UNIVERSITY OF WARSAW

FACULTY OF MATHEMATICS, INFORMATICS AND MECHANICS

Maja Milewska (Czokow)

Spring systems learning mechanical behaviour

PhD dissertation

Supervisor:

prof. dr hab. Jacek Miekisz

Institute of Applied Mathematics and Mechanics
Faculty of Mathematics, Informatics and Mechanics

University of Warsaw

May 2021

Author’s declaration:
aware of legal responsibility I hereby declare that I have written this disser-
tation myself and all the contents of the dissertation have been obtained by

legal means.

date Author’s signature

Supervisor’s declaration:

the dissertation is ready to be reviewed.

date Supervisor’s signature

Contents

Table of Contents
Abstract

Streszczenie

Introduction

1.1 Motivation Lo
1.2 Research methodology
1.3 Thesis structure oL

1.4 Main dissertation results

Spring system model

2.1 Newtonian dynamics

2.2 Spring system model and its dynamics
2.2.1 Partition of thenodes
2.2.2 Relaxation o Lo

2.3 System adaptation for mechanical behaviour
231 Goalo
2.3.2 Parametric learning algorithm
2.3.3 Relation between parametric learning and backpropaga-

tion algorithmo

11
11
12
13
14

CONTENTS

2.3.4 Determining of non-stabilised nodes
2.4 Generating graph G topology for adaptive spring systems . . .
2.5 Stability of equilibrium states
2.5.1 Learning with a noise factor
2.5.2 Exploration of the Hamiltonian profile

2.6 Conclusions

Protein model

3.1 Introduction to biology of proteins

3.2 Implementation of the spring system method

33 Results.
3.3.1 Effectiveness of the approach
3.3.2 Physical properties of protein like systems
3.3.3 Graphical representation of trained protein

3.4 Conclusions

Numerical results
4.1 Prerequisites
4.2 Construction of a synthetic learning problem
4.2.1 Generation of a set of training examples
4.2.2 Setting initial values of spring parameters
4.3 Relaxation procedure
4.4 Properties of parametric learning algorithm
4.4.1 Dynamics of error & during adaptation process
4.4.2 Stopcondition.
4.5 Number of resources of a graph G = (V,€)
4.5.1 Explored cases
4.5.2 Conclusions
4.6 Energy profile and noise factor properties

4.7 Conclusions,

30
32
33
34
36

37
38
40
42
43
46
49

CONTENTS 5

5 Conclusions 77
5.1 Summary 7
5.2 Furtherresearch 78

A Rigid graphs 79
A.1 Rigid graph 79
A.2 Generic rigidity Lo 81
A.3 Henneberg constructions L. 83
A.4 Degrees of freedom of rigid graph 84

B Pseudocode 87
B.1 Relaxation 87
B.2 Parametric learning algorithm 90
B.3 Stop conditiono o 93
B.4 Numerical precision of the calculation of the learning algorithm 93
B.5 Algorithm generating graph topology 95
B.6 Algorithm for generation of training examples 97
B.7 Amnoise factor 99
B.8 Noise robustness Lo 100

C Backpropagation algorithm 101
C.1 Artificial neural networks 101
C.2 Gradient descent algorithm 103
C.3 Sigmoidal perceptron 104
C.4 Backpropagation algorithm 106

Acknowledgments 115

Bibliography 117

CONTENTS

Abstract

Spring systems are commonly employed to model properties of real physical
objects. They are frequently used to illustrate how a solid or a microscopic
body distorts under the influence of external forces. The aim of this disser-
tation is to apply a reverse approach. Namely, in our work we ask a question
how the spring system should be constructed in order to react to external
forces in a predesigned manner. Specifically, the main task in our model is
to find for each harmonic spring, belonging to the system, the values of the
parameters (the rest length, the elastic constant) such that, after acting of
external forces on the system, it distorts in a proper way (nodes considered
as observed nodes are shifted in the desired way). To achieve this aim we
design an algorithm, which in sequential steps alters spring parameters to
teach the system behaviour defined by the set of its training examples.
Additionally, we employ the developed mathematical framework to build
a spring system with topology representing a protein structure. In this case,
the trained spring system moves through the reaction path of the protein,
whose initial and final states are retrieved from the open data base Protein
Data Bank [5]. Our method gives us a model of the protein which can be

easily used in molecular simulations.

The main results of the dissertation are published in [11] and [12]. Other

results concerning our model, but not described here, are published in [13].

KEYWORDS: spring systems, learning systems, protein conformations

7

CONTENTS

Streszczenie

Systemy sprezynowe uczace sie mechanicznych zachowarn

Systemy sprezynowe sa powszechnie wykorzystywane do modelowania
wlasnosci rzeczywistych obiektow fizycznych. Czesto sa uzywane do obrazow-
ania jak ciato state albo obiekt mikroskopowy odksztalci si¢ pod wplywem sit
zewnetrznych. Celem tej rozprawy jest zastosowanie odwrotnego podejscia.
Mianowicie w naszej pracy zadajemy sobie pytanie jak system sprezynowy
powinien byé skonstruowany, zeby zareagowal na zewnetrzne silty w z gory
zdefiniowany sposob. W szczegdlnoscei, gléwnym celem naszego modelu jest
znalezienie dla kazdej sprezyny harmonicznej nalezacej do systemu wartosci
parametrow (dlugosci spoczynkowej, wspotezynnika sprezystosci), takich ze
po zadzialaniu na nie zewnetrznych sit system odksztaltci sie w odpowiedni
sposob (wierzcholki oznaczone jako wyjscie systemu przesuna sie w pozadany
sposob). Aby osiagnaé¢ ten cel, zaprojektowalismy algorytm, ktory w kole-
jnych krokach modyfikuje parametry sprezyn, w celu nauczenia systemu
zachowan zdefiniowanych przez przyktady uczace.

Dodatkowo uzyliSmy nasz aparat matematyczny do budowy systemoéow
sprezynowych o topologii reprezentujacej strukture bialek. W tym przypadku,
wytrenowane systemy sprezynowe poruszaja sie wzdhuz Sciezek aktywnosci
biatek, ktorych stan poczatkowy i koricowy sa pobrane z bazy Protein Data

Bank [5]. Nasza aparat matematyczny dostarcza nam struktury sprezynowe,

9

10 CONTENTS

ktore moga by¢ wykorzystane do symulacji biatek na poziomie molekularnym.

Wyniki przedstawione w rozprawie zostaly opublikowane w pracach [11]
oraz [12]. Inne wyniki dotyczace naszego modelu sprezynowego, ale nie

opisane w rozprawie, zostaly opublikowane w [13].

SELOWA KLUCZOWE: systemy sprezynowe, systemy uczace sie, konform-

acje biatek

Chapter 1

Introduction

1.1 Motivation

Spring systems are widely used for modelling properties of microscopic and
macroscopic objects. They are applied to emulate for example disordered me-
dia in material sciences [32], elastic properties of physical structures [15, 20],
system designs in architectural sciences [21], and in many other contexts.
Moreover, the methodology of spring systems can also be regarded as a par-
ticular instance of finite element methods for partial differential equations,
see again [15]. Elastic network models with spring systems are used to explore
dynamics of proteins [4, 14].

In many mentioned above problems, numerically simulated spring systems
help us to find an answer to a question how a given object behaves under
the influence of factors coming from the environment. For example, they
illustrate how a solid distorts or cracks under the influence of external forces
or how positions of atoms of a microscopic system change as a result of
heating or cooling [16].

The aim of our work is to apply a reverse methodology. According to our

knowledge, this is a novel approach. Namely, our goal is to automatically

11

12 CHAPTER 1. INTRODUCTION

construct a system which behaves in a predesigned way. In other words,
instead of checking how a given manually created spring system distorts, our
method is employed to construct from scratch a spring system with required
elastic properties.

Spring structures are described by rigid graphs [6, 7, 29|, usually em-
bedded in a three-dimensional space. Our approach is strongly related to
automated design problems because our spring systems are subject to the
usual rules of real-world physics. Additionally, the output of our mathem-
atical model can always be directly transformed into a hardware making
precisely the same tasks as computer systems.

We apply our model to find spring systems with structures and dynamics
correlated with proteins. We compare physical properties of these biological
objects and their artificial counterparts found by our method. In particu-
lar, dynamics of harmonic springs approximate interactions between pairs of
particles. Our approach refers to the elastic network model (ENM), which
is commonly used in bioinformatics (see again |4, 14|). In both models, the
motion of nodes is defined by harmonic springs. In ENM all particles moves
with the harmonic motion. In our method this motion is over-damped, and
additionally the positions of some nodes are externally controlled. In ENM
two nodes are connected if distance between them is less than the value of a
model parameter. In our method any pair of nodes can be connected. It is

only required to represent spring systems by rigid graphs.

1.2 Research methodology

In our dissertation, we adopt algorithmical and simulational methodologies.
In order to fully validate our models, numerical simulations and analyses of
data were performed. The most important algorithmical parts of our math-

ematical model are based on the gradient descent scheme. It is applied to

1.3. THESIS STRUCTURE 13

compute mechanical reactions of a given system to external forces. We also
take advantage of this numerical procedure to modify parameters of the sys-
tem to obtain predesigned mechanical behaviour, defined by the set of its
training examples. Application of the gradient descent algorithm exhibits
many features common with classical methods of supervised learning of ar-
tificial neural networks (e.g. backpropagation).

The simulation software is implemented in C++- language. To accomplish
the objectives of the dissertation, it was necessary to make multiple tests for
various input data. Therefore, we performed our simulations on a machine
with a high computing power. In order to analyse numerical results and
render plots, R package was used. Graphs and neural networks in a two-
dimension space were drawn in Inkscape graphics software. Graphs in a

three-dimensional space were rendered in POV-Ray software.

1.3 Thesis structure

The dissertation is organised as follows.

In Chapter 2, we provide a physical theory which is the background of the
spring system model. Next, we define a problem of finding a structure (values
of its rest lengths and elastic constants) with given mechanical behaviour,
and we build a training algorithm solving it. We also propose a stochastic
algorithm generating topology of a spring structure, which can be used to
test the learning ability of the spring networks. The chapter is complemented
by a description of the tools whose functions are to preserve and examine the
resilience of adapted systems to noisy external stimuli.

In Chapter 3, we apply our mathematical framework described in this
dissertation to create elastic structures which mimic mechanical behaviour
of proteins. We evaluate the obtained results. Finally, we prove that our

method is able to find structures with physical properties of real biological

14 CHAPTER 1. INTRODUCTION

objects only getting as an input their three-dimensional configurations.

In Chapter 4, a numerical analysis of the training algorithm is discussed.
We prove justness of applied methods and select factors, which determine
quality of the found solutions.

Finally, we summarise our results in Chapter 5, and we point out potential
aims of the further research.

Technical remarks about rigid graph theory, pseudocodes of applied al-
gorithms, and backpropagation algorithm are outlined in A, B, C Appendix

sections, respectively.

1.4 Main dissertation results

The main results of this dissertation is a parametric algorithm learning
mechanical behaviour (see Subsection 2.3.2). This algorithm for a graph
G = (V,€) embedded in a 3-dimension space finds parameters k[e] (elastic
constants) and {y[e] (equilibrium lengths) e € £, so that after pushing control
nodes into predefined positions, observed nodes in the equilibrium state move
as close as possible to the desired control locations. To find parameters, for
which the structure G maps mechanical behaviour, we define function ®®
punishing for distance between the obtained and target positions of observed
nodes (see the equation 2.16 for ®®) exact formula). Next, until ®® stops
to decrease, we modify parameters kle] and {y[e] according to the following

gradient descent step:

1. set kle] = k[e] — pgi’[(;]) , e € £, where p is a small learning constant,

2. set lole] = Lole] — p2e, e € €.

We can define any number of desired reactions of observed nodes on dislo-
cations of control nodes. Each of them is called a training example. Then,

the gradient descent step is made cyclically on subsequent examples many

1.4. MAIN DISSERTATION RESULTS 15

times. In Section 4.5 we show how the number of training examples affects
the quality of the spring system adaptation.

The remaining results of this dissertation are two algorithms described
for the spring system model (see again 2) and an exemplary application of

our methodology for proteins (see Chapter 3):

e The relaxation algorithm which finds energetically stable configurations

of spring systems (see Subsection 2.2.2).

e The stochastic algorithm generating graph topology for given mechan-

ical behaviour (see Section 2.4).

e The parametric learning and relaxation algorithms were applied to map
real-world movements of proteins onto spring systems (see Chapter 3).
Their applications to real-world protein problems show flexibility of our

spring system model in various areas of science.

16

CHAPTER 1.

INTRODUCTION

Chapter 2

Main aspects of a spring system

model

We begin with a definition of a spring system model and a description of
its dynamics. Physical basis for this aspects is the theory of Newton law of
motion, which is presented in parallel. Next we specify a problem of desired
mechanical behaviour ascribed to a spring system. Space of solutions for this
question is explored by a parametric learning algorithm, which is the most
vital component of this dissertation. Then we present an algorithm which
can be used to build a structure for a spring system. Finally, we show how
to introduce a noise to the algorithm to make its output more resilient to

external factors.

2.1 Newtonian dynamics

In this section, we provide basic notions present in newtonian dynamics, in
particular a harmonic (damped) motion of one particle.
Let us assume that we are given particles v and v connected by a harmonic

spring. Furthermore, the position of u is kept fixed in the origin of the

17

18 CHAPTER 2. SPRING SYSTEM MODEL

Euclidean space. Then, x(t) for v is equal to the length of the spring in time
t, and x(is equal to the distance to which the length of the spring is brought
back by the restoring forces interacting between u and v.

Let F denote the force acting upon the particle. The second law of
dynamics states that the acceleration of a body is proportional to the force
F'" acting upon it: ,

d;gt) - % (2.1)

where m denotes the mass of the object. For simplification, we assume that

m is equal to 1. In our model the force is the sum of two forces:
F= Frestoring + Ffriction- (22)

The force Fesioring depends linearly on displacement x(t) — zo, where x

is a point for which Fjcsoring is equal to 0. So:
Frestoring = —h- (ZE(t) - .I'()), (23>

where h is a positive constant.
The second component of I is the friction force Ffyiction, which is always

against the direction of the motion and is proportional to the velocity of the

particle:
dx(t)
F riction — T M °) 2.4
where y is a positive constant.
Substituting equations 2.3 and 2.4 to 2.2 we get:
dz(t
F=—h-(z(t)—xo) — p- d(t) (2.5)

Next, substituting the obtained equation to 2.1 we get the following equation

of the motion:

(2.6)

2.2. SPRING SYSTEM MODEL AND ITS DYNAMICS 19

In this consideration, a very high friction is assumed, what is equivalent to
a large value of the constant u. After dividing both sides of the equation by

[t we obtain:
1 d*z(t) h dxz(t)
; dt? ——;'($(t)—l‘0)— dt

For a large value of u the left side of the equation is small, and in our

(2.7)

approximation we set it to 0. Simultaneously, we assume that A is large
enough to keep the restoring force non-zero. Now, the form of the equation

of the motion can be presented as over-damped harmonic motion:

dx(t
—() = —k- (z(t) — x0), (2.8)
dt
where £ is equal to % Potential energy of the particle in the position x is

defined by Hamiltonian:
H(z) == k- (2(t) — 20)% (2.9)

Equations 2.8 and 2.9 can be written as follows:
de(t) dH(x)
dt dv

This equation defines gradient descent dynamics and it moves the particle to

(2.10)
the local equilibrium z(t) = z (in this case also global equilibrium).

2.2 Spring system model and its dynamics

In this section, we present a theoretical model of a spring system [11]. Mech-
anical behaviour of spring systems is derived from dynamics of a set of in-
teracting particles. We assume that there are many particles, embedded in
a 3-dimensional space and interacting each other by spring forces. Then, we
represent this system of the particles by the nodes V of the graph G and
interactions between them by the edges V of the graph G. Whenever two

nodes u and v are connected by an edge e € £, we write u ~ v.

20 CHAPTER 2. SPRING SYSTEM MODEL

Definition 2.2.1. A spring system is an undirected graph G = (V, E) with
a finite vertex/node set V and an edge/spring set E C V x V. The system
1s embedded in a 3-dimensional space, thus each vertex is a point in the
Euclidean space v € R®. The model can be extended to any d-dimensional

space.

The edge e has an actual length which is the Fuclidean distance between
vertices u and v and is denoted by f[e]. Furthermore, with each edge e =
{u,v} € &€, u,v € V we associate two parameters: an equilibrium (rest)
length {yle] and a spring constant kle].

The spring constant kle] € R, is the parameter determining the spring e
elastic properties.

The equilibrium (rest) length {yle] € R, is the parameter determining
the distance, to which the length ¢[e] is brought back by the restoring forces
interacting between u and v (e = {u,v}). The restoring force of e acting on
the node v (analogously on the node u) is equivalent to 2.8. If ([e] is not
equal to fye], we say that the spring is perturbed away from the equilibrium
length.

We reformulate 2.8 and we obtain a net force of all springs attached to

each node v € V. The sum of all elastic forces acting upon the node v is:

Fy= > kle](fe] = Lole]) e[_e] . (2.11)

e=u~v

By a configuration Ty = ((Z,)sey) € R¥M of a set V we call a vector of
locations of all nodes v € V.
The Hamultonian function of a whole spring system for a configuration
Zy is given by the formula:
Zk; e] — lole])? . (2.12)
2
Such definition of the energy function of a body system is used in [6] and [7].

