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Abstract

Algorithms for computational mass spectrometry based on the optimal transport
theory

In this dissertation, we present a novel approach to developing computational meth-
ods for the analysis of mass and nuclear magnetic resonance spectra. We start with
the discussion of the state-of-the-art approaches, illustrated by a study of nuclear
magnetic resonance spectra of St John’s wort extracts. We describe the need for
mathematical theory for comparison of spectra of different molecules and with dif-
ferent resolutions. We then describe how to use the notion of optimal transport of
signal and the Wasserstein distance to develop algorithms for fitting a linear combi-
nation of reference spectra to a spectrum of a mixture of chemical compounds. The
algorithm makes it possible to accurately estimate the amounts of compounds with
overlapping spectra. We finish the dissertation with an application of our methods
to the problem of segmentation of mass spectrometric images, where we show that
they allow for obtaining biologically accurate and meaningful results when other
common approaches fail. Our results are applicable for various types of spectrom-
etry and spectroscopy, including NMR spectroscopy and mass spectrometry. The
algorithms developed as a part of this thesis are available in an open-source Python
3 package masserstein available at https://github.com/mciach/masserstein.

Streszczenie

Algorytmy obliczeniowej spektrometrii mas oparte na teorii optymalnego
transportu

W niniejszej rozprawie przedstawiamy nowe podejście do projektowania metod ob-
liczeniowych do analizy widm masowych oraz widm magnetycznego rezonansu ją-
drowego (NMR). Rozprawę rozpoczynamy omówieniem obecnie stosowanych me-
tod na przykładzie analizy widm NMR wyciągów z dziurawca. Uzasadniamy po-
trzebę opracowania aparatu matematycznego do porównywania widm różnych czą-
steczek oraz o różnej rozdzielczości. Następnie opisujemy, w jaki sposób wykorzy-
stać koncepcję optymalnego transportu sygnału i odległości Wassersteina do opra-
cowania algorytmu dopasowującego kombinację liniową widm referencyjnych do
widma mieszaniny związków chemicznych. Metoda ta pozwala na dokładną esty-
mację zawartości związków o nakładających się widmach. Rozprawę kończymy za-
stosowaniem opracowanych metod do analizy obrazów spektrometrycznych, gdzie
pokazujemy, że pozwalają one na otrzymanie biologicznie znaczących wyników na-
wet gdy inne metody zawodzą. Podejście do analizy widm zaprezentowane w ni-
niejszej pracy ma zastosowanie do różnych typów spektrometrii i spektroskopii, wli-
czając w to spektroskopię magnetycznego rezonansu jądrowego oraz spektrometrię
mas. Algorytmy opracowane w ramach ninejszej pracy zostały zaimplementowane
w pakiecie masserstein języka programowania Python 3, dostępnym pod adresem
https://github.com/mciach/masserstein.

https://github.com/mciach/masserstein
https://github.com/mciach/masserstein
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Chapter 1

Introduction

Mass spectrometry is a laboratory technique that measures the mass-to-charge ratio
of ionized chemical molecules [1]. Informally speaking, it’s a technique of "weigh-
ing" individual molecules. The mass spectrometer, i.e. the instrument used to carry
out such a measurement, separates ions in an electromagnetic field according to the
Lorentz force:

F = z(E + v× B),

where z is the charge of the ion, E is the electric field vector, v is the ion velocity
vector, and B is the magnetic field vector. In conjunction with Newton’s second law
of motion, which says that the acceleration a of an object is equal to the value of the
force acting on it divided by the object’s mass, we get the relationship:

a = F/m =
z
m
(E + v× B),

where the value of z/m depends on the properties of the analyzed ion, and the val-
ues of E and B depend on the instrument’s setting. While the acceleration is pro-
portional to the ratio z/m, in practice, for the convenience of data analysis, values
of m/z are used. Since in many cases the ions measured in spectrometers are singly
charged (z = ±1), in most of this Dissertation we write about m/z values as ion
masses, meaning the mass divided by a unit charge. Because of this, we will ex-
press the m/z values in Dalton units, i.e. the units of atomic mass defined as 1/12
of the mass of an unbound, neutral carbon atom. By extension, in mass spectrom-
etry, the units of the m/z axis are referred to as Daltons even if the spectra contain
multiply-charged molecules.

The result of a single measurement is not just the mass of a single ion, but an
entire mass spectrum, i.e. a graph showing the dependence of the intensity of the
measured signal on the value of m/z. The intensity is usually proportional to the
numbers of ions with a given mass, but without a simple relation that could be
used to compute one value using the other in general. Therefore, the units of sig-
nal intensity do not have a physical meaning, and usually the relationships between
intensities at different mass values are analyzed. Accordingly, when plotting a mass
spectrum, the y axis is often not labeled.

Mass spectrometry, in combination with other techniques, provides large amounts
of information on the molecules under study. In the case of mixtures with a known
chemical composition, it can be used to estimate the relative content of each com-
ponent of the mixture (as long as these components can be ionized). In the case
of unknown compounds, fragmenting them and then measuring the masses of the
fragments often allows them to be identified. Consequently, mass spectrometry is
used in many different fields of science, from archaeology to medicine, and in many
branches of industry, from synthetic polymers to pharmacy.
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FIGURE 1.1: An example mass spectrum of a lipid mixture. The
signals are labeled with the common names of the corresponding
compounds. The signal with a mass of 821.6 Da belongs to the so-
called isotopic envelope of the lipid PC(36:4). The lipids PC(36:4) and

PC(36:3) have overlapping isotopic envelopes.

While each ion has a unique m/z value, suggesting that a mass spectrum should
be a discrete function. This, however, is not the case. In practice, during a spectro-
metric measurement, each ion has its own initial velocity and position, which makes
the measurement for each ion slightly different. Because of these measurement un-
certainties, actual mass spectra are continuous functions - for each type of ion we get
a certain distribution of signal intensity around its true mass. Such spectra are said
to be in profile mode. An exemplary profile mode mass spectrum of a lipid mixture is
shown in Fig. 1.1.

A spectrum in a profile mode can be converted to a discrete form by a procedure
called centroiding, which consists of an identification of local signal maxima and a
numerical integration of the signals around the maxima. This procedure results in
discrete signals in locations corresponding to approximate m/z values of the ana-
lyzed ions. Such spectra are said to be in centroid mode. By extension, we apply
this term to computationally simulated, theoretical mass spectra of ions, which are
discrete functions as well.

Due to the presence of naturally occurring isotopes, each ion is observed in the
spectrum as a series of signals collectively referred to as an isotopic envelope. The
signal corresponding to the most common isotopes is called the monoisotopic peak of
the ion. In the context of biological and most of the organic molecules, on which
this Dissertation is focused, the monoisotopic peak is generally the signal with the
lightest mass in a given envelope. The spectrum in Fig. 1.1 is composed of five such
isotope envelopes, and the monoisotopic peak of each of them is labeled with the
name of the corresponding lipid.

Envelopes of ions with similar masses often overlap, causing some of their sig-
nals to merge. Therefore, each signal in the spectrum is potentially a mixture of
signals coming from different ions. The fact that a single ion corresponds to many
signals and a single signal to many ions makes many aspects of the analysis of spec-
trometric data highly nontrivial. In particular, determining the relative abundances
of ions in a spectrum requires the separation of overlapping signals. However, this
fact is often ignored, and the integrals of the monoisotopic peaks are used as sim-
ple measures of the abundances. While this carries the risk of obtaining erroneous
results, especially in the case of complex mixtures, the currently existing alternative
methods for this task have not been widely adopted. This is caused, among others,
by computational difficulties and the lack of appropriate mathematical tools, mak-
ing those alternative approaches difficult to use and sometimes inaccurate.
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In this Dissertation, we present a new approach to computational mass spectrom-
etry, based on the mathematical theory of optimal transport. We start the Disserta-
tion with a discussion of the currently used mathematical and statistical tools, illus-
trated by an analysis of nuclear magnetic resonance spectra of St. John’s wort, car-
ried out jointly with the Faculty of Pharmacy of the Medical University of Warsaw,
published in the article entitled Harvest time affects antioxidant capacity, total polyphe-
nol and flavonoid content of Polish St John’s wort’s (Hypericum perforatum L.) flowers [2].
While the laboratory technique used in this study is slightly different from mass
spectrometry, the data analysis methods used in both types of spectrometry are the
same.

We use the example analysis to highlight and discuss the imperfections of the
currently available methods. One of them is the lack of mathematical tools which
could be used to meaningfully compare spectra of different molecules, spectra of
the same molecules obtained under different experimental conditions, or spectra ac-
quired experimentally and predicted theoretically. In order to solve these problems,
we treat mass spectra as probabilistic measures on the real line R — discrete or con-
tinuous depending on the type of spectrum — and use the optimal transport theory
to compare them. Our main tool is the Wasserstein distance, equal to the minimum
total distance on the m/z axis over which the signal needs to be moved in order to
transform one spectrum into the other [3, 4].

We then use the approach based on optimal signal transport and Wasserstein
distance to develop a new algorithm for regression of mass spectra, i.e. the prob-
lem of approximating a spectrum of a mixture of chemical compounds by a linear
combination of spectra of the components of the mixture. We present a basic version
of the algorithm, which solves a simple version of this problem. We assess the ac-
curacy of the estimation and the practical computational complexity by conducting
computer simulations. The results on the Wasserstein distance properties in the con-
text of analysis of mass spectra and the basic Wasserstein regression algorithm were
published at a peer-reviewed conference Workshop on Algorithms in Bioinformatics
(WABI) as an article entitled The wasserstein distance as a dissimilarity measure for mass
spectra with application to spectral deconvolution [5].

Next, we conduct further research on the practical applications of the spectral
regression method and identify the main factors that reduce the accuracy of the esti-
mation. We present an extension of the basic method that automatically detects and
removes contaminating signals in the spectrum of the analyzed mixture during the
fitting procedure. We also conduct further research on the computational aspects
of the presented method and obtain a more efficient algorithm. The results were
published in an article entitled Masserstein: Linear regression of mass spectra by optimal
transport [6].

The Dissertation ends with a presentation of the application of the developed
method to the analysis of mass images, i.e. images in which each pixel is associated
with a mass spectrum. Together with a research group headed by prof. Olga Vitek
from the Northeastern University in Boston, we conduct research on mass image
segmentation, i.e. the problem of dividing an image into regions with characteris-
tic chemical compositions. Using simulated data, we show that the currently used
methods carry the risk of obtaining erroneous results due to overlapping signals
from different compounds and pixel-to-pixel variance of signals. We then show that
our method returns more accurate spatial distributions of compounds thanks to sep-
arating overlapping isotopic envelopes, and the segmentation method developed by
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FIGURE 1.2: An illustration of the L1 distance between two NMR
spectra. The distance between spectra S1 and S2 is equal to the area

of the shaded region.

the group of prof. Vitek returns improved segments thanks to mitigating the influ-
ence of signal variance on their shapes. We then verify our results on two mass im-
ages obtained experimentally. We detect cases analogous to the simulated ones and
show that lipids with overlapping isotopic envelopes are ubiquitous in this kind of
data. We then use our methods to obtain segments with a good correspondence to
the actual anatomical regions. An additional conclusion from this study is that our
methods of simulating mass spectrometric images provide a good representation of
real data sets. We have described the results in an article entitled Resolving overlap-
ping isotopic envelopes improves segmentation of mass spectrometric images (submitted for
review) [7].

1.1 Computational Mass Spectrometry: the state of the art

Computational methods have been used in mass spectrometry since its very begin-
ning [8, 9, 10]. Initially, they allowed for simple analyzes, such as possible elemental
compositions of low-mass compounds. The development of computers and labo-
ratory techniques made it possible to carry out increasingly complex calculations
on increasingly accurate data, resulting in the continuous development of computa-
tional spectrometry.

One of the challenges of the modern computational mass spectrometry is the
problem of regression of mass spectra (often referred to as separating of isotopic en-
velopes or deconvolution of mass spectra), in which an experimentally measured spec-
trum of a mixture of chemical compounds is explained by a linear combination of
theoretically predicted spectra of the mixture’s components [11]. Various spectral
regression approaches look for coefficients of said linear combination that minimize
a chosen measure of difference between it and the spectrum of the mixture. In this
work, we use the terms regression and deconvolution of spectra interchangeably.

One of the frequently used measures of the difference between spectra is the L1

distance, illustrated in Fig. 1.2. For spectra normalized so that their signal integrates
to a unity, we can formally define it as

L1(µ, ν) =
∫

R
|µ(x)− ν(x)|dx.

This distance is used in many different kinds of spectrometry and spectroscopy, in-
cluding mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy.
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The L1 distance measures the cumulative difference of the intensities of signals
with identical m/z values in both spectra, and therefore the total difference in the
relative concentrations of molecules in the compared samples. Other approaches to
comparing spectra are conceptually similar, and differ mainly in the way that the
intensity at a given m/z value is compared between spectra. They include the L2

distance, the correlation of signals, and multiple similar methods.
Measures of difference (or similarity) of spectra are used not only to compare

spectra in the problem of regression, but also in the problem of compound identifi-
cation (where, based on a spectrum of fragments of a chemical molecule, we want
to figure out its structural formula). They are also used in data analysis to compare
spectra of various mixtures of compounds, for example to assess the influence of
experimental conditions on their content.

In order to put the Dissertation in the context of the current state of compu-
tational spectrometry, as well as to familiarize the reader with the use of known
mathematical tools in this context, we start the Dissertation with an exemplary anal-
ysis of extracts from Hypericum perforatum — the popular St. John’s wort — carried
out in cooperation with the Faculty of Pharmacy of the Medical University of War-
saw [2]. The goal of this study is to compare the content of extracts obtained from
plants collected at two different time points with the use of two different solvents.
For this task, we use the L1 distance to determine the overall differences between
the spectra. Then, we identify the signals corresponding to selected compounds,
determine the relative concentrations of these compounds by integrating their sig-
nals, and compare these contents between spectra. We also study the correlation of
selected signals in spectra obtained on two different instruments. While we have
used nuclear magnetic resonance spectrometry instead of mass spectrometry in this
study, the approach to data analysis remains exactly the same for both experimental
techniques.

The mathematical tools used in the analysis of St. John’s wort extract make it
possible to obtain large amounts of information, but also have significant limita-
tions. Due to the properties and interpretation of the L1 distance, it is applicable to
experiments in which we want to compare two mixtures in terms of the concentra-
tion of their compounds. However, this distance does not allow for a comparison of
how different the compounds in two mixtures are — two spectra containing differ-
ent ions will generally have a unit L1 distance, regardless of the chemical similarity
between these ions. On the other hand, comparing the spectra in terms of the chem-
ical similarity of their ions is needed in many types of experiments, for example in
the identification of chemical molecules.

Another problem with the L1 distance is that, in order for the distance to be chem-
ically meaningful, the compared spectra must be obtained on similar instruments
with similar settings. Consequently, it has a limited application when comparing
experimentally measured mass spectra (where the signal is a continuous function)
and theoretically predicted spectra (where the signal is a discrete function). For this
to be possible, the continuous spectrum (called a profile mode spectrum in the spec-
trometric literature) must be converted to a discrete spectrum (called a centroid mode
spectrum) by a centroiding procedure. Typically, centroiding consists of finding lo-
cal signal maxima and numerical integration of the signal within a region around
each of these maxima. Such procedures, like all data transformations of this type,
inevitably lead to the loss of information. For example, we usually lose the infor-
mation about the width of the signals in profile spectra. Moreover, closely located
signals can merge into a single peak with a location inbetween the m/z values of two
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ions, decreasing the mass accuracy of the measurement. Finally, they have a num-
ber of computational difficulties, such as correct and robust identification of signal
maxima and proper integration radii.

In the spectrometric literature to date, there have been no methods that could
meaningfully compare spectra of different chemical molecules or spectra obtained
with different methods. This was particularly problematic in mass spectral regres-
sion, where we want to compare the combination of theoretical spectra with a given
experimental spectrum, as well as in the identification of compounds based on the
spectra of their fragments, where we want to compare fragmentation patterns of dif-
ferent ions. For these reasons, we have conducted research into alternative methods
for comparing mass spectra.

1.2 Transporting signals — a new approach to mass spectra
comparison

The inspiration for the development of a new approach to comparing mass spectra
came from the field of biological sequence analysis, namely the method of sequence
alignment [12]. In simple terms, it is a method based on introducing gaps in two
sequences so as to match their characters as well as possible. The distance between
the sequences is large if we need to insert many gaps and if their characters, paired
through such gap insertion, are dissimilar. An analogy to the desired properties of a
mass spectra comparison method arises, which should reflect the distances between
the signals on the m/z axis, as well as the differences in the intensities of paired
signals.

However, an approach directly based on this kind of alignment of signals in two
spectra would have two major drawbacks. First, it would only be useful for the
comparison of centroid spectra with discrete signals. Second, it would most likely
be computationally expensive — comparing biological sequences has a quadratic
computational complexity with respect to their length, so for mass spectra one can
expect the complexity to be the same or higher.

It turned out that the achievements of the theory of optimal transport could be
used to compare spectra in a way that is conceptually similar to sequence alignment,
but at the same time applicable to profile spectra and less computationally complex.
This can be accomplished by treating mass spectra as probabilistic measures on the
real line R and comparing them using the Wasserstein distance.

Let µ and ν be the two probability distributions on the real line R. Let us consider
the space of their joint distributions Γ. Let d be some distance function on R. The
Wasserstein distance Wd

p is then defined as:

Wd
p (µ, ν) =

(
min
γ∈Γ

∫
R2

d(x, y)pγ(x, y)dxdy
)1/p

.

We interpret it as the minimum total distance (in the sense of the distance d in R)
that the signal from one of the spectra needs to travel to convert it into the other.
The joint distribution γ of measures µ and ν is interpreted as a transport plan: the
amount of signal transferred from µ at x to ν at y is equal to γ(x, y). The definition
of the Wasserstein distance can be extended to other metric spaces than (R, d), but
we will not cover it in this Dissertation [3, 4].

In the context of mass spectrometry, the most interesting is the W |·|1 Wasserstein
distance, i.e. the one where p = 1 and d(x, y) = |x − y|. The usefulness of this
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distance comes from the fact that it has a chemical interpretation as the total differ-
ence in the m/z values of signals in both spectra, and, in turn, the difference in the
m/z values is a natural measure of the difference between chemical molecules. Such
a Wasserstein distance can therefore be interpreted as a summarized difference be-
tween the ions in the compared spectra, as opposed to the summarized difference of
their concentrations measured by L1.

In the following part, we will refer to W |·|1 simply as the Wasserstein distance,
and denote it with the letter W:

W(µ, ν) = min
γ∈Γ

∫
R2
|x− y|γ(x, y)dxdy.

In the article entitled The wasserstein distance as a dissimilarity measure for mass spectra
with application to spectral deconvolution [5], published at a peer-reviewed conference
Workshop on Algorithms in Bioinformatics (WABI), we showed that the Wasserstein
distance reveals the differences in chemical structures of molecules better than the
distances based on comparing the intensities of signals with identical positions on
the m/z axis.

The Wasserstein distance makes it possible to rigorously compare profile spectra
with their centroided counterparts. This allowed for the development of a new mass
spectral regression algorithm, also published in The wasserstein distance as a dissimilar-
ity measure for mass spectra with application to spectral deconvolution [5]. This algorithm
allows for an easier and more accurate fitting of linear combinations of theoretically
predicted spectra to experimentally measured ones than the previous approaches.
Thanks to the properties of the Wasserstein distance, our algorithm does not require
centroiding of the experimental spectra, nor the processing of theoretical spectra so
as to reduce their accuracy to the level of the experimental spectrum, which is nec-
essary for other methods. It is also more robust to measurement inaccuracies on the
m/z axis compared to algorithms based on point-wise comparison of intensities.

Formally, the problem of Wasserstein regression of mass spectra is defined as
follows. Let µ be a spectrum of a mixture (usually measured experimentally) and
let ν1, . . . , νk be the spectra of the components of the mixture (usually predicted
theoretically). Assume that all the spectra are normalized so that their intensities
sum up to unity. We define a model of the mixture as a linear combination νp =
ν1 p1 + · · ·+ νk pk, where p = p1 + · · ·+ pk = 1. Wasserstein regression is a problem
of finding a vector of proportions p∗ that solves an optimization problem given by:

p∗ = arg min
p:p1+···+pk=1

W(µ, νp). (1.1)

In this Dissertation, we show that for normalized discrete spectra (i.e. ones with
a finite number of m/z values which correspond to non-zero signal intensities that
add up to unity) the above problem is equivalent to the following linear program.
Let (s1, . . . , sn) be an ordered vector of m/z values for which any of the µ, νi spectra
has a non-zero signal intensity. Let Ni denote a vector of length n containing the
cumulative sums of intensities of νi in points s1 to sn, and let N denote a k× n matrix
where the i’th row is the Ni vector, and let M denote a vector of the cumulative sums
of signal intensities of µ. Let In denote an n × n unit matrix, and let Jn denote a
matrix of dimensions n− 1× n equal to an identity matrix without the last row. Let
c be a vector of length 2n+ k equal to c = (M,−M, 0k), and let b be a vector of length
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FIGURE 1.3: An illustration of the Wasserstein regression-denoising
method with an experimental spectrum in black, theoretical spectra
in colors, and the auxiliary spectrum ω presented as a vortex sucking

in the noise signals.

n− 1+ k equal to b = (−d, 0k), where di = si+1− si for i = 1.2, . . . n− 1. Let’s define

A =

[
−Jn −Jn 0
N −N −Ik

]
.

Then, the proportions optimizing the problem (1.1) correspond to the last k coordi-
nates of a vector y that solves the following linear program:

max
y
{yTb | ATy ≤ c, y ∈ R} (1.2)

In the Dissertation we present an efficient algorithm based on the Interior Point
Method for solving the above linear program, using the structure of the matrix A to
speed up the calculations. Experiments on simulated mass spectra showed that the
Wasserstein regression method allows for an accurate estimation of the proportions
of mixture components and is robust to measurement inaccuracies on both the m/z
axis and, to a moderate degree, the signal intensity axis. The algorithm was imple-
mented in the Python 3 programming language and published as the masserstein
package, available at https://github.com/mciach/masserstein.

1.3 Further research on spectral regression — removal of con-
taminating signals

Good preliminary results in the comparison and regression of spectra using the
Wasserstein metric resulted in further research into this approach. In an article en-
titled Masserstein: Linear regression of mass spectra by optimal transport [6], we have
examined more properties of this metric in the context of comparing mass spectra.
In particular, we give theoretical calculations of its values on pairs of spectra repre-
senting some common cases, such as the distance between spectra of the same ion
in profile (continuous) and centroid (discrete) modes. We have also further devel-
oped the original Wasserstein regression algorithm to increase the accuracy of the
estimation, its computational complexity, and the method’s practical applicability.
While the basic algorithm allowed for obtaining the correct proportions of the mix-
ture components in well-prepared spectra, its application to typical mass spectra
required further work.

At this stage of the research, the main problem that caused errors in the estima-
tion of component proportions from real spectra was the presence of signals origi-
nating from sample impurities, spectrometer errors, and other sources. We refer to

https://github.com/mciach/masserstein


1.3. Further research on spectral regression — removal of contaminating signals 9

such signals collectively as noise.
Removing noise during data pre-processing would carry the risk of removing

some of the actual signal from the spectrum, and would also stand in conflict with
the paradigm of the masserstein package, which aims to reduce the need for such
preprocessing and provide algorithms that can analyze "raw" data. For this rea-
son, we have modified the Wasserstein regression algorithm so that it detects and
removes the noise simultaneously with the fitting of the model (i.e. the linear com-
bination of theoretical spectra).

The main conceptual novelty in the new regression algorithm was the introduc-
tion of an auxiliary "artificial spectrum" ω to which we could send some signal from
the spectrum of the mixture. The ω spectrum is a relatively unusual concept: it is
a normalized spectrum (i.e. with a unitary total signal intensity) whose signal is
concentrated at one point without a specified position, but which distance to any
point on the line R is equal to a number κ which is a parameter of the model. A
visualization of the proposed approach is shown in Fig. 1.3.

The Wasserstein regression-denoising procedure presented in the Dissertation
consists in solving an optimization problem with k + 1 variables:

p∗ = arg min
p:p0+···+pk=1

W(µ, p0ω + νp), (1.3)

where, as in the problem (1.1), µ is the spectrum of the analyzed mixture, and νp =
ν1 p1 + . . . νk pk is the model of this spectrum, i.e. a linear combination of the spectra
of the mixture components. Note that now we require p0 + p1 + · · · + pk = 1, so
the signal of the spectrum νp may not sum up to unity (or integrate to unity in the
case of profile spectra). This represents a situation when not all signal from µ can be
represented by the model.

The unusual structure of the "spectrum" ω provides the regression-denoising
method with several properties which are important from a practical point of view.
We treat the signal transported from the µ spectrum to the ω spectrum as noise re-
moved from µ. Due to the fact that ω is defined as equidistant from each point on
R, we get a constant cost κ of removing signal, in the sense that the cost does not
depend on the signal’s location on the m/z axis. The total amount of signal removed
from µ is equal to the estimated proportion of spectrum ω, that is p0. In addition,
such an abstract definition of the regression-denoising problem facilitates its theoret-
ical analysis. In the Dissertation we present an interpretation of the κ parameter as
the maximum "feasible" distance of signal transport on the m/z axis. This interpre-
tation is important from the point of view of practical applications of our method,
because it allows for the initial selection of the value of the κ parameter. We also
present the results of several special cases, including examples when transport can
occur at distances greater than κ (showing that κ does not give a strict threshold of
such distances, which adds some desired flexibility to the model), and we exam-
ine the uniqueness of the solution to the regression-denoising problem (namely, we
construct a case for which the solution is non-unique).

While the regression-denoising procedure in the form of Equation (1.3) is well
suited for theoretical analysis, it does not constitute in itself the basis for an imple-
mentation of an algorithm that estimates the proportions of reference spectra. In or-
der to transform the problem (1.3) into a form suitable for implementation in a com-
puter program, we apply an approach analogous to that used in the basic version
of the algorithm: we show that this problem can be expressed as an L1-regression
on the cumulative sums of signals of the studied spectra, that can then be solved
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by linear programming. In this case, however, we use a different method of trans-
forming the L1 regression problem into a linear program, and we carry out further
transformations to simplify it. Finally, we show that solving problem (1.3) is equiv-
alent to solving the following (dual) linear program, where V is the intensity vector
of the spectrum µ (i.e. Vi = µ(si)), and W is the intensity matrix of the νi spectra (i.e.
Wij = νj(si)):

maximize VTz over z
subject to WTz ≤ 0,

zi − zi+1 ≤ si+1 − si, i = 1, 2, . . . , n− 1,
zi − zi+1 ≥ si − si+1, i = 1, 2, . . . , n− 1,

z ≤ κ,

(1.4)

The optimal proportions of the components of the mixture are equal to the dual vari-
ables for the constraints WTz ≤ 0 of the above program, and the amount of signal
removed from the µ spectrum at point si is a dual variable for the constraint zi ≤ κ.
To solve problem (1.4), we used the Simplex method implemented in the PuLP pack-
age of the Python 3 language. Note that, thanks to the aforementioned simplification
of the linear program, we obtained an optimization problem over n variables, com-
pared to n− 1 + k variables in the algorithm presented in the previous section, even
though the method itself is more complex and implicitly involves additional vari-
ables corresponding to amounts of noise removed from the points of µ.

1.4 Mass Image Segmentation

The Wasserstein regression-denoising method is not only interesting due to its math-
ematical and computational properties, but is also useful for chemical and biological
research. Thanks to the separation of overlapping signals, it allows for a more pre-
cise determination of the concentrations of particular ions in the studied spectrum.
This, in turn, allows us to obtain more accurate results and to perform more complex
analyzes. One of the applications of our method is the analysis of mass spectromet-
ric images, that is, images in which each pixel is associated with a mass spectrum.
Such images are typically obtained for biological samples, e.g. for tissue sections,
and allow for a visualization of the spatial distributions of hundreds of molecules in
a single experiment.

