University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Michat D. Lemariczyk

Recurrence of stochastic processes in some concentration
of measure and entropy problems

PhD dissertation

Supervisor

dr hab. Joanna Kulaga-Przymus, prof. UMK
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University in Torun

December 2020



Author’s declaration:

I hereby declare that this dissertation is my own work.

December 2020

Supervisor’s declaration:
This dissertation is ready to be reviewed.

December 2020

Michat D. Lemariczyk

dr hab. Joanna Kultaga-Przymus, prof. UMK









Contents

I

1

IT

Introduction

Preliminaries

1.1 Stochastic processes: probabilistic approach . . . . . . . ... ... .00

1.2 Stochastic processes: dynamical approach . . . . ... ... .. o000

1.3 Mixed ergodic-probabilistic setup . . . . . . . .. Lo
1.3.1 Staticnotions . . . . . . . . ..
1.3.2  Dynamical notions . . . . . . . . L

1.4 Some additional notation . . . . . ... ... L

Summary of our results

2.1 Gibbs measures, topological pressure and &B-free systems . . . . . . . . ... L.
2.1.1 Imtroduction . . . . . . . . . .
2.1.2 Basic notions and notation . . . . ... ... .. L o
2.1.3 Results . . . . o

2.2 Entropy of multiplicative convolution . . . . . . . . . .. ... ... .. ...
2.2.1 Introduction. . . . . . . . . e
2.2.2  Results: entropy of convolution . . . . . . .. ... Lo
2.2.3 Results: topological pressure . . . . . . . . L o

2.3 Concentration for m-dependent random variables and Markov chains . . . . . . . . ..
2.3.1 Introduction . . . . . . oL
2.3.2 Results: m-dependent processes . . . . . . . . ..o
2.3.3 Results: Markov chains . . . . . . .. L L L

Results and proofs

Entropy and topological pressure

3.1 Background . . . ... L
3.1.1 Shannon Entropy . . . . . . . . L
3.1.2 Entropy rate . . . . . oL
3.1.3 Topological entropy and measures of maximal entropy . . .. .. ... ... ..
3.1.4 Topological pressure and equilibrium measures . . . . .. ... ... ... ...
3.1.5 Periodic processes . . . . . ...
3.1.6  Disjointness of processes by Furstenberg . . . . . . .. ... o000

3.2 Results. . . . . . e
3.2.1 Notation and basic assumptions . . . . . . . . . ... oo
3.2.2  Entropy of multiplicative convolution . . . . . . . . .. ... oL
3.2.3 When a lost signal cannot be retrieved? . . . . . ... ...
3.2.4  Topological pressure for "convolution systems" . . . . . ... ...

PB-free systems

4.1 Background . . . . oL
4.1.1 PB-free subshift . . . . . ..
4.1.2 Hereditary subshifts . . . . . . . .. ... ..o

13
13
14
15
15
16
18

19
19
19
20
20
24
24
26
28
30
30
32
33

35

39
39
39
40
41
41
42
42
42
42
42
47
ol



4.1.3 Taut and Behrend sets . . . . . . . . .

414 Entropy . . . ..
4.1.5 Densitiesof ones . . . . . .. L
4.1.6 Soficsystems . . . .. L e
4.1.7 Mirsky measure . . . . . . ... e
4.1.8 Multiplicative convolution of measures . . . . . . . .. ... .. ... ...
4.1.9 Ones-maximal blocks . . . . . .. . ...
4.1.10 Gibbs property . . . . . . e
4.2 Results . . . . . e
4.2.1 Gibbs property in periodiccase . . . . . . .. L Lo Lo
4.2.2 Absence of Gibbs property . . . . . . ..
4.2.3 Topological pressure . . . . . . . ...
4.3 Open questions . . . . . . . . L

m-~dependent random variables

5.1 Imtroduction . . . . . . . L Lo
5.2 Background . . . ..o
5.2.1 Definitions and examples . . . . . ... Lo
5.2.2 Bernstein inequality. Introduction . . . . .. . ... L0000
5.3 Results. . . . o o e
5.3.1 Bernstein inequality for bounded bounded random variables, m >1 . . . . ..
5.3.2 Bernstein inequality for unbounded random variables, m =1 . .. . ... ...
5.4 Open questions . . . . . . ..o e e

Markov Chains on general spaces

6.1 Background . . . . ..
6.1.1 Definitions . . . . . . oL
6.1.2 Irreducibility . . . . . . oL L
6.1.3 Recurrence, transience and Harris recurrence . . . . . ... ... ... .. ...
6.1.4 Minorization condition . . . . . . . . ... L e
6.1.0 Periodicity . . . . . .o
6.1.6 Invariant measures . . . . . . . . . ... e e e e e e e e
6.1.7 Different kinds of "ergodicities" . . . . . ... . oo
6.1.8 Strong law of large numbers (SLLN) . . . . ... .. . o oo
6.1.9 Central limit theorem (CLT) . . . ... .. ... ... .. . ... ...
6.1.10 Split chain by Athreya-Ney: intuition . . .. ... .. ... ... ... ....
6.1.11 General splitting of the chain . . . . . . . ... ... 00000
6.1.12 Asymptotic variances . . . . . . . . ..o e
6.1.13 Additive functionals . . . . . . . ... L
6.1.14 Bounds on the number of regenerations . . . . . . ... ... ... ... ...

6.2 Results. . . . . . e
6.2.1 Proofs of the main results . . . . . . . .. .. L oo o
6.2.2 Estimate on H,, . . . . . . . . . e
6.2.3 Estimate on Th, . . . . . o o e e e e e e e e e e e e e e
6.2.4 Proof of Theorem 6.2.1 . . . . . . . . . . . ..
6.2.5 Proof of Theorem 6.2.3. . . . . . . . . . . . . ...
6.2.6 Proof of Theorem 6.2.4. . . . . . . . . . . . ... ..o

ITIT Appendixes

A Probability view on ergodic theorems

A.1 Notation and definitions . . . . . . . . ..
A.2 Summary of basic facts from the ergodic theory. . . . . . . . . .. ... ... ...



A3 Proofs . . . 108

B Tail o-fields 111
B.1 Pinsker’s algebra . . . . . . .0 111
B.2 General relations . . . . . .. 114
B.3 Examples . . . . . e 114

B.3.1 Exchangeable processes . . . . . . . . . . . 114
B.3.2 Markov chains . . . . ... L 115
B.3.3 oa-mixing processes . . . . .. ..o e 115
B.3.4 [-mixing processes (weak Bernoulli processes) . . . . . ... ... L. 115

C Besicovitch and Prokhorov metrics 117

D Orlicz exponential norm 121

E Markov-like properties of the split chain 123
E.1 Markov-like property of the split chain . . . . . . . ... ... ... ... .. 124
E.2 Markov property of the vectorized split chain . . . . . . ... .. ... ... .. 125
E.3 Markov property of the random block process . . . . . . . . . ... L. 126






Part 1

Introduction






This thesis is about the role played by return time processes in probability theory and in dynamical
systems. We show how they allow us to obtain Bernstein-type inequalities for additive functionals of
general Markov chains. We demonstrate how they provide a criterion for the inability of the retrieval
of a lost signal. Moreover, we explain how they can be used to solve the task of finding the entropy of
multiplicative convolution of measures which leads to an explicit formula for the topological pressure
of B-free systems. Apart from that we address closely related problems such as the absence of the
Gibbs property by the measure of maximal entropy.

The purpose of this part is twofold. Firstly (in Chapter 1), we would like to introduce the reader
to the notion of a stochastic process seen from both points of view, the probabilistic and ergodic
one. We explain how these perspectives can be combined and used to better grasp the behaviour of
random processes. We explain some differences between these approaches as well. Let us add that
apart from this basic information given in this part, for the convenience of the reader, in Appendix A,
we formulate (and prove) in a probabilistic manner selected standard ergodic theorems concerning
stochastic processes. Secondly (in Chapter 2), we present the essence of our results. Beware that in
that part, for brevity’s sake, some of our theorems are skipped or presented in simplified versions.
Moreover, some basic notions may not be explained. Thus, Chapter 2 should be treated as a foretaste
of full demonstration made in Part II, where all our results are grouped thematically (and presented
in separate chapters) and whole necessary theory is developed.

Let us add that apart from Appendix A mentioned above, at the end of this thesis, we provide some
additional supplementary chapters. In Appendix B we consider the theory of tail o-algebras of processes
(moreover, the Pinsker o-algebra is discussed). In Appendix C we present basic facts concerning
Besicovitch and Prokhorov metrics (results from this part are used in the proof of the formula for the
topological pressure of %B-free systems, see Section 4.2.3). In Appendix D we recall standard facts
concerning Orlicz norms (they appear naturally in concentration inequalities, see Chapters 5 and 6).
In Appendix E we show how Markov-like properties can be established for the split chain. Although,
many results from Appendix E are well-known to specialists, they are hard to find in the literature
(especially in the provided form) and we believe that they deserve to be presented with their full proofs
(the Markov property of a random block process constitutes one of the main ingredients to the proof
of our result concerning Bernstein inequality for Markov chains, see Section 6.2).

This thesis is based on one (submitted) preprint: [A1] (for the summary of our results thence see
Section 2.2) and two published articles: [A2; A3| (see Sections 2.3 and 2.1, respectively). Apart from
these papers, we generalized the formula for the entropy rate of multiplicative convolution from [A3] to
the case in which processes are stationary (see Theorem 3.2.1). Moreover, we established new results
concerning a topological pressure of #-free systems (see Section 2.1).

[A1] J. Kulaga-Przymus and M.D. Lemanczyk. Entropy rate of product of independent processes.
Preprint: arXiv:2004.07648, 2020.

[A2] J. Kulaga-Przymus and M.D. Lemariczyk. Hereditary subshifts whose measure of maximal en-
tropy has no Gibbs property. To appear in Colloquium Mathematicum, arXiv:2004.07643, 2020.

[A3] M.D. Lemariczyk. General Bernstein-like inequality for additive functionals of Markov chains.
Journal of Theoretical Probability, 2020.
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Chapter 1

Preliminaries

The aim of this chapter is to explain the concept of a stochastic process, introduce our general mixed
probabilistic-ergodic setup and present our notation and conventions.

The organization is as follows. Firstly, we recall some basic facts and definitions from the probability
field (Section 1.1). Secondly, we show how to perceive a stochastic process in the light of dynamical
systems (Section 1.2). Next, we give a general setup in which we usually work (Section 1.3). At the
end we provide some auxiliary notation (Section 1.4).

1.1 Stochastic processes: probabilistic approach

For simplicity’s sake, throughout this thesis, we assume that all random variables are defined on
a common probability space (2, F,P), where by a random wvariable X we mean any measurable
function taking values in some measurable state space X (for short, we write X € X). Moreover,
a discrete stochastic process (for short, a process) X = (X;);cr, where we use only time set
T =N={0,1,...} or T = Z, is just a family of random variables X; taking values in a common
state space X'. Note that these definitions ensure that every process is a random variable (we always
consider the product measurable structure on X7).

Sometimes, we replace the underlying probability measure P by its conditioned version, P4(-) =
P(-NnA)/P(A), where A € F with P(A) > 0, or more generally, by some other probability measure
Q. In particular, E4 and Eq stand for the expectation taken with respect to P4 or Q respectively. For
convenience’s sake, sometimes we write A, B instead of AN B for any A, B € F: for example, E4 p
stands for Esnp.

For any random variable X € X and underlying measure Q on Q we write Lo(X) = p for the
distribution of X with respect to Q, that is u(A) = Q (X € A) holds for all measurable A C X

For brevity’s sake, £(X) = Lp(X). The expression X S p is an equivalent of Lo(X) = p, whereas
for any random variable Y, X ~ Y should be translated as £(X) = L(Y). Sometimes we use the
expression "under measure Q" to indicate that we consider random variables on the modified space
(Q, F,Q) instead of usual (Q, F,P).

Although, many problems in the probability field are stated in terms of a specific process X, in
fact, they depend only on the distribution of X. Take for example the well-known task of establishing
concentration inequalities for the tails of sums of centered random variables,

P(Xo+-+Xn>1),

where t € R and X; € R. Clearly, this problem can be reformulated just in terms of marginals
(X0,..+sXn) ~ pip of p ~ X = (X;);cy- Thus, it is justified and natural to say that X and Y are
"equivalent" if X ~ Y. A natural question arises: why one should ever bother to use the language
of random variables instead that of measures? It turns out that in many situations notions such as
independence or coupling of random variables give a powerful insight and intuition which helps to
better conceive objects such as Shannon’s entropy or Pinsker’s o-algebra.

At the end let us introduce the notion of a canonical process. The underlying idea is very
simple and is also broadly used in ergodic theory, cf. (1.2.3) below. Firstly, we consider a special case

13



of underlying probability space, namely, Q = X% and some probability measure ; on €. Secondly,
for any i € Z, we define a random variable X; to be the projection on the ¢’th coordinate, that is
Xi(x) = ;, where x = (2;),.,. Now, the canonical process is given by

X = (Xi)ieZ :
Note that X ~ g under P = p and thus every random process can be realized (in the sense of
distribution) as the canonical one.

1.2 Stochastic processes: dynamical approach

In this section we show how stochastic processes are related to the field of dynamical systems. Let us
introduce first the basic notions from dynamics. Let (X, B, u) be a standard probability Borel space,
f: X — X be an invertible, bi-measurable, p-preserving map, i.e. u(f~1A) = pu(A) for any A € B.
Then the quadruple (X, B, u, f) is called a measure-theoretic dynamical system. Such systems
often arise from topological dynamical systems, i.e. by taking a compact metric space X, with a
homeomorphism f. Space X is then equipped with the o-algebra of Borel subsets B = B(X) and the
existence of invariant measures on (X, B) follows from the Krylov-Bogolyubov theorem (one can also
prove it using the compactness of the space of probability measures on (X, B) considered with the
weak*-topology). Sometimes one needs to study non-invertible systems and only assumes that either f
is measurable (in the measure-theoretic case) or that f is continuous (in the topological case), skipping
the assumption of the invertibility of f.

We are particularly interested in the class of systems which are known as subshifts. Let X be a
measurable space and let T stand for either Z or N. The map S: X7 — X7 given by

S(xi)ier = (Tit1)ier (1.2.1)

is called the left shift and the pair (X7, 9) is called a full shift. Assume now that X is a topological
space and consider the product topology on X7 This immediately makes S (and its inverse for T = 7Z)
continuous. Most frequently, X is compact or even finite (sometimes we need to go beyond this setting
and consider X' countable). As soon as X is (at most) countable, we always equip it with the discrete
topology. We say that (£, S) is a subshift, whenever 2 C X7 is closed and satisfies SZ C & (if
it is clear from the context that we deal with a subshift then sometimes we just write £ for short
instead of (Z,5)). Notice that as soon as X is a compact metric space, this results in a topological
dynamical system as defined above. Moreover, if u is an S-invariant measure on (£, B), where B
is the o-algebra of Borel subsets, then its topological support supp p is closed and S-invariant and
Z = supp p is a subshift. Recall also that S can be interpreted as an operator on the space of
measurable functions (as the composition map Sf = fo.S5) or on the space of probability measures (as
the push-forward map Su(A) = u(S~!A)). Note that for simplicity’s sake, we use the same letter S
in all these interpretations instead, e.g. S, for the push-forward.

Let X = (X;),cp, where X; € X, be a stochastic process. Recall that the left shift S acts naturally
on processes via

SX = (Xit1)ier

the process SX is called shifted and X is stationary if X ~ SX (most procesess which we consider,
especially ones arising from a dynamical context — see below — will be stationary and we will say it
explicitely if we deal with a non-stationary one). Now, notice that if X is stationary then Sy = pu, and
process X induces a measure-theoretic dynamical system

Can we reverse the above procedure? In fact, every Q as in (1.2.2) yields a whole bunch of
stationary processes Y = (Y;)ZET, where Y, € Y and ) is a measurable space. One of them (the
most basic) is given by the canonical one. More generally, let g: X7 — ) be measurable and let
Y = (Y;);cr be given by

Y, =5"9(X), neT. (1.2.3)

14



Every such process Y is called a factor of X. Let us stress that this definition of a factor is consistent
with the one from dynamical systems. Recall that for two dynamical systems Q; = (Xi, Bi, i, fi),
where i € {1,2}, Qy is said to be a factor of Q; if there exists a measurable map 7: X; — X
satisfying m o T7 = Th o and wuy; = pe. If additionally 7 is invertible and bi-measurable then we say
that Q; is tsomorphic to Q1. The consistency of the definition of the factor of a process follows now
from the fact that if 7: X7 — Y7 satisfies m0.S = S o 7 then m must be of the form (S"g),er, where
g: XT — Y is equal to the zero coordinate of .

Recall that in the probabilistic setup we said that two processes are “equivalent” if they have the
same distribution. How one should interpret the isomorphism of random processes in the dynamical
context? It is the most natural to say that two stationary stochastic process are equivalent if the
corresponding quadruples Q (as in (1.2.2)) are isomorphic in the sense of dynamical systems. Thus,
X is isomorphic to Y given by (1.2.3) iff 7 = (S"g)ner : X7 — YT is invertible and bi-measurable.
In a slightly informal way, this means that every realization x of X enables us to reconstruct the
realization y of Y and vice versa.

At last, let us give some examples highlighting the differences between the dynamical and proba-
bilistic definitions of equivalence of processes. The famous theorem due to Ornstein and Friedman [40]
says that if two weak Bernoulli systems have the same entropy then they are isomorphic. In particular,
every mixing Markov chain M is isomorphic to some i.i.d. process X. On the other hand, clearly, if M
is not degenerated then M and X cannot have the same distribution. Reversly, if we take Q = [0, 1], F
is the Borel o-algebra and P = ) is the Lebesgue measure and consider X (t) =2t mod 1 and Y (t) =t
and almost surely constant processes X = (X;);c, and Y = (Y;),5, where X; = X and Y; =Y for all
i € Z then X ~ Y (because X ~Y ~ \). On the other hand, there is no bi-measurable bijection 7
such that 7X =Y because Y is 1-1 whereas X is not. In short, each of these notions of equivalence
is quite different. However, as we will see in this thesis, both these approaches contribute a great deal
of knowledge concerning stochastic processes and when combined together, constitute a powerful tool
which leads to many non-trivial results.

1.3 Mixed ergodic-probabilistic setup

In this section we introduce basic notation that is used throughout this thesis.

1.3.1 Static notions

In this part we introduce basic notions and notation related to sequences. They arise naturally both
when one deals with stochastic processes and subshifts. As no dynamics is needed to define these
notions, we put them in the most abstract context that is of our interest.

Let & C XT. The state space X is sometimes called the alphabet of Z (especially if |X| < o).
The elements of X are denoted by small letters, e.g. x € X, whereas sequences are thickened, e.g.
X = (23);ep € £ . An analogous convention is used for subsets: A C X and A C 2. For convenience’s
sake we “upgrade” numbers 0 and 1 to constant sequences 0 and 1 respectively. Usually, we assume
tacitly that all considered subsets and functions are measurable.

If X C R then

suppx={i €T |z; #0}

stands for the support of x.
Given a sequence x € & or a process X = (X;);cr and a finite set of indices N C T', where
N = {il,...,ik}, 11 <y < -+ < ig, we define

$N=($i1,...,xin), XN:(Xil,...,Xi")

(with obvious modifications when N is infinite). Let us add that if N = & then it is convenient to
think about X4 as about a constant random variable.

For any k, | € Z we introduce integer intervals (as soon as there is no confusion with the usual
definition of an interval)

k)= {k,k+1,...,0}, (—ook]={ .. k—2k—1k},  [Loo)={ll1+1,142,...},

15



where we interpret [k,[] = @ as soon as k > [.

All standard operations valid on the real numbers are vectorized in a natural way (that is coordi-
natewise), resulting in their counterparts for sequences and random processes. For example, x+y = w
where w; = x; +y; or X <Y if X; <Y almost surely for all ¢ € T'.

We denote by Lg the language of Z, that is the family of all words appearing in Z . Recall
that w is called a word (over the alphabet X) if w = (wo, w1, ..., wy,—1) € X" for some n and that

w appears in £ if there exists x € £ and i € T such that w = z|; 4,1 (in other words, w is a

substring of some x € Z'). In that case |w| = n is called the length of w. Furthermore, Lg}) C Ly

stands for the subset of the language of £ consisting of words of length n. Sometimes we speak of
blocks instead of words.
If Kk € T and w is a word over X then the corresponding cylinder set is given by

[w]p = {x € Z | T gt w1 = w0} - (1.3.1)

For brevity’s sake we put [w] = [w]p. Sometimes we identify words w with the corresponding cylinders
[w]. In most cases it leads to no confusion and significantly clarifies writing. Thus, for example, for
measure p on 2, we can write p(1) instead of w([1]).

For every z € X we denote by #, (w) the number of © which appear in w, that is

e (w) = {i € [0,n 1] | w; =z},

where n = |w|.

1.3.2 Dynamical notions

Measures When one speaks of stochastic processes or dynamical systems, measures come naturally
into play. In both, ergodic and probabilistic approach, one usually identifies objects that are the same
up to measure zero and often we do so tacitly. Frequently (where it leads to no confusion), we omit
measurability details, e.g. we write that a measure is defined on some set assuming that this set is
equipped with a measurable o-field (usually the Borel one, if the set is a topological space). Sometimes,
however, we need to be more precise and then some extra notation is provided.

Fix a measure v on a measurable space (2, B). For any A, B € B we say that B contains A up
to v (and write A C B) if there is some Z such that A\Z C B and v(Z) = 0. Furthermore, A < B
if AC B C A. A similar convention is used for families of sets A, B (including o-algebras). More
precisely we write A C B if for every A € A there is B € B such that A C B. In case of o-algebras,
sometimes we say that G C H in the sense of measure algebras if G C H and the underlying
measure v is clear from the context. The set of all probability measures on £ is denoted by
P ="Pqyg.

Let now &£ be a subshift. As we have seen, any choice of u € P = Pg results in a stochastic
process X (with distribution p). The subset of P of shift-invariant measures is denoted by

M= Mg ={pn€Pyx|Su=p}

We omit index Z as soon as the underlying subshift is clear from the context. Sometimes, associating
a process with its distribution, we write X € M.

Note that if X' is compact then there is a natural construction of shift invariant measures. Indeed,
recall that given a sequence x € £ and n € N,

n—1
1
Sxm =— > Ogiy 1.3.2
= s (132)

is known as an empirical measure. Since M g is compact, probability measures dx , converge weakly
along some subsequence to a probability measure v € P. Clearly, by the very definition, v € M. In
such case we say that x is quasi-generic for v. If the convergence holds along the whole sequence of
natural numbers then x is generic for v.
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It is well-known that M is a convex set, the extreme points of which are ergodic measures. Recall
that 4 € M is ergodic (or S-ergodic) if the invariant o-field,

I={ACZ|S A=A}

is p-trivial, that is, T = {@, Z'}.

Induced shift Recall that if X ~ y € M then the quadruple (£, B, 1, S) (sometimes abbrieviated
to (&, u,S) or even to (Z,5) or &) constitutes a measure-theoretic dynamical system (cf. (1.2.2)).
Given A C & with p(A) > 0, we introduce now the corresponding induced subshift

Oa = (Z,Sa,pa), (1.3.3)
where the induced shift Sa and first return time na are given by
Sax = Aty na(x) =inf{k > 1| S*x € A}.
Note that Sa naturally acts on processes via
SAX = (Xitra), TA=7A(X)=inf{n >1|5"X € A}.

In the case of random processes we call Sp the random shift. Furthermore, we say that SaX
is a randomly shifted process. A process (or measure) X ~ p is Sa-invariant if SaX Fxea x
(equivalently, Sapa = pa). Similarly, X is Sa-ergodic if {B | S;'B = B} "2 {5 2}, that is the
Sa-invariant o-field is pa-trivial. It is well-known that if Sy = p then Sapua = pa and that pa
is Sa-ergodic as soon as p is S-ergodic. For more information and proofs of these facts we refer to
Appendix A.

Thus, we can summarize our usual general mixed setup as
P
X =(Xi)er € Z C X7, X; € X, SX ~ X, SAX RAX,

where Z < X7 is a subshift.

Couplings and joinings Fix two measures p and v on some sets A and ) respectively. We define
a coupling of p and v as a measure m on X x ) with marginals p and v, that is 7(X x ) = v and
(- x V) = p. We denote the set of all such couplings m by C(u,v). Sometimes, for brevity’s sake, we
slightly abuse notation by writing (X,Y") € C(u,v) instead of L((X,Y)) € C(u,v). Now let X ~ p and
Y ~ v be stationary processes on X7 and Y7 respectively. We say that (X,Y) = ((X;,Y;));cp ~ 7 is
a jotning of p and v (X and Y) if 7 ~ (X,Y) € C(u,v) and (X,Y) is stationary. The set of all
such joinings m ~ (X,Y) is denoted by € J(u,v) (or J(X,Y)).

Generating partitions At the end let us say something about generating partitions which link
ergodic objects with their probabilistic counterparts. Fix some measurable (at most countable) parti-
tions & and £ of a subshift Z . Recall that for any 7,j € T, where i < 7,

J
o=\ 5", (1.3.4)
k=i

where for any two partitions & and B, & VB = {ANB | A € &,B € # }. We say that & is
generating if the Borel o-field B is generated by

) oo k
Vst =c|)\ 5|, if T =N,
k=0 k=0 7=0

0 o k

\V stg=c()\ st7|, iT=L
k=—o0 k=0j=—k
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If  c X7 and |X| is at most countable then the partition
{lz] | z € X} (1.3.5)

is a generating one. This observation immediately gives the following conclusions. The entropy rate
(for the definition see Section 3.1.2) is a special case of Kolmogorov-Sinai entropy. This follows from
the well-known fact that the supremum in the definition of Kolmogorov-Sinai entropy is attained on
any generating partition (see for example [32], Section 4.2). Moreover, one-sided tail o-algebras of
processes coincide with the Pinsker algebra (see Chapter B.1). At last but not least, two dynamical
systems are isomorphic if the corresponding codings for generating partitions are isomorphic.

1.4 Some additional notation

As usual, for convenience sake, we abbreviate a V b = max(a,b) and a A b = min(a,b). Usually, the
log symbol stands either for log, or log, (in every section or statement we make it clear which one we
use). Sometimes we go further and to avoid some annoying technicalities, we put for example log z to
be equal log,(x V e).

. n—oo . . . .
For any sequence of numbers (a,)nen, we write a, —— a if lim a,, = a. When the time is clear
n—oo

from the context we just write a,, — a. Furthermore, a,, ~ b, if ‘Z—: — 1 when n — oo.

Given random variables X and Y we write X I1'Y if X is independent of Y. For a sequence of
random variables (X;), .y defined on (€2, F,P), we use X,, — X if X,, converges P-almost surely
(abbreviated P a.s. or even a.s. if IP is clear from the context) to X. Sometimes, in order to stress that

a.s. convergence is meant with respect to some other probability measure Q on €2, we use X, Qas, x,
Furthermore, X,, = X stands for the convergence in distribution. Some other types of convergence

are announced by explicit writings, for example f, Lp—@p)> f means that f,, convergence in L,(PP) norm
to f.

We use the following norms: |-||;, total variation norm on the space of signed finite
measures, |||, depending on the context, either the supremum norm or the L, norm.

Unconventionally, given a subshift 2 , H = Hg always stands for the topological entropy of Z .
Moreover, for any p € Mg, H (1) denotes the Sinai-Kolmogorov entropy of p. This notation is
motivated by the compatibility with the symbols we use for entropy in probabilistic setting. For now,
let us only say that if X' is countable then H (u) = H (X) for any X such that X ~ p, where by H (X)
we mean the entropy rate of X.

At the end, let us stress the difference between X € X and X € G where G C F is a sub-o-field
and X is the state space of X. In the latter we mean that X is measurable with respect to G.
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Chapter 2

Summary of our results

As it has already been mentioned, in this section we give just a taste of our main results. In particular,
in order to avoid introducing some additional theory or objects, some of the results are given in a
slightly weakened form. Furthermore, we take for granted that the reader is familiar with the basic
notions from both, ergodic and probability theory. In particular, we skip some standard definitions
and facts. For the detailed introduction and full exposition of particular results we refer to part two
of this thesis, where each subject is treated thoroughly.

Let us add that Sections 2.1 and 2.2 are highly correlated with each other. On the one hand,
the results from Section 2.1 concerning entropy and topological pressure are more general than their
counterparts from Section 2.1. On the other hand, %B-free systems from Section 2.1 were our main
motivation behind obtaining theorems from Section 2.2. In particular, many comments from Section 2.1
refer to Section 2.2 and vice versa.

2.1 Gibbs measures, topological pressure and £-free systems

2.1.1 Introduction

The study of ZB-free systems partly arises from the interest in the properties of the Mobius function
p: N — {=1,0,1}, whose square u? (extended to Z symmetrically) is the characteristic function of
square-free integers, i.e. numbers not divisible by the square of any prime. Given 4 C N\ {1}, let
1N = lrg,, where Fg = Z \ Upcg bZ. The corresponding dynamical system £, (called a £-free
system) is defined as the orbit closure of n € {0,1}% under the left shift S (i.e. we deal with a
subshift). The square-free system (X,,2,5) given by p? is a topological factor of the subshift given
by p itself. Sarnak in his seminal lectures on the randomness of the Mébius function [92] formulated
certain statements about the square-free system which extend in a natural way to general %B-free
systems. One of the open problems stated back then was the intrinsic ergodicity of the square-free
system, i.e. the problem of whether (X2, 5) has exactly one measure realizing the topological entropy.
It was resolved by Peckner in [85] and later extended to the general case in [61, 31]. A natural question
arose, whether the measure of maximal entropy has the Gibbs property (as it is often the case in
many natural situations, including sofic systems [101], i.e. factors of subshifts of finite type). Peckner
in [85] provided the negative answer in the square-free case. However, his proof relied on non-trivial
number-theoretic facts on the primes (and an explicit formula for the Mirsky measure of a block) and
thus he asked if his result extends to general #-free systems. Our main result gives the positive answer
to Peckner’s question. In fact, we are able to give a more general criterion (applicable beyond the
PB-free systems) based on the notions of topological entropy and (topological) density of ones which
ensures the absence of Gibbs property (see Theorem 2.1.2).

Furthermore, we study the closely related problem of finding the topological pressure for %B-free
systems. Computing the topological pressure of general dynamical systems is a non-trivial task —
explicit formulas are available only in some cases for special potentials. A classical example is a
Walter’s result for subshifts of finite type [99], where the topological pressure is roughly given by
the greatest eigenvalue of an appropriate matrix or its generalization, the Ruelle-Perron-Frobenius
operator. Even though %-free systems can be approximated by sofic systems, it does not seem to us
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that this can be used to solve the problem under consideration. One reason is that the size of matrices
coming into play grows very rapidly. This makes it difficult to find algebraic relations useful in the
problem of computing the topological pressure. The probabilistic approach completely avoids these
obstacles and results in an explicit (and relatively easy to compute!) formula for the desired quantity
for continuous potentials. Moreover, it allows us to establish the uniqueness of the equilibrium measure
for potentials depending only on one coordinate, which extends the fact of the intrinsic ergodicity of
PB-free systems.

2.1.2 Basic notions and notation

Recall that a subshift (£, S), where Z C {0,1}%, is hereditary if for every W € £ and W’ < W we
have W’ € L, where £ = L4 stands for the language of & . Moreover, given a subshift 2 c {0,1}7,
the hereditary closure of & is defined via

g%:{ze{O,I}Z:zgxforsomexeﬂ”}.

The topological entropy H of Z is given by

H—Hy — lim ~log (‘c(m

n—oo N

(here and later in this chapter, log stands for log,). Similarly, for any v € M the Kolmogorov-Sinai
entropy H (v) can be computed as

H (v) = lim EHV (L’(")) , H, (E(")> e Z v(w)logv(w).

n—oo n
weLm)

An ergodic measure k € M9 is said to have the Gibbs property if there exists a constant a > 0 such
that
K(C) > a- 27102 Yoo om0 (2.1.1)

Remark 2.1.1. Note that if Hg- = 0 and « has the Gibbs property then it must be purely atomic. In
that sense, when one considers the Gibbs property, the most interesting cases arise when the underlying
subshift has positive topological entropy.

For any pu,v € M, we say that Kk = pu % v s the independent multiplicative convolution of
vand pif Kk ~X-Y where X ~ u, Y ~vand XIIY.

Now, we introduce some notions concerning densities of ones. We define the density of ones
for Z and its measure equivalent for v € M by

.1 .1
D=Dg = lim — max #, W, D, = lim — max #1W,
n—00 N WeLn) n—00 N WeLln), v(W)>0

respectively. Note that the limits exist due to the subadditivity of appropriate sequences. Furthermore,
one can show that sup,¢c g, Dy = Dg . Any measure v which realizes the supremum is called ones-
saturated. Clearly, if v is of full topological support then it is ones-saturated.

Finally, for any 0 < p < 1, let us introduce the family of Bernoulli measures B, ~ B®),

where B(P) = (Bi(p)>
1-P (B =0).

is an i.i.d. Bernoulli process with parameter p, that is, P (Bi(p) = 1) =p=

€L

2.1.3 Results

Our main result is the following one.

Theorem 2.1.2. Fiz a subshift (Z,S), where Z C iO,l}Z, and suppose that v € M$ is ones-
saturated and non-atomic. If D4 = Hg then k = By "% v does not have the Gibbs property (2.1.1).
2
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Remark 2.1.3. One can easily show that Dg < Hg always holds (cf. Proposition 4.1.14).

Recall that given a %B-free system (£ 4, 5), the associated Mirsky measure vy, is a natural invari-
ant measure which is (quasi-)generated by the characteristic function of the %B-free integers (if & is
pairwise coprime with summable series of reciprocals then 7 is generic for v;); this clearly includes
the square-free case): for the details on the Mirsky measure we refer to Section 4.1.7. Moreover, the
measure of maximal entropy for (jﬁv’ n,S) is unique and given by B 1 Iy vy. It is a classical fact in the
theory of cut-and-project sets that for any %, the Mirsky measure v, is ones-saturated for (£ ,,S)
(see, e.g., Theorem 4 and Corollary 4 in [57], cf. Chapter 7 in 7] as well; combine these facts with The-
orem 4.1.9). Alternatively, one can show that every shift-invariant measure on £ ,, can be expressed as
a multiplicative convolution of a certain measure with the Mirsky measure (Theorem 4.1.23) and thus,
by Theorem 4.1.9, the Mirsky measure must be of maximal density of ones (and thus, ones-saturated).
Furthermore, we always have Dg-, = Hin (see Proposition K in [34] or combine Theorems 2.1.16 and

4.1.9 below with the fact that the Mirsky measure is of maximal density of ones). Thus, Theorem 2.1.2
immediately results in the positive answer to the question asked by Peckner in [85].

Corollary 2.1.4. Let 8 C N\ {1}. Suppose that the Mirsky measure v, is not periodic. Then the
measure of mazimal entropy of (£ ,,S) does not have the Gibbs property (2.1.1).

Remark 2.1.5. We will say a few words about the (non-)periodicity of vy, later in this section. For
the precise description of sets % for which vy, is periodic, see Corollary 4.1.36.

Apart from %B-free systems, Theorem 2.1.2 allows us to obtain results for some other intrinsically
ergodic subshifts. Recall that a subshift Z is uniquely ergodic if there is exactly one shift-invariant
(and thus ergodic) measure on £ .

Corollary 2.1.6. If (2, S), where & C {0,1}2, is uniquely ergodic and Hg = 0 then B " has
2

no Gibbs property whenever the unique invariant measure v is non-atomic.

Let us recall the definition of a Sturmian dynamical system. Consider a real number « € (0,1) and
a sequence cq = (ca(n)),cz, Where

ca(n) = 1, 1—q)(na mod 1). (2.1.2)

The corresponding Sturmian system is given by &, := {Sic, | i € Z} C {0,1}* (considered with the
left shift S). Since irrational rotation dynamical systems are uniquely ergodic and of zero topological
entropy, Sturmian systems as codings (with controlled discontinuities) of rotation dynamical systems,
must inherit these properties. We will deal with its hereditary closure, called hereditary Sturmian
system, ie. & ,. Asshown in [61], such subshifts are intrinsically ergodic. Their measure of maximal
entropy is of the form Bi % v, where v is the unique invariant measure for the underlying Sturmian
system. Therefore Corollziry 2.1.6 yields the following result.

Corollary 2.1.7. If (:9,7, S) is a hereditary Sturmian system then its measure of mazimal entropy has
no Gibbs property.

As a byproduct, we also prove several results on %B-free systems that are of independent interest.
In particular, we prove the converse to a recent result by Keller [56], thus obtaining a dynamical
characterization of an important arithmetical notion of tautness. Before we state it, recall that a set
#B C N\ {1} is taut (see [19]) if for every b € B,

6(Mg) > (Mg (1)),

where for any set N C Z, §(N) = nh_)rgo @ Yoy %L‘e N stands for its logarithmic density (or rather
the logarithmic density of N N N), as soon as it exists (which is the case for the sets of multiples, as
proved by Davenport and Erdés in [29]). Recall also that whenever the natural density of a set N C Z
exists then so does the logarithmic density and these two quantities are equal (for an easy argument

see Remark 4.1.4).
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Theorem 2.1.8. Let 8 C N\ {1}. If the corresponding Mirsky measure v, is of full support Z , then
B is taut.

Furthermore, we obtain an explicit formula for the topological pressure of B-free systems. Recall
that, given a potential ¢ and a finite alphabet X = {z1,...,2}, the topological pressure of a
subshift Z C X7 is given by

Py, = lim —logQ Z 95UPA,; Snip(x),

n—,oo N
A,e2,

where @, = {[z1],...,[zx]}0"Y, Sp = 2050 S (for any partition € of &, €} = \/]_, S™"€). In
particular, if ¢ = 0 is the zero potential then we recover the definition of the topological entropy.
Furthermore, the following variational principle holds,

Pap= sup [H(X)+EpX)). (2.1.3)

Every measure (process) X € Mg which realizes the above supremum is called an equilibrium
measure (if o = 0 then such measure X is known as a measure of mazimal entropy and a system
which admits a unique measure of maximal entropy is called intrinsically ergodic).

Let us note that for any Z-free system & ,,, every measure X € M has a representation of

the form Z - Y for some stationary process (Z,Y) € M01)25 40,1325 where Y is distributed according
to the Mirsky measure vy, (see Theorem 4.1.23). Therefore the variational principle (2.1.3) can be
rewritten as
Py = sup H(Z-Y)+Ep(Z-Y)]. (2.1.4)
T (ZY)EMy 132 oay2 Y~

The Mirsky measure vy, corresponding to a %B-free system £, can be either periodic or not (de-
pending on the structure of 4). Clearly, if 4 is finite then the corresponding £, is periodic and so
is its unique invariant measure, that is, the Mirsky measure. On the other hand if |#| = oo then it
can still happen that the corresponding Mirsky measure vy, is periodic. Indeed, for example, consider
two sets: B = {2} and B = 222, where & stands for the set of primes. Clearly, in the first case, the
set of %B-free integers is equal to odd numbers and in the second one, to the union of odd numbers
and set {—2,2}. However, in both these cases the Mirsky measure is the same and periodic (recall
that the Mirsky measure is generated by the indicator of #-free numbers whenever this sequence is
generic). Furthermore, the problems we study (and the way we approach them) make us look at 2,
from the point of view of 14,. This is why the (non-)periodicity of 1, is of our interest, rather than the
(in)finiteness of AB.

