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Abstract

In this dissertation we show how to use cryptocurrencies (mostly Bitcoin) and tech-
niques coming from the field of cryptocurrencies to construct new types of Multiparty
Computation Protocols (MPC), which go beyond the standard definition of MPC.

In the first part of the dissertation we study the MPC protocols, in which parties
have access to a Bitcoin-like cryptocurrency. We show that in this setting it is possible
to design a two-party MPC protocol for computing a value of an arbitrary function f
that has two advantages over classical MPC protocols. First, classical two-party MPC
protocols do not guarantee fairness, which means that a malicious party can interrupt
the execution of a protocol in a state, in which he/she knows the output of the protocol,
but the other party does not. In contrast, our MPC protocol do guarantee some kind
of fairness. More precisely, a party who has not learnt the output due to the other
party’s misbehaviour is given a financial compensation. Moreover, the value of the
function f being computed can contain instructions like “The party A pays 1 bitcoin to
the party B” and our protocol guarantees that such transfers will automatically take
place. Therefore, it allows to create two-party protocols with financial consequences.
We also discuss how to formally verify the correctness and the security of such protocols
and show how to protect them against the so-called malleability of transactions, which
is a problem concerning most cryptocurrencies.

Then, we study cryptographic protocols in a fully peer-to-peer scenario under the
assumption that the computing power of the adversary is limited and there is no
trusted setup (like a PKI or an unpredictable beacon). We show that every primitive
(e.g. Byzantine consensus) that can be realised under the classical assumption that the
majority of the parties executing the protocol is honest and there is a PKI available
can also be realised under the assumption that the majority of the computing power
is controlled by honest parties and there is no PKI.
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Streszczenie

Niniejsza praca przedstawia wykorzystanie walut kryptograficznych (glownie Bitcoina)
oraz technik wywodzacych sie z walut kryptograficznych do konstrukeji protokotéow do
obliczent wielopodmiotowych (ang. Multiparty Computation Protocols, MPC), ktére
wychodza poza standardowsa definicje bezpieczeristwa protokotéw MPC.

W pierwszej czesci pracy analizujemy protokoty MPC, w ktérych strony majg do-
step do kryptowaluty w stylu Bitcoina. Pokazujemy przy tym zatozeniu konstrukcje pro-
tokotu MPC dla dwoch stron do obliczania wartosci dowolnej funkeji f, ktéry ma dwie
zalety w stosunku do klasycznych protokotéw MPC. Po pierwsze, klasyczne protokoty
MPC dla dwoch stron nie gwarantuja tzw. sprawiedliwosci obliczer (ang. fairness), co
oznacza, ze nieuczciwa strona moze przerwaé¢ wykonanie protokotu w stanie, w ktérym
jedynie ona zna wynik obliczenia. W odréznieniu od standardowych protokotéw MPC,
nasz protokol zapewnia pewien rodzaj sprawiedliwosci obliczen. Doktadniej, strona,
ktora nie pozna wyniku obliczenia, automatycznie otrzymuje rekompensate finansows.
Ponadto, wartosé¢ funkeji f moze zawieraé instrukcje w stylu "Strona A ptaci 1 bitcoina
stronie B" i nasz protokoél gwarantuje, ze takie przelewy zostang automatycznie wyko-
nane. Pozwala to zatem na konstrukcje protokotéw z konsekwencjami finansowymi. W
pracy przedstawiamy réwniez metody formalnej weryfikacji poprawnosci i bezpieczeri-
stwa tego typu protokoléw oraz pokazujemy w jaki sposéb chronié¢ te protokoty przed
tzw. kowalnosciq (ang. malleability) transakcji, ktora jest problemem wystepujacym w
wiekszosci kryptowalut.

Ponadto analizujemy protokoty kryptograficzne w sieciach peer-to-peer, ktére nie
wymagaja infrastruktury klucza publicznego ani zrodla skorelowanej losowosci (ang.
random beacon) przy zalozeniu ograniczonej mocy obliczeniowej przeciwnika. Poka-
zujemy, ze kazda funkcjonalnosé, ktéra moze zostaé zrealizowana przy zalozeniu, ze
wiekszosé stron wykonujacych protoké?t jest uczciwa i dostepna jest infrastruktura klu-
cza publicznego moze zosta¢ réwniez zrealizowana przy zalozeniu, ze wiekszos¢ mocy
obliczeniowej jest uczciwa bez zalozenia o istnieniu infrastruktury klucza publicznego.

Stowa kluczowe

protokot do obliczenn wielopodmiotowych, kryptowaluta, Bitcoin

Klasyfikacja tematyczna ACM

Theory of computation, Cryptographic protocols
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Introduction

My PhD dissertation consists of 6 articles, which I wrote during my PhD
studies at the Faculty of Mathematics, Informatics and Mechanics at the
University of Warsaw:

1.

Secure Multiparty Computations on Bitcoin [1], accepted to
IEEE Symposium on Security and Privacy, 2014,

Fair Two-Party Computations via the Bitcoin Deposits [2],
accepted to First Workshop on Bitcoin Research (in Assocation with
Financial Crypto), 2014,

Modeling Bitcoin Contracts by Timed Automata [3], accepted
to Formal Modeling and Analysis of Timed Systems (FORMATS), 2014,

On the Malleability of Bitcoin Transactions [4], accepted to
Second Workshop on Bitcoin Research (in Assocation with Financial
Crypto), 2015,

Secure Multiparty Computations on Bitcoin [5], accepted to
Communications of the ACM (CACM), Research Highlights, 2015,

*This work was supported by the WELCOME/2010-4/2 grant founded within the
framework of the EU Innovative Economy (National Cohesion Strategy) Operational Pro-
gramme.



6. PoW-Based Distributed Cryptography with no Trusted Setup
6], accepted to International Cryptology Conference (CRYPTO), 2015.

The first 5 articles were written together with my supervisor dr hab. Ste-
fan Dziembowski and two fellow PhD students: Daniel Malinowski and
Lukasz Mazurek. The last paper was co-authored only by dr hab. Dziem-
bowski. All of the above papers concern using cryptocurrencies (mainly
Bitcoin) or techniques coming from cryptocurrencies for designing new types
of Multiparty Computation Protocols (MPC), which go beyond the standard
definition of MPC.

A brief introduction to MPC protocols is given in Sec. 2 and a short
description of Bitcoin and other cryptocurrencies is presented in Sec. 3. Then,
in Sec. 4, I describe the results published in the papers included in this
dissertation. Finally, in Sec. 5, I list the publications written during my PhD
studies, which are not part of this dissertation.

2 Multiparty Computation Protocols

Multiparty Computation Protocols (MPC, [7, 8]) are protocols which allow
a group of mutually distrusting parties to jointly compute a value of an
arbitrary function f over their private and secret inputs without disclosing
the values of the inputs. More precisely, the security od means that no party
(even the one which does not follow the protocol) cannot learn more about
the other parties’ inputs than it could learn in the ideal model in which (a)
all parties send their inputs to the trusted third party; (b) the trusted third
party computes the value of the function f; and (c) the trusted third party
sends the value of the function to all the parties.

As an illustration of what the security of MPC protocols means consider
the so-called marriage problem. In this problem, two parties called Alice
and Bob want to check if they both would like to marry each other. Alice’s
input is a bit a indicating whether she would like to marry Bob and Bob’s
input b indicates whether he would like to marry Alice. The output of the
protocol is the bit indicating whether both parties agree to the marriage, so
the function f being computed is the conjunction: f(a,b) = a A b. Notice
that if @ = 1 then Alice can easily infer b from the output of the protocol as
f(a,b) = aAb=0. The secrecy in this scenario means that if Alice does not
want to marry Bob (i.e. @ = 0), then she should not learn Bob’s input b and
the analogical condition should hold for Bob.

Despite very strong security guarantees given by such protocols they are
very rarely used in practice. One of the reasons for this situation is the fact
that, in general, such protocols do not guarantee the so-called fairness, which



means that a malicious party can terminate the execution of a protocol in a
state, in which it is the only party knowing the result of the execution. It
has been proven that fairness cannot be guaranteed without the assumption
that the majority of parties are honest. In particular, MPC protocols do
not guarantee fairness in the case when there are only two parties (unless we
assume that both parties are honest).

3 Cryptocurrencies

Cryptographic currencies (also called cryptocurrencies) are equivalents of reg-
ular money which can be used over the internet. Bitcoin [9] is a cryptocur-
rency introduced in 2008 by an anonymous developer using the pseudonym
“Satoshi Nakamoto”. Despite its mysterious origins, Bitcoin became the first
widely adopted cryptocurrency — its current market capitalisation exceeds
$3 bn (May 2015). The most pivotal feature of Bitcoin, which makes it dif-
ferent from regular currencies, is that there is no central authority, which
controls the system or could “print” more money. Moreover, Bitcoin has
very low transaction fees and provides some level of anonimity.

The rapid success of Bitcoin caused the emergence of many other cryp-
tographic currencies (called alternative cryptocurrencies or altcoins to dis-
tinguish them from Bitcoin). Most of altcoins are just clones of Bitcoin and
do not differ from it significantly. Therefore, although I concentrate in this
dissertation on Bitcoin as the most popular cryptocurrency, the proposed
line of research is universal and concerns the general ideas behind most of
cryptocurrencies.

Bitcoin is an extremely interesting topic from the perspective of cryptog-
raphy, but for the lack of space in this short summary I will only mention
the features of Bitcoin which are most relevant to my work. A more detailed
introduction to Bitcoin may be found in my papers, e.g. [5].

In Bitcoin, all users of the system are connected using a peer-to-peer
network that jointly maintains a public ledger (called blockchain) containing
all transactions which have taken place in the system. Recall that classical
MPC protocols do not guarantee fairness unless the majority of users are
honest. The assumption of the honest majority does not make much sense
in the internet, where a malicious party can create numerous fake identities
(the so-called Sybil attack).

Bitcoin overcomes this limitation by using the so-called Proofs-of-Work
(PoW), which are cryptographic primitives allowing a party to prove to other
parties that it has spent some computational effort on a given task. More
precisely, the security of the Bitcoin protocol relies on the assumption that



the majority of the computing power in the system belongs to honest parties.
Therefore, in order to break the system the adversary would need to control
machines with the computing power comparable to the computing power of
the rest of the network.

As already mentioned the blockchain jointly maintained by the users con-
tains all transactions that have taken place in the system since its inception.
Without digging into the details, we can say a Bitcoin transaction has the
form “A user A transfers x bitcoins to a user B” (bitcoin is a currency unit
used in Bitcoin). Of course, we need to make sure that the user A has enough
funds to make such a transfer. To this end, each transaction has a special
string identifying it (it is, in fact, the hash of its binary representation) and
has, in fact, the form “A user A transfers x bitcoins, which he/she received
in the transaction T', to a user B”. Such a transaction is accepted only if
the blockchain contains the transaction 7' and the transaction T' transfers x
bitcoins to the user A. In this case, we say that the new transaction claims
the transaction T'. Of course, we also need to make sure that a malicious user
cannot spend his coins twice (called a double-spending attack) and hence the
new transaction is only accepted if the blockchain does not already contain
another transaction claiming the transaction 7.

The ownership of bitcoins is proven using public key cryptography (each
user can create a private/public key pair on its own — there is no PKI used).
More precisely, the users of the system are identified by their public keys and
each transaction contains the public key of the recipient. The transaction
claiming the transaction T is considered valid only if it is signed using a
private key corresponding to the public key of the recipient of the transaction
T.

What is important from the perspective of using Bitcoin for designing
MPC protocols is that it allows much more complicated types of transactions
(called non-standard transactions). Such transactions can contain a puzzle,
which the recipient has to solve in order to claim the bitcoins being sent. In
more detail, each transaction contains the so-called output script, which is
a description of some function f. In order to claim the money the recipient
has to provide the argument z for which f(x) = true. The function f is
written in a special language designed for this purpose, which allows among
others verifying cryptographic signatures or computing the values of some
hash functions. Moreover, transactions can be time-locked, which means
that they become valid only after some time t. For instance, it is possible to
send bitcoins to three users in such a way that any two of them can claim
the bitcoins after July 1st, 2015 assuming that they will provide the string x,
s.t. H(z) = v, where H is the SHA-256 hash function and v is some string.



4 Obtained results

4.1 Secure online gambling

Online gambling is a significant market — it is estimated that there are
currently 1,700 gambling sites worldwide handling bets worth over $4 bn per
year [10]. What may be surprising is that online gamblers are completely
unprotected from the abuse by casinos. The casino can easily cheat on its
users, e.g. by “rolling biased dices” or simply refusing to pay them the
prizes they are entitled to and there have been cases when some casinos have
overused their privileged position.

It raises the question whether MPC protocols can be used for online
gambling to guarantee the users that the game will be fair. For the sake
of simplicity, consider a case of two parties (one of them may, for example,
be an online casino) that do not trust each other and would like to bet $1
on a toss of a virtual coin — i.e. each party pays $1 and a party chosen
uniformly at random receives $2. There are MPC protocols which allow to
draw a uniformly random bit, but can we use them in this scenario? There
are two limitations of MPC protocols, which make them unsuitable for this
situation. First of all, two-party MPC protocols do not provide fairness that
means that a malicious party could interrupt a protocol in a state, in which it
knows who the winner is, but the other party does not. The second problem
is that, even if the coin-tossing was performed successfully and both parties
know its result, there is no way to guarantee that the loser will pay the agreed
$1 to the winner.

In our first paper [1] (and a short journal article [5] based on it) we
showed that it is possible to overcome both of the aforementioned problems
assuming that the parties have access to the Bitcoin infrastructure. Namely,
we presented the protocol for an arbitrary number of parties that allows them
to bet on a toss of a virtual coin. The protocol can be executed in a peer-to-
peer environment between anonymous parties who do not trust each other.
It enjoys a very strong security guarantee — no matter how the dishonest
parties behave, the honest parties will never get cheated on (regardless of the
number of malicious parties). More precisely, each honest party can be sure
that, once the game starts, it will always terminate and be fair.

The pivotal idea behind the protocol is as follows. At the beginning of
the protocol, each party makes a special deposit in bitcoins. This deposit is
a non-standard transaction crafted in such a way that the party will be able
to claim the deposit back if it follows the protocol to the very end regardless
of the behaviour of the other parties. If a malicious party tries to cheat,
then this deposit will automatically be given to the other parties and will



compensate them for what they could have lost because of the malicious
party’s misbehaviour.

In [1], not only have we presented the gambling protocol, but we have
also introduced a new computational paradigm, in which MPC protocol is
executed on top of Bitcoin.

4.2 Fair MPC protocols with financial consequences

In our second paper [2], we generalized our results from [1] and presented
the two-party MPC protocol for an arbitrary function f, which has two
advantages over the classical MPC protocols. The first one is that it provides
some kind of fairness. More precisely, the parties make bitcoin deposits at
the beginning of the protocol. If the parties follow the protocol, they both
learn the value of the function f and get their deposits back. However, if one
of the parties misbehaves (i.e. interrupts the protocol prematurely or sends
an incorrect message), then the other party gets both deposits. In other
words, the party that does not learn the result of the computation due to
the other party’s misbehaviour is given a financial compensation in bitcoins.
Hence, this protocol achieves fairness if only the value of the deposit is greater
than the loss from a premature interruption of the protocol. Moreover, this
protocol does not require any trust and making such deposits is completely
safe — a party that follows the protocol is guaranteed to get its deposit back
regardless of the other party’s behavior.

The second advantage of our protocol is that it allows the result of the
function f to include instructions like “Alice pays 5 bitcoins to Bob” and
our protocol enforces that such transfers are indeed performed. This hap-
pens only if the protocol is carried out to the very end, but again, if one of
the parties interrupts the protocol, then its deposit is given to the honest
participant. One of the possible applications of this feature is trading digital
goods. What is surprising, our protocol allows to trade information in such
a way that even a seller does not know exactly what they are selling. The
details may be found in our paper.

Our protocol from [2] required a small Bitcoin protocol modification re-
lated to the problem of malleability of Bitcoin transactions, which is discussed
in more detail in the next section.

4.3 Malleability of Bitcoin transactions

Bitcoin transactions are malleable, which means that knowing a transaction
T everyone can compute a transaction 7" that is semantically equivalent to
T (it has the same sender, recipient and amount of bitcoins being transferred



as T'), but has a different binary representation. This can pose serious prob-
lems, because Bitcoin infrastructure tracks transactions using hashes of their
binary representations and transactions are broadcast in the peer-to-peer
network. In [4] we performed an experimental evaluation of how serious this
problem is. We showed that it is relatively easy to perform the “malleability
attack”, in which an adversary changes the binary representation of a trans-
action broadcast by some other user. We evaluated the behavior of most of
the available Bitcoin wallets (i.e. programs used to send bitcoins) under this
attack and discovered a number of serious bugs in the Bitcoin software. Such
bugs could cause a state, in which it is impossible (at least temporarily) to
make any bitcoin transfers, which means that a user can effectively lose all
his bitcoins.

Moreover, the malleability of transactions can also pose problems to Bit-
coin contracts. In [4] we also showed a general way of protecting Bitcoin
contracts agains malleability attacks, which allows among others to use our
protocol from [2] in the current version of the Bitcoin protocol.

4.4 Formal verification of Bitcoin contracts

Protocols working on top of Bitcoin (also called Bitcoin contracts) are tricky
to write and analyze due to the distributed nature of the block chain and
a huge number of possible interleavings. Moreover, the flaws in designing
such protocols can be exploited by malicious parties for their financial gain.
Therefore, it is an important question whether we can use formal verification
to enhance our confidence in the security of the created protocols.

In [3] we presented a framework for modeling Bitcoin contracts using
timed automata. The presented method is general and can be used to for-
mally verify the correctness and the security of almost arbitrary Bitcoin
contracts. The framework allows to formally verify the statements like “As a
result of the protocol execution the party gains one bitcoin or learns a string
s satisfying some condition C(s) regardless of the other party’s behavior”.
As a proof-of-concept we used this framework to formally verify the security
of two Bitcoin contracts from our previous papers [1, 4] in the UPPAAL
Model Checker [11].

4.5 PoW-based distributed cryptography

The approach described so far was to design MPC protocols, in which parties
have access to some cryptocurrency. There is, however, a completely different
way of enhancing MPC protocols with techniques coming from the field of
cryptocurrencies. One of the innovations of cryptocurrencies is that they



operate under the assumption that the majority of the computing power is
controlled by honest parties, where the computing power is measured by the
number of times a party can compute a value of some function (e.g. SHA-256)
in a period of time.

In [6] we studied cryptographic protocols in a fully peer-to-peer scenario
under the assumption that the computing power of the adversary is limited
and there is no trusted setup (like a PKI or an unpredictable beacon; we
assume that even the number of parties executing the protocol is unknown to
the participants). We propose a formal model for this scenario and construct
two protocols in it.

The first one is a reliable broadcast protocol, which operates under the
assumption that there is a known bound 7 on the total computing power
of all the parties and that the computing power of the honest parties is a
non-negligible fraction of 7.

The second protocol requires that the majority of the computing power
is controlled by the honest parties and allows to compute the subset of the
parties G, s.t.: (1) all parties agree on the set G (consensus); (2) all honest
parties belong to G; (3) the majority of the parties in the set G is honest; and
(4) each party knows the public key of each party in the set G. Therefore, this
shows that every primitive (e.g. Byzantine consensus) that can be realised
under the classical assumption that the majority of the parties executing the
protocol is honest and there is a PKI available (i.e. each party knows the
public key of each other party) can also be realised under the assumption
that the majority of the computing power is controlled by honest parties and
there is no PKI.

5 Other publications

During my PhD studies I also published the following two papers, which I
have decided not to include in this dissertation, because they concern neither
MPC protocols, nor cryptocurrencies:

1. Efficient Leakage Resilient Circuit Compilers, accepted to RSA
Conference Cryptographers’ Track (CT-RSA ), M. Andrychowicz, I. Damgaard,
S. Dziembowski, S. Faust, A. Polychroniadou, 2015,

2. Leakage-Resilient Cryptography over Large Finite Fields: The-
ory and Practice, accepted to International Conference on Applied
Cryptography and Network Security (ACNS), M. Andrychowicz, D. Masny,
E. Persichetti, 2015.
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Secure Multiparty Computations on BitCoin

Marcin Andrychowicz*, Stefan Dziembowski!, Daniel Malinowski} and Fukasz Mazurek®
University of Warsaw

Abstract

BitCoin is a decentralized digital currency, introduced in 2008, that has recently gained
noticeable popularity. Its main features are: (a) it lacks a central authority that controls the
transactions, (b) the list of transactions is publicly available, and (c) its syntax allows more
advanced transactions than simply transferring the money. The goal of this paper is to show how
these properties of BitCoin can be used in the area of secure multiparty computation protocols
(MPCs).

Firstly, we show that the BitCoin system provides an attractive way to construct a version of
“timed commitments”’, where the committer has to reveal his secret within a certain time frame, or
to pay a fine. This, in turn, can be used to obtain fairness in some multiparty protocols. Secondly,
we introduce a concept of multiparty protocols that work “directly on BitCoin”. Recall that the
standard definition of the MPCs guarantees only that the protocol “emulates the trusted third party”.
Hence ensuring that the inputs are correct, and the outcome is respected is beyond the scope of
the definition. Our observation is that the BitCoin system can be used to go beyond the standard
“emulation-based” definition, by constructing protocols that link their inputs and the outputs with
the real BitCoin transactions.

As an instantiation of this idea we construct protocols for secure multiparty lotteries using the
BitCoin currency, without relying on a trusted authority (one of these protocols uses the BitCoin-
based timed commitments mentioned above). Our protocols guarantee fairness for the honest parties
no matter how the looser behaves. For example: if one party interrupts the protocol then her money
is transferred to the honest participants. Our protocols are practical (to demonstrate it we performed
their transactions in the actual BitCoin system), and can be used in real life as a replacement for
the online gambling sites. We think that this paradigm can have also other applications. We discuss
some of them.

I. INTRODUCTION

Secure multiparty computation (MPC) protocols, originating from the seminal works of Yao [37]
and Goldreich et al. [25], allow a group of mutually distrusting parties to compute a joint function
f on their private inputs. Typically, the security of such protocols is defined with respect to the
ideal model where f is computed by a trusted party 7';. More precisely: it is required that during
the execution of a protocol the parties cannot learn more information about the inputs of the other
participants than they would learn if f was computed by Ty who: (a) receives the inputs from the
parties, (b) computes f, and (c) sends the output back to the parties. Moreover, even if some parties
misbehave and do not follow the protocol, they should not be able to influence the output of the
honest parties more than they could in the ideal model by modifying their own inputs.

As an illustration of the practical meaning of such security definition consider the case when
there are only two participants, called Alice and Bob, and the function that they compute is a
conjunction fa(a,b) = a A b, where a,b € {0,1} are Boolean variables denoting the inputs of

* marcin.andrychowicz@crypto.edu.pl
stefan.dziembowski@crypto.edu.pl
daniel.malinowski@crypto.edu.pl
lukasz.mazurek @crypto.edu.pl



Alice and Bob, respectively. This is sometimes called the marriage proposal problem, since one
can interpret the input of each party as a declaration if she/he wants to marry the other one. More
precisely: suppose a = 1 if and only if Alice wants to marry Bob, and b = 1 if and only if Bob
wants to marry Alice. In this case fa(a,b) = 1 if and only if both parties want to marry each other,
and hence, if, e.g., b = 0 then Bob has no information about Alice’s input. Therefore the privacy
of Alice is protected. One can also consider randomized functions f, the simplest example being
the coin tossing problem [6] where the computed function finq @ {L} x {L} — {0,1} takes no
inputs, and outputs a uniformly random bit. Yet another generalization are the so-called reactive
functionalities where the trusted party 7' maintains a state and the parties can interact with 7" in
several rounds. One example of such a functionality is the mental poker [35] where T' simulates
a card game, i.e. she first deals a deck of cards and then ensures that the players play the game
according to the rules.

It was shown in [25] that for any efficiently-computable function f (or, more general, any reactive
functionality) there exists an efficient protocol that securely computes it, assuming the existence
of the trapdoor-permutations. If the minority of the parties is malicious (i.e. does not follow the
protocol) then the protocol always terminates, and the output is known to each honest participant.
If not, then the malicious parties can terminate the protocol after learning the output, preventing
the honest parties from learning it. It turns out [16] that in general this problem, called the lack
of fairness, is unavoidable, although there has been some effort to overcome this impossibility
result by relaxing the security requirements [26], [11], [4], [31]. Note that in case of the two-player
protocols it makes no sense to assume that the majority of the players is honest, as this would
simply mean that none of the players is malicious. Hence, the two-party protocols in general do
not provide complete fairness (unless the security definition is weakened).

Since the introduction of the MPCs there has been a significant effort to make these protocols
efficient [28], [5], [17] and sometimes even to use them in the real-life applications such as, e.g.,
the online auctions [22]. On the other hand, perhaps surprisingly, the MPCs have not been used in
many other areas where seemingly they would fit perfectly. One prominent example is the internet
gambling: it may be intriguing that currently gambling over the internet is done almost entirely
with the help of the web-sites that play the roles of the “trusted parties”, instead of using the coin
flipping or the mental poker protocols. This situation is clearly unsatisfactory from the security
point of view, especially since in the past there were cases when the operators of these sites abused
their privileged position for their own financial gain (see e.g. [32]). Hence, it may look like the
multiparty techniques that eliminate the need for a trusted party would be a perfect replacement
for the traditional gambling sites (an additional benefit would be a reduced cost of gambling, since
the gambling sites typically charge fees for their service).

In our opinion there are at least two main reasons why the MPCs are not used for online gambling.
The first reason is that the multiparty protocols do not provide fairness in case there is no honest
majority among the participants. Consider for example a simple two-party lottery based on the
coin-tossing protocol: the parties first compute a random bit b, if b = 0 then Alice pays $1 to Bob,
if b = 1 then Bob pays $1 to Alice, and if the protocol did not terminate correctly then the parties
do not pay any money to each other. In this case a malicious party, say Alice, could prevent Bob
from learning the output if it is equal to 0, making 1 the only possible output of a protocol. Since
this easily generalizes to the multiparty case, hence it is clear that the gambling protocol would
work only if the majority is honest, which is not a realistic assumption in the fully distributed
internet environment (there are many reasons for this, one of them being the sybil attacks where
one malicious party creates and controls several “fake” identities, easily obtaining the “majority”



among the participants).

The second reason is even more fundamental, as it comes directly from the inherent limitations of
the MPC security definition, namely: such protocols do not provide security beyond the trusted-party
emulation. This drawback of the MPCs is rarely mentioned in the literature as it seems obvious that
in most of the real-life applications cryptography cannot be “responsible” for controlling that the
users provide the “real” input to the protocol and that they respect the output. Consider for example
the marriage proposal problem: it is clear that even in the ideal model there is no technological way
to ensure that the users honestly provide their input to the trusted party, i.e. nothing prevents one
party, say Bob, to lie about his feelings, and to set b = 1 in order to learn Alice’s input a. Similarly,
forcing both parties to respect the outcome of the protocol and indeed marry cannot be guaranteed
in a cryptographic way. This problem is especially important in the gambling applications: even in
the simplest “two-party lottery” example described above, there exists no cryptographic method to
force the looser to transfer the money to the winner.

One pragmatic solution to this problem, both in the digital and the non-digital world is to use
the concept of “reputation” a party caught on cheating (i.e. providing the wrong input or not
respecting the outcome of the game) damages her reputation and next time may have trouble
finding another party willing to gamble with her. Reputation systems have been constructed and
analyzed in several papers (see, e.g. [33] for an overview), however they seem too cumbersome to
use in many applications, one reason being that it is unclear how to define the reputation of the
new users in the scenarios when the users are allowed to pick new names whenever they want [23].

Another option is to exploit the fact that the financial transactions are done electronically, and
hence one could try to “incorporate” the final transaction (transferring $1 from the looser to the
winner) into the protocol, in such a way that the parties learn who won the game only when the
transaction has already been performed. It is unfortunately not obvious how to do it within the
framework of the existing electronic cash systems. Obviously, since the parties do not trust each
other, we cannot accept solutions where the winning party learns e.g. the credit card number, or
the account password of the looser. One possible solution would be to design a multiparty protocol
that simulates, in a secure way, a simultaneous access to all the online accounts of the participants
and executes a wire transfers in their name.! Even if theoretically possible, this solution is clearly
very hard to implement in real life, especially since the protocol would need to be adapted to
several banks used by the players (and would need to be updated whenever they change). The
same problems occur obviously also if above we replace the “bank™ with some other financial
service (like PayPal). One could consider using Chaum’s Ecash [13], or one of its variants [14],
[12]. Unfortunately, none of these systems got widely adopted in real-life. Moreover, they are also
bank-dependent, meaning that even if they get popular, one would face a challenge of designing
a protocol that simulates the interaction of a real user with a bank, and make it work for several
different banks.

We therefore turn our attention to BitCoin, which is a decentralized digital currency introduced
in 2008 by Satoshi Nakamoto? [30]. BitCoin has recently gained a noticeable popularity (its current
market capitalization is over 5 billion USD) mostly due to its distributed nature and the lack of a
central authority that controls the transactions. Because of that it is infeasible for anyone to take

"Note that this would require, in particular, “simulating” the web-browser and the SSL sessions, since each individual
user should not learn the contents of the communication between the “protocol” and his bank, as otherwise he could
interrupt the communication whenever he realizes that the “protocol” ordered a wire transfer from his account. Moreover,
one would need to assume that the transactions cannot be cancelled once they were ordered.

2This name is widely believed to be a pseudonym.



control over the system, create large amounts of coins (to generate inflation), or shut it down. The
money is transferred directly between two parties — they do not have to trust anyone else and
transaction fees are zero or very small. Another advantage is the pseudo-anonymity® — the users
are only identified by their public keys that can be easily created, and hence it is hard to link the
real person with the virtual party spending the money. In Section II we describe the main design
principles of BitCoin, focusing only on the most relevant parts of this system. A more detailed
description can be found in Nakamoto’s original paper [30], the BitCoin wiki webpage en.bitcoin.it
(sections particularly relevant to our work are: “Transactions” and “Contracts”), or other papers on
BitCoin [29], [15], [2], [34]. In the sequel “B” denotes the BitCoin currency symbol.

A. Our contribution

We study how to do “MPCs on BitCoin”. First of all, we show that the BitCoin system provides
an attractive way to construct a version of “timed commitments” [7], [24], where the committer has
to reveal his secret within a certain time frame, or to pay a fine. This, in turn, can be used to obtain
fairness in certain multiparty protocols. Hence it can be viewed as an “application of BitCoin to
the MPCs”.

What is probably more interesting is our second idea, which in some inverts the previous one by
showing an “application of the MPCs to BitCoin”, namely we introduce a concept of multiparty
protocols that work directly on BitCoin. As explained above, the standard definition of the MPCs
guarantees only that the protocol “emulates the trusted third party”. Hence ensuring that the inputs
are correct, and the outcome is respected is beyond the scope of the definition. Our observation
is that the BitCoin system can be used to go beyond the standard “emulation-based” definition,
by constructing protocols that link the inputs and the outputs with the real BitCoin transactions.
This is possible since the BitCoin lacks a central authority, the list of transactions is public, and
its syntax allows more advanced transactions than simply transferring the money.

As an instantiation of this idea we construct protocols for secure multiparty lotteries using the
BitCoin currency, without relying on a trusted authority. By “lottery” we mean a protocol in which a
group of parties initially invests some money, and at the end one of them, chosen randomly, gets all
the invested money (called the por). Our protocols can work in purely peer-to-peer environment, and
can be executed between players that are anonymous and do not trust each other. Our constructions
come with a very strong security guarantee: no matter how the dishonest parties behave, the honest
parties will never get cheated. More precisely, each honest party can be sure that, once the game
starts, it will always terminate and will be fair.

Our two main constructions are as follows. The first protocol (Section IV) can be executed
between any number of parties. Its security is obtained via the so-called deposits: each user
is required to initially put aside a certain amount of money, which will be payed back to her
once she completes the protocol honestly. Otherwise the deposit is given to the other parties and
“compensates” them the fact that the game terminated prematurely. This protocol uses the timed
commitment scheme described above. A certain drawback of this protocol is that the deposits need
to be relatively large, especially if the protocol is executed among larger groups of players. More
precisely to achieve security the deposit of each player needs to be N(N — 1) times the size of the
bet (observe that for the two-party case it simply means that the deposit is twice the size of the
bet).

3A very interesting modification of BitCoin that provides real cryptographic anonymity has been recently proposed in
[29].



We also describe (in Section V) a protocol that does not require the use of deposits at all. This
comes at a price: the protocol works only for two parties, and its security relies on an additional
assumption (see Section V for more details).

The only cost that the participants need to pay in our protocols are the BitCoin transaction fees.
The typical BitCoin transactions are currently free. However, the participants of our protocols need
to make a small number of non-standard transactions (so-called “strange transactions”, see Section
II), for which there is usually some small fee (currently around 0.000058 ~ 0.03$). To keep the
exposition simple we initially present our results assuming that the fees are zero, and later, in
Section VI, argue how to extend the definitions and security statements to take into account also
the non-zero fees. For the sake of simplicity we also assume that the bets in the lotteries are equal
to 1B. It should be straightforward to see how to generalize our protocols to other values of the
bets.

Our constructions are based on the coin-tossing protocol of Blum [6]. We managed to adapt
this protocol to our model, without the need to modify the current BitCoin system. We do not use
any generic methods like the MPC or zero-knowledge compilers, and hence the protocols are very
efficient. The only cryptographic primitives that we use are the commitment schemes, implemented
using the hash functions (which are standard BitCoin primitives). Our protocols rely strongly on
the advanced features of the BitCoin (in particular: the so-called “transaction scripts”, and “time-
locks”). Because of the lack of space we only sketch the formal security definitions. The security
proofs will appear in an extended version of this paper. We executed our transactions on the real
BitCoin. We provide a description of these transactions and a reference to them in the BitCoin
chain.

B. Applications and future work

Although, as argued in Section I-C below, it may actually make economic sense to use our
protocols in practice, we view gambling mostly as a motivating example for introducing a concept
that can be called “MPCs on BitCoin”, and which will hopefully have other applications. One
(rather theoretical) example of such application is the “millionaires problem” where Alice and Bob
want to establish who is reacher.* It is easy to see that Alice and Bob can (inefficiently) determine
who has more coins by applying the generic MPC and zero-knowledge techniques. This is possible
since the only inputs that are needed are (a) the contents of the BitCoin ledger (more precisely:
its subset consisting of the non-redeemed transactions), which is public, and (b) Alice’s and Bob’s
private keys used as their respective private inputs (see Section II for the definitions of these terms).
Obviously, using this protocol makes sense only if, for some reason, each party is interested in
proving that she is the richer one. This is because every participant can easily pretend to be poorer
than she really is and “hide” his money by transferring it to some other address (that he also
controls). Since we do not think that this protocol is particularly relevant to practical applications,
we do not describe it in detail here. Let us only observe that, interestingly, this protocol is in some
sense dual to the coin-tossing protocol, as it uses the BitCoin system to verify the correctness of the
inputs, instead guaranteeing that the outcome is respected (as it is the case with the coin-tossing)°.

We think that analyzing what functionalities can be computed this way (taking into account the
problem of the participants “pretending to be poorer than they really are”) may be an interesting

*The formal definition is as follows: let a,b € N denote the amount of coins that Alice and Bob respectively own. In
this case the parties compute the function fmin : N x N — {A, B} defined as: fmin(a,b) = A if and only if a > b and
fmin(a,b) = B otherwise.

SThe reader may be tempted to think that a similar protocol could be used with the eCash [13]. This is not the case, as
in eCash there is no method of proving in zero-knowledge that the money has not been spent (since the list of transactions
is not public).



research direction. Other possible future research directions are: constructing protocols secure
against “malleability attacks” and “eavesdropping attacks” (see Sec. V for more details) that do not
require the deposits, showing general completeness results, providing a more formal framework to
analyze the deposit-based technique (this can probably be done using the tools from the “rational
cryptography” literature [27], [1], [21]). An interesting research direction is also to construct
protocols for games other than simple lotteries (like card, or board games). We also think that
our protocols can provide a good motivation for research in the formal analysis of the BitCoin
schemes that involve transactions with non-standard scripts. Is it possible to formally specify and
verify the properties of such protocols in the spirit of [18]? Such formal approach would probably
need to involve some elements of the temporal logic (see e.g. [3]) to capture the properties provided
by the time-locks.

C. Economic analysis

Besides of being conceptually interesting, we think that our protocols can have direct practical
applications in the online gambling, which is a significant market: it is estimated that there are
currently 1,700 gambling sites worldwide handling bets worth over $4 billion per year [20]. Some
of these sites are using BitCoin. The largest of them, SatoshiDice, has been recently sold for over
$12 million [10]. All of the popular sites charge a fee for their service, called the house edge (on
top of the BitCoin transaction fees). Currently, the honesty of these sites can be verified only ex
post facto: they commit to their randomness before the game starts and later prove to the public
that they did not cheat. Hence, nothing prevents them from cheating and then disappearing from
the market (using the MPC terminology: such protocols provide security only against the “covert
adversaries” [36]). Of course, this means that the users need to continually monitor the behavior
of the gambling sites in order to identify the honest ones. This system, called the “mathematically
provable fairness” is described in a recent article [9], where it is advised to look on a particular
page, called Mem’s Bitcoin Gambling List, to check the gambling sites’ reputation. This simple
reputation system can of course be attacked in various ways. Moreover, one can expect that the sites
with more established reputation will have a higher house edge, and indeed the SatoshiDice site
charges more than the other, less well-known, sites. Currently SatoshiDice house edge is around
2% [9].

Compared to the gambling sites, our protocols have the following advantage. First of all, the
security guarantee is stronger, as it does not depend on the honesty of any trusted party. Secondly,
in our protocols there is obviously no “house edge”. On a negative side, the BitCoin transaction
fees can be slightly larger in our case than in the case of the gambling sites (since we have more
transactions, and some of them are “strange”). At the moment of writing this paper, using our
solution is cheaper than using SatoshiDice for bets larger than, say, $5, but of course whether our
protocols become really widely used in practice depends on several factors that are hard to predict,
like the value of the fees for the “strange transactions”.

We also note that, although our initial motivation was the peer-to-peer lottery, it can actually
make a lot of sense for the online gambling services to use our solutions, especially the two-party
protocol. Of course the business model of such services makes sense only if there is non-zero house
edge. This is not a problem since our protocols can be easily used in lotteries where the expected
payoff is positive for one party (in this case: the gambling service) and it is negative for the other
one (the client). Such “provably guaranteed fairness” can be actually a good selling line for some
of these services.



D. Related work

Most of the related work has been already described in the earlier sections. Previous papers on
BitCoin analyze the BitCoin transaction graph [34], or suggest improvements of the current version
of the system. This includes important work of Barber et al. [2] who study various security aspects
of BitCoin and Miers et al. [29] who propose a BitCoin system with provable anonymity. Our
paper does not belong to this category, and in particular our solutions are fully compatible with the
current version of BitCoin (except of the ,,malleability” and ,,eavesdropping” problem concerning
the last protocol, Section V)

The work most relevant to ours in the BitCoin literature is probably Section 7.1 of[2] where
the authors construct a secure “mixer”, that allows two parities to securely “mix” their coins in
order to obtain unlinkability of the transactions. They also construct commitment schemes with
time-locks, however some important details are different, in particular, in the normal execution of
the scheme the money is at the end transferred to the receiver. Also, the main motivation of this
work is different: the goal of [2] is to fix an existing problem in BitCoin (“linkability’’), while our
goal is to use BitCoin to perform tasks that are hard (or impossible) to perform by other methods.

Commitments in the context of the BitCoin were already considered in [15], however, the
construction and its applications are different — the main idea of [15] is to use the BitCoin system
as a replacement of a trusted third party in time-stamping. The notion of “deposits” has already
been used in BitCoin (see en.bitcoin.it/wiki/Contracts, Section “Example 17%), but the application
described there is different: the “deposit” is a method for a party with no reputation to prove that
she is not a spambot by temporarily sacrificing some of her money.

II. A SHORT DESCRIPTION OF BITCOIN

BitCoin works as a peer-to-peer network in which the participants jointly emulate the central
server that controls the correctness of transactions. In this sense it is similar to the concept of
the multiparty computation protocols. Recall that, as described above, a fundamental problem with
the traditional MPCs is that they cannot provide fairness if there is no honest majority among
the participants, which is particularly difficult to guarantee in the peer-to-peer networks where
the sybil attacks are possible. The BitCoin system overcomes this problem in the following way:
the honest majority is defined in terms of the “majority of computing power”. In other words: in
order to break the system, the adversary needs to control machines whose total computing power
is comparable with the combined computing power of all the other participants of the protocol.
Hence, e.g., the sybil attack does not work, as creating a lot of fake identities in the network does
not help the adversary. In a moment we will explain how this is implemented, but let us first discuss
the functionality of the trusted party that is emulated by the users.

One of the main problems with the digital currency is the potential double spending: if coins
are just strings of bits then the owner of a coin can spend it multiple times. Clearly this risk could
be avoided if the users had access to a trusted ledger with the list of all the transactions. In this
case a transaction would be considered valid only if it is posted on the board. For example suppose
the transactions are of a form: “user X transfers to user Y the money that he got in some previous
transaction 73, signed by the user X. In this case each user can verify if money from transaction
T, has not been already spent by X. The functionality of the trusted party emulated by the BitCoin
network does precisely this: it maintains a full list of transactions that happened in the system. The
format of the BitCoin transactions is in fact more complex than in the example above. Since it is
of a special interest for us, we describe it in more detail in Section II-A.

Accessed on 13.11.2013.



The BitCoin ledger is implemented using the concept of the Proofs of Work (PoWs) [19] in
the following clever way. The users maintain a chain of blocks. The first block By, called the
genesis block, was generated by the designers of the system in January 2009. Each new block B;
contains a list 7; of new transactions, the cryptographic hash of the previous block H(B;_1), and
some random salt R. The key point is that not every R works for given T; and H(B;_1). In fact,
the system is designed in such a way that it is moderately hard to find a valid R. Technically it
is done be requiring that the binary representation of the hash of (7;||H (B;—1)||R) starts with a
certain number m of zeros (the procedure of extending the chain is called mining, and the machines
performing it are called miners). The hardness of finding the right R depends of course on m, and
this parameter is periodically adjusted to the current computing power of the participants in such
a way that the extension happens an average each 10 minutes. The system contains an incentive
to work on finding the new blocks. We will not go into the details of this, but let us only say that
one of the side-effects of this incentive system is the creation of new coins’.

The idea of the block chain is that the longest chain C' is accepted as the proper one. If some
transaction is contained in a block B; and there are several new blocks on top of it, then it is
infeasible for an adversary with less than a half of the total computating power of the BitCoin
network to revert it — he would have to mine a new chain C’ bifurcating from C' at block B;_;
(or earlier), and C’ would have to be longer than C. The difficulty of that grows exponentially with
number of new blocks on top of B;. In practice the transactions need 10 to 20 minutes (i.e. 1-2 new
blocks) for reasonably strong confirmation and 60 minutes (6 blocks) for almost absolute certainty
that they are irreversible.

To sum up, when a user wants to pay somebody in BitCoins, he creates a transaction and
broadcasts it to other nodes in the network. They validate this transaction, send it further and add it
to the block they are mining. When some node solves the mining problem, it broadcasts its block
to the network. Nodes obtain a new block, validate transactions in it and its hash and accept it by
mining on top of it. Presence of the transaction in the block is a confirmation of this transaction,
but some users may choose to wait for several blocks on top of it to get more assurance.

A. The BitCoin transactions

The BitCoin currency system consists of addresses and transactions between them. An address
is simply a public key pk.> Normally every such a key has a corresponding private key sk known
only to one user. The private key is used for signing the transactions, and the public key is used for
verifying the signatures. Each user of the system needs to know at least one private key of some
address, but this is simple to achieve, since the pairs (sk, pk) can be easily generated offline. We
will frequently denote key pairs using the capital letters (e.g. A), and refer to the private key and
the public key of A by: A.sk and A.pk, respectively (hence: A = (A.sk, A.pk)). We will also use
the following convention: if A = (A.sk, A.pk) then let sig4(m) denote a signature on a message
m computed with A.sk and let ver4(m, o) denote the result (true or false) of the verification of
a signature ¢ on message m with respect to the public key A.pk.

