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Abstract

In the dissertation, the problem of interactive feature extraction, i.e., supported by
interaction with users, is discussed, and several innovative approaches to automating
feature creation and selection are proposed. The current state of knowledge on feature
extraction processes in commercial applications is shown. The problems associated
with processing big data sets as well as approaches to process high-dimensional time
series are discussed. The introduced feature extraction methods were subjected to
experimental verification on real-life problems and data. Besides the experimentation,
the practical case studies and applications of developed techniques in selected
scientific projects are shown.

Feature extraction addresses the problem of finding the most compact and
informative data representation resulting in improved efficiency of data storage and
processing, facilitating the subsequent learning and generalization steps. Feature
extraction not only simplifies the data representation but also enables the acquisition
of features that can be further easily utilized by both analysts and learning algorithms.
In its most common flow, the process starts from an initial set of measured data and
builds derived features intended to be informative and non-redundant. Logically,
there are two phases of this process: the first is the construction of the new attributes
based on original data (sometimes referred to as feature engineering), the second is
a selection of the most important among the attributes (sometimes referred to as
feature selection). There are many approaches to feature creation and selection that
are well-described in the literature. Still, it is hard to find methods facilitating
interaction with users, which would take into consideration users’ knowledge about
the domain, their experience, and preferences.

In the study on the interactiveness of the feature extraction, the problems of
deriving useful and understandable attributes from raw sensor readings and reducing
the amount of those attributes to achieve possibly simplest, yet accurate, models
are addressed. The novel methods proposed in the dissertation go beyond the
current standards by enabling a more efficient way to express the domain knowledge
associated with the most important subsets of attributes. The proposed algorithms
for the construction and selection of features can use various forms of information
granulation, problem decomposition, and parallelization. They can also tackle large
spaces of derivable features and ensure a satisfactory (according to a given criterion)
level of information about the target variable (decision), even after removing a
substantial number of features.

The proposed approaches have been developed based on the experience gained in
the course of several research projects in the fields of data analysis and processing
multi-sensor data streams. The methods have been validated in terms of the quality
of the extracted features, as well as throughput, scalability, and robustness of
their operation. The discussed methodology has been verified in open data mining
competitions to confirm its usefulness.
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Streszczenie

W rozprawie poruszono problem interaktywnej ekstrakcji cech (ang. interactive
feature extraction) oraz zaproponowano szereg innowacyjnych podejs¢é do
automatyzacji procesu ich tworzenia i selekcji rozwazajac mozliwos¢ angazowania
w ten proces uzytkownikéw. Przedstawiono aktualny stan wiedzy w dziedzinie
ekstrakcji atrybutow oraz zaprezentowano znane z literatury zastosowania komercyjne
tego procesu. Omoéwiono wyzwania zwigzane z przetwarzaniem duzych zbioréw
danych, ze szczegdlnym naciskiem na przetwarzanie wielowymiarowych szeregow
czasowych. Poddano dyskusji problem opracowania takiej reprezentacji danych, ktora
bytaby zrozumiata dla ekspertow dziedzinowych. W tym celu, przedyskutowano
mozliwos¢ wykorzystania atrybutéw uzyskiwanych metoda przesuwnego okna
czasowego oraz granulacji atrybutéw. Opracowane metody i algorytmy ekstrakcji
cech poddano weryfikacji eksperymentalnej oraz przedstawiono ich zastosowania w
wybranych projektach naukowych.

Ekstrakcja cech to proces przetwarzania otrzymanych danych, ktéry prowadzi
do uzyskania reprezentacji odpowiednio sprofilowanej do analizowanego problemu.
Tym samym przyczynia sie do poprawy wydajnosci przetwarzania danych i
optymalizacji procesu modelowania oraz umozliwia pozyskiwanie atrybutow, ktore
moga by¢ wykorzystywane zaréwno przez ekspertow dziedzinowych, jak i algorytmy
uczenia maszynowego. Wyrdznia si¢ dwie zasadnicze fazy tego procesu: pierwsza
to konstrukcja nowych cech (ang. feature engineering), natomiast druga to
wybdr najistotniejszych sposréd uzyskanych w ten sposéb atrybutéw (ang.
feature selection). Istnieje wiele podejs¢ do automatyzacji procesu tworzenia
i selekcji atrybutow, trudno jednak znalezé metody wspierajace interakcje z
uzytkownikami, ktére uwzgledniatyby wiedze dziedzinows pozyskiwang od ekspertow,
ich do$wiadczenie i preferencje.

W badaniach nad interaktywno$cig procesu ekstrakcji cech poruszono problemy
zwigzane z uzyskiwaniem uzytecznych i zrozumiatych dla ekspertéw atrybutow z
wielowymiarowych danych, a takze mozliwos¢ ograniczenia ilosci tych atrybutéow
w celu uzyskania mozliwie najprostszych, ale doktadnych modeli. Zaproponowane
w rozprawie nowe metody interaktywnej ekstrakcji cech wykraczaja poza obecnie
znane standardy, umozliwiajac skuteczniejszy sposoéb wyrazania wiedzy dziedzinowej
zwigzanej z najwazniejszymi podzbiorami atrybutéw. Zaproponowane algorytmy
konstrukeji i doboru cech wykorzystuja rézne formy granulacji przestrzeni atrybutow,
a takze pozwalajg na wydajne przetwarzanie duzych danych poprzez zrownoleglenie
obliczen. Na szczegbdlng uwage zashuguje zaproponowana metoda uodpornienia
algorytmow selekcji atrybutéw na ewentualne braki w danych, ktora pozwala znaczaco



zmniejszy¢ wymiarowo$¢ danych gwarantujac jednoczesnie zachowanie niezbednego
poziomu informacji (wg zadanego kryterium) do predykcji zmiennej celu, nawet po
usunieciu okreslonej liczby atrybutéw.

Przedstawione podejscia do ekstrakcji cech zostaty wypracowane na podstawie
doswiadczen z projektéw naukowych z dziedziny analizy danych tekstowych
oraz przetwarzania strumieni sensorycznych. Przedstawione metody zostaty
zweryfikowane pod wzgledem jakosci uzyskanych cech, jak réwniez przepustowosci,
skalowalnosci i stabilnosci dziatania. Zaproponowane rozwigzania zostaly
zweryfikowane w ramach miedzynarodowych konkurséow analizy danych.
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Chapter 1

Introduction

Every day, the surrounding world is monitored by a still increasing number of sensors.
Starting with commonly available sensors from our neighborhood, like mobile phones,
automotive sensors, wearables, smart home appliances [17,200] through medical and
telemedical devices [2] for respiratory monitoring [332], auscultation analysis [132],
cancer diagnostics [326], or rehabilitation support [201], ending with sensors deployed
in factories or coal mines [179,356] to support diagnostics of manufacturing processes
and human staff safety assurance. The variety, variability, and velocity of data have
therefore arisen, putting additional pressure on data analysis tools and methods. On
the one hand, they should provide the possibility to process various types of data
in a multitude of very specialized domains of application. On the other hand, they
should seamlessly adapt to drifts, shifts, or the emergence of previously unobserved
concepts in data, by interaction with domain experts and data scientists [177].

Interactive data exploration techniques allow analysts to discover interesting
dependencies in data due to a fact that it gives the ability to efficiently verify current
hypotheses about investigated phenomena and formulate new ones. In practice, this
is usually done by conducting various tests on available data and using the results of
those tests in consecutive stages of the data exploration process. Very often, the main
objective of an analyst is to define such a representation of objects described in the
data, that in the future will be the most useful for, e.g., constructing prediction
models. There are plenty of methods for automatic feature extraction that are
well-described in literature [149,165,199,242 280]. However, referring to Judea Pearl,
two more ingredients are needed to move from traditional statistical analysis to causal
inference, namely: “a science-friendly language for articulating causal knowledge, and
a mathematical machinery for processing that knowledge, combining it with data and
drawing new causal conclusions about a phenomenon” [290]. The need to embed
domain knowledge in data has already been recognized by many scientists as one of
the most challenging areas of research [26,103,293].

The essential difference between human perceptions and machine-generated
measurements, pointed by Lotfi Zadeh, is that “measurements are crisp whereas
perceptions are fuzzy” [417]. Indeed, machine-generated data are often very vague to
users. Endless chains of numbers generated by sensor networks are not even close
to real-world concepts, problems, and entities [184,260]. Therefore are particularly
hard to interpret. One of the challenges, pointed by Leslie Valiant, is “to characterize
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the computational building blocks that are necessary for cognition” [350]. In that
context, it is essential to describe the data in a possibly intuitive way. The idea is
to make an intelligent use of the information granulation paradigm in the context
of aggregating, selecting, and engineering attributes (features/variables/dimensions)
that describe the data [139,415]. For example, we may refer to such straightforward
techniques as statistics characterizing granules over sliding time windows. In the
case of the underground coal mine sensors, derivation of multivariate series of
window-based statistics allows data analysts and experts to deal with noisy and
incomplete data sources, better reflect temporal drifts and correlations and reliably
describe real situations using higher-level data characteristics [356]. Extracting
meaningful features is important in many domains, like medicine or criminal justice
[119, 325]. Combining machine-generated data with attributes corresponding to
experts’ assessments proved to have a positive impact on the quality and robustness
of the machine learning models, e.g., in the case of seismic bumps prediction [179].

Feature engineering is recognized as an important but laborious approach [28]. As
opposed to the above, representation learning opts to augment artificial intelligence
with the capability to autonomously (i.e., without human interaction) identify and
disentangle the underlying explanatory factors hidden in the low-level sensory data.
The concepts of deep, distributed representations and unsupervised pre-training have
recently become a dynamically developing area of research with many successful
applications [131, 284,309, 382]. There are many methods allowing to project or
embed the data onto new derived dimensions, forming so-called latent concepts —
typically, a combination of (almost) all attributes of the original data [151]. However,
regardless of the achievements in the areas, these algorithms generally suffer from
the lack of interpretation of the projected dimensions [164,325] and for that reason
are not investigated further in this study. In contrary to feature engineering, which
though often labor-intensive, is a way to take advantage of human ingenuity and prior
knowledge. Thereby, justifying the effort put into the design of data transformations
and preprocessing pipelines when deploying machine learning algorithms.

Let us also emphasize the problems associated with the increasing dimensionality
of data, which may exceed human perception. In such cases, users may be still
able to interpret attributes’ meaning but navigation through their subsets becomes
harder. The curse of dimensionality is a well-known problem to machine learning
methods, as well. To address this aspect of complexity, one can operate with clusters
of attributes inducing similar information (e.g., similar partitions) or employ some
techniques of attribute selection, which would replace large attribute sets with their
minimal subsets providing comparable information about data [182]. Searching for
such subsets is a well-established task within the theory of rough sets (RST) [370].
Given an initial set of attributes, one can search for so called reducts, which induce
(almost) the same information as all considered attributes [285]. A number of
heuristic methods have been developed to derive the most interesting reducts from
large and complex data tables [72,285].

The task of feature selection may be defined at two levels. Predicting near-future
readings of a particular sensor, one could think about it in terms of choosing other
relevant sensors and time frames that are enough to start the process of model
training. In this case, it is crucial to interact with domain experts and provide
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appropriate analytic reports/visualizations to let them make the right assessments.
This level might be also called an information source selection. The second level
considered in the thesis refers to selecting specific features constructed during
the sliding time windowing process. The reference to the sliding time window
technique is an example of a situation where at a higher level of granularity, essential
characteristics need to be defined. Indeed, from the user’s point of view, operating
on statistics extracted from numerical series covered by a given window interval is
definitely more natural than operating on raw numerical data. At this level, one can
successfully proceed with relatively simple methods, which yield surprisingly small
feature sets in order to establish an efficient framework for deploying, monitoring and
tuning the forecasting models embedded into the production system.

In some applications, e.g., related to sensor-based hazard monitoring or medical
diagnostics, besides the accuracy, speed, and reliability of a prediction model, no less
important is resilience. A single sensor failure (or interruption of signal transmission),
which typically causes a missing whole dimension of data, cannot result in the
inability to assess the situation. To address this issue, we may refer to the broad
studies on missing data imputation techniques [46,258]. These are often based on
univariate series analysis or sampling from original data distribution and may have
problems dealing with longer gaps, e.g., resulting in a higher level of uncertainty
for subsequent assessment [338,362]. As an alternative, some researchers study
non-imputation methods designed for the classification or regression of incomplete
data. Such methods may rely on aggregation techniques and higher-level features (or
granules of features) that are less sensitive to missing data [143,396], ensembles of
diverse classification of regression models [179,395], or enhanced predictive models
with additional (redundant) checks, e.g., verifying cuts in decision trees [27].

The aforementioned approaches rely on the assumption that features selected for
the process of model learning do contain additional (redundant) knowledge, whereas
state-of-the-art feature selection techniques attempt to remove redundancy. Our
goal is to formulate new constraints, whereby selected feature sets are guaranteed
to provide enough information about the considered target variables even if some of
those features are dropped. One of the discussed approaches is to rely on a collection
of diverse feature subsets with their corresponding prediction models treated as
an ensemble. Another approach is to search for feature sets with a guarantee of
providing sufficient predictive power even if some of their elements are missing. In
the dissertation, we introduce the idea of resilient feature selection. In particular, we
formulate the rough-set-based notion of r-C-reducts — an irreducible subset of features
providing a satisfactory level of information about the considered target variable even
if up to r features are unavailable.

In the study on the interactiveness of the feature extraction methodologies, we
address the problems of deriving useful and understandable parameters (attributes,
features) from raw sensor readings and reducing the amount of those parameters in
order to achieve possibly simple yet accurate models. In the dissertation, a number
of innovative approaches to automating feature creation and selection are proposed.
The current state of knowledge on feature extraction processes used in commercial
applications is shown. The problems associated with processing big data sets and
approaches to process high-dimensional time series derived from sensor networks
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are discussed. Although we rely mainly on RST to specify requirements related
to the design and implementation of our approach to interactive attribute selection,
the framework presented in this paper can be used together with other well-known
methodologies of data analysis.

1.1 Plan of the Dissertation

In Chapter 2, an overview of the state-of-the-art feature extraction methods is
presented. In particular, in Section 2.1 a review of feature engineering techniques
is provided, with a special emphasis put on sliding window techniques to feature
creation. To provide a proper context of other related approaches that are not covered
in this study, in Section 2.2, we present a comprehensive review of representation
learning and dimensionality reduction methods. In Section 2.3, we recall relevant
approaches to feature selection. In Section 2.4, we discuss various approaches to
information granulation in feature extraction. In Section 3.1, we recall basic concepts
from the theory of rough sets (RST).

In Chapter 3, we introduce the idea of resilient feature selection and, accordingly,
we introduce r-C-reducts. In Section 3.1, we introduce the notion of criterion
function C, which enables us to consider various feature selection formulations at a
higher level of abstraction. In particular, we show how C generalizes the RST-based
feature selection approaches relying on various definitions of reducts and approximate
reducts. In Section 3.3, we outline an Apriori-inspired algorithm that generates all
r-C-reducts of a given type. In Section 3.4, we study the tasks of resilient feature
selection from the perspective of their computational complexity. We prove that many
NP-hard feature selection / elimination problems remain NP-hard for any arbitrary
resilience level r. In Section 3.5, we present heuristic DFS algorithms for searching for
optimal r-C-reducts, with specific examples of permutation-based and approximation
methods.

In Chapter 4, we outline our approach for feature extraction, aimed at processing
multivariate time series. In Section 4.1.2, we describe the data in a possibly intuitive
way, using statistics characterizing sliding time windows. In Section 4.2 and its
Subsections: 4.2.1, 4.2.2, and 4.2.3, we discuss how the concept of granulation can
be made useful in selecting and engineering features on large and, possibly, complex
data sets. Finally, in Section 4.3, the complete framework for linking resilient feature
selection and machine learning techniques to build a predictive model resistant to
partial data loss is proposed.

In Chapter 5, we provide a comprehensive experimental evaluation of the
introduced feature extraction methods over large, multivariate time-series data across
significantly different domains. The analysis of potentially dangerous methane
concentration and seismic events are presented in Section 5.1 and 5.2, respectively. In
Section 5.3, we evaluate the performance of the introduced framework in the fire and
rescue domain that refers to the analysis of data collected from body sensor networks.
In this Chapter, we also evaluate the impact of the developed feature extraction
methods on the prediction quality and resilience of various machine learning models.
As an important argument for considering interactive feature extraction processes and
built-in human-computer interaction into machine learning processes, let us stress out
that in the case of seismic data, training models on both sensor readings and domain
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experts’ assessments allowed us to improve the quality of the predictors significantly.
In Section 5.4, we performed short-term spot prices prediction of many univariate
time series collected from the AWS Cloud Spot market. Furthermore, we describe a
series of international data mining challenges organized to facilitate this study.

In Chapter 6, we conclude the dissertation and we elaborate on some future
research directions.

1.2 Main Contributions

The main contributions of this dissertation are:

In Chapter 2, a broad overview of state-of-the-art feature extraction techniques
is provided, with a special emphasis put on sliding window techniques to feature
creation and rough set-based granulation and feature selection techniques. Namely,
to various extensions of reducts (Definition 1).

In Chapter 3, we introduce a new idea of resilient feature selection — based
on so-called r-C-reducts — attribute sets that are well-suited for the investigated
problems and provide a level of redundancy that makes these sets more invulnerable
with respect to possibly missing or questionable attribute values. The introduced
r-C-reducts extend the classical notion of a reduct developed within the rough set
theory (which is briefly discussed in Chapter 2). In the provided notion, C refers to
a function encoding the criterion of preserving enough information by the considered
sets of attributes. At the same time, r stands for the number of attributes that
can be removed from those sets without making them insufficient to build decision
models [137] (at the accuracy level corresponding to C). Functions C (Definition 5)
actually enable us to express a number of so-called approximate attribute reduction
criteria known from the RST-related literature, based on, e.g., discernibility, entropy,
or positive regions. Consequently, by defining the resilience factor r as combinable
with an arbitrary C, we generalize all those formulations. The discussed idea of
resilience is surely more general, and one may consider it an extension of many other,
not necessarily rough-set-based feature selection methods.

The important theoretical contribution in Chapter 3 refers to a broad discussion
on the impact of the resilience on the overall complexity of feature selection problems
and algorithms. In particular, in Section 3.1, we generalize the way of reasoning about
attribute subsets by introducing criterion functions, which, for each given decision
table S = (U, AU {d}), return a binary assessment of the candidate attribute subsets.
We further use criterion functions to provide a generalization of rough set reducts as
criterion reducts C(R) (Definition 6). Lastly, we show some theoretical properties
of criterion reducts and we define criterion reducts for a number of well known
notions of reducts, i.e., approximate entropy reducts (C#)-reducts), 7-reducts
(C7-reducts), etc. In Section 3.3.2, we prove that any NP-hard feature selection
problem understood as the task of finding — for an input decision table — the minimal
C-reduct that may be expressed via so-called monotonic criterion functions C (e.g.,
the minimal (H, €)-approximate reduct problem [352], the minimal (v, €)-approximate
reduct problem [367], a wide family of discernibility-based approximate/partial reduct
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optimization problems [270,276], etc.) retains its NP-hardness for arbitrary resilience
level 7 (Theorem 1).

In order to prove NP-hardness — by providing a polynomial time transformation
— in Subsection 3.4.1, we introduce a family of artificial attributes, so-called
A-attributes, denoted as #attr. In a number of lemmas in Subsection 3.4.1, we
show some important properties of A-attributes. Among others, we prove that any
r A-attributes {#attry, ..., #attr,} form the smallest r-C-reduct (Lemma 3). We
show, in Lemma 4, how to construct C-reduct by adding A-attributes to reduct,
and we discuss the impact on S and C when data representation is extended with
A-attributes (Lemma 5). Our study includes also a visual interpretation of the NPH
proof (Section 3.4.3), a broad discussion on the meaningfulness of the provided NPH
study and the complexity result derivable directly from Theorem 1 (Section 3.4.4).
In particular, referring to Theorem 1, we prove NP-hardness of the resilient version
of the minimal (H,e)-approximate reduct problem, and the resilient versions of the
minimal a-reduct and (7, ¢e)-approximate reduct problems. Let us note that the
same mechanism could be easily applied for many other cases as well, in particular,
for any formulations of C(@)-reducts for which the corresponding measures @ satisfy
conditions of Definition 7 [351,353].

In Sections 3.3 and 3.5, we discuss opportunities of exhaustive and heuristic
search of feature subsets, and we assess computational complexity of proposed
algorithms. We elaborate on two generic strategies that follow a popular idea of
dynamic exploration of the lattice of feature subsets (i.e., Figure 2.2). Namely,
breadth first search (BFS) and depth first search (DFS). For BFS, we adapt the
well-known Apriori algorithm [331] for the purpose of r-C-reduct search (Section
3.3). In Section 3.5, we consider two approaches to the depth first search exploration
of the lattice, which allow us to identify subsets of attributes that satisfy the resilient
version of testc function: r-teste (Algorithm 3). Algorithm r-testc verifies if a given
set of attributes R C A satisfies the resilient criterion r-C under the condition
that implementation of testc is given. In Subsection 3.5.1, we present a novel
Algorithm 4 generating r-C-reducts inspired with a permutation-based technique
that is common for RST-based approaches [353,367]. In Subsection 3.5.2, we discuss
the approximation of the permutation-based algorithm for resilient feature selection
(Algorithm 5).

In Chapter 4, we outline our approach to feature extraction, aimed at processing
data obtained from sensors that provide outputs in the form of time series. In
knowledge-based systems, it is common to deploy a potentially large collection of
sensors of different types to monitor the environment state and its changes. In such
a setting, the gathered data elements can be complex on various levels. Individual
readings may take different forms according to the application domain. Values may
express continuous phenomena, such as pressure, temperature, or humidity. They
can also express a discrete state of the environment, such as an on/off state of
a device. Often, data interpretation is possible only in the context of additional
knowledge obtained from domain experts. Concerning feature engineering, in Section
4.1.2, we attempt to describe the data in a possibly intuitive way, using statistics
characterizing sliding time windows. The proposed approach focuses on extending



1.2 Main Contributions 15

the sliding window construction process by adding a number of designed statistics
and enhancing it with some more static attributes reflecting assessments obtained
from domain experts. This brings the opportunity to compare the prediction quality
of models trained using derived features with the expert-based assessment and
makes it possible to use features derived from experts in ML models training. In
the case of the underground coal mine sensors, derivation of multivariate series of
window-based statistics allows us to deal with noisy and incomplete data sources,
better reflect temporal drifts and correlations, and reliably describe real situations
using higher-level data characteristics, which are common problems in time series
analysis, reviewed in Section 4.1.1.

The contributions in Section 4.2.2 refer to a general algorithmic framework
for performing feature selection on top of a granular representation of attribute
space. Our methodology is devised in such a way that it caters to various types
of granules and various goals of feature selection. The purpose is to perform a kind
of granular attribute selection that exploits to the fullest semantical relationships
between variables. Particular contributions in Section 4.2.1 are concentrated around
two aspects. First, we put forward a framework for expressing granules in attribute
space. Therein, we include original ideas for discovering and managing similarities
between attributes for the purpose of constructing granules. Feature granules can be
induced by, e.g., hierarchical clustering on attributes or analysis of so-called heat maps
that convey the knowledge about attribute interchangeability. On the other hand,
we show that meaningful granulations can be derived according to such prerequisites
as proximity or common functionality of the considered features.

In Section 4.2.3, we discuss how the concept of granulation can be made useful
in selecting and engineering features on large and possibly complex data sets. We
show how to utilize the intrinsic properties of the data and underlying problem and
background/domain knowledge to build a granular representation of attributes. By
taking into account a given granulation of attributes, we can configure our algorithms
to achieve faster convergence. The proposed methods are designed in a way to
deal with large and complex data sets. We present means to make use of efficient,
parallelized computational schemes such as MapReduce. Therefore, the provided
tools and examples are devised to work with data sets that are very large in terms
of the number of objects and the number and complexity of features. Thus, they
address some of the challenges posed by the Big Data paradigm.

As a notable aspect and an important contribution in the frame of this
dissertation, let us point out the framework for linking resilient feature selection and
machine learning techniques to build a predictive model that is resistant to partial
data loss (Section 4.3). In this section, we focus not only on the extracted features and
constructed prediction models but also on data processing stages that are designed to
let it work within a big data environment and, particularly, with the high dimensional,
multi-stream data. In order to provide high-quality assessments, the Algorithm 9 —
for blending the models — is designed in a way, which guarantees that a model can
be included if it is accurate enough on validation data and sufficiently different from
already selected predictors. The diversity may be achieved by employing a variety
of models computed on different subsets of attributes and data samples. For this
task, the similarity measures (Section 4.2) or resilient attribute subsets (Section 3.2)
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may be applied. As a result of blending diverse models, the final ensemble minimizes
the impact of concept drifts and achieves a better prediction quality. The results
of conducted experiments (Chapter 5) confirmed that the idea is very promising,
and resilient learning may significantly minimize the risk and impact of data loss on
predictive analysis.

In Chapter 5, we provide a broad experimental evaluation of learning forecasting
models over large multi-sensor data sets, including the steps of sliding window-based
feature extraction and rough-set-inspired feature subset ensemble selection. We
conducted a series of experiments on data connected to the problems of providing
safety of miners working underground, which is the fundamental requirement for
the coal mining industry. Analysis and proper assessment of potentially dangerous
methane concentration (Section 5.1) and seismic events (Section 5.2) significantly
improve the safety and reduce the costs of underground coal mining.

One of the considered tasks is to construct a model capable of predicting dangerous
concentrations of methane at longwalls of a coal mine basing on multivariate time
series of sensor readings. The contributions in Section 5.1 refer to both the analysis of
how the nature of sensor readings influenced the architecture of the developed system
and the empirical proof that the designed methods for data processing and analytics
turned out to be efficient in practice. We show how the complete mechanism can
perform on data collected in an active coal mine and processed with the described
framework. We show how the complete mechanism can be built into DISESOR - a
decision support system in coal mines. The evaluated feature selection approaches
yield excellent results even when combined with the simplest possible prediction
techniques like logistic regression. Furthermore, we elaborate on the resilience of the
solution in the case of partial data loss, e.g., when particular data sources, sensors
are damaged or inactive (Subsection 5.1.4).

In Section 5.2, we investigate how the interactive feature extraction and
ensemble blending methods, proposed in Chapter 4, generalize to other problems
of multi-stream data analysis. Once again, we address the problem of safety
monitoring in underground coal mines. This time, we investigate and compare
practical methods for the assessment of seismic hazards using analytical models
constructed on both raw multi-stream sensory data and features derived from domain
experts. The possibility of representing a problem related to data exploration
and analysis with machine-generated features, which are additionally enriched with
experts’ assessments, is one of the essential aspects from the point of view of
interactiveness. Furthermore, in Section 5.3, we describe an international data mining
challenge organized to facilitate this study. We also demonstrate that the technique
used to construct an ensemble of regression models outperformed other approaches
used by participants of the described challenge. In Section 5.2.4, we explain how
post-competition data was utilized for the purpose of research on the cold start
problem in the deployment of decision support systems at new mining sites.

To thoroughly assess the versatility of the developed framework across significantly
different domains of application, besides analysis of coal mining-related problems, in
Section 5.3, we evaluate its performance in the fire and rescue domain that refers to
the analysis of data collected from body sensor networks. The aim of this study is to
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assess how automatic feature extraction and classifier learning (without parameters
tuning) can cope with the multi-target learning problem. Furthermore, in Section
5.4, we show that, by analyzing spot instance price history and using ARIMA models,
it is feasible to perform future spot prices prediction of many univariate time series.
The main reason behind the evaluation of ARIMA models on data represented as
candlesticks is that both techniques are easy to interpret. Results confirm the
quality of the solution, its computational performance, and the versatility of the
developed framework resulting in the very short time needed for its adaptation to the
significantly different domains.

Some of the partial results of this dissertation were presented at international
conferences and workshops. Some were published in conference proceedings and
respectable journals. For example, the publications related to the granular
and resilient feature selection [137,139, 142]. Moreover, the research on various
applications of feature extraction to improve prediction quality in the field of
sensor data analysis in hard coal mining and emergency / firefighting domains
[138, 143, 144, 179, 181]. The research on intelligent systems, data models, and
processing optimization for interactive feature extraction and data analysis [136,141,
145,215,356-358,420] are also partial contributions in this dissertation. Some partial
results were also published in technical papers and monographs in Polish [140,178].
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Chapter 2

Feature Extraction

Having in mind the observed variety of possible data representation formats, including
text, audio, image, video, relational data, spatio-temporal time series, and many
others, it is straightforward that the application of machine learning algorithms and
techniques requires a more or less extensive phase of data preparation. Feature
extraction (FE) addresses the problem of finding the most compact and informative
data representation to improve the efficiency of data storage and processing. The
process starts from an initial set of measured data and builds derived features
intended to be informative and non-redundant, facilitating the subsequent learning
and generalization steps, and leading to better human interpretations. Logically,
there are two phases of this process: the first is the construction of new attributes
based on original data (sometimes referred to as feature engineering), the second step
is a selection of the most important among the attributes (sometimes referred to as
feature selection). In this chapter, we provide a broad overview of the state-of-the-art
feature extraction methods, including feature construction, selection, granulation,
and selected methods from rough set theory. We also briefly present some other
related topics, like dimensionality reduction and representation learning.

2.1 Feature Engineering

Feature engineering (FE) is the process of using domain knowledge of the data to
create features that make machine learning algorithms work [199]. The importance
of feature engineering was aptly identified by Pedro Domingos: “At the end of
the day, some machine learning projects succeed and some fail. What makes the
difference? Fasily the most important factor is the features used” [93]. Indeed, this
process is fundamental to the application of machine learning resulting in simpler and
more effective predictive models, improved models’ robustness and resilience, reduced
computation time and resources needed, and foremost, better interpretability of the
results. In this section, we present a comprehensive review of the state-of-the-art in
the area with a strong emphasis on the structural, relational, and time series data
extraction methods.

Some machine learning algorithms, like a decision tree model, can handle various
data representations. However, most have fairly restrictive limitations and usually
require a specific data format. For example, rough set reudcts construction methods
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can work with categorical data only. In the case of numerical attributes, those
algorithms require a discretization to transform continuous attributes before the
data reduction may be performed. On the other hand, some algorithms, like
neural networks, require numeric inputs [373]. The typical data preprocessing
steps that allow adapting attributes’ format to the requirements of selected
learning methods include: normalization, standardization, discretization, categorical
encoding, imputation of missing values, outliers detection, and user-defined custom
transformations, e.g., min/max values, percentiles, or generating polynomial features
[112,144).

There are several data preprocessing techniques to be used for encoding categorical
variables [302]. One hot encoding is the most widely used scheme to transform a single
variable with ’d’ distinct values to 'd’ binary variables indicating the presence (1) or
absence (0) of the particular category. In ordinal coding, an integer value is assigned
to each category (assuming that the number of categories is known). Polynomial
coding is a form of trend analysis that looks for trends in the categorical variable.
Leave-one-out is an example of the target-based encoder that calculates mean target
of a given category for each observation, supposing that this observation is removed
from the data set. We may also mention sum coding, Helmert and James-Stein
encoders, etc. [302]. All leading to converting categorical features to binary, integer,
or continuous ones, as expected by ML algorithms’ inputs.

In the case of some machine learning algorithms, objective functions may not
work at all, or may perform less effectively, without proper feature scaling [10].
For example, we may recall stochastic gradient descent and its variants, which
are recognized as an effective way of training deep networks [170,369]. The need
for normalization and standardization arises naturally when dealing with clustering
[173], in the case of experiments involving multiple arrays [38], or whenever data
are collected from various sources [356]. In some applications of high-density
oligonucleotide arrays, the goal is to learn how RNA populations differ in expression
in response to genetic and environmental differences. For example, large expression of
a particular gene or genes may cause an illness resulting in variation between diseased
and normal tissue. The obscuring sources of variation can have many different effects
on data. Unless arrays are appropriately normalized, comparing data from different
arrays can lead to misleading results [171]. Let us now briefly recall some common
approaches to feature scaling.

Given a lower bound min(a) and an upper bound max(a) for an attribute “a”,
the min-max normalization is one of the elementary methods to scale the range in

[0, 1].

a — min(a)

0= maz(a) — min(a)

The general formula to rescale a range between values [a™/, a**?] is given as:

(a —min(a)) * (a*** — a™/)

A~ ainf
¢ i max(a) — min(a)

Mean normalization refers to the average avg(a) values of a feature “a”:
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a — avg(a)

“= maz(a) — min(a)

Standardization (or Z-score normalization) is a technique used to scale the data
such that the mean of the data becomes zero and the standard deviation becomes one.
Here the values are not restricted to a particular range. We can use standardization
in the case of large differences between input data attributes’ ranges. Standardization
is widely used in many machine learning algorithms, e.g., support vector machines,
logistic regression, or deep learning [250]. The general method of calculation is to
determine the distribution mean p and standard deviation o for each feature a and
to replace it with the following formula:

M _a—p
candidate o
Furthermore, we may scale features according to a given norm ||.||, i.e., Euclidean

length, Ly (city-block length), or any other user-defined norm. We may also mention
rank and quantile normalizations, and their applications in the image processing
and genetics [10,38]. There are also decoupling and Gaussian normalization that
are successfully applied in collaborative filtering [190,191]. In [225] was proposed
an interesting framework to handle some special cases when standard normalization
techniques are not capable of eliminating technical bias due to skewed distribution
of variables. We may also recall a variety of methods adjusted to the given feature
distribution [10], which obviously do not close the range.

Many algorithms, like Apriori or Naive Bayes, can handle only nominal or discrete
attributes [409]. Even in the case of algorithms, which are able to deal with continuous
attributes, learning is far less efficient and effective. Thus an embedded or an external
discretization of data is often required [401]. The main goal of discretization is
to transform a set of continuous attributes into discrete ones, e.g., by associating
categorical values to intervals and thus transforming quantitative data into qualitative
data [410]. In this manner, symbolic data mining algorithms can be applied over
continuous data, and the representation of information is more concise and specific.

Assuming that the data is represented by a set of objects (instances, observations)
U, set of attributes (features, variables) A, and (in the case of supervised problems) a
set of classes D, a discretization algorithm would split the continuous attribute a € A
in this data set into k discrete, non-overlapping intervals:

Adiser = {[ao, Cll], (ab a2]> ) (kaly Clk]}

,where ap = min(a) is the minimal observed value of the attribute a (or —oo, if
attribute values are not bounded), a;, = maz(a) is the maximal value (constant or
00), and Vo<i<j<k @; < a;. Such a discrete result Ag., is called a discretization
scheme on attribute a € A, and A.us = {a1,..,a_1} is the set of cut points of
attribute a € A. Let us briefly present selected, common discretization methods.
Equal-frequency (EFB), equal-width (EWB), and fixed-frequency (FFB) binnings
are the simplest and most straightforward discretization methods. All those methods
involve sorting of the observed values V, of a continuous feature a. For the given
k number of intervals, EFB divides the sorted values into k intervals, so that each
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contains approximately the same number of training instances [97]. Let U refer to the
set of observations (objects), then each interval contains % training instances with
adjacent values. Note that training instances with identical values are placed in the
same interval, thus it is not always possible to generate k equal frequency intervals.

If a continuous variable is observed to have values bounded by min(a) and maz(a),
EWB aims to divide the range of observed values into k equally sized intervals (bins),
where k is a given constant parameter. The width 9, of each interval is computed as:

mazx(a) — min(a)
0y = .

the cuts (boundaries of the intervals) are defined as: min(a) + i * d,, where
i=1,.,k—1.

For a predefined interval frequency k, FFB discretizes the sorted values into
intervals so that each interval has approximately the same number k of training
instances with adjacent values [410]. All above mentioned methods are applied to
each continuous feature independently, hence all are classified as univariate. They
also make no use of class information (unsupervised).

The scientific literature provides numerous proposals of discretization techniques,
and there are many different axes by which they can be classified, e.g., univariate
vs. multivariate, supervised vs. unsupervised, global vs. local, static vs. dynamic,
etc. [120]. The most common evaluation measures used by the discretizer to assess the
best discretization scheme are derived from information theory (Gini index, entropy),
statistics (x?, ChiMerge), or Rough Sets Theory (RST) [108,278,378]. Furthermore,
some methods utilize wrapper approach, like ID3 [308], Bayesian approach [42], fuzzy
functions [322], and many other techniques [33,269]. It is also important to stress
out that obtaining the optimal discretization is a NP-complete problem [66].

When analyzing real data sets, one may face a broad spectrum of problems
related to data, varying around: missing values, anomalies, exceptions, discordant
observations, or contaminants [56,58]. Missing values imputation has been studied
for several decades being the basic solution for incomplete data problems, specifically
those where some data samples contain one or more missing attribute values [239,428].
Outlier detection techniques strive to solve the problem of discovering patterns
that do not fit to expected behaviors [389]. This is a particularly challenging and
important problem in the case of big sensor networks and multidimensional time series
data analysis [211,356]. The problems related to missing attributes, noisy data, or
outliers refer more to data quality aspects and data cleaning rather than to feature
engineering. Therefore, some selected approaches to imputation of missing values
and outlier detection methods are discussed concisely further in Section 4.1.1.

The widespread growth of Big Data and the evolution of Internet of Things enable
various entities to continuously generate and collect streams of data [274]. Stream
data analysis is essential for many fields of application where processes are typically
monitored by a number of sensor devices [200], such as: logistics, mining industry,
health-care, medicine, and even agriculture [73,379,423], Proper understanding of
data collected from many sensors and application of machine learning methods are
very challenging and time-consuming tasks that usually require particular feature
engineering [6, 115]. Feature extraction approaches, which output interpretable and
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Figure 2.1: A set of possible sliding windows set-ups.

dimensionally consistent features, are still in big demand and are considered as an
important research topic [73]. Among them, techniques based on sliding window
segmentation are considered as one of the simplest yet very effective for constructing
easily interpretable features from time series derived from data streams [356,423].

Deriving statistics from sliding time windows can be regarded as a crucial FE stage
in all knowledge discovery process investigating sensor readings and (multivariate)
time series [143,235]. A sliding window is defined by a length and an offset. The
length determines the size of a window, whether it is a fixed number of readings
contained in a window or a fixed time interval. The offset is the extent to which the
consecutive windows overlap to each other. In Figure 2.1, we provide four examples of
possible sliding window set-ups. The example marked in red shows the situation when
the length of a sliding window is equal to the offset. The green and blue examples
show the consecutive positions of a sliding window when the offset is equal to % and
é of the length. The example marked in cyan illustrates the situation when the offset
is twice as large as the length (or in general just greater) of a sliding window [144].

