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Abstract

The aim of this dissertation is to investigate the geometry of resolutions of quotient sin-
gularities Cn/G for G ⊂ SLn(C) with use of an associated algebraic object – the Cox
ring. We are interested in the construction of all crepant resolutions and a combinatorial
description of birational relations among them. This information can be read off from the
structure of the Cox ring.

We give a method to construct certain finitely generated subalgebras of the Cox ring R(X)
of a crepant resolutionX → Cn/G and present three methods to verify when such a subring
is actually the whole Cox ring. The construction relies on the embedding, investigated by
Donten-Bury and Wísniewski, of the Cox ring into the Laurent polynomial ring over an
invariant ring of the commutator subgroup [G,G] ⊂ G.

The first method to verify whether a constructed subalgebra is equal to R(X) relies on a
criterion involving valuations of crepant divisors over the singularity Cn/G. Such valua-
tions can be computed using the McKay correspondence of Ito and Reid as restrictions of
certain monomial valuations on the field of rational functions C(x1, . . . , xn). We apply this
method to the family of three-dimensional quotient singularities given by groups acting via
reducible representations on C3. We obtain a presentation of R(X) in terms of generators
and relations, which is then used to study the geometry of resolutions for several examples
of quotient singularities. One example is the infinite series of quotient singularities given
by dihedral groups, investigated previously by Nolla de Cellis and Sekiya with different
methods. We provide an alternative treatment for such quotients. We also investigate the
geometry of crepant resolutions in the simplest examples of the quotient C3/G when such
a resolution contracts a divisor to a point. Due to limitations of methods used prior to our
work examples exhibiting such a phenomenon were not studied earlier even though they
are typical among resolutions of three-dimensional quotient singularities. Two examples
we present belong to the family of reducible representations and one belongs to the family
of irreducible representations which is substantially harder to analyze.

The second method is based on the characterization theorem for the Cox ring in terms
of Geometric Invariant Theory. We present an example of its use when we give another
proof in the case of dihedral groups.

We also give a general method to bound degrees of generators of the Cox ring by use
of the Kawamata-Viehweg vanishing and multigraded Castelnuovo-Mumford regularity.
We use this method in the study of three examples of symplectic quotient singularities
in dimension four. In this study we use another technique to verify that a constructed
subalgebra is equal to the Cox ring, based on the algebraic torus action on the resolution.
The action allows us, via the Lefschetz-Riemann-Roch theorem, to compute the important
part of the Hilbert series of the Cox ring. We expect that this idea may be generalized
and used to study other examples.

Keywords: finite group action, quotient singularity, resolution of singularities, crepant
resolution, symplectic resolution, Cox ring, algebraic torus action.

AMS MSC 2010 classification: 14E15, 14E30, 14E16, 14L30, 14L24, 14C35, 14C40,
14C20, 14Q15
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Streszczenie

Celem niniejszej rozprawy jest zbadanie geometrii rozwi ↪azań osobliwości ilorazowych Cn/G
dla G ⊂ SLn(C) przy użyciu stowarzyszonego obiektu algebraicznego – pierścienia Coxa.
Interesuje nas skonstruowanie wszystkich rozwi ↪azań krepantnych i kombinatoryczny opis
relacji biwymiernych pomi ↪edzy nimi. Opis taki można odczytać ze struktury pierścienia
Coxa.

Podajemy metod ↪e konstrukcji pewnych skończenie generowanych podalgebr pierścienia
Coxa R(X) rozwi ↪azania krepantnego X → Cn/G i trzy metody pozwalaj ↪ace rozstrzyg ↪ać,
kiedy taki podpierścień jest ca lym pierścieniem Coxa. Konstrukcj ↪e przeprowadzamy w
oparciu o badane przez Donten-Bury i Wísniewskiego zanurzenie pierścienia Coxa w pierś-
cień wielomianów Laurenta nad pierścieniem niezmienników komutanta [G,G] ⊂ G.

Pierwszy sposób sprawdzenia, czy skonstruowana algebra jest równa R(X), opiera si ↪e na
kryterium zwi ↪azanym z waluacjami dywizorów krepantnych nad osobliwości ↪a Cn/G. Walu-
acje te można obliczyć przy użyciu odpowiedniości McKaya w sensie Ito i Reida jako za-
w ↪eżenia pewnych waluacji jednomianowych na pierścieniu funkcji wymiernych C(x1, . . . , xn).
Stosujemy to kryterium do rodziny trójwymiarowych osobliwości ilorazowych zwi ↪azanych
z reprezentacjami rozk ladalnymi. Otrzymujemy prezentacj ↪e R(X) poprzez generatory
i relacje, której nast ↪epnie używamy, aby zbadać geometri ↪e rozwi ↪azań kilku przyk ladów
osobliwości ilorazowych. Jednym z nich jest nieskończona seria osobliwości ilorazowych
zadanych przez grupy dihedralne, badana wcześniej przez Noll ↪e de Cellis i Sekiy ↪e przy
użyciu innych metod. Analizujemy również geometri ↪e rozwi ↪azań krepantnych w najprost-
szych przypadkach osobliwości C3/G o rozwi ↪azaniu ści ↪agaj ↪acym dywizor do punktu. Ze
wzgl ↪edu na ograniczenia stosowanych uprzednio metod przyk lady takich rozwi ↪azań nie
by ly dotychczas badane pomimo ich powszechności wśród rozwi ↪azań trójwymiarowych os-
obliwości ilorazowych. Dwa przyk lady należ ↪a do rodziny reprezentacji rozk ladalnych a
jeden do rodziny reprezentacji nieprzywiedlnych, które s ↪a istotnie trudniejsze do przeanal-
izowania.

Drugi sposób jest oparty o twierdzenie charakteryzuj ↪ace pierścienie Coxa w terminach
geometrycznej teorii niezmienników (GIT). Przedstawiamy jego przyk ladowe zastosowanie,
przeprowadzaj ↪ac alternatywny dowód w przypadku grup dihedralnych.

Podajemy również ogóln ↪a metod ↪e ograniczania stopni generatorów pierścienia Coxa przy
użyciu twierdzenia Kawamaty-Viehwega o znikaniu i wielogradowanej wersji regularności
Castelnuovo-Mumforda. Stosujemy t ↪e metod ↪e do zbadania trzech przyk ladów symplekty-
cznych osobliwości ilorazowych w wymiarze cztery. Stosujemy tutaj inn ↪a technik ↪e do
rozstrzygni ↪ecia, czy skonstruowana podalgebra jest równa ca lemu pierścieniowi Coxa,
opieraj ↪ac si ↪e na dzia laniu algebraicznego torusa na rozwi ↪azaniu. To dzia lanie pozwala nam,
dzi ↪eki twierdzeniu Lefschetza-Riemanna-Rocha, obliczyć ważn ↪a cz ↪eść funkcji Hilberta pierś-
cienia Coxa. Spodziewamy si ↪e, że przedstawione w tej cz ↪eści pracy metody zwi ↪azane z
dzia laniem torusa mog ↪a zostać uogólnione i wykorzystane do badania innych przyk ladów.

S lowa kluczowe: dzia lanie grupy skończonej, osobliwość ilorazowa, rozwi ↪azanie osobli-
wości, rozwi ↪azanie krepantne, rozwi ↪azanie symplektyczne, pierścień Coxa, dzia lanie torusa
algebraicznego
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CHAPTER 1

Introduction

The resolution of singularities allows one to modify an algebraic variety to obtain a non-
singular variety sharing many properties with the original, singular one. The study of
nonsingular varieties is an easier task, due to their good geometric and topological prop-
erties. By the theorem of Hironaka [53] it is always possible to resolve singularities of a
complex algebraic variety.

Quotient singularities are the singularities occurring in quotients of algebraic varieties by
finite group actions. A good local model of such a singularity is a quotient Cn/G of an
affine space by a linear action of a finite group. The study of quotient singularities dates
back to the work of Hilbert and Noether [52], [78], who proved finite generation of the ring
of invariants of a linear finite group action on a ring of polynomials. Another important
classical result is due to Chevalley, Shephard and Todd [19], [86], who characterized groups
G that yield nonsingular quotients. Nowadays, quotient singularities form an important
class of singularities, since they are in some sense typical well-behaved (log terminal)
singularities in dimensions two and three (see [66, Sect. 3.2]). Methods of construction
of algebraic varieties via quotients, such as the classical Kummer construction, are being
developed and used in various contexts, including higher dimensions, see [4] and [36] for
a recent example of application.

In the well-studied case of surfaces every quotient singularity admits a unique minimal
resolution. The geometry of such a resolution can be described by the incidence diagram
of the exceptional curves together with their self-intersection numbers. Among surface
quotient singularities one distinguishes the class of Du Val singularities (see e.g. [39])
associated with Dynkin diagrams, which appear also in representation theory.

The modern notion of a crepant resolution generalizes the notion of the minimal resolution
of a Du Val singularity. A remarkable difference is that in higher dimension a crepant
resolution is rarely unique and it may even not exist at all. Nevertheless, the minimality
property makes crepant resolutions highly desired objects. Moreover, the problem of
non-existence can be avoided by introducing a further generalization, a minimal model,
which is a partial resolution admitting a certain minimality property and which for a
quotient singularity always exists. The study of crepant resolutions and minimal models
of quotient singularities shows an interesting interplay of many techniques from various
fields. Among them are geometry, representation theory, topology and even mathematical
physics (see [29, 28]). One may observe such connections in the research on the McKay
correspondence, which describes the relation between the structure of a group and the
geometry of minimal models of a quotient (see [80], [84] for a survey). This research field
appeared at the end of the previous century and is still developing.

The aim of this work is to develop general methods for construction and study of crepant
resolutions of a quotient singularity via their Cox ring and apply them to three- and
four-dimensional examples exhibiting interesting phenomena.

9



10 1. INTRODUCTION

The Cox ring of a normal complex algebraic variety X with a finitely generated class group
Cl(X) is a Cl(X)-graded ring:

R(X) =
⊕

D∈Cl(X)

H0(X,D)

(see chapter 3 for the precise definition). According to ideas presented in the seminal
paper by Hu and Keel [54] if R(X) is a finitely generated C-algebra it gives a powerful
tool to study the geometry of X and its small modifications. In particular one may recover
X and all its codimension two modifications as quotients of open subsets of SpecR(X) by
the action of the characteristic quasitorus T = Hom(Cl(X),C∗). This observation is the
central theme of our work, the basis of all our research that contributes to this dissertation.
As explained in section 3.4, the finite generation assumption is satisfied whenever X is
a minimal model of a quotient singularity. In this case one may recover all the minimal
models of the singularity together with birational relations between them (flops, see [83])
by using the geometric invariant theory (GIT) to construct quotients corresponding to
chambers in a certain subdivision of the movable cone of X. Knowing the Cox ring one
may find the movable cone of X, its subdivision and GIT quotients corresponding to
chambers.

1.1. Motivation and state of the art

The existence and geometry of crepant resolutions of quotient singularities is an active
field of research. Here we outline problems that motivated our work and summarize what
was known before and what developed while we were conducting the research presented
in the thesis.

Existence and construction of symplectic resolutions. The open problem that
originally motivated our work is the problem of existence and construction of crepant res-
olutions of symplectic quotient singularities. A crepant resolution of such a singularity
preserves the symplectic structure and thus is often called a symplectic resolution (the
converse also holds – a resolution preserving the symplectic structure is crepant). Such
resolutions may find applications in constructing Hyperkähler manifolds via the general-
ized Kummer construction [4]. Finding new Hyperkähler manifolds is an important and
difficult problem in complex geometry.

A theorem of Verbitsky [90] gives a necessary (but insufficient) criterion for the existence of
a crepant resolution of a quotient C2n/G, whereG is a finite group of linear transformations
preserving the symplectic form on C2n. The condition says that the group G has to be
generated by symplectic reflections, i.e. elements which fix a subspace of codimension 2
(see section 2.3).

Finite groups generated by symplectic reflections were classified by Cohen in [21]. The
problem of existence of symplectic resolutions was investigated in [43, 9, 11, 12, 94].
According to [9] and [12, 4.1], for the following groups it is known that a symplectic
resolution exists:

(1) Sn+1 acting on C2n via direct sum of two copies of the standard n-dimensional rep-
resentation of Sn+1. Here a resolution can be constructed via the Hilbert scheme
Hilbn+1(C2). The example of S3 from section 7.3 is the only four-dimensional
representative of his family.

(2) H oSn = HnoSn, where H is a finite subgroup of SL2(C), so that C2/H is a Du
Val singularity, and Sn acts on Hn by permutations of coordinates. The natural
product representation of Hn on C2n extends naturally to the action of H o Sn.
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One of the resolutions is Hilbn(S) where S is the minimal resolution of the Du
Val singularity C2/H. The example of Z2 o S2 analyzed in section 7.4 belongs to
this family. Note that for n = 1 we obtain Du Val singularities and their minimal
resolutions.

(3) A certain four-dimensional representation of the binary tetrahedral group. The
existence of crepant resolutions was first proved by Bellamy in [9]; they were con-
structed later by Lehn and Sorger, see [68]. We consider this case in section 7.5.

(4) A group of order 32 acting on C4, for which the existence of crepant resolutions
was proved in [11]. Their construction and the Cox ring were investigated in [37]
and [47].

Apart from this list, [9], [12] and [94] give also negative results. The non-existence of
crepant resolutions is shown for certain infinite families of representations from the Cohen’s
classification [21]. Notably, the results of the paper [94], that appeard when this work was
in progress, rely on the techniques developed in [37] and [32] (the second paper contributed
partially to this thesis), using Cox rings. On the other hand, even in dimension 4 there
still are infinitely many groups on the Cohen’s list for which the question of existence of
a crepant resolution remains unanswered.

There are also other recent results on the birational geometry of symplectic quotient singu-
larities, related to our work. For example in [10], Bellamy used the work of Namikawa [77]
to find the number of minimal models of a given symplectic quotient singularity. And as
we were finishing this thesis, there appeared paper [8] by Bellamy and Craw in which they
study an interpretation of resolutions for wreath products H oSn as in (2) above as certain
moduli spaces, constructing them with the use of GIT.

Geometry of three-dimensional crepant resolutions. Three-dimensional quo-
tient singularities C3/G for G ⊂ SL3(C) have also been studied extensively. In this case it
is known, see [55, 56, 71, 85], that a crepant resolution exists. It is usually nonunique,
but each two crepant resolutions differ by a modification in codimension two, and the set
of all such resolutions for a given quotient singularity is finite. This set together with
birational relations between its elements form a natural object of study.

As shown in [17], a crepant resolution of C3/G can be constructed as the equivariant
Hilbert scheme G-Hilb, which was conjectured by Nakamura in [75] (see also [25] for the
case of G abelian). In [24] all small Q-factorial modifications of G-Hilb for G abelian
are analyzed and constructed as certain moduli spaces. It was also conjectured that such
a construction might be the possible for arbitrary finite subgroup of SL3(C) – this is
the celebrated Craw-Ishii conjecture. Another successful approach to investigating such
resolutions is based on homological methods and noncommutative algebra [16, 91, 79].
However, up to now, significant results have been obtained only for groups not containing
any elements of age 2. Geometrically, this condition is equivalent to saying that the
resolution does not contract a divisor to a point (see corollary 2.2.27, or the original
source [57]), which apparently makes these resolutions easier to deal with. See e.g. [79] for
an application of this method to finite subgroups G ⊂ SO3, in particular to representations
of dihedral groups, which we study in 5.3.

Cox rings of crepant resolutions. The case of surface quotient singularities was
analyzed by Donten-Bury in [31]. In [37] Donten-Bury and Wísniewski studied the exam-
ple of the symplectic quotient singularity of dimension 4 by a certain group of order 32 (see
(4) above, in the part concerning symplectic quotient singularities). These two papers laid
the groundwork for the study of crepant resolutions X of quotient singularity Cn/G via

Cox ring R(X) by use of the natural embedding R(X) ⊂ C[x1, . . . , xn][G,G][Cl(X)]. Here
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[G,G] ⊂ G is the commutator subgroup and the rank of the finitely generated free abelian
group Cl(X) may be computed via the McKay correspondence of Ito and Reid [57]. In
other words, it was known from these works that the Cox ring of a resolution of a quotient
singularity given by G embeds into the Laurent polynomial ring over the ring of invariants
of the commutator subgroup of G. This embedding is the starting point for the research
presented here.

Prior to our studies there were also known computational methods by Hausen, Keicher and
Laface [49], [47] of finding Cox rings of birational modifications of a variety with known
Cox ring. The main difficulty to apply them in our context is describing the crepant
resolution in terms of the blow-up operation (but see [47] for an application to singularity
studied in [37]).

There are also methods specific to the complexity one case, i.e. for varieties with an
effective action of an algebraic torus of the rank one smaller that the dimension of the
variety [50]. These methods were generalized from complete to not necessarily complete
case by Hausen and Wrobel in [48] when this work was in progress. As our ultimate goal
is to understand the more general case we do not use these results.

As this work was in progress there appeared two more articles developing computational
methods related to resolving singularities via Cox rings. The first is paper [35] by Donten-
Bury and Keicher in which the methods of [49] were combined with tropical geometry to
give an algorithm that in some cases computes the Cox ring of a resolution of a quotient
singularity. This algorithm also relies heavily on the computational power, and we do not
use it in this work. The second was the work of Yamagishi [94] providing an algorithm to
check the slightly generalized valuative criterion given in [32] (we presented the criterion
here in even more general form in chapter 4, see theorem 4.1.15). We use a part of this
algorithm, with some improvements, once, in section 5.5, to study the geometry of crepant
resolutions in the case of a three-dimensional quotient singularity given by a trihedral
group of order 21. The quick growth of computational complexity of this algorithm with
the growth of the number of crepant divisors as well as the fact that it does not always
produce the minimal set of generators suggests to seek for other methods.

As we mentioned before, there is an ongoing research on the explicit minimal model pro-
gram with use of homological methods by Wemyss and others [91], and the research on the
symplectic varieties with use of noncommutative algebra by Bellamy, Namikawa, Schedler
and others [9], [11], [77],[10]. We believe that as these studies develop – the one via Cox
rings presented here, and the ones via homological methods and noncommutative algebra
– each of them may benefit from the existence of the other ones.

1.2. Results and content of the dissertation

Chapters 2 and 3 give the general background for the main objects of our interest in this
work. These are quotient singularities and resolutions in chapter 2 and Cox rings, together
with the concepts of affine GIT of algebraic quasitorus actions, indispensable for retrieving
geometric information from them, in chapter 3.

The first result that to our best knowledge is not explicitly written elsewhere is in sec-
tion 3.4.2, where we generalize directly the well-known result by Hu and Keel [54, Proposi-
tion 2.9] characterizing complete Mori Dream Spaces to the relative setting (theorem 3.4.7).
Then we use this fact to show that crepant resolutions or, more generally, minimal models
of quotient singularities defined by subgroups of SLn(C), are relative Mori Dream Spaces.
In other words, their Cox rings are finitely generated and knowing the Cox ring one may
reconstruct all such resolutions or minimal models together with their flops via GIT of
the characteristic quasitorus action on the spectrum of the Cox ring. In particular the
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information such as the number of minimal models, or graph of flops are encoded by the
subdivision of the cone of movable divisors. The structure of this cone is described in
terms of the generators of the Cox ring by proposition 7.5.7, which is a straightforward
generalization of the analogous result for the complete Mori Dream Spaces given in [5,
Sect. 4.3.3].

The main results of this work are presented in chapters 4, 5 and 7.

In chapter 4, given a projective birational map X → Y we study the natural embedding
of R(X) into a Laurent polynomial ring over R(Y ) generalizing the setup from [37].
We propose a natural way of constructing a finite ‘candidate’ for a set of generators of
R(X) from a given set of generators of R(Y ) and we give a valuative criterion to verify
whether such a ‘candidate’ is an actual set of generators. Then, specializing to the case
of quotient singularities Cn/G for G ⊂ SLn(C), we make this construction and valuative
criterion effective in terms of monomial valuations of junior conjugacy classes of G, using
the McKay correspondence of Ito and Reid [57]. We also present another criterion, based
directly on the characterization of the Cox ring in terms of GIT from [5, Sect. 1.6.4].
Finally, we show how one may use multigraded Castelnuovo-Mumford regularity from [70]
together with the Kawamata-Viehweg vanishing to bound the degrees of generators of a
Cox ring.

Chapter 5 consists of the systematic application of results of the first part of the previous
chapter to study the three-dimensional case. Here, we give the general treatment of quo-
tient singularities C3/G, where C3 is a reducible G-representation and G is a nonabelian
group (so that the quotient is not a toric variety). Then, we analyze the case of dihedral
groups – we reobtain the results of Nolla de Cellis and Sekiya on geometry of crepant
resolutions using methods of Cox rings, where they used theory of noncommutative res-
olutions. We give two proofs for the presentation of the Cox ring in terms of generators
and relations – one proof is based on the general theorem using valuative criterion of 4.1
and the other employs the criterion using characterization theorem for Cox rings from
section 4.3. Finally, we study some examples of groups with elements of age two. We
study two such examples that belong to the general family of reducible representations
studied in the first part of the chapter. Then, in the last section, we study the simplest
possible case of the quotient singularity C3/G where C3 is an irreducible G-representation
and G contains elements of age two. Here we again use the construction of a ‘candidate’
for a set of generators together with a part of the algorithm of Yamagishi [94, Sect. 4] to
verify that the appropriate ‘candidate’ is an actual set of generators.

Chapter 6 is an interlude dedicated to various facts on algebraic torus actions such as lifting
the action to a crepant resolution, local structure of the action on a smooth variety, the
Bia lynicki-Birula decomposition and the equivariant Euler characteristic. Unfortunately,
for the last concept we did not find a satisfactory exposition including the Lefschetz-
Riemann-Roch theorem at the level of generality adequate to our purpose. Therefore we
decided to recall the basic definitions of the algebraic equivariant K0 for an algebraic torus
action and sketch the proof using the localization formula in 6.4.

In the final chapter 7 we exemplify multigraded Castelnuovo-Mumford bounding tech-
niques of section 4.4 in the study of three symplectic quotient singularities in dimension
four. In each case we find the Cox ring and describe the codimension two maximal cycles
(the components of the fibre over 0) as well as the flops. The arguments here are based
on the presence of a two-dimensional algebraic torus action, which comes from the fact
that each of the three groups gives a reducible representation. The line of the argument
here is more subtle than in previous chapters as we are simultaneously studying the ge-
ometry of a resolution and moving toward the proof that the given ‘candidate set’ is an
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actual set of generators of the Cox ring. The final proof of the latter part is based on the
Lefschetz-Riemann-Roch formula from section 6.4 and the bounding technique from 4.4.
Along the way we use computer calculations several times. First, to study the central
fibre of a candidate for a resolution. Then, to prove that the GIT quotient of the ring
generated by the appropriate ‘candidate set’ is a crepant resolution. Finally, we use a
computer algebra system to find the Hilbert series of this ring and compare it with results
of the Lefschetz-Riemann-Roch formula to prove that this ring is the whole Cox ring.

Notation and conventions

We consider algebraic varieties over the field C of complex numbers and make the usual
assumption that they are irreducible.

Let X be an algebraic variety. By C(X) we denote its field of rational functions. By Xsm

we mean the smooth locus of X. If Z ⊂ X is a closed subvariety, then by OX,Z we denote
the local ring of X at Z, i.e. the stalk of the structure sheaf OX at the generic point of Z.

Let R be a commutative ring with unity. By R∗ we denote the group of units of R. If
r1, r2 ∈ R then by r1 | r2 we denote the fact that r1 divides r2, i.e. that there exists r′

such that r1r
′ = r2.

All algebraic group actions on algebraic varieties will be algebraic.

Assume that an algebraic group H acts on algebraic variety X. For x ∈ X we denote by
Hx the isotropy group of x, i.e. Hx = {h ∈ H : hx = x}. By XH we denote the fixed point
locus of the action and for h ∈ H by Xh we denote the fixed point locus of the element h.

By a torus we mean an algebraic group isomorphic to (C∗)m for some m. By a quasitorus
we mean an algebraic group isomorphic to (C∗)m ×H, where H is a finite abelian group.

If σ is a cone in a rational or real vector space then by σ◦ we denote the relative interior
of σ and by σ∨ we denote the dual cone {w : 〈w, v〉 ≥ 0} in the dual vector space.

ζr is a fixed complex primitive root of unity of order r.

Z≥0 is the set of nonnegative integers {0, 1, 2, . . .}.



CHAPTER 2

Singularities and their resolutions

2.1. General results from birational geometry

Here we collect a number of notions from birational geometry and related properties that
we will use to describe objects of our studies and to formulate our results. First, in 2.1.1 we
give the definition of a (discrete) valuation and relate it to divisors over an algebraic variety.
These concepts are essential for later parts of the work as general results in chapter 4 will
be formulated in terms of valuations (see in particular theorem 4.1.15) and the subsequent
chapters will depend on these general results. In 2.1.2 we define the discrepancy of a
divisor over an algebraic variety and we introduce various types of singularities. The
last two sections 2.1.3 and 2.1.4 introduce concepts of a resolution of singularities and of
a minimal model of an algebraic variety. The general reference for birational geometry
is [64], especially Chapter 2 for the content of this part of the work.

2.1.1. Valuations and divisors. Let k be a field and let K/k be a field extension.

Definition 2.1.1 (Discrete valuation). A discrete valuation over k on K is a function
ν : K → Z ∪ {∞} satisfying:

(1) ν(K∗) ⊂ Z, ν(0) =∞, ν(k∗) = 0,
(2) ν(xy) = ν(x) + ν(y),
(3) ν(x+ y) ≥ min{ν(x), ν(y)}.

The ring Aν = {f ∈ K : ν(f) ≥ 0} is called a valuation ring of ν and its quotient kν by
its unique maximal ideal mν := {f ∈ K : ν(f) ≥ 0} is called the residual field of valuation
ν. The ring of the form Aν is called a discrete valuation ring or in short DVR.

Throughout this text we use only discrete valuations over C, so unless we specify otherwise,
whenever we write valuation we mean discrete valuation over C. We will be using the
concept of valuation in the geometric setting that we now present. Let Y be a normal
algebraic variety.

Example 2.1.2. Let E be an irreducible divisor on Y . Then we have a valuation νE on
the field of fractions C(Y ) such that νE(f) is the order of vanishing of f at E. Formally
νE is defined first on the local ring (OY,E ,mY,E) as νE(f) = min{n : f ∈ mn

Y,E}, and then

extended uniquely to C(Y ) by νE(f/g) = νE(f)− νE(g).

This order of pole or order of vanishing of a divisor type of valuation can be generalized
using divisors on birational models of Y .

Definition 2.1.3 (Divisors over Y and algebraic valuations). Now let E be a divisor
on some normal algebraic variety equipped with birational morphism ϕ : X → Y . We
call divisors of this form for various X and ϕ divisors over Y . Then, as ϕ induces an
isomorphism C(X) ∼= C(Y ), we have a valuation νE on C(Y ) even though ϕ(E) might not
be a divisor on Y . The valuation of this form is called an algebraic valuation on C(Y ) and
the image of E in Y is called the center of valuation νE .

15
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The residual fields of algebraic valuations are of transcendence degree over C equal to
dimY − 1. In fact, by theorem of Zariski, every valuation of C(Y ) over C having this two
properties is algebraic, see [64, Lemma 2.45].

2.1.2. Discrepancies and related types of singularity. Here we introduce the
notion of the discrepancy of a divisor over an algebraic variety and related types of sin-
gularity. These are important technical notions in birational geometry. In this work they
will be used in two subsequent sections to define special classes of (partial) resolutions of
singularities – crepant resolution and minimal model – the main objects of our interest.

Let Y be a normal algebraic variety.

Definition 2.1.4. (Discrepancy of a divisor over X) Assume that mKY is a Cartier
divisor for a positive integer m. Let ϕ : X → Y be a birational map from another normal
algebraic variety X. Denote by Ei the irreducible exceptional divisors of ϕ. Then we have
an equivalence of divisors:

mKX ∼ ϕ∗(mKY ) +
∑
i

m · a(Ei, Y )Ei

for some rational numbers a(Ei, Y ) such that m · a(Ei, Y ) ∈ Z. The number a(Ei, Y ) is
called the discrepancy of Ei with respect to Y .

As the notation suggests, the discrepancy of a divisor over Y depend only on Y and the
valuation νE on the function field C(Y ), but not on the choice of the particular variety X
with a birational map ϕ : X → Y such that νE is a valuation of a divisor on X (see [64,
Remark 2.23]).

Definition 2.1.5 (Crepant divisors). An irreducible divisor E over Y is called crepant if
its discrepancy vanishes, i.e. if a(E, Y ) = 0.

If Y is smooth then a(E, Y ) ≥ 1 for every divisor E over Y [64, Lemma 2.29]. In fact,
discrepancies of divisors over Y allow one to introduce the various types of singularity.

Definition 2.1.6 (Singularities related to discrepancies). We will say that Y has:

(1) terminal singularities if a(E, Y ) > 0 for every divisor E over Y ,
(2) canonical singularities if a(E, Y ) ≥ 0 for every divisor E over Y ,
(3) log terminal singularities if a(E, Y ) > −1 for every divisor E over Y .

Remark 2.1.7. The discrepancy of a divisor over Y is a special case of the more general
concept of the discrepancy of a pair (Y,∆), where ∆ is an effective divisor on Y . For
this generalization and related notions of singularities of pairs we refer the reader to [64,
Sect. 2.3]. We will not use them except for one step in the proof of theorem 3.4.10. The
notion of discrepancy from definition 2.1.4 coincides with the notion of discrepancy of pair
(Y,∆) for ∆ = 0.

2.1.3. Resolution of singularities. Let Y be an algebraic variety. Due to many
desired properties of smooth varieties it is interesting to find a way of altering a singular
variety to obtain a smooth one. One of such ways – resolving singularities – is a theme of
this work. Informally speaking, to resolve singularities of Y means to cut out the singular
locus of Y and replace it with a Zariski closed subset to obtain a smooth variety. This
intuition is formalized in the following definition.

Definition 2.1.8 (Resolution of singularities). A resolution of singularities of Y is a
proper birational morphism ϕ : X → Y from a smooth variety X, which is an isomorphism
outside the singular locus of Y , i.e. ϕ|X\ϕ−1(Sing Y ) : X \ ϕ−1(Sing Y ) → Y \ Sing Y is
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an isomorphism. A resolution is called a projective resolution when it is a projective
morphism.

In this work we consider only projective resolutions. By abuse of notation, whenever we
say a resolution we mean a projective resolution. In particular, the domain of a resolution
will always be a quasiprojective variety, whenever we will be resolving singularities of an
affine variety.

In characteristic zero, for every algebraic variety over algebraically closed field there exists a
projective resolution of singularities – this is the celebrated result of Hironaka on resolution
of singularities [53, Main theorem I].

Given the existence of a resolution one may would like to ask what is the minimal possible
way of resolving singularities of Y . For example, if Y is a curve, such a resolution is given
by the normalization. If Y is a surface, then there always exists a minimal resolution,
i.e. a resolution on which one cannot contract any curve to obtain another resolution.
In higher dimensions there are also concepts that express such a minimality postulate, at
least under certain mild assumptions on the singularities. We will present two of them,
one – a crepant resolution – in this section, and another – a minimal model – in the next
one.

Assume that the variety Y is normal. Then, there is a well-defined Weil canonical divisor
class KY on Y which is the unique class of a divisor restricting to the canonical divisor on
the smooth locus of Y . Assume that KY is Q-Cartier.

Definition 2.1.9 (Crepant resolution of singularities). A crepant resolution of singulari-
ties of Y is a resolution of singularities ϕ : X → Y such that every exceptional divisor on
X is a crepant divisor over Y . In other words, a resolution ϕ : X → Y is crepant if and
only if ϕ∗KY = KX .

We will see in theorem 2.2.20 that in the case of canonical quotient surface singularities
the concept of crepant resolution coincides with the concept of minimal resolution. Unfor-
tunately, as we also will see in examples 2.2.25 and 2.3.6 respectively, a crepant resolution
of a canonical quotient singularity does not have to be unique, nor has it to exist at all.
The problem of non-existence of crepant resolution will be discussed further in the next
section, where we introduce minimal models. As for non-uniqueness, for our purposes it
will be sufficient to note that a crepant resolution is unique in codimension one, since the
components of its exceptional locus are precisely the crepant divisors over the resolved
singular space.

2.1.4. Minimal models. In this section we present a concept of a minimal model
in the relative setting. As we noted at the end of the previous section there are canonical
quotient singularities for which a crepant resolution does not always exists. On the other
hand a minimal model always exists (by nontrivial results from the Minimal Model Pro-
gram), but in general it does not have to be smooth – it gives only a partial resolution of
singularities. Nevertheless, in our setting a smooth minimal model is precisely a crepant
resolution.

Although in concrete examples studied in detail in the later parts of this work the crepant
resolution will exist, introducing minimal models will help us to spell out the results of
chapter 4 in a more general setting.

Let ϕ : X → Y be a projective morphism from a normal Q-factorial varietyX with terminal
singularities to a normal Q-factorial variety Y . The following is the relative version of the
notion of minimal model from Mori theory (see [64, Definition 2.13, Example 2.16]).

Definition 2.1.10 (Minimal models in the relative setting).
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(1) A minimal model of ϕ is a normal Q-factorial variety X ′ with terminal singulari-
ties together with a projective morphism ϕ′ : X ′ → Y and a projective birational
morphism ψ : X → X ′ such that:
(a) KX′/Y is ϕ′-nef.
(b) The following diagram commutes:

X
ψ //

ϕ   

X ′

ϕ′~~
Y

(2) A minimal model of Y is a projective morphism ϕ : X → Y such that X is
terminal and KX/Y is ϕ-nef.

In later chapters we use the following characterization of minimal models for varieties with
canonical singularities and trivial canonical divisor:

Proposition 2.1.11. Assume that KY = 0 and Y has canonical singularities. Then
ϕ : X → Y is a minimal model of Y if and only if X is terminal and KX = 0. In
particular, in this situation every crepant resolution of Y is a minimal model of Y and
every smooth minimal model of Y is a crepant resolution of Y .

Proof. One direction is immediate since a linearly trivial divisor is obviously rela-
tively nef. On the other hand if ϕ : X → Y is a minimal model of Y then KX =

∑
i aiEi

for exceptional divisors Ei and coefficients ai ≥ 0. Since KX is nef one has ai = 0 by
negativity lemma [64, Lemma 3.39]. �

Theorem 2.1.12. Let Y be a normal Q-factorial variety with canonical singularities and
assume that KY = 0. Then there exists a minimal model ϕ : X → Y .

Proof. This follows from [15, Corollary 1.4.3] applied to valuations of crepant divisors
on any resolution of singularities of Y and combined with proposition 2.1.11. �

2.2. Quotient singularities and their crepant resolutions

In this section we introduce the singular spaces whose resolutions are main objects of study
in this work – quotient singularities, and we outline their basic properties. In 2.2.1 we
summarize the results on their birational geometry and then, in 2.2.2 and 2.2.3 we present
the known results on two- and three-dimensional cases. The general reference for algebraic
properties of quotient singularities is [13].

Let G ⊂ GLn(C) be a finite subgroup.

Theorem 2.2.1 (Hilbert-Noether [13, Theorem 1.3.1]). The ring of invariants C[x1, . . . , xn]G

is a finitely generated C-algebra.

Definition 2.2.2 (Quotient variety, quotient singularity). We denote the corresponding
affine variety SpecC[x1, . . . , xn]G by Cn/G and call it a quotient variety of the action of
G on Cn. We call a quotient variety Cn/G a quotient singularity if it is singular.

The celebrated Chevalley-Shephard-Todd theorem tells us which quotient spaces Cn/G
are singular in terms of the group G.

Definition 2.2.3 (Complex reflection, complex reflection group, small group). An element
g ∈ GLn(C) is called a complex reflection if dim(Cn)g = n− 1. A subgroup G ⊂ GLn(C)
is called a complex reflection group if G is generated by complex reflections. A subgroup
G ⊂ GLn(C) is called a small group if G does not contain complex reflections.
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Example 2.2.4. The matrix
(−1 0

0 1

)
is a complex reflection. On the other hand every

subgroup G ⊂ SLn(C) is a small group.

Theorem 2.2.5 (Chevalley-Shephard-Todd [13, Theorem 7.2.1]). The quotient algebraic
variety Cn/G is smooth if and only if G is a complex reflection group. In such a case
Cn/G ∼= Cn.

Note that the subgroup generated by complex reflections is normal as a matrix conjugate
of a complex reflection is a complex reflection. As a consequence of this simple observation
and of the theorem above, in the study of quotient varieties Cn/G for G ⊂ GLn(C) one
may restrict attention to quotient singularities for small groups G.

Proposition 2.2.6 (Properties of quotient singularities). Let G ⊂ GLn(C) be a small
finite group. Then

(i) Cn/G is a normal variety.
(ii) Pic(Cn/G) = 0.

(iii) There is a natural isomorphism Cl(Cn/G) ∼= Ab(G)∨ := Hom(G,C∗). In partic-
ular Cn/G is Q-factorial.

(iv) The canonical Weil divisor class KCn/G is trivial if and only if G ⊂ SLn(C).

References. See [13, Proposition 1.1.1] for (i), [13, Theorem 3.6.1] for (ii), [13,
Theorem 3.9.2] for (iii) and [13, Theorem 4.6.2] for (iv). �

The following result will be used to analyze the structure of quotient singularities in
corollary 2.2.8 and in proposition 2.3.12.

Proposition 2.2.7. Let H ⊂ G and denote by pH : Cn → Cn/H the quotient map, and by
pG,H : Cn/H → Cn/G be the map induced by inclusion of invariants. Let x ∈ Cn. Then
pG,H is étale at pH(x) ∈ Cn/H if and only if Gx ⊂ H. In particular the quotient map
p : Cn → Cn/G is étale at x ∈ Cn if and only if Gx is trivial.

Proof. It may be checked topologically (using standard Euclidean topology over C)
that the map pH is unramified. Under our assumptions this is equivalent to pH being
étale. For the algebraic version of the proposition, which works more generally over any
algebraically closed field of characterstic 0 see [69, Sect. II, Lemme 2]. �

Now we may use Chevalley-Shephard-Todd theorem to specify which points on the quotient
variety Cn/G are singular.

Corollary 2.2.8. Let G ⊂ GLn(C) be a finite group, not necessarily small. Then
Sing(Cn/G) is the image of the points in Cn for which the isotropy group Gx is not gen-
erated by complex reflections.

Proof. Let x ∈ Cn. By proposition 2.2.7 the natural map induced by inclusion of
invariants Cn/Gx → Cn/G is étale. In particular the image of x in Cn/G is singular if
and only if the image of x in Cn/Gx is singular. By theorem 2.2.5 the latter holds if and
only if Gx is not generated by complex reflections. �

2.2.1. Discrepancies and the McKay correspondence. Here we collect the gen-
eral results concerning the birational geometry of quotient singularities. For the later
chapters the most important result of this part is the McKay correspondence of Ito and
Reid (theorem 2.2.18). The main references for this section are [66, Sect. 3.2] and papers
on the McKay correspondence [57], [84].

For each r fix a complex primitive root ζr of order r.
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Notation 2.2.9. Let g ∈ GLn(C) be an element of finite order r. Then g has a diagonal
form diag(ζa1r , . . . , ζ

an
r ) for some integers ai ∈ [0, r). In such situation we will write g ∼

1
r (a1, . . . , an). Note that this does not depend on the representative of the conjugacy class
of g.

Definition 2.2.10 (Age). The age of the conjugacy class of g ∼ 1
r (a1, . . . , an) is the

number age(g) = 1
r

∑n
i=1 ai.

By definition age(id) = 0, the age of an element g 6= id is always positive and if g ∈ SLn(C)
then age(g) is an integer.

Definition 2.2.11 (Monomial valuation).

(1) Let (a1, . . . , an) be a tuple of integers such that gcd(a1, . . . , an) = 1. The corre-
sponding monomial valuation on the field C(x1, . . . , xn) of rational functions is
the unique valuation ν over C satisfying

ν

(∑
α

cαx
α

)
= min

{
n∑
i=1

αiai : cα 6= 0

}
.

(2) If g ∼ 1
r (a1, . . . , an) has a diagonal form in coordinates x1, . . . , xn, then we

define the monomial valuation νg of g as the monomial valuation of the tuple
(a1, . . . , an).

The concept of monomial valuation has the following geometric meaning:

Proposition 2.2.12 ([57, Sect. 2.4]). If (a1, . . . , an) are positive integers with gcd(a1, . . . , an) =
1 and W → Cn is the corresponding weighted blow-up with exceptional divisor denoted by
E then νE,Cn is the monomial valuation defined by (a1, . . . , an).

