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Abstract

This thesis is concerned with singularities of minimizing harmonic maps into
closed manifolds, with special emphasis on maps into the sphere S?. By defi-
nition, they are maps that minimize the Dirichlet energy E(u) = [ |Vu|?* with
respect to given boundary conditions. Since the 80’s, such maps are known to
be smooth outside a closed set of codimension at least 3, called the singular set;
recently, its codimension 3 Hausdorff measure was shown to be locally finite.

First, we present a regularity theorem for the singular set. For maps into S?,
we show that the singular set is indeed a codimension 3 topological submani-
fold (up to a set of measure zero), thus excluding possible arbitrary gaps in the
singular set. This was previously known only for domains of dimension 4.

Next, we give various extensions of Naber and Valtorta’s discrete Reifenberg
theorem, a general tool in geometric measure theory that yields upper measure
bounds for sets satisfying Reifenberg-type flatness conditions. We also illustrate
the applications in the study of singularities.

Finally, building upon previously known local measure estimates, we study
how the singularities of a minimizer u: 2 — S? depend on its boundary map
© = ulgq. It is shown that the measure of the singular set can be estimated lin-
early in terms of the boundary energy [, IVo|"L, where n = dim 2. More-
over, the singular set is stable (in Wasserstein distance) with respect to /171
perturbations of the boundary map.

Keywords: harmonic maps, singularities, Reifenberg parametrization

AMS Subject Classification: 58E20, 35]J20, 35A20
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Streszczenie

Tematem niniejszej pracy sa osobliwosci minimalizujgcych przeksztatcen har-
monicznych o warto$ciach w zamknietej rozmaitosci, ze szczegdlnym uwzgled-
nieniem przeksztatcen w sfere S?. Z definicji s3 to przeksztalcenia z zadanym
warunkiem brzegowym, minimalizujace energie Dirichleta F(u) = [ |Vul*
Od ponad 30 lat wiadomo, ze przeksztalcenia takie sg gladkie poza pewnym
zbiorem domknigtym kowymiaru co najmniej 3, zwanym zbiorem osobliwym.
Jednak dopiero w ostatnich latach wykazano, ze miara Hausdorffa (kowymi-
aru 3) tego zbioru jest lokalnie skonczona.

Zaczniemy od zbadania regularnoéci zbioru osobliwego. Dla przeksztatcen w S?
dowiedziemy mianowicie, ze zbior osobliwy jest topologiczng podrozmaitoscig
kowymiaru 3 (z doktadnoscia do zbioru miary zero), wykluczajac w ten sposob
mozliwe dziury w zbiorze osobliwym. Taki wynik byt dotychczas znany jedynie
dla dziedzin wymiaru 4.

Nastepnie zaprezentujemy mozliwe uogoélnienia pochodzacego od Nabera i Val-
torty dyskretnego twierdzenia Reifenberga. Sa to ogélne narzedzia z zakresu ge-
ometrycznej teorii miary, pozwalajace na uzyskanie géornych ograniczen na mi-
are zbiorow spetniajacych odpowiednie zalozenia ptaskosci typu Reifenberga.
Omoéwimy tez zastosowanie takich twierdzen do badania osobliwosci.

Na koniec wykorzystamy i wzmocnimy dostepne lokalne oszacowania, by zba-
da¢ zalezno$¢ osobliwosci przeksztaltcenia minimalizujacego u: Q2 — S? od jego
przeksztalcenia brzegowego ¢ = u|sq. Wykazemy, ze miare zbioru osobliwego
mozna oszacowaé w sposob liniowy przez energie brzegows |, 50 V|1, gdzie
n = dim (). Co wigcej, pokazemy stabilnos¢ osobliwosci (w sensie odleglosci
Wassersteina) przy zaburzeniach przeksztatcenia brzegowego w normie W1m—1,
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Chapter 1

Introduction

1.1 Classical theory of harmonic maps

In the greatest generality, our object of study are maps u: M — N between
two Riemannian manifolds that minimize (or are critical points of) the Dirichlet

energy
E(u) ::/ |Vul?,
M

called harmonic maps. More precise definitions will be given in a moment; for
now let us only explain that the size of the differential Vu(x): T, M — T, N is
measured with the Hilbert-Schmidt norm and the integration takes place with
respect to the volume measure on M.

In this dissertation we investigate the regularity properties of such maps, with
special emphasis on the case N' = S* and dim M > 3. As we shall see, har-
monic maps are in general not regular, but their singularities are by now well
understood. The study of their singular sets is the main objective of this work.

For now, let us mention several interesting examples of harmonic maps:



« if M is 1-dimensional, harmonic maps are geodesics on N;

« if A/ = R, harmonic maps are simply harmonic functions on M;

« if M is 2-dimensional, conformal harmonic maps are parametrizations of
minimal surfaces (i.e., critical points of the area functional).

A detailed discussion of the classical theory of (smooth) harmonic maps can be
found in two survey articles by Eells and Lemaire [11, 12].

1.2 Analytic difficulties

The analysis of harmonic maps becomes substantially harder when the domain
has dimension n > 3. To illustrate the difficulties, let us assume that the target
manifold AV C R" is a submanifold of some (possibly high-dimensional) Eu-
clidean space; by Nash’s isometric embedding theorem, this does not affect the
generality of our considerations.

To start with, assume that u: M — N is a critical point of F; this means that
for each perturbation ¢ € C°(M,RY) we have

d

dt li=o
Note that u + t( is not a valid competitor as it takes values outside of NV, and
thus it needs to be projected back onto N by the nearest-point projection .
This Euler-Lagrange equation can be rewritten as

— Ayu = AN (Vu, Vu), (1.2.1)
where Ay is the Laplace-Beltrami operator on M and A? denotes the second
fundamental form of the submanifold N C RY evaluated at u. To be precise,

the right-hand side is to be understood as a sum ) _, AN (94u, O4u) over some
orthonormal basis 9, of T'M.

E(ma(u+tp)) =0.

This dissertation is focused on the special case when M C R" is a bounded flat
domain and N is the standard sphere S?. Then, the equation (1.2.1) takes the
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simple form

—Au = |Vul?u.

In all possible cases of non-flat target manifolds, the quadratic non-linearity
is troublesome. If one assumes that u belongs to the Sobolev space W1? -
which is natural in the context of minimizing £ - then the right-hand side
belongs merely to the space L!, and most standard techniques of regularity
theory cannot be directly applied. Indeed, in higher dimensions the solutions
may be singular:

. ifu € W2 is a weak solution of (1.2.1) and dim M < 2, then u is a smooth
classical solution (Hélein [21]);
« however, if dim M > 3, then u may be discontinuous everywhere (Riviére

[41]).

An example of a singular harmonic map is

T

R"9x|—>ﬂ€8”_l (n > 3).

x
Let us stress that this map is not only a critical point, but also a minimizer
in the sense of Definition 1.3.2 [25]. It is worth mentioning that singularities
appear also in the absence of topological obstructions - i.e., a homotopically
trivial prescribed boundary map ¢: S*! — S"! may give rise to a singular
minimizer u: B" — S [16, 31].

Since full regularity is not available in the case n > 3, one can hope for at
least a partial regularity result, i.e., smoothness outside a small singular set. To
this end, one has to carefully distinguish between different classes of harmonic
maps. Many of the results cited in this introduction also hold in case of so-
called stationary and stable-stationary harmonic maps, but for simplicity we
focus only on minimizing harmonic maps introduced in the next section.

The dichotomy mentioned above — discontinuity on the singular set and smooth-
ness elsewhere — in some sense reduces the usual regularity problems to the

3



study of the singular set. For this reason, from now on we will focus on estimat-
ing its dimension (which in typical situations is n — 3) and size (i.e., Hausdorff
measure), studying its manifold structure and its dependence on the boundary
data.

1.3 Minimizing harmonic maps

From now on, A/ will always be a smooth closed (i.e., compact, without bound-
ary) manifold, isometrically embedded into some Euclidean space R . To sim-
plify the considerations, we will also assume that the maps u: 2 — N under
consideration are defined on a bounded flat domain 2 C R". Since singular
behavior of u is a local phenomenon, most results in this dissertation can be
generalized to a general domain M. The main idea is that by restricting u to
a sufficiently small ball B, (p) C M and rescaling in normal coordinates we
obtain the map

u: By = N, u(z) = u(exp,(rz))

defined on the unit ball with Riemannian metric arbitrarily close to the Eu-
clidean metric. The differences in analysis are of technical nature - e.g., the
monotonicity formula (2.1.1) becomes an almost-monotonicity formula. The
interested reader can find a detailed explanation in [37] and [47, Sec. 8].

To discuss partial regularity results by Schoen and Uhlenbeck [43, 44, 45], we
first need to precisely define the class of harmonic maps we consider.

Definition 1.3.1. If Q@ C R” is a bounded domain and N’ C RY¥ is a closed
smooth submanifold, then we define the class of Sobolev maps W12(Q2, \) by

W2 N) = {ue W"(Q,RY) : u(z) € N forae. z € Q}.
Note that this is a weakly closed subset, but not a linear subspace of W12(2, R").

Definition 1.3.2. Let u € W12(Q, N).



. if E(u) < E(v) for each v € W1?(Q, N') with the same trace on 9 as u,
then v is called an energy minimizer or a minimizing harmonic map in €2;

« if ) can be covered by a family of balls in which u is minimizing, then u
is called a local energy minimizer or a locally minimizing harmonic map.

Finally, having in mind partial regularity, we adopt the following definition.

Definition 1.3.3. Let u: 2 — N be a (locally) minimizing harmonic map.
A point x € () is called regular if u has a representative continuous at z, other-
wise x is singular. We denote the set of all singular points by sing w.

Remark 1.3.4. Equivalently, a point z € (2 is regular if u is smooth on some
neighborhood of x (see the theorem below).

The following partial regularity theorem summarizes the results obtained by
Schoen and Uhlenbeck in the 1980’s for the interior case [43, 45] and the bound-
ary case [44].

Theorem 1.3.5 ([43, 44, 45]). Let u: Q@ — N be a minimizing harmonic map
in a bounded domain ) C R". Then singu C (2 is a closed subset of Hausdorff

dimension at most n — 3, and u is smooth in € \ sing u. Moreover,

e if both the boundary 02 and the boundary map u|gq are sufficiently smooth
(CY« is sufficient), then u is smooth on some neighborhood of 9);
e in casen = 3, sing u is discrete.

In particular, if both 02 and u|q are sufficiently smooth and n = 3, the singular
set sing u consists of finitely many points. The higher-dimensional counterpart
of this statement — that %" 3(singu) < oo — had been open for over 30 years
and has been recently proved by Naber and Valtorta [37]. This recent break-
through and the new methods behind it were one of the reasons I have chosen
this topic for my doctoral dissertation.

One of the main results of Naber and Valtorta’s article from 2017 [37] is the
following. Further discussion of this work can be found in Chapter 4.
5



Theorem 1.3.6. If u: By, (p) — N is a locally minimizing harmonic map, then
sing u is a rectifiable (n — 3)-dimensional set. Moreover, its measure in a smaller
ball H"3(singu N B,.(p)) is bounded by a constant dependent on n, N and the
energy r>=" s, V%

In general the (n — 3)-dimensional bounds on the singular set cannot be im-
proved. A typical singularity of a minimizing map into S? looks like

R? x R"™3 5 (2,9) — z/|z] € S?,

so it has an (n — 3)-dimensional plane as its singular set (see Corollary 2.4.2).

These are the main results available for a general smooth closed target manifold
N. A number of other interesting properties were shown for special classes of
target manifolds, especially for the standard sphere S

1.4 Results for special target manifolds

There are many results for special classes of target manifolds — real analytic
manifolds [47], simply-connected manifolds [17], symmetric spaces [20] — or
simply for the target manifold ' = S?.

In addition to its intrinsic mathematical interest, this special case also appears in
some physical models. The molecules of liquid crystals are small but relatively
long, and their configuration minimizes an energy that penalizes changes of
direction. Taking the averaged direction of molecules at each point, we obtain
amap u: 2 — RP? that minimizes a functional closely resembling the Dirich-
let energy F(u). Singularities of harmonic maps are related to defects of liquid
crystals, i.e., points where the direction of molecules changes in a discontin-
uous way. Replacing RP? (the space of directions) by S? and simplifying the
functional to £, we can still capture the main phenomena. An interested reader
can be referred to [1] and [14].



Here, I focus on the case A' = S? and give three results of this type. A large part
of the dissertation is dedicated to these three theorems and their generalizations
to higher dimensional domains. Possible generalizations to a larger class of
target manifolds will also be discussed.

In the special case of maps u: B* — S?, Hardt and Lin [19] obtained the fol-
lowing remarkable structure result.

Theorem 1.4.1. The singular set of an energy minimizer u: B* — S? is locally
a union of a finite set and a finite family of Holder continuous closed curves with
a finite number of crossings.

The same claim was obtained also for maps u: B> — S* (Lin-Wang [26]). To
the author’s knowledge, these are the only two cases where sing u was shown
to be essentially a manifold.

Let us remark here that the classification of tangent maps from [26] makes it
possible to generalize the main results of this dissertation to the case of maps
into S?. For clarity, we focus on S? and refer the interested reader to [26] and
[37, Sec. 1.3], where the necessary modifications are described.

In dimension n = 3, when minimizing harmonic maps have only isolated singu-
larities, further refinements of Schoen and Uhlenbeck’s results were obtained.

Hardt and Lin [18] also showed that the singularities are stable under Lipschitz
perturbations of the boundary map.

Theorem 1.4.2. Let Q) C R? be a bounded smooth domain and u: Q — S? be
a minimizing harmonic map with Lipschitz continuous boundary data ¢ := ulgq.
If uy, is a sequence of minimizers with corresponding boundary maps ;. and

©r — ¢ in Lip(0Q, S?), up — u in WH(Q, §?),

then for large k, uj has the same number of singularities as u, and sing uy con-
verges to sing u (say, with respect to Hausdorff distance).

7



Even more, there exist bi-Lipschitz transformations 1y, of ) mapping singu to
sing uy and such that ||n; — id ||Liyp, — 0 and ||u — ug o n;||cs — 0 for some small
g > 0.

Almgren and Lieb estimated the number of singularities in terms of the bound-
ary map [1].

Theorem 1.4.3. Let ) C R? be a bounded smooth domain and u: 0 — S? be
a minimizing harmonic map with boundary data ¢ € W12(9Q, N'). Then

4 sing u < C(Q) /a Vo) di)

Note that a simple non-linear estimate # sing u < C(€2, ||¢||Lip) follows already
from Hardt and Lin’s Theorem 1.4.2 (see [18, Sec. 4]). However, this linear es-
timate only uses the 1¥/12-norm of the boundary map, which does not control
the distance of singularities from the boundary.

1.5 Discussion of results

General goals

Considering the whole theory of harmonic maps, a number of fundamental
questions has already been answered. For low dimensions (n = 1,2), this
theory is classical and the solutions are smooth, while for higher dimensions
(n > 3) one needs to study minimizing maps (instead of merely critical points)
and singularities appear. Again, the case n = 3 (when singularities are iso-
lated) is very well understood, while for n > 3 (when singularities are (n — 3)-
dimensional) a major breakthrough took place in the last 5 years. For special
cases of target manifolds, especially for S?, some further results are available.
They rely heavily on the classification of tangent maps into S* (Theorem 2.4.1),
carried out by Brezis, Coron and Lieb [4].

8



This discussion motivates the following general questions, which I aim to ad-
dress in this disertation.

« Do Theorems 1.4.1, 1.4.2, 1.4.3 generalize to domains of an arbitrary di-
mension n > 37

« Can similar results be shown for other target manifolds? What special
properties of minimizing harmonic maps into S? are crucial?

« In case the singular set is proved to be a topological manifold (as in Theo-
rem 1.4.1), how regular is it?

Structure of the dissertation

Chapters 1, 2, 4 have an introductory character, and only Sections 4.2, 4.3 there
include new results or proofs. The author’s results from [33] are presented
in Chapter 3, while Chapter 5 is based on the article published in Annales
Academiea Scientiarum Fennicee Mathematica [32]. Chapters 6 and 7 discuss
the recent results obtained in collaboration with Katarzyna Mazowiecka and
Armin Schikorra [30] (see also [29]).

Let us now discuss the contents of this dissertation in more detail.

In the course of the proofs, we shall use — among others — many tools developed
in the 1980’s (most of them already in [43]), such as the e-regularity theorem,
monotonicity formula and strong W !2-compactness of the class of minimizing
maps. These are introduced in Chapter 2. The notion of tangent maps — which
describe the infinitesimal behavior of minimizing harmonic maps, especially
around a singular point - is discussed with special care.

Chapter 3 generalizes Theorem 1.4.1 to higher-dimensional domains; it is based
on the author’s work [33]. The main result (Corollary 3.1.5) is the following. For

9



any minimizing map u: € — S? defined on 2 C R", one can distinguish the
top-dimensional part of the singular set sing, u C sing u (see (2.3.1)), which is
a subset of full " 3-measure. Then, sing, u is proved to be an open subset
and a topological (n — 3)-dimensional manifold of Holder class C%" for every

v € (0,1).

In order to extract the topological obstruction responsible for preventing gaps
in the singular set of maps into S?, we study properties of possible singulari-
ties of maps into an arbitrary closed Riemannian manifold . We distinguish
particular homotopy classes of tangent maps R® — A/ (called here indecompos-
able classes, see Definition 3.2.4), with which we are able to prove an analogous
result (see Theorem 3.1.3 for a precise statement). Consider a minimizing map
u: Q — N and an indecomposable homotopy class & € my(N'). Then the set
of points where u has a singularity of type o and energy density close to optimal
forms an open subset of sing u and a topological (n — 3)-dimensional manifold
of Holder class C°7 for some v > 0.

This formulation might seem complicated, but it sheds some light on the an-
alytic and topological properties of singularities responsible for regularity of
the singular set. In the particular case of N' = S?, Theorem 2.4.1 implies that
almost all singularities have the same indecomposable homotopy type and op-
timal energy density, and Corollary 3.1.5 follows.

The important contributions of Naber and Valtorta [37] are crucial to all further
developments described here, thus the whole Chapter 4 is devoted to them. Let
us remark that the three ingredients needed to prove the measure bound in
Theorem 1.3.6 are the L?-approximation theorem (Theorem 4.1.5), the discrete
Reifenberg theorem (Theorem 4.1.3) and an appropriate covering theorem (see
[37, Lemma 8.1]).

In addition to the estimates on the whole singular set (as in Theorem 1.3.6),
bounds on its (n — 4)-dimensional part are also available (see Corollary 4.2.2).
I would like to thank Aaron Naber for pointing out that the results of Chapter

10



3 can be combined with [37] in this way.

To give a flavor of Naber and Valtorta’s methods, we investigate the special case
considered in Chapter 3 of a minimizing map u: B" — S? close to its tangent
map (i.e., 0-flat in the sense of Definition 3.3.3). In Theorem 4.3.1 (a very weak
version of their main result), we show that in this case the original proof sim-
plifies significantly, and the measure bound on sing u can be obtained without
a sophisticated covering argument. This also emphasizes the importance of the
discrete Reifenberg theorem.

Chapter 5 discusses various extensions of the discrete Reifenberg theorem from
[37]; these were published in the author’s paper [32]. Theorems of this kind
have wide applicability in the study of singular sets in various geometric prob-
lems [36, 22, 5], and in particular to singularities of minimizing harmonic maps
[37]. They are also interesting in themselves as general results in geometric
measure theory.

The main result of this chapter is phrased in terms of so called Jones’ height ex-
cess numbers. Fixing a Radon measure ; on R" and some dimension 0 < £ < n,
the quantity

5272(3:, ) :=inf {r_(k“LQ) / d*(y, V) du(y) : V is a k-dim affine plane}
B, (z)

measures how far pu B, (x) is from being supported on some k-dimensional
plane (d(-, V') denotes the distance to V). The main result of this chapter (The-
orem 5.1.1) states that (under some technical assumptions on p) the condition

—k/ / 5M2 Y, S du(y) < J  on each ball B, (x)

implies the bound x(B,(z)) < C(n)(1 4 J?)r* on every ball.