In this dissertation, we focus on a locally asymptotically stable equilibrium of

2.2. SPRING SYSTEM MODEL AND ITS DYNAMICS 21

the system, that is on a configuration to which the system is pushed by 2.12,
after being slightly disturbed from it. Later, in this paragraph we describe
how to provide a spring system whose all local equilibria are asymptotically
stable. To determine a local minimum we let the spring system evolve in
time according to the standard gradient descent dynamics as it is defined by
the following equation with the initial condition:

47y = —VH(Ty)

(2.13)
) = Ty(to)

By G[z),] we denote the equilibrium configuration reached by our gradient
descent evolution initiated at Z%, and the process of approaching G[z%)] is
called relaxation.

We want the configuration G[z%] to be locally asymptotically stable, in
order to remove erratic movements of the system during numeric simulations
of its relaxation. We distinguish two reasons which cause the lack of that
asymptotic stability of equilibria, and we introduce special constraints in
order to remove this setback.

First, the lack of the asymptotic stability of equilibria is caused by the
fact that the Hamiltonian (2.12) is isometry-invariant. So, the local minima
G[z)] also persist for isometric transformations of the spring system (rota-
tions and translations of all nodes simultaneously), see Appendix A.4. In the
sequel, this property is removed by introducing special constraints on con-
figurations. Namely, we shall often freeze positions of certain collections of
nodes in V. Some of those frozen nodes are interpreted as control nodes with
positions set by external intervention, such as user interaction. Other nodes
will be immobilised to reduce the number of degrees of freedom enjoyed by
the system. The manner of partition of nodes V and influence of this division
on the system dynamics, is thoroughly discussed in next subsection.

Second, the set of continuous lengths preserving graph motions can be

22 CHAPTER 2. SPRING SYSTEM MODEL

larger than the set of isometric motions. By definition this is equivalent to
having the graph G non-rigid. In order to rule out drawbacks arising from
this circumstance, we explicitly require G to be rigid. We say that a graph is
rigid if it is impossible to change distances between two nodes in a continuous

way, without modification of the lengths of the edges, see Appendix A.

2.2.1 Partition of the nodes

In our model all nodes V are divided into frozen and mowvable ones. Positions
of frozem nodes Viozen are considered to be constraints of the Hamiltonian
function (2.12), and positions of movable nodes are variables for which a
minimum of the energy is sought. In terms of our basic dynamics (2.13),
the introduced partition of vertices, simply means taking the derivative with
respect to movable nodes only. In terms of 2.11 we only move vertices which

are not declared frozen. The set Viozen 1S divided into subsets:

1. A set Veon of control nodes. These are nodes whose positions are de-
termined by external intervention. As a result of their dislocation,

dynamics (2.13) changes positions of movable nodes.

2. A set Viyeq Oof tmmobilised nodes, whose positions are kept fixed in the

course of the evolution of the system.
The set Viovable is divided into subsets:

1. A set Vs of observed nodes, which after movement of the control nodes
should be dragged by the dynamics into desirable positions. Their

positions can be read by an external mechanism.

2. A set V, of auxiliary nodes. These nodes ensure that the graph has a
structure sufficiently rich in order to efficiently solve problems to which

it is applied.

2.2. SPRING SYSTEM MODEL AND ITS DYNAMICS 23

Since only the movable nodes follow the dynamics (2.13), it allows us

to rewrite the notation G[z%,] to the form Gz},

movable

; Ty, |. The obtained
form denotes the equilibrium configuration of movable nodes reached by the

gradient descent evolution initiated at f?,movabe for the given positions of

1
frozen nodes. Furthermore, because immobilised nodes Vg,.q are always in
the same positions and only control nodes V.., can be dislocated by external
forces, it is convenient for us to hide locations of immobilised nodes and
distinguish locations of control nodes in the notation GG. Eventually, we use

; Ty,..] instead of G[z¥, S TVhosen] 88 Viixed TeIains

movable’

annotation G[zY,

movable

exactly the same.
We require that the set of frozen nodes Viouen is rich enough to re-
duce the number of degrees of freedom enjoyed by the rigid system during

the process of its relaxation and uniquely determines the local equilibrium
G|z5,

movable

; Ty, |- In other words, we want to prevent the system from isomet-
ric transformations i.e. rotations, translations or combinations both of them.
In order to obtain that, for spring system in a three-dimensional space, at
least 3 noncollinear nodes are required to be frozen (|Viogen| > 3), see Ap-
pendix section A.4. Fortunately, the set of randomly selected nodes that

violates this condition has a Lebesgue measure equal to 0.

2.2.2 Relaxation

Having discussed the mathematical theory, we can now rephrase it as a spring
relaxation algorithm.

Input of this procedure is defined as the graph G and constraints for positions
of control nodes 7y, .

Output of the algorithm is defined as a stable equilibrium G|z}, S Ty s

movable ’

to which the system is forced by the dynamics as described in 2.12.

We say that a node is in an equilibrium state or stabilised if the absolute

24 CHAPTER 2. SPRING SYSTEM MODEL

value of each coordinate of the net force acting on it is smaller than the value
of a predefined positive small constant. In fact, the equilibrium state is only
approximated since even in the real-world dynamics the relaxation process
takes infinite time.

The algorithm of the relaxation procedure goes as follows:

e We stabilise perturbed nodes in a sequential way. We distinguish three
types of disturbances which push nodes away from their equilibrium
states (they are described in 2.3.4). As a result of each of them, proper
movable nodes v € Vyovanle are flagged as non-stabilised and pushed
into First In First Out queue. Next, the nodes are popped out from

the queue and are dislocated as it is described in the point below.

e Initially, for a given node v we calculate the net force F;, acting on it.
Next, v is moved in the direction of F, multiplied by a small positive

constant step size:
Ty, =T, + step_size - F,. (2.14)

We repeat these two steps for the node until the node v is in the local
equilibrium state or it has been dislocated maximal, acceptable times
in a row. If the second condition is satisfied and the first one not, then
the node is still considered as non-stabilised and again pushed into the

queue.

e If in the previous step, the node was dislocated more than once in
a row, then all its stabilised neighbours are flagged as non-stabilised
(pushed into the queue). So, the previous step for each vertex is usually

made many times.

e Continue the restabilisation until we obtain the local equilibrium of the

system (the queue is empty).

2.3. SYSTEM ADAPTATION FOR MECHANICAL BEHAVIOUR 25

The numerical analysis of the relaxation procedure is given in Subsection
4.3. The pseudocode of the procedure and its technical details are described
in Appendix section B.1.

2.3 System adaptation for mechanical behaviour

Having introduced the spring system model and its dynamics in the context

of various types of vertices, we can define our main objective (see 2.3.1).

2.3.1 Goal

The principal task of this dissertation is to find physical properties of springs
& for arigid graph G = (V, £), such that G has desired mechanical behaviour.
More precisely, for a given in advance displacement of control nodes of the
graph, the spring system dynamics moves observed nodes in the desired pos-
itions. Such mechanical dependencies are predefined. The searched solution
(physical properties of springs £) must support all the control displacements.
Input for the stated problem is given by a graph G = (V, &) along with a
set (BN of training examples. One training example defines one snap-
shot of the desired behaviour of the spring system. Each training example

E0 — (gggon, g(i)) consists of:

Vobs

1. control part gj](jc)on, which specifies locations of control nodes,

2. observed part ggjbs, which specifies locations of observed nodes.

Output of the problem consists of parameters kle] and {yle], e € £ and

= (%)

equilibria G[z9), ; y](jcon} fori € {1,..., N} such that positions of observed

movable
vertices in the returned equilibria are as close as possible to the locations

= (%)
yvobs :

26 CHAPTER 2. SPRING SYSTEM MODEL

We define the mean squared error function:

® = {(kle, oleece] = 1 D00, (2.15)

where:

0 = O [(Kkle], lole])ece]

1

B = LS (s Gl L (216)

V€ Vobs
Now, our objective is to modify values of parameters k[e] and ¢[e], so
that the value of the error function ® is minimised. The adaptation of the

spring parameters is made by a parametric learning algorithm.

2.3.2 Parametric learning algorithm

We achieve the goal by applying a parametric learning algorithm, which is
the main results of the dissertation.

The algorithm, designed by us, teaches the spring system to mimic defined
in advance mechanical behaviour by making updates of local parameters in

two nested loops.

1. The external loop, which is repeated until the error ® reaches a satis-

factory value or it stops to improve. Each such run is called an epoch.

2. The internal loop during which, sequentially, for each training example
E® i€ {1,...,N} a gradient descent step is made in order to min-
imise @@ (see 2.16). In this loop, we call the subprocedure described

below.

Input of a subprocedure which adapts spring parameters to a given training

example E@ is defined by the graph G = (V, &) and the training example

2.3. SYSTEM ADAPTATION FOR MECHANICAL BEHAVIOUR 27

E®_ At the beginning of the first run of this subprocedure, the configuration
Ty is determined by data passed to the algorithm. At the beginning of each
remaining run, nodes have locations determined by an equilibrium configur-
ation obtained at the end of the previous run of the subprocedure.

Output is a set of modified parameters k[e] and ¢[e] for e € £, and equilib-
ria G[z9, ngjon] minimising ®@ for i € {1,..., N}.

Subprocedure which adapts spring parameters to the training example £

is as follows:

1. Pushing control nodes of the network to their positions in the
ith training example.
Set the positions of control nodes as follows 7y, = ygjon. The new loc-
ations of control nodes are constant until the end of this subprocedure,
which adapts the system to the ' training example. Since we dislo-
cated control nodes, the system is not in an equilibrium point. So, we

let the system evolve to an equilibrium state G[z ; Ty, |, where

movable
=0

y are current positions of movable nodes.
movable

2. Saving the current configuration of the network.

The configuration G [:Z'?,movable; Ty,], got in the previous step, and cur-
rent values of parameters p € (J..o{kle] U {ole]}, are initial conditions
for the remaining steps of this subprocedure. For the needs of the fur-
ther calculations, we save the value of the error function ®® (see 2.16)

for the local minimum G|[z9, STy,

movable ’

3. Estimation of partial derivatives of function ®) with respect

to parameters p € (J.c-{k[e] U £ole]}.

Next, we make iteration throughout the parameters p € |J,.o{k[e] U

ole]}, in order to estimate partial derivatives of function ®) with

28

CHAPTER 2. SPRING SYSTEM MODEL

(@) (i)
respect to p (% and g%[e],

constraints as stored in the previous step.

e € £). Each iteration we start with the

The partial derivative of function ®¥ with respect to p is approximated
with application of the following formula:
00 dO[(p+ Ap)] — @V[(p)]

o ~ Ap . (2.17)

Notice that the value of ®®[(p)] is equal to the value ®@ saved in the
previous step, and for each p, in order to calculate ®@[(p + Ap)], the

relaxation procedure has to be run.

The pseudocode of the algorithm estimating partial derivatives can be

found in Appendix section B.2.

. Parameters update about the value of their gradient.

It is done by moving the parameters in the direction opposite to the
gradient approximation:
(1)
(a) Set kle] = kle] — p - ai_[e]’ eeé,

(b) Set lole] = bole] — p- 525, e € €.

By p > 0 we denote a learning rate. Since the spring parameters have
changed, the relaxation procedure has to be repeated. Next, the value
®0) is calculated again. If as a result of the gradient modification, the
value of the error function decreases or slightly increases, changes are

accepted, otherwise they are rejected.

After the adaptation of the spring system to a given training example
E®@ . the values of error functions for the remaining training examples
EU . j +# i sometimes may increase. But generally ® has decreasing

trend, as expected.

2.3. SYSTEM ADAPTATION FOR MECHANICAL BEHAVIOUR 29

The algorithm returns spring parameters for the graph G and equilibria
G [f%movable; gj)(jc)on] for i € {1,..., N} reached during the epoch for which the
spring system has the smallest value of the error function ®. The numer-
ical analysis of the parametric learning algorithm is given in Section 4.4.
The pseudocode of the procedure and its technical details are described in

Appendix section B.2.

2.3.3 Relation between parametric learning and back-

propagation algorithm

The specification of the problem solved by the parametric learning algorithm
is very alike to the one solved by the backpropagation algorithm. For each
algorithm, we are given a set of pairs of input and output vectors (in our case
we call them control and observed nodes). Pairs are called training examples.
Each algorithm operates on a structure represented by a graph. For BPA it
is called a neural network. The aim of each of them is to teach the graph
to map input vectors onto output vectors. By teaching, we mean adapting

parameters assigned to a structure.

The backpropagation algorithm iterates many times in order to adapt
neural network to the training examples. During each such time step the
collection of parameters is modified sequentially and only one time for each
training example. Such iteration is called an epoch. The adaptation of para-
meters to a given training example is obtained by taking a gradient descent
step C.2, which minimises values of the error function defined for the train-
ing examples. As we can see in previous subsection, the parametric learning

algorithm in the same way applies the gradient descent scheme.

30 CHAPTER 2. SPRING SYSTEM MODEL

2.3.4 Determining of non-stabilised nodes

As it was presented in Subsection 2.3.2; in the parametric learning algorithm
nodes of a stabilised spring system are perturbed away from an equilibrium
state in 3 different cases. Below, we list these cases along with a subset of

nodes flagged as disturbed from their equilibrium state.

e Case 1. All nodes as a result of moving all spring parameters in the

direction of the gradient of the error function ®.

e Case 2. Neighbours of control nodes as a result of transition of control

nodes positions from one training example locations to the second one.

e Case 3. Two nodes connected by a spring, whose parameter is modified
in order to calculate the partial derivative of the error function ® with

respect to the parameter.

2.4 Generating graph G topology for adaptive
spring systems

Here we present a procedure which generates graph topology on the basis
of the set of training examples. In previous section, we assumed that input
data for the parametric learning algorithm (a set of training examples and
a non-adapted spring system) are given in advance. Now, we would like to
find graph topology as well (see also [12]). The pseudocode of the procedure
generating simple set of training examples is described in Appendix section
B.6.

Input: Control and observed positions for the first training example
EML = (gj\(}zn,gj}(,t)b) Constants Cuuz, Cixed and Cedge > 3, which are the num-

ber of auxiliary nodes, number of immobilised nodes and a coefficient pro-

portional to an average node degree in the output graph G, respectively.

2.4. GENERATING GRAPH G TOPOLOGY FOR ADAPTIVE SPRING
SYSTEMS 31

Output: Topology of a graph G = (V,€) along with its configuration z)
(without initial values of spring parameters). Because G = (V, &) is rigid,
there exists a minimally rigid subgraph G’ = (V,&’) C G. Since G’ is minim-
ally rigid, there holds |£’| = 3|V| — 6 (removing an edge yields losing rigidity
by the graph), for more details see A.2.

Our algorithm is based on the Henneberg construction method, which is
an inductive approach that creates a minimally rigid graph in a d—dimensional
space (in our case 3). This inductive construction starts from the complete
graph with the 4-vertex clique K, at the first step, and then it adds a new
node with three edges linking it to the existing graph. For more details
concerning minimal rigidity and Henneberg constructions see A.3.

At least 3 noncollinear frozen nodes |Vyyozen| > 3 are required to prevent
the system from rotating, translating or a combination of them. Furthermore,
the more frozen nodes are present, the less edges are required to obtain a rigid
graph. For simplification we always connect a new node to the system with
at least 3 edges.

Algorithm:

1. Create a graph G = (V, &) with empty sets: Vi, Vixeds; Veon, Vobs and
E.

2. Randomly pick 4 nodes uniformly distributed in the ball with the radius
r € R, and centered at the point ¢ € R3. Add the random nodes to

the set V,, link each pair of these nodes with an edge.

3. Randomly pick cqus + Cixea — 4 nodes uniformly distributed in the same
ball. Sequentially add them to the set V, always requiring that a new

node is connected to c.qq4e nearest and already added to V, vertices.

4. FiX ¢fixeq nodes (move them from V, to Viyeq). If two immobilised nodes

are connected by a spring, remove it.

32 CHAPTER 2. SPRING SYSTEM MODEL

5. Sequentially add observed nodes to the set V,,s. The number of these
nodes is determined by the number of positions in the observed part

_(1 . .
y&,)b . Each new node is connected to c.q4e nearest nodes already exist-

ing in the set)V, and the respective location specified in gf}o)bs is assigned

to it.

6. Sequentially add control nodes to the set V.,,. The number of these
nodes is determined by the number of positions in the control part g&lﬂ
Each new node is connected to cqge nearest nodes in the set Viovable,
and the respective location specified in g](,l)on is assigned to it. In order
to eliminate the rigid motions of the graph G, it has to be satisfied

|Vﬁxed| = Cfixed + |Vcon| Z 3.

7. Return the obtained structure G = (V, &) (with its configuration z,

and without initial values of spring parameters).

The pseudocode of the procedure and its technical details are described

in Appendix section B.5.

2.5 Stability of equilibrium states

In our learning algorithm, the positions of control nodes between various
control parts are changed in a single discrete step, see 2.3.2. In real-world
objects, which can be implemented by spring systems, these transitions are
made in a different manner. The positions of their control nodes are changed
in a continuous way. Simulations of such movements are not applied in our
model during the learning process since it would last much longer.

On the other hand, an adapted spring system which was trained in the
discrete way can behave unexpectedly during real-world movements. In other
words, such system moving from E® to EV) in a continuous way (E® and

EU) are not necessarily sequential training examples), may trap behind a

2.5. STABILITY OF EQUILIBRIUM STATES 33

barrier of the high energy and end up in a various equilibrium than adapted
for EU). This can happen because during the stage of adjustment of spring
parameters there are not only found local equilibria minimising ®® for all
training examples, but also there are automatically selected tracks, which
are used by the system to switch between these configurations. If transitions
between control nodes of the adapted system are defined in a different manner
than during the learning phase, the adapted system might veer off these

tracks.

To minimise these setbacks, we introduce perturbations of positions of
control nodes during evolution of the parametric learning algorithm. Noise
is frequently added to training procedures to increase robustness of the fi-
nal system, and spring systems are not exception. The procedure of adding
a noise during the learning phase is given in next Subsection 2.5.1. The
algorithm evaluating this modification is described in Subsection 2.5.2. Nu-
merical tests exploring influence of the noise factor on dynamics of trained

systems are presented in Subsection 4.6.

