
University of New Caledonia University of Warsaw
Institut des Sciences Exactes Faculty of Mathematics, Informatics

et Appliquées and Mechanics

Marcin Przybyłko

Stochastic games and their complexities
PhD dissertation

Supervisors

prof. dr hab. Damian Niwiński
Institute of Informatics
University of Warsaw

prof. dr hab. Teodor Knapik
Institut des Sciences Exactes et Appliquées

Université de la Nouvelle Caledonie

Auxiliary Supervisor

dr Michał Skrzypczak
Institute of Informatics
University of Warsaw

October 2018



Author’s declaration:
aware of legal responsibility I hereby declare that I have written this dissertation myself and
all the contents of the dissertation have been obtained by legal means.

October 15, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date Marcin Przybyłko

Supervisors’ declaration:
the dissertation is ready to be reviewed

October 15, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date prof. dr hab. Damian Niwiński

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
prof. dr hab. Teodor Knapik



Contents

1 Introduction 8

2 Vital definitions 15
2.1 Words and trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Topology and measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Game theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Finite automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Branching games 29
3.1 Branching games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Values of a branching game . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 The standard games collections . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Problems of interest 42
4.1 Classification problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Computational complexity problems . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Known complexity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Pure branching games 46
5.1 Winning strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Single player winning strategies . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Two player winning strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Dealternation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Stochastic branching games 60
6.1 Regular objectives vs determinacy . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Values of stochastic regular branching games . . . . . . . . . . . . . . . . . . 65
6.3 Derandomisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3



7 Game automata winning sets 80
7.1 Reduction to meta-parity games . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Measures 83
8.1 Computing measure and simple examples . . . . . . . . . . . . . . . . . . . . 83
8.2 First-order definable languages and their standard measures . . . . . . . . . 87
8.3 First-order definable languages with descendant . . . . . . . . . . . . . . . . 93
8.4 Conjunctives queries and standard measure . . . . . . . . . . . . . . . . . . . 94

9 Plantation game 99
9.1 Data overview, preparation, and selection . . . . . . . . . . . . . . . . . . . . 99
9.2 Model description and extraction . . . . . . . . . . . . . . . . . . . . . . . . 101
9.3 Game definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.4 Use of the plantation game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10 Conclusions and future work 113

4



Abstract
We study a class of games introduced by Mio to capture the probabilistic µ-calculi called
branching games. They are a subclass of stochastic two-player zero-sum turn-based infi-
nite-time games of imperfect information. Branching games extend Gale-Stewart games
by allowing players to split the execution of a play into new concurrent sub-games that
continue their execution independently. In consequence, the play of a branching game has
a tree-like structure, as opposed to linearly structured plays of Gale-Stewart games.

In this thesis, we focus our attention on regular branching games. Those are the branching
games whose pay-off functions are the indicator functions of regular sets of infinite trees,
i.e. the sets recognisable by finite tree automata. We study the problems of determinacy,
game value computability, and the related problem of computing a measure of a regular set
of infinite trees.

Determinacy is a property of a game that guarantees that none of the players gains
or loses an advantage by revealing their strategy at the start of the game. In general,
branching games are not determined: not even under mixed strategies nor when the winning
sets are topologically simple. On the positive side, we show that regular branching games
with open winning sets are determined under mixed strategies. Moreover, we show that
game automata definable winning sets guarantee a stronger version of determinacy – the
determinacy under pure strategies. Both results are accompanied by examples showing the
limits of used techniques.

We give an answer to the problem of computing a value of a regular branching game.
We show that a mixed value of a non-stochastic branching game is uncomputable and that
a pure value of a stochastic branching game is also uncomputable. On the other hand,
we provide an algorithm that computes all pure values of a given non-stochastic regular
branching game.

We partially solve the problem of computing measures of regular sets of trees. We provide
an algorithm that computes the uniform measure of a regular winning set in two cases. Either
when it is defined by a first-order formula with no descendant relation or when it is defined
by a Boolean combination of conjunctive queries.

Finally, we use real-life data to show how to incorporate game-theoretic techniques
in practice. We propose a general procedure that given a time series of data extracts a reac-
tive model that can be used to predict the evolution of the system and advise on the strategies
to achieve predefined goals. We use the procedure to create a game based on Markov decision
processes that is used to predict and control level of pest in a tropical fruit farm.
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Streszczenie
W pracy badamy klasę gier zwanych grami rozgałęziającymi. Gry rozgałęziające zostały
wprowadzone przez Mio w celu uchwycenia semantyki probabilistycznego rachunku µ. Sta-
nowią one podklasę stochastycznych dwuosobowych gier turowych o sumie zerowej i nie-
skończonym czasie rozgrywki. Gry rozgałęziające rozszerzają gry Gale’a-Stewarta poprzez
to, że pozwalają podzielić rozgrywkę, tworząc nowe podgry, które są rozgrywane równole-
gle i niezależnie. Z tego powodu rozgrywka gry rozgałęziającej ma strukturę drzewiastą,
w przeciwieństwie do liniowej struktury rozgrywek w grach Gale’a-Stewarta.

W niniejszej rozprawie doktorskiej skupiamy się na regularnych grach rozgałęziających.
Są to te gry rozgałęziające, w których funkcja wypłaty jest funkcją charakterystyczną regu-
larnego zbioru nieskończonych drzew, to jest zbioru nieskończonych drzew, który jest rozpo-
znawany przez skończony automat na drzewach. W pracy skupiamy się głównie na problemie
determinacji, na obliczalności wartości gier oraz na powiązanym z grami problemie obliczania
miary regularnych zbiorów drzew.

Determinacja jest to własność gry, która gwarantuje, że żaden z graczy nie zyska ani
nie straci przewagi poprzez ujawnienie swojej strategii na początku gry. Pokazujemy, że gry
rozgałęziające nie muszą być zdeterminowane: ani gdy zbiory wygrywające są topologicznie
proste, ani w przypadku, gdy dopuścimy strategie mieszane. Z drugiej strony, pokazujemy,
że regularne gry rozgałęziające z otwartymi zbiorami wygrywającymi są zdeterminowane
w strategiach mieszanych. Co więcej, pokazujemy, że te gry są zdeterminowane w strate-
giach czystych, jeśli zbiory wygrywające są rozpoznawalne przez automaty growe. Dla obu
rezultatów konstruujemy przykłady pokazujące granice użytych technik.

Rozwiązujemy także problem obliczalności wartości gier pokazując, że mieszane wartości
niestochastycznych gier rozgałęziających nie są obliczalne oraz, że czyste wartości gier sto-
chastycznych także nie są obliczalne. Z drugiej strony, opisujemy algorytm, który wylicza
czyste wartości niestochastycznych gier rozgałęziających.

Częściowo rozwiązujemy problem obliczania miar regularnych zbiorów drzew. Przedsta-
wiamy algorytm, który oblicza miarę zbioru drzew, względem jednorodnej miary na drze-
wach, w dwu przypadkach: kiedy zbiór jest zdefiniowany poprzez formułę pierwszego rzędu
nie używającą relacji potomka oraz gdy zbiór jest zdefiniowany poprzez boolowską kombi-
nację zapytań koniunkcyjnych.

Wreszcie, pokazujemy w jaki sposób możemy zastosować bogate techniki teorii gier
w praktyce. Proponujemy procedurę, która na podstawie szeregu czasowego tworzy reak-
tywny model pozwalający przewidzieć ewolucję modelowanego systemu i tworzyć strategie
pozwalające zrealizować uprzednio zdefiniowane cele, jeśli takie strategie istnieją. Używamy
wyżej wymienionej procedury, by stworzyć grę bazującą na procesach decyzyjnych Markowa,
która pozwala przewidzieć i kontrolować poziomy obecności szkodników w tropikalnym sadzie
owocowym.

6



Résumé
Nous étudions les jeux ramifiés introduits par Mio pour définir la sémantique du µ-calcul
modal stochastique. Ces jeux stochastiques infinis à information imparfaite joués tour à tour
par deux joueurs forment une sous-classe des jeux infinis à somme nulle. Elles étendent les
jeux de Gale-Stewart en ce que chaque partie peut se scinder en sous-parties qui se dé-
roulent indépendamment et simultanément. En conséquence, chaque partie a une structure
arborescente, contrairement à la structure linéaire des parties des jeux de Gale-Stewart.

Dans cette thèse, nous étudions les jeux ramifiés réguliers. Ceux-ci ont pour caractéris-
tique d’avoir leurs ensembles gagnants régulières, c’est à dire, des ensembles d’arbres infinis
reconnus par automates finis d’arbres. Nous nous intéressons aux problèmes de détermi-
nation, de calcul des valeurs de jeux ramifiés réguliers et de calcul effectif de la mesure
d’un ensemble régulier d’arbres.

La détermination est une propriété qui garantit qu’aucun des joueurs n’acquiert ou ne perd
un avantage en révélant sa stratégie au début d’une partie. En général, les jeux ramifiés
réguliers ne sont pas déterminés, pas même dans les stratégies mixtes, ni lorsque les ensembles
gagnants sont topologiquement simples. Du côté positif, nous montrons que les jeux ramifiés
réguliers ayant pour ensembles gagnants des ouverts sont déterminés en stratégies mixtes.
De plus, dans le cas où les ensembles gagnants sont reconnus par ce qu’on appelle des
automates de jeu, nous montrons la détermination en stratégies pures. Ces deux résultats
sont accompagnés d’exemples qui montrent les limites des techniques utilisées.

Nous donnons une réponse au problème de calcul des valeurs des jeux ramifiés régu-
liers. Nous montrons que les valeurs mixtes des jeux ramifiés non stochastiques ne sont pas
calculables et que les valeurs pures des jeux ramifiés stochastiques ne sont pas calculables.
En revanche, nous donnons un algorithme qui calcule les valeurs pures des jeux ramifiés non
stochastiques.

Nous donnons une réponse partielle au problème de calcul des mesures d’un ensemble
régulier d’arbres. En particulier, nous donnons un algorithme qui calcule la mesure uniforme
dans les deux cas suivants : lorsque l’ensemble est défini par une formule de la logique
du premier ordre qui n’utilise pas la relation de descendant, ou lorsque l’ensemble est défini
par une combinaison booléenne de requêtes conjonctives.

Finalement, nous utilisons des données réelles pour présenter comment on peut employer
des techniques de la théorie des jeux stochastiques en pratique. Nous proposons une procé-
dure générale qui à partir d’une série temporelle crée un modèle réactif capable de prédire
l’évolution du système. Ce modèle facilite aussi les choix des stratégies permettant d’at-
teindre certains objectifs prédéfinis. La procédure nous sert ensuite à créer un jeux basé sur
les processus décisionnels de Markov. Le jeu obtenu peut être utilisé pour prédire et contrôler
le niveau d’infestation d’un verger expérimental.
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Chapter 1

Introduction

From its very beginning game theory has been used to discover, understand, model, and pre-
dict the behaviour of naturally occurring systems. Game theory is especially useful when the
systems in question are defined by an interaction of a number of agents that, not necessarily
in cooperation, try to achieve their individual goals, e.g. a group of processes in an operating
system competing for resources, a group of investment bankers trading shares, or a pack
of predators hunting prey. Systems like those can be found in almost every branch of mod-
ern computer science, economy, or natural sciences. In computer science, games are used
in semantics, verification, logic, and automata theory, to name a few, where they are used
to define and formalise the notions of interaction. In economics, game theory is often associ-
ated with the rational choice in which we assume that the agents behave rationally. Lastly,
in natural sciences games are often used to model complex events and ecosystems, where
a number of competing parties try to achieve the best possible outcome, e.g. predator-prey
equilibria.

Games The central notion in game theory are games. Those considered in this thesis are
an extension of so-called games on graphs. Games on graphs are played on possibly infinite
graphs with vertices distributed between the players. The players move a token, initially
placed in one of the vertices, along the edges of the graph and in accordance to the ownership
of the vertices. If a vertex is owned by a single player, then this player decides where to move
the token. If a vertex is shared, then the players simultaneously and independently choose
an action each; the chosen tuple of actions indicates the next placement of the token. The
outcome of the game, called a play, is the trace of the token. After the game is played, every
player achieves a score defined by a specific to the player pay-off function.

Games on graphs are often enhanced with probability. Such games, called stochastic
games, introduce the uncertainty with a new type of vertices, called random vertices, in which
the next position of the token is not decided by the players, but by the value of an associated
random variable. The addition of random vertices is often encoded as an additional, ficti-
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tious, player that chooses its moves at random. In the case of stochastic games, the score
is the expected value of the pay-off function over the set of possible outcomes. Games with
no random vertices are called non-stochastic or pure games.

The abundance of possible applications and areas of relevance of game theory gave birth
to many classes of games which are often defined by some of their properties and require
different tools to be analysed efficiently. The properties defining those classes include, but
are not limited to, the duration of the game, the progress of time, the number of the play-
ers, the shape of the arena, the presence of uncertainties, players’ knowledge, and the form
of the objectives. Considering duration of the game, we can distinguish one-shot games,
e.g. matrix games, matching pennies, rock-paper-scissors; finite time games, e.g. chess,
tic-tac-toe; and (potentially) infinite time games, like reachability games, system-user in-
teraction, or Gale-Stewart games [19]. Note that from the technical point of view, one-shot
games can be seen as (in)finite time games, and (in)finite time games can be seen as one-shot
games. Indeed, we can either add some inconsequential moves or demand that players declare
all their future decisions at the start of the game.

The progress of time leads to distinction between turn based games, which are played
in rounds, and continuous time games, see e.g. [2]. In the discrete time setting, we have con-
current games, where some vertices can be shared, e.g. Blackwell games [31], and turn-based
games, where every vertex has at most one owner, e.g. Gale-Stewart games [19], or parity
games [38, 16]. The objectives of games are usually given by families of pay-off functions,
one for each player. An important class of games are zero-sum games, where the pay-off
functions are chosen so that the sum of individual scores is zero. A game has a winning set
if the possible scores are binary: win or lose. We say that a game is regular if it has a regular
winning set, i.e. the inverse image of win is a regular set. By regular set we understand a set
defined by a monadic second-order formula, see e.g. [54] for details.

Determinacy One of the most important notions in game theory is determinacy. Intu-
itively, a game is determined if no player gains an advantage knowing the strategies of the
other players.

The exact definition of determinacy depends on the type of the game and the class
of allowed strategies, e.g. in concurrent games or in matrix games with real valued pay-off
functions the determinacy is defined in terms of equilibria, while in zero-sum turn-based
games with winning sets, like Gale-Stewart games, in terms of winning strategies.

The celebrated result of Martin [30] states that Gale-Stewart games with Borel winning
sets are determined under pure strategies. On the other hand, since the seminal work of Gale
and Stewart [19], we know that not every game is determined under pure strategies. There-
fore, broader classes of strategies are considered. Nash theorem [41] states that in one-shot
games with finitely many strategies, there exists at least one point of equilibrium. This
is an extension of the works of von Neumann and Morgenstern [57], who have shown the
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determinacy of two-payer zero-sum games, and was later improved by Glicksberg [21] who
showed that in two-player zero-sum games the equilibrium exists if the space of possibly in-
finite number of strategies is compact and the pay-off function is continuous. The equilibria
are expressed in terms of mixed strategies, i.e. probability distributions on the set of pure
strategies. A similar result by Martin [31] states that Blackwell games, a class of infinite du-
ration discrete time concurrent games with a finite number of possible actions per turn, are
determined under mixed strategies. Note that both results by Martin hold in the stochastic
set-up, see [31] for details.

Branching games In this thesis we study a special extension of stochastic two-player
zero-sum turn-based games on graphs called branching games [33]. The novel addition
of branching games [33] is yet another kind of vertices, as opposed to players’ vertices and
random vertices, called branching vertices. A token placed in one of those vertices is split into
a number of indistinguishable new copies of the token. The copies are placed in the successor
vertices of the current vertex, one in each, and moved with no information on whereabouts
of the other copies. This new type of vertices can be seen as a delegation process, where the
players delegate the resolution of the rest of the game to independent parties that cannot
communicate. Note that branching games are games of imperfect information: we assume
that when players decide where to move a copy of the token, they are unaware of the positions
of other copies.

Traditionally, the two players playing the game are called Adam and Eve, and the ficti-
tious player encoding randomness is called Nature.

Complexities of games The main theoretical focus of this thesis is placed on the compu-
tational complexity of computing the values of the regular branching games. This can be seen
as a natural extension of the work of Mio, who introduced branching games [35] and studied
some of their properties [33].

We are interested in this family of games for two reasons:

• regular sets are a robust class with strongly developed theory and many good proper-
ties, e.g. closure properties, effective representation, and many decision procedures;

• regular sets are complex enough to not trivialise the problems and showcase interesting
properties of branching games, e.g. lack of perfect information or perfect recall, for the
definition of perfect recall see e.g. [27].

Considering the scope and theme of the theoretical part of this thesis, we continue the
work of Mio by considering branching games with regular winning sets and studying their
computational complexity. In greater scope, this research inscribes itself into a rich literature
describing the complexity of ω-regular games, for a survey see e.g. [10].

Applications As we mentioned at the start, using games to model complex ecosystems
has always been an important motivation in the development of game theory. We con-
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tribute to this part of the research by creating a framework that allows an easy incorporation
of game-theoretic methods. We propose a general procedure that given a time series of data,
extracts a reactive model that can be used to predict the evolution of the system and advise
on the strategies to achieve predefined goals.

This is a case study, in which we were presented a data set to work with. Due to the
nature of the data, we have decided to use Markov decision processes as our models of choice
and Baum-Welch procedure to teach our models. Nevertheless, the described procedure
is general and, if the data would allow, both the model and the teaching procedure can
be replaced effortlessly.

Organisation of the thesis and main results This thesis consists of three main parts.
The first part, Chapters 2 to 4, introduces basic notions. The second part, Chapters 5 to 8,
studies branching games with regular winning objectives. The last part, Chapter 9, shows
how game theory in conjunction with machine learning can be used in real-life applications
in modern agriculture.

In Chapter 2 we introduce the basic notions used throughout this document and recall
a number of definitions of classical games. Chapter 3 consists of the central definitions of this
thesis. In this chapter, we define the branching games, strategies, game values, and the
formal notion of determinacy. Moreover, we discuss how various classes of games presented
(informally) in Chapter 2 can be uniformly represented as branching games.

In the short Chapter 4, we define the problems of interest in this thesis and recall some
of the important and previously known results concerning the computational complexity
of those problems.

In Chapter 5 we study the family of pure branching games, i.e. branching games with
no random vertices. Moreover, when considering pure branching games we allow pure strate-
gies only.

We start by recalling the notion of a winning strategy. This allows us to associate the
pure values of the game and the determinacy with the existence of a winning strategy. Then
we recall that branching games are not necessarily determined under pure strategies and
discuss the complexity of computing the values of a given game. We start the discussion
with the case of single-player games, which are necessarily determined under pure strategies.
Then we inspect the case of finite two-player games and show that the sets of winning
strategies are regular sets of trees. From this, we conclude that there is an algorithm that
decides whether a given game is determined under pure strategies. Moreover, we provide
an alternative proof of the existence of an undetermined branching game. The proof is based
purely on computational complexity.

Finally, we present one of the interesting properties of the branching games: the dealterna-
tion of the winning objective. We show that if the winning objective is given as an alternating
automaton, then we can modify in polynomial time both the board and the representation
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of the winning objective so that the pure values are unchanged and the winning set in the
new game is given by a non-deterministic automaton instead of an alternating one. Because
of complexity reasons, such an operation is impossible without the branching elements of the
arena.

The main results of this chapter are as follows.

• In the case of finite single-player games, we reduce the problem of computing the value
of a game with no Adam’s vertices to the non-emptiness of a regular set of trees; sim-
ilarly, the problem of computing the value of a game with no Eve’s vertices to the
universality of a regular set of trees. Moreover, we provide matching upper bounds;
in particular, we show that if the winning set is given by a non-deterministic automa-
ton then computing the pure values is in NP ∩ coNP with no Adam’s vertices and
is EXP-complete with no Eve’s vertices.

• In the case of finite two-player games, we show that the set of wining strategies of either
player is regular and, thus, the values are computable. Moreover, we provide matching
upper bounds, for instance if the winning set is given by a non-deterministic automaton
then computing Eve’s pure value is 2-EXP-complete and computing Adam’s pure value
is EXP-complete.

• There is an algorithm that decides whether a game is determined; the algorithm works
in doubly exponential time.

Results in this chapter are based on [45, 47].
In Chapter 6 we lift the restrictions on the types of vertices and the types of strategies.

Here we study branching games with stochastic elements, i.e. we allow random vertices, and
both behavioural and mixed strategies. We start by showing that branching games with
regular objectives are not necessarily determined even under mixed strategies. On the other
hand, we show that if the winning objective is topologically, relatively, simple, i.e. is an open
(or a closed) set, then the game is determined under mixed strategies. Later, we discuss the
computational complexity of deciding the value of a branching game with a regular winning
set. We show that even in the single-player case there is no algorithm that can compute any
of the values of an arbitrary branching game. In particular, we show that deciding whether
a value of a branching game with effectively encoded regular winning set is strictly greater
than a certain threshold is undecidable.

Finally, we present another interesting property of the branching games: the derandomi-
sation property. We show that we can modify in polynomial space both the board and
the winning set so that the mixed values remain unchanged and the new regular game has
no random vertices.

The main results of this chapter are:

• branching games with open winning sets are determined under mixed strategies;
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• there exists a branching game, with a winning set being a difference of two open sets,
that is not determined under mixed strategies;

• there is no algorithm that computes a value of an arbitrary branching game;

• there is no algorithm that computes a mixed value of a non-stochastic branching game.

Results in this chapter are based on [47].
In the short Chapter 7 we study branching games with winning sets given by so-called

game automata. Game automata are a syntactic restriction of the alternating automata
on trees. We show that those games reduce in polynomial time to meta-parity games intro-
duced by Mio [35]. Since stochastic meta-parity games are determined [33] and their value
is computable (an unpublished result by Mio), branching games with winning conditions
given by game automata are determined under pure strategies and their value is computable.

The main results of this chapter are:

• branching games with winning sets given by so-called game automata are determined
under pure strategies;

• there is an algorithm that computes the value of a given branching game with a winning
set given by a game automaton;

• there is an algorithm that computes the value of a given non-stochastic branching
game with a winning set given by a game automaton, the algorithm belongs to the
class UP∩co-UP.

In Chapter 8 we attack the problem of computing the uniform measure of a regular
set of trees. This problem can be seen as a special case of computing a value of a given
half-player game, i.e. a game with only branching and random vertices. It turns out that,
in some restricted classes of first-order definable sets of trees, we can use Gaifman locality
to show that the measure of a set of trees is rational and computable. We leave the general
problem unsolved, but we give an example, inspired by Potthoff’s example [44], of a first-order
definable set of trees with an irrational, but algebraic, measure. Moreover, we conjecture
that the measures of regular sets of trees are algebraic.

The main results of this chapter are the following.

• If a set of trees is defined by a first-order formula using unary predicates and the suc-
cessor relations only, then the measure is rational and computable in triple exponential
space.

• If a set of trees is defined by a Boolean combination of conjunctive queries using
unary predicates, the successor relations, and the ancestor relation, then the measure
is rational and computable in exponential space. Moreover, deciding whether the
measure is positive is NEXP-complete.
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• There is a first-order definable set of trees whose uniform measure is an irrational
number.

Results in this chapter are based on [46].
In Chapter 9 we show how game theory, and stochastic games in particular, can be used

to support modern agriculture. We propose a plantation game framework, where we show
how using time series of data describing a plantation one can create a tool that can model
and predict the behaviour of the plantation and advise the owner. This is a case study where
we take a time series describing a real fruit plantation and, using machine learning methods,
create a model and, later, a game that can represent the interactions between the different
elements of the fruit farm. Then, we show how the game can be used to predict the evolution
of the system and how to use the game to create an artificial advisor, connecting the theory
with real life applications.
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Chapter 2

Vital definitions

Automata theory, game theory, and logic are rich and spacious disciplines of modern science.
While we are aware of the vast literature that tackle each of them separately, we prefer
to see them as necessarily entwined areas of research, with a great number of similarities
in definitions and techniques. This approach is motivated by the nature of the problems
considered in this thesis, which in natural way mix those areas of research.

Hence, we will introduce the needed definitions in a uniform manner. Let us begin with
the basic building blocks used in this thesis.

2.1 Words and trees

Basic sets By R we denote the set of real numbers with the standard topology, standard
order (≤), and its standard Lebesgue measure. By R≥0 we denote the set of non-negative real
numbers. By R∞ we denote the set of real numbers augmented by the infinity, i.e. the unique
element ∞ such that for every real number x we have that x <∞. By N = {0, 1, 2, . . .} we
denote the set of natural numbers with the standard discrete topology and standard order on
its elements. By ω we denote the first infinite ordinal number. Technically, N and ω denote
the same sets of numbers, but we use ω to emphasise the order on the natural numbers.

Functions By f ∶X → Y we denote a (total) function from X to Y , by f ∶X ⇀ Y we denote
a partial function fromX to Y . If f ∶X ⇀ Y is a (partial) function, then by dom(f) we denote
its domain and by range(f) its range, i.e. the set {y ∈ Y ∣ ∃x ∈ X. f(x) = y}. For a subset
S ⊆ Y by f−1(S) we denote the pre-image of S, i.e. the set {x ∈ X ∣ ∃y ∈ S. f(x) = y}.
If S = {y} is a singleton, then we simply write f−1(y). Recall that, often it is convenient
to see any partial function f ∶X ⇀ Y as a relation f ⊆ X × Y , especially in the context of
relational structures.

Let V, S be a pair of sets such that S ⊆ V . By iV we denote the identity function, i.e. the
function iV ∶V → V such that iV (v) = v for every v ∈ V , and by χS the characteristic
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function of the set S, i.e. the function χS∶V → {0, 1} such that χS(v) = 1 if v ∈ S and
χS(v) = 0 if v /∈ S.
Letters An alphabet Γ is any finite non-empty set, the elements of an alphabet are called
letters. Given an alphabet, a letter is called fresh if it does not belong to the alphabet.
We assume that the family of all letters is infinite and for every alphabet we can find a fresh
letter. We fix a special letter ♭ and call it blank. We write Γ ∪ {♭} to emphasise that
the alphabet in consideration contains blank (even if ♭ ∈ Γ), and Γ \ {♭} to emphasise that
it does not contain blank (even if ♭ /∈ Γ).

Let f ∶S → Γ ∪ {♭} be a function, by nodes(f) we denote the set nodes(f) def
= {s ∈ S ∣

f(s) /= ♭}, i.e. the complement of the pre-image of the letter ♭. The intuitive meaning of the
symbol ♭ is that the object “marked with” this symbol does not exist.

Words A word w over an alphabet Γ is any function w∶N → Γ ∪ {♭} with a ≤-closed set
of nodes1. The symbol ε stands for the unique empty sequence, i.e. the function ε∶N→ {♭},
called the empty word. The length of a word, denoted ∣w∣, is the cardinality of its set of nodes.
If the word w has finite length then we call it finite, if not then we call it infinite. The set
of all finite words over an alphabet Γ is denoted Γ∗, the set of all infinite words by w ∈ Γω.
The set of all words over Γ is denoted Γ≤ω. Moreover, if ⋈ is one of {<,≤,=,≥,>}, then
Γ⋈k def

= {w ∈ Γ≤ω ∣ ∣w∣ ⋈ k}, e.g. the set {a, b}=5 is the set of all words of length 5 over the
alphabet {a, b}.

Let w1 ∈ Γ∗ be a finite word, and w2 ∈ Γ≤ω be a word, then w1 ⋅ w2 is the standard
concatenation of w1 and w2, i.e. the word defined as follows.

(w1 ⋅ w2)(x)
def
= {w1(x) if x ∈ nodes(w),

w2(x − ∣w1∣) otherwise.
(2.1)

We often drop the symbol ⋅ and write w1w2 instead of w1 ⋅ w2.
The standard prefix order on words is denoted ⊑, i.e. we write w1 ⊑ w2 if w1 is finite

and there is a word w3 such that w2 = w1 ⋅ w3 or w1 is infinite and w2 = w1.

Trees A binary tree over an alphabet Γ is a function t∶ {L, R}∗ → Γ∪{♭} with a prefix-closed
set of nodes nodes(t) ⊆ {L, R}∗. The symbols L, R are called left and right, respectively, and
describe directions in the tree. The elements of the set {L, R}∗ are called positions.

The height of a tree t is defined as h(t) def
= sup{∣w∣ ∣ w ∈ nodes(t)}. A tree t is

• finite if the set of nodes of t is finite (i.e. ∣nodes(t)∣ < ω),
• infinite if the set of nodes is infinite,
• of height h if h = h(t),
1Note, that the above implies that if w(i) = ♭ for some natural number i then for every j ≥ i we have

that w(j) = ♭.
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• a complete tree of height h if nodes(t) = {L, R}≤h

• a full binary tree if nodes(t) = {L, R}∗.
Let Γ be an alphabet, then the set TΓ is the set of all binary trees over Γ, the set T ∞

Γ
is the set of all full binary trees over Γ, and the set T k

Γ is the set of all complete binary trees
of height k over Γ. In general, one can consider trees of higher arity, e.g. quaternary trees
t∶ {0, 1, 2, 3}∗ → Γ ∪ {♭} or even unranked trees t∶N∗ → Γ ∪ {♭}. In this work we consider
binary trees only, thus, from now on, when we write a tree we mean a binary tree. Let
sd(u)

def
= u ⋅ d for a position u and a direction d. We say that a node u is a child of v

in a tree t if u, v ∈ nodes(t) and u = sd(v) for some d ∈ {L, R}. Conversely, v is called the
parent of u. We write parent(u) for the parent of the node u. We call the node sL(u) left
child of u and the node sR(u) right child of u.

