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Abstract

Graph homomorphism is a notion almost as simple, notationally and conceptually, as graph
coloring, but one that gives a rich mathematical structure, allowing for new fruitful connections
with algebra and even topology. For combinatorialists, they are already a classical topic, and
while not studied as thoroughly as graph coloring problems, they constitute a fundamental tool
for a deeper understanding thereof. For computer scientists, graph homomorphisms express an
important class of constraint satisfaction problems, exemplifying many relevant questions and
techniques.

This thesis presents new applications of topology to graph theory, obtained by studying spaces
corresponding to graphs and spaces of homomorphisms between two graphs. First, we consider
just the basic topology of the latter space, namely its connected components. That is, we study
‘recoloring’ or ‘reconfiguration’ paths between graph homomorphisms, defined as sequences in which
consecutive homomorphism differ at only one vertex. A natural topological necessary condition is
formulated, which allows to characterize the paths exactly, to strengthen a previous algorithmic
result on finding paths between graph 3-colorings, and to generalize it to homomorphisms into any
graph without cycles of length four.

We then turn to Hedetniemi’s conjecture, a deceptively simple question on the chromatic number
of products of graphs, which stands open for more than 50 years. More generally, we consider
multiplicative graphs, which are the ‘prime’ elements in the lattice of graphs partially ordered by
graph homomorphisms. The connection of these questions with topology is much less conspicuous,
but we apply similar techniques as for reconfiguration. A new proof of the multiplicativity is
shown for all graphs where it was previously known. Furthermore, all graphs without cycles of
length four are similarly shown to be ‘prime’, greatly extending this family.

Finally, we show that Hedetniemi’s conjecture implies an analogous statement in topology. As
the new proofs of multiplicativity show, the underlying principle is based on facts in 1-dimensional
topology which do not extend to higher dimensions. Therefore, one may hope to find a counterex-
ample to the topological statement, which would thus immediately refute Hedetniemi’s conjecture.
On the other hand, this means that a proof in topology should be in principle easier, and could be
as easy to extend to graphs as for some of the currently known cases. A partial converse is also
given, in fact the topological implication of Hedetniemi’s conjecture is shown to be equivalent to
another, weaker combinatorial statement.
These final results are obtained using a combinatorial construction that is a certain inverse

(formally: the right adjoint) to taking the k-th power of a graph (or of its adjacency matrix). The
construction turns out to have useful topological properties as well: it preserves the topology
corresponding to a graph and refines its geometry, allowing to approximate any continuous map
by homomorphisms from such refined graphs. This allows to easily prove the above implication of
Hedetniemi’s conjecture. It also vastly generalizes a previous result saying that the construction
in question preserves the chromatic number when applied to complete graphs.

Hopefully, the results will prove to be not only a significant step in a fundamental conjecture, but
also a new chapter at the puzzling intersection of combinatorics and algebraic topology. However,
the author also hopes this thesis to be an accessible introduction to some of the connections between
these two fields. This is certainly made easier by the fact that the methods used rely mostly on
elementary definitions from topology, which can be understood without much engrossment, and
that concrete, purely combinatorial conclusions follow.

Keywords: graph homomorphisms, Hedetniemi’s conjecture, topological combinatorics
ACM Computing Classification: Mathematics of computing →

Graph coloring, Algebraic topology, Graph algorithms



Streszczenie

Homomorfizm grafów to pojęcie prawie tak proste jak kolorowanie grafów, dające jednak bogatą
matematyczną strukturę, która pozwala na nowe, owocne połączenia z algebrą, a nawet topologią.
Dla kombinatoryków są już klasycznym zagadnieniem i choć nie tak pieczołowicie badane jak koloro-
wania, stanowią niemniej fundamentalne narzędzie dla głębszego ich zrozumienia. Dla informatyków
zaś homomorfizmy grafów wyrażają ważną klasę problemów spełniania więzów, ilustrując wiele
związanych z nimi pytań i technik.
Rozprawa przedstawia nowe zastosowania topologii w teorii grafów, otrzymane przez badanie

przestrzeni odpowiadających grafom oraz przestrzeni homomorfizmów między dwoma grafami. Na
początek rozważana jest topologia tej drugiej w najprostszym wymiarze, to jest spójne jej składowe.
Analizuję więc proces przekolorowywania czy rekonfiguracji, czyli ścieżki między homomorfizmami,
gdzie kolejne homomorfizmy różnią się na jednym tylko wierzchołku. Sformułowanie naturalnego,
topologicznego warunku koniecznego pozwala jednoznacznie scharakteryzować te ścieżki, wzmacni-
ając i uogólniając znany wcześniej algorytm dla znajdowania ścieżek między 3-kolorowaniami do
homomorfizmów w dowolny graf bez kwadratów (cykli długości cztery).

W dalszej części badam hipotezę Hedetniemiego: pozornie proste pytanie o liczbę chromatyczną
produktu grafów, które pozostaje otwarte od ponad 50 lat. Ogólniej, rozważam tzw. grafy
multiplikatywne, czyli elementy ‘pierwsze’ w kracie grafów (częściowo uporządkowanych relacją ist-
nienia homomorfizmu). Związek tych zagadnień z topologią jest mniej łatwy do dostrzeżenia,
ale znajduję zastosowanie dla technik podobnych jak dla rekonfiguracji. Pokazuję nowy dowód
multiplikatywności dla wszystkich grafów, gdzie była ona dotychczas znana. Ponadto dowodzę, że
podobnie wszystkie grafy bez kwadratów są ‘pierwsze’, daleko poszerzając tę rodzinę.

Na koniec pokazuję, że hipoteza Hedetniemiego implikuje analogiczne stwierdzenie w topologii.
Nowe dowody multiplikatywności unaoczniają, że bazują one na faktach o topologii jedno-
wymiarowej, które do wyższych wymiarów się nie uogólniają; można więc mieć nadzieję na
znalezienie topologicznych kontrprzykładów, które zaprzeczyłyby tym samym hipotezie Hedet-
niemiego. Z drugiej strony znaczy to, że dowód topologicznego wariantu zasadniczo powinien być
prostszy, a dowód taki mógłby się stosunkowo łatwo uogólniać na przypadek grafów, tak jak ma to
miejsce w obecnie znanych przypadkach. Dowodzę także, że ten topologiczny wniosek z hipotezy
Hedetniemiego jest równoważny innemu, słabszemu stwierdzeniu w kombinatoryce.

Te ostatnie wyniki otrzymane są dzięki konstrukcji, która stanowi pewną odwrotność (formalnie:
prawe sprzężenie) do operacji brania k-tej potęgi grafu (tj. jego macierzy sąsiedztwa). Konstrukcja
ta okazuje się mieć również przydatne własności topologiczne: zachowuje topologię przestrzeni
odpowiadającej grafowi, a przy tym uszczegóławia jego geometrię, pozwalając na przybliżenie
każdej funkcji ciągłej homomorfizmami z tak otrzymanych grafów. Powyższa implikacja hipotezy
Hedetniemiego jest wtedy prostym wnioskiem, a jednocześnie otrzymuję dalekie uogólnienie
twierdzenia, że rzeczona konstrukcja przyłożona do grafów pełnych zachowuje liczbę chromatyczną.

Wyniki rozprawy można widzieć nie tylko jako krok w badaniach nad ważną hipotezą, ale
także jako nowy rozdział na zagadkowym przecięciu kombinatoryki i topologii algebraicznej.
Niemniej zamiarem autora rozprawy było również przedstawienie przystępnego wprowadzenia do
niektórych połączeń między tymi dziedzinami. Ułatwia to fakt, że użyte metody polegają głównie
na elementarnych definicjach z topologii, które można zrozumieć bez przesadnego wysiłku, oraz to,
że następują po nich konkretne, kombinatoryczne wnioski.

Tytuł pracy w języku polskim:
Topologia przestrzeni rozwiązań problemów kombinatorycznych

Słowa kluczowe:
homomorfizmy grafów, hipoteza Hedetniemiego, kombinatoryka topologiczna
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Chapter I

Introduction

The thesis is centered around graph homomorphisms, Hedetniemi’s conjecture on the chromatic
number of graph products (the statement that χ(G×H) = min (χ(G), χ(H))), and relations with
topology. Let us begin by introducing the notions and notations that appear throughout the thesis,
together with some context. Definitions that will be reused are marked on the margin.

1. Graph colorings and homomorphisms – basic definitions

Graphs are here understood as pairs (V (G), E(G)) where V (G) is a finite set of vertices and E(G)
is a symmetric binary relation on vertices. For a pair of vertices u, v ∈ V (G) in the relation, we
write this simply as uv ∈ E(G), we say that uv is an edge of the graph G with endpoints u and v,
that u and v are adjacent to each other and incident to the edge e = uv. A vertex v may be
adjacent to itself; the edge vv ∈ E(G) is then called a loop. The set of vertices adjacent to v, N(v)
called the neighborhood of v is denoted NG(v) or just N(v); it contains v itself iff there is a loop
at v. We may also use the more general notion of digraphs (for directed graph), where the relation
E(G) is not necessarily symmetric. A subgraph (induced subgraph) of G is any graph obtained by
removing edges and vertices (resp. only vertices, with all incident edges) from G.

A k-coloring of a graphG, for k ∈ N, is an assignment of colors to vertices, f : V (G)→ {1, . . . , k}, coloring
k-chrom.such that adjacent vertices get different colors: f(u) 6= f(v) for uv ∈ E(G). The chromatic number
χ(G)χ(G) of a graph G is the least k such that a k-coloring exists (χ(G) =∞ if G has a loop). A graph

is k-colorable if a k-coloring exists and k-chromatic if χ(G) is exactly k.
Colorings are of course ubiquitous in graph theory and inspired many of its areas. Their con-

sideration led to a better understanding of a myriad of graph classes and aspects such as sparsity
or algebraic graph theory. The study of associated algorithmic problems allows for clear demon-
strations of relations between computational complexity and the structure of a problem instance.
Colorings also have a multitude of more direct applications. Just to mention one example from the
author’s work with Bonamy, Kowalik, Nederlof, Pilipczuk, and Socała [Bon+17], a bound on the
chromatic number of a certain geometrically-defined class of graphs can be used to bound the num-
ber of possible connectivity patterns that can arise in planar digraphs, leading to a faster algorithm.

For two graph G, H, a graph homomorphism from G to H, denoted f : G→ H, is a function G→ H
f : V (G)→ V (H) such that uv ∈ E(G) implies f(u)f(v) ∈ E(H), for all vertices u, v. The same
definition applies when G and H are digraphs. We write G→ H when any such homomorphism
exists. See Figure I.1 for an example. Note that subgraphs of H correspond to injective homo-
morphisms into H. Two graphs are isomorphic, denoted G ' H, if there are homomorphisms G ' H
f : G→ H and g : H → G such that f ◦ g and g ◦ f are equal to the identity.
Homomorphisms can be thought of as more general colorings, where instead of the condition

f(u) 6= f(v), we require that the pair f(u), f(v) is in some fixed relation, which is represented
as a graph (or digraph) H. Indeed, a k-coloring is the same as a homomorphism into the clique Kn

graph Kk (defined as V (Kk) = {1, . . . , k} and E(Kk) = {ij | i 6= j ∈ V (Kk)}). In other words,
χ(G) ≤ k iff G→ Kk. In particular, a graph G is bipartite iff G→ K2 (we can take this as the bipartite
definition). For example, the complete bipartite graph Kn,m has vertex set {1◦, . . . , n◦, 1•, . . . ,m•} Kn,m

and edges i◦j• for all i, j.
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Figure I.1 A homomorphism from a graph G to the 5-cycle graph C5, depicted as a C5-
coloring of G and as an ‘embedding’ of G in C5. Observe that C5 → G also holds.

Because of this, a homomorphism into a graph H is also called an H-coloring, especially when H-col.
H is fixed in the context. Graph homomorphisms have thus been studied as a generalization
of colorings (and many variants thereof), for many of the same reasons. We shall see quite a
few applications in combinatorics later, let us mention a few others now. In computer science,
the problem of deciding whether a given graph admits a homomorphism into a fixed ‘pattern’
graph is a basic example of the very general notion of constraint satisfaction problems (CSPs).
Graph or digraph homomorphisms correspond to CSPs with just a single type of binary constraint;
nevertheless, they can express much of the same. For example, every CSP with a fixed finite family
of available constraint types is computationally equivalent to some H-coloring problem (for some
fixed digraph H, decide whether a given digraph is H-colorable). See [Bod17; HN08] for details
and expositions of the beautiful relations of CSP complexity with universal algebra, presented
using graph homomorphisms. In another area, homomorphism problems were the first natural
complete problems for the most fundamental classes in algebraic complexity theory [Dur+14; MS16],
which allows to define these classes without referring to a computational circuit model. Graph
homomorphism are also often used to formalize the notions of ‘fitting a pattern’ in various settings,
eg. in the theory of graph limits [Lov12]. See [HN04] for a monograph on graph homomorphisms
or [Neš07] for a survey.

2. The structure of graph homomorphisms

A composition of homomorphisms is again a homomorphism, in particular G→ H and H → K
implies G→ K. This simple fact entails a rich structure on the notion of graphs and homomor-
phisms: a poset, a lattice, and a category, which we introduce next. We will not use lattice or
category theory in any substantial way, but these structures are home to many constructions and
examples, as well as the main context for the questions of this thesis.

Equivalence and cores
Graphs G and H are called homomorphically equivalent, denoted G ↔ H, when G → H and hom. eq.

G↔ HH → G. Two homomorphically equivalent graphs are indistinguishable, as far as we are only
concerned with the existence of homomorphisms. We can thus often limit our attention to the
smallest graph representing an equivalence class. A graph that is not homomorphically equivalent core
to any proper subgraph (equivalently: to any graph with fewer vertices or edges) is called a core
graph. It is not hard to see that every graph G is homomorphically equivalent to a unique (up to
isomorphism) core graph, which we call the core of G. (Note this would not be true in general if
we allowed infinite graphs). Furthermore G contains its core as an induced subgraph.

For example, any non-empty graph without edges is (homomorphically) equivalent to K1.

9



Bipartite graphs are all equivalent to the core graph K2, unless they are edge-less. Similarly, any
3-colorable graph which contains a triangle K3 is equivalent to K3. Finally, any graph trivally
admits a homomorphism to the loop graph (K1 with a loop added); hence any graph which
contains a loop is equivalent to the loop graph. Examples of core graphs are given by cliques Kn Cn
for all n and cycles Cn for odd n (defined as V (Cn) = Zn and each i ∈ Zn adjacent to i± 1).
We remark that the ‘equivalence’ has to be taken with a grain of salt whenever we talk about

algorithms, since testing equivalence or computing the core of a graph is computationally hard (eg.
instead of asking whether a graph is 3-colorable, an NP-complete problem, we could equivalently
ask whether its disjoint union with K3 is homomorphically equivalent to K3).

A dense poset
The relation → defines a preorder on graphs, or a poset (partial order) on equivalence classes of
graphs (which can be represented by the unique core graph in the class). It is dense, meaning that
for any graphs G,H such that G < H (meaning “G→ H and H 6→ G”), there is a graph K such
that G < K < H (this holds except for the trivial gaps K0 < K1 and K1 < K2).

0
1

2

34

5

6

K7/2

An example of this which will reappear again and again is the family of Kp/q

circular cliques : for p, q ∈ N (p/q > 2) the graph Kp/q has V (Kp/q) = Zp and
i ∈ Zp is adjacent to integers at least q apart: i+ q, i+ q + 1, . . . , i+ p− q.
They generalize cliques Kn ' Kn/1 as well as odd cycles C2k+1 ' K(2k+1)/k.
The basic fact about circular cliques is that Kp/q → Kp′/q′ if and only if
p
q ≤

p′

q′ . They thus refine the chain of cliques, corresponding to rational
numbers between integers, eg.:

K2→ · · ·→ C9 → C7 → C5 → C3 = K3 → K7/2 → K4 → K9/2 → K5 → · · ·
It is hence natural to define the circular chromatic number χc(G) of a graph G: the infimum
over p

q such that G → Kp/q. Since χ(G) = dχc(G)e, it has been studied as a refinement of the
chromatic number; see [Zhu01] for a survey.

Another example in this poset, which will also be useful later, is the existence of incomparable
graphs: G,H such that G 6→ H and H 6→ G. One way to obtain them is to consider two graph
parameters: the chromatic number χ and the odd girth, which is the length of the shortest odd
cycle (∞ if there is no odd cycle), which we temporarily denote as og(G). Since the chromatic
number can be defined by homomorphism into cliques, it is easy to see that G → H implies
χ(G) ≤ χ(H). Dually, since the odd girth of G is the least odd integer k such that Ck → G, we
have that G→ H implies og(G) ≥ og(H). Therefore, if χ(G) > χ(H) and og(G) > og(H), then
the graphs G and H are incomparable. Such graphs exist, in fact there are several well known
sequences of graphs with strictly increasing χ and og, giving an infinite set of incomparable graphs
(an antichain) in the poset. (This can also be used to show that the poset is dense [HN04, Theorem
3.30]). Perhaps the best known is the randomized construction of Erdős (which in fact yields
graphs with arbitrarily high χ and no short cycles, odd or even).

12 53

23

14

34

25

4531
51

42

KG5,2

A more explicit example is given by Kneser graphs : the graph KGn,k has a KGn,k
vertex for every k-element subset of {1, . . . , n}, with an edge between any two
subsets that are disjoint. The figure shows KG5,2, also known as the Petersen
graph. Showing a lower bound on the odd girth is not trivial already, while
the exact lower bound on the chromatic number, χ(KGn,k) = n − 2k + 2,
was a conjecture of Kneser, originally phrased without graphs. Suppose we
are given objects labeled each by at least k out of n possible labels, and we
want to partition the objects so that every two objects in one part share
some label. How many parts do we need, in the worst case? The worst case

is when we have an object for every k-element subset of labels, and the partition then corresponds
to a coloring of the Kneser graph.
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The exact bound was ultimately proved by Lovász using topology, as we shall describe later.
Incidentally, another classical result in combinatorics, the Erdős–Ko–Rado theorem, describes
maximum independent sets (sets of pairwise non-adjacent vertices) in a Kneser graph. Homomor-
phisms into Kneser graphs also correspond to an independently studied parameter, known as the
fractional chromatic number χf (G). It can be defined as a fractional variant (the optimum value
of a linear programming relaxation) of the standard chromatic number, or as the infimum over n

k
such that G→ KGn,k.

The product

×

P4 × P5

The tensor product G×H of graphs G,H is defined as the graph G×H
with vertex set V (G) × V (H) and with (g, h) adjacent to (g′, h′)
whenever gg′ ∈ E(G) and hh′ ∈ E(H). (This corresponds to taking
the Kronecker product of adjacency matrices). The figure shows Pn
the product of two path graphs (the path on n vertices Pn is defined
as Cn with one edge removed).

For v = (g, h) ∈ G×H, the projections v|G := g and v|H := h are v|G
graph homomorphisms G×H → G and G×H → H, respectively.
It is easy to see that I → G ×H iff I → G and I → H, for any
I,G,H. This means the tensor product is the meet (the greatest
lower bound) in the poset of (equivalence classes of) graphs. Dually, the disjoint union of graphs, G ]H
denoted G ]H, acts as the join (the least upper bound), since G ]H → I iff G→ I and H → I.
Together, this is easily checked to be a distributive lattice.

The category of graphs has graphs as objects and graph homomorphisms as arrows (morphisms)
between them. If we identified all arrows from G to H for each pair G,H, disregarding differences
between distinct homomorphisms, we would get the above poset (in this context also called
the thin category), so the category gives a richer structure. The tensor product satisfies the
category-theoretic definition of a product (namely, for any graph I with homomorphisms f : I → G
and f ′ : I → H, there is a unique f ′′ : I → G×H such that f(·) = f ′′(·)|G and f ′(·) = f ′′(·)|H).
Similarly for the disjoint sum.
The meet in the graph poset is unique up to homomorphic equivalence and the categorical

product is unique even up to graph isomorphism; this justifies calling G×H the product, at least
in the context of graph homomorphisms, and indeed it is the only graph product we shall consider.

C5 ×K2 ' C10 C6 ×K2 ' C6 ] C6

To mention one example, we will often use the
tensor product with K2, (also known as the bipar-
tite double cover of a graph). Observe that G×K2

is connected iff G is connected and non-bipartite.

The exponential graph
One way to define a space of all K-colorings of a graph is the following construction. For two KH

graphs H,K, the exponential graph KH has a vertex for each function V (H)→ V (K) (not only
homomorphisms), with f, g : V (H)→ V (K) adjacent if they define a K-coloring of H ×K2, that
is, if f(u)g(v) ∈ E(K) for all uv ∈ E(H). The exponential graph was used to study properties
of homomorphisms, especially in a category-theoretic setting; several applications are described
in [HN04].
Observe that f : V (H) → V (K) is a homomorphism iff KH has a loop at the vertex f . Any

subgraph G of KH corresponds to a K-coloring of G ×H, see Figure I.2. In fact, G → KH iff
G×H → K, for all graphs G,H,K. A graph with this property is unique up to homomorphic
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Figure I.2 Left: a subgraph of the exponential graph KC5
3 ; each vertex is represented as a

column vector with dark red, blue, and light green representing V (K3). Right: a K3-coloring
of C4 × C5 corresponding to the C4 subgraph visible in the exponential graph.

Figure I.3 One of the three connected components of the exponential graph KC5
3 . The 15

looped vertices in the central cycle correspond to proper 3-colorings of C5 that ‘wind’ once
clockwise around K3. Note that consecutive ones only differ at one row.
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Figure I.4 A path between homomorphisms C5 → K3, as a path on looped vertices in KC5
3 ,

as a recoloring sequence, and as a sequence of ‘embeddings’ of C5 winding clockwise in K3.
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equivalence in the graph lattice; the fact that it always exists makes the lattice a so-called Heyting
algebra. It also satisfies the category-theoretic definition of an exponential object, which makes it
unique up to isomorphism, and gives the category of graphs the structure of a so-called cartesian
closed category. Many equalities analogous to integers follow, eg. KG]H ' KG ×KH .

Reachability in KH will turn out to coincide with reachability in another object that represents
the space of all K-colorings of H, this time in the form of a topological space. Moreover, we will
later see that paths in KH correspond to sequences between K-colorings of H (or of H×K2) where
subsequent colorings differ at only one vertex, see Figure I.4. Thus already connected components
of KH give us interesting information on which K-colorings can be obtained by a simple ‘local
search’ process. The remaining chapters implicitly study the global structure of exponential graphs,
in particular we’ll see that Hedetniemi’s conjecture asks about the K-colorability of KH itself. The
main result of Chapter II will be a characterization of reachability in KH by topological invariants,
which will yield an algorithm for finding paths between K-colorings. The same understanding will
prove useful in later chapters as well, when studying the conjecture.

3. Hedetniemi’s conjecture and multiplicative graphs

In 1966, Stephen T. Hedetniemi [Hed66] made one of the first attempts at a more comprehensive
treatment of graph homomorphisms. In his work, he stated the following conjecture:

3.1 Conjecture. χ(G×H) = min(χ(G), χ(H)), for all graphs G,H.

Despite the simplicity of the statement and years of research, only very partial results are known.
One of the strongest is a proof for the case when G×H is 3-colorable, by El-Zahar and Sauer [ES85].1

We refer the reader to [Zhu98; Sau01; Tar08] for surveys.
The relevance of the conjecture is best seen in the context of graph homomorphisms. Since

a k-coloring is the same as a homomorphism into the clique Kk, the following is an equivalent
statement:

G×H → Kk if and only if G→ Kk or H → Kk (for all G,H, k)

The same motivations will apply to the more general question of which graphs satisfy the same multipl.
graphproperty. Namely, we say that a graph K is multiplicative if, for all graphs G,H:

G×H → K if and only if G→ K or H → K

×Let us present different aspects of multiplicativity and familiarize
ourselves with the concept by showing a few equivalent statements.
Since projections give homomorphisms G×H → G and G×H → H,
the right side trivially implies the left one; the figure shows how a
3-coloring of a path yields a 3-coloring of a product. In other words,
the inequality χ(G × H) ≤ min(χ(G), χ(H)) always holds. Hence
multiplicativity is equivalent to the other direction:

G×H → K implies G→ K or H → K

There are graphs that are not multiplicative. One construction is the following: take any
incomparable graphs G,H, that is, G 6→ H and H 6→ G (such as the triangle K3 and the Kneser
graph KG8,3). Let K = G × H. Then clearly G × H → K, but say G → K would imply
G → G×H → H. In a sense, every example is of this form. Indeed, if K is not multiplicative

1Since the direction χ(G × H) ≤ min(χ(G), χ(H)) is trivial, as shown on the figure next, it follows that the
conjecture is also true for all 4-colorable graphs G,H, as the title of [ES85] indicates. This view may be a bit
misleading however, since no insight is gained into the existence of 4-colorings.
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for G,H, then these are not comparable, since G→ H easily implies G→ G×G→ G×H → K.
Moreover, K is then homomorphically equivalent to a product of two incomparable graphs, namely
K ↔ (G ]K) × (H ]K), as is easy to check. A graph K can be equivalent to the product of
two comparable graphs G→ H only in the trivial case when G alone is already equivalent to K
(because G→ G×G→ G×H → G), hence we may say that a graph K is multiplicative if and
only if:

K is not homomorphically equivalent to a non-trivial product.

In other words, multiplicative graphs are those that cannot be factored, the prime elements in the
graph lattice (these are called meet prime or meet-irreducible elements in lattice theory). Note
that it is easy to recognize a graph which is (up to isomorphism) a product of two others; the
hardness comes from considering graphs up to homomorphic equivalence. In particular, while
this formulation is interesting as a motivation, it does not seem useful in proving multiplicativity.
Dually, we remark that the join prime or join irreducible elements of the graph lattice are simply
the connected graphs, up to homomorphic equivalence (this amounts to the observation that if K
is connected then K → G ]H implies K → G or K → H).
Another way to look at multiplicative graphs is to consider ‘obstructions’ to colorings. For

example, a graph is non-bipartite, G 6→ K2, if and only if it contains an odd cycle (as a homomorphic
image or equivalently, in this case, as a subgraph). We can formalize this property by saying
that a graph K has chain duality (this is not a standard name) if there is a sequence of graphs
O1 ← O2 ← O3 ← . . . (‘decreasing’ in the homomorphism order) such that for all G, we have
G 6→ K iff ∃iOi → G. Similar characterizations of homomorphism to a graph by obstructions in
the form of homomorphisms from other graphs have been studied under the name of dualities
(though usually only for finitely many obstructions); they are extensively discussed in Hell and
Nešetřil’s monograph [HN04]. It turns out that a graph K is multiplicative if and only if:

K has chain duality.

Indeed, if K has chain duality, then G 6→ K and G 6→ K imply some obstructions Oi → G and
Oj → H; then Omax(i,j) → Oi × Oj → G ×H, hence G ×H 6→ K. In the other direction, if K
is multiplicative, then one can set Oi to be the tensor product of all non-K-colorable graphs on
at most i vertices; chain duality is then easily checked. Intuitively, Hedetniemi’s conjecture is
thus the question of whether any two obstructions to k-coloring can be generalized by a common
obstruction earlier in the homomorphism poset. Unfortunately this view has not been successful,
since even the known proofs of multiplicativity of K3 do not display any intuitive obstruction.
Moreover, one cannot hope for something as simple as the odd cycles in case of K2-colorings,
because this would imply a polynomial-time algorithm for deciding K-colorability, whereas the Hell
and Nešetřil theorem [HN90] states that this problem is NP-complete for all K except the trivial
cases (K2,K1,K0, the loop graph, and graphs homomorphically equivalent to them: bipartite
graphs and graphs containing loops). However, this does indicate that the most puzzling cases are
products of two graphs for which obstructions to K-coloring were proved in very different ways.
Indeed, various lower bounds on the chromatic number, eg. fractional or topological, are known to
extend from two graphs to their product, but mixing different lower bounds, even if they are well
understood, seems as hard as the general case of Hedetniemi’s conjecture.

Finally, a more helpful restatement comes from the exponential graph. K is multiplicative iff:

KH → K, for all H such that H 6→ K.

Indeed, the exponential graph has a natural homomorphism H ×KH → K (the ‘evaluation’,
(h, f) 7→ f(h)), so multiplicativity of K implies the above statement. In the other direction, if
K is not multiplicative, let G,H be a counter-example to its multiplicativity, that is, G 6→ K,
H 6→ K and G × H → K. Then the latter means G → KH , hence G 6→ K implies KH 6→ K.
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This proves the other direction and moreover, it shows that if G×H is a counter-example to the
multiplicativity of K, then so is KH ×H. In this sense exponential graphs are the hardest cases
of Hedetniemi’s conjecture!

Recall that K-colorings of H correspond to loops in KH , so in particular H → K iff the graph
KH contains a loop, and is thus homomorphically equivalent to the loop graph. Moreover, there
is always a homomorphism K → KH (mapping a vertex v of K to the function with constant
value v). Therefore, K is multiplicative if and only if (letting C1 denote the loop graph):

either KH ↔ C1 or KH ↔ K, for all H.

In this sense, Hedetniemi’s conjecture is all about the global structure of exponential graphs
(sometimes called coloring graphs for K = Kn). This thesis will present how topological in-
variants can influence and in many cases characterize connected components of these spaces of
homomorphisms, and how this can be used to prove the multiplicativity of different graphs.

Before this thesis, the only non-trivial graphs known to be multiplicative were (up to homo-
morphic equivalence) K3, as El-Zahar and Sauer [ES85] showed, odd cycles, as generalized by
Häggkvist et al. [Häg+88], and circular cliques Kp/q with p/q < 4, as proved by Tardif [Tar05].
In Chapter III we give a new, uniform proof for all these cases. Furthermore, we show that all
square-free graphs (ie. without C4 as a subgraph) are multiplicative. This in particular gives the
first multiplicative graphs of chromatic number greater than 4, since graphs of girth at least 5 are
square-free, but can have arbitrarily high chromatic number. In Chapter IV we also show as a
corollary that 3rd powers of graphs of girth > 12 are multiplicative. Nevertheless, the next case of
Hedetniemi’s conjecture, the multiplicativity of K4, is still frustratingly wide open.

On a side note, Tardif’s [Tar05] result can be restated in terms of the circular chromatic number:
χc(G ×H) = min(χc(G), χc(H)) whenever χc(G ×H) < 4. Zhu [Zhu98] conjectured that this
equality, a strengthening of Hedetniemi’s conjecture, holds in general. Zhu also later proved the
analogous conjecture for the fractional chromatic number χf [Zhu11]. Recently the same has been
proven for semi-definite programming relaxations of the chromatic number: the Lovász θ̄ function
(also known as the vector chromatic number) [God+16] and Schrijver’s θ̄′ function (also known as
the strict vector chromatic number) [God+18].

4. Topological combinatorics

Many of the proofs in this thesis (all of Chapters II, III) will be formally combinatorial, in the
sense that they only refer to finite objects, but the intuitions behind them heavily rely on some
basics from algebraic topology, which we introduce here.

By this point the author hopes that an escapade into the field of topology looks like it may be
worth the effort, even for the most entrenched combinatorialist. The intersection of the two fields
may seem paradoxical at first, especially since what is understood under the name topological
combinatorics is usually applications of algebraic topology to problems that were at least originally
purely combinatorial. We are thus not interested here in other areas of more abstract topology as
used in logic, eg., in descriptive set theory. Nor are we interested in planar graphs or other graphs
embedded on a surface, as in graph minor theory (though this division is more arbitrary and
fuzzy). Still, some more combinatorial problems turn out to benefit from, or perhaps even require,
a topological point of view. Books by Matoušek [Mat08] and de Longueville [Lon13] provide an
elementary yet extensive introduction to many of them, see also [BMZ17; Loe+17].
The principal example of this, and the one relevant to this thesis, is the area originating from

Lovász’ surprising proof [Lov78] of Kneser’s conjecture. As presented before, Kneser’s question
was originally about partitioning a family of finite sets, but is conveniently rephrased as follows:
can the Kneser graph KGn,k be colored with less than n − 2k + 2 colors? In other words, is it
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true that KGn,k → Kn−2k+1? Lovász’ negative answer was followed by many alternative proofs,
all based on variants of the classical Borsuk-Ulam theorem, the shortest and simplest of which
may be by Greene [Gre02]; a combinatorial proof (though more technical and following the same
intuitions) was given by Matoušek [Mat04] (see also [Ais+15] for a partial but purely combinatorial
proof). The answer spawned a whole area of research on similar topological lower bounds on the
chromatic number and other results obtained with related techniques. The modern view on it is
usually through equivariant topology and the box complex, which we introduce next.

Basic definitions in topology

For topological spaces X,Y , we call a continuous function f : X → Y a map, for short. Two maps map
homotop.f, g : X → Y are homotopic if they can be continuously transformed into one another; formally:

there is a family of maps φt : X → Y for t ∈ [0, 1] (called a homotopy) such that φ0 = f , φ1 = g
and such that the function (t, x) 7→ φt(x) from [0, 1]×X to Y is continuous. Two spaces X,Y are homot.

eq.homotopy equivalent if there are maps f : X → Y and g : Y → X such that f ◦ g and g ◦ f are
homotopic to identity maps on X and on Y ; such spaces are equivalent for all of our purposes.