Sliding time windows are represented by various statistics computed over their
values [138]. In practice, such methods require an extensive feature engineering step,
which often needs to be domain-specific [44,419]. For a comprehensive study on
efficient maintenance of basic statistics derived from sliding windows, we may refer
to [82]. For an example how to integrate multi-sensor analysis with external sources
of spatio-temporal information, let us refer to [328]. An example of utilization of
such statistics as higher-level features can be found in [394]. Time series can be also
filtered or smoothed (using, e.g., running averages) in order to reduce its complexity
while maintaining its important characteristics [235]. Series of data points can
be approximated using methods, such as: piecewise constant approximation [208],
or piecewise linear representation [366]. Selection of an appropriate time series
representation is the fundamental aspect of an efficient analysis of sequential data.
For a more detailed overview of approaches to time series representation, one may
refer to [115].

In a broader sense, algorithms and systems for the on-line prediction based on
sensor readings can be placed within the scope of research on time series data
mining [296], or pattern recognition from multivariate time series [113,301]. In
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this field, a lot of research was conducted on topics such as searching for similar
subsequences [81,212], or time series segmentation and dimensionality reduction [207].
In tasks such as subsequence matching, a sliding time window approach is used
in a combination with series compression techniques, e.g., the symbolic aggregate
approximation [238]. In many domains, series transformations such as the discrete
Fourier transforms (DFT) are also often applied in this context [418]. Obviously,
sliding time windows approaches may vary depending on the area of application [251].
Nevertheless, the overall mechanism of computing time-window-based representations
can be treated as a universal approach.

There are numerous well-known automatic feature engineering methods. In some
approaches, they are tightly integrated with the modeling process, e.g., hidden layers
of a deep neural network model internal representations in a way analogous to
constructed features. In other approaches, they are limited to simple preprocessing
of data. Still, extracting meaningful features that describe the studied problem at a
higher level of abstraction, e.g., by a proper data granulation, thus allowing easier
interpretation of the predictive models’ outcomes, is considered a very challenging
task, important in many domains [119,325]. One of the possible approaches to feature
engineering, which is sometimes required to convert “raw” data into a set of useful
and meaningful attributes, is related to human expertise and creation of manually
crafted data extractors and transformations. Despite the evident value of the features
obtained this way, leading to easily interpretable and well suited data representation,
in some cases this method may be far too expensive and time-consuming. Therefore,
by complementing it with automatic methods, one can achieve a viable compromise
between the possibility to process big volumes of data and taking advantage of
human expertise. With this respect, we may refer to already mentioned statistics
characterizing granules over sliding time windows, which may be easily defined or
interpreted by users. Furthermore, as discussed later in the dissertation, the process
of sliding window-based feature creation may be automated, and the derived data
representation may be complemented by experts’ assessments.

2.2 Representation Learning and Dimensionality
Reduction

Representation learning (or feature learning) allows to automatically discover the
representations from raw data. This approach is an established alternative to
classical feature engineering. There are many feature learning methods that can be
either supervised (e.g., neural networks) or unsupervised (e.g., matrix factorization,
auto-encoders), linear (e.g., linear discriminant analysis) or nonlinear (e.g., kernel
methods). However as the number of features increases, the model training takes
far more time, and consumes more compute resources and storage. Trained
predictors may become more complex, and may relay on misleading, redundant, or
noisy information. This may lead to decreased models’ accuracy and over-fitting.
There are many methods allowing to project or embed the data into a lower
dimensional space while retaining as much information as possible. Classical examples
are singular value decomposition, principal component analysis, kernel principal
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component analysis, independent component analysis, multidimensional scaling, word
embeddings, auto-encoders, deep learning, etc. [50,384]. In this section, we provide
an overview of the state-of-the-art in the area.

Singular value decomposition (SVD) and principal component analysis (PCA) are
two commonly used dimensionality reduction methods that attempt to find linear
combinations of features in the original high dimensional data matrix to construct
a meaningful, yet compressed representation of a data set. They are preferred by
different fields of application. PCA is often used for bio-medical data, or in genetics
[102,126]. Meanwhile, SVD is more popular when the investigated problem is related
to sparse representations, e.g., in (mechanical) faults diagnosis, or in the case of
complex chemical processes analysis [158,407].

SVD is a factorization of a real (or complex!, i.e., Z) matrix that generalizes the
eigen-decomposition of a square matrix (i.e., n x n) to a rectangular one (i.e., m x n).
More formally, with SVD any real matrix A € R"™*"™:

11 Q12 - Q1n

Q21 Q22 -+ Q2n
A=| | .

Am,1 Gm2 *°° Omn

is decomposed into the product of two unitary? matrices U € R™*™ and V7 €
R™"™ and a diagonal rectangular matrix of singular values 3 € R"*™. The general
formula A = U x ¥ x V7 is shown in-detail below:

01

) T

where vectors u, € R™, v € R"™, and the singular values o; on the diagonal

of the matrix ¥ are non-negative and ordered according to their importance, i.e.,
o1 > 09 > -+ > 0, > 0, where r < min(m,n) is the rank of the matrix A.
Naturally, we may compress all the matrices in the above formula with the rank r of
the original matrix A. In such a case: U € R™", 3 € R™", and VI € R™",

The central idea of principal component analysis (PCA) is to reduce the
dimensionality of a data set A € R™ ™ (consisting of a potentially large number
of interrelated variables) retaining as much as possible of the variation present in
the data. This is achieved by transforming original data representation to a new set
of variables, so-called principal components, which are uncorrelated, and which are
ordered so that the first few retain most of the variation present in all of the original
variables. I the first step, we center the data in matrix A € R™*" by subtracting it
with matrix A,,.., consisting of mean vectors for each column in matrix A:

ILater in this section, we discuss real matrices, as they are more relevant for real-life data sets.
2We call a matrix X € Z"*" unitary iff XX¥ = XHX = 1. For a real matrix X € R"*", we
have X = X7 and we say that a matrix is orthogonal, i.e., XX7 = XTX =1
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mean(ay 1, .., am1) - mean(ayn, .., Gmn)

mean(ay 1, ..,am1) -+ mean(ay .., Gmp)
Amean - . .

mean(ay 1, ..,am1) - mean(aiq, .., mn)

This way, every column in matrix B = A — A,,,.., has a zero (0) mean. The next
step is to calculate the co-variance® matrix C € R™ " for the columns (features) in
table B = (b_l> . a) Since every column in B has a zero mean (i.e.,V1<;<,E[b;] = 0)
then co-variance between features:

— — 1 — — 1
Cov[bl‘vby] = Z (xi_E[bx])(yi_E[by])zi Z T *Y;
mi<i<m mi<i<m

where z;,y; correspond to i-th observations (rows) in b, and b,, respectively.
Hence, we may express a co-variance matrix as follows:

1
C=—-B"B
m
Here, we can calculate eigenvectors, and the corresponding eigenvalues, for matrix
C, such as:

CV=VX

where matrix V contains eigenvectors, a diagonal matrix ¥ contains eigenvalues?.
For the purpose of dimensionality reduction, we can project the data points onto
the first k principal components, i.e., truncating matrix V to only k most significant
features (Vi) and projecting the original data Ay = AV} retaining enough variance.
The first principal component is the direction in feature space along which projections
of observations have the largest variance. The second principal component is the
direction which maximizes variance among all directions orthogonal to the first one.
The k-th component is the variance-maximizing direction orthogonal to the previous
k-1 components.

It is also worth mentioning a few other dimensionality reduction methods [18].
Fisher’s linear discriminant allows to find a linear combination of features that
separates two or more classes of objects. Linear discriminant analysis is a generalized
version of Fisher’s linear discriminant, typically used for compressing supervised data
[365]. This technique projects data in a way to maximize the target class separability.
In independent component analysis, the original inputs are linearly transformed into
features which are mutually statistically independent. Robust principal component
analysis is proposed since the standard PCA is very sensitive to noise or outliers, and
the estimated values obtained by PCA can be arbitrarily far from the true value [247].
Kernel principal component analysis (KPCA) is an extension of conventional PCA
that is capable of constructing nonlinear mappings that maximize the variance in the
data. Multilinear principal component analysis (MPCA) is a multilinear subspace

3Cou[X, Y] = E[XY] — EIX]E[Y], or Cov[X,Y] = £ Y\, (2 — EIX)) (s — EIY))
4In literature, matrix V is often denoted as W, whereas X as A. We, however, continue with
the notation as introduces with SVD example above.
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learning algorithm. Compared with other commonly used dimensionality reduction
algorithms, MPCA has proven performance for the tensor data [147]. Autoencoders
are a specific type of neural networks that uses an adaptive encoder to transform
high-dimensional data into a low-dimensional code to then reconstruct the output
from this representation [161,244]. In [18,365,381], a comprehensive review of more
related methods can be found.

Reduction techniques, like PCA, are useful for 2D or 3D visualizations of
high-dimensional datasets [432]. Given a matrix D™ "™ with distances between each
pair of m objects form the original set, and a number of dimensions (typically, 2
or 3, for 2D or 3D output), multidimensional scaling (MDS) places each object into
low-dimensional space in a way that preserves (as well as possible) pairwise distances
between object. In genetics and microbiology, typical data analysis pipelines include
a dimensionality reduction step for visualising the data in two dimensions, frequently
performed with t-distributed stochastic neighbour embedding (t-SNE) [213]. A
self-organizing map (SOM) is a type of artificial neural network used to produce
a low-dimensional, nonlinear approximation of data. This makes it an appealing
instrument for visualizing and exploring high-dimensional data, with a wide range of
applications [305]. In addition to already mentioned, there are many more methods
that can be used for a similar purpose, including: locally linear embeddings (LLE),
isomap, or Laplacian eigenmaps [233].

In the case of texts, the raw data, i.e., a sequence of symbols with variable length,
cannot be used directly to the already mentioned algorithms as most of them expect
numerical feature vectors with a fixed size. Extraction of text features is an important
matter for information retrieval (IR) or natural language processing (NLP) [141].
The standard methods derived form IR refer to tokenization, lemmatization, removal
of stop words, Tf-Ifd term weighting, or building various n-gram representations
for document corpus, etc. [256]. Below, we present 5 exemplary documents
{D7, Do, D3, Dy, D5} to better depict some of the reviewed concepts.

D;:"Role of granulation in feature selection”
Dy:"0On resilient feature selection with r-C-reducts”
Ds: "Interactive attribute selection with reducts”
Dy: "Predicting setismic events”

Ds: "Forecasting seismic events”

Word embedding is one of the core feature learning techniques in NLP, where
documents are mapped to vectors of real numbers [13]. In its simple form, the
embedding may be represented as a term-document incidence matrix M™*", where
rows refer to m documents in corpus, columns refer to the n unique terms constituting
the vocabulary of the document corpus, and cells m;; € M may determine whether
i-th document contains j-th term, or a number of times each term occurs per
document. There are many variants of this technique, e.g., by combining it with
Tf-Ifd or word co-occurrence’. In Table 2.1, a simple term-document incidence matrix
for exemplary documents Dy, ..., D5 is presented.

5For a given corpus, the co-occurrence of two words is the number of times they appear together
(and are close enough, e.g., no more than 30 words separates them in text) in documents.
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Table 2.1: A term-document incidence matrix for the exemplary documents.

—| —=| ©| ©| o seismic
o| o| = | | | select

5|19 35| 8| Doc\Term

o|o| =S| o attribute
| —| ol ol of event
o|o| o] ~| | feature
—| o] o| o| of forecast
o|o| o| o ~| granule
o| o| —| o| o interact
o|—| o| o| of predict

o| 0| | —=| 2| reduct
o| o| o| —| 2| resilient

ol ol o| o+ role

Basing on co-occurrence, we may discover hidden similarities between words.
Latent semantic indexing (LSI) relies on SVD to identify relationships between terms
and hidden topics® contained in text. LSI assumes that words which are close
in meaning often occur in a similar context. For example, cosine similarity for
vectors representing terms “attribute” and “feature”, or “predict” and “forecast”
in Table 2.1 would indicate that those terms are dissimilar, whereas LSI would
discover their similarity since both appear in a similar contexts. There are many
other methods for topic modeling, besides LSI, it is important to mention latent
Dirichlet allocation (LDA), which is one of the most popular in this field of study [187].
On the other hand, explicit semantic analysis (ESA) augments text representations
with concept-based features, which are automatically extracted from massive human
knowledge repositories such as Wikipedia. This way, it is possible to assign a
human-readable name for hidden topics, or even to automatically generate a short
substitute summary for documents [266]. Global vectors for word representation
(GloVe), is a global log-bilinear regression model for the unsupervised learning of
word vectors that is also basing on word co-occurrences [295]. GloVe combines the
advantages of the two major model families, i.e., global matrix factorization and local
context window methods.

Computing distributed word representations using neural networks is yet another
very interesting technique because the learned vectors encode many linguistic
regularities and patterns [131]. The skip-gram model is an efficient method for
learning high-quality distributed vector representations that capture a large number
of syntactic and semantic word relationships. The continuous bag of words (CBOW)
model attempts to predict the current target word (the center word) basing on its
context (surrounding words) [261]. For the exemplary document Dy: “Predicting
seismic events”, for the context window of size 3, the task would be to predict the
central word “seismic” having the context words: “predict” and “event”. In [67],
authors observe that — in the case of statistical machine translation — adding features
computed by neural networks consistently improves the performance.

Recurrent neural network (RNN), and particularly long short term memory
networks (LSTM), form a broad group of architectures that handle sequential data

5The main topic for documents { D1, Do, D3} could be related to “feature selection”.
"It is worth mentioning that the neural network input is a numeric vector embedding for each
word (typically, word vectorization is performed after the initial preprocessing).
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such as natural language, and hence are particularly useful for NLP. Transformers
use attention mechanism to gather information about the relevant context of a given
word, and to encode that context in the vector representation [382]. Likewise many
other techniques, attention mechanism, which was initially invented for machine
translation, has found applications in many other tasks, and currently, can help
understanding objects’ inter-relations in an image just as well as it supports machine
translation tasks [284]. Bidirectional encoder representations from transformers
(BERT) is designed to pre-train deep bidirectional representations from unlabeled
text by jointly conditioning on both left and right context in all layers [8§].
Natural language processing comprises a much wider range of diverse tasks, such
as: part-of-speech tagging, chunking, named entity recognition, textual entailment,
question answering, or semantic role labeling, and is supported by a vast amount of
divers representation learning techniques [70,310,375].

The recent advances in objects recognition and image classification were achieved
mainly due to convolutional neural networks (CNNs) [62,218]. The term convolution
refers to the mathematical combination of two functions. In the case of CNN,
convolution is a specialized type of linear operation used for feature extraction,
typically represented as N x N matrix, which is sometimes referred to as kernel, mask,
convolution matrix, or filter [373]. It is used to enhance an image representation
via blurring, sharpening, embossing, edge detection, etc. A convolution layer is a
fundamental component of the CNN architecture that performs feature extraction,
which consists of a combination of a convolution operation and an activation function.
Typically, CNNs include also pooling layers to reduce dimensions of data and to
provide effective controls for over-fitting. Still, automatic learning of high quality
features is considered as a challenge also in this field of study [230]. To improve
the process of feature engineering from sequential data performed by traditional
CNNs, the convolutional recurrent neural network model extracts features from
hidden states or outputs of the recurrent layer [209]. Along to their unquestioned
role in image classification, CNNs were successfully applied in many other domains,
including natural language processing [70], time series analysis and algorithmic
financial trading [336], human activity recognition using multiple accelerometer and
gyroscope sensors [152], or in radiology where a deep convolutional neural network
was designed to detect COVID-19 cases from chest X-ray images [390].

In the case of images, CNNs practically outperformed all other approaches to
feature engineering. However for videos, the well crafted features play a major
role. There exists a large number of approaches for extracting local spatio-temporal
features, including histograms of oriented gradients (HOG), histograms of optical
flow (HOF), and combination of those two [226]. Another popular descriptors are:
SIFT [333], and motion boundary histograms (MBH), which rely on differential
optical flow [77]. Spatio-temporal interest points encode video information at a given
location in space and time. In contrast, dense trajectories track a given spatial point
over time to capture motion information [388].

Recently, a variety of model designs and methods have blossomed. There is,
however, a hidden catch: the reliance of these models on hand-labeled training
data. It is easy to collect and store a large amount of data, however it is
difficult and time-consuming to label data, since interaction with human experts
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is usually essential for this process [177]. Deep hierarchical representations carry
some interesting advantages with that respect. On the one hand, they promote
the re-use of features, e.g., by unsupervised learning of intermediate representations,
which can be used on a variety of supervised learning tasks. On the other hand,
deep architectures can potentially lead to more abstract features at higher layers of
representations [28]. Shared representations are useful to handle multiple modalities
or domains, or to transfer learned knowledge to tasks for which few or no examples
are given but a task representation exists. Learning reusable feature representations
from large unlabeled data sets has been an area of active research. For example,
one way to build good image representations is by training generative adversarial
networks (GANSs), and later reusing parts of the generator and discriminator networks
as feature extractors for supervised tasks [309]. Much research has been dedicated
to learning, understanding, and evaluating the representations of both supervised
and unsupervised pre-training methods. With that respect, unsupervised multi-task
learning is a promising area of research [324]. For example, generative pre-trained
transformer trained on general language data sets can be fine-tuned to specific
language tasks [310]. There are more areas of data science, which consider similar
problems, e.g., transfer learning [311], weak supervised learning [315], or active
learning [177].

As discussed in this section, modern approaches to representation learning and
deep neural networks (DNN) enable performing feature extraction with various
network architectures [28,32]. The feature extraction and selection is often performed
as an implicit phase in training of network’s hidden layers. We can think of DNNs
trained by supervised learning as performing a kind of representation learning. The
last layer of the network is typically a linear classifier, such as a softmax. Whereas,
the hidden layers of the network learn to provide a representation to this classifier. In
many applications, features extracted form hidden layers are processed directly [209],
whereas in statistical machine translation this is a natural model behavior [67].

Deep learning methods employ multiple processing layers to learn hierarchical
representations of data, and have preeminent results in many domains [88,373,390].
Naturally, there are many more topics related to dimensionality reduction and
representation learning [57], including: restricted Boltzmann machines, deep belief
networks, or graph neural networks, which have shown high capability in handling
relational dependencies behind multivariate time series forecasting where variables
depend on one another [402]. This section provides only a high level overview of those
techniques, which, in many cases, can be considered as a foremost alternative to the
feature extraction methods. However, regardless of the unquestioned achievements
in this area, these algorithms generally suffer from the lack of interpretation of the
projected dimensions [164,425], and for that reason, they are not studied further in
this dissertation.

2.3 Feature Selection

Feature selection (FS), sometimes referred to as variable elimination, or attribute
subset selection, is the process of determining those attributes that potentially
contribute to the predictive models. Along to dimensionality reduction, discussed
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in Section 2.2, FS is one of the most popular approaches defying the curse of
dimensionality, by removing irrelevant and redundant attributes from data [59].
There are many benefits of eliminating surplus variables. On the one hand, the
excessive amount of features increases the time and compute resources required to
train models. On the other hand, training models on a large number of features
may lead to over-fitting, resulting in their lower performance. Furthermore, FS is
facilitating data visualization, providing a better understanding of the underlying
process that generated the data [148]. Feature selection not only simplifies the
obtained data representation, but also allows to acquire features that can be easily
utilized by both analysts and learning algorithms [194]. FS can be designed at
different levels spanning from a standard tabular data scenario, whereby features take
a form of the existing columns / attributes, toward determination of data sources that
can be used to extract features in further steps [277]. Feature selection mechanisms
can be also combined with other approaches to machine learning and knowledge
discovery, e.g., by means of analyzing components of neural network structures
(interpreted as features) in order to achieve compact hybrid data representations
[323]. FS has become increasingly important for data analysis with numerous
successful applications in real life machine learning problems in various domains

53,174, 189).

Due to the large search space, FS is a difficult combinatorial problem, i.e., for a
data with n features the number of possible solutions is 2" [349,391]. Searching for
a (near)optimal subset of features is a challenging optimization problem, for which
many meta-heuristics, including: bee or ant colony optimization [123], simulated
annealing and whale optimization [252], Harris hawks [159] or grey wolf optimizers [1],
have been successfully applied. We may also distinguish several search strategies
to select a subset of variables from the input data, including: exhaustive or
heuristic search algorithms, genetic algorithms, evolutionary computation techniques,
forward propagation and backward elimination strategies, or various hybrid strategies
combining the above [94,406]. The forward propagation (sometimes referred to
as sequential forward selection or addition) strategy starts with the empty set
and consecutively adds one attribute at a time until certain criteria are met [59].
On the other hand, the backward elimination strategy starts with the full set (or
relatively large set of attributes that satisfies required criteria). In each iteration,
one attribute is removed - as long as the reduced set satisfies given criteria. Those
algorithms which aim to obtain the possibly minimal set of attributes usually combine
the heuristic search or forward selection with the subsequent phase of backward
elimination [183,412]. We may also refer to a number of studies on parallelization
of feature selection algorithms, e.g., by exploiting the computational capabilities of
modern heterogeneous systems that contain several CPUs and GPUs [129], or by using
Map Reduce paradigm and Spark framework [283]. Big Data aspects of attribute
granulation and selection are discussed further in Section 4.2.3.

Depending on whether the training set is labeled or not, feature selection
algorithms can be categorized into supervised, unsupervised, and semi-supervised.
Given the input data as a table with m samples and n features A = {ay, .., a,}, and
the target variable d, the supervised feature selection problem is to find a sub-set
of features R C A that “optimally” characterizes d [294]. Unsupervised feature
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selection is a less constrained search problem (without class labels), often depending
on clustering quality measures [431], statistical and information measures [430],
or on various hierarchical and granular structures — as briefly discussed further in
Section 2.4. A comprehensive review of unsupervised methods can be found in [12].
It is, however, quite common to have a data set with huge dimensionality but a
small labeled sample size. Under the assumption that, both, labeled and unlabeled
data are sampled from the same population generated by the target concept, the
semi-supervised feature selection methods make use of both labeled and unlabeled
data to estimate the relevance of evaluated features [341]. One way to do this is
to transform the partially labeled data into completely labeled. Whereas, the other
approach is to construct a measurement to cover both labeled and unlabeled data.
For this purpose, one may use ensemble selectors, for example based on rough set
based local neighborhood decision error rate [245], or may incorporate additional
knowledge, like graph-based structures, into semi-supervised FS methods [342].

Feature selection methods can be further categorized into three main groups:
wrapper, embedded, and filter methods [39,148]. Wrapper methods make a selection
of attributes based on the results of a preliminary data analysis. Wrappers use the
learning algorithm as a part of the feature subsets evaluation, i.e., classification (or
regression) model is used as a black box for assessing the feature subsets usefulness
in terms of the error (or fitness) rate obtained by a wrapped model on a testing
set. Wrapper methods include simple approaches, like greedy sequential searches,
but also more elaborate algorithms like recursive feature elimination, or evolutionary
and swarm intelligence algorithms [169,254]. Although these techniques may lead to
feature subsets well corresponding to the analyzed problem, they require training a
model for a combinatorial number of times, hence the computational cost becomes
prohibitive for high dimensional data sets. Embedded methods are nested in machine
learning algorithms, and incorporate knowledge about the specific structure of the
class of functions used by a certain learner, e.g., bounds on the leave-one-out error
of SVMs [30]. Other examples are: Lasso regression, classification and regression
trees, or gradient boosting [35]. Embedded methods are usually less computationally
expensive, still are much slower than filters. Same as in the case of wrappers, the
selected features are dependent on the learning machine.

In contrast to the above-discussed methods, filters carry out the attributes
selection regardless of the chosen model, since for the assessment of feature subsets,
they use evaluation metrics independent of the induction learning algorithm [229].
This strategy is particularly useful because of its efficiency. Typically, attributes
are ranked according to various types of scores, and those with the highest scores
are used to train the model, with an implicit assumption that choosing appropriate
attributes improves the accuracy and efficiency of classification or regression. By
applying statistical measures, one can find columns that do not contribute to the
accuracy of a model (or might in fact decrease its accuracy) and remove them before
the final training phase. Filter methods can be roughly classified further by the
filtering measures they employ to heuristically determine the subset of attributes with
the highest predictive power, i.e., information, distance, dependence, consistency,
similarity, or statistical measures. Examples of which include univariate criteria
like: correlation between evaluated features and a target variable [153,174], entropy,
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chi-square, analysis of variance (ANOVA), or other statistical tests [39], as well as
multivariate tests like various attribute dependency measures from the rough set
theory (RST) [75,183,367], which are discussed in detail in Section 3.1.

Using the correlation coefficient is a simple yet effective approach to FS [153,174].
For the attribute a € A and the decision d, Pearson’s correlation coefficient r, 4 (or
rqp in the case of correlation between two attributes a,b € A), for data with m
samples, is defined as:

> (a; — a)(d; — d)
Yty (a; — a)? iy (di — Ci)z

where @ and d are the mean values for the investigated attribute and the decision,
respectively. Whereas, a; and d; are the values of the attribute a and the decision d
for the i-th sample.

Another simple yet very popular test to maximize the relevance of selected features
is mutual information. Given two random variables X and Y, and their probabilistic
density functions p(x), p(y), and p(x,y), mutual information is defined as:

Ta,d

I(X;Y) = //p(w, y) log ded@/
s p(x), p(y)
Given m samples, we may approximate density functions p for the attribute a € A
as:

pla) ‘ A% Z(S —a;,h
where a; is the value of the attribute a for the i-th sample, §(.) is the density
estimator (e.g., Parzen window function for which A is the window length) [101].
Naturally, we may consider mutual-information-based feature selection for both
discrete and continuous data. For discrete (categorical) variables probability tables
can be estimated from data samples with the following formula:

=3 > pla,y)log Y Pz, y)

yevreX p(z), p(y)

Mutual information may be equivalently expressed with entropy® as:

I[(X;Y) = H(X) — HX|Y)

where H(X|Y) is the conditional entropy. Other well-known feature ranking
strategies are Fisher Score that optimize between-class variance and the within-class
variance, or Relief-based algorithms that order features based on the nearest neighbor
distance [380].

Among filter-based feature selection methods, the most interesting from our
viewpoint are multivariate algorithms [376]. Such approaches rely on inter-feature

8Entropy is one of the basic measures of information contained in data. For a discrete random
variable X with possible values {1, .., 2y, } is defined as: H(X) = —Y"1" | p(z;)log(p(z;)).
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Algorithm 1: Hybrid FS combining mRMR filter with a wrapper model
Data: U — samples, A — set of features, d — target variable;
N — max number of features to be evaluated during forward propagation
M?® - selected ML algorithm for wrapper model
®M — selected criterion to assess model quality
k — cross validation parameter
Result: R C A — selected attribute subset

/* Initialization */

-

N

R+ argmax,ca (I(a; c))

141

Rbest « R

oY, « evaluation of M®(R,U) with ®" under k-fold cross validation

oM «~0

candidate

[

(S}

=]

7 /* Forward propagation */
while (i < N') do

9 i+ +

10 /* incremental mRMR criterion x/
11 | a=argmaZeea\R (I(az’; ¢) = 1 Laer I(as; aj))

12 R+ RU{a}

13 /* evaluation with wrapper model */

1a | OM + eval. of M®(R,U) with ®™ under k-fold cross validation

candidate

15 if ((I)M > @%St) then

candidate

Rbest — R
M M
P — CI)best

candidate

0]

16
17

18 end

19 end
20 return Rpes;

dependencies when selecting a feature subset. Most of multivariate filtering
algorithms attempt to avoid including unnecessary features by measuring redundancy
within the selected subset. Such methods iteratively select features that provide
the most relevant information regarding dependent variable values (e.g., are highly
correlated or have a high value of mutual information index) and, on the other hand,
are less dependent on the already-selected features [243]. As a result, they produce
quite compact feature sets — what is a big advantage in practice [356]. For example,
in [174], authors search for features which have strong correlations with a target class,
yet uncorrelated mutually. This way implementing the correlation-based multivariate
F'S method to identify the most prognostic genes to classify biological samples of
binary and multi-class cancers.

In terms of mutual information, feature selection algorithms aim to find a feature
set R C A, containing features that jointly have the largest dependency on the target
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variable d. One of the most prominent examples of the multivariate F'S based on
mutual information is minimum redundancy maximum relevance algorithm (mRMR)
[90,294]. The main objective of mRMR is to find the subset of features R C A that
maximizes the following criterion:

max@ R, d) Z I(a;;d Z I(a;; a;)
RC |R|a, cR | | ai,ajER

The objective of mRMR algorithm is to maximizes relevance between selected
features and the decision (the left factor of the above subtraction), and to minimize
the redundancy among selected features (the right factor of the above subtraction)
[90]. In practice, we may use an incremental search strategy to find the near-optimal
solution as shown in line 11 in Algorithm 1. As proposed in [294], mRMR criterion
may be combined with wrapper FS method. In each iteration of the forward
propagation the wrapper model M? is evaluated with k-fold cross validation on the
given data sample and so far selected features, i.e., RY ¢ R® c R® c ... C A to
assess the predictive quality of candidate feature set — as presented in Algorithm 1.

To provide more examples of multivariate methods, we may further refer to
N-MRMCR-MI method based on the normalization of maximum relevance and
minimum common redundancy for the nonlinear optimization problems [61]. There
are more approaches that rely on mutual information, e.g., maximum relevance
minimum multicollinearity (MRmMC) [334], double input symmetrical relevance
filter (DISR), or normalized joint mutual information maximization (NJMIM) [31].
We may also recall a linear feature selection method called dynamic change of
selected feature with the class (DCSF) that employs both mutual information and
conditional mutual information [117], which eliminates irrelevant and redundant
features by introducing the dynamic information change of already-selected features
with the class. In [156], authors propose two F'S algorithms and evaluation criterion
inspired by mutual information, ReliefF, and Fisher score. Naturally, there are many
more multivariate filters [29, 53], or combinations of filters and wrappers [123, 155].
In [39,383,391,406], a comprehensive review of more related methods can be found.

Most of feature selection approaches are focused on achieving possibly compact
data representation to perform efficiently on large data volumes [374], or to scale
with respect to high dimensionality [243]. However, as in real life applications data
may be processed continually over time, and some features may become temporarily
unavailable or unreliable, it is also worth to study various extensions of standard
feature selection algorithms, including such aspects as: incomplete data handling [76],
dynamic and incremental data processing [192], or feature cost analysis [263]. To some
extent, the ideas presented in this dissertation could be compared to the notion of
stability (or robustness) of selected feature subsets [198,282]. Stability of feature
selection techniques can be expressed as a variation in feature selection results due to
changes in the data, e.g., when training samples are added or removed [329]. If the
F'S algorithm produces a significantly different subsets for any perturbations in the
training data, then that algorithm becomes unreliable. Measuring stability of selected
features is particularly important in biological and medical research, indicating
whether the selected features are likely to be a real clinical signals worth further
investigation, or not [127]. There are two popular approaches to assess the stability
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of particular FS algorithm: a similarity-based approach and the frequency-based
approach. In both cases, we may measure the stability of a given feature selection
algorithm as the variability of its output with respect to data sampling [281].

Let R = {Ry,.., Ry} be the set containing M feature subsets R; C A being
results of M consecutive runs of the evaluated FS algorithm, e.g., on different data
sub-samples. In the frequency-based approach, we interpret the feature selection
results R = {Ry,.., Ry} as a binary embedding, where 1 means that feature a; has
been selected, whereas 0 means the opposite. For a given data containing |A| = n
features, we may represent R in a tabular form as:

selected(ay, 1) -+ selected(ay, 1)
selected(ay,2) -+  selected(ay,2)
selected(a, M) --- selected(a,, M)

where i-th row corresponds to subset R; € R selected in i-th algorithm run, and
the selected(.,.) function for an attribute a € A and i-th algorithm iteration is defined
as:

_ 1 if a was selected in i-th FS algorithm run
selected(a,i) = ‘
0 opposite
The observed frequency of selection of a feature a € A after M algorithm runs
may be defined as:

pla) = — Z selected(a, 1)
=1
Here, one can define the stability measure by the selection frequencies of each
feature after M algorithm runs, e.g., as the frequency of selection averaged over all
features [127]:

pla
TP

Naturally, there are more frequency-based approaches to assess FS stability, for
example: relative weighted consistency, or entropy of feature sets [281].

In the similarity-based approach, we define stability of algorithms as the average
pairwise similarity between the possible pairs of feature sets in R:

d(R) = RR=1) ]R[—l > > Sim®(Ri, Ry)

R;€R R;€eR
R;«éR

where the stability measure i) depends on the similarity measure Sim? of a choice,
which may be a Hamming (Sime™™9) or Dice-Sgrensen (SimP*¢) index, fuzzy
similarity measures, e.g., generalized weighted Jaccard similarity (Sim&"79) [343], or
RST based similarity measures, e.g., based on discernibility Sim?”%¢ (4.4) as presented
later in Section 4.2.1, and many others [176]. For example, given the Jaccard index as
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the similarity measure (Sim?7e@ ) the stability measure CTD, defined as the average

pairwise similarity between the possible pairs of features, is as follows:

A

~ RI(R[-1) !R! -1 RZE:R RZE:]R | R; U R,
R;#R;

Stability was investigated from various perspectives, e.g., by means of avoiding
over-fitting [282], or minimizing an impact of data noise [14]. In the case of our study,
the meaning of stability may refer to minimizing a risk of information insufficiency
subject to a loss of access to some of pre-selected features.

Another thread of research that corresponds to robust / stable F'S [224] is related
to ensemble-based feature selection [45,329]. An ensemble (sometimes referred to
as a committee) is collection of single classification (or regression) models whose
predictions are aggregated, e.g., by majority voting [217]. To address this aspect while
building classifier ensembles, meta-learning algorithms, such as boosting or bagging,
can be used. Ensembles for feature selection might be further classified following
many diverse criteria [37], but the most simple division is into the homogeneous ones,
in the case of which the base selectors are all of the same kind, and the heterogeneous
ensembles that combine outputs of diverse F'S methods. Diversity of ensamble-based
F'S may be investigated from many perspective, as thoroughly discussed further in
Chapter 4. Yielding in an improved prediction performance, as confirmed in a detailed
evaluation on real data sets presented further in Sections 5.1 and 5.2, is one of the
main reasons to use an ensemble method with divers components. It would not make
any sense to build an ensemble in which all the components offered the same result.

Ensembles have been shown to be an efficient way of improving predictive accuracy
or/and decomposing a complex learning problem into easier sub-problems. The
ensemble feature selection may be interpreted two-fold. On the one hand, several
feature selection processes may be carried out (either using different training sets,
different FS methods, or both), with the final goal to produce a single feature
set as a combination of particular ensemble components [3]. In this approach, the
aggregated predictions are expected to obtain more accurate and stable results, hence
reducing the risk of choosing an unstable subsets, what is especially important for
non-stationary environments [217], such as imbalanced data streams [49], or in the
presence of concept drifts [85]. Indeed, merging multiple feature subsets obtained
using ensemble techniques can yield results that are robust (or stable) from the above
viewpoint. This kind of merging can actually lead toward establishing feature sets
that induce high-quality prediction models [138]. However, robustness with regard
to small data changes is not the same as robustness with regard to losing some of
data dimensions. This latter aspect is specially relevant in knowledge discovery, and
even more in those cases in which data dimensionality is very high, but the number
of samples is not such, as they are more sensible to generalization problems [220].

On the other hand, we may apply FS for several times in order to produce
the diversity of subsets for the purpose of subsequent ensemble learning methods.
Here, ensemble-based methods in feature selection can be considered by means of
creating multiple prediction models [89], whereby each model is built over a different
subset of features, e.g., by constructing a rule-based classifier for each selected feature
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subset and aggregating results of such predictors [361]. In [299], it was noted that
ensemble construction based on random subspace selection can partially solve the
missing feature problem, which is exactly what we want to address in our resilient
feature selection framework presented in Chapter 3. Analogous approaches can be
found also in the rough set literature, with respect to both, standard reducts [166]
and approximate reducts [397]. Actually, using a variety of approximate reducts to
construct an ensemble of diversified models can be efficient in many areas [356].
Still, when comparing to the approach to resilient feature selection, introduced
further in Chapter 3, those aforementioned ideas — based either on merging multiple
reducts [359], or on treating them as an ensemble [361] — are heuristic methods that
miss explicit mathematical formulation of the properties of resilient feature sets and
explicit optimization goals for algorithms aimed at searching for such sets in the data.

2.4 Information Granulation in Feature
Extraction

Granular Computing (GrC) arose as a synthesis of insights into human-centred
information processing that mimics human, intelligent synthesis of knowledge from
information [23,416]. Currently, information granulation plays an important role
in modern machine learning and knowledge discovery algorithms, with a number of
successful applications in various domains [355,393,426]. In this section, we focus on
feature space granulation approaches introduced by now. Our objective is to provide
a general overview of GrC, and to identify the main items on its agenda associating
their usage in the setting of feature extraction. This way, we lay foundation for our
approach by explaining how the granules can be formed, interpreted, and utilized by
feature extraction algorithms.

Decision support in solving problems related to complex systems requires relevant
computation models as well as methods for reasoning [348]. In recent years, one can
observe a growing interest in the area of GrC as a methodology for modeling and
conducting complex computations, in various domains of information technology,
machine learning, and feature extraction, in particular [139]. On the other hand,
human-centricity comes as an inherent feature of intelligent systems [293]. It
is anticipated that a two-way human-machine communication is imperative, and
interactive communication of intelligent systems with users becomes substantial [175].

The possibility to take advantage of additional domain knowledge provided by
human experts relies on the observation that human thinking and perception in
general, and their reasoning while performing data exploration tasks in particular,
can comprise different levels of abstraction, display a natural ability to switch
focus from one level to another, or operate on several levels simultaneously [279].
Human, however, perceives the world, reasons, and communicates at some level of
abstraction that, unlike information systems and algorithms, comes hand in hand
with non-numeric constructs. Those embrace collections of entities characterized by
some notions of closeness, proximity, functionality, resemblance, or similarity, referred
to as information granules (granules or infogranules, for short) [292,413].