A node u of a tree t is branching if it has at least one child in the tree, is fully branching
if it has two children in the tree, and is uniquely branching if it has exactly one child in the
tree.

Distance The distance between two positions is the function d∶ {L, R}∗×{L, R}∗ → N defined
as d(u, v) = ∣u∣+ ∣v∣− 2∣x∣, where x is the longest common prefix of u and v. Equivalently,
the distance between two different positions is the length of the shortest undirected path
connecting the two nodes in the graph ⟨{L, R}∗, sL∪sR⟩. In other words, if u, v ∈ {L, R}∗ are
in distance n, then there is a sequence of nodes u0, . . . , un such that u0 = u, and un = v, and
for every 0 ≤ i < n we have that either parent(ui) = ui+1 or parent(ui+1) = ui. A sequence
of nodes connected by a child relation is called a walk.

Let t ∈ TΓ be tree, a path p starting at node u ∈ dom(t) is a possibly infinite sequence
of positions {ui}0≤i<γ, for some γ ≤ ω, such that u0 = u and for every 0 ≤ i < γ we have
that ui is the parent of ui+1. Let S ⊆ Γ be a non-empty set of letters, we say that a path
is an S-labelled path if the set of labels is contained in S, i.e. if {a ∈ Γ ∣ ∃i. t(ui) = a} ⊆ S.
If S is a singleton, i.e. S = {a} for some a ∈ Γ we may write a-labelled path instead.

Prefixes and sub-trees We say that a tree t1 is a prefix of a tree t2, denoted t1 ⊑ t2, if
nodes(t1) ⊆ nodes(t2) and for every u ∈ nodes(t1) we have t1(u) = t2(u). The set of all trees
t ∈ TΓ such that t1 is a prefix of t is denoted Bt1 .

For a tree t and a node u ∈ nodes(t), by t▵u we denote the unique tree such that for
every position v ∈ {L, R}∗ the following holds.

t▵u(v) def
= t(uv) (2.2)

The tree t▵u is called the sub-tree of t at node u.
If a node u is not fully branching in a tree t and for a direction d we have that t(ud) = ♭,

then we say that the sub-tree t▵ud was cut.
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Words as trees Note that words may be seen as trees. A word w∶N→ Γ∪{♭} can be seen
as a function t∶ {L, R}∗ → Γ ∪ {♭} such that nodes(t) ⊆ {L}∗ and for i ∈ {0, 1, . . .} we have
that w(i) = t(L

i).

2.2 Topology and measure
Let Γ be a finite set. Then, the set of all functions f ∶ {L, R}∗ → Γ ∪ {♭} can naturally
be enhanced with a topology in such a way that it becomes a homeomorphic copy of the
Cantor set, see e.g. [55]. From now on, whenever we refer to a topology we mean this
topology.

Note that the family of the sets of the form

{f ∶ {L, R}∗ → Γ ∣ t ⊑ f}, (2.3)

where t ∈ TΓ is a complete binary tree of some finite height, constitutes a base of the topology.
A set from the basis is called a base set.

A set is open if it is a union, possibly empty, of some base sets; closed if it is a complement
of an open set; clopen if it is both open and closed. Note, that our chosen basis consists
of clopen sets.

Fact 2.2.1. The set of all trees over the alphabet Γ is a closed subset of all functions
f ∶ {L, R}∗ → Γ ∪ {♭}.

A set S is compact if from every open cover of S one can choose a finite cover, i.e. if for
every family of open sets {Si}i∈I such that S ⊆ ⋃

i∈I

Si there is a finite family of sets {S}j∈J
such that J ⊆ I and S ⊆ ⋃

j∈J

Sj.

Fact 2.2.2. The set of all functions f ∶ {L, R}∗ → Γ ∪ {♭} is compact.

Recall the following basic lemma.

Lemma 2.2.3 (Folklore). If X is a compact topological space and a set S ⊆ X is closed,
then S is compact.

A family of subsets of a non-empty set X is called a σ-algebra on X if it is closed under
complement, countable unions, countable intersections, and contains the empty set. A set
is Borel if it belongs to the smallest σ-algebra containing all open sets.

The following fact is folklore and will be stated without a proof.

Fact 2.2.4. The set of all trees over the alphabet Γ is a closed subset of all functions
f ∶ {L, R}∗ → Γ ∪ {♭}.
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Continuous functions Let X and Y be topological spaces. We say that a function
f ∶X → Y is continuous if for every open set S ⊆ Y the pre-image f−1(S) is an open set.
We say that a real valued function f ∶X → R is lower semi-continuous (resp., upper) if for
every y ∈ R the set {x ∈ X ∣ f(x) ≤ y} (resp., {x ∈ X ∣ f(x) ≥ y}) is closed.

Measures For a comprehensive introduction to topology and measure theory we refer
to [25, Chapter 17]. Here we will introduce definitions and properties that are required for
this work to be self-contained. Though some of the following properties will be unproven,
the adequate references will be provided.

A measurable space is a pair ⟨X,X ⟩, where X is a non-empty set and X is a σ-algebra
on X. Let us fix a measurable space ⟨X,X ⟩. A set S ⊆ X is called measurable if S ∈ X .

A measure µ is a function µ∶X → R∞ such that

• for every S ∈ X we have that µ(S) ≥ 0,

• µ(∅) = 0,

• and for every countable collection of disjoint measurable sets {Si}i≥0 we have that
µ(⋃i≥0 Si) = ∑i≥0 µ(Si).

For a given measure µ, we say that a set S ⊆ X is µ-measurable if S ∈ dom(µ). We
say that the measure µ is a probability measure if µ(X) = 1, a Borel measure if its domain
contains the σ-algebra of Borel sets, and complete if for every pair of sets S, S ′ ⊆ X such
that S ⊆ S ′ and S ′ ∈ X , we have the following: if µ(S ′) = 0 then S ∈ X and µ(S) = 0.

Let ⟨X,X ⟩ be a measurable space, by dist(X) we denote the set of all complete Borel
probability measures on ⟨X,X ⟩. Note that ifX is countable, then the power set ofX is a σ-al-
gebra and every probability measure can be seen as a function induced by some function
f ∶X → R≥0 such that ∑x∈X f(x) = 1. In that case, we often write write f(x) instead
of f({x}).

Integrals Let X, Y be measurable spaces and µ be a measure on X. A function f ∶X → Y

is measurable if the pre-image of any measurable set in Y is measurable in X. A func-
tion f ∶X → R is µ-measurable if the pre-image of any measurable set in R is measurable
in ⟨X, dom(µ)⟩. We say that f ∶X → Y is universally measurable if it is measurable for
every complete Borel measure µ on X.

If µ is a measure on the space X and f ∶X → R is µ-measurable, then by ∫
X
f(x) dµ(x)

we denote the Lebesgue integral of f with respect to the measure µ over X. We say that
a function is (Lebesgue) integrable if it has the Lebesgue integral.

Fact 2.2.5. Let X be a measurable space of finite measure, i.e. µ(X) <∞, and f be bounded
on X. Then, f is integrable over X if and only if it is measurable.
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If f ∶X → Y is measurable then f#µ is the pushforward measure, i.e. f#µ is the measure
on Y defined by the equation

f#µ(S) = µ(f−1(S)) (2.4)

where S ranges over the measurable sets in Y . Moreover, if Φ∶Y → [0, 1] is an integrable
function then the following equation holds.

∫
Y

Φ(y) df#µ(y) = ∫
X

Φ◦f(x) dµ(x) (2.5)

By convention, if the variable over which we integrate, e.g. x, is clear from the context,
we may drop it and write ∫

X
f dµ instead of ∫

X
f(x) dµ(x).

2.3 Game theory
Games often considered in the literature can be seen as objects played in a linear-time man-
ner, i.e. games in which players declare their moves in turns. The sequence of their moves
is recorded as a (possibly) infinite word and, then, checked against a rulebook – a set contain-
ing all the winning sequences. Those games are usually played by a finite number of players,
on a (possibly rudimentary) board, with an established order of movements in every turn.

We will now recall a number of informal definitions of classic games. In the following
chapter, we will show how to encode those games in our set-up, providing, in consequence,
formal definitions.

2.3.1 Games on graphs
Games on graphs is a common name for a fairly large family of games that can be encoded
as games that are played by moving a token alongside the edges of a possibly infinite graph.

A game on graph is a pair G = ⟨B,W ⟩, where W is a winning set and B = ⟨V,E, ρ, λ, vI⟩
is the graph, called board, that the game is played on. The set V is a set of vertices, E ⊆ V ×V
is a set of edges, vI is an initial vertex, ρ∶V → {E,A} is a division between players’ positions
(Eve’s and Adam’s positions), and λ∶V → Λ is a labelling of vertices with a possibly infinite
set of labels Λ. For technical reasons, here and in the future definitions of games, we assume
that every vertex has at least one outgoing edge, i.e. for every v ∈ V there is v′ ∈ V such
that ⟨v, v′⟩ ∈ E.

Intuitively, the game starts with the token placed in the initial vertex and is played
in turns. Each turn, a player moves the token alongside the edges of the graph. The move
is made by the player that owns the vertex on which the token lies.

The sequence of the moves of each player is defined by their strategies. A strategy
is a function mapping the path the token took in the unfolding of the arena to the desired
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displacement, i.e. a function s∶V ∗
V → V such that for every v ∈ V and u ∈ V

∗ we have
that ⟨v, s(uv)⟩ ∈ E.

After an infinite number of moves, a labelled path, called play, is created. Eve wins the
play if the sequence of labels on the path belongs to the set W . If not, Adam wins.

2.3.2 Reachability games
Reachability games, see e.g. [4], are one of the basic games considered in game theory.
A reachability game is a tuple G = ⟨V,E, ρ, F, vI⟩, where V is a set of vertices, E ⊆ V × V
is a set of edges, vI is an initial vertex, ρ∶V → {E,A} is a division between Eve’s and Adam’s
positions, and F ⊆ V is a set of final vertices. The winning condition is defined as follows:
Eve wins a play if at least one of the visited vertices belongs to F .

Reachability games are those games on graphs in which the board is the tuple G =

⟨V,E, ρ, iV , vI⟩ and the winning set W ⊆ V
ω is the set of infinite sequences in which appears

an element belonging to the set F . Recall that iV stands for the identity function.

2.3.3 Parity games
Parity games, see e.g. [38, 16], are one of the crucial concepts in the theory of regular
languages of infinite trees. Parity games are a generalisation of reachability games, with the
set of final vertices F replaced by the ranking function α and the winning condition replaced
by the so-called parity condition.

A parity game is a tuple G = ⟨V,E, ρ, α, vI⟩, where V is a set of vertices, E ⊆ V × V

is a set of edges, vI is an initial vertex, ρ∶V → {E,A} is a division between Eve’s and Adam’s
positions, and α∶V → {i, . . . , j} is a ranking function assigning priorities from a finite set
of natural numbers {i, . . . , j} ⊆ N to vertices. Eve wins a play if the smallest priority visited
infinitely often is even. This is the so-called parity condition.

Parity games are those games on graphs in which the board is the tuple ⟨V,E, ρ, α, vI⟩
and the winning set W ⊆ range(α)ω is the set of infinite sequences satisfying the parity
condition.

2.3.4 Gale-Stewart games
A Gale-Stewart game, see e.g. [19, 30], is a tuple G = ⟨S,W ⟩, where S is a non-empty set
and W ⊆ S

ω is a winning set.
The game is played in turns numbered 0, 1, . . . In ith turn first Eve chooses an ele-

ment ei ∈ S and then Adam chooses an element ai ∈ S. After an infinite number of moves,
an infinite sequence e0a0⋯enan⋯, called play, is created. Eve wins a play if it belongs to
the winning set W .
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Gale-Stewart games can be seen as games on graphs in the following way. The winning
set is W and the board is a tuple ⟨V,N, ρ, λ, vI⟩, where the graph structure consists of a set
of vertices V = SA∪SE∪{vI} containing the initial vertex vI and two sets of vertices SA, SE,
where SA = S×{A}, SE = S×{E}, between which the players alternate by choosing an edge
from the set N = ({vI} × SA) ∪ (SA × SE) ∪ (SE × SA), N may be understood as “next
move”. The first coordinate of a vertex defines the labelling λ(vI) = ε, λ(⟨a, x⟩) = a, the
second defines the ownership ρ(vI) = E, ρ(⟨a, x⟩) = x.

2.3.5 Simple stochastic games
Simple stochastic games are an extension of reachability games that introduces probability,
see e.g. [11].

A simple stochastic game is a tuple G = ⟨V,E, ρ, F, vI⟩, where V is a set of vertices,
E ⊆ V × V is a set of edges, vI is an initial vertex, ρ∶V → {E,A,N } is a division between
Eve’s, Adam’s, and Nature’s positions, and F ⊆ V is a set of final vertices.

Intuitively, the game starts with the token placed in the initial vertex and is played
in turns. Each turn, one of the players moves the token alongside the edges of the graph.
If the vertex is owned by Nature, a fair dice is rolled, and the next position of the token
is chosen with uniform probability. If the vertex is not owned by Nature, then, as before,
the move is made by the player that owns the vertex.

The winning condition is defined as follows: Eve wins a play if at least one of the visited
vertices belongs to F .

Simple stochastic games cannot be expressed in terms of the above definition of games
on graphs. Still, by a standard construction that introduces a third player, called Nature, and
enhances the board with a new function describing random choice, simple stochastic games
can be seen as a stochastic extension of games on graphs. This extension will be exploited
in the following chapter, where we define branching games.

2.3.6 Blackwell games
The Blackwell games, see e.g. [31], are a subclass of concurrent games, i.e. games in which
players simultaneously decide the next displacement of the token.

A Blackwell game is a tuple G = ⟨S,W ⟩, where S is a non-empty finite set and W ⊆ S
ω

is a winning set. The game is played by Eve and Adam in turns numbered 0, 1, . . . . Every
turn both players simultaneously choose an element from the set S. In ith turn Eve chooses ei
and Adam chooses ai.

As before, after an infinite number of moves, an infinite sequence e0a0⋯enan⋯, called
a play, is created. Eve wins a play if it belongs to the winning set W .
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As in the case of simple stochastic games, the concurrent nature of Blackwell games
cannot be expressed using our definition of games on graphs. Again, by allowing a shared
ownership of nodes we could recover concurrent behaviour. We will not define this exten-
sion because, as we will see, branching games can recover the concurrency without shared
ownership of the vertices.

2.4 Finite automata
The following definition of finite automata is valid for both finite and infinite trees.

The automata An alternating tree automaton is a tuple A = ⟨Q,Γ, δ, α, qI⟩ where Q
is a finite set of states; Γ is a finite alphabet; α is a ranking function that assigns a priority
α(q) ∈ {i, i + 1, . . . , j} to a state q ∈ Q; qI is an initial state; and δ is a transition function
mapping pairs ⟨q, a⟩ ∈ Q × (Γ ∪ {♭}) to formulae ϕ built using the following grammar

ϕ ∶∶= ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ (p, d) ∣ ⊤ ∣ ⊥, (2.6)

where p ∈ Q and d ∈ {L, R}.
We say that a formula ϕ is

• atomic if ϕ is of the form (p, d) where p ∈ Q, d ∈ {L, R},

• an ∧-split if ϕ is of the form (p, L) ∧ (q, R) where p, q ∈ Q,

• an ∨-split if ϕ is of the form (p, L) ∨ (q, R) where p, q ∈ Q.

Note that the split formulae necessarily utilise both directions in the atomic sub-formulae.
An automaton A is called

• a deterministic automaton, abbreviated DTA, if the formulae are ∧-splits,

• a game automaton, abbreviated GA, if the formulae are either ∨- or ∧-splits,

• a non-deterministic automaton, abbreviated NTA, if the formulae are disjunctions
of ∧-splits.

• an alternating automaton, abbreviated ATA, if the formulae are arbitrary positive
Boolean combinations, as in the grammar (2.6).

Acceptance game Let t be a tree over an alphabet Γ ∪ {♭} and let ∆ be the set of all
sub-formulae of transitions of an alternating tree automaton A. The automaton A accepts
the tree t if Eve has a winning strategy in the parity game G(A, t) = ⟨V, sL ∪ sR, ρ, α

′
, vI⟩

defined as:
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• V = ∆ × {L, R}∗,

• sL, sR∶V → V ,

• vI = ⟨δ(qI, t(ε)), ε⟩.

• Ifm = maxq∈Q α(q), then ρ, α′, sL, and sL are defined as follows: for each v = ⟨ψ,w⟩∈V

– if ψ = ψL ∨ ψR, then ρ(v) = E, α′(v) = m, and sd(v) = ⟨ψd, w⟩ for d ∈ {L, R};
– if ψ = ψL ∧ ψR, then ρ(v) = A, α′(v) = m, and sd(v) = ⟨ψd, w⟩ for d ∈ {L, R};
– if ψ = (d, q), then ρ(v) = E, sL(v)=sR(v)=(δ(q, t(wd)), wd), and α′(v) = α(q);
– if ψ = ⊤, then ρ(v) = E, sL(v) = sR(v) = v, and α′(v) = 0;
– if ψ = ⊥, then ρ(v) = E, sL(v) = sR(v) = v, and α′(v) = 1.

We denote the set of trees accepted by A as L(A) and call it the language recognised by A.

Nondeterminism For the non-deterministic automata we can define an equivalent notion
of accepting a tree, the acceptance by a run. A run of a non-deterministic automaton A
on the tree t is a labelled tree r∶ {L, R}∗ → Q such that r(ε) = qI and for every u ∈ {L, R}∗ and
every d ∈ {L, R} there are states pL, pR ∈ Q and a formula ψ such that r(uL) = pL, r(uR) = pR

and δ(r(u), t(u)) ≡ ((pL, L)∧ (pR, R))∨ψ. We say that r is accepting if for every path in the
tree r the limes inferior of the priorities of the labels on the path is even.

Automata on words Now we will introduce the automata on words (or finite automata)
as a special case of automata on trees. A word automaton is an alternating tree automaton
that uses atomic formulae with the direction L only. This is consistent with the previous
observation that any word can be seen as a tree with the nodes contained in {L}∗. An ATA
A is called

• a deterministic finite automaton, abbrev. DFA, if the formulae are atomic with d = L,

• non-deterministic finite automaton, abbrev. NFA, if the formulae are disjunctions of
atomic formulae with d = L.

• alternating finite automaton, abbrev. AFA, if the formulae are arbitrary positive
Boolean combinations of atomic formulae with d = L, as defined in the grammar (2.6).

We say that a set of trees (resp. words) L is regular if it is recognised by an alternating
automaton on trees (resp. words), i.e. if L = L(A) for some automaton A.

24



2.5 Logic
Relational structure A relational structure is a tuple R = ⟨V,Ri⟩ni=1, where V is called
the universe of the structure R and Ri ⊆ V

ai are some relations. The number ai ∈ N is called
the arity of the relation Ri. The set of “names” of the relations Ri is called signature of the
structure R.

Gaifman graph Let R be a relational structure. The Gaifman graph of R is the undi-
rected graph GR where the set of vertices is the universe of R and there is an edge between
two vertices u, v in GA if there is a relation R in R and a tuple x ∈ R that has both u and v
on some coordinates. The distance d(u, v) between two elements u, v of the universe of R
is the distance between u, v in the Gaifman graph of R. The r-neighbourhood of an ele-
ment v ∈ V is the set of elements S ⊆ V that are in the distance at most r from v, i.e. for
every u ∈ S we have that d(u, v) ≤ r.

Trees and logic A tree t over a finite alphabet Γ can be seen as a relational structure
t
′
= ⟨{L, R}∗, sL, sR, s,⊑, (at)a∈Γ∪{♭}⟩, where

• {L, R}∗ is the universe of t;
• sL, sR ⊆ {L, R}∗×{L, R}∗ are left child relation (u sL u⋅L) and right child relation (u sR u⋅R),

respectively;
• s is the child relation sL ∪ sR;
• ⊑ is the ancestor relation, i.e. the reflexive, transitive closure of the relation s;
• a

t
= λ

−1(a) ⊆ {L, R}∗ for a ∈ Γ ∪ {♭}.

Moreover, the family of sets (at)a∈Γ∪{♭} is a partition of {L, R}∗. Conversely, if t is a tree
seen as a relational structure, then the partition (at)a∈Γ∪{♭} induces a labelling function
λt∶ {L, R}∗ → Γ ∪ {♭} in the natural way, i.e. λt(u) = a if and only if u ∈ at.

Monadic second-order logic Formulae of monadic second-order logic, abbrev. MSO,
can quantify over elements of the universe (∃x,∀x) and over the subsets of the universe
(∃X,∀X) of a relational structure. A sentence is a formula with no free variables. We use
the standard notions of free variables, quantifier rank, valuations, etc.; for details see e.g. [54].

We say that a monadic second-order formula ϕ is over a signature Σ if ϕ is a well-formed
formula built from the symbols in Σ together with the quantifiers and logical connectives.
Let Γ be an alphabet, in this document we consider only the formulae over the signatures
Σ such that Σ ⊆ {sL, sR, s,⋤,⊑, ε} ∪ (Γ ∪ {♭}). The symbol ε stands for the root predicate,
i.e. ε(u) ⟺ u = ε, and the relation ⋤ stands for the strict prefix order, i.e. u⋤v ⟺

(u⊑v ∧ u≠v).
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MSO and tree languages Let t be a tree; v1, . . . , vn be a list of elements from the universe
of t; V1, . . . , Vk be a list of sets of elements from the universe; and ϕ((X1, . . . , Xk, x1, . . . , xn)
be a monadic second-order formula with n first-order free variables and k second-order
free variables. We write t, V1, . . . , Vk, v1, . . . , vn ⊧ ϕ(X1, . . . , Xk, x1, . . . , xn) if ϕ is satisfied
in a tree t where every Xi is interpreted as Vi and every xi is interpreted as vi. We call
a formula ϕ satisfiable (in a tree t) if it is satisfied for some V1, . . . , Vk, v1, . . . , vn as above.
If a formula is not satisfiable, we call it unsatisfiable.

The language of trees defined by a monadic second-order sentence ϕ over a signature
containing an alphabet Γ, denoted L(ϕ), is the set {t ∈ TΓ ∣ t ⊧ ϕ}.

Theorem 2.5.1 (Rabin [50]). Let ϕ be a monadic second-order formula. Then, the set L(ϕ)
is regular.

First-order logic A first-order formula is a monadic second-order formula that does not
quantify over the sets. We say that a first-order formula ϕ(x) is an r-local formula around x
if the quantifiers are restricted to r-neighbourhood of x, i.e. if ϕ(x) uses the quantifiers
∀≤r and ∃≤r defined as follows: ∃≤ry.ψ(y) def

= ∃y.ψ(y) ∧ d(x, y) ≤ r and ∀≤r
y.ψ(y) def

=

∀y.(d(x, y) ≤ r)→ ψ(y), where d(x, y) ≤ r is a first-order formula stating that the distance
in the Gaifman graph between x and y is at most r.

We say that a first-order sentence ϕ is a basic r-local sentence if it is of the form

∃x1, . . . , xs. ( ⋀
1≤i≤s

ϕi(xi) ∧ ⋀
1≤i<j≤s

d(xi, xj) > 2r) (2.7)

where ϕi(x) are r-local formulae around x and d(x, y) > z are first-order formulae stating
that the distance between x and y in the Gaifman graph of the structure is strictly greater
than z.

Theorem 2.5.2 (Gaifman [18]). Every first-order sentence ϕ is equivalent to a Boolean
combination of basic r-local sentences, i.e. sentences of the form defined by Equation (2.7).
Furthermore, one can compute a Boolean combination such that r ≤ 7qr(ϕ) and s ≤ n+qr(ϕ),
where qr(ϕ) is the quantifier rank of the formula ϕ and n is the length of the formula ϕ.

Conjuntive queries A conjunctive query (abbrv., CQ) over an alphabet Γ is a sentence
of first-order logic using only conjunction, existential quantification, unary predicates a(x),
for a ∈ Γ, the root predicate ε(x), and the binary predicates sL, sR, s,⋤.

Patterns An alternative way of looking at conjunctive queries is via graphs and graph
homomorphisms. A pattern π over an alphabet Γ is a tuple π = ⟨V, Vε, EL, ER, Es, E⋤, λπ⟩,
where V is a set of vertices, λπ∶V ⇀ Γ is a partial function assigning labels, Vε is the set

26



of root vertices, EL, ER, Es, and E⋤ ⊆ V × V are a left child, a right child, a child, and
an ancestor relations, respectively.

Since the patterns consist of relations of arity at most two, they can be represented
as graphs. A graph of a pattern π is the finite graph Gπ = ⟨V,EL ∪ER ∪Es ∪E⋤⟩ whose set
of vertices is the universe of π and the set of edges comprises of left child edges EL, right child
edges ER, child edges Es, and ancestor edges E⋤. By ∣π∣ we mean the size of the pattern π,
i.e. the cardinality of the set of vertices of the underlying graph.

A sub-pattern π′ of a pattern π = ⟨V, Vε, EL, ER, Es, E⋤, λπ⟩ is the pattern with the graph
structure induced by some set of vertices S ⊆ V .

We say that a tree t = ⟨dom(t), sL, sR,⋤, (at)a∈Γ∪{♭}⟩ satisfies a pattern π = ⟨V, Vε, EL,

ER, Es, E⋤, λπ⟩, denoted t ⊧ π, if there exists a homomorphism h∶ π → t, that is a function
h∶V → dom(t) such that

1. h∶ ⟨V,EL, ER, Es, E⋤⟩ → ⟨dom(t), sL, sR, sL ∪ sR,⋤⟩ is a homomorphism of relational
structures,

2. for every v ∈ Vε we have that h(v) = ε,

3. and for every v ∈ dom(λπ) we have that λπ(v) = λt(h(v)).

Every pattern can be seen as a conjunctive query and vice versa. Hence, we will use
those terms interchangeably.

Fact 2.5.3 (Folklore). There is a log-space procedure that inputs a conjunctive query q (resp.,
a pattern π) over an alphabet Γ and outputs a pattern π (resp., a conjunctive query q) over
the alphabet Γ such that for every binary tree t over an alphabet Γ we have that

t ⊧ q ⟺ t ⊧ π (2.8)
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Figure 2.1 – A pattern π (solid arrows) equivalent to the conjunctive query
ϕ

def
= ∃x1, x2, x3, x4, x5. ε(x2) ∧ b(x1) ∧ a(x3) ∧ c(x4) ∧ x1⋤x3 ∧ x2⋤x3 ∧ x2sx4 ∧ x4sx5,

and a homomorphism h∶ π → t (blue dashed arrows) between the pattern π and the tree t
(dotted lines).
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Chapter 3

Branching games

In this chapter we define branching games which constitute the central notion of the theoret-
ical part of this thesis. In particular, we define the concepts of a branching board, a (mixed)
strategy, a partial value, and determinacy.

Additionally, we show how the games on graphs defined in the previous chapter can
be interpreted as branching games and state some previously known results about their
determinacy.

3.1 Branching games
Branching games, also known as tree games, see [33], can be seen as an extension ofGale-Stew-
art games [19] or so-called games on graphs [53]. Those games are, in general, played by three
players: Eve, Adam – two antagonistic abstractions of existential and universal choices – and
Nature – the third, disinterested party representing random choice. The interactions between
the players are defined by a board on which the game is played, by the objectives the players
want to achieve, and are formalised as strategies.

The extension proposed in the branching games is formed by adding yet another type
of positions to the board, called the branching positions, and adjusting the notions of an ob-
jective and a strategy to be consistent with the new features of the board.

Intuitively, the branching positions split the flow of the game creating new, separate
threads, which continue the execution of the game independently. The only information
shared between the threads is their common history, i.e. a path beginning at the initial
position on the board and ending at the branching vertex that split the threads.

More specifically, a branching game is a pair G = ⟨B,Φ⟩ where B is a branching board
and Φ is a universally measurable bounded real function Φ∶ plays(B) → R≥0 describing the
objective of the game. The game is played by two adversaries called Eve and Adam (or shortly
E and A) on the branching board B. The behaviour of the third player, who is denoted N ,
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is randomised, consistent with the construction of the board, and visible to the players.
Now we will describe the formalism necessary to discuss the branching games in a precise

manner, i.e. we will define the notions of a branching board, a play, a strategy, and a value
of a game.

3.1.1 Branching board
A branching board is a tuple B = ⟨V,Γ, sL, sR, ρ, η, λ, vI⟩, where

• V is a set of vertices;
• Γ is an alphabet;
• sL, sR∶V → V are successor functions;
• λ∶V → Γ is a labelling of the vertices with the alphabet Γ;
• ρ∶V → {E,A,N ,B} is a partition of the vertices between Eve’s, Adam’s, Nature’s,

and branching vertices;
• η∶ ρ−1({N }) → dist({L, R}) is a function that maps Nature’s vertices to random distri-

butions over the successors;
• and vI ∈ V is an initial vertex.

