log2/q(2)

)
dµ ≥

∫
Rd

f 2

L2
log(f 2/L2)dµ− κ1.

Together with (2.4.2) this yields∫
Rd
f 2 log(f 2/L2)dµ ≤ (B + κ1)L2 + 4C

∫
Rd
f 2 log1−2/q

(
e+

f 2∫
Rd f

2dµ

)
dµ.

It remains to replace the expression on the left-hand side by Entµ(f 2) and
estimate L2.

Since

Entµ(f 2) = inf
t>0

∫
Rd

(
f 2 log(f 2/t)− f 2 + t

)
dµ

≤
∫
Rd

(
f 2 log(f 2/L2)− f 2 + L2

)
dµ,

we conclude that

Entµ(f 2) ≤ (B + κ1 + 1)L2 + 4C

∫
Rd
f 2 log1−2/q

(
e+

f 2∫
Rd f

2dµ

)
dµ. (2.4.3)

Finally, it is easy to see that for every ε > 0 there exist κ2 = κ2(ε, q) such
that, for y > 0,

y log1−2/q(e+ y) ≤ εy log(y) + κ2

Using first the definition of L and the fact that L2 ≥
∫
Rd f

2dµ, and then the
above bound (with y = f 2/

∫
Rd f

2dµ) we can thus estimate

L2 =

∫
Rd
f 2 log1−2/q(e+ f 2/L2)dµ ≤

∫
Rd
f 2 log1−2/q

(
e+

f 2∫
Rd f

2dµ

)
dµ

≤ εEntµ(f 2) + κ2

∫
Rd
f 2dµ.

Combining this bound (for ε small enough; recall that by our assumption
Entµ(f 2) <∞) and (2.4.3) yields the assertion.

20



2.5 Proof of the main result and its corollaries
Proof of Theorem 2.2.1. Our main results follows immediately by combining
Theorem 2.3.3 (and Remark 2.3.4 if µ is not absolutely continuous) and
Corollary 2.4.2.

Remark 2.5.1. Let us comment here that for d = 1 it is known that the
inequalities (2.1.1) and (2.1.3) hold if and only if they hold with the integration
with respect to µ on the right-hand side replaced by integration with respect to
µac, the absolutely continuous part of µ (cf. [20], Appendix of [55], Appendix
of [35]).

For the proofs of the corollaries we need one more technical lemma. We
denote by H∗q (t) := sups∈R{st−Hq(s)}, t ∈ R, the Legendre transform of Hq

(we refer to the book [65] for more information on this topic).

Lemma 2.5.2. The function H∗q is given by the formula

H∗q (t) =


t2/4 if 0 ≤ |t| ≤ 2,

|t| − 1 if 2 ≤ |t| ≤ q,
1
r−1

(1
q
|t|)r if |t| ≥ q.

Moreover, H∗q (t) ≥ 3
16

min{t2, |t|r}.

Sketch of the proof. The first part is a straightforward calculation. To prove
the second part, first notice that for every r ∈ (1, 2) there exists exactly one
strictly positive number t0 such that t20/4 = 1

r−1
(1
q
t0)r. One can check with a

direct calculation that t0 ∈ (2, 4). Since

inf
r∈(1,2)

t0 − 1

t20/4
= inf

t∈(2,4)

t− 1

t2/4
= 3/4

and the functions t2 and |t|r are convex, we conclude that

H∗q (t) ≥ 3

4
min

{
t2/4,

1

r − 1

(1

q
|t|
)r}
≥ 3

16
min{t2, |t|r},

where we also used the fact that

inf
r∈(1,2)

1

r − 1

(1

q

)r
= 1/4.

Proof of Corollary 2.2.2. We follow the classical Herbst argument (see, e.g.,
[51]) and the calculations from [5]. Take a function f : (Rd)n → R and denote

A = sup
x∈Rdn

|∇f(x)|, B = sup
x∈Rdn

‖∇f(x)‖q,2.
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Moreover, let F (λ) =
∫
Rdn e

λf(x)dµ⊗n. Then

λF ′(λ) =

∫
Rdn

λf(x)eλf(x)dµ⊗n

and hence, since µ satisfies the modified log-Sobolev inequality with some
constant C = C(CLO, r) (by Theorem 2.2.1) and by the tensorization property,

λF ′(λ)− F (λ) logF (λ) = Entµ⊗n(eλf )

≤ C

∫
Rdn

n∑
i=1

Hq

(λ
2
|∇if |

)
eλfdµ⊗n

≤ 2C max
{

(Aλ/2)2, (Bλ/2)q
}
F (λ),

where we used the inequality
∑

i max{a2
i , b

q
i} ≤ 2 max{

∑
i a

2
i ,
∑

i b
q
i}. After

dividing both sides by λ2F (λ) we can rewrite this as(1

λ
logF (λ)

)′
≤ 2C max

{
(Aλ/2)2, (Bλ/2)q

}
/λ2.

Since the right-hand side is an increasing function of λ > 0 and

lim
λ→0+

1

λ
logF (λ) =

∫
Rdn

fdµ⊗n,

we deduce from the last inequality that

1

λ
logF (λ) ≤

∫
Rdn

fdµ⊗n + 2C max
{

(Aλ/2)2, (Bλ/2)q
}
/λ,

which is equivalent to∫
Rdn

eλfdµ⊗n ≤ exp
(
λ

∫
Rdn

fdµ⊗n + 2C max
{

(Aλ/2)2, (Bλ/2)q
})
.

Therefore from Chebyshev’s inequality we get, for t > 0 and any λ > 0,

µ⊗n
(
f ≥

∫
Rdn

fdµ⊗n + t
)
≤

∫
Rdn e

2λfdµ⊗n

exp(2λ
∫
Rdn fdµ

⊗n + 2λt)

≤ exp
(
−2λt+ 2C max

{
(Aλ)2, (Bλ)q

})
.

Now we can optimize the right-hand side with respect to λ. Let U and V be
such that A = U1/2V , B = U1/qV . We have

max
{

(Aλ)2, (Bλ)q
})

= U max{(V λ)2, (V λ)q} = UHq(V λ)
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and hence

µ⊗n
(
f ≥

∫
Rdn

fdµ⊗n + t
)
≤ exp

(
−2CUH∗q

( t

CUV

))
.

Using Lemma 2.5.2 and the definitions of U and V we get

µ⊗n
(
f ≥

∫
Rdn

fdµ⊗n + t
)
≤ exp

(
− 3

8
min

{ t2

CA2
,

tr

Cr−1Br

})
,

which yields the assertion of the corollary.

Proof of Corollary 2.2.3. Let fε be the convolution of f and a Gaussian
kernel, i.e., fε(x) = E f(x+

√
εG), where G ∼ N (0, I). This function clearly

inherits from f the estimates of the Lipschitz constants. Since it is smooth,
the `2-norm and the norm ‖ · ‖q,2 of its gradient can be estimated pointwise
by L2 and Lr,2, respectively. Therefore we can apply Corollary 2.2.2 to fε.
Moreover, |fε(x)− f(x)| ≤ L2

√
εE |G| and hence fε converges uniformly to

f as ε tends to zero. This observation ends the proof of the corollary.

Proof of Corollary 2.2.5. We follow the approach of Bobkov and Ledoux
from Section 2 of [17]. Take a set A ⊂ Rdn with µ⊗n(A) ≥ 1/2. For
x = (x1, . . . , xn) ∈ (Rd)n, denote

F (x) = FA(x) = inf
a∈A

n∑
i=1

min{|xi − ai|2, |xi − ai|r}

(note that here | · | stands for the `2-norm on Rd). Take any t > 0 and set
f = min{F, t}. We claim that for all x, y ∈ (Rd)n,

|f(x)− f(y)| ≤ 2
√
t|x− y|, |f(x)− f(y)| ≤ 2t1/q‖x− y‖r,2. (2.5.1)

Suppose that we already know that this holds. Note that (2t1/q)r =
2rtr−1 ≤ 4tr−1. Also,

∫
Rdn fdµ

⊗n ≤ t/2 since F = 0 on A and µ⊗n(A) ≥ 1/2.
Consequently, by Corollary 2.2.3 and (2.5.1),

µ⊗n(FA ≥ t) ≤ µ⊗n(f ≥ t) ≤ µ⊗
(
f ≥

∫
Rdn

fdµ⊗n + t/2
)

≤ exp
(
−3K1

8
min

{(t/2)2

4t
,
(t/2)r

4tr−1

})
≤ exp

(
−3K1

128
t
)
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where K1 = min{1/C2
mLS, 1/C

r−1
mLS} and CmLS is the constant with which, by

Theorem 2.2.1, the modified log-Sobolev inequality holds for µ. Since clearly

{FA < t} ⊂ A+
{

(x1, . . . , xn) ∈ (Rd)n :
n∑
i=1

min{|xi|2, |xi|r} ≤ t
}
,

this yields the first assertion of the corollary. The second part follows by the
inclusion{

(x1, . . . , xn) ∈ (Rd)n :
n∑
i=1

min{|xi|2, |xi|r} ≤ t
}
⊂
√
tBdn

2 + t1/rBn,d
r,2 .

It remains to prove the claim (2.5.1). To this end, consider the functions

G(x) =
n∑
i=1

min{|xi|2, |xi|r}

and g(x) = min{G, t}. Since g is locally Lipschitz it suffices to show that,
a.e.,

n∑
i=1

|∇ig|2 ≤ 4t,
n∑
i=1

|∇ig|q ≤ 2qt.

Indeed, this will imply that (2.5.1) holds with g in place of f (note that the
norm ‖ · ‖r,2 is dual to the norm ‖ · ‖q,2). Since f(x) = infa∈A g(x− a) (and
the infimum of Lipschitz functions is Lipschitz with the same constant), the
same estimates will be inherited by f .

On the open set {G > t} the estimates obviously hold (since g is constant).
The set {G = t} is Lebesgue negligible. Thus in what follows it suffices to
consider the set {G < t} on which g = G.

If, for some i, |xi| < 1, then

|∇ig(x)|2 = 4|xi|2 = 4 min{|xi|2, |xi|r}.

Also,
|∇ig(x)|q = 2q|xi|q ≤ 2q|xi|2 = 2q min{|xi|2, |xi|r}.

If on the other hand |xi| > 1, then

|∇ig(x)|2 = r2|xi|2(r−1) = r2
(
min{|xi|2, |xi|r}

)2/q
.

In this case,

|∇ig(x)|2 = r2|xi|2(r−1) ≤ 4|xi|r = 4 min{|xi|2, |xi|r},
|∇ig(x)|q = rq min{|xi|2, |xi|r}.
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Thus, a.e. (the set where |xi| = 1 for some i is negligible),

|∇ig(x)|2 ≤ 4 min{|xi|2, |xi|r},
|∇ig(x)|q ≤ 2q min{|xi|2, |xi|r}.

Consequently, on the set {G < t} = {g < t}, we a.e. have
n∑
i=1

|∇ig(x)|2 ≤ 4g(x) ≤ 4t,

n∑
i=1

|∇ig(x)|q ≤ 2qg(x) ≤ 2qt.

This finishes the proof.

2.6 Weighted vs. modified log-Sobolev inequal-
ity

In the previous sections we showed that the Latała–Oleszkiewicz inequality
implies the modified log-Sobolev inequality. To the best of our knowledge the
question about the reverse implication is open even for measures on the real
line. We would however like to present one somewhat related result.

It is known that if a probability measure µ on Rd satisfies a certain
weighted log-Sobolev inequality (and an integrability condition), then it also
satisfies a modified log-Sobolev inequality, see Theorem 3.4 in [25] (in the
context of a specific measure on the real line a similar argument appears
already in the large entropy case of the proof of Theorem 3.1 from [31]). The
goal of this subsection is to show that the converse implication does not hold
in general, even for measures on the real line.

We first present a workable criterion for satisfying the weighted log-Sobolev
inequality.

Proposition 2.6.1. Let dµ(x) = e−V (x)dx be a probability measure on the real
line. Assume that V : R→ R is symmetric, of class C2 in some neighborhood
of ∞, and that
(i) lim infx→∞ V

′(x) > 0,
(ii) limx→∞

V ′′(x)
V ′(x)2

= 0.
Then, there exists C < ∞ such that µ satisfies the following weighted log-
Sobolev inequality: for every f : R→ R,

Entµ(f 2) ≤ C

∫
R
f ′(x)2(1 + |x|2−r)dµ(x), (2.6.1)
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if and only if

lim sup
x→∞

V (x)

|x|2−rV ′(x)2
<∞.

Remark 2.6.2. The condition (ii) can be weakened to lim supx→∞
|V ′′(x)|
V ′(x)2

< 1.

Proof of Proposition 2.6.1. Denote W (x) := V (x) − log(1 + |x|2−r), x ∈ R.
By the Bobkov–Götze criterion [20] (cf. Theorems 1 and 3 in [14]), µ satisfies
the weighted log-Sobolev inequality if and only if

sup
x>0

µ((x,∞)) log
( 1

µ((x,∞))

)∫ x

0

eW (t)dt <∞. (2.6.2)

Of course, it suffices to investigate what happens for x→∞.
Note that

lim inf
x→∞

W ′(x) = lim inf
x→∞

(
V ′(x)− (2− r)x1−r

1 + x2−r

)
> 0

(by assumption (i)) and

lim
x→∞

W ′′(x)

W ′(x)2
= 0

(by (ii) and the fact that W ′′(x) = V ′′(x) + o(1)). Thus, as x→∞,

µ((x,∞)) =

∫ ∞
x

e−V (t)dt ∼ e−V (x)

V ′(x)
,∫ x

0

eW (t)dt ∼ eW (x)

W ′(x)
=

eV (x)

(1 + |x|2−r)(V ′(x) + o(1))

(here by ‘∼’ we mean that the ratio of both sides tends to 1 as x → ∞;
to prove that this is indeed the case it suffices to consider the ratio of the
derivatives of both sides). Therefore, (2.6.2) holds if and only if

lim sup
x→∞

V (x) + log V ′(x)

(1 + |x|2−r)(V ′(x) + o(1))V ′(x)
<∞,

which, since V ′(x) is bounded away from zero as x→∞, happens if and only
if

lim sup
x→∞

V (x)

|x|2−rV ′(x)2
<∞.

This ends the proof.

Our example is a modification of the example constructed by Cattiaux
and Guillin [24] to prove that the log-Sobolev inequality is strictly stronger
than Talagrand’s transportation cost inequality.

26



Proposition 2.6.3. For r ∈ (1, 2) and max{r/2, r− 1/r} < β − 1 < r− 1/2
define

V (x) = Vr,β(x) = |x|r+1 + (r + 1)|x|r sin2(x) + |x|β, x ∈ R.

Let µr,β be the probability measure with density proportional to e−Vr,β(x).
Then µr,β satisfies the modified log-Sobolev inequality (2.1.3) and the Latała–
Oleszkiewicz inequality (2.1.1) (with d = 1).

On the other hand, µr,β does not satisfy the weighted log-Sobolev inequal-
ity (2.6.1).

Proof. Let us first note that β ∈ (r, r + 1). For x > 0,

V (x) = xr+1 + (r + 1)xr sin2(x) + xβ,

V ′(x) = (r + 1)(1 + sin(2x))xr + (r + 1)rxr−1 sin2(x) + βxβ−1.

Clearly, V ′(x) ≥ βxβ−1; in particular lim infx→∞ V
′(x) > 0. Moreover, for

x > 1, |V ′′(x)| can be bounded by Mxr for some constant M = M(r, β).
Thus,

lim
x→∞

|V ′′(x)|
V ′(x)2

≤ lim
x→∞

Mxr

β2x2(β−1)
= 0,

since β − 1 > r/2. We are thus in position to apply workable versions of the
criteria for the modified and weighted log-Sobolev inequalities (note that the
normalization of µr,β amounts to adding a constant to the potential V , which
does not affect the calculations and reasoning below).

First note that

lim
x→∞

V (x)

V ′(x)q
≤ lim

x→∞

(r + 3)xr+1

βqx(β−1)q
= 0,

since (β−1)q > (r−1/r)q = r+1. Thus, by the Barthe–Roberto criterion (see
(2.1.6)), µr,β satisfies the modified log-Sobolev and the Latała–Oleszkiewicz
inequality.

On the other hand, for certain values of x→∞ (e.g., for x = kπ − π/4,
k ∈ N), we have |V ′(x)| ≤ ((r + 1)r + β)xβ−1. Hence

lim sup
x→∞

V (x)

x2−rV ′(x)2
≥ lim

x→∞

xr+1

x2−r((r + 1)r + β)2x2(β−1)
=∞,

since β − 1 < r − 1/2. Thus, by Proposition 2.6.1 above, µr,β cannot satisfy
the weighted log-Sobolev inequality.

We finish with a short remark.
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Remark 2.6.4. The introduction of [73], suggests that the results of our
Theorem 2.2.1 are contained in [83], namely that it follows from [83] that
the Fq-Sobolev inequality (2.3.1) implies the modified log-Sobolev inequal-
ity (2.1.3). We would like to rectify this: Wang’s paper [83] deals with
measures with faster decay than Gaussian. He proves that in that setting
an appropriate super Poincaré inequality (or equivalently, an appropriate
F -Sobolev inequality) implies a certain weighted log-Sobolev inequality. How-
ever, in our setting (measures with tail decay slower than Gaussian), we have
an example of a measure which satisfies the modified log-Sobolev inequal-
ity (2.1.3) and the Latała–Oleszkiewicz inequality (2.1.1) (or equivalently, the
Fq-Sobolev inequality (2.3.1)), but does not satisfy the weighted log-Sobolev
inequality (2.6.1). Therefore Theorem 2.2.1 cannot be deduced from Wang’s
paper [83].
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Chapter 3

Concentration of measure for
convex functions: introduction
and preliminaries

3.1 Motivation
In the last thirty years a substantial body of research has been devoted to the
interplay between various functional inequalities, transportation of measure
theory, and the concentration of measure phenomenon, showing intimate
connections between them (some of which we have discussed in the preceding
chapters). While most of the investigations have been carried out in the
setting of general Lipschitz functions, concentration inequalities restricted to
the class of convex Lipschitz functions have also been considered by many
authors, starting from the seminal work by Talagrand in the 1990’s ([77, 78],
see also [49, 54, 67, 68] and the monograph [51] for subsequent developments).
A crucial feature of these results is that they are satisfied under less restrictive
assumptions concerning the regularity of the underlying probability measure
when compared to inequalities valid for all Lipschitz functions.

The research presented in the next chapters originated from the following
question.

Question 3.1.1. Adamczak [1] gave a sufficient condition for a probability
measure on the real line to satisfy the log-Sobolev inequality restricted to
the the class of convex functions. Can one give a sufficient and necessary
condition? What about the modified versions of the log-Sobolev inequality?

Remark 3.1.2. For brevity in what follows we shall slightly informally refer
to the log-Sobolev inequality for convex functions simply as “the convex
log-Sobolev inequality” (with a similar convention for other inequalities).
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Around the time when first partial results were obtained by Adamczak
and the author [5], a new type of weak transportation cost inequalities has
been introduced by Gozlan, Roberto, Samson, and Tetali in [39] and then
studied further by those authors and Shu in [38]. As these developments
turned out to be crucial for our work, we shall start by describing them.
We shall also discuss another important result obtained earlier, connecting
dimension-free concentration inequalities for convex functions with the convex
Poincaré inequality [37].

3.2 Convex Poincaré inequality and dimension-
free concentration for convex sets

Let | · | stand for the standard Euclidean norm on Rn. Let µ be a Borel
probability measure on Rn and let X be a random vector with law µ. We say
that µ (equivalently X) satisfies the convex Poincaré inequality with constant
λ > 0 if for all convex functions f : Rn → R we have

Var f(X) ≤ 1

λ
E |∇f(X)|2, (3.2.1)

where by |∇f(x)| we mean the length of gradient at x, defined as

|∇f(x)| = lim sup
y→x

|f(y)− f(x)|
|y − x|

. (3.2.2)

Note that this coincides with the length of the ‘true’ gradient provided f is
differentiable at x. Also, it is enough to assume that (3.2.1) holds for convex
Lipschitz functions, since an arbitrary convex function can be pointwise
approximated by convex Lipschitz functions.

It follows from the results by Gozlan, Roberto, and Samson [37] that µ
satisfies the convex Poincaré inequality if and only if there exists a constant
c > 0 such that for any N , any convex set A ⊆ (Rn)N with µ⊗N(A) ≥ 1/2,
and any t > 0,

µ⊗N(A+ tBNn
2 ) ≥ 1− 2 exp(−ct), (3.2.3)

where Bk
2 denotes the unit Euclidean ball in Rk and + stands for the Minkowski

addition.
It is not difficult to see that (3.2.3) is equivalent to the one-sided deviation

inequality for convex 1-Lipschitz functions, i.e.

P(f(X1, . . . , XN) ≥ Med f(X1, . . . , XN) + t) ≤ 2e−ct (3.2.4)
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for all t ≥ 0, where X1, . . . , XN are i.i.d. copies of X, and MedY denotes the
median of the random variable Y , i.e., MedY = inf{t ∈ R : P(Y ≤ t) ≥ 1/2}.

Thus the convex Poincaré inequality is equivalent to a dimension-free
deviation inequality for the upper tail of convex Lipschitz functions.

3.3 Weak transport–entropy inequalities
We turn to weak transport–entropy inequalities. We shall present the necessary
definitions and some fundamental results from [39, 38].

3.3.1 Definitions

Following [39] we denote by P1(Rn) the class of all probability measures ν on
Rn such that

∫
Rn |x|dν(x) <∞.

Definition 3.3.1. Let µ1 and µ2 be probability measures on Rn. Assume that
µ2 ∈ P1(Rn). For a convex, lower semicontinuous function θ : Rn → [0,∞]
with θ(0) = 0 define the weak (barycentric) transport cost between µ and ν
as

T θ(µ2|µ1) = inf
π

∫
Rn
θ
(
x−

∫
Rn
ypx(dy)

)
µ1(dx),

where:
• the infimum is taken over all couplings π between µ1 and µ2 (that is
probability measures on Rn × Rn such that π(A × Rn) = µ1(A) and
π(Rn × A) = µ2(A) for any Borel set A ⊂ Rn),
• for x ∈ Rn, px(·) is the conditional measure defined µ1 almost surely by

the relation π(dxdy) = px(dy)µ1(dx).

