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Abstract

A strong edge coloring of a graph G is a coloring of edges of G such that each
color class is an induced matching in GG, and the strong chromatic index of GG, denoted
s'(G), is the minimum number of colors in a strong edge coloring of G. We also consider
the fractional and topological variant of strong chromatic index, denoted s’;(G) and s4(G)
respectively.

Our dream goal is to give a sharp upper bound on the strong chromatic index of
a graph G with the given maximum degree A. A simple, greedy argument shows that
s'(G) < 2A%, and the best known bound is 1.93A? (Bruhn and Joos, 2015+). This result
is still far from 3A?, conjectured by Erdés and NeSetfil in 1985 (which would be sharp).

For bipartite graphs the conjectured bound is s'(G) < A? (Faudree, Gyarfas, Schelp
and Tuza, 1989) and the best known is s'(G) < 1.93A? (that is, there is no improvement
over the mentioned result of Bruhn and Joos); it follows that sj(G) < 1.93A%  For
fractional strong chromatic index, a better bound 1.5A2 can be obtained from earlier
results.

Our main contribution is “breaking the 1.5A% boundary” — we show that for a bipartite
graph G of maximum degree A we have s;(G) < 1.476A% Moreover, we significantly
improve the bound on the topological variant: for a bipartite graph G of maximum
degree A we show s,(G) < 1.703A2. We also show that if G is a graph such that every
edge of GG is in at most ATQ 4-cycles, then §'(G) < K% for some absolute constant K,
and give a bound §'(G) < 4A — 3 in case when G is chordless.

Keywords: strong chromatic index, induced matching, graph coloring, fractional
chromatic number.

AMS Classification: 05C15, 05C35, 05C70, 05CT72.



Streszczenie

Silnym kolorowaniem krawedzi grafu G nazywamy kolorowanie krawedzi G, w
ktorym krawedzie w kazdym z koloréw tworza indukowane skojarzenie w G, a silny in-
deks chromatyczny grafu G, oznaczany s'(G), to minimalna mozliwa liczba kolorow w
silnym kolorowaniu krawedzi G. Rozwazamy réwniez utamkowy i topologiczny odpowied-
nik silnego indeksu chromatycznego, oznaczany odpowiednio s%(G) i s,(G).

Zasadniczym, wciaz nieosiagnietym celem, do ktoérego dazymy, jest wyznaczenie
doktadnego ograniczenia gérnego na silny indeks chromatyczny grafu o zadanym maksy-
malnym stopniu A. Prosty argument, oparty na kolorowaniu zachtannym, pokazuje, ze
s'(G) < 2A?, natomiast najlepsze znane ograniczenie to 1.93A? (Bruhn i Joos, 2015+).
Wynik ten jest odlegly od ograniczenia ZAQ, ktore wydaje sie prawidtowa odpowiedzia
(jest to tres¢ hipotezy Erddsa i NeSetiila z roku 1985).

Dla graféow dwudzielnych moze by¢ prawdziwe ograniczenie s'(G) < A? (hipoteza
Faudree, Gyarfasa, Schelpa i Tuzy z roku 1989), jednak najlepszym znanym jest s'(G) <
1.93A2 (a wiec nie jest znany zaden wynik mocniejszy od twierdzenia Bruhna i Joosa);
wynika stad, ze s,(G) < 1.93A% Dla ulamkowego silnego indeksu chromatycznego moc-
niejsze ograniczenie 1.5A% moze zostaé¢ wywiedzione z wezeéniejszych wynikow.

2 — pokazujemy, ze dla

Naszym gléwnym wynikiem jest ,przetamanie bariery 1.5A
grafu dwudzielnego o maksymalnym stopniu A zachodzi 1.476A%.  Ponadto, istotnie
poprawiamy ograniczenie w wariancie topologicznym: dla grafu dwudzielnego G' o maksy-
malnym stopniu A dowodzimy, ze s}(G) < 1.703A%. Pokazujemy rowniez, ze jezeli G jest
grafem takim, ze kazda krawedz G zawiera sie w co najwyzej ATQ cyklach o dlugosci 4,
wowcezas zachodzi §'(G) < K% dla pewnej uniwersalnej statej K. Dodatkowo, pokazu-
jemy ograniczenie s'(G) < 4A — 3 w przypadku, gdy G jest grafem bezcieciwowym.

Stowa kluczowe: silny indeks chromatyczny, indukowane skojarzenie, kolorowanie

grafow, utamkowa liczba chromatyczna.

Klasyfikacja AMS: 05C15, 05C35, 05C70, 05C72.
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1 Preliminaries

Basic notions

A graph is a pair (V, E), where V is a nonempty finite set and F is a subset of the
set of all 2-element subsets of V; we say that elements of V' are vertices and elements
of E' — edges of the graph. For a graph G, by E(G) (resp. V(G)) we denote the set of
vertices (resp. edges) of G, and e(G) (resp. v(G)) denotes the size of E(G) (resp. v(G)).

We use the shorter notation uv to denote the edge e = {u,v} of a graph G; we say
that vertices u and v are incident to an edge wv. If a graph G has an edge uv, we say
that u and v are adjacent in G and that u is a neighbor of v in G (and vice versa).

The number of edges incident to a vertex v in a graph G is called the degree of v in
G and denoted deg(v), which is shortened to deg(v) when the considered graph is clear
from the context. The maximum degree of a graph G, denoted A(G), is the maximum
of deg(v) over all vertices v of G. The average degree of G if the average of deg(v) over
all vertices v of G.

The set of neighbors of a vertex v in a graph G is denoted Ng(v), and by Nglv] we
denote the set Ng(v)U{v}. For aset S C V(G) we define Ng(S) to be the set of vertices
of G that are adjecent to at least one vertex from S and not contained in S, and set
N¢[S] = Ng(S)US. Those notations are shortened to N(v), N[v], N(S) and N[S] when
the graph G is clear from the context.

We say that edges uv and wx of a graph G are joined in G if uv # wx and G contains
at least one of the edges uw, ux, vw, ve (in particular, if two edges of G intersect, they
are joined in G). This notion is nonstandard.

A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C E(G); H is a
spanning subgraph of G if V(H) = V(G). A subgraph H of a graph G is induced if for
every two vertices u,v € V(H) we have uv € E(H) iff uv € E(G). For aset S C V(G) the
subgraph of GG induced by S, denoted G[S], is the induced subgraph of G with vertex
set S. For a set F' C F(G), the subgraph of G induced by F, denoted G[F], is the graph
(UF,F). For S C V(G) (resp. S C FE(G)) by G — S we denote the grap G[V(G) \ S|



(resp. G|E(G)\ S]). By G — H (where H is a graph) we denote the graph G — E(H).

Graphs G and H are isomorphic if there is a bijection f : V(G) — V(H) such that
wv € E(G) if and only if f(u)f(v) € E(H); such function f is called isomorphism. A
copy of H in G is a subgraph of GG isomorphic to H. A graph G is said to be H-free if
there is no copy of H in G.

Graph classes and invariants

A clique or complete graph is a graph G such that for every two vertices u,v € V(G)
we have uv € E(G). A complete graph on n vertices is denoted K,,. The clique number
of a graph G, denoted w(G), is the number of vertices in the largest complete subgraph
of G.

For n > 3 an n-cycle, denoted C,, is a graph isomorphic to the graph with vertex set
{1,2,...,n} and edge set {i(i+1) : 1 <i<n}U{ln}. An n-path, denoted P,, is a graph
isomorphic to the graph with vertex set {1,2,...,n} and edge set {i(i +1) : 1 <i < n}.
A graph that is n-cycle (resp. n-path) for some n is called a cycle (resp. path).

A graph G is bipartite if V(G) can be paritioned into two sets X, Y such that every
edge of G has one vertex from X and one from Y; X and Y are called the partition
classes of G. A complete bipartite graph, denoted K,,,, is a bipartite graph with
partition classes X and Y and edge set {zy: 2z € X,y € Y}.

A graph G is k-degenerate if every subgraph of G has a vertex of degree at most k,
and the degeneracy of a graph is the minimum k& such that the graph is k-degenerate.
The k-core of the graph is the maximum subgraph that has every vertex of degree greater
than k. A graph G is k-regular if every vertex of G has degree exactly k.

The line graph of a graph G, denoted L(G), is a graph L such that V(L) = E(G)
and for every two e, f € E(G) we have ef € E(L) if and only if e and f intersect. The
square of a graph G, denoted G?, is the graph S such that V(S) = V(G) and for every
two vertices u,v € V(G) we have uwv € E(S) iff uv € E(G) or there is a vertex z € V(G)
such that uz,vz € E(G). In particular, L(G)? is that graph with vertex set F(G) such
that ef € E(L(G)?) iff e and f are joined in G.



A matching is a graph M such that no two edges of M intersect; we shall identify a
matching with its set of edges. A perfect matching in a graph G is a spanning subgraph
of G that is a matching with every vertex of degree 1. An induced matching in G is a
matching that is an induced subgraph of G.

An independent set in a graph G is a subset I C V(G) such that for every two
vertices z,y € I, xy is not an edge of G. The size of the largest independent set in G is
denoted a(G). Note that an induced matching in G is an independent set in L(G)?%.

A vertex-coloring (resp. edge-coloring) of a graph G is a partition of V(G) (resp.
E(G)); the sets in the parition are called color classes and the number of color classes
is shortened to number of colors. A k-vertex-coloring (resp. k-edge-coloring) is a
vertex coloring (resp. edge-coloring) with k colors. The coloring and k-coloring of a
graph is, respectively, vertex-coloring and k-vertex-coloring.

A vertex coloring (resp. edge coloring) of a graph G is proper if each color class is an
intependent set in G (resp. L(G)). The chromatic number of G, denoted x(G) (resp.
chromatic index of G, denoted x'(G)), is the minimum number of colors in a proper
vertex coloring (resp. proper edge coloring) of G.

A fractional k-coloring of a graph G (where k is a real number) is a weighting
w: I — [0,1] (where Zg is the set of independent sets in G) such that for every vertex
v € V(G) the sum of weights of sets from Zy that contain v is equal to 1 and the sum of
all weights is at most &k (note that a proper k-coloring of G can be seen as a fractional k-
coloring of G). The fractional chromatic number of G, denoted x ;(G), is the minimum

k such that there exists a fractional k-coloring of G.

Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality states that for real numbers zq,xs,...,z, and
Y1, Y2, - - -, Yo We have
n 2 n n
(o) = (5o) (22).
i=1 i=1 i=1
We will repetitively use the following consequence of this inequality. Let xq,xs, ..., 2,



be nonnegative real numbers such that >, z; = S. We have

To prove the implication, it suffices to set y; = 1 for all ¢ and replace > | x;y; with

10



2 Introduction

2.1 Two definitions of strong chromatic index

It is worth to note that in a proper edge-coloring of a graph every color class is required
to be a matching. Throughout this dissertation we will be considering colorings obeying
a stronger condition that the matchings must be induced — recall that a matching M in

a graph G is induced if any two edges of M are not joined (by any edge of G).

Definition 2.1.1. Let G be a graph.

A strong edge-coloring of G is an edge-coloring of G such that every color class is
an induced matching in G.

The strong chromatic index of G, denoted s'(G), is the minimum possible number

of colors in a strong edge-coloring of G.

As an example, consider the coloring depicted in Figure la (edge uv has the same
color as xy, uz has the same color as wx and the remaining colors are distinct). It
is indeed strong, because matchings {uv,zy} and {uz,wz} are induced. Moreover,
there is no strong edge-coloring that would use 4 colors, because no two edges from
{uv,uz,vw,vz,yz} can belong to the same induced matching. Therefore, the strong

chromatic index of the graph is 5.

(a) Strong edge-coloring of a graph. (b) Square of the line graph.

Figure 1: Two definitions of strong edge-coloring.

We can also think of strong edge-coloring as a proper vertex-coloring of a certain graph.

If wv is an edge of GG, then its color in a strong edge-coloring of G must be different than

11



the color of any edge that in joined to uv. Conversely, if every two edges that are joined
have different colors, then the edge-coloring is strong. Since our notion of joined edges is
just an adjacency in the square of the line graph, the following definition is equivalent to

Definition 2.1.1.

Definition 2.1.2. Let G be a graph.

A strong edge-coloring of G is a coloring of L(G)?.

The strong chromatic index of G, denoted s'(G), is the chromatic number of L (G)Q.

Consider our previous example; the square of the line graph is depicted in Figure 1b.
The strong chromatic index of the graph on the left is 5 because the chromatic number of
the square of its line graph is 5 (note that {uv,uz, vw,vz,yz} form a clique in the graph
on the right).