Together with the group of prof. Olga Vitek from Northeastern University in
Boston, we conducted a research on mass spectrometric image segmentation, where
the regression-denoising method turned out to be crucial for obtaining biologically
correct results. A segmentation of a mass spectrometric image is a problem of di-
viding it into areas with characteristic spectra. Generally, the purpose of the seg-
mentation is to discover areas of the sample with characteristic chemical compo-
sitions, such as tissues, tumors, or other anatomical regions. A correct segmenta-
tion, i.e. one in which the segments correspond to actual anatomical regions, allows,
among other things, for identification of biomarkers, i.e. compounds characteristic
for those regions. Conversely, if the segments inaccurately or incorrectly correspond
to anatomical regions, this leads to inaccurate or erroneous conclusions about the
chemical characteristics of the studied tissues.

One of the basic and common approaches to the segmentation problem is to se-
lect an m/z value of interest (typically the monoisotopic mass of a selected molecule),
determine the corresponding signal intensities in each pixel, and cluster these inten-
sities with the K-means algorithm. In this case, we cluster one-dimensional data
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FIGURE 1.4: A comparison of mass spectrometric image segmenta-
tions based on the K-means clustering (bottom left) of the monoiso-
topic peak intensity of a selected lipid (top left) and the spatial-DGMM
segmentation (bottom right) based on lipid signal estimated with the

regression method proposed in this Dissertation (top right).

and ignore the spatial relationships between pixels. Naturally, such a simple ap-
proach turns out to be sensitive to the problem described in the introduction, namely
overlapping isotopic envelopes, especially when the overlapping ions have different
spatial distributions. It is also be sensitive to the naturally occurring variance of in-
tensity between pixels (termed pixel-to-pixel variance or variability), which means that
two pixels from different tissues may have similar intensities at a given m/z, while
at the same time those intensities for pixels in a single tissue may differ.

In the article titled Resolving overlapping isotopic envelopes improves segmentation of
mass spectrometric images (submitted for review) we show that overlapping isotopic
envelopes and pixel-to-pixel variance do indeed carry the risk of obtaining segmen-
tation that either has no biological significance or even misidentifies biomarkers [7].
We construct a simulated data set in which the K-means segmentation mixes pixels
from different tissues and misidentifies biomarkers of healthy and diseased tissues.
We then show that Wasserstein regression method, developed in this Dissertation
and implemented in the masserstein package, allows for a proper assignment of
biomarkers thanks to separating overlapping signals. However, due to the pixel-
to-pixel variability of ion signals, the method is not sufficient to obtain segments
with a high degree of agreement with the anatomical regions. To overcome the latter
problem, we combined the masserstein package with the spatial-DGMM segmenta-
tion method, developed by the group of prof. Vitek, which accounts for the spatial
relationships between pixels.

The segmentation based on the combination of masserstein and spatial-DGMM
methods corresponded well to the anatomical regions on the simulated data. We
then applied our methods to the analysis of two mass images, in which we have de-
tected overlapping isotopic envelopes which caused the K-means method to return
an incorrect segmentation. Our methods, on the other hand, produce segments that
closely match actual anatomical regions. A comparison of segments, corresponding
to different characteristic concentrations of a selected lipid, obtained by the K-means
method and our approach is shown in Fig. 1.4. We have also determined that, in
both images, about 50% of the lipids have monoisotopic peaks that fall within iso-
topic envelopes of other lipids, which results in the risk of erroneous estimation of
their concentration.
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1.5 Summary of the Chapter

In the dissertation titled Algorithms for computational mass spectrometry based on the
optimal transport theory, we investigate the use of the Wasserstein distance for com-
paring mass spectra. We use this distance to develop an algorithm for the problem of
regression of mass spectra, which we then extend so as to detect and remove contam-
inating signals and speed up the computations. We apply the developed algorithm
to the problem of mass image segmentation and show that it outperforms currently
used approaches in terms of the biological relevance of the results, allowing for a
more reliable identification of tissue biomarkers.

This Dissertation presents interdisciplinary results, connecting problems and so-
lutions from mathematics, computer science, chemistry, and biology. Accordingly,
it is structured in a way to make it accessible for readers from different disciplines.
In each chapter, we provide explanations of laboratory techniques and terminology
from chemistry and biology, as well as intuitive explanations of mathematical defi-
nitions and results. In Chapters 4 and 5, which deal with algorithms for regression
of mass spectra, we first provide brief and general overviews of the algorithms, and
then proceed to demonstrate their applications. Formal proofs are relegated to sep-
arate sections for interested readers.
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Chapter 2

Current approaches to analysis of
spectral data

Due to its wide range of well documented pharmacological activities, such as antide-
pressant, antiviral, and antibacterial effects, St. John’s wort (Hypericum perforatum L.)
is one of the most consumed medicinal plants in the world [13]. Its extracts are used
as phytopharmaceuticals and nutraceuticals. St. John’s wort antidepressant activity
has been related to the synergetic effect of hypericin and phenolic compounds [14].
The latter modulate the key cellular processes such as redox, metabolic and energetic
homeostasis, proteostasis, signaling and oxidative stress, thus decreasing the risk of
cardiovascular, neurodegenerative and metabolic diseases, as well as of some forms
of cancers [15].

Although, due to the presence of phenolic compounds, H. perforatum has antiox-
idant properties, there are only a few studies on this subject [14, 16, 17, 18, 19, 20,
21, 22]. The variation in total polyphenol (TP) content and antioxidant properties of
St. John’s wort from the Balcan peninsula [17], Lithuania [23, 24], Turkey [25] and
China [26] was studied. The main factors which influenced the TP and antioxidant
properties were geographical origin, whether the plant was wild or cultivated [27],
individual chemotype [28], part of the plant studied (leaves, flowers, fruits, roots),
harvesting stage (floral budding stage, blooming stage or fruit set stage) and the
age of the plant (1-, 2- or 3- year plant) [26, 29, 30, 31]. However, many other factors,
including the temperature and light intensity, also influence these properties [30, 32].

TP and antioxidant properties are very general characteristics of plant extracts,
typically studied by chromatographic techniques. These techniques require refer-
ence compounds and usually do not reveal unknown metabolites that may con-
tribute to the biological activity of the phytochemicals [33]. Nuclear Magnetic Res-
onance (NMR) spectroscopy makes it possible to overcome these limits, detecting
both known and unknown constituents of complex mixtures. In particular, 1H NMR
spectroscopy is widely used in studies of plant extracts to quantitatively and simul-
taneously analyze all proton-bearing compounds, and consequently all relevant sub-
stance classes in the extracts [33, 34].

The signals of main components of H. perforatum extracts were assigned previ-
ously using high-field NMR spectra, i.e. NMR spectra with a high resolution of
signals [35]. However, handling a high-field NMR spectrometer is sophisticated and
costly, and requires large quantities of not environmentally friendly liquid helium
and liquid nitrogen. Thus, in the last decades, benchtop instruments are gaining
popularity. A number of benchtop NMR spectrometers operating at 40-100MHz is
available and used both in research and industry. Benchtop NMR spectrometers
are significantly cheaper, smaller and much easier in operation, and do not require
liquid helium nor liquid nitrogen. However, due to their low resolution, benchtop
spectrometers are used mainly in chemical reaction monitoring, studies of synthetic
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drugs, and other applications where well-separated signals can be obtained. On
the other hand, typical NMR spectra of plant extracts consist of highly overlapping
signals. Low operating frequencies increase the overlap even further, resulting in
signals which are hard to identify or quantify. This limits the possibilities of direct
applications of benchtop NMR for the studies of plant extracts.

The contents of this Chapter. In this Chapter, we present an application of statis-
tical and mathematical methods to analyze spectra. We illustrate this application, as
well as the drawbacks of the modern approaches, on a study of the compositional
variation of H. perforatum extracts. We use spectra obtained on two types of spec-
trometers: a high-field one, with a high resolution on the ppm axis (corresponding
to the m/z axis in mass spectrometry), and a benchtop one, with a low resolution
and many overlapping signals. We apply basic statistical methods to check if the
benchtop instrument accurately reflects the differences in samples as observed in
the high-field spectra. We discuss problems arising due to overlapping signals that
can be potentially solved by advancements in computational spectrometry. We illus-
trate the problems with comparing spectra obtained on the two instruments caused
by differing resolutions.

2.1 Materials and methods

Plant material (flowering tops) was collected from its natural habitat in 2016 from the
end of June till the end of August (26.06, 20.07, 8.08, 18.08, 28.08) in the vicinity of
Radom (Mazovia Province), located in the east-central of Poland (GPS coordinates
51.317709, 21.259254). The place is 162m above sea level. According to Köppen-
Geiger climate classification this climate is classified as Dfb (warm-summer humid
continental climate). The plant material was compared with the botanical descrip-
tion key [36] and the botanical drawing from an atlas of plants1. The shape of the
stem and leaves, the arrangement of the leaves and the inflorescence, the structure
/ type of flower, and the appearance of the fruit was compared. The characteristic
feature of H. perforatum, i.e. translucent dots on flower petals and leaf blades, were
identified. After identification of the plant, only flowers at the blooming stage were
collected. Part of the collected plant material was air-dried in a dark place, at room
temperature, for 7 days. A second part of the collected plant material was frozen
and lyophilized at -25 ◦C for 96 h. The water content of dried plant material was
determined by the oven-drying method: portions of dried and lyophilized plant
materials were weighted, dried in an oven for 2 hours at 105 ◦C, and reweighed.
Then, 50 ml of solvent (either ethanol 96% or an ethanol-water mixture (1:1)) was
added to 1 g of mechanically ground plant material and sonicated at 30 ◦C for 15
min. Then, extracts were filtered and dried in vacuum at either 25 ◦C (ethanol) or
35 ◦C (ethanol-water). For analysis, reconstituted solutions with a concentration of 2
mg/ml were used. All samples were prepared in duplicates. The prepared extracts
were kept at -18 ◦C until used.

For NMR analysis, the extracts (10 mg) were dissolved in 400 µl of MeOD (deu-
terized methanol). 1H NMR spectra were recorded at 301 K on a Magritek 60 MHz
Ultra Spinsolve instrument (Magritek GmbH, Aachen, Germany) (256 scans, a rep-
etition time of 15 s, an acquisition time of 6.4 s with the suppression of the water
peak) or a Varian VNMRS 300 Oxford spectrometer (Agilent Technologies, Santa
Clara, USA) operating at 299.61 (1H) MHz (128 scans, a repetition time of 1 s and an

1http://www.biolib.de/

http://www.biolib.de/
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FIGURE 2.1: 1H NMR spectra of H. perforatum extracts. a) A benchtop
NMR (60 MHz) spectrum of the ethanol extract; b) A benchtop NMR
(60 MHz) spectrum of the ethanol-water extract; c) A high field NMR

(300 MHz) spectrum annotated based on available literature.

acquisition time of 2 s). Each sample was prepared in duplicate. The spectra were
normalized by their total signal calculated by numerical integration with the trape-
zoidal method. Spectra were recalibrated manually by shifting the signals in order
to match intense signals at 4.92000 ppm and 1.36204 ppm between the spectra.

2.2 Results and discussion

We have used two NMR instruments to analyze samples from ethanol and ethanol-
water based extraction for two collection dates, June 26 and August 18 (Fig. 2.1). The
first instrument was a conventional spectrometer with 300 MHz frequency, while the
second one was a benchtop instrument with 60 MHz frequency. Apart from the anal-
ysis of the spectra, we aimed to investigate the extent to which the low-resolution
benchtop instrument can be used to analyze samples after prior identification of sig-
nals on the higher-resolution 300 MHz spectra.

The assignments of NMR signals of the main compounds, shown in Fig. 2.1, were
based on the data published by Rasmussen et al. [35] and Bilia et al. [33]. The anal-
ysis showed that the studied extracts contain hyperforin, sugars, lipids, flavonoid
glycosides (including such constituents of H. perforatum extracts such as hyperoside
and rutin), and chlorogenic acid.

The spectra recorded with the benchtop NMR (60MHz) have a lower resolution
and consist of highly overlapping signals. Nevertheless, they show noticeable dif-
ferences in the ethanol and ethanol-water extracts (Fig. 2.1). We have also observed
some differences in the extract composition for different collection dates.
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TABLE 2.1: Signal fold changes for identified components computed
from 300 MHz spectra. Increasing and decreasing signals highlighted
in green and blue respectively. June 28 w.r.t. August 18: the signal
area at August 18 divided by the corresponding signal area at June 28
per solvent and compound; Ethanol-Water w.r.t. Ethanol: the signal
area in the spectrum of an ethanol-water extract divided by the cor-
responding signal area in the spectrum of an ethanol extract per date

and compound.

Signal area ratio
June 28 w.r.t. August 18 Ethanol-Water w.r.t. Ethanol

Compound ppm range Ethanol-Water Ethanol August 18 June 28
Rutin 0.85-1.06 0.607 0.967 0.256 0.407
Lipids 1.07-1.3 0.678 1.224 0.187 0.338

Hyperforin 1.6-1.8 0.501 0.985 0.223 0.439
Beta-glucose 4.51-4.57 1.257 1.361 1.328 1.437
Hyperoside 5.04-5.14 0.654 0.993 0.38 0.577

Alpha-glucose 5.15-5.19 1.002 1.208 1.062 1.281
Chlorogenic

acid 6.24-6.31 0.747 0.782 1.295 1.356

6.55-7.26 0.66 0.773 1.271 1.49Flavonoid
glycosides 7.88-7.93 1.003 0.854 1.177 1.002

To compare the high-field spectra of the samples quantitatively, we have normal-
ized the spectra by their total area, integrated the assigned signals, and computed
the ratios of their areas. The results are shown in Table 2.1. Compared to the ethanol
extracts, the ethanol-water ones contained less lipids, hyperforin, and hyperoside
than the ethanol-water ones, but more sugars, flavonol glycosides and chlorogenic
acid. The most pronounced changes from June 26 to August 18 were a decrease in
the amount of chlorogenic acid, hyperoside, hyperforin and flavonol glycosides, as
well as an increase in the sugar content, in particular the alpha- and beta-glucose.
The ethanol extracts also showed a slight increase in the lipid content.

The ethanol-water extracts showed a decrease in the signal in the lipid region,
contrary to the ethanol extracts. However, as the former contained a much smaller
amount of lipids than the latter (between three to five times, see Table 2.1), which is
likely to cause a less precise measurement, we can conclude that the lipid content has
increased from June 26 to August 18. The increase in lipid content is in agreement
with the results reported by Amira et al. [37], where the flowers harvested at the end
of August presented higher values of lipids (25.48 %) than harvested at the end of
June (18.56 %). Similar results were reported for the leaf extracts of Ilex paraguarien-
sis, where a higher content of fatty acids was found in autumn and winter compared
to spring and summer. This could be associated with biotic and abiotic stresses or
plant hormones, especially jasmonic acid and its derivatives [38].

To check the overall differences between the high-field spectra, we have calcu-
lated their L1 distances, defined as the area contained between their signals (i.e. the
integral of the absolute difference of the signals). This distance measures the overall
difference in signals of all compounds. In general, the choice of solvent had a much
more pronounced effect on the sample composition than the collection date. The dif-
ferences between samples obtained using different solvents were two- to four times
larger than between different collection dates, as shown in Fig. 2.2. The ethanol
spectra had only a minor difference between collection dates, with the L1 distance
approximately equal 0.17. On the other hand, the composition of samples was highly
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FIGURE 2.2: Comparison of NMR spectra obtained on the 300 MHz
instrument for different solvents and collection dates. The L1 dis-
tance (total area difference) measures the overall difference in signal
intensities between the compared spectra. The results indicate that
the solvent has a two to four times larger impact on the overall sam-

ple composition than the collection date.

dependent on the choice of the solvent, as the L1 distance between the correspond-
ing spectra reached 0.70.

Our final goal was to check if similar results can be obtained on a 60 MHz bench-
top instrument. We have focused on signals which could be visually identified based
on the 300 MHz spectra. Note that, due to a much lower resolution, the regions iden-
tified in the 60 MHz spectra were much broader than in the case of 300 MHz spectra,
and only a few of them did not overlap with other signals. Thus, the integration
regions were adapted manually to correct for the difference in resolutions (see Ta-
ble 2.2 and Figure 2.3).

The 60 MHz instrument has correctly detected the increases and decreases of
the quantities of analyzed compounds. Moreover, we have detected a statistically
significant positive correlation between the 300 MHz and 60 MHz results when dif-
ferent solvents and different dates were compared (ρ = 0.9, p < 0.005, Student’s
exact test). The results suggest that a low-field benchtop instrument can be used to
detect changes in the sample composition when signals are identified on a high-field
instrument and carefully adjusted for low-field spectra. Further development of sta-
tistical methodology, such as confidence intervals for area ratios, is also needed in
order to obtain more reliable results with low-field benchtop instruments. If this is
achieved, such instruments have the potential to greatly reduce the time and costs
of preliminary analyses and screenings of samples.

2.3 Summary of the Chapter.

In this Chapter, we have presented an example analysis of NMR spectra, using
methods which are commonly applied to nearly all kinds of spectrometry and spec-
troscopy. Using a basic mathematical and statistical concepts such as the L1 distance
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TABLE 2.2: Comparison of signal area ratio changes measured on
300 MHz and 60 MHz instruments. Increasing and decreasing sig-
nals highlighted in green and blue respectively. Ethanol-Water w.r.t.
Ethanol: the signal area in the spectrum of an ethanol-water ex-
tract divided by the corresponding signal area in the spectrum of an

ethanol extract per date and compound.

Signal area ratios
Ethanol-Water w.r.t. Ethanol

ppm range August 18 June 28Compound 300 MHz 60 MHz 300 MHz 60 MHz 300 MHz 60 MHz
Rutin and lipids 0.75-1.55 0.7-1.55 0.231 0.289 0.356 0.324

Hyperforin 1.6-1.8 1.57-1.92 0.223 0.307 0.439 0.286
Beta-glucose 4.51-4.57 4.44-4.66 1.328 1.602 1.437 1.853

Chlorogenic acid 6.24-6.31 6.16-6.34 1.295 1.627 1.356 1.780
6.55-7.26 6.55-7.26 1.271 1.833 1.490 1.974Flavonoid

glycosides 7.88-7.93 7.85-7.96 1.177 2.302 1.002 2.091
Correlation 0.921988 0.905054

p-value <0.005 <0.005

and the Pearson’s correlation, we could infer that the collection date has an influ-
ence on the composition of the extracts of Hypericum perforatum, including a higher
concentration of glucose in plants collected in late summer. We have also shown
that a low-resolution benchtop NMR can be used to evaluate the composition of the
extracts.

From this study, we can draw several major conclusions about the current ap-
proaches to the analysis of spectra and pinpoint areas in which computational and
statistical methods can improve the reliability of the results. First, a notable amount
of work needs to be done manually. To calculate the fold changes in the concentra-
tions of different molecules in the high-resolution 300 MHz spectra, we had to man-
ually select the regions of the molecules’ signals based on available literature. Then,
to compare the spectra obtained on different instruments, we had to manually adjust
those regions to match the broader signals of the low-resolution spectra. Here, we
did not have any other reference or a library of identified signals, so the adjustment
was based on a visual comparison of signals in the high- and low-resultion spectra.
Naturally, such approach to data analysis is highly subjective. What’s more, in NMR
spectra, just like in mass spectrometry, a single compound gives rise to multiple sig-
nals (see e.g. the regions of flavonoid glycosides in Table 2.1). Typically, only some of
those signal are selected for integration, because some signal can be subject to inter-
ference from other molecules, and others can be too low to be accurately quantified.
Again, this selection is often subjective. Advancements in computational spectrom-
etry and spectroscopy have the potential to decrease the extent of subjectivity in the
analysis of spectra. In particular, methods that could accurately compare spectra
with different resolutions and identify matching signals are needed.

Low-field benchtop NMR instruments have the potential to greatly reduce the
time and costs of preliminary analyses and screenings of samples. However, al-
though they can detect major changes in the sample composition, they currently
have limited applications in quantitative analyses of selected metabolites. This is
caused, among others, by the lack of appropriate statistical and computational meth-
ods that could be applied to analyze spectra with a rather small signal-to-noise ratio
and a considerable number of overlapping signals. The problem of separating over-
lapping signals in order to accurately quantify the concentrations of molecules is
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ubiquitous in various kinds of spectrometry and spectroscopy. It is especially desir-
able to be able to quantify the amounts of molecules using their reference spectra ob-
tained either on different instruments (such as high-resolution NMR spectroscopes)
or by theoretical means (such as theoretical isotopic envelopes in mass spectrome-
try).
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FIGURE 2.3: Regions selected for the area ratio analysis of low-
resolution and high-resolution NMR spectra.
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Chapter 3

Comparing spectra using the
Optimal Transport Theory

Mass Spectrometry (MS) is one of the main analytical techniques of modern pro-
teomics and metabolomics, which allows for identification and quantification of
molecular compounds. In the first step, the particles are ionized; next, they are sep-
arated in an electromagnetic field according to their mass to charge ratio (m/z), and
finally transferred to a detector. The detected signal, usually proportional to the
number of ions, is plotted against the corresponding m/z value on a mass spectrum.
A pair of detected m/z value and the corresponding signal intensity is called a peak.
The signal intensity is often referred to as ion current [39, 10].

The m/z value can be used to infer the chemical composition of molecules (see
e.g. [40]), but it does not give information about its chemical structure. To gain in-
sight into the latter, several measurement steps are performed in a technique called
Tandem Mass Spectrometry (Tandem MS). After each step, a range of m/z value
is selected, and ions from that range are subjected to fragmentation before the next
measurement. The mass spectrum obtained from the n-th measurement is referred
to as an MSn spectrum.

Even though the MS1 spectrum is recorded prior to any fragmentation, a sin-
gle compound can give rise to several peaks. This is due to the natural occurrence
of isotopes, i.e. atoms with the same number of electrons and protons, but different
numbers of neutrons. Molecules which differ only in their isotopic compositions are
termed isotopologues. A group of peaks corresponding to isotopologues of a single
molecule is referred to as an isotopic envelope (c.f. Fig. 3.1).

Tandem MS can be used to identify the molecule under study. There are two
main approaches to this task: de novo sequencing and database search. The first
one strives to identify the elemental composition and/or structure of the molecule
purely based on the mass spectrum of fragments. The second one searches a database
of mass spectra obtained from known molecules to find the most similar one [41, 42,
43].

To be able to search for a similar spectrum, either a similarity or a distance mea-
sure needs to be employed. There are two main groups of such measures. The first
one relies on the number of matching peaks. Two peaks are said to match if their m/z
values differ by less than a given threshold. An example of such measure is the Jac-
card score, equal to the number of matching peaks divided by the number of distinct
peaks in both spectra. The second group of measures takes into account both the lo-
cation and the intensities of peaks. An example of such measure is the Euclidean
distance or the correlation coefficient [41, 42].

Both groups are similar in the sense that they compare peaks with the same m/z
value. As a consequence, they are highly sensitive to even the slightest differences
in chemical formulas. For example, apigenin (C15H10O5) and quercetin (C15H10O7)
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FIGURE 3.1: Molecular structures and MS1 spectra of apigenin (left)
and quercetin (right) showing their isotopic envelopes. Peak inten-
sities have been normed to sum to 1. The mass spectra have been
downloaded from the MassBank database (MassBank IDs: TY000164,

TY000119).

are two molecules which differ by two oxygen atoms (see Fig. 3.1). Even though
this difference is relatively small compared to the overall atom count, the MS1 spec-
tra contain no matching peaks. Consequently, the discussed measures do not detect
any similarity between these molecules. Some approaches make a preprocessing of
spectra to infer an optimal pairwise matching of peaks before computing the simi-
larity [44]. This, however, requires an additional computational step, increasing the
computational complexity as well as the risk of inaccurate results.

Apart from the differences in chemical compositions of molecules, naturally oc-
curring measurement inaccuracies also hinder the capabilities of the common ap-
proaches to meaningfully compare mass spectra. In order to overcome these prob-
lems, in this Chapter we will investigate a spectrum dissimilarity measure based on
the theory of optimal transport, with the aim to develop a method that allows us
to compare spectra with different resolutions and is robust to measurement errors
in the mass domain. The measure is based on the concept of transporting the ion
current (i.e. the signal) between the spectra. The idea behind the measure is to trans-
port the ion current from one spectrum onto the other and quantify the distance that
the current needs to travel. The dissimilarity between the two spectra is equal to the
minimal distance in m/z domain that needs to be traveled in order to fully trans-
form one spectrum into the other. This makes it possible to express the distance
between spectra in Daltons. The particular distance investigated in this Dissertation
is known in the field of probability theory as the (first) Wasserstein distance [3], and
in the field of image processing as the Earth Mover’s distance [45]. Under certain
assumptions, it can be computed in time linear in the number of distinct peaks in
both spectra.

The Wasserstein distance makes it possible to more accurately reflect the differ-
ences in chemical compositions of the molecules. In particular, the Wasserstein dis-
tance between MS1 spectra of two ions with the same charge is approximately equal
to the molecules’ mass difference. For example, the distance between the MS1 spec-
tra from Fig. 3.1 is equal to 31.48 Da, while the difference in their masses is equal to
32.19 Da. With this interpretation, we can consider as fairly similar those spectra for
which the Wasserstein distance is less than one hydrogen mass. Apart from quanti-
fying the dissimilarity, the computed transport of ion current allows for a matching
of corresponding peaks in the compared spectra, which can aid in the detection of



Chapter 3. Comparing spectra using the Optimal Transport Theory 25

FIGURE 3.2: Example values of the Wasserstein distance between
mass spectra. Left: Two spectra in centroid mode, with the Wasser-
stein distance between them being equal to 0.078 Da. Right: A spec-
trum in profile mode and a corresponding centroided one, with the
Wasserstein distance equal to 0.032 Da. Both values, being less than
1 hydrogen mass, indicate a fairly high degree of similarity, even
though no peaks match in the first example and the spectra are in

different modes (profile vs centroid) in the second one.

differences in elemental composition and chemical structure (see Fig 3.3).
Some other examples of the values of the Wasserstein distance between pairs

of spectra are shown in Fig. 3.2. The spectra are artificially constructed in order to
provide simple and clear examples. Consequently, we have purposefully neglected
several important phenomena occurring in actual spectra, such as the background
noise, which will be dealt with later on in this Dissertation. Worked examples of
how to compute this distance between pairs of spectra are also provided later on in
this Chapter.

In the right panel of Fig. 3.2, we consider a pair of corresponding spectra in pro-
file and centroid mode. Even though such spectra cannot be meaningfully compared
using conventional measures, such as the Euclidean distance, the Wasserstein dis-
tance between them has a small value of 0.032 Da. As shown later on in this Chapter,
this value reflects the different resolutions (i.e. peak widths) of those spectra (where
the centroid-mode spectrum is assumed to have an infinite resolution).

The left panel of Fig. 3.2 presents a pair of spectra with no matching peaks. Point-
wise measures, such as signal correlation, do not capture any similarity between
them (note that, in certain applications, this may be a desirable phenomenon). The
Wasserstein distance, on the other hand, again has a small value of 0.078 Da, indi-
cating that those spectra are very similar in terms of the m/z differences of peak
positions. The fact that the peaks do not match, however, is still reflected by the
Wasserstein distance, since it is over twice as large as between the spectra in the
right panel.

An alternative interpretation of the Wasserstein distance is the minimal amount
of distortion such as shifting, broadening and narrowing of peaks that is required
to transform one of the spectra into the other. This approach is naturally robust to
small distortions in the m/z or intensity measurements, and has no requirements as
to the accuracy or resolution of the measurement. In particular, to the best of our
knowledge, it is the only similarity measure capable of an accurate comparison of
profile and centroided spectra.
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The contents of this Chapter. In the following Sections, we describe the mathe-
matical formalism behind the Wasserstein distance and expand on its interpretation
in the context of mass spectrometry. Then, we show worked examples of computa-
tion of this distance that further illustrate its properties related to mass spectra. Next,
we quantitatively study the correlation between the structural similarity of chemical
compounds and the Wasserstein distance between their MS2 spectra. We finish this
Chapter by discussing some practical considerations when using the Wasserstein
distance to compare profile spectra. In particular, we focus on how such spectra are
represented and stored on computers, leading to a risk of inaccurate distance values
when a simple algorithm to compute them is used. We show how to circumvent this
problem and how to better estimate the distance in practice by using resampling
methods.

3.1 The Wasserstein distance

Let µ and ν be any two mass spectra to be compared. In order to simplify the de-
scription of the Wasserstein distance and the concept of transporting signal between
spectra, we will assume for now that both spectra are centroided. The case of profile
spectra will be discussed later on.