1) Simplified version: We first describe a simplified version of the system and then show how to
extend it to obtain the description of the real BitCoin. We do not describe how the coins are created

"The number of coins that are created in the system is however limited, and therefore BitCoin is expected to have no
inflation.

8Technically an address is a hash of pk. In our informal description we decided to assume that it is simply pk. This
is done only to keep the exposition as simple as possible, as it improves the readability of the transaction scripts later in
the paper.



as it is not relevant to this paper. Let A = (A.sk, A.pk) be a key pair. In our simplified view a
transaction describing the fact that an amount v (called the value of a transaction) is transferred
from an address A.pk to an address B.pk has the following form

T, = (ya B.pk,v, SigA(y’ B.pk, U))v

where y is an index of a previous transaction 7;. We say that B.pk is the recipient of T}, and
that the transaction T;, is an input of the transaction T}, or that it is redeemed by this transaction
(or redeemed by the address B.pk). More precisely, the meaning of 7} is that the amount v of
money transferred to A.pk in transaction T, is transferred further to B.pk. The transaction is valid
only if (1) A.pk was a recipient of the transaction 7T}, (2) the value of T, was at least v (the
difference between v and the value of T}, is called the transaction fee), (3) the transaction T} has
not been redeemed earlier, and (4) the signature of A is correct. Clearly all of these conditions can
be verified publicly.

The first important generalization of this simplified system is that a transaction can have several
“inputs” meaning that it can accumulate money from several past transactions T;,,...,T,,. Let
Ay, ..., Ay be the respective key pairs of the recipients of those transactions. Then a multiple-input
transaction has the following form:

Ty = (Y1, .-, Y, B.pk,v,siga (y1, B.pk,v),...,siga,(ye, B.pk,v)),
and the result of it is that B.pk gets the amount v, provided it is at most equal to the sum of
the values of transactions 7y, ,...,T,,. This happens only if none of these transactions has been
redeemed before, and all the signatures are valid. Moreover, each transaction can have a lock-time
t that tells at what time the transaction becomes final (¢ can refer either to a block index or to the
real physical time). In this case we have:

T, = (yla -y Yo, Bpka U,t,SigAl (y17 B.pk,’l},t), v 7SigA@(y€7 B.pk,’U,t)).

Such a transaction becomes valid only if time ¢ is reached and if none of the transactions Ty, , . .., Ty,
has been redeemed by that time (otherwise it is discarded). Each transaction can also have several
outputs, which is a way to divide money between several users. We ignore this fact in our description
since we will not use it in our protocols.

2) A more detailed version: The real BitCoin system is significantly more sophisticated than
what is described above. First of all, there are some syntactic differences, the most important for
us being that each transaction 7, is identified not by its index, but by its hash H(T}). Hence, from
now on we will assume that x = H(T).

The main difference is, however, that in the real BitCoin the users have much more flexibility
in defining the condition on how the transaction 7, can be redeemed. Consider for a moment the
simplest transactions where there is just one input and no time-locks. Recall that in the simplified
system described above, in order to redeem a transaction the recipient A.pk had to produce another
transaction 7, signed with his private key A.sk. In the real BitCoin this is generalized as follows:
each transaction 7}, comes with a description of a function (output-script) m, whose output is
Boolean. The transaction T, redeeming the transaction T, is valid if 7, evaluates to true on input
T. Of course, one example of 7, is a function that treats 7', as a pair (a message m,, a signature
0:), and checks if o, is a valid signature on m, with respect to the public key A.pk. However, much
more general functions 7, are possible. Going further into details, a transaction looks as follows:
T, = (y, Tz, v,04), where [T,] = (y, 7z, v) is called the body’ of T, and o, is a “witness” that is

°In the original BitCoin documentation this is called “simplified 7,”. We chosen to rename it to “body” since we find
the original terminology slightly misleading.
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used to make the script 7, evaluate to true on 7}, (in the simplest case o, is a signature on [T;]). The
scripts are written in the BitCoin scripting language, which is a stack based, not Turing-complete
language (there are no loops in it). It provides basic arithmetical operations on numbers, operations
on stack, if-then-else statements and some cryptographic functions like calculating hash function
or verifying a signature. The generalization to the multiple-input transactions with time-locks is
straightforward: a transaction has a form:

Tx - (yh--'7y£77r$7vat7017"-705)7

where the body [T;] is equal to (y1,...,ys, 7z, v,t), and it is valid if (1) time ¢ is reached, (2)
every m;([T;],0;) evaluates to true, where each 7; is the output script of the transaction T}, and
(3) none of these transactions has been redeemed before. We will present the transactions as boxes.
The redeeming of transactions will be indicated with arrows (the arrows will be labelled with the
transaction values). For example a transaction T, = (y1, Y2, 7z, v, t, 01, 02) will be represented as:

@ T (in: Ty, , Ty) Gk
o B in-script;: o1 | in-scripta: oo o BB
> out-script(arg): 7, (arg) -
val: vB
tlock: ¢

lUB

The transactions where the input script is a signature, and the output script is a verification
algorithm are the most common type of transactions. We will call them standard transactions,
and the address against which the verification is done will be called the recipient of a transaction.
Currently some miners accept only such transactions. However, there exist other ones that do accept
the non-standard (also called strange) transactions, one example being a big mining pool'’ called
Eligius (that mines a new block on average once per hour). We also believe that in the future
accepting the general transaction will become standard, maybe at a cost of a slightly increased fee.
This is important for our applications since our protocols rely heavily on the extended form of
transactions.

B. Security Model

To reason formally about the security we need to describe the attack model that corresponds to
the current BitCoin system. We assume that the parties are connected by an insecure channel and
have access to the BitCoin chain. Let us discuss these two assumptions in detail. First, recall that
our protocol should allow any pair of users on the internet to engage in a protocol. Hence, we
cannot assume that there is any secure connection between the parties (as this would require that
they can verify their identity, which obviously is impossible in general), and therefore any type of
a man-in-the middle attack is possible.

The only “trusted component” in the system is the BitCoin chain. For the sake of simplicity
in our model we will ignore the implementation details of it, and simply assume that the parties
have access to a trusted third party denoted Ledger, whose contents is publicly available. One
very important aspect that needs to be addressed are the security properties of the communication
channel between the parties and the Ledger. Firstly, it is completely reasonable to assume that the

""Mining pools are coalitions of miners that perform their work jointly and share the profits.
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parties can verify Ledger’s authenticity. In other words: each party can access the current contents
of the Ledger. In particular, the users can post transactions on the Ledger. After a transaction is
posted it appears on the Ledger (provided it is valid), however it may happen not immediately, and
some delay is possible. There is an upper bound maxjeqger On this delay. This corresponds to an
assumption that sooner or later every transaction will appear in some BitCoin block. We use this
assumption very mildly and e.g. maxjedger = 1 day is also ok for us (the only price for this is
that in such case we have to allow the adversary to delay the termination of the protocol for time
O(max| edger)). Each transaction posted on the Ledger has a time stamp that refers to the moment
when it appeared on the Ledger.

What is a bit less obvious is how to define privacy of the communication between the parties
and the Ledger, especially the question of the privacy of the writing procedure. More precisely,
the problem is that it is completely unreasonable to assume that a transaction is secret until it
appears on the Ledger (since the transactions are broadcast between the nodes of the network).
Hence we do not assume it. This actually poses an additional challenge in designing the protocols
because of the problem of the malleability’' of the transactions. Let us explain it now. Recall that
the transactions are referred to by their hashes. Suppose a party P creates a transaction 7" and,
before posting it on the Ledger, obtains from some other party P’ a transaction 7" that redeems
T (e.g.: T' may be time-locked and serve P to redeem 7T if P’ misbehaves). Obviously 7" needs
to contain (in the signed body) a hash H(T") of 7. However, if now P posts 7" then an adversary
(allied with malicious P’) can produce another transaction T whose semantics is the same is 7', but
whose hash is different (this can be done, e.g., by adding some dummy instructions to the input
scripts of T'). The adversary can now post T on the Ledger and, if he is lucky, T will appear on the
Ledger instead of 1! It is possible that in the future versions of the BitCoin system this issue will
be addressed and the transactions will not be malleable. In Section V we propose a scheme that
is secure under this assumption. We would like to stress that our main schemes (Section III and
IV) do not not assume non-malleability of the transactions, and are secure even if the adversary
obtains full information on the transactions before they appear on the Ledger.

We do not need to assume any privacy of the reading procedure, i.e. each party accesses pattern
to Ledger can be publicly known. We assume that the parties have access to a perfect clock and
that their internal computation takes no time. The communication between the parties also takes no
time, unless the adversary delays it. These assumptions are made to keep the model as simple as
possible, and the security of our protocols does not depend on these assumptions. In particular we
assume that the network is asynchronous and our protocols are also secure if the communication
takes some small amount of time. For simplicity we also assume that the transaction fees are zero.
The extension to non-zero transaction fees is discussed in Section. VI.

III. BITCOIN-BASED TIMED COMMITMENT SCHEME

We start with constructing a BitCoin-based timed-commitment scheme [7], [24]. Recall that a
commitment scheme [6], [8] consists of two phases: the commitment phase Commit and the opening
phase Open. Typically a commitment scheme is executed between two parties: a committer C and
a recipient. To be more general we will assume that there are n recipients, denoted Py, ..., P,. The
committer starts the protocol with some secret value x. This value will become known to every
recipient after the opening phase is executed. Informally, we require that, if the committer is honest,
then before the opening phase started, the adversary has no information about x (this property is
called “hiding”). On the other hand, every honest recipient can be sure that, no matter how a

See en.bitcoin.it/wiki/Transaction_Malleability.
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Commit;(in: UL)
in-script: sigs ([Commit;])
dB | out-script(body, o1, 02, x):
(H(z) = h Averg(body, o1))V
(vers(body, o1) Aver g (body, 02))

val: dB
Open,(in: Commit.) """ T PayDeposit, (in: Commit) ~ ~ ]
“?'Sc“g“ N dB dB | imseriptt T 77 ‘
L sclOpen]). s .| sigc([PayDeposit,]) sigp ([PayDeposit ). L1 s
seript(body, 0): :, g:ft:sf;gpﬁt(llocjylai)zivgrg (body, o) ,:
ver: (body, o) ey
val: dB Juveeket  _ _ _ _ ___ ______ R

_ Pre-condition:

1) The key pair of C is C' and the key pair of each P; is P;. _

2) The Ledger contains n unredeemed transactions UL, ..., US, which can be redeemed with key C,
each having value d B.

The CS.Commit(C,d,t,s) phase

3) The Committer C computes h = H(s). He sends to the Ledger the transactions
Commity, ..., Commit,. This obviously means that he reveals h, as it is a part of each Commit;.

4) If within time maxX|edger Some of the Commit; transactions does not appear on the Ledger, or if
they look incorrect (e.g. they differ in the A value) then the parties abort.

5) The Committer C creates the bodies of the transactions PayDeposit,, ..., PayDeposit,, signs them
and sends each signed body [PayDeposit;] to P;. If an appropriate transaction does not arrive to P;,
then he halts.

The CS.Open(C,d,t,s) phase

6) The Committer C sends to the Ledger the transactions Open,, ..., Open,,, what reveals the secret
s.

7)  If within time ¢ the transaction Open, does not appear on the Ledger then P; signs and sends the
transaction PayDeposit,; to the Ledger and earns d B.

Fig. 1. The CS protocol. The scripts’ arguments, which are omitted are denoted by L.

malicious sender behaves, the commitment can be open in exactly one way, i.e. it is impossible for
the committer to “change his mind” and open with some 2’ # z. This property is called “binding”.
Although incredibly useful in many applications, the standard commitment schemes suffer from the
following problem: there is no way to force the committer to reveal his secret x, and, in particular,
if he aborts before the Open phase starts then = remains secret.

BitCoin offers an attractive way to deal with this problem. Namely: using the BitCoin system
one can force the committer to back his commitment with some money, called the deposit, that
will be given to the other parties if he refuses to open the commitment within some time ¢.

We now sketch the definition of a BitCoin-based commitment scheme. First, assume that before
the protocol starts the Ledger contains n unredeemed standard transactions Ulc, cees U,S that can be
redeemed with a key known only to C, each having value d B (for some parameter d). In fact, in
real life it would be enough to have just one transaction, that would later be “splited” inside of the
protocol. This would, however, force us to use the multiple-output transactions which we want to
avoid, in order not to additionally complicate the description of the system.

The protocol is denoted CS(C,d,t,s) and it consists of two phases: the commitment phase,
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denoted CS.Commit(C,d,t,s) (where s contains the message to which C commits and some
randomness) and the opening phase CS.Open(C,d,t,s). The honest committer always opens his
commitment by time ¢. In this case he gets back his money, i.e. the Ledger consists of standard
transactions that can be redeemed with a key known only to him, whose total value'? is (d - n) B.

The security definition in the standard commitment scheme: assuming that the committer is
honest, the adversary does not learn any significant information about x before the opening phase,
and each honest party can be sure that there is at most one value x that the committer can open
in the opening phase. Each recipient can also abort the commitment phase (which happens if he
discovers that the Committer is cheating, or if the adversary disturbs the communication). However,
there is one additional security guarantee: if the committer did not open the commitment by time
t then every other party earns dB. More precisely: for every honest P; the Ledger contains a
transaction that can be redeemed with a key known only to P;.

Let us also comment on the formal aspects. To satisfy the page limit, we do not provide the
full formal model, however, from the discussion above it should be clear how such a model can
be defined. We allow negligible error probabilities both in binding and in hiding. Also, the last
security property (concerning the deposits) has to hold only with overwhelming probability. As
these notions are asymptotic, this requires using a security parameter, denoted by k. Of course, in
reality the parameter k is partially fixed by the BitCoin specification (e.g. we cannot modify the
length of the outputs of the hash functions).

A. The implementation

Our implementation can be based on any standard commitment scheme as long as it is hash-
based, by which we mean that it has the following structure. Let H be a hash function. During the
commitment phase the committer sends to the recipient some value denoted A (which essentially
constitutes his “commitment” to x), and in the opening phase the committer sends to the recipient a
value s, such that H(s) = h. If H(s) # h then the recipient does not accept the opening. Otherwise
he computes x from s (there exists an algorithm that allows him to do it efficiently). One example
of such a commitment scheme is as follows. Suppose =z € {0,1}*. In the commitment phase C
computes s := (x||r), where r is chosen uniformly at random from {0,1}*, and sends to every
recipient h = H(s). In the opening phase the commiter sends to every recipient s, the recipient
checks if indeed h = H(s), and recovers = by stripping-off the last k bits from s. The binding
property of this commitment follows from the collision-resistance of the hash function H, since
to be able to open the commitment in two different ways a malicious sender would need to find
collisions in H. For the hiding property we need to assume that H is a random oracle. We think
that this is satisfactory since anyway the security of the BitCoin PoWs relies on the random oracle
assumption. Clearly, if H is a random oracle then no adversary can obtain any information about
x if he does not learn s (which an honest C keeps private until the opening phase).

The basic idea of our protocol is as follows. The committer will talk independently to each
recipient P;. For each of them he will create in the commitment phase a transaction Commit; with
value d that normally will be redeemed by him in the opening phase with a transaction Open,.
The transaction Commit; will be constructed in such a way that the Open; transaction has to
automatically open the commitment. Technically it will be done by constructing the output script
Commit; in such a way that the redeeming transaction has to provide s (which will therefore
become publicly known as all transactions are publicly visible). Of course, this means that the

2In case of non-zero transaction fees this value can be decreased by these fees. This remark applies also to the amounts
d redeemed by the recipients.
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money of the committer is “frozen” until he reveals s. However, to set a limit on the waiting time
of the recipient, we also require the commuter to send to P; a transaction PayDeposit; that can
redeem Commit; if time ¢ passes. Of course, P;, after receiving PayDeposit; needs to check if it
is correct. The commitment scheme and the transactions are depicted on Figure 1 (page 12). We
now state the following lemma, whose proof appears in the full version of this paper.

Lemma 1: The CS scheme on Figure 1 is a BitCoin-based commitment scheme.

IV. THE LOTTERY PROTOCOL

As discussed in the introduction, as an example of an application of the “MPCs on BitCoin”
concept we construct a protocol for a lottery executed among a group of parties Pq,...,Py. We
say that a protocol is a fair lottery protocol if it is correct and secure. To define correctness assume
all the parties are following the protocol and the communication channels between them are secure
(i.e. it reliably transmits the messages between the parties without delay).

We assume that before the protocol starts, the Ledger contains unredeemed standard transactions
T, ..., TN known to all the parties, all of value 1B and each 7" can be redeemed with a key
known only to P;. Moreover, since we will use the commitment scheme from Section III, the parties
need to have money to pay the “deposits”. This money will come from transactions {U ]Z}, where
i,7 € {l,...,N} and i # j, such that each U]’f can be redeemed only by P; and has value d B (for
some parameter d whose value will be determined later). We assume that these transactions are on
the Ledger before the protocol starts. The protocol has to terminate in time O(maxXiedger) and at
the moment of termination, the Ledger has to contain a standard transaction with value N B which
can be redeemed with a key known only to P,,, were w is chosen uniformly at random from the
set {1,..., N}. The Ledger also contains transactions for paying back the deposits, i.e. we require
that for each P; there is an additional transaction (that can be redeemed only by him) whose value
is (N — 1)dB. Of course, in the case of the non-zero fees these values will be slightly smaller, but
to keep things simple we assume here that these fees are zero.

To define security, look at the execution of the protocol from the point of view of one party, say
P1 (the case of the other parties is symmetric). Assume P; is honest and hence, in particular, the
Ledger contains the transactions 7', U217 cee U}V, whose recipient is P; and whose value is: 1B
in case of 7' and dB in case of the U jl’s. Obviously, P; has no guarantee that the protocol will
terminate successfully, as the other party can, e.g., leave the protocol before it is completed. What
is important is that P; should be sure that she will not loose money because of this termination (in
particular: the other parties should not be allowed to terminate the protocol after he learned that P
won). This is formalized as follows: we define the payoff of P in the execution of the protocol to
be equal to the difference between the money that P; invested and the money that he won. More
formally, the payoff of Py is equal to X1 — ((IN —1)-d+1) B, where X is defined as the total sum
of the values of transactions from the execution of the protocol (including T, U3, ..., U},) that P
(and only him) can redeem when the protocol terminates. (The payoff of any other participant P;
is defined symmetrically.)

Ideally we would like to require that the expected payoff of each honest player cannot be neg-
ative'®>. However, since the security of our protocol relies on non-perfect cryptographic primitives,
such as commitment schemes, we have to take into account a negligible probability of the adversary
breaking them. Hence, we require only that these values are “at least negligible”!* in some security

BIn principle it can be actually positive if the adversary plays against his own financial interest.
“Formally: a function o : N — R is at least negligible if there exists a function 3 : N — R such that for every i we
have a(7) > (%) and S is negligible, i.e. its absolute value is asymptotically smaller than the inverse of any polynomial.
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PutMoney*(in: T")

PutMoney™ (in: T)

in-script:
Sigp, ([PutMoney*])

in-script: _
sigp. ([PutMoney'])

in-script:
sigp,, ([PutMoney™])

out-script(body, o):
verp (body, o)

out-script(body, o):
ver . (body, o)

out-script(body, o):
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val: 1B val: 1B val: 1B
18}
Compute™ (in: ..., PutMoney®,...)
1B in-script: 18
sigf,i([ComputeN])
> out-script(body, o, 81, 82,...,5N)2 <
§1,82,...,88 €SN
H(§1) =hiAN...NH(8n) =hn A verf(glw,gN)(body, o)
val: NB
NB NB NB
ClaimMoney® (in: Compute™) ClaimMoney™(in: Compute™) ClaimMoney™ (in: Compute™)
in-script: in-script: in-script:
sigﬁl([ClaimMoneyl}),sl,.‘.sN sigp ([ClaimMoney']), s1, ... n| sig};N([ClaimMoneyN]),51,...sN
out-script(body, o): out-script(body, o): out-script(body, o):
ver p, (body, o) verp, (body, o) ver py (body, o)
val: NB val: NB val: NB
Pre-condition:

1) For each 4, player P; holds a pair of keys (P;.sk, P;.pk).

2) For each i, the Ledger contains a standard transaction T that have value 1B each and whose recipient is
P;. The Ledger contains also transactions {U}}, where 7,j € {1,..., N} and i # j, such that each U}
can be redeemed by P? and has value d B (for some parameter d)

Initialization phase: _

3) For each 4, player P; generates a pair of keys (P;.sk, P;.pk) and sends his public key P;.pk to all other
players.

4)  For each 4, player P; chooses his secret s;.

Deposits phase:

5) Let t be the current time. For each ¢+ = 1,..., N the commitment phase CS.Commit(P;,d,t + 4 -

mMaXLedger, Si) is executed using the transactions {U}} as inputs.
Execution phase:

6) For each 4, player P; puts transaction PutMoney" to the Ledger. The players halt if any of those transactions
did not appear on the Ledger before time ¢ + 2 - maxi edger-

7)  For each i > 2, player P; computes his signature on transaction Compute™ and sends it to the player P;.

8) Player P, puts all received signatures (and his own) into inputs of transaction Compute™ and puts it to
the Ledger. If Compute”™ did not appear on Ledger in time  + 3 - maX|cdger, then the players halt.

9) For each 4, the player P; puts his Open transactions on Ledger what reveals his secret and sends back
to him the deposits he made during the executions of CS protocol from Step. 5. If some player did not
revealed his secret in time ¢+ 4-max edger, then other players send the appropriate PayDeposit transactions
from that player CS protocols to the Ledger to get N B.

10) The player, that is the winner (i.e.Pf(S1 ,,,,, s N)), gets the pot by sending the transaction
ClaimMoney’ ®1°N) to the Ledger.

Fig. 2. The MultiPlayersLottery protocol.

parameter k (that is used in the crypto primitives). Formally, we say that the protocol is secure if

for any strategy of the adversary, that controls the network and corrupts the other parties, (1) the
execution of the protocol terminates in time O(maxLedger), and (2) the expected payoff of each
honest party is at least negligible. The expected values are taken over all the randomness in the
experiment (i.e. both the internal randomness of the parties and the adversary). We also note that,
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of course, a dishonest participant can always interrupt in a very early stage. This is not a problem
if the transaction fees are zero. In case of the non-zero transaction fees this may cause the other
parties to loose a small amount of money. This problem is addressed in Section VI.

A. The protocol

Our protocol is built on top of the classical coin-tossing protocol of Blum [6] that is based on
cryptographic commitments. The Blum’s scheme adapted to IV parties is very simple — each party
P; commits herself to an element b; € Zy. Then, the parties open their commitments and the
winner is P,, where w = (b; +- - -+ by mod N)-+1. As described in the introduction, this protocol
does not directly work for our applications, and we need to adapt it to BitCoin. In particular, in
our solution creating and opening the commitments are done by the transactions’ scripts using
SHA-256 hashing. Due to the technical limitations of BitCoin scripting language in its current
form!’, instead of random numbers b;, the parties commit themselves to strings s; sampled with
uniformly random from S := {0,1}83%U...U{0,1}3*+N=1) je it is the set of strings of length
k,...,(k+ N — 1) bytes!'®, where k is the security parameter. The winner is determined by the
winner choosing function f(s1,...,sy) for N players to be equal Py if Zfil |si| = (/—1) mod N,
where s1,...,sy are the secret strings chosen from S,iv and |s;| is a length of string s; in bytes.
Honest users first choose length (in bytes) of their strings from the set {k,...,k+ N — 1} and
then generate a random string of the appropriate length. It is easy to see that as long as one of
the parties draws her string’s length uniformly, then the output of f(si,...,sy) is also uniformly
random.

1) First attempt: For simplicity let us start with the case of N = 2 parties, called Alice A and
Bob B. Their key pairs are A and B (resp.) and their unredeemed transactions placed on the Ledger
before the protocol starts are denoted T”, U” and 7B, UB. We start with presenting a naive and
insecure construction of the protocol, and then show how it can be modified to obtain a secure
scheme. The protocol starts with Alice and Bob creating their new pairs of keys A= (K.sk, A. pk)
and B = (B.sk, B.pk), respectively. These keys will be used during the protocol. It is actually quite
natural to create new keys for this purpose, especially since many BitCoin manuals recommend
creating a fresh key pair for every transaction. Anyway, there is a good reason to do it in our protocol,
e.g. to avoid interference with different sessions of the same protocol. Both parties announce their
public keys to each other. Alice and Bob also draw at random their secret strings sp and sg
(respectively) from the set S,f and they exchange the hashes ha = H(sa) and hg = H(sg).
Moreover Alice sends to the Ledger the following transaction:

PutMoney’ (in: T?)
in-script: sig, ([PutMoney{])
out-script(body, 0):
ver z(body, o)
val: 1B

Bob also sends to the Ledger a transaction PutMoney® defined symmetrically (recall that 7” and
T® are standard transactions that can be redeemed by Alice and Bob respectively). If at any point
later a party P € {A, B} realizes that the other party is cheating, then the first thing P will do is

SMost of the more advanced instructions (e.g. concatenation, accessing particular bits in a string or arithmetic on big
integers) have been disabled out of concern that the clients may have bugs in their implementation. Therefore, computing
length (in bytes), hashing and testing equality are the only operations available for strings.

!6The transactions in the protocol will always check if their inputs are from S;' (whenever they are supposed to be
from this set). If not, they are considered invalid, and the transaction is not evaluated.
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to “take the money and run”, i.e. to post a transaction that redeems PutMoneyf . We will call it
“halting the execution”. This can clearly be done as long as PutMoneyllD has not been redeemed
by some other transaction. In the next step one of the parties constructs a transaction Compute;
defined as follows:

Compute, (in: PutMoney, PutMoney?)
in-script; : sig ; ([Compute, )] | in-script: sig; ([Compute, )]
out-script(body, o1, 02, 5a, SB):

(5a,88 € SEAH(5a) =ha ANH(38) = hg A f
(3a,88 € Sf A H(3a) = ha A H(38) = he A f(8a,88) = B A verz(body, 02))
val: 2B

Note that the body of Compute; can be computed from the publicly-available information. Hence
this construction can be implemented as follows: first one of the players, say, Bob computes
[Compute,], and sends his signature sigz([Compute;)] on it to Alice. Alice adds her signature
sig ([Compute;)] and posts the entire transaction Compute; to the Ledger.

The output script of Compute; is an alternative of two conditions. Since they are symmetric
(with respect to A and B) let us only look at the first condition (call it v). To make it evaluate to
true on body one needs to provide as “witnesses” (o1, Sa, Sg) where §a and Sg are the pre-images
of ha and hp (with respect to H) from S,%. Clearly the collision-resistance of H implies that 5p
and 5g have to be equal to sa and sg (resp.). Hence y can be satisfied only if the winner choosing
function f evaluates to A on input (sa, sg). Since only Alice knows the private key of A, hence only
she can later provide a signature on o; that would make the last part of v (i.e.: “ver g(body, 1))
evaluate to true.

Clearly before Compute, appears on the Ledger each party P can “change her mind” and redeem
her initial transaction PutMoneyf , which would make the transaction Compute; invalid. As we
said before, it is ok for us if one party interrupts the coin-tossing procedure as long as she had to
decide about doing it before she learned that she lost. Hence, Alice and Bob wait until Compute;
appears on Ledger before they proceed to the step in which the winner is determined. This final
step is simple: Alice and Bob just broadcast sp and sg, respectively. Now: if f(sa,sg) = A then
Alice can redeem the transaction Compute; in a transaction ClaimMoney’ constructed as:

ClaimMoney’ (in: Compute,)
in-script:
sig 5([ClaimMoney?]), L, sa, sg
out-script(body, o): vera(body, o)
val: 2B

On the other hand Bob cannot redeem Compute;, as the condition f(sa,sg) = B evaluates to
false. Symmetrically: if f(sa,sg) = B then only Bob can redeem Compute; by an analogous
transaction ClaimMoney®.

This protocol is obviously correct. It may also look secure, as it is essentially identical to Blum’s
protocol described at the beginning of this section (with the hash functions used as the commitment
schemes). Unfortunately, it suffers from the following problem: there is no way to guarantee that
the parties always send sa and sg. In particular: one party, say, Bob, can refuse to send sg after
he learned that he lost (i.e. that f(sa,sg) = A). As his money is already “gone” (his transaction
T® has already been redeemed in transaction Compute;) he would do it just because of sheer
nastiness. Unfortunately in a purely peer-to-peer environment, with no concept of a “reputation”,
such behavior can happen, and there is no way to punish it.



18

This is exactly why we need to use the BitCoin-based commitment scheme from Section III.
Later, in Section V we also present another technique for dealing with this problem, which avoids
using the deposits. Unfortunately, it suffers from certain shortcomings. First of all, it works only
for two parties. Secondly, and more importantly, to achieve full security it needs an assumption
that an adversary can not see transactions until they appear on the Ledger.

2) The secure version of the scheme: The general idea behind the secure MultiPlayersLottery
protocol is that each party first commits to her inputs using the CS(C, d, ¢, s) commitment scheme,
instead of the standard commitment scheme (the parameters d and ¢ will be determined later).
Recall that the CS commitment scheme can be opened by sending a value s, and this opening is
verified by checking that s hashes to a value h sent by the committer in the commitment phase.
So, Alice executes the CS protocol acting as the committer and Bob as a recipient (note that there
is only one recipient and hence n = 1). Let sy and ha be the variables s and h created this
way. Symmetrically: Bob executes the CS protocol acting as the committer, and Alice being the
recipient, which the corresponding variables sg and hg. Once both commitment phases are executed
successfully (recall that this includes receiving by each party the signed PayDeposit transaction),
the parties proceed to the next steps, which are exactly as before: first, each of them posts his
transaction PutMoney on the Ledger. Once all these transactions appear on the Ledger they create
the Compute? transaction (in the same way as before), and one it appears on the Ledger they
open the commitments. The only difference is obviously that, since they used the CS commitment
scheme, they can now “punish” the other party if she did not open her commitment by executing
PayDeposit after the time ¢ passes, and claim her deposit. On the other hand: each honest party is
always guaranteed to get her deposit back, hence she does not risk anything investing this money
at the beginning of the protocol.

We also need to comment about the choice of the parameters ¢ and d. First, it easy to see that
the maximum time in which the honest parties will complete the protocol is at most 4 - max| edger
after time ¢’ is the time when the protocol started. Hence we can safely set ¢ :=t' +4 - max| edger-

The parameter d should be chosen in such a way that it will fully compensate to each party the
fact that a player aborted. Let us now calculate the payoff of some fixed player P, say, assuming the
worst-case scenario, which is as that (a) the protocol is always aborted when P; is about to win, and
(b) there is only one “aborting party” (so P; is payed only one deposit). Hence his expected payoff
is —% B (this corresponds to the case when he lost) plus % B (the case when the protocol was
aborted). Therefore to make the expected value equal to 0 we need to set d = N B. This implies
that the total amount of money invested in deposit by each player has to be equal to N(N — 1) B.
In real-life this would be ok probably for small groups N = 2, 3, but not for the larger ones.

We now have the following lemma, whose proof will appear in the full version of this paper.

Lemma 2: The MultiPlayersLottery protocol from Figure 2 is a fair lottery protocol for d = N B
and t = t' 4+ 4 - max| edger, Where ¢’ is the starting time of the protocol.

V. TWO-PARTY LOTTERY SECURE IN A STRONGER MODEL

In this section we show a construction of a two-party lottery which avoids using the deposits,
and hence may be useful for applications where the parties are not willing to invest extra money
in the execution of the protocol. The drawback of the protocol presented in this section is that
it works only for two parties. Moreover, to achieve full security it needs an assumption that the
channel between the parties and the Ledger is private, what means that the adversary can not
see the transactions sent by the honest user, before they appear on the Ledger. In reality BitCoin
transactions are broadcast via a peer-to-peer network, so it is relatively easy to eavesdrop the
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transactions waiting to be posted on the Ledger. Another problem related to eavesdropping is
malleability of transaction (already described in Section II-B). Recall, that the problem is that an
adversary can modify (“maul”) the transaction 1" eavesdropped in the network in such a way that
the modified transaction is semantically equivalent to the original one, but it has a different hash.
Then, the adversary can send the modified version of 7" to the Ledger and if he is lucky it will be
posted on the Ledger and invalidate the original transaction T (its input will be already redeemed).
Hence, e.g., the transactions that were created to redeem 7' will not be able to do it (as the hash
of the transaction is different). In order to be secure for the protocol presented in this section, we
need to assume that such attacks are not impossible. Technically, we do it by assuming that the
channel between from each party to the Ledger is private. The protocols secure in this model will
be called fair under private channel assumption.

To explain our protocol let us go to the point in Section IV where it turned out that we need
the BitCoin commitment schemes. Recall that we observed that the protocol from Section IV-A2
is not secure against a “nasty behavior” of the party that, after realizing that she lost, simply quits
the protocol.

3) An alternative (and slightly flawed) idea for a fix: Suppose for a moment we are only interested
in security against the “nasty Bob”. Our method is to force him to reveal sg simultaneously with
Compute, being posted on the Ledger, by requiring that sg is a part of Compute,. More concretely
this is done as follows. Recall that in our initial protocol we said that Compute, is created and
posted on the Ledger by “one of the parties”. This was ok since the protocol was completely
symmetric for A and B. In our new solution we break this symmetry by modifying the Compute;
transaction (this new version will be denoted Compute,) and designing the protocol in such a way
that Computey will be always posted on the Ledger by B. First of all, however, we redefine the
PutMonele transaction that B posts on the Ledger at the beginning of the protocol. The modified
transaction is denoted PutMoneyS.

PutMoneyS (in: T®)
in-script: sigg ([PutMoney5))
out-script(body, o, 3): ver(body,o) A § € Sp A H(3) = hg
val: 1B

The only difference compared to PutMoney® is the addition of the “A(H () = hg)” part. This
trick forces Bob to reveal the pre-image of hp (which has to be equal to sg) whenever he redeems
PutMoneyS.

The transaction PutMoney? remains unchanged, i.e.: PutMoneyé = PutMoney?. Clearly
players can still redeem their transactions later in case they discover that the other player is cheating.
Transaction Compute, is the same as Compute;, except that sg is added to the input script for
the second input transaction:

Compute,(in: PutMoney?, PutMoney5)
in-script: : sig ;([Compute,]) | in-scripty: sigz ([Compute,]), ss
out-script(body, o1, 02, Sa, SB):

(3a,88 € Sf A H(8a) = ha A H(38) = he A f(3a,88) = A A ver ;(body, a1))V
(30,88 € SEAH(37) =ha ANH(38) = h 5
val: 2B

The parties post their PutMoney, transactions on the Ledger and construct transaction Computeq
in the following way. First, observe that both parties can easily construct the body of Compute,
themselves, as all the information needed for this is: the transactions PutMoney?y and PutMoneyS
and the hashes of sp and sg, which are all publicly available. Hence the only thing that needs
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to be computed are the input scripts. This computation is done as follows: first Alice com-
putes her input script sig ;([Computey]) and sends it to Bob. Then Bob adds his input script
(sig([Compute,]), sg), and posts Compute, on the Ledger.

The ClaimMoneyd procedures (for P € {A, B}) remain unchanged (except, of course that their
input is Compute, instead of Compute;). Let us now analyze the security of this protocol from
the point of view of both parties. First, observe that Alice does not risk anything by sending
sig 7([Compute,]) to Bob. This is because it consists of a signature on the entire body of the
transaction, and hence it is useless as long as Bob did not add his input script'’. But, if Bob added
a correct input script and posted Compute, on the Ledger then he automatically had to reveal sg.
Hence, from the point of view of Alice the problem of “nasty Bob” is solved.

Unfortunately, from the point of view of Bob the situation looks much worse, as he still has no
guarantee that Alice will post sp once she learned that she lost. This is why one more modification
of the protocol is needed.

4) The secure version of the scheme: To fix the problem described above we extend our protocol
by adding a special transaction that we denote Fuse and that will be used by Bob to redeem
Compute if Alice did not send sp within some specific time, say, 2 - max| edger. 10 achieve this
we will use the time-lock mechanism described in the introduction. This requires modifying once
again the Compute, transaction so it can be redeemed by Fuse. All in all, the transactions are
now defined as follows:

Compute(in: PutMoney”, PutMoney®)
in-script; : sig ;([Compute)] | in-scripty: sig ([Compute]), sg
out-script(body, o1, 02, Sa, SB):

(5, 88 € SEANH(5a) = ha A H(88) =

(3a,88) = A Aver z(body, 01))V

(5,88 € SE A H(5a) = ha A H(
(ver 3 (body, o1) A verz(body, 02)

5
3g) = (3a,88) = B Averg(body, o2))V
)

val: 2B

Fuse(in: Compute)
in-script:
sig ;([Fuse]),sigg ([Fuse]), L, L
out-script(body, o): verg(body, o)
val: 2B
tlock: ¢ + 2 - max| edger

(t above refers roughly to the time when Fuse is created, we will define it more concretely in
a moment).

The transactions Claz'mMoneyA and ClaimMoney® are almost the same as the transactions
C'low‘mMoneyé4 and ClaimMoneyQB (except that they redeem Compute transaction instead of
Compute,). It is clear that Compute can be generated jointly by Alice and Bob in the same
way as before (the only new part of Compute is the last line “ver 7(body, o1) A verz(body, 02)”
that can be easily computed by both parties from the public information).

What remains is to describe the construction of the Fuse transaction. Clearly, Bob can create the
entire Fuse by himself, except of the signature sig ;([Fuse]) in the input script, which has to be
computed by Alice, as only she knows her private key. To do this Alice needs to know the body of
Fuse. It is easy to see that she knows all of it, except of the input transaction Compute. Moreover,
Bob cannot simply send Compute to Alice, since Compute includes the information on his secret
sg which Alice should not learn at this point.

"Recall that the body of a transaction includes also the information about its input transactions, and moreover, a
transaction becomes valid only if a// the input transactions can be redeemed
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We solve this problem by exploiting the details of the BitCoin implementation, namely the fact
that the transactions are referenced by their hashes. Hence, to create the body of Fuse Alice only
needs to know the hash hcompute of Compute. Therefore our protocol will contain the following
sub-procedure (executed directly after Bob constructs Compute, but before he posts it on the
Ledger): (1) Bob sends hcompute = H(Compute) to Alice, (2) Alice computes [Fuse], signs it,
and sends the signature sig ;([Fuse]) to Bob, (3) Bob verifies Alice’s signature and halts if it is
incorrect. Time ¢ that is used in the time-lock in Fuse will refer to time when Alice executed Step
(2) above. This system guarantees that Bob can always claim his 2B in time ¢+ 2- Max| edger EVEN
if Alice did not execute the last step. Observe that of course Alice should halt her execution if she
does not see Compute on the Ledger within time ¢ + maxj edger, as otherwise Bob could simply
post Compute at much later (after time ¢ + 2 - max| edger, say) and immediately use Fuse to claim
the reward.

There are some issues in this procedure that need to be addressed. Firstly, the reader may be
worried that H(Compute) reveals some information on Compute. In practice (and in theory if H
is a random oracle) this happens only if the set of possible inputs to H is small and known to
the adversary. In our case the adversary is the dishonest Alice, and it can be easily seen that from
her point of view the set of possible Compute transactions is huge, one reason for this being that
Compute includes sg, which is secret and uniform.

Unfortunately the fact that Alice does not know the complete transaction Compute, but only its
hash, poses a risk to her. This is because a dishonest Bob can, instead of sending H(Compute),
send a hash of some other transaction 7" in order to obtain the information that can be used to
redeem some other transaction used within the protocol, or even outside this session of the protocol.
This is actually one of the reasons why we assumed that the keys used by the users in our procedure
are fresh and will not be used later: in this way we can precisely know, which transactions can be
redeemed if one obtains Alice’s signature on [Fuse] constructed with false A compute-'S. It is easy to
see that the only transaction other than Compute, that could be potentially redeemed using Alice’s
signature is PutMoneyA. This transaction cannot be redeemed by “Fuse with false hcompute” for
several reasons, one of them being that the value of PutM oneyA is 1B, which is less than the value
of Fuse (equal to 2B).

In this way we constructed the TwoPlayersLottery protocol. Its complete description is presented
on Figure 3 (page 22). We now have the following lemma (the proof appears in the full version of
this paper).

Lemma 3: The TwoPlayersLottery protocol from Figure 3 is a secure lottery protocol under the
private channel assumption.

Notice that without the private channel assumption there are two possible attacks, which could
harm Bob. One is that Alice could see Compute, which contains sg before it is posted on the
Ledger. In case she lost she could react with sending to the Ledger another transaction 7', which
redeems PutMoney™. If she was lucky and the transaction 7' was posted on the Ledger before
Compute, that Compute would become invalidated (one of its inputs would be already redeemed)
and Bob would not earn any money. The other possible attack concerns the malleability problem:
for the security to hold Bob needs to be sure that the Fuse transaction will redeem the transaction
Compute. Unfortunately, Fuse has to be created strictly before Compute appears on the Ledger.

18 As a more concrete example what could go wrong without this assumption consider the following scenario. Assume
there is a not-redeemed transaction Compute™ on the Ledger whose recipient is Alice and that also can be redeemed
by a transaction with an input script (L, L, sig7([T]),sigz([T])) (this can happen, e.g., if two coin-tossing protocol
are executed in parallel between Alice and Bob). Then a dishonest Bob can send to Alice H(Compute™) instead of
H(Compute), and redeem Compute™ in time ¢ + 2 - maX edger



PutMoney”™ (in: T™)

1B

in-script:

PutMoney® (in: T®)

in-script:

siga ([PutMoney™])

Compute(in: PutMoney”, PutMoney®)

sigg ([PutMoney®))

out-script(body, o):
ver z(body, o)

val: 1B

in-script; :
sig 7 ([Compute)]

in-scripts:
sig s ([Compute]), sp

out-script(body, o, ):
ver 5 (body, o)

A 2 AN
out-script(body, o1, 0, 3p, 38): A5 € Si NH(3) = hs)

val: 1B

1B

((3a, 88 € SEAH (3) = haAH (88) = hg)
. A ((f(3a, 88) = A Aver 3(body, 01))
V (f(3a, 88) = BAverg(body, 02))))

1B
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1B

V (ver z(body, 01) A ver 5 (body, 02)) . Fuse(in: Compute) |
val: 2B [ insscript:
' sig ([ Fuse]), i
2B| 2B 2B » sigp([Fuse]), L, L
. — . s I out-script(body, o): |
ClaimMoney" (in: Compute) ClatmMoney" (in: Compute) " verg(body, o) |
in-script: in-script: " Jal: 2 B- 7~ 1
sig 5 ([ClaimMoney™]), L, s, sg 1, sig5([ClaimMoney®]), s, sg :’ tlock: ~ ~ "~~~ ’:
out-script(body, o): out-script(body, o): | ¢4 2 - MAX|edger
vera(body, o) verg(body, o) fo - *21;,) ***** !
val: 2B val: 2B -
28 2B
Pre-condition:
1)  Alice holds a pair of keys A = (ska, pk4) and Bob holds a pair of keys B = (skg, pkg).
2) The Ledger contains standard transactions 7" and T that have value 1B each and whose recipients are
pk 4 and pk g, respectively.
Initialization phase: ~ ~
3) Alice and Bob generate their key pairs A = (A.sk, A.pk) and B = (B.sk, B.pk) (respectively) and
exchange the public keys A.pk and B pk.
4) The players choose their secret strings sa and sg.
5) Alice computes a hash of her secret ha := H(sa) and sends it to Bob.
6) Bob computes a hash of his secret hg := H(sg) and sends it to Alice.
7) Each P € {A,B} computes PutMoney” and post it on Ledger. The players proceed to the next step only
once both of these transactions appear on Ledger.
Computation phase:
8) The players construct the Compute transaction as follows:
a)  Alice computes the body of the transaction Compute together with the signature sig ; ([ Compute])
and sends sig ;([Compute]) to Bob.
b) Bob verifies Alice’s signature and halts if it is incorrect. Otherwise he computes the whole transaction
Compute by adding a signature sig ([Compute]) to the message received in the previous step.
9) The players construct the Fuse transaction as follows:
a) Bob sends hcompute = H(Compute) to Alice,
b)  Alice computes [Fuse], signs it, and sends the signature sig ;([Fuse]) to Bob (let ¢ denote the time
when it happened),
c) Bob verifies Alice’s signature and halts if it is incorrect.
Execution phase:
10) Bob sends Compute to Ledger. Note that this reveals sg. If Compute did not appear on Ledger in time
t + maxX|edger then Alice halts.
11)  Alice sends sa to Bob. If Bob did not receive it in time ¢ 4 2 - maxjiedger then he sends the Fuse transaction
to Ledger.
12) If f(sa,s8) = A the Alice sends ClaimMoney® to Ledger, otherwise Bob sends ClaimMoney® to
Ledger.

