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Abstract

A strong edge coloring of a graph G is a coloring of edges of G such that each

color class is an induced matching in G, and the strong chromatic index of G, denoted

s′(G), is the minimum number of colors in a strong edge coloring of G. We also consider

the fractional and topological variant of strong chromatic index, denoted s′f (G) and s′t(G)

respectively.

Our dream goal is to give a sharp upper bound on the strong chromatic index of

a graph G with the given maximum degree ∆. A simple, greedy argument shows that

s′(G) ≤ 2∆2, and the best known bound is 1.93∆2 (Bruhn and Joos, 2015+). This result

is still far from 5
4
∆2, conjectured by Erd®s and Ne²et°il in 1985 (which would be sharp).

For bipartite graphs the conjectured bound is s′(G) ≤ ∆2 (Faudree, Gyárfás, Schelp

and Tuza, 1989) and the best known is s′(G) ≤ 1.93∆2 (that is, there is no improvement

over the mentioned result of Bruhn and Joos); it follows that s′t(G) ≤ 1.93∆2. For

fractional strong chromatic index, a better bound 1.5∆2 can be obtained from earlier

results.

Our main contribution is �breaking the 1.5∆2 boundary� � we show that for a bipartite

graph G of maximum degree ∆ we have s′f (G) ≤ 1.476∆2. Moreover, we signi�cantly

improve the bound on the topological variant: for a bipartite graph G of maximum

degree ∆ we show s′t(G) ≤ 1.703∆2. We also show that if G is a graph such that every

edge of G is in at most ∆2

f
4-cycles, then s′(G) ≤ K ∆2

ln f
for some absolute constant K,

and give a bound s′(G) ≤ 4∆− 3 in case when G is chordless.

Keywords: strong chromatic index, induced matching, graph coloring, fractional

chromatic number.

AMS Classi�cation: 05C15, 05C35, 05C70, 05C72.
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Streszczenie

Silnym kolorowaniem kraw¦dzi grafu G nazywamy kolorowanie kraw¦dzi G, w

którym kraw¦dzie w ka»dym z kolorów tworz¡ indukowane skojarzenie w G, a silny in-

deks chromatyczny grafu G, oznaczany s′(G), to minimalna mo»liwa liczba kolorów w

silnym kolorowaniu kraw¦dzi G. Rozwa»amy równie» uªamkowy i topologiczny odpowied-

nik silnego indeksu chromatycznego, oznaczany odpowiednio s′f (G) i s′t(G).

Zasadniczym, wci¡» nieosi¡gni¦tym celem, do którego d¡»ymy, jest wyznaczenie

dokªadnego ograniczenia górnego na silny indeks chromatyczny grafu o zadanym maksy-

malnym stopniu ∆. Prosty argument, oparty na kolorowaniu zachªannym, pokazuje, »e

s′(G) ≤ 2∆2, natomiast najlepsze znane ograniczenie to 1.93∆2 (Bruhn i Joos, 2015+).

Wynik ten jest odlegªy od ograniczenia 5
4
∆2, które wydaje si¦ prawidªow¡ odpowiedzi¡

(jest to tre±¢ hipotezy Erd®sa i Ne²et°ila z roku 1985).

Dla grafów dwudzielnych mo»e by¢ prawdziwe ograniczenie s′(G) ≤ ∆2 (hipoteza

Faudree, Gyárfása, Schelpa i Tuzy z roku 1989), jednak najlepszym znanym jest s′(G) ≤

1.93∆2 (a wi¦c nie jest znany »aden wynik mocniejszy od twierdzenia Bruhna i Joosa);

wynika st¡d, »e s′t(G) ≤ 1.93∆2. Dla uªamkowego silnego indeksu chromatycznego moc-

niejsze ograniczenie 1.5∆2 mo»e zosta¢ wywiedzione z wcze±niejszych wyników.

Naszym gªównym wynikiem jest �przeªamanie bariery 1.5∆2� � pokazujemy, »e dla

grafu dwudzielnego o maksymalnym stopniu ∆ zachodzi 1.476∆2. Ponadto, istotnie

poprawiamy ograniczenie w wariancie topologicznym: dla grafu dwudzielnego G o maksy-

malnym stopniu ∆ dowodzimy, »e s′t(G) ≤ 1.703∆2. Pokazujemy równie», »e je»eli G jest

grafem takim, »e ka»da kraw¦d¹ G zawiera si¦ w co najwy»ej ∆2

f
cyklach o dªugo±ci 4,

wówczas zachodzi s′(G) ≤ K ∆2

ln f
dla pewnej uniwersalnej staªej K. Dodatkowo, pokazu-

jemy ograniczenie s′(G) ≤ 4∆− 3 w przypadku, gdy G jest grafem bezci¦ciwowym.

Sªowa kluczowe: silny indeks chromatyczny, indukowane skojarzenie, kolorowanie

grafów, uªamkowa liczba chromatyczna.

Klasy�kacja AMS: 05C15, 05C35, 05C70, 05C72.
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1 Preliminaries

Basic notions

A graph is a pair (V,E), where V is a nonempty �nite set and E is a subset of the

set of all 2-element subsets of V ; we say that elements of V are vertices and elements

of E � edges of the graph. For a graph G, by E(G) (resp. V (G)) we denote the set of

vertices (resp. edges) of G, and e(G) (resp. v(G)) denotes the size of E(G) (resp. v(G)).

We use the shorter notation uv to denote the edge e = {u, v} of a graph G; we say

that vertices u and v are incident to an edge uv. If a graph G has an edge uv, we say

that u and v are adjacent in G and that u is a neighbor of v in G (and vice versa).

The number of edges incident to a vertex v in a graph G is called the degree of v in

G and denoted degG(v), which is shortened to deg(v) when the considered graph is clear

from the context. The maximum degree of a graph G, denoted ∆(G), is the maximum

of deg(v) over all vertices v of G. The average degree of G if the average of deg(v) over

all vertices v of G.

The set of neighbors of a vertex v in a graph G is denoted NG(v), and by NG[v] we

denote the set NG(v)∪{v}. For a set S ⊆ V (G) we de�ne NG(S) to be the set of vertices

of G that are adjecent to at least one vertex from S and not contained in S, and set

NG[S] = NG(S)∪ S. Those notations are shortened to N(v), N [v], N(S) and N [S] when

the graph G is clear from the context.

We say that edges uv and wx of a graph G are joined in G if uv 6= wx and G contains

at least one of the edges uw, ux, vw, vx (in particular, if two edges of G intersect, they

are joined in G). This notion is nonstandard.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G); H is a

spanning subgraph of G if V (H) = V (G). A subgraph H of a graph G is induced if for

every two vertices u, v ∈ V (H) we have uv ∈ E(H) i� uv ∈ E(G). For a set S ⊆ V (G) the

subgraph of G induced by S, denoted G[S], is the induced subgraph of G with vertex

set S. For a set F ⊆ E(G), the subgraph of G induced by F , denoted G[F ], is the graph

(
⋃
F, F ). For S ⊆ V (G) (resp. S ⊆ E(G)) by G − S we denote the grap G[V (G) \ S]

7



(resp. G[E(G) \ S]). By G−H (where H is a graph) we denote the graph G− E(H).

Graphs G and H are isomorphic if there is a bijection f : V (G)→ V (H) such that

uv ∈ E(G) if and only if f(u)f(v) ∈ E(H); such function f is called isomorphism. A

copy of H in G is a subgraph of G isomorphic to H. A graph G is said to be H-free if

there is no copy of H in G.

Graph classes and invariants

A clique or complete graph is a graph G such that for every two vertices u, v ∈ V (G)

we have uv ∈ E(G). A complete graph on n vertices is denoted Kn. The clique number

of a graph G, denoted ω(G), is the number of vertices in the largest complete subgraph

of G.

For n ≥ 3 an n-cycle, denoted Cn is a graph isomorphic to the graph with vertex set

{1, 2, . . . , n} and edge set {i(i+1) : 1 ≤ i < n}∪{1n}. An n-path, denoted Pn, is a graph

isomorphic to the graph with vertex set {1, 2, . . . , n} and edge set {i(i+ 1) : 1 ≤ i < n}.

A graph that is n-cycle (resp. n-path) for some n is called a cycle (resp. path).

A graph G is bipartite if V (G) can be paritioned into two sets X, Y such that every

edge of G has one vertex from X and one from Y ; X and Y are called the partition

classes of G. A complete bipartite graph, denoted Km,n, is a bipartite graph with

partition classes X and Y and edge set {xy : x ∈ X, y ∈ Y }.

A graph G is k-degenerate if every subgraph of G has a vertex of degree at most k,

and the degeneracy of a graph is the minimum k such that the graph is k-degenerate.

The k-core of the graph is the maximum subgraph that has every vertex of degree greater

than k. A graph G is k-regular if every vertex of G has degree exactly k.

The line graph of a graph G, denoted L(G), is a graph L such that V (L) = E(G)

and for every two e, f ∈ E(G) we have ef ∈ E(L) if and only if e and f intersect. The

square of a graph G, denoted G2, is the graph S such that V (S) = V (G) and for every

two vertices u, v ∈ V (G) we have uv ∈ E(S) i� uv ∈ E(G) or there is a vertex z ∈ V (G)

such that uz, vz ∈ E(G). In particular, L(G)2 is that graph with vertex set E(G) such

that ef ∈ E(L(G)2) i� e and f are joined in G.

8



A matching is a graph M such that no two edges of M intersect; we shall identify a

matching with its set of edges. A perfect matching in a graph G is a spanning subgraph

of G that is a matching with every vertex of degree 1. An induced matching in G is a

matching that is an induced subgraph of G.

An independent set in a graph G is a subset I ⊆ V (G) such that for every two

vertices x, y ∈ I, xy is not an edge of G. The size of the largest independent set in G is

denoted α(G). Note that an induced matching in G is an independent set in L(G)2.

A vertex-coloring (resp. edge-coloring) of a graph G is a partition of V (G) (resp.

E(G)); the sets in the parition are called color classes and the number of color classes

is shortened to number of colors. A k-vertex-coloring (resp. k-edge-coloring) is a

vertex coloring (resp. edge-coloring) with k colors. The coloring and k-coloring of a

graph is, respectively, vertex-coloring and k-vertex-coloring.

A vertex coloring (resp. edge coloring) of a graph G is proper if each color class is an

intependent set in G (resp. L(G)). The chromatic number of G, denoted χ(G) (resp.

chromatic index of G, denoted χ′(G)), is the minimum number of colors in a proper

vertex coloring (resp. proper edge coloring) of G.

A fractional k-coloring of a graph G (where k is a real number) is a weighting

w : IG → [0, 1] (where IG is the set of independent sets in G) such that for every vertex

v ∈ V (G) the sum of weights of sets from IG that contain v is equal to 1 and the sum of

all weights is at most k (note that a proper k-coloring of G can be seen as a fractional k-

coloring ofG). The fractional chromatic number ofG, denoted χf (G), is the minimum

k such that there exists a fractional k-coloring of G.

Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality states that for real numbers x1, x2, . . . , xn and

y1, y2, . . . , yn we have (
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
.

We will repetitively use the following consequence of this inequality. Let x1, x2, . . . , xn

9



be nonnegative real numbers such that
∑n

i=1 xi = S. We have

n∑
i=1

x2
i ≥

S2

n
.

To prove the implication, it su�ces to set yi = 1 for all i and replace
∑n

i=1 xiyi with

S.
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2 Introduction

2.1 Two de�nitions of strong chromatic index

It is worth to note that in a proper edge-coloring of a graph every color class is required

to be a matching. Throughout this dissertation we will be considering colorings obeying

a stronger condition that the matchings must be induced � recall that a matching M in

a graph G is induced if any two edges of M are not joined (by any edge of G).

De�nition 2.1.1. Let G be a graph.

A strong edge-coloring of G is an edge-coloring of G such that every color class is

an induced matching in G.

The strong chromatic index of G, denoted s′(G), is the minimum possible number

of colors in a strong edge-coloring of G.

As an example, consider the coloring depicted in Figure 1a (edge uv has the same

color as xy, uz has the same color as wx and the remaining colors are distinct). It

is indeed strong, because matchings {uv, xy} and {uz, wx} are induced. Moreover,

there is no strong edge-coloring that would use 4 colors, because no two edges from

{uv, uz, vw, vz, yz} can belong to the same induced matching. Therefore, the strong

chromatic index of the graph is 5.

u

v

w

x

y

z

(a) Strong edge-coloring of a graph.

uv

vw

wx
xy

yz

uz

vz

(b) Square of the line graph.

Figure 1: Two de�nitions of strong edge-coloring.

We can also think of strong edge-coloring as a proper vertex-coloring of a certain graph.

If uv is an edge of G, then its color in a strong edge-coloring of G must be di�erent than
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the color of any edge that in joined to uv. Conversely, if every two edges that are joined

have di�erent colors, then the edge-coloring is strong. Since our notion of joined edges is

just an adjacency in the square of the line graph, the following de�nition is equivalent to

De�nition 2.1.1.

De�nition 2.1.2. Let G be a graph.

A strong edge-coloring of G is a coloring of L(G)2.

The strong chromatic index of G, denoted s′(G), is the chromatic number of L (G)2.

Consider our previous example; the square of the line graph is depicted in Figure 1b.

The strong chromatic index of the graph on the left is 5 because the chromatic number of

the square of its line graph is 5 (note that {uv, uz, vw, vz, yz} form a clique in the graph

on the right).

The second de�nition, although indirect, will turn out to be very handy for cosidera-

tions regarding related graph parameters. In particular, the fractional strong chromatic

index can be thought of as the fractional chromatic number of the square of the line graph,

and it is de�ned as follows.

De�nition 2.1.3. Let G be a graph.

A fractional strong edge-coloring of G is a fractional coloring of L(G)2.