In order to compare µ and ν, we aim to transport all the signal from one spectrum
to the other and quantify the minimal amount of distance in the mass domain over
which the signal needs to be transported. An example of such transport is concep-
tually visualized in Fig. 3.3. We do not differentiate between a source and a target
spectrum, so that the final distance is symmetrical—in other words, we will assume
that transforming µ into ν inflicts the same cost as transforming ν into µ.

We assume that all the considered spectra are normalized by their total ion cur-
rent, so that the peak intensities of each spectrum (including the peaks arising from
background noise or contaminants) sum up to 1. Note that such normalization may
be meaningless from a data analyst’s point of view, because the normalizing factor
includes the noise intensity. However, it is often used for technical reasons when
developing computational methods, because it allows for treating mass spectra as
probability measures and using the tools of probability theory to analyze them (see,
e.g., [46]). Accordingly, throughout this Dissertation, unless stated otherwise, we
will assume that spectra are normalized and we will treat (centroided) mass spectra
as (discrete) probability distributions on the real line R, with µ(x) denoting the in-
tensity at the m/z value x in spectrum µ, and x ∈ µ denoting that x belongs to the
support of µ, i.e. that µ(x) > 0.

Let γ(x, y) be the amount of signal transported between the point x in spectrum
µ and the point y in spectrum ν. The function γ is referred to as a transport plan. Any
transport plan needs to satisfy the following properties [3, 4]:

∑
y∈ν

γ(x, y) = µ(x), ∑
x∈µ

, γ(x, y) = ν(y). (3.1)

The first of the above properties means that all the signal intensity µ(x) needs to be
transported somewhere into the spectrum ν. Similarly, the second property means
that the intensity ν(y) is fully filled by the ion current coming from the spectrum
µ. Naturally, the transport plan also needs to be non-negative, γ(x, y) ≥ 0, as we
cannot transport negative intensity. As a consequence, γ can be interpreted as a
joint probability distribution (also referred to as a coupling) of the two probability
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FIGURE 3.3: The optimal ion current transport plan for MS2 spectra
of apigenin (top) and quercetin (bottom), fragmented using 30 eV col-
lision energy. The colors on the quercetin mass spectrum correspond
to the origin of the transported ion current. The isotopic envelope of

quercetin is shifted by 32 Da, i.e. the mass of two oxygen atoms.

distributions µ and ν. In turn, any function satisfying the above properties is a valid
transport plan.

The cost of a given transport plan is the total distance traveled by the ion cur-
rent. This is calculated by multiplying the distance between the points x and y by
the amount of signal traveling between them, and summing over all peaks in both
spectra:

∑
x∈µ
y∈ν

|x− y|γ(x, y).

We assume that the transport is not directed, so that transporting the intensity in the
direction of increasing mass inflicts the same cost as in the other direction. This is
formally expressed by the absolute difference between the points in the above equa-
tion. Note that the dependence of the sum on the spectra µ and ν is only implicitly
expressed through the function γ and Equations (3.1).

Denote by Γ the space of all possible transport plans (couplings) between µ and
ν. The Wasserstein distance between two spectra, W(µ, ν), is defined as the minimal
cost of transport over all possible transport plans from the space Γ [3, 47, 4]:

W(µ, ν) = min
γ∈Γ

∑
x∈µ
y∈ν

|x− y|γ(x, y), (3.2)

The function W defined this way satisfies the mathematical properties of a distance
function, that is, non-negativity W(µ, ν) ≥ 0, symmetry W(µ, ν) = W(ν, µ) and
the triangle inequality W(µ, ν) ≤ W(µ, ζ) + W(ζ, ν). This can be easily understood
intuitively by noting that we cannot transport the signal over negative distances,
that the definition is symmetric with respect to µ an ν, and that optimal transport of
the signal from µ to ν needs to be less costly than first transporting signal from µ to
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ζ, and then from ζ to ν. For formal proofs, we refer the reader to a book by Villani [3]
or Santambrogio [4].

Since the distance is symmetric, there is no designated source spectrum of the
transported signal, nor a target spectrum to which the signal is transported. How-
ever, when depicting or discussing transport plans for W(µ, ν), we adopt a conven-
tion that the signal is transported from one spectrum to the other.

Although the formulation of the distance may seem baffling, it turns out that
under reasonable assumptions the algorithm to compute W(µ, ν) has a linear time
complexity [47]. The only requirement for this is that the input spectra are available
as lists of sorted m/z values and the corresponding signal intensities. Since raw
spectra, in both centroid and profile mode, are usually stored this way on computers,
the Wasserstein metric is computationally equally efficient to the Jaccard score and
the Euclidean distance. The algorithm to compute the Wasserstein distance between
a pair of spectra is based on the following theorem [4, 47]:

Theorem 3.1. Let µ and ν be two probability measures on the real line R. Let M and N be
the cumulative distribution functions (CDFs) of µ and ν respectively. Then,

W(µ, ν) =
∫

R

∣∣∣M(t)− N(t)
∣∣∣dt. (3.3)

In mathematical terms, Theorem 3.1 states that the cumulative distribution func-
tion is an isometry between the Wasserstein space (in our case, the space of discrete
probability measures with finite supports, equipped with the W distance) and the L1

space of functions. Theorem 3.1 can be applied to spectra normalized by their total
ion current, since such spectra can be interpreted as probability measures. It cap-
tures both the case of centroided and profile spectra (in which case we normalize the
spectrum by the integral of its signal). In the case of centroided spectra, the cumu-
lative distribution functions are step functions, and the formula can be considerably
simplified.

Theorem 3.2. Let µ, ν be two centroided mass spectra normalized by the total ion current.
Let S = {s1, s2, . . . , sn} be an ordered list of all distinct masses in both spectra. Let M and
N be the cumulative distribution functions (CDFs) of µ and ν, i.e. M(t) = ∑x≤t µ(x).
Then,

W(µ, ν) =
n−1

∑
i=1

(si+1 − si)
∣∣∣M(si)− N(si)

∣∣∣. (3.4)

Formula (3.4) admits a simple interpretation. Observe that M(si)− N(si) is the
difference in the ion currents on the left hand side of point si in both spectra, which
needs to be transported either to or from the point si+1 in order to achieve balance.
This amount of ion current is then transported over a distance equal to si+1− si, and
such "partial costs" of transport are summed over all points of both spectra.

Based on Theorem 3.2, we can easily compute the distance W(µ, ν) for cen-
troided, normalized mass spectra. A common way of representing such a spectrum
is a peak list, i.e. a list of pairs (xi, pi) such that xi are in increasing order and repre-
sent m/z values of peaks with intensities pi. Algorithm 1, adapted from [47], shows
how to efficiently compute W given two such lists of peaks. It is based on the obser-
vation that the absolute difference between the cumulative distribution functions of
mass spectra, |M− N|, is a step function, and therefore it is easily integrable numer-
ically. However, the algorithm does not require an explicit calculation of the CDFs.

The runtime of Algorithm 1 is O(n + m), where n and m are the lengths of the
peak lists of both spectra. This can be proved by noting that in each iteration of
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the main loop either i or j is incremented, no index variable will ever exceed the
length of the corresponding list, and the algorithm terminates when both indices
have reached the end of their respective lists.

Algorithm 1: Computation of Wasserstein distance between two spectra
Data: Two lists, L1, L2, of pairs (x, p), containing the lists of peaks of

respective spectra
Result: W distance between given spectra

1 i← 0; j← 0;
2 ret← 0.0; γ← an empty transport scheme
3 n← length(L1); m← length(L2)
4 while i < n ∨ j < m do
5 d← min(L1[i].p, L2[j].p)
6 ret← ret + d · |L1[i].x− L2[j].x|
7 L1[i].p← L1[i].p− d
8 L2[j].p← L2[j].p− d
9 γ(i, j)← d

10 if 0 = L1[i].p then
11 i← i + 1
12 else
13 j← j + 1
14 end
15 end
16 The variable ret contains the Wasserstein distance and γ the transport plan.

3.2 Worked examples.

In order to illustrate the computation of the Wasserstein distance and make the con-
cept more intuitive to the reader, we present two worked examples below.

3.2.1 Example 1.

Consider two abstract spectra, µ and ν, such that µ is concentrated at 100.5 Da
(i.e. µ(100.5) = 1) and ν is distributed evenly over 98, 99, 100, 101 and 102 Da (i.e.
ν(98) = ν(99) = ν(100) = ν(101) = ν(102) = 0.2). Obviously, those spectra do not
correspond to any actual ions. They only serve for an easy illustration of the com-
putation of the optimal signal transport. The transport of the signal is illustrated in
Fig. 3.4. The cumulative distribution functions M and N of µ and ν, respectively, are
given by

M(t) =
{

0.0 : t < 100.5,
1.0 : 100.5 ≤ t,

N(t) =



0.0 : t < 98,
0.2 : 98.0 ≤ t < 99,
0.4 : 99.0 ≤ t < 100.0,
0.6 : 100.0 ≤ t < 101.0,
0.8 : 101.0 ≤ t < 102.0,
1.0 : 102.0 ≤ t.
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FIGURE 3.4: An example of an optimal transport scheme between
two abstract spectra µ and ν, depicted on a single graph in blue and
orange respectively. The signal of the spectrum µ is concentrated at
the point 100.5, while ν is distributed evenly at five points from 98
to 102. Grey arrows depict the transport of the ion current. Num-
bers above arrows show the proportions of the ion current flowing
between neighboring peaks, i.e. the absolute difference of the cumu-

lative distribution functions.

The list of all distinct masses, S, is now equal to (98, 99, 100, 100.5, 101, 102), and the
difference between the cumulative distribution functions, N(t) − M(t), indicating
the ion current imbalance at point t, is equal to

N(t)−M(t) =



0.0 : t < 98.0,
0.2 : 98.0 ≤ t < 99.0,
0.4 : 99.0 ≤ t < 100.0,
0.6 : 100.0 ≤ t < 100.5,
−0.4 : 100.5 ≤ t < 101.0,
−0.2 : 101.0 ≤ t < 102.0,
0.0 : 102.0 ≤ t.

From the above equation, we can read out that 0.2 of the signal is transported from
the point 98.0 to 99.0; 0.4 of the signal is transported from 99.0 to 100.0; 0.6 from
100.0 to 100.5. Next, as the sign of the imbalance changes, so does the direction of
transport between neighboring points, and so 0.4 of the signal is transported from
101.0 to 100.5, and 0.2 of the signal from 102 to 101. Finally, the ion currents of both
spectra balance out at the point 102.

The final distance can be computed by taking the absolute values of the ion cur-
rent imbalance and multiplying them by the distance travelled, so that W(µ, ν) =
0.2 · 1 + 0.4 · 1 + 0.6 · 0.5 + 0.4 · 0.5 + 0.2 · 1 = 1.3 Da.

3.2.2 Example 2.

Consider a spectrum µ concentrated at 100 Da, and a profile spectrum ν consisting of
a single Gaussian peak centered at 100 Da with a standard deviation σ. We therefore
have µ(100) = 1 and

ν(x) =
1√
2πσ

e−
(x−100)2

2σ2 .

Let Φ be the cumulative distribution function of the standard Gaussian random vari-
able:

Φ(t) =
∫

x≤t

1√
2π

e−
x2
2 dx.
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The CDF of ν is then given by N(t) = Φ((t− 100)/σ). The exact value of the Wasser-
stein distance between µ and ν is then equal to

W(µ, ν) =
∫
|M(t)− N(t)|dt =

∫
x≤100

|N(t)|+
∫

x≥100
|N(t)− 1|

=
∫

x≤100
N(t)dt +

∫
x≥100

(1− N(t))dt.

After plugging in Φ in the above integrals and substituting the variables, one arrives
at

W(µ, ν) = σ
∫

x≤0
Φ(x)dx + σ

∫
x≥0

(1−Φ(x))dx.

Using the relation Φ(−x) = 1−Φ(x), we get

W(µ, ν) = σ
∫

x≤0
Φ(x)dx + σ

∫
x≥0

Φ(−x)dx = 2σ
∫

x≤0
Φ(x)dx.

As the antiderivative of Φ(x) is xΦ(x) + ϕ(x) + C, where ϕ is the density of a stan-
dard Gaussian variable, we arrive at

W(µ, ν) = 2σϕ(0) = 2σ
1√
2π

= σ

√
2
π

.

Therefore, we obtain a simple formula for the distance between a centroided spec-
trum and a corresponding profile spectrum with Gaussian peaks of standard devia-
tion σ. This result explains the small distance between spectra in the right panel of
Fig. 3.2.

3.3 Quantitative properties of the Wasserstein distance be-
tween mass spectra

To quantitatively analyze the properties of the Wasserstein metric when applied to
mass spectral data, we have analyzed two sets of spectra obtained from the Mass-
Bank database [48]. In both cases, we have compared the performance of the Wasser-
stein distance with two other popular approaches: the Euclidean distance and the
Jaccard score (i.e. the ratio of matching peaks to the total number of different peaks
in both spectra). When analyzing those two measures, the spectra were binned to
0.01 Da resolution to increase the number of matching peaks and decrease their sen-
sitivity to small measurement errors. No binning was performed during the analysis
of the Wasserstein metric.

The first test was based on 615 MS1 ESI-QTOF spectra with positive ionization
mode. The goal of comparing MS1 spectra was to verify the correlation between
distance values and the difference in mass of the molecules. The spectra have been
compared pairwise, resulting in 188805 pairs. These pairs were then used to com-
pute the Spearman’s rank correlation between the distance and the absolute differ-
ence between masses of the corresponding molecules. The results are summarized
in Table 3.1.

As expected, the metrics based on peak matching are sensitive to mass differ-
ences, and therefore less correlated than the Wasserstein distance. Note that for the
Wasserstein and Euclidean distance the correlation is expected to be positive, while
for the Jaccard similarity metric it is expected to be negative. Surprisingly, we have
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found a negative correlation between the mass difference and the Euclidean dis-
tance.

MS1 spectra
M W J E

M 1.00 0.89 -0.07 -0.37
W — 1.00 -0.08 -0.22

J — — 1.00 -0.17
E — — — 1.00

MS2 spectra
T RW J RE

T 1.00 -0.41 0.22 -0.24
RW — 1.00 -0.21 0.43

J — — 1.00 -0.11
RE — — — 1.00

TABLE 3.1: Spearman’s rank correlations between the Wasserstein
distance, Jaccard score, Euclidean distance, and either the absolute
mass difference or Tanimoto similarity of chemical structures. M, ab-
solute mass difference; W, Wasserstein distance; J, Jaccard score; E,
Euclidean distance; T, Tanimoto similarity; RW, relative Wasserstein

distance; RE, relative Euclidean distance (see text).

The second test was based on MS2 ESI-QTOF spectra with positive ionization
mode. Here, the goal was to investigate the relationship between the distance values
and the molecules’ structural similarity. Note that the Wasserstein distance is partic-
ularly sensitive to the fragmentation intensity—two MS2 spectra obtained for a given
molecule can have a large distance if there is a significant difference in the intensity
of fragments. To account for that, we have selected a subset of 473 MS2 spectra for
different molecules in which the precursor peak had around 10% relative intensity.
This resulted in 111628 pairs of spectra. For each pair of spectra, we have computed
the Wasserstein, Jaccard and Euclidean metrics. Next, we have computed the Tan-
imoto similarity between the structures of the corresponding molecules, based on
the Morgan circular fingerprints [49, 50]. The fingerprints have been computed us-
ing the RDKit package (http://www.rdkit.org), with the radius of 2 and the default
set of the feature-based invariants. The results are summarized in Table 3.1.

Note that the selected set of spectra comes from a diverse set of molecules. In
particular, the mean mass is 310 Da, while the standard deviation is 160 Da. This
poses a problem for the Wasserstein metric, as a pairs of small molecules will yield
small distances regardless of the structural similarity. To account for this, we have
divided the distance by the product of masses of the analyzed molecules. Without
this correction, the correlation between the Wasserstein metric and the Tanimoto
similarity drops to−0.22. This procedure also improved the correlation between the
Tanimoto similarity and the Euclidean distance, but not the Jaccard score. We refer
to the distances with this correction as relative distances.

The detailed relationship between the relative Wasserstein distance and the Tan-
imoto similarity is depicted in Fig. 3.5. For comparison, the Figure also shows the
relationship between the Tanimoto similarity and the Jaccard score. Note that all
compounds with high Tanimoto similarity have small relative Wasserstein distances.
However, this relative distance is much more variable for compounds with low sim-
ilarity. This frequent occurence of molecules with highly divergent structures but
similar MS2 spectra decreases the extent to which the Wasserstein distance corre-
lates with the Tanimoto structural similarity.

The experiments show that the Wasserstein distance outperforms the Jaccard
score and the Euclidean distance in terms of correlation with the molecules’ mass
difference in MS1 spectra and their chemical structure similarity in MS2 spectra.
However, at this moment the Wasserstein distance should be applied only to MS2

spectra with similar proportions of precursor molecules, and preferably obtained

http://www.rdkit.org
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FIGURE 3.5: The relationship between MS2 spectra and the structural
similarity according to the relative Wasserstein distance (left) and the

Jaccard score (right).

from compounds of similar mass. The results so far are optimistic, but more work
needs to be done in order to generalize the Wasserstein distance so that it can be
applied to a broader class of mass spectra.

3.4 Some qualitative properties of the Wasserstein distance
between mass spectra

To give the reader some additional intuitions behind the Wasserstein distance, in this
short Section we discuss some of its qualitative properties when applied to mass
spectra. Some of the points discussed here reflect the computational experiments
performed in the previous Section.

For MS1 spectra of two molecules, the Wasserstein distance is approximately
equal to the absolute mass difference of the molecules. The other main factor that in-
fluences the distance in this case is the presence of measurement inaccuracies. Note,
however, that this influence remains small as long as the inaccuracies in intensity
measurements are small compared to the corresponding peak intensities. In case of
spectra of mixtures of compounds, the relation between the masses of molecules and
the Wasserstein distance is more complex. However, the absolute difference of the
centers of masses of two spectra always gives a lower bound for the distance.

Usually, some inaccuracy in both the intensity and the mass measurement is
present. Naturally, the latter poses a major problem for measures based on peak
matching. On the other hand, the Wasserstein distance is not significantly influ-
enced by small mass measurement errors—instead, the imprecise measurement sim-
ply gets shifted to match its theoretical counterpart.

The implicit assumption of this metric, which may not be desirable in some ap-
plications, is that the mass difference reflects chemical difference. Therefore, two
molecules differing by an OH group are assumed to be more similar to each other
than two molecules differing by a C2H5 group. It is possible to relax this assumption
by applying a different metric in the mass domain, say c(x, y), in the definition of
the Wasserstein distance:

Wc(µ, ν) = min
γ∈Γ(µ,ν)

n

∑
i=1

m

∑
j=1

γ(i, j)c(xi, yj).
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An important caveat in this case is that treating all modifications as equivalent may
lead to unexpected results—notably, a protein being treated as a single carbon atom
with an extremely large modification. Furthermore, using other distances in the
mass domain may lead to difficult optimization problems. The use of absolute dif-
ference, |xi − yj|, avoids costly optimizations in the space of all possible transport
plans thanks to Theorem 3.2.

If the two molecules differ by a modification which does not change their frag-
mentation pattern, then the Wasserstein distance between their MS2 spectra will not
exceed the weight of the modification. This follows from the observation that the
modification is present only in some of the fragments, which account to a fraction
of the total intensity in the spectrum. Note that this is a highly idealized example,
since modifications may significantly change the fragmentation patterns and inflict
a greater influence on the Wasserstein distance. In general, however, this distance
cannot exceed the mass of the heavier molecule.

Lastly, the structure of the optimal transport plan is highly sensitive to chemical
noise, i.e. the presence of unexpected molecules. Recall that all the intensity from
one spectrum needs to be used to explain all the intensity of the second spectrum.
Therefore, if one of the analyzed spectra contains an additional peak, some of the
intensity from the first spectrum needs to be used to explain it. This may lead to
global changes in the structure of the optimal transport plan. It follows that in the
presence of chemical noise, the Wasserstein distance may not reflect the similarity
between the analyzed compounds.

3.5 Handling profile spectra in practice.

Although, in principle, profile spectra are continuous functions, they are usually
represented as finite lists of mass and intensity pairs. In this Section, we show that,
to compute the Wasserstein distance, such lists can be simply treated as centroid
spectra. Under certain assumptions, Theorem 3.2 gives an accurate approximation
of the cost of the optimal transport plan.

Assume we are given a finite list of mass and intensity pairs, (si, Ii) for i =
1, 2, . . . , n, approximating a profile spectrum µ. Assume as well that we have a con-
stant spacing between consecutive intensity measurements, so that si+1 − si = 1/n
for i = 1, 2, . . . , n − 1. Treating µ in the same way as a centroided spectrum, we
compute its cumulative distribution function as M̂(t) = ∑xi≤t Ii/ ∑ Ii, while its true
cumulative distribution function is given by M(t) =

∫
x≤t µ(x)dx/

∫
µ(x)dx. Now,

we have

M̂(t) =
∑xi≤t Ii

∑ Ii
=

1
n ∑xi≤t Ii

1
n ∑ xi Ii

≈
∫

x≤t µ(x)dx∫
µ(x)dx

= M(t),

where the approximation is based on the fact that the sums on the left hand side are
Riemann sums of the integrals on the right hand side.

The assumption of an uniform signal sampling (i.e. a constant spacing between
consecutive measurements) is crucial for the approximation to work. When this is
not satisfied, a spectrum needs to be resampled prior to computing the distance.
However, care needs to be taken to resample the spectrum in a way that does not
lead to a loss of data or an introduction of additional noise signal. We propose to use
a resampling algorithm based on a piecewise-linear interpolation of profile spectra,
presented in Subsection 3.5.1. Note, however, that a resampled spectrum should al-
ways be checked at least visually for the presence of any introduced artifacts, and
the total ion current of the original and the resampled spectra should be compared.
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FIGURE 3.6: A graphical description of piecewise-linear interpolation
of profile mass spectra. The blue dashed line shows the true, unob-
served signal intensity. The black points show the intensity measure-
ments I[j], corresponding to masses M[j], observed in a profile mass
spectrum. The black lines show the interpolated intensities. The red
dashed lines show a result of approximation of the true signal, y[i], at
the point x[i]. The indexes i and j correspond to the ones used in Al-
gorithm 2. Note that in actual spectra the measured points are more

densely spaced, resulting in a much better interpolation.

We also note that further research on the Wasserstein distance between profile spec-
tra sampled on not uniform m/z arrays would likely allow for an easier and more
accurate computation.

Naturally, an alternative way to analyze a profile spectrum with the means of
optimal transport is to first convert it to the centroided mode. This can be espe-
cially useful when resampling is infeasible, e.g. due to increased data size. However,
a proper centroiding needs to accurately reflect the intensities in a profile spectrum,
which is a highly non-trivial task in practice due to different peak widths, presence
of background noise, varying peak shapes (caused e.g. by merging of closely located
peak) and non-zero baseline signal.

There are numerous approaches to signal centroiding, including methods based
on simple numerical integration, as well as more sophisticated (and computationally
costly) approaches based on wavelet transforms [51]. In Subsection 3.5.2, we present
a simple centroiding algorithm, which is based on the integration approach but ro-
bust against multiple sources of error. We will use the techniques of resampling and
centroiding to analyze profile spectra in Chapter 5, where we discuss the problem of
regression of noisy mass spectra.

3.5.1 Piecewise-linear interpolation of spectra.

For certain types of mass spectrometers, the width of a measured signal increases
with the m/z value. In order to decrease the volume of data, typically profile spectra
are stored as lists of m/z and intensity pairs, where the distance between consecu-
tive m/z values increases with mass. This increase is chosen so that each signal in
the spectrum is represented by an approximately constant number of m/z, inten-
sity pairs. However, such a non-uniform sampling of intensity distorts the value of
the Wasserstein distance computed using Equation 3.4 from Theorem 3.2. In order to
correct that, we can interpolate each spectrum by a piece-wise linear function, so that
the interpolated intensity in a given point is a weighted average of the neighboring
measured intensities.
Although the terminology may sound obscure, the idea behind the piecewise-linear
interpolation is straightforward: we join pairs of consecutive points by straight lines
and use those lines to approximate the signal intensities at any given set of points at
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the mass axis. Algorithm 2 shows a numerically optimized way to achieve this. The
idea behind the algorithm is visualized in Fig. 3.6.

In practical implementations of Algorithm 2, we add another constraint that if
the distance between the m/z value at which we interpolate and any of it’s neigh-
boring points is further than a given threshold, the interpolated intensity is set to 0.
This is done in order to handle broad regions with no recorded intensity present in
many experimental spectra.

Algorithm 2: Piecewise-linear interpolation of profile mass spectra.
Data: A sorted list of m/z measurements M, a list of corresponding intensity

measurements I, a sorted list of m/z values in which to interpolate the
intensity x.

Result: A list of interpolated intensity values corresponding to x.
1 Initialize a zero-filled list y of the same length as x.
2 Set i as the index of the first mass from x that lies between M[0] and M[1].
3 Set j = 0.
4 while j < length(M)− 1 do
5 while i < length(x) and x[i] < M[j] do
6 Set

y[i] = I[j + 1]− (M[j + 1]− x[i])(I[j + 1]− I[j])/(M[j + 1]−M[j]).
7 Set i = i + 1.
8 end
9 Set j = j + 1.

10 end
11 The variable y contains signal intensities corresponding to m/z values of x.

3.5.2 Centroiding the profile spectra.

There are numerous available algorithms for peak centroiding, both open-source
and proprietary. We have decided not to use the latter in this work, as it is not
possible to determine the way they work and therefore have confidence in their re-
sults. Instead, we have implemented a simple algorithm that detects local maxima of
intensity and integrates peaks within regions delineated by an intensity threshold,
expressed as a proportion of the apex intensity. Algorithm 3 describes the basic idea
behind our approach in pseudo-code. Below, we explain the rationale behind it and
describe additional details and constraints used in the practical implementation.

After peak location is determined, typically by detecting a local maximum of
the signal, there are two main approaches to obtain peak intensity: either as the
apex intensity, or as the peak area [10]. For many mass spectrometers, only the
latter gives a correct result, as the peak width increases with the m/z value. On the
other hand, approaches based on the apex intensity are simpler and less prone to
errors. Therefore, they are useful for the analysis of spectra with a small range of
m/z values, where peaks have a similar width.

In our implementation, we set additional constraint on maximal peak width. If
the width of the region in which the intensity is to be integrated exceeds this thresh-
old, the peak is discarded.

Note that, when two peaks overlap, they may share their integration region. In
that case, the centroided m/z and intensities of such peaks are identical. Since we
keep a set of peaks instead of a list (note the line 1 of Algorithm 3), such a peak cluster
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is represented by one peak. This essentially merges highly overlapping peaks into
one. Separating highly overlapping peak clusters requires much more sophisticated
approaches (see e.g. [52]).

Algorithm 3: Centroiding of profile mass spectra.
Data: A sorted list of m/z measurements M, a list of corresponding intensity

measurements I, apex intensity proportion t.
Result: A list of (m/z, intensity) pairs of peaks.

1 Initialize an empty set L.
2 Set P as a list of m/z values of the local maxima of intensity from I.
3 for mp in P do
4 Set ι as the signal intensity corresponding to the point mp.
5 Set tp = tι as the intensity threshold.
6 Identify the nearest m/z values m1 ≤ mp ≤ m2 that correspond to

intensities below tp.
7 Use linear interpolation to approximate m/z values m∗1 ≤ mp ≤ m∗2 that

correspond exactly to the intensity tp.
8 Use the trapezoid rule to integrate the intensity in the interval [m∗1 , m∗2 ].
9 Use the trapezoid rule to obtain the peak centroid m/z by integrating the

intensity multiplied by the corresponding m/z values in the interval
[m∗1 , m∗2 ] and dividing the result by the integrated intensity.

10 Add a tuple of peak centroid m/z and integrated intensity to the set L.
11 end

In our implementation, when we identify the integration region in line 6 of Algo-
rithm 3, we additionally require that the intensity is monotonically decreasing with
the distance from the apex. When we detect that the signal intensity starts to in-
crease, we discard the peak. This ensures that only the highest peak of any peak
cluster is considered. It also allows us to discard numerous small peaks that occur
due to background noise.