These technical assumptions are automatically satisfied if p is the Hausdorft
measure on some k-dimensional set (i.e., u = H*LS) or if it is a discrete mea-
sure j1 =) . w0, associated to some family {B, (x;)} of disjoint balls. The

11



name discrete Reifenberg theorem comes from the fact that the proof follows by
a careful application of the classical Reifenberg construction [40], first in the
case when (i is a discrete measure. Indeed, a version for more general measures
(Theorem 5.5.1, Remark 5.5.3) follows easily from the discrete case. Simple mod-
ifications allow also for the use of 3, ,-numbers with ¢ > 2 (which involve the
distance d(-, V') to the power ¢), and for weakened assumptions (Theorem 5.5.4).
I remark here that Edelen, Naber and Valtorta [9, 10] later published even more
general versions of Theorem 5.1.1 (see also the lecture notes [35]).

The last two chapters describe the results of my joint work with Katarzyna Ma-
zowiecka and Armin Schikorra [30]. The main result of Chapter 6 is Theorem
6.1.1, a higher-dimensional counterpart of Almgren and Lieb’s Theorem 1.4.3.
If O C R" is a bounded smooth domain and u:  — S? is a minimizing map

with boundary data ¢ € W1"1(9Q, S?), then
H" 3 (sing u) < C(Q)/ (Voo (z) "t dH" ().
o0

As in the case n = 3, a non-linear estimate H" ?(singu) < C(, ||¢|lLip) is
much easier to obtain (see Theorem 6.1.3). Thus, the power of our result lies
in the linear dependence on the energy, and in the use of W1" l-norm of the
boundary map, which again does not control the distance of singularities from
the boundary.

The strategy of the proof is close to the original, based on refined boundary reg-
ularity results of the following type: if a minimizer v: B — S? has a boundary
map : B?' — S? with small energy, then some region of B is free of sin-
gularities. However, the crucial ingredient here is the hot spot lemma due to
Almgren and Lieb [1, Thm. 2.4], generalized to higher dimensions (Theorem
6.2.2). It yields the same regularity conclusion with a weakened assumption -
we only assume that the energy of ¢ on B? ! \ B, is small, while its behavior
on the small ball B, (called the hot spot) can be arbitrarily wild.

The original paper of Almgren and Lieb [1] relies on the classification of singu-
larities of maps into S? (Theorem 2.4.1) to show a lower bound on the distance

12



between two singularities. Replacing this bound by Naber and Valtorta’s The-
orem 1.3.6, we are able to obtain a similar result in an arbitrary dimension.
A similar strategy was used in the context of minimal surfaces by Edelen in [8],
where he combined interior measure bounds due to Naber and Valtorta [36]
with boundary regularity results to obtain global bounds on the singular set.

Moreover, the only special property of S? needed in course of the proof is the
extension property (Theorem 2.5.1), which can be shown for a wider class of
target manifolds. Thus, the final result holds for maps into any closed simply
connected Riemannian manifold V.

Finally, a higher-dimensional counterpart of Hardt and Lin’s stability theorem
is proved in Chapter 7 (Theorem 7.1.1). With the same assumptions on €2, © and
© as above, if uy, is a sequence of minimizers with boundary data ¢ and

up, = win W, ¢ — @ in WH1

then
_3 . d 3 .
H"3sing uy, - H" 3Lsing u,

where dyy denotes the 1-Wasserstein distance (7.1.1) between Hausdorff mea-
sures on singular sets of u;, and u. In particular, the total measure H" > (sing u;,)
tends to H" 3 (sing ug).

Note that this recovers most of Hardt and Lin’s Theorem 1.4.2 in the case n = 3
(except for the diffeomorphism statement). Indeed, H° is simply the counting
measure, so Wasserstein convergence implies that # singu; = #singu for
large k£ and that sing u;, converges to sing v with respect to Hausdorff distance.
However, generalizing the diffeomorphism statement to higher dimensions is
very hard — even the bi-Lipschitz regularity of sing, u is an open problem for
n > 3.

As in the original paper [18], the heart of the argument lies in the local case.
If we restrict u to a small enough ball around a singularity, it is close to its
tangent map, and after rescaling the problem reduces to the following (which
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is the content of Lemma 7.4.1). If u: Bgy — S? is close enough to its tangent
map (again, J-flat in the sense of Definition 3.3.3), then

(1 —&)wp_z < H" 3 (singu N By) < (1 +€)w,_3.

This means that the measure of sing v N B is close to the measure of the sin-
gular set of its tangent map in By, which is an (n — 3)-dimensional disc. The
proof is very similar to that of Theorem 4.3.1 and follows the lines of Naber and
Valtorta’s work, only that Theorem 4.1.4 (rectifiable Reifenberg) is used instead
of Theorem 4.1.3 (discrete Reifenberg). This time however, the results of Chap-
ter 3 are essential to the proof of the sharp measure estimate above. Therefore,
a generalization to a larger class of target manifolds seems challenging.

However, it should be possible to further refine the norm of the boundary map in
both Theorem 6.1.1 and Theorem 1.4.2. Our work in progress involves replacing
the W1"~1(9Q) norm in these two theorems by W1?(9Q) with any p > 2, using
more sophisticated geometric tools. As examples in [31] show, both results fail
in the case p < 2.
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Chapter 2

Basic properties of minimizing
harmonic maps

This chapter introduces most notions and results needed in the sequel. These
mostly come from the seminal work of Schoen and Uhlenbeck [43], but the
presentation here mostly follows Simon’s lecture notes [48]. In what follows,
u: B" — N is an energy minimizing map into a closed Riemannian manifold

N.

2.1 Regularity of energy minimizers

A central object in the study of singularities is the rescaled energy
Ou(x, 1) = 7"2_”/ Vul? for B,(z) C By,
B, (z)

which can be shown to be monotone in 7:

. . 2
D6,(z,r) = 2/ Vu-{y — )| > 0. (2.1.1)
oB.(zx) |y — |

For the sake of exposition, we show only a weaker version of this formula.
Choosing a competitor v(z) = u(r - %) we see that v = w on 0B, and
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[5 IVv]? = L5 [ |Vrul?, where Vyu denotes the differential restricted to
directions tangent to 0B,. It follows from minimality of u that

,
[ wap <t [ v
B, n — OB,

thus  20,(z,r) = 7“2_”/ IVul* — (n — 2)7“1_”/ |Vul?
OB, B,

27“2_”/ \VU\Q—TQ_”/ IV rul?
OB, OB,

[ e
oB, |y — x|

A refined reasoning based on the so-called stationary equation shows that the
derivative of 0, (z, r) is exactly twice the right-hand side; the proof can be found
in [48, Sec. 2.4]. Either way, it is evident that 0, (x, r) is constant in r if and only
if u is a homogeneous (i.e., radially constant) map.

The monotonicity formula (2.1.1) enables us to define the energy density at z:
0u(x,0) :=lim 6, (x, ),
r—0

which is by definition an upper semicontinuous function (in both x € B" and
u € Wh?) [48, 2.11]. Obviously, 8, (x,0) = 0 at regular points.

The main regularity statement of [43] is the following e-regularity theorem:

there is e(n, N') > 0 s.t. 0,(z,2r) < e = wis smoothon B,.(z), (2.1.2)
in particular 0,(x,0) < € = x ¢ sing u.

We also note two compactness theorems for a sequence uy, of energy minimizers
in )

o if uy, — uwin WH%(Q), then u is an energy minimizer in any subdomain
Q) € Q and the convergence is actually locally strong in W12(Q) [27]
(see [48, Sec. 2.9]),
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e if upy — win W12(Q2), then the convergence is uniform on compact sets
disjoint from sing u [43, Proposition 4.6].

As a historical note, let us mention that the first statement was proved by Luck-
haus a few years after Schoen and Uhlenbeck’s work. Its use significantly sim-
plifies the analysis, even if it could be avoided.

It follows from upper semicontinuity and e-regularity that the singular set of
a minimizer u: 0 — A is relatively closed in 2. The W !2-compactness theo-
rem above yields even more for a sequence of minimizers wy:

yp € singuy, up, — uwin W2y, -y =y € singu. (2.1.3)

2.2 Tangent maps

To study the infinitesimal behavior of w at a singular point x, we introduce the
notion of tangent maps. It is a close analogue of tangent cones used to describe
singularities of minimal surfaces and other possibly non-smooth geometric ob-
jects.

Given an energy minimizer v: B" — AN and a point + € B", consider the
family of rescaled maps u,(y) = u(z + ry). By the results from the previous
section (monotonicity formula and compactness of minimizers), each sequence
L2(R™) to some local

energy minimizer ¢, called a tangent map of u at x (possibly dependent on the

r; — 0 has a subsequence for which u,, converges in )

choice of the subsequence, and thus non-unique). By monotonicity formula,
this limit map is homogeneous, i.e., p(Az) = @(z) for al A > 0, z € R".
Moreover, the energy of ¢ is consistent with the energy density of u in the
sense that 0, (x,0) = 0,(0,r) for any r > 0.

Example 2.2.1. (a) If zis aregular point, then evidently every tangent map ¢
is constant, mapping R" to the point u(x) € N. By e-regularity theorem
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(2.1.2), the reverse implication is also true — if « has a constant tangent
map at x, then 6,(z,0) = 0 and u is smooth around z.

(b) The map u: B* — S? given by u(z) = /|| is energy minimizing. Since
it is homogeneous, u is its own (and unique) tangent map at 0.

For a homogeneous energy minimizer ¢: R” — N, the energy density 6,,(y, 0)
is maximal at y = 0; moreover, equality 6,(y) = 6,(0) at some other point y
leads to higher symmetry: p(x +ty) = ¢(z) forallt € R, 2 € R". Let S(¢) be
defined by

S(ip)={y e R":0,(y) =0,(0)}.
Then S(¢p) is a linear subspace of R" describing the symmetries of ¢:

o(x +vy) =p(x) forallz € R" ye S(p).

For non-constant ¢, we have S(p) C sing ¢. If dim S(p) = n — 3, we note that
this inclusion is necessarily an equality.
Since the symmetries described above will play an important role later, we adopt

the following definition (see [37, Def. 1.1]).

Definition 2.2.2. A map ¢: R" — N is symmetric with respect to a k-dimen-
sional linear plane V' C R" if it is homogeneous (p(Az) = ¢(x) for A > 0 and
r € R") and p(x+y) = ¢(x) forally € V and z € R". Itis called k-symmetric
if any such V' exists; the space of all such functions will be denoted by sym,, ;..

2.3 Top-dimensional part of the singular set

If u is an energy minimizer, for each 7 = 0,1,2,...,n — 1 we define

S; = {y € singu : dim S(p) < j for all tangent maps ¢ of u at y}
= {y € singu : no tangent map ¢ of v at y is (j + 1)-symmetric} ,
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which leads to the classical stratification of the singular set

S5HCS5C...CS,3=5,9=.29,1=singu.

It is known [43] that each S; has Hausdorff dimension at most j, in particular

dimg singu < n — 3.

Because of this, we are mostly interested in the top-dimensional part of the
singular set:

sing* U = Sn_g \ Sn_4 (2.3.1)
= {y € singu : dim S(p) = n — 3 for some tangent map ¢ of u at y} .

Note that
dimg (singu \ sing, u) < n — 4.

Definition 2.3.1. Following [48], we shall call any homogeneous energy min-
imizing ¢: R" — N with dim S(p) = n — 3 (i.e., (n — 3)-symmetric) a homo-
geneous cylindrical map (abbreviated HCM).

2.4 Classification of tangent maps into S*

For maps into S?, all possible homogeneous minimizers ¢ : R®* — S? were clas-
sified by Brezis, Coron and Lieb [4].

Theorem 2.4.1 ([4, Thm. 7.1, 7.3, 7.4]). All homogeneous locally minimizing
harmonic maps o: R? — S? take the form

for some linear isometry q of R3.
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Note that fBl |V|* = 87 does not depend on the choice of g, in particular the
energy density 0, (x,0) can take only two values: 0 at regular points and 87 at
singular points.

In higher dimensional domains, a full classification of tangent maps is not avail-
able, but one can at least describe all HCMs ((n — 3)-symmetric minimizers);
they are responsible for 7"~ 3-almost all singularities. This is done by combin-
ing Theorem 2.4.1 with a simple but important observation due to Hardt and
Lin [19, Lemma 2.1].

Corollary 2.4.2. The map

R? x R 5 (2,y) ——s ‘SE—‘ e’ (2.4.1)
x
is the only locally minimizing (n — 3)-symmetric harmonic map from R™ to S?,
up to linear isometries of R". That is, any such map takes the form WV o q for some
linear isometry q of R".

Its energy density will be denoted by

0:= [ |VV|*dz. (2.4.2)
B,

As before, we may observe that if u: ) — S? is a minimizing harmonic map in
2 C R" and z € sing, u, then 0,(z,0) = O.

2.5 Uniform boundedness of minimizers

The last two sections gather results on boundary behavior of minimizers. For
convenience, we denote the upper half-space by R} = {z € R" : z,, > 0}, and
the upper half-ball by B;" = B, N R’}.. For any r > 0 we write 7, = B, N OR"}
for the flat part and S;" = 0B, NR"} for the curved part of the boundary of the
half ball B
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The following extension property of maps into S? is crucial in establishing The-
orem 6.1.1. A proof can be found in [15].

Theorem 2.5.1 (Extension Property). Let {2 C R" be a bounded domain and

letv € WH2(Q,R3) withv(z) € S? for ae. ¥ € O). Then there exists a map

u e WH(Q,S?),

Yo =]
09 o9

such that

|Vu| 2 < C ||Vl 120

with a dimensional constant C'(n) > 0.

Remark 2.5.2. As shown in [17], an analogous statement holds for any simply
connected manifold AV in place of S*.

We obtain the following as a corollary of Theorem 2.5.1 (see [29, Sec. 3]). We re-
mark here that a similar argument works for domains close to Bi’ (i.e., bounded
by a C? graph with small constant). For clarity, we focus on the flat boundary
case.

Corollary 2.5.3. Ifu: B, — S? is a minimizing harmonic map, then the follow-
ing estimate holds

HVUHLQ(BT) S \/TTHVTUHLQ(aBT)- (2.5.1)

Ifu: B — S? is a minimizing harmonic map with u = ¢ on the flat part of the
boundary T, then the following estimate holds

HVUHB(Bi) 5 \/TTHVTUHLZ(sj) + TﬂT_lHVgOHp(TT). (2.5.2)

Sketch of proof. Consider the first statement with r = 1. The square root comes
from interpolation — since ||ul|~ = 1, we have [u]y12208,) S V/IIVullz208,)-
By the trace theorem, there exists an extension v € W1?(By,R?) such that
IVl 2,y S [ulwrzz(s,)- By the extension property, we can actually take v in

the space W1?(B,S?), and the claim follows from energy comparison.
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The same reasoning works on the half-ball B{, and the general case follows by
rescaling. []

One of the main consequences is the following - slightly surprising - result.

Theorem 2.5.4 (Uniform Boundedness of Minimizers). Letu € W12(Br(0),S?)
be a minimizing harmonic map. Then for anyr < R,

7“2_”/ Vul*dz < C(n) i :
B,(0) K

- T

where C' is an absolute constant.

Also, letu € W2(B3 (0),S?) be a minimizing harmonic map withu =  on the
flat part of the boundary T5,. Then

[ vade <€) (140 [Vl
B} (0)

Proof. We focus on the boundary estimate, which is more delicate. In the ab-
sence of the boundary term, the calculations are more straightforward and one
easily obtains the more precise asymptotics.

Denote D(p) := ||Vu\|L2 BY) and A := r%\\V¢\\L2(T2T). Observing that D' (p) =

| Vul? 12(5;) We can restate Corollary 2.5.3 as the inequality

D(p) < C (pn;\/D’(p) + A) for 0 < p < 2r.

Since our aim is an estimate D(r) < r"~2+ A, we may assume that D(r) > 2C' A
with C' as above. Then

D(p) <2Cp= 7 D'(p) forr < p < 2r.
>

Rewriting this as the differential inequality (—D(p)~!)’ > 4C~2p!~" and inte-

grating, we obtain

2r
D(r)! = D(2r) ! > 402 / P dp.
The final claim now follows from D(2r)~! > 0. ]
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2.6 Boundary regularity

All of the boundary regularity statements were already present (sometimes im-
plicitly) in Almgren and Lieb’s paper [1]. Very similar results (usually with
stronger assumptions on the boundary map) can be found in the literature, and
the necessary modifications in our case are minor. A discussion of these mod-
ification can be found in [29, 30]; here we gather all the necessary results and
briefly sketch the main ideas.

Recall that a weakly convergent sequence of minimizers is actually strongly
convergent in compactly contained subdomain. However, global estimates re-
quire convergence on a domain that reaches the boundary; to this end, one
additionally needs to assume convergence of the boundary map (see [34]).

Theorem 2.6.1 (strong convergence of minimizers at the boundary). Consider
a sequence of minimizing harmonic maps u; € Wh?(B*,S?) and denote their
traces ©; := u;|1,. Assume additionally that @; converges to o in W12(TY). Then,
up to taking a subsequence, we find u: BT — S? such that u; — u strongly in
W12(BF,S?) foreveryr € (0,1). Moreover, u is a minimizing harmonic map in
each such ball B,

Remark 2.6.2. A technical modification of this reasoning allows us to con-
sider in Theorem 2.6.1 a sequence of maps u; defined on converging Lipschitz
domains with non-flat boundaries. This will be used in Theorem 6.2.4. For the
sake of exposition, the author chose to downplay the role of curved boundaries.

As a first corollary of the compactness result above, we have

Theorem 2.6.3 (interior regularity for almost constant boundary data). For
each bounded smooth domain 2 C R" and each o > 0, there is (€2,0) > 0
so that the following holds. If u € W1%(Q,S?) is a minimizing harmonic map
with trace v := u|sq and

/ Vel dH <
o)
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then u is smooth in the interior region {x € ) : dist(z,02) > o}.

Proof. Assume this is not true — there is a sequence of minimizers uy, satisfying
Jo0 IV@r["™1 — 0, but with a singularity ), € singuy, in the interior region.
By interior compactness, we may assume that u;, — u locally in W?(£2), and
yx. tends to some y € sing u in the interior region.

To reach a contradiction, we also need convergence at the boundary. According
to Remark 2.6.2, we can apply Theorem 2.6.1 on €2, as without loss of generality
¢ tends to a constant. But then u is a minimizer with constant boundary con-
ditions, thus u is constant and in particular smooth in the interior region. [

The first step towards to boundary regularity theory is the following uniform
boundary regularity theorem for constant boundary data (see [1, Theorem 1.10]).
The other results can be derived from it by a contradiction argument.

Theorem 2.6.4 (Boundary regularity). There is \(n) > 0 such that the following
holds. Ifu € W12(B{,S?) is a minimizer and its trace  on Ty is constant, then
u is smooth in a small neighborhood T} ;5 X (0, \) of the boundary.

Corollary 2.6.5. There is another constant (n) > 0 such that the smallness
condition le |V ?| < € implies smoothness of u on an even smaller neighborhood

T1/2 X ()\/2, )\)

Again, a similar statement holds for a general domain with flat enough boundary.

Proof. This follows from Theorem 2.6.4 by a contradiction argument based on
Theorem 2.6.1 (see the proof of Theorem 2.6.3). The necessity of restricting to
T2 x (A/2, \) comes from the fact that otherwise the sequence of singularities
may converge to a boundary point. [

Theorem 2.6.6 (Uniform boundary regularity for singular boundary data). Let
2 C R" be a bounded smooth domain. Then there are constants o (depending
on ), €, A (as in Corollary 2.6.5) such that the following holds. Ifu: Q — S? is
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a minimizing harmonic map with the trace p on 052, which satisfies the smallness
condition
/ Vo HdH" < e
Tp(p)
for some p € 0S) and p < o, then u is smooth in BAp(p) N €.

Sketch of proof. We choose o(2) > 0 so that 02 is flat enough in balls of size
p < o (after rescaling to unit size). Applying Corollary 2.6.5 on B,(p), we
obtain regularity in a small strip. Thanks to scaling-invariance of the W71
norm on the boundary, the smallness condition also holds on all smaller balls.
The final claim now follows by a covering argument. []
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Chapter 3

Holder regularity of the singular set

3.1 Introduction

Singularities of energy minimizing harmonic maps

As already mentioned, (locally) minimizing harmonic maps between manifolds
may have singularities if the domain dimension is 3 or higher. The most well-
known example is the map

R® x R"™ 3 (z,y) —2 z/lx| € S°.

Since all the considerations in this chapter are local in nature, we shall drop the
word locally.

