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Abstract

This dissertation is a collection of several results in mathematical analysis of solutions to
quasilinear parabolic partial differential equations with very singular diffusion. By this, we
mean that the diffusivity is of order |∇u|−1, at least near regions where ∇u = 0 (here u is
the unknown in the equation). A model example is the total variation gradient flow.
In Chapter 1, we introduce the reader to parabolic equations with very singular diffusion.
We present typical features of their solutions on the example of scalar, 1-dimensional total
variation flow. Then, we state new results whose demonstrations are contained in the following
chapters.
In Chapter 2, we consider the orthotropic total variation flow on a rectangle and prove
that the class of functions piecewise constant on grid rectangles (PCR) is preserved by the
flow. Consequently, the flow in this case is determined by a finite algorithm. Using this
knowledge and density of PCR functions, we show that the flow preserves continuity. This is
not necessarily the case if the domain is not convex.
Next, we investigate a model very singular equation with diffusivity equal to 1+ α

2|ux| , α > 0 (in
one spatial dimension). We show that the domain can be decomposed into evolving intervals
where the solution is constant (facets) and the remaining region, where the solution satisfies
the heat equation. We establish some continuity properties of facets.
In Chapter 4, we consider the vector-valued total variation flow on an interval. Given the
solution u with initial datum u0 of bounded variation, we show that |ux| ≤ |u0,x| in the
sense of measures. This estimate provides a generalization of several results known in the
scalar-valued case.
In the last chapter, we establish local well-posedness for 1-harmonic flow, i. e. the gradient
flow of total variation energy of maps into a complete Riemannian manifold, in the class of
Lipschitz maps on a convex domain. We assume either that the target manifold is a closed
submanifold in RN , or that it has non-positive sectional curvature. We single out some
conditions for global existence of the flow. We show analogous results in the case where
the domain is a compact, orientable Riemannian manifold. Finally, we solve the homotopy
problem for 1-harmonic maps under some assumptions.

Key words and phrases: very singular parabolic equations, total variation flow, facets,
regularity, 1-harmonic map flow, existence, uniqueness, tetris
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Streszczenie

Niniejsza rozprawa stanowi zbiór kilku wyników dotyczących analizy rozwiązań quasiliniowych
parabolicznych równań różniczkowych cząstkowych z bardzo singularną dyfuzją. To określe-
nie oznacza, że współczynnik dyfuzji jest rzędu |∇u|−1, przynajmniej w okolicy regionów,
gdzie ∇u = 0 (tu u oznacza niewiadomą w równaniu). Typowym przykładem jest potok
gradientowy całkowitego wahania.

W Rozdziale 1 zapoznajemy czytelnika z równaniami parabolicznymi z bardzo singularną dy-
fuzją. Omawiamy typowe własności ich rozwiązań na przykładzie skalarnego, 1-wymiarowego
potoku całkowitego wahania. Następnie przedstawiamy nowe wyniki, których dowody znaj-
dują się w kolejnych rozdziałach.

W Rozdziale 2 rozważamy ortotropowy potok całkowitego wahania na prostokącie i dowodz-
imy, że klasa funkcji kawałkami stałych na kratowych prostokątach (PCR) jest przez niego
zachowywana. W konsekwencji, potok jest w tym przypadku wyznaczony przez skończony al-
gorytm. Przy użyciu tego wyniku oraz gęstości funkcji PCR, pokazujemy, że potok zachowuje
ciągłość. Gdy dziedzina nie jest wypukła, nie musi tak być.

Następnie badamy modelowe bardzo singularne równanie ze współczynnikiem dyfuzji równym
1 + α

2|ux| , α > 0 (w jednym wymiarze przestrzennym). Wykazujemy, że dziedzina może być
rozłożona na ewoluujące odcinki, na których rozwiązanie jest stałe (fasety), oraz pozostały
obszar, gdzie rozwiązanie spełnia równanie ciepła. Dowodzimy pewnych własności regularnoś-
ciowych faset.

W Rozdziale 4 rozważamy potok całkowitego wahania o wartościach wektorowych na odcinku.
Dla rozwiązania u z warunkiem początkowym u0 o wahaniu skończonym wykazujemy, że
|ux| ≤ |u0,x| w sensie miar. To oszacowanie uogólnia kilka wyników znanych w przypadku
skalarnym.

W ostatnim rozdziale wykazujemy lokalne dobre postawienie dla potoku 1-harmonicznego,
tj. potoku całkowitego wahania przekształceń w zupełną rozmaitość riemannowską, w klasie
przekształceń lipschitzowskich na wypukłej dziedzinie. Zakładamy, że dana rozmaitość jest
domkniętą podrozmaitością w przestrzeni euklidesowej, albo że ma niedodatnią krzywiznę
przekrojową. Podajemy pewne warunki na globalne istnienie potoku. Pokazujemy analogiczne
wyniki w przypadku, gdy dziedzina jest zwartą, orientowalną rozmaitością riemannowską. Na
koniec rozwiązujemy problem homotopii dla przekształceń 1-harmonicznych przy pewnych
założeniach.

Kluczowe słowa i frazy: bardzo singularne równania paraboliczne, potok całkowitego wa-
hania, fasety, regularność, potok 1-harmoniczny, istnienie, jednoznaczność, tetris
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Chapter 1

Introduction

The notoriety of elliptic and parabolic partial differential equations (PDEs) involving the
p-Laplace operator

div (|∇u|p−2∇u),

where p > 1, in mathematical research of last two decades, has earned it the title of the
mascot of nonlinear analysis [27]. Considerably less attention was devoted to the boundary
case p = 1. This is probably due, at least partly, to how distinct this case is. When leaving
p = 2 for general p > 1, one has to abandon the classical, smooth setting and consider weak
solutions belonging to Sobolev spaces (which, typically, eventually turn out to have Hölder
continuous gradient). The leap from p > 1 to p = 1 is just as profound. Now, solutions are
found in the space of functions of bounded variation, whose derivatives are Radon measures.
Furthermore, for p = 1, the map ξ → |ξ|p−2ξ is discontinuous at ξ = 0. For these reasons,
the notion of solution has to become even more involved.

Investigation of elliptic and parabolic PDEs involving the 1-laplacian

div ∇u|∇u|

is interesting not only for the reason of technical subtlety. It appears (up to sign) as the
variation of the functional

u 7→
∫
|∇u|, (1.1)

called total variation.1 This functional appears in mathematical mechanics as a term in energy
when modeling phase transitions [76] or Bingham fluids [66]. Recently, total variation and
its many versions are even more prominent in mathematical imaging science. Minimization
problems for energies involving such a term serve as models for solutions to many tasks of
image processing, such as denoising [72] or segmentation [16].

Irrespectively of the origin of functional (1.1) (or any of its versions), a natural way of
decreasing its value is to follow its steepest descent flow with respect to some notion of
distance. A natural choice is the L2 distance, which gives rise to the total variation flow,
formally described by a quasilinear parabolic equation

ut = div ∇u|∇u| . (1.2)

1In this sentence, the word variation appears twice. The first instance refers to variation in the sense of
calculus of variations, which can be understood as Fréchet L2-gradient (or subgradient). The second one is, at
least formally, explained by (1.1). Rigorous definitions appear later on.



8 Chapter 1. Introduction

Before we disclose the statements of this thesis, we would like to acquaint the reader with
our setting by recalling some properties of solutions to equation (1.2) in the case of single
spatial dimension x, where it assumes the particularly simple form

ut = (sgn ux)x. (1.3)

This can be done using only a relatively simple version of technical definitions that will be
introduced later on.

1.1 The total variation flow in one dimension

As we are not interested in boundary effects at this point, let us take the 1-dimensional torus
T = R/Z as the spatial domain for equation (1.3). We can identify T with the unit interval
[0, 1] with periodic boundary. We consider the initial problem for (1.3) in ]0,∞[×T. If the
initial datum u0 is absolutely continuous (i. e. u0 ∈ W 1,1(T)), a unique strong solution u in
the class W 1,2

loc ([0,∞[;L2(T)) ∩ L∞(0,∞;W 1,1(T)) can be shown to exist [13], provided that
we interpret sgn ux as a selection of the multifunction

sgn ◦ ux =

 [−1, 1] if ux = 0{
ux
|ux|

}
otherwise.

(1.4)

If u0 ∈ L2(T), a kind of solution to the initial problem can still be constructed via monotone
operators theory. However, this solution can only be expected to satisfy u(t, ·) ∈ BV (T)
for a. e. t > 0 instead of u(t, ·) ∈ W 1,1(T). In this setting ux is not a (measurable) function
anymore, so (1.4) does not have clear meaning. Let us introduce the proper concept of solution
rigorously.

Definition 1.1. Let u0 ∈ L2(T). We say that u ∈ C([0,∞[, L2(T)) satisfying

u ∈W 1,2
loc (]0,∞[, L2(T)) ∩ L1

w,loc(]0,∞[, BV (T))

is a (strong) solution to the initial problem for (1.3) in ]0,∞[×T with datum u0 if there exists
a function z ∈ L2

loc(]0,∞[,W 1,2(T)) such that for a. e. t > 0

|z(t, ·)| ≤ 1 in T, z(t, ·) · ux(t, ·) = |ux(t, ·)| as measures on T, (1.5)

ut(t, ·) = zx(t, ·) in T, (1.6)

u(0, ·) = u0. (1.7)

The two conditions (1.5) assume now the role of (1.4). They do indeed make sense for
a. e. t > 0, as W 1,2(T) ⊂ C

1
2 (T) by Morrey’s inequality.

Proposition 1.1. Given any u0 ∈ L2(T), there exists a unique strong solution to the initial
problem for (1.3) in ]0,∞[×T.

This is can be deduced from variational semigroup theory just as Theorem 2.2.
Let us now consider two particular examples of evolution.
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(a) Example 1.
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(b) Example 2.

Figure 1.1: Two cases of evolution described by Examples 1 and 2. Dotted lines represent u0, dashed lines: u(1/18, ·),
solid lines: u(1/9, ·).

Example 1.1. Let u0 be a continuous function that changes monotonicity exactly once. This
means that there are points a0, b0, a1, b1 ∈ T such that a0 < b0 ≤ a1 < b1 ≤ a0 with respect
to the cyclic order on T and

• u0 is non-decreasing in [a0, a1] and non-increasing in [a1, a0],

• u0 is constant in [b0, a1] and [b1, a0], and these are maximal (possibly degenerate) inter-
vals with this property.

Points a0, b0, a1, b1 are uniquely defined. Let us introduce the notation

F+
0 = [b0, a1], F−0 = [b1, a0], u±0 = u(F±0 )

for the (possibly improper) extrema of u0. Consider a pair of initial value problems for
functions u± : [0,∞[→ R:

u+
t = − 2

|F+|
, where F+ = F+(u+(t)) = u−1

0

(
[u+(t),+∞[

)
in ]0,+∞[, (1.8)

u+(0) = u+
0 (1.9)

and

u−t = 2
|F−|

, where F− = F−(u−(t)) = u−1
0
(
]−∞, u−(t)]

)
in ]0,+∞[, (1.10)

u−(0) = u−0 (1.11)

These problems are uniquely soluble in C([0,+∞[)∩C1(]0,+∞[). The solution u+ is decreas-
ing with speed not lower than 2, while u− is increasing with speed not lower than 2. Hence,
there is exactly one t∗ > 0 such that u+(t∗) = u−(t∗). For t ∈ [0, t∗[, let us denote

I+(t) = {x ∈ T : F−(t) < x < F+(t)}, I−(t) = {x ∈ T : F+(t) < x < F−(t)}

and define u(t, ·) by

u(t, x) =
{
u±(t) if x ∈ F±(t)
u0(x) if x ∈ I±(t).

(1.12)
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For t ≥ t∗, we define u(t, ·) by

u(t, ·) ≡ u+(t∗) ≡ u−(t∗). (1.13)

With such definition,

u ∈ C([0,∞[, BV (T)) ∩ C([0,∞[×T) = C([0,∞[,W 1,1(T))

and ∫
T
|ux(t, ·)| = 2(u+(t)− u−(t))

for t ≥ 0. Next, for t ∈]0, t∗[ we define z(t, ·) as the piecewise affine, continuous function such
that

z(t, ·)
∣∣∣I±(t) ≡ ±1, z(t, ·)

∣∣∣F±(t) is affine. (1.14)

For t ≥ t∗, we put
z(t, ·) ≡ 0. (1.15)

By (1.14, 1.15), z(t, ·) is a selection of sgn ux(t, ·) for t ≥ 0, so it satisfies (1.5). Furthermore,
by (1.14, 1.12, 1.8, 1.10),

zx(t, ·) = − 2
|F+(t)|1F+(t) + 2

|F−(t)|1F−(t) = ut(t, ·)

for t ∈]0, t∗[, and by (1.15, 1.13)

zx(t, ·) ≡ 0 ≡ ut(t, ·)

for t > t∗. Thus, we have checked that u is a weak solution to the initial problem for (1.6)
with datum u0.

Example 1.2. For n ≥ 2, let a0, a1, . . . , an−1 ∈ T satisfy a0 < a1 < . . . < an−1 < a0.
For k ∈ Zn, denote F k = [ak, ak+1]. The family {F k : k ∈ Zn} forms a decomposition
of T into non-degenerate closed intervals with pairwise disjoint interiors, ordered so that
F 0 ≤ F 1 ≤ . . . ≤ Fn−1 ≤ F 0. Take u0 ∈ BV (T) such that

u0 =
n−1∑
k=0

uk0 1Fk

with uk0 6= uk+1
0 for k ∈ Zn. For t ≥ 0, define z(t, ·) as the continuous function on T such that

for k ∈ Zn
z(t, ak) = sgn (uk0 − uk−1

0 ), z(t, ·) |Fk is affine. (1.16)

It follows that, for t ≥ 0,

zx(t, ·) =
n−1∑
k=0

sgn (uk+1
0 − uk0)− sgn (uk0 − uk−1

0 )
|F k|

1Fk . (1.17)

Now let us define, for t ≥ 0,

u(t, ·) =
n−1∑
k=0

uk(t)1Fk , uk(t) = uk0 + sgn (uk+1
0 − uk0)− sgn (uk0 − uk−1

0 )
|F k|

t. (1.18)
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By (1.17, 1.18), clearly (1.6) holds in ]0,+∞[×T. By definition of z, we have |z| ≤ 1 in
]0,+∞[×T. However, the second condition in (1.5) takes form

n−1∑
k=0

sgn (uk+1
0 − uk0) (uk+1 − uk)δak+1 =

n−1∑
k=0
|uk+1 − uk|δak+1

which holds only as long as

sgn (uk+1(t)− uk(t)) = sgn (uk+1
0 − uk0),

i. e. for t ∈ [0, t1[, where t1 is the first time instance t > 0 such that uk(t) = uk+1(t) for
a k ∈ Zn. Thus, u is a solution to the initial problem for (1.6) in ]0, t1[×T with datum
u0. At time t1, either u(t1·) is constant and evolution stops, or a new decomposition of
T corresponding to u(t1, ·) can be introduced, and the solution can be continued to [t1, t2[,
t2 > t1, by the same scheme. After at most n − 1 such steps, the evolution reaches steady
state (a constant function).

Based on these examples, let us discuss typical features of solutions to (1.3), which are
also present in higher dimensions.

Facets. In both Examples, in the graphs of solutions u(t, ·), t > 0 appear flat parts, facets.
These facets can propagate from the initial datum u0, as in Example 2, or arise out of local
extrema of u0 in the course of evolution, as in Example 1. In any case, locally (until the
moment any pair of them merges) they are well-defined functions of time.

Nonlocality. In the faceted regions (where ux(t, ·) = 0), the evolution is nonlocal, i. e. the
value of ut(t, x) for x in such a region depends on the behavior of u(t, ·) beyond a small in-
terval centered at x. Indeed, ut(t, x) depends on the length of the whole facet (1.8, 1.10, 1.18).

Limited regularity. As seen in Example 1, the highest level of regularity on Sobolev/Hölder
scale that is propagated by the evolution is W 1,∞/C0,1. Indeed, even if (non-constant) u0
belongs to C∞(T), there necessarily exist time instances t > 0 such that ux(t, ·) has a jump
at ∂F±(t).

(Almost) no regularization. The piecewise constant datum from Example 2 stays piece-
wise constant throughout the evolution. For t ∈]0, t1[ it is not constant. Hence, there is no
instantaneous regularization beyond BV (T).

We are now ready to introduce the new results contained in this thesis.

1.2 The orthotropic total variation flow in the plane

As we have seen in Example 2, the class of piecewise constant functions is preserved by the
total variation flow in 1D. This has been noticed already in [52]. In fact, more is true: if

u0 =
n−1∑
k=0

uk0 1Fk
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with decomposition {F k : k ∈ Zn} of T as in Example 2, then — whether or not the condition
uk0 6= uk+1

0 for k ∈ Zn holds — we have

u(t, ·) =
n−1∑
k=0

uk(t) 1Fk

for all t > 0, where uk are continuous, piecewise linear functions that can be found explicitly
using the algorithm from Example 2. Qualitatively speaking, facets can merge, but they
cannot bend or break. In other words, if u0,x = 0 in an open interval U , then ux(t, ·) = 0 in
U for all t > 0.

Already in two dimensions, the situation is more complicated and strongly depends on
which generalization of (1.3) is chosen. There are at least two natural candidates. Besides
the isotropic total variation flow (1.2) (with | · | being the Euclidean norm), which arises as
the steepest descent flow of (1.1), one can also consider the orthotropic total variation flow
given by

ut = (sgn ux1)x1 + (sgn ux2)x2 , (1.19)

which corresponds to the orthotropic total variation functional

TV1(u) =
∫
|ux1 |+ |ux2 |. (1.20)

Qualitative properties of solutions were investigated first, and most thoroughly, in the
isotropic case [9, 10, 3]. In order to avoid contribution of geometry of the domain, which
is already present even for the flat two-dimensional torus T2, the authors of these works
considered (1.2) in the plane R2. In [9], the authors investigate necessary and sufficient
conditions for a bounded set of finite perimeter C such that

if u0 = 1C , then u(t, ·) = û(t)1C . (1.21)

For connected C, they prove that (1.21) holds iff C is convex, ∂C is of class C1,1 and

ess sup
x∈∂C

κ∂C ≤
P (C)
L2(C) . (1.22)

In (1.22), κ∂C is the curvature of ∂C. The quantity

P (C)
L2(C) (1.23)

is known as the Cheeger quotient of C. For any bounded C of finite perimeter, if (1.21) holds,
then

P (C)
L2(C) ≤

P (D)
L2(D) (1.24)

for all D ⊂ C and
û(t) =

(
1− t P (C)

L2(C)

)
+
. (1.25)

In [10], a class of solutions to (1.2) of form

u(t, ·) =
n−1∑
k=0

ui(t)1Ci (1.26)
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is constructed. The convex sets Ci need to satisfy either Ci ⊂ Cj , Ci ⊂ Cj or Ci∩Cj = ∅ for
i, j = 0, . . . , n−1 together with certain bounds on curvature and relative position (essentially,
their boundaries cannot be to close to each other). In [3], the evolution of the characteristic
function of any bounded convex set E in the plane is described. In particular, if (1.22) is not
satisfied, then there is a proper subset C of E satisfying

u(t, x) = c(t)

for x ∈ C, t > 0. It can be shown [50] that the maximal such C satisfies (1.24) for all D ⊂ E
and c(t) =

(
1− t P (C)

L2(C)

)
+
. In E\C, u decreases faster — bending occurs. The result of [3] was

generalized in [19] to gradient flow of anisotropic total variation TVϕ, TVϕ(u) =
∫
|∇u|ϕ,

where | · |ϕ is any norm on R2. In particular, they characterize convex sets C such that
(1.21) holds. If u0 = 1C for a convex C, breaking never occurs, i. e. the jump set of u(t, ·) is
contained in the jump set of u0. In the isotropic case, this is a special case of a more general
fact: breaking does not occur for any initial datum u0 ∈ BV (R2) [20].

This is no longer the case for (1.19), as evidenced by [65, Example 4]. An offending datum
can be constructed as follows. Let A = [0, 1]2 and let Ba = [0, a] × [−1, 0] for a ∈]0, 1]. Let
ua0 = 1A∪Ba . Then, whenever a ∈]1

2 , 1], the solution ua to (1.19) in R2 is given by

ua(t, ·) = (1− 4t)+ 1A +
(

1− 2
a
t

)
+

1Ba

for t > 0. In particular, for t ∈]0, a/2[, ua(t, ·) has a jump across [0, a]×{0}, even though this
segment does not belong to the jump set of ua0. On the other hand, if a ∈]0, 1/2], we have

ua(t, ·) =
(

1− 6
1 + a

t

)
+

1A∪Ba .

Thus, there are non-convex C for which (1.21) holds.
Note, that whether a > 1

2 or not, ua(t, ·) stays piecewise constant for t > 0. Here we
generalize this observation. Instead of R2, we choose as our spatial domain a rectangle
Ω = [0, a] × [0, b] with Neumann boundary conditions. This is the setting that naturally
appears in imaging, it is also consistent with the Cartesian symmetry of (1.19). Now, let
a0, a1, . . . , am, b0, b1, . . . , bn ∈ R with 0 = a0 < a1 < . . . < am = a, 0 = b0 < b1 < . . . < bn = b
and denote

F ij = [ai, ai+1]× [bj , bj+1]
for i = 0, . . . ,m− 1 and j = 0, . . . , n− 1. Given uij0 ∈ R, i = 0, . . . ,m− 1, j = 0, . . . n− 1 let

u0 =
m−1∑
i=0

n−1∑
j=0

uij0 1F ij , (1.27)

and denote by u the solution to (1.19) in ]0,∞[×Ω with Neumann boundary conditions and
initial datum u0. We will address the questions of rigorous definition of solution and its
existence later on in the Preliminaries.

In Chapter 2, we prove the following

Theorem 1.1. There exist continuous functions uij : [0,∞[→ R such that for t ≥ 0

u(t, ·) =
m−1∑
i=0

n−1∑
j=0

uij(t)1F ij .
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The functions uij are finitely piecewise affine, i. e. there exist time instances 0 = t0 < t1 <
. . . < tk such that uij is affine in [tl, tl+1] for l = 0, . . . , k − 1 and constant in [tk,∞[,
i = 0, . . . ,m− 1, j = 0, . . . , n− 1.

The proof of Theorem 1.1 is based on analysis of a more involved, anisotropic version of
Cheeger quotient (1.23). In section 2.2, we prove that the quotient is minimized by a rectilinear
polygon. An important point in the proof is that, due to the structure of the Cheeger quotient,
we are able to construct approximate minimizers that belong to a finite class of rectilinear
polygons determined by u0. As the set of all rectilinear polygons with bounded Cheeger
quotient is not closed, this finiteness is essential. In section 2.3 we then use this result to
prove Theorem 1.1 by constructing level sets of u(t, ·) for t > 0. In section 2.4 we then transfer
Theorem 1.1 to the case Ω = R2.

As (sgn ux1)x1 + (sgn ux2)x2 is a monotone operator, for any datum u0 ∈ L2(Ω) and
a sequence u0,n ∈ L2(Ω), n = 1, 2, . . . such that u0,n → u0 in L2(Ω), solutions un(t, ·) with
data u0,n converge in L2(Ω) to the solution u(t, ·) with datum u0 for t > 0. It is easy to check
that the set of functions of form (1.27) is dense in L2(Ω). In fact, it is even strictly dense in
BV (Ω) (in the sense of seminorm

∫
Ω |∇u|1), see [18, Theorem 3.4]). Therefore, we do not only

construct explicit solution to the Neumann problem for (1.19) when the initial datum is of
form (1.27), but we provide a natural approximation to the solution with any initial datum.
This is a considerably stronger result than what could be obtained in the isotropic case. In
section 2.5 we use it to prove that continuity is preserved by the orthotropic total variation
flow on a rectangle.
Theorem 1.2. Let Ω be a rectangle and let u be the solution to 1.19 in ]0,∞[×Ω with
Neumann boundary condition and initial datum u0 ∈ C(Ω). Then u(t, ·) ∈ C(Ω) in every
t > 0. In fact, if ω1, ω2 : [0,∞[→ [0,∞[ are continuous functions such that

|u0(x1, x2)− u0(y1, y2)| ≤ ω1(|x1 − y1|) + ω2(|x2 − y2|)

for each (x1, x2), (y1, y2) in Ω then we have

|u(t, (x1, x2))− u(t, (y1, y2))| ≤ ω1(|x1 − y1|) + ω2(|x2 − y2|)

for each t > 0, (x1, x2), (y1, y2) in Ω.
Note that if ω is a concave modulus of continuity for u0 with respect to norm | · |1, then

ω1, ω2 defined by ω1 = ω2 = ω satisfy the assumptions of Theorem 1.2. On the other hand,
given ω1, ω2 as in the Theorem, ω′ = ω1 + ω2 is a modulus of continuity for u0 (as well as
u). Theorem 1.2 implies for instance that if L is the Lipschitz constant for u0 with respect to
norm | · |1, then the Lipschitz constant of u with respect to norm | · |1 is not greater than L.