The construction of a granular system for a given data set is frequently portrayed
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as a procedure of zooming in and out on the data or, in other words, changing the data
“resolution”. Depending on the chosen level of granularity, some data items (objects,
cases, instances) become indistinguishable. Hence, the “length” of the data is altered,
which corresponds to possible reduction of the storage and processing resources. By
employing compact descriptions of granules — defined as collections of original data
elements gathered together — one can accelerate computations and, moreover, make
the results of those computations more meaningful for domain experts. It is also worth
mentioning that the idea of zooming in and out — i.e., switching between different
levels of information granularity — is popular in the area of analytical processing
in databases [355]. However, one should remember that data granularity can have
different meanings. In traditional databases, by granular data one usually means the
most detailed, low level, exact data representation [11].

The granular approach to dealing with information systems does not have to be
limited to just the length/volume dimension of the data set. It can also be used
to modify, reduce and transform the “width” and “depth” of information. In GrC
this is sometimes called variable granulation and concept granulation. Just like in
a case of the “classical” granulation, where data objects are combined into more
complex entities, attributes in data can be granulated by using similarity, distance or
correlation between them. In particular, by constructing granules over the space of
attributes in the data set it is possible to reduce dimensionality. In the simplest form
it can be used to replace multiple features/dimensions by just the representative one of
the corresponding granule. A more complex, yet still similar approach is represented
by a reduction based on an information function and discernibility, typical for the
theory of rough sets, where the original set of attributes is replaced by a reduct, i.e.,
a subset that carries the same amount of important information.

In the context of attribute granulation, two attributes are usually regarded as
similar if they convey similar information about objects described in the data. For
instance, one may consider similar two attributes whose values in the data are highly
correlated. In fact, Pearson and Spearman correlation coefficients are commonly used
as measures of attribute similarity for the purpose of attribute clustering [86]. There
are, however, some other possibilities as well. For instance, further in this dissertation
we examine an idea of building similarity of attributes by means of their ability to
replace each other in the constructed decision models. Namely, if an attribute can be
replaced by another without losing important information about investigated objects,
it means that they complement in the same way the remaining attributes. The more
generic approach is to search for whole feature sets with a guarantee of providing
sufficient predictive power even if some of their elements are dropped [137,142].

The proximity of attributes may have a few meanings as well. Typically, this
term is used as a synonym of similarity. However, when it comes to granules of
attributes, it may also be understood as a “physical proximity”. For example, in
coal mines, there are many sensors monitoring the safety of miners, which constantly
gather data about the conditions underground [179]. When analyzing this type of
data, it is important to consider locations of sensors, since readings from closely
co-located devices are inherently correlated [15]. Moreover, events observed by one
group of sensors are detected by other groups after some time and the delay, as well
as the order, in which different sensors denote the event, often corresponds to the
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ventilation scheme of the mine. For this reason, as noted in [277], it is often worth
to consider the whole chunks of attributes corresponding to such proximate sensors.
In this way, it is not only possible to improve readability of the resulting decision
models, but also increase the performance of the whole data processing chain due to a
more efficient utilization of local buffers for reading data streams [136,144]. Another
practical consideration is the aspect of model robustness and fault tolerance. In this
context, proximity of attributes may be regarded as a degree of dependency on a
specific hardware equipment [179]. For instance, if one sensor is faulty, all attributes
whose values are dependent on its readings will be unreliable [142].

It may also be desirable to consider granules of attributes that share some
higher-level properties or that are tied by constraints imposed by a given application
area [130]. Typically, domain experts associate such attributes with similar
functionalities of investigated objects. Let us consider an example of the brain MRI
data set investigated in [393], whereby features derived using some parameterized
image processing procedures may be associated with groups of attributes that take
different values for particular objects (these values depend on particular parameter
settings) but describe the same aspect of the data. Another example of this type
of situation is apparent in the analysis of a stock market. Many financial experts
use technical indices to describe the behavior of stock prices in time. Such indices
(e.g., moving averages, moving variance, RSI, TDI, stochastic oscillators, etc.) have
many parameters, such as the considered time window size. Over long periods, the
accuracy of time series model forecasting is invariably affected by interval length, and
formulating effective interval partitioning methods can be very difficult. In [63], an
interdisciplinary review of the idea of granularity in economic decision making from
different perspectives, including: psychology, cognitive science, complex science, as
well as behavioral and experimental economics is discussed.

The above considerations lead toward several observations. To begin, the spaces
of features/attributes that require to be granulated can be more complex than a set
of columns in a tabular data. The above considerations lead toward the observation
that the spaces of features/attributes A ¢ that require to be granulated can be more
complex than a set of columns in a tabular data. In some real-life scenarios, the set A
may require granulation because of its high cardinality. An example of such situation
can be found, e.g., in [134], where an interactive GUI-based approach for grouping
genes-attributes was introduced. However, in other scenarios the set A may not exist
in a materialized form. We can rather think about a set A* gathering all derivable
attributes/features, e.g., wavelet coefficients in the case of EEG signal analysis [372]
or JSON-driven aggregates defined for a semi-structured data set [186]. Thus, one
could think about A* as a space of all outcomes of the feature engineering/extraction
techniques applied in a given application area. We shall treat A* (sometimes taking
a simple form of A) as our granulation domain.

The second observation is about the meaning of granules built over A* (or
A) from the perspective of data understanding and decision model construction,
including feature selection. With respect to data understanding, it is implicitly
assumed that features dropping into the same granules should be assessed by
domain experts as having some kind of common background, by means of physical,

9Typically the set of all features/attributes is denoted with A [288]
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functional or information-specific comparability. In particular, the information level
of comparability may correspond to the way, in which particular features contribute
to decision models aimed at classifying or distinguishing between different states of
target variables. This aspect, as previously mentioned, seems to be close to the ideas
of adapting various data clustering methods for the purpose of grouping together
similarly acting or replaceable/interchangeable attributes [3,177]. However, we also
need to remember that all of the above flavors of similarity need to be coupled with
some tangible criteria for assessing the quality of pre-defined or produced granules,
especially in the context of feature extraction [185].

Identification of subgroups of similar variables is especially important for
high-dimensional data exploration [40,146]. In this context it is frequently useful
to apply the modern algorithms aimed at big data clustering. Several instance
clustering algorithms, like the expectation maximization or k-means, have already
been implemented in the scalable environments [20, 78]. There are also some prior
results reported on the feature clustering algorithms that are of particular interest in
this paper. The hierarchies of granules/groups of features can be constructed using
some interactive clustering methods as well [134]. It is also important to realize that
the feature similarity measures employed in the above clustering approaches should
somehow correspond to the ultimate goal of finding the groups of attributes that can
play mutually comparable roles in the constructed decision models [3].

The demand for efficiency and effectiveness in Big Data scenarios resulted in
a number of approaches to massively parallel feature reduction [307,429], as well
as highly scalable instance selection and deduplication [371,377]. Popular code
libraries like Spark or Mahout provide parallel implementations of well-known feature
selection methods [104]. There are also approximate implementations of standard
algorithms, which derive heuristic feature evaluation scores from granulated data
summaries [60]. The speed of the feature and instance selection processes becomes
especially important in interactive approaches [358], whereby, additionally, granular
hierarchies of attributes may help the users to navigate through rich feature spaces.
Introducing approximate computations into the feature selection processes is — in
combination with making them highly parallel — an example of a more general trend
in machine learning and knowledge discovery [7].

It is noteworthy that, just as for other popular feature selection methods,
there were some interesting attempts to perform RST reduct derivation within the
MapReduce framework [236]. The ideas of scalable performance of feature extraction,
in particular reduct calculation [138], are most commonly related to decomposing
computations with respect to rows/instances [163]. However, by introducing the
elements of granulation into the feature spaces we can additionally scale up the
algorithms in an “attribute-oriented” fashion. Surely, such granulation-related ideas
could be considered — besides the algorithms originating from the theory of rough
sets — within the scope of other popular feature selection/engineering solutions as
well [148,294].

Besides the so-far-mentioned rough sets [285,288], there are numerous formal
frameworks of information granules [293]. Let us recall some selected alternatives.
Among the most popular ones we may point out the set theory, interval analysis [268]
and fuzzy sets which deliver an important conceptual and algorithmic generalization
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Table 2.2: A decision table S that is used in further illustrations in the frame of this study.

U\A aq Q9 as Qg as Qg d
up | false | ’a’ | sy | o | O | x| good
up | false || sy | ©@ | e | X | good
ug | false | ¢’ | AN | @ | o | X | good
ug | false | 'd | v | ® | < | X | good
us | false | ¢ | sy | © | % |y | good
ug | false |’ | sy | @ | > |y | good
uy | true | g | A | ®@ | Oy | bad
ug true |''h’ | A | © | o | 27| bad
Ug true | V" |y | & | © | 'z | bad

of sets by admitting partial membership of an element to a given information
granule [415]. Shadowed sets distinguish among elements, which (i) fully belong
to the concept, (ii) are excluded from it, and (iii) their belongingness is completely
unknown [291]. The list of formal frameworks is quite extensive [287], interesting
examples are also rough-fuzzy and fuzzy-rough sets [100], probabilistic sets [162],
probabilistic rough sets [248], axiomatic fuzzy sets [246], or three-way decisions [411]
under dynamic granulation [306], and many more [69,427]. In this dissertation,
however, we mainly focus on the interactive feature extraction methods related to
the theory of rough sets [139,142]. In the next sections, we discuss the advantages
of pre-grouping of attributes from the perspective of feature selection, with the
reduct-based decision models originating from the theory of rough sets [367].

2.5 Rough Sets Methods for Feature Selection

One of the data exploration methodologies where a large emphasis is put on the
granulation of attribute space and multivariate feature selection is rough set theory
(RST) [249,347]. RST as a whole provides a formalism for reasoning about imperfect
data, handling such problems as data veracity, uncertainty, or incompleteness [154,
157,219]. Its fundamental concept related to feature selection — and particularly
dimensionality reduction — is a decision reduct, which is an irreducible subset of
attributes (features, columns) that determines a target variable (so-called decision
attribute) at the same level as the whole set of considered attributes.

In RST, we assume that the whole available information about an object v € U is
represented in a structure called an information system [288] — a tuple (U, A), where
U is a finite, non-empty set of objects, and A is a finite, non-empty set of attributes.
Let us distinguish a decision attribute (class feature, target variable), which defines
a partitioning of U into disjoint sets representing decision classes (or categories) that
we want to describe using other attributes. An information system with specified
decision attribute is called a decision table (or decision system) and is denoted by
S=(UAu{d}), An{d} = 0.

For a given decision system S = (U, AU {d}), one considers functions a : U — V,
a € A, where V, is the set of values of a. Such functions allow us to represent
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S as a table with rows labeled by objects, columns labeled by attributes, and
cells corresponding to pairs (u,a) assigned with values a(u) € V, (see Table 2.2).
Obviously, this kind of tabular representation is one of many equivalent formats of
representing the data [398].

The indiscernibility relation (IND) expresses the fact that due to a lack of
information (or knowledge) we are unable to discern some objects employing available
information. In general, we are unable to deal with each particular object but we
have to consider granules (clusters) of indiscernible objects as a fundamental basis
for RST. Let us define indiscernibility relation IND(R) : U x U, for any R C A, as
follows [288,304]:

IND(R) = {(u;,u;) : Ya € R, a(u;) = a(u;)} (2.1)

after considering the decision:

IND(R) = {(ui,u;) : Va € R,a(u;) = a(u;) A d(u;) # d(u;)} (2.2)

By analogy, we can define a discernibility (or more precise R-discernibility)
relation DIS(R), as:

DIS(R) = {(uj,u;) : Ja € R, a(u;) # a(u;)} (2.3)

after considering the decision:

DIS(R) = {(u;,u;j) : Ja € R, a(u;) # a(u;) A d(u;) # d(u;)} (2.4)

(In)discernibility relations enable us to express dependencies among attributes
at a more universal level. We may notice that indiscernibility and disceribility are
equivalence relations. We denote an equivalence class of each object u € U as [u]a.

An excessive amount of attributes in A provides a great potential for data-driven
reasoning. However, many of those attributes may be dispensable, or could be
irrelevant from the point of view of a given problem corresponding to d. In such
situations, A-based information about objects in U needs to be simplified. Selecting
informative sets of attributes is conducted by referring to the notion of a reduct [288].

Definition 1 (Reduct).

Let S = (U, AU {d}) be a decision table. Subset R C A is called a superreduct, if and
only if it determines d within U, denoted as R = d. Superreduct R is called a reduct,
if and only if there is no proper subset R' C R, which holds the superreduct condition.

From a formal point of view, we should write =g instead of =, as the requirement
of determining d by R is data-specific. However, we use a simplified notation
whenever it does not lead to misunderstandings. Analogously, one may think about
the usage of various heuristic measures while evaluating (subsets of) attributes in
filter-based feature selection algorithms. There are plenty of interpretations of
the reduct definition (1) that correspond to several other concepts and theorems
like: (in)discernibility relations, the (in)discernibility matrix, or the positive region.
Below we provide a short review of several significant and representative reduct
interpretations.
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The first example refers to the indiscernibility relation (eq. 2.2), which enables
us to express dependencies among attributes.

Definition 2 (Reduct - by IND relation).

Let S = (U, AU {d}) be a decision table. Subset R C A is called a superreduct, if and
only if IND(R) C IND(A). Superreduct R is called a reduct, if and only if there is
no proper subset R C R, which holds the superreduct condition.

Equivalently, we may say that R C A is a decision reduct, if and only if it is an
irreducible subset of attributes such that each pair of objects w;,u; € U satisfying
the inequality d(u;) # d(u;) is discerned by R.

Another reduct definition is related to the indiscernibility relation and its quotient
set (i.e., is constructed by the equivalence classes of IND). A subset of features
R C A is called a decision superreduct iff for any object u € U the indiscernibility
class of u relative to A is a subset of some decision class, its indiscernibility class
relative to R should also be a subset of that decision class.

Definition 3 (Reduct - by equivalence classes of IND).

Let S = (U, AU {d}) be a decision table. Subset R C A is called a superreduct, if and
only if [ula C [ulg = [u]lr C [u]g. Superreduct R is called a reduct, if and only if
there is no proper subset R" C R, which holds the superreduct condition.

The next example refers to the discernibility relation. The numeric Disc measure
is based on the arity of discernibility relation:

Disc(R) = [{(u,v) : Ja € R,a(u) # a(u') A d(u) # d(u')} (2.5)

The definition of the decision reduct by Disc measure would be very similar to
the above listed. The only difference would refer to the superreduct condition, which,
for Disc measure, would be defined with the following equation:

Disc(R) = Disc(A) (2.6)

Another popular reducts formulation refers to the notion of function v : P(A4) —
[0, 1], which is commonly used to express a degree of dependence between a subset of

attributes and the decision:
_ [POS(R)]

v(R) = 7 (2.7)
where POS denotes the positive region induced by R [288]:
POS(R) ={u € U : Vyerd(u) # d(v') = Jacra(u) # a(u’)} (2.8)

For a decision system S = (U, A U {d}), where cardinality of A and U is: |A] = m,
|U| = n we can define a discernibility matrix M(R). Discernibility matrices are useful
for deriving possibly small subsets of attributes, still keeping the knowledge encoded
within a decision system [349]. Each cell ¢; ; of M(R) fori,j =1.n,1<i<j<n
contains a list of attributes in R C A, which are discerning objects u;, u; with different
decisions, or more formally:

¢ ={ae RCA:u,u; € Unu; #uj alu) # alu) ANd(u;) # d(uj)} (2.9)
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Among the presented variety of extensions of decision reducts, let us also discuss
their approximate interpretations. Criteria for calculating approximate decision
reducts are usually based on functions evaluating degrees of decision information
induced by attribute subsets and thresholds for values of those functions’ specifying
which of those subsets are good enough. Such an approach may lead us to obtain
subsets of attributes that are less accurate than exact reducts but could be preferred
in some real-life applications to deal with large or noisy data, ultimately leading to
smaller data representations.

For example, we may refer to a-approximations of reducts, where a € (0,1] is a
real parameter [276]. The set of attributes R C A is called a-reduct iff it is minimal
in sense of set-inclusion, intersecting at least a - 100% of pairs of objects that are
necessary to be discerned with respect to decision. More formally, we may define
a-reduct with the following equation:

Heij: ROeig #0H
{(wi,uy) = d(ui) # d(uy)] —

We may also easily introduce the approximation threshold ¢ for many reduct
criteria. For example, let us introduce it into criteria based on Disc measure (2.6):

(2.10)

Disc(R) > (1 —¢) x Disc(A) (2.11)

As a yet another significant example, we may point out approximate entropy
reducts [352], in the case of which, the superreduct criterion relay on the conditional
entropy H(d|R) = H(RU{d})— H(R). In the following specification, H plays the role
of a penalty measure, which, with the given approximation threshold e, corresponds
to (H, e)-approximate reducts introduced in [352].

Definition 4 (Reduct - by conditional entropy).

Let S=(U,AU{d}) be a decision table. Subset RCA C A is called a
(H,¢e)-approximate superreduct, if and only if H(d|R) < H(d|A) — logy,(1 — ¢).
Superreduct R is called a (H,e)-approzimate reduct, if and only if there is no proper
subset R C R, which holds the superreduct condition.

There are a lot more extensions for approximate and exact reducts, often
hybridized with other methods [304, 367]. For instance, in [183] a combination
of iterative filter-based feature selection with statistical significance tests based on
random probes and a typical RST-based redundant feature elimination was applied
to calculate dynamically adjusted approximate reducts (DAAR). To provide a wider
range of reasoning strategies, we could easily refer to the rough membership function
par  Va x VE — [0,1] [286], majority decision function mqyp : V§ — 2V4 [351],
and many others [53,253,340]. A similar mixture of iterative feature selection and
reduction was considered in [80]. Although in that latter case authors did not refer
to the rough set literature, their feature reduction phase actually follows the same
criteria as RST-based reduct calculation methods referring to the discernibility of
(almost all) pairs of objects having different target variable values.

Figure 2.2 presents the attribute lattice for the data in Table 2.2. In this context,
reduct computation means the search through the lattice. A minimal reduct may
be interpreted as the first subset for every path from () to A that satisfies the
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W

Figure 2.2: The lattice for the data in Table 2.2. Each oval corresponds to a single
attribute subset, starting from the empty set at the bottom, ending with the whole set
of attributes at the top. Bold ovals correspond to reducts, dotted ovals correspond to
superreducts, arrows correspond to the set inclusion relation C.

considered criterion. We may refer to a number of well-established reduct search
algorithms with this respect [118,319,412]. Tt is also important to stress out that the
problems of finding various types of minimal reducts are known to be NP-hard and
the RST-related literature reports a number of studies with this respect [92,349,360].



Chapter 3

Resilient Feature Selection

There is a variety of approaches for automatic feature selection [59]. Still, it is
hard to find a method that would put together different aspects of feature subset
quality, such as expected efficiency of the corresponding model, its interpretability
from the viewpoint of the end-users, a risk of loss or lack of sufficient data to make
decisions during long-term operations, and so on. In this Chapter, we concentrate on
the last of the above-listed quality aspects. Our goal is to formulate new constraints,
whereby selected feature sets are guaranteed to provide enough information about the
considered target variables even if some of those features are temporarily dropped.

We formalize such constraints by introducing r-C-reducts — irreducible subsets
of features providing a satisfactory level of information about the target variable
according to a given criterion function C, even after removing r elements. The
proposed approach is based on generalization of the notion of an approximate reduct
known from the rough set theory (RST) [367]. This way, we continue RST-based
research on resilient feature selection that was started in [137] by extending standard
reducts [288]. However, the framework proposed in this paper embraces a much
wider family of criteria specifying that a given feature subset is good enough to
determine target variable values. We are actually able to refer to the whole realm of
filter-based feature selection strategies [79], now defining a satisfactory feature set as
the one whose evaluation function exceeds a certain threshold even after removing
its r elements, r > 0.

In the feature selection process based on r-C-reducts, an analyst should be able
to control the level of resilience occurring in generated subsets of features while
maintaining their relevance to the analyzed problem. In other words, the idea is to
let an analyst achieve a relatively compact representation of the data tuned for the
investigated problem, whereby the selected feature set should preserve its relevance
even in case of partial data loss. However, to make this approach feasible, we need
to investigate computational complexity of the corresponding search tasks. Then,
we should also design efficient algorithms deriving meaningful r-C-reducts from the
data. The rough set literature is a good source of inspiration for both above aspects.

In RST, there is a lot of attention paid to NP-hardness of finding various versions
of reducts in the data [270]. For example, in [351] it was proposed to evaluate
feature subsets using a measure modeling accuracy of rule-based classifiers induced
by those subsets over the training data. Then, the problem of finding minimal — in
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terms of cardinality — subset of features providing e-almost the same value of such
measure as the whole set of features was shown to be NP-hard for an arbitrary fixed
threshold € € [0,1). Problems related to r-C-reducts are analogous. As the important
theoretical contribution in this Chapter, we show that any NP-hard problem of finding
minimal attribute subset that yields satisfactory level of information according to a
given C remains NP-hard for an arbitrary resilience level r. As a special case, the
task of finding minimal subset of features providing e-almost the same level of the
aforementioned accuracy measure as the whole set even after removing arbitrary r
elements is NP-hard.

The second contribution is a broad study on algorithmic aspects of searching
for minimal r-C-reducts. By following a popular idea of dynamic exploration of
the lattice of feature subsets, whereby some of its elements turn out to be labeled
as satisfying the criteria for providing enough information while others do not, we
elaborate on two generic strategies, namely, breadth first search (BFS) and depth
first search (DFS). For BFS, we adapt the well-known Apriori algorithm [331] for
the purpose of r-C-reduct search. For DFS, we extend standard reduct construction
methods [353] to incorporate resilience of generated feature sets. Our study includes
also some illustrative examples of data sets, as well as the analysis of computational
cost of particular algorithms.

The rest of the Chapter is organized as follows. In Section 3.1, we introduce
the notion of criterion function C, which enables us to consider various feature
selection formulations at a higher level of abstraction with C-reducts. In Section
3.2, we discuss the idea of resilient feature selection and, accordingly, we introduce
r-C-reducts. In Section 3.3, we outline an Apriori-inspired algorithm that generates
all r-C-reducts of a given type. In Section 3.4, we study the tasks of resilient feature
selection from the perspective of their computational complexity. We prove that many
NP-hard feature selection / elimination problems remain NP-hard for any arbitrary
resilience level r. In Section 3.5, we present heuristic DF'S algorithms for searching for
optimal r-C-reducts, with specific examples of permutation-based and approximation
methods.

3.1 C-reducts

In this section, we take a step towards a generalization of feature selection methods as
a process of achieving a feature subset that satisfies expected criteria. In many cases,
especially in data analysis, it is much more interesting whether the given feature
subset complies with respect to the defined function that is verifying some specified
criteria rather than the exact value of a quality (or error) measure. Below, we
generalize this way of reasoning about attribute subsets by introducing criterion
functions, which, for each given decision table S = (U, AU {d}), return a binary
assessment of the candidate attribute subsets.

Definition 5 (Criterion Function).

A criterion function C is a function, which assigns, for any S = (U, AU{d}), values
0 and 1 to the subsets of A (i.e., C: P(A) — {0,1}, where P(A) denotes the set of all
subsets of A) in such a way that, for any X, Y C A, if X = Y then C(X) > C(Y).



3.1 C-reducts 49

We write C : P(A) — {0,1} instead of Cs : P(A) — {0,1}. However, we go back
to explicit data-specific notation in Section 3.4. Having this in mind, let us note that
for any X, Y C A, if X DY then X = Y, hence C(X) > C(Y). Such monotonicity
of C is illustrated in the attribute subset lattice in Figure 2.2. The above definition
allows us to consider a very broad range of criteria, not all of which could be anyhow
reasonable for feature selection. Still, once we conclude the particular approach does
have a sense and is compliant to the presented generic definition (as we see in the
following sections, there is a number of so far developed approaches that do comply),
we may easily formulate its resilient versions and appraise their complexity.

Besides the constraint expressed for the selected R by C, the proposed approach
follows the very common for RST (but not only for RST - see, e.g., [80]) objective
to achieve the smallest feature subsets — reducts. Below we extend the notion of a
reduct with respect to C.

Definition 6 (Criterion Reduct).

Let S = (U, AU {d}) and C be given. Subset R C A is called a C-superreduct, if and
only if C(R) = 1. We call R a C-reduct, if and only if, additionally, there is no
proper subset R' C R such that C(R') = 1.

In relation to the notions introduced in Definition 1, we may notice that they can
be easily rephrased using specific criterion function, namely:

C7(R) = {1 HR=d (3.1)

0 otherwise

Indeed, reducts and C=-reducts are equivalent to each other. It is also worth adding
that there are decision tables S = (U, A U {d}) for which C¥(A) = 0. In RST, they are
called inconsistent. In such cases, there are no (super)reducts in terms of Definition
1. Definition 6 is surely far more general than Definition 1, subject to a choice of C.
In the literature, one can find many variants of reduct definitions. Below, we recall
some of the popular extensions reviewed in Section 2.5, and re-formulate them using
their corresponding criterion functions.

The criterion function that encapsulates the reduct definition based on Disc
measure (eq. 2.6) may be constructed as follows:

1 if Disc(R) = Disc(A)

. (3.2)
0 otherwise

(CDisc(R) — {

The criterion function that encapsulates the reduct definition based on
discernibility matrix M may be constructed as follows:

CM(R) _ 1 vl§i<]’§'n, Cij € M(A), C;,j c M(R), if ‘CiJ‘ >0= |C;,j‘ >0 (33)
0 otherwise
The criterion function defining so-called v-reducts is as follows:
1 if v(R) =~(A
0 otherwise
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The above examples can be generalized using the notion of a quality measure
Q : P(A) — O, where (O, ) refers to a partially ordered set in which every two
elements have a unique lower and upper bound [142,275,353]:

Definition 7 (Quality Measure).

Function @Q is called a quality measure if, for any S = (U, AU{d}), it assigns the
subsets of A with the elements of © (i.e., Q : P(A) — ©) in such a way that for any
XY CA if X =Y then Q(X) = Q(Y).

The above property of () will be further referred to as the monotonicity with
respect to functional dependencies, which yields in particular — like in the case of
Definition 5 — the monotonicity with respect to set inclusion (cf. the lattice in Figure
3.2). In practice, the most commonly used specification of © are R, N, or (0, 1] with
> relation. Similarly, as in the case of the criterion function definition (5), Definition
7 is intended to cover essential properties of feature subset measures to generalize the
further discussion, not to implement a feature selection by itself.

The following criterion functions correspond to a number of ()-based definitions of
so-called approximate reducts. A general mechanism is to use measures @) : P(A) —
[0, +00) together with an approximation threshold e € [0, 1), which is responsible for
the allowed degree of losing information while removing attributes from A:

C@A(R) {1 Q(R) > (1-2) * Q(A) 35)

0 otherwise

Proposition 3.1.1. For every () satisfying conditions of Definition 7, for every
e €[0,1), criterion function C'@#) satisfies conditions of Definition 5.

Proof. Straightforward. m

For example, let us note that RST-based functions Disc and v can be considered as
special cases of the above framework [275,367]. The corresponding criterion function
for Disc measure would be defined as follows:

1 Disc(R) > (1 —¢) % Disc(A)

) (3.6)
0 otherwise

C(Disc,a) (R) _ {

The criterion function defining v-reducts with the approximation threshold is as
follows:

L (R) = (1—¢)x~(A4)

. (3.7)
0 otherwise

Cctre) (R) = {

Proposition 3.1.2. Functions Disc and vy satisfy conditions of Definition 7.

Proof. 1t is known that both considered functions are monotonic with respect to set
inclusion. The property related to functional dependencies can be shown analogously.
m

Proposition 3.1.3. Function CM(R) 3.3 satisfies conditions of Definition 7.
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Proof. Straightforward. Conditions of discernibility matrix are constructed basing on
discernibility relation DIS and has similar behaviour as Disc. Compare Proposition
3.1.2. m

The above simple facts will be important while considering examples of
CPisee)_reducts and C¥-reducts. Let us refer to [188,288,351] for more examples
of quality measures that can be utilized to specify C(@*)-reducts.

Yet another option to utilize Definition 6 to express various variations of
reducts is to consider functions modeling a lack of information about the decision
attribute, such as, e.g., conditional entropy H(d|R) = H(RU {d}) — H(R). In the
following specification, H plays the role of a penalty measure, which, with the given
approximation threshold e, corresponds to (H,¢)-approximate reducts introduced
in [352].

U H(R) < H(d|A) - logy(1 <)

: (3.8)
0 otherwise

CHE(R) = {
Surely, as in the case of = and C, functions H, Disc, v, etc., could be marked
with additional subscript corresponding to specific S, though we omit it for simplicity.

Proposition 3.1.4. Criterion function CHe) satisfies conditions of Definition 5.
Proof. Straightforward, like in the case of Proposition 3.1.2. O

Let us finish this section with several remarks on computational aspects of deriving
reducts from the data. In some cases, when C({)) = C(A), reduct computation is
trivial. This can happen if there is either no subset of attributes satisfying the given
criterion (C(A) = 0), or every subset does it (C(()) = 1). Nevertheless, the problems
of finding various types of minimal reducts are known to be NP-hard. For instance,
let us consider the problem of finding minimal already-mentioned a-reducts [276],
which are actually equivalent to CP%%%)-reducts for o = 1 — ¢ (see equation (3.5)).
As another example, let us mention NP-hardness of the problem of finding minimal
(H, e)-approximate reducts (or C#+¥)-reducts using the terminology of equation (3.8))
proved in [352]. For further formulations of NP-hard problems related to the search
of e/a-related approximate reducts let us refer to [270,367]. We may also refer to
a number of well-established search algorithms with this respect [183,307,319,412].
Accordingly, those well-known methods of finding reducts can be reconsidered for the
purposes of C-reducts as well. This interpretation can be also compared to other
search strategies applied in the area of feature selection [80].

3.2 r-C-reducts

In applications such as threat detection or recommendation systems, classification
models often have to work on incomplete data. Most of the studies on feature
extraction focus on deriving useful and understandable parameters (variables,
attributes, features) in order to achieve possibly simplest, yet accurate models [194].
However, almost none of the available methods takes into account that the data
may be lost or temporarily unavailable for the analysis. In this regard, let us recall
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] B

Figure 3.1: Three examples of r-reducts. Points represent attributes from Table 2.2, ovals
are grouping attributes into standard reducts, the set of all labelled attributes included in
reducts on each figure forms an r-reduct. The leftmost and the middle present examples
of 1-reducts, since after removal of any attribute, the remaining attributes still form a
superreduct. Analgously, the rightmost figure presents 2-reducts.

r-reducts [137] — one of the approaches to resilient feature selection that extends the
concept of reduct to enable the governance of the redundancy level and, hence, to
improve the resilience of the analysis. In Figure 3.1, a graphical interpretation of
r-reducts is shown.

Definition 8 (r-reduct).

Let S = (U, AU{d}) be a decision table. Subset R C A is called an r-superreduct,
if and only if, after removing any 1 < n < r attributes ay,...,a, from R , the
remaining R = R \ {a1,...,an} is a superreduct. We say that R is an r-reduct, if
and only if it is an r-superreduct and there is no proper subset R - ﬁ’, which is an
r-superreduct.

To emphasize the meaning of resilience let us consider the following scenario. Let
us assume, for simplicity, that for each attribute in R C A, the probability that it
is missing in the data during application of a prediction model is independent and
equal to p € (0, m), where ¢ > 1 (¢ may refer to, e.g., the quality or price of
utilized sensors). Then, for a standard version of (approximate) reducts the risk that
the expected quality measure will not be satisfied is equal to p, while for r-reducts it
is pr 1.

To give a better understanding of r-reducts let us present all the subsets of
attributes from the decision table in Table 2.2 as a lattice — starting with the empty
set () and ending with the full attribute set A = {ay, as, as, a4, as, ag} — see Figure 3.2.
We may imagine that some subsets of A have special properties that are retained by
supersets — an example of such a property is discernibility of objects in a decision
table S = (U, AU {d}). Subsets: {a1},{az2}, {as,as}, {a4, a6}, {as, a6} in Figure 3.2
correspond to reducts (compare Table 2.2) and the line marked as RO corresponds to
the border above which attribute subsets discern all the objects in the decision table.

Subsets {a1,as}, {as,as,as}, {as,aq,a6}, {a4,as,ag} presented in Figure 3.2 are
1-reducts. We may notice, that removal of any attribute from those sets guaranty
discernibility of all objects, however if we remove two attributes it is not guaranteed
— e.g., removal of {a4, as} from {ay4, as,ag}. Thus, the line marked as R1 corresponds
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{ay,ap, a3,34,615 ae}

{a1,a2,a3,a4,a5)) ({ay, 32,63,34,36} {32,33,84,85,66}

{a,az,a4, ae} {as,as,as,a6}

Figure 3.2: The lattice for the data in Table 2.2 with information about various resilience
levels guaranteed by r-reducts. The line marked as RO visualizes the border above which
attribute subsets discern all objects in Table 2.2 with respect to d. The R1 line corresponds
to the border above which each subset is a 1-C-superreduct. That is, after the removal of
any attribute the remaining attributes hold enough information to discern all the objects
in Table 2.2. The R2 line visualizes subsets that are 2-C-superreducts.

to the border above which set guarantee that after the removal any attribute the
remaining ones discern all the objects. Similarly, the line marked as R2 corresponds
to 2-reducts.

Using the criterion functions we may express the notion of, both, r-reducts and
approximate r-reducts. Having defined the criterion function C for approximate
reducts, e.g., C(@9) in equation (3.5), we may define a resilient criterion function
r-C(@<) as shown in equation (3.9). Approximate r-reducts may be defined exactly the
same way as presented in Definition 9. Therefore, in order to provide background for
further discussions, let us reformulate r-reducts with the notion of criterion function.
First, let us define the resilient version of criterion function 7-C : P(A) — {0,1} as:

1 if miangR:\R’|2max(|R\—r,0) C(‘R/) =1
0 otherwise

r-C(R) = { (3.9)

Given the above, the resilient criterion reduct (r-C-reduct) formulation is



54 3. Resilient Feature Selection

straightforward:

Definition 9 (r-C-reduct).

Let S = (U, AU {d}), C and the expected resilience level r be _given. A subset of
attmbutes R is called an r-C- superreduct, if and only if r-C(R ) = 1. We say that
R is an r-C- reduct, if and only if it is an r-C-superreduct and there is no proper
subset R/ - é, which is an r-C-superreduct.

Below we elaborate on some interesting properties of r-C-reducts. Before doing
this, let us just mention that in some special cases there is no risk of losing
information, e.g., when R = () is a reduct. Then we assume that R = 0is an
r-reduct for any r.

Proposition 3.2.1. For every non-empty r- C-reduct R there exist at least r + 1
reducts R for which RNR=RARUR=R (which means that r-C-reduct may be
expressed as a union of at least r + 1 C-reducts).

Proof. Let R be an r-C-reduct in S= (U, AU{d}). We put R = {R C
R| Ris a C-reduct}. Let |R| = k and k < r. Consider a set X = {ay,...,az},
such that for each C-reduct R; € R there is X N R; # (0. Let us remove attributes
ai,...,a; from R . For the remaining set R’ = R\X, for each C-reduct R; € R, there
is R 2 R;. So, for every R C R, R is not a C-reduct. Hence, R’ = R \{a,...,a}
is not a C-superreduct, whereas should be because k < r and R is an r-C-reduct.
Contradiction. O]

Prop051t10n 3.2.2. Ifina given decision table S there exists a non-empty r-C- reduct
R , forr >0, then for each a € R there exists C-reduct R such thata € R and R - R.

Proof. Let R be an r-C-reduct and R = R' U {b}, where b is such that for each
RCR,ifRisa C-reduct, then b ¢ R. For any r attributes aq, ..., a, that satisfy
{a1,...,a,}n{b} = 0, if we remove {ay, ...,a,} from R then R' = R'\{ay,...,a,}U
{b} meets the C-superreduct condition. However, we know that b does not contribute
to any C-reduct. Hence, b is superfluous in R’ because R” = R'\ {b} also meets the
C-superreduct condition. So, R = R\ {b} is also an r-C-reduct and |R'| < |R|.
Contradiction. O

Remark 1. (Zero redundancy)
A 0-C-reduct R is a C-reduct.

Remark 2. (Redundant attributes removal)
After the removal of any attribute a from a non-empty r-C-reduct R , the remaining
set R = R\ {a} satisfies the following:

1. R is a (r —1)-C-superreduct

2. 3R C R, where RV is a (r — 1)-C-reduct.
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{araxazas.as) {arazxagasasl; | ... | {axasasasaeh

L

{az.a3,84}

(First iteration)

(Second iteration)

Figure 3.3: The interpretation of ’downward closure’ property of Apriori in the case
of reduct computation. The bold ovals correspond to reducts, meanwhile the dashed
ovals correspond to sets that will not be explored, since in every iteration we remove all
so-far-found superreducts from the Fj. Such an approach has a big impact on the amount
of explored candidate sets and the overall algorithm performance.
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3.3 Breadth First Search Algorithms

There are a lot of feature selection methods described in the literature (see Section
2.3), however it is hard to find those which would take into account not only the
quality and relevance of selected attribute subsets but also their resilience to partial
loss or lack of the data. Although there are some preliminary studies of algorithmic
approaches that allow to construct resilient subsets of attributes basing on controlled
redundancy in generated subsets [137], or relying on ensemble techniques [356], in
general, it is not straightforward how to provide an expected resilience level to the
feature selection.

In this section, we introduce a novel approach to perform resilient feature selection.
It is inspired by the well-known Apriori algorithm that was adapted in many ways
in both, RST-based [398] and non-RST-based [202] feature selection frameworks.
The presented mechanism generates r-C-reducts for a given implementation of a test
function testo(R) for a criterion C. The testo(R) allows us to verify whether a given
subset of attributes R satisfies the examined criterion.

3.3.1 Apriori-based Algorithm

Originally, the Apriori algorithm was supposed to discover association rules between
items in a database of sales transactions. Given a set of transactions, the problem
is to generate all association rules that have support and confidence no less than
the user-specified thresholds (called minsup and minconf, respectively). Apriori is
characterized as a level-wise complete search (breadth first search) algorithm using
anti-monotonicity of itemsets: “If an itemset is not frequent, any of its superset is
never frequent”; which is also called the downward closure.