We shall only consider topological spaces described in the following simple combinatorial way. A
(simplicial) complex K is a family of non-empty finite sets that is downward closed, in the sense complex

face
vertex

geom.
real.

that ∅ 6= σ′ ⊆ σ ∈ K implies σ′ ∈ K. The sets in K are called faces (or simplices) of the complex,
while their elements V (K) :=

⋃
σ∈K σ are the vertices of the complex. The geometric realization

|σ| of a face σ ∈ K is the subset of RV (K) defined as the convex hull of {ev | v ∈ σ}, where ev is
the standard basis vector corresponding to the v coordinate in RV (K). The geometric realization
|K| of K is the topological space obtained as the subspace

⋃
σ∈K |σ| ⊆ RV (K). We often refer to

K itself as a topological space, meaning |K|.
For example, a circle may be represented as the triangle K = {{1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}},

meaning that |K|, which is the sum of three intervals in R3, is homotopy equivalent to the unit
circle in R2. Adding the face {1, 2, 3} to K would make |K| contractible, that is, homotopy
equivalent to the one-point space.

Equivariant topology – topology with symmetries

It turns out to be easier to work with equivariant topology, that is, considering topological spaces
together with their symmetries and symmetry-preserving maps. A Z2-space is a topological space Z2-. . .
X equipped with a map ν : X → X, called a Z2-action on X, satisfying ν(ν(x)) = x (for all
x ∈ X). The main example is the n-dimensional sphere: the Z2-space defined as the unit sphere Sn
in Rn+1 with Z2-action x 7→ −x (the antipodal action). We often refer to X itself as a Z2-space
when the Z2-action is clear from the context.

A Z2-map from (X, νX) to (Y, νY ) is a map f : X → Y that preserves the symmetry: f(νX(x)) =
νY (f(x)) (this is also called an equivariant map). We write (X, νx)→Z2 (Y, νY ) if such a map exists. X →Z2 Y

This gives a highly non-trivial relation on spaces (as opposed to the existence of just maps, since
mapping everything to one point would always work). In particular, a version of the Borsuk-Ulam
theorem says that there is no Z2-map from a higher-dimensional sphere to a lower-dimensional
one: Sm 6→Z2 Sn for m > n. It remains to define how graphs can be turned into Z2-spaces, so
that graph homomorphisms induce Z2-maps between them: this is the role of the box complex.

Standard notions extend in a fairly straightforward way to equivariant notions. A Z2-complex
is a simplicial complex K together with a function ν : V (K) → V (K) such that ν(ν(v)) = v;
the corresponding space |K| is then a Z2-space with a Z2-action defined by extending ev 7→ eν(v)

linearly on each face |σ| of the geometric realization. The product of two Z2-spaces X,Y is X × Y
X × Y with ‘simultaneous’ Z2-action (x, y) 7→ (νX(x), νY (y)). A homotopy φt between Z2-maps
f, g : X → Y is called a Z2-homotopy if φt is a Z2-map for all t ∈ [0, 1]; f, g are then Z2-homotopic.
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We say that two Z2-spaces X,Y are Z2-homotopy equivalent, denoted X 'Z2 Y , if there are X 'Z2 Y

Z2-maps f : X →Z2 Y and g : Y →Z2 X such that f ◦ g and g ◦ f are Z2-homotopic to the
identity on X and on Y . Both f and g are then called a Z2-homotopy equivalence. Note this is
stronger than just requiring X →Z2 Y and Y →Z2 X; homotopy equivalence is similar to graph
isomorphism, not to homomorphic equivalence.

The box complex – the topology of a graph

The box complex is a construction that assigns a topological space |Box(G)| to a graph G. The
exact construction will not be important until we get to some more technical proofs, but intuitively,
it starts from the edges of G (or rather G×K2) as a topological space (edges become copies of
the unit interval [0, 1] ⊆ R) and then glues faces to each cycle of length 4 and similarly glues
higher-dimensional faces to larger complete bipartite subgraphs.
The crucial connection is that a homomorphism G → H induces a Z2-map |Box(G)| →Z2

|Box(H)| (in a straightforward way). This is the modern view of Lovász’ proof, which allows to get
tight lower bounds on the chromatic number of Kneser graphs. To show that G is not n-colorable,
suppose to the contrary that G → Kn. Then there is a Z2-map |Box(G)| →Z2 |Box(Kn)|. One
shows that |Box(Kn)| 'Z2 Sn−2 and similarly that |Box(G)| is or contains a sphere of higher
dimension (usually by induction on a parameter defining G). Then by the Borsuk-Ulam theorem,
one concludes no such map can exist. The same method applies to several families of graphs (eg.,
Kneser [Lov78], Schrijver [Sch78b], and generalized Mycielski graphs, quadrangulations of the
projective plane [You96] and projective spaces [KS15], a certain graph in [GJS04]).

Different constructions can be used in place of the box complex. Lovász [Lov78] originally used
just the simplicial complex with V (G) as its vertex set and neighborhoods N(v) for v ∈ V (G) (and
their subsets) as faces, known as the neighborhood complex. He also defined a related, but larger,
complex with a Z2-action. However, Csorba [Cso08] proved that both are equivalent (homotopy and
Z2-homotopy equivalent, respectively) to the box complex, a construction that has the advantages
of both: it is small, with only twice as many vertices as G, and comes with a Z2-action.
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Figure I.5 The box complex of K4 is the hollow cube (informally speaking; the drawing only
shows K4 ×K2 and the most important faces). It is Z2-homotopy equivalent to the sphere.
The box complex of K7/2 is Z2-homotopy equivalent to the circle. Thus there cannot be a
homomorphism from K4 to K7/2 (of course in this case it is easier to show this directly).
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Formally, the box complex Box(G) of a graph G is a Z2-complex defined as the family of vertex Box(G)
sets of complete bipartite subgraphs of G×K2 (with both sides non-empty) and their subsets. In
particular it contains all edges of G×K2 and every K2,2 = C4 subgraph. We will write the vertex
set of the box complex as V (G)×{◦, •} (except that isolated vertices, ie. those with no neighbors,
are removed, since they do not appear in any face). That is, for every (non-isolated) vertex
v ∈ V (G), the simplicial complex has two vertices, which we denote v◦ and v•. The Z2-action − v◦, v•
on Box(G) is defined as −v◦ = v• and −v• = v◦ for each v ∈ V (G). See Figure I.5.
When drawing examples of box complexes we ignore certain faces (like K1,n subgraphs) and

represent 4-vertex faces (which in the geometric realization are formally 3-dimensional tetrahedra)
as flat squares for readability. For example in Figure I.5 the face {1◦, 2•, 3•, 4•} of Box(K4) is
ignored, while the face {1◦, 3◦} is only implicitly drawn as part of the face {1◦, 2•, 3◦, 4•}. Formally,
the resulting space can be shown to be Z2-homotopy equivalent by a standard application of
discrete Morse theory, which we discuss in Chapter IV.

A graph without loops is square-free if it does not have a cycle of length 4 (it excludes C4 as a square
sq.-freesubgraph, induced or not). In a general graph G, we define a square to be a quadruple of (possibly

equal) vertices a, b, c, d such that ab, bc, cd, da ∈ E(G). A square is non-trivial if a 6= c and b 6= d.
A graph (with loops allowed) is square-free if it has no non-trivial square. Equivalently it has no
C4 subgraph, no triangle with a looped vertex, and no edge with both vertices looped.
For square-free graphs K, the box complex is essentially just K ×K2 itself. Formally, Box(K)

can be shown to be Z2-homotopy equivalent to the subcomplex containing only V (G×K2) and
E(G ×K2) as faces, giving a 1-dimensional complex. The topology in this case is particularly
simple, which is what will allow the result of Chapter II and III to work for square-free graphs K on
the right side of homomorphisms G→ K (nevertheless, squares in the left side graph are possible
and in fact crucial for the topological arguments). Incidentally, for the same reason topological
lower bounds on the chromatic number of square-free graphs are trivial, even though graphs of
girth > 4 are square-free and may have arbitrarily high chromatic number.

The Hom complex – the space of homomorphisms

The Hom complex is a construction of a topological space describing all graph homomorphisms
between two given graphs. We will not use it in any essential way in proofs, but it may be helpful
in understanding the box complex, which it generalizes, as well as the exponential graph, to which
it is closely related, justifying calling them spaces of homomorphisms. Hom(G,H) is defined as the
simplicial complex with the homomorphisms G→ H as vertices, where a set σ of homomorphisms
forms a face iff all the ways to mix them still give a homomorphism, that is, f(u)f ′(v) ∈ E(H) for
all uv ∈ E(G) and all f, f ′ ∈ σ.
Observe that a function f : V (G)→ V (H) is a vertex of Hom(G,H) iff it is a homomorphism

iff it is a looped vertex of the exponential graph HG. Moreover, f, f ′ : G → H are adjacent in
Hom(G,H) iff they are adjacent in HG. So the reachability relation in Hom(G,H) is the same as in
the subgraph of HG induced on looped vertices. In fact Kozlov [Koz07] and Dochtermann [Doc09a]
showed (among even more general results) that Hom(G,H) is homotopy equivalent to the looped
clique complex of HG (with looped vertices of HG as vertices and clique subgraphs as faces).

The complex Hom(K2, G) (with a Z2-action swapping the values of a homomorphism from K2)
turns out to be Z2-homotopy equivalent to the box complex [Cso08], giving yet another description
of it, this time with oriented edges of G as vertices of the complex.

The Hom complex thus gives an elegant way to connect and generalize these and other notions.
For these reasons, in particular in hope of generalizing topological lower bounds on the chromatic
number, Hom complexes were extensively studied in topological combinatorics, but also in com-
binatorial topology, where they give simple description of interesting topological spaces. See eg.
Dochtermann and Schultz [Doc09a; DS12], and Kozlov [Koz08a].
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One interesting theorem related to the connected components of hom complexes is the following
by Brightwell and Winkler [BW04]: if Hom(G,H) is connected for all G of degree at most d, then
the chromatic number of H is at least d/2 (and is conjectured to be at least d).

Paths between homomorphisms – ×-homotopy, recoloring

As mentioned before, different views of a space of homomorphism give the same notion of
reachability between graph homomorphisms. For two graphs G,H, Dochtermann [Doc09a] defined ×-homot.
two homomorphisms f, g : G→ H to be ×-homotopic if there is a path on looped vertices in HG

between f and g. He showed that this is equivalent to being connected by a (topological) path in
Hom(G,H) and more generally:

4.1 Theorem. ([Doc09a]) The following are equivalent:

• f, g are ×-homotopic;

• For every graph T , the induced maps fT , gT : Hom(T,G)→ Hom(T,H) are homotopic;

• The induced maps fG, gG : Hom(G,G)→ Hom(G,H) are homotopic;

• For every graph T , the induced maps fT , gT : Hom(H,T )→ Hom(G,T ) are homotopic;

• The induced maps fH , gH : Hom(H,H)→ Hom(G,H) are homotopic;

This reachability relation turns out to be also equivalent to the following simple combinatorial
notion, which will bring us back to algorithms and to homomorphisms as constraint satisfaction. We H-recol.
say that f, g : G→ H are H-recolorable if one can be reached from the other by changing the value
at one vertex at a time, that is, if there is a sequence f = f1, f2 . . . , fn = g such that fi : G→ H
are homomorphisms and for each i there is exactly one v ∈ V (G) such that fi(v) 6= fi+1(v) (recall
Figure I.4). If G has a loop at v we additionally require that fi(v)fi+1(v) ∈ E(H).
It is easy to see that f, g are H-recolorable iff they are ×-homotopic. Indeed, a single step

between fi and fi+1 in the definition of H-recolorability satisfies fi(u)fi+1(v) ∈ E(H) for all
uv ∈ E(G), so it corresponds to an edge with looped vertices in HG. Conversely, if f, g : G→ H
are looped vertices adjacent in HG, then they are H-recolorable by replacing the values of f with
values of g one by one, in any order.

We remark that instead of looped vertices in HG, one could consider all of HG. Every oriented
edge of HG corresponds to a H-coloring of G ×K2 and reachability between oriented edges in
HG corresponds to H-recoloring of G×K2 (for this to work, an oriented edge ~fg is considered
adjacent to ~hg, but not to ~gh in general). In practice, this means that any results on the
connected components of Hom(G,H) (equivalently, of the looped subgraph of HG) translate easily
to connected components of HG (or rather HG ×K2, to account for edge orientations), though we
will not use this formally at any point.

The H-Recoloring problem and reconfiguration

H-recoloring (in other words, ×-homotopy) has been studied by graph theorist and algorithmists
as an example of reconfiguration: the process of changing a system, usually a solution to some kind
of constraint satisfaction problem, by small steps. The motivation here is a better understanding of
spaces of solutions, in particular how solutions can be modified by such a ‘local search’ process to
algorithmically find better ones (eg. to gradually satisfy more constraints) or to randomly sample
them (eg. to estimate the number of solutions). Similar paths between solutions are studied for
SAT or general constraint satisfaction problems and many others, such as Independent Set [HD05;
KMM12; BKW14; LM18] or Shortest Path [KMM11; Bon13] reconfiguration; see [Nis17; IS17]
for surveys.
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Such processes are also studied in statistical physics as modeling particle systems exhibiting
interesting phase-transitions (though usually on highly regular graph like grids, but with more
quantitative questions). Coloring corresponds to the zero-temperature anti-ferromagnetic Potts
model, while recoloring corresponds to Glauber dynamics in the language of physics, see [BW02].
Physical intuitions in return inspired new approaches in graph theory [BW02] and in algorithmics:
see [FV07; Jer98] for surveys on some of them. In particular, spaces of colorings of random graphs
(or more generally, spaces of solutions to random constraint satisfaction instances) have been
extensively studied, eg. to determine the threshold density for which a random graph becomes
k-colorable, or for which the space of colorings becomes connected enough to be easily navigated
by algorithms using random walks, see eg. [Mol12] for more recent progress. The physics-inspired
Survey Propagation and Belief Propagation techniques give some of the most successful heuristics
for finding colorings in random instances, see [Bra+06] for an overview.
Algorithmically, for a fixed graph H, H-Recoloring is the problem where given a graph H-Recol.

G and two homomorphisms G → H, one asks whether they are H-recolorable. For standard
k-colorings, that is, H = Kk, the problem was shown to be computationally hard (NP-hard, in
fact PSPACE-complete) for k ≥ 4 by Bonsma and Cereceda [BC09], but solvable in polynomial
time for k ≤ 3 by Cereceda et al. [CHJ11]. The latter, positive result is quite surprising, since
deciding the existence of a 3-coloring is a basic example of an NP-hard problem. Explaining this
through a more general result was one of the motivation for the author’s work on H-recoloring.
Previously, the author considered in his master’s thesis [Wro14] the generalization of the

Kk-Recoloring problem to homomorphisms, that is, to H-colorings for arbitrary graphs (or
digraphs) H. This allows to formalize the question of how the complexity of reconfiguration
problems depends on the constraint types (the fixed graph H) used to define the solution space
and on the structure of how constraints are arranged (the input graph G). One could also consider
more general constraint satisfaction problems in place of graph homomorphisms; we comment on
existing results for the boolean case in Chapter II.

One of the results in [Wro14] was that there is a fixed graph H such that the H-Recoloring
problem is hard even when G is just a cycle. That is, given n and two homomorphisms Cn → H,
deciding whether they are ×-homotopic is PSPACE-complete (the same would be true for two
paths with fixed endpoints in H, instead of two cycles). In particular, this implies that for this
particular H, no algorithmic characterization of paths in Hom(Cn, H) can exist, and that for some
pairs of homomorphisms Cn → H, shortest paths between them are of length super-polynomial in n
(assuming NP 6= PSPACE). On the other hand, some initial, purely combinatorial observations
were also given for the case where H is a square-free graph (and G is arbitrary), yielding a
polynomial-time algorithm in special cases, but these will not be relevant to this thesis.

5. Results

With the context and definitions set up, let us conclude this introduction with a more detailed
overview of the results in this thesis.

Chapter II studies paths between homomorphisms G→ H for square-free graphs H, in particular
the H-Recoloring problem. The starting point is essentially the observation that if f, g : G→ H
are H-recolorable (×-homotopic), then the corresponding continuous maps |Box(G)| →Z2 |Box(H)|
are homotopic. For square-free H, we show that the converse is almost true, by giving an exact
characterization of H-recolorability which includes topological homotopy as the main condition.
In other words, if instead of the discrete and rigid graph homomorphisms we consider only the
corresponding continuous and stretchable maps, the main obstructions to H-recolorability become
visible as topological invariants.

In the case of square-free H these can also be described using elementary algebraic topology,
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which allows use to give an algorithm for H-Recoloring, generalizing the polynomial-time
algorithm for K3-Recoloring and giving a topological interpretation to the invariants originally
used. The concrete algebraic and algorithmic description is also a good introduction to the tools
we use in the next chapter.

Chapter III gives a new proof of the multiplicativity for all graphs previously known to be
multiplicative, and follows with a proof that all square-free graphs are multiplicative. A certain
parity invariant used in El-Zahar and Sauer’s original proof [ES85] of the main known case of
Hedetniemi’s conjecture (the multiplicativity of K3) is interpreted as a topological invariant,
which allows to directly extend the same proof to circular cliques Kp/q with p

q < 4. This
gives a substantially different proof from Tardif’s [Tar05]. We then use these tools to show
the multiplicativity of all square-free graphs. This substantially increases the family of known
multiplicative graphs, for example giving the first multiplicative graphs of chromatic number
greater than 4 (though no direct progress on Hedetniemi’s conjecture, the case of cliques, is made).

Chapter IV first takes a detour and considers an operation on graphs Ωk which can be defined as
a certain inverse (formally, the right adjoint in the graph category) to taking the k-th power of a
graph (or of its adjacency matrix). This construction has been previously used in Tardif’s [Tar05]
proof of the multiplicativity of circular cliques, as well as in a few other combinatorial theorems.
We show that the operation has remarkable topological properties: it preserves the topology of the
box complex (its Z2-homotopy type) and moreover refines its geometry, allowing to approximate
any continuous map from a box complex of G to a box complex H by a graph homomorphism from
a refinement Ωk(G) (with k sufficiently large) to H. This gives a combinatorial characterization of
any ‘topological’ property of graphs, such as topological lower bounds on the chromatic number.

We use this to show that Hedetniemi’s conjecture implies an analogous conjecture in equivariant
topology. This was recently independently proved by Matushita [Mat17a]. We argue that this is
a substantial step in understanding the conjecture and multiplicativity in general: any counter-
example to the topological statement would immediately refute Hedetniemi’s conjecture, while any
proof should be in principle easier and may be a first step to an extension to the combinatorial case,
as in Chapter III. While further progress may require more advanced use of algebraic topology, we
also discuss some other avenues. In particular, we use Ωk in a combinatorial proof showing that
powers of graphs of high girth are multiplicative.

The results of Chapter II were presented at STACS 2015 [Wro15], Chapter III was published in
J. Comb. Theory B [Wro17b], while Chapter IV is available as a preprint [Wro17a], except for
Theorem 1.8, which is joint work with Claude Tardif and will appear in a future publication.
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Chapter II

Recoloring, or paths between homomorphisms

1. Introduction

This chapter considers paths between graph colorings and homomorphisms. For a fixed graph H,
we consider the algorithmic problem of H-Recoloring: given a graph G and two H-colorings of
G (two homomorphisms from G to H), can one be transformed into the other by changing the
color of one vertex at a time? Of course we require maintaining a valid H-coloring throughout, see
Figure II.1. As introduced in Chapter I, this is the same as finding a path in the Hom(G,H) complex,
a looped path in the exponential graph HG, or deciding whether two given homomorphisms are
×-homotopic. In the Shortest H-Recoloring problem one is additionally given an integer `
and the question is whether the transformation can be done in at most ` steps (single vertex color
changes).
For classical colorings, that is, H = Kk, H-Recoloring was shown to be NP-hard (in fact

PSPACE-complete) when k ≥ 4 by Bonsma and Cereceda [BC09] and in P (solvable in polynomial
time) when k ≤ 3 by Cereceda et al. [CHJ11]. The latter result was improved by Jonhson et
al. [Joh+16] to show that Shortest K3-Recoloring is also in P. Note that this holds despite
the fact that deciding the existence of a 3-coloring is an emblematic NP-complete problem (and it
is NP-complete even on graphs as simple as 4-regular planar graphs [Dai80]). We generalize this
positive result by providing an algorithm that solves Shortest H-Recoloring in polynomial
time for any square-free H, even if H is given on input. The algorithm uses a characterization
of possible paths between homomorphisms G→ H (Theorem 6.1), whose main part is a purely
topological condition, which can be interpreted as requiring corresponding continuous maps to be
homotopic.

Figure II.1 A sequence of 3-colorings of C5 and the same sequence seen as a K3-recoloring
sequence of homomorphisms from C5 to K3 (a graph with three vertices: striped red,
checkered green, dotted blue). One vertex of C5 is thickened for clarity.
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Motivations for studying spaces of homomorphisms, from topological combinatorics, graph theory
and algorithmics, to statistical physics, have been introduced in Chapter I. While algorithmically
finding paths between solutions is, for these purposes, mostly a toy problem, it arises more
directly in some settings. Indeed, the Nondeterministic Constraint Logic construction of Hearn and
Demaine [HD05], which gives a simple PSPACE-complete reconfiguration problem, allowed to show
that many popular puzzles (eg. with sliding blocks) are PSPACE-complete [HD09; Meh14]. More
interestingly, Heijltjes and Houston used the construction to prove that deciding the equivalence of
proofs in a certain proof system is PSPACE-complete [HH14], answering a question about normal
forms of proofs that arose in this context.
Another aim of this study is to give more general statements about reconfiguration, seeing

graph homomorphisms as a tool to explore how different constraints influence the complexity of
reconfiguration. This approach previously allowed the author to argue in [Wro18] that the only
notion of sparseness that can be applied algorithmically to (unparameterized) reconfiguration
problems in general is tree-depth, and that many such problems are PSPACE-complete even in
graphs of bounded bandwidth (thus pathwidth, treewidth, etc.). The reduction presented there
explains why reconfiguration variants of easy combinatorial problems can be hard. Dually, this
chapter grew out of an attempt to find reasons for which reconfiguration variants of hard problems
can be, quite surprisingly, easy, generalizing the case of 3-colorings.

Related work
Brewster et al. [Bre+16] recently generalized the dichotomy for classical colorings to circular
colorings. Namely, for H being a circular clique Kp/q with p/q < 4, H-Recoloring is in P, while
for p/q ≥ 4 it is PSPACE-complete. Later, Brewster et al. [Bre+17] showed that H-Recoloring
is PSPACE-complete for odd wheel graphs H (odd-length cycle graphs with an additional vertex
adjacent to all others). They also characterized graphs H for which the problem of deciding
whether a given graph admits a frozen H-coloring is NP-complete. (An H-coloring of G is frozen
if it is isolated in the space of all H-colorings, that is, no single vertex can change its color while
maintaining a proper H-coloring.)
For more general constraint satisfaction problems, mostly the Boolean domain has been con-

sidered, that is, the reconfiguration of SAT problems. Here solutions are satisfying assignments
of a given formula, and a reconfiguration step flips one variable of the assignment. A dichotomy
was shown by Gopalan et al. [Gop+09]: for a fixed set of Boolean constraints Γ (that is, Boolean
relations, or clause types), the problem of finding paths between solutions of a SAT(Γ) instance
(a formula formed from constraints in Γ) is either in P or PSPACE-complete. In particular it is
always in P when the corresponding satisfiability problem is in P (eg. 2-SAT or Horn-SAT), but it
is also in P for some Γ for which satisfiability is NP-complete. This was slightly corrected (with
a further correction in 2015) and extended to several similar problems by Schwerdtfeger [Sch14;
Sch16], while a trichotomy was shown for the problem of finding shortest paths by Mouawad et
al. [Mou+15]. Both [Gop+09] and [Sch14] asked whether their results could be extended to larger
domains. This chapter can be seen as a step in this direction, but limited to only one symmetric
relation of arity 2 (the adjacency relation of the target graph H).
The corresponding dichotomy for satisfiability, that is, for deciding the existence of a solution,

was proved by Schaefer [Sch78a]. Generalizing it to CSPs with arbitrary finite domains is a long-
standing open problem stated by Feder and Vardi [FV98] (at least two proofs are currently claimed
and await peer-review [Zhu17; Bul17]). They showed that the conjecture is unchanged when limited
to one relation of arity 2 (digraph homomorphisms). Hell and Nešetřil proved the dichotomy in
the case the relation is additionally assumed to be symmetic (graph homomorphism) [HN90]: the
problem of deciding the existence of an H-coloring of a given graph is in P for H bipartite or
containing a loop, and NP-complete otherwise.
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Square-free graphs
In this chapter, G and H are always connected undirected graphs with at least one edge and
no loops, and H is always assumed to be square-free. Since we do not consider loops, this
is equivalent to requiring that H has no C4 subgraph. All results of this chapter extend in a
straightforward manner to square-free graphs H with loops allowed; a star graph K1,k with loops
added to leaves gives an interesting example. (Recall that in general a graph is square-free if does
not contain edges ab, bc, cd, da ∈ H such that a 6= c and b 6= d.) However, we choose to omit the
few additional group-theoretic details that would be needed in proofs.

Another way to phrase the square-free condition is to require that for every two colors a, b ∈ V (H),
the set of common neighbors NH(a) ∩NH(b) contains at most one color. That is, when a vertex
of G changes its color from some a to some b ∈ V (H), all its neighbors are forced to have one
common color. Formally, an H-recoloring sequence is a sequence of H-colorings of G in which
consecutive colorings differ at one vertex. Consider a step of an H-recoloring sequence: a vertex
v ∈ V (G) changes color from a ∈ V (H) to b ∈ V (H). Since G is connected, loopless and has an
edge, v has a neighbor w 6= v. As only v changes its color in the step, w has the same color before
and after the step, say h ∈ V (H). The H-coloring before the step implies that ha ∈ E(H), while
the one after the step implies that hb ∈ E(H). Thus h ∈ NH(a) ∩NH(b). From the assumption
that H is square-free we infer that NH(a) ∩NH(b) = {h}. We will often call h ‘the color that all
neighbors of v have during the step’ (that is, in the H-colorings just before and after the step),
without arguing its existence and uniqueness anymore.

2. The fundamental groupoid

Our main tool will be the fundamental groupoid, a basic notion of algebraic topology, which
despite its somewhat intimidating name is a simple group-like structure, describing all paths in a
graph or space. Discrete variants like the one defined here were considered in various contexts, the
first chapter of [KN07] provides an in-depth reference (including details on graphs with loops).
Instead of continuous curves we consider just discrete ‘walks’; instead of homotopy we only need
to consider ‘reducing’ pairs of backtracking edges.

Walks
An oriented edge of a graph H is an oriented pair, denoted uv ∈ H, such that {u, v} is an edge
of H; we denote its initial vertex u as ι(e) and its target vertex v as τ(e). We write e−1 for
τ(e)ι(e) ∈ H. A walk from u to v in a graph H is a sequence of oriented edges e1e2 . . . en of H walk
such that endpoints match: ι(e1) = u, τ(en) = v and τ(ei) = ι(ei+1) for i = 0, . . . , n − 1. The
edges are not necessarily distinct and a walk may self-intersect. We write ε for an empty walk ε

(formally there is a different empty walk from v to v for every vertex v, but the endpoints of ε will
be clear from the context). The length of a walk W , denoted |W |, is the number of edges in it. A |W |

W1 W2
walk W1 from u to v can be concatenated to a walk W2 from v to w to form a walk W1 W2 from
u to w. We identify an edge with a walk of length 1, by abuse of notation.

Note that if α : G→ H is a graph homomorphism and e = uv is an oriented edge in G, then by α(W )
definition α(e) := α(u)α(v) is an oriented edge in H. Similarly if W = e1 . . . en is a walk in G,
then α(W ) := α(e1) . . . α(en) is a walk in H (in contrast, the image of a path is not necessarily a
path).

Reducing
We call a walk reduced if it contains no two consecutive edges eiei+1 such that ei+1 = e−1

i (in other reduce
words, it never backtracks). One can reduce a walk by removing any such two consecutive edges W
from the sequence. It can easily be seen that by iteratively reducing a walk W in any order, one
always gets the same reduced walk, which we denote as W , see Figure II.2. For any two reduced W1 ·W2
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Figure II.2 Examples of two walks (in a ‘dumbbell’ graph H on 10 vertices) which reduce
to the same, bottom left one. The bottom right one is a different reduced walk; when its
endpoints are fixed, it cannot be distorted as a curve to give any of the others.

· =

· =

Figure II.3 Examples of · multiplication in the fundamental groupoid of H = C5.

walks W1,W2 such that W1 ends where W2 starts, we write W1 ·W2 for W1 W2 and similarly one
can observe that · is associative. For any walk W = e1e2 . . . el we write W−1 for the reversed walk W−1

1

e−1
l . . . e−1

2 e−1
1 . Clearly W ·W−1

= ε = W
−1 ·W and ε ·W = W · ε = W .

The (usually infinite) set of reduced walks of a graph forms together with the operations · and groupoid
π(H)()−1 a groupoid ; that is, it satifies all axioms of a group, except that the group operation · is a

partial function, defined only when the ‘head’ of one element matches the ‘tail’ of the other. (A
groupoid can also be defined as a category in which every morphism is invertible.) This particular
groupoid is called the fundamental groupoid π(H) of H. See Figure II.3 for an example.
Groupoids behave similarly to groups (much more so than semigroups, for example) and iden-

tities such as (e · f)−1 = f−1 · e−1 are easily reproved in groupoids. We could define a group by
considering only closed walks starting and ending in a fixed vertex v, but this would make formulas
less uniform, eg. requiring some tedious additional steps when changing the base point v.

Topological interpretation
Let us comment on how this algebraic structure captures the topology of curves in the graph. We
recall some basic facts and definitions, which we do not require formally, but which are helpful, if
not crucial, in understanding the results.
A graph H can be naturally associated with a topological space, constructed as copies of the

unit interval [0, 1] in R for each edge, with endpoints merged into vertices accordingly. (In later
chapters we will consider the box complex of H instead, to account for squares). A curve in this
space is a continuous map f : [0, 1]→ H, not necessarily injective (self-intersections are allowed).
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Two curves f0, f1 are homotopic rel endpoints if one can be continuously transformed into the
other with endpoints fixed; that is, there is a family of curves (φt)t∈[0,1] such that φ0 = f0, φ1 = f1,
endpoints φt(0) and φt(1) are constant, and the mapping (t, x) 7→ φt(x) is continuous as a function
from [0, 1]× [0, 1] to H.

The fundamental groupoid fully describes curves up to homotopy. Two walks between vertices
u, v in H give the same walk in π(H) after reduction if and only if the corresponding curves in
H are homotopic rel endpoints. See again Figure II.2. Instead of fixing endpoints we can also
consider closed curves. A closed walk C1 starting and ending at u is conjugate to a closed walk C2

conjugatestarting and ending at v (possibly u 6= v), meaning C2 = P−1 · C1 · P for some P ∈ π(H), if and
only if the corresponding closed curves are homotopic (via a homotopy φt such that φt(1) is equal
to φt(0) for all t, though not necessarily constant anymore).

3. Vertex walks and realizability

When a vertex v ∈ V (G) changes colors from a to b in a step of a H-recoloring sequence, consider
the color h that all neighbors of v have during the change. Then ah hb is a walk in H (of length
2). Looking this way at all the sequence of color changes of one vertex gives a walk in H which
traces the colors that v had. This walk (for one arbitrarily chosen vertex v), even after reducing,
will be shown to almost completely describe the H-recoloring sequence.

Formally, consider an H-recoloring sequence S = σ0, . . . , σl of G (so σi are homomorphisms S(v)
G→ H) and any vertex v ∈ V (G). We define the vertex walk S(v) of v as the following walk in
H. If l = 0, let S(v) = ε. If l = 1 (S contains only one reconfiguration step) then S(v) = ε when
σ0(v) = σ1(v) and S(v) = σ0(v)h hσ1(v) otherwise, h being the color that all neighbors of v have
in σ0 and σ1. Finally if l > 1, then S(v) = S0(v) S1(v) . . . Sl−1(v), where Si is the subsequence
σi, σi+1 of S.
Instead of asking just whether any H-recoloring sequence exists, we focus on the following

question: which walks in H can be realized, up to reductions, as vertex walks of an arbitrarily
fixed vertex q ∈ V (G) in some solution sequence. For two H-coloring α, β of G and a chosen

realizableq ∈ V (G) we say a reduced walk Q ∈ π(H) from α(q) to β(q) is a realizable walk if there is an
H-recoloring sequence S = σ0, . . . , σl from σ0 = α to σl = β such that S(q) = Q. Which elements
of π(H) are realizable? It is immediate from the definition that Q must have even length (notice
that the parity of the length of walks is preserved by reducing, since we only remove pairs of edges
ee−1). See Figure II.4.
Parity is one of three conditions that characterize realizable walks. Sections 4, 5 describe the

second (topological) and third necessary conditions, respectively. In Section 6 we prove they are
sufficient (the characterization), Section 7 describes algorithmically the topological condition, and
finally Section 8 uses these to give the main algorithm.

q

α qβ S(q)

Figure II.4 A realizable walk for α, β : K2 → H and q. Note that the shortest walk from
α(q) to β(q) (of length 3) is not realizable because of parity.
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4. Topological validity

Intuitively, for an H-coloring of G we look at the corresponding continuous map from G to H (as
on all the figures). A recoloring sequence between two H-colorings then corresponds to a homotopy
(a continuous transformation) between the maps. While much less constrained, since edges may
now be arbitrarily stretched, homotopies still must preserve certain invariants.