In the final section of Chapter 2, we provide several examples illustrating our results. In
particular, we show an example of a smooth initial datum on a non-convex rectilinear polygon
such that u(t, ·) has a jump discontinuity for small enough t > 0.

We note that analogous results can be obtained for minimizers of functional

u 7→ TV1(u) + 1
2λ

∫
(u− u0)2 (1.28)

with given u0 ∈ L2(Ω), λ > 0. Minimization of (1.28), rather than following the flow given
by (1.19), is the more common way of decreasing TV1 in applications to image processing
(see e. g. [29, 22]). The paper [56] contains both the results of Chapter 2 and their analogues
for minimizers of (1.28). Here we focus on the mathematical side of our results and refer for
the discussion of significance in applications to [56].
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1.3 Facets in a uniformly parabolic equation
In Chapter 3, we consider the equation

ut = uxx + α
2 (sgn ux)x on ]0,∞[×T. (1.29)

Here, T is the standard one-dimensional torus, which we identify with the unit interval [0, 1]
with periodic boundary conditions. Well-posedness of initial value problem for (1.29) may be
obtained by viewing it as a parabolic inclusion

ut(t, ·) ∈ Lu(t, ·) for a. e. t > 0, (1.30)

where L = −∂J and J is a functional defined on L2(T) by

J (u) =
{ 1

2
∫
T u

2
x + α|ux| if u ∈ H1(T),

+∞ otherwise.
(1.31)

Clearly, D(J ) = H1(T) and J is equivalent to the standard seminorm on H1(T). Further-
more, J is convex and lower semicontinuous.

Equipped with above observations concerning J , we can use monotone operators theory to
obtain basic existence and regularity result for the inclusion (1.30) [8, Chapter IV, Theorems
2.1 and 2.2].

Proposition 1.2. Let u0 ∈ L2(T). The problem (1.30) with initial condition u0 has a unique
solution

u ∈ C([0,∞[;L2(T)) ∩ L2
loc([0,∞[;H1(T))

which satisfies
u(t, ·) ∈ D(L) for all t ∈]0,∞[.

Moreover, we have
d+

dt u = L0u for all t ∈]0,∞[.

Here, d+

dt u denotes the right-sided time derivative of u and L0 is the minimal selection of L,
i. e. for u ∈ D(L), L0u is the (uniquely defined) element of Lu of minimal norm in L2(T).

It turns out, that similarly to the case of the total variation flow, flat facets appear in
graphs of u(t, ·), t > 0. However, now their evolution is non-trivial and there is a sort
of competition between the faceting effect of the 1-Laplace operator and smoothing due to
presence of the laplacian [67]. In Chapter 3, we argue that these facets are well defined
functions of time and satisfy certain continuity properties.

We recall that there is a natural cyclic order on T which is a ternary relation. We will
use the notation a < b < c (a, b, c ∈ T) to represent it. Just as the usual order on R, it can
be used to define intervals, e. g.

]a, b[= {x ∈ T : a < x < b}

for a, b ∈ T. The cyclic order naturally extends to subsets of T. For A,B,C ⊂ T, we write

A < B < C if a < b < c for all a ∈ A, b ∈ B, c ∈ C.



16 Chapter 1. Introduction

It is natural to index ordered families of n points or subsets of T by elements of the cyclic
group Zn = Z/nZ consisting of integers 0, . . . n− 1 with addition modulo n.

Let us denote by F(T) the set of (non-empty) closed intervals in T. Supplied with Hausdorff
distance, this forms a complete metric space. We also introduce complementary notation I(T)
for the set of (non-empty) open intervals in T. In section 3.2 we prove

Theorem 1.3. Let u0 ∈ D(L) be non-constant and satisfy L0u0 ∈ L∞(T). There exists an
integer m0 with 2m0 ≤ α−2‖L0u‖2L2(T) and a sequence of time instances

0 = t0 < t1 ≤ t2 ≤ . . . ≤ tm0

such that for m = 0, . . . ,m0 − 1 and k ∈ Z2(m0−m) there exist

Ikm : [tm, tm+1[→ I(T), F km : [tm, tm+1[→ F(T)

satisfying for t ∈ [tm, tm+1[:

•
{
Ikm(t), F km(t) : k ∈ Z2(m0−m)

}
is a disjoint decomposition of T and

Ikm(t) < F km(t) < Ik+1
m

for k ∈ Z2(m0−m);

• ux = 0 in F km(t) for k ∈ Z2(m0−m), if t 6= 0 then ux > 0 in Ikm(t) for k even and ux < 0
for k odd;

• |F km(t)| ≥ α2‖L0u0‖−2
L2(T);

• there holds

F km(t) = lim sup
s→t−

F km(s) (for t 6= tm) and F km(t) = lim
s→t+

F km(s)

in the sense of Kuratowski convergence (equivalently, F km is left upper semicontinuous
and right continuous with respect to Hausdorff metric);

Furthermore, for each m = 1, . . . ,m0 there exists k ∈ Z2(m0−m) such that

lim sup
t→t−m

F km(t) ∩ lim sup
t→t−m

F k+1
m (t) 6= ∅ (1.32)

and we have

u(t, ·) ≡
∫
T
u0 for t ≥ tm0 , tm0 ≤ (απ)−1

∥∥∥∥u0 −
∫
T
u0

∥∥∥∥
L2(T)

. (1.33)

An important ingredient in the proof of Theorem 1.3 is regularity provided by Lemma 3.2
in section 3.2. It also follows from Lemma 3.2 that L0u ∈ L∞(T) in ]0,∞[ for the solution
u to (1.30) starting from u0 ∈ L2(T). Therefore, Theorem 1.3 in fact describes the generic
behavior of the solution to (1.30) starting with any u0 ∈ L2(T).
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1.4 A local estimate for the total variation flow of curves
Let I =]a, b[ be an open interval. Given u0 in BV (I,Rn), let u(t, ·) = S(t)u0 for t ≥ 0,
where S is the gradient flow of the convex, lower semicontinuous total variation functional
TVn

I : L2(I,Rn)→ [0,+∞],

TVn
I (u) = sup

{∫
I
u ·ϕx : ϕ ∈ C1

c (I,Rn), |ϕ| ≤ 1
}

=
{
|ux|(I) if u ∈ BV (I,Rn),
+∞ otherwise.

Here and in the following, if v is a vector in a Euclidean space, |v| denotes its Euclidean norm,
while if w is a vector measure on I, |w| denotes its variation with respect to the Euclidean
norm. As in [6, section 2.2], we deduce that u is the unique element of C([0,∞[;L2(I,Rn))∩
L1
w,loc(]0,∞[;BV (I,Rn)) such that there exists

z ∈ L∞(]0,∞[×I,Rn) with zx ∈ L2(]0,∞[×I,Rn)

satisfying
ut = zx a. e. in ]0,∞[×I, (1.34)

|z| ≤ 1 a. e. in ]0,∞[×I, (1.35)

z(t, ·) · ux(t, ·) = |ux(t, ·)| for a. e. t > 0 in the sense of measures on I, (1.36)

z(t, ·) = 0 on ∂I for a. e. t > 0, (1.37)

u(0, ·) = u0. (1.38)

Note that the product z(t, ·) ·ux(t, ·) is indeed well defined for a. e. t > 0 as z(t, ·) belongs to
C(I,Rn) for a. e. t > 0.

It is an essential property of u as a steepest descent curve of TVn
I , that

|ux(t, ·)|(I) ≤ |u0,x|(I)

for t > 0. It turns out that this estimate can be localized in an unusually robust way.

Theorem 1.4. For a. e. t > 0 there holds |ux(t, ·)| ≤ |u0,x| in the sense of Borel measures
on I, i. e.

|ux(t, ·)|(A) ≤ |u0,x|(A) (1.39)

for any Borel A ⊂ I.

It is an immediate consequence of Theorem 1.4 that if u0 belongs to any subspace
of BV (I,Rn) defined in terms of a bound on |u0,x|, such as W 1,p(I,Rn), p ∈ [1,∞] or
SBV (I,Rn), then u(t, ·) belongs to the same subspace for a. e. t > 0.

Inequality (1.39) is an example of a completely local estimate, in the sense that a local
quantity at a time instance t > 0 is estimated by precisely the same quantity at a previous
time instance. Several results like that are already known for gradient flows functionals
similar to TVn

I . In [13], the authors consider scalar total variation flow on an interval I. By
analyzing the evolution of step functions (which is a class preserved by the flow) and using
Lq contractivity of the flow, they prove that if u is the solution starting with initial datum
u0 ∈ BV (I), the size of jumps of u(t, ·) is not bigger than the size of corresponding jumps of
u0 and that

osc Ju(t, ·) ≤ osc Ju0, (1.40)
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where J ⊂ I is any open interval where u0 is continuous and osc Jv = supJ v − infJ v for
v ∈ C(J). The authors remark that this implies preservation ofW 1,1(I) and C0,α(I), α ∈]0, 1]
regularity by the flow. Preservation of W 1,1(I) regularity has recently been obtained also for
gradient flows of more general functionals of linear growth on an interval [68].

On the other hand, in [15] the authors consider the gradient flow of a functional u 7→∫
Ω |divu|, where Ω is a bounded domain in Rm. For a solution u starting with u0 ∈ L2(Ω,Rm)
such that divu0 is a Radon measure on Ω, they prove that

(divu(t, ·))± ≤ (divu0)±

in the sense of measures for t > 0. This coincides with our result in the case m = n = 1.
Their technique is based on considering the dual problem to the variational semi-discretization
of the flow and involves a comparison principle. In the essential lemma, they show certain
monotonicity property of level sets of the solution to the dual problem with respect to the
parameter of discretization. This does not seem to be readily adaptable to the case where
the divergence is a vectorial quantity (which would cover our result for m = 1). On the other
hand, our technique could be directly transferred to the case of gradient flow of

∫
Ω |divu|.

We did not explicitly include this case in order not to obfuscate this Chapter, as it is beside
our primary interest.

We note that if n ≥ 2, the evolution is less obvious than in case n = 1. Indeed, as seen in
Examples 1.1 and 1.2, in the latter case, it can be made completely explicit for a large class
of initial data. This is because if n = 1, non-trivial evolution only occurs at local extrema,
which is of course no longer true if n ≥ 2.

At this point, let us mention that our technique allows also to prove analogous version
of Theorem 1.4 in the setting where the target of u is a Riemannian submanifold in Rn. In
fact, this provides a helpful a priori estimate for the proof of existence of such constrained
total variation flow (so-called 1-harmonic flow) [37]. Theorem 1.4 can also be generalized to
different (e. g. Dirichlet) boundary conditions.

We also mention that in the case of isotropic scalar total variation flow on anm-dimensional
domain Ω, a completely local estimate of type (1.39) is available [20] for the jump part of the
gradient of the solution u starting with u0 ∈ BV (Ω) ∩ L∞(Ω):

|∇u(t, ·)| Ju ≤ |∇u0| Ju0 . (1.41)

It is also well known that such an estimate does not hold for the absolutely continuous part of
|∇u|. For a counterexample, one can take as u0 the characteristic function of a non-calibrable
set, such as a square in the plane [3]. To our knowledge, it is an open question whether an
estimate analogous to (1.39) holds for the remaining Cantor part.

On the other hand, as we have already mentioned in section 1.2, for the orthotropic total
variation flow, the jump set of solution may expand compared to the initial datum. In fact
jumps can appear even if the initial datum has no jumps (Example 2.3).

Finally, we note that a result analogous to Theorem 1.4 can be obtained for minimizers of

u 7→ TVn
I (u) + 1

2λ

∫
I
(u− u0)2. (1.42)

This is done in [35]. Theorem 1.4 is then deduced by the authors as a simple consequence.
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1.5 Regular 1-harmonic map flow
Let (N , g) be a complete, connected smooth n-dimensional Riemannian manifold (without
boundary). Throughout this section and Chapter 5, without loss of generality [69, 46], we
will treat it as an isometrically embedded submanifold in the Euclidean space RN . Given an
open, bounded Lipschitz domain Ω ⊂ Rm we consider the formal steepest descent flow with
respect to the L2 distance of the functional TVNΩ : the total variation functional constrained
to functions taking values in N , given for smooth u by

TVNΩ (u) =
∫

Ω
|∇u|. (1.43)

Following the L2-steepest descent flow is one way of controlled decreasing TVNΩ , which
is a problem appearing in image processing. Besides the case N ⊆ SN−1, which appears in
denoising of optical flows [77] or color images [78], other examples of targets appearing in
applications include the space of isometries SO(3)×R3 [57], the cylinder R2× S1 (LCh color
space) [82] and the space of positive definite symmetric matrices (diffusion tensors) Sym+(3)
[82]. All of these examples are homogeneous spaces, and therefore have natural invariant
metrics. Our main goal in Chapter 5 is to develop a well-posedness theory for the flow in
a generality encompassing these cases. As some of these manifolds are non-compact, we refrain
from the unnecessary (although convenient) assumption of compactness of N . We underline
that in this case well-posedness results are not directly provided by classical semigroup theory,
since the spaces of N -valued functions are not even linear.

Given a point p ∈ N , we denote by

πp : TpRN ≡ RN → TpN

the orthogonal projection onto the tangent space of N at p, TpN . Similarly, π⊥p will denote
the orthogonal projection of RN onto the normal space TpN⊥. The centered dot will denote
the Euclidean scalar product on Rm or RN , while k stacked dots will denote the induced
scalar product on a Cartesian product of any k-tuple of these spaces. Calculating the first
variation of (1.43) at u, one obtains that the flow in a time interval [0, T [ starting with initial
datum u0 is formally given by the system

ut = πu
(
div ∇u|∇u|

)
in ]0, T [×Ω, (1.44)

νΩ · ∇u|∇u| = 0 in ]0, T [×∂Ω, (1.45)

u(0, ·) ≡ u0. (1.46)
The symbol νΩ denotes the external unit normal of Ω, which is defined Hm−1-a. e. on ∂Ω.
The meaning of the expression ∇u

|∇u| in (1.44, 1.45) deserves a clarification even for smooth u:
we understand ∇u

|∇u| as a multifunction

∇u
|∇u| : (t,x) 7→


∇u(t,x)
|∇u(t,x)| if ∇u(t,x) 6= 0
B(0, 1) ⊂ Rm × Tu(t,x)N if ∇u(t,x) = 0

and require that (1.44, 1.45) are satisfied for an appropriate selection. This is formalized in
the following definition, which is an adapted version of [6, Definition 2.5]. Here and in the
following we will use the notation

X(U,N ) = {w ∈ X(U,RN ) : w(y) ∈ N for a. e. y ∈ U},
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where U is any domain in Rl (or a compact l-dimensional Riemannian manifold), l = 1, 2, . . .
and X(U,RN ) is a subspace of L1

loc(U,RN ).

Definition 1.2. Let T ∈]0,∞]. We say that

u ∈W 1,2
loc ([0, T [×Ω,N ) with ∇u ∈ L∞loc([0, T [×Ω,Rm·N )

is a (regular) solution to (1.44) (in [0, T [) if there exists Z ∈ L∞(]0, T [×Ω,Rm·N ) with divZ ∈
L2
loc([0, T [×Ω,RN ) satisfying

Z ∈ ∇u
|∇u| , (1.47)

ut = πu(divZ) (1.48)

L1+m − a. e. in ]0, T [×Ω. We say that a regular solution u to (1.44) satisfies (homogeneous)
Neumann boundary condition (1.45) if

νΩ ·Z = 0 (1.49)

L1 ⊗Hm−1 − a. e. in ]0, T [×∂Ω.

Remark. Due to Morrey’s embedding theorem, any regular solution to (1.44) has a represen-
tative that is locally Hölder continuous on [0, T [×Ω [47, Theorem 5]. We will identify it with
this representative. In particular, the initial condition (1.46) can be understood pointwise.
On the other hand, νΩ ·Z in (1.49) has to be understood as the normal trace of an L∞ vector
field with integrable divergence, as defined in [79, 7].

If conditions in Definition 1.2 are satisfied, we will often say that the pair (u,Z) is a (reg-
ular) solution to (1.44) and/or (1.45). We will often use equivalent (see e. g. the proof of
Lemma 5.2) form of (1.48):

ut = divZ +Au(uxi ,Zi), (1.50)

where Ap denotes the second fundamental form of N at p ∈ N and Z = (Z1, . . . ,Zm). Here
and throughout Chapter 5, we use Einstein’s summation convention.

The adjective regular in Definition 1.2 is justified by the following considerations. Firstly,
W 1,∞(Ω) is the highest Sobolev regularity that is preserved by the scalar total variation flow
[51, 13]. Secondly, such attribute distinguishes the class of solutions in Definition 1.2 from
weak (energy) solutions, whose natural spatial regularity is BV (Ω). However, we note that
in the constrained case, even defining a proper concept of solution is non-trivial in the BV
setting, the crucial issue being an appropriate identification of the right-hand side of (1.48) or
of (1.50). In this regard, the only case considered so far is N ⊆ Sn, in which (1.50) drastically
simplifies due to the isotropy of the sphere:

ut = divZ + u|∇u|.

Suitably defined solutions to (1.44, 1.45) have been obtained in [39] when the initial datum is
contained in an hyper-octant of Sn [39]. When n = 1, the assumption on u0 may be relaxed
and uniqueness results are available too [38]. A notion of solution extending the one in [38, 39]
to (N − 1)-dimensional manifolds with unique geodesics has been proposed in [25]. Existence
of solutions for a discretized Dirichlet problem for (1.44) in the case N = Sn, m = 2 has been
obtained in [44]. The validity of Definition 1.2 is supported by the well-posedness results that
we obtain. First of all, regular solutions are unique.
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Theorem 1.5. Suppose that u1,u2 are two regular solutions to (1.44, 1.45) in [0, T [, T ∈
]0,∞[ such that u1(0, ·) = u2(0, ·) = u0. Then u1 ≡ u2.

The proof of Theorem 1.5 is different from the proofs of analogous results for p-harmonic
flow in [48, 32] in that we do not use strict monotonicity of the p-Laplace operator (since it
does not hold for p = 1).

Provided that Ω is convex, we are able to construct local-in-time Lipschitz solutions to
(1.44, 1.45). We need the assumption of convexity, as we are forced to use global Lp estimates
for ∇u. Localization of these estimates is not available due to the strong degeneracy of
the 1-Laplace operator div ∇u|∇u| . In fact, at least in the case of anisotropic total variation
flow, there are examples of non-convex Lipschitz Ω, where W 1,p(Ω) regularity classes are not
preserved by the flow (Example 2.3). The assumption of convexity is not very restrictive from
the point of view of image processing, as typical domains in applications are rectangles (or
boxes of different dimensions).

The existential theory depends on the sectional curvature KN of N or, equivalently, on
the Riemannian curvature tensor RN of N . We denote by KN the supremum of sectional
curvature over N , i. e.

KN = sup
{

v · RNp (v,w)w
|v|2|w|2 − (v ·w)2

∣∣∣∣∣ p ∈ N ,v,w ∈ TpN linearly independent
}
. (1.51)

Recall that KSO(n)×Rn is positive (and finite) and KS1×Rn , KSym+(n) are non-positive.

Theorem 1.6. Suppose that Ω is convex, the embedding of N in RN is closed and KN <∞.
Given u0 ∈ W 1,∞(Ω,N ), we denote T† = (KN ‖∇u0‖L∞)−1 if KN > 0 and T† = +∞
otherwise. There exists a regular solution u to (1.44, 1.45, 1.46) in [0, T†[ satisfying the
energy inequality

ess sup
t∈[0,T†[

∫
Ω
|∇u(t, ·)|+

∫ T†

0

∫
Ω
u2
t ≤

∫
Ω
|∇u0|. (1.52)

This theorem bears a similarity to [41, Theorem 3.4], where Lipschitz local-in-time solu-
tions to (1.44) are constructed in the case where Ω is a flat torus, i. e. a box with periodic
boundary conditions. However, aside from the choice of boundary condition, there are dif-
ferences between these results — most importantly, in [41], smallness of ∇u0 in L1+ε(Ω) is
assumed. This is because in [41], global solutions to p-harmonic flows constructed in [33] for
small initial data are used as an approximation. In our case a different approximation scheme
is proposed. In fact we cannot use the results in [33] as non-trivial boundary conditions are
not handled there.

At least in the case of Dirichlet boundary data, regular solutions to (1.44) can blow up
in finite time, as shown by explicit examples in [24, 40]. In our case, we prove that solutions
exist globally in time, provided that the range of the initial datum is contained in a small
enough ball in N . In fact, in this case they become constant in finite time, similarly as
for the scalar total variation flow [42]. Note that in the case of inhomogeneous Dirichlet
boundary conditions, the evolution of generic initial data under 1-harmonic flow does not
stop in finite time [43], in contrast to what is observed in the scalar total variation flow, at
least in 1-dimensional domains [51]. Let us denote by Bg(p, R) the ball centered at p ∈ N of
radius R > 0 with respect to the metric induced by g on N .
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Theorem 1.7. Let p0 ∈ N , u0 ∈ W 1,∞(Ω,N ) and u be a regular solution to (1.44, 1.45,
1.46) in [0, T [. Suppose that u0(Ω) ∈ Bg(p0, R), R > 0. There exist

• a constant R∗ = R∗(N ,p0) > 0 such that if R < R∗, then u(t,Ω) ∈ Bg(p0, R) for
t ∈]0, T [,

• constants R̃∗ = R̃∗(N ,p0) ∈]0, R∗[, C = C(Ω,N ,p0) > 0 and u∗ ∈ N such that if
R < min

(
R̃∗,

T
C

)
, then u(t, ·) ≡ u∗ for t ∈]CR, T [.

In the particular case KN ≤ 0 no blow-up occurs for any Lipschitz datum, and we can
obtain a stronger result of global existence. Owing to particularly simple topology of Rie-
mannian manifolds with KN ≤ 0, we need not assume the existence of a closed embedding of
N into RN in this case.

Theorem 1.8. Suppose that Ω is convex and KN ≤ 0. Let u0 ∈ W 1,∞(Ω,N ). There exists
a regular solution u to (1.44, 1.45, 1.46) in [0,∞[ satisfying the energy inequality (1.52).
There exists T∗ = T∗(u0) ∈ [0,∞[ and u∗ = u∗(u0) ∈ N such that u(t, ·) ≡ u∗ for t ≥ T∗.
Furthermore,

ess sup
t>0
‖∇u(t, ·)‖L∞(Ω) ≤ ‖∇u0‖L∞(Ω).

We remark that in the scalar case the preservation of the W 1,∞ bound follows from [21,
Corollary 5.6]. However, the methods there are not readily adaptable to vectorial problems.

From the point of view of imaging science, the rigorously defined notion of regular solution
to (1.44, 1.45, 1.46) provides a theoretical basis for computing a total variation diminishing
flow via a finite difference scheme. Our well-posedness results should then be expected to
translate to stability results for such a scheme. In these terms, the requirement of Lipschitz
regularity of data is not a significant restriction, as it corresponds to the boundedness of
difference quotients on the level of discretization. In the case where N has non-positive sec-
tional curvature (Theorem 1.8), stability propagates indefinitely, even if initial image exhibits
prominent contours. However, this is not necessarily the case anymore for general N , as
the bound on existence time T† of the solution constructed in Theorem 1.6 deteriorates with
increasing Lipschitz constant of the datum. For this reason, well-posedness for a notion of
solution defined on the energy space BV (Ω,N ) would be more desirable. In fact, we plan to
use the thery developed here as a basis for treating this problem.

The regular 1-harmonic flow that we consider here is continuous over the spacetime, and
hence capable of generating homotopy. For this reason we find it appropriate to discuss in
detail the case where the domain is a compact Riemannian manifold (M, γ). In this setting,
the total variation functional takes form

TVNM(u) =
∫
M
|du|γ dµγ . (1.53)

To explain the notation in (1.53), we introduce local coordinates x 7→ (x1, . . . , xm) on M
and denote γ(v,w) = γabv

awb for any vector fields v,w onM,
(
γab
)

1≤a,b≤m
= (γab)−1

1≤a,b≤m.