The following technical result describes in detail divisors over quotient singularities in
terms of the age and monomial valuations of elements of G. To make statement more

concise we use the following convention: whenever we write that E ⊂ X ϕ−→ Y is a divisor
over Y we mean that X is a normal variety, ϕ : X → Y is a birational morphism and
E ⊂ X is a divisor.

Theorem 2.2.13 (Divisors over a quotient). Let G ⊂ GLn(C) be a small group and denote
Y = Cn/G.

(i) If F ⊂ X ′ ϕ−→ Cn is a divisor over Cn then X ′ admits a rational action of G such
that ϕ is an equivariant map and the group Fix(F ) := {g ∈ G : g fixes a general point of F}
is cyclic.

(ii) Every divisor E over Y arises as a divisor over Cn. That is, if E ⊂ X
ϕ−→ Y is

a divisor over Y then there is a birational morphism ϕ′ : X ′ → Cn, a morphism
ψ : X ′ → X and a divisor F ⊂ X ′ such that ψ(F ) = E and the following diagram
commutes:

X ′

ψ
��

ϕ′ // Cn

��
X

ϕ // Y

Moreover ϕ,ϕ′, ψ can be chosen as proper morphisms and then a(E, Y ) = a(F,Cn)+1
#Fix(F ) −

1.
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(iii) Let g ∈ G, g ∼ 1
r (a1, . . . , an), gcd(a1, . . . , an) = 1. Assume that there is no

element g′ ∈ G with g′ ∼ 1
r′ (a1, . . . , an), r | r′ diagonalizable in the same basis.

Consider the weighted blow-up W → Cn with weights (a1, . . . , an) in coordinates
in which g has the diagonal form, its exceptional divisor F . Let E be image

of F over Y , i.e. the divisor E ⊂ X
ϕ−→ Y such that there is a rational map

ψ : W 99K X with ψ|F : F 99K E well-defined and dominating and such that the
diagram below commutes:

W

ψ
��

ϕ′ // Cn

��
X

ϕ // Y.

Then Fix(F ) = 〈g〉, a(E, Y ) = age(g) − 1 and νE = 1
rνg|C(Y ). Moreover, if

age(g) < 2, then every divisor E over Y with Fix(E) = 〈g〉 and a(E, Y ) =
age(g)− 1 has this form.

(iv) Let E be a divisor over Y and denote the corresponding divisor over Cn as in (ii)
by F . Assume Fix(F ) = 〈g〉 6= {id} and g ∼ 1

r (a1, . . . , an) with gcd(a1, . . . , an) =
1. Then a(E, Y ) ≥ age(g)− 1.

References. See [57, Sect. 2.3-4, 2.6-7], [84, Theorem 2.1] or [66, Theorem 3.21]
and its proof. The map ψ in (iii) exists by a general lemma of Abhyankar and Zariski [66,
Lemma 2.22]. See also [61, Lemma 2.2] for a result related to (iv). �

We now draw some corollaries of theorem 2.2.13. Among them are the Reid-Tai criterion
and the McKay correspondence of Ito and Reid. But first, by (ii) and the smoothness of
Cn we obtain immediately that:

Corollary 2.2.14. Cn/G has log terminal singularities.

Theorem 2.2.15 (Reid-Tai criterion [82, 4.11]). Cn/G has canonical (terminal) singular-
ities if and only if age(g) ≥ 1(> 1) for every g ∈ G \ {id}. In particular if G ⊂ SLn(C)
then the corresponding quotient singularity is canonical.

Proof. We use theorem 2.2.13. As in the theorem denote Y = Cn/G. Let E be
a divisor over Y and let F,ϕ, ϕ′, ψ be as in (ii) with ϕ,ϕ′, ψ proper. By (i) we have
Fix(F ) = 〈g〉 for some g ∈ G. By (ii) if Fix(F ) = {id} then a(E, Y ) = a(F,Cn) ≥ 1. The
claim follows now by (iii) and (iv). �

By Reid-Tai criterion, proposition 2.2.6(iv) and theorem 2.1.12 we obtain the existence of
minimal models for quotient singularities for G ⊂ SLn(C).

Corollary 2.2.16. If G ⊂ SLn(C) then there exists a minimal model of the corresponding
quotient singularity Cn/G.

Definition 2.2.17. If G ⊂ SLn(C) the classes of age one in G are called junior conjugacy
classes of G.

The following theorem is the most important part of this section from the point of view
of our applications. It belongs to the field of the McKay correspondence, which stud-
ies relations between properties of geometric objects associated to a quotient singularity
Cn/G and algebraic objects associated to G and its representations. This instance relates
codimension one geometry of a minimal model of a quotient to the group and its action
on the field of rational functions.
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Theorem 2.2.18 (McKay correspondence of Ito and Reid [57]). Let G ⊂ SLn(C) and
denote Y = Cn/G. There is a one-to-one correspondence between junior conjugacy classes
of G and irreducible crepant divisors over Y , i.e. the irreducible exceptional divisors on a
minimal model ϕ : X → Y . More precisely, if E is a divisor corresponding to conjugacy
class of element g of order r, then the divisorial valuation νE is equal to 1

rνg|C(Y ), where

we use identification C(X) = C(Y ) = C(x1, . . . , xn)G.

Sketch of the proof, cf. [57, Sect. 2.8]. We identify crepant divisors over Y with
their valuations on C(Y ). To junior conjugacy class [g] of element g of order r we assign
the valuation 1

rνg|C(Y ). By theorem 2.2.13(iii) this is the valuation of a crepant divisor
over Y which arise as in theorem 2.2.13(ii) from the weighted blow-up of Cn with weights
(a1, . . . , an) in coordinates diagonalizing g. The assumptions on g needed in 2.2.13(iii)
follow from the fact that G ⊂ SLn(C) and [g] is a junior conjugacy class. The assignment
[g] 7→ 1

rνg|C(Y ) is well-defined, since C(Y ) = C(x1, . . . , xn)G. It is injective, because the
field extension C(x1, . . . , xn)/C(Y ) is Galois. The surjectivity follows from the last part
of theorem 2.2.13(iii), since by points (ii) and (i) of the theorem Fix(E) is cyclic for every
divisor E over Y and by point (iv) if E is crepant, then Fix(E) is generated by a junior
element. �

We find this form of the McKay correspondence particularly useful for our needs. Not
only it helps to find the class group of a minimal model or a crepant resolution, but it also
gives us a precise recipe how to calculate divisorial valuations of crepant divisors over the
quotient singularities for G ⊂ SLn(C) in terms of elements of the group G.

2.2.2. Dimension two case. Here we collect the results about subgroups G ⊂
GL2(C) and corresponding quotients two-dimensional quotients C2/G. They serve as
motivating examples to study quotient singularities and they will also find use in later
parts of the work, especially in chapter 5. We begin with the subgroups of SL2(C).

Theorem 2.2.19 (Finite subgroups of SL2(C), [73], [22, Sect. 3]). Every finite subgroup
G ⊂ SL2(C) is conjugate to one of the following groups

(An) Cyclic group Cn of order n generated by
(
ζn 0

0 ζ−1
n

)
.

(Dn) Binary dihedral group BD4n of order 4n, n ≥ 2 generated by C2n and
(

0 i
i 0

)
.

(E6) Binary tetrahedral group BT of order 24 generated by BD8 and a matrix 1√
2

(
ζ8 ζ38
ζ8 ζ78

)
.

(E7) Binary octahedral group BO of order 48 generated by BT and a matrix
(
ζ38 0

0 ζ58

)
.

(E8) Binary icosahedral group of order 120 generated by matrices 1√
5

(
ζ45−ζ5 ζ25−ζ35
ζ25−ζ35 ζ5−ζ45

)
and 1√

5

(
ζ25−ζ45 ζ45−1

1−ζ5 ζ35−ζ5

)
.

The corresponding invariant rings C[x, y]G are generated by three invariant polynomials
p1, p2, p3 with the following relations:
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Group G generators p1, p2, p3 relation

Cn xn, yn, xy Z1Z2 − Z2
3

BD4q xq + yq , xq − yq , xy Z2
1 − Z2

2 − 4Zq3

BT x4 + y4 +
√
−12x2y2, x4 + y4 −

√
−12x2y2, x5y − xy5 Z3

1 − Z3
2 − 12(ζ3 − ζ23 )Z2

3

BO x5y − xy5, x8 + 14x4y4 + y8, x12 − 33x8y4 − 33x4y8 + y12 108Z4
1 − Z3

2 + Z2
3

BI

x11y + 11x6y6 − xy11,

x20 − 228x15y5 + 494x10y10 + 228x5y15 + y20,

x30 + 522x25y5 − 10005x20y10 − 10005x10y20 − 522x5y25 + y30

1728Z5
1 + Z3

2 − Z2
3

The corresponding quotient singularities C2/G forG ⊂ SL2(C) are called ADE-singularities
or Du Val singularities.

Theorem 2.2.20 (Minimal resolutions of Du Val singularities, [64, Theorem 4.20, Theo-
rem 4.22]). There is a unique crepant resolution of a Du Val singularity and it coincides
with the minimal resolution. The exceptional divisor of such a resolution consists of smooth
rational curves with self-intersection (−2) and the dual of its incidence graph is a Dynkin
diagram of type corresponding to the type of the singularity:

(An)

(Dn)

(E6)

(E7)

(E8)

Definition 2.2.21 (Cartan matrices). We define the Cartan matrices of types An, Dn, E6,
E7, E8 as the intersection matrices (Ci.Cj)i,j for the components Ci of the exceptional
divisor on the crepant resolution of the corresponding Du Val singularity.

By Reid-Tai criterion (see theorem 2.2.15) Du Val singularities are two-dimensional canon-
ical singularities. It turns out that the converse is also true, see [64, Theorem 4.20].

Now we will recall the classification of all finite subgroups of GL2(C). To do so, we need
to introduce some notation first.

Notation 2.2.22. Let G1, G2 ⊂ GLn(C) be matrix groups with normal subgroups H1, H2,
and ϕ be the isomorphism of G1/H1 and G2/H2. Set G1 ×ϕ G2 = {(g1, g2) ∈ G1 ×
G2 | ϕ(g1H1) = g2H2}. Then by (G1 | H1, G2 | H2) we understand ψ(G1 ×ϕ G2), where
ψ is the multiplication map. By µd we denote the group of complex d-th roots of unity.
We use the embedding µd · In ⊂ GLn(C).

Theorem 2.2.23 ([22, Sect. 3]). Every finite subgroup G ⊂ GL2(C) is conjugate to one of
the following groups:

(0) Cyclic subgroup Cm,q of order m generated by the matrix diag(ζm, ζ
q
m).

(1) (µ4m | µ2m, BD4q | C2q) of order 4mq.
(2) µ2m · BT of order 24m.
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(3) (µ4m | µ2m, BD8q | BD4q) of order 8mq.
(4) (µ6m | µ2m, BT | BD8) of order 8mq.
(5) µ2m · BD4q of order 4mq.
(6) µ2m · BO of order 48m.
(7) (µ4m | µm, BD4q | Cq) for q odd, of order 2mq if m is odd and of order 4mq if

m is even.
(8) (µ4m | µ2m, BO | BT) of order 48m.
(9) µ2m ·BI of order 120m.

Just as in the case of Du Val singularities, general quotient singularities in the surface
case also coincide with a class of singularities defined in terms of discrepancies – the log
terminal singularities (see [64, Proposition 4.18]).

2.2.3. Dimension three case. In chapter 5 we will be interested in finite subgroups
of the special linear group in dimension three. Let G ⊂ SL3(C). Like in the 2-dimensional
case one can find a crepant resolution of the corresponding quotient singularity.

Theorem 2.2.24 ([17],[85]). There exists a crepant resolution of C3/G.

The proof by Ito [55], [56], Markushevich [71] and Roan [85] follows the classification of
finite subgroups of SL3(C) which we recall in the theorem below. The proof by Bridgeland,
King and Reid in [17] is more conceptual and constructs a crepant resolution uniformly
as so-called G-Hilbert scheme of C3.

On the other hand, the uniqueness property for crepant resolutions in 2-dimensional case
does not extend to dimension three.

Example 2.2.25 (Non-uniqueness of a crepant resolution in dimension three). Consider
the subgroup G ∼= Z2 ⊕ Z2 of SL3(C) generated by matrices:

g1 =
(−1 0 0

0 −1 0
0 0 1

)
, g2 =

(
1 0 0
0 −1 0
0 0 −1

)
.

Then Y = C3/G is a toric variety of the cone σ = cone(e1, e2, e3) ⊂ N ′R for the torus with
one-parameter group lattice N ′ = Z · e1+e2

2 + Z · e2+e3
2 + Z · e1+e3

2 . Using toric geometry
one may prove that:

(1) Blowing-up subsequently in any order strict transforms of images of loci S1, S2, S3

of the points in C3 with isotropy groups 〈g1〉, 〈g2〉, 〈g1g2〉 one obtains a crepant
resolution of Y .

(2) Blowing-up in (1) strict transforms of the images of S1, S2, S3 in various orders
yield 3 resolutions non-isomorphic as varieties over Y .

In fact there are four crepant resolutions of Y which correspond to the subdivisions of the
cone σ defining Y . Slices of these subdivisions are pictured below:

The first three subdivisions correspond to the resolutions described above. Note that they
give isomorphic toric varieties, but the point is that these isomorphisms are not over Y .
The fourth subdivision yields a toric variety which is not even isomorphic as a variety over
C with any of the first three resolutions.

As a consequence the crepant resolution of the quotient singularity Y is not unique.

The classification of finite subgroups of SL3(C) up to conjugacy is well-understood:
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Theorem 2.2.26 ([95, Sect. 1]). Every finite subgroup G ⊂ SL3(C) is conjugate to one of
the following groups

(A) Finite diagonal abelian groups, i.e. finite groups consisting of matrices of the

form
(
a 0 0
0 b 0
0 0 c

)
.

(B) Nonabelian groups corresponding to nonabelian finite subgroups of GL2(C), i.e.
groups of the form

G =
{(

M 0
0 det(M)−1

)
: M ∈ G

}
, where G ⊂ GL2(C), nonabelian.

(C) Groups generated by finite diagonal abelian group as in (A) and the matrix
(

0 1 0
0 0 1
1 0 0

)
.

(D) Groups generated by a group of the form (C) and a matrix
(
a 0 0
0 0 b
0 c 0

)
, where abc =

−1.
(E)-(L) 8 exceptional groups.

The description of exceptional groups is omitted as we will not be dealing with them in
this work. We end this section with the following corollary of the McKay correspondence
(theorem 2.2.18).

Corollary 2.2.27. If n = 3, then we can compose the bijection from the McKay corre-
spondence with the involution sending g to g−1 to obtain that irreducible exceptional divi-
sors of a crepant resolution ϕ : X → C3/G which are contracted to the point [0] ∈ C3/G
are in one-to-one correspondence with conjugacy classes of age 2 in G.

Proof. Note that the exceptional divisor corresponding to the class of g is contracted
to the point [0] if and only if all exponents ai in the expression g ∼ 1

r (a1, a2, a3) are

positive. Then apply theorem 2.2.18 and observe that the involution g 7→ g−1 sends the
classes of age 1 with all exponents ai positive precisely onto the classes of age 2. �

2.3. Symplectic quotient singularities and their symplectic resolutions

Here we define and give basic properties of the special class of quotient singularities, gen-
eralizing Du Val singularities in even dimensions, namely symplectic quotient singularities.
For crepant resolutions of such singularities we have a stronger version of the McKay corre-
spondence proven by Kaledin, see theorem 2.3.11. We will also need a result of Andreatta
and Wísniewski presented in theorem 2.3.13. The content of this section will be used in
chapter 7, where we will analyze the geometry and Cox rings of crepant resolutions of ex-
amples of symplectic quotient singularities. For a survey on symplectic singularities (not
necessarily of the quotient nature) see [40].

Definition 2.3.1 (Symplectic structure on a smooth variety). LetX be a smooth algebraic
variety. A symplectic form on X is a global section ω ∈ H0(X,Ω2

X) which is closed, i.e.
dω = 0 and nowhere degenerate, i.e. it restricts to a nondegenerate bilinear form on the
tangent space TxX for every x ∈ X. A symplectic variety is a smooth variety with chosen
symplectic form.

Let Sp2n(C) be a group of linear transformations of the C2n preserving a standard sym-

plectic form ωC2n =
∑2n

i=1 dxi ∧ dyi on C2n.

Definition 2.3.2 (Symplectic quotient singularity). A symplectic quotient singularity is
a quotient singularity C2n/G where G ⊂ Sp2n(C) is a finite subgroup.

Example 2.3.3. Since Sp2(C) = SL2(C) every Du Val singularity is a symplectic quotient
singularity.
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Let G ⊂ Sp2n(C) be a finite subgroup. Denote by p : C2n → C2n/G the quotient map and
let (C2n/G)sm be the smooth locus of C2n/G. Since the action of G preserves ωC2n and
p|p−1((C2n/G)sm) is étale by proposition 2.2.7 and corollary 2.2.8, the restriction of ωC2n to

the preimage of the smooth locus of C2n/G induces a symplectic structure on the smooth
locus of C2n/G. This allows one to give a characterization of crepant resolutions of C2n/G
in terms of the symplectic form.

Definition 2.3.4 (Symplectic resolution). A resolution of the symplectic quotient sin-
gularity X → C2n/G is called a symplectic resolution if the pullback of the symplectic
structure on the smooth locus of C2n/G extends to a symplectic structure on X.

Proposition 2.3.5 ([90, Theorem 2.5]). A resolution of the symplectic quotient singularity
X → C2n/G is crepant if and only if it is symplectic.

The symplectic resolution does not always exists.

Example 2.3.6. Let G = 〈− idC4〉 ⊂ Sp4(C). Then, by Reid-Tai criterion (see theo-
rem 2.2.15) the singularity Y = C4/G is terminal. In particular, every crepant divisor
over Y is present on Y . Since Y is Q-factorial, it follows that a resolution of singularities
of Y has to contract a divisor (see [64, Lemma 2.62], the proof given there generalizes
verbatim to a projective birational morphism from a quasiprojective variety). In particu-
lar no resolution of singularities of Y is crepant. By virtue of proposition 2.3.5 there is no
symplectic resolution of Y .

We proceed to give a necessary criterion for existence of a symplectic resolution.

Definition 2.3.7 (Symplectic reflection). A symplectic reflection is an element g ∈ Sp2n(C)
such that dim(C2n)g = 2n− 2.

Note that g ∈ Sp2n(C) is a symplectic reflection if and only if age(g) = 1. As in the
example, employing Reid-Tai criterion we may show that the necessary condition for the
existence of the symplectic resolution of C2n/G is the existence of symplectic reflection in
G. The following result of Verbitsky gives a stronger criterion.

Theorem 2.3.8 ([90, Theorem 1.2],[60, Theorem 1.7]). Let X → C2n/G be a symplectic
resolution. Then G is generated by symplectic reflections.

Groups generated by symplectic reflections are classified in [21].

In the case of symplectic quotient singularities there is a stronger version of the McKay
correspondence, assigning to each conjugacy class of X a subvariety of X with a certain
special property. Let us make this precise.

Theorem 2.3.9 ([59, Proposition 4.4],[90, Theorem 2.8]). Let ϕ : X → C2n/G be a sym-
plectic resolution. Then ϕ is semismall, i.e. codimϕ(Z) ≤ 2 codimZ for every algebraic
subvariety Z ⊂ X.

Definition 2.3.10 (Maximal cycle). Let ϕ : X → C2n/G be a symplectic resolution. A
maximal cycle on X is an algebraic subvariety Z ⊂ X such that codimϕ(Z) = 2 codimZ.

Theorem 2.3.11 (Symplectic McKay correspondence [61]). Let ϕ : X → C2n/G be a
symplectic resolution. There is a bijective correspondence between conjugacy classes in G
and maximal cycles on X given as follows. A conjugacy class [g] of G correspond to the
center Zg of monomial valuation vg. Moreover codimZg = age(g).

The simplest examples of symplectic resolutions are given by minimal resolutions of Du Val
singularities 2.2.20. It turns out that every symplectic resolution of a symplectic quotient
singularity is a minimal resolution of transversal Du Val singularity in codimension one in
the sense of the following proposition (cf. [92, Theorem 1.4]).
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Proposition 2.3.12. Let G ⊂ Sp2n(C) be a finite group. Assume that there exists a
symplectic resolution ϕ : X → C2n/G.

(i) Each component Σ0 of the singular locus Sing(C2n/G) is of dimension 2n−2 and
for each such component there is an open subset U ⊂ C2n/G such that Σ0∩U 6= ∅
and a surjective étale rational map (C2/H)× C2n−2 99K U for some finite group
H ⊂ SL2(C).

(ii) Assume that Σ1, . . . ,Σk are the components of the singular locus of C2n/G. Let
E1, . . . , Em ⊂ X be the irreducible components of the exceptional divisor of ϕ. If
Ci is the general fibre of ϕ|Ei : Ei → ϕ(Ei) then the intersection matrix (Ei.Cj)i,j
is the direct sum of Cartan matrices (see definition 2.2.21) corresponding to types
of the Du Val singularities C2/Hi, where Hi ⊂ SL2(C) is obtained as in (i) for
the component Σi.

Proof. To prove (i), let y ∈ C2n/G be a singular point and let x ∈ C2n be a point in its
preimage. The stabilizer group Gx is nontrivial by corollary 2.2.8. By [59, Theorem 1.6]
the quotient V ′/Gx admits a symplectic resolution, where C2n = V ′ ⊕ (C2n)Gx as Gx-
representations. One may check that (C2n)Gx and V ′ are symplectic vector subspaces of
C2n. In particular, by theorem 2.3.8 it follows that Gx ⊂ Sp(V ′) is generated by symplectic
reflections. As the action of Gx on (C2n)Gx is trivial it means that Gx ⊂ Sp2n(C) is
generated by symplectic reflections. Now if g ∈ Gx is any symplectic reflection, then
(C2n)g ⊂ C2n is a subspace of codimension 2n−2 and by corollary 2.2.8 it corresponds to a
2n−2 dimensional component of the singular locus of C2n/G containing y. Moreover, for a
general point x′ of (C2n)g we have Gx′ = {g′ ∈ G : g′|(C2n)g = id} =: H. If C2n = (C2n)g⊕
V ′′ as H-representations then again both subspaces (C2n)g and V ′′ are symplectic and

H ⊂ Sp(V ′′) ∼= SL2(C) because dimV ′′ = 2. The claim with U = (C2n/G)\(Sing(X) \ Σ0)
follows by proposition 2.2.7.

The second part follows directly by the first one and the uniqueness of the crepant reso-
lution in codimension one. �

Dimension four case. In our studies on symplectic resolutions we concentrate on
the dimension four case. The properties of four-dimensional symplectic resolutions were
studied in a more general setting than the one given here in [93] and in [3]. We recall
only a single result that we will need in chapter 7. Assume that G ⊂ Sp4(C) is a finite
subgroup. The theorem below is a special case of [3, Theorem 3.5] (see also section 3.1 for
a discussion of cones of divisors).

Theorem 2.3.13. Let ϕ : X → C4/G be a symplectic resolution. Then the cone Mov(X) ⊂
N1(X) is dual to the cone in N1(X) spanned by the classes of proper curves in X\ϕ−1([0]).





CHAPTER 3

Cox rings and relative Mori Dream Spaces

This chapter is dedicated to the notion of a Cox ring and related ideas in birational
geometry. We follow the fruitful insight of Hu and Keel [54] that one can generalize
the notion of total coordinate ring of a toric variety to the broader context of algebraic
varieties and when this ring turns out to be finitely generated it is a powerful tool to study
the birational geometry of a variety. This is reflected in the very name of the projective
variety with finitely generated Cox ring – such varieties are called Mori Dream Spaces.
We start with introducing several cones of divisors related to birational geometry in 3.1.
Then we define and study basic properties of the Cox ring of a variety in 3.2, in particular
in section 3.2.2 we describe cones of divisors from 3.1 in terms of degrees of generators of
the Cox ring. Section 3.3 is an interlude containing the necessary notions from geometric
invariant theory that will be used in 3.4, where we present a generalization of the notion
of Mori Dream Space to the relative situation. The results of this final part of the chapter
will be used in chapters 5 and 7 to represent all the crepant resolutions of a given quotient
singularity as GIT quotients of the spectrum of its Cox ring.

3.1. Cones of divisors

Here we introduce the vector space spanned by the classes of divisors on an algebraic
variety and various cones which will allow us to study certain properties of divisors (and
in consequence, the birational geometry of a variety) via convex geometry. The references
are [26, Sect. 1.6], [67, Sect. 1.7] and [5, Sect. 3.3.2].

Let X be a normal variety with finitely generated class group Cl(X). Denote by WDiv(X)
the group of Weil divisors on X, i.e. the free abelian group generated by irreducible
codimension one subvarieties of X. To each D ∈ WDiv(X) we have an associated rank
one reflexive sheaf OX(D) of OX -modules:

H0(U,OX(D)) = {f ∈ C(X)∗ : (div f +D)|U ≥ 0} ∪ {0},
which is a subsheaf of the constant sheaf C(X) of rational functions on X. See [81,
Sect. 1, Appendix] and references given therein. In this section we recollect a few facts
about various cones of divisors in the rational vector space N1(X) = Cl(X) ⊗Z Q. Let
D ∈WDiv(X).

For D ∈WDiv(X) and f ∈ H0(X,OX(D)) we denote divD f := div f +D (≥ 0). In other
words divD f is the effective (Weil) divisor, which is the divisor of zeroes of f viewed as
the global section of the reflexive sheaf OX(D).

Definition 3.1.1 (Base locus and stable base locus). The base locus and stable base locus
of D are the following subsets of X:

Bs(D) :=
⋂

f∈H0(X,OX(D))

Supp(divD f), B(D) :=

∞⋂
m=1

Bs(mD)

Definition 3.1.2 (Movable, semiample and (absolutely) ample divisors). The divisor D
is called movable if B(D) is of codimension at least two in X. The divisor D is called

29
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semiample if B(D) = ∅. The divisor D is called absolutely ample if the sets of the form
X \Supp(divnD f) for f ∈ H0(X,OX(nD)) and n > 0 give a basis for Zariski topology on
X.

We define the cones Eff(X), Mov(X), SAmp(X),Amp(X) in the Q-vector space N1(X),
called respectively: effective cone, movable cone, semiample cone and (absolutely) ample
cone, as the convex cones spanned by classes of, respectively: effective, movable and
semiample and absolutely ample Weil divisors on X. One has Amp(X) ⊂ SAmp(X) ⊂
Mov(X) ⊂ Eff(X).

If π : X → Y is a projective morphism then we may consider also the cones Amp(X/Y )
and Nef(X/Y ) of, respectively, relatively ample and relatively nef divisors in N1(X/Y ) =
(Cl(X)/π∗ Pic(Y )) ⊗Z Q. By definition Amp(X/Y ) is spanned by classes of relatively
ample divisors and Nef(X/Y ) is spanned by relatively nef Cartier divisors, i.e. the Cartier
divisors with nonnegative intersection with all effective curves contracted by π. The cone
Amp(X/Y ) is the relative interior of Nef(X/Y ). Amp(X/Y ) is open if X is Q-factorial. If

Cl(Y ) is a torsion group then N1(X) = N1(X/Y ) and SAmp(X) ⊂ Nef(X/Y ) ⊂ Eff(X).
If moreover Y is affine, then Amp(X) = Amp(X/Y ).

3.2. Cox rings

In this section we introduce the Cox ring of an algebraic variety, which is the main tool
as well as the primary object of study in our work. First, we give the definition and list
the most important algebraic properties in 3.2.1. Then, in 3.2.2 we show, how to obtain
descriptions of various cones of divisors introduced in 3.1 in terms of degrees of generators
of the Cox ring. The general reference here is [5, Chapter 1].

3.2.1. Definition and algebraic properties. Let X be a normal variety.

Definition 3.2.1 (Cox ring – the free class group case). Assume that the class group
Cl(X) of X is finitely generated and free. Let K ⊂ WDiv(X) be a subgroup projecting
isomorphically onto Cl(X). Then the Cox ring of X is the ring:

R(X) =
⊕
D∈K

H0(X,OX(D)),

with multiplication induced from C(X). We introduce a Cl(X)-grading on R(X) using
the isomorphism K → Cl(X) induced by projection.

Up to the isomorphism preserving Cl(X)-grading, the Cox ring does not depend on the
choice of the subgroup K ⊂ Cl(X) projecting isomorphically onto Cl(X) ([5, Construc-
tion 1.4.1.1]).

The construction of the Cox ring of X can be generalized to the case when Cl(X) is an
arbitrary finitely generated abelian group under an additional assumption on the global
invertible functions on X.

Definition 3.2.2 (Cox ring – general case). Assume that the class group Cl(X) of X
is finitely generated and that H0(X,O∗X) = C∗. Fix a finitely generated subgroup K ⊂
WDiv(X) projecting onto Cl(X). Let K0 be the kernel of the natural epimorphism K →
Cl(X). Fix a homomorphism χ : K0 → C(X)∗ satisfying div(χ(E)) = E. Define the Cox
ring R(X) of X as

R(X) = S(X)/I(X).

Here S(X) =
⊕

D∈K H
0(X,OX(D)) with multiplication induced by the one in C(X)

and I(X) is the ideal generated by the elements of the form 1 − χ(E) where E ∈ K0
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and χ(E) ∈ C(X)∗ is viewed as homogeneous element of degree −E in S(X). Using
the canonical epimorphism π : S(X) → R(X) we introduce a Cl(X)-grading on R(X) as
follows:

R(X) =
⊕

[D]∈Cl(X)

R(X)[D], R(X)[D] = π

 ⊕
D′∈K

[D′]=[D]

S(X)D′


Again, up to the isomorphism preserving Cl(X)-grading the Cox ring of X does not depend
on the choices of K and χ ([5, Sect. 1.4.3.]) – here the assumptions on H0(X,O∗X) = C∗,
which at the first glance may look unmotivated plays an important role. In particular def-
inition 3.2.2 is consistent with definition 3.2.1. By [5, Lemma. 1.4.3.5] the above definition
coincides with [5, Construction 1.4.2.1].

The canonical epimorphism π : S(X)→ R(X) preserves graded pieces:

Proposition 3.2.3 ([5, Lemma 1.4.3.4]). In the situation of definition 3.2.2 the restriction
π|SD(X) : S(X)D → R(X)[D] is an isomorphism of H0(X,OX)-modules for each D ∈ K.

The next proposition summarizes the algebraic properties of Cox rings, but first, we need
a definition.

Definition 3.2.4 (Factorial grading). Let A be an integral domain, graded by finitely
generated abelian group M . A homogeneous element f ∈ A is called M -prime if for every
homogeneous elements g, h ∈ A if f | gh then f | g or f | h. A is called M -factorial
(or factorially M -graded) if every homogeneous element of A which is not unit, can be
expressed as a product of M -prime homogeneous elements.

The concept of M -factoriality will be motivated by theorem 3.3.13. This theorem in turn
will be used in section 3.4.2. It will allow us to obtain all small modifications of a variety
projective over affine base via variation of GIT (see section 3.3.2), enabling us to study
geometry of resolutions via the combinatorial methods of convex geometry in chapters 5
and 7.

Proposition 3.2.5. Let X be a normal variety with finitely generated class group. Assume
that either Cl(X) is free or H0(X,O∗X) = C∗. Then

(i) The Cox ring R(X) is a normal Cl(X)-graded integral H0(X,OX)-algebra.
(ii) If Cl(X) is free, then R(X)∗ = H0(X,O∗X).

(iii) If H0(X,O∗X) = C∗, then every homogeneous invertible element of R(X) is con-
stant.

(iv) If Cl(X) is free, then R(X) is an unique factorization domain.
(v) If H0(X,O∗X) = C∗, then R(X) is Cl(X)-factorial (see definition 3.2.4).

References. For normality and integrality in (i) see [5, Thm. 1.5.1.1], (ii) and (iv)
are [5, Prop. 1.4.1.5], (iii) follows from [5, Prop. 1.5.2.5(i)] and (v) is the content of [5,
Thm. 1.5.3.7]. �

3.2.2. Cones of divisors via generators of the Cox ring. To work with concrete
examples, as well as to present the characterization of relative Mori Dream Spaces in
section 3.4.2 we need to describe cones of divisors from section 3.1 in terms of generators
of the Cox ring. Here we summarize related results from [5]. We also generalize [5,
Prop. 3.2.2.3] to the non-complete case in proposition 3.2.9.

For varieties with finitely generated class group we have the following characterization of
Eff(X) in terms of generators of Cox ring.
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Proposition 3.2.6 ([5, Prop. 3.3.2.1]). Let X be a normal variety with finitely generated
class group and H0(X,O∗X) = C∗. Let (fi)i∈I be any system of nonzero homogeneous
generators of the Cox ring R(X). Then

Eff(X) = cone(deg(fi) : i ∈ I).

In particular, if R(X) is finitely generated, then Eff(X) = Eff(X).

We also have a description of the movable cone in the similar vein. To present it we
introduce an additional piece of notation.

Notation 3.2.7. Let X and K ⊂ WDiv(X) be as in definition 3.2.2. Let D ∈ K. By
proposition 3.2.3 it follows that we have a canonical bijection H0(X,OX(D))→ R(X)[D].

Now take f ∈ R(X)[D] and let f̃ ∈ H0(X,OX(D)) be an element corresponding to f . We

define div[D] f = divD f̃ ∈WDiv(X).

By [5, Proposition 1.5.2.2] the Weil divisor div[D] f is well-defined and by [5, Proposi-
tion 1.5.3.5.(ii)] D 7→ f[D] gives a one-to one correspondence between effective divisors on
X and homogeneous elements of R(X) up to multiplication by scalars.

Proposition 3.2.8 ([5, Proposition 1.5.3.5(i)]). Let X be as in definition 3.2.2. For
f ∈ R(X)[D] and g ∈ R(X)[E] one has f | g if and only if div[D] f ≤ div[E] g.

We are ready to give the description of the movable cone in terms of degrees of the
generators of the Cox ring. The following theorem, together with the lemma below is a
direct generalization of [5, Prop. 3.3.2.3] and [5, Lem. 3.3.2.4] to the non-complete setting.
The only technical difference is that instead of the condition: dimCR(X)w = 1 one should
use the condition: R(X)w ∼= H0(X,OX) as H0(X,OX)-modules.

Proposition 3.2.9. Let X be a normal variety with finitely generated class group and
H0(X,O∗X) = C∗. Let (fi)i∈I be any system of pairwise nonassociated Cl(X)-prime gen-
erators of the Cox ring R(X). Then

Mov(X) =
⋂
i∈I

cone(deg(fj) : j 6= i).

Proof. Denote wi := deg fi and let I0 ⊂ I be the set of indices i such that R(X)nwi
∼=

H0(X,OX) as H0(X,OX)-modules for all n ≥ 1. If w ∈ Mov(X) then lemma 3.2.10 shows
that for each i ∈ I0 there is m ≥ 1 so that R(X)mw contains a monomial in generators
which is not divisible by fi. For i 6∈ I0 the same is true since R(X)nwi ) H0(X,OX)fni
for some n ≥ 1. Hence w belongs to the right-hand side

Conversely, let w be contained in the right-hand side. Then for each i ∈ I we can express
w as a nonnegative combination of wj with j 6= i. This means that for each i ∈ I there is
m ≥ 1 such that R(X)mw contains a monomial in generators which is not divisible by fi.
Specializing to the case i ∈ I0 and using lemma 3.2.10 we deduce that w ∈ Mov(X). �

Lemma 3.2.10 (cf. [5, Lem. 3.3.2.4]). Let X be a normal variety with finitely generated
class group and H0(X,O∗X) = C∗. Let w ∈ Cl(X) be an effective class. The following
conditions are equivalent:

(a) The stable base locus of the class w contains a divisor.
(b) There exists w0 ∈ Cl(X) with R(X)nw0

∼= H0(X,OX) as H0(X,OX)-modules for
every n ≥ 0 and f0 ∈ R(X)w0 such that for every m ≥ 1 and f ∈ R(X)mw one
has f = f0f

′ for some f ′ ∈ R(X)mw−w0.
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Proof. The implication (b) =⇒ (a) follows by the equality divw f = divw0 f0 +
divmw−w0 f

′.

Assume (a). Let D be an effective divisor representing class w. Let D0 be a prime divisor
contained in the stable base locus of D and let w0 ∈ Cl(X) be its class. We take as f0 the
element of R(X)w0 which is the image of a constant nonzero function in H0(X,OX(D0)).
Since D0 is a fixed component of any effective divisor linearly equivalent to mD then
f0 divides any element of R(X)mw for any m ≥ 1. By the definition of D0 we have
R(X)nw0

∼= H0(X,OX) for any n ≥ 0. Indeed, suppose that n0 is minimal such that
R(X)n0w0 ) H0(X,OX)fn0

0 . By minimality of n0 there exists g ∈ R(X)n0w0 such that
f0 - g. By Cl(X)-factoriality of R(X) we also have f0 - ga0 , where a0 is the multiplicity
of D0 in D. Then Supp(div[na0D0] g

a0) 6⊃ D0, and so nD − na0D0 + div[na0D0] g
a0 is an

effective divisor equivalent to D and not containing D0 in its support – a contradiction. �

If the Cox ring is finitely generated, then the cones of semiample and (absolutely) ample
divisors have the description in terms of the orbit cones of characteristic quasitorus TX =
Hom(Cl(X),C∗) action on SpecR(X) (see definition 3.3.4).

Proposition 3.2.11 ([5, Proposition 3.3.2.6]). Let X be a normal variety with finitely
generated class group, H0(X,O∗X) = C∗ and such that the Cox ring R(X) is a finitely gen-
erated C-algebra. Let f1, . . . , fs be a system of homogeneous generators of R(X). Consider
the homomorphism Q : Zs → Cl(X) defined on the canonical basis of Zs as Q(ei) = deg fi
(cf. section 3.3.3). Let Z = SpecR(X) with the natural action of TX and let W be an
open subset of Z with a good quotient p : W → X as in theorem 3.4.5. Then

SAmp(X) =
⋂
x∈W

Q(ωx), Amp(X) =
⋂
x∈W

Q(ω◦x).

3.3. Results from GIT

In this section we collect important notions from geometric invariant theory (in short:
GIT). The techniques of GIT lie at the very heart of our work, giving us methods to study
birational geometry of algebraic varieties via their Cox rings, following ideas of Hu and
Keel from [54]. First, we recall the notion of good quotient in 3.3.1. Then, in 3.3.2, we
list the results on GIT for quasitorus actions in the affine case. In the last section 3.3.3
we present tools to work effectively with concrete examples. The main references here
are [74], [30] and [5, Sect. 1.2, 3.1].

3.3.1. Good quotients. Here we introduce the notions of a good quotient and a
geometric quotient by the action of an algebraic group, which are fundamental notions in
geometric invariant theory.

Let G be an algebraic group acting on an algebraic variety X.

Definition 3.3.1 (Good quotient and geometric quotient). We call a morphism p : X → Y
a good quotient of the action of G on X if the following conditions hold:

(i) p is a G-invariant, affine surjective morphism.
(ii) The induced map OY → p∗OX is an isomorphism between OY and (p∗OX)G.
(iii) For every closed, G-invariant subset W ⊂ X the image p(W ) ⊂ Y is closed.
(iv) For every pair W1,W2 of disjoint closed, G-invariant subsets of X their images

p(W1), p(W2) are disjoint.

We call a good quotient p : X → Y a geometric quotient if every fibre of p consist of a
single orbit of the G-action.

The following property partially motivates the above definition.
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Proposition 3.3.2 ([5, Corollary 1.2.3.8.(ii)]). Let p : X → Y be a good quotient of the
action of G on X. Then, for every G-invariant morphism of varieties q : X → Z there
exists a unique morphism f : Y → Z such that q = f ◦ p. In particular a good quotient, if
it exists, is unique up to isomorphism.

In this work we will consider mostly the actions of finite groups and algebraic tori.

Example 3.3.3. Let G ⊂ GLn(C) be a finite group. The quotient map Cn → Cn/G is a
good quotient.

3.3.2. Affine GIT for quasitorus actions. From the point of view of our applica-
tions the most important are quotients of an action of algebraic (quasi)torus on an affine
variety. In this section we summarize results concerning such quotients needed in the
further parts of the work – the (semi)stability conditions given by a linearization of a
line bundle and the variation of GIT related to the change of linearization. We introduce
the notion of an orbit cone of a point of a variety and the GIT cone of a weight of the
action. For each weight we have the corresponding good quotient of the semistable locus
of this weight. Altogether GIT cones form a (quasi)fan which encodes the totality of such
quotients – each cone corresponds to a different quotient, and the quotient corresponding
to a face of a GIT cone admits a projective morphism to the quotient given by this cone.
Finally, it turns out that every quotient satisfying certain mild assumptions is given by a
GIT cone.