2.5.1 Learning with a noise factor

A noise factor pushes movable nodes to locations to which they can be moved
by the dynamics if control nodes are dragged in an unexpected way. The
modification, if applied, is made at the beginning of each subprocedure de-
scribed in 2.3.2, which adapts the spring system to a given training example
E®_ During this modification positions of control nodes are perturbed and

the spring system is relaxed. As a result, after control nodes are set as follows

Ty, = ?j](jc)on (this is a regular step of the parametric learning algorithm), the

dynamics has to always drag movable nodes from very various positions.

Input is a graph G and control parts of training examples @‘(j) N

‘con /1=1"

Output is a stable equilibrium G[z%,

ol b 2
e .icvcon], where the constraint Ty,

34 CHAPTER 2. SPRING SYSTEM MODEL

is a random combination of the control parts (gl(jc)on)i]il‘

Algorithm of perturbation of control nodes positions is as follows:

1. For each control node v € V.., we calculate point m, € R?, which is the

weighted sum of all positions defined for a given node v in its control

parts (y_fji))fv:l. The applied vector of weights for a given control node
is picked randomly. It has N positive coordinates, whose values sum
to 1.

/
v

2. Then, for each control node v, we randomly pick point Z/, uniformly
distributed in the ball B(m,,noise radius), where noise radius is

the algorithm parameter. Next, we set z, = Z/,.

. 70 _ =
3. Finally, we set zy, =Ty .., and we let the system evolve to an

equilibrium state G[z9, 7,], which we return.

This optional modification in the parametric learning scheme is made
in the step 5 of the Algorithm 2 and its pseudocode is presented by the
Algorithm 6 in Appendix section B.

2.5.2 Exploration of the Hamiltonian profile

Here, we describe an algorithm which can be used to evaluate how the pres-
ence or lack of a noise factor during the learning process affects a trained
system. This algorithm simulates continuous changes of positions of control
nodes. Since we are confined by time and computer architecture, we emulate
them by taking small discrete steps which drift control nodes configuration
Zy,,, from g](jc)on, and near it to Ql(f;)On. After each such step the relaxation pro-
cess is run. Tracks of transition of control nodes can be defined by various
curves.

Input of this algorithm is an adapted spring system G, its training examples

(BN " and a set of equilibria for all (E®)Y | returned for the system G

2.5. STABILITY OF EQUILIBRIUM STATES 35

by the parametric learning algorithm (equilibria obtained by the dynamics
during the training epoch with the lowest error ®). These equilibria are de-
noted as (G;Qtem)fil.

Output returned by the algorithm is the value of the metric ¥, which meas-

ures distortion between the adapted equilibrium GY) and the equilibrium

patern

obtained as a result of a continuous transition from E® to EU).

Definition 2.5.1. By V is denoted the average distance between positions of
movable nodes in two equilibrium states reached by the dynamics for a given
graph G. Both equilibria are obtained by the relaxation procedure initiated
with the same constraint on control nodes locations Ty , and with various
initial conditions for locations of movable nodes: 7, and 1y, . Ifthe

ovable

value of the function is equal to 0, the compared equilibria are equal.

V(Glay, Weon)s GV, i Teon]) =

mo\nble

Z dlSt movablc VCO“] CH G I:jggmovablc Vcon]) (2 .]. 8)

Vinovabl
| movab e 'Uevmovablc

Algorithm:

1. We randomly choose two various training examples £® and EW. To

the configuration of the system z, we assign Gmtem

2. Next, for each control vertex v € V., we choose a curve connecting gjl(,i)
and @(,j). We propose two manners of defining these curves. The first
one and the simplest—by a straight line. The second way—a random
semicircle whose ends are attached to points g},(f) and gq(;j). Curves define
tracks along which nodes v € V.., move during the transition from £®
to £EU). The transition is made in L steps (L is a positive integer

parameter) during which each control vertex v € V.o, is moved along

36 CHAPTER 2. SPRING SYSTEM MODEL

the proper line or arc by % of the length of this path in the direction
of gjq(,j),

3. After each such small step, the system is relaxed. When control nodes

are in the positions gjg) gjlgiained'

con

, we denote the current equilibrium as G
@ ol

atern; chtained)s Which in an ideal

Finally, the algorithm returns ¥ (G

case is equal to 0.

The pseudocode of the scheme is given in Algorithm 7 in Appendix section
B.

2.6 Conclusions

In this chapter, we introduced the notion of the spring system model. We

defined algorithms for training and testing them:

e The relaxation algorithm 2.2.2.
e The parametric learning algorithm 2.3.2.
e The algorithm generating graph topology 2.4.

e The algorithm adding a noise factor during the learning process 2.5.1
and the algorithm which can be used to test robustness of a spring

system on the added noise 2.5.2.

Numerical tests of these methods are presented in Chapter 4.

Chapter 3
Protein model

Here we use our mathematical model discussed in Chapter 2 to construct
and analyse spring systems which behave like proteins. We are given a time
sequence of real-world configurations achieved by a protein during performing
its biological functions. Our first goal is to train the spring system, which
is described in Section 2.2, to mimic the given mechanical behaviour of the
protein. To achieve the aim we represent the residues of the protein by the set
of vertices of the spring system. Interactions between nearby residues of the
protein are modelled by harmonic springs. The spring system is trained to
move through the given sequence of configurations by our parametric learning
algorithm given in Subsection 2.3.2.

Our second goal is to check if spring parameters found by the parametric
learning algorithm have realistic values. For the trained relaxed system we
calculate the mean value of forces dependent on distance between two nodes.
We fit the obtained curve to the Lennard-Jones force. In this way we show
that the strength of its intermolecular interactions is coded in its reaction

path.

This chapter is organised as follows. Section 3.1 is a brief introduction to

biology of proteins. We describe there distinct aspects of structures of these

37

38 CHAPTER 3. PROTEIN MODEL

molecular objects and functions provided by them. In Section 3.2, we show
how we map a structure of a protein and its real-world configurations onto a
graph representing a spring system. Next, having the spring system trained,
in Section 3.3, we assess a quality of the obtained results. In Subsection 3.3.1,
we show how close the system is pushed to its training configurations, when
the positions of its control nodes are dragged through them. In Subsection
3.3.2, we assess if forces acting between nodes of the trained systems in their

stable equilibria have realistic values. We discuss the results in Section 3.4.

3.1 Introduction to biology of proteins

Proteins are large macromolecules which consist of amino acid residues. They

exist in all living organisms, where they serve many functions:

as antibodies they bind to viruses and bacteria to help protect the body,

e as enzymes they carry out DNA replication and most of chemical reac-

tions in cells,

e as messenger proteins they transmit signals to coordinate biological

processes between various cells, tissues, and organs,

e as structural proteins they are responsible for stiffness of biological

components.

Amino acids in proteins are aligned linearly in a sequence called a poly-
peptide (proteins can consist of more than one polypeptide but we do not
consider such cases in this work). There exists 22 types of amino acids.
Their order in the sequence is known as a primary structure. Alignment
of amino acids plays a crucial role in determining shapes of proteins in the
three-dimensional space. Locally, the primary structure implicates regularly

repeating constructions, among which the most common are alpha helices,

3.1. INTRODUCTION TO BIOLOGY OF PROTEINS 39

beta sheets, and turns. Alignment of local shapes in a sequence is called a
secondary structure. Three-dimensional arrangement of local constructions
is known as a tertiary structure. Such a global state and its flexible motions
define biological activities of the protein. Alternative structures of the same
protein are referred to as its conformations. Linked chains of amino acids
of proteins are created by ribosomes during translation processes. As a con-
sequence of interactions between amino acids, such sequences fold into stable
three-dimensional structures, which are called native conformations, they are
capable of performing various biological functions. Many proteins can fold
as a result of chemical reactions of their amino acids, others require help of
external molecular objects.

As a result of performing their functions, proteins tertiary structures can
be modified. Many proteins convert between their two various locally stable
states [31]. Such alternations of tertiary structures can be a consequence of
proteins interactions with other molecular objects. Enzymes, for example, act
as biological catalysts. Their bind to molecules called substrates and convert
them into other molecules known as products. The substrate is attached
to a region of a protein called an active pocket site. During this process,
the enzyme changes its conformation from open to closed since shape of the
active pocket site looks like it is being closed [36]. In turn, messenger proteins
generate signals mostly as a result of ligands binding.

Alternative three-dimensional configurations of proteins, observed with
the use of empirical methods, are described in the Protein Data Bank (PDB),
see |5] and url www.rcsb.org'. But servers like this one do not present trans-
itions between given conformations, since experimental methods are insuffi-
cient to explore them. Even X-ray diffraction, which is the most powerful
structural technique, provides only a single frozen picture from a conforma-

tional ensemble in terms of averaged configurations.

'Link access date 2021-May

40 CHAPTER 3. PROTEIN MODEL

Movements of tertiary structures are referred to as conformational changes
and corresponding pathways are called classical reaction paths. In the past
years, scientists refined numerical algorithms trying to determine interme-
diate conformations for two predefined, initial and final, configurations, see
[25], [27], |28], [35], and [40].

Molecular dynamics (MD) is the best known theoretical technique for re-
producing protein movements. It uses atomistic force-field and an explicit
representation of solvent [26]. But computations of movements of large mo-
lecular objects can be extremely expensive. Such problems can be tackled by
coarse-grained models, which use reduced representations of structures, see
[22] and [37]. These models, in spite of their simplicity, deliver very often
results of a surprising quality.

FElastic network model (ENM) is a specific implementation of a coarse-
grained approach, see [4]. In this method, positions of amino acids in pro-
teins are usually represented by locations of their a-carbon (C,) atoms. A
side chain is a group of atoms specific for each type of given amino acid.
The side chain is attached to the a-carbon. Interactions between C, atoms
are modelled by harmonic springs if the distance between them is less than
the value of a parameter cutoff for selected conformations. Forces acting
between remaining amino acids are negligible (they are not connected by
springs). Clearly, this is not a realistic approach, since in the microscopic
world physical forces decrease with a distance. Non-cutoff models based on

an exponentially decaying function are more precise, like the ones proposed
in [23] and [30].

3.2 Implementation of the spring system method

To obtain goals of this chapter we map a structure of a protein onto a system

of springs represented by a graph G = (V,), see Section 2.2. The set of

3.2. IMPLEMENTATION OF THE SPRING SYSTEM METHOD 41

vertices V consists of C, atoms of the protein. There is one simplification
in comparison to the classical spring system model. Here, only control and
observed nodes are used V = Vi on U Veps. In our simulations, |Veen| = 0.2+ V|
(|Vobs| = 0.8 -]V|) and nodes of V are split randomly into sets Veon, and Veps.

As an initial conformation of a given protein we choose its biologically
functional state, not bound with other molecular objects. It determines the
first training example £, The final state is the closed or/and ligand bound
form of the same protein. It determines the last training example E). The
conformations are downloaded from the PDB database. Configurations of
EW and EM) are aligned (rotated and translated) to minimise squared aver-
age distance between corresponding nodes. The remaining training examples
constitute a reaction path between two already given states of the protein.
These intermediates are calculated by algorithm GOdMD described in [35],
and whose functionality is freely available on the web server cited in the pa-
per. Moreover, an order of the intermediates in the training set is consistent
with their appearance during the transition process of the protein.

Two nodes are connected by a spring if distance between them is less than
the value of a parameter called cutoff at the initial or final training example.
In our consideration, cutoff = 13A (e.g. in [34] 8 —9A). Equilibrium lengths
lyle], e € £, are initiated by actual lengths of respective edges ([e] in the last
training example EM).

Parameters defining elastic properties of springs kle], e € &, before the
learning process are set up to be a constant value. Parameters k are measured
in ﬁ&? but for simplicity we treat them as unitless.

The spring system is trained to move along the reaction path of a protein
by our parametric learning algorithm given in Subsection 2.3.2. But in the
protein case, we modify the error function ®® (2.16) to adapt the system to

the " training example.

The original function ®® penalizes a deviation of observed nodes from

42 CHAPTER 3. PROTEIN MODEL

their positions in the i** training conformation.
The modified error function @S;)Odi riea additionally penalizes deviations of

all equilibrium lengths fy[e], e € &, from 3.8A%:

(I)fvil)dzfzed = @(z + Tel Z go - 3. 8

ec&

(0 1 st(@3D G0 g9 1)) +
cI)modified = W Z (dlSt(yz(;)a G[xV obs ! chon |g| Z 60 — 3. 8
obs Uevobs eef
(3.1)
where G[j%obs3gw(201,] is the equilibrium state of the spring system reached
upon setting control nodes 7y, , = g@on.

In the protein case we do not use a noise factor.

3.3 Results

The aim of this section is to evaluate properties of spring systems structured
and adapted to reshape like proteins. Each trained system should model in
the best way the whole transition path from the initial conformation to the
final one. We tested our model on 5 proteins. For each of them we made
10 training simulations with various nodes marked as control/observed ones.
In Subsection 3.3.1, we show how accurate is our model in reaching adapted
conformations. We also look at comparison between results of our method
and the GOdAMD method [35]. In Subsection 3.3.2, for the trained systems
in their stable equilibria, we plot the mean value of forces over the distance
between C, residues. We compare the obtained result to the Lennard-Jones
force. In Subsection 3.3.3 we show figures depicting spring systems for trained

Calmodulin Human peroxiredoxin protein.

2A- angstrom is a unit of length equal to 1070 m, value 3.8A is the physical equilib-

rium length between C, atoms.

3.3. RESULTS 43

3.3.1 Effectiveness of the approach

In this subsection, we show how does the parametric learning algorithm man-
age to learn mechanical behaviour of proteins. We examine how close trained
and relaxed spring systems near to their whole reaction paths. We measure it
by @ error (see Equation 2.15). We carry out comparison between results for

the final conformations (measured by ®")

, see Equation 2.16) and equivalent
GOdMD |35] results for 5 proteins. GOdAMD starts from the initial configur-
ation and generates a realistic reaction path targeting to the final one. The
errors between target final structures and approached ones by GOdMD are
measured by a root mean square deviation error RMSD and are given in
Supplementary Information for [35]. The value of RMSD is calculated over

the distance of all atoms of two compared structures z7, and z7):

RMSD(Z,, 7%) = \/ ﬁ > (dist(z,, z1))2. (3.2)
veEY

To unify GOdMD error with ®®¥) we transform RMSD into MSD form which
we define as follows:
MSD(&,, &) = W Z (dist(z,). (3.3)

veY

There is a small difference between MSD and ®®). The function ®W) is
calculated over the set V with exclusion of control nodes. This difference
is justified since positions of control nodes for spring systems are externally
controlled, and elements of the error function for v € V.., are always equal
to 0. Results of the methods are compared in Table 3.1.

Let us emphasise that intermediate conformations generated by GOdMD
to train spring systems does not improve quality of the error @), A spring
system adapted only to the initial and final conformations should have lower

error ®V) than the same system trained to map a transition path with in-

44 CHAPTER 3. PROTEIN MODEL

termediates. So, without loss of generality we can compare results of both
methods for the last training example.

In the following columns are:
e protein — the name of the protein,

e initial state £()— the PDB code of an initial conformation, the struc-

ture is mapped onto the first training example of the spring system,

e final state E®Y) — the PDB code of an final conformation, the structure

is mapped onto the last training example of the spring system,
e number of C,, — the number of C,, atoms (amino acids) in the protein,

e M SDboundary __ the deviation between initial and final conformations
measured by MSD,

o MSDGOIMD __ the deviation between the final state developed by
GOdMD and the real target conformation of the reaction path, see

[35], it is calculated throughout all nodes,
o &) — &W) averaged over results for 10 simulations for a given protein
e & — ® averaged over results for 10 simulations for a given protein

e N — the number of conformations in the whole transition path.

In Table 3.1. results of our and the GOdMD methods for the final conform-

ation are depicted in red and green colour, respectively.

13 /§
R 8 /Ky >
S 2

S A

=~
O
R) 0
3 e 5
> "y &
Qo @ Q
£ N <
R T g
s S
3 <
g

Calmodulin Human B ,
]] lefd lcfe 148 5.33 0.04 0.57 0.60 13
peroxiredoxin

Guanylate Kinase lex6 lex7 186 13.32 0.08 0.32 0.30 6
Adenylate Kinase

)) 2rhb 2rgx 202 35.00 0.15 0.45 0.45 14
from Aquifex Aeolicus

(LAO) binding

protein

2lao 11st 238 22.75 0.07 0.28 0.24 7

Oligopeptide-binding
Irkm 2rkm 517 9.61 0.15 0.21 0.07 13

protein

Table 3.1: Comparison of the results of the GOdMD method and the parametric learning algorithm for 5

proteins. For the final conformations, the results of the methods are denoted in green and in red, respectively.

SIINSHY ‘¢'¢

v

46 CHAPTER 3. PROTEIN MODEL

Our algorithm adapts spring systems with a high precision to the whole
reaction paths. The GOdMD method for the last conformations gets a little
better results than the parametric learning algorithm. Although we consider
our results to be satisfying, since the goal of our method is not only to map

conformations but also code them in spring structures.

3.3.2 Physical properties of protein like systems

In this subsection, we analyse values of forces acting between residues of ad-
apted systems in stable configurations. Initially, before the learning process,
these values are nothing like in real physical objects. For the last training
example they are equal to 0 since for each spring e € &, to its equilibrium
length ¢y[e], we assign its actual length ¢[e] in the final conformation, see 3.2
for the initial conditions. After the learning process, the curve which plots
the mean value of forces dependent on the spring length gets a realistic shape.
Here, we compare it to the shape of the same interaction described by the
Lennard-Jones theoretical model. We focus on force since it drives dynamics
during the relaxation processes. Its value also combines all elements searched
by the parametric learning algorithm: an elastic constant, equilibrium length
and system configuration.