The fractional strong chromatic index of G, denoted s′f (G), is the fractional

chromatic number of L (G)2.

2.2 Motivation

Consider a wireless network, where each node is a transceiver � that is, it can both

transmit and receive messages � and that communication possibility is symmetric (if a

node x is able to receive transmission from y, then y is also able to receive transmission

from x). It naturally de�nes a graph (with an edge joining every two nodes that can

communicate directly); see Figure 2 for an example.

A pair of adjecent nodes can communicate using some channel only if neither of them is

in range of any other transmission on the same channel (because otherwise transmissions

12



u

v

w
x

y

(a) Positions of transceivers.

u

v

w
x

y

(b) Corresponding graph.

Figure 2: Model of communication in a wireless network.

interfere). In our example, the pairs uw and vw can not use the same channel, because

transmissions from u and v would interfere at node w. Similarly, pairs vw and xy can not

use the same channel, because a transmission from w to v would interfere at node x with

a transmission from y.

We would like to assign a channel to each pair of adjecent nodes in such a way that

all of them can communicate at the same time. Note that it is exactly the problem of

�nding a strong edge-coloring of the corresponding graph (where channels correspond to

colors). It is important to use as few channels as possible � and that number is the strong

chromatic index of the wireless network graph.

See [5] for a short study of strong edge-colorings in wireless network communication.

There are many similar models that take into account the possible assymetry of connec-

tions � see [36] for a summary.

2.3 The main focus: upper bound in maximum degree

The main, extremal, question, underlying all parts of this dissertation, is: how big

can strong chromatic index of a graph be? Since this parameter grows with maximum

13



degree of the graph, a more precise formulation would be: given an integer ∆, what is

the maximum possible strong chromatic index of a graph with maximum degree at most

∆? We are especially interested in an answer for large (that is: su�ciently large) values

of ∆.

It is easy to give an upper bound of (roughly) 2∆2, that follows from bounding the

maximum degree in the square of the line graph.

Proposition 2.3.1. Let G be a graph of maximum degree at most ∆. We have

s′(G) ≤ 2∆2 − 2∆ + 1.

Proof. Apply a greedy coloring procedure: order edges of G arbitrarily and perform e(G)

steps, where at i-th step assign to ei (an i-th edge in the order) a color that is not assigned

to any edge joined to ei.

Note that the procedure will always produce a strong edge-coloring. Since, for all i,

there are 2∆ − 2 neighbors of vertices from ei (excluding vertices of ei), each of them

incident with at most ∆ edges (which totals to at most 2∆2 − 2∆ edges joined to ei), we

will always �nd a color for ei, so the procedure will succeed.

Proposition 2.3.1 can be complemented with a lower bound of (roughly) 5
4
∆2. It is

attained by a certain family of graphs � blowups of C5.

Proposition 2.3.2. Let ∆ be a natural number. There is a graph G such that

s′(G) =

 5
4
∆2, for even ∆,

5
4
∆2 − 2∆−1

4
, for odd ∆.

Moreover, L(G)2 is a clique.

Proof. Suppose that ∆ is odd. The graph G∆ is constructed as follows: vertices of G∆

are (ordered) pairs (i, j), where i ∈ {1, 2, 3, 4, 5} and j ∈ {1, 2, . . . , ∆
2
}. Edges of G∆ are

(unordered) pairs {(i, j), (i′, j′)}, where i′ = i ± 1 (mod 5) and j, j′ ∈ {1, 2, . . . , ∆
2
}. See

Figure 3a for an example.

Note that L(G∆)2 is a clique. Indeed, if we consider any two edges e = {(ie, je), (i′e, j′e)}

and f = {(if , jf ), (i′f , j′f )}, without loss of generality we may assume that if = ie + 1.

Therefore, there in an edge {(ie, je), (if , jf )}, so e and f are adjacent in L(G∆)2.

14



(a) ∆ = 6 (even case). (b) ∆ = 7 (odd case).

Figure 3: Graphs such that the square of the line graph is a clique.

For an odd ∆ we obtain G∆ from G∆−1 by adding a double star: we set V (G∆) =

V (G∆−1) ∪ {v13, v24} and de�ne E(G∆) to be E(G∆−1) plus all pairs {v13, (1, j)},

{v13, (3, j)}, {v24, (2, j)}, {v24, (4, j)} and the pair {v13, v24}. See Figure 3b for an ex-

ample. In this case, L(G∆)2 is also a clique.

Since the number of edges of G∆ in both cases matches the number contained in the

Proposition, the proof is �nished.

2.4 Conjecture of Erd®s and Ne²et°il

Clearly, at least one of the Propositions 2.3.1 and 2.3.2 is not tight, but improving

either of them (even by 1) is a nontrivial task. In 1985, Erd®s and Ne²et°il conjectured

that the upper bound can be strengthened by at least a little bit � that is, there exists

an ε > 0 such that s′(G) ≤ (2− ε)∆2 for every graph G of maximum degree ∆.

It took twelve years to give an a�rmative answer; it was done by Molloy and Reed

in 1997 [32]. The resulting value of ε was 0.002, but the authors claim that it can be

improved to 0.01 with a little extra e�ort.

Theorem 2.4.1 (Molloy and Reed, 1997 [32]). If G is a graph with su�ciently large

maximum degree ∆, then

s′(G) ≤ 1.998∆2.
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This result remained the best known for 18 years, until a recent work by Bruhn and

Joos [9]. Their ε is 0.07, which is a major improvement over 0.002.

Theorem 2.4.2 (Bruhn and Joos, 2015 [9]). If G is a graph with su�ciently large max-

imum degree ∆, then

s′(G) ≤ 1.93∆2.

On the other hand, no improvement over Proposition 2.3.2 (construction that achieves
5
4
∆2) is known; maybe it is not possible. A stronger variant of Erd®s and Ne²et°il con-

jecture states that 5
4
∆2 is the correct answer. See [21] for an original appearance of the

problem and [4] for a more recent discussion.

Conjecture 2.4.3 (Erd®s and Ne²et°il, 1985 [21]). If G is a graph with maximum degree

∆, then

s′(G) ≤

 5
4
∆2, for even ∆,

5
4
∆2 − 2∆−1

4
, for odd ∆.

The strongest support of this conjecture so far comes from Chung, Gyárfás, Trotter

and Tuza [11]. They proved that Proposition 2.3.2 is in some sense the best possible: if

L(G)2 is a clique, then the number of edges (and, in consequence, the strong chromatic

index) of G is at most 5
4
∆2.

Theorem 2.4.4 (Chung, Gyárfás, Trotter and Tuza, 1990 [11]). If G is a graph with

maximum degree ∆ and L(G)2 is a clique, then

e(G) ≤

 5
4
∆2, for even ∆,

5
4
∆2 − 2∆−1

4
, for odd ∆.

There are a few results concerning graphs of small maximum degree: the Conjecture

is trivial for ∆ ≤ 2, it is proved for ∆ = 3 (see [27] and [27]) and there is a bound of 22

colors for ∆ = 4 (see [12]; see also [26] for an earlier bound of 23).

2.5 Strong chromatic index of bipartite graphs

The most important class of graphs, for which the (restricted variant of) Conjecture

of Erd®s and Ne²et°il is still unsolved is the class of bipartite graphs. Although those
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graphs give us a strong structural property to work with, so far we did not manage to

use it to �nd a good upper bound on the strong chromatic index; in fact, Theorem 2.4.2

(a bound of 1.93∆2) remains the best known even if we restrict our attention to bipartite

graphs.

On the other hand, graphs given in Proposition 2.3.2 (that achieve 5
4
∆2) are clearly

not bipartite; no examples with strong chromatic index greater than ∆2 are known, and

this bound is attained by K∆,∆. Therefore, maybe the right answer for bipartite graphs

is ∆2 � it was conjectured by Faudree, Gyárfás, Schelp and Tuza in 1989 [22].

Conjecture 2.5.1 (Faudree, Gyárfás, Schelp and Tuza, 1989 [22]). If G is a bipartite

graph with maximum degree ∆, then s′(G) ≤ ∆2.

Instead of the maximum degree of a bipartite graph, one may want to consider the

degrees in partition classes separately and strengthen Conjecture 2.5.1 by suggesting a

bound ∆1∆2 (where ∆i is the maximum degree in i-th partition class) instead of ∆2. This

strengthening is due to Brualdi and Quinn [8].

Conjecture 2.5.2 (Brualdi and Quinn, 1993 [8]). If G is a bipartite graph such that the

vertices in i-th partition class have degree at most ∆i (for i ∈ {1, 2}), then s′(G) ≤ ∆1∆2.

Conjecture 2.5.1 is true for ∆ = 3 (see [39]). Conjecture 2.5.2 is true for some special

classes of graphs (see [8], [34] and [35]).

2.6 Easier problems

Conjecture 2.5.1 (an upper bound of ∆2 for bipartite graphs) is supported by much

stronger evidence than the Conjecture of Erd®s and Ne²et°il (Conjecture 2.4.3). In this

section we will prove two such results; in fact, both proofs give bounds consistent with

Conjecture 2.5.2 (an upper bound of ∆1∆2 for bipartite graphs) for free � a formulation

given here is a bit stronger than in referenced papers.

In an attempt to prove that χ (L(G)2) ≤ ∆2, for a bipartite graph G of maximum

degree ∆, one may start with an easier task: showing that the maximum clique in L(G)2

has size at most ∆2. This problem was solved by Faudree, Gyárfás, Schelp and Tuza in

1990 [23].
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Theorem 2.6.1 (Faudree, Gyárfás, Schelp and Tuza, 1990 [23]). If G is a bipartite graph

such that the vertices in i-th partition class have degree at most ∆i (for i ∈ {1, 2}), then

ω(L(G)2) ≤ ∆1∆2.

Proof. Denote the partition classes of G by V1 and V2 (where the maximum degree in Vi

is at most ∆i). Let F be a set of edges that form a clique in L(G)2 and set H := G[F ].

De�ne di to be the maximum degree in H of a vertex from Vi (for i = 1, 2). Without loss

of generality we assume that ∆1d2 ≤ d1∆2.

Let v be a vertex from V1 of degree d1 in H and denote the neighbors of v in H by

u1, u2, . . . ud1 . We partition F into the set Fnv of edges that are incident with a neighbor

in G of v and the set F ′ of the remaining edges from F .

In G there are at most ∆1 neighbors of v, each incident with at most d2 edges from

Fnv, so |Fnv| ≤ ∆1d2 ≤ d1∆2.

Let e be an edge from F ′ and w be a vertex from V1 incident with e. Since G is

bipartite, w must be adjecent to every ui (for 1 ≤ d1). Therefore, w is adjacent to at most

∆1−d1 vertices from F ′ (because its degree is at most ∆1) and there are at most ∆2 such

vertices w (because the degree of ui is at most ∆2). If follows that |F ′| ≤ (∆1 − d1)∆2.

Adding both estimations we get |F | ≤ ∆1∆2, so the proof is �nished.

A coloring witnessing that χ (L(G)2) ≤ ∆2 is a partition of edges of G into sets

independent in L(G)2 of average size at least e(G)
∆2 . From this point of view, an easier

task would be to show that there exists at least one independent set of this size. This is

exactly the result of Faudree, Gyárfás, Schelp and Tuza from 1989 [22].

Theorem 2.6.2 (Faudree, Gyárfás, Schelp and Tuza, 1989 [22]). If G is a bipartite graph

such that the vertices in i-th partition class have degree at most ∆i (for i ∈ {1, 2}), then

α(L(G)2) ≥ e(G)

∆1∆2

.

Proof. Denote the partition classes of G by V1 and V2 (where the maximum degree in Vi

is at most ∆i) and without loss of generality assume that G has no isolated vertices. Let

X = {x1, x2, . . . , xp} be a minimum subset of V1 such that N(X) = V2. By the minimality
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of X, for every xi there exists some yi ∈ N(vi) such that yi is not adjacent to any other

vertex from X. Since G is bipartite, the set of edges {x1y1, x2y2, . . . , xpyp} is an induced

matching in G of size p (and, equivalently, an independant set in L(G)2).

Let us count the number of edges of G. Each vertex xi has at most ∆1 neighbors,

each of them incident with at most ∆2 edges of G, so we have e(G) ≤ p∆1∆2. Since

p ≤ α (L(G)2), the proof is complete.

2.7 Reed's conjecture and strong chromatic index

Reed's conjecture is a fundamental question regarding chromatic number of a graph.

If G is a graph of maximum degree ∆, then clearly χ(G) ≤ ∆ + 1, but this bound is tight

only for complete graphs and odd cycles (and certain disconnected graphs; by Brooks'

theorem); and all known examples of graphs with chromatic number close to ∆ have

cliques of size close to ∆ � does it mean a deeper dependency? What is the correct upper

bound for chromatic number in terms of both maximum degree and the clique number of

a graph? In 1998, Reed posed the following conjecture [37].

Conjecture 2.7.1 (Reed, 1998 [37]). Let G be a graph with maximum degree ∆ and

maximum clique of size ω. We have

χ(G) ≤
⌈

∆ + 1 + ω

2

⌉
.

This conjecture is relevant to our goal; if it was true, it would easily imply a bound on

strong chromatic index of bipartite graphs outclassing Theorem 2.4.2 (a bound of 1.93∆2).

Proposition 2.7.2. Reed's conjecture would imply that for every bipartite graph G of

maximum degree ∆ we have

s′(G) ≤ 1.5∆2.

Proof. Recall that s′(G) = χ (L(G)2). Note that the maximum degree of L(G)2 is at most

2∆2 − 2∆ and, by Theorem 2.6.1, the clique number of L(G)2 is at most ∆2, so we get

the desired implication from Conjecture 2.7.1.
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Reed's conjecture is supported by some partial results (see [37] and [33, Chapter 16]),

but the strongest support is that its fractional variant holds, as proved by Molloy and

Reed in 2002 [33, Theorem 21.7].