We discuss the periodic case first, as it is much easier than the non-periodic one. Let Y ~ vy, stand
for the Mirsky measure associated with #. Let p € N be the period of Y, that is the smallest natural
number such that SPY =Y and m = Y_?_, Y; be the number of ones contained in that period.
A combination of Theorem 2.2.18 with the variational principle (2.1.4) immediately gives the following

formula for the pressure of @‘;

Theorem 2.1.9. Consider a B-free system &, with the corresponding Mirsky measure Y, where
|B| < co. Let p be the period of Y. Then for any potential ¢ depending on at most p consecutive
coordinates,

1
P =-log, Z 9P®(2j0,m—1]) , (2.1.5)
p

‘%‘7]»50
2[0,m—1]EX™
where m =Y t_Y; and ¢ 5 @, that is, ® is the upgrade of ¢ given by (3.2.24).

Remark 2.1.10. In this section we intentionally omit the precise definition of the upgrade of potential
¢ (via process Y) — despite being easy in concept it is burdensome to present in a short way (for a
quick introduction to this object we refer to Definition 2.2.16; a thorough analysis is done in (3.2.24)).
For now, let us only mention that the function ® is completely determined by the returns of process
Y to state 1.

22



Now, we turn to the case of non-periodic Mirsky measure.

Theorem 2.1.11. For any $B-free system Z v, such that the corresponding Mirsky measure Y ~ vy is
not periodic and a continuous potential p: X2 — R,

Py =P =1)+ sup 9(z), (2.1.6)
¥ zEXL

where o <5 ® is the upgrade of o given by (3.2.24).

Remark 2.1.12. Note that the assumptions of Theorem 2.1.11 exclude v, = 1 (in which the cor-
responding %B-free shift becomes the full shift) and thus our result does not say anything about the
topological pressure of the full shift {0, 1}Z.

Remark 2.1.13. Let us also add that the proof of the above theorem relies on both, the explicit
formula for the entropy of multiplicative convolution of measures (which we provide in Theorem 2.2.5
below) and the appropriate choice of periodic approximation of 2, (which, for every K € N, is
given by the ZB-free subshift associated with Mpcz.<y; in particular, we can apply Theorem 2.1.9
to approximate the pressure of non-periodic case). This approach is highly suggested by the result of
Davenport-Erdos (see [29]):

d(Mg) =d(Mg) = I}grlood(M{be,@:bgK})>

where for any set N C Z, d(N),d(N) stands for the density (lower density resp.) of N (or rather
N NN), which implies some convergence results (see for example Corollary C.0.5).

Remark 2.1.14. Let us explain (informally) why knowing Theorem 2.1.9 one may expect a result
like Theorem 2.1.11. The intuition can be summarized in two observations. Firstly, by the previous
remark, a general non-periodic case can be approximated by periodic ones for which Theorem 2.1.9
can be applied. Secondly, the expression in (2.1.5) can be rewritten as (a logarithm of) the [, norm of
an appropriate vector. It is well-known that as p — oo such norms converge to the o, norm (this is
why we obtain the supremum in the formula from (2.1.6)). Of course this reasoning does not explain
the appearance of P (Yp = 1) in (2.1.6) and some detailed convergence analysis of (2.1.5) as p — oo
must be done.

Remark 2.1.15. In view of Theorem 2.1.11 which provides an explicit formula for the topological
pressure of a Z-free system, it would be interesting to describe any of equilibrium measures for Z ;.
So far we know only that such an example can be obtained as a weak limit of certain multiplica-
tive convolutions of Gibbs-like i.i.d. processes with (periodic) approximations of the Mirsky measure
(see (3.2.33) in Theorem 3.2.32). However, we know nothing about properties of this limiting process.
In particular, it remains open if (or more precisely, under which conditions) a system like in Theo-
rem 2.1.11 admits only one equilibrium measure (we know only that this happens if the underlying
potential depends on one coordinate, see Theorem 2.1.16 below).

At the end we present the result which extends the fact of the intrinsic ergodicity of the hereditary
closure of a %B-free system.

Theorem 2.1.16. Suppose that a continuous potential p: {0,1}% — R depends only on one coordinate.
Then the topological pressure of the hereditary closure of & 4 is given by

P, = (1= d)p(0) +dlog, (270 + 2@<1>> , (2.1.7)
”VI’QO
where d = vy (1). Furthermore, there is a unique equilibrium measure for ¢, which is given by

G 'Y, (2.1.8)

where Y ~ vy, YT G and G is an i.i.d. binary process such that P (G; = j) = 2¢U)/ [2(,0(0) + 29"(1)]
for j €{0,1} (so G; is the Gibbs measure associated with ¢).
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Remark 2.1.17. Compare the formula from (2.1.7) to the well-known one for the pressure of the full
shift 2 = {0, 1}* for the potentials depending on one coordinate (say on the zero coordinate), namely,

Pa ., =log, (2w<o> n Qsou)) ,
which easily follows from

Pay=_sup [H(X)+Ep(Xo)] < sup [H(Xo)+Ep(Xo)] = logy (270 + 2}
XeMg Xoe{0,1}

(the last step follows from a standard calculation made for example below equation (3) in [20]). In
particular, we easily see that the supremum in the variational formula for & = &2 {0,1}2,, 18 attained
at an i.i.d. process G from Theorem 2.1.16.

Thus, the case of the full shift can be treated as a special case of Theorem 2.1.16 for d = 1 (that
is, the case in which vy, = d1).

2.2 Entropy of multiplicative convolution, topological pressure and
retrieving lost signal

2.2.1 Introduction

Let X = (Xj);cz and Y = (Y});c; be finitely-valued real processes such that (X,Y) is stationary.
Assume additionally that Y is ergodic, Y; € {0,1} for ¢ € Z and P(Yp = 1) > 0 (the last assumption,
Y # 0, is made to avoid some degenerate cases when one considers X - Y). Recall that for any
finitely-valued stationary process Z,

1
H(Z)= lim —H (Z[Ln]) =H (ZO \ Z(—oo,—l])

stands for the entropy rate.

In this part we investigate the entropy rate of multiplicative convolution process X - Y, that is
H (X -Y). Apart from obtaining an explicit formula for H (X -Y), we study the following questions
posed in a slightly weaker form in [61] (Question 1 therein):

1. Is there a general formula for the entropy rate H(X - Y)?
2. Do we always have H(X - Y) > 0 whenever H(X) > 07
3. Can we have H(X -Y) = H(X) > 07

There is, though, another problem related to the process X - Y. Before we explain it, recall the
famous problem of filtering a noisy signal by Furstenberg (from 1967). The fundamental question
asked in [11] was when one can retrieve a signal Z from the perturbed one Z + W, where Z and
W are real-valued stationary processes. To solve this problem Furstenberg introduced the notion of
absolute disjointness of processes (which is a much stronger property than the independence of
processes) and showed that this property is sufficient for extracting Z from Z+ W (in fact Furstenberg
needed some additional condition of integrability but it was shown much later by Garbit [44] that it
is redundant). In the same spirit one may interpret X -Y as a lost signal (recall that ¥; € {0,1}) and
ask when it is possible/impossible to retrieve X from X - Y. Clearly, if H(X -Y) < H (X) then one
cannot hope to get X, thus, it is natural to reformulate Question 3 in the following way:

3. Is there a natural criterion for H(X -Y) < H(X) subject to H(X) >0 7

Remark 2.2.1. Note that if the state spaces of processes X and Y were contained in the set of positive
real numbers then an application of logarithm to X - 'Y would transform the problem of retrieving of
a lost signal into Furstenberg’s filtering problem Z + W, where Z = log X and W = logY. In that
sense it is important that we allow Y;’s to be zero.
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Remark 2.2.2. Notice that in the classical Furstenberg problem the signal X is represented by a zero
entropy (i.e. deterministic) process. Contrary to this, in our setting X is non-deterministic and it is
perturbed by a deterministic process Y, so the interpretation from the classical situation does not
fully apply. Nevertheless, there is a clear analogy of these two settings and the problem of entropy loss
seems to be of independent interest (see also the next remark).

Remark 2.2.3. Let us add that a similar (in fact, a much more general) problem of retrieving signal
was studied by Furtenberg, Peres and Weiss in [12|. More precisely, they stated the following question.

Let X = (XJ(.i)) - where ¢ € N, be a family of processes and U be N-valued process. Suppose that
j€

all these processes are jointly stationary. Define
X® = (x{") (2.2.1)
¢ =/

(thus, informally, U chooses among the family of processes). When one can retrieve U from XU)?
In order to answer this question the authors of [12] introduced the notion of double disjointness
of processes. We say that process A is double disjoint (DD) from B if every self-joining of A is
absolutely disjoint from B. In other words, if (A’, A” B’) is a stationary process such that A’, A” ~ A
and B’ ~ B then (A’, A) II B’. The most basic example of DD processes arises when we take A of
zero entropy rate (then clearly, every self-coupling of A has zero entropy) and B which has the trivial
tail-o-field (let us add that in fact if A is DD from B then necessarily H (A) = 0 and B is ergodic).
Now, the main result of [12] can be summarized (roughly) as follows. Suppose that X for i € N and
U are jointly stationary. If U is DD from each X® for i € N then one can retrieve U from X(U),

Let us explain how to fit this theorem to our setting from Question 3’. Consider two processes
X® for i € {0,1}, where

X\ = ix; (2.2.2)

and take U =Y. Then X(Y) = X .Y and the theorem states that we can retrieve Y from X - Y as
soon as Y is DD from X. Note that, since we assume that H (X) > 0, we cannot exchange the role
of X and Y in above reasoning. In this sense, the problem we address is complementary to the one
studied in [12].

Remark 2.2.4. We construct just one example in which X can be retrieved from X - Y (see Exam-
ple 2.2.11). It might be interesting to provide some description of cases (which intuitively are fairly
rare) in which it can be done, however, we do not study this problem in this thesis.

A natural generalization of the notion of entropy is that of the topological pressure. Suppose that a
subshift (£, S) has the following "multiplicative convolution" property. There is a measure Y € Mg,
satisfying H (Y) = 0, such that

ZeMg << Z=X-Y forsome stationary process (X,Y). (2.2.3)

For example if we deal with the full shift 2 = {0,1}” then clearly we can take Y ~ &; to obtain all
elements of M g as described above in (2.2.3). A more elaborate example (fundamental for us!) comes
from the theory of Z-free systems. It has been proved in [61, 34] (see Theorem 4.1.23 and also our
simple proof of this result on page 66) that in this case all members of /\/l~ are of the above form for

Y distributed according to the Mirsky measure v,,. This triggers the followmg question:

4. What is the topological pressure of systems satisfying (2.2.3)? Are the corresponding equilibrium
measures unique?

In fact, our main motivation behind all these questions comes from the theory of &B-free systems.
This was also the setting from [61] alluded to above and Questions 1-3 were formulated in this very
context. Moreover, Question 4 is just as natural for this class. We have already seen some results
corresponding to these problems in the preceeding section. Now, we turn to the abstract setting.
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2.2.2 Results: entropy of convolution

Recall that we assume that (X,Y) is a stationary finitely-valued process, X; € R, Y is ergodic,
Y; € {0,1} and P(Yp = 1) > 0. For any two finitely-valued stationary processes Z and W,

1
H(Z|W) = lim —H (Zj) | W) =H (%0 | Z(-oc,-1), W)

stands for the relative entropy rate. Note that the limit exists due to the subadditivity of n +—
H (Z[Ln] | W[l,n})- The second equality is an easy consequence of the chain rule for Shannon’s entropy.
The Shannon’s entropy chain rule can be used as well to obtain the chain rule for the entropy

rate, namely,
H(Z,W))=H(ZW)+H(W).

Since by the very definition H (Z|W) < H (Z), if U is a finitely-valued stationary process such that
H (U) = 0, then
H((z,W,U))=H((Z,W)), H((ZU)W)=H(Z|W)=H(Z[(W,U)).
Therefore, if H (Y) = 0 (which is the case of our main interest) then
H(X - Y)=H(X-Y|Y).

Furthermore, it seems that in general H(X -Y | Y) is much easier to handle than H (X -Y) and
hence, unlike in Questions 1, 2, 3, 3’., all our main theorems will be expressed in terms of relative
entropy rate (with respect to Y).

Let R = R(Y) = (R;);c;, be the return process, i.e. the process of consecutive arrival times
of Y to the state 1:

inf{j >0:Y; =1}, =0,
Ri=<{inf{j>Ri1:Y;=1}, i>1, (2.2.4)
sup{j < Rit1:Y; =1}, i< —1.

Our main result provides an explicit formula for the entropy rate of multiplicative convolution.

Theorem 2.2.5 (Answer to Question 1). Under our standing assumptions, if H (X) > 0 then
H(X Y |Y)=P(Yo=1)Hy—1 (Xo | X(r_,r .1 Y). (2.2.5)
If additionally X 11'Y then
H(X Y|Y)=P % =1)Ey=H (X0 | X 1 p.y) ik, (2.2.6)

Remark 2.2.6. In order to calculate the integral from the right hand side of (2.2.6) one must
take the following steps. Firstly, for almost Py,—; every realization of our return process R we
calculate Ey,—1H (X | X{T_I,T_Q,_..}), thus obtaining some function f(r(_ ). Secondly, we find

Eyp=1f(R(—c0,—1])-

Recall that if H(Y) =0 then H(X-Y | Y) = H(X-Y). Therefore, the above theorem gives a
formula for H (X -Y), as soon as H(Y) = 0. As a consequence, we immediately get the following
result.

Corollary 2.2.7 (Answer to Question 2). Under our standing assumptions, if we assume additionally
that H(Y) =0 < H(X) and XII'Y then

P(Yo=1)H(X)<H(X-Y)<P(Y=1)H(X).

If one drops the independence assumption X IT'Y then it might happen that H (X -Y) = 0 which
complements the answer to Question 2. (Take for example processes X =Z-(1 —W)and Y =W,
where ZITW, W; € {0,1} and H(Z) > 0=H (W).)

Beside the explicit formula from Theorem 2.2.5 we obtain the following "drop bound" on H (X - Y)
when X is independent of Y.
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Theorem 2.2.8. Under our standing assumptions, if we assume additionally that XII'Y and H (X) >
0, then

H (X Y ’ Y) <H (X) -P (YO = 1)2EY():1H (X[l,rl) ’ X(foo,O]a X{rl,rg,...}) ‘h':Ri' (227)
As a direct consequence of this theorem we obtain the following criterion for the drop of entropy.

Corollary 2.2.9 (Answer to Question 3'.). Under our standing assumptions, if we assume additionally
that X1I'Y and H (X) > 0 then

HX Y|Y)<HX)-PY =1 Py_; (Ri =k H X | Xcoopko) - (2:2.8)
k=1

Recall now that two discrete random variables X and Y with joint distribution px y(x,y) and
margins px (z) and py (y) respectively, are e-independent if

> oy (x,y) — px(@)py (y)] < e
Ty

Furthermore, a stationary finitely valued process X is weak Bernoulli (or equivalently absolutely
regular cf. Section B.3.4) if the past and future become e-independent if separated by a gap g, that
is, given € > 0 there is a gap g € N such that for any k£ > 0 and m > 0, the random vectors X[, ;1
and X[_j g are e-independent (see [93] page 233). Let us mention that the weak Bernoulli property
is stronger than the very weak Bernoulli property (for the definition see [93], page 232). Moreover, a
process X is very weak Bernoulli iff it is isomorphic to some i.i.d. process.

It is well-known that if a process is absolutely regular then the double tail o-field

Tdouble = ﬂ o (X(—oo,—i]a X[z,oo))

i>0

must be trivial. In order to see it, recall that every absolutely regular process must be mixing — even
very weak Bernoulli processes are mixing, see Theorem IV.2.1 in [93], page 230. In particular, it is
ergodic, i.e. its o-field of invariant sets is trivial. Furthermore, the property of being weak Bernoulli
can be defined in terms of S-mixing coefficients and it corresponds to the convergence 5, — 0 (see
Section B.3.4). It remains to apply theorem by Berbee, see Theorem B.3.2.

Thus, if X is stationary and absolutely regular then, due to the continuity of conditional Shannon’s
entropy (with respect to conditioning), it is clear that for all sufficiently big k € N,

H (X710 | X(Zoo0)uiko0) = H (Xi/2 | X(oo0juih0)) = H (Xo | X(Zoo—k/2)0[k/2,00))
~ H (Xo | Taousle) = H (Xo) > 0

(for the sake of simplicity we assumed that k is even) and thus Corollary 2.2.9 immediately yields the
following result.

Corollary 2.2.10. Apart from our standing assumptions, assume additionally that X11Y, H (X) >
0, X 4s weak Bernoulli and Py _, (Ry =k) > 0 for infinitely many k € N. Then we observe the
phenomenon of the drop of entropy, H (X -Y) < H (X).

Finally, it is not so hard to come up with the following example.

Example 2.2.11 (Answer to Question 3). Let (&;),c, be a sequence of ii.d. random variables such
that P (§ =0) = P(§ =1) = %, an arbitrary (relabeling) 1-1 function F: {0,1}* — {1,2,3,4}
and put X; = F(&,&+1). Furthermore, let Y be independent of X and Y ~ %(5,( + dsx), where
x9; = 0 = 1 — 29,41 for i € Z. Since X is a Markov chain and F is 1-1, we have H (X) =
H(Xy1 | Xo) = H(,82&,6) = H(&]6,81) = H(§2) = log2. Moreover, Py,—1(R—1 = 2) =1
and therefore by (2.2.6), H(X - Y) = 1H (X, | X_2) = $H (X() = log2, where we used the fact that

Xp is independent of X_5. Summing it up,

H(X)=H(X-Y). (2.2.9)
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We can even strengthen (2.2.9). Note that since F' does not attain value 0, we can retrieve both,
X and Y from X Y. Indeed, any zero coordinate in X - Y immediately determines Y. Furthermore,
by the very definition of &, € (and thus X) can be reconstructed as soon as we know odd or even
coordinates in X. Hence, as soon as we get Y from the X - Y, the process X is easily found.

Remark 2.2.12. Note that X from the previous example is very weak Bernoulli (it is easily checked
from the very definition that X is absolutely regular (see Section B.3.4) which implies that X is very
weak Bernoulli), that is, it is isomorphic to some i.i.d. process X’'. However, for such process X', by
Corollary 3.2.3, H(X'-Y) < H (X') (as soon as Y # 1) and thus, in particular, the signal cannot be
retrieved. In that sense, the problem of retrieving signal is probabilistic (we care for the distribution
of X) and not ergodic (we cannot allow one to take isomorphism).

Remark 2.2.13. In the previous example Y was periodic, in particular, Py, _, (Ry < K) = 1 for
some K € N. It would be interesting to know whether a similar phenomenon is possible with
Py, (R1 > K) > 0 for every K € N.

2.2.3 Results: topological pressure

Let (Z,S) be a subshift and ¢p: & — R be a continuous function which we call a potential.
A potential is called local if it depends only on finitely many coordinates. In our setting one can
show that the topological pressure, & 4 , equals (note that we use base 2 in all logarithms and
exponentials)
I oo
Aec)

where S, = >°I; S%. It is well- known that the following variational principle (VP) holds (see [99],
Theorem 4.1),
Pa,= sup [H(X)+EpX)]. (2.2.10)
XeMgqg
Note that the map X — H (X) + E¢(X) is upper semi-continuous (in the weak topology) and thus
there is always some optimal X attaining the supremum in (2.2.10), called an equilibrium measure.
Motivated by the VP, for any subset of invariant measures ' C M(X%), we define

Ve = sup [H (X) +Ep(X)]. (2.2.11)
XeN

Fix a random stationary process v ~ Y = (Y;),c5 € {0,1}7 satisfying H (Y) = 0 and assume that X
is a real process, that is X; € R. Inspired by the %-free systems (the reader can think about v ~Y
as about a Mirsky measure), let us consider the family

Ny = {X Y | (X,Y) e MXZX{OJ}Z} . (2.2.12)
Our aim is to find the solution to the following variational problem:

Viye =_sup  [H(X-Y)+Ep(X-Y)], (2.2.13)
X-YeNy

which in case of "multiplicative convolution" spaces (cf. the discussion above Question 4.) coincides
with the topological pressure of the system (recall that the hereditary closure of a %B-free system is an
example of such space, see (2.1.4)).

Let us now present our results. We have three types of theorems. The first one (Theorem 2.2.14)
concerns the case in which ¢ depends only on one coordinate. This is clearly the simplest possible
extension in comparison to studying topological entropy. The second result (Theorem 2.2.18) holds
for (sufficiently) local potentials and periodic processes. In Theorem 2.2.19 we deal with arbitrary
continuous potentials and processes which can be approximated in a certain way by periodic ones. The
case when the limit process is itself periodic is here excluded — this is essential for our methods to work
(notice that m and ¢ in Theorem 2.2.18 are not completely arbirary).
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Theorem 2.2.14 (Potential depending only on one coordinate). Fiz some stationary process Y. Sup-
pose that the potential ¢ is local and depends only on the first coordinate, that is o(x) = p(xg). Then

Vi = sup  [H(X-Y) +Ep(X-Y)] = (1 - d)p(0) +dlogy | >_ 277 ],
X YeNy Tz€EX

where d = P (Yo = 1) stands for the density of ones. Furthermore, if X attains the above supremum
then X -Y ~ G - Y, where G is an i.i.d. process such that P (G; = x) is proportional to 2% (s0 G;
is the Gibbs measure associated with ¢).

Remark 2.2.15. Note that an application of the above theorem with Y = 1 (that is d = 1) yields
the corresponding result for the full shift (cf. Remark 2.1.17).

Given a finite subset of real numbers X' (containing zero), a potential ¢ : X2 — R and a stationary
binary process Y, there is a natural operation

0~ D

(where ® is a certain measurable function defined still on X%) which we call a Y-upgrade of ¢ and is
used in theorems below (cf. Remark 2.1.10 and recall Theorems 2.1.9 and 2.1.11, where we intentionally
omitted the precise definition). We will show now how to construct @, still omitting all technicalities,
but giving more flavour of what is happening here (for the details and more information we refer the
reader to (3.2.24)).

Definition 2.2.16 (Y-upgrade of a potential ). Let ¢: XZ — R be a continuous potential, where
0 € X C R. In order to give the reader some intuition behind Y-upgrade of ¢, we start with a toy
example of Y. Afterwards, we generalize it to the periodic case of Y and at the end we explain briefly
how the general case of Y is treated.

Let Y be distributed according to % (5(01)oo + 5(10)00). Note that then with equal probabilities 1/2,
the associated return (to the state 1) process R (recall (2.2.4)) is equal to either odd or even integers.
In such case we define the Y-upgrade of ¢ via

1
(I)(Z):i o(ooy2-1,0, 20 ,0,..0)4+¢@(...,0,221, 0 ,z0,...)|. (2.2.14)

0—coor. 0—coor.

More generally, take some 0-1 word w = (wo, ..., we_1) € {0, 1} of length £ € N such that wg = 1.
Let Y be the corresponding w-periodic stationary process (in other words Y ~ % Zle S%600, where
w>® € {0,1} and w® = W; mod ¢). In that case, the Y-upgrade is given by

‘
1 ,
®= Z S0, (2.2.15)
i=1
where the sequence of integers r(®) is equal to the consecutive positions of ones in w™ (in particular,
r(()w) =0 and rgw) = k iff wp® = 1) and for any strictly increasing sequence of integers r, ¢, is given by
or(z) =@ | ..., 0017271, proTratl g grirotl el
~— ~—~ ~—~

r—_1—COO0T. 0 —Coor. T1—COOoT.

In order to get a better grasp on the definition of ¢, note that on the right hand side of (2.2.14) the
first summand equals to ¢a7(2z) and the second one to @az41(z) and thus (2.2.15) extends the definition
given in (2.2.14).

Notice now that (2.2.15) can be rewritten as

® = Epr, (2.2.16)

where E denotes the Bochner integral and the return process R is given by (2.2.4). We use for-
mula (2.2.16) to extend the definition of ® to general processes.
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Remark 2.2.17. In the theorems below, given a state space X C R and a binary process Y, ¢(X-Y)
must be well-defined for any process X € X%. In particular, if X does not contain 0 then we must
(somehow artificially) define ¢ on X U {0} (and not just on X).

Recall that a word w is called primaitive if there is no word u and natural number n > 2 such that
w = u".

Theorem 2.2.18 (Periodic case). Fiz some 0-1 primitive word w of length { containing m = #; (w)
of ones. Let 'Y be the corresponding w-periodic stationary process. If ¢ : (X U {0})Z — R is local and
depends only on [0,¢ — 1] coordinates then

1
VNy,Lp = Z 10g2 Z 2Z(I)(Z[O,m—l])

Z[O,m—l]GXm
Y
where @ ~~ .

Theorem 2.2.18 leads to the following result (cf. Remark 2.1.14) which constitutes the crucial part
of the proof of Theorem 2.1.11 (the formula for the topological pressure for B-free systems).

Theorem 2.2.19 (Weak limits of periodic). Assume that the sequence of wy-periodic processes Y™,
where wy, are finite primitive 0-1 words satisfying #1 (wy,) — 00, converges weakly to Y. Then for any
continuous potential : (X U{0})% — R,

ze X7

where 5P,

2.3 Concentration for m-dependent random variables and Markov
chains

2.3.1 Introduction

In this section we establish Bernstein type concentration inequalities for Markov chains and m-
dependent sequences. Let us start with recalling the structure of such inequality in the simplest
i.i.d. case.

Theorem 2.3.1 (Classical Bernstein inequality). If (&;); is a sequence of i.i.d. real centered random
variables such that |||l < M then for 0? = E€Z and any t > 0,

t2
P >t <2 - . 2.3.1

Y&
=1
Let us now analyze (slightly informally) the right hand side of (2.3.1). Note that

t2
2exp | —————5—
P\ o2 1 20t

as a function of t exhibits two types of behavior: for “small” ¢, the Gaussian one (of order exp(—ct?)

for some ¢ > 0), namely,
2
2 — 2.3.2
exp ( 2n02> (232)

and for “large” t, the exponential one (of order exp(—ct) for some ¢ > 0), namely

2 exp (—5\4) . (2.3.3)



By “large” and “small” ¢ we mean the ranges of ¢ for which one of the terms, 2no? and %M t, “strongly”
dominates the other. (From now on, we write (informally) a >> b to say that a “is much greater” than
b.) Clearly, 2no? > 2Mt if ¢ is sufficiently small and 2no? < ZMt if ¢ is large enough. The “(2.3.2)
part” of Bernstein’s inequality is usually called the Gausstan part of the Bernstein inequality.
Let us now explain the name.

Assume that 7; are ii.d. Gaussian random variables with zero mean and variance o2, that is,
ni ~ N(0,02). It is classical that in such case

i ni ~ N(0,n0?)

=1

2
P >t z2exp(—2 2).
no

Thus, if 2no? > %Mt then Theorem 2.3.1 just says that the worst case arises when & = 5;, in other

words,
n n
i=1 i=1

Let us address now the problem of optimality of the Bernstein inequality (2.3.1). By the central
limit theorem (CLT),

and, moreover,

n
Zm

i=1

| > t) . (2.3.4)

1 n
= Z €Z = N(Oa 02)
v i=1
which roughly can be rewritten as

Z& N(0,n0?).

This observation combined with (2.3.4) shows that the Bernstein inequality (2.3.1) is in fact an (asymp-
totically) optimal concentration inequality (at least when it comes to the Gaussian part). Later on,
we will (slightly imprecisely) refer to this fact by saying that the Bernstein inequality is optimal.

Now, let us abandon the i.i.d. setup. Suppose that X = (X;), is an arbitrary real-valued process
such that sup, [| X;||,, < oo, EX; = 0, for which we want to establish a Bernstein-like inequality.
Assume additionally that the CLT holds for X, that is,

inZXi =  N(0,6%) (2.3.5)
=1

2

for some non-negative number o5, > 0 which we call the asymptotic variance. Now, if X is

sufficiently strongly mixing then one should be able to express o2, as

1 n
ol = lim_ Var (IZX> = lim ~Var (;X> . (2.3.6)

Furthermore, in the vein of classical Bernstein inequality, it is natural to expect that for such processes
the following analog of (2.3.1) should hold with an appropriate choice of a constant C' > 0,

PN x| >t) <2exp (- — ), 2.3.
(Z = )- eXp( 2nogo+CMt> (23.7)

i=1
where M = sup; || X;|| .. Note that in order to ensure that (2.3.7) “is able” to reflect the CLT behaviour
(2.3.5) (in other words, that 2no2, > C Mt for sufficiently large n), one must insist on C being o(n) as
n — 00. On the other hand, generally, one can allow C' to depend on some properties of X (as soon as
C = o(n)). This is the case for example for Markov chains, where C' depends on the starting point, the
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transition probability and is of order logn (for the details see Theorem 2.3.5 below). Similarly to the
i.i.d. case, we say (slightly imprecisely) that the Bernstein inequality is optimal, if the inequality
from (2.3.7) reflects the CLT behaviour (2.3.5).

In this part we consider the problem of obtaining versions of Bernstein inequality (2.3.7) for both,
(stationary) m-dependent sequences and general Markov chains. Recall that a process X = (X;), ., is
m-dependent for m € N if

Xcooh) U Xkrmit,00),  Vrez (2.3.8)
The class of m-dependent random variables was studied in many papers including [1, 73, 19, 51, 59,
| but it seems that the problem of optimal Bernstein inequality has not been addressed so far as
opposed to the case of the class of Markov chains, where many types of concentration inequalities
have been established, see |4, 5, 11, 12, 24,30, 31, 43, 54, 68, 67, 75, 74, 83, 91, |- Let us mention
that 1-dependent sequences are strongly related to Markov chains; due to the splitting method (see
Section 6.1.11), which splits a Markov chain into 1-dependent blocks. In particular, a version of
Bernstein’s inequality for 1-dependent processes yields (almost immediately) some for Markov chains,
but not vice versa. On the other hand, there is a conjecture (still open, for the details see Section 5.4)
which says that every 1-dependent stationary process is in fact a 1-factor of a 1-dependent Markov
chain which (if true) would set a nice correspondence between these two classes of processes.

2.3.2 Results: m-dependent processes

Let X = (X;);,cz be a stationary m-dependent sequence (recall (2.3.8)) of bounded and centered
random variables. It is easy to check that in this case the asymptotic variance (cf. (2.3.6)) is given
by

1 m
o2 = lim —Var (X;+ X+ -+ X,) =EX§ +2) EX(X;. (2.3.9)
Since our main result is quite techmnical, let us postpone its precise formulation to part two of this
thesis and now present only its consequence formulated for 1-factors of m-dependent I-Markov chains
which are of special interest in the theory of m-dependent sequences (and of Markov chains as well).
Recall that a process X € X7 is a k-factor of Y € Y7 (cf. (1.2.3)) if there is a function f: X% — Y
such that

Vi = f(Xi, Xi1, oo Xip—1)-

A process Y is called [-Markov chain if, for any k € Z, given the present X[ 1}, the future,
X (kt1,00) 18 independent of the past X —1)-

Theorem 2.3.2. Let X; = f(Y;), where [ is a bounded measurable function and Y = (Y;) is a
stationary m-dependent -Markov chain. Then

P(ixi

i=1
where ¢y = 2(1+ m)Q(erl), dmy =51+ m)(erl)(er 1), M = || X;||,, and o2
is as in (2.3.9).

Remark 2.3.3. The novelty of Theorem 2.3.2 arises from the use of the asymptotic variance o2 in
the Gaussian part of the Bernstein inequality instead of 02 = EXZ, that is the variance of a single
random variable. In fact, it is an easy task to obtain the version of (2.3.10) with o2, replaced by
o2. What are the relations between o2 and 0?? On the one hand, due to the Schwarz inequality, we
always have 02, < (m + 1)o?. On the other hand, it may happen that 02, < o2, that is, 02 can be
arbitrarily small compared to o2 (in fact, the extreme case 02, = 0 < o2 can occur). In the latter
case our theorem provides a much sharper inequality than one with o2, replaced by 0. Moreover, our

inequality (2.3.10) is an optimal one (up to constants depending on [ and m).

tQ
>t] <20m+1 - 2.3.1
—t>— (m + )eXp< cm,l(n+m+l)ago+dth>’ (2.3.10)

Remark 2.3.4. Note that if we could prove that every m-dependent stationary process is in fact
a k-factor (for some k£ € N depending on m) factor of a 1-dependent Markov chain then the above
theorem would imply that the optimal (up to constants depending on m) Bernstein inequality holds
for all m-dependent stationary processes.
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2.3.3 Results: Markov chains

In this part we assume that X = (X, )nen i @ Markov chain defined on a probability space (2, F,P),
taking values in a measurable space (X, B) (we require B to be countably generated), with a transition
function P: X x B — [0,1]. Moreover, we assume that X is t-irreducible, aperiodic and admits
a unique invariant probability measure 7 (for an introduction to this notions we refer the reader
to Section 6.1). As usual, for any initial distribution x4 on X we write P, (X € -) for the distribution
of the chain with X distributed according to the measure p. In order to shorten the notation we use
P, instead of IPs5,, where §, denotes the Dirac mass at x.

We say that X is geometrically ergodic if there exists a positive number p < 1 and a real function
G: X — R belonging to L;i(m) such that for every starting point z € X and n € N,

1P (2, ) = 7()llry < G()p", (2.3.11)

where || - |7y stands for the total variation norm of a measure and P"(:,-) is the n-step transition
function of the chain.

Our main result is the following. (Below, for convenience sake, we set log(-) = In(- V e), where In(+)
is the natural logarithm.)

Theorem 2.3.5 (Bernstein-like inequality for Markov chains). Let X be a geometrically ergodic Markov
chain with state space X and let w be its unique stationary probability measure. Moreover, let f: X — R
be a bounded measurable function such that Erf = 0. Furthermore, let x € X. Then we can find
constants K, 7 > 0 depending only on x and the transition probability P(-,-) such that for all t > 0,

n—1 t2
P, ( i;f(xi) > t) < K exp (—3%0%4% " Tt||f||oologn> :
where .
O3y = Varg(£(Xo)) + 2 Cove(f(Xo), £(Xy)) (2.3.12)

i=1

denotes the asymptotic variance of the process (f(X;)),

i

Remark 2.3.6. The constants K and 7 are explicit and can be found in Theorem 6.2.4. More
general versions of Theorem 2.3.5 are available in Theorems 6.2.1 and 6.2.3, where the assumption of
boundedness of X;’s is replaced by the integrability in the Orlicz norm.

Now, we make general comments on Theorem 2.3.5, to see how our result fits in a broader picture.
Recall the classical Bernstein inequality in the bounded case from Theorem 2.3.1. The CLT for Markov
chains (see [21, 80, 77| or Section 6.1.9) guarantees that under the assumptions and notation of The-
orem 2.3.5 the sums ﬁ S5 f(Xi) converge in distribution to the normal distribution N(0,0%,,.).
Thus, the inequality obtained in Theorem 2.3.5 reflects (up to constants) the asymptotic normal be-
havior of the sums ﬁ > f(X;), similarly as the classical Bernstein inequality in the i.i.d. context does.
Furthermore, the term log n which appears in our inequality is necessary. More precisely, one can show
that if the following inequality holds for all £ > 0:

/2
P, ( > t) < const - exp (— ) (2.3.13)

const - no? + const(x) - ant| f|loo

for some a, = o(n) and o € R (const’s stand for some absolute constants whereas const(z) depends

only on z and the Markov chain) then one must have 0 > const - 03, . Moreover, it is known that

for some geometrically ergodic Markov chains, a,, must grow at least logarithmically with n (see [4],
Section 3.3).

Concentration inequalities for Markov chains and processes have been thoroughly studied in the

literature, the (non-comprehensive) list of works concerning this topic includes |1, 5, 11, 12, 24, 30, 31,

, b4, 68, 67, 75, 74, 83, 91, |- Some results are devoted to concentration for general functions of

n—1

> F(X)

1=0
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the chain (they are usually obtained under various Lipschitz or bounded difference type conditions),
others specialize to additive functionals, which are the object of study in our case. Tail inequalities
for additive functionals are usually counterparts of Hoeffding or Bernstein inequalities. The former
ones do not take into account the variance of the additive functional and are expressed in terms
of || f]lco only. They can be often obtained as special cases of concentration inequalities for general
function (see, e.g., [30, 83, 91]). Bernstein type estimates of the form (2.3.13) are considered, e.g.,
in [4, 5, 11, 12, 24, 31, 43, 68, 67, 75, 74, 83, | and use various variance proxies o2, which do
not necessarily coincide with the limiting variance JJQWU. In the continuous time case, inequalities of
Bernstein type for the natural counterpart of the additive functional, involving asymptotic variance
have been obtained under certain spectral gap or Lyapunov type conditions in [13, 68]. For discrete time
Markov chains, inequalities obtained in [, 5, 12, 21, 31] by the regeneration method give (2.3.13) (under
various types of ergodicity assumptions and with various parameters a,,) with o2, which coincides with
UJQWU only under the additional assumption of strong aperiodicity of the chain. On the other hand, the
articles [75, 74, 91, | provide more general results, available for non-necessarily Markovian sequences
of random variables, satisfying various types of mixing conditions. The variance proxies o2 that are
used in these references are close to the asymptotic variance, however in general do not coincide with
it. For instance, the inequality obtained in [75], which is valid in particular for geometrically ergodic
chains, uses (in our notation) o = Var,(f(Xo)) + 2> 2 |Cova(f(Xo), f(X:))|. Comparing this with
(2.3.12), one can see that 02, < ¢ In fact, one can construct examples when the ratio betweeen
the two quantities is arbitrarily large or even 0%, = 0 and ¢ > 0. The reference [102]| provides an
inequality for uniformly geometrically ergodic processes, involving a certain implicitly defined variance
proxy o2, which may be bounded from above by o2 from [75] or by Var,(f(Xo)) + C||fllecEx|f(Xo)],
where C is a constant depending on the mixing properties of the process. For a fixed process, in the
non-degenerate situation, when the asymptotic variance is non-zero, it can be substituted for o2 at the
cost of introducing additional multiplicative constants, depending on the chain and the function f.

To the best of our knowledge, Theorem 2.3.5 is therefore the first tail inequality available for
general geometrically ergodic Markov chains (not necessarily strongly aperiodic), which (up to universal
constants) reflects the correct limiting Gaussian behavior of additive functionals. The problem of
obtaining an inequality of this type was posed in [5]. Let us remark that the quantitative investigation
of problems related to the Central Limit Theorems for general aperiodic Markov chains seems to be
substantially more difficult than for chains which are strongly aperiodic. For instance optimal strong
approximation results are still known only in the latter case [70].
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Part 11

Results and proofs
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The aim of this part is to present all our results which are gathered together, sorted thematically and
presented in separated, specialized chapters. Each chapter contains (at the very beginning in sections
called "Background") all necessary notions, definitions and facts required for full understanding of
our results. Then in the next chapters called "The results" we present our main theorems. There is
one exception to this rule. Namely, in Chapter 4, Sections 4.1.5 and 4.1.7 which treat about %-free
systems, we develop some new theory concerning notions of "density of ones" and Mirsky measure.
We justify this irregularity by the fact that these results are either kind of additional or serve just as
a tool used for proofs of our main theorems.
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Chapter 3

Entropy and topological pressure

The notions of entropy and topological pressure are classical and can be found in almost every infor-
mation theory book. We recommend [17] for entropy in a more probabilistic approach, [15] Chapter 14
for the ergodic point of view on entropy and [100] Chapter 7 for the basic properties of topological
pressure.