The classic Lennard-Jones model approximates potential between a pair

of molecules or atoms. Its the most common expression is:

et (5" ()] oa

where ¢ = dist(z,,Z,) is the inter-atomic distance between two atoms v
and u, n usually is equal to 6, o is the distance at which potential for each
o 2n
pair of atoms is zero, and € is the depth of the potential well. Term (—)
o\" "
describes repulsive interactions. Term (—) represents attractive factors.
r

The Lennard-Jones potential is depicted in blue in Figure 3.1.

3.3. RESULTS A7

— ¥

-20 —‘}5 -10

I T T T T I T T T T T T T T I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.1: The Lennard-Jones potential and force for ¢ = 20, n = 6, and
o =3.8.

From the Lennard-Jones potential we derived a formula on distance de-

pendent force:

AV (0) o o™
LJF:T:4€ [—2n<€2n+1>+n(€n+l)}. (35)

The plot for this formula is drawn in red in Figure 3.1.

To depict the mean value of forces dependent on distance between two
nodes for adapted systems, we bucketing springs for each trained protein.
This is a discretisation data method. Springs e € £ are grouped into bins on
the basis of their actual lengths £[e] in the final stable configuration E™).

To achieve the aim we make the following steps:

e For each protein to the same bin we put springs which satisfy (le] €
[0.25-7,0.25- (i + 1)), where i € N. Values ¢ = 0.25 - ¢ are labels of the

bins.

48 CHAPTER 3. PROTEIN MODEL

e Next, for each bin for a given protein p we calculate the mean value
of elastic constants k£ and equilibrium lengths ¢,. We denote them by
kr(¢") and 65(¢").

e We calculate the mean value of kP(¢') and ¢ (¢') for all training proteins,
and we denote them by k(¢') and ¢o(¢').

e Finally, for each bin we calculate the mean value of forces:

F(l) = k(@) (€' = o (L)) (3.6)

We search parameters of the Lennard-Jones force which minimises RMSD
(see Equation 3.2) between corresponding points (¢, F(¢')) and (¢, LJp(")).
The found values of the parameters are n = 0.7, 0 = 1.88, and € = 139.67.
RMSD for the stated problem is equal to 0.84. During solving this optimisa-

tion problem we remove outliers from the set of averaged forces F'(¢'). The

plot depicting F'(¢) is drawn in Figure 3.2 along with the Lennard-Jones

force fitted to it. In the plot we distinguish outliers and points F'(¢') which

were used to find the parameters minimising the value of the function RMSD.

The slide in interpolation for ¢/ = 13, which is equal to the cutoff para-
meter, can be explained by decrement of the sample size in bins with labels
¢ > 13.

Matching both curves, confirms that intermolecular interactions are coded
in folding paths of proteins. Of course, the Lennard-Jones force with n = 6
describes better real physical objects, however, taking into account simplicity

of our model we find this result very satisfying.

3.3. RESULTS 49

X —

F(¢
X F(¢) outliers
—— Lennard-Jones F
T T T T T T T T T T T T T T T T T

9 10 11 12 13 14 15 16 17 18
CIA]

-5

N
w
N
o
»
~
[ee]

Figure 3.2: The averaged forces F'(¢') are plotted in blue and green for points
used to solve the optimisation problem and outliers, respectively. In red, the

Lennard-Jones force fitted to the experimental data.

3.3.3 Graphical representation of trained protein

In Figures 3.3 and 3.4 we depict trained spring systems for the initial and
final conformations for Calmodulin Human peroxiredoxin protein (148 C,

residues/vertices).

Figure 3.3: An equilibrium trained for protein lcfd, cuttof = 11A, in red positions of nodes, stars represent
control nodes, balls represent observed nodes and green cones indicate into their desired positions. Edges
change colour from grey to black as the attracting force increases and from dark yellow to bright yellow as

the repulsive force increases.

0¢

THAOW NIHLOYd ¢ YHLdVH))

Figure 3.4: An equilibrium trained for protein lcfe, cuttof = 11A, in red positions of nodes, stars represent
control nodes, balls represent observed nodes and green cones indicate into their desired positions. Edges

change colour from grey to black as the attracting force increases and from dark yellow to bright yellow as

the repulsive force increases.

SIINSHAY '¢€°¢

16

52 CHAPTER 3. PROTEIN MODEL

3.4 Conclusions

In this chapter, we have proved that our method from 3-dimensional struc-
tural data is able to derive dynamics approximating behaviour of real micro-
objects. In Subsection 3.3.1, we have shown that our parametric algorithm
is able to store transition paths of proteins in structures of spring networks.
In Subsection 3.3.2, we have plotted the mean value of forces as a function of
the distance between C, residues for trained systems in their stable equilib-
ria. We have shown that the obtained curve fits well to the Lennard-Jones

force.

Chapter 4
Numerical results

In this chapter, we explore numerical properties of the parametric learning
and generating graph topology algorithms. We mainly measure how their
various parameters impact on the value of the error function ® (see 2.3.1)
calculated for adapted systems. We also study time consumed by the learn-
ing process. It is not surprising that these two magnitudes are negatively
correlated. We try to find the trade-off between these two features in order
to get well-adapted systems in reasonable time.

In Section 4.1, we specify prerequisites for numerical tests conducted in
this chapter.

In Section 4.2, we show how to automatically sample a problem, which
can be an exemplary input of the parametric learning algorithm and can be
applied to explore its properties.

In Section 4.3, we confirm justness of usage of the relaxation subproced-
ure. This scheme is extremely vital since its executions consume almost 100%
of the whole learning processes.

In Section 4.4, we carry tests which confirm effectiveness of the gradient
descent scheme for finding parameters of a spring system structure.

In Section 4.5, we show how the adaptation quality of a spring system,

53

54 CHAPTER 4. NUMERICAL RESULTS

depends on the topology of its graph G.

In Section 4.6, we test resilience of an adapted system to local equilibria
which were not developed during the learning phase of the system. It ap-
pears that the topology of the graph and the noise factor, applied during the

adaptation process, are significant for stability of the system.

4.1 Prerequisites

For all numerical simulations presented in this chapter, we construct syn-
thetic training problems in an automatic way, and next we train the returned
spring systems with application of the parametric learning algorithm.

Unless stated otherwise, for each test we apply the same values of para-
meters of the learning algorithm and its subprocedures. If the value of a
control variable is common for all test simulations, we give it in Appendix
chapter B. Otherwise, it is pinpointed in respective tests prerequisites. All
values of parameters and results presented in this chapter and Appendix B
are unitless. Parameters ¢ and ¢, are measured in magnitudes of displace-
ment, and k in mass per a squared unit of time. For notational convenience,
we omit the units.

Time consumed by simulations is measured in seconds. A processor used
to make simulations was Intel(R) Xeon(R) CPU E5-2690 2.90GHz.

4.2 Construction of a synthetic learning prob-

lem

For real-word applications of our spring system model, we assume that a
graph G and training examples are given in advance or are easy to derived.

For example, for a problem of modeling of proteins, both components can be

4.2. CONSTRUCTION OF A SYNTHETIC LEARNING PROBLEM 55

acquired from the molecular structure of a given protein, see Section 3.2.

In this section, we put forward the process of automatic creation of the
whole input data for the parametric learning algorithm, in the case they are
no longer provided.

The process of automatic creation of a synthetic problem for the paramet-

ric learning algorithm we divide into three stages:
1. generation of a set of training examples,
2. definition of the topology of a graph G with its initial configuration,
3. setting initial values of spring parameters.

We have already handled the second case in Section 2.4. How to generate
a set of training examples and set initial values of springs parameters we put

forward respectively in 4.2.1 and 4.2.2.

4.2.1 Generation of a set of training examples

A procedure described in this subsection generates all locations of nodes
given in a set of training examples (EW)N | for a predefined |Veon|, |Vobs|,
and N training examples.

Initially, the procedure randomly pick control and observed parts for the
first training example from the surface of the 3d ball B(c,r), where ¢ € R?
is the center of the ball and r € R, is the radius of the ball. The sphere
of the ball is partitioned into two hemispheres. gj&ln are picked from one
hemisphere and 37\(,1) ~from the other one.

obs

Next, for the remaining training examples i € {2,..., N}:

e randomly pick a vector w® € R? and scale it to the length I) € R,
where 1) is also a random variable,) ~ 2/(0,6,), and 6, < r is a

constant of the procedure,

56 CHAPTER 4. NUMERICAL RESULTS

e next, for each vertex v € V., U Vus randomly pick a vector ¢ ~
(N(0,602), N(0,02), N(0,63)), where 0, < r is a constant of the proced-
ure and perform 35 = g + w® + 1.

The greater the constants ¢; and 6, are, the harder the training problem is.

4.2.2 Setting initial values of spring parameters

Having specified the topology of the graph G along with its configuration we
would like to set the initial values of its spring parameters.

For each e € &, the equilibrium length of a spring ¢yle] is set up to be
the actual length of this spring f[e]. As a result, the current configuration
of the graph is in the global equilibrium state, and equilibrium lengths are
determined by the initial configuration of the graph G constructed by the

algorithm generating graph topology. Moreover, since 7y, is equal to gf}cln,

and Ty, ,_ is equal to gjl(,lo)bs, we have ®(= 0. During the learning phase,
the perfect adaptation to the first training example is destroyed, hopefully
to obtain the low mean error for all training examples.

Elastic constants kle] for all springs e € £ initially have the same value.
In our computer simulation we apply value 40. If all elastic constants initially
have the same magnitude, like in our case, the initial value of the Hamiltonian
function depends linearly on this value. So, we can treat this value as a scaling
parameter, which has only influence on the numerical aspects of the learning

algorithm.

4.3 Relaxation procedure

In this section, we measure how the profile of the Hamiltonian function 2.12
changes during the process of nodes stabilisation, see the top figure in 4.1.

Simultaneously, we store the sum of values of the net forces acting on all

4.3. RELAXATION PROCEDURE 57

movable nodes:

vaovable = Z HFUH =

VEVmovable

= 301X KAl — tole) (4.1)

where ||| is the function that assigns to a vector in the Euclidean space R?

V€ Vmovable €=UV

its length.
A plot of values of F),

movable

algorithm is presented in the bottom figure in 4.1.

during following iterations of the relaxation

As we can see in Figure 4.1, during the relaxation process, function
Fy,

movable

asymptotically converges to 0. In the same time, the Hamiltonian

converges to its local minimum.

58 CHAPTER 4. NUMERICAL RESULTS

939000
|

a) The change of the

value of the Hamilto-

937000

nian function during

following iterations

Hamiltonian
935?00

of the relaxation

933000
|

algorithm.

931000
|

T T T T T
0 2000 4000 6000 8000 10000

relaxation iteration

2700
|

b) The change of the

o g value of Fy__ = dur-
-Q -

g ing following iterations
g of the relaxation al-
LL

900
|

gorithm.

T T T T T
0 2000 4000 6000 8000 10000

relaxation iteration

Figure 4.1: Dynamics of the relaxation procedure

4.4 Properties of parametric learning algorithm

In this section, we present main aspects of the dynamics of the parametric
learning algorithm (see Section 2.3). In Subsection 4.4.1, we show how the
error ¢ changes in sequential epochs of the learning process when the system
is adapted with and without noise. Next, in 4.4.2, we define a condition

which has to be satisfied to stop the learning process.

4.4. PROPERTIES OF PARAMETRIC LEARNING ALGORITHM 59

4.4.1 Dynamics of error ¢ during adaptation process

In this subsection, we show how the error function ® changes while the
learning algorithm is running. We expect that the trend of the function
decreases.

During the learning phase, the profile of the Hamiltonian 2.12 for each
given training example continuously changes. Let us denote the equilibrium
state G[z%, ¥

S gjvcon], which was calculated for the i'* training example at
the k' epoch of the parametric learning algorithm 2, as G [gj](;c)on]k During the
adaptation process, G [g](jzon]kﬂ

from G [gjl(,ic)on]k.

might be a minimum which has not evolved
It happens, when the movable nodes of the system were
driven to a configuration, which is separated from the minimum evolved from
G [gjggon]k by a potential barrier impassable for the gradient descent dynamics.
The system may in the forthcoming epochs return to the minimum that
evolved from G [gj](jc)on]k. If not, the parametric learning algorithm will evolve
successive minima (G [ggfon]k+2, G [yj)(;ic)on]k+37 G[@l()i)on]kH, ...) from G [g](jc)on]k“
and adjust spring parameters of the system to minimise ®@ for them. In
both cases, the value of ® temporarily increases, sometimes very significantly.

In Figures 4.2 and 4.3 we can see how the error ® changes during following
epochs of the learning process. During the learning process the value of the
error function ®, despite of a lot of oscillations, has a decreasing trend.
Even after rarely occurring large peaks, the spring system quickly returns
to already developed adaptation. A noise factor does not change noticeably
frequency of peaks of the error function. Tests results confirm justness of
application of the parametric learning algorithm to find the solution of a
mechanical behaviour problem. A global minimum of ® is unknown, so we

can not tell the result is a global test solution.

o
81 —without noise
=
o
83
o
N
o_
0 100 200 3?10 400 500
. number of epoc
84 —uwith noise 50 |
S
o
83
o
N
o_
0 100 200 3?10 400 500
. number of epoc
81 —uwith noise 100 |
<
o
83
o
N
o_
0 100 400 500

Figure 4.2: The value of the error function ® vs the number of epochs of the parametric learning algorithm.

200 300
number of epoc%

For each system | V| = 10, [Vixed| =2, [Veon| =7, [Vobs| = 10, ceqge =8, N = 3.

09

SITINSHY TVOIHHINAN 7 HHLAVH))

O]

20000 40000

P

20000 40000

O]

20000 40000

0

0

0

—without noise
0 100 200 3?10 400 500
number of epoc
—with noise 50 |
0 100 200 3?10 400 500
number of epoc
—with noise 100 |
0 100 400 500

200 300
number of epoc%

Figure 4.3: The value of the error function ® vs the number of epochs of the parametric learning algorithm.
For each system |Vi| = 50, [Vixed| =2, [Veon| =7, [Vobs| = 10, ceqge =8, N = 3.

INHIITHODTV DNINYVHT DIHLHINVYVd A0 SHITHHAOYd '§¥'¥

19

62 CHAPTER 4. NUMERICAL RESULTS

4.4.2 Stop condition

The parametric learning algorithm stops its execution, after a predefined
number of epochs executed in a row without adaptation improvement (without
decrease of the value of the error ®). Such maximal number of permitted,
sequential, and not boosting iterations is defined by a parameter epochs no.
In this subsection, we explore influence of epochs mno on time of learning
execution and the quality of adaptation.

To conduct tests we constructed spring systems G along with the set of 3
training examples as described in Section 4.2. Results of tests are depicted
in Figure 4.4.

As we see, the increase of the parameter epochs mno results in better
adaptation of trained systems, at the expense of time consumption. Initially,
the error ® decreases abruptly, while epochs no grows up, but with time it is
suppressed. In all our working examples we stop adaptation after 150 epochs
with non improving error ®. It does not give the best adaptation, but this
value is sufficient for testing numeric properties of the learning algorithm in

acceptable time.

4.4. PROPERTIES OF PARAMETRIC LEARNING ALGORITHM 63

o [V 510
o *
31 - a IV,I=30 a) The plot over
.. + V=50
ol A el 100 tests of the
S | °°05,, oy _
e +iAA average error P
+ AAAAAAAAAAA lied
e S | ++++++++ ADAAAAAAAAAAANADNDADAALAADY versus applie
S +++++++++++++++++++++++++++ .
epochs no in
3] simulations.
&
o
0 200 400 600 800 1000
epochs_no
o [V,=10
o *
SHa IV,=30 4t
« * +++
+ IV,I=50 L
. T b) The plot over
o] ++
n ++
- +++++++ ana | 100 tests of the av-
+ AA
+ A
— + A .
2D, g +++ N erage tlme versus
= 87 + AAAAAAAA .
aand® applied epochs no
N _
ad® . . .
g AAAAA in simulations.
n A 0000”® °°
o
(5 260 4(50 6(50 860 ldOO
epochs_no

Figure 4.4: Dynamics for each size of auxiliary nodes set |V,| € {10, 30,50}
was calculated by averaging over 100 simulations. For each system |Vixed| =
27 |Vcon| = 77 |Vobs| = 107 Cedge = 47 N =3.

64 CHAPTER 4. NUMERICAL RESULTS

4.5 Number of resources of a graph G = (V, &)

In this section, we test how the number of resources of a graph affects on nu-
merical properties of the parametric learning algorithm. In Subsection 4.5.1,
we specify synthetic problems which are solved by the parametric learning
algorithm, and we illustrate numerical results of performed tests. We sum-

marise outcomes of tests in 4.5.2.

4.5.1 Explored cases

We test 3 cases with the various level of complexity of the training examples
set. Namely, they have a various number of control/observed nodes, training
examples N, and various size of scattering of locations of nodes v € Vo, UV, 1
in their training examples (various values of parameters 6,6, are applied
during construction of sets (E@)N | see 4.2.1).

We present plots with following statistics for each subsequent case:

1. The mean value of the error ® against the number of auxiliary ver-

tices | V.| for various parameters ceqge.

2. The mean time consumed by the simulations against the number

of auxiliary vertices |V,| for various parameters cegge.

3. The mean value of the error ® against the number of edges |€]| for

various parameters Ceqge.

4. The mean time consumed by the simulations against the number

of edges |&| for various parameters cegge, |E| & Cedge - |V

In Table 4.1 we define three training problems solved during tests. These are
simple training problem, with multiple training examples, and with multiple

observed nodes, respectively.