Theorem 2.7.3 (Molloy and Reed, 2002 [33, Theorem 21.7]). Let G be a graph with

maximum degree ∆ and maximum clique of size ω. We have

s′f (G) ≤ ∆ + 1 + ω

2
.

As an immediate consequence of Theorem 2.7.3 we obtain a bound on the fractional

strong chromatic index of bipartite graphs.

Proposition 2.7.4. For every bipartite graph G of maximum degree ∆ we have s′f (G) ≤

1.5∆2.

Proof. The maximum degree of L(G)2 is at most 2∆2 − 2∆ and, by Theorem 2.6.1, the

clique number of L(G)2 is at most ∆2. By Theorem 2.7.3, the chromatic number of L(G)2

is at most 1.5∆2, which completes the proof.

Proposition 2.7.4 is proved by using Theorems 2.7.3 and 2.6.1 as �black boxes� (note

that both of them are sharp); is it possible to improve it by delving deeper into the

structure of the problem? We answer this question in Chapter 5.

In this section we focused on bipartite graphs, but a similar discussion can be repeated

in general case if instead of Theorem 2.6.1 we use a recent result by �leszy«ska-Nowak

that for every graph G of maximum degree ∆, the clique number of L(G)2 is at most

1.5∆2 [40] (note that Theorem 2.4.4, a bound of 5
4
∆2 on the number of edges of a graph

G such that L(G)2 is a clique, is too weak for this purpose).

2.8 Graphs with strong chromatic index much lower than ∆2

As we have seen in section 2.3, the upper bound on the strong chromatic index of a

graph with maximum degree ∆, where ∆ tends to in�nity, must be of order ∆2. However,

some classes of graphs admit much smaller values of this parameter; a trivial example is

a star � we have s′(K1,n) = ∆(K1,n) = n.
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In 2000, Mahdian [30] identi�ed a nice structural property that makes the strong

chromatic index much smaller than ∆2. If a graph has no cycles of length 4 and large

maximum degree ∆, then its strong chromatic index is of order at most ∆2

ln ∆
.

Theorem 2.8.1 (Mahdian, 2000 [30]). For any ε > 0 there is ∆0 such that for every

C4-free graph G we have

s′(G) ≤ (2 + ε)
∆2

ln ∆
.

We will discuss the arising questions � why does lack of C4's help to �nd a strong

edge-coloring with few colors and what happens when when a graph contains a small

number of C4's � in Chapter 3. We will see that sparsity of the graph is the �real� reason.

Surprisingly, strong chromatic index can be much smaller than ∆2 even in very dense

graphs. In 2012, Alon, Moitra and Sudakov showed that there are almost complete graphs

on n vertices of strong chromatic index as small as n1+ε (note that the strong chromatic

index of a complete graph is of order n2).

Theorem 2.8.2 (Alon, Moitra and Sudakov, 2012 [2]). For every ε > 0 there exists δ > 0

such that for every su�ciently large n there exists a graph G on n vertices that satis�es

s′(G) ≤ n1+ε and e(G) ≥
(
n

2

)
− n2−δ.

The next step is to investigate graphs with strong chromatic index that is linear in

maximum degree (note that is some sense it is the �nal step: we always have s′(G) ≥

∆(G)). We discuss this case in Chapter 4.
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3 Graphs with small number of C4's

3.1 Number of C4's and strong chromatic index

At �rst glance, Mahdian's Theorem (Theorem 2.8.1: a bound of (2 + ε) ∆2

ln ∆
for C4-free

graphs) may seem surprising. Intuitively, C4's should help us in �nding a strong edge-

coloring � in the proof of Proposition 2.3.1 (a bound of 2∆2 for all graphs, that follow

from greedy coloring) we neglect the fact that some of the neighboring edges may be

counted twice, which would allow us to improve the bound; if every edge of a graph is in

at least 3
4
∆2 4-cycles, then its chromatic index is at most 5

4
∆2, so the graph satis�es the

conjecture of Erd®s and Ne²et°il (Conjecture 2.4.3). Does Mahdian's Theorem suggest

that 4-cycles make a strong edge-coloring with not many colors harder, instead of easier,

to �nd?

We would like to �nd out what happens if we relax the assumption � what is the

maximum possible chromatic index of a graph, of maximum degree ∆, in which every

edge is in a small number of 4-cycles? The �small number� may range from a constant,

through O(∆), up to ε∆2 for some small constant ε.

Besides our general considerations we will investigate a speci�c class of graphs, unit

distance graphs, that have a nice geometric representation and rich, but manageable

structure. Informally, vertices of a unit distance graph are points in Rd and edges join all

pairs of points at distance 1.

De�nition 3.1.1. A graph G is a unit distance graph in Rd i� there is an injective

function f : V (G)→ Rd such that uv is an edge of G if and only if the Euclidean distance

between f(u) and f(v) is 1.

What is the maximum possible strong chromatic index of a unit distance graph in

R2 of maximum degree ∆? Every edge of such a graph is in at most ∆ 4-cycles, so this

question is a special case of the above problem. How abot unit distance graphs in higher

dimensions?
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3.2 Strengthening Mahdian's Theorem

A (potential) surprise, discussed in the start of Section 3.1, becomes less surprising

after we understand the �real� reason that makes Mahdian's Theorem true. It is related to

the local sparsity of the square of the line graph; Alon, Krivelevich and Sudakov proved

in 1999 that a locally sparse graphs have chromatic number much smaller then their

maximum degree (see [1]).

Theorem 3.2.1 (Alon, Krivelevich and Sudakov, 1999 [1]). There exists a constant c

such that the following is true. Let G be a graph with maximum degree ∆ such that for

every vertex v ∈ V (G) the subgraph of G induced by N(v) has at most ∆2

f
edges, where

1 < f ≤ ∆. Then the chromatic number of G is at most c ∆
ln f

.

As an easy corollary of Theorem 3.2.1 we can obtain a strengthening of Theorem 2.8.1

(but with a worse constant); note that a graph is C4-free if every two vertices have at

most one common neighbor, so the following Corollary is a strengthening indeed.

Corollary 3.2.2 (Vu, 2002 [41]). There exists a constant K such that the following holds.

Let G be a graph of maximum degree ∆ such that every two vertices of G have at most ∆
g

common neighbors, where 1 < g ≤ ∆. Then, we have

s′(G) ≤ K
∆2

ln g
.

Proof. Let uv be an edge of G. By the assumption on G, every vertex of G, except u

and v, have at most 2∆
g

neigbours in N(uv). It follows that every edge incident to a

vertex from N(uv) can be joined to at most 4∆2

g
+ 2∆ other such edges. Therefore, every

neighborhood in L(G)2 spans at most 4∆4

g
+2∆3 edges, so the result follows from Theorem

3.2.1.

This corollary immediately gives us an upper bound on the strong chromatic index of

unit distance graphs in the plane.

Corollary 3.2.3. There is a constant K such that if G is a unit distance graph in R2 of

maximum degree ∆, then

s′(G) ≤ K
∆2

ln ∆
.
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Proof. Note that every two vertices of G have at most 2 common neighbors, because

neighbors of any vertex of G lie on a circle and any two circles intersect in at most 2

points. Therefore, if we set g = ∆
2
, the result follows by Corollary 3.2.2.

We would like to show a similar bound for higher dimensions. However, corollary 3.2.2

is too weak for this purpose � the assumption may not be satis�ed even in R3, and the

counterexample is K2,∆.

Proposition 3.2.4. For every ∆, K2,∆ is a unit distance graph in R3.

Proof. Pick any two points x, y at distance less than 2. Note that there are in�nitely many

points at distance 1 from both x and y (and they lie on the circle that is the intersection of

the two spheres of radius 1); pick ∆ such points v1, v2, . . . , v∆. The resulting unit distance

graph is a bipartite graph with partition classes {x, y} and {v1, v2, . . . , v∆}.

Our main contribution in this chapter is a theorem that signi�cantly improves Corol-

lary 3.2.2 and implies a bound on the strong chromatic index of unit distance graphs in

R3. The Theorem is proved in section 3.3.

Theorem 3.2.5 (MD, 2015+). There exists a constant K such that the following holds.

Let G be a graph of maximum degree ∆ such that every edge of G is in at most ∆2

g
cycles

of length 4, where 1 < g ≤ ∆2. We have

s′(G) ≤ K
∆2

ln g
.

In order to apply our result, we need an estimation on the number of edges of a unit

distance graph in R3. We use a Theorem of Erd®s from 1960 [20]; this result has been

improved over last 55 years (see [6, Chapter 5.2] for the summary), but the improvements

are not relevant for our purpose.

Theorem 3.2.6 (Erd®s, 1960 [20]). There is a constant K ′ such that if G is a unit dstance

graph in R3 with n vertices, then

e(G) ≤ K ′n
5
3 .

Now, we are ready to bound the strong chromatic index of unit distance graphs in R3.
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Corollary 3.2.7. There is a constant K such that if G is a unit distance graph in R3 of

maximum degree ∆, then

s′(G) ≤ K
∆2

ln ∆
.

Proof. Let e = uv be an edge of G. Note that every 4-cycle in G that contains e cor-

responds to an edge between a vertex from N(u) \ {v} and a vertex from N(v) \ {u}

(and vice versa). By Theorem 3.2.6, the subgraph of G induced by N(uv) has at most

K ′∆
5
3 edges, so there are at most K ′∆

5
3 4-vertex cycles containing e. Therefore, the result

follows from Theorem 3.2.5 by setting g = ∆
2
5

K′ .

3.3 Proof of Theorem 3.2.5

We start with the technical lemma that will be used to bound the number of edges of

certain bipartite graphs.

Lemma 3.3.1. Let G be a bipartite graph such that each partition class of G has at most

n vertices. Then there is an edge e ∈ E(G) that is contained in at least

e(G)3

n4
+

3n3

e(G)

cycles of length 4.

Proof. Let A and B be partition classes of G. Let nP3 be the number of 3-vertex paths

in G with middle vertex in A. Since each vertex v from A is in 1
2
(deg(v)− 1) deg(v) such

paths, we have

nP3 =
1

2

∑
v∈A

deg(v)2 − 1

2

∑
v∈A

deg(v).

Note that the second sum is equal to the number of edges of G. By applying the Cauchy-

Schwarz inequality to the �rst sum and using the equality
∑

v∈A deg(v) = 2e(G) we obtain

nP3 ≥
e(G)2

2n
− e(G)

2
≥ e(G)2

2n
− n2

2
.

Now, let nC4 be the number of 4-cycles in G. Let d(u, v) denote the number of common

neighbors of vertices u and v. For every two vertices {u, v} ⊆ B, the number of 4-vertex
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cycles in G containing both u and v is 1
2
d(u, v) (d(u, v)− 1), so we have

nC4 =
1

2

∑
{u,v}⊆B

d(u, v)2 − 1

2

∑
{u,v}⊆B

d(u, v).

The sum
∑
{u,v}⊆B d(u, v) is equal to nP3 (and we have nP3 ≤ n3), so by applying the

Cauchy-Schwarz inequality we get

nC4 ≥
1

2
(
n
2

) (e(G)2

2n
− n2

2

)2

− n3

2
=
e(G)4 − n3e(G)2 + n6 − 2n6(n− 1)

4n3(n− 1)
.

Since 1
n−1

> 1
n
, e(G) ≤ n2 and 1 ≤ n, we have

nC4 ≥
e(G)4

4n4
− 3

4
n3.

Every 4-vertex cycle has 4 edges, so by the pigeonhole principle we get the desired

result.

Proof of Theorem 3.2.5. We start with two rather technical Claims that will allow us to

use Theorem 3.2.1. Claim 1 will be used in the proof of more important Claim 2.

Claim 1. In G, for every e ∈ E(G) there are at most

3
√

4
∆2

3
√
g

+ 4∆
7
4

edges with both endpoints in NG(e).

Proof of Claim 1. We use an auxiliary bipartite graph H with partition classes NG(e) and

NG(e) (two copies of NG(e)), such that for every edge xy ∈ E(G), where x, y ∈ NG(e),

we have xȳ, x̄y ∈ E(H).

Let eN be the number of edges of G with both endpoints in NG(e). Note that H has

2eN edges and at most 2∆ vertices in each partition class. By Lemma 3.3.1 we get that

some edge xȳ in H is in at least

(2eN)3

(2∆)4
− 3(2∆)3

2eN

4-vertex cycles in H. Note that the edge xy is in the same number of 4-vertex cycles in

G, so by our assumption we get

e3
N

2∆4
− 12∆3

eN
≤ ∆2

g
.
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Note that if eN ≥ 4∆
7
4 , then we have 12∆3

eN
≤ e3N

4∆4 , so we can rewrite the inequality as

e3
N

2∆4
− e3

N

4∆4
≤ ∆2

g
,

e3
N ≤ 4

∆6

g
,

eN ≤ 3
√

4
∆2

3
√
g
.

In the remaining case by de�nition we have eN ≤ 4∆
7
4 and the Claim follows by summing

both upper bounds on eN .

Claim 2. For every e ∈ E(G) there are at most

7
3
√

4
∆4

3
√
g

+ 44∆
15
4

edges in L(G)2 with both endpoints in NL(G)2(e).

Proof of Claim 2. Let G′ be a subgraph of G induced by neighbors of e in L(G)2. The

edges in L(G)2 with both endpoints in NL(G)2(e) correspond to certain pairs of edges of

G′ (pairs {p, q}, p, q ∈ E(G′), such that p and q have at least one endpoint in NG(e) and

pq is an edge of L(G)2); there are at most n1 +n2 +n3 +n4 +n5 of them, where we de�ne

n1, . . . , n5 such that there are:

n1 pairs of intersecting edges of G′,

n2 pairs of edges of G′ such that at least one of them intersects e,

n3 pairs of edges of G′ joined by an edge of G with both endpoints in NG(e),

n4 pairs of edges of G′ such that at least one of them has both endpoints in NG(e),

n5 pairs of edges of G′ such that both of them have at least one endpoint outside NG(e)

and they are joined by an edge with at least one endpoint outside NG(e).