Fig. 3.

The TwoPlayersLottery protocol



23

If the adversary intercepts Compute before it happened (or: if the miner is malicious) then he
can post a “mauled” Compute transaction on the Ledger that behaves exactly as the original one,
except that it hashes to some other value. Hence Fuse becomes useless.

VI. NON-ZERO TRANSACTION FEES

We now address the problem of the transaction fees, which was ignored in the description
above. On a technical level there is no problem with incorporating the fees into our protocol: the
transactions can simply include a small fee that has to be agreed upon between the parties before
the protocol starts. The expected payoff of the parties will be in this case slightly negative (since
the fees need to be subtracted from the outcome). It is straightforward how to modify the security
definition to take this into account. One problem that the reader may notice is the issue of the
“nasty” behavior of the parties. For example, a malicious Alice can initiate the protocol with Bob
just to trigger him to post PutMoney® on the Ledger. If Alice later aborts then Bob obviously
gets his money back, except of the transaction fee. Of course, this does not change his expected
payoff, but it still may be against his interests, as he looses some money on a game that from the
beginning was planned (by Alice) never to start.

We now describe a partial pragmatic remedy for this problem. The basic idea is to modify the
protocol by changing the instructions what to do when the other parties misbehave. Recall, that in
our protocols the parties are instructed to simply redeem their all their transactions if they notice a
suspicious behavior of the other party. Now, instead of doing this, they could keep these transactions
on the Ledger and reuse them in some other sessions of the protocol. Of course, this has to be
done with care. For example the timed commitment schemes have to be redeemed within a certain
time frame). One also has to be careful to avoid problems with reusing the keys, described above,
cf. Footnote 18. To argue formally about the security of this solution one would need to introduce
a multi-player mathematical model capturing the fact that several sessions can be executed with
shared secrets. This is beyond the scope of this paper, so we just stay on this informal level.

VII. IMPLEMENTATION

As a “proof of concept” we have implemented and executed the presented protocols. The
transactions were created using bitcoinj Java library as normal BitCoin clients do not allow user
to create (nor broadcast) non-standard transactions and sent directly to Eligius mining pool. Below
we present links to some of these transactions on the blockchain.info website. To safe space, all
links are relative to the url o blockchain.info/tx-index/ (hence, they are only indices of transactions
used by the blockchain.info site).

Commitment scheme CS: Links to all transactions in a correct execution of the commitment
scheme with one recipient are as follows: Commit: 97079150; Open: 97094781.

Here is an example of an execution for two recipients, which finished with PayDeposit trans-
actions broadcast: Commit: 96947667; PayDeposit': 96982401; and PayDeposit®: 96982398.

Three-party lottery (MultiPlayersLottery): We have performed a correct execution of the three-
party lottery protocol, where each player bets 0.0012B. First, the players perform standard transac-
tions with output value 0.0012B. The transactions are as follows: PutM, oney™: 96946847; PutMoney®:
96946887; and PutMoney®: 96947563. Then the players exchange the hashes h4, hp and h¢,
and sign and broadcast the Compute transaction (96964833). After the revealing of their secrets
s4, sp and s¢ (by opening the commitments), the winner (in this case, player C) broadcasts the
ClaimMoney transaction (96966124) to get the pot.
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Two-party lottery without deposits (TwoPlayersLottery): Below we present links to all transac-
tions in a correct execution of the protocol won by Alice: PutMoney™: 96424665; PutMoney®:
96436412; Compute: 96436416; ClaimMoneyA: 96436417; In this execution, the players bet
0.04 B each and the transaction fees were set to 0.0001 B for each transaction.

We also performed an execution which finished with the Fuse transaction: PutMoney™: 97094615;

PutMoney®: 97094780; Compute: 97099280; Fuse: 97105484.

As an example of a raw transaction we present the PutMoney®” transaction from the first of
the TwoPlayersLottery protocol executions described above (96436412) in more details. Here is its
dump (with some fields omitted):

{ "lock_time":0,
"in":[{ "prev_out": {"hash":"al4...096", "n":0},
"scriptSig":"304...a01 039...443" }],

"out":[{"value":"0.03990000",
"scriptPubKey":"
OP_SIZE 32 34 OP_WITHIN OP_VERIFY
OP_SHA256 f£53...226 OP_EQUALVERIFY
020...e33 OP_CHECKSIG" }1}

The meaning of the above is as follows. "1lock_time" : 0 means, that the transactioned does not
have a time lock. "hash":"al4...096" denotes a hash of the transaction, which is being
redeemed in PutMoney” and "n":0 denotes, which output of that transaction is being re-
deemed. The input script "scriptSig":"304...a01 039...443" consists of the signature
(039...443) on PutMoney®” under the key B.pk and the public key B.pk itself (304...a01)
(in standard transaction’s output there is only pk’s hash and pk has to be included in the corre-
sponding input).

The output script expects to get as input an appropriate signature and Bob’s secret string.
The script consists of three parts: the first part OP_SIZE 32 34 OP_WITHIN OP_VERIFY
checks whether the second argument has an appropriate length; the second part OP_SHA256
£53...226 OP_EQUALVERIFY checks if its hash is equal to hp i.e. £53...226); and the last
part 020...e33 OP_CHECKSIG checks if the first argument is an appropriate signature under
key B.pk (i.e. 020...e33).
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Abstract. We show how the Bitcoin currency system (with a small modification)
can be used to obtain fairness in any two-party secure computation protocol in the
following sense: if one party aborts the protocol after learning the output then the
other party gets a financial compensation (in bitcoins). One possible application
of such protocols is the fair contract signing: each party is forced to complete the
protocol, or to pay to the other one a fine.

We also show how to link the output of this protocol to the Bitcoin currency. More
precisely: we show a method to design secure two-party protocols for functional-
ities that result in a “forced” financial transfer from one party to the other.

Our protocols build upon the ideas of our recent paper “Secure Multiparty Com-
putations on Bitcoin” (Cryptology ePrint Archive, Report 2013/784). Compared
to that paper, our results are more general, since our protocols allow to compute
any function, while in the previous paper we concentrated only on some specific
tasks (commitment schemes and lotteries). On the other hand, as opposed to “Se-
cure Multiparty Computations on Bitcoin”, to obtain security we need to modify
the Bitcoin specification so that the transactions are “non-malleable” (we discuss
this concept in more detail in the paper).

1 Introduction

In our recent paper [2] we put forward a new concept dubbed “‘secure multiparty com-
putations (MPCs) on Bitcoin”. On a high level the idea of this concept is as follows.
Recall that the MPCs [28,19] are protocols that allow a group of mutually distrusting
parties to “emulate” a trusted third party functionality in a secure way. Examples of such
functionalities include lotteries, auctions, voting schemes and many more. It is known
since 1980s that for any efficiently-computable functionality there exists an efficient
protocol that emulates it, assuming that the majority of the participants is honest and
that certain computational problems are intractable. If there is no honest majority (in
particular: if there are just two parties and one of them is cheating), then such protocols
also exist, but in general they do not provide fairness, i.e. a dishonest party can prevent
the other parties from learning their outputs, after she learned it herself [9,16].
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Despite of their great importance both to the theory and applications, the MPC
protocols suffer from some inherent limitations. The first one is the above-mentioned
lack on fairness when the majority of the participants is dishonest. The second is that the
standard security definition of MPCs does not ensure that the parties provide the inputs
to the computations in an honest way, and that they respect the outcome. For example,
in most of the settings it is clearly impossible to guarantee in a cryptographic way that a
bidder in an auction has enough money to pay his bid, or that the losing party will accept
the outcome of the voting procedure. Bitcoin, due to its fully distributed nature, and the
fact that the list of transactions is publicly known, gives an attractive opportunity to go
beyond this barrier. In [2] we discuss this idea, and provide some examples of how it
can be used. The main technical contribution of that paper is a protocol for a multiparty
lottery with a very strong security property: each honest party can be sure that, once
the game starts, it will be fair, and she will be paid the money in case she wins. This
happens even if the other parties actively cheat, and in particular even if some (or all)
of them abort the protocol prematurely. In order to achieve it we use a mechanism that
financially penalizes a party that does not follow the protocol.

Our main tool is a special type of a “Bitcoin-based timed commitment scheme”, that
has the following non-standard property: a committer has to pay a “deposit” during the
commitment phase, that he gets it back only if he opens his commitment within some
specific time. Although the main application of this commitment scheme is the lottery
protocol, it can actually also be used to obtain fairness in protocols where the inputs
and outputs do not concern Bitcoin. One of the questions left open in [2] is to construct
protocols for more general functionalities than the commitment scheme or the lottery.

Our contribution. In this paper we show that a small modification of the Bitcoin spec-
ification would make it possible to construct protocols for a very general class of func-
tionalities in a two-party settings. Roughly speaking (for more details see Section 3),
for our protocols to work we need to assume that the transactions are “non-malleable”
in the following sense: we assume that each transaction is identified by the hash of its
simplified version (also called the “body” of a transaction in [2]), instead of the hash on
the complete transaction (i.e. the body and the input scripts) as it is done currently in
Bitcoin. Assuming this modification, we show how to achieve fairness in any two-party
protocol in the following sense. Before learning the output of the computation, each
party has to pay some deposit. She is guaranteed to get this money back as long as she
behaves honestly until the very end of the protocol, i.e. until the other party learns the
output. If she misbehaves then her money is given to the other party.

In practice it will make sense to use this protocol if the potential gain from a pre-
mature termination is lower than the deposit that the party pays. As the potential appli-
cations of our protocols let us mention the contract signing problem, which has been
extensively studied in cryptography since 1980s [17,5,11,13]. Informally, the challenge
in this line of work is to design the protocols where two parties simultaneously sign a
document M in a fair way, i.e. it should be impossible for one party, say Alice, to obtain
Bob’s signature on M without Bob obtaining Alice’s signature on M (and vice-versa).
It was shown by Even and Yacobi [17] that this task is in general impossible to achieve,
and since then there has been a substantial effort to overcome this impossibility result



in various ways (e.g. by assuming an existence of a trusted third party). Since obviously
a signing procedure can be modeled as a two-party functionality, hence one can use
our protocol to achieve fairness. If the value of the contract is lower than the deposit
paid by each party, then clearly the parties will have no incentive to cheat. Moreover,
if one party, say Alice, cheats then Bob will earn Alice’s deposit (plus he will get his
own deposit back), which will compensate his loses resulting from the fact that Alice
cheated during the contract signing protocol. Of course, our protocols can be used in
several other applications that rely on a fair exchange of secrets, such as certified e-mail
systems [30,3,1] or non-repudiation protocols [29].

We also show how to link the outputs of our protocols to the Bitcoin money in the
following sense (for more information see Sec. 6). The output of the emulated func-
tionality can contain instructions of a form “Alice sends d B to Bob” or “Bob sends d B
to Alice” (where “B” is the Bitcoin currency symbol). Our protocol will enforce that
these transfers are indeed performed. Of course, this holds only if the parties conduct
the protocol until the very end, but again, if one party decides to abort prematurely then
her deposit will be paid to the other party. Hence, if this deposit is larger than d then it
clearly makes no economic sense to abort. Of course, one example of a such a function-
ality is the lottery protocol. We would like to stress, however, that our result does not
imply the result of [2], since the protocols of [2] work on the current version of Bitcoin
protocol (without any modification).

One can, of course, imagine several other applications of our protocols. For exam-
ple, one can construct protocols for buying digital goods that can be specified by any
poly-time computable functions 7 : {0,1}* — {true, false}. More precisely: imagine
that Alice promises Bob that she will pay him 1B if he sends her a file m € {0,1}*
such that 7(m) = true, however she does not want to reveal this function neither to
Bob nor to the public. Then, we can construct such a protocol that emulates the follow-
ing functionality: the input of Alice is 7 and the input of Bob is m. If w(m) = true then
the output is m and a “forced transfer of 1 B from Alice to Bob”, otherwise the output
is L. Such 7 can be, e.g., a function that checks if m is a secret that concerns a certain
person.!

On a technical level, our protocols are based on a new variant of a Bitcoin-based
timed commitment scheme that we call the “simultaneous commitment” and denote
SCS. It can be viewed as an extension of the Bitcoin-based commitment scheme from
[2] described above. The main difference is that it forces both users to simultaneously
commit to their secrets. In other words, the commitment of each party is valid (and she
is forced to open it by some time ¢) only if the other party made her corresponding
commitment at the same time.

Related work. As described above our paper builds upon the ideas from our previous
paper [2], and hence most of the work relevant to that paper is also relevant to this one.
Usage of Bitcoin to create a secure and fair two-player lottery has been independently
proposed by Back and Bentov in [4]. Similarly to [2], their protocol makes use of the

' A real-life example of such situation is the recent case when the German tax authorities paid
4 million euro to an anonymous informant for a CD containing information about the German
tax evaders with bank accounts in Switzerland [12].



time-locked transactions, but the purpose they are used for is slightly different. Their
protocol uses time-locks to get the deposit back if the protocol is interrupted, while
this paper and [2] use time-locks to make a financial compensation to an honest party,
whenever the other party misbehaves.

Usage of timed-commitments to achieve fairness in MPC has been already proposed
in a number of papers, e.g. [7,18,24], but this line of research uses a completely different
approach from ours. It is based on a gradual release of information and if the protocol is
interrupted prematurely than both parties can reconstruct the result with a huge compu-
tational effort. The fairness of two-party computation has been also studied by Gordon
et al. [16], who showed that complete fairness can be achieved for some functions being
computed, e.g. Boolean and/or, but not xor. In contrast, our construction works for an
arbitrary function.

Improvements to Bitcoin have been suggested in an important work of Barber et
al. [15] who study various security aspects of Bitcoin and Miers et al. [14] who pro-
pose a Bitcoin system with provable anonymity. The idea to use some concepts from
the MPC literature appeared already in Section 7.1 of [15] where the authors construct
a secure “mixer”, that allows two parties to securely “mix” their coins in order to ob-
tain unlinkability of the transactions. They also construct commitment schemes with
time-locks, however some important details are different, in particular, in the normal
execution of the scheme the money is at the end transferred to the receiver. Also, the
main motivation of this work is different: the goal of [15] is to fix an existing problem
in Bitcoin (“linkability”’), while our goal is to use Bitcoin to perform tasks that are hard
(or impossible) to perform by other methods.

Commitment schemes and zero-knowledge proofs in the context of the Bitcoin were
already considered in [8], however, the construction and its applications are different —
the main idea of [8] is to use the Bitcoin system as a replacement of a trusted third party
in time-stamping. The notion of “deposits” has already been used in Bitcoin (see [25],
Example 1), but the application described there is different: the “deposit” is a method for
a party with no reputation to prove that she is not a spambot by temporarily sacrificing
some of her money.

The Bitcoin wiki “Contracts page” [25] contains several interesting multiparty pro-
tocols, and in some sense our work can be viewed as an effort to extend the set of
possible types of contracts. We note that the main features that distinguishes our work
from most of them is (1) we do not want to rely on any trusted third parties (like the
“mediators”) and (2) the focus of our protocols is to protect the input privacy.

The problem of the malleability of the transactions has been noticed before and de-
scribed in [27]. Malleability is a problem for most of the protocols using time-locks
(e.g. [4,26]) and Examples 1, 5, and 7 in [25], but is usually not even mentioned, prob-
ably because it is believed that it will be eliminated in the future versions of the Bitcoin
protocol. In contrast, our lottery protocol from [2] is not susceptible to the malleability
problem.



2 A description of Bitcoin

We assume reader’s familiarity with the basic principles of the Bitcoin. Let us only
briefly recall that the Bitcoin currency system consists of addresses and transactions
between them. An address is simply a public key pk (technically an address is a hash
of pk). We will frequently denote key pairs using the capital letters (e.g. A). We will
also use the following convention: if A = (sk, pk) then sig 4, (m) denotes a signature
on a message m computed with sk and ver 4 (m, o) denotes the result (true or false) of
the verification of a signature o on message m with respect to the public key pk.

Each Bitcoin transaction can have multiple inputs and outputs. Inputs of a transac-
tion T, are listed as triples (y1,a1,01),- .-, (Yn, @, 0pn), Where each y; is a hash of
some previous transaction T}, (our proposal, described in Section 3, is to change it,
but for a moment let us stick to the current version of the system), a; is an index of
the output of T}, (we say that T’; redeems the a;-th output of Ty,) and o; is called an
input-script . The outputs of a transaction are presented as a list of pairs (vy,71), ...,
(Um, ™m ), Where each v; specifies some amount of coins (called the value of the i-
th output of T,,) and 7; is an output-script . A transaction can also have a time-lock
t, meaning that it is valid only if time ¢ is reached. Hence, altogether transaction’s
most general form is: T, = ((y1,01,01), -+ Yn, @ny0n)s (V1,71)5 -« oy (Vs Tom )5 T)-
The body of T, is equal to T}, without the input-scripts, i.e.: ((y1,a1), .-, (Yn,an),
(v1,71), .-, (Um,Tm), t), and denoted by [T]. One of the most useful properties of
Bitcoin is that the users have flexibility in defining the condition on how the transac-
tion 77, can be redeemed. This is achieved by the input- and the output-scripts. One can
think of an output-script as a description of a function whose output is Boolean. A trans-
action T}, defined above is valid if for every i = 1,...,n we have that 7([T,], 0;)?
evaluates to true, where 7/ is the output-script corresponding to the a;-th output of Ty, .
Another conditions that need to be satisfied are that the time ¢ has already passed and
v1 4o+ vy < V) + -+ 4+ o], where each v is the value of the a;-th output of T),,.
The scripts are written in the Bitcoin scripting language.

Following [2] we will present the transactions as boxes. The redeeming of trans-
actions will be indicated with arrows (cf. e.g. Fig. 1). The transactions where the in-
put script is a signature, and the output script is a verification algorithm are the most
common type of transactions and are called standard transactions. The address against
which the verification is done will be called a receiver of this transaction. Currently
some miners accept only such transactions. However, there exist other ones that do ac-
cept the non-standard (also called strange) transactions, one example being a big mining
pool called Eligius.

We use the security model defined in [2]. For the lack of space we only sketch it
here. We assume that the parties are connected by an insecure channel and have access
to the Bitcoin chain, which is the only “trusted component” in the system. We assume
that each party can access the current contents of the block chain, and post messages on
it. Let maxgpg be the is maximal possible delay between broadcasting the transaction and

2 In the original Bitcoin documentation this is called “simplified 77"
3 Technically in Bitcoin [T%] is not directly passed as an argument to ;. We adopt this conven-
tion to make the exposition clearer.



Put(in: T) Fuse(in: Put)
aB in-script: sig ([Put]) B in-script: sig ([Fuse]), sig g ([Fuse])
—— out-script(body, o1, 02): "+ out-script(body, o): verc(body, o)
verc(body, o1) A vers(body, o2) val: d B
val: d B tlock: ¢

a8

Fig. 1. The graph of transactions for a situation when a user locks d B. This is an exemplary situ-
ation when the problem of malleability arises. C' and S denote the pairs of keys hold respectively
by the client and the server. ¢ is a moment of time, when the user can take his deposit back. T'
denotes an unredeemed transaction with value d B, which can be redeemed with key C.

including it in the block chain. We do not assume that this communication is private.
For simplicity we also assume that the transaction fees are zero, but our model and
security statements can be easily modified to take into account the non-zero fees.

3 Bitcoin Improvement Proposal

One of the problems with constructing multi-party protocols using Bitcoin is the “mal-
leability” of transactions. This problem has been noticed before by the Bitcoin com-
munity* as it concerns several Bitcoin protocols that use the advanced features of the
scripting language. Essentially, the problem is that, given a valid transaction 7', it is
possible for everyone to construct a different valid transaction 7”7, which is functionally
equivalent to 7, but has a different hash. The malleability of transactions comes from
the fact, that a hash of a transaction is computed over the whole transaction including
its input scripts. On the other hand, signatures are computed only over the body of the
transaction, which means that they do not cover the input scripts’. Therefore, one can
tweak an input script in a way that does not change its functionality (e.g. by adding push
and pop operations®) and create a transaction, which is also correct (the signatures are
still valid as the input scripts are not signed), and functionally equivalent to the original
transaction, yet its hash is different.

To understand why malleability of transactions may be a problem consider a sit-
uation, when a client wants to prove to a server that he is not a spambot by locking
(making unspendable for a particular amount of time) some amount of bitcoins’. To
achieve this, the client should create a transaction such that he can not redeem it on his
own. But he has to be sure, that he will eventually get his money back after some time.
This could be resolved by using a transaction with a time-lock (see Fig. 1 for a graph

4 See en.bitcoin.it/wiki/Transaction_Malleability.

5 The reason is that it is impossible to construct a signature, in such a way, that it is a part of the
message being signed.

® In this paper we usually treat input scripts as arguments for the corresponding output scripts.
In reality, however, they are scripts in Bitcoin scripting language, which are supposed to push
arguments for an output script on the stack.

7 To read more about such deposits see en.bitcoin.it/wiki/Contracts.



of transactions) — the client first creates a transaction Put spending his money, which
can be redeemed only by a transaction signed by him and the server (so they can agree
to return the deposit to the client at any time). Then he sends the hash of this transaction
to the server and the server returns a transaction Fuse with a signature of the server
on it ¥ — this transaction sends back the deposit to the client after some time. So now
the client may broadcast the first transaction, and after some time he may use the Fuse
transaction to get back his deposit. This is exactly where the problem of malleability
arises: if an adversary sees the transaction Put after it is broadcast, but before it is in-
cluded in the block chain (as the transactions are broadcast in a peer-to-peer network),
he can create and broadcast a transaction Put’, which is functionally equivalent to Put,
but has a different hash. Then, if Put’ is included in the block chain first, the original
Put becomes invalidated. As a result the Fuse will not be correct (it contains a hash of
Put, which never appeared in the block chain), so the client may lose his money.

A source of the malleability problem is that a hash of a transaction depends on its
input scripts. In some situation this dependence is itself a problem, because we may not
know the input scripts of the transaction 7" while signing a transaction redeeming 7.
In next section we present a possible solution for these problems. It requires a small
modification of the Bitcoin specification. We believe that this modification could be
implemented in the future in Bitcoin. We discuss why it does not decrease the security
of Bitcoin.

Our modification. In the current version of Bitcoin protocol, each transaction contains
a hash of the transaction it spends. That hash is computed over the whole transaction.
We propose to compute those hashes over the transaction without its input scripts (i.e.
over the body of the transaction), so they would be computed in the same way the
hashes for transactions’ signatures are currently being computed. That means that the
transaction would have the same hash value regardless of its input scripts.

Obviously with this modification, the malleability is not a problem. An adversary
can still tweak the input script of an arbitrary transaction in the network and broadcast
its modified version, but the hashes of both transactions — original and modified one
— are identical, so it does not make any difference, which of them will be included in
the block chain.

Additionally, with this modification it is possible to sign a chain of transactions
even if we do not know the input scripts of some of them. The only thing, which is
necessary to compute signatures are outputs (output scripts and values) and the hashes
of the transactions redeemed by the first transaction in the chain. This may be useful in
constructing more complex protocols.

Now consider, what in fact is changed with this modification. The input scripts are
used only to show that the transaction is authorized to redeem the other transactions.
So two correct transactions which differ only in the input scripts are equivalent — they
prove in two different ways that the Bitcoin transfer is authorized. It is not possible

8 The server signs a transactions Fuse without seeing the transaction Put and a malicious client
could try to send a hash of an existing transaction instead of Put. Therefore, the server should
use a fresh key every time to prevent itself from being tricked into signing a transaction spend-
ing some other transaction of its to the client.



that the block chain contains two such transactions. That is why the hash still uniquely
identifies the redeemed transaction.’

4 Simultaneous Bitcoin-based timed commitment scheme

In this section we present a modification of the Bitcoin-based timed commitment sche-
me introduced in [2]. To make the paper self-contained we first recall the original timed-
commitment scheme CS(C, d, ¢, s) of [2], and then we describe our modified scheme.

Timed-commitments of [2]. Recall that a (standard) commitment scheme is a proto-
col between two parties: a committer C and a receiver R. The protocol contains of two
phases. In the first one, called the commitment phase, C commits to some secret string
s by interacting with R. What is important is that after this interaction s should remain
secret (this is called the hiding property of the scheme). Then comes the opening phase
in which C opens the commitment by interacting again with R, which results in R learn-
ing s. What we require is that a cheating C cannot “change his mind”, in other words,
once the commitment phase is over, there exists at most one value s that R will accept.
This property is called binding. A simple commitment scheme can be constructed as
follows. Let I be a hash function. To commit to a string s (of some fixed length) the
committer selects a random string p, computes ' = (s||p) and sends H(s') to the re-
ceiver. If H is modeled as a random oracle, and p is sufficiently large (say: linear in the
security parameter), then obviously H (s") does not reveal any significant information
about s (hence the commitment is hiding). To open the commitment, C sends s’ to R.
The binding property of this commitment scheme follows from the collision-resistance
of H.

Several other commitment schemes have been constructed over the last 2 decades.
One inherent problem with all of them is related to the fairness issue in the two-party
computation protocols (see Sect. 1). Namely, there is no way to force C to open the
commitment. This problem has negative consequences for several applications. Con-
sider, e.g., a simple protocol in which two parties (call them again C and R) want to
“flip a coin”, i.e., to select a bit b +— {0, 1} uniformly at random. A simple protocol
of Blum [6] for this problem works as follows: (1) C commits to some random bit
¢ < {0,1}, (2) R selects a random bit r <— {0, 1} and sends it to C, (3) C opens his
commitment, and the output of the protocol is computed as b = ¢ & r. This protocol
is obviously secure, informally because the hiding property of the commitment scheme
guarantees that R does not know ¢ when he chooses 7, and the binding property pre-
vents C from changing c after he learned 7. Unfortunately, there is no way to force R
to complete Step (3) and to open the commitment. Hence, C he can make the protocol
“crash” without producing the output, depending on what the output is.

As aremedy to this problem [2] propose to use Bitcoin in the following way. During
the commitment phase the committer has to put aside a “deposit”. Assume its value is

? The only exception are the so-called generation transactions, which create new bitcoins and
can have arbitrary input scripts (the script is called “coinbase” in this case). However, it is not
difficult to ensure that each such transaction has a different hash, by using a new pair of keys
for each generation.



dB, and it comes from an unredeemed standard transaction 7", whose receiver is C. The
committer gets his money back once he opens the commitment. If he does not open
the commitment within some time ¢ then the money can be claimed by the receiver.
This is implemented using the Bitcoin scripts and time-locks on top of the hash-based
commitment scheme described above. Let C' and R be the respective key-pairs of C and
R. The transactions used in this implementation are as follows (the scripts’ arguments,
which are omitted are denoted by _L):

Commit(in: T')
aB in-script: sig ([Commit])
—out-script(body, o1, 02, ):
(H(z) = h Averc(body,a1)) V (verc(body, o1) A verg(body, o2))

val: dB
Open(in: Commit) . Fuse(in: Commit)
in-script: aB aB in-seript:
_dB [sigo([Open]), L,s" | »LngQ(LFysii]Z, sigp([Fuse]), L JdB>
out-script(body, o): jout-script(body, ): verg(body, o) |
verc (body, o) ival: d B |
val: dB 'tlock:¢ 1

To commit to a secret s the committer first computes s’ = (s||p) (where p is a ran-
dom string of some fixed length), and sets h := H(s’). He then creates the Commit
transaction and posts it on the block chain. The role of this step is to publish & and to
deposit the money. The committer also creates the body of the Fuse transaction with
time lock set to some time ¢ in the future, and sends it to R together with his signature
on it. Hence, the only thing that is missing to obtain the complete Fuse transaction is
the receiver’s signature on the body. This, however, R can compute himself. Hence at
the end of the commitment phase R holds a Fuse transaction. The purpose of Fuse is to
allow the receiver to claim the money, if R did not open the commitment within time ¢.

In the opening phase the committer posts Open on the block chain. This has two
consequences. Firstly, this reveals s’ (and hence s), which is part of the input script.
Secondly, it allows the committer to get his money back. Thanks to the way in which
the scripts are created, this is actually the only way for him to get his money. If he does
not do it by the time ¢, then R posts Fuse on the block chain and gets the committer’s
deposit.

It is easy to see how this timed-commitment scheme solves the problem of fairness
in the coin-flipping protocol described above: if C did not open the commitment scheme
on time then he is “punished” financially for this, and R gets a compensation. Unfortu-
nately, this commitment scheme does not solve the fairness problem in general. This is
because for the general two-party computation protocols we need something stronger.
More precisely, the problem is that this commitment scheme forces the committer to
reveal his secret (or to pay a fine), no matter how the other party behaves. To see why it
is a problem, imagine two parties, called Alice and Bob holding secrets denoted respec-
tively s4 and sp. Suppose that the protocol instructs both of them to commit to their
secrets and then to reveal them (in fact this is exactly the situation that we have in our
two-party scheme in Sect. 5). If they just run two instantiations of the CS scheme, then



one party, say Alice, can interrupt the protocol where she is the committer, after Bob has
already made a commitment. In that case Bob will be forced to reveal his secret share
or lose his deposit. Hence, it is important that both commitment schemes are executed
simultaneously, i.e. it is not possible that as a result of the protocol one of the parties is
committed to her secret and the other one is not. A construction of such a commitment
scheme is one of our two main contributions and is presented below.

Simultaneous Bitcoin-based timed commitment scheme. The protocol is denoted by
SCS(A, B, d, t), where A and B are the parties executing the protocol, d is the value of
the deposits in B, ¢ is the timestamp — the parties should open the commitments before
that time, and s, sp are the secrets. We assume that A and B are the respective key
pairs of A and B and the block chain contains unredeemed transactions 74 and T2,
both of a value d, whose receivers are A and B respectively. The protocol is depicted on
Fig. 2. The commitment phase is denoted by SCS.Commit(A, B, d, t) and the opening
phase is denoted by SCS.Open(A, B, d, t). Let « be the security parameter.

The security definition of the SCS protocol is very similar to the security definition
of the CS protocol of [2] described above. We model the hash function H used in the
protocol as a random oracle. We require that the commitment is hiding and binding. We
allow a negligible (in «) error probabilities in both hiding and biding. The protocol can
be interrupted during the commitment phase — in this case the parties do not lose any
bitcoins and do not learn the other party’s secret. The only difference between the CS
protocol and the SCS protocol is that if the SCS protocol is not interrupted during the
commitment phase, then both parties are committed. This means that an honest party
can be sure that her opponent either reveals the secret by the time ¢ or transfers d B
to her. Moreover, it is guaranteed that the party which reveals a secret would get her
deposit back. Again, we allow negligible probabilities that the above statements do not
hold.

We construct the SCS protocol assuming the Bitcoin modification from Section 3.
The detailed description of the SCS protocol is presented on Fig. 2. In SCS protocol we
assume that both parties already know the hashes h 4 and hp of both secrets concate-
nated with some random strings p4 and pp (resp.). More precisely: ha := H(sal|pa)
and hp := H(sp||pp), where ps < {0,1}* and pp < {0, 1}“. The reason for this
will become clear in Sec. 5. The idea behind the protocol is as follows. First the par-
ties use the existing transactions 74 and T'" to construct the transaction Commit. The
transaction Commit has two outputs — one is used to commit A to s4 and the other
one to commit B to sp. The first output can be claimed by A with revealing her secret
or after time ¢ by B. The latter option is technically achieved by signing at the very be-
ginning of the protocol a transaction Fuse”, which redeems Commit, can be claimed
only by B and has a time-lock ¢. The second output of Commit is analogous. The proof
of the following lemma appears in the extended version of this paper.

Lemma 1. The SCS scheme from Fig. 2 is a simultaneous Bitcoin-based commitment
scheme assuming the modification from Sec. 3.
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Commit(in: T, TF)
in-script; : sig 4 ([Commit]) in-scripts: sig g ([Commit])

dB | out-script; (body, o1, 02, x): out-scriptz(body, 01, 02, ): dB

(vera(body,o1) N H(x) = ha)V  |(verg(body,o2) N H(x) = hp)V
(vera(body,o1) A verg(body,a2)) |(vers(body,o2) A vera(body,o1))

val;: dB valo: dB
ap aB
Y A,
Open (in: Commit (1)) Open® (in: Commit(2))
in-script: in-script:
dB sigA([OpenA]),L,sA L7SigB([OpenB])75?3 dB
out-script(body, o): out-script(body, o):
ver 4 (body, o) verg (body, o)
val: d B val: d B
aB aB
. Fuse™(in: Commit(1)) | | FuseP(in: Commit(2)) |
lin-script: sig , ([Fuse?]), | lin-script: sig , ([Fuse®]), 1
'sig 5 ([Fuse?]), L ! 'sig 5 ([Fuse®]), L !
"out-seript(body, o): vers (body, ) "out-seript{body, o): vera (body, )
ival: dB | dB, <dB ival: dB |
'tock:¢ 'tock: ¢ 1
Pre-condition:

1. A holds the key pair A and B holds the key pair B.

2. A knows the secret sa, B knows the secret sg, both players know the hashes ha = H (314)
and hp = H(s’z), where s’y := (sal|pa), ss := (sBllpB), and pa, ps < {0,1}* are
random strings known only to A and B respectively.

3. There are two unredeemed transactions TA, TB of value d B, which can be redeemed with
the keys A and B respectively.

The SCS.Commit(A, B, d, t) phase

1. Both players compute the body of the transaction Commit using T4 and T'Z as inputs.

2. Both players compute the bodies of the transactions Fuse® and Fuse® using appropriate
outputs (Commit(1) and Commit(2) respectively) of the Commit transaction. Then, they
sign Fuse® and Fuse® and exchange the signatures.

3. Asigns the transaction Commit and sends the signature to B.

4. B signs the transaction Commit and broadcasts it.

5. Both parties wait until the transaction Commit is included in the block chain.

6. If the transaction Commit does not appear on the block chain until time ¢ — 2maxgg, where
maxgg is @ maximal possible delay between broadcasting the transaction and including it in
the block chain (what means that B did not perform Step. 4), then A immediately redeems
the transaction 7 and quits the protocol. Analogously, if A did not send her signature to B
until time ¢ — 2maxag, then B redeems the transaction 72 and quits the protocol.

The SCS.Open(A, B, d, t) phase

7. A and B broadcast the transactions Open and Open® respectively, what reveals the secrets
sa and sp.

8. If within time ¢ the transaction Open does not appear on the block chain, then B broadcasts

the transaction Fuse” and gets d . Similarly, if within time ¢ the transaction Open® does
not appear on the block chain, then A broadcasts the transaction Fuse® and gets d B.

Fig. 2. The SCS protocol. The scripts’ arguments, which are omitted are denoted by L.
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5 Two-party computation

The concept of secure two-party computations has already been informally described in
the introduction. For the lack of space we do not provide full security definitions of these
protocols, and only briefly sketch the constructions. The reader may refer to [10,20]
for more on this topic. A common paradigm [21] for constructing secure multiparty
protocols is to: (1) create a protocol secure only against passive (also called “semi-
honest”) adversaries, i.e. adversaries, which honestly perform the protocol, and then (2)
“compile” such a protocol to be secure against any type of adversarial behavior.

The problem that such a compiler needs to address is that a malicious party can
send a different message than she is supposed to send according to the protocol. One
can deal with this problem using the zero-knowledge protocols [23]. This is possible
since in every protocol a message which should be sent by a party is determined by
(a) the public inputs, (b) the party’s private inputs, (c) the messages that she received
earlier, and (d) the party’s internal randomness. The idea is to attach to each message
a zero-knowledge proof that this message was computed correctly. Since a message
can depend on private inputs and the internal randomness of the sender (which are not
known to the receiver), the players commit at the beginning of the protocol to their
private inputs and the randomness and later use these commitments in the proof (they
actually never open them). Moreover, we need to ensure that the bits used as internal
randomness are indeed random, but it can be easily achieved by masking them with the
bits chosen by the other party. More details can be found, e.g., in [20].

This compiler works as long as all the parties are interested in completing the pro-
tocol. However, the technique described above cannot be used to force a party to send
a message if she loses interest in the execution. It is easy to see that in general, there
is no “purely cryptographic” way to force a party to execute the protocol until the very
end. This may have particularly bad consequences if one of the parties learns the output
and, depending on its value either completes the protocol, or halts (preventing the other
party from learning the output). This is precisely the problem of the lack of fairness
described in the introduction.

In this paper we propose a new way to achieve fairness in two-party computation
based on Bitcoin deposits. The idea is that before starting the execution of the protocol
both parties make a Bitcoin deposit of an agreed amount d B. If the protocol terminates
successfully, then both parties get their deposits back. However, if one of the parties
interrupts the protocol after she learned the output, the other party takes both deposits
— her own and the opponent’s one, so she gains dB. We would like to stress that
making such a deposit is completely safe — the party making it is guaranteed to get it
back if she follows the protocol regardless of the other party’s behavior.

Our construction is based on the two-party computation protocol by Goldreich and
Vainish [22]. We do not provide the details of this protocol here (for its full descrip-
tion the reader may consult, e.g. [10]). Let us just describe its most relevant part. The
property which we take advantage of is that at the end of the protocol’s execution the
parties hold additive shares of the result of the computation, but none of the parties
learned anything about the actual output. This means that the parties holds respectively
bit strings s and sp, such that the result of the computation is equal to s4 & sp. In
the original protocol, the parties reconstruct the result by revealing their shares. More

12



precisely, each party sends its share to the other party and makes a zero-knowledge
proof that it is indeed its share of the result. Of course, one of the parties has to reveal
her share first (or at least a part of it) and the other party can quit the protocol at this
moment, leaving the honest party with no information about the output!?.

In FairComp protocol, which we present in this section the parties reconstruct the
result in a different and fair way. Fairness of that protocol means that one of the fol-
lowing things happened: either (1) at the end of its execution both parties followed the
protocol and they both know the result of the computation, or (2) one of the parties
interrupted the protocol at the beginning and none of the parties learned anything about
the result, or (3) only a malicious party learned the result, and she paid the other party
an agreed amount of bitcoins.

The idea behind FairComp protocol is as follows. Suppose that the parties are called
Alice and Bob. At the very beginning Alice and Bob agree on a value of a deposit
equal to d B. Then they execute the two-party protocol [22,10] together with the zero-
knowledge proofs in order to make it secure against the active adversary. However, they
do not reconstruct the result. Then, Alice sends a hash h4 of her share concatenated
with some random string to Bob and makes a zero-knowledge proof that she indeed
computed h 4 in that way. Similarly, Bob sends hp to Alice and makes an analogous
proof. Later, the parties execute SCS protocol to simultaneously commit themselves to
respectively h 4 and h g. When the commitment is done, the parties reveal their shares. If
any of them does not reveal its share, the honest party can claim the opponent’s deposit.
The description of the protocol is presented on Fig. 3. We now have the following
lemma whose proof appears in the extended version of this paper.

Lemma 2. The FairComp protocol from Fig. 3 is a fair two party computation protocol
assuming the modification from Sec. 3.

6 Extensions

The result from the previous section can be extended in various ways. It is for example
relatively easy to see that the deposits in the SCS and FairComp do not need to be equal
for both parties. Another generalization is that (in theory, and very inefficiently) one
can use an arbitrary commitment scheme, not necessarily the one based on hashes (the
details of this will be provided in the extended version of this paper).

Probably the most interesting extension is to make the payoffs in the FairComp
protocol depend on the result of the computation. More precisely, the FairComp pro-
tocol can be easily extended to handle a situation when the result of the computation
determines the winner, which will be given some reward (an agreed amount of bit-
coins). To achieve this it is enough to add a third output with the value equal to the
value of the reward to the Commit transaction used in the execution of SCS.Commit
in Step. 4 of FairComp protocol. The output script would take as arguments both
secrets sy, s’z and a signature. It would check if both provided secrets are correct
(H(s'y) = ha N H(s'z) = hp), compute s4 and sp as prefixes of respectively s, and

10 Except of that, what she can learn from her inputs and from the function being computed.
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Pre-condition:
1. Aholds a key pair A and B holds the key pair B.
2. The parties agree on a function they want to jointly compute and on a value of deposits
equal d B each.

The computation phase
The parties execute the two-party protocol of Goldreich and Vainish [22] additionally
secured against an active adversary with zero-knowledge proofs, but they do not recon-
struct the secret. At the end of the execution A holds s4 and B holds s, such that the
result of the computation in equal to s4 & sp.
The commitment phase

1. A computes her secret s’; as a concatenation of her share s4 and some random string
pa of length «, where « is a security parameter.

2. Asends ha := H(s';) to B and makes a zero-knowledge proof to B that this value is
indeed equal to H(sal|pa) for some string pa.

3. Similarly, B computes s’z := sg||pp for some random string pp of length o, sends
hp := H(s’z) to A and makes an analogous proof.

4. The parties execute SCS.Commit(A, B, d, t) protocol for some moment of time ¢ in the
future.

The opening phase

5. The parties execute SCS.Open(A, B, d, t) protocol.

6. If A reveals s’y before time t, then B computes s 4 as a prefix of s; of an appropriate
length and computes the result of the computation s := sa & sp. Otherwise, B earns
d B from Fuse® transaction (See Fig. 2).

7. Similarly, if B reveals s’z before time ¢, then A computes sp as a prefix of s’z of an
appropriate length and computes the result of the computation s := s 4@ sp. Otherwise,
A earns d B from Fuse® transaction (See Fig. 2).

Fig. 3. The FairComp protocol.

'z, compute the actual result (s := s4 @ sp), check which party is a winner and verify
if the signature is the winner’s signature on that transaction (this idea is very similar to
the ones used in [4] and [2]).

The idea described above can be further extended to handle a situation, where the
reward may be split arbitrarily among the parties depending on the result of the com-
putation, e.g. the result is a fraction between O and 1, which determines how big part
of the reward will be given to one of the parties (the other party gets the rest of the
reward). Suppose that the reward is equal to 1 B. The parties have to add to Commit
transaction, not one additional output, but a number of them — one with value 0.5 B,
one with value 0.25B, one with value 0.1258 and so on'!. Similarly as earlier, each
output script expects both secrets and a signature. It computes the results of the com-
putation, checks, which party should be given the appropriate part of the reward and
verifies if the signature is that party’s signature.

' The number of outputs created this way is limited and not greater than 30 as a bitcoin is not
infinitely divisible. The smallest amount of bitcoins is called “satoshi” and is equal to 1075 B.
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Abstract. Bitcoin is a peer-to-peer cryptographic currency system. Since its in-
troduction in 2008, Bitcoin has gained noticeable popularity, mostly due to its
following properties: (1) the transaction fees are very low, and (2) it is not con-
trolled by any central authority, which in particular means that nobody can “print”
the money to generate inflation. Moreover, the transaction syntax allows to create
the so-called contracts, where a number of mutually-distrusting parties engage in
a protocol to jointly perform some financial task, and the fairness of this process
is guaranteed by the properties of Bitcoin. Although the Bitcoin contracts have
several potential applications in the digital economy, so far they have not been
widely used in real life. This is partly due to the fact that they are cumbersome to
create and analyze, and hence risky to use.

In this paper we propose to remedy this problem by using the methods originally
developed for the computer-aided analysis for hardware and software systems,
in particular those based on the timed automata. More concretely, we propose a
framework for modeling the Bitcoin contracts using the timed automata in the
UPPAAL model checker. Our method is general and can be used to model several
contracts. As a proof-of-concept we use this framework to model some of the
Bitcoin contracts from our recent previous work. We then automatically verify
their security in UPPAAL, finding (and correcting) some subtle errors that were
difficult to spot by the manual analysis. We hope that our work can draw the
attention of the researchers working on formal modeling to the problem of the
Bitcoin contract verification, and spark off more research on this topic.