4.5. NUMBER OF RESOURCES OF A GRAPH G = (V,€)

65

case N number of initial
|vc0n| |v0bs| .. 01 and 02
number training examples order of ®
case 1 5 5 4 40 8103
case 2 5 5 10 40 9.10°
case 3 10 15 3 30 3-10°

Table 4.1: Parameters which define three training problems.

For each problem given in Table 4.1 we generate and train spring systems

100 times for the following resources:

L4 Cedge S {37 47 67 8}7
o |V, € {5,...,60} for cases 1 and 2, |V,| € {5,...,50} for case 3,
L4 ’Vﬁxed’ =2

During the learning phase, a noise is introduced to the system (see Section
2.5). For cases 1 and 2 we use noise_radius = 100 and for case 3 we use
noise_radius = 50. Results for cases 1, 2, 3 are presented in Figures 4.5, 4.6,

4.7, respectively.

66 CHAPTER 4. NUMERICAL RESULTS
o = edge_count=3 8 | ° edge_count=3 °
<= A edge_count=4 3, | 4 edge_count=4 °
~. + edge_count=6 + edge_count=6 R
o e x edge_count=8 g x edge_count=8 R °°°)°(x
- 0% o o o @ © Y
e 6 o 0006 o °° ° oo © 0 0° %° 0000 — ° X

o 0 9000 0% 000, ° %5° ego 0 ® . Xg %
™~ ° — o° xxx + A
le o | “e 2 x 'M&&“&
o | = <4 o
g MMAAAAAA =g aa® X K
A LM bt oot 05 X e
+++"+++', M
S o He &
© e ++"+++++""’+++++++-0—++H-H++++,.++-0+"++++
OO 00000,
o
10 20 ‘ 40 50 60 10 20 4o 50 60

30
Vil

30
V.l

(a) The plot of @ (left) and the mean time of simulations (right) versus the number of

auxiliary vertices | V|

o o edge_count=3 g | ° edge_count=3 o
<= 4 edge_count=4 3| 2 edge_count=4 °
. + edge_count=6 + edge_count=6 .0
0,%° x edge_count=8 o | * edge_count=8 oce
S e S
S o0 o o B
1 © 4o 000 oooooo°°°°o o0y, o°°°°°°°o°°ooo°o° — o
° ° o
AA A — °
o Iﬂ‘ o
© & : BO0BANML o = & o
Pt A — Y
BpDAAANNSADA AABABA Apmpp o0
+++++ a A o 0% A,
o +++++++ o . AAAAA
o8 X x x S oo
2 X x++++++++++ © o o AAAAAAMA
X X x x X 5 AAAA ++
x % A anBas ++¢-;-(+x+>‘tt< X
o o o°o°°¢°A°AAAAeW° IRt
T T T T T I
50 80 1lo 140 170 200 50 8o 1l0 140 170 200
[E| E|

(b) The plot of ® (left) and the mean time of simulations (right) versus the number of
edges |E|

Figure 4.5: Each point was calculated by averaging over 100 simulations. For
each system |Veon| = 5, |Vobs| = 5, N =4, |Vixed| = 2, 61 = 40, 05 = 40.

4.5. NUMBER OF RESOURCES OF A GRAPH G = (V,€) 67
o edge_count=3 o edge_count=3
4 edge_count=4 A edge_count=4 .
+ edge_count=6 + edge_count=6 ¢
o x edge_count=8 8 | x edge_count=8 . O
(=3 . o °)S(x
S| © 000005 %00 0°° o o < XX
0 °%° 00°%00,0° °°°°°°°°oo°°°°°°°°°°°o°°°°°° . 0o®X OX
o
8 3| 00 %y, +
o] — X X
e K1, cventans oot | B0 B O T
o "++""+++- o ;;x""’e(Ap“w
- o
&1 %"""’“mxx&"f R b =y b flﬁt
P00050050000900K, X006 Xo60X R ﬁgﬂﬁ’
o
o S | +
& g gt
o o
10 20 4o 50 60 10 20 ‘ 4o 50 60

30
V.|

30
Vil

(a) The plot of @ (left) and the mean time of simulations (right) versus the number of

auxiliary vertices | V|

o edge_count=3 o edge_count=3
A edge_count=4 A edge_count=4 .
o
+ edge_count=6 +edge_count=6 ¢
) x edge_count=8 §7 x edge_count=8 Lo
o . =] o
o™ %o0g0 o°°oo°o° °o°°ooo°°°°°eo°o°°°°°°°°°°o°°°°°°°°°°° . 00® ©
o
o S 00 ©
o] Aaapn — S
SN AfMMAAMAAAAAAAAAAMMAAAAAAAAAA 2o o000’
° ++‘k+x+*1’< o o
= PEE b g b S oo
— X 'x Y 0% A
o0 Ab%A
o 05°° AAAA
= &1 anpast *
00° + 4 X
o AADMAA I
o e SIS
ol ol = AAPAARY et
T T T T T I
50 do 1lo 140 170 200 50 g0 1lo 140 170 200
|E| E|

(b) The plot of ® (left) and the mean time of simulations (right) versus the number of

edges |E|

Figure 4.6: Each point was calculated by averaging over 100 simulations. For
each system |vcon| =5, |vobs| =5, N =10, |Vﬁxed| = 2, 0, = 40, 0y =

40.

68 CHAPTER 4. NUMERICAL RESULTS

o edge_count=3 ol® edge_count=3 «
8 4 edge_count=4 <A A edge_count=4 X %ok
N + edge_count=6 — | + edge_count=6 XX5e X
000%%0 x edge_count=8 x edge_count=8 x°°
° °° %%00,0%,0000° 4.0 o o X wt
0s0
o © ©0%0000,0040° x ¥ +, A
S ° %000 §7 5 xxi(. + +A
—_ X7X 0% ° 4 4 ACBN
%) +
i< o AAMAAANA = X o il A
3 BOMMN A XX vl
BN AN AR Y
g AR
o + +H‘H'-H-+H+ < xXxoo °:_4+ +AAAA
&7 Ry gt aaata
3] xxxxXxxx"xXxxXxxxXxx R AT RN, xxxxx o *ZA AAAAAA
XXHXHXHERKXKX KKK Laann’
XXX X XXX Kzﬁ
o o
T T T T T T T T T T
10 20 30 40 50 10 20 30 40 50
V. [V

(a) The plot of ® (left) and the mean time of simulations (right) versus the number of

auxiliary vertices | V|

° edge_count=3 ol® edge_count=3
S| A edge_count=4 <A A edge_count=4 00000
N + edge_count=6 — | + edge_count=6 °
000%%0 x edge_count=8 x edge_count=8 °°
0000, . — — oo
o 296°%04000,% 5,0 o o
o © 08%0000,9050%, 7 o
[} . °
‘e AAAAAAL A W ° %e0®*
8, A, AAAAAAAA AAAAAA = 87 °o o
3 ABAAABBAAAN A © o ©
o o0 N
+
3 R LR S o R 3 R ° AAAAAA
& X x ™ 0go. appba N
oo A ++++ % x
o°°°° AAAAAAAAA
o o
U T U T
95 120 145 170 195 220 95 120 145 170 195 220
|E| |E|

(b) The plot of ® (left) and the mean time of simulations (right) versus the number of
edges |E|

Figure 4.7: Each point was calculated by averaging over 100 simulations. For
each system |vcon| - 107 |v0bs| - 157 N = 37 ‘Vﬁxed‘ = 25 91 = 307 92 =
30.

4.5. NUMBER OF RESOURCES OF A GRAPH G = (V,€) 69

In Figure 4.8 boxplots' depict results for respective training cases (se-
quentially for easy case to solve, with many training examples and with
many observed nodes). Each box represents distribution of ® for a given

Cedge-

-
-+ |
o
&1 - ! !
&1 = g
i = ;
I =]
=1
| 81 4+
-
I
-

HIF4--

2400
-4

le e

e g

HI
FE]---4-
}_

-
_{.
1
_{

Cedge Cedge Cedge

Figure 4.8: Boxplots for respective training cases. Each box represents ® for

a given Cedge-

!Boxplot is a method for graphically depicting groups of numerical data through their
quartiles. Box vertical edges plots the first ()1 and the third quartiles (03, and the band
inside the box is the median. Lines going out vertically from the boxes (whiskers) extend
to the most extreme data point which is no more than 1.5 times the interquartile range
(Q3 — Q1) from the box.

70 CHAPTER 4. NUMERICAL RESULTS

4.5.2 Conclusions

Our tests imply that the number of graph resources has a significant effect on
the learning ability of spring systems. It can be seen in the plots depicting ®
against |V,| in the left figures of 4.5a, 4.6a, and 4.7a. Both, extension of the
size of the auxiliary nodes set V, and increment of the value of the parameter
Cedge, asymptotically decrease the value of ®. The lower bound obtained by
the mean value of ® depends on complexity of a learning problem. The more
complex the problem is, the higher error.

In order to explore influence of the size of the set V, on the learning ability

of the system we present the mean error ® for |V,| = 5 and |V,| = 50. Next,

® for |Vi|=5
O for |Vi|=50"

are presented in Table 4.2. For c.44c = 8 the ratio is equal to 2.66, 1.52 and

for these two statistics we compute their ratio = These results

2.04 for corresponding cases of training categories.

case Cedge V| =5 [Vi| = 50 ratio
1 3 2139 1618 1.32
4 1407 958 1.47

1 6 885 395 2.24
1 8 642 241 2.66
2 3 3539 3307 1.07
2 4 2831 2504 1.13
2 6 2393 1772 1.35
2 8 2144 1414 1.52
3 3 1054 873 1.20
3 4 712 487 1.46
3 6 405 216 1.88
3 8 252 123 2.04

Table 4.2: The following columns present ® for spring systems with various

® for |Vi|=5

number of auxiliary nodes for cases 1 and 2, and 3. Next, ratio = T Jor V.]=50

is calculated.

4.5. NUMBER OF RESOURCES OF A GRAPH G = (V,€) 71

Table 4.3 presents influence of the value of the parameter c.q5 on the
learning ability of spring systems. It can be strictly measured by the ratio of
the mean error ® for spring systems built with parameters c.qq. € {3,8} and
with the set of auxiliary nodes |V,| = 50. The increment of the parameter
Cedge from 3 to 8 improves learning ability 6.71, 2.34, and 7.10 times for the
respective training problems. So, we can conclude that the increment of the
parameter c.qq has a larger effect on enhancement of learning capability of

spring systems than augmentation of the set of auxiliary nodes V,.

Vil =50, | [Vi| =50, .
case ratio
Cedge = 3 Cedge = 8
1 1618 241 6.71
2 3307 1414 2.34
3 873 123 7.10

Table 4.3: The following columns present the mean errors, which are calcu-
lated for |V,| = 50 for cases 1, 2, and 3. Next, ratio = & Jor [Ve|=50, cege =3

© for |Vi|=50, ccage=8 1S
presented.

Average time necessary to yield the error by respective networks, is presen-
ted in the right plots of Figures 4.5, 4.6, and 4.7. Clearly, the more auxiliary
nodes a network has, the longer it takes to train it. As we can see in the
right plots in Figures 4.5a, 4.6a, and 4.7a the mean time of learning execution
grows faster than linearly with the size of V,.

In the plots of Figures 4.5b, 4.6b, and 4.7b we can observe that for systems
with similar number of edges, these with the higher parameter c.q4. and con-
sequently with the lower number of auxiliary nodes, yield significantly lower
values of the mean error of ® (left figures) and lower time consumption (right
figures). That implies that the size of the set of edges is not so important as
an average degree of nodes in a graph.

Table 4.4 presents how changes the order of the error ® before and after

72 CHAPTER 4. NUMERICAL RESULTS

the learning processes for spring systems with c.q4. = 8 and auxiliary nodes
V.| = 50.

initial order final order .
case ratio
of ® of ®
1 8.103 2102 40
2 9103 1-10° 9
3 3-103 1-102 30

Table 4.4: The error ® change during training processes. The last column

presents the ratio for ® error before and after learning processes.

4.6 Energy profile and noise factor properties

In this section, we evaluate how adapted spring systems are resilient to con-
vergence to local minima other than the trained ones. Each explored system
was trained with and without noise.

All systems evaluated in this section have the following complexity of the
training example set: [Veon| = 7, [Vobs| = 10, and the number of the training
examples N is equal to 3.

For this problem we generate and train spring systems 100 times for each
combination of the following resources the existence/magnitude of a noise
factor: ceqge € {4,8}, V| € {5,...,60}, [Vaxea| = 2, and for discarded noise,
with noise radius = 50 or with noise radius = 100.

For each adapted spring system, we sample two training examples, and
we calculate the error U after transition between them as described in 2.5.2

according to two scenarios:

e we sample 200 times training examples, and we perform transitions

between their control nodes positions along semicircles. It gives us

4.6. ENERGY PROFILE AND NOISE FACTOR PROPERTIES 73

20000 values of ¥ for 100 simulations for each combination of the spring

system resources and the existence/magnitude of a noise factor.

e for each pair of training examples we perform transitions between their
control nodes positions along straight line |N| - |N — 1| = 6 times. It
gives us 600 values of ¥ for 100 simulations for each combination of the

spring system resources and the existence/magnitude of a noise factor.

If observed nodes fail to reach corresponding target positions, then ¥ > 0.
For each combination of the spring system resources, the existence/magnitude
of a noise factor, and separately for semicircle and straight line transitions,
we calculate P(W.q). This is a ratio of ¥ values not equal to 0. So, this is
chance that at least one of the observed nodes goes into a wrong position.

In Figure 4.9 we present P(U-() against the number of auxiliary nodes
|Vi|. The plots show that spring systems trained with a noise and with a
larger average degree of nodes are more resilient to the node perturbations.
It is shown by the smaller value of statistics P(¥) for such cases. The value
of P(V.g) goes up together with |V|. For transitions of control nodes along
semicircle curves, increment of the size from |V| = 62 to |V| = 63 (|V.| = 43
to [V.| = 44) is critical for the Hamiltonian function profile. Spring systems
which have the size of V less or equal to 62, have a small value of P(¥),
on the contrary for the size over this point, P(¥() jumps to 1.

Also for spring systems adapted for the tests in previous Section 4.5, such
transitions always happen when |V| is extend from 62 to 63. Alternation of
factors like for example ratio of [Viozen| t0 [Vimovable| Or number of training
examples does not change it.

For transition of control nodes along line curves no critical point is ob-
served. We conclude that big concentration of nodes with the low average
graph distance generates spring systems with explosion of many undesirable

local minima of the Hamiltonian function.

(b) Transitions of control nodes performed along straight lines

74 CHAPTER 4. NUMERICAL RESULTS
o] |
< without noise Fhettpastatacale <7 without noise 0 87004 o9 23008
- el + - el 40RO 0" IR
© a no!se_rad!us:SO © a no!se_rad!us:SO Aaﬁ.,ﬁew.,,
o * noise_radius=100 o *+ noise_radius=100 .
© ©
5 S
> >
5 < e, 5 o< °
& o op g0 & o o % o
0.0 oﬂw‘;* R
| °o° ﬂ e o~ ° °°°°°° © 0 o0 ©
o ©e08 m S, o o° ° m
4;5 00 : i{; I
o “ o | steatmsmanioniny s
e T T T T T T e T T T T T T
10 20 30 40 50 60 10 20 30 40 50 60
V.| V.l
(a) Transitions of control nodes performed along semicircle curves
Q] < |
| = without noise | = without noise
A noise_radius=50 4 noise_radius=50
2 + noise_radius=100 2 + noise_radius=100
© ©
75 S
> ES v
o 27 o°+ *+ M+ o §7 °,° °
A gt \
N _| °éo A+‘gﬁ%¢+w a8 N ° ° o° ° °° ° ° °
o oo o ° ° o°
W % wo, °° G sk Sy 2
|) A
0'7 I 0.7 T T
10 20 40 50 60 10 20 30 40 50 60
IV*I (A

Figure 4.9: Plots present P(Wsg) against the number of auxiliary vertices

|Vi|. In the left for ceqge = 4 and in the right for ceqge = 8. For each

system |Vixed| = 2, [Veon| = 7, [Vobs| = 10, N = 3.

4.6. ENERGY PROFILE AND NOISE FACTOR PROPERTIES 75

In Figure 4.10 we present the mean error and the mean time of simulation

against |Vy|.
§7 + o without noise §7 o without noise
q Axn N A noise_radius=50 g A noise_radius=50
° °3*% + noise_radius=100 + noise_radius=100
¥ o
gl ML !
) & +A#& L, TR + >
A v&&+° ﬁ*%z 44\’ +
° + & A&Q °
"e' S| + \9 o
o o
o ©
=3 o | £y o ot .
5 BT Ml
Nyt & VelgB
o o
10 20 30 40 50 60 10 20 30 4o 50 60
V.l V.|

(a) The plot of ® against the number of auxiliary vertices | V.|

. . . . A
gl- without noise AA gl- without noise + A+AA$°
N7 4 noise_radius=50 + N7 4 noise_radius=50 a A

+ noise_radius=100 Ap R + noise_radius=100 A Af“"++ °
PN b5 SN
8- L oa 34 soa el
® 2By & II °
+ 4 + o ko % o
— NG o | = A
2, =3 . . e 2, =<1 P
© o 4% S0 00 ® © Ao o
+8++ o o ° o+ 00
+AA Booo © ° ‘AA°
S IR °
B P44 o0
® %@* 000
M A
o
o
T T T T T T T T T T T T
10 20 30 40 50 60 10 20 30 40 50 60
Vil Vil

(b) The plot of the mean time of simulations against | V|

Figure 4.10: In the left plots for ceqqe = 4 and in the right plots for
Cedge = 8. For each system |Vixed| = 2, |Veon| =7, [Vobs| = 10, N = 3.