3.1 Background

3.1.1 Shannon Entropy

In this part we give a brief summary of definitions and basic facts concerning different kinds of entropy.
Unless stated otherwise, all random variables are discrete (countably valued). If X € X, Y € Y and
a set A is such that P (4) > 0 then we define the Shannon entropy and the Shannon conditional
entropy via

==Y Py(X =2)logP, (X =x), AX|Y)=)"P,y(Y =y)Hy—ya(X), (3.1.1)
TEX yey
respectively. If P(A) = 1 then we write H (X) and Hy (X) instead of H4 (X) and Hy (X | Y).
Sometimes it is convenient to extend the definition of H (X | Y) to H (X | G) where G is a sub-o-field
of F. In order to do so we need to recall the notion of regular conditional distribution. Given random
variables Z € Z, W € W and a sub-o-field G C F we say that pz(-,-) or pzg(:,-) is a regular
conditional distribution of Z given W or of Z given G, respectively, if the following holds:

e Tor every w € Q (w € W resp.), function pyg(-,w) (pzpw (-, w) resp.) is a probability measure
on €.

e For every measurable A C (), function pyg(A4,-) (pzjw (A4, ) resp.) is measurable. Furthermore,
pzig(A,") =P(Z € A|G) (pzw (A, W) =P(Z € A|W) resp.).

Now, if X is discrete and there exists a regular conditional distribution px|g of X given G, then we
put

H (X | ) = EH (px o /H px | 6(-w)) dP(w).

One easily checks that if G = o(Y) (here Y need not be discrete) then H(X |G) = H(X |Y) =
EH (px | y(~,y))| . where px |y is a regular conditional distribution of X given Y. Sometimes
=

slightly informally we write Hy—, (X) for H (px |y (-, y))‘ _, and thus H (X 1Y) =E[Hy~, (X)]|y=y'

One can check that the conditional counterpart of this formula holds, namely,

H (X |Y,Z) = E[Hy_, (X | 2)] (3.1.2)

|y:Y

for arbitary Y, Z such that the regular conditional distribution px 7|y exists. Note that for any y,
Hy_,(X|Z)=H (X(y) ] Z(y)) where (X®), ZW)) ~ px,zy (-, y). Moreover, we have the following
properties:
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e Invariance under relabeling. If f: X — ) is a bijection then H (X) = H (f(X)) (a similar
fact holds in conditional setting).

e Non-negativity. We have H (X | G) > 0, with equality iff X € G (see Proposition 14.18 in [15]).

e Upper bound. If X € X and |X| < oo then H (X) < log|X|. This follows from the well-known

fact that the Shannon entropy (treated as a function on the probability simplex in R‘f‘) is strictly
concave and invariant with respect to permutations of its arguments.

e Monotonicity in conditioning. If H C G C F are sub-o-algebras then we have H (X | G) <
H (X | #). Furthermore, H (X | G) = H (X) iff X is independent of G (see Proposition 14.18
in [15]).

e Continuity. If G, \yGor G, /" Gthen H(X |G,) /H(X|G) or H(X |G,) \\H (X |9),
respectively (see Theorem 14.28 in [15]).

e Chain rule. Wehave H(X,Y |G) =H (X |G)+ H (Y | G, X) (see Proposition 14.16 in [15]).
In particular, for any function f, H (X, f(X) | G) =H (X | G).

e Decrease of entropy under quantization of argument. For any function f, H (f(X) | G) <
H (X | G) (see Proposition 14.18 in [15]).

3.1.2 Entropy rate

Fix stationary processes X = (X;);,c, and Y = (Y;),., with at most countable alphabets such that
H (X)), H (Y)) < oo and recall that in such a case the entropy rate and the relative entropy rate
are given by

o1 .1 .
H (X) = nh_{go ﬁH (X[o,n—l]) = égg EH (X[o,n—l]) = n11_>H010H (Xn | X[O,n—l]) =H (XO \ X(—oo,—l])
and ) )

HX|Y)= Jim EH (Xion-1] | Yjou—1]) = érelfl\;{ EH (X017 | Yion—11) 5
respectively. Moreover, the following well-known facts hold:

e Affinity. Let X i € N, be a family of stationary processes and a random variable 6 be
independent of X for any 4, where P (0 =4) = p;, >, pi = 1. If H () < oo then H (X(G)) =
>, piH (X(i))_ Indeed, it is enough to notice that H (X[((?)n} | 0) <H (X[(g)"o <H (X[((?)n] | 9>+
H (0) and recollect the definition of the Shannon entropy. Alternatively, see Theorem 14.25
in [15].

e Upper semi-continuity. Suppose that X = X() and, for any n € NU {co} and i € N,
X™ € X with |X| < co. Then limsupH (X(™) < H (X). This immediately follows from a

n—00
combination of the following facts.

— We have H (X) = inf, H (X} ,j) /n.
— The function X — H (X ,j) /n is continuous (in the weak topology).

— The infimum of continuous functions is upper semi-continuous.
e Chain rule. We have H((X,Y)) =H (Y)+H (Xo | X(_oo 1], Y). In particular,
HX)VH(Y) <H(X,)Y) <HX)+H(Y).
This is an easy consequence of the following decomposition:
H (X(1), Vi) = H (Yun) +H (X | Vi) = H (Vo) + 3 H (X0 | Yag, Xiuo)
i=1
and the fact that H (X; | Y1, Xj1.5)) = H (Xo | Yi—in-ij, X1-i0)) —— H (X0 | X[_0 ), Y)

uniformly in ¢ satisfying logn <¢ < n — logn.
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Let us say a few words about zero entropy processes. Firstly, by the chain rule, if H(Y) = 0 then
H (X |Y) = H (X). Secondly, if Tpast = ;>0 (¥(—o0,—i]) stands for the past tail o-field of Y then
the following conditions are equivalent:

e H(Y)=0.
o Foreveryt1 e N H (Y[—i,i] \ 7;;ast) =0.
e For every i € N| Y[,m-] € Tpast-

Intuitively, Y is a zero entropy process iff the knowledge of 7p,s determines the whole process Y. Let us
explain the only non-trivial implication in the above list of conditions, namely, the fact that H (Y) =0
implies H (Y[*Li] \ ’Hmst) = 0. Note that by the subadditivity of Shannon’s entropy and the stationarity
of Y, it is enough to prove that H (Yj | Tpest) = 0. Using the continuity property (in conditioning) of
the conditional Shannon entropy, we easily reduce this problem to demonstration of the following fact:
H (YO ] Y(_oo,_k]) = 0 for any k € N. But this is clear because due to the monotonicity property, the
chain rule and the stationarity of Y we have H (Yb \ Y(_oq_k]) <H (Y[—k:+1,0] | Y(_Oo,_k]) =kH(Y) =
0. More information on tail o-algebras is included in Appendix B.

3.1.3 Topological entropy and measures of maximal entropy
Let (Z,S), where & C X7, be a subshift over a finite alphabet X. Recall that the topological
entropy of (Z,S) is given by

Hy — H = lim ~ ‘U")‘ ~inf 1 ‘d“)

n—oo N neN N

: (3.1.3)

where £ consists of words of length n which appear in 2 . Moreover, by the variational principle,

H= sup H(X). (3.1.4)
XeMg

Any measure which attains the supremum in (3.1.4) is called a measure of mazimal entropy.
Furthermore, we say that dynamical system (£, 5) is intrinsically ergodic if there is exactly one
measure of maximal entropy. Note that the measure of maximal entropy always exists due to the upper
semi-continuity of the entropy rate.

3.1.4 Topological pressure and equilibrium measures

The notion of the topological pressure is a natural extension of that of topological entropy.

Let (Z,9), where & C X7, be a subshift over a finite alphabet X = {1, ..., 3} for some k € N.
Furthermore, let ¢: Z — R be a continuous function which we call a potential. A potential is called
local if it depends only on finitely many coordinates. Recall that the topological pressure of (Z,5)
is given by

Pap=lim logy Y 2
AeZ,

where 2, = {[21], ..., [zx]}§ " and, for any partition C of &, Cf = ,%:i S=kC and S,, = Z?;ol S In
particular, if ¢ = 0 then we recover the definition of the topological entropy. Moreover, the following
variational principle holds:

Pa,= sup [H(X)+Ep(X)]. (3.1.5)
XeMg

Note that X — H (X) + E¢(X) is upper semi-continuous (recall that we assume that X" is finite
and that then X — H (X) itself is upper semi-continuous), thus, there is always an optimal process
X attaining the supremum in (3.1.5). Such X (in fact, its distribution) is called an equilibrium
measure.
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3.1.5 Periodic processes

Let u,v,w be finite 0-1 words. Then w - v for the concatenation of v and v whereas |w| stands for
the length of w. Let |w| = n and denote by w™ the sequence given by w® = w; mod n, for i € Z. We
say that Y is w-periodic if

1

P (Y[O,n—l] — w(i)> ——

o P (Yindn(d+1)] = Yjon-1)) = 1

for all d € Z, where w) = wi,n —1]-w(0, i — 1] stands for the i ’th cyclic shift of w. In other words,
Y is a start randomization of deterministic process w.

If Y is w-periodic then by the very definition of the entropy rate, H (Y) = 0. Moreover, clearly,
Y is a |w|-Markov chain.

3.1.6 Disjointness of processes by Furstenberg

Recall that stationary finitely-valued processes X and Y are disjoint in the sense of Furstenberg
(or absolutely disjoint) if there is a unique stationary coupling of X and Y, namely, the independent
one (see the celebrated paper [11]). This notion still plays one of the main roles in ergodic theory and
is one of the most important concepts used in the field of dynamical systems.

It is well-known that if H (X),H (Y) > 0 then X and Y are not absolutely disjoint (this result
goes back to Furstenberg [41], Theorem I.1; it is also a consequence of Sinai’s and Orstein’s theorems).
On the other hand, if H(Y) = 0 and X has trivial past tail Tpest = (1,500 (X(Oq_n}) then the only
possible joining is the independent one (Furstenberg [11] notices that this is an interpretation of a
result attributed to Pinsker by Rokhlin [29], see the discussion in [11]| following Theorem 1.2). We
recall that more information on tail o-algebras is included in Appendix B.

3.2 Results

3.2.1 Notation and basic assumptions

In this part we assume the following:

1. Stochastic processes X = (X;),;c; and Y = (Y;),o, have finite real alphabets.
2. The process (X,Y) = ((X;,Y:));cz is stationary. (3.2.1)
3.Y is ergodic and, for every i € Z, we have Y; € {0,1}.

4. In order to avoid some degenerate cases, 0 <P (Yp =1) < 1.

It is essential for us to introduce the return process R = (R;);., given by the return times of Y to
the state 1,

inf{j >0:Y; =1}, i=0,
R, = inf{j>RZ’_1 :Yj:1}, 1>1,
sup{j < Rit1:Y; =1}, i< -1
Note that all R;’s are well defined due to the ergodicity of Y. For basic properties of R we refer to
Appendix A. The aim of this section is to explore the quantity H (X -Y). Let us recall that if one
additionally assumes that H (Y) = 0 (this is the case in our motivation example, where Y corresponds
to the Mirsky measure v, see Section 4.1.7) then H(X-Y) = H(X-Y |Y). It turns out that in

general H (X -Y |Y) is slightly easier to handle and thus our main results are stated in terms of
H(X Y |Y) instead of H(X-Y).

3.2.2 Entropy of multiplicative convolution

Our main result gives an explicit formula for H(X-Y | Y).
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Theorem 3.2.1. Under our standing conditions (3.2.1), we have
H(X Y |Y)=P(Yo=1)Hy—1 (Xo| Xz ,r 51 Y).
If additionally X 11'Y then
H(X Y|Y)=PYo=1)Ey,=1H (Xo | X{y_, s 5.}) lr_i=R_,-

Remark 3.2.2. The integral Ey,—1H (XO | X{r,l,r,2,~--}) lr_,=r_, should be understood as follows.
Firstly, for any sequence r (in fact, for any realization of R) we calculate f(r) := H (X | X iroe }).
Secondly, we find Ef(R).

Proof. Using the chain rule and the stationarity of Y we get

H (Mo | Yon)) :ZH(Mz‘\Y[O,n]aM[o,i 1] ZZP 7)Hy,—j (M; | Yo n), Mg ;1)
=0 =0 5=0
=P (Yo =0) ZHY —0 (M; | Yo ), Mg ;—17) + P (Yo ZHY —1 (M; | Yo ), Mig ;1) -
=0 1=0

Clearly, if Y; = 0 then M; = 0 and Hy,— (MZ | Yo, M[oﬂ-,l]) = 0 whereas if Y; = 1 then M; = X;.
Therefore,

H (M[O,n} | Y[Om]) =P(Yo=1) ZHYizl (Xi | }/[O,n]vM[O,ifl]) .
i=0

Now, the stationarity of (X,Y) implies that
H (M[O,n] | Y[O,n]) =P(Yp=1) ZHY0=1 (XU | }/[fi,nfi]a M[fi,fl]) .
i=0
Since
(Y[fi,nfib M[*i,fl]) = (}/[fi,nfi]a 0R7$_i717 XR—S_Z- ) OR?S_iJrliRiS_iilv XR—S_Z'-H’ SRR XR—l ) ORilil)u

where S_; = Z,;:l_z Yk, provides the same amount of information as (Y[_Z-,n_i],XR[_S; _1]), that is
there exists a bijection between these vectors, using the invariance under relabelling, we arrive at

—logn
.1 1"
HM|Y)= lim ~H (Mo | Yiop) =P (Yo =1) lim - ; Hy,—1 (Xo | Y[—i,n—i],XR[,Sii,,”) :
i=logn

(Note that in the above sum we restricted our attention to i satisfying logn < i < n—logn. We can do
this because all summands are bounded by H (Xy) and we normalize the sum by 1/n.) It is remains
to notice that, by the ergodicity of Y, S_; — 0o a.s. as ¢ = oo and

n—oo

Hy,— 1<X0|Y im—i]s X{R_1,R_2,..R_ S}) —= Hy,=1 (X0 | Y, X(r_,,r_s,-}) >
uniformly in ¢ satisfying logn <i < n — logn.

The independent case easily follows from the dependent one. Namely, using the definition of
conditional entropy (recall (3.1.2)),

Hy,—1 (Xo | Y, X{r_, Ry}) = /HY=y (Xo | X{r_,,R_o}) Ay (y)
where iy = Lp, _, (Y). Clearly,

HY:y (XO | X{R—lvR—27"'}) = HY:y (XO ’ X{T_1,T‘_27~--}) =H (XO | X{T—lvr—zv"'}) ’

where in the last inequality we have used X II'Y (the sequence (r;) as usually stands for the support
of realization y of Y). [ |
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Using standard properties of entropy, Theorem 3.2.1 immediately implies the following bounds on
HX-Y|Y).

Corollary 3.2.3 (Bounds). Under our standing assumptions (3.2.1),
P (Yo =1)Hy,=1 (Xo | X(—o—1, Y) SH (XY |Y) <P (Yo = 1) Hy,—1 (Xo), (3.2.2)
which, under additional condition X I1'Y, simplifies to
P(¥o= )H(X) <H (X Y|Y) <P (= 1)H(X). (3.2.3)

Remark 3.2.4. Note that the right inequality in (3.2.3) goes to zero as soon as P (Yp =1) — 0. In
particular, if we keep X fixed, H (Y) = 0 and Y has sufficiently small density of ones P (Yy = 1) then
H(X-Y) < H(X) and we cannot retrieve X from X -Y.

One may wonder when the bounds given in (3.2.2) are attained and when they are strict. In order
to check this, for simplicity’s sake, we assume that X IT'Y and thus consider (3.2.3). In that case it
turns out that the lower bound is attained on the class of exchangeable processes X, the upper bound
on i.i.d. processes and for non-trivial Markov chains we have both inequalities strict.

Corollary 3.2.5 (Lower bound attained). Suppose additionally to (3.2.1) that X is exchangeable and
XIY. Then H(X-Y |Y)=P(Yy = 1) H (X).

Proof. 1t follows from the exchangeability of X that for any negative distinct times r_;, ¢ € N,
H (Xo | Xy pog,y) = H (Xo | Xo12,.) = H(X).
It remains to use Theorem 3.2.1. |

Corollary 3.2.6 (Upper bound attained). Suppose additionally to (3.2.1) that X is i.i.d. and X1I'Y.
Then H(X-Y | Y) =P (Y, = 1) H (Xo).

Proof. Tt is enough to recall that every i.i.d. process X is exchangeable and use the previous corollary.
|

Corollary 3.2.7 (Strict bounds). Suppose additionally to (3.2.1) that X is a Markov chain and X11Y.
Then

[e.e]
HX Y |Y)=P(Y=1)) Py_; (R =kH(X|Xo).
k=1
Proof. 1t is enough to use Theorem 3.2.1 and recall that a process X is a Markov chain if, for every
time ¢ € Z, conditionally on X;, X(_ ;1) is independent of X[; 41 ). |
Given a stationary process Y, we define the corresponding set of convolution measures:

Ny = {X-Y'| (X,Y') € Maz, o132 Y ~ Y} (3.2.4)

Remark 3.2.8. Beware that for simplicity’s sake, further on, (sligtly imprecisely) we denote the
members of Ny by X -Y (we just suppress the prim in Y’). It does not affect the correctness of
our proofs and results because, in fact, we do care about the distributions and not their particular
realizations.

Now, we will show that there is exactly one member of Ny which realizes the maximal entropy

sup H(Z).

ZGNY
Thus, if a subshift (£, S) has the property that for some process Y, Ny = Mg then (£, S) must
be intrinsically ergodic. For example, this is the case for B-free shifts (see Theorem 4.1.23 below). In
particular, Corollary 3.2.9 gives a new proof of intrinsic ergodicity of %B-free systems (proved before in
various settings in [85, 61, 34]).
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Corollary 3.2.9 (Convolution intrinsic ergodicity). Let Ny be as in (3.2.4). Then there is exactly
one convolution measure X - Y € Ny which realizes

sup H(X-Y|Y).
X-YeN~

Moreover, it is given by B - Y, where B is an i.i.d. process independent of Y such that P (B; = x) =
1/1X| for all x € X.

Remark 3.2.10. A similar result (with almost the same proof) holds for the topological pressure for
potentials depending only on one coordinate, see Theorem 3.2.21.

Remark 3.2.11. For the proof of Corollary 3.2.9, we will need a standard argument concerning
conditional mean values. Let G be a sub-o-field of F. If ZI1 G and W € G then

E(9(Z2,W)|G) =GW),  G(w)=Eg(Z,w).
Proof of Corollary 5.2.9. By Theorem 3.2.1, we have
H (XY |Y) =P =1)Hy (Xo| Xg_ ) <P(¥o=1)Hy— (Xo) <P (¥ = 1)log |].
Note that these inequalities become equalities iff (conditionally on Yy = 1)
Xo I (Xr_p ) Y) (3.2.5)

and
Py, -1 (X;=x)=1/]|X| Veex. (3.2.6)

Clearly, B satisfies these conditions.

Now, we show that if a process X has properties (3.2.5) and (3.2.6) then X -Y ~ B -Y under
Py,—1. Clearly, it is enough to show that for any local (i.e. depending on finitely many coordinates)
potential f, we have

Ef(X_-Y_)=Ef(B_-Y_), (3.2.7)

where for any sequence x, x_ stands for 7(_ o). Before we show (3.2.7), we need some auxiliary con-
cepts. For every continuous function f depending on coordinates (—oo,0] and an increasing sequence

of non-positive integers r— = (...,7r_1,79), we define
—1_1—1 _
foo(Zeoso) =f s 21 00Tz 070 (3.2.8)
r_1—coord. ro—coord.

where we interpret 0F for k& < 0 as the empty word. Tt is easily checked that (r_,z_) — fr_(z_)
is a measurable map (z_— — fr_(z_) is continuous and r— — f;_(z_) is measurable, cf. upcoming
Remark 3.2.23). Moreover, given a word z € X*, let

F N z_) = flz_,z). (3.2.9)

Asusual, M=X"-Y.
We prove (3.2.7) in two steps. Firstly, we show it holds on {Yy = 1} and then on {Yy = 0}. In fact,
on {Yp = 1} we show a little stronger formula than (3.2.7), namely

Eyp=1f(X—--Y_)g(Y) =Ey,=1f(B- - Y_)g(Y) (3.2.10)

for any bounded measurable g: {0,1}* — R, This enhanced version enables us to use an inductive
argument (on the number of coordinates f depends on) and is used in the proof of (3.2.7) on {Yp = 0}
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as well. To see (3.2.10), notice that by using first (3.2.8) and then the tower property of conditional
mean value, we obtain

E = Eyy=1f(M-)g(Y) = Eyp=19(Y) f(r_. 1,0 (XR<_OO,_1],X0>
- EY():lg(Y)Eyoil <f(R(,oo’,1]70) (XR(,Ooy,l]vXO) | YvXR<,OO’,1]> .

Now, due to Remark 3.2.11 (with Z := Xo, W := (R0 1) XR_,,_,) and G == (Y, Xp__ _)))
and conditions (3.2.5) and (3.2.6), we arrive at Now, due to Remark 3.2.11 (with Z = Xo, W :=
(R(—oo,—leR(,oo,,l]) and G = O’(Y,XR(ioo’il])), we have

Ey,= l(f(R< 00,—1] 0)(XR< 00,—1] Xo)lY, XR( oo, 11)

= ZPYo:l(XU :x)f(R(—oo,—u,o)(XReoo,flJ’x ]2(\ ZfR< o0, —1], o) (XR (e —1)r )5
rzeX rxeX

where the last step follows from (3.2.5) and (3.2.6). Therefore, using our introduced notation (3.2.9),

we conclude that
[X|E =) Eym19(Y fR( i (XR(,OO,,I])-
rxeX

Furthermore,

X|E="" Ey,_1g(Y)f© 0 (Mi—so,r1) = Y ZEYFlg(Y)f(Ok_lx) (M(—co,-1]) LR y=—k-
zeX zeX k=1

Since (X,Y) is stationary,

X = 3 By g(N %) (M) T o

reX k=1
=33 Eymig(S5Y) £ O (ML) 1y
reX k=1

(Let us mention that in order to see that the last equality holds notice that S*{R_1 = —k, Yy = 1} =
{Yo =1, Ry = k}). Summing it up, we have shown that for any f and g,

IEYO 1f< ’ ZX;EYO 1f 0t ~lz ( )[g(SkY)]lRlzk
Z ZEYO 1k (M) gr(Y)
| zeEX k=1

for some function fy ., gr. Note that for any arbitrary k& and x, fi, depends on a strictly smaller
number of coordinates than f does. Thus, an easy inductive argument gives (3.2.10) whenever f is
local. Now standard approximation arguments imply that (3.2.10) holds for all bounded measurable
functions f depending on (—oo, 0] coordinates.

It remains to check what happens on {Yy = 0}, namely, whether

Eyy=0f(M-) = Ey;—of(B- - Y_),
where once more M = X - Y. Using (3.2.10) and the stationarity of (X,Y), we obtain

o0
Eyy=of(M ZEY of(ok o)) L=k = Z]Ey,kﬂf(ok) (M(—co,—k]) LR =k, Yo=1
k=1
Z yo1 SO (M) 15,y 2= ZEYO OV (B Y ) Ig,—k = Eyy—of(B_ - Y_).
-1 k=1
[ |
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3.2.3 When a lost signal cannot be retrieved?

Now, we turn to the phenomenon of the entropy drop. Our main result is as follows.

Theorem 3.2.12. Assume additionally to (3.2.1) that X11'Y. Then
H(X-Y[Y)<HX)-P(Y=1)Eym1H (X1) | X(Coo0)s Xprims, ) lri=ri-

We divide the proof of the above theorem into three steps. We start with a technical Lemma 3.2.13,
which sets up the ground for further analysis. The proof of Theorem 3.2.12 is then concluded in
Lemma 3.2.14.

Proof of Theorem 3.2.12
Suppose that (3.2.1) holds and we have X ITI'Y.

Lemma 3.2.13. We have

1
HX - Y|Y)= Jim ;E157L>0H (Xrg, Xopy oo s Xy, 1)

‘ri:Ri,sn:Sn
where S, =Y Vi,

Proof. Since for any k € Z, on the event Y, = 0, we have M = 0, it follows that

H (M[Ovn] | }/[Ovn]) =P (Sn > 0) Z ]P)Sn>0 (}/[Ovn] = y[07n}) HY[O,n]:y[O,n] (M[Ovn]) :

Ylo,n]
Moreover, if s, = > ,y; > 0 then (by the indepedence of X and Y)

Py,

[0,n]=Y[0,n

| (M[(),n] = m[o,n]) =P (Xr0 = Mgy eny Xpy, g = mTSn*l) ,
whenever myg ;) and yg 5] are such that y; = 0 implies m; = 0. Hence,
Hy, =y (M[O,n]) =H (Xm, e >ern71) )
which results in
H (M[o,n] | Y[o,n]) =P (S, >0)Eg,~oH (XTO, e 7X7'sn—1)
=Els,>oH (Xr, ., Xry, 4

‘ri:Ri,sn:Sn
)Iri:RhSn:Sn :
This completes the proof. |

Notice now that
1

1 1
;H (XT()7 o 7X7“Sn71) - EH (X[O,n}) - ;H (X[O,n]\{To,...,Tsn_l} ’ X’I‘o7 v 7X7‘3n71) )

limy, 00 ~H (X[0,n)) = H(X) and that (by the ergodicity of Y) we have 1g,~0 — 1 a.s. Thus, in order
to conclude the proof of Theorem 3.2.12, it remains to find li_>m Elg,~oH(n,R) where
n oo

1
H(n, I‘) = EH (X[O,n}\{m“..’un_l} ’ XTO, N ,XTS7171) , = (ri)z’GZ .

Clearly,
E]lsn>0H(7’L, R) Z P (YO = 1) Eyole(n, R)

and H(n,R) is bounded, so if we show that under Py,—;, we have

lim H(n, R) = P(YO = 1)EYO:1H (X[lﬂ‘l*l] ’ X(foo,O]a X{rl,rg,..‘}) ’Ti:Ri (3211)

n—oo

then the proof is concluded. This will be done in the following lemma using the chain rule and Maker’s
ergodic theorem.
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Lemma 3.2.14. Equality (3.2.11) holds under Py, —;.

Proof. Fix y and n € N. By the chain rule, we get

nH(mr) =H (X[OJ’O*” | X{To,..-,T’sn—1}) +H ((X[Tsn—1+1,n] | ern71)

31(n) 33(n)
Sn—2
+ 2 H (X1 | X0y Xprrora, 1)) -
1=0
Sa(sn—1)

We will deal first with the summands 3;(n) and X3(n). Clearly,

1 1 -
521(”‘) < ﬁH (X[Omo—l]) < EH(X()) —0

when n — oco. Since s, = sp,, _;, F - P(Yp=1) > 0as N >t — oo (by the ergodicity of Y) and
rs,—1 — 00, it follows that

z — T, _
3(n) < N Tsn IH(XO) _ (1_ Ton-1 S”) H(Xq) — 0.
n

n n Sry. 1

In order to deal with ¥5(s, — 1), notice that

1 Sp 1
Ezz(sn —1) = 2 =%(sp, — 1).

n Sp
Because of *» — P (Yy = 1), to conclude the proof, it suffices to show that
lim l22(7%) =H (X1, 1) | X(“oo,0) X{r1ra,}) Iri=r:-
n—oo n
Using the stationarity of X, for t; = r; — r;_1, we obtain
n—1

i=0
n—1

= ZH (X[Ltz'ﬂ*l] | X[*WO}’X{t¢+1,~-,ti+1+---+tn}) :
=0

We would like to apply Maker’s ergodic theorem (see (A.2.5)) to study the above sum. However, we
cannot do it directly due to the term X|_,. o appearing in the conditional entropies. This obstacle will
be overcome by estimating each summand from below and above.

Fix k € N. Then for every ¢ such that r; > k and for every j € N, we have

where Hij (ti+1, ti+2, .. ) =H (X[Lti+1—1] | X(—’C,O}?X{ti+1,...,ti+1+“'ti+j}) forkeZuU {OO} Clearly,

j—
Hyj(t1te, .. ) 55 Hi (tta, ) = H (X1 | X(crop Xt tta,) -

Recall that T = (7;),.,, where T; = R; — R;_1, is the inter-arrival process. Furthermore, T is
stationary and ergodic under Py,—; (for more information on this process see Appendix A). By the
entropy chain rule and Kac’s lemma,

kSllp Hk,j(T[l,oo)) <H (Xo) T €14 (Pyozl). (3.2.13)
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Therefore, Maker’s ergodic theorem implies that, for every k € NU {oo}, Py,=; a.s., we have

. 1 n—1
nh—{glo E ZO Hk,nfi (ti+17 ti+2, .. ) — EYolek (Tl, TQ, .. ) . (3214)
1=

Using (3.2.12), it follows from the definition of 35 (and the chain rule) that

n—1 n—1

1 1 b4t 1
-~ Z Hoop—i(tit1, tivo,...) < EZQ(H) < #H(Xo) + -~ Z Hy—i(tiv1, tiga, .- -)
=0 i=k
b4t 1
Lt
< #H(Xo) + - z; Hyp—i(tivt, tiga, - - ),
=

with 8t f(Xo) 2% 0. Thus, due to (3.2.14),

1
Eyye1Hoo (T1, T, ...) < lim =Sy(n) < Eyy1 Hy (T4, T, . ..) .

n—oo N

Notice that Hy — Hs as k — oco. Hence, combining (3.2.13) and the bounded convergence theorem,
we obtain

.1
lim *Eg(n) = Ey(]:lHoo (Tl, TQ, . )

n—oo n

Py,—1 a.s. which is exactly (3.2.3). [ |
A consequence of Theorem 3.2.12. When H(X -Y) < H (X)?

Theorem 3.2.12 immediately yields the following corollary.

Corollary 3.2.15 (Drop of entropy). Assume additionally to (3.2.1) that X 11'Y. Then
HX - Y|Y)<HX)-PYy=1%) Py_; (B =k)H (X1 | X_oooio)) -
k=1

Note that this corollary immediately allows us to create a criterion for H (X -Y) < H (X) (assum-
ing that H (X) > 0). For example, it is enough to ensure that the following conditions hold:

e Tor infinitely many k € N, Py, _, (R = k) > 0.
e For some kg € N, H (X[*ko,ko] ’ %ouble) > 0, where Tgouble := ﬂiZOO' (X(foo,fi]u[i,oo))'

In order to see this it is enough to notice that if H (X[fko,ko} | Eouble) > 0 then (by the continuity in con-
ditioning), for some sufficiently big K € N, H (X[—ko,ko] | X(—oo,—K]u(K,oo}) > 0. Thus, by the station-
arity of X, for k > 10 maX(K, ]{0), H (X[l,k) ‘ X(—oo,()]u[k:,oo)) > H (X[—k’o,ko) ’ X(—oo,—K]U[K,oo)) > 0.

Note that the second requirement is met if Tioupte = Tpast = miZO o (X(—oo,—O] (in the sense of mea-
sure algebras). Indeed, in such a case, we can take ko = 0 and then H (Xo | Taouste) = H (Xo | Tpast) >
0.

In particular, we can observe the phenomenon of the drop of entropy H (X -Y) < H (X) if for
infinitely many k € N, Py, _, (1 = k) > 0 and any of the following conditions holds.

e X is weak Bernoulli, that is £,(X) — 0 (for the definition and properties of S-coefficients, see
Section B.3.4). In this case Tgoupie is trivial (cf. Theorem B.3.2).

e X is a Markov chain such that H (X) > 0. Here Tgoupie = Tai (see (B.3.3)).
e X is a non-trivial exchangeable process. Here Tgoupie = Trair (see (B.3.1)).

e X is a non-trivial ergodic process and ,(X) < 1 for some n € N. Here Tgoupte = Trair (s€€
Theorem B.3.2).
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Note that the last condition contains the first one which we included in our list because of the out-
standing role played by the weak Bernoulli processes in ergodic and probability theories.

Thus, in some cases of interest we observe the phenomenon of the drop of entropy under multi-
plicative convolution. However, we already know by Corollary 3.2.3 that if X II'Y then H(X-Y) >
P (Yy = 1)H (X). In other words the drop is controlled by the quantity P (Yy = 1). The situation
changes completely if we allow some dependence between X and Y: it can happen that

H(X-Y)=0=H(Y)<H(X). (3.2.15)

Example 3.2.16. Take a stationary process (X,Y) and notice that X can be viewed in two separate
parts, namely, on support of Y and on support of 1 — Y. Heuristically, when X is multiplied by Y,
the part of X on the support of Y remains unchaged, whereas the part of X on the support of 1 —Y
dies. Therefore, if X is such that its entropy is zero on the support of Y and positive on the support
of 1 —Y then we have (3.2.15).

To make this argument precise, for every joining (Z, W, U), where U is binary, consider

A=U-Z+(1-U)W. (3.2.16)

Notice that (A, U) is stationary and every stationary process (X,Y) can be realized as (A, U), just by
taking W =Z =X, U =Y. Now, if we assume that WIIUIIZ and H(Z) =H (U) =0 < H(W)
and U # 1 then by the sub-additivity of entropy rate

H(A - U)=H(U-Z) <H(U)+H(Z)=0 (3.2.17)

and by Corollary 3.2.3,
Coro.3.2.3

HA)=H(A|Z U =H(1-UW |Z U =H(1-UW|U) > PUy=0H(W)>0

(to see the second equality use the definition of the conditional entropy rate and then apply relabelling
invariance).

At the end let us look at the quantity H (X - Y) in the light of ergodic theory. Up to the end of this
ind.
section we will denote by u "% v the distribution of X - 'Y where X ~ wand Y ~ v are independent.

Thus, p ey = M(p ® v) where M(x,y) = x-y. Recall that H (1) stands for Sinai-Kolmogorov
entropy of p and we have H (1) = H (Z) for any Z ~ u. Before we start, let us recall a well-known
technical fact.

Remark 3.2.17. Let (Hy,(-,)1),(Ha,,(-,-)2) be Hilbert spaces. Recall that the tensor product of
Hy and Hj is the pair (H, ), where H is a Hilbert space equipped with scalar product (-,-) and
w: Hy x Hy — H is a bilinear mapping satisfying two conditions:

1. the closed linear span of vectors of the form ¢(x,y) is equal to H;

2. (p(x1,91), p(x2,92)) = (x1,22)1(Y1,Yy2)2 for any z1,29 € Hy and y1,y2 in Hy (in particular,
o, I = |l g, Nyllgr,)-

Usually, ¢(z,y) is denoted by x ® y, whereas H by H; ® H.
Suppose now that Go C Hs is a closed subspace of Ho and for some z € Hy and y € Ho,
r®y € H ® Gy, where x # 0. Then necessarily

y € Go. (3.2.18)

Indeed, let y = yo + ¥, with yo € G2 and yj) € Gy. By our assumption this implies that H; ® G >
TRy, =2® (y—1y) € H @ Ga. But H ® G2 and H; ® G are orthogonal (firstly, approximate
arbitrary elements of these spaces using property 1 and then combine property 2 with the bilinearity
of tensor product). Hence z ® yy = 0, |lz @ yoll = [|2llg, llvoll 5z, = 0 and since ||z, # 0 we must
have y(, = 0.
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Let us apply this result in the special case where for ¢ € {1,2}, H; = Lo(X;, B;, ;) and (X5, B;, ;)
are standard Borel probability spaces. Define ¢(f1, f2) = f1 - f2 and note that then due to Fubini’s
theorem we can assume that H = H; ® Hy = La( X1 X Xo, By ® Ba, 1 ® pg). If for i € {1,2}, C;’s are
sub-o-algebras of B;’s then G; = La(X;,C;, p;)’s are closed subspaces of H;’s. Therefore, by (3.2.18),
if B; € B; then

1 @p2

BixBy € 100 < ]lleB2:]lBlﬂBQEG1®G2 &Y, ]lBieGi = VzBZléCZ

and thus
n1®po

B x B, '€*ci®C, & B 2Ci, B €C,. (3.2.19)

By Corollary 3.2.3, if XIT'Y then H(X-Y) > P (Yy = 1) H(X). Let us show how ergodic theory
enables us to prove a slightly weaker condition H(X-Y) > 0.

Proposition 3.2.18. Assume that ju,v € M({0,1}%,S) satisfy H (v) = 0 with v # 6(..0,0,0..) and
H(p) >0. Then H <u e V> > 0.

Proof. Consider ({0,1}% x {0,1}*,u® v, S x S) and denote by II(1) C B the Pinsker g-algebra of .
Recall that for (X, u,T;), @ = 1,2, we have the corresponding relation between the Pinsker o-algebras:
(1 ® po, T x To) = (p1, T1) @ H(ue, Tz), see, e.g. [16]. It follows that

Mpev)=Iu) ® B. (3.2.20)

Let C = {z € {0,1}* | 79 = 1} and suppose that H <u e u> =0, ie II(p e v) = B. Therefore,
additionally using (3.2.20), we obtain

MYB) = M 1" V) c (p @ v) = T(w) © B
and it follows that
CxC=M1'Celllp)®B

(even though C' x C = M~'C is an equality between sets, we think of it up to sets of measure zero).
Hence, for C on the first coordinate in C' x C, we have C' € II(u) (see (3.2.19)). Since {C,C¢} is a
generating partition, II(x) = B (mod p) and it follows immediately that H () = 0. [ |

3.2.4 Topological pressure for "convolution systems"

Let (Z,S5), where & C X%, be a subshift over a finite alphabet X = {x1,..., 2} for some k € N and
¢: & — R be a continuous potential.

Remark 3.2.19. Without loss of generality we assume that every potential ¢ is defined on the
whole space X%. Indeed, since every subshift 2 is (by definition) closed, the Tietze expansion
theorem ensures that every continuous ¢: Z — R can be extended to the full shift (with supremum
norm preserved).

Remark 3.2.20. Suppose that ¢ is local and depends on [k,[] coordinates, where k,I € Z and
k < 1. Then, slightly abusing our notation, we frequently write (xp ) for ¢(y), where y is such that

Ykl = Llk,1)-

Recall (see Section 3.1.4) that the following variational principle holds:

Pay,= sup [H(X)+EpX)]. (3.2.21)
XeMgqg

Motivated by (3.2.21), for any subset of invariant measures N' C M g-, we define

VN, o = ;161% [H (X) + Ep(X)].
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There is a special class of NV we are interested in, namely, given stationary 0-1 process Y and finite
real alphabet X C R, we define

Ny = {X Y | (X,Y) € MXZX{OJ}Z} .

Recall that such class of measures has been already considered in (3.2.4). Let us also add that the
inspiration to study such families comes from %B-free systems (for the details see Section 4.2.3).

In order to warm up we consider firstly potentials depending only on one coordinate. In that case
we have the following generalization of Corollary 3.2.9.

Theorem 3.2.21. Fiz a stationary process Y satisfying H (Y) = 0. Suppose that potential ¢ depends
only on the first coordinate, that is p(x) = p(xg). Then

Vo= sup [H(X Y)+Ep(X-Y)] = (1-d)p(0)+ dlog, <Z zw@)) : (3.2.22)
X YeNy T€X

where d = P (Yo = 1). Furthermore, if X attains the above supremum then XY ~ G -Y where G is
an i.i.d. process (thus, G11Y ) such that P (G; = x) is proportional to 2°(*).

Remark 3.2.22. The common distribution of G;’s is called a Gibbs measure (associated with ¢).
For the purpose of proof below recall that if we fix a finite alphabet X then the Gibbs measure G
realizes the supremum

sup [H (X) 4+ Ep(X)]
Xex

and this supremum equals to logy >y 2¢(*) (see for example a calculation below equation (3) in [20]).

