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Abstract

In this dissertation two models of morphogen transport are studied analytically. Both models are
based on the concept of positional signalling as introduced by Wolpert in the late sixties. Positional
signalling explains the mechanism of cell differentiation and pattern formation in developing embryo
using the process of morphogen gradient formation. Both models couple semilinear parabolic equations
with a system of ordinary differential equations. The first model by Hufnagel et al. describes the space
distribution of chemicals in a rectangle reflecting part of the tissue. The main mathematical difficulty
in the analysis of this model stems from the presence of a Dirac Delta in the boundary flux of one of
the diffusing components. Besides obtaining well-posedness of the evolutionary problem and proving
the existence of the unique equilibrium we perform the dimension reduction. This justifies rigorously
that the simplified one dimensional model is a reduced version of the model posed on a rectangle.
For the second model by Lander et al. we generalise results obtained previously by Krzyzanowski et
al. to domains of arbitrary dimension. Moreover the topology of convergence of the solution to the
steady state is improved. We use tools of functional analysis such as theory of analytic semigroups,
interpolation of Banach spaces and fixed point theorems.

Keywords: morphogen transport, ligands, receptors, reaction-diffusion systems, analytic semigroups,
Radon measures, asymptotic analysis, dimension reduction, interpolation of Banach spaces, uniqueness
of solutions, Lyapunov functionals
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Chapter 1

Introduction

1.1. Modelling of morphogenesis

Explaining the process of tissue formation in embryo is one of the most challenging problems of devel-
opmental biology. Understanding the process of cell differentiation leads to the study of mechanism of
localised gene expression and transformation of initially identical cells into specialised tissues. Besides
extensive experimental studies many mathematical models were constructed starting from the seminal
work of Turing from 1952 (see [32]) where the concept of morphogen was introduced and then developed
by Gierer and Meinhard (see [9]) and many other authors. Gierer and Meinhard introduced two hypo-
thetical diffusive substances - activator and inhibitor whose local concentration determines the fate of
cells. The effect of pattern formation is a consequence of the so called diffusive instability in a system
of two reaction-diffusion equations with linear diffusion and complicated inhibitor-activator nonlinear
reaction kinetics. The main drawback of this approach is related to the experimental identification of
chemicals playing the role of activator and inhibitor. Although this approach leads to solutions which
resemble many patterns observed in nature, it is unclear whether the activator-inhibitor mechanism
is indeed responsible for appearance of real complicated patterns.

An alternative approach was based on the work by Lewis Wolpert from the late sixties (see [33]), who
introduced the concept of morphogen gradient formation. His famous French Flag Model is described in
the next section. In this approach the role of morphogen is played by particular proteins called ligands.
Many of them were already identified (Decapentaplegic, Wingless, Hedgehog). Most experimental
studies on morphogenesis are performed on fruit fly (Drosophila Melanogaster) - a species which is
very convenient to cultivate in the laboratory environment.

1.1.1. Positional signalling

According to the French Flag Model (see Figure) morphogens are molecules which due to mechanism
of positional signalling govern the fate of cells in living organisms. It has been observed that certain
proteins called ligands after being secreted from a source, typically a group of cells, spread through the
tissue and after a certain amount of time form a stable gradient of concentration. Next receptors located
on the surfaces of the cells detect levels of morphogen concentration and transmit these information
to the nucleus. This leads to the activation of appropriate genes, synthesis of proteins and finally
differentiation of cells.



Step 1

Morphogen concentration I

Figure 1.1: The French Flag Model of positional signalling. In Step 1 the morphogen substance is being
secreted from the green cell and spreads above the tissue. In Step 2 receptors detect concentration of
the morphogens and transmit this information to the nuclei. The colors represent thresholds of distinct
gene activation.

Step 2

Although the role of morphogen in cell differentiation, as described above, is commonly accepted there
is still discussion regarding the exact kinetic mechanism of the movement of morphogen molecules
and the role of reactions of morphogen with receptors in forming the gradient of concentration (see
[11],[17],[18]). To determine the mechanism of morphogen transport, several mathematical models
consisting of systems of semilinear parabolic PDEs of reaction diffusion-type coupled with ODEs were

recently proposed and analysed (see [15],[16],[30],[23],[29]).

1.2. Presentation of the mathematical models

We present two models ([LNW].B and [HKCS]) of the transport of two distinct morphogens (Dpp
and Wg) in the imaginary wing disc of the fruit fly. Both models take into account diffusion of
morphogen molecules and their reactions with receptors distributed on the cell surface. Model [HKCS]
additionally accounts for reactions of morphogens with glypicans - special type of receptors which have
an active role in the transport. Another feature which distinguish the models is that in [HKCS] the
transport of morphogens takes place in the extracellular space as well as on the cell surfaces while in
[LNW].B only the latter mechanism is present. Details are presented in the following sections.



1.2.1. The [HKCS] model

The model [HKCS] introduced by Hufnagel et al. in [13] describes the formation of the gradient of
morphogen Wingless (Wg) in the imaginal wing disc of the Drosophila Melanogaster individual. Model
[HKCS] has two counterparts - one and two dimensional, depending on the dimensionality of the
domain representing the imaginal wing disc. We denote these models [HKCS].1D and [HKCS].2D
respectively. In mathematical terms [HKCS].1D is a system of two semilinear parabolic PDEs of
reaction diffusion type coupled with three nonlinear ODEs posed on the interval I” = (—L, L), while
[HKCS].2D consists of a linear parabolic PDE posed on rectangle Q" = (~L, L) x (0, H) which
is coupled via nonlinear boundary condition on 91025 = (—L, L) x {0} with a semilinear parabolic
PDE and three ODEs.

The [HKCS].2D model.

For L, H > 0, and co > T > 0 denote

(-L,L), ;e IF, I' =1,

(—L,L) x (0,H), = (x1,22) € QFH Q =qb!,

00 = {—L, L} x [0, H|U(~L,L) x {H}, o,QP" = (—L, L) x {0}, 90" = 9. 0LH Uy g0l
Qb — (0, 1) x QB (90" ) = (0,T) x 95H

QLH

QL,H

4——L—>

Figure 1.2: Graph of the domain Q%% . The arrow pointing towards the rectangle represents a point
source of the morphogen (a Dirac Delta) on the boundary.



The domain Q5 (see Figure [1.2)) represents the imaginal wing disc of the Drosophila Melanogaster
individual and the x9 direction corresponds to the thickness of the disc, so that in practice H is much
smaller than L.

Let v denote a unit outer normal vector to 90X and let ¢ be a one dimensional Dirac Delta. Moreover

denote by V = (9y,,0y,) the gradient and by A = 92 + 92, the Laplace operator.

The model [HKCS].2D is a system which consists of one evolutionary PDE posed on Q5 one
evolutionary PDE and 3 ODEs posed on 9;Q5H:

[HKCS].2D
oW — DAW = —W, (t,x) € Qb (1.1a)
OW* — D*OZW* = —*W* + E1 — s, (t,z) € (.90 ) (1.1b)
OR=—-Ey—Z3—aR+T, (t,z) € (O QH)p (1.1c)
OR* =Z5 — "R, (t,2) € (O QH)p (1.1d)
iR} =E3— a*R}, (t,z) € (O QLH)p (1.1e)
supplemented by the boundary conditions:
DVWv =0, (t,z) € (BQ"H) 7 (1.2a)
DVWv = —51 — EQ + 8(5, (t, x) € (619L’H)T (1.2b)
O, W* =0, (t,z) € (00.QFH) (1.2c)
and initial conditions:
W(0) = W, z e Qb (1.3a)
W*(0) = Wg, R(0) = Ro, R*(0) = R, R;(0) = R}, z e b (1.3b)

where

(G, W, W*) = kGW — E'W™,
2(R, W, R*) = kyRW — kKxR*,
5(R,W*, RY) = kpgRW* — kg, R

1

2

(11 [l [1

1
[11 (11 [1]

3

In , and W (resp. G, R,W*, R* and R}) denotes concentration of free morphogens Wg
(resp. free glypicans Dlp, free receptors, morphogen-glypican complexes, morphogen-receptor com-
plexes and morphogen-glypican-receptor complexes). It is assumed that W is located on QLH and is
thus a function of (¢, z1, ), while other substances are present only on 912 and depend only on
(t,z1). Substances R, R* and R may be internalised from the cell surface to its interior. The model
takes into account association-dissociation mechanism of

e W and G with rates k, k' : 21,
e W and R with rates kg, kK : Zo,
e W* and R with rates kggy, k}?g B3

Other terms of the system account for



diffusion of W in Q& (resp. W* on 0;Q51) with rate D (vesp D*): —DAW (resp. —D*92 W*),
degradation of W in Q™ (resp. W* on 0,Q% ) with rate v (resp. v*): —yW (resp. —y*W*),

internalisation of R (resp. R*, R}) with rate a (resp. a*,a*) : —aR (resp. —a*R*, —a* R}),

secretion of W with rate s from the source localised at the boundary point z = 0 € 9, Q5 56,

production of R: T
For simplicity we assume that G and I' are given and constant (in time and space).

In order to analyse the reduction of the dimension of the domain we introduce for € > 0 the
[HKCS].(2D,¢) model, which is obtained from [HKCS].2D by changing Q% into Q%<H and rescal-
ing the source term for W in the boundary conditions (|1.2)):

[HKCS].(2D,¢)

OWE — DAW® = —yW*, (t,x) € Qb (1.4a)
W™ — D*02 W* = —*W™€ + Z§ — =5, (t,z) € (8; Q%) (1.4b)
ORE = —E5 — 2§ — aR° + T, (t,z) € (8; QM) (1.4c)
QR =25 — o R™, (t,z) € (8; QM) (1.4d)
O Ry =E5 — "Ry, (t,z) € (0; Q%) (1.4e)
with boundary conditions
e IDVWer =0, (t,z) € (DBt (1.5a)
e 'DVWY = —E§ — Z5 + 50, (t,z) € (0, Q<) (1.5b)
D, W€ =0, (t,z) € (00,Q8<H)p (1.5¢)
and initial conditions
We(0) = W§, z e Qb
W*€(0) = W, R(0) = Ry, R*“(0) = R}, Ry“(0) = Ry, x € 0kl
where
2§ = E{(G, W W) = kGW* — K W™,
25 = ZS(RS, W€, RY) = kyR°W® — K R™*,
25 = Z5(RE, W™, RY) = kpg RW™* — kg, Ry*,
Wé(.%'l, .CEQ) = W()(wl, 1'2/6).

Observe that [HKCS].(2D,1)=[HKCS].2D. Roughly speaking besides the well-posedness of [HKCS],
our main result is that

[HKCS].(2D,¢) = [HKCS].1D, (1.6)

lim

e—0t
where [HKCS].1D is a simplified model analysed in section The precise meaning of the limit
(1.6) is given in Theorem



1.2.2. The [LNW].B model

For the case of morphogen Decapentaplegic (Dpp) acting in the wing disc of the Drosophila Melanogaster
individuals, several models have been proposed in [20]. In this dissertation we are concerned with
model [LNW].B (Model B [20] p.786). In mathematical terms the model is a system of two differ-
ential equations (PDE+ODE equipped with initial and boundary conditions), posed on an annular
shaped domain ' C R", which represents a fragment of the wing tissue. The boundary of €’ consists
of two disjoint sets Iy, and I'/,. An example of a two dimensional domain €’ is provided on Figure

L3l

In the model movement of morphogen molecules (A) occurs by passive diffusion while being affected by
reactions of reversible binding with receptors (C) and degradation of morphogen-receptor complexes
(B). It is assumed that the total concentration of free and bounded receptors B + C' is constant and
equal to Ryt Morphogen is being delivered to the system by secretion from a source localised on
Iy

[LNW].B

0 A — D'AA = kopB — konA(Reot — B), (t,2) € (0,T) x & (1.7a)
B = konA(Riot — B) — (koff + kdeg) B, (t,z) € (0,T) x & (1.7b)

D'VAv =¢, (t,z) € (0,T) x 'y (1.7¢)

A =0, (t,z) € (0,T) x Ty (1.7d)

A(0) = Ay, B(0) = By, zef (1.7¢)

\

Figure 1.3: Graph of a two dimensional domain €'. The arrows pointing towards €2’ represent the
secretion of morphogen from I"y.
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In case of one dimensional domains a detailed mathematical analysis of this model was performed in
[15] and [30].

In [I5] the case ' = (0, L) is analysed. Finding Lyapunov functional allowed to prove well-posedness
and L2(€2) exponential convergence to the unique equilibrium, with rate x expressed explicitly by the
parameters of the model.

In [30] the case ' = (0,00), with a nonlinear dynamic boundary condition at = 0 and vanishing
boundary condition at & — oo is considered. Well-posedness and L, (") convergence of the solution
to the unique steady state were proved.

1.3. The main results of the dissertation

1.3.1. The [HKCS] model

In section we analyse the evolution part of the [HKCS].2D model. Using analytic semigroup
theory we prove its global well-posedness (Theorem in appropriately chosen function setting and
justify rigourously that model [HKCS].1D can be obtained from [HKCS].2D through ”ironing of
the wing disc” - i.e. dimension reduction of the domain in the direction perpendicular to the surface
of the wing disc (Theorem . The main analytic problem which we have to overcome stems from
two factors: the lack of smoothing effect in the ODEs and the presence of a point source term (a Dirac
Delta) in the boundary condition for the equation posed on (—L, L) x (0, H), which causes the solution
to be unbounded for every t > 0.

Stationary problem for the [HKCS].2D is analysed in section We prove that there is a unique
steady state (Theorem which converges to the equilibrium of [HKCS].1D as h — 0 (Theorem
. We illustrate our result by performing numerical computations which show that the graph of the
stationary solution to [HKCS].2D becomes homogeneous in the x5 direction as h — 0 (Figure [2.1)).
It is worth underlining that all our results are proved without imposing any artifficial conditions on
the parameters which are present in the system.

Well-posedness (Theorem and the existence of the unique stationary solution (Theorem to
model [HKCS].1D are established in Section

1.3.2. The [LNW].B model

In chapter [3[ we examine model [LNW].B in the [I5] setting for bounded domains of arbitrary di-
mension n. Although n € {1,2,3} is, from the biological point of view, the only relevant case, we
do not impose this restriction on n (methods that we use do not depend on the dimension). Using
fixed point theorem and monotonicity of the nonlinearity we prove that our model has a unique non-
negative steady state (Theorem . Using theory of analytic semigroups and comparison principle
arguments we show existence of classical global solutions (Theorem. We check that the Lyapunov
functional, obtained in [15], also works for arbitrary n and thanks to appropriate semigroup estimates
and bootstrap arguments we improve the topology of the convergence to the equilibrium from Lo x Lo
to C1 x 0% without losing the exponential rate x (Theorem .

11



1.4. Preliminaries

1.4.1. Notation

We introduce the following notation
1 ifi=j
0 ifi#j

e Vy=max{z,y}, x Ay =min{z,y} for z,y € R

e b;; for i,j € N - the Kronecker symbol d;; = {

ez, =2VO0, z_=(—x)VO0forz,y e R

0
sgn(z) = {]w\/x T 7 forx € R

0 ,t =20
e T =max{z;: 1 <i<n}, £=min{z;: 1 <i<n}forxecR"
If X is a vector space we denote by

e X" - the n-th product power of X

Xt ={z € X: x>0} - the positive cone of (X,>) when > is a partial ordering

lin(Y") - the linear subspace of X spanned by a subset Y C X
e [d: X — X - the identity map Id(z) =z

If X,Y are normed vector spaces we denote by
e clx(U) - the closure of U C X in X
e |||lx - the norm in X

e X* - the topological dual of X
° <a:*, x>(X X) = z*(x) for * € X*,x € X - the natural duality pairing between X and X*

e L(X,Y) - the space of bounded linear operators between X and Y, £(X) = L(X, X)
o A" € L(Y*, X*) - the transpose of A € L(X,Y)
e A: X D D(A) — X - the unbounded linear operator with domain D(A)
e G(A) - the graph of operator A
e p(A) - the resolvent set of A
o(A) - the spectrum of A

e 0,(A) - the point spectrum (the set of eigenvalues) of A

o R(A\A) for A € p(A) - the resolvent operator of A
If X, Y are Hilbert spaces we denote by

e (:|')x - the scalar product in X

e X®Y, z®y - the tensor products

12



e A*:Y D D(A*) — X - the adjoint of operator A: X D D(A) - Y
If U is a subset of R"
U = clgn(U) - the closure of U
OU - the boundary of U

W3 (U) for 1 <p < oo, s €R - the fractional Sobolev (Sobolev-Slobodecki) spaces,
Cho(U) for k € N, a € [0,1] - the Holder spaces,
M(U) = (C(U))* - the space of finite, signed Radon measures.

Moreover we denote by
¢ ||'||co - the supremum norm
e [, ]p - the complex interpolation functor
For a comprehensive treatment on
e normed, Hilbert and Banach spaces we refer to [[28], Chap. I-III]

e bounded and unbounded operators as well as their spectral theory we refer to [[28], Chap. VI-
VIII]

e spaces W3(U),C**(U), M(U) and functor [-, -]y we refer to [I] and [31].
1.4.2. Inequalities

In Lemma 1.1} we collect three elementary estimates which are used in the following chapters. For
completeness of the reasoning we provide short proofs.

Lemma 1.1. The following inequalities hold

sup{t®e " 1t >t} < C(r * +t§)e "0, to > 0,a> 0,7 >0, (1.8a)
t dr
— <l s t>0 >0 <1 1.8b
/0 Ta(t*T)’B_ b 7a7ﬁ_ 7a+/8 b)) ( )
t dr toth\ Hets)
9T < C(—) ForE t>0,a,8>0, <1,r>0, 1.8
/Oe pryrT R " a,B>0,a+p r (1.8¢)

where constant C' depends only on « and S.

Proof. To prove (1.8d) define for t > 0 function f(t) = t®e~"". Then f'(t) = at® le™" — rt%e " =
to~le="(qy — rt). Analysing the sign of f' we obtain that function f is increasing on [0,a/r] and
decreasing on [a/r, 00). It follows that

fla/r) ifty <afr

Sup{tae—rt ot > t(]} = { f(to) < C(T_O‘ + tg)e—rto’

if to > afr —

where one can take C' = max{a®, 1}. To prove inequality (1.8b|) we change variables 7 = ty. Then we

have
¢ dr _ d-a-8 ! dy < O4l—a—B
s =t s SOt .
o Tt —7) 0o ¥*(1-y)

13



Finally we prove ([.8d). Set ¢ = %L Tt is easy to check that 1 < ¢ and (o + B)g < 1. Let

2(at+h)
i = }fggig; be ¢’s Holder conjugate exponent. Using Holder inequality we obtain

p=y5

¢ 1 ! 1 ! ip, 1 dy 1/q
S Ss b R ) / —rty T g < i (atB) / —prty g /
/0 ©oTeE-np T C R Ci ( 0 y> ( 0 yq“(lfy)qﬁ>

—(a+pB)
1 _ e—’r‘tp) 1/p < tl—(OH‘,B)—]./p t(a‘i‘ﬁ) 11+ai,8 _ (tOH—,B ) %Ig)

< Ct1—<a+5>( =C
>~ —(a+p)
rli/p r11+a4+rﬁ

rtp T

O]

Lemma is an extension of the well known Gronwall inequality in integral form. Although several
results of similar type can be found in the literature (for instance in [27]), we were not able to find
a reference to the one which would cover the full range of parameters. Our method of proof is taken
from [27].

Lemma 1.2. Let 0 < o, 3, a+ <1, 0<a, 0<b, 0<T < oo. Assume that f € Loo(0,T") for
every T' < T and that for a.e. t € (0,T) the following inequality holds

0§f(t)§a+b/0 Ta(";(i)ﬁdﬂ

then f € Loo(0,T) and
atp
||f||Loo(o,T) < Caexp (Cb%Tl—l-a—i—ﬁ)’

where C' depends only on o and 3. Moreover C =1 when o = 3 = 0.

