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Abstract

This dissertation is devoted to the study of combinatorial properties of the class of monoids

called Hecke�Kiselman monoids, as well as the structure and irreducible representations of

the associated monoid algebras over a �eld, called Hecke�Kiselman algebras. Every such a

monoid HKΘ is de�ned by a presentation depending on a �nite graph Θ. Here we consider

only �nite graphs Θ with oriented edges.

The case of the Hecke�Kiselman monoid Cn associated to an oriented cycle of length

n ⩾ 3 is crucial in the investigation of any in�nite-dimensional Hecke�Kiselman algebra. We

investigate the surprising ideal structure inside Cn to prove that the associated semigroup

algebra K[Cn] is a semiprime Noetherian algebra. The classical ring of quotients is also

described. These results are then applied to characterize the radical of any Hecke�Kiselman

algebra that satis�es a polynomial identity. Note that the latter condition can be expressed

in terms of properties of the corresponding graph. Moreover we characterize all oriented

graphs Θ for which the algebra K[HKΘ] is right (left) Noetherian.

Irreducible representations of the Hecke�Kiselman algebraK[Cn] associated to an oriented

cycle of length n ⩾ 3 are described. They come from either the representations of the

semigroups of matrix type occurring in the quotients of the ideal structure of Cn or are

one-dimensional and arise from idempotents in a way similar to the representations of �nite

J -trivial monoids. This result is then applied to the general case of Hecke�Kiselman algebras

that satisfy a polynomial identity.

We also �nd a numerical invariant of the graph Θ that describes the Gelfand�Kirillov

dimension of the corresponding algebra K[HKΘ].

Moreover, it is proved that the monoid HKΘ satis�es a semigroup identity if and only if Θ

does not contain two di�erent cycles connected by an oriented path. The explicit construction

of a semigroup identity for the monoid associated to a cycle of any length is described.

The obtained results are illustrated with the Hecke�Kiselman algebras of the monoids C3

and C4 associated to cycles of length 3 and 4.
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Streszczenie

Niniejsza rozprawa po±wi¦cona jest badaniu wªasno±ci kombinatorycznych monoidów Hecke�

Kislemana oraz struktury i reprezentacji nieprzywiedlnych stowarzyszonych z nimi algebr

póªgrupowych, które b¦dziemy nazywa¢ algebrami Hecke�Kiselmana. Ka»dy taki monoid

HKΘ zadany jest przez prezentacj¦ zwi¡zan¡ z pewnym sko«czonym grafem Θ. Wszystkie

rozpatrywane w pracy grafy s¡ zorientowane.

Okazuje si¦, »e przypadek monoidu Cn zwi¡zanego ze zorientowanym cyklem dªugo±ci n ⩾
3 jest kluczowy w badaniu wªasno±ci dowolnych niesko«czonych monoidów oraz algebr Hecke�

Kiselmana. Zbadanie wªasno±ci pewnego wa»nego ªa«cucha ideaªów w Cn pozwala nam

udowodni¢, »e algebra póªgrupowa K[Cn] nad ciaªem K jest póªpierwsza oraz Noetherowska.

Charakteryzujemy w pracy klasyczny pier±cie« uªamków tej algebry. Nast¦pnie otrzymane

rezultaty zostaj¡ zastosowane do wyznaczenia radykaªu dowolnej algebry Hecke�Kiselmana

K[HKΘ], która speªnia to»samo±¢ wielomianow¡. Warunek ten mo»na ªatwo wyrazi¢ w j¦zyku

wªasno±ci stowarzyszonych grafów. Ponadto podajemy charakteryzacj¦ grafów, dla których

algebra K[HKΘ] jest prawostronnie oraz lewostronnie Noetherowska.

Kolejnym rozpatrywanym zagadnieniem s¡ reprezentacje nieprzywiedlne. W pracy zostaje

udowodnione, »e w przypadku algebry Hecke�Kiselmana K[Cn] nad ciaªem algebraicznie

domkni¦tym K reprezentacje nieprzywiedlne pochodz¡ od reprezentacji struktur typu ma-

cierzowego wyst¦puj¡cych w ªa«cuchu ideaªów w Cn lub s¡ jednowymiarowe i stowarzyszone

z idempotentami w Cn, analogicznie do dobrze znanego przypadku reprezentacji sko«czonych

J -trywialnych monoidów. Wynik ten umo»liwia opisanie reprezentacji w przypadku dowol-

nych algebr Hecke�Kiselmana speªniaj¡cych to»samo±¢ wielomianow¡.

Nast¦pnie charakteryzujemy wymiar Gelfanda�Kirillova dowolnych algebr Hecke�Kiselmana

za pomoc¡ pewnego numerycznego niezmiennika stowarzyszonych grafów.

Ponadto udowadniamy w pracy, »e monoid HKΘ speªnia to»samo±¢ póªgrupow¡ wtedy

i tylko wtedy, gdy graf Θ nie zawiera dwóch ró»nych cykli poª¡czonych zorientowan¡ ±cie»k¡

dowolnej dªugo±ci. Jest to równowa»ne temu, »e algebra K[HKΘ] speªnia to»samo±¢ wielo-

mianow¡.

Ostatnia cz¦±¢ pracy stanowi ilustracj¦ otrzymanych wyników dla przypadku monoidów

C3 i C4 stowarzyszonych z cyklami dªugo±ci 3 oraz 4.
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Introduction

Many important algebraic structures occurring in mathematics are de�ned by imposing gen-

erators and relations between them. Celebrated examples include the braid group and the

braid monoid, as well as Iwahori�Hecke algebras of Coxeter groups, that play a signi�cant

role in particular in knot theory, algebraic combinatorics and quantum groups. In these

structures the braid relation, that is the relation xyx = yxy for generators x and y, and its

various generalizations occur.