For resilient attribute subsets, the downward closure property refers to the
monotonicity of C (cf. Definition 5) — that is, if the subset R of attributes satisfies
function C, then every superset R O R does it too. Hence, we do not need to explore
supersets of R. Moreover, for the optimization problems considered in this paper,
it is enough to find minimal sets satisfying C, so that the algorithm could stop (see
Figure 3.3). Going further, in the case of resilient attribute subsets, we know that each
r-C-reduct may be reached only by adding an attribute to an (r — 1)-C-superreduct
(see Remark 2).

The resilient version — r-apriori_gen(Fy_1) — of the original apriori_gen
procedure, takes as an argument Fj_; — the set of all frequent (kK — 1)-items (in
our case, attribute subsets of size k — 1), and returns a superset 'C}’ containing
all frequent k-itemsets. First, in the from’ part of the SQL implementation below,
Fi_1 is joined with all attributes from A (A may be represented as a single-column
table with attributes in rows). In the ’group by’ phase, the set is compacted and
some additional meta-data is created, e.g., is-1-Superreduct, ..., is-r-Superreduct
properties are generated — which means that candidate R has particular resilience
level r. Actually, one can compare this kind of SQL-based approach with some
other Apriori-style SQL implementations [331], as well as SQL-based RST-related
calculations [398].

The candidate set R € C}, is is-r-Superreduct, if and only if all subsets R* C R that
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|R'| = |R| — 1 are r — 1 resilient (see Remark 2). Moreover, we rely on monotonicity
of testc — if any subset of candidate R’ C R satisfies testc(R') = 1 then R as well —
this way, in some cases, we may omit necessity to perform testc calculations. In the
‘having” part of SQL, we discard candidates corresponding to subsets that were left
out earlier (‘count’ is less than k, if and only if some of subsets of R are missing in
Fi_1). The sort() function is responsible for sorting attributes according to, e.g., a
lexicographical order. Below is the SQL implementation of the r-apriori__gen(Fy_,):

INSERT into Cj

select sort(p.itemy, p.itemo, ..., p.itemy_,) as candidate,
max(testC) as testC, min(testC) as is-1-Superreduct,
min(is-1-Superreduct) as is-2-Superreduct, ...,

min(is-(r — 1)-Superreduct) as is-r-Superreduct, count (*)
from Fy_1 p, A a
group by candidate
having count(*) = k

To better illustrate the proposed SQL implementation of r-apriori_gen, in Figure
3.4, we present two iterations of the procedure on the limited set A containing three
attributes A = {ay, as,az}. In the preliminary iteration (left snippet in Figure 3.4)
it is necessary to apply testc(a) for each attribute a € {ay, as,az}. The cost of such
operation is O(]|A|) x O(testc). The result confirmed that attributes {a;} and {as}
satisfy C (let us call them C-reducts), that is testc({a1}) = testc({az}) = 1, however
{as} does not — testc({as}) = 0. In the first iteration (right snippet in Figure
3.4) there is no need to execute testc at all, since all the sets: {aj, a2}, {a1,as},
{az, as} has direct connection in the lattice to at least one C-reduct, hence all satisfy
testc = 1 because of the monotonicity of C (in the presented SQL implementation
of r-apriori__gen it is interpreted as 'maz(testC) as testC”). Moreover, we know that
the set {ay, as} is 1-C-reduct, since every edge down in the lattice ends in a C-reduct
(interpreted as 'min(testC) as is-1-Superreduct’ in SQL). This short discussion shows
that bottom-up approach based on apriori_gen allowed to conclude information
about given superset basing only on properties of its subset, without necessity to
perform additional calculations.

Algorithm 2 presents pseudo-code for r-apriori that, for the given r, generates all
r-C-superreducts or ends with minimal r-C-reducts. The overall flow of r-apriori is
almost the same as the original Apriori algorithm, however there are differences in the
implementation of particular functions like, e.g., r-apriori__gen. In every iteration
of the outer ’for’ loop in Algorithm 2, the candidate subsets are generated with the
resilient r-apriori__gen procedure. The inner ’foreach’ loop iterates over generated
candidates and verifies testc function. Fj, is built on candidate set without those sets,
which are already recognized as r-C-superreducts. Additionally, there are two flags
{ALLy, MINy} that allow to control Algorithm 2 in order to generate all r-C-reducts
in S (ALL), or just minimal ones (MINjy).

For a standard reduct problem, C may correspond to discernibility whereas
testc(R) may correspond to function isReduct [398]. As other examples, testc may
be implemented as correlation with a decision attribute, a constraint for conditional
entropy (3.8), the RST-related function v (3.4), and many others [139].
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@ ® @ @ @ e

(Preliminary iteration) (First iteration)

Figure 3.4: The preliminary (left) and the first (right) iteration of the r-apriori_gen
procedure.

3.3.2 Algorithm Working Example

To confirm that Algorithm 2 generates all (smallest) r-C-reducts (depending on the
control flag) let us perform illustrative experiments for the data in Table 2.2. Let us
refer to the conditional entropy H as the penalty measure and consider the criterion
function C#> %2 The resilient version of C#> %2 may be constructed for a given r
as described in equation (3.9). Let us now present a concise experiment for the data
in Table 2.2, aimed at finding all / the smallest 1-C% %2)_reducts.

In Table 3.1, we summarize the states after every iteration of ’for loop’ in
Algorithm 2. In Table 3.2, each row corresponds to the call of the r-apriori_gen
procedure, whereby the generated attribute subsets are assigned to one of four groups:
ItestC, testC, is-1-Superreduct and is-2-Superreduct. Note that for & = 2 (the second
iteration of r-apriori_gen) minimal 1-C* %2)_reducts were found, with candidate
sets {a1,a2}, {a1,a6}, {as,as} assigned to is-1-Superreduct group. Thus, in the
case of 'Flag’ set to MINp, the algorithm would stop its execution (compare the
if condition in line 12).

3.4 Computational Complexity Study

A natural question arises whether the most meaningful, particularly minimal
r-C-reducts can be derived from the data in a more efficient way than by using
the aforementioned breath first search techniques. Intuitively, having in mind the
already-published NP-hardness results corresponding to minimal r-reducts [137] —
somewhat similar to (multi)set multicover problems studied, e.g., in [167] — we
should not expect the existence of fast deterministic algorithms with this respect.
Still, one might think that this kind of complexity could depend on the choice of
criterion function, i.e., although the problem of finding minimal r-reducts (Definition
8) is known to be NP-hard, the analogous problems of finding minimal r-C-reducts
(Definition 9) could be computationally more feasible at least for some functions C.

In this section, we prove that every NP-hard attribute reduction problem P
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Algorithm 2: r-apriori for resilient feature selection
Data: Fj,_1; S= (U, AU{d}); Flag € {ALLy, MINy}
Result: R — a set of all »-C-reducts or all smallest r-C-reducts
1k 1;r+ 0, F,+— A R+0
2 for k=2;F, 1 #0;k++ do
/* Generate candidates with r-apriori_gen x/
Cy < r-apriori__gen(Fj_4)
foreach candidate R € C), do
if |R.testc then
‘ R.teste < testo(R)
end

© W g o T oA W

end

10 R, < {R € Ck| R is r-C-superreduct }
11 R+ RUR,

12 | if Flag= MINgz AND |R| > 0 then

13 ‘ break;

14 end

15 Fr + C, \' R,
16 end

17 return R

Table 3.1: Summary of experiments for r-Apriori.

k R, R comments
1 0 1) preliminary step;
k=1
2 {CLl?a‘Q}) {CLl,CLG}, {a27a6} {a17a2}7 {alyaﬁ}a {CLQ,CLG} minimal
1-CH: 02)_reducts
3 {a17a47a5}7 {a’27a47a5}7 {a17a2}7 {a17a’6}7 {CLQ,CLG}, all
{Clg, Qy, a5}7 {a37 Gy, aﬁ} {ala Gy, a5}7 {a27 Qy, CL5}, 1_C(H7 0'2)—reduCtS

{a37 Ay, a5}7 {a37 Ay, aﬁ}

that may be expressed via an appropriately defined criterion function C* remains
NP-hard even for its resilient version P , where r refers to the resilience level and
means that any r attributes of the examined set R may be unavailable without any
impact on the criterion C”. The presented NP-hardness proof mechanism works
for any functions C that meet the requirements of Definition 5. On the one hand,
one may say that it overlaps with other complexity studies. For instance, let us
refer to NP-hardness of partial multi-cover problems [314], which might be used as
a prerequisite for proving NP-hardness of a resilient version of the aforementioned
minimal a-reduct problem [276]. On the other hand, our theoretical result is broader
as it allows us to deal with a far wider family of formulations of attribute reduction
problems [351,367].
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Table 3.2: The course of experiments for r-apriori__gen.

k Ck
ltestC {as}, {as}, {as}
] testC {a1}, {a2}, {as}
is-1-Superreduct 0
is-2-Superreduct 0
ltestC 0
) testC {a1, a3}, {a1, a4}, {a1, a5}, {as, as}, {as,as},
{CL?? a5}7 {a37 aﬁ}? {a47 aﬁ}? {CL5, a6}7 {a37 a4}7
{G3,a5}, {a4,a5}
is-1-Superreduct {a1,a2}, {a1,as}, {az,as}
is-2-Superreduct 0
ltestC 0
5 testC 0
is-1-Superreduct {a1, a4, a5}, {as, aq,a5}, {as,aq,as5}, {as,aq, a6}
is-2-Superreduct {ay, as, a6}

3.4.1 A-Attributes

For further needs, let us consider a family of artificial attributes, so-called
A-attributes, denoted as #attr. The values of #attr are constructed, for each u € U,
as concatenations of all values a(u), a € A'. Polynomial reduction presented later in
Subsection 3.4.2 is based on the following properties of A-attributes.

Lemma 1 (A-attribute #attr).
For a given decision table S = (U, AU {d}) and C: P(A) — {0,1} we may generate
an arbitrary number of A-attributes #attr such that:

1. For any n € N, for all i, 7 such that 1 < i,5 < mn, there is
C({#attr;}) = C({#attr;, #attriy, ..., #attr;}) = C(A) = C(A U {#attr;,
H#Hattriy, ..., #attr;}).

2. Singleton sets {#attr;} are the smallest non-empty subsets of attributes
satisfying C in the extended decision table S' = (U, AU {#attri<i<,} U{d}).

Proof. Ttem 1: Since every #attr is generated as concatenation of all attribute values,
there are the following functional dependencies ( = ) between A and each #attr: For
any n € N, for every 7, 7, such that 1 < i < n, there is A = #attr; A\ #attr; = A. So,
C({#attr}) < C(A) A C({#attr}) > C(A). Thus, given 1 <i,j < n, C({#attr}) =
C({#attr;, #attriq, ..., #attr;}) = C(A) = C(AU{F#attr;, #attriyy, ..., F#attr;}).

Item 2: A singleton set {#attr} satisfies C (that is: C({#attr}) = 1) and {#attr}
is a single attribute, hence it is the smallest one — what ends the proof. O

Let us strengthen the meaning of Lemma 1 with the following remarks:

f attribute domains are overlapping, i.e., there exist a;,a; € A for which V,, N Va, # 0, then
concatenation may include a delimiter |4 such that for each a € A we have |4¢ V.
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Lemma 2 (Only one C-reduct contains #attr).

If C(0) # C(A), then, for each i, R = {#attr;} is the smallest C-superreduct in
decision table S" = (U, AU{#attri<i<,} U{d}) and, in particular, there are no other
C-reducts containing #attr;.

Proof. Straightforward. In particular, we know that {#attr;} is a C-reduct.
Therefore, for any set R = {#attr;,a}, a is dispensable. ]

Lemma 3 (#ATT Rs forms the smallest r-C-reduct).
If C(0) # C(A), then the set #ATTRs = {#attry,...,#attr,, #attr,1} is the
smallest set of attributes that satisfies r-C in S'" = (U, A U {#attri<i<,} U {d}).

Proof. We need to show the two following things. First, #ATTRs is an r-C-reduct.
Second, it is the smallest one.

1. After removal of any r elements from #ATT Rs there is still one #attr attribute
left. From Lemma 1, we know that such attribute satisfies C. Hence, #ATT Rs
is the r-C-superreduct.

2. Assume that there is R’ that satisfies r-C and |R'| < r < r+1 = |#ATTRs|.
If so, after removal of r attributes from R’ there is no attribute. Since C() #

C(A), i.e., C(0) = 0 and C(A) = 1, R’ is not an r-C-reduct. Contradiction.
[

Lemma 4 (Reducts and #ATTRs).

Let R be a non-empty C-reduct in S" = (U, A U {#attri<i<,} U {d}), such that
R N {#attry, ..., #attr,} = 0. Then, the set R =RU {#attry, ..., #attr,} is an
r-C-reduct.

Proof. From Lemma 3 we know that {#attry, ... ,#attr,} is the smallest (r —
1)-C-reduct. From Lemma 2 we know that for each C-reduct R C A and #attr, if
R # {#attr}, then RN {#attr} = (. To show that R=RU {#attry, ..., #attr,.} is
an r-C-reduct, we need to prove that for any R’ C R such that |R'| < r the remaining
set R\ R’ is a C-superreduct, thus it satisfies the condition C(R \ R') = 1.

There are two cases to be considered. First, R’ = {#attry,...,#attr,.}. In
that case the remaining set after R \ R is R. Hence, it is a C-reduct. Second,
R # {F#attry,...,#attr,}. In that case the remaining set R \ R’ contains at least
one #attr attribute. So, from Lemma 1 it satisfies C(R \ R') = 1. Thus, it is a
C-superreduct. n

Let us continue with the study of the impact of #attr attributes on the properties
of S and C, with an emphasis on the extended data representation S’. In order to
make a proper distinction between S and §', we go back to the aforementioned explicit
data-specific notation Cg and Cg/, respectively.

Lemma 5 (Impact of #attr on S and C).

Let S = (U, AU{d}) be a decision table, C : P(A) — {0,1} be a given criterion. Let
S = (U, AU {#attry,...,#attr,} U{d}) be an extended data representation. Then,
the following properties hold:
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1. Vgrca if Cs(R) =0 then Cy(R) = 0;

2. Yrea if Cs(R) =1 then Cs/(R) = 1;

3. Yrca Cs(R) = Cy/(R)

4. If Vecauqsatir,,...#attr,y Cor(R') = 0 then VrcaCs(R) = 0;

5. If EIR’QAU{#attm 7777 #attrT} Cg/(R’) = 1 then HRQAC§/(R) = CS(R) = 1

Proof. Ttem 1: If Cs(A) = 0 then from Lemma 1 Cg(A) = Cg(A N {#attr,
.., #Fattr,}) = 0. So, from monotonicity Cgy(R) = 0. If Cs(A) = 1 then
Cs(R) < Cs(A). From Lemma 1 we have Cg(A) = Cg (A N {#attry, ..., #attr,}).
SO, CS/(R) < Cg/(A N {#attrl, ey #attrr}).
Item 2: Directly from Lemma 1.
Item 3: Directly from items (1) and (2).
Item 4: By contradiction. We have that for each R' C A U {#attry, ..., #attr,}
there is Cg(R') = 0. Let R C A and Cs(R) = 1. Then, directly from (2), Cs/(R) = 1.
Item 5: If R N {#attry,. .., #attr,} = 0 then R' C A. Otherwise, if R N {#attry,
.., #attr,} # () then from Lemma 1, we have Cs(A) = Cg(A) = Cg ({#attr,
.., Fattr,}) = Cy (A U {#attry,...#attr,}) = 1. Thus, A is the solution, i.e.,
Cs(A) =Cg(A) =1.
[

3.4.2 Resilient NP-hardness

In this section, we concentrate on showing that every NP-hard attribute reduction
problem P expressed by means of criterion function C¥ remains NP-hard also for its
resilient variant P expressed by r-C”.

Theorem 1. (NP-hardness of minimal r-C¥)

Let P be a problem of finding the minimal set R satisfying condition expressed via
a criterion C¥' : P(A) — {0,1}. If P is NP-hard, then finding minimal set R
satisfying r-C¥ (see equation (3.9)) is also NP-hard.

To prove Theorem 1, we will show that P can be polynomially reduced to
P . The reduction is as follows. Given a problem input, i.e., a decision table
S = (U, AU {d}), the reduction comes to creation of a new data representation S’ that
contains additional r conditional A-attributes, where r corresponds to the expected
resilience level. Obviously, the whole reduction is polynomial:

1. Given the original data representation S = (U, AU {d}) and integer r

2. Add r #attr attributes and, this way, create the extended data representation
S = (U, AU {#attry,...,#attr.} U{d})

3. Solve the problem P defined via r-CF (3.9)

4. Extract the solution of P as described below.
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To show that the reduction is applicable, we need to show two things. First, if there
is a solution of P, then there must be a solution of P ( P — P ). Second, if
there is a solution of P, then there must be a solution of P ( P — P ).

In order to distinguish applications of functions C” and r-C* on the original
decision table S and the extended data representation S’, we use the following
notation: Cg, m-Cs, Cy and r-Cg/, respectively.

v

P — P . First, let us discuss the boundary condition Cg(f)) = Cs(A): a) If
Cs(A) = 0 there is no solution of P in S. So, from Lemma 1 we have
Cs(AU#ATTRs) = 0. So, there is no solution of P in S’ Thus, the equation (3.9)
is never met. Hence, there is no solution of P in S’ b) If Cg(P) = 1 everything is a
solution of P and Cg () = 1 — directly from Lemma 5. The equation (3.9) is always
met so r-Cg () = 1. Hence, everything is a solution of P in'S’. Below, we consider
the more complex case when Cg()) # Cs(A):

Let R, |R| = k, be a solution of P , in particular, Cs(R) = 1. Let #ATTRs =
{#attry, ..., #attr.} be a set of r #attr attributes |#ATTRs| = r. Let R=R U
#ATTRs. Directly from Lemma 4, we have r-Cg/(R U #ATTRs) = 1.

Now, we need to show that R = R U #ATTRs of size |R| = k + r is minimal.
Assume that there exists &' C A U {#attry, ..., #attr,} such that r-Cg(R') = 1
and |R'| < |R|. From equation (3.9), we know that after removing any r attributes
from R’ we have R of size | < k (|R'| < |R|) that satisfies Cg (in S’). From Lemma
5, we know that R’ satisfies also Cg (in S). Whereas, R of size k is a solution of P
for S. Contradiction. O

In order to prove P P, let us introduce an auxiliary lemma for #ATT Rs:

Lemma 6 (#ATTRs and P ).
If there is a non-empty solution R to P inS' = (U, AU{#attry, ..., #attr, }U{d}),
then there exists a solution R' to P in S’ that satisfies:

1R = |7
2. {#attry, ..., #attr,} C R

As a proof, we present a constructive algorithm that transforms a given solution
R to the problem P into R’ whereby || = |R| and {#attry, ..., #attr,} C R
Let R be a solution to P in S’ = (U, AU{#attry, ... #attr,} U {d})
In the first step, we remove all #attr attributes from R , where |R N {#attry,
., #attr,}] =m and 0 < m < r. Next, we remove any r —m other attributes. The
remaining set R of size |R| — r is satisfying Cy(R) =1 (see equation (3.9)).

In the second step, we create a solution R =RU {#attrl, ..., #attr,}. We
know that the solution R’ constructed this way satisfies 7-Cg (R') = 1 and is minimal
because |R'| = |R|. The complexity of the above algorithm is obviously polynomial.

P — P . First, let us discuss the case of Cg (0) = Cg/(A): a) If r-Cg (AU{#attr,,
.., #attr,}) = 0 there is no solution of P in§. Hence, from equation (3.9), for any
R C AU{#attry, ..., #attr.}, if |R| > r, then Cs/(AU{#attry, ..., #attr,} \ R) = 0.
Thus, for R = {#attry, ..., #attr.} we have Cg/(A) = 0. So, from monotonicity of
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Table 3.3: An exemplary decision table extended with two A-attributes.

o\ ar | ax | a3 | as | a5 | as #attry #attry d

wp | f |a |y | o | O] x| flayoldx | flalxyo’x’ | good
uy | f DV @O e | X | f e | fby®ex | good
us | f |7 Al @] o | X CAOX | fiA@OX | good
ug | f | v ® | <9 | X | fdyedx | fi[dy®Ix | good
us | f el v o] x| Y] fevory | fevoxy | good
ug | f [P o | |y fPveory | fTvory | good
urp |t g A Oy | A0y | gAY | bad
ug t || A | 6| e |2 | thhAo ez th’A © &'z’ bad
o | LT V] @] o |2 tivder | tivaor | bad

C, we have that for any R C A there is Cs(A) = 0. b) If r-Cg(0) = 1 then from
equation (3.9) Cg/(0) = 1. Hence, from Lemma 5 Cg(0)) = 1.

Now, we consider the case of Cs() # Cs(A). Let R be a solution to P in
S" = (U, A U {#attry, ..., #attr,} U {d}). Without loosing generality, we may
assume that {#attry, ..., #attr,.} C R (see Lemma 6). Now, we must show that
R = R\ {#attry, ..., #attr,} is a solution of P in S = (U, AU {d}).

From equation (3.9), we know that after removing any r attributes from R the
remaining set R satisfies Cg/(R) = 1. Hence, it is a solution to P in §'. From
Lemma 5, we know that Cg(R) = Cs(A) = 1. So R is a solution to P in S.

The last thing is to show that R = R \ {#attry, ..., #attr,} constructed this way
is minimal in S. Suppose that there is a solution R’ C A that Cg(R’) = 1 in S and
|R'| < |R|. Thus, we may construct set R’ = R'U {#attry, ..., #attr,} that satisfies
r-Cg(R') = 1 and |R'| < |R|. Contradiction, because R is minimal in §’, what ends
the proof. O

3.4.3 Visual Interpretation

In order to provide a better understanding of the proof of Theorem 1, let us present
a visual interpretation of the aforementioned reduction. In Table 3.3, we may find
the exemplary decision table extended with two additional A-attributes created as
described in Subsection 3.4.1. That is, for each object uw € U, we put #attry(u)
= #attry(u) = concat(ay(u), az(u), az(u), as(u), as(u), ag(u)).

In the lattice in Figure 3.5, we can see the additional A-attributes. For simplicity,
let us consider the most standard case of (r-)reducts introduced in Definitions 1 and
8. We remember that each #attribute forms a row identifier that maintains the
same functional dependencies with the decision attribute d as the full attribute set
A ={ay, ay, as, a4, as, ag}. Hence, singleton sets {#attr,} and {#attry} are decision
reducts. (As we know, for the considered data set the empty set of attributes is not
a reduct.) Furthermore, once we consider attribute sets presented above R line in
Figure 3.5, we may notice that every two-element combination of attributes aq, as,
#attry, #attry is a 1-reduct because after removal of any attribute from {a1, a2}, {a1,
#Hattr }, {ay, #attry}, {#attry, #attre} the remaining singletons constitute reducts.
Similarly, every combination of three attributes out of aq, as, #attry, #attry is a
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{a1,a0,83,34,85,36,#attry #attro}
{a1,ap,a3,a4,a5,a6,#attr{}

{a0,a3,24,a5,a¢,#attrq,#attro}

Figure 3.5: The lattice for the data in Table 3.3 with two A-attributes.

2-reduct, etc.

Let us discuss briefly the polynomial reduction basing on an exemplary
visualization of decision table (2.2). In the lattice in Figure 2.2, we may easily notice
that there are two minimal reducts: {a;} and {ay} in the original decision table (2.2).
A presented reduction is as follows: in the first step, we add two A-attributes, this
way we create extended decision table (3.3) - obviously the computational complexity
of this step is polynomial with respect to the original decision table size. In Figure
3.5, we present the impact of the aforementioned extension on the lattice.

o 2
Let us assume that there is a polynomial algorithm Alg () that solves the minimal

2-reduct problem. Hence, the result of Algorithm Avlgz() executed on the decision
table (3.3) is one of the following sets: {ai, ao, #attri}, {a1, as, #attrs}, {a,
H#Hattry, #attry}, {as, F#attry, #attre} - without losing generality let it be {ai, as,
#attry}. According to the reduction presented in Subsection 3.4.2, we should remove
all A-attributes from the resulting set, this way we have: {a;, az}. Now, we may
remove any attribute. Without loosing generality let it be a;. We may easily notice
that the remaining set {as} is a decision reduct in the original decision table (2.2).

3.4.4 Impact of Complexity Study

Let us briefly discuss the impact of Theorem 1. For example, consider the resilient
version of the minimal (H, ¢)-approximate reduct problem or equivalently minimal
CUe)_reduct problem — using the nomenclature of equation (3.8). We may define
r-CH) as shown in equation (3.9). We obtain the following:

Theorem 2. (Minimal r-C*) -reduct problem is NP-hard)
For each e € [0,1) and r € N, the minimal r-C4) -reduct problem - i.c., the problem
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of finding, for an Jinput decision table S the minimal (in the sense of the number of
elements) subset R C A such that r-CHe)(R) =1 — is NP-hard.

Proof. From Proposition 3.1.4, we know that C¥) satisfies conditions of Definition
5. As already mentioned, the minimal (H, )-approximate reduct problem is NP-hard
[352].  Thus, directly from Theorem 1, the minimal r-C#)-reduct problem is
NP-hard too. [

Similarly, we may refer to the minimal a-reduct problem [276], which — as already
discussed — corresponds to the Disc measure (2.5).

Theorem 3. (Minimal r-CP%¢%) _reduct problem is NP-hard)
For each ¢ € [0,1) and r € N, the minimal r-CP*%) _reduct problem — i.e., the

problem of finding, for an input decision table S the minimal (in the sense of the
number of elements) subset R C A such that r-CP%%*)(R) =1 - is NP-hard.

Proof. From Proposition 3.1.2, we know that CP%%¢) satisfies conditions of Definition
5. Since we know that the minimal a-reduct problem is NP-hard [276] and the

criterion r-C(P¢€)(R) = 1 is equivalent for the one formulated for a-reducts for
a = 1—¢, thus from Theorem 1 we know that the minimal r-CP*%)_reduct problem
is also NP-hard. ]

The last example of the complexity result derivable directly from Theorem 1 is the
following. However, let us note that the same mechanism could be applied for many
other cases as well, in particular, for any formulations of C(@)-reducts for which the
corresponding measures ) satisfy conditions of Definition 7 [351,353].

Theorem 4. (Minimal r-CO%) -reduct problem is NP-hard)

For each e € [0,1) and r € N, the minimal r-C -reduct problem — i.e., the problem
of finding, for an input decision table S the minimal (in the sense of the number of
elements) subset R C A such that r-C9)(R) = 1 — is NP-hard.

Proof. From Proposition 3.1.2, we know that C") satisfies conditions of Definition
5. Since the minimal (v, )-approximate reduct problem is NP-hard [367], thus from
Theorem 1 we know that the minimal 7-C*)-reduct problem is also NP-hard. [

3.5 Depth First Search Algorithms

The task of heuristic search of reducts in a given data set is broadly investigated in
the literature. For instance, in [356] a combination of iterative filter-based feature
selection algorithm with a statistical significance stop criterion and an RST-based
redundant feature elimination was applied. A similar mixture of iterative feature
selection and reduction was suggested in [80]. In [412], three groups of algorithms
based on the deletion, addition-deletion and addition strategies were discussed. There
are also many other approaches to algorithmic reduct construction that refer, e.g., to
randomized search [98], ensembles [397], or various methods of feature granulation
[139].

In the following subsections, we consider two approaches to the depth first search
exploration of the lattice, which allow us to identify subsets of attributes that satisfy
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Algorithm 3: r-testc

9

Data: R — the examined subset of attributes; r — resilience level;
S = (U, AU {d})- decision table; testc() — verifies criterion C
Result: true — if a given set of attributes R satisfies selected criteria testc
with expected resilience level v, false — otherwise
1 candidate_subsets < {X C R such that |X| = r}
2 foreach X € candidate subsets do
3 if ltesto(R \ X) then
4 ‘ return false;
5 end
6 end
7 return true;

the resilient version of testc function: r-testc (Algorithm 3). Algorithm r-testc
verifies if a given set of attributes R C A satisfies the resilient criterion r-C under
the condition that implementation of testc is given.

In Subsection 3.5.1, we present a novel algorithm generating r-C-reducts inspired
with a permutation-based technique that is common for RST-based approaches
[353,367]. In Subsection 3.5.2, we follow with discussing the approximation of the
permutation-based algorithm for resilient feature selection.

3.5.1 Permutation-based Algorithm

The function testc(R) verifies if a given set of attributes R C A satisfies the specified
criterion C in a given decision table S = (U, AU {d}). Let us assume that we have
an implementation of testc for C. Algorithm 3 shows how to introduce function
r-teste(R) that verifies whether the given set R satisfies testc after removal of any
r attributes.

Algorithm 4 (genRedp) generates an r-C-reduct R for a given criterion r-C with
the expected resilience level r. The pessimistic computational complexity of genRed

%

with respect to r-testc(R) is O(|A|), since both loops — “while’ and ’foreach’ — are

iterated at most |A| times. Thus, the computational complexity of the r-testc(R)
implementation has a crucial impact on the complexity of genRed .

We may notice that for relatively big values of r, e.g., r = %' or r = %,
the r-testc(R) may iterate testc(R) exponentially many times. However, for any
constant r, the algorithm is polynomial. Comparing to the current market standards
/ defaults with regard to security, resilience and high availability of services and
the data, we may notice that data replication levels offered out-of-the-box by
database management systems vary near relatively low values (2 to 6) as a reasonable
compromise between resilience and storage costs. For example, the default data
replication level in most of MapReduce implementations like, e.g., Hadoop? is set to
3. Cloud services that offer very high level of durability and availability of stored

data usually use between 3 and 6 data replicas, depending on the service pricing

v

’http://hadoop.apache.org
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Algorithm 4: genRedj
Data: r — expected resilience level; S = (U, AU {d})— decision table; testc—
the function that verifies if a given set of attributes R C A satisfies
the specified criteria C
Result: R - a subset of attributes that satisfies resilient criterion r-C
R + (); Permute set A;
/* Forward propagation */
while r < |R| A Ir-testo(R) do
a < removeNext Attribute(A)
R+ RUa
end
/* Backward elimination */
foreach a € R do
if r-testc(R \ a) then
10 ‘ R+ R\a

11 end

N =

= W

© 00 =N O w;

12 end

%

13 return R ;

level®>. Having that in mind, we may calculate that in the case of 7 = 3 (or r = 6 in
a very restrictive case) the complexity of r-testc(R) relies mostly on the complexity
of testc(}v{) and the size of R . With limited constant r, the function remains
polynomial and may be estimated as O(|A|") x O(testc) where O(testc) refers to
the complexity of testc. In that case, the complexity of genRedy depends on the
specifics of C. In the case of, e.g., the classical discernibility criterion CP%¢0) the

pessimistic complexity of isReduct is O(|U| x | A|?).

3.5.2 Approximation Algorithm

Once we have defined the straightforward permutation algorithm, we may elaborate
on possible approximations in order to improve the overall feature selection
performance. There are plenty of approximation methods that may be adopted to
this case like, for example, the DAAR heuristics introduced in [183].

Algorithm 5 (approximateRedy) follows the idea that r 4+ 1 disjoint attribute
subsets, which individually satisfy C, constitute a set that satisfies r-C after being
merged together. In the presented pseudo-code we rely on the permutation-based
algorithm to construct disjoint r + 1 C-reducts. We merge them together to form an
r-C-superreduct R . The set R constructed this way, is for sure a r-C-superreduct,
since we may remove any r attributes and at least one C-reduct will be untouched.
The size of the output is no more than r times bigger than an r-C-reduct could be,
which may be still acceptable for highly multidimensional real life data sets.

As a conclusion, in the case of resilient feature selection, the analyst should
elaborate on the required level of resilience from the perspective of importance and

3https://docs.microsoft.com/en-us/azure/storage/storage-redundancy


https://docs.microsoft.com/en-us/azure/storage/storage-redundancy

3.5 Depth First Search Algorithms 69

Algorithm 5: approvimateRed

Data: r — expected redundancy level; S = (U, AU {d})— decision table;
genRedc() — the function that generates the set of attributes R C A,
which satisfies the specified criteria C

Result: R - a subset of attributes that is a r-C-superreduct

R0

Permute set A

fori=0;1<r+1;i++ do

R < genRedc(A);

A+ A\ R;

R+ RU R;

if A= 0 then

‘ break; /* If we tested all attributes x/
end

[ NV

© 0 N o

10 end

v

11 return R ;

sensitivity of the problem. Nevertheless, one should have in mind the impact of
resilience level on the performance of feature selection and should adjust it with
respect to the aforementioned factors. On the other hand, minimal subsets of
attributes are not always desired. In some situations, it is worth combining the groups
of approximate reducts in order to improve performance of prediction models [138].
This shows that properly managed redundancy in selected attribute sets may not
only increase the resilience of the solution but also may have a positive impact on
the quality of trained models.

3.5.3 Algorithm Working Example

In order to provide a better understanding of the presented algorithms and to verify
the quality of the proposed approach, let us experiment with the size of r-C-reducts
acquired by Algorithm 4 for the data in Table 2.2 and conditional entropy H, namely
the criterion function C#> %2 The resilient version of criterion r-C* %2 may be
constructed for a given resilience level » = 1 as described in equation (3.9).

Below, we present the step-by-step description of a single execution of Algorithm
4. Afterwards, we present a summary of 10 independent executions and the statistical
analysis of the expected size of 1-CU 92)_reducts for the data in Table 2.2.

During the first execution of the experiment, we sorted the set A (line 2 in
Algorithm 4) with the permutation o. Within the "while’ loop (lines 3-6), the
algorithm iterated over A according to oi : ag,as,aq,aq,as,as. After consecutive
draws of attributes, we evaluated whether the condition 1-C*> 92 was met. Below
we enumerate each iteration of the ’while’ loop during the first execution of the
experiment:

e 1st iteration

1. removeNext Attribute(A) returns ag, hence R = {ag}
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Table 3.4: Summary of the experiments for Algorithm 4.

i o; 1-CH: 02 _reduct | size
1 g1 . Qg,03,01, A4, 05, A2 {al,a6} 2
2 O9 ' A3, a3, a4, A1, 5, Ag {as, a3, a4} 3
3 03 : as,as,ds, a1, 4y, dg {az, a3, as} 3
4 04 ay,0as, s, Ag, A5, Ag {ay,as} 2
5 05 : a1, as, s, ds, A4, Ag {a1, a3, as} 3
6 06 : Qg, Ay, Ao, A5, A3, A1 {as, ag} 2
7 07 i Qg,as, A1, dg, A3, A4 {a1, a2} 2
8 Jg . Q4,03,02, a1, 05, Qg {CLQ,CLg,a4} 3
9 09 : ag, Az, a1, G5, A4, A3 {a1, a6} 2
10 010 : 5,03, Ag, A2, 4, A1 {as, as, a6} 3

2. 1-testc({ag}) = 0, because R \ {ag} = 0
e 2nd iteration

1. removeNextAttribute(A) returns ag, hence R= {ag, as}

2. 1-testc({as, as}) = 0 because for the subset {as}, H(d|{as}) = 0.74, hence
H(d[{as}) > —log,(1 —0.2)

e 3rd iteration

1. removeNext Attribute(A) returns ay, hence R = {ag, as, a;}

2. 1-testc({ag, as,a1}) = 1 because for all subsets R € {{a1,as},{a1,ag},
{as,a6}}, we have H(d|R') < —log,y(1 —0.2)

In the first execution, in the ’foreach’ loop (lines 8-12), we iterated over R =
{ag, as, a1} trying to eliminate superfluous attributes. The attribute ag could not be
removed because 1-testc({ay, as}) = 0. The attribute a3 was removed with no impact
on 1-CH 92) because H(d|{a;}) < —log,(1 — 0.2) and H(d|{as}) < —log,(1 —0.2),
thus 1-testc({a1,a6}) = 1. The last attribute a; could not be removed. This way,
we reached 1-CH: 92)_reduct R = {ay,ag} of size |R| = 2 — which is the minimal
possible.

To provide higher reliability, the experiment was repeated 10 times for 10
randomly chosen permutations. Table 3.4 summarizes each iteration %’ including
permutations o1, ..., 01 and the derived 1-C*: 92 reducts R,,..., Ry, with their
size.

Lastly, let us elaborate on the expected size of 1-C! )-reducts that may be
generated with Algorithm 4. The minimal size of 1-C*> 92 _reducts is 2, whereas
the maximal size of 1-C#> 92 _reducts in the analyzed data is 3, because for
each two-element set R C A, H(d|R) < —logy(1 — 0.2). There are 6! possible
permutations o of A. Let us estimate the number of permutations that would result
in 1-C" 92 _reducts of size 2. Such permutations should have two of attributes
{a1, as,a¢} within the first 3 attributes. There are (3) * (3) = 9 three-element

H, 0.2

2 1
combinations that contain two attributes of {a;,as,as} and one that contains all.
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Each of them may be permuted in 3! ways and the rest of ¢ may be arranged in 3!
ways. So, 10331 — 1 The rest half of permutations would result in 1-C*: 92)_reducts
of size 3. Thus, the expected size of 1-CH> 92)_reduct generated by Algorithm 4 for

the data in Table 2.2 is equal to 1 %2+ £ %3 = 2.5.
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Chapter 4

Technical Aspects of Interactive
Feature Engineering

Several useful techniques have already been applied for decision making in the
domains of data warehousing (DW), business intelligence (BI) and machine learning
(ML) [387]. However, before one may apply machine learning algorithms on the
collected data, several steps need to be performed in the first place [84, 424].
Among them, feature extraction and selection are recognized as the most challenging,
time-consuming and computationally cost-full [74]. Optimistically, the similarity
of the nature of sensory and machine generated data provides an opportunity to
construct generic, reusable mechanisms for interactive data processing, exploration
and analysis. In this chapter, we introduce a new approach for learning forecasting
models over large multi-sensor data sets, including the steps of sliding window-based
feature extraction and ensemble-based feature selection.