In probabilistic notation one can write

T θ(µ2|µ1) = inf
(X,Y )

E θ(X − E(Y |X)),

where the infimum is taken over all pairs of random vectors (X, Y ) with
values in Rn × Rn, such that X and Y are distributed according to µ1 and
µ2, respectively. The adjective weak stands for the fact that, by Jensen’s
inequality, T θ(µ2|µ1) is smaller than the classical transport cost,

Tθ(µ2, µ1) = inf
π

∫
Rn×Rn

θ(x− y)π(dx, dy). (3.3.1)

The word barycentric (which we will usually omit) corresponds to the fact
that the barycenter

∫
Rn ypx(dy) appears in the definition.
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Remark 3.3.2. More often than not, we will assume that θ is symmetric:
θ(x) = θ(−x) for x ∈ Rn.

Due to the asymmetry between µ1 and µ2, one can now introduce three
different inequalities related to the cost T θ. Recall that the relative entropy
H(ν|µ) has been defined above in (1.3.4).

Definition 3.3.3. Let µ ∈ P1(Rn) and θ : Rn → [0,∞] be a convex lower
semicontinuous function with θ(0) = 0. We will say that µ satisfies the
inequality
• T+

θ if for every probability measure ν ∈ P1(Rn),

T θ(ν|µ) ≤ H(ν|µ),

• T−θ if for every probability measure ν ∈ P1(Rn),

T θ(µ|ν) ≤ H(ν|µ),

• Tθ if µ satisfies both T+
θ and T−θ .

The definition of those inequalities given by Gozlan, Roberto, Samson, and
Tetali in [39] differs formally from the one presented above (which is taken
from the follow-up paper [38]). It is not difficult to see that the definitions
presented in both articles are equivalent up to universal constants; the version
above is more convenient for our purposes.

3.3.2 Dual formulations

We will rely on the following Bobkov–Götze type criterion for the weak-
transport inequality proved in Lemma 4.1 in [38] (and in a slightly different
version also in Proposition 4.5 in [39]). The proof in [38] is presented for the
real line, but it is not difficult to see that it generalizes to arbitrary dimension.

Proposition 3.3.4. Let θ : Rn → R+ be a convex cost function, θ(0) = 0,
limx→∞ θ(x) =∞. For all functions f : Rn → R bounded from below, x ∈ Rn,
and t > 0 set

Qtf(x) = Qθ
tf(x) = inf

y∈Rn

{
f(y) + tθ

(x− y
t

)}
.

Then
(i) µ satisfies T+

θ if and only if for all convex f : Rn → R, bounded from
below,

exp
(∫

Rn
Q1fdµ

)∫
Rn
e−fdµ ≤ 1; (3.3.2)

32



(ii) µ satisfies T−θ if and only if for all convex f : Rn → R, bounded from
below, ∫

Rn
exp(Q1f)dµ exp

(
−
∫
Rn
fdµ

)
≤ 1; (3.3.3)

(iii) if µ satisfies Tθ, then for all convex f : Rn → R, bounded from below,∫
Rn

exp(Qtf)dµ

∫
Rn
e−fdµ ≤ 1 (3.3.4)

holds with t = 2. Conversely, if µ satisfies (3.3.4) for some t > 0, then
it satisfies Tθ̃ with θ̃(·) = tθ(·/t).

Moreover, the inequality (3.3.2) (resp. (3.3.3)) for all convex, Lipschitz func-
tions bounded from below is a sufficient condition for T+

θ (resp. T−θ ).

We will refer to Qθ
t as the infimum convolution operator and to the inequal-

ity (3.3.4) as the convex infimum convolution inequality. From our point of
view, the importance of infimum convolution inequalities (whether for convex
or all smooth functions) lies also in the fact that they imply concentration
inequalities (cf. Subsection 1.4 above). To this end, the inequality (3.3.4)
was introduced by Maurey [54] (who considered both the classical setting of
smooth functions and the convex setting). The relation with transportation
cost inequalities was first observed by Bobkov and Götze [20].

Remark 3.3.5. The infimum convolution operator appears in the Hopf–Lax
formula for the solution of the Hamilton–Jacobi partial differential equation
(see, e.g., Chapter 3 of [29]). We will use this fact repeatedly in the proofs.

3.3.3 Relation to convex log-Sobolev inequalities

Let us now briefly explain why weak transportation inequalities can be helpful
when looking for an answer to Question 3.1.1.

Recall that in the classical setting there are strong links between the
log-Sobolev inequality, transport–entropy inequalities, and the infimum con-
volution inequality (see Section 1.3 above). Similar connections have been ob-
served by Gozlan, Roberto, Samson, and Tetali in [39] for convex log-Sobolev
inequalities and weak transport–entropy inequalities. More specifically, the
following is proved in Theorem 8.8 of [39].

Proposition 3.3.6. Let θ(x) = |x|2 for x ∈ Rn. For a probability measure µ
on Rn the following conditions are equivalent.
(i) There exists a > 0 such that the measure µ satisfies T−θ(a·).
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(ii) For every s > 0 we have
∫
R e

s|x|dµ(x) <∞ and there exists c > 0 such
that the convex log-Sobolev inequality holds, i.e.,

Entµ(eϕ) ≤ c

∫
R
|∇ϕ|2eϕdµ

for every smooth convex Lipschitz function ϕ : R→ R.

We shall come back to this equivalence later on, in Chapter 4, in the
more general case of modified log-Sobolev inequalities for convex functions
and non-quadratic cost functions θ, as well as in Chapter 5, in the case of
transportation inequalities with a quadratic-linear cost function θ. Let us
only mention, that similar connections hold also for inequalities for concave
functions and inequality T+

θ (with some additional technical restrictions), cf.
Sections 4.4.3 and 5.4.

3.3.4 Characterization on the real line

Let τ be the symmetric exponential measure on R with density 1
2
e−|x|. For

a Borel probability measure µ on R we denote by Uµ the unique left-continuous
and non-decreasing map transporting τ onto the reference measure µ. More
precisely, let

Uµ(x) := F−1
µ ◦ Fτ (x) =

{
F−1
µ (1

2
e−|x|) if x < 0,

F−1
µ (1− 1

2
e−|x|) if x ≥ 0,

where

F−1
µ (t) := inf{y ∈ R : Fµ(y) ≥ t} ∈ R ∪ {±∞}, t ∈ [0, 1],

is the generalized inverse of the cumulative distribution function defined as

Fµ(x) = µ((−∞, x]), x ∈ R.

Denote moreover

∆µ(h) := sup
x∈R
{Uµ(x+ h)− Uµ(x)}, h > 0. (3.3.5)

Recall the following result obtained by Gozlan, Roberto, Samson, Shu,
and Tetali (see Theorem 1.3 of [38]).

Proposition 3.3.7. Let θ : R→ [0,∞) be a symmetric convex cost function.
Assume that θ(t) = t2 for |t| ≤ t0 (for some t0 > 0). For a probability measure
µ ∈ P1(R) the following conditions are equivalent.
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(i) There exists a > 0 such that µ satisfies Tθ(a·).
(ii) There exists b > 0 such that for all h > 0 we have

∆µ(h) ≤ 1

b
θ−1(t20 + h),

where θ−1 : [0,∞) → [0,∞) denotes the inverse of the (increasing)
function θ restricted to [0,∞).

The dependence of the constants is the following: (i) implies (ii) with b = κ1a
and (ii) implies (i) with a = κ2b, where

κ1 =
t0

8θ−1(log(3) + t20)
, κ2 =

min(1, t0)

210θ−1(2 + t20)
.

3.4 Organization of the rest of the thesis
In the following chapters we study functional inequalities for convex functions,
using extensively and extending the results of [39] and [38]. Apart from the
above short introduction, those chapters are essentially self-contained. They
cover respectively the following topics:
• the convex log-Sobolev inequality on the real line (in particular, we

answer Question 3.1.1);
• the convex Poincaré inequality in Rn;
• general concentration inequalities which can be derived from infimum

convolution inequalities for convex functions of the form (3.3.4);
• application to convex infimum convolution inequalities with optimal

cost functions and comparison of moments.
Finally, Appendix A contains basic facts concerning Hamilton–Jacobi equa-
tions, which are used in the proof of Theorem 5.1.1.
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Chapter 4

Convex log-Sobolev inequality:
characterization on the real line

4.1 Introduction and main results
Let µ be a Borel probability measure on Rn. We say that µ satisfies the
(modified) log-Sobolev inequality for a class of functions F (with cost function
H : Rn → [0,∞) and constant c <∞) if for every f ∈ F we have

Entµ(ef ) ≤
∫
Rn
H(c∇f)efdµ. (4.1.1)

In the most classical setting where H(x) = |x|2 and F is the class of C1

functions this inequality was first introduced by Gross in [41]. In this case it
can be rewritten in the form

Entµ(g2) ≤ 4C

∫
Rn
|∇g|2dµ, (4.1.2)

where C = c2, or in yet another form which states that the entropy of
a positive function g is bounded by its Fisher information:

Entµ(g) ≤ C

∫
Rn

|∇g|2

g
dµ.

Remark 4.1.1. In our definition of the log-Sobolev inequality the constant c
is introduced as a scaling of the argument of the function H rather than as a
multiplicative constant outside of the integral. We decided to use this form
because it simplifies some of the calculations in Section 4.2. Clearly, in the
most common cases, e.g., in the case of the functions Hp from Example 4.1.7
below, the two formulations are equivalent up to numerical constants (for the
functions Hp those constants depend on p).

36



Due to its tensorization property the log-Sobolev inequality is a powerful
tool and can be used to obtain dimension-free concentration bounds (via the
so-called Herbst argument, see Proof of Corollary 2.2.2 above for a version
of it). It has been investigated also in more general settings of Riemannian
manifolds and in the context of applications to the study of Markov chains
(see, e.g., the monographs [9, 11] and the expository article [28]).

In Chapter 2 we have discussed some results concerning the inequal-
ity (4.1.1) with F = C1 and non-quadratic functions H. Now we shall be
interested in the case when F is the class of convex functions.1 The restriction
of the class of functions allows us to work with measures which satisfy much
weaker regularity conditions. Most importantly, their supports do not need to
be connected. On the other hand, a disturbing issue arises: the log-Sobolev
inequality for convex functions yields via standard reasonings only deviation
inequalities for the upper tail of functions, i.e.

µ⊗N
({
x ∈ (Rn)N : f(x) ≥

∫
(Rn)N

f dµ⊗N + t
})
, t ≥ 0

(see, e.g., [49]; in the classical setting of smooth functions one obtains bounds
on the lower tail simply by working with −f instead of f , but this is precluded
in our situation because −f is usually not convex).

Our goal is to give an intrinsic characterization of probability measures on
the real line for which the convex log-Sobolev inequality holds. As a corollary
we will obtain dimension-free concentration bounds for upper and lower tails
of convex functions of independent random variables satisfying the convex
log-Sobolev inequality. Before stating our main result let us outline what has
been known in the convex setting.

In [1] Adamczak found a sufficient condition for a probability measure
on the real line to satisfy the convex log-Sobolev inequality with H(x) = x2,
x ∈ R. This has been extended to functions of the form H(x) = max{x2, xq},
where q > 2, by Adamczak and the author in [5].

Recall from Section 3.3 that Gozlan, Roberto, Samson, Shu, and Tetali
[38] established a condition equivalent to the weak transport inequality Tθ on
the real line. By the very definition, it is therefore sufficient for the formally
weaker inequality T−θ , which in turn is equivalent to a certain convex modified
log-Sobolev inequality on the real line (as already hinted in Section 3.3.3;
see Proposition 4.2.1 below for a more precise statement). Their condition,
expressed in terms of the unique left-continuous and non-decreasing map

1Note that in this case the dimension-free tensorization property still holds, but the
alternative formulations (1.3.2) and (4.1.2)—with g being convex, respectively convex and
non-negative—are no longer equivalent to (4.1.1).
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transporting the symmetric exponential measure onto µ (see Proposition 3.3.7),
is in fact weaker than the condition considered in [5].

On the other hand, it follows from [38] and the independent work of
Feldheim, Marsiglietti, Nayar, and Wang in [30] that in the case when H
is quadratic on an interval near zero and then infinite the following are
equivalent:
• the condition on the tail of the measure µ from [5] in the case β = 0,
• the condition on monotone transport map obtained in [38],
• the log-Sobolev inequality for convex functions

(and further: the convex Poincaré inequality, the convex infimum convolution
inequality with a quadratic-linear cost function). In what follows we extend
this result to more general choices of the function H.

Before formulating our main result, we recall for the reader’s convenience
the notation introduced in Section 3.3.4 above:
• Uµ is the unique left-continuous and non-decreasing map transporting

the symmetric exponential measure onto the reference measure µ,

Uµ(x) = F−1
µ ◦ Fτ (x) =

{
F−1
µ (1

2
e−|x|) if x < 0,

F−1
µ (1− 1

2
e−|x|) if x ≥ 0,

where the generalized inverse of the cumulative distribution function
Fµ is defined as

F−1
µ (t) = inf{y ∈ R : Fµ(y) ≥ t} ∈ R, t ∈ (0, 1);

• the modulus of continuity of Uµ is denoted

∆µ(h) = sup
x∈R
{Uµ(x+ h)− Uµ(x)}, h > 0.

We stress that by all means we can have limh→0+ ∆µ(h) > 0. This corresponds
to the fact that the support of µ does not need to be connected.

Recall also that H∗ : R→ R stands for the Fenchel-Legendre transform of
H : R→ R, given by the formula

H∗(x) = sup
y∈R
{xy −H(y)}, x ∈ R.

Remark 4.1.2. Note that if H is a symmetric convex function, such that
H(x) = 1

4
x2 for x ∈ [−2t0, 2t0] for some t0 > 0, then H∗ is also quadratic near

zero (namely, H∗(x) = x2 for x ∈ [−t0, t0], since for such x the supremum in
the definition of H∗ is attained at y = 2x).
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Our main result is the following. The results are new already in the case
of the quadratic function H(x) = 1

4
x2.

Theorem 4.1.3. Let H : R→ [0,∞) be a symmetric convex function, such
that H(x) = 1

4
x2 for x ∈ [−2t0, 2t0] for some t0 > 0. Suppose moreover that

there exist A ∈ [1,∞) and α ∈ (1, 2] such that

∀x∈R ∀s∈[0,1] H(sx) ≤ AsαH(x). (4.1.3)

Denote θ(t) = H∗(t). For a probability measure µ on the real line the following
conditions are equivalent.
(i) For every s > 0 we have

∫
R e

s|x|dµ(x) <∞ and there exists c > 0 such
that

Entµ(eϕ) ≤
∫
R
H(cϕ′)eϕdµ

for every smooth convex Lipschitz function ϕ : R→ R.
(ii) There exists b > 0 such that for all h > 0,

∆µ(h) ≤ 1

b
θ−1(t20 + h),

where θ−1 : [0,∞) → [0,∞) denotes the inverse of the (increasing)
function θ restricted to [0,∞).

Let us state three technical remarks in this place.
Remark 4.1.4. The dependence of constants is explicit but complicated and
hence we shall only specify it throughout the proof of the theorem. However,
in the case when H(x) = x2

4
the dependence of constants can be simplified:

(ii) implies (i) with c = 2
κb

where

κ = max
t0>0

{ min(1, t0)

210
√

2 + t20

}
=

1

210
√

3
;

(i) implies that ∆µ(h) ≤ 16c(2
3

+
√
h/2).

Remark 4.1.5. In (i) the assumption about exponential integrability is added
in order to exclude very heavy-tailed measures for which the only exponentially
integrable convex Lipschitz functions are constants and hence the convex
log-Sobolev inequality is trivially satisfied, whereas (ii) cannot hold.
Remark 4.1.6. Suppose for simplicity that µ is symmetric and has a nowhere
vanishing density. By the definition of Uµ we have

µ([Uµ(x+ h),∞)) = τ([x+ h,∞)) = e−hτ([x,∞)) = e−hµ([Uµ(x),∞))

for x, h ≥ 0. This easy computation shows that (ii) implies:
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(ii’) There exists b > 0 such that for every h > 0,

µ([x+ g(h),∞)) ≤ e−hµ([x,∞)) ∀x ≥ 0,

where g(h) = 1
b
θ−1(t20 + h).

This observation can be used to compare the condition on ∆µ with the
sufficient conditions obtained in [1, 5] (see definition of the classMβ; see also
Subsection 1.3.1 in [5]).

The following example shows that our theorem covers among others the
modified log-Sobolev inequalities from Chapter 2 restricted to the class of
convex functions. Hence, it can be viewed as a convex counterpart of the
results of Barthe and Roberto from [15].

Example 4.1.7. The condition (4.1.3) is stable under taking convex combi-
nations or maxima of functions and, for 1 < p <∞, the function

H(x) = Hp(x) =

{
1
4
x2 if |x| ≤ 2,

2
p
(|x/2|p − 1) + 1 if |x| > 2,

satisfies (4.1.3) with α = min{p, 2} and A = 1.2 Indeed, if x > 0 and
s ∈ (0, 1), then by Cauchy’s mean value theorem

H(sx)

H(x)
=
sH ′(sξ)

H ′(ξ)
=


s2 if 0 ≤ sξ ≤ ξ ≤ 2,

s2(ξ/2)2−p = sp(sξ/2)2−p if 0 ≤ sξ ≤ 2 < ξ,

sp if 2 < sξ ≤ ξ

for some ξ ∈ (0, x). In either case,

H(sx) ≤ max{s2, sp}H(x) = smin{p,2}H(x).

Taking into account the results from [38], we can give a handful of con-
ditions equivalent to the convex log-Sobolev inequality on the real line. For
simplicity we state the result only for the quadratic cost.

Theorem 4.1.8. Let θ(t) = t2 for t ∈ R. For a probability measure µ on the
real line the following conditions are equivalent.
(i) For every s > 0 we have

∫
R e

s|x|dµ(x) <∞ and there exists C > 0 such
that

Entµ(eϕ) ≤ C

∫
R
|ϕ′|2eϕdµ

for every smooth convex Lipschitz function ϕ : R→ R.
2There is a conflict in notation with the function Hq introduced in Chapter 2, but for

p = q both functions are comparable up to multiplicative constants.
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(ii) There exist a, b > 0 such that for all h > 0,

∆µ(h) ≤
√
a+ bh.

(iii) There exists a1 > 0 such that µ satisfies the inequality T−θ(a1·).
(iv) There exists a2 > 0 such that µ satisfies the inequality Tθ(a2·).
(v) There exists t > 0 such that µ satisfies the infimum convolution inequal-

ity ∫
R

exp(Qθ
tf)dµ

∫
R

exp(−f) ≤ 1

for every convex function f : R→ R bounded from below.
In each of the implications the constants in the conclusion depend only on the
constants in the premise.

As a consequence, we immediately obtain concentration bounds for both
the upper and lower tails of convex Lipschitz functions. Indeed, they follow
at once from the convex infimum convolution inequality. Let us stress here
once again that for the lower tail such estimates were previously unknown
(since working directly with the convex log-Sobolev inequality leads only to
bounds for the upper tail, see [49]). For simplicity we also state the result in
the case H(x) = 1

4
x2, but one can obtain appropriate bounds also in the case

when H is not quadratic3. We refer to, e.g., Corollary 3 from [30] for a similar
statement (with H quadratic on an interval near zero and then infinite); see
also Corollary 5.11 from [39] and Chapter 6 below for a general overview
of concentration properties implied by weak transportation inequalities and
convex infimum convolution inequalities.

Corollary 4.1.9. Let µ be a probability measure on R such that for every
s > 0 we have

∫
R e

s|x|dµ(x) <∞ and

Entµ(eϕ) ≤ C

∫
R
|ϕ′|2eϕdµ

for every smooth convex Lipschitz function ϕ : R → R. Then there exist
A,B <∞ (depending only on C), such that for any convex function ϕ : RN →
R which is 1-Lipschitz (with respect to the Euclidean norm on RN) we have

µ⊗N
(
{x ∈ RN : |ϕ(x)−Medµ⊗N (ϕ)| ≥ t}

)
≤ Be−t

2/A, t ≥ 0,

3Using simply the fact that condition (ii) from Theorem 4.1.3 is, by Proposition 3.3.7
and Proposition 3.3.4 above, equivalent to the infimum convolution inequality for convex
functions; for the quadratic cost these results are summarized in Theorem 4.1.8
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where

Medµ⊗N (ϕ) = inf
{
s ∈ R : µ⊗N({x ∈ RN : ϕ(x) ≤ s}) ≥ 1/2

}
is the median of ϕ.

The rest of the chapter is organized as follows. In Sections 4.2 and 4.3 we
prove that the conditions (i) and (ii) are both equivalent to a weak transport–
entropy inequality. Finally, in Section 4.4 we summarize the results of the
previous sections and give the proof of Theorem 4.1.3 (and Corollary 4.1.9).
We also recapitulate all conditions equivalent to the convex log-Sobolev
inequality in the quadratic case, present a corollary connecting the convex
log-Sobolev inequality to Talagrand’s T2 inequality, and pose some open
questions.

4.2 Equivalence of the convex log-Sobolev in-
equality and the weak transportation in-
equality

In this section we establish the equivalence of the convex log-Sobolev inequality
and the weak transport–entropy inequality. In the case of the quadratic cost
this was done in [39] (see also [5] for related results for other cost functions).
Using the techniques developed therein, especially in the dual formulation
(3.3.3), we extend this result to a wider class of cost functions. We work with
measures on the real line, but in contrast to Section 4.3 there are no problems
with extending the results of this section to a higher dimensional setting (cf.
[39, 5] and Lemma 5.4.1 below).

Let H : R→ [0,∞) be a symmetric convex function, such that H(x) = 1
4
x2

for x ∈ [−2t0, 2t0] for some t0 > 0. Recall that H∗ is is also quadratic near
zero (see Remark 4.1.2). Moreover, we assume that there exist A ∈ [1,∞)
and α ∈ (1, 2] such that

∀x∈R ∀s∈[0,1] H(sx) ≤ AsαH(x). (4.2.1)

Note that we have

H(x) ≥ 1

4A
t2−α0 xα for x ≥ t0 (4.2.2)

(this follows immediately by taking s = t0/x in condition (4.2.1)). Also,
limx→∞H

∗(x)/x = ∞, since otherwise there would exist M > 0 such that
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H∗(x) ≤M |x| for all sufficiently large x, which would lead to a contradiction
with the assumption that H takes finite values. In particular, H∗ is not
Lipschitz.

The main technical result of this section is the following.