The dissertation is concerned with a class of monoids and their monoid algebras given by

�nite presentations related to braid relations, depending on associated oriented graphs.

Let Θ be an oriented �nite graph with n vertices, denoted by x1, . . . , xn with at most

one edge between two vertices and without edges that connect a vertex to itself. Then the

corresponding Hecke�Kiselman monoid HKΘ is de�ned as follows.

1) HKΘ is generated by x1, . . . , xn with x2i = xi for every i = 1, . . . , n.

2) If there is an edge xi → xj in Θ, then xixj = xixjxi = xjxixj in the monoid HKΘ.

3) If vertices xi and xj are not connected by an edge, then the relation xixj = xjxi is

imposed.

This is a special case of a more general de�nition of Hecke�Kiselman monoids associated

to the graphs Θ with both oriented and unoriented edges. If there is an unoriented edge

between xi and xj, then the braid relation xixjxi = xjxixj holds in HKΘ.

Hecke�Kiselman monoids were introduced by Ganyushkin and Mazorchuk in the pa-

per [18] as a generalization of two classes of �nite monoids, one coming from representation

theory and the second occurring in convexity theory, that share certain structural properties.

Various aspects of such monoids, mainly of a combinatorial nature, have been studied in a

series of papers [3�5,10,11,16,18�20,29,33,39,40].

Our �rst motivation for the study of Hecke�Kiselman monoids comes from the fact that

these monoids are homomorphic images of 0-Hecke monoids, [42]. The latter come from a

specialization of Iwahori�Hecke algebras, occurring naturally in the representation theory of

Coxeter groups. For an overview we refer the reader to Chapter 5 of [25].

For any set S and a function m : S × S → {1, . . . ,+∞} such that m(s, s′) = m(s′, s) for

all s, s′ ∈ S and m(s, s′) = 1 if and only if s = s′, the corresponding Coxeter group W is
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given by the (group) presentation

⟨s ∈ S | (ss′)m(s,s′) = 1 for all s, s′ ∈ S with m(s, s′) ̸= +∞⟩.

The pair (W,S) is called a Coxeter system. Equivalently, a function m in the above de�nition

is often presented as an unoriented graph with the set of vertices identi�ed with S and exactly

m(s, s′)− 2 edges between vertices s, s′ ∈ S. Coxeter groups arise in several distant branches

of mathematics. As Weyl groups of root systems, they play an important role in Lie theory,

in the classi�cation of complex semisimple Lie algebras. In certain cases Coxeter groups can

be also interpreted as real re�ection groups, [22], interesting from the geometric point of

view. Moreover, several combinatorial aspects have been studied, [7].

Iwahori�Hecke algebras of Coxeter systems are deformations of group algebras of these

groups, depending on the parameter q. More precisely, for a Coxeter system (W,S), the

Iwahori�Hecke algebra Hq(W,S) is a unital algebra over a �xed �eld generated by elements

of the set of generators S, denoted by Ts (T1 = 1) and relations

(Ts − q)(Ts + 1) = 0, for all s ∈ S

(TsTs′)m(s,s′) = (Ts′Ts)m(s,s′) for all s ̸= s′,

where the lower index m(s, s′) indicates the number of factors in the expressions of the form

TsTs′Ts . . .. Consequently, for q = 1 we get the group algebra of (W,S). In the second special

case of the specialization at q = 0, the Iwahori�Hecke algebra is the monoid algebra of the

so-called 0-Hecke monoid. For the function m from the de�nition of a Coxeter group, such a

monoid is generated by the set S and relations of the form s2 = s and (ss′)m(s,s′) = (s′s)m(s′,s).

It has been proved that there exists a bijection between the elements of a Coxeter group (W,S)

and of the 0-Hecke monoid coming from this group, [55]. Therefore such a monoid can be

treated as a semigroup analogue of the associated Coxeter group. The representation theory

of 0-Hecke monoids has been characterized by Norton in [42]. These results have been then

used to build a rich combinatorial approach to these representations in [21].

Moreover, slightly di�erent families of algebras related to Coxeter systems are also studied,

such as for example nil-Coxeter algebras, and their generalizations, [26]. Nil-Coxeter algebras

are given by the same relations as in the group algebra of a Coxeter group except for s2 = 1,

which is replaced by s2 = 0. Introduction of such classes of algebras is motivated in particular

by connections to geometry [15], combinatorics and categori�cation [26].

Let us also note that the ideal structures inside the Hecke�Kiselman monoids associated

to an oriented cycle of any length discovered in [45] have the �avour of the cell ideals of the

so called a�ne cellular algebras [27], that play an important role in representation theory of

some classes of algebras, including various Iwahori�Hecke algebras. In this context the study

of Hecke�Kiselman monoids seems to be well-founded because of the possible connections

and applications to those theories.

Both classes of monoids that led to the de�nition of the Hecke�Kiselman monoids, namely
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0-Hecke monoids and Kiselman's monoids, are examples of �nite monoids that are J -trivial,
[29]. In particular, their irreducible representations admit a nice description, that can be

found for example in [12] and in [53]. In general a characterization of oriented graphs such

that the associated Hecke�Kiselman monoids are J -trivial is not known. On the other hand,

all �nite Hecke�Kiselman monoids associated to oriented graphs and the in�nite monoid

associated to an oriented cycle of any length have this property, [18] and [11]. In this

setting the description of irreducible representations of the latter monoid, obtained in the

dissertation, �ts into the study of possible generalizations of the representation theory of (not

necessarily �nite) J -trivial monoids.

What is more, the class investigated in this dissertation plays certain role in representation

theory of �nite dimensional algebras. Namely, it has been proved in [19] that monoids

generated by the so-called projection functors of simple modules over special classes of path

algebras of �nite quivers are isomorphic to certain �nite Hecke�Kiselman monoids. Moreover,

a categorical approach to the representation theory is investigated in the paper [20] in the

case of Hecke�Kiselman monoids associated to special acyclic graphs.