1 Introduction

Bitcoin is a digital currency system introduced in 2008 by an anonymous developer
using a pseudonym “Satoshi Nakamoto” [23]. Despite of its mysterious origins, Bitcoin
became the first cryptographic currency that got widely adopted — as of January 2014
the Bitcoin capitalization is over €7 bln. The enormous success of Bitcoin was also
widely covered by the media (see e.g. [16,5,25,21,22]) and even attracted the attention
of several governing bodies and legislatures, including the US Senate [21]. Bitcoin owes
its popularity mostly to the fact that it has no central authority, the transaction fees are

* This work was supported by the WELCOME/2010-4/2 grant founded within the framework of
the EU Innovative Economy (National Cohesion Strategy) Operational Programme.
** On leave from the Sapienza University of Rome.



very low, and the amount of coins in the circulation is restricted, which in particular
means that nobody can “print” money to generate inflation. The financial transactions
between the participants are published on a public ledger maintained jointly by the users
of the system.

One of the very interesting, but slightly less known, features of the Bitcoin is the
fact that it allows for more complicated “transactions” than the simple money transfers
between the participants: very informally, in Bitcoin it is possible to “deposit” some
amount of money in such a way that it can be claimed only under certain conditions.
These conditions are written in the form of the Bitcoin scripts and in particular may
involve some timing constrains. This property allows to create the so-called contracts
[27], where a number of mutually-distrusting parties engage in a Bitcoin-based protocol
to jointly perform some task. The security of the protocol is guaranteed purely by the
properties of the Bitcoin, and no additional trust assumptions are needed. This Bitcoin
feature can have several applications in the digital economy, like creating the assurance
contracts, the escrow and dispute mediation, the rapid micropayments [27], the multi-
party lotteries [8]. It can also be used to add some extra properties to Bitcoin, like the
certification of the users [17], or creating the secure “mixers” whose goal is to enhance
the anonymity of the transactions [19]. Their potential has even been noticed by the
media (see, e.g., a recent enthusiastic article on the CNN Money [22]).

In our opinion, one of the obstacles that may prevent this feature from being widely
used by the Bitcoin community is the fact that the contracts are tricky to write and
understand. This may actually be the reason why, despite of so many potential applica-
tions, they have not been widely used in real life. As experienced by ourselves [6,7,8],
developing such contracts is hard for the following reasons. Firstly, it’s easy to make
subtle mistakes in the scripts. Secondly, the protocols that involve several parties and
the timing constraints are naturally hard to analyze by hand. Since mistakes in the con-
tracts can be exploited by the malicious parties for their own financial gain, it is natural
that users are currently reluctant to use this feature of Bitcoin.

In this paper we propose an approach that can help designing secure Bitcoin con-
tracts. Our idea is to use the methods originally developed for the computer-aided anal-
ysis for hardware and software systems, in particular the timed automata [1,2]. They
seem to be the right tool for this purpose due to the fact that the protocols used in the
Bitcoin contracts typically have a finite number of states and depend on the notion of
time. This time-dependence is actually two-fold, as (1) it takes some time for the Bit-
coin transactions to be confirmed (1 hour, say), and (2) the Bitcoin transactions can
come with a “time lock” which specifies the time when a transaction becomes valid.

Our contribution We propose a framework for modeling the Bitcoin contracts using
timed automata in the UPPAAL model checker [9,18] (this is described in Sec. 2). Our
method is general and can be used to model a wide class of contracts. As a proof-
of-concept, in Sec. 3 we use this framework to model two Bitcoin contracts from our
previous work [8,6]. This is done manually, but our method is quite generic and can
potentially be automatized. In particular, most of the code in our implementation does
not depend on the protocol being verified, but describes the properties of Bitcoin system.
To model a new contract it is enough to specify the transactions used in the contract,
the knowledge of the parties at the beginning of the protocol and the protocol followed



by the parties. We then automatically verify the security of our contracts in UPPAAL (in
Sec. 3.1). The UPPAAL code for the contracts modeled and verified by us is available at
the web page http://crypto.edu.pl/uppaal-btc.zip.

Future work We hope that our work can draw the attention of the researchers work-
ing on formal modeling to the problem of the Bitcoin contracts verification, and spark
off more research on this topic. What seems especially interesting is to try to fully au-
tomatize this process. One attractive option is to think of the following workflow: (1) a
designer of a Bitcoin contract describes it in UPPAAL (or, possibly, in some extension
of it), (2) he verifies the security of this idealized description using UPPAAL, and (3) if
the idealized description verifies correctly, then he uses the system to “compile” it into a
real Bitcoin implementation that can be deployed in the wild. Another option would be
to construct a special tool for designing the Bitcoin contracts, that would produce two
outputs: (a) a code in the UPPAAL language (for verification) and (b) a real-life Bitcoin
implementation.

Of course, in both cases one would need to formally show the soundness of this
process (in particular: that the “compiled” code maintains the properties of the idealized
description). Hence, this project would probably require both non-trivial theoretical and
engineering work.

Preliminaries Timed automata were introduced by Alur and Dill [1,2]. There exist
other model checkers based on this theory, like Kronos [31] and Times [4]. It would be
interesting to try to implement our ideas also in them. Other formal models that involve
the notion of the real time include the timed Petri nets [10], the timed CSP [26], the
timed process algebras [30,24], and the timed propositional temporal logic [3]. One can
try to model the Bitcoin contracts also using these formalisms. For the lack of space, a
short introduction to UPPAAL was moved to Appendix D. The reader may also consult
[9,18] for more information on this system.

We assume reader’s familiarity with the public-key cryptography, in particular with
the signature schemes (an introduction to this concept can be found e.g. in [20,12]). We
will frequently denote the key pairs using the capital letters (e.g. A), and refer to the
private key and the public key of A by: A.sk and A.pk, respectively. We will also use
the following convention: if A = (A.sk, A.pk) then sig 4(m) denotes a signature on a
message m computed with A.sk and ver 4(m, o) denotes the result (true or false) of
the verification of a signature o on message m with respect to the public key A.pk. We
will use the “B” symbol to denote the Bitcoin currency unit.

1.1 A short description of Bitcoin

Since we want the exposition to be self-contained, we start with a short description
of Bitcoin, focusing only on the most relevant parts. For the lack of space we do not
describe how the coins are created, how the transaction fees are charged, and how the
Bitcoin “ledger” is maintained. A more detailed description of Bitcoin is available on
the Bitcoin wiki site [11]. The reader may also consult the original Nakamoto’s paper
[23].



Introduction In general one of the main challenges when designing a digital currency
is the potential double spending: if coins are just strings of bits then the owner of a
coin can spend it multiple times. Clearly this risk could be avoided if the users have
access to a trusted ledger with the list of all the transactions. In this case a transaction
would be considered valid only if it is posted on the board. For example suppose the
transactions are of a form: “user X transfers to user Y the money that he got in some
previous transaction 7T),”, signed by the user X. In this case each user can verify if money
from transaction 7}, has not been already spent by X. The main difficulty in designing
the fully-distributed peer-to-peer currency systems is to devise a system where the users
jointly maintain the ledger in such a way that it cannot be manipulated by an adversary
and it is publicly-accessible.

In Bitcoin this problem is solved by a cryptographic tool called proofs-of-work [15].
We will not go into the details of how this is done, since it is not relevant to this work.
Let us only say that the system works securely as long as no adversary controls more
computing power than the combined computing power of all the other participants of the
protocol!. The Bitcoin participants that contribute their computing power to the system
are called the miners. Bitcoin contains a system of incentives to become a miner. For
the lack of space we do not describe it here.

Technically, the ledger is implemented as a chain of blocks, hence it is also called a
“block chain”. When a transaction is posted on the block chain, it can take some time
before it appears on it, and even some more time before the user can be sure that this
transaction will not be cancelled. However, it is safe to assume that there exists an upper
bound on this waiting time (1-2 hours, say). We will denote this time by MAX_LATENCY.

As already highlighted in the introduction, the format of the Bitcoin transactions
is in fact quite complex. Since it is of a special interest for us, we describe it now
in more detail. The Bitcoin currency system consists of addresses and transactions
between them. An address is simply a public key pk?. Normally every such key has a
corresponding private key sk known only to one user, which is an owner of this address.
The private key is used for signing the transactions, and the public key is used for
verifying the signatures. Each user of the system needs to know at least one private key
of some address, but this is simple to achieve, since the pairs (sk, pk) can be easily
generated offline.

Simplified version We first describe a simplified version of the system and then show
how to extend it to obtain the description of the real Bitcoin. Let A = (A.sk, A.pk) be a
key pair. In our simplified view a transaction describing the fact that an amount v (called
the value of a transaction) is transferred from an address A.pk to an address B.pk has
the following form T, = (y, B.pk, v,sig 4 (y, B.pk,v)), where y is an index of a previ-
ous transaction T},. We say that B.pk is the recipient of T, and that the transaction 7,

"It is currently estimated [25] that the combined computing power of the Bitcoin participants is
around 64 exaFLOPS, which exceeds by factor over 200 the total computing power of world’s
top 500 supercomputers, hence the cost of purchasing the equipment that would be needed to
break this system is huge.

2 Technically an address is a cryptographic hash of pk. In our informal description we decided
to assume that it is simply pk. This is done only to keep the exposition as simple as possible,
as it improves the readability of the transaction scripts later in the paper.



is an input of the transaction T, or that it is redeemed by this transaction (or redeemed
by the address B.pk). More precisely, the meaning of 7T}, is that the amount v of money
transferred to A.pk in transaction 7T}, is transferred further to B.pk. The transaction is
valid only if (1) A.pk was a recipient of the transaction T, (2) the value of T}, was at
least v (the difference between the value of T}, and v is called the transaction fee), (3)
the transaction 7}, has not been redeemed earlier, and (4) the signature of A is correct.
Clearly all of these conditions can be verified publicly.

The first important generalization of this simplified system is that a transaction
can have several “inputs” meaning that it can accumulate money from several past
transactions 1y, ,..., T,,. Let Aq,..., A, be the respective key pairs of the recipi-
ents of those transactions. Then a multiple-input transaction has the following form:
Ty = (Y1,---,Ye, B.pk,v,sig4, (y1, B.pk, v),...,siga,(ye, B.pk,v)), and the result
of it is that B.pk gets the amount v, provided it is at most equal to the sum of the values
of transactions Ty, , ..., T,,. This happens only if none of these transactions has been
redeemed before, and all the signatures are valid.

Moreover, each transaction can have a time lock t that tells at what time in the future
the transaction becomes valid. The lock-time ¢ can refer either to a measure called the
“block index” or to the real physical time. In this paper we only consider the latter type
of time-locks. In this case we have T%, = (y1,...,yr, B.pk,v,t,sig4, (y1, B.pk,v,t),
...,siga,(ye, B.pk,v,t)). Such a transaction becomes valid only if time # is reached
and if none of the transactions T}, , . . ., T}, has been redeemed by that time (otherwise
it is discarded). Each transaction can also have several outputs, which is a way to divide
money between several users and to divide transactions with large value into smaller
portions. We ignore this fact in our description since we will not use it in our protocols.

More detailed version The real Bitcoin system is significantly more sophisticated
than what is described above. First of all, there are some syntactic differences, the most
important being that each transaction 7, is identified not by its index, but by its hash
H(T,). Hence, from now on we will assume that = H(T,).

The main difference is, however, that in the real Bitcoin the users have much more
flexibility in defining the condition on how the transaction 7, can be redeemed. Con-
sider for a moment the simplest transactions where there is just one input and no time-
locks. Recall that in the simplified system described above, in order to redeem a trans-
action, its recipient A.pk had to produce another transaction 7, signed with his private
key A.sk. In the real Bitcoin this is generalized as follows: each transaction T}, comes
with a description of a function (output-script) m, whose output is Boolean. The trans-
action T}, redeeming the transaction T, is valid if 7, evaluates to true on input 7T}.
Of course, one example of 7, is a function that treats 7', as a pair (a message m;, a
signature o), and checks if o, is a valid signature on m, with respect to the public
key A.pk. However, much more general functions 7, are possible. Going further into
details, a transaction looks as follows: T, = (y, 7, v, 0,), where [Ty] = (y, 7, v) is
called the body® of T}, and o, is a “witness” that is used to make the script 7, evaluate to

3 In the original Bitcoin documentation this is called “simplified T5”. Following our earlier
work [8,6,7] we chosen to rename it to “body” since we find the original terminology slightly
misleading.



true on T}, (in the simplest case o, is a signature on [T]). The scripts are written in the
Bitcoin scripting language [28], which is stack-based and similar to the Forth program-
ming language. It is on purpose not Turing-complete (there are no loops in it), since
the scripts need to evaluate in (short) finite time. It provides basic arithmetical opera-
tions on numbers, operations on stack, if-then-else statements and some cryptographic
functions like calculating hash function or verifying a signature.

The generalization to the Ty, T T, 7)) Ty,
multiple-input transactions with p—

) - : in-script: o1 [in-script: o

_ . ] w2 B
time loc.ks is straightforward: a +lout-script(arg): 7o (arg) .
transaction has a form: T, = val: v B
(y17'"7y€7ﬂ-375v7t70'17"'70'5)7 tlock: ¢
where the body [T] is equal VB
to (y1,...,Ye, Tz, v,t), and it is

valid if (1) time ¢ is reached, Fig.1. A graphical representation of a transaction T}, =
(2) every mi([Ty], 0;) evaluates (y1,y2, Ta,v,t,01,02).

to true, where each 7; is the output script of the transaction 7}, and (3) none of these
transactions has been redeemed before. We will present the transactions as boxes. The
redeeming of transactions will be indicated with arrows (the arrows will be labelled
with the transaction values). An example of a graphical representation of a transaction
is depicted in Fig. 1.

The transactions where the input script is a signature, and the output script is a
verification algorithm are the most common type of transactions. We will call them
standard transactions. Currently some miners accept only such transactions, due to the
fact that writing more advanced scripts is hard and error-prone, and anyway the vast
majority of users does not use such advanced features of Bitcoin. Fortunately, there
exist other miners that do accept the non-standard (also called strange) transactions,
one example being a big mining pool* called Eligius (that mines a new block on average
once per hour). We also believe that in the future accepting the general transaction will
become standard, maybe at a cost of a slightly increased fee. Actually, popularizing the
Bitcoin contracts, by making them safer to use, is one of the goals of this work.

2 Modeling the Bitcoin

To reason formally about the security of the contracts we need to describe the attack
model that corresponds to the Bitcoin system. The model used in [8,6] was inspired
by the approach used in the complexity-based cryptography. This way of modeling
protocols, although very powerful, is not well-suited for the automatic verification of
cryptographic protocols. In this section we present the approach used in this paper,
based on timed-automata, using the syntax of the UPPAAL model checker.

In our model each party executing the protocol is modeled as a timed automaton
with a structure assigned to it that describes the party’s knowledge. States in the au-
tomaton describe which part of the protocol the party is performing. The transitions in
the automaton contain conditions, which have to be satisfied for a transition to be taken
and actions, which are performed whenever a transition is taken.

4 Mining pools are coalitions of miners that perform their work jointly and share the profits.



The communication between the parties may be modeled in a number of various
ways. It is possible to use synchronization on channels offered by UPPAAL and shared
variables representing data being sent between the parties. In all protocols verified by
us, the only messages exchanged by the parties were signatures. We decided to model
the communication indirectly using shared variables — each party keeps the set of
known signatures, and whenever a sender wants to send a signature, he simply adds it
to the recipient’s set.

The central decision that needs to be made is how to model the knowledge of the
honest parties and the adversary. Our representation of knowledge is symbolic and
based on Dolev-Yao model [13], and hence we assume that the cryptographic prim-
itives are perfectly secure. In our case it means, for example, that it is not possible
to forge a signature without the knowledge of the corresponding private key, and this
knowledge can be modeled in a “binary” way: either an adversary knows the key, or
not. The hash functions will be modeled as random oracles, which in particular implies
that they are collision-resilient and hard to invert. We also assume that there exists a se-
cure and authenticated channel between the parties, which can be easily achieved using
the public key cryptography. Moreover, we assume that there is a fixed set of variables
denoting the private/public pairs of Bitcoin keys. A Bitcoin protocol can also involve
secret strings known only to some parties (like e.g. a string s in the commitment pro-
tocol in Appendix B), we assume that there is a fixed set of variables denoting such
strings. For each private key and each secret string there is a subset of parties, which
know them, but all public keys and hashes of all secret strings are known to all the
parties (if this is not the case then they can be broadcast by parties knowing them).

A block chain is modelled using a shared variable (denoted bc) keeping the status
of all transactions and a special automaton, which is responsible for maintaining the
state of bc (e.g. confirming transactions).

In the following sections we describe our model in more details.

2.1 The keys, the secret strings, and the signatures

We assume that the number of the key pairs in the protocol
is known in advance and constant. Therefore, key pairs | typedef struct {

. . . Key key;
will be simply referred by consecutive natural numbers TxTd tx mum:
(type Key is defined as an 1.nteger from a given range). Nonce input_nonce;
Secrgt strings are modelled in the same way. As already } Signature;
mentioned we assume that all public keys and hashes of
all secrets are known to all parties.

Fig. 2. The signatures type.
Moreover, we need to model the signatures over trans-

actions (one reason is that they are exchanged by the parties in some protocols). They
are modelled by structures containing a transaction being signed, the key used to com-
pute a signature and an input_nonce, which is related to the issue of transaction mal-
leability and described in Appendix A.



2.2 The transactions

We assume that all transactions that can be created by the honest parties during the
execution of the protocol comes from a set, which is known in advance and of size
T. Additionally, the adversary can create his own transactions. As explained later (see
Sec. 2.4 below) we can upper-bound the number of adversarial transactions by 7'. Hence
the total upper bound on the number of transactions is 27'.

For simplicity we refer the transactions us-
ing fixed identifiers instead of their hashes. We

typedef struct {

can do this because we know all the trans- TxId r-lum;
. . . TxId input;
actions, which can be broadcast in advance .
int value;

(compare Sec.2.4 and Appendix A for further
discussion). A single-input and single-output
transaction is a variable of a record type Tx de-
fined in Fig. 3. The num field is the identifier

int timelock;
bool timelock_passed;
Status status;
Nonce nonce;

of the transaction, and the input field is the
identifier of its input transaction. The value
field denotes the value of the transaction (in B).

bool reveals_secret;
Secret secret_revealed;
OutputScript out_script;

The timelock field indicates the time lock of }Tx;

the transaction, and the timelock_passedisa
boolean field indicating whether the timelock
has passed.

The status field is of a type Status that contains following values: UNSENT (indicat-
ing that transaction has not yet been sent to the block chain), SENT (the transaction has
been sent to the block chain and is waiting to be confirmed), CONFIRMED (the transac-
tion is confirmed on the block chain, but not spent), SPENT (the transaction is confirmed
and spent), and CANCELLED (the transaction was sent to the block chain, but while it was
waiting for being included in the block chain its input was redeemed by another trans-
action).

The out_script denotes the output script. In case the transaction is standard it simply
contains a public key of the recipient of the transaction. Otherwise, it refers to a hard-
coded function which implements the output script of this transaction (see Sec. 2.5 for
more details).

The inputs scripts are modelled only indirectly (the fields reveals_secret and
secret_revealed). More precisely, we only keep information about which secrets
are included in the input script (see e.g. the CS protocol in Fig. 9, transaction Open).

The above structure can be easily extended to handle multiple inputs and outputs.

Fig. 3. The transactions type

2.3 The parties typedef struct {
bool know_key[KEYS_NUM];
bool know_secret[SECRETS_NUM|;
int[0,KNOWN_
SIGNATURES_SIZE] known_signatures_size;
Signature known_signatures

[KNOWN_SIGNATURES_SIZE];

The parties are modelled by
timed automata describing proto-
cols they follow. States in the au-
tomata describe which part of the
protocol the party is performing.

The transitions in the automata } Party;

Fig. 4. The parties type.



contain conditions, which have to

be satisfied for a transition to be

taken and actions, which are performed whenever a transition is taken. An example of
such automaton appears in Fig. 7. and is described in more details in Appendix D.2.
The adversary is modelled by a special automaton described in Sec. 2.4.

Moreover, we need to model the knowledge of the parties (both the honest users and
the adversary) in order to be able to decide whether they can perform a specific action in
a particular situation (e.g. compute the input script for a given transaction). Therefore
for each party, we define a structure describing its knowledge. More technically: this
knowledge is modelled by a record type Party defined in Fig. 4.

The boolean tables know_key[KEYS_NUM| and know_secret[SECRETS_NUM| de-
scribe the sets of keys and secrets (respectively) known to the party: know_key[i] =
true if and only if the party knows the i-th secret key, and know_secret[i] = true if
and only if the party knows the i-th secret string. The integer known_signatures_size
describes the number of the additional signatures known to the party (i.e. received from
other parties during the protocol), and the array known_signatures contains these
signatures.

2.4 The adversary

The real-life Bitcoin adversary can create an arbitrary number of transactions with arbi-
trary output scripts, so it is clear that we need to somehow limit his possibilities, so that
the space of possible states is finite and of a reasonable size. We show that without loss
of generality we can consider only scenarios in which an adversary sends to the block
chain transactions only from a finite set depending only on the protocol.

The knowledge of an adversary is modeled in the similar way to honest parties, but
we do not specify the protocol that he follows. Instead, we use a generic automaton,
which (almost) does not depend on the protocol being verified and allows to send to the
block chain any transaction at any time assuming some conditions are met, e.g. that the
transaction is valid and that the adversary is able to create its input script.

We observe that the transactions made by the adversary can influence the execution
of the protocol only in two ways: either (1) the transaction is identical to the transaction
from the protocol being verified or (2) the transaction redeems one of the transactions
from the protocol. The reason for above is that honest parties only look for transactions
of the specific form (as in the protocol being executed), so the only thing an adversary
can do to influence this process is to create a transaction, which looks like one of these
transactions or redeem one of these. Notice that we do not have to consider transactions
with multiple inputs redeeming more than one of the protocol’s transactions, because
there is always an interleaving in which the adversary achieves the same result using
a number of transactions with single inputs. The output scripts in the transactions of
type (2) do not matter, so we may assume that an adversary always sends them to one
particular key known only to him.

Therefore, without loss of generality we consider only the transactions, which ap-
pear in the protocol being verified or transactions redeeming one of these transactions.
Hence, the total number of transactions, which are modeled in our system is twice as
big as the number of transactions in the original protocol.



The adversary is then a party, that can send an arbitrary transaction from this set if
only he is able to do so (e.g. he is able to evaluate the input script and the transaction’s
input is confirmed, but not spent). If the only actions of the honest parties is to post
transactions on the block chain, then one can assume that this is also the only thing that
the adversary does. In this case his automaton, denoted Adversary is very simple: it
contains one state and one loop, that simply tries to send an arbitrary transaction from
the mentioned set. This is depicted in Fig. 5 on page 10 (for a moment ignore the left
loop).

<cond> me.know_key[C_KEY] and
<cond> parties[BOB].known_signatures_size == 0
<action> broadcast_signature(create_signature_tx(C_KEY, bc[FUSE]))| <action> try_to_send(me, bcfi])

Fig. 5. The automaton for the Adversary

In some protocols the parties besides of posting the transactions on the block chain,
also exchange messages with each other. This can be exploited by the adversary, and
hence we need to take care of this in our model. This is done by adding more actions
in the Adversary automaton. In our framework, this is done manually. For example in
the protocol that we analyze in Sec. 3 Alice sends a signature on the Fuse transaction
(cf. Step 3, Fig. 9, Appendix B). This is reflected by the left loop in the Adversary
automaton in Fig. 5, which should be read as follows: if the adversary is able to create
a signature on the F'use transaction and Bob did not receive it yet, then he can send it
to Bob.

Of course, our protocols need to be analyzed always “from the point of view of an
honest Alice” (assuming Bob is controlled by the adversary) and “from the point of
view of an honest Bob” (assuming Alice is controlled by the adversary). Therefore, for
each party we choose whether to use the automaton describing the protocol executed
by the parties or the already mentioned special automaton for an adversary.

2.5 The block chain and the notion of time

In Bitcoin whenever a party wants to post a transaction on the block chain she broad-
casts it over a peer-to-peer network. In our model this is captured as follows. We model
the block chain as a shared structure denoted bc containing the information about
the status of all the transactions and a timed automaton denoted BlockChainAgent
(see Fig. 6), which is responsible for maintaining the state of bc. One of the duties
of BlockChainAgent is ensuring that the transactions which were broadcast are con-
firmed within appropriate time frames.

In order to post a transaction t on the block chain, a party p first runs the try_to_
send( Party p, Tx t) function, which broadcasts the transaction if it is legal. In par-
ticular, the can_send function checks if (a) the transaction has not been already sent,
(b) all its inputs are confirmed and unredeemed and (c) a given party p can create the
corresponding input script. The only non-trivial part is (c) in case of non-standard trans-
actions, as this check is protocol-dependent. Therefore, the exact condition on when the
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party p can create the appropriate input script, has to be extracted manually from the
description of the protocol. If all these tests succeed, then the function communicates
the fact of broadcasting the transaction using the shared structure bc.

<cond> time == bcf[i].timelock and (not bcfi].timelock_passed)
<action> bcfi].timelock_passed = true

<state> forall(i : Txld) (is_waiting(bcli]) imply bc_clock[i] < MAX_LATENCY)
<state> and
<state> forall(i : Txld) ((not bc[i].timelock_passed) imply time <= bc[i].timelock)

<action> init_bc()
©

<cond> is_waiting(bcf[i])
<action> try_to_confirm(bcf[i], n)

Fig. 6. The BlockChainAgent automaton

Once a transaction t has been broadcast, the BlockChainAgent automaton at-
tempts to include it in the block chain (lower loop in Fig. 6). The BlockChainAgent
automaton also enforces that every transaction gets included into the block chain in
less than MAX_LATENCY time, which is a constant that is defined in the system. This is
done by the invariant on the right state in Fig. 6 that guarantees that every transaction is
waiting for confirmation less than MAX_LATENCY.

Eavesdropping on the network The other issue with the block chain is that the peers in
the network can see transactions before they are confirmed. Therefore if a transaction
t contains (e.g. in its input script) a secret string z then an adversary can learn the
value of x before ¢ is confirmed and for example use it to create a different transaction
redeeming the input of ¢ (a similar scenario is possible for a two-party lottery protocol
from [8], which is only secure in a “private channel model”). To take such possibilities
into account, broadcasting a transaction results in disclosure of the secret string =, what
in our model corresponds to setting appropriate knowledge flags for all parties.

Malleability of transactions BlockChainAgent automaton is also responsible for
choosing the nonces, which imitate the attacks involving the malleability of transac-
tions. This is described in details in Appendix A.

3 Modeling the Bitcoin-based timed commitment scheme from [8]

In this section we describe the “contract-dependent” part of our model. Our method of
modeling and verifying Bitcoin contracts as timed automata is generic and can be ap-
plied to a large class of Bitcoin contracts (and even possibly automatized as described
in the paragraph “Future work” on page 3). However, it is easier to describe it using a
concrete example. As a proof-of-concept we constructed the automata corresponding to
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a very simple contract called the “Bitcoin-based timed commitment scheme” from [8].
For the lack of space we only sketch informally what the protocol is supposed to do.
In the protocol one of the parties (called Alice) commits herself to a secret string s. A
key difference between this protocol and classic commitment schemes is that Alice is
forced to open the commitment (i.e. reveal the string s) until some agreed moment of
time (denoted PROT_TIMELOCK) or pay 1B to Bob. The full description can be found
in Appendix B. Although the verification of correctness is quite straightforward in this
case, we would like to stress that our method is applicable to more complicated con-
tracts, like the NewSCS protocol from [8] (see Section 3.2), for which the correctness
is much less obvious.

3.1 The results of the verification

Before running the verification procedure in UPPAAL it is necessary to choose, which
parties are honest and which are malicious.

In UPPAAL it is done by selecting an automaton following the protocol or the ma-
licious automaton for an adversary described in Sec. 2.4 for each of the parties. We
started with verification of the security from the point of view of honest Bob. To this
end we used an honest automaton for Bob (see Fig. 7) and an adversary automaton
described before for Alice (see Fig. 5).

<cond> bc[COMMIT].status == CONFIRMED
<state> time <= MAX_LATENCY <sync> urg_chan? <state> time <= MAX_LATENCY

<cond> can_create_input_script(me, bc[FUSE])

<cond> time == MAX_LATENCY <sync> urg_chan?

<cond> time == MAX_LATENCY <state> accepted

<state> failure

<cond> can_send(me, bc[FUSE])
<action> try_to_send(me, bc[FUSE])
<sync> urg_chan?

Fig. 7. The automaton for an honest Bob in timed-commitment scheme

The property that we checked is the following:

A[] (time >= PROT_TIMELOCK+MAX_LATENCY) imply
(hold_bitcoins(parties[BOB]) == 1 or parties[BOB].know_secret[0]
or BobTA.failure),

which, informally means: “after time PROT_TIMELOCK + MAX_LATENCY one of the fol-
lowing cases takes place: either (a) Bob earned 1B, or (b) Bob knows the committed
secret, or (c) Bob rejected the commitment in the commitment phase”. This is exactly
the security property claimed in [8], and hence the verification confirmed our belief that
the protocol is secure. We verified the security from the point of view of Alice in the
similar way.
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<cond> bc[COMMIT].status == CONFIRMED
<actions try_to_send(me, bo[COMMIT]) <sync> urg_chan? <action> broadcast_signature(create_signature_tx(C_KEY, bc[FUSE]))
()

<sync> urg_chan?
@ ()

<cond> timer_passed|[0]
<sync> urg_chan?

<cond> timer_passed|[0]

<cond> timer_passed[0] <sync> urg_chan?

<sync> urg_chan?

<action> try_to_send(me, bc[OPEN])

Fig. 8. The automaton for an honest Alice in timed-commitment scheme

The property we verified means that Alice does not lose any bitcoins in the execution
of the protocol (even if Bob is malicious).
As a test we also run the verification procedure on the following two statements:

A[] (time >= PROT_TIMELOCK) imply (parties[BOB].know_secret[0])
A[] (time >= PROT_TIMELOCK) imply (hold_bitcoins(parties[ALICE]) == 1).

The first one states that after time PROT_TIMELOCK Bob knows the secret (which can be
not true, if Alice refused to send it). The second one states that after time PROT_TIME-
LOCK Alice holds 1 B (which occurs only if Alice is honest, but not in general). The
UPPAAL model checker confirmed that these properties are violated if one of the par-
ties is malicious, but hold if both parties follow the protocol (i.e. when honest automata
are used for both parties). Moreover, UPPAAL provides diagnostic traces, which are
interleavings of events leading to the violation of the property being tested. They al-
low to immediately figure out, why the given property is violated and turned out to be
extremely helpful in debugging the automata.

3.2 The NewSCS protocol from [8]

We also modeled and verified the Simultaneous Commitment Scheme (NewSCS) pro-
tocol from [8], which is relatively complicated as it contains 18 transactions. To under-
stand it fully the reader should probably look in the [8], but as reference we included the
description of these contracts in Appendix C. Informally speaking, the NewSCS scheme
is a protocol that allows two parties, Alice and Bob, to simultaneously commit to their
secrets (s4 and sp, respectively) in such a way that each commitment is valid only if
the other commitment was done correctly. Using UPPAAL we automatically verified the
following three conditions, which are exactly the security statements claimed in [6]:

— After the execution of the protocol by two honest parties, they both know both
secrets and hold the same amount of coins as at the beginning of the protocol,
which in UPPAAL syntax was formalized as:

A[] (time >= PROT_TIMELOCK+MAX_LATENCY) imply
(parties[ALICE] .know_secret[SB_SEC] and parties[BOB].know_secret[SA_SEC]

and hold_bitcoins(parties[ALICE]) ==
and hold_bitcoins(parties[BOB]) == 2)

(here SA_SEC and SB_SEC denote the secrets of Alice and Bob, respectively, and 2

is the value of the deposit).
— An honest Bob cannot lose any coins as a result of the protocol, no matter how the
dishonest Alice behaves:
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2) A[] (time >= PROT_TIMELOCK) imply hold_bitcoins(parties[BOB]) >= 2

— If an honest Bob did not learn Alice’s secret then he gained Alice’s deposit as a
result of the execution.

3) A[] ((time >= PROT_TIMELOCK+2*MAX_LATENCY) imply
((parties[ALICE].know_secret[SB_SEC]
and !parties[BOB].know_secret[SA_SEC])
imply hold_bitcoins(parties[BOB]) >= 3))

The analogous guarantees hold for Alice, when Bob is malicious. The verification of
each of the mentioned properties took less than a minute on a dual-core 2.4 GHz note-
book. We confirmed that the protocol NewSCS is correct, but there are some imple-
mentation details, which are easy to miss and our first implementation (as an automa-
ton) turned out to contain a bug, which was immediately found due to the verification
process and diagnostic traces provided by UPPAAL. We describe this in more detail in
Appendix C.1. Moreover UPPAAL turned out to be very helpful in determining the ex-
act time threshold for the time locks, for example we confirmed that the time at which
the parties should abort the protocol claimed in [7] (¢ — 3MAX_LATENCY) is strict.

These experiments confirmed that the computer aided verification and in particular
UPPAAL provides a very good tool for verifying Bitcoin contracts, especially since it
is rather difficult to assess the correctness of Bitcoin contracts by hand, due to the dis-
tributed nature of the block chain and a huge number of possible interleavings. There-
fore, we hope that our paper would encourage designers of complex Bitcoin contracts
to make use of computer aided verification for checking the correctness of their con-
structions.
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Malleability of transactions

Let us now describe the reason why we introduced the variables of a type Nonce in the
transaction and the signatures. The reason is that they are used to model the fact that
the transactions in Bitcoin can be slightly modified without changing its functionality.

M
of

alleability is a very general concept introduced in cryptography in a seminal paper
Dolev et al. [14]. It is a (usually) undesired property of the cryptographic schemes

that very informally means that an adversary, after seeing an output of a scheme, can
produce another output that is in some non-trivial way “related” to the original output.’
As it turns out, malleability of transaction is a feature of Bitcoin, which poses a serious

5

For example, the one time pad encryption scheme (see, e.g., [20]) defined as: Enc(K, M) :=

K @& M and Dec(K, C) := K @ C (where “®” denotes the coordinate-wise xor) is malleable
since by negating every bit in C one obtains a ciphertext C’ of a message M’ that is equal
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risk for almost all contracts using time locks. We now briefly describe this problem.
More detailed descriptions can be found in [7,29].

Bitcoin transactions are malleable in the following way: given a valid transaction ¢,
an adversary is able to create a functionally equivalent and valid transaction ¢’ which
has a different hash, even if he does not know the secret key used to produce ¢. Both
transactions have the same input transactions, the same output script and differ only
in the hash. Therefore, the following scenario is possible. A transaction ¢t is sent to the
block chain, which technically means that it is broadcast over the network. An adversary
can therefore see t and create and broadcast ¢'. If he is lucky then eventually ¢’ becomes
included in the block chain, instead of . It means that we can not assume the knowledge
of the hash of the transaction before it is confirmed. It poses a serious problem for most
of the protocols using time locks, because such protocols often need to sign a transaction
s which redeems ¢, before t is broadcast. Such transaction s contains a hash of ¢ and
in case when ¢’ is included in the block chain instead of ¢, the transaction s becomes
invalid.

In our model the transactions are addressed by fixed identification numbers instead
of hashes, so a special technique should be applied to take the malleability of transac-
tions into account. To this end we extend the transaction structure with a “malleability
nonce”, which contains an integer from a fixed and small set Nonce (in most cases
a set int[0, 1] of size 2 is enough). Each transaction, which has not been sent to the
block chain has the nonce field equal to 0, which indicates that the transaction was not
modified. Whenever a transaction is being confirmed, its malleability nonce is set to
a random value. Moreover, the structure describing the signature on the transaction ¢
which redeems s (see Sec. 2.1) contains the assumed malleability nonce of s (set when
the transaction ¢ was being signed) and is considered valid only if this nonce matches
the real nonce of the transaction s. Therefore, if the transaction s was confirmed after
the signature structure was created, the signature may or may not become invalidated,
what catches the issue of malleability in real Bitcoin network.

The above solution with “malleability nonces” makes the assumption that whenever
s is modified, then only the transaction ¢ becomes invalid. In reality it would also influ-
ence another transaction v which redeems ¢ and so on. However, in all Bitcoin protocols
we are aware of, this is not an issue as the signatures are computed at most “one step
forward”. It is also not difficult to extend the model to handle “malleability nonce of
the second (or arbitrary) level” if necessary.

to a “negated” M. Note that this works even if one does not know K. Since the one-time
pad is perfectly secure, thus the non-malleability is not implied by the standard security of an
encryption scheme.
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B Bitcoin-based timed commitment scheme

Commut(in: U)
in-script: sig 4 ([Commit])
dB |out-script(body, o1, 02, T):
(H(z) = h Avera(body,o1))V
(ver a(body, o1) A verg(body, o2))

val: d B
dB T T T AT .7.7777477777
Open(in: Commit) :ﬁiﬁ sErfpgu;S e(in: Commit) __ _ ,:
dB |in-script: si Open)), L, s l ) .
) . out-scgpt(bgo?lgg[ Uf‘ viz A(body, o) »LsgA(Lngg])i sig ([Fusel), L _ _ JdE’»
e ’ jout-script(body, 0): ver 4 (body, o) |
val: dB
vakdB_
'tlock:¢ !

Pre-condition:
. The key pair of Alice is .A and the key pair of Bob is B.

2. Alice already sent to Bob the value h = H (s), where s is the value she wants to

commit to.

3. The block chain contains a confirmed and unredeemed transaction U, which can

be redeemed with key A of value d BB.

The CS.Commit(Alice, Bob, d,t, s) phase
. Alice sends to the block chain the transactions Commit.

2. If within time MAX_LATENCY the Commit transaction does not appear on the block

chain, or if it looks incorrect (e.g. it differs in the h value) then Bob aborts.

3. Alice creates the body of the transaction Fuse, signs it and sends the signature to

Bob.

4. Bob accepts the commitment if he receives the appropriate signature from Alice.

The CS.Open(Alice, Bob, d, t, s) phase

5. Alice sends to the block chain the transactions Open, what reveals the secret string

S.

6. If within time ¢ the transaction Open does not appear on the block chain then Bob

sends to the block chain the transaction Fuse and earns d B.

Fig. 9. The CS(Alice, Bob, d, t, s) protocol. The scripts’ arguments, which are omitted are de-

noted by L.

A commitment scheme is one of the basic cryptographic primitives (see, e.g., [12]). It is
executed between two parties: Alice and Bob. In the first phase (called, the commitment
phase) Alice commits herself to some secret value s. That means that she sends to Bob
a value ¢ = f(s) for some agreed randomized function f. In the second phase (called

the opening phase) Alice sends to Bob s plus some extra information.
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From the commitment scheme we require two properties — hiding and binding.
These properties will be satisfied if we use f as f(s) = H(s||r) where H is a crypto-
graphic hash function and r is a random, fix length padding (if we model H as a random
oracle). In the Bitcoin-based timed commitment scheme this construction is used as a
building block (with often used in Bitcoin function SHA-256 as a hash function). In its
description we assume, that the padding was already added and simply use H instead
of f.

One of the problems with the classical commitment scheme is that there is no way
to force Alice to open the commitment and hence reveal the secret. To remedy this,
in [8] we proposed to use the Bitcoin system to punish financially Alice in case she
does not open the commitment. This is done as follows. Assume that Alice wants to
commit herself to some secret s. To do it, she creates and sends to the block chain a
Bitcoin transaction (Commit) that contains a commitment f(s) and has some value
dB (this money is called the “deposit”). This transaction can be spent in one of two
ways: either by revealing the secret (this is an expected action of Alice, she will have
to reveal the secret to get her money back), or the signatures of both Alice and Bob
(by this Bob can punish Alice). After the transaction is included in the block chain,
Alice creates the Fuse transaction — it spends the Commit transaction and sends the
money to Bob. Alice sets a time lock ¢ (which forces her to open the commitment by
time ¢) adds her signature and sends it to Bob. Bob accepts the commitment if the
transactions are correct (e.g. they have proper values, time lock, and Fuse has a good
signature) and adds his signature to the Fuse transaction. Otherwise he quits. Alice
should open the commitment (i.e. send to the block chain the transaction Open spending
the Commit transaction; it will contain the secret) before the time lock ends to get back
her money. If she does not do that, then Bob sends the Fuse transaction to get agreed
amount of bitcoins. The graph of transactions and a detailed description of the protocol
is presented in Fig. 9. We require that this scheme, besides of being binding and hiding,
has the following extra properties:

1. honest Alice will never lose her money and she will always open the commitment,

2. if both Alice and Bob are honest, then Bob will accept the commitment,

3. if honest Bob accepts the commitment, then he will learn the secret or gain agreed
value of bitcoins.

We verified these conditions using UPPAAL and the model described in this paper (see
Sec. 3.1).
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C Simultaneous Commitment scheme from [7]

N kW

10.

Pre-conditions:

A holds the key pair A and B holds the key pair B.
A knows the secret s4, B knows the secret sg, both players know the hashes hs, =
H(sa)and hsy, = H(sp).

. There are four unredeemed transactions T5*, T* and T2, T, which can be redeemed

with the keys A and B respectively, each having the value of d B.
The NewSCS.Commitg (A, B, d, t, sa, sp) phase:

A draws a random string r 4 and B draws a random string r 5.

The parties execute CS.Commit(A, B, d,¢,74) and CS.Commit(B, A,d,t,rp) using
T1{* and T} respectively. The former execution will be denoted CS* and the latter CSZ.
Recall that the parties quit the whole NewSCS protocol if they detect the misbehavior
of the other party during one of the CS.Commit executions.

The NewSCS.Commits(A, B, d, ¢, sa, sp) phase:

Both players construct the body of the transaction Commit using T3 and T4 as inputs.
A signs the transaction Commit and sends the signature to B.

B signs the transaction Commit and broadcasts it.

Both parties wait until the transaction Commit is confirmed.

If the transaction Commit does not appear on the blockchain until the time ¢ —3maxgg,
where maxgg is the maximal possible delay between broadcasting the transaction and
including it in the blockchain, then A immediately redeems the transaction T3 and after
T4 is redeemed she opens her CS# commitment and quits the protocol. Analogously,
if A did not send her signature to B until the time ¢ — 3maxgg, then B opens his CS®
commitment and quits the protocol.

The NewSCS.Open(A, B, d, t, s4, sg) phase:

A and B broadcast the transactions Open” and Open® respectively, what reveals the
secrets s4 and sp.

After the transactions Open® and Open® are confirmed, A and B open their CS com-
mitments.

If A did not broadcast Open until time ¢, then depending on whether she opened her
commitment CS* or not, B broadcasts Fuse®* or CS#. Fuse to get extra d B (in addition
to 2d B already claimed from Open® and CSZ.Open). Similarly, if B misbehaved then
A broadcasts Fuse® or CS®. Fuse to get her extra d B.

Fig. 10. The description of the NewSCS protocol.
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CSA(A,B,d,t,Ta) CSB(B,A,d,t,r5)

Commit(in: T3, T2 )

in-script; : sig 4 ([Commit]) in-scripts: sig 5 ([Commit])
dB | out-script; (body, o, x): out-scriptz(body, o, T): dB
(vera(body,o) NH(z) = hs,)V |(verg(body,o) N H(z) = hsy) V
(verg(body,o) N H(z) = hy,) (vera(body,o) N H(z) = hyy)
val;: dB valy: dB
B aB
Y A,
Open” (in: Commit(1)) Open® (in: Commit(2))
in-script: in-script:
LB |siga(Open™]), 51 sign(|Open®)).55 | B
out-script(body, o): out-script(body, 0):
ver 4 (body, o) verg(body, o)
val: dB val: dB
aB dB
L _ _ Puse?(in: Commit(1)) __ | L _ _ PuseP(in: Commit(2)) __ |
iin-seript: sigp ([Fuse™]),ra___ 1 in-script: sig , ((Fuse”]), rs__ |
lout-script(body, o): verg(body, o) | lout-script(body, o): ver a(body, o) !
vabdB vk, B vakdy !