The second definition, although indirect, will turn out to be very handy for cosidera-
tions regarding related graph parameters. In particular, the fractional strong chromatic
index can be thought of as the fractional chromatic number of the square of the line graph,

and it is defined as follows.

Definition 2.1.3. Let G be a graph.
A fractional strong edge-coloring of G is a fractional coloring of L(G)?.
The fractional strong chromatic index of G, denoted s(G), is the fractional

chromatic number of L (G)”.

2.2 Motivation

Consider a wireless network, where each node is a transceiver — that is, it can both
transmit and receive messages — and that communication possibility is symmetric (if a
node x is able to receive transmission from g, then y is also able to receive transmission
from x). It naturally defines a graph (with an edge joining every two nodes that can
communicate directly); see Figure 2 for an example.

A pair of adjecent nodes can communicate using some channel only if neither of them is

in range of any other transmission on the same channel (because otherwise transmissions

12



(a) Positions of transceivers. (b) Corresponding graph.

Figure 2: Model of communication in a wireless network.

interfere). In our example, the pairs uw and vw can not use the same channel, because
transmissions from v and v would interfere at node w. Similarly, pairs vw and xy can not
use the same channel, because a transmission from w to v would interfere at node x with
a transmission from y.

We would like to assign a channel to each pair of adjecent nodes in such a way that
all of them can communicate at the same time. Note that it is exactly the problem of
finding a strong edge-coloring of the corresponding graph (where channels correspond to
colors). It is important to use as few channels as possible — and that number is the strong
chromatic index of the wireless network graph.

See [5] for a short study of strong edge-colorings in wireless network communication.
There are many similar models that take into account the possible assymetry of connec-

tions — see [36] for a summary.

2.3 The main focus: upper bound in maximum degree

The main, extremal, question, underlying all parts of this dissertation, is: how big

can strong chromatic index of a graph be? Since this parameter grows with maximum

13



degree of the graph, a more precise formulation would be: given an integer A, what is
the maximum possible strong chromatic index of a graph with maximum degree at most
A? We are especially interested in an answer for large (that is: sufficiently large) values
of A.

It is easy to give an upper bound of (roughly) 2A2 that follows from bounding the

maximum degree in the square of the line graph.
Proposition 2.3.1. Let G be a graph of mazimum degree at most A. We have
s'(G) <2A% —2A + 1.

Proof. Apply a greedy coloring procedure: order edges of G arbitrarily and perform e(G)
steps, where at i-th step assign to e; (an i-th edge in the order) a color that is not assigned
to any edge joined to e;.

Note that the procedure will always produce a strong edge-coloring. Since, for all 7,
there are 2A — 2 neighbors of vertices from e; (excluding vertices of e;), each of them
incident with at most A edges (which totals to at most 2A% — 2A edges joined to e;), we

will always find a color for ¢;, so the procedure will succeed. O

Proposition 2.3.1 can be complemented with a lower bound of (roughly) A% Tt is

attained by a certain family of graphs — blowups of Cs.

Proposition 2.3.2. Let A be a natural number. There is a graph G such that

S5A2, for even A,
G =<1
%Az - —2A4_1, for odd A.

Moreover, L(G)? is a clique.

Proof. Suppose that A is odd. The graph G is constructed as follows: vertices of Ga
are (ordered) pairs (4, j), where i € {1,2,3,4,5} and j € {1,2,...,5}. Edges of Ga are
(unordered) pairs {(¢, §), (', ')}, where ¢ = i + 1 (mod 5) and j,j’ € {1,2,...,5}. See
Figure 3a for an example.

Note that L(Ga)? is a clique. Indeed, if we consider any two edges e = {(ic, je), (i%,7.)}
and f = {(if,jr), (%, j7)}, without loss of generality we may assume that iy = i. + 1.
Therefore, there in an edge {(ic, je), (is,js)}, so e and f are adjacent in L(Ga)>.

14



(a) A =6 (even case). (b) A =7 (odd case).

Figure 3: Graphs such that the square of the line graph is a clique.

For an odd A we obtain Ga from Ga_; by adding a double star: we set V(Ga) =
V(Ga-1) U {v13,v4} and define E(Ga) to be E(Ga_1) plus all pairs {vis, (1,7)},
{v13, (3,7)}, {vo4, (2,7)}, {va4,(4,7)} and the pair {vi3,v24}. See Figure 3b for an ex-
ample. In this case, L(Ga)? is also a clique.

Since the number of edges of Ga in both cases matches the number contained in the

Proposition, the proof is finished. O

2.4 Conjecture of Erdés and NesSetril

Clearly, at least one of the Propositions 2.3.1 and 2.3.2 is not tight, but improving
either of them (even by 1) is a nontrivial task. In 1985, Erdés and NeSetfil conjectured
that the upper bound can be strengthened by at least a little bit — that is, there exists
an € > 0 such that s'(G) < (2 — €)A? for every graph G of maximum degree A.

It took twelve years to give an affirmative answer; it was done by Molloy and Reed
in 1997 [32]. The resulting value of € was 0.002, but the authors claim that it can be

improved to 0.01 with a little extra effort.

Theorem 2.4.1 (Molloy and Reed, 1997 [32]). If G is a graph with sufficiently large
mazximum degree A\, then

§'(G) < 1.998A%

15



This result remained the best known for 18 years, until a recent work by Bruhn and

Joos [9]. Their € is 0.07, which is a major improvement over 0.002.

Theorem 2.4.2 (Bruhn and Joos, 2015 [9]). If G is a graph with sufficiently large maz-
imum degree A, then

s'(G) < 1.93A%

On the other hand, no improvement over Proposition 2.3.2 (construction that achieves
§A2) is known; maybe it is not possible. A stronger variant of Erdés and Negetfil con-
jecture states that gAQ is the correct answer. See [21]| for an original appearance of the

problem and [4] for a more recent discussion.

Conjecture 2.4.3 (Erdds and Nesettil, 1985 [21]). If G is a graph with mazimum degree

A, then
A2, for even A,

5
4
A—
A2 —28-d ) for odd A.

$(G) <

The strongest support of this conjecture so far comes from Chung, Gyarfas, Trotter
and Tuza [11]. They proved that Proposition 2.3.2 is in some sense the best possible: if
L(G)? is a clique, then the number of edges (and, in consequence, the strong chromatic

index) of G is at most 2A2,

Theorem 2.4.4 (Chung, Gyarfas, Trotter and Tuza, 1990 [11]). If G is a graph with

mazimum degree A and L(G)? is a clique, then

A2, for even A,
A% — 2821 for odd A.

4

5
e(G) < ;
1

There are a few results concerning graphs of small maximum degree: the Conjecture
is trivial for A < 2, it is proved for A = 3 (see [27] and [27]) and there is a bound of 22

colors for A =4 (see [12]; see also [26] for an earlier bound of 23).

2.5 Strong chromatic index of bipartite graphs

The most important class of graphs, for which the (restricted variant of) Conjecture

of Erdés and Nesettil is still unsolved is the class of bipartite graphs. Although those

16



graphs give us a strong structural property to work with, so far we did not manage to
use it to find a good upper bound on the strong chromatic index; in fact, Theorem 2.4.2
(a bound of 1.93A?) remains the best known even if we restrict our attention to bipartite
graphs.

On the other hand, graphs given in Proposition 2.3.2 (that achieve %AQ) are clearly
not bipartite; no examples with strong chromatic index greater than A% are known, and
this bound is attained by Ka a. Therefore, maybe the right answer for bipartite graphs
is A? — it was conjectured by Faudree, Gyérfas, Schelp and Tuza in 1989 [22].

Conjecture 2.5.1 (Faudree, Gyarfas, Schelp and Tuza, 1989 [22]). If G is a bipartite

graph with mazimum degree A, then s'(G) < A2

Instead of the maximum degree of a bipartite graph, one may want to consider the
degrees in partition classes separately and strengthen Conjecture 2.5.1 by suggesting a
bound A;A, (where A, is the maximum degree in i-th partition class) instead of A2. This

strengthening is due to Brualdi and Quinn [8].

Conjecture 2.5.2 (Brualdi and Quinn, 1993 [8]). If G is a bipartite graph such that the
vertices in i-th partition class have degree at most A; (for i € {1,2}), then s'(G) < A1A,.

Conjecture 2.5.1 is true for A = 3 (see [39]). Conjecture 2.5.2 is true for some special

classes of graphs (see [8], [34] and [35]).

2.6 Easier problems

Conjecture 2.5.1 (an upper bound of A? for bipartite graphs) is supported by much
stronger evidence than the Conjecture of Erdés and Nesetiil (Conjecture 2.4.3). In this
section we will prove two such results; in fact, both proofs give bounds consistent with
Conjecture 2.5.2 (an upper bound of A;A, for bipartite graphs) for free — a formulation
given here is a bit stronger than in referenced papers.

In an attempt to prove that x (L(G)?) < A2, for a bipartite graph G of maximum
degree A, one may start with an easier task: showing that the maximum clique in L(G)?
has size at most A2 This problem was solved by Faudree, Gyarfas, Schelp and Tuza in

1990 [23].
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Theorem 2.6.1 (Faudree, Gyarfas, Schelp and Tuza, 1990 |23]). If G is a bipartite graph

such that the vertices in i-th partition class have degree at most A; (for i € {1,2}), then
W(L(G>2) S AlAQ.

Proof. Denote the partition classes of G by V; and V, (where the maximum degree in V;
is at most A;). Let F be a set of edges that form a clique in L(G)? and set H := G[F].
Define d; to be the maximum degree in H of a vertex from V; (for ¢ = 1,2). Without loss
of generality we assume that Ajdy < diAs.

Let v be a vertex from V; of degree d; in H and denote the neighbors of v in H by
Uy, Us, . .. Ug, . We partition F' into the set F),, of edges that are incident with a neighbor
in G of v and the set F” of the remaining edges from F.

In G there are at most A; neighbors of v, each incident with at most ds edges from
Fru, 80 |Foy| < Ardy < diAs.

Let e be an edge from F’ and w be a vertex from Vj incident with e. Since G is
bipartite, w must be adjecent to every u; (for 1 < d;). Therefore, w is adjacent to at most
Ay —dy vertices from F” (because its degree is at most A;) and there are at most Ay such
vertices w (because the degree of u; is at most Ay). If follows that |F'| < (A; — dy)As.

Adding both estimations we get |F| < A;Ay, so the proof is finished. O

A coloring witnessing that y (L(G)?) < A? is a partition of edges of G into sets

e(@)
A2 -

independent in L(G)? of average size at least From this point of view, an easier
task would be to show that there exists at least one independent set of this size. This is

exactly the result of Faudree, Gyarfas, Schelp and Tuza from 1989 [22].

Theorem 2.6.2 (Faudree, Gyarfas, Schelp and Tuza, 1989 [22]). If G is a bipartite graph

such that the vertices in i-th partition class have degree at most A; (for i € {1,2}), then

2 e(G)
(LG = A

Proof. Denote the partition classes of G by V; and V, (where the maximum degree in V;
is at most A;) and without loss of generality assume that G has no isolated vertices. Let

X = {x1,22,...,7,} be a minimum subset of V; such that N(X) = V2. By the minimality
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of X, for every z; there exists some y; € N(v;) such that y; is not adjacent to any other
vertex from X. Since G is bipartite, the set of edges {1y, Z2yo, ..., zpy,} is an induced
matching in G of size p (and, equivalently, an independant set in L(G)?).

Let us count the number of edges of G. Each vertex x; has at most A; neighbors,
each of them incident with at most Ay edges of G, so we have e(G) < pA;A,. Since
p < a(L(G)?), the proof is complete. O

2.7 Reed’s conjecture and strong chromatic index

Reed’s conjecture is a fundamental question regarding chromatic number of a graph.
If G is a graph of maximum degree A, then clearly x(G) < A+ 1, but this bound is tight
only for complete graphs and odd cycles (and certain disconnected graphs; by Brooks’
theorem); and all known examples of graphs with chromatic number close to A have
cliques of size close to A — does it mean a deeper dependency? What is the correct upper
bound for chromatic number in terms of both maximum degree and the clique number of

a graph? In 1998, Reed posed the following conjecture [37].

Conjecture 2.7.1 (Reed, 1998 [37|). Let G be a graph with mazimum degree A and
mazximum clique of size w. We have

x(G) < {Mw :

2

This conjecture is relevant to our goal; if it was true, it would easily imply a bound on

strong chromatic index of bipartite graphs outclassing Theorem 2.4.2 (a bound of 1.93A?).

Proposition 2.7.2. Reed’s conjecture would imply that for every bipartite graph G of
mazrimum degree A we have

s'(G) < 1.5A%

Proof. Recall that s'(G) = x (L(G)?). Note that the maximum degree of L(G)? is at most
2A? — 2A and, by Theorem 2.6.1, the clique number of L(G)? is at most A%, so we get

the desired implication from Conjecture 2.7.1. O]
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Reed’s conjecture is supported by some partial results (see [37] and [33, Chapter 16|),
but the strongest support is that its fractional variant holds, as proved by Molloy and
Reed in 2002 [33, Theorem 21.7].

