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Abstract

The thesis is devoted to the study of various classes of inequalities for maximal operators,
both in the weighted and the unweighted settings. It is distinguished by the following two
features:

I. We put a particular emphasis on obtaining sharp results, i.e., deriving the optimal
values of the constants involved;

II. We establish the results with the use of the Bellman function method.

The motivation for I. comes from the fact that maximal operators provide an efficient
tool for the study of wide classes of operators appearing in harmonic analysis. In particular,
maximal estimates can often be applied to obtain the appropriate boundedness properties
of such operators. From this perspective, II. is a very natural direction: Bellman function
method is a tool which enables the investigation of extremal problems and optimal con-
stants. We expect that the special functions and the unified approach presented in the thesis
can be further extended and exploited in the study of related sharp bounds in probability
theory and harmonic analysis.

Throughout, we focus mainly on the dyadic maximal operators and their certain exten-
sions, the so-called dyadic-like maximal operators, which have a direct interpretation in the
probability theory. The material is organized as follows. Chapter 1 is of an introductory
character and contains some motivation, necessary background information, and notation.
Chapter 2 is devoted to the description of the Bellman function method, specified to the con-
text of maximal estimates; this unified approach is a compilation of several works from the
literature. The main contribution of the thesis has been placed in the next five chapters. In
Chapter 3 we obtain a sharp weighted extension of the Kolmogorov inequality: a maximal
Lp estimate for p < 1. Chapter 4 contains a proof of a transference theorem which enables
the passage from a certain type of unweighted estimates for the dyadic maximal operator
to their Fefferman-Stein counterparts in the dyadic-like context. Chapter 5 is devoted to a
certain maximal weak-type estimate in the presence of Muckenhoupt’s Ap weights, p > 1.
Chapter 6 deals with a sharp Lorentz-norm inequality for maximal functions. In the final
part of the paper, Chapter 7, we establish a sharp two-weight bound for a slightly different
object, the so-called harmonic maximal operator.

The contents of the dissertation is quite technical, at least at some points. The search for
the optimal constants and the use of the Bellman function method makes the calculations
really involved in many cases.

AMS 2020 subject classification: Primary: 42B25. Secondary: 46E30, 60G42.

Keywords: maximal operator, dyadic, sharp inequality, weight, Lorentz space
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Streszczenie

Rozprawa jest poświęcona badaniu różnych klas nierówności dla operatorów maksy-
malnych, zarówno w kontekście ważonym jak i bezwagowym. Wyróżniają ją następujące
dwie cechy:

I. Kładziemy szczególny nacisk na otrzymywanie wyników z optymalną stałą;

II. Stosujemy metodę funkcji Bellmana.

Motywacja dla I. wynika z faktu, że operatory maksymalne stanowią efektywne narzę-
dzie do studiowania szerokich klas operatorów występujących w analizie harmonicznej.
W szczególności, oszacowania maksymalne często mogą być stosowane do otrzymywa-
nia odpowiednich własności ograniczoności takich operatorów. Z tej perspektywy II. jest
bardzo naturalnym kierunkiem: metoda funkcji Bellmana jest narzędziem pozwalającym
na badanie problemów ekstremalnych z optymalnymi stałymi. Mamy nadzieję, że funkcje
specjalne oraz zunifikowane podejście zaprezentowane w niniejszej rozprawie będą mogły
być dalej uogólniane i wykorzystywane w pracy nad pokrewnymi nierównościami z opty-
malną stałą w teorii prawdopodobieństwa i analizie harmonicznej.

W całej rozprawie skupiamy się głównie na diadycznych operatorach maksymalnych
i na pewnym ich uogólnieniu, tak zwanych quasi-diadycznych operatorach maksymalnych,
które ma bezpośrednią interpretację w probabilistyce. Praca jest zorganizowana w następu-
jący sposób. Rozdział 1 ma charakter wprowadzający i zawiera motywację, potrzebne in-
formacje wstępne i notację. Rozdział 2 jest poświęcony opisowi metody funkcji Bellmana w
kontekście oszacowań maksymalnych; to zunifikowane podejście jest kompilacją kilku prac
z literatury. Główny wkład niniejszej rozprawy umieściliśmy w następnych pięciu rozdzia-
łach. W Rozdziale 3 otrzymujemy oszacowanie ważone z optymalną stałą będące uogólnie-
niem nierówności Kołmogorowa: nierówności maksymalnej w Lp dla p < 1. Rozdział 4 za-
wiera dowód twierdzenia pozwalającego na przejście od pewnego typu oszacowań bezwa-
gowych dla diadycznego operatora maksymalnego do ich odpowiedników typu Feffermana-
Steina w kontekście quasi-diadycznym. Rozdział 5 jest poświęcony pewnej nierówności
maksymalnej słabego typu z wagą klasy Ap Muckenhoupta, p > 1. W Rozdziale 6 zajmuje-
my się oszacowaniem z optymalną stałą dla norm Lorentza funkcji maksymalnych. W os-
tatniej części pracy, Rozdziale 7, dowodzimy nierówności dwuwagowej z optymalną stałą
dla nieco innego obiektu, tak zwanego harmonicznego operatora maksymalnego.

Zawartość rozprawy jest dość techniczna, przynajmniej w niektórych miejscach. Poszuki-
wanie optymalnych stałych i stosowanie metody funkcji Bellmana w wielu przypadkach
wymaga skomplikowanych obliczeń.
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Chapter 1

Introduction

Maximal operators are fundamental objects in analysis and probability theory, and have far
reaching applications in other areas of mathematics. In particular, they enable the study of
the boundedness, in various function spaces, of wide families of classical operators (e.g.,
fractional or singular). This is a direct consequence of the fact that many such operators,
or some of their components, can be controlled pointwise by an appropriate version of a
maximal function. This gives rise to the question about the efficient handling of maximal
estimates, and the purpose of the thesis is to present a number of techniques which can be
exploited in this type of problems. Furthermore, we will put particular emphasis on the size
of the constants involved.

We start with recalling some background and notation. For a locally integrable function
f : Rd → R (where the integrability is with respect to the d-dimensional Lebesgue measure),
the Hardy-Littlewood maximal operator is defined as follows:

Mf(x) = sup
{
〈|f |〉Q : Q ∈ Qx

}
.

Here 〈f〉Q stands for 1
|Q|
∫
Q f(x)dx, the average of f over Q, |Q| denotes the Lebesgue mea-

sure of Q and for each x ∈ Rd,Qx is a certain family of sets containing x. There are five most
important choices for such families studied widely in the literature:

(i) the centered maximal operator, associated with the classesQx = {B(x, r) : r > 0} of open
balls centered at x;

(ii) the uncentered maximal operator, which corresponds to Qx being the family of all balls
containing x;

(iii) and (iv) are the versions of (i) and (ii) with balls replaced with cubes having sides
parallel to the axes;

(v) the dyadic maximal operator, which corresponds toQx being the class of all dyadic cubes
containing x. (For the discussion on the dyadic lattice, see below).

It is worth saying here that the operators in the above contexts are essentially compara-
ble: having proved an estimate in one setting, one immediately deduces the corresponding
statement for the remaining operators (with a different constant, depending on the dimen-
sion d). While this is more or less obvious for the families (i)-(iv) (see e.g. Grafakos [19]),
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the interplay between the dyadic and non-dyadic context is a little more involved: consult
[22, 32]. The subject becomes much more challenging for general metric spaces equipped
with a non-doubling measure, but we will not touch this area in this thesis.

Maximal operators have been studied and applied in numerous problems of analysis and
probability. In principle, any textbook on harmonic analysis begins with some more or less
detailed presentation of this topic (for example, we refer the interested reader to the mono-
graphs [19] and [74]). Depending on the problem under investigation, it is often convenient
to stick to one of the settings (i)-(v); each of them provides some additional geometric or
combinatorial arguments which might be crucial in the study. Here is a short discussion on
some important selected examples; for a more detailed presentation, see [19, 45, 68]. We will
encounter further examples later in this section, when studying the dyadic context.

(a) Lebesgue’s differentiation theorem asserts that if f : Rd → R is a locally integrable
function, then for almost all x ∈ Rd the limit

lim
r→0
〈f〉B(x,r)

exists and is equal to f(x). The proof of this important result exploits weak-type bounds
for centered maximal operators and the density of continuous functions in Lp spaces.
A similar argumentation leads to various extensions of Lebesgue’s theorem, involving
averages over other families of sets containing x. Such results have turned out to be
extremely useful, for instance in the context of Calderón-Zygmund decompositions and
their extensions.

(b) Maximal functions dominate (pointwise) a large class of convolution operators. For ex-
ample, suppose that k : [0,∞) → [0,∞) is a decreasing continuous function such that
the function K : Rd → R defined by K(x) = k(|x|) is integrable. Define the ε-dilation
of K by Kε(x) = ε−dK(ε−1x). Then for any locally integrable function f we have the
estimate

sup
ε>0

(Kε ∗ |f |)(x) ≤ ‖K‖L1(Rd)Mf(x),

where M is the uncentered maximal operator. Therefore, any estimate for M imme-
diately yields the corresponding bound for the convolution operators given by Tεf =
Kε ∗ f . This observation can be exploited in the study of (maximal) Hilbert transforms
and Poisson/heat semigroups, but the range of applications is much wider.

(c) Estimates for maximal operators form a crucial ingredient in the proofs of various types
of extrapolation theorems. The simplest form of such a theorem asserts that if for some
fixed 1 < p0 <∞ a given operator T is bounded on the weighted space Lp0(w0) for any
Ap0 weight w0, then automatically T is bounded on any weighted space Lp(w) for any
1 < p <∞ and any Ap weight w. The proof exploits the so-called algorithm of Rubio de
Francia, which depends heavily on estimates for uncentered maximal operators.

(d) Maximal estimates are also of fundamental importance in the study of various singular
integral operators. In many cases, the analysis of such operators involves discretization
or approximation of the underlying kernel, which gives rise to sums of various dyadic-
type operators (e.g., the so-called sparse operators, a class which has been rapidly devel-
oped in the recent literature). These discrete structures are typically controlled by dyadic
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maximal functions or their appropriate modifications, and here the maximal estimates
come into play.

(e) There are also numerous examples of maximal inequalities in the probability theory.
These include estimates for sums of independent random variables as well as semi-
martingale inequalities, which have their further applications to the theory of stochastic
integration.

1.1 The dyadic and the dyadic-like maximal operator, and their
boundedness properties

Throughout the thesis, we will be mostly concerned with the dyadic context, and some of
its extensions arising naturally in the probability theory. Recall the definition: the dyadic
maximal operator acts on locally integrable function f : Rd → R by

Mf(x) = sup
{
〈|f |〉Q : Q ⊂ Rd is a dyadic cube, x ∈ Q

}
.

Here the family of dyadic cubes in Rd is formed by the grids (2−nZd)n=0,1,2,...; in other words,
the dyadic lattice is the collection of all cubes of the form

[a1 · 2−n, (a1 + 1) · 2−n)× [a2 · 2−n, (a2 + 1) · 2−n)× . . .× [ad · 2−n, (ad + 1) · 2−n),

where a1, a2, . . . , ad are arbitrary integers and n is a nonnegative integer. One of the key
features is that any two dyadic cubes are either disjoint, or one is contained in the other.
It turns out that this property allows the use of certain inductive arguments in the study
of the operator M . Moreover, there are nice and fruitful connections between the operator
M and the probability theory. To see this, let us restrict ourselves to functions supported
on the unit cube [0, 1)d and denote by Dn the family of dyadic subcubes of [0, 1)d having
volume equal to 2−nd. This immediately suggests the following important link to the theory
of martingales. Namely, consider the probability space ([0, 1)d,B([0, 1)d), | · |) and, for any
n ≥ 0, define the σ-algebra Fn = σ(Dn) and the function/random variable fn = E(f |Fn).
Then (Fn)n≥0 forms a filtration, i.e., a nondecreasing family of sub-σ-algebras of B([0, 1)d).
In addition, the sequence (fn)n≥0 is a martingale adapted to (Fn)n≥0: for any n ≥ 0, the
function/random variable fn is measurable with respect toFn and we have E(fn+1|Fn) = fn
almost surely. Finally, for each n ≥ 0, one easily checks that Mfn = maxk≤n |f |k is the
truncated maximal function of the martingale (|f |n)n≥0, and similarly, the dyadic maximal
operator can be written asMf = supn≥0 |f |n. In other words, the analysis of dyadic maximal
operators and martingale maximal functions are parallel; this interplay enables us to employ
various probabilistic tools and interpretations in the study of M .

From the viewpoint of applications discussed above, it is important to study the bound-
edness of M in various function spaces. This subject has been intensively investigated in the
literature (see e.g. [19, 33, 34, 35, 38, 74], consult also the references in the more recent of
these works), and the related sub-problem of obtaining sharp, or at least good bounds for
the corresponding norms has gained considerable interest. This is one of the main themes in
this thesis, so let us present more details on the topic. The first example is thatM is bounded
as an operator from L1 to L1,∞; actually, it satisfies the slightly stronger estimate

λ
∣∣∣{x ∈ Rd : Mf(x) > λ

}∣∣∣ ≤ ∫
{Mf>λ}

|f(x)|dx (1.1)
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for any f ∈ L1(Rd) and λ > 0. This in particular implies

‖Mf‖L1,∞(Rd) ≤ ‖f‖L1(Rd),

where, for 1 ≤ p < ∞, ‖f‖Lp,∞(Rd) = supλ>0 λ|{x ∈ Rd : |f(x)| > λ}|1/p. The estimate is
sharp: there is a nontrivial function f for which equality is attained. Actually, the weak-type
(p, p) inequality holds, with the unchanged constant 1, in the full range 1 ≤ p <∞ (cf. [36]):
we have the sharp bound

‖Mf‖Lp,∞(Rd) ≤ ‖f‖Lp(Rd).

The next example is the celebrated Hardy-Littlewood-Doob inequality

‖Mf‖Lp(Rd) ≤
p

p− 1
‖f‖Lp(Rd) , 1 < p ≤ ∞, (1.2)

for any f ∈ Lp(Rd), in which the constant p/(p−1) is the best possible; see [5, 33]. This result
gives rise to a number of interesting problems. For instance, the version of (1.2) does not hold
with any finite constant if p = 1; as a substitute, one might consider the corresponding weak-
type (1,1) estimate (which, as we have just seen above, holds with a constant 1). Motivated
by the classical results of Zygmund, one can study a different end-point estimate expressed
in terms of sharp LlogL-type estimates. It can be extracted from the works of Melas [34] (see
also Osękowski [45]) that if K > 1, E is a measurable subset of Rd and a function f : Rd → R
satisfies ‖f‖L logL(Rd) =

∫
Rd(|f | + 1) log(|f | + 1)dx < ∞, then there is a finite constant L(K)

such that ∫
E
Mfdx ≤ K‖f‖L logL(Rd) + L(K) · |E|.

The subsequent work [35] concerns yet another extension of (1.2): the action of M , con-
sidered as an operator from Lp(Rd) to localized Lq(Rd) (for 1 ≤ q < p), is studied there.
Specifically, among other things, Melas determined the best constant Cp,q in the following
inequality: for any measurable subset E of Rd, we have(∫

E
(Mf)qdx

)1/q

≤ Cp,q‖f‖Lp(Rd)|E|1/q−1/p.

The paper [38] by Melas and Nikolidakis extends the above estimate to the wider range of
parameters. It is devoted to the following sharp version of Kolmogorov’s inequality: for any
0 < q < 1 and any measurable E ⊂ Rd,(∫

E
|Mf |qdx

)1/q

≤
(

1

1− q

)1/q

‖f‖L1(Rd)|E|1/q−1.

Lorentz-norm estimates for M have also gathered a lot of interest. Let us first provide some
necessary definitions and notation. Recall that if f is a measurable function on some measure
space (Ω, µ), then its nonincreasing rearrangement f∗ : [0,∞)→ [0,∞) is given by

f∗(t) = inf
{
s > 0 : µ

(
{x ∈ Ω : |f(x)| > s}

)
≤ t
}
.

Note that if µ(Ω) < ∞, then f∗(t) vanishes for t > µ(Ω). Given 0 < p, q < ∞, we define
the Lorentz space Lp,q = Lp,q(Ω, µ) as the family of all (equivalence classes of) measurable
functions f on Ω such that

‖f‖Lp,q :=

(∫ ∞
0

(
t1/pf∗(t)

)q dt
t

)1/q
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is finite. The space Lp,∞ = Lp,∞(Ω, µ) is defined similarly, with the use of the quasinorm

‖f‖Lp,∞ := sup
t>0

t1/pf∗(t).

Melas and Nikolidakis [38] proved that for any 1 < p, q <∞we have

‖Mf‖Lp,q(Rd) ≤
p

p− 1
‖f‖Lp,q(Rd) .

There is also a related estimate concerning the action of M between the spaces Lp,∞ → Lq,r,
see [38, 50, 49] for details. Chapter 6 of this thesis will also be devoted to a result in this
direction.

It turns out that all the above results can be extended significantly: the maximal inequal-
ities hold in a much more general context of measure spaces equipped with a tree structure.
The following concept generalizes the notion of a dyadic lattice.

Definition 1.1.1 (Tree). Assume that (Ω, µ) is a nonatomic measure space with µ(Ω) <∞. A
family T of measurable subsets of Ω is called a tree if the following conditions are satisfied:

(i) Ω ∈ T and for every Q ∈ T we have µ(Q) > 0.

(ii) For every Q ∈ T there is a finite partition C(Q) ⊂ T of Q (i.e., the elements of C(Q) are
pairwise disjoint subsets of Q and their union is Q).

(iii) T =
⋃
m≥0 T m, where T 0 = {Ω} and T m+1 =

⋃
Q∈T m C(Q).

(iv) We have limm→∞ supQ∈T m µ(Q) = 0.

A natural example is the cube Ω = [0, 1)d with the Lebesgue measure µ and the tree
of the dyadic cubes contained in [0, 1)d. Comparing the above definition to the previous
context of Rd with its dyadic lattice, we see that now we impose the additional finiteness
assumption µ(Ω) < ∞. This extra condition has a technical character and its main purpose
is to provide the base point for induction arguments. It should be emphasized that it is not
restrictive in most applications: having proved any estimate in the finite, “local” dyadic case,
one performs rather standard translation and limiting arguments to obtain the result in the
general dyadic case.

Definition 1.1.2 (Maximal operator). Any measure space equipped with a tree gives rise to
the corresponding maximal operatorM =MΩ,µ,T , given by

Mf(x) = sup
{
〈|f |〉Q,µ : Q ∈ T , x ∈ Q

}
,

where 〈f〉Q,µ = 1
µ(Q)

∫
Q fdµ is the average of f over Q with respect to the measure µ. Such

operator will be called the dyadic-like maximal operator associated with T .

If µ(Ω) = 1, i.e., if (Ω, µ) is a probability space, then there is a direct correspondence
between tree structures and atomic filtrations (σ(T n))n≥0. In particular, all the results can
be interpreted in terms of martingales and their maximal functions. The passage between
the analytic and the probabilistic case is essentially the same as in the dyadic setup already
discussed above, so we omit the details.
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It can be shown that all the maximal estimates presented above hold true, with un-
changed constants, if we replace the dyadic operator M with the dyadic-like counterpartM
on an arbitrary measure space with tree-like structure. The reason for this is that the works
cited above contain much more: they actually identify the explicit formulae for the associ-
ated Bellman functions. Let us say a few general words about this approach (for more on the
subject, we refer the reader to [33, 42, 43, 46, 72, 73, 76, 77]; for the version of the technique,
specialized to the maximal context, see Chapter 2 below). The Bellman function method
links a given estimate under investigation to the existence of a certain special function, en-
joying appropriate size and concavity requirements: once such an object is constructed, then
the exploitation of its properties in an appropriate order yields the inequality. However, in
many cases the interplay goes much deeper: the validity of the estimate is actually equivalent
to the existence of the special function, so in particular, the method can be used to track the
best constants involved. In addition, not only does the special function yield the estimate,
but it also encodes the extremizers, i.e., the terms for which equality is attained, or almost
attained.

To finish the discussion, let us point out here that the Bellman function approach, if ap-
plied appropriately, “does not recognize” (or rather: does not refer to) the dyadic splitting
and works equally fine for any trees: this yields the maximal estimates in the general setup
with no additional effort.

1.2 Weights

Actually, we will be interested in a wide class of estimates, in the presence of some addi-
tional objects, the so-called weights. Here and below, the word “weight” refers to a locally
integrable, nonnegative function on the base space (X,µ) (e.g., X = Rd and µ = | · |, or
(X,µ) = (Ω, µ) - this will be clear from the context). We will typically denote the weights
using the letters u, w or v. Any weight w gives rise to the corresponding measure, also de-
noted by w, given by w(E) =

∫
E wdµ for all measurable sets E. Furthermore, the associated

weighted Lp spaces are given by

Lp(w) =

{
f : X → R : ‖f‖Lp(w) =

(∫
X
|f |pwdµ

)1/p

<∞

}
, 0 < p <∞,

with the usual identification of the functions which are equal µ-almost everywhere. The case
p =∞ is handled in a standard manner, with the use of essential supremum with respect to
the measure w. Analogously, one can define the weighted weak-Lp spaces Lp,∞(w), or more
generally, the weighted versions of Lorentz spaces, by the use of the decreasing rearrange-
ments relative to the measure w.

One can study the action of maximal operators on various weighted Lorentz spaces. We
will focus on the case X = Rd, as the statements we will refer to mostly concern this case;
to avoid confusion, the uncentered maximal operator will be denoted by M , and its dyadic
version by M . The starting point is the following result, which can be extracted from the
work of Fefferman and Stein [16]. For any f ∈ L1(Rd), λ > 0 and any weight w we have the
weak-type bound

λw
({
x ∈ Rd : M f(x) > λ

})
≤ Cd

∫
{M f>λ}

|f(x)|Mw(x)dx (1.3)
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for some constant Cd depending only on the dimension. One can show an analogous bound
for the dyadic maximal operator M , with the constant 1. This is an extension of (1.1): the
classical estimate follows if we take w ≡ 1. By a straightforward interpolation argument,
one obtains the weighted bounds

‖M f‖Lp(w) ≤
pCd
p− 1

‖f‖Lp(Mw) , 1 < p ≤ ∞,

and
‖Mf‖Lp(w) ≤

p

p− 1
‖f‖Lp(Mw) , 1 < p ≤ ∞. (1.4)

Note that the latter estimate generalizes (1.2). This gives rise to the question about the exten-
sions of other estimates from the previous section, to this two-weight (w−Mw and w−Mw)
context. We will study this problem in Chapters 3 and 4.

There is another, perhaps more natural problem, which concerns the boundedness of M
and M as operators on the weighted space Lp(w). More precisely, suppose that 1 < p < ∞
is a fixed exponent. It is not difficult to construct a weight w such that ‖M ‖Lp(w)→Lp(w) =
∞ and the problem is to provide the characterization of those w, for which the norm is
finite. A similar question can be posed if one replaces M with the dyadic maximal operator.
The former problem was successfully handled by Muckenhoupt [39] in the beginning of
the seventies: the uncentered maximal operator is bounded as an operator on Lp(w) if and
only the weight w belongs to the class Ap (satisfies Muckenhoupt’s condition Ap). The latter
means that the Ap characteristic of w, given by

[w]generalAp
:= sup

{
〈w〉Q

〈
w1/(1−p)

〉p−1

Q
: Q ⊂ Rd is a cube with sides parallel to the axes

}
is finite. It turns out that the answer of the corresponding question concerning the dyadic
maximal operator requires only some minor modifications: the dyadic maximal operator is
bounded as an operator on Lp(w) if and only if the weight w belongs to the dyadic Ap class,
i.e.,

[w]dyadicAp
:= sup

{
〈w〉Q

〈
w1/(1−p)

〉p−1

Q
: Q ⊂ Rd is a dyadic cube

}
<∞. (1.5)

From now on, we will simply write [w]Ap for the characteristics, it should be clear which
context we are working in.

Muckenhoupt’s result is considered to be the cornerstone of the weighted theory and it
has been subject to numerous extensions and generalizations. It turns out that the condition
Ap characterizes the boundedness of other important classical operators in harmonic anal-
ysis. For example, the sufficiency of Muckenhoupt’s condition for the boundedness of the
Hilbert transform was proved by Hunt, Muckenhoupt and Wheeden [20], while the setting
of Riesz transforms (actually, even a more wider class of singular integrals) was handled
by Coifman and Fefferman [8]. (Proofs of the necessity can be found in [17, 20, 75].) The
weighted estimates for fractional and Poisson integrals were investigated by Sawyer [70, 71],
the analysis of square function operators can be found in the works of Buckley [3], Chanillo
and Wheeden [7] and Lerner [26].