4.1 Sliding Window-based Feature Engineering

In this section, we outline our approach to feature extraction, aimed at processing
data obtained from sensors that monitor certain changes in the environment and
provide outputs in a form of time series. Individual readings may take different
forms according to the application domain [267,300]. Values may express continuous
phenomena, such as pressure, humidity, or the level of methane concentration in
a longwall of a coal mine [197]. They can also express a discrete state of the
environment, such as an on/off state of a device or vehicle movement direction. To
acquire knowledge about environment state and its changes, it is common to set
up a collection of sensors, potentially of different types. Therefore, the gathered
data elements can be complex on various levels and sometimes their interpretation
is possible only in a context of additional knowledge obtained from domain experts.
This, in turn, requires appropriate mechanisms for human-system interaction. No
less important is the ability to properly parallelize data processing in order to deal
with various challenges related to Big Data [16,91].
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4.1.1 Prerequisites and Data Preprocessing

Information systems - especially in the field related to reporting, business intelligence,
machine learning, and decision support - integrate data from many other systems and
sensors [356]. Having data from various sources in a single place provides a valuable
opportunity for pattern discovery. However, those systems and sensors are usually
provided by many different corporations, and are developed using various technologies
with different data formats. Information provided by each can be textual, categorical,
numeric, etc. All may also refer to different data dictionaries and taxonomies.
Therefore, prior to feature extraction, let us outline some typical challenges related to
data integrity and quality as well as basic steps of data preprocessing which becomes
particularly important when real streams of sensor readings are involved.

In the first place, the analysis of a big variety of data representations requires some
kind of unification protocol. With that respect, let us refer to so called sensor card
— an information template created on the basis of investigation of a large variety
of sensors that can be applied whenever heterogeneous data sources need to be
systematized, so that could be integrated. An example of a sensor card - a common
interface that allows to describe in a consistent way a variety of types of sensors and
devices that are used in the domain of underground mining - is presented in [356].
This way, the sensor readings from different data sources may not only be integrated
but also further enhanced with some specific features highly depended on the analyzed
problem, like: the organization of the shift work, shift schedule and plan, information
about bank holidays, recent local events, etc.

The industrial monitoring systems usually produce multidimensional streams of
sensor readings for which performing standard preprocessing steps such as data
integration, data cleaning, feature extraction and selection, etc. is quite challenging.
Measurements recorded by sensor devices tend to be noisy. Because of faults and
errors that may have place in real environments, it is also difficult to maintain
decision models that should be used in an on-line fashion. Thus, the goal of data
preparation and cleaning is to translate data to a form acceptable by the forecasting
model construction methods. This phase is focused on the preparation of the training
sets for further analysis and, once the models are ready, becomes responsible for
feeding them with new inputs. Let us outline some typical issues connected to the
data acquisition in real life environments:

1. Unsynchronized readings: Reading frequencies differ for different sensors.

2. Missed readings: Sensors may stop delivering in a given time interval.

3. Qutlier readings: Sensor readings are frequently imprecise or unreliable.

4. Rare readings: Usually, the most critical events occur in data very sparsely.

The first task is to adjust sensor readings that are collected at different frequencies.
Also, some systems collect a new reading only in the case of a sufficiently significant
change of the measured value. The main objectives of subsequent tasks are imputation
of missing values, and outliers detection [338,362].

he imputation of missing data in time series is a particularly difficult task [27],
and many general techniques are not able to satisfactory deal with this case. And the
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subcase of multivariate time series stays at the core of the most challenging tasks, as
observed in

This are particularly complex tasks for multivariate time series and
spatio-temporal data environments [15,46]. With this respect, one can, e.g., create a
logical expression that defines value replacements (for instance, to replace values < 1
with “low state”), use a default value, follow the last valid reading, take an average
of the neighboring readings, or apply linear regression based on the preceding values.
Imputation techniques are often based on univariate series analysis or sampling
from original data distribution [338,362]. There are also approaches based on
auto-regressive models constructed, e.g., by combining an expectation-minimization
algorithm with the prediction error minimization method, or based on Bayesian
models [24]. The maximum allowed number of consecutive missing values that can
be imputed should be set up too. On the other hand, the missing value imputation
(or outlier replacement) is not always a requirement. It may depend on a context
of a given sensor and knowledge about its operation conditions, or simply on further
preprocessing steps which can deal with incomplete data on the fly.

In the proposed approach, a sliding time window method allows us to overcome,
or at least to minimize the impact of, some of the above-mentioned issues related to
time series data. A viable approach to deal with missing or unreliable attributes -
the resilient feature selection with r-C-reducts — was proposed in Chapter 3. Later
in Section 4.2.2, we discuss another approach to overcome problem with missing
data basing on feature selection over granular attribute space due to attribute
interchangeability. Whereas, in Section 4.3, we propose ensemble-based feature
selection method which is also a practical approach to introduce a certain redundancy
of information.

A special case of data preprocessing corresponds to the creation of a dependent
variable. This is a crucial aspect for any supervised learning approach. For this
purpose, we may use a dedicated operator which allows us to define a dependent
variable as the maximal value measured for a given sensor within a specified time
interval (e.g., three to six minutes into the future). This can be considered as an
example of a broader window-based methodology described below. Such a style of
specifying a dependent variable may also decrease sparsity of its critical values. This
is because a single high measurement influences a score of the whole time interval.
Given the above steps of data preprocessing, we are now ready to go to the topic of
feature extraction.

4.1.2 Sliding Windows

A sliding window travels through the time series from the beginning to the end
and replaces a sequence of raw sensor readings with some of its derived statistics,
accordingly to the predefined aggregation functions (cf. Table 4.1). The range of
aggregation can be chosen by the users by means of, e.g., a time unit that defines
windows containing sensor readings to be grouped together. For each outcome of
aggregation, we can calculate a weight corresponding to the quality of the original
data that is, e.g., inversely proportional to a number of missing values or outliers
involved. This approach allows us to reduce the number of missing values in data,



76 4. Technical Aspects of Interactive Feature Engineering

Table 4.1: Examples of features that represent each time window.

Feature type

Description

basic meta information

e.g., a data source identifier, ID or a name of the

n n

sensor, a total number of readings "n",
valid readings "nValid", etc.

a number of

quality assurance and reliability
of a given windows

e.g., a ratio of correct readings in the window = %“”d

or just a number of identified outliers or missing values

)

time-range of a window and
time related data

e.g., year, month, day of month, day of week, hour,
time-range, etc.

basic summary of all readings in
a given time window

statistics: mean, min, max, stdDev, median and
pecentiles: 5th, 10th, 25th, 75th, 90th, and 95th, etc.

transformations and measures
of values in time window

e.g., selected Fourier transform coefficients, skewness,
Kurtosis measure, etc.

summaries of consecutive

sub-windows

the same statistics as above, computed for sub-windows
of a given window

trends related to recent readings
in a time window

differences between the last reading and min/max
values, differences between last/first readings in a
window

statistics  for  differentiated
values in a time window

mean, median, min, max, stdDev and percentiles of
differences between two consecutive readings

measures derived from
summaries of a time window

differences between min and max, mean and median,
max and percentiles, etc.

measures derived from

summaries of sub-windows

differences between quantities of mean, median, min,
and max values representing consecutive sub-windows

indicators of extreme readings

position in a time window of a reading with min/max
value, position of a min/max value in the latest
sub-window

indicators of extreme

transformed readings

position of a maximum difference between consecutive
readings, etc.

a set of values that express
the trend between statistics in
consecutive sliding windows

inter window data, e.g., a difference between min,
max, mean or between Xth percentiles, where: X €
{5,10, 25,50, 75,90, 95, etc. }

and to introduce weights that can be utilized further by analytical methods. It is
also worth mentioning that such aggregation operations can work on multiple sensor
readings with unsynchronized frequencies [356].

Processing of a single time series requires two parameters: length and offset. The
first of them defines the size of a sliding time window, e.g., the number of readings
to be involved, or a corresponding time interval. The alignment of processed time
windows is controlled by the second parameter. It defines a degree to which two
consecutive windows overlap each other. Let us here recall Figure 2.1 — presented in
a preliminary Section 2.1 — which highlights four examples of sliding window set-ups.
The first example, marked in red, shows the situation when the length of a sliding
window is equal to the offset. The green and blue examples show the consecutive
positions of a sliding window when the offset is equal to 1 and % of the length,

2
respectively. The system is also capable to express the situation when the offset is
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Figure 4.1: Overview of the proposed sliding window approach. The topmost time series
is split into five non-overlapping basic windows of equal length. Two of them are zoomed in
the middle of the above diagram. The statistics are computed for each window separately.
Inter window features express the dynamics of changes of basic window statistics.

greater than the length — the example marked in cyan.

A collection of sensors that perform readings produces a corresponding collection
of time series data. A single time series is an ordered sequence of readings associated
with the timestamp at which it was collected. A collection of aggregated values
created from a time series may be organized arbitrarily at a higher level. For instance,
if a time window covers one minute, then we may be interested in five consecutive
windows that cover five minutes of data in order to analyze various trends over
derived statistics within that period. It is quite different than aggregations over a
single five-minutes time window [138,143]. Going further, sensors may correspond to
many different time series processed independently. To obtain a complete description
of the environment at a given time point, time series collected from different sensors
should be combined together to form a larger set of aggregated values [144].

During the process of moving a time window through a time series, each of its
fixed positions defines so-called basic window (cf. Figure 4.1). For such a basic slice
of data, a predefined aggregation functions are applied. Each aggregation function
can be seen as a new window feature. This step may be adjusted to a specific
data domain by supplying different aggregation implementations [144,179,356]. The
proposed set of features which are calculated to represent the data in a basic window
are presented in Table 4.1. If we consider more than one consecutive basic window to
represent the environment state at a given time point, then we can extract so-called
inter window features expressing trends and changes between pairs of basic windows.
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Figure 4.2: Window-based features calculated for a portion of time series data.

Some examples of inter window features that are calculated to represent the changes
between two consecutive basic windows are presented in Table 4.1. A schematic view
of extracted basic window features, inter window differential statistics as well as their
relation to the processed time series is shown in Figure 5.

Yet another very specific approach is the extension of the sliding window
construction process by adding some more static attributes reflecting assessments
obtained from domain experts [179]. This brings the opportunity to compare the
prediction quality of models trained using derived features with the expert-based
assessment as well as makes it possible to use features derived from experts in ML
models training. Furthermore, the expert assessment helps to address the so-called
cold start problem, when a decision support system is installed, e.g., in a new
location and it does not yet have a sufficient amount of data to fit into the new
environment [364].

The proposed framework is capable of operating on multidimensional time series
derived from a number of sensors. The default method of processing multiple series is
hierarchical, i.e., each time series is processed independently and then the results are
combined according to specified settings. Afterwards, depending on configuration,
features corresponding to basic windows and inter window features derived for
selected sensors create so-called composite windows which represent the overall state
for a given time point.

This way we provide a comprehensive data preprocessing and feature extraction
framework that can be used for constructing informative and robust representation of
multidimensional time series data, as visible in Figure 4.2. The overall mechanism of
computing time-window-based representations can be treated as a universal approach.
It is worth noticing that due to a diversity of extracted features and a high number of
considered sensors this representation of data may be highly dimensional. Hence, it
may require feature selection before forecasting model construction techniques could
be applied.
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4.2 Feature Space Granulation in Feature
Selection

The process of feature selection aims at exploring the given attribute space A (or A*)
and extracting a relatively small subset R C A of attributes that, on the one hand,
are the most relevant and, on the other hand, are sufficient to solve the investigated
problem. Such selection/extraction process is often conducted by applying statistical
tests in order to determine, which attributes contribute to the constructed decision
model [149]. Although the standard feature selection algorithms are not configured
for attributes that are structured or bound by relationships, the knowledge about
attribute granulation can have an important impact on the final subset composition.

4.2.1 Feature Space Granulation

The attribute granules can take various forms. It is possible to group or cluster
features on the basis of their relationship, and it can be done in a parameterized
manner. For example, we can produce various versions of granulations depending on
the choice of cutoff value after the original attributes are hierarchically clustered [139].
In this context, it is important to have the means of assessment of the resulting
granules, similar to those developed for standard data clustering. By making the
feature selection process aware of the underlying granular structure of attribute space
one can make better use of the knowledge contained therein. This in turn may lead to
selecting the sets of features that are not only optimal from the perspective of some
mathematical criteria but are also more useful for interpreting knowledge hidden in
the data.

Let us now present two specific examples of the granulation based on the attribute
interchangeability. The first approach is centered around the notion of explicit
interchangeability of features in attribute subsets that are small in size but sufficient to
model the target decision classes/labels. In the theory of rough sets, such attribute
subsets are usually referred as decision reducts (Definition 1). Intuitively, if two
attributes rarely belong to the same subset but they both often appear together with
similar groups of other attributes, they may be considered interchangeable. In the
opposite situation, when two attributes often belong to the same subset or appear in
a company of completely different features, it seems reasonable to assume that they
convey different information and thus are not similar. More formally, this type of
attribute interchangeability can be measured using a co-occurrence frequency matrix
F, whose entry in i-th row and j-th column equals f; ;:

f"z |{ka2 ERk/\aj GRkH
I {k :a; € Ry}

(4.1)

where a;, a; are attributes, i # j and Ry is the k-th pre-computed attribute
subset (reduct). All values at diagonal of F' are set to 0. The final values of
attribute interchangeability can be computed as a difference between the similarity of
corresponding feature sets and the frequency, with which the given features co-occur,

e.g.:
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I(a;, a;) = cosine(f;., f;.) — fi; (4.2)

In this formula, f;. and f;. are vectors of values from ¢-th and j-th rows of F|,
respectively. Such an approach was successfully applied in [180]. Figure 4.4 depicts
a heat map of a distance matrix that was used for identifying key risk factors for
firefighters during fire&rescue actions. Analogous heat maps could be computed
using, e.g., ensembles of possibly diverse approzimate decision reducts that preserve
information about the decision classes only to some extent and, thus, they can utilize
different groups of attributes to concentrate on different aspects of approximate data
dependencies [353].

A slightly different approach is centered around the attribute similarity function
simP%¢ which refers to the discernibility relation (2.4) and its numeric representation
- measure Disc (2.5). For a given decision system S = (U, AU {d}), we may define
simP® 1 A x A — R as follows:

simDisc(a,a') —
{(u, o) : d(w) # d(w) Aa(w) # a(W) Ad () £ (W)} (43)
[{(,w')  d(u) # d(w) A (a(u) # a(u') V d'(u) # a'(u)) }|

where (u,u') € U x U and a,a’ € A. So defined attribute similarity measure
expresses a ratio between a number of pairs of objects from different decision classes
that are discerned by exactly one attribute from the considered pair, to a number of
such objects discerned by at least one of the compared attributes.

We may extend the definition of the above attribute similarity measure sim
(4.3), so that it operates on subsets of attributes instead of individual attributes. For
a decision system S = (U, A U {d}), the attribute subsets similarity function Sim®” :
P(A) x P(A) — R is defined as:

Disc

SimDisc(R, R/) _
{(u, ) : Bacraer du) #dW) Aa(u) # a(w') Ad'(u) #d(W)}]  (4.4)
[{(u, ') : Jareror d(u) # d(w') A a”(u) # a”(u')}]

4.2.2 Feature Selection Algorithms with Attribute Granules

In this section, we examine to what extent feature granulation can guide the process
of choosing the most appropriate collections of attributes. We argue that it should
influence the order, in which we investigate attributes. We discuss the meaning of
similarity, proximity and functionality while considering the granules of physically
existing, or potentially derivable attributes in the feature extraction process. We also
propose several approaches to utilize granulation structures defined over the feature
spaces in feature selection algorithms. In particular, we consider the algorithms
developed within the theory of rough sets, aimed at finding irreducible subsets of
attributes that are sufficient to distinguish between the cases belonging to different
target decision classes.
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For the purpose of further discussion, let us concentrate on the approach to
conducting feature selection proposed in Section 3.1. Certainly, we do not claim
that all possible methods follow the scheme below. Nevertheless, it is sufficiently
general to explain the benefits of working with attribute granules. For a given
decision system S = (U, AU {d}) and input set of attributes A, let us consider a
criterion function C : P(A) — {0,1} (cf. Definition 5) that indicate which subsets of
attributes are already rich enough to serve as the outcomes of the selection process. In
practice, C may correspond to a collection of criteria reflecting different requirements.
Additionally, let us consider an arbitrary heuristic quality function @ : P(A) — © (cf.
Definition 7) that can be utilized iteratively to add the most “promising” elements
to the constructed feature subset. Let us note that () can combine various aspects of
relationships between the selected attributes and a target variable [80,117,174,294].
Let us also mention that the last item of the following procedure has strong roots

in the theory of rough sets, where there is a particular focus on the simplification of
decision models [75,370,412].

1. While the criterion C(R) is not met by the selected feature subset R continue
the following:

(a) Select candidate subsets of features By, .., By to be added to R
(b)

(c) If the best B, contributes to R, then R < RU B,

(d) Verity if the criterion C(R) is met

Evaluate By, .., By with the desired attribute subset quality measure @)

2. Eliminate superfluous attributes from R

Algorithm 6 reflects our generic idea of embedding the additional knowledge about
attribute granulation into the above-described feature selection process. In each
iteration of the main loop, in order to limit the attribute space A, the subset of
granules {G1,..,G,,} C G is selected with respect to the granulation preferences
expressed by, e.g., a permutation og : {Gsa), Go(2), .-} (Which means that the granule
Go(1) is most preferred to draw attributes from). By limiting the search space using
the additional knowledge about attribute granulation, we may quickly generate a set
of candidates {Bj,.., Bx}. After the evaluation of candidates with the correlation,
Gini index, or other implementation of the function @), the feature subset R may
be extended if only the selected B contributes to R. The loop continues until a
“good enough” R is collected or all combinations/candidates are explored. Finally,
we conduct a backward elimination of superfluous attributes.

The presented framework does not enforce any particular interpretation of the
information granules and, thus, different implementations may vary in a way of their
utilization. In some cases, it may be preferred to select features that belong to
only one, specific granule. For example, the analysis of coal mine sensor readings
may be oriented on the one, particular mine shaft [179]. In that case, the analyst
could generate granules on the basis of a sensor location and introduce a constraint
that the finally selected attributes should/must belong to the particular ones. In
other applications, it may be convenient to generate an attribute subset that contains
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Algorithm 6: General framework for granular feature selection
Data: G — set of granules, A — attribute space,
C- criterion function, og — granule preferences
Result: R — selected attribute subset

1 /* Initialization */
2 R+ 0

3 while R does not satisfy C(R) do

4 B+«

5 Select granules {G1, ..,G,,} C G with respect to og
6 Limit attribute space Ag < AN U<j<m Gi

7 Generate candidates By, .., B, C Ag

8 Evaluate candidates { By, .., Bx}

9 B « select BestCandidate({ By, .., Bg}, ...)

10 if B contributes to R then

11 ‘ R+~ RUB

12 end
13 end

14 R < eliminateSuper fluousAttributes(R)
15 return R;

attributes from multiple granules in order to provide higher robustness [3]. Regardless
of the way that we use the attribute granulation, the general framework is still the
same.

Attribute granulation may also influence a feature selection process with respect
to the expected robustness and resilience of decision models. In real-life applications,
we may observe various anomalies in explored data sets, which cause a model
over-fitting. Some researchers emphasize the role of appropriate granulation of
attributes during feature engineering in achieving higher stability of the created
models. With that respect, we may refer to several techniques using, e.g., clustering
or histograms [422]. During the decision model construction, there are also some
non-functional factors that could impact the continuity of analysis like, e.g., temporal
or permanent unavailability of some sources during on-line data collection [137]. From
this perspective, it is advisable to use diverse feature subsets and ensemble methods,
whereby each of separate decision models is based on a few attributes but, overall,
many attributes are involved [182]. Thus, it is important to combine the feature
selection approaches relying on the attribute granulation with some feature subset
diversification methods.

In this context, the objective is to achieve more robust and resilient results due
to, e.g., exploitation of attributes extracted from diverse sources. In particular, the
method outlined by Algorithm 6 could be used to compose an attribute subset R as
a collection of features from diverse granules. In this case, the attribute reduction
algorithm should aim at achieving feature subsets of minimal cardinality | R| and also
ensure the diversity of granules by, e.g., maximization of |[{G € G: R N G # 0}
Accordingly, a specialized configuration of the main loop in the presented framework
can take into account, both, the so-far-selected features and the granules that are used
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Algorithm 7: Full-granule-oriented version of Algorithm 6
Data: G — set of granules, A — attribute space,
Q- quality function, C- criterion function
Result: R — selected attribute subset

1 /* Initialization */
2 R+ ()

3 while R does not satisfy C(R) = 1 do

4 | Select granules {Gy,..,G,} C G

5 Evaluate granules {G1, .., G,,} and pick the best G,

6 if G, contributes to R then

7 ‘ R+ RUG,

8 end

9 end

10 R < eliminateSuper fluousGranules(R)
11 return R,

less often, i.e., granules G; that minimize the quantity of |G; N R|. The presented
approach may be considered as a practical solution to the problem of resilient feature
selection introduced in Chapter 3.

The feature selection methods should be also able to operate on the whole granules
or their subsets instead of individual attributes. To some extent, it corresponds
to the idea of so-called decision systems with constraints — the enriched data
representation proposed in [277]. The goal of this approach is not only to record
the presence of granules (called constraints) but also to make it possible to apply
various computational methods that make use of them. Let us consider Algorithm
7, where the overall scheme is aligned with Algorithm 6, though one can notice some
simplifications like selecting particular granules G, .., G,, as the candidate subsets B;.
Similarly, the backward elimination concerns removal of the whole granules instead of
individual attributes. In such approaches, as it was observed also by other researchers,
the properties of selected attribute subsets can depend a lot on coarsening or refining
granules [193]. Therefore, there is a need for a framework allowing the domain experts
and algorithm designers to assess the results of feature selection/granulation processes
from different perspectives.

As we could see above, Algorithm 6 can be treated as a general umbrella for
various approaches aiming at utilization of the attribute space granulation for the
purpose of enhancing the feature selection process. Surely, there are still several
details to be discussed. First, it is useful to look at different strategies of validating
whether a given attribute sufficiently contributes to the result R [183]. Second, it
is interesting to compare the proposed framework with methods based on attribute
orderings. The main idea behind this class of methods is to iterate along diversified
permutations o4 over A. Such permutations can be induced partially with respect
to some heuristic function @, or they can be generated fully randomly [367]. In the
latter case, the procedure is repeated a number of times and the best of the obtained
attribute subsets (or a bigger ensemble of subsets) is eventually selected.

Figure 4.3 shows how we can use the knowledge about granules to influence
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Figure 4.3: A diagram with two significantly different attribute ordering strategies that
take into account granulation of attributes.

permutations of attributes, e.g., by arranging the elements of the same granule within
consecutive subsequences, or mixing them together as much as possible (by following
a “preference” permutation og : {Gy(1), Go(2),-.}). It is important to note that such
two semi-randomized strategies are in a correspondence to the ideas of operating with
regular granules (Algorithm 7) and maximally diverse attribute subsets, respectively.
This shows that the attribute granulation is easily applicable to the ordering-based
feature selection algorithms, without a necessity to modify their code. On the one
hand, the described scenarios of “granular ordering” are conceptually aligned with
Algorithm 6. On the other hand, the phase of selecting granules/candidates can be
performed implicitly at a level of generation of attribute permutations.

While the “case-oriented” granulation is a way to cope with ever-growing amounts
of the data, the “attribute-oriented” granulation may turn out to be useful for
high-dimensional data problems, whereby the amounts of possible features become
difficult to handle. This is visible at the stage of feature selection that is aimed at
deriving compact sets of attributes that can be an appropriate input to construct
the final decision models. Computational complexity of typical feature selection
algorithms depends heavily on the number of potentially useful and derivable features,
therefore, any ideas how to reasonably introduce granulation into the feature space
are essential for the Big Data.

4.2.3 BigData Aspects of Attribute Granulation

In this section, we discuss how the concept of granulation can be made useful in
selecting and engineering features on big and possibly complex data sets. We show
how to utilize the intrinsic properties of the data and underlying problem as well as
background/domain knowledge for the purpose of building granular representation
of attributes. All the provided tools and examples are devised to work with data
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Figure 4.4: A heat map expressing interchangeability of risk factors (represented as
attributes) taken from the AATA’14 Data Mining Competition [180]. Granules of attributes
are arranged along the diagonal of the matrix [139].

sets that are very large in terms of the number of objects, as well as the number and
complexity of features. Thus, we address at least some of the challenges posed by the
Big Data paradigm.

Big Data is often characterized by presence of “Five Vs” — Volume, Variety,
Velocity, Variability, and Veracity — reflecting in the enormous complexity that
directly impacts the aforementioned data processing [16,91]. They make it a challenge
to represent the task at hand in a way that is at the same time computationally
useful and comprehensible for the user. Domain experts expect intuitive data
representation, whereas machine generated data collected from, e.g., large sensor
networks may have all of the required technical properties but may be hardly
understandable and detached from the real-life phenomenon that it is meant to record.
The variety of incompatible data formats and non-aligned data structures spanning
across photographs, sensor data, tweets, text documents, encrypted packets, etc., can
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Algorithm 8: Granular feature selection with iterative MapReduce. In each
of ¢-phases the following program is executed.

Map(Key: a € A, Value: G,,V,)

1 Given R ={Ry,..,R,}

2 foreach R; € R do

3 if a is relevant to R; then

4 Rz <— Rz U {CL}

5 emit(sortAttributes(R;), ok, score )
6 end

7 end

Reduce(Key:R;, 0%, Value: {score, score,..}):
1 emit( R;, ok, score )

make it hard to perform data analytics. The possible reduction and transformation
of the data set provided by “classical” object-wise granulation mostly addresses the
Volume, with some additional, lesser impact on Velocity and Variability. With
granular feature selection and construction it is possible to take care of the other
“Vs”, in particular Variability and Veracity.

The high velocity and volume of still-incoming records are often a curse of
storage systems and machine learning algorithms. Furthermore, raw records are
often insufficient for the purpose of predictive analysis and the process of feature
engineering is commonly employed to construct more relevant attributes [9]. The
massively parallel feature engineering methods may be efficiently performed via the
MapReduce programming model what, in turn, may multiply the initial number of
explored attributes [138]. Still, the question remains how to choose which attributes
should be evaluated. As suggested in [393], the actual feature selection process can
be performed at a level of general labels of some attribute granules, whereby specific
elements of those granules are not materialized prior to the algorithm’s start. This
style of hierarchical feature space exploration fits perfectly Algorithm 6 and its specific
configurations.

From the perspective of Big Data, an introduction of some hierarchies of
granularity into the spaces of investigated attributes can make the feature selection
and extraction processes more efficient. Tackling the complexity of large data sets is
an issue noticed by many researchers [107,121]. The typical challenges associated
with Big Data, as symbolized by the presence of “Five Vs”, make things even
more complicated. Besides the complexity and scale of calculations that affect the
required amounts of resources, the superfluous features may negatively influence the
understanding of the data by the analysts, therefore, affecting their ability to monitor
and tune the knowledge discovery processes [179,318].

Models and frameworks for parallel computing focus on various aspects of data
processing [139]. Some of them respond to high velocity of the data, which makes
them closer to incremental stream processing [144]. Others concentrate on batch
processing models and adapt well-known mechanisms, such as the apriori-based
breadth first exploration of a feature space [403]. Herein, the MapReduce paradigm
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Figure 4.5: The overview of feature extraction process split into individual steps. The
labels above the curly braces (at the top of the diagram) indicate objectives in each
processing step. The labels below the curly braces (at the bottom of the diagram) indicate
how the individual processing steps were implemented.

seems to be a good choice to consider [231,236]. We may distinguish two popular
approaches in this field. One of them implements the solution as a single job, whereas
the other — iterative MapReduce — encompasses ¢ consecutive job runs that may be
controlled automatically or manually [68,105]. One can think about parallelization
of the discussed granular feature selection methods using both of these approaches.

Let us outline one of possible implementations of a massively parallel granular
feature selection process as an iterative MapReduce program. Consider ¢ consecutive
iterations, where each of them is based on Algorithm 8. We propose to work on
the transmuted data, i.e., the mappers are executed on attributes a assigned to a
granule GG, and having a vector V, of values for objects/records in the analyzed
data set. The outcome of a single iteration is a sorted set of candidate attribute
subsets, whereas only n best intermediate outputs R = { Ry, .., R,,} are passed to the
subsequent phase. The map functions are provided with the collection R and the
vector Vy containing values of the decision attribute d. To each subset R; there has
been assigned granulation preferences o, whereby the diversification of granule-level
permutations may play a similar role as for the previously discussed attribute-level
permutations. During the evaluation of a, we verify its relevance to every considered
R;, with respect to a quality function @, preferences o, or any other factor of interest.
If the performed assessment reveals that a is relevant for R; (where relevance may
be expressed as a mixture of preference, contribution, etc.), then the set R; U {a} is
emitted. The role of reducers is then to aggregate subsets R; and sort them according
to their score. The whole process ends when the expected number of feature subsets
satisfies C.

The main objective of the above illustrative example of a MapReduce program is
to evaluate a possibly large number of attribute subsets, in order to reach a higher
quality, compactness and/or diversification of the produced outcomes. Obviously,
parallel programming models allow to implement the granular feature selection
framework in many other ways [236,307]. Let us also mention DiReliefF, a distributed
version of the well-known ReliefF [283], or fast-mRMR algorithm for high-dimensional
data [313].
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Figure 4.6: The overview of the feature selection process.

The idea of operating on attribute granules — regardless of their origin — is
worth combining with the principles of parallelization of feature selection methods
with respect to complex spaces of derivable features and their subsets, yet fitting
the iterative nature of most ML algorithms [321]. In [346], granular computing
was utilized to discretize M-factors time series data to obtain granular intervals.
Information granules naturally emerge when dealing with data, including those
coming in the form of data streams [293]. However, regardless the particular
application the ultimate objective is to describe the underlying phenomenon in an
easily understood way and at a certain level of abstraction to enable human-system
interaction.

4.3 Framework for Multi-Stream Data Analysis

In this section, we focus not only on the extracted features and constructed prediction
models but also on data processing stages that are designed to let it work within a
big data processing environment [139,312], and particularly with high dimensional,
multi-stream data [181,184]. In order to provide high quality assessments, the
presented solution requires constructing an ensemble of diverse models [93,179]. The
diversity may be obtained by employing a variety of models computed on different
subsets of attributes and data samples. For this task, the granular similarity measures
(Section 4.2) or resilient attribute subsets (Section 3.2) may be applied. As a result
of blending diverse models, the final ensemble minimizes the impact of a concept
drift [44], and achieves a better prediction quality [179]. The proposed architecture
can be used both in the incremental, stream processing model [36,136], and in highly
scalable, batch processing model, i.e., MapReduce [22,87].

In Figure 4.5, a high-level overview of the feature extraction process divided into
individual steps is presented. The ’original data set’ in STEP 0 corresponds to a
collection of historical data provided as a training set for a machine learning task,
where features: ai, as, as, .. correspond to attributes in the data. STEP 1 is designed
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Figure 4.7: Ensemble blending.

to partition the original set into individual rows (objects) in order to parallelize
calculations - this step may be implemented within, e.g., MapReduce framework
[138]. The purpose of STEP 2 is to split each row into static data, e.g., features
reflecting assessments obtained interactively from domain experts (as discussed in
Sections 2.4, 4.2), and time series data (Section 4.1.2). In STEP 3, the feature
extraction framework is applied to each time series in the data, e.g., to a numerical
time series containing consecutive values expressing the average energy of the most
active geophones at a longwall in a coal mine [179], and all features derived from
time series are constructed (as described in Section 4.1.2). In STEPs 4 and 5, all
attributes are combined together.

The process of feature engineering is performed basing on the sliding time-window
approach that is designed to process data sets containing multiple time series (Section
4.1.2). During the process of moving a time window through the series, aggregating
functions are applied. Table 4.1 presents the overview of features that may be
extracted from individual time series. As emphasized in Section 4.1.2; standard
statistics extracted form a sliding window may be supplemented by more sophisticated
ones, e.g., correlations between pairs of time series. Furthermore, since more than
one window is generated per time series, we may extract inter window statistics - as
depicted in Figure 4.1. That is, a set of values which express changes between the
same statistics obtained in consecutive sliding windows. The inter window stats are
presented in Table 4.1.

During the feature extraction process, a large number of potentially relevant,
however very often redundant, data characteristics are generated [143, 419].
Therefore, after the construction of features, an attribute subset selection algorithm is
applied to reduce the attribute space [59]. In the case of designing decision support
systems, the scope of feature selection is twofold, related to both interaction with
domain experts and analysts while running the system on-line, as well as off-line
exploration of gathered data in order to find out the best feature selection algorithms
and prepare the best possible feature sets for further processing [55,358]. Tt is
herein worth noting that the step of feature selection — conducted independently
or in an iterative fashion — is often taken into account in combination with various
machine learning methods such as neural networks or support vector machines while
building decision systems, e.g., aimed at equipment and environment monitoring in
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coal mines [234].

In Figure 4.6, the overview of the feature selection process, split into individual
steps, is presented. In STEP 6, the random samples of objects with a more balanced
distribution of classes are drawn. The generated samples are randomly divided into
two disjoint groups. First one serves for the purpose of feature selection, whereas the
second group of samples is used for training predictive models. It should be noted
that, in order to use the feature selection algorithms derived from RST (selected
RST based FS methods are surveyed in Section 2.5, the novel ones are introduced
in Chapter 3), numerical attributes in data should be subjected to discretization
(discretization methods are surveyed in Section 2.1).

In STEP 7, the reduced attribute subsets are calculated. With regard to
the proposed architecture (Figure 4.6), we decided to focus mainly on filter-based
methods, which (comparing to wrapper and embedded techniques - Section 2.3) assure
relatively high computational efficiency, as well as independence of the resulting
feature sets from a particular model. This last property allows the obtained feature
sets to be used in combination with various types of forecasting approaches. Among
filter-based feature selection methods, we pay special attention to multivariate
algorithms. One of the most prominent examples of this approach are methods based
on the mRMR framework. Another popular approach that is implemented in the
presented framework refers to computation of approximate decision reducts developed
within the theory of rough sets, e.g., dynamically adjusted approximate reducts
(DAAR), where a statistical test based on random probes is used to avoid selection of
features that are likely to distinguish data records supporting different target classes
only by chance. In STEPs 8 and 9, a number of feature subsets computed in the
previous step are merged into several larger subsets. For this purpose, we refer to
the presented version of the approximate resilient feature selection Algorithm 5. In
STEP 10, only significantly different attribute subsets are maintained for the purpose
of model training.

In order to provide a good clarity of the presentation, in the subsequent steps
of the framework (in Figure 4.7), let us focus on the well known task of regression
analysis!. The final solution is an ensemble of diverse regression models. The diversity
is achieved by training models on different subsets of attributes and objects (STEP
11). The Algorithm 9 for blending models refers to STEPs: 11 to 14 in Figure 4.7,
and is designed in a way which guarantees that a model can be included only if it is
accurate enough on validation data, and sufficiently different from already selected
predictors (e.g., correlation of its prediction with predictions of other models is small
enough). This could be seen as a method for increasing robustness of predictions in
the case of noisy and heterogeneous data. An additional advantage of using different
features for different models is that it may reduce the influence on the final ensemble
of a concept drift between the training and test cases. This approach is also expected
to protect the model against over-fitting and, hence, a decrease in the prediction
quality on the final test set.

IThe description for the classification tasks would differ mainly in the training algorithms, and
model evaluation criteria used.
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Algorithm 9: Construction of the ensemble of diverse regression models.
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Data:

- attSubsets - pre-calculated subsets of attributes (e.g., approximate reducts)

- objectSamples - pre-calculated samples of objects

- testSet - a test set

- regressionAlgorithms, e.g., { rPart, SVM, glm }

- allowedAttempts and minQuality - parameters governing quality of models

Result: ensemble of regression models

/* Initialization of variables */

ensemble < (0; weakAttempts < 0

alg < regressionAlgorithms.removeFirst

while TRUFE do

a1, as < attSubsets.drawAndRemoveTwo

b1, ba < objectSamples.drawAndRemoveTwo

/* Models are trained and validated on different samples */

model < alg.trainAndEvaluate(ay, by, az, by)

score < model.score(testSet)

/* The ensemble is expanded only if the newly trained model meets
the specified quality criteria and there is no other similar
model in the ensemble. */

if score > minQuality N\ —ensemble.containsSimilar(model, score) then

‘ ensemble < ensemble U {model & score}

else

weak Attempts <+ weak Attempts + 1

if weakAttempts < allowed Attempts then

‘ continue;

end

if regressionAlgorithms # () then
alg < regressionAlgorithms.removeF'irst
weak Attempts < 0

else /* end of ensemble blending */

‘ break;
end

end

end

return Zseensemble.scores 53
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Chapter 5

Evaluation, Practical Applications

The goal of this Chapter is to present examples of a data mining investigation, which
illustrate the performance of the framework presented in Chapter 4 and the resilient
feature selection methods described in Chapter 3 when handling real-life problems
related to coal mining and fire & rescue domains. The following study complements
the so-far presented research with the experimental evaluation of the proposed feature
extraction and selection methods.

5.1 Methane Outbreaks

In this section, we provide a broad experimental evaluation of learning forecasting
models over large multi-sensor data sets, including the steps of sliding window feature
extraction and rough-set-inspired feature subset ensemble selection. The considered
task is to construct a model capable of predicting dangerous concentrations of
methane at longwalls of a coal mine basing on multivariate time series of sensor
readings. We show how the described framework performed on data collected from a
sensor network in an active coal mine and, how the complete mechanism can be built
into DISESOR - a particular decision support system.

The contributions in this section refer to both the analysis of how the nature of
sensor readings influenced the architecture of the developed solution and the empirical
proof that the designed methods turned out to be efficient in practice. Furthermore,
we elaborate on the resilience of the solution in the case of partial data loss, e.g.,
when particular data sources (e.g., sensors) are damaged or inactive.

5.1.1 Natural Hazards Monitoring in Coal Mines

Coal mining requires working in hazardous conditions. Miners in an underground
coal mine can face several threats, such as methane explosions, rock-bursts or seismic
tremors, etc. [48,234,257]. To provide protection for people working underground,
systems for active monitoring of production processes are typically used [216]. One of
their fundamental applications is screening dangerous gas concentrations (methane
in particular) in order to prevent spontaneous explosions [181]. For that purpose, the
ability to predict dangerous concentrations of gases in the nearest future can be even
more important than monitoring the current sensor readings [356].