Proposition 4.2.1. For a probability measure µ on the real line the following
conditions are equivalent.
(i) There exists a > 0 such that the measure µ satisfies T−H∗(a·).
(ii) For every s > 0 we have

∫
R e

s|x|dµ(x) <∞ and there exists c > 0 such
that

Entµ(eϕ) ≤
∫
R
H(cϕ′)eϕdµ

for every smooth convex Lipschitz function ϕ : R→ R.
The dependence of the constants is the following: (i) implies (ii) with c = 2/a;
(ii) implies (i) with a = ((α− 1)/A)1/αc−1.

The implication (i) =⇒ (ii) is a general fact and no special assumptions
are used in the proof. For the sake of completeness we sketch the main
argument here.

Proof of Proposition 4.2.1, (i) =⇒ (ii). The exponential integrability fol-
lows from the dual formulation (3.3.3) tested with the function x 7→ s|x|
(cf. [5, p. 86]; note that we use the fact that H∗ is not Lipschitz).

According to Proposition 8.3 from [39], (i) implies that the so-called
(τ)−log-Sobolev inequality holds: for all functions f : R → R such that∫
R fe

fdµ <∞ we have

Entµ(ef ) ≤ 1

1− λ

∫
R
(f −Rλf)efdµ

for every λ ∈ (0, 1). Here

Rλf(x) := inf
p

{∫
R
f(y)p(dy) + λH∗

(
a(x−

∫
R
yp(dy))

)}
,

where the infimum is taken over all probability measures p on R (note that
we skip the dependence on H∗ in the notation). For convex functions f the
infimum above is achieved at some Dirac measure:

Rλf(x) = inf
y∈R
{f(y) + λH∗(a(x− y))}

(indeed, if we replace the measure p by a Dirac mass at the point yp =∫
R yp(dy), then, by Jensen’s inequality, the expression under the infimum in
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the definition of Rλ will not increase; cf. Theorem 2.11 and Subsection 8.2
in [39]). Now, by convexity of f ,

f(x)−Rλf(x) = f(x) + sup
y∈R
{−f(y)− λH∗(a(x− y))}

≤ f(x) + sup
y∈R
{−f(x)− f ′(x)(y − x)− λH∗(a(x− y))}

= λH
(f ′(x)

aλ

)
,

where we have used the fact that H∗∗ = H. Thus, after taking λ = 1/2, we
arrive at the assertion (with c = 2/a).

For the proof of the second implication we need the following simple
lemma. It is based on an argument of Maurey (cf. Proof of Theorem 3 in
[54]), but takes into account the observation that for compactly supported
measures it doesn’t matter whether for large arguments the cost function is
quadratic or equal to +∞. Recall that | · | stands for the Euclidean norm.

Lemma 4.2.2. Let µ be a probability measure on Rn such that the diameter
of the support of µ is not greater than D and denote

θD(x) =

{
1

4D2 |x|2 if |x| ≤ D,

+∞ if |x| > D.

Then for any convex function ϕ : Rn → R bounded from below∫
Rn
eQ

θD
1 ϕdµ

∫
Rn
e−ϕdµ ≤ 1, (4.2.3)

where QθD
1 ϕ(x) = inf{ϕ(y) + θD(x − y) : y ∈ Rn}, x ∈ Rn, stands for the

infimum convolution.
Conversely, if inequality (4.2.3) holds for some D, then the support of µ

is bounded: if x, y ∈ Suppµ, then |x− y| ≤ D.

Proof. Assume that the diameter of the support of µ is bounded by D. Take
a convex function ϕ, bounded from below. By adding a constant to ϕ, we
may assume that infSuppµ ϕ = 0. Take any ε > 0, any x ∈ Suppµ, and let
z ∈ Suppµ be such that ϕ(z) < ε. Moreover, define y = (1− λ)x+ λz, where
λ ∈ [0, 1]. Then |x− y| ≤ D and hence

QθD
1 ϕ(x) ≤ ϕ(y) +

1

4D2
|x− y|2 ≤ (1− λ)ϕ(x) + λϕ(z) +

λ2

4D2
|x− z|2

≤ (1− λ)ϕ(x) + λε+
λ2

4
.
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We now let ε→ 0+, and then optimize with respect to λ ∈ [0, 1]: if ϕ(x) ≥ 1/2
we take λ = 1, and if 0 ≤ ϕ(x) ≤ 1/2 we take λ = 2ϕ(x). This gives
QθD

1 ϕ(x) ≤ k(ϕ(x)), where

k(u) = (u− u2) · 1{u∈[0,1/2)} + 1
4
· 1{u≥1/2}.

Note that we have ek(u) ≤ 2 − e−u. Indeed, for u = 1/2 (or larger) the
inequality holds, and for u ∈ [0, 1/2) we have

(eu−u
2

+ e−u)/2 ≤ e−u
2/2 cosh(u− u2/2) ≤ e−u

2/2 cosh(u) ≤ 1.

Hence ∫
eQ

θD
1 ϕµ ≤

∫
ek(ϕ)dµ ≤ 2−

∫
e−ϕdµ ≤

(∫
e−ϕdµ

)−1

.

Conversely, assume that inequality (4.2.3) holds, but there exist x0, y0 ∈
Suppµ such that |x0 − y0| > D. Then there exist ε, δ > 0, such that
µ(B(x0, ε)) > δ and µ(Rn \ B(x0, D + 2ε)) > δ. Consider now ϕa : Rn → R
defined by the formula ϕa(x) = a dist

(
x,B(x0, ε)

)
for a > 0. For x ∈

Rn \B(x0, D + 2ε) we have

QθD
1 ϕa(x) = inf

y∈Rn:|x−y|≤D

{
a dist

(
y,B(x0, ε)

)
+

1

4D2
|x− y|2

}
≥ aε.

Moreover, ϕa = 0 on B(x0, ε). Thus for sufficiently large a > 0,∫
Rn
eQ

θD
1 ϕadµ

∫
Rn
e−ϕadµ ≥

∫
Rn\B(x0,D+2ε)

eQ
θD
1 ϕadµ

∫
B(x0,ε)

e−ϕadµ

≥ δ2 exp(aε) > 1,

which contradicts the inequality (4.2.3).

Proof of Proposition 4.2.1, (ii) =⇒ (i). Assume that (ii) holds. Without
loss of generality we can assume that µ is absolutely continuous with respect
to the Lebesgue measure. Indeed, if γ is a uniform probability distribution
on [0, δ], then by Lemma 4.2.2, Proposition 3.3.4 (iii), and the already proved
implication (i) =⇒ (ii) of Proposition 4.2.1 it satisfies the convex log-Sobolev
inequality with a quadratic-linear function

H0(x) = δ2x21{|x|≤1/(2δ)} + (δ|x| − 1/4)1{|x|>1/(2δ)}

(and constant c = 2). Hence by (4.2.2) the product measure µ ⊗ γ on R2

satisfies (for sufficiently small δ > 0)

Entµ⊗γ(e
φ) ≤

∫
R2

(
H(cφ′x) +H(cφ′y)

)
eφdµ⊗γ (4.2.4)
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for all smooth convex Lipschitz functions φ : R2 → R. Let ϕ : R → R be
a smooth convex Lipschitz function and let φ : R2 → R be defined by the
formula φ(x, y) = ϕ(x + εy), x, y ∈ R. Applying (4.2.4) to the function φ
and using the assumption (4.2.1), we see that the convolution µ ∗ γε, where
γε(·) = γ(·/ε), satisfies, up to a multiplicative constant which tends to 1 as
ε→ 0+, the same modified log-Sobolev inequality as µ:

Entµ∗γε(e
ϕ) ≤ (1 + Aεα)

∫
R
H(cϕ′)eϕdµ∗γε.

The reader will easily check that the proof below shows that µ ∗ γε satisfies
T−H∗(aε·) with aε = ((α− 1)/Aε)

1/αc−1, where Aε = A · (1 + Aεα) (the multi-
plicative constant 1+Aεα will appear in one place in the estimate of F ′(t)). By
the Lebesgue dominated convergence theorem applied to the dual formulation
this implies that µ satisfies T−H∗(a·) with a = ((α − 1)/A)1/αc−1. Indeed, in
the dual formulation it suffices to consider convex Lipschitz functions only. If
f is Lipschitz, then for every x ∈ R, there exists a compact set Kx such that
for all ε ∈ [0, 1],

Q
H∗(aε·)
1 f(x) = inf

y∈Kx

{
f(x− y) +H∗(aεy)

}
(the infimum cannot be attained for big values of y, since f is Lipschitz and
H∗ grows faster than a linear function when its argument tends to +∞).
Since H∗ is uniformly continuous on Kx, we have pointwise convergence
Q
H∗(aε·)
1 f(x)→ Q

H∗(a·)
1 f(x) as ε→ 0+. We can use the Lebesgue dominated

convergence theorem, because

Q
H∗(aε·)
1 f(x) ≤ f(x) ≤ f(0) + Lip(f)|x|

and by assumption
∫
R e

s|x|dµ(x) <∞ for every s > 0.
Note that if µ is absolutely continuous, then standard approximation

shows that (ii) holds for all convex Lipschitz functions (by the Rademacher
theorem the gradient is then almost surely well defined).

Take a convex Lipschitz function ϕ : R→ R, denote for brevity

Qtϕ(x) = Q
H∗(·)
t ϕ(x) = inf

y∈R

{
ϕ(y) + tH∗

(x− y
t

)}
,

and set F (t) =
∫
R e

k(t)Qtϕ(x)dµ(x) for t > 0 (for some non-decreasing function
k yet to be determined). The Hamilton–Jacobi partial differential equation,

∂tQtϕ+H(∂xQtϕ) = 0,
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holds almost surely on (0,∞)× R (see, e.g., Chapter 3 of [29]). Using first
this fact, then applying the log-Sobolev inequality, and finally the estimate
H(ck(t)·) ≤ Acαk(t)αH(·) which follows from the assumption (4.2.1) if only
ck(t) ≤ 1, we arrive at

k(t)F ′(t) = k(t)

∫
R
ek(t)Qtϕ(x)

(
k′(t)Qtϕ(x) + k(t)∂tQtϕ(x)

)
dµ(x)

= k(t)

∫
R
ek(t)Qtϕ(x)

(
k′(t)Qtϕ(x)− k(t)H

(
∂xQtϕ(x)

))
dµ(x)

= k′(t)F (t) logF (t) + k′(t) Entµ
(
ek(t)Qtϕ

)
− k2(t)

∫
R
ek(t)Qtϕ(x)H

(
∂xQtϕ(x)

)
dµ(x)

≤ k′(t)F (t) logF (t) + k′(t)

∫
R
ek(t)Qtϕ(x)H

(
ck(t)∂xQtϕ(x)

)
dµ(x)

− k2(t)

∫
R
ek(t)Qtϕ(x)H

(
∂xQtϕ(x)

)
dµ(x)

≤ k′(t)F (t) logF (t)

+
[
Acαk′(t)k(t)α − k2(t)

]
·
∫
R
ek(t)Qtϕ(x)H

(
∂xQtϕ(x)

)
dµ(x).

Denote Ã = A1/α and take

k(t) = (Ãc)−α/(α−1)
(
(α− 1)t

)1/(α−1)
.

Then k(0) = 0, ck(t) ≤ 1 for t ∈ [0, Ãαc/(α− 1)], and

Acαk′(t)k(t)α − k2(t) = 0.

For such a choice of k, the differential inequality obtained above is equivalent
to (log(F (t))/k(t))′ ≤ 0 for almost all t ∈ (0, Ãαc/(α− 1)) (note that—by the
fact that Qtϕ is Lipschitz and the integrability properties of µ—the function
log(F (t))/k(t) is absolutely continuous on bounded closed intervals contained
in (0,∞)). Since Qtϕ ≤ ϕ, this yields

logF (t)

k(t)
≤ lim inf

s→0+

logF (s)

k(s)
≤ lim

s→0+

log(
∫
R e

k(s)ϕ(x)dµ(x))

k(s)
=

∫
R
ϕdµ

for t ∈ (0, Ãαc/(α−1)]. This is exactly the dual formulation of T−tk(t)H∗(·/t) (see
Proposition 3.3.4 (ii)). Taking t = t∗ = Ãc/(α− 1)1/α we see that t∗k(t∗) = 1,
t∗ ≤ Ãαc/(α− 1) (recall that A ≥ 1 and 1 < α ≤ 2), and thus also ck(t∗) ≤ 1.
We conclude that µ satisfies T−H∗(a·) with a = 1/t∗ = ((α− 1)/A)1/αc−1.
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4.3 From the weak transportation inequality to
the condition on Uµ

In the previous section we showed the equivalence of the convex log-Sobolev
inequality and the weak transport–entropy inequality. In this section, working
towards the proof of Theorem 4.1.3, we deal with weak transport–entropy
inequalities.

Throughout this section let µ be a measure on the real line (which is not
a Dirac mass) with median m = F−1

µ (1/2). Denote

sµ := inf Supp(µ) ∈ [−∞,∞), tµ := sup Supp(µ) ∈ (−∞,∞].

Let θ : R→ [0,∞) be a symmetric convex cost function such that θ(t) = t2

for t ∈ [−t0, t0] for some t0 > 0. Note that by convexity θ is increasing. We
moreover assume that∫ ∞

0

θ(x)e−λxdx <∞ for any λ > 0. (4.3.1)

The goal of this section is to provide a proof of the following stronger
version of Proposition 3.3.7, where Tθ(a·) is replaced by the formally weaker
inequality T−θ(a·). Note that this in particular means that the inequalities Tθ

and T−θ are equivalent.

Proposition 4.3.1. The following conditions are equivalent.
(i) There exists a > 0 such that µ satisfies T−θ(a·).
(ii) There exists b > 0 such that for all h > 0 we have

∆µ(h) ≤ 1

b
θ−1(t20 + h).

The dependence of the constants is the following: (i) implies (ii) with

b =
min(a, 1)

16

(
1 +

1

at0
θ−1
( log(2eCθ/2 − 1)

2

))−1

,

where Cθ =
∫∞

0
θ(2 + 1

log 2
t)e−tdt, and (ii) implies (i) with a = κb, where

κ = min(1,t0)

210θ−1(2+t20)
.

For the proof we need the following lemma which explains the connection
between the condition (ii) satisfied by the map Uµ and transport–entropy
inequalities connected to costs which are equal to zero in a neighborhood
of zero. The lemma is an immediate consequence of Theorem 2.2 from [35]
(cf. Theorem 6.1 in [38]). In what follows the symbol

∫ t2
t1

always denotes an
integral over the open interval (t1, t2).
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Lemma 4.3.2. Let β : [0,∞) → [0,∞) be a function which is equal to
zero on the interval [0, t0] and then strictly increasing; denote its inverse
by β−1 : [0,∞)→ [t0,∞). The following conditions are equivalent.
(i) There exists d > 0 such that for all h > 0 and x ∈ R,

∆µ(h) ≤ 1
d
β−1(h).

(ii) There exist k > 0, K <∞ such that

sup
x∈[m,tµ)

1

µ((x,∞))

∫ ∞
x

exp
(
β
(
k(u− x)

))
µ(du) ≤ K,

sup
x∈(sµ,m]

1

µ((−∞, x))

∫ x

−∞
exp
(
β
(
k(x− u)

))
µ(du) ≤ K.

The dependence of the constants is the following: (i) implies (ii) with K = 3
and k = d t0

18β−1(2)
; (ii) implies (i) with d = k t0

4β−1(logK)
.

The above lemma will be our main tool in the proof of the implication
(i) =⇒ (ii) of Proposition (4.3.1), but first we need a couple of preparatory
results. They concern the consequences of the convex Poincaré inequality,
which as we recall below is satisfied in our setting.

Lemma 4.3.3. If µ satisfies T−θ(a·), then µ satisfies the following convex
Poincaré inequality: for any convex Lipschitz f : R→ R we have

Varµ(f) ≤ 1

2a2

∫
R
|∇f |2dµ, (4.3.2)

where |∇f(x)| is the length of the gradient of f at x.

Proof. This follows by a standard Taylor expansion argument from the dual
formulation (3.3.3) of the transport entropy inequality: we plug in εf instead
of f , use the estimate

Qθ
1(εf)(x) = inf

y∈R
{εf(x− y) + θ(y)} ≥ εf(x) + inf

y∈R
{−ε|∇f(x)|y + θ(y)}

≥ εf(x)− θ∗(ε|∇f(x)|)

(valid for convex functions; note that |∇f(x)| is just the maximum of the
one-sided derivatives which exist at every point), and take ε → 0+ (recall
that θ∗(t) = t2/4; alternatively, one could use Proposition 4.2.1 and deduce
the Poincaré inequality with a slightly worse constant from the log-Sobolev
inequality by a similar argument).
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By the characterization of Bobkov and Götze from Theorem 4.2 in [19]
(cf. Theorem 1.5 in [38]), if µ satisfies the convex Poincaré inequality, then
there exist D1, D2 > 0 such that ∆µ(h) ≤ D1 +D2h for all h ≥ 0. Following
the proof of Theorem 1 from [30] we get a version with explicit constants.

Lemma 4.3.4. If µ satisfies the convex Poincaré inequality (4.3.2), then we
have Uµ(x + h) − Uµ(x) ≤ 4

a
+ 1

a log(2)
h. However, the constant 4/a may be

replaced by 2/a if we know that x and x+ h are of the same sign.

Proof. Let X,X ′ be two independent random variables with distribution µ.
Fix u ≥ m and plug the function f(x) = max{x− u, 0} into (4.3.2):

1

a2
µ([u,∞)) ≥ 2 Varµ(f) = E(f(X)− f(X ′))2

≥ E(f(X)− f(X ′))2
[
1{X′≤m, X≥u+2/a} + 1{X≤m, X′≥u+2/a}

]
≥ E f(X)21{X≥u+2/a} ≥

4

a2
µ([u+ 2/a,∞)),

Thus,

µ([u+ 2/a,∞)) ≤ 1

4
µ([u,∞)), u ≥ m,

and similarly

µ((−∞, u− 2/a]) ≤ 1

4
µ((−∞, u]), u ≤ m.

By the definition of Uµ (and the fact that Fµ is right-continuous) for x ∈ R
and all ε > 0,

Fµ(Uµ(x)− ε) < Fτ (x) ≤ Fµ(Uµ(x)).

Denote now h0 = 2 ln(2) and let x, x+ h0 ≤ 0. Then, for ε > 0,

µ
(
(−∞, Uµ(x+ h0)− 2/a− ε]

)
≤ 1

4
µ
(
(−∞, Uµ(x+ h0)− ε]

)
< e−h0τ

(
(−∞, x+ h0]

)
= τ
(
(−∞, x]

)
≤ µ

(
(−∞, Uµ(x)]

)
.

The inequality is strict and thus Uµ(x+ h0)− Uµ(x) ≤ 2/a+ ε. Since ε > 0
was arbitrary, Uµ(x+ h0)− Uµ(x) ≤ 2/a for x, x+ h0 ≤ 0.

Similarly Uµ(x+ h0)− Uµ(x) ≤ 2/a for x, x+ h0 ≥ 0, since

µ
(
[Uµ(x) + 2/a+ ε,∞)

)
≤ 1

4
µ
(
[Uµ(x) + ε,∞)

)
≤ 1

4

(
1− Fµ(Uµ(x))

)
≤ e−h0

(
1− Fτ (x)

)
= 1− Fτ (x+ h0)

< µ
(
[Uµ(x+ h0)− ε,∞)

)
.
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Using these inequalities in a telescoping manner at most dh/h0e ≤ 1 + h/h0

times we conclude that

Uµ(x+ h)− Uµ(x) ≤ 2

a
+

1

a log(2)
h

for any x ∈ R and h ≥ 0 such that x and x + h are of the same sign. If
x < 0 < x+ h, then the additive constant 2/a in the last estimate has to be
replaced by 4/a.

With this result in hand, we can prove our last preparatory lemma.

Lemma 4.3.5. If µ satisfies the convex Poincaré inequality (4.3.2), then

1

µ((x,∞))

∫ ∞
x

θ(a(u− x))µ(du) ≤ Cθ for x ∈ [m, tµ),

1

µ((−∞, x))

∫ x

−∞
θ(a(x− u))µ(du) ≤ Cθ for x ∈ (sµ,m],

where Cθ =
∫∞

0
θ(2 + 1

log 2
t)e−tdt. Moreover, if θ(x) = x2 then one can choose

Cθ = 1.

Proof of Lemma 4.3.5. We only need to prove the first inequality (where
x ∈ [m, tµ)), the second one can be taken care of in a similar way.

First, we deal with the case θ(x) := x2. Inequality (4.3.2) implies that

A−B ≤ 1

2
µ((x,∞)),

where A =
∫∞
x

(a(u − x))2µ(du) and B =
(∫∞

x
a(u− x)µ(du)

)2. (This is
again obtained by testing (4.3.2) with u 7→ amax{u−x, 0}; a minuscule limit
argument is needed to obtain the version with the open interval on the right
hand-side: it suffices to consider x + 1/n, n → ∞, instead of x.) By the
Cauchy-Schwarz inequality B ≤ Aµ((x,∞)) and thus

A ≤ 1

2
µ((x,∞)) + Aµ((x,∞)),

which, since x ≥ m, leads to

1

µ((x,∞))

∫ ∞
x

θ(a(u− x))µ(du) ≤ 1

2(1− µ((x,∞)))
≤ 1.

Now we turn to the general θ. By the characterization of Bobkov and
Götze [19], there exist D1, D2 > 0 such that ∆µ(h) ≤ D1 + D2h for all
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h ≥ 0. By Lemma 4.3.4, we see that in our case one can choose D1 = 2
a
and

D2 = 1
a log 2

.
Fix x ≥ m and define v := sup{u : Uµ(u) ≤ x}. Since the map Uµ is

left-continuous we have Uµ(v) ≤ x < Uµ(v+ ε) for any ε > 0; also v ≥ 0 since
x ≥ m. Recall that τ denotes the exponential measure and that∫

R
fdµ =

∫
R
f ◦ Uµdτ

for any measurable function f . Thus (note that µ((Uµ(v), x]) = 0 if we have
Uµ(v) < x)

1

µ((x,∞))

∫ ∞
x

θ(a(u− x))µ(du) =
1

τ((v,∞))

∫ ∞
v

θ
(
a(Uµ(u)− x)

)
τ(du)

≤ ev
∫ ∞
v

θ
(
a(Uµ(u)− Uµ(v))

)
e−udu

≤
∫ ∞
v

θ
(
a(D1 +D2(u− v))

)
e−(u−v)du

=

∫ ∞
0

θ(a(D1 +D2t))e
−tdt

=

∫ ∞
0

θ
(
2 +

1

log 2
t
)
e−tdt = Cθ <∞,

where the last inequality follows from the integrability condition (4.3.1) placed
on θ.