Unfolding We extend the successor functions sd, d ∈ {L, R}, to arbitrary sequences of di-
rections in the natural way. Let v ∈ V be a vertex, u ∈ {L, R}∗ be a sequence of directions,
and d ∈ {L, R} be a direction. Then, sε(v)

def
= v and su⋅d(v)

def
= sd(su(v)).

The unfolding (or unravelling) of a branching board B in a vertex v is the function
tB∶ {L, R}∗ → V such that tB(u)

def
= su(v). If v = vI we call it simply the unfolding of the

board B. Moreover, every board B defines a tree tλB ∶ {L, R}∗ → Γ as the unfolding of the
adequate labelled sub-graph of the board, i.e. tλB

def
= λ ◦ tB. Similarly, we can define the tree

of position assignments tρB
def
= ρ ◦ tB. Note that tλB (resp., tρB) is a full binary tree over the

alphabet Γ (resp. the set {E,A,N ,B}).
For P ∈ {E,A,N ,B}, by VP we denote the set of vertices belonging to P , i.e. ρ−1({P}).

For P ⊆ {E,A,N ,B} we say that B is P-branching if range(ρ) ⊆ P , e.g. a board B
is {N ,B}-branching if it has no Eve’s nor Adam’s positions.

We say that a board B is

• non-stochastic if it is {E,A,B}-branching;

• single player if it is either {E,N ,B}-or {A,N ,B}-branching;

• finitary if V is finite and every distribution in η has rational values;

• simple if every distribution in η has value 1
2 .
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Figure 3.1 – An example of a branching board and a play on this board. We denote Eve’s,
Adam’s, Nature’s, and branching vertices by diamonds, squares, circles, and triangles respec-
tively. Nature’s vertices are equipped with a probability distribution over the successors. The
initial vertex is the only vertex with an arrow not having a source vertex. The successors
R and L are drawn in the clockwise order, i.e. R moves to the right and is drawn first in the
clockwise order.

Flow of the game With the branching board defined, we can intuitively explain how the
players play the game. The proper mathematical description will be presented in the next
few paragraphs. Intuitively, a single play over a branching board B proceeds in threads, each
thread has exactly one token, located in a vertex of the board. Initially, there is a single
thread with the token located in vI.

Consider a thread with a token located in a vertex v:

• if ρ(v) = B then the thread is duplicated into two separate threads with tokens located
in sL(v) and sR(v);

• if ρ(v) = N then the token is moved either to sL(v) or to sR(v) with probability given
by the distribution η(v);

• if ρ(v) ∈ {E,A} then the respective player moves the token either to sL(v) or to sR(v)
depending on the history of the current thread.

The threads are executed in a non-specified order, independently, and simultaneously. Fur-
thermore, the players cannot take into account positions of the tokens from the other threads
in the current play when moving the tokens.

After all the threads moved the tokens infinitely many times, a tree-like structure, called
a play t, has been created.

We will now formalise the notion of a play.

Branching Consider a non-empty set P ⊆ {E,A,N ,B}. We say that a tree t ⊑ t
λ
B

is P-branching if it is fully branching in the nodes u ∈ {L, R}∗ such that ρ(su(vI)) ∈ P and
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uniquely branching in the remaining nodes.

Plays A play on a board B is a tree t ⊑ t
λ
B that is {B}-branching. The set of all plays

on a board B is denoted by plays(B). The value valG(t) of a play t is the value of the
pay-off function Φ, that is valG(t) = Φ(t), recall that a branching game is a pair G = ⟨B,Φ⟩.
Figure 3.1 depicts a branching board and a play on this board.

Strategy For P ∈ {E,A,N } we say that a tree t ⊆ t
λ
B is a pure strategy of P over B if t

is ({E,A,N ,B} \ {P})-branching. The set of pure strategies of P over B is denoted ΣP
B .

Notice that the sets plays(B) and ΣP
B for P ∈ {E,A,N } are closed sets of Γ-labelled trees.

Moreover, if V is finite then all these sets are regular. Indeed, by Proposition 3.1.2 the set
of plays is regular. Additionally, a set of pure strategies of a player P can be seen as a set
of plays on a modified board B′ where every vertex not belonging to P is now branching.

Given three pure strategies σ ∈ ΣE
B , π ∈ ΣA

B , and η ∈ ΣN
B the play resulting from σ, π,

and η (denoted evalB(σ, π, η)) is the unique tree t ∈ plays(B) such that

nodes(t) = nodes(σ) ∩ nodes(π) ∩ nodes(η).

Thus, evalB can be seen as a function evalB∶Σ
E
B × ΣA

B × ΣN
B → plays(Γ) mapping triplets

of pure strategies to the unique play they generate.

Claim 3.1.1. The function evalB is continuous.

Mixed strategies A mixed strategy of a player P ∈ {E,A,N } is a complete Borel proba-
bility measure over the set ΣP

B . The set of all mixed strategies of P is denoted by ΣMP
B .

Behavioural strategies There is a natural family of mixed strategies, strongly associated
with the standard games on graphs, called behavioural strategies. Let f ∶ {L, R}∗ ⇀ dist({L, R})
be a partial function supplying some of the positions with a probability distribution over
the successors and let t ∈ T ∞

Γ be a full binary tree. The function f and the tree t induce,
in a natural way, a measure µft on the set TΓ.

The intuition behind the measure µft is that in a position u belonging to the set dom(f)
the measure “chooses which sub-tree should be cut” with probability given by the distribution
f(u).

The measure is concentrated on the set of prefixes of t, i.e. µ
f
t ({t′ ∈ TΓ ∣ t′ ⊑ t}) = 1,

and defined as follows. Let t′ be a tree of height k, then we define µft (Bt′) as follows.

µ
f
t (Bt′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if there is a node u ∈ dom(f) such that
the node u has both children in t′;

α
f
t (t′) otherwise.

(3.1)
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The number αft (t′) is the probability of the particular choices of directions within the
tree t′ and can be computed as follows.

α
f
t (t′) = ∏

u∈dom(f),
ud∈nodes(t′)

f(u)(d) (3.2)

We say that a mixed strategy σm of a player P is behavioural if it is a measure induced
by some partial function f ∶ {L, R}∗ ⇀ dist({L, R}) such that dom(f) = (tρB)−1({P}) and the
tree tλB , i.e. if σm = µ

f

tλB
. The set of all behavioural strategies of P is denoted by ΣBP

B .
Clearly, we can treat every pure strategy in ΣP

B as a Dirac delta function in ΣMP
B (in fact

in ΣBP
B ). Thus, we can assume that ΣP

B ⊆ ΣBP
B ⊆ ΣMP

B .

Strategy of Nature With every branching board B we associate a special mixed strategy η∗B
of Nature. This strategy represents the intuition, that after a sequence of displacements of the
token, described by a sequence of directions u ∈ {L, R}, ending in a vertex v = su(vI) ∈ V

such that ρ(v) = N , Nature chooses to move the token in a direction d ∈ {L, R} with the
probability η(v)(d). The strategy η∗B is defined as follows.

η
∗
B

def
= µ

t
η
B

tλB
(3.3)

Strategies as functions There is a different way to define the three types of strategies
that may give more intuition to the behaviour and expressive power of the strategies, we can
call those strategies functional strategies. A pure strategy σ ∈ ΣP

B can be seen as a function
σ∶ {L, R}∗ → {L, R}; a behavioural strategy σb ∈ ΣBP

B as a function σb∶ {L, R}∗ → dist({L, R});
and a mixed strategy σm ∈ ΣMP

B as a measure σm ∈ dist(ΣP
B ).

In other words, the three types of strategies utilise different levels of randomness when
deciding where to move the token. A pure strategy deterministically decides the next move
taking into account only the path the token took from the initial position to the current one,
a behavioural strategy flips a biassed coin to determine the next move, the bias is determined
by the path, and a mixed strategy simply chooses a pure strategy at the start of the game,
according to some probability distribution.

This interpretation also allows us to justify stating that a pure strategy chooses a vertex
of the board. When we say that a pure strategy chooses a vertex v of the board, we mean
that the strategy moves the token from its current position to the vertex v.

Let G = ⟨B,Φ⟩ be a branching game. For a player P and a strategy type X, we will often
write ΣXP

G instead of ΣXP
B or, if the board is clear from the context, we will simply drop the

subscript and write ΣXP . Similarly, we will write evalG or simply eval instead of evalB.
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3.1.2 Branching boards and their expressive power

In order to better understand the formal definitions of a branching board and of a branching
game let us discuss which sets of plays a branching game can produce.

We say that a tree language L ⊆ TΓ is game definable1 if there is an {E,B}-branching
finitary board B, with a finite set of vertices, such that L is the set of possible plays on the
board B, i.e. L = plays(B).

Proposition 3.1.2. Every game definable language L is a closed regular set of trees. More-
over, given a finitary board B one can compute a non-deterministic automaton recognising L
in time linear in the size of the board.

Proof. If a tree language L is game definable, then there exists a board B such that L =

plays(B). A tree t is not a play if there is a finite prefix p ⊑ t such that it either has
a node that should be fully branching and it is not, or should be uniquely branching and
it is not. Therefore, the set of trees that are not plays is open, as it is a union of open sets
Bp. In consequence, the set of plays is the complement of an open set and, thus, is closed.

Now we will describe the construction of the automaton. It is defined as follows. The
alphabet is the set of positions on the board and the blank symbol. The states of the
automaton are the positions on the board and a rejecting state. The initial state is the
initial vertex.

The transition function works as follows. If the state is a branching position, then the
automaton assumes that both the left child and the right child are not blank and are labelled
with the left successor and the right successor, respectively; and verifies that. If the state
is not a branching position then the automaton guesses which sub-tree was cut and if guesses
correctly, then continues the run. If not, then it enters the rejecting state. If the automaton
is in a rejecting state, then it stays in the rejecting state.

Rejecting state has priority 1 and every other state has priority 0. Thus, a run is accepting
if and only if it avoids the rejecting state.

It is not hard to see that this automaton recognises the language L. Moreover, it is clear
that the above construction can be done in linear time, which concludes the proof.

The converse statement is not true, e.g. the language {fa, fb} where fa (resp., fb) is the
full binary tree with all nodes labelled with letter a (resp., b) is not game definable. Indeed,
in game definable languages there is a single letter that labels the roots trees in the language.
Clearly, this is not the case for the language {fa, fb}.

1The similarity of terms “game definable” and “game automata” is purely coincidental.
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3.2 Values of a branching game
With the notions of a board, a play, and a strategy properly defined, we can define what
a value of a game is.

Values of strategies Assume that σm ∈ ΣME
B and πm ∈ ΣMA

B are two mixed strategies of the
respective players. Our aim is to define the value valG(σm, πm). Intuitively, valG(σm, πm)
should be the expected value of Φ(evalG(σ, π, η)) where the pure strategies σ, π, and η

are chosen according to the probability distributions σm, πm, and η
∗
B respectively. This

is formalised as follows.

valG(σm, πm)
def
= ∫

ΣEB ,Σ
A
B ,Σ

N
B

Φ(evalG(σ, π, η)) dσm(σ) dπm(π) dη∗B (η) (3.4)

If strategies σ and π are pure strategies of Adam and Eve, respectively, and the board B
is non-stochastic, then valG(σ, π) = Φ(evalG(π, σ, tλB)).
Values of a game The aim of Eve in a branching game is to maximise the value valG(σ, π).
Let us define the partial values of the game. Consider X ∈ {ε, B,M} (i.e. X stands for
respectively pure, behavioural, and mixed strategies). The X value of G for Eve (resp.
Adam) is defined as

valXEG
def
= sup
σ∈ΣXEB

valG(σ) where valG(σ)
def
= inf
π∈ΣAB

valG(σ, π),

valXAG
def
= inf
π∈ΣXAB

valG(π) where valG(π)
def
= sup
σ∈ΣEB

valG(σ, π).

Note that the second inf/sup is taken over the pure strategies of the opponent. This is ex-
plained by the following simple lemma.

Lemma 3.2.1. Let G be a branching game. If σm is Eve’s mixed strategy then

inf
πm∈ΣMA

B

valG(σm, πm) = inf
πb∈ΣBAB

valG(σm, πb) = inf
π∈ΣAB

valG(σm, π)

The same holds for mixed strategies of Adam if we replace inf with sup and A with E.

Proof. Since ΣA
B ⊆ ΣBA

B ⊆ ΣMA
B , we immediately get

inf
πm∈ΣMA

B

valG(σm, πm) ≤ inf
πb∈ΣBAB

valG(σm, πb) ≤ inf
π∈ΣAB

valG(σm, π).

To conclude the proof we only need to show that

inf
π∈ΣAB

valG(σm, π) ≤ inf
πm∈ΣMA

B

valG(σm, πm). (3.5)
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Let σm ∈ ΣME
B and πm ∈ ΣMA

B be arbitrary mixed strategies, then

valG(σm, πm) = ∫ΣEB ,ΣAB ,ΣN
B

Φ(evalG(σ, π, η)) dσm(σ) dπm(π) dη∗B (η)
= ∫ΣAB valG(σm, π) dπm(π)
≥ ∫ΣAB ( infπ′∈ΣAB valG(σm, π′)) dπm(π)
= infπ′∈ΣAB valG(σm, π′).

Since valG(σm, πm) ≥ infπ∈ΣAB valG(σm, π) holds for every pair of strategies σm ∈ ΣME
B ,

πm ∈ ΣMA
B ; we infer that Equation (3.5) holds and conclude the proof.

Determinacy As a simple consequence of Lemma 3.2.1 we obtain the following inequalities

valAG ≥ valBAG ≥ valMA
G ≥ valME

G ≥ valBEG ≥ valEG. (3.6)

The first two (resp. the last two) inequalities hold by the fact that we take inf (resp. sup)
over greater (reps. smaller) sets of strategies. The third inequality holds by Lemma 3.2.1
and the fact that infx supy f(x, y) ≥ supy infx f(x, y).

We will say that a branching game G is determined

• under pure strategies if valAG = valEG,

• under behavioural strategies if valBAG = valBEG ,

• under mixed strategies if valMA
G = valME

G .

Clearly, Equation (3.6) shows that pure determinacy implies behavioural determinacy and
behavioural determinacy implies mixed determinacy. In general, the opposite implications
may not hold, as seen in the following example inspired by Mio, see [33].

Example 3.2.2. Let B be as in Figure 3.2 and L be defined as

L
def
= {t ∈ plays(B) ∣ x1(t) = x2(t) = x3(t) = x4(t) ∨ x3(t) ≠ x4(t)}, (3.7)

where xi(t) is the label of the non-blank child of the xi-labelled node in a tree t. Then, the
game G = ⟨B, χL⟩ has the following partial values:

valAG = 1; valBAG =
3
4; valMA

G =
1
2 = valME

G ; valBEG =
1
4; valEG = 0.

Computing values. Observe that each player has exactly four pure strategies. The set of pure
strategies of Eve is the set ΣE

G = {σ0,0, σ1,0, σ0,1, σ1,1}, where σi,j is the strategy such that
in the resulting play t we have that x1(t) = i and x2(t) = j. Similarly, the set of pure
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Figure 3.2 – A branching board that is not determined under behavioural strategies.

strategies of Adam is the set ΣA
G = {π0,0, π1,0, π0,1, π1,1}, where πi,j is the strategy such that

in the resulting play t we have that x3(t) = i and x4(t) = j. The set of possible outcomes
is given in the following table.

val(σ, π) σ0,0 σ1,0 σ0,1 σ1,1

π0,0 1 0 0 0
π1,0 1 1 1 1
π0,1 1 1 1 1
π1,1 0 0 0 1

(3.8)

Since in every row (resp., column) in (3.8) there is at least one value 1 (resp., 0), we have
that valAG = 1 (resp., valEG = 0).

For the mixed value of Eve, observe that, without loss of generality, Eve can restrict
her set of mixed strategies to the set dist({σ0,0, σ1,1}). Then, any mixed strategy σm of Eve
is a distribution such that σm(σ0,0) = 1 − σm(σ1,1) = a, for some 0 ≤ a ≤ 1. Thus,

valME
G = sup

σm∈ΣME
G

inf
π∈ΣAG

valG(σm, π)

= sup
σm∈dist({σ0,0,σ1,1})

inf
π∈ΣAG

valG(σm, π)

= sup
0≤a≤1

inf
π∈ΣAG

a ⋅ valG(σ0,0, π) + (1 − a) ⋅ valG(σ1,1, π)

= sup
0≤a≤1

min ({a, 1, 1, 1−a}) = 1
2 .

Similarly, we show that valMA
G =

1
2 .

Now we compute the behavioural values. The strategy σα,β is the behavioural strategy
of Eve that chooses left child of the node labelled x1 with probability α and chooses left child
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of the node labelled x2 with probability β. Strategies πα,β of Adam, where 0 ≤ α, β ≤ 1, are
defined mutatis mutandis. Note that those two definitions organically extend the definitions
of the available pure strategies. Moreover, observe that any behavioural strategy of Eve
(resp., of Adam) is of the form σα,β (resp., πα,β) where 0 ≤ α, β ≤ 1.

To compute valBEG we use the following sequence of basic equalities.

valBEG = sup
σb∈ΣME

G

inf
π∈ΣAG

valG(σb, π)

= sup
0≤α,β≤1

inf
π∈ΣAG

valG(σα,β, π)

= sup
0≤α,β≤1

inf
π∈ΣAG

(αβ ⋅ valG(σ0,0, π) + α(1 − β) ⋅ valG(σ0,1, π)

(1 − α)β ⋅ valG(σ1,0, π) + (1 − α)(1 − β) ⋅ valG(σ1,1, π))
= sup

0≤α,β≤1
min ({αβ, 1, 1, (1 − α)(1 − β)})

= sup
0≤α,β≤1

min ({αβ, (1 − α)(1 − β)})

Now, if α ≤ 1 − β then αβ ≤ (1 − α)(1 − β) and

sup
0≤α,β≤1
α≤1−β

min ({αβ, (1 − α)(1 − β)}) = sup
0≤α,β≤1
α≤1−β

αβ ≤ sup
0≤α,β≤1
α≤1−β

(1 − β)β = 1
4 .

On the other hand, if α ≥ 1 − β then αβ ≥ (1 − α)(1 − β) and

sup
0≤α,β≤1
α≥1−β

min ({αβ, (1 − α)(1 − β)}) = sup
0≤α,β≤1
α≥1−β

(1 − α)(1 − β) ≤ sup
0≤α,β≤1
α≥1−β

(1 − α)α = 1
4 .

Hence, valBEG ≤
1
4 . To show that valBEG =

1
4 , we observe that

valG(σ 1
2 ,

1
2
) = min({1

2 ⋅
1
2 , (1 −

1
2)(1 −

1
2)}) =

1
4 .

We show that valBAG =
3
4 in the same way.

Regular branching games The following theorem gives a large class of games, where
the pay-off function Φ is a characteristic function of a regular set of trees L, i.e. Φ(t) = 1
if t ∈ L and Φ(t) = 0 otherwise. In the case of a game G such that the pay-off function
is a characteristic function of a set of trees, we say that the game G has L as a winning set
and we write G = ⟨B, L⟩ instead of G = ⟨B,Φ⟩.

Theorem 3.2.3 (Gogacz et al. [22]). Every regular set L of infinite trees is universally mea-
surable, i.e. for every complete Borel measure µ on the set of trees, we know that L is µ-mea-
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surable.

We say that a branching game is a regular branching game if the pay-off function is a char-
acteristic function of a regular set of trees.

3.3 The standard games collections
We now show how the games defined in Section 2.3 can be expressed in our framework. For
more “standard” definitions of the below games see Section 2.3 on page 20.

Positional strategies In the following games the notions of pure strategies for the re-
spective players are the same as in the case of general branching games. Additionally,
we call a pure strategy τ of P ∈ {E,A} positional if the decision made by P depends
only on the current vertex v ∈ V . In other words, for every two u,w ∈ dom(τ) such that
su(vI) = sw(vI) ∈ VP , either uL, wL ∈ dom(τ) or uR, wR ∈ dom(τ). Thus, a positional strategy
of P can be represented as a function τ ′∶VP → {L, R}.

3.3.1 Simple stochastic games
A simple stochastic game G = ⟨B,Φ⟩ is an {E,A,N }-branching game where the labelling
of the vertices is a function λ∶V → {0, 1} and the distributions in Nature’s vertices given
by η are uniform distributions, i.e. for every v ∈ VN we have that η(v)(L) = η(v)(R) = 1

2 .
A play t of a simple stochastic game has the shape of a unique infinite branch. Such a play
is won by Eve (i.e. Φ(t) = 1) if there is a node u ∈ nodes(t) labelled 1. Otherwise, Φ(t) = 0.

Theorem 3.3.1 (Condon [11]). Let G be a simple stochastic game. Then, G is determined
under pure positional strategies.

Note that any reachability game can be seen as an {E,A}-branching simple stochastic
game.

3.3.2 Parity games
A parity game G = ⟨B,Φ⟩ is an {E,A}-branching game where the labelling of the vertices
is a function λ∶V → {i, i + 1, . . . , j} ⊆ ω. Those labels are called priorities. For technical
purposes we associate with those priorities a ranking function α∶V → {i, i + 1, . . . , j} ⊆ ω

such that α(v) = λ(v). A play t of a parity game has the shape of a unique infinite branch
that corresponds to a sequence of vertices vIv1v2⋯. Such a play is won by Eve (i.e. Φ(t) = 1)
if the limes inferior of the values α(vi) is even. Otherwise, Φ(t) = 0.

Theorem 3.3.2 (Emerson and Jutla [16], Mostowski [38]). Let G be a parity game. Then,
G is determined under pure positional strategies.
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3.3.3 Games with ω-regular winning sets
Those are the games on graphs with winning condition defined by a regular language W
of infinite words. An ω-regular game G = ⟨B,Φ⟩ is an {E,A}-branching game where the
pay-off function is the characteristic function of a special class of regular languages of trees.
Every language from this class satisfies the following property “the only infinite path in the
tree is a word belonging to the set W”.

Theorem 3.3.3 (Büchi and Landweber [6]). Let G be an ω-regular game. Then, G is
determined under pure strategies.

3.3.4 Gale-Stewart games
As mentioned in Section 2.3.4 on page 21, Gale-Stewart games can be seen as games
on graphs with a winning set W of infinite words. Thus, a Gale-Stewart game G = ⟨B,Φ⟩
is an {E,A}-branching game where the pay-off function is the characteristic function of the
language of trees defined as: “the only infinite path in the tree is an infinite word belonging
to the set W”.

Theorem 3.3.4 (Martin [30]). Let G be a Gale-Stewart game. If the winning set is Borel,
then G is determined under pure strategies.

3.3.5 Meta-parity games
A meta-parity game G = ⟨B,Φ⟩ is an {E,A,N ,B}-branching game where the labelling of the
vertices is a function λ∶V → {i, i+1, . . . , j}× {E,A}× {⊤,⊥}× {⊤,⊥}, for some i ≤ j < ω.

A play t of a meta-parity game is interpreted as a parity game. The set of vertices
of the parity games is the set nodes(t)∪{⊥,⊤} with ⊥ and ⊤ being auto-loss and auto-win,
respectively. The transition relations in the nodes of the tree t are induced by the child
relation and the third and fourth coordinates of the labelling, if the respective children
are missing. More precisely, for a node u ∈ nodes(t) if the position uL ∉ nodes(t), then
sL(u) is the third coordinate of λ(u). Similarly, if the position uR ∉ nodes(t), then sR(u) is the
fourth coordinate of λ(u). The priorities for the nodes of the tree t are given by the first
coordinate of the labels, and the partition of the positions by the second coordinate. The
vertices ⊥,⊤ satisfy α(⊥) = 1, α(⊤) = 0, sL(⊥) = sR(⊥) = ⊥, and sL(⊤) = sR(⊤) = ⊤.
A play t is won by Eve (i.e. Φ(t) = 1) if she has a winning strategy in the resulting parity
game. Otherwise, Φ(t) = 0.

Theorem 3.3.5 (Mio [33]). Let G be a stochastic meta-parity game. Then, G is determined
under pure strategies.
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3.3.6 Blackwell games
The encoding of Blackwell games was proposed by Mio in his thesis, see [33, Section 4.2,
pages 138-148] for details. The construction can be easily adapted to express any Blackwell
game with a regular winning set as a regular branching game.

Theorem 3.3.6 (Martin [31]). Let G be a Blackwell game over a finite alphabet Γ. If the
winning set is Borel, then G is determined under mixed strategies.
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Chapter 4

Problems of interest

In this short chapter we define problems that will be discussed in the following chapters
of this thesis. We focus on two groups of problems in general:

• the first group, called classification problems, asks to define families of boards and/or
families of pay-off functions admitting “good” properties, like determinacy, existence
of equilibria, existence of winning strategies, existence of optimal strategies, etc.;

• the second group, called complexity problems, asks about the computational complexity
aspects of deciding the above properties and the algorithms to compute the values of
branching games.

4.1 Classification problems
The classification problems are mostly purely theoretical problems. The solutions of such
problems take the form of mathematical proofs that assure certain properties, or the form
of counterexamples that invalidate such properties.

The main classification problem we consider in this thesis can be described as follows.

Problem 4.1.1 (Determinacy). For which families of winning sets, regular branching games
are determined under pure (mixed, behavioural) strategies?

A collection of classic results concerning determinacy of non-branching games can be found
in the previous chapter.

4.2 Computational complexity problems
The complexity problems come in two flavours. The first one consists in the computational
problems, for which the expected answer is a number, e.g. compute the value of a game,
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compute the number of structures satisfying a first-order sentence, or compute the measure
of a set of infinite words. The other flavour of the complexity problems are the decision
problems. Here, the expected output is binary: the answer is either yes or no.

Those two kinds are often strongly related: every computational problem can be made
a decision problem by establishing a threshold.

The basic computational complexity problem considered in this thesis is the value prob-
lem. Let val be one of the partial values, i.e. val ∈ {valA, valBA, valMA

, valME
, valBE, valE}.

Problem 4.2.1 (Compute val problem).

Input: A regular finitary branching game.
Output: The value val.

Note that the above problem, and all the below problems, is, in fact, a family of problems.
A family parametrised by the partial value that we are asked to compute and by the encodings
of the branching games, pay-off functions, and thresholds.

With the value val problem we associate the appropriate decision problem.

Problem 4.2.2 (Threshold for val problem).

Input: A regular finitary branching game and a rational number c.
Output: Does val ≥ c?

We also consider its simpler version, where the threshold is 1
2 and the inequality is strict.

Problem 4.2.3 (Simple threshold for val problem).

Input: A regular finitary branching game.
Output: Does val > 1

2?

Problem 4.2.4 (Determinacy problem).

Input: A regular finitary branching game.
Output: Is the game determined?

Note that deciding determinacy is not harder than computing values of a game. Indeed,
if we can compute the values of a game, we can decide whether that game is determined.

4.3 Known complexity results
Some of the results concerning classification problems are presented in the previous chapter
in Section 3.3. Here, we list some important, and useful in the scope of this thesis, results
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concerning the computational complexity problems and games on graphs. For an introduc-
tion to computational complexity see [42].

The following results will refer only to those games that are determined under pure
strategies. For such games all partial values coincide, thus we will present the results only
for the case of simple threshold for valE problem.

We start with reachability games, for which we can state the following.

Theorem 4.3.1 (Folklore). Let G be a reachability game. Then, simple threshold for valE

problem is P-complete.

The above theorem is folklore: the polynomial time algorithm simply saturates the set
of vertices reachable from the initial vertex. The stochastic version of reachability games
poses a bigger algorithmic challenge, as can be seen in the following theorem.

Theorem 4.3.2 (Condon [11]). Let G be a simple stochastic game. Then, simple threshold
for valE problem is in UP∩co-UP.

In the case of simple stochastic games, one can associate certain values with the vertices
of the board. The value associated with a vertex is the Eve’s value of the game where that
vertex is the initial vertex. Guessing those values allows to verify in polynomial time that
they are indeed the game values and to solve the problem in the stated complexity, see [11].
The exact complexity is open and strongly connected to parity games, for details see e.g. [9].

Theorem 4.3.3 (Jurdziński [23]). Let G be a parity game. Then, simple threshold for valE

problem is in UP∩co-UP.

Since parity-games are determined under positional strategies, the simplest algorithm
guesses a special unique winning strategy and verifies it in polynomial time. More direct
approach results in exponential in time algorithms like strategy improvement algorithm, see
e.g. [23] or fix-point iteration algorithm, see e.g. [5]. In recent works, an interesting line
of quasi-polynomial time algorithms has been presented, see [8, 12, 28] for details.

Parity games are a special, but important, case of ω-regular games: they can be seen
as ω-regular games with the pay-off function given by deterministic automata on words.
Solving ω-regular games has been widely studied, for a survey see e.g. [10].

In this thesis we are especially interested in automata based pay-off functions. For those,
we know the following.

Theorem 4.3.4. Let G be an ω-regular game with a winning set given by a non-deterministic
automaton. Then, simple threshold for valE problem is EXP-complete.