In general, any energy minimizer u is smooth outside the closed singular set
sing u of Hausdorft dimension n—3 or less, n being the dimension of the domain
(Schoen, Uhlenbeck [43, 45]). The phenomenon of singularities is now well-
understood in dimension 3, when singularities form a discrete set. In recent
years, there has been a substantial progress concerning the case n > 4. Naber
and Valtorta [37] have proved that the singular set has locally finite (n — 3)-
dimensional Hausdorff measure and is (n — 3)-rectifiable, i.e., can be essentially
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covered by countably many Lipschitz images of R"~3; the latter was already
known (due to Simon [47]) in the case when the target manifold is real-analytic.

The results cited above are mostly concerned with the size of the singular set,
but do not imply lower bounds on the singular set. In particular, the possibility
that the singular set is an arbitrary subset of an (n — 3)-dimensional manifold
(with many small gaps) is not excluded by [37, 43, 45, 47].

Lower bounds on the size are indeed possible in the presence of a topological
obstruction; the following example is simple but instructive.

Example 3.1.1. Consider the smooth boundary map ¢: S? x St — S? given by
¢(z,y) = x and (some) u: B3 x S' — S? minimizing the energy in the class of
maps equal to ¢ on the boundary. Restricting u to a slice B x {y} and applying
Brouwer’s theorem, we see that each such slice contains a singular point. This
shows that H'(singu) > H'(S') = 27. In this particular case one can actually
prove that u(x,y) = x/|x|, but the presented reasoning applies also to every
¢': S? x St — S? homotopic to .

In the special case of maps u: B* — S?, Hardt and Lin [19] obtained the fol-
lowing remarkable result.

Theorem 3.1.2. The singular set of an energy minimizer u: B* — S? is locally
a union of a finite set and a finite family of Holder continuous closed curves with
a finite number of crossings.

The same claim was obtained also for maps u: B® — S? (Lin-Wang [26]). To
the author’s knowledge, these are the only two cases where sing u was shown
to be essentially a manifold.

The above theorem relies on the classification of tangent maps from R? into S?
carried out by Brezis, Coron and Lieb [4] (see Theorem 2.4.1); for S?, a similar
classification was obtained by Nakajima [39]. These maps describe the infinites-
imal behavior of u at a typical point of sing u.
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Main results

In this chapter, we aim to extract the topological obstruction responsible for
preventing gaps in the singular set of maps into S*. To this end, we distinguish
particular homotopy classes of tangent maps R® — A/ (called here indecompos-
able classes) for any closed Riemannian manifold \.

To each homotopy class & € 7y (N) we assign its lowest energy level O(«) and
call & indecomposable if O(a) < 0o and « cannot be represented as a sum of
homotopy classes «; € mo(N) with strictly smaller energy levels ©(«;). We
then restrict our attention to singularites with fixed topological type o — we
define sing,, u to be the set of points at which some tangent map of u has type
a. Rigorous definitions are given in Section 3.2.

Another goal is to generalize the result of Hardt and Lin [19] to higher dimen-
sional domains. The difficulty lies in the fact that the singular set is stratified
— it decomposes into parts of different dimensions. For u: B* — S?, there are
only two strata: one is formed by Hélder continuous curves and the other by
their crossing points and a finite number of additional isolated points. In the
theorem below, we were only able to study the top-dimensional part sing, u of
the singular set. Again, the necessary notions are introduced in Section 2.2.

For simplicity, we only consider the standard Euclidean ball B" as the domain,
but the results hold true for any manifold. This is due to the fact that we
only consider the infinitesimal behavior of maps. A detailed explanation can
be found in [37] and [47, Sec. 8].

Theorem 3.1.3. Let u: B" — N be an energy minimizing map into a closed
Riemannian manifold N, o € 7o(N') be an indecomposable homotopy class, and
O(«) be its lowest energy level. Then for each exponent 0 < v < 1 there is
d(v,n, a, N') > 0 such that the set

{:U € sing, u : lim 7“2_”/ Vul? < O(a) + 5}
r—0 BT({L‘)
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forms an open subset of sing u and it is a topological (n — 3)-dimensional manifold
of Holder class C°7.

In the case when N is a real-analytic manifold, Simon [47, Lemma 4.3] showed
that the set of possible energy densities lim,_, r2n fBr(x) \Vu|2 is discrete. This
allows us to slightly strenghten the statement above. The same conclusion holds
also if \V satisfies the integrability assumption introduced in [48, Ch. 3.13].

Corollary 3.1.4. If u: B" — N is an energy minimizing map into a real-
analytic manifold N and o € mo(N) is an indecomposable homotopy class, then

{x € sing, u : lim 7“2_”/ Vu|* = @(a)}
r—0 BT(:L‘)

forms an open subset of sing u and it is a topological (n— 3)-dimensional manifold
of Holder class C*7 with any 0 < v < 1.

Specializing to the case NV = S? and recalling the classification of tangent maps
[4], we obtain a partial generalization of Theorem 3.1.2 [19] to arbitrary dimen-
sions:

Corollary 3.1.5. If u: B" — S? is an energy minimizing map, then the top-
dimensional part sing, u forms an open subset of singu and it is a topological
(n — 3)-dimensional manifold of Holder class C%7 with any 0 < v < 1.

An outline

Section 3.2 starts with the definition of indecomposable homotopy classes of
maps from S? into A. Since Theorem 3.1.3 only concerns the singularities
of indecomposable types, it is worthwhile to investigate the existence of such
classes, which we do in Proposition 3.2.7. Indeed, we show that for any N the
second homotopy group 7 (N, p) is generated (up to the action of 71 (N, p) on
mo(N, p)) by indecomposable homotopy classes. This is very close to the clas-
sical (slightly weaker) result due to Sacks and Uhlenbeck [42] (see also [49]):
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smooth harmonic maps from S? into ' generate the whole group 73 (N, p) (up
to the action of 71 (N, p)).

To obtain bi-Hoélder-equivalence with a Euclidean ball, we employ Reifenberg’s
topological disc theorem [40] (see also [46]). We recall its statement and the
so-called Reifenberg flatness condition in Section 3.3. We also introduce a flat-
ness condition for an energy minimizer v which includes Reifenberg flatness
for sing u, but also forces u to be close to a tangent map.

The main results are proved in Section 3.4. The difficulty in applying Reifen-
berg’s theorem to sing u lies in showing that this set has no gaps. This is done
in Lemma 3.4.1; this is also the point where our topological assumptions play
a role. Then we are able to show that if u satisfies the flatness condition on
the ball B5(0), it also satisfies the same condition on each smaller ball B,.(0)
(Corollary 3.4.5) and on each ball B;(z) centered at a point z € B; with enough
energy density (Proposition 3.4.7). Combining these results, we check the hy-
potheses of Reifenberg’s theorem and establish Theorem 3.1.3.

In addition, Section 3.5 we show that the J-flatness property is stable with re-
spect to small W12-perturbations of the map. This simple result (first proved in
[30]) will play a crucial role in the proof of Theorem 4.2.2 (measure bound on
the S,,_4 stratum of the singular set) and Theorem 7.1.1 (stability of the singular
set).

Some other interesting observations not needed for the proof of Theorem 3.1.3
are gathered in Section 3.6.
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3.2 Indecomposable homotopy classes

Decompositions of tangent maps

Consider now a HCM ¢g: R" — N with S(¢g) = R"3 x 0. This map actu-
ally depends only on 3 variables, i.e. po(z,y) = ¢1(y) for some homogeneous
¢1: R® — N. By [19, Lemma 2.1], the map ¢; defined in this way is energy
minimizing if and only if ¢g is. Since ¢; is homogeneous, it is uniquely de-
termined by its restriction to the unit sphere ¢: S? — N, which is a smooth
harmonic map.

From now on, we shall abuse the notation and use the same symbol for all three
maps g, 1, p2; the precise meaning should be clear from the context. Note that
their energies differ by a multiplicative constant:

Vil = / Vol = C(n) / Vol
S? B? B?

so energy comparison does not lead to confusion.

Homotopy type of a HCM always refers to the map p,: S? — N (as ¢y, i, are
discontinuous and defined on contractible domains). For a general HCM ¢ we
may choose a rotation ¢ that maps S(pg) to R"™ x 0 and thus reduce to the
previous case. We then say that ¢y has homotopy type « if ¢y o ¢! restricted
to 0 x S? has type .

Remark 3.2.1. There is a subtle ambiguity here. Depending on the choice of
¢, we may obtain two homotopy types that differ by a composition with the
antipodal map, i.e. both [po ()] and [po(—2)].

Using this terminology, singular points in sing, u can be classified according to
their energy density and the homotopy type of a tangent map. Since we only
consider basepoint-free homotopies, we denote by (/') the set of homotopy
classes of continuous maps S? — .
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Remark 3.2.2. To avoid confusion, we distinguish the set of basepoint-free
homotopy classes 75 (N) from the second fundamental group w5 (N, p). Note
that in general m2 (/') does not carry a group structure, as it is the quotient of
the action of m; (N, p) on m (N, p).

Definition 3.2.3. For any homotopy type a € mo(N') we let
sing, u = {y € singu : some tangent map of u at y is a HCM of type o} .

We also denote its lowest energy level by
O(«a) := inf {/ IVl|? : ¢ is a HCM of type oz} :
By

A simple compactness argument shows that this infimum is either infinite (if
no HCM has type «) or achieved by some minimal HCM. We also let

sing.g u = {y € singu : 0,(y,0) > O} .

which is a closed set by upper semicontinuity of 6,(-, 0).

At this point we cannot exclude the case when there are many homotopically
different tangent maps at one point. However, this cannot happen under an
additional assumption described below (see Remark 3.4.10). Again, the decom-
position in Definition 3.2.4 is to be understood up to the action of w1 (/N), as
described in Section 3.2 (see also the formulation of [42, Thm. 5.9]).

Definition 3.2.4. Consider o € mo(N') with ©(a)) < co. This homotopy class
is called decomposable if there is a decomposition

a=a;+...+ap inmN),

where O(aj) < O(a) foreach j =1, ..., k. Otherwise « is called indecompos-
able.

Note that the above criterion does not depend on the dimension 7, but only on
the manifold .
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As a special case, « is indecomposable if ©(«) is the smallest among all non-
trivial homotopy types. In this case the proof is much easier (see the remark
below Lemma 3.4.1).

Remark 3.2.5. Similar decompositions of this type appear naturally as a result
of the bubbling phenomenon when one tries to minimize the energy in a given
homotopy class. More precisely, recall that by [42] (see also [44, 49]) any smooth
map : S? — N can be decomposed as [p] = [p1] + . .. + [px], where each ¢,
is a harmonic map and

k
> Lwdi< [ v
j=1

Motivated by these decompositions, one could replace the condition O(a) >
max; ©(a;) in Definition 3.2.4 by ©(ar) > >, O(«;), thus enlarging the set of
indecomposable classes. A natural conjecture here would be that Theorem 3.1.3
continues to hold in this case, but the author was not able to verify it.

Example 3.2.6. By Theorem 2.4.1 (classification of tangent maps from [4]), the
only HCMs into the sphere S? are isometries ¢: S* — S%. Thus, for o € my(S?)

we have
0 for a = 0,

O(a) = ¢ 4r  for a = [+id],
oo  otherwise.

By Definition 3.2.4, the indecomposable classes here are 0, [id], [— id]. Note that
these classes generate the whole group 7(S?) (see Proposition 3.2.7 for the
general case).

An existence theorem

We show that the set of all indecomposable homotopy classes generates s (N).
Similarly to [42, Thm. 5.9], we only consider basepoint-free homotopies, so
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this statement should be understood as generating (N, p) up to the action
of w1 (N, p). In other words, for any @ € mo(N) there are indecomposable
homotopy classes o, . .., ax € m(N') and a continuous map

k
w: B\ JB; = NV
j=1

such that u|pp € aand u|gB, € o, where B; € B are smaller disjoint balls.

This can be divided into two steps as follows. The first one is due to Schoen
and Uhlenbeck [44, Prop. 3.3].

Proposition 3.2.7. Let N be a closed Riemannian manifold. Then

(a) the set of all HCMs ¢: S — N generates mo(N),
(b) each HCM p: S* — N as an element of m2(N) can be decomposed into
indecomposable homotopy classes.

Proof. To show part (a), fix o € m(N) and choose a smooth map ¢: S* — N
of this type. Then there exists (possibly non-unique) u € W1?(B3 A such
that

Vul? = min{ Vo2 :v e WH(B,N), v =pon SQ} :

B, B,
note that the set of admissible maps is indeed non-empty, as it contains the map
xr — @(z/|z|). Such a minimizer has at most a finite number of interior sin-
gularities py,...,pr € Bj. At each p; there is a (possibly non-unique) tangent
map ¢;, which is necessarily a HCM; by uniform convergence away from the
singularity, u restricted to 0B, (p;) is homotopic to ¢; for some arbitrary small r
(in consequence, also for all sufficiently small 7). This yields the decomposition

ol = [p1] + ..+ o] inm(N).

Part (b) follows from the definition by a compactness argument, which allows
us to exclude infinite decompositions. Consider any homotopy type o € N rep-
resented by a HCM, i.e. with ©(a)) < oo. First let us show that there are only
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finitely many homotopy types 5 € m(N') with O(5) < ©(«). Indeed, other-
wise we would have an infinite sequence of HCMs (), : B} — N with distinct
homotopy types and uniformly bounded energy. Without loss of generality, ¢,
converges to some HCM ¢ in W1?(B;), but also in C°(S?). This shows that
almost all ¢ have the same homotopy type as (, which is a contradiction.

If o is decomposable, we have a = oy + ... + oy, where O(¢;) < O(«a) for
each j. Decomposing further each «; whenever possible, and iterating this
procedure until all obtained homotopy types are indecomposable, we arrive at
claim (b). One only needs to note that this procedure stops after at most NV steps,
where N is the number of homotopy types from the last paragraph. Indeed, any
branch of the decomposition tree is a sequence Sy, 51, (52, . . . with fy = a and
O(B;+1) < ©(B;) for each j, so it contains at most /N elements. O

We remark that a similar decomposition was first obtained by Sacks and Uh-
lenbeck [42] (see also [49]): smooth harmonic maps from S? into N generate
the whole group 72 (N, p) up to the action of 71 (N, p). It may be that some
homotopy classes in m2(/N') do not contain any harmonic map. Since here we
only consider harmonic maps ¢: S> — N for which the homogeneous exten-
sion ¢: B® — N is energy minimizing, the result discussed above is slightly
more general.

3.3 Notions of flatness and Reifenberg’s topological disc
theorem

Holder regularity of the singular set will be obtained by an application of Reifen-
berg’s topological disc theorem [40] (see also [46]). To state it, we first need the
following notion of flatness (for our purposes restricted to codimension 3).

Definition 3.3.1. A set A C R" is said to be e-Reifenberg flat in the ball B,.(z)
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(with respect to L) if
ANB,(z) CB,.L and LNB,(z) CB,.A

for some (n — 3)-dimensional affine plane L through x.

The above condition means exactly that the normalized Hausdorff distance on
B, (z) from A to some (n — 3)-dimensional affine plane through z is not larger
than e.

Theorem 3.3.2 (Reifenberg’s topological disc theorem). For each Holder expo-
nent 0 < v < 1 there is e(n,~y) > 0 such that the following holds. If a closed
set A C R" containing the origin is -Reifenberg flat in each ball B,.(z) with
x € ANBy andr < 1, then the set A N By is bi-Holder equivalent to the closed
unit ball B"3 C R"3 with exponent 1.

We shall also make repeated use of the following condition for energy minimiz-
ing maps.

Definition 3.3.3. Fix an indecomposable homotopy class a € mo(/N) and let
© = O(a) be its lowest energy level (as in Definition 3.2.3). We say that an
energy minimizer u is d-flat in the ball B, (x) (of type «) if

1. x is a singular point of uw and © < 6,(x,0) < 0,(x,7) < O + 4,
2. sing u is %O—Reifenberg flat in B, (x) with respect to some L, and u re-
stricted to (z + L") N B, 2(x) has homotopy type .

Note that this definition is scale-invariant in the following sense: u is J-flat in
B, () if and only if the rescaled map u(y) = u(x +ry) is 6-flat in B;. Also note
that u is smooth outside the tube around L by and thus the homotopy type is
well-defined.

The main feature of Definition 3.3.3 is that J-flatness in a ball trivially ensures
that Condition 1 is satisfied in all smaller concentric balls, and one only needs to
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check Condition 2 (see Corollary 3.4.5). This is why the constant 1—10 in Condition
2 was chosen independently of 6.

%O—Reifenberg condition in 2 to the one-sided con-

dition singu N B,(z) € B, /;oL. This gives effectively the same notion of J-
flatness, as used in [30].

In fact, one could relax the

From now on, we consider a non-trivial indecomposable class o and its lowest
energy level © = O(a) to be fixed.

3.4 Regularity of the singular set

Persistence of indecomposable singularities

As a first step, we show that if an energy minimizer u restricted to some sphere
has homotopy type «, then sing u satisfies the flatness condition of Definition
3.3.3 and the energy density of u cannot drop in a smaller ball. Note that the
claim of Lemma 3.4.1 is essentially stronger than the corresponding condition
LN B; C B.(sing.g u) appearing in Definition 3.3.1.

Observe that some tubular neighborhood B,/ C R admits a continuous
retraction 7, onto V. As a consequence, if two continuous functions f, ¢ into
N C RM are close enough in supremum norm, then

(t,2) = mn(tf(z) + (1 —t)g(x))
yields a homotopy between them.

Lemma 3.4.1. Assume that singu N B; C B.L for some () < ¢ < % and some
(n — 3)-dimensional plane L through 0. Assume further that u restricted to the
sphere L+ N 0By j» has homotopy type c.. Then

LNBy_. C7r(singsgunBy),
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where 71, denotes the orthogonal projection onto L. In particular, singgu is €-
Reifenberg flat in B,.

Before giving the full proof, let us consider the special case when O(«) is the
lowest among all non-trivial homotopy types; in particular, this property holds
if we consider maps into the standard sphere S2. In this case, the proof is simpler
and does not depend on the deep results of Naber and Valtorta [37].

For each y € L N B;_., the restriction of u to the sphere (y + L) N dB.(y)
has homotopy type «, therefore it cannot be continuously extended to the ball
(y + L) N B.(y). This shows the weaker inclusion LNB;_. C 77 (sing uNBy).
Recall that H"3-a.e. point z € sing u belongs to sing, u and hence ,,(z,0) > ©
due to our additional assumption. Since sing- g u is a closed set, we obtain the
stronger inclusion.

Proof of Lemma 3.4.1. For simplicity, let us assume L = R" 3 x 0 (by composing
u with a rotation, if necessary). Assume for the contrary that L N B;_. is not
covered by the projection of sing- o u NB;_. /2. Since the latter is a compact set,
it has to be disjoint with some small cylinder B} *(z) x R? with |2| < 1 —e.

Recall that by the recent important work of Naber and Valtorta [37] discussed
in the next chapter (see Theorem 4.1.1), the set sing u has finite "~ measure
(locally, away from the boundary). Moreover, the set sing u is (n — 3)-rectifiable
and for H"3-a.e. y € sing u there exists an (n — 3)-dimensional tangent plane
Tan(sing u, y) coinciding with S(p) for every tangent map ¢ of u at y. Let us
temporarily assume that these tangent planes are transversal to 0 x R"73, i.e.

Tan(singu,y) M0 x R®  for H" 3-ae. y € singu N Bi_.). (3.4.1)

We shall need Eilenberg’s inequality, a Fubini-type inequality valid for any
H"3-measurable set A with finite measure (see [28, 7.7-7.8] or [13, 2.10.25-
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27]):
/ HO(A N ng(y)) dy < wn_gﬂn_?’(A)
Bj’(2)

Applying the above inequality twice — once with A as the singular set and once
with A as its exceptional part of measure zero — we learn that for almost every
y € BY3(2) the slice singu N By N 7' (y) consists of finitely many points,
at each of them the tangent plane exists and is transverse to 0 x R? (i.e. the
direction of slicing).

Let us choose one such y and denote these singular points by pi,...,p. Let
also

L; := Tan(singu,p;), 1o := %n;‘li‘n (lpi = pil,e — Ipi —yl)-

For each j = 1,...,k, there isa HCM ¢;: R" — N with S(p;) = L; such
that the sequence of rescaled maps u,,(z) = u(p; + r;x) converges to ¢, in
VV&E(R”) for some sequence r; — 0. Note that by our assumption, ¢; has
energy density strictly less than ©. Since this convergence is uniform away
from L;, maps u,, and ¢, are homotopic on LjL N OB for large enough . Tilting
Lj to 0 x R? and rescaling, we get that for some small r; < r the restriction of
uto ;' (y) NOB,., (p;) has the homotopy type of ;. Recalling that u restricted
to 0 x R? N 9B /5 (and hence also to 77 (y) N 0B.(y)) has homotopy type a,
we conclude

a=[p1]+ ...+ [pr] inm(N),

where each ¢; has energy density smaller than ©, which is a contradiction with
the assumption that « is indecomposable.