Another extension of Muckenhoupt’s result, which has gained a lot of interest in the re-
cent literature, concerns the optimal dependence of the norm ‖M ‖Lp(w)→Lp(w) and its dyadic
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counterpart ‖M‖Lp(w)→Lp(w) on the size of the characteristic [w]Ap . More precisely, for a
given 1 < p <∞, the problem is to find the least exponent α = α(p) such that

‖M f‖Lp(w) ≤ Cp[w]
α(p)
Ap
‖f‖Lp(w) (1.6)

where the constant Cp depends only on p. This question was posed and answered in the
nineties by Buckley [3]: he showed that the optimal exponent α(p) is equal to 1/(p − 1).
Again, one can study analogous problems, replacing the maximal function with other im-
portant operators of harmonic analysis; we only mention here the works of Hÿtonen [21]
and Lerner [27] for some information on Calderón-Zygmund singular integrals, Lacey et. al.
[25] for the study of fractional integrals and Lerner [26] for the context of Littlewood-Paley
square functions. Consult also the references in these works.

Coming back to the maximal functions, we would like to mention the further improve-
ment to (1.6) obtained by Osękowski: the paper [54] contains, for any 1 < p < ∞ and any
c ≥ 1, the identification of the optimal constant Cp,c such that

‖M‖Lp(w)→Lp(w) ≤ Cp,[w]Ap
. (1.7)

In the thesis, we will obtain results related to this estimate.
We would like to point out that there are also versions of theAp condition in the endpoint

cases p ∈ {1,∞}. We will focus here on the case p = 1, as the A∞ condition will not appear
in our considerations below. Namely, w is an A1 weight if

[w]A1 := esssup
Rd

Mw

w

is finite; an obvious modification leads to the dyadic A1 weights. It seems natural to expect
that in the boundary case p = 1 we should have some weighted weak-type bound for M
and M . The Fefferman-Stein inequality (1.3) (and its dyadic version) shows that this is the
case: it immediately yields the one-weight bound

λw
({
x ∈ Rd : M f(x) > λ

})
≤ Cd[w]A1

∫
{M f>λ}

|f(x)|w(x)dx, (1.8)

along with its dyadic version. Furthermore, it is easy to show that the linear dependence on
the characteristic is the best.

The estimates (1.3) and (1.8) can be pushed in a very interesting direction, by means of
appropriate duality arguments. Motivated by the works of Lerner et. al. [29, 30, 31], we
consider the strong dual version

w
(
{x ∈ Rd : M f(x) ≥Mw(x)}

)
≤ Cd

∫
Rd
|f |dx, (1.9)

where w is an arbitrary weight and Cd depends only on the dimension. The weak dual
inequality concerns A1 weights and reads

w
(
{x ∈ Rd : M f(x) ≥ w(x)}

)
≤ Cd[w]A1

∫
Rd
|f |dx. (1.10)

It is not difficult to establish these estimates in the uncentered and the dyadic contexts. The
aforementioned works of Lerner et. al. contained the analysis of analogous inequalities
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for general Calderón-Zygmund singular integral operators, which are far more challenging.
The contribution of the thesis in this direction, presented in Chapter 5, concerns a version of
(1.10) in the context of dyadic Ap weights with p > 1.

All the results for the dyadic maximal operators formulated above can be studied in the
more general setup of measure spaces (Ω, µ) with a tree-like structure T . All the discussion
can be carried out with no difficulty: one needs to treat a weight as a measurable and non-
negative function on Ω, the only essential change concerns the Muckenhoupt’s condition.
The modification is straightforward: for a weight w and an exponent 1 < p <∞, we define

[w]Ap := sup

{
〈w〉Q,µ

〈
w
−1
p−1

〉p−1

Q,µ
: Q ∈ T

}
<∞.

The boundary case p = 1 is handled in an obvious manner.

1.3 The harmonic maximal operator

There is another interesting version of the maximal function, the so-called dyadic harmonic
maximal operator MH, which is defined by the identity

MHf(x) = sup
{〈
|f |−1

〉−1

Q
: Q ⊂ Rd is a dyadic cube, x ∈ Q

}
.

This definition generalizes easily to the context of a measure space (Ω, µ) with a tree T : set

MHΩ,µ,T f(x) = sup
{〈
|f |−1

〉−1

Q,µ
: Q ∈ T , x ∈ Q

}
.

Here and below, we use the convention 1/0 =∞ and 1/∞ = 0. The joint behavior of (and the
interplay between) M and MH is similar to that of the arithmetic and the harmonic averages

|x1|+ |x2|+ . . .+ |xn|
n

,

(
|x1|−1 + |x2|−1 + . . .+ |xn|−1

n

)−1

,

where x1, x2, . . ., xn are arbitrary real numbers. In particular, we have the pointwise estimate
Mf ≥ MHf on Rd. The harmonic maximal operators appeared for the first time in the
works [9, 10, 11] in a slightly different form: the authors studied there the so-called minimal
operator

Mf(x) = inf
{
〈|f |〉Q : Q ⊂ Rd is a dyadic cube, x ∈ Q

}
,

which is linked to MH via the identity MHf = M(|f |−1)−1. In a sense, the minimal operator
M controls f on the set where the function is small (while the maximal operator M controls
f where the function is large). The minimal operator was used to study the fine structure
of Ap weights in [10], further applications to weighted norm inequalities and differentiation
theory can be found in [11].

One can ask about sharp versions of the estimates from the previous subsections, with
M and M replaced with MH. To the best of our knowledge, very little is known about
this topic. The paper [23] contains the proof of sharp weak- and strong-type estimates for
MH. The (unweighted) Lp norms ofMH can be extracted from the appropriate general Φ-
estimates for martingale maximal functions, see Chapter 7 in [45]. There is a natural question
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about the weighted inequalities for MH. As shown in [11], for any fixed 0 < p < ∞, the
operatorMH is bounded as an operator from Lp(v) to Lp(u) if and only if the pair (u, v) of
weights satisfies

[u, v]A−p := sup

{
〈u〉Q,µ

〈
v

1
p+1

〉−p−1

Q,µ
: Q ∈ T

}
<∞

(with the convention 0 ·0−p−1 = 0). See also Duffee and Moen [15]. We will provide a certain
sharp two-weight estimate in this direction.

1.4 The organization and the contribution of the thesis

The remaining part of this thesis has been divided into six separate chapters: let us briefly
discuss their contents and indicate the main results. All the estimates are obtained in the
context of dyadic-like operators on measure spaces equipped with trees.

Chapter 2 is devoted to the detailed description of the Bellman function method, which
will play a distinguished role in our considerations. The material presented in this chapter
is not new, it is a compilation of several texts from the literature, including [43, 45].

Chapter 3 handles the weighted Kolmogorov’s inequalities for maximal functions. Given
p < 1 and an arbitrary weight w, we have the sharp bound

‖Mf‖pLp(w) ≤
1

1− p
‖f‖p

L1 ‖w‖L1 +
p2

1− p
ET (f, w),

where ET (f, w) is an appropriate error term. This term is equal to zero when w = const, so
it is indeed a generalization of the unweighted Kolmogorov’s inequality. One of the very in-
teresting additional features is the associated Bellman function, which has quite an unusual
form. The contents of this chapter is taken from [64].

Chapter 4 shows that any integral inequality forM of a rather general form automatically
self-improves into a weighted estimate with an arbitrary weight w on one side andMw on
the other, in analogy to the Fefferman-Stein inequality (1.3) being an extension of (1.1). The
contents of this chapter is based on [65].

Chapter 5 contains the proof of the weak-type inequality

w ({x ∈ Ω :Mf ≥Mw}) ≤ Cp[w]Ap

∫
Ω
fdµ,

where p > 1 and w is an Ap weight. The linear dependence on the Ap characteristic is
optimal. The contents of this chapter is taken from [60].

Chapter 6 is dedicated to the study of M as an operator between unweighted Lorentz
spaces. More precisely, we obtain an explicit formula for ‖M‖Lp,q1→Lp,q2 , where 1 < p ≤
q1 < q2 <∞. The contents of this chapter is taken from [59].

The final part of the thesis, Chapter 7, investigates the weighted inequalities for the har-
monic maximal operator. More specifically, we will obtain the following sharp two-weight
Lp estimate forMH. Suppose that p > 0 and (u, v) is a pair of weights satisfying

[u, v]A−p := sup

{
〈u〉Q,µ

〈
v

1
p+1

〉−p−1

Q,µ
: Q ∈ T

}
<∞.
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As we have mentioned above, this condition guarantees that the operatorMH is bounded
as an operator from Lp(v) to Lp(u). Motivated by (1.7), one study and answer the question
about the optimal bound for

∥∥MH∥∥
Lp(v)→Lp(u)

in terms of the joint characteristic [u, v]A−p .
The contents of this chapter is taken from [61].
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Chapter 2

Bellman function method

In the literature, estimates for maximal operators have been studied with the use of various
techniques: these include, for example, covering theorems, Calderón-Zygmund-type de-
compositions, interpolation, and many more. One of the main tools exploited in the thesis is
the Bellman function method. This technique has proved to be very powerful and efficient in
the investigation of numerous problems of harmonic analysis and probability theory. From
the historical point of view, the approach has its origins in the theory of optimal stochastic
control developed by Bellman [1]. Probably the first results, which explored the connections
of the method with other areas of mathematics, were those of Burkholder [4], who used it to
show sharp estimates for martingale transforms and to identify the unconditional constants
of the Haar system. Soon after the appearance of the seminal paper [4], Burkholder’s argu-
ments were extended from the martingale setting to the context of general semimartingales:
see e.g. the monograph [45] for an overview. This can be regarded as a probabilistic direc-
tion for the Bellman function method. In the nineties, a decisive step was made by Nazarov
and Treil [42], inspired by the preprint version of [43]. In that paper, the technique was
pushed towards quite general applications in harmonic analysis; since then, the method has
been used in many contexts, including the properties of BMO spaces, weighted estimates,
properties of Carleson sequences, and many, many more.

Let us roughly explain the main idea behind the approach. The Bellman function method
relates the validity of a given estimate to the existence of a certain special function which en-
joys appropriate size and concavity requirements. Let us be a little more specific here. Typi-
cally, the study of a given inequality is equivalent to finding the supremum of some quantity
under some fixed parameters. The maximal value of this quantity is just by definition the
value of the Bellman function (for this extremal problem), and the parameters are the argu-
ments of this function. A trivial choice for these parameters gives the corresponding lower
bound for the function, which is typically called the obstacle condition (or the majorization
property). The key fact is that in many cases the extremal problem is self-similar under scal-
ing; therefore, the definition of the Bellman function immediately leads to some inequality of
concavity type. The Bellman function appears to be the minimal possible among all the func-
tions satisfying this concavity condition. This extremal property implies that the concavity
must degenerate in some directions (here the so-called Bellman equation comes into play),
which yields a nonlinear partial differential equation for the Bellman function. This equa-
tion sometimes can be solved explicitly, which gives the formula for the Bellman function
and establishes the initial estimate.

21
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Typically, the Bellman function is quite a complicated object. The discovery of the de-
generate directions, as well as finding the solution to the corresponding partial differential
equation, is in general a quite elaborate issue. The difficulty grows significantly with the di-
mension of the problem: there are many results in which a Bellman function of two variables
was calculated successfully; there are only a few papers handling the three-dimensional con-
text, and, to the best of our knowledge, no examples in higher dimensions.

In the case when the identification of the Bellman function is too difficult, one can study
the less challenging problem of finding the so-called supersolution, i.e., a majorant which
satisfies the same concavity and obstacle conditions, but not necessarily the underlying Bell-
man equation. Sometimes such sub-extremal objects are also called Bellman functions in the
literature, although they do not satisfy the appropriate minimality. It is also worth pointing
out that in many cases they also lead to sharp-constant estimates and have a simpler, less
technical formula, so from the viewpoint of the estimate under investigation, they are more
convenient to work with. However, in most situations the supersolutions do not yield the
optimal constants, but, on the positive side, they can still give the asymptotic sharpness with
respect to some parameter (e.g., the characteristic of a weight: see (1.6) above).

We restrain ourselves from the further general discussion and turn our attention to the
specific context of maximal inequalities. We have decided to present the details in the ana-
lytic language, but it is easy to translate them all into the probabilistic context of martingales.

2.1 Bellman function method for unweighted estimates

For the sake of simplicity and clarity, we have decided to start with the presentation of the
method in the case when the weighted ingredient does not appear. Suppose that (Ω, µ) is
a fixed finite measure space equipped with a tree T and the associated dyadic-like maxi-
mal operator M. Actually, we will restrict ourselves to probability spaces: in most cases,
this normalization can be imposed with no loss of generality. A function f on T is called
T -simple, if it is measurable with respect to σ(T N ) for some integer N . Note that in par-
ticular, T -simple functions have only finitely many values. Consider the angular domain
D = {(x, y) ∈ [0,∞) × [0,∞) : x ≤ y}. Suppose that V : D → R is a given function and
assume that we are interested in showing the estimate∫

Ω
V (f,Mf)dµ ≤ 0 (2.1)

for all nonnegative T -simple functions f on Ω. Note that the pair (f,Mf) takes values
in D, so the integrand on the left makes sense. For example, the choice V (x, y) = yp −(

p
p−1

)p
xp, 1 < p < ∞, corresponds to the strong-type estimates (1.2). Another example

is V (x, y) = χ(λ,∞)(y)(λ − x), λ > 0, which leads to the weak-type bound (1.1). Note that
the requirement f ≥ 0 imposed above is not excessive: in all of the maximal estimates
discussed in the previous chapter, the dependence on the function f was through |f |, in other
words, the passage from f to |f | does not change anything. Furthermore, the restriction to
T -simple functions removes all the inconvenient problems concerning the measurability or
integrability on the left of (2.1). On the other hand, in all the relevant examples the passage
from the simple to the general case is a matter of standard approximation arguments.

The underlying idea of the approach towards (2.1) is the following: we look for a function
B : D → R that satisfies the following three properties.
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1◦ (Initial condition). For any x ≥ 0 we have B(x, x) ≤ 0.

2◦ (Majorization). We have B ≥ V on D.

3◦ (Concavity). For any (x, y) ∈ D, any numbers x1, x2 ≥ 0 and λ1, λ2 ∈ (0, 1) such that
λ1 + λ2 = 1 and λ1x1 + λ2x2 = x, we have

B(x, y) ≥ λ1B(x1, y ∨ x1) + λ2B(x2, y ∨ x2), (2.2)

where a ∨ b is the maximum of a and b. Let us study precisely the relation between the
validity of (2.1) and the existence of a function B possessing the above three properties.

Theorem 2.1.1. If there is a function B which satisfies 1◦, 2◦ and 3◦, then (2.1) holds true.

Proof. We start with a simple generalization of the condition 3◦ to a finite number of vari-
ables. A straightforward induction implies that for any m ≥ 2, any (x, y) ∈ D and any
numbers xk ∈ [0,∞), λk ∈ (0, 1), k = 1, 2, ...,m satisfying

∑m
k=1 λk = 1 and

∑m
k=1 λkxk = x,

we have

B(x, y) ≥
m∑
k=1

λkB(xk, y ∨ xk). (2.3)

For any n ≥ 0, we will use the notation fn =
∑

Q∈T n〈f〉Q,µχQ (in the probabilistic language,
(fn)n≥0 is the martingale associated with f ). The key ingredient of the proof of the theorem
is to show that the sequence

(∫
ΩB(fn,Mfn)dµ

)
n≥0

is nonincreasing. To prove this fact,
fix n ≥ 0, an element Q ∈ T n and denote the children of Q in T n+1 by Q1, Q2, ..., Qm.
The functions fn andMfn are constant on Q: denote the corresponding values by x and y.
Similarly, fn+1 andMfn+1 are constant on eachQk: denoting the value of fn+1|Qk by xk, one
easily checks thatMfn+1 = y ∨ xk on Qk. Let us check that the conditions listed above (2.3)
are satisfied, with λk = µ(Qk)/µ(Q). The numbers λk sum up to 1 and

x =
1

µ(Q)

∫
Q
fdµ =

m∑
k=1

µ(Qk)

µ(Q)
· 1

µ(Qk)

∫
Qk

fdµ =

m∑
k=1

λkxk.

Hence we can apply (2.3) and obtain∫
Q
B(fn+1,Mfn+1)dµ =

m∑
k=1

∫
Qk

B(fn+1,Mfn+1)dµ =
m∑
k=1

µ(Qk)B(xk, y ∨ xk)

= µ(Q)
m∑
k=1

λkB(xk, y ∨ xk) ≤ µ(Q)B(x, y) =

∫
Q
B(fn,Mfn)dµ.

Summing over all Q ∈ T n we get the aforementioned monotonicity property∫
Ω
B(fn+1,Mfn+1)dµ ≤

∫
Ω
B(fn,Mfn)dµ.

To finish the proof, fix a large integer N such that f is σ(T N )-measurable. Applying 2◦, then
the above monotonicity, and finally 1◦, we get∫

Ω
V (f,Mf)dµ =

∫
Ω
V (fN ,MfN )dµ

≤
∫

Ω
B(fN ,MfN )dµ ≤

∫
Ω
B(f0,Mf0)dµ = B(f0, f0) ≤ 0

(2.4)

and the proof is finished.
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The implication of the above theorem can be reversed. The Bellman function B : D → R
associated with the problem (2.1) is defined by

B(x, y) = sup

∫
Ω
V (f, y ∨Mf)dµ, (2.5)

where the supremum is taken over the class of all nonnegative, T -simple functions f satis-
fying

∫
Ω fdµ = x. The tree T and the probability space (Ω, µ) are also allowed to vary in the

above supremum.

Theorem 2.1.2. If (2.1) holds true for any tree T on any probability space (Ω, µ) and any T -simple,
nonnegative function f , then B, given by (2.5), satisfies 1◦, 2◦ and 3◦. Actually, it is the least
function on D enjoying these conditions.

Proof. The condition 1◦ is a direct consequence of the validity of (2.1): for any x ≥ 0 and any
T -simple function f ≥ 0 with

∫
Ω fdµ = x, we haveMfn ≥ x and∫

Ω
V (fn, x ∨Mfn)dµ =

∫
Ω
V (fn,Mfn)dµ ≤ 0.

Thus, taking the supremum over all such f gives the initial condition. The majorization 2◦

follows by considering the constant function f ≡ x in the definition of B(x, y). The main
difficulty lies in showing the concavity condition 3◦. Fix (x, y) ∈ D and numbers λ1, λ2, x1, x2

as in the statement of the condition. Let f1, f2 be nonnegative functions as in the definition
of B(x1, y∨x1) and B(x2, y∨x2), respectively. We may assume that these functions are given
on some disjoint probability spaces (Ω1, µ1) and (Ω2, µ2) endowed with the trees T1, T2, and
that f1 is T1-simple and f2 is T2-simple. We splice these probability spaces into one space
(Ω, µ), where Ω = Ω1 ∪ Ω2 and µ(A1 ∪ A2) = λ1µ1(A1) + λ2µ2(A2) for any A1 ∈ σ(T1) and
A2 ∈ σ(T2). This new probability space is equipped with the tree T defined by T 0 = {Ω}
and T n = T n−1

1 ∪ T n−1
2 for n ≥ 1. Next, let us splice the functions f1, f2 into one function

f on the new probability space, setting f = f1χΩ1 + f2χΩ2 . This new function is T -simple
and satisfies f0 = λ1x1 + λ2x2 = x and fn = f1

n−1χΩ1 + f2
n−1χΩ2 for n ≥ 1. Denote the

corresponding dyadic-like maximal operators byM,M1 andM2. Since x ≤ y, we see that
for n ≥ 1 we have

y ∨Mfn = (y ∨M1f
1
n−1)χΩ1 + (y ∨M2f

2
n−1)χΩ2

and hence y ∨Mf = (y ∨M1f
1)χΩ1 + (y ∨M2f

2)χΩ2 . Thus, by the very definition of B,

B(x, y) ≥
∫

Ω
V (f, y ∨Mf)dµ = λ1

∫
Ω1

V (f1, y ∨M1f
1)dµ1 + λ2

∫
Ω2

V (f2, y ∨M2f
2)dµ2,

and taking the supremum over all f1, f2 as above, we get the desired concavity condition.
To see that B has the minimality property, fix an arbitrary function B enjoying 1◦, 2◦ and 3◦.
For a given (x, y) ∈ D, we repeat the arguments leading to (2.4), replacingMf with y ∨Mf
in all the places. As the result, we obtain the estimate∫

Ω
V (f, y ∨Mf)dµ ≤ B(f0, y ∨ f0) = B(x, y)

and taking the supremum over all f , we get the pointwise bound B(x, y) ≤ B(x, y).
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The above two theorems illustrate well the heart of the Bellman function method. The va-
lidity of the estimate (2.1) is indeed equivalent to the existence of the corresponding special
function. Furthermore, it is also well-visible that the concavity of the Bellman function is in-
tricately connected to the self-similarity of the estimate. It originates in the fact that if we split
an element Q into its children Q1, Q2, . . ., Qm, then the analysis of the term

∫
Qk
V (f,Mf)dµ

for each of Qk is ‘parallel’ to that on Q (and, in turn, also on Ω). The parameter y plays the
role of the ‘memory’ of the maximal function, which is key when passing from Q to Qk.

Remark 2.1.3. Let us say a few words about a certain modification of the approach, which
will become very important for our considerations in Chapter 6. For the sake of clarity, we
will present the argument for the Lp inequality

‖Mf‖Lp ≤ Cp‖f‖Lp , 1 < p <∞. (2.6)

This estimate can be studied with the above method (the choice V (x, y) = yp−Cppxp reduces
the estimate to (2.1)). But we can also proceed by considering a slightly different Bellman
function B′, defined for (x, y, z) ∈ [0,∞)3 satisfying xp ≤ z by

B′(x, y, z) = sup

{∫
Ω

(y ∨Mf)pdµ
}
.

Here the supremum is taken over all nonnegative functions f satisfying
∫

Ω fdµ = x and∫
Ω f

pdµ = z. One can check that B′ satisfies

1◦ (Initial condition). For any x ≥ 0 we have B′(x, y, z) ≤ Cppz.

2◦ (Majorization). We have B′(x, y, xp) ≥ yp for all x, y.

3◦ (Concavity). For any (x, y, z), any numbers x1, x2 ≥ 0, z1 ≥ xp1, z2 ≥ xp2 and λ1, λ2 ∈ (0, 1)
such that λ1 + λ2 = 1, λ1x1 + λ2x2 = x and λ1z1 + λ2z2 = z, we have

B′(x, y, z) ≥ λ1B
′(x1, y ∨ x1, z1) + λ2B

′(x2, y ∨ x2, z2). (2.7)

Furthermore, the existence of some function B which satisfies the above set of requirements
yields the validity of (2.6). We omit the details, and nor we discuss the interesting interplay
between the Bellman functions B and B′, it would lead us beyond the scope of the thesis.
We only would like to mention that, obviously, the function B′ is more difficult to handle:
it involves more variables. The passage from this context to the simpler B (“dropping the
variable z”) is achieved by moving (the p-th power of) the right-hand side of (2.6) to the left
and inserting it into the function V . We should emphasize that such a maneuver might not
always be possible (see Chapter 6), but instead the version described in this remark might
be available.

Let us conclude with a simple variant which enables to handle the regularity of the tree.
The above lemmas work with no structural properties on T , but these can be included, which
yields an interesting modification of method for special filtrations.

Definition 2.1.4. Let α ∈ (0, 1/2] be a fixed parameter. A tree T on (Ω, µ) is called α-regular,
if for any n ≥ 0, any Q ∈ T n and its child Q′ ∈ T n+1, we have µ(Q′) ≥ αµ(Q).

A classical example is the dyadic tree on [0, 1)d, which is 2−d-regular. Here is the modifi-
cation of the Bellman function method which takes into account the α-regularity. The proof
is analogous to that above and is omitted.
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Theorem 2.1.5. Let α ∈ (0, 1/2] be a fixed parameter. The inequality (2.1) holds true for all α-
regular trees if and only if there exists a function B satisfying 1◦, 2◦ and a version of 3◦ in which the
parameters λ1 and λ2 are assumed to be at least α.

In particular, let us restrict ourselves to the one-dimensional dyadic setting. Consider
the probability space [0, 1) with the Lebesgue measure equipped with the dyadic treeD. The
Bellman function B : D → R associated with the problem (2.1) is defined by

B(x, y) = sup

∫ 1

0
V (f(t), y ∨Mf(t))dt, (2.8)

where the supremum is taken over the set of all nonnegative, D-simple functions f with∫ 1
0 f(t)dt = x. We have the following fact.

Lemma 2.1.6. If (2.1) holds true for the dyadic treeD on the probability space [0, 1) with the Lebesgue
measure and any D-simple, nonnegative function f , then B given by (2.8) satisfies 1◦, 2◦, and a
weaker version of 3◦, where the numbers λ1, λ2 are fixed to be equal to 1/2.