The upper bound is a consequence of the fact that automata on words can be deter-
minised, i.e. for a given non-deterministic automaton on words one can compute a determin-
istic automaton that recognises the same language. The construction can be done in exponen-
tial time, see e.g. [51] for details. The resulting ω-regular game can be solved in exponential
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time with respect to the size of the original game: the new game is, in essence, a parity
game.

The exponential blow-up is unavoidable, and is, partially, the reason behind the lower
bound: already the universality of a non-deterministic automaton is EXP-complete, see
e.g. [54].

Since we will work with alternating automata, we need also to mention the following
result.

Theorem 4.3.5. Let G be an ω-regular game with a winning set given by an alternating
automaton. Then, simple threshold for valE problem is 2-EXP-complete.

As before, the upper bound is a consequence of the determinisation procedure, which
is doubly exponential in the case of alternating automata on words. The lower bound follows
from the fact that alternating automata are succinct. It can be inferred from e.g. [1].

As stated by the celebrated theorem of Rabin, any set of trees that is defined by a monadic
second-order formula is regular, see e.g. [50]. Moreover, since the construction of the au-
tomaton recognising the language defined by the formula is effective, we have the following.

Theorem 4.3.6. Let G be an ω-regular game with a winning set given by a monadic sec-
ond-order formula. Then, simple threshold for valE problem is decidable.

Lastly, we give an unpublished result by Mio.

Remark 4.3.7 (Mio, personal communication). Let G be a stochastic meta-parity game.
Then, simple threshold for valE problem is decidable.

The result is a consequence of Mio’s work. In [33], Mio shows that the denotational
and the game semantics for the probabilistic µ-calculus coincide. In particular, he defines
a translation that takes a formula of the probabilistic µ-calculus and returns a meta-parity
game such that the value of the formula is equal to the value of the game. Later, in col-
laboration with Michalewski, Mio proves that the uniform measure of a game automata
definable language is computable, see [32] which builds on the previous collaboration of Mio
with Simpson [36, 37].

To prove the computability Michalewski and Mio translate the automaton and the proba-
bility distribution into a Markov branching play, which is a play of a meta-parity game.1 The
Markov branching play is, then, translated into an appropriate system of (least and greatest)
fixed-point equations, which is solved using Tarski’s quantifier elimination procedure [52].

In personal communication, Mio stated that using the equivalence between the game and
the denotational semantics, one can easily extend the above result to a result that translates
a meta-parity game into an appropriate system of (least and greatest) fixed-point equations,
which, again, can be solved using Tarski’s quantifier elimination procedure.

1Equivalently, Markov branching plays can be seen as instances of meta-parity games in which neither
Adam nor Eve owns any vertices.
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Chapter 5

Pure branching games

In this chapter we consider the branching games with no probabilistic elements involved.
In this set-up computing Eve’s (resp., Adam’s) pure value is equivalent to deciding whether
there exists Eve’s (resp., Adam’s) winning strategy.

We show that for a finite game, the sets of winning strategies are regular and their finite
representation, in the form of an alternating tree automaton, computable.

Hence, we conclude that

• the pure values are computable

• we can decide whether a pure branching game is determined.

Every branching game considered in this chapter will be a regular {E,A,B}-branching game.

5.1 Winning strategies
Since there are no vertices belonging to Nature, there ultimately is a single strategy of Nature,
namely the full binary tree tλB that is the unravelling of the board. Let σ be a pure strategy
of Eve and π be a pure strategy of Adam. Then, the measure induced by the strategies σ, π
and the board is concentrated on a single tree, denoted play(σ, π) def

= eval(σ, π, tλB), and the
value of that play belongs to the binary set {0, 1}. Moreover, valG(σ, π) = 1 if and only if
play(σ, π) ∈ L.

This observation allows us to give an alternative way to define pure determinacy. We say
that a strategy σ ∈ ΣE

G of Eve is winning if for every strategy π of Adam we have that
eval(σ, π, tλB) ∈ L. Dually, a strategy π ∈ ΣA

G of Adam is winning if for every strategy σ

of Eve we have that eval(σ, π, tλB) /∈ L. With the established notion of a winning strategy
we can state.
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Fact 5.1.1. An {E,A,B}-branching game G is determined under pure strategies if and only
if either Adam or Eve has a winning strategy. Moreover,

valEG = 1 ⟺ ∃σ ∈ ΣE
G.∀π ∈ ΣA

G. play(σ, π) ∈ L (5.1)

and
valAG = 0 ⟺ ∃π ∈ ΣA

G.∀σ ∈ ΣE
G. play(σ, π) /∈ L, (5.2)

Proof. We start with proving the equivalences (5.1) and (5.2). The equivalence (5.1) is in-
ferred as follows.

valEG = 1
1
⟺ supσ∈ΣEB infπ∈ΣAB valG(σ, π) = 1

2
⟺ ∃π ∈ ΣG

A.∀σ ∈ ΣE
G.valG(σ, π) = 1

3
⟺ ∃π ∈ ΣG

A.∀σ ∈ ΣE
G.play(σ, π) ∈ L.

The first equivalence is the definition of the value valE. The second one follows from
the fact that the values valG(σ, π) belong to a finite set, which implies that the infima and
the suprema are always realised. The last one is simply the observation that valG(σ, π) = 1
if and only if play(σ, π) ∈ L. The equivalence (5.2) is inferred similarly.

To prove the main statement let us remind that, by the definition, a game G is determined
under pure strategies if valEG = valAG. Moreover, by Equation (3.6) on page 36 we know that
valEG ≤ valAG.

Therefore, if Eve has a winning strategy then

1 = valEG ≤ valAG ≤ 1

and the game is determined under pure strategies. Similarly, if Adam has a winning strategy
then

0 = valAG ≥ valEG ≥ 0

and, again, the game is determined.
On the other hand, let us assume that a game G is determined, i.e. valEG = valAG. Then,

either

• valAG = 0 and by (5.2) Adam has a winning strategy,

• or valEG = 1 and by (5.1) Eve has a winning strategy.

This concludes the proof.

The notion of a winning strategy is important and widely used in the non-stochastic
setting. It introduces a combinatorial structure that allows us to forget about the underlying
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continuous nature of the partial values of branching games and to adapt techniques from the
discrete setting.

From Example 3.2.2 we know that not every {E,A,B}-branching game is determined
and, thus, not every branching game has a winning strategy. Therefore, there are at least
two natural directions of research.

The first one asks whether there are natural families of winning sets for which every
{E,A,B}-branching game is determined under pure strategies.

The other one tasks us with developing algorithms that allow us to decide whether a given
game is determined under pure strategies, to decide which of the players has a winning
strategy, or to compute a winning strategy, if any exists.

5.2 Single player winning strategies
One of the simplest examples of branching games that are necessarily determined under pure
strategies are single player branching games, i.e. the family of games where only one of the
players, either Eve or Adam, is present. Nevertheless, even if a game is determined, deciding
which player has a winning strategy can be computationally hard.

Theorem 5.2.1. Let G = ⟨B, L⟩ be a finite branching game. If the game is {E,B}-branching,
then deciding whether Eve has a winning strategy

• is in UP∩co-UP, if L is given by a non-deterministic automaton,
• is EXP-complete, if L is given by an alternating automaton.

If the game is {A,B}-branching then deciding whether Eve has a winning strategy

• can be done in UP∩co-UP, if L is given by a game automaton,
• is EXP-complete, if L is given by a non-deterministic or an alternating automaton.

To prove the theorem, we use the fact that both the tree language plays(B) and the
winning set L are regular.

Proof. We start with the following observation. If G is {E,B}-branching then Eve wins
if and only if plays(B) ∩ L is not empty. Dually, if G is {A,B}-branching then Eve wins
if and only if plays(B) ⊆ L.

Now, the upper bounds follow from this observation and known results about tree au-
tomata. Let A be the automaton recognising L, i.e. the input automaton. Let B be a non-de-
terministic automaton recognising the set plays(B). Since B can be computed in polynomial
time, cf. Proposition 3.1.2 we have the following. We can check whether L(B) ∩ L(A) = ∅
in exponential time and in UP∩co-UP if A is a non-deterministic automaton. Similarly,
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a b

c c

Figure 5.1 – The board used in the proof of Lemma 5.2.2, with X = A.

we can check whether L(B) ⊆ L(A) in exponential time and in UP∩co-UP if A is a game
automaton. For details see [54, 15, 17].

To show the lower bounds we formulate the following lemma.

Lemma 5.2.2. Let X ∈ {E,A}. There exists a logarithmic space reduction that inputs
an alternating tree automaton A over the two letter alphabet Γ = {a, b} and constructs
a finite {X ,B}-branching game G = ⟨B,L(C)⟩ with the winning set given by an alternating
tree automaton C such that

• plays(B) ⊆ L(C) if and only if T ∞
Γ = L(A),

• and plays(B) ∩ L(C) = ∅ if and only if L(A) = ∅.

Moreover, if A is a non-deterministic tree automaton, then so is C.

Proof. The board B does not depend on the automaton and is defined as in Figure 5.1.
Formally, the board has four vertices, V = {0, 1, 2, 3}, and successors are defined as follows:
sR(0) = sR(1) = 2, sR(2) = sR(3) = 0, sL(0) = sL(1) = 3, sL(2) = sL(3) = 1, and the initial
vertex is vI = 0. The labelling is defined as λ(2) = a, λ(3) = b, λ(0) = λ(1) = c, and the
partition as ρ(0) = ρ(1) = A, ρ(2) = ρ(3) = X .

The automaton C = ⟨Q′
,Γ′, δ′, α′, q′I⟩ does depend on the automaton A and is constructed

as follows. For a given automaton A = ⟨Q,Γ, δ, α, qI⟩, the automaton C on odd depth (nodes
labelled a or b) behaves like A and on even depth (nodes labelled c) transits to the non-blank
child without change of the current state. More formally, C is an NTA such that

• Γ′ = Γ ∪ {♭},
• Q

′
= Q × {o, e} ⊔ {f,⊤,⊥},

• q
′
I = ⟨qI, e⟩,

• α
′(q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α(p), if q = ⟨p, l⟩, where l ∈ {o, e};
0, if q ∈ {f,⊤};
1, otherwise.
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• δ
′(q, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(p, x), if q = ⟨p, o⟩, x /= ♭
(⟨p, L⟩ ∧ ⟨f, R⟩) ∨ (⟨f, L⟩ ∧ ⟨p, R⟩), if q = ⟨p, e⟩, x /= ♭
⟨⊤, L⟩ ∧ ⟨⊤, R⟩, if q = f, x = ♭
⟨⊥, L⟩ ∧ ⟨⊥, R⟩, if q = f, x /= ♭
⟨q, L⟩ ∧ ⟨q, R⟩, otherwise.

It is easy to see that A accepts every full binary tree over the alphabet {a, b} if and only
if C accepts every play from the set plays(B). Moreover, since we add only non-deterministic
transitions, if the original automaton is a non-deterministic tree automaton then the resulting
automaton is a non-deterministic tree automaton as well.

Now we can conclude the proof of Theorem 5.2.1. To show EXP-hardness in the {A,B}
case we will use the EXP-complete problem of the universality of an NTA over a two letter
alphabet. Let A be an NTA as in Lemma 5.2.2, X = A, and G = ⟨B,L(C)⟩ be the branching
game produced by Lemma 5.2.2. Since the board has no existential positions, by the defini-
tion Eve has a winning strategy if and only if plays(B) ⊆ L(C). In consequence, we have that
plays(B) ⊆ L(C) if and only if T ∞

Γ ⊆ L(A). This implies that Eve has a winning strategy
if and only if A is universal which concludes the proof of this case.

The proof of the {E,B} case is similar. We will use the EXP-complete problem of the
emptiness of an ATA over a two letter alphabet. As before, letA be an ATA as in Lemma 5.2.2
and X = E. Again, let G = ⟨B,L(C)⟩ be the branching game constructed by Lemma 5.2.2.
Since the board has no universal positions, by the definition Eve has a winning strategy if and
only if the set plays(B)∩L(C) is not empty. In consequence, we have that plays(B)∩L(C) /= ∅
if and only if L(A) /= ∅. This implies that Eve has a winning strategy if and only if A accepts
a tree, and concludes the proof.

5.3 Two player winning strategies
We now move to games where both Eve and Adam are allowed to move the token. Here, the
determinacy is not guaranteed, not even in non-branching set-up – cf. e.g. [26], and the game
values are even harder to compute. Nevertheless, the following lemma allows us to decide
whether a given finite game is determined under pure strategies.

Lemma 5.3.1. Let G = ⟨B,L(A)⟩ be an {E,A,B}-branching finite game with a regular win-
ning set given by an alternating tree automaton A, and P ∈ {E,A} denotes a player. Then,
the set of winning strategies of the player P is regular and recognisable by an alternating tree
automaton C of size polynomial in the size of the board B and exponential in the size of the
automaton A. Moreover, if A is non-deterministic and P = A, then C is of polynomial size
in the size of the board B and in the size of the automaton A.
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Proof. Every strategy t ∈ TΓ belonging to the set ΣE
B of all strategies of Eve is a prefix t

of the tree tλB such that t is uniquely branching in Eve’s nodes and fully branching in the
remaining nodes. We claim that the language LE ⊆ ΣE

B of all winning strategies of Eve
is regular and show how to construct the automaton C.

Let LE ⊆ TΓ be the complement of the language LE. Let L
E
loosing be the language of Eve’s

strategies that are not winning, i.e. LEloosing consists of strategies σ for which there is a play p ∈
plays(B) consistent with this tree, i.e. p ⊑ σ, such that p does not belong to the winning
set L. Then, LE = L

E
loosing ∪ ΣE

B .
An automaton A1 recognising the language ΣE

B simply guesses where is the inconsistency
between the tree and the board, and is of polynomial size with respect to the board. Checking
that a tree is not a winning strategy is a bit more complicated. The automatonA2 recognising
this language has to guess a play p and check on-the-fly that this play does not belong to L.
Since the check is performed on-the-fly, it can be done by a non-deterministic automaton A3

that recognises the complement of the language L. Indeed, given an NTA recognising L the
automaton simply assumes that the tree is a proper strategy of Eve and decides on-the-fly
which sub-trees Adam cuts and what is the run on such a pruned tree. It is not a problem
that the automaton A2 may accept trees that are not Eve’s valid strategies, in the end we will
take the union of the languages L(A2) and L(A1).

The automaton A3 is exponential in the size of A, therefore we can construct an ATA B′

recognising the complement of the language LE that is of size exponential in the size of A and
polynomial in the size of the board. Indeed, using basic operations on automata, we con-
struct an automaton B′ such that L(B′) = LE = L(A1) ∪ (L(A2) ∩ L(A1)). To obtain
the automaton B, we simply take an ATA that recognises the complement of L(B′). Such
an automaton is of the same size as B′. This ends the proof of the first part of the lemma.

Now we will prove the second part. Let A be an NTA. Let LAloosing be the language
of Adam’s strategies that are not winning. Then the complement of the language of Adam’s
winning strategies LA is the union of ΣA

B and LAloosing. This time, the automaton recognising
the language LAloosing guesses a play p and checks on-the-fly that this play does belong to L.
Since we do not need the complement of the language L, we can simply use the automa-
ton A. Therefore, one can construct a non-deterministic automaton B′′, of size polynomial
in the size of A and polynomial in the size of the board, that recognises the complement
of the language LA. Again, to obtain the automaton B one can simply take the alternating
automaton that recognises the complement of the language L(B′′). Such an automaton is of
the same size as B′′.

The above lemma allows us to compute a finite representation of a winning strategy,
or decide that one does not exists. In conjunction with Fact 5.1.1, this allows us to compute
the pure partial values valE and valA of any {E,A,B}-branching game with a regular winning
set.
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Theorem 5.3.2. Let G be an {E,A,B}-branching finite game with a winning set given by
an alternating tree automaton and val ∈ {valE, valA}. Then, simple threshold for val problem
is 2-EXP-complete.

Proof. In both cases the upper bound is a straightforward implication of Lemma 5.3.1.
We will discuss the valE case for succinctness. We know that valE ∈ {0, 1} and, by Fact 5.1.1,
we have that valE = 1 if and only if Eve has a winning strategy. Since the non-emptiness
of an ATA is EXP-complete, we infer the desired upper bound.

The lower bounds can be obtained from previously known results. Solving two-player
games on graphs, i.e. {E,A}-branching games, with objectives defined by an LTL formulae
is 2-EXP-complete (cf. e.g. [1], [43]). Since an LTL formula can be translated into an ATA
in polynomial time, cf. [56], the lower bound for simple threshold for valE problem immedi-
ately follows. To obtain the lower bound for simple threshold for valA problem we recall that
such games are determined under pure strategies, thus valA = valE, cf. Martin’s theorem
on page 40.

Note that, to witness determinacy under pure strategies of a branching game, we need
to compare the pure values only. Thus, as a simple consequence we observe.

Corollary 5.3.3. Let G be an {E,A,B}-branching finite game with a winning set given by
an alternating tree automaton. Then, there is an algorithm that in doubly-exponential time
decides whether the game G is determined.

We can refine Theorem 5.3.2 in the following way.

Theorem 5.3.4. Let G be an {E,A,B}-branching game with a winning set given by a non-de-
terministic automaton. Then, simple threshold for valE problem is 2-EXP-complete and
simple threshold for valA problem is EXP-complete.

To prove the above theorem we will introduce an interesting property of branching games
called dealternation. This property will be defined and proved in the following section, but
before that, let us point out that the above theorem gives us a bit roundabout but inter-
esting way to show that not every branching game with a regular winning set is determined
under pure strategies. That is, we can infer the existence of such a branching game from
Theorem 5.3.4 by a reasoning based purely on complexity theory.

Corollary 5.3.5. There is a finite {E,A,B}-branching game with a regular winning set that
is not determined under pure strategies.

Indeed, if branching games with regular winning sets were determined under pure strate-
gies then for every {E,A,B}-branching game with a regular winning set we would have that
valE = valA. Since simple threshold for valA problem with a winning set defined by an NTA
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is EXP-complete, in exponential time we can check whether valA = 0 or valA /= 0, solving
the 2-EXP-complete problem of deciding simple threshold for valE problem in exponential
time. Since this is impossible, by the time hierarchy theorem, e.g. see [24], the corollary
holds.

5.4 Dealternation
The entirety of this section is devoted to proving that regular branching games have a deal-
ternation property. This property can be defined by the following lemma.

Lemma 5.4.1. There exists a procedure such that given an {E,A,B}-branching finite game G
with a winning set given by an alternating tree automaton outputs an {E,A,B}-branching
finite game G′ with a winning set given by a non-deterministic tree automaton, such that
valEG = valEG′. This procedure runs in polynomial time.

Intuitively, the dealternation property allows us to remove alternation from an automaton
recognising the winning set and put it into the branching board, with only polynomial cost
to the size of the game.

Proof. To prove the lemma, we will show the construction of the new game from the old
one, and prove its correctness. We start with a simple observation about the nature of the
regular branching games.

Two-phase game Consider a finite {E,A,B}-branching game G = ⟨B,L(A)⟩ where the
winning set L(A) is given by an alternating tree automaton A. Simple threshold for valE

problem for a game G asks whether

∃σ ∈ ΣE
G. ∀πΣA

G. play(σ, π) ∈ L(A). (5.3)

Recall that the acceptance of a tree t by an ATA A is defined in terms of a game,
see Section 2.4 on page 23 for the definition of the acceptance game G(A, t). Thus, the
above equation can be seen as a two-phase game, where in the first phase the players play
the original branching game and after that they play a parity game.

Since the automaton A is alternating and the parity game H def
= G(A, play(σ, π)) is de-

termined under pure strategies, the question whether play(σ, π) ∈ L(A) can be written
equivalently as:

• ∃σ̄∀π̄. σ̄ wins against π̄ in G(A, play(σ, π)),

• ∀π̄ ∃σ̄. σ̄ wins against π̄ in G(A, play(σ, π)),
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where σ̄ and π̄ range over the adequate sets of pure strategies of the respective players in the
game G(A, play(σ, π)).

Since parity games are positionally determined, in both cases we can restrict to positional
pure strategies σ̄ and π̄. By incorporating the latter condition, Equation (5.3) transforms
into:

∃σ ∈ ΣE
G. ∀π ∈ ΣA

G. ∀π̄ ∈ ΣA
H . ∃σ̄ ∈ ΣE

H . σ̄ wins against π̄ in G(A, play(σ, π)). (5.4)

The construction Now we will construct a board B′ and a non-deterministic tree automa-
ton A′ such that a pure strategy of Adam over B′ will encode both, a pure strategy π over B
and a positional strategy π̄ in G(A, play(σ, π)). Intuitively, the non-deterministic automa-
ton A′ will guess a positional strategy σ̄ of Eve in G(A, play(σ, π)). Thus, simple threshold
for valE problem for the game G′ will be equivalent to asking whether:

∃σ ∈ ΣE
G′ . ∀(π, π̄) ∈ ΣA

G′ . play(σ, (π, π̄)) ∈ L(A′). (5.5)

Assume that the set of states of A is Q = {q0, q1, . . . , qn}, its initial state is qI and
∆ is the set of the all sub-formulae in the transitions of A. The alphabet Γ′ of the new
board B′ will be the disjoint union of the original alphabet Γ, the set Q × Γ, the set ∆, and
a special symbol f . Our aim is to replace each vertex v ∈ V on the board B with λ(v) = a

by a gadget G(v) that simulates all the possible transitions of A over a.
First let us define inductively F(δ) for δ ∈ ∆ as depicted in Figure 5.2 – the atomic

transitions lead to trivial sub-games looping in a vertex labelled by f , the disjunctions are
replaced by branching vertices, and the conjunctions are replaced by Adam’s vertices.

New board Now, B′ is obtained from B by performing the replacement depicted in Figure 5.3
– each vertex v of B that was labelled by a is replaced by a gadget listing all the states of A
with all the transitions from these states over the letter a.

New automaton We will now describe the automaton A′. Its aim is to simulate a play
of G(A, t) over the extended arena B′. The only essential non-determinism of A′ will be avail-
able when a letter of the form φ∨ ψ is read. In that case the automaton will guess a choice
of Eve (from the strategy σ̄) and follow the respective sub-tree generated by the sub-boards
F(φ) or F(ψ). After resolving the current transition δ(q, a) (represented as F(δ(q, a)))
when the automaton finally reaches a vertex labelled by an atomic formula ψ (e.g. (q, d))
it needs to pass this knowledge to the successive node denoted by the hexagon in Figure 5.3.
This will be achieved by guessing in advance that the resolved atomic formula will be ψ.

Let the set of states of A′ be Q∪Q× {L, R}∪ {⊤,⊥}. The states from Q will denote the
fact that a transition of A has not been resolved yet, while the states from Q×{L, R}∪{⊤,⊥}
will denote the fact that we already have played a finite game over the formulae in ∆. The
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F(q, d)

(q, d)

F(φ ∨ ψ)

φ ∨ ψ

F(φ) F(ψ)

F(φ ∧ ψ)

φ ∨ ψ

F(φ) F(ψ)

F(⊤)

⊤

F(⊥)

⊥

Figure 5.2 – The inductive construction of the sub-board F(δ) for δ ∈ ∆.

initial state of A′ is qI. Let m = maxq∈Q α(q) and let α′(q, d) = α
′(⊤) = α

′(⊥) = m. For
q ∈ Q let α′(q) = α(q).
A run description Before we list the transitions of A′ we describe the operation of A′

informally:

• It enters a component G(v) as depicted in Figure 5.3 in a state q.

• It passes along the left-most branch of G(v) until a letter (q, a) is reached.

• It guesses the atomic formula that will be reached when resolving the transition δ(q, a)
(i.e. the sub-board F(δ(q, a))).

• It passes the guessed atomic formula along the left-most branch of G(v) until reaching
the final node labelled by a letter a ∈ Γ.

• At the same time it passes the guessed atomic formula down the sub-tree of F(δ(q, a)).
• Since the conjunctive formulae of the form φ∧ψ were translated into Adam’s positions,

they are already resolved – i.e. the nodes of the tree labelled by them are uniquely
branching.

• The disjunctive formulae of the form φ ∨ ψ are not resolved yet and the automaton
resolves them using non-determinism.
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v

a

sL(v) sR(v)

G(v)

(q0, a)

F(δ(q0, a))(q1, a)

F(δ(q1, a))

(qn, a)

F(δ(qn, a))a

⟼

G(sL(v)) G(sR(v))

Figure 5.3 – The transformation on the board B to obtain B′. The hexagon represents
an arbitrary vertex v of B that is labelled by a ∈ Γ. This vertex is replaced by a gadget G(v)
in B′, as depicted on the right-hand side of the figure. The gadget lists all the states q0, . . . , qn
of A and for each state contains the sub-board F(δ(qi, a)) that represents the formula of
the transition of A over a from q. Finally, the left-most branch of the gadget G(v) reaches
a copy of the vertex v that leads to the gadgets corresponding to the successors of v in B.
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• When it reaches a node labelled by an atomic formula, it checks that the formula is the
same as its state.

Transitions The automaton will have the following transitions:

• From a state q over a letter (q′, a) with q′ ≠ q it will deterministically take the transi-
tion (q, L), following the left-most path in the gadget depicted in Figure 5.3.

• From a state q over a letter (q, a) it will non-deterministically take one of the transitions
(θ, L) ∧ (θ, R) for θ ∈ Q × {L, R} ∪ {⊤,⊥}. Such a transition corresponds to guessing
that the formula δ(q, a) will be resolved to an atomic formula θ (the (θ, R) part) and
continuing the computation on the left-most path in the state θ (the (θ, L) part).

• From a state θ ∈ Q × {L, R} ∪ {⊤,⊥} over a letter (q′, a′) it will deterministically take
the transition (θ, L), following the left-most path in the gadget depicted in Figure 5.3.

• From a state θ ∈ Q × {L, R} ∪ {⊤,⊥} over a letter φ ∨ ψ it will non-deterministically
take one of the transitions (θ, d) for d ∈ {L, R}.

• From a state θ ∈ Q × {L, R} ∪ {⊤,⊥} over a letter φ ∧ ψ it will non-deterministically
take one of the transitions (θ, d) for d ∈ {L, R} – the node labelled φ ∧ ψ has exactly
one child in a play and we need to follow that successor.

• From a state θ ∈ Q × {L, R} ∪ {⊤,⊥} over a letter θ′ ∈ Q × {L, R} ∪ {⊤,⊥} with θ ≠ θ′

the automaton takes the transition to ⊥.

• From a state θ ∈ Q×{L, R}∪{⊤,⊥} over the letter θ the automaton takes the transition
⊤.

• From a state (q, d) ∈ Q × {L, R} over a letter from the original alphabet a ∈ Γ the
automaton deterministically takes the transition (q, d), moving in the direction d to the
state q ∈ Q.

• From a state θ ∈ {⊤,⊥} over a letter from the original alphabet a ∈ Γ the automaton
deterministically takes the transition θ.

• For states and letters not listed above, the automaton takes the rejecting transition.

Correctness Let G′
= ⟨B′,L(A′)⟩. Now we will prove the correctness of the construction

of G′, as expressed by the following claim.

Claim 5.4.2. Eve has a winning strategy in the original branching game G if and only if Eve
has a winning strategy in the game G′.

Proof. First, assume that σ is a pure winning strategy of Eve in the original game G. Since
Eve has no additional choices over the board B′, the strategy σ can be naturally interpreted

57



as a pure strategy σ
′ over the board B′. Consider a pure strategy π

′ of Adam over the
board B′. We will prove that play(σ′, π′) ∈ L(A′).

Notice that the strategy π′ consists of two parts:

• first part encodes a pure strategy π of Adam over the board B,

• the second, i.e. the choices made by π′ in the vertices labelled by the elements of ∆,
encodes a positional strategy π̄ of Adam in the game G(A, play(σ, π)).

Since the strategy σ is winning, we know that play(σ, π) ∈ L(A). Therefore, there exists
a positional strategy σ̄ of Eve that wins against π̄ in the game G(A, play(σ, π)). We can use
σ̄ to define an accepting run of A′ over the tree play(σ′, π′). Therefore, we have proven that
play(σ′, π′) ∈ L(A′).

Now consider a pure winning strategy σ
′ of Eve in the new game G′. Because of the

lack of additional choices of Eve in B′ and the fact that the choices of Eve over B′ cannot
depend on the choices made by Adam on the sub-boards F(ψ), we know that σ′ corresponds
to a pure strategy σ over the board B. We will prove that σ is winning in G. Consider any
pure strategy π of Adam over B. Our aim is to prove that play(σ, π) ∈ L(A). Assume to the
contrary, that play(σ, π) ∉ L(A) and let π̄ be a positional winning strategy of Adam in the
game G(A, play(σ, π)). Similarly as above, the pair of strategies π and π̄ can be combined
into one pure strategy π′ of Adam over B′.

We will now prove that play(σ′, π′) ∉ L(A′), contradicting the assumption that σ′ was
winning in the game G′. If it was the case that play(σ′, π′) ∈ L(A′) then a winning strategy
of Eve in G(A′

, play(σ′, π′)) would translate into a strategy σ̄ in G(A, play(σ, π)) that would
win against the positional strategy π̄ of Adam. Thus, play(σ′, π′) ∉ L(A′). This concludes
the proof of the claim.