Proof. Firstly consider the case of H (X) > 0. Using Theorem 3.2.1, properties of entropy (conditioning
decreases entropy) and Remark 3.2.22 we get

Thm 3.2.1

H (X Y) +Ep(XoYy) ™= dHy,o1 (Xo | X(n,___,,Y) +Ep(XoYp)

< (1 - d)p(0) +d[Hy,_1 (Xo) + Evym10(X0)] < (1 - d)p(0) + dlog, (Z 2so<x>> .
TeEX

Furthermore, the first (second, resp.) inequality above becomes an equality iff conditionally on Yy = 1,
Xp is independent of Y and X _ 20(0)

(we have Py, _, (Xo=1x) = SR for all z € X, resp.).
Clearly, G satisfies both these conditions which immediately yields (3.2.22).
Now if H (X) = 0 then H (X -Y) = 0 and

00,—1]

H (X Y)+ Ep(XoY)) = Ep(XoYp) = (1 — d)p(0) + dEy,=1(X0) < (1 —d)p(0) + dmﬁx ®.

Clearly, maxy ¢ < logy (erx 2"9(””)).
The proof of part of the uniqueness of the distribution of X - Y goes along the same lines as in
Corollary 3.2.9 (just change letter B to G and use analogous arguments as in Corollary 3.2.9). |

What happens if our potential ¢ depends on more than one coordinate? Can we get some concise
formula like in (3.2.22)7 It seems that there is no explicit expression for general local potentials. Take
for example the case when Y = 1 is the constant process. Then Ny = M yz and there are no evident
closed-form expressions for the topological pressure. One can use the result by Walters which expresses
the topological pressure in terms of greatest eigenvalue of some matrix (see Lemma 4.7 in [99]). Notice
that finding explicit formulas from Walter’s Lemma 4.7 is a tedious task which, for big n, if ¢ depends
on n coordinates, is impossible to perform either by humans or computers. However, it turns out that
there are some examples of Y and ¢ for which one can answer positively our questions. Roughly,
one can give explicit formula for Vis, ., if either Y is periodic and ¢ does not depend on "too many"
coordinates (more precisely, if p is the period of Y then ¢ can depend on at most p coordinates; for
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the details see Theorem 3.2.32) or Y can be approximated in the weak topology by periodic processes
(here ¢ can be arbitrary; see Theorem 3.2.34). In fact, both these cases arose during our studies of
PB-free systems.

In order to deal with potentials depending on more than one coordinate, it will be convenient to
introduce the following notion of Y-upgrade of potential p. Recall that with every 0-1 process Y
we can associate the return process R as in (2.2.4). Note that either of R and Y determines the other.
Consider some r = (7;);., (think about r as about a realization of R) and put

or(z) =@ | ..., 0017271, proTreatlo g griTrotl el
~—~ ~~ ~~
r_1—Ccoor. ro—Coor. 71—Co0T.

Thus, r determines the slots in which sequence z is put. For example 1 = ¢ and ¢¢ = ¢(0). If ¢ is local
and depends only on coordinates [—m, m] for some m € N then we will sometimes use an alternative
definition corresponding to finite sequence r. Namely, given a set A = {i,42,...,4} C [-m,m], where
1 <--etjo1 <0<d; <o <, we put

A (Zmm) =¢(.., 221 N e T (A I N | (3.2.23)
~— ~— —~—
1j—1—COOT. 1 —COOT. 141 —COOT.

Thus, for example @y = p(0?mF1), Clemm] = @5 P03 (Z—mm]) = ¢(0™,20,0™). Note that we
slightly abused notation by identifying ¢(x) and @(z|_p m)) via @(Z(_mm)) = ¢(y) for any y such
that Yy m) = L(-mm]-

Now, we define Y -upgrade of potential ¢, ® = &y, as

& = Egg, (3.2.24)

where E stands here for the Bochner’s integral (r — ¢, acts on increasing bilateral integer-valued
sequences and has image in the space of real continuous functions on X%, equipped with the supremum
norm). For brevity’s sake, we denote this procedure by

© % D, (3.2.25)

Remark 3.2.23. Note that r — ¢, is measurable. Indeed, if ¢ is local, then it is easy to see that
r — p is a continuous function. In the general case, r — ¢, is measurable. Indeed, since the space
of local functions is dense in the supremum norm, we can find a sequence of local functions (™ such

or — gps.n)H < 1/n.
o
Hence the mapping r — ¢ is a pointwise limit of continuous function, thus, it is measurable.

that H<,0 — cp(")Hoo < 1/n for n € N. By the definition of ¢, this implies sup,

Remark 3.2.24. Clearly, |¢r|lo < |l¢llo- Therefore, by the previous Remark 3.2.23, ¢r is Bochner-
integrable, Epg is well-defined and ||[E¢pr ||, < [|¢|lo-

Remark 3.2.2(55). Suppose that, Y = Y and let R("™ be are defined as in (2.2.4) with Y replaced
by Y If ¢ Yoo (™ and % % @ then

o — Epgm M Eor = ®.

Indeed, if ¢ is local then this is trivial. Otherwise, for each € > 0, there is a local potential go(s) which
satisfies H(p — ) HOO < ¢ and then

B~ Bonl, < |[Bono ~ Eeigh,

E - E (E)H HE (e) - E (e)
Oo+" PR PR OO"‘ PR PR

(3.2.26)

o0

It remains to notice that the first two terms are bounded by &, whereas the third one goes to 0 when
n — oo.
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Example 3.2.26 (Local case). Consider a local potential ¢ depending only on coordinates [—m,m]
for some m € N. How does ® defined by (3.2.24) look like? It is not hard to see that

z)= > PVa=1,Ya =001 (2-mm) (3.2.27)
AC[—m,m]
where A¢ = [-m,m]\A. Since each 4 is continuous, it follows from (3.2.27) that so must be ®.

Moreover, @ is local and depends (at most) on coordinates [—m,m] .

Remark 3.2.27. Let us give a short glossary related to binary words. Let
w = (wo,...,wp_1) € {0,1}".

e Recall that |w| = ¢ stands for the length of w. Moreover, #; (w) denotes the number of ones
appearing in w, that is #; (w) = > ;" w;.

e We upgrade w to sequence w™ € {0,1}” via W© = Wj mod -

e If w is non-zero then r(®) = (rgw)> - € Z” denotes the sequence of positions of ones in w™.
1€
(If w is clear from the context we will omit the upper index and write r and r; instead of r()

and rz(w) respectively.) More precisely, we set 7o = inf{k > 0 | wy, = 1}, r; < 141 for i € Z and

for any k € Z, w, = 1 iff k = r; for some ¢ € Z. Note that this definition is consistent with the
definition of the return time process (2.2.4) where Y = w™. Clearly, r is periodic, with period

equal to #1 (w).
o We call w primitive if there exists no word u and k > 2 such that w = u*.
e At last, for any 0 < i < ¢ — 1 we define the cyclic shift of word w by w(® = Wi 1] * W[0,i—1]-

Remark 3.2.28. One of our main motivations behind considering such upgrade of potentials lies in
the following easy observation

Ep(X-Y) =EE (p(X - Y)[Y) =EE (¢r [(Xr,)icz] 1Y),
which follows from the tower property of conditional expectation and the definition of pR.

Example 3.2.29. Let Y be periodic with Y ~ % (5(01)oo + 5(10)00). Then with equal probabilities 1/2,
R is either a sequence of odd or even integers. Thus, for any potential ¢, if ¢ % ®, then

1
<I>(z):§ o(y2-1,0, 20 ,0,..)4+¢(...,0,2_1, 0 ,20,...)|- (3.2.28)

0—coor. 0—coor.

More generally, take w = (wo, ..., we—1) € {0, 1}5 with wg = 1. Let Y be the corresponding w-periodic
stationary process (so Y arises as the start randomization of deterministic process w™). In that case,
if o ~ @, then the expansion of the integral in (3.2.24) gives

¢
1 )
<I) = Z E SZSOI.(w), (3229)
=1

where the r(®) are the positions of ones in w™.

There is another reason why we care for upgrades of potentials and it is contained in the following
lemma.

Lemma 3.2.30. Let w be a binary word of length |w| = £. Suppose that (X, Y) € (R x R)? is a
stationary finitely-valued process such that Y is w-periodic. Then

Ep(X-Y) =Ey,, ,—u® (Xr)icz) (3.2.30)

where @ ~ ® and r = (r;),c, are indices of ones in W™,

o4



Proof. Let w = (w, ..., ws_1) € X* and recall that w® = W —1—4] " W)o,—1] Stands for the i’th cyclic
shift of w. Using the fact that (X,Y) is stationary we get

500 0) =10 (0 (5)) = e (5 (0))
=1

L
Z EY[O,Z—H:“’SO (SZ (X ’ woo)) e EY[o,z—ﬂ:wq) ((Xri)iez) :
=1

™~

1

<.
Il

|

In order to present our main result concerning the periodic case, we need one more easy corollary
of Theorem 3.2.1.

Corollary 3.2.31. Let w be a binary word of length |w| = ¢, with #1 (w) = m. Suppose that (X,Y)
is a stationary finitely-valued process, such that H (X) > 0 and Y is w-periodic. Then

1
H (X : Y) = ZH)/IO7271]=11} (X{'ranl»7"m72:-~~7"10} ‘ X{”’*ly"'*Q#“}) ? (3231)
where r = (1;),c, are indices of ones in W™

Proof. Without loss of generality we can assume that wg = 1. For brevity’s sake for any set Z C Z
and k € Z denote Z + k ={z+ k| z € Z}. Using the properties of conditional entropy, the fact that
Y is periodic and then the stationarity of (X,Y) we get

HYo 1 (XO | XR( ) Z IP)YO 1 ( [0,6—1] — w(m)) H}/[O,Z—l]:w<ri> (XO | X?”(foo,i—l]_ri)
1 m— m—
% Z —ri,—riHL—1] =W (XO | XT( oo,i—l]*ﬁ‘) Z 017 1]=w < T4 | XT"(—oo,i—1]) ’
i=0 =0
which after the application of the chain rule gives the desired result. |

Lemma 3.2.30 and Corollary 3.2.31 are the main ingredients of the proof of the following theorem.

Theorem 3.2.32. Let w be a primitive binary word of length |w| = £, with #1 (w) = m. Suppose that
(X,Y) € (R xR)% is a stationary finitely-valued process, such that H (X) > 0 and Y is w-periodic. If
@: (X U{0})%Z — R is local and depends only on coordinates [0, — 1] then

1
~ log, > 2ftom-n) (3.2.32)

Y E
Z[O,mfl] exm

Moreover, the supremum defining Vi, o ts attained by any pair (X,Y), where X conditionally on
Yjo,0-1) = w is such that (X[i&(i_i_l)g_l})) s an i.4.d. process satisfying

@ (wio,m—1])
> 2P (z0,m—1))
2[0,m—1]

Proof. Let r be the sequence of positions of ones in w™. Firstly we consider the case of H (X) > 0.
Then, by Lemma 3.2.30 and Corollary 3.2.31,

1
L

Thus, we must now deal with the following problem

P (Xrg 1y = Wom 1)) = (3.2.33)

H (X Y) = ;Hymo (X | X y) s Eo(XY) =By, ymu® (X ) -

Xf{uelj)\/ EHY[OZ 1]~ (XT[O,m—u | XT(—oc,—l]) + EY[O,@—UZ”LU(I) (XT[O,m—u) :
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Note that we can absorb the constant 1/¢ by considering %g@ instead of ¢. Hence, substituting Z; = X,,
reduces our problem to showing that

SlépH (Ziom—1) | Z(=o0,-1)) + E® (Zjo,m—1)) = log, Z 2%(#0m-1)

2[0,m—1]
where the supremum is taken over processes Z that are stationary under S™ (here we use the assumption

of primitivity of w!). Thus, equivalently, after another substitution, namely U; = Z;, (i4-1)m—1], We
must deal with

sup  H (Up | Uioo, 1)) +E® (Up) = log, [Z 2% | (3.2.34)
U —stationary ”
But this is a standard problem:
H (U | U{_o,—1) +E® (Up) < H (Up) + E® (Up) < log, [Z 24’(“)] , (3.2.35)
where the last inequality becomes equality iff (recall Remark 3.2.22)
92 (uo)
At last, one can obtain equalities in (3.2.35) iff U is an i.i.d. process satisfying (3.2.36).
It is remains to notice that if H (X) = 0 then H (X -Y) = 0 and by Lemma 3.2.30 E¢(X -Y) <
max,ecxm ®(x) which is smaller than the right-hand side expression of (3.2.31). [ |

Remark 3.2.33 (Continuity (in potential) of variational problem in supremum norm). Recall that

Ep(X-Y) = EE (¢r [(Xr,);ez] [Y) -
Thus,

’VNY7<P - VNY#P‘ < ’EE ((QOR - ¢R) [(XRi)iGZ] ’Y)‘ < Slrl‘p ||<Pr - 7vzjlr'”oo < H(p - T/)HOO

Now, we will show what happens if Y can be approximated by wy,-periodic processes Y™ with w,
primitive and such that |w,| — co.

Theorem 3.2.34. Assume that the sequence of wy-periodic processes Y™ where w, are finite prim-
itive 0-1 words satisfying |#1 (wy) | — 00, converges weakly to Y. Then for any continuous potential
o (X U{0}Z = R,
VN e = P (Yo = 1) log |X| + sup ®(z), (3.2.37)
zeXZ
where 5 B,

Proof. Since for any Z, ¢ — ® and ¢ — V), ,, are continuous in supremum norm (recall Remark 3.2.24
and Remark 3.2.33 resp.), (X\)/ithout loss of generality, we can assume that ¢ is local and depends on
[0, N] coordinates. Let ¢ ~» &), £, = |w,| and m, = #1 (w,). Then by Theorem 3.2.32 we get that

1 0, (M)
VNY(”)"‘O = flogz Z 90n @™ (210,m, —1])

n
2[0,mp—1]

Since ®,, depends only on [0, N — 1] coordinates and m,, — oo, for sufficiently big n, we have
1 (n) My — N 1 -
V_/\[ (n) = E 10g2 Z 2£nq> (Z[O,Nfl]) _m -7 10g2 |X’ + E 10g2 Z 2@71(1) (Z[O,N—l])

Y 12
2[0,mp —1] " 2[0,N—1]

Therefore, using 7 =P (YO(") = 1) — P (Yp = 1), Remark 3.2.25 and the standard fact that £, norms

converge to the fo, norm (as p — co), we get our result. [ |
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Chapter 4

PB-free systems

Sets of multiples of a given set 8 C N and their complements (%B-free sets) were studied already in the
30’s by numerous mathematicians from the number-theoretic viewpoint (see, e.g. [28, 22, 14,29, 29, 35]).
The most prominent example here is the set of square-free integers, i.e. the set of integers not
divisible by the square of any prime. The dynamical approach was initiated by Sarnak in his seminal
lectures [92]. He proposed to study the dynamical system given by the orbit closures of the Mobius
function p and its square p? under the left shift S in {—1,0,1}% (note that p? is nothing but the
characteristic function of the set of non-negative square-free integers). These ideas were later extended
to general sets of %B-free numbers, resulting in a class of dynamical systems called &-free systems.
See, e.g. [3], where the basic dynamical tools were developed or [34]. Last, but not least, let us
mention that Sarnak’s dynamical approach was motivated by the random-like behaviour of the Mdbius
function. He formulated a conjecture on the orthogonality of p to all deterministic sequences (arising
from topological dynamical systems of zero topological entropy) [92]. This conjecture is weaker than
the celebrated conjecture of Chowla on the absence of autocorrelations of p (for an ergodic-theoretic
proof suggested already in [92], see [2], cf. also |86, 96]). Thus, we deal with a very active area of
study, lying at the verge of ergodic theory and number theory (one of the break-throughs made on
the number-theoretic side was made by Matomiki, Radziwilt and Tao [72]). For examples and more
background, we refer the reader, e.g., to [38] and [60].

Since the topological entropy of the square-free system is positive, a natural question arose whether
this system is intrinsically ergodic. It was answered by Peckner in [35]. Later, this result was extended
to general %B-free systems [61, 34]. Peckner also showed that the measure of maximal entropy fails to
have Gibbs property. However, his proof relies on non-trivial number-theoretic facts (more precisely,
on the explicit formula for the Mirsky measure of blocks and some classical estimates concerning the
squares of primes). Thus, he asked if his result extends to the general case of & such that elements of
% are coprime and ) ;5 1/b < co. We recall that in such case the corresponding %-free subshift is
hereditary. Our main result gives the positive answer to this problem. Furthermore, it is proven using
different kinds of arguments than those from [25]. In fact, we formulate a more general criterion based
on notions of topological entropy and (topological) density of ones which ensures the absence of Gibbs
property (see Theorem 4.2.3).

4.1 Background

4.1.1 AB-free subshift

For a subset of positive integers & C N\{1}, consider respectively, the set of multiples and the set
of B-free numbers
Mg=|]JVZ,  Fa=17\Msg. (4.1.1)
be#

Let n = (%) = 1r, stand for the characteristic function of Fg (thus, n is just a binary bilateral
sequence) and define the B-free subshift by setting

Xy ={Skn|keczZ}c {01}~ (4.1.2)
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Remark 4.1.1. We tacitly assume that £ is primitive in the sense that if k£ and [ are distinct
members of & then k /1 and [ k. Note that if # is not primitive then we can throw away some
elements of # (namely, those which are multiples of the others) obtaining a primitive set € in such a
way that the set of multiples does not change, that is Mg = M.

4.1.2 Hereditary subshifts
A subshift (2, S) with language £, where & C {0,1}%, is called hereditary if

wel, w<w = weL.
Moreover, given a subshift 2, the hereditary closure of & is defined by
g’:{ZE{O,l}Z|z§xf0rsomex€3&’}.

It follows immediately that £ is hereditary iff £ = £ . Examples of hereditary systems include many
PB-free systems, spacing shifts [05], beta shifts ([37], for the proof of heredity, see [62]), bounded density
shifts [95] or some shifts of finite type. Most of them are intrinsically ergodic (i.e. they have a unique
measure of maximal entropy), see [25] for beta shifts and [84] for a subclass of bounded density shifts
(for other listed examples, to our best knowledge, intrinsic ergodicity remains open). See also [58, 62].

There is another subshift of {0, 1} closely related to & ,,, namely 2 g, known as Z-admissible
subshift and defined by

xeEZg < |suppxmodbd <b Vg (4.1.3)

By the very definition, 2 g is hereditary. Since for an arbitrary %, 0 ¢ supp 7, we immediately get
neZqg. Thus, £, C 4 and it follows that Z,, C Z,, C X g. It is not always true that 2, is
hereditary, but if 4 is a co-prime set such that ), z1/b < oo (if both these conditions are satisfied,

we say that 2 is Erdds) then this is the case. In fact, we then even have &, = EK\; = Z » (see
Remark 3.11 in [34]).

Example 4.1.2 (Square-free system). If we put
B =P ={p?:pec P}, & = {prime numbers} (4.1.4)

then Fg is the set of square-free integers. The characteristic function of Fg is the square p?
of the M&bius function p extended to Z in the natural symmetric way, u(—n) = p(n). Recall that
w(n) = (=1)F if n is a product of k > 1 distinct primes, (1) = 1 and p(n) = 0 if n € N is not
square-free. Since £? is Erdos, Z 5, = ,%’Nn =Z .

4.1.3 Taut and Behrend sets

Recall that given a subset of integers N C Z, the upper and lower logarithmic density of N are
defined as

- 1 1
6(N)=1 1; O(N) =1i f 1
(N) im sup lognzgi iEN 4(N) 1nH_1>£ ognz iEN

respectively. If §(N) = §(NN) then we say that N has logarithmic density and denote this quantity
by 0(N). Similarly, the classical (upper/lower) density of N are given by

d(N) = limsup — ZLEN’ d(N —hmlnffZLeN, d(N) = lim *ZLGNa

n—ooco N = n—oo n n—oo N

respectively.

Remark 4.1.3. It turns out that the classical density of Mg does not always exist (see [13]) unlike
its logarithmic counterpart (see [29]). More precisely, it was shown in [29] that for any 4,

d(Mg) =dMg) = lim d(Mpezi<iy)- (4.1.5)
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Remark 4.1.4 (Relations between § and d). Let us fix some N C N and let s; = Zle Lien. Then,
using the summation by parts we get

1 &K1 1 1 1 Sl s s
3 — 21, _ Lo e — = i+1 n+1 _ 1 .
" logn ; i N logn ; i(slﬂ 2 logn ; 11+1 * (n+1)logn logn

Thus, roughly, the partial sum of logarithmic type &, can be treated as convex combinations of
s1/1,82/2,...,8,/n .This immediately leads to the following conclusion:

d(N) < 8(N) < 5(N) < d(N).
A set B C N\ {1} is taut (see [19]) if for every b € B,
d(Mg) > d( Mg\ 1})- (4.1.6)
It was shown in [34] (see Corollary 2.31 therein) that the tautness of & implies the following property
d(Mgiay) = 6(Mg) = a € Mg. (4.1.7)

A set 8 C N\{1} is said to be Behrend (see [19]) if (Fg) = 0. Each infinite subset of primes
whose sums of reciprocals is infinite is Behrend (see (0.69) in [19]). Take a,r € N with ged(a,r) = 1.
Dirichlet proved that aZ + r contains infinitely many primes and Zpe(aZ e 1 /p = oo. Thus,

ged(a,7) =1 = aZ+r is Behrend. (4.1.8)

4.1.4 Entropy

Firstly, for convenience of the reader (we want this chapter to be self-contained), we recall (and rewrite
in ergodic manner) some basic facts and definitions concerning entropy. Given a subshift (£, 5), its
topological entropy H = Hg (see Section 3.1.3) can be computed as

1 1
H = lim —log ‘E(”)’ = inf — log ’E(") . (4.1.9)
n—00 1 neN”nN
Furthermore, for any v € Mg the measure entropy (cf. Section 3.1.2) H (v) is given by
H(v) = lim ~H, (E(”)> — inf 1H, (,c(”>> , (4.1.10)
n—00 1 neN N
where H,, (E(”)) = — > werm V(w)log (v(w)) denotes the Shannon entropy with respect to the par-

tition of & given by £™ (cf. Section 3.1.1). It is well-known that H (v) and H are related via
variattonal principle

H= sup H(v). (4.1.11)
veM

Every measure v such that H (v) = H is called measure of mazimal entropy. If there is only
one measure of maximal entropy then we say that £ is intrinsically ergodic.

Remark 4.1.5. Since every probabilistic measure on a finite set can be interpreted as a probabilistic

vector p = (p1,...,pp) it is natural to extend the definition of Shannon’s entropy to such vectors via
n

H (p) = — > pilog,pi- (4.1.12)
i=1

In particular, if p € [0,1] and p = (p,1 — p) then we write

H (p) = H(p) = —plog(p) — (1 — p)log(1 - p) (4.1.13)

for binary entropy function. Notice that H(p) is symmetric with respect to 1/2, strictly increasing
(decreasing resp.) on [0,1/2] ([1/2,1] resp.).
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4.1.5 Densities of ones

In this part, given a subshift 2 C {0,1}%, we discuss how to measure the density of occurrences of
ones in Z . On the one hand we do it in light of the topology of Z (dg and Dg), on the other hand,
from the point of view of a fixed measure v € Mg (d, and D,). More precisely, for v € M = Mg,
we define

ma; v w
d‘%" = sup d,, d,=v ([1])’ Dy = lim maxwecr,, #1W7 D, = lim XWeLn, v(W)>0 #1 .

veM n—00 n n—00 n

When the underlying space & is clear from the context we skip the index Z in Dg and dg .
Notice that both D and D, are well defined since the sequences (maxweﬁnw(w)w #1 (w))n and
(maxyer, #1w),, are sub-additive. In particular, we can replace lim’s by inf’s.

We call a measure v € Mg a mazimal density measure if d, = d and ones-saturated if
D, =D.

Remark 4.1.6. Notice that a measure of maximal density always exists. Indeed, f = 1 is continuous
and thus so is v — v(1) = v(f).

At last recall that for any N C N its upper Banach density is given by
1 n
dp(N) = limsup ———— Lien-

In order to present our main theorem concerning relations between different notions of density of ones,
we need to recall a folklore result. For reader’s convenience we provide its proof.

Proposition 4.1.7. Let (Z,5) be a subshift. Let x € Z and let A C Z be a clopen set. Then
dp({n € N| S"x € A}) = sup{v(A) | v € M such that v({S"x | n € Z}) = 1}.
Proof. Firstly, we show that there exists v such that
v({Snx | n € Z}) =1, dp({n e N|S"x € A}) = v(A).
Fix x € & and let (my) C N be a sequence such that

_ 1
dp({neN| S"x € A}) = khjgo% Hmir <n<mp+k—-1|5"xe€ A}|. (4.1.14)

Let x(*) = §™*x and
1 k—1
v = Z ; 0 gise(k) -

Without loss of generality we may assume that v = v. Notice that v is S-invariant and concentrated
on the orbit closure of x under S. Rewriting (4.1.14) and using the fact that 1a is continuous, we
obtain

k—o0

k
_ 1 )
dp({n € N| S"x € A}) = lim > 1a(Sx®) = lim [ 1ady = v(A).
0

Now we show that if v € M is such that v({S"x | n € Z}) = 1} then v(A) cannot exceed dg({n €
N | S"x € A}). Using the ergodic decomposition, it is clear that it suffices to prove it for v ergodic.
For any ergodic v that is concentrated on the orbit closure of x under .S, we can find a generic point
y in the orbit closure of x. In particular, one can find mj such that

{0<i<k—-1|S"TxcA}={0<i<k—-1|SycA}
(recall that A is clopen). It follows that

—= 1
dp({neN|S"x € A}) Zklim %\{mkgngmk—i—k—l\S”XeA}]
— 00
1
=lim -{0<n<k-1|S"yec A} =v(A)
k—oo k
which completes the proof. |
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Let us make a (side) remark on Proposition 4.1.7 and recall a result of a very similar flavour, the
proof of which, goes along the same lines as that of Proposition 4.1.7. Surprisingly, it seems that none
of the results implies the other.

Theorem 4.1.8 (Theorem 2.6 in [10]). Let (X,T') be a topological dynamical system and let © € X.
The following conditions are equivalent:

e the point © € X is essentially recurrent, i.e. for any neighbohood U, of x the set of visits {n €
Z:T"x € Uy} has positive upper Banach density;

e the orbit closure of x under T is measure saturated, i.e. for every nonempty open subset U of the
orbit closure of x, there exists an invariant measure p with p(U) > 0.

Now we are ready to present our main result of this section.

Theorem 4.1.9. For any v € M$%,
d,<D,<D=d (4.1.15)

Proof. Taking into account the additional supremum over all x € £ and applying Proposition 4.1.7
to A = [1], we obtain that

D=supv(l)= sup d,=d. (4.1.16)
veM vEM g

Moreover, denoting %', = supp(v) C £, Proposition 4.1.7 yields

1 _
D,=lim — max #i(w)= sup dg({neN |z, =1})=sup{u(l) | u(#,)=1}= sup d,.
Jim e )= sup Tp(fn €N | = 1)) = swp(u(1) | @) =1} = s d,

It follows immediately that d, < D, <D =d. |

Remark 4.1.10. Clearly, each measure of full support is ones-saturated. In other words, if D, < D
then v cannot be of full support. Moreover, it follows from Theorem 4.1.9 that also each measure of
maximal density is ones-saturated, whence, by Remark 4.1.6, a ones-saturated measure always exists.

Example 4.1.11. Let us present some examples which show that the inequalities in Theorem 4.1.9
can be sharp.

e (d, < D,) Consider the full shift & = {0,1}? and the Bernoulli measure v = B, where
p=v([1]) € (0,1). Then D, =1 >d, =p.

e (d, < D, < D) Consider the full shift 2 = {0,1}%, a measure x ~ B®) .Y, where Y ~ v ~
%(5(01)00 + Sdo1y~), Y 1I B® and B® is a Bernoulli process with parameter p € [0,1]. Then
dﬁzg<DH:%<D:1assoonasp<1.

Density vs entropy

What are the relations between topological entropy H = Hg and densities? Let us start with the
following lemma.

Lemma 4.1.12. Let & C {0,1}% be a subshift. Suppose that d < L. Then

1
5

H < H(d). (4.1.17)
In particular, if d — 0 then H — 0.
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Proof. For d = % the inequality H < H(d) is obvious. Fix d < % It follows from the right hand side
of (4.1.15) that for every € > 0 and sufficiently large n > 1, every allowed block of length n has at
most (d 4 €)n ones. Thus, for such n’s

(d+e)n n
n < < 2nH(d+a).
L5)-

=0
As a consequence, H < H(d + ¢) for any € > 0. Taking ¢ — 0, gives (4.1.17). [ |

Example 4.1.13. It turns out that the relations between H and d can be arbitrary.
e (d = H) Just take the full shift 2 = {0,1}*. Then d=D =H = 1.

e (d > H) For each zero entropy subshift £ admitting an invariant measure different from dg, we
have 0 = H < d.

e (d < H) We will construct a whole family of examples indexed by 0 < p < 1/2. (Think about
p to be very close to 1/2.) Using the Jewett-Krieger theorem we may find a uniquely ergodic
subshift (£, v, S) measure-theoretically isomorphic to the Bernoulli shift ({0,1}%, B,, S). By
the variational principle (4.1.11),

Hy ““"H(v)=H(B,) =H(p). (4.1.18)
On the other hand

p<dg <1-p. (4.1.19)

Indeed, by (4.1.10), (4110)
H(v(1) = H(v)=H(@).
Due to the shape of binary entropy function H, it follows that
p<v(l)=d,=dg <1-p.

If we take 0 < p < 1/2 such that 1 —p < H(p), (4.1.18) with (4.1.19) imply d < H.

Density, entropy and hereditary closures

Let us now see the relations between entropies and densities of ones if the hereditary closure of £ is
taken into account. For brevity’s sake denote

d=dg, D=Dy, H=Hyg, d=dz, D=Dgy, H=Hg (4.1.20)

We have the following easy observations:
d=d=D=D<H<H-+dand H<H. (4.1.21)

To see this, notice that using the identity D = d from (4.1.15), one obtains immediately that d = d=
D = D. The inequality H > H follows from the very definition of topological entropy. Furthermore,
we have the following observation.

Proposition 4.1.14. We have

dy <Hgz <Hg + dg. (4.1.22)
Proof. Recall that dgr = Dg = Dg. It Cy, is a ones-maximal block of length n then the "downgrading
argument" (here we refEJE to the fact that, given x € &, due to the heredity, we can replace 1’s by 0’s
in x still remaining in Z°) yields

9#1(Cn) < ‘ﬁ(%) 9#1(Cn)

< |cg

Taking logarithms, dividing by n and passing to limits n — oo results in

1
+ lim —# (Cn) =Hg +Dg =Hg +dg,
n—oo n

T 1 (n) . 1 (n)
Hy < H = lim - log, [£37] < lin —og, |5
which concludes the proof. |
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Now we give some examples in the class of topological Markov chains which show that one
cannot hope (in general) for other relations save these in (4.1.21).

Given a family F C [J;2,{0, 1}* of blocks, by & 7 we denote the set of all x € {0, 1}Z such that no
block from F appears in x (hence, F N L(Z r) = @). A subshift (£, 5) is said to be of finite type
(SFT) (or a topological Markov chain) if Z = Z 7 for a certain finite family of blocks.

Remark 4.1.15. Note that if F satisfies: C € F,C’' > C = C' € F, then (Z #,S5) is hereditary.
We make use of some facts from the theory of SF'Ts given in [70].

Example 4.1.16. Consider the golden mean subshift Z = Z (1;;. By Remark 4.1.15, & is
hereditary. Moreover, by Example 4.1.4 in [70] and (4.1.15),

1 5 1
H = log, +2\[ ~ 0.69 > d= 5 (4.1.23)
Now, we present a SF'T that is not hereditary and satisfies
H<dandd=d < H. (4.1.24)

Example 4.1.17. Consider F = {00,111} and & = Z r. We claim that (4.1.24) is valid. Firstly,
we show that H < d. Note that F' = {000,001, 100, 111} is the full list of forbidden blocks of length
3and Zr = & . Now, the admissible blocks in Z # of length 2 are 11, 10 and 01. Hence, the
adjacent matrix A for this subshift is given by

A:

_ o O
—_ O =
O = O

and since A* has all entries positive, A is aperiodic, that is, & 7 is irreducible. It follows that
H = log A\, where A is the Perron-Frobenius eigenvalue of A. Since the characteristic polynomial equals
t3 —t—1, we get A =~ 1.32 and

H ~ log(1.32) =~ 0.4.

Moreover, d = 2/3 (consider x = ...011.011011... € & ), which results in H < d.
Now, we turn to the proof of d < H. The crucial observation is that

Y = %{111’1001} C g-]-‘. (4.1.25)

Assume for a moment that (4.1.25) is true. Then, we have H > Hg , so in order to show H > d, it is
enough to bound Hg from below. We claim that

Hy ~ 0.76. (4.1.26)
In order to see (4.1.26), notice that 3-admissible blocks in £ {111 1901} are
000, 100, 010, 001, 110, 101, 011.

Hence, the adjacent matrix equals

1001000
1000000
01000T10

A=10 0100 0 1
01000T10
0010001

000010 0O

Now A7 > 0, so A is aperiodic. It remains to calculate log A, where ) is the Perron-Frobenius eigenvalue
of A, which is approximately 0.76.
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We turn to the proof of (4.1.25). For y € %', we need to find x € Z with y < x . We begin by
setting x = y. Now, suppose that somewhere on x we see a block of the form

B=100...01. (4.1.27)
¢

By the definition of &, either £ =1 or £ > 3. If / = 1, we do nothing. If £ > 3 and is even, we replace
Bby A=101...101. If £ > 3 and is odd, we replace B by A = 10110101010...10101. We apply

L L
this procedure to all occurences of blocks of the form (4.1.27). Tt is easy to see that, as a result, we

obtain a point x with the desired properties.

4.1.6 Sofic systems

Fix a finite alphabet X and let (G, L) be a labeled graph, i.e. G is a graph with edge set E and the
labeling L: E — X. Then if & C XZ arises by reading the labels along the paths on G is called sofic
(this term was coined by Weiss [101] and there are several equivalent ways to define sofic subshifts, see
also [70]). We consider only the case of X = {0,1}.

Remark 4.1.18. Let us mention that the class of sofic shifts is precisely the class of factors of subshifts
of finite type (also called topological Markov chains) given by continuous local (i.e. depending on finitely
many coordinates) maps. For more information on this subject we refer to [70] (Chapters 2 and 3).

Notice that for a sofic subshift 2 C {0,1}%, the subshift Z is also sofic. Indeed, take a corre-
sponding labeled graph (G,L) for & and define (é,[) as follows: for each edge in G labeled with 1
add an extra edge between the same vertices and label it with 0. Clearly, the subshift resulting by
reading the labels along the paths in the new graph is nothing but £ . Recall also that a finite union
of sofic shifts remains sofic (to see this, it suffices to consider the corresponding graphs and take their
disjoint union).

Remark 4.1.19. Let us now consider #-free subshifts. It was shown in [34] that that for each finite

% C N\ {1}, both .%n and Z g are sofic. A simpler way to prove this is to notice that if & is finite

then n is periodic. This immediately gives that &, is sofic and by the above discussion so is X n-
Moreover, Z 4 is a finite union of the following form:

ﬁfg:U U X (r,bcB)>

be#B 0<r,<b—1

where ¥ € & (;, be) iff (supp © mod b) N (bZ + 1) = O for each b € &B. Notice also that Z (,,..c2) is
the hereditary closure of the subshift generated by the periodic point z(,,.,cs) whose support equals

Z\ (Upeg(bZ 4 13)). Thus, we can apply here the same argument as for 2.

4.1.7 Mirsky measure

Instead of definition A central role in the theory %B-free systems is played by the Mirsky mea-
sure vy,. Instead of giving the definition of 1, , let us recall here some of its properties. In the Erdos
case, 1) is a generic point for vy, (see [3]), i.e. we are interested in the frequency of blocks appearing
in n (for n = p? they were first studied by Mirsky in [78, 79]). In general, n may fail to be a generic
point, cf. (4.1.3). However, if (Ny) is an increasing sequence of integers realizing the lower density of

Mg, ie.
d(Mg) =d(Mg) = lim Ni [1, Np] N Mg,

k—oo [N

then n is quasi-generic along Ny for the Mirsky measure [31] (Theorem 4.1 therein).

Remark 4.1.20. If we deal with a finite set £ = {b1,...,b,} then n is a periodic point and its
period is a divisor of the least common multiple of b;’s. It follows immediately that X, is also finite
and the unique shift-invariant probability measure on X, is given by vy, = % Z,ﬁgl Si&q.
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Remark 4.1.21. In the usual approach, the Mirsky measure is defined as the image of the Haar
measure via a certain coding from an odometer corresponding to & to {0,1}%. This coding first
appeared in [3] in the Erdos case. For the details of the general case, we refer the reader to [34]. In
particular, it follows immediately that the Mirsky measure is of zero entropy as we deal with a factor
of a (uniquely ergodic) zero entropy system (in fact, the factoring map establishes an isomorphim, see
Theorem F in [31]).

Entropy and intrinsic ergodicity It was shown in [34] (Proposition K) that the topological en-

tropy of (S, Xy) equals 6(Fg) (this extends the earlier results from [85, 3]). Moreover (S, Z ) is
intrinsically ergodic (i.e. has only one measure of maximal entropy) and its unique measure of

maximal entropy is given by
ind.

Un * B% :M(Vn®B%),

where Bi stands for the Bernoulli measure on {0, 1}#* with parameter 1/2 and M (x,y) = x-y (see [31]
2
and the earlier papers [25, 61] or combine Theorem 4.1.23 recalled below with Corollary 3.2.9).

Remark 4.1.22. In the notation of stochastic processes the unique measure of maximal entropy equals
by B2 . Y™ where Y ~ vy and B(1/2) stands for the i.i.d. Bernoulli process with parameter 1/2
(recall Corollary 3.2.9 and combine it with upcoming Theorem 4.1.23 below). Note that, due to the
fact that B has the trivial tail o-algebra and H (Y(")) = 0 there is only one stationary coupling of
these processes, namely the independent one (see Theorem 1.2 in [41]).

It was shown in [01] (in the Erdds case and later, in [34], in the general case) that all invariant
measures for X, are of the following special form.

Theorem 4.1.23. For any u € M‘%n, there exists p € M{O’I}ZX‘%’" such that p[g,yn =vpand Mp = p,
where M (x,y) =x-y.
Remark 4.1.24. In terms of stochastic processes the above theorem means that if Z € M;v, then

n

we can find a stationary and ergodic process (X,Y(")) = <<X¢, Y;(n)>>‘ , such that Y™ ~ vy and
1€
X- Y ~ Z.

Taut case Taut B-free sets are of big importance in the theory of %B-free systems. It turns out that
they carry the information about all invariant measures for all #-free systems (cf. (4.1.29)). More
precisely, we have the following.

Theorem 4.1.25 (Theorem C and Theorem 4.5 in [31]). For each 98 C N\ {1} there exists a unique
taut B’ such that
]:g/ C .7::@ and Vp = I/n/7 (4128)

where vy and v,y stand for the Mirsky measures for Z v and &y respectively.

In particular, combining this result with Theorem 4.1.23, one sees immediately that

Mg, =Mz . (4.1.29)

Moreover, recently, Keller proved the following.

Theorem 4.1.26 ([56]). If 8B is taut then vy has full support in Z 4.

Our results on the Mirsky measure

This section consists of three parts. First we give a short proof of Theorem 4.1.23 using the notion
of generic points. Then, we prove the converse of Theorem 4.1.26. Finally, we describe all sets & for
which the Mirsky measure is atomic.
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Proof of Theorem j.1.23. Step 1. |%B| < oc.
Note that in this case &y, is periodic (and thus uniquely ergodic) and the unique measure of maximal
entropy vy is periodic. In other words, in order to finish this step, it is enough to prove the following.