We have | du|γ = (γabuixauixb)
1
2 and dµγ = |det (γab)|

1
2 dLm. In this setting, the system of

equations (1.44) representing the flow becomes

ut = πu
(
divγ du

| du|

)
in ]0, T [×M. (1.54)
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The expression for divγ acting on a 1-form ϑ onM in coordinates is

divγϑ = |det (γab)|−
1
2
(
|det (γab)|

1
2γabϑb

)
xa
.

Observe that (1.54) is a formal limit as p→ 1+ of systems

ut = πu(divγ(|du|p−2 du)) in ]0, T [×M (1.55)

corresponding to p-harmonic map flows between Riemannian manifolds. These were first
considered in the case p = 2 in connection with the homotopy problem for harmonic maps,
i. e. the problem of finding a harmonic map homotopic to a given one. The problem was
solved in [28] under the condition that KN ≤ 0 by constructing the harmonic map flow. An
analogous result was later obtained in [32] for any p > 1. We note that there are several non-
equivalent notions of p-harmonic maps, among them weakly p-harmonic maps, i. e. stationary
weak solutions to (1.55).

We introduce the notation

du
| du|γ : (t,x) 7→


du(t,x)
| du(t,x)|γ if du(t,x) 6= 0
Bγ(0, 1) ⊂ T ∗xM× Tu(t,x)N if du(t,x) = 0.

Measurable selections of du
| du|γ (t, ·) can be seen as L∞ sections of the bundle T ∗M×RN over

M for a. e. t ∈]0, T [, see [70] for reference. As in [70], we let Lp(T ∗M×RN ) denote Lp sections
of this bundle, p ∈ [1,∞]. Similarly, we denote by Lp(]0, T [×T ∗M× RN ) the space of Lp
sections of the bundle ]0, T [×T ∗M×RN over ]0, T [×M, and by Lploc([0, T [×T ∗M×RN ) the
space of measurable sections of this bundle which are p-integrable locally on [0, T [×M. We
are ready to introduce a concept of solution to (1.54).

Definition 1.3. Let T ∈]0,∞]. We say that

u ∈W 1,2
loc ([0, T [×M,N ) with du ∈ L∞loc([0, T [×T ∗M× RN )

is a (regular) solution to (1.54) (in [0, T [) if there exists Z ∈ L∞(]0, T [×T ∗M× RN ) with
divγZ ∈ L2

loc([0, T [×M,RN ) satisfying

Z ∈ du
| du|γ , (1.56)

ut = πu(divγZ) (1.57)

L1+m − a. e. in ]0, T [×M.

The strength of our result in this case depends on the sign of the Ricci curvature RicM
ofM. Opposite to the usual convention, we define it as a (2, 0) tensor, i. e.

(RicM)ab = γacγbd(RM)eced (1.58)

in coordinates. We denote

RicM = min
{
RicMp (ϑ,η)
|ϑ|γ |η|γ

∣∣∣∣∣ p ∈M,ϑ,η ∈ T ∗pM\ {0}
}
.
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Theorem 1.9. Let (M, γ) be a compact, orientable Riemannian manifold and let (N , g) be
a compact submanifold in the Euclidean space RN . Given u0 ∈ W 1,∞(M,N ), there exists
T ∈]0,∞] and a unique regular solution to (1.54, 1.46) in [0, T [.

If KN ≤ 0, the solution exists in [0,∞[. If in addition RicM ≥ 0, there exists a
sequence (tk) ⊂]0,∞[, tk → ∞, u∗ ∈ W 1,∞(M,N ) and Z∗ ∈ L∞(T ∗M × RN ) with
divγZ∗ ∈ L∞(M,RN ) such that

πu∗(divγZ∗) = 0, Z∗ ∈ du∗
| du∗|γ , (1.59)

u(tk, ·)→ u∗ in C(M,N ). (1.60)

As u is continuous and the sequence (u(tk, ·)) converges to u∗ in C(M,N ), u∗ and u0
are homotopic. Thus, we have solved the homotopy problem for (weakly) 1-harmonic maps
assuming thatM is orientable with RicM ≥ 0 and KN ≤ 0.

The plan of Chapter 5 is as follows. Firstly, in section 5.1, we prove Theorem 1.5. In
section 5.2, we obtain well-posedness of an approximating system to (1.44, 1.45, 1.46) and
we obtain some a priori estimates (independent of the parameter of approximation) for their
solutions. This permits us to prove Theorem 1.6, to which section 5.3 is devoted. The
asymptotic behavior is treated in the next sections: in section 5.4, we prove Theorem 1.7
while in section 5.5, we treat the case of non-positive curvature; i.e Theorem 1.8. Section
5.6 is devoted to the case where the domain is a compact Riemannian manifold, in which we
prove Theorem 1.9.



Chapter 2

The orthotropic total variation flow
in the plane

2.1 Notation and preliminaries

2.1.1 Balls

In this Chapter, by Bϕ(x, r) we denote the ball in RN with respect to norm | · |ϕ, centered
at x, of radius r. For the ball with respect to the Euclidean norm, we write simply B(x, r).
Symbols Bϕ(r), B(r) stand for balls centered at the origin.

2.1.2 Measures. Lebesgue and Bochner spaces

We denote by Lm andHm−1 them-dimensional Lebesgue measure and the (m−1)-dimensional
Hausdorff measure in Rm, respectively. If A ⊂ Rm is a set of positive (possibly infinite) Lm
measure, we denote by Lp(A), 1 ≤ p ≤ ∞ the Lebesgue space of functions integrable with
power p with respect to Lm. On the other hand, if A ⊂ Rm has finite Hm−1 measure (e. g. A is
the boundary of a Lipschitz domain), Lp(A) denotes the Lebesgue space of functions integrable
with power p with respect to Hm−1. We adopt similar notation for spaces Lp(A,Rk), k =
2, 3, . . . Whenever it is clear, we adopt the convention that an equality or inequality between
two measurable functions holds in the sense of Lebesgue spaces, i. e. almost everywhere with
respect to the corresponding (implicitly specified) measure, unless otherwise stated.

If T ∈]0,∞] and X is a Banach space, we denote by Lp(]0, T [, X) the usual space of
Bochner measurable functions f : ]0, T [→ X s. t.

∫ T
0 ‖f‖

p
X < ∞. By Lpw(]0, T [, X) we denote

the analogous space of weakly measurable functions (see [8, Chapter I]).

2.1.3 Functions of bounded variation and sets of finite perimeter

We use standard definitions of the theory of functions of bounded variation, as outlined in
[5, 31], with occasional differences in notation. Let Ω be an open set in Rm. Given u ∈ L1

loc(Ω),
we define the total variation of u by

TVΩ(u) = sup
{∫

Ω
udivη dLm : η ∈ C1

c (Ω,Rm), |η| ≤ 1
}
.

If TVΩ(u) < +∞, we write u ∈ BV (Ω). In this case the distributional gradient Du of u is a
Radon vector measure, and there holds TVΩ(u) = |Du|(Ω), where |Du| denotes the variation
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measure of Du. We write u±(x) for the lower and upper approximate limits of u at x ∈ Ω
which exist Hm−1-a. e. and Ju for the jump set of u, i. e. the set of points where u+ 6= u−.
Finally, Du

|Du| denotes the Radon-Nikodym derivative of Du with respect to its variation |Du|.
Given a Lebesgue measurable subset E of Rm, we define its perimeter in Ω by

Per(E,Ω) = TVΩ(1E)

and write Per(E) = Per(E,Rm).
If E is a set of finite perimeter in Ω, the jump set of 1E is Hm−1-equivalent to the

reduced boundary ∂∗E defined by the following. We say a point x ∈ Ω belongs to ∂∗E if
|D1E |(B(x, %)) > 0 for sufficiently small % > 0 and quantity D1E(B(x,%))

|D1E |(B(x,%)) has a limit that
belongs to Sm−1 as % → 0+. If these conditions hold, we denote this limit by νE(x). There
holds

∂∗E ⊂ ∂
1
2E =

{
x ∈ Ω: lim

%→0+

Lm(B(x, %) ∩ E)
Lm(B(x, %)) = 1

2

}
,

also Hm−1
(
∂

1
2E \ ∂∗E

)
= 0 and Hm−1-almost every point in Ω is either a Lebesgue point

for 1E or belongs to ∂∗E.

2.1.4 The anisotropic total variation. The anisotropic perimeter

We recall here the notion of anisotropic total variation introduced in [4]. Given an open set
Ω ⊆ Rm, a norm | · |ϕ on Rm, and a function u ∈ L1

loc(Ω), we define

TVϕ,Ω(u) = sup
{∫

Ω
udivη dLm : η ∈ C1

c (Ω,Rm), |η|∗ϕ ≤ 1
}

where | · |∗ϕ denotes the dual norm associated with | · |ϕ. When restricted to L2(Ω), this is a
proper, convex, lower semicontinuous functional with values in [0,∞]. We have TVϕ,Ω(u) <
+∞ iff u ∈ BV (Ω), in which case we define a measure |Du|ϕ by

|Du|ϕ =
∣∣∣∣ Du|Du|

∣∣∣∣
ϕ

|Du|.

There holds |Du|ϕ(Ω) = TVϕ,Ω(u). This is an equivalent seminorm on BV (Ω).
Given a Lebesgue measurable set E in Rm we denote Perϕ(E,Ω) = TVϕ,Ω(1E) and

Perϕ(E) = Perϕ(E,Rm). If E has finite perimeter in Ω, then

Perϕ(E,Ω) =
∫

Ω∩∂∗E
|νE |ϕ dH1. (2.1)

If ∂E is Lipschitz, we can drop the star in ∂∗E, and νE is the pointwise Hm−1-a. e. defined
outer Euclidean normal to E.

2.1.5 The subdifferential of TVϕ,Ω

We consider the space

XΩ =
{
ξ ∈ L∞(Ω,Rm) : div ξ ∈ L2(Ω)

}
. (2.2)
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In [7, Theorem 1.2], the weak trace on the boundary of a bounded Lipschitz domain Ω of the
normal component of ξ ∈ XΩ is defined. Namely, it is proved that the formula〈

[ξ,νΩ], ρ
〉

=
∫

Ω
ρdiv ξ dLm +

∫
Ω
ξ · ∇ρdLm for ρ ∈ C1(Ω) (2.3)

defines a linear operator [·,νΩ] : XΩ → L∞(∂Ω) such that∥∥∥[ξ,νΩ]
∥∥∥
L∞(∂Ω)

≤ ‖ξ‖L∞(Ω) (2.4)

for all ξ ∈ XΩ and [ξ,νΩ] coincides with the pointwise trace of the normal component if ξ is
smooth.

In the analysis of differential equations associated with the functional TVϕ,Ω, a crucial
role is played by the following result characterizing the L2-subdifferential of TVϕ,Ω, whose
proof can easily be obtained by adapting that of [6, Proposition 1.10].

Proposition 2.1. Let Ω be a bounded Lipschitz domain and let w ∈ D(TVϕ,Ω) = BV (Ω).
There holds v ∈ −∂TVϕ,Ω(w) iff v ∈ L2(Ω) and there exists ξ ∈ XΩ such that v = div ξ and

|ξ|∗ϕ ≤ 1 Lm-a. e. in Ω, (2.5)

[ξ,νΩ] = 0 Hm−1-a. e. on ∂Ω. (2.6)

−
∫

Ω
w div ξ dL2 =

∫
Ω
|Dw|ϕ, (2.7)

We denote by Xϕ,Ω(w) the set of ξ ∈ XΩ satisfying (2.5-2.7). Proposition 2.1 holds also
with Ω = R2. In this case, the Neumann condition (2.6) becomes void.

2.1.6 The orthotropic total variation flow

We are now ready to recall the rigorous definition of (strong) solution to the Neumann problem
for (1.19), formally given by

ut = (sgn ux1)x1 + (sgn ux2)x2 in ]0,∞[×Ω,
(sgn ux1 , sgn ux2) · νΩ = 0 in ]0,∞[×∂Ω.

(2.8)

which is an adaptation of [65, Definition 4.].

Definition 2.1. A function u ∈ C([0,∞[, L2(Ω)) is called a strong solution to (2.8) if ut ∈
L2
loc(]0,∞[, L2(Ω)), u ∈ L1

w,loc(]0,∞[, BV (Ω)) and there exists z ∈ L∞(]0,∞[×Ω,R2) such
that for a. e. t > 0,

ut = div z L2-a. e. in {t} × Ω, (2.9)

|z|∞ ≤ 1 L2-a. e. in {t} × Ω, (2.10)

[z,νΩ] = 0 H1-a. e. on {t} × ∂Ω (2.11)

and
−
∫

Ω
u(t, ·) div z(t, ·) dL2 =

∫
Ω
|Du(t, ·)|1. (2.12)
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By Proposition (2.1) and the theory of semigroups generated by nonlinear maximal mono-
tone operators due to Komura, Brezis and Crandall-Liggett [53, 14, 23], reasoning as in section
2.2 of [6] we obtain the following existence result.

Proposition 2.2. Let u0 ∈ L2(Ω). There exists exactly one strong solution u to (2.8) such
that u(0, ·) = u0.

Here we are concerned with evolution of regular (with respect to the operator −∂TV1,Ω)
initial data. In such case, semigroup theory yields following result [8, Chapter III].

Proposition 2.3. Let u0 ∈ D(∂TV1,Ω) and let u be the global strong solution to (2.8) start-
ing with u0. Then, every z ∈ L∞(]0,∞[×Ω,R2) satisfying (2.9-2.12) has a representative
(denoted henceforth z) such that

(1) in every t ∈ [0,∞[, z(t, ·) minimizes

FΩ(ξ) =
∫

Ω
(div ξ)2 dL2

over Xϕ,Ω(u(t, ·)) and this condition uniquely defines div z(t, ·),

(2) the function
[0,∞[3 t 7→ div z(t, ·) ∈ L2(Ω) is right-continuous,

(3) the function
[0,∞[3 t 7→ ‖div z(t, ·)‖L2(Ω) is non-increasing,

(4) the function [0,∞[3 t 7→ u(t, ·) ∈ L2(Ω) is right-differentiable and

d
dt

+
u(t, ·) = div z(t, ·) in every t ∈ [0,∞[.

2.1.7 Rectilinear polygons

Figure 2.1: An example of a rectilin-
ear polygon F and a grid G. There
holds G = G(F ) and F ∈ F(G).

We denote by R the set of closed rectangles in the plane whose
sides are parallel to the coordinate axes, and by I, the set of
all horizontal and vertical closed line segments of finite length
in the plane.

We call F ⊂ R2 a rectilinear polygon if F =
⋃
RF with a

finite RF ⊂ R. We denote by F the family of all rectilinear
polygons. Similarly, we call C ⊂ R2 a rectilinear curve if C =⋃
IC with a finite IC ⊂ I. We denote by C the set of all

rectilinear curves.
We call any finite set G of horizontal and vertical lines in

the plane a grid. If F is a rectilinear polygon, we denote by
G(F ) the minimal grid such that each side of F is contained in
a line belonging to G(F ). If C is a rectilinear curve, we denote
by G(C) the minimal grid with the property that there exists
IC ⊂ I, C =

⋃
IC such that all endpoints of intervals in IC

are vertices of G(C).
Given a grid G, we denote
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• by I(G) the set of line segments connecting adjacent ver-
tices of G,

• by R(G) the set of rectangles whose sides belong to I(G),

• by F(G) the set of rectilinear polygons of form
⋃
RF with

a finite non-empty RF ⊂ R(G).

Note that all of the above are finite sets.
It is also convenient to introduce the following notions of partitions of rectilinear polygons

and signatures for their boundaries. Let Ω be a rectilinear polygon. We say that a finite
family Q of rectilinear polygons with disjoint interiors is a partition of Ω if Ω =

⋃
Q. If G is a

grid, we say that a partition Q of Ω is subordinate to G if Q ⊂ F(G). Let F be a rectilinear
polygon and let G be a grid. We say that (∂F+, ∂F−) ∈ C × C is a signature for ∂F (or for
F ) if ∂F± ⊂ ∂F and H1(∂F+ ∩ ∂F−) = 0. We say that a signature (∂F+, ∂F−) for ∂F is
subordinate to G if both ∂F± are subordinate to G.

Now, we give a precise definition of the class of functions piecewise constant on rectangles
that we will work with. Let Ω be a rectangle and let w ∈ L1(Ω). We write w ∈ PCR(Ω) if w
has a finite number of level sets of positive L2 measure, and each one is a rectilinear polygon
up to a L2-null set. We denote the family of level sets of a function w ∈ PCR(Ω) by Qw.
Qw is a partition of Ω in the sense of the definition in the previous paragraph. Similarly, we
will denote by Q(w1,w2) the family of level sets of a vectorial function (w1, w2) ∈ PCR(Ω)2.
If Q ∈ Qw and E ⊂ Q has positive L2 measure, we denote by w(E) the value taken by w
L2-a. e. on E. Given w ∈ PCR(Ω) and Q ∈ Qw, we say that (∂Q+, ∂Q−) ∈ C × C is the
signature induced by w on ∂Q if

x ∈ ∂Q+ iff x ∈ ∂Q′, Q′ ∈ Qw, w(Q′) < w(Q),
x ∈ ∂Q− iff x ∈ ∂Q′, Q′ ∈ Qw, w(Q′) > w(Q).

Furthermore, we put Gw =
⋃
Q∈Qw G(Q), Iw = I(Gw), Rw = R(Gw), Fw = F(Gw).

Again, these are all finite sets.
The family PCR(Ω) is a linear subspace of BV (Ω). If w ∈ PCR(Ω), we have

Jw =
⋃

Q∈Qw
∂Q+ =

⋃
Q∈Qw

∂Q−, w± = w(Q) H1-a. e. on ∂Q±,

where Q 7→ (∂Q+, ∂Q−) is the signature induced by w. Furthermore, we have

|Dw|1 = |Dw| = (w+ − w−)H1 Jw =
∑
Q∈Qw

w(Q)(H1 ∂Q+ −H1 ∂Q−). (2.13)

In particular, if F is a rectilinear polygon, then

Per1(F,Ω) = Per(F,Ω).

We have

Lemma 2.1. Let Ω be a rectangle, w ∈ PCR(Ω) and suppose that ξ ∈ XΩ satisfies

|ξ|∞ ≤ 1 L2-a. e. in Ω, [ξ,νΩ] = 0 H1-a. e. on ∂Ω. (2.14)



30 Chapter 2. The orthotropic total variation flow in the plane

Then, condition
−
∫

Ω
wdiv ξ dL2 =

∫
Ω
|Dw|1 (2.15)

is equivalent to
[ξ,νQ] = ∓1 H1-a. e. on ∂Q± (2.16)

for each Q ∈ Qw, where ∂Q± is the signature induced on ∂Q by w.
Furthermore, X1,Ω(w) is non-empty (equivalently, w ∈ D(∂TV1,Ω)).

Proof. First, suppose that ξ ∈ XΩ satisfies [ξ,νΩ] = 0 H1-a. e. on ∂Ω and (2.16). Then, using
definition of [ξ,νQ] and (2.13), we calculate

−
∫

Ω
wdiv ξ dL2 = −

∑
Q∈Qw

w(Q)
∫
∂Q

[ξ,νQ] dH1 =
∫
Jw

(w+ − w−) dH1 =
∫

Ω
|Dw|1.

On the other hand, suppose that ξ ∈ XΩ satisfies (2.14) and (2.15). Then, integrating by
parts in each Q ∈ Qw on the l. h. s. of (2.15) and using (2.13) we get∑

Q∈Qw
w(Q)

∫
∂Q

[ξ,νQ] dH1 =
∫
Jw

(w+ − w−) dH1.

The l. h. s. can be further rewritten as∫
Jw

(
[ξ,νQw+ ]w+ + [ξ,νQw− ]w−

)
dH1,

where Qw± = w−1(w±). Let us briefly verify that

[ξ,νQw+ ] = −[ξ,νQw− ] H1-a. e. on ∂Qw+ ∩ ∂Qw− .

Indeed, for any line segment I ⊂ ∂Qw+ ∩ ∂Qw− without endpoints and any ρ̌ ∈ C1
c (I), there

exists an extension ρ ∈ C1
c (int (Qw+ ∪Qw−)) of ρ̌. Hence, by (2.3),∫

I

(
[ξ,νQw+ ] + [ξ,νQw− ]

)
ρ̌ dH1

=
∫
Qw+
ρdiv ξ dL2 +

∫
Qw+
ξ ·∇ρ dL2 +

∫
Qw−
ρ div ξ dL2 +

∫
Qw−
ξ ·∇ρdL2 =

∫
Ω

div (ρ ξ) dL2 = 0.

Thus, we have ∫
Jw

[ξ,νQw+ ](w+ − w−) dH1 =
∫
Jw

(w+ − w−) dH1.

Together with the condition |ξ|∞ ≤ 1 and (2.4), this implies (2.16).
One way to construct a field belonging to X1,Ω(w) is to extend it into each Q from ∂Q,

where its normal component is fixed by (2.16) or the Neumann condition, by component-wise
linear interpolation.

It follows from Lemma 2.1, that condition (2.12) in Definition 2.1 can be replaced with

[z(t, ·),νQ]
∣∣∣
∂Q±

= ∓1 for all Q ∈ Qu(t,·) (2.17)

(where ∂Q± is the signature induced on ∂Q by u(t, ·)) whenever u(t, ·) ∈ PCR(Ω).



2.2. Cheeger problems in rectilinear geometry 31

2.2 Cheeger problems in rectilinear geometry
Let G be a grid. Let F0 be a rectilinear polygon and let (∂F+

0 , ∂F
−
0 ) be a signature for ∂F0,

all subordinate to G.
We introduce a functional JF0,∂F

+
0 ,∂F

−
0

with values in ] −∞,+∞] defined on subsets of
F0 of positive area given by

JF0,∂F
+
0 ,∂F

−
0

(E) = Per1(E, intF0) +H1(∂∗E ∩ ∂F+
0 )−H1(∂∗E ∩ ∂F−0 )

L2(E) ,

if E has finite perimeter and JF0,∂F
+
0 ,∂F

−
0

(E) = +∞ otherwise. Note that for each measurable
E ⊂ F0 of positive area and finite perimeter, we have

JF0,∂F
+
0 ,∂F

−
0

(E) = Per1(E)−H1(∂∗E ∩ ∂F0 \ ∂F+
0 )−H1(∂∗E ∩ ∂F−0 ) dL2

L2(E) .

Lemma 2.2. Let E ⊂ F0 be a set of finite perimeter with L2(E) > 0. Then for every ε > 0
there exists a rectilinear polygon F ∈ F(G) such that

JF0,∂F
+
0 ,∂F

−
0

(F ) < JF0,∂F
+
0 ,∂F

−
0

(E) + ε.

Proof. Throughout the proof, we write for short J = JF0,∂F
+
0 ,∂F

−
0
.

Step 1. Smoothing
First, given ε > 0, we obtain a smooth closed set Ẽ ⊂ F such that J (Ẽ) ≤ J (E) + ε and
Ẽ does not contain any vertices of F0. For this purpose, we adapt the standard method of
smooth approximation of sets of finite perimeter. Namely, we consider superlevels of smooth
functions ψδ ∗ χE , δ > 0. Here, ψδ is a standard smooth approximation of unity. Using
Sard’s lemma on regular values of smooth functions and the coarea formula for anisotropic
total variation [4, Remark 4.4], we obtain, reasoning as in the proof of [45, Theorem 1.24], a
number 0 < t < 1

2 and a sequence δj → 0+ such that

Ẽj = {ψδj ∗ χE ≥ t}

is a smooth set for each j = 1, 2, . . . and

L2(Ẽj4E)→ 0, lim inf
j→∞

Per1(Ẽj) = Per1(E), H1((∂∗E) \ Ẽj)→ 0. (2.18)

Here and in the following we denoted by 4 the symmetric difference. The first two items in
(2.18) are covered explicitly in [45]. It remains to justify the last one. Since ∂∗E ⊂ ∂

1
2E, for

each x ∈ ∂∗E there is a natural number j0 such that for every j > j0 there holds x ∈ Ẽj .
Thus, as H1(∂∗E) = Per(E) is finite, the assertion follows by continuity of measures.