By Claim 5.4.2 the construction is correct. This ends the proof of Lemma 5.4.1.

With the dealternation procedure we can finally prove Theorem 5.3.4.

Proof of Theorem 5.3.4. The lower bound for Adam’s value follows from Theorem 5.2.1. The
lower bound for Eve’s value follows from Lemma 5.4.1. Indeed, Lemma 5.4.1 provides us with
a reduction from the 2-EXP-complete problem from Theorem 5.3.2.

We end this chapter with the observation that the dealternation is an inherent property
of branching games.

Claim 5.4.3. The dealternation cannot be performed in polynomial time without the presence
of branching elements in the outputted game.
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Proof. If such an operation would be possible, then in polynomial time we could transform
a game on graphs with a winning set defined by an ATA into a game on graphs with
a winning set defined by an NTA. Since the problem of computing the value of the former
is 2-EXP-complete, and the problem of computing the value of the latter is EXP-complete,
by the time hierarchy theorem, such a translation is impossible.
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Chapter 6

Stochastic branching games

In the previous chapter we have limited our interest to non-stochastic boards and pure
strategies. This restriction on two basic aspects of the game, the shape of the board and
the permitted strategies, allowed us to use a number of combinatorial and automata based
techniques to identify a class of branching games with computable pure values.

As we will see in this chapter, the above class is in a sense maximal: restoring the
full power of any of those aspects with no restriction on the regular winning sets yields
undecidability.

In this chapter, we also discuss the determinacy of stochastic regular branching games.
In particular, we show that those games do not have to be determined under mixed strategies,
and that the class of branching games with open winning sets is determined under mixed
strategies.

6.1 Regular objectives vs determinacy
As mentioned before, branching games with regular objectives are undetermined under pure
strategies. In fact, this is true even for bounded depth families of trees or clopen sets, for such
a game see e.g. Example 3.2.2. On the other hand, Nash Existence Theorem, see e.g. [41],
implies that for those types of winning sets a mixed equilibrium exists.

Proposition 6.1.1. Let G be a branching game with a winning set W that is clopen or there
is a common bound on the height of trees in W . Then, G is determined under mixed strate-
gies.

We do not include the proof of the above proposition as it will be a simple corollary
of Theorem 6.1.8.

Intuitively, when a game allows one of the players to limit the number of valid strategies
to a finite number, Nash Existence Theorem infers the mixed determinacy. On the other
hand, if the number of valid strategies is infinite, a game is not always determined.
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Example 6.1.2 (Choose a Number). Choose a Number is a game in which two players, Eve
and Adam, simultaneously and independently choose a natural number each. The number
chosen by Eve is n ∈ N and the number chosen by Adam is m ∈ N. The outcome of the
game is either 0, Adam wins, or 1, Eve wins. Eve wins the game if n > m.

c

b

a e

0 1 2 3

f

Figure 6.1 – A branching board that is not
determined under mixed strategies.

It is folklore that Choose a Number is not
determined under mixed strategies. Intuitively,
each player prefers to play as large number
as possible. Since the set of the allowed num-
bers is unbounded, for any player and their cho-
sen mixed strategy ξm, there will be a number N
such that the probability that the number chosen
by the strategy ξm is greater than N is arbitrar-
ily close to 0. Hence, the opponent, knowing the
strategy ξm, can always choose a number that
is larger than N , and win with a probability ar-
bitrarily close to 1.

Now we will encode Choose a Number in our
framework and show that the resulting game
is a branching game that is not determined under
mixed strategies.

Example 6.1.3. Let BCN, the index CN stands
for “Choose a Number”, be an arena as depicted in Figure 6.1. Let words(t) be the set of all
infinite words in t starting from the root, i.e. the set {w ∈ Γω ∣ ∃u ∈ {L, R}ω. ∀i ≥ 0. w(i) =
t(u(0)u(1)⋯u(i − 1))}.

Observe that, for every t ∈ plays(BCN) we have that words(t) ⊆ c
ω + c

∗
ba(0 + 1)fω +

c
∗
be(2+ 3)fω. Moreover, for every tree t ∈ plays(BCN) and n ≥ 1 either cnba0fω or cnba1fω

belongs to the set words(t), but not both. Similarly, either cnbe2fω or cnbe3fω belongs to the
set words(t), but not both.

We define LCN as the language of trees t such that the tree t is a proper play, i.e. t ∈
plays(BCN), and there is a number n such that

• c
n
be2fω ∈ words(t),

• for every 1 ≤ k < n we have that ckbe3fω ∈ words(t), and
• if there is m such that cmba0fω ∈ words(t) then m < n holds for the smallest such m.

This game encodes Choose a Number in the following manner. In the game ⟨BCN, LCN⟩
the board allows to simulate the choice of numbers. For a play p ∈ plays(BCN), the number
chosen by Eve is the smallest number n such that cnbe2fω ∈ words(p) or −1 if such a number
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does not exist. Similarly, the number chosen by Adam is the smallest number m such that
c
m
ba0fω ∈ words(p) or −1 if such a number does not exist.
The language LCN assures that Eve wins if and only if she chooses a number and her

number is strictly greater than the number chosen by Adam.

Lemma 6.1.4. The game G = ⟨BCN, LCN⟩ is an {E,A,B}-branching game with a regular
winning set. Moreover, the mixed game values are:

• valME
G = 0,

• valMA
G = 1.

Before we prove the above lemma, let us see some intuition. We say that a player plays
an even (an odd) number if the player moves a token into a vertex labelled by an even
(an odd) number. Intuitively, we demand that both Adam and Eve will eventually play
an even number, 2 for Eve and 0 for Adam. Moreover, whoever plays an even number
at larger depth, wins the game. Therefore, the best strategy for either player is to choose
an even number at larger depth than the opponent. Unfortunately, since the players cannot
observe each other, postponing playing the even number may result in not playing it at all
and, in consequence, forfeiting the game.

Proof of Lemma 6.1.4. Since it is easy to see that the language LCN is regular, we will focus
our attention on computing the mixed values.

Let us fix a mixed strategy σm ∈ ΣME
BCN and a number ε > 0. We will show that

there is a pure strategy π ∈ ΣA such that valG(σm, π) < ε. This will immediately imply
that valME

G = 0.
Let En ⊆ plays(BCN) be the set of plays where Eve plays an even number before the

depth n, i.e. En = {t ∈ plays(BCN) ∣ there is n′ < n such that cn
′

be2fω ∈ words(t)}.
It is easy to see that En is a monotone sequence, i.e. En ⊆ En+1, and that the set

E = ⋃En is the set of trees where “Eve eventually plays an even number”. In consequence,
we have that LNC ⊆ E.

The family of sets {En}n∈N has a special property: for a fixed mixed strategy of Eve
σm the probability that the resulting play belongs to En does not depend on the strategy
of Adam. More formally, let B′ be a branching board, L′ be a regular set of trees, and σ′m ∈

ΣME
B′ , π

′
m ∈ ΣMA

B′ , then by µσ
′
m,π′m(L′) we denote the value µσ

′
m,π′m(L′) def

= val⟨B′,L′⟩(σ′m, π′m).
Now, the special property can be expressed as follows. For every n and any two strategies
of Adam π

′
m, π

′′
m ∈ ΣMA

BCN we have that

µ
σm,π′m(En) = µσm,π

′′
m(En). (6.1)
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Thus, the value pn
def
= µ

σm,πm(En) is well defined for every n and does not depend
on the choice of πm. Since the sequence En is ascending, the sequence pn converges to p =
µ
σm,πm(E). Intuitively, p is the probability that “Eve eventually plays an even number”.
Now, we can define the pure strategy π ∈ ΣA

BCN of Adam. Since pn converges to p, there
is a number N ≥ 1 such that for every k ≥ N we have p− pk < ε. Let π ∈ ΣA

BCN be a strategy
such that π(L

N
RLL) = 0 and for every 1 ≤ k < N we have that π(L

k
RLR) = 1, i.e. “Adam

plays an even number at the depth N”.
To end the proof it is enough to observe that

valG(σm, π)
1
= µ

σm,π(LCN)
2
= µ

σm,π(EN ∩ LCN) + µσm,π((E \ EN) ∩ LCN)
3
= µ

σm,π((E \ EN) ∩ LCN)
4
≤ µ

σm,π(E \ EN)
5
= p − pN

6
< ε.

The first equality holds from the definition, the second from the fact that LCN ⊆ E. The
third from the fact that “Adam plays an even number at the depth N”, i.e. we have that
µ
σm,π(EN ∩LCN) = 0. The fourth inequality follows from the fact we increase the set while

the fifth from the fact that EN ⊆ E. Finally, the last inequality stems from the choice of N .
Since for every strategy σm we can find π such that the value valG(σm, π) is arbitrarily

close to 0, we infer that valME
G = 0.

The argument implying that valMA
BCN = 1 is analogous. Given an arbitrary mixed strat-

egy πm of Adam and a positive number ε, we construct a pure strategy σ of Eve such that
valG(σ, πm) > 1 − ε. To construct such a strategy, we define a family of sets An where An
is the set of plays where for some 1 ≤ k ≤ n “Adam plays an even number at the depth k”.
When the family An is chosen, the rest of the proof follows the same path. We take as pn
the measure, defined as in Equation (6.1), of the set An and then choose N sufficiently big
to approximate the limit measure p.

From the above lemma we get immediately.

Proposition 6.1.5. The game ⟨BCN, LCN⟩ is not determined under mixed strategies.

A closer inspection of the winning set reveals that it can be expressed as a difference
of two open sets. This allows us to claim the following.

Theorem 6.1.6. There is an {E,A,B}-branching game with a winning set being a difference
of two open sets that is not determined under mixed strategies.

Proof. The set LCN is a difference of two open sets L1 and L2. The set L1 is the set
of trees where “Eve plays an even number”. That is, L1 = ⋃i≥1 Bti , where ti is the greatest
common prefix of the plays t for which cibe2fω ∈ words(t). The set L2 is the union of the
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complement of the set of plays plays(BCN) and the set LA of trees in which Adam plays his
first even number after Eve has already played an even number. That is, LA

def
= ⋃j≥i≥0 Bti,j

where every ti,j is the greatest common prefix of the plays t for which “Adam plays an even
number at the depth j”, i.e. cjba0fω ∈ words(t), “Eve plays an even number at the depth i”,
i.e. cibe2fω ∈ words(t), and for all 1 ≤ k < j “Adam does not play an even number at the
depth k”, i.e. ckba1fω ∈ words(t).

L1 is open because it is a union of sets of trees having a common finite prefix. L2 is open
because it is a union of a complement of a closed set, see Proposition 3.1.2 for details, and
of a union of sets of trees having a common finite prefix.

As an interesting corollary we notice that branching games cannot be simulated by Black-
well games.

Corollary 6.1.7. There is no function f ∶Γ∗ → Γ∗ that takes a representation of a branching
game G with a regular winning set and produces a representation of a Blackwell game G′ over
a finite set with a Borel winning set, both encoded as finite words over an alphabet Γ, such
that for every partial value val ∈ {valBA, valMA

, valME
, valBE} we have that valG = valG′.

Proof. If such a function would exist, it would preserve the determinacy, i.e. the image
of an undetermined branching game would be an undetemined Blackwell game. Martin’s
determinacy for Blackwell games theorem, see [31], states that Blackwell games with Borel
winning sets are determined under mixed strategies. However, by Theorem 6.1.6, we know
that there are branching games with Borel winning sets that are not determined under mixed
strategies. Therefore, there cannot exist such a function f .

Theorem 6.1.6 states that any branching game with a winning set being a difference
of two open sets is not necessarily determined under mixed strategies. We cannot provide
similar examples with topologically simpler winning sets, because branching games with open
winning sets are determined under mixed strategies, as expressed in the following theorem.

Theorem 6.1.8. Branching games with open (resp., closed) winning sets are determined
under mixed strategies.

Note that the above theorem does not place many restrictions on the structure of the
game. It does not assume that the winning set is regular nor that the board is finite. All it
requires is that the board is finitely branching and that the pay-off function is semi-continu-
ous. When those requirements are met, the theorem follows immediately from Glicksberg’s
minimax theorem.

Theorem 6.1.9 (Glicksberg, [21]). Let X, Y be compact metric spaces and f ∶X×Y → [0, 1]
be a lower (resp., an upper) semi-continuous function. Then, the following equality holds
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sup
σ∈dist(X)

inf
π∈dist(Y )

∫
X×Y

f dσdπ = inf
π∈dist(Y )

sup
σ∈dist(X)

∫
X×Y

f dσdπ (6.2)

Proof of Theorem 6.1.8. Let G = ⟨B, L⟩ be a branching game with an open winning set L.
Let X = ΣE

B , Y = ΣA
B , and f(σ, π) = ∫ΣN

B
χL(evalB(σ, π, η)) dη∗B (η).

The sets ΣE
B ,Σ

A
B are compact metric spaces, they are closed subsets of the compact set

of all trees TΓ. By Corollary 17.21 in [25] on page 112, the function

ΣME
B × ΣMA

B × ΣMN
B ∋ ⟨σm, πm, ηm⟩↦ evalB#(σm × πm × ηm)(L) ∈ R.

is lower semi-continuous. Thus, by fixing ηm as η∗B , we obtain that lower semi-continuous
is the function

ΣME
B × ΣMA

B ∋ ⟨σm, πm⟩↦ evalB#(σm × πm × η∗B )(L) ∈ R.

Now, as the identity injection i∶ΣE
B ×ΣA

B → ΣME
B ×ΣMA

B is continuous, the following function
is also lower semi-continuous

ΣE
B × ΣA

B ∋ ⟨σ, π⟩↦ evalB#(σ×π×η∗B )(L) = ∫
ΣN
G

χL(evalB(σ, π, η)) dη∗B (η) = f(σ, π).

Hence, the chosen sets X, Y and the function f satisfy the assumptions of Glicksberg’s
minimax theorem. In consequence, Equation (6.2), describing the mixed determinacy holds.

6.2 Values of stochastic regular branching games
Now we discuss the problem of computing the values of stochastic branching games. In con-
trary to the complexity results presented in the previous chapter, even in the single-player
case the values of stochastic branching games with regular winning sets are uncomputable.

Theorem 6.2.1. Simple threshold for val problem of a regular branching game G = ⟨B, L⟩
is undecidable for every partial value val ∈ {valA, valBA, valMA

, valME
, valBE, valE}. The

problem is undecidable even for a fixed single player simple finitary board, i.e. the board B is
a simple finitary {P,B,N }-branching board where P ∈ {E,A}.

To prove the undecidability we will reduce the following undecidable problem.
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Problem 6.2.2 (Word problem of VSNA).

Input: A very simple non-deterministic automaton A on finite words over
the alphabet {a, b}.

Output: Does there exist a finite word such that more than half of the runs
of A on this word is accepting?

A very simple non-deterministic automaton is an NFA such that for every state q ∈ Q

and every letter a ∈ Γ the transition function leads to a disjunction of two atomic formulae,
i.e. δ(q, a) = ⟨q0, L⟩ ∨ ⟨q1, L⟩, where q0, q1 ∈ Q and q0 /= q1.

The undecidability of the above problem is a refinement of Corollary 1 in [20]. In [20]
the corollary does not assume that the automaton is very simple, but it is clear that the
standard technique of cloning states is enough to show the refinement.

Proof of Theorem 6.2.1. By Lemma 3.2.1, a {P,N ,B}-branching game is determined under
pure strategies. Thus, all the six partial values are the same for such games. Hence, without
loss of generality we can assume that P = E and val = valE.

To prove the theorem, we will reduce an instance of word problem of VSNA to an instance
of simple threshold for valE problem.

Let A be a very simple non-deterministic automaton. The board B does not depend
on the automaton A and is depicted in Figure 6.2a.

A play t ∈ plays(B), which can be seen in Figure 6.2b, on this board consists of a sequence
of decisions made by Eve, whether to move from the vertex labelled l to the vertex labelled a
or to the vertex labelled b. At every moment Eve can stop this sequence by choosing the right
successor of the vertex labelled p. For every choice of a or b by Eve, Nature simultaneously
and independently chooses a number 0 or 1, by choosing the appropriate vertex. Thus,
any play t ∈ plays(B) results in two finite sequences of the same length, or in two infinite
sequences: l0, l1, . . . with li ∈ {a, b} and n0, n1, . . . with ni ∈ {0, 1}. We will call those
sequences tE and tN , respectively.

The reduction of word problem for VSNA to simple threshold for valE problem is defined
as follows. Let A be a very simple NFA and let us assume that the two transitions over
a letter l ∈ {a, b} from a state q ∈ Q lead to the states δ0(q, l) and δ1(q, l). Now, we will
show how to construct an {E,N ,B}-branching game G = ⟨B, L⟩ with a regular winning set L
such that valEG > 1

2 if and only if there exists a finite word such that more than half of the
runs of A on this word is accepting.

Let t ∈ plays(B) have a finite sequence tE. Then, the two sequences tE and tN allow
us to naturally define a sequence tρ ∈ Q

∗ that follows the respective transitions of A over
the word tE: tρ(0) = qI and tρ(i + 1) = δtN (i)(tρ(i), tE(i)).
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Figure 6.2 – Boards used in the undecidability proofs.
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(a) A branching board used in the proof of Theo-
rem 6.2.1.
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(b) A play t representing a run of a very simple
probabilistic automaton. The play encodes the
word tE = bba and the sequence of bits tN = 011.
The non-essential nodes labelled f are omitted.
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The winning set is defined in the following way.

L
def
= {t ∈ plays(B) ∣ the sequence tE is finite and tρ is an accepting run on tE}. (6.3)

It is easy to see that the winning set L can be represented as a regular language of trees.
Indeed, the appropriate automaton has to assert two facts: that the tree is a proper play
and that the combined choices of Eve and Nature encode an accepting run. To check the
latter, the automaton simulates the original automaton: it chooses letters according to Eve’s
choices and transitions according to Nature’s choices.

To conclude the proof we need to show the correctness of the reduction, i.e. we need
to show that valEG >

1
2 if and only if there exists a finite word w ∈ {a, b}∗ such that more

than half of the runs of A on this word is accepting. By the definition, valEG > 1
2 if and only

if there exists a pure strategy σ ∈ ΣE
G of Eve such that valG(σ) > 1

2 . Now, a pure strategy
of Eve in the game G either never moves from the vertex labelled p to the vertex labelled f
(in that case its value is 0) or it corresponds to a finite word w ∈ {a, b}∗. The value of such
a strategy σ is the probability that the choices of Nature represent an accepting run of A
over the word w. Since every such run is equiprobable, valEG(σ) > 1

2 if and only if more than
half of the runs of A on w is accepting. This concludes the correctness of the reduction and
the proof of Theorem 6.2.1.

6.3 Derandomisation
We can strengthen Theorem 6.2.1 by removing the need of Nature’s vertices in the game.
This can be obtained by derandomisation, i.e. by a procedure that removes stochastic po-
sitions from the board. Such a procedure was already introduced by Mio in his thesis, for
details see [33, Section 4.4]. Our construction improves on Mio’s in two aspects. First, the
pay-off function remains a characteristic function of a regular set. Second, our construction
is effective. Unfortunately, those improvements come at a price. We need to slightly modify
the structure of the board, in particular both Adam’s and Eve’s vertices will be present after
the dealternation, and we may not preserve the pure values. The exact statement of the
result is formulated in Theorem 6.3.5.

We start the description of the dealternation with the standard construction allowing us to
encode arbitrary rational numbers as branching games. To be more precise, the number will
be encoded as a Markov chain.

Lemma 6.3.1. There exists a polynomial space procedure that inputs a rational number r =
x

y
∈ [0, 1] where x and y are represented in binary and outputs a simple finitary {N }-branch-

ing game G = ⟨Br,L(Ar)⟩ with a regular winning set given by an NTA Ar such that val = r
for every partial value val of the game G.
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Figure 6.3 – The game Gr encoding the number r = 1
28 , i.e. the number 0.00(001)ω in binary.

Only reachable vertices are shown.

Proof. We start by constructing an {N ,B}-branching game Gr = ⟨Br,L(Ar)⟩ for a rational
number r = x

y
. Later, we will show how to remove the branching vertices.

The board Br = ⟨V, {0, 1}, sL, sR, ρ, η, λ, vI⟩ consists of the set of y + 3 vertices V =

{0, . . . , y}∪ {⊤,⊥}, with the initial vertex vI = x. The vertices ⊤ and ⊥ are branching and
the rest belongs to Nature. The successor functions are defined as follows. For every vertex
v ∈ V \ {⊥,⊤},

• if v

y
<

1
2 then sL(v) = ⊥ and sR(v) = 2v,

• if v

y
≥

1
2 then sL(v) = ⊤ and sR(v) = 2v − y,

and for v ∈ {⊥,⊤} sL(v) = sR(v) = v. The distribution on Nature’s vertices chooses
successors with uniform probability. The alphabet is the set {0, 1} and the labelling function
λ assigns 1 to the vertex ⊤ and 0 to the rest of the vertices.

The winning set does not depend on the number r nor the board B and is the language
of all trees that contain a node labelled 1. The automaton Ar simply guesses the path
to a 1-labelled node of the binary tree.

We claim that the game Gr = ⟨Br,L(Ar)⟩ has the desired partial values.
Since the game Gr has only Nature’s and branching positions, it is determined and, thus,

all the partial values coincide. Hence, it is enough to show that valEGr = r.
The set of plays plays(Gr) is the set of trees plays(Gr) = {ti}1≤i≤ω, where ti is a tree that

either contains an ancestor monotone sequence of nodes labelled 0 that is infinite or every
such sequence is finite and the maximal one ends in a node u such that ti▵u is a full binary
tree with every node labelled 1. More precisely, for every j such that 0 ≤ j ≤ i − 2 we have
that ti(R

j
L) = ♭, ti(R

i) = ♭, and the sub-tree rooted in the node ti(R
i−1

L) is a full binary tree
with every node labelled either 0 or 1. In particular, the tree tω has no 1-labelled nodes and
every left child is labelled ♭.
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By the definition, see Equation (3.3) on page 33, the measure η∗Br satisfies

η
∗
Br({ti}) = 2−i, (6.4)

with η∗Br({tω}) = 0.Moreover, let w = b1b2⋯bn⋯ ∈ {0, 1}ω be a word such that for every i > 0
we have that bi = 1 if and only if ti ∈ L(Ar). It is easy to see that w is a binary expansion
of r i.e. the following holds.

r =∑
i≥1

bi2
−i (6.5)

Therefore, if Φ is the characteristic function of the set L(Ar), then the following holds.

valEGr = ∫
ΣN
Gr

Φ(t) dη∗Br(t) =∑
i≥1

Φ(ti)η∗Br({ti}) =∑
i≥1

bi2
−i
= r

To conclude the proof, observe that the branching positions can be changed to Nature’s
without changing the values of the game.

The procedure can clearly be done in polynomial space: we iterate over the set V that
is exponential in the size of the encoding of r.

Expressive power How complex numbers can we represent? Lemma 6.3.1 gives a procedure
that for a predefined rational number r constructs a simple finitary branching game Gr

such that valEGr = r. The procedure simply computes a binary expansion of r: the tree ti
represents the ith bit in the expansion. Thus, the procedure, if run ad infinitum, defines
a branching-game representation for every real number r from the interval [0, 1]. However,
the resulting board is infinite.

Still, it is impossible to represent every real number from the interval [0, 1] as a partial
value of a finitary branching game with a regular winning set, since there is only countably
many such games. On the other hand, we know that some algebraic irrational numbers
can be represented, e.g. see [32] or Proposition 8.3.1 from page 93. This seems to be the
limit, we are not aware of any finitary branching game with a regular winning set and
a non-algebraic partial value. Thus, we conjecture the following.

Conjecture 6.3.2. Let G be a finitary regular branching game. Then, all partial values are
algebraic.

Technical note Before we proceed with more complex stochastic branching games, we need
to adjust some notions. For the sake of simplicity and readability of the proofs, in the remain-
der of this chapter, we will partially diverge from viewing pure strategies as trees, see the
definition of a pure strategy in Section 3.1.1 on page 32, and we will use the functional point
of view, see Strategies as functions on page 33. In other words, in the proof of Lemma 6.3.3
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Figure 6.4 – The gadget used to transform a finitary game to a simple finitary game. The
ownership of the hexagon nodes is undefined and depends on the original board. The blue
dashed arrows depict the function f .

and in the proof of Theorem 6.3.5, a pure strategy ξ is a function ξ∶ {L, R}∗ → {L, R}, a be-
havioural strategy ξb is a function ξb∶ {L, R}∗ → dist({L, R}), and, as before, a mixed strategy ξm
is a probability measure over the set of pure strategies.

The functional approach simply adds information on the behaviour of the strategies in un-
reachable positions. That superfluous information is not a problem, as it does not change
the behaviour in reachable positions and we can easily recover the adequate tree-like strat-
egy from the functional one, by forgetting the choices in the sub-trees cut by the functional
strategy in the vertices owned by the player.

The main advantage given by the change of the notion of a pure strategy are simpler
definitions of functions combining pure strategies, e.g. see page 75 for the definition of the
function fN ,N that combines two strategies of Nature into one.

Simple branching games Returning to deradomisation, we use the construction from
Lemma 6.3.1 to transform branching games into simple branching games.

Lemma 6.3.3. Let S ⊆ {E,A,N ,B} be a non-empty set. There exists a polynomial
space procedure that inputs a finitary S-branching game G = ⟨B,L(A)⟩, with a regular
winning set given by a non-deterministic tree automaton and outputs a simple finitary
(S ∪ {N ,B})-branching game G

′
= ⟨B′,L(A′)⟩ with the winning set given by a non-de-

terministic tree automaton C such that for every partial value val ∈ {valA, valBA, valMA
,

valME
, valBE, valE} we have that valG = valG′.

Proof. By Lemma 6.3.1, for every rational number r ∈ [0, 1] there is a simple finitary
{N }-branching game Gr = ⟨Br,L(Ar)⟩ such that all partial values coincide and are equal
to r. Moreover, since the automaton Ar does not depend on the number r nor on the
board Br we can compute in constant time an automaton Br that recognises the complement
of the language L(Ar).
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The new board B′ is the original board B where every Nature’s vertex x, with successors
labelled y, z, is replaced by the gadget depicted in Figure 6.4. We assume that g and c are
fresh letters.

The automaton C is defined as follows. The automaton C on a play p ∈ plays(B′)
behaves like the automaton A until it reaches a root of a copy of the gadget, i.e. a node v
labelled g. Then, the automaton C stores the current state q of the automaton A and
non-deterministically guesses whether the sub-tree in the right child vR of the node v belongs
to the language L(Ar).

If the automaton guesses that p▵vR ∈ L(Ar) then in the node vR the automaton simu-
lates Ar to verify the guess and continues the run of the automaton A in the node vLL. If the
automaton guesses that p▵vR /∈ L(Ar), then in the node vR the automaton simulates Br
to verify the guess and continues the run of the automaton A in the node vLR.

The construction of the new board from the original one defines a function f ∶ {L, R}∗ →
{L, R}∗ that maps positions in the unfolding of the board B to their respective positions in the
unfolding of the new board B′, with the Nature’s positions mapped to the root of the adequate
copy of the gadget.

Since the construction of the board B′ does not introduce new positions of neither Adam
nor Eve, the above function f induces a continuous bijection fE∶Σ

E
G′ → ΣE

G, and a continuous
bijection fA∶Σ

A
G′ → ΣA

G, defined by collapsing the nodes, in the respective trees, that originate
from the gadget.

The transformation defines also a measurable surjection of Nature’s strategies fN ∶ΣN
G′ →

ΣN
G in the following manner. If η′ ⊑ t

λ
B′ is a pure strategy of Nature in the game G′, then

fN (η′) ⊑ tλB is a pure strategy of Nature in the game G such that for every Nature’s position u
in t

λ
B we have the following. If in the gadget rooted in the node f(u) the sub-tree in the

node f(u)R belongs to the language L(Ar), then the strategy fN (η′) in the node u chooses
the left child, if not then the strategy fN (η′) in the node u chooses the right child.

Since regular languages of trees are universally measurable, see Theorem 3.2.3 on page 38,
the function fN is measurable and we can use it to push forward the measure η∗B′ . Observe
that the pushforward measure fN#η∗B′ , see Equation (2.4) on page 20 for definition, is defined
on the set ΣN

G and coincides with the board measure η∗B in the original game, as expressed
in the following claim.

Claim 6.3.4. The following equation holds.

fN#η∗B′ = η
∗
B (6.6)

Proof. The strategy η∗B is a behavioural strategy, i.e. η∗B is defined by a function fη∗B ∶ {L, R}∗ →
dist({L, R}) that maps Nature’s positions to distributions over successors. The same function
induces the measure fN#η∗B′ . Indeed, if in a node u the strategy η∗B chooses left child with
probability r then the strategy fN#η∗B′ chooses left child with probability valEGr , where Gr
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Figure 6.5 – The gadget used to transform a stochastic game to a non-stochastic game.

is the sub-game in the game G′ that starts at node f(u)R. Since valEGr = r, the claim
holds.