Proposition 4.1.27. Suppose that (%, S) is a uniquely ergodic subshift of {0,1}%. Let us denote by
v € Mgy the unique S-invariant measure. Then, for any p € M; there exists p € M?{OJ}ZXQ/,SXS)
such that Mp = p and pg = v.

Remark 4.1.28. Note that pig = v is automatic because by the very definition pjg € Mg = {v}.

Proof of Proposition /.1.27. Let z € % be a generic point for u. Then there exists y € & such that
z < y. Moreover, y must be generic for the unique S-invariant v on #%. Let x € {0,1}? be such
that x -y = z. Notice that (x,y) is quasi-generic for some measure p € M (01)2x sxs) Satisfying
p = v. Moreover, since X -y =z, Mp = p. In order to complete the proof, it suffices to use the
ergodic decomposition of p (the image of a convex combination of measures is a convex combination
of their images, with the same coefficients). ]

Step 2. |#| = cc.
Let vy, be the Mirsky measure associated with the %B-free system & = X, and B = {b1,b2,...},
where by < by < ---. For any k € N define ), = {b1,...,b;} and consider &'y, := £, with the

corresponding Mirsky measure vy := vy, , where i, = 1 Fa, Clearly, n < ng and thus & C %
Take p € M?}j C ./\/lyk and let x € & be a generic point for u. Since x € E?,’Yk, we can find ¢ € N

such that x < S%n,. As x is generic (for p) iff S7'x is (for ), in what follows, we assume without loss
of generality, that i = 0. Thus, x = y}, - 0, for some y; € {0,1}%2. Now the (yx,n;) is quasi-generic
for some py € Myq 1y24 9, satistying pg g, = v and Mp, = p (the latter property of py follows from
the fact that x = yy - 1, is quasi-generic for M py and generic for ). Passing to a subsequence we can

assume that py = p for some p € M (note that (), Z'r = £ ). Therefore,

{0,1}2x %
p=Mpr) = M(p), vk =prg, = Pz (4.1.30)

Thus, our next step in the proof of Theorem 4.1.23 is the following lemma.

Lemma 4.1.29. We have
Vg = Vp.

Proof. For simplicity’s sake let n, := n. Recall that n,, is generic for Yy, for k < oo and quasi-generic
for k = co. Thus, we can choose a common subsequence (n;) such that for every k € NU {00},

1 &
— Z Ssim, = Vi (4.1.31)
() =0

when ¢ — oco. It remains to use Corollary C.0.5 along with the fact (4.1.5). [ |

At the end we need to pass from ergodic measures p € M} to the non-ergodic ones. Let

A= {pe M(X, x{0,1}7): p|x, = vy}

Notice that A is a closed subset of M({0,1}% x {0,1}%) and thus, it consitutes a compact metric space.
What we have proved so far can be written down in this notation as

ME(X,) € M(A) € M(X,).

Since M (as the push-forward on measures) is continuous, it follows that the image of A via M is
measurable (as it is compact). Moreover, for any measure x € M(A) its inverse image M ' is closed,
whence compact. Thus, we can apply the Arsenin-Kunugui theorem on measurable selection (see e.g.
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Theorem 18.18 in [55]) and it follows that there exists a measurable map ¢: M(A) — A such that Mo
is the identity map on M (A). Now, fix k € M(X,)) and consider its ergodic decomposition

”:/ _ KydP(7)
M(X)

(where measure P is concentrated on the set of ergodic measures, but it is defined globally on the set
of all invariant measures). By the measurability of ¢, we can define

pi= /M(~ 1()AP(7)

%)

(since 7y + K is measurable, so is v +— 1 0 k). Since p € A4, it follows that p|x, = 1. Moreover, we
have M, ([ pydP(v)) = [ M.(p,) dP(v). This finishes the proof of Theorem 4.1.23.
[ |

Now, we turn to the converse of Theorem 4.1.26.

Theorem 4.1.30. Let 8 C N\ {1}. If the Mirsky measure vy is of full support & ,, then % is taut.

Proof. Let & be non-taut and let ' be the corresponding taut set, as in (4.1.28). Then
X C X (4.1.32)

Suppose for a moment that we have already proved (4.1.32). We know that vy = vy (cf. (4.1.28)).
Moreover, by Theorem 4.1.26, &, is the support of v,y. It follows immediately from (4.1.32) that the
support of vy, (equal to £ ,y) is not full.

Now we turn to the proof of (4.1.32). We will prove first that &,y C Z,,. By Theorem 4.1.26, v,y
is of full support &y, i.e. each block appearing in n’ is of positive v,y-measure. By (4.1.28), we have
Vn = Uy, i.e. each block appearing in n’ is of positive vy-measure. Since 7 is a quasi-generic point for
vy, each block of positive v,-measure appears in 7. Therefore, each block appearing in " appears also
on n, which gives &,y C Z .

Suppose now that £,y = £ 5. In particular, we have n € £,y C & g . Therefore, for each
b € B, there exists 1 < 7' < b such that FgN (VZ+1") =0, i.e. ¥Z +1' C Mg. Let d = ged (b, r").
For b" =V /d, " = r'/d, we have

dW"Z +1r") C MgC My.

It follows by this and by (4.1.8) that §(Mg) = §(Mg1qy). By (4.1.7), we obtain d € Mg . Hence,
there exists b’ € %' such that b"”|d, i.e. we have "’ | d | b'. Thus, by the primitivity of &', we obtain
b" = d = b. Therefore, r’ = b’ and we conclude that ¥'Z C Mg. Since V/ € %' was arbitrary, it follows
that Mg = Mg . Now, it remains to use the primitivity of £ and %’ to conclude that Z = %'. This

vields a contradiction and completes the proof.
|

Remark 4.1.31. It is a classical fact in the theory of cut-and-project sets that for any £, the Mirsky
measure vy, is a measure of maximal density for (£ 4, 5) (see e.g. Theorem 4 and Corollary 4 in [57],
cf. Chapter 7 in 7] as well; alternatively see Corollary 4.1.32 below). Therefore, in order to obtain a
maximal density measure without full support, it is enough to consider a &-free system that is not taut
and take its Mirsky measure. Furthermore, we always have dg-, = an (see Proposition K in [34]).

Corollary 4.1.32. The Mirsky measure v = vy has mazimal density in X .. If B is not taut then v
is not of full support.

Proof. Firstly, we show that the Mirsky measure is of maximal density of ones. By Theorem 4.1.25,
there exists a unique taut %’ such that

Fa C Fa and v=1,
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where v/ = v, stands for the Mirsky measures for 2 ,. By Keller’s theorem (see Theorem 4.1.26), v/
must be of full support. In particular, 2/ is of maximal density (recall Theorem 4.1.9). Using, (4.1.29)

we get
d,=d,= sup d,= sup d,
neMeg neMg,
If & is not taut then by Theorem 4.1.30 v cannot have full support. |

As an immediate consequence (recall Theorem 4.1.9) we obtain the following fact.
Corollary 4.1.33. The Mirsky measure is ones-saturated.

Remark 4.1.34. In [33], it was shown that %B-free systems that are minimal, are necessarily taut.
Notice that this also follows immediately from Corollary 4.1.30, as in minimal systems all invariant
measures have full support.

Now, we describe all sets £ for which the Mirsky measure is atomic.

Proposition 4.1.35. The Mirsky measure vy, is atomic if and only if the taut set B’ given by (4.1.28)
1s finite.

Proof. Clearly, if 2’ is finite then the corresponding Mirsky measure is atomic. We will prove now the
other implication. In view of (4.1.28), we can assume that £ itself is taut, and we need to prove that
in this case £ is finite. But if 4 is taut then by Theorem F in [34] the measure-theoretic dynamical
system (% 5, vy, S) is isomorphic to a rotation on a certain compact Abelian group considered with
Haar measure. However, Haar measure has an atom if and only if the group is finite. Since the group
is given by the inverse limit of cyclic groups Z/lem({b € B :b < K}), K > 1, # itself is finite. [ |

Corollary 4.1.36. The Mirsky measure vy is atomic if and only if for some k,£ > 1,
B=c1B1U-- - UcyBrU{c,...,ch}, (4.1.33)
with B, ..., being Behrend.

Proof. Let ' be as in (4.1.28). It follows by the construction of the taut set &' in Section 4.2 in [34]
that either

B =(B\(1ZU...Uc,Z))U{ct, ... cn} (4.1.34)
and
B=(B\(1ZU...Uc,Z))U (181 U---Uc,B) (4.1.35)
for some n > 1 and some Behrend sets %4, ...,%, or
B =B\ |)cnZ)U{cnin>1}
n>1
and

B=2B\|Jcz)U B0

n>1 n>1

for some Behrend sets %,,n > 1.
The finiteness of &' means that (4.1.34) and (4.1.35) hold for some n > 1. In particular, the set
B\ (c1ZU---UcpZ) is finite, i.e. (4.1.33) holds. [ |
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4.1.8 Multiplicative convolution of measures

Recall that M(x,y) = x-y and given subshifts £,% C R% and measures v My and p € Mg, the
zndependent multiplicative convolution of v and p is defined by v o uw= M(v ®,u) We already

know that (.Qf n,S) is intrinsically ergodic and the measure of maximal entropy for (.Qf n,S) is equal
to vy "% B.1 where Bl stands for the Bernoulli measure on {0, 1}% with parameter 1/2.
2

In this part we W111 study measure of the form

ind.
kK=v * B

(4.1.36)

1,
2

where v € M%-. Later, we will apply these general facts to Vn ¥ B1
Tt is not hard to see that x = v % B1 is of full support as soon as v is. Moreover, Kk = v 5 B1 is
ergodic whenever v is. Indeed, x is a factor of the product of a mixing and an ergodic system.

Lemma 4.1.37. Let v € Mg. Then for k =v N Bi and each C € L4 we have
2

KC)= Y w(C) 27, (4.1.37)
La3C'>C

Proof. Let k =v oy Bi1i ~M = B Y where process B has the symmetric Bernoulli distribution and
2
is independent of Y. Then, due to BII'Y, the conditioning on Y}y, gives

P (Mo n) = mi0,0)) = BE (Lnsgmmpo g Iio yzmio, Vo)) = Bl yzmg 25007
which is equivalent to the desired formula. |

Remark 4.1.38. Notice that x = v % B 1 is descreaging in the sense that for any two words of length
2

n, wi, wg such that wy < wsy, we have
k(wy) > kK (w2). (4.1.38)

4.1.9 Ones-maximal blocks

In our proof of absence of Gibbs property, the main role is played by the family of ones-maximal blocks.
We say that a block C € Lg is ones-maximal if

#1(C) = wemX #1(W). (4.1.39)

Analogously, for any measure v € Mg, we call block C € L4 v-ones-mazximal if

C) = wW). 4.1.40
#1( ) WEﬁ‘C‘%},(V(W)>O#1( ) ( )

Remark 4.1.39. Notice that if C' is v-ones-maximal (or ones-maximal) then (4.1.37) simplifies to
ind

v % Bi(C)=uv(C)-27%1(O), (4.1.41)

2

4.1.10 Gibbs property

Measure x € M9 is said to have the Gibbs property if there exists a constant a > 0 such that
K(C) > a-27ICH2 (4.1.42)
for all blocks C € L4 having positive k-measure.
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Remark 4.1.40. Let us recall here that the notion of Gibbs measures comes from statistical physics [90,
| and it corresponds to the idea of equilibrium states of complicated physical systems. They turned
out to be an interesting object also from the point of view of dynamics and have played an important
role in ergodic theory (see, e.g., [17, 91]). Given a finite alphabet X and a (H6lder) continuous po-
tential ¢: X2 — R and a subshift 2 C X%, a measure ty € Mg is called a Gibbs measure for ¢,
whenever there exist constants & = P, o~ > 0 and b = b(p, Z') > 0 such that for every x € Z°

bl < ,ugo($[0,n—1})

S S (P < b for any n > 1. (4.1.43)

One can show that the above constant &2 is equal to the topological pressure of Z (with underlying
potential ¢). In particular, if ¢ = 0 then &2 = Hg . Moreover, if we consider just the lowerbound in
(4.1.43) with ¢ = 0 then we arrive at the definition of the Gibbs property (recall (4.1.42)).

Let us now explain our motivation to study the Gibbs property defined above. In many natural
situations, like sofic systems [101] or systems enjoying particular specification properties and beyond
(see [25, 26] and the references therein), there is a unique measure of maximal entropy and it enjoys
the Gibbs property or a weakening of it. More than that, by a result of B. Weiss [101], if k satisfies
the Gibbs property and is a measure of maximal entropy, then (£, .5) is intrinsically ergodic. We are
interested in examples, where (4.1.42) fails, but the system under consideration remains intrinsically
ergodic. This yields natural classes of positive entropy intrinsically ergodic systems different from
many known so far.

By the variational principle for entropy (4.1.11), if H = 0 then H (k) = 0 for any K € M. In
general, if H > 0, it is hard to say for which x we have H (k) > 0. However, we have the following
simple observation.

Proposition 4.1.41. Suppose that k € M has full support and satisfies Gibbs property (4.1.42). Then
H (k) > aH.

Proof. Without a loss of generality we can assume that H > 0. Let ¢, = |£,|. Notice that (4.1.9)
implies that log ¢, > nH for any n € N, i.e. we have

(, > 28, (4.1.44)

Moreover, the function z — —xlogx is increasing for < 1/2. Due to the full support of £ and the
Gibbs property (4.1.42), we obtain

= > K(W)logk (W) > > a2”"™M [nH — log (a)] . (4.1.45)
weL, WeLn, k(W)<1/2

Since only one atom of the partition given by £, can have the measure larger than %, it follows that

S @™ nH —log(a)] > (6, — a2 "™ [nH — log (a)]. (4.1.46)
WeLn, k(W)<1/2

Now, we apply (4.1.44) to get
(b — 1)a2 " [nH — loga] > a (2”H —1) 27"H [pH — loga] = a (1- 2_"H) (nH —loga). (4.1.47)
Combining (4.1.45), (4.1.46) and (4.1.47), we obtain

e OIS (4 oy (g 2210)

H (k) -

——aH

n—oo

n—o00 n

and the result follows. [ |
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Remark 4.1.42. If Z = {0,1}” and & is an ergodic measure of full support with the Gibbs property
then k = B1 Indeed, the inequality in (4.1.42) can be rewritten as k(C) > a - B1 (C) for each block

C. In partlcular B1 < k and the claim follows from the ergodicity of x and 31

Remark 4.1.43. Note also that if H = 0 then s cannot have the Gibbs property unless it is purely
atomic.

Since k = v ¥ B 1 is of our special interest, at the end, let us give the following fact concerning
2
the rate of convergence in the formula for topological entropy.

Proposition 4.1.44. Suppose we can find v € Mg such that kK = v o Bi satisfies Gibbs prop-
2
erty (4.1.42) and has full support. Let us denote |Eg,)] by £,. Then for every n € N,

1 1 1
0<0g%>_H<bg<)
n n a

Proof. 1t follows from the “decreasing property” (4.1.38) that for any n € N there exists a maximal
(n)

word (in the sense of the coordinatewise order) W™n ¢ E‘(g) such that for every W, € Ly, we have
K (Wy) > & (Wa™). Then

K (Wmin) <
Now, taking advantage of the Gibbs property, we get

a27Hn S ﬂ(ngn) Rema.:/l.l.IBO v (W’rf,lnln) 27|W771n7,n‘ S 2*10g(£n)

_p|logtn) o . . .
Thus, a <2 [ “n H] and finally n [1 g(ln) _ H} <log (%) , which gives the desired rate of conver-

gence. |

4.2 Results

4.2.1 Gibbs property in periodic case
Theorem 4.2.1. Suppose that v € M9 is purely atomic. Then Kk =v o B% has the Gibbs property.

Proof. Since v is atomic, it follows immediately that v is concentrated on a finite orbit, i.e. there exists
x € Z and k > 1 with S*x = x and we have

1
v = %(6,( +dsx + -+ Ogr-14).

Thus, since in the definition of Gibbs property we must check only what happens on the support of
v, we may assume that & = {x, Sx,...,S* Ix}. Tt follows from Section 3.2.1 in [61] (or from our
Corollary 3.2.9) that the (unique) measure of maximal entropy for (£, S) is of the form

ind.
K=V % 31

Now, (‘%‘ ,S) as the hereditary closure of finite subshift is sofic. Therefore, its measure of maximal
entropy has the Gibbs property. |

Remark 4.2.2. As a matter of fact, if x € {0, 1} is periodic of period k > 1 and & = {SJX Jj=
0,...,k — 1} then Hgz = dg =: d and (,9," S) is intrinsically ergodic with x = v N B1 being

the measure of maximal entropy (combine Corollary 3.2.9 with Theorem 3.2.1). By the monoton1c1ty
property (4.1.38), we need to check (4.1.42) only for the maximal blocks and for such, by (4.1.41), we
obtain

— —#1(B) ~ nd _ nH g
k(B) =v(B)2 k:2 k:2 z

so K has the Gibbs property and one can take a = % in (4.1.42).
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4.2.2 Absence of Gibbs property

Let us present our main result.

Theorem 4. 2 3 Fiz (', S) and suppose that v € M$- is ones-saturated and non-atomic. If D = Hg:
then kK = B1 "% v does not have Gibbs property.

Proof. Let us start with an easy observation. Let v € Mg and a > 0. Suppose that a sequence
of blocks C), satisfies |Cy,| / oo and v(C,) > a. Then there exists a subsequence (nj) such that
k1 Cny # 0. Moreover, we have v({z}) > a for {z} = (5, Cp,. Indeed, for any k > 1, there exists
B € Li(Z) such that for infinitely many n € N, we have C},[0, k — 1] = B. Now, it is enough to apply
a diagonal procedure to find the required (ny) for which (5 Cn,) = v({z}) > a.

Now, for n € N, let C), € L£,, be v-ones-maximal. Define o, = #; (C},) and H = H?f' Due to

ind.
Lemma 4.1.37, for k = v * Bi, we have
2

K(Cp) - 28 = 1(C,,) - 27 on,

_Using (4.1.9), we get d = D = D, < 0,/n. Therefore, using the assumption that H = d, we obtain
nH — o, < 0. If we could find some a > 0 for which v(C},) > a holds for infinitely many n € N then
the observation made on the very beginning would imply that v is not atomless. This is not possible
because we assumed otherwise. The proof is concluded. |

Recall that for the ZB-free systems we have dgr, = H~ Moreover, the Mirsky measure vy, is of
77
maximal density. Furthermore, v, Y B 1 is the unique measure of maximal entropy. Therefore, the

above theorem immediately answers the questlon asked by Peckner concerning &-free subshifts. More
precisely, we have the following.

Corollary 4.2.4. Let 8 C N\ {1}. Suppose that the Mirsky measure vy is not atomic. Then the
(unique) measure of mazimal entropy of (& »,S) does not have the Gibbs property.

Theorem 4.2.3 goes beyond the %B-free context. For example, if (Z,S) is of zero topological
entropy, it follows from Lemma 2.2.16 in [061]| (or our Proposition 4.1.14) that d = Hg. Thus, as a
consequence of Theorem 4.2.3, we obtain the following result.

Corollary 4.2.5. If (Z',S) is uniquely ergodic and Hg = 0, then B% S v has no Gibbs property
whenever the unique tnvariant measure v is non-atomic.

At last but not least, in [61], Sturmian sequences are discussed (we refer the reader to [61]). It is
proved that the hereditary closure of the system given by any Sturmlan sequence yields an intrinsically
ergodic system whose measure of maximal entropy is of the form v ¥ 31 Moreover, in this case we

also have d = H. Using again Theorem 4.2.3 we obtain the following corollary.

Corollary 4.2.6. If (:9,7, S) is a Sturmian hereditary system then its measure of mazimal entropy has
no Gibbs property.

4.2.3 Topological pressure

Remark 4.2.7. At the beginning let us note that the following results are very recent and are not a
part of any preprint. Moreover, we are still working on many aspects of this subject. Here, we would
like to explain the motivation behind Theorem 3.2.34.

Let vy be the Mirsky measure associated with a %B-free system (£ ,,S5). Moreover, if B =
{b1,be,...} is infinite with by < by < ---, we define its natural approximations &y = {b1,...,bx}
where k € N. Thus, for every k € N we can consider &', and the associated Mirsky measure vy, ,

where 1, = 1 Fa, Recall that each measure vy, is periodic. It is intuitively clear that £, can be
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treated as a approximation for X n, thus, in particular, it should be true that the topological pressure

of &y, converges to that of 2. Furthermore, we already know that v, = v (recall Lemma 4.1.29).

Now we make the above argument strict. For brevity’s sake let i, = 1. Firstly, we take care of the
convergence of the topological pressure of approximations & 5, . The crucial observation is contained
in the fact that &, is a descending sequence of sets.

Lemma 4.2.8. Let '\ be a decreasing sequence of subshifts, that is X O & p+1. Then for any
upper semi-continuous potential @,

P P, (4.2.1)
where ' = (> £ k.
Proof. By a basic monotonicity property (with respect to the underlying space) of topological pressure,

Pa,o>Pa,. ., and thus
liminf Py o > Py, (4.2.2)

On the other hand, if u are the equilibrium states for ¢ (on Z') then, due to the upper semi-continuity
of entropy rate and variational principle,

limsup P g, , = limsup [H (ux) + /goduk] <H (pn)+ / pdp < P g o (4.2.3)
k—o0 k—o00
where, without loss of generality, we assumed that pp = p for some p. |

Since ‘%nk D ‘/%/\'

result.

mes1» for any k € N and (5, %nk = :ﬁifvn, we immediately get the following

Lemma 4.2.9. For every upper semi-continuous potential o,

P — P (4.2.4)

z‘nkm(ﬂ '9'/-7700750'

The second observation concerns the weak convergence of Y, . (The lemma below has been already
proven in the ergodic setting in Lemma 4.1.29. However, for convenience of the reader we recall here
its short proof.)

Lemma 4.2.10. We have
Yy, = Yy . (4.2.5)

Proof. Recall that n;, is generic for Y, for k < oo and quasi-generic for k = oo. Thus, we can choose
a common subsequence (n;) such that for every k € NU {o0},

ng

1
o > Osin, = Yo, (4.2.6)
§=0
when ¢ — oo. It remains to use Corollary C.0.5 along with (4.1.5). [ |

Let us now present our main theorem of this section.

Theorem 4.2.11. For any B-free system (Z y, S) and a continuous potential ¢: {0,1}2 — R we have

Py =PYo=1)+ sup P(z),
Znsp z€{0,1}%

where vy ~ Y is the Mirsky measure and ¢ 5 @ s the upgrade of ¢ given by (3.2.24).
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Proof. By Theorem 4.1.23, for any k € N U {00}, all measures p € Mg are of the form
n

k

o~ X- Yk‘)
where Yy, ~ vy, , X € My 132 and (X,Y}) is stationary. In other words,

Nyk = ./\/lg,nk. (4.2.7)
Recall also that by Lemma 4.2.10, we have Y = Y. Therefore, using the variational principle, (4.2.7)
and Theorem 3.2.34, we obtain

P4 = sup H(p) —I—/s!?d,u = sup H(u)+ /godu — P (Yy=1) + sup ®(z).
P Mg HeNy, .

= — P which
fnkﬁﬂ ‘%-"7730’

concludes the proof. |

On the other hand, by Lemma 4.2.9, for every continuous potential ¢, 22

4.3 Open questions

In view of Theorem 4.2.11 which provides an explicit formula for the topological pressure of a £-free
system, it would be interesting to describe any of the corresponding equilibrium measures for 2. So
far we known only, that such an example can be obtained as a weak limit of certain multiplicative
convolutions of Gibbs-like i.i.d. processes with (periodic) approximations of the Mirsky measure (recall
(3.2.33) in Theorem 3.2.32). However, we know nothing about properties of this limiting process. In
particular, it remains open if (or more precisely, under which conditions) a system like in Theorem 4.2.11
admits only one equilibrium measure (we know only that this happens if the underlying potential
depends on one coordinate, recall Theorem 3.2.21).
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Chapter 5

m-dependent random variables

5.1 Introduction

The class of m-dependent random variables was studied in many papers including [1, 73, 19, 51, 59, 97].
Such variables can be treated as a middle ground between the classical case of independent random
variables and strongly mixing processes (like c-mixing or S-mixing sequences, see Sections B.3.3 and
B.3.4). They are highly correlated with Markov chains, due to the splitting method (see Section 6.1.11),
which allows one to split a Markov chain into one-dependent blocks (in fact, this is why we started
to study this class of random variables). Many facts and theorems for independent random variables
are still valid in the m-dependent case, take for example the central limit theorem or the strong law
of large numbers. However, there are many questions which remain unanswered (see Section 5.4).
Among them there is one concerning finding an "optimal" Bernstein inequality, which we explore in
this section.

5.2 Background

5.2.1 Definitions and examples

Recall that a process X = (X;),c; is m-dependent if for any k € Z, (X;);<x is independent of
(Xi)i>k+m+1- Thus, for example, if m = 0 then X is an ¢ndependent process. Let us give now some
examples.

Example 5.2.1 (Block factors of stochastic processes). Consider an independent process & =
(&i)icz where & € X and a measurable function f: Xmtt 5y, Put X = f(&, &1, Eipmo1). Any
such processes X = (X;),;cy is called an m-block factor of an i.i.d. process. Clearly, by the very
definitions, X is an m — 1-dependent process. Moreover, if £ is stationary then so is X. More generally,
if Xi = f(Y}iiym—1)) for some process Y then we say that X is an m-block factor of Y.

Example 5.2.2 (m-dependent Markov chains). Let X = (X;),., be a Markov chain on a finite
state space X and let P = [p(z,y)], ,cr be its transition matrix. Then X is m-dependent iff prtl
has identical rows. It can be shown that every stationary one-dependent Markov chain with |X| < 4
is in fact a two-block factor (see [1] Corollary below Theorem 3). Moreover, Matus in [73] gives an
explicit example of a 5-state stationary Markov chain which is one-dependent but cannot be expressed
as a 2-block factor of an i.i.d. process (see Consequence in |73]).

Remark 5.2.3. For a long time there was a conjecture that every 1-dependent process is in fact a
two-block factor of some i.i.d. process. As mentioned above, this is not true. In fact, Matus showed
that it is not true even for Markov chains. Moreover, the authors in [19] gave an explicit construction
of a stationary one-dependent process (in fact, a whole family of such processes) that are not m-factors
(of an i.i.d. process) for any m € N. Recently, in [51] the authors presented a natural class of coloring
processes which are m-dependent but are not k-factors (of an i.i.d. process) for any k. For example
they showed that there exists 1-dependent 4-coloring of Z (part of Theorem 1 in [51]) and no r-block
factor (of an i.i.d. process) g-coloring exists for any r and ¢ (Proposition 2 in [51]).
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Example 5.2.4 (Renewal processes). Aaronson in [1| showed that every stationary, one-dependent
renewal process is in fact a 2-block factor.

Example 5.2.5 (See [59]). For an explicit easy yet non-trivial example of one-dependent process
consider mutually independent B; ~ Bern(p), { ~ Rade(1/2), thatisP (B;=1)=1-P(B; =0)=p
and P(§=1)=1-P(§, =—1) =1/2 and put

X; =B + (1 — Bi)‘fz’—l&i—? (521)

Clearly X = (Xi)iEZ is Stationary and Xl ~ Bzfz'f— (1 _Bi)gi—lgi—Z ~ Bzfz + (1 — Bi)fi—l ~ Rade(1/2)
One can show that X; is pairwise independent. More surprisingly, this 3-block factor is also a one-
dependent process (see Corollary 2 in [59]). Best to our knowledge it is not known if it can be expressed
as a 2-block factor (of an i.i.d. process). Furthermore, X is not a Markov chain of any order.

Example 5.2.6 (Longest alternating sequence). The authors in [52| showed (among many other
results) that the length of the longest alternating sequence of a random uniform permutation can be
expressed as a 3-block factor of an i.i.d. process (see Proposition 2.2 or equation (4) therein).

5.2.2 Bernstein inequality. Introduction

Let us recall the classical Bernstein inequality for bounded functions.

Theorem 5.2.7 (Classical Bernstein inequality). If (&) is a sequence of i.i.d. centered random vari-
ables such that ||&i]|cc < M then for any t >0,

=1

where 0% = ng

Notice that if tM < no? then (5.2.2) reflects the CLT behaviour of the partial sums > 1, & which
should be of order 2exp (—%) For this reason, we speak of the Gaussian part of Bernstein’s

inequality to refer to this part of the right-hand side of (5.2.2). We also say that (5.2.2) is optimal,
meaning that its Gaussian part is optimal. (We refer (slightly imprecisely) to the remaining part
of (5.2.2) as to the Poisson part even though it is not of "Poisson order" tlogt for large t.)

Consider a stationary m-dependent, bilateral process X such that EX; = 0 and || X;|| <
M < oo for each i € Z. The asymptotic variance o2 is given by

1 m
o2 = lim —Var(X; +---+ X,) =EX] +2) EX; X;. (5.2.3)

n—oo N —
1=

Thus, (1/y/n)(X1 + -+ X,) = N(0,02,) and the “ideal Bernstein inequality” for the partial sums

should be of the form
P Xl >t <2 _ ], 5.2.4
(Z —>—em<%@+m9 (5:2.4)
2

i=1
% is asin (5.2.3) and c is some numerical constant. We do not have any counterexample to
(5.2.4) but, at the same time, we do not have a slightest idea how to show (5.2.4).

Note that in the Gaussian part of (5.2.4) we have used the asymptotic variance o2, (5.2.3) and
not the variance of a single random variable X;, 0> = EX?2. In general, these two variances can be
quite different. Firstly, by Holder’s inequality, we always have o2, < (m + 1)o?. If EX;X; > 0 for
all i, then clearly, o2, > o2. However, if EX1X; < 0 for all i then 02 can be arbitrarily small when
compared to o2. For the extreme example of this phenomenon consider an i.i.d. process € = (&)iez
and X; = & — &—1. In this case 0% = 0, whereas 02 = 2E£2. In fact, it turns out (cf. [53]) that the
reverse is true, that is if for a 1-dependent, bounded stationary process (X;);en we have 02, = 0 then
there exists an i.i.d. process (§;)ien such that X; = &1 — &;.

where o
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Now we show how one can immediately get a version of (5.2.4) with o2 replaced by 02 = EX?.
Clearly, since X is m-dependent and stationary, processes (Xi(mH)Jrk)ieZ, where 0 < k < m, are i.i.d.

Thus, splitting the sum » ;" ; X; into (m + 1) sums of the form Egﬁ{(mﬂ)_kj Xi(m+1)+k,> using the
union bound and applying the classical Bernstein’s inequality (5.2.2), we obtain

. ( (£2/(m +1))? )

>t <2m+1)exp | —
) ( ) p( 2[n/(m+1)]02+ ZMt/(m+1)
Note that unlike in (5.2.4), the Poisson and Gaussian parts of right hand-side of (5.2.5), depend on m.

n

> Xi

=1

(5.2.5)

<2(m+1)exp (— r ) .

2(m +1)(n+m+ 1)02? + 2(m + 1) Mt

5.3 Results

This section is divided into two parts. In the first one (Section 5.3.1) we consider arbitrary m > 1 but
we restrict our attention to bounded random variables. This additional assumption allows us to
present the key ideas in a simplified form. However, sometimes (e.g. in Chapter 6 where we study the
phenomenon of concentration of measure for additive functionals of Markov chains) more general in-
tegrability conditions are necessary. Here, the case m = 1 is of particular interest (cf. Section 6.1.11,
where we describe the splitting method for Markov chains). We provide the corresponding versions of
the Bernstein inequality under this extra assumption (see Section 5.3.2).

5.3.1 Bernstein inequality for bounded bounded random variables, m > 1

Best to our knowledge, it remains open if the optimal Bernstein inequality (5.2.4) holds for arbitrary
m-dependent stationary, bounded random variables X;, ¢ € N. Nevertheless, the argument used in
our paper |[66] results in a nearly optimal (up to constants depending on m) version of (5.2.4) in
some cases of interest, including functions of m-dependent Markov chains and k-block factors of i.i.d.
processes. The whole idea is based on the observation that we can replace X;’s by Z;’s in such a way
that Y. | X; =~ Y i | Z;, Z; are k-dependent (relations between k and m may depend on the very case)
and, most importantly, Var (Z;) = o2, (thus the variance of a single random variable Z; is equal to
the asymptotic variance of process X). To construct Z;, we use a filtration satisfying certain technical
properties.

Lemma 5.3.1 (Variance of modification of X;’s). Let X = (X;),., be a stationary centered square-
integrable process and m € N. Suppose that we can find a filtration G = (G;)icz such that X; is
Gi-measurable for all i € N and for

Zi =Y [E(X;|Gi) — E(X;|Gi-1)] (5.3.1)

j=i
we have the following:
1. (Z;)i>1 1is stationary.
2. For any 1 < p < m process (E (Xi1p|Gi)),>, s stationary.
8. For anyi>1, G;_1 is independent of X;1m.
4. In case of m > 1 let for any 0 < p < q <m + 1 process (X;qE (Xi4p|Gi)); oy be stationary.
Then -

EZ} =0 =EX{+2 ) EX|X;. (5.3.2)
j=2

77



Remark 5.3.2. For brevity’s sake, every filtration G which satisfies conditions 1-4 from Lemma 5.3.1
will be called nice (for X).

Before we proceed with the proof of this lemma let us give examples for which a nice filtration can
be easily found.

Example 5.3.3 (m-block factors). Let X be an (m + 1)-block factor of an i.i.d. process, i.e. X; =
f&, &+, &ipm) for @ € N and a measurable and bounded function f. Clearly, (X;)iez is m-
dependent and stationary. Define a filtration

Fi = 0 (§(—o0yitm))) - (5.3.3)
We show now that Z given by (5.3.1) is an (m + 1)-block factor of €. More precisely,
Zi = F (&50m))

for some measurable function F' which does not depend on 1.
By the stationarity of &, there exist functions Fj for 0 < k < m such that

E(X;|F) = E (£ (€ j+m)l(—o0,itm)) = B (f € jemDIElitm)) = Fi-i(€itm))-

for i < j <i4m. We also have

+m m
Z; = ZE(XH]—}) —E (X;[Fi1) = ZE(XJ'HU:@') —E (Xl Fic1) = F(&r&iv1s - -5 &iem)-
=i =0

It is now a pure routine to check that (F;) is nice.

Example 5.3.4 (I-Markov chains). Let X be a 1-block factor of a stationary m-dependent [-Markov
chain Y, with [ > m, i.e. X; = f(Y;), i € N, for a measurable and bounded function f. Consider the
natural filtration associated with Y,

fi =0 (}/(_OOVZ]) :
We show now that Z given by (5.3.1) is an [-block factor of Y. More precisely,

Zi = F(Yi—i—1,4])

for some measurable function F' which does not depend on i. In particular, Z is an (m+[—1)-dependent
stationary process.

By the I[-Markov property and the stationarity of Y, for 0 < k < m, there exist functions F} such
that

E(X;|7) = E () Yii-14) = Fj-i(Yi-t) (5:3.4)
for i < j <i+m. Thus,
i+m
Zi = E(X;|F) —E(X;|Fic1) = F(Yjimi—1,)-
Jj=t

Once again, it is easy to check that (F;) is nice.

Proof of Lemma 5.3.1. For brevity’s sake, let EF(X) = [E (X|G;)]” for any random variable X, p = 1,2
and ¢ € Z. Notice that by assumption 1, Z; share the same distribution and thus it is enough to prove
(5.3.2) for i = 1. We have

2
m+1 m+1
EZ} =E [ Y Ei(X;) —Eo(X;) | =) E(Ei(X;)—Eo(X;))”
=1 j=1

+2 Y E(Ei(X)) - Eo(X;)) (Bi(Xy) — Eo(Xy)) = I + 211,
1<5<j' <m+1
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Clearly, if we show that I = EX? and I] = Z2Sj§m+1 EX1X; then the proof will be concluded.

Firstly, we consider I. For any i € Z and j € N put v; = EE?(X,;;) and notice that v; is well-
defined (independent of i) due to assumption 2. Moreover, since X; € G; and we have assumption
3, we get that vg = EX? and vy,41 = 0. Hence, using properties of conditional expectation, for any
j >0, we obtain

E (E1(X;) — Eo(X;))? = EE3(X;) + EE3(X;) — 2EE4 (X;)Eo(X;) = EE3(X;) — EE3(X;) = vj_1 — vy,
and thus I = Z;njll Vj_1 — Vj = V) — Umg1 = EXZ.

To see the formula for 11, note that for any 1 < j < 5/ < m + 1 we have
E (Eq1(X;) — Eo(X})) (El(Xj/) - Eo(Xj/)) =EX;E(X;) — EX;Eq(X;) — EX;jEo(X;) + EX;Eq(X;)
=EX;E(X;) - EX;Eo(X;) = EXyE(X;) — EXj 1 E1(Xjg1),
where in the last equality we have used assumption 4 (note that if m = 1 then j = 1, j/ = 2 and

instead of assumption 4 one can use property 3; this is why assumption 4 is redundant in this case).
Therefore

= > [EX;E(X;) - EXjB (Xj41)]
1<j<j’' <m+1
= Y EX;E(X) - Y EXpE(X))
1<j<j' <mA+1 2<j<j' <m+2
= Y EXGE(X) - Y EXpE(X) = Y EXiXj;+0,
2<5'<m+1 2<j<m+1 2<5/<m+1
where in the last line we have used assumption 3 and the fact that X; is G;-measurable. |

Now, we show how to obtain a version of the Bernstein inequality (5.2.4), using process Z defined
in (5.3.1).

Theorem 5.3.5. For i € Z let X; be bounded centered random variables satisfying || X;| . < M < oo.
Suppose that a filtration G = (G;)icz is such that X; € G; and Z = (Z;),cq given by

i+m
Zi = [E(X,]G:) — E(X;|Gi-1)]
j=i

satisfies the assumptions 1-4 from Lemma 5.3.1. If Z is k-dependent for some k € N then
n
([

=1
where ¢y = 2(1 + grzapry) (k + 1), dim = §(1+ grgiapray) (k + D(m +1).

ce(n+1+k)ok + dgmtM

> t> < 2(k+ 1) exp <_ r ) , (5.3.5)

Remark 5.3.6. Note that the right hand-side of (5.3.5) is monotonic with respect to o2,. Thus (for
k ~ m), in terms of the Gaussian parts, (5.3.5) is stronger than (5.2.5) only when o2, < o2.

Proof. Once more, for brevity’s sake, denote E;(X) = E (X|G;) for any random variable X and i € Z.
Firstly, notice that

Y Xi=Y Zi—> [En(Xntj) —Eo(X;)]. (5.3.6)
i=1 i=1 j=1
Indeed,
n n i+m n i+m n—1i+m+1
D Zi= D [E(X) —Bia (X)) =D ) Ei(X;) =Y > Ei(X))
i=1 i=1 j=i i=1 j=i i=0 j=i+1
n—1 n—1 n-+m m—+1 n m
=Y Xi= Y Ei(Ximr) + D Ea(X5) = D Eo (X)) =) Xi+ ) [En (Xatj) — Eo (X;)].
i=1 i=1 j=n j=1 i=1 j=1
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Notice that without loss of generality, ¢t > dj,, M (otherwise the right hand-side of (5.3.5) exceeds

one). Define e >0by (1—€) 1 =1+ m and notice that te > 2Mm > || 320 E (X4 |Fn) —

E (X;]F0) ||oo- Now, using (5.3.6) we get

P ( > x| > t) <P ( > Zi| > (1- e)t) +P [ D E (Xl Fn) — E(X|Fo)| > et
=1 =1 =1
) ’ (5.3.7)
:P< Z; 2(1—e)t>§Z]P’ > Zi| > t(1—€)/(k+1)
i=1 §=0 i=1,...,n, (k+1)|(i—j)

Applying the classical Bernstein inequality (5.2.2) for i.i.d. sequences and the k-dependence of (Z;) we

obtain
]P> (

t2
<2k +1)ew (‘2(1 — )2k + ) (n+k+1)0% + 51— (k+1)(m+ 1>M> .