3.6 Summary of the Chapter

In this Chapter, we have presented and analyzed a new approach to the comparison
of mass spectra based on the Wasserstein metric. This metric is a well-established
and well-studied concept used in both probability theory and image processing
field. Compared to the current approaches to comparison of spectra, it is more robust
to measurement errors and better reflects the differences in chemical compositions
of ions. In the MS2 spectra of similar compounds, the Wasserstein distance reflects
differences in both chemical structure and fragmentation intensities.

The extensive mathematical research on the topic of optimal transport has re-
sulted in powerful theorems that express the Wasserstein distance as a computa-
tionally feasible integral. The optimal cost of transporting the signal between spec-
tra can be computed in a straightforward manner without the need for a numerical
optimization in the space of all possible transport plans.

Further research. The Wasserstein distance quantifies the similarity of spectra only
in terms of the difference in m/z locations of signals. A drawback of this approach
is that it is relatively sensitive to differences in peak intensities. This is further em-
phasized by the different nature of measurement uncertainties in the mass and the
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intensity domain, caused by the fact that mass spectrometers measure the m/z and
the number of ions differently. Although accounting for this phenomenon would be
desirable, it is highly non-trivial to formalize it mathematically in a way that would
be suitable for applications in mass spectrometry and linear regression of spectra
(defined in Chapter 4) in particular. Especially in the latter, allowing peak intensities
to vary may lead to instability of the results—when everything is variable, we can
fit everything to anything.



39

Chapter 4

The Wasserstein regression of mass
spectra

A frequently encountered task in various types of spectrometry and spectroscopy is
the quantification of signal corresponding to a particular set of ions. From an algo-
rithmic point of view, the most challenging parts of this problem are the separation
of the signal from the noise and the separation of signals from overlapping spectra.
In the context of mass spectrometry, numerous approaches have been developed in
order to tackle this problem in the context of specific experiments. These include
the estimation of reaction rates in ETD fragmentation [53]; quantification of polymer
chain lengths and compositions [54, 55]; annotation of MS2 spectra in data indepen-
dent acquisition label-free quantification experiments [11]; studies of fragmentation
of aliphatic diselenides and selenosulfenates [56, 57], and studies of protein deami-
dation and 18O labelling [58].

Despite the apparent abundance of various algorithmic approaches and software
tools, their common underlying theme is the approximation of an experimentally
observed spectrum by a set of reference spectra. Therefore, from a mathematical
point of view, all the described problems can be expressed with a single equation:

µ = p1ν1 + p2ν2 + · · ·+ pkνk. (4.1)

Here, µ is the observed spectrum, νi’s are the reference spectra of the ions in
question, and pi’s are the unknown proportions of the latter. Since the reference
spectra are often predicted using computational methods, we refer to them as the
theoretical spectra. By analogy to the ordinary linear regression known from the field
of statistics, in this work we call the problem of finding pi the linear regression of
spectra. The mathematical definition of this problem encompasses multiple kinds of
spectrometry and spectroscopy, including the NMR spectroscopy. However, for the
sake of clarity of exposition, throughout this Dissertation we will discuss it mainly
in the context of mass spectrometry.

Equations similar to Equation 4.1 have appeared e.g. in [11], where the authors
have used it to annotate data independent acquisition label-free quantification ex-
periments. Figure 4.1 illustrates a linear regression of a mass spectrum consisting of
overlapping isotopic envelopes of human hemoglobin subunits α and δ.

In the case when the reference spectra do not overlap, the background noise is
small, and there is only a handful of molecules of interest, linear regression of spectra
can easily be performed manually by integrating selected regions of the experimen-
tal spectrum. However, algorithmic approaches need to be employed when there
is a considerable overlap of the reference spectra, the signal-to-noise ratio is small,
or thousands of molecules need to be analyzed in a high-throughput setting. The
ever-increasing popularity of high-throughput methods, such as mass spectrometry
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FIGURE 4.1: An example of a regression of a simulated human
hemoglobin ESI MS1 spectrum. Using the method presented in this
Chapter, we have separated the signal into α 19+ and δ 20+ sub-
units and the remaining background noise. The proportions were
estimated directly from the top-left spectrum, without any additional

preprocessing such as peak picking or denoising.

imaging, calls for advanced algorithmic solutions which allow for rapid processing
of massive data sets. In those types of experiments, and with software tools that
sometimes neglect computational optimization, the time needed to process a single
data set can take up to several days, needlessly extending the time needed to analyze
the sample of interest.

Unfortunately, the currently used terminology is somewhat misleading. The
problem of estimating abundances of overlapping reference spectra is known in the
mass spectrometric literature under several names, most common ones being the re-
solving of isobaric interferences and deconvolution. In the context of NMR, Raman, and
Infrared spectroscopy, this problem is also known as curve fitting. Since the exper-
imental spectrum is expressed as a linear combination of the theoretical ones, this
problem has also been referred to as the linear deconvolution [11].

On the other hand, in mass spectrometric literature, the term deconvolution is
used to refer to several problems which usually deal with separating overlapping
peaks and/or isotopic envelopes (but rarely have anything in common with the
mathematical operation of convolution). The authors of [59] define deconvolution
as inferring the relative quantities of molecules with overlapping isotopic envelopes.
Similar problems have been described in [60, 61, 62]. However, the term deconvolu-
tion is sometimes used as a synonym for deisotoping, that is, conversion of isotopic
envelopes into single peaks with average m/z value and joint intensity [63, 64]. An-
other common application of the term deconvolution is converting m/z values into
masses, as exemplified by the popular MaxEnt algorithm [65], also referred to as the
charge deconvolution [66, 67, 68]. In this Dissertation, we introduce the term linear re-
gression of mass spectra in order to avoid confusion with other algorithmic problems
of mass spectrometry.

The general problem of regression of mass spectra can be formally expressed as
follows:
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Problem 1 (Generalized Mass Spectral Regression). Let µ be a normalized mass spec-
trum, and let {νi : 1 ≤ i ≤ k} be a collection of normalized mass spectra. Let d(µ, ν) be
a distance measure between spectra. Let ∆k−1 be a k − 1-dimentional probability simplex.
Find a set of weights p∗ ∈ ∆k−1 which minimizes the distance between µ and the convex
combination of νi:

p∗ = arg min
p∈∆k−1

d

(
µ,

k

∑
i=1

piνi

)
(4.2)

In the above definition, µ is referred to as an experimental spectrum, and νi are re-
ferred to as theoretical or reference spectra. Note that neither the distance measure nor
the origin of the theoretical spectra is specified in this general definition. Depending
on their choice, this definition can be reduced to several of the aforementioned com-
putational problems. For example, if the theoretical spectra correspond to isotopic
envelopes, the solution to MSR can be used for deisotoping, in which case pi corre-
sponds to the joint intensity of the i-th envelope. On the other hand, if νi correspond
to mass spectra of a single molecule with different charges, the problem reduces to
conversion of m/z values to mass. Finally, if νi are mass spectra from a database,
the problem can be reduced to the annotation of a mass spectrum. However, an
underlying assumption is that the reference spectra are known. Therefore, from the
methodological point of view, this problem is an exact opposite of molecule identi-
fication, where the task is to identify the identity of ions, but not their quantities.

A common approach to the problem of regression of mass spectra, found e.g. in
the specter [11] and the masstodon [69] tools, is to perform an ordinary least squares
regression where the experimental spectrum is treated as the dependent variable
and the theoretical ones as independent variables. Mathematically, this technique
minimizes the Euclidean distance between the experimental spectrum and a linear
combination of the theoretical ones. A similar technique, the L1 regression (also
known as the least absolute deviation regression), is sometimes used [55]. Another
approach is a sequential subtraction of estimated signal from the experimental spec-
trum, as exemplified by the THRASH algorithm [70].

The performance of the currently available methods is hindered by a series of
problems. Most of them arise from the fact that they are based on a point-wise com-
parison of spectra, that is, they compare peaks with the same m/z values. However,
unlike the theoretically predicted spectra, experimental ones have limited resolution
and accuracy. Because of this, peak picking of the experimental spectrum is required,
which is often imperfect (such as the conventional peak centroiding) or computa-
tionally expensive (such as the continuous wavelet transform approach [51]). The
experimentally obtained peaks never match the theoretical ones exactly due to accu-
racy limits of the instrument and numerical errors of peak-picking procedures. This
limits the performance and applicability of most of the approaches to measure the
similarity between spectra, like the Euclidean distance, correlation, spectral contrast
angle [42], or the entropy function [46].

The contents of this Chapter. In this Chapter, we propose a solution to the prob-
lem of regression of mass spectra with the Wasserstein metric as the distance mea-
sure. We will refer to this computational problem as the Wasserstein regression, and
we will use the terms Wasserstein regression and mass spectral regression (MSR) in-
terchangeably throughout the rest of this Dissertation. Therefore, we will be dealing
with the following problem:
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Problem 2 (Mass Spectral Regression, MSR). Let µ be a normalized mass spectrum,
and let {νi : 1 ≤ i ≤ k} be a collection of normalized mass spectra. Let ∆k−1 be a k − 1-
dimentional probability simplex. Find a set of weights p∗ ∈ ∆k−1 which minimizes the
Wasserstein distance between µ and the convex combination of νi:

p∗ = arg min
p∈∆k−1

W

(
µ,

k

∑
i=1

piνi

)
(4.3)

Apart from fixing the distance function, we tackle the problem of linear regres-
sion of mass spectra in its abstract form instead of focusing on a particular type of
experiment. This way, our methods retain their full scope of applicability, from ana-
lytical chemistry to metabolomics to proteomics to synthetic polymer science. They
are not limited to any single type of mass spectrometer or pre-processing software.
The mathematical foundations presented in this Chapter stay the same regardless
whether an FTICR, TOF, or quadrupole instrument is used, or whether applied to
mass spectrometry or NMR spectroscopy.

In the next Sections, we present the main ideas behind the solution, state the
most important results, and show the performance of the method assessed by com-
putational simulations. The technical details and proofs are relegated to the final
Sections of this Chapter. In Section 4.3, we show how to express the problem of
(Wasserstein) regression of spectra as a linear program. In Section 4.4, we describe
the details behind the algorithm for solving this program.

4.1 An overview of the solution to MSR

To solve the MSR problem with the Wasserstein distance, we can express it as a linear
program. In this Section, we will give a brief overview of this approach, focusing on
the general ideas and main results, and pointing the reader to specific Sections of
this Chapter where we discuss the mathematical details behind particular results.

Let µ = ∑m0
j=1 w0,jδx0,j be the experimental spectrum with m0 peaks and for i =

1, 2, . . . , k let νi = ∑mi
j=1 wi,jδxi,j be the i-th theoretical spectrum with mi peaks. De-

note the set of all support points from the empirical and theoretical spectra by S =
{xi,j : 1 ≤ j ≤ mi, 0 ≤ i ≤ k} and let n = |S|. Let s = s1 < s2 < · · · < sn be a vector
of ordered elements of S .

For 1 ≤ j ≤ n − 1, let Ni,j and Mj be the values of the cumulative distribution
functions of νi and µ respectively on the interval [sj, sj+1) (notice that those functions
are constant on those intervals), and set Ni,n = 1 = Mn. Let dj = sj+1 − sj be the
length of the j-th interval for 1 ≤ j ≤ n− 1. Denote by Ik an identity matrix of size
k, and by Jn an (n− 1)× n matrix equal to the identity matrix of size n without the
last row. Define a matrix:

A =

[
−Jn −Jn 0
N −N −Ik

]
.

Finally, let c be a vector of length 2n + k, such that c = (M,−M, 0k), where 0k is the
vector of zeros of length k, and let b = (−d, 0k) be a vector of length n− 1 + k. The
following Lemma, proved in Section 4.3, states that MSR can be reduced to linear
programming.



4.1. An overview of the solution to MSR 43

Lemma 4.1. The following dual linear programming problems:

min
x

xTc

s.t. Ax = b
x ≥ 0

max
y

yTb

s.t. ATy + z = c
z ≥ 0

(4.4)

are feasible. Furthermore, for any solution (x∗, y∗, z∗) of the above problem, the vector of the
last k elements of y∗ belongs to the set of solutions of MSR.

We propose to solve the above linear program using an Interior Point Method
(IPM), while using the structure of our linear programming problem to significantly
decrease the time and memory cost of each iteration. In general, IPM for linear pro-
gramming solves both primal and dual problems simultaneously, by solving a clev-
erly chosen nonlinear approximation of those problems using the Newton’s Method.
For an overview of IPM we refer our reader to [71] and references therein. A notable
advantage of this approach is that it does not require the starting point nor the sub-
sequent iterates to be in the feasible region of primal and dual problems.

In Algorithm 4 we present a pseudocode for the general scheme of IPM for the
dual problem (4.4). In what follows, xt, yt, zt are t-th iterates of variables x, y, z from
the problem, while Xt = diag(xt), Zt = diag(zt) are diagonal matrices.

Algorithm 4: Solving MSR with a primal-dual IPM
Data: Matrix A and vectors b, c defining dual linear problems. A starting

point (x0, y0, z0) and error tolerance ϵ > 0.
Result: an ϵ-feasible ϵ-solution of the linear problem

1 Set t = 0
2 repeat
3 Compute centrality µt = ⟨xt, zt⟩/(2n + k)
4 Compute primal residual rt

p = b− Axt and dual residual
rt

d = c− ATyt − zt
5 Choose scaling factor σt (see Section 4.4)
6 Find direction (dx, dy, dz) by solving the system of linear equations:A 0 0

0 AT I
Zt 0 Xt

dx
dy
dz

 =

 rt
p

rt
d

σtµt1− Xtzt

 (4.5)

7 Find αp ∈ (0, 1] such that xt+1 = xt + αpdx > 0
8 Find αd ∈ (0, 1] such that zt+1 = zt + αddz > 0 and take yt+1 = yt + αddy
9 Set t = t + 1

10 until triple (xt, yt, zt) is an ϵ-feasible ϵ-solution;

A triple (xt, yt, zt) is called an ϵ-feasible ϵ-solution if it is both primal-dual fea-
sible and optimal up to ϵ tolerance. Since the computational cost of each iteration
of Algorithm 4 is dominated by finding the direction of the step by solving equa-
tion (4.5), we focus on this part and relegate to Section 4.4 the discussion about
choosing the stopping condition, the starting point (x0, y0, z0) and the scaling fac-
tors σt.
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The solution of the equation (4.5) can be obtained by solving the following nor-
mal equation for dy:

AZ−1
t Xt ATdy = b + AZ−1

t (Xtrt
d − σtµt1).

After solving the normal equation for dy, the remaining direction coordinates dx, dz
can be obtained using formulas:

dz = z = rt
d − ATdy, dx = −xt + Z−1

t (σtµt1− Xtdz).

The computational cost of single step of IPM is dominated by solving the normal
equation, which is of order O(k(n− 1)3). However, thanks to the specific structure
of matrix A, for any vectors v, w we can compute Av, ATv and solve an equation
AZ−1

t Xt ATv = w efficiently. The detailed derivation of an efficient algorithm, tai-
lored to the MSR problem, is given in the Section 4.4. This allows us to perform
one step of IPM efficiently, with the computational cost of a single step equal to
O(k3 + k ∑k

i=1 mi + n) and the memory cost equal to O(k2 + n). For the given error
tolerance ϵ, the IPM needs O(

√
2n + k log(ϵ−1)) iterations to find an ϵ-solution, i.e.

one for which the duality gap is less than ϵ (see the Section 4.4 for details).

4.2 Computational experiments on simulated data

We have performed several computational experiments to illustrate the performance
of the proposed solution to MSR, and to analyze its robustness to various kinds of
distorsions occuring in MS measurements. In contrast to the previous case studies,
in this Section we use in silico generated spectra. This allows us to precisely control
the signal-to-noise ratio, and to rigorously estimate the error of the method.

Our main goal is to demonstrate the applicability of the Wasserstein distance to
MSR in case of noisy experimental spectra. There are several sources of noise in
mass spectrometric measurements, among others: (i) precision of the intensity mea-
surement, (ii) precision of the m/z measurement, (iii) resolving power, i.e. the ability
to detect peaks with similar masses, (iv) chemical noise, i.e. presence of unexpected
molecules in a spectrum [10]. In this Section, we focus mostly on the first three types
of noises, i.e. low resolving power and/or precision. The first step of all our exper-
iments was to generate the isotopic envelopes of selected molecules by the IsoSpec
algorithm [72]. These envelopes form the set of the theoretical spectra. The experi-
mental spectrum was obtained by taking a convex combination of the latter. Finally,
the experimental spectrum was distorted in the following manner:

• Gaussian noise has been added to the logarithm of the peak intensity, and the
result has been exponentiated (equivalent to multiplying the intensities by log-
normally distributed random variables),

• Each peak has been replaced by the density function of the normal distribution,

• The resulting intensity distribution has been binned.

Both Gaussian noises had a standard deviation of 0.01. For binning of the mass spec-
trum, we have assumed two resolving powers of the spectrometer: 0.001 Da and
0.01 Da. An example of the result of this procedure is depicted in Fig. 4.2. A spec-
trum without these distortions is referred to as clean, while the distorted one as noisy.
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FIGURE 4.2: An illustration of the simulated measurement inaccura-
cies based on a theoretical spectrum of bradykinin (C50H73N15O11).
Top: clean spectrum. Middle: noise in the intensity domain. Bottom:
noise in the mass domain. The apparent change in intensity in the
right spectrum is caused by a Gaussian blurring of the peaks and bin-

ning afterwards.
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The performance of our approach to MSR has been quantified by the Root Mean
Square Error (RMSE) between the original and inferred proportions of different iso-
topic envelopes, which approximates the average error made on each proportion.
More formally, if the RMSE for regression of n isotopic envelopes is equal to ϵ, then
the estimated proportions are on an (n− 1)-dimentional hypersphere centered at the
true proportions with a radius ϵ

√
n. In particular, the absolute error on any single

proportion is not larger than this radius.
We have performed three tests, inspecting the method’s sensitivity to the num-

ber of overlapping envelopes, the molecular mass of deconvolved molecules, and
the molecules’ charge. The first test is based on random molecular formulas. The
next two are based on simulated proteins composed of averagine—a model amino
acid with a molecular formula C4 · 9384 H7 · 7583 N1 · 3577 O1 · 4773 S0 · 0417 and an
average molecular mass of 111.1254 Da [73]. In the first test, we have inspected both
clean and noisy spectra. In tests two and three, only noisy spectra were analyzed. To
check the standard deviation of the prediction error, the tests were replicated, with
noise added independently in each replicate. Below we present each test in detail.

Test no. 1 — increasing number of molecules. This test is based on 17 randomly
chosen isobars (molecules with the same nominal masses, i.e. masses rounded to
the nearest integer) consisting of carbon, oxygen, hydrogen, nitrogen and sulfur,
each one with the nominal mass of 30 000 Da. The experimental spectra with a
range of interfering isobars were constructed by gradually extending a subset of
those molecules. This procedure was replicated 20 times, resulting in 340 experi-
mental spectra. The results are shown on Fig. 4.3. The prediction error is very low
and stable for less than 5 isobars, suggesting that the ratios of particular elements in
the deconvolved molecules have no considerable influence on the method’s perfor-
mance.

FIGURE 4.3: The performance of our MSR method for an increasing
number of deconvolved molecules. The solid line represents the av-
erage RMSE over 20 repetitions. The ribbon represents the standard

deviation of the error.

Test no. 2 — increasing mass of molecules. In this test, we consider overlapping
isotopic envelopes of two types of proteins: singly charged protein consisting of n
units of averagine, and doubly charged protein consisting of 2n units, where the val-
ues of n were selected so that the average m/z ratio of proteins spans the range from
1,500 Da to 45,000 Da. For any given n, the isotopic envelopes of the two correspond-
ing proteins were mixed in proportions 0.8 and 0.2 respectively. The procedure was
replicated 50 times. The outcome of this experiment is presented in Fig. 4.4.

Test no. 3 — increasing charge of molecules. In this test, we consider the follow-
ing four proteins based on averagine: C1482H2328N408O444S12, C1482H2329N408O444S12,
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FIGURE 4.4: The performance of our MSR method for increasing
mass of deconvolved molecules. The solid line represents the aver-
age RMSE over 50 repetitions. The ribbon represents the standard

deviation of the error.

FIGURE 4.5: The performance of our MSR method for increasing
charge of deconvolved molecules. The solid line represents the av-
erage RMSE over 50 repetitions. The ribbon represents the standard

deviation of the error.

C1482H2330N408O444S12 and C1481H2341N408O444S12, mixed in proportions 0.3, 0.5, 0.1
and 0.1, respectively. The first three molecules differ by one hydrogen atom, result-
ing in partially overlapping isotopic envelopes. The fourth molecule is an isobar of
the second one, as one carbon has been replaced by 12 hydrogens. All molecules
have been equally charged, with the charge varying from 1 to 10. This yields a se-
quence of regression problems with increasing difficulty, because the peaks become
more densely packed while the resolution stays constant. For each charge, 50 repli-
cates were performed. The results are presented in Fig. 4.5.

Computational experiments show that our approach is able to deconvolve com-
plex spectra in the presence of measurement inaccuracies. Even for 17 isobars, for
which we obtain exceptionally complex spectra, the RMSE does not exceed 0.05.
However, it must be noted that our approach to MSR is expected to be sensitive to
chemical noise, because the Wasserstein metric requires that all the intensity of the
experimental spectrum is explained. Therefore, the solution to the problem of regres-
sion of mass spectra presented in this Chapter should be applied to spectra of highly
purified compounds. In Chapter 5, we will discuss an extension of our method to
handle contaminating signals in the experimental spectra, as well as cases when the
set of the reference spectra does not contain all the molecules in the experimental
mixture.
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4.3 Regression as a linear program

In this Section, we prove Lemma 4.1 by showing how the MSR problem defined in
(4.2) can be reduced to linear programming in the case when the distance measure
is the Wasserstein metric W1. Recall that our problem is to find

p∗ = arg min
p∈∆k−1

W1

(
µ,

k

∑
i=1

piνi

)
, (4.6)

where νi, µ are discrete probability measures with finite support.
First, we show that the MSR problem can be restated as a weighted L1 regression

on the probability simplex ∆k−1. By denoting M and Ni as the cumulative distribu-
tion functions (CDFs) of µ and νi, and using Theorem 3.1, we can write:

arg min
p∈∆k−1

W1

(
µ,

k

∑
i=1

piνi

)
= arg min

p∈∆k−1

∫
R

∣∣∣∣∣ k

∑
i=1

M(x)− piNi(x)

∣∣∣∣∣ dx. (4.7)

Recall that S denotes the set of points from theoretical and empirical spectra, and
that (si)

n
i=1 are elements of S ordered increasingly. Note that for x < s1 and x ≥ sn,

the function under the integral on the right hand side of (4.7) is zero. At the same
time, the function is constant on intervals [si, si+1).

For 1 ≤ j ≤ n − 1, let Ni,j and Mj be the values of the cumulative distribution
functions (CDFs) of νi and µ, respectively, on the interval [sj, sj+1), and set Ni,n =
Mn = 1. For 1 ≤ j ≤ n− 1 let dj = sj+1 − sj be the length of the j-th interval. We can
now write ∫

R

∣∣∣∣∣M(x)−
k

∑
i=1

piNi(x)

∣∣∣∣∣ dx =
n−1

∑
j=1

dj

∣∣∣∣∣Mj −
k

∑
i=1

piNi,j

∣∣∣∣∣ ,

and we reduce the optimization problem (4.6) to a weighted L1 regression on a prob-
ability simplex

p∗ = arg min
p∈∆k−1

n−1

∑
j=1

dj

∣∣∣∣∣Mj −
k

∑
i=1

piNi,j

∣∣∣∣∣ (4.8)

Now, we apply a well known technique of representing a weighted L1 regression as
a linear programming problem (see e.g. [74]). Let us introduce dummy variables tj,
such that tj ≥ |Mj − ∑k

i=1 piNi,j|. With this notation, problem (4.8) is equivalent to
minimizing a linear function ∑n−1

i=1 djtj.
Now, for any j, the inequality tj ≥ |Mj − ∑k

i=1 piNi,j| can be represented by
an inequality tj ≥ max(Mj − ∑k

i=1 piNi,j,−Mj + ∑k
i=1 piNi,j). This, in turn, can be

expressed as a conjunction of two linear inequalities, tj ≥ Mj − ∑k
i=1 piNi,j and

tj ≥ −Mj + ∑k
i=1 pi fi,j.

To take into account the fact that vector (pi)
k
i=1 needs to belong to the probability

simplex, we need to add inequality constraints pi ≥ 0 for i = 1, . . . , k and an equality
constraint ∑k

i=1 pi = 1. By rewriting the latter as two inequality constraints, we end
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up with the following linear program:

min
p,t

dTt

s.t. − tj +
k

∑
i=1

piNi,j ≤ Mj

− tj −
k

∑
i=1

piNi,j ≤ −Mj

1 ≤
k

∑
i=1

pi ≤ 1

pi ≥ 0.

(4.9)

Note that the target function minimized in (4.9) does not itself depend on p, but the
variable p appears in the constrains. From the construction of (4.9) it follows that,
for any feasible pair (p, t), we have:

dTt ≥
n−1

∑
i=1

dj

∣∣∣∣∣Mj −
k

∑
i=1

piNi,j

∣∣∣∣∣ ,

with equality holding if and only if tj = |Mj − ∑k
i=1 piNi,j|. Therefore, for any so-

lution p∗ of problem (4.8), there exists t∗ such that (p∗, t∗) is a solution of (4.9). It
also follows that, for any solution (p∗, t∗) of (4.9), the vector p∗ is a solution of prob-
lem (4.8). Furthermore, since (4.8) is a problem of optimizing continuous convex
function on a compact set, at least one solution exists.

We have thus reduced the MSR problem (4.6) to a linear programming problem
(4.8). We will now express problem (4.8) in a concise matrix form. Let Ik be an
identity matrix of size k, and Jn an (n − 1) × n matrix equal to an identity matrix
of size n without the last row (equivalently, an identity matrix of size n− 1 with an
appended column of zeroes). We can rewrite problem (4.9) as

min
t

dTt

s.t.

−JT
n NT

−JT
n −NT

0 −Ik

( t
p

)
≤

 M
−M
0k,


where 0k is a zero vector of length k. Note that the constraint ∑k

i=1 pi = 1, split into
two inequality constraints ∑k

i=1 pi ≤ 1 and −∑k
i=1 pi ≤ −1, is included in the above

program using the last row of matrix NT and the last element of vector M, which are
equal to 1.

Let us now define c = (M,−M, 0k), b = (−d, 0k) and

A =

[
−Jn −Jn 0
N −N −Ik

]
.
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By using the above notation, adding the slack variables z to replace inequality con-
strains by equality constrains, and replacing a minimization problem with a maxi-
mization one, we can rewrite the problem (4.9) in a standard form:

max
y

yTb

s.t. ATy + z = c
z ≥ 0.

(4.10)

This completes the reduction of the original minimization to a problem linear pro-
gramming. We can summarize this Section with a proof of Lemma 4.1.

Proof of Lemma 4.1. From the discussion in this Section it follows that the feasible
region of the problem (4.10) is non-empty. Furthermore, note that the problem given
by (4.8) is bounded from below. This, combined with the inequality:

yTb ≤ −
n−1

∑
j=1

dj

∣∣∣∣∣Mj −
k

∑
i=1

piNi,j

∣∣∣∣∣ ,

means that yTb is bounded from above, and therefore the maximization problem
from Lemma 4.1 has a solution. From the duality theory for linear programs it fol-
lows that the dual minimization problem is feasible as well, and the duality gap is
zero.

Finally, from the structure of the A matrix and the discussion in this Section it
follows as well that if (x∗, y∗, z∗) is a solution of dual problems in Lemma 4.1, then
the last k elements of y∗ form a vector in ∆k−1 that is a solution of the initial MSR
problem.

4.4 Solving MSR with Interior Point Method

In this Section, we present the details behind the algorithm for solving the dual lin-
ear problems from Lemma 4.1. In Section 4.1 we presented a general scheme for a
primal-dual Interior Point Method for the case when primal problem has only equal-
ity constraints, as is the case for the problem of interest to us. In this Section, we
discuss the details of Algorithm 4, and prove our claim about its time and memory
complexity.