Perturbing each Ẽj a little, we can require that ∂Ẽj is transverse to every line in G. Then,
∂(F0 ∩ Ẽj) are piecewise smooth curves and it is visible that all items in (2.18) remain true if
we substitute F0 ∩ Ẽj for Ẽj . Therefore, for any given ε′ > 0 we choose a number j such that

L2(F0 ∩ Ẽj) > L2(E)− ε′, Per1(F0 ∩ Ẽj) < Per1(E) + ε′,

H1(∂(Ẽj ∩ F ) ∩ ∂F0 \ ∂F+
0 ) > H1(∂∗E ∩ ∂F0 \ ∂F+

0 )− ε′

and H1(∂(Ẽj ∩ F ) ∩ ∂F−0 ) > H1(∂∗E ∩ ∂F−0 )− ε′. (2.19)
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Taking ε′ small enough we obtain

J (F0 ∩ Ẽj) < J (E) + ε. (2.20)

Due to transversality, there is at most a finite number of points where the piecewise smooth
curve ∂(F0 ∩ Ẽj) is not infinitely differentiable. Thus, we can smooth out the set F0 ∩ Ẽj in
such a way that (2.19), and consequently (2.20), still hold. We denote the resulting set by Ẽ.
Possibly adjusting Ẽ slighty, we can require that it does not contain any vertices of F0.

Step 2. Squaring
For each x ∈ ∂Ẽ there is an open square U(x) = I(x)× J(x) such that Ẽ ∩ U(x) coincides
with the subgraph of a smooth function g : I(x) → J(x) or g : J(x) → I(x) and that U(x)
intersects at most one edge of F0 (contained in the supergraph of g). The family {U(x) : x ∈
∂Ẽ} is an open cover of ∂Ẽ. We extract a finite cover {U1, . . . , Ul} out of it. We assume that
{U1, . . . , Ul} is minimal in the sense that none of its proper subsets covers ∂Ẽ. Let us take
Ê0 = Ẽ ∪

⋃l
i=1Wi, where Wi ⊂ F0 is the smallest closed rectangle containing Ui ∩ Ẽ. The

operation of taking a union of Ẽ with W1 increases volume while not increasing l1-perimeter.
Indeed, denoting U1 =]a1, b1[×]a2, b2[ and assuming without loss of generality that Ẽ ∩ U1
coincides with the subgraph of a smooth function g1 : ]a1, b1[→]a2, b2[, we have∫

W1∩∂Ẽ
|νẼ |1 dH1 =

∫
]a1,b1[

1 + |g′1| dL1 ≥ | sup g1 − g1(a1)|+ |b1 − a1|+ | sup g1 − g1(b1)|

and consequently

Per1(Ẽ) = H1(∂Ẽ \W1) +
∫
W1∩∂Ẽ

|νẼ |1 dH1 ≥ Per1(Ẽ ∪W1).

Similarly, we show that taking the union of Ẽ ∪W1 with W2 does not increase the perimeter,
and so on. Furthermore, clearly ∂Ẽ0 ∩ ∂F0 \ ∂F+

0 ⊂ ∂Ê0 ∩ ∂F0 \ ∂F+
0 and ∂Ẽ0 ∩ ∂F−0 ⊂

∂Ê0 ∩ ∂F−0 . Summing up, we have

L2(Ê0) ≥ L2(Ẽ), Per1(Ê0) ≤ Per1(Ẽ),
H1(∂Ê0 ∩ ∂F0 \ ∂F+

0 ) ≥ H1(∂Ẽ ∩ ∂F0 \ ∂F+
0 ), H1(∂Ê0 ∩ ∂F−0 ) ≥ H1(∂Ẽ ∩ ∂F−0 ).

(2.21)

Thus, J (Ê0) < J (E) + ε holds.

Step 3. Aligning
Take any line L0 ⊂ G(Ê0) that is not contained in G. We assume for clarity that L is
horizontal, i. e. L = R × {y0}, y0 ∈ R. We denote L0 ∩ ∂Ê0 = C0 × {y0} and observe that
C0 ⊂ R necessarily contains an interval. Let L+ = R×{y+} and L− = R×{y−} be the lines
in G∪G(Ê0) situated above and below L0 closest to L0. We have C0× [y−, y+] ⊂ F0. Let us
first assume that Ê0 6= C0 × [y0, y+], Ê0 6= C0 × [y−, y0]. For y ∈ [y−, y+], we define

J (y) =
{
J (Ê04 (C0 × [y0, y])) if y > y0,

J (Ê04 (C0 × [y, y0])) otherwise.
(2.22)
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(a) A BV set E. (b) Smoothed set Ẽ. (c) Squared set Ê0. (d) Aligned set F .

Figure 2.2: The construction in Lemma 2.2 applied to an example set of finite perimeter contained in a rectilinear
polygon (in case f = 0).

It follows from the choice of L0 and L±, that each one of line segments constituting ∂C0 ×
[y−, y+] is contained (up to a finite number of points) in either ∂F+ ∪ intF , ∂F− or ∂F \
(∂F+ ∪ ∂F−). Therefore, J is a homographic function and hence monotone on ]y−, y+[.

However, J might be discontinuous at the endpoints of its domain. This is only possible if,
as y attains y+ (or y−), a pair of edges of Ê04 (C0×[y0, y]) (resp. Ê04 (C0×[y, y0])) vanishes,
or an edge touches the boundary of F0. In either case, there still holds limy→y± J (y) ≥ J (y±).

Thus, whether J is continuous or not, either J (y+) or J (y−) (or both) is not larger than
J (y0) = J (Ê0). In accordance with that, we denote either Ê1 = Ê04 (C0 × [y0, y+]) or
Ê1 = Ê04 (C0 × [y−, y0]) and perform the same argument with Ê1 instead of Ê0.

Now, let us go back to the excluded cases and suppose, without loss of generality, that
Ê0 = C0×[y0, y+]. Then, J is still a well-defined homography in [y−, y+[ and limy→y+ J (y) =
+∞. Hence, J (y−) ≤ J (y0) = J (Ê0) and we put Ê1 = Ê0 ∪ (C0 × [y−, y0]) = C0 × [y−, y+]
and continue the procedure.

For each i, G(Êi+1) contains at least one line not contained in G less than G(Êi), so this
procedure terminates in a finite number s of steps and we obtain F = Ês whose all edges are
contained in G and J (F ) ≤ J (Ê0) < J (E) + ε.

Theorem 2.1. The functional JF0,∂F
+
0 ,∂F

−
0

is bounded from below and is minimized by a
rectilinear polygon F ⊂ F0 such that F ∈ F(G).

Proof. Suppose that JF0,∂F
+
0 ,∂F

−
0

(En)→ −∞. Then, due to Lemma 2.2 there exist rectilinear
polygons Fn ⊂ F0, n = 1, 2, . . . such that Fn ∈ F(G) and JF0,∂F

+
0 ,∂F

−
0

(Fn) → −∞, an
impossibility.

Now, consider any minimizing sequence (En) of JF0,∂F
+
0 ,∂F

−
0
. By means of Lemma 2.2 we

find a minimizing sequence of rectilinear polygons Fn ∈ F0 such that F ∈ F(G). As the set
of such rectilinear polygons is finite, (Fn) has a constant subsequence (Fnk) ≡ (F ). Clearly,
F minimizes JF0,∂F

+
0 ,∂F

−
0
.
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Instead of JF0,∂F
+
0 ,∂F

−
0

we can consider

J̌F0,∂F
+
0 ,∂F

−
0

(E) : {E ⊂ F0 — measurable s. t. L2(E) > 0} → [−∞,+∞[

defined by

J̌F0,∂F
+
0 ,∂F

−
0

(E) = −Per1(E, intF0) +H1(∂∗E ∩ ∂F+
0 )−H1(∂∗E ∩ ∂F−0 )

L2(E) ,

if E has finite perimeter and −∞ otherwise. Then, noticing that

J̌F0,∂F
+
0 ,∂F

−
0

= −JF0,∂F
−
0 ,∂F

+
0

we obtain analogous versions of Lemma 2.2 and Theorem 2.1.

Lemma 2.2’. Let E ⊂ F0 be a set of finite perimeter with L2(E) > 0. Then for every ε > 0
there exists a rectilinear polygon F ∈ F(G) such that

J̌F0,∂F
+
0 ,∂F

−
0

(F ) > J̌F0,∂F
+
0 ,∂F

−
0

(E)− ε.

Theorem 2.1’. The functional J̌F0,∂F
+
0 ,∂F

−
0

is bounded from above and is maximized by a
rectilinear polygon F ⊂ F0 such that F ∈ F(G).

2.3 The TV1,Ω flow with PCR initial datum

In what now follows, we are concerned with the identification of the evolution of initial datum
w ∈ PCR(Ω) under (2.8). The result below determines the initial evolution, prescribing
possible breaking of initial facets.

Lemma 2.3. Let w ∈ PCR(Ω). There exists a vector field η ∈ X1,Ω(w) such that divη ∈
PCR(Ω) and Gdiv η ⊂ Gw. Furthermore, if F0, F1 ∈ Q(w,div η), then

[η,νF0 ]
∣∣∣
∂F0∩∂F1

= −1 if w(F1) < w(F0) or w(F1) = w(F0) and divη(F1) < divη(F0),

[η,νF0 ]
∣∣∣
∂F0∩∂F1

= 1 if w(F1) > w(F0) or w(F1) = w(F0) and divη(F1) > divη(F0).
(2.23)

Proof. We fix Q ∈ Qw and produce a partition TQ of Q (that will correspond to level sets of
divη|Q) by means of an inductive procedure. Let (∂Q−, ∂Q+) be the signature for ∂Q given
by w. By virtue of Theorem 2.1, the functional JQ,∂Q+,∂Q− attains its minimum value on a
rectilinear polygon F1 ∈ F(Q). We define

∂F−1 = ∂Q− ∩ ∂F1 and ∂F+
1 = (∂F1 ∩ ∂Q+) ∪ (∂F1 \ ∂Q).

Next, in k-th step, we put F̌k =
⋃k−1
j=1 Fj . If F̌k = Q we stop and put TQ = {F1, . . . , Fk−1}.

Otherwise we define Fk as any minimizer of

JQ\F̌k,∂Q+,∂Q−∪∂F̌k ,
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and
∂F−k = ∂Fk ∩

(
∂Q− ∪ ∂F̌k

)
,

∂F+
k = (∂Fk ∩ ∂Q+) ∪

(
∂Fk \

(
∂Q ∪ ∂F̌k

))
.

∂F±k are defined in such a way that each JFk,∂F+
k
,∂F−

k
is the restriction of JQ\F̌k,∂Q+,∂Q−∪∂F̌k

to subsets of Fk. In particular, Fk is a minimizer of JFk,∂F+
k
,∂F−

k
.

Now, for each Fk ∈ TQ, we consider the functional Fk defined on the set of vector fields
ξ ∈ L∞(Fk,R2) satisfying

div ξ ∈ L2(Fk), |ξ|∞ ≤ 1 L2-a. e. on Fk, [ξ,νFk ]
∣∣∣
∂F±

k

= ∓1, [ξ,νFk ]
∣∣∣
∂Fk∩∂Ω

= 0

by
Fk(ξ) =

∫
Fk

(div ξ)2 dL2.

Proceeding as in [11, Proposition 6.1], we see that Fk attains a minimum and for any two
minimizers η1,η2 we have divη1 = divη2 in Fk. Let us take any minimizer and denote it ηFk .
We now adapt the reasoning in the proof of Theorem 5 in [9] in order to prove that divηFk is
constant. Arguing as in [11, Theorem 6.7] and [12, Theorem 5.3], divηFk ∈ L

∞(Fk)∩BV (Fk).
Let ν = JFk,∂F+

k
,∂F−

k
(Fk). By definition of ∂F±k , we have

1
L2(Fk)

∫
Fk

div ξFk dL2 = − 1
L2(Fk)

(
H1(∂F+

k )−H1(∂F−k )
)

= −ν.

Were divηFk not constant in Fk, there would exist µ < ν such that

Aµ =
{
x ∈ Fk : − divηFk(x) < µ

}
has positive measure and finite perimeter. By virtue of [12, Proposition 3.5],

− ν < −µ < 1
L2(Aµ)

∫
Aµ

divηFk dL2

= − 1
L2(Aµ)

(
Per1(Aµ, Fk) +H1(∂F+

k ∩ ∂
∗Aµ)−H1(∂F−k ∩ ∂

∗Aµ)
)

= −JFk,∂F+
k
,∂F−

k
(Aµ),

which would contradict that Fk minimizes JFk,∂F+
k
,∂F−

k
, hence divηFk is constant in Fk and

therefore equal to its mean value:

divηFk = − 1
L2(Fk)

(H1(∂F+
k )−H1(∂F−k )).

Next, we repeat the procedure for the rest of Q ∈ Qw and define η by η|Fk = ηFk for
every Fk ∈ TQ, Q ∈ Qw. It is easy to check that η satisfies our hypotheses.

Remark. Instead of considering the minimization problem for J , one can consider at each
step the maximization problem for J̌ (see Theorem 2.1’).
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We are now in position to prove Theorem 1.1. We assume that u0 is not constant. By
Lemma 2.3, there exists a vector field z0 ∈ X1,Ω(u0) such that div z0 ∈ PCR(Ω), Gdiv z0 ⊂
Gu0 and

[z0,ν
F ]
∣∣∣
∂F∩∂F ′

= −1 if u0(F ′) < u0(F ) or u0(F ′) = u0(F ) and div z0(F ′) < div z0(F ),

[z0,ν
F ]
∣∣∣
∂F∩∂F ′

= 1 if u0(F ′) > u0(F ) or u0(F ′) = u0(F ) and div z0(F ′) > div z0(F ).
(2.24)

for F, F ′ ∈ Q(u0,div z0). We define z̃ : [0,∞[×Ω → R2 by z̃(t, ·) = z0 for t ≥ 0 and
ũ : [0,∞[×Ω→ R by

ũ(0, ·) = u0, ũt(t, ·) = div z0 for t > 0.
The function

[0,∞[3 t 7→ ũ(t, ·) ∈ BV (Ω)
is affine, in particular it is (strongly) continuous. Clearly, ũ(t, ·) ∈ PCR(Ω) and G(ũ(t, ·)) ⊂
G(u0,div z0) for all t > 0. Furthermore, given F, F ′ ∈ Q(u0,div z0),

if u0(F ′) < u0(F ) or u0(F ′) = u0(F ) and div z0(F ′) < div z0(F ) then ũ(t, F ′) ≤ ũ(t, F ),
if u0(F ′) > u0(F ) or u0(F ′) = u0(F ) and div z0(F ′) > div z0(F ) then ũ(t, F ′) ≥ ũ(t, F )

(2.25)
for small enough t > 0. Let t1 denote the latest time instance such that (2.25) holds for all
t ∈ [0, t1] and all F, F ′ ∈ Q(u0,div z0) satisfying H1(∂F ∩∂F ′) > 0. By virtue of (2.24), Lemma
2.1 and uniqueness of strong solution to (2.8) with initial datum u0, we obtain u(t, ·) = ũ(t, ·)
for t ∈ [0, t1]. If u(t1, ·) is constant, we have u(t, ·) = u(t1, ·) for all t > t1 and the proof is
finished. Otherwise, we repeat this reasoning with u(t1, ·) in place of u0. By iterating this
procedure k times, we obtain a sequence of time instances 0 = t0 < t1 < . . . < tk and vector
fields z0 ∈ X1,Ω(u(t0, ·)), . . . ,zk−1 ∈ X1,Ω(u(tk−1, ·)) such that

ut(t, ·) = div zj(t, ·) ∈ PCR(Ω) for L1-a. e. t ∈]tj , tj+1[.

Now, let us prove that this procedure terminates after a finite number of steps. For this
purpose, we rely on Theorem 2.3. In fact, we prove that there exists a constant γ = γ(G) > 0
such that at each tj , j = 1, . . . , k the non-increasing function t 7→ ‖div z(t, ·)‖L2(Ω) has a
jump of size at least γ. To avoid confusion, we recall that the function div z ∈ L2(]0,∞[×Ω)
is uniquely defined for a given strong solution u to (2.8). This however is not necessarily the
case for z itself. Although this non-uniqueness does not matter, for mental comfort we can
adjust any given z so that

z(t, ·) = zj for L1-a. e. t ∈]tj , tj+1[,

j = 0, . . . , k − 1.
First, we argue that ‖div zj‖L2(Ω) < ‖div zj−1‖ for j = 0, . . . , k − 1. We will reason

by contradiction. If ‖div zj‖L2(Ω) = ‖div zj−1‖L2(Ω), then zj−1 is a minimizer of FΩ in
X1,Ω(u(tj , ·)) and, by virtue of Theorem 2.3,

div zj−1 = div zj = div z(t, ·) for t ∈ [tj−1, tj+1[. (2.26)

According to Lemma 2.1, the minimization problem for FΩ in X1,Ω(u(tj , ·)) is equivalent to
minimization of functionals FQ,∂Q−,∂Q+ defined by

FQ,∂Q−,∂Q+(η) =
∫
Q

(divη)2 dL2
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on the set of vector fields

η ∈ XQ = {η ∈ L∞(Q,R2) : divη ∈ L2(Q)}

satisfying

|η|∞ ≤ 1 L2-a. e. in Q, [η,νQ] = ∓1 H1-a. e. on ∂Q±, [η,νQ] = 0 H1-a. e. on ∂Q ∩ ∂Ω

separately for each Q ∈ Qu(tj ,·), where (∂Q+, ∂Q+) is the signature induced on ∂Q by u(tj , ·).
Let us take Q ∈ Qu(tj ,·) such that there exist F1, F2 in Q(u(tj−1,·),div zj−1), F1, F2 ⊂ Q, F1 6= F2
with H1(∂F1 ∩∂F2) > 0. Denote by Qmerge the maximal subset of Q(u(tj−1,·),div zj−1) with the
properties

• F1, F2 belong to Qmerge,

• if F belongs to Qmerge then F ⊂ Q,

• if F belongs to Qmerge then there exists F ′ ∈ Qmerge, F ′ 6= F with H1(∂F ∩ ∂F ′) 6= 0.

In other words, Qmerge consists of those F ∈ Q(u(tj−1,·),div zj−1), whose interiors are contained
in the same connected component of intQ as F1 and F2. Let now F0 be a minimizer of
F 7→ ut(]tj−1, tj+1[, F ) = div zj−1(F ) = div zj(F ) among F ∈ Qmerge. For all σ ∈]tj−1, tj [,
τ ∈]tj , tj+1[ we have

u(σ, F0) > u(σ, F ), u(τ, F0) < u(τ, F )

if F ∈ Qmerge and

sgn (u(σ, F0)− u(σ,E)) = sgn (u(τ, F0)− u(τ, E))

if E ∈ Q(u(tj−1,·),div zj−1) \ Qmerge and H1(E ∩ F0) > 0. Hence, by (2.17),

[z(σ, ·),νF0 ] = −1, [z(τ, ·),νF0 ] = +1 H1-a. e. on ∂F0 ∩ F

if F ∈ Qmerge and

[z(σ, ·),νF0 ] = [z(τ, ·),νF0 ] H1-a. e. on ∂F0 ∩ E

if E ∈ Q(u(tj−1,·),div zj−1) \ Qmerge. Consequently,∫
F0

div z(σ, ·) dL2 <

∫
F0

div z(τ, ·) dL2,

which contradicts (2.26).
Next, we observe that there is only a finite set of values, depending only on G, that

‖div z(t, ·)‖L2(Ω) can achieve. Indeed, for all t ≥ 0, div z(t, ·) is the unique result of minimiza-
tion problems for functionals FQi,∂Q−i ,∂Q+

i
, i = 1, . . . ,#u(t,Ω), where Qi belong to Qu(t,·), a

rectilinear partition of Ω subordinate to G, and for each i, (∂Q−i , ∂Q
+
i ) is a signature induced

on ∂Qi by a function u(t, ·) ∈ PCR(Ω) subordinate to G. There is only a finite number of
these.

It remains to prove finiteness of extinction time of u. Let us first note, that by (2.9, 2.11),
we have d

dt
∫

Ω udL2 = 0 L1-a. e. on ]0,∞[. Thus, denoting m = 1
L2(Ω)

∫
Ω u0 dL2, there holds
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1
L2(Ω)

∫
Ω u(t, ·) dL2 = m for all t > 0. Then, using (2.9), (2.12) and Sobolev inequality, we

obtain

d
dt

1
2

∫
Ω

(u−m)2 dL2 =
∫

Ω
(u−m)div z dL2 = −

∫
Ω
|∇u|1 dL2 ≤ −CΩ

(∫
Ω

(u−m)2 dL2
) 1

2

L1-a. e. on ]0,∞[ with a constant CΩ > 0, and consequently

‖u(t, ·)−m‖L2(Ω) ≤
(
‖u0 −m‖L2(Ω) − CΩt

)
+

for t > 0, whence an estimate on extinction time follows.

2.4 The case Ω = R2

In this section we transfer previous results to the case Ω = R2. First, we note that all
the definitions and theorems in subsection 2.1.6 carry over without change (the Neumann
boundary condition becomes void) to this case (see [65]). As for the definitions in subsection
2.1.7, it turns out that the statements of our results transfer nicely to the case of the whole
plane if we allow for certain unbounded rectilinear polygons. Accordingly, in this section a
subset F ⊂ R2 will be called a rectilinear polygon if either

• F =
⋃
RF with a finite RF ⊂ R (in which case we say that F is a bounded rectilinear

polygon)

• or F = R2 \
⋃
RF with a finite RF ⊂ R (in which case we say that F is an unbounded

rectilinear polygon).

Next, we restrict ourselves to non-negative compactly supported initial data. We say that a
non-negative, finitely valued, compactly supported function w ∈ BV (R2) belongs to PCR+(R2)
if each of its level sets coincides (up to a L2-null set) with a rectilinear polygon. Note that in
this case Qw contains exactly one unbounded set Q0 and w|Q0 = 0.

The essential difficulty in transferring Theorem 1.1 to our current setting lies in con-
structing z on such unbounded level sets of u(t, ·), t ≥ 0. For this purpose, we need the
following

Lemma 2.4. Let f ∈ PCR+(R2) and let F be an unbounded rectilinear polygon. Then, there
exists a vector field ξF ∈ XF such that

|ξF |∞ ≤ 1 L2-a. e. on F, [ξF ,νF ] = 1 H1-a. e. on ∂F, div ξF = 0 L2-a. e. on F (2.27)

if and only if
H1(∂∗E ∩ ∂F ) ≤ Per1(E, intF ) (2.28)

for all bounded E ⊂ F of finite perimeter.

This is a version of [9, Theorem 5 and Lemma 6] where analogous statement is proved for
isotropic perimeter. The idea of the proof is to consider auxiliary problem in a large enough
ball. The proof of Lemma 2.4 follows along similar lines, however we decided to put it here,
also because it seems that there is a small gap in the proof of [9, Theorem 5] that we patch.
Namely the first inequality in line 12, page 511 of [9] (corresponding to (2.33) here) does not
seem to be satisfied in general.
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Proof. If a vector field ξF ∈ XF satisfies (2.27), then we have for any bounded set E ⊂ F of
finite perimeter

0 =
∫
E

div ξF dL2 ≥ H1(∂∗E ∩ ∂F )− Per1(E, intF ).

Now assume that (2.28) holds. Let us take R > 0 large enough that

2 dist(∂B∞(R), ∂F ) ≥ H1(∂F ). (2.29)

Put c(R) = − H1(∂F )
H1(∂B∞(R)) . Denote by ξR the minimizer of functional F defined by F(η) =∫

F∩B∞(R) (divη)2 dL2 on the set of vector fields η ∈ XF∩B∞(R) satisfying

|η|∞ ≤ 1 L2-a. e. on F ∩B∞(R), [η,νF ] = 1, [η,νB∞(R)] = c(R).