93
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Coal mines are well equipped with monitoring, supervising, and dispatching
systems connected with machines, devices, and transport facilities. There are also
systems for monitoring natural hazards. Such systems are provided by many different
companies, hence some problems with data quality, integration, and interpretation
may be observed (Section 4.1.1). Once someone is able to overcome these issues,
the collected data can be used for ongoing visualization of conditions in particular
places of a mine [271]. Moreover, by utilizing the domain knowledge and patterns
derived from integrated historical data [113], one can construct forecasting models
to enrich the upcoming sensory data with additional predictions. This way, it is
possible to considerably improve both the safety of miners and work efficiency [265].
For example, thanks to short-term prognoses related to methane concentrations
combined with information regarding the location and work intensity of a cutter
loader, it is possible to prevent emergency energy shutdowns and maintain continuity
of mining [181]. This, in turn, allows for increasing the production volume and
reducing the wear of electrical elements whose exploitation time largely depends on a
number of switch-ons and switch-offs [345]. Furthermore, a decision support system
should be easily comprehended by the experts and end-users who, not only, need
access to its outcomes, but also to arguments or causes that were taken into account
(Section 4.2).

DISESOR is a decision support system designed for monitoring potential threats
in coal mines [356], which processes data from sensors of various types, like: CO2,
methanometers, machine monitoring devices and many others (Table A.1, and
Appendices: A.1, A.2). In Figure 5.1 (a), a draft architecture of DISESOR system is
presented [303]. Basing on a vast amount of sensor readings collected via integration
of data from various monitoring systems [140], e.g., THOR or Zefir, DISESOR
provides predictive analytics of mine conditions and threats. As the most important
use cases of the system we can indicate: Assessment of seismic hazard probabilities in
the vicinity of the mine; Forecasting dangerous increase in the methane concentration
in the mine shafts; Forecasting of the possible ranges of the sensor readings in advance;
Detection of endogenous fires and conveyor belts fires; Detecting anomalies in the
consumption of media such as electricity [178].

From data processing point of view, a decision support system that aid in
controlling the coal mining process requires efficient methods that can handle large
volumes of data from many sensors enriched with features provided by domain experts
(Sections 4.2.3, 4.3). The continuous collection and analysis of multiple streams of
readings from a large network of sensors located underground raises certain problems
with providing expected resilience (Chapter 3) in business continuity plans. In Figure
5.1, a potential impact of missing data sources is shown. The bottom drawing in
Figure 5.1 (b) outlines — in a schematic manner — the window based processing of
two data streams from methane and C'O; sensors. We may notice on the drafts above
that the impacted stream (in red) propagates the problem forward and blocks the
subsequent processing tasks. That is especially harmful when we combine a number
of sources — i.e., joining data streams in Figure 5.1 (b). The majority of predictive
models are very sensitive to the (in)completeness of input data.

Predictive models providing a proper assessment of potentially dangerous methane
concentrations (Section 5.1) and seismic events (Section 5.2), which are resilient
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Figure 5.2: A scheme of the mining process corresponding to the data set considered
in [181]. A shearer moves along the wall of coal extraction between the sensors MM261
and MM264. The progress of the coal extraction is unveiled by an arrow described with
“longwall”. Thin arrows depict flow direction of the air in the mine sidewalks which is
enforced by a ventilation system.

to missing data sources and are able to interact with domain experts to use
their assessments, could significantly improve the safety and reduce the costs of
underground coal mining.

5.1.2 1IJCRS’15 Data Challenge

Based on the sensor readings collected in an active Polish coal mine, a data mining
competition was organized at the international conference IJCRS’15 [181]. By
publishing this data set and defining the corresponding problem in the form of
a competition task, we obtained and analyzed 1,676 solutions submitted by 90
registered research teams from 18 different countries. Additionally, 40 teams provided
reports describing their approach. Altogether, these solutions can be regarded as
state-of-the-art in the predictive analysis of multivariate time series data and as the
reference in our research.

Data prepared for the competition correspond to a mining period between March
2, 2014, and June 16, 2014. Among the thousands of sensors located over tens of
kilometers of underground corridors, 28 sensors monitoring the work in the immediate
vicinity of the shearer workplace were selected. Prepared data records were composed
of raw sensor readings arranged in 10-minutes time series, with measurements taken
every second. Hence, each record consisted of 16,800 numerical features, i.e., 600
values per sensor. The detailed information about all the sensors can be found in
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Table A.1. In Figure 5.2, a detailed location of all sensors, as well as a workplace of
a longwall shearer, on a fragment of the coal mine plan is shown.

Each row of the training data was tagged with three labels, each from the set
{0, 1}, where 0 and 1 corresponded to “normal” and “warning” labels, respectively.
Labels indicated whether a warning threshold had been reached in a period between
three and six minutes after a given measurement, for three methane meters denoted
as M M?263, M M264 and M M256 (Figure 5.2). If a given data row corresponded to a
time period between t_s599 and ¢y, then its dependent variable value for a meter M M
was “warning”, if and only if max{M M (t1s1), ..., MM (t360)} > p, where p is a safety
threshold. The value of this threshold may vary for different longwalls, however, it is
usually set between 1% and 1.5% on the basis of interviews with experts (see, e.g., a
sensor card in [356]) and the national regulations on hazard estimation [135].

The training set contained sensor readings registered within 51, 700 time periods.
Periods in the training set were overlapping and given in a chronological order.
However, periods included in the testing set did not overlap and they were given
in a random order. Figure 5.3 presents frequency distributions of values for the
three sensors M M263, M M264 and M M256. The vast majority of the observations
stored in the data set are below the warning threshold. Table 5.1 presents the
amount of “warnings” observed for each investigated sensor in the training data and
may be used as a premise to realize the decision class imbalance in the context
of methane concentration monitoring. Selected, more in-depth insights into the
methane-related data are provided in Appendix A.1. Data sets are available online
on the KnowledgePit platform.

The task of the data challenge was to predict the likelihood of the label 1
(“warning”) for the threshold p = 1%. The solutions were evaluated with the Area
Under the ROC Curve (AUC) measure, which was computed separately for each of
the target sensors. The final score corresponded to the average AUC for a submitted
solution “s™:
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Table 5.1: Occurrences of the labels in the training data set.

MM263 MM264 MM256 count
normal normal normal 48695
o warning 1208
g warning normal 1258
© warning 74
5 warning normal normal 435
g warning 24
- warning normal 2
warning 4

AUCwar263(8) + AUCyara6a(s) + AUChpas6(S)

i (5.1)

score(s) =

Table 5.2 shows the scores of top-ranked teams together with the score of
our methods. Baseline model was created by averaging 10 simple rule-based
models computed out-of-the-box using the RoughSets package [319]. The Zagorecki
approach [418] assumed generation of a large number of variables characterizing sensor
measurements and operating with the time series derived from those measurements.
Separate random-forest-based models were then created to predict the “warning”
states for each of three considered methane meters. On the other hand Boulle [43]
focused on a problem of distribution drift between the training and testing data sets.
Informativeness of each considered feature with respect to both classification and
drift detection was evaluated. As a result, the training data set was reduced to a
single sensor per target class. The prediction model was then generated by the Naive
Bayes classifier. Grzegorowski and Stawicki [143] provided a logistic regression model
based on the linear combination of selected three features — extracted with the sliding
window framework (presented in Section 4.1.2). The Ruta and Cen [327] method was
also based on a logistic regression model computed over a small subset of sensor
observations. The authors utilized their self-organizing framework to choose this
particular model out of a number of other solutions including decision trees, support
vector machines, etc. Among other successful approaches used by participants of the
competition, there were also deep learning models using the LSTM networks [289].

Based on the analysis of the most successful solutions submitted to the
competition (Table 5.2), we reached a conclusion that a robust prediction of methane
concentration levels can be achieved even when a small subset of features is used
for constructing the model. Although the Zagorecki [418] solution used nearly 5,000
features in the learning process, several of the other top-ranked teams achieved similar
results with models considering far fewer features. Another interesting outcome was
that a vast majority of solutions followed the ideas of producing sliding window
aggregations and that such aggregations, treated as low-level features, were useful
while learning various prediction models [223].
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Table 5.2: A comparison of the logistic regression performance for the competition data
set between the implemented feature extraction methods and the top ranked solutions of
IJCRS’15 Data Challenge.

Method Macro averaged AUC (5.1)
Zagorecki [418] 0.9592

FE+DAAR 0.9545

Grzegorowski and Stawicki [143] | 0.9473

Boulle [43] 0.9439

Ruta and Cen [327] 0.9436

FE+mRMR 0.9413

Pawlowski and Kurach [289] 0.94

Baseline 0.9004

5.1.3 Evaluation of Multi-Stream Framework

In the second part of our experiments, we considered exactly the same sensor
readings as those used in Section 5.1.2, now, taking into account our multi-stream
feature extraction framework with ensemble blending (Section 4.3). We applied
two different feature selection methods into our framework and we examined the
AUC scores of prediction outcomes obtained using ensembles of simple models. Both
cases were following the general framework presented in Section 4.3, in particular,
in Algorithm 9. In both cases the training algorithm was used independently for
each of three dependent variables — implementing a particular transformation for
the original multi-target problem [41]. Subsequently, we extended the analysis with
two new multi-stream data sets, both related to hard coal mining, to verify how
effectively the discussed approach could transfer to new data in the same domain
with implementation changes limited to adaptation of the sliding window feature
extraction layer only [330].

In the first setup of the framework, we applied our version of the minimum
redundancy maximum relevance (mRMR) method [313]. Comparing to the standard
mRMR, provided modifications are related to criteria for selecting the best feature in
each iteration and to a stopping condition — outlined in Algorithm 10. First, we select
a feature that maximizes the difference between its relevance (the dependency score
¢(a,d)) and its maximal dependency on features selected before. Second, we stop the
algorithm if the feature selected in a given iteration does not pass the random probe
test, i.e., the estimation of the probability that a randomly generated feature obtains
a higher score than the selected feature exceeds an allowed threshold [368]. Thus, we
guarantee compactness and the relatively high independence of the resulting feature
set.

We obtained three small subsets of features containing three, six and seven
elements, respectively. With these feature sets, we trained three independent logistic
regression models and utilized them to make predictions for the testing cases.
Although we used a very simple prediction method and a completely automated
feature selection, the average AUC of this solution for the testing set was 0.9413 —
see FE4+mRMR in Table 5.2.

In order to verify the stopping criteria we repeated the experiment with the probe
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Algorithm 10: Implemented version of mRMR feature selection method.

Input: set of features A and dependent variable d;
¢: Ax AU{d} — RT function for measuring dependency;
N eN;ee€[0,1);
Output: subset of features R C A
1 begin

2 stopFlag + FALSE;
3 R + argmaxgea ¢(a,d);
4 A<+ A\ R;
5 while stopFlag == FALSFE do
6 @ 4+ arg maxqeA (cZ)(a, d) — maxpear ¢(a, b));
7 foreach i €1,..., N do
8 ‘ p; < random permutation of a;
end
10 if |{i¢\¢(ﬁi7d)]\v>_£(ﬁvd)|}|+1 > ¢ then
11 ‘ stopFlag < TRUFE;
12 else
13 | R+ RUa
14 end
15 end
16 end

condition switched off. Figure 5.4 shows the results of the forecasting model trained
using features selected in 25 consecutive iterations of the mRMR procedure. It can be
seen that, for each of dependent variable values, the results obtained for our stopping
method were close to optimal. Moreover, by virtue of the random probe test, the
resulting feature subsets were compact. Overall, they contained the lowest number of
features among the solutions submitted by the top-ranked teams in the competition.

In the second setup, we implemented the granular algorithmic schema outlined in
Algorithm 7 using — as a granulation technique — a DAAR heuristic [183]. For each
of three dependent variables, we computed 10 different feature sets. Then, for each
set, we computed a logistic regression model using the same training algorithm as for
features selected with mRMR. Finally, we created a simple ensemble by averaging
their prediction. The final score achieved by the ensemble of DAAR-based logistic
regression models was 0.9545 — see FE4+DAAR in Table 5.2.

In order to thoroughly investigate the performance of the proposed framework
with particular interes on feature extraction and selection part, we evaluated it on two
additional data sets that were obtained from different coal mines. The first of those
sets contained sensor readings from over a month (November 2007 — December 2007).
Similarly as the first set there were three target methane meters (MM532, MM533
and MMb34) and the sensor reading frequency was one per second. The data set
contained readings from eight sensors plus additional information regarding the coal
shearer status. After the initial preprocessing, the data consisted of 51,329 records
corresponding to 10-min periods of sensor readings. These records were divided into
two disjoint sets - one for training the compared models and the second one for
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Figure 5.4: AUC values obtained for simple linear regression models trained on features
selected in subsequent iterations of mRMR procedure for each of dependent variable values
in the data: dashed blue lines show the scores on the preliminary testing set; dashed-dotted
red lines show the scores on the final testing set; thick black lines show the scores on the
joined testing set; thin vertical lines mark the iteration on which the stopping condition of
our implementation of mRMR algorithm was triggered.

validation. The testing set corresponded to the last two weeks of sensor readings.

In the second of the considered new data sets, there was only one target methane
meter (denoted by MWR116) and the data spanned across five months (September
2013 — January 2014). In this set, there were readings from 14 sensors, sampled
once per minute. After the initial preprocessing, the set consisted of 204,465 records.
They were divided into separate training and testing sets as well. The test period
corresponded to the last two months of sensor readings. The results obtained for each
of the target sensors from all three data sets are presented in Table 5.3. In addition
to our own models, we include there the results obtained using implementation of the
model reported by the IJCRS’15 competition winner [418].

It is also worth to notice that the multi-stream framework setup with DAAR
feature selection algorithm achieved the highest macro average AUC on all seven
target sensors (Table 5.3). The paired Wilcoxon test did not reveal statistically
significant differences in the results between the AutoML multi-stream framework
results (Section 4.3) and the best of the fine-tuned solutions constructed on nearly
5000 features. It is, therefore, sufficient to conclude that the proposed framework
can successfully replace more complicated and hardly interpretable machine learning
approaches. Moreover, computation time required to train our model was an order of
magnitude lower. For instance, for the third data set, our model was constructed in
19 min, whereas the construction of the random forest model took nearly five hours.

The aforementioned analysis clearly shows the accuracy obtained using our
approach, taking into account its subsequent layers of feature creation and selection
(Figures 4.5 and 4.6) and the forecasting models training and ensemble blending
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Table 5.3: A comparison of logistic regression performance (AUC measure) for individual
target methane meters from the three data sets considered in our study (macro averaged
AUC - in the last row).

Target variable FE+mRMR | FE4+DAAR | Zagorecki [418]
MM256 0.9432 0.9579 0.9439
MM263 0.9374 0.9564 0.9760
MM264 0.9433 0.9492 0.9579
MM5b32 0.9176 0.9170 0.8968
MM5b33 0.8501 0.8681 0.8283
MM534 0.9276 0.9321 0.9299
MWR116 0.9389 0.9431 0.9575
Macro Averaged AUC | 0.9226 0.9320 0.9272

(Figure 4.7). Both evaluated feature selection approaches — mRMR and DAAR
methods — yield very good results even when combined with the simplest possible
prediction techniques — the logistic regression. From the prediction accuracy
perspective, they perform comparably to the model developed by the competition
winner which was manually tuned for over two months. Moreover, they are easy to
maintain, efficient to compute and, what is maybe the most important aspect from
the point of view of interactiveness, they are understandable for the system users
and domain experts by means of operating with small subsets of intuitively defined
features. In particular, this is why the DAAR-based method was deployed in a
production system responsible for processing sensor readings collected from multiple
monitoring and dispatching systems deployed in different coal mines. [356].

5.1.4 Impact of Feature Extraction on Resilience

Let us evaluate the impact of the sliding window-based feature extraction on the
quality and resilience of methane prediction. For that purpose, we refer to the same
data set of sensor readings collected from an active coal mine in Poland between
March 2, 2014, and June 16, 2014 - as described in Section 5.1.2. In the following
study, we performed a series of experiments on both raw, unprocessed data and on the
data after performing feature extraction (as described in Chapter 4). The problem
was to predict maximal methane concentrations in a six minutes time horizon for three
selected methane meters, denoted as: MM263, MM264 and M M256 (Figure 5.2)
— similarity as in JCRS’15 Data Challenge — see Section 5.1.2. This time, however,
evaluations were performed with three error measures designed to assess regression
problems: mean absolute error (MAE), root mean squared error (RMSE), and root
relative squared error (RRSE).

In the frame of the experiment, we focused on those methods that can predict
the methane concentration even in the absence of selected conditional attributes,
including linear regression (Im), two implementations of regression trees (rpart,
ctree), regression rules (cubist), and gradient boosting (ghm). As in most short-term
regression problems, the last know value (last val.) is usually a reasonably good naive
approach, commonly used as a baseline forecast. Apart from that, we also used as
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Table 5.5: Impact of sliding window feature extraction on resilience of methane prediction.

Target| Missing: - MM256 MM263, MM264 MM256, MM263, MM264
Attr. | Method MAE RMSE RRSE | MAE RMSE RRSE | MAE RMSE RRSE | MAE RMSE RRSE
rpart without FE | 0.0906 0.2941 0.8327 | 0.1688 0.3796 1.0747 | 0.1179 0.7232 2.0474 | 0.1846 0.5273 1.4928
. rpart+FE(1:1/0:1)| 0.0713 0.2661 0.691 | 0.1146 0.3126 0.7248 | 0.0567 0.274 0.6888 | 0.1139  0.3067 0.7711
A rpart+FE(1:3/0:1)| 0.0737 0.2543 0.6603 | 0.1163 0.2905 0.7542 | 0.0591 0.2897 0.7284 | 0.1204 0.316  0.8206
w rpart+FE(1:6/0:1)| 0.0733 0.2582 0.6491 | 0.1141 0.224  0.5817 | 0.0701 0.2945 0.7403 | 0.1153  0.2628 0.6823
best rpart+FE | 0.0713 0.2543 0.6491] 0.1141 0.224 0.5817| 0.0567 0.274 0.6888| 0.1139 0.2628 0.6823
best without FE | 0.0733 0.2941 0.8327 | 0.144  0.3395 0.9611 | 0.0733 0.2971 0.841 | 0.1520 0.3491 0.9883
Missing: - MM263 MM256, MM264 MM256, MM263, MM264
MAE RMSE RRSE | MAE RMSE RRSE | MAE RMSE RRSE | MAE RMSE RRSE
rpart without FE | 1.1592 3.0303 9.3317 | 0.1348 0.3285 1.0115 | 1.1592 3.0303 9.3317 | 0.1337 0.3263 1.005
- rpart+FE(L:1/0:1)| 0.0521 0.2708 0.7395 | 0.137  0.3335 0.911 | 0.0457 0.2598 0.686 | 0.1234 0.3161 0.8348
8 rpart+FE(1:3/0:1)] 0.0753 0.2368 0.6467 | 0.1356 0.2862 0.7816 | 0.0544 0.2569 0.6785 | 0.1204 0.316  0.8206
w rpart+FE(1:6/0:1)] 0.0521 0.2596 0.6459 | 0.12  0.2438 0.6658 | 0.0511 0.2526 0.667 | 0.1338 0.3004 0.8204
best rpart+FE | 0.0521 0.2368 0.6459] 0.12  0.2438 0.6658| 0.0457 0.2526 0.667 | 0.1204 0.3004 0.8204
best without FE | 0.0498 0.2905 0.8945 | 0.1331 0.3247 1 0.0498 0.2009 0.8957 | 0.1331 0.3247 1
Missing: _ MM264 MM256, MM263 MM256, MM263, MM264
MAE RMSE RRSE | MAE RMSE RRSE | MAE RMSE RRSE | MAE RMSE RRSE
rpart without FE | 0.0738 0.3411 1.0441 | 0.1799 0.341 1.044 | 0.0819 0.3981 1.2187 | 0.1534 0.3217 0.985
rpart+FE(1:1/0:1)] 0.0698 0.2555 0.665 | 0.1227 0.2886 0.7337 | 0.0635 0.3262 0.8492 | 0.1257 0.328  0.8537
g rpart+FE(1:3/0:1)] 0.07  0.2351 0.5978 | 0.1295 0.2651 0.6901 | 0.0497 0.2894 0.7533 | 0.1245 0.2925 0.7614
= rpart+FE(1:6/0:1)| 0.0719 0.2433 0.6333 | 0.1241 0.3113 0.8102 | 0.0619 0.2952 0.7684 | 0.1294 0.2613 0.68
= best rpart+FE | 0.0698 0.2351 0.5978| 0.1227 0.2651 0.6901| 0.0497 0.2894 0.7533| 0.1245 0.2613 0.68
best without FE | 0.0632 0.2704 0.8277 | 0.1623 0.3247 0.9939 | 0.0632 0.2667 0.8165 | 0.1534  0.3217 0.985
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a predictor a very simple statistic, that is an average calculated on the training set
(train p). Since the purpose of the experiment was to assess the relative impact of the
performed feature extraction vs. using raw data, we did not enforce any parameter
tuning of the models. The results are summarized in Table 5.4.

The first column in Table 5.4 indicates the target variable. The second one
provides information about the prediction method used. Three consecutive columns
provide information about the prediction error under the assumption that all the
sensors from the training set were available during the assessment - the best results
per each target variables in bold. We may notice that the results of simple approaches
like the last value were quite often the best. Regression threes (rpart) performed very
well in the case of M M256, however by far the worst in the case of M M263 — we
could observe similar behavior whenever the M M?263 was available in the conditional
attribute set - evidently, the cause of the observed over-fitting. This raised the
question of whether the rpart model on different data representation (i.e., with sliding
window-based feature engineering applied) could result in a more robust behavior of
this method.

Due to hazardous events or harsh conditions prevailing in mines, sensors or wires
transmitting data may be damaged. As presented in Figure 5.1, this may cause
gaps in the collected readings, resulting in missing values of particular attributes.
Thus, all the predictive models utilizing affected features from failed sensors may
become impacted (Figure 5.1). To verify the resilience of the methods to missing
attributes, we performed the following three experiments: we had been removing
from the test data the most important attributes: M M256, M M263, and M M264.
The “Missing:” keywords in Table 5.4 indicate rows with sensor symbols that were
excluded from the conditional attributes in the test set. Columns 6-8 indicate the
error measured when the historical values of the target variable were not present -
such a situation obviously disables forecasts with the last value predictor. The last
three columns (12-14) provide an assessment of the methane concentration forecasts
when all M M256, M M263 and M M 264 sensors would be, for some reason, disabled.
We may notice that tree-based methods handled relatively well that crisis-scenario.

In Table 5.5, we provide results of the same experiments, this time, however,
performed on a slightly different representation of data - after the sliding window
feature extraction was applied. For that study, we picked one of the tree-based
models - rpart - and applied three different sliding window setting with respect to
window length and offset (Recall, e.g., Figure 2.1) designated with “+FE” in Table
5.5. For each rpart+FE(l:.../o: ...) method, information in brackets indicates a
particular sliding window setting, where “1:” indicates a length of a time window (in
minutes) and “o:” refers to an offset of a time window (in minutes). To emphasize the
quality gain achieved with sliding window feature extraction, we additionally added
“rpart without FE” to the comparison. The last two rows per each target variable
contain the best results achieved with feature extraction - that is rpart+FE =
MIN (rpart+FE(l : 1/o : 1),rpart+FE(l : 3/o : 1),rpart+FE(l : 6/o : 1)) vs.
the best results without FE - that is with minimal error in Table 5.4. We may notice
that rpart with feature extraction outperformed the best of the evaluated methods
33 out of 36 times - the best results in bold.

The results confirm that the developed feature extraction methods have a positive
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impact on prediction of methane concentration. An important contribution of this
research is the evaluation of the impact of the developed feature extraction methods
not only on the quality of prediction but also on the resilience of various machine
learning models in the case of partial data loss, i.e., missing attributes. The performed
experimental study confirms that it is feasible to assure a proper resilience level
of methane concentration prediction. Hence, would allow us to immunize decision
support systems in case of data loss.

5.2 Seismic Events

In this section, we investigate how the interactive feature extraction and ensemble
blending methods, proposed in Chapter 4, generalize to other problems of
multi-stream data analysis. Once again, we address the problem of safety monitoring
in underground coal mines. This time, we investigate and compare practical
methods for the assessment of seismic hazards using analytical models constructed
on both multi-stream sensory data and features derived from domain experts. The
possibility to represent a problem related to data exploration and analysis with
machine-generated features enriched with expert assessments, we consider as one
of the essential aspects from the point of view of interactiveness.

For our case study, we use a rich data set collected during a period of over five years
from several active Polish coal mines. We focus on comparing the prediction quality
between expert methods, which serve as a standard in the coal mining industry, and
state-of-the-art machine learning methods for mining high-dimensional time series
data. We describe an international data mining challenge organized to facilitate our
study. We also demonstrate that the technique, which we employed to construct an
ensemble of regression models (presented in Section 4.3) together with the sliding
window feature extraction framework (Section 4.1.2) were able to outperform other
approaches used by participants of the challenge. Finally, we explain how we utilized
the data obtained during the competition for the purpose of research on the cold
start problem in deploying decision support systems at new mining sites.

5.2.1 Seismic Hazards in Coal Mines

Coal mining is one of the most important branches of heavy industry in the world,
with the employment level exceeding 3.5M people worldwide [179]. As briefly outlined
in Section 5.1, there are many threats that may be encountered by miners working in
underground coal mines. An important aspect of safe and efficient coal mining is the
prediction of seismic hazards, particularly those related to high-energy destructive
tremors, which may result in rock-bursts [48]. Safety refers to saving workers from
accidents and injuries, while efficiency refers to unplanned shut-downs of longwall
systems. From this perspective, proper prognosis of potentially dangerous methane
concentrations [345] and seismic events [109] constitutes one of the most important
challenges that should lead toward improving the safety and reducing the costs of
underground coal mining.

More and more advanced seismic and seismoacoustic monitoring systems allow
for a better understanding of rock mass processes [109] and defining seismic hazard
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prediction methods [124]. Seismic hazard assessment and prediction methods, among
others, include: probabilistic analysis [228,272] that predicts the energy of future
tremors or a linear prediction method [214], which can be used to predict aggregated
seismic and seismoacoustic energy emitted from a mining longwall. Both methods
perform analysis in a given time horizon. An application of data clustering techniques
to seismic hazard assessment was presented in [232]. There are also approaches to
the prediction of seismic tremors by means of artificial neural networks [195] and
rule-based systems [197]. The accuracy of the methods created so far is, however,
far from perfect. These methods often require a special, non-standard measuring
apparatus and that is the main reason why some of them are not applied in mining
practice.

Microseismic monitoring and multi-parameter indices may be also considered
as a tool for the early warning of rock-bursts [96]. In the context of dealing
with uncertainties in geomechanical underground works, particularly interesting are
techniques that apply the Bayesian modeling approach [264]. Rule induction and
decision tree construction techniques were also applied for this purpose [344]. There
are also applications of machine learning methods to diagnostics of mining equipment
and machinery [386]. The issue of mining devices diagnostics was raised among
others in [265]. Still, expert systems are currently the most popular method of natural
hazard prediction in the area of underground coal mining.

Two basic methods are routinely used by experts for the assessment of seismic
hazards in Polish coal mines. These methods are often called seismic and
seismoacoustic, respectively [197]. In Appendix B.1, we briefly describe both methods
of seismic hazard assessment. The seismic and seismoacoustic methods are the result
of the work of many domain experts and serve as a current standard in the Polish
mining industry. Therefore, estimating the accuracy of those expert methods for
natural hazard assessment and comparing their reliability with automatic prediction
models constructed using statistical and machine learning techniques is of the utmost
importance. This was one of the objectives of the presented research.

Processes related to the seismic activity are often considered the hardest types
of natural hazards to predict. In this respect, they are comparable to earthquakes.
Seismic activity in underground coal mines occurs in the case of a specific structure
of geological deposits and due to the excavation of coal. Factors which influence the
nature of seismic hazards are diverse. Relationships between those factors are very
complex and still insufficiently recognized. To provide protection for people working
underground, systems for active monitoring of coal extraction processes are typically
used. One of their fundamental applications is to screen seismic activity in order to
minimize the risk of severe mining incidents. Such a situation occurs in the Upper
Silesian Coal Basin, where the additional conditions are related to the multi-seam
structure of the coal deposit [168].

In almost all mines in this region, there are systems that detect and assess seismic
activity degrees. The current industry standard in this regard (and the regulations
imposed by Polish law) involves manual assessment of hazards by mining experts.
However, the question remains whether the existing systems and expert methods
take full advantage of the available data in order to provide their users with the
maximum possible prediction accuracy. Moreover, it is important to design seismic
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hazard prediction methods that can adapt to new conditions. There is also a question
of whether the way in which currently deployed systems work is sufficiently clear and
comprehensible, so the users can properly interpret their results and react in case of
possible false emergencies.

Table 5.6: Basic characteristics for data obtained from different working sites. The first
column shows working sites ids, whereas the subsequent ones present information regarding
initial expert assessments of the working site’s safety, the number of data samples in the
training and test sets, and the percentage of cases with the "warning’ decision label.

main initial number number of training test
working assessment of training test cases warnings warnings
site ID cases (percent)  (percent)
146 a 5591 98 0.0014 0.0000
149 b 4248 98 0.0718 0.0018
155 b 3839 98 0.1681 0.0094
171 a 0 49 0.0000 0.0000
264 b 20533 0 0.0039 0.0000
373 b 31236 0 0.0113 0.0000
437 b 11682 0 0.0041 0.0000
470 c 0 258 0.0000 0.0078
479 a 2488 35 0.0000 0.0000
490 a 0 160 0.0000 0.0500
208 a 0 o8 0.0000 0.0172
541 b 6429 5 0.0087 0.0000
D75 b 4891 253 0.0045 0.0012
283 b 3552 215 0.0021 0.0029
599 a 1196 363 0.0148 0.0289
607 b 2328 209 0.0000 0.0000
641 a 0 97 0.0000 0.0103
689 b 0 83 0.0000 0.1205
703 a 0 145 0.0000 0.0069
725 b 14777 330 0.0920 0.0021
765 a 4578 329 0.0000 0.0022
T b 13437 330 0.0000 0.0009
793 b 2346 330 0.0000 0.0045
799 a 0 317 0.0000 0.0000
total - 133151 3860 0.0226 0.0508

5.2.2 AAIA’16 Data Challenge

The complexity of seismic processes and the imbalanced distribution of the positive
(e.g., 'warning’) and negative (‘normal’) examples is a serious difficulty in seismic
hazard prediction. Commonly used statistical methods are still insufficient to achieve
good sensitivity and specificity of the predictions. Therefore, it is essential to search
for new and more efficient techniques of natural hazard assessment, including methods
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derived from the field of machine learning. By organizing an international data
challenge related to seismic hazards assessment as an open, on-line competition
we aimed to conveniently review and evaluate the performance of the available
state-of-the-art methods. Furthermore, this allowed us to verify not only the viability
of the predictive models but also whole analytic processes, including preprocessing,
feature extraction, model construction, and post-processing of predictions (e.g.,
ensemble approaches).

AATA’16 Data Mining Challenge: Predicting Dangerous Seismic Events in Active
Coal Mines took place between October 5, 2015, and February 27, 2016. It
was organized at the KnowledgePit platform, under auspices of 11*" International
Symposium on Advances in Artificial Intelligence and Applications (AAIA’16) which
is a part of the FedCSIS conference series. The task in this competition was related to
the assessment of safety conditions in underground coal mines with regard to seismic
activity and early detection of seismic hazards.

The data set provided to participants was composed of readings from sensors that
monitor the seismic activity perceived at longwalls of different coal mines and measure
the energy released by so-called seismic bumps. Each case in the data was described
by a series of hourly aggregated sensor readings from a 24 hour period. The provided
data also contained information regarding the intensity of recent mining activities
at the corresponding working site, coupled with the latest assessments of the safety
conditions made by mining experts (for instance, ratings obtained using the seismic
and seismoacoustic methods — described in Appendix B.1). To further enrich the
available data, for each working site that occurs in the data set, some additional
meta-data were made available, such as identifiers of the mine and region where
the working site is located or a working site’s height. The detailed list of all data
attributes is available in Table A.2 in Appendix A.2.

Participants of the competition were asked to design a prediction model which
would be capable of accurately detecting periods of increased seismic activity. In
particular, the target attribute in the provided data (the decision) indicated cases
for which the total energy of seismic bumps observed in a following 8 hour period
exceeded the warning level of 5 - 10 Joules (i.e., the energy released in the period
starting after the last hour of aggregated readings describing the case and ending
8 hours later). In total, the provided data was described by 541 main attributes and
6 additional features related to particular working sites. Most of the attributes were
numeric, but there were also a few symbolic (qualitative) ones, e.g., assessments made
by experts. The competition’s data correspond to over 5 years of readings which, to
the best of our knowledge, makes this research the most comprehensive study related
to this domain, conducted anywhere in the world.

The data set was divided into a training part, which was made available to
participants along with the corresponding decision labels, and a test part. The labels
for the test set were hidden from participants. The division of cases between the
training and test sets was made based on time stamps. In particular, the training
data set corresponding to a period between May 5, 2010 and March 6, 2014. It
consisted of 133151 data rows, each corresponding to a different 24-hour period,
overlapping for consecutive cases. The test data covered the period between March 7,
2014 and June 24, 2015. Unlike the training set, to facilitate the objective evaluation
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Table 5.7: Final results and number of submissions from the selected, top ranked teams in
the AATA’16 Data Challenge. The last row shows results obtained solely from assessments
made by mining experts that were available in the data (see Appendix B.1).

Method No. of submissions  AUC
Grzegorowski M. [138] 2 0.9396
Milczek et al. (Deepsense Inc.) [262] 111431  0.9393
Tabandeh Y. (Golgohar Inc.!) 54 0.9342
Podlodowski [298] 71 0.9336
Kurach & Pawlowski [221] 32 0.9312
Bagak et al. [150] 30 0.9297
experts assessment (18 place) — 0.9196

of solutions and to prevent a common problem with so-called data leakage [204],
the test cases were not overlapping and provided in random order. For this reason,
the test set used in the challenge was much smaller than the training data but still
covered a period of nearly 16 months.

Table 5.6 shows some basic data characteristics from each working site that was
used in the competition. It is worth noting that not all working sites present in the
training data also appeared in the test set and there were a few working sites that
were present in the test data but not in the training set. Such a situation reflects a
real-life problem when the exploration of coal shifts to a new site for which there is
no data available. A similar issue can also be identified within other domains, e.g.,
recommender systems, and is commonly referred to as the cold start problem [364].
A fact worth noticing is also that the distribution of cases with a "warning’ decision
label is quite uneven for different working sites.

Solutions submitted by participants had a form of scores assigned to the test cases
(i.e., real numbers, which could be interpreted as likelihoods of ‘warning’ signals). In
practical applications related to the monitoring of safety conditions, such a form of
predictions is more valuable than the exact decision labels because it allows for tuning
the sensitivity of the utilized model. Due to imbalanced distributions of decision
labels, the quality of each submission was measured using Area Under the ROC
(AUC). The AUC measure explicitly relates the true alarm rate to the false alarm
rate and, thus, is appropriate for measuring the performance of prediction models in
a situation when underestimating the risk of a minority binary class (i.e., a seismic
event) is significantly worse (in our case in terms of safety) than overestimating the
risk.

Among the registered teams, 106 were active, i.e., submitted at least one solution.
Table 5.7 shows scores achieved by the selected, top-ranked teams. In total, we
received 3236 solutions, of which 3135 were correctly formatted and successfully
passed the evaluation procedure. In Section 5.2.4, we explain how we used those
submissions in our post-competition analysis of the cold start problem in the
deployment of predictive models for new working sites. Additionally, 50 of the
participating teams provided reports describing their approach, e.g., [138,262, 421].
These reports turned out to be a valuable source of knowledge regarding the
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state-of-the-art solutions in the predictive analysis of time series data related to early
detection of seismic hazards.

5.2.3 Construction of a Seismic Hazard Assessment Model

In this section, we focus not only on the constructed prediction models but also on
data processing stages that were designed to let it work within a big data processing
environment, and particularly with multi-sensor data streams. The highest result
in the final evaluation of AATIA’16 Data Challenge was obtained out-of-the-box by
the solution trained with the framework described in Section 4.3. The Grzegorowski
M. [138] method (Table 5.7)) is based on the framework presented in Chapter 4 —
and had been successfully applied to a similar problem, namely, the prediction of
dangerous methane concentration levels in corridors of coal mines (Section 5.1). The
fact that we were able to reuse this approach confirms its attractive generality. The
overall work we spend on the framework configuration, data preprocessing, feature
extraction and selection, models training, and ensemble blending for the purpose of
seismic data prediction did not exceed 2 hours.

Let us now take a closer look at the best performing solution — Grzegorowski
M. [138] (see Table 5.7) — of the AAIA’16 Data Challenge. In order to provide
high quality assessments, this solution constructed an ensemble of diverse logistic
regression models (Section 4.3). The diversity is obtained by employing a variety
of models computed on various subsets of attributes and examples (Section 4.1.2).
By aggregating predictions of those models using the Algorithm 9, we were able to
obtain robust performance even for new mining sites. As a result, the final ensemble
minimized the impact of a concept drift [85,95] and achieved a better quality and
robustness of prediction than models used by all other teams participating in the
competition.

A scheme of the whole feature extraction process is the same as depicted in Figure
4.5. In the 'Map’ phase (compare steps 2 and 3 in Figure 4.5), each data row was
divided into sub-series of numerical values from various sensors, a set of static and
aggregated features and, in the case of the training set, also a label. The labels,
as well as the static attributes from experts, were transferred to the 'Reduce’ phase
unchanged while the time series were subjected to the feature extraction process
described in Section 4.1.2. In the 'Reduce’ phase (steps: 4 and 5 in Figure 4.5), all
the attributes obtained for each row were combined again.

The design of our model and particularly the method for construction of an
ensemble was largely affected by the imbalanced distribution of ‘warning’ cases in the
data (only about 2.3% of all objects). Firstly, we drew a number of random samples
that contained between 10000 and 20000 objects from the training set. The samples
differed in the number of objects from the ‘warning’ class — it was assured that each
contained a minimum of 1000 and a maximum of 2000 such cases. Objects within a
particular sample were unique, but they could be repeated between different samples.
Such prepared samples supported the ensemble feature selection technique to yield
more robust results [329]. All steps of the feature selection, models training, and the
construction of the final ensemble are presented in Figures 4.6 and 4.7.