Now we are ready to prove Proposition 4.3.1.

Proof of Proposition 4.3.1. Due to Proposition 3.3.7 we only need to check
that if µ satisfies the inequality T−θ(a·), then the condition from (ii) is satisfied
by Uµ.

Fix x > m and consider the function f(t) = θ(a[t − x]+). Then clearly
Q
θ(a·)
1 f(t) = 0 if t ≤ x. For t > x,

Q
θ(a·)
1 f(t) = inf

y∈R
{θ(a[y − x]+) + θ(a(t− y))}

= inf
y∈[x,t]

{θ(a(y − x)) + θ(a(t− y))} = 2θ(a(t− x)/2),

where the last equality follows from the fact that we have an inequality
due to the convexity of θ and on the other hand the infimum is attained
at y = (x+ t)/2. Hence the dual formulation (3.3.3) of the weak transport
inequality implies that

µ((−∞, x]) +

∫ ∞
x

exp
(
2θ(a(t− x)/2)

)
dµ(t) ≤ exp

(∫ ∞
x

θ(a(t− x))µ(dt)
)
.
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Denote k = 1/2 and β(u) = 2θ(a[u− t0]+) for u > 0. Since θ is increasing
on (0,∞) we have β(ku) ≤ 2θ(au/2). Therefore,∫ ∞

x

exp
(
β(k(t− x))

)
µ(dt) ≤ exp

(∫ ∞
x

θ(a(t− x))µ(dt)
)
− 1 + µ((x,∞)).

(4.3.3)
By Lemmas 4.3.3 and 4.3.5 there exists Cθ < ∞ such that

∫∞
x
θ(a(t −

x))µ(dt) ≤ Cθµ((x,∞)). Hence, since µ((x,∞)) ∈ [0, 1/2],∫∞
x

exp
(
β(k(t− x))

)
µ(dt)

µ((x,∞))
≤

exp
(
Cθµ((x,∞))

)
− 1 + µ((x,∞))

µ((x,∞))

≤ 2eCθ/2 − 1.

One can deal with x ≤ m similarly. Since

β−1(h) =
(
t0 + 1

a
θ−1(h/2)

)
,

Lemma 4.3.2 implies that

∆µ(h) ≤ 1
d
β−1(h) = 1

d

(
t0 + 1

a
θ−1(h/2)

)
≤ 1

dmin(a, 1)

(
t0 + θ−1(h/2)

)
≤ 2

dmin(a, 1)
θ−1(t20 + h), (4.3.4)

where

d =
t0

8β−1(log(2eCθ/2 − 1))
=

t0
8(t0 + 1

a
θ−1(1

2
log(2eCθ/2 − 1)))

(recall that k = 1/2). This finishes the proof.

4.4 Summary

4.4.1 Proof of the main results and dependence of con-
stants for H(x) = 1

4x
2

The results of the two preceding sections allow us to prove our main result.

Proof of Theorem 4.1.3. The implication (ii) =⇒ (i) has been proved in [38]
(cf. Proposition 3.3.7 above). The implication (i) =⇒ (ii) follows immediately
by combining Propositions 4.2.1 and 4.3.1. The only assumption we need
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to check is that
∫∞

0
θ(x)e−λxdx < ∞ for any λ > 0 (i.e., (4.3.1)), but this

follows from the scaling condition placed on H. Indeed, for s ∈ (0, 1],

H∗(y/s) =
(
H(s·)

)∗
(y) ≥

(
AsαH(·)

)∗
(y) = AsαH∗(y/(Asα)).

Taking z ≥ 1 and substituting into the above inequality s = z−1/(α−1) and
y = As = Az−1/(α−1) we arrive at

θ(z) = H∗(z) ≤ H∗(A)A−1zα/(α−1),

which implies the claim.

As for the dependence of constants, in the case H(x) = 1
4
x2 one can take

A = 1 and α = 2 in (4.1.3). Let us consider the implication (i) =⇒ (ii) from
Theorem 4.1.3. In Proposition 4.2.1 we have a = 1/c and moreover we can
take Cθ = 1 in Lemma 4.3.5. Therefore, inequality (4.3.4) reads

∆µ(h) ≤ 1
d

(
t0 + c

√
h/2
)
≤ 8

t0 + 2
3
c

t0

(
t0 + c

√
h/2
)
, (4.4.1)

since
d =

t0

8
(
t0 + 1

a

√
1
2

log(2e1/2 − 1)
) ≥ t0

8(t0 + 2
3
c)
.

Taking t0 = 2
3
c we obtain the result announced in Remark 4.1.4 (the de-

pendence of constants for the implication (ii) =⇒ (i) follows directly from
Proposition 4.2.1 and Proposition 3.3.7). In fact, we can take t0 = c 4

√
2h/9

(which minimizes the right-hand side of (4.4.1)) to obtain a slightly better
estimate

∆µ(h) ≤ 8c
(

2/3 +
√
h/2 + 2 4

√
2h/9

)
.

Proof of Theorem 4.1.8. The assertion follows immediately by combining
Theorem 4.1.3, Proposition 3.3.7, and Proposition 3.3.4.

Finally, the proof of Corollary 4.1.9 reduces to standard techniques. We
postpone a more detailed discussion of concentration inequalities which can
be derived from the convex infimum convolution inequality to Chapter 6.

Proof of Corollary 4.1.9. By Theorem 4.1.8 the measure µ satisfies the in-
equality Tθ for the quadratic cost. An application of, e.g., Corollary 5.11 of
[39] completes the proof. Alternatively, for a more self-contained reasoning,
one can use item (v) of Theorem 4.1.8, that is the convex infimum convolution
inequality, and adapt the approach of [54].
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4.4.2 Relation to Talagrand’s inequality

Assume that θ(t) = t2 for t ∈ R (one can formulate a similar result also for
costs other than the quadratic cost). Recall from Chapter 1 that we say that
a probability measure µ on the real line satisfies Talagrand’s inequality (with
constant C) if

Tθ(µ, ν) ≤ CH(ν|µ)

for every probability measure ν (Tθ was defined in (3.3.1)). In the classical
setting of smooth functions we have the implication chain

log-Sobolev inequality =⇒ Talagrand’s inequality
=⇒ Poincaré inequality

and these implications are strict (see Section 4.3 of [35] for a nice discussion).
From [38] we also know that Talagrand’s inequality is strictly stronger than
the convex log-Sobolev inequality. The following corollary explains what
additional information is carried by it. It is an immediate consequence of
Theorem 4.1.3 above and Theorem 1.1 from [35].

Corollary 4.4.1. A probability measure µ on the real line satisfies Talagrand’s
inequality if and only if it satisfies the Poincaré inequality for smooth functions
and the log-Sobolev inequality for convex functions.

4.4.3 Further questions

We conclude with three open questions, which to the best of our knowledge
are open even in the case θ(t) = t2.

Question 4.4.2. Suppose that a probability measure µ on Rn, n ≥ 2, satisfies
the inequality T−θ(a·) for some a > 0. Does it satisfy the inequality Tθ(a′·) for
some a′ > 0?

Question 4.4.3. Suppose that a probability measure µ on the real line satisfies
the inequality T+

θ(a·) for some a > 0. Does it satisfy the inequality T−θ(a′·), and
thus Tθ(min{a′,a}·), for some a′ > 0?

While these questions are stated in terms of the weak transport–entropy
inequalities, they can be equivalently expressed with the use of log-Sobolev
inequalities for convex and concave functions. We refer to Theorem 8.15
from [39] and Remark 8.8 from [39] for details and subtleties concerning the
log-Sobolev inequality for concave functions and their relation to inequality
T+
θ .
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As for the case of the quadratic-linear cost function, we present a partial
answer to the above two questions in the next chapter.

The last question is deliberately somewhat vague. It would be nice to have
a more dimensional version of Theorem 4.1.3, that is a condition equivalent to
the convex log-Sobolev inequality which is not expressed in terms of quantifiers
ranging over families of functions or measures (like, e.g., the conditions from
Propositions 3.3.4 and 3.3.6), but rather in terms of the measure µ itself.

Question 4.4.4. Find an intrinsic characterization of probability measures
on Rn, n ≥ 2, which satisfy the convex log-Sobolev inequality.

Unfortunately, the results of this chapter, and even the very statement of
Theorem 4.1.3, relied on techniques specific to the real line (and, moreover,
the proofs were rather indirect and based on many other characterizations).
This leads to the suspicion that Question 4.4.4 may be very hard to answer.
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Chapter 5

Convex Poincaré inequality

5.1 Introduction
Recall from Chapter 3 that we say that a probability measure µ (or, equiva-
lently, a random variableX with law µ) satisfies the convex Poincaré inequality
with constant λ > 0 if for all convex functions f : Rn → R we have

Var f(X) ≤ 1

λ
E |∇f(X)|2, (5.1.1)

where by |∇f(x)| we mean the length of gradient at x, defined as

|∇f(x)| = lim sup
y→x

|f(y)− f(x)|
|y − x|

.

We already explained in Section 3.2, that—by a result of Gozlan, Roberto,
and Samson [37]—the convex Poincaré inequality is equivalent to a dimension-
free deviation inequality for the upper tail of convex Lipschitz functions.
Let us now pass to the connections between the Poincaré inequality and
transportation inequalities.

Let θ : Rn → [0,∞] be a measurable function with θ(0) = 0. Recall that
the optimal transport cost between two probability measures µ and ν on Rn,
induced by θ is given by

Tθ(ν, µ) = inf
π

∫
Rn

∫
Rn
θ(x− y)π(dxdy), (5.1.2)

where the infimum is taken over all couplings between µ and ν.
It has been proved in [18] that µ satisfies the Poincaré inequality for all

smooth functions if and only if there exist constants C,D such that for all
probability measures ν,

TθC,D(ν, µ) ≤ H(ν|µ), (5.1.3)
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where

θC,D(x) =

{
|x|2
2C

for |x| ≤ CD,

D|x| − CD2

2
for |x| > CD.

(5.1.4)

Recently Gozlan, Roberto, Samson, Shu, and Tetali [38] formulated a
similar characterization of the convex Poincaré inequality on the real line.
They proved that a probability measure µ on the real line satisfies the convex
Poincaré inequality for some constant λ > 0 if and only if it satisfies the weak
transportation inequality TθC,D for some C,D > 0. In a dual formulation
(expressed in terms of infimum convolution inequalities), this result has been
also obtained independently in [30].

The main result of this chapter is an extension of this equivalence to
arbitrary dimension.

Theorem 5.1.1. For a probability measure µ on Rn the following conditions
are equivalent.
(i) There exists λ > 0 such that µ satisfies the convex Poincaré inequality

(5.1.1).
(ii) There exist C,D > 0 such that µ satisfies the transportation inequality

TθC,D .

Remark 5.1.2. The implication (ii) =⇒ (i) is standard, in this case λ = 1
C
.

Unfortunately, in our proof the constants C,D in the implication (i) =⇒ (ii)
depend not only on λ but also on certain quantiles related to the measure µ
(which are always finite but may be of the order of up to

√
n). This is related

to the inequality T+
θC,D

responsible for the lower tail of convex functions. We
suspect that this is an artifact of our proof and one should be able to obtain
T+
θC,D

with C,D depending only on λ. As for T−θC,D our argument does yield
it with C,D depending only on λ (see Corollary 5.4.3 below for details).

Remark 5.1.3. Thanks to well known tensorization properties of the inequality
TθC,D , Theorem 5.1.1 implies that the convex Poincaré inequality is equiva-
lent to improved two-level dimension-free concentration inequality for convex
functions (see Example 6.3.5 below for a precise formulation). Recall from
the previous chapters, that in the class of Lipschitz functions such a fact
was established by Bobkov and Ledoux [17]; by results due to Gozlan et
al. [37] this can be regarded as a self-improvement of dimension-free con-
centration properties of Lipschitz functions. Our result shows that similar
self-improvements are present also in the setting of convex concentration.

Remark 5.1.4. Recall from Chapter 4 that Bobkov and Götze [19] provided a
simple characterization of measures on R which satisfy the convex Poincaré
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inequality for some λ > 0 (and thus also the inequality TC,D). A similar
characterization for n ≥ 2 seems to be a non-trivial open problem.

The organization of the chapter is as follows. First, in Section 5.2, we
present preliminary properties of measures satisfying the convex Poincaré
inequality, to be used in the proofs (we refer to Section 3.3 for the definitions
of the weak transport–entropy inequalities and preliminary results about
them). Section 5.3 contains our most important technical result, i.e., modified
log-Sobolev inequalities for convex and concave functions, which in Section
5.4 are combined with the Hamilton–Jacobi equations giving the proof of
Theorem 5.1.1.

Next, in Section 5.5 we briefly discuss operations preserving the convex
Poincaré inequality, which may be used to provide new non-trivial examples
of measures satisfying it.

Finally, in Section 5.6 we state a few open questions.

5.2 Preliminaries on the convex Poincaré in-
equality

In this section we present basic concentration of measure properties im-
plied by the convex Poincaré inequality and the dual formulations of weak
transportation inequalities. They will be needed in the proof of our main
result.

We begin with a simple reformulation of the convex Poincaré inequality.

Lemma 5.2.1. Suppose that X is a random vector in Rn satisfying the convex
Poincaré inequality (5.1.1). Then for every convex function f : Rn → R,

E(f(X)−Med f(X))2 ≤ 2

λ
E |∇f(X)|2.

Proof. Thanks to the fact that the median minimizes the mean absolute
deviation, for every random variable Z we have

(EZ −MedZ)2 ≤ (E |Z −MedZ|)2 ≤ (E |Z − EZ|)2 ≤ VarZ.

Thus
E(Z −MedZ)2 = VarZ + (EZ −MedZ)2 ≤ 2 VarZ

and it is enough to set Z = f(X) and apply (5.1.1).

Let us start with the already mentioned (see (3.2.4)) upper tail estimate
for convex Lipschitz functions implied by the convex Poincaré inequality. The
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proposition below can be also obtained up to constants by abstract results
from [37], but we would like to provide an alternative derivation based on
moments (the possibility of such a proof was suggested in [37]). Our strategy
mimics a well known approach from the general Lipschitz case (see, e.g.,
Proposition 2.5 in [56]), however we have to deal with some small difficulties
related to the fact that in the convex setting we cannot truncate the function
as this operation does not preserve convexity.

Proposition 5.2.2. Assume that X is a random vector in Rn, satisfying the
convex Poincaré inequality (5.1.1). Then for any L-Lipschitz convex function
f : Rn → R and any t > 0,

P(f(X) ≥ Med f(X) + t) ≤ 8 exp
(
−
√

2λ

eL
t
)
.

Proof of Proposition 5.2.2. Consider the random variable Y = (|X| − a)+,
where a ∈ R+ is arbitrary such that P(|X| ≤ a) > 1/4, and let Y ′ be an
independent copy of Y . Since the function ϕ(x) = (|x| − a)+ is convex,

1

λ
P(|X| ≥ a) =

1

λ
E |∇ϕ(X)|2 ≥ VarY =

1

2
E(Y − Y ′)2

≥ 1

2
E(Y − Y ′)2(1{Y >0}1{Y ′=0} + 1{Y=0}1{Y ′>0})

≥ 1

4
EY 21{Y >0} ≥

2

λ
P(|X| > a+ 2

√
2/λ)

and so P(|X| ≥ a + 2
√

2/λ) ≤ 2−1P(|X| ≥ a), which implies that |X| is
exponentially integrable. In particular for every Lipschitz function f and all
p > 0, E |f(X)|p <∞.

Assume now that f : Rn → R is convex. Then for all p ≥ 2, applying
Lemma 5.2.1 to the convex function x 7→ (f(x) −Med f(X))

p/2
+ (note that

its median is zero and |∇(f(x)−Med f(X))+| ≤ |∇f(x)|), we obtain

E(f(X)−Med f(X))p+ ≤
2

λ
· p

2

4
E(f(X)−Med f(X))p−2

+ |∇f(X)|2

≤ p2

2λ

(
E(f(X)−Med f(X))p+

)1−2/p(E |∇f(X)|p
)2/p

,

where we used Hölder’s inequality with exponents p/(p − 2), p/2. If we
additionally assume that f is Lipschitz, so that E(f(X)−Med f(X))p+ <∞,
we get (

E(f(X)−Med f(X))p+
)1/p ≤ p√

2λ

(
E |∇f(X)|p

)1/p
, (5.2.1)
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which via Chebyshev’s inequality in Lp implies

P
(
f(X) ≥ Med f(X) + e

p√
2λ

(
E |∇f(X)|p

)1/p
)
≤ e2−p (5.2.2)

for p ≥ 0 (the inequality holds trivially for 0 ≤ p < 2 because of the
multiplicative constant e2). Now, if the Lipschitz constant of f equals one,
the above inequality yields for t > 0,

P(f(X) ≥ Med f(X) + t) ≤ exp
(

2−
√

2λ

e
t
)
≤ 8 exp

(
−
√

2λ

e
t
)
.

Remark 5.2.3. Another possible approach is based on the Laplace transform:
assume without loss of generality that E f(X) = 0 and denoteM(s) = E esf(X)

for s ≥ 0. Since the function esf(·)/2 is convex, the Poincaré inequality yields

M(s)−M(s/2)2 = Var(esf(X)/2) ≤ 1

4λ
E s2|∇f(X)|2esf(X) ≤ L2s2

4λ
M(s).

The idea would be now to regroup the expressions appearing in the above
inequality, repeat the procedure (with s/2 instead of s), and—after a simple
limit argument—obtain a bound on E esf(X). After that we could use Markov’s
inequality and optimize in s to obtain an estimate of the upper tail of
f . However a delicate issue emerges: we have to a priori know that (for
reasonable choices of the parameter s) esf(X) is integrable (in the setting of
smooth functions one overcomes this problem simply by truncating f , for
convex functions one would need, e.g., to repeat the beginning of the proof of
Proposition 5.2.2); cf. the remark following Theorem 6.8 in [37].

We do not know whether the convex Poincaré inequality implies similar
tail estimates—which depend only on λ and the Lipschitz constant of the
function—for the lower tail of convex Lipschitz functions, i.e., for P(f(X) ≤
Med f(X)− t), t > 0 (cf. Question 5.6.3 below).

Nonetheless, we can easily get estimates in terms of λ and certain quantiles
of X. They will be crucial in the proof of the implication

convex Poincaré inequality =⇒ T+
θC,D

.

Lemma 5.2.4. Let X be a random vector in Rn which satisfies the con-
vex Poincaré inequality (5.1.1) and let M be any number such that P(|X −
EX| ≤ M) ≥ 3/4. Then for every convex f : Rn → R and for any
t > 32M E |∇f(X)|,

P(f(X) ≤ Med f(X)− t) ≤ 8 exp
(
−

√
2λ

16eE |∇f(X)|
t
)
.
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Proof. By Proposition 5.2.2 (note that the function x 7→ |x− EX| is convex
and 1-Lipschitz),

P(|X − EX| ≥M + t) ≤ 8 exp
(
−
√

2λ

e
t
)
, t ≥ 0. (5.2.3)

Let f : Rn → R be a convex function. Without loss of generality we may
assume Med f(X) = 0. We have P(f(X) ≥ 0) ≥ 1/2,

P(|X − EX| ≤M) ≥ 3/4,

P(|∇f(X)| < 8E |∇f(X)|) ≥ 7/8.

Thus there exists x0 such that f(x0) ≥ 0, |x0 − EX| ≤ M , and |∇f(x0)| <
8E |∇f(X)|. Define

f̃(x) = f(x0) + 〈u, x− x0〉, x ∈ Rn,

where u is any subgradient of f at x0, so that f̃(x) ≤ f(x) for all x ∈ Rn.
Taking x = x0 + εu with ε → 0 we see that |u| ≤ |∇f(x0)| ≤ 8E |∇f(X)|,
and thus we have

P(f(X) ≤ −t) ≤ P(f̃(X) ≤ −t) ≤ P(〈u,X − x0〉 ≤ −t)
≤ P(|u||X − x0| ≥ t) ≤ P

(
|X − x0| ≥ t/(8E |∇f(X)|)

)
≤ P

(
|X − EX| ≥ t/(8E |∇f(X)|)− |x0 − EX|

)
≤ P

(
|X − EX| ≥ t/(8E |∇f(X)|)−M

)
.

If now t/(16E |∇f(X)|) ≥ 2M , we can conclude from (5.2.3) that

P(f ≤ −t) ≤ P
(
|X − EX| ≥M + t/(16E |∇f(X)|)

)
≤ 8 exp

(
−

√
2λ

16eE |∇f(X)|
t
)
,

which ends the proof.

5.3 From convex Poincaré to convex and con-
cave modified log-Sobolev inequalities

In this section we present modified log-Sobolev inequalities for convex and
concave functions which are implied by the convex Poincaré inequality. Our
approach builds heavily on the arguments introduced by Bobkov and Ledoux in
[17] for arbitrary Lipschitz functions, however some non-trivial modifications
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will be necessary in order to handle the difficulties imposed by the restriction
of the Poincaré inequality to convex functions.

Recall that for a nonnegative random variable Y we define its entropy as

EntY = EY log Y − EY log(EY )

if EY log Y < ∞ and EntY = ∞ otherwise. We refer to, e.g., [9, 51] for
basic properties of entropy and log-Sobolev inequalities.

Throughout this section we assume that µ is a probability measure on
Rn satisfying the convex Poincaré inequality (5.1.1) and that X is a random
vector with law µ, which will not be explicitly stated in all the theorems.

5.3.1 Convex modified log-Sobolev inequalities

Theorem 5.3.1. Let f : Rn → R be convex with |∇f(x)| ≤ c <
√

2λ/e for
all x ∈ Rn. Then

Ent(ef(X)) ≤ C E |∇f(X)|2ef(X), (5.3.1)

where
C = C(λ, c) =

1

3λ
exp(c

√
2/λ) +

1

3
(√

λ/2− c/2
)2 .

Our constants are slightly worse than in [17], basically because we need to
work with the median rather than the mean. However the argument (which
works also in the classical case) seems to slightly simplify the technicalities of
[17]. The proof relies on two propositions.

Proposition 5.3.2. Let f : Rn → R be convex with Med f(X) = 0 and
|∇f(x)| ≤ c <

√
2λ/e for all x ∈ Rn. Then

E f(X)2ef(X) ≤ C1 E |∇f(X)|2ef(X),

where C1 = C1(c, λ) =
(√

λ/2− c/2
)−2.