4.4.1 Starting point, stopping criterion and the scaling factor.

We first address the issues of initial conditions (x0, y0, z0) for the primal-dual pro-
gram, stopping criterion and choosing the scaling factor σt. The IPM does not re-
quire the starting point or the iterates to be in feasible region. The only requirement
is that all elements of vectors xt, zt are positive for t ≥ 0. Hence, we can choose the
starting point almost arbitrarily, but in practice it is beneficial to choose x and z that
are not too close to zero.

We propose the following choice of the starting point x0 for the primal problem.
For 1 ≤ i ≤ n − 1 we take (x0)i = (x0)n+i = di/2 (half the length of the interval
[si, si+t)). We also set (x0)n = 2/3, (x0)2n = 1/3 and (x0)2n+i = 1/3 for 1 ≤ i ≤ k.
Naturally, we have x0 > 0. It is also straightforward to check that this choice of x0
satisfies Ax0 = b.
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Finding a starting point (y0, z0) for the dual problem that is dual feasible can be
done using the connection of the dual problem to the L1 regression problem (4.8).
We choose a uniform vector p ∈ ∆k−1 and set tj = |Mj − ∑k

i=1 piNi,j| + 1 for all
j ≤ n − 1. By taking y0 = (t, p) and z0 = c − ATy0, we get a dual feasible point
with z0 ≥ 1. This starting point can be efficiently computed using subroutines for
computing NTv and ATv which we describe later on in this Section.

The main loop of the IPM stops when the triple (xt, yt, zt) becomes an ϵ-feasible
ϵ-solution or when the algorithm reaches a maximum number of iterations. We say
that a point is ϵ-feasible if the norms of the residuals rt

p, rt
d, given by rt

p = b − Axt

and rt
d = c − ATyt − zt, are smaller than ϵ, i.e. ∥rt

p∥2 < ϵ and ∥rt
d∥2 < ϵ. We say

that a point is an ϵ-solution it the duality gap, given by a scalar product ⟨xt, zt⟩, is
smaller than a given ϵ.

Choosing the scaling factor can be done in a variety of ways. The simplest
method is to choose a single σk for each k as a constant in (0, 1). However, there
exist methods for choosing the scaling factor that are both practical and lead to the-
oretical guarantees on the number of iterations necessary for an IPM to converge.
We will use the existence of such methods in our theoretical analysis of the compu-
tational complexity of Algorithm 4. One of such methods is the predictor-corrector
method, which first finds the Newton direction (d̂x, d̂y, d̂z) for the most optimistic
σ̂t = 0. Then, the actual scaling factor σt is chosen based on how much reduction
in duality gap could be achieved while going in the direction (d̂x, d̂y, d̂z). Most im-
portantly, for the state-of-the-art methods, the cost of computing the scaling factor is
the same as the cost of solving the system of linear equations for (dx, dy, dz), and is
actually done by solving a system of equations with the same right hand side as 4.5.
For more details on methods of choosing the scaling factor we refer the reader to [71]
and references therein.

The cost of computing one step of Algorithm 4 is dominated by solving a system
of equations for (dx, dy, dz) given byA 0 0

0 AT I
Zt 0 Xt

dx
dy
dz

 =

 rt
p

rt
d

σtµt1− Xtzt

 , (4.11)

A common technique for solving the system of equations (4.11) is to apply a block-
wise Gaussian elimination to reduce it to the normal equation Σdy = r, where:

Σ = AZ−1
t Xt AT,

r = b + A(Zt)
−1(Xtrk

d − σkµk1).

Given a solution dy of the normal equation, we can compute dx, dz using the fact that
dz = rk

d − ATdy and dx = −xt + (Zt)−1(σkµk1− Xtdz).
As we have noted in Section 4.1, to effectively perform a single step of the IPM

procedure, we need to be able to efficiently compute Av, ATv and solve Σv = w. We
devote the rest of this Section to presenting and analyzing methods for those three
computational problems that take advantage of the specific structure of matrix A.
We first observe that matrix N is related to a sparse matrix.

Lemma 4.2. Let m = ∑k
i=1 mi, where mi is the size of the i-th theoretical spectrum. Let

U denote an upper-triangular n × n matrix with U[i, j] = 1 for i ≤ j and U[i, j] = 0
for i > j. Then, there exists a sparse m × n matrix W, with m non-zero entries, such
that N = WU. Furthermore, the sparse representations of matrices W and WT can be
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constructed in O((n + m) log(n + m)) time and O(m) memory complexity from a list of
spectra represented as lists of pairs of m/z and intensity values.

Proof. Let s1 ≤ . . . ≤ sn be the ordered vector of point from the set S of all m/z
values with non-zero intensity in any of the spectra µ, νi. For any theoretical spec-
trum νi, we can represent it as νi = ∑n

j=1 wi,jδsj , where only mi of elements wi,j are
non-zero.

Define matrix W as W[i, j] = wi,j. Then, the matrix W is sparse and has m =

∑k
i=1 mi non-zero elements in total. We now have N = WU, because for any i, j we

have WUi,j = ∑l≤j wi,l = Ni,j.
To finish the proof, we need to show how to efficiently construct sparse repre-

sentations of W and WT. In a classic sparse representation of a matrix, we represent
each row of W as a list of nonzero elements, i.e. (j, wi,j) for j such that wi,j > 0,
and we represent W as a list of rows. This is representation of a sparse matrix al-
lows to compute Wv in time m = ∑k

i=1 mi for any vector v ∈ Rn. We construct the
representation of WT in the same manner.

We will now give an efficient algorithm for construction of the sparse represen-
tations of W and WT. Consider a peak-list representation of νi given by (si,j, wi,j)

mi
j=1

(sorted with respect to si,j for each i) and a peak-list representation of µ given by
(s0,j, w0,j)

m0
j=1 (sorted with respect to s0,j). Now, concatenate the peak-list represen-

tations of µ and νi, storing the index of each spectrum, to get a list of triples L =
(si,j, i, wi,j). Sort L with respect to the first element, i.e. the m/z values. Now, it is
enough to pass through this sorted list once to construct both W and WT. Note that
each triple with i > 0 corresponds to exactly one element of the matrix W. Now,
since we pass through the triples in an increasing order of the m/z values si,j, for
a given triple (s, i, w) we have W[i, l] = w if we have seen l different s values so
far. We then simply add (l, w) to the i-th list in the sparse representation of W and
(i, w) to the l-th list in the representation of WT. The total cost of this construction
is O((n + m) log(n + m)) due to the sorting L, and the memory needed for storing
both representations is O(m).

We can now analyze the time and memory complexity of computing Av and
ATw during the IPM method. Note that constructing the sparse representations of
W and WT needs to be done only once before the first iteration of the IPM method.
Therefore, in the following Lemma, we assume that those representations are al-
ready pre-computed.

Lemma 4.3. For any vector v ∈ RN and w ∈ Rn+m−1, the products Av and ATw can be
computed in O(n + m) time and using additional O(n + k) memory.

Proof. The only nontrivial part of operations Av and ATw is computing Nx and NTy
for vectors x, y of appropriate lengths. This can be done efficiently thanks to the rep-
resentation N = WU given by Lemma 4.2. To compute h = Nx, we first compute
u = Ux which can be done in O(n) time, without the need to explicitly store the
matrix U, by computing suffix sums of vector x. We need O(n) memory to store the
result of this operation. Next, we compute h = Wu. Thanks to the sparse representa-
tion of W, this multiplication can be done in O(m) time and we need O(k) memory
for storing the result. This gives a total of O(n + m) time and O(n + k) memory
complexity.

Similarly, to compute g = NTy, we first multiply y by WT and then multiply the
resulting vector of length n by UT, which corresponds to computing prefix sums,
and does not require an explicit construction of U. In this case, we need O(n + m)
time and O(n) memory.
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We are left with the task of solving a system of linear equations Σv = w. Recall
that Σ = AZ−1

t Xt AT and note that Z−t 1 and Xt are diagonal matrices with positive
elements on their diagonals. Therefore, we can generalize our task and deal with
solving systems of linear equations for matrices Σ of a form Σ = AHAT, where H is
a diagonal matrix with positive elements on the diagonal. To prove that this can be
done efficiently, we first prove

Lemma 4.4. For any diagonal matrix G of size n× n, the matrix NGNT can be computed
in O(m(k + m) + n) time and using O(m2) memory.

Proof. We start with representing NGNT as WUGUTWT. It is straightforward to
check that for i, j ≤ n we have (UGUT)i,j = ∑n

l=maxi,j
G[l, l]. Therefore, if we com-

pute the suffix sums of the diagonal of G in time and space O(n), we can retrieve
(UGUT)i,j for any i, j in constant time. Denote αi,j = (UGUT)i,j. We now have:

(NGNT)i,j = ∑
p≤n

∑
q≤n

wi,pαp,qwj,q.

Using the sparse representations of rows Wi and Wj, the above sum can be computed
in time O(mimj). There is, however, a faster way. Notice that for q ≥ p we have
αp,q = αq,q, and write:

∑
1≤p≤q≤n

wi,pαp,qwj,q = ∑
1≤p≤q≤n

wi,pαq,qwj,q (4.12)

The above sum can be computed inO(mi +mj) time. Let Li, Lj be the lists containing
the sparse representations of Wi, Wj. We first compute the suffix sums of αq,qwq,j for
(q, wj,q) ∈ Lj, which can be done in O(mj) time since the list Lj is ordered by the
column number q. Then, for any (p, wi,p) ∈ Li, we add to the result the suffix sum
of αq,qwq,j for the smallest q ≥ p such that (q, wj,q) ∈ Lj. Since the lists Li and Lj are
ordered by column numbers p, q, this can be done in O(mi + mj) time in standard
way. Therefore, the sum in equation (4.12) can be computed in O(mi + mj) time.
Similarly, the sum:

∑
1≤q<p≤n

wi,pαp,qwj,q = ∑
1≤q<p≤n

wi,pαp,pwj,q

can be computed in O(mi + mj) time. Therefore, after we compute the suffix sums
of the diagonal of G in time and memory O(n), the cell (i, j) of matrix NGNT can be
computed in O(mi + mj) time. We have

∑
1≤i,j≤n

mi + mj = (2k− 1)m

and therefore the whole matrix NGNT can be computed in O(km + n) time and
O(k2 + n) memory.

We can now prove that the normal equation Σdy = r can be solved efficiently for
any right hand side.

Lemma 4.5. Let r ∈ Rn+k−1 be a vector and let H be a (2n + k) × (2n + k) diagonal
matrix with positive elements on the diagonal. Then, the matrix AHAT has a full rank, and
the equation AHATv = r can be solved withO(k3 + km + n) time andO(k2 + n) memory
complexity.
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Proof. First, we present a useful decomposition of the matrix AHAT. Let H =
diag(H1, H2, H3) where H1, H2, H3 are diagonal matrices of sizes n, n, k respectively.
Then, using the definition of A, we can write:

AHAT =

[
Jn(H1 + H2)JT

n Jn(H2 − H1)NT

N(H2 − H1)JT
n N(H1 + H2)NT + H3

]
. (4.13)

We will now use a block-wise LDU decomposition of the right hand side of the

above equation. For a given matrix B =

[
B1,1 B1,2
B2,1 B2,2

]
with an invertible block B1,1,

the block-wise LDU decomposition of B is:

B =

[
I 0

B2,1B−1
1,1 I

] [
B1,1 0

0 B2,2 − B2,1B−1
1,1 B1,2

] [
I B−1

1,1 B1,2

0 I

]
Note that Jn(H1 + H2)JT

n is a diagonal (n− 1)× (n− 1) matrix with positive elements
on the diagonal, and is therefore invertible and easy to invert numerically. Denote
K = Jn(H1 + H2)JT

n , L = Jn(H2 − H1) and G = H1 + H2 − LTK−1L. Using the block
LDU decomposition for (4.13), we get

AHAT =

[
In−1 0

NLTK−1 Ik

] [
K 0
0 NGNT + H3

] [
In−1 K−1LNT

0 Ik

]
=: LMR

From this representation it follows that AHAT has a full rank as a product of full-
rank square matrices L, M, R. The L and R matrices have full rank as upper-triangular
matrices with ones on their diaginals. To see that M also has a full rank, observe
that G is a diagonal matrix with positive elements. This follows from the fact that,
element-wise, we have G ≥ H1 + H2 − (H2 − H1)

2/(H1 + H2) with equality on
all elements except the right bottom row. On the other hand, H1 + H2 − (H2 −
H1)

2/(H1 + H2) = 4H1H2/(H1 + H2), which is a diagonal matrix with positive ele-
ments. Therefore, NGNT is non-negative definite, and since H3 is positive definite,
we conclude that NGNT + H3 is positive definite. Now, since K is positive definite
as well, M has a full rank, and so does AHAT.

For given vector r, we now need to solve the equation LMRv = r. The way to
do this is to first solve the equation Lv1 = r, then the equation Mv2 = v1 and lastly
Rv = v2 to obtain LMRv = LMv2 = Lv1 = r. We can therefore work with each
matrix L, M, R separately.

To solve Lv1 = r, write r = (r1, r2), where r1 is of length n− 1 and r2 has length
k. Then,

v1 =

(
r1

r2 − NLTK−1r1

)
,

which can be computed efficiently since the cost of multiplying a vector by LTK−1

is O(n), and we can efficiently multiply vectors by N thanks to Lemma 4.3. We can
solve the equation Rv3 = v2 analogically, with the same time complexity since we
can efficiently multiply by NT as well.

The only thing left is solving Mv2 = v1. Assume v1 = (u1, u2), where u1 is of size
n− 1 and u2 is of size k. Let P = NGNT + H3. Then, P is a positive definite matrix
of size k × k. Thanks to Lemma 4.4, we can compute it in O(km + n) time. Let v′

be a solution of Pv′ = u2, which we find using standard methods in time O(k3) and
space O(k2). Then, v2 = (uT

1 , v′T)T is the solution of equation Mv2 = v1.
Summing up, the cost of finding a solution to the equation AHATv = r isO(k3 +
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km + n), where O(k3) is the cost of solving a linear equation with a k× k matrix and
O(km + n) is the cost of creating this matrix. All other operations have costs linear
in n, k, m. We also need O(k2) memory for computing the k × k matrix. All other
operations can be done using additional memory linear in n, k.

We can now state the computational complexity of Algorithm 4. For each itera-
tion, we need to solve a finite, bounded number of normal equations (possibly more
than one, depending on our mechanism of choosing scaling factor) and additionally
perform a finite, bounded number of multiplications of type Av, ATv , Nv and NTv.
Since all the other operations can be done in time and memory linear in n, k, m, we
conclude that one iteration of our primal-dual Interior Point Method can be done in
O(k3 + km + n) time and O(k2 + n) memory.

4.5 Summary of the Chapter

In this Chapter, we have proposed a formalization of the Mass Spectral Regression
(MSR) problem, which encompasses separating overlapping isotopic envelopes, deiso-
toping, and decharging. We have shown that the Wasserstein distance can be used
to effectively solve this problem in the presence of measurement inaccuracies.

The proposed solution for MSR works for a wide range of m/z values and mul-
tiply charged ions. Furthermore, it is not limited to a single class of compounds like
peptides or metabolites. In principle, the theoretical isotopic envelopes can be either
predicted in silico or measured experimentally. However, the main limitation of the
proposed method comes from the fact that it needs to be used on spectra of highly
purified samples, as it is sensitive to the presence of contaminating signals. We will
deal with this limitation in Chapter 5.
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Chapter 5

Regression of noisy spectra

If all the signal of an experimentally observed spectrum µ can be explained by a
model spectrum νp = p1ν1 + · · ·+ pkνk, the regression problem can be expressed as
finding proportions p∗ such that

p∗ = arg min
p∈∆k−1

W(µ, νp).

In Chapter 4, we have shown that this approach yields accurate results when the
only differences between µ and νp are caused by mass measurement errors and
differing resolution. However, experimentally obtained spectra most often contain
signals which are not theoretically predicted, like chemical contaminants or back-
ground noise. Such signals strongly disturb the optimal transport plan, leading to
incorrect estimation of the proportions p∗. This is because the Wasserstein distance
requires both spectra to have equal amounts of intensity, enforcing p1 + · · ·+ pk to
be equal to 1.

In this Chapter, we assume that the observed spectrum can be approximated by
the model spectrum with some additional chemical and/or background noise ε, so
that for any m/z value x we have

µ(x) = νp(x) + ε(x). (5.1)

The total signal of νp is now equal to the proportion of µ that is explained by the
model. Therefore, in this Chapter, the model spectrum νp is not assumed to be nor-
malized, and its total ion current may be less (but not greater) than one.

The contents of this Chapter. In this Chapter, we further investigate the problem
of linear regression of mass spectra. We analyze the case of noisy spectra of mixtures
of chemical compounds, which were identified as a potential source of estimation
errors in Chapter 4. We develop a method that is robust against interfering signals
coming from chemical impurities and background noise, at the same time being
robust against measurement inaccuracies and numerical errors of peak picking al-
gorithms thanks to using the Wasserstein distance.

We note that spectral regression methods based on the ordinary least squares
regression are also naturally robust to contaminating signals. The main novelty in
our approach to linear regression, compared to the existing methods, is the use of
the Wasserstein distance, which is naturally robust to uncertainties in m/z measure-
ments and different resolutions of the compared spectra. In particular, to our knowl-
edge, this is the first algorithm that is capable of explaining an experimental spec-
trum in profile mode using a set of computationally generated, infinitely resolved
theoretical spectra. On the other hand, when the experimental spectrum is analyzed
in centroid mode, our algorithm does not require peak matching, and is therefore
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capable of utilizing the full information in both the experimental and the theoretical
spectra.

We test the performance of our Wasserstein regression algorithm on a custom-
made data set consisting of 200 repeated measurements of the same set of com-
pounds. This allows us to assess both the accuracy and variance of the estimation
of ion proportions. We further confirm our results using simulated data sets, where
we take into account several measurement inaccuracies occurring naturally in mass
spectra.

5.1 Wasserstein regression of noisy spectra

To account for the additional signal in µ, we extend the m/z axis by adding an aux-
illiary point ω onto which such signal can be transported. All the signal transported
onto ω is assumed to be unexplained by the model spectrum, and usually treated
as noise that can be removed from µ. This applies regardless of the nature of the
transported signal, i.e. whether it is a contaminant or background electronic noise.
The idea behind this approach is visualized in Fig. 5.1.

We assume that the cost of transporting signal from µ to ω does not depend on
the m/z value of the signal (equivalently, that ω is equidistant to all points on R).
We denote as κ the cost of transporting signal from µ to ω (equivalently, the distance
between ω and any point on R). Since κ is interpreted as the cost of removing noisy
signal from µ, we refer to it as the denoising penalty.

Let p = (p1, p2, . . . , pk) be a vector of non-negative weights or proportions such
that p1 + · · ·+ pk ≤ 1 (note the inequality sign). Define νp to be a linear combination
of the theoretical spectra with weights p, i.e.

νp = p1ν1 + · · ·+ pkνk.

We will call νp a model spectrum in analogy to a model matrix used in an ordinary
least squares linear regression. Note that the νp’s intensity sums up to p1 + · · ·+ pk,
which may be less than 1. The inequality is allowed in order to account for the fact
that νp may not explain all of µ’s signal. We define the Wasserstein regression of
mass spectra, accounting for signal unexplained by the model spectrum, as

p∗ = arg min
p∈∆k

W(µ, p0ω + νp), (5.2)

where p0 is the amount of the unexplained signal in µ transported onto ω. Note that
we now have k + 1 weights, with p0 + p1 + · · ·+ pk = 1.

During the minimization of the Wasserstein distance in Equation 5.2, the ob-
served signal that cannot be feasibly transported onto any theoretical spectrum gets
transported onto ω. An important property of this approach is that the decision
whether to remove a given signal is performed independently for each intensity
measurement in the experimental spectrum. This allows it to work properly in the
case when the number of the background noise peaks greatly exceeds the number of
the peaks of the molecules of interest, which is usually the case in mass spectrome-
try. For example, the noise peaks in the middle of Fig. 5.1 are going to be removed
(i.e. transported into ω) regardless of their number.

Note that the denoising penalty κ admits a physical interpretation in terms of
m/z units. Transporting intensity from the experimental to the model spectrum over
a distance larger than κ is more costly than removing it by transporting it to ω. The



5.1. Wasserstein regression of noisy spectra 59

FIGURE 5.1: An illustration of the Wasserstein regression of mass
spectra. An experimental spectrum (black) is explained by a set of
three theoretical spectra (orange, green and magenta). Excess signal
from the theoretical spectrum, occurring due to background noise or
sample impurities, is transported onto an auxilliary point ω, repre-

sented as the vortex.

penalty can therefore be treated as a maximum distance over which the transport is
feasible. This allows for some intuition behind the optimal values of this parameter:
the maximum feasible transport distance should be set as the smallest value that
allows to match corresponding theoretical and experimental peaks. The instrument
accuracy (in Dalton units) is therefore an example of a reasonable value for the κ
parameter. In practice, however, the choice of this parameter is more complicated.
This is because, apart from the instrument accuracy, there are several factors that
influence the distance between experimentally observed peaks and their theoretical
counterparts, including, but not limited to, the resolving power. Therefore, usually
the results for several different values of κ need to be inspected manually. This issue
is discussed in more detail in the subsequent Sections.

A major advantage of our approach, as opposed to matching peaks by mass win-
dows in methods based on least squares regression, is that κ does not set a hard
threshold on the transport distance, allowing for more flexibility in the choice in
this parameter. Furthermore, in some cases it may be beneficial to transport the sig-
nal over distances larger than κ, while in other cases interfering signal is removed
regardless of its proximity to theoretical peaks. Specifically, whether a given sig-
nal is removed depends not only on it’s distance from the nearest theoretical peaks,
but also on the shapes of the theoretical isotopic envelopes—in contrast to methods
based on linear regression, in which a signal is always incorporated when it’s suffi-
ciently close to any theoretical peak. This phenomenon is illustrated by the following
example.

5.1.1 A worked example

Consider a theoretical spectrum ν consisting of n peaks, and let the i-th peak be at
m/z m1 + i/q for some mi ≥ 0, and let it have intensity ai, where a1 + a2 + · · ·+ an =
1. This models a low-resolution theoretical spectrum of an ion with charge q and
with the monoisotopic peak at m1. Since the proportions ai are arbitrary, this model
encompasses all possible single-ion low-resolution spectra, allowing us to obtain a
general result.

Let the experimental spectrum µ be equal to the theoretical one scaled by 1− ϵ,
with an additional noise peak in location x ≤ m1 with intensity ϵ (see Fig. 5.2). We
will investigate which values of κ allow to correctly identify the additional peak as
noise, and return the proportion of ν as 1 − ϵ instead of 1. To this end, we will
compare the Wasserstein distance W(µ, ν) with the cost of denoising κ. Note that,
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FIGURE 5.2: An example pair of experimental and theoretical spec-
trum, where the former (top) is equal to the latter (bottom) plus an

additional noise peak.

since the spectra are identical save for the noise peak, if this peak gets removed then
κ is the full cost of regression (i.e. we get W(µ, p0ω + νp) = κ).

Let Ai be the cumulative intensity of the theoretical spectrum ν. The Wasserstein
distance W(µ, ν) is equal to

W(µ, ν) = ϵ(m1 − x) +
n−1

∑
i=1

1
q
∣∣Ai − (1− ϵ)Ai − ϵ

∣∣
= ϵ(m1 − x) +

n−1

∑
i=1

1
q
∣∣ϵAi − ϵ

∣∣
= ϵ(m1 − x) +

ϵ

q

n−1

∑
i=1

(1− Ai)

= ϵ(m1 − x) +
ϵ

q
(n−

n−1

∑
i=1

Ai).

Now, note that ∑n−1
i=1 Ai = ∑n−1

i=1 (n − i)ai = n(1 − an) − ∑n−1
i=1 iai, where the first

equality comes from counting the number that each of the ai variables occur in the
sum, and the second one follows from the fact that the intensities sum to 1. This can
be further simplified by noting that n(1− an) − ∑n−1

i=1 iai = n − ∑n
i=1 iai, where we

included the term nan in the sum.
Now, note that since the intensities are normalized,the average mass of the spec-

trum ν, denoted as m̄, is equal to ∑n
i=1(m1 + i/q)ai. This allows us to express ∑n

i=1 iai
simply as q(m̄ − m1), i.e. the distance between the average and the monoisotopic
mass multiplied by the charge. Plugging this into the equation for W(µ, nu), we get
a simple formula

W(µ, ν) = ϵ(m1 − x) + ϵ(m̄−m1).

The cost of removing the noise peak will be lower than the cost of such transport
whenever ϵ(m1 − x) + ϵ(m̄ − m1) > κ. It follows that the influence of the noise
peak on the estimated proportions depends not only on it’s proximity to the signal,
m1− x, as is the case in methods based on linear regression, but also on the width of
the isotopic envelope, m̄−m1. Note that the latter term is always positive for spectra
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with more than one peak. Therefore, the shape of the isotopic envelope facilitates the
detection of noise peaks by the linear regression procedure based on the Wasserstein
distance.

The presence of the noise peak changes the proportion of ν from 1 to 1− ϵ, even
though it is the only isotopic envelope in µ. This is because we estimate the amount
of the total signal in µ that, under a given value of κ, can be feasibly explained by the
model spectrum, and not the amount of ions. To obtain the latter, the proportions of
the theoretical spectra returned by our method need to be normalized so that they
sum up to 1.

5.1.2 Computation of the optimal proportions.

The formulation of the regression problem discussed in the previous Sections is well
suited for theoretical analysis. However, it does not show how to obtain the optimal
proportions in practice. Below, we show an equivalent formulation that is better
suited for implementation and practical applications. The formal proof that the two
formulations are equivalent is presented in Section 5.5.

Let M(t), Nj(t) be the cumulative distribution functions of µ and νj respectively.
The cumulative distribution function of the model spectrum νp = ∑k

j=1 pjνj is equal
to Np(t) = ∑k

j=1 pjNj(t).
Let g(si) for i = 1, 2, . . . , n be the amount of µ’s signal at the point si that is

transported onto ω under a given transport plan. Note the distinction between g
and ω: the latter is an auxilliary spectrum, therefore it’s a concept analogous to µ
and νp; the former denotes the amount of signal transported to ω, therefore being
analogous to γ. Let G(si) = g(s1) + · · ·+ g(si) be a cumulative distribution function
of the unexplained signal. Note that G(sn) = gs1 + · · ·+ gsn = p0. Conceptually, G
is a different construct than M or N, since it does not denote the amount of signal
present in any given spectrum, but rather the amount of signal removed from µ by
transporting it onto ω. In particular, we need to have g(x) ≤ µ(x) for any point x.

For centroided spectra, the optimization problem (5.2) can be rephrased as a min-
imization over the variables p and g as follows:

p∗, g∗ = arg min
p,g

{
κp0 +

n−1

∑
i=1

(si+1 − si)
∣∣∣M(si)− G(si)− Np(si)

∣∣∣}. (5.3)

Note that the minimization above is performed over both pj and g(si) variables.
Moreover, we require p0 + ∑k

j=1 pj = ∑n
i=1 g(si) + ∑k

j=1 pj = 1, as all the signal in the
observed spectrum needs to either be explained by the theoretical spectra or labeled
as unexplained. The sum of pj variables denotes the proportion of signal explained
by the model spectrum.

Note that the optimization problem (5.3) is similar to formula (3.4) from Theo-
rem 3.2, expressing the Wasserstein distance between a pair of spectra. It is equiva-
lent to computing the Wasserstein distance between the model and the experimen-
tal spectrum after removing the unexplained signal from the latter, and additionally
penalizing for the amount of signal removed. However, it does not give any clear
physical interpretation of the denoising penalty κ.

The minimization problem (5.3) is an example of the Least Absolute Deviation
(LAD) regression [75]. One of the common approaches to solving such problems is
by using the technique of linear programming, which optimizes a linear function
under a set of linear constraints [74]. However, the function to be minimized in
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problem (5.3) is not linear due to the absolute value, and the problem needs to be
converted before using linear programming to solve it. There are several ways to
convert a Least Absolute Deviation regression problem into a linear program, and
choosing the proper one in each particular application is a crucial factor in obtaining
a computationally efficient solution. We investigated several approaches and found
that, in the case of linear regression of mass spectra, the approach based on the ideas
described in [76] seems to be the most efficient.