>ox

=1

(4=2)
> t) <2(k+1)exp | — 3 (
2[n/(k+1)]o3, + 52(m + 1) M~

Combining Theorem 5.3.5 with the observations made in Examples 5.3.3 and 5.3.4, we immediately
get the following two corollaries.

Corollary 5.3.7. Let X = (f(Y;))iez be a factor of a stationary m-dependent I-Markov chain Y, with
> m. Then
]P) <

where ¢, = 2(1 + m)%m +1), dmy = %(1 + m)(m +1)(m+1).

n

>ox

=1

2
> t) <2(m+1+1)exp (— P Copr—y v s dth> , (5.3.8)

Corollary 5.3.8. Let X be an m-block factor of an i.i.d. process. Then (5.3.8) holds with constants
Cm, and dp,; replaced by ¢y, 1 and dp, 1, respectively.

Remark 5.3.9. In both above corollaries the constants ¢ and d depend (at least) on m, whereas in
the “ideal Bernstein inequality” (5.2.4) there is no such dependence. The following natural question
arises: are there any natural examples indicating that the dependence on m is essential? Notice that
due to the union bound used in the proof, our method is not sufficient to get rid of this dependence.

5.3.2 Bernstein inequality for unbounded random variables, m = 1

In this section, we present two versions of Bernstein inequality for one-dependent random variables: for
suprema of sums and randomly stopped sums. They are later used in the proofs of our main theorems
concerning additive functional of Markov chains (see, for example, Theorem 6.2.1). As usual,

02 =EX? +2EX X

stands for the asymptotic variance of one-dependent stationary process X. Recall that

: X
IIXIIwasz{c>0|Eexp e §2}.

stands for the exponential Orlicz norm (for more information, see Chapter D).

For convenience of the reader, let us start with recalling two versions of the Bernstein inequality for
suprema of independent random variables: the bounded case and the case of Orlicz integrable random
variables.
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Theorem 5.3.10 (Classical Bernstein inequality; supremum case). If (&;); is a sequence of i.i.d.
centered random variables such that ||&;||cc < M then for any t > 0,

2
P{ sup >t| <2exp ,
<1<k<n Z& ) ( 2no? + gtHfi’oo)

Proof. Tt is just a special case of the Azuma-Bernstein inequality. See e.g. Theorem A in [36]. Alter-
natively, one can combine a Chernoff-like type of argument along with the Doob maximal inequality
for martingales. |

where 0% = E&2.

Now, we show how Bernstein’s inequality changes if we replace the boundedness condition || X;|| , <
oo by the integrability with respect to the Orlicz norm.

Lemma 5.3.11. Let (§;)i>o be i.i.d. sequence of random variables such that |||, < c for some ¢ >0
and 0 < a < 1. If Uy = &1, > then for A = (21/2¢)—1

n—1
Eexp ( (It + aErUz-r)a)) < exp(8). (5.3.9)
=0

Furthermore, if E§; = 0 then for anyt >0 and n € N

to t2
>t> Sexp(8) exXp <_2(6C)a> +2€Xp ( WW) y
5 5

where M = ¢(3a~2 log n)i and 0% = E&2.

k

P| sup
<1§k§n ;

&i

Proof. The first part of the lemma (5.3.9) is just the content of Lemma 4.1 in [5].
Now, we prove the tail inequality for > ;" | &. Fix p = 1/6, define B; = &ilig, 1<, B; = B, — EB;,
U; = U; — EU; and notice that & = B; + U;. Therefore, the union bound implies that

: (13;5” 2.6 - p>) |

Firstly, we take care of the unbounded part. Using the Markov inequality, o < 1 and (5.3.9),

tapa tCM
| >tp) < ~ 8) = ————+8]. 5.3.10
wo) oo (g o) =en (g e). w0

Now, we turn to the bounded part. Notice that EEZ < IEBZ-2 < 02. Therefore, Theorem 5.3.10
yields (recall that p = 1/6)

. t2(1 —p)? t2
P il >t(1—p) | <2exp|— (4 P) = 2exp 2S5 )
P 2n0? + 5t(1 —p)M Zno? + M

The proof is concluded. |

k

>t] <P sup
1<k<n i—

k

>tp | +P| sup Z
1<k<n i—1

ST B

1

Now we turn to the one-dependent case.

Lemma 5.3.12 (Bernstein inequality for suprema of partial sums). Let (X;
sequence of centered random variables such that || X[, < ¢ for some a € (0,
that there exists a filtration (F;);~, such that for

i>0 be a 1-dependent
| and ¢ > 0. Assume

)
1

Z; = X;+E (X1+1|fz) —E (Xl|fz_1) (5.3.11)

we have the following:
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0. X; is F;-measurable,

1. (Z;)i>1 is stationary,

2. (Zi)i>1 is m-dependent with m =1 or m = 2,
3. (E(Xi|Fi-1));>y 18 stationary,

4. For any i > 1, F;_1 is independent of X;y1.

Then EZ? = 0%, and
1
1Zillpo < c(8/a)=, (5.3.12)

where || Z;||y, stands for the exponential Orlicz norm of Z; (see Appendiz D). Moreover, for any t > 0
and n € N,

P| sup

X

te t2
>t> < K, exp <_u cO“) + L, exp <_v 7 T w t> (5.3.13)

where wy, = . s Vpm = 5(m + D(n+m+ 1), wym = 2(m + 1)(24a3 logn)éc, K, =
2(m + 1) exp(8) and L, = 2(m + 1).

16-8% (m+1)®

Remark 5.3.13. Note that Z; in (5.3.11) are defined in exactly the same manner as Z;’s from Lemma
5.3.5 form = 1.

Proof. Assume for a moment that (5.3.12) holds. We show now how to combine Lemma 5.3.11 and
(5.3.12) to obtain (5.3.13). Firstly, notice that the assumptions of Lemma 5.3.1 are satisfied and thus
EZ? = o2,. Moreover, (5.3.13) is trivial unless t > wy, ,, log (2(m + 1)) (as the right-hand side exceeds
1). Therefore from now on we consider only ¢ satisfying this lower bound. In particular, setting
p = 1/5, we have t > %(Q/Q)éc and t > 4é%(10g n)é Using the union bound and assumption 3, we
get (denoting for brevity E; (-) = E (-|F;))

k k
P sup ZXi >t <P| sup ZZi > t(1—p) —HP’( sup |E; X1 — EoX;| >tp>
1<k<n |5 1<k<n |5 1<i<n
i t
<P( sup Y Z|>t(1—p)|+2P < sup |Ei_1X;| > p) . (5.3.14)
1<k<n | 1<i<n 2

By another application of the union bound together with the stationarity of (E;_1X;), (cf. assumption
3) and Lemma D.0.5, we obtain

tp tp pet® )
2P [ sup |E;—1X;| > = ) <2nP | |[Eg X > = | < 12nexp | — .
(19’211’ Xl 2> N <| ol 2) N p< 2(2c)>

Notice that

pOLtOl patO{ patO( pOlta
12 - =12 - - <12 —
e < 2(2c)a> [" P < 42007 )| TP\ Ta@2ee ) = TP\ T )
where the inequality is a consequence of the estimate ¢ > é%(log n)é It follows that

P Eax) > ) <12 PN g r (5.3.15)
su i— 1 —_ ex —_— = ex —_— ] . ..
(S0, TRy ) = RO Ty ge)e P\ 41000

In order to deal with P(|>°7 | Z;| > t(1 —p)), we split this sum into m + 1 parts and use the union
bound:

>t(1—p)> §i]}” sup Z Z;i| > t1=p)
=0

m+1
LShSn |1 <ickmt1fi-g
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Now, to each summand on the right-hand side of the above inequality we will apply the1 estimate for
the independent case obtained at the beginning of this proof. Setting M = (24a~3logn)ac and taking
into account (5.3.2) from Lemma 5.3.1, we obtain

k m
1 1 t(1—p)
——P | sup Zil >t(1—p) | < P| sup Z;| >
m1 <1<’“<” ; ( )> m1 Jgo Lsksn 1<i<k§+1i—j ml
o (1 —p)2t2
< 8 — +2 —
< exp(8) exp [ -t +2exp (- r (5.3.16)
Rl (R T Ty Bt N (R DI G NI § P 3,77 ) A

Finally using (5.3.14), (5.3.15) and (5.3.16) we get

> t) <12exp <—4(1tg;)a> + (m + 1) exp(8) exp (‘ 16(8(77:(1 1)c)“>

k

P| sup

X

«

t2
+2(m+1)exp <5(m—|—1)(7’L+m+1)0go+2(m+1)tM)

To conclude (5.3.13) it is now enough to note that the second summand on the right-hand side above
dominates the first one.

To finish the proof of the lemma it remains to show the upperbound on Orlicz norm of Z;, i.e.
(5.3.12). Using the triangle inequality (cf. Lemma D.0.1) twice and then Lemma D.0.3, we obtain

1 1 1 2
1 Zillge <257 Xollge + 20 HE Xi1 — BoXillya < 201 X[lge + 20 EoX1 |,
1 24 1 11 1 1 (5.3.17)
< 20 Xiflgo + 27 2/a) [ Xillya < [[Xillpa | 25 + 5(B/a)~ | < e8/a)e.

This concludes the proof of the lemma. |

Now, a similar argument to that given in the bounded case (recall Example 5.3.4) combined with
Lemma 5.3.12 (applied with m = 2) immediately yields the following corollary (we omit numerical
calculations).

Corollary 5.3.14. Let (X;)i>0 be a 1-dependent stationary Markov chain and f be such that Ef (X;) =
0 and || f(Xi)lly, < c for some a € (0,1] with c> 0. Then for anyt >0 andn €N,

—at® —¢$2
P| sup >t §66Xp(+8> + 6exp .
<1§k§" > 16 - (24¢) 15(n + 3)02, + 6(24a—3logn)a ct

Now we turn to the case of random length sums. In the proof of Lemma 5.3.16 below we will need
the following fact.

k

> F(X)

i=1

Lemma 5.3.15. Fiz independent random variables (7v;)o<i<i—1 such that Ey; = 0, o’ = ]E%-2 and
17illy, < v for some v > 0. Let B := v(3a~21og(1))Y*.  Moreover, assume that T is a bounded
stopping time (with respect to some filtration G; D o(v1,71,...,%i—1) such that ~; is independent of
Gi). Then for any a >0 and t > 0,
i >t]<ef LA < L )
> e exp| — exp | — ,
2(24+v2)" e 8ao? + 2v/2ut

T

Z%’—l

=1

where B
= (5 20\ 1T = @l )
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Proof. 1t is just a reformulation of Proposition 4.4. ii) from [5] with e := 1, p := \/\i/i and ¢ :=v2. W

Lemma 5.3.16 (Bernstein inequality for random sums). Let (X;)i>o be a 1-dependent sequence of
centered random variables such that || Xi||, < c for some a € (0,1] and ¢ > 1. Moreover, let N <
n € N be an N-valued bounded random variable. Assume that we can find a filtration F = (F;),~q such
that for Z; = X; + E (X 41| F;) — E(X;|Fi—1) we have the following: -

0. X; is F; measurable,
1. N s a stopping time with respect to F,

2. (Zi)i>1 1is stationary,

e

. For each j € N process (Z;)i>jy3 is independent of Fj,

B

- (E(Xi|Fi-1));> is stationary,

v

. Fi—1 is independent of X;y1 for all i > 1.

Then for any t >0 and a > 0,

- ¢

where u = 1826% "y = 102a, w = 14M max (2, \/|| (IN/3] —a+1), le) and M = c(24a_3logn)§,

N

>_Xi

i=1

Proof. Observe that 0. and 3. imply the 2-dependence of process (Z;);>1. Therefore, filtration F
satisfies all the assumptions of Lemma 5.3.12 and thus (5.3.2) holds. Note also that without loss of
generality we may assume that ¢ > wlog9 (otherwise the right-hand side of (5.3.18) is at least one).
Fix s = (8v/21log9)~!. Using the union bound and setting E; (-) = E (-|.F;), we get

N N
t
P> Xi|>t) <P[[> Z|>tl1-5s) +219>< sup |Ei_1X;] > 5) . (5.3.19)
i—1 i—1 l=isn 2
1 o
Now, using Lemma D.0.5 and the inequalities ts/2 > ¢ (%) « t>wlog9 and nexp <—4((82tz)a) <1, we
obtain
st st (st)
2P Ei—1X;| > = | <2nP | |Eg X1 > = ) <12 — . 3.
(o Bt > 5 ) < 2np (20i) > 5 ) < e (505 ) (5320

Next, we take care of the other term on the right-hand side of (5.3.19). Firstly we split the sum:

'

Now, we will consider the jth summand of the above sum. Let us take r =

N

>z

i=1

2
> (1 — s)> <>P >z > 15(13_8) . (5.3.21)

=0 1<i<N, 3|(i+))

3 .
5vZ108(0) and notice that

there exists function f; : N — N such that for any n € N, L%J < fj(n) < {%1 and

P Y Zi|>t1-9)/3]| =P > Zsig|>t(1-5)/3

1<i<N, 3|i+j 1<i<f; (N
<i<N, 3li+] £ () (5.3.22)
<P > Zsig| >t —r)(1-s)/3 +IP<2 sup | Zy| >tr(1—s)/3>.
1<i<[N/3]+1 ksnt6
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Due to || Z;||, < C(8/Oé)é (cf. (5.3.12)) and Lemma D.0.4 along with ¢ > wlog(9), n > 2 (for n =1
there is nothing to prove), we get

P (2 sup |Zu| > ”’(13_8)> < (n+6)P (\zk\ > ”'(13_‘9))

k<n+6
a(tr(l —s))* a(tr(l —s))“
<2 —_ ) <2 - .
< 2(n +6)exp ( 8(3¢c) = Sexp 16(3c)®
To handle the first summand on the right-hand side of (5.3.22), let us fix j and put v; = Z3i43—j,
Gi = F3i—j, T = [N/3+1] < [n/3] + 1. Using the assumptions on the filtration F and (5.3.2) it is
straightforward to check that the following properties hold:

(5.3.23)

1. ; are independent,

2. Eni =0, En} = 0%, |illy, < e(8/a)7,
3. 7i—1 is G; measurable,

4. ~; is independent of G;,

5. T is a stopping time with respect to the filtration G;.
This is precisely the setting of Lemma 5.3.15 which implies that for any a > 0,

P > Zsig|>t1-1)(1-5)/3
1<i<[N/3]+1 (5.3.24)

(H1L = r)(1 — 5)" (1 =n( - s)?
< exp(8) exp <_ 2(3(2 + V2)¢) > e <_ 72002, 4+ 6v2p(1 —r)(1 - S)f> 7

where

e (T v 0,0, ) o= (2)’

a

Using (5.3.2), Lemma D.0.2 with Y = 22~ and 8 = 2, together with the gamma function estimate
g a

8cx

I'(z) < (%)m_l for # > 2 (see Theorem 1 in [69]), we get

2 2 2
Ugo_EZ12§262<8>aF(2+1>§402<8>QF(2)§4CQ<82>Q,
a ! a \a o a

which implies that oo < %M and, as a consequence,

4
p < S Mb, where b= max (2, \/|| (IN/3] —a+1), ||¢,1) .

Therefore, (5.3.24) reduces to

P > Zsig| >t -r)(1—5)/3

1<i<[N/3]+1

(t1—r)1-s) (t(1=r)(1 = s))*
2(3(2 + v2)¢)° ) e (_720,0—30 + 8vV2Mb(1 —r)(1 — s)t> '

=

Combining the above inequality with (5.3.19)—(5.3.23), we obtain

v < iXi >t> < 1Zexp <— (st)” > + 6exp <_a(tr(1—s))°‘)

pat 4(2¢) 16(3c)>
+ 3exp(8) exp (— (t1 —r)(1 — ) (t(1—r)(1—s))? ) ‘

+9exp | —

2(3(2 + V/2)é)> ) P ( 72a02, + 8v2Mb(1 —r)(1 — s)t

To conclude, it is now enough to recall that r» = 3(8v/21og(9))™!, s = (8v/2log9)~! and do some
elementary calculations. |

< exp(8) exp <—
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Once more we easily get the following corollary for one-factors of one-dependent Markov chains.

Corollary 5.3.17. Let (X;)i>0 be a 1-dependent stationary Markov chain and f be such that Ef(X;) =
0 and [|f(Xi)ly, < c for some o € (0,1] and ¢ > 1. Moreover, let N < n € N be a bounded stopping
time with respect to the natural filtration F; = 0(X{;). Then for any t >0 and a > 0,

te t?
P ( > t) < 4exp(8) exp <_uca> + 9exp <—W> ) (5.3.25)

where u = 18262 " = 1020, w = 14M max (2, \/H (IN/3] —a+1), le) and M = c(24a3 log n)é

« 7

N

Sx

i=1

5.4 Open questions

Assume that X is a stationary, 1-dependent sequence of random variables X; € X.

Is it true that every such X is, in fact, a k-block factor of a stationary Markov chain M, where
M;’s belong to some countable state space M? Clearly, in this problem we must assume that X
is at most countable. Furthermore, if we drop the assumption about the countability of M then the
answer to this question is trivial since we can always take M; = X(_ ;-

Can X always be expressed as a k-factor of a one-dependent stationary Markov chain M (here,
unlike in the previous question, we allow an arbitrary state space M)? Note that in view of Corol-
lary 5.3.7, the positive answer to this question would immediately imply general, optimal up to nu-
merical constants, version of the Bernstein inequality for all one-dependent stationary processes X.
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Chapter 6

Markov Chains on general spaces

In this section we show how the combination of the classical splitting method for Markov chains and
our versions of Bernstein inequalities for one-dependent sequences allows us to obtain an "optimal"
Bernstein-type inequalities for general Markov chains.

6.1 Background

6.1.1 Definitions

In this part X = (X;);cy always stands for a time homogeneous Markov chain (not necessarily sta-
tionary) defined on (2, F,PP), taking values in a countably generated measurable space (X,B) and
equipped with a transition probability P(x, A) : X x B — [0,1]. For any initial distribution p on X,
we write P, (X € -) for the distribution of the chain with X distributed according to the measure p.
More precisely, for all n € N and arbitrary measurable sets A;,

n

P, (X[Om] € ><()Ai> = /Xn+1 ]lw[om,_1]€><?:_01 A, P(@n—1,An) ... P(21,dzo) P(20, dv1) p(dzo).  (6.1.1)
1=

For simplicity’s sake we use P, = Ps_ where ¢, is the Dirac measure at z. In particular, under P,,

Xo = x almost surely. Denoting by E, the expectation taken with respect to P, we easily extend

(6.1.1) to

Eu (f(X[n,oo))LFn) = Ean(X[n,oo)) = [Exnf($n> X[n-i—l,oo))] Tn=X,"

where f is any integrable (product measurable) function and for any i < j, ]:f =o(Xi,...,X;) (we
abbreviate F" = F{'). Sometimes, when the distribution of the integrand does not depend on the
choice of starting distribution u, we express this fact by omitting the index, that is writing P instead
of P, (the same convention is used for E). Since we consider a discrete time Markov processes it is
well-known (Proposition 3.4.6 in [77]) that the strong Markov property holds, that is for all initial
distributions g, all real integrable function f and all stopping times 7 (with respect to the filtration
F),

E,u (f(X[T,oo)>|‘Fg) = EX.,-f(X[T,oo)) (612>
[P, almost surely on the set {7 < oo} (by definition, 7 is a stopping time with respect to the filtration
(FF)p if for all k € N, P (1 < k) € F¥).

Recall that the n-step transition kernel is defined recursively by

/P”l(y, A)P(z,dy), if n > 1.

In other words, P"(z,A) =P, (X, € A), that is, if X starts from x then the probability that X,, € A
is equal to P"(x, A). Due to the Markov property, it is intuitive (see Theorem 3.4.2 in [77]) that for
any 0 < m < n we have Chapman—Kolmogorov formula

P*(z,A) =

P"(z,A) = /P"_m(y,A)Pm(x,dy). (6.1.3)
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Heuristically, in order to transport X from x to A using n steps, alternatively, we can start from =,
at time m visit some y € X' (at this point X forgets about the past due to the Markov property) and
move in the n — m remaining steps to the set A.

6.1.2 Irreducibility

For any set A C X let
TA=inf{n>1]| X, € A}

be the first return time to the set A. Given a (not necessarily probability) measure ¢ on X, we
say that X is -irreducible if for every x

e(A)>0 = P,(ta<o0)>0.

If such a ¢ exists then one can show (Theorem 4.0.1 in [77]) that there is essentially one "mazimal”
irreducibility measure 1 in the following sense.

e For every z € X, ¢(A) > 0iff P, (14 < 00) > 0.
o If ¢(A) = 0 then ¢ ({y | P, (74 < 00) > 0) =0.
e If Aissuch that ¥(X\A) = 0then A = A,UZ where ¢(Z) = 0 and for all x € Ay, P(x,Ay) = 1.

e Moreover, if 9 is a maximal irreducibility measure then all irreducibility measures are absolutely
continuous with respect to ¢ (see Proposition 4.2.2 in [77]). In particular, any two maximal
irreducibility measures are equivalent (they have the same measure zero sets). Thus, if such ¥
exists, it makes sense to define

By ={A|v¢(A4) >0} (6.1.4)
the family of sets of positive -measure.

In the statements like "X is t-irreducible" we always tacitly assume that ¢ is a maximal irre-
ducibility measure.

6.1.3 Recurrence, transience and Harris recurrence

Define

na=>» Ix,ea. (6.1.5)
=1

We say that A is uniformly transient if there exists M < oo such that sup,c4 E;na < M. A set A
is called recurrent if E;ng = oo for all x € A. If X is ¢-irreducible then one can show (Theorem 8.0.1
in [77]) that either every set A € By (recall (6.1.4)) is recurrent (in this case we call X recurrent) or
there is a countable cover of X’ with uniformly transient sets (in this case we say that X is transient).
A set A is called Harris recurrent if

P,(na=00) =1, Vsea. (6.1.6)

A 4)-irreducible chain X is Harris recurrent if every A € B, is Harris recurrent. One can verify that
A is Harris recurrent just by checking if P, (14 < 00) = 1 for every x € A (this is a content of Theorem
9.1.1in [77]). In some sense this is clear due to the strong Markov property of X (cf. (6.1.2)). Unlike
in the case of a countable X it is not true in general that every recurrent chain is Harris recurent
(see the example from the the second paragraph of Section 9.1.2 in [77]) Nonetheless, one can show
(Theorem 9.1.5 in [77]) that if X is recurrent then X = H UT where H is a mazimal Harris set
(the precise definition of such a set is given above Theorem 9.1.5 in [77]) and T is transient.
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6.1.4 Minorization condition

We say that a Markov chain X satisfies @ minorization condition if there exists a set C € B (called
a small set), a probability measure v on X (a small measure), a constant § > 0 and a positive
integer m € N such that

P"(z,B) > ov(B) Veeo VBeB- (6.1.7)

Although at first glance the minorization condition (6.1.7) might look a little technical it plays
a central role in the analysis of general Markov chains. For example, it allows one to formulate the
notion of period of the chain X. Moreover, it serves as a basic tool when one introduces the split chain
of X, which will be essential for us to obtain concentration inequalities for additive functionals of X.

Furthermore, one can show that for ¥-irreducible Markov chains a minorization condition is always
satisfied. More precisely, due to Theorem 5.2.2 in [77], if X is ¢-irreducible and A € B then there
exists m > 1, small measure v and a set C' C A such that C' € By, v(C) > 0 and (6.1.7) holds.

At the end let us note that (6.1.7) is a generalization of the notion of atom. We say that A is an
atom if there is a probability measure v such that

P(z,-) =v, VeeA. (6.1.8)

If additionally A € By (recall (6.1.4)) then A is is called an accessible atom. Unlike in the case of
minorization condition (6.1.7), it turns out that it is not true that accessible atoms always exist (even
for ¢-irreducible Markov chains). However, (6.1.7) can be used to construct a pseudo-atom (see
upcoming Section 6.1.11). The existence of an atom simplifies many proofs and ideas. For example, a
consideration of consecutive return times of X to A leads to the regeneration technique (in order
to get some intuition on this subject, see upcoming Section 6.1.10). Roughly, these return times split
X into independent (random length) blocks for which many well-known techniques from the theory of
independent random variables can be applied.

6.1.5 Periodicity

We follow Section 5.4.3 from [77]. Suppose that X is ¢-irreducible and satisfies the minorization
condition (6.1.7) where ¥(C) > 0. Consider set

{neN, n>1|3s5,50 (6.1.7) is satisfied with m =n, v =0,v, C = C}. (6.1.9)

By (6.1.3) this set is closed under addition and thus it contains natural "period" given by the GCD
p. Moreover, for a sufficiently large £ € N all pk belong to this set. Furthermore, it turns out that the
definition of p does not depend on the choice of a small set C. By Theorem 5.4.4. in [77], one can find
sets Dy, ..., Dp_1 such that for every 0 <¢ <p—1and z € D;

P(x,Dit1 modp) =1, ¢ |X\ |J Di|=0. (6.1.10)
0<i<p—1

The cycle D; is "maximal" in the sense that if Ey, ..., E, satisty the analog of (6.1.10) then necessarily
q|p. If ¢ = p then after relabeling one can assume that D; L E;.

We call p the period of X. If p = 1 then we say that X is aperiodic. Note that if the minorization
condition (6.1.7) is satisfied with m = 1 then by the very definition 1 belongs to the set (6.1.9) and
the chain is aperiodic. In such a case we call X strongly aperiodic.

6.1.6 Invariant measures

Recall that 7 (not necessarily finite) is invariant for X if 7P = 7, that is

() = / P(y, A)dn(y), Vace.
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If X is recurrent then one can show (Theorem 10.0.1 in [77]) that there is a unique invariant measure
7 for X. Moreover, 7 is a maximal irreducibility measure and for any A such that 7(A) > 0,

m(B) = /A E. Y Lx,epdn(z).
=1

Furthermore, if we can find a petit set C' (for the definition of a petit set see the beginning of Sec-
tion 5.5.2 in [77], let us only note that every small set is petit) such that sup,cc E;7c < oo then 7 is
finite (in general 7 is only o-finite).

A recurrent Markov chain X is called positive, if 7(X) < oo and null otherwise. If X is Harris
recurrent and positive then we say that X is positive Harris.

If X is positive then it must be recurrent (Theorem 10.1.1 in [77]). For chains admitting atoms we
have the following positivity criterion (Theorem 10.2.2 in [77]). If X is ¢-irreducible and admits an
accessible atom A then X is positive iff E474 < co. Here, by E4, we mean E, for arbitrary x € A
(recall (6.1.8)). In that case (cf. the Kac’s formula (A.3.2))

1

m(A) = EaTa’

As an immediate corollary we get (Proposition 10.2.3 in [77]) that if X" is countable and X is positive
recurrent irreducible Markov chain on X then the unique invariant probability measure 7 is given by
7y = 1/Ey7, for any = € X.

Furthermore, due to Theorem 10.4.9 in [77], if X is recurrent and  is its unique stationary measure
then 7 equivalent to a maximal irreducibility measure . In other words, if X is recurrent then 7 can
be taken as a maximal irreducibility measure. In particular, if X is recurrent then an application of
Theorem 5.2.1 from [77] in case ¢ = 7 gives the existence of C' C X such that #(C) > 0 and the
conditional version ¢ (7 conditioned on C') satisfies a minorization condition (6.1.7) for some m € N
and 0 > 0.

6.1.7 Different kinds of "ergodicities"

This time we follow |21]| (surroundings of equation (1.6)). In this part we assume tacitly that X is
y-irreducible.
We say that X is:

e ergodic if it is positive Harris recurrent and aperiodic or equivalently, if X is positive and for
all starting points € &, ||P"(z,-) — 7(-)||; — 0.

e ergodic of order 2 if for any A € By (recall (6.1.4)) Ex74 < oo or equivalently if X is ergodic
and Yy [ ||P'(x,-) — 7(-)||;y dm(z) < oo (for this equivalence, see Theorem 4.1 in [21]).

e geometrically ergodic if there are r > 1 such that Y1+ [ || Pi(z,-) — 7r(-)HTV dr(x) < oo
or equivalently that there is r < 1 and a function G : X — R such that G € Li(m) such that
HP%’E, ) - 7r(~)||TV < G(z)r™ for all z € X.

e uniformly (geometrically) ergodic if sup,cy [|[P"(z,:) — 7(:)||p;y — 0. (In fact, since the
sequence a, = ||[P"(x,-) — 7(-)|py is sub-multiplicative and a,, = 0, a,, goes to zero geometrically
fast, that is, there are 0 < ¢ < 1 and K € R, such that a, < K¢" for all n € N.)

Thus,
unif. erg. = geom. erg. = erg. oforder2 = erg.

Remark 6.1.1 (Periodic case). Suppose that X is positive Harris recurrent with period p. Then (see
Theorem 13.3.4 in [77]) for any initial distribution A we have

lim
n—oo

= 0. (6.1.11)

p—1
; S Pz, A () — ()
=0 TV

If X is just positive recurrent then there is a set Z such that 7(Z) = 0 and (6.1.11) holds for any initial
distribution A which satisfies A(Z) = 0.
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6.1.8 Strong law of large numbers (SLLN)

This part is based on Chapter 17 from [77]. Firstly, recall that by Birkhoft’s ergodic theorem if 7 is a
stationary distribution for a Markov chain X then for any function f: X — )Y such that f(X) € Li(P,),

lzf(si )P”‘” 0% fo(X) = Ep, (f|Z) (X)

L1(Pr

where 7 is the invariant o-field of X'. It turns out foo(X) can be expressed as a function of merely X
(under P). In other words,

. 1 - i Pr a.s.
lim — S'X) /= goo(X, 6.1.12
i 23 7(5'K) 222 g (Ko (6.1.12)

for some function goo: X — R. This follows from the fact that f. is an S-invariant function, that is
Sk f o (X) = foo(X) for all £ € N, and the following lemma.

Lemma 6.1.2. Suppose that fs: XN — R is an S-invariant function in Li(P;). Then there ewists
0. X — R such that

Foo(X) = goo(Xi) Yken. (6.1.13)

Proof. Consider a function
hy(z) = Eg foo (X).
We prove now that one may take goo = hy. To this end denote Fk=0 (X[O,k})- Using the fact that

SEF(X) Z f(X) (note that this implies that for m-almost every 2 € X, S¥f(X) Z f(X)) along with
the Markov property, we get

P (X0) = B foo(X) Z Ex, foo (SYX) Z E (foo( S| X011 ) = E (foe(X)| 7).

Therefore, under Py, (hy (Xj), F¥) is an integrable martingale such that

By (X3) 22255 £0(X).

Since, additionally, (hy., (Xy)),cy is stationary (under Pr), for all k, hy, (Xo) = hy (Xp) = foo(X).
Indeed,

P (Ihfo(Xo) = by (Xn)| 2 €) = lim P (|hg (Xi) = by (Xign)| > €)

1—00

< lim P (| (X0) = F(X)] 2 2) + lim P (|hy (Xien) = FX)] = 5 ) = 0.

1—00

Remark 6.1.3. Note that for 7 almost every x,

fo SIX) L8 g ().

Indeed, it is enough to recall that P, = [ P.dr(z) and by (6.1.12),

—p, <,3;n010 LS s =gm<xo>> - [=. (nlggo ijf (5% —gwu)) dn(x).
=1

Remark 6.1.4. At the end let us give a following fact. Suppose that a stationary distribution 7 exists.
Then one can show (Theorem 17.1.7 in [77]) that X is positive Harris iff for any f € Li(m, X') and

initial distribution A,
1 ¢
~> (X H”*—>/fdn.
i=1
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6.1.9 Central limit theorem (CLT)

Assume that X is ergodic and f: X — R is such that E,f = 0, E;f? < oo and the sum of covariances
>, Covy (f(Xo), f(X;)) converges. Then by Theorem 3.1 in [21], for any initial distribution A,

i /XD v o2, (6.1.14)

vn

for some 03, > 0. If we strengthen our assumptions and assume additionally that > to; f(-) P f(:)
converges in Li(7) then we can identify 0%, as

Otro = lim ~Vary (F(X1) + -+ F(Xa)) = Vars (F(X0)) + . Cove (F(X0), F(X0).  (6.1.15)

n—oo N
k=1

It turns out (Theorem 4.1 in [21]) that if X is ergodic then X is ergodic of order 2 iff (6.1.14)
holds for every bounded and 7-centered function f, where o3, is given by (6.1.15). Furthermore, if
f: X — Ris such that E;f =0, E;f? < oo and X is uniformly ergodic then CLT (6.1.14) holds with
(6.1.15) (see Theorem 4.3 in [21]).

6.1.10 Split chain by Athreya-Ney: intuition

The aim of this part is to give an intuitive description of the regeneration technique via regeneration
times by Athreya and Ney (see [6]) which was invented independently by Nummelin (see [20]). To do
so in a user-friendly way, we only sketch an idea omitting many details which we provide in the next
section. To this end suppose that X is strongly aperiodic, that is (6.1.7) holds with m = 1. Moreover,
let for all z € X,

P,(tc <o0)=1 (6.1.16)

(as we mentioned before, (6.1.16) implies that X visits C' infinitely often P, almost surely).
In order to split X into independent parts, firstly, one proves that there is a random time 7 > 1 (a
regeneration time) such that

P, (Xnt1 € A,7=n)=v(ANC)P, (T =n) (6.1.17)
for all n and A. Now, (6.1.17) implies that at time 7 the Markov chain regenerates, that is starts
anew accordingly to small measure v forgetting about what happened in past. In particular, X - is
independent of X[, 1 ). Now, one can repeat this procedure just by finding an analog of 7 for the
process X[ 1 o) and so on and so forth. In short, this technique allows to split the chain into random
length blocks Z; (for ¢ > 0) such that (5;);>1 is stationary and independent.

Assume that a minorization condition (6.1.7) holds. In order to construct 7 as in (6.1.17) we run
X until it hits the small set C' (cf. (6.1.16)). Let’s say, it happens at time k and a place x. Then with
probability § we distribute Xy11 according to v and with probability 1 — § to

1

Q) = —— [P(e,) — ov()].
We repeat this procedure every time X enters C'. Since each time we do so there is an independent
positive probability § of choosing Xyy1 ~ v, it is should be intuitively clear that eventually at some

step we will distribute X1 according to v. The first time it happens serves as the definition of 7.

6.1.11 General splitting of the chain

In this part we will introduce the splitting method in its full strength and in far more detailed way. This
part is based on [77], Section 17.3.1. However, there are some slight differences between our exposition
and the one in [77]. Furthermore, we postpone some proofs concerning Markov-like properties of
processes connected with the split chain to Appendix E.
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Fix C, m, v and § > 0 as in (6.1.7). The minorization condition allows us to redefine the chain
X together with an auxiliary regeneration structure. More precisely we start with a splitting of the
space X into two identical copies on level 0 and 1 namely we consider

X =X x {0,1}.

Now we split X in the following way. We consider a process X defined on T (usually called the split
chain) given by -
X = (Xi)5 = (X,Y) = (X, Yi)izo.

Remark 6.1.5. For simplicity’s sake, we slightly abuse our notation by denoting the first coordinate
of the split chain with the same letter as we used for the initial Markov chain. However, in the end,
it turns out that the first coordinate of the split chain X has the same distribution as the starting
Markov chain X which justifies this convention.

The random variables Y; take values in {0,1} and should be interpreted as indicators of levels
on which X is at the very moment. Now, for any Ay,..., A, € B, k € Nand i € {0,1}, set

P (Ykm =4, Xjpmt1, (b4 1ym] € X Ai | Froens Froms—ms Xem = l‘)

i=1

=P (YO = Z'7X[17m] e XA | Xo= :C) (6.1.18)
i=1

:/ / P (@, Ty 1) P (21, AT ) P2, dm 1) - .. P2, 1),
Aq Am

where
. ﬂmec T’($, xm)a if 1 = 1, 6V(dy)
Y, 1) = ) Y) = ———. 6.1.19
i) {1 o (), Hi=0, YT Prady) (0119
Moreover, for any k,i € N such that km < i < (k+ 1)m we put
Y; = Yign. (6.1.20)

Since the above definition are far from being pleasant, let us give some words of explanation. For
the clarity of this presentation, here and later on, we omit the measurability details.

Firstly, the Radon derivative r(x,y) in (6.1.19) is well defined due to (6.1.7). Moreover, (6.1.7)
implies that r(x,y) < 1.

When it comes to the level process Y, which is the second coordinate of X, (6.1.18) defines only
Y; when ¢ is a multiple of m. Thus, one needs to provide a definition of the remaining Y;’s and this is
done in (6.1.20) just by saying that if X at time km was on level Y}, then it remains on this level up
to time (k + 1)m.

Notice that, by (6.1.18), Yk, = 1 enforces Xy, to fall into the small set C. Moreover, (6.1.18)
implies that in that case

L(Xmktm | Yk =1) = v.

Summing it up, if the split chain X, at time km, is on level Y}, = 1 (thus X, € C) then, at time
km +m, X regenerates and starts anew from v. Thus, if for convenience sake we put 7_1 = —m and
then for ¢ > 0 we define 7; to be the ¢’th time when the second coordinate (level coordinate) hits 1,
namely

7i =min{k > 1,1 | Yy = 1, m|k}, (6.1.21)

we obtain a desired regeneration structure for X (cf. (6.1.17)). In particular, we can split X into
random length blocks which are "nearly independent", that is, one-dependent. More precisely, we
introduce the random block process

[



where we consider each =; as a random variable with values in the disjoint union |_|j20 XJ. Tt turns
out that the random block process = is a one dependent Markov chain such that (Z;);>;
is stationary (see [21], Corollary 2.4). These properties of 2 will be of crucial importance when we
consider concentration inequalities for additive functionals of Markov chains.

Remark 6.1.6. If m = 1 then one can show that the "Athrey-Ney"’s random times introduced in
(6.1.17) are in fact return times of X to the atom C' x {1} (that is 7 = 7oy (1} in (6.1.17)).

Now, we present some ideas which clarify why E is a Markov chain (see (6.1.24) below). Although,
in general the split chain X is not a Markov chain one should think about it as about a Markov-like
process possessing the Markov-like property (6.1.18), which easily generalizes to

E (F (X[k:m—‘rl,oo)v Yv[k’m,oo)) | fl}m?'rlz;nfm) =K (F (X[km—i-l,oo)v Yv[k:m,oo)) | ka) ) (6123>

where F' is a product measurable bounded function. This, in turn, immediately leads to the fact that

(m)

the m-vectorized split chain X'~ = (y[imiim+m71])i€N is a Markov chain. Even more,

E (F (Yf;”;)) | YE{{Q_@ ) (F (Yf,?”‘go)) | Y,@l) ) (F (Yf,i”go)) | Xonters Xomo 15 Ymk_m) .

By the strong Markov property of m-vectorized split chain X(m) it follows that 2 is a Markov chain.
In fact, we can get even more. Namely, for any product measurable function F’

E (F (Bi00)) [E10,-1)) = E (F (Bpi0)) 1Zi-1) = E (F (Epi.o0)) P (Ei-1)) (6.1.24)

where pr,, : | | XJ — X™ is the projection on m-last coordinates,

j>m

pr, (2o, ..., %) = (Tj—ms1, ..., Zj) . (6.1.25)

Although in general (save the case m = 1) Z;’s are not independent one can show that the lengths
of Z; given by |Z;| = 7; — 7,_1 are independent (for i > 0). Moreover, (7; — 7;_1);>1 is stationary.