Theorem 2.7.3 (Molloy and Reed, 2002 [33, Theorem 21.7|). Let G be a graph with

mazimum degree A and mazimum clique of size w. We have

A

< +1+ w

- 2

As an immediate consequence of Theorem 2.7.3 we obtain a bound on the fractional

strong chromatic index of bipartite graphs.

Proposition 2.7.4. For every bipartite graph G of mazimum degree A we have s(G) <
1.5A2,

Proof. The maximum degree of L(G)? is at most 2A? — 2A and, by Theorem 2.6.1, the
clique number of L(G)? is at most A?. By Theorem 2.7.3, the chromatic number of L(G)?

is at most 1.5A2, which completes the proof. O

Proposition 2.7.4 is proved by using Theorems 2.7.3 and 2.6.1 as “black boxes” (note
that both of them are sharp); is it possible to improve it by delving deeper into the
structure of the problem? We answer this question in Chapter 5.

In this section we focused on bipartite graphs, but a similar discussion can be repeated
in general case if instead of Theorem 2.6.1 we use a recent result by Sleszynska-Nowak

2 is at most

that for every graph G of maximum degree A, the clique number of L(G)
1.5A? [40] (note that Theorem 2.4.4, a bound of 2A? on the number of edges of a graph

G such that L(G)? is a clique, is too weak for this purpose).

2.8 Graphs with strong chromatic index much lower than A?

As we have seen in section 2.3, the upper bound on the strong chromatic index of a
graph with maximum degree A, where A tends to infinity, must be of order A2. However,
some classes of graphs admit much smaller values of this parameter; a trivial example is

a star — we have §'(K,) = A(Ky,) =n.
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In 2000, Mahdian [30]| identified a nice structural property that makes the strong
chromatic index much smaller than A2 If a graph has no cycles of length 4 and large

. . . . . 2
maximum degree A, then its strong chromatic index is of order at most ﬁ—A.

Theorem 2.8.1 (Mahdian, 2000 [30]). For any € > 0 there is Ay such that for every
Cy-free graph G we have
AQ

$'(G) < (2+¢) A

We will discuss the arising questions — why does lack of Cy’s help to find a strong
edge-coloring with few colors and what happens when when a graph contains a small
number of Cy’s — in Chapter 3. We will see that sparsity of the graph is the “real” reason.

Surprisingly, strong chromatic index can be much smaller than A? even in very dense
graphs. In 2012, Alon, Moitra and Sudakov showed that there are almost complete graphs
on n vertices of strong chromatic index as small as n'™ (note that the strong chromatic

index of a complete graph is of order n?).

Theorem 2.8.2 (Alon, Moitra and Sudakov, 2012 [2]). For every e > 0 there exists § > 0

such that for every sufficiently large n there exists a graph G on n vertices that satisfies
n
s'(G) <n'te and e(G) > (2> —n?°

The next step is to investigate graphs with strong chromatic index that is linear in
maximum degree (note that is some sense it is the final step: we always have §'(G) >

A(G)). We discuss this case in Chapter 4.
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3 Graphs with small number of C}’s

3.1 Number of C4’s and strong chromatic index

At first glance, Mahdian’s Theorem (Theorem 2.8.1: a bound of (2 + ¢) % for Cy-free
graphs) may seem surprising. Intuitively, Cy’s should help us in finding a strong edge-
coloring — in the proof of Proposition 2.3.1 (a bound of 2A2? for all graphs, that follow
from greedy coloring) we neglect the fact that some of the neighboring edges may be
counted twice, which would allow us to improve the bound; if every edge of a graph is in
at least %AQ 4-cycles, then its chromatic index is at most %Az, so the graph satisfies the
conjecture of Erdés and Negetiil (Conjecture 2.4.3). Does Mahdian’s Theorem suggest
that 4-cycles make a strong edge-coloring with not many colors harder, instead of easier,
to find?

We would like to find out what happens if we relax the assumption — what is the
maximum possible chromatic index of a graph, of maximum degree A, in which every
edge is in a small number of 4-cycles? The “small number” may range from a constant,
through O(A), up to eA? for some small constant e.

Besides our general considerations we will investigate a specific class of graphs, unit
distance graphs, that have a nice geometric representation and rich, but manageable
structure. Informally, vertices of a unit distance graph are points in R? and edges join all

pairs of points at distance 1.

Definition 3.1.1. A graph G is a unit distance graph in R? iff there is an injective
function f: V(G) — RY such that uv is an edge of G if and only if the Euclidean distance
between f(u) and f(v) is 1.

What is the maximum possible strong chromatic index of a unit distance graph in
R? of maximum degree A? Every edge of such a graph is in at most A 4-cycles, so this
question is a special case of the above problem. How abot unit distance graphs in higher

dimensions?
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3.2 Strengthening Mahdian’s Theorem

A (potential) surprise, discussed in the start of Section 3.1, becomes less surprising
after we understand the “real” reason that makes Mahdian’s Theorem true. It is related to
the local sparsity of the square of the line graph; Alon, Krivelevich and Sudakov proved
in 1999 that a locally sparse graphs have chromatic number much smaller then their

maximum degree (see [1]).

Theorem 3.2.1 (Alon, Krivelevich and Sudakov, 1999 [1]|). There ezists a constant c
such that the following is true. Let G be a graph with mazimum degree A such that for
every verter v € V(G) the subgraph of G induced by N(v) has at most ATQ edges, where

1 < f <A. Then the chromatic number of G is at most c%.

As an easy corollary of Theorem 3.2.1 we can obtain a strengthening of Theorem 2.8.1
(but with a worse constant); note that a graph is Cy-free if every two vertices have at

most one common neighbor, so the following Corollary is a strengthening indeed.

Corollary 3.2.2 (Vu, 2002 [41|). There exists a constant K such that the following holds.
Let G be a graph of maximum degree A such that every two vertices of G have at most %
common neighbors, where 1 < g < A. Then, we have
$(G) <K A—Z
Ing
Proof. Let uv be an edge of G. By the assumption on G, every vertex of G, except u
and v, have at most % neigbours in N(uv). It follows that every edge incident to a
vertex from N (uv) can be joined to at most % + 2A other such edges. Therefore, every

neighborhood in L(G)? spans at most % +2A% edges, so the result follows from Theorem

3.2.1. [l

This corollary immediately gives us an upper bound on the strong chromatic index of

unit distance graphs in the plane.

Corollary 3.2.3. There is a constant K such that if G is a unit distance graph in R? of

mazimum degree A, then
AQ
"G) < K——-.
s(G) = InA
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Proof. Note that every two vertices of G have at most 2 common neighbors, because
neighbors of any vertex of G lie on a circle and any two circles intersect in at most 2

points. Therefore, if we set g = %, the result follows by Corollary 3.2.2. [

We would like to show a similar bound for higher dimensions. However, corollary 3.2.2
is too weak for this purpose — the assumption may not be satisfied even in R3, and the

counterexample is K a.
Proposition 3.2.4. For every A, Ky is a unit distance graph in R3.

Proof. Pick any two points x, y at distance less than 2. Note that there are infinitely many
points at distance 1 from both = and y (and they lie on the circle that is the intersection of
the two spheres of radius 1); pick A such points vy, vy, ..., va. The resulting unit distance

graph is a bipartite graph with partition classes {x,y} and {vy,vs,...,va}. O

Our main contribution in this chapter is a theorem that significantly improves Corol-
lary 3.2.2 and implies a bound on the strong chromatic index of unit distance graphs in

R3. The Theorem is proved in section 3.3.

Theorem 3.2.5 (MD, 2015+). There exists a constant K such that the following holds.
Let G be a graph of maximum degree A such that every edge of G is in at most %2 cycles
of length 4, where 1 < g < A%. We have
§(G) <K %
In order to apply our result, we need an estimation on the number of edges of a unit
distance graph in R3. We use a Theorem of Erdds from 1960 [20]; this result has been

improved over last 55 years (see |6, Chapter 5.2| for the summary), but the improvements

are not relevant for our purpose.

Theorem 3.2.6 (Erdés, 1960 [20]). There is a constant K’ such that if G is a unit dstance

graph in R® with n vertices, then

Jo

e(G) < K'ns.

w

Now, we are ready to bound the strong chromatic index of unit distance graphs in R3.
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Corollary 3.2.7. There is a constant K such that if G is a unit distance graph in R? of

mazimum degree A, then

1&2
/ < [
s(G) = KlnA

Proof. Let e = uv be an edge of G. Note that every 4-cycle in G that contains e cor-
responds to an edge between a vertex from N(u) \ {v} and a vertex from N(v) \ {u}
(and vice versa). By Theorem 3.2.6, the subgraph of G induced by N(uv) has at most
K'As edges, so there are at most K'A3 4-vertex cycles containing e. Therefore, the result

follows from Theorem 3.2.5 by setting g = %. [

3.3 Proof of Theorem 3.2.5

We start with the technical lemma that will be used to bound the number of edges of

certain bipartite graphs.

Lemma 3.3.1. Let G be a bipartite graph such that each partition class of G has at most

n vertices. Then there is an edge e € E(G) that is contained in at least

cycles of length 4.

Proof. Let A and B be partition classes of GG. Let np, be the number of 3-vertex paths
in G with middle vertex in A. Since each vertex v from A is in 3(deg(v) — 1) deg(v) such

paths, we have
1 , 1
ne =5 > deg(v)® - 5 > " deg(v).
vEA veEA
Note that the second sum is equal to the number of edges of G. By applying the Cauchy-

Schwarz inequality to the first sum and using the equality > _, deg(v) = 2e(G) we obtain

veEA

2 2 2

np > e(G)*  e(G) > e(G)* n
2n 2 2n 2

Now, let n¢, be the number of 4-cycles in G. Let d(u,v) denote the number of common

neighbors of vertices u and v. For every two vertices {u,v} C B, the number of 4-vertex
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cycles in G containing both u and v is $d(u, v) (d(u,v) — 1), so we have
ne 1 Z d(u 1})2—1 Z d(u,v)
4 2 ) 2 ) *
{uv}CB {uv}CB
The sum }°, ycpd(u,v) is equal to np, (and we have np, < n?), so by applying the
Cauchy-Schwarz inequality we get

1 <@ n_2>2_n_3_e(G)4—n3e(G)2+n6—2n6(n—1)'

2n 2

ne, 2 —

2(3)

Since = > L ¢(G) < n?and 1 < n, we have
n—1 n

e(G)*
ney 2 4Ant

2 4n3(n — 1)

Every 4-vertex cycle has 4 edges, so by the pigeonhole principle we get the desired
result. 0

Proof of Theorem 3.2.5. We start with two rather technical Claims that will allow us to

use Theorem 3.2.1. Claim 1 will be used in the proof of more important Claim 2.

Claim 1. In G, for every e € E(G) there are at most
A2

VA= + 47
V9

edges with both endpoints in Ng(e).

Proof of Claim 1. We use an auxiliary bipartite graph H with partition classes Ng(e) and
Ng(e) (two copies of Ng(e)), such that for every edge zy € E(G), where z,y € Ng(e),
we have xy, 7y € E(H).

Let ey be the number of edges of G with both endpoints in Ng(e). Note that H has
2en edges and at most 2A vertices in each partition class. By Lemma 3.3.1 we get that

some edge xy in H is in at least

(2en)?  3(2A)3
(2A) 2y

4-vertex cycles in H. Note that the edge xy is in the same number of 4-vertex cycles in
(G, so by our assumption we get

3 3 2
ey 12A <A_.

2A4 eN g
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3
Note that if ey > 4A£, then we have % < 4?4, so we can rewrite the inequality as

AQ
EN S Y 4—.
Va9

In the remaining case by definition we have ey < 4AT and the Claim follows by summing

both upper bounds on ey. O

Claim 2. For every e € E(G) there are at most

3 A4 15
VA= + 44AT
N4}

edges in L(G)? with both endpoints in Npcy(e).

Proof of Claim 2. Let G’ be a subgraph of G induced by neighbors of e in L(G)?. The
edges in L(G)? with both endpoints in Ny g)2(e) correspond to certain pairs of edges of
G’ (pairs {p,q}, p,q € E(G’), such that p and ¢ have at least one endpoint in Ng(e) and
pq is an edge of L(G)?); there are at most ny + ny + n3 + ng +ns of them, where we define

ni,...,ns such that there are:
ny pairs of intersecting edges of G,
no pairs of edges of G’ such that at least one of them intersects e,
ns pairs of edges of G’ joined by an edge of G with both endpoints in Ng(e),
ny pairs of edges of G’ such that at least one of them has both endpoints in Ng(e),

ns pairs of edges of G’ such that both of them have at least one endpoint outside Ng(e)

and they are joined by an edge with at least one endpoint outside Ng(e).