There are at most 2∆2 edges of G′, each intersecting at most 2∆ other edges, so we

get n1 ≤ 4∆3. Similarly, there are at most 2∆ edges intersecting e and each of them is

joined to at most 2∆2 other edges of G′, so we have n2 ≤ 4∆3.
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By Claim 1, there are at most

3
√

4
∆2

3
√
g

+ 4∆
7
4

edges of G with both endpoints in NG(e), and each of them joins at most ∆2 edges of G′

and is joined to at most 2∆2 edges of G′, so we have

n3 + n4 ≤ 3
3
√

4
∆4

3
√
g

+ 12∆
15
4 .

Now, for an edge p ∈ E(G′) let Xp = NG(p) \ NG(e). Let Hp ⊆ G′ be an auxiliary

bipartite graph such that partition classes of Hp are Xp and NG(e), and edges of Hp are

all edges of G′ with one endpoint in each partition class. Let ep be the number of edges

of Hp.

Note that for every pair {p, q} that contributes to n5 we have p ∈ E(Hq) or q ∈ E(Hp).

If follows that n5 is at most 2∆2 times the maximum value of ep over all edges p; now we

will bound this maximum.

Since both Xp and NG(e) have size at most 2∆, by Lemma 3.3.1 some edge of Hp is

in at least
e3
p

16∆4
− 24∆3

ep

4-vertex cycles. Therefore, by our assumption we get

e3
p

16∆4
− 24∆3

ep
≤ ∆2

g
.

Now (as in the proof of Claim 1), we either have ep ≤ 12∆
7
4 or ep ≥ 12∆

7
4 . In the

second case we have 24∆3

ep
≤ e3p

32∆4 , so the above inequality gives

e3
p

16∆4
−

e3
p

32∆4
≤ ∆2

g
,

Therefore, after solving for ep and taking into account the �rst case, we obtain

ep ≤ 2
3
√

4
∆2

3
√
g

+ 12∆
7
4 ,

and n5 is at most 2∆2 times this upper bound. Note that ∆3 ≤ ∆
15
4 , so the claim follows

by summing all the upper bounds on n1, . . . , n5.

28



First, consider the case g ≤ ∆
3
4 and de�ne f =

3
√
g

56
. Note that ∆4

3
√
g
≥ ∆

15
4 , so by Claim

2 we get that a subgraph of L(G)2 induced by NL(G)2(e) for any e ∈ V (L(G)2) has at

most 4∆4

f
edges, so by Theorem 3.2.1 we get

χ
(
L(G)2

)
≤ K ′

2∆2

ln f

(where K ′ is a constant from Theorem 3.2.1). Since ln g is equal to some constant times

ln f , we get that

s′(G) ≤ K1
∆2

ln g
.

In the remaining case, we take f =
4√∆
56

and by the same argument (with an exception

that from Claim 2 we deduce the bound 56∆
15
4 ) we get

s′(G) ≤ K2
∆2

ln g
.

Finally, by taking K as maximum of K1 and K2, the Theorem follows.

3.4 Further investigations

After we establish Corollary 3.2.7 (a bound of K ∆2

ln ∆
for unit distance graph in R3), a

natural question arises: can we show a similar bound on strong chromatic index of unit

distance graphs in higher dimensions? This problem is much easier, and the answer is

negative; every complete bipartite graph is a unit distance graph in R4.

Proposition 3.4.1 (Lenz, see [6, Chapter 5.2]). For every ∆, K∆,∆ is a unit distance

graph in R4.

Proof. Consider two orthogonal circles C1, C2 of radius
√

2
2
, centered at (0, 0, 0, 0) (that is,

C1 satis�es x2
1 + x2

2 = 1
2
and x3 = x4 = 0; and C2 satis�es x2

3 + x2
4 = 1

2
and x1 = x2 = 0).

Note that each point of C1 is at distance 1 from each point of C2, so by picking ∆ points

from each circle we obtain K∆,∆.

Another natural question is the one regarding optimality of the results. Theorem 3.2.5

(a bound of K ∆2

ln g
for graphs with every edge in at most ∆2

g
4-cycles) is tight up to a factor
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O( ln ∆
ln g

), because there are C4-free graphs with chromatic index at least Θ
(

∆2

ln ∆

)
(see [30]).

Note that this factor is constant when g is at least some power of ∆; we believe that it

should be constant also for lower values of g.

On the other hand, mentioned construction of C4-free graphs with high strong chro-

matic index is probabilistic and (probably) does not give unit distance graphs in R2 or

R3; we do not know any nontrivial estimation on tightness of Corollaries 3.2.3 and 3.2.7

(the bounds of K ∆2

ln ∆
for unit distance graph in R2 and R3). Can those bounds be low-

ered to at least ∆2−ε for some constant ε > 0? We suspect that it is the case, but such

an improvement would require a totally di�erent approach, not using Theorem of Alon,

Krivelevich and Sudakov (Theorem 3.2.1).

Finally, Theorem 3.2.5 has a nice consequence regarding the conjecture of Erd®s and

Ne²et°il (Conjecture 2.4.3): the conjecture is true if we assume that every edge of the

graph is in at most ε∆2 4-cycles (for some absolute constant ε > 0). As we mentioned in

Section 3.1, it is also true if every edge of the graph is in at least 3
4
∆2 4-cycles. It would

be interesting to prove the conjecture in the mixture of those cases � that is, when some

edges of the graph are in at most ε∆2 4-cycles, and the remaining ones are in at least 3
4
∆2

4-cycles.
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4 Linear bounds on strong chromatic index

4.1 Short history of a conjecture of Chang and Narayanan

In Section 2.6 we omitted one result that supports Conjecture 2.5.1 (an upper bound

of ∆2 for bipartite graphs). Recall that a graph is bipartite if and only if the length of

every cycle is even; Faudree, Gyárfás, Schelp and Tuza proved in 1990 that if we require

the length of every cycle to be divisible by 4 instead, then the conjecture is true.

Theorem 4.1.1 (Faudree, Gyárfás, Schelp and Tuza, 1990 [23]). If G is a graph of

maximum degree ∆ and the length of every cycle in G is divisible by 4, then s′(G) ≤ ∆2.

However, the authors suspected that the result is not tight � that strong chromatic

index of such graphs should be much smaller, probably even linear in maximum degree

� because of a special structure of graphs in question. If all cycles in a graph have

length divisible by 4, then it must be very sparse; one may prove that such graphs are

2-degenerate.

The suspicion was con�rmed in 2012 by Chang and Narayanan [10]: they showed that

the strong chromatic index of every 2-degenerate graph of maximum degree ∆ is at most

10∆ − 10. The authors conjectured that the result can be generalized to k-degenerate

graphs for all k.

Conjecture 4.1.2 (Chang and Narayanan, 2012 [10]). There exists a constant c such

that for any k-degenerate graph G of maximum degree ∆ we have s′(G) ≤ ck∆.

This statement was proved by the author of this dissertation, Grytczuk and �leszy«ska-

Nowak (see [17]). However, the conjecture was in fact con�rmed in 2006, even before it

was stated, by Barrett, Kumar, Marathe, Thite, Istrate and Thulasidasan [5]. Their proof

contains a small mistake which infuences the resulting constant (they claimed that the

main term is (4k−3)∆, while it should be (4k−1)∆); here, we state the corrected version

of their theorem and give a valid proof.
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Theorem 4.1.3 (Barrett et al., 2006 [5], corrected). Let G be a k-degenerate graph of

maximum degree ∆, where k ≤ ∆. We have

s′(G) ≤ (4k − 1)∆− 2k2 − k + 1.

Proof. We start by enumerating vertives of G as v1, v2 . . . , vn in such a way that vi have at

most k neigbours in {v1, v2, . . . , vi−1}, for every i (such ordering can be found iteratively:

at each step we pick a vertex of degree at most k, add it before the �rst element of already

built list and remove it from the graph).

We will color edges of G greedily, starting with edges incident to v1, then proceeding

with edges incident to v2, and so on. We need to show that each edge, at the time when

it is assigned a color, is joined to at most (4k − 1)∆− 2k2 − k other edges; it guarantees

that (4k − 1)∆− 2k2 − k + 1 colors will always su�ce to complete the coloring.

Suppose that we are coloring an edge vivj, where i < j. Colored edges joined to vivj

are either (A) incident to a neigbour of vi other than vj or (B) incident to a neighbor of

vj other that vi.

(A) Note that at most k neigbours of vi precede it in our ordering, and clearly each

of them is incident to at most ∆ colored edges. Every other neigbour of vi is incident to

at most k colored edges (because by our ordering a vertex vi′ , for i′ > i, have at most k

neigbours among {v1, v2, . . . , vi}). Since thare are at most ∆− 1 neigbours of vi that are

not vj, it totals to at most k∆ + (∆− 1− k)k colored edges.

(B) There are at most k − 1 neigbours of vj that precede vi in the ordering, each

incident to at most ∆ colored edges. Remeining neigbours of vj, except vi, are incident

to at most k coloring edges (by the same argument as above). It totals to at most

(k − 1)∆ + (∆− 1− (k − 1)) k.

Summing the estimations (A) and (B) we get (4k − 1)∆ − 2k2 − k, so the proof is

complete.

4.2 Chordless graphs

We say that a graph G is chordless if every cycle in G is induced (that is, there is

no edge joining two nonconsecutive vertices on a cycle � such an edge is called a chord).
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This notion generalizes both graphs with every cycle length divisible by 4 and minimally

2-connected graphs, and forms a (proper) subclass of 2-degenerate graphs.

Chang and Narayanan [10] proved that s′(G) ≤ 8∆ − 6 if G is a chordless graph

of maximum degree ∆. Although the result is never stronger than Theorem 4.1.3 (by

Theorem 4.1.3, when k = 2, we get 7∆ − 9), their approach is di�erent: it involves

recoloring some previously colored edges with additional colors and relies on a useful

structural lemma.

Lemma 4.2.1 (Chang and Narayanan, 2012 [10]). Every chordless graph G contains

some vertex v such that at least deg(v)− 1 of its neighbors have degree at most 2.

Our main contribution in this chapter is an improved bound on strong chromatic index

of chordless graphs. The proof uses Lemma 4.2.1 and contains all key ideas used in the

(mentioned in the previous section) proof of the conjecture of Chang and Narayanan by

MD, Grytczuk and �leszy«ska-Nowak.

Theorem 4.2.2 (MD, Grytczuk, �leszy«ska-Nowak, 2015 [17]). If G is a chordless graph

of maximum degree ∆, then

s′(G) ≤ 4∆− 3.

Given a graph G, we say that a vertex v ∈ V (G) is nice (in G) if it has at most one

neigbour of degree greater than 2 and at least one neighbor of degree at most 2.

Lemma 4.2.3. Let G be a chordless graph with at least one edge and take X to be the

set of vertices of degree 1 in G. Then either G or G−X contains a nice vertex.

Proof. Without loss of generality we assume that G has no isolated vertices. If G has no

vertices of degree 1, the result follows by Lemma 4.2.1. Otherwise, we have three cases:

(a) G−X has no vertices, (b) G−X has a vertex of degree at most 1 and (c) G−X has

no vertices of degree 0 or 1. Now, in (a) every vertex of G satis�es the desired property

and in (b) we pick a vertex of degree at most one in G − X. For (c) note that a nice

vertex in G−X is also nice in G, so the result again follows by Lemma 4.2.1.

33



Proof of Theorem 4.2.2. We will in fact show that L(G)2 is (4∆ − 4)-degenerate by or-

dering edges of G in such a way that each edge is joined to at most 4∆ − 4 edges that

preceed it in the order. We will construct an (ordered) list of egdes of G starting from

the end � that is, whenever we add an edge to the list, it is added before the �rst element

of our list � and ensure that each added edge is joined (in G) to at most 4∆ − 4 edges

that are not on the list yet. We will proceed in steps and de�ne Li to be the list obtained

after i-th step, starting with L0 being an empty list.

Suppose that Li, with i ≥ 0, is de�ned, and let Ii ⊂ E(G) be the set of edges that

appear in Li (where I stands for �Inactive edges�). Let Hi = (V (G), E(G) \ Ii) (that is,

Hi is a subgraph of G induced by active edges), and let Xi be the set of vertices of degree

1 in Hi. Take vi to be a vertex that is nice in Hi or in Hi \Xi; note that, by Lemma 4.2.3,

such a vertex must exist (the vincinity of vi is depicted in Figure 4).

(A) If vi is nice in Hi, we put Ai = ∅ (and Ai stands for �edges added to the list in

part (A) of the i-the step�). Otherwise, we set Ai to be the set of all edges incident to a

vertex of degree 1 in Hi and a neigbour (in Hi \ Xi) of vi that has degree at most 2 in

Hi \Xi. Now, we set L′i to be the list obtained by adding to Li all edges from Ai in an

arbitrary order. Let H ′i = Hi \ Ai. Note that vi is nice in H ′i.

(B) Let Bi be the set of edges of H ′i incident with vi and a vertex of degree at most 2,

that is,

Bi = {viy ∈ E(H ′i) : degH′
i
(y) ≤ 2}

(where Bi stands for �edges added to the list in part (B) of the i-the step�). Take Li+1

to be the list obtained from L′i by appending edges from Bi in any order. Clearly, Bi is

nonempty, so for some s the list Ls contains all edges of G.

We will show that the following invariant holds: the number of active edges incident

to each vertex of an inactive edge is at most 1. More formally, we shall prove the following

claim.

Claim 3. For every i = 0, 1, . . . , s, and every vertex v ∈ V (G), if v is incident to at least

one edge from Ii, then it is incident to at most 1 edge outside Ii.