The derivation of the linear program equivalent to the minimization problem (5.3)
is shown in Section 5.5. The main idea is to show that solving the regression prob-
lem is equivalent to solving the following linear program for the vector of variables
z, and analyzing the differences between left- and right-hand sides of the inequali-
ties:

maximize VTz over z
subject to WTz ≤ 0,

zi − zi+1 ≤ si+1 − si, i = 1, 2, . . . , n− 1,
zi − zi+1 ≥ si − si+1, i = 1, 2, . . . , n− 1,

z ≤ κ,

(5.4)

Above, V is a vector of the observed spectrum intensities, such that Vi = µ(si), and
W is a matrix of theoretical intensities, Wij = νj(si). Note that V and the columns
of W may represent spectra in either centroided or profile mode, because both types
of spectra are represented as finite lists of m/z and intensity measurements when
stored on computers. Moreover, since we only use the vectors of intensities and
m/z values, we do not need to compute any additional values prior to solving the
program (such as the cumulative sums used in the Wasserstein distance).

The minimization problem above can be solved using a number of algorithms
for linear programming, such as the Simplex or the Interior Point methods. In our
implementation, available in our Python 3 package masserstein, we have used the
Simplex algorithm.

As in the case of computing the Wasserstein distance, the regression algorithm
can be applied to profile experimental spectra provided that the sampling of inten-
sity values is uniform over the m/z axis. This is how the results shown in Fig. 4.1
were obtained, with κ = 0.02. According to our knowledge, the Wasserstein distance
is the first solution that allows for this kind of processing without the requirement
for peak detection or centroiding. In the next Section, we validate the performance
of this approach on a set of experimentally obtained spectra as well as on simulated
data.

5.1.3 The choice of the denoising penalty.

Our method requires the user to specify a single parameter: the cost of denoising κ,
interpreted as the maximum feasible transport distance in the m/z domain. This in-
terpretation of κ allows to treat it analogously to the radius of a mass window. How-
ever, a major difference between the two approaches is that κ acts as a soft threshold:
during regression, whether some signal is transported between two peaks depends
not only on their distance relative to κ, but also on the shape of the theoretical iso-
topic envelopes. This allows for some flexibility in setting the value of κ and makes
the results more stable when the value is sub-optimal.

Similarly to the width of a mass window, in practical applications the choice of
κ is not straightforward. The performance of the regression methods for a given
parameter value is influenced by several factors, including the instrument accuracy
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and resolving power. Usually, the results for several different values need to be
inspected manually in order to make a final decision. The half-base widths of peaks
in profile spectra and the instrument accuracy serve as a convenient reference for
the reasonable range of values of this parameters. Setting κ higher than 1 is usually
inadvisable, as it allows to transport the signal between peaks of ions with different
atomic compositions.

The choice of κ resembles the classical variance-bias trade-off known from the
field of machine learning. Small values of κ lead to down-estimation of ion pro-
portions, as insufficient signal is available to be transported onto their theoretical
isotopic envelopes. On the other hand, while high values of κ allow to transport all
the required signal, they lead to incorporation of noise in the estimated proportions,
therefore increasing the variance of the estimation. Additionally, if systematic sam-
ple impurities are present, high values of κ may lead to an over-estimation of the
amounts of the molecules of interest. Further studies are needed in order to give
precise guidance as to the optimal value of this parameter.

5.1.4 A note about experimental data.

In real mass spectra, there are several different sources of unexpected signal, includ-
ing chemical contaminants, random baseline electronic noise etc. In this work we
do not distinguish between them, and broadly classify the experimental signal into
two classes: the signal of the molecules of interest, referred to as the explained or
expected signal, and all the other signal, referred to as the unexplained signal or
noise.

Naturally, in noisy spectra, it is often far from clear whether a given signal is
expected or not. Accordingly, any numerical method may mistake actual signal of
interest for noise, and the other way around. Therefore, the signal transported from
µ onto ω is the noise estimated by our method, which, as for any computational
method, may differ from the actual noise signal.

One of the most difficult types of unexpected signal is the chemical contaminants
with isotopic envelopes that highly overlap with the ones of the molecules of inter-
est. In this case, the contaminating signal might be transported onto the theoretical
envelope of the molecule of interest instead of ω. One of the possible ways of han-
dling this problem is to use a database of common contaminants, such as the cRAP
database1, and include their theoretical isotopic envelopes in the model spectrum.

There are multiple factors other than the noise signal that influence the simi-
larity of the observed spectra to their theoretical counterparts and the similarity
between experimental spectra from replicate experiments. These include the vari-
ation of peak m/z position and the variation of peak intensities caused by random
isotopologue sampling and measurement inaccuracies. Naturally, with any compu-
tational method, including ours, a change in the input will result in a change in the
output. However, the variations in m/z and intensity values have different effects
on the results obtained.

Due to the use of the optimal transport theory, our approach is inherently robust
to the variation in the mass domain, as long as the parameter κ is properly adjusted
and the variation is not excessive, as may be caused e.g. by an improper calibration
of the instrument. Natural variations of m/z occurring in replicate experiments have
close to no influence on the estimated proportions of molecules.

On the other hand, the variation in intensity has a pronounced effect on the ob-
tained results, because it influences the amount of signal in the observed isotopic

1https://www.thegpm.org/crap/

https://www.thegpm.org/crap/
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envelope of a given molecule. The variability of the signal intensity is therefore re-
flected in the variability of the estimated proportions. In particular, low ion counts
lead to a highly unstable estimation. An example of this phenomenon is discussed
in the next Section.

Although our method is fairly robust against measurement inaccuracies and
sample impurities, any computational method will give improper results if the qual-
ity of the data is insufficient. Therefore, it is always the responsibility of the spec-
trometrist and the data analyst to first inspect the spectrum visually in order to de-
termine its quality.

5.2 Validation on experimental data

In this Section, we verify whether the regression algorithm based on the Wasserstein
metric can accurately filter out the background noise and estimate ion proportions in
experimental spectra. We also compare the performance of the method on centroid
and profile spectra.

As our test dataset, we take 200 repeated measurements of Pierce® LTQ Velos
ESI Positive Ion Calibration Solution (Thermo Scientific). This calibration mixture
is composed of caffeine, a short peptide with the sequence MRFA, and Ultramark
1621, a compound shown in Fig. 5.3. Note that due to varying side group lengths,
Ultramark 1621 is in fact a mixture of 13 different compounds. In this dataset, all the
isotopic envelopes of the compounds of interest are disjoint. We simulate the effect
of overlapping envelopes by superposing shifted spectra.

Due to the different ionization rates of different compounds, it is difficult to
predict the correct proportions of ion signals from their concentrations in samples.
Therefore, we have assumed that our ground truth to which we compare our esti-
mates are the true signal areas of compounds. To obtain the latter, we have manually
selected the signal regions of all compounds, taking into account their monoisotopic
peaks and peaks of isotopologues containing one additional neutron (i.e. first iso-
topic peaks). The region selection was performed on an average spectrum based on
the 200 profile spectra. To ensure that the selected regions contain whole peaks in all
the spectra, we have additionally taken into account the standard deviation of inten-
sity at each point. The selected regions are shown in Table 5.1, and a fragment of the
average spectrum used to select them in Fig. 5.3. Next, for each spectrum we have
integrated the signal within the selected regions using the trapezoidal rule. For each
compound, the signals of its monoisotopic and first isotopic peaks were summed to
yield the total signal of the compound.

We have inspected the results of our Wasserstein regression method for several
manually selected values of κ. The selection was based on the observed peak widths
in profile spectra, which ranged from 0.013 at 195 Da to 0.38 at 1725 Da. In princi-
ple, setting κ to half base width of the broadest observed peak allows the method
to use all the necessary experimental signal. However, we have observed that the
performance was best for κ = 0.4, i.e. the full base width of the broadest peak. This
value allowed for a more flexible transport of signal between peaks of an isotopic
envelope, effectively countering the effect of the variance of experimental peak in-
tensity. The effect is mostly pronounced for low intensity peaks with small signal
to noise ratio, in which case the particularly high variance of signal intensity has a
detrimental effect on the estimation unless κ is sufficiently high. The reason behind
this effect is explained in more detail in the following paragraphs.
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FIGURE 5.3: Top: Ultramark 1621, one of the compounds analyzed in
this study; x=1,2,3. Bottom: A fragment of an average spectrum used
to define m/z regions of ion signals, showing the first two peak of
an isotopic envelope of Ultramark 1621 with 14 CF2CF2 groups. Blue
line shows the average signal. Dark orange and light orange ribbons
show±σ and±3σ regions, where σ is the standard deviation of signal
intensity. Grey lines show the maximum and minimum signal over
the 200 spectra. Red dots show the m/z values of theoretically pre-
dicted peaks. As the theoretically predicted masses agree well with
the signal apexes, we infer that the spectrum is properly calibrated.
As the maximum and minimum lines are in proximity of the ±3σ
ribbon, we infer that there are no outlying measurements of intensity.
Random increases of maximum signal between the peaks indicate the

presence of background noise.
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Name Region
Caffeine 195.075 - 195.100 Da
Caffeine 196.073 - 196.103 Da

MRFA 2+ 262.614 - 262.655 Da
MRFA 2+ 263.118 - 263.154 Da
MRFA 1+ 524.216 - 524.306 Da
MRFA 1+ 525.217 - 525.320 Da

Ultramark 8x 1121.85 - 1122.13 Da
Ultramark 8x 1122.84 - 1123.15 Da
Ultramark 9x 1221.84 - 1222.12 Da
Ultramark 9x 1222.84 - 1223.15 Da

Ultramark 10x 1321.82 - 1322.15 Da
Ultramark 10x 1322.82 - 1323.15 Da
Ultramark 11x 1421.77 - 1422.17 Da
Ultramark 11x 1422.78 - 1423.16 Da
Ultramark 12x 1521.77 - 1522.16 Da
Ultramark 12x 1522.76 - 1523.17 Da
Ultramark 13x 1621.75 - 1622.19 Da
Ultramark 13x 1622.74 - 1623.19 Da
Ultramark 14x 1721.73 - 1722.19 Da
Ultramark 14x 1722.73 - 1723.19 Da
Ultramark 15x 1821.70 - 1822.17 Da
Ultramark 15x 1822.76 - 1823.17 Da

TABLE 5.1: Regions of the m/z axis used to compute ion signal inten-
sities for the validation of the Wasserstein regression. Ultramark 8x

denotes Ultramark 1621 with 8 CF2CF2 groups, etc.

5.2.1 Analysis of centroided spectra.

The first goal of this study is to verify whether the Wasserstein regression algorithm
implemented in the masserstein package returns accurate results when applied to
a centroided experimental spectrum. In order to perform the centroiding in a con-
trolled manner, we have implemented our own peak-picking procedure. Briefly, the
spectra are centroided by integrating the signals within regions delimited by a frac-
tion of 0.2 of the apex intensity. The pseudo-code of the full procedure is shown in
Algorithm 3 in Section 3.5.2 of Chapter 3. We have validated our implementation by
comparing the centroided peak intensities with the manually integrated signal areas
and found a good agreement.

We have generated the theoretical spectra of the compounds of interest using
IsoSpecPy [72], assuming a proton adduct. In each spectrum we have retained the
monoisotopic and the first isotopic peaks, so that the theoretical spectra correspond
to the manually identified regions. After that, we have used masserstein to regress
each of the 200 experimental spectra against our set of theoretical spectra. We have
inspected several values of the denoising penalty κ ranging from 0.05 to 0.6. For
κ = 0.4, the regression of all spectra took around 98 seconds on a single core of an
Intel(R) Core(TM) i5-6300HQ CPU @ 2.30GHz processor

The masserstein package requires that all the spectra are normalized. Prior to
normalization we have computed the total ion currents of the experimental spectra.
After obtaining the estimated proportions of ions, they were multiplied by the total
ion current of the experimental spectrum. This way we obtain the total signal (as
opposed to the proportion of the total signal) explained by each ion, which we then
compare to the manually calculated signal area.

The results for κ = 0.4 are shown in Fig. 5.4. The overall correlation between the
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FIGURE 5.4: A Bland-Altman plot summarizing the Wasserstein re-
gression results for the calibration mix on centroided spectra. Each
point corresponds to an estimate of an ion intensity in one of the 200
spectra analyzed, with colors corresponding to different ions. The Y
coordinate of each point corresponds to the estimated minus the true
signal divided by the latter. Ultramark 1621 8x denotes Ultramark

1621 with 8 CF2CF2 groups, etc.

estimated and the manually computed signal was equal to ρ = 0.9998. The mean
difference between the estimated and manually integrated signal relative to the lat-
ter was equal to 1%, indicating a slight downward bias for this value of denoising
penalty. The mean absolute relative difference was equal to 0.017, meaning that the
average error of the estimation is equal to 1.7% of the true value. The detailed results
for each ion are shown in Fig. 5.5.

For κ = 0.3 the results were similar for most ions, and the overall correlation of
the estimated and true signals was equal to ρ = 0.9994. However, we have found a
strong down-estimation of the signal of Ultramark 1621 with 15 CF2CF2 side groups,
which caused the drop in the correlation. We have found out that the bias is caused
by a large variability of the relative peak intensities of this ion. In some spectra,
the first isotopic peak was up to two times lower than on average. Such a large
variability is most likely caused by a small number of ions of this compound.

Highly variable peak heights, combined with low denoising penalties, are detri-
mental to our current implementation of the Wasserstein regression. When the max-
imum feasible transport distance is low, the procedure necessarily fits to the smallest
matching peak of the experimental spectrum. This is because, after all the signal of
such peak is transported to a theoretical spectrum, there is no neighboring signal left
that can be feasibly transported.

Increasing the denoising penalty allows to distribute the experimental signal
more evenly over the theoretical spectrum, therefore increasing the accuracy of the
estimation. However, when the penalty is too high, the background noise may also
be transported to the theoretical spectrum, leading to an overestimation of an ion’s
signal.

The results demonstrate that the optimal transport theory applied to the problem
of linear regression of mass spectra is capable of giving very accurate estimates of
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FIGURE 5.5: The Wasserstein regression results for 200 centroided
spectra of Pierce® LTQ Velos ESI Positive Ion Calibration Solution
(Thermo Scientific). The plots show ion intensities estimated by the
linear regression based on the Wasserstein distance versus manually
integrated peak areas. Each point corresponds to a mass spectrum.
Numbers in top-left corners represent the Pearson correlation. Note
the different scales in plots, due to different average signal intensities

of different molecules.
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ion signals, provided that all the considered signals are over the limit of quantifica-
tion to ensure small variability of peak areas. As we show below, it also opens the
possibility of directly analyzing the profile spectra without the peak-picking step.

5.2.2 Analysis of profile spectra.

In the current implementation of the Wasserstein regression algorithm, we treat pro-
file spectra in the same way as the centroided ones. As discussed in the previous
Section, this approach gives a good approximation when the signal sampling is uni-
form over the m/z axis. However, this is often not the case for spectrometers which
have a non-constant resolving power. As peaks get broader with the increasing m/z
value, less data points are needed to reflect the signal shape. This phenomenon is
often exploited in order to decrease the data size. One of the way to circumvent this
problem in order to use the current implementation of our method is to resample
the signal intensities.

We have resampled our spectra using a piecewise linear interpolation, in which
the signal intensity in each point is approximated by a weighted average of the
neighbouring intensities. The full procedure is shown in pseudo-code in Algo-
rithm 2 in Section 3.5.1 of Chapter 3. For each spectrum, we have interpolated its
signal such that the spacing between neighboring m/z values was 0.001.

The downside of the resampling strategy is a large increase of the data complex-
ity and, consequently, the computational time. For the regression of the 200 profile
spectra with κ = 0.4, the computations took 35 minutes, compared to 98 seconds for
centroided spectra.

The penalty κ = 0.4 yielded an overall correlation of 0.9998. The results for all
compounds are shown jointly in Fig. 5.4, and for each ion in detail in Fig. 5.6. We
have noticed a systematic slight overestimation of the caffeine signal, most likely
due to incorporation of a small unidentified peak at 195.72 Da which was present in
most spectra. For κ = 0.3 we have observed a bias in the estimation of Ultramark
1621 with 15 CF2CF2 groups, similar as for the centroided spectra.

Further information about the results of the regression can be obtained by in-
specting the spectrum of the remaining signal (i.e. the signal not explained by the
theoretical spectra). An example of such spectrum, obtained for one of the 200 mass
spectra, is shown in Fig. 5.7. The remaining signal corresponds to approximately
45% of the total ion current. By inspecting the spectrum of the remaining signal we
conclude that all the molecules of interest were properly detected. However, not all
of the signal of interest was used for regression, most likely due to the peak height
variability discussed in the previous paragraph. We also detect contaminating ions,
one of which is visible at 1395 Da in the right panel of Fig. 5.7, and numerous ap-
parently random peaks. On the other hand, inspecting the fragment with caffeine
(not shown) confirmed our assumption that a contaminant with a highly overlap-
ping isotopic envelope caused an overestimation of the signal. Further research into
the application of optimal transport to the processing of mass spectra should allow
for a better separation of the signal of interest from the contaminants.

In general, the results were similar to the ones obtained on centroided spectra.
This shows that masserstein allows for the processing of profile spectra without
the need of peak peaking. Further research into applications of the optimal trans-
port theory to the processing of mass spectra has the potential to increase both the
computational efficiency and the accuracy of the results.
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FIGURE 5.6: The Wasserstein regression results for 200 profile spectra
of Pierce® LTQ Velos ESI Positive Ion Calibration Solution (Thermo
Scientific). The plots show ion intensities estimated by the linear
regression based on the Wasserstein distance versus manually inte-
grated peak areas. Each point corresponds to a mass spectrum. Num-
bers in top-left corners represent the Pearson correlation. Note the
different scales in plots, due to different average signal intensities of

different molecules.
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FIGURE 5.7: One of the 200 mass spectra used in this study with the
signal remaining after regression with κ = 0.4 highlighted in red.
Left: Full spectrum. Black peaks, corresponding to no remaining sig-
nal, indicate that the molecules of interest were properly detected.
Right: A zoomed in fragment containing the isotopic envelope of Ul-
tramark with 11 CF2CF2 groups at 1421.77 Da. The signal from the
first isotopic peak was fully used for regression, while there is still
some remaining signal of the monoisotopic peak. As expected, the
signal from the second isotopic peak was not used, because this peak

was discarded from the theoretical spectrum.

5.2.3 Overlapping isotopic envelopes.

In our final experiment on the calibration mix data, we investigate the influence of
overlapping envelopes on the accuracy of the estimation. In the case of disjoint iso-
topic envelopes, like in the previous experiments, it is easy to obtain the ground
truth by manually selecting peak regions for integration. However, the task is com-
plicated when the peaks of the envelopes overlap, because manual integration does
not allow to separate them and compute their individual signals. Therefore, we have
decided to simulate this effect using the calibration mix data.

For each spectrum in profile mode, we have created its copy shifted by one hy-
drogen mass. Each spectrum was mixed with its shifted copy in proportion 0.7 of
the original and 0.3 of the copy. The spectra were subsequently centroided as in the
previous examples.

To generate a model spectrum, we have taken the formulas from the previous
experiments, and the same formulas with one additional hydrogen. When adding
a hydrogen atom to the sum formula, we only modified the ion’s mass, while keep-
ing its charge unchanged. Note that, from a computational perspective, it does not
matter whether the formulas obtained this way correspond to any actual chemical
compound.

From the computational point of view, this dataset is much more difficult than
the previous ones, and we expect a decrease in estimation accuracy. One of the
reasons is that when overlapping signals merge, the apex positions shift relative
to the original ones. Therefore, peak picking a profile spectrum with overlapping
signals returns distorted peak positions, and for a sufficiently large overlap one gets
a single peak instead of two. This poses a major difficulty for approaches based on
pointwise comparison of spectra, while the Wasserstein distance is more robust to
such changes.
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FIGURE 5.8: The ratio of estimated signals of ions with overlapping
isotopic envelopes. Each boxplot corresponds to a pair of ions with
sum formulas differing by one hydrogen atom. The dashed line rep-

resents the true ratio.

Using masserstein, we have regressed the mixed spectra with denoising penalty
κ = 0.4. This time, the regression of all the spectra took approximately 3 minutes
(not including the time needed for centroiding). The results were compared with
the signal areas integrated in the previous experiment, rescaled either by 0.7 or 0.3
to accommodate for the mixing proportions. The correlation between the estimates
of masserstein and the true signals was equal to ρ = 0.9985, only slightly smaller
than for the previous datasets. The detailed results are shown in Fig. 5.9.

Additionally, we have calculated the ratios of estimated proportions of corre-
sponding ions. In each spectrum we have compared the estimated signal of an
original ion to the estimated signal of it’s counterpart with one additional hydro-
gen atom. We have compared the ratio obtained this way to the reference value of
0.7/0.3 ≈ 2.33. The result is shown in Fig. 5.8.

We have observed that the ratio is overestimated for MRFA 1+. Comparing the
ratio with the results shown in Fig. 5.9, we conclude that this is caused by an overes-
timation of the signal of the original MRFA 1+ ion (i.e. without the added hydrogen
atom). For all the other ions, the true ratio was within the 95% confidence interval
of the estimation. The estimated ratio showed a high variance for Ultramark 15x,
which is likely caused by the lower signal to noise ratio of this ion compared to the
other ions. On the other hand, the estimated signal ratio was the most accurate for
caffeine, likely due to low amount of background noise in the neighbourhood of its
isotopic envelope and a sufficiently high signal intensity.

The results of the three experiments presented in this Subsection show that our
Wasserstein regression algorithm implemented in masserstein is capable of accu-
rate estimation of signal intensity based on experimental spectra in both centroided
and profile mode, and also in the presence of overlapping isotopic envelopes. How-
ever, the dataset presented in this Section contained only a handful of molecular for-
mulas. In order to verify the results for a broader range of molecules, and to demon-
strate that masserstein is not limited to any particular type of ions (be it lipids,
peptides or metabolites), in the next Subsection we perform an extensive analysis on
simulated datasets consisting of purely random molecular formulas.
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FIGURE 5.9: The Wasserstein regression results on 200 spectra of
Pierce® LTQ Velos ESI Positive Ion Calibration Solution (Thermo Sci-
entific) after introducing overlapping isotopic envelopes. Red: sig-
nals from original spectra; Blue: signals from spectra shifted by one

hydrogen mass. Note the different scales on the X and Y axes.
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5.3 Computational experiments on simulated data

In this Section, we evaluate the accuracy and bias of the estimation performed by
masserstein using simulated mass spectra. We introduce a series of measurement
distortions into the observed spectrum in order to reflect the variability of peak
heights and limited resolving power and accuracy observed in real spectra.

We have created several simulated datasets by computing spectra of mixtures of
randomly generated molecules. In each dataset, all the molecules had the same nom-
inal mass in order to ensure high overlap of their isotopic envelopes. The molecules
were simulated by subsequently sampling elements in the order of C, O, N, S, and P.
Note that any user-supplied formula can be used in masserstein, as no mathemat-
ical procedure used in this work depends on the chemical properties of molecules.
Therefore, in order to simplify the simulation procedure, we did not restrict the sam-
pled molecules to ones which are chemically possible.

We have simulated datasets consisting of isobaric molecular formulas for a range
of nominal masses from 60 to 12 000 Da and from 1 to 8 isotopic envelopes. Based on
the formulas, we have generated theoretical spectra using IsoSpecPy [72]. To obtain
simulated experimental spectra, for each dataset we have mixed the theoretical ones
in random proportions. We have generated both centroid and profile experimental
spectra. In the latter case, we have assumed a Gaussian shape of peaks.

To each experimental spectrum, in both profile and centroid mode, we have in-
troduced extensive distortions to simulate the effects of a finite number of molecules,
electronic noise, measurement inaccuracy in mass and intensity domain and limited
resolving power (100 000 at 600 Da in the case of profile spectra). The procedure is
described in detail in Section 5.6.

To assess the quality of regression results, we calculate the mean absolute de-
viation (MAD) between true and estimated signal contributions of the theoretical
spectra:

MAD =
1
k

k

∑
i=1
| p̂−pi|

In the above formula, k is the number of theoretical isotopic envelopes, pi is the true
proportion of the i-th envelope, and p̂i is its estimated proportion. We do not directly
compare the amount of unexplained signal, p0, as this information is implicitly in-
cluded in the sum of the estimated proportions.

In the case of profile observed spectra, we have inspected two denoising penal-
ties, equal 0.0075 (half peak base width) and 0.08. The results are shown in Fig. 5.10.
For the lower penalty, the MAD was mostly between 10−2 and 10−1, indicating at
least one accurate decimal digit in an average estimate. We have observed some
bias in the estimation, as the estimated proportions were usually lower than the true
ones. The mean of the residues was equal to -0.0197, while their standard deviation
was 0.025. The bias increased with increasing true proportion. This can be explained
by the fact that the isotopic envelopes of abundant ions have a larger variance of
their peak heights due to isotopologue sampling. For the 0.08 penalty, the MAD was
smaller and usually around 10−2. The decrease in MAD was especially pronounced
for low numbers of isotopic envelopes. One of the reasons for better performance
in this case is a lower bias, as the mean of the residues was -0.008. However, at the
same time, their variance increased to 0.028. In all cases, the processing of a single
spectrum took less than one second on a laptop computer with Intel(R) Core(TM)
i5-6300HQ CPU @ 2.30GHz processor.
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FIGURE 5.10: Mean absolute deviation of estimation of molecule pro-
portions on profile experimental spectra for two denoising penalties.

Note the logarithmic scale of the plots.
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In the case of centroided spectra, the denoising penalty was set to 0.02 (ten times
the standard deviation of the simulated m/z measurement error). The results are
shown in Fig. 5.11. The MAD was mostly between 10−3 to 10−2, indicating at least
two accurate decimal digits an average estimation. There were no clear differences
between low and large masses, indicating that isotopic envelopes of 200 Da ions
have enough information for accurate regression using our method. In most cases,
the best estimates per observed spectrum had at least three accurate decimal digits.
We did not observe any bias of the estimation. The mean of the residues was one
order of magnitude lower than in the case of profile spectra.

The results show that our method is able to perform accurate estimation of ion
proportions even in the case of several isobaric interferences and additional chem-
ical noise. Moreover, it is applicable to both profile and centroided spectra. In the
case of profile spectra, we have observed a tradeoff between the estimation bias and
variance for different values of the denoising penalty κ. The results presented above
were better for centroided spectra. However, the two different types of distortions
used to simulate both types of observed spectra are not directly comparable, and
their magnitudes differ.

Notably, we have obtained accurate results for up to 6 isobaric molecules of 200
Da in the presence of 50 additional interfering peaks, even though the molecules
themselves have only a few peaks in their isotopic envelopes. In this case, the largest
absolute error of estimation per centroided spectrum, averaged over 100 replicates,
was 0.026 (see Fig. 5.11). This indicates that, on average, all the estimates had at least
one accurate decimal digit.

5.4 Reduction to LAD regression on CDFs

In Section 5.1.2, we have presented two formulations of an optimization problem
that allows for an estimation of ion proportions accounting for the presence of addi-
tional signal, not present in the theoretical spectra (Eqs. (5.2), (5.3) in the main text):

p∗ = arg min
p

W(µ, p0ω + νp),

p∗, g∗ = arg min
p,g

{κp0 +
n−1

∑
i=1

(si+1 − si)
∣∣∣M(si)− G(si)− Np(si)

∣∣∣}.
The bottom equation is an example of a Least Absolute Deviations (LAD) regression
problem, also known as the L1 regression [75, 74]. In this Section, we show a proof
of the equivalence of the formulas. We also give further examples which illustrate
several properties of our Wasserstein regression procedure, such as the relationship
between the denoising penalty κ and the maximum transport distance. Those exam-
ples further motivate the interpretation of κ as a kind of soft threshold on the transport
distance.