We can describe essentially all of these invariants by considering the H-recoloring of just walks
in G, which corresponds to continuously transforming an individual curve within H. The following
lemma states in one algebraic equation the key implication of this continuity, see Figure II.5.

u

v

α

u

v

β S(u)

S(v)α(u)
S(u)

S(v)

α(W ) β(W )

Figure II.5 When continuously transforming a curve, from α(W ) to β(W ), there is an exact
relation between the curves traced by the endpoints u, v of W , namely S(u), S(v). One
endpoint v traces the same (up to homotopy rel endpoints) as the following: first going to
the other endpoint u (along the initial curve’s position α(W ) in H), then tracing u, and
then going back to v (along the curve’s final position β(W ) in H).

4.1 Lemma. Let S = σ0, . . . , σl be an H-recoloring sequence of G from α = σ0 to β = σl.
Consider any walk W from vertex u to v in G. Then S(v) = α(W )

−1 · S(u) · β(W ).

Intuitively, if α can be transformed to β by H-recoloring, then there is a corresponding homotopy
φ : [0, 1]× [0, |W |]→ H from the initial position φ(0, ·) = α(W ) to the final position φ(1, ·) = β(W )
of W in H. Let S(u) = φ(·, 0) and S(v) = φ(·, |W |) be the paths (vertex walks) traced by the
endpoints u and v, respectively. Since φ is a continuous mapping of a rectangle to H and since
the boundary of the rectangle can be contracted to a point, the image of this boundary can also
be contracted, giving the equality: α(W )

−1 · S(u) · β(W ) · S(v)
−1

= ε.

Proof. Formally, the proof uses induction and the square-free property of H for the base case.
Assume first that l = 1, so S = σ0, σ1, where σ1 is obtained from σ0 by recoloring one vertex
w ∈ V (G) from σ0(w) = a to σ1(w) = b. Let h be the color that all neighbors of w have in σ0

and σ1. By definition of vertex walks, S(w) = ah hb and all other vertex walks are empty.
If W = ε, then u = v and the claim follows trivially, since α(W ) = ε and β(W ) = ε.
If W has length one, that is W is a single edge uv, then one of the following holds, depending

on where the recolored vertex w is:

• u 6= w and v 6= w, implying
S(u) = S(v) = ε and σ0(W ) = σl(W ).

• u 6= w and v = w, implying
S(u) = ε, S(v) = ah hb and σ0(W ) = ha, σl(W ) = hb.
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• u = w and v 6= w, implying
S(u) = ah hb, S(v) = ε and σ0(W ) = ah, σl(W ) = bh.

In each case σl(W ) = S(u)
−1 · σ0(W ) · S(v), which is equivalent to the claim.

If W is longer, the claim follows inductively by splitting it into shorter walks: W = W1 W2 for
W1 from u to some vertex w and W2 from w to v. It then follows that σl(W ) =

= σl(W1) · σl(W2) =

= S(u)
−1 · σ0(W1) · S(w) · S(w)

−1 · σ0(W2) · S(v) =

= S(u)
−1 · σ0(W1) · σ0(W2) · S(v) =

= S(u)
−1 · σ0(W ) · S(v).

It remains to consider the case where S has more than one step. Then the claim follows
inductively by writing S as the concatenation of shorter sequences: S1 which ends in σi and S2

which starts in σi. It then follows that S(v) = S1(v) S2(v) and S(v) =

= S1(v) · S2(v) =

= σ0(W )
−1 · S1(u) · σi(W ) · σi(W )

−1 · S2(u) · σl(W ) =

= σ0(W )
−1 · S1(u) · S2(u) · σl(W ) =

= σ0(W )
−1 · S(u) · σl(W ).

The lemma has two important corollaries.
First, in a given instance of H-Recoloring, the reduced vertex walk S(q) of one vertex q

in a H-recoloring sequence S determines up to reductions (in other words, up to homotopy) all
other vertex walks (since α and β are given). Later we will see that in shortest solution sequences
all vertex walks are already reduced, so S(q) actually determines the sequence exactly, up to
reordering color changes of different vertices. This means shortest recoloring sequences can be
concisely represented by one realizable element S(q) ∈ π(H). (The possible reorderings will be
revealed in the proof of the characterization theorem). This is also the reason for which we can
focus on one walk and its realizability, instead of trying to describe an entire recoloring sequence.
Second, observe that the equality in the lemma holds for all walks in G, even though different

walks between the same endpoints could a priori give different values. For every closed walk C
from v to v in G, we infer some equation on S(v), namely S(v) = α(C)

−1 · S(v) · β(C), which
expresses a certain topological condition on how solution sequences look like. We can rearrange
this condition as

S(v)
−1 · α(C) · S(v) = β(C)

In group theory we say that α(C) and β(C) are conjugate and that S(v) is a witness of that. We
say a walk is topologically valid if it satisfies the above equation for all C:

4.2 Definition. Let α, β be two H-colorings of G and let q be a vertex of G. A walk Q ∈ π(H) is
topologically valid for α, β, q if for every closed walk C from q to q we have β(C) = Q−1 ·α(C) ·Q.

4.3 Corollary. If Q ∈ π(H) is realizable for α, β, q then Q is topologically valid for α, β, q.

We analyze such conjugacy equations in more detail in Section 7, for now let us give their
intuitive meaning. The condition that α(C) and β(C) are conjugate means that C, during any
reconfiguration, always maps around the same cycle (or closed walk) in H, up to reductions and
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rotations (ie. the corresponding closed curves can be continuously transformed into one another,
they are homotopic). The number of times the image of C winds around this cycle in H must
also remain unchanged (in the special case H = K3 this gives exactly one of the conditions for
3-recoloring given by [CHJ11, Theorem 7 (C2)]). Finally, the condition that the realized walk S(v)
must be a witness will imply that two realizable walks (two solutions to the recoloring problem)
can differ only in the number of times they wind around this cycle, essentially.

In the next, final lemma of this section, we show that equations for closed walks already imply
all other equations that would follow from Lemma 4.1. Moreover, one could show that Q is
topologically valid for α, β, q if and only if there is a homotopy continuously transforming α to
β (simultaneously on all of G, not on a single walk) such that q traces the curve Q throughout
this transformation (that is, φ0 = α, φ1 = β and the image of t 7→ φt(q) is Q). This means that
Corollary 4.3 is the strongest we can achieve using only this topological setting.

4.4 Lemma. If a walk Q ∈ π(H) is topologically valid for α, β, q, then for any vertex v and
any two walks W1,W2 from q to v in G we have α(W1)

−1 ·Q · β(W1) = α(W2)
−1 ·Q · β(W2).

Proof. W1 W
−1
2 is a closed walk starting and ending in q, so β(W1 W

−1
2 ) = Q−1 ·α(W1 W

−1
2 ) ·Q.

Therefore:
α(W2) · α(W1)

−1 ·Q · β(W1) · β(W2)
−1

=

= α(W1 W
−1
2 )

−1
·Q · β(W1 W

−1
2 ) =

= α(W1 W
−1
2 )

−1
·Q ·Q−1 · α(W1 W

−1
2 ) ·Q =

= Q.

Left-multiplying the equation by α(W2)
−1

and right-multiplying by β(W2) gives the claim.

5. Tight closed walks and frozen vertices

There is one more necessary condition for a walk to be realizable, beside even length and topological
validity. Intuitively, closed walks that map to walks tightly stretched around H cannot be recolored
in any way.
Formally, in an H-coloring α of G, a vertex v of G is called frozen if for every H-recoloring frozen

sequence from α the resulting H-coloring β has β(v) = α(v). A closed walk C = e1e2 . . . el is cycl. red.
cyclically reduced if it is reduced (ei 6= e−1

i+1) and additionally el 6= e−1
1 . In other words, repeating

C gives an infinite reduced walk. A closed walk C is α-tight if α(C) is cyclically reduced. α-tight

5.1 Lemma. Let α be an H-coloring of G and let C be an α-tight walk in G. Then all vertices
of C are frozen in α.

Proof. Suppose to the contrary that there is an H-recoloring sequence σ0, . . . , σl from α, such
that σl(C) 6= σ0(C). Let i be the least such that σi(C) 6= σ0(C). Then in σi−1 all vertices of C
have the same color as in α = σ0, so σi−1(C) is cyclically reduced, while σi is obtained from σi−1

by changing the color of some vertex v ∈ C from a to b. Let h be the color that all neighbors of
v have in σi−1 and σi. Let u,w be the vertices of C just before and just after v on C. Since they
are neighbors of v, they must both have the color h in σi−1. But then σi−1 maps the subsequent
edges uv vw of C to ha ah, contradicting that σi−1(C) is cyclically reduced.

This generalizes the characterization of frozen vertices in the case of H = K3 from [CHJ11]. In
general, frozen vertices can also arise in other situations, see Figure II.6 for an example, but these
will not be relevant to the characterization theorem.
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Figure II.6 Left: walking along the 10 edges of the thin black graph gives a tight walk
containing all vertices, so no reconfiguration step is possible. Middle: walking along one
cycle, the bridge, the second cycle, and then back along the bridge, gives a tight closed walk
containing all vertices, so no reconfiguration step is possible. Right: no closed walk is tight,
but the 4 middle vertices are frozen.

Finding any frozen vertex v means S(v) = ε for any solution sequence S. This allows us to limit
potentially realizable walks Q to a single one, since even if our arbitrarily chosen vertex q is not
frozen, Lemma 4.1 gives Q = S(q) = α(W )

−1 · S(v) · β(W ) = α(W )
−1 · β(W ), for any walk W

from v to q. Thus, we have the following necessary condition for a walk to be realizable:

5.2 Corollary. Let α, β be two H-colorings of G and let q be a vertex of G. If Q ∈ π(H) is
realizable for α, β, q, then for any α(C)-tight closed walk in H, any vertex v on C and any walk
W from v to q, we have Q = α(W )

−1 · β(W ).

Finally, we show how to find α-tight closed walks by exploring walks W such that α(W ) is
reduced.

5.3 Lemma. There is an algorithm that given G,H,α, finds an α-tight walk or concludes there
is none, in time O(|V (G)| · |E(G)|).

Proof. Consider the following directed graph D: its vertices are oriented edges of G and there
is an arc from e to e′ when endpoints match (τ(e) = ι(e′)) and α(e) 6= α(e′)−1. Then directed
cycles in D are α-tight closed walks in G, and conversely, any α-tight closed walk in G gives a
directed cycle in D (if some oriented edge of the closed walk is repeated, use only the fragment
between the closest two repetitions).
D has 2|E(G)| vertices and

∑
v∈V (G) 2

(
deg(v)

2

)
≤ |V (G)| ·

∑
v∈V (G) deg(v) = O(|V (G)| · |E(G)|)

arcs, so a directed cycle in D can be found by depth-first search in time O(|V (G)| · |E(G)|).

We note that the prefix tree of walks W such that α(W ) is reduced (starting from some fixed
point v), gives a generalization of the layer construction of [CHJ11]. Infinite paths in it are walks
that must contain some oriented edge twice, so the fragment between repetitions is an α-tight closed
walk; conversely, repeating any α-tight closed walk gives an infinite walk W such that α(W ) is
reduced, so an infinite path in the tree. In topology, this tree is known as the universal cover of H.

6. Characterization of realizable walks

In this section we prove the characterization theorem: the three necessary conditions described
in the previous sections are enough to characterize all possible solutions to an H-Recoloring
instance. This is very unexpected, as it shows we can view the graphs as purely topological
structures and the only remaining conditions to remember are a simple parity condition and the
condition that tight closed walks are frozen—the fact that edges are actually discrete and cannot
be stretched arbitrarily turns out to imply no further obstructions to recoloring (it does however
restrict the possible H-colorings, which are given on input). The algorithm in Section 8 will use
the theorem to find a concise description of the set of all realizable walks, in particular to find one
such walk. See Figure II.7 for an example.
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q

β S(q)?

Figure II.7 Two H-colorings α, β of an 8-cycle, where H is the gray graph on 9 vertices.
Even though no vertex is frozen, α cannot be reconfigured to β. The short (red and green)
walks are not realizable for α, β, q because of parity. The long (blue) walk has good parity,
but is not topologically valid (imagine continuously deforming the 8-cycle by pulling q along
this walk—the cycle would necessarily end up stretched around the triangle).

6.1 Theorem. Let α, β be two H-colorings of G. Consider any vertex q of G and let Q ∈ π(H)
be a reduced walk in H from α(q) to β(q). Then Q is realizable for α, β, q if and only if

• Q has even length,

• Q is topologically valid for α, β, q, and

• for every α-tight walk C, and any walk W from any vertex on C to q, Q = α(W )
−1 · β(W ).

Furthermore, there is an O(|V (G)|2 + |V (G)| · |Q|)-time algorithm that given G,H,α, β and given
a walk Q satisfying these conditions, outputs a recoloring sequence (as a sequence of color changes)
such that S(q) = Q, S(v) is reduced and |S(v)| ≤ 2|V (G)|+ |Q| for all v ∈ V (G).

Proof. If an H-recoloring sequence is given, then the conditions are satisfied by Corollary 4.3
and Corollary 5.2, which proves the ‘only if’ half.
Consider now a reduced walk Q ∈ π(H) that satisfies the above conditions. For every vertex

v ∈ V (G), let Sv = α(W )
−1 ·Q · β(W ) for some walk W from q to v; by Lemma 4.4, this does

not depend on how W is chosen. In particular Sq = Q. We will show an H-recoloring sequence S
from α to β such that S(v) = Sv for all v ∈ V (G). The idea is that the walks Sv define a correct
H-recoloring sequence for each edge, which is consistent thanks to topological validity, but it
remains to order changes of different vertices into one reconfiguration sequence. Each edge gives
a condition on which endpoint should recolor first and it turns out to be enough to respect these
conditions. This is impossible if and only if there is a directed cycle of conditions, which turns
out to be exactly an α-tight cycle.
Formally, observe first that since |Q| is even, |α(W )| = |W | = |β(W )|, and since reducing

preserves parity, we have that each Sv has even length.
Consider two adjacent vertices u, v ∈ V (G). Let W be any walk from q to u. Then W followed

by the oriented edge uv is a walk from q to v, hence by definition Sv =

= α(W uv)
−1 ·Q · β(W uv) =

= α(v)α(u) · α(W )
−1 ·Q · β(W ) · β(u)β(v) =

= α(v)α(u) · Su · β(u)β(v).

Let use write the exact sequence of edges in Su and Sv (note the use of instead of ·):

Su = a0a1 a1a2 a2a3 an−1an,

Sv = b0b1 b1b2 b2b3 . . . bm−1bm.
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Since Su is by definition reduced, we have ai 6= ai+2, similarly for Sv. Now α(u) = a0, α(v) = b0
and β(u) = an, β(v) = bm, hence

Sv = b0a0 · Su · anbm.

Suppose Su is non-empty (n ≥ 1). Then by the parity condition we have n ≥ 2 and

Sv = b0a0 a0a1 a1a2 . . . an−2an−1 an−1an anbm.

There are two cases, depending on whether b0a0 a0a1 cancels out to ε. Either it does, that is
b0a0 = a0a

−1
1 , in which case

Sv = a1a2 a2a3 . . . an−2an−1 an−1an anbm

which means b0 = a1, b1 = a2, . . . , bn−2 = an−1 (case u→ v)
or it does not, in which case

Sv = b0a0 a0a1 a1a2 . . . an−2an−1 an−1an anbm

which means b1 = a0, b2 = a1, . . . , bn = an−1 (case u← v).

For two adjacent vertices u, v ∈ V (G) such that Su and Sv are non-empty, let us write u→ v
in the first case and u← v in the other, as defined above. We have u→ v iff v ← u, otherwise
b0 = a1 = b2 (if u → v and v → u) or a0 = b1 = a2 (if u ← v and v ← u), contradicting that
Su, Sv are reduced walks.

Furthermore, the → relation has no cycles. Suppose to the contrary that there exist v0, v1, . . . ,
vl−1, v0 (l ≥ 3) such that vi → vi+1 for i ∈ Zl. We will write Sjv for the j-th vertex of Sv. Then
this is an α-tight walk: indeed, arrows imply adjacency in G, and vi → vi+1 → vi+2 implies that

α(vi+2) = S0
vi+2

= S1
vi+1

= S2
vi 6= S0

vi = α(vi).

Therefore by the last condition we have Q = α(W )
−1 · β(W ) and for any walk W from vi to q,

Svi = α(W ) ·Q · β(W )
−1

= α(W ) · α(W )
−1 · β(W ) · β(W )

−1
= ε.

But we did not assign arrows between vertices whose sequences are empty, a contradiction.
Therefore, by the lack of cycles, there is an ordering v1, v2, . . . , v|V (G)| of V (G) such that if

vi → vj then i < j. We claim the following is a valid H-recoloring sequence from α to β. Recolor:
v1 from S0

v1 to S2
v1 , v2 from S0

v2 to S2
v2 , . . . , vn from S0

vn to S2
vn ,

v1 from S2
v1 to S4

v1 , v2 from S2
v2 to S4

v2 , . . . , vn from S2
vn to S4

vn ,
v1 from S4

v1 to S6
v1 , . . . . . .

We continue in this order (disregarding any undefined recolorings to Sjvi for j > |Svi |). Because
of the parity condition, every vertex vi eventually gets recolored to the last color in Svi , which is
β(vi); that is, the coloring we reach is indeed β.

To check that it is a valid H-recoloring sequence, consider any edge uv of G and define ai, bi as
above. If both Su and Sv are empty, then uv gets constantly mapped to the same edge α(u)α(v)
of H. If exactly one of Su, Sv is empty, say Su, then Sv = b0a0 · Su · a0bm = b0a0 a0bm where
b0 6= bm (and m = 2). Thus b1 = a0, so uv gets mapped initially to α(u)α(v) = a0b0 and then to
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a0b2 = b1b2, which is an edge of H. If both Su and Sv are non-empty, then assume without loss
of generality u→ v (otherwise swap u and v). We have

Su = a0a1 a1a2 a2a3 . . . an−2an−1 an−1an,

Sv = a1a2 a2a3 . . . an−2an−1 an−1an anbm

Thus uv gets mapped initially to α(u)α(v) = a0b0 = a0a1 and then to a1a2, a3a2, a3a4, . . . ,
ending in either anan−1 or anan+1 (depending on whether an−1an anbm = ε). This is again
always an edge of H (because Su, Sv are walks in H). Thus the H-coloring condition is never
violated on any edge and the sequence is a valid H-recoloring sequence.

The algorithm first checks that |Q| is even. Then, it has to choose some arbitrary walks
to define Sv for v ∈ V (G); choosing shortest paths from q (in time O(|E(G)|)) guarantees
|Sv| ≤ 2|V (G)| + |Q|. Then, for each edge uv of G, it checks whether u → v or v → u holds,
by inspecting the first edges of Sv and Su in constant time, O(|E(G)|) in total. The ordering
v1, . . . , v|V (G)| (a topological ordering of the arrow graph) is constructed in O(|E(G)|) time; if
none is found, we can output a tight closed walk, in fact a tight cycle. Finally it outputs the
sequence of color changes given by Sv in the above order, in time linear in the total number of
color changes, which is O(|V (G)| · (|V (G)|+ |Q|)). Note that the algorithm can check whether
the conditions on Q were really satisfied by checking the consecutive colors on each edge as in the
previous paragraph, in total time O(|E(G)| · (|V (G)|+ |Q|)); if at some point the check fails, this
is a contradiction, which means that Q could not have been topologically valid. If we wanted to
output the entire H-coloring at each step, this makes the output |V (G)| times larger, requiring
O(|V (G)|2 · (|V (G)|+ |Q|)) total time.

The running time does not depend on H at all, because we only inspect images of edges in G;
H could indirectly cause Q to be long, but we will construct realizable walks Q of polynomial
length.

As the proof of the characterization theorem produces a solution sequence where all vertex walks
are reduced, any sequence where this is not true can be shortened.

6.2 Corollary. Let α, β be two H-colorings of G. Let S = σ0, . . . , σl be an H-recoloring sequence
between σ0 = α and σl = β such that l is minimized. Then for each vertex v of G, S(v) is reduced.

Proof. Suppose S(q) is not reduced for some q. Let Q = S(q). By the above theorem we know
from one side that Q is realizable. From the other side we obtain a solution sequence S′ such
that S′(v) = S′(v) for all v and S′(q) = Q = S(q). By Lemma 4.1, this implies S′(v) = S(v), for
all v. But S(v) is always no longer than S(v), and S(q) is strictly shorter than S(q). Since the
number of recoloring steps is equal to half the sum of lengths of all S(v), S was not shortest.

7. Calculations in the fundamental groupoid

The goal of this section is to prove Lemma 7.5, which describes algorithmically the set of topo-
logically valid walks. This follows from well-known calculations in the fundamental groupoid of
graphs, which we recall here.
Any algorithm will need to limit the number of closed walks considered. The standard way to

do that is as follows: fix a vertex q ∈ V (G) and an arbitrary spanning tree T of G (a minimal
connected subgraph that includes all vertices). For each e ∈ E(G) \ E(T ) and an arbitrarily fixed
orientation ι(e)τ(e) of e, define the fundamental cycle Ce as the closed walk that goes from q to
ι(e) along the unique path that connects them in T , then through e to τ(e), then back to q along
the unique path in T . There are |E(G)| − |E(T )| = |E(G)| − |V (G)|+ 1 fundamental cycles and
together they generate all other cycles (see for example Lemma 1.2. in [KN07]):
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7.1 Fact. Let C be any closed walk from q to q in G. Then C = Ce1
s1 · . . . · Cen

sn where
e1, . . . , en ∈ E(G) \E(T ) are the consecutive non-tree edges of C and si ∈ {−1,+1} are chosen to
match their orientation.

This allows to limit the number of conjugacy equations defining topological validity to poly-
nomially many (|E(G) \ E(T )|, to be exact). It is also folklore that conjugacy equations can be
solved in polynomial time:

7.2 Fact. Given two H-colorings α, β of a graph G and a vertex q, one can find in time
O(|E(G)| · |V (G)|+ |E(H)|) a walk Q ∈ π(H) that is topologically valid for α, β, q, or conclude
there is none.
Proof. By definition, Q is topologically valid if and only if for every closed walk C from q to q
we have β(C) = Q−1 · α(C) · Q. By Fact 7.1, this is equivalent to satisfying the equation for
each fundamental cycle Ce. Let W be any walk from β(q) to α(q) in H. Then Q satisfies the
equations if and only if Q ·W satisfies W · β(Ce) ·W−1 = (Q ·W )−1 · α(Ce) · (Q ·W ) for each
fundamental cycle Ce. In this form, we have polynomially many equations where each of the
walks Q ·W , α(Ce) and W · β(Ce) ·W−1 is a closed walk from α(q) to α(q) in H.

Denote by π(H,α(q)) the subset of π(H) given by closed walks from α(q) to α(q). It is a group
(under ·); moreover, it is the free group generated by the fundamental cycles of H as described
in Fact 7.1 (see for example Lemma 1.1., 1.2. in [KN07]). Finding an element Q ·W satisfying
the above equations in π(H,α(q)) is therefore the Simultaneous Conjugacy Search Problem in a
free group, for which a linear time algorithm is described in Theorem 6.5. of [MU08]. The size
of the input to this algorithm can be bounded by the number of equations |E(G) \ E(T )| times
the length of α(Ce) and W · β(Ce) ·W−1 in each equation, which is O(|V (G)|). Additionally, we
need to compute a spanning tree of H and give the edges outside of it, in O(|E(H)|) time, to
present π(H,α(q)) as a free group.

To describe all valid walks we will need the following. For a non-empty closed walk C ∈ π(H)
we define the primitive root of C as the unique R ∈ π(H) such that C = Rn for some n ∈ N such
that n is maximized. Note that if R is a primitive root, then the primitive root of W ·Rn ·W−1 is
W ·R ·W−1 (for n ≥ 1 and W ∈ π(H) such that W ·R is defined), for example. It is a routine
exercise to check that the primitive root is well defined, can be computed in linear time, and that
the following holds (see eg. Lemma 2.1. of [MA80]):

7.3 Fact. Let C1, C2 ∈ π(H). Then C1 and C2 commute, ie. C1 · C2 = C2 · C1, if and only if
C1 = ε or C2 = ε or both have the same primitive root or one root is the inverse of the other.

We now show that whenever a cycle C maps to a non-trivial cycle in H, possible solution
sequences can only differ in the number of times they wind around this cycle; see Figure II.8.

7.4 Lemma. Let α, β be two H-colorings of G and let q be a vertex of G. Let P ∈ π(H) be
topologically valid for α, β, q. Then Q ∈ π(H) is topologically valid for α, β, q if and only if for
every closed walk C in G starting and ending in q such that α(C) 6= ε, we have

Q = Rn · P

for some n ∈ Z, where R is the primitive root of α(C).

Proof. Suppose Q is topologically valid and let C be a closed walk starting and ending in q. Then
by definition we have β(C) = P−1 · α(C) · P and β(C) = Q−1 · α(C) ·Q. Therefore

P−1 · α(C) · P = Q−1 · α(C) ·Q

Q · P−1 · α(C) = α(C) ·Q · P−1
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q

α β R P R−1 · P
Figure II.8 In this example, let C be the shortest non-trivial walk from q to q in the thin
black graph G. Its image α(C) and β(C) winds twice around the root R (α(C) = R2). The
topologically valid paths are exactly {Rn ·P | n ∈ Z} (think about deforming α by pulling q:
one can pull it once or more around the top cycle by rotating all of α, but this is impossible
for the bottom cycle if we want to end at β).

So α(C) commutes with Q · P−1. Therefore, if α(C) 6= ε and R is the primitive root of α(C),
then Q · P−1 = Rn for some n ∈ Z by Fact 7.3.
For the other side, suppose that for every closed walk C from q to q with α(C) 6= ε and

a primitive root R of α(C), there is an n ∈ Z such that Q = Rn · P . Then for every closed
walk C from q to q, α(C) commutes with Q · P−1, because either α(C) = ε or α(C) = Rk and
Q · P−1 = Rn for some R ∈ π(H) and n, k ∈ Z. Thus β(C) =

= P−1 · α(C) · P =

= Q−1 ·Q · P−1 · α(C) · P =

= Q−1 · α(C) ·Q · P−1 · P =

= Q−1 · α(C) ·Q,

which shows the topological validity of Q.

The above lemma allows us to describe the set of all topologically valid walks:

7.5 Lemma. Let α, β be H-colorings of G and q a vertex of G. Consider the (possibly infinite)
set Π ⊆ π(H) of topologically valid walks for α, β, q. One of the following holds:

0. Π = ∅.
1. Π = {Q} for some Q ∈ π(H).
2. Π = {Rn · P | n ∈ Z} for some R,P ∈ π(H).
3. Π contains all reduced walks from α(q) to β(q).

Moreover, there is an algorithm that given G,H,α, β, q decides in time O(|E(G)| · |V (G)|+ |E(H)|)
which case holds and outputs Q and R,P in cases 1 and 2.

Proof. Use Fact 7.2 to compute a topologically valid walk P ∈ π(H) for α, β, q in time O(|E(G)| ·
|V (G)|+ |E(H)|). If there is none, we immediately answer case 0. Fix an arbitrary spanning tree,
compute the elements α(Ce) for all fundamental cycles of G (in total time O(|E(G)| · |V (G)|))
and if some for e it is non-empty, check if it commutes with all other elements (again in time
O(|E(G)| · |V (G)|), since |α(Ce)| = O(|V (G)|)). One of the following holds:

35



a) For every Ce, α(Ce) = ε. Then by Fact 7.1, for every closed walk C from q to q, α(C) = ε.
By Lemma 7.4, vacuously, every walk Q ∈ π(H) from α(q) to β(q) is topologically valid.

b) There is a Ce such that α(Ce) 6= ε and for every Cf , α(Cf ) commutes with α(Ce). Then
by Fact 7.1, for every closed walk C starting and ending in q, α(C) commutes with α(Ce).
Let R be the primitive root of α(Ce). R (or its inverse) is also the primitive root of every
non-empty α(C), so by Lemma 7.4, Q is topologically valid iff Q = Rn · P for some n ∈ Z.

c) There are Ce, Cf such that α(Ce) and α(Cf ) do not commute. Then we show Π = {P}.
Clearly α(Ci) 6= ε, so let Ri be the primitive root of α(Ci) for i ∈ {e, f}. Suppose Q ∈ π(H)
is topologically valid. Then by Lemma 7.4, Q = Rne

e ·P and Q = R
nf

f ·P for some ne, nf ∈ Z.
Thus Rne

e = R
nf

f . If this element has a primitive root (ne, nf 6= 0), then it is equal to both
Re and Rf , implying that α(Ce) and α(Cf ) have the same primitive root, contradicting
Fact 7.3. Therefore ne = nf = 0, so Q must be equal to P .

We hence output, respectively, case 3., case 2. with R,P , or case 1. with P .

8. The main algorithm

In this section we give the main algorithm, which returns a description of all solution sequences,
in particular telling whether there is one. It follows directly from the algorithm for describing
topologically valid walks in Lemma 7.5 by simply checking the two other conditions of Theorem 6.1.

8.1 Theorem. Let α, β be H-colorings of G and q a vertex of G. Consider the set Π′ ⊆ π(H)
of realizable walks for α, β, q. One of the following holds:

0. Π′ = ∅.
1. Π′ = {Q} for some Q ∈ π(H).
2. Π′ = {Rn · P | n ∈ Z} for some R,P ∈ π(H).
3. Π′ contains all reduced walks of even length from α(q) to β(q).

Moreover, there is an algorithm that given G,H,α, β, q decides in time O(|E(G)| · |V (G)|+ |E(H)|)
which case holds and outputs Q or R,P in cases 1,2.

Proof. First, find any α-tight closed walk and if there is one, let Q be the only possibly realizable
walk as in the last condition of Theorem 6.1. By running the algorithm from Theorem 6.1 we can
check whether it is indeed realizable and return either Π′ = ∅ or Π′ = {Q}.

Assume now that there is no α-tight walk. Run the algorithm of Lemma 7.5 to get a description
of topologically valid walks Π and consider the following cases:

0. Π = ∅. Then also Π′ = ∅ (see Theorem 6.1).

1. Π = {Q} for some Q ∈ π(H). Return Π′ = {Q} if Q has even length and Π′ = ∅ otherwise.

2. Π = {Rn · P | n ∈ Z} for some R,P ∈ π(H). The only remaining condition is parity, so
one of the following holds:

• R is even and P is odd: then Π′ = ∅,
• R is even and P is even: then Π′ = Π,
• R is odd and P is even: then Π′ = {R2n · P | n ∈ Z},
• R is odd and P is odd: then Π′ = {R2n · (R · P ) | n ∈ Z}.

3. Π contains all reduced walks from α(q) to β(q). Then Π′ contains all reduced walks of even
length from α(q) to β(q).
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The set of even walks from α(q) to β(q) in H is empty if and only if H is bipartite and α(q), β(q)
are on different sides of a bipartition. We can construct an even walk or conclude there is none
in linear time. Thus in each case we decide whether there is a realizable walk Q and if so,
construct one of length bounded by the total running time, O(|E(G)| · |V (G)|+ |E(H)|). From
Q, the algorithm of Theorem 6.1 can compute an actual recoloring sequence (as a sequence of
color changes) in time O(|V (G)|2 + |V (G)| · |Q|) = O(|E(G)| · |V (G)|2 + |E(H)| · |V (G)|). In
particular, whenever some sequence exists, we output a sequence of polynomial length. (Note that
for non-square-free H = K4, examples where shortest recoloring sequences have length exponential
in |V (G)| are known [BC09]).

8.2 Corollary. For square-free graphs H, H-Recoloring can be decided in time O(|E(G)| ·
|V (G)|+ |E(H)|).

Shortest recoloring sequences can also be found in polynomial time with some more care.