Proof. We use induction on i. For i = 0 we have Ii = ∅, so there is nothing to prove.
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vix

w y

edges of H ′i

edges of Hi \H ′i

edges of G \Hi

Figure 4: Proof of Theorem 4.2.2, vicinity of the vertex vi that is nice in H ′i (all edges

incident with depicted vertices are shown).

Now, suppose that the claim holds for some i (where 0 ≤ i < s), and consider some vertex

v incident with at least one edge from Ii+1. Note that if v is incident to an edge from Ii,

then the statement follows from induction hypothesis, as Ii ⊂ Ii+1. In the remaining case,

v is either (i) a vertex of degree 1 in Hi, (ii) a neigbour of vi in Hi of degree at most 2 in

H ′i or (iii) vi. In case (i), all edges incident to v are in Ii+1, in case (ii) we have vvi ∈ Bi,

so there remains at most one edge outside Ii+1 incident to v, and in case (iii), by v being

nice in H ′i, at most one edge incident to v in Hi is outside Bi, so the claim follows.

Now, for any edge e ∈ E(G), we will count the number of edges that are joined to

e and preceed e in Ls; see Figure 4 for an illustration. We either have (i) e ∈ Ai or (ii)

e ∈ Bi, for some i.
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In case (i) we need to count the number of edges of Hi joined (in G) to e. Let e = wx,

where w is a vertex of degree 1 in Hi and w is a vertex of degree at most 2 in H ′i. Note

that x have at most ∆ − 1 neigbours in G other than w and, by Claim 3, each of them

is incident to at most one edge of Hi. By de�nition of Ai, w have at most 2 neigbours in

Hi that are incident to more than one edge of Hi and, by Claim 3, all other neigbours of

w in G (other than x) are incident to at most one edge from Hi, which totals to at most

3∆− 3 edges. Therefore, e is joined to at most 4∆− 4 edges of Hi.

In case (ii) we need to count the number of edges of H ′i joined (in G) to e. Let e = viy,

where y have degree at most 2 in H ′i. Either y has degree 2 in H ′i and (by Claim 3) is

not incident with any edge from Ii or it has degree 1 in H ′i and (again by Claim 3) every

neigbour of y in G, other than vi, have degree at most 1 in Hi. Therefore, neigbours of

y in G, other than vi, are incident to a total of at most ∆ edges of H ′i. By Claim 3 and

choice of vi, there is at most one neigbour of vi in G incident to more than two edges

of H ′i, so neighbors of vi in G other than y are incident to at most 3∆ − 4 edges of H ′i.

Therefore, e is joined to at most 4∆− 4 edges of H ′i.

It follows that 4∆ − 3 colors will su�ce to �nd a strong edge coloring of G with a

greedy coloring in order given by Ls, so the proof is complete.

4.3 Discussion on linear bounds on strong chromatic index

Sections 4.1 and 4.2 suggest the following question: are k-degenerate graphs (for con-

stant k) the only graphs that have the strong chromatic index at most linear in maximum

degree? The answer is negative: there exist graphs with arbitrarily large maximum (and

even: average) degree ∆ that have strong chromatic index at most 2∆.

Proposition 4.3.1 (see [17]). If n = 2k, for an integer k ≥ 1, there exists a (log2 n)-

regular graph with n vertices such that s′(G) = 2 log2 n.

Proof. For every n = 2k we construct a regular graph Gk of degree k and χ′s(G) ≤ 2k.

The set of vertices of Gk is the set of all binary sequences of length k, with two vertices

being adjacent when their Hamming distance is exactly k−1 (that is they agree in exactly

one position). Now we will color the edges of Gk using the set of pairs C = {(i, j) : i ∈
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{1, 2, . . . , k}, j ∈ {0, 1}} as the set of colors, in the following way: the color of an edge uv

is the pair (i, j) if they agree on the ith coordinate whose value is j. Clearly, the set of

edges in a �xed color (i, j) forms a strong matching in Gk.

Bre²ar and Kraner �umenjak in [7] conjectured that an upper bound 2∆ is also valid

for median graphs (G is a median graph if for every three vertices u, v, w ∈ V (G) there

exists exactly one vertex that lies on a shortest path from u to v, a shortest path from v

to w and a shortest path from u to w; such graphs on n vertices can have average degree

of order log n, hypercube is an example).

Can we �nd denser graphs with small strong chromatic index? When asking such a

question, it is reasonable to de�ne �small� using the average degree instead of maximum

degree of the graph (note that if G is a disjoint union of a dense graph and s star K1,r,

for large enough r, we have s′(G) = ∆(G), and such construction is not very insightful).

For a �xed constant c > 0, let Fc denote the family of graphs G satisfying χ′s(G) ≤

cd(G). Let fc(n) = max{d(G) : G ∈ Fc, |V (G)| ≤ n}. We shall demonstrate that c = 2 is

the smallest constant for which the class Fc is not empty.

Proposition 4.3.2 (see [17]). For every graph G we have

s′(G) ≥ 2d(G)− 1.

Proof. Let G be a simple graph on the set of n vertices V (G) = {v1, v2, . . . , vn}. For any

edge e = uv, let s(e) = d(u) + d(v) denote the sum of degrees of its ends u and v. Let

M = max{s(e) : e ∈ E(G)}. Since s′(G) ≥ M − 1, it su�ces to show that M ≥ 2d(G).

First notice that ∑
e∈E(G)

s(e) =
∑

v∈V (G)

d(v)2.

Next consider two n-dimensional vectors x = (d(v1), d(v2), . . . , d(vn)) and y = (1, 1, . . . , 1).

Applying the Cauchy-Schwarz inequality to x and y gives∑
v∈V (G)

d(v) ≤
√
n ·
√ ∑

v∈V (G)

d(v)2.

Hence, we get

2 |E(G)| ≤
√
n ·
√ ∑

e∈E(G)

s(e) ≤
√
n ·
√
M |E(G)|.
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By squaring we get 4 |E(G)|2 ≤ nM |E(G)|, which implies that 4 |E(G)| /n ≤ M . This

proves the desired relation 2d(G) ≤M .

By Proposition 4.3.1, f2(n) is unbounded, but what is its order of magnitue? How

about fc(n) for larger values of c? Finding the right answer reamins an open problem.

Problem 4.3.3 (see [17]). What is the order of magnitude of fc(n)?
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5 Fractional strong chromatic index of bipartite graphs

5.1 The main Theorem

Is it possible to strengthen Proposition 2.7.4 (an upper bound 1.5∆2 on fractional

strong chromatic index of bipartite graphs)? Although the bound 1.5∆2 is far from the

one conjectured by Faudree, Gyárfás, Schelp and Tuza (∆2; Conjecture 2.5.1), it follows

from two theorems that are tight. Is it a premise that the mentioned conjecture is wrong

and that 1.5 is the right constant?

A careful examination of the proof of Proposition 2.7.4 reveals that Theorem 2.7.3

(which con�rms fractional relaxation of Reed's conjecture) is applied to squares of line

graphs of bipartite graphs � although Theorem 2.7.3 is tight, it is not clear whether it

is tight for this particular class of graphs. Another weakness of the proof of Proposition

2.7.4 is that Theorem 2.6.1 (which says that maximum clique in a square of the line graph

of a bipartite graph G of maximum degree ∆ is at most ∆2), although tight, is not the

best possible � if a clique in L(G)2 has maximum possible size ∆2, then it must consist

of vertices of degree ∆2 − 1 (that is, roughly half of the maximum possible); it prompts

that a better tradeo� between clique size and vertex degrees in L(G)2 can be found and

used.

We show that the constant 1.5 can be improved to 1.476. In the proof we replace

Theorem 2.6.1 with Lemma 5.2.2, which concerns both the cliqes and degrees in L(G)2,

and an immediate consequence of Theorem 2.7.3 which is �compatible� with it. The proof

is in Sections 5.2 and 5.3.

Theorem 5.1.1 (MD, 2015+ [14]). Let G be a bipartite graph of maximum degree ∆. We

have

s′f (G) ≤ 31

21
∆2 + ∆1.5.

We consider Theorem 5.1.1 the main result of this dissertation. Note that the constant

is improved by only a little (less than 0.24) and the most important message is that it

can be improved at all.

It is worth to note that if Reed's conjecture (Conjecture 2.7.1) is true, we will get a
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strengthening of Theorem 5.1.1, concerning strong chromatic index instead of fractional

strong chromatic index, for free.

Remark 5.1.2. Reed's conjecture would imply that for every bipartite graph G of maxi-

mum degree ∆ we have

s′(G) ≤ 31

21
∆2 + ∆1.5.

5.2 Outline of the proof

Our general goal is to apply Theorem 2.7.3 (inequality χf (H) ≤ ∆(H)+ω(H)+1
2

) to

obtain a fractional coloring of the graph H = L(G)2 with strictly less than ∆(H)+ω(H)+1
2

colors. In order to succeed, we need our graph H to satisfy a certain property, which is

an assumption of Lemma 5.2.1 (think of x as not much larger than ∆(H)).

Lemma 5.2.1. Let H be a graph such that each complete subgraph of H of order r contains

a vertex of degree at most x− r. Then we have χf (H) ≤ x+∆(H)
3

+ 1.

Proof. We start by �nding an induced subgraph of H, denoted H ′, such that ω(H ′) ≤
2x−∆(H)+1

3
. We de�ne H ′ to be a graph obtained from H by deleting all vertices of degree

less than x+∆(H)−1
3

.

Now, we show that ω(H ′) ≤ 2x−∆(H)+1
3

. Suppose for the contrary that H ′ contains a

complete subgraph S of order greater than 2x−∆(H)+1
3

. Since it is also a complete subgraph

of H, by our assumption on H we deduce that S contains a vertex of degree (in H) less

than x− 2x−∆(H)+1
3

= x+∆(H)−1
3

, which contradicts the choice of H ′.

Applying Theorem 2.7.3 to H ′ we get that

χf (H
′) ≤

2x−∆(H)+1
3

+ ∆(H) + 1

2
≤ x+ ∆(H)

3
+ 1.

Any (x+∆(H)
3

+ 1)-coloring of H ′ can be extended to a (x+∆(H)
3

+ 1)-coloring of H (by

assingning colors to the remaining vertices greedily), so the proof is complete.

The main di�culty of the proof is showing that L(G)2 satis�es the desired property,

with x ≈ 17
7

∆(G)2.
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Lemma 5.2.2. Let G be a bipartite graph and H a subgraph of G such that E(H) is a

clique in L(G)2. There exists an edge e ∈ E(H) such that

degL(G)2(e) + e(H) ≤ 17

7
∆(G)2 +

√
2∆(G)1.5.

Theorem 5.1.1 is an immediate consequence of the two lemmas.

Proof of Theorem 5.1.1. Let G be a bipartite graph. By Lemma 5.2.2, each complete

subgraph of L(G)2 of order r contains a vertex of degree at most x − r, where x =

17
7

∆(G)2+
√

2∆(G)1.5. Therefore, the Theorem follows by Lemma 5.2.1 applied for L(G)2.

5.3 Proof of Lemma 5.2.2

We will need the following lemma, which is a quantitive form of the statement �if there

is a large clique in L(G)2, then G contains a large number of 3-vertex paths�. The result

will be useful for |A| of order ∆(G) and e(H) of order ∆(G)2 (|B| can be larger, which

makes the proof more complicated than it would be otherwise).

Lemma 5.3.1. Let G be a bipartite graph with partition classes A,B and H a subgraph

of G such that E(H) is a clique in L(G)2. There are at least

|A|2 ∆(G)

2

(
1−

√
1− e(H)2

|A|2 ∆(G)2

)
−
√

2

2
∆(G) |A|

√
|A|

copies of P3 in G that have two vertices in A.

Proof. We will count the number of unordered pairs {e, f} such that e and f are adjacent

in L(G)2 (where e, f ∈ E(G)). Let us denote this number by np. On one hand, np ≥
e(H)2−e(H)

2
(because E(H) is a clique in L(G)2).

Now consider a vertex u ∈ B. The number of pairs {e, f}, where u ∈ e and f contains

a neighbor (in G) of u, that contribute to np is at most degG(u)2∆(G) −
(

degG(u)
2

)
−

degG(u) (there are degG(u) choices for e and at most degG(u)∆(G) choices for f , so we

get degG(u)2∆(G). However, this way we double-count
(

degG(u)
2

)
pairs {e, f} where both
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e and f are incident to u and degG(u) adjacencies of some edge to itself, so we substract

respective numbers). We will say that such pairs are counted by u.

Note that every pair {e, f} that contributes to np, is counted by some vertex u ∈ B (be-

cause G is bipartite). Moreover, if there is a copy of C4 in G on vertices v1, u2, v3, u4 (with

edges {v1u2, u2v3, v3u4, u4v1}; where u2, u4 ∈ B), then pairs {v1u2, v3u4} and {u2v3, u4v1}

are counted by both u2 and u4. Therefore, if we set nC4 to be the number of copies of C4

in G, we obtain

e(H)2 − e(H)

2
≤ np ≤

∑
u∈B

(
degG(u)2∆(G)−

(
degG(u)

2

)
− degG(u)

)
− 2nC4 . (1)

Now we will �nd a lower bound on nC4 . For v, w ∈ A, where v 6= w, let y{v,w} be a

number of common neighbors (in G) of v and w. There are
(
y
2

)
= y2

2
− y

2
copies of C4 in

G that contain vertices v and w, so we have

nC4 =
1

2

∑
v,w∈A,v 6=w

y2
{v,w} −

1

2

∑
v,w∈A,v 6=w

y{v,w}. (2)

Note that the sum of all y{v,w} (over v, w ∈ A, v 6= w) is equal to
1
2

∑
u∈B degG(u)(degG(u)− 1) (because u is a common neighbor of every two of its neigh-

bors). Therefore, considering (y{v,w}) as an
(|A|

2

)
-dimensional vector, by the Cauchy-

Schwarz inequality we obtain∑
v,w∈A

y{v,w} ≥
(

1
2

∑
u∈B degG(u)(degG(u)− 1)

)2(|A|
2

) .