Hecke�Kiselman monoids are also useful in the study of the mathematical language of

computer simulations. Namely, �nite Hecke�Kiselman monoids HKΘ �nd a natural realiza-

tion in a combinatorial approach to the so-called sequential dynamical systems de�ned with

the use of the graph Θ, [10].

The next motivation to study Hecke�Kiselman monoids comes from connections with

the Yang�Baxter equation. The quantum Yang�Baxter equation is one of the equations

arising in mathematical physics that initiated a rapid development of a wide range of studies

in several branches of mathematics, such as some aspects of Hopf algebras, knot theory and

quantum groups, [24]. As �nding all solutions seems to be extremely hard, it was proposed by

Drinfel'd in [13] to study a special class of solutions, called set-theoretic solutions. Since then

the problem has been extensively explored using various methods built (among others) on:

noncommutative rings [51], group theory [14], and semigroup theory [23,32]. In particular, the

so-called structure group, monoid and the algebra that can be associated to any set-theoretic

solution have been proved extremely useful, [14, 23]. It is well-known that every solution

of the Yang�Baxter equation induces a representation of the braid group. Moreover, the

special class of idempotent solutions, introduced in [32], induces representations of 0-Hecke

monoids and can be used in the study of homological aspects of other important classes of

monoids. Note that in the paper [33] of Lebed certain representations of Hecke�Kiselman

monoids inspired by the Yang�Baxter equation are constructed. Moreover, representations

of the symmetric groups have been already applied in the context of solutions of the Yang�

Baxter equation in [34]. The obtained results justify extending research to wider classes of

associative algebras that could be used to construct new solutions of Yang�Baxter equation.

These were the main motivations for the research project that has lead to the results of

the dissertation. The main aims were to describe structural and combinatorial properties

of Hecke�Kiselman algebras and to built representation theory of these algebras. Most of

the results of the thesis have been published in [45, 46, 57, 58]. However, some other original
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results have not been published yet; these include in particular the results of Chapter 7

and of Section 8.5.

Structure and main results of the dissertation

In Chapter 1 we introduce the mathematical notions and the necessary background on

noncommutative ring theory and semigroup theory, that will be used in the further parts of

the thesis. Next, after giving the de�nition of the Hecke�Kiselman monoids and algebras,

selected known results about the combinatorics on words in these monoids and certain prop-

erties of their algebras are described. These include a description of a Gröbner basis and

a characterization of Hecke�Kiselman algebras that satisfy a polynomial identity, stated in

Theorem 1.63 and Theorem 1.72.

Chapter 2 is devoted to the structure of the Hecke�Kiselman monoids Cn associated to

oriented cycles of length n ⩾ 3. The importance of this case comes from the fact that the

monoid HKΘ is �nite if and only if the graph Θ is acyclic. The main results are Theorem 2.1,

Theorem 2.44 and Theorem 2.52. First, a characterization of almost all reduced words in

Cn is provided. It is then applied to construct a surprising ideal chain inside this monoid

with factors that are, up to �nitely many elements, semigroups of matrix type. Lastly, we

prove that the semigroup algebras associated to such semigroups are prime algebras. The

signi�cant part of this chapter is based on the results obtained during author's master's

studies. Therefore, instead of providing full proofs, we often outline only the main ideas. On

one hand, this is to explain the nature of the technical auxiliary lemmas, on the other hand,

some of these results are also used in the subsequent parts of the thesis. Section 2.4 contains

theorem proved during author's PhD studies. The content of this chapter is mostly based on

the paper [45], written jointly with Jan Okni«ski.

In Chapter 3 the radical of Hecke�Kiselman algebras that satisfy a polynomial identity

is described. Note that this condition can be expressed in terms of the properties of the

corresponding graph. The case of the algebra K[Cn] associated to an oriented cycle turns

out to be a crucial step. Using the properties of structures of matrix type from the previous

chapter, it is proved that the algebra is semiprime in this case. As a by-product we describe

the maximal chains of prime ideals and the classical ring of quotients of K[Cn]. We also prove

that this algebra is Noetherian. Finally, we proceed inductively to show that every Hecke�

Kiselman algebra which is PI has a radical which can be described by a certain congruence in

the monoid and the algebra modulo the radical is another Hecke�Kiselman algebra associated

to a subgraph of the original graph, admitting a clear description. The main results are

collected in Theorem 3.3, Theorem 3.5 and Theorem 3.9. The chapter is based on the joint

work with Jan Okni«ski, [46].

The main result of Chapter 4 is the complete characterization of oriented graphs Θ, for

which the Hecke�Kiselman algebra is right (left) Noetherian, Theorem 4.2. As the most

di�cult case of the algebra associated to an oriented cycle of any length is resolved in the

previous chapter, Lemma 4.1 is su�cient to complete the proof. The results of this chapter

were obtained in the author's master's thesis and were published in [45].
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Chapter 5 is devoted to the irreducible representations of Hecke�Kiselman algebras over an

algebraically closed �eld that satisfy a polynomial identity. As in the case of other properties,

the case of the algebra K[Cn] associated to an oriented cycle is crucial. This chapter starts

with a characterization of idempotents in Cn. This result had been known before, but we

characterize reduced forms of idempotents and provide an alternative proof for the sake of

completeness. Then the semigroups of matrix type, discovered inside the monoid Cn in

Chapter 2, are exploited to show that irreducible representations of K[Cn] either are induced

by those of semigroups of matrix type or are one-dimensional representations arising from

idempotents in the way similar to that known for �nite J -trivial monoids (see [53]). As

a consequence, we are able to characterize all maximal ideals of K[HKΘ] which satis�es

a polynomial identity. Irreducible representations of such algebras are then described. The

main results of this chapter are collected in Theorem 5.8, Proposition 5.10 and Theorem 5.12.