8.3 Theorem. For square-free graphs H, Shortest H-Recoloring can be solved in time
polynomial in the size of G and H.

Proof. By Corollary 6.2, it suffices to choose a walk Q ∈ Π′ from Theorem 8.1 minimizing∑
v∈V (G)

S(v) =
∑

v∈V (G)

|α(Wv)
−1 ·Q · β(Wv)|, (1)

where Wv is a walk from q to v (arbitrarily chosen). In cases 0. and 1. this is trivial. In case 2.
(Q = Rn · P , for any n ∈ N) it is easy to see that repeating R will eventually lengthen all
summands of (1), hence |n| ≤ 2|V (G)|+ |P | in shortest sequences. It thus suffices to compute (1)
for all these possibilities for n.

In case 3., consider a realizable walk Q, ie., any reduced walk of even length from α(q) to β(q).
Let P1 be the longest common prefix of Q and α(Wv), choosing v ∈ V (G) to maximize its length.
That is, P1 is longest such that all of P1 will reduce with α(Wv)

−1
in some summand of (1).

Analogously, let P2 bet the longest common suffix of Q and some β(Wv)
−1

. Either P1 and P2

overlap, or Q = P1Q
′P2, for some Q′ ∈ π(H). In the latter case, since by definition no element of

Q′ will be reduced in any summand of (1), it can be written as∑
v∈V (G)

|α(Wv)
−1 ·Q · β(Wv)| =

∑
v∈V (G)

(
|α(Wv)

−1 · P1|+ |Q′|+ |P2 · β(Wv)|
)
.

Thus we can guess P1 by enumerating all prefixes of all α(Wv), similarly guess P2 and guess
how much they overlap. In case they do not overlap, the sum is minimized by taking Q′ to
be an arbitrary shortest path of appropriate parity from the tail of P1 to the head of P2 in H.
Enumerating all possibilities for (the length of) P1, P2 and the overlap can be done in polynomial
time, and a shortest path of given parity in H can be found by duplicating every vertex, ie.,
finding a shortest path in the tensor product H ×K2.

9. Conclusions and future work

The case H = K3

Our result generalizes the algorithm for K3-Recoloring of [CHJ11] and recovers many of its
features in a more general and perhaps more intuitive setting. When limited to H = K3 (a 3-cycle),
there is only one possible root R for closed walks in H (and its inverse), so they all commute. This
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means that either no walk is topologically valid (that is, α, β are not homotopic), or all are. (In
the proof of Lemma 7.5, case 1. is impossible, while case 2. is the same as case 3.).
This allows to simplify the algorithm for K3-Recoloring substantially. Given an instance

α, β, if there is any solution sequence, any realizable walk, then we can find it as follows, knowing
that all walks are topologically valid. Either there is some frozen vertex, which implies Q1 = ε is
realizable for this vertex, or no vertex is frozen, which implies that all even walks are realizable, in
particular the walk Q2 from α(q) to β(q) of length 0 or 2. Thus we do not need to perform any of
the calculations in Section 7, it suffices to run the simple algorithms of Lemma 5.3 and Theorem 6.1
(with either Q1 or Q2) and check whether the resulting sequence is a valid H-recoloring sequence
(if not, the assumption that some realizable walk exists was false).

Similarly, we can easily deduce the following purely graph-theoretic observation:

9.1 Theorem. Let G be a graph with no cycles of length divisible by 3. Then G is 3-colorable.

Proof. The proof is by induction on the number of edges: let α be a 3-coloring of G− e, for an
arbitrary e = uv ∈ E(G). If α(u) 6= α(v), then this is a 3-coloring of G.
Otherwise, define β(x) = α(x) + 1 mod 3 (where the colors, or vertices of K3, are {0, 1, 2}).

This is another 3-coloring of G− e, obtained just by rotating α, so homotopic to β. That is, we
can choose q ∈ V (G) arbitrarily and let Q be the walk of length 2 from α(q) to β(q): it has even
length, it is easily checked to be topologically valid, and by the assumption that G has no cycles
of length divisible by 3, there are no α-tight cycles. Hence Q is realizable for α, β, q.

Therefore, there is a H-recoloring sequence from α to β. But then at some point u or v changes
its color for the first time, so it becomes different from the color of v or u, respectively, giving a
3-coloring of G.

The statement already follows from a stronger theorem of Chen and Saito [CS94], that graphs
with no cycles of length divisible by 3 are in fact 2-degenerate (all their subgraphs have a vertex
of degree ≤ 2, see also a strengthening by Gauthier [Gau17]). But at least in principle, this shows
we can deduce the existence of homomorphism using recoloring.

If we only exclude cycles of length divisible by 3 as induced subgraphs, it is an open problem
whether such a graph is 3-colorable, but Bonamy et al. [BCT14] recently showed that the chromatic
number is bounded. In [Dvo+16], Bonamy points out that 3-colorability would follow from the
same proof as Theorem 9.1 if the following were true:

9.2 Conjecture. Every graph G without induced cycles of length divisible by 3 has an edge e
such that G− e still has no induced cycles of length divisible by 3.

Curiously, the chromatic number of graphs with no induced cycles of length divisible by 3 is
related to a very different connection between colorings and topology conjectured by Gil Kalai and
Roy Meshulam, see [BCT14]. See also [Bre+16] and [SS17] for further results on coloring graphs
with few cycles of prescribed mod k length.

The box complex

In this chapter we focused on combinatorial and algebraic descriptions, avoiding in particular box or
Hom complexes. However, they may offer a nicer and perhaps deeper view into the characterization
in Theorem 6.1.

First, we could get rid of the parity condition, that realizable walks must have even length, by
using π(H ×K2) instead of π(H). Intuitively, this is simply because a vertex of H ×K2 accounts
for not only our position in H, but also for the parity of the walk we used to get there. Recall that
the box complex of H is constructed by taking H ×K2 and gluing faces to squares (and more
generally, to complete bipartite subgraphs). So for square-free H, the box complex of H is just
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H ×K2 (as a simplicial complex, up to Z2-homotopy equivalence). This way, the parity condition
is already accounted for topologically, if we use the box complex.
If we use Hom complexes, we can rephrase all the three conditions of Theorem 6.1 into one.

Indeed, recall that the box complex of G is equivalent to Hom(K2, G). Furthermore, the condition
on tight cycles can also be described more topologically by noticing that a cyclically reduced closed
walk of length n in G is exactly an isolated vertex of Hom(Cn, G). An H-coloring α of G induces
a continuous map from Hom(Cn, G) to Hom(Cn, H), and an α-tight cycle is an isolated vertex of
Hom(Cn, G) that is mapped to an isolated vertex of Hom(Cn, H). Thus with some effort one can
rephrase Theorem 6.1 as follows:

9.3 Theorem. Let α, β be two H-colorings of G (where H is a square-free graph). Then α, β
are ×-homotopic (connected by a path in Hom(G,H)) if and only if

• the induced maps αT , βT : Hom(T,G)→ Hom(T,H) are homotopic for T = K2 and T = Cn,
n ≤ |V (G)|.

Recall that the same holds (almost trivially) for T = G (see Chapter I, Theorem 4.1), but
the point is that the topology of paths in Hom(G,H) is governed by a few much simpler Hom
complexes. This is also essentially what allows us to get a polynomial-time algorithm. It would
be interesting to see if this can be extended to all of Hom(G,H), not just paths in it, or to
non-square-free graphs H. The hardness result for H = K4 by Bonsma [BC09] suggests that useful
topological invariants might not exist already in this case. On the other hand, it is also possible
that such invariants do exist, but are algorithmically more complex only because they involve
higher dimensions or additional discrete conditions.

Statistical physics

Interesting, partly related properties of homomorphisms to square-free graphs, with motivations in
statistical thermodynamics, were found independently by Chandgotia [Cha17]. One of the results
there states that if two homomorphisms from the infinite grid graph Zd with d ≥ 2 to a square-free
graph H differ at only finitely many vertices, then they can be recolored into one another.

Generalizations

We note that none of the proofs in this chapter used any structural properties of H. If we consider
H-Recoloring for any graph H, but only allow recoloring a vertex if all of its neighbors have
one common color, the same results will follow.

An obvious question is how far can our results be extended to more general constraint satisfac-
tion problems: to the asymmetric (directed) case, to multiple constraint types, to hypergraphs
(relations of arbitrary arity)? Is there any connection with the tractable cases of generalized SAT
reconfiguration problems?
Another question is whether the problems of graph homomorphism reconfiguration exhibit a

dichotomy. For which graphs H is H-Recoloring in P or PSPACE-complete? For the hard
side, it is known that K4-Recoloring is PSPACE-complete even for G bipartite [BC09]. This is
equivalent to saying that H-Recoloring is PSPACE-complete for H the cube graph K4 ×K2,
which similarly implies that H-Recoloring is PSPACE-complete for H the 4-cycle C4 with all
loops added, for example. It is not known whether for every loop-free graph H containing K4 the
problem is hard. However, an easy reduction (known as folding, see [FL12]) allows us to focus on
so called stiff graphs. These statements are discussed in more detail in [Wro14].
Instead of an algorithmic dichotomy, we may also ask for which H is it true that shortest

H-recolorings of G have polynomial length in |V (G)|? In other words, which H guarantee that
the connected components of Hom(G,H) have polynomially small diameter?
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Answering these questions could be a way to get a better understanding of the category of
graphs and the topological combinatorics of graph homomorphisms. As we will see in the following
chapter, the tools that characterize paths in Hom(G,H) are also very useful in the study of
Hedetniemi’s conjecture.

40



Chapter III

Multiplicativity of circular cliques and
square-free graphs

1. Introduction

Recall that a graph K is multiplicative if G×H → K implies G→ K or H → K, for all graphs
G,H. They are the prime elements in the lattice of graphs, and as presented in Chapter I,
Hedetniemi’s conjecture states that all cliques Kn are multiplicative. However, the only non-trivial
graphs known to be multiplicative are K3, odd cycles, and still more generally, circular cliques
Kp/q with p

q < 4.
We make no progress for cliques, but in this chapter we show that all square-free graphs are

multiplicative. This answers a question of Tardif [Tar08] and greatly extends the family of known
multiplicative graphs. For example, it gives the first multiplicative graphs of chromatic number
higher than 4 (since graph of girth at least five have no squares, but have arbitrarily high chromatic
number). Generalizing, in terms of the box complex, the topological insight behind existing proofs
for odd cycles, we also give a different proof for circular cliques with p

q < 4.

Previous work That K2 is multiplicative—ie., a product of two graphs is bipartite iff one of
the factors is—follows easily from the fact that a graph is bipartite iff it has no odd-length cycle.
K3 was proved to be multiplicative by El Zahar and Sauer [ES85]. Their proof was generalized to
odd cycles by Häggkvist et al. [Häg+88]. Much later, Tardif [Tar05] used the fact that odd cycles
are multiplicative to extend the result to circular cliques Kp/q, for any integers p, q satisfying
2 ≤ p

q < 4. His method was very different, deducing the multiplicativity of one graph from another
one by using general constructions: powers and inverse powers of graphs (which we study in
the next chapter). The new proof presented here is based on the original approach from [ES85;
Häg+88], but extends it to circular cliques by making the topological intuitions therein more
general and explicit. This shows that this approach applies to all graphs currently known to be
multiplicative. However, it makes it all the more interesting to ask whether this can be connected
with the approach in [Tar05], which appears to be more general.

One relatively recent partial result on multiplicative graphs that is especially relevant here, is a
proof by Delhommé and Sauer [DS02] that if G and H are connected graphs each containing a
triangle and K is a square-free graph, then G×H → K implies G→ K or H → K. Our result is
thus lifting the requirement on containing triangles, but beside similarities to the original proof for
K3, their approach is combinatorial and substantially different.

Squares in graph products Formally, all the proofs in this chapter are again self-contained
and combinatorial, not requiring any knowledge of topology and not involving continuous spaces.
However, the intuitions behind proofs heavily rely on some basic algebraic topology.
The proofs on multiplicativity in [ES85; Häg+88; DS02] rely on a common parity invariant,

which turns out to be essentially just the parity of the winding number of certain cycles. Informally,
this was already noted before, but by making the topological interpretation more explicit we are
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able to extend the proof to circular cliques and to find a cleaner argument for the crucial step
where certain parities are shown to be different. For square-free graphs, we make use of a stronger
invariant, the homotopy type of these cycles (describing where the cycle is mapped to, in the
square-free graph, up to continuous transformations).
We will hence use the fundamental groupoid π(K) of a graph K, as defined in Chapter II, to

describe these invariants. The results from Chapter II are not applicable directly, but we will also
use the general intuition that if we can do something via continuous transformations, then we can
probably do this via recoloring, at least in square-free graphs.
However, it will be crucial to take squares (C4 subgraphs) into account, when discussing the

topology of graphs, especially of tensor product of graphs G×H (which have plenty of squares).
On an intuitive level, we will be looking at the box complex of graphs (instead of at graphs directly
as 1-dimensional simplicial complexes) and use the fact that the box complex of G×H is equivalent
to the product of box complexes of G and H (as a Z2-spaces). Recall that the box complex has
a face for every square in the graph (and similarly, higher-dimensional faces for every complete
bipartite subgraph). This means if the vertices v0, v1, v2, v3 form a square, then a path going from
v0 through v1 to v2 can be continuously transformed to a path going from v0 through v3 to v2.
Formally, this will give an equivalence relation ∼ between walks, making one side of a square
equivalent to the other, for each square in a graph. This results in a coarser groupoid π(G)/∼,
essentially quotienting π(G) by squares. The crucial property is that π(G×H)/∼ is isomorphic to
π(G)/∼ ×π(H)/∼ (up to some parity issues). Formal definitions and proofs are given in Section 3.
This coarser groupoid is essentially the fundamental groupoid of the box complex of G, as

defined in topology, except that instead of using G×K2 (as in the definition of the box complex),
we will use G and just consider the parity of the length of walks directly. Since we only look at the
fundamental groupoid, so walks and cycles, the higher-dimensional faces of the box complex turn
out to be irrelevant. We note that combinatorial definitions of so called higher homotopy groups
of the box complex (and general Hom complexes) have been given by Dochtermann [Doc09b].

Proof outline Consider a homomorphism µ : G × H → K. A cycle in G yields a cycle in
G×H, which is mapped to a closed walk in K (precise definitions will come in the main text).
In Section 3 we deduce two facts from the properties of coarse groupoids of graph products. (1.)
Closed walks in K coming from odd (=odd-length) cycles in G and H must all wind around the
same cycle in K. (2.) Such closed walks can be composed into an image of an odd cycle in G×H.
An image of an odd cycle in G×H must wind an odd number of times around an odd cycle in K.
Thus any two closed walks from G and from H must have a total winding number that is odd.

Section 4 then considers the caseK is a circular clique, first showing that indeedK is topologically
a circle (formally, that π(K)/∼ is isomorphic to Z). From the above (2.) it will easily follow that
all closed walks in K coming from odd cycles in either G or H, say G, have odd winding numbers.
This odd parity then implies that every odd cycle in G has an edge g0g1 such that the K-coloring
µ maps the edge (g0, h0)(g1, h1) of G×H close to its antipode (g0, h1)(g1, h0) (for some arbitrary
fixed edge h0h1 of H). Such edges of G can be disregarded, and we get a bipartite subgraph of G,
which we color with either µ(·, h0) or µ(·, h1) according to a bipartition. This gives a K-coloring
of G, concluding the proof for circular cliques.
A reader comfortable with topology may for a moment jump to Chapter IV, Lemmas 6.1–6.3

(pages 75–76), where a purely topological analogue is given; as many combinatorial details become
unnecessary, the proof there takes little more than a page.
For the case of square-free K, in the last theorem of Section 3, we show that the above (1.)

implies that one of three possibilities holds: either all closed walks in K coming from cycles in G
are topologically trivial (equivalent to ε), or the same holds for H instead, or all cycles in G×H
map to closed walks winding around the same cycle in K. This is the starting point for Section 5,
where we aim to improve the K-coloring of G×H by recoloring vertices one by one, so that it
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reflects its topological type more directly. An improved K-coloring of G×H then turns out to be
in fact just a K-coloring of G composed with a projection, or a K-coloring of H composed with
a projection, or a homomorphism from G ×H to a cycle in K. Multiplicativity of cycles then
implies G→ K or H → K, concluding the proof.
Many steps of the proof generalize to other graphs K, but in the end we need the topology of

its box complex to be essentially 1-dimensional, and even that is not sufficient. The results still
strongly rely on analyzing odd cycles, which may exclude interesting generalizations, in particular
any applicability to Hedetniemi’s conjecture. We comment more on this issue in Chapter IV.

2. Definitions

Graphs Throughout this chapter we again consider only graphs without loops (undirected,
simple), this time because the questions we consider have trivial answers for graphs with loops.
Similarly, we assume that all graphs have at least two vertices and every vertex has a neighbor
(that is, there are no isolated vertices—otherwise we could handle them trivially).

Recall from Chapter I that for a vertex set S ⊆ V (G), its neighborhood NG(S) is defined as NG()
N2
G(){v | uv ∈ E(G), u ∈ S}. We write NG(v) for NG({v}) and N2

G(S) for NG(NG(S)) \ S, often
skipping the subscript G.
The tensor product G ×H is the graph with V (G ×H) = V (G) × V (H) and (g, h)(g′, h′) ∈ G×H

E(G×H) iff gg′ ∈ E(G) and hh′ ∈ E(H). For a vertex v = (g, h) ∈ V (G×H), v|G = g denotes project.
v|Gits projection to G. For h0h1 ∈ H, we write G × h0h1 for the subgraph of G × H induced on
G× h0h1V (G)× {h0, h1}, isomorphic to G×K2. Note that Cn ×K2 is a cycle for odd n. Whenever the

connectivity of some graph is needed, we frequently use the fact that G×H is connected if and
only if G,H are connected and at least one of them is not bipartite.

The fundamental groupoid From Chapter II, recall that we write uv ∈ G and vu = uv−1 ∈ G
for oriented edges. A walk W is a sequence of oriented edges with matching endpoints. Its length |W |, ε
|W | is the number of edges in it, ε is the empty walk, W W ′ denotes concatenation of walks and W W ′

W−1 denotes the reverse walk. Reducing a walk means removing consecutive edges ei, ei+1 such
W

that ei+1 = e−1
i and W denotes the result of iteratively reducing W as long as possible. We write

W ·W ′
W ·W ′ for the W W ′. The set of all reduced walks in a graph with · and ()−1 operations is

π(G)
πv(G)

the fundamental groupoid of G and we denote it π(G). For a vertex v ∈ V (G), the subset of all
reduced walks which are closed, starting and ending at v, forms a group, called the fundamental
group and denoted πv(G). It is easy to check that any walk W from u to v gives an isomorphism
between πu(G) and πv(G) by mapping C to W−1 · C ·W .
If µ : G→ K is a graph homomorphism and W is a walk in G, then µ(W ) is a walk in K. In

particular projections are homomorphisms, |G : G×H → G, so if W is a walk in G×H, then W |G W |G
is a walk in G. Clearly a graph homomorphism µ : G→ H induces a groupoid homomorphism
W 7→ µ(W ) from π(G) to π(H). Formally, a groupoid homomorphism φ : Π→ Π′ is a function
such that φ(P−1) = φ(P )−1, and if P ·Q is defined in Π, then φ(P ) · φ(Q) is defined and equal to
φ(P ·Q) in Π′.

3. Topological invariants of cycles

Recall that a square in a graph G is a quadruple of vertices a, b, c, d such that ab, bc, cd, da ∈ G. A square
square is trivial if a = c or b = d, non-trivial otherwise (since we work with graphs without loops
only, a square is non-trivial if and only if its vertices are pairwise different). A graph is square-free
if it has no non-trivial squares.
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The definition of the fundamental groupoid π(G) turns out to be too fine-grained. One intuitive
reason is that we would like π(G×H) to have something in common with π(G)×π(H): intuitively,
the product of two cycles should behave like a torus, see later Figure III.1. Another reason is
recoloring: if a, b, c, d is a square, a walk going through a, b, c can be changed to go through a, d, c
instead, by changing just one value, so we want to allow such a replacement in π(G) too.
For a graph G, we define ∼ to be the smallest equivalence relation between walks in G which ∼

makes a walk W equivalent to its reduction W , and makes W ab bc W ′ equivalent to W ad dc W ′

for all walks W,W ′ and every non-trivial square a, b, c, d in G. In other words, two walks are
equivalent under ∼ if and only if one can be obtained from the other by a series of elementary
steps, each step consisting of either deleting or introducing a subwalk of the form e e−1 (for some elem.

stepedge e) or replacing a subwalk ab bc with ad dc (for some non-trivial square a, b, c, d in G). Note
that the words ‘non-trivial’ can be dropped without changing the definition, because if b = d,
a subwalk ab bc is of course already equal to ad dc, and if a = c, then a subwalk ab bc can be
deleted and a subwalk ad dc can be introduced (in other words, they both reduce to ε).
We denote the equivalence class of P under ∼ as [P ]. Two walks equivalent under ∼ must [P ]

have the same initial and final vertex. Since P ∼ P ′ and Q ∼ Q′ implies P Q ∼ P ′ Q′ for walks
P, P ′, Q,Q′, and since P ∼ P , we have that P ∼ P ′ and Q ∼ Q′ implies P ·Q ∼ P ′ ·Q′ for reduced
walks. Also P ∼ P ′ implies P−1 ∼ P ′−1. Therefore the quotient groupoid π(G)/∼ (and group π(G)/∼
πv(G)/∼) can be defined naturally on equivalence classes of walks under ∼. We note that similar
quotients were considered in [STW17] and [STW16].
The equivalence of π and π/∼ for square-free graphs follows from definitions:

3.1 Lemma. Let K be a square-free graph. Then the function from π(K)/∼ to π(K) mapping
[W ] to W for any walk W in K is well defined and is a groupoid isomorphism.

Quite naturally, a graph homomorphism implies a groupoid homomorphism for π/∼ as well.

3.2 Lemma. Let µ : G → K be a graph homomorphism. Then the function from π(G)/∼
to π(K)/∼ mapping [W ] to [µ(W )] for any walk W in G is well defined and is a groupoid
homomorphism.

Proof. We want to show that if W ∼ W ′ for two walks in G, then µ(W ) ∼ µ(W ′). It suffices
to check this when W and W ′ differ by one elementary step. If W ′ is obtained from W by
deleting (or introducing) a subsequence g0g1 g1g0 for some g0g1 ∈ G, then µ(W ′) is obtained
from µ(W ) by deleting (or introducing) the subsequence µ(g0g1) µ(g1g0). Hence µ(W ) ∼ µ(W ′).
If W ′ is obtained from W by replacing a subsequence g1g2 g2g3 with g1g4 g4g3 for some square
g1, g2, g3, g4 in G, then µ(W ′) is obtained from µ(W ) by replacing the corresponding images
of µ. Since µ is a graph homomorphism, µ(g1), µ(g2), µ(g3), µ(g4) is a square in K, and hence
µ(W ) ∼ µ(W ′). Thus W ∼W ′ implies µ(W ) ∼ µ(W ′), meaning the function is well defined. It
is indeed a groupoid homomorphism, because µ(W−1) = µ(W )−1, and µ(W ·W ′) ∼ µ(W ·W ′) =

µ(W W ′) = µ(W W ′) = µ(W ) µ(W ′) = µ(W ) · µ(W ′).

A crucial observation is that if W = W ′ or more generally W ∼ W ′, then the lengths of W
and W ′ have the same parity (this follows immediately by considering elementary steps). We can length

parityhence speak of the parity of an element of π(G)/∼.
We would like to think of π(G×H)/∼ as being isomorphic to π(G)/∼ × π(H)/∼, but one may

see that by projecting a walk in G×H to G and H, we can never get a pair of walks of different
parity. Except for this problem (which could be resolved by taking G×K2 instead of G), they
are in fact equivalent, and we will only need the following slightly weaker lemma. The intuitive
meaning is that when considering the equivalence class (the homotopy type) of a walk in G×H,
it suffices to look at the projections to G and H independently. Unfortunately the proof is quite
technical. Note the lemma would not be true if we considered π(G) instead of π(G)/∼.
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3.3 Lemma. Let G,H be graphs. The function φ : π(G×H)/∼ → π(G)/∼ × π(H)/∼ mapping
[W ] to ([W |G], [W |H ]) for any walk W in G×H is a well defined injective groupoid homomorphism.

Proof. We first show that if W ∼ W ′ for two walks W,W ′ in G ×H, then W |G ∼ W ′|G (and
symmetrically W |H ∼ W |′H). It suffices to show this when W and W ′ differ by an elementary
step. If W ′ is obtained from W by a single reduction deleting (or introducing) a subwalk
(g1, h1)(g2, h2) (g2, h2)(g1, h1), then W ′|G is obtained from W |G by a single reduction deleting
(or introducing) g1g2 g2g1, and hence W |G ∼W ′|G. If W ′ is obtained from W by a replacing a
subwalk v1v2 v2v3 with v1v4 v4v3 for some square v1, v2, v3, v4 in G×H, then W ′|G is obtained
from replacing the corresponding subsequences after projection, where v1|G, v2|G, v3|G, v4|G is a
square in G, and hence W |G ∼ W ′|G. Thus W ∼ W ′ implies W |G ∼ W ′|G and W |H ∼ W ′|H ,
so φ([W ]) = ([W |G], [W |H ]) unambiguously defines a function from π(G×H)/∼ to π(G)/∼ ×
πh(H)/∼. Clearly (W ·W ′)|G ∼ (W ·W ′)|G = W W ′|G = W W ′|G = W |G W ′|G = W |G ·W ′|G
andW−1|G = W |−1

G , so φ defines a groupoid homomorphism. It remains to show that φ is injective.

For walks P in G and Q in H such that |P | = |Q| mod 2, define join(P,Q) as the following
walk in G×H. If |P | ≥ |Q|, let join(P,Q) be the walk whose projection to G is P and whose
projection to H is Q e−1 e . . . e−1 e, where e is an arbitrary edge ending in the same vertex
as Q, repeated |P | − |Q| times here. Otherwise, if |P | < |Q|, define join(P,Q) analogously,
extending P with an arbitrary edge e so that it’s length matches the length of Q, that is,
join(P,Q)|G = P e−1 e . . . e−1 e and join(P,Q)|H = Q.

Observe that join(P,Q)|G = P , join(P,Q)|H = Q for every pair P,Q for which it is defined,
and W = join(W |G,W |H) for every walk W in G×H. We claim that for any walks P, P ′, Q,Q′,
if P ∼ P ′ and Q ∼ Q′ then join(P,Q) ∼ join(P ′, Q′) if both joins are defined. It suffices to
show this in the case P differs from P ′ with an elementary step and Q′ = Q (we can show the
case Q differs from Q′ and P = P ′ in a symmetric way).
If P ′ is obtained from P by replacing a subwalk g1g2 g2g3 with g1g4 g4g2 for some square

g1, g2, g3, g4 in G, then |P | = |P ′|, so join(P ′, Q) is obtained from join(P,Q) by replacing a sub-
walk (g1, h1)(g2, h2) (g2, h2)(g3, h3) with (g1, h1)(g4, h2) (g4, h2)(g3, h3) for vertices h1, h2, h3 ∈
V (H) (that is, the projections to G are as described and projections to H are unchanged). Then
(g1, h1), (g2, h2), (g3, h3), (g4, h2) is a square in G×H, so join(P,Q) ∼ join(P ′, Q).

If P ′ is obtained from P by introducing a subwalk g1g2 g2g1 for some g1, g2 ∈ V (G), then let
P = P1 P2 and P ′ = P1 g1g2 g2g1 P2 for some walks P1, P2 in G. We prove the claim by induction
on the length P2. For the inductive step, let P2 be non-empty, so P2 = g1gx P3 for some edge g1gx
and walk P3 of G. Define an intermediate walk P ′′ = P1 g1gx gxg1 P2. Then P ′ and P ′′ have
the same lengths, so join(P ′, Q) = join(P1 g1g2 g2g1 P2, Q) is obtained from join(P ′′, Q) by
replacing a subwalk (g1, h1)(g2, h2) (g2, h2)(g1, h3) with a subwalk (g1, h1)(gx, h2) (gx, h2)(g1, h3)
for some h1, h2, h3 ∈ V (H). Note (g1, h1), (g2, h2), (g1, h3), (gx, h2) is a square in G × H, so
join(P ′, Q) ∼ join(P ′′, Q). Since P ′′ = P1 g1gx gxg1 g1gx P3 can be obtained from P =
P1 g1gx P3 by introducing gxg1 g1gx before P3, whose length is shorter than P2, we know by
inductive assumption that join(P,Q) ∼ join(P ′′, Q) and hence join(P,Q) ∼ join(P ′, Q).
For the basis of the induction assume now that P2 is empty. Suppose first that P = P1

is strictly shorter than Q. Then by definition of join, join(P,Q) = join(P e−1 e,Q) for
some edge e with the same endpoint as P , that is, e = (gx, g1) for some gx ∈ V (G). In this
case join(P ′, Q) = join(P g1g2 g2g1, Q) can be obtained from join(P,Q) by replacing the
subwalk whose projection to G is e−1 e, namely (g1, h1)(gx, h2) (gx, h2)(g1, h3), with a walk
whose projection to G is the introduced fragment (and the projection to H is unchanged), that
is, (g1, h1)(g2, h2) (g2, h2)(g1, h3). Note (g1, h1), (gx, h2), (g1, h3), (g2, h2) is a square in G×H, so
join(P,Q) ∼ join(P ′, Q).
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Suppose now that P2 is empty and P = P1 is at least as long as Q. Then join(P ′, Q) =
join(P g1g2 g2g1, Q) is obtained from join(P,Q) by appending (g1, h1)(g2, h2) (g2, h2)(g1, h1)
to it, where e = h1h2 is the edge with which Q would be extended in the definition of join. Thus
join(P,Q) ∼ join(P ′, Q).
This concludes the proof that for any walks P, P ′, Q,Q′, if P ∼ P ′ and Q ∼ Q′, then

join(P,Q) ∼ join(P ′, Q′), if both joins are defined. Thus we can unambiguously define the
function join′([P ], [Q]) := [join(P,Q)] for walks P,Q whose lengths have the same parity. Since
join′(φ([W ])) = [join(W |G,W |H)] = [W ], the function join′ is the inverse of φ. Thus φ is
an injection. In fact, φ gives an isomorphism between π(g,h)(G × H)/∼ and the subgroup of
πg(G)/∼×πh(H)/∼ formed by those pairs ([P ], [Q]) where |P | and |Q| have the same parity.

The only cases for which we will use the above ‘product lemma’ are the next two corollaries,
focusing on closed walks of G and H. For a closed walk C in a graph G and an oriented edge h0h1

C ⊗ h0h1in a graph H, we define C ⊗ h0h1 as the closed walk in G×H whose projection to G is C C and
whose projection to H is h0h1 h1h0 repeated |C| times (this is just a way to represent a trivial
closed walk ε in H). For a closed walk D in H and g0g1 ∈ G we define g0g1 ⊗D symmetrically.
Elements of the form [µ(C ⊗ h0h1)] in π(K)/∼ will be our central tool; see Figure III.1. The
‘product lemma’ then translates to the following corollary.

0, 0 0, 2 0, 4 0, 6 0, 1 0, 3 0, 5 0, 0

1, 1 1, 3 1, 5 1, 0 1, 2 1, 4 1, 6

2, 0 2, 2 2, 4 2, 6 2, 1 2, 3 2, 5 2, 0

3, 1 3, 3 3, 5 3, 0 3, 2 3, 4 3, 6

4, 0 4, 2 4, 4 4, 6 4, 1 4, 3 4, 5 4, 0

5, 1 5, 3 5, 5 5, 0 5, 2 5, 4 5, 6

0, 0 0, 2 0, 4 0, 6 0, 1 0, 3 0, 5 0, 0

Figure III.1 Top: the graph C6 × C7. For h ∈ V (H), the vertices (g, h) are drawn in two
columns depending on the parity of g + h to make the structure more apparent. The red
line shows 0 1⊗C7. The blue line shows C6⊗ 0 1 (visiting each edge twice, since C6 is even).

Bottom: a larger example, C16×C17. The red cycle 0 1⊗C16 and the the blue cycle C17⊗0 1
represent different elements (they are not equivalent under ∼). However, they commute,
ie. (0 1⊗ C16) (C17 ⊗ 0 1) ∼ (C17 ⊗ 0 1) (0 1⊗ C16). Intuitively, this means the first walk,
(0 1⊗C16) (C17 ⊗ 0 1), can be continuously transformed along the surface to get the second
one (with the starting point fixed).
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3.4 Corollary. Let µ : G × H → K. Let g0g1 ∈ G and h0h1 ∈ H. Let C ∈ π(g0,h0)(G × H).
Then [µ(C)]·2 = [µ(C|G ⊗ h0h1)] · [µ(g0g1 ⊗ C|H)].

Proof. Since h0h1 h1h0 ∼ ε in H and φ is a groupoid homomorphism by Lemma 3.3, we have

φ([C2]) = ([C2|G], [C2|H ]) = ([C2|G], [ε]) · ([ε], [C2|H ]) =

= ([C|G2], [h0h1 h1h0 . . . ]) · ([g0g1 g1g0 . . . ], [C|H2]) =

= φ([C|G ⊗ h0h1]) · φ([g0g1 ⊗ C|H ]) = φ([C|G ⊗ h0h1] · [g0g1 ⊗ C|H ]).