Now, from (2) (and by
(|A|

2

)
≤ |A|2

2
) we obtain

nC4 ≥
(∑

u∈B degG(u)(degG(u)− 1)
)2

4 |A|2
−
∑

u∈B degG(u)(degG(u)− 1)

4
. (3)

For convenience, we set x =
∑

u∈B degG(u)(degG(u) − 1). Now, from (1) and (3) we

get

e(H)2 − e(H)

2
≤ ∆(G)x+ ∆(G)

∑
u∈B

degG(u)− x

2
−
∑
u∈B

degG(u)− x2

2 |A|2
+
x

2
. (4)

Note that we have e(H) ≤
∑

u∈B degG(u) and
∑

u∈B degG(u) ≤ |A|∆(G) so we can

rewrite (4) as

0 ≤ −e(H)2 + 2∆(G)x+ 2∆(G)2 |A| − x2

|A|2
. (5)
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The right side of (5) is a quadratic function in x that attains its maximum value for

xmax = |A|2 ∆(G) (and this value is at least 0 by e(H) ≤ |A|∆(G)). Moreover, in point

x− = |A|2 ∆(G)(1 −
√

1− e(H)2

|A|2∆(G)2
) −
√

2∆(G) |A|
√
|A| this function is negative (and

equal to −2
√

2
√

1− e(H)2

|A|2∆(G)2
∆(G)2 |A|

√
|A|). Therefore, inequality (5) implies that

x ≥ |A|2 ∆(G)

(
1−

√
1− e(H)2

|A|2 ∆(G)2

)
−
√

2∆(G) |A|
√
|A|. (6)

Since each vertex u ∈ B is a central vertex of degG(u)(degG(u)−1)
2

copies of P3 in G that have

two vertices in A, by de�nition of x inequality (6) �nishes the proof.

v

α

∆(H) ≤ ∆(G)−∆(H)

X
Y

Figure 5: Notation used in the proof of Lemma 5.2.2 (edges outside H are grayed out or

not shown)

Proof of Lemma 5.2.2. To shorten the notation, we will write ∆G instead of ∆(G) and

∆H instead of ∆(H).

Let v ∈ V (H) be a vertex of degree (in H) equal to ∆H . We will now introduce a few

notions, see Figure 5 for a visualization.

Let Vα be the set of vertices of H that are adjacent (in G) to a neighbor of v and

incident to at least one edge of H that is not incident to a neighbor (in G) of v. De�ne α

to be the size of Vα. Moreover, we will denote the set of edges of H incident to a vertex

from Vα by Eα.
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Let X (resp. Y ) denote the set of egdes of H that are incident to a vertex from NH(v)

(resp. NG(v) \NH(v)) and not incident to any vertex from Nα. Set x (resp. y) to be the

size of X (resp. Y ).

Since E(H) is a clique in L(G)2, each edge of H is incident to a neighbor of v or a

vertex from Vα. Moreover Eα ≤ α∆H , so we have

e(H) ≤ α∆H + x+ y + ∆H . (7)

Now we will count the number of copies (in G) of directed P3 that start in NH(v) and

end in NG(v) (a directed P3 is a P3 with one leaf marked as a startpoint, and the other as

an endpoint; each copy of P3 correponds to two directed P3's). Let us denote this number

by #P3.

Note that every vertex from Vα is adjacent to every vertex from NH(v) (by de�nition

of Vα and G being bipartite). Therefore, there are (exactly!) ∆H(∆H − 1)α directed P3's

that start and end in NH(v) and have a middle point in Vα.

By Lemma 5.3.1 (applied for a graph G′ that is a subgraph of G induced by NH(v) ∪

N2
H(v), its subgraph H ′ = (V (G′), X) and A = NH(v)) we get that there are at least

∆2
H∆G

(
1−

√
1− x2

∆2
H∆2

G

)
−
√

2∆G∆H

√
∆H

directed P3's that start and end in NH(v), and have a middle point outside Vα.

Moreover, for every two edges e ∈ X and f ∈ Y there is a directed P3 that starts

in e ∩ NH(v), ends in f ∩ (NG(v) \ NH(v)) and starts with e or ends with f (because

E(H) is a clique in L(G)2 and G is bipartite). Since each such path corresponds to at

most 2∆H pairs (e, f), we have at least xy
2∆H

directed P3's that start in NH(v) and end in

NG(v) \NH(v).

Now we have an estimation of the number of directed P3's that start in NH(v), end

in NG(v) and have a middle vertex other than v. By the above estimations and the

pigeonhole principle we deduce that there is a vertex u ∈ NH(v) that is the start of at

least

(∆H − 1)α + ∆H∆G

(
1−

√
1− x2

∆2
H∆2

G

)
−
√

2∆G

√
∆H +

xy

2∆2
H

(8)
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directed P3's that start in NH(v), end in NG(v) and have a middle vertex other than v.

It remains to show that the edge vu satisies the condition ot the Lemma.

Each directed P3 that starts in u, ends in NG(v) and have middle vertex other that

v corresponds to a copy of C4 in G that contains the edge uv. Since degL(G)2(uv) is at

most 2∆2
G − 2∆G minus the number of copies of C4 in G that contain uv, by combining

(7) and (8) we obtain

degL(G)2(uv) + e(H) ≤ 2∆2
G − 2∆G − (∆H − 1)α−∆(H∆G

(
1−

√
1− x2

∆2
H∆2

G

)
+
√

2∆G

√
∆H −

xy

2∆2
H

+ α∆H + x+ y + ∆H . (9)

Observing that α ≤ ∆G and ∆H ≤ ∆G, we simplify this to

degL(G)2(uv) + e(H) ≤ 2∆2
G −∆H∆G +

√
∆2
H∆2

G − x2 + x− xy

2∆2
H

+ y +
√

2∆1.5
G . (10)

By y ≤ ∆H (∆G −∆H) and x ≤ ∆2
H we obtain

degL(G)2(uv) + e(H) ≤ 2∆2
G +

√
∆2
H∆2

G − x2 + x− x (∆G −∆H)

2∆H

−∆2
H +
√

2∆1.5
G . (11)

Now we introduce γ so that x = γ∆G∆H (note that 0 ≤ γ ≤ 1) and we get

degL(G)2(uv) + e(H) ≤ 2∆2
G −

γ∆2
G

2
+ ∆G∆H

(√
1− γ2 +

3γ

2

)
−∆2

H +
√

2∆1.5
G . (12)

The right side of inequality 12 is a quadratic function in ∆H that attains its maximum

in point 2
√

1−γ2+3γ

4
∆G, which implies that

degL(G)2(uv) + e(H) ≤ ∆2
G

(
9

4
− 1

2
γ +

5

16
γ2 +

3

4
γ
√

1− γ2

)
+
√

2∆1.5
G . (13)

Note that we have
√

1− γ2 ≤ 29
21
− 20

21
γ (graph of the function on the left is a part of

a circle, and the graph of the function on the right is a line tangent to the circle at point

γ = 20
29
). Therefore, (13) implies

degL(G)2(uv) + e(H) ≤ ∆2
G

(
9

4
+

45

84
γ − 135

336
γ2

)
+
√

2∆1.5
G . (14)

The function in brackets is quadratic in γ and attains its maximum value 51
21

for γ = 2
3
,

so the proof is complete.
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5.4 Possible improvements

Consider the relation between Lemma 5.2.2 and Theorem 2.6.1 � the lemma implies

that the maximum clique in L(G)2 is not larger than (rougly) 17
14

∆(G)2 (for a bipartite

graph G), which is weaker than the (tight) bound ∆(G)2 given by the theorem, and the

theorem does not does not give any information on the degrees of vertices in cliques in

L(G)2. Hence, those two results are incomparable (that is, neither of them is an easy

cosequence of the other).

We believe that Lemma 5.2.2 can be strengthened so that its consequence would match

Theorem 2.6.1. Note such a strengthening, apart from being interesting on its own, would

translate to an essentianl improvement of Theorem 5.1.1 � the constant 31
21

would improve

to 4
3
. We conjecture the following.

Conjecture 5.4.1 (MD, 2015 [14]). Let G be a bipartite graph and H a subgraph of G

such that E(H) is a clique in L(G)2. There exists an edge e ∈ E(H) such that

degL(G)2(e) + e(H) ≤ 2∆(G)2.

Our work would also bene�t from a certain strengthening of Theorem 2.7.3. Note that

the quantity x in assumption of Lemma 5.2.1 corresponds to ω(G) + ∆(G) + 1 (and is

smaller than or equal to that number). Although we do not dare to pose it as a conjecture,

we would like to see a stronger version of Theorem 2.7.3 with x insted of ω(G)+∆(G)+1

(in fact, Lemma 5.2.1 is a small step in this direction). For a discussion of variants of

Theorem 2.7.3 see the paper by Edwards and King [19]; in particular, their Conjecture 4

is related to our suggestion and would probably imply a strengthening of Theorem 5.1.1.

Finally, we believe that the same ideas can be used to give an upper bound on fractional

strong chromatic index of all (not necessarily bipartite) graphs � note that the only missing

part is a non-bipartite analog of Lemma 5.2.2. Recall that if G is a blowup of C5 (depicted

in Figure 3a), then L(G)2 is a clique of order 5
4
∆(G)2; we conjecture that it is the worst

possible and that the desired analog of Lemma 5.2.2 should be as follows.

Conjecture 5.4.2. Let G be a graph and H a subgraph of G such that E(H) is a clique
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in L(G)2. There exists an edge e ∈ E(H) such that

degL(G)2(e) + e(H) ≤ 2
1

2
∆(G)2.
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6 Topological strong chromatic index of bipartite

graphs

6.1 Topological analog of chromatic number

In this section we de�ne a topological equivalent of the chromatic number of a graph

(which is relevant to the topic of the dissertation � recall that strong chromatic index

is the chromatic number of a certain graph, according to De�nition 2.1.2). There is a

number of parameters that may be considered a topological counterpart of the chromatic

number, and among those we focus only on the largest one (being an upper bound for

all other). We refer to the paper by Simonyi and Zsbán [38] for the discussion of other

similar notions.

A Z2-space is a pair (X, v), where X is a topological space and v : T → T is a

continuous function satisfying v ◦ v = idX (that is, v(v(x)) = x for all x; such v is called a

Z2-action). We say that a Z2-space (X, v) is free if v(x) 6= x for all x ∈ X. We apply this

notion to topological spaces arising from simplicial complexes. We say that a simplicial

complex F equipped with a simplicial map f : V (F ) → V (F ) is a free Z2-complex if

(||F ||, ||f ||) is a free Z2-space, where ||F || is a geometric realization of F and ||f || is a

natural extension of f to a continuous function on ||F ||.

A Z2-map between two Z2-spaces (X, v) and (Y, u) is a continous map m : (X, v)→

(Y, u), such that m(v(x)) = u(m(x)) for any x ∈ X. The Z2-index of a free Z2-space

(X, v) is the minimum d such that there exists a Z2-map m : (X, v)→ (Sd,−), where Sd

is a d-dimensional sphere and − is a natural antipodal operation. We de�ne the Z2-index

of a free Z2-complex (F, f) to be the Z2-index of the underlying Z2-space and denote it

by ind(F ).

We de�ne the box complex of a graph G (denoted by B(G)) to be a free Z2-complex

on two copies of vertices of G, V (G) and V (G), where A∪B is a face if and only if either

G contains a complete bipartite subgraph with partition classes A and B (for A,B being

nonempty) or all vertices in A and B have at least one common neighbor (for A or B

being an empty set). A Z2-action v is de�ned by v(x) = x and v(x) = x for x ∈ V (G).
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The Z2-index of the box complex of G (plus 2) can be thought of as a topological

analog of the chromatic number of G. We have χ(G) ≥ ind(B(G)) + 2 and in many cases

this lower bound turns out to be sharp. In particular, Kneser graph with parameters n, k

satisfy ind(B(Kn,k)) + 2 = n − 2k + 2 and have chromatic number equal to n − 2k + 2,

while the fractional chromatic number is n
k
, which shows that ind(B(G))+2 can be greater

than the fractional chromatic number of G. Results concerning this chromatic parameter

provide supporting evidences for a number of conjectures on chromatic number of speci�c

graphs [38].

We will use two properties of the Z2-index. The �rst one is a topological counterpart

of the observation that adding a new vertex of degree d to a graph cannot increase its

chromatic number above d+ 1. It is implicitly proved in the book by Matou²ek [31] (see

Proposition 5.3.2).

Lemma 6.1.1 (see [31, Proposition 5.3.2]). Let G be a graph and take G′ = G− v, where

v is a vertex of G of degree d. We have

ind(B(G)) + 2 ≤ max(ind(B(G′)) + 2, d+ 1).

The second tool is the so-called Kl,m-theorem of Csorba et. al [13] stating that a graph

of large Z2-index must contain large complete bipartite subgraphs (note that it is not the

case with chromatic number).

Theorem 6.1.2 (Csorba, Lange, Schurr and Wassmer, 2004 [13]). If G is a graph satis-

fying ind(B(G)) + 2 ≥ t, then for every possible l,m ∈ N with l + m = t, the complete

bipartite graph Kl,m appears as a subgraph of G.

6.2 An upper bound on topological strong chromatic index of

bipartite graphs

We de�ne a topological analog of strong chromatic index of a graph in a way consistent

with De�nition 2.1.2.