Consider a set of theoretical spectra νj and an observed spectrum µ. Recall that
the latter is assumed to be composed of theoretical spectra and possibly some re-
maining signal. Formally, we assume that there are some true proportions of spectra
νj, denoted pj, satisfying

µ = p1ν1 + · · ·+ pkνk + ε, (5.5)

where ε is a spectrum representing the remaining signal. We assume that p1 + · · ·+
pk ≤ 1, allowing some of them to be zero. Furthermore, recall that we assume that
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FIGURE 5.11: Errors of estimation of molecule proportions on cen-
troided experimental spectra. Top: mean absolute deviation of es-
timation per spectrum. Bottom: largest deviation of estimation per

spectrum. Note the logarithmic scale of the plots.
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all the spectra µ and νj are normalized by their total ion current. It follows that the
total signal intensity in ε is equal to 1− p1 − p2 − · · · − pk, which will be denoted as
p0.

Under the assumption that ε is empty, the optimal proportions p∗j were found by
minimizing the Wasserstein distance W(µ, p1ν1 + · · ·+ pkνk) between µ and a linear
combination of νj [5]. With non-empty ε, we need to incorporate it’s removal to the
estimation procedure. In order to do that, we introduce an auxiliary spectrum ω and
transport this signal from µ to ω. That is, the amount of signal transported from µ(si)
onto ω is interpreted as the amount of the remaining signal at si after transporting
the rest of the signal onto the theoretical spectra.

The auxiliary spectrum ω may be a somewhat non-intuitive concept. First, we
assume its total signal sums up to one, but we do not explicitly assume this signal
to have any particular m/z value. Second, we assume that there is a constant cost of
transporting signal from µ to ω, denoted as κ and referred to as the denoising penalty.
In a way, ω can be thought of as being equidistant to all signals in µ. The reason for
defining ω in such way is to formally define a cost of denoising that does not depend
on the m/z value of the removed signal.

Now, we look for optimal proportions as

p∗ = arg min
p0+p1+···+pk=1

W(µ, p0ω + p1ν1 + · · ·+ pkνk). (5.6)

That is, we look for proportions that allow for the optimal transport of the signal
from µ onto νj’s and ω.

The Wasserstein distance between two measures µ and ν defined on a space X is
given by

W(µ, ν) = min
γ∈Γ

∫
X

∫
X

ρ(x, y)γ(x, y)dxdy,

where Γ is the space of all joint distributions of µ and ν and ρ(x, y) is a distance
function between points x ∈ X and y ∈ Y. In general, the definition works for any
distance function ρ. In our case, we define ρ(x, y) between two m/z values x and y
as follows:

ρ(x, y) =

{
|x− y| if y ∈ R,
κ if y = ω.

Based on the above definitions, we have

W(µ, p0ω + p1ν1 + · · ·+ pkνk) = min
γ∈Γ

∫
R

∫
R∪{ω}

ρ(x, y)γ(x, y)dxdy, (5.7)

where the minimization is over all joint distributions γ of µ and p0ω + p1ν1 + · · ·+
pkνk. It follows that γ satisfies the following properties:∫

x∈R
γ(x, y)dx = p1ν1(y) + · · ·+ pkνk(y) if y ∈ R,∫

x∈R
γ(x, ω)dx = p0,∫

y∈R
γ(x, y)dx = µ(x)− γ(x, ω),∫

x∈R

∫
y∈R

γ(x, y) = p1 + · · ·+ pk = 1− p0
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We now proceed to convert the optimization problem (5.7) to a form that is compu-
tationally feasible. We start by splitting the integral over R∪ω into two summands
and simplifying the resulting terms:∫

R

∫
R∪{ω}

ρ(x, y)γ(x, y)dxdy =
∫

x∈R

(
κγ(x, ω) +

∫
y∈R
|x− y|γ(x, y)dy

)
dx

=
∫

x∈R
κγ(x, ω)dx +

∫
(x,y)∈R2

|x− y|γ(x, y)dydx

= κp0 +
∫
(x,y)∈R2

|x− y|γ(x, y)dydx

In the last line, we arrive at the total cost inflicted by signal removal, p0κ, and a
double integral that is strikingly similar to the definition of the Wasserstein distance
between two spectra. Namely, we integrate the transport distance |x− y|multiplied
by γ(x, y), the amount of signal transported between x and y. However, unlike in the
definition of the Wasserstein distance, now Γ is a set of joint distributions over R and
R ∪ ω, so γ function may not be a joint distribution of two probabilistic measures
defined on the real line. It means that we cannot yet use the formula that joins
the Wasserstein distance to the cumulative distribution functions of the compared
measures.

To circumvent the above problem, we proceed as follows. Define a measure
g(x) = γ(x, ω) and denote it’s cumulative distribution function as G(t). Observe
that the total signal in g is equal to p0. It follows that∫

x∈R

∫
y∈R

γ(x, y)/(1− p0) =
∫

x∈R
(µ(x)− g(x))/(1− p0) = (1− p0)/(1− p0) = 1.

We write γ|R2 to explicitly denote γ function restricted to R2. From the above inte-
grals it follows that γ|R2(x, y)/(1− p0) is a two-dimentional probabilistic measure
on R2. Its marginal measures are∫

y∈R
γ|R2(x, y)/(1− p0)dy = (µ(x)− g(x))/(1− p0),∫

x∈R
γ|R2(x, y)/(1− p0)dx = (p1ν1(y) + · · ·+ pkνk(y))/(1− p0),

which are both probabilistic measures on R. Note that in both equations above we
consider γ|R2 , meaning that we assume y ̸= ω. We now can use Theorem 3.2 which
expresses the Wasserstein distance between two centroided spectra, µ and ν, in terms
of their cumulative distribution functions, M and N. In the first step, we split the
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minimization over Γ into two steps: first, minimization of γ|R2 , and then minimiza-
tion of g.

min
γ∈Γ

∫
x∈R

∫
y∈R
|x− y|γ(x, y)dydx = min

g
min
γ|R2

∫
x∈R

∫
y∈R
|x− y|γ(x, y)dydx

= (1− p0)min
g

min
γ|R2

∫
x∈R

∫
y∈R
|x− y|γ(x, y)/(1− p0)dydx

= (1− p0)min
g

∫
R

∣∣∣(M(t)− G(t))/(1− p0)−
k

∑
j=1

pjNj(t)/(1− p0)
∣∣∣dt

= min
g

∫
R

∣∣∣M(t)− G(t)−
k

∑
j=1

pjNj(t)
∣∣∣dt.

Putting it all together, we arrive at

W(µ, p0ω + p1ν1 + · · ·+ pkνk) = κp0 + min
g

∫
R

∣∣∣M(t)− G(t)−
k

∑
j=1

pjNj(t)
∣∣∣dt.

The κp0 term in the above equation is the penalty for removing p0 of the signal from
the observed spectrum. The minimized integral can be interpreted as the Wasser-
stein distance between the observed spectrum without the additional signal and the
combination of expected spectra under the optimal signal removal plan described
by g, on the condition that we remove p0 of the signal.

To obtain the optimal proportions, we minimize the equation over the propor-
tions p. Since the term κp0 does not depend on the signal removal plan g, as long as
p0 of the signal is removed, we can minimize over both p and g together and write
the following formula for optimal proportions:

min
p

W(µ, p0ω + p1ν1 + · · ·+ pkνk) = min
p,g
{κp0 +

∫
R

∣∣∣M(t)− G(t)−
k

∑
j=1

pjNj(t)
∣∣∣dt}.

Formally, we minimize over all proportions p0 to pk and over the signal removal
plan such that gi sum up to p0. This is, however, equivalent to minimization over p1
to pk (i.e. without p0) and gi such that ∑k

j=1 pj + ∑n
i=1 gi = 1. This formulation of the

minimization problem is used in the next Section.

5.4.1 Some more worked examples and properties

Before we proceed to describe the algorithm for solving the minimization prob-
lem, we give some additional remarks about the problem itself. First, the denoising
penalty κ is interpreted as the distance between any peak from the observed spec-
trum to the auxiliary spectrum ω. If, for a given observed peak, all the theoretical
peaks are further away than κ, then ω is the closest spectrum to this observed peak.
Therefore, κ can be interpreted as the maximum feasible transport distance. This
interpretation is helpful in estimating reasonable denoising penalties. However, it
should be treated as an intuition or a rule of thumb rather than a formal property, as
transport for distances greater than κ might occur in some cases.

An example where a long distance transport is beneficial is shown in Fig. 5.12. In
this example, we regress an artificially constructed experimental spectrum against
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FIGURE 5.12: An example of a long-distance transport. The observed
spectrum is shown at the top, the theoretical one at the bottom. The
spectrum ω is represented as a vortex. Two transport plans are com-
pared: A, no signal removed, and B, one removed peak. Scenario A
is less costly than B regardless of the denoising penalty, and in fact
optimal in this example. Long distance transport occurs, because re-
moving the rightmost peak from the experimental spectrum highly

disturbs the transport plan.

one theoretical spectrum. Both spectra are abstract examples which serve for a sim-
ple illustration of the properties of our method, and do not correspond to any actual
molecule.

The theoretical spectrum is composed of three peaks with m/z values 1, 2 and 3
Da, and intensities 1/2, 1/2− h, h with 0 < h < 1/2. The experimental spectrum
is identical to the theoretical one, except that the peak at 3 Da is shifted 1 Da to the
right. We analyze two limiting scenarios that may occur in this situation: either the
shifted peak is removed, or it’s not.

In the first scenario, no signal is removed, and therefore the proportion of the
theoretical spectrum is equal to 1 and the shifted peak is transported onto its the-
oretical counterpart. The Wasserstein distance in this case is therefore equal to the
height of the shifted peak, denoted h.

In the second scenario, the shifted peak is removed. The proportion of the theo-
retical spectrum is equal to the amount of the remaining experimental signal, that is
1− h. In order to compute the cost of the signal transport in this case, we remove the
shifted peak from the experimental spectrum, multiply the theoretical peak intensi-
ties by 1− h, and compute the cost of the optimal transport between the resulting
spectra.

The CDF of the experimental spectrum after this procedure becomes equal to

M̃(t) =


0.0 : t < 1,
1/2 : 1 ≤ t < 2,
1− h : 2 ≤ t,
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FIGURE 5.13: An example of regression when κ controls the maxi-
mum transport distance. In this example, setting κ < 2 makes the
scenario A less costly than scenario B, and prohibits the transport of
the small experimental peak at 4 Da. The transport of this peak over

a distance of 2 Da is permitted when κ > 2.

and the one of the theoretical spectrum becomes equal to

Ñ(t) =


0.0 : t < 1,
(1− h)/2 : 1 ≤ t < 2,
(1− h)− h(1− h) = (1− h)2 : 2 ≤ t < 3,
1− h : 3 ≤ t.

The cost of signal transport between the two spectra is therefore equal to∣∣∣1
2
− 1− h

2

∣∣∣+ ∣∣∣1− h− (1− h)2
∣∣∣ = (3

2
− h
)

,

and the total cost of this scenario, obtained by adding the cost of the peak removal
to the above cost of transport, is equal to hκ + h(3/2− h) = h(κ + 3/2− h), and
is higher than the cost of the first scenario whenever h < κ + 1/2. However, since
0 < h < 1/2 and κ ≥ 0, the first scenario is always less costly than the second one.
Therefore, regardless of the value of the denoising penalty, it is always beneficial to
transport the rightmost experimental peak to its theoretical counterpart rather than
remove it.

The phenomenon described above occurs because removing a peak induced a
large disturbance in the optimal transport plan, depicted in Fig. 5.12. In the first of
the described scenarios, the peaks are matched one to one, and only the rightmost
experimental peak needs to be transported. On the other hand, in the second sce-
nario, some portion of the signal needs to be transported from each experimental
peak, because their intensities exceed the ones of their theoretical counterparts.

In general, κ sets a threshold on the maximum transport distance for those peaks
of the experimental spectrum which can be removed without causing major distor-
tions in the optimal transport plan or the optimal proportions of theoretical spectra.
An example of such case is shown in Fig. 5.13. In this example, κ does indeed define
a strict limit on the maximum transport distance. The computation of the costs of
the scenarios is done in the same way as in the previous examples.
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Another property of our method that should be noted is that the solution to the
minimization problem may not be unique in some cases (see Fig. 5.14 for an exam-
ple). In the current implementation, we do not attempt to make it unique. Instead,
when there are several equally good solutions, we simply pick one at random.

5.5 Reduction to linear programming

In the previous Section, we have derived the formula that needs to be minimized in
order to obtain optimal proportions of the theoretical spectra within the observed
spectrum,

min
p,g
{κp0 +

∫
R

∣∣∣M(t)− G(t)−
k

∑
j=1

pjNj(t)
∣∣∣dt}. (5.8)

In this Section, we show a computational procedure of finding the proportions pj
and the amounts noise g(si). In principle, the above formula could be used to treat
profile and centroided spectra differently. The cumulative distribution functions of
the profile spectra are continuous, while the ones of centroided spectra are step func-
tions.

FIGURE 5.14: An example of a non-unique
solution to the Wasserstein regression prob-
lem. The observed spectrum is shown at the
top, the theoretical one at the bottom. The
Wasserstein distance is equal to W(µ, ν) =
p0κ + p1κ = κ and does not depend on the

proportion of the expected spectrum ν.

However, in the current implementa-
tion, we treat both types of spectra in
the same manner. A profile spectrum
is treated simply as a particularly long
peak list, or a series of intensity mea-
surements at discrete m/z values. This
is consistent with the way profile spec-
tra are stored on computers, i.e. as finite
lists of m/z values and corresponding
signal intensities. It follows that all our
CDFs are step functions.

In order to solve the problem (5.8)
under the above assumptions, we will
convert it to a linear program. A linear
program is a problem of finding a min-
imum of a linear function under a set
of linear constraints [74]. We follow the
ideas of converting a Least Absolute De-
viations (LAD) regression problem into
a linear program outlined in [76].

Recall that we write S = (s1, s2, . . . , sn)
for a sorted list of all observed m/z val-

ues. Since the CDFs of the spectra are step functions, the integral in the problem (5.8)
is equal to a simple sum:

∫
R

∣∣∣M(t)−G(t)−
k

∑
j=1

pjNj(t)
∣∣∣dt =

n

∑
i=1

(si+1− si)
∣∣∣M(si)−G(si)−

k

∑
j=1

pjNj(si)
∣∣∣ (5.9)

As discussed in the main text, equations of the above form admit a natural inter-
pretation in terms of optimal transport. The difference of CDFs at the point si is the
difference in the amount of ion current between the compared spectra on the left
hand side of this point. This difference needs to be balanced by transporting the ion
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current either to or from the next point, si+1. Therefore, the summands can be inter-
preted as the amount of ion current that flows between points si and si+1 multiplied
by the interval length.

Let Mi = M(si), Nij = Nj(si) and Gi = G(si). Let li = si+1− si be the i-th interval
length, and let ϵi = Mi −Gi −∑k

j=1 pjNij be the ion current flow between si and si+1.
The task now is to minimize ϵi over proportions pj and amounts of removed signal
gi. Note that, since the spectra are normalized, the ion current balances out at sn, so
that ϵn = 0. Therefore, in the optimization problems below, we consider ϵi only for
i = 1, 2, . . . , n− 1.

Using the above notation notation, we reformulate our optimization problem as
follows:

minimize
n−1

∑
i=1

li|ϵi|+
n

∑
i=1

κgi over ϵ, p, g

subject to ϵi+
i

∑
j=1

gj +
k

∑
j=1

Nij pj = Mi, i = 1, 2, . . . , n− 1

n

∑
i=1

gi +
k

∑
j=1

pj = 1,

gi, pj ≥ 0.

Note that while we enforce a constraint that the total amount of removed signal does
not exceed the leftover signal in the observed spectrum, we do not enforce such a
constraint peak-wise. That is, during the course of numerical optimization, it may
happen that the proportion of signal removed from the i-th experimental peak will
temporarily exceed the intensity of that peak. However, such a peak-wise constraint
is fulfilled automatically in the optimized signal removal scheme.

The objective function, ∑n−1
i=1 li|ϵi|, is not yet linear. However, by splitting the

error ϵi into a positive part, ϵ+i , and a negative part, ϵ−i , so that ϵi = ϵ+i − ϵ−i , we can
rewrite the above optimization problem as a linear program:

minimize
n−1

∑
i=1

liϵ+i +
n−1

∑
i=1

liϵ−i +
n

∑
i=1

κgi over ϵ+, ϵ−, p, g

subject to ϵ+i − ϵ−i +
i

∑
l=1

gl+
k

∑
j=1

Nij pj = Mi, i = 1, 2, . . . , n− 1,

n

∑
i=1

gi+
k

∑
j=1

pj = 1,

ϵ+i , ϵ−i , gi, pj ≥ 0.
(5.10)

The above linear program has 3n− 2 + k variables and n + 1 constraints. For large
spectra, where n can be of the order of tens of thousands peaks, this leads to a com-
putationally intensitve optimization problem. In order to obtain a more efficient
algorithm, we consider a dual problem. A comprehensive treatment of the duality
theory in linear programming can be found in [74]. In short, each linear program
admits a so-called dual program which is equivalent in the sense that it has the
same optimal value of the optimized function. Furthermore, after solving the dual
program, we can easily reconstruct the optimal values of the variables of the primal
program (5.10).
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The dual formulation of the program (5.10) is as follows:

maximize
n

∑
i=1

Miyi over y

subject to
n

∑
l=1

Nijyi ≤ 0, j = 1, 2, . . . , k,

n

∑
i=l

yi ≤ κ, l = 1, 2, . . . , n,

yi ≤ li, i = 1, 2, . . . , n− 1,
yi ≥ −li i = 1, 2, . . . , n− 1,

y ∈ Rn.

(5.11)

In the above dual program, we have n variables, n+ k constraints and 2n− 2 bounds.
We now proceed to further simplify the program.

Let U = ([i ≥ j])i,j=1,2,...,n be an n× n square, lower-triangular binary matrix with
ones on and below the diagonal and zeros above it. We use it to re-write the above
dual program in matrix notation:

maximize MTy
subject to NTy ≤ 0,

UTy ≤ κ,
−l ≤ y1:(n−1) ≤ l,
y ∈ Rn

Let W = (νj(si)) be the matrix of intensities of the theoretical spectra on the points
si for i = 1, 2, . . . , n, i.e. the theoretical spectra stacked column-wise. Similarly, let
V = (µ(si)) be a vector of intensities of experimental spectrum for i = 1, 2, . . . , n.
Note that we have N = UW and M = UV, and substitute that into the program
formulation:

maximize VTUTy
subject to WTUTy ≤ 0,

UTy ≤ κ,
y1:(n−1) ≤ l,
y1:(n−1) ≥ −l,

y ∈ Rn.

Since the matrix U is full-rank, substitution z = UTy is a valid variable change. Note
that

U−1 =


1 0 0 . . . 0 0
−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1


and since y = U−Tz, we have yi = zi − zi+1 for i = 1, 2, . . . , n− 1 and yn = zn. After
substituting and rearranging rows of the linear program we obtain

maximize VTz
subject to WTz ≤ 0,

zi − zi+1 ≤ li, i = 1, 2, . . . , n− 1,
zi − zi+1 ≥ −li, i = 1, 2, . . . , n− 1,

z ≤ κ,

(5.12)
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which is a program with n upper-bounded variables and k + 2n− 2 constraints.
Program (5.12) is the dual linear program in its final form. Its major advantage

over the first representation of the dual program is the sparsity of matrix W as op-
posed to matrix N, meaning that many of its values are zero. Modern implementa-
tions of the Simplex algorithm, one of the algorithms used to solve linear programs,
take advantage of matrix sparsity to speed up the computations.

Since the linear program (5.12) was obtained by rearranging the lefthand side
terms in Program (5.11), the optimal target function value stays unchanged, just as
the values of the primal program variables corresponding to the constraints. The
latter can be obtained from the solution, as the modern Simplex implementations
implicitly solve both the dual and the primal problem. The probability values, pj,
can be obtained as the duals to the constraints WTz ≤ 0, while the noise amounts gi
can be obtained as the duals to the constraints zi ≤ κ.

On a final note, note that we have allowed for non-zero noise value gi on non-
experimental peaks. In the dual linear program (5.12), this is visible as upper bounds
for all zi variables, instead of just the ones that correspond to points si with a non-
zero experimental signal. This does not influence the results, as non-zero gi at a point
without any experimental signal is always sub-optimal. If one would like to explic-
itly forbid non-zero values of gi at masses without experimental signal, it would
suffice to remove upper bounds for zi corresponding to purely theoretical peaks.
Removing bounds leads to a simplification of the feasible region, which speeds up
the Simplex algorithm. However, we have found out that the speedup obtained this
way is negligible in practice.

5.6 Simulation of mass spectra

In this Section, we describe the details behind the simulation procedures used in
Section 5.3. To simulate random molecular formulas, we use Algortihm 5 for E =
(C, O, N, S, P) andW = (12, 16, 14, 32, 31). For each element, the number of atoms is
sampled uniformly from 0 to the maximum number allowed by the remaining mass,
and the remaining mass is filled with hydrogen atoms. Note that, in this algorithm,
the order of elements influences their abundance. Elements which are closer to the
beginning of the list E tend to be more abundant that those at the end of the list.

We have simulated 100 sets of molecular formulas (referred to as replicates) for
each combination of the following parameters:

• Nominal mass of molecules: 60, 120, 600, 1200, 6000, 12000,

• Number of overlapping isotopic envelopes: 1, 2, 3, 4, 5, 6, 7, 8.

After the molecules were simulated, theoretical spectra were computed using the
IsoSpecPy package [72]. To construct observed spectra, we have simulated several
sources of measurement distortions. An example result of the simulation is shown
in Fig. 5.15.

First, we have simulated the effect of a finite number of molecules, which causes
the peak heights to be variable due to random numbers of isotopologues. We assume
that each observed spectrum is formed by N = 10000 ions to obtain a moderate to
high variability of peak heights. For each set of molecular formulas, we sample
their proportions p1, . . . , pk uniformly from a unit simplex ∆ = {p ∈ Rk : ∑k

i=1 pi =
1, ∀j pj ≥ 0}. The number of ions of the j-th molecular formula is then equal to Npj.
Each ion is then assigned to an isotopic composition according to the probabilities



5.7. Summary of the Chapter 87

computed by IsoSpec, under the assumption of standard isotopic compositions of
elements. Next, we assume that each ion contributes a random amount of signal
intensity to its spectrum, with a Gaussian distribution with mean 1 and standard
deviation 0.001. A mass spectrum is then obtained by summing the signal contribu-
tions of all ions.

Next, to simulate chemical noise, we have added 50 random peaks, with uni-
formly distributed m/z values and Gamma-distributed intensities (shape=scale=2).
Those peaks were then scaled so that the total amount of noise had a Beta distribu-
tion (alpha=1.444, beta=5). The parameters were selected so that, on average, the
noise peaks amount for 10% of the total signal intensity in the spectrum. Further
distortions were different for centroided and profile observed spectrum.

In the case of simulated centroided spectra, we additionally simulate the effects
of limited resolution and accuracy and errors introduced during the preprocessing
procedures such as peak picking. To each m/z value we add a Gaussian random
variable with mean 0 and standard deviation of 0.002. The parameters were chosen
to obtain only two accurate decimal digits in the m/z values. To simulate a limited
resolving power, we round the m/z to three decimal digits and merge peaks with
equal masses.

In the case of simulated profile spectra, we simulate the effect of limited resolving
power and electronic noise. We use a Gaussian filter with a standard deviation of
0.0025 to obtain a resolving power of 100 000 at 600 Da. Next, to each intensity
measurement we add a Gaussian random variable with mean zero and standard
deviation of 0.0001.

Algorithm 5: Simulation of random molecules.
Data: Set of non-hydrogen elements E , mass numbersW , integer number N.
Result: A random moleculeM with total mass number N.

1 Initialize an empty listM
2 for i in 1, 2, . . . , |E | do
3 Let w←W [i]
4 Sample U from {0, 1, . . . , ⌊N

w ⌋}
5 LetM[i]← U
6 Let N ← N − wU
7 end
8 LetM[|E |+ 1]← N
9 VariableM contains the numbers of sampled elements with hydrogen as the

last entry.

5.7 Summary of the Chapter

In this Chapter, we present advances in theoretical studies on the problem of lin-
ear regression of mass spectra, defined as fitting a linear combination of theoretical
spectra to an experimental one. The problem is ubiquitous in mass spectrometry,
appearing either implicitly or explicitly in areas as diverse as metabolomics, pro-
teomics and polymer science. The theoretical foundations of the methods studied in
this Chapter are not limited to any particular type of experiment. Furthermore, the
method can be readily applied to other types of spectra, such as the nuclear mag-
netic resonance ones, as long as reliable reference spectra are available. The broad
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FIGURE 5.15: Simulated mass spectra with four overlapping isotopic
envelopes. The top spectrum was used to construct a centroided and
a profile observed spectrum with measurement distortions. Isotopic

envelopes of different ions are highlighted with different colors.
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range of applications is achieved by focusing on an abstract problem of fitting a lin-
ear combination of reference signals to an experimentally measured one, as opposed
to developing a method restricted to a particular application.

One of the major factors that hinder the performance of currently available linear
regression methods is the fact that the locations of experimentally measured peaks
never match the theoretically predicted ones perfectly. This is caused, among oth-
ers, by measurement inaccuracies, which, even if seemingly small, are unavoidable.
Although they may be negligible when the spectra are analyzed manually, an m/z
difference as small as a millionth of a Dalton means that a computer program sees
the peak locations as different.

In order to circumvent this problem, the currently available software matches
peaks within so called mass windows of predefined width [11, 53]. The width needs
to be specified by the user, which makes it more difficult to apply this kind of ap-
proach in practice. The choice of a mass window width is further complicated by
the occurrence of highly overlapping peaks in profile spectra. In some cases, the in-
dividual apexes of such peaks are no longer visible. Instead, we obtain a single apex
located between the "true" apexes of the component peaks. This kind of merging of
peaks, occurring especially in complex profile spectra, leads to an increased differ-
ence between theoretical and observed peak locations in centroided spectra. There-
fore, especially in complex or low-resolution spectra, the optimal window width
may be considerably greater than the nominal accuracy of the instrument.

Even if the user knows the optimal width of a mass window, this kind of ap-
proach has several intrinsic drawbacks. Due to the infinite resolution of a theoreti-
cally predicted spectrum, a mass window usually contains several theoretical peaks.
Within the window, those peaks are effectively treated as one. Therefore, this pro-
cedure effectively limits the resolution of the in silico predicted spectrum, leading
to an unnecessary loss of information. On the other hand, it tends to merge closely
positioned signal and noise peaks in the experimental spectrum, which influences
the estimated proportions.

In order to alleviate those difficulties, we have investigated the application of the
Wasserstein distance to the problem of linear regression of mass spectra. Methods
based on quantifying the distance in the m/z domain needed to transform one spec-
trum into the other are naturally robust to limited resolving power and accuracy of
instruments. This robustness makes them a promising tool for methods based on
comparing experimentally acquired spectra.

Further research. A practical consequence of allowing the signal to only be re-
moved from the experimental spectrum is that, when simulating the theoretical
spectra, we need to discard peaks that are under the level of quantification. The
measured intensities of such peaks are unreliable, leading to erroneous results for
the whole ion. In an extreme case, when a peak is missing in the experimental spec-
trum but is present in the theoretical one, it forces the estimated proportion to be
zero. The lack of experimental intensity that can be transported onto this theoretical
peak means that the whole isotopic envelope needs to be discarded. Allowing for
some flexibility in the intensities of theoretical peaks would allow to alleviate this
difficulty. However, in order to accurately reflect the observed variability of peak in-
tensities, the regression procedure needs to be coupled with a mathematical model
of the shape of experimentally measured isotopic envelopes. Whether such coupling
is mathematically and computationally feasible remains an open question.
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Implementation. We have implemented the discussed algorithms in a Python 3
package called
masserstein. Our implementation is designed to be applicable in larger data pro-
cessing pipelines. Efficient development of pipelines requires freely available mod-
ular tools, which perform specific tasks and can be easily combined. Therefore, our
implementation does not perform any additional pre- or postprocessing of the re-
sults, such as peak-picking or correcting for proton affinity of molecules. Such pro-
cedures can be performed separately using designated tools, available e.g. in the
OpenMS package [77].