To finish the proof, we need to get rid of the additional assumption (3.4.1). This
is done by using the following simple transversality lemma.

Lemma 3.4.2. Let n = a + b, consider the Grassmannian G(n, a) with the stan-
dard Haar measure \ and G (n, b) with a finite positive Borel measure ji. Then the
set

{E e G(n,a) : p({F € G(n,b): Efl F'}) > 0})

has zero \ measure.
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Postponing its proof for the moment, we complete the reasoning as follows.
Choose a = 3, b = n — 3, and let ix be the measure H"’gLsing u N B pushed-
forward by the map Tan(sing u, -), i.e.

w(U) = H"3({y € singu N By : Tan(singu,y) € U}).

Then the set in Lemma 3.4.2 has measure zero and in particular its comple-
ment is dense. In result, we can choose £ € GG(n,3) so that £ th F for p-a.e.
F € G(n,n — 3), with E arbitrarily close to 0 x R?. This amounts to satisfying
(3.4.1) with a slightly tilted direction of slicing. Recall that sing.qu N By is
disjoint with the cylinder B} ?(z) x R, in consequence it is also disjoint with
a smaller cylinder in direction E*. It is easy to see that the rest of the proof
remains unchanged. []

Proof of Lemma 3.4.2. Note that for each F' € G(n, b) the set of all £ € G(n, a)
non-transversal to F is a finite union of smooth submanifolds of G(n,a) of
positive codimension

min(a,b)
{F € G(n,a): Ef F} = U {F € G(n,a) : dmENF = c},

c=1

hence it has zero A measure. Applying Fubini’s theorem, we get

/G( )u({F € G(n,b) : E ¢ff F}) A\(E)

I
S

/ Lpgr du(F) dA(E)
(n,a) J G(n,b)

N{E € G(n,a) : E ¢ F}Y) du(F)
G(n,l)

I
o

9

so the integrand has to be zero for A-a.e. £ € G(n,a). O
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Propagation of /-flatness to finer scales

In this section we investigate some important consequences of Definition 3.3.3.
Assuming that an energy minimizing map u is -flat in B; (with small 6 > 0),
we shall see that sing v is actually more flat than a priori assumed (Lemma
3.4.3), u is also d-flat in all smaller concentric balls (Corollary 3.4.5), and that
0 € sing, u (Corollary 3.4.6).

Lemma 3.4.3. For every ¢ > 0 there is 61(¢) > 0 such that if u is 61-flat in
By, then |[u — ¢|ly12m,) < € for some HCM ¢ of homotopy type o with energy
density ©. Moreover, sing u is e-Reifenberg flat in By with respect to the (n — 3)-
dimensional plane S(yp).

Remark 3.4.4. For clarity, the conclusion above is stated on the twice smaller
ball, but one can obtain a stronger conclusion (||u — ¢|[y12, ) < € and e-
Reifenberg condition in B;_.) by the same argument. However, restricting to
a smaller ball is necessary due to the local nature of the W'1?-compactness the-
orem, as well as possible singularities on 0Bs.

Proof. We employ the usual contradiction argument. Let u; be a sequence of
minimizing harmonic maps such that uy, is 1 /k-flat in Bo; we may assume sing u
is 1—10-Reifenberg flat with respect to a fixed plane L. Choosing a subsequence,
we have u;, — o in W,>?(By) for some energy minimizing . By condition 1 in
Definition 3.3.3, ¢ is homogeneous with energy density ©. By Lemma 3.4.1, for
each k the set sing. g uy, is %-Reifenberg flat in B, with respect to L. Taking
the limit and exploiting the upper semicontinuity of 6.(-, 0) with respect to both
the map and the point, we conclude that the set

S(p) = singzg ¢

is not contained in any (n — 4)-dimensional plane. On the other hand, it is itself
a linear subspace of dimension at most n — 3, so we learn that ¢ is a HCM of
homotopy type «; the homotopy property follows from uniform convergence
away from L. For large enough k, uy, is e-close to ¢ in W1?(B;) and its singular
set is contained in B.S(y) (this is a consequence of upper semicontinuity of
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6.(-,0) and e-regularity (2.1.2)), which finishes the proof by another application
of Lemma 3.4.1. [

Corollary 3.4.5. If § < 61(55) and u is -flat in By, then u is also 6-flat in any
smaller ball B, centered at 0 with(0 < r < 1.

Proof. Condition 1 of Definition 3.3.3 is trivially satisfied. As for condition 2, it
follows from Lemma 3.4.3 that sing u is %—Reifenberg flat in B, hence %O—ﬂat
in any ball B, with % < r < 1. In consequence, u is d-flat in each of these

balls. Then the claim follows by iteration of Lemma 3.4.3 rescaled to smaller
and smaller balls. []

Corollary 3.4.6. If ) < 51(%) and u is 0-flat in By, then every tangent map to
w at 0 is a HCM of type «. In particular, O € sing,, u.

Proof. Let ¢ be any tangent map to u at 0, i.e. a VVli’f(R”)—limit of rescaled
functions uy(x) = wu(ryz) for some sequence r, — 0; any thus obtained ¢ is
homogeneous. By Corollary 3.4.5, each uy, is d-flat in B, (with the set sing uy
1—10—Reifenberg flat with respect to some Ly), so the claim follows from Lemma
3.4.1 as in the proof of Lemma 3.4.3. The only difference is that the planes L
may change, but without loss of generality L, — L in G(n,n — 3), which is
enough to conclude that sing- g ¢ spans an (n — 3)-dimensional plane. O]

Moving the ball center

Proposition 3.4.7. For every e > 0 there is d3(¢) > 0 such that if u is do-flat in
Bs, then u is 01(¢)-flat in each of the balls B,(z) with z € sing.gu N By and
0 < r < 1/2. Moreover, the sets sing,, v and sing-g u restricted to the ball B,
coincide.

Proof. Choose 09 := min(dy(¢), d1(n/2)) according to Lemma 3.4.3, where ) > 0
is to be fixed in a moment. Applying Lemma 3.4.3 rescaled to the ball B, denote
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by ¢ the approximating HCM and let . = S(¢); according to Remark 3.4.4, we
may assume the conclusion actually holds on the larger ball B3 /5. To obtain the
first claim, we first show that 6,(z,1/2) < © + 6;(¢) for each z € B; N B, L.

First,
[oowar< [ wek o
B/2(2) By/2(2)

by Lemma 3.4.3. If 2/ = 77 (2), then |z — 2/| < n and

[oveP< [ veP=(ezye
Bi/2(2) Bi/214(2")

by L-invariance of ¢ in z’-direction. If 7 is chosen small enough (depending on
d1(¢)), we obtain 0,(z,1/2) < © + 4, (e).

Since each point z € sing.gu N By lies in B, L by Lemma 3.4.3, the above
reasoning shows that condition 1 of Definition 3.3.3 holds for the ball B 5(z).
Condition 2 is satisfied by our assumptions, so this ball is d; (¢)-flat. Then Corol-
lary 3.4.5 implies 01 (¢)-flatness of  also in all smaller balls B,.(z) (to be precise,
01-flatness for radii in the interval (%, 1) comes from the assumption of Reifen-

2
berg flatness).

By Corollary 3.4.6 we now have z € sing, u for each z € sing.o NB;. The
inverse inclusion sing,, u C sing. g u is evident from the definition of O(cv). [

Corollary 3.4.8. Under the assumptions of Proposition 3.4.7, the whole singu-
lar set sing u restricted to the ball By, coincides with sing. o u (and hence with
sing,, u).

Proof. Assume that the ball B/, contains a point p € singu \ sing. g u. We
may choose a point z € sing.gu closest to p (as it is a closed set) and set
r=2|p— z|. Clearly z € By and 0 < r < 1, so u is d1(¢)-flat in B,.(z). Choose
L = L(z,r) according to Definition 3.3.1. Then by Lemma 3.4.1 there is a point
7' € sing.gu N B,(2) such that 77 (2") = 71 (p). Since both |7 (p) — p| and
|m(2") — 2| are less than {5, the triangle inequality yields a contradiction with
minimality of z. [
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In order to apply the above results, one needs to know that u is J-flat in at least
one ball.

Lemma 3.4.9. Let 6 > 0. If0 € sing, v and 0,(0,0) < ©+4, then thereisr > 0
such that u is 6-flat in B,..

Proof. Note that condition 1 of Definition 3.3.3 is trivially satisfied for small
enough 7.

By definition of sing,, u, some sequence of rescaled functions uy(x) = u(ryz)
converges in VVl(l)CQ(R”) to a HCM ¢ of homotopy type a for some sequence
ry — 0. For large enough k, we have singu, N By C By/10S5(p). Since the
convergence is uniform away from S(), uy, restricted to S(¢)*= N 9By, has
homotopy type «, so condition 2 follows from Lemma 3.4.1. Rescaling, we see
that v is 0-flat in B, for large enough k. ]

Remark 3.4.10. Combining Lemma 3.4.9 with Corollary 3.4.6, we see that some
can be changed to any in the definition of sing,, if only we restrict ourselves
to points with energy density close to optimal. That is, if y € sing, u and
0.(y,0) < © + 61(5;), then every tangent map of u at y is a HCM of type c.

We are now ready to prove the main theorem.

Proof of Theorem 3.1.3. Fix the Holder exponent 0 < v < 1 and choose the value
e(y,n) > 0 according to Reifenberg’s topological disc theorem (Theorem 3.3.2),
then fix 0 to be dy(¢) from Proposition 3.4.7.

Choose a point p € sing, u such that 6,(p,0) < © + §. According to Lemma
3.4.9, u is d5(¢)-flat in some small enough ball By, (p). By Proposition 3.4.7 we
now know that the set sing, v N B,.(p) is closed and e-flat in each ball B(z)
centered at z € sing, v N B, (p) with radius 0 < s < r/2. Applying Theorem
3.3.2, we conclude that sing,, uNB,.(p) is bi-Holder equivalent (with exponent )
to an (n — 3)-dimensional ball.
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By upper semicontinuity of 6,(-,0) we can ensure 0,(y,0) < © + J for all
y € B,.(p) (just by taking r small enough), which together with Corollary 3.4.8
shows that the set in question forms an open subset of sing u. ]

3.5 Stability of )-flatness

The following proposition states that the J-flatness property is stable with re-
spect to small W12-perturbations of the map. This simple result will play a cru-
cial role in the proof of Theorem 4.2.2 (measure bound on the S,,_, stratum of
the singular set) and Theorem 7.1.1 (stability of the singular set).

As before, consider an indecomposable homotopy type o € m2(N') and its low-
est energy level © = O(a).

Proposition 3.5.1 (Stability of )-flatness). For each ¢ > 0 there is 0 > 0 such
that the following holds. If u is 6-flat in the ball By and v, — u in Wh?(By),
then for k large enough there is x;, € sing uy N B such that uy, is e-flat in the ball

Bl_g(l'k).

Proof. Choose ¢'(n,e) > 0 small enough, more precisely such that
e <e/2, (1-2)"(O+¢/2) <O +e.

By taking 0 small enough, we may assume by Lemma 3.4.3 (and Remark 3.4.4)
that
singu N Bi_o /s € B.js(L)

for some (n — 3)-dimensional linear plane L. Since singular points converge
again to singular points (see (2.1.3)), we have for all large £,

singuy N Bi_o € Bojo(L). (3.5.1)
Recall that u; — w locally uniformly outside the singular set, and thus
U = U n Bl_E/ \ Bg//Q(L).
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In particular, uj, and u restricted to L+ N By ), have the same homotopy type
for large k.
By Lemma 3.4.1

LNBi_gs C mp(singsg ur N Bi_o).

Combined with (3.5.1), this means that we may find x;; € singg uy such that

2| < i’ and 6,,, (1, 0) > ©.

The last condition to show is 6, (z;, 1 — €) < © + €. By strong convergence,

for large enough £,
/ |Vur* < e/4 —|—/ |Vul?.
B1 ! Bl

—€

Thus

(1— 25’)2“/ IV ? < (1 —2)%" (5/4 +/ \vu|2>
B1—25’(xk) B,
< (1—-26)7"(O + 6 +¢/4),

which does not exceed © + ¢ if only 6 < £/4. By the monotonicity formula, we
conclude that 6, (zg, 1 — €) < 0, (z, 1 — 2¢') < O + ¢ and hence that uy is
e-flat in the ball B;_.(xy). O

3.6 Additional results

In this subsection we discuss two elementary observations that give a better
description of d-flatness, but were not needed earlier in the proof of Theorem
3.1.3. Again, we fix an indecomposable homotopy type o € m(N) and its
lowest energy level © = O(«).

The following lemma shows that Condition 2 in Definition 3.3.3 can be dropped
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if one assumes a priori that x € sing, u. This gives us an equivalent condition
for o-flatness.

Lemma 3.6.1. Assume that 0 € sing, u. If§ < 61(55) and 6,(0,2) < © + 4,
then u is d-flat in B.

Proof. Inspecting the proof of Lemma 3.4.3, we see that condition 2 of Defini-
tion 3.3.3 was only needed to ensure required symmetry of approximating ho-
mogeneous minimizer ¢. Hence it would be enough to assume condition 2 of
Definition 3.3.3 in a smaller ball B, /5, and d-flatness in B follows as in Lemma
3.4.3.

By Lemma 3.4.9, there is r > 0 (possibly very small) such that u is J-flat in
B,. Applying the reasoning above, we see it is also d-flat in every ball B, with
r < s < min(1, 2r). An iteration of this argument (as in Corollary 3.4.5, but in
the opposite direction) leads to the claim. [

The last lemma gives a uniform bound (independent of ) for the rate of con-
vergence 0, (z,r) — 0,(x,0) when r — 0, assuming 6, (x, r) is already close to
0.(x,0). This assumption cannot be dropped, if only there exist tangent maps
¢: R" — N with dimy sing ¢ = n — 3 which are not HCMs.

An additional assumption is needed to ensure that the energy density is not
greater than ©. This assumption is automatically satisfied if \V is real-analytic
or integrable in the sense of [48, Ch. 3.13]; see the remark preceding Corollary
3.1.4.

Lemma 3.6.2. Let us assume that 0 € sing, u and 6,(0,1) < O + d3 with
d3(n, a, N') > 0 sufficiently small, and assume additionally that © is an isolated
energy level for HCMs of type .. Then for every 6 > 0 there is r(5,n,N') > 0
such that 0,,(0,7) < © + 0 (in consequence, u is 0-flat in B,).
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Proof. We choose d3 > 0 smaller than §;(5;) from Lemma 3.4.3 and such that

JRLCRICRT
BT

for each HCM ¢ of type a.

For the sake of contradiction, assume there is a sequence of such energy mini-
mizing maps u;, with

O+6<0,(0,1/k) <0,,(0,1) <O + 5.
Taking a subsequence, we obtain a limit map u such that
O +6<6,0,0) <0,(0,1) <O +ds.

It follows from Lemma 3.6.1 that each wy, is d; (%)—ﬂat in By /5, hence so is v and
by Corollary 3.4.6 we infer 0 € sing, u. In particular the energy density 6,,(0, 0)
is either O or greater than © + 43, a contradiction. ]
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Chapter 4

Regularity results of Naber and Valtorta

4.1 Important tools and results

Here we discuss the results of Naber and Valtorta [37] needed in the sequel.
A simplified presentation of these is available in their later article [38].

The main result of [37] is the following more precise restatement of Theorem
1.3.6 discussed in the introduction. As in the previous chapter, all the cited
results also hold for local energy minimizers, and so we drop the distinction
between local and global minimizers.

Theorem 4.1.1 ([37, Thm. 1.5, 1.6]). Let u: By, — N be energy minimizing
and r* =" I8, |Vu|?> < A. Then there exists a constant C(n, N', A) > 0 such that
H" 3 (singuNB,) < Cr"=3,

Moreover, sing u is a rectifiable (n — 3)-dimensional set and for H"3-a.e. singular
point p € sing u there exists a unique (n — 3)-dimensional plane L such that every
tangent map of u at p is symmetric with respect to L.

In the special case of N = S?, uniform boundedness of minimizers (Theorem
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2.5.4) implies that the energy assumption is redundant. The simple corollary
below is a key ingredient in the proof of Theorem 6.1.1.

Corollary 4.1.2. Ifu: By, — S? is an energy minimizer, then the uniform mea-
sure bound H"3(sing u N B,.) < Cr" 3 holds with some constant C'(n) > 0.

In order to prove the stability theorem (Theorem 7.1.1), one needs more re-
fined measure estimates. Note that for the tangent map ¢, the singular set is
an (n — 3)-plane and so H"3(sing ¢ N B,.) = w,,_3r" 3. If u is close to 1), one
could expect its singular set to have similar measure (see Lemma 7.4.1). To this
end, we will need two more results, which are essential ingredients of [37].

To state them, we first recall the definition of Jones’ height excess S-numbers.
Choosing a Borel measure p in R”, a dimension 0 < k£ < n and an exponent
p = 1, we can define for each ball B, (z) the quantity

1/p
Bukp(x,r) = inf (r_k_p/ dist(y, L)? d,u(y)) ,
L B, (z)

where the infimum is taken over all £-dimensional affine planes L C R". This
measures how far the support of y is from a k-dimensional plane (on the ball

B, (z)).

The role of 3 in obtaining upper bounds is discussed in detail in Chapter 5. In
the applications however, we shall not work directly with this definition, but
rather rely on the two theorems below, since they encompass all the geometric
information we need.

The next two theorems are general geometric results. The first one plays a cen-
tral role in proving measure bounds on the singular set. The reasoning sketched
in the next section illustrates this application, and the whole Chapter 5 is de-
voted to various extensions of this theorem.

Theorem 4.1.3 (discrete Reifenberg [37, Thm. 3.4]). There are dimensional con-
stants C(n),6(n) > 0 such that the following holds. Let {B,,(x;)} be a disjoint
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collection of balls in Bo, and let 1 = Zj wkrféxj be its associated discrete measure.
If for each ball B,.(xz) C By we have

" ds
/ /@MW%ﬂMéW
B,(z) JO S

then 1(B;) < C.

The second is concerned with the special case when p is the Hausdorff measure
on some k-dimensional set S. In this case, the same assumptions yield rectifia-
bility and sharp measure estimates. Interestingly, these measure estimates were
not used at all in [37], but are essential for our stability theorem (Theorem 7.1.1).

Theorem 4.1.4 (rectifiable Reifenberg [37, Thm 3.3]). For every e > 0 there is
§(n,e) > 0 such that the following holds. Let S C R" be a H*-measurable subset
and assume that for each ball B,.(z) C By

" ds
/ /%Mw%ﬂ@éw
B, (z) J0O S

where i denotes the measure H*_S. Then u(B1) < (1 + ¢)wy and S is a k-
rectifiable set.

As a side remark, let us note that in our application (Chapters 6 and 7) the set S
will satisfy the so-called Reifenberg condition and so one could work with the
W1P-Reifenberg theorem [37, Thm 3.2] instead.

For the last main tool developed in [37], recall the notion of k-symmetric maps
from Definition 2.2.2. Recall also that the tangent map ¥ from (2.4.1), which is
(n — 3)-symmetric but not (n — 2)-symmetric, hence it belongs to sym,, ; for
allk =0,1,...,n — 3 but not for k = n — 2. In future applications (Theorems
43.1,7.4.1), we will fix

g 1= 2dist 2, (¥, symn’n_Q)
and choose ¢ > 0 accordingly.
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Theorem 4.1.5 (L?-best approximation [37, Thm 7.1]). For every ¢ > 0 there
are §(n,e) > 0 and C(n,e) > 0 such that the following holds. If u: Byg — S? is

energy minimizing,

diStL2 (B1o) (U, Symnjo)

0,
distz2(B,) (¢, sym,, ;1) = €

<
>

)

then for any finite measure |« on B; we have

2 0.1)<C / (0u(4,8) — 0u(y, 1)) dpu(y).

B,

Again, the formulation in [37] involves an energy bound. However, Theorem
2.5.4 shows a uniform bound on [ |Vu|? and thus we obtain the stronger for-
mulation above.