This work was published in the paper [57].

In Chapter 6 we focus on the growth of algebras. It had been known before that the

Gelfand�Kirillov dimension of any Hecke�Kiselman algebra is either a �nite integer or in�-

nite and it is equal to 1 for the algebra associated to an oriented cycle of any length. In

Theorem 6.12 we give a characterization of the Gelfand�Kirillov dimension of K[HKΘ] in

terms of a numerical invariant of the graph Θ. Namely, the dimension is equal to the sum

of the lengths of paths of certain speci�c type in the graph Θ and the number of cyclic sub-

graphs of the graph. The obtained theorem relies on the result asserting that Hecke�Kiselman

algebras are automaton, [40]. This part of the dissertation is published in the paper [58].

Chapter 7 is concerned with the semigroup identities of Hecke�Kiselman monoids. The

existence of such an identity in the case of �nite monoids can be deduced from known results.

Therefore we focus on the case when the monoid HKΘ is in�nite. Semigroups of matrix type

are used to construct an explicit identity in the case of the monoid Cn associated to a cycle of

any length n, Theorem 7.1. Then an inductive construction is used to prove that the Hecke�

Kiselman monoid satis�es a semigroup identity if and only if the graph does not contain two

di�erent cycles connected by an oriented path, Theorem 7.2. The latter condition is known

to be equivalent to the property that the monoid does not contain free submonoids of rank

2 and also to the fact that the corresponding algebra satis�es a polynomial identity.

Chapter 8 illustrates our main results with the Hecke�Kiselman monoid C3 and the algebra

K[C3] associated to the cycle of length 3 and partially with the monoid C4 associated to the

cycle with 4 vertices. Then a subalgebra Z of the centre of K[C3] such that K[C3] is a

�nite module over Z is described, using two methods. Calculations involve explicit forms of

reduced words representing elements of the semigroups of matrix type inside C3. While we

proved that K[Cn] is a �nite module over its center for every n ≥ 3, a description of the

center is not known. Thus, we end with several remarks about limitations of the methods

used in this example.
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Chapter 1

Preliminaries

In this chapter we recall basic notions and results of ring theory and semigroup theory used

in the thesis. Moreover we present the de�nition and preliminary results on Hecke�Kiselman

monoids and their algebras.

1.1 Ring theory background

1.1.1 Introduction

Let us introduce the necessary terminology on noncommutative ring theory and theory of

radicals. Note that we will touch only a few selected aspects of the theory that will be

applied in our context. We refer the reader to the book [38] for a comprehensive overview of

the subject.

All considered rings are associative rings, with an identity 1, if not speci�ed otherwise.

If a left or right R-module M has the property that for any ascending chain M0 ⊆M1 ⊆
M2 ⊆ · · · of submodules of M there exists an integer n such that Mn =Mn+1 = . . ., then we

say that M satis�es the ascending chain condition on submodules.

De�nition 1.1. A left (right) R-module M is Noetherian if it satis�es the ascending chain

condition on submodules. A ring R is left (right) Noetherian, if it is Noetherian when viewed

as a left (right) R-module. Finally, a ring is Noetherian if it is right and left Noetherian.

Example 1.2. 1) Every �eld is Noetherian.

2) The well-known Hilbert basis theorem states that the polynomial ring R[x] over a

Noetherian ring R is also Noetherian.

3) Mn(R) is right Noetherian if and only if R is right Noetherian.

The descending chain condition is de�ned dually. A left (right) R-module M is Artinian,

if it satis�es the descending chain condition on submodules. In particular, a ring R is right

(left) Artinian if it is Artinian as right (left) R-module. A ring is Artinian if it is right and left
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Artinian. It is easy to check that Z is Noetherian but not Artinian ring. On the other hand,

although these two notions seem to be symmetrical, the famous Hopkins�Levitzki theorem

states that every right Artinian ring is right Noetherian. Let us also note that the following

proposition holds.

Proposition 1.3. If M is a �nitely generated left module over a left Noetherian (Artinian)

ring, then M is a Noetherian (Artinian, respectively) module.

1.1.2 Prime rings and prime radical

De�nition 1.4. An ideal P of a ring R is said to be prime if for any ideals I, J of R from

IJ ⊆ P it follows that I ⊆ P or J ⊆ P . A ring R is called prime if {0} is a prime ideal in R.

Let us mention an alternative equivalent de�nition. An ideal P of R is prime if for any

elements a, b the condition aRb ⊆ P implies that a ∈ P or b ∈ P . We can also replace in the

de�nition two�sided ideals with one-sided ideals; that is P is prime if for any two left (right)

ideals I, J from IJ ⊆ P it follows that I ⊆ P or J ⊆ P .

Example 1.5. 1) If R is a commutative ring, then it is prime if and only if it is an integral

domain.

2) The matrix ring Mn(R) over a ring R is prime if and only if R is a prime ring.

A minimal prime ideal of R is any prime ideal in R which does not contain properly any

other prime ideal of R. It can be proved that every prime ideal contains a minimal prime

ideal.

De�nition 1.6. The intersection of all prime ideals in a ring R is called the prime radical

of R and will be denoted by P(R).

Example 1.7. 1) If R = K[x]/(x2), then (x) is the only prime ideal and thus P(R) = (x).

2) It can be proved that P(Mn(R)) =Mn(P(R)) for any ring R.

It can be proved that P(R) is always a nil ideal of R, that is for every x ∈ P(R) there
exists n ⩾ 1 such that xn = 0. Moreover from the de�nition it follows that every nilpotent

ideal (that is an ideal I such that In = {0} for some n ⩾ 1) is contained in P(R).