Proof. When o = 8 = 0 the result is the well known Gronwall inequality in integral form. Otherwise
we proceed similarly as in the proof of inequality (1.8c|). Fix ¢ > 1 such that ¢(a + ) < 1 and let
p= q%l be ¢’s Holder conjugate exponent. Using Holder inequality we obtain

[, st e ([ revan) ([ o)
—( /O tf(r)pdf)l/ptl/q—(aw)( /01 Tqud;)ﬂq )
< C’oTl/q(aJrB)(/t f(T)pdT) Upj
0

where Cy = fol 7—0411(11717—),3«1‘ Thus

t 1/p\p t
f(t)P < (a+bCOT1/q—<a+5>( / f(T)pdT) ) < 2P~LgP 4 op—LppCbr/a—plath) / f(r)Pdr.
0 0
Using Lemma [I.2) with a = 8 = 0 we obtain
F(t)P < 2P~ 1aP exp (Qp—lprng/q—p(a+ﬂ)t>
f(t) < 2Y9qexp <p_12p_1prng/q_p(a+B)+l) = 2Y4g exp (p_12p_1prng(1_a_/8))

< Caexp(CoPTP1—2=A)),

with C' = max{21/‘1,p_12p_1cg}. To finish the proof observe that for ¢ = %(1 + Tiﬁ) one has
_ 14o+p
p= 17375' O]

14



1.4.3. Existence result for a system of abstract ODE’s

Fori=1,...,nlet (A, Xil) be a densely injected Banach couple (i.e. Xil is a dense subspace of X; in
the topology of &;). For a; € (0,1) denote X[ = [X;, X}!]a, (where [.,.]q, is the complex interpolation
functor). Finally note

a=(a1,...,0n), X=X X ... X X, X=X x . x XL, XY= XM x ... x X0, (1.9)
Lemma 1.3. Assume that fori=1,...,n the following three conditions are satisfied

1. The operator A; : X; D X! — X; generates an analytic strongly continuous semigroup etAi,

2. The map F; : X% — X; is Lipschitz continuous on bounded sets i.e.
Vrsoden |Iullxe, [wllxe < R = | Fi(u) = Fi(w)|lx, < Crllu - w]xe

3. ug; € Xz-ai.

Then the following system of abstract ODE’s

d
%ui — .Azuz = E(u), t>0 (1.10)
ul(O) = UQ; (1‘11)
has a unique mazimal X% solution u = (uy,...,uy) i.e. there exists a unique

u € C([0, Tax); %) N CH(0, Trnax); X) N C((0, Tax); X1),

which satisfies system (L.10)-(1.11)) in the classical sense. For t € (0,Tmax) the following Duhamel
formulas hold:

t
ui(t) = i, +/ e(t_T)Ai}'i(u(T))dT, 1<i<mn,
0

and Thax satisfies the blow-up condition:

if Thmax < oo then limsup|lu(t)||xe = oo. (1.12)
t—Tmax

In particular if there exists C' such that
Y IIFiw®)lx, < Cllu®)|xe +1) for ¢ € [0, Tinax) (1.13)
i=1

then Tpax = 00.
Proof. If n = 1 the result is well-known and can be proved using contraction mapping principle

(see for instance [[21], Theorem 6.3.2]) . For n > 1 one can adapt the same method with obvious
modifications. O]
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Chapter 2

Well-posedness and dimension
reduction in the [HKCS| model

In the present chapter we investigate evolution and stationary problems for the [HKCS] model. We
begin with nondimensionalisation of system ([1.4]).

2.1. Nondimensionalisation and basic assumptions

Introduce the following nondimensional parameters:

T =I%/D, K, = kgT, Ko = kgT/H, h = e¢H/L, d = D*/D,
b= (b1,b2,b3,b4,b5) = (T, Ty, T, Ta™, Ta™),
c=(c1,c9,¢3,c4,05) = (TkG/H, Tk',Hk‘Rg/kR,Tk;g,Tkkg),
p = (p1,p2,03,04,05) = (K2T's,0, KoTT,0,0).

For (t,z) = (t,z1,22) € Qp = (0,T) x (—1,1) x (0,1) we define functions

ul(t, 21, 29) = KiWE(Tt, Ly, eHa), ub(t,x1) = KoW*(Tt, Lx1), ul(t,21) = KoR(Tt, L)
wj(t,a1) = KoR(Tt, Lay), ul(t, 1) = KoRy“(Tt, Ly)

uh = (u?,u%,u?,uﬁ,u?)

uor(x1,x2) = KiWS(Lay, eHaxo) = KiWo(Lxy, Hxa), up2(z1) = KoWi(Lx1), ues(x1) = KoRo(Lx1)
ups(z1) = Ko R (L), uos(21) = KaRyo(Lwy)

uo = (Uo1, Uo2, U03, U0, U05 )

then system [HKCS].(2D,¢) rewritten in the nondimensional form reads

O + div(Jn(uf)) = =bruf, (t,z) € O (2.1a)
dyult — d@ilug = cult — (b + ¢ + czul)ul + csul, (t,x) € (1)1 (2.1b)
dpult = —(bs + ul' + czul)ult + cul} 4 csul + ps, (t,x) € (01Q)r (2.1¢)

Opuly = ululy — (by + ea)ul}, (to) e ()r  (2.1d)

Opup = cgubulf — (bs + cs)ul, (t,z) € (0,Q)r (2.1e)
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with boundary and initial conditions

—Jh(u?)u =0, (t,x) € (0oQ)r
—Jh(uM ) = —(c1 + ul)ul + coult + cqult + py, (t,x) € (01Q)7
Dy, ult =0, (t,x) € (00.Q)7
uh((), ) = ug

where
o Ju(u) = —(0p,u, h"20,,u) denotes the flux of uf,
e v denotes the outer normal unit vector to 052,
e J denotes a one dimensional Dirac Delta i.e §(¢) = ¢(0) for any ¢ € C([—1,1]).

From now on we impose the following natural assumptions on the signs of the constant parameters
and (possibly nonconstant) initial conditions

d,b>0, ¢c,p,ug > 0. (2.2)

where b = (by,...,bs) and similarly for ¢, p.

In the whole chapter Iy = (0,1), I = (—1,1) and 2 = (—1,1) x (0,1) are fixed domains.

2.2. Evolution problem

In this section we study well-posedness and dimension reduction in the system (2.1). We begin by
introducing a functional analytic framework which will be used to put system (2.1]) in the form of a
system of abstract ODEs.

2.2.1. Operators, semigroups, estimates
The X*° spaces, operators Ay, Ay,.
Let us recall that I, = (0,1), I = (—1,1), Q=1 x I;. For U € {I;,I,Q} we denote

X(U) = L2 (U), ([)xw) = C1)Law)-

For ¢,j € N we define functions wu;, v;, w;;

ui(z1) = cricos(im(zy +1)/2), z1 € I, wvi(xe) = cg; cos(imza), xo € I (2.3)
wij($1,$2) = ui(xl)vj(x2)7 (xla l’g) € Qv 2 4)
where constants cy;, co; are such that [|u;| x () = [Jvil|x,) =1 e
1/vV2 ifi=0 1 if i=0
1y = e 0 (2= o (25)
1 if7>0 V2 ifi>0

The reason we introduce functions u;, v;, w;; is given in the following
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Lemma 2.1. The set {v; : i € N} (resp. {u; : i € N} and {w;j : i,j € N}) is a complete orthonormal
system in X (1) (resp. X(I) and X (R2)).

Proof. The fact that {v; : ¢ € N} is a complete orthonormal system in X () is well known. Since
ui(z) = (c1i/c2i)vi((x + 1)/2) the thesis for the set {u; : i« € N} follows. Finally observe that since
wij = u; ®v; and X(Q) = X(I) ® X(I1) then the claim for the set {w;; : i,j € N} follows from [[28],
Chap. I1.4, Prop. 2].

O

Denote
Xfm(f) = lm({uz NS N}), Xfm(Q) = lin({wij D4, ] € N})
Define sequences

A = (A )iew, A = —(in)?, i €N
M= (\Dien, M =—(in/2)?, ieN
oI . . .
XS = (A n)igens App = M +h72N\" = —(in/2)* — (jm/h)?, i,j €N, h € (0,1]
and denote \? = )\g, )\% = )‘zgj,l' Next we define X (/) and X(2) realisations of the perturbed
Laplace operator witn Neumann boundary condition. Define A and Ay, for h € (0, 1] to be the unique
unbounded linear operator such that

o\,
zlxlul - Aiu’w

Ag: X(I) D Xpin(I) — X(I), Agu; = 02
/ih : X(Q) D) szn(Q) — X(Q), fihwij = *di’UJh(’wij) = (831 + h_26§2)wi]~ = )\%hwij,

and denote A = fil.
Define the unbounded linear operators Ay and Ay, for h € (0, 1]:

Ag: X(I) 5 D(Ag) = X(I), D(Ao) = {u € X(I): 3 (1 = A (ufui) ) < o0},
1€N

Aou = Z )\lI(U|uz)X(I)Uu
ieN

Ap: X(Q2) D D(Ap) = X(Q), D(Ap) ={w e X(Q): Z (1-— )‘?j7h)2(w|w’ij)§(((2) < 00},
1,JEN

Apw =Y AL (wlwig) x @)wij,
i,jEN

and denote A = A;. Observe that the domain D(A},) does not depend on h since )\% < )\%h < h_QA%,
i.e. D(Ap) = D(A) for any h € (0, 1].

Next we collect spectral properties of operators Ay, Ay,.
Lemma 2.2.

1. The operator Ay (resp. Ay) is the closure of the operator Ay (resp. Ay).

2. Operators Ag and Ay, are self-adjoint and nonpositive.
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3. The spectra of operators Ay, Ay, consist entirely of eigenvalues:

o(Ao) = 0p(Ao) = A, o(An) = op(Ap) = A%- (2.6)

4. Resolvent operators R(\, Ag) and R(\, Ap) satisfy

RO\, Ao)u = (A= M)~ (ufui) x 1y, for A € p(Ao), u € X(I), (2.7)
ieN

RO\ Ap)w = >~ (A= A5 5) ™ (wlwij) xywij, for A € p(Ap), w € X(9). (2.8)
ijeN

Proof. We give the proof only for A, (for Ay it is similar). Moreover it is clear that it is enough to
consider the case h = 1.

Step 1 It is readily seen that the operator A is an extension of the operator A. To show that the
operator A is closed let us consider an arbitrary sequence (wy,)5>; C D(A) such that

wy, — w, in X(2), Aw, — v, in X(Q),

for certain w,v € X (). It follows that (w,)S>; is a Cauchy sequence in the Hilbert space X*(Q) =
(D(A), (-]) x1(n)), where

(wlw)xi0y = Y (1= A0 (wlwij) x () (W' Jwij) x (o), for w,w’ € D(A).
ijeN

Thus w € D(A) and Aw = v which proves that A is closed. It is left to prove that G(A) C
clx ()x x(2)G(A). To achieve this goal choose an arbitrary (w, Aw) € G(A). Then the sequence (wy,);24
defined by wy, = 7, i<, (wlwij) x (o) wi; satisfies

w, € D(A), forn>1,
(wp, Awy,) — (w, Aw), in X(Q) x X(Q),

which completes the proof of 1.
Step 2 To prove that the operator A is symmetric and nonpositive let us observe that for w,w’ € D(A)
we have

(Aw”w/)X(Q) = Z (Aw’wij)X( (w ’wu xX(Q) = Z )\ (w|wij) x ( I|wij)X(Q) =

i,jEN i,jJEN
= ) (wlwij) x () (A [wij) x () = (w]Aw) x o),
i,jeN
(Aw|w) x(q) Z A (wlwif) %
4,JEN

Moreover A is densely defined since X¢;,(2) C D(A) and X ¢;,(£2) is dense in X (€2) by Lemma
thus it is possible to define the adjoint operator A*. To prove that A is self-adjoint it is left to prove
that D(A*) = D(A), which is equivalent to D(A*) C D(A) since the opposite inclusion always holds.
Choose arbitrary w’ € D(A*). By definition of D(A*) there exists unique v € X (92) such that for
every w € D(A) one has (w'|Aw)x ) = (v|w)x(q). Choosing w = w;; we obtain )\Q( w'|wij) x () =

(v|wij)x (@) Finally w' € D(A) since >, (1 — )\%)Q(w’|wij)§((m <231+ |)\%] ) (W' lwig)3 Y@ =
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2("“’/”%((9) + Hv”gg(g)) < 0.
Step 3 Since Aw;; = )\?jwij we obtain that A C 0,(A). For A ¢ A\ define the operator

B\, Aw = (A= X))~ (wlwij) x(@)wij-
i?j
One checks easily that B(\, A) € £(X(92)), B(A\, A)w € D(A) for w € X(2). Moreover B(\, A)(X —
A)w =w for w € D(A) and (A — A)B(\, A)w = w for w € X () which is easily seen for w € X;,(Q)
and by the density argument can be extended to D(A) and X (Q). Thus p(A) = C\ A%, R(\, A) =
B(\, A) for X € p(A) and o(A) = g,(A) = A\ O

Since operators Ay, Ay are self-adjoint and nonpositive they generate strongly continuous analytic

semigroups et4o and etAn :
ety = Ze”‘{ (u|ui) x (ryui, for u € X(I), (2.9)
1eN
etAny = Z eNiin (wlwij) x (@)wij, for w € X (). (2.10)
i,jEN

Since operators I — Ag and I — A are self-adjoint and positive one can define their fractional powers
(I — Ap)® and (I — A)*® for s > 0. Their domains D((I — Ap)®) and D((I — A)®) become Hilbert spaces
(which we denote X*(I) and X*(£2)) when equipped with appropriate scalar products. For s > 0
spaces X*(I) and X*(Q) are defined as follows

Xo(I) = {ue X (1) : Y (1= A (ului)(py < o0},

ieN
(ulu') xs(r) = Z(l — XD (ulw) x(ry (W |ui) x 1y, for u,u’ € X5(1),
€N
X3Q) ={w e X(Q): Y (1= ) (wwi)kq) < o}
i,jEN
(ww) xsy = D (1= A3 (wlwis) x o) (W' |wij) x (), for w,w’ € X*(€).
1,jJEN

In the next lemma we give correspondence between scalar products in X*® spaces.

Lemma 2.3.
1. For s1 > s9 > 0 the following equalities hold
(ulug) xon 1y = (1= N2 (wfuy) sa gy, for w € X*(I), (2.11)
(wlwij) xo1 @) = (1= AL)2E752) (wlwi) xoo (0, for w € X1 (Q). (2.12)
2. The set {u; : i € N} (resp. {wi; : i,j € N}) is a complete orthogonal system in X*(I) (resp.

X?*(Q)) for any s > 0. In particular if s1 > sa > 0 then X*'(I) (resp. X*1(2)) is a dense
subspace of X*2(I) (resp. X*2(2)).

3. For U € {1,Q}, s1 > s9 >0 the space X*1(U) imbeds compactly into X*2(U):

X (U) cC X%2(U). (2.13)
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Proof.
Step 1 We give the proof for U = I only as the one for U = Q is analogous. For s > 0 and u € X*(I)
we have

(i) xs(ry = (1 = M) (ufug) x (1 (wilun) x () = (1 = X)) (wlui) x (1)
keN

from which follows. The proof of is similar.

Step 2 Orthogonality in X*® follows from , and Lemma. For the proof of completeness
of {u; : i € N} notice that if u € X*(I) then denoting u, = Y i ((u|u;) x(ryu; one has lim, o |lu —
Un"%(s([) = limp o0 Yot (1 — A2 (ulug)d Xy = 0. Similarly one prooves completeness of {wij -
i,j € N}

Step 3 Let (u")52; be a bounded sequence in X*!(I). Denote M = sup{[|u"||xs1(r) : n € N}. Since
X*1(I) is a Hilbert space we can choose a subsequence (u"*);—1 weakly convergent in X*(I) to certain

¢ X*1(I). In particular

lim (u"’“\ul)xu) = (u“]ui)X(D, for i € N,

k—o0
[u™ xs1(r) < M.
For any ig € Ny we estimate
i0—1 [e%s)
"™ = u™ | Fea ) < Z = AR = ) x ([P (1= AP (1= AP (™ — ufug) x|

=10

.
|
—

0
< D (M= AN = u ) x (P A+ (L= AP w5

_ O

%
09—

< 3T AP — ) e+ AME(L - AL

[e=]

Fix € > 0. Choose ip € Ny such that 4M?(1 — A{O)Z“‘;?*Qsl < €2. Then lim supy,_, . ||u™ —u||xs2 ) < €
and consequently limy, oo [[u"™ — u™||xs2(py) = 0.

Next we extend the scale of Hilbert spaces X*(I), X*(Q2) to s € [—1,0) by duality. More precisely for

any s € [—1,0) we define X*(I) = (X °(1))*, X*°(Q) = (X %(Q))*. Then for s € [—1,0) Banach spaces
X% become Hilbert spaces when equipped with the following scalar products

Nxsy = (1=A)*(u,u; ! ug f 'e X*(1
(ule) ey = D_(1=XD) <u’u>(Xs(1),xfs(1))<u’u>(Xs(1),xfs(1))’ or u, € XX(D),

€N
(2.14)
wlw’) xs(q) = 1—/\?- 25 (w, wyj W, wi; , for w,w’ € X*(Q).
(W) x«(@) iJZE:N< ) < ]>(XS(Q),X—S(Q))< 9>(xs(9),x—s(§z)) ()
(2.15)

Observe that assertions of Lemma [2.3] are still valid without assumming that s, s1, s2 are nonnegative.
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In the following lemma we give relation between X* spaces and complex interpolation.
Lemma 2.4. [X*'(U), X%2(U)]p = X510=0+20(U) for 1,89 > —1, 0 € [0,1], U € {I,Q}.

Proof. We provide the proof for U = () as the one for U = I can be carried out similarly. For s > —1
and i,j € N define Hilbert spaces Zj; = (R, (|)z; ), where (a\a’)zfj =(1- )\Q)2Saa’ for a,a’ € R
and Ir(Z5) = ({a = (ay)ijen : aij € R, 3, jenllagllZ: < oo}, (1)iyzs)), where (ala’)y,zs) =
>ijenlaijlaj;)zs for a,a’ € 13(Z7;). Define map

d(w) = (<w,wij>(X_1(Q)7X1(Q)))iijN, for w € X71(Q).

Observe that @ is an isometric isomorphism between X*(§2) and 5(Z};) for any s > —1. This fact
allows as to justify the first and the fourth equality in

[X51(Q), X°2(D)]g = [12(Z5), 12(Z2)]o = 1125, Z32)9) = Lo(Z5170H20) = xo1(-0)+s20(),

17 ?

while the second equality follows from [[31], Chap. 1.18.1, Theorem]. O

In the next lemma we characterise X* spaces as Sobolev-Slobodecki spaces with Neumann boundary
condition.

Lemma 2.5. For s € [0,1], U € {I,Q} we have the following characterisation of the spaces X*(U):

X5(U) = {WgS(U) B XY W),

W3N(U) ={u e W3*(U) : Vu-v=00n U} if 3/4 <s <1
(2.16)

Proof. The case when U is an open bounded domain of R™ with a smooth boudary (in particular
U =1)or Uis a half space - U = R, x R"! was treated in [[§], Theorem 2]. The case when U = Q
we divide in several steps.
Step 1 We will show that

XH(Q) = W3 n(). (2.17)
Denote
ui(r1) = cyisin(im(zy +1)/2), x1 € I, Ti(x2) = coisin(inzsy), xo € 1.

Reasoning similarly as in the proof of Lemma we obtain that the set {w; : i € Ny} (resp. {v; :
1 € N+}, {ﬂl ®Uj :14,] € N+},{ﬂi ®wvj :1,€ Ny,j € N},{ul ®Uj 11 € Ny,j € N}) is a complete
orthonormal system in X (I) (resp. X (1), X (), X(Q), X(©2)). Compute

. _ _ . _ I _
Op w5 = —(m/2)ui®vj = - \)\ﬂui@)vj, OpoWij = —(Jm)u; ® 05 = —\/|)\j+|u,~®fuj
. . I
07 4y wij = —(im/2)?wi; = Nwij,  85,,,wij = —(jm) wi; = X wi

/ Iy — _
6.51932 = 822231 (171—/2)(']71' uZ XU v] ‘)\7,[")\]+ ‘uz ® Uj.

Observe that Xy;,(2) C WQQN(Q) Let w € X (). Using the triangle inequality and (a + b)?
2(a® + b?) we estimate

w3 @) = I = A)wlf ) < 20wl ) + 20107, 2, wl1Z,0) + 107,0,wI17,0) < 4wl -
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On the other hand

ol @y = lwl300) +Z||azzw||L2(m +ZZ||a£l%wnL2

i=1 j=1
I I
= Z (L4 M+ T+ NP+ I 4+ 200 [ D (wlwig)k @

I
< QZ 1 - )\I + (w|ww)§((ﬂ)

= QZ 1= N2 (wlwig)x o) = 2lwlX1 ()

Thus norms ||-||W22(Q) and ||| x1(q) are equivalent on Xz, (€2).

In particular X(Q) = clx1(Xfin () = clyz (X pin(Q2)) C W22N(Q) It is left to prove that W22N(Q) C
X1(Q). Choose arbitrary u € W22N(Q) and let f =u — Au. Then f € X(Q). Let w = R(1,A)f. Since
xX4Q) c WQQN(Q) thus w € WQQN(Q) and f = w — Aw. We have

0= [w=uf=p= [ @=uf~ [@-waw=w= [@=-uf+ [ [Vw-wp

since V(w — u) - v = 0 on 9. Finally we obtain that u = w € X1(1).
Step 2 We will show that for U € {(R;)?, Q}:

W2 ((U)if 0<s<3/4

] . (2.18)
W2 (U) if 3/4 < s < 1.