At the end of this section let us give a remark concerning initial distributions for the split chain.

In order to be able to set the initial distribution for the split chain X for arbitrary probability measure
pon X, we define the split measure p* on X via

(1—0)u(CNA)+u(ANCe), ifi=0,

6.1.26
Su(C N A), if i =1. (6..26)

(A x {i}) = {

Such definition ensures that (Xo, Yy) ~ p* as soon as Xg ~ u. For convenience sake, for any x € X,
we write P+ instead of Ps:x.

6.1.12 Asymptotic variances

During the upcoming proofs we will meet two types of asymptotic variances: 012»17«11 agsociated with the
process f(X) and o2, associated with process f(Z). The first one, defined as

U]QVIT'U = lim lvar (f(X[O,nfl])) = Varﬂ’(f(XO» + QZ COVW(f(Xo), f(Xz))a (6127)

n—oo N =
1z

is exactly the variance of the limiting normal distribution of the sequence ﬁ Yoy f(Xi). The second
one,

02 = lim L Var (f(E1) + -+ F(En) = Ef(E1)? + 2Ef(Z1) f(Za),

n—oo N

is the variance of the limiting normal distribution of the sequence % >y f(E;). Both asymptotic
variances are very closely linked via the formula

02 = o3, EB(r — 10) = o%,,md m(C) 7L (6.1.28)

For the proof of this formula we refer to [77] (see (17.32), page 434).
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6.1.13 Additive functionals

Recall that the our aim is to bound the tail probabilities of additive functionals of X

f (Xjon-1)) = f(Xo) + -+ f(Xn-1). (6.1.29)

It is convenient to extend every real function f: X = R to f: | ]~ X" — R via

flapn) =Y flx),  f(@) =0 (6.1.30)
1=0

Suppose that the majorization condition (6.1.7) hold. The splitting technique allows us to split
the sum from (6.1.29) into a random number of random length blocks. More precisely, (recall the
regeneration times 7; from (6.1.21)) let

N=N,1=inf{i >0|r+m—-1>n—1} (6.1.31)
stand for the number of regenerations up to time n — 1. Note that if N > 1 then split (6.1.29)
into the three parts

N

Z f(E’L)] - f(X[n,TN—&-m—l})' (6132>

=1

f (Xjon-11) = f(E0) +

By properties of the random blocks Z;, one immediately concludes that process (f(Z;));~; is a one-
block factor of a stationary, one-dependent Markov chain. Moreover, for any ¢ > 1 and starting

measure /i (see Theorem 17.3.1 in [77], page 435)
E.f(Z) =E,f(Z0) = 5_17T(C)_1m/fd7r. (6.1.33)

As a direct consequence, for any i > 1, we have E,|Z;| = E,(r; — 7i-1) = 6 'n(C)"'m and if
Eﬂf<X0> =0 then Eﬂf(Ez) =0.

Clearly, by (6.1.32), the main difficulty in obtaining some tail inequality for (6.1.29) resides in
getting such for the middle term Zf\; 1 f(Ei). There are two natural ways to do it. The first one relies
on the combination of the following observation

P(.

k

>t| <P| sup
B

=1

f(E:)

N
> E)
=1

> t) +P (N > K), VKeN (6.1.34)

with Lemma 5.3.12. The second one is just an application of Lemma 5.3.16. In both cases one needs
to provide some exponential bounds on tails of N. This is done in the upcoming Section 6.1.14.

6.1.14 Bounds on the number of regenerations

In this part we provide bounds on the tail of number of regenerations N (recall (6.1.31)). To do so,
we need a notion of the exponential Orlicz norm. Recall that for any random variable X and a > 0
the exponential Orlicz’s (quasi-) norm is defined as

, X
[ Xl = inf {c >0|Bexp| =5 ) < 2}. (6.1.35)
Let us stress that, unlike in the case of & > 1, if @ < 1 then || - ||, is just a quasi-norm. For basic

properties of these quasi-norms we refer to Appendix D.

In what follows we deal with various underlying measures on the state space X. In order to stress
the dependence of the Orlicz norm on the initial distribution p of the chain X we sometimes write
I o instead of [ - [|u,.

Firstly, we need the v version of the Bernstein inequality, which follows easily from the classical
moment version of this inequality (see, e.g., Lemma 2.2.11 in [98]), by observing that for k& > 2,
E¢[* < KNS, = kMY 20/2, where M = [|€]|y,, v = 2[|€]]3,-
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Lemma 6.1.7 (¢; Bernstein’s inequality). If (&;); is a sequence of independent centered random vari-
ables such that sup; |||y, < 7, then

n 2

t
P E >t < - .
<i:1 Si2 ) _exp< 4n7'2—|—27't>

Now, we turn to the bounds on the number of regenerations. Recall that if the distribution of a
random variable does not depend on the starting distribution p then instead of P, we write [P omitting
the subscript.

Lemma 6.1.8. If |11 — 10|y, < d then for any p > 0 and starting distribution p,

P, (N > {(1 +p)n[E(m — 7'0)]_1—‘) < exp (—W + 1) , (6.1.36)

where K, = L, +16/L,, and L, = 1?6 +20. Moreover, the function p — K, is decreasing on Ry (in
particular K, > Ko = %) and if p=2/3 then %Kp < 67.

Proof. For convenience sake, let T; = 7; — ;1 for ¢ > 1. Firstly, notice that without loss of generality
we may assume that np > L,JET;. Indeed, otherwise, using ET7 < d we obtain

pnETy L,E*Ty L,
exp<— —I—l)Zexp(— +1)>exp|l——= )] >1.
K,d? K,d? K,

Thus, from now on we consider n such that np > L,ETy. For A = (1 + p)n[ET1] " > 1 we get

[A1-1
Pu(N > [A]) <P(ray—m0<n) <P | > Tipy —ETy <n— AETy
=0
[A]—-1 [A]-1
=P| Y T —ETa<n—(QA+pn|=P( Y Ty —ELy < —np
i=0 1=0

(6.1.37)

Clearly, || Ti+1 — ETiq1|y, < 2d. Using Lemma 6.1.7, ET} < d and np > L,ET} we get

By <N - [(1 +p)n [ETl]il-D < exp <_4(A + 12)?4212z + 4dnp>

pnETy
P T I+p |, ETy
2 ETy
1602 (52 + EL) + 4ETy
< pnETy ( anT1> < < . pn]ET1>
S exp — =exXp |\ —— S exp — ,
1642 (1# + ﬁ) + 4d2 Kpd? Kpd?

which finishes the proof of (6.1.36). The required properties of K, follow from easy computations. W

The following lemma is a standard consequence of the tail estimates given in Lemma 6.1.8. Its
proof, based on integration by parts, is analogous to that of Lemma 5.4 in [5].

Lemma 6.1.9. Suppose that |11 — 79|y, < d for some d > 0. Then for any p > 0,

4K,d? 4K, d?
< <
o [Em-m)? T m?

H (N — (1 +p)n[E(r — TO)}—l)

)

+

here K, = L, + 16 and L, = 16 +20. M. PEy S K SK
where K, = p+fpan p= 5 +2U. oreover,m_ p = Hoo-
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Proof. Put a = (1 + p)n[E(my —79)] ", ¢ = E(my — 19) and b = Zd?;p > 2K, > 2K. Then

N — o0 N — 00
Eexp<(ba)+>=1+/ etIP’<(ba)+>t>dt:1+/ e'P(N >th+a)dt
0 0

:1+/ etIP’(N>[tb+aﬂ)dt§ell7+/ e'P (N > [th+a — 1])dt.
0 1/b

Note that b > 2K, > 2K, and thus exp(1/b) < exp(ﬁ). To bound the above integral denote

p=p+ = 1c and note that for ¢t > 1/b we have p > p > 0 and K3 < K. Therefore applying
Lemma 6.1. 8 with p = p, we get

Ooet[[b N> |[th+a—-1 dtﬁ/ooexp< pn +t+ >dt§/ooexp< pn —|—t—|—1>dt.
/1/b ( [ D 1/b Kp d2 1/b Kpd?

Now, due to the definition of p,

~ 2 p 2 2
pnc 2c t +pnc—c c” —pnc 1 1
— = =2+ —7F < 24+ — < -2t + —
K,d& Kpd2 e ST TR, ST TR,

which gives

/ etIP’(N>[tb+a—H)dt§/ exp<—2t++t+1>:exp<1+>.
1/b 0 Koo Koo

Thus, using Ko = 104 we conclude that

N — 1 1
E exp <(ba)+> < exp <2K> + exp (1 + K) <A4.

In order to finish the proof it is enough to apply the Jensen inequality. |

6.2 Results

Before we formulate our main result let us introduce and explain the role of the following parameters:

T0/m T0/Mm
a=|>_ |6l . b= ey o e=FEdly,, d=ln-mly, (62.1)
k=0 wﬂzpz* k=0 mew*

where O, = Z?;Bl f(Xkm+i)- Recall our "random block" decomposition

N
f (X[07n_1]) - f(EO) + Zf(El>] - f(X[n7TN+m—l]) . (622)
I \i,_/ 171
T

The parameter a (resp. b) allows us to estimate the I (IIT) term on the right-hand side of (6.2.2),
whereas the parameters ¢ and d are used to control the middle term 7. We note that d quantifies the
geometric ergodicity of X and is finite as soon as X is geometrically ergodic. Moreover, all these parame-
ters can be bounded for example by means of drift conditions widely used in the theory of Markov chains
(see Remark 6.2.2). Finally, let us remind that o%,,, = Var:(f(Xo)) +2Y o0, Cov,(f(Xo), f(X;)) de-
notes the asymptotic variance of normalized partial sums of the process (f(X;));.

We are now ready to formulate the first of our main results (recall the definitions of the small set C,
m and § from the minorization condition (6.1.7)).
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Theorem 6.2.1. Let X be a geometrically ergodic Markov chain and w be its unique stationary proba-
bility measure. Let f: X — R be a measurable function such that E.f = 0 and let o € (0, 1]. Moreover,
assume for simplicity that m|n. Then for all x € X and t > 0,

P, ( > t) < 2exp <_(2§:)a> +2[0m(C)] " exp <— (2122)&)

e 2 nm
6 exp(8 5o | +6 - 1 676m(C)d2 )
+ 6 exp( )exp< ;6(276)01) + eXp( 30na]2\4w+8t]\/[> + exp{ )exp< 6767r(C')d2>

where o3, denotes the asymptotic variance for the process (f(X;)): given by (6.1.27), the parameters
a, b, c,d are defined by (6.2.1) and M = ¢(24a=3log n)é

n—1

Z f(X3)

=0

(6.2.3)

Remark 6.2.2. For the conditions under which a, b, ¢ are finite we refer to [5], where the authors give
bounds on a, b, c under the classical drift conditions. If f is bounded then one easily shows that

max (a,b) < 2D flleo; ¢ < D[ fllco; (6.2.4)

where D = max (d, ||7o[|y,, P, , |70/, p,. ). For computable bounds on D we refer to [3].

z* )

Let us note that in Theorem 6.2.1 the right-hand side of the inequality does not converge to 0 when ¢
tends to infinity (one of the terms depends on n but not on t). Usually in applications ¢ is of order at
most n and the other terms dominate on the right-hand side of the inequality, so this does not pose a
problem. Nevertheless one can obtain another version of Theorem 6.2.1, namely

Theorem 6.2.3. Under the assumptions and notation of Theorem 6.2.1 we have

P, < > t) < 2exp <—(5:)a> +2[0m(C)] " exp (‘ (5iz)a>

+ 4 exp(8) exp (— 5
(0%

n—1

> F(X)

=0

(6.2.5)

(07

t2
) 4 6exp |- ,
(27c)a> P ( 37(1 + pyno2,,. + 18Mds /Kpt>

where K, = L, +16/L, and L, = % + 20.

It is well-known that for geometrically ergodic chains |70y, 2, |70/l¢1, Py 171 — T0lly < 00
(see [8] for constructive estimates). Therefore (6.2.4) and Theorem 6.2.1 lead to

Theorem 6.2.4. Let X be a geometrically ergodic Markov chain and w be its unique stationary,
probability measure. Let f: X — R be a bounded, measurable function such that Exf =0. Fix x € X.
Moreover assume that ||7o|y, 52, [|70llyy 7=, |71 — 7ollgy < D. Then for all t > 0,

n—1 2

t
P, X)) >t| <K - : 6.2.6
(gﬂ i > eXp( 32no%m+433t67r(0>|rfuooD210gn> (6:26)

where o3, is the asymptotic variance of (f(X;)); and K = exp(10) 4+ 26~ 17(C) L.

Remark 6.2.5. Theorem 6.2.4 implies our main Theorem 2.3.5 from Part I with constants K =
(exp(10) + 20~ '7(C)™') and 7 = 43307 (C)D>.

6.2.1 Proofs of the main results

In this section we prove our main results. The structure of proofs of Theorems 6.2.1 and 6.2.3 is similar,
and they contain a common part, which we present in Sections 6.2.2 and 6.2.3. The proof of Theo-
rem 6.2.1 is concluded in Section 6.2.4 whereas that of Theorem 6.2.3 in Section 6.2.5. Theorem 6.2.4
is obtained as a corollary to Theorem 6.2.1 in Section 6.2.6.
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Let us thus pass to the proofs of Theorems 6.2.1 and 6.2.3. Recall that m|n. The argument is

based on the approach of [1] and [5] (see also [21] and [31]) and relies on the decomposition
n—1
" F(X0)| < Hy+ My, + T, (6.2.7)
i=0
where
To/m n/m—1 N TN+m—1

> Oilnso+lIn=o Y, O, M,= , To=

Inso Y, [(Xk)
k=n
N=mf{i>0|n+m—-1>n-—1}.

The proof is divided into three main steps. In the first two (common for both theorems) we get easy
bounds on tails of H,, and T},. The main, third step is devoted to obtaining two different estimates on
the tail of M,,. To this end we use Lemmas 5.3.12, 6.1.8 (for the proof of Theorem 6.2.1) and Lemmas
5.3.16, 6.1.9 (for Theorem 6.2.3).

6.2.2 Estimate on H,
Using {N = 0} C {790 > n — m}, the definition of a (see (6.2.1)) and Lemma D.0.4 we get

T0/M n/m—1 To/Mm
Po(Hy, > t) < Ppe | Iyso Z 10| + Ty—o Z 0] >t | <P Z |0;| >t
=0 =0 i=0 (6.2.8)

tO{
< 2exp <—a> .
a

6.2.3 Estimate on T,

By repeating verbatim the easy argument presented in the proof of Theorem 5.1 in [5], we obtain
_1 #o
P(|Tn| > t) <2[0n(C)] " exp <_b0‘> . (6.2.9)

We skip the details.

6.2.4 Proof of Theorem 6.2.1

Recall that M = ¢(24a~3log n)é and note that without loss of generality we can assume that ¢ >
8M log 6. Otherwise (6.2.3) is trivial as the right hand side is greater than or equal to 1. Fix p = 2/3.
We have (A := [(p+ Dn(E(r1 — 70))'])

P(M, >t)=P(M, >t, N<A) +P (M, >t,N > A)
su Zi)
o (1<k~EA Zf

To control the first summand on the right-hand side of the above inequality we apply Corol-
lary 5.3.14, X; := Z;, ¢ := ¢ and n := A obtaining
k
> t)

>t| =P sup Z
1<k<A |i
2

15(24(:)a> oo <_ 15 ([(p+ Dn(E(r1 — 10)) '] 4 3) 02 + 6tM>

(6.2.10)

2) P(N > A).

k

P:=P| sup

< 6exp(8) exp (—

f(Ei) F(Zit1)

«
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o t2
< —— — . 2.11
= oo ( %.?(24c>a> #60 (55 g~ gz samr) - 02
Recall that by (6.1.28), 02 = o3, E(11 — 70). We will now obtain a comparison between o2 and

tM, which will allow us to reduce the above estimate to one in which the subgaussian coefficient is
expressed only in terms of 02, . Thanks to Lemma D.0.2 applied to Y := (f(Z1)/c)® and 8 := 2/a,
we have

o2 < 3Ef(51)% < 3¢*T(2/a + 1) < 3c2(2/a)a !

where the last inequality is a consequence of equation 4 in [09]. Moreover, recalling the definition of
M and using the assumption ¢ > 8log(6)M, we obtain

tM > 8log(6)M? = 8log(6)c?(24a 3 log(n))a > 16 - 8log(6)c?(2/a)at! > 7602,
The last inequality in combination with (6.2.11) yields

a

t t*
P < 6exp(8 “ oo | t6 -
< 6.exp(8) exp ( f(z4c)a> oo < 15(p + )no3y,, + 7tM>

te t2
< Gexp(8 | +6exp (- .
< Gexp( )eXp< {j(24e)a> * eXp( %5102, +7tM>

Thus, in order to get a bound on P(M,, > t) it suffices to estimate the second term on the right-hand
side of (6.2.10). To this end we use Lemma 6.1.8 with p = 2/3 and d = d obtaining

(6.2.12)

PV > [0+ pin(E(n —m) 1) < exp(t)exp (-,

In combination with (6.2.10) and (6.2.12) this gives

1o 2 nE(m — 1)
P (M, > t) < 6exp(8) exp <_1ﬁ(240)a> +6exp <_ %nol, + 7tM> o <_67d2 1)

Combining the above inequality with (6.2.8) and (6.2.9), we get

S 1-/5/6 1-/5/6
Px<;f(X¢) >t> gP(an 2t> +P (M, = /5/6t) +P<Tn22t)

(67

< 2exp (— (2;)&) > +2[5m(C <

«

¢
6 exp(8 6
G exp(8) exp < 15 (97¢)o ) +ohexp < 30naMm + 8tM>

In order to finish the proof of Theorem 6.2.1 it is enough to recall that E(r; — 79) = 67 (C) " 'm.

) ety (1)

6.2.5 Proof of Theorem 6.2.3

Recall that M = c¢(24a3log n)é and let p > 0 be a parameter which will be fixed later on. We are
going to apply Corollary 5.3.17, X; := E;j41, c :=¢, F; := 0{E; | 0 < j < i+ 1}. Clearly, N is a
stopping time with respect to F. Let a = (1 +p)5 [E(m1 — 70)] . By Lemma, 6.1.9 we get

) 2
(/31 = a+ 1), ], < 5 |V = A+ P =) ), ]+ o
4, 2 IAY
S 3By s S <3 5o>d
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where the last inequality follows from (recall the definition of K, from Lemma 6.1.8)
7 7 7 104 2
> - . >

— K, > — Ko = — .
50 P =50 50 5 T log2

Therefore max <2, \/|| (IN/3] —a+1), H¢1) < /4/3+47/50,/K, - d and we get that for arbitrary

p >0,
(07

t2
P >t | <4dexp(8)e ————— | +9e - )
( ) < 4exp(8) exp ( f(26c)a> P ( 34(1 + p)o,,, + 17Mdt\/fp>

Using the above inequality together with (6.2.8), (6.2.9) we obtain

t 26t t
< > — > — >
([ 00 =) <2 (2 £) wr (32 ) wp (2 1)
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< 2exp ((5;[)&) +2[07(C)] L exp < (54b)a) + 4 exp(8) exp (W)

N

> fE)

=1

n—1

> F(X)

=0

t2
+9exp | —
P < 37(1 + p)od, . + 18Madt, /Kp>

which concludes the proof of Theorem 6.2.3.

6.2.6 Proof of Theorem 6.2.4.

Let us denote || f||,, by M and notice that for ¢ > nM the left-hand side of (6.2.6) vanishes, so we
may assume that ¢ < nM. Using (6.2.4), one can easily see that if m|n then Theorem 6.2.1 applied

with a = 1 implies that
P, >t] < (2 +2 [5%(0)]_1> exp | — ! + 6 exp(8) exp __t
- 46DM 432DM
+6e +exp(l)e nm
X — X X — = <=5 | -
P\ 30n02, , + 192tDM PRSP Terar(C)D?

2
The assumption t < nM yields

n—1

> (X

=0

(6.2.13)

oxp MM e (o
P\ "675n(0)D2 ) = P\ “6r0n(C)MD2 )

which plugged into (6.2.13) gives, after some elementary calculations, that (recall K = exp(10) +

2[6m(C)]7)
P, ( > t) < Kexp < r > , (6.2.14)

30no?%,,. +432tD2Mém(C)logn
proving the theorem in the special case m|n.

Now we consider the case m fn. Define [n],, to be the smallest integer greater or equal to n, which
is divisible by m. Notice that without loss of generality we can assume that ¢ > 4330D?Mén(C')
(otherwise the assertion of the theorem is trivial as the right-hand side of (6.2.6) exceeds one). Since
D%57(C) > m (recall E(1; —70) = §~17(C)~1m), this implies that ¢ > 4330Mm. Moreover, ast < nM,
we also obtain that n > 4330m.

Thus, for p = 1/4330 we have ‘Z@f FX0)

n—1

> F(X)

1=0

< Mm < pt, and as a consequence

n—1 [n]m—1
m(zﬂxa >t> <p (| 3 sxa| > a-p). (6.215)
i=0 =0
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Now using (6.2.14) and the inequality n > 4330m, we get

px<

n—1

> (X

1=0

t2
>t| <K -
) B eXp< 31[n)mo3,,, +433tD2Mém(C) logn>

2
<K -
=0 e < 31(n+ m)o3,, + 433tD2Mr(C) logn>

2
<K - .
=8P ( 32no3, . + 433tD2Mém(C) logn>

This concludes the proof of Theorem 6.2.4.
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Appendix A

Probability view on ergodic theorems

The aim of this chapter is to extend the mixed ergodic-probabilistic setting introduced in Section 1.3
and to present all basic ergodic theorems expressed in the language of stochastic processes. In Sec-
tion A.2, we include a concise dictionary of such facts. Even though these results are nowadays a
folklore knowledge (especially for researchers involved in ergodic theory), we discuss them in detail
and include proofs of most of them in Section A.3. We believe that our unusual and definitely less
frequent way of presentation of ergodic facts via stochastic processes nicely corresponds to the content
of this thesis and deserves to be included.

In this part, for simplicity’s sake, we assume that all processes are bilateral, that is T' = Z. Recall
that in this case the left shift .S is invertible.

A.1 Notation and definitions

Let us fix a stochastic process X = (X;),.;, and some measurable A C X7 with P(X € A) > 0. Firstly,
we slightly extend the definition of the return process given in (2.2.4) to

inf{kzo\SkXEA}, i=0,
R=R®A = (REA))@-GZ’ Y = dinf{k = R | shX e A}, iz, (A11)
sup{k<R§j§f | SkXEA}, i< -1,
where we use the following conventions: inf @ = oo and sup @ = —oo. Thus, for example, if Ry = oo

for some k € Z then R; = oo for all [ > k.
Note that for any k € Z, the random time Rj determines the randomly shifted processes
(defined on {—oco < Ry < o0}),

X0 = (xAD) L xW-x
1€

z. RN (A.1.2)

(A)

Furthermore, with every return process R we can associate the corresponding inter-arrival

process,
A A A A
T-T® - (1} >)k€Z, T®) = R _ pA) (A.1.3)

Here we use the following convention. As soon as R,(CA) < 00 or R,&é)l > —oo then T,E,A) is well-defined.

Otherwise, we put TIEA) = 00.

When the set A (and the reference process X) are clear from the context, we abbreviate, R = R®A),
X (k) = XAk = A
Let us now pass to the ergodic setting and explain how the counterpart of (A.1.1) in dynamical
systems looks like. To this end, given X and A, we construct the corresponding induced dynamical
system
Qa = (X7, 5a, B, ua), (A.1.4)
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where pa stand for the conditioned version of u, Sa for the induced shift
Sa:{na < oo} — X% Sax = S" M (x),
and the first return time function na: A — NU{oo} is given by

na(x)=inf{n >1]S"x € A}. (A.15)

One can show that na '2 %0 (this is the content of the Poincaré recurrence theorem, see Theorem
2.11 in [27]) and Sp = p implies Sapa = pa (cf. Lemma 2.43 in [27]). Therefore, indeed, (A.1.4)
constitutes a dynamical system.

How exactly this ergodic setting (A.1.4) is connected with (A.1.2)? Firstly, note that Sa acts
naturally on processes via

SaX = (Xitrs), 7ta=inf{n>1]8"X € A}. (A.1.6)

Clearly, if X ~ p then pa corresponds to the distribution of X under Pxca. Moreover, by the Poincaré

recurrence theorem, 7p ' oo, and thus, under Pxca, 7TA = RgA) < 0. In particular, SAX = X1

is well defined on {X € A}. Furthermore, Sapua = pa is equivalent to SAX ~ X under Pxea.
Summing it up, under Pxcy, for any k € Z, process X(A¥) is well defined and

X ~pa,  Ta=R®, SaX=XAD  RM oo X~ XA,

Remark A.1.1. For the sake of convenience, we reserve symbol 7o for the first return time to A only
for the process denoted by letter X. Furthermore, SAX is well defined only on the set {7a < oo}.

Moreover, there is a slight difference between 7o and R(()A) (recall (A.1.1)). The first one is a return time

whereas the latter is a hitting time. More precisely, 7o coincides with Ry = R[()A) on the set {Ry > 0}

and with RgA) on {Ryp = 0}. In order to better grasp the action of Sa on processes, note that for
example for any k € Z, X(Ak+D) = 6, X(AK) (on the set where both processes are well-defined).

Remark A.1.2 (Inter-arrival process as a factor). Note that inter-arrival process T = T(4) can
be regarded as a factor of X. Indeed, clearly there is a natural function 7: X% — NZ such that

P
T 2% 7(X). Moreover, by the very definition of m,

moSA(X) = 57(X) = S5T. (A.1.7)

A.2 Summary of basic facts from the ergodic theory.
As usual, let X ~ p, and denote by Z,, or Zx the o-field of p invariant sets, that is
T, =Tx = {ACXZ | SAéA}. (A.2.1)

Recall that 4 is called ergodic if 7, is trivial, in the sense of measure algebras, that is A € 7, implies
p(A)(1 — u(A)) = 0. We say that X is S-ergodic or Sa-ergodic if so is the corresponding dynamical
system Q = (X1, S, B, ) or Qa from (A.1.4) respectively.

Remark A.2.1. It will turn out in a moment that X is S-ergodic (under P) iff X is Sa-ergodic (under
Pxea).

Let us give some very simple observation which is tacitly used throughout this chapter.

Remark A.2.2 (Push forward of a conditional mean value). Suppose that X: Q — X is a random
variable with X ~ p. Let £ be a o-field on X and f: & — Y. Then

E (f(X)|X7'E) =By (fI€) (X).
Indeed, if F € £ then

EE, (f|€) (X)]lXeE:/IEH(f\S)]lEd]P’X:/f]lEdPX:Ef(X)IXEE:E]E (f(X)\X_lé’) IxeE.
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Now we list some basic ergodic facts translated into the language of stationary random processes.
There are discussed in details (including most proofs) in Section A.3.

Recurrence

1. Poincaré recurrence lemma (see Lemma A.3.2). If X is stationary then for any A such that
P(XeA)>0,
Pxea (S"X € A i.0.) =1
In particular all random variables R\ and T\ are Pxca a.s. finite (for k € Z) and all processes X (A:%)
are well-defined on whole set {X € A}.

2. Kac’s lemma (see Lemma A.3.3). Let X ~ p be a stationary process and A be such that P (X € A) >
0. Assume that a set B € 7, satisfies P (X € B) > 0 and Py g (7a < o0) = 1. Then X is stationary
under Pxep and for any f such that f, € Ly (Pxen) or f— € Ly (Pxen), we have

TA—1

Exenf(X) =ExeBlxea Z f(S°X

=0

In particular, we recover the classical version of Kac’s lemma, that is

ExcanB7a = 1/Pxcp (X € A).

Furthermore, Px g (74 = k) = mpxeAmB (ta > k) and

1 1
7PX€B (X S A) EXEAQBTX + =

1+Pxep (X € A)Exga, xeB7A = Exep7a = 5 5

Induced process

1. Induced process, SX ~ X implies SAX ~ X under Pxca (see Lemma A.3.5 and Corol-
lary A.3.6). Suppose that X is stationary. Then for any k € Z, X(A*) ~ X under Pxca. In
particular, under Pxca, the inter-arrival process T(4) is stationary (recall (A.1.3) and (A.1.7)).

The next fact reverses this observation.
2. Induced process, SaX ~ X implies SX ~ X (see Lemma A.3.7). Suppose that X is a canonical

process. Let us denote SpX by X&), Suppose that under Q we have X ~ XA) and Egna < oo, where
na = inf{n > 1| S"X®A) ¢ A}. Let

na—1

Eq Y S'dxa- (A.2.2)

=0

P=

EQ’?A

Then X is stationary with respect to P. Note that the construction given by (A.2.2) can be treated as
the inverse to P — Pxca because if Q = Pxeca then (A.2.2) retrieves P. For the details we refer to
Remark A.3.9.

3. Ergodicity of the randomly shifted process (see [27], Lemma 2.43.) If X is stationary and ergodic
then X is Sa-stationary and Sa-ergodic under Pxea (and so is the inter-arrival process T = TW due

0 (A.1.7)).
Ergodic theorems

1. Birkhoff’s ergodic theorem (see Theorem 2.30 in [27]). Suppose that X is stationary. Then for
any f such that fi(X) € Ly (P) or f_(X) € Ly (P) we have

1 i a.s. —
ﬁ;f(é’ )“;—(P)HE( (X)|X7'Z,).

Furthermore, for any A such that P (X € A) > 0 (recall that in such case X ~ SpoX under Pxca) and
f such that f(X) € Ly (Pxea) or f—(X) € Ly (Pxea) we have

—Zf(x(A”) XML Fvea (f(X)[XT1,). (A23)

Ly (Pxea)
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Since T is stationary (see Corollary A.3.6), it follows that for any f such that f.(T) € L; (Pxeca) or
f-(T) € L1 (Pxea) we have

n—1

1 ; Xe a.s. _
~>_f(s'T) —>i (PA 7 Exea (£ (T)|T 'Zr). (A.2.4)
i=0 1Exe

2. Maker’s ergodic theorem (see [71]). Suppose that X is stationary. Then for any sequence (f;) such
that f;(X) 22 f(X) and sup; | f;(X)| € L1 (P), we have

. 1 n—1 . . 1 n—1 . B
Jim ; fi (§'X) = lim ~ ;0 faei (S'X) =E (f (X)|X7'Z,), (A.2.5)

where the limit exists almost surely and in L;(P). Moreover, the obvious modifications of (A.2.3) and
(A.2.4) (where f is replaced by the sequence of f;’s) hold.

A.3 Proofs

In this part, unless stated otherwise, X = (X;),, is a stationary bilateral process with X; € X', A is such
that P (X € A) > 0 and p stands for the distribution of X under P. For any events A; € F where i € N C Z
and |N| = oo, the abbreviation "{4;, N-i.o.}" denotes the event (;cy Uy>; ren Ak that is the event in which
infinitely many A;’s, for ¢ € N, occurred simultaneously.

At the beginning, let us give a simple remark which will be used in the upcoming proofs.

Remark A.3.1. We have S™* {X € A,...,9"X € A} = {S*X € Ap,...,S""FX € A, } and {S*X € A} =
{X € S7FA} for any k € Z and sets A, A;. In particular, if SB £ B then for any k € Z, {SkX € B} =
{X € B}.

Lemma A.3.2 (Poincaré Recurrence lemma). We have
Pxea (S X €A, N—io)=1 (A.3.1)
Proof. Since the events, B; = {S'X € A, 5" X ¢ A,S™X ¢ A, ...} = 57" By are pairwise disjoint, thus, by

the stationarity of X, we must have P (B;) = 0. In particular P (By) = 0 implies

P(B§) =Pxea | | JSXeA]| =1.

i>1
It remains to use Py (ﬂpo Bf) = 1. m

Lemma A.3.3 (Kac’s lemma). Assume that B is such that P (X € B) > 0, Px g (7a < o0) =1 and B € Ix,
where Ix denotes the invariant o-field (recall (A.2.1)). Then X under Pxcp is stationary and for any f such
that f+ € L1 (PxeB) or f— € Ly (Pxe) we have

TA—1
EXer(X) = IEXeB Ixea Z f(SiX)- (A-3-2)
i=0

Proof. We have
Exef(X) = Exef(X)Ixeca + Exepf(X)Ixcac.

By the stationarity and the shift-invariance of B, we get

Exef(X)Ilxeac = ExeBf(SX)lsxecac = ExeBf(SX)lsxecacxea +ExeBf(SX)lsxecac,xcac
=Exef(SX)1,a>1,xea + Exef(SX)Lgxcac xcac.

Similarly,

Exenf(SX)lsxeac,xeae = Exenf(S°X) L >2,xea + Exenf(S°X)1x sx s2xcAc-
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Therefore, inductively, we get, that for any n € N,

n
Exenf(X) =) Exenf(S"X)lraixea + Exenf(S"X)1x 5%, snXecAc (A.3.3)
1=0

Firstly, we show our claim for f > 0 and || f||,, < co. Note that

n (e’ o TA—1
nILH;OZEXGBf(SZX)]]-TA>i,X€A =3 Y Exef(SX)Lra—jxea =Exen Y f(S'X)Lxea
i=0 =0 j=i+1 i=0

and
ExeBf(S"X)1x 5X,....snXecAc < [ flloo Pxen (X, 59X, ..., 5"X € A°) = || f[l o Pxep (Ta >n) — 0.

Now the case of f > 0 follows from considering f An and the monotone convergence theorem, whereas the
general one, from the decomposition f = fi — f_. |

Remark A.3.4. This version of Kac lemma is slightly less known, though, the idea of the proof is exactly the
same as in the classical case where f = 1 is a constant function and B is the whole space. Moreover, it can be
treated as a translator between systems Q and Qa. Here we list some useful consequences of this version of
Kac’s lemma.
e For f =1, (A.3.2) reduces to
EXEAHBTA = I/PXEB (X S A) . (A34)

e Recall (A.1.5) and that by the very definition 7o = na (X). We have

1 1
1+ ]P)XEB (X € A) EXQA, XcBTA = EXEBTA = i]P)XEB (X S A) ]EXEAQBT% =+ 5 (A35)

In particular,
74 € Li(PxeB) © 74 € La(PxeanB)-

Indeed, the left hand side equality of (A.3.5) follows from the splitting of the integral according to sets
{X € A} and {X € A} and use of (A.3.4). The other equality is a consequence of an application of
(A.3.2) for f =na >0, namely,

TA—1
A.3.2 . TA(TA +1
Exenma = P (lxeca)Exen Z (ta —1) =Pxcg (X €A) EXEAOB%-
i=0
It remains to use (A.3.4).

Similarly, one can obtain that for any j > 2,
Exen [Rj — Rj-1] <Pxcp (X € A)Exen7X = 2Exen7a — 1.

Indeed, using (A.3.2), Schwarz’s inequality, the stationarity of sequence R; — R;_1 (under Pxca) and
(A.3.5) we get

TA—1

Exen [R; — Rj-1] "=” Exeplxea ) [Rj — Rj-1] = Pxep (X € A)Excarnma(R; — R;-1)
i=0

<Pxcp(X€A) \/EXGAmBTi\/EXeAmB(Rj —Rj_1)?

= Pxep (X € A)Excanp7a = 2Excp7a — 1.

e We can easily identify the distribution of 74 under Pxcp. Namely,

1

E PxcanB (ta > k).
XcANBTA

Pxep (Ta =k) =
To see this, for any fixed k£ € N consider f(x) = 1,,, (x)— and then use (A.3.2). Indeed, if 0 <i <74 —1
and TA > k then f(SWX) = ]lnA(SiX):k = ]lTA:i-‘rk and

TA—1

Pxep (Ta = k) = Pxep (X € A)ExeBnalrazk Z Lon=ith = Pxep (X € A)Pxcanp (Ta 2 k).
i=0
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Lemma A.3.5. Let Ay C A. Then for anyn € N,
Pxea (X € Ap,...,S"X € A,) =Pxca (S™X € Ap,...,5™ "X € A,). (A.3.6)
In other words, SAX ~ X under Pxca.

Proof. We do a similar trick as in the Kac lemma. Since X is stationary
P(X €Ag,....,8"X€EA,)=P(ra=1,X€A S'XeA,,...,s""'XeA,)
+P(X¢A S'XeA,....,8"'XeA,).

Now, we repeat this argument to get inductively that

N
P(X€Ag...,S"XeA,)=) P(ra=kXecA SXecA,... S""XecA,)
k=1
+P(X¢A,... ,SVIX¢A SXeA,...,s" X eA,).

Note that, if N — oo, then the first term converges to P(X € A,S™X € Ay,...,S™1t"X € A,,). Therefore,
it remains to show that the second term vanishes as N — oo. However, this immediately follows from the
observation that sets

Ay ={X¢A,. .. SV XA S"X€eA,,...,s""XeA,} (A.3.7)

are pairwise disjoint and ZNeNIP’ (Ay) <1
[ ]

Since the inter-arrival process T(4) is a function of X (say T = f(X)) and ST = f(SaX) (in other
words T(A) is a factor of X) we immediately get the following.

Corollary A.3.6 (Stationarity of inter-arrival times). Under Pa the inter-arrival process T is stationary.

We have shown that if X is stationary then under Pxca, X ~ SaX. Now we reverse this observation.

(A)

Lemma A.3.7. Suppose that X is a canonical process. Let us denote SAX by X Suppose that under Q,

X ~ X®) with Egna < oo, where na = inf{n > 1] S"X®) € A}. Let

na—1

Eq Y S'éxa (A.3.8)

=0

P=
EQWA

Then X is stationary with respect to P.

Remark A.3.8. If X is not canonical then (A.3.8) can be rephrased as

na—1

EQ Z ]15qu eF (A39)

P(XeF):EQnA
=0

and Lemma A.3.7 asserts that if X has a distribution given by (A.3.9) then X is stationary.
Proof. We have

P—SP= ]Ean Eq [0xa) — S™0xm)] = E@lnA |:£Q (X(A)) — Lo (S”AX(A))} .

It remains to notice that the assumption X ~ X®) implies X&) & §naxX(A), [ ]

Remark A.3.9. The changes of underlying measures proposed by Lemmas A.3.5 and A.3.7 may be treated as
a reverse to each other. More precisely, if X is stationary under P then SaX is stationary under Q = Px¢cAa.
Note that in this case Lemma A.3.7 transforms such Q back to P. Indeed, this is a consequence of the Kac’s
lemma (see (A.3.2)). Conversely, if SaoX is stationary under Q and P is as in Lemma A.3.7 then Pxca = Q.
This follows from Q (X(A) € A) =1 and

na—1
E 1 (S'XA) = —Q(X* € ANF
E@nA ° ; aoe { )= ]E@UAQ ( )= Eqna

P(XeANF)= ——Q(X*eF).

The following lemma is standard and thus we omit its proof (which can be found for example in [27], Lemma

2.43).

Lemma A.3.10. If X is stationary and ergodic under P then X is Sa -stationary and Sa-ergodic under Pxca .
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Appendix B

Tail o-fields

Our studies concerning tail o-algebras are motivated by the fact they naturally appear in entropy problems.
For example, for any zero entropy process the one-sided tail o-algebra explains the whole process (recall the
end of Section 3.1.2). Moreover, as we have already seen in Theorem 3.2.12, the double sided tail o-fields is a
crucial part of criterion for the problem of retrieving a lost signal.

Fix some stationary process X = (X;);., such that X; € X', with |X| < co. Recall that the tail o-fields are
defined as

%ast(x) = ﬂ g (X(—oo,—n}) ) 7}uture(x) = ﬂ g (X[n,oo)) ) 7:louble(x) = ﬂ a (X(—oo,—n]aX[n,oo)) .

n>0 n>0 n>0

When the whole process X is explained by Tryiure OF Tpast (Taoubie respectively) then we say that X is deter-
ministic (bilaterally-deterministic respectively). In other words, X is deterministic iff H (X) = 0.