Let T ∼= (C∗)r ×H, where H is a finite abelian group and let X be an affine variety with
a T -action. Then X = SpecA for a finitely generated M -graded algebra A =

⊕
m∈M Am,

where M = Hom(T,C∗) ∼= Zr ×H is the group of characters of T .

We introduce notation:

Definition 3.3.4. The orbit cone of a point x ∈ X is the cone:

ωx = cone(m ∈M : ∃f∈Amf(x) 6= 0) ⊂M ⊗Z Q.
The weight cone of X is the cone:

ωX = cone(m ∈M : Am 6= 0) ⊂M ⊗Z Q.
The GIT cone of weight m ∈ ωX is the cone:

λ(m) =
⋂
m∈ωx
x∈X

ωx ⊂M ⊗Z Q.

The relative interior of a top-dimensional GIT cone is called a GIT chamber.

Remark 3.3.5. The weight cone of X and every orbit cone are closed polyhedral cones [5,
Rem. 3.1.1.2]. There are only finitely many pairwise distinct orbit cones [5, Prop. 3.1.1.10],
in particular every GIT cone is also a closed polyhedral cone.

To characterize good and geometric quotients of the action of T on X we have to con-
sider the following notion of (semi)stability, which coincides with the classical notion of
(semi)stability with respect to a linearization of the trivial line bundle [30, Sect. 8.1].

Definition 3.3.6 (Semistable and stable points). The set of semistable points associated
with an element m ∈M ⊗Z Q is the set:

Xss(m) = {x ∈ X : ∃k>0 ∃f∈Akm f(x) 6= 0}.
The set of stable points associated with an element m ∈ M ⊗Z Q is the set of points in
Xss(m) with finite isotropy group and closed orbit in Xss(m). The complement of the set
of semistable points is called the set of unstable points.
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Remark 3.3.7 ([74, Sect. 1.4(1)]). Xs(m) ⊂ Xss(m) ⊂ X are open and T -invariant.

The set of semistable points always admits a good quotient and its restriction to the set
of stable points is geometric.

Proposition 3.3.8 ([5, Proposition 3.1.2.2]). For every m ∈ ωX there is a good quotient
p : Xss(m)→ Y (m) of the T -action, with Y (m) projective over Y (0) = SpecA0. Moreover
the restriction p|Xs(m) : Xs(m)→ p(Xs(m)) is a geometric quotient.

Relation between various good quotients thus obtained is described in the next proposition.

Proposition 3.3.9 ([5, Proposition 3.1.2.3]). For any m1,m2 ∈ ωX if Xss(m1) ⊂ Xss(m2)
then there exists a projective and surjective morphism of quotients Y (m1)→ Y (m2) mak-
ing the following diagram commutative

Xss(m1)

//T

��

⊂ Xss(m2)

//T

��
Y (m1) // Y (m2).

The GIT cones provide the description of semistability in terms of convex geometry.

Remark 3.3.10. For m ∈ ωX we have Xss(m) = {x ∈ X : m ∈ ωx} = {x ∈ X : λ(m) ⊂
ωx}.

Theorem 3.3.11 ([5, Theorem 3.1.2.8]). The collection Λ(X) := {λ(m) : m ∈ ωX} of
all GIT cones is a quasifan ( quasi- means that it does not necessarily consist of strongly
convex cones) in M ⊗ZQ. The support of Λ(X) (i.e. the set theoretic sum of its elements)
is equal to the weight cone ωX . Moreover for m1,m2 ∈ ωX

λ(m1) ⊂ λ(m2) ⇐⇒ Xss(m1) ⊃ Xss(m2).

In particular m1,m2 are contained in the relative interior of the same GIT cone if and
only if the equality Xss(m1) = Xss(m2) holds, i.e. if and only if they give the same good
quotients.

Definition 3.3.12. We call Λ(X) the GIT (quasi)fan of T -variety X.

Theorem 3.3.11 allows us to introduce the notation Xss(λ) = Xss(m), for GIT cone
λ = λ(m), as the set of semistable points does not depend on the choice of weight used to
define λ.

If A is factorial, or more generally: M -factorial (see definition 3.2.4), then the open sets
of the form Xss(w) are the all open and T -saturated subsets of X = SpecA from which
one can form good quotients that are varieties projective over Y (0) (T -saturated means
here that for each T -orbit contained in the subset its closure is also contained).

Theorem 3.3.13. Assume that A is M -factorial. The assignment λ 7→ Xss(λ) gives a
bijection between Λ(X) and T -saturated open subsets of X = SpecA admitting a good
quotient which is a variety projective over Y (0) = SpecAT .

Proof. By [5, Theorem 3.1.4.3] the above assignment gives a bijection between Λ(X)
and maximal T -saturated open subsets of X = SpecA admitting a good quotient which
is a quasiprojective variety. Since every quotient Y (λ) = Xss(λ)//T is projective over
Y (0) and open subset of Y (λ) is not projective over Y (0) unless it is the whole Y (λ), the
theorem follows. �
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3.3.3. Orbits and I-faces. To work with concrete examples of affine GIT quotients
by a (quasi)torus action we need effective methods to describe orbit cones. In this section
we introduce the notion of I-face, which is used to relate orbit cones with generators of
the coordinate ring of an affine variety with a quasitorus action.

Assume that an algebraic quasitorus T ∼= (C∗)r ×H with character group M ∼= Zr ×H
act on affine variety X = SpecA. Consider the M -grading on A induced by this action.
Let f1, . . . , fs be a system of homogeneous generators of A. Consider the homomorphism
Q : Zs → M defined on the canonical basis of Zs as Q(ei) = deg fi. Let I be the ideal of
relations between generators f1, . . . , fs, i.e. I is a kernel of the surjective ring homomor-
phism C[T1, . . . , Ts] 3 Ti 7→ fi ∈ A corresponding to a closed embedding X ⊂ Cs (in other
words I = I(X) for this affine embedding).

Definition 3.3.14 (I-face). An I-face is a face σ of cone(e1, . . . , es) such that the product
of fi with ei ∈ σ does not belong to the radical of the ideal (fi : ei 6∈ σ).

The next proposition unravels the geometric meaning of the concept of an I-face:

Proposition 3.3.15 ([5, Proposition 3.1.1.9]). The face σ of cone(e1, . . . , es) is an I-face
if and only if the corresponding orbit {(z1, . . . , zs) : zi 6= 0 ⇐⇒ i ∈ σ} of the big torus
(C∗)s coordinatewise action on Cs intersects the embedded variety X.

Using I-faces we can describe effectively orbit cones of the T -action on X.

Proposition 3.3.16 ([5, Proposition 3.1.10]). Let σ be an I-face. Then, for every x ∈
X ∩ {(z1, . . . , zs) : zi 6= 0 ⇐⇒ i ∈ σ} we have ωx = Q(σ).

3.4. Cox rings via GIT

Using the results from invariant theory that we introduced in preceeding sections we can
now present the relation of a finitely generated Cox ring to the birational geometry of a
variety, as described in the absolutely projective setting by Hu and Keel in [54]. First,
in section 3.4.1 we state a theorem that characterizes the Cox ring of a variety X as the
coordinate ring of an affine variety with the action of the characteristic quasitorus, dividing
by which we may obtain X as a good quotient. In section 3.4.2 we introduce and study the
notion of a relative Mori Dream Space. In particular, theorem 3.4.10 based on nontrivial
results from birational geometry [15] shows that minimal models of quotient singularities
defined by finite subgroups of SLn(C) are relative Mori Dream Spaces.

3.4.1. Characterization theorem. In this section we recall the characterization of
the Cox ring in terms of GIT from [5]. We apply it in the next section to present a
generalization of ideas of Hu and Keel to relative setting. It is also used in section 4.3 to
give a method of confirming that a certain ring is the Cox ring of a crepant resolution,
which is then illustrated in section 5.3. The reference for this section is [5, Sect. 1.6.]

Let X be as in definition 3.2.2. Assume that the Cox ring R(X) is finitely generated. We
consider a quasitorus action on SpecR(X) induced by the Cl(X)-grading on R(X).

Definition 3.4.1 (Characteristic quasitorus / Picard torus). The quasitorus TX = Hom(Cl(X),C∗)
is called the characteristic quasitorus of X. If TX is a torus (i.e. if Cl(X) is free) and X
is smooth (in particular Cl(X) = Pic(X)) we call TX the Picard torus of X.

We proceed to give a characterization of the variety SpecR(X) in terms of the action
of the characteristic quasitorus. To do so, we will need to introduce two notions. The
notion of the TX -factoriality is the geometric counterpart of the algebraic notion of Cl(X)-
factoriality from definition 3.2.4.
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Definition 3.4.2 (T -factorial variety). Let X be a normal variety with the action of a
quasitorus T . We say that X is T -factorial if every T -invariant divisor on X is a divisor
of a rational function which is homogeneous with respect to the grading on OX induced
by the action of T .

Proposition 3.4.3 ([5, Prop. 1.5.3.3]). Let M be a finitely generated abelian group and
denote by T = Hom(M,C∗) the associated quasitorus. Let X = SpecA be a normal affine
variety with a T -action. The following are equivalent:

(a) X is T -factorial.
(b) A is M -factorial.

We will also need the notion of strongly stable action, which encompasses the fact that
there are sufficiently many closed orbits with trivial isotropy to cover an open subset with
complement of codimension at least two.

Definition 3.4.4 (Strongly stable action). Let G be a linear algebraic group acting on
the variety W . We say that the action of G on W is strongly stable if there exists a open
subset W ′ ⊂W invariant with respect to the action of G satisfying:

(1) Complement W \W ′ is of codimension at least two.
(2) The action of G on W ′ is free, i.e. there are no nontrivial stabilizers.
(3) Each point x ∈W ′ has a closed orbit in W .

Let X be as in definition 3.2.2 and assume that the Cox ring R(X) is finitely gener-
ated. The following theorem gives a characterization of the Cox ring of X in terms of its
spectrum.

Theorem 3.4.5 ([5, Construction 1.6.3.1, Corollary 1.6.4.4]). Up to an isomorphism Z =
SpecR(X) is the unique normal affine variety with an action of a quasitorus TX satisfying
the following conditions:

(1) Z has only constant invertible global homogeneous functions,
(2) there exists an open TX-invariant subset W ⊂ Z with complement of codimension

at least two, such that TX-action on W is strongly stable and that W admits a
good quotient q : W → X,

(3) Z is TX-factorial.

3.4.2. Relative Mori Dream Spaces. In this section we relate the finite generation
of the Cox ring to the birational geometry while studying the notion of a relative Mori
Dream Space – a generalization of the notion from [54].

Let Y be a normal affine variety with torsion class group and let ϕ : X → Y be a projective
morphism. Assume moreover that X is normal and Q-factorial.

Definition 3.4.6 (Relative Mori Dream Space). X is called a Mori Dream Space (in short
a MDS ) over Y if:

(1) Cl(X) is a finitely generated group,
(2) the cone Nef(X/Y ) ⊂ N1(X/Y ) = N1(X) is polyhedral and generated by semi-

ample line bundles, and
(3) there exist finitely many Q-factorial varieties ϕi : Xi → Y projective over Y

satisfying (1) and (2), and there exist isomorphisms ψi : X 99K Xi in codimension
1 over Y and such that strict transforms (ψ−1

i )∗(Nef(Xi/Y )) form a subdivision
of Mov(X).

The following theorem relates the notion of a relative Mori Dream Space with the finite
generation of the Cox ring.
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Theorem 3.4.7. Let Y be a normal affine variety with torsion class group and let ϕ : X →
Y be a projective morphism. Assume moreover that X is normal and Q-factorial and
that the assumptions of the definition of the Cox ring are satisfied, i.e. Cl(X) is finitely
generated and H0(X,O∗X) = C∗. Then the two following conditions are equivalent:

(a) X is a Mori Dream Space over Y .
(b) The Cox ring R(X) is a finitely generated C-algebra.

To prove that the Cox ring of a relative Mori Dream Space is finitely generated we will
use the following theorem, which goes back to the paper of Zariski [96].

Theorem 3.4.8 ([26, Proposition 1.8.20]). Let Y be a normal affine variety and let
ϕ : X → Y be a projective morphism. Assume moreover that X is normal and Q-factorial.
If D1, . . . , Dr ∈WDiv(X) are semiample then the ring

⊕
n1,...,nr≥0H

0(X,n1L1 + . . . nrLr)

with multiplication induced from the function field C(X) is finitely generated C-algebra.

We will use also the following lemma.

Proposition 3.4.9. Let X be a normal variety with finitely generated class group and
H0(X,O∗X) = C∗. If Mov(X) is polyhedral then Eff(X) is polyhedral.

Proof. This is [5, Lemma 4.3.3.3], except that here we do not assume that X is
complete. Nevertheless, the proof goes analogously, using the generalization of the de-
scription of the movable cone from the complete case to the general case given in propo-
sition 3.2.9. �

Proof of the implication (a) =⇒ (b) in theorem 3.4.7. We are following the
proof in the complete case given in [5, Sect. 4.3.3]. Let X → Y be a relative MDS. Then the
movable cone Mov(X) is polyhedral. By proposition 3.4.9 the effective cone Eff(X) is also
polyhedral. Denote by w1, . . . , wd the primitive generators of rays of Eff(X) such that given
n ≥ 0 we have eitherR(X)nwi = 0 orR(X)nwi

∼= H0(X,OX) as H0(X,OX)-module. Note
thatR(X)nwi 6= 0 for some n ≥ 0 as wi is effective. Let ni > 0 be the minimal positive inte-
ger satisfyingR(X)niwi 6= 0 and take the generator fi of the H0(X,OX)-moduleR(X)niwi .
It follows that fi is Cl(X)-prime and H0(X,OX)[fi] =

⊕∞
n=0R(X)nwi for each i. Let

λi := (ϕ−1
i )∗(Nef(Xi/Y )). By Gordan’s lemma [23, Prop. 1.2.7] the semigroup Cl(X)∩λi

is finitely generated. Therefore by theorem 3.4.8 the algebra
⊕

w∈Cl(X)∩λi R(X)w is finitely

generated for every i. It follows that the algebra

A(X) :=
⊕

w∈Cl(X)∩Mov(X)

R(X)w =
r∑
i=1

 ⊕
w∈Cl(X)∩λi

R(X)w

 ,

is finitely generated. We claim that elements fi ∈ R(X)niwi together with a choice of
finitely many generators for A(X) generate the Cox ring R(X). Take f ∈ R(X)w \ 0.

If w is not movable, then by lemma 3.2.10 we have f = fif
(1) for some i and f (1) ∈

R(X)w−niwi \ 0. Repeating the same procedure we get the sequence of elements f (m) ∈
R(X)w−ni1wi1−...−nimwim . Since for sufficiently largem the element of the form w−ni1wi1−
. . . − nimwim is not in Eff(X) the sequence must be finite and hence the last term has

degree from Mov(X). In other words f = fi1 · . . . · fiM · f (M) where deg f (M) ∈ Mov(X)
and the proof is finished. �

Proof of the implication (b) =⇒ (a) in theorem 3.4.7. By description of the
ample cone in proposition 3.2.11 we see that Amp(X) is polyhedral. Since Y is affine
and Cl(Y ) is a torsion group Amp(X) = Amp(X/Y ) and, as a consequence, Nef(X/Y )
is polyhedral. Moreover, by the same proposition 3.2.11, we know that SAmp(X) =
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Amp(X)(= Amp(X/Y ) = Nef(X/Y )) is a GIT cone of TX -action on Z = SpecR(X),
contained in Mov(X).

By theorem 3.3.13 every variety which is projective over Y and is a quotient of an invariant
open subset of Z is of the form Xλ = Zss(λ)//TX for some GIT cone λ. Note that varieties
isomorphic in codimension one have the same Cox ring. Hence, by theorem 3.4.5 every
variety isomorphic to X in codimension 1 is a quotient of an invariant open subset of Z.
Similarly as before, by proposition 3.2.11 we see that SAmp(X) = λ. Therefore if Xλ is
isomorphic in codimension 1 to X over Y then λ ⊂ Mov(X), since its semiample cone has
to be contained in Mov(X).

On the other hand, by theorem 3.4.5 and the definition of strongly stable action (defini-
tion 3.4.4) it follows, that if λ ⊂ Mov(X), then Xλ is isomorphic in codimension 1 to X
over Y . Moreover Xλ is Q-factorial as Amp(Xλ) = λ◦ is of full dimension. �

The next theorem shows that the objects of our study in this work – crepant resolutions,
or more generally, minimal models of quotient singularities given by subgroups of SLn(C)
are relative Mori Dream Spaces.

Theorem 3.4.10. Let G ⊂ SLn(C) be a finite subgroup and let ϕ : X → Cn/G be a minimal
model. Then X is a relative Mori Dream Space over Cn/G.

Remark 3.4.11. If G ⊂ Sp4(C) and X smooth this is a particular case of [3, The-
orem 3.2]. In case of higher-dimensional symplectic singularities the theorem follows
from [77, Main Theorem].

Proof of theorem 3.4.10. By proposition 2.1.11 for arbitrary G ⊂ SLn(C) a mini-
mal model X of Cn/G is a Q-factorial variety with terminal singularities and KX = 0. By
argument as in [64, Lemma 2.62] there is a relatively ample divisor which is the negative
of a divisor B supported on the exceptional locus of ϕ.

Now observe that for every effective divisor D supported on the exceptional locus of ϕ the
pair (X, εD) is klt for sufficiently small ε > 0 (see [64, Definition 2.34]). Indeed, since X
has terminal singularities, for any log resolution ψ : W → X of (X, εD) with irreducible
components of exceptional divisor Ei we have KW = ψ∗KX +

∑
i aiEi, where all ai are

positive. Then for sufficiently small ε > 0 we get ai + εbi > 0, where ψ∗D +
∑

j bjEj is

the strict transform of D. Cf. [92, Proposition 4.5(i)].

Since every klt pair is dlt ([64, Proposition 2.41]) the pair (X, εB) is dlt for sufficiently
small ε > 0. Hence the pair (X, εB) satisfies the assumptions of [15, Corollary 1.3.2] and
so the Cox ring of X is a finitely generated C-algebra. �





CHAPTER 4

Cox rings of resolutions – general results

In this chapter we present general results concerning computing Cox rings that are il-
lustrated by the analysis of concrete examples in chapters 5 and 7. Section 4.1 presents
the main idea – for a projective birational morphism ϕ : X → Y of varieties satisfying
general assumptions under which the Cox ring is defined we embed the Cox ring of X
into a ring of Laurent polynomials over the Cox ring of Y . We give a certain valuation
compatibility condition (theorem 4.1.15) to decide whether a natural candidate for a set
of generators indeed generates the image of the embedding. In section 4.2, specializing to
the case of a crepant resolution of a quotient singularity we describe explicitly the Cox
ring of Y and the valuations involved. These results are crucial in chapter 5, where we
analyze three-dimensional quotient singularities and their crepant resolutions. Then, in
section 4.3, based on the characterization of the Cox ring given in section 3.4.1, we give
another criterion to check whether the image of the embedding is generated by a candidate
set. We apply this theorem in section 5.3 to present an alternative treatment of Cox rings
of crepant resolutions of three-dimensional quotient singularities given by dihedral groups.
Finally, section 4.4 outlines a direct approach to bounding the degrees of generators of the
Cox ring of a relative Mori Dream Space, by use of multigraded Castelnuovo-Mumford
regularity. This method is important in the study of symplectic examples in chapter 7.

Part of the results from this chapter (especially in sections 4.1 and 4.2) form a generaliza-
tion of results of the joint work with Maria Donten-Bury [32].

4.1. Embedding of the Cox ring and the compatibility criterion

In this section we work under the following general assumptions.

Situation 4.1.1. Let ϕ : X → Y be a projective birational morphism of normal varieties
with finitely generated class groups and with H0(X,O∗X) = C∗ = H0(Y,O∗Y ). Assume
moreover that Y is Q-factorial and that E1, . . . , Em are the irreducible components of the
exceptional divisor of ϕ.

The following result by Hausen, Keicher and Laface describes the change of the Cox ring
under the birational morphisms.

Proposition 4.1.2 ([49, Proposition 2.2]). Under the assumptions in situation 4.1.1 there
exist:

(i) A natural pushforward homomorphism ϕ∗ : WDiv(X)→WDiv(Y ) such that for
every prime divisor D either ϕ∗(D) = ϕ(D) if ϕ(D) is a divisor on Y or ϕ∗(D) =
0 if codimϕ(D) > 1. This homomorphism induce a homomorphism of class
groups ϕ∗ : Cl(X)→ Cl(Y ).

(ii) A pushforward map H0(X,OX(D)) → H0(Y,OY (ϕ∗D)) defined as f 7→ f , via
isomorphism C(X) ∼= C(Y ) induced by ϕ.

Moreover the maps from (ii) give a surjective ring homomorphism ϕ∗ : R(X) → R(Y )
compatible with the pushforward map ϕ∗ : Cl(X) → Cl(Y ). If the ring R(X) is finitely

41
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generated then the kernel of ϕ∗ : R(X) → R(Y ) is generated by elements of the form
1− fEi, for some fEi with div[Ei] fEi = Ei.

The proposition above gives in particular a recipe how to compute R(Y ) in terms of R(X),
assuming that R(X) is finitely generated. What follows is motivated by an attempt to give
an inverse construction. More precisely, our ultimate goal is to findR(X) assuming that we
knowR(Y ), at least when ϕ is a crepant resolution of a quotient singularity. In this section
we present a general construction for a natural ‘candidate set’ for a set of generators and
a condition when such set actually generates R(X). For crepant resolutions of a quotient
singularity we describe objects appearing in these constructions in 4.2. This allows us to
use them effectively in chapters 5 and 7. The construction is a direct generalization of the
constructions given in [31], [37], [32] and [94] (the order of references here corresponds
to the growing level of generality).

Denote Cl(X/Y ) = Cl(X)/ϕ∗ Pic(Y ) and by Cl(X/Y )free the free part of Cl(X/Y ).

Proposition 4.1.3. Under the assumptions in situation 4.1.1 we have exact sequences:

0→
m⊕
i=1

Z[Ei]→ Cl(X)
ϕ∗−→ Cl(Y )→ 0

and

0→
m⊕
i=1

Z[Ei]→ Cl(X/Y )
ϕ∗−→ Cl(Y )/Pic(Y )→ 0.

Proof. By [46, Proposition II.6.5(d)] we have an exact sequence:
m⊕
i=1

Z[Ei]→ Cl(X)
ϕ∗−→ Cl(Y )→ 0.

By definition of Cl(X/Y ) this yields an exact sequence
m⊕
i=1

Z[Ei]→ Cl(X/Y )
ϕ∗−→ Cl(Y )/Pic(Y )→ 0.

To finish the proof it suffices to prove that the map
⊕m

i=1 Z[Ei] → Cl(X/Y ) is injective.
We first note that there exists a ϕ-ample divisor on X of the form A = −

∑m
i=1 aiEi, where

ai > 0 for every i. Indeed, take any ϕ-ample divisor A0, then define A = A0 − ϕ∗ϕ∗A0

and note that A ∼ϕ A0 is ϕ-ample and A = −
∑m

i=1 aiEi with ai ≥ 0.

Now note that for each i there exists yi ∈ Y such that ϕ−1(yi) ∩ Ei \
⋃
j 6=iEj 6= ∅. Since

Ei is contracted by ϕ there exists a curve Ci ⊂ ϕ−1(yi) which has nonempty intersection
with Ei \

⋃
j 6=iEj . As A.Ci > 0 and Ci.Ej ≥ 0 for i 6= j because Ci 6⊂ Ej , we must have

Ei.Ci < 0 and ai > 0.

To finish the argument assume that a linear combination L of Ei is ϕ-trivial. In particular
it is nef. By negativity lemma [64, Lemma 3.39] at least one of coefficients in L is negative.
Then for some combination pA−qL of A and L with p, q > 0 we have Ei 6⊂ Supp(pA−qL)
for some i. But then (pA− qL).Ci < 0 even though pA− qL ∼ϕ pA is ample as p > 0 – a
contradiction. �

Lemma 4.1.4. Under the assumptions in situation 4.1.1 the homomorphism Cl(X) 3 α 7→
(ϕ∗α, [α]) ∈ Cl(Y )⊕ Cl(X/Y )free is injective.

Proof. Assume that α is send to zero by this homomorphism. Then ϕ∗α = 0 in Cl(Y ).
By proposition 4.1.3 we have α ∈

⊕m
i=1 Z[Ei] ⊂ Cl(X). But [α] = 0 in Cl(X/Y )free and⊕m

i=1 Z[Ei] embeds into Cl(X/Y )free, hence α = 0. �
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Proposition 4.1.5. Under the assumptions in situation 4.1.1 the ring homomorphism
Θ: R(X)→ R(Y )⊗C C[Cl(X/Y )free]:

R(X)α 3 f
Θ7→ ϕ∗f ⊗C t

α

is injective, where tα is the character of the torus Hom(Cl(X/Y )free,C∗) corresponding to
the class of α in Cl(X/Y )free.

Proof. Assume that Θ(f) = 0. By lemma 4.1.4 we may assume that f is homoge-
neous, but then the claim follows as the map ϕ∗ : R(X)α → R(Y )ϕ∗α is injective. �

The proposition that we just have proven gives us an embedding of the ring R(X), that we
would like to understand, into the ring R(Y ) ⊗C C[Cl(X/Y )free], which is just a Laurent
polynomial ring over the ring R(Y ). As we noted before, in cases of our interest the
structure of the ring R(Y ) will be known (more precisely, we will know the generators
of R(Y ) and relations among them). In particular, the structure of the ring R(Y ) ⊗
C[Cl(X/Y )free] will be easier to understand than the structure of R(X). Our hope is
to find a finite set of elements of R(Y ) ⊗ C[Cl(X/Y )free] which generate Θ(R(X)). We
proceed to describe a ‘candidate’ for such a set of elements and give a criterion when it
actually generates Θ(R(X)). Both description of the ‘candidate set’ and the criterion will
rely on the following notion.

Definition 4.1.6. Under the assumptions in situation 4.1.1:

(i) Consider an effective Weil divisor D on Y . Let D = ϕ−1
∗ D be the strict transform

of D via ϕ. Then ϕ∗D = D+
∑

i νi(D)Ei. We call the number νi(D) the valuation
of D at Ei.

(ii) IfD is any Weil divisor on Y , then for every f ∈ H0(Y,O(D)) = {h ∈ C(Y )∗ : div h+
D ≥ 0} we define the valuation of f at Ei as νi(f) = νi(div f +D).

Remark 4.1.7. In the situation of definition 4.1.6 (i) if ϕ∗KY = KX then νi(D) =
−a(Y,Ei, D), where a(Y,Ei, D) is the discrepancy of (Y,D) atEi (see [64, Definition 2.25]).

Remark 4.1.8. In the situation of definition 4.1.6 (ii) if rD is a Cartier divisor, then f r is
a global section of line bundle OY (rD). Take a trivialization of OY (rD) along open subset
U ⊂ Y such that Ei ∩U 6= ∅ and let fY be a section of OY along U which corresponds to
f r. Then rνi(f) = νEi(fY ), where νEi : C(Y )∗ → Z is a divisorial valuation of Ei.

Observe that the notion of a valuation of a divisor or of a nonzero section of H0(Y,OY (D))
at Ei is not precisely a valuation defined on the field extension of C in the sense of
section 2.1.1. Nevertheless, the remark 4.1.8 relates the two notions and in the next
section we will see an even closer relation in the case of crepant resolution of quotient
singularity.

Proposition 4.1.9. Under the assumptions in situation 4.1.1 assume further that D is an
effective Weil divisor on Y and f ∈ R(Y )[D] such that div[D] f = D. Then in Cl(X/Y )free
we have the equality of classes D = −

∑
i νi(f)Ei.

Proof. This follows by definition of νi – since Y is Q-factorial for some positive integer
r we have ϕ∗(rD) = rD +

∑
i rνi(f)Ei, where rD is a Cartier divisor. Therefore rD =

−r
∑

i νi(f)E in Cl(X/Y ) and we may cancel r in the free abelian group Cl(X/Y )free. �

We are now ready to describe the promised ‘candidate’ for generating set of Θ(R(X)) and
to give a valuative criterion when it is indeed a generating set.
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Situation 4.1.10. Under the assumptions in situation 4.1.1 assume further that R(Y ) is
finitely generated and let φ1, . . . , φs be a system of homogeneous generators of R(Y ).

Consider the subring R ⊂ Θ(R(X)) defined by generators as:

R = C[φit
Dφi , tEj for i = 1, . . . , s and j = 1, . . . ,m],

where Dφi is the strict transform of a divisor Dφi ∈ WDiv(Y ) corresponding to φi, i.e.
Dφi = divdeg φi φi.

Remark 4.1.11. Note that in the above situationR is generated by images of homogeneous
elements in R(X), and so it has a natural Cl(X)-grading. Moreover, this grading is
compatible with the Cl(Y )⊕Cl(X/Y )free-grading on R(Y )⊗C[Cl(X/Y )free] via the map
from lemma 4.1.4.

Remark 4.1.12. Also note that in the above situation if R(X) is finitely generated then
there always exists the system of generators of R(X) the form as in the definition of R –
indeed, one may take any system of homogeneous generators, and take as φi pushforwards
of generators (cf. the proof of lemma 4.1.18).

The choice of generators of R in situation 4.1.10 has the following simple geometric inter-
pretation.

Proposition 4.1.13. R = Θ(R(X)) if and only if for every effective divisor D ∈WDiv(Y )
one has D =

∑s
i=1 aiDφi +

∑m
j=1 bjEj for some nonnegative integers ai, bj.

Proof. Every effective divisor on X can be expressed as the sum D + E, where D
is an effective divisor on Y and E is an effective divisor supported on the components
of the exceptional divisor. Now the assertion follows from the correspondence between
homogeneous elements of R(X) (up to scalar multiplication) and effective divisors on
X. �

We now restate this observation in the language of valuations to make it more effective for
crepant resolutions of quotient singularities in the next section. Let κ : C[Z1, . . . , Zs] →
R(Y ) be a surjective map defined by Zi 7→ φi. Define a monomial valuation ν̃i on
C(Z1, . . . , Zs) by setting ν̃i(Zj) = νi(φj).

Assumption 4.1.14 (Valuation compatibility condition). Assume that for every Cl(Y )-

homogeneous element f ∈ R(Y )α there exists an element f̃ ∈ C[Z1, . . . , Zs] with κ(f̃) = f

and such that for every i we have νi(f) = ν̃i(f̃). (Equivalently: f can be expressed as a
sum of monomials fj in φ1, . . . , φs such that νi(f) ≤ νi(fj) for every i, j.)

Theorem 4.1.15 (Valuation compatibility criterion). In situation 4.1.10 the following
conditions are equivalent:

(i) Assumption 4.1.14.

(ii) R = Θ(R(X)), i.e. elements φit
Dφi and tEj , i = 1, . . . , s, j = 1, . . . ,m generate

the embedded Cox ring Θ(R(X)).

Proof. The proof of (i) =⇒ (ii) is the combination of the three lemmas be-
low. For the converse note that if R = Θ(R(X)) and f ∈ R(Y )α then we can find

h ∈ C[Z1, . . . , Zs, Zs+1, . . . , Zs+m] with minimal number of monomials, satisfying ftDf =

h(φ1t
Dφ1 , . . . , φst

Dφs , tE1 , . . . , tEm) and such that every monomial occurring in polyno-

mial h after substituting φit
Dφi , tEj is of the same degree in R as ftDf . We may take

f̃ = h(Z1, . . . , Zs, 1, . . . , 1) for such h to get assumption 4.1.14. �
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Lemma 4.1.16. If f ∈ R(Y )α is a monomial in generators φ1, . . . , φs, then ftDf ∈ R.

Proof. It is immediate that ftDf is the same monomial evaluated at φit
Dφi instead

of φi. �

Lemma 4.1.17. Assume that f ∈ R(Y )α satisfies the condition from the assumption 4.1.14

then ftDf ∈ R.

Proof. By the assumption we may write f =
∑

i fi where fi is a monomial in gen-

erators φ1, . . . , φs and νi(f) ≤ νi(fj) for every i, j. By proposition 4.1.9 we have Df =

−
∑

i νi(f)Ei and Dfj = −
∑

i νi(fj)Ei in Cl(X/Y )free. Therefore Df = Dfj +
∑

j ni,jEi,
with ni,j > 0. Since f and fj are homogeneous we may assume that they have the same de-

gree, and therefore ni,j ∈ Z by proposition 4.1.3. Then ftDf =
∑

k fjt
Dfj ·

∏
i(t

Ei)ni,j ∈ R
by the previous lemma. �

Lemma 4.1.18. Assume that f ∈ R(Y )α. If ftDf ∈ R and ftD ∈ Θ(R(X)) for some
D ∈WDiv(X), then ftD ∈ R.

Proof. Let ftD ∈ Θ(R(X)). Then D = Df +
∑

i niEi in Cl(X/Y )free for some

nonnegative integers ni. Therefore ftD = ftDf ·
∏
i(t

Ei)ni ∈ R by the previous lemma. �

We finish with a description of the movable cone of X in terms of degrees of generators of
the form considered in situation 4.1.10 and the geometric information encoded by its GIT
subdivision under assumptions dictated by applications in chapters 5 and 7.

Denote

(4.1.19) Mov(R) =
s⋂

k=1

cone({Dφi : i 6= k} ∪ {E1, . . . , Em}) ∩
m⋂
k=1

cone({Dφ1 , . . . , Dφs} ∪ {Ej : j 6= k})

⊂ N1(X).

Note that the characteristic quasitorus T = Hom(Cl(X),C∗) of X acts on SpecR as R is
Cl(X)-graded by remark 4.1.11.

Proposition 4.1.20. Under the assumptions at the beginning of the section if R =
Θ(R(X)) then Mov(X) = Mov(R). If moreover Y is affine with KY = 0, canonical
singularities and torsion class group, and ϕ : X → Y is a minimal model of Y then there
is a one-to-one correspondence between minimal models of Y and GIT chambers of the
action of T on SpecR contained in Mov(R). Namely, taking GIT quotients corresponding
to GIT chambers of this action we obtain all, pairwise nonisomorphic minimal models of
Y .

Proof. The equality Mov(X) = Mov(R) is a particular case of proposition 3.2.9.
The second part follows as X is a Mori Dream Space over Y by theorem 3.4.7 and every
two minimal models are isomorphic in codimension one (for the last fact note that the
exceptional divisors on a minimal model of Y are precisely the crepant divisors over Y by
proposition 2.1.11). �

4.2. Case of a resolution of a quotient singularity

Here we describe objects appearing in the previous section specializing to crepant resolu-
tions of quotient singularities. In this case, we describe more effectively the Cox ringR(Y ),
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the valuation of a divisor and, more generally, the valuation of a section of a reflexive sheaf
of a divisor at an exceptional divisor.

Let G ⊂ GLn(C) be a small group. Recall from proposition 2.2.6 (iii) that there is a
natural isomorphism Cl(Cn/G) ∼= Ab(G)∨ = Hom(G,C∗). Note that we have an Ab(G)-

action on Cn/[G,G] and the corresponding Ab(G)∨-grading on C[x1, . . . , xn][G,G], where
[G,G] ⊂ G is the commutator subgroup and Ab(G) = G/[G,G].

Proposition 4.2.1 ([6, Theorem 3.1]). There is a natural isomorphism of Ab(G)∨-graded

algebras R(Cn/G) ∼= C[x1, . . . , xn][G,G].

Since Pic(Cn/G) = 0 by proposition 2.2.6 (ii), proposition 4.1.3 takes the following form.

Corollary 4.2.2. If E1, . . . , Em are the components of the exceptional divisor of a reso-
lution ϕ : X → Cn/G then we have the exact sequence:

0→
m⊕
i=1

Z[Ei]→ Cl(X)
ϕ∗−→ Cl(Cn/G)→ 0.

The next proposition implies that in our setting Cl(X) = Cl(X/Y )free.

Proposition 4.2.3 ([37, Lemma 2.13]). Let ϕ : X → Cn/G be a resolution of singularities.
Then the class group Cl(X) is free.

By propositions 4.2.1 and 4.2.3 proposition 4.1.5 simplifies to the following.

Corollary 4.2.4. Let ϕ : X → Cn/G be a resolution of singularities. The ring homo-
morphism Θ: R(X)→ R(Cn/G)⊗C C[Cl(X)]:

R(X)α 3 f
Θ7→ ϕ∗f ⊗C t

α ∈ C[x1, . . . , xn][G,G]
α ⊗C C[Cl(X)]

is injective, where tα is the character of the Picard torus T = Hom(Cl(X),C∗) correspond-
ing to the class of α in Cl(X).

We are now going to describe valuations from the previous section in the setting of crepant
resolutions of quotient singularities. Assume that G ⊂ SLn(C) and that ϕ : X → Cn/G is
a crepant resolution. Let g1, . . . , gm be representatives of junior conjugacy classes corre-
sponding to the components E1, . . . , Em of the exceptional divisor via McKay correspon-
dence (theorem 2.2.18). Denote by ri the order of gi and by νgi : C(x1, . . . , xn)∗ → Z the
monomial valuation of gi. Note that νgi restricts to a well-defined function on the quotient

field of the Cox ring R(Cn/G) = C[x1, . . . , xn][G,G] which is equal to C(x1, . . . , xn)[G,G] ⊂
C(x1, . . . , xn). By the McKay correspondence we have:

Corollary 4.2.5. Under the assumptions above let D be an effective Weil divisor on

Cn/G and f ∈ C[x1, . . . , xn]
[G,G]
[D] such that div[D] f = D. Then νi(f) = νi(D) = 1

ri
νgi(f).

Proof. Note that f r ∈ R(Cn/G)0 = C[x1, . . . , xn]G for some r. By remark 4.1.8 we
have rνi(f) = νEi(f

r) and by theorem 2.2.18 we know that νEi = 1
ri
νgi |C(x1,...,xn)G . �

It is often convenient to work with a free abelian group ΛX of which Cl(X) is a sub-
group of finite index. This group is defined as the subgroup of Cl(X) ⊗Z Q with a basis
1
r1
E1, . . . ,

1
rm
Em. It allows us to express the embedding Θ a bit more clearly in terms of

monomial valuations νgi and orders ri of gi. By identifying C[ΛX ] with C[t±1
1 , . . . , t±1

m ],

where t−rii = tEi we obtain another form of the embedding Θ (denoted by the same letter
by abuse of notation).
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Corollary 4.2.6. Under the assumptions above if D is an effective divisor on Y and a

homogeneous element f ∈ R(X) corresponds to D then Θ(f) = ϕ∗(f)
∏m
i=1 t

νgi (ϕ∗(f))
i ∈

C[x1, . . . , xn][G,G][t±1
1 , . . . , t±1

m ]. Moreover Θ(tEi) = t−rii .

4.3. Approach via characterization theorem

Assume that we are in situation 4.1.10, assume moreover that ϕ : X → Y is a crepant
resolution of singularities, Cl(X) is free abelian group and that the Cox ring R(X) is
finitely generated. This setup is of most interest for us as it includes the case of quotient
singularities by proposition 4.2.3 and theorem 3.4.10. It is natural to try to use the char-
acterization theorem for Cox rings (theorem 3.4.5) to give a criterion when the inclusion
R ⊂ Θ(R(X)) is the equality. We will now give such a criterion. Unfortunately, the crite-
rion may not be easy to apply efficiently in concrete examples, as one of the conditions to
check is whether of some elements of R are prime. Nevertheless, we will give an example
how to use it in section 5.3, in the study of the three-dimensional quotients by dihedral
groups.

We need two general lemmas relating R to R(X) and Y . They are interesting on their
own and the first one finds also another use in chapter 7. It shows that the GIT quotient of
the spectrum of R with respect to the Picard torus T action linearized by trivial character
is the same as the analogous quotient for R(X).

Lemma 4.3.1. Under the assumptions at the beginning of the section we have RT =
R(Y )0 ⊗ 1 (∼= H0(Y,OY )). In particular, if we assume moreover that Y is affine, then
(SpecR)/T ∼= Y .

Proof. To see that RT ⊂ R(Y )0 ⊗ 1 note that every element of RT is of the form

f̃ = ϕ∗(f)⊗ 1 for some f ∈ R(X). Then degϕ∗(f) = 0 since deg f̃ = 0 and ϕ∗ : R(X)→
R(Y ) is a map of graded rings.