[L2(U), W3 n(U)]s = {

To prove (2.18) for U = (R )? we proceed as in the proof of [[§], Theorem 2] for the case U = R, x R
substituting functions 7 and v from that proof by

V' Lo((Ry)?) = La(R?), vu(zr, 22) = u(|a1l, |z2]),

Z v(€e1x, €2x2).

61,626{—1,1}

7' Loy(R?) — Lo((Ry)?), 7'v(zy,x0) =

NH

Observe that the only nonsmooth points of rectangle €2 are the corners. We choose the covering of
Q by four open subsets {§2;} such that each of them contains exactly one corner. Then a standard
argument involving partition of unity inscribed in the covering {€2;} allows us to adapt (2.18]) from
U=Ry)?toU=0.

Step 3 Using Lemma [2.4 and (2.17) we obtain X*(2) = [X (), X ()]s = [LQ(Q),WQ%N(Q)]S from
which Lemma [2.5) n 5[ for U Q follows due to ([2.18)). O

In the next lemma we collect imbeddings of X* spaces into Lebesgue spaces L, and the space of
continuous functions.

Lemma 2.6. We have the following imbeddings

C)if1/4<s

, X°(I) C Loya—as)(1), 2.19
Ly(I)if 0<s<1/4, 1<p<2/(1—4s) (1)  Laj1-15) (1) (2.19)

X*(1) CC{
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C@)if 1/2< s

, X)) C Lyj1-24(9). 2.20
Ly(Q)if 0<s<1/2, 1 <p<2/(1—2s) () € Lyja-29) () (2.20)

X3(Q) CC{

Proof. Imbeddings (2.19) and (2.20]) are straigthforward consequences of the well-known continuous
imbeddings of fractional Sobolev spaces W (see for instance [[I], Theorem 7.27]), characterisation of
X?® spaces given in and compact imbeddings of X* spaces given in (2.13]). ]

For s > —1 define operator Ay (resp. Ap ) as X*(I) (resp. X*(§2)) realisation of operator Ag (resp.
Ah) i.e.

Ag,s : X3(I) D X*H(I) = X3(I), Aosu= Y N (ului)xryus, for u € X*H(I),

€N
Ah,s : XS(Q) D) X8+1(Q) — XS(Q), Ahﬁw = Z )\?j,h(w\wij)x(g)wij, for w € X8+1(Q).
1,7EN

Operators Ay s, Ap s are self-adjoint and nonpositive and thus generate strongly continuous, analytic
semigroups of contractions et40s € L(X*(I)), etAns € L(X3(Q)).

If s; > s3 > —1 then operators Ag s, , R(\, Ao 5, ), et40.51 are restrictions of operators Ap sy, R(X, Ao sy), et40,52
and operators A, ¢, R(A, Aps, ), € tAh 1 are restrictions of operators Ay, s,, R(\, Ap.s,), etnss je.
Ag s, u = Ag syu, for u € XH(T),
R(\, Ap.s)u = R\, Ag s, )u, €01y = e 0saq for u € X*1(I),
Apsyw = Ap g,w, for w e X81+1(Q),
R(X, Aps, )w = R(A, Ap s, )w, etAnsiqy = etAhsayy, for w € X°H(Q).
From now on we will loose s-dependence in notation and write Ag, Ay, R(\, Ag), R(\, Ap,), et etAn

instead of Ag s, Aps, RN, Ao.s), R(A, Ap ), etA0s etAnss,

In the next lemma we collect basic estimates for the resolvents R(\, Ap), R(A, Aj,) and semigroups
tAg tAp
etfo etdn,

Lemma 2.7. For h € (0,1], A >0, ¢t > 0 the following estimates hold

1
A s s! ,A s s/ S N
RN, Aol 2oxs (), x+ (ry) T IR Al £ xs0), x+ (92 C)\(

1
11 sy, + 1€ ooy < €1+ F) “lssss, (222)

1+XA7%), -1<s<s <s+1, (221)

where C depends only on s,s’.

Proof. The proof may be obtained with the use of spectral decomposition. For details we refer to the
proof of the Lemma where we use the same technique. O

Operators F, P and Tr

Define operators

E € L(X(I), X(Q), [Eu)(z1,22) = u(z1), for u e X(I), (2.23)

PeL(X(Q),X()), [P / w(wy, x2)dxs, for w e X (). (2.24)
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Basic properties of operators F and P are collected in the following

Lemma 2.8. Operators E and P are mutually adjoint i.e. E* = P. Moreover
E e L(X°(]),X%(Q)), Pe L(X*(Q),X°()), for s > 0. (2.25)
Proof. To prove that E* = P we need to show that
(Bulw) x(q) = (u|Pw) x(r), for u € X(I),w € X(1). (2.26)
Observe that for 7,5,k € N
Euy, = wio and Pw;j = u;0;. (2.27)
Thus
(Buk|wij) x @) = (wrolwij) x (@) = Oridoj = (ur|uido) x (1) = (ur|Pwij) x (1)-

Owing to bilinearity of scalar products we obtain (2.26) for u € Xy (I),w € Xy () and finally
by density of X i, (I) (resp. Xin(2)) in X (1) (resp. X(€2)) and continuity of scalar products and
operators E, P we obtain (2.26)) for arbitrary v € X (I),w € X(Q).

For u € X*(I) we obtain

Bl %s () = Z(l = X)* (Bulwi)x ) = (1= AD¥ (wPwij)x ) = > (1 = M) (ului) k(0005
i,J 4.J

= Z (1= A0) (ulud) X (1) = llullXs(r),
since )\l% = )\Z-I . Similarly

[Pwllxs(1) ZZ( = ADF(Pwlur) gy = D (1= AN)* (wlBun)k )
k

Z (1- )\ w’ka)X(I < HWHX
k

O]

Define operator P_y = E’ and operator £_; = P’. Using Lemma we obtain that P_1 and F_4
satisfy

Py e L(X(Q), X (1)), Bt € L(X*(I),X (), 5 € [0,1].
Moreover for u € X(I), w € X(Q)
P iw=Fw=Fw=Pw, FE_ju=Pu=P*u=FEu.

From now on we will write F, P instead of F_1, P_1.

For w € X7, (€2) denote by Tr(w) the trace operator i.e. restriction of w to I x {0}:

Tr(w)(z1) = w(xy,0), for x; € 1.
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Lemma 2.9. For any s > 1/4 there exists C' depending only on s such that for any w € X 1, ()
ITr (W)l xs-1/4¢ry < Cllwlxs(0)- (2.28)
The operator Tr can be uniquely extended to an operator Tr € L(X*(), X*~V/4(I)) .

Proof. Forw=">", >0 @ijwi; where only finitely many a;; are nonzero we have

E azjulv] E g CLUCQ]

4,7>0 >0 720
Using Lemma we get that the system {u;} is orthogonal in X*~1/4(I) and HuiHﬁ(s_w(I) =(1-
AD25=1/2 = (1 4 (im/2)2)?571/2. Since 0 < coj < V2 (see (2-5)) we thus obtain
1T (@) Zeimsrary = D asgea)* il Zeassagry < 230 lagg (1 + (im/2))? 12
>0 720 >0 720
<2< ) ZZ\@Z] (1+ i)t L
i>0 j>0
Using Cauchy-Schwarz inequality to estimate the inner sum we further obtain that
4s—1 S 1 Nds—
ITr )i <2(5) D laiPU+i+ )" gm0
>0 j>0 jz0 T
T 48—1 48 2 . . 48
<2(3) 7 g Ol i+ i), (2:29)
i>0 j>0
where the last inequality is a consequence of the following estimate
1 + \4s—1 1 + \4s—1 [e’s) dt
S e s T S e < [
70 J i J 14
4s
— 1 1 Nds—1 1 1—4s — .
FA+ T4 15— 1
On the other hand since the system {w;;} is orthogonal in X*(€) and
lwij|5s @) = (1= N> = (14 (im/2)* + (jm)*)* > 372(1 i + j)*
we have
lollXe@y = X laisPlwilie@y = D (D lay (1 + (in/2)® + (jm)*)>)
1,520 >0 j=>0
>33 (O laglP(1+i+5)"). (2.30)
i>0 >0

Combining (2.29) and (2.30) we obtain (2.28) with C? = 32¢(7/2)*~18s/(4s — 1). Since X;n () is
dense in X S(Q) (see part 2 of Lemma[2.3) the latter part of the Lemma follows. O

From now on we write T instead of Tr.
Next we collect several identities involving operators P, E, Tr, R(\, Ay), R(\, Ag), !4 and ef4o.
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Lemma 2.10. The following identities hold

PTr'vw=TrEu= PEu=wu, forue X *(I), 1>s5>0 (2.31a)
R\, Ap)E = ER(\, Ag), for hh > 0 (2.31D)
enE = Eet | for h > 0. (2.31c)

Proof. Identities Tr Eu = PEu = u are obvious for v € X(I) and can be extended to the case when
u € X7%(I) by a density argument. Then

PTr'u=E'"Tr'v= (TrE)u = u,

from which ([2.31a)) follows.

Since Fu; = w; for any ¢ > 0 hence

R()\, Ah)Euz = R()\, Ah)wio = Wi;0 = i = ER()\, Ao)uZ

1
L= By
PREDYS) A=

Since {u;}i>o is a Schauder basis in every X*(I) (see part 2 of Lemmal[2.3)) we obtain (2.31b). Similarly
one proves ([2.31d]). O

Resolvent and semigroup estimates used in the dimension reduction

Estimates for semigroup e*4" and resolvent operator R(\, Ap,) which are presented in the next lemma
are of fundamental importance in the dimension reduction carried out in Section

Lemma 2.11. For h € (0,1}, s,8' > —1, t, A\ >0, w € X*(Q) the following estimates hold

||R()\, Ah)([ — EP)wHXS’(Q) S W(l + ()\ — )\gl’h)S,_S)H(I — EP)’UJ”X5(Q), 0 S 8/ — S S 1,
01,h
(2.32)
41 = BP)ull o) < (14 s )™ = BPJull oy, 05 =5 (2:33)

where C depends only on s,s’.

Proof. Since X7, () is dense in X*(§2) (see part 2 of Lemma one can assume that w € X, (£2)
ie. w= Zi,jzo a;;w;; where only finitely many a;; are nonzero. Define

(1= .
Ml :SUP{/\_/\Q’Z: 220,] 2 1}
1‘77
Observe that
(I — EP)wij = W5 — E(uiéoj) = Wij; — wz‘o(SOj = wij(l — (50]'), (2.34)
(wij’wkl)xs’(g) =(1- )\%)25151‘3'5;‘1, (2.35)
lwisll oy = (1= X5~ llwijll xs0)- (2.36)
(@)

28



Indeed is a snnple consequence of the definitions of operators E and P (see (2.23)),(2.24])) and

, Whlle and - follow from Lemma. 2.3] Using ([2.34 - and ([2.36)) we estimate

1
HR(A,Ah)(I—EP)wHis/(Q | Z azjwing(s/(Q): > TESRE 'Lg”wl]HXs @
i>0 ]>1 ZJ h i>0,5>1 ij,h
1 _
= . PSR 0y (1= N2 i Feoa) < M7 Y allwig s
i>0,5>1 ij,h 1>0,5>1

= M?|(I — EP)w|%.(qy
To finish the proof of it is left to show that
M, < A—];Eful(l + A= AE L)), (2.37)
Using condition 0 < s’ — s < 1 and the following inequality
I+x)*<1l+a%forz>0,0<a<l
we estimate

(=20 (A0 L4 (A0 1)

ij,h
Q — Q — Q — Q
A=A2, A=A, A=A, A=A,
1 1 1 1 1

(T+ (A= A5)" )

, < 5t =
()\ PRy L) —S) A — 28 (A — )‘&,h)l_(s =) A — Ath A— )‘(S)ZLh

ij,h ij,h

from which (2.37) and consequently (2.32)) follows. We move to the proof of (2.33)). Reasoning as in
the proof of (2.32)) we obtain that for w € X*(Q)

e (1w — EPw)|| v gy < Mol — EPul| -0,
where
My = sup{(1 — )\%) exp(t)\w p):1>0,7>1}.
Using inequality ((1.8a)) from Lemma we estimate for ¢ > 0,5 > 1
(1= A" fexp(tAll,) = 1+ (W/Q) + (jm)2)* exp(—t((im/2)* + (jm/h)?))
= (1+ (im/2)* + (jm)*)" * eXp(—ﬁ(l + (im/2)? + (j7)?)) exp(—t(im/2)?) eXp(h2 (14 (in/2)*))
< sup{z*"* exp(—

%:c) cw > 14 (i7/2)% + 72} exp(—t(in/2)?) exp(h2 (1+ (i7/2)2))
2

< O(Y 4 (U /2 4 7)) expl— iy (1 + (i/2)” + 7)) exp(—t(im/2)%) exply (1 + (im/2)?))

h’2 s'—s . 2 2\s t7T2
=C((5) "+ L+ (m/2)" +m )* %) exp(—t(im/2)?) exp(—=7)
1 i /9)2 s'—s 2
< O + 1+ W i /20) exo(- )
1 1 / tr? 1 tr?
< T s'—s - > < i 7).
S OO+ g + oy sup{e” exp(—2) 1 2 2 0}) exp(——5) < O(1 + ) exp(——5)

29



The multiplication operator

For 1 <p <oocand 02> f € L,(I) we define the multiplication operator My
My : Loo(I) D D(My) = Loo(I), Mpu = fu, (2.38)

where D(My) = {u € Loo(I) : fu € Lo(I)}. Observe that if u € Lo (I) and Re(A) > 0 then
R(A\, Myp)u = 525 € Loo(I) and ||[R(X, My)llz(ro (1)) < 1/|Al, which proves that My is sectorial and

thus generates an analytic semigroup etMr:
eMiy = etfu, u e Lo(I).

Basic estimates concerning e*™s are collected in the following

Lemma 2.12. Assume that 0 > f, f1, fo € Ly(I). Then for t,t' >0

1™ epwry < 1, (2.39)
et Mr — ethHE(Loo(I),Lp(I)) <" =t fllz, ) (2.40)
e — ezl (1), L)) < 1 = Fallz, ) (2.41)

Proof. Using inequalities
0<6$§1; |€m_6y| < |$—y|7 xay<07
we get for u € Loo(I),t,t' >0
le™ oo = [l ull L) < Nl lloollull Lor) < 1ulloo,
/M M / /
(™M — eMyal iy = (e = el < Nl = e, llelloo < 18 =LAy oo,
(™ — M yullp oy = (e = e)ullp, 1) < lle — 2|, pllulleo < tlf1 = falln,@llulloos

from which (2.39)), (2.40) and (2.41)) follow. O

2.2.2. The case of a regular source

Denote

u = (ul7u25u3au4au5) S R57 flaf27f3)f47f5 : R5 — Rv
= —(c1 + ug)ur + caug + cauy,

f5 Uu) = Cc3u2u3 — <b5 + C5)U5.
In this section we study system (2.1)) with ¢ substituted by a regular function w:
Opur + div(Jp(u1)) + byug = 0, (t,x) € Qr (2.42a)
Opug — dO7 ug = fo(uw), (t,z) € (M Q)r (2.42b)
8t’u,3 = fg(’u), (t,IL’) S (819)T (2.42(3)
Oruy = fa(u), (t,x) € (1) (2.42d)
Ous = f5(u), (t,x) € (1) (2.42e)



with boundary and initial conditions

—Jh(ul)l/ =0, (t,x) S (BOQ)T

—Jh(ul)y = fl(u) + w, (t,x) S (81Q)T
8x1u2 =0, (t,a:) S (8619)7‘
u(0,-) = ug

To obtain well-posedness of system (2.42)) we interpret it as a system of abstract ODE’s ((1.10)-
([T.11).

Assume that

d,b>0, ¢,p>0, (2.43a)
1/2 <s<s <3/4, (2.43Db)
0 <w € Loo(I). (2.43c)

Define spaces

Xy = X(Q), X = XOI), X = Xy = X5 = Loo(I)
Xl = X7 (Q), X = X(1), & = X} = X = Loo(I)

Set a = (1+s—s,1/2,1/2,1/2,1/2) and observe that due to Lemma [2.4] we have
XY = X5(0) x XY2(I) x (Loo(I))>.
Define operators

A= (A, —b1)u, u € X},
Asu = dAyu, u € Xy
Ai=0,71=3,4,5

and for u € X“ set

Fi(w) = Tr'[fi(Tr(w), us, . .. us) + ]
]:Z(u) = fi(TT’(’LLl),UQ, s ,U5), 1= 273745 5.

The main result of the present section is the following

Theorem 2.1. Assume (2.43). Then for every 0 < ug € X system (2.42)) has a unique globally in
time defined X% solution w. The solution w is nonnegative and satisfies for all times the following
estimate

[us()lloo + lua(®)lloo + llus(t)]loo < C (2.44)

where C' depends only on ||uspl|eo + [|240/co + ||50]00, b3, ba, b5, D3.

Proof.
Step 1 - local existence of solution.
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Using assumption , Lemma and Lemma we get
XY= X°(Q) x XY2(I) x (Loo(1))? € C(€) x C(I) x (Lo (1))?,
Tr' € L(Lso(I), X1),
Tr e L(X,C(]))

from where we deduce that for u,w € X“ the following estimates hold

5
Zuf ||X<c{1+ZHuzuxz<1+|ru3HX;3>+ZHuz-ngi+||wuoo} (2.45)
=4

=1
an W) < O an — g (1 + gl on + [ o)
2 5
o g = gl (1 D (Uil s + L)) + s = o }
i=1 i=4

Using above estimates we conclude that assumptions of Lemma are satisfied which results in the
existence of a unique maximally defined X'® solution to (2.42)).

Step 2 - nonnegativity of solution.

Reasoning as in Step 1 we obtain that system

Oy + div(Jp(v1)) + bivg =0, (t,x) € Qr (2.46a)
Oyva — dO2 va = for(v), (t,x) € (1)1 (2.46b)
Oyvg = +(’U), (t,z) € (1) (2.46¢)
Oy = fat(v), (t,x) € (019Q)1 (2.46d)
s = f51(v), (t,z) € (M) (2.46e)
with boundary and initial conditions
—Jp(v)v =0, (t,z) € (0oQ)r
—Jp(v1)v = f14(v) + w, (t,z) € (01Q)r
Oz, v2 =0, (t,x) € (00:192)1
v(0,-) = up
where for i =1,...,5 and v € R’

fir(0) = fil(vi)4, .-, (v5)4)

has a unique maximal X solution v(t). Note by T}, its time of existence.
Testing (2.46al),. . .,(2.46€) by (v1)_, ..., (vs)— we obtain

1d _
- 5%”(01)—”%((9) - ||321(U1)—||,2><(Q) —h 2||3oc2 (Ul)—H,QX(Q) - bl||(?f1)—\|.2x(ﬂ) =

/I(f1+(vl(331,0), ’U2(331), e ,’U5(.T1)) + w(ml))(vl(ml,O)),d:cl

d

- %%H(UQ)—H%((I) = d)| 0z, (v2) 1% (1 /f2+ v1(21,0), v2(21), - . v5(21)) (va(21)) ~dy
d

a %%H(WLH%{(I) - /Ifi+(U1(fE1,0)aU2(fU1), - vs(@)) (vi(en)) —day, @ = 3,4, 5.
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Since right hand sides of above equalities are nonnegative we obtain that

5
d
%[H(vl)—llgqm + 3 llw)-l%p] <0

=2
5 5

1Cor (D)= 15y + D)~y < Iwor)- [ + Dl (wod) -1 1y = 0.
i=2 i=2

Which proves that the only solution of system ([2.46)) is nonnegative. Since for v > 0 there is f;1(v) =
fi(v) we see that Tyax > 11 .. and u(t) = v(t) for t € [0,7),,,). Finally observe that if T} .. < oo

- max ) T max

then owing to the blow-up condition (|1.12)

ax

limsup ||u(t)|| xe = limsup ||v(t)||xe = o0
t—Tax t—=Thax

whence Tiax = Thox

and finally u(t) > 0 for ¢ € [0, Tynax)-

Step 3 - global solvability: Tj,.x = oo.

Adding equations (2.42d)),(2.42d)),(2.42¢)) and using nonnegativity of u we get

Oy (u3 4 ug + us) + min{bs, by, bs } (u3 + ug + us) < p3

from which we conclude that there exists C' depending only on ||uso||eo + [|240]|co + ||450]| 00, b3, b4, b5, D3
such that

[[uz () lloo + lua(®)llo + llus(t)llco < C ¢ € [0, Tiax)- (2.47)

Using (2.47)) and (2.45)) we get that condition (1.13)) is satisfied which gives Tinax = 00.

The case of a singular source and dimension reduction

We begin by introducing auxiliary functions which are used in the definition of M-mild solution
presented in section

2.2.3. Auxiliary functions

Let us recall the definition of the standard one dimensional mollifier

C —t), <1
s < [ () ml <1 e >0
0, |$1‘ Z 1

where C' is such that fR n=1.