Proof. For x ∈ R we define Ψ(x) = xex/2 and

Φ(x) =

{
xex/2 for x ≥ −2,

−2/e for x < −2.

One easily checks that |Ψ(x)| ≤ |Φ(x)|, |Φ′(x)| ≤ |Ψ′(x)|, and Φ is convex
nondecreasing.
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Denote a2 = E |Φ(f(X))|2 and b2 = E |∇f(X)|2ef(X) (where a, b ≥ 0).
The function Φ(f) is convex, moreover Med Φ(f(X)) = 0. Hence, by Lemma
5.2.1,

a2 ≤ 2

λ
E |∇f(X)|2(1 + f(X)/2)2ef(X)1{f(X)≥−2}

≤ 2

λ

(
b2 + cE |∇f(X)|ef(X)/2 · |f(X)|ef(X)/2 +

c2

4
E f(X)2ef(X)

)
≤ 2

λ

(
b2 + cb

√
E f(X)2ef(X) +

c2

4
a2
)

≤ 2

λ

(
b+ ca/2

)2
.

Note that a <∞ (by Proposition 5.2.2 and since c <
√

2λ/e). Thus a(
√
λ/2−

c/2) ≤ b and the assertion follows.

Proposition 5.3.3. Let f : Rn → R be either convex or concave, with
Med f(X) = 0 and |∇f(x)| ≤ c for all x ∈ Rn. Then

E |∇f(X)|2 ≤ C2 E |∇f(X)|2ef(X),

where C2 = C2(c, λ) = exp(c
√

2/λ). Consequently,

E f(X)2 ≤ 2

λ
C2 E |∇f(X)|2ef(X).

Proof. If |∇f(X)| vanishes with probability one, there is nothing to prove.
Otherwise, denote by Ẽ the expectation with respect to the probability mea-
sure with density |∇f(X)|2/E |∇f(X)|2 relative to P. By Jensen’s inequality,

E |∇f(X)|2e−|f(X)| = E |∇f(X)|2Ẽe−|f(X)| ≥ E |∇f(X)|2e−Ẽ|f(X)|.

Thus, using the trivial inequality −|f | ≤ f , we conclude that

E |∇f(X)|2 ≤ eẼ|f(X)| E |∇f(X)|2ef(X).

But since by Lemma 5.2.1 we have

E |∇f(X)|2|f(X)| ≤ cE |∇f(X)||f(X)| ≤ c
√

E |∇f(X)|2
√
E f(X)2

≤ c
√

2/λE |∇f(X)|2,

we can bound Ẽ|f(X)| by c
√

2/λ. This yields the assertion of the proposition.
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Proof of Theorem 5.3.1. Without loss of generality assume Med f(X) = 0.
Denote F (t) = E f(X)2etf(X), t ∈ [0, 1]. By the formula

∫ 1

0
ta2etadt =

aea − ea + 1 and the convexity of t 7→ F (t),

Ent(ef(X)) ≤ E(f(X)ef(X) − ef(X) + 1) = E
∫ 1

0

tf(X)2etf(X)dt =

∫ 1

0

tF (t)dt

≤
∫ 1

0

t(1− t)F (0) + t2F (1)dt =
1

6
F (0) +

1

3
F (1)

(note that for this argument to work we do not need the expectation of f(X)
to vanish). Thus Propositions 5.3.2 and 5.3.3 imply the assertion of the
theorem.

5.3.2 Concave modified log-Sobolev inequalities

Theorem 5.3.4. Let f : Rn → R be convex with |∇f(x)| ≤ c <
√

2λ/(32e)
for all x ∈ Rn. Assume that M ∈ R+ satisfies P(|X − EX| ≤ M) ≥ 3/4.
Then

Ent(e−f(X)) ≤ C E |∇f(X)|2e−f(X),

where C = C(λ, c,M) is a constant depending only on λ, c,M .

Remark 5.3.5. If we denote by X1, . . . , Xn the coordinates of X, then by the
Poincaré inequality we have

E |X − EX|2 =
n∑
i=1

E |Xi − EXi|2 ≤
n

λ
,

and hence, by the Chebyshev inequality, M = 2
√
n/λ satisfies P(|X−EX| ≤

M) ≥ 3/4. Thus in fixed dimension n and for say c =
√

2λ/(64e), the
constant C in Theorem 5.3.4 can be bounded uniformly over all probability
measures satisfying the convex Poincaré inequality with constant λ.

Proof of Theorem 5.3.4. We start as in the proof of Theorem 5.3.1. Denote
g = −f (this is a concave function). Without loss of generality assume
Med g(X) = 0. Denote F (t) = E g(X)2etg(X), t ∈ [0, 1]. By the convexity of
t 7→ F (t),

Ent(eg(X)) ≤ E(g(X)eg(X) − eg(X) + 1) = E
∫ 1

0

tg(X)2etg(X)dt =

∫ 1

0

tF (t)dt

≤
∫ 1

0

t(1− t)F (0) + t2F (1)dt =
1

6
F (0) +

1

3
F (1). (5.3.2)
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We have

F (1) ≤ E g(X)2 + E g+(X)2eg+(X) = F (0) + E g+(X)2eg+(X) (5.3.3)

By Proposition 5.3.3,

F (0) ≤ 2

λ
exp(c

√
2/λ)E |∇g(X)|2eg(X), (5.3.4)

so it remains to estimate E g+(X)2eg+(X).
Integration by parts and Lemma 5.2.4 yield

E e2g+(X) = 1 +

∫ ∞
0

2e2tP(g+(X) ≥ t)dt

= 1 +

∫ 32Mc

0

2e2tdt+

∫ ∞
32Mc

2e2tP(g+(X) ≥ t)dt

≤ e64Mc +

∫ ∞
32Mc

16 exp
(

2t−
√

2λ

16ec
t
)
dt < D1 = D1(λ, c,M) <∞,

if only c <
√

2λ/(32e). Similarly (using Lemma 5.2.4 in its full strength),

E g+(X)4 =

∫ ∞
0

4t3P(g+(X) ≥ t)dt

=

∫ 32M E |∇f(X)|

0

4t3dt+

∫ ∞
32M E |∇f(X)|

4t3P(g+(X) ≥ t)dt

≤ (32M E |∇f(X)|)4 + 4

∫ ∞
32M E |∇f(X)|

t3 exp
(
−

√
2λ

16eE |∇f(X)|
t
)
dt

≤ D2(E |∇f(X)|)4 ≤ D2(E |∇f(X)|2)2

for some D2 = D2(λ,M). Thus, by Proposition 5.3.3, applied to g,

E g+(X)2eg+(X) ≤
√

E g+(X)4
√
E e2g+(X) ≤

√
D1D2 E |∇f(X)|2

≤
√
D1D2e

c
√

2/λ E |∇f(X)|2e−f(X).

This, together with (5.3.2), (5.3.3), and (5.3.4) ends the proof:

Ent(e−f(X)) ≤ 1

6
F (0) +

1

3
F (1) ≤ 1

2
F (0) +

1

3
E g+(X)2eg+(X)

≤
(1

λ
+

1

3

√
D1D2

)
ec
√

2/λ E |∇f(X)|2e−f(X).
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5.4 Proof of the main result
We are ready to present the proof of Theorem 5.1.1. As already mentioned,
the implication (ii) =⇒ (i) is standard, we provide a sketch of its proof
just for the sake of completeness. The proof of the implication (i) =⇒ (ii)
follows the arguments introduced first in [18] and based on the analysis of the
Hamilton–Jacobi equations. The modified log-Sobolev inequalities obtained
in Section 5.3 are a crucial element of the proof.

Lemma 5.4.1. Let X be a random vector in Rn. Assume that there exist
C <∞ and L > 0 such that

E eL|X| <∞ (5.4.1)

and the inequality

Ent(ef(X)) ≤ C E |∇f(X)|2ef(X) (5.4.2)

holds for every convex (respectively: concave) L-Lipschitz function f : Rn → R.
Then, for every convex Lipschitz function f : Rn → R bounded from below,

E eQα1 f(X)e−E f(X) ≤ 1(
respectively: eEQ

α
1 f(X) E e−f(X) ≤ 1

)
,

where Qα
t f(x) = infy∈Rn{f(x−y)+tα(y/t)}, t > 0, is the infimum convolution

operator with the cost function α : Rn → R given by the formula

α(s) =

{
|s|2
4C

for |s| ≤ 2CL,

L|s| − L2C for |s| > 2CL.
(5.4.3)

Remark 5.4.2. Similarly as in Chapter 4, the condition (5.4.1) is introduced
to exclude heavy-tailed measures for which the only exponentially integrable
convex functions are constants, cf. Remark 4.1.5.

If we recall the dual formulations of the weak transport–entropy inequalities
T− and T+ (see Proposition 3.3.4), the definition of θC,D from (5.1.4), and
the results of the preceding section (namely, Theorems 5.3.1 and 5.3.4), we
immediately obtain the following corollaries.

Corollary 5.4.3. Let X be a random vector in Rn satisfying the convex
Poincaré inequality (5.1.1). Then, for any c <

√
2λ/e, the law of X satisfies

the inequality T−θ2C,c with

C = C(λ, c) =
1

3λ
exp(c

√
2/λ) +

1

3
(√

λ/2− c/2
)2 .
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Corollary 5.4.4. Let X be a random vector in Rn satisfying the convex
Poincaré inequality (5.1.1) and let M be any number such that P(|X−EX| ≤
M) ≥ 3/4. Then, for any c <

√
2λ/(32e), the law of X satisfies the inequality

T+
θ2C,c

for some constant C = C(λ, c,M) depending only on λ, c, and M .

Proof of Lemma 5.4.1. Suppose that the log-Sobolev inequality (5.4.2) holds
for all convex and L-Lipschitz functions. We first present a perturbation
argument which allows us to work with random vectors with an absolutely
continuous law. We then shall follow the approach of [38, Proof of Theorem
1.5].

Let G be a Gaussian random vector in Rn, independent of X, with the
covariance matrix being a sufficiently small multiple of identity, so that it
satisfies the usual log-Sobolev inequality with constant C,

Ent ef(G) ≤ C E |∇f(G)|2ef(G)

for all Lipschitz functions f : Rn → R (see, e.g., Theorem 5.1 in [51] for an
equivalent formulation).

Then, by the tensorization property of entropy (see, e.g., Proposition 5.6 in
[51]), the random vector (X,G) on Rn×Rn satisfies the modified log-Sobolev
inequality

Ent(eF (X,G)) ≤ C E(|∇XF (X,G)|2 + |∇GF (X,G)|2)eF (X,G) (5.4.4)

for all convex functions F : Rn × Rn → R which are L-Lipschitz with respect
to the first coordinate (here |∇XF | and |∇GF | denote partial lengths of
gradients with respect to the first and second variable, with the other variable
fixed).

Let f : Rn → R be a convex L-Lipschitz function and consider ε >
0. Applying the inequality (5.4.4) to the function defined by the formula
F (x, y) = f(x+ εy) for x, y ∈ Rn (which is L-Lipschitz with respect to the
first variable), we see that the random vector Xε = X + εG satisfies the
modified log-Sobolev inequality

Ent(ef(Xε)) ≤ Cε E |∇f(Xε)|2ef(Xε), (5.4.5)

where Cε = C(1 + ε2). Note that the law of Xε is absolutely continuous
with respect to the Lebesgue measure on Rn, and so almost surely Xε is a
differentiability point of f and |∇f(Xε)| coincides with the Euclidean length
of the ‘true’ gradient ∇f(Xε).

Moreover, (5.4.5) can be rewritten in the form

Ent(ef(Xε)) ≤ Eα∗ε(∇f(Xε))e
f(Xε), (5.4.6)
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where α∗ε : Rn → R is the Legendre transform of

αε(s) =
|s|2

4Cε
1{|s|≤2CεL} + (L|s| − L2Cε)1{|s|>2CεL},

i.e., more explicitly,

α∗ε(s) =

{
Cε|s|2 for |s| ≤ L,

+∞ for |s| > L.

If f : Rn → R is convex, Lipschitz (with arbitrary Lipschitz constant)
and bounded from below, then Qαε

t f is well defined, convex (as an infi-
mum convolution of two convex functions), and L-Lipschitz for t > 0 (since
Qαε
t f(x) = infy∈Rn{f(y)+ tαε((x−y)/t)} and the function x 7→ tαε((x−y)/t)

is L-Lipschitz for t > 0).
Moreover, the function u(t, x) = Qαε

t f(x) is Lipschitz on (0,∞)× Rn and
satisfies the Hamilton–Jacobi equation

d

dt
u(t, x) + α∗ε(∇xu(t, x)) = 0 for Lebesgue almost all (t, x) ∈ (0,∞)× Rn,

(see Proposition A.0.1 in Appendix A). Set

F (t) =
1

t
ln
(
E etQ

αε
t f(Xε)

)
, t ∈ (0, 1].

(Note that F (t) < ∞ since Qαε
t f is L-Lipschitz.) Using the integrability

properties of X (and as a consequence of Xε), together with the Lipschitz
property of u it is not difficult to see that F is locally Lipschitz and for
Lebesgue almost all t ∈ (0, 1),

d

dt
F (t) = − 1

t2
ln
(
E etQ

αε
t f(Xε)

)
+

1

t

E etQ
αε
t f(Xε)

(
Qαε
t f(Xε) + t d

dt
Qαε
t f(Xε)

)
E etQαεt f(Xε)

=
1

t2 E etQαεt f(Xε)

(
Ent
(
etQ

αε
t f(Xε)

)
− t2 Eα∗ε(∇Qαε

t f(Xε))e
tQαεt f(Xε)

)
≤ 1

E etQαεt f(Xε)
Cε E

(
|∇Qαε

t f(Xε)|2 − |∇Qαε
t f(Xε)|2

)
etQ

αε
t f(Xε) = 0,

where we used (5.4.6), the definition of α∗ε, and the fact that Qαε
t f is L-

Lipschitz. Thus

F (1) ≤ lim inf
t→0+

F (t) ≤ lim
t→0+

ln
(
E etf(Xε)

)
t

= E f(Xε),
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or, in other words,
E eQ

αε
1 f(Xε) ≤ eE f(Xε).

It is easy to see that by taking ε→ 0 we arrive at the assertion of the lemma
(recall that f and Qαε

1 are Lipschitz and αε ≤ α).
Suppose now that the log-Sobolev inequality (5.4.2) holds for all concave

and L-Lipschitz functions. As before, we pass to the random vector Xε

which has an absolutely continuous distribution. Let g : Rn → R be convex
and bounded from below. Then the function f = −Qαε

1 g is concave and
L-Lipschitz. The same calculation as above yields

E eQ
αε
1 f(Xε) ≤ eE f(Xε),

or equivalently
E eQ

αε
1 (−Qαε1 g)(Xε) ≤ e−EQαε1 g(Xε). (5.4.7)

We stress that now, in order to prove the Hamilton–Jacobi equations via
Proposition A.0.1, we need to use the L-Lipschitz property of f , since in
general f is not bounded from below.

Since

−g(x) ≤ inf
y∈Rn

sup
z∈Rn
{−g(z)− αε(y − z) + αε(x− y)} = Qαε

1 (−Qαε
1 g)(x)

(to verify the inequality take z = x), we deduce from (5.4.7) that

eEQ
αε
1 g(Xε) E e−g(Xε) ≤ 1.

A limit argument yields the assertion.

We are now ready for the proof of our main result.

Proof of Theorem 5.1.1. The implication (i) =⇒ (ii) follows immediately
from Corollaries 5.4.3 and 5.4.4, and the definition of Tθ2C,c . To obtain
the reverse implication one can use a standard Taylor expansion argument.
Assume that TθC,D holds. Let f : Rn → R be convex, Lipschitz, and bounded
from below. For x ∈ Rn denote

fx(z) = f(x) + 〈ux, z − x〉, z ∈ Rn,

where ux is any subgradient of f at x, so that fx ≤ f on Rn. Taking
z = x+ εux with ε→ 0 we see that |ux| ≤ |∇f(x)|.
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For sufficiently small ε we have ε|∇f(x)| ≤ D for all x ∈ Rn, and hence

Q
θC,D
2 (εf)(x) ≥ inf

y∈R
{εfx(x− y) + 2θC,D(y/2)}

= εf(x) + inf
y∈R
{−ε〈ux, y〉+ 2θC,D(y/2)}

= εf(x)− 2θ∗C,D(εux) ≥ εf(x)− ε2C|∇f(x)|2

(recall that |ux| ≤ |∇f(x)|). We now substitute εf into the dual formula-
tion (3.3.4) and use the above estimate. An inspection of the Taylor expansions
up to order ε2 yields

Var(f(X)) ≤ C E |∇f(X)|2.

This ends the proof.

5.5 Operations preserving the convex Poincaré
inequality

We will now discuss several tools which allow to construct measures satisfying
the convex Poincaré inequality. To shorten the notation we will denote by Eµ
and Varµ respectively the mean and variance of f seen as a random variable
on Rn equipped with probability measure µ.

Let us start with the well known tensorization property of variance (see,
e.g., [9, Proposition 1.4.1]), which asserts that whenever µi are probability
measures on Xi, i = 1, . . . , n, then the product measure µ = µ1 ⊗ · · · ⊗ µn on
X1 × · · · × Xn, satisfies the inequality

Varµ f ≤
n∑
i=1

Eµ Varµi f,

for every function f : X1 × · · · × Xn → R, where Varµi f denotes the variance
of f treated as a function on Xi, with the other coordinates fixed.

This immediately implies the tensorization property for the convex Poin-
caré inequality, namely if µi (i = 1, . . . , N) is a probability measure on Rni ,
satisfying the convex Poincaré inequality with constant λ, then the product
measure µ = µ1 ⊗ · · · ⊗ µN on Rn1+···+nN satisfies

Varµ f ≤
1

λ
E

N∑
i=1

|∇if |2, (5.5.1)
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for every convex function f : Rn1+···+nN → R, where |∇if | denotes the ‘partial
length of gradient’ along Rni . If the measures µi are absolutely continuous
with respect to the Lebesgue measure, then by Rademacher’s theorem locally
Lipschitz functions are almost everywhere differentiable, in particular the
right-hand side of the above inequality coincides with λ−1 E |∇f |2 and so we
obtain that µ satisfies the convex Poincaré inequality with constant λ. The
situation is more delicate for measures which are not absolutely continuous,
however thanks to results by Gozlan, Roberto and Samson [37], we can obtain
the following simple proposition.

Proposition 5.5.1. Assume that µi are probability measures on Rni, i =
1, . . . , N , satisfying the convex Poincaré inequality with constant λ. Then
the measure µ = µ1 ⊗ · · · ⊗ µN on Rn1+···+nN satisfies the convex Poincaré
inequality with constant λ/C for some universal constant C

Proof. We provide only a sketch of the proof, leaving some computational
details to the Reader. Denote n = n1 + · · ·+ nN and consider an arbitrary
convex smooth 1-Lipschitz function f on Rnk, k ≥ 1. By (5.5.1) we have
Varµ⊗k f ≤ λ−1 Eµ⊗k |∇f |2 ≤ 1/λ. Using an analogous argument as in the
proof of Proposition 5.2.2 (for p > 2, to remain in the smooth setting) we
arrive at

µ⊗k(f ≥ Medµ⊗k f + t) ≤ 8e−
√
λt/2 (5.5.2)

for all 1-Lipschitz smooth convex functions. We can extend this inequality to
arbitrary 1-Lipschitz convex function (approximating them with 1-Lipschitz
smooth convex functions, e.g., by convolving them with Gaussian densities,
see [67, p. 429]), so in particular we get that for any convex set A ⊆ Rnk,
with µ⊗k(A) ≥ 1/2, and all t > 0,

µ⊗k(A+ tBnk
2 ) ≥ 1− 8e−

√
λt/2,

where Bnk
2 is the unit Euclidean ball in Rnk. Recall the notation

|∇−f(x)| = lim sup
y→x

(f(y)− f(x))−
|x− y|

By [37, Theorem 6.7], the dimension-free subexponential concentration for
convex sets of the form (5.5.2) implies that µ satisfies the Poincaré inequality

Varµ f ≤
1

λ′
E |∇−f |2 ≤ 1

λ′
E |∇f |2 (5.5.3)
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for all convex functions f , where

√
λ′ = sup

{Φ̄−1(8 exp(−
√
λr/2))

r
: r ≥ 2 log(16)√

λ

}
,

where Φ̄ is the Gaussian tail function. Using the estimate Φ̄(x) ≥ 1
2
e−x

2 and
performing some elementary calculations, we arrive at the assertion of the
proposition.

Remark 5.5.2. The above argument shows that if µ satisfies the Poincaré
inequality (5.1.1) then it also satisfies the formally stronger inequality (5.5.3)
with λ′ = λ/C. We remark that in the category of all Lipschitz functions it
is known that the Poincaré inequalities with the length of gradients |∇−f |
and |∇f | are equivalent and the involved constants do not change (cf. [37,
Remark 1.1]).

Tensorization allows in particular to pass from one-dimensional measures
satisfying the convex Poincaré inequality (characterized in [19]) to product
measures in higher dimensions. Another standard tool for producing new
examples is perturbation: if µ satisfies the convex Poincaré inequality with
constant λ and ν is a measure with density eU with respect to µ, then ν
satisfies the convex Poincaré inequality with constant λ exp(inf U − supU).
For the proof see, e.g., [9, Chapter 3.4] (the proof therein is written in the
context of Markov processes and Dirichlet forms but it is based only on the
elementary observation that Var f = infa∈R E |f − a|2 and works in exactly
the same way in the convex setting).

Perturbation and tensorization are tools that appeared for the first time in
the ‘classical’ theory of Poincaré and log-Sobolev inequalities for smooth (or
locally Lipschitz) functions. The next proposition does not have a counterpart
in the classical setting and significantly extends the set of tools for creating new
examples. Namely, we will show that the convex Poincaré inequality passes
to mixtures of measures. Note that this cannot be the case for the classical
Poincaré inequality since it clearly cannot hold for measures with disconnected
support. We note however that the preservation of the Poincaré and log-
Sobolev inequalities by mixtures of measures with overlapping supports has
been investigated by Chafaï and Malrieu in [26]. In particular, the Proposition
5.5.3 below has been inspired by calculations in Section 4.1 therein.

Let T2(µ0, µ1) stand for the usual Kantorovich transport cost between µ1

and µ0 (defined by taking θ(x) = |x|2 in (5.1.2)), in other words the square
of the Kantorovich-Wasserstein distance W2.