If div ξR is constant in F ∩ B∞(R) then, due to choice of c(R), div ξR ≡ 0 in F ∩ B∞(R).
Supposing that the opposite is true, we obtain, as in the proof of Lemma 2.3, that there exists
λ > 0 such that

Qλ = {x ∈ F ∩B∞(R) : div ξR > λ}

is a set of positive measure and finite perimeter, and we have

− Per1(Qλ, intF ∩B∞(R)) +H1(∂∗Qλ ∩ ∂F ) + c(R)H1(∂∗Qλ ∩ ∂B∞(R))
≥ λL2(Qλ) > 0 (2.30)

which can be rewritten as

−Per1(Qλ) + 2H1(∂∗Qλ ∩ ∂F ) + (1 + c(R))H1(∂∗Qλ ∩ ∂B∞(R)) > 0. (2.31)

Assumption (2.29) implies that c(R) > −1, so we approximate Qλ with a closed smooth set
as in the proof of Lemma 2.2 in such a way that (2.31) still holds. Due to additivity of left
hand side of (2.31), there is a connected component Q̃λ of this smooth set that also satisfies
(2.31), or equivalently

−Per1(Q̃λ, intF ∩B∞(R)) +H1(∂Q̃λ ∩ ∂F ) + c(R)H1(∂Q̃λ ∩ ∂B∞(R)) > 0. (2.32)

If ∂Q̃λ ∩ ∂B∞(R) = ∅, (2.32) contradicts (2.28). On the other hand, if ∂Q̃λ ∩ ∂F = ∅,
(2.32) itself is a contradiction (recall that c(R) ≤ 0). Taking these observations into account,
there necessarily holds

Per1(Q̃λ, intF ∩B∞(R)) ≥ 2 dist(∂B∞(R), ∂F ), (2.33)

whence (2.29) yields a contradiction, unless Q̃λ is not simply connected in such a way that
there is a connected component Γ of ∂Q̃λ with following properties:

• Q̃λ is inside of Γ (Γ is the exterior boundary of Q̃λ),

• Γ does not intersect ∂F ∪ supp f ,

• and Γ intersects all four sides of B∞(R).
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In this case, let us denote by Q̂λ the union of Q̃λ and the region between Γ and ∂B∞(R). We
have

∫
Γ\∂B∞(R) |νQ̃λ |1 dH1 ≥ H1(∂B∞(R) \ Γ) and consequently (as −c(R) < 1)

Per1(Q̃λ, intF ∩B∞(R))− c(R)H1(∂Q̃λ ∩ ∂B∞(R)) ≥ Per1(Q̂λ, intF ∩B∞(R))
− c(R)H1(∂Q̂λ ∩ ∂B∞(R)) = Per1(Q̂λ, intF ∩B∞(R)) +H1(∂F ),

a contradiction with (2.32) which implies that div ξR ≡ 0.
We define ξF ∈ XF by

ξF (x1, x2) =


ξR(x1, x2) in F ∩B∞(R),
(c(R)sgn x1, 0) in {|x1| > R, |x2| < R}
(0, c(R)sgn x2) in {|x1| < R, |x2| > R}
(0, 0) in {|x1| > R, |x2| > R}.

(2.34)

Next, we argue that Lemma 2.3 holds in the case Ω = R2, provided that w ∈ PCR+(R2).
For each bounded Q ∈ Qw, we construct the vector field η on Q as before. Now, let F
be the unbounded rectilinear polygon in Qw and let us denote by R0 the smallest rectangle
containing ∂F . Clearly, R0 is subordinate to Gw. Arguing by approximation of E with
smooth sets as in the proof of Lemma 2.1, we observe that

Per1(E ∩R0, intF )−H1(∂∗(E ∩R0) ∩ ∂F ) ≤ Per1(E, intF )−H1(∂∗E ∩ ∂F ). (2.35)

If there exists a bounded set of finite perimeter E ⊂ F such that JF,∅,∂F (E) < 0, by (2.35)
we have JF,∅,∂F (R0 ∩ E) ≤ JF,∅,∂F (E). Thus, we obtain the following alternative:

• either JF,∅,∂F is minimized by a bounded rectilinear polygon F1 subordinate to G,

• or Per1(E, intF )−H1(∂∗E ∩ ∂F ) ≥ 0 for each bounded E ⊂ F of finite perimeter.

In the first case, we produce η|F1 as in the proof of Lemma 2.3 and repeat the reasoning
above with F \ F1 in place of F . In the second case, by virtue of Lemma 2.4 there exists a
vector field ξF ∈ XF such that (2.27) is satisfied. We put η|F = ξF , and at this point we
have η defined L2-a. e. on R2.

With an equivalent of Lemma 2.3 at hand, the rest of the proof of Theorem 1.1 follows
as in the previous section, except a slight difference in the estimate on extinction time tn. In
the case of compactly supported functions on R2, the BV seminorm controls full L2 norm,
hence for t > 0 we get

‖u(t, ·)‖L2(R2) ≤
(
‖u0‖L2(R2) − Ct

)
+
,

where C is the constant in the Sobolev inequality on R2.

2.5 Preservation of continuity
We start with a lemma concerning PCR functions on a rectangle, which says, roughly speak-
ing, that the maximal oscillation on horizontal (or vertical) lines, on any given length scale, is
not increased by the solution to (2.8) with respect to initial datum u0 ∈ PCR(Ω). To make a
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precise statement, we fix a rectangle Ω and let G be any grid such that Ω is subordinate to G.
Further, let m1 (m2) be the number of horizontal (vertical) lines of G. For any given integer
0 ≤ m ≤ m1 − 3 (m2 − 3) we denote by R2

1,m(G) (R2
2,m(G)) the set of pairs of rectangles

that lay in the strip of Ω between any two successive horizontal (vertical) lines of G and are
separated by at most m rectangles in R(G).

Lemma 2.5. Let Ω be a rectangle, let u be the solution to (2.8) with u0 ∈ PCR(Ω) and let
G be a grid such that Qu0 is subordinate to G. Then for i = 1, 2 there holds

max
(R1,R2)∈R2

i,m(G)
|u(t, R1)− u(t, R2)| ≤ max

(R1,R2)∈R2
i,m

|u0(R1)− u0(R2)| (2.36)

in any time instance t > 0.

Remark. Taking m = 0 in Lemma 2.5 we obtain, for t > 0,

H1-ess max
Ju(t,·)

(u+(t, ·)− u−(t, ·)) ≤ H1-ess max
Ju0

(u0,+ − u0,−).

Proof. The form of solution obtained in Theorem 1.1 implies that the function

t 7→ max
(R1,R2)∈R2

i,m(G)
|u(t, R1)− u(t, R2)| (2.37)

is piecewise linear and continuous, in particular it does not have jumps. Having this observa-
tion in mind, let us consider time instance τ > 0 that does not belong to the set of merging
times {t1, . . . , tn}. We can assume that tl < τ < tl+1 (l ∈ {0, . . . , n− 1}).

For a given 0 ≤ k ≤ mi assume we have already proved that the slope of (2.37) is non-
positive in t = τ for each 0 ≤ m < k. Take any pair of rectangles (R+, R−) ∈ R2

i,k(G) that
realizes the maximum in (2.37). Let us take rectilinear polygons F+, F− in Q(u(τ,·),div z(τ,·)) =
Q(u(tl,·),div z(tl,·)) such that R± ⊂ F±.

Now we assume, without loss of generality, that i = 1 (i. e. rectangles R± are in the same
row of R(G)), u(τ,R+) > u(τ,R−) and R− is to the left of R+. Let us denote by x− the
maximal value of x coordinate of points in R− and by x+ the minimal value of x coordinate
of points in R+. Further, let us denote

J0

x- x+

R- ,0

R- ,1

R- ,2

R- ,- 1 R+,0

R+,1

R+,2

R+,- 1
F-

F+R+R-

Figure 2.3: Map key for the notation in the proof of Lemma 2.5.
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• by J0 the maximal interval such that {x±} × J0 ∩ ∂R± 6= ∅ and {x±} × J0 ⊂ ∂F±,

• by R±,0 minimal rectangles in F(G) that have {x±}×J0 as one of their sides and contain
R±,

• by R+,−1 (resp. R−,−1) the minimal rectangle in F(G) that has {x+} × J0 (resp.
{x−} × J0) as one of its sides and does not contain R+ (resp. R−),

• by K the number of endpoints of J0 that do not intersect ∂Ω (K ∈ {0, 1, 2}),

• by R±,j , j ∈ N, j ≤ K the K pairs of rectangles in R(G) such that

– all of R+,j , have a common side with R+,0 and belong to the same column in R(G)
as R+,

– all of R−,j , have a common side with R−,0 and belong to the same column in R(G)
as R−,

– for a fixed j, both R±,j belong to the same row in R(G).

Due to the way these are defined, fixing j ≤ K, at least one of the two rectangles R±,j is not
contained in F+ ∪ F−, and

at least one of inequalities u(τ,R+,j)<u(τ,R+,0), u(τ,R−,j)>u(τ,R−,0) hold. (2.38)

If there is a pair of rectangles R′± in R2
1,m(G), m < k such that R′± ⊂ F± then we have

already proved that

|u(τ,R+)− u(τ,R−)| =
∣∣u(τ,R′+)− u(τ,R′−)

∣∣ ≤ max
(R1,R2)∈R2

i,k

|u0(R1)− u0(R2)| .

Therefore, we can assume that

u(τ,R+,−1)<u(τ,R+,0) and u(τ,R−,−1)>u(τ,R−,0) hold. (2.39)

F± is not necessarily a level set of u(τ, ·). However, as τ is not a merging time, ∂F± is
contained in the boundary of one. Hence, ∂F± inherits the signature (∂F−± , ∂F+

± ) induced on
it by u(τ, ·). Furthermore, we have

F− ∈ arg minJF−,∂F+
− ,∂F

−
−

and F+ ∈ arg max J̌F+,∂F
+
+ ,∂F

−
+
.

Therefore, taking into account (2.38, 2.39),

ut(τ, ·)|F+ − ut(τ, ·)|F− = −J̌F+,∂F
+
+ ,∂F

−
+

(F+) + JF−,∂F+
− ,∂F

−
−

(F−)

≤ −J̌F+,∂F
+
+ ,∂F

−
+

(R+) + JF−,∂F+
− ,∂F

−
−

(R−) ≤ 0 (2.40)

which concludes the proof.

Proof. Recall that Ω = [0, a]× [0, b]. For k = 1, 2, . . . let

Gk =
({

ja

k
, j = 0, 1, . . . , k

}
× R

)
∪
(
R×

{
jb

k
, j = 0, 1, . . . , k

})
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and let u0,k ∈ PCR(Ω) be defined by

u0,k(x) = u0(xR) for x ∈ R ∈ R(Gk),

where xR is the center of R.
For any k = 1, 2, . . ., i = 1, 2, m = 0, . . . , k − 1, let (R,R′) ∈ R2

i,m(Gk) with (x1, x2) ∈
R, (y1, y2) ∈ R′ we have ∣∣u0,k(R)− u0,k(R′)

∣∣ ≤ ωi(|xi − yi|+ 1
k ). (2.41)

Let us denote by uk the solution to (2.8) with initial datum u0,k. Due to inequality (2.41)
and Lemma 2.5 we have for any (x1, x2), (y1, y2) ∈ Ω,

|uk(t, x1, x2)− uk(t, y1, y2)| ≤ |uk(t, x1, x2)− uk(t, y1, x2)|+ |uk(t, y1, x2)− uk(t, y1, y2)|
≤ ω1(|x1 − y1|+ 1

k ) + ω2(|x2 − y2|+ 1
k ).

Now, due to monotonicity of −∂TV1,Ω (see [65], Theorem 11.), we have for t > 0 ‖uk(t, ·)−
u(t, ·)‖L2(Ω) ≤ ‖u0,k − u0‖L2(Ω). Therefore, there exists a set N ⊂ Ω of zero L2 measure and
a subsequence (kj) such that ukj (t,x) → u(t,x) for all x ∈ Ω \ N. Now, for each pair
(x1, x2), (y1, y2) ∈ Ω take any pair of sequences ((x1,n, x2,n)), ((y1,n, y2,n)) ⊂ Ω \N such that
xi,n → xi and yi,n → yi. Passing to the limit j →∞ and then n→∞ in

|ukj (t, x1,n, x2,n)− ukj (t, y1,n, y2,n)| ≤ ω1(|x1,n − y1,n|+ 1
kj

) + ω2(|x2,n − y2,n|+ 1
kj

)

we conclude the proof.

Finally, we note that all the results in this section carry over in a straightforward way to
the case Ω = R2, provided that in the statement of Lemma 2.5, PCR(Ω) is replaced with
PCR+(R2) and in the statement of Theorem 1.2, C(Ω) is replaced with Cc,+(R2) (meaning
non-negative, compactly supported continuous functions on R2). On the other hand, if Ω is
a rectilinear polygon different from a rectangle, the continuity is not necessarily preserved as
Example 2.3 shows.

2.6 Examples
In this section, we provide several examples illustrating the strength of our results. Theorem
1.1 predicts that the jump set of a function piecewise constant on rectangles may expand
under the TV1,Ω flow, i. e. facet breaking may occur. Many explicit examples of this kind can
be constructed. Here we present a simple one, for which the procedure described in the proof
of Theorem 2.3 is concise enough to be presented in detail.

Example 2.1. Let
u(t, ·) =

(
1− 4

3 t
)

+
χB + (1− 2t)+ χC ,

where we denoted

B = B∞
(
(0, 0), 3

2

)
, C = B∞

(
(2, 0), 1

2

)
∪B∞

(
(−2, 0), 1

2

)
∪B∞

(
(0, 2), 1

2

)
∪B∞

(
(0,−2), 1

2

)
.

For each t ≥ 0, u(t, ·) ∈ PCR+(R2) and u solves (1.19) in ]0,∞[×R2 with initial datum
u0 = χB∪C . To see this, we execute the algorithm described in the proof of Lemma 2.3. Let
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Q1 = u−1
0 (1) = B ∪ C. Due to symmetry, the only plausible largest minimizers of JQ1,∂Q1,∅

are B, C and B ∪C (we only need to consider elements of Fu0 and no subset of square B can
produce lower value of the functional than B). We check that the values of JQ1,∂Q1,∅ on these
sets are, respectively, 4

3 , 4, and 20
13 , hence B is the minimizer and the initial velocity on B is

−4
3 . Next, we have to find the largest minimizer of JC,∂Q1,∂B. There is only one competitor,

C. To find initial velocity on C, we calculate −JC,∂Q1,∂B(C) = −2. Finally, as explained in
section 2.4, we need to find the largest minimizer of JQ0,∂R0,∂Q1 , where we denoted R0 to be
the smallest rectangle (square) containing the support of u0 and Q0 = R0∩u−1

0 (0). We check
that the minimizer is Q0 itself, with JQ0,∂R0,∂Q1(Q0) = 0.

(a) t = 0. (b) t = 0.08. (c) t = 0.24.

Figure 2.4: Plots of u(t, ·) from Example 2.1 in certain time instances t.

(a) t = 0. (b) t = 0.08. (c) t = 0.24.

Figure 2.5: Plots of u(t, ·) from Example 2.2 in certain time instances t.

On the other hand, Theorem 1.2 asserts that if u0 is (Lipschitz) continuous, the solution
u starting with u0 is (Lipschitz) continuous in every time instance t > 0. For instance, if
one extends the characteristic function form Example 2.1 continuously outside its support,
no jumps will appear in the evolution — another manifestation of nonlocality of the equation.

Example 2.2. Here we present Figure 2.5, depicting evolution u of piecewise linear continu-
ous function u0 obtained by extending the initial datum from Example 2.1 outside its support
up to 0 in such a way that ∇u0 ∈ {(0, 0), (1, 0), (0, 1)}. The evolution is obtained by explicit
identification of corresponding field z = (z1, z2) under an ansatz that in each of a finite num-
ber of evolving regions either zi = ±1 or a zi is a linear interpolation of boundary values,
i = 1, 2 (see Figure 2.6). This reduces the problem to a decoupled infinite system of ODEs.
The evolution obtained this way is the strong solution starting with u0 as it satisfies all the
requirements in Definition 2.1. Figures 2.5 and 2.6 are obtained by solving numerically the
system of ODEs using Mathematica’s NDSolve function. We omit the quite lengthy details.
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(a) t = 0. (b) t = 0.08. (c) t = 0.24.

Figure 2.6: Density plots of z1(t, ·) corresponding to u(t, ·) from Example 2.2 in certain time instances t. Black corre-
sponds to value 1, ivory to −1; note the value 0 outside the minimal strip containing the support of u(t, ·).

Next we provide an example showing that in non-convex rectilinear polygons (i. e. other
than a rectangle) evolution starting with continuous initial datum may develop discontinuities.

Example 2.3. Let

Ω = {(x1, x2) : |(x1, x2)|∞ ≤ 1, x1 ≤ 0, x2 ≤ 0}, u0(x1, x2) = x2

and so ∇u(0, ·) ≡ (0, 1), z(0, ·) ≡ (0, 1). The solution can be written explicitly, for t ≤ 1
8 we

have

u(t, x1, x2) =


−1 +

√
2t if x2 ≤ −1 +

√
2t,

−
√

2t if x1 ≥ 0 and x2 ≥ −
√

2t,
1−
√

2t if x1 < 0 and x2 ≥ 1−
√

2t,
x2 otherwise.

We see that regions where ∇u = 0 appear near the boundary and expand with speed 1√
2t .

In these regions, z2 is linear interpolation between 0 and 1. Also a jump in the x2 direction
appears near x = 0 and grows with the same speed.

(a) t = 0. (b) t = 0.04. (c) t = 0.12.

Figure 2.7: Plots of u(t, ·) from Example 2.3 at certain time instances t.
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Facets in solutions to a uniformly
parabolic very singular equation

3.1 Characterization of D(L)
For p ∈ R, let us denote

J(p) = 1
2(p2 + α|p|), L(p) = ∂J(p).

It is easy to see that L(p) = p+ α
2 sgn p, where sgn is understood as a multifunction, i. e.

L(p) =


{p− α

2 } if p < 0,
[−α

2 ,
α
2 ] if p = 0,

{p+ α
2 } if p > 0.

The operator L ≡ −∂J is given by

Proposition 3.1. We have

D(L) ≡ D(∂J ) =
{
u ∈ H2(T) such that there exists z ∈ H1(T)
satisfying z(x) ∈ L(ux(x)) for x in T

}

and
Lu = {zx : z ∈ H1(T), z(x) ∈ L(ux(x)) for x in T}.

Proposition 3.1 motivates the notation

XT(u) = {z ∈ H1(T) : z(x) ∈ L(ux(x)) for x ∈ T}

for u ∈ D(L).
Proposition 3.1 can be obtained by adapting the arguments in [14, Examples 2 and 3]

(see also [34, Lemma 2.2]). However, in our particularly simple case, a shorter argument is
sufficient — we present it here.

Proof. Let u ∈ D(J ) = H1(T). Whenever w ∈ ∂J (u), we have

J (u+ ϕ) ≥ J (u) +
∫
T
wϕ (3.1)
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for any ϕ ∈ L2(T). Clearly, it is sufficient to consider ϕ of form ϕ = λψ with ψ ∈ H1(T),
λ > 0. Then (3.1) becomes

1
2

∫
T
|ux + λψx|2 + α|ux + λψx| − 1

2

∫
T
|ux|2 + α|ux| ≥ λ

∫
T
wψ (3.2)

which we transform and divide by λ to obtain

1
2

∫
T
λψ2

x + 2uxψx + α
2

∫
{ux=0}

|ψx|+ α
2

∫
{ux 6=0}

1
λ(|ux + λψx| − |ux|) ≥

∫
T
wψ. (3.3)

Next, we pass to the limit λ→ 0+. In the limit, the first term of the l. h. s. vanishes. To treat
the last one, we notice∫

{ux 6=0}
1
λ(|ux + λψx| − |ux|)

=
∫
{0<|ux|≤λ|ψx|}

1
λ(|ux + λψx| − |ux|) +

∫
{λ|ψx|<|ux|}

(sgn ux)ψx (3.4)

and ∫
{λ|ψx|<|ux|}

(sgn ux)ψx →
∫
{ux 6=0}

(sgn ux)ψx, (3.5)

∣∣∣∣∣
∫

0<|ux|≤λ|ψx|
1
λ(|ux + λψx| − |ux|)

∣∣∣∣∣ ≤
∫

0<|ux|≤λ|ψx|
|ψx| → 0 (3.6)

as λ → 0+ by virtue of dominated convergence. Therefore, we obtain that if w belongs to
∂J (u), the inequality∫

T
uxψx + α

2

∫
{ux=0}

|ψx|+ α
2

∫
{ux 6=0}

(sgn ux)ψx ≥
∫
T
wψ (3.7)

is satisfied for each ψ ∈ H1(T). The converse is also true, as (3.7) implies (3.3). Thus, if
w = −zx, where z ∈ H1 is a selection of the multifunction L(ux), then w ∈ ∂J (u).

On the other hand, take any w that satisfies (3.7). Taking ψ ≡ 1 we see that
∫
Tw = 0,

and thus w admits a primitive (defined up to a constant, which we will choose in a moment),
i. e. w = −zx for a function z ∈ H1(T). Now, noting that

{ψx : ψ ∈ H1(T)} =
{
ϕ ∈ L2(T) :

∫
T
ϕ = 0

}
,

we take any ψ ∈ H1(T) such that ψx = 0 on {ux = 0}. Considering both ψ and −ψ in (3.7)
yields ∫

{ux 6=0}
(ux + α

2 sgn ux)ψx =
∫
{ux 6=0}

zψx (3.8)

and thus, z = ux + α
2 sgn ux a. e. in {ux 6= 0} up to a constant (which we now choose to be 0).

Finally, take any ψ ∈ H1(T) such that ψx = 0 on {ux 6= 0}. Considering ψ and −ψ in
(3.7) yields ∣∣∣∣∣

∫
{ux=0}

zψx

∣∣∣∣∣ ≤
∫
{ux=0}

|ψx| (3.9)
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Figure 3.1: Graph of a typical u ∈ D(L).

which implies that z = c+ z∗ a. e. in {ux = 0} with ‖z∗‖L∞({ux=0}) ≤ α
2 and c ∈ R. Unless u

is constant in T, our previous choice of z together with its regularity imply that c = 0. If u
is constant, we choose c = 0.

Now, note that for any u ∈ D(L), ux is representable as the composition of the piecewise
linear continuous function p 7→ sgn p(|p|− α

2 )+ and any z ∈ XT(u). In particular, the function
uxx = zx1{ux 6=0} (defined independently of z ∈ XT(u)) is the distributional second derivative
of u and belongs to L2(T).

Proposition 3.1 states that the elements of D(L) are at least as regular as elements of
D(∆). However, as the dissipation of L is essentially stronger than that of the laplacian, they
are in fact more regular. This additional regularity is expressed in Proposition 3.1 in a rather
convoluted way, as the existence of a regular selection of L(ux). The following Lemma makes
it more explicit. Roughly, it states that a non-constant u ∈ H2(T) belongs to D(L) if and
only if T can be divided into a finite number of (non-degenerate) intervals where u is constant
and intervals where u is monotone. Furthermore, it identifies L0u as (L◦ux)x, where L◦ is a
certain nonlocal operator introduced in [67]. We recall its definition (in generality sufficient
for our purposes) in the statement of the Lemma.

Lemma 3.1. Let u ∈ D(L) be non-constant. There exists an even number n and a disjoint
decomposition {Ik, F k : k ∈ Zn} of T such that for k ∈ Zn:

(i) F k is a non-degenerate closed interval, Ik is an open interval and Ik < F k < Ik+1,

(ii) ux = 0 in F k, F k is a maximal interval with this property, and u attains an improper
local maximum (resp. minimum) in F k if k is even (resp. odd),

(iii) u is non-decreasing (resp. non-increasing) in Ik if k is even (resp. odd),

(iv) |F k| ≥ α2‖L0u‖−2
L2(T).

On the other hand, if u ∈ H2(T) and a finite disjoint decomposition {Fk, Ik : k ∈ Zn} of
T satisfies conditions (i, ii, iii) for k ∈ Zn, then u ∈ D(L) and (iv) holds.

Furthermore, there exists a unique element L◦ux of XT(u) satisfying

(a) L◦ux = ux + α
2 in Ik for k even, L◦ux = ux − α

2 in Ik for k odd,

(b) (L◦ux)x = − α
|Fk| in F

k for k even, (L◦ux)x = α
|Fk| in F

k for k odd.

There holds L0u = (L◦ux)x.
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Proof. Let z ∈ XT(u). Due to embedding H1(T) ⊂ C
1
2 (T) and Proposition 3.1, both ux and

z are continuous. Suppose that u attains a local maximum on a (possibly degenerate) interval
F = [a, b] ⊂ T, and that F is a maximal interval with respect to this property. There are
points x, y arbitrarily close to F such that x < a ≤ b < y and ux(x) > 0, ux(y) < 0. Hence,
z(a) = α

2 , z(b) = −α
2 (in particular a 6= b). As the affine function minimizes the functional

z 7→
∫
F z

2
x on H1(F ) with prescribed boundary values, we have

‖L0u‖2L2(T) ≥
∫
F
z2
x ≥

∫
F

(
z(b)− z(a)
|F |

)2
= α2

|F |
. (3.10)

Analogous argument shows (3.10) if u attains a local minimum on F . Hence, u has only
a finite number n of local extrema, in fact n ≤ α−2‖L0u‖2L2(T) (recall that |T| = 1). We
enumerate them F 0 = [a0, b0], . . . , Fn−1 = [an−1, bn−1] in a manner consistent with the cyclic
order on T and so that F 0 corresponds to a local maximum of u. Clearly, u is monotone in
each of complementary intervals Ik =]bk−1, ak[, k ∈ Zn.