4.2 A measure bound on lower strata

The measure bound H"?(singu N B,) < Cr" 3 in Theorem 4.1.1 concerns
the whole singular set, but estimates for lower strata S (introduced in Section
2.3) are also available. This section is devoted to discussion of these results and
their corollaries.

First, we need to refine the notion of k-symmetry (Definition 2.2.2) to k-almost-
symmetry, and the stratification Sj (from Section 2.3) to quantitative stratifica-
tion. Although it would make some statements more concise, I chose to avoid
these notions outside of this section.

A map f is called (k, €)-symmetric on a ball B, (p) in its domain if

[f(p+r2) = f(a)de < €
B,
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for some k-symmetric map f: B; — N. In this language, the assumptions of
Theorem 4.1.5 could be stated as follows: w is (0, )-symmetric but not (k+1, ¢)-
symmetric on By.

Cheeger and Naber [6] introduced the following quantitative stratification:

3

Sk = {y € singu : u is not (k + 1, )-symmetric on any B,(y) with s € (0, 1]}

~{vesingus [ 140 - TP d > 2
B,

for each k-symmetric map f and s € (0, 1]} :

In its full generality, the measure bound derived in [37] concerns a larger set
Si_f . (defined by restricting the radius above to » < s < 1). One can check [37,
Sec. 9.3] that Sfm N\ S¥and S* 7 Sy, so the classical stratification is recovered.

Theorem 4.2.1 ([37, Thm 1.4]). Let u: By, — N be energy minimizing and
r2n I8, |Vu|> < A. Then S* is a k-rectifiable set and H"3(S* N B,) < COrk
for some constant C(e,n, N', A) > 0.

For general \/, Theorem 4.2.1 does not imply that the k-th stratum Sj, has finite
k-dimensional measure. This is only possible for the top-dimensional stratum,
and the reason is that the e-regularity theorem (2.1.2) can be rephrased as the
inclusion sing u C S”2 for some small ¢; see [6, Thm. 2.4] and [37, Sec. 10.1].

The results of Chapter 3 can be employed in a similar fashion, implying the
inclusion \S,,_4 C 52_4 and hence the measure bounds.

Corollary 4.2.2. Thereisc(n) > 0 such that the following holds. Ifu: Bo, — S?
is @ minimizing harmonic map, then S, _4 C S"*. In consequence, the uniform
measure bound H"*(S,_4 N B,.) < Cr"~* holds for some constant C'(n) > 0.

Proof. For the sake of contradiction, assume that such an inclusion is in gen-
eral not true. By rescaling, this means that there is a sequence of minimizers
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ug: Bo — S? which are (n — 3, %)-symmetric on By, but 0 € S,,_4. By compos-
ing with a rotation, we may also assume that ||u, — fi||r2B,) < 2"/2¢ for some
fx symmetric with respect to a fixed (n — 3)-dimensional plane 0 x R" 3,

By taking a subsequence, uj converges in I/Vlicz(Bg) to a minimizer w. It follows
from the assumptions that u is also symmetric with respect to 0 x R"~3. By
Theorem 2.4.2, there are two possibilities:

CasE 1. The map u is constant. Then by W 12-convergence, the energy fBl V|2
tends to zero and by e-regularity (2.1.2) uy is smooth around 0. This is a con-
tradiction, since 0 is assumed to be a singular point.

Caskg 2. The map u has the form (z,y) — +777- In this case, let us fix small
d > 0 according to Proposition 3.4.7. By W!2-convergence and Proposition
3.5.1 (stability of d-flatness) we infer that for large enough k the map uy, is J-flat
on a ball By (py,) centered at some point p;, € B, /4. Now Corollary 3.4.8 implies
that any singular point in B;; C By/s(p;) lies in the top-dimensional part
sing, u. This is a contradiction, since 0 is a singularity in the lower stratum

Sp—4.

4.3 A measure bound on the singular set for A = S?

The following is a toy case of Theorem 4.1.1. We restrict our attention to the
target manifold A" = S?, and to the case when u is close to the tangent map ¥
(2.4.1) in the sense of Definition 3.3.3. Its proof is meant to illustrate the meth-
ods of [37] and in particular emphasize the importance of the discrete Reifen-
berg theorem (Theorem 4.1.3) in the study of singularities. Thanks to results
of Chapter 3, the main tools described in the previous section can be applied
directly, without additional covering arguments.
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A closely analogous argument will be used to prove the local stability theorem
(Lemma 7.4.1). For this reason, I chose to make the following proof a bit sketchy
at parts where it coincides with the proof of Lemma 7.4.1.

Theorem 4.3.1. There are constants Cy(n) > 0,(n) > 0 such that the following
is true. If u: Bgy — S? is energy minimizing and J-flat in Bgy (see Definition
3.3.3), then the (upper) Minkowski content estimate M"3(singu N B;) < Cy
holds.

The (upper) Minkowski content mentioned above can be defined as

M?(A) = limsup P(A,e)e’, where

e—0

P(A,e) = max {k : there exist k disjoint balls B.(z;) centered at z; € A}

is the packing number. Estimates for Minkowski content M? are harder to
obtain than for Hausdorff measure H*, since H*(A) < M?(A) in general.

As an example, consider the set A = {0} U {1/n : n € N}, which has Haus-
dorff dimension 0 and Minkowski dimension 1/2; indeed, one can check that
P(A,¢) > (2¢)7/2. See [28, Ch. 5] for a detailed discussion and comparison.

The use of M? instead of H* here is mostly for convenience, but it also helps
illustrate the power of these methods. Indeed, with just a little more effort one
can get here packing content estimates, which are even stronger than Minkow-
ski content estimates (again, see [28, Ch. 5]) and are crucial in some applications
[35].

Proof. We follow the general outline of Naber and Valtorta’s work [37, Sec. 1.4].

In order to derive a Minkowski content estimate, fix a finite disjoint family of
balls B, (z;) with centers x; € singuNB; and radii g < 1/2. Denote the asso-
ciated discrete measure by p := ) 7“3_35%. We choose () to be the constant
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from the discrete Reifenberg theorem (Theorem 4.1.3) and prove inductively
that
1(B(z)) < Cor"® forallz € By with g < r < 7. (4.3.1)

Once this is shown for r; = 1 (with arbitrarily small 7y and an arbitrary family
of balls), the proof of the Minkowski content estimate is complete.

The induction takes place with respect to r;. For r; = ¢, (4.3.1) obviously
holds, even with constant 1 instead of Cj. Without loss of generality, we focus
on the last inductive step - i.e., we assume that the estimate (4.3.1) is already
known for r; = 1/2.

However, since any ball can be covered by at most C'(n) balls of 8 times smaller
radius, we see (4.3.1) holds for 8 with a worse constant C'(n) - C. This weak
upper bound does not establish the inductive claim, but is enough to justify the
estimates that follow.

With 6; > 0 to be fixed later, by Proposition 3.4.7 we can choose J small enough
so that all singular points in By lie in the top-dimensional part sing, u, more-
over u is also d;-flat in each ball B, (z) with z € singu N By and 0 < r < 20.

It follows from J;-flatness that we can apply the L?-best approximation Theo-
rem 4.1.5 on each of these balls and obtain

B2(z.5) < Om)s™ ) /B Ol 59) = (y,9) ()

for each ball B,(z) C B, with z € sing u, where (8 denotes 3, ,_3 2.

Integrating this estimate over B,.(z), exchanging the order of summation and
exploting the weak upper bound, we obtain

/ B2z 8) du(z) < / (6u(y,85) — Bu(y, 5)) du(y).
B, (x) B, ()

When the above is integrated with respect to s, we obtain a telescopic sum. In-

56



deed, the substitution s — 8s together with monotone convergence 0,,(y, s) \
0.(y,0) give us

[ 0089 - 0095 = [ 0009 - 0,00.0)

< 111(8)61,

as 0, (y,8r) — 0,(y,0) < §; for all considered y and .

Now we are ready to combine the above estimates:

/ / Bz, —du / /BQT u(y,8s) — 0 (y,S))du(y)%

<[ )5 duy)
By, (z)

5 517,7173

Y

where we used the weak upper bound again in the last line. Assuming that
91 < 92(n)/C(n), where 62(n) is chosen as in the discrete Reifenberg theorem
(Theorem 4.1.3), we see that the assumptions of this theorem are satisfied and
we infer the upper estimate u(B;) < Cj.

Since the estimate does not depend on the choice of balls, we infer the packing
number bound P(singu N By, 79)r) > < Cp. The estimate is also independent
of 79, thus the Minkowski content bound M"3(sing uNB;) < C; follows. [
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Chapter 5

Discrete Reifenberg-type theorem

5.1 Introduction

Reifenberg-type theorems

Classical Reifenberg’s theorem states that if a closed set S C R" is well ap-
proximated by affine k-planes (in the sense of Hausdorff distance) at all balls
centered in S, then S is bi-Holder equivalent with a plane. It was proved by
Reifenberg in 1960 [40] in his work on the Plateau problem (see also [46]).

Here we consider approximation in the sense of Hausdorff semi-distance, i.e.
sets with holes are allowed.

The quality of this approximation is measured by Jones’ height excess numbers
(. Fix natural numbers 1 < £ < n and let x be a Radon measure on R"”; the
basic example is p = HELS, where S is a k-dimensional set and H* is the
k-dimensional Hausdorff measure. We define

1/q
<r‘<’“+q> / d'(y, V") du(y)> - (5.1.1)
B, (x)

BM»Q(xﬂ T‘) — 1‘1//,1]9
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This is the L? norm of d(y, V*)/r on B,(x) with respect to the measure %,
where V* is the best affine k-plane.

In order to obtain an upper bound on the measure u, a uniform bound on
B,(x, ) is not sufficient (see Example 5.2.1). The upper bound can follow from
a bound on Jones’ square function

Jpal7) = / 82 (x,5)

In dimension 1, Jones’ Traveling Salesman Theorem [23] shows the connec-

ds
.

(5.1.2)

tion between a version of this function and 1-dimensional Hausdorff measure
bounds. The geometric importance of .J, , is also illustrated by Example 5.2.2.
The subscript i shall be omitted when it is clear from the context.

There are many results concerning the consequences of a bound on Jones’
square function. David and Toro [7] showed that if S satisfies the assump-
tions of Reifenberg’s theorem and Jyr_g;(z, 1) is uniformly bounded, then the
parametrization of S obtained in Reifenberg’s theorem is Lipschitz continuous.
Azzam and Tolsa [50], [3] characterized rectifiable measures by the condition
Ju2(x,1) < oo p-ae., assuming that the upper-density is positive and finite
[i-a.e.

Our aim here is to obtain upper bounds on the measure p. In this direction,
Naber and Valtorta [37] proved that there is 6(n) > 0 such that if

rt / Ju2(y,r) du(y) < 67
B, (x)

holds for any ball B, (z) C B, then u(B1) < C(n). This was proved in two
cases: when 1 is a discrete measure and when . = H*LS. In the latter case,
the authors also obtained rectifiability of S; see Chapter 4 for a more detailed
discussion of their results.

However, it was the discrete version (Theorem 4.1.3 [37, Th. 3.4]) that was used
to obtain an upper bound on the singular set H*(singu) of a harmonic map
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v in terms of its Dirichlet energy. Application to singular sets of solutions of
nonlinear PDEs is one of the main motivations of this chapter.

Recently, Azzam and Schul [2] have generalized Jones’ work to sets of higher
dimensions. One of their results bounds the k-dimensional Hausdorff measure
= HF.S of a closed set S C B; C R” in terms of J,4(0,2). The set S
is assumed to be lower content regular; this property implies that for some
c,rg >0

(B, (x)) > erf forallz € S, 0 <r < ry.

The precise definitions and statements are slightly more involved, as they em-
ploy the outer measures H% instead of H"; we refer the reader to [2] for details.
Thanks to this modification the authors avoid assuming a priori that y is finite.

Similar results were also obtained by Edelen, Naber and Valtorta in their paper
[9], which improves their previous work [37]. They prove a variant of Theorem
5.1.1 under somewhat different assumptions and also show rectifiability of the
measure in case the lower-density is suitably controlled.

Basic notation

The measure of k-dimensional unit ball is w; and AB,(x) = B, (z) is used to
denote the scaled ball.

If S = {B,} is a collection of balls, then CentS stands for the set of centers

of these balls and AS = {AB,} is the collection of scaled balls with the same
centers. We denote the union by

USZUBj.
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As in [7], we use the normalized local Hausdorff distance
1
dyr (B, F) = —distg(E N B,(x), F N B, (x)),
r

where disty is the standard Hausdorff distance.

Statement of the main results

The following is a slightly improved version of Naber and Valtorta’s Theorem
4.1.3 [37, Th. 3.4]. The main difference is that the upper bound J is not assumed
to be small. Moreover, the theorem holds for any 2 < g < oo.

Theorem 5.1.1 (discrete Reifenberg). Let S = {B, ()} be a collection of dis-
joint balls in By, p = 3, wirh 0y, be its associated measure and let B, (x,r),
Jy(x,7) be defined as in (5.1.1), (5.1.2), where 2 < q < 0o. Assume that for each
ball B, (z) C By we have

r_k/ Jo(y,r)dp(y) < J. (5.1.3)
B, (z)
Then the following estimate holds:
w(By) = Z wkrf < C(n,q) - max (1, qu2) . (5.1.4)
{I?jEBl

The choice of the normalizing constant wy, is motivated by the comparison of
with k-dimensional Hausdorff measure, but has no importance for the theorem.

The proof of Theorem 5.1.1 follows the lines of [37]. This generalization is
made possible by relaxing the inductive claim in the construction and carefully
keeping track of the constant.

This observation also leads to other possible extensions, discussed in Section 5.5.
First, Theorem 5.5.1 and Remark 5.5.3 generalize the above to measures p with
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controlled upper-density, in particular to the case jt = H*LS. Second, Theorem
5.5.4 shows that, with minor modifications, the proof applies also with (5.1.3)
replaced by a weaker assumption

][ Jo(y,r)du(y) < J.
B, (z)

Outline of the proof of Theorem 5.1.1

The main tool is Reifenberg’s construction of surfaces 7g, 77,75, ... approxi-
mating the support of ;.. The bound on Jones’ square function J, (5.1.3) enables
us to prove that this approximation is efficient. There are three key properties
that we need:

« The total area |7;| of the approximating surface is estimated from above
via 3, numbers (see (5.4.1)).

« The measures p and H*_T; are comparable on (at least some) balls B,. ()
centered near T; (see (5.4.2)).

« The region outside some neighborhood of 7; has small measure p (see
(5.4.3)).

It is intuitive that these three imply some bound on the measure . Indeed, once
they are derived, we shall see at the end of Section 5.4 that the final estimate is
an easy consequence.

5.2 Examples

Reifenberg’s theorem states that any e-Reifenberg flat set is a-Holder equiva-
lent with a k-plane. This leads to finite Hausdorff measure in dimension k/c.
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As e — 0, o tends to 1 and the dimension bound &/« gets arbitrarily close to
k. The example below shows that under these assumptions this bound cannot
be improved.

Example 5.2.1 (flat snowflake). Fix a small angle 6 and consider a modification
of the Koch curve (a snowflake): each segment is divided into three segments
of equal length and the middle segment is replaced by two segments, each of
them at angle 6 to the original segment (the original construction is obtained
for 6 = m/6). We denote the curve obtained by starting with a unit segment
and iterating the above procedure by K.

If 0 is small, K is e-Reifenberg flat and a-Holder equivalent with a segment.
For 0 ~ 0 we have ¢ ~ # ~ 0 and a ~ 1. Still, the Hausdorff dimension of K
is greater than 1. This example shows that Reifenberg’s theorem is optimal -
e-Reifenberg flatness condition does not imply a bound on the k-dimensional
Hausdorff measure.

Since e-Reifenberg flatness condition is not enough to imply a bound on the
k-dimensional Hausdorff measure, we investigate an improved example taken
from [7]. It suggests that the proper hypothesis is a bound on Jones’ square
function (5.1.2).

Example 5.2.2 (very flat snowflake). Modify the previous example by taking
another angle 6, at each stage ¢ of the construction. After NV stages we have
a curve of length

N2_|_1 N

1T —300891‘ =11 <1 + ée? + o(9§)> .

The product is convergent if and only if the sum ), 6 converges. The measure
A (K) of the limit curve can be bounded in terms of this sum.

Since the angles 6; are comparable with 3, numbers taken on the corresponding
balls, this shows that indeed the exponent 2 in the definition of Jones’ square
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function J; (5.1.2) is natural. It also suggests that this function can be used
to bound the k-dimensional measure; indeed, a result of this type was proved
in [7]. In this paper we relax this assumption by concerning a bound on the

average f (. Jo(y,7) dpu(y) or on rk B, (@) Ja(y,7) duu(y) for each ball B, (z).

5.3 Technical constructions

The tools discussed in this section are well known and most of them are cited
from [37]. Some technical corrections were made in Lemmata 5.3.2, 5.3.3 (coun-
terparts of [37, 4.7, 4.8]). These corrections come from the fact that the ball B,
cannot be covered by finitely many balls B,(x;) contained in B;. Thus one is
forced to work with a weaker condition x; € B, in consequence the balls are
contained in a slightly larger ball By ,.

Properties of 5 numbers

Recall the definitions

— inf -~ (k+a) k
Bilw,r) = g /Br<x>dq(y’v>du(y), (5.1.1)
" d
Jq(x,r):/() Bg(x,s)?s. (5.1.2)

Due to the factor r~(*+9 these quantities are scale invariant. Indeed, if v is
a scaled version of y, ie. v(-) = A *u(\-), then 3,,(0,7) = B,,4(0, ) and
Jyq(0,7) = J,4(0, Ar). This scaling occurs e.g. if v, y are discrete measures
corresponding to collections of balls S, AS, or k-dimensional Hausdorff measure
restricted to sets S, \S.
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First we note the basic continuity property of ,. For any y € B, (z) we have
B, (z) C By, (y) and it follows from the definition that

Bi(x,r) < 2k+263(y, 2r) fory € B,(x). (5.3.1)
This simple observation leads to an equivalent form of Jones’ square function.

Remark 5.3.1. Fixsome p € (0, 1) andletr, = p®fora = 0,1,2,.... Thenany
bound on Jones’ square function is (up to a constant depending on p) equivalent

to a bound on
> Bix,ra).

o <2r

Proof. Similarly to (5.3.1), we have

Bl(z,r) < (7“2/7"1)“‘163(%7“2) for ri < ro.

Take arbitrary s € (0,7) and choose « such that p®™1 < s < p® Then
c(p)By (@, p™) < Bj(x,5) < Clp)By(x, p°)

(0%

rd
ad (o)< [ <)
pa-i-l S
which shows the equivalence. []
Denote the auxiliary numbers
2 —k 2
e =t [ ) ant) (532

Note that assumption (5.1.3) together with Remark 5.3.1 yields a very rough
estimate 0, (z,7) < C.J. Moreover,

(52(.1’1,7“1) < C(rl/rg)(Sg(a:g,rg) ifBrl(CCl) Q Brz(aﬁg).

Yet another corollary of (5.3.1) can be obtained by taking the average over all
Yy e Br(x):

B2(27) < c<k,q>][ B2(y, 2r) dpu(y).
B, (z)
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If one assumes a lower bound (B, (z)) > 7(n)Mr* (as it will be satisfied in
the applications), this can be further estimated by

F o Ao < o [ G anty
=C(n,m)M 15§(x, 2r). (5.3.3)

Finally, an estimate for 5 can be obtained by

q/2
B(a.r) = (82(x, )" S(BU@@amM@Q

S (M_I(SS(:C,QT))C]/Q S M_%J%ég(:v,?r’), (5.3.4)

where the symbol < denotes an inequality up to a multiplicative constant, pos-
sibly dependent on n, q, 7, p.

Comparison of L?-best planes via j3,

Due to compactness of the Grassmannian G(k,n) and continuity of d(y, V),
there exists a k-plane minimizing [ (@) d?(y, V) du (there may be more than
one). We choose any of the L?-best planes and denote it by V' (z, r).

We will estimate the distances between the L%-best planes on different balls
using 3, numbers. More precisely, we want to prove that the distance between
V(z1,71) and V (22, 72) is estimated via 5, numbers if 71, 7 are comparable and
controlled by |z — x5|.

In the case of the standard (., numbers this is an elementary geometric prob-
lem. As shown by simple examples in [37], in case of 3, numbers one is forced
to assume some kind of Ahlfors-David regularity of the measure ;.. Here we use
the condition 7M7* < 1u(B,) < Mr because we want to study the dependence
on M with 7(n) fixed.
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Lemma 5.3.2. There exists py(n, T) such that for p < pg the following holds. If

u(B,(z)) < p*

holds for all x € By and ;«(B1) > 7, then for every affine plane V. < R" of
dimension < k — 1, there exists a point x € B such that

d(z,V)>10p, pu(B,(z)) > C(n,p) > 0.