Proposition 5.5.3. Let {µϑ}ϑ∈Θ be a family of probability measures on Rn

which satisfy the convex Poincaré inequality (5.1.1) with constants {λϑ}ϑ∈Θ
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respectively. Let ν be a probability measure on Θ and assume that for each
Borel set A ⊆ Rn, the map ϑ → µϑ(A) is measurable. Then the measure
µ =

∫
µϑdν(ϑ), satisfies the convex Poincaré inequality (5.1.1) with constant

λ =
(

sup
ϑ∈Θ
{1/λϑ}+ 2 diam

(
{µϑ}ϑ∈Θ

)2
)−1

,

where diam
(
{µϑ}ϑ∈Θ

)2
= supϑ1,ϑ2∈Θ T2(µϑ1 , µϑ2).

Proof. If f : Rn → R is a convex function, then as one can easily check,

Varµ(f) =

∫
Varµϑ(f)dν(ϑ) +

1

2

∫∫
(Eµϑ1 f − Eµϑ2 f)2dν(ϑ1)dν(ϑ2)

≤ sup
ϑ∈Θ
{1/λϑ}Eµ |∇f |2 +

1

2

∫∫
(Eµϑ1 f − Eµϑ2 f)2dν(ϑ1)dν(ϑ2)

and it suffices to estimate the last term.
For fixed ϑ1, ϑ2 ∈ Θ let X and Y be random vectors in Rn with laws µϑ1

and µϑ2 respectively. By convexity of f ,∣∣E f(X)− E f(Y )
∣∣ ≤ E(|∇f(X)|+ |∇f(Y )|)|X − Y |
≤ (
√

E |∇f(X)|2 +
√
E |∇f(Y )|2)

√
E |X − Y |2.

Taking the infimum over all realizations of X and Y , we conclude that

(Eµϑ1 f − Eµϑ2 f)2 ≤ 2(Eµϑ1 |∇f |
2 + Eµϑ2 |∇f |

2) diam
(
{µϑ}ϑ∈Θ

)2
.

Thus,

1

2

∫∫
(Eµϑ1 f − Eµϑ2 f)2dν(ϑ1)dν(ϑ2)

≤
∫∫ (

Eµϑ1 |∇f |
2 + Eµϑ2 |∇f |

2
)
dν(ϑ1)dν(ϑ2) diam

(
{µϑ}ϑ∈Θ

)2

= 2 diam
(
{µϑ}ϑ∈Θ

)2 Eµ |∇f |2.

This implies the assertion.

Example 5.5.4. Having the above results concerning the preservation of the
convex Poincaré inequality under appropriate transformations of measures, as
well as the characterization of one-dimensional measures satisfying it (obtained
by Bobkov and Götze in [19]), one can create many examples of measures in
high dimensions, satisfying the convex Poincaré inequalities but not satisfying
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the usual Poincaré inequality for smooth functions or any stronger functional
inequalities for convex functions.

To illustrate this we will provide a specific class of examples, built from
perturbation, products and mixtures of one dimensional measures. Fix h > 0
and consider a bounded set Θ in Rd and a probability measure ν supported
on Θ. For ech x ∈ Θ let µx be a measure on R such that for all t > Medµx,
µx([t+h,∞)) ≤ 1

2
µ([t,∞)) and a symmetric condition is satisfied by the lower

tail of the measure. Assume also that the set {Medµx}x∈Θ is bounded by some
constant l. By the results in [19], the measures µx satisfy the convex Poincaré
inequality with constant λx uniformly bounded from below by some ch > 0.
It is easy to see that by Proposition 5.5.3, the measure µ on Rd+1 = Rd × R
defined as µ(dxdt) = µx(dt)ν(dx) satisfies (5.1.1) with λ > 0, depending only
on h, l and the diameter of Θ. Note that if supp ν ⊆ Θ is not connected,
then µ cannot satisfy the usual Poincaré inequality for smooth functions.
Moreover, if for x from a set of positive ν-measure, the measures µx have tails
bounded from below by e−cx for some c <∞ (which may happen under the
requirements on µx introduced above), then at least one marginal of µ also has
exponential tails, which means that µ cannot satisfy any weak transportation
inequality or convex modified log-Sobolev inequality substantially stronger
than the convex Poincaré inequality. Now, thanks to stability of the convex
Poincaré inequality under bounded perturbations and tensorization, one can
pass to products and perturbations of measures µ (for various choices of the
driving measure ν) and build more complicated examples in higher dimension,
still satisfying the convex Poincaré inequality with constants depending only
on h, l and the diameter of Θ.

5.6 Further questions
Let us conclude with some open questions, which seem natural in view of our
results.

As already mentioned in the introduction, in our proof of the implication

µ satisfies the convex Poincaré inequality with constant λ

=⇒ µ satisfies the inequality TθC,D for some C,D,

the constants C,D do not depend just on λ, but also on certain quantiles of
the measure µ. In fact, the issue comes from the inequality T+, since the
constants in T− do depend only on λ (see Corollary 5.4.3). This gives rise to
our first question.

Question 5.6.1. Does the Poincaré inequality with constant λ imply the weak
transportation inequality TθC,D with constants C,D depending only on λ?
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The inspection of our proof shows that in order to answer the above
question in the affirmative, it is enough to remove the restriction on t in Lemma
5.2.4. Actually, by (ii) of Theorem 6.3.1 below, it would be sufficient to show
that the convex Poincaré inequality with constant λ implies subexponential
concentration for convex 1-Lipschitz functions (with constants depending only
on λ). The problem lies only in the lower-tail (as the upper one is handled
by Proposition 5.2.2). More precisely, we have the following result.

Theorem 5.6.2. Assume that µ is a probability measure on Rn, satisfying
the convex Poincaré inequality (5.1.1) with constant λ and c is a positive
constant, such that for all 1-Lipschitz convex functions f : Rn → R and all
t > 0,

µ
(
{x ∈ Rn : f(x) ≤ Medµ f − t}

)
≤ 2 exp(−ct).

Then µ satisfies the inequality TθC,D with C,D depending only on λ and c.

This motivates the following question, which is clearly of interest also in
its own right.

Question 5.6.3. Does the convex Poincaré inequality (5.1.1) with constant
λ imply subexponential estimates for the lower-tail of convex 1-Lipschitz
functions, with constants depending only on λ? Specifically, is it true that
whenever µ is a probability measure on Rn satisfying (5.1.1), then for every
convex 1-Lipschitz function f : Rn → R,

µ
(
{x ∈ Rn : f(x) ≤ Medµ f − t}

)
≤ 2 exp(−c(λ)t),

where the constant c(λ) depends only on λ?

The inequality provided by Lemma 5.2.4 introduces an additional depen-
dence on n, which carries over to the dependence of constants in Theorem
5.1.1. Let us point out that all the proofs of lower-tail estimates based on
the Poincaré inequality and available for the category of all smooth functions,
which we have been able to find in the literature, seem to break down in the
convex setting (see, e.g., the arguments in [40, 8, 37]).
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Chapter 6

Refined concentration of measure
derived from convex infimum
convolution inequalities

6.1 Goals and notation

In this chapter we present refined concentration of measure inequalities,
which are consequences of weak transportation inequalities. We consider more
general cost functions than the one corresponding to, e.g., the convex Poincaré
inequality considered in the previous chapter and discuss applications both to
the Lipschitz and non-Lipschitz setting. Some of the ideas presented below
have been used recently by Adamczak, Kotowski, Polaczyk, and the author in
[3] to obtain concentration bounds for quadratic forms in bounded, dependent
random variables (under some assumptions, which are fulfilled, e.g., in the
Ising model satisfying the Dobrushin condition).

First, we shall explain what concentration inequalities for convex functions
can be obtained from general convex infimum convolution inequalities of the
form (3.3.4). While some parts of our derivation are well known and are
included only for the sake of completeness, we also provide new inequalities
valid beyond the setting of Lipschitz functions. Their proofs are elementary
but to our best knowledge they have not been noted in the literature before.

Throughout this section θ : Rn → [0,∞) is a convex function. We also
assume the following conditions:
• θ(x) = θ(−x) for all x ∈ Rn,
• θ(x) = 0 if and only if x = 0 (in particular, by convexity, limx→∞ θ(x) =
∞).

We remark that at the cost of some technical work one can obtain the
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results we present below for more general cost functions (say taking the value
∞ or not satisfying the symmetry condition). We restrict to a smaller class
to simplify the presentation.

In what follows, for a function f : Rn → R, bounded from below, we set

f�θ(x) := Qθ
1f(x) = inf

y∈Rn

{
f(y) + θ(x− y)

}
. (6.1.1)

We also denote

Bθ(r) = {x ∈ Rn : θ(x) < r}, r > 0.

6.2 Enlargements of sets and concentration for
Lipschitz functions

Let us start with the classical description of concentration of measure in terms
of enlargements of sets. The following proposition goes back to [54].

Proposition 6.2.1. Assume that µ is a probability measure on Rn, satisfying∫
Rn
ef�θdµ

∫
Rn
e−fdµ ≤ 1 (6.2.1)

for all convex functions f : Rn → R, bounded from below. Then for all convex
subsets A ⊆ Rn and r > 0, we have

µ
(
(A+Bθ(r))

c
)
µ(A) ≤ e−r.

Proof. Consider f =∞1(clA)c and note that f�θ(x) < r if and only if there
exists y ∈ A such that θ(x − y) < r. Applying the inequality (6.2.1) to f
(which can be justified by monotone approximation), we obtain

erµ
(
(A+Bθ(r))

c
)
µ(A) ≤

∫
Rn
ef�θdµ

∫
Rn
e−fdµ ≤ 1.

To formulate corollaries to the above proposition we need to introduce new
notation, which at first may seem rather abstract. However, as the examples
presented in the subsequent parts of this section will show, it will prove useful
in providing a uniform framework for concentration inequalities, especially in
the non-Lipschitz case.

Definition 6.2.2. Define the norm | · | 1
p
θ on Rn, as the Orlicz norm corre-

sponding to the function x 7→ 1
p
θ(x), i.e.,

|x| 1
p
θ = inf{a > 0: θ(x/a) ≤ p}.
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Define also the norm | · |θ,p on Rn as the dual to | · | 1
p
θ, i.e.,

|x|θ,p = sup
{ n∑

i=1

xiyi : θ(y) ≤ p
}
.

The norm |x|θ,p is equivalent (up to universal constants) to the Orlicz
norm | · |θ∗p related to the function θ∗p(x) = 1

p
θ∗(px), explicitly given by

| · |θ∗p = inf{a > 0: θ∗p(x/a) ≤ 1} = inf{a > 0: θ∗(px/a) ≤ p}.

It was observed by Gluskin and Kwapień in [32] that norms of this type
play an important role in moment estimates for sums of independent random
variables. Recently it has been noted [7, 2] that they also appear in moment
estimates for smooth functions of random vectors satisfying modified log-
Sobolev inequalities. Since in the context of transportation or infimum
convolution inequalities one starts from the function θ and not from θ∗ (which
is the case in the corresponding log-Sobolev setting) it is more convenient to
work with | · |θ,p rather than with the equivalent norm | · |θ∗p used in [7, 2].

In what follows we will need a simple inequality which can be easily derived
from convexity of θ and the assumption θ(0) = 0. For x ∈ Rn, p > 0, and
t ≥ 1,

|x|θ,tp ≤ t|x|θ,p. (6.2.2)

The following corollary to Proposition 6.2.1 is again based on by now
standard arguments, written however in the language of the norms | · |θ,p.

Corollary 6.2.3. Let X be a random vector with law µ, satisfying (6.2.1) for
all convex functions f : Rn → R bounded from below. Then for any smooth
convex Lipschitz function f : Rn → R and p ≥ 0,

P(|f(X)−Med f(X)| > sup
x∈Rn
|∇f(x)|θ,p) ≤ 4e−p. (6.2.3)

Remark 6.2.4. It is easy to see that if the inequality (6.2.3) holds for all
smooth convex Lipschitz functions, then one can apply it to arbitrary convex
Lipschitz function, replacing supx∈Rn |∇f(x)|θ,p by the Lipschitz constant of
f with respect to the norm | · | 1

p
θ. To verify this it is enough to consider

convolutions of f with a sequence of Gaussian densities converging to Dirac’s
mass at zero—they are smooth, have the same Lipschitz constant as f and
converge to f uniformly (see, e.g., [67, p. 429]).
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Proof of Corollary 6.2.3. Let A = {y ∈ Rn : f(y) ≤ Med f(X)}, so that
P(X ∈ A) ≥ 1/2. Then by convexity, for any y ∈ A,

f(X) ≤ f(y) + 〈∇f(X), X − y〉 ≤ Med f(X) + |∇f(X)|θ,p · |X − y| 1
p
θ.

(6.2.4)

Thus

P(f(X) > Med f(X) + sup
x∈Rn
|∇f(x)|θ,p) ≤ P(inf

y∈A
|X − y| 1

p
θ > 1)

= P(X /∈ A+ clBθ(p)) ≤
e−p

P(X ∈ A)
≤ 2e−p, (6.2.5)

where in the second inequality we used Proposition 6.2.1.
Let now A = {y ∈ Rn : f(y) < Med f(X)− supx∈Rn |∇f(x)|θ,p}. Similarly

as above, we obtain

1/2 ≤ P(f(X) ≥ Med f(X)) ≤ P(inf
y∈A
|X − y| 1

p
θ ≥ 1)

≤ P(X /∈ A+Bθ(p)) ≤
e−p

P(X ∈ A)
,

which shows that

P(f(X) < Med f(X)− sup
x∈RN

|∇f(x)|θ,p) ≤ 2e−p.

Combining the last inequality with (6.2.5) proves the corollary.

6.3 Concentration inequalities for general con-
vex functions

We are now ready to state the main result of this section, contained in the
following theorem, dealing with general (not necessarily Lipschitz) convex
functions. In its formulation we adopt the convention 0

0
= 0. The proof of

the theorem as well as of its corollary is postponed to Section 6.4
We would like to emphasize, that in the theorem we assume only (6.2.3),

which is strictly weaker than the infimum-convolution inequality (6.2.1).

Theorem 6.3.1. Let X be a random vector satisfying (6.2.3) for all smooth
convex Lipschitz functions f : Rn → R. Then for any smooth convex function
f : Rn → R, the following properties hold.
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(i) For any p ≥ 1, ∥∥∥(f(X)−Med f(X))+

|∇f(X)|θ,p

∥∥∥
p
≤ 31/p. (6.3.1)

(ii) Let p > 0, q ∈ (1/2, 1] and let Mp,q ∈ R satisfy P(|∇f(X)|θ,p ≤Mp,q) ≥
q. Then

P
(
f(X) < Med f(X)−Mp,q

(
1 + log(8/(2q − 1))

))
≤ 4e−p.

In particular for p ≥ 0,

P(f(X) < Med f(X)− 16E |∇f(X)|θ,p) ≤ 4e−p. (6.3.2)

(iii) For all p ≥ 1,

‖(f −Med f(X))−‖p ≤ 48E |∇f(X)|θ,p.

Remark 6.3.2. As will become clear in the proof, the part (i) of the above
theorem holds in fact under one-sided concentration, i.e., it is enough to
assume that

P(f(X)−Med f(X) > sup
x∈Rn
|∇f(x)|θ,p) ≤ 4e−p. (6.3.3)

Let us now illustrate the above theorem with a few concrete examples
and a corollary. In particular we will show what the norms | · |θ,p look like for
different choices of the cost function θ.

Example 6.3.3. If θ(x) = c|x|r for some r ≥ 1 and c > 0, then |x|θ,p =
c−1/rp1/r|x| and (6.2.3) is equivalent to

P(|f(X)−Med f(X)| ≥ t) ≤ 4 exp(−ctr) (6.3.4)

for all 1-Lipschitz convex functions (in particular for r = 2 we get the
subgaussian concentration). The first part of Theorem 6.3.1 gives then the
following inequality for all (not necessarily Lipschitz) convex functions and
p ≥ 1, ∥∥∥(f(X)−Med f(X))+

|∇f(X)|

∥∥∥
p
≤ 31/pc−1/rp1/r.

Thus by the Lp-Chebyshev inequality, with p = ctr/(3e)r we obtain for t ≥ 0,

P
(f(X)−Med f(X)

|∇f(X)|
≥ t
)
≤ e exp

(
− ctr

(3e)r

)
(6.3.5)
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(the additional factor e on the right-hand side is introduced artificially to
encompass all t ≥ 0, also those for which p < 1; note that in this case
the right-hand side exceeds one). We remark that similar self-normalized
inequalities are known, e.g., in the theory of empirical processes (see [27]).

The lower tail inequalities give

P(f(X) ≤ Med f(X)− t) ≤ 4 exp
(
− c tr

16r(E |∇f(X)|)r
)
. (6.3.6)

Moreover, using the full strength of part (ii) of Theorem 6.3.1, one can replace
E |∇f(X)| by 4−1M3/4, where M3/4 is the 3/4 quantile of |∇f(X)|. Thus no
integrability conditions on the gradient are in fact required.

Remark 6.3.4. Let us note that inequalities similar to (6.3.6) were previously
known with the quantity (E |∇f(X)|2)1/2 instead of the quantile or E |∇f(X)|
(see [67] or [50, Chapter 3.3]). Very recently, Paouris and Valettas [63] have
proved that the standard Gaussian vector in Rn satisfies a similar inequality
(for r = 2) with E |f(X) −Med f(X)| in place of E |∇f(X)|. Their proof
uses in a crucial way isoperimetric properties of Gaussian measures. The
version with E |∇f(X)| follows simply by an application of the (1,1)-Poincaré
inequality for the Gaussian measure, i.e., E |f(X)−Med f(X)| ≤ C E |∇f(X)|
(see, e.g., [64, 56]). In fact the proof in [63] gives also inequalities in terms
of quantiles of |f(X)−M |. We do not know if they are comparable to our
estimates (specialized to the standard Gaussian measure) in terms of quantiles
of |∇f(X)|.

Note also that (6.3.4) for r = 1 is a consequence of the convex Poincaré
inequality (however we do not know if (5.1.1) implies (6.3.4) with c depending
only on λ and not on the dimension n, see Question 5.6.3 below).

Example 6.3.5. Let us now consider a measure µ on Rn satisfying the convex
Poincaré inequality with constant λ. Then, by Theorem 5.3.1 it satisfies the
convex Bobkov–Ledoux inequality (5.3.1) with constants C and c depending
only on λ. By the classical Herbst argument it follows (see, e.g., [17, 5]) that
for each N ≥ 1, if X is an Nn-dimensional random vector with law µ⊗N ,
then for any smooth convex function f : RNn → R and any t > 0,

P(f(X) ≥ E f(X) + t)

≤ 2 exp
(
−c′(λ) min

{ t2

supx∈RNn |∇f(x)|2
,

t

supx∈Rn maxi≤N |∇if(x)|

})
,

where for x = (x1, . . . , xN) ∈ (Rn)N = RNn, ∇if(x) denotes the partial
gradient with respect to xi.
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Moreover, by the Poincaré inequality

|E f(X)−Med f(X)| ≤ 1√
λ

sup
x∈RNn

|∇f(x)|,

which at the cost of changing the constant allows to replace the mean by the
median in the above inequality. Thus we obtain that for some constant c′′(λ)
and p > 0,

P
(
f(X) ≥ Med f(X) + c′′(λ) sup

x∈RNn
(
√
p|∇f(x)|+ pmax

i≤N
|∇if(x)|)

)
≤ 2e−p.

It is easy to see that up to universal constants c′′(λ)(
√
p|x|+ pmaxi≤N |xi|)

is equivalent to |x|θ,p, where

θ(x) =
N∑
i=1

(∣∣∣ xi
c′′(λ)

∣∣∣21{| xi
c′′(λ) |≤1} +

(
2
∣∣∣ xi
c′′(λ)

∣∣∣− 1
)
1{| xi

c′′(λ) |>1}

)
(e.g. by comparing θ with θ1(x) =

∑N
i=1 min(|xi/c′′(λ)|2, |xi/c′′(λ)|), which

is not convex but is comparable to θ up to multiplicative constants). More
precisely

|x|θ,p ≤ c′′(λ)
(√

p|x|+ pmax
i≤N
|xi|
)
≤ 4|x|θ,p.

Thus, the first part of Theorem 6.3.1 together with Remark 6.3.2 gives
for arbitrary smooth convex function f on RNn, the inequality∥∥∥ (f(X)−Med f(X))+√

p|∇f(X)|+ pmaxi≤N |∇if(X)|

∥∥∥
p
≤ c′′′(λ),

for p ≥ 1, where c′′′(λ) depends only on λ. By Chebyshev’s inequality this
implies that

P
( (f(X)−Med f(X))+√

t|∇f(X)|+ tmaxi≤N |∇if(X)|
≥ ec′′′(λ)

)
≤ e−t

for t ≥ 1 (note that contrary to (6.3.5) this time t cannot be removed from
the denominator).

As for the lower tail, by Theorem 5.1.1, Remark 5.1.2, Proposition 3.3.4
and tensorization properties of infimum convolution inequalities (see Lemma
5 in [54]) we obtain that X satisfies (6.2.1) and thus also (6.2.3) with θ(x) =
K(λ, n)

∑N
i=1(|xi|21{|xi|≤1} + (2|xi| − 1)1{|xi|>1}), where K(λ, n) depends only

on λ and the dimension n (note that here K(λ, n) denotes a constant which
is perhaps small). Thus, by the second part of Theorem 6.3.1,

P
(
f(X) ≤ Med f(X)−K ′(λ, n)−1

[√
pE |∇f(X)|+ pEmax

i≤N
|∇if(X)|

])
≤ 4e−p, (6.3.7)
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or equivalently (up to constants depending only on λ, n),

P(f(X) ≤ Med f(X)− t)

≤ 4 exp
(
−K ′′(λ, n) min

{ t2

(E |∇f(X)|)2
,

t

Emaxi≤N |∇if(X)|

})
.

We stress that all the above inequalities are dimension-free in the sense that
the constants do not depend on the number N but just on the initial dimension
n (cf. Remark 5.1.3).

Example 6.3.6. Finally, we remark that general cost functions θ lead to
other concentration profiles, which have been studied in the literature. One
can for instance consider products of measures on R, satisfying (6.2.1) with

θ(x) ' |x|21|x|≤1 + |x|r1|x|>1

for r ≥ 1 (such measures are characterized thanks to results in [38]). If we
denote for x ∈ Rn, |x|r = (|x1|r + · · · + |xn|r)1/r and let r∗ be the Hölder
conjugate of r, then such costs correspond for r ∈ [1, 2] to norms of the form
|x|θ,p '

√
p|x|+ p1/r|x|r∗ (the case r = 1 has been discussed above), while for

r > 2 to
|x|θ,p ' p1/r|(x∗i )

p
i=1|r∗ +

√
p|(x∗i )ni=p+1|,

where (x∗i )
n
i=1 is the non-increasing rearrangement of the sequence (|xi|)ni=1.