76 CHAPTER 4. NUMERICAL RESULTS

4.7 Conclusions

In this chapter, we have presented the most important numerical properties
of the parametric learning algorithm.

In Section 4.3, we have shown how the value of the Hamiltonian function
decreases during the following iterations of the relaxation procedure. In
turn, in Section 4.4, we have depicted how the parametric learning algorithm
iteratively finds better solutions (its quality is measured by the value of the
error ®) for a given problem.

In Section 4.5, we have shown that the mean error, to which the learning
process converges, depends mainly on the topology of a trained spring system.
A spring system obtains the best adaptation for a structure with a high
average degree of nodes. The size of the set V, should be kept small since
increasing the number of its auxiliary nodes quickly stops improving the
learning ability of the spring system. Moreover, the mean time consumed
by the learning process grows up faster than linearly with the size of V.
Systems with the described topology are more resilient to the disturbance of
locations of control nodes by external forces as has been shown in 4.6. This

property is also improved by adding a noise factor.

Chapter 5

Conclusions

5.1 Summary

In this dissertation, we have proposed a new parametric learning algorithm
for mechanical behaviour tasks carried out by complex spring systems (see
Subsection 2.3.2). For a given collection of examples specifying target re-
lationship between the control and observed nodes, the procedure outputs
physical parameters (lengths, elastic constants) of a system designed to rep-
resent this relationship. We have implemented our algorithm and tested it
using various examples. We have shown that it gives reasonable results for
spring structures with a high average degree of nodes and with not to many
auxiliary nodes (see 2.2.1 for definition of various types of nodes). Keeping a
high average degree of nodes and a restricted number of auxiliary nodes, has
additional advantages. It makes the system more resilient to a noise, which
can cause wrong mapping of control onto observed nodes. Explored spring
systems were constructed by our algorithm generating graph topology (see
Section 2.4).

We have applied our model to mimic dynamics of proteins, see Chapter 3.

The quality of the obtained results is very high. We have plotted the mean

77

78 CHAPTER 5. CONCLUSIONS

value of forces as a function of a spring length for systems in their stable
equilibria representing real-world configurations of proteins. We have shown

that the obtained curve fits well to the shape of the Lennard-Jones force.

5.2 Further research

The algorithm, which trains spring systems, presented in this work, can be
developed in various directions according to particular scientific problems.

It would be interesting to build spring systems representing more elab-
orated shapes like for example parts of a car body or an atypical building
architecture. Found systems could form a basis to construct real objects
with appropriate elastic properties. In other words, instead of checking if
a given manually created spring system is appropriate to use, our model is
employed to construct a spring system from the scratch. Hence, our method
could support a computer-aided design with a useful utility. The constructed
spring systems should also have a possibly simple structure in order to easily
produce their real-world implementation.

After conducting the proposed research, our model could be a plugin
of a computer-aided design (CAD) software in the areas like mechanical or
structural engineering. Such tools get as an input a physical object with
known elastic properties and explore whether or not it reacts in a target
manner under the influence of physical external forces. If it distorts in a
wrong way, it could be a good idea to apply our algorithm to adjust physical
properties of the engineering structure. For such a purpose the learning
algorithm proposed by us can only modify elastic constants (without lengths)

if advisable.

Appendix A
Rigid graphs

In this chapter, we present the theory concerning rigid graphs (see Sections
A.T and A.2). In Section A.3, we present an algorithm building a generically
minimally rigid graph. In Section A.4, we encapsulate how we remove degrees

of freedom from structures of spring systems and why it is necessary.

A.1 Rigid graph

One of the first results regarding rigidity theorem were provided by Cauchy
in 1813, see [9]. Although rigidity problems were of immense interest of
engineers, a strong mathematical study of these kinds of problems has oc-
curred relatively recently. Here we present a theory concerning this area of
knowledge, which is relevant in this dissertation.

Let us assume that we are given an undirected graph G = (V,€) with a
finite vertex/node set V and an edge/spring set £ (see Section 2.2). In the
context of theory presented in this appendix section, vertices V' are embedded
in R and d = 3.

Definition A.1.1. (after [3, 6, 29]) The graph G along with its embed-

ding in the three-dimensional Cartesian space Ty = ((To)vey) € RV called

79

80 APPENDIX A. RIGID GRAPHS

configuration, is said to be rigid in R if and only if every continuous mo-
tion of wvertices V, beginning at Ty and preserving the lengths for all edges
lle], e € &, terminates at a configuration T}, = ((Z,)vey) which is the image
Tty = ((TT)vey) under an isometry T of RL. Moreover, we say that the
configuration Ty of the graph is rigid. Otherwise, the graph G (configuration)
is flexible in RY.

Figure A.1 presents examples of a rigid (left) and flexible (right) graph

in R? and in Figure A.2 is an example of a rigid graph in R3.

/ \ / \ v3

) A rigid graph in R? (b) A flexible graph in R?
Figure A.1: Examples of rigid (left) and flexible (right) graph in R?. For
both cases two configurations are presented. The first one is derived from
the second one by continuous motions of vertices, preserving the lengths for

all edges. For the rigid graph, the distances between all pairs of nodes were

preserved, for the flexible graph were not.

A.2. GENERIC RIGIDITY 81

Figure A.2: A rigid graph in R3.

A.2 Generic rigidity

Recently, it has been proved that determining whether or not a graph is rigid
for d > 2 is NP-hard, see [1]. This problem becomes more tractable if we
assume that the graph G along with configuration is generic i.e. there are no
algebraic dependencies between the coordinates (Z,)yey, see [8, 19]. Then it
is known that the rigidity of the graph depends only on its topology. The
generic configurations of a given graph G are either all rigid or all flexible in
R?. A graph G is called generically rigid in R if and only if all its generic con-
figurations are rigid in RY. Otherwise, all its configurations are flexible and
the graph G is called generically flexible, see [38]. A randomly constructed
configuration in R? with high probability is generic (the Lebesque’s measure
of the set of configurations which are not generic is equal to 0). Should it
happen that the configuration is not generic (for instance it was arbitrary
predefined), this property can be easily restored by small perturbation of
positions of nodes. So, without loss of generality we can assume that the
graph G has generic configuration and determine whether or not it is rigid

based solely on its topology.

Definition A.2.1. ([2, 29, 38]) A (generically) rigid graph which after re-
moving any of its edges becomes a (generically) flexible is called (generically)

manimally rigid graph.

2 APPENDIX A. RIGID GRAPHS

It is easy to notice that the addition of extra edges to a generically rigid
graph will not affect its generic behaviour. In consequence, it seems jus-
tified that in our numerical tests we construct spring systems by building
a minimally rigid graph and by adding to it extra edges. Sometimes this
approach might not be convenient and then we enforce sufficient rigidity of
the structure by creating a graph with adequately a high average degree of
nodes.

In 1970, Laman published a theorem that can be used to test whether or

not a planar graph is rigid in R2.

Theorem (Laman, [24]) A planar graph G = (V,) is rigid for dimension
2 if and only if there is a subset £ C & such that:

L& =2V =3,

2. for all &" C & where |V(E")| > 2 we have |£"| < 2|V(E")| — 3, where
V(E") denotes all vertices v € V for which exists at least one incident

edge in &”.

This condition is necessary and sufficient. The graph G’ = (V,&’) is a
minimally rigid graph. By modifying Laman’s condition we get the following

statement for the three-dimensional space.

Theorem ([17]) A graph G = (V,€) is rigid for dimension 3 if and only if
there is a subset £ of £ such that:

1. | =3|V| -6,
2. for all &” C & where |V(E")| > 3 we have |£"| < 3|V(E")| — 6.

Although this condition is necessary, it is no longer sufficient. In Figure

A.3 is presented a graph flexible in 3d, which satisfies Laman’s condition.

A.3. HENNEBERG CONSTRUCTIONS 83

Figure A.3: A graph satisfies Laman’s condition, but it is flexible.

A.3 Henneberg constructions

Henneberg construction is an inductive method, which is applied to create
a generically minimally rigid graph. Here we briefly describe this method
and its substantial properties. Theory presented in this section is thoroughly

covered in Section 5 in [38].

Definition A.3.1. Let us assume that we are given a graph G = (V,€)
embedded in RY.

e The H{ (vertex addition) operation applied to G, inserts one new

vertex that gets connected to d existing ones.

e The HY (edge split) operation applied to G, replaces an edge by a new
vertex that gets connected to its endpoints and additionally to d — 1

other vertices.

Definition A.3.2. A Henneberg d-sequence for a graph G is a sequence of
graphs Gy, ..., G, with the following properties:

o G, = K41, where Kgyq is so called a complete graph consisting of d+1

84 APPENDIX A. RIGID GRAPHS

vertices and in which every pair of distinct nodes is connected by a

unique edge,
L gn - g;

® Vic(2..n—1} Git1 is obtained from G; through the H{l or Hg step.

Theorem A graph G = (V,€) is generically minimally rigid in R? if and

only if can be generated by a Henneberg 2-sequence.

Theorem Every graph G obtained by Henneberg d-construction is generic-

ally minimally rigid in R

For d > 2 Henneberg construction does not enable us to construct all
generically minimally rigid graphs in R%. However, in our dissertation we are
mainly interested in building generically rigid graphs in R? by constructing
a generically minimally rigid graph and by adding extra edges. Henneberg
construction is sufficient for us, moreover, we restrict ourselves to applying
only H} operation. In Figure A.4 we present an example of a Henneberg

2-sequence, where the following graphs are obtained through H?.

A.4 Degrees of freedom of rigid graph

A graph G in a three-dimensional space, for which |V| is equal to n and with
an empty set of edges &, has 3n degrees of freedom (all points can freely
move in the space). By augmentation of the set £ by adding sequential edges
constituting connections of minimally rigid graph of G, the number of degrees
of freedom decreases. Eventually, every (minimally) rigid graph in a three-
dimensional space has 6 degrees of freedom. The half of them arise from
three independent coordinates, along which the graph can be translated, and

remaining ones from three axes of rotation. For more details see Section 4 in

A.4. DEGREES OF FREEDOM OF RIGID GRAPH 85

3y
i

Figure A.4: An example of a Henneberg 2-sequence, where the following

graphs are obtained through H?.

[18]. Tt is vital to prevent a spring system from these rotations, translations
or combinations of them, in order to avoid its erratic movements during the
relaxation process. This is obtained by keeping 3 noncollinear nodes frozen,

and in our model it is realised by the sets Viyea and Veon.

86

APPENDIX A. RIGID GRAPHS

Appendix B

Pseudocode

In this appendix chapter we briefly list technical details of the learning pro-
cedure 2.3 and algorithms designed for spring systems. In the first Section
B.1, we describe technical details and the pseudocode of the relaxation pro-
cedure. In Section B.2, we present the pseudocode of the parametric learning
algorithm, for which various alternative stop conditions are described in Sec-
tion B.3. Next, in B.4 we analyse influence of numerous parameters of the
algorithm on the adaptation process. In Sections B.5 and B.6, we define
pseudocodes of procedures which create a random structure of a spring sys-
tem and a set of training examples if not given. In B.7 we provide technical
description of the scheme adding a noise to positions of movable nodes during
the learning process. In the end, in B.8 we provide the pseudocode of the
algorithm, which evaluates robustness of adapted spring systems on perturb-

ation of movable nodes positions.

B.1 Relaxation

In this section, we present the pseudocode of the procedure seeking an equi-

librium of G. The scheme moves nodes as given in the Algorithm 1.

87

88 APPENDIX B. PSEUDOCODE

Algorithm 1 Relaxation

1: procedure RELAXATION(G)

2 push all unbalanced, movable nodes to a First-In-First-Out queue @)
3 while () is not empty do
4 pop an element ¢ from the queue @)
5: counter < 0
6 whenStabilised < —1
7 repeat
8 counter < counter + 1
9 calculate the vector of the force f acting on ¢
10: move ¢ according to the formula z, < z, + step_size - f
> step size is a small positive constant
11: if f=(f1, f2 f3) satisfies V2_,|fi| < threshold then
> we assume that the node ¢ is in an equilibrium state
> threshold is a small positive constant
12: whenStabilised < counter
13: end if
14: until max_counter > counter and whenStabilised = —1
> max__counter is an integer constant greater than 0
15: if whenStabilised = —1 then
> the vertex ¢ has not been stabilised sufficiently
16: push again ¢ to the queue)
17: end if
18: if whenStabilised # 1 then
> ¢ was significantly relocated in the repeat loop 7
19: push all movable neighbours of ¢, which have not been there
already, to @)
20: end if
21: end while
22: return 7y

23: end procedure

B.1. RELAXATION 89

In Table B.1 we present parameters applied in the procedure.

symbol domain | value description

threshold R4 0.06 when all absolute values of coordinates of the force
acting on a node are less than this value, the node

is considered as stabilised

step _size R4 0.125 | a rate of a net force applied to stabilise a node in
one step

max_counter | Zxq 10 a maximal number of steps stabilising one node in
a row

Table B.1: Table presents parameters applied in Algorithm 1 along with their

domain, value used in test simulations, and description.

Step 10, where a node ¢ is moved in the direction of the force acting
on it, is an equivalent of a gradient descent modification (see C.2). In this
step, each i"* i € {1,...,3} coordinate of the node is decreased about the
value proportional to the partial derivative of the Hamiltonian (see 2.12) with

respect to the coordinate xf]i) at the current configuration point z:

xfl) — xfz) Y E W(xy), (B.1)
Oxyg

where 7) is a small positive learning constant.

After calculating a net force for a given node ¢ (see step 9), it is always
dislocated in the direction of the force (see step 10). Even if the net force
satisfies the stop condition defined by threshold. It is made since this step
has low time cost and it predominantly enhances the node stabilisation. So,
as a result, the vertex ¢ is always dislocated at least once in the repeat loop
7.

It is vital that the larger value of the parameter step size is, the bigger
probability of a node oscillations. So, we have to keep this parameter suffi-
ciently small. On the other hand, too small value of the parameter step _size,

elongates the process significantly.

90 APPENDIX B. PSEUDOCODE

B.2 Parametric learning algorithm

The adaptation of parameters kle] and fy[e] is made with application of the
gradient descent Algorithm 2 (see Section 2.3). In Table B.2 we present

parameters applied in the algorithm.

symbol domain value description
lear _rate | Ry 0.25-[Vobs| | size of a gradient descent step
max_slide | Ry 1.3 a maximal acceptable ratio of the error ®()

increment in one gradient descent step

Ry 40 an initial value of k

R 0.2 a length of an interval applied to estimate dif-

ference quotient

Table B.2: Table presents parameters applied in Algorithm 2 along with their

domain, value used in test simulations, and description.

The idea and the description of the step 5 introducing a noise are de-
scribed in Section 2.5. The gradient V®) can be calculated explicitly given
equation (2.12) and using a second order approximation of the Hamiltonian

(4)

H at equilibrium G[z9, ; 9y,]. However, this turns out to be quite in-

movable
efficient as it requires inversmn of large matrices. On the other hand, since
the equilibrium G[z}, yVCO | has to be found anyway, by applying the
dynamics (2.13), it is quite easy to approximate the gradient by directly ex-
amining the displacements of the equilibrium under small perturbations of
parameters kle], {yle], e € €. This is the option we have chosen. More pre-
cisely, in order to approximate partial derivatives of ®® with respect to kle]
and lyle], e € €, we apply difference quotients:

00 D[(k[e] + 6, lole])] — P[(K[e], fole])]

Ok|e]) ’

0® _ ®[(kle], ¢ H+5)] ®[(k[e], lole])]

~

dlole] ~

B.2. PARAMETRIC LEARNING ALGORITHM 91

Algorithm 2 Parametric Learning Algorithm

1: procedure PARAMETRICADAPTATION((EW)N, G)

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:

2
3
4
o:
6
7
8
9

while the stop condition is not satisfied do
for each subsequent example E() = (gﬁfon, 37$ij> cyclically do
if learning with a noise factor then
add a noise into the position of each control node v € V.,
assign to 7y <— RELAXATION(G)
end if
set the positions of control nodes Zy, , in accordance with g@on

assign to Ty <— RELAXATION(G)

calculate @@ and set @be)fom — o0
calculate VO (p) <~ DIFFERENCEQUOTIENT(G, B @b’e)fore)

set p < p — lear _rate - VOO (p)
> p is a vecor of all parameters p € P : (J..o{kle] U {ole]}
assign to Ty <— RELAXATION(G)
calculate ®® and set ' }ter — o0
if o > max_slide - @éefore then
revert the changes done in the step 12
end if

end for

after

approximate the value of the error function D+]{, ZZV 1 o)

> for i training example &) % if the change

after

> of the parameters was accepted, otherwise, () @éze)fme

if it is the first epoch or ® is the smallest up to now then
store kle], lole], e € € and (G[zy o) N,
end if

end while
(1)])N

return stored parameters ke, {yle], e € € and (G[ZY, o

movable’ yvcon

25: end procedure

92 APPENDIX B. PSEUDOCODE

For a given training example E® and the spring system staying in the

equilibrium G[z3, gj‘(jc)on] with the value of the error function assigned to
(I)(i)

before’

the Algorithm 3 is used in order to determine the gradient V&),

Algorithm 3 Approximation of partial derivatives of ®® with respect to
kle] and fyle], e € €

1. procedure DIFFERENCEQUOTIENT(G, E® &),)

before

2: store :f;mp — Ty

3 for each parameter p in the set p € P = |J,.c{k[e] U lo[e]} do

4: pp+0o
> ¢ is a small positive constant
5: assign to Ty <— RELAXATION(G)
6: calculate ®® and set @fj}ter — o)
n O e, el
8: p—p—20
> withdraw the change made in the step 4
9: Ty + 75"

> withdraw the change made in the step 5
10: end for
11: return Vo©

12: end procedure

B.3. STOP CONDITION 93

B.3 Stop condition

A stop condition, which has to be satisfied in order to terminate execution

of the parametric learning Algorithm 2, can be defined in different manners:

1. The stop condition is satisfied, when the error ® (see 2.15) obtains
value less than the predefined threshold. This condition, may never be
satisfied or can significantly elongate the time of simulation, so it is not

recommended.