For the opposite inclusion let ψ1, . . . , ψk be generators of R(Y )0. By the construction of

the generators of R we have ψit
Di ∈ R for some effective divisors Di on Y . Moreover, by

proposition 4.1.9 we have Di = −
∑

j νj(Di)Ej for nonnegative rational numbers νj(Di)

which are in fact nonnegative integers as degψi = 0 ∈ Cl(Y ) imply Di ∈
⊕

j ZEj in Cl(X)

(see proposition 4.1.3). Then ψi = ψit
Di ·

∏
j(t

Ej )νj(Dj) ∈ R. �

Let S be a multiplicative system generated by elements tE1 , . . . , tEm ∈ R ⊂ Θ(R(X)).

Lemma 4.3.2. Under the assumptions at the beginning of the section S−1R = S−1Θ(R(X)).

Proof. The inclusion ⊂ is trivial and the inclusion ⊃ can be deduced from propo-
sition 4.1.3 as follows. First, note that if f ∈ R(Y ) is Cl(Y )-homogeneous, D,D′ ∈
Cl(X/Y )free and ftD, ftD

′ ∈ Θ(R(X)) then D − D′ ∈
⊕n

i=1 Z[Ei], because ϕ∗(ft
D) =

ϕ∗(ft
D′) = f and so ϕ∗D = ϕ∗D

′. Now since elements tEi are Cl(X)-homogeneous
we have a natural Cl(X)-grading on S−1Θ(R(X)). As every Cl(X)-homogeneous el-
ement of Θ(R(X)) is of the form ftD (see proposition 4.1.5) we deduce that homo-
geneous elements of Θ(R(X)) are contained in S−1R and this suffice to conclude that
S−1R ⊃ S−1Θ(R(X)). �

Now we are ready to state and prove the main result of this section. In the notation of
proposition 4.1.20 let σ ⊂ Mov(R) be a GIT cone of the Picard torus T action on SpecR.

Theorem 4.3.3. Under the assumptions given at the beginning of the section assume
moreover that Y is affine. The following conditions are equivalent:
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(i) Each element tEi is prime in R, there exists λ ∈ σ◦ such that the good quotient
(SpecR)ss(λ)//T is smooth and the set of points of SpecR that are unstable with
respect to λ or have nontrivial isotropy group has the codimension greater than
one.

(ii) The natural map (SpecR)ss(λ)//T→ (SpecR)ss(0)//T = Y is a resolution which
is isomorphic to X in codimension one and R = Θ(R(X)).

Proof. To prove (i) =⇒ (ii) we use two previous lemmas.

By lemma 4.3.2 we have S−1R = S−1Θ(R(X)). Therefore, as Cl(X) is free, we may use [5,
Proposition 3.4.1.8] and [5, Theorem 3.4.1.11] to conclude that the ring R is factorial, in
particular it is factorially graded and normal. Moreover, SpecS−1R ∼= SpecS−1R(X) as
T-varieties.

By the assumption on the codimension of unstable point locus and the locus of points
with nontrivial isotropy group the T-action on SpecR is strongly stable and we may use
theorem 3.4.5 to get R ∼= R(X ′), where X ′ = (SpecR)ss(λ)//T. By lemma 4.3.1 we have
(SpecR)ss(0)//T ∼= Y .

Now the map X ′ → (SpecR)ss(0)//T ∼= Y is an isomorphism outside the set
⋃m
i=1{tEi = 0}

and {tEi = 0} are irreducible divisors on (SpecR)ss(λ)//T. Since all crepant divisors over
Y have to be divisors on every nonsingular variety admitting a projective birational map
to Y it means that {tEi = 0} are crepant divisors over Y . Hence X ′ is a crepant resolution
and as such it is isomorphic in codimension one to X. Thus we get (ii).

The implication (ii) =⇒ (i) follows from theorem 3.4.5. �

4.4. Bounding degrees of generators with multigraded regularity

In this section we give a direct bound on the degrees of generators of the Cox rings using the
results in the sheaf cohomology – the Kawamata Viehweg vanishing (as in [62, Theorem
1-2-3]) and the properties of multigraded Castelnuovo-Mumford regularity. We start with
a brief introduction to multigraded regularity.

4.4.1. Multigraded Castelnuovo-Mumford regularity. The following general-
ization of the Castelnuovo-Mumford regularity is due to Maclagan and Smith [70]. Let X
be an algebraic variety, let B1, . . . , B` be globally generated line bundles on X and let L
be a line bundle on X.

Definition 4.4.1 (See [51, Sect. 2.]). A coherent sheaf F is called L-regular (with respect
to B1, . . . , B`) if H i(X,F ⊗L⊗B−u) = 0 for all i > 0 and |u| = i, where u := (u1, . . . , u`)
is a tuple of nonnegative integers, |u| := u1 + . . .+ u` and Bu := Bu1

1 ⊗ . . .⊗B
u`
` .

The concept of multigraded regularity is interesting for us due to the following property.

Theorem 4.4.2 ([51, Theorem 2.1(2)]). Let F be a L-regular coherent sheaf on X. Then
the multiplication map:

H0(X,F ⊗ L⊗Bu)⊗H0(X,Bv)→ H0(X,F ⊗ L⊗Bu+v)

is surjective for all `-tuples of nonnegative integers u,v.

We will be using this theorem via the following corollary.

Corollary 4.4.3. Assume that X is a smooth algebraic variety with KX = 0. Let ϕ : X →
Y be a projective morphism onto an affine variety Y . Let B1, . . . , B` be globally generated
line bundles on X. Assume that the fibres of ϕ are of dimension at most r. Let A be a
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line bundle on X such that A ⊗ B−u is ϕ-nef and ϕ-big for every tuple u of nonnegative
integers with |u| ≤ r. Then the multiplication map:

H0(X,A⊗Bv)⊗H0(X,Bw)→ H0(X,A⊗Bv+w)

is surjective for all `-tuples of nonnegative integers v,w.

Proof. This is a direct consequence of theorem 4.4.2 for L = OX and F = A since
the defining property of OX -regular sheaf follows then by Kawamata-Viehweg vanishing
theorem [62, Theorem 1-2-3]. The vanishing of cohomologies H i(X,A ⊗ B−u) with i >
r follows from the assumption on the dimension of fibres of ϕ as Y is affine, see [46,
Corollary III.11.2] �

4.4.2. Degrees of generators of R(X). Assume that we are in situation 4.1.10.
Assume moreover that ϕ is a relative Mori Dream Space, Y is affine and KX = 0.

Let Σ be a GIT subdivision of the movable cone Mov(X) and let σ ∈ Σ be a cone of
maximal dimension. Then σ = SAmp(X ′) for some ϕ′ : X ′ → Y isomorphic to X over
Y in codimension one. Let ρ1, . . . , ρs be rays of σ and let D1, . . . , Ds ∈ Cl(X ′) be ray
generators. Assume that m1, . . . ,ms > 0 are such that m1D1, . . . ,msDs are divisors with
base point free linear systems. Let R(X)σ =

⊕
α∈Cl(X)∩σR(X)α.

Proposition 4.4.4. Assume that X ′ is smooth and the dimensions of fibres of ϕ′ are at
most r. Then the C-algebra R(X)σ is generated by the elements corresponding to global
sections of all line bundles of the form

∑s
i=1 kiDi with 0 ≤ ki < (r + 1)mi for every i.

Proof. We apply corollary 4.4.3 multiple times for globally generated line bundles
{B1, . . . , B`} = {miDi : i ∈ I} and A =

∑
i∈I(rmi + ki)Di, for all I ⊂ {1, . . . , s} and all

0 ≤ ki < mi. �

Proposition 4.4.5. (cf. the proof of implication (a) =⇒ (b) in theorem 3.4.7) Under
the assumptions above the Cox ring R(X) is generated by generators of R(X)σ for σ ∈ Σ
together with the elements corresponding to the components of the exceptional divisor.

Proof. We argue as in the proof of proposition 4.1.13. Every effective Weil divisor
on X is of the form D + E where D is the strict transform of a Weil divisor on Y and E
is an effective divisor supported on the components of the exceptional divisor.

Then D is movable as D is movable on Y because Y is affine. Indeed, assume that D ∼ D′
on Y for an effective divisor D′ and D′ does not contain a certain prime component D0 of
D in its support. Then D + F1 ∼ D′ + F2, where F1, F2 are effective divisors supported
on the components of the exceptional divisor. Let A be a relatively ample divisor. Let
A′ = A − ϕ∗ϕ∗A. Then A′ is relatively ample and −A′ is an effective divisor supported
on the exceptional divisor. By replacing A′ with some positive multiple we may assume
that −(A′ + F1) is effective and A′ + F2 is relatively ample. Let A′′ ∼ A′ + F2 be an
effective divisor which does not contain D0 in its support. Now D ∼ D′ + F2 − F1 =
D′ − A′ − F1 + A + F2 ∼ D′ − A′ − F1 + A′′ and the latter is an effective divisor which
does not contain D0 in its support. As we may argue in the same manner for each prime
component D0, we conclude that D is movable.

As homogeneous elements of R(X) up to multiplication by a constant correspond to
effective divisors on X we see that every homogeneous element of R(X) belongs to the
C-algebra generated by R(X)Mov(X) and the elements corresponding to the components
of exceptional divisor. �

Note that propositions 4.4.4 and 4.4.5 combined allow one to bound degrees of generators
of R(X) under the assumption that all the codimension two modifications X ′ → Y of
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X → Y corresponding to the chambers in movable cone are smooth. This assumption is
satisfied for example in the case of three-dimensional quotient singularities and in the case
of symplectic quotient singularities considered in chapters 5 and 7 (see proposition 5.1.1
and proposition 7.1.4 respectively). Combining this with proposition 4.4.5 and McKay
correspondence, which helps to bound the degree of exceptional divisors (see section 4.2),
we obtain the method to bound degrees of such quotient singularities. This method will
be used in chapter 7.



CHAPTER 5

Resolutions of three-dimensional quotient singularities

In this chapter we apply the general results from the previous chapter to crepant reso-
lutions of quotient singularities in dimension three. In section 5.1 we introduce briefly
the setup in which we work and we classify all the crepant resolutions of a given quotient
singularity as GIT quotients of the spectrum of the Cox ring of a single resolution. In
section 5.2 we compute Cox rings of quotient singularities corresponding to faithful re-
ducible representations of nonabelian groups. Then in sections 5.3 and 5.4 we specialize
to concrete examples – representations of dihedral groups and two quotients for which
the resolution contracts a divisor to a point. The last section presents an example of a
different nature – the analysis of the quotient corresponding to the simplest irreducible
representation with a crepant resolution contracting a divisor to a point.

We refer to section 2.2.3 for general facts such that the existence of crepant resolutions in
dimension three and the classification of finite subgroups of SL3(C).

Most of the content of this section was originally published in the joint paper with Maria
Donten-Bury [33].

5.1. Setting

Let G ⊂ SL3(C) be a finite group. Let ϕ : X → C3/G be a crepant resolution with
components E1, . . . , Em of the exceptional divisor of ϕ. Then we are in situation 4.1.10.
By results of section 4.2 we have an embedding

Θ: R(X)→ R(C3/G)⊗C C[Cl(X)] ⊂ R(C3/G)⊗C C[ΛX ] = C[x, y, z][G,G][t±1
1 , . . . , t±1

m ].

Given the system of Ab(G)∨-homogeneous generators φ1, . . . , φs of C[x, y, z][G,G] we con-

sider the subalgebra R ⊂ Θ(R(X)) generated by elements of the form φit
Dφi and tEj ,

where Dφi is the strict transform of the divisor Dφi ∈ WDiv(C3/G) corresponding to

φi. By corollary 4.2.5 νEi = 1
ri
νgi , where gi ∈ G is an element in the conjugacy class

corresponding to Ei via McKay correspondence and ri is the order of gi. Moreover by

corollary 4.2.6 we have tDφi =
∏m
j=1 t

νgj (φi) and tEj = t−rj .

Recall the cone Mov(R) introduced in (4.1.19). The next proposition gives the geometric
motivation for seeking the generators of R(X).

Proposition 5.1.1. If R = Θ(R(X)) then Mov(X) = Mov(R). Moreover, there is a one-
to-one correspondence between the crepant resolutions of C3/G and GIT chambers of the
action of T on SpecR contained in Mov(R). Namely, taking GIT quotients corresponding
to GIT chambers of this action we obtain all pairwise nonisomorphic crepant resolutions
of C3/G.

Proof. It is a corollary from proposition 4.1.20 if we show that every minimal model
of X is smooth. In the three-dimensional case the smoothness of minimal models follows
from [65, Corollary 4.11] – this result implies that in dimension three if one minimal
model is smooth then the others are smooth as well. By theorem 2.2.24 we know that

51
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a crepant resolution exists, by definition it is smooth and by proposition 2.1.11 it is a
minimal model. �

5.2. Case of a reducible representation

In this section we give a description of R(X) using the compatibility criterion (theo-
rem 4.1.15) under the additional assumption that G is nonabelian and C3 = V1 ⊕ V2 as
G-representations, with dimVi = i (case (B) of theorem 2.2.26).

In the case of abelian groups (case (A) of theorem 2.2.26) the quotient and crepant resolu-
tions are toric and hence the structure of the Cox ring is well-known – it is then isomorphic
to the polynomial ring, with number of variables and grading described by the combina-
torial data related to the toric structure. See [23, Chapter 5] for discussion of Cox rings
of toric varieties.

In the case considered in this section the quotient space C3/G is not toric, but it inherits
a natural 2-dimensional torus action (where each C∗ factor comes from a homothety on
a component), which lifts to a resolution (see section 6.1). This means that we obtain
a (non-complete) T -variety of complexity one. The spectrum of the Cox ring for such
varieties is always defined by trinomial relations; in the projective case it is shown in [50],
and the case of non-complete rational varieties is treated in [48]. Since the structure of
[G,G]-invariants for reducible representations is quite simple (there are always just four
invariants) we obtain that there is always a single trinomial relation in the Cox ring, see
remark 5.2.7. But in general the structure of the Cox ring of a (crepant) resolution of a 3-
dimensional quotient singularity can be more complex, see the case of A4 in [35, Thm 4.5]
and section 5.5 of this work.

We start from the 2-dimensional representation, that is G ⊂ GL2(C), and we construct G
as the set of 3× 3 matrices of the following form, for all M in G:(

M 0
0 det(M)−1

)
Let X → C3/G be a projective crepant resolution. We are going to find the presentation
of the Cox ring R(X) in terms of generators and relations using theorem 4.1.15. By
a classification of finite subgroups of GL2(C) (theorem 2.2.23) we obtain the following
corollaries.

Corollary 5.2.1. A finite group G ⊂ GL2(C) is of the form (µwd | µd, H | K) for some
integers w, d and a normal subgroup K ⊂ H = (C∗ ·G) ∩ SL2(C).

Corollary 5.2.2. For a finite subgroup G ⊂ GL2(C) we have the equality [G,G] = [H,H],

hence also C[x, y][G,G] = C[x, y][H,H]. Moreover, an element p ∈ C[x, y][G,G] homogeneous
with respect to the degree grading is homogeneous with respect to the Ab(G)-action if and
only if it is homogeneous with respect to the Ab(H)-action.

Consider the ring of invariants C[x, y, z][G,G] = C[x, y][G,G][z]. Recall that we listed finite
subgroups of SL2(C) up to conjugacy in theorem 2.2.19. In particular the generators of
invariant rings for H ⊂ SL2(C), are given in the table in theorem 2.2.19. It can be verified
directly that they are Ab(H)∨-homogeneous.

Consider the ring homomorphism κ : C[Z1, Z2, Z3, Z4]→ C[x, y, z][G,G] defined by Zj 7→ pj
for j = 1, 2, 3, and Z4 7→ z. Note that we have an Ab(H)-action on C[Z1, Z2, Z3, Z4]

induced from C[x, y, z][G,G] = C[x, y, z][H,H], where H = (C∗ · G) ∩ SL2(C) acts on x, y
linearly and trivially on z.
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Let g1, . . . , gm be representatives of all junior conjugacy classes of G, r1, . . . , rm their
orders and ν1, . . . , νm corresponding monomial valuations on C(x, y, z). We will also use
monomial valuations ν̃1, . . . , ν̃m on C[Z1, Z2, Z3, Z4] defined by setting ν̃i(Zj) = νi(κ(Zj)).

We can now state the main result of this section.

Theorem 5.2.3. The image Θ(R(X)) of the Cox ring of a crepant resolution X → Y via
the embedding Θ from corollary 4.2.4 is generated by m+ 4 elements

pj

m∏
i=1

t
νi(pj)
i for j = 1, 2, 3, z

m∏
i=1

t
νi(z)
i , t−rii for i = 1, . . . ,m.

The proof uses theorem 4.1.15 and corollary 4.2.5 by showing the compatibility condition
for valuations νi and ν̃i. We begin with introducing some more notation and proving a
lemma, which actually implies that homogeneous elements can be lifted from C(x, y, z) to
C(Z1, Z2, Z3, Z4) via κ compatibly with respect to a single valuation νi (in the sense of
Theorem 4.1.15). Then we finish with the main part of the argument, which is to show
that homogeneous elements can be lifted correctly with respect to multiple valuations
simultaneously.

If we choose a monomial valuation ν then we may write any polynomial F as F0 + F1,
where all monomials in F0 have valuation equal to ν(F ) and ν(F1) > ν(F ).

Denote by R the trinomial relation between p1, p2, p3, that is the generator of kerκ. Choose
a valuation ν := νi, and if necessary, make a linear change of coordinates such that the
corresponding matrix gi acts diagonally. In these coordinates we may take minimal parts
of generators with respect to νi: p1,0, p2,0, p3,0. We also decompose R with respect to
ν̃ := ν̃i: R = R0 + R1. Note that R0 is a relation between p1,0, p2,0, p3,0. In this setting
we state the following result.

Lemma 5.2.4. Every relation between p1,0, p2,0, p3,0 homogeneous with respect to Ab(H)-
action lies in the ideal generated by R0 in C[Z1, Z2, Z3].

Proof. First notice that p1,0, p2,0, p3,0 depend only on the inequality between values
of ν on coordinates u, v diagonalizing gi, that is whether ν(u) > ν(v), ν(u) = ν(v) or
ν(u) < ν(v). If gi = ζdh for some h ∈ H then the inequality between ν(u) and ν(v) is
the same as the inequality between values on u, v either of the valuation corresponding to
h or the one corresponding to h−1. Thus without loss of generality we may assume that
p1,0, p2,0, p3,0 are determined by monomial valuation νh corresponding to h ∈ H.

Now we reduce to the case of Cox rings of minimal resolutions of C2/H for H ⊂ SL(2,C).
By [31, Theorem 6.12] we find that p1, p2, p3 satisfy valuation compatibility property. Here
we use implication (ii) =⇒ (i) theorem 4.1.15: if φ1, . . . , φs can be used for producing
a generating set of the Cox ring then they satisfy the valuation compatibility condition
(assumption 4.1.14).

Hence it suffices to show that for νh the valuation compatibility property implies the
statement of the lemma. Let Q ∈ C[Z1, Z2, Z3] be any Ab(H)-homogeneous relation
between p1,0, p2,0, p3,0. We can change it by adding an element W (Z1, Z2, Z3)R, to obtain
a compatible lift q̃ = Q + WR of q = Q(p1, p2, p3). That is, ν̃h(Q + WR) ≥ νh(q). But
ν̃h(Q) < νh(q) because Q is a relation between initial forms of p1, p2, p3 with respect to
νh. Thus the initial forms of Q and WR with respect to ν̃h must cancel: −Q0 = (WR)0 =
W0R0. Since Q0 is a relation between p1,0, p2,0, p3,0, Q1 also is, and if Q1 6= 0 we proceed
by induction, repeating the argument for Q1, to show that Q is a multiple of R0. �

Proof of theorem 5.2.3. We show that the valuation compatibility condition from
Theorem 4.1.15 is satisfied. Note that by definition of a monomial valuation it suffices
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to check only these elements of C[x, y, z][G,G] which are homogeneous with respect to the
standard degree grading and with respect to the Ab(G)-action, i.e., by corollary 5.2.2,
precisely the elements homogeneous with respect to the standard grading and Ab(H)-
action.

Let f ∈ C[x, y, z][G,G] be any element homogeneous with respect to both the standard
degree and the Ab(H)-action. Take any F ∈ κ−1(f) ⊂ C(Z1, Z2, Z3, Z4). Set N =
maxi=1,...,m(νi(f) − ν̃i(F )). We may assume N > 0, since N ≥ 0 by definition of ν̃i, and
the valuation compatibility condition is equivalent to N = 0. We proceed by induction:
we find F ′ such that

(1) κ(F ′) = f ,
(2) ν̃i(F

′) ≥ ν̃i(F ) for all i,
(3) ν̃i0(F ′) > ν̃i0(F ) for some i0.

Let j be any index such that ν̃j(F ) < νj(f). We decompose F = F0 + F1 with respect
to ν̃j . Changing coordinates if necessary, we may assume that the corresponding matrix
gj acts diagonally and decompose pi = pi,0 + pi,1 with respect to νj .

Since ν̃j(F ) < νj(f), the part of F with the smallest j-th valuation must annihilate parts
of generators with smallest j-th valuation in order to increase valuation when passing
through κ. Formally, we have F0(p1,0, p2,0, p3,0, z) = 0, but since z is algebraically inde-
pendent of p1,0, p2,0, p3,0, in fact F0 ∈ C[Z1, Z2, Z3] is a relation between p1,0, p2,0, p3,0.
Moreover, as a sum of monomials in an element of C[Z1, Z2, Z3, Z4] homogeneous with
respect to Ab(H)-action, F0 is homogeneous with respect to Ab(H)-action.

By Lemma 5.2.4 applied to νj and ν̃j we have F0 = PR0 for some P ∈ C[Z1, Z2, Z3].
We claim that F ′ = F − PR satisfies conditions (1)-(3) with i0 = j. Condition (1) is
immediate since κ(R) = 0. Condition (3) holds because F ′ = F − PR = F1 − R1P
and ν̃j(R1) > ν̃j(R0), implying ν̃j(R1P ) > ν̃j(R0P ) = ν̃j(F ). To prove condition (2)
we use again F ′ = F1 − R1P and the fact that R is a trinomial. We have to show that
ν̃i(R1) ≥ ν̃i(R0). Since R0 consists of at least two monomials (as a relation between
leading forms), R1 is either 0 or a monomial. Assuming the latter and repeating the same
argument for ν̃i for i 6= j we see that there are at least two monomials in R with valuation
ν̃i(R). Thus at least one of them is in R0, which implies ν̃i(R1) ≥ ν̃i(R) = ν̃i(R0). �

Remark 5.2.5. The argument generalizes immediately to the analogous description of
the Cox ring of a minimal model of a quotient singularity Cn+2/G for a finite nonabelian
subgroup G ⊂ SLn+2(C), acting on Cn+2 via a representation which splits into one 2-
dimensional component and n components of dimension 1.

Remark 5.2.6. Some ideas in the above proof are related to the algorithm presented
in [94, Sect. 4]. In the notation therein, F0 = minj(F ), pi,0 = minj(pi) and minj(I) =
(R0) = minj(J). One may also check that all steps of the algorithm in [94, Sect. 4] end
without introducing additional generators which gives a different proof of Theorem 5.2.3.

Remark 5.2.7. Note that to get the generator of the ideal of relations between elements
generating the Cox ring R(X) listed in Theorem 5.2.3 it suffices to take the trinomial
generator of relations between p1, p2, p3 and homogenize it with respect to Ab(G)-action
using variables mapped into generators of the form t−rii .

The first application of Theorem 5.2.3 is the case of dihedral groups, obtained in the case
of even n as (µ4 | 〈1〉, BD2n | Cn) and in the odd n case as (µ4 | 〈1〉, BD4n | Cn), studied
in section 5.3. In section 5.4 we provide two more examples with an interesting feature,
not appearing in the series of dihedral groups: the groups contain elements of age 2.
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5.3. Example – Dihedral groups

Let G = D2n, n ≥ 3, be a dihedral group of order 2n, i.e. the group of isometries of
the regular n-gon in the plane. In terms of generators and relations G can be presented
as 〈ρ, ε | ρn, ε2, (ερ)2〉, and its elements are: the identity, rotations ρ, ρ2, . . . , ρn−1 and
reflections ε, ερ, . . . , ερn−1. The structure of the sets of conjugacy classes of G, which are
very important for the properties of the resolution because of the McKay correspondence,
differs depending on the parity of n – this is why we describe these cases separately.

We consider the following 3-dimensional representation of G:

(5.3.1) ρ 7→

ζ 0 0
0 ζ−1 0
0 0 1

 , ε 7→

0 1 0
1 0 0
0 0 −1

 ,

where ζ denotes the primitive n-th root of unity. It is easy to check that the image of any
other faithful representation of G in SL3(C) is the same subgroup up to conjugacy. By
abuse of notation, from now on we will denote by G the image of the given representation
and by ρ, ε their images.

5.3.1. The odd case: n = 2k+1. The commutator subgroup consists of all rotations:
[G,G] = 〈ρ〉. All reflections are conjugate and pairs of rotations are conjugate, so there
are k + 2 conjugacy classes:

{1}, {ρ, ρ−1}, . . . , {ρk, ρ−k}, {ε, ερ, ερ2, . . . , ερ2k}.

The set of points in C3 with nontrivial isotropy group consists of the line x1 = x2 = 0 fixed
by 〈ρ〉 and n lines, each fixed by a reflection, e.g. x1 − x2 = x3 = 0 fixed by 〈ε〉. In the
quotient C3/G these lines are mapped to two components of the singular points set: the
first one to a component Lρ with transversal A2k singularity and lines fixed by reflections
to a component Lε with transversal A1 singularity (away from 0). The image of 0, as the
intersection point of these components, has a worse singularity.

From the McKay correspondence we obtain that each nontrivial conjugacy class in G
correspond to an exceptional divisor on the resolution which is mapped to a line of singular
points in C3/G. This is because there are no elements of age 2, which would give an
exceptional divisor in the fibre over the origin. Thus we have k exceptional divisors
E1, . . . , Ek mapped to Lρ and Eε mapped to Lε.

The Cox ring. The Cox ring R(C3/G) is the ring of invariants C[x, y, z][G,G] of the
commutator subgroup [G,G] = 〈ρ〉. To find the Cox ring of a crepant resolution we
also have to determine the eigenspaces of the action of the abelianization Ab(G) ' Z2,
generated by the class of ε, on R(C3/G).

Lemma 5.3.2. R(C3/G) = C[x, y, z][G,G] is generated by xn + yn, xn − yn, xy, z, where
xn+yn and xy are also ε-invariant, but on xn−yn and z the reflection ε acts by multiplying
by −1.

Next, we need the values of monomial valuations corresponding to all conjugacy classes
(of age 1) in G.

Lemma 5.3.3. The values of monomial valuations on given generators of R(C3/G) are as
follows:

val\gen xn + yn xn − yn xy z

νρi
in

gcd(n,i)
in

gcd(n,i)
n

gcd(n,i) 0

νε 0 1 0 1
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Let ϕ : X → C3/G be a crepant resolution.

Theorem 5.3.4. The Cox ring R(X) as a C-subalgebra of C[x, y, z][G,G][t±1
ε , t±1

i : i ∈
{1, . . . , k}] is generated by

(xn + yn)
k∏
i=1

t
in

gcd(n,i)

i , (xn − yn)tε

k∏
i=1

t
in

gcd(n,i)

i , xy

k∏
i=1

t
n

gcd(n,i)

i , ztε,

t−2
ε , {t

− n
gcd(n,i)

i : i ∈ {1, . . . , k}}.

Proof. It follows from a more general result, theorem 5.2.3. One can also give an
alternative proof based on theorem 4.3.3, which we sketch below. �

We define the surjective map

(5.3.5) κ : C[Z1, Z2, Z3, Z4, Tε, Ti : i ∈ {1, . . . , k}] −→ R(X)

which sends each variable to the respective generator of R(X).

Corollary 5.3.6. The ideal Ik = kerκ, corresponding to the embedding of SpecR(X)
in Ck+5, is generated by a single trinomial

(5.3.7) Z2
1 − Z2

2Tε − 4Zn3

k∏
i=1

Tn−2i
i .

An alternative proof of theorem 5.3.4. We will use theorem 4.3.3.

Denote the C-algebra generated by elements from the statement by R. We prove first
that R = C[Z1, Z2, Z3, Z4, Tε, Ti : i ∈ {1, . . . , k}]/Ik. That is we give an alternative proof
of corollary 5.3.6. One verifies directly that Ik ⊂ kerκ. On the other hand the polyno-
mial from the statement generates the prime ideal (e.g. by the Eisenstein criterion for
irreducibility [38, Proposition 9.4.13]). Corollary 5.3.6 follows now by comparing Krull
dimensions of R(X) and C[Z1, Z2, Z3, Z4, T1, . . . , Tk, Tε]/Ik.

Using the Eisenstein criterion again we can check that (Ti) + Ik and (Tε) + Ik are prime
ideals, dividing first by the variable, and then by the image of the generator of Ik in the
quotient polynomial ring. In particular the elements κ(Ti) and κ(Tε) are prime.

Next we will show that the set of stable points of SpecR with respect to the Picard torus
action induced by grading on R is contained in the smooth locus of SpecR. We have an
explicit description of the singular locus:

Sing(SpecR) = {Z1 = Z2 = Z3 = 0} ∪
k−1⋃
i=1

{Z1 = Z2 = Ti = 0},

which follows from Jacobian criterion for smoothness. By the description of the cone
Mov(R) in proposition 5.3.10 and its GIT subdivision in proposition 5.3.11 it follows
that Sing(SpecR) ∩ (SpecR)ss(λ) = ∅ for any λ inside a GIT chamber inside Mov(R)◦.
Moreover, all the points in (SpecR)ss(λ) have trivial isotropy groups, in particular the
quotient (SpecR)ss(λ)//T is smooth by the Luna slice theorem [69]. The set of points of
SpecR unstable with respect to such λ has codimension at least two. Therefore we may
conclude by theorem 4.3.3. �

The Mov cone and the set of all crepant resolutions. The monomial valuations from
lemma 5.3.3 yield a description of the action of the Picard torus T = Hom(Cl(X),C∗) on
SpecR(X) in the following lemma:
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Lemma 5.3.8. The class group Cl(X) as a subgroup of ΛX is generated by E1, . . . , Ek and
1
2Eε.

Proof. The class group contains the group M generated by degrees of generators
of Θ(R(X)). This group is equal to the group generated by E1, . . . , Ek and 1

2Eε, in
particular it contains the group generated by the components of the exceptional divisor as
a subgroup of index 2. By corollary 4.2.2 the group Cl(X) also contains group generated by
the components of the exceptional divisor as a subgroup of index 2 as Cl(C3/G) ∼= Ab(G)∨

is of order 2. Hence Cl(X) = M . �

In particular the matrix of the T-action on SpecR(X) is:

Uk :=


1 1 0 1 −1 0 0 0
2 2 0 1 0 −1 0 0
...

...
...

...
...

...
. . .

...
...

k k 0 1 0 0 −1 0
0 1 −2 0 0 0 0 1


The first three groups of columns correspond to sets of variables in monomials in the
trinomial relation defining SpecR(X) in corollary 5.3.7, and the last one corresponds to
Z4 not involved in the relation.

We are ready to describe the cone Mov(R) in N1(X) = Cl(X)⊗Z Q ' Qk+1. We denote
the standard basis by e1, . . . , ek+1. Note that in these coordinates the exceptional divisors
are Ei = −ei for i ∈ {1, . . . , k} and Eε = −2ek+1. We also use the following vectors:

q = ek+1 = (0, . . . , 0, 1),

vi = (1, 2, . . . , i− 1, i, . . . , i, 0) for i ∈ {1, . . . , k},
wi = (1, 2, . . . , i, . . . , i, 1) = vi + q for i ∈ {1, . . . , k}.

(5.3.9)

Proposition 5.3.10. The cone Mov(X) = Mov(R) is spanned by rays q, v1, . . . , vk and
defined by the inequalities

{(a1, . . . , ak+1) : ak+1 ≥ 0, 2a1 ≥ a2, ak ≥ ak−1, 2ai ≥ ai−1 + ai+1, 1 < i < k}.

Proof. First, it is easy to check that the cones defined by given rays and by given
inequalities are equal: obviously all the rays satisfy the inequalities, and one can construct
inductively a positive combination of the rays equal to a vector satisfying the inequalities.
We denote this cone by τk.

Then by proposition 4.1.20 we have to show that τk is equal to Mov(R) defined as the
intersection of the images of facets of the positive orthant γ ⊂ Qk+5 under Uk. That is, we
describe Mov(R) as the intersection of cones spanned by any set of k + 4 columns of Uk.
To prove τk ⊂ Mov(R) we look at the rays of τk and show that they belong to the image
of any facet. And for τk ⊃ Mov(R) we use the inequalities for τk: for each of them one
can find a facet whose image satisfies the considered inequality. We skip the details of this
purely combinatorial argument. �

Proposition 5.3.11. There are k + 1 GIT chambers of Mov(R) = Mov(X), which are
relative interiors of the cones:

σ0 = cone(q, w1, . . . , wk), σi = cone(v1, v2, . . . , vi, wi, wi+1, . . . , wk) for i ∈ {1, . . . , k}

where q, vi and wi are as in (5.3.9).
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To give the proof we need to describe projected Ik-faces of the positive orthant γ ⊂ Qk+5

under Uk which are big enough to cut out a full-dimensional cone.

Lemma 5.3.12. The projected Ik-faces of dimension k + 1 are spanned by the sets of rays
given below. Note that indices i ≤ j (possibly equal!) are always from {1, . . . , k}.

{v1,−e1, . . . ,−ek,±ek+1}, {v1,−e1, . . . ,−ek, ek+1}, {v1,−e1, . . . ,−ek+1},(5.3.13)

{q, v1, wk,−e1, . . . ,−ek+1} \ {−ei,−ej}, {q, wk,−e1, . . . ,−ek+1} \ {−ei},
{v1, wk,−e1, . . . ,−ek+1} \ {−ei,−ej}, {wk,−e1, . . . ,−ek+1} \ {−ei},

(5.3.14)

{−e1, . . . ,−ek,±ek+1}, {−e1, . . . ,−ek,−ek+1}, {−e1, . . . ,−ek, ek+1},(5.3.15)

{q, v1, wk,−e1, . . . ,−ek} \ {−ei,−ej}, {q, wk,−e1, . . . ,−ek} \ {−ei},(5.3.16)

{v1,−e1, . . . ,−ek+1} \ {−ei}, {q, v1,−e1, . . . ,−ek+1} \ {−ei}.(5.3.17)

Proof. By definition 3.3.14 we need to choose all sets of columns of Uk which span Qk+1

such that if we set all variables corresponding to not chosen columns to 0 in the trino-
mial (5.3.7) then we still can find nonzero values for the remaining variables to make the
trinomial vanish. This last condition means that we may set to 0 precisely 3, 1 or 0 mono-
mials in the trinomial (by choosing columns corresponding to any sets of their variables),
but not 2 of them. In this way we make the list of all possible sets given above, checking
if they span Qk, simplifying them and avoiding redundancies.

If the third monomial Z3
∏
i Ti is nonzero, then we can get only the whole space or a

halfspace, (5.3.13). Four sets in (5.3.14) correspond to setting only the third monomial
to 0: note that we may remove at most 2 columns from the third group to have a set
spanning Qk+1. The last three cases describe the situation with all three monomials set
to 0. In (5.3.15) we have Z1 = Z2 = Z3 = 0, in (5.3.16) Z1 = Tε = Z3

∏
i Ti = 0 (note that

here we need the last column to span the whole Qk+1) and in (5.3.17) Z1 = Z2 =
∏
i Ti =

0. �

Proof of Proposition 5.3.11. First, note that Mov(X) is indeed a sum of given
cones. All the cones are contained in Mov(X) since all their rays lie in this cone. For the
other inclusion, take v = aq + a1v1 + . . .+ akvk ∈ Mov(X). If a ≥ a1 + . . .+ ak then v is
in σ0:

v = (a− a1 − . . .− ak)q + a1w1 + . . .+ akwk.

Otherwise, let j be maximal such that a < aj + . . .+ ak. Let Sj = aj + . . .+ ak. Then v
can be written as an element of σj :

v = a1v1 + . . .+ aj−1vj−1 + (Sj − a)vj + (a− Sj+1)wj + aj+1wj+1 + . . .+ akwk.

Next, we prove that projected Ik-faces do not subdivide given chambers. That is, any
projected Ik-face of maximal dimension either contains a whole chamber, or does not
contain any of its points. It can be checked directly, by showing for each chamber and
each type of Ik-face of maximal dimension, that either all rays of the chamber lie within the
Ik-face or that there is a hyperplane separating interiors of these cones. An easy way for
finding such a hyperplane is to determine it by computation for small k and then deduce
the equation in the general case. Since the results are similar for all types of Ik-faces, we
present here just a single case, one of the least trivial.

Consider Ik-faces of the first type from (5.3.16). If j = i or j = i + 1 then such an
Ik-face contains chambers σ0, . . . , σi, because one can construct v1, . . . , vi from its rays
as combinations of mv1 and negatives of basis vectors, and w1, . . . , wk either as vi + q or
as combinations of wk and negatives of basis vectors. The hyperplane ai+1 − ai = ak+1

separates interior of such an Ik-face and chambers σi+1, . . . , σk. Now assume that j−i > 1.
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Then the hyperplane ai + aj = ai+1 + aj−1 separates the interior of the Ik-face and any of
the chambers (i.e. the whole Mov(X)).

Finally, we have to show that any chamber can be separated from any other using a
projected Ik-face. But this follows from the previous paragraph: Ik-faces of the first type
from (5.3.16) separate σi from σi+1, . . . , σk for i = 0, . . . , k − 1. �

Example 5.3.18. For D14, that is k = 3, we give the equation for the Cox ring of crepant
resolutions and the matrix of the Picard torus action. The picture shows a 3-dimensional
slice of the Mov cone subdivided into chambers. Three chambers, sharing an edge on the
back face of the tetrahedron, are shown in grey, the last one is white. One sees that there
is only one way of walking through chambers, starting from the leftmost or the topmost,
i.e. crepant resolutions and flops form a sequence.

1 1 0 1 −1 0 0 0
2 2 0 1 0 −1 0 0
3 3 0 1 0 0 −1 0
0 1 −2 0 0 0 0 1


Z2

1 − Z2
2Tε − 4Z7

3T
5
1 T

3
2 T3

Remark 5.3.19. In fact, it follows from the proof of the Proposition 5.3.11 that for any k
flops of crepant resolutions form a sequence, as in the example above.

Structure of the central fibre. We describe the structure of the central fibre of the
resolution, check how it changes under a flop and find the chamber corresponding to the
G-Hilb resolution.

Proposition 5.3.20. If G is a representation of a dihedral group defined as in (5.3.1)
then C[x, y, z]G = C[xn + yn, (xn − yn)z, xy, z2].

Proof. We take a generating set of the invariants of the first (diagonal) generator ρ
and modify it to obtain eigenvectors of the action of the second generator ε. (In the case
of n odd we have already seen this, since ρ generates [G,G] and ε determines the action
of Ab(G).) Thus we have an induced diagonal action of ε on the invariant ring of ρ, so we
just need to determine invariant monomials in generators of this ring. �

The ideal of C[Z1, Z2, Z3, Z4, Tε, Ti : i ∈ {1, . . . , k}] of the closure of the subset of SpecR(X)
which is mapped to the central fibre of the resolution by the GIT quotient morphism is
the inverse image under κ, see (5.3.5), of the ideal generated by the nonconstant elements
of C[x, y, z]G in R(X). This is the same as the ideal generated by Ik and the Picard torus
invariants.

Corollary 5.3.21. The ideal of the closure of the subset of SpecR(X) ⊂ Ck+5 mapped
to the central fibre of X is

Jk = Ik + (Z1T1T
2
2 · · ·T kk , Z2Z4TεT1T

2
2 · · ·T kk , Z3T1T2 · · ·Tk, Z2

4Tε).

Lemma 5.3.22. The subset of SpecR(X) ⊂ Ck+5 mapped to the central fibre of the reso-
lution X decomposes into the following irreducible components:

Wi = {Z4 = Ti = Z2
1 − Z2

2Tε = 0} and W ′i = {Z1 = Tε = Ti = 0} for i ∈ {1, . . . , k},
W0 = {Z1 = Z3 = Tε = 0}, Wu = {Z1 = Z2 = Z3 = Z4 = 0}.
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Proof. One can prove directly that the radical of Jk is equal to the intersection of
all ideals listed above; the key observation is that Z2

1 − Z2
2Tε is in the radical of Jk. �

Let ϕi : Xi → C3/G be the resolution corresponding to the choice of the linearisation of
the Picard torus action given by a character from the chamber inside the cone σi.