We will now present a corollary to Theorem 6.3.1, providing concentration
inequalities for non-Lipschitz convex functions, in the spirit of recent results
due to Bobkov, Nayar, and Tetali [21].

Corollary 6.3.7. Under the assumptions of Theorem 6.3.1 for all convex
functions f : Rn → R and t ≥ 0,

P(f(X)−Med f(X) ≥ t) ≤ inf
p≥1

{
e−p + P

(
|∇f(X)|θ,p ≥ t/(3e)

)}
.

Moreover, for any p ≥ 1,

P
(
|f(X)−Med f(X)| ≥ 3e2

∥∥|∇f(X)|θ,p
∥∥
p

)
≤ 6e−p (6.3.8)

Let us note that inequalities of the form (6.3.8) have been obtained in [2]
for all smooth functions of random vectors satisfying modified log-Sobolev
inequalities (assumed to hold for all smooth functions). Therein, the function
θ had to satisfy some appropriate growth condition.
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Example 6.3.8. In particular for θ(x) = c|x|2, the above corollary gives

P(f(X)−Med f(X) ≥ t) ≤ inf
p≥1

{
e−p + P(

√
p/c|∇f(X)| ≥ t/(3e))

}
.

By substituting p = ct2

(3e)2L2 and adjusting the constant we obtain

P(f(X)−Med f(X) ≥ t) ≤ inf
L>0

{
2e−c

′ t2
L2 + P(|∇f(X)| ≥ L)

}
, (6.3.9)

where c′ is positive and depends only on c. The factor 2 in the above inequality
is introduced for notational simplicity to allow the whole range of L > 0
in the infimum (note that for large L we have p < 1 and we cannot apply
Corollary 6.3.7, on the other hand the above inequality becomes then trivial,
as the right-hand side exceeds one).

Recall also the second part of Theorem 6.3.1 which for q = 3/4 gives in
this case

P(f(X) ≤ Med f(X)− t) ≤ 4 exp
(
−c′′ t2

M2
3/4

)
, (6.3.10)

where M3/4 = inf{x ∈ Rn : P(|∇f(X)| ≤ x) ≥ 3/4} and c′′ again depends
only on c.

The above inequalities should be compared with a recent result in [21],
which asserts that for some constant positive c′′′ depending only on c,

P(|f(X)− f(Y )| ≥ t) ≤ 2 inf
L≥Med |∇f(X)|

{
e−c

′′′ t2
L2 + P(|∇f(X)| ≥ L)

}
,

(6.3.11)

where Y is an independent copy of X.
It is not difficult to see that in the regime of t for which the above

inequalities are of interest, i.e., the right-hand sides are small, (6.3.9) gives
estimates on the upper tail which (up to numerical constants) are comparable
to those implied by (6.3.11), whereas for the lower tail, the inequality (6.3.10)
improves over (6.3.11).

Example 6.3.9. Consider the function θ(x) =
∑N

i=1(|xi/c|21{|xi/c|≤1} +
(2|xi/c| − 1)1{|xi|/c>1}), which we have already discussed in Example 6.3.5.
From Corollary 6.3.7 we get

P(f(X)−Med f(X) ≥ t)

≤ inf
p≥1

{
e−p + P(

√
p|∇f(X)|+ pmax

i≤N
|∇if(X)| ≥ t/c′)

}
.
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By substituting p = min{ t2

(2c′)2L2 ,
t

2c′M
} and using the union bound we obtain

P(f(X)−Med f(X) ≥ t)

≤ inf
L,M>0

{
2 exp

(
− c′′min

{ t2
L2
,
t

M

})
+ P

(
|∇f(X)| ≥ L

)
+ P

(
max
i≤N
|∇if(X)| ≥M

)}
,

with c′′ depending only on c. As in the preceding example, the factor 2 is
introduced to allow for all positive values of L,M .

Remark 6.3.10. Let us note that another way of obtaining estimates on the
upper tail of non-Lipschitz functions under the convex Poincaré inequality is
to use the estimates (5.2.1) and (5.2.2). By approximating arbitrary convex
functions with Lipschitz ones we can easily see that they hold in fact for
all convex functions. Thus, if one controls the moments of |∇f(X)|, one
can obtain tail estimates beyond the Lipschitz case. Such inequalities are
however different than those of the above example as they are of exponential
type and not of mixed exponential/Gaussian type. On the other hand, the
weak transportation inequality with the cost function of Example 6.3.5 arises
usually as a consequence of tensorization, so in order to apply it we need
some additional structure of the measure.

6.4 Proofs of Theorem 6.3.1, Corollary 6.3.7
Proof of Theorem 6.3.1. Let us start with (i), the proof of which is quite
similar to the proof of Corollary 6.2.3. Let us again define A = {x ∈
Rn : f(x) ≤ Med f(X)}. Using (6.2.2) and (6.2.4), we can write for t ≥ 1,

f(X)−Med f(X)

t|∇f(X)|θ,p
≤ f(X)−Med f(X)

|∇f(X)|θ,tp
≤ inf

y∈A
|X − y| 1

tp
θ.

Hence for t ≥ 1,

P
((f(X)−Med f(X))+

|∇f(X)|θ,p
> t
)
≤ P(inf

y∈A
|X − y| 1

tp
θ > 1) ≤ 4e−pt,

where we used the fact that the function g(x) = infy∈A |x− y| 1
tp
θ is convex,

1-Lipschitz with respect to | · | 1
tp
θ and Med g(X) = 0, together with Corollary

6.2.3 and Remark 6.2.4. We can now integrate by parts and get

E
∣∣∣(f(X)−Med f(X))+

|∇f(X)|θ,p

∣∣∣p ≤ 1 + 4

∫ ∞
1

ptp−1e−ptdt ≤ 1 + 4

∫ ∞
1

e−tdt ≤ 3
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(the integrand is pointwise non-increasing with respect to p ≥ 1, as the
computation of the derivative with respect to p reveals), which proves the
first part of the theorem.

Let us now pass to the second part. Assume without loss of generality that
Med f(X) = 0 and p ≥ 1. Consider the set B = {x ∈ Rn : |∇f(x)|θ,p ≤Mp,q}.
By the definition of Mp,q, we have P(X ∈ B) ≥ q. Let f̃ : Rn → R be defined
as

f̃(x) = sup
y∈B

{
f(y) + 〈∇f(y), x− y〉

}
.

Then f̃ is convex, moreover by convexity of f we have f̃ ≤ f pointwise and
f̃ = f on B. By the definition of the set B and inequality (6.2.2), for any
t ≥ 1 all linear functionals x 7→ 〈∇f(y), x〉, y ∈ B, are (tMp,q)-Lipschitz with
respect to | · | 1

tp
θ and therefore so is f̃ . By Corollary 6.2.3 and Remark 6.2.4

this implies that for any t ≥ 1,

P(|f̃(X)−Med f̃(X)| > tMp,q) ≤ 4e−tp. (6.4.1)

We also have P(f̃(X) ≥ 0) ≥ P(f(X) ≥ 0 and X ∈ B) ≥ q − 1/2. Therefore,
the above inequality applied with t↘ log(8/(2q − 1)) > 1 gives

Med f̃(X) +Mp,q log(8/(2q − 1)) ≥ 0,

which by another application of (6.4.1) implies

P
(
f(X) < −Mp,q

(
1+ log

( 8

2q − 1

)))
≤ P(f̃(X) < Med f̃(X)−Mp,q) ≤ 4e−p.

This proves the first inequality of part (ii).
The second inequality of part (ii) follows from the first one by specializing

to q = 3/4, Mp,q = 4E |∇f(X)|θ,p and some elementary calculations.
As for part (iii), using again inequalities (6.2.2) and (6.3.2), we get for

t ≥ 16E |∇f(X)|θ,p

P(f(X)−Med f(X) ≤ −t) ≤ 4 exp
(
− pt

16E |∇f(X)|θ,p

)
.

Now, again by integration by parts,

E(f(X)−Med f(X))p−

≤ (16E |∇f(X)|θ,p)p + 4p

∫ ∞
16E |∇f(X)|θ,p

tp−1 exp
(
− pt

16E |∇f(X)|θ,p

)
dt

≤ 3(16E |∇f(X)|θ,p)p,

which ends the proof.
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Proof of Corollary 6.3.7. To prove the first inequality it is enough to note
that if |∇f(X)|θ,p ≤ t/(3e) and f(X)−Med f(X) ≥ t, then

Z :=
(f(X)−Med f(X))+

|∇f(X)|θ,p
≥ 3e ≥ e‖Z‖p,

where the last inequality follows from (6.3.1). The assertion follows thus from
Chebyshev’s inequality: P(Z ≥ e‖Z‖p) ≤ e−p.

As for the second inequality, we it suffices to apply the first one with
t = 3e2‖|∇f(X)|θ,p‖p and combine it with the estimate (6.3.2).
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Chapter 7

Convex infimum convolution
inequalities with optimal cost
functions

7.1 Introduction

In the previous chapters we have seen that the convex infimum convolution
inequality (3.3.4) plays a crucial role in theory of weak transport–entropy
and convex log-Sobolev inequalities, and also what general concentration
properties follow from it. Now we shall take a look at the results from [39]
and [38] from a new perspective. To this end, we introduce slightly different
notation.

Let X be a random vector with values in Rn and let ϕ : Rn → [0,∞]
be a measurable function. Recall that we say that the pair (X,ϕ) satisfies
the infimum convolution inequality if for every bounded measurable function
f : Rn → R,

E ef�ϕ(X) E e−f(X) ≤ 1, (7.1.1)

where f�ϕ denotes the infimum convolution of f and ϕ (see (1.4.1) or (6.1.1)
above for the definition). We also say that the pair (X,ϕ) satisfies the convex
infimum convolution inequality if (7.1.1) holds for every convex function
f : Rn → R bounded from below.

Maurey [54] showed that Gaussian and exponential random variables
satisfy the infimum convolution inequality with a quadratic and quadratic-
linear cost function respectively. Thanks to the tensorization property of the
infimum convolution inequality, he recovered—up to constants—the Gaussian
concentration inequality as well as the so-called Talagrand two-level concen-
tration inequality for the exponential product measure. Moreover, Maurey
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proved that bounded random variables satisfy the convex infimum convolu-
tion inequality with a quadratic cost function (see equation (3) in [69] for an
improvement and consult Lemma 2.3 in [68] for results for non-symmetric
Bernoulli measures; see also Lemma 4.2.2 above).

Later on, Maurey’s idea was developed further by Latała and Wojtaszczyk
who studied comprehensively the infimum convolution inequality in [48]. By
testing with linear functions, they observed that the optimal cost function
is given by the Legendre transform of the cumulant-generating function
(here optimal means largest possible, up to a scaling constant, because
the inequality (7.1.1) improves when we increase the cost function). They
introduced the notion of optimal infimum convolution inequalities, established
them for log-concave product measures and uniform measures on `p-balls,
and put forward important, challenging and far-reaching conjectures (see also
[43]).

In this chapter we go along Latała and Wojtaszczyk’s line of research
and study the optimal convex infimum convolution inequality. Using the
characterization of weak transport cost inequalities on the real line (see
Proposition 3.3.7), we show that product measures with symmetric marginals
having log-concave tails satisfy the optimal convex infimum convolution
inequality, which complements Latała and Wojtaszczyk’s result about log-
concave product measures. This has applications to concentration and moment
comparison of any norm of such vectors in the spirit of celebrated Paouris’
inequality (see [62] and [4]) and addresses some questions posed lately in [46].
We also offer an example showing that the assumption of log-concave tails
cannot be weakened substantially.

7.2 Main results
For a random vector X in Rn we define

Λ∗X(x) := LΛX(x) := sup
y∈Rn
{〈x, y〉 − lnE e〈y,X〉},

which is the Legendre transform of the cumulant-generating function

ΛX(x) := lnE e〈x,X〉, x ∈ Rn.

If X is symmetric and the pair (X,ϕ) satisfies the infimum convolution
inequality, then ϕ(x) ≤ Λ∗X(x) for every x ∈ Rn (see Remark 2.12 in [48]). In
other words, Λ∗X is the optimal cost function ϕ for which the infimum convo-
lution inequality can hold. Since this conclusion is obtained by testing (7.1.1)
with linear functions, the same holds for the convex infimum convolution
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inequality. Following [48] we shall say that X satisfies (convex) IC(β) if the
pair (X,Λ∗X(·/β)) satisfies the (convex) infimum convolution inequality.

We are ready to present the first result of this chapter.

Theorem 7.2.1. Let X be a symmetric random variable with log-concave
tails, i.e., such that the function

t 7→ N(t) := − lnP(|X| ≥ t), t ≥ 0,

is convex. Then there exists a universal constant β ≤ 1680e such that X
satisfies the convex IC(β).

The (convex) infimum convolution inequality tensorizes and, consequently,
the property (convex) IC tensorizes: if independent random vectors Xi satisfy
(convex) IC(βi), i = 1, . . . , n, then the vector (X1, . . . , Xn) satisfies (convex)
IC(max βi) (see Lemma 5 in [54] and Proposition 2.14 in [48]). Therefore we
have the following corollary.

Corollary 7.2.2. Let X be a symmetric random vector with values in Rn and
independent coordinates with log-concave tails. Then X satisfies the convex
IC(β) with a universal constant β ≤ 1680e.

Note that the class of distributions from Corollary 7.2.2 is wider than the
class of symmetric log-concave product distributions considered by Latała and
Wojtaszczyk in [48] (since, by the Prékopa–Leindler inequality, log-concave
measures have log-concave tails). Among others, it contains measures which
do not have a connected support, e.g., a symmetric Bernoulli random variable.

In order to comment on the relevance of the assumptions of Theorem 7.2.1
and present applications to comparison of weak and strong moments, we need
the following definition. Let X be a random vector with values in Rn. We
say that the moments of X grow α-regularly if for every p ≥ q ≥ 2 and every
θ ∈ Sn−1 we have

‖〈X, θ〉‖p ≤ α
p

q
‖〈X, θ〉‖q

Clearly, if the moments of X grow α-regularly, then α has to be at least 1
(unless X = 0 a.s.).
Remark 7.2.3. If X is a symmetric random variable with log-concave tails,
then its moments grow 1-regularly (this classical fact follows for instance from
Proposition 5.5 from [42] and the proof of Proposition 3.8 from [48]).

The assumption of log-concave tails in Theorem 7.2.1 cannot be replaced
by a weaker one of α-regularity of moments: if X is a symmetric random
variable defined by

P(|X| > t) = 1[0,2)(t) +
∞∑
k=1

e−2k1[2k,2k+1)(t), t ≥ 0, (7.2.1)
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then the moments of X grow α-regularly (for some α < ∞), but—as we
shall prove in Section 7.5 below—there does not exist C > 0 such that the
pair (X, x 7→ max{(Cx)2, C|x|}) satisfies the convex infimum convolution
inequality. All the more, X cannot satisfy convex IC(β) with any β < ∞.
Thus it seems that the assumptions of Theorem 7.2.1 are not far from necessary
conditions for the convex infimum convolution inequality to hold with an
optimal cost function (random variables with moments growing regularly are
akin to random variables with log-concave tails as the former can essentially
be sandwiched between the latter, see (4.6) in [47]).

Our second main result is an application of Theorem 7.2.1 to moment
comparison. Recall that for a random vector X its p-th weak moment
associated with a norm ‖ · ‖ on Rn is the quantity defined as

σ‖·‖,X(p) := sup
‖t‖∗≤1

‖〈t,X〉‖p,

where ‖ · ‖∗ is the dual norm of ‖ · ‖. The following version of Proposition 3.15
from [48] holds (some non-trivial modifications of the proof are necessary in
order to deal with the fact that the inequality (7.1.1) only holds for convex
functions).

Theorem 7.2.4. Let X be a symmetric random vector with values in Rn the
moments of which grow α-regularly. Suppose moreover that X satisfies the
convex IC(β). Then for every norm ‖ · ‖ on Rn and every p ≥ 2 we have(

E
∣∣‖X‖ − E‖X‖∣∣p)1/p

≤ Cαβσ‖·‖,X(p),

where C is a universal constant (one can take C = 4
√

2e < 16).

Immediately, in view of Corollary 7.2.2 and Remark 7.2.3, we obtain the
following corollary in the spirit of the results from [62, 4, 46, 45]. Similar
inequalities for Rademacher sums with the emphasis on exact values of
constants have also been studied by Oleszkiewicz (see Theorem 2.1 in [59]).

Corollary 7.2.5. Let X be a symmetric random vector with values in Rn

and with independent coordinates which have log-concave tails. Then for every
norm ‖ · ‖ on Rn and every p ≥ 2 we have(

E ‖X‖p
)1/p ≤ E ‖X‖+Dσ‖·‖,X(p), (7.2.2)

where D is a universal constant (one can take D = 6720
√

2e2 < 70223).
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Note that each of the terms on the right-hand side of (7.2.2) is, up to
a constant, dominated by the left-hand side of (7.2.2), so (7.2.2) yields the
comparison of weak and strong moments of the norms of X.

Note also that the constant standing at E ‖X‖ is equal to 1. If we only
assume that the coordinates of X are independent and their moments grow
α-regularly, then (7.2.2) does not always hold (the example here is a vector
with independent coordinates distributed like in (7.2.1); see Section 7.5 for
details), although by Theorem 1.1 from [46] it holds if we allow the constant
in front of E ‖X‖ to be greater than 1 and to depend on α. Hence Corollary
7.2.5 and example (7.2.1) partially answer the following question raised by
Latała and Strzelecka in [46]: “For which vectors does the comparison of weak
and strong moments hold with constant 1 at the first strong moment?”

The organization of the chapter is the following. In Section 7.3 and 7.4
we present the proofs of Theorem 7.2.1 and Theorem 7.2.4 respectively. In
Section 7.5 we discuss example (7.2.1) in details.

7.3 Proof of Theorem 7.2.1

Our approach is based on a characterization provided in [38] of measures on
the real line which satisfy a weak transport–entropy inequality (see Proposi-
tion 3.3.7 above). We emphasize that our optimal cost functions need not be
quadratic near the origin, therefore we cannot apply the result as is, but have
to first fine-tune the cost functions a bit. We shall also need the following
simple lemma.

Lemma 7.3.1. If X is a symmetric random variable and EX2 = β−2
1 , then

Λ∗X(x/β1) ≤ x2 for |x| ≤ 1.

Proof. Since X is symmetric, we have

E etX = 1 +
∞∑
k=1

‖X‖2k
2kt

2k

(2k)!
≥ 1 +

∞∑
k=1

‖X‖2k
2 t

2k

(2k)!

= 1 +
∞∑
k=1

β−2k
1 t2k

(2k)!
= cosh(β−1

1 |t|).

Moreover, L
(
ln cosh(·)

)
(|u|) ≤ |u|2 for |u| ≤ 1 (see for example the proof of

Proposition 3.3 in [48]). Therefore

Λ∗X(x/β1) = L(ΛX(β1·))(x) ≤ L(ln cosh(·))(x) ≤ x2 for |x| ≤ 1.
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Throughout the proof g−1 stands for the generalized inverse of a function
g defined as

g−1(y) := inf{x : g(x) ≥ y}.

Proof of Theorem 7.2.1. Note that N(0) = 0 and the function N is non-
decreasing. First we tweak the assumptions and change the assertion to a
more straightforward one.

Step 1 (first reduction). We claim that it suffices to prove the assertion
for random variables for which the function N is strictly increasing on the
set where it is finite (or, in other words, N(t) = 0 only for t = 0). Indeed,
suppose we have done this and let now X be any random variable satisfying
the assumptions of the theorem. Let Xε be a symmetric random variable
such that P(|Xε| ≥ t) = exp(−Nε(t)), where Nε(t) = N(t)∨ εt (note that this
function is convex). Consider versions of X and Xε on the probability space
(0, 1) (equipped with Lebesgue measure) constructed as the (generalized)
inverses of their cumulative distribution functions. Then |Xε| ≤ |X| almost
surely. Hence ΛXε ≤ ΛX and therefore also Λ∗Xε ≥ Λ∗X .

The theorem applied to the random variable Xε and the above inequality
imply that the pair (Xε,Λ

∗
X(·/β)) satisfies the convex infimum convolution

inequality. Since by construction Xε → X a.s. for ε→ 0+, we get the assertion
for X (in the second integral we just use the fact that the test function f is
bounded from below and thus e−f is bounded from above; for the first integral
it suffices to prove the convergence of integrals on any interval [−M,M ], and
on such an interval we have f�Λ∗X(x/β) ≤ f(x) + Λ∗X(0) = f(x), and thus
exp(max[−M,M ] f) is a good majorant).

Step 2 (second reduction). We claim that it suffices to prove the assertion
for random variables such that ΛX <∞. Indeed, suppose we have done this
and let X be any random variable satisfying the assumptions of the theorem.
Let Nε(t) = N(t)∨ ε2t2 and let Xε be a symmetric random variable such that
P(|Xε| ≥ t) = exp(−Nε(t)). Then, similarly as in Step 1., ΛXε ≤ ΛY < ∞,
where Y is symmetric and P(|Y | ≥ t) = exp(−ε2t2). Thus we can apply the
proposition to Xε and we continue as in Step 1.

Step 3 (scaling). Due to the scaling properties of the Legendre transform,
we can fix the value of EX2 = β−2

1 . We choose β1 := 2e (the case where
X ≡ 0 is trivial), so that, by Markov’s inequality, e−N(1/2) = P(|X| ≥ 1

2
) ≤

4EX2 = e−2 and equivalently

N(1/2) ≥ 2. (7.3.1)

Step 4 (reformulation). For x ∈ R let

ϕ(x) :=
(
x21{|x|<1} + (2|x| − 1)1{|x|≥1}

)
∨ Λ∗X(x/(2β1)).
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We claim that there exists a universal constant b̃ ≤ 1/420, such that the pair
(X,ϕ(̃b ·)) satisfies the convex infimum convolution inequality. Of course the
assertion of the theorem follows immediately from that.

Note that ϕ is convex, increasing on [0,∞) (because it is convex and
ϕ(x) = 0 only for x = 0). Crucially, we have ϕ(x) = x2 for x ∈ [0, 1] (by
Lemma 7.3.1), so the cost function ϕ is quadratic near zero. Moreover, by
Lemma 7.3.1, ϕ−1(3) = 2.