The next lemma concerns convergence of 1 as € — 0.
Lemma 2.13. For any 0 < s the following convergence holds

E£%1+H77€ — 5HX71/475(I) — 0 (248)
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Proof. Without loss of generality assume that s < 1/8. It is enough to show that every sequence
(€n)o of positive numbers which converges to 0 has a subsequence (e, )32, such that

nee — § in X YAS(1). (2.49)

Since X/4*s5(I) cc C(I) (see Lemma [2.6) thus M(I) = C(I)* cc X~V/4=5(I). Fix any sequence
(€)52; of positive numbers which converges to 0. Since (7). ; is a bounded sequence in M (1) then,
by the previous observation, one can choose a subsequence (€, ) such that

Nk — w in X~YA75(D),

for certain u € X~ /475(I). Finally observe that for any v € X'/4+5(I) one has

<u,v>(X71/475(1)7X1/4+5(I)) - klgrolo <77 nk’U>(X71/475(1)7X1/4+S(1)) - kl;ngo 177 "o =v(0),

where the first equality is a consequence of the fact that strong convergence in X 1/4—$ (I) implies
convergence in the weak star topology of X ~1/4-s (I) while the third equality follows from a well known
fact that ¢ converges to § in the weak star topology of M(I). Thus u = § and ([2.49) follows. O

From now on we denote
"’ =6, p=(h,e) € (0,1] x [0,1] and po = (h,0). (2.50)

Next we define auxiliary functions m* and m° which play a fundamental role in the definition of
M-mild solution which is given in section [2.2.4

m* = R(by, Ap)(p1Tr'n°), mO = R(by, Ag)(p10). (2.51)

From (2.51)) we get that m# for € > 0 and m® are W3 weak solutions of the following boundary value
problems

bym* + div(Jp(m*)) =0, r € (2.52a)
—Jp(m*)v =0, x € 0pf) (2.52b)
—Jp(m*)v = p1nS, x € 019, (2.52¢)
bym? — d8 m =m0, 1 €1 (2.53a)
Dpym® =0, x1 € 0I. (2.53b)

Concerning regularity of m" and m* we have the following

Lemma 2.14. Let m® and m* be given by (2.51)) then
m® e Wi (I), (2.54)
m* € W, () for any 1 < p <2, (2.55)
Hmﬂuxl/Z—s(Q) <C,0<s< 3/2 (256)
Hm“ — m“0HX1/275(Q < CHT}E - (5”X71/4—S(I)7 0<s < 3/4 (257)
1

HmILLO Em HX1/2 5(Q) < C‘)\Q | 5/2° 0<s < 3/2, (258)

where C' does not depend on . Moreover m*, m°® > 0.
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Proof. To prove (2.54)) define u(z1) = m®(z1) +

LL|z1|. Then using (2.53) we obtain that byu—doz u =

b1p1|:1:1| for #; € I. We conclude that u € 02( ) from where (2.54) follows. The claim ([2.55) is a

consequence of Lemma [2.17]
Using (2.21)), (2.28)), (2.48) we estimate

[m#| x1/2-5) < PLIR(Ob1, Ap) || g(x-1/2-5(0), x1/2-5(

Q)) HT’["/HE(X—1/4—S(I)7X—1/2—S(Q

from which (2.56|) follows. To prove ([2.57)) we proceed in a similar manner

Wl x-1/a-sry £ C,

[[m# — muouxl/%s(g) < p1[|R(b1, Ah)HC(X*1/2*S(Q),X1/2*S(Q)) HTT,”E(X*l/‘lfs(I),X*1/2*3(Q)) In° — 5”)(71/475(1)-

Using (2.31a)) we get that 6 = PT’¢ hence using (2.31b)) and (2.32) we obtain

[m#® — Em®|| x1/2-<(q) = p1l|R(b1, Ap)Tr'6 — ER(b1, Ao) PT7' 8| x1/2-+(q)

:pﬂRwhAwU—lNWﬂﬁmxmﬁm)SC<

Moreover using (2.28) and ([2.48]) we have

||(I EP)TT 5||X 1/2— 5/2 < ||I EPHEX 1/2— 5/2

Finally to finish the proof of (2.58|) observe that

1 1

(b1 — )‘01 h)s/z by — Agl,h

))HTT/||5(X‘1/4_S/2(1):X_1/2_S/2(Q))

+ <
(b1 = AL p)*% b= AR, AL

s/2°

)WI—EPHWMquﬂmmy

||5HX—1/4—S/2(1) <C.

Using maximum principle for elliptic boundary value problem (2.52) we get that m* > 0 for € > 0.

Then (2.57)) implies that m*® > 0 while m® > 0 follows from (2.58)).

Recall that u = (h,€) € (0,1] x [0, 1]. Substituting ¢ by 1 in (2.1]) we get

Ol + div(Jp(ul)) + blul =0,

Opuly — do2 uly = fo(uh),
8tu3 = f3(u"),
3tu fa(u?),
Opus = f5(ut),

with boundary and initial conditions

—Jp(uf)v =0,
—Jn(uf)v = fi(u") + pin,
Oz uby =0,
u(0, ) = uy,

where

I R R
ut = (uf, ufy,ufy,uy, ul).
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(t,z) € Qp

(t,z) € (01Q)r
(t,z) € (01Q)r
(t,z) € (1)
(t,z) € (1)

(2.60)



2.2.4. Definition of M-mild solution

Using Theoremwe obtain that for e € (0, 1] system (2.59)) has a unique globally defined X solution.
Unfortunately due to regularity issues the notion of X“ solution is insufficient for the case e = 0. Due

to the presence of a singular source term any potential solution u/®

has to be unbounded function of

x for any positive time which causes problems in the ODE part of the system. This motivates us to
generalize the notion of solution. We rewrite our problem in the new variables so that system (2.59)
with singular source term is transformed into system (2.63)) with regular sources and low regularity

initial data.

Observe that putting

N A A TR TR A 7 T T
ZH_(Z17227237Z4725)_M(U1_m#7u27u37u47u5)7

zly = (2h), 202, 203, 204, 205) = M (ug1 — m*, uoz, uos, U4, Uos),

where m* was defined in (2.51)) and M denotes the following matrix

1,0,0,0,0
0,1,0,0,0

M = 10,0,1,0,0] ,
0,0,1,1,0
0,0,1,1,1

system (2.59)) can be rewritten as

with boundary and initial conditions

where

Oz + div(Jp(2))) + b12) =0, (t,x) € Qr
Oy — dO2 2 = gh(z"), (t,z1) € (0192)
Oz + Tr(mh)z = gs(2*), (t,x1) € (19)
o2l = ga(2"), (t,z1) € (1)
Ozt = g5(2"), (t,z1) € (1))
—Jp( v =0, (t,z) € (QQ)r
—Jn(z)v = gy ("), (t,x1) € (D1Q)r
O 24 =0, (t,x1) € (001Q)1
zM(0,-) = 28,

gf,gg I xRS — R, g3,94,95 :R? — R,
g(z) = —c121 + caza — 2123 + ca(z4 — 23) — (c1 + 23)Tr(m*),
gh(2) = —baza + c121 — cozo — 32223 + ¢5(25 — 24) + 1 Tr(mM),
93(2) = —bszz — 2123 — c32023 + ca(24 — 23) + c5(25 — 24) + p3,
ga(z) = —bgzz — ba(z4 — 23) — c32z223 + c5(25 — 24) + p3,

(2)

= —b323 — bs(24 — 23) — bs(25 — 24) + p3.
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Assume that:
dvb > 07 ¢,p 2 07

2<p< 0<O< {1 1}
mln
p=00 167 2p

0 < up = (uo1, ... ugs) € X/20(Q) x XV2(I) x {Loo(1)}>.

Define Banach spaces

Z_ =71 XZy XZ3 X Zy xZs =X7Q) x X(I) x Ly(I) x Ly(I) x Ly(I),
Z =7y X Zy x Zy x Zy x Zs = X270(Q) x XV2(I) x Ly(I) x Ly(I) x Ly(I),
Z, =214 X Zoy X Zag X Ty X Zsy = XV20(Q) x XV2(I) x Loo(I) X Loo(I) X

For z € Z put

Gl(z) =Tr' (g4 (Tr(z1), 22, 23, 24, 25)),
GY(z) = g5 (T'r(=1), 22, 23, 24, 25),
Gi(z) = ¢i(Tr(21), 22, 23, 24, 25), © € {3,4,5}.

(2.64a)
(2.64b)

(2.64c)

Loo(D).

Definition 1. Fiz u = (h,e) € (0,1] x [0,1] and let 2", z}y be related with u*,ug by equations (2.61))
and (2.62). We define u" as a M-mild solution of system (2.59) on [0,T) if the following three

conditions are satisfied
1. Assumptions ([2.64) hold.
2. The function z* has the following regularity

A e C([0,7), 21), t228 € Loo(0,T; Z1y) for T' < T,
2 € O([0,1), Z2),

25 € C([0,T),Z3) N Loo(0, T Z3+),

#'e C([0,T),Ziy), i € {4,5}.

3. For every t € [0,T) the following Duhamel formulas hold
¢
() = g+ [ IGy e

t
0 = oz + [ DG ()i
0

t
2h(t) = e T a5 + / e~ =DM Gy (20 (7)) dr,
0
t
2 (t) = 20i + / Gi(z"(7))dr, i € {4,5}.
0

Concerning regularity of M-mild solutions we have the following

Remark 1. If u* is a M-mild solution of system (2.59|) then
uf € O([0,7), W, 72°(Q)), t*ul € Loo(0,T; W (Q)) for 1 < p <2,
uhy € C([0,T), Wy (1)),
u; € C([0,T), Ly(I)) N Loo (0, T'; Loo(I)) for i € {3,4,5}.
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Proof. Using Lemmaﬁwe obtain that Z; = W3 =2%(Q), Z, = W3 2(Q), Zy = W3 (I). Using Lemma
mt e Wy (Q) N W, ~20(Q)) for 1 < p < 2. Thus using (2.61)) and (2.65) we obtain that

uf =24 +mt C O(0,T), Wi~ (Q)),

t20ul = 1202 + t2mt C Loo(0, T, W3 (Q)) + Loo(0,T; W, (Q)) € Loo(0,T; W)

Similarly one shows (2.67b)) and (2.67c]). O

2.2.5. The main results of Section [2.2]

We first prove that for € > 0 system (2.59)) has a unique M-mild solution and study its convergence
as € — 0.

Theorem 2.2. Assume (2.64). Then

1. For every p = (h,e) € (0,1] x (0,1], 0 < T < oo system (2.59) has a unique M-mild solution ut
defined on [0,T). This solution is nonnegative and is also X< solution.

2. For every h € (0,1], e =0, 0 < T < oo system (2.59)) has a unique M-mild solution u*° defined
on [0,T). The solution is nonnegative. Moreover if T = oo then for every 0 < T' < oo the
following convergence holds

5
lim {3l = w02 | = 0. (2.68)

+
e—0 1

Next we consider the dimension reduction problem. We show that for ¢ = 0 the solution of system
(2.59) converges to the solution of an appropriate one dimensional problem when h — 0.

Theorem 2.3. Let u* be the unique, global in time M-mild solution of system (2.59) for h € (0,1]
and € = 0. Then for every 0 < T < oo

5

Jim, {||t29(2f0 — D) Ltoriz1,) + O _ll0S° = ug”Loo(O,T;Zi)} =0, (2.69)
=2

where 240 = uf® —mto, 20 = E(ud —m®) and u® = (u9,...,ud) is the unique classical solution of
Oruy — 851114 +biur = fi(u) + p1d (t,z1) € Ino (2.70a)
Gtug — daglfm = fg(u), (t,:(}l) S Ioo (2.70b)
Opuz = f3(u), (t,71) € I (2.70¢)
8tU4 = f4(u), (t,l’l) el (2.70(?1)
Orus = f5(u), (t,x1) € Ino (2.70e)

with boundary and initial conditions
Oz, u1 = Oy, u2 =0, (t,z1) € (D)7

u(0,.) = uf = [Puot, uo2, Uo3, Uoa, Uos)-

Remark 2. Global well-posedness of system ([2.70)) is established in Section .
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2.2.6. Proof of Theorem 2.2

Step 1 - estimates for G;’s.

Lemma 2.15. For z,2' € Z,, p € Z4 x [0,1] the following estimates hold

5
ZHG“ iz +ZHG uzw<c(1+Zszsz+< sz + D leilzy ),

i=1 i=4

Z||G;r‘<z> ||zz,+2||G ()17, < C((+ sl 2, + 1251 2,) anz #llz
=1 =1

2 5
+ (1D (il + 12z )28 = e + Dz = 20z,

=1 =4
2 2
>lci(z) -G ||zl,+2||G () < C((+ 28z, + 125020) DNz = 2z
i=1 =1

2 5
+ (1 D (Uzllzey + 12Hl20) 128 = 2llza, + DMz = 2z, ),

=1 =4

2
Y oIGH (=) = G ()2 < COA+ llzsllze) 11 — Sl x-1/a-0(1)5

where C does not depend on (.

Proof. We will prove inequalities involving G4 and Gs. Inequalities involving G5, G4 and G5 can be
derived analogously. Using condition 1} and Lemma 2.6 . we get that X/ e 9( ) C Lp(I), from
which Tr € L(Z1,Ly(I)) by Lemma 2.9 Using the above observation and Holder’s inequality we
estimate

HGlll(z)”Zl— = HT"JgiL(TT(Zl)v22723724725)HX*1/4*9(Q) < CHQQL(TT(Zl)vZ2aZ3aZ4aZ5)”L2(I)

< C(HTT(Zl)HLz(I) + 22l Loy + 1Tl a1zl + 24l Loy + 23]l )

5
(L zslo) ITr () 1)) < €((1+ anznz+ )1+ lzslzay) + DNzl ),
=4
5
1G5 z5s < C(Izslloe + ITr(z0) ool o0 + 12200025100 + D lzilloc + 1)
=3

2 5
< (0 + Y lallz)( +lzsllz,) + Y llzilz ),
=1 =4

|G (z) = G (2)|z,_ < Cllg{ (Tr(z1), 22, 23, 24, 25) — g1 (Tr(2), 25, 23, 24, 25) | Lo(1)
< (HTT(Zl — 2l ony + 1122 = 23l Loy + 177 (21 — 2D o) 1230100 + 123 = 23]l Lo () 1 T7(21) [l oo

+llza = ZAllza + 2 = Al oy +ITrm) e, llzs =z, ) < O(A+ zslze
E

2 2 5

125l zon) D Mz = 2illz + (L4 D (lzillzis + 2z )z — 250z, + D ll2i ZéHzi)a

=1 =1 1=4
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1G3(2) = Gs(2) ||z, < C(llZs = 2|1, (1) + 1T (21 = 2|z, (nll2sllos + 123 = 2511, 177 (21) Il

5
1122 = 2l llzsllos + l12s = Sz, ylIbloe + 3 llzi = 2y ) < C((1+ sz,
=4

2 2 5
+ 112501 25, ) Z”Zi —2illz; + L+ D (lzillzey + 120z ) 28 — Zllzs + D Nz — Zz"HZi)v

i=1 1=4
1Ga(2) = Ga(2") 0. < C(ll2 = Zlloe + ITr(z1 = 2)llocllz8lloo + 128 = 2o IT7(21) 1o
5
o+ l122 = Zhllo lz8llo0 + 125 = Zllocllhlloc + 1126 = 2Hlloc ) < C(1+ Nzl
=4
2 2 5
1% z0) YoMz = 2l zy + (0 Dzl + 12z, Dllzs = 2Lz, + DMz = 2z, )
=1 =1 =4

IGY (2) = GY°* (2)ll 2, < Cll(ex + 2z8)Tr(m! —m#)|| 1,1y < C(1 4+ [lzslloo) IITr(m — mH )|l 1y 1)
S O+ llzsllzsy ) lIn® = 0ll x-1/a-0z)-

Step 2 - uniqueness of M-mild solution to system (2.59).

Assume that u,u’ are two M-mild solutions of system on [0,7),0 < T < oo, with the same

initial condition. Let z, 2z’ be related with u,u’ by - Fix T/ < T.
For t € (0,T') denote f(t) = S22 ||zi(t) — 2(t)||z,. Put
K\(T") = 1?21\l nc 01200y + 12220 L 0.1 200)

Ki(T') = zill oo 0,120 + zill o017, 20) 1= 2,3
R(T') = max{ Ky (T'), Ka(T"), Ks(T"))

Using condition ([2.65)) we get that f € Loo(0,7") and K(T") < oo. Owing to Lemma we obtain

that for ¢ € (0,7") there is

2 5
ZIIGf(Z(t)) ~GHE )z, + Y _IGi(2(1) = Gi(2'(1))]|z, < C{ (1 + [123()| s
i i=3

2

+ It HZH)ZHZZ Oz + (14 XUzl + 120 12.)) I28(t) = D)z
=1

+Z||zz Az} <o (1+ K T')anz (Ollz+ (14 g Ka(T)

+ K (1)) |25(8) = 24(8) 12 + Zuzz 0l } < O+ R (14 55 ) £
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Using Lemma and owing to the fact that z, 2’ satisfy (2.66]) we obtain for t € (0,7")

70 < [ {1 e |G () = G ()l

+ [l £z, ) 1Gh (2(7) = GE(Z' (D)l 2o- + [le” T 5, ||Ga(2(7)) — Ga(2' (7)) 24
5 / — t 1 1 1
+ ;nGi(z(r)) — Gil#(1)z pdr < €1+ K(T)) / (i o) (1 ) S

0
¢ T
< C(L+ E(T))(1+ (T")**+20) /0 729('5(_)7)3/4

dr.

Finally using Lemma ((1.2]) (see (2.64b])) we conclude that f =0 on (0,7”) hence u = u’.

Step 3 - existence of global solutions for € > 0 and p-independence of bounds.

Usmg Theorem [2.1) with s = 1/2+ 0, ' = 1/2 + 20, w = 1° we obtain that system ) has for

€ (0,1] x (0, 1] a unique global X solution w* which is nonnegative. Let z*, 2§ be related with
u“, up by (2.61]) and (2.62)). It is easy to see that z* satisfies formulas from Which one concludes
that u* is also a M-mild solution of system . Using estimate from Theorem we get
that

Mz = sup 125 ]| Lo (0,0052: (2.711)
(Ol]xOl]; Loo0:00:25+)

is finite. Fix T < oo and for 0 < t < T denote g(t) = 1+t22||2}'(t)[| 2., + /24 ()| 2., . Owing to Lemma
2,15 we obtain

ZIIG“ ((llzi- < OO+ 1 Ollzis + 125 Ol )+ 1Ol za) + 124 Oy + 120122, )
< OO+ M)+ 4@z, + 15O ,) < OO+ M) (14 35 ) 9(0)

Using (2.66)) and Lemma [2.7| we estimate (recall that Zo = Zoy)

0| tA dA
9(t) <1+ e | £z, 20 ) ll261 120 + €0 £(22) | 202l 2,

t
= /0 (PN oz, 2 pIGEE Oz + 1 7, ) |GE(H ()| )7

<ot [ (14 Gy + Gomgm) (14 )]

2 3/4+460 ! 9(7)
<C(+T ){1+(1+M3)(1 +T )/0 (t_7)3/4+29729d7}

t
20 3/4+60 9(7)
<CA+T*)+COA+ Ms)(1+T )/0 (t77)3/4+207-29d7'

Thus using Lemma (see (2.64b)) we get that for every T > 0

M(T)= sup || 072, and Ma(T) = sup  [|Z]| 10720 (2.72)
1€(0,1]x(0,1] n€(0,1]x(0,1]
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are finite.
Step 4 - existence of local M-mild solutions for ¢ = 0.

To prove existence of local M-mild solutions we use the contraction mapping principle in appropriate
weighted in time spaces. For R, T > 0 define

21 ={zn1 € C([0,T],Z1) : 21l Lee(0,1520) + HthlHLm(O,T;ZH) < R},

dz, (21,71) = |21 — 24l e 0.1) + 122 (21 = 2D e 07201

2y ={2 € C([0,T], Z2) : |22l Lo (0,1;22) < R}, dz,(22,23) = llz2 — 23/l 1. (0,7:2)
2i={z€C([0,T),Z;) : HZZ'”LOO(OTZH_ < R}, dz,(2i,2) = 12i = %l Lo 0,1:2,0)> = 3,4,5

Z=Z1x...%X 25, dz(2z,2) ng Ziy 21).

Observe that Z; and Z are complete metric spaces.
For z € Z, = (h,€) € (0,1] x [0, 1] define
t
(@ (2)](1) = " =00)f) + / TG (2(7) dr,
t
[@5(2)](t) = €' 20 +/0 =G (2(7))dr,
¢
[@4(2)](t) = e ™) 255 + / e~ (=T M) Gy (2(7))dr,
0

t
[®i(2)](t) = 200 + / Gila(r))dr, i = 4.5
0
B = (U, B, DY, Dy, Bs).