2.2 Bellman function method for weighted estimates

Now we will show how to modify the above approach in the presence of the Ap weights.
Suppose that (Ω, µ) is an arbitrary probability space equipped with a tree-like structure T .
Let c ∈ [1,∞), p ∈ (1,∞) be given parameters and let V : [0,∞)3 → R be a fixed function.
Assume further that we are interested in showing the estimate∫

Ω
V (f,Mf, w) dµ ≤ 0 (2.9)

for any T -simple function f : Ω → [0,∞) and any T -simple Ap weight w on Ω satisfying
[w]Ap ≤ c. The appearance of the weight increases the dimension of the problem from two
to four. Consider the domain D = Dp,c =

{
(x, y, u, v) ∈ [0,∞)4 : x ≤ y, 1 ≤ uvp−1 ≤ c

}
and

the class of all special functions B : D → R which enjoy the following structural properties.
1◦ (Initial condition). We have

B(x, x, u, v) ≤ 0 if (x, x, u, v) ∈ D. (2.10)

2◦ (Majorization). If 0 ≤ x ≤ y, then

B(x, y, u, u1/(1−p)) ≥ V (x, y, u). (2.11)

3◦ (Concavity). Let λ1, λ2, . . ., λm ≥ 0 be nonnegative numbers summing up to 1 and
let (x, y, u, v), (x1, y1, u1, v1), . . . , (xm, ym, um, vm) be elements of D enjoying the following
conditions: we have yj = max{xj , y} for all j = 1, 2, . . . , m and

x =

m∑
k=1

λkxk, u =

m∑
k=1

λkuk, v =

m∑
k=1

λkvk.

Then we have

B (x, y, u, v) ≥
m∑
k=1

λkB(xk, yk, uk, vk). (2.12)

The existence of such a function is equivalent to the validity of (2.9). As previously, we
study each implication separately.
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Theorem 2.2.1. Let 1 < p <∞ be fixed. If there is a function B satisfying 1◦, 2◦ and 3◦, then (2.9)
holds true for any probability space (Ω, µ) with a tree T , any T -simple function f : Ω→ [0,∞) and
any T -simple weight w ∈ Ap satisfying [w]Ap ≤ c.

Proof. The argument goes along the same lines as in the unweighted setting. Fix (Ω, µ), T
and any f , w as in the statement, and suppose that f and w are σ(T N )-measurable. For any
n ≥ 0, define the functions fn, gn, wn and zn on Ω by fn =

∑
Q∈T n〈f〉Q,µχQ, gn = Mfn,

wn =
∑

Q∈T n〈w〉Q,µχQ and zn =
∑

Q∈T n〈w1/(1−p)〉Q,µχQ. It is easy to see that (fn, gn, wn, zn)
takes values in the domain D: this is the consequence of the inequality [w]Ap ≤ c.

As previously, the main part of the proof is to show the monotonicity of an appropri-
ate sequence. Using the same arguments as in the unweighted context, one shows that the
sequence

(∫
ΩB(fn, gn, wn, zn)dµ

)
n≥0

is nonincreasing. Combining this with the initial con-
dition, we get ∫

Ω
B(fN , gN , wN , zN )dµ ≤

∫
Ω
B(f0, g0, w0, z0)dµ ≤ 0,

since f0 ≡ g0. Furthermore, we have fN = f , gN = Mf , wN = w and zN = w1/(1−p) =

w
1/(1−p)
N , so applying (2.11) to the left-hand side, we get the claim.

Now we will handle the implication in the reverse direction. Introduce the abstract func-
tion B : D → R by the formula

B(x, y, u, v) = sup

{∫
Ω
V (f, y ∨Mf, w) dµ

}
. (2.13)

Here the supremum is taken over all probability spaces Ω with a tree T , all T -simple func-
tions f : Ω → [0,∞) satisfying

∫
Ω fdµ = x, all T -simple Ap weights w on Ω satisfying

[w]Ap ≤ c,
∫

Ωwdµ = u and
∫

Ωw
1/(1−p)dµ = v.

Theorem 2.2.2. If (2.9) holds, then B, given by (2.13), satisfies the properties 1◦, 2◦ and 3◦. Actu-
ally, it is the least function defined on D enjoying these conditions.

Proof. The initial condition follows directly from (2.9): indeed, for any Ω, T , f and w as in
the definition of B(x, x, u, v) we have∫

Ω
V
(
f, x ∨Mf, w

)
dµ =

∫
Ω
V
(
f,Mf, w

)
dµ ≤ 0,

and the inequality remains valid if we take the supremum. The majorization is also very
simple: pick arbitrary Ω, T and consider the constant function f ≡ x and the constant weight
w ≡ u. Then [w]Ap = 1 ≤ c and

∫
Ωw

1/(1−p)dµ = u1/(1−p), so by the very definition of B,

B(x, y, u, u1/(1−p)) ≥
∫

Ω
V

(
f, x ∨Mf, w

)
dµ = V (x, y, u).

It remains to prove the concavity-type condition 3◦. Fix an auxiliary number ε > 0 and
pick parameters λj and points (x, y, u, v), (xj , yj , uj , vj) as in the statement of 3◦. By the def-
inition of B, there are probability spaces (Ωj , µj) with a tree Tj each, as well as appropriate
functions fj and wj on Ωj such that

B(xj , yj , uj , vj) ≤
∫

Ωj

V

(
fj ,max

{
MΩjfj , yj

}
, wj

)
dµj + ε. (2.14)
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With no loss of generality, we may assume that Ωj are pairwise disjoint. We splice them into
one space Ω =

⋃m
j=1 Ωj with the probability measure µ given by µ(A) =

∑m
j=1 λjµj(A ∩ Ωj)

and the tree structure T such that T 0 = {Ω} and T n =
⋃m
j=1 T

n−1
j for n ≥ 1. Next, we

“splice” the functions and weights as follows: f =
∑m

j=1 fjχΩj and w =
∑m

j=1wjχΩj . Let us
check that f and w satisfy the requirements in the definition of B(x, y, u, v). First, we have∫

Ω
fdµ =

m∑
j=1

∫
Ωj

fjdµ =
m∑
j=1

λj

∫
Ωj

fjdµj =
m∑
j=1

λjxj = x

and similarly,
∫

Ωwdµ = u,
∫

Ωw
1/(1−p)dµ = v, so the averaging conditions are satisfied.

Now we will verify that [w]Ap ≤ c. By the calculations we have just carried out, we see
that 〈w〉Ω,µ

〈
w1/(1−p)〉

Ω,µ
= uvp−1 ≤ c, where the latter bound follows from the inclusion

(x, y, u, v) ∈ D. Next, if Q ∈ T is different than Ω, then Q belongs to Tj for some j; since
[wj ]Ap ≤ c,

〈w〉Q,µ
〈
w1/(1−p)

〉
Q,µ

= 〈wj〉Q,µ
〈
w

1/(1−p)
j

〉
Q,µ
≤ c.

This establishes the desired Muckenhoupt condition and hence, by the very definition of B,

B(x, y, u, v) ≥
∫

Ω
V

(
f,max

{
Mf, y

}
, w

)
dµ.

Now, since x ≤ y, we have max
{
Mf, y

}
= max

{
MΩjfj , y

}
on Ωj and hence

B(x, y, u, v) ≥
m∑
j=1

λj

∫
Ωj

V

(
fj ,max

{
MΩjfj , y

}
, wj

)
dµj

≥
m∑
j=1

λjB(xj , yj , uj , vj)− ε,

where in the last passage we have exploited (2.14). Since ε was arbitrary, the concavity
condition follows. The minimality of B is handled as in the unweighted context.

2.3 An alternative approach in the unweighted context

There is a different version of the method, also based on the construction of a certain special
function, which can be used to study maximal estimates. We will not use this version in the
thesis, but we have decided to provide some brief presentation for the sake of completeness.
We will handle the unweighted case only (but one can develop the meaningful extension to
the weighted context; see e.g. [43]). The starting point is the following simple observation,
sometimes referred to as the linearization of the maximal operator. Namely, if f is σ(T N )-
measurable, then, sinceMf = maxn≤N fn, for each ω ∈ Ω there is an integer n(ω) ≤ N such
thatMf(ω) = fn(ω)(ω) (‘the maximal function is attained at some average’). Of course, such
an n may not be unique; in such a case, we take n(ω) to be the smallest possible. For any
Q ∈ T let

E(Q) = {ω ∈ Ω : Qn(ω)(ω) = Q},

where Qn(ω) denotes the unique element of T n which contains ω. By the very definition,
we have E(Q) ⊆ Q, the sets (E(Q))Q∈T are pairwise disjoint and their union is the full Ω.
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Furthermore, since f is σ(T N )-measurable, we have E(Q) = ∅ for all Q ∈ T n with n > N .
This allows us to write the maximal operator in the linear form

Mf =
∑
Q∈T
〈f〉Q,µ χE(Q).

Define the functional sequence (gn)n≥0 with the formula

gn =
∑
R∈T n

χR
µ(R)

∑
Q⊆R, Q∈T

µ(E(Q)). (2.15)

Observe that gn is σ(T n)-measurable and, for R ∈ T n, we have the identity∫
R
gndµ =

∑
Q⊆R, Q∈T

µ(E(Q)).

The sequence (gn)n≥0 enjoys a certain decreasing integral property, namely, for each R ∈ T n
the sequence

(∫
R gmdµ

)
m≥n is nonincreasing. To see this, fix n ≥ 0, an element R ∈ T n, and

denote the children of R in T n+1 by R1, R2, ..., Rm. Then we have∫
R
gn+1dµ =

m∑
k=1

∑
Q⊆Rk, Q∈T

µ(E(Q)) =
∑

Q(R, Q∈T
µ(E(Q)) =

∫
R
gndµ− µ(E(R)) ≤

∫
R
gndµ.

Now, suppose that we are given nondecreasing functions Φ,Ψ : [0,∞) → [0,∞), and
assume that we are interested in showing the estimate∫

Ω
Ψ(Mf)dµ ≤

∫
Ω

Φ(f)dµ (2.16)

for any T -simple, nonnegative function f . We look for a function B : [0,∞)× [0, 1]→ R that
satisfies the following properties.

1◦ For any x ≥ 0 we have B(x, 1) ≤ 0.

2◦ For any x ≥ 0 we have B(x, 0) ≥ −Φ(x).

3◦ For any (x, y) ∈ [0,∞)×[0, 1] and any numbers x1, x2 ≥ 0, y1, y2 ∈ [0, 1] and λ1, λ2 ∈ (0, 1)
such that λ1 + λ2 = 1, λ1x1 + λ2x2 = x and λ1y1 + λ2y2 ≤ y we have

B(x, y) ≥ λ1B(x1, y1) + λ2B(x2, y2) + Ψ(x)(y − λ1y1 − λ2y2). (2.17)

In particular, assuming λ1y1 +λ2y2 = y in 3◦ we see thatB must be concave on [0,∞)× [0, 1].
Furthermore, the inequality (2.17) implies that for any m ≥ 0, if (x, y) ∈ [0,∞) × [0, 1] and
the numbers xk ∈ [0,∞), yk ∈ [0, 1], λk ∈ (0, 1), k = 1, 2, . . . ,m satisfy

∑m
k=1 λk = 1,∑m

k=1 λkxk = x and
∑m

k=1 λkyk ≤ y, then we have

B(x, y) ≥
m∑
k=1

λkB(xk, yk) + Ψ(x)

(
y −

m∑
k=1

λkyk

)
. (2.18)



30 CHAPTER 2. BELLMAN FUNCTION METHOD

To see this, first apply (2.17) to the weights λ1, λ
′
2 =

∑m
k=2 λk and the points

x1, x′2 =
1

λ′2

m∑
k=2

λkxk, y1, y′2 =
1

λ′2

m∑
k=2

λkyk.

As the result, one gets

B(x, y) ≥ λ1B(x1, y1) + λ′2B(x′2, y
′
2) + Ψ(x)

(
y −

m∑
k=1

λkyk

)

and it suffices to combine this with the estimate

B(x′2, y
′
2) ≥

m∑
k=2

λk
λ′2
B(xk, yk),

which follows from the concavity of B.
Let us study the relation between the validity of (2.16) and the existence of a function

B possessing the above three properties. Again, we have the full equivalence, and we treat
each implication separately.

Theorem 2.3.1. If there is a function B which satisfies 1◦, 2◦ and 3◦, then (2.16) holds true for any
tree T on any probability space (Ω, µ) and any T -simple, nonnegative function f .

Proof. Assume that f is σ(T N )-measurable. As before, let fn =
∑

Q∈T n〈f〉Q,µχQ and let the
sequence (gn)n≥0 be given by (2.15). Next, fix n ≥ 0, an element Q ∈ T n and denote its
children in T n+1 by Q1, Q2, . . . , Qm. Use (2.18) with

λk =
µ(Qk)

µ(Q)
, x = 〈f〉Q,µ , y = 〈gn〉Q,µ , xk = 〈f〉Qk,µ , yk = 〈gn+1〉Qk,µ

for k = 1, 2, . . . ,m. We obtain∫
Q
B(fn, gn)dµ = µ(Q)B(x, y) ≥ µ(Q)

(
m∑
k=1

λkB(xk, yk) + Ψ(x)

(
y −

m∑
k=1

λkyk

))

=

m∑
k=1

µ(Qk)B(xk, yk) + Ψ(x)

(
µ(Q)y −

m∑
k=1

µ(Qk)yk

)

=

m∑
k=1

∫
Qk

B(fn+1, gn+1)dµ+ Ψ(x)

(∫
Q
gndµ−

m∑
k=1

∫
Qk

gn+1dµ

)

=

∫
Q
B(fn+1, gn+1)dµ+ Ψ(x)

∫
Q

(gn − gn+1) dµ

=

∫
Q
B(fn+1, gn+1)dµ+ Ψ(x)µ(E(Q))

=

∫
Q
B(fn+1, gn+1)dµ+

∫
E(Q)

Ψ(fn)dµ,

or ∫
Q
B(fn, gn)dµ ≥

∫
Q
B(fn+1, gn+1)dµ+

∫
E(Q)

Ψ(Mf)dµ,



2.3. AN ALTERNATIVE APPROACH IN THE UNWEIGHTED CONTEXT 31

by the very definition of E(Q). Summing over all atoms Q ∈ T n, we get∫
Ω
B(fn, gn)dµ−

∫
Ω
B(fn+1, gn+1)dµ ≥

∑
Q∈T n

∫
E(Q)

Ψ(Mf)dµ.

Hence, by induction, we see that∫
Ω
B(f0, g0)dµ−

∫
Ω
B(fN+1, gN+1)dµ ≥

∫
Ω

Ψ(Mf)dµ,

because Ω is a disjoint union of (E(Q))Q∈T . However, we have g0 = 1, gN+1 = 0 and
fN+1 = f . Therefore the application of 1◦ and 2◦ gives us∫

Ω
Φ(f)dµ ≥

∫
Ω

Ψ(Mf)dµ,

which is the desired estimate.

Now we will reverse the above implication. Consider the abstract Bellman function B :
[0,∞)× [0, 1]→ R, associated with the problem (2.16), which is defined by

B(x, y) = sup

(∫
A

Ψ(Mf)dµ−
∫

Ω
Φ(f)dµ

)
. (2.19)

Here the supremum is taken over the class of all nonnegative, T -simple functions f such
that

∫
Ω fdµ = x and all sets A ∈ σ(T ) with µ(A) = y. The tree T and the probability space

(Ω, µ) are also allowed to vary in the above supremum.

Lemma 2.3.2. If (2.16) holds true for any tree T on any probability space (Ω, µ) and any T -simple,
nonnegative function f , then B given by (2.19) satisfies 1◦, 2◦ and 3◦. It is the least function on
[0,∞)× [0, 1] enjoying these conditions.

Proof. The initial condition 1◦ is a direct consequence of (2.16), while 2◦ follows by consid-
ering the constant function f ≡ x. To establish the third property, fix the parameters as
in the statement and let A1, A2, f

1, f2 be sets and functions as in the definition of B(x1, y1)
and B(x2, y2), respectively. Assume that these functions are given on disjoint probability
spaces (Ω1, µ1), (Ω2, µ2) and perform the splicing procedure as in the proof of Theorem 2.1.2.
Consider any set A ∈ σ(T ) with µ(A) = y and A1 ∪A2 ⊆ A. We have

B(x, y) ≥
∫
A

Ψ(Mf)dµ−
∫

Ω
Φ(f)dµ

=

∫
A\(A1∪A2)

Ψ(Mf)dµ+

2∑
k=1

(∫
Ak

Ψ(Mf)dµ−
∫

Ωk

Φ(f)dµ
)

≥ µ(A \ (A1 ∪A2))Ψ(x) +

2∑
k=1

λk

(∫
Ak

Ψ(Mkf
k)dµk −

∫
Ωk

Φ(fk)dµk

)
.

Taking the supremum over all A1, A2, f
1, f2 as above, we get the desired claim. The mini-

mality of B is proved as previously.



32 CHAPTER 2. BELLMAN FUNCTION METHOD

Remark 2.3.3. There is a natural question about the relation between the Bellman functions
appearing in the two variants presented above. There seems to be no evident algebraic
connection. Although some indication is hidden in the abstract formulas (2.5) and (2.19),
the passage from one context to the other is nontrivial. The key difference between the two
approaches is the role of the second variable y: in the former case it corresponds to the
“memory” of the maximal function, while in the latter it measures the size of the set.

2.4 Other extensions

The above considerations cover just a part of the area of maximal estimates which can be
studied with the use of the Bellman function method. For example, we have not included
here the alternative approach for the weighted estimates; we have also not discussed the
setting of Fefferman-Stein inequalities (see (1.3), (1.4)), which involves the use of both w and
Mw, instead of the Muckenhoupt’s condition. We believe that even the brief presentation
of all the possible modifications would be quite extensive and rather tedious, as there is
a quite big common part of the approach in each setting (we have already experienced a
lot of repetitions above). Instead, we have decided to content ourselves with the material
presented above, hoping that it provides the necessary insight into the technique, and to
postpone the description of the relevant changes to the appropriate chapters.

2.5 Melas’ Lemma

In the final section of this chapter, we discuss an issue which is not related to the Bellman
function method, but is very useful in the construction of the extremizers (i.e., the functions
for which both sides of an estimate under investigation become equal, or almost equal) on
arbitrary probability spaces. Namely, there is a universal method of finding measurable
subsets with a given, prescribed measure; here by the universality we mean that the structure
of the tree does not play a role. Specifically, we have the following fact proved in [33].

Lemma 2.5.1 (Melas). For every Q ∈ T and every β ∈ (0, 1) there is a subfamily F (Q) ⊂ T ,
consisting of pairwise disjoint subsets of Q, such that

µ

 ⋃
R∈F (Q)

R

 =
∑

R∈F (Q)

µ(R) = βµ(Q).

Proof. This is rather straightforward and rests on an argument which can be roughly de-
scribed as “at each step, take as much as you can”. There is an integer m such that Q ∈ T m.
We construct a nondecresing sequence (An)n≥m by the following procedure. We start with
Am = ∅. Having constructedAn, we defineAn+1 to be the set which containsAn, is the union
of some elements of T n+1 and has the largest possible measure, satisfying µ(An+1) ≤ βµ(Q).
It is easy to see that the limit set

⋃
n≥mAn has measure βµ(Q) and can be split into family

F (Q) as in the statement.

The above lemma can be applied recursively to obtain the whole family of sets, satisfying
the prescribed measure requirements.
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Lemma 2.5.2. For any decreasing sequence (an)n≥0 of real numbers from the interval (0, 1] there
exists a sequence (Qn)n≥0 of subfamilies of T and a decreasing sequence (En)n≥0 of subsets of Ω with
the following fractal structure.

(i) µ(E0) = a0.

(ii) For all n ≥ 0 we have En =
⋃
Qn.

(iii) For all n ≥ 0 we have En+1 ⊆ En.

(iv) If Q ∈ Qm, then for all n ≥ m we have µ(Q ∩ En) = µ(Q) · anam .

The elements of Qn are called the atoms of En.

Proof. We use induction. The existence of the family Q0 follows directly from the previous
lemma. Suppose that n ≥ 0 and we have successfully constructed the family Qn. For each
atom Q ∈ Qn we use the previous lemma with β = an+1/an, obtaining a family F (Q) of
subsets of Q. Then we set Qn+1 =

⋃
Q∈Qn F (Q) and En+1 =

⋃
Qn+1. This completes the

description of the induction step. All the properties follow easily from the construction.
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Chapter 3

A weighted inequality for 0 < p < 1

3.1 Motivation and the statement of results

Suppose that (Ω, µ) is a probability space endowed with a tree structure T andM is the asso-
ciated dyadic-like maximal operator. The motivation for the results discussed in this chapter
comes from the weighted Lp estimates for M: as we have mentioned in the introductory
section, for each 1 < p <∞ and an arbitrary weight w we have the Fefferman-Stein estimate

‖Mf‖Lp(w) ≤
p

p− 1
‖f‖Lp(Mw). (3.1)

Furthermore, if we additionally assume that w ∈ Ap, then

‖Mf‖Lp(w) ≤ Cp,[w]Ap
‖f‖Lp(w) (3.2)

(see (1.7)). This gives rise to the natural question about the case 0 < p < 1. In the unweighted
setting we have the Kolmogorov bound (cf. [37])

‖Mf‖Lp ≤ (1− p)−1/p‖f‖L1 . (3.3)

Two important comments are in order. The first comment is that (3.3) involves two different
function spaces on both sides: the more natural estimate

‖Mf‖Lp ≤ cp‖f‖Lp

simply does not hold with any finite constant cp (if 0 < p < 1). Second, Muckenhoupt condi-
tion becomes more and more restrictive as we decrease p, which implies that (3.2) becomes
more “challenging for a weight”. This in particular suggests that the A1 condition might not
be sufficient for the validity of the weighted version of Kolmogorov’ estimate. Both these
observations indicate that the appropriate extension of (3.3) to the weighted context might
be of complicated form. Actually, it seems reasonable to expect that there is no analogue of
(3.2) for 0 < p < 1, and hence in our considerations below we will focus on the search for the
appropriate version of (3.1).

The approach to the above problem, presented in this chapter, is based on the paper
[64]. Our first step is to try to guess the appropriate “shape” of the weighted version of Kol-
mogorov’s inequality. Motivated by the form in the unweighted setting, a plausible attempt
is to separate the functions and assume that the right hand side depends on f and w through

35
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their L1 norms only. Combining this conjecture with homogeneity restrictions, we arrive at
the estimate

‖Mf‖pLp(w) ≤ cp ‖f‖
p
L1 ‖w‖L1 ,

which, unfortunately, does not hold. Indeed, pick an arbitrary integrable function f for
whichMf /∈ L1, and set w = Mf1−p. Then ‖Mf‖Lp(w) = ‖Mf‖L1 = ∞, while ‖f‖L1 and
‖w‖L1 are finite.

However, a little experimentation reveals that if we introduce the additional error term,
the inequality becomes valid. We define

ET (f, w) :=

(∥∥∥f · (Mw)
1
p

∥∥∥
L1
− ‖f‖L1 ‖w‖

1
p

L1

)(
‖f‖L1 ‖w‖

1
p

L1

)p−1

.

In the case when ‖f‖L1‖w‖L1 = 0, the error term is understood to be zero.
Our main result can be stated as follows:

Theorem 3.1.1. Assume f, w ∈ L1(Ω) are nonnegative. For p ∈ (0, 1) we have

‖Mf‖pLp(w) ≤
1

1− p
‖f‖p

L1 ‖w‖L1 +
p2

1− p
ET (f, w). (3.4)

Both constants 1/(1− p) and p2/(1− p) are the best possible.

The proof of the above statement will be based on a version of the Bellman function
method, presented in a separate section below.

3.2 A modification of the Bellman function method

The estimate (3.4) involves four objects: f , Mf , w and Mw. Thus it is natural to expect
that the special functions to be constructed will depend on four variables: x, y, u and v.
Furthermore, since f ≤ Mf and w ≤ Mw, we consider the domain D = {(x, y, u, v) ∈ R4 :
0 ≤ x ≤ y, 0 ≤ u ≤ v}. Motivated by the discussion from the previous chapter, we proceed
as follows. Suppose that V : D → R is a given function and assume that we are interested in
the estimate ∫

Ω
V (f,Mf, w,Mw)dµ ≤ 0, (3.5)

for all T -simple and nonnegative f, w. Assume further that B : D → R enjoys the following
set of requirements:

1◦ (Initial condition). For any x, u ≥ 0 we have B(x, x, u, u) ≤ 0.

2◦ (Majorization). We have B ≥ V on D.

3◦ (Concavity). For any (x, y, u, v) ∈ D, any numbers x1, x2 ≥ 0, u1, u2 ≥ 0 and λ1, λ2 ∈
(0, 1) such that λ1 + λ2 = 1, λ1x1 + λ2x2 = x and λ1u1 + λ2u2 = u, we have

B(x, y, u, v) ≥ λ1B(x1, y ∨ x1, u1, v ∨ u1) + λ2B(x2, y ∨ x2, u2, v ∨ u2). (3.6)



3.2. A MODIFICATION OF THE BELLMAN FUNCTION METHOD 37

Remark 3.2.1. By a straightforward induction argument, the concavity condition is equivalent
to the following statement. For any m ≥ 2, any point (x, y, u, v) and any numbers x1, x2, . . .,
xm, u1, u2, . . ., um ≥ 0, λ1, λ2, . . . , λm ∈ (0, 1) satisfying

m∑
j=1

λj = 1,

m∑
j=1

λjxj = x,

m∑
j=1

uj = u,

we have

B(x, y, u, v) ≥
m∑
j=1

λjB(xj , y ∨ xj , uj , v ∨ uj). (3.7)

We have the following statement.

Theorem 3.2.2. The inequality (3.5) holds true if and only if there is a function B satisfying the
properties 1◦, 2◦ and 3◦.