De�nition 1.8. An ideal Q of a ring R is said to be semiprime if for any ideal I in R the

condition I2 ⊆ Q implies that I ⊆ Q. A ring R is semiprime, if {0} is a semiprime ideal

in R.

An alternative condition involving elements of the ring instead of its ideals is that an

ideal I is semiprime if for any element a ∈ R from aRa ⊆ I it follows that a ∈ I. There is

a strong relation between the notions of the prime radical and the semiprime ring. Namely,

the following holds.
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Proposition 1.9. A ring R is semiprime if and only if P(R) = {0}.

From the de�nitions it is easy to see that any direct product of semiprime rings is

semiprime. Therefore from the previous example we can construct the following example.

Example 1.10. If Ri are semiprime rings for i = 1, . . . , k then the ring

Mn1(R1)×Mn2(R2)× · · · ×Mnk
(Rk)

is semiprime.

Note that from the de�nition of a semiprime ring it follows that for any a ∈ R such that

aRa = 0 we know that a ∈ P(R).

1.1.3 Primitive rings and Jacobson radical

We say that a left (right) R-moduleM ̸= {0} is simple if it has no submodules di�erent than

{0} and M . The annihilator of a left (right) R-module M is de�ned as annR(M) = {r ∈ R :

rM = 0} (annR(M) = {r ∈ R : Mr = 0}, respectively). A left (right) R-module M is said

to be faithful if annR(M) = {0}.

De�nition 1.11. A ring R is called left (right) primitive if it has a simple faithful left (right,

respectively) module. An ideal P of R is left primitive if R/P is a left primitive ring.

The following useful proposition holds.

Proposition 1.12. Left (right) primitive ideals of R are exactly annihilators of simple left

(right) R-modules.

Example 1.13. 1) If R is a commutative ring, then every simple R-module M is of the

form R/P for a maximal ideal P such that P = annR(M). It follows that left and right

primitive ideals in this case are exactly maximal ideals of R.

2) Every maximal ideal is right and left primitive.

Note that every left (right) primitive ring is prime, but the converse is not true, as

for example the polynomial ring C[x] over complex numbers is prime but not left (right)

primitive.

De�nition 1.14. The Jacobson radical of a ring R, denoted by J (R), is the intersection of

all left primitive ideals in R.

Alternatively, the Jacobson radical of R can be characterized as the intersection of anni-

hilators of all simple left (or right) R-modules or as the intersection of all maximal left ideals

in R.

Despite the fact that left primitive ideals occur in the above de�nition, the notion of the

Jacobson radical is left-right symmetric.
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Example 1.15. 1) If R = K[x]/(x2) for a �eld K, then J (R) = (x), as (x) is the only

maximal ideal in R.

2) For any ring R it is known that J (Mn(R)) =Mn(J (R)).

A ring R is called semiprimitive if J (R) = {0}. This notion is analogous to the de�nition

of a semiprime ring discussed before.

Let us observe that directly from the de�nition we get the inclusion P(R) ⊆ J (R) for
any ring R. In many important cases these two notions of radicals coincide. For example we

have the following.

Proposition 1.16. If R is a left Artinian ring, then J (R) = P(R), and it is a nilpotent

ideal.

As in the dissertation we are mainly interested in the case of another class of rings R for

which P(R) = J (R), we do not dwell into the details of the general theory.

1.1.4 Gelfand�Kirillov dimension

Let us introduce the de�nitions related to the Gelfand�Kirillov dimension, called also GK

dimension, for short. This dimension describes an asymptotic behaviour of the growth of

algebras and is a basic tool in the study of noncommutative algebras.

We restrict our attention to �nitely generated algebras over a �eld K. For the de�nition

in full generality and for more information we refer the reader to [28]. Let A be a �nitely

generated algebra. A generating subspace V of A is any �nite dimensional K-subspace such

that A is generated by V as a K-algebra. Such a subspace always exists, as we can consider

the space spanned by the �nite set of generators of A.

De�nition 1.17. Let A be a �nitely generated algebra over a �eld K and V be an arbitrary

generating subspace of A. The growth function of A with respect to V is given by

dV (n) = dimK(V
0 + . . .+ V n),

where V k = linK{v1 · · · vk : vi ∈ V for i = 1, . . . , k} for any k ⩾ 0, with V 0 = K.

The growth function depends on the choice of a generating subspace of an algebra. To

obtain an invariant of an algebra we consider the asymptotic behaviour of this function.

Arbitrary non-decreasing functions f, g : N → R+ are said to be equivalent, if there are

integer constants c1, c2 and m1,m2 such that f(n) ⩽ c1g(m1n) and g(n) ⩽ c2g(m2n) for all

but �nitely many natural numbers n. Then it can be shown, [28, Lemma 2.1], that if f and

g are equivalent, then lim supn→∞ logn f(n) = lim supn→∞ logn g(n).

It can be easily veri�ed that if V and W are two generating spaces of an algebra A,

then dV and dW are equivalent. Consequently, lim supn→∞ logn dV (n) does not depend on

the choice of V .
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De�nition 1.18. The Gelfand�Kirillov dimension of a �nitely generated algebra A, which

we will denote by GKdim(A), is de�ned as follows

GKdim(A) = lim sup
n→∞

logn dV (n),

where dV (n) is the growth function of the algebra A with respect to an arbitrary generating

subspace V of A. As explained above, the de�nition does not depend on the choice of V .

Possible values of the Gelfand�Kirillov dimension are in the set {0} ∪ {1} ∪ [2,∞]. In

particular, there exist algebras with a non-integer dimension. Moreover, an algebra is of zero

GK dimension if and only if it is �nite dimensional and in the class of �nitely generated

commutative algebras GK dimension coincides with the classical Krull dimension (de�ned as

the supremum of the lengths of chains of prime ideals).