Fig. 11. The graph of transactions for the NewSCS protocol. Two boxes labeled with CS(...)
denote the transactions broadcast in the appropriate execution of the Bitcoin-based timed com-
mitment scheme. h, denotes the value H (x), but it is used in the output scripts to stress that the
value of the hash is directly included in the transaction (instead of value of x and an application
of the hash function).

C.1 A bug in the first version of NewSCS

As mentioned in Section 3.2 the protocol NewSCS is correct, but there are some im-
plementation details, which are easy to miss and our first implementation turned out
to contain a bug, which was immediately found due to verification process. More pre-
cisely, in Step 10 of the NewSCS protocol it is said that Bob sends to the block chain
one of the two transactions: Fuse”* or CSA. Fuse and as a result gains 1 bitcoin, what
means that at least one of these two transactions becomes confirmed. Therefore, our
first implementation just tried to send these two transactions. However, it turns out that
there is a strategy of malicious Alice and an interleaving of events in which none of
these transactions becomes confirmed and it is necessary to try to sends the transaction
Fuse” again after waiting for time MAX_LATENCY. UPPAAL provides diagnostic traces,
which allows to easily find bugs like the one mentioned.
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D UprPAAL

D.1 A very short introduction to timed automata and UPPAAL

For the lack of space we only sketch the description of UPPAAL and the semantics of
the timed automata (focusing on the most relevant features). The reader may consult
[9,18] for more information on this topic.

In UPPAAL the automata are generally finite-state automata equipped with clocks.
UPPAAL system consists of some number of timed automata, clocks and variables of
discrete, bounded sets (also user defined, like records) and functions working on vari-
ables and clocks. The state of the system consists of locations of the automata, values
of the variables and the clocks evaluation. The clocks evaluate to positive real numbers,
but because of bounded set of possible constraints number of different state it which the
system can be is finite.

The only possible transitions in UPPAAL are moving all the clocks forward with
the same value or to use some of edges to change the state of some of the automata.
Both kind of transitions are correct only if all invariants and guards are satisfied. The
invariants are properties of the locations and have to be satisfied each time the system
is in this location. The locations may have also names (used in a verification), be urgent
(time cannot pass when any automaton is in such location) or committed (the system
immediately has to use an edge outgoing from such location). Moreover, edges can use
selectors to set a local variable to any value of some type. When an edge is used, it may
also run a connected update — it changes values of variables and resets some clocks.
The pairs of edges may also be synchronized — in such case they can be used, but only
together. The synchronization may also be urgent — then it has to be used if only it can
be used. More details and a syntax used in UPPAAL can be found in Appendix D.2.

UPPAAL comes also with a simulator (to e.g. run transitions in a random order) and
a verifier. The verifier checks whether the given properties (written in the simplified
version of TCTL — timed computation tree logic) are satisfied by the system.

D.2 UPPAAL syntax

Let us analyze the UPPAAL syntax on the example of automaton for Bob from a timed
commitment scheme (Fig. 12). It has 4 states: the upper-left is a starting state, the upper-
right corresponds to a situation when the Commit transaction is confirmed, but the
signature on Fuse from Step. 3 has not yet been received by Bob. The lower-left state
(denoted failure) means that the commitment was not accepted by Bob and the lower-
right (denoted accepted) state means that Bob accepted the commitment (Step 4).
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<cond> bc[COMMIT].status == CONFIRMED
<state> time <= MAX_LATENCY <sync> urg_chan? <state> time <= MAX_LATENCY

<cond> can_create_input_script(me, bc[FUSE])

<cond> time == MAX_LATENCY <sync> urg_chan?

<cond> time == MAX_LATENCY
<state> accepted

<state> failure

<cond> can_send(me, bc[FUSE])
<action> try_to_send(me, bc[FUSE])
<sync> urg_chan?

Fig. 12. The automaton for Bob in timed-commitment scheme

There are 5 types of labels on the picture®:

<select> These labels are placed on the edges to set a local variable used in following
condition and/or action to any value from a specified set, e.g. i : TxId, cond(i),
action(i) placed on an edge means that this edge can be used for any i from
TxId, provided cond(i) is true and then action(i) is performed. The mentioned
automation for Bob does not have any edges of this kind.

<cond> These labels are placed on the edges and they represent conditions (called
guards in UPPAAL), which have to be satisfied, e.g. bc[COMMIT].status == CON-
FIRMED means that this transition can be taken only if the transaction Commit has
been already confirmed and can_create_input_script(me, bc[FUSE]) checks if
Bob is able to create input script for Fuse transaction, what is equivalent to the fact
that he has already received the signature from Step. 3 (Fig. 9).

<action> These labels are placed on the edges and they represent actions (called up-
dates in UPPAAL), i.e. functions which are called whenever a transition is taken.
In our example there is just one action try_to_send(me, bc[FUSE]), which checks
whether it is possible to send the given transaction in the current state (e.g. it was
not sent earlier, its inputs are confirmed, but not spent, the current party is able to
evaluate the corresponding input scripts) and changes the state of the transaction to
SENT if all conditions are met.

<state> These labels, placed on the states, represent names of the states (failure and
accepted) and invariants specifying conditions, which has to be satisfied in the
given state. Execution in which the invariant is not satisfied are ignored by UPPAAL.
Therefore a node with an invariant time <= MAX_LATENCY and an outgoing edge
with a guard time == MAX_LATENCY guarantee that the edge will be taken exactly
at time MAX_LATENCY (Moreover it makes impossible to enter the state after time
MAX_LATENCY, but it is not important in our example.)

<sync> These labels, placed on the edges, represent synchronization channels. Here
they are used for a special purpose of obtaining urgent transitions. This is the tech-
nical trick described in Sec. D.3, but for understanding this picture it is enough to
know that the automaton is not allowed to wait whenever there is an edge available
with the label urg_chan?.

% We color them using the default UPPAAL coloring. We also decided to add special text labels
(in the “<>” brackets) in the Figures of automata to make the text readable when printed black
and white
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D.3 Helper automaton

A transition is called urgent, when it has to be taken immediately whenever it is pos-
sible. More precisely, the time cannot pass, whenever there is an automaton with an
urgent transaction available (i.e. with a satisfied guard). UPPAAL does not provide ur-
gent transitions, but there exists a simple workaround, described e.g. in [9]. The solu-
tion is based on the so-called urgent channels. Here, the “urgency” means that the time
cannot pass whenever there is an automaton with an available transition synchronizing
on an urgent channel (availability means that in particular there is another automaton,
which can synchronize on the same channel). Therefore, it is enough to mark edges we
would like to be urgent with a synchronization label urg_chan? and create a special
automaton (called Helper in our implementation) with one state and a loop with label
urg_chan! for some urgent channel urg_chan.

UPPAAL does not allow to put guards involving clocks on edges with synchroniza-
tion on urgent channels, so another workaround is needed to achieve this functionality.
The simple solution is to check on the edge a value of some boolean shared variable
and make sure that the value of this variable is always the same as the value of the clock
condition we would like to have on the edge. The correct value of the shared variable
can be maintained by another loop in the Helper automaton. The Helper automaton
is presented in Fig. 13.

<cond> timer_t[i] == time and (not timer_passed([i])
<action> timer_passed][i] = true
<action> init_prot()
O <state> forall(i : Timer) ((not timer_passed][i]) imply time <= timer_{[i])

<sync> urg_chan!

Fig. 13. The Helper automaton
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On the Malleability of Bitcoin Transactions*

Marcin Andrychowicz**, Stefan Dziembowski* * *, Daniel Malinowski®, Lukasz Mazurek?

University of Warsaw
Abstract. We study the problem of the malleability of the Bitcoin transactions. Our first two
contributions can be summarized as follows:
(i) we perform practical experiments on Bitcoin that show that it is very easy to maul Bitcoin

transactions with high probability, and

(i) we analyze the behavior of the popular Bitcoin wallets in the situation when their transac-
tions are mauled; we conclude that most of them are to some extend not able to handle this
situation correctly.

The contributions in points (i) and (ii) are experimental. We also address a more theoretical

problem of protecting the Bitcoin distributed contracts against the “malleability” attacks. It is

well-known that malleability can pose serious problems in some of those contracts. It concerns

mostly the protocols which use a “refund” transaction to withdraw a financial deposit in case

the other party interrupts the protocol. Our third contribution is as follows:

(iii) we show a general method for dealing with the transaction malleability in the Bitcoin
contracts. In short: this is achieved by creating a malleability-resilient “refund” transaction
which does not require any modification of the Bitcoin protocol.

1 Introduction

Malleability is a term introduced in cryptography by Dolev et al. [15]. Very informally, a cryp-
tographic primitive is malleable if its output C' can be transformed (“mauled”) to some “related”
value C’ by someone who does not know the cryptographic secrets that were used to produce C.
For example, a symmetric encryption scheme (Enc, Dec) is malleable if the knowledge of a cipher-
text C' = Enc(K, M) suffices to compute C’ such that M’ = Dec(K, C") is not equal to M, but is
related to it (e.g. M’ is equal to M with the first bit set to 0). It is easy to see that the standard crypto-
graphic security definitions (like the semantic security of the encryption schemes) in general do not
imply non-malleability, and hence the non-malleability is usually viewed as an additional (but often
highly desirable) feature of the cryptosystems. Since its introduction the concept of non-malleability
was studied profoundly, mostly by the theory community, in several different contexts including the
encryption and commitment schemes, zero-knowledge [15], multiparty computation protocols [12],
hash functions and one-way functions [10], privacy amplification [14], tamper-resilient encoding
[16], and many others. Until last year, however, it remained largely out of scope of the interests of
the security practitioners.

This situation has changed dramatically, when the MtGox Bitcoin exchange suspended its trading
in February 2014, announcing that around 850,000 bitcoins belonging to customers were stolen by
an attacker exploiting the “malleability of the Bitcoin transactions” [18]. Although there is a good

* This work was supported by the WELCOME/2010-4/2 grant founded within the framework of the EU In-
novative Economy (National Cohesion Strategy) Operational Programme. Moreover, Lukasz Mazurek is a
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evidence that MtGox used the malleability only as an excuse [13], this announcement definitely
raised the awareness of the Bitcoin community of this problem, and in particular, as argued in [13]
it massively increased the attempts to exploit this weakness for malicious purposes.

The fact that the Bitcoin transactions are malleable has been known much before the MtGox
collapse [21]. Briefly speaking, “malleability” in this case means that, given a transaction 7', that
transfers x bitcoins from an address A to address B (say), it is possible to construct another trans-
action 7" that is syntactically different from 7', but semantically it is identical (i.e. 7" also transfers
x bitcoins from A to B)!. This can be done by anybody, and in particular by an adversary who does
not know A’s private key. On a high level, the source of the malleability comes from the fact that
in the current version of the Bitcoin protocol, each transaction is identified by a hash on its whole
contents, and hence in some cases such a 7" will be considered to be a different transaction than 7.

There are actually several ways T” can be produced from 7. One can, e.g. exploit the malleability
of the signature schemes used in Bitcoin, i.e., the fact that given a signature o (computed on some
message M with a secret key sk) it is easy to compute another valid signature ¢’ on M (with
respect to the same key sk)?. Since the standard Bitcoin transactions have a form 7" = (message
M, signature o on M), thus 7" = (M, o) is a valid transaction with the same semantics as 7T,
but syntactically different from 7'. Another method is based on the fact that Bitcoin permits more
complicated transactions than those in the format described above. More precisely, in the so-called
“non-standard transactions” the “c” part can be in fact a script in the Bitcoin scripting language.
Since this language is stack-based, thus adding dummy PUSH and POP instructions to o produces
o’ that is operationally equivalent to o, yet, from the syntactic point of view it is different. See, e.g,
[22,13] for more detailed list of different ways in which the Bitcoin transactions can be mauled.

Recall that in order to place a transaction 7" on the block chain a user simply broadcasts 1" over
the network. Thus it is easy for an adversary A to learn 7" before it is included in the block chain.
Hence he can produce a semantically equivalent 7" and broadcast T". If A is lucky then the miners
will include 7" into the block chain, instead of T'. At the first sight this does not look like a serious
problem: since 7" is equivalent to T, thus the financial effect of 7" will be identical to the effect of
T'. The reason why malleability may cause problems is that typically in Bitcoin the transactions are
identified by their hashes. More precisely (cf., e.g, [8]), an identifier (TXID) of every transaction
T = (M, o) is defined to be equal to H(M, o), where H is the doubled SHA256 hash function.
Hence obviously TXID of T' will be different than TXID of T”.

There are essentially three scenarios when this can be a problem. The first one comes from the
fact that apparently some software operating on Bitcoin does not take into account the malleability
of the transactions. The alleged MtGox bug falls in this category. More concretely, the attack that
MtGox claimed to be the victim of looked as follows: (1) a malicious user P deposits  coins on his
MtGox account, (2) the client P asks MtGox to transfer his coins back to him, (3) MtGox issues a
transaction 7 transferring  coins to P, (4) the user P launches the malleability attack, obtaining 7"
that is equivalent to 7" but has a different TXID (assume that 7" gets included into the block chain
instead of T'), (5) the user complains to MtGox that the transaction was not performed, (6) MtGox
checks that there is no transaction with the TXID H(T') and concludes that the user is right, hence
MtGox credits the money back to the user’s account. Hence effectively P is able to withdraw his
coins twice. The whole problem is that, of course, in Step (6) MtGox should have searched not for
the transaction with TXID H(T), but for any transaction semantically equivalent to 7.

! For a short description of Bitcoin and the non-standard transactions see Section 2.

2 This is because Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) that has the property
that for every signature 0 = (r,s) € {1,..., N — 1} the value ¢’ = (r, N — s) is also a valid signature
on the same message and with respect to the same key as o. Moreover,



The second scenario is related to the first one in the sense that it should not cause problems if
the users are aware that malleability attacks can happen. It is connected to the way in which the
procedure of “giving change” is implemented in Bitcoin. Suppose a user A has 3B in an unspent
transaction Tp on the block chain, and he wants to transfer 1 B to some other user B. Typically, what
A would do in this case is: create a transaction 77 that has input 7;) and has two outputs: one that
can be claimed by B and has value 1B, and the one that can be claimed by himself (i.e. A) and has
value 2 B. He would then post T} on the block chain. If he now creates a further transaction T that
claims money from T} without waiting for 77 to appear on the block chain, then he risks that 75 will
be invalid, in case someone mauls 7} .

The third scenario is much more subtle, as it involves the so-called Bitcoin contracts which are
protocols to form financial agreements between mutually distrusting Bitcoin users. In this paper we
assume readers familiarity with this Bitcoin feature. For an introduction to it see, e.g., [19,4,3] (in
this paper we use the notation from [4,3]). Recall that contracts are more complicated than normal
money transfers in the standard transactions. To accomplish their goal contracts use the non-standard
transactions. One of the common techniques used in constructing such contracts is to let the users
sign a transaction T} before its input 7§ is included in the block chain. Very informally speaking, the
problem is that 7} is constructed using the TXID H (7}), which means that an adversary that mauls
Tp into some (equivalent but syntactically different) T, can make the transaction T3 invalid. There
are many examples of such situations. One of them is the “Providing a deposit” contract from [19],
which we describe in more detail in Section 4, where we also explain this attack in more detail. Note
that, unlike in the first two scenarios, this problem cannot be mitigated by patching the software.

1.1 Possible fixes to the Bitcoin malleability problem

There are several ways in which one can try to fix the problems caused by the malleability of Bitcoin
transactions. For example one can try to modify Bitcoin in order to eliminate malleability from it.
Such proposals have indeed been recently put forward. In particular, Pieter Wuille [22] proposed a
number of ad-hoc methods to mitigate this problem, by restricting the syntax of Bitcoin transactions.
While this interesting proposal may work in practice, it is heuristic and it comes with no formal
argument. In particular, it implicitly assumes that the only way to maul the ECDSA signatures is the
one described in Footnote 2, and we are not aware of any formal proof that this is indeed the case.

In our previous paper [3] we proposed another modification of Bitcoin which eliminates the
malleability problem. The idea of this modification is to identify the transactions by the hashes
of their simplified versions (excluding the input scripts). With this modification one can of course
still modify the input script of the transaction, but the modified transaction would have the same
hash. Unlike [22] this solution does not rely on heuristic properties of the signature schemes. On
the other hand, the proposal of [22] may be easier to implement in practice, since it requires milder
modifications of the Bitcoin specification.

Another solution proposed recently by Peter Todd [1] is to introduce a new instruction
OP_CHECKLOCKTIMEVERIFY for the Bitcoin scripting language that allows a transaction output to
be made unspendable until some point in the future. It does not concern the problem of malleability
directly, but using this opcode would allow to easily create Bitcoin contracts resilient to malleability.

Unfortunately, changing the Bitcoin is in general hard, since it is not controlled by any central
authority, and hence the modifications done without proper care can result in a catastrophic fork, i.e. a
situation where there is a disagreement among the honest parties about the status of transactions?.

? An example of such a fork was experienced by the Bitcoin community in March 2013, when it was caused
by a bug in a popular mining client software update [11]. Fortunately it was resolved manually, but it is still
remembered as one of the moments when Bitcoin was close to collapse.



Hence it is not clear if such modifications will be implemented in close future. It is therefore natural
to ask what can be done, assuming that the Bitcoin system remains malleable.

First of all, fortunately, as described above in many cases malleability is not a problem if the
software is written correctly, and therefore the most obvious thing to do is the following.

Direction 1: Educate the Bitcoin software developers about this issue. Convince them that it is a
real threat and they should always test their software against such attacks.

The only context in which the malleability cannot be dealt with by better programming are the
Bitcoin contracts. Hence a natural research objective is as follows.

Direction 2: Develop a technique that helps to deal with the malleability of the Bitcoin transactions
in the Bitcoin contracts.

The goal of this paper is to contribute to both of these tasks.

1.2 Our contribution

The technical contents of this paper is divided into two parts corresponding to the research directions
described above. We first focus on “Direction 1” (this is done in Section 3). Since most of the
software practitioners will probably only care about problems where the threat is real, not theoretic,
we executed practical experiments that examine the feasibility of the malleability attacks. It turns
out that these attacks are quite easy to perform, even by an attacker that has resources comparable
to those of an average user. In fact, our experiments show that it is relatively easy to achieve success
rates close to 50%.

We then analyze the behavior of popular Bitcoin clients when they are exposed to such attacks.
Our results indicate that all of them show a certain resilience to such attacks. In particular we did
not identify weaknesses that would allow users to steal money (as argued in Section 1.3 this is
in fact something that one would expect from the beginning). On the other hand, we identified a
number of smaller weaknesses in most of these clients. In particular, we observed that in many
cases the malleability attack results in making the user unable to issue further transactions, unless
he “resets” the client. In most cases such a reset can be performed relatively easy, in one case it
required an intervention of a technically-educated user (restoring the backup files), and in two cases
there seemed to be no way to perform such action.

This shows that some of the Bitcoin developers seem to still ignore the malleability problem,
despite of the fact that over 8 months have passed since the infamous MtGox statement.

The second part (contained in Section 5) of this paper concerns the “Direction 2”. We provide
a general technique for transforming a Bitcoin contract that is vulnerable to the malleability attacks
(but secure otherwise), into a Bitcoin contract that is secure against such attacks. Our method covers
all known to us cases of such contracts, in particular, those listed on the “Contracts” page of the
Bitcoin Wiki [19], and the lottery protocol of [S]. It can also be applied to [3], what gives the first fair
Two-Party Computation Protocol (with financial consequences) for any functionality whose fairness
is guaranteed by the Bitcoin deposits, and which, unlike the original protocol of [3] can be used on
the current version of Bitcoin®.

* The protocol of [3] was secure only under the assumption that the Bitcoin is modified to prevent the mal-
leability attacks.



Related work. Some of the related work was already described in the previous sections. The idea
of using Bitcoin to guarantee fairness in the multiparty protocols and to force the users to respect the
outcome of the computation was proposed independently in [4,3] and in [6] (and implicitly in [5]),
and was also studied in [7]. The protocols of [4] and [5] work only for specific functionalities (i.e. are
not generic), and [5] is vulnerable to the malleability attack. The protocols of [3,6] are generic, but
are insecure against the malleability attack. Also the protocol of [7] seems to be insecure against
such attacks.

1.3 Ethical issues

We realize that performing the malleability attacks against the Bitcoin can raise questions about the
ethical aspects of our work. We would like to stress that we were only attacking transactions that
were issued by ourselves (and we never tried to maul transactions coming from third parties). It is
also clear that performing such attacks cannot be a threat to stability of the whole Bitcoin system,
since, as reported by [13] Bitcoin remained secure even against attacks on a much higher scale
([13] registered 25,752 individual malleability attacks involving 286,076 bitcoins just on two days
of February 2014).

Let us also note that even before we started our work we could safely assume that none of the
popular Bitcoin clients is vulnerable to the malleability attacks to the extent that would allow mali-
cious users to steal money, as it is practically certain that any such weakness would be immediately
exploited by malicious users. In fact, as argued in [13] such malicious attempts were probably behind
the large number of malleability attacks immediately after the MtGox collapse. In other words: the
experiments that we performed were almost certainly performed by several hackers before us. We
believe that therefore making these results public is in the interest of the whole Bitcoin community.

2 Bitcoin description

We assume reader’s familiarity with the basic principles of Bitcoin. For general description of Bit-
coin, see e.g. [17,20,4]. For the description of non-standard transaction scripts, see [19,4,3]. Let us
only briefly recall that the Bitcoin currency system consists of addresses and transactions between
them. An address is simply a public key pk (technically an address is a hash of pk). We will fre-
quently denote key pairs using the capital letters (e.g. A). We will also use the following convention:
if A = (sk, pk) then sig 4 (m) denotes a signature on a message m computed with sk and ver 4 (m, o)
denotes the result (true or false) of the verification of a signature o on message m with respect to
the public key pk.

Each Bitcoin transaction can have multiple inputs and outputs. Inputs of a transaction T are
listed as triples (y1,a1,01), ..., (Yn, an, 0p), where each y; is a hash of some previous transaction
Ty,, a; is an index of the output of T, (we say that T, redeems the a;-th output of Ty,) and o;
is called an input-script. The outputs of a transaction are presented as a list of pairs (vy,7m1),. ..,
(U, ™m ), where each v; specifies some amount of coins (called the value of the i-th output of
T.) and 7; is an output-script. A transaction can also have a time-lock ¢, meaning that it is valid
only if time ¢ is reached. Hence, altogether transaction’s most general form is: T, = ((y1, a1,01),
coos WYny @y o), (01,71), -+ oy (Vs T ), t). The body of T, is equal to T}, without the input-scripts,
ie: ((y1,61), -y Wnyan), (V1,71), ..., (Um, Tm), t), and denoted by [T7;].

One of the most useful properties of Bitcoin is that the users have flexibility in defining the
condition on how the transaction 7, can be redeemed. This is achieved by the input- and the output-
scripts. One can think of an output-script as a description of a function whose output is Boolean. A

5 In the original Bitcoin documentation this is called “simplified 7}



transaction T}, defined above is valid if for every i = 1,...,n we have that 7}([T}], 0;)® evaluates
to true, where =, is the output-script corresponding to the a;-th output of Tj,. Another conditions
that need to be satisfied are that the time ¢ has already passed, v1 + -+ + vy, < V] + -+ + v,
where each v] is the value of the a;-th output of T}, and each of these outputs has not been already
spent. The scripts are written in the Bitcoin scripting language. Following [4] we will present the
transactions as boxes. The redeeming of transactions will be indicated with arrows (cf. e.g. Fig. 3).
The transactions where the input script is a signature, and the output script is a verification algorithm
are the most common type of transactions and are called standard transactions. The address against
which the verification is done will be called a recipient of this transaction.

We use the security model defined in [4]. In particular, we assume that each party can access the
current contents of the block chain, and post messages on it. Let A be the is maximal possible delay
between broadcasting the transaction and including it in the block chain.

3 Experiments

The implementation of the malleability attack. In order to perform malleability attacks we have
implemented a special program called adversary (using the bitcoinj [2] library). This program is
connected as a peer to the Bitcoin network and listens for transactions sending bitcoins to a particular
address Addr’ owned by us. Whenever such a transaction is received by the program, it mauls the
transaction® and broadcasts the modified version of the transaction.

The effectiveness of the attack is measured by the percent of cases in which the mauled trans-
action becomes confirmed and the original one invalidated. It depends on the fraction of the net-
work (and hence miners), which receives the mauled transaction before the original one. In order
to achieve a high effectiveness we need to push the modified transaction to the whole peer-to-peer
network as fast as possible. Therefore, the adversary connects to many more peers than a typical
Bitcoin client, more precisely it maintains on average 1000 connections’. Moreover, it connects di-
rectly to some nodes, which are known to be maintained by the mining pools'? and sends the mauled
transaction to them in the first place.

Effectiveness analysis In order to measure the effectiveness of our attack we set up another machine
called victim, which makes hundreds of transactions sending bitcoins to the address Addr. More
concretely we measured the effectiveness of mauling transactions under 3 different circumstances:

A) The IP address of a victim is not known to the adversary.

B) The IP address of a victim is known to the adversary. In this case the adversary can connect
directly to the victim, what allows him to discover transactions broadcast by the victim much
faster. In our experiments both machines — adversary and victim were located in the same local
network, which in some cases can be possible also in real life (a motivated adversary can connect
to the local network used by the victim). Our experiments showed that connecting directly to the
victim greatly increases the effectiveness of the attack.

® Technically in Bitcoin [T}] is not directly passed as an argument to ;. We adopt this convention to make the
exposition clearer.

"In our experiments we used addresses 13eb7BFXgHeXfxrdDevlehrBSGVPG6obu8 and
115932FHp77hQpuulWpw8 j8RYKPVvxD1AXyP.

8 By changing (r, s) into (r, N — s) in the ECDSA signature, see Footnote 2 on Page 2.

? Average Bitcoin client maintains about 8 connections.

19 More precisely it connects to the nodes maintained by mining pools GHash.IO and Eligius.



C) The victim is aware of the malleability problem and tries to protect against it by broadcasting
her transactions on a higher number of connections. In our experiment the victim was connected
to 100 peers on the network and her IP address was not known to the adversary.

The results of our experiments are presented on Fig. 1. The effectiveness depends on the nodes to
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Fig. 1. Effectiveness of the attack under different circumstances.

which the victim is connected, so after each transaction she drops all her connections and establishes
new ones. Moreover, the effectiveness depends on the distribution of mined blocks among miners
in the testing period, so experiments were performed over longer periods of time (e.g. 24 hours).
In order to exclude the influence of the factors like physical proximity of adversary and victim (in
experiments A and C) we performed part of them with victim and adversary running on machines
far away from each other.

Clients testing. In order to determine the significance of the malleability problem for individual
Bitcoin users, we decided to test how the most popular Bitcoin wallets behave when a transaction is
mauled. We have tested 14 Bitcoin wallets listed in [9]. In every test we performed several Bitcoin
transfers from the wallet to Addr. During the tests the adversary was trying to maul every transaction
addressed to this address.

We observed that (1) most of the clients determine whether the transaction is confirmed by
looking for a transaction with a matching hash in the block chain, and (2) the clients are likely to
receive from the network the modified transaction and list it in the account’s history as a separate
transaction. This can lead to unpredictable behavior of the wallet of many types, in most cases being
hard to precisely describe. In Table 1 we present the results of our tests. In a nutshell, we have
observed the following types of behavior of the clients:

(a) the wallet incorrectly computes the balance,

(b) the wallet is unable to make an outgoing transaction because it assumes that the conflicting
transaction will be confirmed in the future,

(c) the application crashes.

Note that if the client refuses to make an outgoing transaction and it is not possible to remove
the conflicting transaction from the history, the user will be unable to spend his bitcoins forever.



Moreover, because of the “giving change” procedure, an attack against a single transaction can
potentially make all the money in the wallet unspendable (cf. the second scenario on Page 2).
Going more into the details: Bitcoin Core and Xapo appear to handle the malleability problem
correctly. For example Bifcoin Core detects the malleability attack and marks it as “double spending”
(indicating it with an exclamation mark). Green Address and Armory display incorrect balances
(however, when it comes to allowing a user to make a transaction, they seem to take into account
the real balance). Blockchain.info, Coinkite, Coinbase, Electrum, MultiBit, Bitcoin Wallet, and KnC
Wallet, may display the conflicting transaction, which will never be confirmed and hence prevent the
user from creating correctly the next transaction. Fortunately, these clients give the user an option to
“reset the list of transactions”, which makes this problem disappear. In Hive we were able the obtain
the effect of “resetting” the transaction list only by a manual action (which may be non-trivial for a
non-technically educated user). The problem is much more severe in case of BitGo and Mycelium,
which also display the conflicting transaction, but there appears to be no way to reset the list. We note
that, since BitGo is a web-client, thus the wrong transaction can be removed by the administrator.!!

Wallet name | Type |[(a)|(b)|(c)|when the problem disappears
Bitcoin Core |Desktop -
Xapo Web -
Armory Desktop| X never
Green Address | Destop | X never
Blockchain.info| Web | X | X after six blocks without confirmation
Coinkite Web | X |X after several blocks without confirma-
tion
Coinbase Web | X | X after several hours
Electrum  |Desktop| X | X after application reset
MultiBit  |Desktop| X | X after “Reset block chain and transac-
tions” procedure
Bitcoin Wallet | Mobile | X | X after “Reset block chain” procedure”
KnC Wallet | Mobile | X | X | X |after “Wallet reset” procedure
Hive Desktop| X | X | X |after restoring wallet from backup
BitGo Web | X |X never
Mycelium | Mobile | X | X never

Table 1. Results of testing 14 Bitcoin wallets listed on [9] against malleability attack. The tests took place in
October 2014 and hence may not correspond to the current software version. Value never in the last column
means that we could not figure out a way to solve the problem and it did not disappear on its own after a few
days.

4 Malleability in Bitcoin Contracts

As shown in the earlier sections malleability of Bitcoin transactions can pose a problem to users if
Bitcoin clients or services they are using have bugs in their implementation. But when these bugs
are fixed then there should be no problems or dangers in typical usage of Bitcoin. Unfortunately
malleability is a bigger problem for the security of the Bitcoin contracts. In this section we will
describe a (known) malleability attack on a protocol for a deposit. Later we will also identify other
protocols that are vulnerable to the malleability attack.

"' In fact, the BitGo administrators reacted to our experiments by contacting us directly.



(a)  Insufficient funds. Your available balance is -0.00010561 BTC

(b) My Wallet ze vour own Bank. =0.0002155 BTC $-0.08
(d)

The transaction that you just executed, does not appear to
have been accepted by the Bitcoin network. This can happen
(C) for a variety of reasons, but it is usually due to a bug in the
Armory software.
On some occasions the transaction actually did succeed and
this is the bug itself! To confirm whether the the
transaction actually succeeded, you can try this direct link to

Hive cannot be started. blockchain.info:
Could not read wallet file. It might be damaged. https:/ /blockchain.info/tx/4c95340259e82f39ad07...

=7 If you do not see the transaction on that webpage within one
minute, it failed and you should attempt to re-send it. If it

does show up, then you do not need to do anything else -- it
will show up in Armory as soon as it receives one

confirmation.

If the transaction did fail, please consider reporting this error
the the Armory developers. From the main window, go to
"Help" and select "Submit Bug Report”. Or use "File" -> "Export
Log File" and then attach it to a support ticket at

https:/ /bitcoinarmory.com/support

Fig. 2. Different behavior of clients during malleability attacks: (a) BitGo, (b) Blockchain.info., (c) Hive, and
(d) Armory.

4.1 The deposit protocol

The Deposit protocol [19] is executed between parties A and B. To remain consistent with the rest of
this paper we describe it here using the notation from [4,3] (cf. Section 2). The idea of this protocol
is to allow A to create a financial deposit worth d B for some period of time. A has to be sure that
after time ¢ she will get her money back and B has to be sure that A will not be able to claim her
money earlier. One of the possible applications of this protocol is the scenario when B is a server
and A is a user that wants to open an account on the server B. In this case B wants to be sure that A is
a human and not a bot that creates the accounts automatically. To assure that, B forces A to create a
small deposit for some time. For an honest user this should not be a big problem, because the deposit
is small and she will get this money back. On the other hand it makes it expensive to create many
fake accounts (for some malicious purposes), because the cumulative value of the deposits would
grow huge.

We will now describe the deposit protocol in an informal way. The main idea of this protocol is
fairly simple: A “deposits” her money using a transaction Deposit that can be spent only using the
signatures of both A and B. To be sure that this money will go back to her she creates a transaction
Fuse that spends Deposit. This transaction needs to be signed by B, and hence A asks B to sign it,
and only after A receives this signature she posts Deposit on the block chain. In order to prevent A
from claiming her money too early Fuse contains a timelock ¢. In more detail the protocol looks as
follows:

1. At the beginning A and B exchange their public keys used for signing Bitcoin transactions and
they agree on the deposit size d and time ¢ at which the deposit will be freed.

2. Then A creates a transaction Deposit of value d B, but she does not broadcast it. This transaction
is constructed in such a way that to spend it someone has to include both signatures of A and B.



3. Afterwards A creates the transaction Fuse that has a time lock ¢, spends the transaction Deposit
and sends the money back to her. This transaction is also not yet broadcast.

4. Then A sends the transaction Fuse to B, he signs it and sends back to A.

5. Only then A sends the transaction Deposit to the block chain.

6. After time ¢ she sends the transaction Fuse to get the deposit back.

The graph of transactions in the Simple deposit protocol is presented on Fig 3. The security proper-

Deposit(in: T') Fuse(in: Deposit)
in-script: sig 4 ([Deposit)) in-script: sig , ([Fuse]), sig 5 ([Fuse])
aB - aB -
— out-script(body, o1, 02): »~ out-script(body, o): ver 4 (body, o)
ver 4 (body, o1) A verg(body, o2) val: d B
val: d B tlock: ¢

aB

Fig. 3. The Deposit protocol (vulnerable to malleability) from [19].

ties that one would expect from this protocol are as follows:

(a) Aisnot able to get her deposit back before the time ¢ (assuming that B follows the protocol).
(b) A will not lose her deposit, i.e. she will get d B back before the time (¢ + A) (where A denotes
the maximum latency between broadcasting transaction and its confirmation).

It is easy to see that (a) holds, since there is no way Deposit can be spent before time ¢ (as it requires
B’s signature to be spent). One would be tempted to say that also (b) holds, since A can always claim
her money back by posting Fuse on the block chain. Unfortunately, it turns out that this argument
strongly relies on the fact that Deposit was posted on the block chain exactly in the same version
as the one that was used to create the Fuse transaction. Hence, if the adversary mauls Deposit and
posts some Deposit’ (syntactically different, but semantically equivalent to Deposit) then the Fuse
transaction will not be able to spend it (as it expects its input to have TXID equal to H (Deposit),
not H(Deposit")).

4.2 Other protocols vulnerable to the malleability attack

In this section we will list other known Bitcoin contracts that are vulnerable to the malleability attack.
The problem with all of them is that they are creating a transaction spending another transaction
before the latter is included in the block chain. Each of this protocols can be made resistant to
malleability using our technique described in the next section.

- “Example 5: Trading across chains” from [19]'?
- “Example 7: Rapidly-adjusted (micro)payments to a pre-determined party” from [19]'3

12 The malleability problem occurs in Step 3 when Party A generates Tx2 (the contract) which spends Tx1, and
then asks B to sign it and send it back. This happens before Tx1 is included in the block chain and hence if
later the attacker succeeds in posting a mauled version Tx1" of Tx1 on the block chain, then the transaction
Tx2 becomes invalid.

'3 The malleability problem is visible in Step 3, where the refund transaction T2 is created. This transaction
depends on the transaction T1 that is not included in the block chain at the time when both parties sign it (in
Step 3 and 4).



— Back and Bentov’s lottery protocol [5]'
— Simultaneous Bitcoin-based timed commitment scheme protocol from [3]"

S Our technique

In this section we will show how to fix the Deposit protocol to make it resistant to malleability. This
technique can be used also to other protocols e.g. those listed in section 4.2. Recall that the reason
why the protocols from Sections 4.1 and 4.2 were vulnerable to the malleability attacks was that
one party, say A, had to obtain a signature of the other party (B) on a transaction 77, whose input
was a transaction 7j, and this had to happen before Ty was posted on the block chain (in case of the
Deposit protocol Tjy and T; were the Deposit and the Fuse transactions, resp.). Our main idea is
based on the observation that, using the properties of the Bitcoin scripting language, we can modify
this step by making 7 spendable not by using the B’s signature, but by providing a preimage s of
some value h under a hash function H (where H can be, e.g., the SHA256 hash function available
in the Bitcoin scripting language)'®. In other words, the T;’s spending condition

out-script(body, . ..,0): --- Averg(body, o)
(cf. the Deposit protocol in Fig. 3) would be replaced by
out-script(body, ..., x): --- AN H(x) = h,

where h = H(s) is communicated by B to A, and s is chosen by B at random. This would allow
A to spend T no matter how it is mauled by the adversary, provided that A learns s. At the first
sight this solution makes little sense, since there is no way in which B can be forced to send s to
A (obviously in every protocol considered above s would need to be sent to A some time after T
appears on the block chain, as otherwise a malicious A could spend 7T immediately). Fortunately,
it turns out that this problem can be fixed by adding one more element to the protocol. Namely, we
can use the Bitcoin-based timed commitment scheme from [4] which is a protocol that does exactly
what we need here: it allows one party, called the Committer (in our case: B) to commit to a string
s by sending h = H(s) to the Recipient (here: A). Later, B can open the commitment by sending s
to A (before this happens s is secret to A). The special property of this commitment scheme is that
the users can specify a time ¢ until which B has to open the commitment. If he does not do it by
this time, then he is forced to pay a fine (in bitcoins) to A. As shown in [4], the Bitcoin-based timed
commitment scheme is secure even against the malleability attacks. For completeness we present
this protocol in more detail in the next section.

5.1 Bitcoin-based timed commitment scheme

The Bitcoin-based timed commitment scheme protocol (CS) is being executed between the Commit-
ter B and the Recipient A. During the commitment phase the Committer commits himself to some

14 The problem occurs in Steps 4 and 7, where the “refund_bet” and “refund_reveal” transactions are signed
before theirs input transactions “bet” and “reveal” are broadcast.

'3 The problem is visible in Step 2 of the Commit phase of this protocol (the Fuse” and Fuse® transactions
are created before their input transaction Commit appears on the block chain).

'® Such transactions are called hash locked in the Bitcoin literature. Notice that having an output script, which
requires only preimages and no signatures is not secure, because anyone who notices in the network a trans-
action trying to redeem such output script learns the preimages and can try to redeem this output script on
his own. In our case the output script of the transaction Ty requires also a signature of A, but we omit it (. ..)
to simplify the exposition.



string s by revealing its hash h = H(s). Moreover the parties agree on a moment of time ¢ until
which the Committer should open the commitment, i.e. reveal the secret value s. The protocol is
constructed in such a way that if the Committer does not open the commitment until time ¢, then
the agreed amount of d B is transferred from the Committer to the Recipient. More precisely, at the
beginning of the protocol the Committer makes a deposit of d B, which is returned to him if he opens
the commitment before time ¢ or taken by the Recipient otherwise.

Commit(in: T')
in-script: sig ; ([Commit])
out-script(body, o1, 02, T): dB
(verg(body,o1) AN H(xz) = h) V o
(verg(body, o1) A ver 4 (body, o2))

val: dB
| Fuse(in: Commit) | _ ,
:ﬁiﬁ-sicrfpti' sse(in: Commit) __ _ f: B |aB Open(in: Commit)
. ) . in-script: si Open]), L, s
B sigg([Fuse)), sigs ([Fusel), L !, seript sgstOpenl). 2o | ap
jout-script(body, o): ver 4 (body, o) | Y, o)t
val: d B ‘ verg (body, o)
Hockst ~ T T T T T T val: d 3

Pre-conditions:

1. The protocol is being executed between the Committer B holding the key pair B and the Recipient A
holding the key pair A.

2. The Committer knows the secret string s.

3. The block chain contains an unredeemed transaction 7" with value d B, which can be redeemed with the
key B.

The CS.Commit(B, A, d, ¢, s) phase:

1. The Committer computes h = H (s) and broadcasts the transaction Commit. This obviously means that
he reveals h, as it is a part of the transaction Commit.

2. The Committer waits until the transaction Commit is confirmed. Then, he creates a body of the transaction
Fuse, signs it and sends the signature to the Recipient.

3. If the Recipient does not receive the signature or the signature or transaction Commit are incorrect then
he quits the protocol.

The CS.Open(B, A, d, t, s) phase:

4. Not later than at the time (¢ — A) the Committer broadcasts the transaction Open, what reveals the secret s.

5. If within time ¢ the transaction Open does not appear on the block chain then the Recipient broadcasts
the transaction Fuse to gain d B (or learn the secret s if the Committer sends the transaction Open in the
meantime and it is included in the block chain).

Fig. 4. The CS protocol from [4]. The scripts’ arguments, which are omitted are denoted by L.
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The graph of transactions and the full description of the CS protocol is presented on Fig. 4.
The main idea is that if the Committer is honest then only the transactions Commit and Open will
be used (to commit to s and to open s respectively). If, however, the Committer refuses to open
his commitment, then the Receiver will post the Fuse transaction on the block chain and claim
B’s deposit. Observe that Fuse is time-locked and therefore a malicious receiver cannot claim the
money before time ¢ (and after time ¢ he can do it only if B did not open the commitment). The
reader may refer to [4] for more details. Note that even if the transaction Commit is maliciously
changed before being included in the block chain, the protocol still succeeds because the transaction
Fuse is created after Commit is included in the block chain, so it always contains the correct hash
of Commit. Therefore, the CS protocol is resistant to the transaction malleability. The properties of
the CS protocol are as follows:

(a) The Recipient has no information about the secret s before the Committer broadcast the trans-
action Fuse (this property is called hiding).

(b) The Committer cannot open his commitment in a different way than revealing his secret s (this
property is called binding).

(c) The honest Committer will never lose his deposit, i.e. he will receive it back not later than at the
time ¢.

(d) If the Committer does not reveal his secret s before the time (¢ + A) then the Recipient will
receive d B of compensation.

5.2 The details of our method

We now present in more detail our solution of the malleability problem in Bitcoin contracts that was
already sketched at the beginning of Section 5. It can be used in all of the Bitcoin contracts that are
vulnerable to the malleability attacks that we are aware of. In this paper we show how to apply it to
the Deposit protocol (described in Section 4.1).

The main idea of our solution is to use the CS protocol instead of standard Fuse transaction.
More precisely at the beginning of the protocol B samples a random secret s and commits himself
to it using the Commit phase of the CS protocol. Now A knows that B will have to reveal his secret
(i.e. the value s s.t. H(s) = h) before the time ¢. So A can create a Deposit transaction in such a
way that to spend it she has to provide her signature and the value s. That means that after the time
t either B will reveal the value s and A will be able to spend the transaction Deposit or A will get
the deposit of B from the CS protocol. Such a modified protocol is denoted NewDeposit. Its graph
of transactions and its full description is presented on Fig. 5.

The properties of the NewDeposit protocol are as follows (all of them hold even against the
malleability attacks):

(a) Aisnot able to get her deposit back before the time (¢t — A).
(b) The honest A will not lose her deposit, i.e. she will get d B back before the time (t+2A4).
(c) Additionally the honest B will not lose his deposit, i.e. he will get it back before the time .

The proof of the above properties is straightforward and it is omitted because of the lack of space.
We note that this protocol may not be well-suited for the practical applications, as it requires the
server to make a deposit. Nevertheless, it is a very good illustration of our technique, that is generic
and has several other applications.



CS(B, A, d,t,s)

Deposit(in: T)

a8 in-script: sig , ([Deposit])
—out-script(body, o, x):
vera(body,o) NH(z) =h
val: d B

Fuse(in: Deposit)

dB |in-script: sig , ([Fuse]), s
out-script(body, o): ver o (body, o)
val: d B

aB

B ——

Pre-conditions:
1. A holds the key pair A and B holds the key pair B.

The commitment phase:

1. B samples a random secret s.

2. The parties execute the CS.Commit(B, A, d, ¢, s) protocol.

3. A creates the Deposit transaction using the value h from the transaction
CS(B, A, d,t,s).Commit and broadcasts it.

The opening phase:

4. B opens the commitment revealing s at the time (¢t — A).

A learns the value of s and broadcasts the Fuse transaction.