Proof. The argument is similar to that in the previous chapter, so we will be brief. First
we show that the existence of B yields (3.5). For any n ≥ 0, we let fn =

∑
Q∈T n〈f〉QχQ,

gn = max0≤k≤n fk, un =
∑

Q∈T n〈w〉QχQ and vn = max0≤k≤n uk. The concavity condition
(the enhanced version (3.7)) implies that the sequence(∫

Ω
B(fn, gn, un, vn)dµ

)
n≥0

is nonincreasing. Combining this with the majorization and the initial condtion gives (3.5):
by the T -simplicity of f and w, for sufficiently large n we have∫

Ω
V (f,Mf, w,Mw)dµ =

∫
Ω
V (fn, gn, un, vn)dµ

≤
∫

Ω
B(fn, gn, un, vn)dµ

≤
∫

Ω
B(f0, g0, u0, v0)dµ =

∫
Ω
B(f0, f0, u0, u0)dµ ≤ 0.

(3.8)

To prove the reverse implication, we consider the function B : D → R, given by

B(x, y, u, v) = sup

{∫
Ω
V
(
f, y ∨Mf, w, v ∨Mw

)
dµ
}
,

where the supremum is taken over all T -simple nonnegative functions f and w on Ω satis-
fying

∫
Ω fdµ = x and

∫
Ωwdµ = u. Arguing as previously, one checks that B enjoys 1◦, 2◦

and 3◦; actually, it is not difficult to show that it is the least function which satisfies these
requirements.

Remark 3.2.3. It is straightforward to modify the approach so that it enables the study of the
estimates of the form ∫

Ω
V (f,Mf, w,Mw)dµ ≤ G (‖f‖1, ‖w‖1) ,

for some given V and G. Namely, the validity of such an inequality is equivalent to the
existence of a function B which satisfies 2◦, 3◦ and the following version of 1◦:

1◦’ For any x, u ≥ 0 we have B(x, x, u, u) ≤ G(x, u).
To see one implication, simply modify the last passage in (3.8); to get the reverse, one con-
siders the function B given by the same formula.
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3.3 A special function and its properties

We are ready for the study of the estimate (3.4). Let B : D → R be given by

B(x, y, u, v) = ypu+
p

1− p
yp−1xv − p2

1− p
xv

1
p .

We will apply the Bellman function method with

V (x, y, u, v) = ypu− p2

1− p
xv

1
p

and, in the terminology developed in Remark 3.2.3, with G(x, u) = B(x, x, u, u). Obviously,
with these choices of V and G, the initial and the majorization conditions hold true. There-
fore, all we need is the concavity requirement. We will prove the following pointwise bound
which, as we will show later, directly yields 3◦.

Lemma 3.3.1. If (x, y, u, v) ∈ D, y ≥ 1, v ≥ 1, s ≥ −x and t ≥ −u we have

B(x, y, u, v) + s

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+ typ ≥ B(x+ s, y ∨ (x+ s), u+ t, v ∨ (u+ t)).

Proof. Fix variables y, v ≥ 1 and consider the function By,v : [0,∞)2 → R defined by the
formula By,v(x, u) = B(x, y ∨ x, u, v ∨ u). In explicit form, By,v is given by

By,v(x, u) =



ypu+ p
1−py

p−1xv − p2

1−pxv
1
p for x ≤ y, u ≤ v,

xp
(
u+ p

1−pv
)
− p2

1−pxv
1
p for x > y, u ≤ v,(

yp + p
1−py

p−1x
)
u− p2

1−pxu
1
p for x ≤ y, u > v,

1
1−px

pu− p2

1−pxu
1
p for x > y, u > v.

We will first prove the claim for x = y and u = v. We shall consider four cases, depending on
signs of s and t. All of them are easy and require only the inequalities of the type (y + s)p ≤
yp + pyp−1s or −(v + t)

1
p ≤ −

(
v

1
p + 1

pv
1
p
−1
t
)

, which follow directly from the mean-value
theorem.

1. Assume s ≤ 0 and t ≤ 0. We have

By,v(y + s, v + t) = yp(v + t)

+
p

1− p
yp−1(y + s)v − p2

1− p
(y + s)v

1
p

= − p2

1− p
yv

1
p + ypt+ s

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+

1

1− p
ypv

= B(y, y, v, v) + s

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+ typ.

In this case we have equality, because the derivative of Uy,v is constant on the rectangle
(0, y)× (0, v).
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2. Assume s > 0 and t ≤ 0. We have

By,v(y + s, v + t)=(y + s)p
(
v + t+

p

1− p
v

)
− p2

1− p
(y + s)v

1
p

≤ (yp + pyp−1s)

(
t+

1

1− p
v

)
− p2

1− p
yv

1
p − p2

1− p
sv

1
p

= typ + s

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+

1

1− p
ypv − p2

1− p
yv

1
p + pstyp−1

≤ B(y, y, v, v) + s

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+ typ.

Here in the last inequality we used the estimate pstyp−1 ≤ 0.

3. The next case we consider is s ≤ 0 and t > 0. We have

By,v(y + s, v + t) =

(
yp +

p

1− p
yp−1(y + s)

)
(v + t)− p2

1− p
(y + s)(v + t)

1
p

≤
(

1

1− p
yp +

p

1− p
syp−1

)
(v + t)− p2

1− p
(y + s)

(
v

1
p +

1

p
tv

1
p
−1
)

=
1

1− p
typ +

p

1− p
syp−1v − p

1− p
tyv

1
p
−1 − p2

1− p
sv

1
p

+
1

1− p
ypv +

p

1− p
styp−1 − p2

1− p
yv

1
p − p

1− p
stv

1
p
−1

= s

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+B(y, y, v, v)

+ t

(
1

1− p
yp − p

1− p
yv

1
p
−1

+
p

1− p
syp−1 − p

1− p
sv

1
p
−1
)

= s

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+B(y, y, v, v) + typ

+
p

1− p
t
(
yp − yv

1
p
−1

+ syp−1 − sv
1
p
−1
)

= s

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+B(y, y, v, v) + typ

+
p

1− p
t(y + s)

(
yp−1 − v

1
p
−1
)
.

But we have y, v ≥ 1 and hence yp−1 ≤ 1 ≤ v(1−p)/p, which means that the expression
in the last bracket is nonpositive.

4. The final case to consider is s > 0 and t > 0. We compute that

By,v(y + s, v + t) =
1

1−p
(y + s)p(v + t)− p2

1−p
(y + s)(v + t)

1
p

≤ 1

1− p
(
yp + pyp−1s

)
(v + t)− p2

1− p
(y + s)

(
v

1
p +

1

p
v

1
p
−1
t

)
and from this point we proceed exactly as in the previous case.
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The above considerations establish the assertion of Lemma 3.3.1 in the particular case
x = y and u = v. Now we will investigate the general case, in which x ≤ y and u ≤ v are
arbitrary. We have

By,v(x+ s, u+ t) = By,v(y + (x− y) + s, v + (u− v) + t)

≤ B(y, y, v, v) + (s+ x− y)

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+ (t+ u− v)yp

=
1

1− p
ypv − p2

1− p
yv

1
p +

p

1− p
xyp−1v − p2

1− p
xv

1
p − p

1− p
ypv

+
p2

1− p
yv

1
p + ypu− ypv + s

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+ typ

= ypu+
p

1− p
yp−1xv − p2

1− p
xv

1
p + s

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+ typ

= B(x, y, u, v) + s

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+ typ.

This is precisely the desired claim.

The above lemma immediately implies that the function B satisfies the concavity condi-
tion 3◦: roughly speaking, the pointwise estimate we have just established asserts that B lies
below an appropriate tangent plane. To be more precise, pick the parameters (x, y, u, v), x1,
x2, u1, u2, λ1 and λ2 as in the statement. For i = 1, 2, we have

B(x, y, u, v) + (xi − x)

(
p

1− p
yp−1v − p2

1− p
v

1
p

)
+ (ui − u)yp ≥ B(xi, y ∨ xi, ui, v ∨ ui).

Multiplying both sides by λi and summing over i = 1, 2, we get (3.6).

3.4 Proof of (3.4)

Assume that f and w are nonnegative and T -simple functions. Let us consider first the case
in which ‖f‖1 = ‖w‖1 = 1. The application of the Bellman function method yields∫

Ω
(Mf)pwdµ− p2

1− p

∫
Ω
f(Mw)

1
pdµ ≤ p+ 1.

Now, for the general case (in which (fn)n≥0 and (wn)n≥0 not necessarily start from 1), use
the above bound with f/f0 and w/w0. As the result, we obtain∫

Ω

(
Mf

f0

)p w
w0

dµ ≤ p2

1− p

∫
Ω

f

f0

(
Mw

w0

) 1
p

dµ+ p+ 1,

which is equivalent to∫
Ω

(Mf)pwdµ ≤ p2

1− p

∫
Ω
f(Mw)

1
pdµ · fp−1

0 w
1− 1

p

0 +
1− p2

1− p
fp0w0,

or ∫
Ω

(Mf)pwdµ ≤ 1

1− p
‖f‖p1‖w‖1 +

p2

1− p
ET (f, w). (3.9)
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This completes the proof of (3.4) for all T -simple functions f , w.
The general case is obtained by approximation and standard limiting theorems. More

precisely, for any n the functions fn and wn are T -simple, so the application of (3.9) gives∫
Ω

(Mfn)pwndµ ≤ 1

1− p
‖fn‖p1‖wn‖1 +

p2

1− p
ET (fn, wn).

But ‖fn‖1 = ‖f‖1 and ‖wn‖1 = ‖w‖1. Furthermore, notice thatMwn ≤Mw and the function
z 7→ z

1
p is increasing: consequently, we have∫

Ω
fn(Mwn)

1
pdµ =

∫
Ω
f(Mwn)

1
pdµ ≤

∫
Ω
f(Mw)

1
pdµ,

which implies ET (fn, wn) ≤ ET (f, w). To handle the left-hand side, we let n→∞: we have∫
Ω(Mfn)pwndµ =

∫
Ω(Mfn)pwdµ→

∫
Ω(Mf)pwdµ by the Lebesgue monotone convergence

theorem. Putting all the above facts together, we get the estimate (3.4) for general f , w.

3.5 Sharpness

Now we turn our attention to the optimality of the constants. The inequality (3.9) can be
written as∫

Ω
(Mfn)pwndµ ≤ c1f

p
0w0 + c2

(∫
Ω
fn(Mwn)

1
pdµ− f0w

1
p

0

)
· fp−1

0 w
1− 1

p

0 ,

with c1 = 1/(1 − p) and c2 = p2/(1 − p). There is a natural question whether any of these
two numbers can be improved. We will show that it is not possible.

The first constant, c1 = 1/(1 − p), is the best, it cannot be decreased even at a cost of
a significant enlargement of c2. Indeed, this follows from the fact that 1/(1 − p) is already
optimal in the unweighted case [37], and ET (f, w) = 0 whenever w is constant.

The constant c2 = p2/(1 − p) is also the best possible, but the proof of this fact is a
little more complicated. Take η > 0 and N ∈ N, and introduce the auxiliary parameter
δ = (1 + η)1/N − 1. We use Lemma 2.5.2 with the sequence an = (1 + δ)−n, n = 0, 1, 2, . . ., to
obtain the appropriate decreasing family (En)n≥0 of subsets of Ω. If Q is an atom of Ek, then
for any n ≥ k we have

µ(Q ∩ En) = µ(Q)

(
1

1 + δ

)n−k
. (3.10)

For n > N , define f, w by the formulas f = (1 + δ)n1En and w = (1 + δ)N1EN . Then we have

‖f‖1 = (1 + δ)nµ(En) = 1,

by (3.10) applied with Q = Ω and k = 0. Similarly, ‖w‖1 = 1. Let us now handle the
maximal operator. By the very definition ofM, if ω ∈ En, thenMf(ω) ≥ f(ω) = (1 + δ)n.
Furthermore, if ω ∈ Ek \ Ek+1 for some k = 0, 1, 2, . . . , n− 1, then ω belongs to some atom
Q of Ek; therefore,

Mf(ω) ≥ 1

µ(Q)

∫
Q
fdµ =

(1 + δ)nµ(Q ∩ En)

µ(Q)
= (1 + δ)k,
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again by (3.10). Consequently, we have proved that

Mf ≥ (1 + δ)n1En +
n−1∑
k=0

(1 + δ)k1Ek\Ek+1

µ-almost everywhere. Actually, it is easy to see that equality holds here, but we will not
need this. A similar analysis to that above shows that the integral

∫
Ω f(Mw)1/pdµ is equal

to (1 + δ)N/p = (1 + η)1/p (the argument is even simpler: f vanishes outside En, we have
En ⊂ EN and w is supported and constant on EN ; thus the identity follows at once). To see
how the Lp norm ofMf behaves for large n, we compute that

lim
n→∞

∫
Ω

(Mf)pwdµ ≥ lim
n→∞

(
(1 + δ)(p−1)n(1 + η) +

n−1∑
k=N

(1 + δ)(p−1)k(1 + η) · δ

1 + δ

)

=
∞∑
k=N

(1 + δ)(p−1)k(1 + η) · δ

1 + δ

=
(1 + δ)(p−1)N

1− (1 + δ)p−1
(1 + η) · δ

1 + δ
=

(1 + η)p
(
(1 + η)1/N − 1

)
(1 + η)1/N − (1 + η)p/N

.

Therefore we obtain a lower bound on c2:

c2 ≥
(1+η)p((1+η)1/N−1)

(1+η)1/N−(1+η)p/N
− 1

1−p

(1 + η)1/p − 1

=
(1− p)(1 + η)p((1 + η)1/N − 1)− (1 + η)1/N + (1 + η)p/N

(1− p)
(
(1 + η)1/N − (1 + η)p/N

)
((1 + η)1/p − 1)

=
(1− p)(1 + η)p((1 + η)1/N − 1)− (1 + η)p/N

(
(1 + η)(1−p)/N − 1

)
(1− p)(1 + η)p/N

(
(1 + η)(1−p)/N − 1

)
((1 + η)1/p − 1)

.

When we put η = 1/N and let N → ∞, we will obtain that the above expression has a limit
of p2/(1− p), which proves that c2 cannot be smaller.

Remark 3.5.1. The above reasoning shows that c2 = p2/(1 − p) is optimal if we take c1 =
1/(1 − p). It is not clear to us what happens to the optimal value of c2 if we allow c1 to
increase.

Remark 3.5.2. There is a natural question how we have discovered the Bellman function B
exploited above, and we will provide some brief and informal discussion in this direction.
We start with the observation that the search for the function was, essentially, parallel to the
search of the appropriate weighted version of Kolmogorov’s inequality. The first step is to
take a look at the unweighted bound

‖Mf‖Lp(Ω) ≤
1

(1− p)1/p
‖f‖L1(Ω),

for which the associated Bellman function is (cf. [45])

b(x, y) = αpy
p−1

(
y +

px

1− p

)
, 0 < x ≤ y,
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for some αp depending only on p. Note that this function is homogeneous of order p and
linear in x. Together with the condition 3◦, this suggests to search for a special function B
which is homogeneous of order p with respect to variables x, y; furthermore, it should be
(jointly) linear with respect to x and u. Finally, for u = v, one might expect the function to be
close to b. All these observations do not leave too much freedom to the construction: we are
more or less immediately led to

B(x, y, u, v) = αpy
p−1

(
yu+

pxv

1− p

)
.

Unfortunately, this function does not satisfy the condition 3◦ and some modification is re-
quired. We have discovered the additional term xv1/p after a series of experiments; this term
is actually responsible for the appearance (and the shape) of the error term ET . There might
be different modifications of B which can yield other weighted variants of Kolmogorov’s
inequality.
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Chapter 4

General Fefferman-Stein inequalities

4.1 Motivation and the statement of results

We stick to the context of a probability space (Ω, µ) endowed with a tree structure T and
the associated maximal operator M. The purpose of this chapter is to inspect closer the
following interplay we have encountered above. Namely, we have the sharp Lp estimate for
the dyadic-like maximal operator:

‖Mf‖p ≤
p

p− 1
‖f‖p, 1 < p <∞,

and its variant of Fefferman and Stein:

‖Mf‖Lp(w) ≤
p

p− 1
‖f‖Lp(Mw), 1 < p <∞.

We see that both estimates involve the same optimal constant p/(p − 1). The same phe-
nomenon occurs for the logarithmic inequalities: as proved by Osękowski [53], for any f on
Ω and any weight w, we have the bound∫

Ω
Mfwdµ ≤ K

∫
Ω
|f | log |f |Mwdµ+ L(K)

∫
Ω
Mwdµ. (4.1)

Here, for a givenK > 1, the constant L(K) is given by L(K) = K2

(K−1)e ; ifK ≤ 1, the estimate
does not hold with any finite constant L(K). It turns out that this choice of L(K) is already
the best possible in the unweighted setting (i.e., for w ≡ 1), cf. Gilat [18]. See also [55] or
below for a related exponential result.

The above discussion gives rise to the following very natural “transference” question.
Namely, suppose that Φ, Ψ are two functions on [0,∞) satisfying the estimate∫

Ω
Ψ(Mf)dµ ≤

∫
Ω

Φ(|f |)dµ.

Is it true that the analogous Fefferman-Stein estimate∫
Ω

Ψ(Mf)wdµ ≤
∫

Ω
Φ(|f |)Mwdµ

holds in the weighted context? Basing on the contents of [65], we will give the affirmative
answer to this question, under some mild regularity assumptions on Φ and Ψ. Here is the
precise statement; the letter M stands for the dyadic maximal operator localized to [0, 1).
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Theorem 4.1.1. Let Φ,Ψ : [0,∞) → [0,∞) be nondecreasing functions such that Φ is convex and
Ψ is left-continuous. Suppose in addition that the inequality

||Ψ(Mf)||L1(0,1) ≤ ||Φ(|f |)||L1(0,1) (4.2)

holds for all integrable functions f : [0, 1] → R (with the underlying Lebesgue measure). Then for
any probability space (Ω, µ) with a tree structure T , any weight w on Ω and any integrable function
f : Ω→ R, we have

||Ψ(Mf)||L1(w) ≤ ||Φ(|f |)||L1(Mw). (4.3)

Thus, any “integral” inequality which is valid in the very special one-dimensional dyadic
setting automatically extends to the general weighted context. A very nice feature is that the
“shape” of the inequality is preserved, i.e., no additional multiplicative constants appear.
This in particular implies that if the starting inequality (4.2) is sharp, then so is the weighted
version (4.3). We will see several applications of the above result in the final subsection of
this chapter.

It turns out that the Bellman function method is a very convenient tool for the proof
of Theorem 4.1.1. The approach is quite natural: from the general theory, the validity of
the assumed estimate (4.2) implies the existence of the associated Bellman function. Now
it seems plausible to expect that carrying out some appropriate modifications should lead
to the Bellman function corresponding to (4.3). This is indeed the case. We would like to
mention that the analysis of the particular cases (iii) and (iv), presented in [53] and [55], was
very helpful and indicated the direction in which the modifications should be made. A very
nice feature of our result is that we treat a very general case and, in particular, do not need to
invoke the explicit formula of the Bellman functions associated with (4.2) (its abstract form
is sufficient).

4.2 A special function for the unweighted inequality

Our starting point is to associate a certain special abstract function with the assumed esti-
mate (4.2). Throughout this subsection, we assume that the underlying probability space is
the interval [0, 1) with Lebesgue’s measure m, equipped with the dyadic tree D.

We have already seen similar reasoning above, so we will be brief. We consider the
domain D = {(x, y) ∈ R2 : 0 ≤ x ≤ y} and introduce the abstract function U : D → R∪ {∞}
by the formula

U(x, y) = sup

{∫ 1

0

(
Ψ(Mf ∨ y)− Φ(f)

)
dm
}
.

Here the supremum is taken over all D-simple functions f : [0, 1) → [0,∞) satisfying∫ 1
0 fdm = x. The function U enjoys the following structural properties.

Lemma 4.2.1. (i) We have U(x, x) ≤ 0 for any x ≥ 0.
(ii) For any (x, y) ∈ D we have U(x, y) ≥ Ψ(y)− Φ(x).
(iii) The function U satisfies the following mid-concavity property: for any (x, y) ∈ D and any

t ∈ [0, x] we have

U(x, y) ≥ 1

2
U(x− t, y) +

1

2
U(x+ t, (x+ t) ∨ y).
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Proof. We omit the straightforward proof. We would only like to mention that the fact that
we work with the special dyadic context implies that in the concavity condition (iii), one
needs to consider the coefficients 1/2 only.

Properties (i) and (iii) imply that U is finite on D. We will also need the following addi-
tional technical fact.

Lemma 4.2.2. For any y > 0 we have limx↑y U(x, y) = U(y, y) and limz↓y U(z, z) = U(y, y).

Proof. Let f be an arbitrary nonnegative D-simple function f on [0, 1) such that
∫ 1

0 fdm = y.
For any z > y, the function f + (z − y) has integral z, so by the definition of U(z, z),

U(z, z) ≥
∫ 1

0
(Ψ(M(f + (z − y)) ∨ z)− Φ(f + z − y))dm

=

∫ 1

0
(Ψ(M(f + (z − y)))− Φ(f + z − y))dm

≥
∫ 1

0

(
Ψ(Mf)− Φ(f + z − y)

)
dm,

where in the last line we have exploited the monotonicity of Ψ. Now, the function f takes a
finite number of values, so using the convexity of Φ, the above estimate gives

lim inf
z↓y

U(z, z) ≥
∫ 1

0

(
Ψ(Mf)− Φ(f)

)
dm.

Taking the supremum over all f , we get that

lim inf
z↓y

U(z, z) ≥ U(y, y). (4.4)

Next, observe that the condition (iii) implies in particular that for any y > 0, the function
x 7→ U(x, y) is midpoint-concave on [0, y]. Since this function is bounded from below (by
(ii)), it must be merely concave on [0, y] and consequently,

lim
x↑y

U(x, y) ≥ U(y, y). (4.5)

However, applying (iii) with x = y, we get

U(y, y) ≥ 1

2
U(y − t, y) +

1

2
U(y + t, y + t),

and letting t→ 0 gives the claim, in the light of (4.4) and (4.5).

Now we will modify the function U slightly, to ensure certain additional properties.

Lemma 4.2.3. The function Ũ : D → R given by Ũ(x, y) = min{U(x, y),Ψ(y)} satisfies (i), (ii)
and the following two conditions.

(iii’) For any (x, y) ∈ D, x 6= 0, there exists a number A(x, y) such that for any s ≥ −x we have

Ũ(x+ s, (x+ s) ∨ y) ≤ Ũ(x, y) +A(x, y)s. (4.6)

(iv) For any x, y ≥ 0 we have Ũ(x, x ∨ y) ≤ Ψ(y).
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Note that (iii’) is an extension of the concavity condition (iii), which can be seen by ap-
plying (4.6) to s = −t, s = t and summing the obtained estimates.

Proof. The conditions (i) and (ii) are obviously preserved. The condition (iv) is also straight-
forward: if x ≥ y, then Ũ(x, x ∨ y) ≤ U(x, x) ≤ 0 ≤ Ψ(y); on the other hand, if x < y, then
the inequality follows directly from the definition of Ũ . Thus, it remains to handle the prop-
erty (iii’). As we have seen in the proof of the previous lemma, for any y ≥ 0 the function
x 7→ U(x, y) is concave on [0, y] and continuous on (0, y]; it is clear that the function Ũ inher-
its both these properties. Set A(x, y) to be the corresponding left-sided derivative Ũx(x−, y).
Then the inequality (4.6) is obviously satisfied if x + s ≤ y; on the other hand, if x + s > y,
then we write

Ũ(x, y) +A(x, y)s = Ũ(x, y) +A(x, y)(y − x) +A(x, y)(x+ s− y)

≥ Ũ(y, y) +A(y, y)(x+ s− y).

Here in the last passage we have used (4.6) with s = y − x (which we have just proved) and
the inequality A(x, y) ≥ A(y, y) which is due to the concavity of x 7→ Ũ(x, y). However,
directly from the definition of Ũ , the functions U and Ũ coincide on the diagonal x = y
and the left-sided derivative A(y, y) = Ũx(y−, y) is not smaller than the left-sided derivative
Ux(y−, y), so it is enough to prove that

U(x+ s, x+ s) ≤ U(y, y) + Ux(y−, y)(x+ s− y).

Suppose that the inequality is not satisfied: for some positive κ, we have

U(x+ s, x+ s) ≥ U(y, y) + Ux(y−, y)(x+ s− y) + κ. (4.7)

An application of (iii) with x = y := (x+ s+ y)/2 and t = (x+ s− y)/2 gives

U

(
x+ s+ y

2
,
x+ s+ y

2

)
≥ 1

2
U

(
y,
x+ s+ y

2

)
+

1

2
U(x+ s, x+ s).

Directly from the definition of U and the monotonicity of Ψ, we see that U(x, y) increases as
y increases. Consequently, we have U (y, (x+ s+ y)/2) ≥ U(y, y), which combined with the
previous estimate and (4.7) gives

U

(
x+ s+ y

2
,
x+ s+ y

2

)
≥ U(y, y) + Ux(y−, y)

x+ s− y
2

+
κ

2
.