Example 1.19. In the case of the monoid algebra K[M ] associated with a �nitely generated

monoid M generated by a set Z containing the identity element of M , a generating subspace

can be chosen as V = linK Z. Then the growth function dV is the rate of growth of the

monoid, that is dV (n) = |{m ∈ M : m = m1 . . .mk, k ⩽ n,mi ∈ Z}|. Consequently, the GK
dimension of the algebra K[M ] measures an asymptotic behaviour of the number of elements

of M of at most given length. For instance, if M is an in�nite cyclic monoid generated by x,

then we set Z = {1, x} and dV (n) = n+ 1. Consequently GKdim(K[x]) = 1.

The following basic lemma describes the relation between the Gelfand�Kirillov dimension

of the algebra and its subalgebras and homomorphic images.

Lemma 1.20. If S is a subalgebra or a homomorphic image of an algebra R then GKdim(S) ⩽
GKdim(R).

1.1.5 Polynomial identity algebras

In the present section we introduce several classical results on the structure of rings that

satisfy a polynomial identity. We focus only on the theorems that will be useful in the

dissertation.

By an algebra we mean an associative algebra with identity 1. An algebra R over a �eld

K satis�es a polynomial identity if there exists a non-zero polynomial f(x1, . . . , xn) in n

non commuting variables x1, . . . , xn with coe�cients in K such that f(r1, . . . , rn) = 0 for all

r1, . . . rn ∈ R. For brevity we then say that R is a PI-algebra.

Many natural classes of algebras satisfy a polynomial identity, including commutative

algebras, �nite dimensional algebras and the algebra Mn(A) of matrices of size n× n over a

commutative algebra A. Indeed, in every commutative algebra the identity xy−yx = 0 holds.

It is the special case of a family of identities, called standard identities, that are satis�ed for

any algebra which is �nitely generated as a module over its center.
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It is easy to show that any subalgebra and any homomorphic image of a PI-algebra

satis�es a polynomial identity. The following celebrated theorem, due to Regev, shows that

the class of PI-algebras is also closed under taking tensor products, see [49, Theorem 6.1.1].

Theorem 1.21 (Regev). The tensor product of two PI-algebras also satis�es a polynomial

identity.

The case of PI-algebras that are Noetherian and of �nite Gelfand�Kirillov dimension is

of special interest in our setting.

First recall the well-known result of Small, Sta�ord, War�eld, [52], showing in particular

that the class of PI-algebras contains all �nitely generated algebras with Gelfand�Kirillov

dimension 1.

Theorem 1.22 (Small, Sta�ord, War�eld). Every �nitely generated algebra R of Gelfand�

Kirillov dimension one satis�es a polynomial identity. Moreover, if P(R) is the prime radical

of R, then P(R) is nilpotent and R/P(R) is a �nite module over its Noetherian center.

By [28, Theorem 10.10], the following result about the relationship between the Gelfand�

Kirillov and the classical Krull dimensions of PI-algebras holds. Recall that the classical

Krull dimension of R, denoted by clKdim(R), is the supremum of the lengths of �nite chains

of prime ideals in the algebra R.

Theorem 1.23. If R is a �nitely generated prime PI-algebra, then GKdim(R) = clKdim(R).

It is clear from the facts mentioned in this section that the matrix algebra Mn(F ), where

F is a �eld extension of the �eld K satis�es a polynomial identity. Anan'in Theorem, [1],

asserts that every algebra from an important class of PI-algebras can be embedded into such

a matrix algebra.

Theorem 1.24 (Anan'in). Let R be a �nitely generated right Noetherian PI-algebra over a

�eld K. Then R embeds into the matrix ring Mn(F ) over a �eld extension F of K, for some

positive integer n.

We say that a ring D is a division ring if every non-zero element has a right and a left

inverse in D. The following Kaplansky theorem, see for instance [50, Theorem 6.1.25], will

be useful in the characterization of representations of Hecke�Kiselman algebras.

Theorem 1.25 (Kaplansky). If R is a left primitive ring satisfying a polynomial identity,

then R is isomorphic to the ring of matrices Mr(D), r ≥ 1, over a division ring D that is

�nite dimensional over its center.

Finally, in the class of �nitely generated PI-algebras the prime radical and the Jacobson

radical, introduced in Sections 1.1.2 and 1.1.3, coincide.

Theorem 1.26. If R is a �nitely generated algebra over a �eld that satis�es a polynomial

identity, then J (R) = P(R), where J (R) is the Jacobson radical of R and P(R) is the prime

radical.
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1.1.6 Rings of quotients

Let us introduce the necessary de�nitions and properties of rings of quotients. The gen-

eral idea is to embed the ring into another one with better properties, by making certain

elements invertible in the new ring. Localization is one of the crucial techniques used in

algebra. One important example is localization of a commutative domain with respect to all

non-zero elements, which is called the �eld of fractions. Another useful case is localization

of a commutative ring at any prime ideal. Although the analogous constructions in the non-

commutative setting are not always possible, also in this case certain localizations provide a

useful tool in the study of the structure of rings. One such important result is the celebrated

Goldie's theorem, presented in Theorem 1.32 only in the Noetherian case.

We refer to Chapters 2 and 3 of [38] and Chapter 4 of [30] for further information and

proofs of the presented results. The case of algebras satisfying a polynomial identity is

considered in Chapter 1.7 of [49].

We restrict the discussion to two special cases of rings of quotients, where the multiplica-

tively closed set of "denominators" consists of either so-called regular elements or elements

from the center of the ring.

A subset S of ring R is multiplicatively closed, if S · S ⊆ S and 1 ∈ S.
We say that an element r ∈ R is right regular in R if rs = 0 implies that s = 0 for any

s ∈ R and symmetrically left regular if from equality sr = 0 it follows that s = 0. An element

is regular if it is left and right regular.