Lemma 3.3 also says that φ is injective, and hence [C]·2 = [C|G ⊗ h0h1] · [g0g1 ⊗ C|H ]. By
Lemma 3.2, [µ(C)]·2 = [µ(C|G ⊗ h0h1)] · [µ(g0g1 ⊗ C|H)].

The crucial property of the tensor product is that if X is a closed walk of the form C ⊗ h0h1

and Y is of the form g0g1 ⊗D, then X and Y commute in π(G×H)/∼, that is X · Y = Y ·X.
Therefore, by Lemma 3.2, [µ(X)] commutes with [µ(Y )], which will give us a lot of information
(in the case of square-free K).

3.5 Corollary. Let µ : G × H → K. Let g0g1 ∈ G and h0h1 ∈ H. Let C ∈ πg0(G) and
D ∈ πh0(H). Then [µ(C ⊗ h0h1)] commutes with [µ(g0g1 ⊗D)].

Proof. Since h0h1 h1h0 ∼ ε in H, φ([C ⊗ h0h1]) = ([C2|G], [ε]) and similarly φ([g0g1 ⊗ D]) =
([ε], [D2|H ]). As [ε] commutes with any element of πg0(G)/∼ (and similarly for H), ([C2|G], [ε])
commutes with ([ε], [D2|H ]). By Lemma 3.3, φ is an injective homomorphism and hence [C⊗h0h1]
commutes with [g0g1 ⊗D]. Since µ is a graph homomorphism, by Lemma 3.2, [µ(C ⊗ h0h1)]
commutes with [µ(g0g1 ⊗D)].

We now consider the information given by π(K)/∼ more precisely. For the graphs K we consider,
πv(K)/∼ is a free group, for any v ∈ V (K). For square-free graphs this follows from the fact
that πv(K) is always a free group (see eg. [KN07]). For circular cliques this follows from the fact
that πv(Kp/q)/∼ is isomorphic to Z, for 2 < p

q < 4 (Lemma 4.1). The property of free groups we
need (and which can easily be checked directly for πv(K) and Z) is that primitive roots can be
unambiguously defined and that primitive roots of commuting elements are equal, up to inversion.
For an element O of a free group π other than the trivial element ε, its primitive root is the unique

primitive
rootR ∈ π such that O = Rn for some n ∈ N with n maximized (see eg. [MA80] for a linear time

algorithm computing R).

3.6 Fact. Let O1, O2 be elements of a free group. Then O1 and O2 commute, ie. O1 ·O2 = O2 ·O1,
if and only if O1 = ε or O2 = ε or their primitive roots are equal or the inverse of each other.

Turning our attention to square-free graphs K, from Corollary 3.5 (and Lemma 3.1) we have
that µ(C ⊗ h0h1) commutes with µ(g0g1 ⊗D) for any cycles C,D in G,H, and therefore they
have the same primitive root (up to inversion), if they are both non-ε elements of πµ(g0,h0)(K).
Intuitively, this means that if we take any cycle in G and any cycle in H, then µ maps them to
closed walks that wind around the same cycles (or the same sequence of cycles) in K, though they
may wind a different number of times and in opposite directions.
Since this is true for any pair of cycles, this implies that either all cycles in G map to ε, or all

cycles in H map to ε, or all cycles in G and H map to closed walks winding around one common
cycle of K. We make this more formal in the following proof. The theorem captures all we need
from this section for the case of square-free K. In the first and second case we will later be able to
directly obtain a graph homomorphism from G and H, respectively, while in the third case, we
will reduce our problem by obtaining a homomorphism G×H → Cn, where Cn → K corresponds
to the common primitive root.

47



3.7 Theorem. Let µ : G×H → K for a square-free graph K. Let g0g1 ∈ G, h0h1 ∈ H. Then
one of the following holds:

• µ(C) = ε for every closed walk C from (g0, h0) in G× h0h1,

• µ(D) = ε for every closed walk D from (g0, h0) in g0g1 ×H,

• there is an R ∈ π(K) such that for every closed walk C ′ from (g0, h0) in G×H, µ(C ′) = R·i

for some i ∈ Z.

Proof. Suppose first that µ(C ⊗ h0h1) = ε for all C ∈ πg0(G). Let C ′ be any closed walk from
(g0, h0) in G × h0h1. Then C ′ C ′ = C ′|G ⊗ h0h1, and hence µ(C ′)

·2
= µ(C ′|G ⊗ h0h1) = ε,

implying µ(C ′) = ε. So the first case of our claim holds. Symmetrically, if µ(g0g1 ⊗D) = ε for
all D ∈ πh0(H), then the second case of our claim holds.

If neither of the above two possibilities holds, then there is a C0 ∈ πg0(G) with µ(C0 ⊗ h0h1) 6= ε

and a D0 ∈ πh0(H) with µ(g0g1 ⊗D0) 6= ε. Let R be the primitive root of µ(C0 ⊗ h0h1), R 6= ε.
Let D be any element of πh0(H). By Corollary 3.5 and Lemma 3.1, µ(C0 ⊗ h0h1) commutes

with µ(g0g1 ⊗D). By Fact 3.6, this implies that the primitive root of µ(g0g1 ⊗D0) is R, up to
inversion. That is, for every D ∈ πh0(H), µ(g0g1 ⊗D) = R·i for some i ∈ Z. Using D0, we can
symmetrically show that for every C ∈ πg0(G), µ(C ⊗ h0h1) = R·i for some i ∈ Z.
For any C ′ ∈ π(g0,h0)(G×H), by Corollary 3.4 (and Lemma 3.1), µ(C ′)

·2
= µ(C ′|G ⊗ h0h1) ·

µ(g0g1 ⊗ C ′|H) and hence µ(C ′)
·2

= R·i for some i ∈ Z. So either µ(C ′) is empty or it has the
same primitive root as µ(C ′)

·2
, and in both cases µ(C ′) = R·i for some i ∈ Z.

4. The case when K is circular

We begin this section by showing that circular cliques with 2 < p
q < 4 behave like circles,

topologically, and so the (coarse) fundamental group just describes an integer: the winding number.
(An analogous fact is well known for the box complex: formally, it is homotopy equivalent to a
circle and its fundamental group is isomorphic to Z for circular cliques with 2 < p

q < 4). For
simplicity, we only consider odd p; this includes the case of odd cycles in particular (as C2n+1 is
isomorphic to K2n+1/n), and will still allow us to conclude the general case.

4.1 Lemma. Let p, q be integers such that 2 < p
q < 4 and p is odd. Then πv(Kp/q)/∼ is a group

isomorphic to Z, for any v ∈ V (Kp/q).

Proof. We begin by defining a more intuitive view of a circular clique (so that edges will join
numbers that are close enough, instead of far enough). We need the following definitions:

• For i, j ∈ Z2p, define ~d(i−j) to be the integer (in Z) in the set {−(p−1),−(p−2), . . . , p−1, p}
which is equivalent to i − j mod 2p (this depends only on i − j, but we think of it as a
signed distance between i and j in the circle Z2p).

• LetK ′ be the graph with V (K ′) = {0, 1, . . . , 2p−1}, E(K ′) = {ij | ~d(i−j) is odd and |~d(i−
j)| ≤ p− 2q} (that is, K ′ is the Cayley graph of Z2p with generators ±1,±3, . . . ,±p− 2q).

• Define φ : Kp/q × K2 → K ′ as φ(i, 0) = 2i mod 2p and φ(i, 1) = 2i + p mod 2p. This
is easily seen to be a graph isomorphism. Indeed, vertices whose difference is (i − j) ∈
{q, q + 1, . . . , bp2c, d

p
2e, . . . , p− q} mod p, will map to vertices whose difference is

2(i− j) + p ∈ {2q + p, 2q + 2 + p, . . . , 2bp2c+ p, 2dp2e+ p, . . . , 2(p− q) + p} =
= {−(p− 2q),−(p− 2q − 2), . . . ,−1, 1, . . . , p− 2q} mod 2p.
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• For a walk W in Kp/q whose (i+ 1)-th edge is wiwi+1, define ϕ(W ) to be the walk in K ′ of
the same length whose (i+ 1)-th edge is φ(wi, i mod 2)φ(wi+1, i+ 1 mod 2). Note that ϕ
maps closed walks of odd length beginning and ending in w0 ∈ V (Kp/q) to walks between
φ(w0, 0) and φ(w0, 1) = φ(w0, 0) + p mod 2p, which are not closed.

• For a walk W ′ in K ′ whose (i+ 1)-th edge is wiwi+1, define ∆(W ) =
∑|W |−1

i=0
~d(wi+1 −wi).

Intuitively, ∆ measures how far W went winding around K ′, and we should think of a
closed walk W as winding d times if ∆(W ) = d · 2p.

We claim that ∆ defines a functor from π(K ′)/∼ to the group Z, that is, ∆(W W ′) =
∆(W ) + ∆(W ′) and W ∼W ′ implies ∆(W ) = ∆(W ′) for any two walks W,W ′ in K ′. The first
is clear, so consider two walks W ∼ W ′ in K ′. It suffices to show that ∆(W ) = ∆(W ′) when
W and W ′ differ by an elementary step. If W ′ is obtained from W by introducing/deleting
a subsequence w1w2 w2w1 for some w1w2 ∈ E(K ′), then ∆(W ′) is obtained from ∆(W ) by
adding/subtracting ∆(w1w2 w2w1) = ~d(w2 −w1) + ~d(w1 −w2) = 0, so the two values are indeed
equal (note that ~d(w2 −w1) = −~d(w1 −w2) unless both are equal to p, which is impossible when
w1w2 ∈ E(K ′)). If W ′ is obtained from W by replacing a subsequence ab bc by ad dc, for some
square a, b, c, d inK ′, then ∆(W ′) differs from ∆(W ) by (~d(b−a)+ ~d(c−b))−(~d(d−a)+ ~d(c−d)) =
~d(b− a) + ~d(a− d) + ~d(d− c) + ~d(c− b). Since ab is an edge of K ′, we have |~d(b− a)| ≤ p− 2q
and similarly |~d(a − d)| ≤ p − 2q. Hence |~d(b − a)| + |~d(a − d)| ≤ 2p − 4q < p, so a, b, d are
contained in an interval of length less than p in Z2p, implying ~d(b− a) + ~d(a− d) = ~d(b− d) and
|~d(b− d)| < p. Similarly ~d(d− c) + ~d(c− b) = ~d(d− b). Therefore the difference between ∆(W ′)
and ∆(W ) is ~d(b− d) + ~d(d− b) = 0, so they are in fact equal.
Furthermore, ∆ ◦ ϕ is a functor from π(Kp/q)/∼ to the group Z, that is, ∆(ϕ(W W ′)) =

∆(ϕ(W )) + ∆(ϕ(W ′)) and W ∼ W ′ implies ∆(ϕ(W )) = ∆(ϕ(W ′)). The first follows from
the definitions and the fact that ~d((p + i) − (p + j)) = ~d(i − j) for i, j ∈ Z2p. The second
follows from the fact that an elementary step showing W ∼ W ′ in Kp/q corresponds to an
elementary step showing φ(W ) ∼ φ(W ′) in K ′; in particular, if a, b, c, d is a square in Kp/q, then
φ(a, i), φ(b, 1− i), φ(c, i), φ(d, 1− i) is a square in K ′ for i = 0, 1.

Let us define a generator for π0(Kp/q)/∼. Define O as the closed walk of length p in Kp/q whose
(i+1)-th edge is (i · dp2e mod p, (i+1) · dp2e mod p). Then ϕ(O) is a walk of length p in K ′ going
from 0 to p, whose (i+1)-th edge is (i mod 2p, i+1 mod 2p); indeed, for even i, it is by definition
(2 · idp2e mod 2p, 2 ·(i+1)dp2e+p mod 2p) = (i ·(p+1) mod 2p, (i+1) ·(p+1)+p mod 2p) = (i

mod 2p, i+ 1 mod 2p), and similarly for odd i. Thus ∆(ϕ(O)) =
∑|O|

i=0 1 = |O| = p.
We claim that for every closed walk W in Kp/q from 0 to 0, there is a d ∈ Z such that W ∼ Od.

First, we use elementary steps to transform W so that wi+1−wi ∈ {bp2c, d
p
2e} (as elements in Zp)

for any edge wiwi+1 ofW . Indeed, if say wi+1−wi ∈ {q, q+1, . . . , bp2c−1}, then letting x = wi+bp2c
and y = wi− 1, we see that wi− x = bp2c, x− y = dp2e, and wi+1− y = wi+1−wi + 1 mod p. In
particular, wi, x, y, wi+1 is a square in Kp/q, so wiwi+1 ∼ wiwi+1 wi+1y ywi+1 ∼ wix xy ywi+1.
Hence we can replace the subwalk wiwi+1 in W by wix xy ywi+1. Since this introduced two
edges with difference between endpoints in {bp2c, d

p
2e} and changed this difference for the third

edge to be closer to bp2c, we can do such replacements until we get a walk W ′ ∼ W with
w′i+1−w′i ∈ {b

p
2c, d

p
2e} for any edge w′iw

′
i+1 of W ′. Then, if two consecutive edges have a different

difference, say, w′i+1−w′i = bp2c and w
′
i+2−w′i+1 = dp2e, then in fact w′i+2 = w′i + bp2c+ dp2e = w′i,

so they reduce, that is, the subwalk w′iw
′
i+1 w

′
i+1w

′
i+2 can be deleted in an elementary step. We

do this until we get a walk W ′′ ∼ W such that w′′i+1 − w′′i = c for all edges w′′i+1w
′′
i of W ′′, for

some constant c ∈ {bp2c, d
p
2e} = {bp2c,−b

p
2c}. Then the i-th vertex of the walk is w′′i = i · c. Since

W ′′ is a closed walk, it must be that |W ′′| · c = 0 mod p. Therefore, p must divide |W ′′| and
W ′′ = O|W |/p or W ′′ = O−|W |/p.
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The above paragraph shows that every element of π0(Kp/q)/∼ is of the form [Od] for some
d ∈ Z. Since ∆(ϕ(Od)) = d · p, these are pairwise different elements, for different d. Clearly
[Od] · [Od′ ] = [Od+d′ ], hence π0(Kp/q)/∼ is a group isomorphic to Z. For any v ∈ V (Kp/q), let P
be any walk from 0 to v in Kp/q. Then [O] 7→ [P ] · [O] · [P ]−1 is easily checked to be a group
isomorphism between πv(Kp/q)/∼ and π0(Kp/q)/∼.

Next, with give a very short proof of a parity argument used in [ES85; Häg+88; DS02]. For a half-
-paritycycle C in G or H, if [µ(C ⊗ h0h1)] = X ·2 for some X ∈ π(K)/∼, define the half-parity of C as

the parity of |X|. The following lemma shows that the half-parity of each odd-length cycle in G is
defined and different from the half-parity of each odd-length cycle in H.

4.2 Lemma. Let µ : G × H → K, g0g1 ∈ G, h0h1 ∈ H, and assume πµ(g0,h0)(K)/∼ is a
free group. Let C be a closed walk from g0 in G and let D be a closed walk from h0 in H, with
|C|,|D| odd. Then [µ(C ⊗ h0h1)] = R·2i and [µ(g0g1 ⊗D)] = R·2j for some R ∈ πµ(g0,h0)(K)/∼ of
odd length and i, j ∈ Z such that i+ j is odd.

Proof. Let J be the closed walk from (g0, h0) in G×H whose projection to G is C |D| and whose
projection to H is D|C|. Then J has length |C| · |D|, which is odd, in particular [µ(J)] 6= ε. Let
R be the primitive root of [µ(J)], that is, [µ(J)] = R·k, for some k ∈ Z. It follows that R and k
are odd. By Corollary 3.4,

R·2k = [µ(J)]·2 = [µ((C |D|)⊗ h0h1)] · [µ(g0g1 ⊗ (D|C|))] = [µ(C ⊗ h0h1)]·|D| · [µ(g0g1 ⊗D)]·|C|

By Corollary 3.5, [µ(C ⊗ h0h1)] and [µ(g0g1 ⊗ D)] commute. Hence they both commute
with R·2k and by Fact 3.6, they are equal to R·2i and R·2j respectively, for some i, j ∈ Z (the
exponents must be even because R is odd and |C ⊗ h0h1| is even). Then R·2k = R·(2i|D|+2j|C|),
so i · |D|+ j · |C| ≡ i+ j mod 2 must be odd.

This implies that either the half-parity is odd for all odd-length cycles in G and even for all
odd-length cycles in H, or vice versa. (As a side note, let us mention this conclusion could
be reached more generally, even when π(K)/∼ is not free, as long as the edges of K admit an
orientation such that no square a, b, c, d of K is oriented a → b → c → d and a → d; if such an
orientation exists, the algebraic length mod 4 of a walk turns out to be a suitable invariant.)

The key to the parity approach is however in the next lemma, and in the corollary following it.
It will show that if an odd-length cycle in G has odd half-parity, then µ(g, h0) is equal or close to
µ(g, h1) for some vertex g of the cycle. Excluding such a vertex (or edge) from every odd cycle,
we will later make a large subgraph of G bipartite.

Intuitively, the lemma reflects the topological fact that in a map from a circle to a circle
µ : S1 → S1 winding an odd number of times, there must be a pair of antipodal points that maps
to antipodal points, that is, a point x ∈ S1 ⊆ R2 satisfying µ(x) = −µ(−x). The idea is then that
given a cycle C in G, we can view µ as a map from C ⊗ h0h1 to K ×K2, which can be extended
piece-wise linearly to a continuous map from a circle to the topological space corresponding to
K ×K2. If C has odd half-parity, then this map will be winding an odd number of times. The
above fact then implies that some antipodal points map to antipodes in K ×K2 and hence the to
the same point in K. If K is an odd cycle and |C| is odd, it can be shown that such antipodal
points will occur as vertices of C ⊗ h0h1 (instead of some general position in the continuous
extension). This is not true for circular cliques, but we can still show a slight relaxation.

4.3 Lemma. Let O = k0k1 k1k2 . . . k2n−1k0 be a closed walk of length 2n in Kp/q, for n, p odd
and 2 < p

q < 4. If [O] = [R]·2 for some walk R of odd length in Kp/q, then there is an index i ∈ Z2n

such that kiki+n+1 and ki+1ki+n are edges of Kp/q.
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Proof. We reuse the definitions of ~d,K ′,∆, ϕ of the proof of Lemma 4.1. Let us first translate
the statement in these terms. In particular, ϕ(O) is a closed walk in K ′ of length 2n. Since |R|
is odd, ∆(ϕ(R)) is odd too (from the definitions, it is a sum of |R| summands, each of which
corresponds to an edge of K ′ and hence is an odd integer). We showed that O ∼ R2 implies
∆(ϕ(O)) = ∆(ϕ(R2)) = 2 ·∆(ϕ(R)) and hence ∆(ϕ(O)) ≡ 2 mod 4, which is all we need to
know about ϕ(O).
Let ϕ(O) = c0c1 c1c2 . . . c2n−1c0. We wish to show that for some i ∈ Z2n, kiki+n+1 and

ki+1ki+n are edges of Kp/q. This is the same as saying that the difference between endpoints is
in {q, q + 1, . . . , bp2c, d

p
2e, . . . , p− q} mod p, which by definition of ϕ is equivalent to saying that

the difference between endpoints of cici+n+1 and ci+1ci+n is in

{2q, 2q + 2, . . . , 2bp
2
c, 2dp

2
e, . . . , 2(p− q)} = {2q, 2q + 2, . . . , p− 1,−(p− 1), . . . ,−2q},

that is, |~d(ci − ci+n+1)| ≥ 2q and |~d(ci+1 − ci+n)| ≥ 2q. We can forget Kp/q and focus on the
walk ϕ(O) in K ′ from now on.

The statement we want to prove is now the following: if ϕ(O) = c0c1 c1c2 . . . c2n−1c0 is a
walk in K ′ of length 2n for n odd such that ∆(ϕ(O)) ≡ 2 mod 4, then there is an i ∈ Z2n such
that |~d(ci − ci+n+1)| ≥ 2q and |~d(ci+1 − ci+n)| ≥ 2q.

Suppose to the contrary that for all i ∈ Z2n, |~d(ci − ci+n+1)| < 2q or |~d(ci+1 − ci+n)| < 2q. We
claim that for all i ∈ Z2n,

~d(ci+1 − ci)− ~d(ci+n+1 − ci+n) = ~d(ci+1 − ci+n+1)− ~d(ci − ci+n) (*)

Fix i ∈ Z2n and assume first that |~d(ci−ci+n+1)| < 2q. Then cici+1 ∈ E(K ′) means |~d(ci+1−ci)| ≤
p − 2q and hence ci, ci+1 and ci+n+1 are contained in an interval of length less than p of Z2p,
which implies ~d(ci+1 − ci) + ~d(ci − ci+n+1) = ~d(ci+1 − ci+n+1). Similarly ci+n+1ci+n ∈ E(K ′)
implies that ~d(ci − ci+n+1) + ~d(ci+n+1 − ci+n) = ~d(ci − ci+n). Subtracting the two gives (*).
Note also that |~d(ci − ci+n)| < 2q + p− 2q = p. The proof is analogous in the other case, when
|~d(ci+1 − ci+n)| < 2q.

Let us now sum (*) over i = 0, 1, . . . , n− 1. The left side then amounts to
∑n−1

i=0
~d(ci+1 − ci)−∑2n−1

i=n
~d(ci+1−ci), while the right side telescopes to simply−~d(c0−c0+n)+~d(cn−1+1−cn−1+n+1) =

−~d(c0 − cn) + ~d(cn − c0) = 2~d(cn − c0) (the last equality follows from |~d(c0 − cn)| < p). Since
n is odd, cn and c0 belong to different sides of the bipartition of K ′ and hence ~d(cn − c0)
is odd. Therefore

∑n−1
i=0

~d(ci+1 − ci) −
∑2n−1

i=n
~d(ci+1 − ci) = 2~d(cn − c0) ≡ 2 mod 4. Since

similarly ~d(ci+1 − ci) is odd for all i, and n is odd, we have 2 ·
∑2n−1

i=n
~d(ci+1 − ci) ≡ 2 mod 4.

Together, this implies
∑2n−1

i=0
~d(ci+1 − ci) ≡ 0 mod 4. But this contradicts our assumption that

∆(ϕ(O)) =
∑2n−1

i=0
~d(ci+1 − ci) ≡ 2 mod 4.

4.4 Corollary. Let µ : G ×H → Kp/q for 2 < p
q < 4 and p odd. Let h0h1 ∈ H. Let C be an

odd-length closed walk in G. If C has odd half-parity, then there is an edge gg′ of C such that
µ(g, h0)µ(g′, h0) and µ(g, h1)µ(g′, h1) are edges in Kp/q.

Proof. Recall C having odd half-parity means [µ(C ⊗ h0h1)] = X ·2 for some odd X ∈ π(Kp/q)/∼.
The claim follows then from Lemma 4.3 applied to the closed walk µ(C ⊗ h0h1): it has
length 2|C|, where |C| is odd, and vertices indexed with i, i + |C| + 1, i + 1 and i + |C|
are µ(g, hj), µ(g′, hj), µ(g′, h1−j) and µ(g, h1−j) respectively, for some gg′ ∈ C and j ∈ {0, 1}.

Finally, we use what we obtained to get a graph homomorphism G→ K, similarly as in [ES85],
except for using the relaxed condition on edges instead of a condition on vertices.
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4.5 Lemma. Let µ : G×H → K. Let g0g1 ∈ G, h0h1 ∈ H. If every odd-length closed walk in
G has an edge gg′ such that µ(g, h0)µ(g′, h0) ∈ K and µ(g, h1)µ(g′, h1) ∈ K, then G→ K.

Proof. Let G′ be the subgraph of G obtained by removing those edges gg′ ∈ G which satisfy
µ(g, h0)µ(g′, h0) ∈ K and µ(g, h1)µ(g′, h1) ∈ K. Then the assumption says that G′ is bipartite.
Fix a bipartition of G′ and let δ(g) = h0 for g ∈ V (G) on one side of it and δ(g) = h1 for g on
the other side. In other words, δ is a graph homomorphism from G′ to h0h1, a subgraph of H
isomorphic to K2.
Define γ : V (G) → V (K) as γ(g) = µ(g, δ(g)) for g ∈ V (G). To show that γ is a graph

homomorphism, consider any edge gg′ ∈ G. If gg′ ∈ G′, then δ(gg′) ∈ H (in fact δ(gg′) = h0h1)
and gg′ ∈ G, which implies γ(gg′) = µ((g, δ(g))(g′, δ(g′))) ∈ K. If gg′ 6∈ G′, then either
δ(gg′) ∈ H and γ(gg′) ∈ E(K) follows as before, or δ(g) = δ(g′) = hi for some i ∈ {0, 1}, which
implies γ(gg′) = µ(g, hi)µ(g′, hi), which is an edge of K by construction of G′.

Since the above lemma is the one that gives the final graph homomorphism, we note a potentially
interesting generalization which follows straightforwardly from the same proof: let µ : G×H → K,
let H ′ be an induced subgraph of H, and let G′ be the subgraph of G obtained by removing those
edges gg′ ∈ E(G) such that ∀h,h′∈V (H′)µ(g, h)µ(g′, h′) ∈ K; then G′ → H ′ implies G→ K.

4.6 Theorem. The circular clique Kp/q is multiplicative, for 2 ≤ p
q < 4.

Proof. We first show the claim for p odd (in particular 2 < p
q ). Let µ : G × H → Kp/q for

some graphs G,H and let g0g1 ∈ G, h0h1 ∈ H. We can assume G and H are connected and
non-bipartite. By Lemma 4.1, πµ(g0,h0)(Kp/q)/∼ is isomorphic to Z and hence a free group. By
Lemma 4.2, for any odd-length closed walks C,D in G,H from g0, h0 respectively, the half-parities
of C and D are different. Assume without loss of generality that the half-parity is odd for all
odd-length closed walks C from g0 in G (otherwise swap G and H).
If C ′ is an odd-length closed walk from g′ in G, we claim C ′ has odd half-parity too. Indeed,

taking any even-length walk W from g0 to g′, W C ′ W−1 is an odd-length closed walk from
g0 in G. It hence has odd half-parity, meaning [µ((W C ′ W−1) ⊗ h0h1)] = X ·2 for some odd
X ∈ π(Kp/q)/∼. Thus [µ(C ′ ⊗ h0h1)] = Y ·2 for Y = [µ(W ′)]−1 ·X · [µ(W ′)], where W ′ is the
walk with W ′|G = W and W ′|H = (h0h1 h1h0)|W |/2. Hence C ′ has odd half-parity too.

Therefore by Corollary 4.4 every odd-length closed walk in G has an edge with the property
from the claim and hence Lemma 4.5 gives a homomorphism G→ Kp/q.

Consider now Kp/q with p even. Suppose G×H → Kp/q. Then G×H → Kp′/q′ for any p′, q′

with p
q <

p′

q′ and thus G→ Kp′/q′ or H → Kp′/q′ for p′ odd. Since the set of rationals 2 < p′

q′ < 4

with p′ odd is dense in the interval (2, 4), and since χc(G) = inf{p
′

q′ : G→ Kp′/q′} is known to be
attained [Zhu01], it follows that G→ Kp/q or H → Kp/q.

5. The case when K is square-free

As sketched in the introduction, the proof will rely on inductively improving a K-coloring µ of
G×H by recoloring. Recall that we say a K-coloring µ of a graph G can be recolored to µ∗ if recolor
there is a sequence µ0, . . . , µn of K-colorings of G with µ0 = µ, µn = µ∗, where µi+1 differs from
µi for at most one value g ∈ V (G). Note that if µ∗ is obtained from µ by changing colors at some
independent set of vertices (a set S ⊆ V (G) such that S×S ∩E(G) = ∅), then µ∗ can be obtained
by recoloring (considering vertices of S one by one, in any order). Recoloring can be thought as a
discrete homotopy, it preserves the topological invariants we defined before; we will need this only
in the following case (see the previous chapter for a more constructive statement; note also this
works for general K by taking π(K)/∼ instead of π(K)).
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5.1 Lemma. Let µ, µ∗ : G→ K for K square-free. Assume µ can be recolored to µ∗. Let C be
any closed walk in G. Then µ(C) and µ∗(C) are conjugate, that is, there is a Q ∈ π(K) such that
µ(C) = Q · µ∗(C) ·Q−1.

Proof. It suffices to prove the lemma in the case µ∗ is obtained in a single step, changing the
color of g ∈ V (G) only. Let C = c0c1 c1c2 . . . cn−1c0. For any i ∈ Zn such that ci = g, since G
is loop-free, ci−1 and ci+1 are different from g. Thus µ(ci−1) = µ∗(ci−1) and µ(ci+1) = µ∗(ci+1),
which means µ(ci−1), µ(ci), µ(ci+1), µ∗(ci) is a square in K. Since K is square-free, this implies
µ(ci−1) = µ(ci+1) and thus µ(ci−1ci cici+1) = ε = µ∗(ci−1ci cici+1). Hence, if c0 6= g, µ(C) =
µ∗(C), while if c0 = g, then

µ(C) = µ(c0c1) ·µ(c1c2 . . . cn−2cn−1) ·µ(cn−1c0) = µ(c0c1) ·µ∗(c1c2 . . . cn−2cn−1) ·µ(cn−1c0) =

= µ(c0c1) · µ∗(c0c1)
−1 · µ∗(C) · µ∗(cn−1c0)

−1 · µ(cn−1c0) = Q · µ∗(C) ·Q−1

for Q = ab bc where a = µ(c0), b = µ(c1) = µ∗(c1) = µ(cn−1) = µ∗(cn−1) and c = µ∗(c0).

The above lemma, together with the observation that Q ·R·i ·Q−1 = (Q ·R ·Q−1)
·i, implies that

if any case of Theorem 3.7 is true for µ, then it is also true for any K-coloring reachable from it by
recoloring. We use this to improve a givenK-coloring without losing the conclusions of Theorem 3.7.

By H-improving a K-coloring µ of G×H, we mean recoloring µ to make µ(·, h) as constant as H-impr.
possible, for every h ∈ V (H). Formally, µ∗ : G×H → K H-improves over µ if the number of triples
g, g′ ∈ V (G), h ∈ V (H) such that g, g′ have a common neighbor in G and µ∗(g, h) 6= µ∗(g′, h) is
lower than for µ. We say µ can be H-improved by recoloring if there is a µ∗ to which it can be
recolored and which H-improves over µ.

For readers familiar with covering spaces in topology, the intuitions behind ‘improving’ can be
explained in the following terms (which in fact could be made formal using the theory of graph
coverings presented in [KN07]). Consider any base vertex (g0, h0) of G×H with any edge h0h1 ∈ H.
In the first case of Theorem 3.7, when all cycles in G× h0h1 map to closed walks in K that are
topologically trivial, we can lift the K-coloring µ to a graph homomorphism mapping G× h0h1

to the universal cover of K, which is a tree (its nodes are the reduced walks based at µ(g0, h0)).
This graph homomorphism to a tree can then be folded until it becomes a homomorphism to an
edge, constant on V (G)× {h0} and on V (G)× {h1}. We fold it by finding extremal vertices in
G × h0h1—those which map the furthest from a fixed base vertex in the universal cover—and
changing the mapping so that they map closer. For example, if µ maps a walk starting at the base
point to ab bc cd dc cb ba, then we recolor the extremal vertex (colored d) so that the walk maps to
ab bc cb bc cb ba; then we recolor the new extremal vertices (colored c) to reach ab ba ab ba ab ba.
We proceed similarly in the last case of Theorem 3.7, when all cycles of G×H map to closed

walks winding around the same root R of K. Instead of the universal cover, we can only lift to a
covering space whose fundamental group is (instead of the trivial group) the subgroup of π(K)
generated by R. In other words, we measure for each vertex, using any walk from the base vertex
to it, how far this walk (as mapped in K) goes outside R. Folding vertices extremal in this sense,
we eventually reach a K-coloring that maps all such walks within R, which means there is a graph
homomorphism to a cycle which admits a homomorphism to K. Using the multiplicativity of
cycles concludes the proof.

Formally, for µ : G×H → K, an H-extremal set is a pair (S, h0h1) where h0h1 ∈ H and S is a H-extr.
subset of V (G)× {h1} that is monochromatic, whose neighborhood is monochromatic, and whose
second neighborhood is non-empty, with colors different from the color of S (Figure III.2, left).
That is, µ(S) = {a}, µ(NG×h0h1(S)) = {b}, N2

G×h0h1(S) 6= ∅ and a 6∈ µ(N2
G×h0h1(S)), for some

a, b ∈ V (K).
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The following technical lemma gives our basic inductive argument. Intuitively, if we find an
H-extremal set (S, h0h1), then we can H-improve µ by recoloring S to match some color in
its second neighborhood. If this is not immediately possible, because the colors would conflict
with some µ(·, h2), then by square-freeness we will find that the conflicting values give a smaller
H-extremal set.

h0 h1

Sa

 

a′

N2(S)

b

N(S)

a′

h0 h1 h2

(g′1, h1)

S

N2(S)

(g2, h0)
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N(S)

a′

a

(g1, h1)
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(y, h0)
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a′ (x, h1)
(y, h2)

(y′, h2)

S′b′

Figure III.2 Illustration for the proof of Lemma 5.2: K-colored vertices of G×H (arranged
in columns according to their H coordinate). Left: an H-extremal set (dark red) S, its
neighborhood (blue) and second neighborhood in G × h0h1. Middle: S′ cannot have a
neighbor outside S. Right: S′ has a non-empty second neighborhood.