Note that this estimate is of the same form as (4.7) and we may iterate the above reasoning
to obtain

U

(
y +

x+ s− y
2n

, y +
x+ s− y

2n

)
≥ U(y, y) + Ux(y−, y)

x+ s− y
2n

+
κ

2n

for any nonnegative integer n. Now, if n is chosen sufficiently large, then (x+ s− y)/2n ≤ y
and yet another application of (iii) gives

U(y, y) ≥ 1

2
U

(
y − x+ s− y

2n
, y

)
+

1

2
U

(
y +

x+ s− y
2n

, y +
x+ s− y

2n

)
,
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which combined with the previous bound implies

U(y, y)− U
(
y − x+ s− y

2n
, y

)
≥ Ux(y−, y)

x+ s− y
2n

+
κ

2n
.

Dividing by (x+ s− y)/2n and letting n→∞ yields Ux(y−, y) ≥ Ux(y−, y) + κ/(x+ s− y),
a contradiction to (4.7).

4.3 A special function for the weighted inequality and a proof of
Theorem 4.1.1

Now we will complicate the function Ũ constructed above to obtain the Bellman function
corresponding to (4.3). First we introduce the extended domain D0 = {(x, y, u, v) ∈ R4 : 0 ≤
x ≤ y, 0 ≤ u ≤ v} and let B : D0 → R be given by

B(x, y, u, v) = (u− v)Ψ(y) + vŨ(x, y).

Observe that the properties (i) and (ii) enjoyed by Ũ imply

(i) B(x, x, u, u) = uŨ(x, x) ≤ 0.

(ii) B(x, y, u, v) ≥ uΨ(y)− vΦ(x).

We will also need a property analogous to (iii’).

Lemma 4.3.1. The functionB satisfies the following concavity-type property. Pick an arbitrary point
(x, y, u, v) ∈ D0 and two numbers s ≥ −x, t ≥ −u. If x 6= 0, then

B(x+ s, y ∨ (x+ s), u+ t, v ∨ (u+ t)) ≤ B(x, y, u, v) + svA(x, y) + tΨ(y),

where A is the function guaranteed by Lemma 4.2.3. If x = 0, then

B(x, y, u+ t, v ∨ (u+ t)) ≤ B(x, y, u, v) + tΨ(y).

Proof. The second estimate is straightforward. Indeed, if u+ t ≤ v, then both sides are equal,
while for u+ t > v we use the bound Ũ(0, y) ≤ Ψ(y) (the property (iv)) to get

B(x, y, u+ t, v ∨ (u+ t)) = (u+ t)Ũ(x, y) ≤ (u+ t− v)Ψ(y) + vŨ(x, y)

= B(x, y, u, v) + tΨ(y).

To prove the first inequality of the lemma, we consider three cases.

The case x+ s ≤ y and u+ t ≤ v. From the property (iii’) we have Ũ(x+ s, y) ≤ Ũ(x, y) +
sA(x, y) and therefore

B(x+ s, y ∨ (x+ s), u+ t, v ∨ (u+ t)) = B(x+ s, y, u+ t, v)

= (u+ t− v)Ψ(y) + vŨ(x+ s, y) ≤ (u+ t− v)Ψ(y) + v(Ũ(x, y) + sA(x, y))

= B(x, y, u, v) + svA(x, y) + tΨ(y).
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The case x+s > y and u+t ≤ v. The property (iii’) yields Ũ(x+s, x+s) ≤ Ũ(x, y)+sA(x, y).
Moreover, notice that Ψ(y) ≤ Ψ(x+ s), since Ψ is nondecreasing. Therefore

B(x+ s, y ∨ (x+ s), u+ t, v ∨ (u+ t)) = B(x+ s, x+ s, u+ t, v)

= (u+ t− v)Ψ(x+ s) + vŨ(x+ s, x+ s)

≤ (u+ t− v)Ψ(y) + v(Ũ(x, y) + sA(x, y)) = B(x, y, u, v) + svA(x, y) + tΨ(y).

The case u+ t > v. Using the property (iii’) and the inequality Ψ(y) ≥ Ũ(x+ s, y∨ (x+ s))
(guaranteed by the property (iv)), we have

B(x, y, u, v) + svA(x, y) + tΨ(y) = (u+ t− v)Ψ(y) + v(Ũ(x, y) + sA(x, y))

≥ (u+ t− v)Ψ(y) + vŨ(x+ s, y ∨ (x+ s))

≥ (u+ t)Ũ(x+ s, y ∨ (x+ s))

= B(x+ s, y ∨ (x+ s), u+ t, v ∨ (u+ t)).

This completes the proof.

It remains to observe that the function B is the Bellman function corresponding to the
estimate (4.3). Indeed, the properties (i) and (ii) are the appropriate size requirements, while
(iii) gives the necessary concavity. See the previous chapter for a similar argumentation.

4.4 Applications

We conclude this chapter by the discussion on several interesting applications of the above
statement. For the sake of completeness, we have decided to include the results discussed at
the beginning.

(i) If we take Ψ(x) = λχ(λ,∞)(x) and Φ(x) = x for a given λ > 0, then (4.2) becomes the
unweighted weak-type bound (1.1), and the assertion (4.3) is precisely the aforementioned
result of Fefferman and Stein (1.3), in the context of trees.

(ii) The choice Ψ(x) = xp and Φ(x) = (p/(p − 1))pxp for a given p > 1 leads to the tree
version of the weighted Lp-bound (1.4).

(iii) Let K > 1 be a fixed parameter. Setting Ψ(x) = x and Φ(x) = Kx log x + K2/((K −
1)e) corresponds to the sharp L logL bound (4.1).

(iv) Now we will present an application to a different type of maximal operator, the
so-called geometric maximal operator MG associated with the tree T . This object acts on
log-integrable functions f on Ω by the formula

MGf(x) = sup
{

exp
(
〈log |f |〉Q,µ

)
: Q ∈ T , x ∈ Q

}
.

It is well-known (see e.g. [22]) that for p > 0 we have ||MGf ||Lp(Ω) ≤ e1/p||f ||Lp(Ω) and the
above theorem yields the following weighted version. Namely, the identity ‖MG‖Lp→Lp =
e1/p implies the sharp estimate∫

Ω
exp(pMg)dµ ≤

∫
Ω

exp(1 + p|g|)dµ
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(indeed: this is ||MGf ||Lp(Ω) ≤ e1/p||f ||Lp(Ω) with f = e|g|). This inequality can be rewritten
in the form (4.2), with Ψ(x) = exp(px) and Φ(x) = exp(1 + px). Consequently, Theorem 4.1.1
yields ∫

Ω
exp(pMg)wdµ ≤

∫
Ω

exp(1 + p|g|)Mwdµ.

In particular, applying this bound to g = log |f |, we obtain the estimate∫
Ω

(MGf)pwdµ ≤
∫

Ω
exp(pM(log |f |))wdµ ≤

∫
Ω

exp(1 + p| log |f ||)Mwdµ,

which is a bit worse than the desired weighted Lp bound forMG . To overcome this problem,
assume first that log |f | is bounded from below by some constant N and replace f by fe−N

in the latter estimate. As the result, we get an inequality equivalent to∫
Ω

(MGf)pwdµ ≤ e
∫

Ω
|f |pMwdµ,

as needed. The general case follows by standard limiting arguments: we use the latter bound
for |f | ∨ e−N1 and finally let N1 →∞.

(v) We would like to emphasize that the results obtained in the previous chapter do not
quite fit into the picture described above. Kolmogorov’s inequality studied there does not
seem to transfer easily to the setup of Theorem 4.1.1.

(vi) Finally, we will show how the above approach leads to the sharp Lp,∞ → Lp,∞

estimate. The starting point is the unweighted bound for the dyadic maximal operator M
on [0, 1):

|{Mf > 1}| ≤
∫ 1

0
(p(f − 1) + 1)+dm. (4.8)

Let us decompose the set {Mf > 1} into the union of pairwise disjoint maximal dyadic
intervals. In other words, for any x ∈ [0, 1) let τ(x) = inf{n : 〈|f |〉Qn(x) > 1}, where Qn(x) is
the unique dyadic interval with the measure 2−n containing x. Here we use the convention
inf ∅ = ∞. Then the collection {Qτ (x) : x ∈ [0, 1), τ(x) < ∞} is the aforementioned family
of maximal elements from which the set {Mf > 1} is built. Now, for any such maximal
element Q, we have

|Q| =
∫
Q

dm ≤
∫
Q

(p(|f | − 1) + 1)dm ≤
∫
Q

(p(|f | − 1) + 1)+dm,

and summing over all Q yields (4.8) (actually, even a slightly stronger form). Therefore,
Theorem 4.1.1 gives the weighted variant of this bound:

w({Mf > 1}) ≤
∫

Ω
(p(|f | − 1) + 1)+Mwdµ.

Now we proceed as follows: we have∫
Ω

(p(|f | − 1) + 1)+Mwdµ =

∫
Ω
p

(
|f | − p− 1

p

)+

Mwdµ

= p

∫ ∞
(p−1)/p

Mw({|f | > t})dt

≤ p
∫ ∞

(p−1)/p
t−p‖f‖pLp,∞(Mw)dt =

(
p

p− 1

)p
‖f‖pLp,∞(Mw).
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It remains to note that by homogeneity, this implies ‖Mf‖Lp,∞(w) ≤ p
p−1‖f‖Lp,∞(Mw). The

constant p
p−1 is the best possible in the unweighted setting: consult e.g. [37].



Chapter 5

A weak-type inequality with an Ap

weight

5.1 Motivation and the statement of results

We turn our attention to a certain maximal estimate in the presence of Muckenhoupt’s Ap
weights. The starting point is the classical weak-type (1, 1) inequality

λ({Mf > λ}) ≤
∫
Rd
|f |dx, λ > 0,

where M is the dyadic maximal operator on Rd. The following problem has gained a lot of
interest in the literature: can we replace the number λ with a weight? In other words, given
a weight w, is the estimate

w({Mf > w}) ≤ Cw
∫
Rd
|f |dx (5.1)

valid for all integrable functions f , where the constant Cw depends on the weight only? It
is easy to see that in such a generality, the answer is negative. Indeed, let f be a nonzero
integrable function. Then Mf is not integrable, and hence the choice w = Mf/2 provides us
with a counterexample. Therefore, if we want (5.1) to hold, we need some assumptions on
the weight. For example, Muckenhoupt’s condition A1 is sufficient, as was proved in [29],
and then the estimate holds with Cw = [w]A1 (this is even true for non-dyadic A1 context).
Let us briefly show an extension of this result to the context of probability space (Ω, µ) with
a tree structure T . Namely, we have the stronger bound

w({Mf >Mw}) ≤ ‖f‖L1

for arbitrary weight; this yields

w({Mf > w}) ≤ [w]A1‖f‖L1 (5.2)

be a simple homogeneity argument. To prove the above estimate, we use the following
argument: let Q be the collection of maximal elements Q ∈ T such that 〈|f |〉Q,µ ≥ 〈w〉Q,µ.
Such elements are pairwise disjoint and the set {Mf >Mw} is contained in the union

⋃
Q.

Consequently, we obtain

w({Mf >Mw}) ≤
∑
Q∈Q

w(Q) ≤
∑
Q∈Q

∫
Q
|f |dµ ≤ ‖f‖L1 ,

53
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and the estimate is established. It is not difficult to see that the linear dependence on the A1

characteristic is optimal: for any κ < 1, the inequality

w({Mf > w}) ≤ C[w]κA1
‖f‖L1

does not hold with any finite constant C (see examples below). There is an interesting ques-
tion whether the estimate (5.2) extends to the more general setting in which the weight w is
assumed to belong to the class Ap. Furthermore, if the answer is positive, what is the opti-
mal dependence on the Ap characteristic? We will answer both these questions, basing on
the results obtained in [60]. Here is the precise formulation of the main statement.

Theorem 5.1.1. Let (Ω, µ) be a probability space with a tree T . If 1 < p <∞ and w is an Ap weight
on Ω, then for any integrable function f : Ω→ R we have

w ({Mf(x) > w(x)}) ≤ 2ep[w]Ap

∫
Ω
fdx. (5.3)

The linear dependence on the Ap characteristic is optimal.

It is worth stressing here that we do not impose any regularity condition on T : for any
element Q of T and any child Q′ of Q, the ratio µ(Q′)/µ(Q) need not be bounded away from
0 or 1. On the other hand, the result is new even in the context of dyadic filtrations.

The following example shows that the linear independence on [w]Ap is optimal already
in the one-dimensional dyadic context (i.e., for [0, 1) with the dyadic tree structure). Fix an
arbitrary integer N > 1. Define f = 2Nχ[0;2−N ) and w =Mf/2. Directly from the definition
of the maximal operator, we easily compute that

Mf = 2Nχ[0;2−N ) +
N−1∑
k=0

2kχ[2−1−k;2−k).

We have w(Mf ≥ w) = w([0, 1)) = 1/2 + N/4. After some easy calculations we see that
(N + 2)/2 > [w]Ap > 2−p(N + 2) and hence

w(Mf ≥ w)

[w]Ap
∫ 1

0 f(x)dx
> 1/2.

Since [w]Ap → ∞ as N → ∞, this proves that we cannot have an inequality of the form
w(Mf ≥ w) ≤ Cp[w]κAp

∫
Ω fdµ with any κ < 1.

Thus, all we need is to establish (5.3), which will be handled with the use of the Bell-
man function method. We have already seen in Chapter 2 the appropriate modification of
the approach: we need to construct a certain special function of four variables. Our initial
considerations revealed that such an object probably has a quite complicated formula, and
its discovery, as well as the verification of the required properties, seemed to be quite an
elaborate issue. Fortunately, we have invented a shortcut which enables to overcome these
technical difficulties. Namely, we will make a heavy use of an abstract, non-explicit formula
for the Bellman function corresponding to (5.3). We have already encountered such an argu-
ment in the previous chapter, which also exploited such non-explicit Bellman functions; the
novel and a little unexpected thing is that here we explore this path while studying a very
particular estimate (and in the previous chapter a general inequality was investigated). The
argument is motivated by analogous phenomenon which occurs in the context of weak-type
estimates for the Haar system (see below).
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5.2 A motivating example

To present the idea behind our approach, let us study, for a moment, the modification
of the Bellman function method to the context of Haar multipliers, following the work
of Burkholder [4]. Let (hn)n≥0 be the standard Haar system on [0, 1), i.e., a collection of
functions given by h0 = χ[0,1), h1 = χ[0,1/2) − χ[1/2,1), h2 = χ[0,1/4) − χ[1/4,1/2), h3 =
χ[1/2,3/4) − χ[3/4,1), and so on. Suppose that V : R2 → R is a given function and assume
that we are interested in showing the inequality

∫
[0,1)

V

(
n∑
k=0

akhk,
n∑
k=0

εkakhk

)
dx ≤ 0 n = 0, 1, 2, . . . , (5.4)

for any sequence (ak)k≥0 of integers and any sequence (εk)k≥0 of signs. For instance, for
the choice V (x, y) = |y|p − Cpp |x|p (where 1 < p < ∞) the above estimate is related to the
unconditionality of the Haar system. The key to handle this problem is to consider the class
of all functions B : R2 → R which enjoy the following properties:

1◦ (Initial condition) B(x,±x) ≤ 0 for all x ∈ R;
2◦ (Majorization) B ≥ V on R2;
3◦ (Concavity-type property) B is concave along any line of slope ±1.

The existence of a function B with the above properties implies the validity of (5.4). Indeed,
the third condition implies that for any n ≥ 0 we have

∫ 1

0
B

(
n+1∑
k=0

akhk,

n+1∑
k=0

εkakhk

)
dx ≤

∫ 1

0
B

(
n∑
k=0

akhk,

n∑
k=0

εkakhk

)
dx

(this is just the conditional Jensen’s inequality), so by 2◦ and finally 1◦, we obtain

∫ 1

0
V

(
n∑
k=0

akhk,

n∑
k=0

εkakhk

)
dx ≤

∫ 1

0
B

(
n∑
k=0

akhk,

n∑
k=0

εkakhk

)
dx

≤
∫ 1

0
B(a0, εa0)dx ≤ 0.

Probably the simplest inequality which can be studied with the above approach is the L2

bound ∥∥∥∥∥
n∑
k=0

εkakhk

∥∥∥∥∥
2

L2

≤

∥∥∥∥∥
n∑
k=0

akhk

∥∥∥∥∥
2

L2

,

n = 0, 1, 2, . . . (which, of course, follows at once from the orthogonality of the Haar system).
The corresponding function V , i.e., the one which transforms theL2 bound into (5.4), is given
by V (x, y) = y2 − x2, and it turns out that B = V is the corresponding special function. Let
us see what happens for the weak-type (1, 1) estimate∣∣∣∣∣

{
x ∈ [0, 1) :

∣∣∣∣∣
n∑
k=0

εkakhk(x)

∣∣∣∣∣ > 1

}∣∣∣∣∣ ≤ C
∥∥∥∥∥

n∑
k=0

akhk

∥∥∥∥∥
L1

,
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for n = 0, 1, 2, . . .. This inequality is of the form (5.4), with V (x, y) = χ{|y|>1} − C|x|, and
using the above approach, Burkholder showed the estimate with the optimal constantC = 2.
The special function B is slightly more complicated:

B(x, y) =

{
y2 − x2 if |x|+ |y| ≤ 1,

1− 2|x| if |x|+ |y| > 1.

For some more or less formal arguments which lead to the discovery of this function, see
e.g. [45, 46]. For the sake of our further considerations concerning the estimate (5.3), let us
make here some important observations. We see that B is built of two components: if (x, y)
is close to (0, 0), then it coincides with the special function corresponding to the L2 estimate;
for remaining (x, y), it is an affine expression (in |x|), which is almost equal to V . One easily
checks 1◦ and 2◦; to verify 3◦, we rewrite the above formula as

B(x, y) =

{
min

{
y2 − x2, 1− 2|x|

}
if |x| ≤ 1,

1− 2|x| if |x| > 1
(5.5)

and now it is clear that the concavity holds: both (x, y) 7→ y2 − x2 and (x, y) 7→ 1 − 2|x| are
concave along the lines of slope ±1, and hence so is B, being essentially the minimum of the
two.

As we will see in Section 5.4, the inequality (5.3) can be efficiently studied in a similar
manner: it will be handled with a certain Bellman function given as the minimum of special
functions associated with L2 estimates and the appropriate affine expressions. More pre-
cisely, we will proceed as follows: first we will prove directly a certain weighted L2 estimate
for a yet another class of important class of operators in harmonic analysis, the so-called
dyadic shifts; this will give us the existence of the associated Bellman function B. Then we
will take an appropriate modification of the formula (5.5), with the term y2 − x2 replaced
with B, to obtain the function for the weak-type estimate.

5.3 Bellman function method for maximal operators

We return to the context of arbitrary probability space (Ω, µ) equipped with a tree-like struc-
ture T . Let c ∈ [1,∞), p ∈ (1,∞) be given parameters and let V : [0,∞)3 → R be a fixed
function. Let us briefly recall the material presented in Chapter 2. Suppose we are interested
in showing the estimate ∫

Ω
V (f,Mf, w) dµ ≤ 0 (5.6)

for any integrable function f : Ω → [0,∞) and any Ap weight w on Ω satisfying [w]Ap ≤ c.
To this end, we consider the four-dimensional domain

D = Dp,c =

{
(x, y, u, v) ∈ [0,∞)4 : x ≤ y, 1 ≤ uvp−1 ≤ c

}
.

Then the validity of (5.6) for T -simple functions and weights is equivalent to the existence
of a special function B : D → R, which enjoys the following structural properties.

1◦ (Initial condition) We have

B(x, x, u, v) ≤ 0 if (x, x, u, v) ∈ D. (5.7)
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2◦ (Majorization) If 0 ≤ x ≤ y, then

B(x, y, u, u1/(1−p)) ≥ V (x, y, u). (5.8)

3◦ (Concavity-type property) Let λ1, λ2, . . ., λm ≥ 0 be nonnegative numbers summing
up to 1 and let (x, y, u, v), (x1, y1, u1, v1), . . . , (xm, ym, um, vm) be elements of D enjoying the
following conditions: we have yj = max{xj , y} for all j = 1, 2, . . . , m and

x =

m∑
k=1

λkxk, u =

m∑
k=1

λkuk, v =

m∑
k=1

λkvk.

Then we have

B (x, y, u, v) ≥
m∑
k=1

λkB(xk, yk, uk, vk). (5.9)

Furthermore, if the inequality (5.6) holds, then the smallest special function B : D → R
is given by the formula

B(x, y, u, v) = sup

{∫
Ω
V (f,max {Mf, y} , w) dµ

}
. (5.10)

Here the supremum is taken over all probability spaces Ω with a tree T , all T -simple func-
tions f : Ω → [0,∞) satisfying

∫
Ω fdµ = x, all T -simple Ap weights w on Ω satisfying

[w]Ap ≤ c,
∫

Ωwdµ = u and
∫

Ωw
1/(1−p)dµ = v.

5.4 Proof of Theorem 5.1.1

Our starting point is the sharp dimension-free weighted Lp estimate for maximal operators
established in [54]. Namely, for any 1 < p < ∞ and any probability space (Ω, µ) with the
tree structure T and any Ap weight w on Ω, we have

‖M‖Lp(w)→Lp(w) ≤
p

p− 1− d(p, [w]Ap)
.

Here, for a given 1 < p <∞ and c ≥ 1, the constant d(p, c) is the unique number in [0, p− 1)
satisfying the equation

c(1 + d)(p− 1− d)p−1 = (p− 1)p−1.

We will need the more explicit bound

‖M‖Lp(w)→Lp(w) ≤
p

p− 1− d(p, [w]Ap)

=
p

p− 1

(
(1 + d(p, [w]Ap))[w]Ap

)1/(p−1)

≤ p

p− 1
p1/(p−1)[w]

1/(p−1)
Ap

≤ pe

p− 1
[w]

1/(p−1)
Ap

.

(5.11)

Let q be the harmonic conjugate to p and consider the weightw1−q dual tow. Since [w1−q]Aq =

[w]q−1
Ap

, the aforementioned theorem implies that

‖M‖Lq(w1−q)→Lq(w1−q) ≤
qe

q − 1
[w]Ap = pe[w]Ap .
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Equivalently, for any Ap weight w with [w]Ap ≤ c and any f ∈ Lq(w1−q) we have∫
Ω
V (f,Mf, w)dµ ≤ 0,

for V (x, y, u) = yqu1−q − (pecx)qu1−q. In particular, the above estimate holds for all T -
simple functions f . Therefore, by the Bellman function method, the function B given by
(5.10) enjoys the properties 1◦, 2◦ and 3◦. We will need the following enhanced version of
the majorization.

Lemma 5.4.1. For all (x, y, u, v) ∈ D we have

B(x, y, u, v) ≥ yqv − (pecx)qu1−q. (5.12)

Proof. Let us go back to the definition (5.10) of B(x, y, u, v) (with V (x, y, u) = yqu1−q −
(pecx)qu1−q). Take there an arbitrary weight w with the appropriate conditions on char-
acteristic and averages, and put f = xw/u. Since

∫
Ω fdµ = x, we have

B(x, y, u, v) ≥
∫

Ω

[
max{Mf, y}

]q
w1−qdµ− (pec)q

∫
Ω
f qw1−qdµ

≥
∫

Ω
yqw1−qdµ− (pecx)qu−q

∫
Ω
wdµ

= yqv − (pecx)qu1−q.

Now we will modify B to obtain the Bellman corresponding to the weak-type estimate
(5.3). Define B : D → R by

B(x, y, u, v) =

{
min

{
B(x, y, u, v), u− 2pecx

}
if pecx < u,

u− 2pecx if pecx ≥ u
(5.13)

and V : [0;∞)3 → R by V (x, y, u) = uχ{y≥u} − 2pecx. Obviously, we have

B(x, y, u, v) ≤ u− 2pecx on D. (5.14)

Furthermore, by (5.12), if pecx = u, then

B(x, y, u, v) ≥ yqv − pecx · (pecxu−1)q−1 ≥ −pecx = u− 2pecx, (5.15)

so we also have

B(x, y, u, v) =

{
min

{
B(x, y, u, v), u− 2pecx

}
if pecx ≤ u,

u− 2pecx if pecx > u

(in comparison to the formula (5.13), the inequalities pecx < u and pecx ≥ u have become
non-strict and strict, respectively). We will need the following additional property of B.

Lemma 5.4.2. For any point (x, y, u, v) ∈ D and any x′ > x we have

B(x′,max{x′, y}, u, v) ≥ B(x, y, u, v)− 2pec(x′ − x).
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Proof. We split the reasoning into a few parts.

Step 1. An easy case. If B(x′,max{x′, y}, u, v) = u − 2pecx′, then the claim follows imme-
diately from (5.14):

B(x′,max{x′, y}, u, v) = u− 2pecx− 2pec(x′ − x) ≥ B(x, y, u, v)− 2pec(x′ − x).

Hence, from now on, we assume that B(x′,max{x′, y}, u, v) < u − 2pecx′; this in particular
implies that B(x′,max{x′, y}, u, v) = B(x′,max{x′, y}, u, v) and pecx′ < u, by the definition
of B.