Proposition 5.3.23. For Xi the stable components of the set mapped to the central fibre
are W1, . . . ,Wi,W

′
i , . . . ,W

′
k. For X0 the stable components are W0,W

′
1, . . . ,W

′
k.

Proof. We show that W ′j for j = 1, . . . , i − 1 are not stable on Xi; the remaining
assertions are proved similarly. To fix a linearisation corresponding to Xi we pick a vector
si from σi which is the sum of its rays. We need to show that it does not belong to
the interior of the orbit cone ω′j corresponding to an open subset of W ′j . The cone ω′j is
spanned by all columns of Uk except the ones corresponding to Z1, Tε and Tj .

Take a positive combination of rays of ω′j with coefficient α at (1, 2, . . . , k, 1) and β at

(1, . . . , 1, 0), and assume it gives si. From a direct computation of coordinates of si (j,
j+1 and k+1 respectively) and the negativity of certain rays of ω′j we get three conditions:

jα+ β = (k(k + 1)− (k − j)(k − j + 1))/2 + j,

(j + 1)α+ β ≥ (k(k + 1)− (k − j − 1)(k − j))/2 + j + 1,

α ≤ k − j + 1.

This leads to k − i+ 1 ≥ α ≥ k − j + 1, which contradicts the assumption j < i.

The investigation of stability of Wi relies on the fact that its open subset corresponds to an
orbit cone spanned by all columns of Uk except these corresponding to Z4 and Ti. Finally,
note that in a similar way one could list all orbit cones corresponding to stable points of
SpecR(X), which we skip for the sake of brevity. �

Using similar methods to investigate the stability of the intersections of components
W0,W1, . . . ,Wk,W

′
1, . . . ,W

′
k one also checks that the components of the central fibre form

a chain of smooth rational curves.

Corollary 5.3.24. By analysing the proof of Theorem 5.1 in [79] one checks that the
G-Hilb resolution corresponds to the chamber inside the cone σ0.

5.3.2. The even case: n = 2k. Since we have presented the details in the case of
D2n for odd n, here we skip some details and arguments if they are the same as in the
previous case.

The commutator subgroup consists of all even rotations: [G,G] = 〈ρ2〉. Then Ab(G) '
Z2×Z2 and we use classes of ε and ερ as its generators. Pairs of mutually inverse rotations
are conjugate and reflections make two conjugacy classes, so there are k + 3 conjugacy
classes:

{1}, {ρ, ρ−1}, . . . , {ρk−1, ρ−k+1}, {ρk}, {ε, ερ2, . . . , ερ2k−2}, {ερ, ερ3, . . . , ερ2k−1}.

The set of points in C3 with nontrivial isotropy group consists of the line x1 = x2 = 0
fixed by 〈ρ〉 and n lines, each fixed by a reflection, e.g. x1 − x2 = x3 = 0 fixed by 〈ε〉 and
x1 − ζx2 = x3 = 0 fixed by 〈ερ〉. In the quotient C3/G these lines are mapped to three
components of the singular points set: a component Lρ with transversal A2k−1 singularity
and two components Lε and Lερ with transversal A1 singularity (away from 0). The image
of 0 has a worse singularity.

By the McKay correspondence we have k exceptional divisors E1, . . . , Ek mapped to Lρ
and Eε, Eερ mapped to Lε, Lερ respectively.
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The Cox ring. We compute the ring of [G,G]-invariants, give a generating set of eigen-
vectors of the Ab(G) action and provide values of all monomial valuations corresponding
to conjugacy classes (of age 1) on these generators.

Lemma 5.3.25. R(C3/G) = C[x, y, z][G,G] is generated by xk + yk, xk − yk, xy, z, where ε
acts trivially on xk + yk and xy and multiplies by −1 the remaining two generators, and
ερ acts trivially on xk − yk and z and multiplies by −1 the remaining two generators.

Lemma 5.3.26. The values of monomial valuations on given generators of R(C3/G) are
as follows:

val\gen xk + yk xk − yk xy z

νρi
ik

gcd(n,i)
ik

gcd(n,i)
n

gcd(n,i) 0

νε 0 1 0 1
νερ 1 0 0 1

Let ϕ : X → C3/G be a crepant resolution.

Theorem 5.3.27. The Cox ring R(X) as a C-subalgebra of C[x, y, z][G,G][t±1
ε , t±1

ερ , t
±1
i : i ∈

{1, . . . , k}] is generated by:

(xk + yk)tερ

k∏
i=1

t
ik

gcd(n,i)

i , (xk − yk)tε
k∏
i=1

t
ik

gcd(n,i)

i , xy
k∏
i=1

t
n

gcd(n,i)

i , ztεtερ,

t−2
ε , t−2

ερ , {t
− n

gcd(n,i)

i : i ∈ {1, . . . , k}}.

We define the surjective map

(5.3.28) κ : C[Z1, Z2, Z3, Z4, Tε, Tερ, Ti : i ∈ {1, . . . , k}] −→ R(X)

which sends each variable to the respective generator of R(X).

Corollary 5.3.29. The ideal Ik = kerκ of SpecR(X) ⊂ Ck+6 is generated by

Z2
1Tερ − Z2

2Tε − 4Zk3

k−1∏
i=1

T k−ii .

The Mov cone and the set of all crepant resolutions. The matrix of weights of the
Picard torus action on SpecR(X) ⊂ Ck+6, given by values of monomial valuations listed
above, subdivided into groups of columns corresponding to monomials in the trinomial
defining SpecR(X), is

Uk =



1 0 1 0 2 −2 0 0 0 0
2 0 2 0 2 0 −2 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

k − 1 0 k − 1 0 2 0 0 −2 0 0
k 0 k 0 2 0 0 0 −2 0
0 0 1 −2 0 0 0 0 0 1
1 −2 0 0 0 0 0 0 0 1


This follows from the description of Cl(X) as the subgroup of ΛX generated by E1, . . . , Ek
and 1

2Eε,
1
2Eερ.
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Now we describe Mov(X) ⊂ N1(X) = Cl(X) ⊗Z Q ' Qk+2. We also use the following
vectors:

q1 = (0, . . . , 0, 1, 0), q2 = (0, . . . , 0, 0, 1), q3 = (0, . . . , 0, 1, 1)

ui = (1, 2, . . . , i− 1, i, . . . , i, 0, 0) for i ∈ {1, . . . , k},
vi = ui + q1 = (1, 2, . . . , i− 1, i, . . . , i, 1, 0) for i ∈ {1, . . . , k},
v′i = ui + q2 = (1, 2, . . . , i− 1, i, . . . , i, 0, 1) for i ∈ {1, . . . , k},
wi = 2ui + q3 = (2, 4, . . . , 2i− 2, 2i, . . . , 2i, 1, 1) for i ∈ {1, . . . , k}.

(5.3.30)

The next two statements can be proved based on the same ideas as for n odd, see 5.3.10
and 5.3.11, but they require more cases to check, hence we skip the details.

Proposition 5.3.31. The cone Mov(R) = Mov(X) is spanned by rays q1, q2, u1, . . . , uk
and defined by inequalities

{(a1, . . . , ak+2) : ak+1 ≥ 0, ak+2 ≥ 0, 2a1 ≥ a2, ak ≥ ak−1, 2ai ≥ ai−1 +ai+1, 1 < i < k}.
Proposition 5.3.32. There are (k + 1)2 GIT chambers of Mov(R) = Mov(X) which are
relative interiors of the cones:

σ0,0 = cone(q1, q3, v1, . . . , vk), σ
′
0,0 = cone(q2, q3, v

′
1, . . . , v

′
k),

σ0,i = cone(q3, w1, . . . , wi, vi, . . . , vk) for i ∈ {1, . . . , k − 1},
σ′0,i = cone(q3, w1, . . . , wi, v

′
i, . . . , v

′
k) for i ∈ {1, . . . , k − 1},

σi,j = cone(u1, . . . , ui, wi, . . . , wj , vj , . . . , vk) for i, j ∈ {1, . . . , k − 1}, i ≤ j,
σ′i,j = cone(u1, . . . , ui, wi, . . . , wj , v

′
j , . . . , v

′
k) for i, j ∈ {1, . . . , k − 1}, i ≤ j,

σ′′0 = cone(q3, vk, v
′
k, w1, . . . , wk−1), σ′′k = cone(u1, . . . , uk, vk, v

′
k),

σ′′i = cone(u1, . . . , ui, wi, . . . , wk−1, vk, v
′
k) for i ∈ {1, . . . , k − 1}.

where all the rays are as defined in (5.3.30).

Remark 5.3.33. Similarly as in section 5.3.1 for n odd, one can analyze the structure of the
central fibre of crepant resolutions and the flops between different resolutions for n = 2k.
The following diagram shows which chambers of the subdivision from proposition 5.3.32
have common facet, i.e. which resolutions corresponding to chambers differ by a flop. Here
(k + 1)2 crepant resolutions are pictured in the form of an isosceles triangle with 2k + 1
resolutions at the base and the number of resolution in consecutive rows parallel to the
base decreasing by 2. Flops can be performed between adjacent resolutions in rows and
in columns.

σ0,0

q1/w1
σ0,1

v1/w2

q3/u1

· · ·
vk−2/wk−1

σ0,k−1

vk−1/v′k

q3/u1

σ′′0

vk/v′k−1

q3/u1

σ′0,k−1

wk−1/v′k−2

q3/u1

· · ·
w2/v′1

σ′0,1
w1/q2

q3/u1

σ′0,0

σ1,1

v1/w2
· · ·

vk−2/wk−1
σ1,k−1

vk−1/v′k

w1/u2

σ′′1

vk/v′k−1

w1/u2

σ′1,k−1

wk−1/v′k−2

w1/u2

· · ·
w2/v′1

σ′1,1

.

.

.

wk−2/uk−1

.

.

.

wk−2/uk−1

.

.

.

wk−2/uk−1

σk−1,k−1

vk−1/v′k
σ′′k−1

vk/v′k−1

wk−1/uk

σ′k−1,k−1

σ′′k



5.4. REDUCIBLE EXAMPLES WITH A DIVISOR CONTRACTED TO A POINT 63

For the resolutions corresponding to σi,j and σ′i,j with i, j = 0, . . . , k, i ≤ j the exceptional
fibre is a chain of k + 2 smooth rational curves. The passage from σi,j to σi,j+1 flops the
(j + 2)-th curve of the chain, the passage from σi,k−1 to σ′′i flops (k + 2)-th curve and the
passage from σi,j to σi+1,j flops the (i + 1)-th curve of the chain. The change of models
for σ′i,j ’s is analogous.

For the resolutions corresponding to σ′′i with i = 0, . . . , k − 1 the central fibre consists of
a chain of k smooth rational curves with two additional curves intersecting the k-th curve
at the same point. The passage from σ′′i to σ′′i+1 flops the (i+ 1)-th curve of the chain.

Finally, the central fibre of resolution corresponding to σ′′k consists of smooth rational
curves with dual graph of intersection equal to the Dynkin diagram Dk+2.

The G-Hilb resolution can be identified based on the proof of [79, Thm 5.2] as the central
resolution on the base of the triangle, corresponding to the chamber inside the cone σ′′0 .

5.4. Reducible examples with a divisor contracted to a point

In this section we apply the results of previous parts of the work to two examples in which
the resolution contracts a divisor to a point. Recall that by McKay correspondence of Ito
and Reid such divisors correspond to age two conjugacy classes of the group (2.2.27).

Example 5.4.1. Let G = (µ4 | µ2, BD16 | BD8) =
〈(

0 i
i 0

)
,
(
ζ38 0
0 ζ8

)〉
and let G be the

corresponding subgroup of SL3(C). Using GAP [41] we compute that G has order 16
and has six nontrivial conjugacy classes, five of which have age 1. One may choose the
following representatives of junior classes:

g1 =

0 −1 0
1 0 0
0 0 1

 , g2 =

 0 ζ8 0
ζ7

8 0 0
0 0 −1


and g3 = diag(−1,−1, 1), g4 = diag(−i, i, 1), g5 = diag(ζ3

8 , ζ8,−1).

Here H = BD16, so [G,G] ' [G,G] = [BD16,BD16] =
〈(

i 0
0 −i

)〉
. By theorem 2.2.19,

the generators of algebra of invariants C[x, y][G,G] homogeneous with respect to Ab(H)-
action are p1 = x4 +y4, p2 = x4−y4, p3 = xy with relation Z2

1 −Z2
2 −4Z4

3 . Diagonalizing
representatives of conjugacy classes of age 1 we compute values of corresponding monomial
valuations ν1, . . . , ν5 on generators p1, p2, p3 and z of C[x, y, z][G,G]:

val\gen x4 + y4 x4 − y4 xy z
ν1 4 6 2 0
ν2 1 0 0 1
ν3 4 4 2 0
ν4 4 4 4 0
ν5 4 4 4 4

By theorem 5.2.3, the Cox ring R of a crepant resolution X → C3/G is isomorphic to
C[Z1, Z2, Z3, Z4, T1, . . . , T5]/(Z2

1T2 − Z2
2T1 − 4Z4

3T
2
4 T5). As in lemma 5.3.8 we see that

Cl(X) ⊂ ΛX is generated by 1
2(E1 + E2), 1

2(E1 + E5), 1
2(E2 + E5), E3, E4. Identifying

Ei = −2ei, i = 1, 2, 5 and E3 = −e3, E4 = −e4 for the canonical basis e1, . . . , e5 of Q5 we
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have the degree matrix for indicated generators of R:
2 0 3 −2 1 0 0 0 0
1 −2 0 0 0 0 0 1 0
2 0 2 0 1 0 0 0 −1
1 0 1 0 1 −1 0 0 0
1 0 1 0 1 0 −2 1 0

 ,

where the first three groups of columns correspond to variables in monomials of the rela-
tion, and the last two columns to variables Z4 and T3, not involved in the relation.

Now we compute the movable cone of X and its chamber decomposition. The rays of
Mov(X) ⊂ R5 are

v1 = (0, 0, 0, 0, 1), v2 = (0, 1, 0, 0, 1), v3 = (2, 0, 2, 1, 1),
v4 = (1, 0, 1, 1, 1), v5 = (1, 1, 1, 1, 1), v6 = (3, 0, 2, 1, 1),
v7 = (4, 2, 3, 2, 2), v8 = (2, 1, 2, 1, 1), v9 = (6, 3, 4, 2, 3).

Let w1 = (2, 0, 2, 1, 2), w2 = (3, 0, 2, 1, 3), w3 = (3, 1, 2, 1, 2). Then the 11 (simplicial)
chambers in Mov(X), corresponding to all crepant resolutions of C3/G, are the relative
interiors of the cones:

σ1 = cone(v6, v7, v8, v9, w3), σ2 = cone(v2, v7, v8, v9, w3),
σ3 = cone(v4, v6, v7, v8, w3), σ4 = cone(v2, v4, v7, v8, w3),
σ5 = cone(v4, v6, v8, w1, w3), σ6 = cone(v4, v6, w1, w2, w3),
σ7 = cone(v2, v4, v8, w1, w3), σ8 = cone(v2, v4, v5, v7, v8),
σ9 = cone(v2, v4, w1, w2, w3), σ10 = cone(v3, v4, v6, v8, w1),
σ11 = cone(v1, v2, v4, w1, w2).

Flops between resolutions, i.e. pairs of adjacent chambers, are shown in the diagram
below; a label v/w at an edge means that in the set of rays v is replaced by w.

σ10

v3/w3

σ1
v9/v4

v6/v2

σ3

v6/v2

v7/w1
σ5

v8/w2

v6/v2

σ6

v6/v2

σ2
v9/v4

σ4

w3/v5

v7/w1
σ7

v8/w2
σ9

w3/v1
σ11

σ8

The following picture presents the changes of the central fibre between resolutions. Denote
by Xi → C3/G the resolution corresponding to the chamber inside the cone σi. It turns out
that the exceptional divisor contained in the central fibre of Xi is a smooth projective toric
surface Si. The remaining part of the central fibre consists of chains of smooth rational
curves attached to this toric surface at some fixed points of the torus action. For each
resolution we draw the fan of Si and mark the maximal cones corresponding to appropriate
fixed points with the number equal to the length of chain attached at this point. For the
chain marked by 3? the point of intersection with the surface S10 lies at the second curve
of the chain. The remaining chains intersect the surface in the point lying at the curve
which is the end of the chain. All flops except X9 99K X11 contract the curve from a chain
and blow-up the toric surface in the intersection point. Passage from X9 to X11 flops the
curve corresponding to the marked ray of the fan. Note that S1

∼= P2, S8
∼= P1 × P1, S10

is the second Hirzebruch surface and the remaining Si’s are toric blow-ups of P2.
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3
2 1

3
2 1

3

1 1 1 1

3?

It would be interesting to relate this description to the previous work on the crepant
resolutions of quotient singularities in dimension three by answering the following:

Open question 5.4.2. Which cone σi corresponds to the resolution given by the G-Hilbert
scheme?

Example 5.4.3. Consider G = (µ8 | µ4, BD12 | C6) =
〈(

ζ6 0
0 ζ56

)
,
(

0 ζ38
ζ38 0

)〉
of order 24.

LetG be the corresponding subgroup of SL3(C). It has seven conjugacy classes [g1], . . . , [g7]
of age 1 and four of age 2.

The representatives of junior classes are g1 = diag(−1,−1, 1), g2 = diag(ζ5
6 , ζ6, 1), g3 =

diag(ζ2
3 , ζ3, 1), g4 = diag(i, i,−1), g5 = diag(ζ12, ζ

5
12,−1) and

g6 =

 0 ζ5
8 0

ζ5
8 0 0
0 0 i

 , g7 =

 0 ζ8 0
ζ8 0 0
0 0 i

 .

In this case H = BD12, so [G,G] ' [G,G] = [BD12,BD12] =
〈(

ζ3 0
0 ζ23

)〉
. Theorem 2.2.19

implies that generators of the ring of invariants C[x, y][G,G] homogeneous with respect to
Ab(H)-action are p1 = x3 + y3, p2 = x3 − y3, p3 = xy with relation Z2

1 − Z2
2 − 4Z3

3 . As
before, diagonalizing representatives of conjugacy classes of elements of age 1 we compute
values of corresponding monomial valuations ν1, . . . , ν7 on generators of C[x, y, z][G,G].

val\gen x3 + y3 x3 − y3 xy z
ν1 3 3 2 0
ν2 3 3 6 0
ν3 3 3 3 0
ν4 3 3 2 2
ν5 3 3 6 6
ν6 7 3 2 2
ν7 3 7 2 2

By Theorem 5.2.3, the Cox ring of a crepant resolution X → C3/G is isomorphic to
C[Z1, Z2, Z3, Z4, T1, . . . , T7]/(Z2

1T6 − Z2
2T7 − 4Z3

3T
2
2 T3T5). As in lemma 5.3.8 we see that
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Cl(X) ⊂ ΛX is generated by E1, E2, E3, E4, E5,
1
2(E4 + E5) + 1

4(E6 + E7), 1
2(E1 + E2) +

1
4(E4 − E5) + 1

8(E6 − E7). Identifying Ei = −2ei, i = 1, 2, E3 = −e3, Ei = −4ei, i =
4, 5, Ei = −8ei, i = 6, 7 we obtain the degree matrix of indicated generators of R:

3 0 3 0 2 0 0 0 0 −2 0
1 0 1 0 2 −2 0 0 0 0 0
1 0 1 0 1 0 −1 0 0 0 0
3 0 3 0 2 0 0 0 2 0 −4
1 0 1 0 2 0 0 −4 2 0 0
7 −8 3 0 2 0 0 0 2 0 0
3 0 7 −8 2 0 0 0 2 0 0


,

where the first three groups of columns correspond to variables in monomials of the relation
and the last three columns to variables Z4, T1, T4, not involved in the relation.

The movable cone Mov(X) ⊂ R7 has 17 rays:

(0, 0, 0, 3, 1, 3, 3), (0, 0, 0, 1, 1, 1, 1), (0, 0, 0, 3, 1, 3, 7), (0, 0, 0, 3, 1, 7, 3),
(3, 1, 1, 3, 1, 3, 3), (3, 1, 1, 3, 3, 3, 3), (2, 1, 1, 2, 1, 2, 2), (2, 1, 1, 2, 2, 2, 2),
(2, 1, 1, 3, 1, 3, 3), (2, 1, 1, 3, 1, 3, 7), (2, 1, 1, 3, 1, 7, 3), (2, 2, 1, 2, 2, 2, 2),
(2, 2, 1, 6, 2, 6, 6), (2, 2, 1, 6, 2, 6, 14), (2, 2, 1, 6, 2, 14, 6), (3, 1, 1, 3, 1, 3, 7),
(3, 1, 1, 3, 1, 7, 3).

It is subdivided into 34 chambers, corresponding to all crepant resolutions of C3/G.

As in the previous example it would be interesting to find the answer to the following:

Open question 5.4.4. Which chamber corresponds to the G-Hilbert scheme?

5.5. Irreducible example with a divisor contracted to a point

While for reducible 3-dimensional representations we have proved that the Cox ring of a
crepant resolution is defined by a single trinomial equation, the irreducible case is much
more interesting from the point of view of the structure of the Cox ring.

Thus we intended to investigate the irreducible case not only to understand the geometry
of the resolutions, but also to get new insight into the structure of the Cox ring in this
much more intriguing setting. To be able to finish our computations, we have chosen the
smallest possible group with elements of age 2 in order to work with singularities where
not much is known about the set of crepant resolutions. There are two more examples of
the similar nature presented in the joint paper with Maria Donten-Bury [33].

Consider a trihedral group G generated by ζ7 0 0
0 ζ2

7 0
0 0 ζ4

7

 ,

 0 0 1
1 0 0
0 1 0

 ,

where ζ7 is the seventh root of unity. The commutator subgroup is [G,G] ' Z7, generated
by the first group generator.

We compute the ring of invariants of the commutator subgroup [G,G] and find its gener-
ating set consisting of eigenvectors of the Ab(G)-action. The main difficulty is in the next
step: extending this generating set to a (minimal) one satisfying the valuative criterion
from theorem 4.1.15. We use the following simple algorithm:

(1) for a fixed (standard) degree, starting from the smallest, compute the space of
linear relations between leading forms L1,i, . . . , Lk,i of [G,G]-invariants P1, . . . , Pk
in this degree for different monomial valuations νi corresponding to junior classes,
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(2) intersect spaces of relations computed for different valuations in order to check
if there is a relation R which increases values of more than one valuation si-
multaneously (i.e. R(L1,i, . . . , Lk,i) = 0 = R(L1,j , . . . , Lk,j) for some valuations
νi, νj),

(3) check whether such a relation R produces an element R(P1, . . . , Pk) not satisfying
valuation compatibility property with respect to current generating set – if yes
then add it to the set of generators,

(4) check whether the current generating set is minimal with the valuation compati-
bility property (adding a new element may cause some redundancies),

(5) check whether the spectrum of the ring determined by current generating set has
smooth GIT quotients – if not then go back to step 1, increasing the degree.

Finally, one has to verify that the ring generated by the obtained set is really a Cox
ring. This can be done either with the Singular [27] library quotsingcox.lib [34]
accompanying [35] or with the algorithm for finding the Cox ring of minimal models
of quotient singularities from [94]. The source code for our computations is available
at www.mimuw.edu.pl/∼marysia/research/3dimcox. Note that, however, the algorithm
from [94] does not behave very well in the case when the candidate for the generating set
of the Cox ring is not correct, hence we use it only for verification, not for determining
elements of the generating set.

The group G has just 4 nontrivial conjugacy classes: 3 of age 1 and 1 of age 2, the last
one containing the cube of the first group generator. Hence we have to find generators
corresponding to [G,G]-invariants and add just 3 other ones, corresponding to exceptional

divisors. However, C[x, y, z][G,G] needs already at least 13 generators, in degrees from 3
to 7. The requirement of being eigenvectors with respect to the action of Ab(G) ' Z3

causes that they cannot be taken monomials.

Our computations show that the initial set of [G,G]-invariants which are Ab(G)-eigenvectors,
returned by the library [34] based on Singular’s computation of finite group invariants,
is almost suitable for constructing the generating set of R(X). It suffices to modify one
invariant in degree 6 and three in degree 7 by a correction term, which is a product of
lower degree generators, to increase their valuations (associated with conjugacy classes
of elements of order 3). Thus, we have 16 generators of R(X) in total: 13 coming from
[G,G]-invariants and 3 corresponding to exceptional divisors.

Proposition 5.5.1. The following set of generators of C[x, y, z][G,G] satisfies valuation
compatibility property, i.e. it produces a generating set of the Cox ring R(X) via theo-
rem 4.1.15.

F1 = xyz, G1 = xy3 + x3z + yz3,

G2 = (−ζ3 − 2)xy3 + (2ζ3 + 1)x3z + (−ζ3 + 1)yz3,

G3 = (ζ3 − 1)xy3 + (−2ζ3 − 1)x3z + (ζ3 + 2)yz3,

H1 = x3y2 + y3z2 + x2z3, H2 = ζ3x
3y2 + (−ζ3 − 1)y3z2 + x2z3,

H3 = (−ζ3 − 1)x3y2 + ζ3y
3z2 + x2z3, L1 = x5y + y5z + xz5 − 3x2y2z2,

L2 = ζ3x
5y + (−ζ3 − 1)y5z + xz5, L3 = (−ζ3 − 1)x5y + ζ3y

5z + xz5,

M1 = x7 + y7 + z7 − x2y4z − x4yz2 − xy2z4,

M2 = (−3ζ3 − 2)x7 + (ζ3 + 3)y7 − 7x2y4z + (7ζ3 + 7)x4yz2 − 7ζ3xy
2z4 + (2ζ3 − 1)z7,

M3 = (−3ζ3 − 1)x7 + (ζ3 − 2)y7 + 7x2y4z + 7ζ3x
4yz2 + (−7ζ3 − 7)xy2z4 + (2ζ3 + 3)z7.

http://www.mimuw.edu.pl/~marysia/research/3dimcox
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The matrix of values of the monomial valuations is (columns corresponds to generators,
ordered as above)  7 7 7 7 7 7 7 7 7 7 7 7 7

0 0 2 1 0 2 1 3 2 1 3 2 4
0 0 1 2 0 1 2 3 1 2 3 4 2


Proof. To obtain given set of [G,G]-invariants, one preforms necessary computations

along the following scheme explained above. The linear algebra part, that is investigating
relations between leading forms, is done using simple scripts in Macaulay2 [45].

However, in this case checking that the constructed ring is a Cox ring, is hard. The algo-
rithm in the library [34] is not efficient enough to finish the computation on a standard
computer (the problematic step is computing preimages of generators of the ideal of re-
lations). The approach via the algorithm in [94] works, though some parts of it have to
be implemented in Macaulay2 and some in Singular due to certain restrictions of these
systems. �

We also determine the subdivision of Mov(X) into chambers, using proposition 5.1.1.

Proposition 5.5.2. The number of chambers in the GIT chamber subdivision of the cone
Mov(X), i.e. the number of projective crepant resolutions of C3/G, is 4. There is a central
chamber, from which one can pass to each of the remaining (corner) ones, which are not
connected to each other.

We collected some data on the structure of central fibres of crepant resolutions of C3/G.
By proposition 5.5.2 the Mov cone decomposes into the central chamber inside the GIT
cone σ0 and three corner chambers inside GIT cones σ1, σ2, σ3. By I we denote the ideal
of SpecR ⊂ C16 given by generators produced from the invariants in proposition 5.5.1.

We start with a description of the components of the subset S0 ⊂ SpecR(X) mapped to
the central fibre (its ideal can be computed as for dihedral groups, see argument preceding
corollary 5.3.21). Then we present four tables of orbits of the action of (C∗)16 on C16,
which cover S0 and are stable with respect to a linearisation chosen from a chamber. In
each table, equations are vanishings of coordinates describing the closure of the orbit, dim
is the dimension of the orbit, and dim(∩) is the dimension of the intersection of the orbit
with SpecR(X).

Proposition 5.5.3. The subset S0 ⊂ SpecR(X) ⊂ C16 = SpecC[T1, . . . , T16] mapped to
the central fibre of a resolution X → C3/G has three components

V (I + T14), V (T1, T2, T4, T5, T6, T7, T9, T10, T11, T12, T15),

V (T1, T2, T3, T5, T6, T7, T9, T10, T11, T13, T16).

and two more, which are unstable for any chamber. General points on the first one are
always stable; it corresponds to an exceptional divisor. General points on the second one
are stable only for σ1 and general points on the third one are stable only for σ2.

Proof. One decomposes, e.g. in Singular [27], the ideal generated by I and the
generators of the ring of invariants of the Picard torus action (which can be computed in
4ti2 [1]). The information on stability can be read out from the tables given below. �

Once again, it would be interesting to find the answer to the following:

Open question 5.5.4. Which cone among σi, i = 0, 1, 2, 3 corresponds to the resolution
given by the G-Hilbert scheme?
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Stable orbits for the central fibre for σ0.

equation dim dim (∩)

T14 = 0 15 5
T1 = T14 = 0 14 4
T2 = T14 = 0 14 4
T3 = T14 = 0 14 4
T4 = T14 = 0 14 4

T1 = T5 = T6 = T7 = T8 = T9 = T10 = T14 = 0 8 4
T1 = T2 = T3 = T4 = T5 = T6 = T7 = T8 = T9 = T10 = T14 = 0 5 3

T2 = T5 = T7 = T9 = T10 = T11 = T12 = T14 = T15 = 0 7 4
T2 = T3 = T5 = T7 = T9 = T10 = T11 = T12 = T14 = T15 = 0 6 3
T2 = T5 = T6 = T9 = T10 = T11 = T13 = T14 = T16 = 0 7 4

T2 = T4 = T5 = T6 = T9 = T10 = T11 = T13 = T14 = T16 = 0 6 3
T1 = T2 = T5 = T6 = T7 = T9 = T10 = T14 = T15 = T16 = 0 6 4

T1 = T2 = T5 = T6 = T7 = T8 = T9 = T10 = T14 = T15 = T16 = 0 5 3
T1 = T2 = T5 = T6 = T7 = T9 = T10 =

= T11 = T12 = T13 = T14 = T15 = T16 = 0 3 3

Stable orbits for the central fibre for σ1.

equation dim dim (∩)

T14 = 0 15 5
T1 = T14 = 0 14 4
T2 = T14 = 0 14 4
T3 = T14 = 0 14 4
T4 = T14 = 0 14 4

T1 = T5 = T6 = T7 = T8 = T9 = T10 = T14 = 0 8 4
T1 = T2 = T3 = T4 = T5 = T6 = T7 = T8 = T9 = T10 = T14 = 0 5 3
T1 = T2 = T4 = T5 = T6 = T7 = T9 = T10 = T11 = T12 = T15 = 0 5 4

T1 = T2 = T4 = T5 = T6 = T7 = T9 = T10 = T11 = T12 = T13 = T15 = 0 4 3
T2 = T5 = T7 = T9 = T10 = T11 = T12 = T14 = T15 = 0 7 4

T2 = T3 = T5 = T7 = T9 = T10 = T11 = T12 = T14 = T15 = 0 6 3
T1 = T2 = T5 = T6 = T7 = T9 = T10 = T14 = T15 = T16 = 0 6 4

T1 = T2 = T5 = T6 = T7 = T8 = T9 = T10 = T14 = T15 = T16 = 0 5 3
T1 = T2 = T4 = T5 = T6 = T7 = T9 =

= T10 = T11 = T12 = T14 = T15 = T16 = 0 3 3
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Stable orbits for the central fibre for σ2.

equation dim dim (∩)

T14 = 0 15 5
T1 = T14 = 0 14 4
T2 = T14 = 0 14 4
T3 = T14 = 0 14 4
T4 = T14 = 0 14 4

T1 = T5 = T6 = T7 = T8 = T9 = T10 = T14 = 0 8 4
T1 = T2 = T3 = T4 = T5 = T6 = T7 = T8 = T9 = T10 = T14 = 0 5 3
T1 = T2 = T3 = T5 = T6 = T7 = T9 = T10 = T11 = T13 = T16 = 0 5 4

T1 = T2 = T3 = T5 = T6 = T7 = T9 = T10 = T11 = T12 = T13 = T16 = 0 4 3
T2 = T5 = T6 = T9 = T10 = T11 = T13 = T14 = T16 = 0 7 4

T2 = T4 = T5 = T6 = T9 = T10 = T11 = T13 = T14 = T16 = 0 6 3
T1 = T2 = T5 = T6 = T7 = T9 = T10 = T14 = T15 = T16 = 0 6 4

T1 = T2 = T5 = T6 = T7 = T8 = T9 = T10 = T14 = T15 = T16 = 0 5 3
T1 = T2 = T3 = T5 = T6 = T7 = T9 =

= T10 = T11 = T13 = T14 = T15 = T16 = 0 3 3

Stable orbits for the central fibre for σ3.

equation dim dim (∩)

T14 = 0 15 5
T1 = T14 = 0 14 4
T2 = T14 = 0 14 4
T3 = T14 = 0 14 4
T4 = T14 = 0 14 4

T1 = T5 = T6 = T7 = T8 = T9 = T10 = T14 = 0 8 4
T1 = T2 = T3 = T4 = T5 = T6 = T7 = T8 = T9 = T10 = T14 = 0 5 3
T5 = T6 = T7 = T8 = T9 = T10 = T11 = T12 = T13 = T14 = 0 6 4

T1 = T5 = T6 = T7 = T8 = T9 = T10 = T11 = T12 = T13 = T14 = 0 5 3
T2 = T5 = T7 = T9 = T10 = T11 = T12 = T14 = T15 = 0 7 4

T2 = T3 = T5 = T7 = T9 = T10 = T11 = T12 = T14 = T15 = 0 6 3
T2 = T5 = T6 = T9 = T10 = T11 = T13 = T14 = T16 = 0 7 4

T2 = T4 = T5 = T6 = T9 = T10 = T11 = T13 = T14 = T16 = 0 6 3
T2 = T5 = T6 = T7 = T8 = T9 = T10 =

= T11 = T12 = T13 = T14 = T15 = T16 = 0 3 3



CHAPTER 6

Background on torus actions

In this chapter we collect various results on actions of algebraic tori that we use in the
next chapter. There, we study four-dimensional symplectic quotient sigularities, and we
need additional tools to the ones presented in chapter 4 – our idea is to develop methods
employing torus action on a resolution. In 6.1 we show that torus actions on quotient
singularities could be lifted to crepant resolutions. In 6.2 we analyze weights of C∗-action
on a variety with a symplectic structure compatible with the action. In 6.3 we collect
results on the local structure of the action. In section 6.3.1 we define the compass at
a fixed point of a variety with a torus action. We also present the Bia lynicki-Birula
theorem on the (partial) decomposition of a smooth algebraic variety with C∗-action into
C∗-fibrations over components of the fixed point locus. The last part 6.4 of this chapter
introduces the notion of the equivariant Euler characteristic in the context of varieties
projective over an affine base.

6.1. Torus actions on crepant resolutions

Let T ∼= (C∗)r be an algebraic torus acting linearly on Cn. Assume that G ⊂ SLn(C) is a
finite group and that the actions of T and G commute. Then the action of T descends to
the action on the quotient Cn/G since the grading on C[x1, . . . , xn] corresponding to the
T -action induce the grading on the invariant ring of G. Moreover we have the following
theorem:

Proposition 6.1.1. If ϕ : X → Cn/G is a crepant resolution then there is a unique action
of T on X such that ϕ is a T -equivariant map.

Proof. The argument given in the proof of [7, Proposition 8.2] shows the assertion
for the action of every one-parameter subgroup of T . We conclude since the action of T
can be expressed as a product of actions of its one-parameter subgroups. �

6.2. C∗-actions on symplectic varieties

Let X be a smooth variety with symplectic structure ω. Assume that one-dimensional
algebraic torus C∗ acts on X.

Definition 6.2.1 (Homogeneous symplectic form). We say that ω is homogeneous of
degree k with respect to the C∗-action if t∗ω = tkω for every t ∈ C∗.

Proposition 6.2.2. If X,Y are two smooth varieties with symplectic structures ωX , ωY
respectively and C∗-action, and if ϕ : X → Y is a C∗-equivariant morphism such that
ϕ∗ωY = ωX , then ωY is homogeneous of degree k if and only if ωX is homogeneous of
degree k.

71
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Proof. This can be proven by explicit calculation:

t∗ωX(u, v) = ωX(Dt(u), Dt(v)) = ϕ∗ωY (Dt(u), Dt(v)) = ωY (DϕDt(u), DϕDt(v)) =

= ωY (D(ϕ ◦ t)(u), D(ϕ ◦ t)(v)) = ωY (D(t ◦ ϕ)(u), D(t ◦ ϕ)(v)) =

= ωY (DtDϕ(u), DtDϕ)(v)) = t∗ωY (Dϕ(u), Dϕ(v)).

Here u, v ∈ TxX and x ∈ X, t ∈ C∗. By abuse of notation we denoted the bilinear forms
on TxX and Tϕ(x)Y induced by ωX and ωY by the same symbols. Similarly Dϕ : TX →
TY, Dt : TX → TX, Dt : TY → TY are the maps induced by ϕ and t respectively. �

We will be using the results of this section in the following setting:

Example 6.2.3. The standard symplectic form ω =
∑n

i=1 dxi∧dyi on C2n is homogeneous
of weight two with respect to standard C∗-action by homothety: t · (x1, y1, . . . , xn, yn) =
(tx1, ty1, . . . , txn, tyn). Moreover, if G ⊂ Sp2n(C) and ϕ : X → C2n/G is a symplectic
resolution, then the symplectic form on X is homogeneous of weight two.

Proposition 6.2.4. If X is a smooth 2n-dimensional variety with a C∗-action and a sym-
plectic form ω of weight k then at each fixed point x of X there is a basis u1, v1, . . . , un, vn of
TxX consisting of eigenvectors of C∗-action, such that the sum of weights of the C∗-action
on ui and vi is equal to −k for each i = 1, . . . , n.

Proof. Since a linear C∗-action is diagonalizable there exists a basis e1, . . . , e2n of
eigenvectors of the action on TxX. As ωx : TxX × TxX → C is nondegenerate there
exists j such that ωx(e1, ej) 6= 0. Moreover, the vector subspace span{e1, ej}⊥ = {v ∈
TxX : ωx(e1, v) = ωx(ej , v) = 0} is C∗-invariant, because ω is homogeneous. Now note that

TxX = span{e1, ej}⊥⊕span{e1, ej}. Taking u1 = e1, v1 = ej and arguing by induction on
n we obtain the basis u1, v1, . . . un, vn of TxX consisting of eigenvectors of C∗-action and
such that ωx = u∗1 ∧ v∗1 + . . . + u∗n ∧ v∗n, where u∗1, v

∗
1, . . . , u

∗
n, v
∗
n is the dual basis of T ∗xX.

It follows that the sum of weights of ui and vi is equal to −k for each i = 1, . . . , n. �

6.3. Local properties of algebraic torus action

Assume that an algebraic torus T ∼= (C∗)r acts on algebraic variety X. In the next
chapter we will need the following local properties of the T -action on X. The first is a
simple lemma from work of Luna and the second is a celebrated result of Sumihiro.

Proposition 6.3.1 ([69, III.1, Lemme]). Assume that X is affine. Let x be a smooth point
of X and denote by T ′ ⊂ T the isotropy subgroup of x. Then there exists a T ′-equivariant
étale map φ : X → TxX such that φ(x) = 0.

Sketch of proof. One uses the fact that the map d : m → m/m2 ∼= T ∗xX is T ′-
equivariant to find a subspace of W ⊂ m such that d|W is an isomorphism. Then applying
the functor of symmetric algebra to the inverse isomorphism (d|W )−1 one obtains a mor-
phism with desired properties. �

Theorem 6.3.2 ([87, Corollary 2]). If X is normal then there exists a cover of X by
T -invariant affine open subsets.

We will use the following corollaries of the results above.

Corollary 6.3.3 (cf. [58, Proposition 1.3]). If X is smooth then XT is smooth.

Corollary 6.3.4. Assume that X is smooth. Let x be a fixed point of X. Then there
exists an open T -invariant affine neighbourhood U ⊂ X of x and a T -invariant étale map
φ : U → TxX such that φ(x) = 0.
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6.3.1. Compasses and C∗-fibrations. Let T ∼= (C∗)r be an algebraic torus acting
on a smooth algebraic variety X of dimension d. Denote the connected components of
XT by Y1, . . . , Ys. If x ∈ XT the torus T acts on the cotangent space T ∗xX = mx/m

2
x with

weights which are the same for x in fixed connected component Yj . By corollary 6.3.4
there are di := dimYi weights equal to zero. Denote the remaining nonzero d− di weights
by νi,1, . . . , νi,d−di .