Now we can prove the aforementioned tilt-excess result. We denote x = 1%[) SO

that kB, (z) C kB;(0) for any € B(0).

~

Lemma 5.3.3. Fix7T € (0, 1) and p(n, T) as in Lemma 5.3.2; denote . = 1%/). Le
1 be a positive Radon measure. Assume that (1(B1) > 7M and that u(B,2(y)) <
M p* foreveryy € B,. Additionally, letx € By be such that 1(B,(z)) > 7 Mp".

Then if d(x,V(0,k)) < p/2 ord(x,V (x,kp)) < p/2, then the distance between
the L1-best planes is estimated by

&8, (V(0,K), V (2, k) < Cln, . p, )M (B0, %) + Bz, xp))

We present a sketch of proof, referring to [37, Lemma 4.8] for a more detailed
explanation.

Sketch of proof. We assume that d(x, V' (0, k)) < p/2; in the other case one has
to exchange the roles od V' (0, k) and V (z, kp). Consider first the case M = 1.

We choose k + 1 points 4y, ..., yx € B,(x) with u(B,2(y;)) > c(n, 7). Denote
by p; the center of mass of B 2(y;) and let p! be its projection onto V (0, ). We
require p; to effectively span V' (0, ) N B,(z), i.e.

d(pi 1, span(py, . . ., pi)) > 8p°.
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This is done by inductive application of Lemma 5.3.2 and the elementary in-
equality |y; — pi| < p* Jensen’s inequality yields

dq(piu V(O7 ’Li)) < Cﬁg(Q ’%)7
(pi, V(1)) < OB, w),

hence all points p; are close to V(x,kp). Since these points effectively span
V (0, ) NB,(z), it can be shown that this k-plane is contained in a small neigh-
borhood of V'(x, kp) NB,(x). Since these two planes have the same dimension,
the assumption d(z, V (0, k)) < p/2 ensures that the inclusion works both ways
(see [37, Lemma 4.2]). This completes the case M = 1.

Now consider a measure p satisfying the assumptions for some M > 0. Then
the above reasoning can be applied for the measure v = M !y, satisfying sim-
ilar assumptions with 1 instead of M. Since p, v have the same L%-best planes
and g3} (y,r) = MB{ (y,r) on any ball B,(y), the claim follows. O

In the proof of Theorem 5.1.1, the values of 7, p shall be fixed depending only
on the dimension n.

Bi-Lipschitz diffeomorphism construction

Here we introduce the construction later used to obtain the approximating sur-
faces in the proof of Theorem 5.1.1.

For some r > 0, let J = {B,(z;)} be a finite collection of balls such that 1J
is disjoint. For each ball choose a k-dimensional affine plane V; and denote
the orthogonal projection onto V; by ;. As in [7], one can choose a locally
finite smooth partition of unity A\;: R” — [0, 1] subordinate to the cover ] 4J
satisfying
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2. \; = 0 outside 4B,.(z;) for all 4,
3. [[VAl]loe < C(n) /7,

4. the partition is completed with the smooth function¢) = 1 — > . \; and
IVY]lee < C(n)/r.

Definition 5.3.4. Given J, \;, p;, V; as above, define the smooth map
o R" =R, o) =v(@)z+ Y N()m(z).

The map o interpolates between the identity and the projections onto the affine
planes V;. Note that o = id outside of the union | J 4J, as on this region we have
1 = 1. On the other hand, if V; are all close to some V, then ¢ is close to the
orthogonal projection onto V' in the region | J 3J. This will be made precise in
Lemma 5.3.6.

Lemma 5.3.6 is a modified version of [37, Lemma 4.12]. It is essentially a coun-
terpart of the squash lemma used to prove classical Reifenberg’s theorem. The
crucial additional part of the following is the bi-Lipschitz estimate for o that is
quadratic in dg, d1; this should be compared to the measure estimate in Example
5.2.2 and the definition (5.1.2) of Jones’s square function. In order to obtain this
quadratic estimate, let us first consider the following geometric fact.

Lemma 5.3.5. Let Vy, V5 be two linear k-planes and m,, o be the corresponding
orthogonal projections. If dy1(V1, Va) < 0, then ||mma — id ||y, -1, < C(n)d

Proof. Tt follows that |75 || < Cd and |75 71|| < C6;in fact one can define the
Grassmannian distance this way. Since m; = id on V7, it is enough to estimate
the norm of mymom — my:
[mimem — m| = [[mi(m2 — id)m ||
= [|mmym|
= [[(mimy ) (mym)|

< lmmy || -y mll < (CO)°.
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[]

The following lemma deals with graphs of functions that are C' small at scale 7.
To simplify the notation, we introduce the normalized C'' norm

=r"[gllo + || V|| -

Lemma 5.3.6 (squash lemma). Fix some ball B,(y) C R" and a k-dimensional

affine plane V' such that d(y, V') < r/2. Suppose that for all balls B,.(z;) € J
centered in 10B,.(y) we have

d:rim(v;a V) < 51-

Suppose also that Gy C R" is the graph Gy = {x + go(x) : x € V} N 5B, (y) of
a small function go: V — V*, iie. ||go||c2 < do. If &9 < 1 and 61 < §(n), then

1. The set G1 = o(Gy) restricted to 4B, (y) is a graph of a C' function
g1: V — V+ with
g1llcr < C(n) (o + d1)-
There is ratio § > 3 — C(n) (6o + 61) such that on each of the balls 6B, (z;)
the previous bound is actually independent of 6, i.e. ||g1||c: < C(n)d;.

2. The map o: Gy — Gy is a C! diffeomorphism from G to G and
lo(2) — 2] < C(n)(6o+ 61)r  forz € Gy.
Moreover, its bi-Lipschitz constant does not exceed 1 + C'(n)(53 + 07).

Proof. Note that V; are also close to V' on the larger ball: d, 10,(V;,V) < Cé;
for all . For x € V denote z = x + g(:z:) and

ZA (z + go(2)) — ),
so that
oz + go(x)) = Y(2)(x + go(x +Z)\ )mi(z + go(z))

= x4+ ¥(2)go(x) + h(x )-
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For simplicity, assume that 0 € V. Then we can consider the decomposition of
o obtained by projecting onto the linear plane V' and its orthogonal complement
V+

oz + go(x)) = o’ () + o (),
z) =2+ hl(z),

Now we show that 07 —id and o+ are C’;-small. Indeed, it is easily checked that
||mi(x 4 go(x)) — x[|cx < C0y forall z € V N 5B, (x;) and hence for all  such
that \;(z) > 0. Note that this is independent of g, if only ¢y < 1. Therefore
175 leps 1A+ lex < Cér.

The remaining term is estimated by ||¢(z)go(z)]
all = such that z € | 3J.

cr < Cdy, but it vanishes for

Thus we obtained
lo" —id]lex < OO, loHler < C (00 + 61)

We choose ¢; < d(n) small in order to apply the inverse function theorem for
o’: V — V. Thus we obtain the inverse function ¢ satisfying ||¢ — id||c1 <
(C'd1 and ¢ = id outside | J 4J. The inverse enables us to write

o(a + go(x)) = o' (x) + gi(0” (x)), where gi(z) = o™ (¢(x)).
This proves point (1) and the first part of point (2).

What is left is the estimate for the bi-Lipschitz constant of ¢. To this end, we
decompose o in the following way:

id -1 UT i
Go 2 =+ go(x) LR INICAN ol () RN ol (z) + gi(c"(2)) € Gy

The Lipschitz constant of the map V' b, G is bounded by /1 + 42 and its

inverse is a contraction. Similarly, the bi-Lipschitz constant of V' At G is
bounded by /1 + C(62 + 87).
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T
To obtain a quadratic bound for V' 2= V, we need to improve the estimate
|VAT||s < O6; derived before. To this end, compute

VA (2 Zw )Wz (mymi(z + go(z)) — )

+ Z)\ vaﬂl id +Vgo( )) — ld)

In the second sum, the expression in parentheses is (7, V1; Vo) +(my Vr; —id).
The first term is bounded by (C'dyd;, while for the second Lemma 5.3.5 implies
the bound C'67. The estimates for the first sum are obtained analogously. Hence
IVAT || < C(62 + 67) and the bi-Lipschitz constant of ¢! is bounded by 1 +
C(62 + 7). In consequence, we obtain the bound for o as a composition.  []

We end with a related lemma, which shows that if G is a graph over V; and
V1, V5 are close, then it is also a graph over V5.

Lemma 5.3.7. Let V1, V5 be two affine k-planes and d,, ,(V1,V2) < 0, and let
G C B, be a graph over Vi of a function g, with |[g1||c: < 6. Ifd < 6(n), then
GNOB, is also a graph over V5 of a function gs, ||g2||c: < Cd. The ratio § satisfies
1-Co<O<1

Sketch of proof. We follow the proof of Lemma 5.3.6. The composition

id+g¢1 A

Vit s G — V5

is shown to be a diffeomorphism. If we denote its inverse by ¢, then G N 6B,
is a graph over V5 of go(x) = ¢(x) + g1(o(x)) — . O]
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5.4 Proof of the main theorem

Induction upwards

Fix 7(n) = 807167, then choose p(n,7) € (0,1) according to Lemma 5.3.2
applied with the value 27%7 instead of 7, finally denote x = 1%[). Without loss
of generality we can assume that each of the balls in S has radius r; = p’ for
some natural j > 1. Otherwise we exchange each B,(z) € S for B, (), where
we take j sothatr; <r <r;_;ifr < pandj = 1if r > p. This only changes
the values in (5.1.3) and (5.1.4) by a multiplicative constant. Similarly, we can
assume u to be supported in By, i.e. CentS C B, (8, , numbers are monotone

in p).

Let S’ denote those balls that have radius r; = p’; we denote S =S'U. .. US
and 5> etc. analogously. We can further assume S to be finite. Otherwise
we proceed with the finite truncated collection SS* and its associated measure
1S4, which also satisfies the assumption (5.1.3):

<A _ k
uSt = E Wk Oz
Jiri=ph

If we are able to obtain the claim (5.1.4) for <4 with a constant independent of
A, then by passing to the limit A — oo we obtain the claim for p. Thus let us
assume that the smallest radius in the collection is 7 4.

We focus on proving by induction the following claim:

Claim 5.4.1. For each j = A,...,0 and any ball B, () C By disjoint from
Cent S/,
u(B,,(2)) < M.

At the end of the proof, it shall be clear that M (n, J) = C'(n) - max(1, J) works
here.
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Note that this estimate fails without the additional disjointness assumption, as
for any x € CentS' and arbitrarily large j we have ;(B,,(z)) = wyrk. Still,
Claim 5.4.1 implies our final claim. Indeed, the collection S0 is empty, thus
p(B1) < M.

On the other hand, for j = A any ball disjoint from Cent S<4 has measure zero,
so the claim is trivial. This is the basis for our upwards induction.

Induction downwards. An outline of the construction

Here we assume that Claim 5.4.1 holds for all z € By and scales 7 +1,..., A
and consider a ball B, (z). For simplicity let us assume j = 0 and work with
the ball B, (i.e. the last step of the upwards induction).

We proceed with Reifenberg’s construction of coverings of CentS N B; at all
scalesi = 0,..., A. A covering at scale 7 will consist of the excess set E<' and
collections of balls Good’, Bad’, Fin’, each of radius r; and centered in CentS.
The balls Fin’ will be chosen from the collection S’ (hence u(B) = wyr! for
B € Fin’) and the other balls will be separated according to their measure:
1(B) > 7M1k for good balls and u(B) < 7MrF for bad balls.

As the first step, we define the approximating surface to be
TO = V(O, /i) < R".

The covering of CentS N By is obtained by just one good ball Good" = {B}.
Note that if this ball is in fact bad, there is nothing to prove.

The covering will satisfy the following properties:

Claim 5.4.2 (properties of the covering). The support of i is covered by the col-
lections of balls Good’, BadS’, FinS' and the excess set E<', i.e.

CentS C U Good' U U BadS‘ U U FinS' U E<.
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The collections %Goodi, %Badgi, %Fingi taken together are disjoint. Moreover, the
collection Good' is disjoint from Cent S<°,

A sequence of surfaces approximating Cent S will also be constructed, but it is
not used to obtain Claim 5.4.2.

Excess set

For each good ball B, () € Good' we define the excess set

E(y,r:) =By (y) \ By, a(V(y, £ri)).

This set is exactly what prevents the set CentS from satisfying the uniform
Reifenberg condition S (y, r;) < p/4. Its measure will be estimated via Cheby-
shev’s inequality later on.

We sum up over all good balls to obtain

E' = U E(y,r;).

Good'

We add it to the previous excess sets: ES' := ES™1 U EY,

Denote the remainder set
RS .= U Bad<' U U FinS U B,

The measure of this set can be estimated in a straightforward way, hence we do
not need to cover it in the next steps of our inductive construction.
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Construction of the covering

In order to cover the set | ] Good" \ R¥’ at scale r;, we first choose the final balls
Fin't! .= {Bml(,z) 2 € CentS™N (U Good’ \ R<i>} :
so that Fin’™ C S'*!, Due to Claim 5.4.2, what is left to cover is the set
CentS™" N (U Good" \ R@) : (%)

We choose any maximal r; | -separated subset Cent J'™! of the set (x) and con-
sider the collection of balls

Jt={B,, () : 2 € Cent J'*'}.

By maximality, the set (x) is covered by | J J*!. We divide J*™! into two subcol-
lections:

Good™ :={B € J'": u(B) > Mrf, },
Bad™ := {B e J: u(B) < TMrf,,}.

Proof of Claim 5.4.2. By inductive hypothesis, RS covers Cent ng We covered
the rest of Cent S"! by Fin'™! and Cent S>i*! by Good™, Bad™?, thus we ob-

tained the desired covering. Since the balls in S are disjoint and Cent J'! is an
r;+1-separated set, the rest of the claim follows. L]

Construction of the approximating surface

Here we apply the construction from Definition 5.3.4 for the collection of balls
J = Good"™". Thus for each ball B,, ,(ys) € Good'*! there is an associated
function \,, which together with 1) forms a partition of unity. We choose V;
as the L2-best plane V (y,, k7;11) on a slightly enlarged ball. This defines the
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smooth function

oi1(2) = Y(@)z + Y Ag(x)my, (2)

and the surface
Tiv1 = Uz‘+1(Tz‘)-

The construction is now complete. Our aim is to derive three crucial properties
(5.4.1), (5.4.2), (5.4.3). Once these are obtained, the final estimate is an easy
consequence. First we need some basic properties of the surfaces constructed
above.

Properties of the approximating surface

Proposition 5.4.3. (a) Fory € T;,

1

|0i+1(y) - y| X Eﬁ'ﬂ-

N\

(b) IfB,.,,(y) € Good" ™", then

(c) 0i41: Ty — Tj41 is bi-Lipschitz and for every B, (y) € Good™! its bi-

Lipschitz constant on 5B,,,, (y) is bounded by

Ti+1

: a2
Llpi—|—1 < 1 + C(”? q, P, T)M e 5§(y7 6Ti—1);
in particular Lip, ; < 2'/*.

@) If B, ,(y) € Good™, the surface T}y, is a graph over V(y, kris1) on
2B,,.,(y) of a C" function satisfying

1 1les

Ti41

< C(n,q,p, T)M*%éﬁ(y, 5ry).
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Proof. In order to derive these, we apply the squash lemma (Lemma 5.3.6) for
a ball B, () € Good'™. 1Its center y lies in some B,,(z) € Good’; we let
V := V(z, kr;) be the reference plane. Consider any 3/ € Cent Good'™* such
that |y — ¢| < 57i41. Then ¥/ lies in By, (z) and we may apply Lemma 5.3.3
(with 27 %7 instead of 7) and obtain

dy g, (V (2,267, V(Y b7i1)

C(n, g, p, T)M_g (53(?/; Krit1) + 55(2, 2/{7}))
CM—¥ (53(?/; 2K1i41) + 53(2, 4/173))
CM_¥5§(3/, 57;)

q+2

CM < J

NN NN

Here we used again the pointwise estimate (5.3.3) and a very bad estimate
(53(1‘, r) < J (the latter shall be refined in the next subsection). We can choose
M > C(7)J#2 large enough so that the right-hand side is small. The planes
V(z,2kr;) and V(z, kr;) are compared in the same way:

&2, (V(z,261:), V(z,w13)) < OM ™" 82(y,5r;) < CM ™% .

By the inductive assumption, 7; is a graph over V (z, ;) on 2B,.(z) hence we
can apply Lemma 5.3.6 with

1/2 1/2

01 1= (CM_quchSg(yjm)) . Op = (C’M_qfég(zjm_l))

Thus we obtain (a) and (b), while (c) follows after an additional estimate on

o, 01.

We also obtain an altered version of (d): 7, is also a graph over V(z, kr;) on
6B, ,(y) with the desired C'* bound (one can take § = 2.5). By an application
of Lemma 5.3.7, one can change the plane: T}, is a graph over V (y, kr;11) on
2B, ,(y). This completes the proof of Proposition 5.4.3. O
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Estimates on the approximating surfaces 7;

Combining the bound for the bi-Lipschitz constant of ;1 : T; — T}, in Propo-
sition 5.4.3c with the elementary estimate (1 + z)* < 1 + k2" 'z (valid for
x € [0, 1]), we obtain

Liph, () < 14+ CM ™% 62(y,,6ri1), @ € 5B, (ys)

for eachball B,,,, (y;) € Good_”l. Summing over all balls in Good’"! and noting
that 0,1 = id outside 5Good" ",

Llpf—l—l( ) 1 + CM Z 52 yS? 6TZ 1)X5Br +1(ys)($)
The measure of T;,1 = 0,41(7;) can be estimated by

| < / Lipk,, (z) dH* (x).

%

Applying the above estimate and Proposition 5.4.3b,
‘]—%+1‘ < |irz‘ + CM_% Z |T M 5Br +1‘52(y87 67“1' 1)

|T!+CM‘Z/ (2,67;1) du(2)

Bﬁfllyb
<IT|+ oM /52 i) du(2),

In the last line we used the fact that any point z € Bj belongs to at most C'(n, p)
balls Bg,. ., (ys), as the balls %Good“r1 are disjoint.

Applying this inductively, we arrive at the following bound:
T < [To] + CM~* Z/ B2(z, 6r1) dpa(2)

<wr (14 Cofn,q,p,7)MF ). (5.4.1)

Here, the bound on the series follows from Remark 5.3.1, and equality |7p| = wy,
comes from the fact that 7 is a plane.
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Comparison of ;i and H*_T;

Let B € Bad'*! U Fin'™! be bad or final. In either case, its center y lies in some
B(z,7;) € Good" and d(y, V (z,kr;)) < ri41/4, so T; is a graph over V (z, kr;)
on B. In particular,

1
(e /3)"

Since |0;41(y) —y| < TZ+1 and 0,1 has a bi-Lipschitz constant Lip,,; < < oWk
due to Proposition 5.4. 3 we have

[TiNB/3| =

T NB/2[ > [TiN B/3\ - Lipiy

207137k .

VoWV

By construction, the centers Cent Good” "™ lie outside B, hence B/2 is disjoint
with 5Good”""! and ¢, = id on B/2 for s > i + 1. Therefore

T, N B/2| > 207137 %F

for s = 4,i + 1,.... By definition, u(B) < 7MrF,, if B is bad. We choose
M > wy /T, so that the same holds if B is final. Thus we obtain the following
comparison estimate

u(B) < CitM|Ts N B/2| (5.4.2)

for B € Bad'"™* UFin"*" and s = 4,7 + 1,.... It is essential that the constant
Cy = 20 - 3* does not depend on p, 7.

Estimates on the excess set

Since
E(yvri) = {ZE‘ € Bn(y) : d(l’, V(yv ’Lﬂni)) 2 7nl'—|-1/4}7
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Chebyshev’s inequality yields
1
p(E(y, i) < —/ d*(z,V(y, kri)) dp
(E(y, 7)) e/ Jo ) (z, V(y, k1))
< C(n? q, P)Tfﬁg(yy K'TZ')
< Cln,q.p. )M T rfS) (, 20)
where in the last line we applied the estimate (5.3.4). By construction, the balls

%Goodi are disjoint, hence any point z € R" belongs to at most C'(n) of the
balls 2Good’. Thus

W(E) < Cn,q,p,7)M 207 | B2(x,2r;) dp

B,
and by summing over i = 0,1, ..., A we obtain the bound
W(ESY) < Cs(n,q,p,7)M 23, (5.4.3)

Here we used again the assumption (5.1.3) together with Remark 5.3.1.