Step 2. Monotonicity of B with respect to y. Fix (x, y, u, v) ∈ D. Observe that if y′ > y, then

B(x, y, u, v) ≤ B(x, y′, u, v), (5.16)

which follows from the definition of B. Indeed, if (Ω, µ), T is an arbitrary probability space
with a tree, and f , w are functions on Ω as in the definition of B(x, y, u, v), then∫

Ω

[
max

{
Mf, y

}]q
w1−qdµ− (pec)q

∫
Ω
f qw1−qdµ

≤
∫

Ω

[
max

{
Mf, y′

}]q
w1−qdµ− (pec)q

∫
Ω
f qw1−qdµ ≤ B(x, y′, u, v).

Taking the supremum over all f and w yields (5.16).

Step 3. An additional concavity. We have pecx′ < u (see the end of Step 1 above), so x′

belongs to the interval (x, u/(pec)) and hence there is λ ∈ (0, 1) such that x′ = λx + (1 −
λ)u/(pec). Therefore, an application of the concavity property of B yields

B(x′,max{x′, y}, u, v)

= B(x′,max{x′, y}, u, v)

≥ λB(x,max{x′, y}, u, v) + (1− λ)B(u/(pec),max{u/(pec), y}, u, v).

(5.17)

However, by (5.16) and the inequality pecx < pecx′ < u we have

B(x,max{x′, y}, u, v) ≥ B(x, y, u, v) ≥ B(x, y, u, v). (5.18)

Furthermore, by (5.15) and the definition of B, we see that

B(u/(pec),max{u/(pec), y}, u, v) ≥ B(u/(pec),max{u/(pec), y}, u, v),

so by Step 1 above,

B(u/(pec),max{u/(pec), y}, u, v) ≥ B(x′,max{x′, y}, u, v)− 2pec

(
u

pec
− x′

)
. (5.19)

Plugging (5.18) and (5.19) into (5.17) yields the claim.

We are ready for the main ingredient of Theorem 5.1.1.

Theorem 5.4.3. The function B satisfies the conditions 1◦, 2◦ and 3◦ (with respect to V ).
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Proof. The property 1◦ is easy to check: by the initial property of B, if pecx ≤ u, then
B(x, x, u, v) ≤ B(x, x, u, v) ≤ 0; on the other hand, if pecx ≥ u, then B(x, x, u, v) = u −
2pecx ≤ −pecx ≤ 0.

We proceed to the majorization condition 2◦. If pecx ≥ u, then there is nothing to prove,
so from now on we may assume that the reverse estimate holds. Suppose first that y ≥ u.
Then, by the definition of B, the majorization is equivalent to B(x, y, u, v) ≥ u − 2pecx.
However, applying (5.12) (and using the estimate uq−1v ≥ 1), we get

B(x, y, u, v) ≥ yqv − pecx ·
(
pecxu−1

)q−1 ≥ u− pecx ≥ u− 2pecx.

So, it remains to verify 2◦ for y < u; then the desired bound becomes

B(x, y, u, v) ≥ −2pecx.

This is obvious if B(x, y, u, v) = u− 2pecx; otherwise, again by (5.12),

B(x, y, u, v) = B(x, y, u, v)

≥ yqv − (pecx)qu1−q ≥ −pecx ·
(
pecxu−1

)q−1 ≥ −2pecx.

It remains to establish 3◦. If B(x, y, u, v) = u− 2pecx, then the condition follows directly
from (5.14). So, suppose that B(x, y, u, v) = B(x, y, u, v) < u − 2pecx. In particular this
implies pecx < u and hence we have pecxj ≤ uj for at least one j; relabelling the points if
necessary, we may and do assume that there is an integer k such that pecx1 ≤ u1, pecx2 ≤ u2,
. . ., pecxk ≤ uk and pecxk+1 > uk+1, pecxk+2 > uk+2, . . ., pecxm > um. Now we will run
a backward induction with respect to k. First, if k = m, then the claim follows from the
concavity property 3◦ of B:

B(x, y, u, v) = B(x, y, u, v) ≥
m∑
j=1

λjB(xj , yj , uj , vj) ≥
m∑
j=1

λjB(xj , yj , uj , vj).

We proceed to the induction step. Assume that pecx1 ≤ u1, pecx2 ≤ u2, . . ., pecxk−1 ≤ uk−1

and pecxk > uk, pecxk+1 > uk+1, . . ., pecxm > um. The idea is to modify xj , but keeping
their average

∑m
j=1 λjxj fixed. More specifically, we may increase x1, x2, . . ., xk−1 a little

bit (so that the estimates pecxj ≤ uj remain valid) and decrease xk to make pecxk > uk
into equality; the points xk+1, xk+2, . . ., xm remain unchanged. For notational convenience,
denote these new values by x′1, x′2, . . ., x′m. Then, by the induction assumption, we have

B(x, y, u, v) ≥
m∑
j=1

λjB(x′j ,max{x′j , y}, uj , vj). (5.20)

Now, by the previous lemma and (5.16), for any j ≤ k − 1 we have

B(x′j ,max{x′j , y}, uj , vj) ≥ B(xj ,max{x′j , y}, uj , vj)− 2pec(x′j − xj)
≥ B(xj ,max{xj , y}, uj , vj)− 2pec(x′j − xj).

Furthermore, by (5.15),

B(x′k,max{x′k, y}, uk, vk) ≥ uk − 2pecx′k = uk − 2pecxk − 2pec(xk − x′k).
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Plugging the last two estimates into (5.20), we complete the proof of the induction step: we
obtain

B(x, y, u, v) ≥
m∑
j=1

λjB(xj , yj , uj , vj).

Thus, B has the desired concavity property.

The properties of B immediately yield our main weighted estimate, by the Bellman func-
tion method described in the precious section.
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Chapter 6

Sharp unweighted inequalities in
Lorentz spaces

6.1 Motivation and the statement of results

In contrast to the other chapters, this part of the thesis is devoted to a certain estimate for
the maximal function without the presence of weight. Suppose that (Ω, µ) is a measure
space endowed with a tree structure T andM is the associated dyadic-like maximal oper-
ator. As we have seen in Chapter 1, the operator M enjoys a number of interesting sharp
unweighted estimates, in particular, the strong- and weak-type bounds. Motivated by inter-
polation theory, one might ask about the norm ofM as an operator between other Lorentz
spaces. As proved by Melas and Nikolidakis [38], if 1 < p < ∞ and 1 ≤ q ≤ ∞, then we
have ‖M‖Lp,q(Ω)→Lp,q(Ω) = p/(p− 1). We will study the question about the extension of this
result to the case of different parameters q in the base and target Lorentz space. That is, we
will be interested in the explicit formula for the norm ofM as an operator from Lp,q1(Ω) to
Lp,q2(Ω). This part of thesis is based on the contents of [59].

Let us first discuss some preliminary results for general choice of parameters: 0 < p <∞
and 0 < q1, q2 <∞. We start with the observation that if p < 1, then

‖M‖Lp,q1→Lp,q2 =∞, (6.1)

no matter what q1 and q2 are: to see this, testM on the function f = χA, where A ∈ T . Then
we have f∗ = χ(0,µ(A)] and hence

‖f‖Lp,q1 =

(∫ µ(A)

0
tq1/p−1dt

)1/q1

=

(
p

q1

)1/q1

µ(A)1/p.

On the other hand, we haveMf ≥ 〈f〉Ω,µ = µ(A)/µ(Ω) almost surely, so (Mf)∗ ≥ µ(A)/µ(Ω)
on (0, µ(Ω)] and hence

‖Mf‖Lp,q2 ≥

(∫ µ(Ω)

0
tq2/p−1(µ(A)/µ(Ω))q2dt

)1/q2

=

(
p

q2

)1/q2

µ(A)µ(Ω)
1−p
p .

Letting µ(A)→ 0 shows that the ratio ‖Mf‖Lp,q2/‖f‖Lp,q1 cannot be bounded.

63
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For p = 1 the identity (6.1) holds as well, unless q1 = 1 and q2 = ∞ (but this special
case has been already discussed in (1.1)). Therefore, from now on we only consider the
case p > 1. Of course, if q1 > q2, then there are functions satisfying ‖f‖Lp,q1 < ∞ and
‖Mf‖Lp,q2 ≥ ‖f‖Lp,q2 = ∞, so in this case (6.1) holds as well. Thus, the only notrivial cases
left correspond to 1 < p <∞ and 0 < q1 ≤ q2 <∞.

Our approach will allow us to study the case 1 < p ≤ q1 < q2, from now on we assume
that this condition is satisfied. Set α = q1/p− 1, β = q2/p− 1, γ = q1(p− 1)/(p(q1 − 1)) and
define

Cp,q1,q2 = q
1
q2
1 (q2(q1 − 1))

− 1
q1 γ

q2−q1
q1q2

−1

 (q2 − q1)Γ
(
q1q2
q2−q1

)
Γ
(
q2(q1−1)
q2−q1

)
Γ
(

q2
q2−q1

)


q2−q1
q1q2

.

Our main result can be formulated as follows.

Theorem 6.1.1. Suppose that 1 < p ≤ q1 < q2 are fixed parameters. Then for any integrable
function f on Ω,

‖Mf‖Lp,q2 (Ω) ≤ Cp,q1,q2 ‖f‖Lp,q1 (Ω) (6.2)

and the constant on the right-hand side is the best possible for each individual tree.

Our approach will rest on a novel modification of the Bellman function method. As we
have seen in Chapter 2, the classical version of the technique allows the study of inequalities
which can be expressed in the integral form

∫
Ω V (f,Mf)dµ ≤ 0. However, the Lorentz-

norm estimates cannot be rewritten in such a form and hence some new splitting argument
(leading to some concavity-type condition) is required. In the next section we introduce
the abstract special function B corresponding to (6.2): then the identification of the explicit
formula for this object becomes our major task. To handle this problem, in Section 6.3 we
establish an appropriate concavity-type (or rather monotone-type) property of B. Roughly
speaking, this condition gives an indication how the function B should look like: we present
an informal reasoning which leads to an explicit candidate for B: we use a different symbol
B for this object. In Section 6.4 we prove that this candidate satisfies B ≥ B (that is, B
is a supersolution to our problem, in the terminology introduced in Chapter 2), which in
particular yields the inequality (6.2). The final part of this chapter contains the proof of the
reverse estimate B ≤ B, which, in particular, allows us to show that the constant Cp,q1,q2 in
(6.2) is indeed the best possible.

As we shall work with different measure spaces, we will sometimes use the notation
MΩ to emphasize that we study the action of the maximal operator on functions on Ω. One
the other hand, for the sake of brevity, we have decided not to indicate the underlying tree
structure. We believe that this should not lead to any confusion.

6.2 An abstract Bellman function

Suppose that x, y are nonnegative numbers and T > 0. Assume further that q1 ≥ p, so that
α ≥ 0. Consider the class C(x, y, T ), which consists of all nonnegative measurable functions
f given on some measure space (Ω, µ) with µ(Ω) = T , such that

1

T

∫ T

0
f∗(t)dt = x,

1

T

∫ T

0
tα
[
f∗(t)

]q1dt ≤ y.
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Note that we have inequality in the second requirement. We emphasize that the measure
space (Ω, µ) and the tree structure are allowed to vary. A simple application of Hölder’s
inequality shows that if the class C(x, y, T ) is nonempty, then

Tαxq1 ≤ γ1−q1y (6.3)

(recall that γ = q1(p − 1)/(p(q1 − 1))). Actually, the reverse implication is also true, which
can be seen by taking any measure space (Ω, µ) and any function f : Ω → [0,∞) satisfying
f∗(t) = γx(T/t)α/(q1−1) (for the existence of a function with a prescribed nonincreasing rear-
rangement, see [19, p. 65] or Lemma 2.3 in [50]). Note that if equality holds in (6.3), then this
is the only choice for f∗.

The abstract Bellman function related to the estimate (6.2) is given by

B(x, y, T ) = sup

{∫ T

0
tβ
[
(Mf)∗(t)

]q2dt : f ∈ C(x, y, T )

}
for (x, y, T ) ∈ [0,∞)2 × (0,∞) satisfying (6.3). We see a novel feature, which has already
been discussed in Remark 2.1.3. The problem is that the estimate (6.2) cannot be rewritten
in the integral form. To overcome this, we fix the right-hand side, which is hidden in the
condition 1

T

∫ T
0 tα

[
f∗(t)

]q1dt ≤ y. This gives rise to the additional variable of the Bellman
function and increases the difficulty (dimension) of the problem. At this cost, the method is
still applicable.

In the next three sections, we will identify the explicit formula for B. We would like
to emphasize here that our proof will yield a stronger fact. One might consider the above
definition of C(x, y, T ) and B for a fixed measure space (Ω, µ) and a tree structure T . We
will actually show that for any such individual choice, the resulting Bellman function is the
same. However, as it will be useful for us to switch the measure spaces and trees at some
points of the proof, we have decided to work under the above definitions.

6.3 A candidate for the Bellman function

Throughout, we assume that q1 ≥ p. We start our search by proving the following estimate,
which can be regarded as a version of the concavity-type property 3◦.

Lemma 6.3.1. For any S, T > 0 and any x, y, c ≥ 0 we have

B

(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
≥ B(x, y, T ) +

(
Tx+ Sc

T + S

)q2 (T + S)β+1 − T β+1

β + 1
.

(6.4)

Proof. Take arbitrary measure spaces (Ω, µΩ), (Λ, µΛ) satisfying Ω ∩ Λ = ∅, µΩ(Ω) = T ,
µΛ(Λ) = S, equipped with some tree structures TΩ, TΛ, respectively. Let µΩ∪Λ be the measure
on the space Ω∪Λ, given by µΩ∪Λ(A∪B) = µΩ(A)+µΛ(B) for all measurableA ⊆ Ω,B ⊆ Λ.
Let c ≥ 0 be a positive number. Suppose that f : Ω→ [0,∞) satisfies

1

T

∫ T

0
f∗(t)dt = x,

1

T

∫ T

0
tα
[
f∗(t)

]q1dt ≤ y (6.5)
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and consider its extension f̃ = f1Ω + c1Λ, a nonnegative function on the measure space
(Ω ∪ Λ, µΩ∪Λ). We compute directly that

1

µΩ∪Λ(Ω ∪ Λ)

∫
Ω∪Λ

f̃dµΩ∪Λ =
Tx+ Sc

T + S
(6.6)

and, since α ≥ 0 (here is the place where we use the assumption q1 ≥ p),

1

µΩ∪Λ(Ω ∪ Λ)

∫ T+S

0
tα[f̃∗(t)]q1dt

≤ 1

µΩ∪Λ(Ω ∪ Λ)

[∫ T

0
tα[f∗(t)]q1dt+

∫ T+S

T
tαcq1dt

]
= (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
.

(6.7)

In other words, we have the inclusion

f̃ ∈ C
(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
.

Now let us study the appropriate Lorentz norm of the maximal function of f̃ . To this end,
we equip the space (Ω ∪ Λ, µΩ∪Λ) with the tree TΩ∪Λ given by T 0

Ω∪Λ = {Ω ∪ Λ} and T nΩ∪Λ =
T n−1

Ω ∪ T n−1
Λ for n ≥ 1. To avoid confusion, we will denote byMΩ andMΩ∪Λ the maximal

operators on (Ω, µΩ) and (Ω ∪ Λ, µΩ∪Λ). Of course, we may write∫ T+S

0
tβ
[
(MΩ∪Λf̃)∗(t)

]q2dt

=

∫ T

0
tβ
[
(MΩ∪Λf̃)∗(t)

]q2dt+

∫ T+S

T
tβ
[
(MΩ∪Λf̃)∗(t)

]q2dt.

Next, observe that on Ω,

MΩ∪Λf̃ = max

{
MΩf,

1

T + S

∫
Ω∪Λ

f̃dµΩ∪Λ

}
≥MΩf.

Hence (MΩ∪Λf̃)∗ ≥ (MΩf)∗ on (0, T ] and the first integral on the right is not smaller than∫ T
0 tβ

[
(Mf)∗(t)

]q2dt. To deal with the second integral, note that

MΩ∪Λf̃ ≥
1

µ(Ω ∪ Λ)

∫
Ω∪Λ

f̃dµΩ∪Λ =
Tx+ Sc

T + S
on Ω ∪ Λ,

and hence ∫ T+S

T
tβ
[
(MΩ∪Λf̃)∗(t)

]q2 ≥ (Tx+ Sc

T + S

)q2 (T + S)β+1 − T β+1

β + 1
.

Thus, taking into account the above estimates forMΩ∪Λf̃ and the conditions (6.6), (6.7), we
obtain, by the very definition of B,

B

(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
≥
∫ T

0
tβ
[
(Mf)∗(t)

]q2dt+

(
Tx+ Sc

T + S

)q2 (T + S)β+1 − T β+1

β + 1
.
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Since (Ω, µΩ) was an arbitrary measure space and f was an arbitrary nonnegative function
on Ω satisfying (6.5), we get the claim.

In what follows, we will also need a certain homogeneity-type property of B.

Lemma 6.3.2. We have
B(x, y, T ) = xq2T β+1ϕ

( y

xq1Tα

)
, (6.8)

where ϕ(s) = B(1, s, 1).

Proof. Fix an arbitrary measure space (Ω, µ) satisfying µ(Ω) = T and an arbitrary function
f : Ω→ [0,∞) satisfying

1

T

∫ T

0
f∗(t)dt = x,

1

T

∫ T

0
tα
[
f∗(t)

]q1dt ≤ y.

Then for any λ > 0, the function f̃ = λf satisfies

1

T

∫ T

0
f̃∗(t)dt = λx,

1

T

∫ T

0
tα
[
f̃∗(t)

]q1dt ≤ λq1y

and ∫ T

0
tβ
[
(Mf̃)∗(t)

]q2dt = λq2
∫ T

0
tβ
[
(Mf)∗(t)

]q2dt,

so by the very definition of B we obtain

B(λx, λq1y, T ) ≥ λq2
∫ T

0
tβ
[
(Mf)∗(t)

]q2dt.

Since Ω and f were arbitrary, this gives B(λx, λq1y, T ) ≥ λq2B(x, y, T ). Replacing x, y, λ
with λx, λq1y and λ−1, respectively, we get the reverse bound. Consequently, we may write

B(x, y, T ) = xq2B(1, y/xq1 , T ). (6.9)

Next, consider the space (Ω, µ̃) := (Ω, µ/λ) with the same tree structure and let f be as above.
We compute that

1

µ̃(Ω)

∫
Ω
fdµ̃ = x

and ∫ T/λ

0
tα(f∗µ̃(t))q1dt =

λ−α

T

∫ T/λ

0
tα(f∗µ̃(t/λ))q1dt =

λ−α

T

∫ T

0
tα(f∗(t))q1dt ≤ λ−αy.

SinceM acts identically on the spaces (Ω, µ) and (Ω, µ̃), we have∫ T/λ

0
tβ((Mf)∗µ̃(t))q2dt = λ−β−1

∫ T

0
tβ((Mf)∗µ(t))q2dt

and therefore, by the definition of B,

B(x, y/λα, T/λ) ≥ λ−β−1

∫ T

0
tβ((Mf)∗µ(t))q2dt.
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Since f was arbitrary, we get B(x, y/λα, T/λ) ≥ λ−β−1B(x, y, T ). Replacing y, T , λ with
yλ−α, T/λ and λ−1, we obtain the reverse estimate. Combining this with (6.9), we finally
arrive at

B(x, y, T ) = xq2B(1, y/xq1 , T ) = xq2T β+1B(1, x−q1yT−α, 1),

which is the desired identity.

To find the candidate for B, we will exploit the “infinitesimal” version of the concav-
ity/monotonicity (6.4), which combined with the identity (6.8) will yield a certain ordinary
differential inequality for ϕ. From now on we assume that B is of class C1. We would like to
stress that at this point we may impose any regularity assumption, since our main purpose is
to guess the explicit formula; the rigorous verification will be postponed to the next section.

Lemma 6.3.3. The function ϕ = B(1, ·, 1) satisfies

ϕ
(
γq1−1

)
=

q1

q2γ
(6.10)

and the differential inequality

(q1 − 1)

γ −(sϕ′(s)− q2
q1
ϕ(s)

ϕ′(s)

)1/(q1−1)
(sϕ′(s)− q2

q1
ϕ(s)

)
≥ 1. (6.11)

Proof. To show (6.10), note that the class C(1, γq1−1, 1) contains only one element: see the
discussion below (6.3) (formally: all the elements from the class have the same nonincreasing
rearrangements) and hence the Bellman function can be directly evaluated. We turn our
attention to the differential inequality. Put T = x = 1 and rewrite (6.4) in the form

1

S

[
B

(
1 + Sc

1 + S
, (1 + S)−1

(
y + cq1 · (1 + S)α+1 − 1

α+ 1

)
, 1 + S

)
−B(1, y, 1)

]
≥
(

1 + Sc

1 + S

)q2 (1 + S)β+1 − 1

(β + 1)S
.

Letting S → 0 (and using the assumption that B is of class C1), we get the partial differential
inequality

(−1 + c)Bx(1, y, 1) + (−y + cq1)By(1, y, 1) + BT (1, y, 1) ≥ 1, (6.12)

or equivalently

(q2ϕ(y)− q1yϕ
′(y))(c− 1) + ϕ′(y)(cq1 − y) + (β + 1)ϕ(y)− αyϕ′(y) ≥ 1.

Since q2/q1 = (1 + β)/(1 + α), this can be rewritten in the form

(q2ϕ(y)− q1yϕ
′(y))

(
c+

α+ 1

q1
− 1

)
+ ϕ′(y)cq1 ≥ 1.

This estimate holds for all c, we may optimize over this parameter. Putting

c =

(
y − q2ϕ(y)

q1ϕ′(y)

)1/(q1−1)

,

we obtain the desired differential inequality.
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Now, let us assume that the differential inequality (6.11) is actually an equality. This leads
us to the following candidate for the Bellman function. Namely, let ϕ be the solution of the
differential equation (6.11) with the initial condition (6.10) (of course, we need to show that
such a solution exists; this will be done below). Then the candidate B is obtained via the
identity (6.8), i.e.,

B(x, y, T ) = xq2T β+1ϕ
( y

xq1Tα

)
. (6.13)

6.4 Proof of B ≤ B

We start the formal analysis by showing that B is well-defined. To this end, we need the
rigorous definition of ϕ. This will be proved with the help of the following statement.

Lemma 6.4.1. For any s > γq1−1 there is a unique u = u(s) ∈ (0, γ) which satisfies the identity

q2(q1 − 1)

q2 − q1

∫ γ

u
(γ − w)q1/(q2−q1)wq1(q1−1)/(q2−q1)+q1−2dw

= (s− uq1−1) (γ − u)q1/(q2−q1) uq1(q1−1)/(q2−q1).

(6.14)

Furthermore, lims→γq1−1 u(s) = γ and lims→∞ u(s) = 0.

Proof. For a fixed s, consider the difference of the left- and the right-hand side as a function
of u ∈ (0, γ) and denote it by F (u). A bit lengthy computation shows that

F ′(u) =
q1

q2 − q1
(γ − u)q2/(q2−q1)−1 uq1(q1−1)/(q2−q1)−1G(u),

where G(u) = s(q1u − q1 + 1 + α) − uq1 . Since G′(u) = q1(s − uq1−1), the function G is
increasing on the interval (0, γ). Note that G(0) = s(−q1 + 1 + α) < 0 and

G (γ) = γ
(
s− γq1−1

)
> 0,

so there is a unique u0 such that the function G is negative on (0, u0) and positive on (u0, γ).
This implies that F decreases on (0, u0) and increases on (u0, γ); since F (0) > 0 and F (γ) = 0,
the existence of u(s) is proved. The limiting behavior of this function as s→ γq1−1 or s→∞
follows quickly from the definition (6.14).

Letting s→∞ in (6.14) and using the fact that u(s)→ 0, we see that

q2(q1 − 1)

q2 − q1

∫ γ

0
(γ − w)q1/(q2−q1)wq1(q1−1)/(q2−q1)+q1−2dw

= γq1/(q2−q1) lim
s→∞

su(s)q1(q1−1)/(q2−q1),

or equivalently,

lim
s→∞

sq2/q1−1u(s)q1−1

=

q2(q1 − 1)

q2 − q1
·

Γ
(

q2
q2−q1

)
Γ
(
q2(q1−1)
q2−q1

)
Γ
(
q1q2
q2−q1

)
q2/q1−1

γq2(q1−1)/q1 ,
(6.15)

by the properties of beta function. We are ready for the proof of the existence of the function
ϕ.
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Lemma 6.4.2. There is an increasing function ϕ :
[
γq1−1,∞

)
→ R, satisfying the differential

equation

(q1 − 1)

γ −(sϕ′(s)− q2
q1
ϕ(s)

ϕ′(s)

)1/(q1−1)
(sϕ′(s)− q2

q1
ϕ(s)

)
= 1 (6.16)

for s > γq1−1 and the initial condition ϕ
(
γq1−1

)
= q1

q2γ
. Furthermore, we have ϕ(s) ≤ Cq2p,q1,q2sq2/q1

for all s.