Definition 6.3.5. The multiset of weights νi,1, . . . , νi,d−di is called the compass of X at
Yi.

Assume now additionally that X is also quasiprojective variety and T = C∗ is a one-
dimensional algebraic torus acting on X. For a fixed point x ∈ XT we denote by
(TxX)+, (TxX)−, (TxX)0 eigenspaces of the tangent space TxX on which T acts with
positive, negative and zero weights respectively. We will describe the local structure of
the (part of the) variety X along fixed locus of T . We need the following concept.

Definition 6.3.6 (C∗-fibration). A trivial C∗-fibration of dimension n over a variety Z is a
variety with a C∗-action equivariantly isomorphic to V ×Z, where V is a C∗-representation
of dimension n and C∗ acts trivially on Z. A variety E with a C∗-action and a morphism
E → Z is a C∗-fibration E of dimension n over Z if there exists an open cover {Zi}i such
that E ×Z Zi is equivariantly isomorphic over Zi to a trivial C∗-fibration of dimension n
over Zi.

Theorem 6.3.7 ([14, Theorem 4.1]). For any i = 1, . . . , r there exist locally closed subva-
riety X+

i ⊂ X, (resp. X−i ⊂ X) and a morphism γ+
i : X+

i → Yi (resp. γ−i : X−i → Yi)
such that

(a) Yi is a closed subvariety of X+
i (resp. X−i ), γ+

i |Yi (resp. γ−i |Yi) is the identity.

(b) X+
i (resp. X−i ) with the action of C∗ (induced from the action on X) and with

γ+
i (resp. γ−i ) is a C∗-fibration over Yi.

(c) For any x ∈ Yi, Tx(X+
i ) = (TxX)0⊕(TxX)+ (resp. Tx(X−i ) = (TxX)0⊕(TxX)−).

The dimension of the C∗-fibration defined in (b) is equal to dim(TxXi)
+ (resp. dim(TxXi)

−).

If X is complete, then each of finite families {X+
i } and {X−i } cover X and one gets two

decompositions of X into C∗-fibrations that are locally closed in X (this is the celebrated
ABB decomposition, see [14, Theorem 4.3]).

6.4. Equivariant Euler characteristic and the Lefschetz-Riemann-Roch
theorem

In this section we give the definition and prove necessary properties of the notion of equi-
variant Euler characteristic for algebraic torus actions on varieties that are projective over
an affine variety. Unfortunately, we did not find a reference that covers this notion in
such setting. In the later chapters we need only corollary 6.4.22. For an introduction to
equivariant K-theory and a discussion of projective case see [20, Chapter 5]. The basic
difference between the absolutely projective case and the relatively projective case is that
in the former the equivariant Euler characteristic is a polynomial over integers, and in the
latter one has to make an additional assumption on the action (see assumption 6.4.15)
to get the Euler characteristic as a Laurent power series with integer coefficients. Never-
theless, after making the necessary assumption, the expression of this series in terms of
weights of the action still can be obtained by the localization formula as in the absolutely
projective case (see corollary 6.4.21).
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Let X be a smooth quasiprojective algebraic variety with an action of an algebraic torus
T ∼= (C∗)r. Denote the structure morphism of the action by σ : T × X → X and the
projection onto X by pX .

Definition 6.4.1 (T -sheaf). A T -sheaf on X is a coherent sheaf F together with an
isomorphism φ : σ∗F ∼= p∗XF , satisfying cocycle condition: p∗23φ ◦ (idT ×σ)∗φ = (m ×
idX)∗φ, where m : T×T → T is the multiplication morphism and p23 : T×T×X → T×X
is the projection onto product of second and third factor T ×X.

The notion of a T -sheaf generalizes the notion of a T -equivariant vector bundle ([20,
Sect. 5.1]). The cocycle condition can be expressed as the commutativity of the diagram:

(m× idX)∗σ∗F
(m×idX)∗φ // (m× idX)∗p∗XF

(idT ×σ)∗σ∗F
(idT ×σ)∗φ // (idT ×σ)∗p∗XF = p∗23σ

∗F
p∗23φ // p∗23p

∗
XF

where identifications follow from commutativity of the diagrams:

T × T ×X

idT ×σ
��

m×idX // T ×X

σ

��
T ×X σ // X,

T × T ×X

idT ×σ
��

p23 // T ×X

σ

��
T ×X

pX // X,

T × T ×X
p23
��

m×idX // T ×X
pX
��

T ×X
pX // X.

Proposition 6.4.2 ([20, Lemma 5.1.23]). If (F , φ) is a T -sheaf then there is an induced
T -action on H0(X,F) defined by the composition:

H0(X,F)
σ∗−→ H0(T ×X,σ∗F)

φ−→ H0(T ×X, p∗XF) = H0(T,OT )⊗C H
0(X,F),

so that t · s =
∑

i fi(t)si, where φ(σ∗(s)) =
∑

i fi ⊗ si.

Proposition 6.4.3 (Twisting T -sheaf structure by a character). Given T -sheaf (F , φ) and
a character tm of T we define tm · φ by:

H0(U1 × U2, σ
∗F) 3 s 7→ tm|U1 · φ(s) ∈ H0(U1 × U2, p

∗
XF) = H0(U1,OT )⊗C H

0(U2,F),

for open affine U1 ⊂ T, U2 ⊂ X. Then (F , tm · φ) is a T -sheaf.

For our convenience we will abuse notation by writing tm · F instead of (FX , tm · φ),
whenever it will be clear from the context what the map φ is.

Example 6.4.4 (T -sheaf structures on a trivial line bundle). There is a natural T -sheaf
structure on the structure sheaf OX given by the composition of natural isomorphisms
φ : σ∗OX ∼= OX ∼= p∗XOX . By [63, Lemma 2.2, Proposition 2.3] any other structure of
T -sheaf on OX is of the form tm · φ, where tm is a character of T .

Definition 6.4.5 (Morphism of T -sheaves). A morphism of T -sheaves (F , φ) → (F ′, φ′)
on X is a morphism: α : F → F ′ of underlying coherent modules such that the following
diagram is commutative:

σ∗F
φ //

σ∗α
��

p∗XF

p∗Xα

��
σ∗F ′

φ′ // p∗XF ′.
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With such a definition of morphism T -sheaves on X form a category. Moreover direct
sum of T -sheaves, kernel, image and cokernel of a morphism of T -sheaves have natural
structures of a T -sheaves. With these notions the category of T -sheaves on X is an abelian
category [89, 1.4].

Definition 6.4.6 (Equivariant K0). An equivariant K0-group of X is the quotient KT
0 (X)

of the free abelian group generated by T -sheaves on X divided by relations F = F ′ + F ′′
for each exact sequence: 0→ F ′ → F → F ′′ → 0 of T -sheaves.

Let R(T ) be the representation ring of T . Note that R(T ) ∼= Z[t±1
1 , . . . , t±1

r ]. It turns out
that KT

0 (X) admits a natural R(T )-algebra structure. Let us first introduce the structure
of an R(T )-module.

Proposition 6.4.7 (R(T )-module structure on KT
0 ). KT

0 (X) is an R(T )-module with
multiplication given by tm · [F ] = [tm · F ] for characters tm of T .

The following important result allows one to restrict attention to locally free T -sheaves
while studying KT

0 (X). It uses the assumption of smoothness of X.

Theorem 6.4.8 ([20, Proposition 5.1.28]). For every T -module F there exists a finite
equivariant resolution of F by locally free T -sheaves, i.e. an exact sequence of the form:

0→ Ep → . . .→ E1 → F → 0,

where maps are morphisms of T -sheaves.

Corollary 6.4.9. KT
0 (X) is the quotient of the free abelian group generated by locally

free T -sheaves on X divided by relations E = E ′ + E ′′ for each exact sequence: 0 → E ′ →
E → E ′′ → 0 of free T -sheaves.

Now we are ready to describe multiplication in KT
0 (X).

Proposition 6.4.10 (Multiplication in KT
0 , [20, 5.2.11(iii)]). We define multiplication in

KT
0 (X) by setting [E ] · [E ′] := [E⊗E ′] for locally free T -sheaves E , E ′ which generate KT

0 (X)
by theorem 6.4.8 and extending by linearity. With this multiplicative structure KT

0 (X) is
a commutative R(T )-algebra.

Let us look at the simplest possible example, when X is a point.

Example 6.4.11 (Equivariant K0 for a point). If X = pt is a point then KT
0 (X) is

isomorphic to the representation ring R(T ) of T , i.e. to the Laurent polynomial ring
Z[t±1

1 , . . . , t±1
r ]. Indeed, by taking global sections T -sheaves on a point may be identi-

fied with the finite-dimensional T -representations. This identification preserves sum and
multiplication.

Projective maps induce maps in K-theory.

Proposition 6.4.12 (Projective pushforward for KT
0 ,[20, 5.2.13]). Let p : X → Y be

a projective T -equivariant map of smooth quasiprojective T -varieties. Then we define the

proper pushforward f∗([F ]) =
∑dimX

i=0 (−1)i[Rip∗F ]. This gives a well-defined R(T )-module
homomorphism: f∗ : KT

0 (X)→ KT
0 (Y ).

The following fundamental theorem allows one to express equivariant K0 in terms of K0 of
fixed point loci. Let T be an algebraic torus and let S ⊂ R(T ) be a multiplicative system
generated by the set {1 − tm : tm character of T}. Let X,Y be smooth quasiprojective
varieties with action of T . Assume that XT , Y T are projective over C. Note that they
are smooth by corollary 6.3.3. Denote by N∗

XT /X
the conormal bundle of XT in X and
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let λ−1(N∗
XT /X

) =
∑dimX

i=0 (−1)iΛi(N∗
XT /X

). Let p : X → Y be an equivariant projective
map.

Theorem 6.4.13 (Localization theorem for KT
0 ,[88, Theorem 6.4, Corollary 6.7]). With

above assumptions and notation:

(i) The element λ−1(N∗
XT /X

) is invertible in the localized ring S−1KT
0 (XT ).

(ii) The map LocX : S−1KT
0 (X) → S−1KT

0 (XT ) given by [E ] 7→ [E|T /λ−1(N∗
XT /X

)]

for locally free sheaves E is an isomorphism of R(T )-algebras.
(iii) The following diagram commutes:

S−1KT
0 (X)

LocX
��

p∗ // S−1KT
0 (Y )

LocY
��

S−1KT
0 (XT )

(p|
XT

)∗ // S−1KT
0 (Y T ).

For our purposes the most important will be the basic case of a linear action on an affine
space. Let T = (C∗)r act linearly on Cn.

Theorem 6.4.14.

(i) Every locally free T -sheaf on Cn is equivariantly isomorphic to a direct sum of
rank one free T -sheaves.

(ii) Every T -module on Cn is a quotient of a direct sum of rank one free T -sheaves.
(iii) Every T -module on Cn has an equivariant finite resolution by direct sums of rank

one free sheaves.

Proof. (i) is an equivariant version of the Quillen-Suslin theorem, proven for abelian
groups in [72].

For (ii) let s1, . . . , sk ∈ H0(X,F) be homogeneous generators overH0(Cn,OCn) = C[x1, . . . , xr]

of degrees w1, . . . , wr. Then we have a surjective map
⊕k

i=1(twi · OCn)ei → F defined by
ei 7→ si.

For (iii) we use the Hilbert syzygy theorem [20, Theorem 5.1.30] together with (i) and
(ii). Using (ii) inductively we construct a free equivariant resolution of F :

. . .→ Ep → . . .→ E1 → F → 0,

where maps are morphisms of T -sheaves. By the Hilbert syzygy theorem Ep is a locally
free T -sheaf and we may apply (i). �

From now on we will work under the following assumption.

Assumption 6.4.15. There exists an embedding C∗ ⊂ T such that the weights of the
coordinates x1, . . . , xn on Cn are positive.

Note that when assumption 6.4.15 is satisfied we have (Cn)T = {0}. The second important
consequence of this assumption is the next proposition.

Proposition 6.4.16. Assume that assumption 6.4.15 is satisfied. Let F be a T -sheaf on
Cn. Then:

(i) The graded pieces with respect to the grading on H0(Cn,OCn) = C[x1, . . . , xn]
induced by the T -action are finite dimensional vector spaces over C.

(ii) In the weight-space decomposition:

H0(Cn,F) =
⊕
w∈Zr

H0(Cn,F)w,
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each component H0(Cn,F) is a finite dimensional vector space over C.

Proof. (i) is immediate as there are only finitely many monomials in x1, . . . , xn of
fixed degree. (ii) follows from (i) as F is a quotient of a free T -sheaf on Cn by theorem 6.4.8
and by theorem 6.4.14. �

The previous proposition allows us to formulate the following definition.

Definition 6.4.17 (Equivariant Euler characteristic for a T -sheaf on an affine space).
Under the assumption 6.4.15 the equivariant Euler characteristic of a T -sheaf F on Cn is
a Laurent power series

χT (Cn,F) =
∑
w∈Zr

(dimH0(Cn,F)w)tw ∈ Z((t1, . . . , tr)).

Proposition 6.4.18. Equivariant Euler characteristic is a well-defined map of rings:

χT (Cn, ·) : KT
0 (Cn)→ Z((t1, . . . , tr)),

that factorizes through the localization map from theorem 6.4.13, i.e. we have a commu-
tative diagram:

S−1KT
0 (Cn)

Loc //

S−1χT (Cn,·) ((

S−1KT
0 ({0}) = S−1Z[t±1

1 , . . . , t±1
r ]

tt
Z((t1, . . . , tr)),

where S ⊂ R(T ) = Z[t±1
1 , . . . , t±1

r ] is the same multiplicative system as in the localiza-

tion theorem 6.4.13 and S−1Z[t±1
1 , . . . , t±1

r ] → Z((t1, . . . , tr)) is the inclusion of rational
functions into Laurent power series ring.

Proof. By the vanishing of the higher cohomology on an affine space [46, III.3]
χT (Cn, ·) is a well-defined map from KT

0 (Cn). Since the composition of ring homomor-
phisms is a ring homomorphisms it suffices to check the commutativity of the diagram on
additive generators of KT

0 (Cn). By corollary 6.4.9 and theorem 6.4.14 as a group KT
0 (Cn)

is generated by the classes of rank-one free T -sheaves. These are of the form tm · OCn by
example 6.4.4. The proposition follows now by the explicit computation of the equivariant
Euler characteristic of tm · OCn and by the fact that the restriction to the fibre over zero
gives an isomorphism KT

0 (Cn) ∼= KT
0 ({0}) (the latter is a consequence of theorem 6.4.14

or localization formula 6.4.13 but in fact it is much easier, see e.g. [20, Theorem 5.4.17]).
Indeed, Loc([tm · OC]) = [(tm · OCn)/λ−1(T ∗0 Cn)] = tm∏n

i=1(1−tνi ) ∈ Z((t1, . . . , tr)), where

ν1, . . . , νn are weights of the T -action on T ∗0 Cn. As generators of H0(Cn,OCn) have weights
ν1, . . . , νr and are algebraically independent we get precisely the same Laurent power series
by the explicit calculation of χ(Cn, tm · OCn). �

Now assume that Y ⊂ Cn is a T -invariant affine variety.

Definition 6.4.19 (Equivariant Euler characteristic for a T -sheaf on an affine variety).
Under the assumption 6.4.15 the equivariant Euler characteristic of a T -sheaf F on Y ⊂ Cn
is a Laurent power series

χT (Y,F) = χT (Cn, ι∗F) ∈ Z((t1, . . . , tr)),

where ι : Y → Cn is the closed embedding.

Assume that X
p→ Y ⊂ Cn is an equivariant projective map from a smooth T -variety to

an affine T -variety.
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Definition 6.4.20 (Equivariant Euler characteristic for a T -sheaf). Under the assump-
tion 6.4.15 the equivariant Euler characteristic of a T -sheaf F on X is a Laurent power
series

χT (X,F) =

dimX∑
i=0

(−1)iχT (Y,Rip∗F) =

dimX∑
i=0

(−1)iχT (Cn, Ri(ι ◦ p)∗F) ∈ Z((t1, . . . , tr)).

Denote the connected components of XT by X1, . . . , Xs. By corollary 6.3.3 Xi are smooth
varieties. Let N∗Xi/X be a conormal bundle to Xi in X. Denote pi : Xi → {0} = SpecC
the constant map.

Corollary 6.4.21 (Lefschetz-Riemann-Roch theorem). The equivariant Euler character-
istic of T -vector bundle E on X is equal to:

χT (X,E) =
s∑
i=1

pi∗

(
E|Xi

λ−1(N∗Xi/X)

)
∈ S−1R(T ),

where S ⊂ R(T ) is the same multiplicative system as in the localization theorem 6.4.13 .

Proof. This follows immediately by the definition of χT (X,E) when we apply theo-
rem 6.4.13(iii) and proposition 6.4.18. �

Suppose further that in the above situation each component Xi is a point and {νi,j}dimX
j=1

is the compass (definition 6.3.5) of Xi in X. Let L be a T -line bundle on X and let µi(L)
be the weight of T -action on the fibre over the point Xi.

Corollary 6.4.22. The equivariant Euler characteristic of T -line bundle L on X is equal
to:

χT (X,L) =

s∑
i=1

tµi(L)∏dimX
j=1 (1− tνi,j )

.

Proof. This follows from corollary 6.4.21 since the cotangent space to the i-th T -fixed
point is in this case precisely N∗Xi/X . �



CHAPTER 7

Resolutions of symplectic quotient singularities in
dimension four

In this final chapter we apply general results from chapter 4 and the results on torus actions
from the previous chapter to crepant resolutions of symplectic quotient singularities in
dimension four admitting an action of two-dimensional torus. In section 7.1 we introduce
briefly the setup in which we work and we classify all the crepant resolutions of a given
symplectic quotient singularity as GIT quotients of the Cox ring of a single resolution.
Then, in section 7.2 we outline the strategy which we use to analyze examples in the
next three sections. The order of examples correspond to their level of complexity. In
section 7.3 we study the symplectic action of the group S3 on C4 – it is the simplest of the
examples considered since there is only one irreducible exceptional divisor on the crepant
resolution. Then, in section 7.4 we consider the symplectic action of the wreath product
Z o S2 on C4. It is the simplest case of the wreath product of the group defining Du Val
singularity with S2 – the one corresponding to the A1 singularity. Finally, in section 7.5
we study the most challenging of the three examples, the binary tetrahedral group acting
on C4 (see 7.5.1 for a description of the action), which according to the work of Bellamy
and Schedler [11] and Lehn and Sorger [68], gives the quotient admitting a symplectic
resolution. In the last section 7.6 we present thoughts on the possibility of generalization
of the method applied to the three examples worked out in this chapter.

Parts of this chapter are based on preprints [32] (joint work with Maria Donten-Bury)
and [44].

7.1. General setting

Let G ⊂ Sp4(C) be a finite group. Assume that there exists a symplectic resolution
ϕ : X → C4/G. Let E1, . . . , Em be the components of the exceptional divisor of the
resolution ϕ : X → C4/G. Let Ci denote the generic fibre of ϕ|Ei : Ei → ϕ(Ei). By
theorem 2.3.13, the classes of C1, . . . , Cm form a basis of the vector space N1(X/(C4/G))
which in our case is equal to N1(X). The dual basis of N1(X) (via the intersection pairing)
will be denoted by L1, . . . , Lm. Then, the coefficients of a divisor D on X in this basis are
the intersection numbers (Ci.D)i.

Proposition 7.1.1 ([37, 2.16]). We have a commutative diagram, whose rows are exact
sequences:

0 //
m⊕
i=1

ZEi // Cl(X)
ϕ∗ //

� _

��

Cl(C4/G) //
� _

��

0

0 //
m⊕
i=1

ZEi //
m⊕
i=1

ZLi // Q // 0,

Here the homomorphism
⊕

i ZEi →
⊕

i ZLi takes Ei to
∑

i(Ei.Cj)Lj, and the group Q is

defined as its cokernel. The image of D ∈ Cl(C4/G) in Q is given by D 7→
∑

i(D.Ci)[Li].

79
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By proposition 2.3.12 we know that C4/G has Du Val singularities in codimension 2 and
the intersection matrix (Ei.Cj)i,j is a direct sum of corresponding Cartan matrices, see
also [92, Theorem. 1.4] and [3, Thm. 4.1]. In particular it is invertible and so the lattice
Cl(X) = Pic(X) ⊂ N1(X) is a finite index sublattice of the lattice

⊕m
i=1 ZLi ⊂ N1(X).

Combining the proposition 7.1.1 with results of section 4.2 we have an embedding

Θ: R(X)→ R(C4/G)⊗C[Cl(X)] ⊂ R(C4/G)⊗C [⊕iZLi] = C[x1, . . . , x4][G,G][t±1
1 , . . . , t±1

m ].

In cases of our interest it will be true that Cl(X) =
⊕

i ZLi.
Given the system of Ab(G)∨-homogeneous generators φ1, . . . , φs of C[x1, y1, x2, y2][G,G] we

consider the subalgebra R ⊂ Θ(R(X)) generated by elements of the form φit
Dφi and tEj ,

where Dφi is the strict transform of the divisor Dφi ∈ WDiv(C4/G) corresponding to

φi. By corollary 4.2.5 νEi = 1
ri
νgi , where gi ∈ G is an element in the conjugacy class

corresponding to Ei via McKay correspondence and ri is the order of gi. On the other
hand, using proposition 7.1.1 we can express Θ directly by Θ(φtD) = ϕ∗(φ)

∏m
i=1 t

D.Ci .

Remark 7.1.2. In section 4.2 as well as in chapter 5 we considered the embedding Θ
in coordinates given by the basis − 1

r1
E1, . . . ,− 1

rm
Em of the lattice ΛX ⊂ N1(X). To

pass from those coordinates to the coordinates given by a basis L1, . . . , Lm of the lattice⊕m
i=1 ZLi one uses the matrix (Ei.Cj)i,j . More precisely, if φD ∈ C[x1, y1, x2, y2][G,G] is an

element corresponding to a divisor D ∈WDiv(C4/G) then we have:

(7.1.3)

(
1

r1
ν1(φD), . . . ,

1

rm
νm(φD)

)
· (Ei.Cj)i,j = −(D.C1, . . . , D.Cm).

Recall the cone Mov(R) introduced in (4.1.19). The next proposition is the analogue of
proposition 5.1.1 and again it gives a geometric motivation for seeking the generators of
R(X). It is true for symplectic resolutions in arbitrary dimension.

Proposition 7.1.4. Assume that G ⊂ Sp2n(G) is a finite group and there exists a sym-
plectic resolution ϕ : X → C2n/G. If R = Θ(R(X)) then Mov(X) = Mov(R). Moreover
there is a one-to-one correspondence between the crepant resolutions of C2n/G and GIT
chambers of the action of the Picard torus T on SpecR contained in Mov(R). Namely,
taking GIT quotients corresponding to GIT chambers of this action we obtain all pairwise
nonisomorphic symplectic resolutions of C2n/G.

Proof. Like in the proof of the proposition 5.1.1 it is a corollary from proposi-
tion 4.1.20 if we show that every minimal model of X is smooth. In the symplectic case,
assuming that the smooth minimal model exists, all the other minimal models are smooth
by [76, Corollary 31] or by a more general result [76, Corollary 25]. The smoothness of
at least one minimal model follows from our assumption on the existence of a symplectic
resolution and by propositions 2.1.11 and 2.3.5. �

7.2. Outline of the strategy

In what follows we consider three examples of symplectic quotient singularities admitting
an action of a two-dimensional algebraic torus and we study geometry of their crepant
resolutions. Each of the examples is treated according to the same strategy that we
outline briefly in this section.

To avoid confusion we emphasize the fact that throughout the remaining part of this
chapter we consider simultaneously two different tori. One is the Picard torus T =
Hom(Cl(X),C∗) of a resolution X → C4/G and the other one is the torus T = (C∗)2

acting on C4 = C2 ×C2 by multiplication of scalars on each component C2. Torus T acts
also on the quotient and (equivariantly) on resolutions.
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First, we compute the data related to the general method from section 4.2. We find
Ab(G)∨-homogeneous generators of C[x1, y1, x2, y2][G,G], which, by 4.2.1, is the Cox ring
of the quotient C4/G. We also find monomial valuations corresponding to symplectic
reflections, which in the symplectic case are the elements of age one and hence, by McKay
correspondence (theorem 2.2.18), they give the valuations of crepant divisors over the
quotient. Using this data, we find a ‘candidate set’ for a set of generators of the image of
the embedding Θ from section 4.1. In all examples except the last one we stick to the set
arising from Ab(G)∨-homogeneous invariants of the commutator subgroup computed in
Singular [27]. In the last example it is easy to see that such set of invariants does not satisfy
the valuation compatibility criterion, but we modify it by a simple linear transformation
involving two generators. For such a candidate set we form a subalgebra R of the Cox ring
that they generate and compute the cone Mov(R) together with its GIT subdivision with
respect to the Picard torus action on SpecR induced by the Cl(X)-grading. This step,
together with the formulation of results in each example, is done in sections 7.3.1, 7.4.1
and section 7.5.1 respectively.

Then, we study geometry of the GIT quotient with respect to a linearization λ from a
chamber of GIT subdivision of Mov(R). We start with the study of the central fibre,
i.e. the fibre over the point [0] ∈ C4/G given by a natural morphism (SpecR)ss(λ)//T→
C4/G. This is done in sections 7.3.2, 7.4.2 and 7.5.2.

Next, we present an open cover of the GIT quotient consisting of affine spaces, thus
proving the smoothness of the quotient. At this point we are also able to prove that the
GIT quotient is a crepant resolution. This step is done in sections 7.3.3, 7.4.3 and 7.5.3.

Then, in sections 7.3.4, 7.4.4 and 7.5.4 we explain how we found the open cover. Working
under the assumption of smoothness of the quotient, we find compasses at fixed points
(see definition 6.3.5) of two-dimensional torus action on the GIT quotient and give the
heuristic argument that was used to predict the covers in sections 7.3.3, 7.4.3 and 7.5.3.

To prove that R is actually the whole Cox ring, we employ results of sections 6.4 and 4.4.
First, we prove that Mov(R) = Mov(X) and that the GIT subdivision of Mov(R) is the
same as the subdivision of Mov(X) induced by the Picard torus action on R(X). We also
calculate the Hilbert series for the subring R(X)≥0 =

⊕
L∈Mov(X)R(X)L, using corol-

lary 6.4.22. This is done in sections 7.3.5, 7.4.5 and 7.5.5. Finally, in sections 7.3.6, 7.4.6
and 7.5.6 we apply the results of section 4.4 to deduce that R = R(X).

7.3. Symmetric group G = S3

7.3.1. The setup and results. In this section we apply the strategy presented in the
previous section to investigate an action of G = S3 on C4 with coordinates (x1, y1, x2, y2).
We take the direct sum of two copies of the standard two-dimensional representation of
S3, which preserves the symplectic form ω = dx1 ∧ dy2 + dy1 ∧ dx2 on C4. That is, we
identify G with the matrix group generated by

ε =


ε 0 0 0
0 ε−1 0 0
0 0 ε 0
0 0 0 ε−1

 α =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


where ε = e2πi/3 is a 3rd root of unity. The following proposition summarizes basic
properties of this representation; all of them are immediate.

Proposition 7.3.1. With the notation above:
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(1) There are three conjugacy classes of elements of G of which one consists of sym-
plectic reflections.

(2) The commutator subgroup H = [G,G] is a cyclic group of order 3 generated by ε.
(3) Ab(G) = G/[G,G] is a group of order 2 generated by the class of α.
(4) Symplectic reflections in G are εiα for i = 0, 1, 2. These elements correspond to

transpositions in S3 and as such generate G.
(5) The representation of G defined as above is reducible. It decomposes into a direct

sum of two 2-dimensional representations C4 = V1 ⊕ V2. In particular the (C∗)2-
action on C4 induced by multiplication by scalars on Vi commutes with G.

Let Σ ⊂ C4/G be the singular locus of the quotient. It can be described as follows.

Proposition 7.3.2. The preimage of Σ via the quotient map C4 → C4/G consists of
six planes, each of which maps onto Σ. Outside the image of 0 the singular locus is a
transversal A1-singularity.

Proof. This is a consequence of a direct computation of the subspaces fixed by sym-
plectic reflections of G – these are the only elements that stabilize a proper nontrivial
subspace of C4. �

Let ϕ : X → C4/G be a symplectic resolution. It is known that such a resolution exists
(see [11, Sect. 1]) but we will also prove it independently in section 7.3.3. Using the
symplectic McKay correspondence (theorem 2.3.11) and propositions 7.3.1 and 7.3.2 we
obtain the following facts about the geometry of X.

Proposition 7.3.3. There is a single irreducible exceptional divisor E of X which is
mapped onto Σ. The central fibre ϕ−1([0]) consist of an irreducible surface. The fibre of
ϕ over any point in Σ \ [0] consists of one curve isomorphic to P1.

By section 6.1 and proposition 7.3.1 we have also:

Corollary 7.3.4. There is a natural T := (C∗)2-action on X making ϕ an equivariant
map.

As we noted earlier, we consider two different tori – one is the Picard torus T which in
this case is one-dimensional and the other one is the two-dimensional torus T acting on
C4 = C2 × C2 by multiplication of scalars on each component C2.

Let C be the numerical class of a complete curve which is a generic fibre of the morphism
ϕ|E : E → Σ. We may describe the generator of the Picard group of X in terms of its
intersection with curve C. By proposition 7.1.1 we have:

Proposition 7.3.5. The Picard group of X is a free rank one abelian group generated by
line bundle L such that L.C = 1.

One may see the Cox ring R(X) of X as a subring of C[x1, y1, x2, y2][G,G][t±1
1 ] (see 7.1).

It follows that the action of the two-dimensional torus T = (C∗)2 on X induces the action
on SpecR(X).

Proposition 7.3.6. The elements φij in the table below are the eigenvectors of the action

of Ab(G) which generate the ring of invariants C[x1, y1, x2, y2][G,G] ⊂ C[x1, y1, x2, y2].

eigenvalue generators
1 φ01 = x1y1, φ02 = x2y2, φ03 = x1y2 + x2y1

φ04 = x3
1 + y3

1, φ05 = x3
2 + y3

2, φ06 = x2
1x2 + y2

1y2, φ07 = x1x
2
2 + y1y

2
2

−1 φ11 = x1y2 − x2y1

φ12 = x3
1 − y3

1, φ13 = x3
2 − y3

2, φ14 = x2
1x2 − y2

1y2, φ15 = x1x
2
2 − y1y

2
2.
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Proof. We compute this generating set using Singular, [27]. First we find the invari-
ants of the action of [G,G]. Then we split their linear span into smaller Ab(G)-invariant
subspaces on which the action of Ab(G) is easy to diagonalize. �

Let ν be the monomial valuation C(x1, y1, x2, y2)∗ → Z associated with symplectic reflec-
tion α.

Remark 7.3.7. We have ν(φ0j) = 0 and ν(φ1j) = 1. Moreover ν(φij) = Dφij .C by (7.1.3).

In the spirit of section 4.1 we may form a candidate set for a generating set of the Cox ring
R(X) using generators φij . Our goal in this few sections is to prove that this is indeed
the generating set. As we pointed out in section 7.2 we will not use the valuative criterion
from 4.1, but multigraded Castelnuovo-Mumford regularity from 4.4 and the Lefschetz-
Riemann-Roch theorem from 6.4. See [32, Sect. 4.2] for an alternative argument using
valuative criterion.

Theorem 7.3.8. The Cox ring R(X) ⊂ R(C4/G)[t±1
1 ] of the symplectic resolution X →

C4/G is generated by the elements w01, . . . , w07, w11, . . . , w15, t, where w0i = φ0i, w1j =

φ1jt1, t = t−2
1 . In particular the degree matrix with respect to the generator L of Pic(X)

(the first row) and to the T -action (remaining two rows) is:
w01 w02 w03 w04 w05 w06 w07 w11 w12 w13 w14 w15 t

0 0 0 0 0 0 0 1 1 1 1 1 −2

2 0 1 3 0 2 1 1 3 0 2 1 0
0 2 1 0 3 1 2 1 0 3 1 2 0


We will prove this theorem in section 7.3.6. From now on we will denote the ring generated
by the elements from the theorem 7.3.8 by R.

It is a general principle that using the degrees of generators of the Cox ring of X we can
describe the movable cone Mov(X) and find the number of resolutions and the correspond-
ing subdivision of Mov(X) into the nef cones of resolutions of X (see proposition 7.1.4).
However, since we use the description of movable cone and its subdivision to prove that
R is a Cox ring of X we give independent proofs.

Proposition 7.3.9.

(1) The cone Mov(X) of movable divisors of X is equal to Mov(R) and is generated
by the line bundle L and it is equal to the ample cone of X.

(2) There is a unique symplectic resolution of C4/G.

Proof.

(1) This follows from theorem 2.3.13 which allows us to find Mov(X) and by definition
of Mov(R) (see e.g. the paragraph preceeding proposition 7.1.4).

(2) This is an immediate consequence of the previous point and proposition 7.1.4.

�

The next theorem also follows from theorem 7.3.8, but as we need it before we prove this
theorem it is proven independently in the section 7.3.3.

Theorem 7.3.10. Taking the GIT quotient of SpecR by the Picard torus action with
respect to the linearization given by the character corresponding to L ∈ Cl(X) one obtains
the symplectic resolution of C4/G.
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Remark 7.3.11. The weights of the T -action on global sections of the fixed line bundle
on X are lattice points in Z2. Taking a convex hull one obtains a lattice polyhedron in
R2. For example taking the line bundle L one gets a polyhedron with the tail (or recession
cone) equal to the positive quadrant of R2 and with a head spanned by the lattice points
from the picture below (see [2, 4.2] for terminology):

(0, 3)

(1, 1)

(3, 0)

By [18, Lemma 2.4(c)] if L is globally generated, then marked vertices of this polyhedron
correspond to T -fixed points of X. We will see in lemma 7.3.19 that indeed fixed points of
this polytope correspond to points in XT and in lemma 7.3.16 that L is globally generated.

7.3.2. The central fibre of the resolution. In this section we study the structure
of the central fibre ϕ−1([0]) of a resolution ϕ : X → C4/G using the ideal of relations
between generators of the ring R, under the assumption that X is a GIT quotient of
SpecR. The results of this section are used in the next one, where we investigate the
action of the two-dimensional torus T on X with the fixed point locus XT contained in
the central fibre. The additional assumption that X is a GIT quotient of SpecR is dealt
with in section 7.3.3.

Lemma 7.3.12. We have an isomorphism SpecRT ∼= C4/G. In particular the inclusion of
invariants RT ⊂ R induce a map p : SpecR → C4/G.

Proof. This follows from lemma 4.3.1. �

Let Z = p−1([0]). Decomposing the ideal of relations from the presentation of SpecR
one obtains the decomposition of Z into irreducible components. We consider the closed
embedding SpecR ⊂ C13 given by the generators of R from statement of theorem 7.3.8.

Proposition 7.3.13. The components of Z are the following subvarieties of C13:

Zu = V (wij | (i, j) ∈ (0, 1), . . . , (0, 7), (1, 1), . . . , (1, 5)),

Z0 = V (t, w07, w06, w05, w04, w03, w02, w01, w
2
14 − w12w15, w13w14 − w2

15, w12w13 − w14w15).

The component Zu is contained in the locus of unstable points with respect to any lin-
earization of the Picard torus via a character from the movable cone.

Proof. The first part follows by decomposing ideal of Z in Singular. The statements
concerning stability are the consequences of lemma 7.3.14 below. �

Lemma 7.3.14. The unstable locus of SpecR with respect to a linearization of the Picard
torus action on the trivial line bundle by the character corresponding to L ∈ Cl(X) \ 0 is
cut out by equations w11 = w12 = w13 = 0. Moreover, all the semistable points of Z are
stable and have trivial isotropy groups.

Proof. This can be done by a computer calculation, using the Singular library git-
comp by Maria Donten-Bury (see www.mimuw.edu.pl/~marysia/gitcomp.lib). �

www.mimuw.edu.pl/~marysia/gitcomp.lib
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The following theorem gives a description of the central fibre. Let W be the locus of stable
points of SpecR with respect to the T-action linearized by the character corresponding
to L and consider the quotient map W → X. Denote by S the image of the set of stable
points of the component Z0. Note that this is the central fibre of ϕ.

Theorem 7.3.15. S is a toric surface isomorphic to the projective cone over the image of
the third Veronese embedding P1 → P3.

Proof. We may assume that Z0 is the toric variety embedded into C5 with coordinates
w11, w12, w13, w14, w15 defined by the toric ideal generated by binomials:

w2
14 − w12w15, w13w14 − w2

15, w12w13 − w14w15.

This coincides with homogeneous equations of the twisted cubic curve which is the image
of the third Veronese embedding P1 → P3. Since T = C∗ acts on the coordinates w1i with
weights equal to 1 we are done. �

Lemma 7.3.16. L is a globally generated line bundle on X.

Proof. Since L is invariant with respect to the T -action and the base point locus of
a linear system is closed it either has to be empty or it has a nontrivial intersection with
the central fibre S. But L|S is an ample line bundle on a toric variety and as such it has
to be globally generated by [23, Theorem 6.1.7, Theorem 6.1.14]. �

7.3.3. Smoothness of the GIT quotient. Let R be the subring of the Cox ring of
the crepant resolution generated by the elements from the statement of theorem 7.3.8. In
this section we show that the GIT quotient SpecR//LT with respect to the linearization
of the trivial line bundle by the character of the Picard torus T corresponding to L is
smooth. In consequence we see that SpecR//LT → C4 is a crepant resolution. This
makes the results on geometry of crepant resolutions of C4/G in the previous section
unconditional and helps to conclude that R is the whole Cox ring in section 7.3.6.

We consider SpecR as a closed subvariety of C13 via the embedding given by generators
from statement of Theorem 7.3.8.

Theorem 7.3.17. The stable locus of SpecR with respect to the linearization of the trivial
line bundle by a character corresponding to L is covered by three T × T-invariant open
subsets U1, U2, U3 such that Ui/T ∼= C4. More precisely:

(1) U1 = {w13 6= 0} and (Rw13)T = C
[
w02, w05,

w11
w13

, w15
w13

]
,

(2) U2 = {w11 6= 0} and (Rw11)T = C
[
w12
w11

, w13
w11

, w14
w11

, w15
w11

]
,

(3) U3 = {w12 6= 0} and (Rw12)T = C
[
w01, w04,

w11
w12

, w14
w12

]
.

In particular the GIT quotient SpecR//LT with respect to the linearization of the trivial
line bundle by the character corresponding to L is smooth.

The choice of an open cover will be explained in the next section (see 7.3.25).

Proof. Lemma 7.3.14 implies that {Ui}i=1,2,3 form an open cover of the quotient.
It remains to prove equalities from points (1)–(3). Note that then in each case the four
generators of the ring on the right-hand side of the equality have to be algebraically
independent as the GIT quotient SpecR//T is irreducible and of dimension four.

By symmetry it suffices to consider only Ui for i = 1, 2. In each case we calculate the
invariants of the localization of the coordinate ring of the ambient C13 obtaining:
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(1) SpecRT
w13

= C
[
w0i,

w1j

w13
, w2

13t
]
i=1,...,7, j=1,...,5

(2) SpecRT
w11

= C
[
w0i,

w1j

w11
, w2

11t
]
i=1,...,7, j=1,...,5

Then, using the Gröbner basis of the ideal of relations between generators of R with
respect to an appropriate lexicographic order, we verify with Singular [27] in each case
that each of the generators of these two rings can be expressed as a polynomial of the four
generators from the statement. �

By the inclusion of invariants RT ⊂ R (see lemma 7.3.12) we have the induced projective
map SpecR//LT→ SpecR/T ∼= C4/G.

Corollary 7.3.18. The map ϕ : SpecR//LT → SpecR/T ∼= C4/G is a crepant resolu-
tion.

Proof. Denote E = {t = 0} ⊂ SpecR//LT. This is an irreducible divisor on
SpecR//LT. By the construction of R the map ϕ is an isomorphism outside E. Hence ϕ
is a resolution and it has to be crepant since there is only one crepant divisor over C4/G
by symplectic McKay correspondence and it has to be present on each resolution. �

7.3.4. Compasses at fixed points. In this section we obtain a local description of
the action of the two-dimensional torus T on a symplectic resolution X = SpecR//LT of
C4/G at fixed points of this action. We will not use the precise description of the smooth
open cover of X from theorem 7.3.17 as it was the compass calculation that originally led us
to this open cover (see remark 7.3.25 at the end of this section for a detailed explanation).

We find compasses of all fixed points of the action T on X (see definition 6.3.5).

Lemma 7.3.19. The following diagram shows the weights of the action of T on the space
of sections of H0(X,L) which are nonzero after the restriction to the central fibre S.