Lemma 2.16. There exist R,T > 0 such that for every u € (0,1] x [0,1] the map ®" maps Z into
itself and satisfies for every z,z' € Z the following condition

dz(®"(2), ®"(2)) < (1/2)dz (2, 2). (2.73)

Proof. Fix R>1>T > 0. Using Lemma we have for t € [0,7] and 2,2’ € Z

ZIIG“ Oz + ZIIG Dz, < ORQ(l + t29> (2.74)

NG (0) — GHE @)l + S NGx0) — Gl W, < CR(1+ 55 )dz(z ). (275)
1=1 =3
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Using (2.74) and Lemma we estimate

0 0 ,tA A
][ @5 (2)] ()| 2. + 1[5 (2))(B)] 2, +ZH Ollzey < e Nl ez, 200) + e i)zt ]z,

t
A - —T)A
1l ez loalza + 1oy sz, + 3 ez, + /0 {(#N = ez, )
=4
—7)A —7)dA
+ [let=) h||£(zl,,zl>)|!G*‘<z<r>>uz1_ 140 £ 2 IGE )2

Tr(mt) 0
T PN [NE ||z3++ZHG Dz, bar < @ + Dbz, + l200]12

5 t
1 1 1 1
. 2 “on
+ Z||ZOZHZ7;+ +R /0 (1 + (t — 7)3/4+20 + (t — 7)3/4 + (t— 7-)1/2) (1 + 729>dT}

1=3

1
< C{Hzolel + [[202l 2, + Z:HZOszZ+ + RZ/ = 7)3/4+29729d7} < C(llzp1llz, + llz02]| 2,
1=3
5
+ 3 llzoillz,, ) + CRATY A,
=3

Taking R, T such that R > max{1, QC(HzglHzl—l—”zog||Z2—|—Z?:3|]20¢||Zi+)} and T' < min{1, (2C’R)4/(169_1)}
we obtain

2)[@ (2)](1)] z2s + I[@Y (2)](0)]1 2 + ZII (@ (2)](t)]lz., < R/2+ R/2 =

which proves that ®" maps Z into itself. Using (2.75) we prove analogously that condition (2.73)
holds after making 7" smaller if needed. O

We obtain from Lemma[2.16]that the map ®# : Z — Z satisfies, for certain R, T which are independent
of u, the assumptions of the contraction mapping principle. We conclude that system ([2.59 has for
¢ = 0 a unique maximally defined M-mild solution u#® defined on [0,T7,.), where T* : mf{ max
h € (0,1]} > 0.

Step 5 - For any fixed h € (0,1]: u* converges to u® as ¢ — 0. Moreover T/, = cc.

max
Fix T < Tk and for 0 < t < T denote: f*(t) = 32 ||2(t) — 2/°(t)||z,- Put

E{(T) = sup [ | o200y, KPN(T) = sup |28 |01z, )0 0= 2.3
e€[0,1] €€(0,1]

Observe that due to (2.71)),(2.72) K'(T) are finite. Denote Fh(T) = max{K}(T), KMT), K}(T)}.
Using Lemma [2.15] we have for 0 <t < T

5
ZHG“ (2(1)) ~ L)z + DG (1) — Gl ()2, < COL+ T T (1+ 25) (1)
1=3

7}7/ €
ZHG“ 20(1)) — GE(2 (1)l 7, < C(L+ KTl = 8l x-vjaoqyy

G (1) 1z, < 0(1 o) (14 (B (@)
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Thus owing to (2.66) we estimate

PR < N1€ 2 || iz llzby — 262112 + [le™ ) — et im0 2 203 2,

t
+ /0 {He“*”mel,,Zl) (||Gé‘(z“<r>) — G (2" (7)) ||z + |GY (20 (7)) — GYo(2H <T>>||zl,)
+ (e g 2 (||G3<z“<f>> — GH(2" (7)) ||z + |GE (2 (7)) — Géﬂ(zwmnz?,)

(H ST 4, (1G3(2(7) = Ga(24(1) ] 24

5
[l (DTN DT G (7)) . ) + NG (7)) = Gil2 ()|, f b
=4
Using Lemma and Lemma we obtain

@) < Cllm# —m# ||z + | Tr(m" —m" )|z || 203 25 .

t 2
+ /0 {1 ez, 2y + 150 oz, 2y + e DT 5 1) (NG ()
— GY(2(7))| 2, +2||G (2(r)) = Gi(2"(7)) | ) par

t 2
[ {0y 1 oz (SDIGH (7)) = Gl (D)) b
=1

t
+ /(; ”ef(tf‘r)TT(m“) N ef(th)TT(m#O) HZJ HGS(ZMO (T))“Z:H_dT

t
< O(L+t)|In° — 8l x-1/a-0() + C(1 +Kh(T))/O (1+ 7 _17)3/4 v _17)1/2) (1+ %)f”(ﬂdf

t
—h c 1 1
+C(1+K (T))HT] _5‘|X1/49(I)A ((t—7)3/4 + (t—T)l/Q)dT

+C(1+ (B D)) In = ol x-1/4-001 /Ot(t -1+ g)dT

_ < s , G
< an(T)lIn = Slle=saony + (D) | =57z

Using Lemma (see (2.64b))) we get that
" ¢ I /4420
170 2 cio1) < an(T) 0 = Ol x—s/a-0(yC exp (bn(T) 720 CTT/4427),

from which we conclude that lim_,o+ || f#||1... (0.7 = 0 for every h € (0,1], T < T}, by Lemma

In particular w0 is nonnegative on [0,77,,) and for every T < T .

Ht20210HLoo(0,T;Zl+) < My(T),

11251 Loc (0,725, ) < Ma(T),
5
ZHZZHOHLOO(O,T;ZH) < M,
i=3
where M;(T), My(T') are defined in while Mj is defined in (2.71)). Hence we observe that z#°
does not blow-up in finite time in ||-[|z . Using standard continuation argument we conclude that
Th .. = oo for any h € (0,1].

max
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2.2.7. Proof of Theorem 2.3

Recall that m? is defined in (2.51]) while ug; in (2.64c). Denote

2:01 Pum 0,
91,92 9.7 xRS — R,
Y(2) = —c121 + caza — 2123 + ca(24 — 23) — (c1 + 2z3)m°,

gg(z) = —bozo + 121 — Coz9 — 32223 + ¢5(25 — 24) + cym.
For z € Z define

GY(z) = Tr' () (Tr(z1), 22, 23, 24, 25)),
G5(2) = ¢5(Tr(21), 22, 23, 24, 25).

Observe that since u’ = (uf,...,u?) solves (2.70a)), 2° = (29,...,20) = M(E(u) — m°),u3, ..., ud)
satisfies the following Duhamel formulas:

t
() :E{ef<A0—bl>zgl+ / 6(t_7)(A°_b1)PG(1)(zO(T))dT}, (2.76a)
0
t
29(t) = et 0205 + / et G0 (20 (7)) dr, (2.76b)
0
t
2(t) = e " 203 + / e~ (=M’ Ga (20(7))dr, (2.76¢)
= 20i + / Gi( ))dr, i € {4,5}. (2.76d)
For t <T < oo denote
3
D) = sup (I ooz + 1 Raorzin + 04 lorz +18lcaorza)
€(0, =2
Fro() = )40 () — 2Ol 20y + E:IIZ“0 — 2 (t)llz:-

Observe that N(T') < My(T) + M2(T) + M3 < oo as was proved in Step 3 of Theorem Owing to
Lemma 2.15] and Lemma 2.14] we have

5
ZIIG“° 2(0) = GOz + Y IGi((0) = GOz < €U+ N1+ 37) £00),
1G22, + G (0)zs, < CO+ (NN (14 55).

ZHG“O GOz, < CO+ NI g7
RYTY /

Since z#0 (resp. 2") satisfies (2.66) (resp. (2.76])) thus using (2.31)) and Lemma we obtain
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— _ 0
Fro(t) < t)|en (27 — Ezdy)ll 2, + e T — €7 2, 1208 2o,

t t
b [ {1 (croge (o) - BPGYE)) I, Jar + [ {74 (Gg0(ar0 ()
0 0
t Ko 0
=G4 Iz r + [ {Jlem T Gy(o(r)) - e G ()]
0
5 t
+3° [16:() = Gl zdr < (1 = EPyuns |z, + 76 ez, 2 ™ — Bz
; 0
t
() =m0l s, + T [ {1 ez (165 20(0) = G
t
HIGHE) - ) ) Jar + 7% [ {01~ EP)GIE 04, i
0
t
+ /O {1790 £, ) (IG5 (240(7)) = G5 (2 (M) 2o + 1G5 (2°(7)) = GB(=(7))l1 2. ) }ebr
t
+ [l g G () = Gl

5 t
+ ”6_(15—7')T7"(mHO) _ 6_(t_T)mO||Zg||G3(Z0(T))HZ3+}dT + Z/O HGi(Z'uO(T)) — Gi(ZO(T))HZidT-

Using Lemma, Lemma Lemma, Lemma, and Lemma [I.1] we have

1

fro(t) < Ct¥eor M ugy || z,, + C(1 4+ #*°) —g——7 + Clt—g—7 | 203l 25,
Al Aowal”
CT?(1+ N(T t1 ! P T ! d
+CTP e N@) | (14 ) (1 520) 70 + W)T

t 1 1 Q
26 2 (=)L
+CT(1+ (N(T)) )/O <1+(t_7_)3/4+29><1+7_29)e 0L,h 1

+Coa+ N(T))/Ot (1+ (t—1¢)1/2> ((1+ %)fuo(r) Mmlh'e/z)df

+C(1+N(T>)/Ot (1+?§9)f”°(7)+0(1+(N(T))2) 1|/2/t(t T)(l—l—%)dT

|01h

1 1
<C(1+7T) + + O+ T%) (1 + (N(T) / S S
(’)‘01 nl? P\&ﬁ\gﬂ) ‘)‘Olh‘ A2 16/2 (t—71) 3/4+29

+ (t_lT)l/Q +(t-7)(1+ :w))dr+/ot (1+ ﬁ) (1+ @_17)29)6”01”%#

—l—/ot <1 + (t—T;3/4+26 + (t—lr)l/?)(l - %)fNO(T)dT}

1 1 L ()
< a(T) 4 ) 4+ u(7) / dr.
<|)\gl7h|a/2 Y m) o (t— 7)3/4+20728
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Using Lemma (1.2)) (see (2.64Db))) we get that
7/4+460

1 1
1/ oo 0,7y < a(T)( oozt S )cexp (b(T)1/4 1 CT7/4+49>
ol g, s

from which we conclude that limy,_,+[|f#0||1_ o) = 0 since |A, n = (n/h)? = o0 as h — 0.

2.3. Stationary problem

In this section we show that system (2.1) has a unique equilibrium. Moreover we study the problem
of the dimension reduction for the stationary case.

2.3.1. The results of Section 2.3

Let us observe that due to the presence of three ODE’s in the system ({2.1]), the stationary problem
may be reduced to a system of two elliptic equations:

div(Jp(u1)) + biug = 0, xz € (2.77a)
—d8§1u2 —cluy + (bg +co + kQH(ul,UQ))UQ =0, x € (2.77b)
with boundary conditions
—Jp(uy)v =0, x € 0pfd (2.78a)
—Jh(ul) (Cl + le(ul, uQ))ul + coug + p10, T € (278b)
Op ug = x € 00111, (2.78¢)
where
ki1 = b4/(b4 + 64), ko = Cgb5/(b5 + 05), H(ul, u2) = pg/(klul + koug + bg) (2.79)
and
kl k2
uz = H(u1,u2), ug = aulH(ul,uz) us = EUQH(U&,UQ).

We will prove the following two theorems.

Theorem 2.4. For every h € (0, 1] system (2.77] ﬂ ) has a unique nonnegative Wi solution (uf,ub)
i.e. there exists a unique nonnegative (u}f,ug) 6 WLQ) x W (01Q) such that for every (vi,v2) €
W () x W (0:19)

— / [Jh(u}f)Vvl + blui‘vl] = p1v1(0) —i—/ [—(c1 + le(u?,ug))u}f + 02ug]v1, (2.80a)
Q 012

/ ddy, uh Dy v = / [crult — (bg + o 4 ko H (uff, ult))ulvy. (2.80b)
31Q C()IQ
Moreover (uff,ul) € Wpl(Q) X W2(819) for every1 <p<2,1<q<oo and

1wy ) + B 10zt |, ) + Wb lwzo,0) < C, (2.81)

where C' does not depend on h.
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The following theorem concerns dimension reduction in the stationary problem.

Theorem 2.5. Let (u?,ul) be the unique solution of system R.77)-(2.78). Then for every 1 < p <
2,1 < g < oo we have the following weak convergence as h — 0T

ul' ~uf in Wpl(Q), (2.82a)
uy = ud in WZ(0Q). (2.82b)

Moreover O,ul = 0 (so that uY depends only on x1) and (u,u3) € WL(I) x C*(I) is the unique
solution of

—u1” + (b1 + ¢1 + k1 H (w1, u2))ur — coug = p16, rel (2.83a)
—duy” — ciuy + (by + o + ko H (ug, u))us = 0, rzel (2.83b)
ull = UQ/ =0, x € 0l. (2.83C)

Proofs of Theorem [2.4] and [2.5] are given in sections 2.3.3 and 2.3.4.

Remark 3. Notice that (2.83) is the stationary problem associated with model [HKCS].1D (analysed
in Section . Thus Theorem 18 the rigourous formulation of the dimension reduction of the model
[HKCS].2D in the stationary case.

In Figure placed at the end of this chapter we present graphs of u}f for several values of h. Notice
that as h becomes smaller the graph of u? becomes homogeneous in the xo direction.

2.3.2. Solvability of certain linear system with measure valued sources

To prove Theorem we will use two lemmas concerning solvability of linear elliptic boundary value
problems with low regularity data.

Lemma 2.17. Assume that 0 < ag € Loo(€2), 0 < a11 € Loo(0:192). Then for every h € (0,1], A > 0
and po € M(Q), pr € M(I) the following boundary value problem

div(Jp(u)) + (A + ag)u = pq, x e (2.84a)
—Jp(u)r =0, x € 0pQ2 (2.84b)
—Jp(u)v + anu = p, x € 0112 (2.84c¢)

has a unique W solution i.e. there exists a unique u € W{() such that for every v € WL ()

/[—Jh(u)Vv + (A + ap)uv] +/ ajpuy = / vdpg +/ vdpg. (2.85)
Q o0 Q 010
Moreover u € VVID1 (Q) for every p < 2 and

lullwy ) +h ™ 10asullr, @) < Cllluallry + llutllrv), (2.86)

where C' depends only on p, A, |laoll ) la11ll . @.0)- If o, s > 0 then u > 0.
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Proof. We divide the proof into two parts. In the first part we employ the technique from [3] to prove
existence of the solution which additionally satisfies . Notice that one has to use a slight modifi-
cation due to the Robin boundary condition instead of the Dirichlet condition which is treated in [3].
In the second part of the proof, using duality technique from [5], we show that the solution is unique
in the Wi class.

Step 1 - existence of solutions.
Observe that due to linearity of the problem ([2.84) one can assume without loss of generality that

luellrv + prllry < 1.

First let us consider pg € Loo(2), pir € Loo(0192). Using the Lax-Milgram lemma we obtain that the
problem (2.84)) has a unique solution u € W3 (). We will now prove that this solution satisfies (2.86)).
Observe that if ¢ € WL (R) is such that

1]l o) < 1, yo(y) >0, ¢'(y) >0, (2.87)

then testing (2.85)) by v = ¢(u) € W4(Q2) we obtain

A 1 2.88
/Qud)(u) <1, (2.88a)
0< / ! () T () Ve < 1. (2.88D)
Q
For n > 1 define
_Jny if ly| <1/n
enly) = {Sgn(y) ity > 1/n (2.89)

Choosing in (2.88a)) ¢ = ¢, and taking n — oo we obtain that

[ullL, @) < /A< C. (2.90)

For n > 0 define B,, = {z : n < |u(z)] <n+1} and

0 if [yl <n
Yn(y) =<y —sgn(y)-n ifn<|y<n+1.
sgn(y) if [yl >n+1

Choosing in (2.88b)) ¢ = v, we obtain that

(15, oy = [ =) Vu <1, (2.91)

n

where my,(u) = /|0, u|?> + h=2|0x,u|?. Using Holder’s inequality with 1 = p/2 + p/p* we have

I (), 12 gy < Imn(u) L, 2, | Bal?’? < [BaP7" < C. (2.92)
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Using Sobolev’s inequality and (2.90)) we have

[ullz,. @) < CUlmi(u)lz,@) + vl @) < CUma(wllL,w +1)- (2.93)
From (2.92)), Holder’s inequality (for series) and (2.93|) we have
N 0o oo
Ima(I ) = S lma@)1e, 2 o+ 3 Ima(@ls, [ o <CN+D+ > |B P

n=0 n=N-+1 n=N-+1

<C(N+1)+ i n~P|lulg, ||’ <C(N+1)+ ( i n—2>p/2Hqu

= — BnllL,«(Q) = e Ly ()

n=N+ n=N+

=CO(N+ 1)+ AN lluly, . ) < C(N + 1) + CAWNP(lmn(ullf, ) + D

Taking N sufficiently large we obtain

[ (W), @) < C-

Finally from (2.93) it follows that [|u[|L, ) < Cllullz,.() < C(ma(w)|L,«)+1) < C which completes
the proof of (2.86|).

The case of arbitrary Radon measures pg, pr follows by standard approximation, see [3] for instance.

Step 2- uniqueness of solution.
We shall use duality technique. Let u be a W} solution to

div(Jp(u)) + (A +ap)u = 0, x €N (2.94a)
—Jp(u)y =0, x € 0o (2.94b)
—Jp(w)v +ajju =0, x € 0182. (2.94c¢)

We intend to prove that u = 0. First we assume additionally that a;; = 0. Using [7] we get that for
every f € Lq(2),q > 2, problem

div(Jp(v)) + (A +ap)v = f, x€Q (2.95a)
—Jp(v)r =0, x € 09 (2.95b)

has a unique solution v € W2(€2). Since ¢ > 2 we have W2(Q2) € WL (), so that for every w € W} ()
we have

/Q[—Jh(v)Vw—i-(/\—Fao)vw} :/wa.

Taking w = u we thus get fQ fu =0 and since f was arbitrary - u = 0 follows.
Now let us take 0 < ajy € Loo(0192). Denote g = —ajju. Observe that u is a W11 solution of

div(Jp(u)) + (A +ag)u =0, x € (2.96a)
—Jp(u)r =0, x € 02 (2.96b)
—Jp(u)v =g, x € 016 (2.96¢)

As we already showed (2.96) has a unique W{ solution and, thus u € Wpl(Q) for every p < 2. In
particular g € L,(0:Q) for every ¢ < co. We can now use Lax-Milgram theorem to prove that (2.96))
has a unique W solution and thus conclude that u € W} (Q). It follows that, u is also a W4 solution

of (2.94), whence u = 0.
O
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Lemma 2.18. Assume that d >0, 0 < ag € Loo(2) and

aij € Loo(019), a11 > |azi|, a2 > |aizl. (2.97)

Then for every h € (0,1], A > 0, uo € M(Q), ur € M(I) the following system
div(Jp(u1)) + (A + ao)ur = pa, x e (2.98a)
—d8§1u2 —aguy + (A + ag)ug =0, x € 0192 (2.98b)

with boundary conditions

—Jp(ur)v =0, x € 0pf2 (2.99a)
—Jp(u1)v + aj1ur — argug = ur, x € 0 (2.99b)
Oz u2 =0, x € 00112, (2.99¢)

has a unique W1 solution i.e. there exists a unique (uy,uz) € Wi (2) x Wi(0:Q) such that for every
(1)1,1)2) S Wolo(Q) X Wgo(alQ)

/Q[—Jh(ul)Vvl + (A + ap)ugv1] + /

. [d@aclugamvg + Augvg — (M(ul, ug)’(vl,v2)>R2]
1

Z/Ulduﬂ+/ vidpy,
Q 010

Moreover (u1,uz) € Wy (Q) x W2(01Q) for every 1 <p <2,1<q < oo and

whe're M(ul, UQ) = (—a11u1 =+ aijauz,a21u1 — a22u2).

lutllwi oy + b~ |, ) + luzlwz@e) < Cllallry + llprllrv, (2.100)

where C' depends only on p, A\, d, ||ao| ... @), |9ij | Lo (0r0)- If B2, pi1; @12, 021 > 0 then uy,ug > 0.

Proof.

Step 1 - existence of solution.