Let U = F−1 ◦Fν , where F , Fν are the distribution functions of X and the
symmetric exponential measure ν on R, respectively. By Propositions 3.3.4
and 3.3.7 we know that if there exists b > 0 such that for every x, y ∈ R we
have ∣∣U(x)− U(y)

∣∣ ≤ 1

b
ϕ−1

(
1 + |x− y|

)
, (7.3.2)

then the pair (X,ϕ(̃b ·)), where b̃ = b
210ϕ−1(2+12)

= b
420

, satisfies the convex
infimum convolution inequality. We will show that (7.3.2) holds with b = 1.

Step 5 (further reformulation). Let a = inf{t > 0 : N(t) =∞}. We have
three possibilities (recall that N is left-continuous):
• a =∞. Then N is continuous, increasing, and transforms [0,∞] onto

[0,∞]. Also, F is increasing and therefore F−1 is the usual inverse of
F .
• a <∞ and N(a) <∞. Then X has an atom at a. Moreover, N(a) =

limt→a− N(t).
• a <∞ and N(a) =∞ = limt→a− N(t).

Of course, in the first case one can extend N by putting N(a) =∞, so that
all formulas below make sense.

Note that

F (t) =

{
1
2

exp(−N(|t|)) if t < 0,

1− 1
2

exp(−N+(t)) if t ≥ 0,

whereN+(t) denotes the right-sided limit ofN at t (which is different fromN(t)
only if t = a and X has an atom at a). Hence, F is continuous on the interval
(−a, a), the image of (−a, a) under F is the interval

(
1
2

exp(−N(a)), 1 −
1
2

exp(−N(a))
)
, and we have F (−a) = 1

2
exp(−N(a)) and F (a) = 1. Since

the image of R under U is equal to the image of (0, 1) under F−1, we conclude
that U(R) = (−a, a) if N(a) =∞ and U(R) = [−a, a] if N(a) <∞. Denote
A := U(R).

When N(a) <∞, it suffices to check the condition (7.3.2) for x, y ∈ [−a, a]
(otherwise one can change x, y and decrease the right-hand side while not
changing the value of the left-hand side of (7.3.2)). For x ∈ [−a, a] we
can write U−1(x) = N(|x|) sgn(x) and U−1(x) ∈ R. When N(a) = ∞, U
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is a bijection (on its image), so we can obviously write again U−1(x) =
N(|x|) sgn(x) for any x ∈ R.

Therefore, in order to verify (7.3.2) with b = 1 we need to check that

|x− y| ≤ ϕ−1
(
1 +

∣∣N(|x|) sgn(x)−N(|y|) sgn(y)
∣∣) for x, y ∈ A. (7.3.3)

Since we consider the case when ΛX(t) is finite for every t ∈ R, the
Chernoff inequality applies, so for t ≥ EX = 0 we have

1

2
e−N(t) = P(X ≥ t) ≤ e−Λ∗X(t),

so
N(t) ≥ Λ∗X(t)− ln 2. (7.3.4)

Note that ϕ(|x− y|) <∞ for x, y ∈ A, since ϕ(|x− y|) =∞ would imply
Λ∗X(|x−y|/(2β1)) =∞, and hence Λ∗X(|x−y|/2) =∞, and – by (7.3.4) – also
N(|x−y|/2) =∞, but for x, y ∈ A we have |x−y|/2 ∈ [0, a) when N(a) =∞
or |x− y|/2 ∈ [0, a] when N(a) <∞ and in either case N(|x− y|/2) is finite.
Therefore for every x, y ∈ A we have ϕ(|x− y|) < ∞. Since ϕ−1(ϕ(z)) = z
for z such that ϕ(z) < ∞ (because ϕ is then continuous and increasing on
[0, z]), the condition (7.3.3) is implied by

ϕ
(
|x− y|

)
≤ 1 +

∣∣N(|x|) sgnx−N(|y|) sgn y
∣∣ for x, y ∈ A. (7.3.5)

In the next step we check that this is indeed satisfied.
Step 6 (checking the condition). Let x0 = inf{x ≥ 1 : 2x− 1 = Λ∗X( x

2β1
)}

(if x0 = ∞ we simply do not have to consider Case 2 below). We consider
three cases. We repeatedly use the fact that uN(t) ≥ N(ut) for u ≤ 1, t ≥ 0,
which follows by the convexity of N and the property N(0) = 0.

Case 1. |x−y| ≤ 1. Then ϕ
(
|x−y|

)
= (x−y)2 ≤ 1, so (7.3.5) is trivially

satisfied.
Case 2. |x− y| ≥ x0. Then ϕ

(
|x− y|

)
= Λ∗X( 1

2β1
|x− y|) ≤ Λ∗X(|x− y|/2).

Inequality (7.3.4) implies that in order to prove (7.3.5) it suffices to show that
if x, y are of the same sign, say x, y ≥ 0, then N

(
|x− y|/2) ≤ |N(x)−N(y)|

and if x, y have different signs, we have N
((
|x|+ |y|

)
/2
)
≤ N(|x|) +N(|y|).

By the convexity of N , for s, t ≥ 0 we have

N(s/2) +N(t) ≤ N(s) +N(t) ≤ s

s+ t
N(s+ t) +

t

s+ t
N(s+ t) = N(s+ t)

and
N
(
(s+ t)/2

)
≤ 1

2
N(s) +

1

2
N(t) ≤ N(s) +N(t),
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so N satisfies the aforementioned two inequalities. This finishes the proof
of (7.3.5) in Case 2.

Case 3. 1 ≤ |x− y| ≤ x0. Then ϕ
(
|x− y|

)
= 2|x− y| − 1. Consider two

sub-cases:
(i) x, y have different signs. Without loss of generality we may assume

x ≥ |y| ≥ 0 ≥ y. Thus in order to obtain (7.3.5) it suffices to show that
N(x) ≥ 2x+ 2|y|. Note that 1 ≤ x+ |y| ≤ 2x, so x ≥ 1

2
. Thus

N(x) ≥ N(1/2)2x
(7.3.1)
≥ 4x ≥ 2x+ 2|y|,

which finishes the proof in case (i).
(ii) x, y have the same sign. Without loss of generality we may assume

x ≥ y ≥ 0. Thus it suffices to show that 2(x− y) ≤ N(x)−N(y). Note
that due to the assumption of Case 3 we have x ≥ x− y ≥ 1 ≥ 1

2
, so by

the convexity of N we have

N(x)−N(y)

x− y
≥
N(1

2
)−N(0)
1
2
− 0

(7.3.1)
≥ 4 ≥ 2

This ends the examination of case (ii) and the proof of the theorem.

7.4 Comparison of weak and strong moments

The goal of this section is to establish the comparison of weak and strong
moments with respect to any norm ‖·‖ for random vectorsX with independent
coordinates having log-concave tails (Corollary 7.2.5). In view of Theorem
7.2.1 and Remark 7.2.3, it is enough to show Theorem 7.2.4.

Our proof of Theorem 7.2.4 comprises three steps: first we exploit α-
regularity of moments of X to control the size of its cumulant-generating
function ΛX , second we bound from below the infimum convolution of the
optimal cost function with the convex test function being the norm ‖·‖ properly
rescaled, and finally by the property convex IC(β) we obtain exponential tail
bounds which integrated out give the desired moment inequality.

We start with two lemmas corresponding to the first two steps described
above and then we put everything together.

Lemma 7.4.1. Let p ≥ 2 and suppose that the moments of a random vector
X in Rn grow α-regularly. If for a vector u ∈ Rn we have ‖〈u,X〉‖p ≤ 1, then

ΛX((2eα)−1pu) ≤ p.
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Proof. Let k0 be the smallest integer larger than p. If αe‖〈u,X〉‖p ≤ 1/2,
then by α-regularity we have

ΛX(pu) ≤ ln
(∑
k≥0

E |〈pu,X〉|k

k!

)
≤ ln

( ∑
0≤k≤p

pk
‖〈u,X〉‖kp

k!
+
∑
k>p

(αk)k
‖〈u,X〉‖kp

k!

)
≤ ln

( ∑
0≤k≤p

pk‖〈u,X〉‖kp
k!

+
∑
k>p

(
αe‖〈u,X〉‖p

)k)
≤ ln

( ∑
0≤k≤p

pk‖〈u,X〉‖kp
k!

+ 2(αe‖〈u,X〉‖p)k0
)

≤ ln
( ∑

0≤k≤p

pk‖〈u,X〉‖kp
k!

+
(2αep‖〈u,X〉‖p)k0

k0!

)
≤ ln

( ∑
0≤k≤k0

(2αep‖〈u,X〉‖p)k

k!

)
≤ 2αep‖〈u,X〉‖p ≤ p.

Replace u with (2eα)−1u to get the assertion.

Lemma 7.4.2. Let ‖ · ‖ be a norm on Rn and let X be a random vector with
values in Rn and moments growing α-regularly. For β > 0, p ≥ 2, and x ∈ Rn

we have (
Λ∗X (·/β)�a‖ · ‖

)
(x) ≥ a‖x‖ − p,

where a = p(2eαβσ‖·‖,X(p))−1.

Proof. For f(x) = a‖x‖ with positive a being arbitrary for now we bound
the infimum convolution as follows(

Λ∗X(·/β)�f
)
(x) = inf

y
sup
z

{
β−1〈y, z〉 − ΛX(z) + a‖x− y‖

}
= inf

y
sup
u

{
(2eαβ)−1p〈y, u〉 − ΛX((2eα)−1pu) + a‖x− y‖

}
≥ inf

y
sup

u:‖〈u,X〉‖p≤1

{
(2eαβ)−1p〈y, u〉 − p+ a‖x− y‖

}
,

where in the last inequality we have used Lemma 7.4.1. Let us choose u =
σ‖·‖,X(p)−1v with ‖v‖∗ ≤ 1 such that 〈y, v〉 = ‖y‖. Then clearly ‖〈u,X〉‖p ≤ 1
and thus

Λ∗X(·/β)�f(x) ≥ inf
y

{
(2eαβσ‖·‖,X(p))−1p‖y‖ − p+ a‖x− y‖

}
.
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If we now set a = p(2eαβσ‖·‖,X(p))−1, then by the triangle inequality we
obtain the desired lower bound(

Λ∗X (·/β)�a‖ · ‖
)
(x) ≥ a‖x‖ − p.

Proof of Theorem 7.2.4. Let f(x) = a‖x‖ with a = p(2eαβσ‖·‖,X(p))−1 as in
Lemma 7.4.2. Testing the property convex IC(β) with f and applying Lemma
7.4.2 yields

E ea‖X‖ E e−a‖X‖ ≤ ep.

By Jensen’s inequality, both E ea(‖X‖−E ‖X‖) and E ea(−‖X‖+E ‖X‖) are bounded
above by ep. Thus Markov’s inequality implies the tail bound

P
(
a
∣∣‖X‖ − E ‖X‖

∣∣ > t
)
≤ 2e−tep ≤ 2e−t/2, t ≥ 2p.

Consequently,

ap E
∣∣‖X‖ − E ‖X‖

∣∣p =

∫ ∞
0

ptp−1P
(
a
∣∣‖X‖ − E ‖X‖

∣∣ > t
)
dt

≤ (2p)p + 2

∫ ∞
0

ptp−1e−t/2dt = (2p)p + 2 · 2ppΓ(p)

≤ 2(2p)p.

Plugging in the value of a gives the result (we can take C = 4
√

2e < 16).

7.5 An example
Let X be a symmetric random variable defined by P(|X| > t) = T (t), where

T (t) := 1[0,2)(t) +
∞∑
k=1

e−2k1[2k,2k+1)(t), t ≥ 0, (7.5.1)

or, in other words, let |X| have the distribution

(1− e−2)δ2 +
∞∑
k=2

(
e−2k−1 − e−2k

)
δ2k .

Let us first show that the moments of X grow 3-regularly, but X does not
satisfy IC(β) for any β < ∞ (we also prove a slightly stronger statement
later).

Let Y be a symmetric exponential random variable. Then Y has log-
concave tails, so the moments of Y grow 1-regularly (see Remark 7.2.3).
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Moreover, if X and Y are constructed in the standard way by the inverses of
their cumulative distribution functions on the probability space (0, 1), then

|Y | ≤ |X| ≤ 2|Y |+ 2.

Therefore, for p ≥ q ≥ 2,

‖X‖p ≤ 2‖Y ‖p + 2 ≤ 2
p

q
‖Y ‖q + 2 ≤ 3

p

q
‖X‖q

(we used the fact that |X| ≥ 2 in the last inequality). Thus the moments of
X grow 3-regularly.

On the other hand, for every h > 0 there exists t > 0 such that

P(|X| ≥ t+ h) = P(|X| ≥ t).

Therefore by Theorem 1 of [30] there does not exist a constant C such that the
pair (X,ϕ(·/C)), where ϕ(x) = 1

2
x21{|x|≤1} + (|x| − 1/2)1{|x|>1}, satisfies the

convex infimum convolution inequality. But, by symmetry and the 3-regularity
of moments of X,

ΛX(s) ≤ ln
(

1 +
∑
k≥1

s2k EX2k

(2k)!

)
≤ ln

(
1 +

∑
k≥1

s2k(3k)2k
(
EX2

)k
(2k)!

)
≤ ln

(
1 +

∑
k≥1

s2k(3e/2)2k
(
EX2

)k)
= ln

(
1 +

∑
k≥1

(
9e2s2 EX2/4

)k)
.

Hence, using the inequality ln(1 + x) ≤ x and summing the geometric series,
we arrive at

ΛX(s) ≤ 9e2 EX2

4− 9e2s2 EX2
· s2,

provided that |s| ≤ ε for some small enough ε. Thus for some A, ε > 0 we
have ΛX(s) ≤ As2 for |s| ≤ ε. Having chosen ε and possibly increasing A, we
can also guarantee that 2Aε2 ≥ 1. Hence

Λ∗X(t) ≥ sup
|s|≤ε
{st− As2} = 1

4A
t21{|t|≤2Aε} + (ε|t| − Aε2)1{|t|>2Aε}

= 2Aε2ϕ
(
t/(2Aε)

)
≥ ϕ

(
t/(2Aε)

)
.

We conclude that X cannot satisfy IC(β) for any β.
Remark 7.5.1. Let us also sketch an alternative approach. Take a, c > 0,
b ∈ R, and denote ϕ(x) = min{x2, |x|}, f(x) = fa,b(x) = a(x− b)+ for x ∈ R.
One can check that

(
f�ϕ(c·)

)
(x) =


0 if x ≤ b,

c2(x− b)2 if b < x ≤ b+ 1/c,

c(x− b) if x > b+ 1/c,
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if a > 2c. It is rather elementary but cumbersome to show that for any c > 0
there exist a > 0 and b ∈ R such that (7.1.1) is violated by the test function
f . We omit the details.

In fact, the above example shows that even a slightly stronger statement
is true: for vectors with independent coordinates with α-regular growth of
moments the comparison of weak and strong moments of norms does not need
to hold with the constant 1 at the first strong moment. More precisely, let
X1, X2, . . . be independent random variables with distribution given by (7.5.1).
We claim that there does not exist any K <∞ such that

(
Emax

i≤n
|Xi|p

)1/p ≤ Emax
i≤n
|Xi|+K sup

‖t‖1≤1

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p

(7.5.2)

holds for every p ≥ 2 and every positive integer n (note that we chose the
`∞-norm as our norm). We shall estimate the three expressions appearing
in (7.5.2).

We have

sup
‖t‖1≤1

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p

≤ sup
‖t‖1≤1

n∑
i=1

|ti|‖Xi‖p = ‖X1‖p (7.5.3)

(this inequality is in fact an equality). Since the moments of X1 grow 3-
regularly, the last term in (7.5.2) is bounded by K̃p for some K̃ <∞.

To estimate the remaining two terms we need the following standard fact.

Lemma 7.5.2. For independent events A1, . . . , An,

(1− e−1)
(

1 ∧
n∑
i=1

P(Ai)
)
≤ P

( n⋃
i=1

Ai

)
≤ 1 ∧

n∑
i=1

P(Ai).

In particular, for i.i.d. non-negative random variables Y1, . . . , Yn,

(1− e−1)

∫ ∞
0

[
1 ∧ nP(Y1 > t)

]
dt ≤ Emax

i≤n
Yi ≤

∫ ∞
0

[
1 ∧ nP(Y1 > t)

]
dt.

Proof. The upper bound is just the union bound. The lower bound follows
from de Morgan’s laws combined with independence, which imply that

P
( n⋃
i=1

Ai

)
= 1−

n∏
i=1

(
1− P(Ai)

)
,

and from the inequalities 1 − x ≤ e−x and 1 − e−y ≥ (1 − e−1)y for x ∈ R,
y ∈ [0, 1].
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Fix m ≥ 2 and let e2m−1 ≤ n < e2m . Then

1 ∧ nT (t) =

{
1 if 0 < t < 2m,

nT (t) if t ≥ 2m.

By the above lemma,

Emax
i≤n
|Xi| ≤

∫ 2m

0

dt+ n

∫ ∞
2m

T (t)dt = 2m + n

∞∑
j=m

e−2j(2j+1 − 2j)

= 2m + n

∞∑
j=m

e−2j2j ≤ 2m + ne−2m2m
∞∑
j=0

(2e−2m)j

= 2m +
ne−2m2m

1− 2e−2m
.

Set θ = θ(m,n) = ne−2m ∈ [e−2m−1
, 1). Then

Emax
i≤n
|Xi| ≤ 2m

(
1 +

θ

1− 2e−2m

)
. (7.5.4)

Similarly,

Emax
i≤n
|Xi|p ≥ (1− e−1)

∫ ∞
0

1 ∧ T (t1/p)dt

= (1− e−1)
[ ∫ 2mp

0

dt+ n

∫ ∞
2mp

T (t1/p)dt
]

= (1− e−1)
[
2mp + n

∞∑
j=m

e−2j
(
2(j+1)p − 2jp

)]
.

Hence

Emax
i≤n
|Xi|p > (1−e−1)ne−2m

(
2(m+1)p−2mp

)
= (1−e−1)θ2mp(2p−1). (7.5.5)

Putting (7.5.3), (7.5.4), and (7.5.5) together, we see that (7.5.2) would
imply

(1− e−1)1/pθ1/p2m(2p − 1)1/p ≤ 2m
(

1 +
θ

1− 2e−2m

)
+ K̃p

for every p ≥ 2, m ≥ 2, and θ ∈ [e−2m−1
, 1) of the form ne−2m , n ∈ N. Take

p = 1/θ and θ ∼ 1/m to get

(1− e−1)θθθ(21/θ − 1)θ ≤ 1 +
θ

1− 2e−2m
+

K̃

2mθ
.

Since θ → 0 and 2mθ →∞ as m→∞ this inequality yields 2 ≤ 1, which is
a contradiction. Hence inequality (7.5.2) cannot hold for all p ≥ 2 and all
positive integer n.
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Appendix A

Facts related to Hamilton–Jacobi
equations used in Chapter 5

Below we present some basic properties of Hamilton–Jacobi equations related
to infimum convolution operators with the cost θ(x) = α(x), where α is given
by (5.4.3), which have been exploited in the proof of Lemma 5.4.1. We remark
that all the facts we will rely on are quite standard, however in the literature
they are usually considered under slightly different sets of assumptions, which
makes it difficult to find an off-the-shelf result applicable to our situation. We
will briefly indicate how the reasonings from Chapter 3 of [29] can be modified
to yield the properties we need. Alternatively, as in [38], one could rely on
modification of the results from [36], where the theory of Hamilton–Jacobi
equations is extended to the setting of metric spaces.
Proposition A.0.1. Let C,L be positive constants and let α be defined by
(5.4.3). Assume that f : Rn → R is either bounded from below or L-Lipschitz
and let u : (0,∞)× Rn → R be given by u(t, x) = Qα

t f(x), where

Qα
t f(x) = inf

y∈Rn
{f(y) + tα((x− y)/t)}, t > 0.

Then the following conditions hold.
(a) For every s, t > 0 and every x ∈ Rn, QtQsf(x) = Qt+sf(x).
(b) The function u is Lipschitz on (0,∞)× Rn,
(c) At every point (t, x) ∈ (0,∞)× Rn of differentiability of u, one has

d

dt
u(t, x) + α∗(∇xu(t, x)) = 0,

where α∗ : Rn → R is the Legendre transform of α, given explicitly by
the formula

α∗(s) =

{
C|s|2 for |s| ≤ L,

+∞ for |s| > L.
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Sketch of proof. Let us note that if f is bounded from below or L-Lipschitz,
then Qtf is well defined.

Ad (a). To show the semigroup property one can repeat the argument
from the proof of [29, Chapter 3.3.2, Lemma 1], however in our setting one
needs to work with infima rather then minima.

Ad (b). For fixed t, u is L-Lipschitz as the function of x, as an infimum
of L-Lipschitz functions. Indeed for each y, the function x 7→ tα((x− y)/t) is
L-Lipschitz. As for the Lipschitz property with respect to t, the argument
in the proof of [29, Chapter 3.3.2, Lemma 2] shows that if f is L-Lipschitz,
then for any x,

|u(t, x)− f(x)| ≤Mt,

where M = max|x|≤L α
∗(x) = CL2. Now the Lipschitz condition with respect

to t > 0 (for general f , which may not be L-Lipschitz) follows from the
semigroup property and the fact that Qtf is an L-Lipschitz function of x.

Ad (c). Using again the fact that Qtf is L-Lipschitz, it is enough to
consider the case when so is f . One can then repeat the proof of [29, Chapter
3.3.2, Theorem 5], provided that one can prove that the infimum in the
definition of Qtf is in fact achieved. To this end, it is enough to note that
whenever |y − x| > 2CLt we have, denoting z = x+ 2CLt(y − x)/|x− y|,

f(y) + tα((x− y)/t)

= f(z) + tα((x− z)/t) + (f(y)− f(z)) + tα((x− y)/t)− tα((x− z)/t)

≥ f(z) + tα((x− z)/t)− L|z − y|+ tα((x− y)/t)− tα((x− z)/t)

= f(z) + tα((x− z)/t),

where the inequality holds by the Lipschitz property of f and the last equality
follows from the definition of α (and the fact that z lies on the interval with
endpoints x and y). Thus Qtf(x) = inf |y−x|≤2CLt{f(y) + tα((y − x)/t)} and
the existence of the minimizer follows from compactness and continuity of f
and α.
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