(0, 3)

(1, 1)

(3, 0)

The dots correspond to the weights of sections of L restricted to S.

Proof. This follows by a computer calculation (using Macaulay2 [45]) of dimensions
of appropriate graded pieces of the coordinate ring of Z0 from proposition 7.3.13. �

Remark 7.3.20. Lattice points from lemma 7.3.19 are contained in the polyhedron from
remark 7.3.11. Moreover their convex hull form the minimal head of this polyhedron.

Remark 7.3.21. Considering the polytope which is the convex hull of weights marked by
dots in lemma 7.3.19 we get the polytope of the line bundle L pulled back to S viewed as
a toric variety (see [23, Chapters 2,6] for a reference on the polytopes in toric geometry).
As L is globally generated (see lemma 7.3.16) the vertices correspond to the fixed points
of the action of T on S, cf. [18, Lemma 2.4(3)]. In particular one obtains the weights of
the action of T on the tangent space to S at fixed points.

Theorem 7.3.22. The fixed points of the T -action correspond to the vertices of the polytope
which is the convex hulls of weights marked by dots in lemma 7.3.19. The compasses of
the points corresponding to the vertices are as in the table below:
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Point Compass
P1 ↔ (0, 3) ν1,1 = (1,−2), ν1,2 = (1,−1), ν1,3 = (0, 3), ν1,4 = (0, 2)
P2 ↔ (1, 1) ν2,1 = (−1, 2), ν2,2 = (2,−1), ν2,3 = (0, 1), ν2,4 = (1, 0)
P3 ↔ (3, 0) ν3,1 = (−2, 1), ν3,2 = (−1, 1), ν3,3 = (2, 0), ν3,4 = (3, 0)

The following picture illustrates the weights of the T -action calculated in the theorem. It
is a directed graph. The points correspond to the sections of H0(X,L) for L which are
nonzero after the restriction to the central fibre together with vectors, as in lemma 7.3.19.
The directed edges are the vectors from the compasses attached to the points which cor-
respond to fixed points of T -action. In case when two vertices are connected by the two
edges pointing in both ways we depict them by a single edge without any arrow.

In the proof of the theorem we will use two lemmas that are true in the following general
setting. Let G ⊂ Sp4(C) be a finite group, such that C4 = V1 ⊕ V2 as G-representations,
with dimVi = 2. Let ϕ : X → C4/G be a symplectic resolution. Then, by section 6.1 there
is a two-dimensional torus T acting on X and C4/G so that ϕ is equivariant. Clearly
XT ⊂ ϕ−1([0]). Let x ∈ XT . Then we may decompose TxX = Tx(ϕ−1([0])) ⊕ V ′ where
V ′ is an eigenspace of the T -action. We will call the weights of T on V ′ the remaining
weights on TxX. Note that lemmas give an information on the weights of torus actions on
TxX and in the proof of the theorem we will draw conclusions about weights on the dual
space T ∗xX, by taking negatives of weights on TxX.

Lemma 7.3.23. The remaining weights for the T -action on TxX are of the form (a, 0) or
(0, a).

Proof. First note that every orbit of the T -action on C4 \0 is either two-dimensional
or has the isotropy group equal to C∗ × 1 or 1× C∗.
Now take any x ∈ XT , any remaining weight λ of the T -action on TxX and a one-
dimensional eigenspace Vλ with this weight which is not contained in the tangent space
to the central fibre. By corollary 6.3.4 such an eigenspace corresponds to the closure of
an orbit O of the T -action via an equivariant local étale map U → TxX, where U is an
invariant neighbourhood of x. In particular dimO = 1, and dimϕ(O) = 1, as O is not
contained in the central fibre of the resolution ϕ : X → C4/G. Therefore ϕ(O) as well as
O and Vλ are stabilized by either C∗ × 1 or 1× C∗ and the claim follows. �

For the next claim, consider C∗ as a subtorus of T embedded with the weight (1,−1).

Lemma 7.3.24. Let x ∈ XC∗. Among the weights of the induced C∗-action on TxX two
weights are positive and two are negative.

Proof. Let

X+
x = {x ∈ X : lim

t→0
tx ∈ Xx},

X−x = {x ∈ X : lim
t→0

t−1x ∈ Xx},
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where Xx ⊂ XC∗ is the connected component containing x. We will use the fact that X±x
are irreducible, locally closed subsets of X (see theorem 6.3.7).

If at least three weights at x were nonnegative then dimX+
x ≥ 3 by theorem 6.3.7. Similarly

if at least three weights at x are nonpositive then dimX−x ≥ 3. Suppose that dimX+
x ≥ 3.

On the other hand (C4)+
0 = C2×0 is two-dimensional and hence also (C4/G)+

0 = (C2×0)/G
is two-dimensional. Since dimϕ−1([0]) = 2 and the fibres of ϕ : X \ ϕ−1([0])→ C4/G are
of dimension at most one then dimϕ(X+

x ) ≥ dimX+
x − 1 = 2. As ϕ(X+

x ) ⊂ (C4/G)+
0 we

know that dimϕ(X+
x ) = 2 and hence X+

x has to be an exceptional divisor of the resolution
ϕ : X → C4/G. But the image of such an exceptional divisor is contained in the singular
locus of C4/G which consists of the image of four planes in C4 that have one-dimensional
intersection with C2× 0 and so, dimϕ(X+

x ) = 1, a contradiction. The case dimX−x ≥ 3 is
completely analogous. �

Proof of theorem 7.3.22. First, note that XT is contained in the central fibre. In
particular XT = ST and as we noted in the remark 7.3.21 the elements of ST correspond to
the vertices of the polytope from the statement. Taking into account the natural inclusion
of the tangent space to the central fibre into the tangent space of X most of the weights
can be deduced from the fact that the action of T on S is toric. The polytope spanned by
the points marked by dots in the lemma 7.3.19 is the polytope of this toric variety. Thus
using toric methods one can describe affine cover of S and the weights of the T -action on
the tangent space to its T -fixed points. Altogether the weights calculated in this way are
the ones from the assertion except ν1,3, ν1,4, ν3,3, ν3,4.

Now the calculation of all the weights for the homothety action is easy, since the symplectic
form is of weight two with respect to this action, and we can compute at least two weights at
each T -fixed point, by summing components of each known weight νi,j . For the remaining
weights of the T -action we combine lemmas 7.3.23 and 7.3.24.

For example we know that ν1,1 = (1,−2) and ν1,2 = (1,−1), which gives the weights of
the homothety action −1 and 0 at point corresponding to (0, 3). By proposition 6.2.4 the
remaining weights for homothety are equal to 3 and 2. By the lemma 7.3.23 the remaining
weight ν1,3 is of the form (3, 0) or (0, 3) and ν1,4 is of the form (2, 0) or (0, 2). Since ν1,1

and ν1,2 yield two positive weights for the C∗-action considered in the lemma 7.3.24 and
so do (3, 0) and (2, 0) we have ν1,3 = (0, 3) and ν1,4 = (0, 2). Other weights are computed
analogously. �

Remark 7.3.25. Note that theorem 7.3.22 follows immediately by theorem 7.3.17 when
we note that Ui ∼= C4 is a T -invariant neighbourhood of the i-th T -invariant point (we
order points as in rows of the table from the assertion). Nevertheless, since we used the
statement of theorem 7.3.22 to guess the open cover Ui, we decided to give an independent
proof to preserve the logical consequence of our considerations.

More precisely, to find isomorphisms Ui ∼= C4 in theorem 7.3.17 we used the compass
calculation from this section with a priori assumption on smoothness of the quotient
SpecR//LT as a heuristic. To guess the coordinates on each invariant open subset Ui
we picked an element f ∈ R of a degree corresponding to the i-th fixed point and four
elements of (Rf )T of degrees equal to the predicted weights of the action on the cotangent
space.

7.3.5. Dimensions of movable linear systems. In this section we use the torus
T action on X to give a formula for dimensions of these graded pieces of R(X) which
correspond to the movable linear systems on the resolution.

Let X → C4/G be the resolution corresponding to the linearization of the Picard torus
action by a character L ∈ Cl(X).
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Denote by Pi the fixed points of the T -action on X as in the table from theorem 7.3.22.
Let {νi,j}4j=1 denote the compass of Pi in X. Let us also denote by µi(L) the weight of the

T -action on the fibre of L over Pi. Note that µi is linear i.e. µi(A+B) = µi(A) + µi(B).

Remark 7.3.26. In section 7.3.4 we computed the weights µi for the line bundle L:

i µi(L)
1 (0, 3)
2 (1, 1)
3 (3, 0)

Theorem 7.3.27. If h0(X, pL)(a,b) is the dimension of the subspace of sections H0(X, pL)
on which T acts with the weight (a, b), then we have the following generating function for
such dimensions for line bundles inside the movable cone:

∑
a,b,p≥0

h0(X, pL)(a,b)y
pta1t

b
2 =

3∑
i=1

1

(1− tµi(L)y)
∏4
j=1(1− tνi,j )

.

Remark 7.3.28. The computed generating function may be interpreted as the multivariate
Hilbert series of a Z≥0 × Z2

≥0-graded subalgebra of R(X) consisting of the graded pieces

of R(X) corresponding to movable line bundles on X. We will use this interpretation in
the next section.

Proof. By a corollary of the Lefschetz-Riemman-Roch theorem (corollary 6.4.22) we
have:

χT (X,L) =
3∑
i=1

tµi(L)∏4
j=1(1− tνi,j )

.

Using the linearity of µi:∑
p≥0

χT (X, pL)yp =
∑
p≥0

3∑
i=1

tpµi(L)∏4
j=1(1− tνi,j )

yp =
3∑
i=1

1

(1− tµi(L)y)
∏4
j=1(1− tνi,j )

.

The assertion follows now by Kawamata-Viehweg vanishing, which for p ≥ 0 implies

χT (X, pL) =
∑
a,b≥0

h0(X, pL)(a,b)t
a
1t
b
2.

�

Example 7.3.29. The dimensions of the weight spaces corresponding to the lattice points
in a head of the polyhedron spanned by weights for the line bundle L considered in re-
mark 7.3.11 and in section 7.3.4 can be depicted on the following diagram:

1

1

1

1

1

1

1

2

2

2

3

1

1

2

2

3

3

4

1

1

2

3

3

4

5

5

2

2

3

4

5

5

7

1

2

3

4

5

6

7

8

1

2

3

5

5

7

8

9

1

3

4

5

7

8

9

11
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7.3.6. The Cox ring. Using the generating function from theorem 7.3.27 we may
prove theorem 7.3.8. In this section we outline an argument using the methods of sec-
tion 4.4. Denote by R(X) the Cox ring of X and by R the subring of R(X) generated by
the elements from the statement of theorem 7.3.8.

Lemma 7.3.30. The Cox ring of X is generated by t and by

R(X)≥0 :=
⊕
p≥0

H0(X, pL).

Proof. This is a particular case of proposition 4.4.5. �

Thus to prove that R = R(X) it suffices to show that R contains R(X)≥0. The following
lemma reduces the problem further, to finitely many graded pieces with respect to Z2-
grading by characters of the Picard torus of X.

Lemma 7.3.31. R(X)≥0 is generated by the sections of all linear spaces H0(X,M) for
M ∈ S where S := {OX , L, 2L}.

Proof. By virtue of lemma 7.3.16 this follows from proposition 4.4.4 with m1 = 1
and r = 2 for cone σ = Mov(X). �

Hence we reduced the problem to showing that R contains spaces of global sections only
for these finitely many line bundles which are elements of S in lemma 7.3.31. This, with
the help of computer algebra, can be done with the use of the previous section, namely by
theorem 7.3.27 in which we computed the Hilbert series of R(X)≥0.

Lemma 7.3.32. R contains H0(X,M) for each M ∈ S, where S is as in the lemma 7.3.31.

Proof. We calculate the Hilbert series of R in Macaulay2 [45]. It is of the form:

1

1− y−2
· F (y, t1, t2),

where:

F (y, t1, t2) =

=
1 + yt21t2 + yt1t

2
2 + t1t2 + t31 + t21t2 + t1t

2
2 + t32 − yt

4
1t2 − yt

3
1t

2
2 − yt

2
1t

3
2 − yt1t

4
2 − yt

3
1t

3
2 − t

3
1t

2
2 − t

2
1t

3
2 − yt

4
1t

4
2

(1− t22)(1− t21)(1− yt32)(1− yt31)(1− yt1t2)
.

Then, using Singular [27] we extract from it the Hilbert series for each of the vector
spaces RM , M ∈ S, graded by characters of T . The Hilbert series F0, F1, F2 for OX , L, 2L
respectively are:

F0(t1, t2) = F (1,t1,t2)+F (−1,t1,t2)
2 ,

F1(t1, t2) = F (1,t1,t2)−F (1,t1,t2)
2 ,

F2(t1, t2) = F0(t1, t2)− F (0, t1, t2).

Using Singular we check that for each M ∈ S the Hilbert series of RM agrees with the
Hilbert series for R(X)M which we calculated in theorem 7.3.27. Since R ⊂ R(X) it
means that RM = R(X)M . �
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7.4. Wreath product G = Z2 o S2

7.4.1. The setup and results. In this part we consider the symplectic action of the
wreath product G = Z2 o S2 on C4 with coordinates (x1, y1, x2, y2) and symplectic form
dx1 ∧ dx2 + dy1 ∧ dy2. The action is given by the embedding Z2

∼= 〈− id〉 ⊂ SL2(C) and
by permutation of factors C4 = C2 × C2. More precisely, G is generated by matrices

α =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 β =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

Remark 7.4.1. This is a subgroup of the 32-element group investigated in [37]. In the
notation used therein α = T0, β = T2.

The treatment follows the outline given in section 7.2 and is analogous to the one applied
in case G = S3 in section 7.3. Hence, whenever possible, we will omit full proofs and point
out that arguments are analogous.

Below we list basic properties of G. The arguments are straightforward.

Proposition 7.4.2. With notation as above:

• G is isomorphic to the dihedral group D8 of order 8, the isomorphism is given by
identifying elements ±α,±β with reflections and αβ with rotation.
• The commutator subgroup [G,G] ∼= Z2 is generated by matrix − id.
• Ab(G) = G/[G,G] ∼= Z2 × Z2 is generated by classes of α and β.
• Matrices ±α and ±β are the only symplectic reflections in G. Their conjugacy

classes are {±α}, {±β}.
• The representation of G defined as above is reducible. It decomposes into a direct

sum of two 2-dimensional representations C4 = V1 ⊕ V2. In particular the (C∗)2-
action on C4 induced by multiplication by scalars on Vi commutes with G.

Let Σ ⊂ C4/G be the singular locus of the quotient. By analysis of the fixed-point loci of
symplectic reflections in G it can be described as follows.

Proposition 7.4.3. Σ consists of two irreducible components, and outside of the image
of 0 each of them is transversal A1-singularity. The preimage of each component of Σ via
the quotient map C4 → C4/G consists of two planes.

Let ϕ : X → C4/G be a symplectic resolution. It is known that such a resolution exists
(see [11, Sect. 1]) but we will also prove it independently in section 7.4.3. As in the case
G = S3 considered in section 7.3.1 we have:

Proposition 7.4.4. There are two exceptional divisors E1, E2 of X each of which is
mapped onto an irreducible component of Σ. The central fibre ϕ−1([0]) consist of four
surfaces. The fibre of ϕ over any point in Σ \ [0] consists of a curve isomorphic to P1

which is contained in exactly one of two exceptional divisors.

Corollary 7.4.5. There is a natural T := (C∗)2-action on X making ϕ an equivariant
map.

Again we have two important two-dimensional tori – one is the Picard torus T := Hom(Cl(X),C∗)
and the other one is the torus T = (C∗)2 acting on C4 = C2 × C2 by multiplication of
scalars on each component C2.
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Let Ci be the numerical class of a complete curve which is a generic fibre of the morphism
ϕ|Ei : Ei → ϕ(Ei). Again we describe the generators of the Picard group of X in terms of
their intersections with curves Ci using proposition 7.1.1:

Proposition 7.4.6. The Picard group of X is a free rank two abelian group generated by
line bundles L1, L2 such that the intersection matrix (Li.Cj)i,j is equal to identity matrix.

Again using the computer algebra system Singular [27] to compute the invariants of [G,G]
we obtain the following proposition.

Proposition 7.4.7. The elements φij in table below are eigenvectors of the action of

Ab(G), which generate the ring of invariants C[x1, y1, x2, y2][G,G] ⊂ C[x1, y1, x2, y2].

α β generators
1 1 φ01 = x2

1 + y2
1, φ02 = x2

2 + y2
2, φ03 = x1x2 + y1y2

−1 1 φ11 = x1y2 + x2y1, φ12 = x1y1, φ13 = x2y2

1 −1 φ21 = x1x2 − y1y2, φ22 = x2
1 − y2

1, φ23 = x2
2 − y2

2

−1 −1 φ3 = x1y2 − x2y1

Let ν1, ν2 : C(x1, y1, x2, y2)∗ → Z denote monomial valuations corresponding to symplectic
reflections α, β respectively.

Remark 7.4.8. We have

νi(φjk) =

{
0 if i 6= j,

1 if i = j

and νi(φ3) = 1. Moreover νi(φjk) = Dφjk .Ci by (7.1.3).

As for G = S3 we have (cf. theorem 7.3.8).

Theorem 7.4.9. The Cox ring R(X) ⊂ R(C4/G)[t±1
1 , t±1

2 ] of the symplectic resolution
X → C4/G is generated by the elements w01, w02, w03, w11, w12, w13, w21, w22, w23, w3, s, t,
where w0i = φ0i, wjk = φjktj , s = t−2

1 , t = t−2
2 . In particular the degree matrix with re-

spect to the generators L1, L2 of Pic(X) (the first two rows) and to the T -action (remaining
two rows) is: 

w01 w02 w03 w11 w12 w13 w21 w22 w23 w3 s t

0 0 0 1 1 1 0 0 0 1 −2 0
0 0 0 0 0 0 1 1 1 1 0 −2

2 0 1 1 2 0 1 2 0 1 0 0
0 2 1 1 0 2 1 0 2 1 0 0


We prove this theorem in section 7.4.6. From now on we will denote the ring generated
by the elements from the theorem 7.4.9 by R.

Similarly as in the case G = S3 we need to prove independently of the previous theorem
the description of Mov(X) and its subdivision. The proposition below is originally due to
the work of [3].

Proposition 7.4.10.

(1) The cone Mov(X) of movable divisors of X is equal to Mov(R) and is generated
by line bundles L1 and L2.

(2) There are two symplectic resolutions of C4/G. The chambers in Mov(X) cor-
responding to the nef cones of these resolutions are relative interiors of cones
cone(L1, L1 + L2) and cone(L2, L1 + L2). The Mori cones of corresponding res-
olutions are cone(C2, C1 − C2) and cone(C1, C2 − C1).

Proof.
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(1) This follows from theorem 2.3.13 which allows us to find Mov(X) and by definition
of Mov(R) (see e.g. the paragraph preceeding proposition 7.1.4).

(2) We will prove the first part of the claim in section 7.4.5 as proposition 7.4.26 (we
will not use this result until then). The part on Mori cones then follows by taking
dual cones.

�

The theorem below will be proven independently of theorem 7.4.9 in section 7.4.3.

Theorem 7.4.11. Taking a GIT quotient of SpecR by the Picard torus action with respect
to the linearization given by a character (a, b) with a > b > 0 and with b > a > 0 one
obtains the two symplectic resolutions of C4/G.

Remark 7.4.12. The weights of the T -action on global sections of the fixed line bundle
L on X are lattice points in Z2. Taking a convex hull one obtains a lattice polyhedron in
R2. For example fixing a line bundle L = 2L1 + L2 one gets a polyhedron with the tail
equal to the positive quadrant of R2 and with a head spanned by the lattice points from
the picture below:

(0, 6)

(1, 3)
(2, 2)

(3, 1)
(6, 0)

By [18, Lemma 2.4(c)] if L is globally generated, then marked vertices of this polyhedron
correspond to T -fixed points of X. We will see in lemma 7.4.21 that indeed fixed points of
this polytope correspond to points in XT and in lemma 7.4.18 that L is globally generated.

7.4.2. The structure of the central fibre. In this section we study the structure
of the central fibre ϕ−1([0]) of a resolution ϕ : X → C4/G using the ideal of relations
between generators of the ring R, under the assumption that X = SpecR//LT for a
certain linearization L. The results of this section are used in the next one, where we
investigate the action of the two-dimensional torus T on X with the fixed point locus
XT contained in the central fibre. The additional assumption that X = SpecR//LT is
dealt with in section 7.4.3. Note that the approach adopted here is different than the one
adopted in the paper [32].

The reasoning is analogous to the case of G = S3 except that we have to consider stability
with respect to more than one linearization of T and there are more components of the
central fibre:

Lemma 7.4.13. We have an isomorphism SpecRT ∼= C4/G. In particular the inclusion of
invariants RT ⊂ R induce map p : SpecR → C4/G.

Let Z = p−1([0]). By decomposing its ideal in computer algebra system [27] and using
lemma 7.4.15 below we obtain:
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Proposition 7.4.14. The components of Z are the following subvarieties of C12:

Zu = V (w3, w23, w22, w21, w13, w12, w11, w03, w02, w01),

Z0 = V (w2
21 − w22w23,−w13w22 + w12w23,−2w13w21 + w11w23,

− 2w12w21 + w11w22, w11w21 − 2w12w23, w
2
11 − 4w12w13, t, s, w03, w02, w01),

ZP = V (−w2
3t+ w2

11 − 4w12w13, s, w23, w22, w21, w03, w02, w01),

Z ′P = V (−w2
3s+ w2

21 − w22w23, t, w13, w12, w11, w03, w02, w01).

The component Zu is contained in the locus of unstable points with respect to any lineariza-
tion of the Picard torus via character from the movable cone. Points in the component
Z ′P are unstable with respect to any linearization by the character (2, 1) ∈ Cl(X) and
points in the component ZP are unstable with respect to any linearization by the character
(1, 2) ∈ Cl(X).

Note that in the above proposition we may replace characters (2, 1) and (1, 2) by any other
pair of characters from the interiors of the two top-dimensional GIT cones. We chose
characters (2, 1), and (1, 2) to keep any computations involving the chosen characters as
simple as possible.

Lemma 7.4.15. The unstable locus of SpecR with respect to a linearization of the trivial
line bundle by a character (2, 1) ∈ Cl(X) is cut out by equations:

w13w23 = w13w3 = w11w3 = w12w3 = w12w22 = 0.

Moreover, all the semistable points of Z are stable and have trivial isotropy groups.

The following theorem gives a description of components of the central fibre. Let W be
the locus of stable points of SpecR with respect to the T-action linearized by a character
(2, 1) (the case (1, 2) is analogous) and consider the quotient map W → X. Denote by
S0, P the images of sets of stable points of the components Z0, ZP . Note that these are
precisely the components of the central fibre of X.

Theorem 7.4.16.

(a) S0 is a toric surface isomorphic to the Hirzebruch surface H4. The action of T
on S0 is given by characters in the columns of the matrix

(
1 0
−1 −2

)
.

(b) P is isomorphic to P2. The action of T on P in homogeneous coordinates is given
by the matrix ( 1 2 0

1 0 2 ).

Proof of (a).

Claim 1. By rescaling variables we may assume that Z0 is the toric variety embedded into
C7 with coordinates w11, w12, w13, w21, w22, w23, w3 defined by the toric ideal generated by
binomials:

w2
21 − w22w23, w12w23 − w13w22, w11w23 − w13w21,

w11w22 − w12w21, w11w21 − w12w23, w
2
11 − w12w13.

Claim 2. Z0 is the affine variety of the cone σ∨ = cone(e1− 2e2 + 2e3, e1, e3, 2e2− e3, e4)
in space R4 spanned by the character lattice M = Z4 of four-dimensional torus.

Proof of the claim. One may do the calculation as in the proof of [23, Thm 1.1.17]
or use computer algebra system Polymake [42] to check that the toric variety of the cone
from the statement has the binomial ideal from claim 1. �



7.4. WREATH PRODUCT G = Z2 o S2 95

Claim 3. The Picard torus acting on Z0 may be viewed as (C∗)2 embedded into TM = (C∗)4

by characters in the columns of the matrix:(
1 0 0 1
0 1 1 1

)
.

Proof of the claim. The i-th column corresponds to ei ∈ M, i = 1, 2, 3, 4 and
these correspond to w13, w21, w22, w3 respectively. �

To obtain S0 from Z0 we have to remove unstable orbits of Z0 and divide the remaining
open subset by the action of the Picard torus. By lemma 7.4.15 we have:

Claim 4. The unstable locus of Z0 is the closure of two orbits:

O1 = {w11 = w12 = w13 = 0}, O2 = {w11 = w13 = w21 = w22 = w23 = w3 = 0}.

One checks by [23, 3.2.7] that:

Claim 5. The orbits O1, O2 correspond respectively to the following faces of the cone
σ = cone(2e1 + e2, e1, e2 + 2e3, e2 + e3, e4) dual to σ∨:

τ1 = cone(e1), τ2 = cone(2e1 + e2, e2 + e3, e4).

To obtain the fan of the toric variety S0 we consider the fan of Z0, remove cones τ1 and
τ2 together with all the cones containing them and take the family of the images of the
remaining cones via the dual of the kernel of the matrix from claim 3, i.e. by:

Q :=

(
0 −1 1 0
−1 −1 0 1

)
.

Now Q(2e1 + e2) = (−1,−3), Q(e1) = (0,−1), Q(e2 + 2e3) = (1,−1), Q(e2 + e3) =
(0,−1), Q(e4) = (0, 1) and changing coordinates in Z2 by (1, 0) 7→ (1,−1), (0, 1) 7→ (0,−1)
we obtain the standard fan for Hirzebruch surface H4.

The matrix of the T -action on S0 is given by the product of the matrix J of embedding
of T into the big torus of Z0 with the transpose of the matrix Q. Here, inspecting the
construction of the generators of R, we obtain:

J =

(
0 1 2 1
2 1 0 1

)
.

�

Proof of (b). Denote x := w11, y := w12, z := w13, w := w3. Rescaling coordinates
we may assume that ZP is embedded in C5 as the hypersurface x2−w2t+ 4yz = 0. Then
the unstable locus is described by equations xw = yw = zw = 0, see lemma 7.4.15. This
gives an open cover of the set of semistable points, given by the union of three open sets
{xw 6= 0} ∪ {yw 6= 0} ∪ {zw 6= 0}. Gluing the quotients of these open sets coincides with
the standard construction of P2 (with coordinates x, y, z) by gluing three affine planes.
Finally, note that T acts on w11, w12, w13 with weights (1, 1), (2, 0), (0, 2) respectively. �

Since, contrary to the case G = S3, we have more than one component of the central
fibre we would like to describe the incidence relation between various components. By the
analysis of intersections of stable loci of Z0 and ZP we can systematically describe the
intersections of the components of the central fibre in terms of the identifications from
theorem 7.4.16.

Theorem 7.4.17. S0∩P is the curve corresponding to (0,−1) on S0 and the quadric curve
x2 − yz = 0 on P with homogeneous coordinates x, y, z.



96 7. RESOLUTIONS OF SYMPLECTIC QUOTIENT SINGULARITIES IN DIMENSION FOUR

Proof. We will be using the notation from the proof of theorem 7.4.16. On Z0 the
intersection Z0 ∩ ZP is cut out by equations w21 = w22 = w23 = 0. Hence it contains as
a dense subset the orbit of the toric variety Z0 which corresponds to the one-dimensional
cone τ = cone(e2 + e3), since σ∨ \ τ⊥ 3 v21, v22, v23. Then we have Q(e2 + e3) = (0,−1).

On ZP the intersection Z0 ∩ ZP is cut out by the equation t = 0. By the construction of
the isomorphism P ∼= P2 this equation yields the curve x2 − yz = 0 on P2. �

The next lemma shows that all nef line bundles on X are globally generated as for G = S3,
which again will be important in the next sections. Note that it is already known that all
nef line bundles on X are globally generated by work of [3].

Lemma 7.4.18. L1 + L2 and L1 are globally generated line bundles on X.

Proof. Since L1 + L2 and L1 are invariant with respect to the T -action and the
base point locus of a linear system is closed for both linear systems |L1 + L2| and |L1|
it either has to be empty or it has a nontrivial intersection with the central fibre. The
assertion follows by inspecting the weights of the generators of the Cox ring with respect
to the Picard torus action and the equations of components of the fibre p−1([0]) where
p : SpecR → C4/G is as in proposition 7.4.14. It turns out that the intersections of the
zero sets of elements of each of these two linear systems with p−1([0]) are contained in the
unstable locus. �

7.4.3. Smoothness of the GIT quotient. Let R be the subring of the Cox ring of
the crepant resolution generated by the elements from the statement of theorem 7.4.9. In
this section we show that the GIT quotient SpecR//LT with respect to the linearization
of the trivial line bundle by the character L = 2L1 +L2 of the Picard torus T is smooth. In
consequence we see that SpecR//LT→ C4 is a crepant resolution. This makes the results
on the geometry of crepant resolutions of C4/G in the previous section unconditional and
helps to conclude that R is the whole Cox ring in the final section 7.4.6.

We consider SpecR as a closed subvariety of C12 via the embedding given by generators
from statement of Theorem 7.4.9. The next two results are analogous to the one in the
case of G = S3 (theorem 7.3.17 and corollary 7.3.18).

Theorem 7.4.19. The stable locus of SpecR with respect to the linearization of the trivial
line bundle by a character (a, b), a > b > 0 is covered by seven T × T-invariant open
subsets U1, . . . , U5 such that Ui/T ∼= C4. More precisely if (a, b) = (2, 1) then:

(1) U1 = {w13w23 6= 0} and (Rw13w23)T = C
[
w2

13s, w02,
w11
w13

, w3
w13w23

]
,

(2) U2 = {w13w3 6= 0} and (Rw13w3)T = C
[
w13w23
w3

, w02,
w11
w13

, w12
w13

]
,

(3) U3 = {w11w3 6= 0} and (Rw11w3)T = C
[
w13
w11

, w11w23
w3

, w11w22
w3

, w12
w11

]
,

(4) U4 = {w12w3 6= 0} and (Rw12w3)T = C
[
w12w22
w3

, w01,
w11
w12

, w13
w12

]
,

(5) U5 = {w12w22 6= 0} and (Rw13w3)T = C
[
w2

12s, w01,
w11
w12

, w3
w12w22

]
.

In particular the GIT quotient SpecR//(a,b)T with respect to the linearization of the trivial
line bundle by a character (a, b), a > b > 0 is smooth.

The choice of an open cover is based on the reasoning as in the case G = S3, see re-
mark 7.3.25.

Proof. Lemma 7.4.15 implies that {Ui}i=1,...5 form an open cover of the quotient.
It remains to prove equalities from points (1)–(5). Note that then in each case the four
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generators of the ring on the right-hand side of the equality have to be algebraically
independent as the GIT quotient SpecR//(a,b)T is irreducible and of dimension four.

By symmetry it suffices to consider only Ui for i = 1, 2, 3. In each case we calculate the
invariants of the localization of the coordinate ring of the ambient C12, with the help of
4ti2 [1] obtaining in consequence:

(1) SpecRT
w13w23

= C
[
w0i,

w1i
w13

, w2i
w23

, w2
13s, w

2
23t,

w3
w13w23

]
i=1,2,3

(2) SpecRT
w13w3

= C
[
w0i,

w1i
w13

, w13w2i
w3

, w2
13s,

w2
3t

w2
13

]
i=1,2,3

(3) SpecRT
w11w3

= C
[
w0i,

w1i
w11

, w11w2i
w3

, w2
11s,

w2
3t

w2
11

]
i=1,2,3

Then, using the Gröbner basis of the ideal of relations between generators of R with
respect to an appropriate lexicographic order, we verify with Singular [27] in each case
that each of the generators of this three rings can be expressed as a polynomial of the four
generators from the assertion. �

By the inclusion of invariants RT ⊂ R (see lemma 7.4.13) we have the induced projective
map SpecR//LT→ SpecR/T ∼= C4/G.

Corollary 7.4.20. The map ϕ : SpecR//LT → SpecR/T ∼= C4/G is a crepant resolu-
tion.

7.4.4. Compasses of fixed points. In this section we obtain a local description of
the action of the two-dimensional torus T on a symplectic resolution X = SpecR//LT of
C4/G at fixed points of this action, where L = 2L1 +L2. As for G = S3 the results of this
section served as a guide in section 7.4.3, where we proved that indeed X is of the form
SpecR//LT. This is why we are not using here the open cover from theorem 7.4.19, but
only the smoothness of the quotient (see also remark 7.3.25).

We find compasses of all fixed points of the action T on X (see definition 6.3.5). The
arguments are analogous as these of section 7.3.4.

Lemma 7.4.21. The following diagram shows the weights of the action of T on the space
of sections of H0(X,L) for L = 2L1 + L2 which are nonzero after the restriction to some
irreducible component of the central fibre.

(0, 6)

(1, 3)

(2, 2)

(3, 1)

(6, 0)

The black dots correspond to the weights of sections of L restricted to P and red ones to
S0 (note that lattice points marked by multiple colours correspond to weights occurring in
restriction to more than one component).

Proof. This follows by a computer calculation (using Macaulay2 [45]) of dimensions
of appropriate graded pieces of the coordinate rings of Z0 and ZP from proposition 7.4.14.

�

Remark 7.4.22. Lattice points from lemma 7.4.21 are contained in the polyhedron from
remark 7.4.12. Moreover, their convex hull form the minimal head of this polyhedron.
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Remark 7.4.23. Considering the polytope which is a convex hull of weights marked by
the red colour in lemma 7.4.21 we get the polytope of the line bundle L pulled back to the
corresponding component S0 of the central fibre viewed as a toric variety. As L is globally
generated (see lemma 7.4.18) the vertices correspond to the fixed points of the action of
T on S, cf. [18, Lemma 2.4(3)].

Theorem 7.4.24. The fixed points of the T -action correspond to the vertices of the poly-
topes which are convex hulls of weights marked by the colour fixed in lemma 7.4.21. The
compasses of the points corresponding to the vertices of these polytopes are as in the table
below:

Point Compass
P1 ↔ (0, 6) ν1,1 = (1,−3), ν1,2 = (1,−1), ν1,3 = (0, 4), ν1,4 = (0, 2)
P2 ↔ (1, 3) ν2,1 = (−1, 3), ν2,2 = (1,−1), ν2,3 = (2,−2), ν2,4 = (0, 2)
P3 ↔ (2, 2) ν3,1 = (−1, 1), ν3,2 = (1,−1), ν3,3 = (2, 0), ν3,4 = (0, 2)
P4 ↔ (3, 1) ν4,1 = (3,−1), ν4,2 = (−1, 1), ν4,3 = (−2, 2), ν4,4 = (2, 0)
P5 ↔ (6, 0) ν5,1 = (−3, 1), ν5,2 = (−1, 1), ν5,3 = (4, 0), ν5,4 = (2, 0)

The following picture illustrates the weights of the T -action calculated in the theorem. It
is a directed graph. The points correspond to the sections of H0(X,L) for L = 2L1 + L2

which are nonzero after the restriction to the central fibre together with vectors, as in
lemma 7.4.21. The directed edges are the vectors from the compasses attached to the points
which correspond to fixed points of T -action. In case when two vertices are connected by
the two edges pointing in both ways we depict them by a single edge without any arrow.

Proof of theorem 7.4.24. First, note that XT is contained in the central fibre. In
particular XT = ST0 ∪ P T . Now all the weights corresponding to fixed points, except
(2, 2), together with most elements of compasses can be deduced from the fact that the
action of T on S0 is toric. In the calculation of compasses we take into account the natural
inclusions of the tangent spaces to the components of the central fibre into the tangent
space of X. The polytope spanned by the points marked by red colour in the lemma 7.4.21
is the polytope of S0. Thus using toric methods one can describe affine cover of S0 and
the weights of the T -action on the tangent space to its T -fixed points. In the case of
weights at (1, 3), (2, 2) and (3, 1) which come from the action of T on P we use the explicit
description of P from the proof of theorem 7.4.16(b). Altogether the weights calculated up
to this point are the ones from the assertion except ν1,3, ν1,4, ν2,3, ν3,3, ν3,4, ν4,4, ν5,3, ν5,4.

Now the calculation of all the remaining weights is analogous as in the proof of theo-
rem 7.3.22, in particular we use lemmas 7.3.23 and 7.3.24. �

7.4.5. Dimensions of movable linear systems. In this section we use the torus
T action on X to give a formula for dimensions of these graded pieces of R(X) which
correspond to movable linear systems on some of the resolutions.
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Let X → C4/G be the resolution corresponding to the linearization of the Picard torus
action by a character (2, 1). Let X ′ → C4/G be the resolution corresponding to the
linearization (1, 2).

Denote by Pi the fixed points of the T -action on X as in the table from theorem 7.4.24.
Let {νi,j}4j=1 denote the compass of Pi in X. Let us also denote by µi(L) the weight of the

T -action on the fibre of L over Pi. Note that µi is linear i.e. µi(A+B) = µi(A) + µi(B).

Remark 7.4.25. By lemma 7.4.18 we may compute the weights µi for line bundles L1 +L2

and L1 similarly as for 2L1 + L2 in section 7.4.4 to obtain (the last column is calculated
from the first two ones by the linearity of µi):

i µi(L1) µi(L1 + L2) µi(L2)
1 (0, 2) (0, 4) (0, 2)
2 (0, 2) (1, 1) (0,−1)
3 (1, 1) (1, 1) (0, 0)
4 (2, 0) (1, 1) (−1, 1)
5 (2, 0) (4, 0) (2, 0)

We may now prove the observation on the subdivision of the cone of movable divisors on
X, see proposition 7.4.10 (which is originally due to the work of [3]).

Proposition 7.4.26. There are two symplectic resolutions of C4/G. The chambers in
Mov(X) corresponding to the nef cones of these resolutions are relative interiors of cones
cone(L1, L1 + L2) and cone(L2, L1 + L2).

Proof. Consider the homomorphisms µi : N1(X) → R2. The two walls of the
chamber C containing 2L1 + L2 are corresponding to the contractions of X, in par-
ticular they identify some T -fixed points of X. Hence each wall has to be spanned
by an element v ∈ Mov(X) satisfying µi(v) = µj(v) for some i 6= j. Now the only
such elements in cone(L1, L1 + L2) are lying on the rays spanned by L1 + L2 and L1.
Therefore C = cone(L1, L1 + L2). The analogous argument, using the homomorphisms
µ′i : N

1(X ′) → R2 corresponding to the T -fixed points of X ′, shows that the chamber
containing L1 + 2L2 is equal to the relative interior of cone(L1 + L2, L2). �

Theorem 7.4.27. If h0(X, pL1 + qL2)(a,b) is the dimension of the subspace of sections

H0(X, pL1 + qL2) on which T acts with the weight (a, b), then we have the following
generating function for such dimensions for line bundles inside the movable cone:∑

a,b,p,q≥0

h0(X, pL1 + qL2)(a,b)y
p
1y
q
2t
a
1t
b
2 =

=
7∑
i=1

1

(1− tµi(L1)y1)(1− tµi(L2)y2)
∏4
j=1(1− tνi,j )

.

Again, the computed generating function may be interpreted as the multivariate Hilbert
series of a Z2

≥0 ×Z2
≥0-graded subalgebra of R(X) consisting of the graded pieces of R(X)

corresponding to movable line bundles on X. This is the interpretation of the theorem
that we will use in the next section.

Proof. By a corollary of the Lefschetz-Riemman-Roch theorem (corollary 6.4.22) we
have:

χT (X, pL1 + qL2) =

7∑
i=1

tµi(pL1+qL2)∏4
j=1(1− tνi,j )

.



100 7. RESOLUTIONS OF SYMPLECTIC QUOTIENT SINGULARITIES IN DIMENSION FOUR

Using the linearity of µi:

∑
p,q≥0

χT (X, pL1 + qL2)yp1y
q
2 =

∑
p,q≥0

7∑
i=1

tpµi(L1) · tqµi(L2)∏4
j=1(1− tνi,j )

yp1y
q
2 =

7∑
i=1

1

(1− tµi(L1)y1)(1− tµi(L2)y2)
∏4
j=1(1− tνi,j )

.