Let us define the Hilbert spaces X /5 = W3 (Q) x W3 (819), X_1 /5 = X7/ and an unbounded operator
A: X 19D Xy = X_q2 by

<A(u1,u2), (vl,v2)>(x o) = /Q[Jh(ul)Vvl — apuqv1]
—1/2,31/2

X /6 ) [_ dB, U8, V2 + (M(m,m)‘(th))RQ]-

Due to boundedness of ag and a;; operator A — A is coercive for X large enough and the Lax-Milgram
lemma guarantees that there is A\g > 0 such that [Ag,00) C p(A) (p(A) denotes the resolvent set
of A) . Because X/, is compactly embedded into X_;/5 we get that for A € p(A) the resolvent
operator (A — A)~! is compact and thus the spectrum o(A) consists entirely of eigenvalues. Choose
any A € R, 0 € X_;/5 and u = (u1,uz) € X/ such that (A — A)u = 6. Let ¢, be the function defined

in (2.89). Then

(6, (pu (), u(u2)) ) = (= A, ), (o), n2))

(X_1/2:X1/2 (X_1/2:X1/2)

N /Q[—%(ul)Jh(ul)Vul + (At ao)urpn(ur)]

" /6 [ lon sl = (M) |(pulm). @), + Ao ()]

> )\(/Quuﬂn(ul)—i‘/alﬂuwn(l@) —/Q (M(Ul,u2)‘(¢n(u1)a<ﬁn(uz))>R2-
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Thus taking n — oo and using (2.97) we get

lim inf <9, (pn(ur), ¢n(u2))>

n—oo

> (|| + |ju . 2.101
s 2 M@ el 10) (2.101)

In particular it follows from (2.101)) that for A > 0 equation (A — A)u = 0 does not have nontrivial
solutions, whence (0,00) C p(A).
Observe that when uq, uy are bounded functions then the distribution 6 defined by

<0, (vl,v2)> :/Qvld,ug+/lvldu1:/vagd:n—l—/lvl(-,O)mdscl (2.102)

belongs to Xik/z thus equation (A — A)u = 6 has a unique solution u = (u1,u2) € X/, which is a

solution to problem ([2.98)-(2.99)). We will now prove that u satisfies (2.100)). Due to linearity of (2.98)),
(2.99) we can assume, without loss of generality, that

lpallrv + [lurllry < 1.

Next we prove respectively that

Ml ) + lluzllz, @,0)) < C, (2.103)
lutllw @y + b~ IOz will L, o00) < C (2.104)
luzllwz(a,0) < C- (2.105)

To get (2.103]) observe that from ([2.101]) with 6 given by (2.102)) one has

T
Aluallzy @) + 1wzl @y0)) < liminf <97 (¢n(u1), Son(UZ))>(X_1/2’X1/2)

< lpallz, @ + ez, < 1

since |pn(y)] <1 for y € R. Then (2.104)) follows from (2.103|) and Lemma while (2.105) follows
from ([2.98b)), (2.104) and the fact that for every 1 < ¢ < oo there exists 1 < p < 2 such that the trace

operator maps W, (92) into L(819). To prove existence of solutions to (2.98), (2.99) for the case when
o and pr are finite Radon measures one proceeds by the standard approximation technique with the

use of (12.100]).

Step 2 - uniqueness of solution.
Let (u1,us) be a Wi solution of problem (2.98), (2.99) with A > 0, ug = 0, uy = 0.

Denoting g1 = a12uz € Loo(I), g2 = asjuy € Li(I) we see that uy is a Wi solution of

div(Jp(u)) + (A +ap)u = 0, r e (2.106a)
—Jh(u)z/ =0, T € 0hfd (2.106b)
—Jh(u)v +a1u = g1, r € (2.106C)
and ug is a Wi solution of
—d02 u+ (A + az)u = go, xel (2.107a)
Oz, u =0, x € 0l. (2.107b)

Since g1 € Loo(0182) then by Lax-Milgram lemma problem has a W4 solution which by Lemma
is unique in Wi class. Thus u; is a W4 solution of (2.106]) and go € Lo(I). From Lax-Milgram
lemma we obtain that has a W solution which due to duality technique is unique in W class.
Thus up € W3. Finally we observe that (u1,uz) € Xjo is in the kernel of the operator (A — A) and
thus (u1,u2) = 0. O
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2.3.3. Proof of Theorem 2.4

Step 1 - existence of solution.
Fix 1 >s>1/p, oo >¢q> 1 and for R > 0 define

K = {(v1,v2) € W(Q) x Lg(0192) : v1,v2 = 0, [[vrllws(e) + lv2ll,010) < R}

KR is a bounded, convex and closed subset of the Banach space B = W (£2) x Lq(019). For (v1,v2) €
Kpg consider problem (2.77)-(2.78) with H(uy,us2) replaced by H(v1,v2) (notice that v1(0,-) is well
defined as s > 1/p) i.e.

div(Jp(u1)) + byuy = 0, x e (2.108a)
—d02 us — cruy + (by + c2 + ko H (v1,v2))us = 0, z € 019 (2.108b)
with boundary conditions
Jh(ul) = T € 0pfd (2.109&)
—Jh(ul) = (61 + le(Ul, 02))u1 + coug + p19, x € 0112 (2.109b)
Op U2 = x € 0014L. (2.109¢)

Using Lemma with
A= min{bl,bg}, ag=b1 — A, no =0, pr = p19,

a11 = ¢1 + ki1 H(vi,v2), aip = c2,
as] = €1, a22:b2_>\+62+k2H(U1aU2)7

we obtain that problem has the unique solution (u1,u2) = T'(vy, v2) satisfying with C
independent of R (since H is bounded on Ri) Thus for large R the nonlinear operator T' maps Kr
into itself. Since W (€2) x W2(012) embeds compactly into W3 (€2) x Ly (91€2) the nonlinear operator T
is compact. Since H is globally Lipchitz we conclude that T is continuous in the topology of B. Thus,
using Schauder fixed point theorem, T has a fixed point, which additionally satisfies .

Step 2 - uniqueness of solution.
Assume that (u1,uz), (vi,ve) are two Wi solutions of (2.77)-(2.78). Denoting z; = u; — v; for i = 1,2
we have:

div(Jp(21)) + b121 =0, x €
—dﬁgle —cC1z21 + (bQ + CQ)ZQ + k?g(H(ul, UQ)UQ — H(Ul, UQ)’UQ) =0, z € 0192
with boundary conditions
—Jn(z1)v =0, x € 0pf2
—Jh(Zl)V = —C121 — kl(H(ul,UQ)ul — H(Ul,vg)’ul) + co29, T € 81(2
85,;12’2 =0, x € 00:1)

Define

D = (kyuy + kaug + bs)(k1v1 + kava + b3),
w; = (u; +v;)/2, i =1,2.
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Notice that
U1V2 — UV] = Zl(UQ + 112)/2 — Zg(ul + Ul)/Q = Z1W2 — 2W1,

H(ul, uz)ul — H(Ul, U2 V] =

U1 )
krur + k2u2 +bs  kyvy + kovo + by

il
= %(k: (u1v2 — ugvy) + bz21)
- %((kng + bg)zl kawi22),
H(uy,ug)ug — H(vy,va)vg = p3<k ut k2u2 T bs ko _,_2;2 + b3>
= %( k1 (u1ve — ugvy) + bg22)
= %( kiwaz + (k1w + bg)z2).
Thus
div(Jp(z1)) + b121 =0, z €
—dO?, 2z — (c1 + %)Zl + (by + k2§’b3 +e+ %)@ =0, r € 010
with boundary conditions
—Jp(z1)v =0, x € 0pf2
_Jh(zl)V—F(M—l-Cl—i—%)zl —(C2+%)Z2 =, r € hQ
Oy, 22 = 0, x € 00,4

Hence, using the notation introduced in Lemma (21, 22) is a W} solution of (2.98)),(2.99) with
A =min{by,be}, ap=b1 — A\, po =0, uy =0

" 1P303 c1 1 2p3w27 19 Co 1 2p3wl7
kik p3w k b kik p3w
a9 = c1 1203 2’ 09 b2 A 2P303 co 1203 1‘

Since the nonnegativity of wq, ws ensures that assumption (2.97) is fulfilled we infer that z; = 25 = 0.

2.3.4. Proof of Theorem [2.5]

Since the spaces Wpl(Q) and W(IQ(@lQ) are reflexive for 1 < p < 2, 1 < ¢ < oo thus, owing to (2.81)),

there exists a sequence (hy)32; C (0, 1] such that limy_,o gy = 0 and

uf ~w; in WHQ), (2.110a)
ubk —~wy in W2(01Q). (2.110D)
Now we claim that
Op, w1 =0, (2.111a)
W (0,-) = wi(0,)) in Ly(Q), (2.111D)
ub* — wy in X (2.111c¢)
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Indeed (2.111a)) comes from (2.81]). To prove (2.111bf) fix any 1 < g < oo, then choose s, p such that

l<p<2,1/p<s<1,s—2/p>—1/q. Then Wpl(Q) embeds compactly into W, (), the trace operator

maps W7 () into W;”/”(alm and the latter space embeds continuously into Ly(0;2). Finally (2.111c])
follows from compact embedding of WZ2(8:Q) into C(919). Choose v1 € C1(Q), va € C1(0192), then
by (2.80)
/[Gmlulfkamlvl + blu}f’“vl] + / [d@xlug’“ﬁmlvg — cluif’“vQ] = p1v1(0),
Q 012

/ [clH(u?’“,ug’“)uiLkvl — cyug’“vl + (b2 + CQH(U;Lk,ng)'UQ)] =0.
01

Using (2.110) and (2.111)) we can pass to the limit with & — oo and identify that (w1, ws) = (uf,u9)
is a solution of ([2.83)). Finally notice that (2.82)) follows from (2.110) and the fact that (2.83) has a

unique solution, as proved in Section

2.4. Limit problem

After nondimensionalisation the [HKCS].1D model reads:

Orul — (b1 +c1 + U3)u1 + coug + cquy + p15, (t, l‘) e Ir (2.112&)
Orug — da 2U2 = (bz + co + 03U3)U,2 + c1uy + csus, (t, x) e lr (2.112b)
Oyus = —(bg + uy + c3uz)us + caug + csus + ps, (t,z) € It (2.112¢)
Opuy = —(bg + C4)U4 + uyus, (t, l’) e Ir (2.112d)
Orus = (b5 + C5)U5 + c3uqus, (t, x) e lr (2.1126)
with boundary and initial conditions
Dyur = Dyus = 0, (t,2) € (D)7

u(0,) = uyg, xel

The aim of this section is to establish well-posedness of (2.112]) and to prove existence of a unique
steady state.

During the analysis we encounter the following difficulties:

e absence of diffusion in equations (2.112c|),(2.112dJ),(2.112¢)) so that there is no smoothing effect
for U3z, Ug,Us,

e singular source term in (2.112a)),

e nonsymmetric zero order part of the operator which appears in the stationary problem.

We first solve the stationary problem for by using Schauder’s fixed point theorem. The key
observation is that the linear operator which appears in the definition of 7;,(v) (see proof of Theorem
, has a diagonally dominant structure. This leads us to analyse the problem in an L; setting rather
than Lo. To prove uniqueness we consider the system which is satisfied by the difference of two possible
solutions and after algebraic manipulations show that it also has a diagonally dominant structure.

To remove the singularity p1d from we change variables z = u — u*, where u™* is the steady
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state to . Then local well-posedness in the space of continuous functions of the system for z fol-
lows from the classical perturbation theory for sectorial operators. To prove global existence we notice
that the quasipositivity of the vector field which appears on the right hand side of guarantees
that the semiflow generated by preserves the positive cone. Then using compensation effects
it is easy to show that ug, us, us € Loo(0, Tinaz; C()) and ui,us € Loo(0, Tinag; L1(1)). Finally using
smoothing effects of the heat semigroup we prove that uj,us € Loo(0, Tinar; C(I)), from which we
finally conclude that the system is globally well posed and has bounded trajectories.

Before stating the results precisely we introduce the notation and function spaces which we will use

to analyse the system ([2.112)).

2.4.1. Function spaces

To analyse the problem we will use the following Banach spaces

X=C), X1 =C3I) ={u:ueC*(I), u'(-1) =u'(1) =0}, Xy, =WiL(),
Y =Li(I), Y1 =Wn(I) = {u: u e WE(I),u'(-1) = /(1) = 0}.
Notice that due to the imbedding W2(I) C C(I) the boundary conditions in the definition of Y7 are

meaningful.

2.4.2. The results of Section 2.4

From now on we assume that
d,b>0, ¢,p>0, up € X°.

We start with the analysis of the stationary problem and prove that there exists unique nonnegative
steady state. Observe that due to the absence of diffusion in (2.112c)),(2.112d)),(2.112¢]) the station-
ary problem reduces to the system (2.115]) (see below) of two semilinear elliptic equations for u} and uj.

Theorem 2.6. System ([2.112) possesses a unique nonnegative steady state
u* € X5 x X1 x X3, such that

1/2
us = H(uj,u3), byuy = kyuil H(uj,u3), bsui = kousH (uj,us), (2.113a)
where
k1 =ba/(bs + ca), ko = c3bs/(bs + c5), H(z1,22) = p3/(k1x1 + kaxa + b3) (2.114)

and (u¥,ud) is a solution of the following boundary value problem

—uj" + (by + c1 + ki H (uf, ud))uf — coud = p16, rxel (2.115a)
—du3” — crui + (bg + o + ko H (uf, uj))ub = 0, xel (2.115b)
ui' =uy =0, z €l (2.115¢)

i.e. for every ¢ € X9

/[U’{/w’ + (b1 + c1 + k1 H (ug, u3) Jui — caus)ep] = prip(0)
I
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and (2.115Db)) is satisfied in the classical sense. Moreover
ut 4 pilz|/2 € C*(T). (2.116)
A typical shape of the steady state is to be found in Figure present at the end of this chapter.

Numerical scheme based on the standard finite difference method was implemented in Octave. To
approximate § we have used Gaussian with small variance.

In the following remark we analyse the behavior of the stationary solution near the source of mor-
phogen.

Remark 4 (u* near x = 0). Observe that as u* is unique it must be even. Indeed otherwise u*(—x)
would be a second solution as the system (2.115)) is invariant under the transformation x — —x. Thus
using ([2.116))

(u})'(07) = =p1/2 <0, (2.117a)
(u3)'(0) =0, (2.117D)
where (u}) (07) denotes the right-sided derivative of ui at z = 0.

Using (2.113)) and (2.117) we compute directly

_ pika

(6)/(0°) = B2 (H(uf 0), w3 0)) > 0 (2.1150)
(u3)/(07) = ~ P2 1w 0), i (0))2(3(0) + b 2) < 0, (2118)
P304
(u3)'(0%) = p;’“,f? [H (w7} (0), u5(0)]?u3(0) > 0. (2.118¢)
P305

In particular from (2.118b), (2.118c) and the fact that u* is even we infer that uj(0) (resp. ui(0)) is
a strict local maximum (resp. minimum), which explains the difference near x =0 in u} (steep spike)
and uf (depletion effect) as observed in Figure .

Next we turn our attention to the evolution problem and establish its well-posedness and the uniform
boundedness of trajectories in X?°.

Theorem 2.7. System (2.112) possesses a unique, global in time, nonnegative solution

uy € C([0,00); X) NC((0,00); X) N C((0,00); X1 2) (2.119a)
uy € C([0,00); X) N CL((0,00); X) N C((0,00); X1) (2.119b)
us, ug, us € C([0,00); X) (2.119¢)

such that for every o € Xy /9,t € (0,00)

/8tu190 +D / Opu1O0pp = /[—(b1 + ¢1 + ug)ug + coug + cquqlp + pre(0)
I I I

and other equations are satisfied in the sense of X. Moreover u € Ly (0,00; X°) and the following
estimates hold

5 5
D ui(t) < e8> uig + ps(1 — e 7b) /b, (2.120a)
1=3 =3
> w@lly <e™® Y Juiolly +pi(1—e)/b. (2.120b)
ie{1,2,4,5) i€{1,2,4,5)
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We conclude with a remark concerning the discussion about the asymptotic behavior.

Remark 5 (Asymptotics). For the case of morphogen Dpp acting in the imaginal wing disc of the fruit
fly without the presence of glypicans, it is proved in [15] that the morphogen gradient (i.e. steady state
of the appropriate evolution system) is globally exponentially stable. It is expected that an analogous
result should hold for [HKCS].1D, though we are not able to prove even the local stability of the
steady state. However it may also be the case that the presence of glypicans has a destabilising effect
on the equilibrium within a certain range of parameters.

2.4.3. Lemmas

In this section we collect lemmas which are used in the proofs of the results. The first lemma states
that realisations of one dimensional Laplace operator in the chosen Banach spaces are sectorial. Since
this result is well known we state it only to make the dissertation more self-contained.

For Z € {X,Y} we define the Z-realisation of the Laplace operator with Neumann boundary condi-
tion:

Az : ZD>71 = Z, Azu=1u", u e Z;.

Proof. For the proof we refer the interested reader to [[22], Chapter 3.1]. O

Lemma 2.19. Ay is a sectorial, densely defined operator with compact resolvent. It gemerates an
analytic, strongly continuous semigroup €A% and for t > 0 the following estimates hold

147 )l 22y < 1 1€ lrxy < C(LADTV2,
Moreover (Ax,etAx) is a restriction of (Ay,etdY) to X i.e.
Axu=Ayu, ue Xy, eu=eMu, (t,u) e 0,00) x X.
The second lemma concerns solvability of linear elliptic systems with diagonally dominant zero or-
der term. It is crucial in the proofs of existence and uniqueness of the steady state of the system .
Lemma 2.20. Assume that for i,j =1,2, d; > 0,a;; € X4 and
aip > ag, G2 > ai2. (2.121a)

Define operators

M:Y? > Y? Mu= (—a11u1 + ajoug, ag1u; — asus),

G:Y?DY2 = Y? G=(dAy) x (deAy) + M.

Then G is a sectorial, densely defined operator with a compact resolvent R(\,G) = (A — G)~! and the
following hold

(0,00) C p(G) and ||[R(A, G)||zyv2) < 1/A, (2.122a)
IROSG)lgqyaysy < CL+ 17N, (2.122b)
R()\, G) preserves Y2, (2.122¢)

where A > 0 and C' depends only on d;, ||ai;|| x -
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Proof. To prove that G is sectorial and has a compact resolvent notice that it is a perturbation of the
operator (dyAy) x (daAy) having these two properties by a bounded operator M € £(Y?). From the
compactness of the resolvent of G we get that the spectrum o(G) only contains eigenvalues (see [[14],
Theorem 6.29)).

In the rest of the proof we will use the following observation. For a < 0 < b define

Then for every z,y one has zvy(x) > 0 and zvy(x) > x7v(y). Using (2.121) we obtain the following
pointwise inequality

(Mu, (7(“1)\7(U2)))R2 = —anury(ur) + arzuzy(u1) + agiury(ug) — azgugy(us) (2.123a)
< —upy(u1)(a1n — az1) — uey(ug)(az — arz) < 0. (2.123b)

Choose A > 0, f € Y2 u € Y such that
f=0-G)u. (2.124)

To proove ([2.122a)) we estimate
I£llve > [ (£ Gontun)isgn(ua)) , = Aluly= - Zd [ wtsantuo

_ / (Mu, (sgn(ul),sgn(UQ))>R2 > Mlully2,

I
where we used (12.123) with v = sgn and the following Kato’s inequality (see Lemma 2 in [5])

—/v”sgn(v) >0, veN. (2.125)
I

To prove (2.122b]) observe that from ([2.124] we have

HGUHY2 < Hwa + >\HUHY2 < 2[|flly=,
whence
||UHY2 < C(|I(Ayur, Ayug)lly2 + llully2) < Cl(dr Ada) ™ |Gu — Mully2 + || flly2/A
(di A do) M (|Gulliyy2 + 1M 2y lully2) + 1 Flly=2/A)
(dy Ado) M2+ | M || (v /A) + T/ Ly
+ 1/ fly=-

Finally to prove (2.122¢) fix f € Y_E. Using (2.123) with
z_/x, ©H#0
V(x) = {0 /

(
Cl
Cl
c(1

=0
we obtain
0> /I (f (v(u1) |y (u2)) AZ/UZ’Y u;) Zd /u sgn(u;) — /I<Mu|(7(u1),fy(u2))>R2
> Mu—|ly2,
whence u > 0. O
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2.4.4. Proof of Theorem 2.6

We divide the proof into two steps. To prove existence of a solution of we first approximate the
singular source term p;d by more regular functions h,, € Y. Using Schauder’s fixed point theorem we
prove solvability of the approximated problem. Finally using compactness methods we show that the
approximated solutions converge to a solution of . In the proof of uniqueness we show that the
difference of any two possible steady states belongs to the kernel of a certain operator A — G, where
A > 0 and G satisfies assumptions of Lemma [2.20]

Step 1 - Existence of solutions

Choose a sequence h,, € Y, such that h, —* § in M([—1,1]) - the space of signed Radon measures.
For v € (X )? consider the following problem

—u{ + (b1 + 1 + ki H(v1,v2) Jur — coug = pihy, rel (2.126a)
—duy — cruy 4 (ba + g + ko H (v1,v2) Jug = 0, rel, (2.126b)
u) =uhH =0, z € 0l, (2.126¢)

where H is defined in (2.114]). Using notation introduced in Lemma m system (2.126)) is equivalent
to

()‘ - G)(u1>u2) = (plhm 0)7

where
A :bv
di=1,dy =d,
a1 = by —b+c1 + k1 H(vy,v2), aiz = C,
as = c1, ag = by — b+ co + koH(vy,v2).