De�nition 1.27. 1) Let S be a multiplicatively closed subset of a ring R consisting of all

regular elements in R. Then a ring R′ containing R is called a right classical ring of

quotients of R, if elements of S are units in R′ and every element of R′ is of the form

rs−1 for some r ∈ R and s ∈ S. We denote this ring of quotients by Qr
cl(R).

2) Let S be the multiplicatively closed subset of a ring R consisting of all regular elements

contained in the center of R. Then a ring R′ containing R, such that elements of S are

units in R′ and every element of R′ is of the form rs−1 for some r ∈ R and s ∈ S, is
called a central ring of quotients, denoted by Qr

Z(R).

One can de�ne similarly the left analogues of the above de�nitions.

Note that the right classical ring of quotients does not always exist. For example, let

R = K⟨x, y⟩ be the free algebra in two non commuting generators x and y. Then R \ {0}
is multiplicatively closed set consisting of all regular elements. Suppose that Qr

cl(R) exists.

Then in particular y is unit in Qr
cl(R), and therefore y−1x can be written in the form rs−1

for some r, s ∈ Qr
cl(R) such that s ̸= 0. Thus xs = yr in R for some non-zero s, which is

impossible.

If right classical ring of quotients of R exists, then the set S, consisting of all regular

elements, has the property, called the right Ore condition, that for each r ∈ R and s ∈ S,
there exist r′ ∈ R and s′ ∈ S such that rs′ = sr′. Similarly, one can also de�ne the left
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Ore condition. It turns out that such conditions are also su�cient for the existence of the

classical right or left ring of quotients.

Theorem 1.28. A right (left) classical ring of quotients Qr
cl(R) exists if and only if the

multiplicatively closed set of regular elements satis�es the right (left) Ore condition.

On the other hand, a multiplicatively closed set S of regular central elements of a ring R

satis�es evidently the right and left Ore conditions. The central ring of quotients of R always

exists.

A right classical ring of quotientsQ of a ring R is universal for homomorphisms α : R→ R′

such that α(S) consists of units of R′, where S is the set of all regular elements of R. Therefore

we get the following remark.

Remark 1.29. If there exists a right classical ring of quotients Q of a ring R then it is

unique up to an isomorphism.

Similarly, a central ring of quotients of a ring R is universal for homomorphisms α : R→
R′ such that α(S) consists of units of R′, where S is the set of all regular elements contained

in the center of R. Thus it is also unique up to an isomorphism.

Example 1.30. If R is a Noetherian integral domain then the right classical ring of quotients

Qr
cl(R) exists. It is enough to show that for any non-zero a, b ∈ R we have aR ∩ bR ̸= {0}.

But if we had aR ∩ bR = {0}, then the sum Σm⩾1b
maR would be direct, contradicting the

Noetherian property. Indeed, if bkar0 + · · · + bk+marm = 0 for some k and m > 0 such that

r0, rm ̸= 0, ri ∈ R, then because R is an integral domain, −ar0 = b(ar1 + · · · + abm−1rm) ∈
aR ∩ bR = {0}, which leads to a contradiction.

In the thesis we will work with the rings that have both right and left rings of quotients.

Then from the universal property satis�ed by these rings, we easily get the following lemma.

Lemma 1.31. If right and left classical (central) rings of quotients exist, they are isomorphic.

In this case we speak about the classical ring of quotients (central ring of quotients) and denote

this ring by Qcl(R) (QZ(R)).

In the forthcoming sections we are interested in the ring of quotients of Noetherian rings.

Let us recall the famous Goldie's theorem in the case of Noetherian rings. The theorem gives

the characterization of rings with classical rings of quotients that are semisimple. Recall that

a ring R is semisimple if and only if every right R-submodule of R is a direct summand of R.

It can be proved that a ring R is semisimple if and only if it is left Artinian and semiprimitive.

Theorem 1.32 (Goldie). If R is a Noetherian ring then the following conditions are equiv-

alent.

1) R is a semiprime ring.

2) R has a quotient ring Qcl(R) which is semisimple.
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One of the aims of Chapter 3 is to �nd the classical rings of quotients of certain Hecke�

Kiselman algebras R. The minimal prime ideals P of these algebras will be constructed

and the rings of quotients Qcl(R/P ) of the quotient rings R/P will be found. Thanks to

the following observation (Corollary 11.44 in [30]), it is then possible to describe the ring of

quotients of the algebra R.

Proposition 1.33. Let R be a semiprime ring with �nitely many minimal prime ideals

P1, . . . , Pk. Then R has a classical quotient ring Qcl(R) if and only if all R/Pi have classical

quotient rings Qcl(R/Pi). Moreover, if this is the case, then Qcl(R) ∼=
∏k

i=1Qcl(R/Pi).

Another natural observation, which can be derived from 3.1.6 in [38], concerning di�erent

rings with the same classical ring of quotients, will be useful.

Lemma 1.34. If R is a prime Noetherian ring, 0 ̸= A is a two-sided ideal of R and S is a

subring of R such that A ⊆ S ⊆ R then S has the same (right) classical quotient ring as R.

In the present thesis we are interested in the properties of algebras that are PI. Therefore

let us recall the following theorem about the classical and central rings of quotients in the

case of PI-algebras, see Theorem 1.7.34 in [49].

Theorem 1.35. If R is a Noetherian semiprime PI-ring then QZ(R) = Qcl(R).

1.2 Basics of semigroup theory

The thesis is devoted to the certain class of monoids and their monoid algebras. In particular,

some aspects of semigroup theory are extensively used in the forthcoming chapters. Therefore

we now set up the notation and basic de�nitions of semigroup theory, with emphasis on the

representation theory of �nite semigroups and semigroup identities. For a complete overview

of the topic we refer to the books [9, 43, 53].

De�nition 1.36. A semigroup is a set S with an associative binary operation, denoted by ·,
called multiplication. If a semigroup contains an identity element 1, it is called a monoid.