Hence, for every pair of strategies σ′ ∈ ΣE
G′ and π

′
∈ ΣA

G′ we have that

valG′(σ′, π′)
1
= ∫ΣN

B′
Φ′(evalG′(σ′, π′, η′)) dη∗B′(η

′)
2
= ∫ΣN

B′
Φ(evalG(fE(σ′), fA(π′), fN (η′))) dη∗B′(η

′)
3
= ∫ΣN

B
Φ(evalG(fE(σ′), fA(π′), η)) dfN#η∗B′(η)

4
= ∫ΣN

B
Φ(evalG(fE(σ′), fA(π′), η)) dη∗B (η)

5
= valG(fE(σ′), fA(π′)).

The first equation is the definition applied to the pure strategies σ′ and π′. The second is the
consequence of point-wise equality. The third equation is the integration by substitution
of the pushforward measure fN#η∗B′(η), see Equation (2.5) on page 20 and the fourth stems
from Equation (6.6). The last one is, again, the definition of the value in the original game.

Since fE and fA are bijections, this proves that the pure values in the game G coin-
cide with the respective pure values in the game G′. The equivalence of the mixed values
follows immediately from pushing forward the mixed strategies while the equivalence of the
behavioural values follows from the fact that pushing forward a behavioural strategy through
the considered bijections yields a behavioural strategy.

We use the above lemma to show that, when considering stochastic partial values, we can
entirely eliminate Nature’s positions.

Theorem 6.3.5. There exists a logarithmic space procedure that inputs a simple finitary
branching game G = ⟨B,L(A)⟩ with a regular winning set given by an alternating tree au-
tomaton and outputs a finitary non-stochastic {E,A,B}-branching game G′

= ⟨B′,L(A′)⟩
with the winning set given by an alternating tree automaton A′ such that for every partial
value val from the set {valBA, valMA

, valME
, valBE} we have that valG = valG′.
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Proof. We start by defining the game G′
= ⟨B′,L(A′)⟩, then we will show that the values of

the old game and the new game coincide.
The new board B′ is obtained by substituting the vertices of Nature with the gadget

depicted in Figure 6.5. An x-labelled vertex v in the original game, with the y-labelled
vertex sL(v) and the z-labelled vertex sR(v), is replaced by a copy of the gadget so that the
g-labelled vertex v′ is put in the place of v, sLLL(v′) = sL(v), and sLRR(v′) = sR(v). We assume
that g and c are fresh letters.

The new winning set is defined as follows. The automatonA′ recognising the new winning
set simulates the original one until it reaches the gadget, i.e. a g-labelled node v. Then, the
automaton A′ stores the current state q of the automaton A, and guesses whether Eve and
Adam chose the same direction in the vertices vRL and vRR. If it guesses that they did, the
automaton resumes the simulation of the automaton A in the node vLL and verifies the guess
in the sub-tree rooted in the node vR. If the automaton A′ guesses that they did not choose
the same direction, the automaton A′ resumes the simulation of the automaton A in the
node vLR and verifies the guess in the sub-tree rooted in the node vR.

The new game is defined and the procedure is clearly definable in log-space. Thus, all
we need to prove is that the construction preserves the values, i.e. that the following holds.

Claim 6.3.6. For val ∈ {valBA, valMA
, valME

, valBE} we have that valG = valG′.

The proof of the claim is technical, thus we start with some intuition. Intuitively, we will
show that for Eve and Adam playing with uniform probability in vertices belonging to the
gadget does not worsen the game values. Thus, every use of the gadget simulates a Nature’s
vertex in a simple branching game. Since every Nature’s vertex has been replaced by an in-
stance of the gadget, the values coincide.

Observe that the construction of the new board from the original one defines a function
f ∶ {L, R}∗ → {L, R}∗ that maps positions in the unfolding of the board B to their respective
positions in the unfolding of the new board B′, with the Nature’s positions mapped to the left
child of the root of the adequate copy of the gadget, i.e. the c-labelled node of the gadget.

Note that the structure of the gadget replaces a position of Nature with a pair of positions.
One of the positions belongs to Eve, the other one to Adam. This induces the following set
of functions in the natural way.

• A continuous bijection fE∶Σ
E
G′ → ΣE

G × ΣN
G ,

• a continuous bijection fA∶Σ
A
G′ → ΣA

G × ΣN
G ,

• and a continuous surjection fp∶ plays(G′)→ plays(G).

The functions fE and fA take as an input a pure strategy ξ′ ∈ ΣX
G′ , X ∈ {E,A}, and

output a pair of strategies ⟨ξ, η⟩ ∈ ΣX
G×ΣN

G such that the strategy ξ in a position u belonging
to the player X in the game G chooses the same node as the strategy ξ′ in the node f(u),
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and the strategy η in a position v belonging to Nature in the game G chooses the same node
as the strategy ξ′ in the node of the player X in the copy of the gadget whose c-labelled
node is f(v). The function fp simply maps a play of the game G′ to its interpretation in the
game G.

In the reverse direction, the transformation defines a measurable function f
∗
E∶Σ

ME
G →

ΣME
G′ and a measurable function f∗A∶Σ

MA
G → ΣMA

G′ , obtained by pushing forward the mixed
strategies in the following way.

f
∗
E(σm) = f−1

E #(σm × η∗B ) (6.7)

f
∗
A(πm) = f−1

A #(πm × η∗B ) (6.8)

The function f
∗
E (resp., f∗A) combines a mixed strategy of Eve (resp., of Adam) in the

game G with the strategy of Nature in G that chooses moves in the gadget with uniform
distribution.

In the sequel we will transfer strategies of the players between the games G and G
′.

Equation (6.7) and Equation (6.8) show how we transfer strategies form the game G to the
game G′. The transfer in the reverse direction is given by the functions fE and fA. Observe
that the transfer of strategies from G

′ to G yields a pair of strategies of Nature. To merge
those strategies into a single strategy of Nature we use the following function fN ,N ∶Σ

N
G ×

ΣN
G → ΣN

G . The function fN ,N takes two strategies η1, η2 of Nature and returns a pure
strategy η of Nature such that for every position u of Nature, the strategy η chooses the
left child, η(uR) = ♭, if the strategies η1, η2 agree on that position, i.e. η1(uL) = η2(uL) and
η1(uR) = η2(uR), and chooses the right child if they do not agree.

Claim 6.3.7. For every mixed strategy ηm ∈ ΣMN
G of Nature the following holds.

fN ,N#(ηm × η∗B ) = η∗B = fN ,N#(η∗B × ηm) (6.9)

Proof. By the symmetry argument, we only need to prove fN ,N#(ηm × η∗B ) = η∗B .
The strategy η∗B is behavioural, i.e. the strategy η∗B is defined by a function fη∗B ∶ {L, R}∗ →

dist({L, R}) that maps Nature’s positions to distributions over successors. The same function
induces the measure fN ,N#(ηm × η∗B ). Indeed, let η ∈ ΣN

G be a pure strategy of Nature. If
in a node u the strategy η chooses left child, then the strategy fN ,N#(η × η∗B ) chooses left
child with probability 1

2 . Thus Equation (6.9) holds for any pure strategy of Nature.
Since Equation (6.9) holds for every pure strategy and mixed strategies are probability

measures on the set of pure strategies, Equation (6.9) holds for every mixed strategy ηm ∈

ΣMN
G .

Intuitively, the above claim simply states that when one of the players plays randomly
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in the game G′ in the positions originating from the gadget, then the strategy of the other
player in those positions does not matter. Moreover, playing randomly in those nodes results
in that the positions originating from the gadget simulate behaviour of Nature in the game G.

Let fst denote the first element of a pair and snd denote the other one. Now we are ready
to prove the equality of the Eve’s mixed values in Claim 6.3.6. We start by showing the
following.

Claim 6.3.8. The following inequality holds.

valME
G′ ≥ valME

G (6.10)

Proof. Recall that since the board B′ has no vertices of Nature, the strategy η
∗
B′ induced

by the board B′ is the tree tλB′ . Thus, for any mixed strategy σ
′
m ∈ ΣME

G′ and any pure
strategy π′ ∈ ΣA

G′ we have that valG′(σ′m, π′) = ∫ΣE
G′

Φ′(evalG′(σ′, π′, η∗B′)) dσ′m(σ′). Now, the
claim follows from the following sequence of (in)equalities.

valME
G′

1
= sup

σ′m∈ΣME

G′

inf
π′∈ΣA

G′

valG′(σ′m, π′)

2
≥ sup

σm∈ΣME
G

inf
π′∈ΣA

G′

valG′(f∗E(σm), π′)

3
= sup

σm∈ΣME
G

inf
π′∈ΣA

G′

∫ΣE
G′

Φ′(evalG′(σ′, π′, η∗B′)) df∗E(σm)(σ′)

4
= sup

σm∈ΣME
G

inf
π′∈ΣA

G′

∫ΣEG×ΣN
G

Φ′(evalG′(f−1
E (σ, η), π′, η∗B′)) dfE#f∗E(σm)(σ, η)

5
= sup

σm∈ΣME
G

inf
π′∈ΣA

G′

∫ΣEG×ΣN
G

Φ′(evalG′(f−1
E (σ, η), π′, η∗B′)) dσm×η

∗
B (σ, η)

6
= sup

σm∈ΣME
G

inf
π′∈ΣA

G′

∫ΣEG×ΣN
G

Φ(evalG(σ, fst(fA(π′)), fN ,N (η, snd(fA(π′))))

dσm×η
∗
B (σ, η)

7
= sup

σm∈ΣME
G

inf
π′∈ΣA

G′

∫ΣEG×ΣN
G

Φ(evalG(σ, fst(fA(π′)), η)) dσm×η
∗
B (σ, η)

8
= sup

σm∈ΣME
G

inf
π′∈ΣA

G′

valG(σm, fst(fA(π′)))

9
= sup

σm∈ΣME
G

inf
π∈ΣAG

valG(σm, π) = valME
G

The first (in)equality is the definition, the second follows from the fact that we restrict
the set of strategies over which we take the supremum. The third is, again, the defini-
tion, see Equation (3.4) on page 35. The fourth follows from integration by substitution
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and the fifth from computing the pushforward measure. The sixth equality follows from
point-wise equality of pay-off functions and the seventh from the fact that the function
t↦ fN ,N (t, snd(fA(π′)) does not change the measure η∗B , see Equation (6.9).

The eighth equality is the definition of valG, while the ninth follows from the fact that
fst(fA(ΣME

G′ )) = ΣME
G . The last equality is the definition of valME

G .

Now we prove the reverse inequality.

Claim 6.3.9. The following inequality holds.

valME
G′ ≤ valME

G (6.11)

Proof. The following sequence of (in)equalities holds.

valME
G′

1
= sup

σ′m∈ΣME

G′

inf
π′m∈ΣMA

G′

valG′(σ′m, π′m)

2
≤ sup

σ′m∈ΣME

G′

inf
πm∈ΣMA

G

valG′(σ′m, f∗A(πm))

3
= sup

σ′m∈ΣME

G′

inf
πm∈ΣMA

G

∫ΣE
G′
×ΣA

G′
Φ′(evalG′(σ′, π′, η∗B′)) dσ′m×f

∗
A(πm)(σ′, π′)

4
= sup

σ′m∈ΣME

G′

inf
πm∈ΣMA

G

∫ΣEG×ΣN
G ×ΣAG×ΣN

G
Φ′(evalG′(f−1

E (σ, η1), f−1
A (π, η2), η∗B′))

dfE#σ′m×fA#f∗A(πm)(σ, η1, π, η2)
5
= sup

σ′m∈ΣME

G′

inf
πm∈ΣMA

G

∫ΣEG×ΣN
G ×ΣAG×ΣN

G
Φ(evalG(σ, π, fN ,N (η1, η2)))

dfE#σ′m×fA#f∗A(πm)(σ, η1, π, η2)
6
= sup

σ′m∈ΣME

G′

inf
πm∈ΣMA

G

∫ΣEG×ΣN
G ×ΣAG×ΣN

G
Φ(evalG(σ, π, fN ,N (η1, η2)))

d fst(fE#σ′m)×snd(fE#σ′m)×πm×η∗B (σ, η1, π, η2)
7
= sup

σ′m∈ΣME

G′

inf
πm∈ΣMA

G

∫ΣEG×ΣAG×ΣN
G ×ΣN

G
Φ(evalG(σ, π, fN ,N (η1, η2)))

d fst(fE#σ′m)×πm×snd(fE#σ′m)×η∗B (σ, π, η1, η2)
8
= sup

σ′m∈ΣME

G′

inf
πm∈ΣMA

G

∫ΣEG×ΣAG×ΣN
G

Φ(evalG(σ, π, η))

d fst(fE#σ′m)×πm×η∗B (σ, π, η)
9
= sup

σm∈ΣME
G

inf
πm∈ΣMA

G

∫ΣEG×ΣAG×ΣN
G

Φ(evalG(σ, π, η))

dσm×πm×η
∗
B (σ, π, η)

10
= sup

σm∈ΣME
G

inf
πm∈ΣMA

G

valG(σm, πm) = valME
G .
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The first equality is the definition of the mixed value of Eve in the game G′ together
with Lemma 3.2.1 on page 35. The following inequality stems from the fact that we limit
the set of Adam’s strategies for which we compute the infimum. The third follows from the
definition of valG′(σ′m, f∗A(πm)). The fourth follows from the integration by substitution and
pushing forward the measure σ′m×f

∗
E(πm). The fifth is a point-wise equality on the values

of the pay-off functions and the sixth is obtained by computing the pushforward measure.
The inequalities numbered seven and eight follow from Fubini’s theorem and Equation (6.9),
respectively. The ninth equality stems from the fact that σ′m ranges over all strategies of Eve
in the new game, thus fst(fE#σ′m) ranges over all strategies of Eve in the old game. The
tenth equality is the definition of valG(σm, πm), and the last one is the definition of the mixed
value of Eve in the game G, again, together with Lemma 3.2.1.

In consequence, from Claim 6.10 and Claim 6.11 we infer that valME
G′ = valME

G .
To conclude the proof, note that the equality valMA

G′ = valMA
G is proven mutatis mutandis

and that the equalities between the behavioural values stem from the simple observation
that both f∗E and f∗A map behavioural strategies to behavioural strategies.

Theorem 6.3.5, the derandomisation theorem, implies immediately three interesting corol-
laries.

Corollary 6.3.10. There exists a polynomial space procedure that inputs a finitary branching
game G = ⟨B,L(A)⟩ with a regular winning set given by an alternating tree automaton and
outputs a finitary non-stochastic {E,A,B}-branching game G′

= ⟨B′,L(C)⟩ with the winning
set given by an alternating tree automaton C such that for every partial value val from the
set {valBA, valMA

, valME
, valBE} we have that valG = valG′.

Proof. This is an immediate consequence of Theorem 6.3.5 and Lemma 6.3.3.

Moreover, if the original game is determined under pure strategies we get the following.

Corollary 6.3.11. There exists a polynomial space procedure that inputs a determined under
pure strategies, finitary branching game G = ⟨B,L(A)⟩ with a regular winning set given by
an alternating tree automaton A and outputs a finitary non-stochastic {E,A,B}-branching
game G′

= ⟨B′,L(C)⟩ with the winning set given by an alternating tree automaton C such
that valEG = valBEG′ .

Proof. Since in branching games that are determined under pure strategies all partial values
coincide, this is an immediate consequence of Corollary 6.3.10.

Last, but not least, there is no algorithm that computes partial non-pure values of a given
regular branching game. Recall that by Theorem 5.3.2, we can compute pure partial values
of non-stochastic games.
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Corollary 6.3.12. For every val ∈ {valBA, valMA
, valME

, valBE}, simple threshold for val
problem of a regular {E,A,B}-branching game is undecidable.

Proof. The corollary follows immediately from Theorem 6.2.1 and Corollary 6.3.10.
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Chapter 7

Game automata winning sets

In this short chapter, we simplify branching games by restricting the power of the automata
defining the winning sets of games. We do that by virtually removing non-determinism from
the structure of the tree automata. This is obtained by the requirement that every transition
is a split and results in an automaton model called game automaton, see Section 2.4 for the
definition. Game automata were introduced by Duparc et al. [15] and studied in e.g. [17].

In this chapter, we show that regular branching games with winning sets given by game
automata are determined under pure strategies and that there is an algorithm that decides
whether pure values of a given game exceed any given threshold.

7.1 Reduction to meta-parity games
When we restrict the winning sets of branching games to those sets which are recognis-
able by game automata, branching games reduce to meta-parity games. For a definition
of meta-parity games in the setting of branching games see Section 3.3.5 on page 40, for the
original definition see e.g. [34].

Theorem 7.1.1. There exists a logarithmic space procedure using a UP∩co-UP oracle that
inputs a finitary branching game G = ⟨B,L(A)⟩ with a regular winning set given by a game
automaton A and outputs a stochastic meta-parity game G

′ such that valEG′ = valEG and
valAG′ = valAG. Moreover, if S ⊆ {E,A,N ,B} and G is S-branching then G

′, as a branching
game, is also S-branching.

Proof. Let B = ⟨V,Γ, sL, sR, ρ, η, λ, vI⟩ and A = ⟨Q,Γ ∪ {♭}, δ, α, qI⟩. We define the new
game as G′

= ⟨B′,Φ⟩, where Φ is the pay-off function used in meta-parity games, see
Section 3.3.5 on page 40, and the new B′ is defined as follows. Intuitively, the board
B′ = ⟨V ′

,Γ′, s′L, s
′
R, ρ

′
, η
′
, λ

′
, v
′
I⟩ is the synchronised product of the old board B and the automa-

tonA. More precisely, the set of new vertices is the set V ′
= V ×Q, the new initial vertex is the
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vertex v′I = ⟨vI, qI⟩, and the alphabet is the set Γ′ = {i, i+1, . . . , j}×{E,A}×{⊤,⊥}×{⊤,⊥}.
Let t♭ be the blank tree, i.e. the tree t♭∶ {L, R}∗ → {♭}, and let fA∶Q→ {⊥,⊤} be the function
defined as

fA(p) = {⊤, if A[qI = p] accepts the tree t♭,
⊥, otherwise

where the automaton A[qI = p] is the automaton A with the initial state replaced by the
state p, i.e. A[qI = p]

def
= ⟨Q,Γ, δ, α, p⟩.

Now, we define the remaining components of B′. If v′ = ⟨v, q⟩ is a vertex of the new
board, then for some qL, qR ∈ Q and ⋄ ∈ {∧,∨} we have that δ(q, λ(v)) = qL ⋄ qR, every
transition of a game automaton is a split, and

• the successor functions satisfy s′L(v′) = ⟨sL(v), qL⟩ and s′R(v′) = ⟨sR(v), qR⟩;
• the ownership of v′ is induced by the ownership in the original game, i.e. ρ′(v′) = ρ(v);
• the labelling is defined as λ′(v′) = ⟨α(q),⋄, fA(qL), fA(qR)⟩.

Since B′ is the synchronised product of B and A, there is a natural continuous bijection
between the strategies in the original game and the new game, i.e. a function f ∶ΣE

B × ΣA
B ×

ΣN
B → ΣE

B′ × ΣA
B′ × ΣN

B′ .
Therefore, to conclude the proof, it is enough to show that for every triple of strategies σ ∈

ΣE
B , π ∈ ΣA

B , η ∈ ΣN
B the resulting tree evalG(σ, π, η) is accepted by the automaton A if and

only if Eve wins the parity game induced by the play evalG′(σ′, π′, η′), where ⟨σ′, π′, η′⟩ =
f(σ, π, η), i.e. that the following equation holds.

χL(A)(evalG(σ, π, η)) = Φ(evalG′(σ′, π′, η′)) (7.1)

Indeed, if Equation (7.1) is true, then by pushing forward the appropriate measures
it is true for every mixed strategy of Nature and the equations

valEG′ = valEG, val
A
G′ = valAG

simply follow.
To prove Equation (7.1), we observe that the game induced by the play evalG′(σ′, π′, η′)

is, essentially, the parity game G(A, evalG(σ, π, η)) with the sub-games G(A[qI = p], t♭)
replaced by the appropriate⊥- or⊤-vertex, for the definition of the acceptance game G(A, t)
see Section 2.4 on page 23.

From the above theorem we infer immediately the following.

Corollary 7.1.2. Let G be a finitary branching game with a regular winning set given
by a game automaton. Then, the game G is determined under pure strategies and simple
threshold for val problem is decidable for every value val ∈ {valBA, valMA

, valME
, valBE}.
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Proof. By Theorem 7.1.1 and Theorem 3.3.5 we obtain the determinacy under pure strate-
gies. In particular, since G is determined under pure strategies all partial values coin-
cide. Moreover, by Theorem 7.1.1 and Remark 4.3.7, we conclude that the values are com-
putable.

Intuitively, when the winning set is recognisable by a game automaton, the game flattens.
That is, the two-phase structure of the game collapses to a single phase. This is especially
evident in the case of non-stochastic games, where the whole game collapses to a parity
game.

Corollary 7.1.3. Let S ⊆ {E,A,B}. There exists a logarithmic space procedure using
a UP∩co-UP oracle that inputs a finitary non-stochastic S-branching game G = ⟨B,L(A)⟩
with a regular winning set given by a game automaton A and outputs a parity game G′ such
that valEG′ = valEG and valAG′ = valAG.

The corollary follows immediately from Theorem 7.1.1 and Remark 5.1.11 on page 175
in [33]. We omit the full proof of the above corollary, more straightforward approach can
be found in [45] where we show a direct reduction.

We conclude this chapter with the following observation. With small alternations to the
definition of meta-parity games we can remove the necessity of the oracles: instead of using
⊥ and ⊤ as plug-ins for the missing children in the play of the resulting meta-parity game,
one could substitute the missing nodes with arbitrary, albeit finitary, parity games.

Such meta-parity games would remain determined under pure strategies and their values
computable.
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Chapter 8

Measures

In this chapter we focus on the problem of computing the uniform measure of a regular
set of infinite trees. This problem is a simplification of the problem of computing game
values: computing the value of a regular {N ,B}-branching game G = ⟨B, L⟩ can be seen
as computing the value η∗B (L), for the definition of η∗B see Equation (3.3) on page 33.

We show that for a regular set of full binary trees its uniform measure is rational and
computable if the set is defined by a first-order formula not using descendant relation or if it is
defined by a Boolean combination of conjunctive queries.

8.1 Computing measure and simple examples
When computing the value, e.g. Eve’s pure value or Adam’s mixed value, of a stochastic
branching game, it is not hard to see that we can distinguish two separate sub-problems.
The first one is to find a strategy that realises (or approximates) the optimal, in a predefined
notion, value of the game. The second sub-problem is to compute (or, again, approximate)
the value of the play which is the result of that strategy. When the strategies σm, πm are
specified, the formula defining the values interprets the strategies as a measure over the set
of plays and computes the expected value of the pay-off function Φ with the respect to this
measure.

valG(σm, πm) = ∫
ΣEB ,ΣAB ,ΣN

B

Φ(evalG(σ, π, η)) dσm(σ) dπm(π) dη∗B (η)

If the pay-off function Φ is defined as a set of winning plays, i.e. Φ = χL, this translates
to computing the measure of the winning set with respect to this specific measure.

valG(σm, πm) = evalG#σm×πm×η
∗
B (L)

In this chapter we will focus on the problem of computing the measure of a winning set
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which can be expressed by the following question.

Question 8.1.1. Let L be a set of trees given by a computable description, what is the
measure of that set?

While the above question does not specify the measurable space in which we compute
the measures, even the basic measures, e.g. a uniform measure, pose a challenge.

A uniform (or standard) measure µ∗ defined on the set of full trees T ∞
Γ is the probability

measure satisfying that for every finite tree t ∈ TΓ we have that µ∗(Bt) = ∣Γ∣−∣nodes(t)∣.
In other words, this measure is such that for every node u ∈ {L, R}∗ and a label a ∈ Γ the
probability that in a random tree t the node u is labelled with the letter a is 1

∣Γ∣ .
The following problem of computing the uniform measure of a regular set of infinite trees

is unsolved.

Problem 8.1.2 (open). Does there exists an algorithm that given a non-deterministic tree
automaton A computes µ∗(L(A))?

To better understand the properties of this special measure let us consider some simple
sets of infinite trees. The presented examples not only give an insight into the behaviour
of the uniform measures, but can, and will be, used in the proofs of the theorems given
in this chapter.

Lemma 8.1.3. Let t be a binary tree over the alphabet Γ and u ∈ {L, R}∗ be a position.

1. If t is finite and L = Bt,u
def
= {t′ ∈ T ∞

Γ ∣ t⊑t′▵u} then µ∗(L) = Γ−∣nodes(t)∣.

2. If t is finite and L = {t′ ∈ T ∞
Γ ∣ ∃v.(u ⋤ v) ∧ (t ⊑ t′▵v)} then µ∗(L) = 1.

3. If t is infinite and L = Bt,u = {t′ ∈ T ∞
Γ ∣ t⊑t′▵v} then µ∗(L) = 0.

Proof. The proof of Item 1 is straightforward. To prove Item 2, let Li be the language
Li

def
= Bt,uLiR = {t′ ∈ T ∞

Γ ∣ t⊑t′▵(uL
i
R)}. Then, for every j ≥ 0 we have that Lj ⊆ L and,

in consequence, L ⊆ ⋂j≥0 Lj. Hence, for every j ≥ 0 we have that

1 − µ∗(L) = µ∗(L) ≤ µ∗(⋂
j>i≥0

Li) = (1 − ∣Γ∣−∣nodes(t)∣)j,

where the last inequality follows from the fact that the nodes uL
l
R and uL

k
R are incomparable

for k /= l, thus Li are independent and

µ
∗(⋂
j>i≥0

Li) = ∏
0≤i<j

µ
∗(Li) = ∏

0≤i<j
(1 − ∣Γ∣−∣nodes(t)∣) = (1 − ∣Γ∣−∣nodes(t)∣)j.

Taking the limit, we conclude Item 2.
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To prove Item 3 let ti be a sequence of finite trees such that for every i ≥ 0 we have
that ti ⊑ ti+1 ⊑ t and ∣nodes(ti)∣ < ∣nodes(ti+1)∣. Since the sequence of sets Bti,u is decreas-
ing and its limit contains the set Bt,u, i.e. Bti,u ⊇ Bti+1,u ⊇ Bt,u, we have that µ∗(Bt,u) ≤
lim
i→+∞

µ
∗(Bti,u) = lim

i→+∞
∣Γ∣−∣nodes(ti)∣

= 0.

The above examples may suggest that the uniform measures enjoy a form of Kolmogorov’s
zero-one law: e.g. in a random tree a given finite structure exists with probability 1, whereas
a given infinite structure exists with probability 0. It is not exactly the case, as can be seen
by the following examples.

Example 8.1.4. Let Γ = {a, b, c}.

1. If La is the set of trees over the alphabet Γ with arbitrarily long sequences of a-labelled
nodes, i.e. La = {t ∈ T ∞

Γ ∣ ∀k ≥ 0. ∃w, v ∈ {L, R}∗.( (∣v∣ ≥ k)∧∀ u ⊑ v. t(wu) = a)},
then µ∗(La) = 1.

2. If La3 is the language of trees over the alphabet Γ with an infinite {a}-labelled path
starting at root, i.e. La3 = {t ∈ T ∞

Γ ∣ ∃w ∈ {L, R}ω.∀u ⋤ w. t(u) = a}, then
µ
∗(La3) = 0.

3. If La2 is the language of trees over the alphabet {a, b} with an infinite {a}-labelled path
starting at root, i.e. La2 = {t ∈ T ∞

{a,b} ∣ ∃w ∈ {L, R}ω.∀u ⋤ w. t(u) = a}, then
µ
∗(La2) = 0.

4. If Lab is the language of trees over the alphabet Γ with an infinite {a, b}-labelled path
starting at root, i.e. Lab = {t ∈ T ∞

Γ ∣ ∃w ∈ {L, R}ω.∀u ⋤ w. t(u) ∈ {a, b}}, then
µ
∗(Lab) = 1

2 .

Calculating the measures. To see Item 1, let ti be a complete tree of height i such that every
node in nodes(ti) is labelled a and let Li be the language of trees having t

i as a prefix
of its sub-tree at some node u. Then, by Lemma 8.1.3 part 2 we have that µ∗(Li) = 1.
Moreover, ⋂i≥1 L

i
⊆ La and Li+1

⊆ L
i. Since any measure is monotonically continuous, we

have that
µ
∗(La) ≥ µ∗(⋂

i≥1
L
i) = lim

n→+∞
µ
∗( ⋂

n≥i≥1
L
i) = 1.

Let φ(t) stay for “in the tree t there is an infinite {a}-labelled path starting at root” then
Item 2 follows from the fact that the language in question is regular, thus measurable, and
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its measure satisfies the following equation.1

µ
∗(La3) = µ∗(ϕ(t) ∧ t(ε)/=a)+

µ
∗(t(ε)=a) ⋅ (µ∗(φ(t▵L)) + µ∗(φ(t▵R)) − µ∗(φ(t▵L) ∧ φ(t▵R)))

The equation states that the measure of La3 is equal to the sum of the measures of two sets
of trees. The first set consists of all trees t such that the root is not labelled a and the tree
t satisfies φ. The second set consist of all trees t such that the root is labelled a, the sub-tree
at the left child of the root satisfies φ, i.e. φ(t▵L), or the sub-tree at the right child of the
root satisfies φ, i.e. φ(t▵R).