De�nition 6.2.1. The topological strong chromatic index of a graph G, denoted

s′t(G), is ind(B(L(G)2)) + 2.
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Note that s′t(G) ≤ s′(G) (as mentioned in Section 6.1), so if we prove an upper bound

on s′(G), it is also an upper bound on s′t(G). On the other hand, an upper bound on

s′t(G) would not yield any formal consequences regarding s′(G), but it may indicate that

a similar bound on s′(G) exists. In view of the apparent di�culty of Conjectures 2.4.3

and 2.5.1, it is worthwhile to investigate their topological variants.

Conjecture 6.2.2 (Erd®s and Ne²et°il, topological variant). For any graph G of maxi-

mum degree ∆ we have s′t(G) ≤ 5
4
∆2.

Conjecture 6.2.3 (Faudree, Gyárfás, Schelp and Tuza, topological variant). For any

bipartite graph G of maximum degree ∆ we have s′t(G) ≤ ∆2.

Conjectures 6.2.2 and 6.2.3 would be sharp, as witnessed by a blowup of C5 (see

Proposition 2.3.2 for de�nition) and K∆,∆ respectively.

Recall that for a bipartite graph G of maximum degree ∆, the best known bound on

s′(G) is 1.93∆2 (Theorem 2.4.2), which implies that s′t(G) ≤ 1.93∆2. We improve the

constant to 1.703.

Theorem 6.2.4 (MD, 2015 [15]). Let G be a bipartite graph of maximum degree ∆. We

have

s′t(G) ≤ 1.703∆2.

6.3 Proof of Theorem 6.2.4

The main idea of our argument goes as follows. First we consider the case when G

contains no complete bipartite subgraph with z∆2 edges, where z is some constant, to be

revealed later. Once we establish Corollary 6.3.3, the rest of the proof goes by a simple

greedy coloring argument.

A complete bipartite subgraph of L(G)2 can be viewed as two disjoint sets of edges of

G, such that each two edges e and f , where e belongs to the �rst set and f to the second

one, are joined. We refer to those sets as red edges (denoted R) and blue edges (denoted

B). We use the term red degree (respectively, blue degree) of v ∈ V (G), denoted dr(v)

(resp. db(v)), which is de�ned to be the number of red (blue) edges that are incident to
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v (in G). Finally, by the second red degree (the second blue degree) of v ∈ V (G),

denoted d(2)
r (v) (d(2)

b (v)) we mean the number of red (blue) edges incident to at least one

neighbor of v.

We refer to a pair (R,B) of subsets of V (L(G)2) as a selection (in G), if |R| = |B|,

R ∩B = ∅ and each edge in R is within distance 1 from each edge in B. The order of a

selection (R,B) is de�ned as |R|+ |B|.

Lemma 6.3.1. Let G be a bipartite graph of maximum degree ∆ which contains no com-

plete bipartite subgraph with at least z∆2 edges, and let (R,B) be a selection in G. If

u, v ∈ V (G) are in di�erent partition classes of G, then

d(2)
r (u) + d

(2)
b (v) < (1 + 2z − z2)∆2.

Proof. Note that in a bipartite graph d(2)
c (w) (where c equals r or b) is equal to the sum∑∆

i=1 dc(wi), where w1, . . . , w∆ are neighbors of w. For i = 1, 2, . . . ,∆, de�ne βi to be the

red degree of the i-th neighbor of v and let γi be the blue degree of the i-th neighbor of

u, setting βi = 0 (γi = 0) if there are fewer than i neighbors. We denote the neighbors of

v by v1, v2, . . . and neighbors of u by u1, u2, . . ..

u vui vj

x

y
red blue

Figure 6: Part of the proof of Lemma 6.3.1: we have uivj ∈ E(G) or xy ∈ E(G)

Note that if we have βiγj ≥ z∆2 for some i and j, then viuj ∈ E(G) (see Figure 6).

Indeed, if viuj /∈ E(G), then every neighbor x of vi connected to it by a red edge must be

adjacent to each neighbor y of ui connected to it by a blue edge (since G is bipartite we

have x 6= y, so xy remains the only possible link between those two edges), so G contains

a complete bipartite subgraph with βiγj edges, which contradicts our assumption on G.
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Clearly, the sum d
(2)
r (u) + d

(2)
b (v) is equal to

∑
i βi +

∑
i γi. For any α ∈ (0, 1], let

nα = |{i : βi ≥ α∆}||{i : γi ≥ z
α

∆}| (that is, the number of pairs (i, j) such that

βiγj ≥ z∆2 and βi ≥ α∆). By the above claim, for each such pair, there is an edge viuj,

so G contains a complete bipartite subgraph with at least nα edges. Therefore, we must

have

nα < z∆2. (15)

Our aim is to show that the condition (15) implies the upper bound of (1+2z−z2)∆2 on

the sum S =
∑

i βi+
∑

i γi for any real numbers β1, . . . , β∆, γ1, . . . , γ∆ that are nonnegative

and at most ∆. Note that this claim immediately completes the proof.

Our �rst step is to prove that for any con�guration (i.e. the choice of values βi and γi

satisfying (15) for all α) there is a con�guration at least as good (with not lower value of

S), in which there is no βi nor γi in the interval [z∆,∆). Indeed, suppose that there is

some βk ∈ [z∆,∆) and there exists γm strictly smaller than ∆. Without loss of generality

we may assume that βk is the lowest among such βi, γm is the highest among such γi and

βk ≤ γm. Note that if we decrease βk to βkγm
∆

and increase γm to ∆, S will increase. Since

no βi lies in the interval [z∆, βk), the increase of γm will not result in increasing any nα,

so the condition (15) would hold. If for every i we have γi = ∆ then replacing βk by ∆

does not change nα (for any α). Note that the same argument applies if we exchange β

with γ. By repeating this process we obtain the desired con�guration.

Hence, we may and shall assume that all βi's and γj's are either equal to ∆ or smaller

than z∆. Let cr be the number of βi that are equal to ∆ (cr = |{i : βi = ∆}|) and let cb

stand for the number of γi equal to ∆. Then

S ≤ ∆(cr + cb) + z∆((1− cr) + (1− cb)) = ∆(1− z)(cr + cb) + 2z∆.

Note that 0 < cr, cb ≤ ∆ and, by (15), we have crcb < z∆2, so we obtain S < (1 + 2z −

z2)∆2, as desired.

Lemma 6.3.2. Let G be a graph of maximum degree ∆ which contains no complete

bipartite subgraph with at least z∆2 edges. Then, the order |R| + |B| of each selection

(R,B) is at most

max((2− z), 2f(1 + 2z − z2, z), 2f(1− z/2, z))∆2,
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where f(α, z) = α/2 + 2z/α− z.

Proof. Let w, t be a pair of vertices from di�erent partition classes of G maximizing

d
(2)
b (t) + d

(2)
r (w). Take S = d

(2)
b (t) + d

(2)
r (w) and without loss of generality suppose that

d
(2)
r (w) ≥ S

2
. Let v be a neighbor of w of highest red degree. Clearly, dr(v) ≥ d

(2)
r (w)

∆
. Con-

sider dr(v) neighbors of v that are connected to v by a red edge, denoted u1, u2, . . . , udr(v).

We start by proving the following claim.

Claim 4. The number of blue edges is at most S/2 + 2z∆4/S − z∆2 = f(S/(2∆2), z).

v

u1

udr(v)

x

ydr(v) red edges

≤ ∆− dr(v)

blue edges

Figure 7: Part of the proof of Lemma 6.3.2: we have at most ∆−dr(v) blue edges incident

with x and not incident with a neighbor of v

Proof. Let us count the number of blue edges incident to a neighbor of some ui and not

incident with any neighbor of v. Consider a vertex x at distance 2 from v and distance

1 from u1 (see Figure 7). If there is a blue edge xy, where y is di�erent than all ui, then

either y is at distance 1 from v (so we do not count xy) or all ui must be adjacent to x

(because xui is the only possible link between xy and vui by G being bipartite). There are

clearly at most ∆− dr(v) blue edges incident with x and not incident with any neighbor

of v. As G has no complete bipartite subgraph on z∆2 edges, there are at most z∆2/dr(v)

such vertices x (incident with at least one blue edge not incident to a neighbor of v), so

the number of edges in question is at most (∆− dr(v))z∆2/dr(v).

To bound the number of all blue edges, we need to add the number of blue edges

incident with a neighbor of v. Consequently, there are at most

d
(2)
b (v) + (∆− dr(v))

z∆2

dr(v)
≤ d

(2)
b (v) +

z∆4

d
(2)
r (w)

− z∆2
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blue edges. Since v and w belong to di�erent partition classes, d(2)
r (w) ≥ S/2 and d(2)

b (v) ≤

S/2 which concludes the proof of the claim.

Claim 5. If S ≤ (1− z/2)∆2, then the order of selection (R,B) is at most (2− z)∆2.

Proof. Let mi,c, where i ∈ {1, 2} and c ∈ {r, b} denote the maximum value of d(2)
c (u) for

a vertex u in i-th partition class of G. Without loss of generality we may assume that

m2,b ≤ m2,r. For any red edge ab ∈ R (where a is in the �rst partition class of G) the

number of blue edges is at most

|B| ≤ d
(2)
b (a) + d

(2)
b (b) ≤ m1,b +m2,b ≤ m1,b +m2,r ≤ S.

Consequently, since |R| = |B|, the order of selection (R,B) is at most 2S, which proves

Claim 5.

Now note that as a function of S, when z and ∆ are �xed, the function S/2+2z∆4/S−

z∆2 is unimodal, so if we could bound S both from above and below, it would result in

an upper bound on the number of blue edges by Claim 4.

If S is smaller than (1−z/2)∆2, then the result follows by Claim 5. Therefore, we may

assume that S/∆2 ≥ 1 − z/2. Moreover, by Lemma 6.3.1 we have S/∆2 < 1 + 2z − z2.

Using the observation from the above paragraph and Claim 1 we have that the number

of blue edges is at most max(f(1 − z/2, z), f(1 + 2z − z2, z))∆2, which completes the

proof.

After plugging in the value z = 0.298, we immediately get the following Corollary.

Corollary 6.3.3. Let G be a graph of maximum degree ∆ which contains no complete

bipartite subgraph with at least 0.298∆2 edges. Then, the order of each selection (R,B) is

less than 1.703∆2.

Proof of Theorem 6.2.4. Suppose that G is a minimal counterexample to Theorem 6.2.4.

If G has no complete bipartite subgraphs with at least 0.298∆2 edges, then by Corollary

6.3.3 the maximum order of a selection in G (equal to maximum order of a bipartite

subgraph of L(G)2 with partition classes of equal order) is smaller than 1.703∆2. By

Theorem 6.1.2 we get that s′t(G) ≤ 1.703∆2, a contradiction.
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In the remaining case, let H be a complete bipartite subgraph of G with at least

0.298∆2 edges and consider the graph G′ = G \ V (H). Note that, by our choice of G,

vertices of L(G′)2 can be colored using 1.703∆2 colors. Thus, to complete the proof it is

enough to verify that L(G)2 can be obtained from L(G′)2 by adding to it vertices one by

one in such a way that each added vertex has degree less than 1.702∆2 in the existing

graph, and use Lemma 6.1.1. We start with vertices of L(G)2 corresponding to edges

having exactly one end in V (H), and then proceed with edges of H.

Consider an edge vw of G, where v ∈ V (H) and w /∈ V (H). Clearly, the degree of vw

in L(G)2 \ E(H) (and all its subgraphs) is at most 2δ2 − |E(H)| ≤ 1.702∆2.

Now let e = uv ∈ E(H) be an edge of L(G)2. There are at most 2∆ − 2 vertices

adjacent to u or v (and not equal neither to u nor to v), each incident with at most ∆

edges, so the degree of e (in L(G)2) is at most 2∆2 − 2∆ minus the number of edges

(other than e) incident to both a neighbor of u and a neighbor of v. The latter number

is at least the number of edges of H that are not incident with neither u nor v, so it is

strictly greater than 0.298∆2 − 2∆. consequently, the degree of any edge e = uv ∈ E(H)

in L(G)2 is less than 1.702∆2.

This completes the proof of Theorem 6.2.4.

6.4 Possible and impossible improvements

It seems that further exploration of our ideas may lead to results stronger than Theo-

rem 6.2.4. The �rst possibility is to strengthen Lemma 6.3.1, but even if we could replace

the constant (1 + 2z − z2) by 1, it would result in strengthening of Theorem 6.2.4 by

only 0.014∆2. The obstacle to greater improvement is hidden in the proof of Lemma

6.3.2, where we must carefully consider the case when s is small: if the lower bound on

s provided by Claim 2 would be a bit weaker (where a bit stands for at least 0.061∆2),

then it would lead to worse constants in Corollary 6.3.3.

Other possible way of strengthening the result is to directly bound the number of red

and blue edges, like in the proof of Lemma 6.3.1, getting rid of the weaknesses of Lemma

6.3.2 mentioned above. There is also some hope that this approach will let us remove the
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assumption that G is bipartite.

Note that our proof relies on Theorem 6.1.2. As useful as it is, it is not strong enough

to con�rm Conjectures 6.2.2 and 6.2.3. Indeed, if we take the graph K∆,∆ and subdivide

each edge of some small complete bipartite subgraph, we can produce a graph G′ such that

L(G′)2 contains the bipartite subgraph Kl,m, for any given l,m such that l+m = (1+ε)∆2

(where ε is some constant around 0.05). Similar statement holds for the blowup of C5 (we

can achieve l +m = (5
4

+ ε)∆2 for ε around 0.02).
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7 Side problem: matching subsets

7.1 Mazur's conjecture

In this chapter we discuss a problem that is not related to strong chromatic index of

graphs, except a rather loose connection; recall that in a strong edge coloring we require

each color to be an induced matching � here we consider perfect matchings in certain

graphs (the graphs are not explicitly used, which simpli�es the formulation).

Let S be a �nite set and let P(S) be the family of all subsets of S. A red-blue coloring

of P(S) is called antipodal if each set is colored di�erently than its complement. A

perfect matching respecting given coloring of P(S) is a partition of P(S) into a

number of pairs, such that for every pair {A,B}, A and B are inclusion related subsets

of di�erent colors.