5.2 Lemma. Let µ : G×H → K for K square-free, G connected and non-bipartite. If there is
an H-extremal set, then µ can be H-improved by recoloring.

Proof. Choose an H-extremal set (S, h0h1) minimizing |S|+ |NG×h0h1(S)|. Let a′ be any color
in µ(N2

G×h0h1(S)), a′ 6= a. Consider recoloring S from a to a′, that is, consider the assignment
µ∗ : V (G×H)→ V (K) obtained from µ by setting µ∗(g, h1) := a′ for (g, h1) ∈ S. It is easy to
see that µ∗ H-improves over µ (indeed, the relation µ(g, h)

?
= µ(g′, h) could change only for pairs

with (g, h) ∈ S, (g′, h) 6∈ S; so h = h1 and µ(g, h1) = a 6= µ(g′, h1), a non-equality, could only
change to an equality, namely µ∗(g, h1) = a′ = µ∗(g′, h1), which indeed happened for at least one
g′).
If µ∗ is a K-coloring then we are done, so assume otherwise. There must be some (g, h2) ∈

NG×H(S) with a color b′ := µ∗(g, h2) such that a′b′ 6∈ K. Since H is loop-free, h2 6= h1, hence
µ∗(g, h2) = µ(g, h2) = b′. By definition of H-extremal, NG×h0h1(S) is mapped to one color, say b.
It must be that a′b ∈ K (as a′ appears on N2

G×h0h1(S) and µ was a K-coloring) and thus b 6= b′

and in particular h2 6= h0.
Let S′ = NG×h2h1(S) ∩ µ−1({b′}). By the above, S′ is non-empty. We want to show (S′, h1h2)

should have been chosen instead of (S, h0h1).
We claim that NG×h2h1(S′) ⊆ S. Suppose to the contrary that (g1, h1)(g2, h2) ∈ G ×H for

some (g2, h2) ∈ S′ and (g1, h1) 6∈ S. By definition of S′, (g2, h2) also has a neighbor (g′1, h1) ∈ S.
Consider now (g2, h0)—it must be a neighbor of (g1, h1) and (g′1, h1) as well. Hence (g1, h1) is in
N2
G×h0h1(S), implying a′′ := µ(g1, h1) 6= a. But then µ(g2, h0) = b, µ(g′1, h1) = a, µ(g2, h2) = b′,

and µ(g1, h1) = a′′, which gives a square in K with b 6= b′, a 6= a′′, a contradiction.
Hence NG×h2h1(S′) ⊆ S. Thus, we have a non-empty set S′ ⊆ G×{h2} such that µ(S′) = {b′},

µ(NG×h2h1(S′)) = {a}, and µ(N2
G×h2h1(S′)) ⊆ µ(NG×h2h1(S) \ S′) 63 b′ by choice of S′.
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To show that N2
G×h2h1(S′) 6= ∅, let (x, h1) ∈ N2

G×h0h1(S), let (y, h0) be its neighbor in
NG×h0h1(S), and let (z, h1) be a neighbor of (y, h0) in S. Then (y, h2) is also a neighbor of
(x, h1) and (z, h1). Since µ(x, h1) 6= a = µ(z, h1), it must be that µ(y, h2) = µ(y, h0) (by
square-freeness of K) and hence µ(y, h2) = b 6= b′. The set S ∪NG×h0h1(S) must be connected
in G× h0h1, otherwise we could limit S to one of the connected components at the beginning.
Thus S ∪ NG×h2h1(S) is connected in G × h2h1 as well, which means it contains a path from
S′ to (y, h2). The first vertex (y′, h2) on this path such that µ(y′, h2) 6= b′ then exists and is in
N2
G×h2h1(S′), showing its non-emptiness. Hence (S′, h1h2) is an H-extremal set.
It remains to show that |S′|+ |NG×h2h1(S′)| < |S|+ |NG×h0h1(S)|. We have already proved

NG×h2h1(S′) ⊆ S, so |NG×h2h1(S′)| ≤ |S|. The inclusion S′ ⊆ NG×h2h1(S) is strict because of
(y, h2), hence |S′| < |NG×h2h1(S)| = |NG×h0h1(S)|. Adding the inequalities gives the claim, so
(S′, h1h2) indeed should have been chosen in place of (S, h0h1) at the beginning.

A K-coloring that cannot be improved further has no H-extremal sets, which we use in the
following lemma to strengthen the outcomes of Theorem 3.7. For the first and second outcome we
will use H ′ = h0h1 instead of H, for the third outcome we apply this lemma directly.

5.3 Lemma. Let µ : G × H → K for K square-free, G,H connected, and G non-bipartite.
Suppose µ has no H-extremal sets and suppose there is an R ∈ πµ(g0,h0)(K) such that for every
closed walk C from (g0, h0) in G×H, µ(C) = R·i for some i ∈ Z. Then either:

• µ is constant on V (G)× {h} for some h ∈ V (H), or

• for every walk W in G×H starting at (g0, h0), µ(W ) is a prefix of R·i for some i ∈ Z.

Proof. For a reduced walk W in G×H starting at (g0, h0), define pre(W ) as the longest prefix
of µ(W ) which is also a prefix of R·i for some i ∈ Z (note it might be a prefix of R and R−1 at
the same time). Define ext(W ) as the remaining suffix: µ(W ) = pre(W ) ext(W ).
We claim for two walks W,W ′ with same endpoints, ext(W ) = ext(W ′). Indeed, since

W W ′−1 is a closed walk starting and ending in (g0, h0), we have R·i = µ(W ) · µ(W ′)
−1

=
pre(W ) ext(W ) ext(W ′)−1 pre(W ′)−1 for some i ∈ Z. All edges in ext(W ) (and possibly more)
must be reduced by ext(W ′)−1 in the above expression, as otherwise pre(W ) e would be a
prefix of the reduced expression, where e is the first edge of ext(W )—this is impossible because
pre(W ) e is not a prefix of R·i (by definition of pre). Hence ext(W ) is a suffix of ext(W ′).
Symmetrically, ext(W ′) is a suffix of ext(W ), so the two are equal.

Therefore, we can unambiguously define ext(v) for v ∈ G×H as ext(W ) for any walk W from
(g0, h0) to v. If ext(v) = ε for all v ∈ V (G×H), then the second case of the claim holds.

Assume then that ext(v) is not always ε. Choose (g∗, h∗) ∈ V (G×H) maximizing |ext((g∗, h∗))|.
Let ext((g∗, h∗)) = a0a1 a1a2 . . . an−1an for ai ∈ V (K), where n ≥ 1 by assumption. Let S be
the set of vertices s in V (G)× {h∗} with ext(s) = ext((g∗, h∗)). As ext(s) is a walk ending at
µ(s), this implies µ(S) = {an} (see Figure III.3).
We claim that µ(NG×H(S)) = {an−1}. Indeed, let x ∈ V (G × H) be a neighbor of some

s ∈ S. Let W be a walk from (g0, h0) to s. Since µ(W ) = pre(W ) ext(s), we have µ(W sx) =
pre(W ) ext(s) µ(s)µ(x). Since W sx is a walk to x and |ext(x)| ≤ |ext(s)|, the last edge of
ext(s) must reduce with µ(s)µ(x). This implies µ(x) = an−1 as claimed.
Let h′ be any neighbor of h∗ in H. Now either N2

G×h∗h′(S) is empty or not. In the first case,
by connectedness of G × h∗h′ this means that S and NG×h∗h′(S) cover all of G × h∗h′. Since
S ⊆ V (G)× {h∗}, S must be equal to the side V (G)× {h∗} of the bipartition of G× h∗h′, and
NG×h∗h′(S) must be equal to the other. As µ is constant on S, the first case of the claim holds.

In the second case, if N2
G×h∗h′(S) is not empty, we show that an 6∈ µ(N2

G×h∗h′(S)). Suppose to
the contrary µ(y) = an for some y ∈ N2

G×h∗h′(S). Let x ∈ NG×h∗h′(S) be a neighbor of y and let
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s ∈ S be a neighbor of x. As argued before, µ(s) = an, µ(x) = an−1. Since µ(y) = an too, for
any walk W from (g0, h0) to x we have µ(W xy) = µ(W xs) and hence ext(y) = ext(s). As y is
on the same side of the bipartition of G× h∗h′ as s, this means it must have been in S (by choice
of S), a contradiction. Thus in fact an 6∈ µ(N2

G×h0h1(S)), so (S, h0h1) would be an H-extremal
set, meaning it is never the case that N2

G×h0h1(S) is not empty.

R

µ(W )

µ(W ′)(g0, h0)

ext(W )

ext(W ′) (g∗, h∗)

Figure III.3 The images in K of two walks from (g0, h0) to (g∗, h∗). Their final vertex,
extending out of R, defines an H-extremal set: it is mapped to an (the red color), it’s
neighbors are mapped to an−1 (the blue color), while second neighbors are not red. We
could hence improve the mapping by moving (g∗, h∗) to the violet color, say.

The first outcome of Lemma 5.3 is easily strengthened, giving a homomorphism H → K:

5.4 Lemma. Let µ : G × H → K for K square-free, G,H connected, and G non-bipartite.
If µ has no H-extremal sets and is constant on V (G)× {h} for some h ∈ V (H), then µ = γ ◦ δ,
where δ : G×H → H is the projection to H and γ : H → K is a graph homomorphism.
Proof. We first show that µ is constant on V (G) × {h} for every h ∈ V (H). Suppose the
contrary holds. Then by connectivity of H there is an edge h0h1 ∈ E(H) such that µ is
constant on V (G)× {h0} and is not constant on V (G)× {h1}. Let a ∈ µ(V (G)× {h1}) and let
S = µ−1(a)∩ (V (G)× {h1}). Then by connectivity of G× h0h1 it is easy to see that (S, h0h1) is
an H-extremal set, contradicting the assumption on µ.
Thus we can define γ : V (H)→ V (K) by letting γ(h) be the unique value in µ(V (G)× {h}).

Clearly µ = γ ◦ δ, where δ : G×H → H is the projection to H and γ : H → K.

For the other outcome of Lemma 5.3, we first need to show that R is not only reduced, but cyclically
reducedis cyclically reduced, meaning R R is reduced. This follows easily by temporarily considering a

different base point.

5.5 Lemma. Let µ : G × H → K for K square-free, G and H connected and non-bipartite.
Suppose µ has no H-extremal sets. Suppose R ∈ πµ(g0,h0)(K) is such that for every closed walk C
from (g0, h0) in G×H, µ(C) = R·i for some i ∈ Z. If µ is not constant on V (G)× {h} for any
h ∈ V (H), then R is cyclically reduced.

Proof. Suppose to the contrary that R = e R′ e−1 for some e = (k0, k1) ∈ E(K) (where
k0 = µ(g0, h0)) and R′ ∈ πk1(K). Let C be any closed walk from (g0, h0) in G×H of odd length
(it exists by assumptions on G and H). Then µ(C) must be odd too, so in particular µ(C) = R·i

for some i ∈ Z other than 0. Thus the first edge of µ(C) is e. Let C = W1 W2, where W1 is the
longest prefix of C such that µ(W1) = e. Let (g′, h′) be the last vertex ofW1 (and first ofW2). For
any closed walk C ′ from (g′, h′) in G×H, sinceW1 C

′ W−1
1 is a closed walk from (g0, h0) in G×H,
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we have µ(C ′) = µ(W1)
−1 · µ(W1 C ′ W

−1
1 ) · µ(W1) = e−1 ·R·j · e = e−1 · (e ·R′ · e−1)

·j · e = R′·j

for some j ∈ Z. Therefore the premises of Lemma 5.3 are true for (g′, h′) and R′ too (instead
of (g0, h0) and R). The first outcome of the lemma does not hold by assumption, so the second
outcome is true, implying in particular that µ(W−1

1 ) is a prefix of R′·k for some k ∈ Z. However,
µ(W−1

1 ) = e−1 and this cannot be the first edge of R′ nor R′−1, because R = e R′ e−1 is a
reduced walk, a contradiction.

The next lemma (used for F = G × H) gives the final conclusion of the second outcome of
Lemma 5.3. The proof describes the homomorphisms and then just checks their validity.

5.6 Lemma. Let µ : F → K. Suppose there is an R ∈ πµ(f0)(K) such that R is cyclically
reduced and for every closed walk C from f0 in F , µ(C) = R·i for some i ∈ Z. Suppose for
any walk W in F starting at f0, µ(W ) is a prefix of R·i for some i ∈ Z. Then there exist graph
homomorphisms γ : F → C|R| and δ : C|R| → K such that µ = δ ◦ γ.

Proof. For a walk W in F starting at f0, let i ∈ Z be such that µ(W ) is a prefix of R·i and define
γ(W ) = sgn(i) · |µ(W )| mod |R|. Note this is unambiguous, as µ(W ) either has zero length (so
the choice of i is irrelevant), or cannot be both a prefix of R·i for positive and negative i, because
we assumed R is cyclically reduced (so sgn(i) does not depend on the choice of i).

For any two walks W,W ′ from f0 to the same endpoint, we want to show that γ(W ) = γ(W ′).
Indeed, µ(W ′) = µ(W ′) ·µ(W )

−1 ·µ(W ) = µ(W ′ W−1) ·µ(W ) = Ri ·µ(W ) for some i ∈ Z (since
W ′ W−1 is a closed walk). Then one of the following holds, in each case implying γ(W ) = γ(W ′):

• µ(W ) is empty, and then µ(W ′) = R·i has length 0 mod |R| too;

• i = 0, implying µ(W ′) = µ(W ) and hence γ(W ) = γ(W ′) trivially;

• µ(W ) is a prefix of R·j for j ∈ Z \ {0} with sgn(j) = sgn(i), in which case µ(W ′) =
R·i · µ(W ) = R·i µ(W ), which is a prefix of R·i+j with the same sign and length mod |R|;

• µ(W ) is a prefix of R·j for j ∈ Z \ {0} with sgn(j) = −sgn(i) and |µ(W )| > |R·i|, in which
case µ(W ′) = R·i · µ(W ) is a prefix of R·j of length |µ(W )| − |R·i| = |µ(W )| mod |R|;

• µ(W ) is a prefix of R·j for j ∈ Z \ {0} with sgn(j) = −sgn(i) and |µ(W )| ≤ |R·i|, in which
case µ(W ′) = R·i · µ(W ) is a prefix of R·i of length |R·i| − |µ(W )| = −|µ(W )| mod |R|.

Therefore, we can unambiguously define γ : V (F )→ {0, . . . , |R| − 1} as γ(f) = γ(W ) for any
walk W from f0 to f . This is a graph homomorphism from F to C|R|, because if {f, f ′} is an
edge of F , then γ(f ′) = γ(W ff ′) = γ(W )± 1 for any walk W from f0 to f . The last equality
holds because |µ(W ff ′)| = |µ(W )| ± 1 and the sign in the definition of γ can only change when
one of µ(W ff ′), µ(W ) is empty.

Let R = r0r1 r1r2 . . . r|R|−1r0 for ri ∈ V (K). Define δ : {0, . . . , |R| − 1} → V (K) as δ(i) = ri.
Since R is a closed walk in K, δ : C|R| → K is a graph homomorphism. It is easily checked
from definitions that rγ(W ) is the endpoint of µ(W ) for any walk W from f0 to f , and thus
δ(γ(f)) = µ(f) for f ∈ V (F ).

We are now ready to conclude the main theorem, in a slightly stronger form. It gives G→ K,
H → K, or homomorphisms G×H → Cn and Cn → K. By multiplicativity of cycles, the latter
implies G→ Cn → K or H → Cn → K, concluding the proof of multiplicativity of square-free K.

5.7 Theorem. Let µ : G ×H → K for K square-free, G and H connected and non-bipartite.
Then there are graph homomorphisms µ∗ : G×H → K, γ : G×H → I and δ : I → K such that
µ∗ = δ ◦ γ and µ∗ is reachable from µ by recoloring, where I is either G, H or Cn for some n ∈ N.
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Proof. Let {(g0, h0), (g1, h1)} be an edge of G×H. By Theorem 3.7, one of the following holds:

• µ(C) = ε for every closed walk C from (g0, h0) in G× h0h1. Then, by repeatedly applying
Lemma 5.2, we can recolor µ to eventually reach a K-coloring µ∗ with no H-extremal sets.
Since it is reached by recoloring, Lemma 5.1 guarantees that it still has the same property:
µ∗(C) = ε for every closed walk C from (g0, h0) in G× h0h1.
Therefore µ∗|V (G×H′) : G×H ′ → K satisfies the conditions of Lemma 5.3 for R = ε, G and
H ′ = h0h1 (a graph isomorphic to K2). The second outcome of the lemma cannot hold,
because the reduced image of a one-edge walk µ∗((g0, h0)(g1, h1)) has odd length and thus
cannot be a prefix of ε·i (the empty walk) for any i ∈ Z. Hence the first outcome is true,
that is, µ∗ is constant on V (G) × {h} for some h ∈ {h0, h1}. The claim then follows for
I = H from Lemma 5.4.

• µ(D) = ε for every closed walk D from (g0, h0) in g0g1×H. This case is entirely symmetric
with the previous one, swapping the roles of G and H. The claim then follows for I = G.

• There is an R ∈ π(K) such that for every closed walk C from (g0, h0) in G×H, µ(C) = R·i

for some i ∈ Z. Then, again by repeatedly applying Lemma 5.2, we can recolor µ to
eventually reach a K-coloring µ∗ with no H-extremal sets. Since it is reached by recoloring,
Lemma 5.1 guarantees that there is an R′ ∈ π(K) such that for every closed walk C from
(g0, h0) in G×H, µ∗(C) = R′·i for some i ∈ Z.
Hence µ∗ : G ×H → K and R′ satisfy the conditions of Lemma 5.3 directly. If the first
outcome of the lemma holds, then the claim follows for I = G from Lemma 5.4. Otherwise
the second outcome is true, that is, for every walk W in G×H starting from (g0, h0), µ(W )
is a prefix of R′i for some i ∈ Z. By Lemma 5.5, R′ is cyclically reduced. Then the claim
follows for I = C|R′| from Lemma 5.6.

6. Conclusions

Some further conclusions can be drawn from Theorem 5.7. For one example, let µ : G×H → K
for a square-free graph K, and suppose that G 6→ K, G 6→ K3, H 6→ K3, and that H has
only one K-coloring γ, up to automorphisms of K. Then µ is the only K-coloring of G × H
(up to automorphisms of K). Indeed, the only possible outcome of Theorem 5.7 (again up to
automorphisms) is that µ can be recolored to µ∗ = δ◦γ, where δ is the projection to H. That is, µ∗

is constant on V (G)×{h} for each h ∈ V (H). If µ∗ 6= µ, then it was obtained by recoloring; let the
last recoloring step change the color of (g, h) ∈ V (G×H) from a ∈ V (K) to b := µ∗(g, h). Before
this step, the K-coloring was still constant on V (G)×{h′} for h′ 6= h ∈ V (H). Hence replacing all
values of µ∗(·, h) = b with a gives a different K-coloring of G×H, which is a composition of the
projection to H with a different K-coloring of H (but different only on g). But this is impossible,
thus in fact µ = µ∗ is the only K-coloring of G×H (up to automorphisms of K).

Second, multiplicativity of square-free graphs K can be strengthened to the following statement:
for graphs G,H and odd cycles G′ in G and H ′ in H, if G×H ′ ∪G′×H (an induced subgraph of
G×H) has a K-coloring, then G→ K or H → K. This follows by adapting Theorem 3.7 so that
depending on the types of G′ and H ′ we have one of the same three conclusions, with the first two
limited to closed walks in G′×h0h1 and g0g1×H ′ respectively (instead of G×h0h1 and g0g1×H).
The third case is without change. In the first two, we then consider G′ instead of G (or H ′ instead
of H, respectively) and continue the proof without change (applying Lemma 5.3 to G′×h0h1 only)
to eventually get H → K (or G→ K, respectively). In other words, if µ(C ⊗ h0h1) = ε for one
odd cycle C of G, then this already implies H → K.
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Unfortunately, this means our methods have the same limitations as previous ones: Tardif and
Zhu [TZ02a] showed that an analogous extension is false for K = Kn with n ≥ 4. Namely, for any
m > n ≥ 4 there exists m-chromatic graphs G,H with n-chromatic subgraphs G′, H ′ such that
G×H ′∪G′×H is n-chromatic. On the other hand, our approach yields results for high-chromatic
graphs while still only relying on cycles, essentially. Nevertheless, all the author’s attempts to
get even partial results for K4, the next case of Hedetniemi’s conjecture, fizzled. The underlying
reason is that the topology of K4 is a two-dimensional sphere, and extensions of the topological
arguments to that case remain elusive, regardless of any combinatorics. We discuss this obstacle
in the next chapter, formalizing a natural topological conjecture which turns out to be implied by
Hedetniemi’s conjecture.

Let us also mention that the proofs here are constructive, in the sense that given a K-coloring
of G×H, a K-coloring of G or H can be found in polynomial time. This is straightforward for
circular cliques, while for square-free graphs this follows from the fact that a K-coloring of G×H
can be H-improved only polynomially many times. More explicit colorings, for example describing
colors of nodes of the exponential graphs KG in time polynomial in G, remain an interesting open
problem, see [Tar06].

59



Chapter IV

Inverse powers of graphs and topological
implications of Hedetniemi’s conjecture

1. Introduction

Graph functors In this chapter we show that the ‘inverse power’ operation Ωk on graphs,
defined next, has surprising topological properties. It preserves the topology (the Z2-homotopy
type) of the box complex and refines its geometry. This means that Z2-maps (equivariant,
continuous maps) between box complexes of graphs G,H can be approximated by homomorphisms
from the refined graph Ωk(G) to H, for high enough k. This allows to generalize some theorems
on coloring powers of graphs and to characterize topological properties in combinatorial terms.
The most interesting corollary is that Hedetniemi’s conjecture implies an analogous conjecture in
topology, as independently proved by Matsushita [Mat17a]. We discuss this and other implications,
arguing the importance of the topological conjecture.

We consider three interrelated families of graph operations Λk, Γk, Ωk, parameterized by an odd
integer k. The left operation, the graph k-subdivision Λk(G) of a graph G, is obtained by replacing
every edge with a path on k edges (this is sometimes denoted G

1
k ). The central operation, the

k-th power Γk(G) of G is the graph on the same vertex set V (G), with two vertices joined by an
edge if they were connected by a walk of length exactly k in G (equivalently, the adjacency matrix
is taken to the k-th power; this is sometimes denoted Gk, note however this is not the same as
joining vertices at distance at most k). Our results concern the right operation, Ωk, which is a
certain inverse to the powering operation Γk, as we shall now make precise.

Each operation in the above families is a functor in the (thin) category of graphs, which means
simply that G→ H implies Π(G)→ Π(H), for any graphs G,H (for Π = Λk,Γk,Ωk with k odd).1

More importantly, Γk is a right adjoint to Λk, meaning that Λk(G) → H holds if and only if
G→ Γk(H) does. Similarly (but less trivially), Ωk is a right adjoint to Γk, that is, Γk(G)→ H
iff G→ Ωk(H). This characterizes Ωk up to homomorphic equivalence, but we give the explicit
construction with other definitions in Section 2. For example, the third power of a graph G admits
an n-coloring (a homomorphism into the clique Kn) if and only if G→ Ω3(Kn).
Adjointness of various graph constructions is the principal tool behind Hell and Nešetřil’s

celebrated theorem (characterizing the complexity of deciding G → H, for a fixed H) [HN90],
in particular the adjointness of Γk to Λk is used in the first of many steps of the proof. The
construction Ωk was used implicitly by Gyárfás et al. [GJS04], to answer a question on n-chromatic
graphs with “strongly independent colour classes”: they showed that Ω3(Kn) gives an example
of an n-chromatic graph whose third power is still n-chromatic. The construction has also been
used in a homomorphism duality theorem by Häggkvist and Hell [HH93]. Tardif [Tar05] used

1We are only concerned with the existence of homomorphisms and maps, not with their identity (compositions,
uniqueness). Thus we only consider the thin category of graphs (where all homomorphisms G→ H are identified
as one arrow), or equivalently, the poset of graphs (with G ≤ H when G → H). In the language of posets,
functors are just order-preserving maps, while adjoint functors are known as Galois connections. Additional
properties required of adjoint functors in the usual (non-thin) categories are not necessarily met, see [FT18].
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iterations of Ω3 and Γ3 to extend results on Hedetniemi’s conjecture to the circular chromatic
number, showing the multiplicativity of circular cliques. Iterating Ω3 k times is equivalent to
applying Ω3k ; the functors Ωk for general odd k can thus be considered just a smoother way to
express such iterations. They were first considered by Hajiabolhassan and Taherkhani [HT10],
who proved, among other results, a characterization of the circular chromatic number in terms of
the chromatic number (or even just 3-colorability) of powers of graph subdivisions.
The operations Λk, Γk, Ωk are also the simplest example of so called left, central, and right

Pultr functors, a more general construction of adjoint graph functors [Pul70]. Another simple
example of a (central) Pultr functor is the so called arc graph construction (see eg. [Ror+16]), also
crucial in applications to Hedetniemi’s conjecture [PR81; Tar08]. Graph products and exponential
graphs can also be seen as applying Pultr functors. See [FT18] for a survey on graph functors
focused around Hedetniemi’s conjecture and [FT15] for the question of when both left and right
adjoints to a common functor exist.

The topology of graphs Recall from Chapter I that the box complex is a way to assign a
Z2-space (a topological space with a symmetry in the form of a Z2-action) to a graph, with the
property that a homomorphism G→ H induces a Z2-map |Box(G)| →Z2 |Box(H)| (it is a functor
from the category of graphs to the category of Z2-spaces with Z2-maps). Knowing that eg. the
box complex of a clique is a sphere, |Box(Kn)| 'Z2 Sn−2, we can deduce topological obstructions
to homomorphisms using the Borsuk-Ulam theorem, which states that there is no Z2-map from a
higher-dimensional sphere to a lower-dimensional one, Sm 6→Z2 Sn for m > n.
Our main technical result is that Ωk functors behave much like subdivision (in the topological

sense) on the box complex. That is, they preserve the homotopy type and they refine the geometric
structure, so that any continuous maps between box complexes can be approximated with graph
homomorphisms from refinements Ωk(G) of G. See Figure IV.1 for a particularly simple example.
Formally (here pk is a certain natural homomorphism Ωk(G)→ G, see Section 2 for definitions):

1.1 Theorem. (Equivalence) |Box(G)| and |Box(Ωk(G))| are Z2-homotopy equivalent, for all
odd integers k. Moreover, pk induces a Z2-homotopy equivalence.

1.2 Theorem. (Approximation) There exists a Z2-map from |Box(G)| to |Box(H)| if and only if
for some odd k, Ωk(G) has a homomorphism to H.

Moreover, for every Z2-map f : |Box(G)| →Z2 |Box(H)|, there is an odd k and a homomorphism
Ωk(G)→ H that induces a map Z2-homotopic to pk ◦ f .

1 2

34

12

3 4

Box(K4) Box(Ω3(K4))

1{234} 2{134}

3{124}4{123}

2{1} 1{2}

3{2}

2{3}

4{3}3{4}

1{4}

4{1} 1{24} 2{13}

3{24}4{13}

3{1}

1{3}

3{124}

4{2}

2{4}

4{123}

1{3}

3{1}

1{234}

1{23}

3{14}

4{3}

2{14}

4{23}

3{4}

3{21}

1{34}

4{1}2{34}

4{21}

1{4}

Figure IV.1 The box complex of the clique graph K4 and of Ω3(K4). As G becomes G×K2,
for each vertex v of the graph there are two vertices v◦ and v• in the complex. Faces are
glued to each 4-cycle, making both complexes equivalent to the (hollow) sphere. The vertex
({v}, {v1, v2, . . . }) of Ω3(K4) is labeled v{v1v2 . . . } for short. (A careful reader may note
that the definition of Box() includes also faces corresponding to each vertex neighborhood,
such as the tetrahedron {1◦, 2•, 3•, 4•}, but it can be shown that these can be collapsed).
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Csorba [Cso08] gave a construction showing that any simplicial complex is equivalent to some
box complex (see also a generalization to actions of groups other than Z2 and to complexes of
homomorphisms in [DS12]).

1.3 Theorem. (Universality, [Cso08]) For every Z2-complex X, there is a graph G such that
|X| and Box(G) are Z2-homotopy equivalent.

Together, these three theorems show that the homotopy theory of Z2-spaces is largely reflected
in graphs, with Ωk functors as the connection. (Equivalently, in all of our results, ‘for some odd k’
can be replaced by ‘for large enough odd k’ and Ωk by iterations Ω3(. . . (Ω3(G)) . . . ) of Ω3).
The existence of some sequence of functors which satisfy the above Equivalence and Approxi-

mation Theorems already follows from the work of Dochtermann and Schultz [DS12, Proposition
4.7]. Essentially, the idea is to go to the box complex, apply barycentric subdivision iteratively,
and return to graphs with the construction from the Universality Theorem. The construction
is however ad-hoc and tedious to describe directly, it cannot be described as iterating a single
functor, and it is not clear whether the resulting graph functors admit left adjoints.

One application of the Equivalence Theorem, for Ωk functors specifically, is that it immediately
implies the result of Gyárfás et al. [GJS04]: since Ωk(Kn) has the same homotopy type as Kn, it is
not (n− 1)-colorable (by the Borsuk-Ulam theorem, as explained above). It is then easy to check
that it is in fact an n-chromatic graph whose k-th power is still only n-chromatic (in particular it
has no loops, so Ωk(Kn) has no odd cycle of length ≤ k). The chromatic number of Ωk(Kn) (as a
“universal graph for wide colorings”) has also been shown in [ST06] and [BS05]. More generally, for
any graph K without loops, Ωk(K) gives a graph with a Z2-homotopy equivalent box complex,
but with arbitrarily high odd girth (no odd cycles of length ≤ k).

Hedetniemi’s conjecture and multiplicative graphs

The strong connection between graphs and topology, together with the fact that the functors Ωk

commute with the product (which follows from them being right adjoints, see Lemma 2.2), allow
us to show that Hedetniemi’s conjecture implies an analogous statement in topology (recall that
Sd denotes the d-dimensional sphere with antipodal Z2-action). This has recently been shown
independently by Matsushita [Mat17a]:

1.4 Theorem. Suppose Hedetniemi’s conjecture is true. Then |X| × |Y | →Z2 Sd implies
|X| →Z2 Sd or |Y | →Z2 Sd, for any Z2-complexes X,Y and any integer d.

Matsushita in fact adapts the box complex construction, the functors of Dochtermann and
Schultz [DS12], and the construction of Csorba [Cso08], to give a particularly elegant connection
between the category of graphs and the category of Z2-spaces in the form of adjoint functors
preserving finite limits, from which the statement readily follows. While the approach in this thesis
does not give such a graceful connection, the author finds it surprising that the most important
topological conclusions can also be made using more natural graph functors Ωk, which have already
proven to be useful for purely combinatorial theorems. Our methods do not give here any stronger
results than Matsushita’s (except maybe for Theorem 1.7, where the appearance of Ωk will make
the statement more meaningful as a combinatorial characterization), but we comment more on
the implications on Hedetniemi’s conjecture and further argue on the importance of topological
approaches.
Recall that a graph K is multiplicative if G × H → K implies G → K or H → K, for all

graphs G,H. Hedetniemi’s conjecture is then that all clique graphs Kn are multiplicative. We can
analogously define a Z2-space Z to be multiplicative when |X| × |Y | →Z2 Z implies |X| →Z2 Z multipl.

Z2-spaceor |Y | →Z2 Z, for all Z2-complexes X,Y (we do not care here about Z2-spaces not coming from
(finite) Z2-complexes). Since the box complex of the clique |Box(Kn)| is (Z2-homotopy equivalent
to) the (n− 2)-dimensional sphere Sn−2, Theorem 1.4 is a special case of the following:
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1.5 Theorem. Let K be a multiplicative graph. Then |Box(K)| is a multiplicative Z2-space.

In other words, this means Hedetniemi’s conjecture implies the following:

1.6 Conjecture. All spheres Sd are multiplicative.

We do not know if the converse implication is true. However, from the multiplicativity of a Z2-
space we can deduce a weaker statement, which can be seen as a relaxation of graph multiplicativity,
and a combinatorial characterization of multiplicative spaces:

1.7 Theorem. Let Z be a Z2-space and let K be a graph such that |Box(K)| 'Z2 Z. Then
Z is multiplicative if and only if: for all graphs G,H, G×H → K implies that for some odd k,
Ωk(G)→ K or Ωk(H)→ K.