2. We count the number of epochs (the number of runs of the loop while
in line 2). The stop condition is satisfied, when the predefined number

is obtained.

3. We count the number of epochs without improvement of the error ®.

The stop condition is satisfied, when the predefined number is obtained.

In our simulations we applied the third option. This choice guarantees
us that the learning procedure converge and the time of processing is not
elongated by useless epochs. For simulations in Chapters 3 and 4 we stop

learning after 200 and 150 epochs without improvement, respectively.

B.4 Numerical precision of the calculation of

the learning algorithm

The quality of adaptation of a spring system achieved by the training al-
gorithm 2, depends on the values of parameters used by it and by algorithms
which execute more precise tasks i.e. relaxation, approximation of partial
derivatives of the error function. There are a few parameters which have an

especially big effect on precision of calculation. These are:

1. lear rate in the gradient descent algorithm 2,

94 APPENDIX B. PSEUDOCODE

2. step _size and threshold in the relaxation algorithm 1,

3. and ¢, the value by which an argument (an equilibrium length or an
elastic constant) of the error function is increased to approximate its

difference quotient 3.

The smaller values of these parameters are, the larger precision of the calcula-
tion is. But we have to remember that, when these parameters are decreasing
also pace of adaptation is slowing down. Furthermore, we are limited by rep-
resentation of floating point numbers in a computer architecture. We use
parameters values, which could seem too large. It appears that for very
small values of the mentioned parameters, simulations quickly get stuck in
shallow local minima of the error function ®. Another approach is to de-
crease values of the parameters in time, for example when for the significant
number of epochs of the loop while 2, the parametric learning Algorithm 2
has not improved its adaptation (the value of the parameter obtained min
has not decreased). But our tests show that the Algorithm 2 on average
obtains similar adaptation with and without descending parameters. So, we
choose option with constant parameters, for which simulations are faster.
In the parametric learning Algorithm 2, when a spring system is adapted
to the " training example, we check if the value of ®® does not increase
significantly. The value of the parameter max _slide, applied to prevent
the error from bursting, is equal to 1.3 (we approve worsening of the error
function ®® maximally about 30 percent). This modification enables the
learning process to get out of shallow local minima. Again, in order to save
simulation time, we do not check how modification done during adaptation
of the current training example impacts on ®) for the remaining examples.
Consequently, it may happen that the algorithm approves a change with the
value of the error function ® considerably larger than it was before modific-

ation of the spring parameters. Figures 4.2 and 4.3 in Subsection 4.4.1 plot

B.5. ALGORITHM GENERATING GRAPH TOPOLOGY 95

the value of the error function ® for exemplary learning simulations against
the number of epochs of the parametric learning algorithm. There repeatedly
the value of the error function ® increases. These slides are momentary, thus,
we ignore them.

For values of applied parameters, it can happen that for some spring para-
meters, values of approximated partial derivatives of the error function are
very large. As a consequence, the relaxation Algorithm 1 significantly elong-
ates its duration after decreasing spring parameters about gradient V®®.
Also, adaptation of the spring system becomes significantly worse and as a
result, recently applied modification of all spring parameters, is rejected. We
eliminate this problem by introducing a limitation on the maximal absolute

value of each coordinate of the gradient.

B.5 Algorithm generating graph topology

Let us present the pseudocode of the algorithm generating graph topology.

In Table B.3 we present parameters applied in the procedure.

symbol | domain | value description
c R3 (0,0,0) | the center and radius of a ball, whose surface
r R4 200 contains the positions of E(}) = (37\(;2[‘, ?]80)13)7

these are common constants for this procedure

and for the procedure 5

Cauz Ny - a number of auxiliary nodes in a graph G
Chixed Np 2 a number of immobilised nodes in a graph G
Cedge N>3 - a coefficient for which |€| & cedge - |V|

Table B.3: Table presents parameters applied in the Procedure 4 along with
their domain, value used in test simulations, and description. Values of

parameters are given, if they are common for all tests in this dissertation.

96

APPENDIX B. PSEUDOCODE

Algorithm 4 Generating graph topology procedure

~(1)

1: procedure TOPOLOGYGENERATION(EW) = (ﬂu(/lc)onayvobs))

2:
3
4
o:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

create a graph G with empty sets Vi, Vixed, Veons Vobs and £
define an abstract ball with the radius r and centered at ¢
for each k € {1,...,4} do
randomly pick a node v uniformly distributed in the ball B
link v with all nodes already added to the set V,
add the node v to the set V,
end for
for each k € {1,..., Cour + Coixea — 4} do
randomly pick a node v uniformly distributed in the ball
connect v with min(|V,|, ceqge) nearest nodes from V,
add v to the set V,
end for
for each k € {1,...,Cxea} do
fix a random auxiliary node v and move it from V, to Ve
end for

for each gf,l) in g](j?b do

create a node v and assign z, < ?]1(;1)
connect v with min(|V|, ceqge) nearest nodes from the set V
add v to the set Veps

end for

for each gS}’ in gj,(}cz) do
create a node v and assign 7, < qul)
connect v with min(|Viovable|, Cedge) Nearest nodes from Viovable
add v to the set Veon

end for

return the obtained structure G = (V, U Viixed U Veon U Vobs, €)

28: end procedure

B.6. ALGORITHM FOR GENERATION OF TRAINING EXAMPLES

To obtain a rigid graph it is required that c.44e > 3. In order to eliminate

the rigid motions of the graph G, it has to be satisfied |Vyyozen|

[Veon| > 3, see Appendix section A.

B.6 Algorithm for generation of training ex-

amples

Let us present the pseudocode of the procedure generating a set of training
examples (BN for a predefined N, |V.on| and |[Vyys|. In Table B.4 we

present parameters applied in the procedure.

symbol domain value description

c R3 (0,0,0) | the center and radius of a ball, whose surface

r R, 200 contains the positions of E()) = (gl(/lcln’ QSOL)

01 (0,7) e R | 40 the maximal possible mean value of the distri-
bution from which is sampled distance between
371(,1) and gqui) for v € Veon U Vopbs for a given
i€{2,...,N}

0o (0,7) eR | 40 the standard deviation of the distribution applied

to sample coordinates gjgi) for v € Veon U Vops for

agiveni € {2,...,N}

Table B.4: Table presents parameters applied in the Procedure 5 along with

their domain, value used in test simulations, and description.

97

= Cfixed T

98

APPENDIX B. PSEUDOCODE

Algorithm 5 Generation of a set of training examples

1: procedure TRAININGEXAMPLEGENERATION(N, [Veon|, [Vobs|)

2:
3:
4.

10:

11:
12:
13:
14:

define a ball with the radius r € R, and centered at the point ¢ € R?
partition the ball into two hemiballs: B; and Bs
randomly pick uniformly distributed |V .| points in the surface of By
and assign them to gj,(,lc?m
randomly pick uniformly distributed |V,ps| points in the surface of By
and assign them to g&ls
for each i € {2,...,N} do
randomly pick I ~ U(0, ;)
> #; is a constant of the procedure
randomly pick a vector w € R3 and scale it to the length [
for each 7\ in E® do
randomly pick a vector ¢ ~ (N(0,63), N(0,03), N(0,63))
> 5 is a constant of the procedure
assign gq(f) — gqul) +w+Y
end for
end for

return (E0)N,

15: end procedure

B.7. A NOISE FACTOR 99

B.7 A noise factor

Here we present the pseudocode of the Algorithm 6, which introduces a noise
to the parametric learning algorithm. In Table B.5 we present parameters

applied in the procedure.

Algorithm 6 Perturbation of positions of control nodes
1: procedure ADDNOISE(G, (EW)N)

7

2 for each control vertex v € V., do

3 [wy, ..., wy]| < sample coordinates from Ug 1)

4 s SN w

5: for each i € {1,...,N} do

6 w; < *

7 end for

8 m Zfil W - gjq(f)

9 randomly pick one point Z, uniformly distributed in the ball

centred at the point m, and with the radius equal to the
algorithm parameter noise radius

10: change the position of the node v by ascribing z, < Z/

11: end for

12: end procedure

symbol domain description

noise_radius | Ry a parameter defining magnitude of a noise factor

Table B.5: Table presents parameter applied in the Procedure 6 along with

its domain and its description.

100 APPENDIX B. PSEUDOCODE

B.8 Noise robustness

Here we present the pseudocode of the algorithm applied to examine noise
robustness 7. The procedure input data are a trained system §, its train-
ing examples and configurations of equilibria adapted for all of them —
(G(i))N

patern)i=1- Lhe value of a parameter L used in simulations is equal to 60.

Algorithm 7 Continuous transition between a pair of training examples

1: procedure INPUTNODESTRANSITION(G, (ED)N | (GY). N)
2: choose randomly two various training examples ¢ and j

> optionally examples are predefined
(i)

3: assign Ty < Gpatern
4: for each control vertex v € V.., do
5: choose randomly a semicircle whose ends are attached to points

75 and gquj) (optionally: take a straight line joining gqui) and yjz(,j))

6: end for

7: for [<+ 1to L do

8: for each control vertex v € V., do

9: move v € V.., along the curve determined for it by % part

of this curve in the direction of gjf,j)

10: end for

11: assign Ty < RELAXATION(G)

12: end for

13: Gg]l;ztained <y

e W s S GG [Glllainedl)
> W is an average distance between positions of movable
> nodes in ng)tem and G(()Qamed

15: return ¥

16: end procedure

Appendix C

Backpropagation algorithm

There exist many similarities between the parametric learning and back-
propagation algorithms. We enumerate them in Subsection 2.3.3. The back-
propagation procedure is used to train a multilayer perceptron (MLP), which
belongs to the family of artificial neural networks. We present their funda-
mental aspects in Section C.1. A gradient descent algorithm, which is an op-
timisation method applied by the backpropagation and parametric learning
algorithms, we describe in C.2. Definition and functionality of a perceptron,
which is the smallest learning unit of MLP, can be found in Section C.3.
Finally, in Section C.4 we define the error function for a problem solved by
MLP and by minimising it by the gradient descent scheme we derive the
backpropagation algorithm.

C.1 Artificial neural networks

Artificial neural networks (ANNs) are models, which process information.
They are inspired by biological nervous systems, such as the brain. The
structure of the neural network is usually represented by a directed graph.

Depending on the type of the neural network the edges can be bi-directed

101

102 APPENDIX C. BACKPROPAGATION ALGORITHM

or one-directed. The nodes of the network are usually identified with bio-
logical neurons and are called processing elements, units or simple neurons.
The edges/connections of the artificial neural network are identified with
synapses of neurons. The units connected by an edge can exchange inform-
ation through this connection in the direction pointed by it. Each edge has
assigned a numerical value called a weight, which scales the strength of the
transmitted signal. Each unit retrieves signals from connections attached to
it and directed into it, processes them and sends to other neurons through

synapses. Some types of the neurons can store the processed information.

ANNSs are applied to find solutions of problems that are hard to solve using
ordinary programming methods e.g. pattern recognition or data classifica-
tion. In order to solve a given problem, the neural network has to be trained
through a learning process. There are three major learning paradigms. These
are supervised learning, unsupervised learning and reinforcement learning.
We would like to focus on supervised learning since this paradigm is relevant
in the context of this dissertation. In this method of learning we are given a
set of training examples. FEach example consists of an input vector z € R/

and an output vector t € R¥.

During the learning process the weights of the neural system are modified
in such a way, that the neural network maps inputs x onto their outputs ¢
in the best possible way. In order to employ the network to this transform-
ation, we have to assign values from a given input vector to selected units
in the artificial neural network. These units are called input ones. Next, the
values from the control nodes are propagated through network synapses and
eventually a numerical solution of the problem is returned through selected
neurons called output. This usually requires an acyclic graph (DAG). The
quality of the obtained mapping of the training examples is evaluated with
application of an error function and depends on such factors like the struc-

ture of the neural network or complexity of the training set. So, the aim of

C.2. GRADIENT DESCENT ALGORITHM 103

the learning process is to modify the weights in such a way that the sum of
errors of all training examples obtains the lowest possible value. The neural
system is adapted to training examples in a sequential way.

In this dissertation we discuss two neural network models trained with
application of supervised learning. The first one is a sigmoidal perceptron
and the second one is a multilayer perceptron. In fact, the first model is also
the multilayer perceptron confined to one neuron. The learning process of
both models is based on a gradient descent algorithm [10], so we start our

discussion from describing this method.

C.2 Gradient descent algorithm

Gradient descent is an optimisation algorithm (GDA), applied to approxim-
ate a local minimum of a multivariate and differentiable function f : R — R.
More precisely we are given an argument a(® € R? and the goal of the al-
gorithm is to find the minimum of an attractor, in which f(a(®) is located.
The function f has to be continuous and differentiable. The gradient descent
algorithm works in an iterative manner. Namely, during each " iteration,
a point a® is calculated by taking a step proportional to the negative value
of the gradient of the function f at the point a“~Y. The pseudocode of the

algorithm is as follows:
1. Start at point a(®.

2. Perform:

where 7 is a small positive learning constant.

3. If a stop condition is met, return a?, otherwise go back to 2.

104 APPENDIX C. BACKPROPAGATION ALGORITHM

A stop condition is satisfied, when each coordinate of V f(al~V) is smaller
than a (o is a small positive constant). It means that the point a¥ calculated
in the last iteration is very close to the minimum, and it is an approximation
of the minimum point.

The quality of the solution depends on the value of a. The smaller this
value is, the closer to the sought minimum is the returned point.

The dynamics of GDA pushes a point a to the local minimum of its
attractor. Because a(?) is a random point, it is worth to restart the algorithm
many times and choose the minimum, for which the function f has the lowest

value.

C.3 Sigmoidal perceptron

A simple perceptron is one of the most basic neural network models con-
sisting of a single neural cell. A simple perceptron was developed by Frank

Rosenblatt in 1958 [33]. Its definition is as follows:

Definition C.3.1. A simple perceptron is a system consisting of n inputs

1, .., Ty (2 € R), n41 weights wo, w, . .., w, (w; € R) associated with the

mputs xo = +1,x1,...,x, and an activation or response function f : R — R.
Given the input vector T = [x1,...,x,], the perceptron returns a response
equal to:

Out(z) = f(z TwW;). (C.1)

The input unit xo = 1 is called a bias, and in some cases it can significantly
extend the learning ability of the perceptron. The function Out can have
various forms. Commonly used are perceptrons with a sigmoidal activation
function. The form of this function is as follows:

1

flz)=0o(x) = 11 eBa’

C.3. SIGMOIDAL PERCEPTRON 105

where 5 € (0,4+00) is a parameter of the function. The plot of the sigmoidal
function is presented in Figure C.1. The sigmoidal function returns values in
the range (0,1).

— sigmoid

0.0 0.2 04 06 08 1.0

Figure C.1: The sigmoidal function.

During the learning process the derivative of this function is applied. It is
easy to show that, the formula for the derivative of the sigmoidal function is

as follows:
d'(s) =oa(s)(1—a(s)).

The plot of ¢’(s) is depicted in Figure C.2.

_| — derivative of sigmoid \

0.20 0.30
1

0.10
1

Figure C.2: The derivative of the sigmoidal function.

106 APPENDIX C. BACKPROPAGATION ALGORITHM

C.4 Backpropagation algorithm

A directed acyclic and topology-sorted graph of perceptrons is referred to
as a feed forward perceptron network. A special type of such network is a
multilayer perceptron (MLP). This type of network is able to approximate
many complex functions. A user does not have to know or assume any form
of dependencies in mapped models. It is a convenient tool for dealing with
many forms of forecasting, classification, and automatic driven processes.
In the multilayer perceptron, all perceptrons are partitioned into sequen-
tial, disjoint layers. Neurons in the layer L + 1 as inputs get outputs from
neurons in the previous layer L. It is prohibited to connect neurons in the
same layer and neurons which are not in the sequential layer i.e. from L™
to L 4 2, from L' to L + 3™ etc. Moreover, each unit in the L™ layer is
connected with each unit in the L + 1! layer. We distinguish three types of

layers in such network:
e the first/input layer, which is composed by input units,
e the last layer, which is composed by output units,

e all remaining layers between the input and output ones are called hid-

den layers (units in these layers are called hidden units).

In order to map the input vector x onto the output vector ¢t with applica-
tion of the multilayer perceptron, we assign values from a given input vector
to respective neurons in the input layer and we propagate introduced signals
forward through all hidden layers and finally through the output layer. Units
in the L+1% layer can calculate their activations and propagate them further,
if and only if they have obtained signals from all units in the previous L™
layer. After the propagation of the input signals through the whole network,

the output layer returns the final mapped value.

C.4. BACKPROPAGATION ALGORITHM 107

The structure of the network is predefined before we proceed to the learn-
ing process. Namely, the number of hidden layers and number of neurons in
each layer is known. For the sake of discussion simplicity, a network with
one hidden layer is employed. Its input layer consists of I input units and
additionally the bias, the hidden layer consists of J units and the bias, fi-
nally, the output layer consists of K units. The structure of this network is

presented in Figure C.3.

igpg; hlidden
X1 ayer

Xo0= 1 (bias) o= 1(bias)

Figure C.3: A multilayer perceptron with one hidden layer.

Now, we introduce forward dynamics with application of appropriate
notation, which will be helpful in the further part of this section. To set
up the process, proper values are assigned to the neurons in the input layer
and the signals are propagated through edges to the hidden neurons. Next,
for each j j = {1...J} neuron we calculate the weighted sum of obtained

impulses, which is denoted by a;:
a; = w;fw.