The assertion follows now by Kawamata-Viehweg vanishing, which implies

χT (X, pL1 + qL2) =
∑
a,b≥0

h0(X, pL1 + qL2)(a,b)t
a
1t
b
2 =

∑
a,b≥0

h0(X ′, pL1 + qL2)(a,b)t
a
1t
b
2.

if p ≥ q ≥ 0 and likewise for q ≥ p ≥ 0 on X ′. �

Example 7.4.28. The dimensions of the weight spaces corresponding to the lattice points
in a head of the polyhedron spanned by weights for the line bundle 2L1 + L2 considered
in remark 7.4.12 and in section 7.4.4 can be depicted on the following diagram:

1

1

2

1

2

3

4

1

3

4

6

7

1

3

5

7

9

3

5

8

10

13

2

5

8

11

14

1

4

8

11

15

18

3

7

11

15

19

1

6

10

15

19

24

4

9

14

19

24

2

7

13

18

24

29

7.4.6. The Cox ring. Using the generating function from theorem 7.4.27 we may
prove theorem 7.4.9 i.e. we reconfirm that the elements from the statement are indeed
sufficient to generate the Cox ring of X. In this section we outline an argument using the
methods of section 4.4.

Denote by R(X) the Cox ring of X and by R the subring of R(X) generated by the
elements from the statement of theorem 7.4.9.

Lemma 7.4.29. The Cox ring of X is generated by s, t and by

R(X)≥0 :=
⊕
p,q≥0

H0(X, pL1 + qL2).

Proof. This is a particular case of proposition 4.4.5. �

Thus to prove that R = R(X) it suffices to show that R contains R(X)≥0. The following
lemma reduces the problem further, to finitely many graded pieces with respect to Z2-
grading by characters of the Picard torus of X.

Lemma 7.4.30. R(X)≥0 is generated by the sections of all linear spaces H0(X,L) for L ∈
S∪S ′ where S := {OX , L1, L1+L2, 2L1, 2L1+L2, 2L1+2L2, 3L1+L2, 3L1+2L2, 4L1+2L2}
and S ′ := {L2, 2L2, L1 + 2L2, L1 + 3L2, 2L1 + 3L2, 2L1 + 4L2}.

Proof. By virtue of lemma 7.4.18 this follows from proposition 4.4.4 with r = 2 and
all m1 = m2 = 1 for cones cone(L1, L1 + L2) and cone(L2, L1 + L2). �
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Hence we reduced the problem to showing that R contains spaces of global sections only
for these finitely many line bundles which are elements of S ∪ S ′ in lemma 7.4.30. This,
with the help of computer algebra, can be done with the use of the previous section,
namely by theorem 7.4.27 in which we computed the Hilbert series of R(X)≥0.

Lemma 7.4.31. R contains H0(X,L) for each L ∈ S∪S ′, where S is as in the lemma 7.4.30.

Proof. We calculate the Hilbert series of R in Macaulay2 [45]. It is of the form:

1

(1− y−2
1 )(1− y−2

2 )
·G(y1, y2, t1, t2),

where:

F (y1, y2, t1, t2) =
1 + y1t1t2 + y2t1t2 + t21 + t1t2 + t22 − y1y2t

3
1t2 − y1y2t

2
1t

2
2 − y1y2t1t

3
2 − y1t

2
1t

2
2 − y2t

2
1t

2
2 − y1y2t

3
1t

3
2

(1− y2t22)(1− y2t21)(1− y1t22)(1− y1t21)(1− y1y2t1t2)
.

Then, using Singular [27] we extract from it Hilbert series for each of the vector spacesRL,
L ∈ S, graded by characters of T . Denote the Hilbert series corresponding to pL1 + qL2

by Fp,q. Then we have:

F0,0(t1, t2) = F (1,1,t1,t2)+F (−1,1,t1,t2)+F (1,−1,t1,t2)+F (−1,−1,t1,t2)
4 ,

F1,0(t1, t2) = F (1,1,t1,t2)−F (−1,1,t1,t2)+F (1,−1,t1,t2)−F (−1,−1,t1,t2)
4 ,

F0,1(t1, t2) = F (1,1,t1,t2)+F (−1,1,t1,t2)−F (1,−1,t1,t2)−F (−1,−1,t1,t2)
4 ,

F1,1(t1, t2) = F (1,1,t1,t2)−F (−1,1,t1,t2)−F (1,−1,t1,t2)+F (−1,−1,t1,t2)
4 ,

F2,0(t1, t2) = F0,0(t1, t2)− F (0,1,t1,t2)+F (0,−1,t1,t2)
2 ,

F2,1(t1, t2) = F0,1(t1, t2)− F (0,1,t1,t2)−F (0,−1,t1,t2)
2 ,

F1,2(t1, t2) = F1,0(t1, t2)− F (1,0,t1,t2)−F (−1,0,t1,t2)
2 ,

F2,2(t1, t2) = F2,0(t1, t2)− F (1,0,t1,t2)+F (−1,0,t1,t2)
2 + F (0, 0, t1, t2),

F3,1(t1, t2) = F1,1(t1, t2)−
∂F
∂y1

(0,1,t1,t2)− ∂F
∂y1

(0,−1,t1,t2)

2 ,

F3,2(t1, t2) = F1,2(t1, t2)−
∂F
∂y1

(0,1,t1,t2)+ ∂F
∂y1

(0,−1,t1,t2)

2 + ∂F
∂y1

(0, 0, t1, t2),

F4,2(t1, t2) = F2,2(t1, t2)−
∂2F
∂y21

(0,1,t1,t2)+
∂2F
∂y21

(0,1,t1,t2)

4 + 1
2
∂2F
∂y21

(0, 0, t1, t2).

Using Singular we check that for each L ∈ S the Hilbert series of RL agrees with the
Hilbert series for R(X)L which we calculated in theorem 7.4.27.

Since R ⊂ R(X) it means that RL = R(X)L for L ∈ S.

Now note that by symmetry of the Hilbert series of R and of Hilbert series of R(X)≥0

(see theorem 7.4.27) if H0(X, aL1 + bL2) ⊂ R then H0(X, bL1 + aL2) ⊂ R. In particular
from what we proven it follows also that RL = R(X)L for L ∈ S ′. �

7.5. Binary tetrahedral group

7.5.1. The setup and results. In this section we collect known facts on the group
G ⊂ Sp4(C) investigated by Bellamy and Schedler in [11] and by Lehn and Sorger in [68],
the corresponding symplectic quotient singularity C4/G and its symplectic resolution X.
In particular we introduce two Z2-gradings on the Cox ring of X, one induced by the
Picard torus action and one induced by the action of a two-dimensional torus on X.
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The treatment is according to the program from section 7.1, and the execution follows
analogously to the examples in sections 7.3 and 7.4.

Let G ⊂ Sp4(C) be the symplectic representation of binary tetrahedral group generated
by the matrices:

i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 , −1

2


(1 + i)ε (−1 + i)ε 0 0
(1 + i)ε (1− i)ε 0 0

0 0 (1 + i)ε2 (−1 + i)ε2

0 0 (1 + i)ε2 (1− i)ε2

 ,

where ε = e2πi/3 is a third root of unity.

Proposition 7.5.1.

(1) There are 7 conjugacy classes of elements of G among which two consist of sym-
plectic reflections.

(2) The commutator subgroup [G,G] has order 8 and it is isomorphic to the quater-
nion group. In particular the abelianization G/[G,G] is cyclic of order 3.

(3) The representation G defined above is reducible. It decomposes into two two-
dimensional representations V1⊕V2. In particular the (C∗)2-action on C4 induced
by multiplication by scalars on Vi commutes with G.

Proof. Points (1) and (2) can be quickly verified with GAP Computer Algebra Sys-
tem [41]. Point (3) follows directly by the definition of G. �

Let Σ ⊂ C4/G be the singular locus of the quotient. Analogously as in sections 7.3.1
and 7.4.1 we have:

Proposition 7.5.2. The preimage of Σ via the quotient map C4 → C4/G consists of
four planes, each of which maps onto Σ. Outside the image of 0 the singular locus is a
transversal A2-singularity.

Let ϕ : X → C4/G be a projective symplectic resolution which exists by [11] or by [68]
(we will prove it independently in 7.5.3).

Proposition 7.5.3. There are two exceptional divisors E1, E2 of X each of which is
mapped onto Σ. The central fibre ϕ−1([0]) consist of four surfaces. The fibre of ϕ over
any point in Σ \ [0] consists of two curves isomorphic to P1 intersecting in one point and
each of which is contained in exactly one of two exceptional divisors.

Corollary 7.5.4. There is a natural T := (C∗)2-action on X making ϕ an equivariant
map.

Once again we have two different two-dimensional tori – one is the Picard torus T :=
Hom(Cl(X),C∗) and the other one is the torus T acting on C4 = C2×C2 by multiplication
of scalars on each component C2.

Let Ci be the numerical class of a complete curve which is a generic fibre of the morphism
ϕ|Ei : Ei → Σ.

Proposition 7.5.5. The Picard group of X is a free rank two abelian group generated by
line bundles L1, L2 such that the intersection matrix (Li.Cj)i,j is equal to identity matrix.

Using Singular computer algebra system [27] we may obtain the candidate set for the
generating set of R(X). Using similar methods as in section 5.5 it is easy to verify that
the original outcome of the program does not satisfy the valuative compatibility criterion,
so it will not suffice to generate R(X). However after a linear transformation involving two
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generators of [G,G]-invariants we obtain the following candidate set, which turns out to
be sufficient, as the next theorem asserts. Denote the following elements of the (Laurent)
polynomial ring C[x1, y1, x2, y2][t±1

1 , t±1
2 ]:

w01 = y1x2 − x1y2,
w02 = x5

2y2 − x2y
5
2 ,

w03 = x5
1y1 − x1y

5
1 ,

w04 = x4
1 + (−4b+ 2)x2

1y
2
1 + y41 ,

w05 = x4
2 + (4b− 2)x2

2y
2
2 + y42 ,

w06 = x1x
3
2 + (−2b+ 1)y1x

2
2y2 + (−2b+ 1)x1x2y

2
2 + y1y

3
2 ,

w07 = x3
1x2 + (2b− 1)x1y

2
1x2 + (2b− 1)x2

1y1y2 + y31y2,

w11 = (−3bx2
1x

2
2 + (−b+ 2)y21x

2
2 + (−4b+ 8)x1y1x2y2 + (−b+ 2)x2

1y
2
2 − 3by21y

2
2)t1,

w12 = (x4
2 + (−4b+ 2)x2

2y
2
2 + y42)t1,

w13 = (x3
1x2 + (−2b+ 1)x1y

2
1x2 + (−2b+ 1)x2

1y1y2 + y31y2)t1,
w14 = (−5x4

1y1x2 + y51x2 − x5
1y2 + 5x1y

4
1y2)t1,

w15 = (x1y1x
4
2 + 2x2

1x
3
2y2 − 2y21x2y

3
2 − x1y1y

4
2)t1,

w21 = ((3b− 3)x2
1x

2
2 + (b+ 1)y21x

2
2 + (4b+ 4)x1y1x2y2 + (b+ 1)x2

1y
2
2 + (3b− 3)y21y

2
2)t2,

w22 = (x4
1 + (4b− 2)x2

1y
2
1 + y41)t2,

w23 = (x1x
3
2 + (2b− 1)y1x

2
2y2 + (2b− 1)x1x2y

2
2 + y1y

3
2)t2,

w24 = (y1x
5
2 + 5x1x

4
2y2 − 5y1x2y

4
2 − x1y

5
2)t2,

w25 = (−2x3
1y1x

2
2 − x

4
1x2y2 + y41x2y2 + 2x1y

3
1y

2
2)t2,

w3 = (9x2
1y1x

3
2 + (−2b+ 1)y31x

3
2 + 9x3

1x
2
2y2 + (6b− 3)x1y

2
1x

2
2y2 + (−6b+ 3)x2

1y1x2y
2
2 − 9y31x2y

2
2+

+(2b− 1)x3
1y

3
2 − 9x1y

2
1y

3
2)t1t2

s = t−2
1 t2,

t = t1t
−2
2 ,

where b is a primitive root of unity of order 6.

Theorem 7.5.6. The Cox ring R(X) of X is generated by 20 generators:

w01, . . . , w07, w11, . . . , w15, w21, . . . , w25, w3, s, t.

The degree matrix of these generators with respect to the generators L1, L2 of Pic(X) (first
two rows) and with respect to the T -action (remaining two rows) is:

w01 w02 w03 w04 w05 w06 w07 w11 w12 w13 w14 w15 w21 w22 w23 w24 w25 w3 s t

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 −2 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 −2

1 0 6 4 0 1 3 2 0 3 5 2 2 4 1 1 4 3 0 0
1 6 0 0 4 3 1 2 4 1 1 4 2 0 3 5 2 3 0 0


We prove this theorem in section 7.5.6. From now on we will denote the ring generated
by elements from the statement of theorem 7.5.6 by R.

As in two previous examples we need to describe the movable cone Mov(X) and find its
GIT subdivision independently of the theorem above.

Proposition 7.5.7.

(1) The cone Mov(X) of movable divisors of X is equal to Mov(R) and is the cone
generated by the line bundles L1 and L2.

(2) There are two symplectic resolutions of C4/G. The chambers in Mov(X) cor-
responding to the nef cones of these resolutions are relative interiors of cones
cone(L1, L1 + L2) and cone(L2, L1 + L2). The Mori cones of corresponding res-
olutions are cone(C2, C1 − C2) and cone(C1, C2 − C1).

Proof.

(1) This follows from theorem 2.3.13 which allows us to find Mov(X) and by definition
of Mov(R) (see e.g. the paragraph preceeding proposition 7.1.4).
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(2) We will prove the first part of the claim in section 7.5.5 as proposition 7.5.24 (we
will not use this result until then). The part on Mori cones then follows by taking
dual cones.

�

We also will prove the following result independently in section 7.5.3.

Theorem 7.5.8. Taking a GIT quotient of SpecR by the Picard torus action with respect
to the linearization given by a character (a, b) with a > b > 0 and with b > a > 0 one
obtains the two symplectic resolutions of C4/G.

Remark 7.5.9. The weights of the T -action on global sections of the fixed line bundle L
on X are lattice points in Z2. Taking a convex hull one obtains a lattice polyhedron in
R2. For example fixing a line bundle L = 2L1 + L2 one gets a polyhedron with the tail
equal to the positive quadrant of R2 and with a head spanned by the lattice points from
the picture below:

(0, 16)

(1, 11)

(3, 7)

(5, 5)
(6, 4)

(10, 2)

(20, 0)

By [18, Lemma 2.4(c)] if L is globally generated, then marked vertices of this polyhedron
correspond to T -fixed points of X where X is the resolution on which L is relatively ample.
We will see in 7.5.20 that indeed fixed points of this polytope correspond to points in XT

and in lemma 7.5.17 that L is globally generated.

7.5.2. The structure of the central fibre. In this section we study the structure
of the central fibre ϕ−1([0]) of such a resolution ϕ : X → C4/G using the ideal of relations
between generators of the ring R, under the assumption that X = SpecR//LT for some
linearization L. Analogously to arguments given in two previous examples, the results of
this section are used in the next one, where we investigate the action of the two-dimensional
torus T on X with the fixed point locus XT contained in the central fibre. The additional
assumption that X = SpecR//LT is dealt with in section 7.5.3. The omitted proofs are
similar to the ones in section 7.4.2.

Lemma 7.5.10. We have an isomorphism SpecRT ∼= C4/G. In particular the inclusion of
invariants RT ⊂ R induce map p : SpecR → C4/G.

Let Z = p−1([0]). Again, decomposition of its ideal with use of computer algebra system
Singular [27] and application of lemma 7.5.12 yields:
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Proposition 7.5.11. The components of Z are the following subvarieties of C20:

Zu = V (w3, wij | (i, j) ∈ (0, 1), . . . , (0, 7), (1, 1), . . . , (1, 5), (2, 1), . . . , (2, 5)),

Z0 = V (s, t, w25, w24, w15, w14, w07, w06, w05, w04, w03, w02, w01,

w12w22 − w13w23, w11w21 − 9w13w23, w
3
21 − 27w22w

2
23, w13w

2
21 − 3w11w22w23,

w12w
2
21 − 3w11w

2
23, 3w

2
13w21 − w2

11w22, 3w12w13w21 − w2
11w23, w

3
11 − 27w12w

2
13)

ZP = V (s, w25, w24, w23, w22, w21, w15, w14, w07, w06, w05, w04, w03, w02, w01,

w
3
11 − 27w12w

2
13 − i

√
3w

2
3t),

Z
′
P = V (t, w25, w24, w15, w14, w13, w12, w11, w07, w06, w05, w04, w03, w02, w01,

w
3
21 − 27w22w

2
23 + i

√
3w

2
3s),

Z1 = V (s, w25, w24, w23, w21, w15, w12, w07, w06, w05, w04, w03, w02, w01,

2w3w22t+ ζ3w11w14, 2w
2
11w22 + ζ

7
12

√
3w3w14, w

3
11 − i

√
3w

2
3t, 4w11w

2
22t+ ζ

5
12

√
3w

2
14),

Z2 = V (t, w25, w22, w15, w14, w13, w11, w07, w06, w05, w04, w03, w02, w01,

2w3w12s+ ζ6w21w24, w
3
21 + i

√
3w

2
3s, 2w12w

2
21 + ζ

11
12

√
3w3w24, 4w

2
12w21s+ ζ

7
12

√
3w

2
24),

where ζ3, ζ6, ζ12 are primitive 3rd, 6th and 12th roots of unity. The component Zu is
contained in the locus of unstable points with respect to any linearization of the Picard
torus via character from the movable cone. Points in the component Z ′P are unstable
with respect to any linearization by a character (2, 1) and points in the component ZP are
unstable with respect to any linearization by a character (1, 2).

Lemma 7.5.12. The unstable locus of SpecR with respect to a linearization of the trivial
line bundle by a character (2, 1) is cut out by equations:

w12s = w12w23 = w11w3 = w12w3 = w13w3 = w13w22 = w22t = 0.

Moreover, all the semistable points of Z are stable and have trivial isotropy groups.

The following theorem gives a description of components of the central fibre. Let W be
the locus of stable points of SpecR with respect to the T-action linearized by a character
(2, 1) (the case (1, 2) is analogous) and consider the quotient map W → X. Denote by
S0, S1, S2, P the images of sets of stable points of the components Z0, Z1, Z2, ZP . Note
that these are precisely the components of the central fibre of X.

Theorem 7.5.13.

(a) S0 is a non-normal toric surface whose normalization is isomorphic to the Hirze-
bruch surface H6. The action of T on the normalization of S0 is given by char-
acters in the columns of the matrix

(
1 −1
−1 −1

)
.

(b) S1 is a non-normal toric surface whose normalization is the toric surface of a fan
spanned by rays: (0, 1), (1, 0), (1,−1), (−1,−2). The action of T on the normal-
ization of S1 is given by characters in the columns of the matrix

(
3 −1
1 −1

)
.

(c) S2 is a non-normal toric surface whose normalization is the toric surface of a fan
spanned by rays: (0, 1), (1,−1), (−1,−2). The action of T on the normalization
of S2 is given by characters in the columns of the matrix

(−1 3
−1 1

)
.

(d) P is isomorphic to P2. The action of T on P in homogeneous coordinates is given
by the matrix ( 2 0 3

2 4 1 ).

Proofs of (a)–(c) are analogous to the proof of theorem 7.4.16(a), and (d) is similar to
7.4.16(b).

We can also describe the non-normal locus of components of the central fibre.

Theorem 7.5.14. If νi : S̃i → Si is the normalization of the component Si of the central
fibre i = 0, 1, 2 and Ni ⊂ Si is the locus of the non-normal points of Si, then
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(a) ν−1
0 (N0) is the sum of the closures of the orbits corresponding to (−1,−3) and

(1,−3) i.e. it is the sum of invariant fibres of H6.
(b) ν−1

1 (N1) is the sum of the closures of the orbits corresponding to (−1,−2) and
(1,−1).

(c) ν−1
2 (N2) is the sum of the closures of the orbits corresponding to (−1,−2) and

(1,−1).

Proof. We use lemma 7.5.15 and the description of T-stable orbits of Zi analogous
to the one in the proof of theorem 7.5.13 for Z0. Altogether, T-stable orbits of Zi which
consist of normal points correspond to the cones which do not contain the cones τj and
are not contained in ωk, where τj ’s are defined analogously as in the proof of 7.4.16(a) and
ωk’s are:

• For i = 0: ω1 = cone(e4, e2 + e3) and ω2 = cone(e1, e4).
• For i = 1, 2: ω := ω1 = cone(e2 + e3, e4).

In each case one easily finds all such cones and their images via the map Q (again, notation
after proof of 7.5.13) turn out to be the cones parametrizing orbits in the statement. We
conclude since the non-normal points of Si = Zi//T are precisely the images of the non-
normal points of Zi which are T-stable. Here we use the fact that all semistable points of
Zi are stable and the isotropy groups of the T-action are trivial by lemma 7.5.12, so that
the quotient Zsi → Zi//T is a torsor. �

Lemma 7.5.15. Let S be a subsemigroup of the lattice M and let U = SpecC[S] be
the corresponding (not necessarily normal) affine toric variety. Let σ = cone(S). Let

Ũ = SpecC[M ∩ σ] be the toric normalization of U . Then for each subcone τ ≺ σ the
orbit O(τ) ⊂ U consists of the normal points of U if and only if we have the equality of
semigroups M ∩ 〈τ〉+ S = M ∩ 〈τ〉+M ∩ σ, where 〈τ〉 is the linear span of τ .

Proof. The toric variety U(τ) = SpecC[M ∩ 〈τ〉 + S] is the open subvariety of
SpecC[S] obtained by removing these torus orbits which does not contain O(τ) in their

closure. Similarly Ũ(τ) = SpecC[M ∩〈τ〉+M ∩σ] is the open subvariety of SpecC[M ∩σ]
obtained by removing all the torus orbits whose closure does not contain the orbit cor-

responding to τ . Moreover Ũ(τ) → U(τ) is the normalization. Hence the equality
M ∩ 〈τ〉 + S = M ∩ 〈τ〉 + M ∩ σ holds if and only if U(τ) is normal, which is pre-
cisely the case when O(τ) consists of the normal points, since it is contained in the closure
of each orbit of U(τ) and the non-normal locus of a variety is closed. �

The analysis of intersections among the components of the central fibre is analogous to
the one in case G = Z2 o S2 (cf. theorem 7.4.17).

Theorem 7.5.16.

(a) S0 ∩S1 is the curve corresponding to (−1,−3) on the normalization of S0 and to
(1,−1) on a normalization of S1.

(b) S0 ∩ S2 is the curve corresponding to (1,−3) on the normalization of S0 and to
(1,−1) on a normalization of S2.

(c) S0 ∩ P is the curve corresponding to (0,−1) on the normalization of S0 and the
cuspidal cubic curve x3 − yz2 = 0 on P with homogeneous coordinates x, y, z.

(d) S1 ∩ P is the curve corresponding to (1, 0) on the normalization of S1 and to the
line y = 0 on P with homogeneous coordinates x, y, z (note that this is the flex
tangent of the cuspidal cubic curve S0 ∩ P ).
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(e) S2 ∩ P is the point corresponding to the cone spanned by rays (0, 1), (1,−1) on
the normalization of S2 and to the point x = z = 0 on P with homogeneous
coordinates x, y, z (note that this is the cusp of the cubic curve S0 ∩ P ).

The next lemma shows that all nef line bundles on X are globally generated, which will be
important in the next sections. The proof is analogous to the one in the previous example
(lemma 7.4.18).

Lemma 7.5.17. L1 + L2 and L1 are globally generated line bundles on X.

7.5.3. Smoothness of the GIT quotient. Let R be the subring of the Cox ring of
the crepant resolution generated by the elements from the statement of theorem 7.5.6. In
this section we show that the GIT quotient SpecR//LT with respect to the linearization
of the trivial line bundle by the character L = 2L1 +L2 of the Picard torus T is smooth. In
consequence we see that SpecR//LT→ C4 is a crepant resolution. This makes the results
on the geometry of crepant resolutions of C4/G in the previous section unconditional and
helps to conclude that R is the whole Cox ring in the final section 7.5.6.

We consider SpecR as a closed subvariety of C20 via the embedding given by generators
from statement of Theorem 7.5.6.

The proofs of results in this section are as in the case G = S3 presented in section 7.3.3.

Theorem 7.5.18. The stable locus of SpecR with respect to the linearization of the trivial
line bundle by a character (a, b), a > b > 0 is covered by seven T × T-invariant open
subsets U1, . . . , U7 such that Ui/T ∼= C4. More precisely if (a, b) = (2, 1) then:

(1) U1 = {w12s 6= 0} and (Rw12s)
T = C

[
w02, w05,

w23
w12s

, w24
w12s

]
,

(2) U2 = {w12w23 6= 0} and (Rw12w23)T = C
[
w2

12s
w23

, w21
w23

, w24
w23

, w3
w12w23

]
,

(3) U3 = {w12w3 6= 0} and (Rw12w3)T = C
[
w11
w12

, w13
w12

, w12w23
w3

, w12w24
w3

]
,

(4) U4 = {w11w3 6= 0} and (Rw11w3)T = C
[
w12
w11

, w13
w11

, w11w22
w3

, w11w23
w3

]
,

(5) U5 = {w13w3 6= 0} and (Rw13w3)T = C
[
w11
w13

, w12
w13

, w12w21
w3

, w12w22
w3

]
,

(6) U6 = {w13w22 6= 0} and (Rw13w22)T = C
[
w2

22t
w13

, w11
w13

, w14
w13

, w3
w13w22

]
,

(7) U7 = {w22t 6= 0} and (Rw22t)
T = C

[
w03, w04,

w13

w2
22t
, w14
w12s

]
.

In particular the GIT quotient SpecR//(a,b)T with respect to the linearization of the trivial
line bundle by a character (a, b), a > b > 0 is smooth.

Proof. Lemma 7.5.12 implies that {Ui}i=1,...7 form an open cover of the quotient.
It remains to prove equalities from points (1)–(7). Note that then in each case the four
generators of the ring on the right-hand side of the equality have to be algebraically
independent as the GIT quotient SpecR//(a,b)T is irreducible and of dimension four.

By symmetry it suffices to consider only Ui for i = 1, 2, 3, 4. In each case we calculate the
invariants of the localization of the coordinate ring of the ambient C20, with the help of
4ti2 [1] obtaining in consequence:

(1) SpecRT
w12s = C

[
w0i,

w1j

w12
,
w2j

w2
12s
, w3

w3
12s
, w3st

]
i=1,...,7, j=1,...,5

(2) SpecRT
w12w23

= C
[
w0i,

w1j

w12
,
w2j

w23
,
w2

12s
w23

,
w2

23t
w12

, w3
w12w23

]
i=1,...,7, j=1,...,5

(3) SpecRT
w3w12

= C
[
w0i,

w1j

w12
,
w12w2j

w3
,
w3

12s
w3

,
w2

3t

w3
12

]
i=1,...,7, j=1,...,5
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(4) SpecRT
w3w11

= C
[
w0i,

w1j

w11
,
w11w2j

w3
,
w3

11s
w3

,
w2

3t

w3
11

]
i=1,...,7, j=1,...,5

Then, using the Gröbner basis of the ideal of relations between generators of R with
respect to an appropriate lexicographic order, we verify with Singular [27] in each case
that each of the generators of these four rings can be expressed as a polynomial of the four
generators from the assertion. �

By the inclusion of invariants RT ⊂ R (see lemma 7.5.10) we have the induced projective
map SpecR//LT→ SpecR/T ∼= C4/G.

Corollary 7.5.19. The map ϕ : SpecR//LT → SpecR/T ∼= C4/G is a crepant resolu-
tion.

7.5.4. Compasses of fixed points. In this section we obtain a local description of
the action of the two-dimensional torus T on a symplectic resolution X = SpecR//LT of
C4/G at fixed points of this action, where L = 2L1 +L2. The arguments and remarks are
similar to the ones given for G = Z2 o S2 in section 7.4.4.

We describe compasses of all fixed points of the action T on X (see definition 6.3.5).

Lemma 7.5.20. The following diagram shows the weights of the action of T on the space
of sections of H0(X,L) for L = 2L1 + L2 which are nonzero after the restriction to some
irreducible component of the central fibre.

(0, 16)

(1, 11)

(3, 7)

(5, 5)
(6, 4)

(10, 2)

(20, 0)

The black dots correspond to the weights of sections of L restricted to P , blue ones to S0,
green ones to S1 and red ones to S2 (note that lattice points marked by multiple colours
correspond to weights occurring in restriction to more than one component).

Remark 7.5.21. Lattice points from lemma 7.5.20 are contained in the polyhedron from
remark 7.5.9. Moreover, their convex hull form the minimal head of this polyhedron.

Theorem 7.5.22. The fixed points of the T -action correspond to the vertices of the poly-
topes which are convex hulls of weights marked by the colour fixed in lemma 7.5.20. The
compasses of the points corresponding to the vertices of these polytopes are as in the table
below:

Point Compass
P1 ↔ (0, 16) ν1,1 = (1,−3), ν1,2 = (1,−5), ν1,3 = (0, 4), ν1,4 = (0, 6)
P2 ↔ (1, 11) ν2,1 = (−1, 5), ν2,2 = (2,−4), ν2,3 = (1,−1), ν2,4 = (0, 2)
P3 ↔ (3, 7) ν3,1 = (−2, 4), ν3,2 = (−1, 3), ν3,3 = (2,−2), ν3,4 = (3,−3)
P4 ↔ (5, 5) ν4,1 = (−2, 2), ν4,2 = (1,−1), ν4,3 = (3,−1), ν4,4 = (0, 2)
P5 ↔ (6, 4) ν5,1 = (−1, 1), ν5,2 = (4,−2), ν5,3 = (−3, 3), ν5,4 = (2, 0)
P6 ↔ (10, 2) ν6,1 = (−4, 2), ν6,2 = (5,−1), ν6,3 = (−1, 1), ν6,4 = (2, 0)
P7 ↔ (20, 0) ν7,1 = (−3, 1), ν7,2 = (−5, 1), ν7,3 = (4, 0), ν7,4 = (6, 0)
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The following picture illustrates the weights of the T -action calculated in the theorem. It
is a directed graph. The points correspond to the sections of H0(X,L) for L = 2L1 + L2

which are nonzero after the restriction to the central fibre together with vectors, as in
lemma 7.5.20. The directed edges are the vectors from the compasses attached to the points
which correspond to fixed points of T -action. In case when two vertices are connected by
the two edges pointing in both ways we depict them by a single edge without any arrow.

7.5.5. Dimensions of movable linear systems. In this section we use the torus
T action on X to give a formula for dimensions of these graded pieces of R(X) which
correspond to the movable linear systems on some of the resolutions. The arguments are
analogous to the ones in the case G = Z2 o S2 in section 7.4.5.

Let X → C4/G be the resolution corresponding to the linearization of the Picard torus
action by a character (2, 1). Let X ′ → C4/G be the resolution corresponding to the
linearization (1, 2).

Denote by Pi the fixed points of the T -action on X as in the table from theorem 7.5.22.
Let {νi,j}4j=1 denote the compass of Pi in X. Let us also denote by µi(L) the weight of the

T -action on the fibre of L over Pi. Note that µi is linear i.e. µi(A+B) = µi(A) + µi(B).

Remark 7.5.23. By lemma 7.5.17 we may compute the weights µi for line bundles L1 +L2

and L1 similarly as for 2L1 + L2 in section 7.5.4 to obtain (the last column is calculated
from the first two ones by the linearity of µi):

i µi(L1) µi(L1 + L2) µi(L2)
1 (0, 4) (0, 12) (0, 8)
2 (0, 4) (1, 7) (1, 3)
3 (0, 4) (3, 3) (3,−1)
4 (2, 2) (3, 3) (1, 1)
5 (3, 1) (3, 3) (0, 2)
6 (3, 1) (7, 1) (4, 0)
7 (8, 0) (12, 0) (4, 0)

Proposition 7.5.24. There are two symplectic resolutions of C4/G. The chambers in
Mov(X) corresponding to the nef cones of these resolutions are relative interiors of cones
cone(L1, L1 + L2) and cone(L2, L1 + L2).

Theorem 7.5.25. If h0(X, pL1 + qL2)(a,b) is the dimension of the subspace of sections

H0(X, pL1 + qL2) on which T acts with the weight (a, b), then we have the following
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generating function for such dimensions for line bundles inside the movable cone:∑
a,b,p,q≥0

h0(X, pL1 + qL2)(a,b)y
p
1y
q
2t
a
1t
b
2 =

=
7∑
i=1

1

(1− tµi(L1)y1)(1− tµi(L2)y2)
∏4
j=1(1− tνi,j )

.

As in the two previous examples, the computed generating function may be interpreted
as the multivariate Hilbert series of a Z2

≥0 × Z2
≥0-graded subalgebra of R(X) consisting

of the graded pieces of R(X) corresponding to movable line bundles on X. This is the
interpretation of the theorem that we will use in the next section.

Example 7.5.26. The dimensions of the weight spaces corresponding to the lattice points
in a head of the polyhedron spanned by weights for the line bundle 2L1 + L2 considered
in remark 7.5.9 and in section 7.5.4 can be depicted on the following diagram:

1

1

1

1

1

1

2

2

2

1

1

2

2

3

3

4

1

1

2

3

3

4

5

5

2

2

3

4

5

5

7

7

1

2

3

4

5

6

7

8

9

1

2

3

5

5

7

8

9

10

12

2

3

4

6

7

8

10

11

12

2

3

5

6

8

9

11

12

14

15

1

3

5

6

8

10

11

13

15

16

1

2

4

6

8

9

12

13

15

17

19

2

4

6

8

10

12

14

16

18

20

1

4

5

8

10

12

14

17

18

21

23

2

5

7

9

12

14

16

19

21

23

2

4

7

9

12

14

17

19

22

24

27

1

3

6

9

11

14

17

19

22

25

27

2

5

7

11

13

16

19

22

24

28

30

1

4

7

10

13

16

19

22

25

28

31

3

6

9

12

16

18

22

25

28

31

35

1

4

8

11

14

18

21

24

28

31

34

1

3

7

10

14

17

21

24

28

31

35

38

2

5

9

13

16

20

24

27

31

35

38

4

7

11

15

19

22

27

30

34

38

42

2

6

10

14

18

22

26

30

34

38

42

1

4

9

12

17

21

25

29

34

37

42

46

2

6

11

15

19

24

28

32

37

41

45

1

5

9

14

18

23

27

32

36

41

45

50

7.5.6. The Cox ring. Using the generating function from theorem 7.5.25 we may
prove theorem 7.5.6 i.e. we prove that R = R(X). In this section we outline an argument
using the methods of section 4.4.

Denote by R(X) the Cox ring of X and by R the subring of R(X) generated by the
elements from the statement of theorem 7.5.6.

Lemma 7.5.27. The Cox ring of X is generated by s, t and by

R(X)≥0 :=
⊕
p,q≥0

H0(X, pL1 + qL2).

Proof. This is a particular case of proposition 4.4.5. �

Thus to prove that R = R(X) it suffices to show that R contains R(X)≥0. The following
lemma reduces the problem further, to finitely many graded pieces with respect to Z2-
grading by characters of the Picard torus of X.

Lemma 7.5.28. R(X)≥0 is generated by the sections of all linear spaces H0(X,L) for L ∈
S∪S ′ where S := {OX , L1, L1+L2, 2L1, 2L1+L2, 2L1+2L2, 3L1+L2, 3L1+2L2, 4L1+2L2}
and S ′ := {L2, 2L2, L1 + 2L2, L1 + 3L2, 2L1 + 3L2, 2L1 + 4L2}.
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Proof. By virtue of lemma 7.5.17 this follows from proposition 4.4.4 with r = 2 and
all m1 = m2 = 1 for cones cone(L1, L1 + L2) and cone(L2, L1 + L2).. �

Hence we reduced the problem to showing that R contains spaces of global sections only
for these finitely many line bundles which are elements of S ∪ S ′ in lemma 7.5.28. This,
with the help of computer algebra, can be done with the use of the previous section,
namely by theorem 7.5.25 in which we computed the Hilbert series of R(X)≥0.

Lemma 7.5.29. R contains H0(X,L) for each L ∈ S∪S ′, where S is as in the lemma 7.5.28.

Proof. We calculate the Hilbert series of R in Macaulay2 [45]. It is of the form:
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Then, using Singular [27] we extract from it Hilbert series for each of the vector spacesRL,
L ∈ S, graded by characters of T . Denote the Hilbert series corresponding to pL1 + qL2

by Fp,q. Then we have:

F0,0(t1, t2) = F (1,1,t1,t2)+F (ε,ε2,t1,t2)+F (ε2,ε,t1,t2)
3 ,

F1,0(t1, t2) = F (1,1,t1,t2)+ε2F (ε,ε2,t1,t2)+εF (ε2,ε,t1,t2)
3 ,

F0,1(t1, t2) = F (1,1,t1,t2)+εF (ε,ε2,t1,t2)+ε2F (ε2,ε,t1,t2)
3 ,

F1,1(t1, t2) = F0,0(t1, t2)− F (0, 0, t1, t2),

F2,0(t1, t2) = F0,1(t1, t2)− ∂F
∂y2

(0, 0, t1, t2),

F2,1(t1, t2) = F1,0(t1, t2)− ∂F
∂y1

(0, 0, t1, t2)− 1
2
∂2F
∂y22

(0, 0, t1, t2),
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F2,2(t1, t2) = F0,0(t1, t2)− ∂2F
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(0, 0, t1, t2)− 1
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Using Singular we check that for each L ∈ S the Hilbert series of RL agrees with the
Hilbert series for R(X)L which we calculated in theorem 7.5.25. Since R ⊂ R(X) it
means that RL = R(X)L.

As in the case G = Z2 o S2 by symmetry of the Hilbert series of R and of Hilbert series of
R(X)≥0 (see theorem 7.5.25) if H0(X, aL1 + bL2) ⊂ R then H0(X, bL1 + aL2) ⊂ R. In
particular from what we proven it follows also that RL = R(X)L for L ∈ S ′. �

7.6. General scheme

The considerations from this chapter suggest the following geometric approach to the veri-
fication whether a ‘candidate’ for generating set of R(X) of the form as in situation 4.1.10
actually generates the Cox ring of a crepant resolution X for a quotient singularity. The
idea is to use a torus T acting on a resolution.

Step 1 Calculate the fixed point locus XT and the invariants needed to compute the
equivariant Euler characteristic of line bundles on the resolution with Lefschetz-
Riemman-Roch formula. In case when XT is discrete it suffices to know the
compass at each point of XT and the weights of the T -action on fibres over fixed
points of line bundles generating Pic(X).

Step 2 Use the Lefschetz-Riemman-Roch formula (corollary 6.4.22) combined with the
Kawamata-Viehweg vanishing theorem to compute the Hilbert series of the non-
negatively graded part of the Cox ring R(X)≥0. For the case when dimXT ≤ 1
one may use [18, Corollary A.3].

Step 3 Use multigraded Castelnuovo-Mumford regularity and the Kawamata-Viehweg
vanishing as outlined in section 4.4 to obtain a finite set S of line bundles whose
global sections generate the Cox ring.

Step 4 Compute the Hilbert series for R and extract from it Hilbert series of the vector
spaces RL, L ∈ S, graded by characters of T . Check whether they are equal to
Hilbert series R(X)L calculated in Step 2.

Note that if we know the Hilbert series for R(X)≥0 calculated in step 1 then the above
procedure suggests also where to look for additional generators of R(X) if we do not have
equality in step 4.

The implementation of the procedure proposed above is challenging, since one has to
obtain enough information on the geometry of resolutions without knowing the Cox ring.
The required data are of two kinds – in step 1, one has to find data associated with the
torus action. And in step 3, to successfully use regularity, one has to find sufficiently many
line bundles which are globally generated on one of the resolutions. Nevertheless, we plan
on developing these ideas and and applying them in the future study of other examples.

One family of potential candidates to study with use of torus action methods arising from
the family of groups Zn oS2 ⊂ Sp4(C). The corresponding family of quotient singularities is
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a subset of the family studied recently by Bellamy and Craw [8]. It might be worthwhile to
study it with techniques involving torus actions and compare the two methods. It would be
also interesting to adapt methods related to torus actions to the case of three-dimensional
quotient singularities. Finally, every crepant resolution of a quotient singularity admits a
C∗-action induced by homothety action on Cn. One may hope to develop our methods to
use this action in the study of geometry of crepant resolutions.
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[3] Marco Andreatta and Jaros law Wísniewski. 4-dimensional symplectic contractions. Geometriae Ded-
icata, 168(1):311–337, 2014.
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[23] David A. Cox, John B. Little, and Hal K. Schenck. Toric Varieties. Graduate studies in mathematics.

American Mathematical Soc., 2011.
[24] Alastair Craw and Akira Ishii. Flops of G-Hilb and equivalences of derived categories by variation of

GIT quotient. Duke Math. J., 124(2):259–307, 08 2004.
[25] Alastair Craw and Miles Reid. How to calculate A-Hilb C3. Séminaires et congrès, 6:129–154, 2002.
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