Derivation of the bound

Here we prove Claim 5.4.1 using the estimates (5.4.1), (5.4.2), (5.4.3). By con-
struction, the balls Good' are disjoint from Cent St This means that at the
A-th step of the construction we have Good” = (), as this collection of balls is
disjoint with Cent S. Therefore p is supported in the remainder set:

supp p C U Bad<4 U U Fins4 U Es4.

Recall that the collections %BadgA, %FingA are disjoint, so we can use (5.4.2) for
all bad and final balls with s = A to obtain:

" (U Bad<' U J Fin<A) < Oy MI|Tyl.
Then the surface estimate (5.4.1) yields

q+2

y (Bad<A ulJ Fin<A) < wpCirM(1 + CoM "7 ).
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We add it with the estimate for the excess set (5.4.3) and arrive at
u(Bi) < M (chlf(l LM ) + ch—q?ﬁ) .

Note that 7(n) = 807167 is chosen so that w;C17 < 1/4. Now we choose the
smallest M satisfying

CoM™T <1, CaM~5J8< 5

and other lower bounds of the form M > C(n,q) imposed during the proof;
since 7(n) is fixed, we see that M = C'(n) - max (1, J7% ). Finally, we are able
to estimate

u(By) < M (3(1 1)+ %) — M.

This ends the proof of Claim 5.4.1 and Theorem 5.1.1.

5.5 Extentions of the theorem

Generalization to non-discrete measures

We assume that S C B is a H*-measurable subset. Here we generalize Theo-
rem 5.1.1 to measures of the form ;1 = H”*LS, i.e. we show that (5.1.3) implies
(5.1.4) in this case as well. This was done as a part of an independent theorem
in [37, Th. 3.3], but here we show it is a corollary of Theorem 5.1.1.

Theorem 5.5.1. Let S C By be a H"-measurable set and let B,(x, 1), J,(x, 1) be
defined as in (5.1.1), (5.1.2) corresponding to the measure H*LS and some exponent
2 < g < co. Assume that for each ball B, (x) C By we have

[ a) <
SNB,.(x)
Then for each ball B, (x) C By the following estimate holds:
H(SNB,(z)) < C(n,q) - max (1, qu2> -k
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Proof. 1tis sufficient to show the claim for the ball B;. Then for any B, () C B,

we can apply the theorem to the scaled set S" = %(S — x), which satisfies the

assumptions with the same value of J. Thus we obtain

HH(S (1B, (@) = H(S 1 By) - ¥ < Oln) - mae (1,775 -

As a first step we show that y = H*LS is o-finite. Indeed, (5.1.3) yields in
particular

/B Jo(y,2) dp(y) <2 J.

For fixed t > 0, the measure of the superlevel set S; = {y € S : J,(y,2) > tJ}
can be estimated by 1(.S;) < 2¥/t using Chebyshev’s inequality. On the other
hand, the set Sy = {J,(y,2) = 0} is clearly contained in a k-dimensional plane
and hence 1(.S)) < oo. Since

S =5 Ul Sy

J=1

(1 is o-finite. We can assume without loss of generality that  is finite. Indeed,
we can first consider the smaller sets Sy U .S} /; instead; since the bound (5.1.4)
depends on n and ¢ only, in the limit we obtain the bound also for .S.

Second, we recall the notion of upper k-dimensional density

k
O**(S, z) = limsup H(S N B,(2))

r—0 wyrk

and its following property [28]:

Proposition 5.5.2. Let S C R" be a set with H*(S) < oo. Then for H*-a.e.
x e,
27F <O (S, x) < 1. (5.5.1)

Consider the set 5™ of all points x € S satisfying (5.5.1). We can replace S with
this possibly smaller set. Since the difference S \ S* has zero #* measure, the
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obtained bound for S* holds also for .S. From now on we assume that all points
x € S satisfy (5.5.1).

For every = € S choose a radius r, € (0, p| such that

(50

(B, (2)) < 2wyrt for all 7 < 7.

WV

2_k_1wk(rx/10)k,

The set S is covered by balls B, (z) and we can extract a countable Vitali sub-
covering B; = B, (;), so that the balls :B; are disjoint. Choose p; to be the
center of mass of 1—10B ; and define the collection

S :={B,,/10(p))}-

Since p; € 1—10Bj, we have B, /19(p;) C %Bj, thus the collection S is disjoint.
We consider the associated measure

V= Zwk(rj/lO)képj.
J

Our goal now is to reduce the problem for p to the already solved problem for
the discrete measure v. We will show that this is possible due to the following
comparison estimates:

1(By)

EE)

2 10F0(By42,)
2

<
< 2MHIgEtage (2, 3s).

For the first estimate, we observe that

pB1) < Y uBy) <2-108 D wi(ry/10)" <2 10F0(Byyay).

:EjEBler LL‘jEB1+p

As for the second, consider a ball Bs(z) such that 3Bs(z) C Bs. If there is
some p; € By(z) with ;/10 > 2s, then by disjointness of S this is the only
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point from supp v in B(x) and /3, 2(z, s) = 0. In the other case, ;/10 < 2s for
all p; € Bs(z). Choose an affine k-plane V. On each %Bj we apply Jensen’s
inequality for the function d¢(-, V'):

2(p;, V) < ][ &y, V) dp.

19B;
This yields
(ry/10) nd(p;, V) <241 [y V) d
10Bj
and hence
JRCUACI L S Sl A GV Sy AR
B.(x) p,€B, () 76B; B3, (z)

Taking the infimum on the right-hand side,

k41 gkt
b (w,s) <2773 qﬁg7q(x,33).

Therefore the flatness condition (5.1.3) is satisfied also for the measure v and
we obtain our claim by an application of Theorem 5.1.1. To be more precise,
one first needs to apply an easy rescaling and covering argument, as one needs

to bound v(Bj.9,) instead of #(B), and also the obtained estimate works only
for balls B(z) such that 3B4(z) C B,. O

Remark 5.5.3. This proof shows that Theorem 5.1.1 actually works for all mea-
sures p with the covering property resulting from Proposition 5.5.2. Consider
p supported in the union of balls B, (z;), each satisfying

1
] (1—0Brj(xj)> > c,(r;/10)",

p(Br(xj)) < C’ur}“ forall r < rj.
In particular, this is satisfied by any p such that

¢, <O%(u,2) <C, for prae. .

If 11 satisfies the assumption (5.1.3), then 1 (B1) is bounded as in (5.1.4). Natu-
rally, the constant obtained in the final estimate depends on ¢, C,.
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Weakened assumptions

The proof of Theorem 5.1.1 applies also with the assumption (5.1.3) replaced
by fg J» < J. This means that we consider the integral divided by (B, (z))
instead of r*. Since there is no a priori upper bound for y, this assumption is
weaker.

Theorem 5.5.4. Let S = {B, (x;)} be a collection of disjoint balls in By and
=72, Wi 0y, e its associated measure and let By(x, 1), J,(x,r) be defined as
in (5.1.1), (5.1.2), where 2 < q < 0o. Assume that for each ball B,.(z) C By we
have

‘f Ty, ) duly) < .
B, (z)

Then the following estimate holds:
u(By) = Z wkrf < C(n,q) - max (1, Jg> :

.Z’jGBl

Sketch of proof. Proceeding as in the proof of Theorem 5.1.1, one obtains the
following counterparts of estimates (5.4.3), (5.4.1):

H(EgA) < 03*]%7
ITa| < wi (1 + OQM—?]) .

The main difference lies in the last step of each estimate, where one needs to
bound the integral fB2 Jy(x, ) dp(z). A closer look at the proof shows that in
fact an integral over B ;5 is sufficient to bound these quantities (actually, any
ball larger than B, is sufficient if p is small enough). In the case considered
in Theorem 5.1.1, this is bounded by J; in this case, one has to use the rough
estimate ;(B15) < C(n)M to obtain

[ ) duta) = uBus)f e dp < CoM

Bis

This rough estimate can be derived as follows. Since the collection S = S!
is disjoint, there are at most C'(n, p) ball centers B; 5 N CentS! and each has
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measure wyp". The rest of By 5 can be covered by C(n, p) balls of radius p
disjoint from CentSS!. By the inductive assumption of Claim 5.4.1, each has
measure bounded by M p*. This yields

#(Bis) < C(n, p)wrp® + C(n, p)Mp* < C(n, p)M.

The proof of the estimate (5.4.2) carries over without changes:
1w(B) < Ci7M|T, " B/2| for B € Bad™' UFin"™ and s > i.
Similarly, these three estimates combined yield

p(Br) <M (chﬂ' <1 + O2M_§J> + CgM_1Jg>

and the proof works for M = C(n) - max (1, J2). O]
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Chapter 6

Linear bound on the measure of
singularities

6.1 Linear law

This chapter is devoted to the proof of Theorem 6.1.1, a higher-dimensional
counterpart for Almgren-Lieb’s linear estimate on the number of singularities.

Theorem 6.1.1. Letu € W1%(Q, S?) be a minimizing harmonic map in a smooth
bounded domain ) C R", and let ¢ := ulgq be its trace. Then

H" 3 (singu) < C(Q) V| tdH" . (6.1.1)
o9

In contrast to Almgren and Lieb’s original proof, the one presented here does
not depend on the classification of singularities (Theorem 2.4.1), and the only
necessary special property of S? is the extension property (Theorem 2.5.1). As
already noted in Remark 2.5.2, it holds for all closed simply connected manifolds
(see [17]). Thus, we obtain the following more general result.

Corollary 6.1.2. Assume that N is a smooth closed simply-connected manifold.
Letu € WY2(Q, N) be a minimizing harmonic map in a smooth bounded domain
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Q) C R", and let p := u|pq be its trace. Then

H" 3 (singu) < C(Q,N) / IV|" tdH" . (6.1.2)
o0

Let us discuss why such an estimate is noteworthy. First, a non-linear estimate
on the measure of singularities follows easily from Naber and Valtorta’s interior
bounds. As an example, consider the following very simple result.

Theorem 6.1.3. Let (), u and  be as before. Then
"3 (sing u) < C(Q, Lip(p)).

Proof. If the boundary map ¢ is Lipschitz continuous, there exists o > 0 (de-
pending on the geometry of ) and the Lipschitz constant of ¢) such that any
minimizer v is smooth in the region {z € Q : dist(z,00?) < o}; this was
proved in [18], but also follows from more general Corollary 2.6.5. For any ball
B, /2(p) centered outside this region, Corollary 4.1.2 implies an upper bound
H" 3 (singu N Byja(p)) < C(n,0). Since {z € Q : dist(x,0Q) > o} can be
covered by finitely many such balls, we obtain an upper bound depending on
(2 and Lip(yp). O

The second improvement lies in the norm used for estimating sing u. A closer
look at the argument above shows that in fact Lip(¢) can be replaced by the
norm |[|¢||y1r(a0) for any p > n — 1. However, even a non-linear estimate in
terms of ||o||yy1.n-1(90) has to involve some more sophisticated geometric con-
siderations — the singularities still have positive distance to the boundary, but
this distance cannot be estimated in terms of the norm alone.

As already mentioned in the introduction, one can hope for a further refine-
ment — replacing W1~ 1(9Q) by WP(9) with any p > 2 - but the analysis
becomes more challenging, as the singularities may approach the boundary.

Examples in [31] show, the W?(9Q)-norm with p < 2 cannot control the
singularities, so Corollary 6.1.2 is sharp in dimension n = 3.
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6.2 Hot spots — refined boundary regularity

We start by refining further the boundary regularity theorems from Chapter 2.

Recall that Theorem 2.5.4 gives a bound on the energy of u: B} — S* in terms
of the energy le |Vo|? of its boundary map. In this section, we are considering
possible hot spots on the boundary. That is, we assume V¢ is controlled on most
of T except for a small ball, on which the integral may be arbitrarily large.

The first result states that in this case a uniform bound on the energy is also
available away from the hot spot (see [1, Thm. 2.3.]).

Theorem 6.2.1. Let ) C R" be a bounded domain with smooth boundary. There
exists a number ro = 1¢(£2) > 0, with the following property.

Forp € 09 let A(,.5)(p) := {x € R" : r < dist(z, p) < s}. Suppose also that u
is a minimizer in () having boundary map ¢. Then, whenever 0 < r < ry,

r2n / Vul*dz < C + Cr*™" / Vl?dH"™, (6.2.1)
QNA( 20 (p) O0NAG2,5r/2) (P

where C'(n) > 0 is a dimensional constant.

Proof. We choose 1 so that balls B, (q) N Q with ¢ € 9Q are C*-close to B}
after rescaling (see the remark preceding Corollary 2.5.3).

On any ball B, /4(¢q) with ¢ € 92N A, 9,)(p) we have the estimate

/ Vul?dz < 7"/ V| dH"
QNB,/4(q) IQNA(r/2,5r/2)(P)

by Theorem 2.5.4. On the other hand, by the same theorem

/ Vul?dz < r" 2
QﬂBr/S(q)
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for any ball such that B, 4(q) € €. We can cover the annulus A, 5, (p) by
finitely many balls of these two types, the number of balls depending only on the
dimension. Summing up, we conclude the final estimate (compare [29, Theorem
6.1]). ]

With this uniform energy bound, we can actually show that boundary energy in
small balls cannot induce distant singularities [1, Thm. 2.4]. In the contradiction
argument, the hot spot tends to zero in size and disappears completely in the
limit.

Theorem 6.2.2 (regularity away from hot spots). There is €(n) > 0 such that
the following holds. Supposeu € W12(B{,S?) is a minimizer with trace o on Ty,

and
1/ Vo> dH" ' < e
Tl\Be(p)
for some ball B.(p). Then u is smooth in
Thje X (A/2,0),

where A(n) > 0 is a small dimensional constant.

Proof. We argue by contradiction. Assume that u;: B — S? is a sequence of
minimizers with boundary maps (; such that

/‘ IVoi?dH" ! < g
Tl \Bsz (pz)

for a sequence of balls B, (p;) and ¢; 2%, Setting r; = (£,)72 > &; we
obtain

(r)*™" / Vi *dH" ! <, (6.2.2)
Tl\Br-(p1)
where 7; 2% 0, and up to taking a subsequence, r; < 27°.

Now, we assume (by contradiction) that each u; has at least one point singularity
yi € Tija X (A/2,A).
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1

By Theorem 6.2.1, for large enough ¢ and for any r» > 2~

7“2_”/ |V, |*de < C.
B NAq ) (pi)

Thus, for every 1 < k < 4,

/ V2 de < ¢ 27F0=2),
BTﬁA(g—k,Q—k—H)(pi)

Up to taking another subsequence we can assume that p; — pg, and for conve-
nience also |p; — po| < 27". Then, from the above estimate we have

/ VuPde < C Y 277 < C (6.2.3)
B, :\B,-i+13(po) _
4/5 V72 k=1

In particular by a diagonal argument and the strong convergence of minimizers,
Theorem 2.6.1, we obtain a minimizer v in I/VLQ(B;:/4 \ B, (py)) for any r > 0.

Moreover, its trace, which we shall call ¢ € VVkl)f(Tl \ {po},S?) is the limit of
©;. Observe that ¢ is constant on 7} by (6.2.2).

Moreover, by (2.1.3) the sequence of singular points y; can be assumed to con-
verge to a singular point of u, which we call y € T’ /5 X [A/2, A].

To reach a contradiction with Theorem 2.6.4, one needs to solve the subtle is-

sue of minimality around p,. To this end, we note that by (6.2.3) the energy

[a+ \B, () |Vu;|? is uniformly bounded for all » > 0, and hence by monotone
4/5\Pr

convergence u € W172(B;:/ ,)- In view of Lemma 6.2.3 below, the singularity py

is removable, and so u is a minimizing harmonic map in B;/ ,) With a constant

boundary map ¢. This contradicts the singularity at y. [

To complete the proof of Theorem 6.2.2, we need the following removability
lemma.

Lemma 6.2.3 (Removability of points for minimizing harmonic maps). Assume
that u € W12(B{,S?) is a minimizer away from the origin, i.e., assume that for
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any § > 0 and anyv € W1?(B{,S?) satisfyingv = u on 0B} and v = u on

By we have
/ Vul*dz < / |Vo|* da. (6.2.4)
B \B} B \B}

Then u is a minimizing harmonic map in all of B .

Proof. Let w € W12(B{,S?) with u = w on 9B be a competitor. We need to

show that
/ |Vul?dz < / Vw|? dw. (6.2.5)
By B

For 0 > 0 let n; € C2°(Bys) be a standard cut-off function satisfying ; = 1 in
B; and |Vrs| < .

We set ws € W12(Bf, R?) by

ws = (1 — 775)10 + nsu,
which satisfies ws = u on 8Bf, Ws = u in B; and Wy = w in Bf \ Bys. By
the extension property (Theorem 2.5.1) applied in B, \ Bs we can correct ws
to a map ws € W1?(B{,S?) such that

u in Bf
ws = { W in B \ Bys
U on 0B,
and
/ IVws|? dz < / |Vais|? de.
BJ;\B; BJ;\B;

In particular, ws is a competitor in the sense of (6.2.4), and we have

/ |Vul?dz < / |Vw;|* da
B/ \Bs

BT \B;

/ |Vw5|2da:+/ Vws| dz
B{\B2; B

By;\Bs
< / |Vw\2dx+6’/ |Vas|? da.
B \Ba; B3;

93



Since u, and w € W1?(B) using the absolute continuity of the integral we
find that

/\W\deg/ |Vw|2d:c+Climinf/ V5| da. (6.2.6)
B B IR 3¢
Now
1
/|Vw5\2dx<—2 |u—v\2dx+/ |vu\2dx+/ |Vo|* da.
BJ; 0% Jny; B, B,

Observe that we are in dimension n > 3 and S? is compact, so
1 2

= lu —v|“dx < 6.

(52 B+

26

Thus, using again the absolute continuity of the integral and that u, w € W2

we find

lim [ |Va;[*dz = 0.
6—0 B2+5

Plugging this into (6.2.6) we conclude. []

In the applications, we will use the following global version of Theorem 6.2.2
(see [1, Cor. 2.7]).

Theorem 6.2.4 (boundary regularity with hot spots). For each bounded smooth
domain Q) C R", there are small constants 0,6, \, A > 0 (0 depending on the
geometry of 1, the others only on the dimension) so that the following statement

holds true for any minimizer u € W12(Q, S?) with trace ¢ := u "

For any singular point p € singu with r := dist(p, 92) < o and for any ball
B).-(¢) € R", we have

r3_n/ Vel dH"™ > .
90N (B, (p)\Bar())

Proof. In principle, this is a rescaled version of Theorem 6.2.2, only with non-flat
boundary — with A = 1/)\ and A = /X, where ¢, \" are the values from Theo-
rem 6.2.2. By choosing o > 0 small enough, we can ensure that after rescaling
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the balls to unit size, the boundary is arbitrarily close to flat. To consider this
more general case, one needs a bit different contradiction argument based on
Theorem 2.6.1 (see Remark 2.6.2). ]

By Holder’s inequality, the conclusion can be replaced by

QN (Bar(p)\Bar(q))

and this is the formulation actually used in the sequel. However, it is impor-
tant to note that all boundary regularity theorems work with 712, and the
scale-invariance of W!" 1-norm on the boundary is only needed for the final
covering argument.

6.3 Covering argument

As in the case n = 3, the study of singularities near the boundary involves the
following covering lemma, which we here cite from [1, Theorem 2.8, 2.9].

Theorem 6.3.1 (Covering lemma). Let B be a family of closed balls in R",
be a Borel measure over R", and let T,w € (0,1). Moreover, assume that the
following two hypotheses hold:

1. For any two different B,.(p), Bs(q) € B we have
Ip — q| = wmin(r, s).
2. Suppose that B,.(p) € B and q € R" is an arbitrary point, then

1 (Br(p) \ B (q)) = 1.