There are many interesting and notoriously di�cult problems involving matching prop-

erties in the subset lattice (cf. for instance [18], [28], [29]). The following Conjecture

constitutes an extension of the problem posed by Przemysªaw Mazur [25].

Conjecture 7.1.1. For every antipodal coloring of P(S) there is a perfect matching re-

specting this coloring.

The original formulation of this problem concerns matching in the set of all possible

products of a given set of prime numbers, where the smaller half is red and the rest is

blue.

We prove the conjecture in the monotone case: one of the color classes is closed on

taking subsets (in consequence, the other color class is closed on taking supersets), which

solves the original problem. Our result is slightly stronger and concerns partial colorings

of P(S). A rigorous formulation and the proof is found in Section 7.2.

We may generalize Conjecture 7.1.1 to lattices of divisors of an integer. Since notions

of antipodal coloring and a perfect matching can be easily extended, the generalization

may be formulated in exactly the same words. We show that this (obviously stronger)

version of Conjecture 7.1.1 is equivalent to its original form.
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Remark 7.1.2. Conjecture 7.1.1 would imply that for every antipodal coloring of the set

of divisors of an integer n there is a perfect matching respecting this coloring

Proof. Let n = pα1
1 p

α2
2 . . . pαr

r be the standard factorization into primes. Note that the set

of divisors of the form pk1m and pα1−k
1 m form a sublattice closed under taking complements,

that is isomorphic to the set of divisors of n′ = p1p
α2
2 . . . pαr

r (when α1 6= 2k) or n′ =

pα2
2 . . . pαr

r (when α1 = 2k). The result follows by induction.

Note that the same argument can be used to prove an analog of our Theorem 7.2.1

for these lattices.

The study of matchings that respect certain constraints is also related to the union-

closed sets conjecture, posed by P. Frankl in 1979, stating that for any union-closed family

F of sets from P(S) there is an element a ∈ S that belongs to at least half of the sets in

the family (cf. [24]).

Remark 7.1.3. Let F be a family of sets from P(S). If there exists a perfect matching

M between F and F such that for every {A,B} ∈M we have B ⊆ A (where A,B ∈ F),

then every element of S is contained in at least half of the sets in F

Proof. Consider a directed graph G on a vertex set F , in which AB is an edge whenever

{A,B} is contained in M . It is easy to see that if a /∈ A, then a ∈ B. As G is a union of

disjoint cycles, the result follows.

Note that this remark, together with Theorem 7.2.1, proves Frankl conjecture in case

when F is closed under taking supersets (however, it this special case the conjecture can

be proved by a simple, direct argument).

7.2 Aa a�rmative result

Let c : P(S) → {−1, 0, 1} be a coloring of the subsets of S. We interpret −1 as

the red color, 1 as the blue color, and 0 as white. A coloring c is called antipodal if

c(A) = −c(A), and monotone if A ⊆ B implies c(A) ≤ c(B), for all A,B ⊆ S. A

matching is a collection of disjoint pairs {A,B} such that either A ⊆ B or B ⊆ A. We
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say that a matching M respects coloring c, if c(A) = −c(B) and c(A) 6= 0, for every

pair {A,B} ∈M . Finally, a matching M is perfect (with respect to c) if every subset A

with c(A) 6= 0 occurs in some pair of M .

Theorem 7.2.1 (MD, 2012 [16]). For any antipodal, monotone coloring c of P(S) there

is a perfect matching respecting c.

Before proceeding to the proof we need more notation. Assume that S = {1, 2, . . . , n}

and let S ′ = S \ {n}. In order to apply inductive argument we use two types of reduction

of a coloring c from P(S) to P(S ′). Let c : P(S) → {−1, 0, 1} be any coloring of P(S).

The weak reduction of c is a coloring cw : P(S ′)→ {−1, 0, 1} de�ned by

cw(A) = sgn(c(A) + c(A ∪ {n}))

for every A ⊆ S ′. So, cw(A) = 0 if and only if both sets A and A ∪ {n} are white, or one

of them is red and the other one is blue (in coloring c). In all remaining cases the color of

A is inherited from a non-white member of the pair (A,A∪{n}). The strong reduction

of c is the coloring cs : P(S ′)→ {−1, 0, 1} given by

cs(A) = c(A) + c(A ∪ {n})− cw(A).

For convenience we collect all possibilities in the table below.

c(A) c(A ∪ {n}) cw(A) cs(A)

0 0 0 0

+ + + +

− − − −

+ − 0 0

− + 0 0

0 + + 0

0 − − 0

+ 0 + 0

− 0 − 0

(16)

The following lemmas show that both types of reduction preserve the desired proper-

ties.
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Lemma 7.2.2. Let c be a monotone antipodal coloring of P(S). Then the weak reduction

cw is a monotone antipodal coloring of P(S ′).

Proof. Let A be any subset of S ′. Since A is at the same time a subset of S, we have to

distinguish between the complements of A in S and in S ′, which will be denoted simply

as S \ A and S ′ \ A, respectively. By antipodality of c we may write

cw(A) = sgn (c(A) + c(A ∪ {n})) = sgn(−c(S \ A)− c(S \ (A ∪ {n})))

= −sgn(c(S \ A) + c(S ′ \ A)) = −sgn(c((S ′ \ A) ∪ {n}) + c(S ′ \ A))

= −cw(S ′ \ A).

This shows that cw is antipodal. Monotonicity of cw follows easily from the monotonicity

of the function sgn(x).

Similar lemma holds for the strong reduction.

Lemma 7.2.3. Let c be a monotone antipodal coloring of P(S). Then the strong reduction

cs is a monotone antipodal coloring of P(S ′).

Proof. Let A be a subset of S ′. Then by antipodality of c and cw we may write

cs(A) = c(A) + c(A ∪ {n})− cw(A) = −c(S \ A)− c(S − (A ∪ {n})) + cw(S ′ \ A)

= −c((S ′ \ A) ∪ {n})− c(S ′ \ A) + cw(S ′ \ A)

= −cs(S ′ \ A).

Let A and B be subsets of S ′, with A ⊆ B. Put k = c(B) + c(B ∪{n})− c(A)− c(A∪

{n}). By monotonicity of c we have k ≥ 0. Hence, the inequality sgn(x) ≥ sgn(x+k)−k

holds for any real number x, and we may write

cs(A) = c(A) + c(A ∪ {n})− sgn(c(A) + c(A ∪ {n}))

≤ c(A) + c(A ∪ {n}) + k − sgn(c(A) + c(A ∪ {n}) + k)

= c(B) + c(B ∪ {n})− sgn(c(B) + c(B ∪ {n}))

= cs(B).

This proves the lemma.
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The following lemma gives a construction of the desired matching from matchings

related to reduced colorings.

Lemma 7.2.4. Let c : P(S)→ {−1, 0, 1} be a monotone antipodal coloring of P(S), and

let cw and cs be the weak reduction and the strong reduction of c, respectively. Let Mw

and Ms be perfect matchings of P(S ′) such that Mw respects cw and Ms respects cs. Then,

there exists a perfect matching that respects c.

Proof. Let G denote a graph on the vertex set P(S), in which AB forms an edge whenever

A and B are inclusion related. Let H = Mw ∪Ms denote a subgraph of G consisting of

the edges of matchings Mw and Ms. Denote for convenience A+ = A ∪ {n}, and for a

connectivity component C of the graph H, let C+ = {A+ : A ∈ C}. Clearly, C may be a

path or an even cycle. We shall de�ne a new matching M on the red-blue part of P(S)

separately for each set C ∪ C+. We distinguish two cases.

Case 1. C is an even cycle.

Let A1, . . . , A2k, k ≥ 2, be the consecutive vertices of the cycle C, where the edges

A1A2, A3A4, . . . , A2k−1A2k belong to the matching Ms. This implies that cs(Aj) 6= 0 for

every j = 1, 2, . . . , 2k. In consequence, c(Aj) = c(A+
j ) 6= 0 for all j (see table 16). This

means that the color pattern on the cycle C is the same as on its shifted copy C+. Thus,

we may extend the matching Ms by adding pairs A+
1 A

+
2 , A

+
3 A

+
4 , . . . A

+
2k−1A

+
2k. Clearly,

each new pair respects inclusion.

Case 2. C is a path with at least one edge.

Let the vertices of the path C be denoted as A1, . . . , Am. First we claim that cs(A1) =

0. Indeed, if cs(A1) is nonzero, then cs(Aj) 6= 0 for all j = 1, 2, . . . ,m, as the matching

Ms covers all of C. This implies (see the table) that also cw(Aj) 6= 0 for all j. Hence,

the matching Mw covers all vertices of C, too. But this is impossible as the end vertices

of the path have degree one. For the last vertex Ak we may argue similarly, hence

cs(Am) = 0. In consequence, the �rst and the last edge of C must belong to the matching

Mw, which implies that m = 2k. So, the edges A1A2, . . . , A2k−1A2k belong to Mw, while

A2A3, . . . , A2k−2A2k−1 belong to Ms. Therefore all values cs(Aj) are nonzero except for
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j = 1 and j = 2k. Analyzing possible sign patterns on the path C (see Table 16) and

remembering that coloring c is monotonic, we get the following picture:

A1 A2 A3 A4 · · · A2k−1 A2k

cw(Aj) − + − + · · · − +

cs(Aj) 0 + − + · · · − 0

c(Aj) − + − + · · · − 0

c(A+
j ) 0 + − + · · · − +

. (17)

(The case cw(A1) = 1 gives a symmetric table.) Notice that c(A+
1 ) = c(A2k) = 0, so

these vertices will not be covered by our new matching M . Now, by monotonicity of

the weak reduction cw it must be A1 ⊆ A2. Hence A1 ⊆ A+
2 and we may include the

edge A1A
+
2 to the matching M . Next we take all edges of the matching Ms, that is

A2A3, . . . , A2k−2A2k−1, and the shifted edges A+
3 A

+
4 , . . . , A

+
2k−1A

+
2k. Clearly, all new edges

respect inclusion.

Finally, we have to take care of those vertices of G which are colored red or blue by

coloring c, but became white in both reductions. Then we simply match A with A∪{n},

which is correct, as in this case the sets have opposite colors (see table 16). This concludes

the proof of the lemma.

Proof of Theorem 7.2.1. Use induction on n and apply Lemma 7.2.4 (that can be aplied

due to Lemmas 7.2.2 and 7.2.3) to construct a desired matching.

7.3 Further generalizations

Is it likely that (an analog of) Conjecture 7.1.1 or Theorem 7.2.1 holds for posets other

than the one induced by P(S)? As the antipodality restriction on the coloring is essential,

we shall focus on posets in which every element has a natural complement. Apart from

lattices of divisors of a natural number, mentioned in Remark 7.1.2, we may consider

lattices of subspaces of a �nite vector space (where the unique complement of a subspace

is the largest orthogonal subspace). We believe that at least the following statement is

true.
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Conjecture 7.3.1. For every monotone antipodal 2-coloring of a lattice of subspaces of

a �nite vector space there is a perfect matching respecting this coloring.

Remark 7.1.3 suggests a broader area of interest. Are there any properties of antipodal

(partial) colorings of P(S) (other than monotonicity) that assure the existance of a red-

blue perfect matching? The antipodality alone is not enough (consider a partial coloring

where only two sets are colored). On the other hand, the case when coloring is antipodal

and all sets of size k and n− k are non-white seems promising.

Conjecture 7.3.2. For every partial antipodal coloring of P(S), that assigns color to all

sents of order k and |S| − k, there is a perfect matching respecting this coloring.
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8 Conclusions

Note that all our results concerning (variants of) the strong chromatic index of graphs

share one fundamental trait: they rely on not-too-high local density of the graph � In

Theorem 3.2.5 we require that every edge of the considered graph G is in a small number of

4-cycles, Theorem 6.2.4 is proved by showing that L(G)2 do not contain a large complete

bipartite subgraph, Theorem 5.1.1 follows from restricting the degree of vertices in large

cliques in L(G)2 and Theorem 4.2.2 is proved by coloring edges around nice vertices

(vertices that have a low number of edges in their vicinity). Therefore, our techniques

can be thought of as a development of earlier ideas: the proofs of Theorem of Bruhn and

Joos (Theorem 2.4.2) and Theorem of Molloy and Reed (Theorem 2.4.1) use the fact that

neighborhoods in L(G)2 are sparse.

It is not clear how to relate our results on topological and fractional strong chromatic

index to the original variant of the problem. We proved s′t(G) ≤ 1.703∆2 and s′f (G) ≤

1.476∆2 for a bipartite graph G of maximum degree ∆, and both of theese bounds are

far stronger than 1.93∆2 that follows from Theorem 2.4.2 (recall that 2∆2 is trivial), but

both s′t(G) and s′f (G) are *lower* bounds on s′(G). The improvements seem even more

exciting if one believes that s′t(G), s′f (G) and s′(G) are always close to each other � note

that it is the case with known extremal graphs (blowups of C5 in Proposition 2.3.2 and

complete bipartite graphs) and that there are no premises to think otherwise.

The main weakness of our �ndings is that they are not tight. However, one should

not reasonably hope for a tight result on the topological, fractional or original variant of

the strong chromatic index, when much easier problems remain unsolved � we would like

to highlight two of them. The �rst is a very relaxed variant of Conjecture of Erd®s and

Ne²et°il (Conjecture 2.4.3): show that the clique number of L(G)2is at most 5
4
∆2 (where

G is a graph of maximum degree ∆; see also [40]). The second one emerges from our

considerations in Chapter 5: what is the minimum x = x(∆) such that for every graph G

of maximum degree ∆ and every clique in L(G)2 the size of that clique plus the minimum

degree of a vertex in that clique is at most x (Conjecture 5.4.2)?
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