Observe that condition ([2.121)) holds, thus using Lemma we obtain that (2.126]) has a unique solu-
tion (u1,uz) € Y127Jr and there exists C1 which does not depend on (v1, v2), (u1,u2), hy, such that

[(ur, ug)llyz < Crllnlly- (2.127)
Using the compact imbedding
YicCcX (2.128)
and we obtain that there exists Cy such that
[(u1, u2)ll(x)2 < Coll(ur, ug)llyz < C1C%||hnlly- (2.129)
Define

Voo = {(v1,02) € (X4)?: [[(v1,02) ]| (x)2 < C1Callhnly },
Th: Vi — an Tn(vlva) = (ul7u2)u

where (u1,ug) is the solution of (2.126]). Observe that V;, is a closed and convex subset of a Banach
space (X)? and T;, is well defined, and continuous (because H is a globally Lipschitz continuous
function on Ri) Moreover due to (2.128)) and (2.129) T,,(V,,) is precompact. Hence by Schauder’s
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theorem T), has a fixed point (uy, 1, uy, ) € Va.
Since (hy,);2; is bounded in Y we get, by (2.129), that (u; ;,u; 9)p2 is bounded in Y. From the

n=1
imbeddings Y1 C X5 CC X there exist (uj,u3) € Xy, and a subsequence (uy, 1,u;, o)7~; such that
fori=1,2

(u5,0)" =" (uf)', in Loo(T)

ng,t 7
*

u’nk,l

— uy, in X.

Fix ¢ € X9, then since Ty, (uy,, 1,uy, o) = (up, 1, Uy, o) We have:

\/](u:k,l)/gpl + [(bl + C1 + le(u;kLk,l7 u:k,2))u;klk,l - CQu;kLkQ]SO = pl /[ hnk907 (21308‘)

[ a)'¥' + et + (ot o Fa (0 000, ) ol = ) (2.130b)

Using again the fact that H is globally Lipschitz continuous on Ri we can pass in (2.130) with ny — oo
and obtain that (u],u3) is a solution of ([2.126).

Step 2 - Uniqueness

Assume that (u1,u2), (v1,v2) are two solutions of (2.115)). Noting z; = u; —v; for i = 1,2 we have:
—2{ + (b1 + c1)21 — cozo + k1 (H (uy, ug)uy — H(vi,v0)v1) =0
—dZé/ —C121 + (b2 + 02)22 + k‘Q(H(ul, UQ)UQ — H(’Ul, ’02)2}2) =0.
Define
D = (kiuy + koug + b3)(k1v1 + kave + b3)
wi = (i +vi)/2 i = 1,2
and compute
ULV9 — UV = Zl(UQ + 1)2)/2 — Zg(ul + U1)/2 = Z1W9 — 29W1

U1 U1 )
kiur + koug + b3 k11 + kovg + b3

H(uy,u2)u; — H(vy,v2)m =P3(

= %(kg(ulvg — u21}1) + 5321) = %((kaz + b3)21 — /62’11}122)
Uuo (%]
H (u, — H(v, - ( _ )
(11, uz)us (01, v2)v2 = p3 kiur + koug + b3 k11 + kovog + b3
= %(—kl(ul’l}g — u2’U1) + b3ZQ> = %(—klwgzl + (k1w1 + 193),22).
Thus
k1p3bs k1kopswa k1kopswy
_ " _ R ————— =
2] + (bl + D +c1 + D )21 (CQ + D )22 0
kik kopsb k1k
—dzé/ — (01 + ML b 2é73w2)21 + (bQ + 2P303 +co + RSl Qé)gwl )22 =0.

Hence, using the notation introduced in Lemma 3, (21, 22) belongs to the kernel of the operator b— G
where

dy=1,dy=d

B k1psbs k1kap3wa _ k1kapswy
aj; =b; —b+ 5 tat—p5 a12 = ez + —5—,

B k1kapswo B kop3bs k1kap3wn
agL =c1+ —p— az =by —b+ o tet—Fp—
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Since nonnegativity of wi,ws ensures that assumption (2.121)) is fulfilled we infer that z; = 29 = 0
which finishes the proof.

Higher regularity of u] outside z =0

Observe that F = —p;|z|/2 satisfies —E” = p1d in the sense of distributions. Owing to (2.115a))
v = u} — E solves the following boundary value problem

" = f, zel
v =—F, xedl

with f = coud — (b1 + c1 + k1 H (uj, u3))uj. Since f € X then (2.116]) follows.

2.4.5. Proof of Theorem [2.7]

Using the theory of analytic semigroups we first establish the local well-posedness of . Using
quasipositivity of the right hand side of we next prove that the generated semiflow preserves
nonnegativity of initial conditions. Then using a compensation effect we derive Lo (0, 00, X) estimate
for ug, uq, us and Lo (0, 00,Y") estimate for uj, ug. Finally thanks to the regularising properties of the

semigroup e¥* we bootstrap the estimate to u € Loo(0, 00, X7).

Step 1 - local existence
We rewrite system (2.112)) in the new variables z = u — u*, where u* is the unique steady state of
(2.112)), and put it into the semigroup framework:

Z— Axz = f(2), t>0 (2.131a)
z(0) = z¢9 = up — u’, (2.131b)

where

A= AX X (dAx) X 03
f=(f1,fo, f3, f1, f5) - (X)° = (X)°

fi(z) = —(b1 + c1)z1 — (2123 + ulzz + uzz1) + ca22 + caza

fa(z) = —(b2 + c2) 22 — c3(2223 + U322 + u323) + c121 + 525

f3(z) = —bszs — (2123 + ujzs + u321) — c3(2223 + usze + us23) + ca24 + C525
fa(z) = —(bs + ca)za + (2123 + ujzg + uzz1)

f5(z) = —(bs + ¢5) 25 + c3(z223 + U322 + u523).

Observe that A generates an analytic, strongly continuous semigroup in X :
etA = etAx x etd4x x (Id)3. Moreover f is Lipschitz continuous on bounded subsets of X°. Using
Lemma we obtain that ([2.131)) possesses a unique solution defined on a maximal time interval
[0, Thnaz) with the following regularity:
21,22 € C([07 Tmaz); X) N Cl((oa Tma:p)§ X) N C((O, Tmax)? Xl)
Z3, 24,25 € Cl([oa Tma:z:)§ X)

Setting © = z + u™ it is obvious that w is the unique solution to (2.112]).
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Step 2 - nonnegativity of solutions

Consider the following system

6tv1 3 01 = —(b1 +c1 + (v3)1)v1 + ca(v2) 4 + ca(va)+ + P16, (t, ) )
Opvg — —(b2 + c2 + e3(v3)+)v2 + c1(v1)4 + ¢5(v5) 4, (t,z) )
atvg = —(bg + (v1)+ + c3(v2)+)vs + ca(ve)+ + c5(vs5)+ + p3, (t,z) € I (2.132¢)
Orvg = —(bs + ca)va + (v1)+(v3)+, (t, ) )

—( (t,2) )

Opvs = —(bs + ¢5)vs + c3(v2)+(v3) 4,

with boundary and initial conditions

Oyv1 = 002 =0, (t,z) € (0])so
v(0,-) = uo, z el

Reasoning as in the previous section, the system (2.132]) possesses a unique maximally defined solution
v(t) on [0,T),4.) in (X)®. We will now prove that v(t) > 0 for t € [0,77,,,). Multiplying ([2.132)) by
—(v)- and adding equations we obtain:

P
o7 D (@) 113 + 102 (v1) - 13 + 210 (v2)-[[5 < O
i=1
5
> ll(wi(0))-[I5 = 0.
i=1

Thus v(t) > 0 for t € [0,7),,,)- Then v4 = v and it readily follows from (2.132) that v solves (2.112)

on [0,7),...). Consequently, v = w on [0,7) ,.) and T} .. < Tmaz- Fmally observe that if T ... < 00
then, by (L.12), limsup, 7, [[u(t)](x)s hmsupt_)TT/’mHv( Mxys = oo thus Ty, = Tmee and
u(t) >0 on [0, Thaz)-
Step 3 - ug, ug, us € Loo(0, Thnaz; X)
Adding equations (2.112¢)),(2.112d)),(2.112¢)) and using nonnegativity of u, we obtain
5 5
atzui‘i'gzuigp?n (t,l‘)e [OaTma:p)XI-
=3 =3
Thus
0< Zul <e® Zuzo +p3(1—e ) /b, (t,z) € [0, Thaz) x I. (2.133)

Step 4 - T, = 00

Observe that due to (2.133)

zi(t)z3(t)||x < Cllzi(t)]lx, i =1,2.
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Thus f(z(t)) satisfies (1.13), whence T},4, = 0o by Lemma
Step 5 - uy,us € Loo(0,00;Y)

After integrating equations (2.112a)), (2.112b), (2.112d)), (2.112¢]) over the set I and adding them
together we obtain

d
20wl +b Y July <pr

i€{1,2,4,5} i€{1,2,4,5}
Thus
S luw®lly e > Juiolly +pr(1—e72)/b. (2.134)
i€{1,2,4,5} i€{1,2,4,5}

Step 6 - uy,uz € Loo(0,00; X)

From (2.133)), (2.134)) we obtain that fi(2z) + 21 € Leo(0,00;Y"). Using the Duhamel formula and
estimates from Lemma |2.19| we get

t
Iz ()l x < e [l zix) 210l x + /0 el |l covxy 1 (2(E = 8)) + 21(t — 5) ||y ds
< lz10llx + Cllf1(2) + 21l oo (v) /O (1A s)"2e%ds < |z10llx + ClA(2) + 21/l (v,

whence u; € Loo(0,00; X). A similar argument gives us € Lo (0, 00; X) and completes the proof.
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Figure 2.1: Graph of u} - the stationary solution to problem (normalised to 1) computed
for the following values of parameters: b = [100,10,10,10,10], ¢ = [10,10,1,10,10], p =
[100,0,100,0,0], d = 1/10. First row - h € {1,1/3,1/5}, second row - h € {1/10,1/15,1/20}, third
row - h € {1/25,1/30,1/35}, fourth row - h € {1/40,1/45,1/50}. A numerical scheme based on the
finite difference method was implemented using the software Octave.
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Figure 2.2: Graph of u* - the stationary solution to problem (2.112) (normalised to 1) com-
puted for the following values of parameters: b = [100, 10,10, 10, 10], ¢ = [10,10,1,10,10], p =
[100,0,100,0,0], d = 1/10. First row - wuj/[|uj|x,us/||us|x,us/||uillx, second row -
wy/||uillx,ui/||uk]| x - Notice the surprising difference in behavior of u} and uf near z = 0 (see Remark
for explanation).
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Chapter 3

Well-posedness and asymptotic
behaviour in the [LNW]|.B model

3.1. Nondimensionalisation and basic assumptions

After nondimensionalisation the [LNW].B model reads

[LNW].B
Ol —dAl =cs — (1 —s), (t,z) € (0,00) x Q
Os =—(c+b)s+1(1—s), (t,z) € (0,00) x Q
ol
d%:g, (t,x) € (0,00) x 'y
[ =0, t,x) € (0,00) xI'p
1(0) = lp, s(0) = so, x €

where by % we denote the derivative in the direction of the outer normal vector to I'y.

In the whole chapter we assume that
Al neN, p>n>1.

A2 Q C R" is a bounded domain (open, connected) with (C!) boundary which consists of two
disjoint parts: 9Q =T'p UTy.

A3 0<geW, P(Ty).
A4 o, 50 € WH(Q); 0<lp(z), 0<so(x) <1 forze; Ilo(x)=so(x)=0,forzelp.

3.2. Notation and preliminaries

In this chapter C' denotes a positive constant which may depend on a subset of {ly, s, g, ¢, b,d,Q, p}
and may change its value from line to line.
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For 1 < g < oo,a € {1,2} we introduce the spaces W'z (£2):

WlﬁBl(Q) ={u e W, (Q):up, =0},

q
ou
Wq2,82 (Q) = {u € WqZ(Q) : U|FD =0, %h’z\r = 0}7

with standard Sobolev norms ||.||4.q-
We will often use the following version of Poincaré’s inequality

lully < ClIVullg, for u € Wy g (), (3.1)

where C' depends only on on ¢ and {2.

In what follows we denote by A, the L,(Q2) realisation of the Laplace operator with mixed boundary
condition.

Ag i Ly() D D(Ay) = Ly(R), D(Ag) = W75 (9) Agu = Au for u € D(Ay).
The properties of operator A, are collected in the following

Lemma 3.1.

1. The operator A, generates an analytic, strongly continuous semigroup et for1 < g < o0.
Moreover etAnu = Aoy for 1 < g1 < g2 < 00 and u € Ly, (Q).

2. The spectrum of A, does not depend on q and consists entirely of negative eigenvalues

g(Ag) =0p(Ag) ={Ni: i€NLEH 0> A > >0

3. For a,p€{0,1,2}, a <, 1 <q < gz <oo andt >0 the following estimates hold
leaul|gq < C(EA 1) g 4 < CHOA2|jullqq, u e Wipa(2) (3.2a)

leaullg, < C(t A 1)UV @RI || < Ot PUOV®R |yl we Ly Q) (3.2b)

where A1 < 0 is the first eigenvalue of As and C' depends only on q,q1, qo, 2.

Proof.

Step 1 Observe that Part 1 follows from [[2], Theorem 4.1].

Step 2 As a straightforward consequence of Part 1 we obtain that for any 1 < ¢ < oo the resolvent
set p(Ay) is not empty. Moreover using the compact imbedding

W2 g2 () CC Ly(Q),
we get that R(\, A,) is compact for A € p(A4,) and thus o(4,) = 0,(A,). We will now prove that
0 € p(4y) for 1 < g < 0. (3.3)

Assume that u € ker(A4,). To prove (3.3) it is enough to show that u = 0. If ¢ > 2 we have

Oz/Aquu:—/ |Vul?,
Q Q
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whence u = 0 due to the boundary condition . If 1 < ¢ < 2 denote p = q/(¢—1) > 2, choose f € L,(2)
and let w = R(0, Ap)(—f). Then

0= [ Agw =~ [ Vuw = [ u. (3.4)

Since (3.4) holds for any f € L,(Q2) we conclude that u = 0. We will now show that
o(Aq) = 0(Ay), for 1 < g < g <oo. (3.5)

It is clear that o(Ay) C 0(Ay) as D(Ay) C D(Ay). To prove the opposite inclusion choose A € o(A)
and 0 # ¢ € D(A,) such that A;¢ = A¢. To finish the proof of it suffices to show that ¢ € D(Ay).
Define sequence (g;)1"; such that ¢ = q1 < ¢2 < ... < ¢m = ¢ and Wq%(Q) C Lg;,, (). We will prove
inductively that ¢ € D(Ay,) for i = 1,...,m. The base of induction follows from the definition of ¢.
Assume that ¢ € D(Ay,) for certaini € 1,...,m—1. Then ¢ € Ly11(€2). Denote ¢ = R(0, Ag41)(—A9).
Then ¢ € D(Ag41) and Ay() — ¢) = 0 hence ¢ =1 € D(Ag41).

Finally since operator A is self-adjoint, negative and has a compact resolvent we get from the spectral
theorem for unbounded operators on Hilbert spaces that o(A4,) = 0(A2) = 0p(A2) = {\i: i € Ny}
and 0 > A\ > Ao > ...

Step 3 Observe that A; = sup Re(o(A4,)) for any 1 < ¢ < oo. Thus using [[22], Corollary 2.3.5.] we
obtain the following estimates

letaully < Moe*Jlullg, (3.6)
[E(Ag + MD)eoully < Myet?full.
From (3.6) and (3.7]) we obtain

le*rulla,q < CllAge™aully < Oll(Ag + AcD)eullg + CArfle el

< C(My/t + Mohy)eMull, < C(t A1) e ful|,. (3.8)
From [[2], Theorem 5.2] we obtain
[Lqg(2), W7 52 (D]ajz = W'pa(Q), for a € {0,1,2}, (3.9)
[Lay (), W2 52()]o C Ly, (), for 6> n/2(1/q1 — 1/q2). (3.10)
Finally estimates and follow from , , and . O

From now on we will omit subscript ¢ and write A instead of A,.

3.3. Stationary problem

In this section we prove the following

Theorem 3.1. [LNW].B has a unique nonnegative steady state (lso, Soo), where
0<lx € sz(Q) is the unique solution to

bloo

—dAls = P x el (3.11a)

Ol
dﬁ =g, rely (3.11b)
loo = 0, z €Tp. (3.11c)

and Soo = loo/(b+ ¢+ lxo)-
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The proof of existence is based on maximal regularity for uniformly elliptic operators in Sobolev spaces,
compact embedding, comparison principle and Schauder fixed point theorem. Uniqueness follows from
monotonicity of the nonlinear part in (3.11al).

Proof of Theorem[3.1, For x> 0 let f(x) = —f=—. For u € L,(Q)4 define operator

A(u) : Lp(Q) D W;,B2 (Q) = Lp(Q), A(v)w = dAw — f(u)w.

Using [[2], Theorem 4.1] we see that A(u) generates an analytic, strongly continuous semigroup. In
particular there exists 0 < A(u) € p(A(u)). From compact imbedding W57BQ(Q) CC Ly(£2) we get that
the resolvent operator R(A(u), A(u)) is compact and thus o(A(u)) = o,(A(u)) (i.e. A(u) consists of
eigenvalues only). Finally since ker(A(u)) = {0} we obtain that 0 € p(A(u)) hence operator A(u) is
invertible. Let G € W2(£2) be such that G = 0 on I'p and ddG/dv = g on T'y. Consider the operator
T: La(2)4 — Lo(Q2), defined by

T(u) = (—A(u))"H(dAG - f(u)G) + G.

Observe that T'(u) € W2 () satisfies

—dAT(u) + f(u)T(u) =0, x e (3.12a)
daT&(/“) _ zeTly (3.12b)
T(u) =0, xelp (3.12¢)

We will show that T" has a bounded image in L2(2), is compact and continuous (this via the Schauder
fixed point theorem will imply existence of a solution of (3.11)) in W2} (€2)). Multiplying (3.12a)) by T'(u),
integrating by parts and using positivity of f and Poincaré’s inequality we obtain the following energy
estimate

1T (W) llwy ) < CliglLawny)- (3.13)

where C' does not depend on u. From (3.13) we obtain that the range of T is bounded in W4 (£2)
and therefore in Ly(92). Compactness of T follows from the compact imbedding W, () CC La(£2). To
show that T'(u) > 0 we multiply (3.12a)) by T'(u)— and integrate by parts

~d [ 1vrt)-p- [ o)~ | @)y =o.

Thus T'(u)— is constant in Q and since T'(u) = 0 on I'p therefore T'(u) > 0 in €.
Assume that u,, — w in Lo(Q). Let w = T'(u), w, = T'(uy), then

—dA(wy, — w) + f(up)(wy —w) +w(f(up) — f(u)) =0, x el
dwzo’ rely
ov
wy, —w =0, xelp

therefore

lwn = wllzy@) < Cllw(f (un) = Fu)llza@) < Cllwlzw@) I w000 ltn = ullzy@)

which proves that T is continuous. Using Schauder fixed point theorem we obtain existence of I, €

W2 () which solves (3.11).
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To prove uniqueness, assume that 1,12 are solutions of (3.11)). Subtracting equations ([3.11a) for

1,12, multiplying by I}, — 2, integrating by parts and using the monotonicity of function Ry > x —

zf(x) we get
o 1 o 2 2: 1 1 o 2 2 1 o 2
d /Q V(L — 2 /Q P — PO, —12) >0,

which by (3.11d) implies I}, = 2. O]
3.4. Evolution problem

We next turn to the evolution problem and establish its well-posedness.

Theorem 3.2. [LNW].B has unique solution (l,s) such that

I — los € C([0,00); W, (2)) N C1((0,00); Lp(£2)) N C((0, 00); W), (3.14a)
s € C'([0,00); W, (9)). (3.14b)

Moreover for (t,z) € [0,00) X §

0<lI(tyx), 0<s(tz)<]l. (3.14c¢)

Local existence and uniqueness are obtained by putting system [LNW].B into the semigroup frame-
work and using general theory for abstract parabolic semilinear problems. Comparison principle allows
us to deduce that (3.14¢) is satisfied from which we get that our solution is global.