Proof. Define ϕ by the formula

ϕ(s) =
q1(s− uq1−1(s))

q2(q1 − 1)uq1−1(s)(γ − u(s))
, s > γq1−1,

where u comes from the previous lemma. Some lengthy calculations show that

ϕ′(s) =
1

(q1 − 1)uq1−1(s)(γ − u(s))
=

q2
q1
ϕ(s)

s− uq1−1(s)
.

Consequently, we have u(s) = (s − q2
q1
ϕ(s)/ϕ′(s))1/(q1−1) and (6.16) follows. To prove the

initial condition, recall that by the previous lemma,

lim
s→γq1−1

u(s) = γ

and hence, by the definitions of ϕ and u,

lim
s→γq1−1

ϕ(s) = lim
s→γq1−1

q1

∫ γ
u (γ − w)q1/(q2−q1)wq1(q1−1)/(q2−q1)+q1−2dw

(q2 − q1) (γ − u(s))q2/(q2−q1) (u(s))q2(q1−1)/(q2−q1)
=

q1

q2γ
,

where in the last line we have used de l’Hospital rule. Finally, to establish the majorization
ϕ(s) ≤ Cq2p,q1,q2s

q2/q1 , one easily shows that the function s 7→ ϕ(s)/sq2/q1 is increasing and
converges to Cq2p,q1,q2 as s → ∞. Indeed, by differentiation, the monotonicity follows from
the estimate ϕ′(s)s ≥ q2

q1
ϕ(s) (which obviously holds), and the formula for the limit is a

consequence of the definition of ϕ and the identity (6.15).

Thus we have shown that the candidate B given by (6.13) is well-defined. We turn our
attention to its properties.

Lemma 6.4.3. We have

Bx(x, y, T ) · c− x
T

+By(x, y, T ) · c
q1Tα − y

T
+BT (x, y, T ) ≥ xq2T β. (6.17)

Proof. We will use certain formulas obtained in the previous section. First, note that we have
the following analogue of (6.12):

(−1 + c)Bx(1, s, 1) + (−s+ cq1)By(1, s, 1) +BT (1, s, 1) ≥ 1. (6.18)

To show this, observe that By(1, s, 1) > 0 (since ϕ is an increasing function) and

Bx(1, s, 1) = q2ϕ(s)− q1sϕ
′(s) ≤ 0.
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Hence the expression on the left of (6.18), considered as a function of c ≥ 0, attains its mini-
mum at c = ((−Bx(1, s, 1)/(q1By(1, s, 1))))1/(q1−1). But this minimal value is equal to 1: this
is equivalent to the differential equation (6.16), as we have already checked in the previous
section. Hence (6.18) holds; replacing c with cx, we get

(−1 + cx)Bx(1, s, 1) + (−y + cq1xq1)By(1, s, 1) +BT (1, s, 1) ≥ 1. (6.19)

Put s = x−q1yT−α. It follows directly from the definition of B that

Bx(x, y, T ) = xq2−1T β+1Bx(1, x−q1yT−α, 1),

By(x, y, T ) = xq2−q1T β+1−αBy(1, x
−q1yT−α, 1)

and
BT (x, y, T ) = xq2T βBT (1, x−q1yT−α, 1).

Combining these identities with (6.19) yields the claim. Let us also record that if

c =

(
− Bx(x, y, T )

q1TαBy(x, y, T )

)1/(q1−1)

, (6.20)

then both sides if (6.17) are equal. This follows from the proof above.

Now we will show that B satisfies the following main inequality.

Lemma 6.4.4. For any S, T > 0, any x, y and c ∈ [0, x] we have

B

(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
≥ B(x, y, T ) +

(
Tx+ Sc

T + S

)q2 (T + S)β+1 − T β+1

β + 1
.

(6.21)

Proof. Define auxiliary functions X, Y : [T, S + T ]→ [0,∞) by the formulas

X(t) =
Tx+ (t− T )c

t
, Y (t) =

1

t

(
Ty + cq1 · t

α+1 − Tα+1

α+ 1

)
.

We compute that

d
dt
B(X(t), Y (t), t)

= Bx(X(t), Y (t), t) · T (c− x)

t2

+By(X(t), Y (t), t) ·
(
−Ty + (α+ 1)−1cq1(tα+1 − Tα+1)

t2
+ cq1tα−1

)
+BT (X(t), Y (t), t).

(6.22)

However, by (6.17), the expression

Bx(X(t), Y (t), t) · c−X(t)

t
+By(X(t), Y (t), t) · c

q1tα − Y (t)

t
+BT (X(t), Y (t), t)
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is not smaller than X(t)q2tβ. In addition, we have

c−X(t)

t
=
T (c− x)

t2

and
cq1tα − Y (t)

t
= −Ty + (α+ 1)−1cq1(tα+1 − Tα+1)

t2
+ cq1tα−1,

so by (6.22), we obtain

d
dt
B(X(t), Y (t), t) ≥ X(t)q2tβ ≥

(
Tx+ Sc

T + S

)q2
tβ.

Here in the last line we have used the inequality X(t) ≥ (Tx+Sc)/(T +S), which is a direct
consequence of the assumption c ≤ x. This proves that

B(X(T + S), Y (T + S), T + S) ≥ B(X(T ), Y (T ), T ) +

∫ T+S

T

(
Tx+ Sc

T + S

)q2
tβdt,

and it remains to use the identities (X(T ), Y (T ), T ) = (x, y, T ) and

(X(T + S), Y (T + S), T + S)

=

(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
.

The claim is established.

Remark 6.4.5. Later on, we will need to know when both sides of (6.21) are almost equal.
Of course, this is true if we let S → 0, but actually the reasoning from the previous section
allows to extract an „infinitesimal” version of this statement: namely, if S → 0 and we let

c =

(
−Bx(X(T ), Y (T ), T )

q1TαBy(X(T ), Y (T ), T )

)1/(q1−1)

,

then the difference of the left- and the right-hand side is of order o(S). This follows from the
proof of Lemma 6.4.3.

We are ready for the proof of the key estimate.

Proof of B ≤ B. Let (Ω, µ) be an arbitrary measure space with µ(Ω) = T and let f : Ω →
[0,∞) be a measurable function belonging to the class C(x, y, T ).

Step 1. Reductions. If equality holds in (6.3), then there is nothing to prove: we already
know that B = B at such point. So, suppose that we have strict inequality in (6.3); then
by a simple approximation, we may assume that 1

T

∫ T
0 tα[f∗(t)]q1dt < y. Next, we replace f

by an appropriate simple function. To this end, let N be a huge integer and let g = gN be
the conditional expectation of f with respect to T N : that is, g is constant on each element
Q of T N and equal to 1

µ(Q)

∫
Q fdµ there. Clearly, g has the same average as f ; furthermore,

by Doob’s martingale convergence theorem (and the assumption (iv) on the tree), we have
gN → f µ-almost everywhere and hence also ‖gN‖Lp,q1 → ‖f‖Lp,q1 ; thus in particular gN ∈
C(x, y, T ) provided N is large enough. Furthermore,MgN ≤ Mf andMgN ↑ Mf . Thus,
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an upper estimate for ‖MgN‖Lp,q2 will also imply the same bound for ‖Mf‖Lp,q2 . So, let
N be fixed. Our final reduction is that we may assume that gN =

∑M
k=1 ak1Ak for some

pairwise disjoint setsAk of the same measure µ(Ω)/M = T/M : this can be seen by modifying
the generation T N so that its elements have (almost) equal measures and discarding the
generations T N+1, T N+2, . . .. From now on, we will write g instead of gN . We need to prove
that ∫ T

0
tβ[(Mg)∗(t)]q2dt ≤ B(x, y, T ). (6.23)

This will be done by induction.
Step 2. Proof of (6.23) for M = 1. Then both g andMg are constant and equal to x on Ω

and, in addition,

y ≥ 1

T

∫ T

0
tα(g∗(t))q1dt = cq1Tα/(α+ 1). (6.24)

Note that B ≥ 0, so (6.21) implies

B

(
Tx+ Sc

T + S
, (T + S)−1

(
Ty + cq1 · (T + S)α+1 − Tα+1

α+ 1

)
, T + S

)
≥
(
Tx+ Sc

T + S

)q2 (T + S)β+1 − T β+1

β + 1
.

So, letting T → 0 we get, by the continuity of B,

B(c, cq1Sα/(α+ 1), S) ≥ cq2Sβ+1/(β + 1).

Now replace c with x, S with T and use the inequality (6.24) together with the monotonicity
of B with respect to the variable y to get

xq2T β+1/(β + 1) ≤ B(x, y, T ).

This is precisely (6.23) (for M = 1).
Step 3. Induction step. It follows from the weak-type inequality for M that there exists

k ∈ {1, 2, . . . ,M} such thatMg = 1
µ(Ω)

∫
Ω fdµ = x on Ak. Consider the space Ω̃ = Ω \ Ak

equipped with the restricted measure µ and the tree T̃ which consists of all sets of the form
A \ Ak, A ∈ T , provided that the difference is nonempty. Denote the associated maximal
operator by M̃.

Obviously, there is an index m such that g = min g on Am. If k 6= m, then we replace g
with

g̃ = ak1Am + am1Ak +
∑

r/∈{k,m}

ar1Ar ,

i.e., we switch the values of g at the sets Ak and Am. Since µ(Ak) = µ(Am), this modification
does not change the nonincreasing rearrangement of g. On the other hand, note that on Ak
we have

Mg̃ ≥ 1

µ(Ω)

∫
Ω
g̃dµ =

1

µ(Ω)

∫
Ω
gdµ =Mg.

Furthermore, we have
M̃g̃ ≥Mg on Ω \Ak. (6.25)
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Indeed, suppose that u ∈ Ω \Ak and let A be the element of T containing u such that

Mg =
1

µ(A)

∫
A
gdµ. (6.26)

There may be many sets A with this property; if this is the case, we choose A which belongs
to T j with j as small as possible. If A ∩ Ak = ∅, then g̃ ≥ g on A and hence M̃g̃(u) ≥

1
µ(A)

∫
A g̃dµ ≥ Mg(u). On the other hand, if Ak ⊂ A, then 1

µ(A)

∫
A gdµ ≤ x, by the very

definition of Ak, and hence we must actually have equality: see (6.26). Hence

M̃g̃(u) ≥ 1

µ(Ω \Ak)

∫
Ω\Ak

g̃dµ ≥ 1

µ(Ω)

∫
Ω
gdµ = x =Mg(u)

and the desired majorization is established. Note that we may apply induction hypothesis
to g̃, obtaining ∫ T (M−1)/M

0
tβ
[
(M̃g̃)∗(t)

]q2dt ≤ B (x̃, ỹ, T (M − 1)/M) ,

where

x̃ =
1

µ(Ω̃)

∫
Ω̃
g̃dµ, ỹ =

1

µ(Ω̃)

∫ µ(Ω̃)

0
tα(g̃∗(t))q1dt.

Hence∫ T

0
tβ
[
(Mg)∗(t)

]q2dt

=

∫ T (M−1)/M

0
tβ
[
(Mg)∗(t)

]q2dt+

∫ T

T (M−1)/M
tβ
[
(Mg)∗(t)

]q2dt

≤
∫ T (M−1)/M

0
tβ
[
(M̃g̃)∗(t)

]q2dt+ xq2(β + 1)−1T β+1

(
1−

(
M − 1

M

)β+1
)

≤ B(x̃, ỹ, T (M − 1)/M) + xq2(β + 1)−1T β+1

(
1−

(
M − 1

M

)β+1
)
.

(6.27)

In the light of (6.21) (applied with x := x̃, y := ỹ, S := T/M , T := T (M − 1)/M and
c := am = min g), the latter expression is not bigger thanB(x, y, T ). This completes the proof
of (6.23) and the inequality B ≤ B follows.

Proof of (6.2). Take any measure space (Ω, µ), any measurable function f : Ω→ R and set

T = µ(Ω), x =
1

T

∫ T

0
f∗(t)dt, y =

1

T

∫ T

0
tα(f∗(t))q1dt.

Then by Lemma 6.4.2,

‖Mf‖q2Lp,q2 (Ω,µ) =

∫ T

0
tβ[(Mf(t))∗]q2dt

≤ B(x, y, T ) ≤ xq2T β+1 · Cq2p,q1,q2
( y

xq1Tα

)q2/q1
= Cq2p,q1,q2‖f‖

q2
Lp,q1 .

This completes the proof.
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6.5 The inequality B ≥ B

It is convenient to split the reasoning into two parts.

6.5.1 On the search of the extremizer

First we will sketch some steps which lead to the discovery of extremal function. Let us em-
phasize here that the argumentation will be informal and brief, its purpose is to discover the
formula for the nonincreasing rearrangement of the appropriate function. From the formal
point of view, the reader might skip this subsection and proceed to the next one; however,
we believe that the contents of this subsection is helpful as it explains the origins of the com-
plicated formulas which will appear later. The idea is very simple: we will inspect carefully
the above proof of the inequality B ≤ B and try to find a function g for which all the in-
equalities become (almost) equalities. Fix a huge integer N (it will be sent to infinity in a
moment). First, we will consider a special measure space (Ω, µ): the interval (0, 1] with the
Lebesgue measure, and equip it with the tree T , where for any 0 ≤ n ≤ N , the family T n
contains the intervals (0, (N − n)/N ], ((N − n)/N, (N − n+ 1)/N ], . . ., (1− 1/N, 1]. In what
follows, we will assume that g is a nonincreasing function. ThenMg also has this property,
and hence the function g̃, appearing in the proof of B ≤ B, coincides with g on its domain
(therefore in (6.25) we will have equality). Thus the only inequalities which must be turned
into (almost) equalities is the last passage in (6.27) and the fact that the final expression in
(6.27) is not bigger than B(x, y, T ). Let us look at the second estimate: to see when both
sides become almost equal, we go back to Remark 6.4.5. This statement suggests that on the
interval (m/N, (m+ 1)/N ], g should equal

(
−Bx(X(m/N), Y (m/N),m/N)

q1(m/N)αBy(X(m/N), Y (m/N),m/N)

)1/(q1−1)

= X(m/N)

(
s− q2ϕ(s)

q1ϕ′(s)

)1/(q1−1)

= X(m/N)u(s),

where

X(m/N) =
1

m/N

∫ m/N

0
g(t)dt, Y (m/N) =

1

m/N

∫ m/N

0
tαg(t)q1dt

and s = X−q1(m/N)Y (m/N)(m/N)−α. Now let N → ∞: we obtain that for any t ∈ (0, 1],
we should have

ξ(t) :=
g(t)

1
t

∫ t
0 g(r)dr

= u

((
1

t

∫ t

0
g(r)dr

)−q1 (1

t

∫ t

0
rαg(r)q1dr

)
t−α

)
. (6.28)

Plug this into the definition of u: we get

q2(q1 − 1)

q2 − q1

∫ γ

ξ(t)
(γ − w)q1/(q2−q1)wq1(q1−1)/(q2−q1)+q1−2dw

=

(
Y (t)

tαX(t)
− ξ(t)q1−1

)
(γ − ξ(t))q1/(q2−q1) ξ(t)q1(q1−1)/(q2−q1).
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Now we differentiate both sides with respect to t. After some lengthy and tedious computa-
tions, we get the equivalent equality I · II = 0, where

I = ξ′(t) +
q2 − q1

q1
· ξ(t) (γ − ξ(t))

t

and II is a certain complicated expression. Assuming that the term I vanishes, we obtain a
simple differential equation for ξ, whose general solution is

ξ(t) = γ

(
1 + dt

γ
q2−q1
q1

)−1

.

Here d is an arbitrary real number. Having identified ξ, we easily findX and g: sinceX ′(t) =
g(t)/t−X(t)/t, (6.28) implies

d
dt
X(t) = −X(t)

t
+
X(t)ξ(t)

t
.

This is easily solved:

X(t) = ct−α/(q1−1)

(
1 + dt

γ
q2−q1
q1

)−q1/(q2−q1)

,

(where c is an arbitrary number) and hence we obtain the following candidate for the ex-
tremizer:

g(t) = ct−α/(q1−1)

(
1 + dt

γ
q2−q1
q1

)−q2/(q2−q1)

. (6.29)

Now, we can choose c and d so that∫ 1

0
g(t)dt = x and

∫ 1

0
tα(g(t))q1dt = y. (6.30)

Indeed: we compute that

R(d) :=

∫ 1
0 t

α(g(t))q1dt(∫ 1
0 g(t)dt

)q1 =

∫ 1
0 t
−α/(q1−1)

(
1 + dt

γ
q2−q1
q1

)−q2q1/(q2−q1)

dt(∫ 1
0 t
−α/(q1−1)

(
1 + dt

γ
q2−q1
q1

)−q2/(q2−q1)

dt

)q1

is a continuous function of d ∈ [0,∞) and

R(0) = γ, lim
d→∞

R(d) =∞.

Therefore, there is d for which R(d) = y/xq1 , and then we choose c so that
∫ 1

0 g = x.
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6.5.2 A formal verification

Now we can prove rigorously the bound B(x, y, T ) ≥ B(x, y, T ). By homogeneity, we may
assume that T = 1: that is, we assume that (Ω, µ) is a probability space. We repeat the above
arguments in the reverse direction. Let g be given by (6.29), where c, d are chosen so that
(6.30) holds. Then a careful inspection of the above arguments (or a direct calculation) shows
that the function

G(t) := B

(
1

t

∫ t

0
g(r)dr,

1

t

∫ t

0
rα(g(r))q1dr, t

)
+

∫ 1

t
rβ
(

1

r

∫ r

0
g(w)dw

)q2
dr

is constant. We have G(1) = B(x, y, 1); let us check how G behaves in the neighborhood of
0. Note that

B

(
1

t

∫ t

0
g(r)dr,

1

t

∫ t

0
rα(g(r))q1dr, t

)
=

(
1

t

∫ t

0
g(r)dr

)q2
tβ+1ϕ(s),

where

s =

(
1

t

∫ t

0
rαg(r)q1dr

)(
1

t

∫ t

0
g(r)dr

)−q1
t−α.

Now if we let t→ 0, then s→ γq1−1 as t→ 0, and the factor(
1

t

∫ t

0
g(r)dr

)q2
tβ+1

converges to zero. Therefore

lim
t→0

G(t) =

∫ 1

0
rβ
(

1

r

∫ r

0
g(w)dw

)q2
dr

and hence we have proved that∫ 1

0
rβ
(

1

r

∫ r

0
g(w)dw

)q2
dr = B(x, y, 1).

Now we return to the general context. Let (Ω, µ) be a nonatomic probability space
equipped with an arbitrary tree structure T . The idea is very simple: we will construct a
random variable f such that the distributions of f and g coincide, while the distributions
ofMf and the function t 7→ 1

t

∫ t
0 g are arbitrarily close. Let us recall a notion which is fre-

quently used in probability theory.

Definition 6.5.3. Suppose that f1, f2 are two measurable functions on some measure spaces
(Ωi, µi) with µi(Ωi) > 0, i = 1, 2.

(i) Suppose that µ1(Ω1) = µ2(Ω2). The measurable functions f1 : Ω1 → R and f2 : Ω2 → R
are said to have the same distribution, if their nonincreasing rearrangements coincide: f∗ =
g∗.

(ii) Without the assumption µ1(Ω1) = µ2(Ω2), the functions f1 and f2 are said to have
the same conditional distribution, if their nonincreasing rearrangements, with respect to the
normalized measures µ1/µ1(Ω1), µ2/µ2(Ω2), coincide.
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We will freely use the fact that if (Ω1, µ1), (Ω2, µ2) are nonatomic measure spaces with
µi(Ωi) > 0, i = 1, 2, then for any measurable function f1 on Ω1, there exists a measurable
function f2 on Ω2 with the same conditional distribution. See [19, p. 65] or Lemma 2.3 in
[50].

Now we proceed to the construction. Let N ≥ 2 be a fixed integer.
Step 1. First we use Lemma 2.5.2 with the sequence aj = (j − N)/N , j = 0, 1, ..., N − 1

to obtain the families (Qj)N−1
j=0 and the corresponding decreasing sequence of sets (Ej)

N−1
j=0 .

Additionally, denote EN = ∅. This sequence corresponds to the sequence [0, 1) ⊃ [0, 1 −
N−1) ⊃ [0, 1− 2N−1) ⊃ . . . ⊃ [0, N−1) ⊃ ∅ which appears in the above analysis of g. By the
lemma, for any Q ∈ Qj we have µ(Q ∩ Ej+1) = µ(Q) · (1− (N − j)−1) and, for each k ≥ j,

µ(Q ∩ Ek)
µ(Q)

=
N − k
N − j

=
|[0, 1− k/N)|
|[0, 1− j/N)|

. (6.31)

Step 2. For each j the set Ej \ Ej+1 is the union of pairwise almost disjoint sets Q \ Ej+1,
Q ∈ Qj . Let f : Ω → R be a function whose distribution is uniquely determined by the
following requirement: for any j and any Q ∈ Qj , the function f restricted to Q \ Ej+1 and
the function g restricted to [1− (j + 1)/N, 1− j/N) have the same conditional distributions.
Hence, if we fix j and sum over all Q ∈ Qj , we see that the distribution of f restricted to
Ej\Ej+1 and the distribution of g restricted to [1−(j+1)/N, 1−j/N) coincide. Consequently,
f and g have the same distribution and hence f ∈ C(x, y, 1).

It remains to handle the maximal function Mf , and this is the place where the fractal
properties will be used. An important observation is that for any j and any Q ∈ Qj the dis-
tribution of f restricted to Q and the distribution of g restricted to [0, 1− j/N) conditionally
coincide; this follows from (6.31). So, in particular,

1

µ(Q)

∫
Q
fdµ =

N

N − j

∫
[0,1−j/N)

g(r)dr.

Consequently, by the definition of the maximal function, we obtain

Mf ≥ N

N − j

∫
[0,1−j/N)

g(r)dr on Q,

and since Q ∈ Qj was arbitrary, the above estimate holds on the whole Ej . By the very
definition of the nonincreasing rearrangement, this yields

(Mf)∗(t) ≥ 1

t+N−1

∫ t+N−1

0
g(r)dr,

since µ(Ej) = 1− j/N . Therefore,∫ 1

0
tβ
[
(Mf)∗(t)

]q2dt ≥
∫ 1

0
tβ

(
1

t+N−1

∫ t+N−1

0
g(r)dr

)q2
dr.

By Lebesgue’s monotone convergence theorem, the expression on the right converges, as
N →∞, to ∫ 1

0
tβ
(

1

t

∫ t

0
g(r)dr

)q2
dt = B(x, y, 1).

This, by the very definition of B, shows that B(x, y, 1) ≥ B(x, y, 1) and completes the proof.
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6.6 On an alternative proof of (6.2)

It was pointed out by the Referee of [59] that the Lorentz-norm estimate (6.2) can be estab-
lished directly, without the use of the Bellman function method. The purpose of this section
is to sketch briefly the main steps of the argumentation.

We start from an observation concerning the weak-type bound (1.1). Namely, it is well-
known that the probabilistic version of this estimate is equivalent to

(Mf)∗(t) ≤ 1

t

∫ t

0
f∗(s)ds for all t ∈ (0, 1].

This inequality is extremely sharp: as we have seen above, for any nonincreasing and in-
tegrable function g and any probability space (Ω, µ) equipped with a tree T , there exists a
random variable f such that the distributions of f and g coincide, while the distributions
ofMf and t 7→ 1

t

∫ t
0 g are as close as we wish. (For the probabilistic version of this sharp-

ness, see Dubins and Gilat [14]). This observation allows to reduce the problem of finding
the sharp constant in (6.2) to the question about the best constant in a modified Hardy’s
inequality (∫ 1

0
t1/p

(
1

t

∫ t

0
g(s)ds

)q1 dt
t

)1/q1

≤ Cp,q1,q2
(∫ 1

0
t1/pgq2(t)

dt
t

)1/q2

(6.32)

tested against non-increasing functions g; the two constants coincide. The complete analysis
of the latter estimate, for the full range of parameters p, q1, q2 can be found, for example, in
the paper by Persson and Samko [63]. Interestingly, they studied the inequality for general
(i.e., not necessarily monotone) functions and it turns out that the extremizers are nonin-
creasing if and only if q1 ≤ q2. In other words, both approaches - exploiting the Bellman
function and that above - allow to obtain the sharp version of the estimate (6.2) only in this
limited range of q1 and q2.

Several comments are in order. The proof of the estimate (6.32) presented in [63] rests
on a number of clever observations and substitutions which reduce the claim to the classical
Bliss’ inequality(∫ ∞

0

(∫ x

0
g(t)dt

)q
x−q/p

′−1dx
)1/q

≤ cp,q
(∫ ∞

0
gp(x)dx

)1/p

,

for 1 < p ≤ q < ∞. This estimate was established in [2] with the use of the calculus of vari-
ations (see also [51] for an alternative proof). We strongly believe that our approach to (6.2),
which depends on the Bellman function method, is of independent interest and connections.
One of its remarkable features is its flexibility, which possibly enables the unified treatment
of Lorentz-norm estimates in related contexts.