B.1 Pinsker’s algebra

Let T be an ergodic endomorphism of a standard probability Borel space (X, B, ). If T is (is not) an automor-
phism, we will speak of invertible (non-invertible) case.

Remark B.1.1. In what follows we will extensively use some properties of Shannon’s entropy with respect to
a measurable (at most countable) partition 4 of X,

H(A) = 3 —u(A) logy (A) (B.1.1)
AcA
and Kolmogorov-Sinai entropy
H (T, A) = lim nH (A5, (B.1.2)
where for any ¢ < j, Ag = i:i T—*A. Since these objects are very closely related to those of Shannon’s

entropy of a random variable (see Section 3.1.1) and entropy rate of a process (see Section 3.1.2), respectively,
we take for granted that the reader is familiar with these notions. If not, as an introduction to this subject, we
recommend the second part of Glasner’s book (see [15]).

Recall that with any set A we can associate the binary partition
Pa={A A°}.
Morever, the Pinsker o-algebra is given by
I(T)=T"={AeB|H(T,Ps) =0}.
Furthermore, the tail o-fields (associated to some partition A) are defined as

past T A m A 7}uture T A ﬂ -A

n>0 n>0

where for any i < j, A = TFA.
Let us list some basic propertles of II.
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e II is T-invariant, countably p-generated o-algebra (see Proposition B.1.3).
e II(T*) = II(T) for any k > 1. If T is invertible then one can take k € Z\{0} (see Proposition B.1.4).

e If Ais a countable partition such that H (A) < oo and T is invertible then A € IT iff H (T, A) = 0 (see
Proposition B.1.6).

e If T is invertible then II(T) = \/Aeyfm Tpast(A, T), where & r;,, stands for the family of finite partitions
(see Proposition B.1.7).

e If T is invertible and A is a countable generating partition for 7" then in the sense of measure algebras
Tpast (A, T) = Truture (A, T) = II(T) (B.1.3)
(see Proposition B.1.8).
e For any ergodic systems (X, ) and (Y, v) we have
(X xY,pov)=1(X,u)  II(Y, v) (B.1.4)
(unlike for the other facts, we do not provide the proof of this one and refer to Theorem 18.13 in [15]).

Remark B.1.2. Let us show how II can be used to analyse stationary random processes. An application of
(B.1.3) to stationary countably-valued process X and generating partition P = {[z] | z € X} (for any =z € X,
[x] = {x € & | xg = =} stands for the corresponding cylinder set) immediately yields a non-trivial result:

Tpast(X) = Truture(X) (B.1.5)
as soon as H (X() < oco. Furthermore, by (B.1.4), (B.1.5),
Toast (X, Y)) = Tpast (X) & Tpast(Y)
as soon as X and Y are stationary countably valued processes such that H (Xy) + H (Yy) < co and X II'Y.
Proposition B.1.3. The family 11 = II(T) is a T-invariant u-countably generated o-algebra.

Proof. The T-invariance follows from T~ 'P4 = Pp-1, and

H (T Pri) = i H ((Proay)y ™) = lim TH((Pa))) = H(T.Pa),

n—oo M n—o0 1

where we have used

H ((Pa)y) —H (Pa) <H((Pa)y) < H((Pa)y) -

In order to see that II is p-countably generated, recall that H (7, A) —H (T, B) < H (A | B). It follows that
H (T, ) is continuous (with respect to u-symetric difference metric) on the space of 2-partitions. This space can
be treated as a closed subspace of Li(u). Thus, the result follows from the separability of Lq(u).

At last, it is clear that if A € II then A° € Il and X € II. Let A; € Il and A = |J,; A;. Note that
Pae A=\/,Pa, and hence H(T,P,4) <H (T, A) <> .H(T,Pa,) =0. [ ]

Proposition B.1.4. For any k € Z, k # 0, II(T*) = II(T).

Proof. Tt is a consequence of the fact that for arbitrary finite partition A, H (Tk, .A) =kH (T, A) for k > 1 (if
T is invertible then H (T%, A) = |k|H (T, A) for k # 0). [ |

Remark B.1.5. Slightly informally, given a countable partition A and a o-field G we write A € G if every
element of A is G-measurable (this notation is consistent with one used for the random variables).

Proposition B.1.6. Let T be invertible. Then for any countable partition A satisfying H (A) < oo, A € II iff
H (T,A) = 0. In particular, if A€ 1l then A€ A* _ for all k € Z.

Proof. Let A= {A;,As,...}. If ATl then H(T,A) <> ,H(T,Pa,) =0. Conversely, if H (T, A) = 0 then
H (T,Pa,) <H(T, A) =0 and thus A; € II for all 4.

In order to get A € A¥ _ for any k < —1, we proceed inductively (the proof for k > 1 is analogous). Clearly,
A€ AL . On the other hand, A € A~} implies TA€ A2 . Thus, Ac A2 VTA=A"2. n

— 00

Proposition B.1.7. If T is invertible then

IT) = \/ Tpast (T, A). (B.1.6)

AEPfin
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Proof. We already know that if A € II then A € A* __ for all k € Z (Proposition B.1.6). In particular,
Ae€ 7;?&575 (Ta A)
Conversely, if B € Tpast = Tpast (T, A) then B C B2 € Tpast C A:}x). Therefore, on the one hand

H(AB|AZL)=H (B|AZL) +H(A|AZL.B) =H (4] AZL)
and on the other

H(AB|AZL) =H (A,B|AZL BZL) =H(T,AVB) =H (A| AZL, B> ) + H (B | BZL)

=H(A|AZL)+H(B|BZY),
which, combined together, give H (B | B:io) = 0 or, equivalently, B € II. ]

Proposition B.1.8. Let T be invertible. If A is a countable generating partition for T such that H (A) < oo
then

7;9ast (Ta A) = 7}uturc (T, A) = H(T) (Bl?)

Proof. Since II(T') = II(T 1), it is enough to show that for example Tpust = Tpast (T, A) = II(T).
Firstly, we show Tpasi C II(T). Take B € Tpas: (T, A). Using the fact that A is generating we get

H(T,A)=H(T,AVB) =H ("', AvB)=H (T"",B) + H(A| AZL,B=,.).
Since for any k € Z, T*B € Tpast (T, A) and Tpast C AL,
H(A| AL, B2 ) =H (A| AZL) = H(T, A)

which results in H (T, A) = H (T, 8) + H (T, A). Thus, H (T, B) = 0.
Conversely, let B € II. Then

H(T,A)=H(T,AVB)=H (T, AvB)=H (T"",B) + H (A | AZL,,B>,).

However,

H(T .8)=H(T,B)=0, H(A|AL,B=)<H(A|lAZL)
which for any k € Z gives
HA|AZL)=H((T. A =H(A| AL, B> ) <H(A| AL, T""'B) <H(A|AZL). (B.1.8)
Thus, all inequalities must be equalities. Now, we will show that (B.1.8) implies
H(B|A )=H(B|A), Ve (B.1.9)

Before we prove (B.1.9) let us present how (B.1.9) concludes the proof. Since A is generating, taking k — oo in
(B.1.9) gives that for k € Z, H (B | A% ) = 0. Now taking k — —oo results in H (B | Tpes: (T, A)) = 0, that is
B € Tpast (T, A).

Hence it remains to show (B.1.9). Since A>_

is countably generated, for any k € Z
H(BT A A ) =H(B|A" ) +H (T 'A|B,A" )

and
H (BT 1A AR ) =H (T7F 1A A ) + H (B| AM)).

Therefore (B.1.9) holds iff
H(T " AIB A ) =H (T " A A" ), Viez

Note that H (T* 1A | B,A* ) =H (A | T*B,AZL ) and H (T~ 1A | AF ) =H (4] AZL). Now, it is
enough to notice that (B.1.8) implies

H(A| AT, B2 ) =H(A| AT THB) =H (A| A"L),  Viez
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B.2 General relations

In this section we return to our standard setting, that is we consider a stationary finitely valued process X with
the corresponding subshift (2, 5).

ClearIYa we always have East = East(x)yﬂuture = 7—future<X) - 7:iouble = 7jiouble()()- Are there any
relations between the o-fields of shift invariant sets Z = {A C & | SA = A} and these tail o-algebras? It
turns out that if X = (X;),  is unilateral then we always have T C Truture(X). In the bilateral case, things get
a little more complicated but one can still show that Z C Tfyure(X) in the sense of measure algebras. These
facts have a nice immediate corollary. If one of the tail o-fields is trivial then so is Z and thus X is ergodic. In
fact, with a little more effort, one can show that in case of trivial tail o-field, X is mixing (i.e. the corresponding
dynamical system is mixing in the ergodic setting). The converse fact is not true in general, that is the fact that
mixing (in the ergodic theoretic sense) implies the triviality of tail o-algebras. The following natural questions
arise. What kind of mixing ensures that Tpast, Tfuture O €ven Tgoupie are trivial? What are condition under
which Tpast = Truture = Taoubie in the sense of measure algebras? When Tpast, Truture C Tdouble is strict?

Firstly, let us note that there is a "mixing" criterion which is equivalent to the triviality of Tpast or Truture-

Lemma B.2.1 (When "past" or "future" tail is trivial). The past tail sigma algebra is trivial iff for all B € F,

lim sup |[P(A,NB)-P(4,)P(B) =0, (B.2.1)

n——oo An E]:n

where F* = o (X(,oo’n]).

Proof. Suppose that past sigma tail is trivial. Let us denote 14, — P(A,) and 15 — P (B) by X,, and YV
respectively. Then

IP (4, N B) =P (A,) P (B)| = EX,)Y = EX,;E (Y|F") <E[E (Y|F")| “=== E[E (Y|T;)| = 0.
Suppose that past sigma tail is not trivial that is B € 7,, P (B) € (0,1). But then taking A = B gives

sup IP(A,B) —P(A)P(B)| > |P(B)—P(B)* > 0.
eFm

Remark B.2.2. In the language of ergodic theory, a process which has trivial "single" tail o-algebra Tpqst
(equivalently satisfy (B.2.1)) is called K-mixing.

In the next section we present some examples illustrating the complicated relations which can arise between
tail o-fields and other natural o-algebras associated with processes.

B.3 Examples

B.3.1 Exchangeable processes

Recall that X = (X;),., is exchangeable if for any distinct {io,...,i,} C T we have X, iy~ Xjon). By a
celebrated result of de Finetti [39] (cf. also [50]), this condition is equivalent to X being a convex combination of
i.i.d. processes. In other words, X is exchangeable iff there exists a random variable © such that, conditionally
on ©, X is an i.i.d. process. Furthermore, if we assume that X is Polish space then the following fact holds: if
‘H is a o-algebra conditionally on which X; are i.i.d then essentially H = o(©) (in sense of measure algebras).
For this fact see the only theorem in [81]. One can say more about tail-o fields. Olshen in [82] showed that if
X = (Xj);¢z is exchangeable then

I=¢= 7-double = 7—future = %ast, (B31)

(as measure-algebras), where £ denotes the o-algebra of finite permutation invariant sets. If X is unilateral
then one still has 7 = £ = Truture.
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B.3.2 Markov chains

Let X = (X;),cy be a finitely-valued Markov chain, X; € &. It is well-known (see [37], Chapter XV, Section 6,
Theorem 3, page 392) that we can uniquely decompose the state space X into disjoint union

X=CUDiUDyl---UDy, (B32)

where C' is the set of transient states and D; are closed sets. If X starts in D; (i.e. Xo € D;) then it remains in
D; forever. If Xy € C then X stays in C for finite time and jumps to some D; (and never leaves D; afterwards).
Moreover (see [37], Chapter XV, Section 7, Criterion, page 395), if 7 is a stationary measure then necessarily
©(C) = 0.

Remark B.3.1. In this part, for brevity’s sake, sometimes we shorten Tgoupie (X), Tpast (X)), Truture (X) to
Ta(X). Ty (X) . Ty (X), respectively.

Now, suppose that a bilateral, finitely-valued Markov chain X = (Xj),., is stationary (thus, C = & in
(B.3.2)). In that case we will show that Tgoupie (X) = Tpast (X) = Truture (X).

Fix 1 < j <k and let Xp, stand for X conditioned on Xy € D;. By the definition of D;, process Xp, is an
irreducible (equivalently, ergddic), stationary Markov chain. Now, let p; be the period of Xp,. Then D; can
be decomposed into p; disjoint sets (see [23], Chapter 1, Section 3, Theorem 4)

Dj=Djol--UDjp;—1
such that P (X1 € Dj (441) mod p; | Xo € Dj,g) = 1. Using Corollary 2 from [1(], we get that

Ta(Xp,) = Tp (Xp,) = T; (Xp,) = 0 {{Xo € Djo} , {Xo € Dy}, {Xo € Dyp,-1}}-

Note that Corollary 2 from [16] is stated only for 7; but a perusal of the proofs of Theorem 1 and Corollaries 1
and 2 therein gives the same result for 73. Thus, X, conditionally on X € D, ;, has trivial tail o-algebras. This
immediately leads to

Ta(X) =T, (X) = T; (X) = 0 {Xp € Dy} |15 <k0<C<p,}. (B.3.3)

Indeed, if for example A € T4 (X) then, for all j, ¢, P (A | Xo € D, ) € {0,1} which yields (B.3.3).

B.3.3 oa-mixing processes

Recall that for any o-fields A and B, we define a-mizxing coefficient as

a(A,B,P)=2 sup |P(ANB)-P(A)P(B).
A€A, BeB
More intuitively, one can show that a (A, B,P) = sup| x| _ y|_<1 |Cov (X,Y)] (see (1.12a) in [35]). Moreover,
for any process X = (X;),;, we define its n’th o mixing coefficient as

an =supa (0 (X oo t) & (Xptn.o0))) -
kez
If X is stationary, this definition simplifies to o, = a (0 (X(—c0,0)) 0 (X[n,00)))- We say that X is a-mizing
(or strongly mizing) if a,, —— 0. One can show that if X (not necessarily stationary) is a-mixing then the
single-sided tail o-algebras Tryture and Tpqs: are trivial. However, even if X is strongly mixing, 7Tqousie can be
non-trivial. Even more, in [19] one can find a construction of a strictly stationary, finite-state, strongly mixing,
bilaterally deterministic X.

B.3.4 [-mixing processes (weak Bernoulli processes)

For any o-fields A and B, we define S-mixing coefficient as

B(A,B,P) = sup Y [P(ANB)-P(A)P(B), (B.3.4)

AfinCAByin CB A€Afin,BEByfin

DO =

where Ay, and By;, stand for finite partitions. One can show that a (A, B,P) < 23 (A, B,P). Moreover, for
any process X = (X;),., we define its n’th 8 mixing coefficient as

B =sup B (0 (X(—oo41) » 0 (X[ttn,00))) -
keZ
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If X is stationary, this definitions simplifies to 3, = (cr (X(—oo,o}) , O (X[WX)))). We say that X is S-mixing
(or absolutely regular) if 53, 27%% 0. One can show that for finitely-valued stationary processes X, X is
absolutely mixing iff X is weak Bernoulli (see [18], equation (2.4) and surroundings). Furthermore, one can
show that if X (not necessarily stationary) is S-mixing then necessarily Tgoupie is trivial (and thus so are the
one-sided tail o-fields). In fact, Berbee in [9] showed more. He introduced a notion of period for general random

process X and showed the following theorem.

Theorem B.3.2. Let X be a stationary, ergodic process. If 3, < 1 for some n then X has a finite period p and
1

Bn—1——. (B.3.5)
p

Moreover, Taouvte = Tpast = Tjuture = Ip (in the sense of measure algebras), where I, is the SP-invariant
o-field, is partitioned by {S°X € E}, for i € [0,p), into atoms that are SP-invariant. Furthermore, for each
1 < i < p, process X conditioned on S'X € E is absolutely regular.
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Appendix C

Besicovitch and Prokhorov metrics

This summary of basic facts concerning the Besicovitch pseudo-distance is based on [63]. Unlike in some other
parts of this thesis, we assume here that (X, d) is a compact (not necessarily finite) metric space. Every such
metric d determines the Besicovitch pseudo meitric

n—1

1
dp: XN x XN 5 R, dp(x,y) = limsup — Zd iy Yi)-

n—o00
=0

Moreover, recall that the upper density of a set N C N is given by

d(N) —hmsup INN[0,n—1]|.

n—oo

The following example is connected with %-free systems and the convergence of periodic approximations (cf.
Section 4.2.3).

Example C.0.1. Assume that X = {0,1} is equipped with the Hamming distance d(z,y) = 1,»,. Let
x(™ € XZ be a sequence of binary sequences such that x(") < x(»=1) (coordinatewise) for all n and dm =

lim sup k#l (zfo)k 1]) 27 d= likminf %#1 (f[o,lc—l])- Then
k—o0 —+o0
dp(x™ x) = 0.
Indeed, it is enough to notice that due to the assumptions

= =
T Z 2™ 2a, Z 1 2Mo1 T L Z 1,,=1.
ki

=0

Therefore,
dg(x™ x) <d™ —d — 0.

Let us now introduce a metric strongly connected with dg, namely,
dp: XN x XN 5 Ry, dp(x,y)=inf {6 >0|d({i € N|d(z;,y;) > 5}) <6}. (C.0.1)
Remark C.0.2. We use index P to express the resemblance to Prokhorov(-Lévy) metric on measures.
We have the following relations between dp and dp.
Lemma C.0.3. Let (X,d) be a compact space. Then
dp(x,y) < dp(x,y) < dp(x,y) L+ [Ix = yll..] < dp(x,y) [1 + diam(X)],

where ||[x —yll,, = sup;eyd(zi,y;) stands for the supremum "norm” and diam(X) = sup, ,d(x,y) for the
diameter of X.

Proof. Let dp(x,y) < §. Then, by the very definition of dp,

d(Cf) —hmsupf [[0,n] N C§| < 0, Cs ={i e N|d(z;,y;) <6},

n—oo
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where C§ = N\Cj5. Thus,
1 n—1 1 _
dp(x,y) =limsup — > d(x;,y:) <limsup— > d(ws, v:) + |x = yllo d(C5) <51+ [x —yllo]-

n n
n—oo g o0 e0,nINCs

Conversely, if dg(x,y) < § then for sufficiently big n, L nt d(x;,y;) < d. Thus,

’n =0

HOSZ'STZW(%,%) > \/S}‘ < nVs,

which implies that d ({z e N |d(z;,y:) > \/5}) < /6 and dp(x,y) < V0. [ ]

Lemma C.0.3 enables us to obtain a continuity property for limits of empirical measures. More precisely,
recall that, given x € XN, the family of empirical measures is given by

n—1
1
dxn =~ ; i, (C.0.2)

where n € N. Moreover, we define the set of limits of empirical measures:

1 T’Lk—l
=0

Now, we would like to say that if dp(x,y) is small then M(x) is close to M(y). To do so formally, recall that
with each metric space (X, d) we can associate the Hausdorff distance between sets given by

dy(A,B)=inf{§ >0|AcC B°, BC A’}, A°={zeX|d(xA)<d}. (C.0.4)
Moreover, the Prokhorov-Lévy metric on the space of probability Borel measures on X is defined as
dp(p,v) =inf {6 > 0| Va_pora  p(A) < v(A%) + 6, v(A) < u(A%) + 6} . (C.0.5)

It is well-known that if (X, d) is separable then dp is equivalent to the weak convergence topology (for general
metric space dp(fin, 1) — 0 implies p,, = p) (see [15], Section "The Prohorov metric").

Beware of the difference between dp(u, ) and dp(x,y). The latter is given by (C.0.1). Now, we are ready
to state the continuity property.

Theorem C.0.4. Let (X,d) be a compact metric space. Then for any p € M(x) and v € M(y) such that p
and v are generated on some common subsequence (ny),

dP(:u? V) < dP(X7y) < V dB(X? y) (006)
In particular,
dpr(M(x), M(y)) < dp(x,y), (C.0.7)

where dppr stands for the Hausdorff distance (cf. (C.0.4)) induced by the Prokhorov metric (C.0.5).

Proof. The second inequality in (C.0.6) is a content of Lemma C.0.3. To see the first inequality in (C.0.6),
assume that dp(x,y) < ¢ for some § > 0. Then, for all sufficiently large n we have

=
E ; ]ld(xi,yi)Zt? < 0.
Hence, for such n’s and any Borel set B C X
= = 5
dxn(B) =~ ; loen < — ; Ly, eps + 0 =0dyn(B°) +4.

Exchanging the role of x and y we obtain (after taking § — dp(x,y))

dp(dxn;0y,n) < dp(x,y) (C.0.8)

for all n > n(x,y). Since p € M(x) and v € M(y) are generated on a common subsequence and the Prokhorov
metric is equivalent to the weak convergence, (C.0.8) yields (C.0.6). Now, (C.0.7) immediately follows from
(C.0.8). |
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Combining Example C.0.1 with Theorem C.0.4, we immediately get the following corollary.

Corollary C.0.5. Assume that X = {0,1} is equipped with the Hamming distance d(z,y) = Ly2,. Let x(™ ¢

X7 be a sequence of binary sequences such that x(™ > x("=1 for all n € N and x(™) N\, x(°) coordinatewise. If

(n) > n— 00

i € M(x™) for all n € NU {co} are generated along the same subsequence and klim %#1 (x[o f—1]
—00 )

lerr;O %#1 ($[o,k—1]) then
n = Poo-

119



120



Appendix D

Orlicz exponential norm

At the beginning recall the definition of the exponential Orlicz quasi-norm. For any random variable X and
a > 0 we define

X1

C&

XOC
wﬂ:inf{c>0|EeXp(| | )gz}. (D.0.1)

Note that if & > 1 then || - ||, is & norm whereas for 0 < o < 1, || - ||, is only a quasi-norm. More precisely,
we have the following version of the triangle inequality (see Lemma 3.7 in [5]).

Lemma D.0.1 (Triangle inequality for a < 1). Fiz 0 < o < 1. Then for any random variables X, Y we have

a a 1/«
1X + Y. < (1XI1%, +1Y17,)

<2V (1 X g + 1Y ) -

Now, we present a moment estimation for random variables with bounded exponential moment.

Lemma D.0.2. IfY is non negative random variable such that Eexp(Y) < 2 then for any 8 > 0 we have
EY”? <2T(B +1).

Furthermore, if 5 € N then one can replace the constant 2 with 1.

Proof. If 8 is a natural number then the claim follows from Taylor’s expansion of exp(z). The general case is
obtained by Markov’s inequality, namely

EY# :/ P(Y? >t)at :/ P (eY > et%) dt < / 2t dt = 2/ e *BsPtds = 26T(B).
0 0 0 0
[

The next lemma allows us to pass from the ©,-norm of a random variable to the norm of its conditional
expectation.

Lemma D.0.3 (Orlicz’s norm of Conditional Mean Value). Let 0 < o < 1. Assume that a random variable X
satisfies || X ||y, < 0o. Moreover, let F be some sigma field. Then

IE(XIF) s, < (1 -2 @Z};‘a‘)”) Xl < (i) Xl

Proof. Set @q(x) = exp(z®) for > 0 and notice that ¢, is concave on (0,z,) and convex on (z,,c0), where

Zo = (fTa)l/ “. Define ¥, to be a smallest convex function greater than or equal to ¢, which is equal to ¢q
on (x4,00), that is
1-« a—1 .
aex Tx +1 fo<ax<z
bty = Lo (557 ez ) .
valz), if £ > zq.

l—«
«

Clearly, ¥, is a convex function on R, and it is easy to see that ¢, < ¥, < aexp( )goa. Using these

properties, Jensen’s inequality and the definition of the Orlicz norm, we get

Epq <E(X‘7:)|> <EY, <|E(X‘7:)|> <EV, ( RY ) < 2aexp (1_O‘> )
1 Xl 1 Xl [ X [l o
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xp( iz a
Put ¢, = (1 + W) > 1 and note that due to Jensen’s inequality

o () < (oo (22) " <2

which completes the proof. |

Now we give two concentration inequalities which are valid for random variables with finite Orlicz norm.
The first one is an easy consequence of the Markov inequality, therefore we omit the proof.

Lemma D.0.4. For any random variable X with || X||y, < oo and t >0,

toé
P(|X]=1) <2exp <_||X||"‘> :
/l?ba

Lemma D.0.5 (Tail inequality for conditional mean value). Let 0 < oo < 1. Assume that a random variable X
satisfies | X ||y, < co. Moreover, let F be some sigma field. Then for any t > (%)1/(1 1 X N 5

t&
P(|E(X|F)| > ) < 6exp | —=——— | .
21 X%,

Proof. Fix ¢ > || X ||, and ¢

(%)Ua c. Then in particular we have o (£)® > 2. Using the Markov and Jensen
inequalities along with T'(x) < &

>
< a%/e®=1 ([69], Thm. 1) and Lemma D.0.2 with Y = (|X|/c)®, B = t*/c®, we get

t t a

PEX|F) > 1) < P(EX|FE > ) <O B Ex|F)12E" <@g x)o(0)
= (/) B 1X/e/*(])" < 2 (8/¢)* exp (— (t/e)%) < 2eexp (—(1/2) (t/e)°),

where in the last inequality we used the estimate ze~® < e~ 3 which is valid for all z € R. Now, it is enough to
take limit ¢ — || X ||y, and notice that 2e < 6. |
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Appendix E

Markov-like properties of the split chain

Let P(-,-) be a transition kernel. Recall that the split chain X = (X;,Y;) was defined via (for the details and
intuition see Section 6.1.11)

P (Ykm = Z17AX[km-l-l,(k-‘rl)m] € >< A; | flz(m’flzn—manm - iL’) =P (YO - Z.aAX[l,m] € >< Ay ‘ Xo = .TC)
i=1 i=1
= / _ / r(x, Tm, 1) P(Tm-1,dxm)P(@m—o,dTm—1) ... P(x,dz1),
A Am
1 (E.0.1)

where

1{1/’ b b) .f ' = ]'7
r(x,y,1) = { e (@) " _ _ovldy) (E.0.2)

1-— ]]-mGC T‘(’L’,y), if i = 07 ’ T(x’y) B Pm(xvdy)

and for any process Z = (Zi),cn, F2 = (F7),n stands for the natural filtration associated with Z, that
is
Ffl=0o (Zé) .

Moreover, for any k,i € N such that km < i < (k + 1)m we put
Y; = Yim. (E.0.3)

Remark E.0.1. Recall that such definition (E.0.1) of X ensures that the first coordinate X forms a Markov
chain with transition kernel P(-,-). However, for m > 1 it may happen that X is not a Markov chain.

In this section we present how such a definition of X implies a Markov-like property of X (see Lemma
E.1.3), the Markov property of m-block process

(Y[im,im%»mf 1] ) ieN

(see Lemma E.2.1) and then the Markov property of random blocks (recall (6.1.22))

—_

= (Ei>i2()’ =i = X[Ti—ler,Tz‘er*l]?

[

(see Lemma E.3.2). In particular, we justify the formulas we provided in Section 6.1.11.

Let us add that in this section we use extensively the Dynkin 7w — A\ lemma. For the exact formulation
of it we refer to the Lemma 4.10 in [18]. Furthermore, let us warn the reader that this part is very technical
and we assume a good knowledge of standard tools and arguments from the probability field. In order to avoid
lengthy writings we use an additional notation, namely, for arbitrary integers &, [ such that £ <[ and a sequence
x = ()7

ah = (xp, Thin, ..o, x)

with similar convention for random processes (we do not use this convention for sets to not perplex the reader;

A{ is just too ambiguous; however, Aj; j = Xff:i Ay, is used frequently).

Moreover, for clarity’s sake, we omit measurability details, in particular, we tacitly assume that products
spaces are equipped with the product o-fields, similarly, all functions we consider are bounded and measurable
(with respect to appropriate underlying o-field). If need be, one can easily extend all below facts to the case of
integrable functions.
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E.1 Markov-like property of the split chain
In this section we explain how to generalize (E.0.1) to the arbitary functions.

Lemma E.1.1. Let L = {0,1} be a "level” space and k € N. For any bounded measurable real function
F:LxX™ >R,

k m k m
" (E.1.1)
- (/) /F(yo,967171)7“(ka,&Um,alyo)P(a:mﬂ,dacm)P(acm,g,dgcm,l)...P(ka,dggl)7
x L

where 1 is given by (E.0.2).

Remark E.1.2. Note that due to the definition of function r (recall (E.0.2)), i — r(z,y,¢) can be treated as
a probability measure.

Proof. We use the standard argument of approximation. Firstly, notice that for functions F' of the form

Lyo=i, 21€A1, ..., 2mEAm

Lemma E.1.1 reduces to the very definition given in (E.0.1). It follows that Lemma E.1.1 is valid for all functions
of the form (B C L)
LyeB, z1€A1, .., €A - (E.1.2)

Furthermore, by the Dynkin 7 — A lemma, we conclude that Lemma E.1.1 holds for all functions F' of the form
1p, (E.1.3)

where D C 2L x X™. Now, by the linearity (in F) of terms in Lemma E.1.1 we obtain that Lemma E.1.1 is
true for linear combinations of functions of the form (E.1.3). It remains to use the approximation argument to

get that Lemma E.1.1 holds for all non-negative and then for all bounded functions F.
|

Now, using induction (on number of coordinates the F' below depends on), the definition (E.0.3) and the
Dynkin 71—\ lemma we can generalize previous lemma to the functions depending on infinitely many coordinates.

Lemma E.1.3 (Markov-like property of the split chain). For any k € N and measurable bounded function
F:(Lmxx™mY SR,

E (F ((}/lz(l+1)_17XanrL(itl))le> |]:I§mvflzfm—m) =E (F ((}/l:qn@(l-i_l)_laX;?n(j_—;l))le) |ka) (E14)

Proof. Let us only sketch the inductive step. The induction is on n € N in the number of arguments for F', that
is F: (L™ x X™)" — R. If n = 1 then we are in the setting of the previous lemma (recall (E.0.3)). For n = 2
we proceed as follows. Firstly, we consider function F' of the form

n(k+1)—1 m(k+1) m(k+2)—1 m(k+2) o m(k+1)—1 m(k+1) m(k+2)—1 m(k+2)
F <( km ' Llemt1 )a (ym(k+1) ’xm(k+1)+1)) =G <ykm ' Chom+1 )H( m(k+1) ’xm(k+1)+1>

where G, H : L™ x X™ — R. For such F', the tower property of the conditional mean value implies that

m(l+1)—1 m(l+1
E <F ((lem( +1) ,le(_:i )>k+12l2k) |‘Flz(m7]:kYm—m)

= (& (v X VB (H (Y X ) 1ty Py ) s i) -

Now, by Lemma E.1.1, the inner conditional mean value is a function of X,,;41). Another application of
Lemma E.1.1 (now to the external mean value) implies that

E (F ((Y'ly:l(l—‘rl)_l,X;?n(itl))k+1212k) |f13(m,flgm7m)
is a function of Xk,,. This combined with Dynkin’s 7 — X\ lemma concludes the inductive step (the argument
for the genearal n is analogous).

Now it is enough to apply once more w-A Dynkin’s lemma to obtain (E.1.4) for F' depending on infinitely
many coordinates. The proof is completed. |
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E.2 Markov property of the vectorized split chain

In this part we show that a vectorized split chain V = (V}), .y, where
Vie = (Xkm Yems Xema1, Yemats - - Xemam—1, Yemim—1) € (X x {0,1H)™ (E.2.1)

is in fact a Markov chain.
Lemma E.2.1 (Markov property of m-blocks). For any measurable bounded function F : [(X x {0,1})™]" — R,

B (F (Vi) | Vo) = E (F (Vi) 1Vies) =B (F (Vo) | Koo Xkt Vi) . (E:22)
Proof. Notice that due to the Markov-like property of the split chain from Lemma E.1.3,

E (F (Vikoo) | Viow) =E (B (F (Vikoo) | Xims Viow) [Vior)) = E (B (F (Vik,oo)) | Xim) [Vio )

=E (G (Xim) [Vio,)) -

for some measurable function G. Therefore in order to prove (E.2.2) it is enough to show that for any bounded
measurable function G : X — R,

E (G (ka) ‘Vv[O,k)) =E (G (ka) Ika—17 ka—ma Yk)m—m) . (E23)

To this end for 7 € N consider A; = A X B X Ajpy1 X By X -+ X Ajmim—1 X B; where B; C {0,1} and A;
are measurable subsets of X'. Recall that for brevity’s sake we write Aj; ;) instead of A; x A;1; x -+ A; and

similarly for Aj; ;. Now,

]EG(ka)]lVo k—11€A0,k—1]

| km—m> km 2m

v (B.2.4)
E[ILV“ s v B (CXem) v ene Ly )}

mk— 7n+1eA[mk7m+1,mk 1]
Thus, using Lemma E.1.1 we obtain

E (G(ka)]lYkm m€EDBk— 1]lX[mk mA1,mk—11EA[mk—m+1,mk— 1]|]:km mo ]:km Qm)

m—1
- (/X) ]lm?F EAlm(k—1)+1,mk—1] [/ /G $m Liey_, (E.2.5)

T(Xkm—ms Tm, di) P(Xm—1,dxm) | P(Tm—2,dTm—1) - . . P(Xgm—m,dx1).

Define
f;\f T(Thm—ms Ty 1) P(Tm—1,dTm) .
) fX ka*m7xm,Z)P($m717d(ﬁm) ’ Trm—m
H(ka—m,xm_l,z) -
/G(:Cm)P(xmfl7dxm)7 o & C.
X

(it will turn out in a moment that in view of our aim (E.2.6) it is not important how we define H when
S 7@ km—m> T, 1) P(Tm—1, dzyp,) = 0; in particular, here and later on we omit this case in our considerations).
Then one can check that

/ /G(inm)]]-iEBk,lr(ka—nuxmadi)P(xm—ladxm)
XL (E.2.6)

:/ /H(ka—mvxm—lai)]]-iEkalT(ka—m7IMadi)P(xm—ladxm)-
X JL

Indeed, if Bx_1 = {1} then
/ / G(xm)]]-iGBk_lr(kafmvl'mvdi)P(‘rmfladmm) = I]-ka_WGC/ G(xm) T(kafmawm)P(xmflvdxm)
X JL X

and
/ /H(Xk:mfwuxmflai)]lieBk_lr(kafm>xmudi)P(xmflydxm)
X JL
= H(kafmaxmflal)]lka_mEC/ T(kafmymm)P(xmfladwm)

X
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and it is enough to use the very definition of H in the case of zgm—m € C. If Bx_; = {0} then

/ / G(l‘m)]liEBk,lr(ka—maxm7di)P(l‘m—lvdxm)

xJr
= / G(xm)P(xm—lydxm) - ]lem,meC/ G(xm) T(ka—maxm)P(xm—ladxm)
X x
and
I:= / / H(ka—'rm Tm—1, i)]]-iEBk,lr(ka—m7 LT, di)P(ij—la dxm)
xJL

= H(kafmvxmfla 0) |:]- - ]]-ka—mGC/ T(kafm’xm)P(xmil’ dl’m):|
X
= H(kafmy xm717 O)Ika—mgc
+H(kaim7xm71,0)]l_kaimec |:1 —/ ]lemmeC T(kam;l‘m)P(l‘mlad.Tm):| .
X

Using the definition of H (and (E.0.2)) we obtain

I= / Gt P(tmr, d) Ly, g0
X

n fX G(xm)T(kafmvmm»O)P(xmfladl’m)
fX ’I“(ka,m7$m,0)P($m71,dil?m)

— ]lem,mQC'/ G(ajm)P(xmfladxm) + ]lem,mEC/ G(l‘m)’l"(Xk,m,m,.’L‘m,O)P(l'm,hdl‘m).
X X

]]-ka_mEC |:1 _/ ILka_meC T(kamaxm)P(xmladxm)}
X

It remains to expand 7(Xgm—m, Tm,0) and simplify expressions.

Now, the repetition of arguments used for H in place of G (in backward manner; roughly, we proceed as
follows: (E.2.6) allows us to "replace" G by H in (E.2.5) which leads to a version of (E.2.4) with G substituted
by H) yields

EG(ka)]]-V[o,queA[o,kfl] = EH(ka—ma Xim,s Ykm—m) ]]-V[o,kfl]EA[o,kfl] .

Remark E.2.2 (Strong Markov property of m-blocks). By standard arguments (in the area of stochastic
processes) Lemma E.2.1 immediately implies that for any stopping time 7 (with respect to natural filtration
FV), the strong Markov property holds, namely

E(F (V) IFY) =E(F (V31)|IVe) =E(F (V1) | Xordm—1, Ximr, Yom) - (E.2.7)

E.3 Markov property of the random block process

Recall that the regeneration times 7; are defined in the following way. For convenience’s sake 7_; = —m and
for i > 0,
7 =min{k > 71 | Vi =1, m|k}. (E.3.1)

Furthermore, the random block process is given by

—_
—

E= (Ei>i20’ =i = X[Tifler,Tz‘er*l]' (E32)
In this part we show how the strong Markov property of the vectorized split chain (recall (E.2.7)) implies that
process E is Markov. To this end let
s= ]
n>1

Remark E.3.1. In the definition of S the union should be treated as a disjoint one. In other words we can
think about S as about X ., A™" x {n}. Furthermore, a set A € S is measurable iff AN A" is measurable
for any n € N. B

Now, we have the following fact.

Lemma E.3.2 (Markov property of random blocks). For anyi > 1 and measurable bounded function F: SN —
R,
E(F(E1)[E) = E(F(EX)IE:) = E(F(EX1)|Xr4m—1, X7,). (E.3.3)
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Remark E.3.3. Note that due to the stationarity of (Ei)z‘eN\{o}a there exists G : X2 — R such that

E(F(Zit1,Zit2, )20, 2150, Z) = B(F(Zig1, Eiga, - - ) Xrpm—1, X)) = G(Xr4m—1, X7,),

holds for all ¢ > 1. In other words, (E;41,E;42,...) depends on =g, =1, ..., E; only through the starting and
ending point of the last block of length m in =;.

Proof. Clearly, by the Dynkin lemma and standard approximation techniques (recall the proof of Lemma E.1.1),
it is enough to show that

E(F(Zit1,Zit2,-- )20, E15 -, Bi) = E(F(Eit1,Biga, - )| Xri4m—1, X7,),
is valid for F' of the form
F(wi+17 Li+2,- - ) = 1$i+1€Ai+1 ]1201‘+2€Ai+2 s ]lwi+n€Ai+n'

where for any k € N
A = A x A7 x - x AR € B,

and strictly positive a; € N are chosen is such a way that m|a.
To this end notice that for any 7,5 € N, ¢ > 0,

Titj+m—1 J
_ —. . Titj/m
1z, Ai]]‘Ei+1 €EA;ipr1 - ]]'eq+j€Ai+j = H ]]'XkeAzgg H ]]‘Tk+'i_7k+'i—1=ak+i - GJ (Vq—,,_l/m-kl) ’
k=1,—14+m k=0

where for any k € N, b(k) and ¢(k) < apx) and functions G; are uniquely determined and V is the vectorized
split chain as in (E.2.1). Clearly,

Titj/m v
Gy (VI ) € FY
Thus, (for brevity’s sake let o; = 7;/m) using the strong Markov property of the vectorized split chain V
(see (E.2.7)), we obtain
EF (2%1) Izjeay,, = EGnot (V7H) Gi (V) = BGi (Vi) E (G (V7)) 175)

. EG; (Voai) E (anl (Va?iilﬂ) | Xritm—1, XTi’YTi) =EF (Xritm—1, X7, Y7,) ]lEgeA[O.W

for some measurable function F : X2 x {0,1} — R. It is enough to recall that by the very definition, Y;, = 1.
The proof is concluded. n
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