Proof of Theorem[3.3. To deal with nonhomogeneous boundary condition on I'y we subtract from
(1, s) the stationary state (loo, Sco). Setting (21, 22) = (I — lo, S — Soo) We arrive at

Opz1 — dAz = czo — 21(1 — 22) + So021 + loo22, (t,z) € (0,00) x Q (3.15a)
Orza = —(c+b)za + 21(1 — 22) — Sc021 — loo22, (t,x) € (0,00) x Q (3.15b)
0
d% =0 (t,z) € (0,00) x T'y (3.15¢)
21 =0, (t,z) € (0,00) x I'p (3.15d)
21(0) =210 = lop — lo, LR (3156)
29(0) = 290 = S0 — Soo, r e (3.15f)

We interpret system (3.15) as a differential equation in a Banach space specified below

C = H(e), t € (0,00) (3.16a)

dt
Z(O) = Zo = (Zlo, 220) (3.16b)
where z = (z1,22), Az = (dAz,0), H = (H', H?),
HY(2) = cz2 — 21(1 — 22) + 80021 + loo22, (3.17a)
H%(2) = —(c+b)za + 21(1 — 22) — S0021 — loo2a. (3.17b)

In the following lemma we prove local existence for (3.16]).
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Lemma 3.2. For a € {0,1,2} denote Z,, = Wz?fBa X W;}Bl' For every zo € Z1,, the Cauchy problem
(13.16|) possess a unique mazimal local solution

S C([O, Tmax); Zl,p) N Cl((07 Tmax); ZO,p) N C((07 Tmax); ZQ,p).

which satisfies for t € [0, Tyax) the following Duhamel formula:

t
2(t) = ez + / U= (2(s))ds, (3.18a)
0
29(t) = 290 + /t H?(2(s))ds. (3.18b)
0

Moreover if Tiax < 00 then limsup, .- ||z(t)[|1,, = oc.

max

Proof of Lemma (3.2, The operator A : Z, D Zy, — Z, is a generator of an analytic strongly contin-
uous semigroup etA = etdA x Id (as a product of two generators). Moreover since Zj, is a Banach
algebra (p > n) we observe that H : Zy, — Z, is locally Lipschitz on bounded sets. The claim
follows from Lemmal.3] . O

We next turn to the proof of (3.14c]).
To prove that for ¢ € [0, Tiax) L(t), s(t) > 0 we consider the system

ol —dAl = es'y = U/ (1 —5,), (t,x) € (0,00) x Q2 (3.19a)
Os' = —(c+b)s', + 1 (1-5), (t,z) € (0,00) x Q (3.19b)

dglyl =g, (t,x) € (0,00) x 'y (3.19¢)
I'=0, (t,x) € (0,00) x I'p (3.194d)

'(0) = ly, z € (3.19¢)

s'(0) = s, x € (3.19f)

As before one can show that (3.19) possess unique classical local solution (I, s’). After multiplying
(3.19a) by [ and integrating by parts we obtain

1d
——— [ " Pde—d | VI Pdz—d [ 1'gdS=c [ s dx>0.
2dt Jo Q r Q

N

Similarly multiplying (3.19b)) by s_ yields
1d
—/ ]3'|2d:c—/l'+s'dx20.

Therefore for ¢t € [0, Tinax)
1) 13 + 118" (&) 115 < 7/ (0)-[I5 + [|s"(0)-[15 = 0

and consequently I'(t) > 0,s'(t) > 0. We observe now that (I, s’) is a solution of [LNW].B and using
uniqueness we finally get that [(t) =1'(t) > 0, s(t) = §'(t) > 0 for ¢t € [0, Tiax)-
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To show that s(t,x) < 1 for (t,z) € [0, Tax) X Q we get from Lemma that for every fixed z € O
the function m =1 — 5 =1 — 20 — 500 € C1([0; Trnax ), R) satisfies for ¢ > 0 the following ODE

dm

E—i—(c—i—b—i—l)m:c%—b.

Therefore

t
m(t) = (NI ) (o) [ gy g,
0

We finally show that Ti,.x = co. Reasoning by contradiction assume that Ti,,x < oo. Using uniform
Lo boundedness of s (and therefore of z2) we obtain for ¢ € (0, Tinax):

1 (=(0)llp < CA+ z1®)llp) < O+ [lz1(8)ll1p)- (3.20)

Using (3.18al),(3.2al),(3.20)) we obtain

l1 () < e 2101, + /w“T“H%<»Mmf
<QMﬂm+0/ PR H (2 (8))
<ﬂ%ﬂm+0/ V2 4 oy (1) 1)
CWm%m+D+CA@—TYWWKﬂMMT
Using Lemma (1.2 we get that ||21(t)|1,, < C and therefore

I (2(E) 11 < CA+ [l22() ). (3.21)

Using (3.18b)) and ([3.21)) we obtain

l2(®)lp < llz20]l1p + /MW HMM<WMM+O/ 1+ ()1 p)dr

CW@Mp+U+C/WMﬂLMf
0

Another application of Lemma gives the desired contradiction from which we deduce that Ti,.x =
0.

O]

We finally study the stability of the steady state and show that it attracts all trajectories with the
uniform exponential rate.

Theorem 3.3. There exists a positive constant C' depending on ly, g, g, ¢, b, d, Q, p such that for every
t>0

11(£) = Looll1.p + [5(£) = $acll1p < Cem /2, (3.22a)
[1(t) = lool2p < Cmax{1/vt,1}e~X/2, (3.22b)
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where

—dM\i(c+0b) b }

a2 2 (3.22¢)

X:min{ —d\y,

and Ay is defined in Lemma|[3]]

By extending Lyapunov functional (derived in [15] for one dimensional interval) to the case of arbitrary
dimension we obtain estimates on the distance between solution and steady state in Ls X Lo topology.
Using regularising properties of the heat semigroup we next bootstrap the topology of convergence to
W2 x Wl

P P

Remark
Using embedding W2 (€2) x W} (Q) € C1*(Q) x C%*(Q) valid for p > n, 0 < o <1 —n/p we obtain
topology of convergence as claimed in the introduction.

Proof of Theorem [3.3. The proof of Theorem is based on Lo estimates obtained for n = 1 in [15]
and bootstrap method to improve convergence from X;-topology to X;ti-topology, where X;11 C X;
are appropriately chosen Banach spaces. We use (as long as the regularity of our solution permits) the
following two step

Bootstrap scheme
L lz1(®)]lx; + |22(0)]x; < Ce= /2t gives Iz1(8) ]| x.,, < Ce—(X/2)t.
2. |z1(1)||x,y, < Ce 0D gives [|zo(t)]| x,,, < Ce” /2,

Part 1. is a consequence of the Duhamel formula (3.18a]) and semigroup estimates (3.2]).
Part 2. follows from the fact that we can solve equation (3.15b|) explicitly for zo in terms of z;.

Step 1 - Ly estimate

We first show that, as in the one dimensional case [LINW].B has a Lyapunov functional from which
exponential convergence to the equlibrium (I, Soo) follows.

Lemma 3.3. Forx €[0,1),u,v € W;Bl(Q),O <wv <1, define
Yr(z) =—In(1 — x),
Ao(v) = / (1= o) low + ¢+ 26) [£1(0) — B (s00) —
Q

1
A, v) = Sl = Leell3 + Ao (o),

V — Soo

dx,

1— 5+

— (e + )V + b(loo + ¢+ b) (v — 850)?
1—-w

DA(u,v):dHV(u—loo)H%—i—/Q[u(l_v) da.

Then fort >0

/u\ﬂﬁ)M—th,

XA(U(1), s(t)) < Da(l(t), s(1)),
(c+0)s(t) = secll3 < 2A0(s(1))
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and
() = locll3 + (¢ + B)I5(t) = secl3 < 2A(lo, s0)e ™, (3.23)
where x satisfies (3.22¢)).

Proof of Lemma (3.3 The proof can be obtained exactly as in [15] (part of Theorem 8 and Proposition
9 pp 1740-1744). For the case n = 1,p € (1, 2), to justify integration by parts and Poincaré’s inequality,
we observe that for ¢ > 0: [(t) € W2 () € W3 (). O

Step 2 - L, estimate

In this subsection we will prove that for t > 0
121 @)l + [l22()]|p < Cem ™2, (3.24)

the parameter p being defined in A1.
Notice that if p € (1,2] (which can only happen if n = 1), the inequality (3.24) follows from (3.23]).
Otherwise we have p > (2 V n). We choose an increasing sequence (p;)/"; such that

P1 = 2,pm = D,
n/2(1/pz — 1/pz'+1) <lforl<i<m-—1.

Notice that for n € {1,2,3,4} one can take m = 2. Inductively we will prove that

21 (O)lp, + llz2()llp, < Ce ™, 1< i <m. (3.25)
For i =1 (3.25)) follows from (3.23]). Assume that (3.25) is true for some 1 <4 < m — 1. Then
1 (2(8))llp: < NllpilIT = 22+ so0llo + ll22llp, e + b+ loclloo < Ce™ /2, (3.26)

Using (3.18al), (3.2b)), (3.26)) and x/2 < dA; we obtain

t
121 ()i < N z10llpi +/0 e H (2(t = 7))|piy d7
t
< Cetht C/ (rd A1) PP P ) T H (28— 7))y dT
0

t
< CedMt C/ (rd A 1)—n/2(1/1?i—1/’pi+1)ed/\1Te—(X/2)(t—T)d7-
0

t
< Ce®Mt 1 Ce—(x/2)t/ (rd A 1)—”/2(1/Pi—1/Pi+1)e(d>\1+x/2)7'd7—
0

< Ce~WX/2)t.

We now show that [|z2()||p,, < Ce~X/2* for ¢ > 0. Indeed from Theorem We obtain that for each
fixed x € Q the function 25 € C*([0, 0); R) satisfies the ODE

dz

gt +(c+ b+l +21)22 = (1 — 500)21,
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hence
2a(t) = A(t)z20 + (1 — 520) /0 LAt — Py, (3.27)

where
At) = exp ( - /Ot(c+ bt Lo + 21(7)dr). (3.28)

From oo 4 21 = 1 > 0 we get || A(t)]|oo < e~ (¢t Using x/2 < ¢+ b we obtain

t
22 llpiss < 1A@ ool z20[lpisr + 111 = Sool!oo/o AT looll21(t = 7)[lp;, d7

t
< Ce (et | Co— (/21 / e~ (eHbX/D7 gr < o=/,
0

thus finishing the proof of (3.25)), whence that of (3.24]).

In the next two sections we use the smoothing properties of e/ to extend convergence to the first and
second derivatives.

Step 3 - Wp1 estimate

Using (3.18a)), (3.2a)), (3.24) and x/2 < —dA; we obtain

t
lz1(®)l1p < HetdAZloHl,er/O ™A H (2(t — 7)) |1 pdT
t
< CedMt 4 c/ (rd A 1)7V2MT | HY (2(t — 1)) || pdr
0
t
< CetMt 4 C'/ (td A 1)_1/26’\1d76_(X/2)(t_T)d7'
0

t
< Ce®Mt 4 Ce (/2 / (td A 1)_1/2e(d’\1+X/2)Td7'
0

< Ce— /2t

Using the above estimate for z; we obtain that A(t) given by (3.28)) satisfies

JA®)]l, < CIlA®)||oo < Ce™ e+t
t

IVAD, = ||—A(t)/0 (Vleo + Vi (7))dr]lp < IIA(t)Iloo/0 IVisolly + IV21(7)llp)dr

t
< Ce—(c+b)t/ (14 e~ 027 gr < Cpe—(eHbt
0
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Thus using (3.27) we have

Iz2()][1p < [1A@)[[1,p]l220]

t
Lp+CJl1 = SooHLp/O Al pllz2 (& = 7)1 pdr
t
< C(t+1)e (0t 4 C/ (7 + 1)e (0T~ (/2= g7
0

t
< C(t+1)e 0t L 0O/ / (7 + 1)e (X277
0

< Qe X/t

which finishes the proof of ((3.22a)).
Step 4 - WI? estimate for z;

Using (3.18al), (3.2a]), (3.22a]) and x/2 < d\; we obtain

t
IOz < le"210ll2 + /0 lem A H (=t = 7)) 27
t
< C(td A1)t 4 C/ (rd A1) Y2eMdT = (/2 (E=7) g
0

t
< C(t/\ 1)—1/2€d>\1t + Ce—(X/Q)t/ (7_/\ 1)—1/2€(d>\1+x/2)7d7_
0

< Cmax{1/Vt,1}e” /21,

which finishes the proof of (3.22b]).
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Chapter 4

Conclusions and final remarks

We summarise the content of the dissertation as well as provide few additional remarks and state one
open problem.

The subject of the dissertation is a rigorous mathematical analysis of two models that were recently
proposed to describe morphogen transport - a biological process governing cell differentiation in living
organisms. The models that are taken under consideration describe the movement of two distinct
morphogens (Wg and Dpp) in the imaginal wing disc of the fruit fly.

In Chapter we have analysed the [HKCS] model of morphogen Wg transport introduced by Hufnagel
et al. in [I3]. We have shown that the model is well-posed in appropriately chosen function setting
(Theorem and Theorem and has a unique stationary solution (Theorem and Theorem |2.6|).
The most significant result of the dissertation is a mathematically rigorous justification of the fact
that the one dimensional version of the [HKCS] model can be obtained from the full two dimensional
version by an appropriate limiting process in the evolutionary (Theorem as well as in the stationary
(Theorem [2.5)) case. This process can be interpreted either as dimension reduction (the two dimensional
domain of the full model is "ironed” to the interval) or as sending to infinity the flux of morphogen
molecules in the direction perpendicular to the wing disc. Above result may be seen as an argument
to justify that the one dimensional domain is sufficient to model the process. However the topology
of convergence is to weak to exclude one qualitative difference in the behaviour of solutions at the
source point z = 0. Namely the concentration of morphogen in the [HKCS].2D model blows up
at x — 0 while it stays bounded in the case of one dimensional domain. Roughly speaking this
phenomenon is a consequence of the fact that the Dirac Delta which is used to represent the point
source of morphogen in both models, is a more singular distribution in the second dimension. Another
interesting phenomenon observed during the analysis is the surprising behaviour of the concentration
of the triple morphogen-glypican-receptor complexes near the source point (see Figure . Although
we are able to justify that analytically (see Remark |[4)) we believe that there should also be a biological
explanation. What remains open in the analysis of the [HKCS] model is the asymptotic behaviour of
solutions as t — oo.

In Chapter [3| we have analysed the [LNW].B model of morphogen Dpp transport introduced by
Lander et al. in [20]. We have shown that all results obtained before by Krzyzanowski et al. in [15] for
the case of a one dimensional domain (i.e. well-posedness and existence of a unique equilibrium which is
globally exponentially stable in the Ly topology) hold in the domains of arbitrary dimension (Theorem
Theorem and Lemma [3.3). Moreover we have shown that the topology of convergence of time
dependent solution to the equilibrium is at least C1* x C% (Theorem [3.3) which improves the result
from [I5] and shows that the gradient of morphogen is being formed in a more regular manner.

79






Bibliography

[1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.

[2] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value prob-
lems, Function Spaces, Differential Operators and Nonlinear Analysis. Teubner, Stuttgart, Leipzig,
(1993), pp. 9-126.

[3] L. Boccardo, T. Gallouet, Non-linear elliptic and parabolic equations involving measure data, J.
Funct. Anal., Vol. 87 (1989), pp 149-169.

[4] T. Bollenbach, K. Kruse, P. Pantazis, M. Gonzéalez-Gaitén, F. Jilicher, Morphogen transport in
Epithelia, Physical Review E. 75, 011901 (2007).

[5] H. Brezis, W. A. Strauss, Semi-linear second-order elliptic equations in L', J. Math. Soc. Japan,
Vol. 25, No. 4, pp 565-590 (1973).

[6] J. W. Cholewa, T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical
Society Lecture Note Series 278, Cambridge University Press, (2000).

[7] M. Faiermann, Regularity of solutions of an elliptic boundary value problem in a rectangle, Com-
munications in Partial Differential Equations, 12(3) (1987) pp 285-305.

[8] D. Fujiwara, Concrete characterization of the domains of fractional powers o some elliptic differ-
ential operators of the second order, Proc. Japan Acad., Vol. 43, (1967) pp 82-86.

[9] A. Gierer, H. Meinhardt, A theory of biological pattern formation, Kybernetik 12, (1972) pp 30-39.

[10] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program,
(1985).

[11] J. B. Gurdon, P.-Y. Bourillot, Morphogen gradient interpretation, Nature, Vol. 413, (2001).

[12] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics,
Springer-Verlag, (1981).

[13] L. Hufnagel, J. Kreuger, S. M. Cohen, B. I. Shraiman, On the role of glypicans in the process of
morphogen gradient formation, Dev. Biol. Vol. 300, Iss. 2, pp 512-522 (2006).

[14] T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer Verlag
(1995).

[15] P. Krzyzanowski, P. Laurencot, D. Wrzosek, Well-posedness and convergence to the steady state
for a model of morphogen transport, SIAM Journal of Mathematical Analysis, Vol. 40, No. 5, (2008)
pp- 1725-1749.

81



[16] P. Krzyzanowski, P. Laurengot, D. Wrzosek, Mathematical models of receptor-mediated transport
of morphogens, Mathematical Models and Methods in Applied Sciences 20, (2010) pp 2021-2052.

[17] A. Kicheva, P. Pantazis, T. Bollenbach, Y. Kalaidzidis, T. Bittig, F. Jiilicher, M. Gonzdlez-Gaitan,
Kinetics of Morphogen Gradient Formation, Science, Vol. 315, (2007) pp 521-525.

[18] M. Kerszberg, L. Wolpert, Mechanisms for Positional Signalling by Morphogen Transport: a
Theoretical Study, Journal of Theoretical Biology, 191, (1998) pp 103-114.

[19] J. L. Lions, E. Magenes, Probleme aux limites non homogénes IV, Ann. Sc. Norm. Sup. Pisa, 15
(1961) pp 311-326.

[20] A. D. Lander, Q. Nie, Y. M. Wan, Do Morphogen Gradients Arise by Diffusion?, Developmental
Cell, Vol. 2, (2002) pp. 785-796.

[21] L. Lorenzi, A. Lunardi, G. Metafune, D. Pallara, Analytic semigroups and reaction-diffusion
problems, Internet Seminar 2004-2005.

[22] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Non-
linear Differential Equations and their Applications, Vol. 16, Birkhauser, Basel, Boston, (1995).

[23] M. Malogrosz, Well-posedness and asymptotic behavior of a multidimensonal model of morphogen
transport, J. Evol. Eq., Vol. 12, Iss. 2 (2012), pp 353-366.

[24] M. Malogrosz, A model of morphogen transport in the presence of glypicans I, Nonlinear Analysis:
Theory, Methods & Applications, Vol. 83 (2013), pp 91-101.

[25] M. Malogrosz, A model of morphogen transport in the presence of glypicans II, submitted.
[26] M. Malogrosz, A model of morphogen transport in the presence of glypicans III, submitted.

[27] M. Medved, A new approach to an analysis of Henry type integral inequalities and their Bihari
type versions, Journal of Mathematical Analysis and Applications, 214 (1997), pp. 349-366.

[28] M. Reed, B. Simon, Methods of modern mathematical physics I: Functional analysis, Academic
Press, Inc. (1980).

[29] C. Stinner, J. I. Tello, M. Winkler, Mathematical analysis of a model of chemotaxis arising from
morphogenesis, M2AS, Vol. 35 (2012), pp 445-465.

[30] J. 1. Tello, Mathematical analysis of a model of morphogenesis, Discrete and continuous dynamical
systems, Vol. 25, No. 1 (2009) pp 343-361.

[31] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Math-
ematical Library, Vol. 18 (1978).

[32] A. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society
of London. Series B, Biological Sciences, Vol. 237, No. 641. (Aug. 14, 1952), pp 37-72.

[33] L. Wolpert Positional information and the spatial pattern of cellular differentiation, J. Theor.
Biol. 25 (1) (1969) pp 1-47.

82



	Introduction
	Modelling of morphogenesis
	Positional signalling

	Presentation of the mathematical models
	The [HKCS] model
	The [LNW].B model

	The main results of the dissertation
	The [HKCS] model
	The [LNW].B model

	Preliminaries
	Notation
	Inequalities
	Existence result for a system of abstract ODE's


	Well-posedness and dimension reduction in the [HKCS] model
	Nondimensionalisation and basic assumptions
	Evolution problem
	Operators, semigroups, estimates
	The case of a regular source
	Auxiliary functions
	Definition of M-mild solution
	The main results of Section 2.2
	Proof of Theorem 2.2
	Proof of Theorem 2.3

	Stationary problem
	The results of Section 2.3
	Solvability of certain linear system with measure valued sources
	Proof of Theorem 2.4
	Proof of Theorem 2.5

	Limit problem
	Function spaces
	The results of Section 2.4
	Lemmas
	Proof of Theorem 2.6
	Proof of Theorem 2.7


	Well-posedness and asymptotic behaviour in the [LNW].B model
	Nondimensionalisation and basic assumptions
	Notation and preliminaries
	Stationary problem
	Evolution problem

	Conclusions and final remarks