80 CHAPTER 6. SHARP UNWEIGHTED INEQUALITIES IN LORENTZ SPACES



Chapter 7

Sharp inequalities for the harmonic
maximal operator

7.1 Motivation and the statement of results

In our considerations above, we have encountered two modifications of the dyadic maximal
function: the geometric maximal operator MG and the harmonic maximal operator MH.
Recall that these objects are given by

MGf(x) = sup
{

exp(〈log |f |〉Q) : Q ∈ D(Rd), x ∈ Q
}

and
MHf(x) = sup

{〈
|f |−1

〉−1

Q
: Q ∈ D(Rd), x ∈ Q

}
,

where D(Rd) is the lattice of dyadic cubes in Rd. The behavior of the triple M , MG and MH

is similar to that of the arithmetic, geometric and the harmonic averages:

|x1|+ |x2|+ . . .+ |xn|
n

, |x1x2 . . . xn|1/n and
(
|x1|−1 + |x2|−1 + . . .+ |xn|−1

n

)−1

,

where x1, x2, . . ., xn are arbitrary real numbers. In particular, we have the pointwise bound
Mf ≥MGf ≥MHf and hence all the estimates which hold true for M , are also valid for the
remaining two maximal functions. However, the optimal constants are different in general,
and one might ask for the explicit derivation of their values.

We will be interested in a certain two-weight estimate for the harmonic maximal opera-
tor. Our motivation comes from the following important question. As we have discussed in
the introductory section, given 1 < p < ∞, the class of the weights w for which the norm
‖M‖Lp(w)→Lp(w) is finite, is characterized by Muckenhoupt’s condition Ap. One may ask
about the counterpart of this result in the case when the Lp spaces are based on two different
weights. That is, the problem is to characterize those pairs (u, v) of weights, for which the
norm ‖M‖Lp(v)→Lp(u) is finite. Motivated by the form of the Muckenhoupt’s result (which
corresponds to the case u = v), it seems reasonable to expect that the condition reads

[u, v]Ap := sup
{
〈u〉Q〈v1/(1−p)〉p−1

Q : Q ∈ D(Rd)
}
<∞. (7.1)

81
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But this is not the case: the above condition is equivalent to ‖M‖Lp(v)→Lp,∞(u) < ∞, which
is slightly weaker. The problem of the boundedness on Lp remained open for a few years
and was finally solved by Sawyer [69]: the characterization can be expressed by the so-called
testing condition ∫

Q

(
M(v−1/(p−1)χQ)

)p
udx ≤ c

∫
Q
v−1/(p−1)dx. (7.2)

In other words, given 1 < p < ∞ and a pair (u, v) of weights, the estimate
∫
Rd(Mf)pudx ≤

Cp
∫
Rd f

pvdx holds true for all functions f if and only if it holds (possibly, with a different
constant) for special “test functions” of the form f = v−1/(p−1)χQ. Of course, the implication
‘⇒’ is trivial, the main difficulty lies in the passage from the test functions to general f ’s. In
fact, we have the following quantitative statement: if the estimate (7.2) holds true, then we
have ‖M‖Lp(v)→Lp(u) ≤ pc

p−1 and the multiplicative factor p/(p− 1) is the best (see [43, 54]).
A similar result is true for the geometric maximal operator (cf. [56]) and it is natural

to ask about the analogous statement for the harmonic maximal function. It turns out that
in contrast to the context of the maximal operator, here the characterization is given by an
appropriate version of (7.1). Namely, it follows from [11] that for any fixed 0 < p < ∞, the
operator MH is bounded as an operator from Lp(v) to Lp(u) if and only if the pair (u, v) of
weights satisfies

[u, v]A−p := sup
Q∈D(Rd)

〈u〉Q〈v1/(p+1)〉−p−1
Q <∞.

We will extend this result to the more general context of probability spaces with tree struc-
tures and provide the appropriate sharp quantitative statement. Recall that the associated
dyadic-like harmonic maximal operator is given by

MHf(x) = sup
{〈
|f |−1

〉−1

Q,µ
: Q ∈ T , x ∈ Q

}
.

For a pair (u, v) of weights on Ω, the quantity [u, v]A−p is given by the same formula as above,
but the averages are calculated over elements of T and with respect to µ.

We will prove the following statement, basing on the paper [59].

Theorem 7.1.1. If 0 < p < ∞ and (u, v) is a pair of weights on Ω satisfying [u, v]A−p < ∞, then
we have ∥∥MH∥∥

Lp(v)→Lp(u)
≤ (p+ 1)

p+1
p

p
[u, v]

1/p
A−p

. (7.3)

The estimate is sharp: for each individual triple (Ω, µ, T ), any 0 < p <∞, any c > 0 and any ε > 0
there is a pair (u, v) with [u, v]A−p ≤ c such that

∥∥MH∥∥
Lp(v)→Lp(u)

>
(p+ 1)

p+1
p

p
c1/p − ε.

Our approach, in a sense, follows that used by Sawyer in [69]. Namely, we will prove
a sharp version of the testing condition: see Theorem 7.3.3. This will enable us to apply
a certain change-of-measure argument, which will allow to deduce the result from its un-
weighted counterpart, established in the earlier Theorem 7.3.1. Fortunately, sharp constants
obtained in both these theorems combine into the best constant in (7.3).
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7.2 Bellman function method for harmonic maximal operators

The modification of the approach is based on the following relation between MH and the
minimal operator M, mentioned in the introductory chapter:

Mf(x) = inf
{
〈|f |〉Q,µ : Q ⊂ T , x ∈ Q

}
.

The relation isMHf = (M(|f |−1))−1. Hence it is enough to develop the version of the Bell-
man function method for M. As usual, we may restrict ourselves to nonnegative functions,
and then the modification is straightforward: the definition of M differs from that ofM just
by the use of infimum instead of supremum. Hence, it is enough to replace the maxima
appearing in the technique by the minima. Formally, we proceed as follows. Suppose that
V : {(x, y) : 0 ≤ y ≤ x} → R is a fixed function and we aim at establishing the estimate∫

Ω
V (f,Mf)dµ ≤ 0 (7.4)

for all probability spaces with tree structures T and all T -simple positive functions f . The
validity of this inequality is equivalent to the existence of a function B : {(x, y) : 0 < y ≤
x} → R, enjoying the following conditions:

1◦ (Initial condition). For any x > 0 we have B(x, x) ≤ 0.

2◦ (Majorization). We have B ≥ V on {(x, y) : 0 < y ≤ x}.

3◦ (Concavity). For any 0 < y ≤ x, any numbers x1, x2 > 0 and λ1, λ2 ∈ (0, 1) such that
λ1 + λ2 = 1 and λ1x1 + λ2x2 = x, we have

B(x, y) ≥ λ1B(x1, y ∧ x1) + λ2B(x2, y ∧ x2),

where a ∧ b = min{a, b}.

Furthermore, if (7.4) holds true, then the least special function satisfying the above require-
ments is given by

B(x, y) = sup

∫
Ω
V (f, y ∧Mf)dµ.

Here the supremum is taken over the class of all nonnegative, T -simple functions f satis-
fying

∫
Ω fdµ = x, the tree T and the probability space (Ω, µ) are also allowed to vary. The

proof of the above statements is the mere repetition of the arguments used in Chapter 2.
However, the above modification concerns the unweighted setting, while we are inter-

ested in the two-weight setting. As we will see in the next section, we will need to use
(at least in one of our partial results) the version of the technique for weights satisfying
[u, v]A−p < ∞. We have decided not to present the abstract formulation of the method here
(in the spirit of the above considerations): it might look quite confusing. Instead, we have
decided to illustrate it on a particular example (the estimate (7.6)), the reader will easily
recognize the main features of the approach in the proof.
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7.3 Proof of (7.3)

Throughout, p and c are given positive numbers and (Ω, µ, T ) is a fixed probability space
with a tree structure. Our first result is the sharp unweighted inequality for the harmonic
maximal operator.

Theorem 7.3.1. We have ‖MH‖Lp(Ω)→Lp(Ω) = (p+ 1)/p.

Proof. The inequality ‖MH‖Lp(Ω)→Lp(Ω) ≤ (p + 1)/p will follow if we show that for any T -
simple and positive function f on Ω we have∫

Ω
(Mf)−pdµ ≤

(
p+ 1

p

)p ∫
Ω
f−pdµ.

This estimate is of the form (7.4), with V (x, y) = y−p−
(
p+1
p

)p
x−p. The associated Belmman

function B is given by the formula

B(x, y) =
p2

p+ 1

(
xy−p−1 − p+ 1

p
y−p
)
.

Some steps which lead to the discovery of this object are presented in Remark 7.3.2 below. It
remains to verify the properties 1◦, 2◦ and 3◦. The initial condition is trivial. The majorization
follows at once from the mean-value theorem for the convex function t 7→ t−p, t > 0 (simply
multiply both sides ofB ≥ V by yp and substitute t = x/y). To check the concavity, we prove
the stronger pointwise bound

B(x+ h, y ∧ (x+ h)) ≤ B(x, y) +Bx(x, y)h. (7.5)

This is equivalent to the estimate

(x+ h)
(
y ∧ (x+ h)

)−p−1 − p+ 1

p

(
y ∧ (x+ h)

)−p ≤ (x+ h)y−p−1 − p+ 1

p
y−p.

Now if x + h ≥ y, then both sides are equal; if x + h < y, then multiplying both sides by yp

and substituting t = (x+ h)/y transforms the inequality into

p+ 1

p
≤ t+

t−p

p
,

which again follows from the mean-value theorem for the convex function t 7→ t−p.
Thus, the application of the Bellman function method yields ‖MH‖Lp(Ω)→Lp(Ω) ≤ (p +

1)/p. The reverse bound is postponed: we will prove below that a more general two-weight
estimate is also sharp.

Remark 7.3.2. Let us sketch briefly how the function B above was constructed (and how the
optimal constant (p + 1)/p was discovered). The function V is homogeneous of order −p,
so it is natural to expect that B should also have this property; actually, it can be proved
rigorously that the least function, B, must enjoy it. The second hint is indicated by the
inequality (7.5): a little thought leads to the guess that for a fixed y, the function B should be
linear with respect to x. These two observations lead to

B(x, y) = axy−p−1 + by−p.
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Now we verify the conditions 1◦ and 2◦ with V (x, y) = y−p −Cpx−p. The optimization with
respect to a and b reveals that the least C for which these conditions can be guaranteed, is
(p+ 1)/p. Furthermore, for such a C, we need to take a = p2/(p+ 1) and b = −p.

The next step of our analysis is the appropriate version of the testing condition. Consider
the domain

D = Dp,c = {(x, y, z) ∈ (0,∞)3 : x ≤ cyp+1}

(whose form captures the condition [u, v]A−p ≤ c) and let B : D → R be defined by

B(x, y, z) = xz−p + cpz.

This function is a key tool in the proof of the following statement.

Theorem 7.3.3. Suppose that a pair (u, v) of weights on Ω satisfies [u, v]A−p ≤ c. Then for any
R ∈ T we have ∫

R

(
MH

(
v
−1
p+1χR

))p
udµ ≤ (p+ 1)[u, v]A−p

∫
R
v

1
p+1 dµ. (7.6)

The constant (p+ 1)[u, v]A−p is the best possible.

Proof. It is convenient to split the argumentation into three parts.

Step 1. Since R ∈ T , there is an integer m such that R ∈ T m. Consider the functional
sequences (xn)n≥m, (yn)n≥m and (zn)n≥m given by

xn =
∑
Q∈T n

〈u〉Q,µχQ, yn =
∑
Q∈T n

〈
v1/(p+1)

〉
Q,µ

χQ, zn = min
m≤k≤n

yk.

Note that (zn)n≥m corresponds to the localized minimal operator applied to v1/(p+1). Obvi-
ously, for any n ≥ m and any Q ∈ T n, the functions xn, yn and zn are constant on Q and we
have ∫

Q
xn+1dµ = µ(Q)xn|Q,

∫
Q
yn+1dµ = µ(Q)yn|Q. (7.7)

In addition, the sequence (zn)n≥m is nonincreasing and, as we discussed above,

lim
n→∞

zn =MH(v−1/(p+1)
1R)−1 (7.8)

almost everywhere. Finally, by the definition of (xn)n≥m, (yn)n≥m, (zn)n≥m and the assump-
tion [u, v]A−p ≤ c, it follows at once that (xn, yn, zn) ∈ Dp,c.

Step 2. Now we make use of the standard argument: we prove that the sequence(∫
RB(xn, yn, zn)dµ

)
n≥m is nondecreasing. It follows from (7.7) that if n ≥ m and Q is an

element of T n, then∫
Q
B(xn, yn, zn)dµ = µ(Q)B(xn, yn, zn)|Q =

∫
Q
B(xn+1, yn+1, zn)dµ, (7.9)

since the dependence of B on x (and y) is linear. Now, observe that

B(xn+1, yn+1, zn) ≥ B(xn+1, yn+1, zn+1). (7.10)
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Indeed, if zn = zn+1, there is nothing to prove; on the other hand, if zn > zn+1, then neces-
sarily yn+1 = zn+1 < zn (since zn+1 = min{zn, yn+1}) and

B(xn+1, yn+1, zn)−B(xn+1, yn+1, zn+1) =

∫ zn

zn+1

Bz(xn+1, yn+1, s)ds

= p

∫ zn

zn+1

(
− xn+1s

−p−1 + c
)
ds

≥ p
∫ zn

zn+1

(
− xn+1y

−p−1
n+1 + c

)
ds ≥ 0,

where the last estimate follows from the condition [u, v]A−p ≤ c. This completes the proof of
(7.10). Plugging this into (7.9) and summing over all Q ∈ T n which are contained in R, we
obtain the desired monotonicity of the sequence

(∫
RB(xn, yn, zn)dµ

)
n≥m.

Step 3. We are ready for the proof of (7.6). Note that∫
R
xnz

−p
n dµ ≤

∫
R
B(xn, yn, zn)dµ ≤

∫
R
B(xm, ym, zm)dµ,

where in the second passage we have used the previous step. But R ∈ T m, so the functions
xm, ym and zm are constant on R; actually, zm = ym, by the very definition of zm. Since
xm ≤ cyp+1

m (which is due to [u, v]A−p ≤ c), we get B(xm, ym, zm) = xmy
−p
m + cpym ≤ cym +

cpym = c(p+ 1)ym and hence∫
R
B(xm, ym, zm)dµ ≤ µ(R)B(xm, ym, ym)

∣∣
R
≤ c(p+ 1)

∫
R
v1/(p+1)dµ.

On the other hand, xn is the conditional expectation of u on T n, so∫
R
xnz

−p
n dµ =

∫
R
z−pn udµ n→∞−−−→

∫
R

(MH(v−1/(p+1)
1R))pudµ,

by virtue of (7.8) and Lebesgue’s monotone convergence theorem (recall that the sequence
z−1
n is nondecreasing). Putting all the above facts together, we get the desired estimate (7.6).

The sharpness of this inequality will follow immediately from the sharpness of (7.3). See
Remark 7.3.4 below.

Proof of (7.3). Take an arbitrary pair (u, v) with [u, v]A−p = c and an arbitrary integrable
function f > 0. By a simple approximation argument, we may assume that ϕ = f−1 is
measurable with respect to a σ-algebra generated by some generation T N . Then we have
MHf = maxQ∈T n, n≤N 〈ϕ〉−1

Q,µ1Q and hence for each ω ∈ Ω there is an element Q = Q(ω)

belonging to
⋃
n≤N T n such thatMHf(ω) = 〈ϕ〉−1

Q,µ. Such a Q may not be unique: in such
a case we pick the set belonging to T n with n as small as possible. For any Q ∈ T , take
E(Q) = {ω ∈ Q : Q(ω) = Q}. Note that {E(Q)}Q∈T are pairwise disjoint and we have the
linearization

MHf =
∑
Q∈T
〈ϕ〉−1

Q,µχE(Q).

So, we may write ∫
Ω

(MHf)pudµ =
∑
Q∈T
〈ϕ〉−pQ,µu(E(Q)).
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Now we perform a change-of-measure argument: we have

〈ϕ〉Q,µ =
1

µ(Q)

∫
Q
ϕv−1/(p+1) · v1/(p+1)dµ = 〈ϕv−1/(p+1)〉Q,v1/(p+1)〈v1/(p+1)〉Q,µ,

where 〈·〉Q,v1/(p+1) is the average over Q with respect to the measure v1/(p+1)dµ. Plugging
this above, we obtain∫

Ω
(MHf)pudµ =

∑
Q∈T
〈ϕv−1/(p+1)〉−p

Q,v1/(p+1)〈v1/(p+1)〉−pQ,µu(E(Q)). (7.11)

The crucial observation is that there exists a collection {E′(Q)}Q∈T of pairwise disjoint sets
such that

〈v1/(p+1)〉−pQ,µu(E(Q)) = c(p+ 1)v1/(p+1)(E′(Q)). (7.12)

This follows from the inductive application of (7.6). For n > N and Q ∈ T n we have
E(Q) = ∅: this follows directly from the definition of E(Q) and the fact that ϕ is mea-
surable with respect to σ(T N ). Consequently, we may also take E′(Q) = ∅ for such Q. To
see the (backward) induction step, suppose that we defined E′(Q) for all Q ∈ T n+1 and pick
R ∈ T n. By (7.6), we have∑

Q∈T ,Q⊆R
〈v1/(p+1)〉−pQ,µu(E(Q)) ≤

∫
R

(
MH

(
v
−1
p+1χR

))p
udµ ≤ (p+ 1)c

∫
R
v

1
p+1 dµ,

and hence, by the inductive assumption,

〈v1/(p+1)〉−pR,µu(E(R)) ≤ (p+ 1)c

∫
R
v

1
p+1 dµ− (p+ 1)c

∫
R′
v

1
p+1 dµ = (p+ 1)c

∫
R\R′

v
1
p+1 dµ,

where R′ =
⋃
{Q ∈ T : Q ( R}. So, we may pick an appropriate E′(R) ⊂ R \ R′ and the

inductive step is described. Now, plugging (7.12) into (7.11) yields∫
Ω

(MHf)pudµ = c(p+ 1)
∑
Q∈T
〈ϕv−1/(p+1)〉−p

Q,v1/(p+1)v
1/(p+1)(E′(Q))

≤ ‖MH
v1/(p+1)(fv

1/(p+1))‖p
Lp(v1/(p+1))

,

whereMH
v1/(p+1) is the harmonic maximal operator, but calculated with respect to the mea-

sure v1/(p+1). This measure need not be probabilistic, but we still can apply the estimate ‘≤’
of Theorem 7.3.1, performing an appropriate normalization if necessary. As the result, we
get

‖MHf‖Lp(u) ≤ c(p+ 1) ·
(
p+ 1

p

)p ∫
Ω

(fv1/(p+1))pv1/(p+1)dµ = c(p+ 1) ·
(
p+ 1

p

)p
‖f‖pLp(v),

which is the desired claim.

Remark 7.3.4. The inequality (7.6) is sharp, for each individual probability space (Ω, µ) with
a tree T . Indeed, otherwise we would be able to improve the constant in the estimate (7.3);
however, we will see in the next section that this is impossible.
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7.4 Sharpness

Throughout this section, p and c are given positive parameters and (Ω, µ, T ) is a fixed prob-
ability space with a tree. We will show that for each ε > 0 there is a pair (u, v) of weights on
Ω satisfying [u, v]A−p ≤ c and

∥∥MH∥∥
Lp(v)→Lp(u)

>
(p+ 1)

p+1
p

p
c1/p − ε.

It is convenient to split the reasoning into a few parts.

Step 1. Auxiliary geometrical facts and parameters. Pick c̃ ∈ (0, c) and δ, η > 0. If δ is
chosen small enough, then the line ` passing through the points K = (1− δ, c̃(1− δ)p+1) and
L = (1, c̃) lies below the curve y = cxp+1. Fix such a δ and distinguish the point

M =

(
1 + η, c̃

(
1 + η · 1− (1− δ)p+1

δ

))
, (7.13)

which is easily seen to lie on `. See Figure 7.1 below. Note that if we let c̃ → c, then δ
converges to 0.

Figure 7.1: The crucial points and their geometric interpretation: K = (1 − δ, c̃(1 − δ)p+1) and L = (1, c̃) lie on the curve

y = c̃xp+1, the point M =
(

1 + η, c̃
(

1 + η · 1−(1−δ)p+1

δ

))
lies on the line `.

Step 2. Construction. We use Lemma 2.5.2 with the sequence an =
(

η
η+δ

)n
to obtain the

decreasing sequence (En)n≥0 of subsets of Ω. If Q is an atom of Em, then for any n ≥ m we
have

µ(Q ∩ En) = µ(Q)

(
η

η + δ

)n−m
and hence in particular,

µ(Q ∩ (En \ En+1)) = µ(Q)

(
η

η + δ

)n−m δ

η + δ
. (7.14)
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Recall the point M defined in (7.13) and denote its coordinates by Mx and My. Introduce the
weights u, v on Ω by

u = My

∞∑
n=0

(1− δ)n(p+1)
1En\En+1

, v = Mp+1
x

∞∑
n=0

(1− δ)n(p+1)
1En\En+1

and let f : Ω→ R be given by

f =
∞∑
n=0

(1 + rδ)−n1En\En+1
,

where r is an auxiliary parameter satisfying −(p+ 1)/p < r < 0.
Step 3. Verification of the condition [u, v]A−p ≤ c. By (7.14), if Q is an atom of Em, then

〈u〉Q,µ = My

∞∑
n=m

(1− δ)n(p+1)

(
η

η + δ

)n−m δ

η + δ

=
Myδ

η + δ − (1− δ)p+1η
· (1− δ)m(p+1) = c̃(1− δ)m(p+1)

(7.15)

and

〈v1/(p+1)〉Q,µ = Mx

∞∑
n=m

(1− δ)n
(

η

η + δ

)n−m δ

η + δ
= (1− δ)m. (7.16)

Now, suppose that R is an arbitrary element of T . Then there is an integer m such that
R ⊆ Em−1 and R 6⊆ Em. We have

〈u〉R,µ =
1

µ(R)

∫
R\Em

udµ+
1

µ(R)

∫
R∩Em

udµ.

But u = My(1 − δ)(m−1)(p+1) on R \ Em; furthermore, by (7.15), applied to each atom Q of
Em contained in R, we get∫

R∩Em
udµ = µ(R ∩ Em) · c̃(1− δ)m(p+1).

Therefore, setting κ := µ(R ∩ Em)/µ(R) ∈ [0, 1], we rewrite the preceding equality in the
form

〈u〉R,µ = (1− δ)(m−1)(p+1)

[
κKy + (1− κ)My

]
.

(In analogy to the above notation, Ky stands the second coordinate of the point K; the num-
ber Kx, which will appear below, is the first coordinate of this point). A similar calculation
shows that

〈v1/(p+1)〉R,µ = (1− δ)m−1

[
κKx + (1− κ)Mx

]
and therefore

〈u〉R,µ〈v1/(p+1)〉−p−1
R =

[
κKy + (1− κ)My

][
κKx + (1− κ)Mx

]−p−1

.
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This number does not exceed c. Indeed, as κ ranges from 0 to 1, the point κK + (1 − κ)M
runs over the line segment KM which lies below the curve y = c|x|p+1 (see Step 1). Since R
was arbitrary, the inequality [u, v]A−p ≤ c follows.

Step 4. Completion of the proof. In the same manner as above, one verifies that if Q is an
atom of Em, then

〈f−1〉Q,µ =
∞∑
n=m

(1 + rδ)n
(

η

η + δ

)n−m δ

η + δ
=

(1 + rδ)m

1− rη
.

This immediately yieldsMHf ≥ (1 − rη)(1 + rδ)−m on Em and hence, by the definition of
u, v and f , we obtain

(MHf)pu ≥ (1− rη)pMy

Mp+1
x

fpv on Em \ Em+1.

The latter bound does not depend on m, so we can rewrite it uniformly as

(MHf)pu ≥ (1− rη)pMy

Mp+1
x

fpv on Ω.

Consequently, (1−rη)pMy/M
p+1
x is the lower bound for the norm

∥∥MH∥∥
Lp(v)→Lp(u)

, as long
as we have ‖f‖Lp(v) <∞. Let us study the latter estimate. Note that∫

Ω
fpvdµ = (1 + η)p+1

∞∑
n=0

(1 + rδ)−np(1− δ)n(p+1)

(
η

η + δ

)n δ

η + δ

and observe that the ratio of the above geometric series is equal to

(1 + rδ)−p(1− δ)p+1 · η

η + δ
≤ 1− prδ − (p+ 1)δ + o(δ).

Therefore for any r as above (i.e., satisfying r > −(p + 1)/p), any η > 0 and c̃ sufficiently
close to c (so that δ is close enough to 0) we have ‖f‖Lp(v) < ∞. Rewrite the constant
(1− rη)pMy/M

p+1
x explicitly as

(1− rη)pMy

Mp+1
x

=
(1− rη)p · c̃

(
1 + ηδ−1

(
1− (1− δ)p+1

))
(1 + η)p+1

.

Now, we choose η to be very large, then δ is made small, and finally, we pick r close to

−(p + 1)/p. Then the above expression can be made as close to c(p + 1)
(
p+1
p

)p
as we wish.

This establishes the desired sharpness.
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