It is worth noticing that the selection of attribute subsets was carried out using
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a technique that originated within the theory of rough sets (cf. Section 2.5).
Similarly, as in the FE4+DAAR (Table 5.2) approach presented in Section 5.1.3, the
DAAR heuristic for computation of approximate decision reducts was applied to find
relatively small subsets of relevant features. Furthermore, we decided to combine a
few approximate reducts into a single attribute subset to extend the feature space
for each logistic regression model while increasing their diversity (compare steps 8 —
10 in Figure 4.6) — the combined reducts were randomly matched. Only significantly
different subsets were maintained for the purpose of model training, the rest were
filtered out.

In the next steps (compare Figure 4.7), the obtained subsets of attributes and
objects with a more balanced distribution of classes (see, e.g., SMOTE oversampling
technique for sensor readings and ensemble learning [237]) were used to train logistic
regression models using pre-selected algorithms. The most important models were
used to form an ensemble. Criteria for selecting models for the ensemble considered
a quality of individual regressors as well as the degree of diversity of a resulting
collection of models. The course of the experiment is presented in Algorithm 9 and in
Figure 4.7. All the processing steps were implemented in R environment for statistical
computing using additional libraries, e.g., rpart, e1071 and RoughSets [319].

The final solution was an ensemble of diverse logistic regression models which
interpret the ’"warning’ label as 1 and the 'mormal’ label as 0. The diversity
was achieved by training the models on different subsets of attributes and objects.
Algorithm 9 guarantees that a model can be included only if it is accurate enough
on validation data and sufficiently different from already selected predictors (in that
case, correlation of its prediction with predictions of other models is small enough).
This could be seen as a method for increasing the robustness of predictions in the
case of noisy and heterogeneous data.

The final ensemble consisted of 8 different regression models which were calculated
using three various algorithms, namely: regression trees (calculated using the
implementation from the rpart library), SVM regression, and a generalized linear
model. These particular models were selected:

e five regression trees calculated with rpart (default settings),
e two SVM models with different kernel functions:

— SV M - linear kernel, cost: 1, eps: 0.1
(the number of support vectors: 2968),

— SV M, - radial kernel, cost: 1, gamma: 0.07143, eps: 0.1
(the number of support vectors: 7171),

e one logistic regression model computed with glm.

A comparison of the selected solutions to predictions that were based solely on
assessments made by experts revealed that more complex models were able to quickly
attain significantly higher scores for working sites with available training data. In
the case of the remaining working sites, the advantage of complex prediction models
was not that clear. The average results for selected models in phase 6 were only
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slightly higher, however, for a part of the investigated solutions, the difference was
much more favorable than for others.

Table 5.7 shows scores achieved by the selected, top-ranked teams. The
second highest result, achieved by Milczek et al. solution [262], was based on
a mixture of multiple gradient-boosted trees [64, 114], extremely randomized trees
[34, 122] multi-task logistic regression and linear discriminant analysis models [273].
Interestingly, when we computed the Spearman’s correlation between predictions of
our model and the Milczek et al. (Deepsense Inc.) [262] model, it turned out to be
relatively small (= 0.77). When we combined these predictions by averaging ranks
of predicted values for the test cases, we obtained a higher AUC than those of the
individual models (0.9421 vs. 0.9396 and 0.9393). This result highlights the benefit
of using diverse prediction models for constructing ensembles.

In general, an overview of the most successful approaches in the competition
suggests that the key steps to achieve a good result in this task included:

1. Extracting relevant features (computing a new data representation) that
aggregate time series data and are robust with regard to a concept drift.

2. Designing an appropriate evaluation procedure for testing performance of used
prediction models and tuning their parameters.

3. Using ensemble learning techniques for blending predictions of simpler models.

Such a general approach, which is strongly dependent on feature engineering, was
employed by eight out of the ten top-ranked teams. A slightly different methods
utilized deep neural networks (DNN) to automatically learn a representation of data
[414]. Some details regarding DNN approaches may be also found in [221].

It is here very important to stress out that a solution based solely on domain
experts’ assessments achieved the 18 position. It confirmed that data mining
techniques may outperform experts in forecasting seismic hazards. It also showed
that this problem is not easy to solve even using state-of-the-art ML methods.
Furthermore, a closer analysis of the reports submitted by the most successful teams
revealed that the attributes corresponding to experts’ assessments were commonly
used by their models. Interestingly, all submitted solutions performed significantly
better when the set of input data included the most recent evaluations provided
by experts. It clearly shows how important the domain knowledge is for the
efficient assessment of seismic hazards in coal mines. Furthermore, as we show in
the subsequent section, expert knowledge allowed us to successfully transfer the
knowledge to the new working sites.

5.2.4 The Cold Start Problem

The cold start problem is an important practical issue that is related to real-world
applications of many decision support systems. In the case of coal mining, it typically
appears when a system for monitoring natural hazards is being deployed for new,
previously unexplored longwalls. Omne of the research objectives, motivating the
organization of AATA’16 Data Mining Challenge (described in Section 5.2.2), was to
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investigate the severity of this problem in the context of systems for early detection
of periods of increased seismic activity.

To gather comprehensive data about the impact of the size of available data on the
quality of predictions for a given working site, the training set in the competition was
divided into five separate parts and the challenge was split into six phases. Table 5.8
shows some basic statistics related to the consecutive phases, including the maximum
size of the data set available to participants in each phase of the challenge. After the
start of the competition, only the first part of the training data was revealed. The four
consecutive parts were made available in monthly intervals. In the sixth phase, which
lasted for the last two weeks of the competition, all training data parts were revealed
to all participating teams. Since in each phase a new subset of training data was
made available to participants, we were able to verify the impact of this additional
information by examining the quality of solutions submitted in consecutive phases.

Table 5.8: Basic statistics for each phase of the
challenge, including: training set size, number of
submissions (cases) as well as best, mean and standard
deviation of AUC scores.
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A detailed analysis of the distribution of scores in time reveals some interesting
observations. For the analysis, we only used valid solutions with a reasonable quality
(we disregarded 'random’ submissions and those which obtained a preliminary score
lower than 0.65). Table 5.8 shows the mean and standard deviation of evaluation
scores for each of the competition phases.

As an interesting observation related to the analysis of the results shown in Table
5.8, we may point that, starting at some point in time, the use of additional training
data has a diminishing impact on the performance of prediction models. For instance,
if we compare the average results from the second phase with the results from the
fourth or fifth phase, we see that the difference is minimal. Even though in these
phases we received a comparable number of submissions, and the available training
set in the phase 5 was larger than in the phase 2 by nearly 43%. This was even less
expected due to the fact that the data available in the phase 2 contained information
about only 9 out of 21 main working sites present in the test data (these sites
corresponded to &~ 45% of observations in the test set), whereas in the phase 5 this
number was much higher (13 out of 21 sites; ~ 70% of observations). This suggests
that models relatively quickly became saturated with the training examples.

To further confirm this observation, we analyzed the best solutions in each phase
taking into account only the submissions from well-performing teams — that obtained
AUC scores higher than 0.85 — results of such teams better reflect the performance of
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the state-of-the-art models. Figure 5.5 visualizes basic statistics (min, max, quantiles,
and the mean values) of the best AUC scores of those submissions. The average scores
slightly increase from phase to phase. However, when we checked the statistical
significance of the changes, it turned out that a significant difference (p-value lower
than 0.01) occurred only between results from the fifth and sixth phases. For other
consecutive phases, the p-values of the Wilcoxon test were always higher than 0.175.

Let us now thoroughly investigate the performance of top-ranked solutions
submitted in each phase, with regard to individual working sites. For this purpose,
we disregarded working sites for which there were no examples with the ‘warning’
label in the test set. The reason for that was the inability to compute values of AUC
on such data subsets. This way, for the remaining part of our analysis there were 15
working sites left, which corresponded to ~ 81.5% of observations in the test data.
From solutions submitted in each competition phase, we chose 6 with scores in the
top 10% for a given phase. Table 5.9 shows their average AUC values with respect
to individual working sites. Additionally, the last two rows of the table give average
values of AUC for working sites that were present in the training set and for those
which were unavailable in the training data, respectively. Finally, the last column
of Table 5.9 shows AUC values obtained for individual working sites using only the
assessments made by experts.

For most of the working sites there is a statistically significant improvement
(tested using t-test with a confidence level of 0.95) of results from the later
competition phases in comparison to the first phase. However, in nearly all cases the
improvement between the second and later phases becomes marginal (one exception
is the working site with ID:599). Interestingly, there are working sites (e.g., ID:689,
ID:777) for which there is a noticeable drop in the average quality of solutions between
the second phase and phases 3, 4 and 5. Our partial explanation of this phenomenon
is that in the case of site 689, there is no training data for this particular site, while
in the test set, it is characterized by the highest percentage of ‘warning’ cases (over
12%). In the case of site ID:777, the situation is the opposite. For this site, there were
many examples in the training data and their number was increasing in consecutive
phases. However, all examples in the training set belonged to ‘normal’ decision class,
whereas the test set contained a few observations from the ‘warning’ class (see Table
5.6). Such a distribution of labels could trick the models into thinking that all cases
from this mining site should be ‘normal’, and as a result, decreased their performance.
Interesting is also the fact that the top solutions obtained consistently higher scores
for working sites that were not present in the training data.

The above observations show that having a sufficiently large data set, it is possible
to construct efficient prediction models for the assessment of seismic hazards. The
created models can outperform the currently used expert methods even for completely
new working sites, as long as these sites have comparable geophysical properties and
the same methodology is used for collecting new data. At this point, it is worth
emphasizing that all the evaluated models were trained on both sensory data and
domain experts’ assessments. Such an approach allowed to significantly improve
the quality of machine learning models since it encapsulated part of the knowledge
about the particular conditions of each working site not covered by sensors. This is
an important argument for considering interactive feature extraction processes and
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Table 5.9: Average scores of top solutions for individual working sites, in different phases
of the competition. Evaluations of expert assessments are given for comparison in the
last column. Additionally, the last two rows display aggregated values (averages) for
working sites with some data in the training set and the working sites without any available
training data.

working | phase 1l phase 2 phase 3 phase4 phase 5 phase 6| expert’s
site ID assessment
149 0.8984 0.9056 0.8523 0.9062 0.8766 0.9005 | 0.9306
155 0.6578 0.7328 0.7492 0.7393 0.7242 0.7487 | 0.6845
470 0.9749 0.9922 0.9876 0.9935 0.9922 0.9964 | 0.9707
490 0.8013 0.8122 0.8340 0.8021 0.7892 0.8289 | 0.8109
508 0.9825 0.9971 1.0000 0.9942 0.9854 1.0000 | 1.0000
575 0.9348 0.9845 0.9859 0.9826 0.9820 0.9825 | 0.9723
583 0.9000 0.9419 0.9363 0.9388 0.9370 0.9401 | 0.9280
599 0.8391 0.8585 0.8678 0.8445 0.8670 0.8710 | 0.8020
641 0.9809 0.9983 1.0000 0.9965 1.0000 1.0000 | 1.0000
689 0.7723 0.8812 0.8523 0.8685 0.8582 0.8938 | 0.8884
703 0.9346 0.9792 0.9826 0.9699 0.9873 0.9722 | 0.9722
725 0.8968 0.9188 0.9251 0.9151 0.9176 0.9099 | 0.8955
765 0.7989 0.7911 0.7367 0.7608 0.7423 0.7808 | 0.7587
7 0.9118 0.9354 0.9242 0.9252 0.9175 0.9408 | 0.9444
793 0.9499 0.9545 0.9585 0.9538 0.9361 0.9468 | 0.8868
avail. in | 0.8653 0.8915 0.8818 0.8852 0.8778 0.8912 | 0.8670
training

unavail. in| 0.9077 0.9433 0.9428 0.9374 0.9354 0.9486 | 0.9404
training

built-in human-computer interaction into machine learning processes.

5.3 Tagging Firefighter Posture and Activities

A fire ground is considered to be one of the most challenging decision-making
environments. In dynamically changing situations, such as those occurring at a fire
scene, all decisions need to be taken in a very short time. Since wrong decisions might
have severe consequences, a commander of the response team is forced to act under
huge pressure [180]. Based on several thousands of carefully analyzed reports, experts
identified the "lack of situational awareness" as the main factor associated with major
accidents among firefighters [133]. According to studies on causes of mortal accidents
during actions of firefighters conducted by the Department of Homeland Security
of the United States [5] over 43% of deaths at a fire scene was caused by stress or
overexertion. Therefore, another critical way of increasing firefighter safety is by
monitoring their kinematics and psycho-physical condition during the course of fire
& rescue actions.

The computer systems for human activity recognition may help to reduce
unsafe events, improving communication, and increasing the efficacy of incident
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management. Human activity recognition using Body Sensor Networks (BSN) is a
non-invasive system that is able to deliver information about person motion patterns,
posture and specific actions performed [152,227]. A network of sensors located on a
firefighter body are used to gather kinematic (motion) data from different parts of
the body that may be additionally complemented with physiological data sensors for
vital function monitoring. Afterward, sensor readings are transferred, pre-processed
and various machine learning classification techniques may be applied in order to
estimate the current activity. In this section, we present a practical application
of the presented framework for interactive feature extraction in the fire and rescue
domain that refers to BSN data analysis.

5.3.1 Additional Constraints and Requirements

The aim of our research was to assess how the automatic feature extraction and
classifiers learning (without parameters tuning) can cope with the multi-target
learning problem [19,426]. The evaluated mechanism was previously applied for
the purpose of processing multiple streams of readings generated by sensor networks
in coal mines (Sections 5.1 and 5.2). Hence, one of our objectives was to assess
the versatility of the developed framework across significantly different domains of
application. Working on the solution, we imposed a few additional constraints and
requirements that are essential for the emergency and threats detection domains:

1. The overall time spent on solving the problem must not exceed a total of 2MD
(two man days - that is 16 h).

2. The overall computation time required to prepare data and train the classifiers
must not exceed the total of 10 minutes.

3. The total time required to pre-process a single row of data to a format accepted
by a classifier and assignment of both labels must not exceed one second.

The first of the imposed restrictions was intended to evaluate the possibility to
adapt quickly to a new domain with a satisfactory quality of the model. We put a
requirement that the time for configuring the framework, processing data, training,
and applying the model should not exceed 2 MD which has been recognized as
sufficient for researchers to become familiar with the task and to adjust original data
representation to formats accepted by the evaluated feature extraction mechanisms.

The second point posed a constraint on the time necessary to re-train the model
on new data. After a certain time, the quality may fall below the predetermined
threshold due to, e.g., concept shift or drift [128,240]. We assumed that the time
required for re-training the model should not exceed 10 minutes.

The last point, we consider as the most important because it imposed limits on the
permissible delay in the operation of the pre-processor and classifiers when acting in
a production environment. According to the assumptions, maximum delay between
data collection, complete processing, and labeling of a single row of data should not
exceed one second. This was one of the main reasons for excluding from consideration
all object-based methods as well as heavy classifier ensembles.
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Figure 5.6: Time series form an accelerometer (measured in m/s?) and a gyroscope
(measured in deg/s).

5.3.2 AAIA’15 Data Challenge

The competition: Tagging Firefighter Activities at a Fire Scene [260] — organized
within the frame of the International Symposium on Advances in Artificial Intelligence
and Applications® — concerned the problem of an automatic assignment of labels
(activities) to short series of readings from sensors that monitor activities and
movements of firefighters during an action. The aim of the competition was to
maximize a balanced accuracy measure which is defined as an average accuracy within
all decision classes. It was computed separately for the labels describing the posture
and main activities of firefighters. The final score is a weighted average of balanced
accuracies computed for those two sets of labels and is defined as follows:

BAC,(s) +2- BAC,(s)

5 (5.2)

score(s) =

Where BAC), is the balanced accuracy for labels describing the posture and BAC,
for the main activity. Recall the definition of the balanced accuracy (BAC):

BAC (preds, labels) =

Yocict ACCi(preds, labels)
)

ACC(preds, labels) — |1-Preds = labels; = i

| j : labels; =1 |

The data provided in the competition were obtained during training exercises
conducted by a group of eight firefighters from the Main School of Fire Service. The
sensors placed on a chest were registering vital functions, while the sensors placed on
the torso, hands, arms, and legs were registering movements of a firefighter. Along

2AAIA’15, https://fedcsis.org/aaia
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Figure 5.7: Inter-dependencies between posture and activity labels in training data.

with recording the data from sensors, all training sessions were also filmed. The video
recordings, firstly synchronized with the sensor readings, were presented to experts
who manually labeled them with actions performed during the exercises. The training
and test data sets contain 20000 rows and 17242 columns each. The data are available
online on the KnowledgePit platform as CSV files. The considered task was even more
challenging since the training and test data sets consist of recordings from disjoint
groups of firefighters.

Each single row in data sets corresponds to several short time series with
length equal to approximately 1.8 s. The first 42 columns contain basic statistics
(like mean, standard deviation, maximum, minimum, etc.) of data from sensors
monitoring a firefighter’s vital functions over the given, fixed time period. The
raw readings for the vital functions were recorded using Equivital Single Subject
Kit (EQ-02-KIT-SU-4) fitted with two medical-quality ECG units, heart rate and
breath rate units, and thermometers for measuring skin temperature. The remaining
columns contain readings from a set of kinetic sensors that were attached to seven
places on a body, i.e., left leg, right leg, left hand, right hand, left arm, right arm,
and torso. The enumerated body areas correspond to the following name prefixes
in data: Il,rl,lh,rh,la,ra,torso, respectively. An infix — acc or gyro — refers to an
accelerometer (dynamic bandwidth: 4 /- 16G) or gyroscope (scale up to 2000 deg/s),
respectively. Each sensor of both types produced three readings corresponding to
the three dimensions. A suffix z,y, or z indicates the axis readings came from. An
average time difference between consecutive sensory readings in the data is 4.5 ms.
Eventually, time series are divided into 400 chunks that represent consecutive points
in time. Figure 5.6 contains exemplary, six time series (each consists of 400 values
that correspond to approximately 1.8 s) from a set of sensors placed on a left hand
of a firefighter performing an exercise.

The above description shows the details of the values arrangement in the data.
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Figure 5.8: Inter-dependencies between posture and activity labels in test data set.

In the frame of the experiment, we considered each row as a separate data set
containing readings from many sensors. Values from the vital sensors were aggregated
externally but the kinetic ones were provided in the raw form of time series - this
setup was out-of-the-box covered by the framework - compare Figure 4.5 in Section
4.3. However, the preliminary data analysis revealed two interesting characteristics
of the investigated data. The posture and activity labels were not independent [203]
— see Figures 5.7 and 5.7). Furthermore, the analysis revealed an imbalance in label
distribution [392,404].

5.3.3 Feature Extraction

For the purpose of posture and activity recognition, we processed the data with three
configurations of a sliding window mechanism (Section 4.1.2). As presented in Figure
5.9, every time series were split into 1, 2, and 5 consecutive, non-overlapping sliding
windows, respectively. If there were more than one window generated for the time
series we extracted so-called inter window statistics (in addition to those included in
a basic window) — that is a set of features expressing changes of attribute’s values
between a pair of consecutive windows (Section 4.1.2).

According to the task description, the kinetic sensors (accelerometers and
gyroscopes) used during the exercises have symmetric scales with 0 as their neutral
reading. The specificity of the firefighter activities like walking, running, moving up
the stairs or ladder, could cause the readings to be more significant when considered as
a group — e.g., a whole tuple (x,y, z) from a given accelerometer rather than separate
readings z, y, and z. For that reason, we introduced a concept of so-called wirtual
sensors. Besides applying the aggregate functions to the original time series available
in the delivered files, we implemented an idea of creating artificial time series derived
from the original ones. The virtual sensors were created on the basis of one or more
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Figure 5.9: Illustration of the sliding window configurations. Time series were processed
with varied granularity, ranging from the statistics computed for the whole time series, to
calculate them for 2 or 5 shorter, non-overlapping sliding windows which divided the time
series to the parts of equal length.

time series from other sensors (whether original or virtual) by applying a particular
function. In our solution, we decided to create virtual sensors for readings from
all accelerometers and gyroscopes’ axes separately, applying an abs (absolute value)
function. We created also virtual sensors for readings grouped in tuples (z,y, z) for
each kinetic sensor — computing the Manhattan and Euclidean norms for the (x,y, 2)
vectors. An example that illustrates the concept of virtual sensors used in our solution
is presented in Figure 5.10.

Along with so far mentioned attributes, we additionally extracted more
domain-specific features, e.g., a sum of the selected features for the left and right
hand or a sum for the left and right leg — to exclude the symmetry of right- and
left-handed people. This was important because the training samples were created
based on the behavior of different people than the test samples. Moreover, training
and test set data were acquired during observation of a small group of firefighters,
hence the training sample could not contain all possible patterns. All extracted
statistics were joined together, in a sense of appending all their values in a data
table, and served as an input for the further steps of data analysis and experiments
(see the subsequent steps — 5 and above — in Figure 4.6 and in Figure 4.7).

The above-mentioned adjustments and re-configurations of the presented FE
framework were performed in stages in an interactive way. In Figure 5.11, the ultimate
schema of feature extraction process is presented. The extracted data sets had a
total of 27177 attributes, due to 3 different sliding windows configurations: 2199 —
one sliding window per time series; 6315 — two sliding windows per time series, and
18663 — five sliding windows. All identifiers and all constant attributes were removed
from data. In the process of feature selection, we employed a wrapper approach. In
the forward propagation phase, we had been progressively enlarging the number of
candidate features and making periodic evaluations with SVM model after each step.
Ultimately, 163 most significant attributes were selected for the purpose of model
training.
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Figure 5.10: An example of virtual sensors extracted by applying an absolute value
function and the Euclidean norm to the original time series.

5.3.4 Model Training

The main multi-target learning problem of labeling multivariate time series with many
labels that are interdependent (Figures 5.7 and 5.7) may be modeled and solved in
a number of ways [19,426]. One of the options could be transformation to a typical
classification problem by training classifiers to solve posture and activity recognition
independently. Another option could be creation of new labels corresponding to
couples of posture and activity, e.g., for posture: "moving" and action "stairs_ up" the
combined label would be "moving stairs up". Such an approach would incorporate
the additional knowledge about dependencies between labels, on the other hand, the
number of cases for niche activities would be relatively small. The way in which the
assessment of the solutions is defined (eq. 5.3.2), that is uneven importance of labels
for posture and activity, encourages to consider various concepts like a multi-label
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Figure 5.11: Pre-processing and feature extraction. Figure 5.12: Classifier chain.

classification with label ranking [116] or a graded multilabel classification [65]. The
experimentation with label power-set methods [317,408], however, did not provide
satisfactory results.

Ultimately, we decided to follow ensembles of classifier chains (ECC) [316]. This
approach involves linking together classifiers in a chain structure [405], such that
posture label predictions become features for activity classifiers. Class imbalance
is an intrinsic characteristic of analyzed multi-label data (Compare Figures 5.7
and 5.7). Some of the labels in data were associated with a small number of
training examples. In general, class imbalance poses a key challenge that plagues
most multi-label learning methods [241]. Classifier Chains [316] — one of the most
prominent multi-label learning methods — is no exception to this rule, as each of the
models it builds is trained on all positive and negative examples of each label. To
make a ECC resilient to class imbalance, we coupled it with over- and under-sampling
(recall STEP 6 in Figure 4.6) [363].

Experiments were implemented and carried out in the R software environment
with additional packages. We experimented with decision trees, random forest, and
SVM models [203]. To align with agreed constraints, that is: not to exceed 10
minutes of model training and at most 1 second for single input processing and
labeling, the final solution was based on two SVM models with radial kernel set up in
a classification chain. In Figure 5.12, the schema of classifier chain training — carried
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out in order to solve the problem of labeling sensor time series with posture and
main activity of a firefighter — is presented. A model responsible for recognizing a
firefighter’s posture was trained on the 163 attributes. The (second in the chain) SVM
model which classified the data with a main activity had one additional attribute —
the prediction for posture label. Although constrained effort in solving the problem
(limited with a maximum of 16 hours), the final evaluation reached BAC = 0.72
and significantly exceeded the organizer’s baseline BAC = 0.6.

In the final embodiment, the total time of training classifiers did not exceed
7 minutes. Extraction of all the features, including those for both: raw and
virtual-sensors readings, took approximately 450 milliseconds per a single csv file
row. The post-processing, including assignment of the labels, was performed in R
software environment for statistical computing and consisted of: importing data 1.5
millisecond per record (overall 30 seconds per 20000 rows of test data set), feature
selection 0.5 millisecond per record (overall 10 seconds per 20000 rows of test set)
and labeling 3.5 millisecond per record (classification with SVM of both labels for
20000 rows took in total 70 seconds).

5.4 Spot Instances Price Prediction

The ability to analyze the available data is a valuable asset for any successful business,
especially when the analysis yields meaningful knowledge. Analytical data processing
has become the cornerstone of today’s businesses success, and it is facilitated by Big
Data platforms that offer virtually limitless scalability. The storage technologies
with high level of compression that support stream data collection and analytics
[21,354] as well as the data processing and integration tools [51,320,420] , which can
scale up to thousands of compute resources [87,136,172] allowed companies to store
and analyze data collected from ubiquitous sensors. Furthermore, cloud computing
has emerged as an important paradigm offering a variety of low-cost hardware and
software in pay-as-you-go pricing model [399], which is particularly convenient for
Big Data analytics [339].

Cloud computing offers a number of Big Data solutions related to scalable storage,
processing, and sophisticated business analytics. Due to the growth of Big Data
over cloud, cost-effective allocation of appropriate resources has become a significant
research problem [205,339]. Minimizing the total cost of ownership (TCO) for the
infrastructure supporting Big Data is considered a very challenging task. The number
of available pricing models on the cloud markets is overwhelming, but it is worth
paying special attention to two of them, in particular: the on-demand and spot
markets. The first one represents the pay-as-you-go cloud model, and today is the
most common way the resources are provisioned. The second one allows customers
to save up to 90% of costs by using the cloud data centers’ idle servers.

In this section, we show that, by analyzing spot instance price history and
using ARIMA models, it is feasible to leverage the discounted prices of the cloud
spot market [145]. In particular, we evaluate savings opportunities when using
Amazon EC2 spot instances comparing to on-demand resources. The performed
experiments confirmed the feasibility of short-term future spot prices prediction,
which can improve the cost-effectiveness of any cloud processing bringing up big
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savings comparing to the on-demand prices. This way, we provide a significantly
different application of the presented framework for multi-stream feature extraction
and analysis. Instead of referring to multi-dimensional data representation, we
performed univariate analysis of many time series independently where the feature
extraction part was limited to extracting candlesticks from sliding windows over the
spot price bidding data collected from AWS Cloud [8,145]. The main reason behind
the evaluation of ARIMA models on data represented as candlestick is that both
techniques are very popular and easily interpretable by experts.

5.4.1 Introduction

Proper allocation of cloud resources is a challenging task, particularly for
computationally cumbersome tasks like data processing. There are quite a few
examples of cluster size optimizations for Big Data analytics that focus on resource
management for sustainable and reliable cloud computing [125]. One of the
approaches could rely on initial estimations of data stream characteristics expressed
in a vector termed Characteristics of Data (CoD). Clusters of cloud resources could
then be created dynamically with the help of, e.g., Self-Organizing Maps [205, 255].
Another approach — presented in [106] — focuses on the optimization of short-running
jobs. Authors in [160] propose a query-like environment where developers can
query for the required cluster size. The proposed approach requires, however,
implementation-specific details. The evaluation of historic executions and metrics
is considered as one of the prominent methods that leads to proper optimization,
resulting in the timely processing of data [420].

Cloud providers aim to optimize server utilization to avoid idle capacity and
significant peaks [206]. This led to the emergence of cloud spot markets on which
service providers and customers can trade computation power in near real-time.
One of the evident concerns regarding the spot model is that prices fluctuate along
with changes in supply and demand. Furthermore, cloud providers may terminate
provisioned instances with a minute notice due to outbidding. The ability to forecast
future spot prices in a time horizon necessary to complete the data processing
tasks would be a game-changer allowing to decrease total costs of operation of
data processing pipelines, and to minimize the risk of resource terminations. In
practice, typical data processing tasks, and in particular feature engineering tasks,
have a degree of temporal flexibility - they need to be fulfilled before a specified
deadline. However, it is often possible to defer the computations if it could lead to
overall cost reduction due to price fluctuation. With a reliable forecasting model
that provides accurate spot price prediction for a given time horizon, and reliable
estimation of resources required to perform the task, one could recommend an efficient
and cost-effective cluster configuration.

Some of the frameworks for cluster size optimization, to minimize the deployment
cost, consider allocating server time to spot cloud resources. For that purpose, a
fine-tuned heuristic to automate application deployment, and a Markov model that
describes the stochastic evolution of the spot price and its influence on virtual machine
reliability are proposed [99]. In [400], the authors describe an integral framework for
sharing time on servers between on-demand and spot services. This is one way to
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guarantee that on-demand users can be served quickly while spot users can stably
use servers for an appropriately long period. This is a critical feature in making
both on-demand and spot services accessible. However, guaranteeing timely cloud
job execution on a spot instance is a very challenging task, and existing strategies
may not fulfill requests in case of outbidding.

Changes in supply and demand are the primary factor that impacts the price of
a given service. This behavior is well-known in the stock exchange or commodity
markets [54,110]. Among many available methods for time series regression [337]
— which are the most suitable for modeling the problem of price prediction — one
of the most popular and broadly used are autoregressive integrated moving average
(ARIMA) models [4]. Results obtained in this study confirmed that ARIMA has a
strong potential for short-term spot prediction.

The ability to accurately forecast future spot prices is essential to minimize the
risk of resource terminations. A number of models have already been applied for that
task [206]. For example, in [25], the authors evaluated a model to predict EC2 spot
prices based on long/short-term memory recurrent neural networks. The problem
of forecasting EC2 spot prices one day and one week ahead was also evaluated with
random forest regressors [210]. Because of the similarity between cloud spots and
financial markets [110], we decided to assess ARIMA models [71], which are known
to be robust and efficient in short-term time series forecasting on stock exchanges or
commodity markets [54,83].

5.4.2 Cloud Spot Market

Spot instances can be regarded as spare compute capacity in cloud data centers. They
are offered as one of the three ways cloud providers sell their computing capacity
— the other two are on-demand and reserved instances. In terms of the servers,
there is no difference between the three. The difference is in the business model.
On-demand instances represent the pay-as-you-go model, while reserved instances
facilitate long-term renting of computing resources with a discount. However, spot
instances allow customers to save up to 90% of costs by using the cloud’s unused
servers (cf. Figure 5.13). The two most popular cloud providers, Amazon AWS3
and Windows Azure*, have such spot instance offerings. Even though both Windows
Azure and Amazon AWS offer spot instances, there are years of spot instance price
history available for AWS. Therefore, most of the discussion later in this section
revolves around AWS types of spot instances.

With spot instances, customers never pay more than the maximum price specified
in the bid. However, the evident concern with the spot model is that the cloud
provider may terminate these instances with literally last-minute notice. AWS offers
various options to configure interruption behavior of Spot instances and Spot fleets
(a set of spot instances), including hibernation and automatic restarting. When
the AWS Spot service determines to hibernate a Spot Instance, an interruption
notice is issued as a CloudWatch event, but the customer does not have time before
the Spot Instance is interrupted, and hibernation begins immediately. To prevent

3aws.amazon.com/ec2/spot/
4azure.microsoft.com/en-us/pricing/spot/
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Figure 5.13: Histogram of discount rates for the Linux/UNIX spot machines compared to
on-demand pricing. The values are computed based on the data described in Section 5.4.4

interruptions, the best practices suggest using the on-demand price for bidding,
storing necessary data regularly at persistent storage (e.g., Amazon S3, Amazon EBS,
or DynamoDB), and dividing the work into small tasks while using checkpoints. The
more advanced techniques consider future spot price prediction this, in turn, allow to
either avoid resource termination by bidding higher, or to store partial results before
interruption is triggered by cloud provider.

5.4.3 Univariate Prediction Methods

Naive predictions As in many short-term forecast problems, the last known value
is a reasonably good indicator of the next value. Thus, such predictions are commonly
used as a baseline. In this section, we refer to it as Naive prediction model — that
refers to the last known spot price of a particular instance type in the given availability
zone. With this approach, at the time when we need to predict future spot price of a
particular instance, we simply use the current price and predict that all future prices
are going to be equal to it. Obviously, this is a very naive assumption, completely
ignoring the dynamic demand for spot instances. As the prediction is about values
further away in the future, the expectation is that the quality of such a forecast would
significantly decrease. Still, the motivation to include this approach in the evaluation
is derived from the exploratory analysis of the dataset showing that the spot prices
of some instances were infrequently changing.

Autoregressive integrated moving average ARIMA form a class of time series
models that are widely applicable in the field of time series forecasting. ARIMA
models are known to be robust and efficient in short-term time series forecasting,
with some prominent results in financial and commodity markets, or for anomaly
detection in IoT environments [71,83]. In the ARIMA model, the future value of a
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Table 5.10: The most popular spot machines.

region az machine N Avg bid fre%'t(g)ev Avg bid prlcSe t](3$e>v

ap-northeast-2 a r4.8xlarge 513 5.609858 1.850305 0.61898109 0.032847797
ap-south-1 ¢ mbd.dxlarge 511 5.646654 2.098600 0.26793268 0.049972972
ap-south-1 a md.10xlarge 510 5.664042 1.919549 0.64866667 0.065327196
us-west-1 a rd4.8xlarge 509 5.679289 1.691382 0.68227269 0.042938466
us-west-1 a rbdxlarge 507 5.697051 1.577393 0.56153195 0.082851776
sa-east-1 ¢ mddxlarge 505 5.718381 2.680653 0.33331168 0.022590959
us-west-2 b chn.dxlarge 504 5.720918 1.442650 0.40579861 0.031436667
us-west-1 b mbd.4xlarge 504 5.730931 1.736511 0.37877837 0.071149562
eu-central-1 ¢ c¢bHd.9xlarge 504 5.732888 1.632358 0.64598294 0.032545920
ap-south-1 b ch.2xlarge 504 5.740978 1.712241 0.19892956 0.022324986
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Figure 5.14: Candlestick charts for two popular machine types in N. Virginia region, both
in AZ: b’

variable is a linear combination of past values and errors after removing the trend — by
differencing. Given a time series data Y; where ¢ is an integer index, an ARMA (p,q)
model is given by:

P q
Yi=c+e + ngi}/;ffi + Zez‘gtﬂ‘

i=1 i=1

where Y; and ¢; are the actual value and error at time period t, respectively.
Whereas, ¢ is a constant, #; and ¢; are model parameters to be estimated in the
process of model training. ARIMA (p,d,q) model is an extension of ARMA that aims
to model non-stationary processes. When the observed time series has a trend, the
difference between consecutive observations is computed d times until the observed
process becomes stationary.

To provide high-quality spot price forecasts, we trained ARIMA models separately
for each AWS instance type in each availability zone. To adjust price prediction to
the still changing environment on the AWS spot market, hence minimizing the effect
of so-called concept drifts [240], models were iteratively re-trained after each day. The
more detailed analysis of spot price prediction is provided further in Section 5.4.6.
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5.4.4 Dataset

Contributing to the popularity in industry and research community of the Amazon
Web Services (AWS), and the hardware heterogeneity offered in various instance
types [259], AWS was used for the experimental evaluation. AWS cloud consists of
geographically dispersed regions around the world, each with multiple availability
zones (AZ’s)®. In each of the regions, AWS offers a broad number of cloud services,
among which the Elastic Cloud Compute (EC2) is the essential one.

The analyzed spot price data were collected from 11 AWS regions
Tokyo (ap-northeast-1), Seoul (ap-northeast-2), Mumbai (ap-south-1), Singapore
(ap-southeast-1), Sydney (ap-southeast-2), Canada (ca-central-1), Frankfurt
(eu-central-1), Ireland (eu-west-1), Sao Paulo (sa-east-1), N. Virginia (us-east-1), N.
California (us-west-1), and Oregon (us-west-2) over the period between November 11,
2019 and March 11, 2020. After the preliminary data filtering, we left only those
records, which referred to the EMR compatible EC2 machine types — i.e., dedicated
for Big Data processing’ — working with Linuz/UNIX operating system. For spot
instances there is also a constraint that the root volume must be an Elastic Block
Store (EBS) volume, not an instance store volume, which eliminated some of the
instances from this study. In our study, we were interested in ETL related servers,
that is: the memory oriented machine types — m and r series; the computation
oriented — ¢ series, and ¢ and p series which are popular for the data analysis and
machine learning. The remaining instance families were ignored.

6.

Concerning the savings that could be made with spot instances compared to the
corresponding on-demand prices, the prelimynary data exploration results confirmed
that the advertised claim of savings up to 90% was indeed true, as shown in
Figure 5.13. In Table 5.10, we also present a brief overview of 10 spot price time
series for the most popular (i.e., with the most frequent spot price changes) machine
types. For more information about the data and the process of data acquisition, we
may refer to Appendix A.4.

5.4.5 Data Exploratory Analysis

To verify the feasibility of short term spot price prediction, we decided to limit the
scope of analysis further and to focus on the time series with non-trivial price change
characteristics. Therefore, we discarded machines with infrequent bids (less than 100
bids in the entire data set), as well as the time series with almost constant prices
in the analyzed time range (with the standard deviation of prices ¢ < 0.01). The
final data set contained 854 time series for 85 different machine types aggregated in
non-overlapping candlesticks — a standard tool in financial stock market analysis [8].
Candlestick charts are often used together with various machine learning models,
like SVM or DNN [222]. In the performed experiments, each candlestick contained
volume of operations as well as open, high, low, and close price during one day.
The exemplary candlestick charts for two popular machine types in North Virginia

5See AWS global cloud infrastructure at aws .amazon.com/about-aws/global-infrastructure
6 AWS code-names for regions in brackets.
"See docs.aws.amazon.com/emr/latest/ManagementGuide/emr-supported-instance-types
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Figure 5.15: Correlation heatmap for the three popular spot machine types: r4.4xlarge,
mb.4xlarge, cb.2xlarge.

(us-east-1) region are depicted in Figure 5.14. In Figure 5.17, the schematic flow of
the entire data collection and machine learning process is presented.