Now, assume that u ∈ H2(T) and a finite decomposition {F k, Ik} of T satisfying conditions
(i, ii, iii) exists. Conditions (a) and L◦ux ∈ H1(T) define L◦ux uniquely in the closure of
each interval Ik, with

L◦ux = (−1)k α2 (3.11)
at the endpoints. Then, we extend L◦ux to intervals F k in the unique way so that condition
(b) is satisfied and the result is continuous on T. As a continuous, piecewise H1 function,
L◦ux ∈ H1(T) and clearly belongs to XT(u).

Finally, note that whenever ux = 0 in an open interval I ⊂ Ik, there holds (L◦ux)x = 0 in
I. Taking into account this and (3.10) we see that (L◦ux)x minimizes the L2(T) norm among
elements of D(L). Thus, L0u = (L◦ux)x.

Remark. It is now an easy observation that D(L) is dense in L2(T).

3.2 Higher regularity and facets
Formally, we may write

zt = L(ux)t = L′(ux)uxt = L′(ux)zxx. (3.12)

As L′ = 1+αδ0 > 0 in D′(R), we could expect (3.12) to yield additional regularity of solutions
to (1.30), but due to lack of proper definition of the term L′(ux) in (3.12) we need to proceed
by approximation. Hence, let us denote by Jε smoothened versions of J given by

Jε(p) = 1
2p

2 + α
2 (ε2 + p2)

1
2

and by Lε its derivative
Lε(p) = J ′ε(p) = p+ α

2
p

(ε2+p2)
1
2
.

In particular we have
1 ≤ L′ε(p) = 1 + α

2
ε2

(ε2+p2)
3
2
≤ 1 + α

2ε . (3.13)

Analyzing the approximate problem

uεt = Lε(uεx)x in T (3.14)

we obtain the following result.
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Lemma 3.2. Let u be the solution to (1.30) with u0 ∈ D(L) and let T > 0. There holds

L0u ∈ L2(0, T ;H1(T)) ∩ L∞(0, T ;L2(T)).

If moreover L0u0 ∈ L∞(T), then

L0u ∈ L∞(]0, T [×T) and ux ∈ C
1
2 ([0, T ]× T).

Proof. Using either monotone operators theory [8] or fixed point methods [54] we obtain the
existence of a unique strong solution uε to (3.14) with initial datum u0 in H1(0, T ;L2(T)) ∩
L2(0, T ;H2(T)). Testing the problem with uεxx and recalling (3.13), we obtain the following
estimate independent of ε:

1
2ess sup

t∈]0,T ]
‖uεx(t, ·)‖2L2(T) + ‖uεxx‖2L2(0,T ;L2(T)) ≤ ‖u0,x‖2L2(T). (3.15)

We denote zε = Lε(uεx). There holds

zεt = L′ε(uεx)zεxx in D′(T). (3.16)

The function L′ε(uεx) is uniformly positive and bounded in ]0, T [×T for any given ε > 0.
Freezing uε we may see (3.16) as a linear uniformly parabolic equation for zε. Supplying it
with initial datum L◦u0,x ∈ H1(T), we obtain a strong solution in the class H1(0, T ;L2(T))∩
L2(0, T ;H2(T)), which clearly coincides with zε. Testing the problem with zεxx we obtain (see
[30, 5.9., Theorem 3]) the following estimate independent of ε

1
2ess sup

t∈]0,T ]
‖zεx(t, ·)‖2L2(T) + ‖zεxx‖2L2(0,T ;L2(T)) ≤ ‖L

0u0‖2L2(T). (3.17)

Now, we justify the limit passage as ε → 0+ in (3.14). We note that ‖uεxx(t, ·)‖2L2(T) ≤
‖zεx(t, ·)‖2L2(T) and u

ε
t = zεx. It is also easy to check that uε and uεx satisfy weak maximum and

minimum principles. Summarizing, the following quantities are bounded independently of ε:

‖uε‖L∞(]0,T [×T), ‖uεx‖L∞(]0,T [×T), ‖zε‖L∞(]0,T [×T),

‖uεt‖L2(]0,T [×T), ‖uεxx‖L2(]0,T [×T), ‖uεtx‖L2(]0,T [×T).

Due to anisotropic Morrey embedding [47, Theorem 5], we also have a uniform bound on uε

in C
1
2 (]0, T [×T). Hence we can extract from the family (uε, zε) a sequence (uεn , zεn) such

that there exists a pair (u, z) with u ∈ H1(0, T ;H1(T))∩L2(0, T ;H2(T)), z ∈ L∞(]0, T [×T)∩
L2(0, T ;H2(T)) satisfying

uεn → u in C([0, T ]× T), uεnx → ux a. e. in ]0, T [×T zεn
∗
⇀ z in L∞(]0, T [×T),

ut = zx a. e. in ]0, T [×T.

It remains to check that z is a selection of L(ux). Indeed, this follows from almost-everywhere
convergence of uεnx and uniform convergence of graphs of Lε to the graph of multifunction L.
Hence, due to uniqueness of solutions to (1.30), we see that u = u. As a consequence, we get
also z = L◦ux, i. e. zx = L0u.
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Next, suppose that L0u0 ∈ L∞(T). We verify that for any ε > 0, zεx satisfies weak
maximum and minimum principles: for any k > 0 there holds

d
dt

1
2

∫
T
(zεx ∓ k)2

± =
〈
(L′ε(uεx)zεxx)x, (zεx ∓ k)±

〉
(H−1(T),H1(T)) = −

∫
{±zε>±k}
L′ε(uεx)(zεxx)2 ≤ 0

a. e. in ]0, T [. Hence, by a standard argument, ‖zεx‖L∞(]0,T [×T) ≤ ‖L0u0‖L∞(T) and conse-
quently ‖L0u‖L∞(]0,T [×T) ≤ ‖L0u0‖L∞(T).

Finally, we recall that ‖uxx‖L∞(]0,T [×T) ≤ ‖L0u‖L∞(]0,T [×T). Therefore, again by [47, The-
orem 5], ux ∈ C

1
2 ([0, T ]× T).

Remark. If (3.12) was a regular parabolic equation, one would be able to obtain L0u at
least in C([0, T ];L2(T)). The reasoning in the proof of Proposition 3.2 does not lead to such
regularity, as the usual uniform estimate on L2(0, T ;H−1(T)) norm of zεx does not hold.

Lemma 3.3. Let T ∗ = (πα)−1‖u0 −
∫
T u0‖L2(T). The solution u is constant and equal to∫

T u0 in [T ∗,∞[×T.

Proof. Assume first that
∫
T u0 and consequently

∫
T u = 0 in a. e. time instance. Testing the

problem (1.30) with u we obtain

1
2

(∫
T
u2
)
t

= −
∫
T
u2
x + α

2 |ux| (3.18)

in a. e. instance of time. As

2π‖u‖L2(T) ≤ ‖ux‖L2(T) ≤
∫
T
|ux|, (3.19)

this yields (
‖u‖2L2(T)

)
t
≤ −2πα‖u‖L2(T). (3.20)

Solving this ODE yields
‖u(t, ·)‖L2(T) ≤ ‖u0‖L2(T) − παt (3.21)

as long as u(t, ·) 6≡ 0. Hence, u ≡ 0 for t ≥ (πα)−1‖u0‖L2(T).
Finally, we relax the assumption of vanishing mean of u. It suffices to notice that u−

∫
T u0

is the solution to (1.30) with initial datum u0 −
∫
T u0.

Armed with this battery of lemmata, we are ready for the

Proof of Theorem 1.3. To prove the existence of functions F km, we use a technique derived
from [61]. Let 2m0 be the number of local extrema of u0 (finite due to Lemma 3.1). Let tm0

be the first time instance t such that u(t, ·) is constant (well defined due to Lemma 3.3 and
continuity of u).

Take s, t with 0 ≤ s < t < tm0 . Let {Ikt , F kt : k ∈ Znt} be the decomposition of T
produced by Lemma 3.1 given u(t, ·). For k ∈ Znt , take yk ∈ Ikt such that ux(t, yk) 6= 0. Let
Us,t = {(t, x) ∈]s, t[×T : ux 6= 0} and let Ak denote the connected component of Us,t such
that (t, yk) ∈ Ak. Due to weak maximum principle, there exists xk ∈ T such that (s, xk) ∈ Ak
and ux(s, xk) 6= 0. As Ak is an open, connected set, both Ak and Ak are path-connected. Let
Γk : [0, 1]→ Ak be any continuous path joining xk and yk such that Γk(]0, 1[) ⊂ Ak, Clearly,
ux has constant sign along Γk; due to the choice of yk, the sign is positive for k odd and
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negative for k even. Hence, u(s, ·) has a local extremum in ]xk, xk+1[ for k ∈ Znt . This proves
that the number of local extrema of u(t, ·) is not bigger than that of u(s, ·).

For m = 1, . . . ,m0 − 1, we denote by tm the greatest lower bound of the set of time
instances t such that u(t, ·) has not more than 2(m0−m) local extrema. Due to continuity of
ux, u(t, ·) has exactly 2(m0−m) local extrema for t ∈ [tm, tm+1[, m = 0, . . . ,m0− 1. For any
m = 0, . . . ,m0 − 1 such that tm 6= tm+1, let us now take s = tm, t ∈]tm, tm+1[ and construct
curves Γk, k ∈ Z2(m0−m) as before. As the sign of ux on Γk is alternating with changing k,
these curves cannot intersect. Hence, they preserve the cyclic order, i. e.

Γk ∩ {τ} × T < Γk+1 ∩ {τ} × T < Γk+2 ∩ {τ} × T

for τ ∈ [s, t]. By a counting argument, this implies that u(τ, ·) attains exactly one local
extremum between Γk and Γk+1. For τ ∈ [s, t], we define F km(τ) as the set where this
extremum is attained. Then, we take s′ = t and t′ ∈]t, tm+1[. As before, we construct
continuous paths Γ′k joining points (s′, x′k) and (t′, y′k). We choose the numbering of these
points so that x′k ∈ Ikt . As before, we use these paths to define F km(τ) for τ ∈]s′, t′]. We also
join Γ′k with Γk by the line segment conv {(t, yk), (t, x′k)}. Iterating this procedure, we obtain
functions F km : [tm, tm+1[→ F(T) and continuous paths Γkm : [0, 1] → [tm, tm+1[×T such that
the sets F k[tm,tm+1[ =

⋃
t∈[tm,tm+1[{t}×F km(t) are separated from each other by curves Γkm. We

also define
Ikm(t) = {x ∈ T : F k−1

m (t) < x < F km(t)}

for t ∈ [tm, tm+1[. This way, we obtain an order-consistent choice of disjoint decompositions
{Ik, F k} = {Ikm(t), F km(t)} of T satisfying conditions (i-iii) from Lemma 3.1 (with u = u(t, ·)).
Hence, |F km(t)| ≥ α2‖L0u0‖−2

L2(T).
Let us denote Ik]tm,tm+1[ =

⋃
t∈]tm,tm+1[{t}×Ikm(t). Note that for any t ∈]tm, tm+1[, we have

ux 6= 0 in some neighborhoods in Ikm(t) of its endpoints. Hence, Ik]tm,tm+1[ coincides with the
set of convex combinations of points x = (t, x), x′ = (t, x′) with x,x′ ∈ Ik]tm,tm+1[ ∩ Utm,tm+1 .
As this latter set is open, it is easy to see that also Ik]tm,tm+1[ is open. By Lemma 3.1,
L0u = uxx in Ik]tm,tm+1[. Thus, u is a solution to the heat equation in Ik]tm,tm+1[, in particular
u ∈ C∞(Ik]tm,tm+1[). By the strong maximum principle [58, Theorem 2.7], ux 6= 0 in Ik]tm,tm+1[.

Take t ∈]tm, tm+1[. Due to continuity of ux, we have

lim sup
s→t−

F km(s) ⊂ F km(t). (3.22)

The difference F km(t) \ lim sups→t− F km(s) is contained in the closure of Ik]tm,tm+1[ ∪ I
k+1
]tm,tm+1[

minus the parabolic boundary of this set. Again by the strong maximum principle [58,
Theorem 2.7], F km(t) \ lim sups→t− F km(s) = ∅. The same reasoning proves that

lim sup
s→t−

{x ∈ T : ux(s, ·) = 0} = {x ∈ T : ux(t, ·) = 0}

for any t ∈]0, T ]. For t = tm, this implies (1.32).
Next, we take t ∈ [tm, tm+1[. Again,

lim sup
s→t+

F km(s) ⊂ F km(t). (3.23)



3.2. Higher regularity and facets 53

follows from continuity of ux. For s ∈ [tm, tm+1[ denote F km(s) = [b(s), c(s)]. Take r > 0 small
enough so that F k−1

m (t) < b(t)− 2r < F km(t) < c(t) + 2r < F k+1
m (t). By virtue of (3.23), there

exists δ = δ(r) > 0 such that

F k−1
m (s) < b(t)− 2r < b(t)− r < F km(s) < c(t) + r < c(t) + 2r < F k−1

m (s)

if t ≤ s ≤ t+δ. Now, consider the solution uε to the approximating problem (3.14) in ]t, T [×T
with initial condition uε(t, ·) = u(t, ·). Let us take a piecewise linear function η ∈ C(T, [0, 1])
such that

η = 1 in [b(t)− r, c(t) + r], η = 0 in [c(t) + 2r, b(t)− 2r],
η′ = 1

r in ]b(t)− 2r, b(t)− r[, η′ = −1
r in ]c(t) + r, c(t) + 2r[.

Differentiating (3.16) with respect to x and testing the resulting equation with zεxη2 yields
d
dt

1
2

∫
T
|zεx|2η2 = −

∫
T
L′ε(uεx)|zεxx|2η2 + 2

∫
T
L′ε(uεx)zεxxzεxηη′ ≤

∫
T
L′ε(uεx)|zεx|2|η′|2.

Integrating this inequality over [t, s] yields∫ c(t)+r

b(t)−r
|zεx(s, ·)|2 ≤

∫ c(t)+2r

b(t)−2r
|zεx(t, ·)|2 + 2

r2

∫ s

t

∫
A(t,r)

L′ε(uεx)|zεx|2, (3.24)

where we have denoted A(t, r) = [b(t) − 2r, b(t) − r] ∪ [c(t) + r, c(t) + 2r]. We recall that by
Lemma 3.2,

‖zεx‖L∞(]t,t+δ[×T) ≤ ‖L0u(t, ·)‖L∞(T).

Hence, we can rewrite (3.24) as∫ c(t)+r

b(t)−r
|zεx(s, ·)|2 ≤

∫ c(t)

b(t)
|L0u(t, ·)|2 +

(
4r + 4

r
(s− t) max

[t,s]×A(t,r)
L′ε(uεx)

)
‖L0u(t, ·)‖L∞(T).

(3.25)
Using observations from the proof of Lemma 3.2, we can pass to the limit with (uε, zε) along
a suitable sequence εn. By virtue of uniqueness of u, the limit coincides with (u, L◦u)|[t,T ]×T.
Taking into account that uεnx converges uniformly to ux, which is bounded away from 0 on the
closed set [t, t+ δ]×A(t, r), we have uniform convergence Lεn(uεnx )→ 1 on this set. Passing
to the limit εn → 0+ in 3.25 yields

ess sup
s∈[t,t+δ]

∫ c(t)+r

b(t)−r
|L0u(s, ·)|2 ≤

∫ c(t)

b(t)
|L0u(t, ·)|2 +

(
4r + 4δ

r

)
‖L0u(t, ·)‖L∞(T).

We can assume that δ ≤ r2. Recalling that |L0u(s, ·)| = α|F km(s)|−1 on F km(s),

ess sup
s∈[t,t+δ]

α2|F km(s)|−1 ≤ α2|F km(t)|−1 + 8r‖L0u(t, ·)‖L∞(T),

which we may further rewrite as

ess inf
s∈[t,t+δ]

|F km(s)| ≥ |F km(t)|
1 + 8r‖L0u(t, ·)‖L∞(T)α−2|F km(t)| . (3.26)

As r > 0 can be chosen arbitrarily small, this implies right lower semicontinuity of |F km|:

lim inf
s→t+

|F km(s)| ≥ |F km(t)| (3.27)

for t ∈ [tm, tm+1[. Together with (3.23), this implies the desired right continuity of F km.
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A local estimate for the total
variation flow of curves

The proof of Theorem 1.4 is based on an estimate for a smooth approximation of total variation
flow. Suppose for now that u0 ∈ C∞(I) and all compatibility conditions D2k

x z0 = 0 on ∂I,
k = 0, 1, . . . hold with z0 = uε0,x√

ε2+|uε0,x|2
. From now on, we stop specifying the codomain in

the notation for function spaces. Given ε > 0, let uε in C∞([0,∞[×I) be the solution to the
system

uεt = zεx in ]0,∞[×I, (4.1)

zε = uεx√
ε2 + |uεx|2

in ]0,∞[×I (4.2)

zε(t, ·) = 0 on ∂I. (4.3)
uε(0, ·) = u0, (4.4)

Existence and regularity of the solution to the quasilinear system (4.1-4.4) is known (see
e. g. Proposition 5.1).

For x0 ∈ R and r > 0, let us denote by B(x0, r) the closed interval [x0 − r, x0 + r].
Lemma 4.1. Let p ∈]1, 3] and t > 0. Let x0 ∈ I and 0 < r < R be such that B(x0, R) ⊂ I.
There holds ∫

B(x0,r)

(
|uεx(t, ·)|2 + ε2

) p
2 ≤

∫
B(x0,R)

(
|u0,x|2 + ε2

) p
2 + p

p− 1
2εp−1t

R− r
. (4.5)

Proof. In the following calculations we will omit the index ε. First of all, we note that
1
2

d
dt |ux|

2 = ux · zxx. (4.6)

Now, let ϕ be the Lipschitz cutoff function such that suppϕ = B(x0, R), ϕ = 1 in B(x0, r)
and |ϕx| = 1

R−r in B(x0, R) \B(x0, r). Given p ≥ 1, we calculate

1
p

d
dt

∫
I
ϕ2
(
|ux|2 + ε2

) p
2 =

∫
I
ϕ2
(
|ux|2 + ε2

) p
2−1

ux · zxx =
∫
I
ϕ2
(
|ux|2 + ε2

) p
2−

1
2 z · zxx

= −
∫
I
ϕ2
(
|ux|2 + ε2

) p
2−

1
2 |zx|2 − (p− 1)

∫
I
ϕ2
(
|ux|2 + ε2

) p
2−

3
2 ux · uxx z · zx

− 2
∫
I
ϕϕx

(
|ux|2 + ε2

) p
2−

1
2 z · zx. (4.7)
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We have

z · zx = 1
2
(
|z|2

)
x

= 1
2

(
|ux|2

|ux|2 + ε2

)
x

= 1
2

(
1− ε2

|ux|2 + ε2

)
x

= ε2ux · uxx
(|ux|2 + ε2)2 . (4.8)

Substituting (4.8) into (4.7) yields

1
p

d
dt

∫
I
ϕ2
(
|ux|2 + ε2

) p
2 ≤ −(p− 1)ε2

∫
I
ϕ2
(
|ux|2 + ε2

) p
2−

7
2 |ux · uxx|2

− 2ε2
∫
I
ϕϕx

(
|ux|2 + ε2

) p
2−

5
2 ux · uxx (4.9)

We treat the last term in (4.9) with Cauchy’s inequality, obtaining

2
∫
I
ϕϕx

(
|ux|2 + ε2

) p
2−

5
2 ux · uxx ≤ (p− 1)

∫
I
ϕ2
(
|ux|2 + ε2

) p
2−

7
2 |ux · uxx|2

+ 1
p− 1

∫
I

(
|ux|2 + ε2

) p
2−

3
2 ϕ2

x.

Assuming that 1 < p ≤ 3, we get

d
dt

∫
I
ϕ2
(
|ux|2 + ε2

) p
2 ≤ p

p− 1
2εp−1

|R− r|
(4.10)

which, integrated over time, yields (4.5).

Let us remark that expanding the first term on the right hand side of (4.7) shows it to be
of order ε4, hence it is not useful for obtaining a completely local estimate. For this reason,
approximation step with p > 1 cannot be omitted in presented reasoning.

With Lemma 4.1 at hand, it is easy to conclude.

Proof of Theorem 1.4. With our assumptions, the families (uεx) and zε are uniformly bounded
in L∞(]0,∞[×I) and the family (uεt ) is uniformly bounded in L2(]0,∞[×I), see Lemmata 5.1
and 5.3. Hence, there is a sequence (εk) and a pair (u, z) satisfying (1.34-1.38), such that

uεk → u in C([0,∞[×I) and zεk
∗
⇀ z in L∞(]0,∞[×I).

Due to lower semicontinuity of
∫
B(r,x0) |ux|p with respect to uniform convergence of u, passing

to the limit ε→ 0+ with (4.5) yields∫
B(x0,r)

|ux(t, ·)|p ≤
∫
B(x0,R)

|u0,x|p (4.11)

and, after limit passages p→ 1+, R→ r+,∫
B(x0,r)

|ux(t, ·)| ≤
∫
B(x0,r)

|u0,x|.

Next, we remove the smoothness assumption on u0. We take a sequence (uk0) ⊂ C∞(I)
converging to u0 strictly in BV (I) as k → ∞. To guarantee that uk0 satisfy compatibility
conditions for (4.1-4.4), we construct them by extending u0 beyond I by even reflection with
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respect to endpoints and convolving the result with standard even mollifying kernel. The
sequence (uk0) gives rise to a sequence of solutions (uk, zk) to (1.34-1.37) such that (uk) is
uniformly bounded in L∞(0,∞;BV (I)), (ukt ) is uniformly bounded in L2(]0,∞[×I), (zk) is
uniformly bounded in L∞(]0,∞[×I) and for all x0 ∈ I, r > 0 with B(x0, r) ⊂ I,∫

B(x0,r)
|ukx(t, ·)| ≤

∫
B(x0,r)

|uk0,x|. (4.12)

We extract a subsequence (renamed immediately to (uk, zk)) such that

uk → u in L2(]0,∞[×I) and zk
∗
⇀ z in L∞(]0,∞[×I),

where (u, z) is the solution to (1.34-1.38). Fix t > 0. Due to lower semicontinuity of total
variation, passing to the limit k →∞ with (4.12) we get

|ux(t, ·)|(B(x0, r)) ≤ |u0,x|(B(x0, r)) (4.13)

for any ball B(x0, r) ⊂ I such that (cf. [5, Proposition 3.7])

|u0,x|(∂B(x0, r)) = 0 (4.14)

Property (4.14) is satisfied for every x0 ∈ I and almost every r > 0 such that B(x0, r) ⊂ I.
Hence, by [31, 1.5.2., Corollary 1], up to a set of zero |ux(t, ·)| measure we can fill any

open set U ⊂ I with a countable family of disjoint closed balls B(xk, rk) contained in U and
satisfying (4.14): hence

|ux(t, ·)|(U) =
∞∑
k=1
|ux(t, ·)| (B(xk, rk)) ≤

∞∑
k=1
|u0,x| (B(xk, rk)) ≤ |u0,x|(U).

Finally, by virtue of [31, 1.1.1., Lemma 1], given a Borel A ⊂ I and ε > 0 we can find an
open U with A ⊂ U and |u0,x|(U \A) ≤ ε. Therefore,

|ux(t, ·)|(A) ≤ |ux(t, ·)|(U) ≤ |u0,x|(U) ≤ |u0,x|(A) + ε.

As ε > 0 is arbitrary, we are done.



Chapter 5

Regular 1-harmonic map flow

5.1 Uniqueness
In this section, we give the proof of Theorem 1.5.

Let (u1,Z1), (u2,Z2) be two regular solutions to (1.44, 1.45). For i = 1, 2 there holds

uit = divZi +Aui(uixj ,Z
i
j).