Sequentially, for each j™ neuron is calculated the value of an activation
function denoted by y;:

yj = flay).
The activation function f has to be continuous and differentiable. Usually,

it is represented by sigmoid. The activation returned by each neuron is sent

108 APPENDIX C. BACKPROPAGATION ALGORITHM

through synapses to units in the next layer. In Figure C.4 we depict edges

connecting the input layer with the j®* neuron in the hidden layer.

input idden
X1 1ayer ayer

X0=1 (bias) yo=1 (bias)

Figure C.4: Synapses connecting the input layer with the j* neuron in the

hidden layer are marked in red.

Next, analogically, activations for the hidden units are calculated and these

signals are propagated to the units in the output layer:
b, = wyy,

2k = f(bk)'

In Figure C.5 we depict edges connecting units in the hidden layer with the

k' neuron in the output layer.

input hlidden
X1 'ayer ayer

X0=1 (bias) y0=1 (bias)

Figure C.5: Synapses connecting units in the hidden layer with the & neuron

in the output layer are marked in red.

C.4. BACKPROPAGATION ALGORITHM 109

A learning algorithm for multilayer perceptron is based on the gradient
descent algorithm and is called a backpropagation algorithm [39]. We assume
that we are given a set of N training examples ((zM),¢tM), ... (2™ V),
Our aim is to find values of weights, such that if the network as an input
gets ™ = (1,2, 2%, it returns a vector 2™ = (2\" . 2, which
is as close as possible to the expected output vector (™ = (t(n) e ,t%)), for
alln € {1,..., N}. The quality of the adaptation of the neural system to all

training examples is evaluated by the following squared error function:

ERROR(w Z Z — t\M)?

n=1 k=1
The arguments of this function are identified with weights of the network
since z depends on them. So, we employ the gradient descent algorithm
to find weights which minimise the error. What is vital that the ERROR
function is continuous and differentiable.

Let us denote the error function for one training example by E™ n €

{1,...,N}. So:

K

n 1 n n
B = 23 (5" —)

k=1

k=1
Additionally, the error function for one training example E™ is split into

the sum of expressions E,En), where E,g")

is the squared error function for
the n'* example of the k™ output of the network. In order to minimise the
mean error K RROR, we minimise sequentially the error £™ for all examples

n € {1,..., N}. Namely, we make:

110 APPENDIX C. BACKPROPAGATION ALGORITHM

1. Start at random point w(®.

2. For all weights g =1...d make:

(m) _ ,,(m=1) _
w, w, n o,

where 7) is a small positive learning constant.

3. If the stop condition is met, return w™, otherwise go back to 2.

Initially, in step 2, the weights connecting the output layer with the hid-
den layer are modified. Next, the weights connecting the hidden layer with
the input layer are altered. During calculation of output, we propagate input
signals form the first layer to the last layer, whereas during weights modific-
ation we propagate the error £ from the last layer to the first layer. This
is the reason of calling the discussed method the backpropagation algorithm.

During one step of adaptation of the network to (z(™, ™), the weights
are moved in the direction opposite to the gradient of £ but the formula
for this vector of partial derivatives is not so clear and now we would like to
derive it. In Figure C.6 we depict the weight wy; joining the &' unit in the
output layer with the 5% unit in the hidden layer.

input hidden
X1 layer layer

Do
N N~
Vi

NG

AN

0N
: ‘?” N

X0=1 (bias) yo=1 (bias)

Figure C.6: A synapse connecting the k* neuron in the output layer with

the 7% unit in the hidden layer is marked in red.

First, we find formula for all such weights wy; connecting the output layer

C.4. BACKPROPAGATION ALGORITHM 111

with the hidden layer. Since now, for notational simplicity we omit an index
denoting the number of a training example in presented formulas (e.g. F
means the same as E™).

Since it is know, that:

Rk = f(bk)a
b, = wiiy;
1 1 &
E= 5 Z(Zh —tp)° = 5 Z(f(bh) —tn)7,
h=1 h=1

it can be shown that:

OB 9 1

8wkj N 8wkj 2 he1 kaj 2

0F
In the previous formula, for notational convenience, we denoted -k by k.

Oby,
It is easy to show that:

OF ,
W: = (Sk = (Zk — Ifk)f (bk)

In turn:

Oby, 0
Owy; - 8wk'(wklyl + Wiz + - F WYy - WeaYs) = Yy
J j

So:
OFE OFE) Oby

8wkj B abk 8wkj

= 6kyj'

Now, we find partial derivatives for weights w;; connecting the hidden
layer with the input layer. In Figure C.7 we depict the weight wj; connecting

the j* neuron in the hidden layer with the i unit in the input layer.

112 APPENDIX C. BACKPROPAGATION ALGORITHM

Xo=

Figure C.7: A synapse connecting the j* neuron in the hidden layer with

the i unit in the input layer is marked in red.

Since E depends on a; and a; depends on wj;, from the chain rule we can

get:
0E O da,

8wji N 8aj 8’(1]]1

First, we simplify the formula for the partial derivative of a; with respect to

Wi

8aj 0
Dw. = —aw”(wjl.l?l + Wj2T2 + -+ Wj;T; + -+ lex[) = Tj.
Ju Jt

Next, we simplify the formula for the partial derivative of F with respect to

a;. Since we know that:

a; = wiz,
bk = w]tgya
Yj f(aj)7

it can be shown that:

OF 0 1o , e 01 . = 0E,
%—@§Z(f(bh)—th) _Z%§(f<bh)_th) —ZTj—
h=1 h=1 h=1
5 OB 5 0
~ < 9by, Ba; 4= "Ba,

C.4. BACKPROPAGATION ALGORITHM 113

Now, we calculate the partial derivative of b, with respect to a;:

oby, 0
Er %(wmyl + WhaYo + - F WhsY; o WhYg) =
J J
0
a(wmf(ch) +wpa f(ag) + - +wp; fla;) + - +wpsflay)) =
)

Own; f(a;) _ wn;Of (a;)
8aj aCL]’
what we apply to obtain:

= whjf/(aj)’

K K
> dwwni f'(a;) = (O dwwng) f'(ay)-
h=1 h=1

We denote the obtained formula for the partial derivative of E with respect
to a; by 9,. So, finally we get:
aE . G_E 6aj

8wji n 8aj 811)]'2'

= 6J.T,L

Having derived formulas for partial derivatives of the error function F

with respect to weights, we can introduce backpropagation algorithm:
1. Randomly pick initial weights.
2. Sequentially for each training example (z,t) do:

(a) Perform forward propagation of the input signals through the net-
work, for each unit remember its input sum and its output. So,

for the hidden nodes we calculate:

in turn, for the output nodes:
bk = wli;:‘/?

2k = f(bk>'

114

APPENDIX C. BACKPROPAGATION ALGORITHM

(b)

Perform backward propagation of the error £ through the net-
work, for each unit calculate § value. First we calculate ¢ values

for units in the output layer:
5k = (Zk — tk)f/(bk)

Next, for the units in the hidden layer:

K
0j = (Z xwiy) f'(az).
k=1
Keeping in mind that for the output units:
f1r) = 21(1 = z),
in turn, for the hidden units:
fia;) =y;(1 —yy),
if f is the sigmoidal function.

Update the weights. For the output layer apply the formula:

m+1 m
w,ij+) = w,ij) — N0RY;-

Equivalently, for the hidden layer:

w](-;nH) = w](;n) —n0;x;.

Here, n is a small positive learning constant e.g. n = 0.001.

3. If the error ERROR is still decreasing, go back to 2.

The multilayer perceptron trained by the backpropagation algorithm can

have more than one hidden layer. For many learning problems it is advisable,

to apply at least two hidden layers. For each unit in hidden layers, ¢ is

calculated in the same way. One must keep in mind that before values of §

for the units in the L™ layer are calculated, these values have to be calculated

for units in the L 4 1! layer. § for a given unit in the L™ layer, which is

hidden, depends on ¢-s from the L + 1% layer.

Acknowledgments

The author would like to mention prof. Tomasz Schreiber (1975-2010), a
brilliant mathematician and computer scientist, professor at the Faculty of
Mathematics and Computer Science, Nicolaus Copernicus University. He had
the greatest influence on the subject of this work and direction of scientific
interests of the author.

The author acknowledges the help of supervisor — prof. Jacek Miekisz
for trust and patience.

The author would like to thank Jarostaw Piersa for many discussions

concerning scientific interests and motivation to finish the dissertation.

115

116 APPENDIX C. BACKPROPAGATION ALGORITHM

Bibliography

1]

2l

3]

4]

[5]

(6]

T. G. Abbot, Generalizations of Kempes Universality Theorem, MSc
thesis, MIT (2008) 81

B. D. O. Anderson, B. Fidan, J. M. Hendrickx, C. Yu: Rigidity and
Persistence for Ensuring Shape Maintenance of Multiagent Meta Form-

ations, Asian Journal of control, 10, Issue 2 (special issue on Collective
Behaviour and Control of Multi-Agent Systems), 131-143, (2008) 81

L. Asimov, B. Roth, The Rigidity of Graphs, Trans. Amer. Math. Soc.
245, 279-289, (1978) 79

A. R. Atilgan, S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Ke-
skin, 1. Bahar, Anisotropy of fluctuation dynamics of proteins with
an elastic network model, Biophysical journal, 80(1), 505-515, DOI:
10.1016/S0006-3495(01)76033-X 11, 12, 40

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H.
Weissig, I. N. Shindyalov, P. E. Bourne, The Protein Data Bank, Nuc-
leic Acids Research 28, 235-242, (2000) 7, 9, 39

R. Connelly, W. Whiteley, Second-Order Rigidity and Prestress Stabil-
ity for Tensegrity Frameworks, STAM Journal of Discrete Mathematics
9, 453-491, (1996) 12, 20, 79

117

118

BIBLIOGRAPHY

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Connelly, Rigidity and energy, Inventiones Mathematicae 66, 11-33,
(1982) 12, 20

R. Connelly, Generic global rigidity, Discrete Comp. Geometry 33, 549—
563, (2005) 81

A. L. Cauchy, Sur les polygones et les polyedres XVIe Cahier IX, 87-89,
(1813) 79

A. L. Cauchy, Méthode générale pour la r’esolution des systéms déqua-
tions simultanées, Comp. Rend. Sci. Paris, 25, 46-89, (1847) 103

M. Czokoéw, T. Schreiber, Adaptive Spring Systems for Shape Program-
ming, ICAISC 2010, Part II, LNAI 6114, 420-427, (2010) 7, 10, 19

M. Czokow, T. Schreiber, Structure Searching for Adaptive Spring Net-
works for Shape Programming in 3D, ICAISC 2012, PART II, LNCS
7268, 207215, (2012) 7, 10, 30

M. Czokéw, J. Miekisz, Influence of a Topology of a Spring Network
on its Ability to Learn Mechanical Behaviour, PPAM 2013, PART 1,
LNCS 8384, 412422, (2014) 7, 10

G. M. Crippen, T.F. Havel, Distance Geometry and Molecular Con-
formation, Wiley, New York, (1988) 11, 12

A. A. Gusev, Finite Element Mapping for Spring Network Represent-
ations of the Mechanics of Solids, Phys. Rev. Lett. 93, 034302, (2004)
11

E. Granato, S. C. Ying, Dynamical transitions and sliding friction in
the two-dimensional Frenkel-Kontorova model, Phys. Rev. B 59, 5154,
(1999) 11

BIBLIOGRAPHY 119

[17]

[18]

[19]

20]

[21]

[22]

23]

[24]

[25]

[26]

J. Graver, B. Servatius, H. Servatius, Combinatorial Rigidity, Graduate
Studies in Math., AMS, (1993) 82

W. Greiner, Classical Mechanics: Systems of Particles and Hamilto-

nian Dynamics, Classical theoretical physics, Springer, (2010) 85

B. Jackson, A necessary condition for generic rigidity of bar-and-joint
frameworks in d-space, arXiv:1104.4415, (2011) 81

M. Kelloméki, J. Astrom, J. Timonen Rigidity and Dynamics of Ran-
dom Spring Networks, Phys. Rev. Lett. 77, 2730, (1996) 11

A. Kilian, J. Ochsendorf, Particle-Spring Systems for Structural Form
Finding, Journal of the International Association for Shell and Spatial
Structures: TASS, 46, (2005) 11

S. Kmiecik, D. Gront, M. Kolinski, L. Wieteska, A. E. Dawid, A. Kolin-
ski: Coarse-Grained Protein Models and Their Applications, Chemical
Reviews 2016 116 (14), 7898-7936, (2016) 40

J. Kovacs, P. Chacon, R. Abagyan: Predictions of protein flexibility:
first-order measures Proteins, 56(4), 661-668, (2004) 40

G. Laman, On graphs and rigidity of plane skeletal structures, J. Eng.
Mathematics, 4, 331-340, (1970) 82

P. Maragakis, M. Karplus, Large amplitude conformational change in
proteins explored with a plastic network model: adenylate kinase, J.
Mol. Biol., 2005, 352, 807-822, (2005) 40

J. A. Mccammon, B. R. Gelin, M Karplus, Dynamics of folded proteins,
Nature, 267, 585-590, (1977) 40

120

BIBLIOGRAPHY

27|

28]

[29]

[30]

[31]

[32]

33

[34]

O. Miyashita, Nonlinear elasticity, proteinquakes, and the energy land-
scapes of functional transitions in proteins, Proc. Natl. Acad. Sci. USA,
100, 12570-12575, (2003) 40

K. I. Okazaki, N. Koga, S. Takada, J. N. Onuchic, P. G. Wolynes,
Multiple-basin energy landscapes for large-amplitude conformational

motions of proteins: Structure-based molecular dynamics simulations,
Proc. Natl. Acad. Sci. USA, 103, 11844-11849, (2006) 40

R. Olfati-Saber, R. M. Murray, Graph Rigidity and Distributed Form-
ation Stabilization of Multi-Vehicle Systems, Proc. of the 41st IEEE
Conf. on Decision and Control, Las Vegas, Nevada, (2002) 12, 79, 81

L. Orellana, M. Rueda, C. Ferrer-Costa, J. R. Lopez-Blanco, P.
Chacon, M. Orozco, Approaching Elastic Network Models to Molecular
Dynamics Flexibility, J. Chem. Theory Comput. 2010, 6, 2910-2923,
(2010) 40

L. Orellana, Large-Scale Conformational Changes and Protein Func-
tion: Breaking the in silico Barrier, Frontiers in molecular biosciences,
(2019) 39

M. Ostoja-Starzewski: Lattice Models in Micromechanics, Appl. Mech.
Rev. 55, 35-60, (2002) 11

F. Rosenblatt, A probabilistic model for information storage and or-
ganization in the brain, Psychological Review, 65(6), 386-408, (1958)
104

M. Rueda, P. Chacon, M. Orozco, Thorough validation of protein nor-
mal mode analysis: a comparative study with essential dynamics, Struc-
ture, 15(5), 565-575, (2007) 41

BIBLIOGRAPHY 121

[35]

[36]

[37]

[38]

[39]

[40]

P. Sfriso, A. Hospital, A. Emperador, M. Orozco, Exploration of
conformational transition pathways from coarse-grained simulations,
Bioinformatics, 2013 15 Aug, 29(16), 1980-1986, (2013) 40, 41, 42,
43, 44

F. Tama, Y. H. Sanejouand, Conformational change of proteins arising

from normal mode analysis, Protein Engineering, 14, 1-6, (2001) 39

V. Tozzini, Coarse-grained models for proteins, Current opinion in
structural biology, 15, issue 2, 144-150, (2005) 40

A. E. Varvitsiotis, Algebraic and combinatorial techniques in rigidity
theory, MSc thesis, (2009), http://users.uoa.gr/ avarvits/MSc.pdf 81,
83

P. Werbos, Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences, PhD thesis, Harvard University, (1974) 109

W. Zheng, M. Tekpinar, Analysis of protein conformational transitions
using elastic network model, Methods Mol Biol 2014, 1084, 159-172.
40

	Table of Contents
	Abstract
	Streszczenie
	Introduction
	Motivation
	Research methodology
	Thesis structure
	Main dissertation results

	Spring system model
	Newtonian dynamics
	Spring system model and its dynamics
	Partition of the nodes
	Relaxation

	System adaptation for mechanical behaviour
	Goal
	Parametric learning algorithm
	Relation between parametric learning and backpropagation algorithm
	Determining of non-stabilised nodes

	Generating graph G topology for adaptive spring systems
	Stability of equilibrium states
	Learning with a noise factor
	Exploration of the Hamiltonian profile

	Conclusions

	Protein model
	Introduction to biology of proteins
	Implementation of the spring system method
	Results
	Effectiveness of the approach
	Physical properties of protein like systems
	Graphical representation of trained protein

	Conclusions

	Numerical results
	Prerequisites
	Construction of a synthetic learning problem
	Generation of a set of training examples
	Setting initial values of spring parameters

	Relaxation procedure
	Properties of parametric learning algorithm
	Dynamics of error during adaptation process
	Stop condition

	Number of resources of a graph G = (V,E)
	Explored cases
	Conclusions

	Energy profile and noise factor properties
	Conclusions

	Conclusions
	Summary
	Further research

	Rigid graphs
	Rigid graph
	Generic rigidity
	Henneberg constructions
	Degrees of freedom of rigid graph

	Pseudocode
	Relaxation
	Parametric learning algorithm
	Stop condition
	Numerical precision of the calculation of the learning algorithm
	Algorithm generating graph topology
	Algorithm for generation of training examples
	A noise factor
	Noise robustness

	Backpropagation algorithm
	Artificial neural networks
	Gradient descent algorithm
	Sigmoidal perceptron
	Backpropagation algorithm

	Acknowledgments
	Bibliography