Thus Conjecture 1.6 can be stated as a purely combinatorial statement, relaxing Hedetniemi’s
conjecture. However, we note that the conclusion that Ωk(G)→ K is much weaker than the desired
G → K. For example, circular cliques Kp/q with 3 < p/q < 4 do not admit a homomorphism
into K3, but Ωk(Kp/q) does (for high enough odd k depending on p/q), since the box complex of
Kp/q is a circle (up to homotopy, in this range of p/q). More strikingly, when G has high girth,
then G can have high chromatic number, but Ωk(G) coincides with the graph k-subdivision of G
(Lemma 2.3.(vii)), which is always 3-colorable.

Nevertheless, quite surprisingly, known proofs of multiplicativity for graphs largely follow
topological ideas. In Section 6 we give direct, elementary proofs of the multiplicativity of the
circle S1 and discuss the few additional steps needed to conclude the multiplicativity of K3, cycles,
and circular cliques, as done in Chapter III. (We note that Matsushita [Mat17a] gives a different,
though in essence somewhat similar, direct proof of the multiplicativity of S1, using the theory of
covering spaces).
This strongly suggests that Conjecture 1.6 is crucial to resolving Hedetniemi’s conjecture: any

counter-example immediately implies a counter-example to Hedetniemi’s conjecture, while a proof
could be an important first step to a strengthening for graphs (and at least implies a weaker
graph-theoretical statement). Furthemore, a proof of Conjecture 1.6 should be in principle easier
than any proof of Hedetniemi’s conjecture, while obstacles to proving Conjecture 1.6 are also
obstacles for certain approaches to Hedetniemi’s conjecture. We discuss these in Section 6.
To complement this, we show new multiplicative graphs: powers of graphs of high girth.

1.8 Theorem. If K has girth > 12 (ie. no cycles of length ≤ 12), then Γ3(K) is multiplicative.

The proof is combinatorial and follows the ideas of Tardif’s [Tar05] original proof of the
multiplicativity of circular cliques, deduced from the multiplicativity of cycles using Γk and Ωk

functors. On the other hand, the requirement that the girth be larger than 12 is precisely the
case where K and Γk(K) can be shown to have the same topology (ie. Z2-homotopy equivalent
box complexes). It thus seems that these methods are also limited by topology, though whether
this can be formally proved remains an open question: for example, is there a general connection
between whether a graph K admits a homomorphism Ω3(Γ3(K))→ K and its topology?

Organization
Section 2 gives basic definitions and lists some properties of Λk,Γk,Ωk functors. The Equivalence
Theorem 1.1 is proved in Section 3 using Discrete Morse Theory, which is also introduced there. The
Approximation Theorem 1.2 is proved in Section 4, by considering the geometry of |Box(Ωk(G))|
and then a fairly standard use of the simplicial approximation technique. In Section 5 we show
Theorem 1.8 with a short, combinatorial proof. Finally Section 6 gives the proofs of Theorems 1.4,
1.5 and 1.7, which are straighforward applications of the main technical theorems. We then
consider in more detail the implications on Hedetniemi’s conjecture and multiplicative graphs; we
also comment more on obstacles to generalizations, on Conjecture 1.6, and on open questions that
arise from these results.
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2. Preliminaries

Graphs
For a graph G and two vertex subsets A,B ⊆ V (G), we write A B (A is joined to B) if all A B
vertices of A are adjacent to all vertices of B (and A B otherwise). We denote the common
neighborhood of A ⊆ V (G) as CN(A) :=

⋂
v∈AN(v) (CN(∅) = V (G)). Observe that A B iff CN(A)

A ⊆ CN(B) iff B ⊆ CN(A). Note that A B implies that A and B are disjoint, if G has no loops.
Recall that a graph without loops is square-free if it contains no C4 as a subgraph. More generally,
a graph G (with loops allowed) is square-free if it has no quadruple v1, v2, v3, v4 ∈ V (G) such that
v1 6= v3, v2 6= v4 and v1v2, v2v3, v3v4, v4v1 ∈ G. Equivalently A B implies |A| ≤ 1 or |B| ≤ 1 for
A,B ⊆ V (G).
In this chapter a walk of length n is a sequence of vertices v0, . . . , vn such that vi is adjacent walk

pathto vi+1 (i = 0 . . . n− 1); that is, vertices and edges may repeat, and the length is the number of
edges. A path is a walk with no vertex (nor edge) repetitions.

Box complex
The definitions in equivariant topology were given in Chapter I: Z2-spaces and their products,
the spheres Sd, a Z2-complex X and its geometric realization |X|, a Z2-map X →Z2 Y , and
Z2-homotopy equivalence X 'Z2 Y . Note that thus is much stronger than just requiring X →Z2 Y
and Y →Z2 X.
Let us recall the definition of the box complex Box(G) of a graph G with new notation. If G Box(G)

has isolated vertices (vertices with no neighbors), first remove all of them from G. Let the vertex
set of Box(G) be V (G)× {◦, •}; that is, for every (non-isolated) vertex v ∈ V (G), the simplicial v◦, v•

v?complex has two vertices, which we denote v◦ and v•. We will also write v? when ? ∈ {◦, •} is
clear from the context. For a set σ ⊆ V (G) × {◦, •}, we write σ◦, σ• for σ ∩ (V (G) × {◦}) and σ◦, σ•
σ ∩ (V (G) × {•}), respectively. For a set A ⊆ V (G), we write A◦ and A• for {v◦ | v ∈ A} and A◦, A•
{v• | v ∈ A} (to avoid confusion, we denote faces with small greek letters and vertex subsets with
capital latin letters). The faces of Box(G) are exactly those sets σ ⊆ V (G) × {◦, •} such that
σ◦ σ• and both CN(σ◦) and CN(σ•) are non-empty (in other words, the non-trivial complete
bipartite subgraphs of G and their subsets). Note that if σ◦ 6= ∅, then σ◦ ∪ CN(σ◦) = σ ∪ CN(σ◦)
is again a face; similarly for σ•; hence all maximal faces σ have both σ◦ and σ• non-empty. The
Z2-action − on Box(G) is defined as −v◦ = v• and −v• = v◦ for each v ∈ V (G). As mentioned in
the introduction, a homomorphism G→ H induces a Z2-map |Box(G)| →Z2 |Box(H)|.

Graph functors
An operation Γ on graphs is a (thin) functor if G → H implies Γ(G) → Γ(H), for all graphs functor,
G,H. Two functors Γ,Ω are called a (thin) adjoint pair when Γ(G) → H holds if and only if adjoint
G→ Ω(H) does. In this case Γ,Ω are called left and right adjoints, respectively. Note that a right
adjoint functor may be a left adjoint in another pair, as is the case for the Γk functor. The graph
subdivision functor Λk and powering functor Γk were defined in the introduction.
For a graph G and an integer `, the graph Ω2`+1(G) is defined as follows. Its vertices are Ωk

tuples Ā = (A0, . . . , A`) of vertex subsets Ai ⊆ V (G) such that A0 is a singleton (contains exactly
one vertex) and Ai−1 Ai (for i = 1 . . . `). Its edges are pairs {Ā, B̄} such that Ai−1 ⊆ Bi,
Bi−1 ⊆ Ai, and Ai Bi (for i = 1 . . . `). We define the homomorphism p2`+1 : Ω2`+1(G)→ G as pk
p2`+1(({v}, A1, . . . , A`)) := v. We do not define Ωk(G) for even integers k (see [FT18] for a functor
Ω2 that shares some properties).

We now list a few basic properties of these functors. For the box complex, an important property
is that Box() commutes with products:

2.1 Lemma. ([Cso08], see [SZ10]) |Box(G)| × |Box(H)| 'Z2 |Box(G×H)|.
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Similarly, any right adjoint graph functor commutes with the tensor product. We state this
together with a few other simple properties. The proofs are straightforward. The applications to
multiplicativity (Lemma 2.2.(vi) and 2.3.(x)) have first been shown and used by Tardif [Tar05]; we
do not use them except for the proof of Theorem 1.8.

2.2 Lemma. Let G,G1, G2 be any graphs. Then:

(i) G1 ×G2 → Gi, for i = 1, 2;

(ii) G→ G1 ×G2 if and only if G→ G1 and G→ G2;

(iii) if Γ is a functor, then Γ(G1 ×G2)→ Γ(G1)× Γ(G2);

(iv) if (Γ,Ω) is an adjoint pair of functors, then Γ(Ω(G))→ G→ Ω(Γ(G));

(v) if Ω is a right adjoint, then Ω(G1 ×G2)↔ Ω(G1)× Ω(G2);

(vi) if Ω is a right adjoint to a functor that is a right adjoint itself, and if K is a multiplicative
graph, then Ω(K) is multiplicative too.

We follow with a few properties more specific to Λk, Γk, and Ωk. Most of these have been shown
by Tardif [Tar05] or by Hajiabolhassan and Taherkhani [Haj09; HT10], who also proved many
properties of other compositions of these functors (which can be interpreted as “fractional powers”).
As far as we know, (vi) and (vii) are folklore, but have not appeared earlier in literature.

2.3 Lemma. Let G,H,K be graphs and let k, k′ be odd integers. Then:

(i) Λk(G)→ H if and only if G→ Γk(H) (that is, (Λk,Γk) is an adjoint pair);

(ii) Γk(G)→ H if and only if G→ Ωk(H) (that is, (Γk,Ωk) is an adjoint pair);

(iii) Λk(G)→ Λk−2(G)→ · · · → Λ1(G) = G = Γ1(G)→ · · · → Γk−2(G)→ Γk(G);

(iv) Ωk(G)→ Ωk−2(G)→ · · · → Ω1(G) = G;

(v) Λk(Λk′(G))↔ Λk·k′(G), Γk(Γk′(G))↔ Γk·k′(G), and Ωk(Ωk′(G))↔ Ωk·k′(G);

(vi) Λk(G) ⊆ Ωk(G), in particular Λk(G)→ Ωk(G);

(vii) if G is square-free, then Λk(G)↔ Ωk(G);

(viii) Γk(Ωk(G))↔ G↔ Γk(Λk(G));

(ix) G→ H if and only if Ωk(G)→ Ωk(H);

(x) K is multiplicative if and only if Ωk(K) is.

Proof. Let k = 2`+ 1. (i) and (iii) follow straight from definitions. For one direction of (ii), let
f : Γk(G) → H; then a homomorphism G → Ωk(H) is given by v 7→ (N0(f(v)), . . . , N `(f(v)))
where N i(f(v)) is the set of vertices reachable from f(v) by walks of length i, as one can easily
check. For the other direction, let f : G→ Ωk(H); then a homomorphism Γk(G)→ H is given
by mapping v to the only vertex in the first, singleton set of f(v) = (A0, . . . , A`).

For (iv), (A0, . . . , A`−1, A`) 7→ (A0, . . . , A`−1) gives the homomorphism (where k = 2`+1). For
(v) observe that Λk(Λk′(G))↔ Λk·k′(G) follows from the definition. Then since Γk·k′ is a right
adjoint to Λk·k′ , which is homomorphically equivalent (when applied to any graph) to Λk(Λk′(·)),
which in turn is a left adjoint to Γk′(Γk(·)), it follows that Γk·k′(G)↔ Γk′(Γk(G)) (for all G, k, k′).
Similarly the same follows for Ωk.

For (vi), let us define the following injective homomorphism Λk(G)→ Ωk(G). For a, b ∈ V (G),
the path of length k between a and b in the graph k-subdivision of G is mapped to the following
path in Ωk(G):
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({a}, N(a), {a}, N(a), {a}, . . . ),
({b}, {a}, N(a), {a}, N(a), . . . ),
({a}, {b}, {a}, N(a), {a}, . . . ),
...

({b}, {a}, {b}, {a}, {b}, . . . ), (←)
({a}, {b}, {a}, {b}, {a}, . . . ), (← or vice-versa)
...

({b}, {a}, {b}, N(b), {b}, . . . ),
({a}, {b}, N(b), {b}, N(b), . . . ),
({b}, N(b), {b}, N(b), {b}, . . . ).

(The two vertices in the middle should be swapped when bk2c is even). It is straightforward to
check this defines an injective homomorphism in a consistent way.
To show (vii), let k = 2` + 1. We construct f : Ω2`+1(G) → Λ2`+1(G) as follows. For

Ā = (A0, . . . , A`) ∈ V (Ω2`+1(G)) with A0 = {a}, let jĀ be the maximum index such that Ai are
singletons for i ≤ jĀ. If jĀ = 0, we set f(Ā) = a, otherwise let A1 = {b} and we set f(Ā) to be
the i-th vertex on the path between a and b (counting a as the 0-th vertex), where A1 = {b} and
i = jĀ if jĀ is even, while i = 2`+ 1− jĀ if jĀ is odd.
Let Ā, B̄ be adjacent in Ω2`+1(G). Since A` B` and G is square-free, one of A`, B` must be

of size at most 1. Assume without loss of generality that |A`| ≤ 1 (otherwise swap Ā and B̄).
Since A` ⊇ B`−1 ⊇ A`−2 ⊇ . . . is a sequence of containments ending in a singleton A0 or B0,
all these containments are equalities. Let us also assume that ` is odd (the proof is the same
with ` even). That is, the sequence ends in B0 and A` = B`−1 = A`−2 = · · · = B0 is a singleton.
Let B0 = {b} and A0 = {a}. Consider the sequence A0 ⊆ B1 ⊆ A2 ⊆ · · · ⊆ B` and let j be
the maximum index such that the j-th set of this sequence is a singleton, and hence equal to
A0 = {a}, as well as to all the sets in between. Then, since the next sets in the sequence (if there
are any) are not singletons, we have jĀ = j and jB̄ = j + 1 or vice versa (depending on the parity
of j), unless j = `, in which case jĀ = jB̄ = `. It each case, it is easily checked that f(Ā) and
f(B̄) are adjacent in Λ2`+1(G).

Observe that (vi) implies Λk(G)→ Ωk(G), which by adjointness is equivalent to G→ Γk(Ωk(G))
and to Γk(Λk(G))→ G. This, together with Lemma 2.2.(iv), implies (viii). Applying Γk to both
sides of the assumption Ωk(G)→ Ωk(H) thus yields the non-trivial direction of (ix).

For (x), one direction follows from Lemma 2.2.(vi). For the other, suppose Ωk(K) is multiplica-
tive. Let G×H → K. Then Ωk(G)× Ωk(H)→ Ωk(G×H)→ Ωk(K), hence Ωk(G)→ Ωk(K)
or Ωk(H)→ Ωk(K), which by (ix) implies G→ K or H → K.

3. Proof of the Equivalence Theorem 1.1 – collapses and
expansions

The goal of this section is to show Theorem 1.1, in particular that |Box(G)| and |Box(Ω2k+1(G))|
are Z2-homotopy equivalent, for all k. Following ideas of Csorba [Cso08], we use basics of
Discrete Morse Theory, a framework introduced by Forman [For98] which allows to show homotopy
equivalence in a very combinatorial way. We refer to [For02] for an introduction and [Koz08b] for
an in depth coverage.

Let us introduce the required notions. We will construct homotopy equivalences by composing a
sequence of small steps. If K is a simplicial complex with a face τ such that there is a unique collapse
face σ 6= τ in K containing τ , then it is not hard to show that K \ {τ, σ} is homotopy equivalent simple

homot.
eq.

to K; this is called an elementary collapse. If K ′ can be obtained from K by a sequence of
elementary collapses, we say that K collapses to K ′. If K ′ can be obtained from K by a sequence
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of elementary collapses and expansions (operations inverse to elementary collapses), we say that
K ′ is simple homotopy equivalent to K (Whitehead showed that this notion is slightly stronger
than just homotopy equivalence, see [Coh73]). The definitions are naturally extended to free
Z2-simplicial complexes (where elementary collapses have to be performed in pair: τ, σ are removed
together with their Z2-image τ ′, σ′).
A sequence of elementary collapses can be described more concisely using matchings. For a

matchingsimplicial complex K and a subcomplex K ′, a matching is a bijective function µ on the set of faces
K \K ′ such that µ ◦ µ = id and for each σ ∈ K \K ′, µ(σ) contains or is contained in σ. We also
require that dimµ(σ) = dimσ ± 1. Since all of the faces of K \K ′ are matched into pairs, we can
try to order them into a sequence of elementary collapses. The sufficient and necessary condition
turns out to be the following. A matching is acyclic if there is no sequence of containments of the

acyclicfollowing form (for n ≥ 2 pair-wise different σi in K \K ′):

µ(σ1) µ(σ2) µ(σn)
⊆ ⊇ ⊆ ⊇ ⊆ ⊇

σ1 σ2 · · · σ1

(∗)

With those definitions, we can state the basic theorem of Discrete Morse Theory (we note this is
only the simplest version of the statement, but we will not need anything more):

3.1 Theorem. ([For98]) Let K be a Z2-simplicial complex and K ′ a Z2-subcomplex. If there is
an acyclic Z2-matching M on the set of faces K \K ′, then K ′ is Z2-homotopy equivalent to K
and the inclusion map K ′ ↪→ K is a Z2-homotopy equivalence.

We will show that Box(Ω2k+1(G)) and Box(Ω2k−1(G)) are (simple) homotopy equivalent by
defining an intermediate complex that collapses to both. For Ā ∈ V (Ω2k+1(G)), let φ(Ā)

φ(Ā) := (A0, . . . , Ak−1,CN(Ak−1)) ∈ V (Ω2k+1(G)).

Define the graph Ω′2k+1(G) by adding the following edges to Ω2k+1(G): for each existing edge Ω′2k+1

{Ā, B̄}, add new edges {Ā, φ(B̄)}, {φ(Ā), B̄}, and {φ(Ā), φ(B̄)}. Observe that φ(Ā) is adjacent
to φ(B̄) if and only if (A0, . . . , Ak−1) and (B0, . . . , Bk−1) are adjacent in Ω2k−1(G). In particular
the subgraph of Ω′2k+1(G) induced on vertices of imφ is isomorphic to Ω2k−1(G). We show that it
induces a homotopy equivalent subcomplex. (We write σ 4 {v} for the symmetric difference, that σ 4 {v}
is, σ ∪ {v} if v 6∈ σ and σ \ {v} otherwise).

3.2 Lemma. Box(Ω′2k+1(G)) Z2-collapses to the subcomplex induced by imφ (isomorphic to
Box(Ω2k−1(G))).

Proof. The faces not in the subcomplex are exactly those that contain Ā◦ (or Ā•) for some vertex
Ā from outside imφ. We define a matching µ by matching every such face σ with σ 4{φ(Ā)◦} (or
σ 4 {φ(Ā)•}), where Ā is chosen to be the smallest vertex in σ \ imφ, according to an arbitrary,
fixed ordering on V (Ω′2k+1(G)). Note that exactly one of Ā◦, Ā• is in σ, so this is a well defined
Z2-matching. The fact that σ 4 {φ(Ā)?} is a face of Box(Ω′2k+1(G)) follows from the definition of
φ and Ω′2k+1.

To show that the matching is acyclic, suppose σ1, . . . , σn (n ≥ 2) forms a cycle as in (∗). When
going up the matching, from σi to µ(σi), we always add a vertex in imφ. Therefore, since the
sequence forms a cycle, when going down from µ(σi) to σi+1 we can only remove vertices in
imφ; the set of vertices of σ not in imφ remains constant. But then the vertex φ(Ā)? added
when going up the matching from σ1 to µ(σ1) is also the vertex in σ2 4 µ(σ2), by definition of
the matching µ. This vertex is not removed when going down from µ(σ1) to σ2, since σ1 6= σ2

(n ≥ 2). Hence σ2 contains this vertex and µ(σ2) = σ2 \ {φ(Ā)?}, contradicting that the sequence
should go up the matching (σ2 ⊆ µ(σ2)).
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The collapse onto Box(Ω2k+1(G)) is less easy to describe. Let us first characterize minimal faces
that have to be collapsed.

3.3 Lemma. A face σ ∈ Box(Ω′2k+1(G)) is not in the subcomplex Box(Ω2k+1(G)) if and only if

(i) σ contains Ā◦, B̄• such that Ak Bk, or

(ii) σ contains Ā◦, C̄◦ (or Ā•, C̄•) such that Ak Ck−1.

Proof. Let us first show one direction. If σ ∈ Box(Ω′2k+1(G)) contains Ā◦, B̄• such that Ak Bk,
then these are clearly not adjacent in Ω2k+1(G), so σ is not in the subcomplex. If σ contains
Ā◦, C̄◦ (or Ā•, C̄•) such that Ak Ck−1, then suppose σ is in the subcomplex. By definition this
implies CN(σ◦) (meaning the common neighborhood in Ω2k+1(G)) is non-empty, so let B̄ be a
common neighbor of Ā and C̄ in Ω2k+1(G). Then Ā is adjacent to B̄ in Ω2k+1(G), which implies
Ak Bk, and B̄ is adjacent to C̄, which implies Bk ⊇ Ck−1, contradicting Ak Ck−1. Hence σ
cannot be in the subcomplex.
For the other direction, consider a face σ ∈ Box(Ω′2k+1(G)) that is not in the subcomplex.

That is, there are Ā◦, B̄• ∈ σ such that Ā and B̄ are not adjacent in Ω2k+1(G), or it must be
that CN(σ◦) or CN(σ•) is empty. In the former case, since Ā and B̄ are adjacent in Ω′2k+1(G),
we conclude that Ak Bk. In the latter case, say CN(σ◦) is empty. That is, the vertices of σ◦
do not have a common neighbor in Ω2k+1(G), although they do have some common neighbor
B̄ in Ω′2k+1(G). Let B̄′ := (B0, . . . , Bk−1, B

′
k) where B′k :=

⋃
C̄∈σ◦ Ck−1. Since B̄′ in particular

is not a common neighbor of σ◦ in Ω2k+1(G), it must be that B′k Ak for some Ā ∈ σ◦. By
definition of B′k, this means that Ck−1 Ak for some Ā, C̄ ∈ σ◦

We can now show the necessary collapse, in phases corresponding to the points in Lemma 3.3.
The reader is warned that the proof is not very illuminating, it is just trying the simplest collapses
that come to mind, carefully adapted into a few phases until all cases are covered, and checking
that all the technical conditions are satisfied.

3.4 Lemma. Box(Ω′2k+1(G)) Z2-collapses to the subcomplex Box(Ω2k+1(G)).

Proof. We first collapse faces containing some vertices Ā◦, C̄◦ (or Ā•, C̄•) such that Ak Ck−1.
Among those, we first collapse faces where Ā can be chosen from outside imφ.

For any such face σ, choose Ā? ∈ σ \ imφ, C̄? ∈ σ such that Ak Ck−1 and (Ā, C̄) is
lexicographically minimum (according to some arbitrary fixed ordering of vertices of Ω2k+1(G)).
Without loss of generality assume ? = ◦ for this minimum pair. Let

Ā∗ := (A0, . . . , Ak−1,CN(S)) where S :=
⋃
Ā′◦∈σ

A′k−1 ∪
⋃

B̄′•∈σ\imφ

B′k

We define a matching µ(σ) := σ 4 {Ā∗◦}. We need to check a series of technical conditions:

(i) the vertex Ā∗ is well defined;

(ii) σ 4 {Ā∗◦} is a face of Box(Ω′2k+1(G)); equivalently, that Ā∗ is adjacent to vertices in σ• and
has a common neighbor together with all the vertices in σ◦;

(iii) σ 4 {Ā∗◦} still contains Ā◦ and C̄◦ (so it is not in the subcomplex we collapse to);

(iv) µ(σ 4 {Ā∗◦}) = σ (so that µ is indeed a matching);

(v) µ is acyclic.

For (i), observe that S contains Ak−1, which implies Ak−1 CN(S), as required for a vertex.

68



For (ii), let us first show that Ā∗ is adjacent to each vertex in σ•. Let B̄ ∈ σ•. One condition for
adjacency is that Bk−1 ⊆ CN(S), or equivalently, that Bk−1 S. This holds, because Bk−1 A′k−1

for each Ā′◦ ∈ σ (because B̄•, Ā′◦ are adjacent, as they are contained in σ). Furthermore, Bk−1 B′k
for each B̄′• ∈ σ \ imφ, because Bk−1 ⊆ Ak and Ak B′k (because B̄• and Ā◦ are adjacent, while
Ā◦ and B̄′• are adjacent and not in imφ). Thus Bk−1 S, that is, Bk−1 ⊆ CN(S).
If B̄ ∈ imφ, then B̄ = (B0, . . . , Bk−1,CN(Bk−1)) = φ((B0, . . . , Bk−1, Ak−1)). But Ā∗ is

adjacent to (B0, . . . , Bk−1, Ak−1), because Ā was adjacent to B̄, Bk−1 ⊆ CN(S) and Ak−1 CN(S).
Hence Ā∗ is (by definition of Ω′2k+1) also adjacent to φ((B0, . . . , Bk−1, Ak−1)), which is B̄.

If on the other hand B̄ 6∈ imφ, then Ā∗ is again adjacent to it, because Ā was, Bk−1 ⊆ CN(S)
(as shown above), and Bk CN(S) (because Bk ⊆ S).

To conclude (ii), it remains to show that Ā∗ has a common neighbor together with all vertices
in σ◦. If σ• is non-empty, then any vertex in it is such a common neighbor. If however σ• is
empty, then there must exists a vertex B̄ ∈ CN(σ◦), so σ ∪ {B̄•} is a face and the same analysis
as above shows that Ā∗ is also adjacent to B̄, proving that B̄ is a common neighbor of σ◦ 4 {Ā∗}.
For (iii), we need to show that Ā∗◦ 6= Ā◦ and Ā∗◦ 6= C̄◦. The former follows from the fact that

S ⊇ Ck−1, so A∗k = CN(S) Ck−1, while Ak Ck−1, thus A∗k 6= Ak. The latter follows from the
fact that Ck−1 Ak, but A∗k−1 = Ak−1 Ak, so Ck−1 6= A∗k−1.
For (iv), we need to show that the initial choice of a pair Ā?, C̄? for σ ∪ {Ā∗◦} will be the

same as for σ \ {Ā∗◦}. Recall that valid choices are pairs Ā?, C̄? of vertices in the face such that
Ā 6∈ imφ and Ak Ck−1, and we select the lexicographically minimum valid choice. Without loss
of generality assume σ4{Ā∗◦} = σ∪{Ā∗◦} and suppose to the contrary that the choice for σ∪{Ā∗◦}
is (Ā†, C̄†), different from the choice (Ā, C̄) for σ. Since (Ā, C̄) is a valid choice for σ ∪ {Ā∗◦} as
well, (Ā†, C̄†) must be lexicographically smaller. That is, either Ā† < Ā, or Ā† = Ā and C̄† < C̄.
Since (Ā†, C̄†) was not a valid choice for σ, we have Ā† = Ā∗ or C̄† = Ā∗. If Ā† = Ā∗, then
A†k = A∗k = CN(S) C†k−1 (because S ⊇ C†k−1), contradicting that (Ā†, C̄†) was a valid choice. If
on the other hand C̄† = Ā∗, then validity of the choice implies A†k C†k−1 = A∗k−1 = Ak−1. In
particular A† 6= A, so A† < A. But then the pair (A†, A) would have been a valid, lexicographically
smaller choice for σ, a contradiction.

Finally we show (v), that is, the matching µ is acyclic. Suppose to the contrary that σ1, . . . , σn
(n ≥ 2) forms a cycle as in (∗). When going up the matching, from σi to µ(σi), the initial choice
of Ā?, C̄? remains the same, as shown in (iv). When going down from µ(σi) to σi+1 contained in
it, the initial choice can only stay the same or increase lexicographically (since it is also available
for µ(σi)). Hence the choice of Ā?, C̄? must in fact remain unchanged throughout the cycle, say
it is Ā◦, C̄◦ for all σi and µ(σi). Therefore, the vertices we add (and hence also those we remove)
in the cycle are all of the form (A0, . . . , Ak−1, X)◦ for some vertex subsets X. This implies that
the set S, as defined above, and hence also Ā∗, is always the same when defining the face µ(σi)
matched to σi. But then Ā∗ is always the vertex added (the vertex in µ(σi) \ σi) and hence also
the only vertex removed (the one in µ(σi) \ σi+1), which implies σ1 = σ2, a contradiction.

We now collapse the remaining faces σ that contain some vertices Ā◦, C̄◦ (or Ā•, C̄•) such that
Ak Ck−1. By the previous collapsing phase, we know that Ā ∈ imφ and symmetrically:

For any B̄′•, B̄• ∈ σ with B′k Bk−1, we know that B̄′ ∈ imφ. (1)

For any such face σ, choose Ā?, C̄? ∈ σ such that Ak Ck−1 and (Ā, C̄) is lexicographically
minimum (according to some arbitrary fixed ordering of vertices of Ω2k+1(G)). Without loss of
generality assume ? = ◦ for this minimum pair. Just as before, let

Ā∗ := (A0, . . . , Ak−1,CN(S)) where S :=
⋃
Ā′◦∈σ A

′
k−1 ∪

⋃
B̄′•∈σ\imφB

′
k
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We define a matching µ(σ) := σ 4 {Ā∗◦}. Similarly as before, we need to show (i)–(v). The proof
of (i) is unchanged: S contains Ak−1, which implies Ak−1 CN(S), as required for a vertex.
For (ii), let us first show that Ā∗ is adjacent to each vertex in σ•. Let B̄ ∈ σ•. Observe that

Bk−1 A′k−1 for all Ā′◦ ∈ σ and by (1), Bk−1 B′k for B̄′• ∈ σ \ imφ, hence Bk−1 S, which
means Bk−1 ⊆ CN(S). The remaining proof proceeds just as before (with two cases depending
on B̄ ∈ imφ or B̄ 6∈ imφ), concluding (ii). The proofs of (iii)–(v) also proceed without change,
since they never used the fact that Ā 6∈ imφ.

Finally, we collapse all faces σ containing Ā◦, B̄• such that Ak Bk. Fortunately this is
considerably simpler, since σ• is non-empty, and by the previous collapses, we known that

B′k B′′k−1 for any B̄′, B̄′′ ∈ σ• (2)

For any such face σ, choose a lexicographically minimum pair Ā◦, B̄• or Ā•, B̄◦ such that
Ak Bk. Without loss of generality assume it is Ā◦, B̄•. Let Ā∗ := (A0, . . . , Ak−1,

⋃
B̄′∈σ B

′
k−1).

We define a matching µ(σ) := σ 4 {Ā∗◦} and check (i)–(v). It is now easy to check (using (2))
that (i) and (ii) are satisfied.
For (iii), we need to show that Ā∗◦ 6= Ā◦ (and trivially Ā∗◦ 6= B̄•). This follows from the fact

that Ak Bk, but A∗k =
⋃
B̄′∈σ B

′
k−1 Bk (by (2)).

For (iv), we need to show that the initial choice of a pair Ā◦, B̄• for σ ∪ {Ā∗◦} will be the same
as for σ \ {Ā∗◦}. This follows from the fact that A∗k B′k for all B̄′ ∈ σ•, so Ā∗ does not contribute
in any way to this choice (since it only consider vertices such that Ak Bk).
Finally to show (v), suppose to the contrary that σ1, . . . , σn (n ≥ 2) forms a cycle as in (∗).

When going up the matching, from σi to µ(σi), the initial choice of Ā◦, B̄• remains the same, as
shown in (iv). When going down from µ(σi) to the face σi+1 contained in it, the initial choice can
only stay the same or increase lexicographically (since it is also available for µ(σi)). Hence the
choice of Ā◦, B̄• must in fact remain unchanged throughout the cycle. This implies that when
going up the matching, we only add vertices to σ◦, so when going through the cycle we also only
remove vertices from σ◦, and σ• is unchanged. But then the vertex Ā∗ added in the matching (in
µ(σi) \ σi) is always the same, so the only possible vertex in µ(σi) \ σi+1 is also Ā∗, implying
that σ1 = σ2, a contradiction.

Theorem 3.1 with Lemma 3.2 and 3.4 already imply the Z2-simple homotopy equivalence of
Box(Ω2k+1(G)) and Box(Ω2k−1(G)). To describe an explicit homotopy equivalence, Theorem 3.1
is insufficient, as it only guarantees a map in one direction of a collapse (the containment map) to
be a homotopy equivalence. We hence replace the use of Lemma 3.2 with an explicit homotopy to
conclude our theorem. The Equivalence Theorem 1.1 follows by applying it repeatedly.

3.5 Theorem. For any graph G and k ∈ N, Box(Ω2k+1(G)) and Box(Ω2k−1(G)) are Z2-
simple homotopy equivalent. Moreover, the homomorphism (A0, . . . , Ak−1, Ak) 7→ (A0, . . . , Ak−1) :
Ω2k+1(G)→ Ω2k−1(G) induces a Z2-homotopy equivalence.