6. If B has not opened the commitment until time ¢ then A broadcasts the transaction
CS(B, A, d,t,s).Fuse to gain d B (or learn the value s if the Committer sends the transaction
Open in the meantime and it is included in the block chain; in that case A may just broadcast
the Fuse transaction to get her deposit back).

b

Fig. 5. The solution of the deposit problem resistant to malleability. CS(B, A, d, ¢, r) denotes the transactions
in the appropriate execution of the CS protocol.
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ABSTRACT

Is it possible to design an online protocol for playing a lottery, in
a completely decentralized way, i.e. without relying on a trusted
third party? Or: can one construct a fully decentralized protocol
for selling secret information, so that neither the seller nor the buyer
can cheat in it? Until recently it seemed that every online protocol
that has financial consequences for the participants needs to rely on
some sort of a trusted server that ensures that the money is trans-
ferred between them. In this work we propose to use Bitcoin (a
digital currency, introduced in 2008) to design such fully decen-
tralized protocols that are secure even if no trusted third party is
available. As an instantiation of this idea we construct protocols
for secure multiparty lotteries using the Bitcoin currency, without
relying on a trusted authority. Our protocols guarantee fairness for
the honest parties no matter how the loser behaves. For example:
if one party interrupts the protocol then her money is transferred to
the honest participants. Our protocols are practical (to demonstrate
it we performed their transactions in the actual Bitcoin system) and
in principle could be used in real life as a replacement for the online
gambling sites.

1. INTRODUCTION

One of the most attractive features of the Internet is its decentral-
ization: the TCP/IP protocol itself, and several other protocols run-
ning on top of it do not rely on a single server, and often can be ex-
ecuted between parties that do not need to trust each other, or even
do not need to know each other’s true identity. Examples of such
protocols include: the SMTP and the HTTP protocols, the peer-to-
peer content distributions platforms, messaging systems, and many
others. A natural question to ask is: how far can the “decentraliza-
tion” of the digital world go? In other words: what are the real-life
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applications which one can implement on the Internet without the
need of a trusted third party? Until recently one notable example of
a task that seemed to always require some sort of a “trusted server”
was the online financial transactions (that had to rely on a bank or
a credit card company). This situation changed radically in 2009,
when the first fully decentralized digital currency, called Bitcoin,
was deployed by Satoshi Nakamoto' [17]. The huge success of
Bitcoin (its current market capitalization is around $5 billion) is
due precisely to its distributed nature and the lack of a central au-
thority that controls Bitcoin transactions. We describe Bitcoin in
more detail in Section 2.

The fact that Bitcoin money transfers can be done without a
trusted server raises another intriguing question, namely: can we
“decentralize” the financial system even further, i.e.: can we im-
plement some more advanced financial instruments in a distributed
manner? The Bitcoin specification partly answers this question, by
providing the so-called “non-standard transactions”. We describe
this feature in more detail in Section 2, but for a moment let us
only say that Bitcoin allows the parties to specify more complex
conditions about when the money can be spent. This, in turn, per-
mits them to create so-called “Bitcoin contracts”, which are forms
of agreements whose execution is later enforced by the Bitcoin
system itself (without the need of a trusted third party). Exam-
ples of such contracts include rapidly-adjusted micropayments, as-
surance contracts, and dispute mediation (see https://en.bitcoin.it/
wiki/Contracts for more on this).

Probably one of the most advanced types of multiparty protocols
that can be performed digitally are the cryptographic “secure multi-
party computation (MPC)” protocols, originating from the seminal
works of Yao [20] and Goldreich et al. [14]. Informally, such pro-
tocols allow a group of mutually distrusting parties to compute a
joint function f on their private inputs. For example for two par-
ties, Alice and Bob, Alice has an input z, Bob has an input y, and
they both want to learn f(z,vy), but without Alice learning y or
Bob learning x. In this paper we initiate the study of using Bitcoin
in order to perform MPC protocols.

The coin tossing protocol.

A very simple example of such a protocol is the coin tossing
problem [6], executed between two parties, Alice and Bob, who
want to jointly compute a bit b that is equally likely to be O or
1. In other words they want to compute a randomized function
frna @ {L} x {L} — {0, 1} that takes no inputs and outputs a
uniformly random bit. This protocol can be implemented using an
idea similar to the rock-paper-scissors game: Alice sends a bit b4 to

IThis name is widely believed to be a pseudonym.



Bob, and simultaneously Bob sends a bit b to Alice. They output b
is computed as b := ba B bp (where “@” denotes the xor function).
Clearly if at least one of the bits b4 and bp is uniformly random
then b is also uniformly random, and hence each party can be sure
that the game is fair, as long as she behaves honestly (i.e., chooses
her bit uniformly). When one tries to implement this protocol over
the Internet, then of course the main challenge is to ensure that
Alice and Bob send their bits simultaneously. This is because if
one party, say Alice, can choose her bit ba after she learns bp,
then she can make b equal to any value b’ she wants by choosing
ba = Ve bgs.

The solution proposed in [6] is to use a tool called a crypto-
graphic commitment scheme. Informally, such a scheme is a two-
party protocol executed between a committer and a receiver. At the
beginning the committer knows some value s that is secret to the re-
ceiver. The parties first perform the commitment phase (Commit).
After this phase is executed, the receiver still does not know s (this
property is called hiding). Later, the parties execute the opening
phase (Open) during which the receiver learns s. The key prop-
erty of a commitment scheme is that the committer cannot “change
his mind” after the commitment phase. More precisely, after the
first phase is executed there exists precisely one value s that can
be opened in the second phase. This property is called binding. In
some sense the commitment phase is analogous to sending a mes-
sage s in a locked box, and the opening phase can be thought of as
sending the key to the box. Clearly after the box is sent the com-
mitter cannot change its contents, but before getting the key the
receiver does not know what is inside the box.

There exist several secure methods of constructing such commit-
ments. In this paper we use ones that are based on the cryptographic
hash functions (see Section 3).

It is now easy to see how a commitment scheme can be used
to solve the coin-tossing problem: instead of sending her bit ba
directly to Bob, Alice just commits to it (i.e., Alice and Bob execute
the commitment scheme with Alice acting as the committer, Bob
acting as the receiver, and ba being the secret). Symmetrically,
Bob commits to his bit bp. After these commitment phase is over,
the parties execute the opening phase and learn each other’s bits.
Then the output is computed as b = ba @ bg. The security of the
commitment scheme guarantees that no party can choose her bit
depending on the bit of the other party, and hence this procedure
produces a uniformly random bit.

Boolean operations.

The coin tossing example above is a particularly simple case of
a multiparty protocol, since the parties that execute it do not take
any inputs. To explain what we mean by a protocol where the par-
ties do take inputs, consider the case when the function that Al-
ice and Bob compute is the conjunction fa(a,b) = a A b, where
a,b € {0,1} are Boolean variables denoting the inputs of Alice
and Bob, respectively. This is sometimes called the marriage pro-
posal problem, since one can interpret the input of each party as a
declaration if she/he wants to marry the other one. More precisely:
suppose a = 1 if and only if Alice wants to marry Bob, and b = 1
if and only if Bob wants to marry Alice. In this case fa(a,b) =1
if and only if both parties want to marry each other, and hence, if
e.g. b = 0 then Bob after learning the output of the function has no
information about Alice’s input. Therefore the privacy of Alice is
protected.

On can generalize this example and consider the set-intersection
problem. Here Alice and Bob have sets A and B as their inputs and
the output is equal to fn (A, B) = AN B. For example: think of A
and B as sets of email addresses in Alice’s and Bob’s contact lists

— then the output f~ (A, B) is the list of the contacts that they have
in common. The security here means that: (1) the parties do not
learn about each other’s input more than they can deduce from their
own input and the output, and (2) a malicious party cannot cause
the result to be incorrect (e.g., a corrupt Alice cannot falsely make
Bob think that some email address is in her contact list). For this
example, condition (1) means that for every a ¢ A Alice should
obtain no information if @ is in B (and symmetrically for Bob).

General results and the lack of “fairness”.

The above examples can be generalized in several ways. First of
all, one can consider protocols executed among groups of parties
of size larger than two (hence the name multiparty computations,
as opposed to the two-party examples above). For example, a mul-
tiparty coin tossing protocol is specified exactly as the two-party
one, except that the number of the participants is larger than two.

Secondly, one can consider more complicated functions than the
ones described above. It was shown in [14] that for any efficiently-
computable function f (including “randomized” functions like the
one in the coin tossing example) there exists an efficient protocol
that securely computes it, assuming the existence of trapdoor per-
mutations (which is a well-established assumption, widely believed
to hold). If a minority of the parties is malicious (i.e., does not
follow the protocol) then the protocol always terminates, and the
output is known to each honest participant. However, if more than
half of the parties are malicious, then the malicious parties can ter-
minate the protocol after learning the output, preventing the honest
parties from learning it. Note that in case of two-player protocols it
makes no sense to assume that the majority of the players is honest,
as this would simply mean that none of the players is malicious.
This problem is visible in the coin-tossing example above, as each
party can refuse to open her commitment after she learned what
was the bit of the other party. In some cases this is not a problem,
since the parties can agree that refusing to open the commitment is
equivalent to losing the game.

However, it turns out [9] that in general this problem, called the
lack of fairness, is unavoidable. Hence, two-party protocols in gen-
eral do not provide complete fairness.

Why are the MPC not widely used over the Internet?.

Since the introduction of MPCs there has been a significant effort
to make these protocols efficient [16, 4, 10] and sometimes even to
use them in the real-life applications such as, e.g., the online auc-
tions [7]. On the other hand, perhaps surprisingly, the MPCs have
not been used in many other areas where seemingly they would fit
perfectly. One prominent example is internet gambling: it may be
intriguing that currently gambling over the internet is done almost
entirely with the help of websites that play the roles of “trusted
parties”, instead of using a cryptographic coin flipping protocol to
eliminate the need for trust. This situation is clearly unsatisfactory
from the security point of view, especially since in the past there
were cases when the operators of these sites abused their privileged
position for their own financial gain [18]. Hence, it may look like
the multiparty techniques that eliminate the need for a trusted party
would be a perfect replacement for the traditional gambling sites.
An additional benefit would be a reduced cost of gambling, since
gambling sites typically charge fees for their service.

In our opinion there are at least two main reasons why MPCs
are not used for online gambling. The first reason is that multiparty
protocols do not provide fairness in case there is no honest majority
among the participants. Consider for example a simple two-party
lottery based on the coin-tossing protocol: the parties first compute
a random bit b, if b = 0 then Alice pays $1 to Bob, if b = 1 then



Bob pays $1 to Alice, and if the protocol did not terminate correctly
then the parties do not pay any money to each other. In this case
a malicious party, say Alice, could prevent Bob from learning the
output if it is equal to 0, making 1 the only possible output of a
protocol. This means that two-party coin tossing is not secure in
practice. More generally, multiparty coin tossing would work only
if the majority is honest, which is not a realistic assumption in the
fully distributed internet environment: for instance, sybil attacks
[11] allow one malicious party to create and control several “fake”
identities, easily obtaining the “majority” among the participants.

The second reason is even more fundamental, as it comes di-
rectly from the inherent limitations of the MPC security definition:
such protocols take care only of the security of the computation,
and are not “responsible” for ensuring that the users provide the
“real” input to the protocol and that they respect the output.

Consider for example the marriage proposal problem: it is clear
that there is no technological way to ensure that the users honestly
provide their input to the trusted party. Nothing prevents one party,
say Bob, from lying about his feelings and setting b = 1 in order to
learn Alice’s input a. Similarly, forcing both parties to respect the
outcome of the protocol and indeed marry cannot be guaranteed in
a cryptographic way.

This problem is especially important in the gambling applica-
tions: even in the simplest “two-party lottery” example described
above, there exists no cryptographic method to force the loser to
transfer the money to the winner.

One pragmatic solution to this problem, both in the digital and
the non-digital world, is to use the concept of “reputation”: a party
caught cheating (i.e., providing the wrong input or not respecting
the outcome of the game) damages her reputation and next time
may have trouble finding another party willing to gamble with her.
Reputation systems have been constructed and analyzed in several
papers [19]. However, they seem too cumbersome to use in many
applications, one reason being that it is unclear how to define the
reputation of new users if users are allowed to pick new names
whenever they want [12].

Another option is to exploit the fact that the financial transac-
tions are done electronically. One could try to “incorporate” the
final transaction (transferring $1 from the loser to the winner) into
the protocol, in such a way that the parties learn who won the game
only when the transaction has already been performed. It is un-
fortunately not obvious how to do it within the framework of the
existing electronic cash systems. Obviously, since the parties do
not trust each other, we cannot accept solutions where the winning
party learns the credit card number or the account password of the
loser. One possible solution would be to design a multiparty proto-
col that simulates, in a secure way, a simultaneous access to all the
online accounts of the participants and executes a wire transfers in
their name. Even if theoretically possible, this solution is very hard
to implement in real life, especially since the protocol would need
to be adapted to several banks used by the players (and would need
to be updated whenever they change).

The main contribution of this paper is the introduction of a new
paradigm, which we call “multiparty computation protocols on Bit-
coin", that provides a solution to both of the problems described
above: the lack of fairness, and the lack of the link between “real
life” and the result of the cryptographic computation. We describe
our solution in Section 1.1.

1.1 Our contribution

We study how to do “MPCs on Bitcoin”. First of all, we show
that the Bitcoin system provides an attractive way to construct a
version of “timed commitments” [8, 13], where the committer has

to reveal his secret within a certain time frame, or pay a fine. This,
in turn, can be used to obtain fairness in certain multiparty pro-
tocols. Hence it can be viewed as an “application of Bitcoin to
MPCs”.

What is probably more interesting is our second idea, which in
some sense inverts the previous one by showing an “application of
the MPCs to Bitcoin”, namely we introduce a concept of multi-
party protocols that work directly on Bitcoin. As explained above,
the standard definition of MPCs guarantees only that the protocol
performs the computation securely, but ensuring that the inputs are
correct and the outcome is respected is beyond the scope of the se-
curity definition. Our observation is that the Bitcoin system can be
used to go beyond this standard definition, by constructing proto-
cols that link the inputs and the outputs with real Bitcoin transac-
tions. This is possible since the Bitcoin lacks a central authority, the
list of transactions is public, and its syntax allows more advanced
transactions than simply transferring the money.

As an instantiation of this idea we construct protocols for secure
multiparty lottery using the Bitcoin currency, without relying on
a trusted authority. By “lottery” we mean a protocol in which a
group of parties initially invests some money, and at the end one
of them, chosen randomly, gets all the invested money (called the
pot). Our protocol works in purely peer-to-peer environment and
can be executed between players who are anonymous and do not
trust each other. Our constructions come with a very strong security
guarantee: no matter how the dishonest parties behave, the honest
parties will never get cheated. More precisely, each honest party
can be sure that, once the game starts, it will always terminate and
will be fair.

Our main construction is presented in Section 4. Its security is
obtained via deposits: each user is required to initially put aside a
certain amount of money, which will be paid back to her once she
completes the protocol honestly. Otherwise the deposit is given to
the other parties and “compensates” them for the fact that the game
terminated prematurely. This protocol uses the timed commitment
scheme described above. A drawback of this protocol is that the
deposits need to be relatively large, especially if the protocol is ex-
ecuted among larger groups of players. More precisely, to achieve
security the deposit of each player needs to be N(N — 1) times the
size of the bet, where [V is the number of players. For the two-party
case, this simply means that the deposit is twice the size of the bet.

The only cost that the participants need to pay in our protocols
are Bitcoin transaction fees. Most Bitcoin transactions are cur-
rently free. However, the participants of our protocols need to make
a small number of non-standard transactions (so-called “strange
transactions”, see Section 2), for which there is usually some small
fee (currently around 0.0001 B ~ $0.04).” To keep the exposition
simple we present our results assuming that the fees are zero. For
the sake of simplicity we also assume that the bets in the lotteries
are equal to 1 B. It should be straightforward to see how to gener-
alize our protocols to other values of the bets.

Our constructions are based on the coin-tossing protocol explain-
ed above. We managed to adapt this protocol to our model, with-
out the need to modify the current Bitcoin system. We do not
use any generic methods like MPC or zero-knowledge compilers,
and hence our protocols are very efficient. The only cryptographic
primitives that we use are commitment schemes, implemented us-
ing hash functions (which are standard Bitcoin primitives). Our
protocols rely strongly on the advanced features of the Bitcoin (in
particular: the so-called “transaction scripts”, and “time-locks”).
Because of the lack of space we only sketch the formal security

2We use “B” for the Bitcoin currency symbol.



definitions. We executed our transactions on the real Bitcoin. We
provide a description of these transactions and a reference to them
in the Bitcoin block chain®.

1.2 Independent and subsequent work

Usage of Bitcoin to create a secure and fair two-player lottery
has been independently proposed by Adam Back and Iddo Bentov
in [3]. We provide a detailed comparison between their protocol
and ours in the extended version of this paper.

In subsequent work [1, 2] we show how to extend the ideas from
this paper in order to construct a fair two-party protocol for any
functionality, in such a way that the execution of this protocol has
“financial consequences”. More precisely, in the first paper [1] we
show how to solve this problem under the assumption that the Bit-
coin transactions are non-malleable (see [1, 2] for more on this
notion), and in [2] we show how to modify the protocol from [1]
to obtain a protocol that is secure in the current version of Bitcoin.
Some alternative ideas for obtaining fairness in the multiparty pro-
tocols were developed independently by Iddo Bentov and Ranjit
Kumaresan [5, 15].

1.3 Applications and future work

Although, as argued in the extended version of this paper, it may
actually make economic sense to use our protocols in practice, we
view gambling mostly as a motivating example for introducing a
concept that can be called “MPCs on Bitcoin”, and which will
hopefully have other applications. One example of a task that can
be implemented using our techniques is a protocol for selling secret
information for Bitcoins. Imagine Alice and Bob know a descrip-
tion of a set X containing some valuable information. For example
X can contain some sensitive data that is hard to find (say: personal
data signed by a secret key of some public authority). Alice knows
some subset A of X and Bob knows a subset B of X . Their goal is
to sell to each other the elements of A U B in such a way that they
will pay to each other only for the elements they did not know in ad-
vance. In other words: Alice will pay to Bob (|B \ A|—|A\ B|)B
(if this value is negative then Bob will pay to Alice its negation).
Without the MPC techniques it is not clear how to do it: when-
ever Alice reveals to Bob some element a € A Bob can always
claim that he already knew a. Moreover, even if MPC techniques
are used, Alice has no way to force Bob to pay her the money (and
vice-versa). Our tools (developed in the subsequent papers men-
tioned in Section 1.2) solve this problem: we can design a protocol
that transfers exactly the right sum of Bitcoins, and moreover, this
happens if and only if both parties really learned the output of the
computation!

The above example can be generalized in several different ways.
For example: the output can go only to one party (say: Alice),
and the condition for the information that Alice is willing to pay
for can be much more complicated. For example: Alice can be an
intelligence agency that has a special secret function g that specifies
what is the value of a given information (for some set of inputs g
can even output 0). Then Bob can try to “sell” his information =
to Alice setting some minimal value v that it is worth according to
him. The protocol would compute g(z) and check if g(z) > v —
if yes, the Alice would learn x and pay v to Bob, and otherwise
Alice would learn nothing (and Bob would earn 0).

Finally, let us remark that our protocols can potentially be used
for malicious purposes. For example: consider ransomware that

3For example the main transaction (Compute)
of the three-party lottery is available here:
blockchain.info/tx/540d816bd57300209754dd36ffcec1d669-
bd2068641844783451cd3ef32c8aad.

encrypts the hard disk of the victim’s machine and promises to pro-
vide a decryption key only if the victim pays a ransom. Currently,
such malicious programs have no way to prove that they will really
send the right key if the ransom is payed. With our techniques one
can make delivery of this key secure (in the sense that the payment
happens only if the key really decrypts the disk). Another potential
risk are attacks on online voting schemes: it is well-known that if
these schemes are not receipt-free then the adversary can buy votes.
Our techniques can make such attacks easier, as they eliminate the
need of the vote seller to trust the vote buyer.
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2. A SHORT DESCRIPTION OF BITCOIN

Bitcoin [17] works as a peer-to-peer network in which the partic-
ipants jointly emulate a central server that controls the correctness
of the transactions. In this sense it is similar to the concept of the
multiparty computation protocols. Recall that, as described above,
a fundamental problem with the traditional MPCs is that they can-
not provide fairness if there is no honest majority among the partici-
pants, which is particularly difficult to guarantee in the peer-to-peer
networks where the sybil attacks are possible. The Bitcoin system
overcomes this problem in the following way: the honest major-
ity is defined in terms of the “majority of computing power”. In
other words: in order to break the system, the adversary needs to
control machines whose total computing power is comparable with
the combined computing power of all the other participants of the
protocol. Hence, e.g., the sybil attack does not work, as creating a
lot of fake identities in the network does not help the adversary. In
a moment we will explain how this is implemented, but let us first
describe the functionality of the trusted party that is emulated by
the users.

One of the main problems with digital currencies is potential
double spending: if coins are just strings of bits then the owner
of a coin can spend it multiple times. Clearly this risk could be
avoided if the users had access to a trusted ledger with the list of
all the transactions. In this case a transaction would be considered
valid only if it is posted on the ledger. For example suppose the
transactions are of a form: “user A transfers x bitcoins to user B”.
In this case each user can verify if A really has x bitcoins (i.e., she
received it in some previous transactions) and she did not spend it
yet. The functionality of the trusted party emulated by the Bitcoin
network does precisely this: it maintains a full list of the transac-
tions that happened in the system. The format of Bitcoin transac-
tions is in fact more complex than in the example above. Since it is
of a special interest for us, we describe it in more detail in Section
2.1. However, for the sake of simplicity, we omit the features of
Bitcoin that are not relevant to our work such as transaction fees or
how the coins are created.

The Bitcoin ledger is in fact a chain of blocks (each block con-
tains transactions) that all the participants are trying to extend. The
parameters of the system are chosen in such a way that an extension
happens on average once each 10 minutes. The idea of the block
chain is that the longest chain C' is accepted as the proper one and
appending a new block to the chain takes non-trivial computation.
As extending the block chain or creating a new one is very hard,
all users will use the same, original block chain. Speaking in more
detail, this construction prevents double spending of transactions.
If a transaction is contained in a block B; and there are several new



blocks after it, then it is infeasible for an adversary with less than
a half of the total computational power of the Bitcoin network to
revert it — he would have to mine a new chain C” bifurcating from
C at block B;_1 (or earlier), and C’ would have to be longer than
C. The difficulty of that grows exponentially with number of new
blocks on top of B;. In practice transactions need 10 to 20 minutes
for reasonably strong confirmation and 60 minutes (6 blocks) for
almost absolute certainty that they are irreversible.

To sum up, when a user wants to pay somebody in bitcoins, he
creates a transaction and broadcasts it to other nodes in the network.
They validate this transaction, send it further and add it to the block
they are mining. When some node solves the mining problem, it
broadcasts its block to the network. Nodes obtain a new block, val-
idate transactions in it and its hash and accept it by mining on top
of it. The presence of the transaction in the block is a confirmation
of this transaction, but some users may choose to wait for several
blocks to get more assurance. In our protocols we assume that there
exists a maximum delay Trnq. between broadcasting the transac-
tion and its confirmation and that every transaction once confirmed
is irreversible.

2.1 Bitcoin transactions

In contrast to the classical banking system Bitcoin is based on
transactions instead of accounts. A user A has some bitcoins if in
the system there are unredeemed transactions for which he is a re-
cipient. Each transaction has some value (number of bitcoins which
is being transferred) and a recipient address. An address is simply
a public key pk. Normally every such a key has a corresponding
private key sk known only to one user — that user is the owner of
the address pk. The private key is used for signing (authorizing) the
transactions, and the public key is used for verifying the signatures.
Each user of the system needs to know at least one private key of
some address, but this is simple to achieve, since the pairs (sk, pk)
can be easily generated offline. We will frequently denote the key
pairs using capital letters (e.g. A), and refer to the private key and
the public key of A by A.sk and A.pk, respectively.

2.1.1 Simplified version

We first describe a simplified version of Bitcoin and then show
how to extend it to obtain the description of the real Bitcoin. Let
(A.sk, A.pk) and (B.sk, B.pk) be the key pairs belonging to users
A and B respectively. In our simplified view a transaction describ-
ing the fact that an amount v (called the value of a transaction) is
transferred from an address A.pk to an address B.pk has the form
T, = (y,v, B.pk,sig), where y is an index of a previous transac-
tion T}, and sig is a signature computed using sender’s secret key
A.sk on the whole transaction excluding the signature itself (i.e.,
on (y, v, B.pk)). We say that B.pk is the recipient of T}, and that
the transaction Ty is an input of the transaction T, or that Ty is
redeemed by T,,. More precisely, the meaning of 7T is that the
amount v of money transferred to A.pk in transaction 7, is trans-
ferred further to B.pk. The transaction T is valid only if (1) A.pk
was a recipient of the transaction T, (2) the value of T}, was equal
to v, (3) the transaction Ty has not been redeemed earlier, and (4)
the signature of A is correct. All of these conditions can be verified
publicly.

We will present the transactions as boxes. The redeeming of
transactions will be indicated with arrows with the value of the
transaction. For example, a transaction T, = (y,v, B.pk,sig),
which transfers v bitcoins from A to B, is depicted in Fig. 1 (a).

The first important generalization of this simplified system is that
a transaction can have several “inputs” meaning that it can accu-
mulate money from several past transactions T, ,...,T,,. Let

Ai, ..., A be the respective key pairs of the recipients of those
transactions. Then a multiple-input transaction has the following
form: T = (y1,...,ye,v, B.pk,sigy, . ..,sig,), where each sig,
is a signature computed using key A;.sk on the whole message ex-
cluding the signatures. The result of such transaction is that B.pk
gets the amount v, provided it is equal to the sum of the values of
the transactions Ty, , ..., Ty,. This happens only if none of these
transactions has been redeemed before, and all the signatures are
valid. Each transaction can also have several outputs, which is a
way to divide money between several users or get change, but we
do not use this feature in our protocols.

2.1.2 A more detailed version

The real Bitcoin system is significantly more sophisticated than
what is described above. First of all, there are some syntactic
differences, the most important for us being that each transaction
T, is identified not by its index, but by the hash of the whole
transaction, H(7,). Hence, from now on we will assume that
x = H(T,). Moreover, each transaction can have a time-lock t
that tells at what time the transaction becomes valid. In this case we
have: T, = (y1,...,Ye, v, B.pk,t,sig,,...,sig,). Such a trans-
action becomes valid only if the time ¢ is reached and all the condi-
tions mentioned earlier are satisfied. Before the time ¢ the transac-
tion T}, cannot be used (it will not be included into any block before
the time t).

The main difference is, however, that in the real Bitcoin the users
have much more flexibility in defining the condition on how the
transaction can be redeemed. Consider for a moment the simplest
transaction where there is just one input and no time-locks. Recall
that in the simplified system described above, in order to redeem
a transaction the recipient A.pk had to produce another transac-
tion Ty signed with his private key A.sk. In the real Bitcoin this
is generalized as follows: each transaction 7} comes with a de-
scription of a function (called output-script) w, whose output is
Boolean. The transaction 77, redeeming the transaction 7Ty, is valid
if m, evaluates to true on input 7T},. In case of standard transac-
tions, 7y is a function that treats 7, as a pair (a message m., a
signature o), and checks if o, is a valid signature on m, with
respect to the public key A.pk. However, much more general func-
tions 7, are possible. Going further into details, a transaction looks
as follows: T, = (y, Ts, v, 04 ), where [T;] = (y, 75, v) is called
the body of T, and o, is an input-script — a witness that is used
to make the script m, evaluate to true on 7} (in standard transac-
tions o is a signature of a sender on [T}]). The scripts are writ-
ten in the Bitcoin scripting language, which is a stack based, not
Turing-complete language (there are no loops in it). It provides
basic arithmetical operations on numbers, operations on stack, if-
then-else statements, and some cryptographic functions like calcu-
lating a hash function or verifying a signature. The generalization
to multiple-input transactions with time-locks is straightforward: a
transaction has the form T, = (y1,...,Ye, Tz, 0, 6,01, ..., 00),
where the body [T ] is equal to (y1, . .., y¢, Tz, v, t), and it is valid
if (1) time ¢ is reached, (2) every m;([T:], 0;) evaluates to true,
where each ; is the output script of the transaction 7, , (3) none
of these transactions has been redeemed before, and (4) the sum of
values of transactions 77, is equal to v.

A box representation of a general transaction with two inputs,
T, = (y1,Y2, Tz, v,t,01,02), is depicted in Figure 1 (b).

The most common type of transactions are transactions with-
out time-locks or any special script: the input script is a signature,
and the output script is a signature verification algorithm. We will
call them standard transactions, and the address against which the
verification is done will be called the recipient of a transaction.
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Figure 1: (a) a standard transaction transferring v bitcoins
from A to B, (b) a non-standard transaction with two inputs
and a time-lock, (c) the CS protocol.

Currently some miners accept only standard transactions (although
the non-standard transactions are also correct according to the Bit-
coin description). We believe that in the future accepting the non-
standard transactions will become common. This is important for
our applications since our protocols rely heavily on non-standard
transactions.

3. BITCOIN-BASED TIMED
COMMITMENT SCHEME

We start with constructing a Bitcoin-based timed commitment
scheme. Commitment schemes were already described in the in-
troduction. A simple way to implement a commitment is to use a
cryptographic hash function H. To commit to a secret s € {0, 1}*,
the committer chooses a random string r € {0, 1}'2® and sends to
the receiver ¢ = H (s||r) (where “||” denotes concatenation). To
open the commitment, the committer sends (s, x) and the receiver
verifies that H (s||z) = c.

Although incredibly useful in many applications, standard com-
mitment schemes suffer from the following problem (already de-
scribed in the introduction): there is no way to force the committer
to reveal his secret s, and, in particular, if he aborts before the Open
phase starts then s remains secret. Bitcoin offers an attractive way
to deal with this problem. Namely: using the Bitcoin system one
can force the committer to back his commitment with some money,

called the deposit, that will be given to the recipient if he refuses
to open the commitment within some time ¢ agreed by both par-
ties. More precisely, during the commitment phase the committer
makes a deposit in bitcoins. He will get this deposit back if he
opens the commitment before the time ¢. Otherwise, this deposit
will be automatically given to the recipient.

3.1 Construction

Our construction of the Bitcoin-Based Timed Commitment Scheme

(CS) will be based on the simple commitment scheme described
earlier. The hash function used in Bitcoin is SHA256 and in our
protocols we also use it, because it can be used in the Bitcoin script-
ing language. But for clarity we will still denote it by H in the de-
scriptions of the protocols. Additionally we assume that the secret
is already padded with random bits so we do not add them or strip
them off in our description. In fact we will later use the CS proto-
col to commit to long random strings so in that case padding is not
necessary.

The basic idea of our protocol is as follows. In the commit-
ment phase the committer creates a transaction Commst with some
agreed value d, which serves as the deposit. The only way to re-
deem the deposit is to post another transaction Open, that reveals
the secret s. The transaction Commit is constructed in such a way
that the Open transaction has to open the commitment, i.e., reveal
the secret value s. This means that the money of the committer
is “frozen” until he reveals s. To allow the recipient to claim the
deposit if the committer does not open the commitment within a
certain time period, we also require the committer to send to the re-
cipient a transaction PayDeposit that can redeem Commiat if time
t passes.

Technically it is done by constructing the output script of the
transaction Commit in such a way that the redeeming transac-
tion has to provide either C’s signature and the secret s (which
will therefore become publicly known as all transactions are pub-
licly visible) or signatures from both C and R. After broadcast-
ing the transaction Commit the committer creates the transaction
PayDeposit, which sends the deposit to the recipient and has a
time-lock ¢. The committer signs it and sends it to the recipient.
After receiving PayDeposit the recipient checks if it is correct and
adds his own signature to it. After that he can be sure that either
the committer will open his commitment by the time ¢ or he will be
able to use the transaction PayDeposit to claim the d B deposit.

The graph of transactions in this protocol is depicted in Figure
1 (c). The full description of the protocol can be found in the ex-
tended version of this paper.

4. THE LOTTERY PROTOCOL

As discussed in the introduction, as an example of an application
of the “MPCs on Bitcoin” concept we construct a protocol for a
lottery executed among two parties: Alice (A) and Bob (B). We say
that a protocol is a fair lottery protocol if it is correct and secure.

To define correctness assume that both parties are following the
protocol and the communication channel between them is secure
(i.e., it reliably transmits the messages between the parties without
delay). We assume also that before the protocol starts, the parties
have enough funds to play the lottery, including both their stakes
(for simplicity we assume that the stakes are equal 1B) and the
money for deposits, because in the protocol we will use the com-
mitment scheme from Section 3. If these assumptions hold, a cor-
rect protocol must ensure that at the end of the protocol one party,
chosen with uniform probability, has to get the whole pot consist-
ing of both stakes and the other party loses her stake. Additionally
both parties have to get their deposits back.



To define security, look at the execution of the protocol from
the point of view of one party, say A (the case of the other party
is symmetric) assuming that she is honest. Obviously, A has no
guarantee that the protocol will terminate successfully, as the other
party can leave the protocol before it is completed. What is impor-
tant is that A should be sure that she will not lose money because
of this termination: for example the other party should not be al-
lowed to terminate the protocol after he learned that A won. This is
formalized as follows: we define the payoff of A in the execution of
the protocol to be equal to the difference between the money that
A invested and the money that she has after the execution of the
protocol. We say that the protocol is secure if for any strategy of
an adversary that controls the network and corrupts one party, the
expected payoff of the other, honest party is not negative. We also
note that, of course, a dishonest participant can always terminate at
a very early stage when she does not know who is the winner — it
does not change the payoff of the honest party.

4.1 The protocol

Our protocol is built on top of the classical coin-tossing protocol
of Blum [6] described in the introduction. As already mentioned,
this protocol does not directly work for our application so we need
to adapt it to Bitcoin. In particular, in our solution creating and
opening the commitments are done by the transactions’ scripts us-
ing (double) SHA-256 hashing. After choosing a random bit bp,
the party P € {A, B} chooses a string sp sampled uniformly ran-
dom from {0, 1}**¥7%P je., the set of strings of length 128 or
129 bits, according to the value of bp. Party P then commits to
sp using a timed commitment. The winner is determined by the
winner choosing function f, defined as follows: f(sa,sp) = A
if [sa] = |sp| and B otherwise, where s4 and sp are the secret
strings chosen by the parties and |sp| is the length of sp in bits. It
is easy to see that as long as one of the parties draws their bit bp
uniformly, then the output of f(sa, sg) is also uniformly random
(provided the parties can only choose the strings s4 and s to be
of length 128 or 129).

4.1.1 First attempt

We start with presenting a naive and insecure construction of the
protocol, and then show how it can be modified to obtain a secure
scheme. Both parties announce their public keys to each other. Al-
ice and Bob also draw at random their secret strings sa and sp
(respectively) as mentioned earlier and they exchange the hashes
ha = H(sa) and hg = H(sp). If ha = hp, then the players
abort the protocol*. Both parties broadcast their input transactions
and send to the other party the links to their appearance in the block
chain. If at any point later a party P € {A, B} realizes that the
other party is cheating, then the first thing P will do is to “take
the money and run”, i.e., post a transaction that redeems the input
transaction. We will call it “*halting the execution”. This can clearly
be done as long as the input transaction has not been redeemed by
some other transaction. In the next step one of the parties constructs
a transaction Compute defined as follows:

“We would like to thank Iddo Bentov and Ranjit Kumaresan, and
independently David Wagner, for pointing out to us that this step is
needed. It protects from the copy attack: A waits until B commits
with his hash hp and then she commits with the same hash. During
the opening phase A again waits until B reveals his secret sp and
then she reveals the same secret. By doing this A always wins since
f (SA7 SB ) = A

Compute

in-script;: A’s signature | in-script2: B’s signature

out-script: can be spent using: (1) strings 4 and x g of length
128 or 129 s.t. H(xza) = ha,H(zp) = hp and (2) X’s
signature where X is the winner (i.e. X = f(za,zB))

Note that the body of Compute can be computed from the publicly-
available information. Hence this construction can be implemented
as follows: first one of the players, say, Bob computes the body
of Compute, and sends his signature on it to Alice. Alice com-
putes the body, adds both signatures to it and broadcasts the entire
transaction Compute.

The output script of Compute is tricky. To make it evaluate to
true on body one needs to provide as “witnesses” the signature of
a party P and strings x4, zp where x 4 and x g are the pre-images
of ha and hp (with respect to H). The collision-resistance of H
implies that z4 and xp have to be equal to s4 and sg (resp.).
Hence it can be satisfied only if the winner choosing function f
evaluates to P on input (s, sg). Since only party P knows her
private key, only she can later provide a signature that would make
the output script evaluate to true.

Before Compute appears on the block chain each party P can
“change her mind” and redeem her input transaction, which would
make the transaction Compute invalid. As we said before, it is
ok for us if one party interrupts the coin-tossing procedure as long
as she had to decide about doing it before she learned that she lost.
Hence, Alice and Bob wait until the transaction Compute becomes
confirmed before they proceed to the step in which the winner is
determined. This final step is simple: Alice and Bob just broadcast
sa and sp, respectively. Now: if f(sa,sp) = A then Alice can
redeem the transaction Compute in a transaction ClaimMoney 4,
constructed as:

ClaimMoney 4

in-script: strings s 4 and sp and A’s signature

out-script: can be spent only by A

On the other hand Bob cannot redeem Compute, as the condition
f(sa, sp) = B evaluates to false. Symmetrically: if f(sa,sp) =
B then only Bob can redeem Compute by an analogous transaction
ClaimMoney g.

This protocol is obviously correct. It may also look secure, as
it is essentially identical to Blum’s protocol described before (with
a hash function used as the commitment scheme). Unfortunately,
it suffers from the following problem: there is no way to guaran-
tee that the parties always reveal s4 and sp. In particular: one
party, say, Bob, can refuse to send sp affer he learned that he
lost (i.e., that f(sa,sp) = A). As his money is already “gone”
(his input transaction has already been redeemed in transaction
Compute) he cannot gain anything, but he might do it just because
of sheer nastiness. Unfortunately in a purely peer-to-peer environ-
ment, with no concept of a “reputation”, such behavior can happen,
and there is no way to punish it. This is exactly why we need to use
the Bitcoin-based commitment scheme from Section 3.

4.1.2  The secure version of the scheme

The general idea behind the SecurelLottery protocol is that each
party first commits to her inputs using the Bitcoin-based timed
commitment scheme, instead of the standard commitment scheme.
Recall that the CS protocol can be opened by sending a value s,
and this opening is verified by checking that s has required length
(either 128 or 129) and hashes to a value h sent by the committer in
the commitment phase. So, Alice executes the CS protocol acting
as the committer and Bob as a receiver. Let s 4 and h 4 be the vari-
ables s and h created this way. Symmetrically: Bob executes the
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Figure 2: The Securelottery protocol.

CS protocol acting as the committer, and Alice being the receiver,
and the corresponding variables are sp and hp. Once both com-
mitment phases are executed successfully (recall that this includes
receiving by each party the signed PayDeposit transaction), the
parties proceed to the next steps, which are exactly as before: first,
each of them broadcasts an input transaction. Once these trans-
actions are confirmed they create the Compute transaction in the
same way as before, and once it appears on the block chain they
open the commitments. The only difference is that, since they used
the CS commitment scheme, they can now “punish” the other party
if she did not open her commitment by by the time ¢ and claim
their deposit. On the other hand: each honest party is always guar-
anteed to get her deposit back, hence she does not risk anything by
investing this money at the beginning of the protocol. The graph of
transactions in this protocol is presented in Figure 2.

We also need to comment about the choice of the parameters: ¢
— the time when deposit become available to the receiver and d
— the value of the deposit. Our protocol consists of 4 “rounds” of
transactions — in each round parties wait for the confirmation of
all the transactions from this round before proceeding to the next
round. Thus, the correct execution of the protocol always termi-
nates within time 4-T’,q2, Where T, 4. is the maximal time needed
for a transaction to be confirmed. Because of that we can safely set
t to be the start time of the protocol plus 5 - Thnqaz-

The parameter d should be chosen in such a way that it will fully
compensate to each party the fact that the other player aborted. That
means that for a two player lottery each player should make a de-
posit equal to two stakes. This way if one party aborts the protocol
then the other party may lose her stake worth 1B, but she gets a
deposit of value 2B, so as a result of the protocol executions she
earns 1 B, what is never worse for her than executing the protocol
to the very end.

The complete description of this protocol can be found in the
extended version of this paper, where we also show how to gener-
alize it to N parties. In our multiparty solution the total amount
of money invested in the deposit by each player has to be equal
to N(N — 1) B. In real-life this would be ok probably for small
groups N = 2, 3, but not for the larger ones.
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Abstract. Motivated by the recent success of Bitcoin we study the question of
constructing distributed cryptographic protocols in a fully peer-to-peer scenario
under the assumption that the adversary has limited computing power and there
is no trusted setup (like PKI, or an unpredictable beacon). We propose a formal
model for this scenario and then we construct a broadcast protocol in it. This
protocol is secure under the assumption that the honest parties have computing
power that is some non-negligible fraction of computing power of the adversary
(this fraction can be small, in particular it can be much less than 1/2), and a
(rough) total bound on the computing power in the system is known.

Using our broadcast protocol we construct a protocol for simulating any trusted
functionality. A simple application of the broadcast protocol is also a scheme for
generating an unpredictable beacon (that can later serve, e.g., as a genesis block
for a new cryptocurrency).

Under a stronger assumption that the majority of computing power is controlled
by the honest parties we construct a protocol for simulating any trusted func-
tionality with guaranteed termination (i.e. that cannot be interrupted by the ad-
versary). This could in principle be used as a provably-secure substitute of the
blockchain technology used in the cryptocurrencies.

Our main tool for verifying the computing power of the parties are the Proofs of
Work (Dwork and Naor, CRYPTO 92). Our broadcast protocol is built on top of
the classical protocol of Dolev and Strong (SIAM J. on Comp. 1983).

1 Introduction

Distributed cryptography is a term that refers to cryptographic protocols executed by
a number of mutually distrusting parties in order to achieve a common goal. One of
the first primitives constructed in this area were the broadcast protocols [38,20] using
which a party P can send a message over a point-to-point network in such a way that
all the other parties will reach consensus about the value that was sent (even if P is
malicious). Another standard example are the secure multiparty computations (MPCs)
[48,30,13,8], where the goal of the parties is to simulate a trusted functionality. The
MPCs turned out to be a very exciting theoretical topic. They have also found some
applications in practice (in particular they are used to perform the secure on-line auc-
tions [10]). Despite of this, the MPCs unfortunately still remain out of scope of interest

* m.andrychowicz @mimuw.edu.pl
** s.dziembowski @ mimuw.edu.pl



for most of the security practitioners, who are generally more focused on more basic
cryptographic tools such as encryption, authentication or the digital signature schemes.

One of very few examples of distributed cryptography techniques that attracted at-
tention from general public are the cryptographic currencies (also dubbed the cryp-
tocurrencies), a fascinating recent concept whose popularity exploded in the past 1-2
years. Historically the first, and the most prominent of them is the Bitcoin, introduced
in 2008 by an anonymous developer using a pseudonym ‘“Satoshi Nakamoto” [43].
Bitcoin works as a peer-to-peer network in which the participants jointly emulate the
central server that controls the correctness of transactions, in particular: it ensures that
there was no “double spending”, i.e., a given coin was not spent twice by the same
party. Although the idea of multiple users jointly “emulating a digital currency” sounds
like a special case of the MPCs, the creators of Bitcoin did not directly use the tools
developed in this area, and it is not clear even to which extend they were familiar with
this literature (in particular, Nakamoto [43] did not cite any of MPC papers in his work).
Nevertheless, at the first sight, there are some resemblances between these areas. In par-
ticular: the Bitcoin system works under the assumption that the majority of computing
power in the system is under control of the honest users, while the classical results from
the MPC literature state that in general constructing MPC protocols is possible when
the majority of the users is honest.