Since the set of all possible trees at left child (or, at right child) of the root is the set
of all trees, we get the equation

µ
∗(La3) =

1
3 ⋅ (2µ

∗(La3) − µ∗(La3)2) = 2
3µ

∗(La3) −
1
3 ⋅ µ

∗(La3)2

implying that µ∗(La3) = 0 or µ∗(La3) = −1. Since the measure cannot be negative, we con-
clude that µ∗(La3) = 0.

Similarly, in Item 3 we get the equation

µ
∗(La2) =

1
2 ⋅ (2µ

∗(La2) − µ∗(La2)2) = µ∗(La2) −
1
2 ⋅ µ

∗(La2)2 (8.1)

implying that µ∗(La2) = 0.
In Item 4, we get the equation

µ
∗(Lab) =

2
3 ⋅ (2µ

∗(Lab) − µ∗(Lab)2) = 4
3µ

∗(Lab) −
2
3 ⋅ µ

∗(Lab)2 (8.2)

implying that either µ∗(Lab) = 1
2 or µ∗(Lab) = 0. Thus we need to look at this example

a bit more carefully. Consider a sequence of languages {Ai}i≥0, where A
0
= T ∞

Γ and Ai is the
language such that there is an {a, b}-labelled path of length i beginning at the root. Then,
we claim the following.

Claim 8.1.5. ⋂i≥1A
i
= Lab

Proof. Since an infinite path contains sub-paths of arbitrary length, we have that ⋂i≥1A
i
⊇

Lab. For the reverse inclusion, let t ∈ ⋂i≥1A
i. Then, for every i ≥ 0 the tree t has

an {a, b}-labelled path of length i. Since t is a binary tree, König’s lemma assures that the
tree t has an infinite {a, b}-labelled path. This concludes the proof of the claim.

1Here, we slightly abuse the notation for the sake of readability. We write µ∗(ψ) instead of µ∗({t ∈ T ∞
Γ ∣

ψ}).
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Now, for every i ≥ 0 we have that Ai+1
⊆ A

i and

µ
∗(Ai+1) = 2

3 ⋅ (2µ
∗(Ai) − µ∗(Ai)2) = 4

3µ
∗(Ai) − 2

3 ⋅ µ
∗(Ai)2

. (8.3)

Now, note that if µ∗(Ai) ≥ 1
2 , then µ

∗(Ai+1) ≥ 1
2 . Indeed, the quadratic function f(x) =

2
3(2x − x

2) is monotonically increasing on the interval [−∞, 1] and we have that f(1) = 2
3

and f(1
2) =

1
2 . Since µ

∗(A0) = 1 ≥ 1
2 , we conclude that µ∗(Lab) = 1

2 .

8.2 First-order definable languages and their standard
measures

The ideas presented in both Lemma 8.1.3 and Example 8.1.4 allow us to compute the mea-
sures of sets of full trees defined by some first-order formulae.

Theorem 8.2.1. Let ϕ be a first-order sentence over the signature Γ ∪ {ε, sL, sR, s}. Then
the measure µ∗(L(ϕ)) is rational and computable in three-fold exponential space.

The proof utilises the Gaifman locality, see Section 2.5 for definitions, to partition the
formula into two separate sub-formulae. Intuitively, one sub-formulae describes the neigh-
bourhood of the root while the other one describes the tree “far away from the root”.

Before we proceed, let us note that in this section we disallow the use of the ⋤ relation
in formulae. Hence, the Gaifman graf of a tree t is induced by the child relations only, and
so is the notion of distance in that tree. For the definition of the distance in a tree see
Section 2.1 on page 17, for the definition of the Gaifman graph see Section 2.5.

Now we define the idea of a root formula, i.e. a formula that necessarily describes
the neighbourhood of the root. Let ψ(x) be an r-local formula around x. We say that
ψ(x) is a root formula if for every tree t ∈ T ∞

Γ and every position u ∈ {L, R}∗ if t, u ⊧ ψ(x)
then d(u, ε) < r. Note that every unsatisfiable formula is, by the definition, a root formula.

Let ϕ be a basic r-local sentence, i.e. of the form

ϕ
def
= ∃x1, . . . , xn (

n

⋀
i=1

ϕ
r
i (xi) ∧ ⋀

1≤i<j≤n
d(xi, xj) > 2r) , (8.4)

where ϕri are r-local and d(xi, xj) > 2r is a first-order formula stating that xi and xj are
at a distance strictly greater than 2r. We say that ϕri , for i ∈ {1, . . . , n}, is a root formula
of ϕ if it is a root formula.

Fact 8.2.2. For every satisfiable basic r-local sentence there is at most one root formula.
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In other words, only one of ϕri s can describe the r-neighbourhood of the root. As, if two
such formulas ϕri , ϕ

r
j would be root formulae, then the variables xi and xj would be mapped

in a distance at most r−1 from the root, i.e. in a distance strictly smaller than 2r from each
other.

Note that, by the definition of satisfiability, for a tree t ∈ TΓ and a basic r-local sentence
ϕ we have that t ⊧ ϕ if and only if there is a function τ ∶ {x1, . . . , xn} → {L, R}∗ mapping
variables x1, . . . , xn to positions so that for every i ∈ {1, . . . , n} we have that t, τ(xi) ⊧ ϕi(xi)
and for every pair of indices i /= j we have that d(τ(xi), τ(xj)) > 2r.

Lemma 8.2.3. Let ϕ be a basic r-local sentence, i.e. as in Equation (8.4). If ϕ is

• not satisfiable, then µ∗(L(ϕ)) = 0,
• satisfiable and has no root formula, then µ∗(L(ϕ)) = 1,
• satisfiable and has a root formula ϕ∗,

then for every tr that is a complete tree of height 2r+1 we have that

µ
∗(L(ϕ) ∩ Btr) = {µ

∗(Btr) if ∃u ∈ {L, R}≤r. tr, u ⊧ ϕ∗(x);
0 otherwise.

Proof. If ϕ is not satisfiable then L(ϕ) = ∅ and µ
∗(L(ϕ)) = 0. Therefore, let us assume

that ϕ is satisfiable. By Fact 8.2.2 we know that there is at most one root formula in ϕ.
Let I be the set of indices of not root formulae, i.e. for i ∈ I we have that ϕi is not a root
formula. Since ϕ is satisfiable, for every i ∈ I there are a finite tree ti ∈ TΓ and a node
ui ∈ {L, R}∗ of length ∣ui∣ > r, such that ti, ui ⊧ ϕi(x), and the set nodes(ti) contains the
r-neighbourhood of ui.

LetW = {vi}ni=1 be a set of n ⊑-incomparable nodes such that for i ∈ I we have that ∣vi∣ >
2r. Let F = ⋂i∈I Li where Li is the set of trees for which ti is a prefix of a sub-tree at some
node below vi, i.e. Li

def
= {t′ ∈ T ∞

Γ ∣ ∃u.(vi ⋤ u) ∧ (ti ⊑ t
′▵u)}. By Lemma 8.1.3 every Li

has measure 1, thus we have that µ∗(F ) = 1. Moreover, for every tree t ∈ F and index i ∈ I
there is a node v′i ∈ {L, R}∗ such that d(vi, v′i) > r, vi ⊑ v′i and t, v′i ⊧ ϕi(x).

Now, if there is no root formula in ϕ, i.e. I = {1 . . . , n}, then F ⊆ L(ϕ). Indeed, let
t ∈ F , then for i /= j we have that d(v′i, v′j) > 2r and we can infer that t ⊧ ϕ. Hence, the
sequence of inequalities

1 = µ∗(F ) ≤ µ∗(L(ϕ)) ≤ 1

is sound and proves the second bullet of Lemma 8.2.3.
On the other hand, let there be a root formula in ϕ. Without loss of generality, ϕ1 is the

root formula and I = {2, . . . , n}. Moreover, let F and v′is be as before, let tr be a complete
tree of height 2r+1, as stated in the lemma, and t ∈ F ∩ Btr be a full binary tree. If there
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is u1 ∈ {L, R}≤r such that tr, u1 ⊧ ϕ
∗(x), then we take v′1

def
= u1. Now, again, for i /= j we have

that d(v′i, v′j) > 2r and for all i ∈ I we have that t, v′i ⊧ ϕi(xi). In other words, if there
is u1 ∈ {L, R}≤r such that tr, u1 ⊧ ϕ

∗(x) then F ∩ Btr ⊆ L(ϕ) ∩ Btr . Moreover, since F
is of measure 1, the following sequence of inequalities is sound

µ
∗(Btr) = µ∗(F ∩ Btr) ≤ µ∗(L(ϕ) ∩ Btr) ≤ µ∗(Btr).

Furthermore, if there is no such u1 then ϕ1 is not satisfiable in t
r. Since ϕ1 is a root

formula, we have that µ∗(L(ϕ) ∩ Btr) = 0, which concludes the proof.

Intuitively, the above lemma states that, when we consider the uniform measure and
a basic r-local sentence, the behaviour of the sentence is almost surely defined by the neigh-
bourhood of the root. This intuition can be formalised as follows.

Lemma 8.2.4. Let ϕ be a basic r-local sentence. Then there is a sentence ϕ∗ such that for
every complete tree tr of height 2r + 1 we have that

µ
∗(L(ϕ) ∩ Btr) = µ∗(L(ϕ∗) ∩ Btr).

Moreover, for every full tree t ∈ Btr we have that t ⊧ ϕ∗ if and only if tr ⊧ ϕ∗.

Proof. If ϕ has a root formula ϕi, then we take ϕ∗ def
= ∃x.ϕi(x)∧d(x, ε) < r. If ϕ has no root

formulae, but is satisfiable then we take ϕ∗ def
= ∃x.ε(x). Otherwise, we take ϕ∗ def

= ⊥.

The formula ϕ∗ is called the reduction of ϕ. Before we show how to compute the reduction
of a basic r-local formula, we recall a known result.

Lemma 8.2.5 (Folklore). There is an algorithm that given a first-order formula ϕ and
a finite tree t decides whether t ⊧ ϕ in space polynomial with respect to the size of the
formula ϕ and with respect to the size of the set of nodes of the tree t.

Proof. The lemma is folklore; the property can be easily verified using an APTIME algo-
rithm.

Now we show how to compute the reduction.

Lemma 8.2.6. Given a basic r-local sentence ϕ one can compute its reduction ϕ∗ in space
polynomial in the size of the formula and doubly exponential in the unary encoding of r.

Proof. An r-local formula ψ(x) is satisfiable in some full binary tree if, and only if, it is sat-
isfiable in a node u of some tree of height 2r + 1, such that ∣u∣ < r + 1. Thus, to check the
satisfiability of any formula ϕi, we need to check the trees of height at most 2r + 1.
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Moreover, to check whether ϕi is a root formula, we need to check whether ϕi is satisfiable
and the formula ϕi(x)∧depth≥r(x), where depth≥r(x) stands for a first-order formula stating
that x is at depth r + 1, is not satisfied in any full binary tree. This, again, can be check
by iterating all trees of height at most 2r + 3.

Thus, the reduction of ϕ can be computed by the algorithm computeReduction pre-
sented in Algorithm 1. The complexity follows from Lemma 8.2.5.

Algorithm 1 computeReduction
Require: a first-order formula ϕ in Gaifman normal form
ψ = ⊤
S ← {i ∣ ϕi is not satisfiable}
if ∣S∣ > 0 then
return ψ

end if
S ← {i ∣ ϕi is a root formula}
if ∣S∣ = 0 then
ψ ← ∃x. ε(x)

else if ∣S∣ = 1 then
ψ ← ∃x.ϕi(x) ∧ d(x, ε) < r

else
ψ ← ⊥

end if
return ψ

Lemma 8.2.4 can be extended to Boolean combinations of r-local basic formulae by the
following property of measurable sets.

Lemma 8.2.7. Let M be a measurable space with measure µ, W be a measurable set and
{Si}i∈I be a family of measurable sets such that for every i ∈ I either µ(W ∩ Si) = 0
or µ(W ∩ Si) = µ(W ). Then, for every set S in the Boolean algebra of sets generated
by {Si}i∈I , we have that either µ(W ∩ S) = 0 or µ(W ∩ S) = µ(W ).

Proof. The proof goes by a standard inductive argument.

Hence, by Lemma 8.2.3 and the above lemma, we obtain the following.

Lemma 8.2.8. Let φ be a Boolean combination of basic r-local formulae and t be a complete
tree of height 2r+1. Then, µ∗(L(φ) ∩ Bt) = µ

∗(L(φ∗) ∩ Bt), where φ∗ is the reduction
of φ, i.e. the Boolean combination φ with its every basic r-local sentence ϕ replaced by its
reduction ϕ∗.

Moreover, µ∗(L(φ∗) ∩ Bt) = {µ
∗(Bt) if t ⊧ φ∗;

0 otherwise
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Proof. For every complete tree tr of height r we use Lemma 8.2.7 with M being the set
of full trees T ∞

Γ , µ being the uniform measure µ∗, and W being the set Btr . The sets Si are
the sets of trees defined by the basic r-local formulae and S = L(φ). By Lemma 8.2.4, the
assumptions of Lemma 8.2.7 are satisfied.

With the above lemmas, we can finally prove Theorem 8.2.1.

Proof of Theorem 8.2.1. Let ϕ be a first-order sentence as in the theorem. We utilise the
Gaifman locality theorem (see Theorem 2.5.2 on page 26) to translate the sentence ϕ into
a Boolean combination φ of basic r-local sentences. Now, let φ∗ be the reduction of φ,
as in Lemma 8.2.8, and let S ⊆ TΓ be the set of all complete trees of height h = 2r+1. Then,

µ
∗(L(φ)) 1

= µ
∗(L(φ) ∩ (⋃t∈S Bt))

2
= µ

∗(⋃t∈S (L(φ) ∩ Bt))
3
= ∑t∈S µ

∗(L(φ) ∩ Bt)
4
= ∑t∈S µ

∗(L(φ∗) ∩ Bt)
5
= ∑t∈S∧t⊧φ∗ µ

∗(Bt)
6
= ∣{t ∈ S ∣ t ⊧ φ∗}∣ ⋅ 1

∣Γ∣2h+1−1 .

The first equation follows from the fact that {Bt ∣ t ∈ S} is a partition of the space. The
second from operations on sets and the third is a simple property of measures. The fourth
follows from the first part of Lemma 8.2.8, while the fifth follows from the second part of this
lemma. The last equation is a consequence of the fact that µ∗(Bt) = ∣Γ∣−∣dom(t)∣.

Since µ∗(L(φ)) = ∣{t∈S∣t⊧ψ}∣
∣Γ∣2h+1−1 , it is enough to count how many complete trees of height

h = 2r+1 satisfy the reduction of φ. The pseudo-code of the algorithm, called compute-
MeasureFO, is presented in Algorithm 2.

The complexity upper bound comes from the fact that translating a first-order formula
ϕ into its Gaifman normal form can be done in three-fold exponential time and can produce
a three-fold exponential formula φ in result, see [13] for details. The resulting formula φ
is a Boolean combination of basic formulae, thus, we can compute its reduction in three-fold
exponential space. The function computeReduction∗ computes the reduction φ∗ of the
Boolean combinations by replacing the formulae used in the Boolean combination with their
reductions. This can be done in the required complexity, see Lemma 8.2.6 and note that
the size of the formula dominates the constant r. Finally, the last part of the algorithm
requires us to check the formula φ∗ against three-fold exponential number of trees of size that
is two-fold exponential in the size of the original formula. Since model checking of a first-order
formula can be done in polynomial space with respect to the size of the tree and to the size
of the formula, see Lemma 8.2.5, we get the upper bound.
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Algorithm 2 computeMeasureFO
Require: a first-order formula ϕ and a positive number h
S ← the set of all complete trees of height h
φ← computeGaifmanForm(ϕ)
φ← computeReduction∗(φ)
S ← {t ∈ S ∣ t ⊧ φ}
return ∣S∣ ⋅ ∣Γ∣−2h+1+1

8.3 First-order definable languages with descendant
The technique used to prove Theorem 8.2.1 cannot be extended to formulae utilising the
descendant relation because when we allow the descendant relation, the diameter of the
Gaifman graph of any tree is at most two. Additionally, as presented in Proposition 8.3.1
below, sets of full trees defined by such formulae can have irrational measures.

Proposition 8.3.1. There is a set L of full binary trees over an alphabet Γ such that
L is definable by a first-order formula over the signature Γ ∪ {sL, sR,⋤} and the standard
measure of L is irrational.

Proof. Let Γ = {a, b}, we define a language L in the following way L def
= {t ∈ T ∞

{a,b} ∣ for every
path the earliest node labelled b (if exists) is at an even depth}. Now, the measure µ∗(L)
is irrational, and there is a language L′ definable by a first-order formula over the signature
Γ ∪ {sL, sR,⋤} such that µ∗(L′) = µ

∗(L). We start by computing the measure of L, then
we will define L′.

Observe that the measure µ∗(L) satisfies the following equation.

µ
∗(L) = µ∗({t ∈ T ∞

{a,b} ∣ t(ε)=b}) + µ∗({t ∈ T ∞
{a,b} ∣ t(ε)=t(L)=t(R)=a}) ⋅ µ∗(L)4

After substituting the appropriate values, we obtain the equation

µ
∗(L) = 1

2 +
1
8µ

∗(L)4 (8.5)

which, by the rational root theorem, see e.g. [7] page 116, has no rational solutions.
To conclude the proof, we will describe how to define the language L′. The crux of the

construction comes from the beautiful example by Potthoff, see [44, Lemma 5.1.8]. We will
use the following interpretation of the lemma: one can define in first-order logic over the
signature {a, b, sL, sR,⋤} a language of finite trees over the alphabet {a, b} where every node
labelled a has exactly two children and every node labelled b is a leaf on an even depth.

To construct L′ we simply utilise the formula defining the language in the Potthoff’s
example to define L′ by substituting the formula describing a leaf with the formula describing
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a first occurrence of the label b on a path: ϕleaf(x)
def
= b(x) ∧ ∀y. (y⊑x)⟹ a(y). Note

that the set L′ agrees with L on every tree that has a label b on every infinite path from
the root. On the other hand, the truth value of the modified formula on the trees that have
an infinite path from the root with no nodes labelled b, i.e. on the set La2 from Example 8.1.4,
is of no concern to us. Indeed, as previously shown, the standard measure of the set La2 is 0.

To be precise, for every tree t ∈ T ∞
{a,b} \ La2 we have that t ∈ L ⟺ t ∈ L

′, where
La2 is the language from Example 8.1.4. Therefore, we have that L ∪ La2 = L

′ ∪ La2. Since
µ
∗(La2) = 0, we have that

µ
∗(L) = µ∗(L ∪ La2) = µ∗(L′ ∪ La2) = µ∗(L′),

which concludes the proof.

8.4 Conjunctives queries and standard measure
As shown in Proposition 8.3.1 allowing the descendant relation in first-order formulae permits
irrational values of measures. Nevertheless, we can recover rational values and computability
when we restrict the formulae to the positive existential formulae using only atomic formulae
and conjunction, i.e. to the conjunctive queries. For a definition of conjunctive queries
see Section 2.5.

Note that introducing the ancestor/descendant relation to the tree structure causes that
every two nodes in the Gaifman graph are in distance at most two from each other. Thus,
for the purpose of having a relevant definition of the distance in the tree, we retain the child
related notion of distance, i.e. in this section, as before, the notion of the distance is induced
by the child relations only.

Theorem 8.4.1. Let q be a conjunctive query over the signature Γ∪ {ε, sL, sR, s,⋤}. Then,
the standard measure of the language L(q) is rational and computable in exponential space.

To prove the theorem we will modify the concept of firm sub-patterns, used e.g. in [40].
Intuitively, a firm sub-pattern is a maximal part of a conjunctive query that has to be mapped
in a tree in a small neighbourhood. To recall the notion of a pattern see Section 2.5, page 26.

A sub-pattern π′ is firm if it is a sub-pattern of a pattern π induced by vertices belonging
to a maximal strongly connected component in the graph Gπ = ⟨V,E⟩ such that ⟨x, y⟩ ∈ E
if either xsLy, ysLx, xsRy, ysRx, xsy, ysx, x⋤y, or ε(x). In particular, a pattern is firm if it has
a single strongly connected component. We say that a sub-pattern is rooted if it contains
the predicate ε.

Proposition 8.4.2. Let π = ⟨V, Vε, EL, ER, Es, E⋤, λπ⟩ be a firm pattern. Then, for every
tree t such that t ⊧ π, for every two vertices x, y in V , and for every homomorphism h∶π → t
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Figure 8.2 – A possible placement of nodes in the proof of Proposition 8.4.2.

we have that d(h(x), h(y)) < ∣π∣. Moreover, if π is rooted then for every vertex x we have
that d(h(x), ε) < ∣π∣.

Proof. Let us assume otherwise, let n = ∣π∣. Then, there is a tree t, a homomorphism h,
and two vertices x, y such that t ⊧ π and d(h(x), h(y)) ≥ n. We claim that x and y cannot
be in the same strongly connected component.

Since for some m we have that d(h(x), h(y)) = m− 1 ≥ n, there is a sequence of distinct
nodes u1, u2, . . . um such that u1 = h(x), um = h(y) and for every i, ui and ui+1 are in a child
relation, i.e. s(ui, ui+1) or s(ui+1, ui). Moreover, there is a node u such that u = ui for some
1 ≤ i ≤ m, u ∉ h(π), and one of the nodes h(x) or h(y) is a descendant of u, i.e. u ⋤ h(x)
or u ⋤ h(y). Without loss of generality, let us say that u ⋤ h(y). Or, more precisely, that
uL ⊑ h(y).

If x and y were in the same strongly connected component then there would be a path
in the graph Gπ that connects y to x, i.e. a sequence of vertices y1, y2, . . . , yk, for some
k, such that y1 = y, yk = x, and for every i = 1, . . . , k − 1 there is an edge between yi
and yi+1 in Gπ. In particular, this would imply that for every i we have that h(yi) and
h(yi+1) are ⊑-comparable. Now, there would also exist an index j ∈ {1, . . . , k− 1} such that
h(yj+1) ⋤ u ⋤ h(yj). Indeed, if there would be no such index, then all the vertices yi would
satisfy uL ⊑ h(yi), as yi and yi+1 are ⊑-comparable for every index i. But this is impossible
because if uL ⊑ h(yi) for all i, then we would have that uL ⊑ h(yk) = h(x). Now, since
uL ⊑ h(y) and uL ⊑ h(x), then, by the definition of the distance, u would not belong to the
sequence u1, . . . , um. Which is a contradiction with our assumption.
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Therefore, there is an index j such that h(yj+1) ⋤ u ⋤ h(yj). Thus, by the definition
of Gπ we have that either yjsLyj+1, yj+1sLyj, yjsRyj+1, yj+1sRyj, yjsyj+1, yj+1syj, yj⋤yj+1, or
ε(yj). Neither of child relations is possible because the distance between h(yj) and h(yj+1)
is at least two. Similarly, both yj⋤yj+1 and ε(yj) are impossible because we have that
u ⋤ h(yj). Hence, there is no such sequence y1, . . . yk, thus x and y cannot belong to the
same strongly connected component. This proves the first part of the lemma.

Now, if π is rooted then there is a vertex y such that for every homomorphism h we have
that h(y) = ε. Hence, by the first part of the lemma, for all vertices x ∈ π we have that
d(h(x), ε) = d(h(x), h(y)) < n.

Graph of firm sub-patterns Let q be a conjunctive query. Consider a graph GF
q = ⟨V,E⟩

where V is the set of firm sub-patterns of q and there is and edge ⟨v1, v2⟩ ∈ E ⊆ V × V

between two vertices v1, v2 if and only if there is an ⋤ labelled edge between some two vertices
w1 ∈ v1, w2 ∈ v2. We call this graph the graph of firm sub-patterns of the conjunctive query q.

Proposition 8.4.3. The directed graph G
F
q of firm sub-patterns of a conjunctive query q

is acyclic and has at most one rooted firm sub-pattern. We call that sub-pattern the root
sub-pattern.

Proof. By the definition of the firm sub-patterns, every node with the predicate ε ends
up in the same maximal strongly connected component. The acyclicity follows directly from
the fact that firm sub-patterns are the maximal strongly connected components.

As in the case of root formulae, the root pattern decides of the behaviour of a satisfiable
conjunctive query, as expressed by the following lemma.

Lemma 8.4.4. Let q be a conjunctive query over the signature {a, b, ε, sL, sR, s,⋤}. Then,
either

• q is not satisfiable and µ∗(L(q)) = 0,

• q is satisfiable, has no root sub-pattern, and µ∗(L(q)) = 1,

• or q is satisfiable, has a root sub-pattern p, and µ∗(L(q)) = µ∗(L(p)).

Proof. If q is not satisfiable then L(q) = ∅ and so µ
∗(L(q)) = 0. Let q be satisfiable,

i.e. there is a tree tq and a homomorphism h∶Gq → t
q. Let tr be a finite tree such that

h(Gq) ⊆ nodes(tr) and let the set S ⊆ T ∞
Γ be the set of all trees t such that for every node

u ∈ {L, R}∣q∣+1 the tree tr is a prefix of t▵u. By Lemma 8.1.3, we have that µ∗(S) = 1.
If q has no root firm sub-pattern, then S ⊆ L(q) and we have that

µ
∗(L(q)) ≥ µ∗(S) = 1.

96



On the other hand, if q has a root sub-pattern p then for every tree t ∈ S we have that
t ⊧ q if and only if t ⊧ p. Thus, L(q) ∩ S = L(p) ∩ S and since µ∗(S) = 1, we have that

µ
∗(q) = µ∗(L(q) ∩ S) = µ∗(L(p) ∩ S) = µ∗(p).

In other words, the problem of computing the uniform measure of a set of full binary
trees defined by a conjunctive query reduces to the following problem of counting the models
of a fixed height, see page 16.

Problem 8.4.5 (Conjunctive queries counting).

Input: A conjunctive query q and a natural number n.
Output: Number of complete binary trees of height n that satisfy q.

Proposition 8.4.6. Problem 8.4.5 can be solved in space exponential in the unary encoding
of n and polynomial in the size of the query.

Proof. All we need is to enumerate all the binary trees of height n and check whether they
satisfy the query. The number of such trees is exponential in the unary encoding of n and
the model checking can be done in polynomial space with respect to both the query and the
size of the tree, see Lemma 8.2.5.

We infer Theorem 8.4.1 as an immediate consequence.

Proof of Theorem 8.4.1. In polynomial space we can check whether the query is satisfiable,
see e.g. [3], and in polynomial time compute its root sub-pattern: it is folklore that one can
compute all strongly connected components of a directed graph in polynomial time.

Now, by Lemma 8.4.4, if the query is not satisfiable then the measure is 0; if it is satisfi-
able, but there is no root sub-pattern then the measure is 1. Thus, the only case left is when
the query is satisfiable and has a root sub-pattern q′.

If it is the case, then µ∗(L(q)) = µ∗(L(q′)). Since q′ is a root pattern, then by Proposi-
tion 8.4.2 for any tree t, any homomorphism h∶ q′ → t, and any vertex v of the query we have
that ∣h(v)∣ < ∣q′∣. Thus, for any full binary tree t ∈ T ∞

Γ to decide whether t ⊧ q′ we only
need to check the prefix of t that is of height ∣q′∣.

Since the sets Bt′ , where t
′ ranges over complete trees of height ∣q′∣, form a partition

of T ∞
Γ , to compute µ∗(L(q′)) it is enough to iterate over all such trees and compute how

many of them satisfy q′.
Since every complete tree of height ∣q′∣ is of exponential size with respect to q′ and they

can be iterated in exponential space, we infer that the measure µ∗(L(q′)) can be computed
in exponential space. This concludes the proof.
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As in the case of first-order formulae, we can lift Theorem 8.4.1 to Boolean combinations
of conjunctive queries.

Corollary 8.4.7. Let ϕ be a Boolean combination of conjunctive queries. Then, the standard
measure µ∗(L(ϕ)) is rational and can be computed in exponential space.

Proof. This is an immediate consequence of Lemma 8.2.7 and Theorem 8.4.1.
Indeed, by Lemma 8.2.7 and Theorem 8.4.1, patterns in ϕ can be replaced by their

root patterns without the change of measure, or by the query ∃x. a(x) ∧ b(x) if they are
unsatisfiable. The rest of the reasoning follows as in the proof of Theorem 8.4.1.

We conclude this chapter with a lower bound. We show that deciding whether the
standard measure of a Boolean combination of conjunctive queries is positive is intractable,
as expressed in the following theorem.

Theorem 8.4.8. Let ϕ be a Boolean combination of conjunctive queries. Then, deciding
whether µ∗(L(ϕ)) > 0 is NEXP-complete.

Proof. The upper bound is an immediate consequence of Lemma 8.2.7 and Theorem 8.4.1.
Again, by Lemma 8.2.7 and Theorem 8.4.1, patterns in ϕ can be replaced by their root

patterns without the change of the measure.
Now, to prove that the measure is positive, we only need to find a complete tree t

of height ∣π∣ that satisfies the new combination of queries. Such a tree is of size exponential
in the size of the original combination of queries and can be easily verified in non-deterministic
exponential time: simply guess the homomorphism.