Here and in the rest of this section, uixj and Zi
j denote, respectively, the derivative of ui in

direction of xj and the j-th component of Zi, i = 1, 2, j = 1, . . . ,m. We calculate

1
2

d
dt

∫
Ω
|u1 − u2|2 =

∫
Ω

(u1 − u2) · (divZ1 − divZ2)

+
∫

Ω
(u1 − u2) · (Au1(u1

xj ,Z
1
j )−Au2(u2

xj ,Z
2
j )). (5.1)

In the first term on the r. h. s. of (5.1) we integrate by parts, yielding∫
Ω

(u1 − u2) · (divZ1 − divZ2) = −
∫

Ω

(
|∇u1| − ∇u1 ..Z2 + |∇u2| − ∇u2 ..Z1

)
which is non-positive as |Zi| ≤ 1, i = 1, 2. Next, we note that for any p1,p2 ∈ N contained
in a fixed compact subset K of N we have

|π⊥pi(p
1 − p2)| ≤ C1(K)|p1 − p2|2

for i = 1, 2. The exponent two on the right-hand side follows from the second-order Taylor
expansion of π⊥pi(p− p

i) around pi: indeed

p− pi = exp−1
pi
p+O(|p− pi|2)

in a neighborhood U ⊂ N of pi, where exp−1
pi

: U → TpiN is the logarithmic map of N
at pi (see e. g. [62, Lemma A.1]). Such exponent is crucial for the following Gronwall-type
argument.

As u1, u2 are continuous on [0, T ] × Ω (we assume without loss of generality that T is
finite), there is indeed a compact set K = K(u1,u2) in N with ui([0, T ]× Ω) ⊂ K, i = 1, 2.
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Therefore, as Aui is valued in TuiN⊥ (i = 1, 2) there is a constant C2 depending on K and
the norms of ∇u1, ∇u2 in L∞(]0, T [×Ω,RN ) such that

1
2

d
dt

∫
Ω
|u1 − u2|2 ≤ C2

∫
Ω
|u1 − u2|2

for a. e. t ∈]0, T [. Thus, if u1(0, ·) = u2(0, ·), we have u1 ≡ u2 due to Gronwall’s lemma.

5.2 The approximate system
In this section, Ω ⊂ Rm is assumed to be an open, bounded, smooth, convex domain and 0 <
α < 1. Given ε > 0, T ∈]0,∞] we consider the approximating system for uε : [0, T [×Ω→ N :

uεt = πuε

(
div ∇uε√

ε2+|∇uε|2

)
in ]0, T [×Ω, (5.2)

νΩ · ∇uε = 0 in ]0, T [×∂Ω, (5.3)

uε(0, ·) = u0. (5.4)

Further in this section, we will drop the index ε and denote Z = ∇u√
ε2+|∇u|2

.
We will obtain solutions to (5.2, 5.3, 5.4) in parabolic Hölder spaces as defined in [54,

Chapter I]. Let us introduce some necessary notation. Given numbers k = 0, 1, . . ., 0 < α < 1
and an interval I, we write C

k+α
2 ,k+α(ΩI ,RN ) for the parabolic Hölder space on ΩI = I × Ω

of order k+α. Similarly, we write u ∈ C
k+α

2 ,k+α
loc (ΩI ,RN ) if u ∈ C

k+α
2 ,k+α(ΩK ,RN ) for every

interval K compactly included in I.

5.2.1 Uniform bounds

In this subsection, we prove essential a priori estimates for u ∈ C
3+α

2 ,3+α
loc (Ω[0,T [,N ) solving

(5.2, 5.3) with a given ε, T > 0. For brevity, we denote

v =
(
|∇u|2 + ε2

) 1
2 , v0 =

(
|∇u0|2 + ε2

) 1
2 .

The basic energy estimate reflects the gradient flow structure behind (5.2, 5.3).

Lemma 5.1. Let u ∈ C
3+α

2 ,3+α
loc (Ω[0,T [,N ) satisfy (5.2, 5.3). Then

sup
t∈[0,T [

∫
Ω
v(t, ·) +

∫ T

0

∫
Ω
u2
t ≤

∫
Ω
v0. (5.5)

Proof. The estimate follows from the equality

d
dt

∫
Ω
v =

∫
Ω
Z ..∇ut = −

∫
Ω
u2
t

which holds as ut(t,x) ∈ Tu(t,x)N for (t,x) ∈]0, T [×Ω.

In order to derive further uniform bounds, our main tool is the following version of
Bochner’s identity (see [59, Chapter 1.] for the case of harmonic maps).
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Lemma 5.2. Let u ∈ C
3+α

2 ,3+α
loc (Ω[0,T [,N ) satisfy (5.2). Then, on ]0, T [×Ω,

1
2

d
dt |∇u|

2 = (∇u ..∇Zi)xi − (πu∇2u) ...∇Z +Zi · RNu (uxi ,uxj )uxj . (5.6)

Proof. Given t ∈]0, T [, x ∈ Ω, we choose a local orthonormal frame (Nk)k=1,...,N−n on N
around u(t,x). For any p ∈ N close enough to u(t,x), we express using this frame

π⊥p = Nk
p ⊗Nk

p, Ap(X,Y ) = (X ·DpNk Y )Nk
p, (5.7)

where X,Y ∈ TpN , Nk
p denotes the value of Nk at p and DpNk : TpN → RN is the tangent

map to Nk at p, that is DwNkws = (Nk
w)s for any C1 curve s 7→ w(s) ∈ N . We recall

that Ap is symmetric and does not depend on the choice of (Nk) [74, Chapter 7], and by
convention

X ⊗ Y u = (Y · u)X, (X ⊗ Y u) · v = (Y · u)(X · v) (5.8)

for any X,Y ,u,v ∈ RN .
First, we calculate

−Nk
u ⊗Nk

u divZ = −Nk
u(Nk

u ·Zj︸ ︷︷ ︸
=0

)xj +Nk
u((Nk

u)xj ·Zj) = Au(uxj ,Zj)

which allows us to rewrite (5.2) as

ut = divZ +Au(uxj ,Zj). (5.9)

Using (5.9), we obtain

1
2

d
dt |∇u|

2 = ∇u ..∇divZ +∇u ..∇Au(uxi ,Zi)

= (∇u ..∇Zi)xi −∇
2u

...∇Z +
(
uxj · Au(uxi ,Zi)︸ ︷︷ ︸

=0

)
xj
−∆u · Au(uxi ,Zi) (5.10)

where in the last line we used that Au is orthogonal to uxj ∈ TuN .
Next we perform the following calculations:

(
π⊥u∇2u

) ...∇Z (5.7)=
(
Nk
u ⊗Nk

u∇2u
) ...∇Z = (Nk

u ⊗Nk
u uxixj ) ·Zi,xj

(5.8)2= Nk
u · uxixj Nk

u ·Zi,xj

=
(
(Nk

u · uxi︸ ︷︷ ︸
=0

)xj − (Nk
u)xj · uxi

)(
(Nk

u ·Zi︸ ︷︷ ︸
=0

)xj − (Nk
u)xj ·Zi

)
= Au(uxi ,uxj ) · Au(uxj ,Zi)

and similarly

π⊥u∆u
(5.8)1= (Nk

u · uxjxj )Nk
u =

(
(Nk

u · uxj︸ ︷︷ ︸
=0

)xj − (Nk
u)xj · uxj

)
Nk
u = −Au(uxj ,uxj ),

so that

∆u · Au(uxi ,Zi) = π⊥u∆u · Au(uxi ,Zi) = −Au(uxj ,uxj ) · Au(uxi ,Zi).
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Hence, (5.10) may be rewritten as

1
2

d
dt |∇u|

2 = (∇u ..∇Zi)xi −
(
πu∇2u

) ...∇Z
−Au(uxi ,uxj ) · Au(uxj ,Zi) +Au(uxj ,uxj ) · Au(uxi ,Zi).

Finally, we recall the Gauss-Codazzi equation

W · RNp (X,Y )Z = Ap(Y ,Z) · Ap(X,W )−Ap(X,Z) · Ap(Y ,W )

for any quadruple of vectors X,Y ,Z,W ∈ TpN , p ∈ N , which finishes the proof.

We are now ready to derive uniform Lipschitz bounds.

Lemma 5.3. Let u ∈ C
3+α

2 ,3+α
loc (Ω[0,T [,N ) satisfy (5.2-5.4).

(i) If KN ∈]0,∞[, then

‖v(t, ·)‖L∞ ≤
‖v0‖L∞

1− tKN ‖v0‖L∞
(5.11)

for t ∈]0,min(T†, T )[, where T† := (KN ‖v0‖L∞)−1.

(ii) If KN ≤ 0, then for 0 < t < T < T† := +∞ there holds

‖v(t, ·)‖L∞ ≤ ‖v0‖L∞ . (5.12)

Proof. Given a finite p ≥ 1, using (5.6) and integrating by parts, we calculate

1
p

d
dt

∫
Ω
vp =

∫
Ω
vp−2∇u ..∇ut

= −
∫

Ω
vp−2(πu∇2u

) ...∇Z − (p− 2)
∫

Ω
vp−4∇u ..∇2u · ∇Z ..∇u

+
∫
∂Ω
vp−2(∇u ..∇Zi)(νΩ)i +

∫
Ω
vp−3uxi · RNu (uxi ,uxj )uxj . (5.13)

We have
Zij,xk = v−1

(
uixjxk − Z

i
j(∇uxk ..Z)

)
and

∇Zj
..∇u = v−1(∇u ..∇uxj − Zij Zik∇uxk ..∇u)

for i = 1, . . . , N and j, k = 1, . . . ,m. Thus, we can rewrite

∇u ..∇2u · ∇Z ..∇u = v−1∇u ..∇uxj (Imjk − ZijZik)∇uxk ..∇u (5.14)

(we use the notation Il = (I ljk : j, k = 1, . . . , l) for the l-dimensional identity matrix). On the
other hand,

(πu∇2u) ...∇Z = v−1(πu∇uxj ) .. (Im⊗ IN −Z ⊗Z) ..∇uxj . (5.15)

From (5.14), (5.15) and the fact that |Z| ≤ 1, it is clear that, provided p ≥ 2, the first two
terms on the r. h. s. of (5.13) are non-positive. To treat the remaining boundary term, we
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extend νΩ to a normal tubular neighbourhood of ∂Ω in such a way that it is constant in the
fibers, and calculate (at points in ∂Ω)

(∇u ..∇Zi)(νΩ)i = ∇uj · ∇(Zji (ν
Ω)i)−∇uj · ∇(νΩ)i Zji = −v−1νΩ · A∂Ω(∇ui,∇ui). (5.16)

The term ∇uj · ∇(Zji (νΩ)i) vanishes because, due to (5.3), ∇uj ∈ Tx∂Ω and ∇(Zji (νΩ)i) ∈
(Tx∂Ω)⊥ for j = 1, . . . N . By A∂Ω we denoted the second fundamental form of hypersurface
∂Ω,

A∂Ω
x (X,Y ) = (X ·DxνΩ Y )νΩ

x

for x ∈ ∂Ω, where index x on A∂Ω, νΩ denotes evaluation at x and DxνΩ : Tx∂Ω→ Rm is the
tangent map of νΩ at x (see the remark after (5.7)). As Ω is convex, νΩ ·A∂Ω is non-negative.
This ends the proof of (5.12) in the case KN ≤ 0.

Now, assume that KN ∈]0,∞[. By virtue of the previous calculations and (1.51), we have

d
dt

(∫
Ω
vp
) 1
p

≤
(∫

Ω
vp
) 1
p
−1
KN

∫
Ω
vp+1 ≤ KN

(∫
Ω
vp
) 1
p

‖v‖L∞ .

Passing to the limit p→∞ we obtain, at least in a weak sense,
d
dt‖v‖L

∞ ≤ KN ‖v‖2L∞

which implies (5.11).

5.2.2 Existence for the approximate system

In order to prove existence of solutions to the approximate system we proceed similarly as in
[48, Section 3.]. The assumption that the embedding of N into RN is closed enables us to
construct a metric h on RN such that (N , g) is a totally geodesic Riemannian submanifold of
(RN , h) (see Lemma A.1 in the appendix), i. e.,

• the restriction of h to TN coincides with g, that is hp|TpN×TpN ≡ gp for p ∈ N ,

• there is a tubular neighborhood T of N in RN such that the involution τ : T → T given
by multiplication by −1 in the fibers of T is an isometry.

The gradient flow of the unconstrained functional
∫

Ω |∇u|h defined for any regular enough
function u : Ω→ RN is expressed by the system

uit = div ∇ui√
ε2+|∇u|2

h

+ 1√
ε2+|∇u|2

h

Γijk(u)uj
xl
ukxl , (5.17)

νΩ · ∇ui = 0, (5.18)
where i = 1, . . . , N and Γijk are the Christoffel symbols of (RN , h). As h restricted to TN
coincides with g, the system (5.17, 5.18) is identical to (5.2, 5.18) as long as the range of u
is contained in N . In order for C

3+α
2 ,3+α

loc (Ω[0,T [,N ) solutions to the system (5.17, 5.18) with
initial datum u0 to exist, the following compatibility conditions

νΩ · ∇ui0 = 0 (5.19)

νΩ · ∇
(

div ∇ui0√
ε2+|∇u0|2h

+ 1√
ε2+|∇u0|2h

Γijk(u0)uj0,xlu
k
0,xl

)
= 0 (5.20)

on ∂Ω for i = 1, . . . , N need to be satisfied.



62 Chapter 5. Regular 1-harmonic map flow

Proposition 5.1. Suppose that KN <∞ and α ∈]0, 1[. Let u0 ∈ C3+α(Ω,N ) satisfy (5.19,
5.20). Then for any ε > 0 the system (5.2-5.4) has a unique solution

u ∈ C
3+α

2 ,3+α
loc (Ω[0,T†[,N )

where T† = T†(‖∇u0‖L∞ ,KN ) ∈]0,∞] is defined in Lemma 5.3.

Note that T† in Proposition 5.1 does not depend on ε.
The expressions on the right hand side of (5.17) make sense without assuming a priori

that the range of u is contained in N . This fact enables us to obtain a local-in-time solution
using known results for parabolic systems. For that purpose, the authors in [48] or in [32]
combine a general existence result from [60] with sectoriality estimates from [81]. On the
other hand, in [63] the author employs estimates from [73] and [64]. However, both [81] and
[73] can only be applied to the system with Dirichlet boundary condition, or to the case with
no boundary. As we are dealing with homogeneous Neumann boundary condition, we appeal
instead to a result of Acquistapace and Terreni [1, Theorem 1.1.] for quasilinear systems with
general boundary conditions.

To justify its applicability to our problem, let us briefly check the assumptions. We
can rewrite the divergence part of the right hand side of (5.17) as Akl(∇u)uxkxl , where
Akl : RN → RN is given by

Akl(P) = 1√
ε2+|P|2

h

(
Imkl IN − P k√

ε2+|P|2
h

⊗ P l√
ε2+|P|2

h

)
,

for k, l = 1, . . . ,m with P = (P 1, . . . ,Pm). (Akl) defines a locally uniformly strongly elliptic
operator (see e. g. [2]) and therefore satisfies assumption (0.2) from [1]. It is easy to check
that (5.18) satisfies the complementarity condition (0.3) from [1], and that the system satisfies
regularity condition (0.4) from [1].

Thus, as u0 ∈ C2+α(Ω,N ) satisfies compatibility condition (5.19), we obtain for any p > m
the existence of unique solution to (5.17, 5.3) with initial datum u0 in C1+α

2 ([0, T0[, Lp(Ω,RN ))∩
C
α
2 ([0, T0[,W 2,p(Ω,RN )) for some T0 > 0. We choose p so that W 2,p(Ω) ⊂ C1,α(Ω). Then,

we can treat the system (5.17, 5.3) as a linear system with C
α
2 ,α coefficients and apply [54,

Theorem VII.10.1] to obtain u ∈ C1+α
2 ,2+α(Ω[0,T0[). As long as u(t, ·) ∈ C2+α(Ω,RN ), we

can extend the solution via Acquistapace-Terreni theorem. Therefore, there exists a maximal
time T∗ ≤ ∞ such that

• u exists in C1+α
2 ,2+α

loc (Ω[0,T∗[,RN ),

• the norm of u in C1+α
2 ,2+α(Ω[0,t[,RN ) blows up as t→ T−∗ if T∗ <∞.

Since u ∈ C1+α
2 ,2+α

loc (Ω[0,T∗[,RN ), the coefficients of (5.17), seen as a linear equation, belong

to C
1+α

2 ,1+α
loc (Ω[0,T∗[). Therefore, provided u0 ∈ C3+α(Ω,RN ) and the additional compatibility

condition (5.20) is satisfied, we may appeal once more to [54, Theorem VII.10.1] and conclude
that u ∈ C

3+α
2 ,3+α

loc (Ω[0,T∗[,RN ).
We now argue that u(t,Ω) ⊂ N for all t ∈ [0, T∗[. Suppose, to the contrary, that there

is t ∈]0, T∗[ with u(t,Ω) 6⊂ N . Let TN be the first time instance such that u(t,Ω) 6⊂ N for
TN < t < TN + δ with some δ > 0. Possibly diminishing δ we can assume that u(t,Ω) ⊂ T
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for t ∈ [0, TN + δ[. Then τ ◦ u is a solution to (5.17) different to u with the same initial and
boundary conditions, thus violating uniqueness. Therefore, u(t,Ω) ⊂ N for all t ∈ [0, T∗[.

It remains to show that T∗ ≥ T†, where T† is defined in Lemma 5.3. Suppose that T∗ < T†.
Lemma 5.3 yields

sup
t∈[0,T∗[

‖∇u(t, ·)‖L∞(Ω) <∞. (5.21)

Let now q > m+2
1−α . According to [54, Theorem VII.10.4 and Lemma II.3.3], there holds u ∈

W 1,q(]0, T∗[, Lq(Ω,RN ))∩Lq(]0, T∗[,W 2,q(Ω,RN )) and consequently∇u ∈ C
α
2 ,α(Ω[0,T∗[,Rm·N ).

Now, [54, Theorem VII.10.1] yields u ∈ C1+α
2 ,2+α(Ω[0,T∗[,RN ), a contradiction.

5.3 Local existence
In this section we prove Theorem 1.6.

Step 1. We assume that Ω is smooth and the initial datum u0 ∈ C3+α(Ω) satisfies the
compatibility conditions (5.19), (5.20). We want to pass to the limit ε → 0+ in (5.2-5.4).
Owing to Lemmata 5.1 and 5.3, we have uniform bounds on uεt in L2(]0, T [×Ω) and on ∇uε
in L∞(]0, T [×Ω) for any T < T†. Consequently, we also have a uniform bound on uε in
C

1
n+1 (]0, T [×Ω) [47]. All these imply that we can extract a sequence (uk) = (uεk) from (uε)

such that
uk → u in C([0, T ]× Ω), ∇uk ⇀ ∇u in L2(]0, T [×Ω).

Due to definition of Zε, we have ‖Zε‖L∞ ≤ 1, hence

Zk
∗
⇀ Z in L∞(]0, T [×Ω) with |Z| ≤ 1 a. e. in ]0, T [×Ω (5.22)

for a sequence (Zk) = (Zεk). Furthermore, by virtue of the strong convergence of uk,

0 = π⊥ukZk
∗
⇀ π⊥uZ in L∞(]0, T [×Ω). (5.23)

Next, note that due to the Hölder bound, the family uε is contained in a compact subset of
N . Rewriting (5.2) as

uεt = divZε +Auε(uεxi ,Z
ε
i ), (5.24)

we deduce a uniform bound on divZε in L2(]0, T [×Ω). By a standard div-curl reasoning,

∇uk ..Zk ⇀ ∇u ..Z in L2(]0, T [×Ω). (5.25)

A simple calculation shows that

∇uε ..Zε = |∇uε|2√
ε2+|∇uε|2

≥ |∇uε| − ε. (5.26)

Hence, by lower semicontinuity of | · | with respect to weak convergence, we get

∇u ..Z ≥ |∇u|. (5.27)

Collecting (5.22, 5.23, 5.25, 5.27) we obtain that ∇u and Z satisfy (1.47). Boundedness of
divZε in L2(]0, T [×Ω) together with strong convergence of uk is enough to pass to the limit
in (5.2, 5.3), obtaining that ∇u and Z satisfy (1.48, 1.49).
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Step 2. Now, we relax the regularity assumption on the initial datum to u0 ∈ W 1,∞(Ω,N ).
Take a sequence (u0,j) ⊂ C∞(Ω,N ) such that u0,j converges uniformly to u0, satisfies the
compatibility conditions (5.19, 5.20) and

‖∇u0,j‖L∞ → ‖∇u0‖L∞ . (5.28)

Such a sequence is produced in Lemma A.2. By the previous step, there exists a regular
solution (uj ,Zj) to (1.44, 1.45) with initial datum u0,j . Recall that due to the form of
estimates in Lemmata 5.1 and 5.3 the norms of uj,t in L2(]0, T [×Ω,RN ) and of ∇uj in
L∞(]0, T [×Ω,Rm·N ) are controlled by ‖∇u0,j‖L∞ . By virtue of (5.28), this control is uniform
with respect to j. Hence, we can extract a subsequence converging to a regular solution to
(1.44, 1.45, 1.46) following the same argument as in the previous step, with (uε,Zε) replaced
by (uj ,Zj), except that now we have ∇uj ..Zj = |∇uj | instead of (5.26).
Step 3. Next, we lift the smoothness assumption on the domain. A convex domain Ω can
be approximated with respect to the Hausdorff distance by smooth convex domains Ωk ⊂ Ω,
k = 1, 2, . . .. For a proof of this result using the signed distance function of Ω, see Lemma
A.3 in the appendix. The reasoning in the previous paragraph yields a sequence of pairs
(uk,Zk), with k-th one satisfying (1.47, 1.48, 1.49) in ]0, T [×Ωk with initial datum u0|Ωk .
The estimates provided by Lemmata 5.1 and 5.3 are uniform with respect to k. Hence, we
can use them as before together with a diagonal argument to extract subsequences of (uk),
(Zk) that converge on compact subsets of [0, T [×Ω to a regular solution (u,Z) to (1.44, 1.46)
in ]0, T [×Ω.

Finally, we argue that the boundary condition (1.49) is satisfied. Let us fix ϕ ∈ C1(]0, T [×Ω).
We have ∫ T

0

∫
∂Ω
ϕνΩ ·Z =

∫ T

0

∫
Ω
ϕdivZ +∇ϕ ·Z,

0 =
∫ T

0

∫
∂Ωk

ϕνΩk ·Zk =
∫ T

0

∫
Ωk
ϕ divZk +∇ϕ ·Zk.

Let us denote f = ϕdivZ +∇ϕ ·Z, fk = ϕ divZk +∇ϕ ·Zk. By virtue of Hausdorff conver-
gence, for a given ε > 0, we are allowed to choose K ⊂ Ω and k0 so that |]0, T [×(Ω \K)| ≤ ε2

and K ⊂ Ωk for k ≥ k0. Recalling (5.24), we note that ‖fk‖L2(]0,T [×Ωk) is controlled in terms
of norms ‖uk,t‖L2(]0,T [×Ωk) and ‖∇uk‖L∞(]0,T [×Ωk) and hence is uniformly bounded. We can
assume that (fk|K)∞k=k0

converges weakly to f |K in L2(]0, T [×K). Thus, we can choose k ≥ k0

large enough so that
∣∣∣∫ T0 ∫K f − fk∣∣∣ ≤ ε. We estimate∣∣∣∣∣

∫ T

0

∫
∂Ω
ϕνΩ ·Z

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

∫
K
f − fk

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
Ω\K

f

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
Ωk\K

fk

∣∣∣∣∣
≤ (1 + ‖f‖L2(]0,T [×Ω) + ‖fk‖L2(]0,T [×Ωk))ε.

As ε and ϕ are arbitrary, we are done.

5.4 Finite extinction time
In order to prove Theorem 1.7 we will work directly with regular solutions to (1.44, 1.45,
1.46) in local coordinates p 7→ (p1, . . . , pn) on N , in which (1.48) is expressed [28] as

uit = divZi + Γijk(u)uj
xl
Zkl , i = 1, . . . , n, (5.29)
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where Γijk are the Christoffel symbols of the chosen coordinate system. For p0 ∈ N we denote

R∗(p0) = min
{

sup
{
R > 0: R ≤ π

2
[
KBg(p0,R)

]− 1
2

+

}
,
`(p0)

4

}
, (5.30)

where [KBg(p0,R)]+ is the supremum of sectional curvature over Bg(p0, R) (compare with
(1.51)) or +0 if the supremum is negative, `(p0) is the infimum of lengths of maximal closed
geodesics in N passing through p0, and π is the length of a circle of radius 1

2 . R∗(p0) is
positive and lower than both the convexity radius and half of the injectivity radius injN (p0)
[71, section 6.3.2].