Proof. By Theorem 3.1 and Lemma 3.4 the containment map of Box(Ω2k+1(G)) in Box(Ω′2k+1(G))
is a Z2-homotopy equivalence. It remains to show that the following map q from Box(Ω′2k+1(G))
to Box(Ω2k−1(G)) is a Z2-homotopy equivalence:

q : (A0, . . . , Ak−1, Ak)? 7→ (A0, . . . , Ak−1)? (for ? ∈ {◦, •})

Consider the containment map ι : (A0, . . . , Ak−1)? 7→ (A0, . . . , Ak−1,CN(Ak))? of Box(Ω2k−1(G))
in Box(Ω′2k+1(G)). One composition, ι◦ q : Box(Ω2k−1(G))→ Box(Ω2k−1(G)), is just the identity.

The other composition is q◦ι : (A0, . . . , Ak−1, Ak)? 7→ (A0, . . . , Ak−1,CN(Ak−1))?. For t ∈ [0, 1],
define qt(Ā) = (1−t)·Ā+t·ι(q(Ā)) ∈ |Box(Ω′2k+1(G))| and extend it linearly from vertices to each
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face. For this to be well defined, we need to show that for any σ ∈ Box(Ω′2k+1(G)), the set σ ∪
{ι(q(Ā?)) | Ā? ∈ σ} is again a face. This follows from the definition of Ω′2k+1 and the fact that q◦ι
coincides with the map φ used in this definition. Thus qt defines a Z2-homotopy from q1 = q ◦ ι to
q0, the identity map. Therefore q and ι are Z2-homotopy equivalences, and hence q composed with
the containment map of Box(Ω2k+1(G)) into Box(Ω′2k+1(G)) is a Z2-homotopy equivalence.

4. Proof of the Approximation Theorem 1.2 – simplicial
approximation

We first show that |Box(Ω2k+1(G))| refines |Box(G)|. This is the part where using Ω2k+1 instead
of iterations of Ω3 makes the proof considerably simpler, because when iteratively applying Ω3,
one would have to deal with the fact that degrees in the graph, and hence dimensions of simplicies,
grow exponentially.

4.1 Theorem. There is a Z2-map g from |Box(Ω2k+1(G))| to |Box(G)| such that:

• g is homotopic to the map induced by the homomorphism pk : Ω2k+1(G)→ G,

• in particular, g is a Z2-homotopy equivalence (by Theorem 1.1),

• g maps every face of Box(Ω2k+1(G)) into a subset of |Box(G)| of diameter less than 6D
k ,

where D is the maximum degree of G.
Proof. For a set of points S = {s1, . . . , sn} ⊆ |Box(G)|, define avg(S) := 1

n(s1 + · · ·+ sn). For
Ā◦ ∈ V (Box(Ω2k+1(G))), let

g(Ā◦) := avg({avg(A0◦), avg(A1•), avg(A2◦), . . . , avg(Ak?)})
(with ◦ and • alternating). Since Ā is not an isolated vertex of G (by definition of the box
complex), we have Ai ⊆ Ai+2 for i = 0 . . . k − 2 and Ai Ai+1 for i = 0 . . . k − 1. Hence the set
τĀ◦ :=

⋃
i evenAi◦ ∪

⋃
i oddAi• is a face of Box(G). As g(Ā◦) is a convex combination of vertices

in this face, it defines a point in the geometric realization |Box(G)|. Define g(Ā•) ∈ |Box(G)|
symmetrically and extend this map linearly to all of |Box(Ω2k+1(G))|. This is well defined, since
the set τσ :=

⋃
Ā?∈σ τĀ?

is easily checked to be a face of Box(G).
For t ∈ [0, 1] and Ā◦ ∈ V (Box(Ω2k+1(G))) with A0 = {v}, define gt(Ā◦) := (1− t) · g(Ā◦) + t · v.

This is again a convex combination of vertices in τĀ that extends linearly, hence gt defines a
homotopy from g0 = g to g1 = pk.

It remains to bound the diameter of images of faces. Let σ be a maximal face of Box(Ω2k+1(G)).
Let Ā◦, B̄• ∈ σ. Then A0 ⊆ B1 ⊆ A2 ⊆ . . . and B0 ⊆ A1 ⊆ B2 ⊆ . . . are two subset
chains of length k + 1. Moreover, since Ak Bk, all sets have size at most |Ak|, |Bk| ≤ D,
where D is the maximum degree in G. Since |A0| = |B0| = 1, in both chains at most D − 1
containments ⊆ are strict, all the other ones are equalities. In particular, among the pairs
(A0, B1), (A1, B0), (A2, B3), (A3, B2), . . . at most 2D−2 are pairs of different sets. Therefore g(Ā◦)

and g(B̄•) can be written as 2D−2
k p+ k−(2D−2)

k q and 2D−2
k p′+ k−(2D−2)

k q for some points p, p′, q
in τσ (defined as averages of subsets of {avg(A0◦), avg(A1•), . . . } and {avg(B0•), avg(B1◦), . . . }).
Hence the distance between g(Ā◦) and g(B̄•) is the same as the distance between 2D−2

k p and
2D−2
k p′, which is at most 2D−2

k

√
2, since the distance between any two point p, p′ in a simplex

(namely in the face τσ) of a geometric realization is at most
√

2. The distance between g(Ā◦) and
g(Ā′◦) for any Ā◦, Ā′◦ ∈ σ is at most the sum of their distances to g(B̄•), hence at most 4

√
2(D−1)
k .

Since the image of σ is the convex hull of the images of its vertices, its diameter is also bounded
by 4

√
2(D−1)
k , which we bound by 6D

k for conciseness.

We are now ready to show the Approximation Theorem 1.2. This closely follows the standard
technique of simplicial approximation (see eg. Theorem 2C.1. in [Hat01]). The main difference is
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that we consider Z2-maps instead of just continuous maps, and that finding a Z2-map between
box complexes that is simplicial (ie., a linear extension of a map on vertices of the complex) is not
enough to find a graph homomorphism (because a simplicial map can map two adjacent vertices
into a single vertex). To avoid these problems, we use a variant of the fact that the box complex
is equivalent to the complex Hom(K2, G) [Cso08], allowing us to avoid certain extremal points of
the box complex.

1.2 Theorem. (restated) There exists a Z2-map from |Box(G)| to |Box(H)| if and only if for
some k ∈ N, Ω2k+1(G) has a homomorphism to H.

Moreover, for any Z2-map f : |Box(G)| →Z2 |Box(H)| there is an integer k and a homomorphism
Ω2k+1(G)→ H that induces a map Z2-homotopic to pk ◦ f .

Proof. For one direction, suppose Ω2k+1(G) has a homomorphism to H, for some k ∈ N. This
induces a Z2-map from |Box(Ω2k+1(G))| to |Box(H)|. By Theorem 1.1, there is a Z2-map from
|Box(G)| to |Box(Ω2k+1(G))|. Composition then gives a Z2-map from |Box(G)| to |Box(H)|.

For the other direction, let f : |Box(G)| →Z2 |Box(H)| be a Z2-map. Let X ⊆ |Box(H)| be
the set of points x ∈ |Box(H)| that, when written as a convex combination x =

∑
v∈V (H) λvv◦ +∑

v∈V (H) µvv•, satisfy
∑

v λv =
∑

v µv = 1
2 . Simonyi et al. [STV09] observed that the equivalences

of various versions of the box complex imply that |Box(H)| is Z2-homotopy equivalent to the
subspace X. Therefore, up to Z2-homotopy, we can assume that the image of f is contained in X.
Define the star of a face σ in a simplicial complex K to be the subcomplex made of all faces

containing σ (and their subsets), that is: {τ | τ ∪ σ ∈ K}. Define the closed star Stσ ⊆ |K| as
the geometric realization of the star of σ and the open star stσ ⊆ |K| as the sum of interiors
of geometric realizations of faces in the star of σ. Thus Stσ is the closure of the open set stσ.
For a vertex v of the complex, we write St v for short instead of St{v}.
Observe that the sets st v◦ for v ∈ V (H) cover (a superset of) X in |Box(H)| (to cover all of
|Box(H)| we would need st v• as well). Consider the family of sets C◦ := {f−1(st v◦) | v ∈ V (H)}.
This is a family of open sets covering |Box(G)|, a compact space (as a closed and bounded subset
of Rn). Therefore, we can let ε > 0 be the Lebesgue number of C◦, that is, a number such that
any set X ⊆ |Box(G)| of diameter less than ε is contained in some set of C◦.
Let D be the maximum degree of G and let k := 12D · 1

ε . Let g be the Z2-map from
|Box(Ω2k+1(G))| to |Box(G)| given by Theorem 4.1. For every face σ of |Box(Ω2k+1(G))|, g(σ)
has diameter at most 6D

k in |Box(G)|. Thus, for every vertex Ā of Ω2k+1(G), g(St Ā◦) has diam-
eter less than 12D

k = ε in |Box(G)|, hence there is a vertex h(Ā) ∈ V (H) such that g(St Ā◦) ⊆
f−1(sth(Ā)◦), that is, f(g(St Ā◦)) ⊆ sth(Ā)◦. We claim that h : V (Ω2k+1(G)) → V (H) is a
graph homomorphism.

Indeed, let Ā, B̄ be two adjacent vertices of Ω2k+1(G). Then f(g(St Ā◦)) ⊆ sth(Ā)◦ and
f(g(St B̄◦)) ⊆ sth(B̄)◦, or equivalently (since f, g are Z2-maps), f(g(St B̄•)) ⊆ sth(B̄)•. Since
Ā◦ is contained in both St Ā◦ and St B̄•, f(g(St Ā◦)) is contained in both sth(Ā)◦ and sth(B̄)•.
Hence sth(Ā)◦∩ sth(B̄)• 6= ∅, which implies that h(Ā) and h(B̄) must be adjacent graph vertices.
Finally we show that the Z2-map induced by h is homotopic to g ◦ f , which in turn is

homotopic to pk ◦ f , as guaranteed by Theorem 4.1. Indeed, let x be a point in a face
|σ| = |{Ā1

◦, . . . , Ā
n
◦ , B̄

1
• , . . . , B̄

m
• }| of |Box(Ω2k+1(G))|. Then h(x) is a point in the face |h(σ)| :=

|{h(Ā1)◦, . . . , h(B̄1)•, . . . }| (since the Z2-map induced by the graph homomorphism is defined as
a linear extension of the map on vertices). On the other hand x is in St Ā1

◦∩· · ·∩St B̄1
•∩ . . . , hence

f(g(x)) is in sth(Ā1)◦∩ . . . sth(B̄1)•∩ . . . , which is equal to st{h(Ā1)◦, . . . , h(B̄1)•, . . . } = sth(σ)
(see Lemma 2C.2. in [Hat01]). Therefore h(x) and f(g(x)) are both contained in a common face
(a face in the star of h(σ)). We can thus define a homotopy t · f(g(x)) + (1− t) · h(x) (this is
clearly continuous for x varying on any face |σ|, hence everywhere) from h to g ◦ f .
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5. Powers of graphs of high girth are multiplicative

In this section we show that 3rd powers of a graphs of girth > 12 are multiplicative. For this, we use
Ω3 and Γ3 functors in a similar way as Tardif [Tar05] did to prove the multiplicativity of circular
cliques. There is always a homomorphism K → Ωk(Γk(K)), namely v 7→ ({v}, N(v), . . . , N `(v)),
as is easy to check (here Nd(v) is the set of vertices reachable by walks of length exactly d from v).
If for some K we can show a homomorphism in the other direction, then K is homomorphically
equivalent to Ωk(Γk(K)). By Lemma 2.3 (x), this is multiplicative if and only if Γk(K) is. We use
this to infer the multiplicativity of Γk(K) from that of a square-free graph K.
The proof here is combinatorial, but an informal intuition behind it is that for graphs of girth

> 4k, taking the k-th power does not change the topology (one can show that the box complex
remains Z2-homotopy equivalent); one may thus hope that applying the ‘inverse’ Ωk will get us
back to the original graph. Whether the proof can really be extended to k-th powers of graphs
of girth > 4k for all k ∈ N remains an open question. It would also be interesting to find more
graphs for which Ω3(Γ3(K))→ K.

1.8 Theorem. (restated) Let K be a graph of girth > 3 · 4 (no cycles of length ≤ 12). Then
Ω3(Γ3(K))→ K, hence Ω3(Γ3(K))↔ K and Γ3(K) is multiplicative.

Proof. Throughout the proof all neighborhoods and walks are always meant in K, not in Γ3(K)
(only A B will mean joined sets in Γ3(K)). We define a homomorphism f : Ω3(Γ3(K))→ K as
follows. For a vertex Ā = ({x}, A1), let f(Ā) be any vertex in CN(A1) closest to x (possibly x
itself) if CN(A1) 6= ∅, otherwise let f(Ā) := x.

To show that f is indeed a homomorphism, consider two adjacent vertices ({x}, A), ({y}, B) in
Ω3(Γ3(K)). That is, x ∈ B, y ∈ A and A B in Γ3(K). We first show that

CN(A) 6= ∅ or CN(B) 6= ∅ (*)

Suppose that to the contrary CN(A) = CN(B) = ∅. Then there are a, a′ ∈ A with no common
neighbor in K (since otherwise there would be distinct a, a′, a′′ ∈ A with pairwise common
neighbors, contradicting that the girth is > 6) and similarly b, b′ ∈ B with no common neighbor in
K. Since A B in Γ3(K), there are walks of length 3 between a, a′ and b, b′ in K. Concatenated
together, these four walks give one closed walk of length 12 going through a, a′, b, b′ in order.
Since K has girth > 12, this closed walk must be a walk in a tree subgraph T of K. Hence there
are walks of length 3 between a, a′ and b, b′ in T ⊆ K.
Let P be the shortest path between a and a′ in T : since there is a walk of length exactly 6

between them (going though b or b′), the shortest path has even length ≤ 6 and > 2, since a, a′

have no common neighbor. Hence P has length 4 or 6. If P has length 6, then b and b′, which
are accessible via walks of length 3 from both endpoints of P in T , must both be equal to middle
vertex of P , a contradiction. If P has length 4, then similarly b and b′ must be adjacent to the
middle vertex of P in T , hence they have a common neighbor in T ⊆ K, a contradiction. This
proves (*).

If CN(A) 6= ∅ and f({y}, B) = y, then y ∈ A is adjacent by definition to any vertex in
CN(A), so f({y}, B) is adjacent to f({x}, A) ∈ CN(A). In particular if CN(B) = ∅, then
f({y}, B) = y and CN(A) 6= ∅ by (*), hence the mapping is correct. Symmetrically if CN(B) 6= ∅
and f({x}, A) = x, then the mapping is correct. In particular if CN(A) = ∅, then we are done.

It thus remains to consider the case where f({x}, A) 6= x and f({y}, B) 6= y. In this case, we
have that CN(A) 6= ∅ but x 6∈ CN(A) and similarly for y,B. Let a be a vertex in A not adjacent
to x in K. Since x ∈ B A 3 a in Γ3(K), there is a (unique, since K has girth > 6) walk of length
3 between a and x in K; let x, p, q, a be the vertices on it. If there is any vertex a′ ∈ A other
than a, there is a walk of length 2 between a and a′ (as they have a common neighbor), a walk
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of length 3 from a′ to x, and the walk of length 3 x, p, q, a; together they form a closed walk of
length 8, so they must map to a tree in K and it is easy to see that the common neighbor of a and
a′ must be q. Hence q ∈ CN(A). If |A| > 1 there can be only one vertex in CN(A) (since K has
no C4), while if A = {a}, then vertex in CN(A) = N(a) closest to x is q. Hence f({x}, A) = q.

Since f({y}, B) 6= y, we have CN(B) 6= ∅ but y 6∈ CN(B). Then y ∈ A is adjacent to q ∈ CN(A).
If y is not adjacent to x, then y, q, p, a is a (unique) walk of length 3 and just as above we conclude
that f({y}, B) is the second vertex on this walk, namely p; thus f({x}, A) = q and f({y}, B) are
adjacent. Otherwise, if y is adjacent to x, then it is a common neighbor of x and q, hence y = p
(sinceK has no C4). For any vertex b ∈ B other than x, similarly as before there is a walk of length
2 between x and b (since CN(B) 6= ∅), a walk of length 3 between b and a, an the walk a, q, p, x;
together, they form a closed walk of length 8, so they must map to a tree in K and it is easy to see
that the common neighbor of x and b must be y. Hence y ∈ CN(B), which we assumed was not
the case. Therefore in all cases f({x}, A) is adjacent to f({y}, B) in K, concluding the proof.

One can check that the same proof works with walks in K ×K2 used in place of K, so in fact it
suffices to assume that K ×K2 has girth > 12, that is, cycles of length 7, 9, 11 are allowed in K.

6. Conclusions on the multiplicativity of graphs and spaces

Proof of Theorem 1.5 and Theorem 1.7

We show how the following theorem easily follows from the Equivalence, Approximation and
Universality Theorems. (Recall that a Z2-space Z is multiplicative if X × Y →Z2 Z implies
X →Z2 Z or Y →Z2 Z for any Z2-spaces X,Y .)

1.5 Theorem. (restated) Let K be a multiplicative graph. Then |Box(K)| is multiplicative.

Proof. LetX,Y , be finite simplicial Z2-spaces such thatX×Y →Z2 |Box(K)|. By the Universality
Theorem 1.3, there are graphs G,H such that X 'Z2 |Box(G)| and Y 'Z2 |Box(H)|. Thus:

|Box(G×H)| Lem 2.1'Z2 |Box(G)| × |Box(H)| 'Z2 X × Y →Z2 |Box(K)|.

By the Approximation Theorem 1.2, there is an odd integer k such that Ωk(G)× Ωk(H)
Lem 2.2↔

Ωk(G×H)→ K. By definition of multiplicativity of K, we have Ωk(G)→ K or Ωk(H)→ K,
hence by the other direction of the Approximation Theorem 1.2, X 'Z2 |Box(G)| →Z2 |Box(K)|
or Y 'Z2 |Box(H)| →Z2 |Box(K)|.

The proof of Theorem 1.7 is similarly straightforward.

1.7 Theorem. (restated) Let Z be a Z2-space and let K be a graph such that Z 'Z2 |Box(K)|.
Then Z is multiplicative if and only if for all graphs G,H the following holds: if G×H → K, then
for some odd k, Ωk(G)→ K or Ωk(H)→ K.

Proof. For one direction, let K be a graph such that |Box(K)| is a multiplicative Z2-space. Let
G,H be graphs and suppose that G×H → K. Then

|Box(G)| × |Box(H)| Lem 2.1'Z2 |Box(G×H)| →Z2 |Box(K)|

By multiplicativity of |Box(K)|, we have |Box(G)| →Z2 |Box(K)| (or the same for H). By the
Approximation Theorem 1.2, this implies that Ωk(G)→ K for some odd integer k.

For the other direction, suppose K has the property that for all graphs G,H, G ×H → K
implies Ωk(G) → K or Ωk(H) → K for some odd k. Let X,Y be any Z2-spaces such that
X × Y →Z2 |Box(K)|. By the Universality Theorem 1.3, there are graphs G,H such that
|Box(G)| 'Z2 X and |Box(H)| 'Z2 Y .
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Then
|Box(G×H)| →Lem 2.1'Z2 |Box(G)| × |Box(H)| →Z2 |Box(K)|

Hence by the Approximation Theorem 1.2, there is an odd integer k such that

Ωk(G)× Ωk(H)
Lem 2.2↔ Ωk(G×H)→ K

By the property of K, there is an odd integer k′ such that Ωk′(Ωk(G)) → K (or the same
for H). By the Approximation Theorem 1.2 and the Equivalence Theorem 1.1, this implies
X 'Z2 |Box(G)| 'Z2 |Box(Ωk(G))| →Z2 |Box(K)| 'Z2 Z (or Y →Z2 Z).

Known cases of multiplicativity

Let us give as a warm-up an elementary proof of the multiplicativity of the 0-dimensional sphere
S0 (two points −1, 1 on the real line, with the Z2-action swapping them), in the following two
lemmas. (The first will be crucial to the multiplicativity of S1 as well).

6.1 Lemma. Let X be a Z2-space. Then S1 6→Z2 X if and only if X →Z2 S0.

Proof. Let p : S1 →Z2 X be a Z2-map. Then p on one half of S1 gives a path p′ : [0, 1] → X
from some point p(0) = x ∈ X to p(1) = −x. If there was a map f : X →Z2 S0, then each
connected (path-)component of X would have to map all into −1 or all into 1 ∈ S0, in particular
f(x) = f(−x), a contradiction.
For the other direction, assume S1 6→Z2 X. Then there is no path p : [0, 1]→ X from a point

x ∈ X to −x, since concatenating such a path t 7→ p(t) with t 7→ −p(t) gives a Z2-map S1 →Z2 X.
Therefore, the Z2-action − matches the connected (path-)components of X into pairs. We can
choose a map that maps one component of each pair into −1 and the other into 1, giving a
Z2-map X →Z2 S0.

To translate the above proof to graphs, recall that the antipode of v◦ in the box complex of a
graph G (for a vertex v of G) is v• and observe that there is a path from v◦ to v• in the box complex
if and only if there is a walk of odd length in the graph G from v to v itself. That is, ‘equivariant’
circles in the box complex, represented as Z2-maps S1 →Z2 X, correspond to odd closed walks
in the graph. The above lemma then corresponds to the fact that a graph has no odd closed
walks (equivalently, no odd cycles) if and only if it has a homomorphism to K2 (equivalently, it is
bipartite). The proof can also be made entirely analogous, by considering connected components
of G×K2. We proceed with a proof of multiplicativity.

6.2 Lemma. S0 is multiplicative. That is, for any Z2-spaces X,Y , if X × Y →Z2 S0, then
X →Z2 S0 or Y →Z2 S0.

Proof. Suppose that X 6→Z2 S0 and Y 6→Z2 S0. By the above lemma, there are Z2-maps
p : S1 →Z2 X and q : S1 →Z2 Y . But then t 7→ (p(t), q(t)) is a Z2-map S1 →Z2 X × Y (since by
definition of the product of Z2-spaces, −(p(t), q(t)) = (−p(t),−q(t)) = (p(−t), q(−t))). Therefore
X × Y 6→Z2 S0.

The multiplicativity of K2 is a simple translation of this proof: if G 6→ K2 and H 6→ K2,
then there are odd closed walks P = (P1, . . . , Pn) (Pi ∈ V (G)) in G and Q = (Q1, . . . , Qm)
in H. We can turn them into odd closed walks of equal length, say P ′ = P and Q′ =
(Q1, . . . , Qm, Qm−1, Qm, . . . , Qm−1, Qm) if n ≤ m. Thus ((P ′1, Q

′
1), (P ′2, Q

′
2), . . . ) is an odd closed

walk in G×H, hence G×H 6→ K2.

After this warm-up, let us turn to the circle S1.
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6.3 Lemma. S1 is multiplicative. That is, for any Z2-spaces X,Y , if X × Y →Z2 S1, then
X →Z2 S1 or Y →Z2 S1.

Proof. Let f : X × Y →Z2 S1 be a Z2 map (that is, −f(x, y) = f(−x,−y) for all x ∈ X, y ∈ Y ).
Without loss of generality assume X,Y are (path-)connected (otherwise we can consider each
pair of connected components separately). Fix arbitrary points x0 ∈ X, y0 ∈ Y .
Consider any Z2-maps p : S1 →Z2 X and q : S1 →Z2 Y starting (and ending) at x0 and y0,

respectively (if there are none, the claim already follows from Lemma 6.1). For t ∈ S1, let
p′(t) := f(p(t), y0) and q′(t) := f(x0, q(t)). The functions p′, q′ are continuous maps from S1

to S1 (not necessarily Z2-maps). Since the concatenation of the path p(t) with the constant
path t 7→ x0 is homotopic to p(t) (and similarly for q(t) and y0), the concatenation of paths
t 7→ (p(t), y0) and t 7→ (x0, q(t)) in X × Y is homotopic to t 7→ (p(t), q(t)). Therefore the
concatenation of p′(t) = f(p(t), y0) and q′(t) = f(x0, q(t)) is homotopic to t 7→ f(p(t), q(t)). Thus
the winding numbers of p′ and q′ sum to the winding number of t 7→ f(p(t), q(t)). The latter is a
Z2-map (because f, p, q are) and hence has odd winding number. Therefore exactly one of the
winding numbers of p′ and q′ is odd. Without loss of generality suppose the winding number of
p′ is odd and the winding number of q′ is even. Then the winding number of p′ is odd for any
choice of p : S1 →Z2 X (starting and ending at x0), as we can keep the choice of q, q′ unchanged
(with even winding number). Moreover, for any p : S1 →Z2 X, even if p does not necessarily start
and end at x0, then p is still homotopic to a Z2-map that does, so p′ has odd winding number in
this case as well.

For any p : S1 →Z2 X, since the winding number of p′ is odd, there is a point t ∈ S1 such that
p′(−t) = −p′(t). That is f(p(−t), y0) = −f(p(t), y0). Let us call a point x ∈ X a coincidence
point if f(x, y0) = −f(−x, y0) (equivalently, f(x, y0) = f(x,−y0)). Let X ′ ⊆ X be the set of
coincidence points (observe that if x ∈ X ′, then −x ∈ X ′ as well). Then we know that there
is no Z2-map p : S1 →Z2 X \X ′. Therefore, there is a Z2-map h : X \X ′ → S0. We can then
define a Z2-map from X to S1 as follows: if x ∈ X \X ′, we map x to f(x,−y0) or to f(x, y0)
depending on h(x) ∈ {−1, 1}; otherwise, if x ∈ X ′, we map x to f(x, y0) = f(x,−y0). This is
easily checked to give a Z2-map from X to S1.

The proof of the multiplicativity of K3 by El-Zahar and Sauer [ES85], its generalization to odd
cycles by Häggkvist et al. [Häg+88], and especially its reformulation and generalization to circular
cliques Kp/q (with 2 < p/q < 4) given in Chapter III, largely follows the steps of the above proof
of Lemma 6.3. An invariant on odd cycles is considered, which turns out to be exactly the winding
number assigned as above to the corresponding map S1 →Z2 |Box(G)|. One then proves that all
odd cycles on one side of the product must have an odd invariant, which implies that certain
coincidence points must exists on every such cycle (this part can be done just as above, purely
topologically, in the box complex). If those coincidence points occur on vertices of the box complex
(corresponding to vertices of the graph), as opposed to some general position on edges or larger
faces, then they can be temporarily removed to conclude a homomorphism just as above. The
only additional step is thus showing that the coincidence points can be assumed to lie on vertices,
which is indeed true and not hard to show for K3 and odd cycles. However, for circular cliques a
certain relaxation of this notion is necessary (but still possible, see Chapter III), while for other
graphs G with |Box(G)| 'Z2 S1 we do not know whether this approach can work at all, indeed we
do not know whether all such graphs are multiplicative.

The multiplicativity of square-free graphs, also shown in Chapter III, corresponds to the
multiplicativity of 1-dimensional Z2-spaces, that is, those coming from simplicial complexes with
no faces of size larger than 2. However, all such spaces can be shown to admit a Z2-map to S1,
and then their multiplicativity easily follows from that of S1. This reasoning does not extend to
the combinatorial setting, unfortunately.
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Obstacles and non-tidy spaces

When attempting to generalize the above proofs to higher dimensional spheres, even just to S2,
while some steps do extend (the arguments on the parity of winding numbers, in particular), there
are nevertheless substantial obstacles. Perhaps the most important is the fact that Lemma 6.1
becomes false: there are Z2-spaces X such that S2 6→Z2 X, but X 6→Z2 S1.
This gap can in fact get much worse. Consider the following two parameters of a Z2-space X.

The coindex coind(X) is the largest n such that Sn →Z2 X. The index is the least n such that ind
coindX →Z2 Sn. The Borsuk-Ulam theorem thus states that coind(X) ≤ ind(X). These parameters are

analogous to the clique number ω(G) (the size of the largest clique subgraph) and the chromatic
number χ(G) of a graph G. In fact:

ω(G) ≤ coind(|Box(G)|) + 2 ≤ ind(|Box(G)|) + 2 ≤ χ(G).

Spaces where the coindex is strictly smaller than the index are called non-tidy (see [Mat08], p.
100). Lemma 6.1 states that the coindex is 0 if and only if the index is 0, so non-tidy spaces are
counter-examples to its generalization, and thus a significant problem when attempting to extend
known cases of Hedetniemi’s conjecture. Moreover, Conjecture 1.6 is equivalent to the statement
that, for all Z2-spaces X,Y :

ind(X × Y ) = min(ind(X), ind(Y )).

Since the inequality ind(X×Y ) ≤ min(ind(X), ind(Y )) is trivial and since X →Z2 Y easily implies
the other direction, any counter-example to Conjecture 1.6 must satisfy X 6→Z2 Y and Y 6→Z2 X.
Since coind(X) ≥ ind(Y ) implies Y →Z2 S ind(Y ) →Z2 X, this means any counter-example to
Conjecture 1.6 must involve a non-tidy space.

Non-tidy spaces are not so easy to come by, at least for a combinatorialist, but a few examples
are known. The following (and others: Stiefel manifolds, constructions using the Hopf map) are
discussed in more detail in Matoušek’s book [Mat08] and in a chapter of Csorba’s thesis [Cso05]
devoted to the topic. The simplest is perhaps the torus with two holes (that is, the 2-dimensional
orientable surface of genus 2, with Z2-action x 7→ −x in a symmetric embedding in R3, ie.,
swapping the holes) which has coindex 1 and index 2, that is, S2 6→Z2 X, but X 6→Z2 S1. Real
projective spaces (with an appropriate Z2-action) provide examples with the worst possible gap:
they have coindex 1 and arbitrarily high index, that is, S2 6→Z2 X, but X 6→Z2 Sn, for an
arbitrarily high n (the index has been computed by Stolz [Sto89], see also an exposition in [Pfi95]).
Matsushita [Mat17b] proved an even stronger example where not only the index is arbitrarily
high, but so is a cohomological lower bound of it; his proof also uses considerably fewer tools of
algebraic topology.
The dual to Conjecture 1.6, namely coind(X × Y ) = min(coind(X), coind(Y )), has been

considered by Simonyi and Zsbán [SZ10]. This statement is trivial in topology, that is, Sn →Z2

X × Y if and only if Sn →Z2 X and Sn →Z2 Y . However, they showed that coind |Box(G×H)| =
min(coind |Box(G)|, coind |Box(H)|) (without resorting to |Box(G)|×|Box(H)| 'Z2 |Box(G×H)|),
which allowed them to conclude that Hedetniemi’s conjecture is true on all graphs for which the
topological bound on the chromatic number coind(|Box(G)|) + 2 ≤ χ(G) is tight. Conjecture 1.6
would imply that tightness of the stronger bound ind(|Box(G)|) + 2 would suffice.

In topological literature on the index (see eg. [Yan54; Yan55; CF60; CF62; Ucc72; Tan03]),
Z2-maps are usually called equivariant maps. The names ‘coindex’ and ‘index’ are usually swapped
with respect to their usage in (topological) combinatorics. The index has also been called the
B-index, level, genus. Nevertheless, the only mention of the index of products of spaces seems to
be [Kau13].
We note that the index has important applications in algebra, see [DLP80; DL84]; Dai and

Lam proved a crucial connection and stated a question [DL84, (11.2)] about tensor products of
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commutative R-algebras that is closely related, via this connection, to Conjecture 1.6. The level
s(A) of an algebra A is the least n such that −1 can be represented as the sum of n squares:
−1 = a2

1 + · · ·+ a2
n for some ai ∈ A. The question is whether s(A⊗R B) = min(s(A), s(B)), for

all commutative R-affine algebras A,B. As far as we know, this question has not been explored
further, regrettably.

Open questions

For a topologist, the main question stemming from this chapter and the whole of this thesis is
Conjecture 1.6. Even though we state it as a conjecture, we have no serious reason to believe it
to be true. In fact so little is known that any partial result would be interesting. In particular,
is S2, or really any non-1-dimensional Z2-space, multiplicative? An example of a Z2-space that
is not multiplicative is X × Y for any X,Y such that X 6→Z2 Y and Y 6→Z2 X; can any other
examples be given? As far as we know, it could even turn out that known non-tidy spaces provide
relatively simple counter-examples to Conjecture 1.6 and hence to Hedetniemi’s conjecture. Can
one compute the index of some non-trivial products involving non-tidy spaces? How about some
subspaces of the space of maps from S3 to S2?

Closer to combinatorics, we ask how close can the connection with topology be. Is every graph
K with |Box(K)| 'Z2 S1 multiplicative? All known examples suggest so, but very little is known
on graphs that are not multiplicative, so any new method for disproving multiplicativity would
be interesting. Beside taking K = G × H for graphs such that G 6→ H and H 6→ G, the only
construction known to the author comes from Kneser graphs, see [TZ02b].
Finally, do other functors have similar properties to Ωk, in particular do all “adjoint fractional

powers” of the form Γ`(Ωk(·)) with l < k preserve the homotopy type (as in the Equivalence
Theorem 1.1)? How about right adjoints to the arc graph construction? Can the properties
be derived from more general principles? Similarly, aiming to generalize the proof that powers
of graphs of high girth are multiplicative, for which graphs K can we show a homomorphism
Ωk(Γk(K))→ K?
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