There are at most 2A? edges of G’, each intersecting at most 2A other edges, so we
get n; < 4A3. Similarly, there are at most 2A edges intersecting e and each of them is

joined to at most 2A?% other edges of G’, so we have ny < 4A3.

27



By Claim 1, there are at most

AN 7
VIS 1 aal
Vi

edges of G with both endpoints in Ng(e), and each of them joins at most A? edges of G’

and is joined to at most 2A? edges of G’, so we have
3 A 15
ng +ng < 3VA— + 12A7,
V9

Now, for an edge p € E(G’) let X, = Ng(p) \ Ne(e). Let H, C G’ be an auxiliary
bipartite graph such that partition classes of H, are X, and Ng(e), and edges of H, are
all edges of G’ with one endpoint in each partition class. Let e, be the number of edges
of H,.

Note that for every pair {p, ¢} that contributes to n; we have p € E(H,) or ¢ € E(H,).
If follows that n; is at most 2A? times the maximum value of e, over all edges p; now we
will bound this maximum.

Since both X, and Ng(e) have size at most 2A, by Lemma 3.3.1 some edge of H, is

in at least r
e 24A°
16A% ep

4-vertex cycles. Therefore, by our assumption we get

e3 24A3 A2
< —,

p —

16A4 ep g

Now (as in the proof of Claim 1), we either have e, < 12A7 or ep > 12A7. In the

3
second case we have % < 326Z4, so the above inequality gives
3 3 2
&% % AT
16A*  32A* — g’

Therefore, after solving for e, and taking into account the first case, we obtain

A2
e, < 2VA— + 1241,
V9
and ns is at most 2A? times this upper bound. Note that A3 < AIATS, so the claim follows

by summing all the upper bounds on nq, ..., ns. O
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First, consider the case g < A1 and define f= %g. Note that %7; > A%, so by Claim
2 we get that a subgraph of L(G)? induced by Np(e) for any e € V (L(G)?) has at
most, % edges, so by Theorem 3.2.1 we get
x (L(G)?) < K’2—A2
~ Inf
(where K’ is a constant from Theorem 3.2.1). Since In g is equal to some constant times
In f, we get that
A2

! < Kij—.
S(G)_ 1111g

In the remaining case, we take f = <*5/_65 and by the same argument (with an exception

that from Claim 2 we deduce the bound 56A%) we get

AQ
/ < =
S (G) < Kglng

Finally, by taking K as maximum of K; and K, the Theorem follows.

3.4 Further investigations

After we establish Corollary 3.2.7 (a bound of K % for unit distance graph in R?), a
natural question arises: can we show a similar bound on strong chromatic index of unit
distance graphs in higher dimensions? This problem is much easier, and the answer is

negative; every complete bipartite graph is a unit distance graph in R*.

Proposition 3.4.1 (Lenz, see [6, Chapter 5.2|). For every A, Kaa is a unit distance
graph in R*.

Proof. Consider two orthogonal circles Cy, Cs of radius ‘/75, centered at (0,0,0,0) (that is,
C) satisfies 2% + 22 = % and z3 = 74 = 0; and C, satisfies 73 + 22 = % and z; = x9 = 0).
Note that each point of (] is at distance 1 from each point of C5, so by picking A points

from each circle we obtain Ka a. O

Another natural question is the one regarding optimality of the results. Theorem 3.2.5

(a bound of K% for graphs with every edge in at most %2 4-cycles) is tight up to a factor
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O(%), because there are Cy-free graphs with chromatic index at least © (ﬁ) (see [30]).
Note that this factor is constant when g is at least some power of A; we believe that it
should be constant also for lower values of g.

On the other hand, mentioned construction of Cy-free graphs with high strong chro-
matic index is probabilistic and (probably) does not give unit distance graphs in R? or
R3; we do not know any nontrivial estimation on tightness of Corollaries 3.2.3 and 3.2.7
(the bounds of K% for unit distance graph in R? and R?®). Can those bounds be low-
ered to at least A?~¢ for some constant € > 0?7 We suspect that it is the case, but such
an improvement would require a totally different approach, not using Theorem of Alon,
Krivelevich and Sudakov (Theorem 3.2.1).

Finally, Theorem 3.2.5 has a nice consequence regarding the conjecture of Erdds and
Nesetfil (Conjecture 2.4.3): the conjecture is true if we assume that every edge of the
graph is in at most eA? 4-cycles (for some absolute constant ¢ > 0). As we mentioned in
Section 3.1, it is also true if every edge of the graph is in at least %AQ 4-cycles. Tt would
be interesting to prove the conjecture in the mixture of those cases — that is, when some
edges of the graph are in at most eA? 4-cycles, and the remaining ones are in at least %AQ

4-cycles.
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4 Linear bounds on strong chromatic index

4.1 Short history of a conjecture of Chang and Narayanan

In Section 2.6 we omitted one result that supports Conjecture 2.5.1 (an upper bound
of A? for bipartite graphs). Recall that a graph is bipartite if and only if the length of
every cycle is even; Faudree, Gyarfas, Schelp and Tuza proved in 1990 that if we require

the length of every cycle to be divisible by 4 instead, then the conjecture is true.

Theorem 4.1.1 (Faudree, Gyarfas, Schelp and Tuza, 1990 [23|). If G is a graph of
mazimum degree A and the length of every cycle in G is divisible by 4, then s'(G) < AZ.

However, the authors suspected that the result is not tight — that strong chromatic
index of such graphs should be much smaller, probably even linear in maximum degree
— because of a special structure of graphs in question. If all cycles in a graph have
length divisible by 4, then it must be very sparse; one may prove that such graphs are
2-degenerate.

The suspicion was confirmed in 2012 by Chang and Narayanan [10]: they showed that
the strong chromatic index of every 2-degenerate graph of maximum degree A is at most
10A — 10. The authors conjectured that the result can be generalized to k-degenerate
graphs for all £.

Conjecture 4.1.2 (Chang and Narayanan, 2012 [10]). There exists a constant ¢ such
that for any k-degenerate graph G of mazximum degree A we have s'(G) < ckA.

This statement was proved by the author of this dissertation, Grytczuk and Sleszyriska-
Nowak (see [17]). However, the conjecture was in fact confirmed in 2006, even before it
was stated, by Barrett, Kumar, Marathe, Thite, Istrate and Thulasidasan [5|. Their proof
contains a small mistake which infuences the resulting constant (they claimed that the
main term is (4k —3)A, while it should be (4k —1)A); here, we state the corrected version

of their theorem and give a valid proof.
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Theorem 4.1.3 (Barrett et al., 2006 [5], corrected). Let G be a k-degenerate graph of

mazimum degree A, where k < A. We have
§'(G) < (4k — 1)A —2k* — k + 1.

Proof. We start by enumerating vertives of G as vy, vy ..., v, in such a way that v; have at
most k neigbours in {vy,vg,...,v;_1}, for every i (such ordering can be found iteratively:
at each step we pick a vertex of degree at most k, add it before the first element of already
built list and remove it from the graph).

We will color edges of GG greedily, starting with edges incident to vy, then proceeding
with edges incident to vy, and so on. We need to show that each edge, at the time when
it is assigned a color, is joined to at most (4k — 1)A — 2k* — k other edges; it guarantees
that (4k — 1)A — 2k? — k + 1 colors will always suffice to complete the coloring.

Suppose that we are coloring an edge v;v;, where ¢ < j. Colored edges joined to v;v;
are either (A) incident to a neigbour of v; other than v; or (B) incident to a neighbor of
v; other that v;.

(A) Note that at most k neigbours of v; precede it in our ordering, and clearly each
of them is incident to at most A colored edges. Every other neigbour of v; is incident to
at most k colored edges (because by our ordering a vertex vy, for ¢/ > i, have at most k
neigbours among {vy, vq, ..., v;}). Since thare are at most A — 1 neigbours of v; that are
not v;, it totals to at most kA + (A — 1 — k)k colored edges.

(B) There are at most k& — 1 neigbours of v; that precede v; in the ordering, each
incident to at most A colored edges. Remeining neigbours of v;, except v;, are incident
to at most k coloring edges (by the same argument as above). It totals to at most
(k—1DA+(A-1—(k—=1))k.

Summing the estimations (A) and (B) we get (4k — 1)A — 2k* — k, so the proof is

complete. n

4.2 Chordless graphs

We say that a graph G is chordless if every cycle in G is induced (that is, there is

no edge joining two nonconsecutive vertices on a cycle — such an edge is called a chord).
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This notion generalizes both graphs with every cycle length divisible by 4 and minimally
2-connected graphs, and forms a (proper) subclass of 2-degenerate graphs.

Chang and Narayanan [10] proved that s'(G) < 8A — 6 if G is a chordless graph
of maximum degree A. Although the result is never stronger than Theorem 4.1.3 (by
Theorem 4.1.3, when k& = 2, we get TA — 9), their approach is different: it involves
recoloring some previously colored edges with additional colors and relies on a useful

structural lemma.

Lemma 4.2.1 (Chang and Narayanan, 2012 [10]). Every chordless graph G contains

some vertexr v such that at least deg(v) — 1 of its neighbors have degree at most 2.

Our main contribution in this chapter is an improved bound on strong chromatic index
of chordless graphs. The proof uses Lemma 4.2.1 and contains all key ideas used in the
(mentioned in the previous section) proof of the conjecture of Chang and Narayanan by

MD, Grytczuk and Sleszyriska-Nowak.

Theorem 4.2.2 (MD, Grytczuk, Sleszytiska-Nowak, 2015 [17]). If G is a chordless graph
of mazimum degree A, then

§'(G) <4A - 3.

Given a graph G, we say that a vertex v € V(G) is nice (in G) if it has at most one

neigbour of degree greater than 2 and at least one neighbor of degree at most 2.

Lemma 4.2.3. Let G be a chordless graph with at least one edge and take X to be the

set of vertices of degree 1 in GG. Then either G or G — X contains a nice verter.

Proof. Without loss of generality we assume that GG has no isolated vertices. If G has no
vertices of degree 1, the result follows by Lemma 4.2.1. Otherwise, we have three cases:
(a) G — X has no vertices, (b) G — X has a vertex of degree at most 1 and (¢) G — X has
no vertices of degree 0 or 1. Now, in (a) every vertex of G satisfies the desired property
and in (b) we pick a vertex of degree at most one in G — X. For (c) note that a nice

vertex in G — X is also nice in G, so the result again follows by Lemma 4.2.1. O
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Proof of Theorem 4.2.2. We will in fact show that L(G)? is (4A — 4)-degenerate by or-
dering edges of G in such a way that each edge is joined to at most 4A — 4 edges that
preceed it in the order. We will construct an (ordered) list of egdes of G starting from
the end — that is, whenever we add an edge to the list, it is added before the first element
of our list — and ensure that each added edge is joined (in G) to at most 4A — 4 edges
that are not on the list yet. We will proceed in steps and define L; to be the list obtained
after ¢-th step, starting with Ly being an empty list.

Suppose that L;, with ¢ > 0, is defined, and let I; C E(G) be the set of edges that
appear in L; (where I stands for “Inactive edges”). Let H; = (V(G), E(G) \ 1;) (that is,
H; is a subgraph of G induced by active edges), and let X; be the set of vertices of degree
1 in H;. Take v; to be a vertex that is nice in H; or in H; \ X;; note that, by Lemma 4.2.3,
such a vertex must exist (the vincinity of v; is depicted in Figure 4).

(A) If v; is nice in H;, we put A; = () (and A; stands for “edges added to the list in
part (A) of the i-the step”). Otherwise, we set A; to be the set of all edges incident to a
vertex of degree 1 in H; and a neigbour (in H; \ X;) of v; that has degree at most 2 in
H; \ X;. Now, we set L} to be the list obtained by adding to L; all edges from A; in an
arbitrary order. Let H! = H; \ A;. Note that v; is nice in H..

(B) Let B; be the set of edges of H! incident with v; and a vertex of degree at most 2,
that is,

B; = {vyy € E(H}) : degy(y) < 2}

(where B; stands for “edges added to the list in part (B) of the i-the step”). Take L;4
to be the list obtained from L} by appending edges from B; in any order. Clearly, B; is
nonempty, so for some s the list L, contains all edges of G.

We will show that the following invariant holds: the number of active edges incident
to each vertex of an inactive edge is at most 1. More formally, we shall prove the following

claim.

Claim 3. For every i =0,1,...,s, and every vertex v € V(QG), if v is incident to at least

one edge from I;, then it is incident to at most 1 edge outside I;.