At a closer look, however, it becomes clear that there are some important differences
between both areas. In particular the main reason why the MPCs cannot be used directly
to construct the cryptocurrencies is that the scenarios in which these protocols are used
are fundamentally different. The MPCs are supposed to be executed by a fixed (and
known in advance) set of parties, out of which some may be honestly following the
protocol, and some other ones may be corrupt (i.e. controlled by the adversary). In the
most standard case the number of misbehaving parties is bounded by some threshold
parameter t. This can be generalized in several ways. Up to our knowledge, however,
until now all these generalizations use a notion of a “party” as a separate and well-
defined entity that is either corrupt or honest.

The model for the cryptocurrencies is very different, as they are supposed to work in
a purely peer-to-peer environment, and hence the notion of a “party” becomes less clear.
This is because they are constructed with a minimal trusted setup (as we explain below
the only “trusted setup” in Bitcoin was the generation of an unpredictable “genesis
block™), and in particular they do not rely on any Public Key Infrastructure (PKI), or any
type of a trusted authority that would, e.g., “register” the users. Therefore the adversary
can always launch a so-called Sybil attack [21] by creating a large number k of “virtual”
parties that remain under his control. In this way, even if in reality he is just a single
entity, from the point of view of the other participants he will control a large number
of parties. In some sense the cryptocurrencies lift the “lack of trust” assumption to a
whole new level, by considering the situation when it is not even clear who is a “party”.
The Bitcoin system overcomes this problem in the following way: the honest majority
is defined in terms of the “majority of computing power”. This is achieved by having
all the honest participants to constantly prove that they devote certain computing power
to the system, via the so-called “Proofs of Work” (PoWs) [22,23].



The high level goal for this work is to bridge the gap between these two areas.
In particular, we propose a formal model for the peer-to-peer communication and the
Proofs of Work concept used in Bitcoin. We also show how some standard primitives
from the distributed computation, like broadcast and MPCs, can be implemented in this
model. Our protocols do not require any trusted setup assumptions, unlike Bitcoin that
assumes a trusted generation of an unpredictable “genesis block” (see below for more
details). Besides of being of general interest, our work is motivated twofold.

Firstly, recently discovered weaknesses of Bitcoin [26,6] come, in our opinion, par-
tially from the lack of a formal framework for this system. Our work can be viewed
as a step towards better understanding of this model. We also believe that the “PoW-
based distributed cryptography” can find several other applications in the peer-to-peer
networks (we describe some of them). In particular, as the Bitcoin example shows, the
“lack of trusted setup” can be very attractive to users'. In fact, there are already some
ongoing efforts to use the Bitcoin paradigm for purposes other than the cryptocurren-
cies (see Appendix A.3 for more on this). We would like to stress however, that this is
not the main purpose of our work, and that we do not provide a full description of a new
currency. Our goal is also not the full analysis of the security of Bitcoin (which would
be a very ambitious project that would also need to take into account the economical
incentives of the participants).

Secondly, what may be considered unsatisfactory in Bitcoin is the fact that its se-
curity relies on the fact that the so-called genesis block By, announced by Satoshi
Nakamoto on January 3, 2009, was generated using heuristic methods. More concretely,
in order to prove that he did not know By earlier, he included the text The Times
03/Jan/2009 Chancellor on brink of second bailout for banks in By (taken from the
front page of the London Times on that day). The unpredictability of By is important
for Bitcoin to work properly, as otherwise a “malicious Satoshi Nakamoto” A that knew
By beforehand could start the mining process much earlier, and publish an alternative
block chain at some later point. Since he would have more time to work on his chain, it
would be longer than the “official” chain, even if .A controls only a small fraction of the
total computing power. Admittedly, its now practically certain that no attack like this
was performed, and that By was generated honestly, as it is highly unlikely that any A
invested more computing power in Bitcoin mining than all the other miners combined,
even if A started the mining process long before January 3, 20009.

However, if we want to use the Bitcoin paradigm for some other purpose (including
starting a new currency), it may be desirable to have an automatic and non-heuristic
method of generating unpredictable strings of bits. The problem of generating such
random beacons [44] has been studied in the literature for a long time. Informally: a
random beacon scheme is a method (possibly involving a trusted party) of generating
uniformly random (or indistinguishable from random) strings that are unknown before
the moment of their generation. The beacons have found a number of applications in
cryptography and information security, including the secure contract signing protocols
[44,25], voting schemes [42], or zero-knowledge protocols [4,31]. Note that a random

! Actually, probably one of the reasons why the MPCs are not widely used in practice is that
the typical users do not see a fundamental difference between assuming a trusted setup and
delegating the whole computation to a trusted third party.



beacon is a stronger concept than the common reference string frequently used in cryp-
tography, as it has to be unpredictable before it was generated (for every instance of the
protocol using it). Notice also that for Bitcoin we actually need something weaker than
uniformity of the By, namely it is enough that By is hard to predict for the adversary.

Constructing random beacons is generally hard. Known practical solutions are usu-
ally based on a trusted third party (like the servers www.random.org and beacon.nist.gov).
Since we do not want to base the security of our protocols on trusted third parties thus
using such services is not an option for our applications. Another method is to use pub-
lic data available on the Internet, e.g. the financial data [14] (the Bitcoin genesis block
generation can also be viewed as an example of this method). Using publicly-available
data makes more sense, but also this reduces the overall security of the constructed
system. For example, in any automated solution the financial data would need to come
from a trusted third party that would need to certify that the data was correct. The same
problem applies to most of other data of this type (like using a sentence from a news-
paper article). One could also consider using the Bitcoin blocks as such beacons (in
fact recently some on-line lotteries started using them for this purpose). We discuss the
problems with this approach in App. A.4.

Our contribution. Motivated by the cryptocurrencies we initiate a formal study of the
distributed peer-to-peer cryptography based on the Proofs of Work. From the theory
perspective the first most natural questions in this field is what is the right model for
communication and computation in this scenario? And then, is it possible to construct
in this model some basic primitives from the distributed cryptography area, like: (a)
broadcast, (b) unpredictable beacon generation, or (c) general secure multiparty com-
putations? We propose such a model (in Section 2). Our model does not assume any
trusted setup (in particular: we do not assume any trusted beacon generation). Then, in
Section 4 we answer the questions (a)-(c) positively. To describe our results in more
detail let n denote the number of honest parties, let m be the computing power of each
honest party (for simplicity we assume that all the honest parties have the same com-
puting power), let mnax be the maximal computing power of all the participants of the
protocol (the honest parties and the adversary), and let m4 < 7max — n7 be the actual
computing power of the adversary. We allow the adversary to adaptively corrupt at
most ¢ parties, in which case he takes the full control over them (however, we do not
allow him to use the computing power of the corrupt parties, or in other words: once
he corrupts a party he is also responsible for computing the Proofs of Work for her).
Of course in general it is better to have protocols depending on 7 4, not on Tyax. On
the other hand, sometimes the dependence from 7,,,« is unavoidable, as the participants
need to have some rough estimate on the power of the adversary (e.g. clearly it is hard
to construct any protocol when 7 is negligible compared to mnax). Note that also Bit-
coin started with some arbitrary assumption on the computing power of the participant
(this was reflected by setting the initial “mining difficulty” to 232 hash computations).
Our contribution is as follows. First, we construct a broadcast protocol secure against
any mmax, working in time linear in [7max /7 |. Then, using this broadcast protocol, we
argue how to construct a protocol for executing any functionality in our model. In case



the adversary controls the minority of the computing power (i.e. n > [74/7] + 1)
that were user ber our protocol cannot be aborted prematurely by her. This could in
principle be used as a provably-secure substitute of the blockchain technology used in
the cryptocurrencies. Using the broadcast protocol as a subroutine we later (in Section
5) construct a scheme for an unpredictable beacon generation.

One thing that needs to be stressed is that our protocols do not require an unpre-
dictable trusted beacon to be executed (and actually, as described above, constructing
a protocol that emulates such a beacon is one of our contributions). This poses a big
technical challenge, since we have to prevent the adversary from launching a “pre-
computation” attack, i.e., computing solutions to some puzzles before the execution of
the protocol started.

The only thing that we assume is that the participating parties know a session iden-
tifier (sid), which can be known publicly long time before the protocol starts. Observe
that some sort of mechanism of this type is always needed, as the parties need to know
in advance, e.g., the time when the execution starts.

One technical problem that we need to address is that, since we work in a purely
peer-to-peer model, an adversary can always launch a Denial of Service Attack, by
“flooding” the honest parties with his messages, hence forcing them to work forever.
Thus, in order for the protocols to terminate in a finite time we also need some mild
upper bound € on the number of messages that the adversary can send (much greater
than what the honest parties will send). We write more on this in Section 2. Although
our motivation is mostly theoretic, we believe that our ideas can lead to practical imple-
mentations (probably after some optimizations and simplifications). We discuss some
possible applications of our protocols in Section 5.

Independent work. Recently an interesting paper by Katz, Miller and Shi [36] with a
motivation similar to ours was published on the Eprint archive. While their high-level
goal is similar to ours, there are some important technical differences. First of all, their
solution essentially assumes existence of a trusted unpredictable beacon (technically:
they assume that the parties have access to a random oracle that was not available to
the adversary before the execution started). This simplifies the design of the protocols
significantly, as it removes the need for every party to ensure that “her” challenge was
used to compute the Proof-of-Work (that in our work we need to address to deal with
the pre-computation attacks described above). Secondly, they assume that the proof
verification takes zero time (we note that with such an assumption our protocols would
be significantly simpler, and in particular we would not need an additional paramter 0
that measures the number of messages sent by the adversary). Thirdly, unlike us, they
assume that the number of parties executing the protocol is known from the beginning.
Finally, they use strong intractability assumptions taken from the “time-lock puzzles”
literature, namely that computing some hash functions has intrinsic “sequential cost”.

2 The reader migh be confused we in this inequality ¢ appears on the righ hand side, as it may
look like contradicting the assumption that the adversary does not take the control of the com-
puting power of the corrupt parties. The reason for having this term is the adaptivity: the
adversary can corrupt a party at the very end of the protocol, hence, in some sense taking
advantage of her computing resources before she was corrupted.



2  Our model

In this section we present our model for reasoning about computing power and the peer-
to-peer protocols. We first do it informally, and then formalize it using the universal
composability framework of Canetti [11].

Modeling hashrate Since in general proving lower bounds on the computational hard-
ness is very difficult, we make some simplifying assumptions about our model. In par-
ticular, following a long line of previous works both in theory and in the systems com-
munity (see e.g. [23,43,5]), we establish the lower bounds on computational difficulty
by counting the number of times a given algorithm calls some random oracle H [7].
In our protocols the size of the input of H will be linear in the security parameter x
(usually it will be 2« at most). Hence it is realistic to assume that each invocation of
such a function takes some fixed unit of time.

Our protocols are executed in real time by a number of devices and attacked by an
adversary A. The exact way in which time is measured is not important, but it is useful
to fix a unit of time A (think of it as 1 minute, say). Each device D that participates in
our protocols will be able to perform some fixed number 7 of queries to H in time
A. The parameter 7p is called the hashrate of D (per time A). The hashrate of the
adversary is denoted by 7 4. The other steps of the algorithms do not count as far as
the hashrate is considered (they will count, however, when we measure the efficiency of
our protocols, see paragraph Computational complexity below). Moreover we assume
that the parties have access to a “cheap” random oracle, calls to this oracle do not count
as far as the hashrate is considered. This assumption is made to keep the model as
simple as possible. It should be straightforward that in our protocols we do not abuse
this assumption, and in on any reasonable architecture the time needed for computing
H’s would be the dominating factor during the Proofs of Work. In particular: any other
random oracles will be invoked a much smaller number of times than /7. Note that,
even if these numbers were comparable, one could still make H evaluate much longer
than any other hash function F’, e.g., by defining H to be equal to multiple iterations of
F.

In this paper we will assume that every party (except of the adversary) has the same
hashrate per time A (denoted 7). This is done only to make the exposition simpler. Our
protocols easily generalize to the case when each party has a device with hashrate 7;
and the 7;’s are distinct. Note that if a party has a hashrate {7 (for natural ¢) then we
can as well think about her as of ¢ parties of hashrate 7 each. Making it formal would
require changing the definition of the “honest majority” in the MPCs to include also
“weights” of the parties.

The communication model. Unlike in the traditional MPC settings, in our case the
number of parties executing the protocol is not known in advance to the parties exe-
cuting it. Because of this it makes no sense to specify a protocol by a finite sequence
(My, ..., M,) of Turing machines. Instead, we will simply assume that there is one
Turing machine M whose code will be executed by each party participating in the pro-
tocol (think of it as many independent executions of the same program). This, of course,



does no mean that these parties have identical behavior, since their actions depend also
on their inputs, the party identifier (pid), and the random coins.

Since we do not assume any trusted set-up (like a PKI or shared private keys) mod-
eling the communication between the parties is a bit tricky. We assume that the parties
have access to a public channel which allows every party and the adversary to post a
message on it. One can think of this channel as being implemented using some stan-
dard (cryptographically insecure) “network broadcast protocol” like the one in Bitcoin
[47]. The contents of the communication channel is publicly available. The message
m sent in time ¢ by some P; is guaranteed to arrive to P; within time ¢’ such that
t’ —t < A. Note that some assumption of this type needs to be made, as if the messages
can be delayed arbitrarily then there is little hope to measure the hashrate reliably. Also
observe that we have to assume that the messages always reach their destinations, as
otherwise an honest party could be “cut of” the network. Similar assumptions are made
(implicitly) in Bitcoin. Obviously without assumptions like this, Bitcoin would be easy
to attack (e.g. if the miners cannot send messages to each other reliably then it is easy
to make a “fork” in the blockchain).

To keep the model simple we will assume that the parties have perfectly synchro-
nized clocks. This assumption could be easily relaxed by assuming that clocks can differ
by a small amount of time d, and our model from Section 2.1 could be easily extended
to cover also this case, using the techniques, e.g., from [35]. We decided not to do it to
in order to keep the exposition as simple as possible.

We give to the adversary full access to the communication between the parties:
he learns (without any delay) every message that is sent through the communication
channel, and he can insert messages into it. The adversary may decide that the messages
inserted into the channel by him arrive only to a certain subset of the parties (he also has
a full control over the timing when they arrive). The only restriction is that he cannot
erase or modify the messages that were sent by the other parties (but he can delay them
for time at most A).

Resistance to the denial of service attacks As already mentioned in the introduction,
in general a complete prevention of the denial of service attacks against fully distributed
peer-to-peer protocols seems very hard. Since we do not assume any trusted set-up
phase, hence from the theoretical point of view the adversary is indistinguishable from
the honest users, and hence he can always initiate a connection with an honest user
forcing it to perform some work. Even if this work can be done very efficiently, it
still costs some effort (e.g. it requires the user to verify a PoW solution), and hence
it allows a powerful (yet poly-time bounded) adversary to force each party to work
for a very long amount of time, and in particular to exceed some given deadline for
communicating with the other parties. Since any PoW-based protocol inherently needs
to have such deadlines, thus we need to somehow restrict the power of adversary. We
do it in the following way.

First of all, we assume that if a message m sent to P; is longer than the protocols
specifies then P; can discard it without processing it.> Secondly, we assume that there

3 Discarding incorrect messages is actually a standard assumption in the distributed cryptogra-
phy. Here we want to state it explicitly to make it clear that the processing time of too long
messages does not count into the computing steps of the users.



is a total bound 6 on the number of messages that all the participants can send during
each interval A. Since this includes also the messages sent by the honest parties, thus
the bound on the number of messages that the adversary .4 sends will be slightly more
restrictive, but from practical point of view (since the honest parties send very few mes-
sages) it is approximately equal to 8. This bound can be very generous, and, moreover it
will be much larger than the number of messages sent by the honest users*. In practice
such a bound could be enforced using some ad-hoc methods. For example each party
could limit the number of messages it can receive from a given IP address. Although
from the theoretical perspective no heuristic method is fully satisfactory, in practice they
seem to work. For example Bitcoin seems to resist pretty well the DoS attacks thanks
to over 30 ad-hoc methods of mitigating them (see [46]). Hence, we believe that some
bound on 6 is reasonable to assume (and, as argued above, seems necessary). We will
use this bound in a weak way, in particular the number of messages sent by the honest
parties will not depend on it, and the communication complexity will (for any practical
choice of parameters) be linear in 6 for every party (in other words: by sending 6 mes-
sages the adversary can force an honest party to send one long message of length O(9)).
The real time of the execution of the protocol can depend on . Formally it is a linear
dependence (again: this seems to be unavoidable, since every message that is sent to an
honest party P; forces P; to do some non-trivial work). Fortunately, the constant of this
linear function will be really small. For example, in the RankedKeys (Figure 1, Page 16)
the time each round takes (in the “key ranking phase”) will be A + 6 - timey /7, where
timey is small. Observe that, e.q, 8/7 = 1 if the adversary can send the messages at the
same speed as the honest party can compute the H" queries, hence it is reasonable to
assume that /7 < 1.

Communication, message and computational complexity We define the commu-
nication complexity in the public channel model in App. E. We will also analyze the
computational complexity of our protocols. This is defined in a straightforward way and
appears in App. F. We can also extend our model to cover the case of non-authenticated
bilateral channels. We describe this extension in App. G.

2.1 Formal definition

Formally, a multiparty protocol (in the (7, 4, 0)-model) is an ITM (Interactive Turing
Machine) M. It is executed together with an ITM A representing the adversary, and
and ITM €& representing the environment. The real execution of the system essentially
follows that scheme from [11]. Every ITM gets as input a security parameter 1*. Ini-
tially, the environment takes some input z € {0, 1}* and then it activates an adversary
A and a set P of parties. The adversary may (actively and adaptively) corrupt some
parties. The environment is notified about these corruptions.

The set P (or even its size) will not be given as input to the honest parties. In other
words: the protocol should work in the same way for any P. On the other hand: each
P € P will get as input her own hashrate 7 and the upper bound 7., on the total
combined hashrate of all the parties and the adversary (this will be the paramters of
the protocol). The running time of P € P can depend on these parameters. Note that

4 This is important, since otherwise we could trivialize the problem by asking each user to prove
that he is honest by sending a large number of messages.



|P| - m 4+ w4 < Tmax, but this inequality may be sharp, and even |P| - 7 + T4 < Tmax
is possible, as, e.g., the adversary can use much less hashrate than the maximal amount
that he is allowed to°.

Each party P € P runs the code of M. It gets as input its party identifier (pid)
and some random input. We assume that all the pid’s are distinct, which can be easily
obtained by choosing them at random from a large domain ({0, 1}, say). Moreover the
environment sends to each P some input zp € {0,1}*, and at the end of its execu-
tion it outputs to £ some value yp € {0,1}*. We assume that at a given moment only
one machine is active. For a detailed description on how the control is passed between
the machines see [11], but let us only say that it is done via sending messages (if one
party sends a message ot the other one then it “activates it”). The environment £ can
communicate with A and with the parties in P. The adversary controls the network.
However, we require that every message sent between two parties is always eventually
delivered. Moreover, since the adversary is poly-time bounded, thus he always eventu-
ally terminates. If he does so without sending any message then the control passed to
the environment (that chooses which party will be activated next).

We assume that all the parties have access to an ideal functionality fs@'h“’o (de-
picted below) and possibly to some random oracles. The ideal functionality .7-"_;;’”“*9 is
used to formally model the setting described informally above. Since we assumed that
every message is delivered in time A we can think of the whole execution as divided
into rounds (implicitly: of length A). This is essentially the “synchronous communica-
tion” model from [11] (see Section 6.5 of the Eprint version of that paper). As it is the
case there, the notion of a “round” is controlled by a counter 7, which is initially set to 1
and is increased each time all the honest parties send all their inputs for a given round to
]-"s’;;]“’e. The messages that are sent to P in a given round r are “collected” in a buffer
denote L, and delivered to P at the end of the rounds (on P’s request). The fact that
every message sent by an honest party has to arrive to another honest party within a
given round is reflected as follows: the round progresses only if every honest party sent
her message for a given round to the functionality (and this happens only if all of them
received messages from the previous round). Recall also that sending “delayed output
2 to a P” means that the « is first received by .4 who can decide when z is delivered to
P.

Compared to [11] there are some important differences though. First of all, since
in our model the set P of the parties participating in the execution is known to the
honest participants, thus we cannot assume that P is a part of the session identifier. We
therefore give it directly to the functionality (note that this set is anyway known to &,
which can share it with A).

Secondly, we do not assume that the parties can send messages directly to each
other. The only communication that is allowed is through the “public channel”. This is
reflected by the fact that the “Send” messages produced by the parties do not specify
the sender and the receiver (cf. Step 3), and are delivered to everybody . In contrast, the
adversary can send messages to concrete parties (cf. Step 4)

> In particular it is important to stress that the assumption that the majority of the computing
power is honest means that n- 7w > 7.4, and not, as one might think, - 7T > Tmax/2 (assuming
the number ¢ of corrupt parties is zero).



Thirdly, and probably most importantly, the functionality ]:5,;1”’9 also keeps track
on how much computational resources (in terms of access to the oracle H) were used by
each participant in each round. To take into account the fact that the adversary may get
access the oracle long before the honest parties started the execution we first allow him
(in Step 1) to query this oracle adaptively (the number of these queries is bounded only
by the running time of the adversary, and hence it has to be polynomial in the security
parameter). Then, in each round every party P € P can query H. The number of such
queries is bounded by 7.

Functionality fsf;h“"a

]-"57;’”“*9 receives a session ID sid € {0, 1}*. Moreover we assume that it obtains a list P
of parties that were activated with sid, i.e., those parties among which synchronization
is to be provided and that will issue the random oracle queries.

1. At the first activation, the functionality chooses at random a random oracle H. It
then waits for queries from the adversary A of a form (Hash, w) (where w is from
the domain of H). Each such a query is answered with H (w). This phase ends
when A sends a query Next or when it terminates its operation.
2. Initialize a round counter r := 1, for every party P € P initialize variables hp := 0
and L, = (. Initialize h4 := 0. Send a public delayed output (Init,sid) to all
parties in P.
3. Upon receiving input (Send, sid, m) from a party P € P, for every P’ € P set
LY, := L%, U {m} and output (sid, P,m, r) to the adversary.
4. Upon receiving input (Send, sid, P’, m) from A (where P’ € P) set L}, := L'p, U
{m}.
5. Upon receiving (Hash, w) from P’ € P U { A} (note that P’ can either be a party
or the adversary) do
(a) if P’ € P, where P’ is not corrupt and hp: < 7 then reply with H(w) and
increment the counter: hp := hp, + 1,

(b) if P’ = Aand hy < 74 then reply with H and increment the counter: h 4 :=
ha+1,

(¢c) otherwise do nothing (since P’ has already exceeded the number of allowed
queries to H" in this round).

6. Upon receiving input (Receive, sid, r’) from a party P € P, do:

(a) Ifr’ = r (i.e., v’ is the current round), and you have received the Send message
from every non-corrupt party in this round then:
i. Increment the round number: 7 :=r 4 1.
ii. Forevery P’ € P U {A} reset the variable hp: := 0.
iii. If the size of L}Tl is at most 6 then output (Received, sid, L}Tl) to P,
otherwise output L to P.
(b) If 7 < r and the size of L, is at most § then output (Received, sid, L’;) to P,
otherwise output L to P.
(c) Else (i.e., " > r or not all parties in P have sent their messages for round r),
output Round Incomplete to P.
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We use a counter hp (reset to 0 at the beginning of each new round) to track the number
of times the user P queried H. The number of oracle queries that .A can ask is bounded
by 74 and controlled by the counter s 4. Note that, once a party P € P gets corrupted
by A it looses access the oracle H. This reflects the fact that from this point the com-
puting power of P does not count anymore as being controlled by the honest parties,
and hence every call to H made by such a P has to be “performed” by the adversary
(and consequently increase h_4). The output of the environment on input z interacting
with M, A and the ideal functionality 7;74-¢ will be denoted execgfif(z).

In order to define security of such execution we define an ideal functionality F that
is also an ITM that can interact with the adversary. Its interaction with the parties is
pretty simple: each party simply interacts with F directly (with no disturbance from the
adversary). The adversary may corrupt some o the parties, in which case he learns their
inputs and outputs. The functionality is notified about each corruption. At the end the
environment outputs a value execr 4 ¢(2).

Definition 1 We say that a protocol M securely implements a functionality F in the
(m, 74, 0)-model if for every polynomial-time adversary A there exists a polynomial-
time simulator S such that for every environment Z the distribution ensemble exec?vfi’g
and the distribution ensemble execr 4 ¢ are computationally indistinguishable (see
[11] for the definition of the distribution ensembles and the computational indistin-

guishability).
3 The security definition of broadcast

In this section we present the security definitions of our main construction, i.e., the
broadcast protocol. We first describe its informal properties and then specify it as an
ideal functionality. Let P be the set of parties executing II, each of them having a
device with hashrate = > 0 per time A. Each P € P takes as input zp € {0,1}", and
it produces as output a multiset Yp C {0, 1}*. The protocol is called a myax-secure
broadcast protocol if it terminates is some finite time and for any poly-time adversary
A whose device has hashrate 74 < 7max and who attacks this protocol the following
conditions hold except with probability negligible in x (let  denote the set of parties
in P that were not corrupted by the adversary): (1) Consistency: All the sets Vp are
equal for all non-corrupt P’s, i.e.: there exists a set ) such that for every P € H we
have Yp = Y, (2) Validity: For every P € H we have z; € ), and (3) Bounded
creation of inputs: The number of elements in )’ that do not come from the honest
parties (i.e.:|Y \ {zp}pcp]|) is at most [ 4/7|. This is formally defined by specifying

TA|T

an ideal functionality J,

(see below). The formal definition is given below.

Definition 2 An ITM M is a (7 max, 0)-secure broadcast protocol if for any m and 7 4 it
securely implements the functionality ]-"J:A/ ™| in the (m, 74, 0)-model (see Def. 1 from
Sect. 2.1), as long as the number | P| of parties running the protocol (i.e. invoked by the

environment) is such that |P| - m + 74 < Tmax-

Note that we do not require any lower bound on 7 other than 0. In practice, however,
running this protocol will make sense only for 7 being a noticeable fraction of 7yay,
since the running time of our protocol is linear in 7mayx /7. This protocol is implemented
in the next section.
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4 The construction of the broadcast protocol

We are now ready to present the constructions of the protocols specified in Section
3. In our protocols the computational effort will be verified using so-called Proofs of
Work. A Proof-of-Work (PoW) scheme [22], for a fixed security parameter & is a pair of
randomized algorithms: a prover P and a verifier V, having access to a random oracle
H (in our constructions the typical input to H will be of size 2x). The algorithm P takes
as input a challenge ¢ € {0,1}" and produces as output a solution s € {0,1}*. The
algorithm V takes as input (¢, s) and outputs true or false. We require that for every
¢ € {0,1}* it is that case that V(c, P(c)) = true.

Functionality F,L“

]—fgn receives a session ID sid € {0, 1}*. Moreover it obtains a list P of parties that
were activated with sid.

1. At the first activation initialize the variables X := () and X5 := ), where X’ and
Xs are multisets. Send a public delayed output (Init, sid) to all parties in P.
2. Upon receiving input (Broadcast, sid, ) (where x € {0,1}*) from P € P (with
PID pid) do the following:
(a) add xz to X, i.e., let X := X U {x}, moreover send (Broadcast, sid, pid, x) to
S,
(b) otherwise do nothing.
3. Upon receiving (Broadcast, sid, ) from S:
(a) if |Xs| < T then let Xs := Xs U {x},
(b) otherwise do nothing.
4. Upon receiving (Remove, sid, pid) from S: if P with PID pid is not corrupt or such
a message has already been received before then ignore it.
Otherwise look for a string x that was added by a party with PID pid to X in Step
2. If no such string exists do nothing. Otherwise: remove x from the multiset X
5. Upon receiving (Receive, sid) from some P € P:
(a) If there is some non-corrupt party P & P from which no message
(Broadcast, sid, ) has been received yet then ignore this message.
(b) Otherwise:
i. Ifitis the first message (Receive, sid) received then set ) := X U Xs and
send ) to the adversary.
ii. Output (Received,sid,)) to P.

“ T is the bound on the number of “fake identities” that the adversary can create. Our security
definition requires that 7" = [7.4/7].

We say that a PoW (P, V) has prover complexity t if on every input ¢ € {0,1}*
the prover P makes at most ¢ queries to the oracle H. We say that (P, V) has verifier
complexity t' if for every ¢ € {0,1}* and s € {0,1}* the verifier V makes at most ¢’
queries to the oracle H. Defining security is a little bit tricky, since we need to consider
also the malicious provers that can spend considerable amount of computational effort
before they get the challenge c¢. We will therefore have two parameters: to,7; € N,
where fo will be the bound on the tofal time that a malicious prover has, and i < fo
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will be the bound on the time that a malicious prover got after he learned c. Consider
the following game between a malicious prover P and a verifier V: (1) P adaptively
queries the oracles H on the inputs of his choice, (2) P receives ¢ « {0,1}", (3) P
again adaptively queries the oracles H on the inputs of his choice, (4) P sends a value
s € {0,1}* to V. We say that P won if V(c, s) = true. We say that (P, V) is ({o, #1)-
secure with e-error (in the H-model) if for a uniformly random ¢ < {0, 1}* and every
malicious prover P that makes in total at most &, queries to H in the game above,

and at most ¢, queries after receiving ¢ we have that P (Is(c) wins the game) <elt

will also be useful to use the asymptotic variant of this notion (where « is the security
parameter). Consider a family {(P*,V*)}>2 ;. We will say that it is #;-secure if for
every polynomial £, there exists a neghglble e such that (P*,V*) is (fo(x), 1, )-secure
with error €(x). Our protocols will be based on the PoW based on the Merkle trees
combined with the Fiat-Shamir transform. The following lemma is proved in App. C.

Lemma 1. For every functiont : N — N s.t. t(k) > k there exists a family of
PoWs (PTreey(,.), VTreey,,) has prover complexity t and verifier complexity [k log? t].
Moreover the family {(PTreey,), VTreey,.y)}2, is {t-secure for every constant § €
[0,1).

One of the main challenges will be to prevent the adversary from precomputing the
solutions to PoW, as given enough time every puzzle can be solved even by a device
with a very small hashrate. Hence, each honest party P; can accept a POW proof only
if it is computed on some string that contains a freshly generated challenge c. Since we
work in a completely distributed scenario, and in particular we do not want to assume
existence of a trusted beacon, thus the only way a P; can be sure that a challenge ¢ was
fresh is that she generated it herself at some recent moment in the past (and, say, sent it
to all the other parties).

This problem was already considered in [2], where the following solution was pro-
posed. At the beginning of the protocol each party P; creates a fresh (public key, secret
key) pair (pk;, sk;) (we will call the public keys identities) and sends to all other parties
a random challenge c;. Then, each party computes a Proof of Work on her public key
and all received challenges. Finally, each party sends her public key with a Proof of
Work to all other parties. Moreover, whenever a party receives a message with a given
key for the first time, than it forwards it to all other parties. An honest party P; accepts
only these public keys which: (1) she received before some agreed deadline, and (2)
are accompanied with a Proof of Work containing her challenge c;. It is clear that each
honest party accepts a public key of each other honest party and that after this process
an adversary can not control a higher fraction of all identities that his fraction of the
computational power. Hence, it may seem that the parties can later execute protocols
assuming channels that are authenticated with the secret keys corresponding to these
identities.

Unfortunately there is a problem with this solution. Namely it is easy to see that the
adversary can cause a situation where some of his identities will be accepted by some
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honest parties and not accepted by some other honest parties 6. We present a solution to
this problem in the next sections.

4.1 Ranked Kkey sets

The main idea behind our protocol is that parties assign ranks to the keys they have
received. If a key was received before the deadline and the corresponding proof contains
the appropriate challenge, then the key is assigned a rank 0. In particular, keys belonging
to honest parties are always assigned a rank 0. The rank bigger than 0 means that the key
was received with some discrepancy from the protocol (e.g. it was received slightly after
the deadline) and the bigger the rank is, the bigger this discrepancy was. More precisely
each party P; computes a function rank; from the set of keys she knows /; into the set
{0,...,£} for some parameter . Note that this primitive bares some similarities with
the “proxcast” protocol of Considine et al [17]. Since we will use this protocol only as
a subroutine for our broadcast protocol, to save space, we present its definition without
using the “ideal functionality” paradigm.

Let X = (Gen, Sign, Vrfy) be a signature scheme and let £ € N be an arbitrary
parameter. Consider a multi-party protocol II in the model from Section 2, i.e., having
access to an ideal functionality F;™, where  is interpreted as the hashrate of each of
the parties, and 7 4 as the hashrate of the adversary.

Each party P takes as input a security parameter 1%, and it produces as output a
tuple (skp, pkp, Kp, rankp), where (skp, pkp) € {0,1}* x {0,1}* is called a (private
key, public key) pair of P, the finite set Kp C {0,1}* will be some set of public
keys, and rankp : Kp — {0,...,¢} will be called a key-ranking function (of P).
We will say that an identity pk was created during the execution II if pk € Kp for
at least one honest P (regardless of the value of rankp(pk)). The protohancol I7 is
called a 7w 4-secure {-ranked X-key generation protocol if for any poly-time adversary
A who attacks this protocol (in the model from Section. 2) the following conditions
hold: (1) Key-generation: II is a key-generation algorithm for every P, by which we
mean the following. First of all, for every ¢ = 1,...,n and every m € {0, 1}* we have
that Vrfy(pk p, Sign(skp, m)) = true. Moreover skp can be securely used for signing
messages in the following sense. Suppose the adversary A learns the entire information
received by all the parties except of some P, and later .4 engages in the “chosen message
attack” (see Sect. B) against an oracle that signs messages with key skp. Then any such
A has negligible (in ) probability of forging a valid (under key pkp) signature on a
fresh message. (2) Bounded creation of identities: We require that the number of created
identities is at most n + [m4/7| except with probability negligible in x. (3) Validity:
For every two honest parties P and P’ we have that rankp(P’) = 0. (4) Consistency:
For every two honest parties P and P’ and every key pk € K p such that rank p(pk) < ¢
we have that pk € Kps and moreover rankp:(pk) < rankp(pk) + 1.

Our construction of a ranked key generation protocol RankedKeys is presented on
Figure 1. The protocol RankedKeys uses a Proof of Work scheme (P, V) with prover
time timep and verifier time timey. Note that the algorithms P and V query the oracle

® This discrepancy can come from two reasons: (1) some messages could be received by some
honest parties before deadline and by some other after it, and (2) a Proof of Work can contain-
ing challenges of some of the honest parties, but not all.
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H. Technically this is done by sending Hash queries to the FJ;™ oracle, in the H"-
model (it also uses another hash function F : {0,1}* — {0, 1} that is modeled as a
random oracle, but its computation does not count into the hashrate). We can instantiate
this PoW scheme with the scheme (PTree, VTree) described in App. C. The parameter
¢ will be equal to [Tmax/7|. The notation < is described below.

Let us present some intuitions behind our protocol. First, recall that the problem
with the protocol from [2] (described at the beginning of this section) was that some
public keys could be recognized only by a subset of the honest parties. A key could
be dropped because: (1) it was received too late; or (2) the corresponding proof did
not contained the appropriate challenge. Informally, the idea behind the RankedKeys
protocol is to make these conditions more granular. If we forget about the PoWs, and
look only at the time constrains then our protocol could be described as follows: keys
received in the first round are assigned rank 0, keys received in the second round are
assigned rank 1, and so on. Since we instruct every honest party to forward to everybody
all the keys that she receives, hence if a key receives rank k from some honest party,
then it receives rank at most k£ + 1 from all the other honest parties.

If we also consider the PoWs then the description of the protocol becomes a bit
more complicated. The RankedKeys protocol consists of 3 phases. We now sketch them
informally. The “challenges phase” is divided into ¢ + 2 rounds. At the beginning of the
first round each P generates his challenge ¢ randomly and sends it to all the other
parties. Then, in each k-th round each P collects the messages a1, ..., a,, sent in the
previous round, concatenates then into A’}_, = (a1,...,an), hashes them, and sends the
result ¢k, = F(AY) to all the other parties.

Leta < (by,...,by) denote the fact that a = b; for some 7. We say that the string
b dependents on a if there exists a sequence a = vy, ...,v,, = b, such that for every
1 <4 < m, it holds that F'(v;) < v;+1.The idea behind this notion is that b could
not have been predicted before a was revealed, because b is created using a series of
concatenations and queries to the random oracle starting from the string a. Note that
in particular c% depends on %, * for any honest P, P’ 7 and 1 < k < / and hence ¢},
depends on ¢%, for any honest P, P’ and an arbitrary 1 < k < ¢+ 1.

Then, during the “Proof of Work™ phase each honest party P draws a random key
pair (skp, pkp) and creates a proof of work® P(F(pkp, A5™)). Then, she sends her
public key together with the proof to all the other parties.

Later, during the “key ranking phase” the parties receive the public keys of the other
parties and assign them ranks. To assign the public key pk rank k the party P requires
that she receives it in the k-th round in this phase and that it is accompanied with a proof
P(F(pkp,s)) for some string s, which depends on ¢ . Such a proof could not have
been precomputed, because cf;k depends on ¢}, which was drawn randomly by P at
the beginning of the protocol and hence could not been predicted before the execution
of the protocol. If those conditions are met, than P forwards the message with the key
to the other parties. This message will be accepted by other parties, because it will be
received by them in the (k + 1)-st round of this phase and because s depends on cf;k

5

7 This is because c§,, ' < A} and F(A}) = cb.
8 The reason why we hash the input before computing a PoW is that the PoW definition requires
that the challenges are random.
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The challenges phase consists of ¢ + 2 rounds:

— Round 0: Each party P draws a random challenge cp < {0, 1}" and sends his challenge
message of level 0 equal to (Challenge®, ¢%) to all parties (including herself).

— For k = 1to £ + 1 in round k each party P does the following. It waits for the messages
of a form (Challenge® ™!, a) that were sent in the previous round (note that some of them
might have already arrived earlier, but, by our assumptions they are all guaranteed to arrive
before round k& ends). Of course if the adversary does not perform any attack then there will
be exactly n such messages (one from every party), but in general there can be much more
of them. Let (Challenge® ™', a1), ..., (Challenge®* ™', a,,) be all messages received by P.
Denote A% = (a1, ...,am). Then P computes her challenge in round k as ¢ = F(A%)
and sends (Challenge®, ¢%) to all parties (this is not needed in the last rounds, i.e., when
k=0+1).

In the Proof of Work phase each party P performs the following.

1. Generate a fresh key pair (skp, pkp) < Gen(1¥) and compute Solp = P(F(pkp, AS))
(recall that Af;"l contains all the challenges that P received in the last round of the “chal-
lenges phase”). Note that this phase takes [timep /(7 - A)] rounds.

2. Send to all the other parties a message (Keyo, pkp, Afjl, Solp). This message contains P’s
public key pkp, the sequence Afj'l of challenges that he received in the last round of the
“challenges phase”, and a Proof of Work Sol p. The reason why she sends the entire Afjl,
instead of F'(pkp, Agl), is that in this way every other party will be able check if her
challenge was used as an input to ' when F'(pkp, Af;rl) was computed (this check will be
performed in the next phase).

The key ranking phase consists of £ + 1 steps, each lasting 1 4 [(6 - timey) /(7 - A)] rounds.
During these steps each party P constructs a set JCp of ranked keys, together with a ranking
function rankp : Kp — {0,..., £} (the later a key is added to Kp the higher will be its rank).
Initially all Kp’s are empty.

— Step 0: Each party P waits for one round for the messages of the form (Key®, pk, B!, Sol)

sent in the PoW phase. Then, for each such message she checks the following conditions:
e Sol is a correct PoW solution for the challenge F(pk, B‘*!), ie., if
V(F(pk, B“T1), Sol) = true,
o % appears in B! ie., ¢b < B!,
If both of these conditions hold then P accepts the key pk with rank 0, i.e., P adds pk to the
set Cp and sets rankp(pk) := 0. Moreover P notifies all the other parties about this fact by
sending to every other party a message (Key', pk, A%, B‘T!, Sol).

— For k = 1to £ in step k each party P does the following. She waits for one round for the
messages of a form (Keyk, pk, B¢T1=k . Bt Sol). Then she stops listening and for
each received message she checks the following conditions:

e the key pk has not been yet added to Kp, i.e.: pk € Kp,

e Sol is a correct PoW solution for the challenge F(pk, B‘T!), ie., if

V(F (pk, B*1), Sol) = true,

o % < B**17F and for every i = £ + 1 — k to £ it holds that F(B*) < B'*!,
If all of these conditions hold then P accepts the key pk with rank k, i.e., P adds pk to
the set p and sets rankp(pk) := k. Moreover if k& < £ then P notifies all the other
parties about this fact by sending at the end of the round to every other party a message
(Key* ™, pk, AGF BH1=F . B! Sol) (recall that A% is equal to the set of chal-
lenges received by P in the k-th round of the “challenges phase”, and F/(A%) = k).

At the end of the protocol each party P outputs (skp, pkp, Kp, rankp).

16

Fig. 1. The RankedKeys protocol.




which depends on cﬁ;(kﬂ) for any honest P’. In the effect, all other honest parties,

which have not yet assigned pk a rank will assign it a rank k& + 1.

Let RankedKeysp,.. denote the RankedKeys scheme instantiated with the PoW
scheme (PTreef;, ., VTreef ..) (from App. C), where timep := x* - ({ +2)A - 7 and
timey := k [log, timep] . We have the following fact (its proof appears in App. D).

Lemma 2. Assume the total hashrate of all the participants is at most Tmax, the hashrate
of each honest party if 7, and the adversary can not send more than (0 — [Tmax/7])
messages in every round. Then the RankedKeyspr,.. protocol is a w 4-secure {-ranked
key generation protocol, for £ = [Tmax/m|, whose total execution takes (2 + 3) +
[timep/(m - A)] 4+ [(£ 4+ 1)(0 - timey) /(7 - A)] rounds.

The communication and message complexity of the RankedKeys protocol are analysed
in App. H.

The Broadcast protocol

1. Each party P takes as input (Broadcast, sid, zp).
2. The parties run the RankedKeys protocol (attaching sid to every message). Let
(skp, pkp, Kp, rankp) be the output of each P € P.
Each party P initializes, for every pk € Kp, a variable lejk =0.
4. Each D € P performs the following procedure that consists of ¢ 4+ 1 rounds (this
can be executed in parallel for every D):
— Round 0: D (we will call him the Dealer) sends to every other party a message
(sid, zp, pkp, Signy, (2D, Pkp)).-
— Round k, for1 < k < {: Each party P except of the dealer D waits for the mes-
sages of the form (sid, v, pkp, Signska1 (v, pkp), - - ,Signskuk (v, pkp)). Such
a message is accepted by P if:
(1) all signatures are valid and are corresponding to different public keys,
(2) pkq, = pkp,
(3) pk,, € Kp and rankp(pk,;) < kfor1l < j <k, and
4) v ¢ ZXP and 207 | < 2.
If a message is accepted then P adds v to her set ZkaD
and if moreover k < ¢, than she sends a message
(sid, v, pkp, Signpka1 (v,pkp), ..., Signpkak (v,pkp), Signy . (v, pkp)) o
all other parties.
5. Each party P determines the set Yp as the union over all lejk’s that are of size 1,
ie:Yp = UPkilzil‘lzl ZP¥_ It outputs (Received, sid, Vp).

(O]

The Broadcast protocol. The reason why ranked key sets are useful is that they allow
to construct a reliable broadcast protocol, which is secure against an adversary that has
an arbitrary hashrate. The only assumption that we need to make is that the total hashrate
in the system is bounded by some 7.5 and the adversary cannot send more than 6 — n
messages in one interval (for some parameter ¢). Our protocol, denoted Broadcast,
works in time that is linear in £ = [myax/7| plus the execution time of RankedKeys.
It is based on a classical authenticated Byzantine agreement by Dolev and Strong [20]
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(and is similar to the technique used to construct broadcast from a proxcast protocol
[17]). The protocol is depicted on the figure above and it works as follows. First the
parties execute the RankedKeys protocol with parameters 7, Tmax and 6, built on top
of a signature scheme (Gen, Sign, Vrfy) — Sign, denotes a signatures computed using
a private key corresponding to a public key pk. For convenience assume that every
signature o contains information identifying the public key that was used to compute it.
Let (skp, pkp, Kp, rankp) be the output of each P after this protocol ends (recall that
(skp, pkp) is her key pair, Kp is the set of public keys that she accepted, rankp is the
key ranking function). Then, each party D € P executes in parallel the procedure from
Step 4. During the execution each party P maintains a set Z;kD initialized with (. The

output of each party is equal to the only elements of this set (if Zf;kD is a singleton) or
L otherwise.
The following lemma is proven in Appendix 1.