First, we prove

Lemma 5.4. Let p0 ∈ N , u0 ∈ W 1,∞(Ω). If u0(Ω) ⊂ Bg(p0, R) with R ∈]0, R∗(p0)[, then
u(t,Ω) ⊂ Bg(p0, R), t ∈]0, T [.

Proof. We proceed by contradiction. Let T∗ = inf{t ∈ [0, T [ : u(t,Ω) 6⊂ Bg(p0, R)}. Due
to continuity of u, there is a δ > 0 such that u(t,Ω) ⊂ Bg(p0, R∗(p0)) for t ∈ [0, T∗ + δ[.
We choose on Bg(p0, R∗(p0)) a polar coordinate system p 7→ (pr, pϑ1

, . . . , pϑ
n−1) centered at

p0. Due to the block diagonal form of the metric in these coordinates, (5.29) for the radial
coordinate pr takes the form

urt = divZr − 1
2gϑiϑj ,r(u)uϑixlZ

ϑj

l . (5.31)

Here and in the following, gϑiϑj ,r denotes the derivative of gϑiϑj (a function on N ) in direction
pr. Equation (5.31) is satisfied a. e. in the open set {(t,x) ∈]0, T∗ + δ[×Ω: u(t,x) 6= p0}.
Furthermore, there holds (see the proof of Corollary 2.4 in [71, Chapter 6])(

gϑiϑj ,r(p)
)n−1

i,j=1
≥ 2

pr cos
([
KBg(p0,R)

] 1
2

+
pr
)

(gϑiϑj (p))n−1
i,j=1 for p ∈ N (5.32)

as quadratic forms. Taking into account (5.31, 5.32, 1.47, 1.49) and recalling that uxl is a
non-negative multiple of Z l for l = 1, . . . ,m we calculate

1
2

d
dt

∫
Ω

(ur −R)2
+ =

∫
Ω

(ur −R)+u
r
t

≤ −
∫
{x∈Ω: ur(x)>R}

|∇ur| −
∫

Ω

(ur −R)+
ur

(
cos π2

)
gϑiϑj (u)uϑixlZ

ϑj

l ≤ 0. (5.33)

Next, we recall the notion of Riemannian center of mass. Let R < R∗(p0), p0 ∈ N . We
say that pc ∈ Bg(p0, R) is a center of mass of a Radon measure µ on Bg(p0, R) if pc is a
minimizer of the function fµ : Bg(p0, R)→ [0,∞[ given by

fµ(p) = 1
2

∫
N

distg(·,p)2 dµ.

A unique center of mass exists for any Radon measure on Bg(p0, R) and we have

0 = dfµ(pc) =
∫
Bg(p0,R)

exp−1
pc

dµ, (5.34)



66 Chapter 5. Regular 1-harmonic map flow

where exp−1
pc

: Bg(pc, injN (pc)) → TpcN denotes the logarithmic map at pc. In (5.34), we
identified elements of T ∗pcN and TpcN via g [49, Section 1]. For p0 ∈ N , we denote

R̃∗(p0) = 1
2 inf {R∗(p) : p ∈ Bg (p0, R∗(p0))} . (5.35)

We are ready to state
Lemma 5.5. Suppose that u0 ∈ W 1,∞(Ω) satisfies u0(Ω) ⊂ Bg (p0, R), p0 ∈ N , 0 < R <
R̃∗(p0). Let pc(t) be the center of mass of the pushforward measure µ(t) = u(t, ·)#Lm on
Bg(p0, R). There exists C0 = C0(Ω,N ,p0) > 0 such that

d
dtfµ(pc) ≤ −C0R

2
m
−1fµ(pc)1− 1

m (5.36)

for t > 0.
Proof. We have

fµ(t)(pc(t)) = 1
2

∫
Ω

distg(u(t, ·),pc(t))2 = 1
2

∫
Ω
ur(t, ·)2,

where we have chosen polar coordinates centered at pc(t). Employing (5.34, 5.31, 5.32, 1.47,

1.49) and observing that cos
([
KBg(pc,R)

] 1
2

+
R

)
≥ cos

([
KBg(pc,R∗(pc))

] 1
2

+
R∗(pc)

2

)
∈
[√

2
2 , 1

]
,

d
dtfµ(pc) =

〈
dfµ(pc),pc,t

〉
T ∗pcN ,TpcN

+
∫

Ω
ururt

≤ −
∫

Ω
|∇ur| − cos

([
KBg(pc,R)

] 1
2

+
R

)∫
Ω
gϑiϑj (u)uϑixlZ

ϑj

l ≤ −
√

2
2

∫
Ω
|∇u|g. (5.37)

This equation is rigorously justified by passing to the limit R→ 0+ in the weak formulation
of (5.33) using Lebesgue monotone convergence theorem. Now, we choose on B(pc, R∗(pc))
coordinate system p 7→ exp−1

pc(t)
p = (p1, . . . , pn). From (5.37) we obtain that there exists a

constant C1 = C1(N ,p0) > 0 such that (recall that pr =
√
pipi)

d
dt

∫
Ω
uiui ≤ −C1

∫
Ω

√
ui
xj
ui
xj
. (5.38)

Finally, applying Sobolev-Poincaré inequality (recall (5.34)):(∫
Ω
uiui

)1− 1
m

≤ R1− 2
m

(∫
Ω

(√
uiui

) m
m−1

)1− 1
m

≤ C2R
1− 2

m

∫
Ω

√
ui
xj
ui
xj

(5.39)

with C2 = C2(Ω) > 0. Estimates (5.38, 5.39) add up to (5.36).

Proof of Theorem 1.7. First of all, by Lemma 5.4, we obtain the bound u(t,Ω) ⊂ Bg(p0, R)
if u0(Ω) ⊂ Bg(p0, R) for R < R̃∗(p0) and any t ∈ [0, T [. Next, we deduce the estimate on
extinction time from (5.36) by solving the ordinary differential inequality, which yields

fµ(t)(pc(t))
1
m ≤

(
fµ(0)(pc(0))

1
m − 1

mC0R
2
m
−1t
)

+
,

where
fµ(t)(pc(t)) =

∫
Ω

dist(u(t, ·),pc)2.

As fµ(0)(pc(0)) ≤ 1
2 |Ω|R

2, there is u∗ ∈ N such that u(t, ·) ≡ u∗ for t ≥ CR, where C =

m
(
|Ω|
2

) 1
m C−1

0 .
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5.5 Non-positive sectional curvature of the target
This section is devoted to the proof of Theorem 1.8.

Let T > 0 and suppose that Ω is convex and N is a complete Riemannian manifold
with KN ≤ 0. In order to prove Theorem 1.8 without the assumption that there is a closed
embedding of N into RN , we introduce a universal cover γ : Ñ → N of N with a Riemannian
manifold (Ñ , g̃). As a simply-connected Riemannian manifold of non-positive curvature, Ñ is
diffeomorphic to Rn via the exponential map (this is the content of Cartan-Hadamard theorem
[26]). In other words, there is a global coordinate system on Ñ , p̃ 7→ exp−1

p̃0
p̃ = (p̃1, . . . , p̃n).

As Ω is topologically trivial, any function u0 ∈ C(Ω,N ) can be lifted preserving any Sobolev
or Hölder regularity to ũ0 ∈ C(Ω, Ñ ) such that u0 = γ ◦ ũ0. Then, assuming that Ω and u0
are of class C3+α and u0 satisfies the compatibility conditions (5.19,5.20) for i = 1, . . . , n, we
consider the system

ũε,it = div ∇ũε,i√
ε2+|∇ũε|2

g̃

+ 1√
ε2+|∇ũε|2

g̃

Γ̃ijk(ũε)ũ
ε,j
xl
ũε,k
xl

in ]0, T∗[×Ω,

∇ũε,i · νΩ = 0 in ]0, T∗[×∂Ω,
ũε,i(0, ·) = ũi0,

i = 1, . . . , n. This system satisfies the assumptions of the Aquistapace-Terreni existence
theorem (see subsection 5.2.2), hence a unique solution exists for some T∗ > 0. Vector
lengths |ũεt |g̃ and |∇ũε|g̃ are invariant under local isometries of the target manifold, and any
Riemannian manifold is locally isometric to a submanifold in a Euclidean space. Therefore,
we can repeat the proofs of Lemmata 5.1, 5.2 and 5.3 performing the computations in a
neighbourhood of any point, obtaining bounds on ‖ũεt‖L2(]0,T∗[×Ω) and ‖∇ũε‖L∞(]0,T∗[×Ω)
independent on T∗. Reasoning as in subsection 5.2.2, the solution can be prolonged up to
the arbitrary given T . Then, taking uε = γ ◦ ũε, we obtain a solution to (5.2-5.4). Using
the uniform bounds, we pass to the limit as in section 5.3 obtaining a regular solution u to
(1.44-1.46) with any u0 ∈W 1,∞(Ω) in any convex Ω.

Finally, we consider any lifting ũ : Ω → Ñ of u with ũt ∈ L2(]0, T [×Ω,RN ), ∇ũ ∈
L∞(]0, T [×Ω,RN ). As R∗ = +∞ for Ñ , arguments from section 5.4 imply that ũ becomes
constant in finite time (if we take large enough T ), and consequently the same holds for
u = γ ◦ ũ.

5.6 The case where the domain is a Riemannian manifold
Throughout this section, we assume that (M, γ) is an orientable, compact Riemannian man-
ifold. Our aim is to prove Theorem 1.9.

Similarly as in section 5.2, given ε, T > 0 we first consider the following approximate
system for uε : [0, T [×M→ N :

uεt = πuε

(
divγ duε√

ε2+| duε|2γ

)
in ]0, T [×M, (5.40)

uε(0, ·) = u0. (5.41)
Again, in what follows we drop the index ε and denote

Z = du√
ε2+| du|2γ

, v =
(
|du|2γ + ε2

) 1
2 , v0 =

(
|du0|2γ + ε2

) 1
2
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Lemma 5.6. We have

sup
t∈[0,T [

∫
M
v(t, ·) +

∫ T

0

∫
M
u2
t ≤

∫
M
v0. (5.42)

There exists T† = T†(RicM,KN , ‖v0‖L∞) ∈]0,∞] and a non-decreasing function

MRicM,KN ,‖v0‖L∞ : ]0, T†[→]0,∞[

such that for t ∈]0,min(T, T†)[ there holds

‖v(t, ·)‖L∞ ≤MRicM,KN ,‖v0‖L∞ (t). (5.43)

If KN ≤ 0, T† = +∞. If moreover RicM ≥ 0, for t ∈]0, T [ there holds ‖v(t, ·)‖L∞ ≤ ‖v0‖L∞ .

Proof. We start by deriving a version of the Bochner formula (5.6) in our current setting. We
calculate:

1
2

d
dt | du|

2
γ = γabuxa · (πudivγZ)xb = γabuxa · (divγZ)xb + γabuxa · (πu)xbdivγZ. (5.44)

Let us recall the expression of div γ as the trace of covariant derivative [17, Lemma 2.6],

div γϑ = γabϑa;xb = (γabϑa);xb (5.45)

(note that covariant derivative of the metric vanishes) and the Ricci identity [75, Chapter 5]

ϑa;xbxc − ϑa;xcxb = ϑd(RM)dabc (5.46)

for the commutator of covariant derivatives of a 1-form ϑ onM. Using (5.46), we obtain

(γcdZc;xd)xb = γcdZc;xdxb = γcdZc;xbxd + γcdZe(RM)ecdb. (5.47)

By antisymmetry of the Riemannian tensor and (1.58),

γcd(RM)ecdb = −γed(RM)cdcb = −(RicM)efγfb. (5.48)

An application of (5.45) yields

γabuxa · γcdZc;xbxd = (γabuxa · γcdZc;xb);xd − γabuxa;xd · γcdZc;xb

= divγ(γabuxa ·Z ;xb)− γabγcduxd;xa ·Zc;xb . (5.49)

Combining (5.45), (5.47), (5.48) and (5.49) we obtain

γabuxa · (divγZ)xb = divγ(γabuxa ·Z ;xb)− γabγcduxd;xa ·Zc;xb −RicM(Zi, dui). (5.50)

From (5.44) and (5.50) we derive, proceeding as in the proof of Lemma 5.2, a Bochner-type
formula involving only coordinate-invariant expressions:

1
2

d
dt | du|

2
γ = divγ(γabuxa ·Z ;xb)− γabγcd(πuuxd;xa) ·Zc;xb

−RicM(Zi, dui) + γabγcdZa · RNu (uxb ,uxc)uxd . (5.51)
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We take any p > 2 and calculate 1
p

d
dt |du|

p
γ . Proceeding as in the proof of Lemma 5.3,

appealing to (5.45) and the fact that covariant derivatives of the metric vanish (or just working
in normal coordinates) we obtain

1
p

d
dtv

p ≤ divγ(vp−2γabuxa ·Z ;xb)−vp−3RicM( dui, dui)+vp−3γabγcduxa ·RNu (uxb ,uxc)uxd

≤ divγ(vp−2γabuxa ·Z ;xb)−RicMvp−1 +KN v
p+1. (5.52)

Next, we integrate (5.52) overM. AsM is compact and orientable, the term∫
M

divγ(vp−2γabuxa ·Z ;xb) dµγ

vanishes due to Stokes theorem. We are led to the following estimate:

1
p

d
dt

∫
M
vp dµγ ≤ −RicM

∫
M
vp−1 dµγ +KN

∫
M
vp+1 dµγ

≤ −Ric−M µγ(M)
1
p

(∫
M
vp dµγ

)1− 1
p

+K+
N ‖v‖L∞

∫
M
vp dµγ ,

where we have used Hölder inequality and denotedRic−M = min (RicM, 0),K+
N = max (KN , 0).

Thus,
d
dt

(∫
M
vp dµγ

) 1
p

≤ −Ric−Mµγ(M)
1
p +K+

N ‖v‖L∞
(∫
M
vp dµγ

) 1
p

.

Passing to the limit p→∞,

d
dt‖v‖L

∞ ≤ −Ric−M +K+
N ‖v‖

2
L∞ . (5.53)

We let MRicM,KN ,‖v0‖L∞ be the locally existing solution to

dM
dt = −Ric−M +K+

NM
2

with initial datum ‖v0‖L∞ , and let T† be the maximal time of existence of MRicM,KN ,‖v0‖L∞ ,
completing the proof.

Proposition 5.2. Let u0 ∈ C3+α(M,N ). There exist T† = T†(RicM,KN , ‖∇u0‖L∞) > 0
and unique solution u ∈ C

3+α
2 ,3+α

loc ([0, T†[×M,N ) to the system (5.40, 5.41).

Proof. Let u0 ∈ C3+α(M,N ). As in [48, section 3], we show that there exists T > 0 and
unique solution u ∈ C1([0, T ], Cα(M,N )) ∩ C([0, T ], C2+α(M,N )) to (5.40, 5.41). Using
linear theory [54], we rise regularity of the solution to C

3+α
2 ,3+α([0, T [×M,N ). Then, using

the uniform bound on du in L∞ from Lemma 5.6 we show that the solution can be extended
to [0, T†[ as in the proof of Proposition 5.1.

Proof of Theorem 1.9. The proof of uniqueness follows along the lines of the proof of Theorem
1.5. An important point is that integration by parts is allowed becauseM is orientable.
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Given any initial datum u0 ∈ W 1,∞(M,N ), we take an approximating family (uε0) ⊂
C3+α(M,N ) such that uε0 → u0 as ε→ 0+ in C(M,N ) and ‖ duε0‖L∞ → ‖du0‖L∞ . Proposi-
tion 5.2 generates a family (uε), where uε solves (5.40) with initial datum uε0. This family sat-
isfies uniform bounds on (uεt ) in L2(]0, T†[×M,RN ) and on ( duε) in L∞loc([0, T†[×T ∗M×RN ).
Using these bounds, we pass to the limit as in section 5.3 and obtain the regular solution
(u,Z) to (1.54) in [0, T†[. Recall that if KN ≤ 0, T† = +∞.

Now we assume that KN ≤ 0 and RicM ≥ 0. In this case we have

ut ∈ L2(]0,∞[×M,RN ), ‖du(t, ·)‖L∞ ≤ ‖du0‖L∞ in a. e. t > 0. (5.54)

Therefore, we can choose a sequence of time instances (tk) ⊂]0,∞[, tk → ∞ such that there
exists u∗ ∈W 1,∞(M,N ) with

u(tk, ·)→ u∗ in C(M,N ), ut(tk, ·) ⇀ 0 in L2(M,RN ), (5.55)

and

ut(tk, ·) = πu(tk,·) (divγZ(tk, ·)) , Z(tk, ·) ∈ du
| du|γ (tk, ·) µγ-a. e. inM. (5.56)

The first item in (5.56) can be rewritten as

ut(tk, ·) = divγZ(tk, ·) + γabAu(tk,·)(uxa(tk, ·),Zb(tk, ·)),

hence (5.54) implies that the sequence divγZ(tk, ·) is uniformly bounded in L2(M,RN ). The
second item in (5.56) is equivalent to

π⊥u(tk,·)Z(tk, ·) = 0, |Z(tk, ·)|γ ≤ 1,

γabuxa(tk, ·) ·Zb(tk, ·) = |du(tk, ·)|γ µγ-a. e. inM.

Hence, there exists Z∗ ∈ L∞(T ∗M× RN ) satisfying divγZ∗ ∈ L∞(M,RN ) and (possibly
decimating the sequence (tk))

Z(tk, ·)
∗
⇀ Z∗ in L∞(T ∗M× RN ), divγZ(tk, ·) ⇀ divγZ∗ in L2(M,RN ), (5.57)

π⊥u∗Z∗ = 0, |Z∗|γ ≤ 1 µγ-a. e. inM. (5.58)

Using a standard div-curl reasoning and weak-star convergence of u(tk, ·) in W 1,∞(M,N ) we
also obtain

|du∗|γ ≤ lim inf | du(tk, ·)|γ = γabu∗,xa ·Z∗,b ≤ |du∗|γ µγ-a. e. inM.

This together with (5.58) yields the second item of (1.59). The first item of (1.59) is produced
by passing to the limit in the first item of (5.56) using (5.55, 5.57).



Appendix: Technical lemmata

Lemma A.1. Let (N , g) be a closed embedded Riemannian submanifold in the Euclidean
space RN . There exists a Riemannian metric h on RN such that (N , g) is a totally geodesic
Riemannian submanifold of (RN , h).

Proof. Let R > 0. As N is a closed submanifold of RN , N ∩B(0, R) is compact. Hence, there
is a non-increasing function R 7→ δR ∈]0, 1[ such that

NR,δ = {y + n : y ∈ N ∩B(0, R),n ∈ TyN⊥, |n| < δ}

is a tubular neighborhood of N ∩ B(0, R) in RN that does not intersect N \ B(0, R) for
δ ∈]0, δR[. Identifying Ty+nNR,δR with TyN × RN−n, we define a Riemannian metric hR on
NR,δR as follows:

hRp+n(w1 +w′1,w2 +w′2) = gp(w1,w2) +w′1 ·w′2
for p ∈ N ∩ B(0, R), |n| < δR, w1,w2 ∈ TpN , w′1,w′2 ∈ RN−n. Next, we define the tubular
neighborhood of N

T =
∞⋃
k=1

Nk, 12 δk+1

so that
{RN \ T , N1,δ1 , N2,δ2 , . . .}

is an open cover of RN . Indeed, if z /∈ RN \ T , i. e. z ∈ T , then letting k0 be the smallest
integer bound of |z|, we have

z ∈ T ∩B(0, k0 + 1) ⊂
k0+1⋃
k=1

Nk, 12 δk+1
=

k0+1⋃
k=1

Nk, 12 δk+1
.

Here, we used the fact that U ∩
⋃∞
k=1Ak ⊂

⋃∞
k=1 U ∩Ak for any sequence of sets Ak and open

set U . Hence, by definition of k0, z ∈ Nk0,
1
2 δk0+1

. Therefore

z = y + n with |n| ≤ 1
2δk0+1 < δk0+1 and y ∈ B(0, k0) ⊂ B(0, k0 + 1),

that is, z ∈ Nk0+1,δk0+1 .
We take a smooth partition of unity {ϕ0, ϕ1, ϕ2, . . .} subordinate to this cover (a con-

struction of a partition of unity subordinate to an infinite open cover can be found in [80,
Appendix C]) and define

hy(v1,v2) = ϕ0(y)v1 · v2 +
∞∑
k=1

ϕk(y)hky(v1,v2)

for y ∈ RN . It is easy to check that (N , g) is a totally geodesic submanifold in (RN , h).
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Lemma A.2. Let u0 ∈ W 1,∞(Ω,N ). There exists a family (u0,ε) ⊂ C∞(Ω,N ), ε ∈]0, ε0[,
ε0 > 0 such that

• u0,ε → u0 in C(Ω,RN ) as ε→ 0+,

• ‖∇u0,ε‖L∞ → ‖∇u0‖L∞ as ε→ 0+,

• u0,ε satisfy compatibility conditions (5.19, 5.20) for ε ∈]0, ε0[.

Proof. As ∂Ω is a compact smooth submanifold of Rm, there is ε′0 > 0 and a tubular neigh-
bourhood of ∂Ω

T = {y + rνΩ,y ∈ ∂Ω, r ∈]− ε′0, ε′0[}.

We extend u0 to w ∈W 1,∞(Ω ∪ T,N ) putting

w(y + rνΩ(y)) = y

for r ∈ [0, ε′0[. For any ε ∈]0, ε′0[ we define

Ωε = {x ∈ Ω: dist(x, ∂Ω) > ε}.

Mollifying w as in [49, Theorems 4.4, 4.6] we produce a family of maps (wε)ε∈]0,ε0[, ε0 ∈]0, ε′0[,
wε ∈ C∞(Ω,N ) such that wε → u0 in C(Ω,N ) and ‖∇wε‖L∞ → ‖∇u0‖L∞ as ε→ 0+.

Now, let ηε ∈ C∞(]0, ε[, ]0, ε[) satisfy the conditions

• ηε(r) = r for r ∈ [ ε2 , ε[,

• η′ε(r) = 0 for r ∈]0, ε4 ],

• 0 ≤ η′ ≤ 1.

We define Φε ∈ C∞(Ω,Ω) by

Φε(x) =
{
y − ηε(r)νΩ if x = y − rνΩ ∈ Ω \ Ωε,

x if x ∈ Ωε.

It is easy to see that u0,ε = wε ◦ Φε satisfies the desired conditions.

Lemma A.3. Let Ω ⊂ Rm be open and convex. There exists a family (Ωε) of open, convex
sets with smooth boundary such that Ωε ⊂ Ω for ε ∈]0, ε0[, ε0 > 0 and the Hausdorff distance
of Ωε from Ω tends to zero as ε→ 0+.

Proof. Let d denote the signed distance function of Ω, i. e.

d(x) = dist(x,Ω)− dist(x,Rm\Ω) for x ∈ Rm.

This function is convex and satisfies

|d(x)− d(y)| ≤ |x− y| for x,y in RN . (5.59)

Let (ϕε)ε>0 be a standard family of mollifying kernels such that

suppϕε ⊂ B(0, ε) (5.60)
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and denote dε = ϕε ∗ d. It is easy to check that dε is smooth and convex. Let us further
denote

Ωε = {x ∈ Rm : dε(x) < −ε}.

As a sublevel set of a convex function, Ωε is convex. Now, denote by rΩ the inradius of Ω,
equivalently rΩ = |min d|. Take ε0 = rΩ

3 and assume ε < ε0. Suppose that d(x) ≥ 0. Due to
(5.60, 5.59), we have

dε(x) =
∫
B(x,ε)

ϕε(x− y)d(y) dy > −ε.

Hence, Ωε ⊂ Ω. Similarly, if d(x) ≤ −2ε, then dε(x) < −ε. This in turn implies that

dist(∂Ωε, ∂Ω) = min{−d(x) : dε(x) = −ε} < 2ε. (5.61)

Denoting by xΩ the center of any circle inscribed in Ω,

min dε ≤
∫
B(xΩ,ε)

ϕε(xΩ − y)d(y) dy < −rΩ + ε < −2ε. (5.62)

Recall that a critical point of a smooth convex function on Rm is necessarily its global (possibly
improper) minimum. Hence, by virtue of (5.61, 5.62), Ωε does not contain critical points of
dε, and so it is a smooth hypersurface. Finally, (5.61) implies the Hausdorff convergence of
Ωε to Ω as ε→ 0+.
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