On a final note, we reiterate that, from a methodological point of view, molecule
identification and quantification are two separate tasks. Accordingly, in this Chapter,
we have assumed that the chemical formulas of the molecules to be quantified are
known a priori. These may come either from the scientific question at hand (such as
the frequency of a given posttranslational protein modification), from the knowledge
about the experimental setup (such as whether lipid extraction was performed), or
from an identification study performed prior to quantitative analysis (e.g. using the
SIRIUS program [78]). Another approach, applicable to proteomics, is to use the
averagine model of amino acid, as exemplified by the MasSPIKE program [79]. In
Chapter 6, we show an example application of our methods in a case when only the
general class of molecules is known (in this case, phosphoglycerolipids).
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Chapter 6

Improved segmentation of mass
spectrometric images

Mass spectrometry imaging (MSI) has established its place as a valuable technique
in numerous fields of studies. The possibility to characterize the spatial distribution
of hundreds of molecules in a single experiment offers great opportunities in dis-
ciplines as diverse as medical research [80], fundamental and applied biology [81],
food science [82, 83], and synthetic polymer research [84]. In order to fully bene-
fit from the vast amounts of information contained in a single mass spectrometric
image, mathematical, statistical and computational tools are routinely used. New
algorithms and software are constantly being developed, making analyses easier,
faster, and opening new possibilities to harness the complexity of the data for new
discoveries [85, 86, 87].

Among the most popular methods of MSI data analysis is the image segmen-
tation, used to identify regions with characteristic chemical compositions [85, 88].
Ideally, such regions correspond to physically distinct parts of the sample, such as
tissues, lesions, tumors etc. Accurate segmentation methods offer a simple and reli-
able approach to identify novel biomarkers [89, 90].

Segmentation methods can be roughly divided into two types: univariate and
multivariate. The former segment the image based on a single selected feature
(therefore being more of a "targeted" approach), while the latter use multiple features
(being more "untargeted"). While multivariate methods may be easier to use and of-
fer a more accurate segmentation, univariate methods allow for a greater degree of
control over the segmentation process, as the user may directly select a feature of
interest to be analyzed. They also allow for an easier interpretation of the segments
as regions with characteristic concentrations of a given chemical compound [91].

A common approach to univariate mass spectrometric image segmentation is to
select a peak of interest and simply cluster its intensities from all pixels using al-
gorithms such as (1-dimensional) K-means or Gaussian Mixture Models [89]. This
approach disregards the spatial relations between pixels, and because of that, it suf-
fers from two issues caused by pixel-to-pixel variability: first, pixels from different
anatomical regions can have similar peak intensities purely by chance, and second,
closely located pixels from the same regions can have differing intensities [92]. This
results in spatially inhomogeneous segments with only partial correspondence to
anatomical regions. Although it has already been noted and addressed by some au-
thors, methods that ignore spatial relationships are still widely used and developed.
A recent article has addressed this problem by developing a spatially-informed seg-
mentation method called spatial-DGMM, based on a Bayesian approach to Gaussian
Mixture Models [91].

Another problem is that the aforementioned approach implicitly assumes that a
single peak is an independent, autonomous feature. However, isotopic envelopes
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of ions with similar masses can overlap, causing some peaks to be composed of
signals from more than one ion. On the other hand, typical ions have more than one
peak in their isotopic envelope. A single mass spectral feature (a peak) is therefore
a complex combination of parts of chemical features (ionized chemical compounds),
the analysis of which is the goal of MSI. This problem has been studied, among
others, in the context of proteomics, lipidomics and polymer science [11, 54, 55, 93,
94, 95], but seems to have gained less attention in MSI literature.

One of the solutions to this problem is to calculate the theoretical spectra of ions
of interest and fit them to the observed spectrum to estimate their proportions. One
of the tools developed for this task is masserstein, which is based on the optimal
transport paradigm of the analysis of mass spectra, making it robust to moderate
measurement inaccuracies and model misspecifications [5, 6, 96, 97].

The contents of this Chapter. In this Chapter, we study the possible consequences
of and the interplay between two challenges in mass spectrometry image segmenta-
tion: the pixel-to-pixel variability and the overlapping of isotopic envelopes. First,
we develop a simulation scheme which mimics real images in terms of pixel-to-pixel
variability and shapes of isotopic envelopes. We use it to construct a simulated im-
age which shows that, without taking the two challenges into account, the resulting
segmentation can be not only inaccurate but downright misleading, resulting in ap-
parent ion concentration regions contrary to the actual ones. Then, we demonstrate
how to solve this problem by using two recently developed tools, masserstein and
spatial-DGMM. We show that this combination is capable of detecting regions of ac-
tual concentration of molecules in complex MSI data. Ipso facto we show that the two
problems described in the introduction constitute the main obstacles in obtaining a
biologically meaningful segmentation. We validate the conclusions drawn from the
simulations by analyzing similar situations in a mass spectrometry image of a mouse
bladder. We show that the combination of masserstein and spatial-DGMM improves
the qualitative and quantitative agreement between segments and anatomical re-
gions compared to the basic approach exemplified by the K-means clustering of peak
intensities. We quantify the prevalence of overlapping isotopic envelopes of lipids
in the image and show that the discrepancy between mass spectral and chemical
features is ubiquitous.

6.1 Materials and methods

Data sets. An MS image of a tissue section of a mouse bladder [98] was downloaded
from the PRIDE database [99] (ID PXD001283). An additional simulated data set
was prepared as a part of this work as described later in this section. For the experi-
mental data set, all spectra were normalized by their total ion current calculated by
numerical integration of intensities in profile mode. For the mouse bladder MSI, due
to an extensive background area that influenced the average spectrum of the image,
an approximate mask image of the tissue sample was constructed manually based
on the accompanying microscopic image and selected ion images using the GNU
Image Manipulation Program (GIMP; https://www.gimp.org).

Average spectra. Average spectra of MS images were computed in order to
inspect their overall composition and to detect overlapping isotopic envelopes. A
common mass axis was fixed with a uniform distribution of m/z values (from 600
to 1100 Da, spaced by 0.01 Da). For each pixel, signal intensities in points of the
mass axis were approximated by a piecewise-linear interpolation as described in
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previous works [6]. The interpolated spectra were then summed over all pixels and
normalized by their total ion currents calculated by numerical integration (trapezoid
method). For the mouse bladder data set, pixels corresponding to the background
were ignored. The average spectra were centroided using a procedure implemented
in the masserstein package [6].

Theoretical spectra. All chemical formulas of glycerolipids, glycerophospho-
lipids and sphingolipids were obtained from the LIPID MAPS database [100] on
March 28, 2022 (4235 formulas of 22239 different lipids). Formulas containing el-
ements other than CHNOP were discarded. Theoretical spectra of lipid ions with
potassium adducts were computed using IsoSpec. Theoretical spectra were trun-
cated to contain only the first two peaks, because in experimental spectra the heavier
peaks tended to be below the limit of detection. Spectra with the monoisotopic mass
lower than 600 Da or greater than 1100 Da were discarded. This has resulted in 2460
theoretical spectra.

Detection of overlapping isotopic envelopes. Linear combinations of truncated
theoretical spectra were fitted to the normalized and centroided average spectra of
MS images using masserstein (MTD=0.02 for mouse bladder, MTD=0.01 for mouse
cerebellum, selected based on a visual assessment of the quality of the model fit).
Ions with estimated signal less than 100 ppm were discarded. Remaining ions were
assigned to a single cluster if the difference of their monoisotopic masses was smaller
than 2.2 Da.

Ion images and signal images. Ion images of selected lipids were generated by
taking the apex intensities (i.e. heights) of their monoisotopic peaks in each normal-
ized pixel spectrum in profile mode. Using peak heights instead of areas is justified
in the case of this study, because we compare lipid intensities on a per-cluster basis.
Each cluster spans only a small mass region, therefore containing peaks of simi-
lar width. For clusters of overlapping isotopic envelopes, lipid signal images were
obtained by using the masserstein package to fit a combination of truncated theo-
retical spectra of lipids from the cluster to centroided and normalized pixel spectra
of the MS image.

Choice of algorithm parameters. To obtain proper lipid signal images, the MTD
parameter of masserstein was estimated by comparing the lipid signal images to
the ion images of selected lipids with no evidence for interference in the average
spectra of MS images and selecting the lowest value that gave a sufficient visual
agreement.

Simulation of a mass spectrometric image. A 40x40 pixel reference image for the
simulated mass spectrometric image, containing four distinct regions, was drawn
manually in the GNU Image Manipulation Program. Three lipid formulas were used
to simulate an MS image, assuming a potassium adduct: PC(38:1), C46H90NO8PK,
854.603 Da; PA(44:0), [C47H93O8PK, 855.624 Da; and PC(38:0), C46H92NO8PK, 856.619
Da. The first lipid was concentrated in the top half of the image; the second in the
bottom half; and the third in a 20x20 center square (see Fig. 6.1).

In each pixel, the number of ions of each lipid species was drawn from a negative
binomial distribution with the average value given by Table 6.1 and a coefficient of
variance equal to 20%. Next, simulated isotopic envelopes for the three lipids were
generated by drawing samples from a multinomial distribution, with the numbers
of trials equal to the drawn numbers of lipid ions in each pixel, and probability
vectors corresponding to the theoretical isotopic envelopes of the lipids generated
with IsoSpec [72]. In each pixel, the simulated isotopic envelopes of the three lipids
were added together. Then, to simulate chemical contaminants and other signals, 10
randomly located peaks, jointly accounting for 10% of the intensity of the spectrum,
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TABLE 6.1: Average numbers of lipid ions in regions of the simulated
mass spectrometric image.

PC(38:1) PA(44:0) PC(38:0)
Region 1 10 000 2 000 1 000
Region 2 1 000 4 000 1 000
Region 3 10 000 2 000 2 000
Region 4 1 000 4 000 2 000

were added. A Gaussian filter was then applied to the pixel spectra to simulate a
limited resolving power (FWHM=0.12 at 854.6 Da).

6.1.1 Analysis of the simulated image.

To generate ion images of lipids, in each pixel the spectrum was integrated in the
following m/z ranges: 854.4 Da to 854.8 Da for PC(38:1); 855.4 Da to 855.8 Da for
PA(44:0); 856.4 Da to 856.8 Da for PC(38:0). Trapezoid method implemented in the
numpy package was used for integration. To obtain proportions of lipids, theoret-
ical spectra were fitted to each pixel spectrum using masserstein with MTD pa-
rameter equal 0.2. To obtain signal images of lipids, the lipid proportions in each
pixel were multiplied by the total ion current in that pixel, obtained through nu-
merical integration of the associated spectrum. Ion images and signal images were
segmented with the K-means algorithm using the scikit-learn package [101] and
with spatial-DGMM [91].

6.2 Results and discussion

We have designed a simulated mass spectrometry image to illustrate the potential
pitfalls of common image segmentation approaches. The image is composed of three
lipid ions with distinct spatial distributions, each with a single region of high con-
centration. The goal of segmentation is to discover these regions. However, a simple
K-means clustering of peak intensities leads to surprising results, including an inver-
sion of the apparent enrichment region. True distributions can only be discovered
when the spatial structure of the segments and the composition of spectra are taken
into account. Next, we identify similar situations in a real mass spectrometry im-
age, demonstrating that our simulations reveal problems encountered in actual data
analysis. Along the way, we discover an unexpected problem with the common
assumption of potassium adducts in lipid ions in MSI.

6.2.1 Ion images can be misleading.

In order to give a clear illustration of how the interference between isotopic en-
velopes makes it difficult to analyze the mass spectrometry imaging data, we have
generated a simulated image containing three lipid ions with overlapping isotopic
envelopes and characteristic spatial distributions. This image also serves as a proof
of concept that masserstein and spatialDGMM make it possible to discover the true
distributions of clustered ions, a claim that will be further supported by experiments
on real data later in this Chapter.

Peaks are combinations of molecular features. The three lipids used in the sim-
ulations are PC(38:1), PA(44:0) and PC(38:0), each one Dalton heavier than the pre-
vious one. The first lipid is concentrated in the top half of the image; the second in



6.2. Results and discussion 95

FIGURE 6.1: Overlapping isotopic envelopes distorted observed ion
images. A) The reference images of lipid concentrations used to simu-
late a mass spectrometry image; colors represent the numbers of ions.
B) The spectra of distinct regions of the image, shown before simulat-
ing pixel-to-pixel and isotopic envelope variability. C) The ion images
obtained by integrating monoisotopic peaks and the signal images es-
timated by fitting spectra with masserstein. The peak intensity of
PA(44:0) became inverted with respect to its concentration due to in-

terference from PC(38:1).
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the bottom half; and the third in a center square (Fig. 6.1). The goal of mass spectro-
metric image segmentation is to reconstruct those regions.

Due to a high overlap of the spectra, the ion images of the last two lipids do not
reflect their true spatial distributions (Fig. 6.1). The intensity of the monoisotopic
peak of PA(44:0) is higher in the top half of the image, despite the lipid being less
concentrated in this region. This “swap” of regions is caused by the large intensity
of PC(38:1) in the top half, and the fact that the isotopic envelope of this lipid over-
laps with the monoisotopic peak of PA(44:0). Therefore, the intensity of PC(38:1)
contributes to the apparent intensity of PA(44:0).

While the apparent distribution of PA(44:0) is reversed with respect to the true
one, a different kind of effect is exhibited by the monoisotopic peak intensity of
PC(38:0). This peak is influenced by the isotopic envelopes of both PC(38:1) and
PA(44:0). As a consequence, four different regions can be seen in its ion image, de-
spite the lipid being concentrated in the middle square region of the image.

K-means segments are mixtures of biological segments. The results of K-means
(K=2) clustering of the monoisotopic peak intensity follow the patterns visible on
the ion images (Fig. 6.2). The clustering of the signal of PC(38:1) monoisotopic peak
follows the spatial distribution of this lipid, with a high-intensity segment in the
upper half of the image. The signal of PA(44:0) also segments the image into the
upper and the lower half. However, the average intensities in the segments suggest
that this lipid is concentrated in the top half, contrary to its true spatial distribution.
This is caused by the high intensity of the n+1 peak of PC(38:1), which overlaps with
the monoisotopic peak of PA(44:0). The segmentation of the peak intensity of the
third lipid, PC(38:0), shows little resemblance to its true spatial distribution, because
of the interference of the two lighter lipids. No segment corresponds to the central
square in which this lipid is concentrated.

Ion intensity estimation recovers true molecular features. The lipid intensities
estimated with masserstein follow their true spatial distributions (Fig. 6.2). This
is because fitting the whole isotopic envelopes simultaneously to the cluster makes
it possible to separate their signals and remove interferences. Accordingly, the K-
means segmentation of estimated lipid intensities shows a better qualitative agree-
ment with their spatial distribution (Fig. 6.2). The high-intensity cluster of PA(44:0)
roughly corresponds to the bottom half of the image, and the central square is visible
as the high-intensity cluster of PC(38:0).

Although masserstein makes it possible to achieve a qualitative agreement be-
tween the segmentation and the true lipid enrichment regions, the quantitative agree-
ment is still far from perfect, especially for a simulated data set. The percentage
of pixels from high-concentration regions correctly identified as such was 56% for
PA(44:0) and 68% for PC(38:0). Disregarding the spatial relationships between pix-
els leads to rugged and dispersed clusters, as pixels from different segments can
have similar lipid intensities due to the variability of the ion count.

Spatially-aware segmentation recovers true biological segments. Using the
spatial-DGMM algorithm, a spatially-aware segmentation method developed specifi-
cally for mass spectrometry imaging data, returns more spatially homogeneous clus-
ters. The percentage of correctly classified high-concentration pixels increased to
98% for PA(44:0) and 80% for PC(38:0). The combination of both algorithms makes
it possible to obtain image segmentation with high quantitative agreement with the
ground truth.

Overlapping isotopic envelopes are ubiquitous. In order to see whether over-
lapping isotopic envelopes pose a substantial challenge in the analysis of real mass
spectrometric images, and whether they can lead to misleading ion images, we have
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FIGURE 6.2: K-means clustering of peak intensities wrongly suggests
that PA(44:0) is concentrated in the top half of the image and pro-
duces noisy segments. Estimating ion signals with masserstein cor-
rects the lipid spatial distribution by separating overlapping isotopic
envelopes. Segmenting the estimated signals with spatial-DGMM pro-
duces spatially homogeneous clusters by modeling the image’s spa-
tial structure. Numbers in the top-right corners show the percentages

of correctly classified pixels.
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FIGURE 6.3: Left: An optical image of the tissue section of a mouse
bladder used to obtain a mass spectrometric image analyzed in this
Chapter. The image was published alongside the mass spectromet-
ric image in the PRIDE database (ID PXD001283). Right: Using
masserstein to fit a linear combination of theoretical isotopic en-
velopes to the average spectrum of the mass spectrometric image pro-

vides a putative annotation of a cluster of isotopic envelopes.

analyzed a previously published image of a mouse bladder tissue section (Fig. 6.3) [98].
We have used chemical formulas of 2460 glycerolipids from the LIPID MAPS database
and calculated their theoretical isotopic envelopes. According to the original article,
we have assumed a potassium adduct.

Out of the 2460 lipid ions, masserstein detected 78 in the average spectrum of
the tissue. Only 33 of them were not subject to an interference from a lower-mass
lipid with an overlapping isotopic envelope. We have detected 17 clusters of at least
two overlapping isotopic envelopes, jointly accounting for 62 lipid ions.

Fitting theoretical spectra provided a putative annotation of peaks. We have
selected a cluster of 5 overlapping isotopic envelopes for further analysis (Fig. 6.3).
The peaks of the cluster were annotated with lipids detected by masserstein, fur-
ther verified by accurate mass matching against the LIPID MAPS database. The
annotated lipids are phosphatidylcholines and a sphingomyelin, classes commonly
discovered in lipidomics MSI experiments. Other lipids from those classes were dis-
covered in this image and verified through MS/MS in the original work.

Estimating lipids’ signal was equivalent to increasing the spectrometer’s re-
solving power. Due to the lack of ground truth about the lipid locations, in order
to compare a K-means segmentation based on peak intensity and a spatial-DGMM
segmentation based on lipid signals, we have first performed a computational ex-
periment in which we have artificially lowered the mass resolutions of the pixel
spectra by applying a Gaussian filter (Fig. 6.4).

This resulted in merging of the monoisotopic peak of SM(40:1), a lipid located
in the muscle tissue, with the second peak of PC(36:2), a lipid located mostly in the
urothelium. As a consequence, the ion images made from low-resolution spectra
suggest that SM(40:1) is located throughout the whole tissue (Fig. 6.4). However,
masserstein was still able to return the correct spatial distribution, with minimal
changes compared to the image generated from full-resolution spectra. This shows
that masserstein is able to correctly separate overlapping signals, and therefore it
should give more accurate results than ion images in full-resolution spectra as well.

Spatially-aware segmentation of estimated ion signals recovered underlying
tissues. We have estimated the spatial distributions of the lipids using three meth-
ods: by taking their ion images, by taking ion images at the n + 1 peaks (i.e. peaks
1 Da heavier than the monoisotopic ones, which are typically less affected by inter-
ferences from lighter lipids [94]) and by fitting their theoretical spectra to each pixel
spectrum. The results are compared in Fig. 6.5. The estimation using masserstein
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FIGURE 6.4: Estimation with masserstein has the same qualitative
effect as increasing the resolving power of the spectrometer. In low-
resolution spectra, the monoisotopic peak of SM(40:1) at 825.62 Da
merges with the n + 1 peak of PC(36:2). The ion image is then a mix-
ture of the distributions of both lipids. In consequence, the K-means
segment occupies the whole sample. Fitting theoretical isotopic en-
velopes of the lipids recovers the true spatial distribution visible in
ion images from high-resolution spectra. Accordingly, the K-means

segment corresponds to the muscle tissue.

typically resembled the n + 1 ion images more than the monoisotopic ones, seem-
ingly due to filtering of interferences by separation of overlapping signals.

The distributions obtained with masserstein and monoisotopic peak ion image
are highly divergent for PC(36:3). While masserstein shows that this lipid is located
mostly in the umbrella cells (a subregion of the urothelium), its ion image suggests
that it is located in the whole urothelium, and the enrichment in the umbrella cells is
not clearly visible. The ion image also shows a considerable signal of PC(36:3) in the
muscle cells, a region in which this lipid is absent according to masserstein. The
differences are seemingly caused by an interference from PC(36:4), which isotopic
envelope overlaps with the monoisotopic peak of PC(36:3). As the lower-mass lipid
is highly abundant, it has a significant impact on the ion image of the heavier one.

As in the case of the simulated images, the K-means segmentation of lipid signals
returns highly dispersed clusters, resulting in a poor quantitative agreement with
the actual locations of tissues in the mouse bladder. Segmentation with spatial-DGMM
results in more spatially homogeneous clusters, which have a higher agreement with
the true anatomical regions (Fig. 6.6). In particular, for PC(36:4), we can see a clear
segmentation of the image into a segment consisting of urothelium and the adventi-
tial layer (Fig. 6.6, top row, left, yellow) and a segment corresponding to the muscle



100 Chapter 6. Improved segmentation of mass spectrometric images

FIGURE 6.5: Signal of lipids estimated with masserstein is less prone
to interferences from lighter lipids than the monoisotopic peak inten-
sity. Estimation with masserstein resembles the intensity of n + 1
peak, showing that masserstein uses information from the whole
isotopic envelope. In case of lipids, the n + 1 peak was previously

reported as less prone to interferences.
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tissue (Fig. 6.6, top row, left, aquamarine), while the segments obtained with K-
means clustering of peak intensities for k=2 and k=4 mix all tissues (Fig. 6.6, top
row, middle and right panel). Similarly, for PC(36:2), we can see clear regions of
concentration characteristic for the umbrella cells (Fig. 6.6, third row, left, yellow)
and the rest of the urothelium (Fig. 6.6, third row, left, aquamarine), while the K-
means segmentation results in much less clearly delineated regions (Fig. 6.6, third
row, middle and right).

6.3 Summary of the Chapter

Overlapping isotopic envelopes in mass spectrometric images seem to be the norm
rather than an exception. In the mouse bladder data set, we have found that the
monoisotopic peaks of at least 60% of detected lipids are, to some extent, influenced
by isotopic envelopes of other ions. Since the image contained multiple molecules
other than lipids, this figure is an underestimation of the true frequency of this phe-
nomenon.

As demonstrated with simulated data sets and confirmed on an experimental
one, the interfering signal from an overlapping isotopic envelope can dramatically
influence an ion image. In the case of low-intensity ions influenced by high-intensity
ones, this can lead to wrong conclusions about their spatial distributions. The com-
mon practice to segment an image disregarding the spatial relationships between
pixels is subject to another type of overlap, where different regions of interest can
have pixels with similar ion intensities due to pixel-to-pixel variability. This leads to
spatially dispersed clusters, with each cluster containing pixels from parts of several
different tissues. Both phenomena have negative implications for tissue characteri-
zation and biomarker detection, making the results less reliable. At the same time,
they currently seem to be the main challenges in obtaining accurate image segmen-
tation.

The two challenges can be overcome using recent developments in computa-
tional mass spectrometry designed to resolve overlapping isotopic envelopes and
mitigate the effect of pixel-to-pixel variability. The masserstein tool returns a correct
spatial distribution of the signal of a lipid when ion images generated from monoiso-
topic peak intensity fail due to interferences from lighter lipids. The spatial-DGMM
tool combines closely located pixels into both spatially and chemically homogeneous
segments. Combining both approaches makes it possible to obtain a more biologi-
cally meaningful univariate segmentation of mass spectrometry images.

Arguably, the downside of the approach presented in this paper is that more ad-
vanced tools require more effort in tuning their parameters. Often, multiple values
need to be inspected in order to obtain a segmentation that matches the expectations
based e.g. on histological staining. Further research in the methodology of applying
software tools and diagnosing their results is needed to give precise procedures of
parameter tuning.

In this Chapter, we have analyzed a mass spectrometry image of a mouse blad-
der assuming that lipids are ionized with a potassium adduct. This is a prevalent as-
sumption in MSI data analysis, including the original work with which the data set
was published. However, comparing the average spectrum of the image to the the-
oretically predicted lipid spectra and inspecting the fine isotopic distribution seems
to contradict this assumption (Fig. 6.7).

Although masserstein is robust to moderate model misspecifications, the lack
of 41K peak in the pixel spectra had a negative effect on the software’s performance.
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FIGURE 6.6: Segmentation with spatial-DGMM increases the spatial
homogeneity of segments compared to K-means, leading to a better
agreement with the underlying anatomical regions. Rows correspond

to lipids in the order of Fig. 6.5
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FIGURE 6.7: A fragment of the average spectrum of the image over-
laid with a theoretical isotopic envelope of PC(36:4). Although the
first two peaks match almost exactly, the third theoretical peak is over
two times too high and shifted to the left. Inspecting its fine isotopic
distribution shows that this peak splits into two, of which the lighter
one corresponds to 41K isotope, which seems to be missing in the ex-
perimental spectrum and causes the apparent shift of intensity and

location.

For this reason, we had to truncate the theoretical spectra to only contain the first two
peaks. Although we still could obtain a good separation of the overlapping isotopic
envelopes, solving this problem — either by software development or further stud-
ies in mass spectrometry — will most likely improve the results even further. The
ability to use full theoretical isotopic envelopes would make it possible to resolve
more complex clusters with an even higher accuracy.

Simulated data sets are often met with skepticism, as many people believe that
they do not reflect many features of real mass spectra. However, a properly simu-
lated mass spectrometric image can be hardly distinguishable from an experimen-
tally acquired one. Such data sets prove useful in theoretical studies on the proper-
ties of mass spectra and spectrometric images, revealing potential problems in data
analysis and their solutions.
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Chapter 7

Conclusions

In this dissertation, we have presented an approach to computational spectrometry
and spectroscopy based on the notion of an optimal transport of signal between
spectra. Our main mathematical tool is the Wasserstein distance, which quantifies
the difference between two spectra as the minimal distance in the m/z axis needed to
match their signals. The Wasserstein distance was the basis for the development of a
regression-denoising algorithm for fitting a linear combination of reference spectra
to an experimental spectrum of a mixture of chemical compounds. The regression-
denoising algorithm was implemented as a Python 3 package called masserstein,
available at https://github.com/mciach/masserstein. We have demonstrated the
practical applicability of our approach by improving the methods of segmentation
of mass spectrometric images.

Our approach is not the first attempt at the problem of linear regression of mass
spectra. In fact, this problem has been tackled multiple times, usually in the context
of very specific experiments. Many of the previous solutions are very crude, without
mathematical formalism that would allow for their theoretical analysis. One of such
examples is to estimate the intensity of the lightest ion by integrating its monoiso-
topic peak, and then to subtract the isotopic envelope of this ion from the analyzed
cluster of overlapping envelopes. Such procedures are not only difficult to analyze,
but also to generalize to other kinds of experiments and experimental methods.

Our main conceptual contribution is to treat spectra as probabilistic measures
to encompass both profile and centroid spectra in a single mathematical formalism,
and to use the notion of optimal transport to compare different spectra to each other.
Thanks to this approach, we were able to develop a method of fitting a linear com-
bination of discrete theoretical spectra to a continuous experimental one. Our ap-
proach is the first that is capable of such fitting. Further research has the potential to
improve the quality of estimation in such setting.

This work is a result of an interdisciplinary collaboration between mathemat-
cians, biologists, statisticians, chemists, and computer scientists. Through our work,
we have identified practical difficulties encountered in experimental research with
mass spectrometry or NMR spectroscopy. We have expressed those difficulties as
mathematical problems and solved them using optimization algorithms. Finally,
we have shown that our approach can be generalized to other types of data analysis
and makes it possible to improve the biological accuracy of the results. Starting from
natural sciences, we have moved to abstract mathematical definitions, solved math-
ematical problems, and returned back to natural sciences to apply our solutions.

Although, for most of this thesis, we presented masserstein as a tool for the
analysis of mass spectra, this was done mostly for the sake of consistency and sim-
plicity of the exposition of the method. The optimal transport paradigm and the
regression-denoising algorithm are applicable to multiple kinds of spectrometry and

https://github.com/mciach/masserstein
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spectroscopy, including the nuclear magnetic resonance (NMR) spectroscopy. Pre-
liminary experiments, which were not included in this dissertation, show very promis-
ing results for the analysis of NMR spectra, and show that masserstein is capable
of an accurate estimation of concentrations of molecules from particularly complex
spectra which are either difficult or impossible to analyze by hand.
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