Proof. We use induction on i. For i = 0 we have I, = (, so there is nothing to prove.
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L g

— edges of H]
—— edges of H; \ H]

........ edges of G\ H;

Figure 4: Proof of Theorem 4.2.2, vicinity of the vertex v; that is nice in H] (all edges

incident with depicted vertices are shown).

Now, suppose that the claim holds for some ¢ (where 0 < i < s), and consider some vertex
v incident with at least one edge from I;, ;. Note that if v is incident to an edge from I;,
then the statement follows from induction hypothesis, as I; C I;;. In the remaining case,
v is either (i) a vertex of degree 1 in H;, (ii) a neigbour of v; in H; of degree at most 2 in
H! or (iii) v;. In case (i), all edges incident to v are in I;;1, in case (ii) we have vv; € B;,
so there remains at most one edge outside I;;; incident to v, and in case (iii), by v being

nice in H, at most one edge incident to v in H; is outside B;, so the claim follows. O

Now, for any edge e € E(G), we will count the number of edges that are joined to
e and preceed e in Lg; see Figure 4 for an illustration. We either have (i) e € A; or (ii)

e € B;, for some 1.
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In case (i) we need to count the number of edges of H; joined (in G) to e. Let e = w,
where w is a vertex of degree 1 in H; and w is a vertex of degree at most 2 in H]. Note
that = have at most A — 1 neigbours in G other than w and, by Claim 3, each of them
is incident to at most one edge of H;. By definition of A;, w have at most 2 neigbours in
H; that are incident to more than one edge of H; and, by Claim 3, all other neigbours of
w in G (other than x) are incident to at most one edge from H;, which totals to at most
3A — 3 edges. Therefore, e is joined to at most 4A — 4 edges of H;.

In case (ii) we need to count the number of edges of H/ joined (in G) to e. Let e = vy,
where y have degree at most 2 in H]. Either y has degree 2 in H] and (by Claim 3) is
not incident with any edge from I; or it has degree 1 in H} and (again by Claim 3) every
neigbour of y in G, other than v;, have degree at most 1 in H;. Therefore, neigbours of
y in G, other than v;, are incident to a total of at most A edges of H;. By Claim 3 and
choice of v;, there is at most one neigbour of v; in G incident to more than two edges
of H!, so neighbors of v; in G other than y are incident to at most 3A — 4 edges of H..
Therefore, e is joined to at most 4A — 4 edges of H..

It follows that 4A — 3 colors will suffice to find a strong edge coloring of G' with a

greedy coloring in order given by L, so the proof is complete. O]

4.3 Discussion on linear bounds on strong chromatic index

Sections 4.1 and 4.2 suggest the following question: are k-degenerate graphs (for con-
stant k) the only graphs that have the strong chromatic index at most linear in maximum
degree? The answer is negative: there exist graphs with arbitrarily large maximum (and

even: average) degree A that have strong chromatic index at most 2A.

Proposition 4.3.1 (see [17]). If n = 2%, for an integer k > 1, there exists a (logyn)-
reqular graph with n vertices such that s'(G) = 2log, n.

Proof. For every n = 2* we construct a regular graph G, of degree k and x.(G) < 2k.
The set of vertices of Gy, is the set of all binary sequences of length k, with two vertices
being adjacent when their Hamming distance is exactly k—1 (that is they agree in exactly

one position). Now we will color the edges of G}, using the set of pairs C' = {(i,7) : i €
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{1,2,...,k}, 7 €{0,1}} as the set of colors, in the following way: the color of an edge uv
is the pair (i, 7) if they agree on the ith coordinate whose value is j. Clearly, the set of

edges in a fixed color (i,7) forms a strong matching in Gj. O

Bresar and Kraner Sumenjak in [7] conjectured that an upper bound 2A is also valid
for median graphs (G is a median graph if for every three vertices u,v,w € V(G) there
exists exactly one vertex that lies on a shortest path from u to v, a shortest path from v
to w and a shortest path from u to w; such graphs on n vertices can have average degree
of order log n, hypercube is an example).

Can we find denser graphs with small strong chromatic index? When asking such a
question, it is reasonable to define “small” using the average degree instead of maximum
degree of the graph (note that if G is a disjoint union of a dense graph and s star K.,
for large enough r, we have s'(G) = A(G), and such construction is not very insightful).

For a fixed constant ¢ > 0, let F. denote the family of graphs G satisfying x.(G) <
cd(@G). Let f.(n) = max{d(G) : G € F.,|V(G)| < n}. We shall demonstrate that ¢ = 2 is

the smallest constant for which the class F. is not empty.

Proposition 4.3.2 (see [17]). For every graph G we have
§'(G) = 2d(G) —

Proof. Let G be a simple graph on the set of n vertices V(G) = {vq,vs,...,v,}. For any
edge e = wv, let s(e) = d(u) + d(v) denote the sum of degrees of its ends u and v. Let
M = max{s(e) : e € E(G)}. Since s'(G) > M — 1, it suffices to show that M > 2d(G).
First notice that

2 se)= D dwy’

ecE(G) veV(G)
Next consider two n-dimensional vectors x = (d(vy),d(vs), ..., d(v,))andy = (1,1,...,1).

Applying the Cauchy-Schwarz inequality to = and y gives
> dl > dlv
veEV(Q) veV(G)

Hence, we get

2|B(@)| < V- [ Y sle) < Vn-V/MIEG)].

e€E(Q)
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By squaring we get 4|FE(G)|* < nM |E(G)|, which implies that 4 |E(G)| /n < M. This
proves the desired relation 2d(G) < M. ]

By Proposition 4.3.1, f3(n) is unbounded, but what is its order of magnitue? How

about f.(n) for larger values of ¢? Finding the right answer reamins an open problem.

Problem 4.3.3 (see [17]). What is the order of magnitude of f.(n)?
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5 Fractional strong chromatic index of bipartite graphs

5.1 The main Theorem

Is it possible to strengthen Proposition 2.7.4 (an upper bound 1.5A% on fractional
strong chromatic index of bipartite graphs)? Although the bound 1.5A? is far from the
one conjectured by Faudree, Gyarfas, Schelp and Tuza (A?; Conjecture 2.5.1), it follows
from two theorems that are tight. Is it a premise that the mentioned conjecture is wrong
and that 1.5 is the right constant?

A careful examination of the proof of Proposition 2.7.4 reveals that Theorem 2.7.3
(which confirms fractional relaxation of Reed’s conjecture) is applied to squares of line
graphs of bipartite graphs — although Theorem 2.7.3 is tight, it is not clear whether it
is tight for this particular class of graphs. Another weakness of the proof of Proposition
2.7.4 is that Theorem 2.6.1 (which says that maximum clique in a square of the line graph
of a bipartite graph G of maximum degree A is at most A?), although tight, is not the
best possible — if a clique in L(G)? has maximum possible size A, then it must consist
of vertices of degree A? — 1 (that is, roughly half of the maximum possible); it prompts
that a better tradeoff between clique size and vertex degrees in L(G)? can be found and
used.

We show that the constant 1.5 can be improved to 1.476. In the proof we replace
Theorem 2.6.1 with Lemma 5.2.2, which concerns both the cliges and degrees in L(G)?,
and an immediate consequence of Theorem 2.7.3 which is “compatible” with it. The proof

is in Sections 5.2 and 5.3.

Theorem 5.1.1 (MD, 2015+ [14]). Let G be a bipartite graph of mazimum degree A. We
have

31
/ < 2 15.
$(G) < AT+ A

We consider Theorem 5.1.1 the main result of this dissertation. Note that the constant
is improved by only a little (less than 0.24) and the most important message is that it
can be improved at all.

It is worth to note that if Reed’s conjecture (Conjecture 2.7.1) is true, we will get a
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strengthening of Theorem 5.1.1, concerning strong chromatic index instead of fractional

strong chromatic index, for free.

Remark 5.1.2. Reed’s conjecture would tmply that for every bipartite graph G of mazi-

mum degree A we have

ﬂ@g%%v+AW

5.2 Outline of the proof

A(H)—I—w(H)—‘rl)
2

Our general goal is to apply Theorem 2.7.3 (inequality xf(H) < to

obtain a fractional coloring of the graph H = L(G)? with strictly less than w

colors. In order to succeed, we need our graph H to satisfy a certain property, which is

an assumption of Lemma 5.2.1 (think of z as not much larger than A(H)).

Lemma 5.2.1. Let H be a graph such that each complete subgraph of H of order r contains

a vertex of degree at most x — r. Then we have x¢(H) < %(H) + 1.

Proof. We start by finding an induced subgraph of H, denoted H’, such that w(H’) <

M We define H' to be a graph obtained from H by deleting all vertices of degree

z+A(H)—1
3

Now, we show that w(H') <

less than

& Suppose for the contrary that H’' contains a

2e—AH)+1

complete subgraph S of order greater than 3

. Since it is also a complete subgraph

of H, by our assumption on H we deduce that S contains a vertex of degree (in H) less

than o — meAéH)H = HA(SH)*I, which contradicts the choice of H'.

Applying Theorem 2.7.3 to H' we get that

2o BT | A(H) + L _ o+ A(H)

1.
2 - 3 i

xs(H') <

Any (HA( ) 4+ 1)-coloring of H' can be extended to a (‘HA( ) 4 1)-coloring of H (by

assingning colors to the remaining vertices greedily), so the proof is complete. O]

The main difficulty of the proof is showing that L(G)? satisfies the desired property,
with x ~ 1—77A(G)2.
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Lemma 5.2.2. Let G be a bipartite graph and H a subgraph of G such that E(H) is a
clique in L(G)?. There exists an edge e € E(H) such that

deguier(e) + e(H) < S A(G) + VEA(G)'*.

Theorem 5.1.1 is an immediate consequence of the two lemmas.

Proof of Theorem 5.1.1. Let G be a bipartite graph. By Lemma 5.2.2, each complete
subgraph of L(G)? of order r contains a vertex of degree at most  — r, where z =
YA(G)*+v2A(G)". Therefore, the Theorem follows by Lemma 5.2.1 applied for L(G)?.

O

5.3 Proof of Lemma 5.2.2

We will need the following lemma, which is a quantitive form of the statement “if there
is a large clique in L(G)?, then G contains a large number of 3-vertex paths”. The result

will be useful for |A| of order A(G) and e(H) of order A(G)? (|B| can be larger, which

makes the proof more complicated than it would be otherwise).

Lemma 5.3.1. Let G be a bipartite graph with partition classes A, B and H a subgraph
of G such that E(H) is a clique in L(G)%. There are at least

AP AG) (1 - \/1 _eHP ) - %EA(G) AlVIA]

2 AP A@G)?

copies of P3 in G that have two vertices in A.

Proof. We will count the number of unordered pairs {e, f} such that e and f are adjacent
in L(G)? (where e, f € E(G)). Let us denote this number by n,. On one hand, n, >
w (because E(H) is a clique in L(G)?).

Now consider a vertex u € B. The number of pairs {e, f}, where u € e and f contains
a neighbor (in G) of u, that contribute to n, is at most degq(u)?A(G) — (degg(“)) -
dege(u) (there are degg(u) choices for e and at most degq(u)A(G) choices for f, so we

get degg(u)?A(G). However, this way we double-count, (degg(“)) pairs {e, f} where both
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e and f are incident to u and deg,(u) adjacencies of some edge to itself, so we substract
respective numbers). We will say that such pairs are counted by w.

Note that every pair {e, f} that contributes to n,, is counted by some vertex u € B (be-
cause G is bipartite). Moreover, if there is a copy of Cy in G on vertices vy, ug, v3, uy (With
edges {viug, ugvs, V3Ug, usvy }; Where ug, uy € B), then pairs {vug, v3us} and {ugvs, ugvy }
are counted by both us and uy. Therefore, if we set ne, to be the number of copies of Cy
in GG, we obtain

e(H)* — e(H) <n, <y (degG(u)QA(G) - (degg(u)) _ degG(u)) —2n¢g,. (1)

2
ueB

Now we will find a lower bound on n¢,. For v,w € A, where v # w, let yg, .} be a
number of common neighbors (in G) of v and w. There are (}) = %2 — ¥ copies of Cj in

G that contain vertices v and w, so we have
1 9 1
ne, =5 D, Yew Ty DL Yow (2)
v,WEA,vFwW v,wEA VAW
Note that the sum of all yp., (over v,w € Awv # w) is equal to
1> wep dega(u)(degg(u) — 1) (because u is a common neighbor of every two of its neigh-
bors). Therefore, considering (yf,.,)) as an (";')—dimensional vector, by the Cauchy-

Schwarz inequality we obtain

1 pdegq(u)(degq(u) —1 2
vaEAy{uw} > (2 Zue gG((z;)XI() gc(u) )) .