Then
#balls in B < Cu(R"),

for a constant C(w, T,n) > 0.
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Proof of Theorem 6.1.1. Choose o > 0 (depending on the geometry of 0f2) ac-
cording to Theorems 2.6.3, 6.2.4. We first estimate the measure of the set

Ay = {pesingu:r(p) <o}, wherer(p)=3dist(p,dQ),

which is covered by balls B, (,)(p). Then we choose a Vitali subcovering such
that the balls B, (p;) cover A; and the balls B, /5(p;) are disjoint; let 3 be the
family of balls B, /\(p;) with A as in Theorem 6.2.4. The first condition from
Theorem 6.3.1 with w = A\ /5 follows: for any two distinct balls in our collection
we have

[pi = pjl = 5(ri +1;) = §max(ri/A,15/A).
Now let 1 be the measure

! 1
W= _’v90|n—1 ’H”_ll_aQ, 1.e. ,LL(U) = _/ |V¢‘n—1 d’H”’_l,
© € Joonu

where ¢ > 0 is the constant from Theorem 6.2.4. If we set 7 = )2, then the
second condition of Theorem 6.3.1 with k£ = n — 3 follows from Theorem 6.2.4
and we infer that

#B< O [ |Vo" tdH"
o9

On each ball B,,(p;), Corollary 4.1.2 implies H"*(sing u N B, (p;)) < CT;L_?’.
Summing over all balls, we obtain

H' P (A) <O | |[Ve|" tan
o0

Next we estimate the set
Ay:={p€singu:r(p) > o}

For each ball B,(y) with dist(y,0§2) > 20, Corollary 4.1.2 yields an upper
bound H"3(singu N B, (y)) < Co" 3. The set A, can be covered by finitely
many such balls (the number of balls depending only on ¢ and the geometry of
(2), which gives us an estimate

H"3(Ay) < Cy.
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Taking Cj as above and € as in Theorem 2.6.3, we have two possibilities. Either

the smallness condition [, |V|" ' dH" ! < ¢ is satisfied and H"*(A;) = 0
follows, or

C
H'3(A) < Cp < =2 [ |V TdH" .
€ Jon

In both cases, combining the estimates for A; and A ends the proof. ]
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Chapter 7

Stability of singularities

7.1 Statement of results

This chapter is concerned with stability of singularities. By this we mean that
if two boundary maps ¢, ¢’: 9Q — S? are close in the right Sobolev norm,
then the singularities of their corresponding minimizers u, u’: 2 — S? are close
as well. Since minimizers are in general non-unique, the precise statement is
a little more subtle — e.g. by assuming uniqueness a priori.

In any case, let us discuss the right notions of closeness. In dimension n = 3,
when the singular set consists of finitely many points, Hardt and Lin [18] proved
Theorem 1.4.2. They considered the Lipschitz norm for boundary data, and
showed that small perturbations do not change the number of singularities.
Moreover, they constructed a bi-Lipschitz diffeomorphism 7: €2 — 2 (close to
identity in Lipschitz norm) such that u is close to v/ o7 in some C'” norm. These
results were recently extended to the case of W!2-perturbations of boundary
data by Li [24].

In higher dimension n > 3, we consider perturbations in the W!"~1 norm.
Since the singular set is a rectifiable set of codimension 3, we prove its stability
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with respect to Wasserstein metric (see [51])

dw(p,v) =  sup {/ hd,u—/ hdy}, (7.1.1)
h: R [-11] UJRe n

IVh|<1

i.e., we show that the distance between measures H" 3_sing u and H" 3_sing v’
is small. Since taking i = 1 in the definition yields

[(R") = w(R)| < dw (s, v),

we obtain in particular that the size of the singular set H"?(singu) is also
stable under W1 !-perturbations of boundary data.

Theorem 7.1.1 (stability of singularities). Let u € W1%(Q,S?) be a minimizer
in a bounded smooth domain Q0 C R™ with boundary data o € W19, S?).

If uy is a sequence of minimizers with boundary data ¢, and
wp — w in WH(Q),  op = @ in WH1H(00Q), (7.1.2)
then
H" 3 sing uy, s H 3 sing

in particular H"3(sing uy) — H"3(sing u).

For n = 3, we recover most of Hardt and Lin’s Theorem 1.4.2. Indeed, we see
that # sing uy, = # sing u for large k (as H is simply the counting measure) and
that sing uj converges to sing u with respect to Hausdorft distance. However,
generalizing the diffeomorphism statement to higher dimensions seems very
challenging — note that bi-Lipschitz regularity of sing, u is an open problem for
n > 3.

If one assumes uniqueness, the statement becomes slightly simpler:

Corollary 7.1.2. Let () C R" be a bounded smooth domain, and assume that for
boundary datap € Wm0, S?) there is a unique minimizeru € W12(Q, $?).
Then for each € > 0 there is 0 > 0 such that

¢ — ¢l <o inWt 1 = dy (H”_3Lsing u, H"3Lsing u) <e

for any minimizer u' with boundary data ('
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Proof. For the sake of contradiction, let u; be a sequence of minimizers with
boundary data ¢y, with ¢ — ¢ in W90, S?). Taking a subsequence, by
Theorem 2.6.1 we may assume that v, converges in W12(£2, S?) to a minimizer
u with boundary data . By uniqueness, uw = v and Theorem 7.1.1 implies that
H" 3L sing uy, tends to H"3Lsing u. Thus, we obtain a contradiction for large

enough £. []

7.2 OQOutline

In analogy to the original argument of Hardt and Lin [18], the heart of the
argument lies in the special case when w is the tangent map VU as in (2.4.1)
given by

R? x R 5 (2/,2") ——— — € S2.

Establishing a stability result for the singular set (which for ¥ is an (n — 3)-
dimensional plane) requires some care. Here we adopt the notion of J-flatness
introduced in Chapter 3, which combines topological and analytic conditions
for a minimizer to be close to W. In Section 7.3 we cite some of the necessary
results in our case.

With this in hand, we are able to modify the original arguments of Naber and
Valtorta [37] and improve their measure estimates in the special case of maps
into S2. In result, we obtain the stability result for U mentioned earlier (Lemma
7.4.1).

Since around " 3-almost every singular point, any energy minimizer is close
to the map ¥ (composed with an isometry), this stability result can be seen
as a local case for Theorem 7.1.1. Indeed, in Section 7.5 we cover most of the
singular set of u by balls on which Lemma 7.4.1 can be applied. An argument
based on Proposition 3.5.1 then shows that the same covering works for both
sing v and sing uy, and the global estimate follows.
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7.3 Behavior of top-dimensional singularities

This section recapitulates the results of Chapter 3 in the special case of the
target manifold N' = S%. These results will allow us to study further the top-
dimensional part of the singular set.

Recall that by Theorem 2.4.2, the map ¥: R? x R" 3 — S? given by ¥ (z,y) =
x/|z| (2.4.1) is the only locally minimizing (n — 3)-symmetric harmonic map
from R" to S? (up to linear isometries of R™). In particular, its energy density
O = fBl |V |? from (2.4.2) is the only energy density on the top-dimensional
part of the singular set - i.e., 0,(z,0) = © for each = € sing, u. As already
noted in Chapter 3, this implies that the homotopy class [id] is indecomposable
in the sense of Definition 3.2.4.

From now on, we shall use the notion of -flatness (see Definition 3.3.3) with
this fixed homotopy class and its (lowest) energy level ©.

Below we summarize the main consequences of J-flatness from Chapter 3 in
the special case N/ = S%. For simplicity, we only deal with the ball Bs, but
one can easily obtain the corresponding statement for any ball using the scale-
invariance.

Theorem 7.3.1. For each ¢ > 0 there is d > 0 such that the following holds. If u
is 0-flat in Bo, then

1. for some tangent map of the form W = W o q (with U as in (2.4.1) and some
linear isometry q) we have

lu = Tlirm,) <&
2. for the (n — 3)-dimensional linear plane L := sing ¥,
singuNB; CB.(L) and LNBi_. C mp(singun By),

3. all singular points in B lie in the top-dimensional part sing, u, and u is
e-flat in each of the balls B, (2) with z € singu N B; and 0 < r < 1/2.
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Proof. Points (1) and (2) are essentially the content of Lemma 3.4.3, except for
the condition L N B;_. C 7y (singu N By), which follows from Lemma 3.4.1.
Point (3) comes from combining Proposition 3.4.7 and Corollary 3.4.8. []

7.4 Local case

The lemma below can be thought of as a local version of the stability theorem.
It says that perturbing the tangent map W a little does not change the size of
the singular set much.

Lemma 7.4.1. For each € > 0 there is 0 > 0 such that the following is true. If
u: By — S? is energy minimizing and 6-flat in By (see Definition 3.3.3), then

(1 —&)wn3 <H" *(singunBy) < (1 +¢)wp_3.

Here w,_3 = H"3(sing ¥ N By) is the volume of the (n — 3)-dimensional ball.

It is natural that in order to conclude the right estimate on B, one needs to
make assumptions on a larger ball. The ball By would be enough here, but
working with Bgj saves us from an additional covering argument.

Proof. The lower bound follows from a simple topological argument (compare
with [37, Lemma 6.1]). Fix ¢’ = —%5, then apply Theorem 7.3.1 to find that there
is an (n — 3)-dimensional linear plane L such that

LNB; o Crp(singunBy),

provided ¢ is small enough. Since the orthogonal projection 71, is 1-Lipschitz,
this shows

H" 3 (singunBy) > H"(LNB o) =(1—&) " w, 3> (1 —¢e)wn_s.
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A rough upper bound follows from Naber and Valtorta’s work [37], namely
Corollary 4.1.2:
H" 3 (singu N B, (2)) < C(n)r"? (7.4.1)

for each ball By, (z) C Bo.

To obtain the sharp upper bound, we will follow the general outline of Naber
and Valtorta’s work [37, Sec. 1.4]. When the target manifold is S2, the original
reasoning can be made significantly easier due to topological control of singu-
larities (analyzed in Chapter 3). In particular, we will be able to apply Rectifiable
Reifenberg Theorem 4.1.4 to the whole singular set in B, without decomposing
it into many pieces.

With 9; > 0 to be fixed later, by Theorem 7.3.1 we can choose ¢ small enough so
that all singular points in By lie in the top-dimensional part sing, u, moreover
u is also d1-flat in each ball B,.(z) with z € singu N By and 0 < r < 20.

We can now apply the L?-best approximation Theorem 4.1.5 on these balls; for
simplicity, we consider the ball By first. By Theorem 7.3.1, u is W!?-close to
a map of the form ¥ = VU o ¢ (with ¥ as in (2.4.1) and some linear isometry g).
Note that ¥ lies in sym,, 5 and the value

€p 1= diStLQ(Blo)(ﬁa Symn,k—i—l) >0

depends only on the dimension n (not on the choice of ¢). Hence, by taking d;
small enough we can ensure that

diStLZ(Bw)(U; symn’o) < (5,
distr2(g,,)(u, symmkﬂ) > 2¢9

with § = §(2¢) chosen according to Theorem 4.1.5. Then we obtain

B0, < C) | (018) ~ 0u(0:1) duly),
where 11 ;= H" 3 (singu N By) and § = (,,,,—3.9. Similarly,
3(2,5) < C(n)S_(”_g)/ (0u(y, 8s) — buly, s)) du(y) (7.4.2)
B:(2)
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for each ball B4(z) C B, with 2z € singu. To see this, one simply needs to
consider the rescaled map w(z) = u(z 4+ rx) and apply scaling-invariance of
0-flatness and S-numbers.

Now we verify the hypotheses of Rectifiable Reifenberg Theorem 4.1.4. Fix a ball
B, (z) C By; we only need to check that

/ / B(z, —du( ) < Gor" 3 (7.4.3)

with d5(¢) > 0 chosen according to Theorem 4.1.4,

First, we integrate the estimate (7.4.2) over B, (x) and exchange the order of
summation:

/ 52 (z, (= 3/ / u(,85) = 0u(y, s)) du(y) dp(z)

—(n=3) S S Z
/B% / Bu(y,85) — Bu(y, )) du(=) du(y)
< / (0u(1.85) — Ouly, 5)) dpa(y).
Bgr(w)

Note that in the last step we used the weak upper bound (7.4.1) on the ball
B, (y).

When the above is integrated with respect to s, we obtain a telescopic sum. In
order to estimate it, first recall that u is d;-flat in each ball Bg,(y) such that
B, (y) € By, in particular

eu(y7 8T) - eu(y7 0) < 51

on the support of p. Thus, the substitution s — 8s together with monotone
convergence 6,(y, s) \, 8,(y,0) give us

/T(eu(y’&s) - eu(yos))E - / r(eu(yvs) - eu(yao))E
0 T

S S
ln(8)51
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Now we are ready to combine the above estimates:

/ /B —du //]32 u(y,8s) — 0 (?J,S))dﬂ(y)%

<[ )5 du)
Ba,(z)

5 (517“”73

Y

where we used (7.4.1) again in the last line. Assuming §; < d2(g)/C(n), we
have verified the assumption (7.4.3) and we infer the upper estimate

H" P (singuNBy) = u(B1) < (1 +&)w,_3.

7.5 Global case

The idea of the proof is to cover most of sing u by good balls, on which w is J-
flat and thus the measure of sing u is controlled by Lemma 7.4.1. The rest of the
singular set is to be covered by bad balls, whose total mass is small. To achieve
this, we will need the following simple covering lemma.

Lemma 7.5.1. Let S C R" be a compact set of finite H*-measure and let B be
a family of open balls such that for each pointp € S, all small enough balls around
p belong to B. Then, given anyc > 0, .S can be covered by the union of two finite
families of open balls Good, Bad, where Good C B consists of pairwise disjoint
balls and Bad = B, (p;) is a small family in the sense that

Y rh<e (7.5.1)
j

Proof. One way to construct this covering is by using Vitali’s covering theorem
for Radon measures (see e.g., [28, Theorem 2.8]). Applying it to the measure
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1 := H¥LS, we obtain a countable family of pairwise disjoint closed balls A =

{Brs (ps)}, covering p-almost all S and satisfying Bo, (ps) € B for each s.

Since the 1 is finite, we can divide A into two subfamilies Good’, Bad’, where
Good' is finite and Bad’ is small, i.e., u (U Bad') < . To obtain the desired
properties, we still need to alter these families a little.

First, we define Good to be the balls of Good’ slightly enlarged to open balls,
but still pairwise disjoint and still belonging to B.

Now, the remaining part S \ | J Good is a compact set and

L (S \ U Good) < (U Bad’) < e.

By definition of Hausdorff measure, this set can be covered by a finite family of
open balls Bad satisfying the smallness condition (7.5.1). []

Proof of Theorem 7.1.1. Fix € > 0. For the sake of clarity, we focus on showing
that the difference |H" 3 (sing uy) — H"3(sing u)| is controlled by ¢ for k large
enough. The estimate for Wasserstein distance follows the same lines; it is
briefly discussed at the end of the proof.

STEP 1 (BOUNDARY REGULARITY). Choose ¢y > 0 according to the boundary
regularity theorem (Theorem 2.6.6). Fix > 0 such that

/ Vol < e0/2
B, (x)

for every ball B,.(z) centered at 2. Then u is smooth in a Ar-neighborhood of
082 (with A(n) > 0 as in Theorem 2.6.6). By strong convergence of o to ¢ in
Whn=1(0Q), we may assume that [, [V <2+ [, [Ve|""! and thus

/ [V|" ! < e
B, (z)

for every ball B, (z) centered at 0f). As a consequence, we may assume each
uy, is also smooth in the same fixed neighborhood of 0f).
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STEP 2 (COVERING THE LOW-DIMENSIONAL PART). Recall the stratification from
Section 2.3
SO C...C5,4C Snf?) = Singu,

in which the k-th stratum S}, has Hausdorff dimension k or smaller. We will
consider separately the set S,,_4 and the top-dimensional part

sing, u 1= Sn-3 \ Sn—4.

Since sing u is compact and sing, u is an open subset of sing u by Theorem 7.3.1,

Sp—4 is also compact. At the same time, it has a uniform distance from 0¢2 and
H"3(S,_4) = 0, so it can be covered by a finite family Bad; = {B,.(p;)} of
open balls satisfying the smallness condition (7.5.1)

-3
g ri? e
i

and such that B, (p;) C ( for each i.

On each such ball Corollary 4.1.2 yields H"*(singu N B,,(p;)) < Cr} 3, with
C' depending only on the dimension n. Summing over all balls, we obtain

H3 (singu N U Bad1> < Ce.
The same estimate holds verbatim for each u;, by the same application of Corol-

lary 4.1.2.

STEP 3 (COVERING THE TOP-DIMENSIONAL PART AND ESTIMATING H" 3 (sing u)).
Here, we use the covering lemma (Lemma 7.5.1) for the set .S := sing u\ | J Bad;.
Thanks to Step 1, sing u has positive distance from the boundary, so it is a com-
pact set of finite 4" 3-measure due to Corollary 4.1.2. We choose B to be

B = {Br(p): p € sing, u, u is d-flat in Bglr(p)} :

where 6(¢) > 0 is chosen according to Lemma 7.4.1. Since S,_4 is already
covered by Bad;, we know that S C sing, v and hence small enough balls
around each point in S lie in B by Lemma 3.4.9 and Corollary 3.4.5.
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Having checked the properties required by Lemma 7.5.1, we can cover S by
the union of a finite disjoint family Good C BB and another finite family Bads
satisfying (7.5.1). We add the latter to Bad; to obtain the family of bad balls
Bad := Bad; U Bady, which still satisfies the smallness condition (7.5.1).

Repeating the reasoning from Step 2, we have again via Corollary 4.1.2,
HS (singu N U Bad) < 2Ck¢, (7.5.2)
H3 (sing wp N U Bad) < 2Ce forall k.

By assumption, the map u is d-flat in Bg,, (ps) for each ball B, (ps) € Good.
By Lemma 7.4.1, we now obtain

(1 —&)wp_3r™ 3 < H" P (singu N B, (ps)) < (14 &)wp_sr™™?

for each s. To finish the proof, we need to show that a similar comparison holds
for uy if £ is large.

STEP 4 (ESTIMATING H"3(singuy)). Since u, — w in W12(Q) and singu is
covered by the open families Good, Bad, by (2.1.3) the same holds for wy if k is
large enough (from now on we assume it is). For bad balls, the rough estimate
(7.5.2) will be enough, so we focus on good balls.

By Proposition 3.5.1, we can assume (by taking k large and ¢ small) that for
each B, (ps) € Good there is p* € singu; such that [p* — p,| < er, and wy, is
&'-flat in the ball Bgg(1.,, (p%). Here, the value of §' is chosen to be §(¢) from
Lemma 7.4.1.

Applying Lemma 7.4.1 to uy, on balls B(;_.),, (p¥) and B(y.),(p¥), we obtain
(1 — S)n_zwn_?ﬂ“g_g < H”_g(sing up M B(l—a)rs (plj))
sing ur N By, (ps))

sing ux N Bi4o), (P5))
+ E)n_anng?_g,

/

n—3(

X X

n—S(

NN N

—~
—_
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which is only slightly worse that the estimate for H"3(sing u).

STEP 5 (coMPARISON). Recalling that Good is a disjoint family, we can sum the
above estimate over all s to obtain

(1—e)" A< H" *(singuy N JGood) < (1+4¢)" 24,

where A := >"_w,_3r""3. Combining it with the estimate for bad balls (7.5.2),
we finally obtain

(1—e)"2A < H" 3(singuy) < (14 &) %A+ 2Ce.
Exactly the same estimate is true for u. Combining these two yields
| H" P (singug) — H" (singw)| < (1 +e)" > = (1—¢)"?) A+ 2Ce

n—2

Evidently the right-hand side tends to zero when ¢ — 0, which ends the proof
of stability of H"3(sing u).

STEP 6 (WASSERSTEIN DISTANCE ESTIMATE). With just a little bit more care, the
reasoning above leads to the Wasserstein distance estimate. Let us consider the
measure p = H" 3L sing u and decompose it into = py, + Y, s, where

[y = [bL (UBad\UGood),

ps = B, (ps) for each ball B, (ps) € Good.

The estimate for p, is simply dyy (15, 0) < p (| Bad) < 2Ce, whereas on each
good ball B, (ps) we have the inequalities

/ h d:us - wn—37’273h(273)

_ / (=) dpt (1B, () = et ™) hip

< rop(By,(ps)) + (B, (ps)) — wnf3T2_3|
< (rs + 28)wp_grt°

S
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for any function h: R" — R satisfying |h| < 1 and |Vh| < 1. If only each
radius is smaller than ¢, it follows that dy (py, wn_37“?_35p5) < 3ew, 3" 3. By
triangle inequality, dy (u, v) < 3eA + 2Ce, where v = Y w,,_3r" 34, is the
packing measure associated to Good and once again A = v(R"). Applying the
same reasoning to uj, we conclude as before.
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