For the lower bound, we refer to the proof of Theorem 3 in Murlak et al. [40], the
case of non-recursive schemas: it is shown there that verifying if a tree t as above exists
is NEXP-hard (the proof is given in a slightly different set-up but can be easily adapted
to our needs).

98



Chapter 9

Plantation game

One of the crucial directions of research, and science in general, is application of the theo-
retical models to the problems existing in nature. In this chapter, we will present the re-
sults of our cooperation with the Institut Agronomique néo-Calédonien, who kindly provided
us with data concerning seven years of functioning of an experimental fruit farm situated
in Pocqereux near La Foa, New Caledonia.

The main purpose of this chapter in not to find a perfect model emulating an ecosystem
of a fruit farm situated in a tropical zone nor to use the rich theory of branching games, but
to present a viable and verifiable way to use discrete stochastic game-based models in real-life
applications.

Hence, we feel inclined to issue two comments. Firstly, due to not using the theory
of branching games, we have made an effort to make this chapter self-contained. Neverthe-
less, while we do not use branching games explicitly, we use a form of Gale-Stewart games,
or games on graphs, in our approach. Thus, the introductory chapters can be used as a refer-
ence when searching for definitions and occasional references to previous chapters are present
in the text. Secondly, we are aware of the fact that many crucial improvements can be made.
Thus, the state of the work described in this chapter should be considered a work in progress.

Finally, we would like to point out that, though we do not use branching games as the
game of choice in this chapter, the proof of Theorem 6.2.1 suggests that the Markov decision
processes, that are used in this chapter, can be encoded as branching games.

9.1 Data overview, preparation, and selection
Data was being gathered between February 2000 and December 2006, twice a week, in ir-
regular 3 or 4 days periods. In total, results of 719 separate measurements are listed in the
dataset. The dataset contains information concerning

• methodology of the experiment, i.e. dates and descriptions of measurements,
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• weather conditions, e.g. temperature, humidity, rainfall,

• secondary environmental observations, e.g. presence of fruits, evapotranspiration,

• quantities of flies, with particular emphasis on Bactrocera psidii, B. tryoni, B. curvipen-
nis,

• and human activity, in form of pest control interventions.

The meteorological data was recorded once a week by a local meteorological station.The
data concerning the chemical treatments has been recorded on the day of the spraying and
consists of the dates, names of used chemicals and dosages. The pest activity in form of the
number of fruit flies has been gathered biweekly and is recorded as a number of specimens
collected from traps placed in the experimental orchard.

Some records are incomplete, with a substantial loss of data in September 2006, a month
(10 consecutive entries) of pest levels is missing. We have dealt with the missing data
by replacing it with averages taken from neighbouring measurements and rejecting any data
collected after the 22.08.2006, i.e. we have deleted 35 entries, which contributes to less than
5% of the data. The difference in the data collection of weather conditions and insect
presence was overcome by unifying the biweekly data and taking the averages. After the
adjustments, the final dataset consists of 342 measurements gathered between the 11.02.2000
and the 22.08.2006.

After consultations with our colleges from the Institut Agronomique néo-Calédonien,
we have decided to select the following attributes to use in our model:

• relative humidity,

• temperature,

• evapotranspiration,

• fruit presence,

• treatments,

• number of B. psidii,

• and number of B. tryoni.

First five attributes are the environmental parameters, with only the treatments1 being
directly connected to human actions. The last two are our prediction objectives, i.e. the
quantities that we want to forecast.

1Information about treatment is binary: we are interested only in the fact that a spraying occurred in
given point of time, our model ignores the type of used chemicals.
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9.2 Model description and extraction
To model interactions and dynamics reflected by the collected data, we use the Partially
Observed Markov Decision Process (ab. POMDP) – a simple generalization of Hidden Markov
Models which are a tool that has been used in time series analysis and forecasting to a great
success.

A POMDP is a tuple M = ⟨π,A,B⟩ where

• π ∈ dist(Q) is the initial internal state of the system,
• A ∶ {E × P}→ (Q→ dist(Q)) is an indexed family of transition matrices,
• and B ∶ E → (Q→ dist(P )) is an indexed family of emission matrices,

with Q,E, P being some finite sets. The set Q is called the state space, elements of P are
called observations, and elements of E are called environmental types.

The idea behind the use of a POMDP is as follows. A system we want to model can
be seen as a discrete time process that can be arbitrarily complex and for which we cannot
presume to possess the perfect information about its current state. Furthermore, the only
information about the state of the system can be inferred from its visible behaviour, repre-
sented by a sequence of discrete signals o emitted by the system, we call them observations
and the set of all observations is denoted by O. We assume that the observations depend
on both: the internal state of the system q ∈ Q and the environment in which our system
operates e ∈ E. Thus, from the sequence of pairs (O × E)∗ we can asses our belief about
the real state of the process. The belief is represented as a distribution over the internal,
hidden states π ∈ dist(Q) of the POMDP.

With a POMDP M and an auxiliary information in a form of a possibly infinite word
w = ⟨ei, oi⟩ ∈ (E × P )ω, we associate two sequences of distributions M(w) and M∗(w).

The sequence M(w) = ⟨τi⟩ωi=0 is defined in the following way:

• π0 = π,

• πi = A(⟨ei, oi⟩) ⋅ πi−1 for i > 0,
• τi = B(ei) ⋅ πi for i ≥ 0.

The sequence M(w) = ⟨τi⟩ωi=0 is also defined in an inductive way:

• π
∗
0 = π

∗
,

• τ
∗
i = B(bi) ⋅ π∗i ,

• π
∗
i = ∑o∈P τ

∗
i−1 ⋅ A(⟨ei−1, o⟩) ⋅ π∗i−1 for i > 0.

Since function M∗ ignores the second coordinate of the elements, we will sometimes
abuse the notation and write M∗(w) for a sequence w ∈ E

ω.
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Any infinite sequence of distributions d ∈ (dist(P ))ω defines a measure over the family
of infinite sequences of observations P ω. For a word w and a POMDP M, we will denote
the measure defined by M(w) as µw and the measure defined by M∗(w) as µ∗w. Those two
measures are connected in the following manner.

We say that a POMDP M is faithful to sequence w = ⟨ei, oi⟩ ∈ (E×P )ω if M accurately
predicts the visible part of the sequence, i.e if M(w)(i)(oi) = 1 for i > 0.

Observation 9.2.1. If a partially observable Markov decision process M is faithful to se-
quence w, then M(w) =M∗(w) and, thus, µw = µ∗w.

In general, we consider two versions of environmental sensitivity: one is observation
sensitive where transitions between internal states of the model depend on both the environ-
mental type and the observed infestation level. The other is observation oblivious where the
POMDP uses the environmental type only, i.e. for a POMDP M = ⟨π,A,B⟩ we have that
A(o2, e) = A(o1, e) for all infestation types o1, o2 ∈ O and every environmental type e ∈ E.
The discussion on advantages and weaknesses of both approaches can be found in Section 9.5.

Model extraction We do not assume to know the internal structure of the system. Hence,
to use the underlying dependencies and hidden dynamics we need to extract them directly
from the data. We achieve this goal by using Data Mining techniques and Machine Learning
algorithms.

Environmental and infestation types Since our model, in a form of a POMDP, works
with fine sets, we need to transform a possibly infinite sets of environmental conditions and
observations into a finite discrete sets of environmental types E and infestation types P ,
respectively.

We use the standard clustering methods to extract the environmental types present in our
dataset. More specifically, we use the k-centroids algorithm, cf. e.g. [29], with the euclidean
distance measure to generate a partition of the environment and use the resulting clusters
as environmental types e ∈ E. Similarly, we use the k-centroids algorithm with the Man-
hattan distance to extract infestation types o ∈ P from the data describing the quantity of
pests. Each infestation type o ∈ P is represented by the smallest convex area containing
all points from the associated cluster. We consider this as an alternative to the Voronoi
diagrams.

With obtained sets, we associate two classification functions Env ∶ N × H ↦ E and
Obs ∶ N2

+ ↦ P , transforming environmental conditions into environmental types and pest
numbers into infestation types, respectively. Those functions can be obtained as a result
of the standard classification algorithms, in particular we use the C4.5 algorithm [48].

Model teaching To teach a POMDP, we use a naive extension of the Baum-Welch (abbr.,
BW) algorithm which is a variation of the general Expectation Maximisation (abbr., EM)
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procedure, for the EM procedure see e.g. [14]. A standard version of the Baum-Welch
algorithm is used to teach hidden Markov models, see for example [58]. We modify the
procedure in a way that it uses different transition and emission matrices, depending on the
environmental conditions.

Since we use a naive modification of the BW, both the learning rate and the convergence
properties are not well specified. Nevertheless, since the general EM procedure does not
guarantee finding a global maximum, none of its variants can.The appealing factors of our
approach are: iterative improvement procedure, intuitive soundness and relatively simple
implementation.

Intuitively, given a sequence s = ⟨ei, oi⟩Ni=0 ∈ (E ×O)∗ we are searching for a model that
maximises the accuracy of the forecast P(o0o1⋯oN ∣M, s).

To measure the accuracy of a POMDP M on a sequence s = ⟨ei, oi⟩Ni=0 ∈ (E×P )∗ we use
the function

acc(M, s) = log∣∣P ∣∣(P(o0o1 ⋅ oN ∣s,M)) (9.1)

where P(o0⋯oN ∣o1⋯oN , e1⋯eN ,M) is the probability that M will emit sequence o0⋯oN
given the sequence of pairs ⟨ei, oi⟩Ni=0, and P is the set of possible infestation levels.

9.3 Game definition
In the data presented in Section 9.1 we can observe an interaction between Nature, Human,
and Pests in an experimental fruit farm. In previous section, we have described how to create
and teach a discrete stochastic model. Now, we will present how we can use such a system
to predict future pest infestation levels and how to give strategy recommendations based
on game-theoretic methods.

Since the only data regarding pests activity – their quantity – is exactly our prediction
goal, the farm is to be seen as an arena witnessing the interactions between Nature and
Human farmers, i.e. the internal behaviour of insects P will be completely embedded in the
created model of the system.

Intuitively, players H and N play in turns enumerated by natural numbers i ∈ N. Each
turn corresponds to a period of one week in which N chooses the environmental conditions ni
and, then, H prepares countermeasures in form of chemical treatments hi. Consequently,
players’ actions result in a sequence w ∈ E

ω of environmental types and the final outcome,
the play, is the sequence M(w) of distributions over the levels of infestation on which
we evaluate the pay-off function defining our objectives.

More formally, the game is a tuple G = ⟨N,H, P,E,Env,M,Φ⟩ where

• N is the set of Nature actions,

• H is the set of Human actions,
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• P is the set of possible pest infestation types, called observations,

• E is the set of environmental types,

• Env ∶ H×N → E is a function matching players actions into appropriate environmental
types E,

• M = ⟨π,A,B⟩ is a POMDP, with dom(B) = E and dom(A) = E × P ,
• and Φ ∶ P ω

→ [0, 1] is a Borel pay-off function that describes the objectives.

Game G is played in rounds and the notions of strategies and game value carry naturally
from notions defined for games on graphs (see Section 3.3).

In our setting, standard definitions are interpreted in the following manner. An play
is a word u = ⟨ni, hi⟩ωi=0 ∈ (N × H)ω. It defines a sequence of environmental types w =

⟨Env(ni, hi)⟩ωi=0, and a sequence of infestation types distributions ⟨di⟩ωi=0 = M(w), where
di ∈ dist(O) for all i > 0. Last sequence, in a natural way, defines measure µu over the set
of all possible observation sequences Oω. A visualization of a play can be seen in Table (9.2).

Round 1 2 . . . i . . .

H h1 h2 . . . hi . . .

N n1 n2 . . . ni . . .

R Env(n1, h1) Env(n2, h2) . . . Env(ni, hi) . . .

Obs d1(e) d2(e) . . . di(e) . . .

(9.2)

The set of Human’s strategies is the set Σ = (N ×H)∗ ×N → H, and Π = (N ×H)∗ → N

is the set of Nature’s strategies. The unique play defined by a pair of strategies σ ∈ Σ and
π ∈ Π is denoted uσ,π and the value of a play u ∈ (N×H)ω is defined as val(G, u) = ∫

Oω
Φdµu.

Since Φ is Borel, the value of the game exists and is defined by the following equation.

val(G,Φ) = sup
σ∈Σ

inf
π∈Π

val(G, uσ,π) = inf
π∈Π

sup
σ∈Σ

val(G, uσ,π) (9.3)

With the definitions in place, a careful reader will notice a small discrepancy between
the learning phase and the game phase of our procedure. In the learning phase we utilize
a sequence w = ⟨ei, oi⟩ ∈ (E × P )ω to find a model that is, in essence, an approximation
of a POMDP faithful to w, while in the game phase we use a sequence w∗ = ⟨ei⟩ ∈ E

ω

to compute the sequence of observations. This approach is consistent by Observation 9.2.1.

9.3.1 Objectives
In general, there are two types of objectives we want to consider: infinite- and finite-horizon
objectives. Intuitively, infinite-horizon objectives ask whether a certain situation can occur
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somewhere in the future, whereas finite horizon ask what will happen in a fixed number
of days.

Since a POMDP is essentially a probabilistic transducer, deciding whether one can
achieve infinite horizon objectives, e.g. safety or reachability, is undecidable in general, see
e.g. [10]. On the other hand, finite time objectives are decidable: we need to forecast a fixed
number of rounds only.

The most basic problem we consider is simulation, which is essentially a strategy eval-
uation in a controlled environment. Since, in the real world, we cannot predict the en-
vironmental conditions with certainty, we need to be able to estimate the expected value
of randomised strategies.

Problem 9.3.1 (Forecast simulation). Given a game G, a set of forbidden observations
F ⊆ O, two natural numbers k, l, a sequence of human actions h0, h1, . . . , hl−1 ∈ H

l, and
a forecast n1, n2, . . . nl−1 ∈ dist(N)l in a form of a sequence of discrete distributions with
finite support compute the probability that system will not emit forbidden observation between
rounds k and l, i.e. compute the value of the game with pay-off function

Φ(o1o2⋯oi⋯) def
= { 1 if oi /∈ F for k ≤ i ≤ l

0 otherwise.

We call the above problem simulation because it does not take into account the interaction
between players and tracks the evolution of the system only. To include the interactive nature
of our model, we use two problems that ask about the existence of certain strategies.

Naturally, the use of chemicals should reduce the infestation levels, in near future2.
Therefore, with an unrestricted set of human strategies, an optimal strategy for player H
is to perform treatment every round. On the other hand, toxicity, plant degradation, or fruit
poisoning are a real concern in modern agriculture and require introducing constriction
on the dosages and frequency of the chemical treatments. Therefore, for the real life appli-
cations we consider a version with the sets of strategies that restrict the number of chemical
treatments.

Problem 9.3.2 (Forecast recommendations). Given a game G, a fixed limit t ∈ N of the
crucial actions from the set A, two natural numbers k, l, a forecast n1, n2, . . . nl−1 ∈ dist(N)l
in a form of a sequence of discrete distributions with finite support, and a threshold c ∈ R,
decide whether there is a strategy σ ∈ Σ that uses at most t crucial actions, and for which the
probability that system does not emit observations from the set F ⊆ O between the rounds k

2We have no information concerning the overuse of the chemicals
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and l is greater than c, i.e. does val(G) ≥ c hold with the pay-off function

Φ(o1o2⋯oi⋯) ∶= { 1 if oi /∈ F for k ≤ i ≤ l,
0 otherwise.

and restricted set of player H strategies Σt.

Next problem asks about the existence of an optimal strategy with no information re-
garding the behaviour of the environment.

Problem 9.3.3 (Advisor). Given a game G, a fixed limit t ∈ N of crucial actions from the
set A, two natural numbers k, l, and a threshold c ∈ R decide whether there is a strategy σ ∈ Σ
that uses at most t crucial actions and for which the probability that system does not emit
observations from the set F ⊆ O between the rounds k and l is greater than c, i.e. does
val(G) ≥ c hold with the pay-off function

Φ(o1o2⋯oi⋯) ∶= { 1 if oi /∈ F for k ≤ i ≤ l,
0 otherwise.

and restricted set of player H strategies Σt.

Finally, we consider the infinite-horizon Safety problem which ask whether there is a strat-
egy that prevents certain levels of infestation.

Problem 9.3.4 (Safety). Given a game G, a set of infestation levels F ⊆ O, and a threshold
c ∈ [0, 1], does val(G) ≥ c hold with the pay-off function

Φ(o1o2⋯oi⋯) ∶= { 1 if oi /∈ F for i ≥ 0,
0 otherwise.

The complexity of the above problems varies, from polynomial to recursively enumerable,
depending on the problem and the form of the input, see e.g. [10].

9.4 Use of the plantation game
The complexity follows directly from the choice of the model that we have used to mimic the
changes in the system. Careful reader can notice immediately that our four main problems
can be seen as variations of classical reachability problems for POMDPs.

As stated before the Forecast simulation problem can be solved via simple dynamic
programming as shown in Algorith 3.

To solve the advisor problem we use the following observation.
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Algorithm 3 calculateSimulation

Require: n ∈ dist(N)l, h ∈ H l

//de[i] – distribution of environmental types in round i
//do[e][i] – distribution of infestation levels in round i, given environmental type e
//fo[i] – distribution of infestation levels in round i
π[0] ∶=M.π
for (i ∶= 0; i ≤ l; i ∶= i + 1) do
for e ∈ E do
de[i][e] ∶= Env(ni, hi)
do[e][i] ∶=M.B(e) ⋅ π[i]

end for
π[i + 1] ∶= ∑e∈E de[i][e] ⋅ (∑o∈O do[e][i] ⋅ (M.A(e, o) ⋅ π[i]))
for e ∈ E do
fo[i][o] ∶= ∑e∈E de[i][e] ⋅ do[e][i][o]

end for
end for

Observation 9.4.1. For every game G there is at most ∣H∣∣E∣ essentially different actions
that player N can perform each cycle.

Indeed, let r ⊆ N ×N be a relation, such that ⟨n1, n2⟩ ∈ r if, and only if, Env(n1, h) =
Env(n2, h) for every action h ∈ H. Naturally, r is an equivalence relation of index smaller
than ∣H∣∣E∣.

The above observation implies that instead of working with an infinite space of possible
actions, we can limit our attention to a finite case. If we are able to compute the classes
of equivalence relation r, this reduces the problem to a finite-horizon problems for POMDPs.
In other words, according to the above observations, both the lower and the upper complexity
bounds follow from extensive work surveyed in [39].

As for the last problem, we recall the following result.

Proposition 9.4.2. The Safety problem is undecidable even when the threshold c is 1.

The undecidability follows directly from the undecidability of the non-emptiness of a prob-
abilistic automaton (cf. e.g. [20]).

9.4.1 Visible game definition
When using a POMDP as a model, we almost immediately encounter undecidability: every
reasonable infinite-horizon objective is undecidable even for threshold 1. This seems to be the
result of working with the unknown internal state of the system. Therefore, in order to verify
infinite horizon properties we need to use a simplified model in which internal state is visible.
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It is well-known that for stochastic games the border of decidability lies between partial and
perfect information games, see e.g. [10].

Now, we propose a simplified version of the game. The simplified game starts with a token
representing the state of the system placed in the initial observed state oI ∈ O. Afterwards,
players H and N in turns enumerated by natural numbers i ∈ N choose their actions. Each
turn corresponds to a period of one week in which N chooses the environmental conditions ni
and H prepares countermeasures in form of chemical treatments hi. After players’ actions
are chosen the token is moved accordingly to the transition function δ and environmental
type Env(hi, ni).

More formally, the game is a tuple G = ⟨N,H,O,E, oI ,Env, δ,Φ⟩ where
• N is the set of Nature actions,
• H is the set of Human actions,
• O is the set of possible pest infestation levels,
• E is the set of environmental types,
• oI is the initial observed state of the system,
• Env∶H ×N → E is a function matching players actions to appropriate environmental

types belonging to the set E,
• δ∶O × E → dist(O) is a transition function,
• and Φ∶Oω

→ [0, 1] is a Borel pay-off function that describes the objectives.
Game is played in rounds and the notions of strategies and game value, again, carry naturally
from the games on graphs. In this setting, the standard definitions are interpreted in the
following manner. A play is the path u ∈ Oω that the token took. A visualization of a play
can be seen in Table (9.4).

Round 1 2 . . . i . . .

H h1 h2 . . . hi . . .

N n1 n2 . . . ni . . .

R Env(n1, h1) Env(n2, h2) . . . Env(ni, hi) . . .

Obs u1 u2 . . . ui . . .

(9.4)

The set of strategies of player H is the set ΣS = (O)∗ ⋅N → H, and the set of player N
strategies is the set Π = (O)∗ → N .

A pair of strategies σ ∈ Σ and π ∈ Π in a natural way defines a measure µσ,π on the
set Oω. Since Φ is Borel, the value of the game exists and is defined by the following equation.

val(G,Φ) = sup
σ∈Σ

inf
π∈Π
∫
Oω

Φ(o)dµσ,π = inf
π∈Π

sup
σ∈Σ
∫
Oω

Φ(o)dµσ,π. (9.5)

108



It is not hard to notice that game G is, essentially, a simple stochastic game, see Sec-
tion 2.3.5 on page 22, and, thus, the appropriate versions of the problems defined in Sec-
tion 9.3.1 are computable.

For completeness, given a training data represented by a sequence ⟨ei, oi⟩ ∈ (E × O)∗,
we define the transition function δ∶O × E → dist(O) used in the simplified version of the
game in the following way.

δ(o, e)(ô) = {
∣∣{i∈N∶oi=o,ei=e,oi+1=ô}∣∣

∣∣{i∈N∶oi=o,ei=e}∣∣
if ∣∣{i ∈ N ∶ oi = o, ei = e}∣∣ > 0

δo,ô otherwise
(9.6)

The function δi,j is the Kronecker delta.

9.5 Experimental results
We have divided our time series into two sets: the training set that consists of first 300
measurements and the test set constructed from the remaining 42 measurements.

Using the methods described in Section 9.2, we have taught a number of models with the
number of internal states ranging between 4 and 15, using

• a fixed set of e = 6 environmental types,

• 4 sets of infestation levels, with 6, 7, 8, and 9 different types of infestation levels, re-
spectively,

• and both observation sensitive and observation oblivious semantics.

The diagrams of used infestation levels can be seen in Figure 9.1. The result of the
teaching algorithms can be seen in Figure 9.2 which contains the accuracies of the models
computed on the training set.

In the subsequent rows of the table showed in Figure (9.2), we have the number of internal
states and the accuracy values with respect to the number of different infestation levels used
in the teaching. The columns marked with the asterisk (∗) use the observation oblivious
semantics; the remaining columns use the observation sensitive semantics. The first row
of the table contains the benchmark values, i.e. the values that a model that emits infestation
levels with the uniform probability achieves. The subsequent rows contain values that were
achieved by the models obtained from our teaching algorithm.

As expected, with the increase of the number of internal states of the used POMDP,
the accuracy of the forecast rises. The inconsistencies in the growth are, most probably,
a consequence of the local nature of the learning algorithm, i.e. the of the fact that the
algorithm can return a local optimum which is not necessarily a global optimum. Similarly,
we observe that the increase of the number of possible infestation types results in a lower
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Figure 9.1 – Infestation levels used in the experiments.

accuracy of predictions. This, most probably, is a consequence of the small size of the
dataset.

An interesting property of our approach can be drawn form the comparison of the ac-
curacies of the observation sensitive and the observation oblivious models. While with low
number of different infestation levels using the observation sensitive models increases the
quality of teaching, high number of clusters reverses this property. We attribute this be-
haviour to the relation between the number of the independent parameters defining the
model and the amount of available data. Of course, greater number of parameters allows
to describe more complex dependencies, but it also reduces the number of available data per
parameter. With o different infestation levels, e environmental types, and q internal states
an observation sensitive model uses o⋅e transition matrices of size q2 and e emission matrices
of size q ⋅ o, whereas a observation oblivious model uses only e transition matrices of size q2

and e emission matrices of size q ⋅ o. In other words, with o = 9 we have on average 9 times
less data entries per matrix. In our experiment, this translates to difference between 50
and 5.56 training entry per transition matrix. Less training data results in worse parameter
estimation and is not compensated by the rise of the expressive power of the model. On the
other hand, when more training data is available the observation sensitive semantics should
perform better than the observation oblivious semantics.

Moreover, since the clusterings of the pest quantities and the environmental conditions
are done separately, it is possible that certain pairs of the infestation levels and of the en-
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vironmental types are not present in the training data, and, thus, some of the transition
matrices present in an observation sensitive model are not subjected to the teaching algo-
rithm.3 This can negatively influence the accuracy of the forecast performed on the test
data, if some of the missing pairs are present in the test data, but not in the training data.

3Notice that every environmental type is present in the training data and, thus, this observation does not
impact observation oblivious models.
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Chapter 10

Conclusions and future work

In the theoretical part of the thesis we have studied the properties of regular branching
games. We can differentiate three groups of results. The first one concerns the determinacy
of branching games, the second one the computational complexity of computing game values,
and the last one the computational complexity of computing the measures of regular sets
of trees.

Determinacy In the case of determinacy we have shown that regular branching games with
open (closed) sets are determined under mixed strategies, see Theorem 6.1.8. This is the limit
in the terms of topological hierarchy of sets as we have also presented an example of a regular
branching game which is not determined under mixed strategies, see Example 6.1.3. This
game has a winning set that is a difference of two open sets, placing it at the level of Boolean
combinations of open sets.

In the case of both pure and behavioural strategies even clopen sets or sets of trees
of bounded depth do not guarantee determinacy. This is showcased in Example 3.2.2, which
combines the classic game of “Matching Pennies” with the observation of Mio, see [33,
Example 4.1.18]. This example stays contrary to Nash-like results in the perfect-information
games with perfect recall, which state that finite duration games with finite set of actions
are determined under behavioural strategies.

Still, those results do not characterise the classes of winning sets that guarantee deter-
minacy. Indeed, in Chapter 7 we show that branching games with game automata definable
winning sets are determined under pure strategies, see Corollary 7.1.2. Therefore, we think
that it would be interesting to find new types of families of winning sets that guarantee
determinacy.

Computing game values We have solved the general problem of computing values of reg-
ular branching games. In particular, we have shown that

• there is no algorithm that given a branching game with an arbitrary regular winning
set computes any of the game’s partial values, see Theorem 6.2.1;
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• there is no algorithm that given a non-stochastic branching game with an arbitrary reg-
ular winning set computes any of the behavioural or mixed values, see Corollary 6.3.12;

• there is an algorithm that given a finite non-stochastic branching game with a regular
winning set computes all of the pure values, see Theorem 5.3.2.

The exact computational complexity of the algorithm in the last bullet depends on the
kinds of vertices on the board and the representation of the winning set.

The negative results are not necessarily surprising: endowing systems of imperfect infor-
mation with probability often leads to undecidability, e.g. probabilistic automata [49]. The
positive results give hope to find classes of games with computable partial values.

While the above results answer the question of computability in the general case, a smart
restriction on the set of possible winning sets may yield a class of branching games with
computable values. An example of such a class are branching games with winning sets
defined by game automata, see Chapter 7, for which the values coincide and are computable
in elementary time. Another promising class of regular winning sets may arise not from
syntactic restrictions on automata, but by restrictions on the expressive power of monadic
second-order logic. The class of special interest are Boolean combinations of conjunctive
queries, for the reason mentioned in the following paragraph.

Measures In Chapter 8 we have tackled the problem of computing the standard measure
of a given regular set of trees. We have shown that

• there is an algorithm that given a first-order formula ϕ not using the descendant
relation computes the standard measure of the set L(ϕ), see Theorem 8.2.1;

• there is an algorithm that given a Boolean combination of conjunctive queries ϕ com-
putes the standard measure of the set L(ϕ), see Theorem 8.4.1.

The involved techniques use the notion of locality and cannot be extended to the full
power of monadic second-order logic. Even the full first-order logic is not captured in the
scope of those results.

An obvious direction of future research is to try to find algorithms computing the measure
of any arbitrary regular set or at least for a set definable by some logic subsumed by monadic
second-order logic, e.g. CTL, or modal µ calculus. A less obvious direction of research
would be to extend the techniques presented in this thesis to arbitrary measures generated
by graphs1.

Applications In Chapter 9 we have presented a generic way of using machine learning
methods and game theory to create a simple advisor taught on a time series describing

1For instance, a measure generated by a graph can be defined in terms of behavioural strategies.
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a closed ecosystem. The presented approach is simple yet robust, allowing easy exchange
of used tools and techniques.

In this particular case we have used Markov decision processes and the Baum-Welch
procedure to create a stochastic two-player game that represents a fruit farm. This game
can be used to predict the presence of pests, in the form of fruit flies and to plan chemical
treatments that will help with the management of the population of the flies.

The provided data did not allow us to use the rich theory we have developed in the study
of branching games. Still, we think that designing and developing tools which incorporate
branching games would be an interesting direction of future research. In our opinion, the sys-
tems that would benefit the most from the branching games representation are those, where
two adversaries oversee a number of independent, non-communicating agents: e.g. virus
outbreak, or breeding bacteria.
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