Now, from (2) (and by (|A|) < %) we obtain

(Suep dega(u)(degg(u) = 1)) 3, degg(u)(degg (u) — 1) )
41A]? 4 '

For convenience, we set x = ) _pdegg(u)(degg(u) — 1). Now, from (1) and (3) we

ne, =

get

2 _ 22
MSA Gz + A(G ZdegG ———Z ega(u +x (4)
ueB ueB 2 |A|

Note that we have e(H) < ) _pdegg(u) and ) pdegs(u) < |A|A(G) so we can
rewrite (4) as
22

0< —e(H)?+2A(G)z +2A(G)? |A| — W (5)
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The right side of (5) is a quadratic function in z that attains its maximum value for

Tmax = |A|* A(G) (and this value is at least 0 by e(H) < |A| A(G)). Moreover, in point

_ = |APAG)(1 — /1 - %) — V2A(G) |A] \/]A| this function is negative (and

equal to —2v/2,/1 — —S° _A(G)2 |A| \/]A]). Therefore, inequality (5) implies that

BRENGE
e(H)?
x> APAG) [1— /1 — —5——— | = V2A(G) |A] V]A]. 6
> 14 <>< \/ |A|2A(G>2> (©)141VIA ©)
Since each vertex u € B is a central vertex of degG(“)(dng(“)_l) copies of P3 in G that have
two vertices in A, by definition of = inequality (6) finishes the proof. O

Figure 5: Notation used in the proof of Lemma 5.2.2 (edges outside H are grayed out or

not shown)

Proof of Lemma 5.2.2. To shorten the notation, we will write A¢ instead of A(G) and
Ay instead of A(H).

Let v € V(H) be a vertex of degree (in H) equal to Ay. We will now introduce a few
notions, see Figure 5 for a visualization.

Let V,, be the set of vertices of H that are adjacent (in G) to a neighbor of v and
incident to at least one edge of H that is not incident to a neighbor (in G) of v. Define «
to be the size of V,. Moreover, we will denote the set of edges of H incident to a vertex

from V, by E,.
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Let X (resp. Y') denote the set of egdes of H that are incident to a vertex from Ny (v)
(resp. Ng(v) \ Ng(v)) and not incident to any vertex from N,. Set z (resp. y) to be the
size of X (resp. Y).

Since E(H) is a clique in L(G)?, each edge of H is incident to a neighbor of v or a

vertex from V. Moreover E, < aApy, so we have
6(H>§C¥AH+JJ+Q+AH. (7)

Now we will count the number of copies (in G) of directed Pj that start in Ngy(v) and
end in Ng(v) (a directed P is a Py with one leaf marked as a startpoint, and the other as
an endpoint; each copy of P3 correponds to two directed Ps’s). Let us denote this number
by #P;.

Note that every vertex from V, is adjacent to every vertex from Ny (v) (by definition
of V,, and G being bipartite). Therefore, there are (exactly!) Ay (Ay — 1)« directed P3’s
that start and end in Ng(v) and have a middle point in V.

By Lemma 5.3.1 (applied for a graph G’ that is a subgraph of G induced by Ny (v)U
NZ(v), its subgraph H' = (V(G'), X) and A = Ng(v)) we get that there are at least

A% Ag <1—1/1 - N) V2AcAEY Ag

directed P3’s that start and end in Ng(v), and have a middle point outside V,.
Moreover, for every two edges e € X and f € Y there is a directed P3 that starts
in e N Ny(v), ends in f N (Ng(v) \ Ng(v)) and starts with e or ends with f (because

E(H) is a clique in L(G)? and G is bipartite). Since each such path corresponds to at

most 2Ap pairs (e, f), we have at least 53~ directed Py’s that start in Ny(v) and end in
Ng(v) \ Ng(v).

Now we have an estimation of the number of directed Ps’s that start in Ny (v), end
in Ng(v) and have a middle vertex other than v. By the above estimations and the

pigeonhole principle we deduce that there is a vertex u € Ny (v) that is the start of at

(AH—1)a+AHAG(1—,/1 AQAQ) IAG\/_JFQAQ (8)
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directed Py’s that start in Ny (v), end in Ng(v) and have a middle vertex other than v.
It remains to show that the edge vu satisies the condition ot the Lemma.

Each directed P; that starts in u, ends in Ng(v) and have middle vertex other that
v corresponds to a copy of Cy in G that contains the edge uv. Since degyg)2(uv) is at
most 2A% — 2As minus the number of copies of Cy in G that contain uv, by combining

(7) and (8) we obtain
2
deg (g2 (uv) +e(H) < 2AZ —2A¢ — (Ag — Da — A(HAg (1 — /1= ﬁ)
H2G
—l—\/_AG\/_
Observing that o < Ag and Ay < Ag, we simplify this to

degyay(uv) + o(H) < 20% — Mgl + \/AZAL —a? 1o - m?é Ly VAL (10)

By y < Ag (Ag — Ag) and x < A% we obtain

degp gz (uv) + e(H) < 2A% + /AL AL — 22 + 2 — % — A% +V2AL°. (11)
H

Now we introduce v so that * = YAgApy (note that 0 <y < 1) and we get

2A2 +alAg+x+y+Ay. (9)

AZ 3y
deg g2 (uv) +e(H) < 2AZ, — WTG + AcApy ( -2 4 5 > A2 +V2AL. (12)

The right side of inequality 12 is a quadratic function in Ay that attains its maximum

24/1—~2+3y

1 A¢, which implies that

in point

9 1 5 3
degp gz (uv) + e(H) < A <4 7t 1—67 + 17 1- 72) +V2AL (13)

Note that we have /1 — 2 < % — ﬁv (graph of the function on the left is a part of
a circle, and the graph of the function on the right is a line tangent to the circle at point

v = 2). Therefore, (13) implies

9 45 135
d > H)<AZ (= - — 205 14
cesiap(un) + e(H) < 8% (G + 1 = goon?) + VEAL (1)
The function in brackets is quadratic in v and attains its maximum value for vy = %
so the proof is complete. O
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5.4 Possible improvements

Consider the relation between Lemma 5.2.2 and Theorem 2.6.1 — the lemma implies
that the maximum clique in L(G)? is not larger than (rougly) - A(G)? (for a bipartite
graph G), which is weaker than the (tight) bound A(G)? given by the theorem, and the
theorem does not does not give any information on the degrees of vertices in cliques in
L(G)?. Hence, those two results are incomparable (that is, neither of them is an easy
cosequence of the other).

We believe that Lemma 5.2.2 can be strengthened so that its consequence would match
Theorem 2.6.1. Note such a strengthening, apart from being interesting on its own, would
translate to an essentianl improvement of Theorem 5.1.1 — the constant % would improve

to %. We conjecture the following.

Conjecture 5.4.1 (MD, 2015 [14]). Let G be a bipartite graph and H a subgraph of G
such that E(H) is a cliqgue in L(G)?. There exists an edge e € E(H) such that

degry2(e) +e(H) < 2A(G)%.

Our work would also benefit from a certain strengthening of Theorem 2.7.3. Note that
the quantity x in assumption of Lemma 5.2.1 corresponds to w(G) + A(G) + 1 (and is
smaller than or equal to that number). Although we do not dare to pose it as a conjecture,
we would like to see a stronger version of Theorem 2.7.3 with z insted of w(G)+ A(G)+1
(in fact, Lemma 5.2.1 is a small step in this direction). For a discussion of variants of
Theorem 2.7.3 see the paper by Edwards and King [19]; in particular, their Conjecture 4
is related to our suggestion and would probably imply a strengthening of Theorem 5.1.1.

Finally, we believe that the same ideas can be used to give an upper bound on fractional
strong chromatic index of all (not necessarily bipartite) graphs — note that the only missing
part is a non-bipartite analog of Lemma 5.2.2. Recall that if G is a blowup of C5 (depicted
in Figure 3a), then L(G)? is a clique of order 2A(G)?; we conjecture that it is the worst
possible and that the desired analog of Lemma 5.2.2 should be as follows.

Conjecture 5.4.2. Let G be a graph and H a subgraph of G such that E(H) is a clique
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in L(G)?. There exists an edge e € E(H) such that

1
degg2(e) +e(H) < 2§A(G)2.
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6 Topological strong chromatic index of bipartite

graphs

6.1 Topological analog of chromatic number

In this section we define a topological equivalent of the chromatic number of a graph
(which is relevant to the topic of the dissertation — recall that strong chromatic index
is the chromatic number of a certain graph, according to Definition 2.1.2). There is a
number of parameters that may be considered a topological counterpart of the chromatic
number, and among those we focus only on the largest one (being an upper bound for
all other). We refer to the paper by Simonyi and Zsbéan [38] for the discussion of other
similar notions.

A Zs-space is a pair (X,v), where X is a topological space and v : T' — T is a
continuous function satisfying vov = idx (that is, v(v(x)) = x for all z; such v is called a
Zs-action). We say that a Zs-space (X, v) is free if v(z) # z for all x € X. We apply this
notion to topological spaces arising from simplicial complexes. We say that a simplicial
complex F' equipped with a simplicial map f : V(F) — V(F) is a free Z,-complex if
(II1F||, | f]]) is a free Zo-space, where ||F|| is a geometric realization of F and ||f|| is a
natural extension of f to a continuous function on ||F||.

A Zy-map between two Zs-spaces (X, v) and (Y, u) is a continous map m : (X, v) —
(Y, u), such that m(v(z)) = u(m(z)) for any x € X. The Zs-index of a free Zy-space
(X, v) is the minimum d such that there exists a Zy-map m : (X,v) — (S —), where S?
is a d-dimensional sphere and — is a natural antipodal operation. We define the Z,-index
of a free Zy-complex (F, f) to be the Zs-index of the underlying Zs-space and denote it
by ind(F').

We define the box complex of a graph G (denoted by B(G)) to be a free Zs-complex
on two copies of vertices of G, V(G) and V(G), where AUB is a face if and only if either
G contains a complete bipartite subgraph with partition classes A and B (for A, B being
nonempty) or all vertices in A and B have at least one common neighbor (for A or B

being an empty set). A Zs-action v is defined by v(z) = T and v(T) = x for z € V(G).
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The Zs-index of the box complex of G (plus 2) can be thought of as a topological
analog of the chromatic number of G. We have x(G) > ind(B(G)) + 2 and in many cases
this lower bound turns out to be sharp. In particular, Kneser graph with parameters n, k
satisfy ind(B(K,x)) + 2 = n — 2k 4+ 2 and have chromatic number equal to n — 2k + 2,
while the fractional chromatic number is %, which shows that ind(B(G))+-2 can be greater
than the fractional chromatic number of G. Results concerning this chromatic parameter
provide supporting evidences for a number of conjectures on chromatic number of specific
graphs [38].

We will use two properties of the Zs-index. The first one is a topological counterpart
of the observation that adding a new vertex of degree d to a graph cannot increase its
chromatic number above d + 1. It is implicitly proved in the book by Matousek [|31] (see
Proposition 5.3.2).

Lemma 6.1.1 (see [31, Proposition 5.3.2]). Let G be a graph and take G' = G — v, where

v s a vertex of G of degree d. We have
ind(B(G)) 4+ 2 < max(ind(B(G")) + 2,d + 1).

The second tool is the so-called K ,,-theorem of Csorba et. al [13] stating that a graph
of large Zs-index must contain large complete bipartite subgraphs (note that it is not the

case with chromatic number).

Theorem 6.1.2 (Csorba, Lange, Schurr and Wassmer, 2004 [13]). If G is a graph satis-
fying ind(B(G)) + 2 > t, then for every possible [, m € N with | +m = t, the complete

bipartite graph K, appears as a subgraph of G.

6.2 An upper bound on topological strong chromatic index of
bipartite graphs

We define a topological analog of strong chromatic index of a graph in a way consistent

with Definition 2.1.2.

Definition 6.2.1. The topological strong chromatic index of a graph G, denoted
si(@), is ind(B(L(G)?)) + 2.
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Note that s;(G) < s'(G) (as mentioned in Section 6.1), so if we prove an upper bound
on §'(G), it is also an upper bound on s(G). On the other hand, an upper bound on
s;(G) would not yield any formal consequences regarding s'(G), but it may indicate that
a similar bound on §'(G) exists. In view of the apparent difficulty of Conjectures 2.4.3

and 2.5.1, it is worthwhile to investigate their topological variants.

Conjecture 6.2.2 (Erdés and Negetfil, topological variant). For any graph G of mazi-

mum degree A we have sj(G) < 2A2

Conjecture 6.2.3 (Faudree, Gyarfas, Schelp and Tuza, topological variant). For any
bipartite graph G of mazimum degree A we have s;(G) < A2

Conjectures 6.2.2 and 6.2.3 would be sharp, as witnessed by a blowup of C5 (see
Proposition 2.3.2 for definition) and Ka a respectively.