5.4.6 Spot Price Predictions

Having the data aggregated in one-day candlesticks, for a given day (t,), we aim to
predict the highest price during the next day (¢,11). The models are evaluated with
two commonly used error metrics, namely, root mean square error (RMSE) and mean
absolute percentage error (MAPE). However, to make the prediction and obtained
error rates comparable between various machines, the prices were scaled — they were
divided by the on-demand price of the same machine type in the corresponding
region. This allows providing an estimation of a budget needed for the data processing
task. The preliminary analysis showed that even the Naive model, which used as a
prediction the last day price, achieved a relatively good quality. The highest MAPE
of 5.49% was recorded for the mdd.16zlarge machine type in ap-northeast-2 region
(See Figure 5.16 (a)). The median and macro average of MAPE over all 854 evaluated
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Figure 5.16: Candlestick charts of two machines troublesome for prediction.

time series was 0.66% and 0.87%, respectively. These results mean that in the worst
case, we can expect a budget overrun of ca. 5.49% in the event of a rapid price change
(as shown in Figure 5.16). However, on average, the error will be much smaller. The
results of Naive model performance aggregated over all 854 time series are presented
in Table 5.11 in the row signed Naive. The median RMSE, in Table 5.11, refers
to median value of 854 experiments. Similarly, in the table, we also report macro
average, 3" quantile, and max value for RMSE and MAPE.

In the performed study, we trained ARIMA models for each of 854 time series
in data. Similar to the Naive model’s case, the evaluation was performed on the
last two months in data (60 days). Before each assessment (at time ¢,) of next
day price, the ARIMA model was re-trained on all available historical data (t...t,).
The aggregated performance of the ARIMA model trained on all available history
is presented in Table 5.11 in the row marked as “ARIMA(AIl)”. To further verify
the optimal history size for the estimation of model’s parameters, that allows more
dynamically respond to the shifts in characteristics of AWS spot prices, we repeated
the experiments for various length of training data history to fit the ARIMA model
(from 10 days to 50 days). In the case of 40 day long history the maximal MAPE error
of 3.84% was recorded in us-west-1 region for r5d.16zlarge machine (see Figure 5.16
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Figure 5.17: A schematic flow of the entire data collection and machine learning process.
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Table 5.11: Spot price prediction in one day horizon. ARIMA with various sliding window
settings (training history length in brackets) and the naive model with last known value.
The minimal error for all classifiers was equal to zero. The 1! quantile was always smaller
than 0.001 and 0.15 for R2 and MAPE, respectively. Prediction evaluated on the last two
months in data (60 days).

Model Hist RMSE MAPE
size | Median MacAvg 3"Qu. Max Median MacAvg 3"¢Qu. Max

10 | 0.00354 0.00624 0.00651 0.04195| 0.7069 0.9088 1.2520 5.1401
15 | 0.00315 0.0055 0.0071 0.0617 | 0.6486 0.8008 1.1552 3.8915
20 | 0.00325 0.00643 0.00759 0.05964 | 0.6620 0.8884 1.2644 5.1581
25 | 0.00313 0.00630 0.00750 0.05926 | 0.6322 0.8597 1.1928 6.4112
30 | 0.00305 0.00598 0.00714 0.05909 | 0.6199 0.8240 1.2005 5.5383
35 | 0.00299 0.00606 0.00715 0.08033 | 0.6101 0.8197 1.1622 4.7605
40 | 0.00293 0.00577 0.00688 0.05909 | 0.5987 0.8020 1.1433 3.842
45 1 0.00286 0.00577 0.00704 0.07563 | 0.5954 0.8032 1.1157 4.0203
50 | 0.00286 0.00557 0.00692 0.10255 | 0.5893 0.789 1.0645 4.9812
All | 0.0028 0.00551 0.00739 0.07884 | 0.5866 0.8051 1.0335 6.5449
Naive 1 0.00314 0.00607 0.0059 0.04648 | 0.6640 0.8782 1.25566 5.4873

ARIMA

(b)). This provides us with the worst-case estimation of cost under- or over-run of
spot resource allocation. Still, in the (macro) averaged or mean case, we would be
far more accurate. In Table 5.11, the aggregated analysis for the Naive model and
all ARIMA settings is presented.

For the more in-depth analysis, we decided to select Naive, ARIMA(AI),
ARIMA(40) models. The first one presents a baseline, the second achieved lowest
average errors, whereas the ARIMA (40) minimized the maximal MAPE error, which
assures the lowest worst-case budget misestimation. The three main parameters
to be estimated in the ARIMA(p, d, ¢) model are the number of time lags of
the auto-regressive model p, degree of differencing d, and the order of the moving
average model (¢). In our experiments, these parameters were estimated using the
Box—Jenkins approach. The analysis of the selected models revealed that for various
time series and length of available training data, different p and ¢ parameter values
were chosen. In the performed experiments, the series was most often differenced
once - trend components for the trained ARIMA models were usually d = 1. The
AR parameters were typically equal to 1 or 2, whereas MA parameters varied from
0 to 4. The seasonality test was negative in all examined cases. Hence, the trained
ARIMA models were of a form ARIMA(1 —2,1,0—4).

To validate the statistical significance of observed differences between the
performance of the selected models, we decided to employ the Wilcoxon signed rank
test — due to a very low p-value observed during Shapiro-Wilk normality test on
both RMSE and MAPE distributions achieved during the tests. In all the cases,
p-value of Shapiro-Wilk normality test was: p-value < 1.0e-15. In the case of
RMSE, the Wilcoxon signed rank test, with the null hypothesis that the errors of
the Naive model are not greater than those of ARIMA(40) did not allow to reject
this hypothesis (p-value = 0.1954). However, when the ARIMA(AIl) model was
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Table 5.12: A summary of the prediction errors of the selected models for various
forecasting horizons (1-3 days).

Model Pred. RMSE MAPE

day | Median MacAvg 3"7Qu. Max | Median MacAvg 3"9Qu. Max
< 1 0.0028 0.0055 0.0074 0.0788 | 0.5866 0.8051 1.034 6.545
% i 2 0.0053 0.01 0.0118 0.095 1.15 1.537  2.029 10.73
< 3 0.0076 0.0146 0.0152 0.142 1.647  2.28 2.948 16.32
< 1 0.0029 0.0058 0.0069 0.0591 | 0.599  0.802 1.143  3.842
% % 2 0.0056 0.0105 0.0123 0.079 1.187 1.57 2.18 7.96
-~ 3 0.0079 0.015 0.017  0.136 1.72 2.36 3.24 13.98
v 1 0.00314 0.0061 0.006  0.0465 | 0.664  0.878 1.256  5.487
= 2 0.00547 0.0112 0.011 0.0887 | 1.1841 1.6459 2.335 11.01
= 3 0.0073 0.0157 0.014 0.126 1.609 2345  3.317 16.48

compared to ARIMA(40) and Naive, the p-values of both tests were very low, i.e.,
3.786e-08 for Naive and 4.649¢ — 06 for ARIMA(40), respectively. It allowed us to
reject the null hypothesis, hence showing the statistical significance of differences
between the models. Slightly different observations were made for the MAPE
measure. In this case, the Wilcoxon test revealed that ARIMA(40) model was
significantly better than Naive (p-value = 3.053e-07). However, the ARIMA(All)
again performed significantly better than both ARIMA(40) (p-value = 0.005515)
and Naive (p-value = 3.396e-11) models.

In the last part of our study, we attempted to validate the feasibility of spot price
prediction in a bit longer horizon of two and three days ahead. We examined the
performance of the three selected models from our previous test: Naive, ARIMA(All)
and ARIMA(40). The results - presented in Table 5.12 - showed that the observed
drop of each model performance is significant, and the maximal MAPE error exceeds
16% for both ARIMA(AIll) and Naive models. However, we may conclude that
prediction is still feasible two and three days ahead, with a median of MAPE errors
only slightly exceeding 1.6% for ARIMA(AIl).

An interesting approach to further investigation would be to use multivariate
methods, mainly due to the observed correlations between various time series in
multiple regions and availability zones, as shown in Figure 5.15. This figure is a
heatmap with a dendrogram added to the left side and to the top where the colour
of each cell represents the correlation between the price of a pair of instance types in
different availability zones. A dendrogram is a tree-structured graph that visualizes
the result of a hierarchical clustering calculation. For the dendrogram on the left
side of the heatmap, the individual rows in the clustered data are represented by the
right-most nodes (i.e., the leaf nodes). Each node in the dendrogram represents a
cluster of all rows from the connected leaves. The left-most node in the dendrogram
is therefore a cluster that contains all rows.
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Chapter 6

Concluding Remarks and Future
Works

This chapter concludes the dissertation and summarizes the presented research. It
also indicates some possible research directions for the future development of the
interactive feature extraction methods and points out some interesting application
areas.

6.1 Summary

In the dissertation, we discuss interactive feature extraction, and we propose several
innovative approaches to automating feature creation and selection processes. In the
study on the interactiveness of the feature extraction methodologies, we address the
problems of deriving relevant and understandable attributes from raw sensor readings
and reducing the amount of those attributes to achieve possibly simplest yet accurate
models. The proposed algorithms for the construction and selection of features
can use various forms of granulation, problem decomposition, and parallelization.
Consequently, they respond to the requirements of expressing complex concepts
intuitively and efficiently, which are essential for the feasibility of feature selection.

Feature selection is crucial for constructing prediction and classification models,
resulting in their higher quality and interpretability. However, the selected features
may become temporarily unavailable in a long-term time frame, which can disable
a pre-trained model and cause a severe impact on business continuity. The novel
methods introduced in the dissertation go beyond the current standards. Accordingly,
we formalize the notion of resilient feature selection by introducing r-C-reducts —
irreducible subsets of attributes providing a satisfactory level of information about the
target variable according to a given criterion function C, even after removing arbitrary
r elements. The proposed approach is based on a generalization of (approximate)
reducts known from the rough set theory (RST) [367]. The framework proposed in
this paper embraces a much wider family of criteria specifying that a given feature
subset is good enough to determine target variable values. We are actually able to
refer to the whole realm of filter-based feature selection strategies [79], now defining
a satisfactory feature set as the one whose evaluation function exceeds a certain
threshold even after removing its arbitrary r elements, » > 0.
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We proved that any NP-hard problem of finding a minimal attribute subset that
yields a satisfactory level of information according to a given criterion function C
remains NP-hard for an arbitrary resilience level r. As a special case, the task
of finding a minimal subset of features providing e-almost the same level of the
aforementioned accuracy measure as the whole set even after removing arbitrary r
elements is NP-hard. The dissertation discusses also opportunities of the exhaustive
and heuristic search of r-C-reducts. By following a popular idea of dynamic
exploration of the lattice of feature subsets, whereby some of its elements turn out
to be labeled as satisfying the criteria for providing enough information while others
do not, we elaborate on two generic algorithmic strategies, namely: breadth first
search (BFS), and depth first search (DFS). For BFS, we adapted the well-known
Apriori algorithm [331] for the purpose of r-C-reduct search (Section 3.3). For DFS,
we extended standard reduct construction methods [353] to incorporate resilience of
generated feature sets (Section 3.5.1). The presented results confirm that the idea
is very promising, and resilient feature selection may significantly minimize the risk
and impact of data loss on predictive analysis.

With regard to feature engineering, we present a particular take on the challenge
of devising a more effective and efficient feature extraction methodology. The
main idea behind our approach is to make intelligent use of the information
granulation paradigm in the context of aggregating, selecting, and engineering
attributes (features/variables/dimensions) that describe the data. The gist is to
operate on attribute granules that are formed through the use of various knowledge
discovery algorithms, such as, e.g., clustering or interchangeability analysis through
heat maps. In many instances, as exemplified by the use cases discussed, granules
built over the attribute space may represent semantic relationships that are important
for domain experts. The proposed framework facilitates discovering meaningful
knowledge from the underlying data, which may be further leveraged in order to
obtain a more comprehensible and user-friendly representation that is described in
a possibly intuitive way, i.e., using statistics characterizing sliding time windows
(Section 4.1.2). In the case of the underground coal mine sensors, derivation of
multivariate series of window-based statistics allowed us to deal with noisy and
incomplete data sources, better reflected temporal drifts and correlations, and reliably
described real situations using higher-level data characteristics.

As a notable aspect and an important research field addressed in the frame
of this study, let us point out the framework for linking sliding window-based
feature creation, resilient feature selection, and machine learning techniques to build
predictive models that are understandable for experts and resistant to partial data
loss (Chapter 4). The solution conveys the granular knowledge in the data to the final
decision model. At the same time, it is designed to deal with enormous amounts of
information that needs to be processed when facing the kinds of tasks typical for Big
Data. The proposed methods for feature extraction are easy to maintain and efficient
to compute. They are understandable for the system users and domain experts by
means of operating with small subsets of intuitively defined features, which is an
important aspect from the point of view of interactiveness.

The proposed approaches to interactive feature extraction have been developed
based on the experience gained in the course of several research projects in the fields of
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processing mutli-sensory streams in various domains, but also textual data analysis
[141]. The experimental study in Chapter 5 confirms the quality of the proposed
framework, taking into account its subsequent layers of feature creation, selection
(Figures 4.5, and 4.6), forecasting models training and ensemble blending (Figure 4.7).
The methods have been validated in terms of the quality of the obtained features,
throughput, scalability, and resilience of their operation. The discussed methodology
has been successfully applied in several real-life problems related to the time series
data [136, 141,179,216, 356,420]. Furthermore, we describe a series of international
data mining challenges organized to facilitate this study.

The dissertation addresses a number of challenges related, among others, to the
comprehensible and concise representation of the analyzed data or the possibility
of embedding domain knowledge into the data. The investigated problems have
been thoroughly considered both from the theoretical and practical sides. The
developed solutions have been meticulously evaluated in terms of various qualitative
aspects like the diversity of the solution or its resilience to data deficiencies. The
dissertation provides a comprehensive rationale for this research direction, building a
solid theoretical foundation for further considerations related to the interactivity of
the feature extraction and machine learning process.

6.2 Future Works

The next steps towards practical use of the outlined methodology would be to devise
methods and tools that automate this process and, at the same time, maintain an
acceptable level of transparency and human readability in a possibly visual way while
taking into account various constraints [52,277]. Further research on the interactive
incorporation of domain knowledge into feature extraction is also a desired direction.
For example, in one of the possible scenarios, an analyst collaborates with a feature
selection algorithm through a specially designed user interface. In an iterative
way, the analyst passes feedback on the relevance of attributes proposed by the
algorithm. Therefore, allows to limit the scope of the analysis and improve the quality
of the obtained features. A complete system capable of flexible, comprehensible,
and extensible interaction with a data scientist who analyzes massive data sets and
provides their input by interruption to the extraction process would be an invaluable
tool [358].

No less important is integration with the existing technologies. In the presented
study, we have shown how the MapReduce principles can be employed. There are,
however, many more other techniques that were developed over the years with Big
Data in mind. For example, it could be helpful to integrate the proposed methods
with the existing tools for the management of massive relational data sets (such as
Apache Hive or some approximate database engines) [355]. This way, we could embed
the “zoom in/out” operations on attributes into a convenient RDBMS environment.

It would be valuable to continue the study on problems related to monitoring
natural hazards in underground coal mines. In particular, to continue work on
extending and better utilizing information registered while adding new data sources.
There are many places where such information could be useful to configure the steps
of consistent data ingestion, preprocessing, and learning forecasting models. It is
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commonly known that the stage of feature extraction should take into account the
semantics of both the overall forecasting task and particular inputs that may help to
build its solution. One of the potentially valuable capabilities would be to use it to
customize window-based and inter window-based aggregations applied for particular
sensors and groups of sensors during the process of feature extraction. In the case
of multi-sensor analytics in the domain of underground coal mining, it may mean
applying different feature extraction strategies for different types of sensors, as well
as constructing higher-level features basing on spatial information represented by the
corresponding mining schemes, such as the one shown in Figure 5.2.

As for future research in this area, it is important to perform a deeper analysis
of errors made by different models to identify factors influencing wrong predictions
for different mining sites. It is important to continue research on the problem of
reliability of prediction models in cases when some of the sensory devices which
gather the input data are malfunctioning. This is a very common situation in active
mines due to a very harsh working environment. In order to construct prediction
models which are robust and insensitive to gaps in incoming data, we would like to
develop methods for automatic detection of exchangeable features (i.e., attributes
whose values come from different sources but express very similar information). We
plan to further investigate feature subset selection methods that keep a controllable
degree of information redundancy.

In this particular area, the notion of r-C-reduct can be regarded as a feature
selection method derived from the theory of rough sets that allows constructing
small subsets of features while maintaining the discernibility of objects in a data
set, even in a case when we suspect that a part of attributes may not be available in
future. It is, however, worth remembering that there are also some cases of criterion
functions C, which model data-based information encoded by attribute subsets in a
not (strictly) monotonic way, which means that smaller attribute sets can potentially
yield a higher level of information. As a special case, we could consider classes of
functions with relaxed monotonicity conditions. In particular, it would be valuable
to study functions providing weak, quasi, and directional monotonicity [297, 335].
We could also consider various aggregation functions (called also pre-aggregation
functions), directionally increasing conjunctors and implications [47], or mixture
functions - a type of weighted averages for which the corresponding weights are
calculated by means of appropriate continuous functions of their inputs, which need
not be monotone increasing [385].

It is particularly important to investigate all the above aspects in both theoretical
and empirical study, including the assessments in real-life environments, taking into
account simulations based on pessimistic and random attribute removal scenarios that
model temporary, partial unavailability of data sources. For the same reason, it is
needed to empirically compare the proposed framework with other (both RST-based
and not RST-based) approaches to stable and robust feature selection [3,198].

We do believe that further research results may have a significant impact on the
development of feature extraction. The presented future research directions have
a solid practical motivation. Deriving meaningful features, which are interpretable
for human experts, is important in many domains, as medicine, criminal justice,
or industrial processes monitoring [119,325,356]. Such methods may increase the
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safety of people working in, e.g., underground mines or participating in firefighting
rescue operations. Furthermore, through analysis of variables’ importance [111] and
co-predictive mechanisms between interpretable features [118], they may foster the
understanding of the root causes of modeled phenomena.
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Appendix A

Data Insights

A.1 Methane Data

The appendix presents selected, more in-depth insights into the methane-related data
set, reffed to in Section 5.1.2. The data correspond to a mining period between March
2,2014, and June 16, 2014, and is collected from selected 28 (out of thousands) sensors
located in an active Polish coal mine, which were located in the vicinity of the coal
extraction area. The data has been made available on KnowlegePit platform for the
purpose of organizing IJCRS’15 Data Challenge: Mining Data from Coal Mines [181].

Table A.1: Sensors related to methane data.

Sensor Type Unit Type Additional Info

AN311 Anemometer m/s alarming Threshold A: none, Threshold B: <= 0.3 m/s

AN422 Anemometer m/s switching off Threshold A: <= 1.1 m/s, Threshold B: <= 1.3 m/s
AN423 Anemometer m/s switching off Threshold A: <= 1.0 m/s, Threshold B: <= 1.2 m/s
TP1721 Thermometer °C  registering Tri-constituent sensor THP2/93

RH1722 Humidity %RH  registering Tri-constituent sensor THP2/93

BA1723 Barometer hPa  registering Tri-constituent sensor THP2/93

TP1711 Thermometer °C  registering Tri-constituent sensor THP2/94

RH1712 Humidity %RH  registering Tri-constituent sensor THP2/94

BA1713 Barometer hPa  registering Tri-constituent sensor THP2/94

MM252 Methanometer %CH, switching off Threshold A: 2.0%, Threshold B: 1.5%

MM261 Methanometer %CH,4 switching off Threshold A: 1.5%, Threshold B: 1.0%

MM262 Methanometer %CH, switching off Threshold A: 1.0%, Threshold B: 0.6%

MM263 Methanometer %CH,4 switching off Threshold A: 1.5%, Threshold B: 1.0%

MM264 Methanometer %C H,4 switching off Threshold A: 1.5%, Threshold B: 1.0%

MM256 Methanometer %CH4 switching off Threshold A: 1.5%,Threshold B: 1.0%

MM211 Methanometer %C H,4 switching off Threshold A: 2.0%, Threshold B: 1.5%

CM861 Methanometer %CH, registering Measures high concentrations of methane

CR863 Pressure difference Pa  registering Sensor is placed on the demethanisation orifice
P_864 Barometer kPa  registering Pressure inside the pipeline for methane drainage
TC862 Temperature °C  registering Temperature inside the pipeline for methane drainage
WM868  Methane expense m?3/min  registering Methane expense calculated by CM, CR, P, TC
AMP1 Ammeter A registering Current in the motor in the left arm of the shearer
AMP2 Ammeter A registering Current in the motor in the right arm of the shearer
DMP3 Ammeter A registering Current in the motor in the left tractor of the shearer
DMP4 Ammeter A registering Current in the motor in the right tractor of the shearer
AMP5 Ammeter A registering Current in the hydraulic pump motor of the shearer
F_SIDE Drive direction left, right  registering The driving direction of the shearer

\" Shearer speed Hz registering Work frequency, 100Hz means ca 20 m/min
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In Table A.1, three groups of sensors are presented (groups are separated with
horizontal lines). The first group is responsible for the monitoring of the mine
atmosphere, the second group monitors the methane drainage flange, the third group
monitors the operating status of a longwall shearer. The fifth column provides
additional information about security thresholds assigned to the selected sensors.
After crossing the threshold A the “switching off” sensors cut off the electricity supply.
After crossing the threshold B both the “alarming” and “switching off” sensors display
a predefined warning message. All of sensor recordings are collected and stored for
the purpose of the further analysis. A detailed location of all sensors, as well as a
workplace of a longwall shearer, on a fragment of the coal mine plan, is shown in
Figure 5.2, in Section 5.1.
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Figure A.1: Examples of outliers in methane concentration time series.
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Figure A.2: Methane indications oscillating near the warning threshold. On the rightmost
plot the current cut off after exceeding the methane concentration threshold.
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Figure A.3: Relatively small dynamics of changes in methane concentration for three
methane detectors. On the rightmost plot we can observe current consumption of the
cutter loader that corresponds to ongoing coal mining.
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Figure A.4: Three methane detectors and ammeter located on the cutter loader. The
sensor MM263 has exceeded the warning threshold.

The plots show that, apart from outliers (Figure A.1), the variation of

methanometer indications is relatively small (Figure A.3).

Hence, indications

oscillating near the warning threshold, like in Figure A.2, are the most difficult cases.
Furthermore, “warnings” were rarely indicated by more than one sensor (see example
in Figure A.4) what could potentially affect on, e.g., multi-target approaches related
to classifier chains technique [316].
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A.2 Seismic Data

Seismic data is related to AAIA’16 Data Mining Challenge: Predicting Dangerous
Seismic Events in Active Coal Mines that took place between October 5, 2015, and

February 27, 2016, under auspices of 11** International Symposium on Advances in
Artificial Intelligence and Applications (AAIA’16) which is a part of the FedCSIS

conference.

attribute no. description

O©COoONOOOTRAWN =

ID of the main working site where the measurements were taken

total energy of seismic bumps registered in the last 24h

total energy of major seismic bumps registered in the last 24h

total energy of destressing blasts in the last 24h

total seismic energy of all types of bumps

latest progress in the mining from, both, left and right side

latest seismic hazard assessment made by experts (a/b/c/d)

latest seismoacoustic hazard assessment by experts (a/b/c/d)

latest (alternative) seismoacoustic hazard assessment (a/b/c/d)

latest comprehensive hazard assessment made by experts (a/b/c/d)

maximum yield from the last meter of the small-diameter drilling

depth at which the maximum yield was registered

time series containing number of seismic bumps with energy in range (0, 102] per hour (1..24)

time series containing number of seismic bumps with energy in range (102, 103] per hour (1..24)

time series containing number of seismic bumps with energy in range (103, 10%] per hour (1..24)

time series containing number of seismic bumps with energy in range (104, 10°] per hour (1..24)

time series containing number of seismic bumps with energy in range (10%, Inf) per hour (1..24)
time series containing sum of energy of seismic bumps with energy in rang (0, 102] per hour (1..24)
time series containing sum of energy of seismic bumps with energy in rang (102, 103] per hour (1..24)
time series containing sum of energy of seismic bumps with energy in rang (103, 10%] per hour (1..24)
time series containing sum of energy of seismic bumps with energy in rang (104, 10°] per hour (1..24)
time series containing sum of energy of seismic bumps with energy in rang (10°, Inf) per hour (1..24)
time series containing number of seismic bumps per hour (1..24)

time series containing number of rock bursts per hour (1..24)

time series containing number of destressing blasts per hour (1..24)

time series containing energy of the strongest seismic bump per hour (1..24)

time series containing max activity of the most active geophone per hour (1..24)

time series containing max energy of the most active geophone per hour (1..24)

time series containing avg activity of the most active geophone per hour (1..24)

time series containing avg energy of the most active geophone per hour (1..24)

time series containing maximum difference in activity of the most active geophone per hour (1..24)
time series containing maximum difference in energy of the most active geophone per hour (1..24)
time series containing average difference in activity of the most active geophone per hour (1..24)

time series containing average difference in energy of the most active geophone per hour (1..24)

Py

Table A.2: Attributes of the seismic data. The experts assessments (a/b/c/d) corresponds

to: a - no hazard; b - moderate hazard; ¢ - high hazard; d - dangerous.

All the attributes of the data set are described in Table A.2. Test and train
data sets are available online at the competition’s web page — AAIA’16 Data Mining

Challenge at the KnowledgePit platform. To access the data it is necessary to register.
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A.3 Firefighter Data

Figure A.5: Filmed and tagged training exercises synchronized with sensor readings.

The data used in the AATA’15 data mining competition: Tagging Firefighter
Activities at a Fire Scene were collected during training exercises conducted by
a group of firefighters from the Main School of Fire Service in Warsaw. All
cadets participating in the experiment were equipped with several sensors located
on their body, including seven inertial measurement units (IMU) Polulu AItIMU-9
rev-4 with 3—axis (horizontal, vertical, and altitudinal) accelerometers with +16g
dynamic range, and 3—axis gyroscopes with £2000 0 /s maximum angular rate, and a
physiological data sensor — Equivital Single Subject Kit (EQ-02-KIT-SU-4). Sensors
were integrated with a data acquisition unit (DAU) on Odroid-U3+ with an external
battery, additional Bluetooth, and a Wi-Fi module. The data acquisition process
was further supported by XBee-PRO 868 communication nodes and Arduino micro
prototype platform connected via USB to DAU.

During the exercise, cadets were simulating typical actions related to a fire
incident. The video recordings of the experiment were synchronized with sensor
readings and provided to domain experts, who tagged videos with the observed
posture and activity. In Figure A.5, we provide a demonstrative frame from the
video recording of the exercises with sample labels and selected sensor readings!.
The data set achieved this way contains 20,000 rows and 17,242 columns, and is
available on-line at KnowlegePit platform. Each data row corresponds to a short
time series (approximately 1.8 s long) of sensor readings; hence an average time
difference between consecutive sensory readings is 4.5 ms. The descriptions of data
attributes and two labels are provided in Table A.3. For further reading about the
measuring apparatus or the recording procedure, we may refer to the summary of
AATA’15 data mining competition [260].

IThe video recording is available on-line on KnowlegePit platform.
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attribute description
1-42 42 attributes with aggregated statistics, including: average, standard deviation,
median, skew, and avgDiff collected from physiological sensor measuring:
ECG, breath rate, heart beat rate, heart rate interval (RR), and body temperature.
Each attribute name ends with: ECG1, ECG2, HRBR1, HRBR2, RR, and TEMP,
indicating the measured vital parameter, and each one is prefixed with the type of
statistics, e.g., min_TEMP, max_ECGH1, or avg_HRBR2.
time1..400 relative time of each measure (1..400)
Il_acc_x_1..400 400 readings from x-axis of accelerometers attached to each firefighter’s left leg
Il_acc_y_1..400 400 readings from y-axis of accelerometers attached to each firefighter’s left leg
Il_acc_z_1..400 400 readings from z-axis of accelerometers attached to each firefighter’s left leg
Il_gyro_x_1..400 400 readings from x-axis of gyroscopes attached to each firefighter’s left leg
Il_gyro_y_1..400 400 readings from y-axis of gyroscopes attached to each firefighter’s left leg
Il_gyro_z_1..400 400 readings from z-axis of gyroscopes attached to each firefighter’s left leg
rl_acc_x_1..400 400 readings from x-axis of accelerometers attached to each firefighter’s right leg
rl_acc_y 1..400 400 readings from y-axis of accelerometers attached to each firefighter’s right leg

rl_acc_z 1..400
rl_gyro_x_1..400
rl_gyro_y_1..400
rl_gyro_z_1..400
Ih_acc_x_1..400
lh_acc_y_1..400
Ih_acc_z 1..400
Ih_gyro_x_1..400
lh_gyro_y_1..400
Ih_gyro_z 1..400
rh_acc_x_1..400
rh_acc_y_1..400
rh_acc_z_1..400
rh_gyro_x_1..400
rh_gyro_y_1..400
rh_gyro_z_1..400
la_acc_x_1..400
la_acc_y 1..400
la_acc_z 1..400
la_gyro_x_1..400
la_gyro_y_1..400
la_gyro_z 1..400
ra_acc_x_1..400
ra_acc_y_1..400
ra_acc_z_1..400
ra_gyro_x_1..400
ra_gyro_y_1..400
ra_gyro_z_1..400
torso_acc_x_1..400
torso_acc_y_1..400
torso_acc_z_1..400

400 readings from z-axis of accelerometers attached to each firefighter’s right leg
400 readings from x-axis of gyroscopes attached to each firefighter’s right leg
400 readings from y-axis of gyroscopes attached to each firefighter’s right leg

400 readings from z-axis of gyroscopes attached to each firefighter’s right leg

400 readings from x-axis of accelerometers attached to each firefighter’s left hand
400 readings from y-axis of accelerometers attached to each firefighter’s left hand
400 readings from z-axis of accelerometers attached to each firefighter’s left hand
400 readings from x-axis of gyroscopes attached to each firefighter’s left hand
400 readings from y-axis of gyroscopes attached to each firefighter’s left hand
400 readings from z-axis of gyroscopes attached to each firefighter’s left hand
400 readings from x-axis of accelerometers attached to each firefighter’s right hand
400 readings from y-axis of accelerometers attached to each firefighter’s right hand
400 readings from z-axis of accelerometers attached to each firefighter’s right hand
400 readings from x-axis of gyroscopes attached to each firefighter’s right hand
400 readings from y-axis of gyroscopes attached to each firefighter’s right hand
400 readings from z-axis of gyroscopes attached to each firefighter’s right hand
400 readings from x-axis of accelerometers attached to each firefighter’s left arm
400 readings from y-axis of accelerometers attached to each firefighter’s left arm
400 readings from z-axis of accelerometers attached to each firefighter’s left arm
400 readings from x-axis of gyroscopes attached to each firefighter’s left arm

400 readings from y-axis of gyroscopes attached to each firefighter’s left arm

400 readings from z-axis of gyroscopes attached to each firefighter’s left arm

400 readings from x-axis of accelerometers attached to each firefighter’s right arm
400 readings from y-axis of accelerometers attached to each firefighter’s right arm
400 readings from z-axis of accelerometers attached to each firefighter’s right arm
400 readings from x-axis of gyroscopes attached to each firefighter’s right arm
400 readings from y-axis of gyroscopes attached to each firefighter’s right arm
400 readings from z-axis of gyroscopes attached to each firefighter’s right arm
400 readings from x-axis of accelerometers attached to each firefighter’s torso
400 readings from y-axis of accelerometers attached to each firefighter’s torso
400 readings from z-axis of accelerometers attached to each firefighter’s torso

torso_gyro_x_1..400
torso_gyro_y_1..400
torso_gyro_z_1..400
posture
activity

400 readings from x-axis of gyroscopes attached to each firefighter’s torso
400 readings from y-axis of gyroscopes attached to each firefighter’s torso
400 readings from z-axis of gyroscopes attached to each firefighter’s torso
a label describing a posture of a firefighter.

a label describing a main activity of a firefighter.

Table A.3: Attributes of the firefighter data.
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A.4 AWS Spot Data

The data were iteratively collected over the period between November 11, 2019 and
March 11, 2020, from 11 AWS regions®: ap-northeast-1 (427309), ap-northeast-2
(303113), ap-south-1 (322593), ap-southeast-1 (459592), ap-southeast-2 (382703),
ca-central-1 (206218), eu-central-1 (453457), eu-west-1 (546474), sa-east-1 (280076),
us-east-1 (1061429), us-west-1 (285975), and us-west-2 (661369) using AWS
command line interface (CLI v2) with the following command:

aws2 ec2 describe-spot-price-history

--region <e.g., us-east-1>

--start-time <e.g., 2019-11-11T12:00:00>

--end-time <e.g., 2019-11-18T12:00:00>

——output text

The raw data consisted of a total of 5.4M unique records, each corresponding
to a bid for one of the AWS spot instances, in a form as presented in Table A.4.
The preliminary data exploration revealed that the spot price time series for a given
instance type differ between regions and availability zones.

Table A.4: Exemplary spot price bids collected from AWS.

SPOTPRICEHISTORY Region & AZ Instance Type System Bid Price Bid Date & Time

SPOTPRICEHISTORY sa-east-1c m4.xlarge Linux/UNIX 0.076300 2020-02-11T14:50:42+00:00
SPOTPRICEHISTORY sa-east-1b mb.large Linux/UNIX 0.052800 2020-02-11T14:25:45+00:00
SPOTPRICEHISTORY sa-east-1c mb5.24xlarge Linux/UNIX 2.055900 2020-02-11T14:11:04+00:00
SPOTPRICEHISTORY sa-east-1c mb5.24xlarge Windows 6.471900 2020-02-11T14:10:52+00:00
SPOTPRICEHISTORY sa-east-1a r3.2xlarge SUSE Linux 0.262800 2020-02-11T14:08:50+00:00

After the initial filtering and pre-processing, the data were aligned into 854
time series. One per each region, AZ, instance type triple, and aggregated daily
as presented in Table A.5. Volume column presents the number of price changing
bids recorded in a given time window. Open refers to the first bid in a given time
window. Whereas High, Low, and Close columns refer to highest, lowest, and the last
bid in each time window, respectively. If no bids were recorded, i.e., Volume equals to
zero (cf. last row in Table A.5), Open, High, Low, and Close rates were assigned the
same value as the Close price in the previous window. Such a data format allowed
us to represent time series as candlestick charts (cf. Figure 5.14).

Table A.5: Data aggregated in 24h long time windows starting at Window Begin.

Region AZ Instance Type Window Begin Open ($) High ($) Low ($) Close ($) Volume
us-east-1 d r5.12xlarge 2020-03-07 12:00:00 0.8790 0.8790 0.8763 0.8763 3
us-east-1 d  r5.12xlarge 2020-03-08 12:00:00 0.8761 0.8761  0.8757 0.8757 4
us-east-1 d r5.12xlarge 2020-03-09 12:00:00 0.8767 0.8810 0.8767 0.8810 3
us-east-1 d  r5.12xlarge 2020-03-10 12:00:00 0.8799 0.8882 0.8799 0.8863 4
us-east-1 d r5.12xlarge 2020-03-11 12:00:00 0.8863 0.8863 0.8863 0.8863 0

2Numbers in brackets indicate the amount of unique bids in data for each region.
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Appendix B

B.1 Expert methods for classifications of seismic
hazards in coal mines

Two basic methods are routinely used by experts for the assessment of seismic hazards
in Polish coal mines. These methods are often called seismic and seismoacoustic,
respectively [197].

The essence of the seismic method is the analysis of tremor occurrences in mines.
Table B.1 presents the basis for quantitative hazard assessment using this method.
This type of assessment is performed routinely every shift. As shown in Table B.1,
very simple and intuitive rules are used in order to model the relationship between
the energy of tremors and rock bursts. These rules were designed by experts based
on their experience and common sense.

The seismoacoustic method is based on an analysis of seismoacoustic emissions
recorded at a given longwall. The seismoacoustic emission is described by its intensity;,
understood as the number of registered events and their total energy. The dependency
between the seismoacoustic emission seismic hazards was often observed in practice
by mining experts. In this type of assessment, the following factors are considered as
crucial:

e registered seismoacoustic emissions,

e the number of pulses recorded by geophones, which is converted into so-called
conventional seismic energy using an appropriate formula.

Available studies on the effectiveness of the seismic and seismoacoustic methods
are limited to those conducted by the Polish Central Mining Institute [196]. Its
analysis of selected cases of rock-bursts showed that the seismic method correctly
predicted these dangerous events in only about 17% of cases. When the seismic
method was coupled with the seismoacoustic approach (i.e., a hazardous state is
predicted when any of the methods indicate the state ’d’), the prediction accuracy
increased to about 20%. However, the data set used for the purpose of that
experiment was relatively small and did not cover coal mines located in different
geographical locations. The used data set is not publicly available, hence the results
of this evaluation were difficult to reproduce.
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Table B.1: Quantitative assessments of seismic hazards based on the observed seismic activity, as outlined in [197].

Rockburst hazard

Caved faces

Roadways

a

1. No tremors or single tremors with energies

E of the order of 102J — 10%J

1. No tremors or single tremors with energies F of
the order of 10%J

no hazard 2. Epaw < 104 2. Ergs < 103
3. XE < 10°J per 5m of longwall advance 3. XE < 103J per 5m of longwall advance
b 1. Occurrence of tremors with energies F of the 1. Occurrence of single tremors or single tremors
order of 102J — 10°J with energies E of the order of 10? — 103J
low hazard 2. 104 < Eppe < 10°] 2. Erae <5-103J
3. 10° < Y E < 10%J per 5m of longwall advance 3. 103J< Y E < 10%J per 5m of longwall advance
c 1. Occurrence of tremors with energies F of the 1. Occurrence of single tremors or single tremors

moderate hazard

order of 10%2J — 10°J
2.5-10°) < B < 5-10°%]

3. 105 < X E < 107J per 5m of longwall advance

with energies E of the order of 10?2 — 10%J
2.5:10%] < Epar <5-10%]

3. 104J < ¥ E < 10°J per 5m of longwall advance

d

high hazard

1. Occurrence of tremors with energies £ of the
order of 102J — 10°¢J

2. Epgz > 5-10%]

3. ¥E > 107J per 5m of longwall advance

1. Occurrence of single tremors or single tremors
with energies E of the order of 10> — 10°J

2. Epge > 10°]

3. ¥E > 10°J per 5m of longwall advance
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