Lemma 3. The Broadcast protocol is a (Tmax, 0)-secure broadcast protocol.

S Applications

Multiparty computations. As already mentioned before, the Broadcast protocol can
be used to establish a group of parties that can later perform the MPC protocols. For
the lack of space we only sketch this method here. The main idea is as follows. First,
each party P generates its key pair (skp, pkp). Then, it uses the broadcast protocol to
send to all the other parties the public key pkp. Let 7 4 be the computing power of the
adversary, and let ¢ be the number of parties that he corrupted. From the properties of
the broadcast protocol he can make the honest parties accept at most [7 4 /7] keys pkp
chosen by the adversary. Additionally, the adversary knowns up to ¢ secret keys of the
parties that she corrupted. Therefore altogether there are at most [74/7] + ¢ keys pkp
such that the adversary knows the corresponding secret keys skp. The total number of
keys is [m4/7] + n (where n is the number of the honest parties).

Given such a setup the parties can now simulate the secure channels, even if initially
they did not know each others identities (i.e. in the model from Section 2), by treating
the public keys as the identities. More precisely: whenever a party P wants to send a
message to P’ (known to P by her public key pkp.) she would use the standard method
of encryption (note that in the adaptive case this is secure only if the encryption scheme
is non-committing) and digital signatures to establish a secure channel (via the insecure
broadcast channel available in the model) with P’. Hence the situation is exactly as
in the standard MPC settings with the private channels between |7 4/7| + n parties.
We can now use well-known fact that simulating any functionality is possible in this
case [12]. In case we require that the protocol has guaranteed termination we need an
assumption that the majority of the participants is honest [30], i.e, that [74/7| + ¢ <
(n — t). Suppose we ignore the rounding up (observe that in practice we can make
[m4/m] arbitrarily close to w4 /7 by making 7 small). Then we obtain the condition
w4 +tw < (n—t)n. The left hand side of this inequality can be interpreted as the “total
computing power of the adversary” (including his own computing power and the one of
corrupt parties), and the right hand side can be interpreted as the total computing power
of the honest parties. Therefore we get that every functionality can he simulated (with
guaranteed termination) as long as the majority of the computing power is controlled
by the honest parties. This argument will be formalized in the full version of this paper.
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Unpredictable beacon generation. The Broadcast protocols can also be used to pro-
duce unpredictable beacons even if there is no honest majority of computing power in
the system by letting every party broadcast a random nonce and then hashing the result.
This is described in more detail is App. J. In App. K we discuss also the possibility of
creating provable secure currencies using our techniques.
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Description of Bitcoin

A.1 A short introduction to Bitcoin.

The PoWs that Bitcoin uses are based on computing the value of a hash function H
(more concretely: H is the SHA256 function) on multiple inputs. Therefore the “com-
puting power” is measured in terms of the speed at which a given party can compute
a certain hash function. This speed is called a hashrate. Currently almost all of the
computing power in Bitcoin comes from dedicated hardware, as computing SHA256 in
software is too inefficient. Bitcoin contains incentives for the users to contribute their
computing power to the system. We do not describe them here (the reader may find a
description of this incentive system, e.g., in [43,9,1]). The same idea is used in several

21



other cryptocurrencies like Litecoin [45] (that, instead of SHA256, uses a hash function
Script, which is designed in such a way, that it is difficult to implement it in hardware
efficiently), or Peercoin [37] (in combination with the so-called “Proof of Stake” which
we will not describe here).

The “trusted functionality” that the parties emulate is simply a public ledger on
which the parties can post their transactions. From the security perspective the Bitcoin
ledger is very similar to a broadcast channel: every party should be able to broadcast
some value to all the other parties (i.e.: post it on the ledger) and in case a malicious
party posts several different values, the honest participants should be able to reach a
consensus about which of them is accepted as a valid one. One additional property
(compared to the standard broadcast definition) that the Bitcoin ledger has is the public
verifiability, which in particular means that the parties that joined the system long time
after a given value v was posted can verify that v appeared on the ledger.

We do not describe here the exact syntax of the Bitcoin transactions, as it is not
relevant to this paper. The Bitcoin ledger is implemented in the following clever way.
The users maintain a chain of blocks. The first block By, called the genesis block, was
generated by the designers of the system in January 2009 (this is the only “trusted setup”
that is required in Bitcoin, however, as we describe later, some heuristic methods were
applied to prove that By was generated honestly). Each new block B; contains a list 7
of new transactions, the hash of the previous block H(B;_1 ), and some random salt R.
The key point is that not every R works for given T; and H(B;_1). In fact, the system
is designed in such a way that it is moderately hard to find a valid R. Technically it
is done be requiring that the binary representation of the hash of (T;||H(B;_1)||R)
starts with a certain number m of zeros (the procedure of extending the chain is called
mining, and the machines performing it are called miners). The hardness of finding
the right R depends of course on m, and this parameter is periodically adjusted to the
current computing power of the participants in such a way that the extension happens
on average each 10 minutes.

The idea of the block chain is that the longest chain C' is accepted as the proper one.
If some transaction is contained in a block B; and there are several new blocks on top
of it, then it is infeasible for an adversary with less than a half of the total computing
power of the Bitcoin network to revert it — he would have to mine a new chain C’
bifurcating from C' at block B;_; (or earlier), and C’ would have to be longer than C.
The difficulty of that grows exponentially with number of new blocks on top of B;.
In practice the transactions need 10 to 20 minutes (i.e. 1-2 new blocks) for reasonably
strong confirmation and 60 minutes (6 blocks) for almost absolute certainty that they
are irreversible.

To sum up, when a user wants to post a transaction on the network, he sends it
to other nodes. The receivers validate this transaction and add it to the block they are
mining. When some node solves the mining problem, it broadcasts the new block B;
to the network. Nodes obtain a new block, check if the transactions are correct, that it
contains the hash of the previous block B;_; and that H(B;) starts with an appropriate
number of zeros. If yes, then they accept it and start mining on top of it. Presence of the
transaction in the block is a confirmation of this transaction, but some users may choose
to wait for several blocks on top of it to get more assurance.
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In [43] it was claimed that this system is secure as long as the majority of computing
power is controlled by the honest users. In other words: in order to break the system,
the adversary needs to control machines whose total computing power is comparable
with the combined computing power of all the other participants of the protocol. Unfor-
tunately, no proof of this statement, or even a formal security definition was provided.
In our opinion, this is one of the main weaknesses of Bitcoin. We discuss it in the next
section.

A.2 Lack of security proof and the dishonest minority attacks on Bitcoin.

While the hard-core cryptography part (like the choice of the signature schemes and the
hash functions) in the most popular cryptocurrency systems looks secure, what seems
much less understood is the system of maintaining the trusted ledger. This is not just a
theoretical weakness. In fact, recently in a very interesting paper Ittay Eyal and Emin
Gun Sirer [26] have shown that Nakamoto’s claim that no dishonest majority can break
the system is false. We will not present their attack (called the “selfish mining”) in detail
here, as it depends on Bitcoin incentive mechanism that we do not describe in this paper.
Let us only say that from a very high level view their strategy for the dishonest minority
is to keep the newly mined blocks secret, and to send them over the network only if
certain conditions are satisfied.

One may argue, that performing such attacks by miners is financially irrational,
because such attacks can be easily noticed, what would cause a collapse in the Bitcoin
price and subsequently would make mining less profitable. Even if this argument is
sound, it shows that we need some additional assumptions to make Bitcoin secure,
other than “the majority is honest”, what was claimed in the original Nakamoto’s paper.

Another claim from the original work of Nakamoto, which turned out not to be
completely true is that a probability of reverting a transaction in a block on top of
which there are b other blocks decreases exponentially with b. Surprisingly, Lear Ba-
hack [6] has recently shown that this claim is no longer true if we consider the difficulty
adjustment algorithm, which is used in Bitcoin to gradually make mining new blocks
more difficult as the total computational power of all miners grows. In his paper Bahack
shows than an adversary can discard a block on any depth with a probability 1 regard-
less of his computational power if he is willing to wait long enough. An interesting
survey of the known strategies for dishonest miners and their discussion can be found
in [19].

In our opinion all of these weakness could have been avoided (or at least they could
be known in advance) if Bitcoin came with a formal model and mathematically proven
security. Unfortunately, it was not the case. This was probably partly due to the fact
that designing a complete model for cryptocurrencies is a challenging and ambitious
project. For example such a model should take into account the incentive system for
mining, and hence should include elements of the rational cryptography framework
[34,32,28].
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A.3 Other applications of the blockchain technology

Garman et al. [29] propose to use the Bitcoin’s PoW-based distributed consensus in
order to create a decentralized system for anonymouns credentials, and Fromknecht et
al. [16] present an idea of applying the same technology to create a decentralized PKI,
also IBM recently announced an “Adept” system [33], where the blockchain technology
is used for the “Internet of Things” applications. Many of these applications require
only some kind of a “distributed consensus mechanism”, and hence one can use our
protocols there (as a replacement of the blockchain). We also believe that our protocols
can potentially lead to improved constructions of new cryptocurrencies.

A.4 Bitcoin as a source of unpredictable beacons?

Treating Bitcoin blocks as a source of randomness can make sense for some applica-
tions, even for running new cryptocurrencies, e.g., a genesis block for a new currency
can be based on some Bitcoin block. This solution is not fully satisfactory from a theo-
retical point of view since it suffers from a “chicken or egg problem”: to create a cryp-
tocurrency one needs to assume that another cryptocurrency is already running. Also,
from the practical point of view it has some weaknesses. In particular, as described
above, Bitcoin is not fully secure, and moreover one of the attacks described in the lit-
erature [26] is based on the strategy of withholding blocks. Associating some external
(possibly financial) incentive for publishing only blocks that satisfy certain properties,
can additionally change the economical model of Bitcoin, and needs to be taken into
account when the security of the whole system is considered®.

B Signature schemes

We recall here the definition of the signature schemes. This is done for the refer-
ence, as some of our protocol definitions can be viewed as extensions of this stan-
dard definitions. A signature scheme is a tuple of poly-time randomized algorithms
(Gen, Sign, Vrfy) where Gen is a key generation algorithm that takes as input a security
parameter 1 € N and produces as output a key pair (pk,sk) € {0,1}* x {0,1}*. The
signing algorithm Sign takes as input the private key sk and a message m € {0,1}*
and produces as output a signature ¢ = Sign(sk, m), and the verification algorithm
Vrfy takes as input the public key pk, a message m and a signature o € {0,1}*
and produces as output a bit Vrfy(pk,m,o) € {true,false}. We require that always
Vrfy(pk, Sign(sk,m),m) = true. The security of the signature scheme is defined by
the following game played be a poly-time adversary A (for some fixed 1%): (1) let
(pk,sk) < Gen(1%), (2) the adversary A learns 1* and pk, (2) the adversary can ap-
ply a chosen-message attack, i.e., he can adaptively specify a sequence of messages
myq,...,m, and learn Sign(sk, m;) for each m,, and (3) the adversary produces a pair
(1, ). We say that A won if Vrfy(pk, m, ) = true and m & {mq, ..., my}. We say

® Actually, this is one of the reasons why modeling and proving Bitcoin’s security is so hard:
one would need to also consider these type of “environmental conditions” to model the whole
economic system accurately.
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that (Gen, Sign, Vrfy) is secure if for every A the probability that .4 wins is negligible
in K.

C Proofs of Work based on the Merkle trees

The goal of this section is to prove Lemma 1 that states that for every function ¢ :
N — N st t(k) > r there exists a family of PoWs (PTreey,, VTreey,,) has

prover complexity ¢ and verifier complexity {n log? ﬂ. Moreover it states the family
{(PTreef,), VTreey,)) }22; is {t-secure for every constant £ € [0,1). This lemma
will be proven at the every end of this section. We first need to introduce some auxiliary
machinery.

Binary trees. A (binary) tree is a finite non-empty set 7' C {0, 1}* that is prefix-closed
(i.e.: forevery x € T every prefix of z is also in T'). We say that a free T" is a sub-tree of
Tif T" C T. Every element « € T is called a node and its length |z| is called its depth.
The depth of the tree T is equal to the maximal depth of its nodes. The size of the tree T'
is equal to |T'|. The empty string € is called the root of T'. For every x € T the elements
z||0 € T and z||1 € T will be called the left (resp.: right) child of x (where “||” denotes
concatenation). Moreover x||0 and z||1 will be called siblings (of each other). A node
without children in T" will be called a leaf. A path is a set of nodes v, ..., v; such that
each v; 41 is a child of v;. Sometimes it will be useful we to fix an ordering < on the
nodes of a binary tree. We will assume that if vy, v1 are nodes of the same depth then
=< compares the nodes accordingly to the lexicographic order, and otherwise vy < vy
if and only if the depth of vy is smaller or equal to the depth of v;. A tree T is called
complete if every leaf x € T has the same depth d. It is easy to see that in this case d has
to be equal to log, (|7'| + 1) — 1. A tree is almost complete if every leaf « € T has depth
either |log,(|7°| + 1) — 1] or [logy(|T] + 1) — 1] (hence every almost complete tree of
size 2¢ — 1, for a natural 4, is complete). It is easy to see that every almost complete tree
of size ¢ has exactly [¢/2] leaves. To make the almost complete tree unique for every
tree size ¢ we assume that all the leafs of length [log, (|T| + 1)] are always “shifted to
the left”, i.e., for every node A € T all the other strings that are smaller according to the
= ordering are also in T'. A labelled binary tree is a pair (T, f), where T is a binary tree
and f is a labelling function of a type T' — X (for some set X of labels). In this case
F(X\) (for A € T) will be called a label of the node \. We will often abuse the notation
and use T also as the labelling function (i.e. T'(\) will denote the label of \).

Random oracle model. As already mentioned above we model the hash functions as
random oracles [7]. It will be convenient to assume that our algorithms have access to
a family H = {H)} e of random oracles, where the finite set A will be fixed for
every input size of a given algorithm (and, in particular |A| will never be larger than
the running time of the algorithm). Clearly one random oracle is enough to simulate
the existence of such a family (as A can be treated simply as an additional argument).
Without loss of generality assume that every algorithm .4 that we consider never queries
each random oracle H) on the same input more than once. The hash functions that
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we use often take inputs from the set {0,1}" x {0,1}* U {0,1}* (for some natural
parameter x). In this case we will denote each individual hash function as HY, and
the family {H } e 4 of such functions as #". Some additional machinery needed for
analyzing the random oracles appears in Appendix C.

Consider an algorithm A running in time ¢ and look at his calls to the random
oracles in H" during his execution. Call an execution canonical if it never happened
that a malicious prover “guessed” an output of any random oracle. More formally, an
execution is canonical if for every A € A and every call g to HY equal to (w,v) €
{0,1}" x {0,1}* or w € {0, 1}" it is never the case that A receives v or w from HY,
(for some possibly different A’ € A) after he issues q . We now have the following.

Lemma 4. For every A running in time t the probability that the execution of A is not
canonical is at most 2t% - 27",

Proof. Consider a value u € {0,1}" that A received from any H), on some query
q. Since we assumed that A never queries Hy, more than once on ¢, thus before A
received H(q), it appeared uniform to him. Therefore the probability that A earlier
queried H on u, (w,u) or (u,w) (for some w € {0,1}*) is at most 2¢ - 27", Since A
issues at most ¢ oracle queries hence (by the union bound) we get that the probability
that the execution of A is not canonical is at most 2£2 - 27", O

Suppose every H), is of a type H : {0,1}* — {0, 1}*. Call an execution collision-free
if it never happened that there were two different calls ¢ and ¢’ to H (for some A € A)
such that Hy(q) = Ha(q').

Lemma 5. For every A running in time t the probability that the execution of A is not
collision-free is at most t? - 275,

Proof. For every output w of H) the probability that it was output already to some
earlier call is at most £ - 2. Thus, the probability that this happens for some output w
is at most £2 - 27, o

Merkle trees. We use a standard cryptographic tool called the Merkle trees [39]. Take
any kK € N,c € {0,1}" and 8 € N. Let A; be an almost complete binary tree of
size t = 2f3. Let H" be a family of hash functions, i.e.: {HY }rc,, Where each HY
is of a type {0,1}* x ({0,1}* U {0,1}" x {0,1}*) — {0,1}". Define a function
MHash™" : ({0,1}*)# — {0, 1}* as on Figure 2.

The Merkle trees are useful since they allow for very efficient proofs that a given
value v; was used to calculate » = MHash™" (v1,...,v3). To be more precise, there
exists a procedure MProof " (described on Figure 2) that on input (v1,...,vg) €
({0,1}*)? outputs a certificate M’ that proves that v; was used to calculate r =
MHash(vy, ..., vg). The certificate M’ is a labelled subtree of M induced by i, i.e.
consisting of all nodes on a path from the leaf \; to the root and their siblings. Such
a proof can be verified by a procedure MVrfyHK (described on Figure 2) that takes as
inputv; € {0,1}",i € {1,...,8},7 € {0,1}" and a labelled tree M’ and outputs true
if the labeling of M is correct. We clearly have that MVrfy™" (vi,i,7m, M) is equal to
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true if » = MHash(vy,...,v3) and M’ = MProof ((v1,...,vg),7). It is easy to see
that the following holds.

Function MHash™":

On input (v1,...,vs) the function MHash™" first recursively labels the tree A; (denote the
resulting labelled almost complete binary tree as MZ'") and then outputs the root of this tree.
This is done as follows.

1. Let A1 < --- < \g be the leaves of MZ{N. Each leaf )\; is labelled with v;.

2. If anode X has one child, and this child is labelled with v then let M?" (\) := Hy(v).

3. If a node A has two children A||0 and A||1 and their respective labels are v and w then let
MPT(A) := Hy(v,w).

4. Output the label of the root of MH

Function MProof*"

On input (v1,...,v5) € ({0,1}*) and i € {1,..., 3} outputs a labelled binary tree M’ that
is a sub-tree of MZ{A constructed as follows:

1. Run MHash™" (v1,...,v8). Let ./\/lZ{K be the output of this function (in many cases MZ{N
will be already stored in user’s memory, and hence there will be no need to compute it),

2. Define A’ := {(A||j) € MZ" : Xisaprefix of Ai, A\ # A;and j € {0,1}} U {e} (recall
that )\; is an i-th leaf of A accordingly to the < ordering). In other words, A’ is a subtree of
A induced by \; (i.e. containing a path from A; to the root, together with all the siblings of
the nodes on this path).

3. Let M’ be the tree labelled like M™", but containing only nodes from A’.

Function MVrfy"

Take as input v; € {0,1}*,i € {1,...,8},r € {0,1}" and a labelled tree M, and output true
if the labeling of M’ is correct. More precisely, it outputs true if the following conditions hold:

1. the leaf \; has label v; in M’,
2. every non-leaf node X in M’ is labelled by the appropriate hash of its children,
3. the root of M’ is labelled with r.

Otherwise it outputs false.

Fig.2. The MHashHN7 MProof ™" and MVrfyHN functions.

Lemma 6. Consider any algorithm A running in time at most t. The algorithm A gets
as input (v1,...,v5) € ({0,1}*)° and then it outputs v € {0,1}", i € {1,...,8},
and a tree M. Suppose that it happened that MVrfy™" (v;,i,r, M') = true. Then
with probability at least 3t> - 2~ before the algorithm A produced M’ he made all the
queries to the H" oracles that are needed by the verification algorithm IVIVrfyHH (vi, i, p, M)

(in particular: he queried HY on v;).
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Proof. Without loss of generality assume that A also queries the oracle on r. Now,
suppose his execution was canonical and collision-free. This means that he also had to
query the oracle on both children of the root of M?" (i.e. on M*"(0), M7*" (1), and
then, recursively, on children of every node on the path from the root to \;. Hence in this
case A made all the queries that are needed by the verification algorithm MVrfy™ (v;, 4, p, w).
This finishes the proof, since, by Lemmas 4 and 5 the probability that the execution was
either not canonical or not collision-free is at most 3¢2 - 2%, O

C.1 Proofs-of-Work

An example of a PoW scheme The PoW scheme used in Bitcoin is based on finding
inputs for a hash function that produce an output starting with a certain number of
zeros. We cannot use this PoW here, since the variance of the computational effort
needed to solve it is to high: a lucky solver can solve the Bitcoin PoW much quicker
than an unlucky one. Instead, we use a PoW based on the Merkle trees and a variant
of the Fiat-Shamir transform [27]: a prover first constructs a Merkle tree with leaves
depending on the challenge ¢, and then hashes (using some hash function G) the value
r in the root of this tree to obtain indices of « leaves u1,. .., t, in the tree (for some
parameter «). Finally, he sends 7, the labels on the leaves i1, . . ., 1, together with the
Merkle Proofs that the these leaves are correct. We later prove that a malicious prover
that did not compute sufficiently large part of the Merkle tree cannot reply to all of these
queries correctly with non-negligible probability. Similar techniques were already used
in [15,24,3,40,41]

Prover P;“:
On input ¢ € {0, 1}" the prover P;"* executes the following steps.

1. Compute rr = MHashHR(H'f1 ()., HX,(c)).

2. Let (p1,- .-, pha) := G(r). )

3. Forevery i = 1 to a compute M; := MProof ™" (1, . .., pta), 7). For efficiency reasons
we assume that the tree MZ{H’ was not erased after Step 1, and hence each invocation of
MProof ™" does not need to recompute it.

4. Output (M4, ..., M, 7).

Verifier V;"*:
On input (¢, (M1, ..., Ma,r)) the verifier V;"* does the following:
1. Let (p1,-..,pa) := G(r).

2. For every i = 1 to a:run MVrfy(Hy;, (c)). If in all the cases the output is true then output
true. Otherwise output false.

Fig. 3. A PoW scheme (P;", V;'%).
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We now define our PoW scheme (P, V™) that is secure in the H* model, for any
natural parameters x, « and ¢. Let 8 := [t/2] and let A1,..., Ag be the leaves of an
almost complete binary tree of size ¢. Suppose G : {0,1}* — {1,...,5}“ is a hash
function modeled as a random oracle. Note that we do not count the calls to G in the
hashrate of the devices. This is ok since the calls to " will dominate. Our PoW scheme
is presented on Figure 3. It is easy to see that the following holds.

Lemma 7. The prover complexity of (P;"", V") is t and its verifier complexity is
a - [logy t].

Proof. The prover complexity of (P}, V{"®) is equal to the number of nodes of Merkle .,
and hence it is equal to ¢. The verifier complexity is equal to the number of nodes in
each M times «, and hence it is equal to « - [log, ¢]. O

The security of (P;"”, V;"®) is proven in the following lemma.

Lemma 8. The PoW scheme (P}, Vi) is (to, t1)-secure with error t ((t;+1)/t)*+
(3t2 +1)-27%.

Proof. Consider a malicious prover P running in total time £, and in time #; after he
received some ¢ € {0, 1}", and look at his calls to the random oracles during his exe-
cution. Consider the labeled tree M that P sends to the verifier. Of course, every “rea-
sonable” P would check himself the conditions that the verifier checks in Step 2, as
otherwise his probability of guessing the correct labels are very small. In the proof,
however, we need to consider all possible strategies of P, and hence we also need to
take into account the case when he behaves in an unreasonable way. To make it formal,
we say that an execution of P is normal if the tree T that he sends to V is such that
during the execution P issued all the oracle queries that V issues in Step 2. We now
have the following.

Lemma 9. If an execution of P is not normal then the probability that V outputs true
is at most 27",

Proof. If P never issued a query that will be issued during the verification process,
then the only thing he can do is try to guess it. Since the outputs of the random oracle
are distributed uniformly, thus the probability that he guesses correctly is at most 27°.
Hence Lemma 9 is proven. O

Lemma 10. Assume the execution of P on some ¢ € {0, 1}* was canonical and collision-

free (cf. Appendix C) and normal. Then the probability that Is(c) convinces the verifier
Vis at most t1((t; + 1) /1)~

Proof. Let Q denote the set of queries of a type (L, R) that P(c) ever made to the
random oracle H/ (where € is the root of the tree). Clearly |Q| < ¢;. Fix some ¢ € Q
and define recursively a labeled binary tree U (of depth at most [log, ¢]) as follows:

— the root € to U has a label H"(q),
— for every node of U with a label w:
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e if during the execution there was a call (L, R) to HY whose outcome was w
then add to U nodes (A||0) and (\||1) with labels L and R (resp.),

e if during the execution there was a call L to HY whose outcome was w then
add to U a nodes (A||0) with labels L.

Since we assumed that the execution is canonical and collision-free thus each value w
appears at most once as an output of an oracle. Therefore the binary tree U is defined
uniquely for every ¢q. Let X = {01, ..., 0, } denote the leaves of U. Since U is a binary
tree, hence its total number of nodes is at least equal to 2 - m — 1. It is also easy to see,
that, since the execution is canonical, thus all the calls to H" that were issued during the
construction of U were made after P learned ¢). Therefore the total number of nodes in
U is at most fl, and thus we obtain:

m < (t +1)/2 6

The fixed query ¢ € Q also determines the input H"(q) to the oracle G, and, in turn,
G’s output (A1,...,Ay) := G(H"(q)). Fori = 1,...,d let X; denote the event that
Ai € Y. Since the execution is canonical X' had to be chosen before the query g was
sent to H", and thus the choice of X is independent from (A1, ..., A, ). Therefore the
events X}, ..., X2 are independent. Moreover, since the outputs of the random oracle
are uniform, hence for every i the probability of X} is equal to the cardinality m of
|X| divided by the total number [t/2] > t + 1 of leaves in Merkle; .. Therefore, by
(1), it is at most (f; + 1)/t. Let X7 denote the event that for every i we have \; € X,
ie. X7:= A, X/ From the independence of X;"’s we get that

P (X7) < (B +1)/t)*

Let X' denote the sum of events X9 over all ¢ € Q. There are clearly at most #; such ¢’s.
Therefore, from the union bound we have P (X') = 1 ((£, +1)/t)®. If X’ did not happen
then for every ¢ € Q the malicious prover does not know the label of at least one leaf
Ai € H"%(q). Thus, since we assumed that the execution is normal, he cannot send any
tree 1" to V that would convince him. Hence the total probability of P succeeding is at
most £, ((£; + 1)/t)®. This finishes the proof of Lemma 10. O

We now go back to the proof of Lemma 8. Since, by Lemmas 4 and 5 (in Appendix
C) and Lemma 9 the total probability that an execution is either not normal or not
collision-free or not cannonism is at most (3£2 + 1) - 27", If this did not happen, then by
Lemma 10 the malicious prover convinces V with probability at most # ((£; + 1)/t)®.
Altogether, this probability is bounded by (3£2 4+ 1) - 27% + £, ((£; + 1)/t)*. O

We now have the following.

Proof (of Lemma 1). Denote (PTreey, VTreef') := (P;", V") and use Lemma 8.

D Proof of Lemma 2

Proof. First observe that the honest parties have enough time to perform all the com-
putations that the protocol requires them to perform. Clearly, this is true for the “chal-
lenges” and the “Proof of Work™ phases. To see why it holds for the “key ranking
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phase” assume for a while (it will be proved later), that each honest party sends at most
[max/7| messages to each other party in this phase and therefore altogether there are
at most 6 messages delivered to each party in every round. Therefore each party has to
compute at most € times the V function, which altogether takes 6 - timey steps, which
take real time (6 - timey)/m. This is exactly the time we have given to every P to
compute it.

The key generation property is satisfied trivially since the secret keys skp of the
honest parties are never used in the protocol. It is also easy to see that if two parties P
and P’ are honest then the message (Key’, pkp, Af;“, Solp) will always be accepted
in round 0 of the “key ranking” phase, and hence the validity property holds.

To see why the consistency property holds assume that & = rankp(pk) < ¢ for
some pk. This means that P received a message (Key”, pk, B“*1=% ... B*1 Sol) in
k-th round of the “key ranking” phase, and she accepted this pk. Hence, she sent the
message (Key" ™ pk, AG% Bk B! Sol) to P/, and it was received by P’
in the (k + 1)-st round of the key ranking phase. If P’ already accepted pk in some
earlier round then rankp/(pk) < k, and hence we are done. Suppose it was not the
case. Then P, in order to accept pk checks exactly the same conditions as P plus the

condition that c?f, (k1) AT Ttis easy to see that this condition has to hold, since an

honest P always adds cfj_,('ﬂ_l) (sent to him by an honest P’ in the “challenges phase™)
to A5,

What remains is to prove the bounded creation of identities property. To simplify the
calculations assume that timep /(7 - A) and (6 - timey) /(7 - A) are integers, and hence
producing the proof of work takes time timep /7 and each step of the key ranking phase
takes time A+6-timey /7. Observe that each party P accepts a public key pk if it comes
with a proof of work computed on F(pk, B*1), and a sequence B“t'=% ... B+l
such that for every £ + 1 — k < i < ¢ we have F(B?) < B'*l. Because of this,
clearly, F(pk, B*1) is uniformly random to everybody (including the adversary) be-
fore a query F(B“t'~*) is made to F'. Party P also checks if ¢ " < B‘*'~* where
cf;k is P’s challenge from the (¢ — k)th round. Since this challenge needs to be a func-
tion of P’s’ challenge c?; from the Oth round, hence before the protocol started it was
uniform from the point of view of the adversary. Hence, altogether, F'(pk, B*!) was
uniform from A’s point of view before the protocol started. Hence, for each pk the ad-
versary had to invest some number of computing steps, let I denote the set of those pk’s
where he worked for at least £timep steps, where

¢ = 14+7/(2m4)
T l4w/mg

Since £ is a constant and is smaller than 1, thus (by Corollary 1) with overwhelming
probability he will only manage to create to identities from the set /. Hence, what
remains is to give a bound on |I|. Let us look at the total time 7" that the execution of
the protocol takes. The “challenges phase” takes (¢ + 2)A time. The “proof-of-work™
phase takes timep /7 time, and the “key ranking phase” takes (£+1)(A+(0-timey)/m)
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time. Summing it up we obtain

T < (0+2)A+timep/m+ (£ +1)(A+ (0 -timey) /)
< timep /(k%7) + timep /7 + timep /(k%7) + (£ + 1) - 0 - timey /7 )
= (14+2/K%) -timep/m + (£ +2) -0 - timey /7
< (1 +2/K?) - timep /7 + (timep /(K - A - 7)) - 0 - timey /7 3)
_ timep . <1+ 2+9tlmiv/(ﬂﬂ'>>
™ K
_ timep 2 0 [log,timep]
oo <1+52+ k-A-m > @
e(k):=
= T (14 e(w), )

where (2) and (3) come from the fact that timep = k2 - (£ +2) - A - 7, and (4) comes
from the fact that timey =  [log, timep|. We get that

1)< TPEITA (1 g () /(€ - timep) ©)

:M-(l—l-e(fi))-m ™
T 1+¢e(k)

- (%—i_l) 1+7/(2ma) ®

Since log timep = 2log x + log(¢ + 2) + log 7 thus e(x) — 0. Hence for sufficiently
large « the value of (8) is smaller than 7 4 /7 + 1, and hence, since it is an integer, it has
to be at most [7.4/7]. O

E Communication and message complexity

Our main measure of communication complexity is based on the public channel. More
precisely, we say that an execution of a protocol II has communication complexity ~ for
a party P; if the total length of the messages that the party P; sends is ~y. Similarly, the
communication complexity of the adversary A attacking a protocol 11 is the total length
of the messages that .4 sends. We also define the message complexity of an execution
of a protocol 11 for a party P; as the total number of messages the party P; sends, and
analogously the message complexity of the adversary A attacking a protocol II as the
number of messages that the adversary sends. The notion of a message complexity will
be useful when we will be reasoning about the denial of service attacks, since arguably
in many cases it is easier for an adversary to send say 1 message of size 1IMB than 1
million messages of 1 byte size, e.g. if each message requires starting a new IP session.
We explain this in more detail below.
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F Computational complexity

We will also measure the running time of our algorithms in the standard complexity-
theoretic way. In order to avoid confusion with the notion of the real time, we always use
the term “time complexity” in this context. More precisely we say that a an execution
of an algorithm has time complexity n if a Turing machine executes it in n steps. Each
random oracle or ideal functionality call counts as one step. It will be important to
assume that the adversary’s computational complexity is poly-time, since otherwise he
could query the random oracle H on all possible inputs before the protocol starts or
break the underlying cryptographic primitives (like the signature schemes that we use
frequently in our protocols).

G The bilateral communication model.

The reader may object that this way of measuring the communication complexity ig-
nores the fact that sending messages over the public channel may be expensive, as the
messages sent through it have to arrive to every party in the system. What sometimes
might be more realistic is to measure the communication complexity by looking at
messages sent directly between the parties. Such an approach would take into account
differences between the costs of sending a message to one party and sending it to a
large number of parties. We propose the following model for this. Each party P; is able
to send messages either through the public channel, or directly to some other party P;.
Since the set P of parties is unknown to P;, hence in principle P; is not able to address
a message to any other party before it received a message from it . Therefore in our
protocols we will always assume that P; replies to a message of P; that was earlier sent
via the public channel. The security properties of the direct channel between P; and P;
are exactly like the public channel, i.e., A can listen to it, insert his own messages and
delay the messages by time at most A. Moreover A can create a “fake identity” P and
hence provoke P; to send messages to a non-existing Pj. It should be straightforward
how the functionality ]—"57;’”“79 can be extended to cover this case.

We say that an execution of a protocol 1I has communication complexity -y for a
party P; in the bilateral model if the total number of bits that the party P; sends is . The
message complexity of an execution of a protocol 11 for a party P; is the total number
of messages that the party P; sends. In all the cases above the messages sent over the
public channel count |P| times. These notions extend naturally to the communication
and message complexities of the adversary in the bilateral model.

H Communication and message complexity of the RankedKeys
protocol

Communication and message complexity in the public channel model. Before we
provide an efficiency analysis of the RankedKeys scheme let us optimize it a bit'°. First

19 The reason why the first version of the protocol was presented without these optimizations was
that we think that would make the protocol harder to understand.
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of all, observe that the only reason why (Key®, pk, A5 BH1-F . B Sol) is
sent by P at the end of the kth round of the “key ranking phase” is that each other
party P’ needs to be able to check in the the (k + 1)st round that cP'¢~(F+1) < A7k
and F(ASF) < B'=F and F(BY) < B! (fori = k — 1 down to 0). An ob-
vious way to optimize it is to use the Merkle Trees (see Section ??) in the following
way. Instead of using a hash function F' we use MHash, and then instead of sending
AT Btk BT wesend A", MHash (B“H1=F) ... MHash(B‘t!) together
with the Merkle proofs that F'(A% %) was used to compute the hash MHash(B‘+1=*)
and that MHash(B*~%) was used to compute MHash(B**'~%) (for i = k — 1 down to
0). These proofs can be checked efficiently using the MVrfy procedure. The security of
such improved protocol easily follows from Lemma 6 (that states that no poly-time ad-
versary can “fake” a Merkle proof with non-negligible probability). Since the length of
each Merkle proof is at most logarithmic in the length of its input, hence the total length
of every message sent during the “key ranking phase” is O(x(0 + ¢log 6) + p), where p
is the size of the proofs generated by Sol algorithm !!. There are at most £ = [7max /7]
identities created in the execution of the protocol (except a negligible probability), so
each honest party sends at most ¢ messages in the ,.key ranking phase” and hence the
communication complexity of each party in this phase is O(¢x(0 + £log8) + p). It
is also easy to see that the communication complexity of each party in the “challenges
phase” is O(¢k), and in the “Proof of Work™ phase it is O(6x + p). Therefore the total
communication complexity of each party is O(¢x (0 + £log 0) + £p). Each honest party
sends ¢ + 2 messages in the ,,challenge phase”, exactly one message in the ,,Proof of
Work” phase and at most ¢ messages in the ,,key ranking phase”, so the total message
complexity of every party is equal to 2¢ + 3.

Communication and message complexity in the bilateral channels model. Recall
that in the bilateral channels model we assume unreliable channels between the parties
and measure the communication and message complexities by counting the total num-
ber of respectively bits and messages sent over all channels. Of course, every protocol
secure in the public key model can be run also in the bilateral model, by telling each
party to send through the bilateral channels all the messages that normally she would
send over C. This, however, would result in the communication complexity multiplied
by n (since each channel counts now separately). Fortunately, in case of our protocol we
can do something more clever. Note that in the “key ranking phase” the goal of sending
the Af;k vectors is to allow each party to check that here challenge (that is ch_,(kH))
was used to compute ¢ ¥ = F(A%*). In the bilateral channels model we can mod-
ify this by using once again the Merkle trees: each P sends to each P’ a Merkle hash
MHash(Af—jk) together with a proof that P’’s challenge cf{,(kﬂ) was used to compute
it. Later, P’ can easily verify it using the MVrfy procedure. Hence, the communication
complexity becomes O(x(? log § + £p). Obviously, the message complexity is O(nf).

" A% has a length O(x6) and we have O(£) Merkle proofs of length O(k log #) each
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I Proof of Lemma 3

We start by showing that the informal properties of the protocol (i.e, “consistency”,
“validity** and the “bounded creation of inputs”), described in Section 3, hold.

The “validity” property follows simply from the description of the protocol. Each
honest party P receives in the first round the message (sid, v, pkp, Sighp (v, Pkp)),

so she sets Z}p;kD = {v}, where v is the value the dealer wants to broadcast. Note that
an honest party will never accept a message with with the same pkp and different v,
because the value has to be signed by the dealer, what implies that at the end of the
protocol lejk = {v} for each honest P and hence for each honest P we have v € Vp.
To prove the “consistency” consider for a moment a slightly simplified version of
the Broadcast protocol, namely one with the condition |Z]png| < 2 omitted. We will

now prove that in this simplified version at the end of the protocol it holds that Z}’,kD =

Z}p,k,D for any two honest P and P’ at the end of the protocol. To this end consider an

arbitrary v € ZIPDkD. We will prove that v € ZE,ITD. Suppose that P added v to Z?,kD
during kth round. Consider two cases:

— k < {. It means that P sent a message
(sid, v, pkpy, Signp, (v Pkp), .-, Signge, (v, Pkp), Signg (v, pkp))

to P’ at the end of k-th round and it was received by P’ in the (k + 1)-st round.
P’ will accept this message as all conditions are satisfied (or already v € Z}ij ,
namely:

e Conditions (41) and (42) are trivially satisfied.

o It holds that rankp(a,) < k for any 1 < ¢ < k, because otherwise P would
have not accepted the message containing the value v in the k-th round. There-
fore, from the definition of ranked key sets we have that rankp(aq) < k +1
for any 1 < ¢ < k. Moreover, rankp: (pkp) = 0, because P is honest. Hence,
condition (43) is satisfied.

o If the condition (44), namely v ¢ Z;%D is not satisfied than we already have
that v € Z0P.

Hence, either P’ accepted this message and added v to lejk,D at (k + 1)-st round or
v was already in ZE,'TD

— k = ¢. It means that P received a message with a signatures of ¢ different parties on
the value v. Obviously we can assume that at least one party is honest (as otherwise
n = 0 and the protocol is secure trivially). Since there are at most £ = [Tmax /7]
identities created by the RankedKeys protocol, thus at least one of these signatures
comes from an honest party. Therefore, this honest party added this value to her
set in one of the previous rounds and sent a message with the value v to all other
parties. Note that messages sent by honest parties are always accepted by other
honest parties (cf. analysis from the previous point), so the message with this value
was accepted by all honest parties.

Hence, in both cases it is true that v € P’ and therefore at the end of the protocol each
party P has the same value of the set Z]‘lkD and outputs the same value.
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The conditionv € Z}p,kD is added to the Broadcast protocol merely for the efficiency
reasons, as it puts down the number of the messages exchanges by the parties down to
O(n?). Assume that at some point of the protocol it holds that Z}p,kD = {a,b} for
some honest P and some a, b. Hence, P; does not need to broadcast any messages with
values other than a and b, because it is already certain that during the execution of the
protocol each honest P’ will accept the message with values a and b unless it already
had accepted some other two values. Therefore, in this case for each honest party P we
have | Z%P| # 1.

The “bounded creation of inputs” property comes from the “bounded creation of
identities” property of the RankedKeys protocol (as clearly the size of each Vp cannot
be larger than P’s set [Cp).

Description of the simulator. The description of the simulator S is fairly simple. It
starts the adversary .A and forwards all the communication from £ to A and backwards.
Since he receives from the Broadcast™ functionality the list of inputs for the parties
he can simulate the execution of the protocol himself. He observes the calls from A
and the parties to the ideal functionality }'g;,”’o and to the other random oracles used
but the Proof-of-Work scheme. Thanks to this, he can easily “predict” what will be the
output of the honest parties, or, in other words which inputs x will be accepted (on
top of the inputs provided by the honest parties). If he realizes that for some corrupt
party P (with PID pid) her input x p will not be accepted by the honest party he issues
a request (Remove, sid, pid). He also determines the set of inputs x that do not come
from the honest parties but will be accepted by them. For each such = he issues a
(Broadcast, sid, z) query. He then outputs what A outputs. Now, from the “validity”
we obtain that the inputs of the honest parties will be included in ), from “consistency”
we get that the outputs are the same for every party, and from the “bounded creation of
inputs” it follows that the number of (Broadcast, sid, z) queries is at most [ 4/7]. O

J Unpredictable beacon generation

Generating an unpredictable beacon using the Broadcast protcool is done in the follow-
ing straightforward way. First, each party P; draws at random a string s; < {0,1}".

Then, the parties Py, ..., P, execute the Broadcast”™ protocol with inputs s1, ..., s,
respectively. Let s,. .., s, be the result. The parties compute the value of the beacon
as ahash H(s},...,s),,). Note that obviously, the adversary can influence the result of

this computation by adding some s; that he controls. He can even do it after he learns
the inputs of all the other honest parties. However, it is easy to see that if H is modeled
as a random oracle, then a poly-time limited adversary cannot make H(s},...,s.,)
equal to some value chosen by him in advance (except with negligible probability).
Hence, the value of the beacon is unpredictable. This is, of course, a weaker property
than the uniformity, but it still suffices for several applications (e.g. it is ok to use this
value as a genesis block for a new cryptocurrency).
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K Provably secure cryptocurrencies?

It might be tempting to say that the honest majority created for the MPC protocols can
be used to construct a new cryptocurrency. In the simplest case, the parties selected by
this procedure would simply emulate a trusted ledger, but also more general functional-
ities could be emulated. This would have the following advantages over the blockchain-
based systems: (1) possibly quicker transaction confirmation times (no need to wait for
new blocks), (2) security proof (which is especially important given the recent attacks
on Bitcoin described in the introduction). We think it is an interesting option to explore,
but we leave it as future work, since to fully solve this problem a good economic model
for the cryptocurrencies is needed (and we are not aware of such a model). Below we
only state some simple ideas and observations that can be used in such constructions.

One way of implementing a new currency using our methods would be as follows.
Assume that the “honest majority group” is selected once a day. The parties that con-
stitute this group are responsible for recording all the transactions. Independent of this,
they also participate in a process of selecting of a new group for the next day. Once such
a group is selected it identifies itself with a public key (whose corresponding private key
is shared over all parties). Then the parties from the previous group sign a statement that
the “passes” the control over the currency to the new group.

One thing that we need to consider here is the public verifiability of the history
of transactions. Currently Bitcoin is designed in such a way that every new user can
decide himself which chain is the proper one (assuming he knows the genesis block).
The protocols that we propose in this paper provide assurance of correctness only to
the players that were active during the execution of these protocols. This problem could
be dealt with in the following way: a new user of the system waits for 1 day before
deciding which group to trust (so that he can be sure that the “majority group” was
selected honestly). The reader may object that in this case the adversary can break the
system if he gets control over large computing power for a short period of time only.
We want to stress that Bitcoin also suffers from this problem (as pointed out in [18]).

37