Recall that for a bipartite graph G of maximum degree A, the best known bound on
s'(G) is 1.93A% (Theorem 2.4.2), which implies that sj(G) < 1.93A2%. We improve the
constant to 1.703.

Theorem 6.2.4 (MD, 2015 [15]). Let G be a bipartite graph of mazimum degree A. We
have

sh(G) < 1.703A%

6.3 Proof of Theorem 6.2.4

The main idea of our argument goes as follows. First we consider the case when G
contains no complete bipartite subgraph with zA? edges, where z is some constant, to be
revealed later. Once we establish Corollary 6.3.3, the rest of the proof goes by a simple
greedy coloring argument.

A complete bipartite subgraph of L(G)? can be viewed as two disjoint sets of edges of
G, such that each two edges e and f, where e belongs to the first set and f to the second
one, are joined. We refer to those sets as red edges (denoted R) and blue edges (denoted
B). We use the term red degree (respectively, blue degree) of v € V (&), denoted d,.(v)
(resp. dp(v)), which is defined to be the number of red (blue) edges that are incident to
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v (in G). Finally, by the second red degree (the second blue degree) of v € V(G),
denoted d\” (v) (dgz)(v)) we mean the number of red (blue) edges incident to at least one
neighbor of v.

We refer to a pair (R, B) of subsets of V(L(G)?) as a selection (in G), if |R| = |B|,
RN B = () and each edge in R is within distance 1 from each edge in B. The order of a
selection (R, B) is defined as |R| + |B|.

Lemma 6.3.1. Let GG be a bipartite graph of mazximum degree A which contains no com-
plete bipartite subgraph with at least zA? edges, and let (R, B) be a selection in G. If

u,v € V(G) are in different partition classes of G, then
dP (u) + dl()z)(v) < (1422 —2%)A%

Proof. Note that in a bipartite graph dg)(w) (where ¢ equals 7 or b) is equal to the sum
Zle d.(w;), where wy, ..., wa are neighbors of w. Fori=1,2,... A, define §; to be the
red degree of the i-th neighbor of v and let 7; be the blue degree of the i-th neighbor of
u, setting f; = 0 (v; = 0) if there are fewer than ¢ neighbors. We denote the neighbors of

v by vy, vg, ... and neighbors of u by uy, us, .. ..

red o TTe-ll - . blue
Figure 6: Part of the proof of Lemma 6.3.1: we have u,v; € E(G) or zy € E(G)

Note that if we have (;7; > zA? for some ¢ and j, then v;u; € E(G) (see Figure 6).
Indeed, if v;u; ¢ E(G), then every neighbor x of v; connected to it by a red edge must be
adjacent to each neighbor y of u; connected to it by a blue edge (since G is bipartite we
have x # y, so xy remains the only possible link between those two edges), so G contains

a complete bipartite subgraph with 3;7; edges, which contradicts our assumption on G.
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Clearly, the sum d'”(u) + d,(f)(v) is equal to >, 3 + ;7. For any a € (0,1], let
ne = i@ Bi > aA}[|{i : v > ZA}| (that is, the number of pairs (4,j) such that
Biy; > zA? and B; > aA). By the above claim, for each such pair, there is an edge v;u;,
so GG contains a complete bipartite subgraph with at least n, edges. Therefore, we must
have

Ne < zA% (15)

Our aim is to show that the condition (15) implies the upper bound of (1+2z—2%)A? on
thesum S = ). B+, v for any real numbers 1, ..., Ba,71, ..., 7a that are nonnegative
and at most A. Note that this claim immediately completes the proof.

Our first step is to prove that for any configuration (i.e. the choice of values S; and ~;
satisfying (15) for all a) there is a configuration at least as good (with not lower value of
S), in which there is no f5; nor ; in the interval [zA; A). Indeed, suppose that there is
some f, € [zA, A) and there exists ~,, strictly smaller than A. Without loss of generality
we may assume that (§; is the lowest among such 3;, v, is the highest among such ~; and
Br < ¥m- Note that if we decrease [ to % and increase 7,, to A, S will increase. Since
no f; lies in the interval [zA, B), the increase of 7, will not result in increasing any n,,
so the condition (15) would hold. If for every i we have 7; = A then replacing 5, by A
does not change n, (for any «). Note that the same argument applies if we exchange
with v. By repeating this process we obtain the desired configuration.

Hence, we may and shall assume that all 8;’s and ;’s are either equal to A or smaller
than zA. Let ¢, be the number of §; that are equal to A (¢, = |{i: f; = A}|) and let ¢,

stand for the number of v; equal to A. Then
S<A(e, 4+ )+ 2A((1—c)+ (1 —a) = A1 — 2)(e, + ) + 22A.

Note that 0 < ¢, ¢, < A and, by (15), we have c.c, < 2A?, so we obtain S < (1 + 2z —
2?)A?, as desired. O

Lemma 6.3.2. Let G be a graph of mazimum degree A which contains no complete
bipartite subgraph with at least zA* edges. Then, the order |R| + |B| of each selection
(R, B) is at most

max((2 — 2),2f(1 + 2z — 2%, 2), 2f (1 — 2/2,2)) A%,
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where f(a,z) = a/2+2z/a — 2.

Proof. Let w,t be a pair of vertices from different partition classes of G maximizing

dl(f) (t) + d@(w). Take S = dl(f) (t) + dg)(w) and without loss of generality suppose that
@)

d? (w) > . Let v be a neighbor of w of highest red degree. Clearly, d,(v) > dTT(“’). Con-

sider d,(v) neighbors of v that are connected to v by a red edge, denoted uy, us, . .., ug, (v)-

We start by proving the following claim.

Claim 4. The number of blue edges is at most S/2 + 22A%/S — zA? = f(S/(2A%), 2).

d,(v) red edges

Y

U1 z /

v H/_/’
<A Yd,(v)
() blue edges

Figure 7: Part of the proof of Lemma 6.3.2: we have at most A —d,.(v) blue edges incident

with = and not incident with a neighbor of v

Proof. Let us count the number of blue edges incident to a neighbor of some u; and not
incident with any neighbor of v. Consider a vertex x at distance 2 from v and distance
1 from u; (see Figure 7). If there is a blue edge xy, where y is different than all ;, then
either y is at distance 1 from v (so we do not count zy) or all u; must be adjacent to x
(because zu; is the only possible link between zy and vu; by G being bipartite). There are
clearly at most A — d,.(v) blue edges incident with = and not incident with any neighbor
of v. As G has no complete bipartite subgraph on zA? edges, there are at most zA?/d,.(v)
such vertices = (incident with at least one blue edge not incident to a neighbor of v), so
the number of edges in question is at most (A — d,.(v))2A%/d,.(v).

To bound the number of all blue edges, we need to add the number of blue edges

incident with a neighbor of v. Consequently, there are at most

A A
d? () + (A — d,(v)) 2~ < dP(0) + ——— — 2A2
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blue edges. Since v and w belong to different partition classes, d\”) (w) > S/2 and dl()Q)(v) <

S/2 which concludes the proof of the claim. [
Claim 5. If S < (1 — 2/2)A?, then the order of selection (R, B) is at most (2 — z)AZ.

Proof. Let m; ., where ¢ € {1,2} and ¢ € {r,b} denote the maximum value of d? (u) for
a vertex u in ¢-th partition class of G. Without loss of generality we may assume that
mayp < mo,. For any red edge ab € R (where a is in the first partition class of G) the

number of blue edges is at most
|B| < dl(f)(a) + dz(f)(b) <may +mop <myp+me, <S.

Consequently, since |R| = |B|, the order of selection (R, B) is at most 25, which proves
Claim 5. 0

Now note that as a function of S, when z and A are fixed, the function S/2+22A%/S —
2A? is unimodal, so if we could bound S both from above and below, it would result in
an upper bound on the number of blue edges by Claim 4.

If S is smaller than (1—z/2)A2?, then the result follows by Claim 5. Therefore, we may
assume that S/A? > 1 — z/2. Moreover, by Lemma 6.3.1 we have S/A? < 1+ 2z — 2%
Using the observation from the above paragraph and Claim 1 we have that the number
of blue edges is at most max(f(1 — 2z/2,2), f(1 + 2z — 2%, 2))A?, which completes the

proof. O
After plugging in the value z = 0.298, we immediately get the following Corollary.

Corollary 6.3.3. Let G be a graph of mazximum degree A which contains no complete
bipartite subgraph with at least 0.298A? edges. Then, the order of each selection (R, B) is
less than 1.703A2,

Proof of Theorem 6.2.4. Suppose that GG is a minimal counterexample to Theorem 6.2.4.
If G has no complete bipartite subgraphs with at least 0.298A2 edges, then by Corollary
6.3.3 the maximum order of a selection in G (equal to maximum order of a bipartite
subgraph of L(G)? with partition classes of equal order) is smaller than 1.703A% By
Theorem 6.1.2 we get that s,(G) < 1.703A?, a contradiction.
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In the remaining case, let H be a complete bipartite subgraph of G with at least
0.298A? edges and consider the graph G’ = G\ V(H). Note that, by our choice of G,
vertices of L(G’)? can be colored using 1.703A? colors. Thus, to complete the proof it is
enough to verify that L(G)? can be obtained from L(G’)? by adding to it vertices one by
one in such a way that each added vertex has degree less than 1.702A? in the existing
graph, and use Lemma 6.1.1. We start with vertices of L(G)? corresponding to edges
having exactly one end in V(H), and then proceed with edges of H.

Consider an edge vw of G, where v € V(H) and w ¢ V(H). Clearly, the degree of vw
in L(G)?\ E(H) (and all its subgraphs) is at most 262 — |E(H)| < 1.702A2.

Now let e = uv € E(H) be an edge of L(G)? There are at most 2A — 2 vertices
adjacent to u or v (and not equal neither to u nor to v), each incident with at most A
edges, so the degree of e (in L(G)?) is at most 2A% — 2A minus the number of edges
(other than e) incident to both a neighbor of u and a neighbor of v. The latter number
is at least the number of edges of H that are not incident with neither u nor v, so it is
strictly greater than 0.298A2 — 2A. consequently, the degree of any edge ¢ = uv € F(H)
in L(G)? is less than 1.702A2.

This completes the proof of Theorem 6.2.4. O

6.4 Possible and impossible improvements

It seems that further exploration of our ideas may lead to results stronger than Theo-
rem 6.2.4. The first possibility is to strengthen Lemma 6.3.1, but even if we could replace
the constant (1 + 2z — 2?) by 1, it would result in strengthening of Theorem 6.2.4 by
only 0.014A2. The obstacle to greater improvement is hidden in the proof of Lemma
6.3.2, where we must carefully consider the case when s is small: if the lower bound on
s provided by Claim 2 would be a bit weaker (where a bit stands for at least 0.061A?%),
then it would lead to worse constants in Corollary 6.3.3.

Other possible way of strengthening the result is to directly bound the number of red
and blue edges, like in the proof of Lemma 6.3.1, getting rid of the weaknesses of Lemma

6.3.2 mentioned above. There is also some hope that this approach will let us remove the
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assumption that G is bipartite.

Note that our proof relies on Theorem 6.1.2. As useful as it is, it is not strong enough
to confirm Conjectures 6.2.2 and 6.2.3. Indeed, if we take the graph K A and subdivide
each edge of some small complete bipartite subgraph, we can produce a graph G’ such that
L(G")? contains the bipartite subgraph K ,, for any given [, m such that [+m = (1+¢)A?
(where € is some constant around 0.05). Similar statement holds for the blowup of C5 (we

can achieve [ +m = (2 + €)A? for € around 0.02).
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7 Side problem: matching subsets

7.1 Mazur’s conjecture

In this chapter we discuss a problem that is not related to strong chromatic index of
graphs, except a rather loose connection; recall that in a strong edge coloring we require
each color to be an induced matching — here we consider perfect matchings in certain
graphs (the graphs are not explicitly used, which simplifies the formulation).

Let S be a finite set and let P(S) be the family of all subsets of S. A red-blue coloring
of P(S) is called antipodal if each set is colored differently than its complement. A
perfect matching respecting given coloring of P(S) is a partition of P(S) into a
number of pairs, such that for every pair {A, B}, A and B are inclusion related subsets
of different colors.

There are many interesting and notoriously difficult problems involving matching prop-
erties in the subset lattice (cf. for instance [18], [28], [29]). The following Conjecture

constitutes an extension of the problem posed by Przemystaw Mazur [25].

Conjecture 7.1.1. For every antipodal coloring of P(S) there is a perfect matching re-

specting this coloring.

The original formulation of this problem concerns matching in the set of all possible
products of a given set of prime numbers, where the smaller half is red and the rest is
blue.

We prove the conjecture in the monotone case: one of the color classes is closed on
taking subsets (in consequence, the other color class is closed on taking supersets), which
solves the original problem. Our result is slightly stronger and concerns partial colorings
of P(S). A rigorous formulation and the proof is found in Section 7.2.

We may generalize Conjecture 7.1.1 to lattices of divisors of an integer. Since notions
of antipodal coloring and a perfect matching can be easily extended, the generalization
may be formulated in exactly the same words. We show that this (obviously stronger)

version of Conjecture 7.1.1 is equivalent to its original form.
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Remark 7.1.2. Conjecture 7.1.1 would imply that for every antipodal coloring of the set

of divisors of an integer n there is a perfect matching respecting this coloring

Proof. Let n = p{'p3?...p%" be the standard factorization into primes. Note that the set
of divisors of the form p¥m and p?“km form a sublattice closed under taking complements,
that is isomorphic to the set of divisors of n’ = pip3?...p% (when «; # 2k) or n' =

p5?...p% (when ay = 2k). The result follows by induction. O

Note that the same argument can be used to prove an analog of our Theorem 7.2.1
for these lattices.

The study of matchings that respect certain constraints is also related to the union-
closed sets conjecture, posed by P. Frankl in 1979, stating that for any union-closed family
F of sets from P(S) there is an element a € S that belongs to at least half of the sets in
the family (cf. [24]).

Remark 7.1.3. Let F be a family of sets from P(S). If there exists a perfect matching
M between F and F such that for every {A, B} € M we have B C A (where A, B € F),

then every element of S is contained in at least half of the sets in F

Proof. Consider a directed graph G on a vertex set F, in which AB is an edge whenever
{A, B} is contained in M. It is easy to see that if a ¢ A, then a € B. As G is a union of

disjoint cycles, the result follows. O

Note that this remark, together with Theorem 7.2.1, proves Frankl conjecture in case
when F is closed under taking supersets (however, it this special case the conjecture can

be proved by a simple, direct argument).

7.2 Aa affirmative result

Let ¢ : P(S) — {—1,0,1} be a coloring of the subsets of S. We interpret —1 as

the red color, 1 as the blue color, and 0 as white. A coloring c is called antipodal if

c¢(A) = —c(A), and monotone if A C B implies ¢(A) < ¢(B), for all A,B C S. A
matching is a collection of disjoint pairs {A, B} such that either A C B or B C A. We
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say that a matching M respects coloring ¢, if ¢(A) = —¢(B) and ¢(A) # 0, for every
pair {A, B} € M. Finally, a matching M is perfect (with respect to ¢) if every subset A
with ¢(A) # 0 occurs in some pair of M.

Theorem 7.2.1 (MD, 2012 [16]). For any antipodal, monotone coloring ¢ of P(S) there
18 a perfect matching respecting c.

Before proceeding to the proof we need more notation. Assume that S = {1,2,...,n}
and let S” = S\ {n}. In order to apply inductive argument we use two types of reduction
of a coloring ¢ from P(S) to P(S’). Let ¢: P(S) — {—1,0,1} be any coloring of P(S).
The weak reduction of ¢ is a coloring ¢, : P(S’) — {—1,0,1} defined by

cw(A) = sgn(c(A) + (AU {n}))

for every A C S'. So, ¢,,(A) = 0 if and only if both sets A and AU {n} are white, or one
of them is red and the other one is blue (in coloring ¢). In all remaining cases the color of
A is inherited from a non-white member of the pair (A, AU{n}). The strong reduction

of ¢ is the coloring ¢, : P(S’) — {—1,0,1} given by
cs(A) = c(A) + c(AU{n}) — cu(A).

For convenience we collect all possibilities in the table below.

c(A) | c(Au{n}) | cu(A) | cs(A)
0 0 0 0
- + + +
+ — 0 0 (16)
— + 0 0
0 - - 0
0 —~ —~ 0
- 0 + 0
—~ 0 —~ 0

The following lemmas show that both types of reduction preserve the desired proper-

ties.
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Lemma 7.2.2. Let ¢ be a monotone antipodal coloring of P(S). Then the weak reduction

Cw 18 a monotone antipodal coloring of P(S’).

Proof. Let A be any subset of S’. Since A is at the same time a subset of S, we have to
distinguish between the complements of A in .S and in S’, which will be denoted simply

as S\ A and S"\ A, respectively. By antipodality of ¢ we may write
cw(A) = sgn(c(A) +c(AU{n})) = sgn(—c(S\ A) — c(S\ (AU{n})))
= —sgn(c(S\ A) +c(S"\ A)) = —sgn(c((S"\ A) U{n}) + (5" \ A))
= —c,(S"\ A).

This shows that ¢, is antipodal. Monotonicity of ¢, follows easily from the monotonicity

of the function sgn(z). O
Similar lemma holds for the strong reduction.

Lemma 7.2.3. Let ¢ be a monotone antipodal coloring of P(S). Then the strong reduction

¢s 1s a monotone antipodal coloring of P(S').

Proof. Let A be a subset of S’. Then by antipodality of ¢ and ¢,, we may write

es(A) = c(A)+c(AU{n}) — co(A) = —c(S\ A) — ¢(S — (AU {n})) + cu(S'\ A)
= —c((S"\NA)U{n}) —c(S"\ A) + ¢, (5"\ A)
= —c,(S'\ A).

Let A and B be subsets of S, with A C B. Put k = ¢(B) +c(BU{n}) — ¢(A) — c(AU
{n}). By monotonicity of ¢ we have & > 0. Hence, the inequality sgn(z) > sgn(z+k) — k
holds for any real number z, and we may write

cs(A) = (A) +c(AU{n}) — sgn(c(A) + (AU {n}))
< c(A) + (AU {nY) + k — sgn(c(A) + (AU {n}) + k)
= «(B) +c(BU{n}) — sgn(c(B) + (B U {n}))
= ¢(B).

This proves the lemma. O]
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The following lemma gives a construction of the desired matching from matchings

related to reduced colorings.

Lemma 7.2.4. Let ¢ : P(S) — {—1,0,1} be a monotone antipodal coloring of P(S), and
let ¢, and cs be the weak reduction and the strong reduction of c, respectively. Let M,
and M; be perfect matchings of P(S’) such that M, respects c,, and Mj respects cs. Then,

there exists a perfect matching that respects c.

Proof. Let G denote a graph on the vertex set P(.S), in which AB forms an edge whenever
A and B are inclusion related. Let H = M,, U M, denote a subgraph of G consisting of
the edges of matchings M,, and M,. Denote for convenience A™ = AU {n}, and for a
connectivity component C' of the graph H, let CT = {A* : A € C'}. Clearly, C' may be a
path or an even cycle. We shall define a new matching M on the red-blue part of P(S)
separately for each set C'U C*. We distinguish two cases.

Case 1. C is an even cycle.

Let Aq,..., Ao, k > 2, be the consecutive vertices of the cycle C, where the edges
Ay Ay, A3Ay, ..., Agk_1 Aoy, belong to the matching M. This implies that ¢s(A;) # 0 for
every j = 1,2,...,2k. In consequence, ¢(A;) = c¢(A]) # 0 for all j (see table 16). This
means that the color pattern on the cycle C' is the same as on its shifted copy C*. Thus,
we may extend the matching M by adding pairs A] Ay, ATAS,... A, A}, Clearly,

each new pair respects inclusion.
Case 2. C s a path with at least one edge.

Let the vertices of the path C' be denoted as Ay, ..., A,,. First we claim that c¢s(A4;) =
0. Indeed, if ¢;(A;) is nonzero, then cs(A4;) # 0 for all j = 1,2,...,m, as the matching
M; covers all of C. This implies (see the table) that also ¢, (A;) # 0 for all j. Hence,
the matching M, covers all vertices of C, too. But this is impossible as the end vertices
of the path have degree one. For the last vertex A, we may argue similarly, hence
¢s(A,,) = 0. In consequence, the first and the last edge of C' must belong to the matching
M,,, which implies that m = 2k. So, the edges Ay As, ..., Agr_1As belong to M, while

Ay As, ..., Aop_2Asx—1 belong to M. Therefore all values ¢ (A;) are nonzero except for
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j = 1 and j = 2k. Analyzing possible sign patterns on the path C' (see Table 16) and

remembering that coloring ¢ is monotonic, we get the following picture:

A Ay Az Ay Agr—1 Ao
cwldj) | — + — + - — +
c(A4) ] 0 + — 4+ - 0 (17)
c4;) | - + - + - — 0
Ay | 0 + — + — +

(The case c,(A;) = 1 gives a symmetric table.) Notice that c(A]) = c¢(A4s) = 0, so
these vertices will not be covered by our new matching M. Now, by monotonicity of
the weak reduction c, it must be A; C Ay. Hence A; C AS and we may include the
edge A;AJ to the matching M. Next we take all edges of the matching M, that is
AgAsz, ..., Agp 2 A9y 1, and the shifted edges AT Af, ..., Af A, Clearly, all new edges
respect inclusion.

Finally, we have to take care of those vertices of G which are colored red or blue by
coloring ¢, but became white in both reductions. Then we simply match A with AU{n},
which is correct, as in this case the sets have opposite colors (see table 16). This concludes

the proof of the lemma. O

Proof of Theorem 7.2.1. Use induction on n and apply Lemma 7.2.4 (that can be aplied

due to Lemmas 7.2.2 and 7.2.3) to construct a desired matching. ]

7.3 Further generalizations

Is it likely that (an analog of) Conjecture 7.1.1 or Theorem 7.2.1 holds for posets other
than the one induced by P(S)7 As the antipodality restriction on the coloring is essential,
we shall focus on posets in which every element has a natural complement. Apart from
lattices of divisors of a natural number, mentioned in Remark 7.1.2, we may consider
lattices of subspaces of a finite vector space (where the unique complement of a subspace
is the largest orthogonal subspace). We believe that at least the following statement is

true.
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Conjecture 7.3.1. For every monotone antipodal 2-coloring of a lattice of subspaces of

a finite vector space there is a perfect matching respecting this coloring.

Remark 7.1.3 suggests a broader area of interest. Are there any properties of antipodal
(partial) colorings of P(.S) (other than monotonicity) that assure the existance of a red-
blue perfect matching? The antipodality alone is not enough (consider a partial coloring
where only two sets are colored). On the other hand, the case when coloring is antipodal

and all sets of size k and n — k are non-white seems promising.

Conjecture 7.3.2. For every partial antipodal coloring of P(S), that assigns color to all

sents of order k and |S| — k, there is a perfect matching respecting this coloring.
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& Conclusions

Note that all our results concerning (variants of) the strong chromatic index of graphs
share one fundamental trait: they rely on not-too-high local density of the graph — In
Theorem 3.2.5 we require that every edge of the considered graph G is in a small number of
4-cycles, Theorem 6.2.4 is proved by showing that L(G)? do not contain a large complete
bipartite subgraph, Theorem 5.1.1 follows from restricting the degree of vertices in large
cliques in L(G)? and Theorem 4.2.2 is proved by coloring edges around nice vertices
(vertices that have a low number of edges in their vicinity). Therefore, our techniques
can be thought of as a development of earlier ideas: the proofs of Theorem of Bruhn and
Joos (Theorem 2.4.2) and Theorem of Molloy and Reed (Theorem 2.4.1) use the fact that
neighborhoods in L(G)? are sparse.

It is not clear how to relate our results on topological and fractional strong chromatic
index to the original variant of the problem. We proved s}(G) < 1.703A% and s(G) <
1.476A? for a bipartite graph G of maximum degree A, and both of theese bounds are
far stronger than 1.93A? that follows from Theorem 2.4.2 (recall that 2A? is trivial), but
both s;(G) and s'(G) are *lower* bounds on s'(G). The improvements seem even more
exciting if one believes that si(G), s}(G) and s'(G) are always close to each other — note
that it is the case with known extremal graphs (blowups of Cj in Proposition 2.3.2 and
complete bipartite graphs) and that there are no premises to think otherwise.

The main weakness of our findings is that they are not tight. However, one should
not reasonably hope for a tight result on the topological, fractional or original variant of
the strong chromatic index, when much easier problems remain unsolved — we would like
to highlight two of them. The first is a very relaxed variant of Conjecture of Erdés and
Negetril (Conjecture 2.4.3): show that the clique number of L(G)%s at most 2A? (where
G is a graph of maximum degree A; see also [40]). The second one emerges from our
considerations in Chapter 5: what is the minimum = = x(A) such that for every graph G
of maximum degree A and every clique in L(G)? the size of that clique plus the minimum

degree of a vertex in that clique is at most x (Conjecture 5.4.2)7
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