For a semigroup S, we de�ne S1 as a semigroup obtained from S by adding an identity

element 1 to S, if S does not contain an identity and S1 = S, otherwise. An element θ of a

semigroup S is called the zero element, if for every s ∈ S we have θ · s = s · θ = θ. By S0 we

denote a semigroup S with zero element adjoined.

Notions of an ideal and Green's relations play a fundamental role in semigroup theory. A

subset I of a semigroup S is called a left (right) ideal if SI ⊆ I (IS ⊆ I, respectively). We

say that I is a two-sided ideal, if it is a right and a left ideal. For example, for any element

s ∈ S, we can consider a two-sided principal ideal S1sS1 in S generated by this element. It

consists of all elements of the form ust for any u, t ∈ S1.
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For every two-sided ideal I of the semigroup S, the Rees quotient semigroup S
/
I as a set

consists of S \ I ∪ {θ}. It has a structure of a semigroup, where multiplication is de�ned for

every s, t ∈ S \ I as follows

s · t =

{
st if st /∈ I
θ otherwise

.

We assume that for any semigroup S the Rees factor S/∅ is the semigroup S with zero

adjoined.

Recall that an equivalence relation σ on S is a congruence if sσt for s, t ∈ S implies that

suσtu and vsσvt for any u, v ∈ S. For every congruence σ on a semigroup S the set of

σ-classes is a semigroup. We denote this semigroup by S/σ.

Elements m,n of a semigroup S are in Green's relation R ( L ) if and only if mS1 = nS1

(S1m = S1n, respectively). We say that two elements are in relation H, if they are R and L�
related. Lastly, elements m,n of a semigroup S are in the Green's relation J (are J �related)
if and only if they generate the same two-sided ideal in S1, that is S1mS1 = S1nS1.

Example 1.37. Consider the multiplicative semigroup (Mn(K), ·) of the n×n matrices over

a �eld K. Then the following can be proved.

1) Two matrices are J �related of and only if they have the same rank.

2) Two matrices A,B are L�related if and only if they have the same row space.

3) Two matrices A,B are R�related if and only if they have the same column space.

The equivalence class of a given element with respect to Green's relation J (L, R)
will be called the J -class (L-class, R-class) of an element. In the set of these classes in a

semigroup S let us de�ne a partial order, denoted by ⩽J (⩽L, ⩽R, respectively), such that

for any two J -classes (⩽L, ⩽R-classes, respectively) L and L′ we have L ⩽J L′ if and only

if S1LS1 ⊆ S1L′S1 (similarly, L ⩽R L′ if and only if LS1 ⊆ L′S1 and L ⩽L L
′ if and only if

S1L ⊆ S1L′).

We say that a semigroup S is J -trivial if Green's relation J is equality, that is S1mS1 =

S1nS1 implies that m = n in the semigroup S. Notions of R-trivial and L-trivial semigroups

are de�ned analogously.

Example 1.38. Let S be a monoid such that S = {1, e} with identity 1 and such that

e2 = e. It is clear that S is J -trivial.

Let us note the following useful property of Green's relation J .

Remark 1.39. If M is a J -trivial monoid and I is a two-sided ideal in S, then the Rees

quotient semigroup M/I is also J -trivial.

Proof. Let M be a J -trivial monoid and let I be a two-sided ideal in M . Consider u, v

from M/I that generate the same principal ideal, that is for some s, t, p, q ∈M \ I ∪ {θ} we
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have u = svt and v = puq in M/I. If at least one of s, t, p, q is the zero element θ, then it

follows easily that u = v = θ. Otherwise we get that u = svt and v = puq also in M , that is

MuM ⊆MvM and MvM ⊆MuM , respectively. Therefore, as M is J -trivial, u = v in M ,

and thus also in M/I.

One can also de�ne a direct product of semigroups or monoids as follows.

De�nition 1.40. For semigroups (monoids) S and T with operations ·S, ·T the direct product

of S and T , denoted by S ⊕ T , is the Cartesian product S × T , together with the binary

operation · : (S × T ) × (S × T ) −→ S × T such that (s, t) · (s′, t′) = (s ·S s′, t ·T t′). Then

(S ⊕ T, ·) is also a semigroup (monoid).

Now we give a brief exposition of the structure of �nite semigroups. In particular we are

interested in the semigroup analogue of the Jordan-Hölder theorem. This will be useful in

the study of representation theory of semigroups.

Let us de�ne a class of semigroups that do not have non-trivial two-sided ideals.

De�nition 1.41. We say that a semigroup without zero is simple, if it does not contain

ideals other than S. If a semigroup S contains a zero element θ, it is a 0-simple semigroup,

if {θ} and S are its only ideals in S and S2 ̸= θ.

Note that the condition S2 ̸= θ implies that the semigroup S = {θ, a}, where a2 = θ, is

not 0-simple.

Example 1.42. Let S = {eij ∈ Mn(K) : i, j = 1, . . . , n} ∪ {θ} be the semigroup consisting

of all standard basis matrices eij with 1 in the i row and j column and 0 everywhere else and

the zero matrix. Then it can be easily veri�ed that S is a 0-simple semigroup.

An element e of a semigroup is idempotent if e = e2. In the set of idempotents of a

semigroup de�ne a partial order such that e ⩽ f if and only if ef = fe = e. Idempotent f

is called primitive if f ̸= 0 and e ⩽ f implies that e = f or e = θ for any idempotent e. For

instance, in the semigroup S from Example 1.42 every idempotent of the form eii is primitive.

A semigroup S is completely 0-simple if it is 0-simple and contains a primitive idempotent.

Note that for example any �nite 0-simple semigroup is completely 0-simple, see [9, Section

2.7].

1.2.1 Finite semigroups, semigroup algebras and their representa-

tions

We are now in a position to present the basic theorem describing the ideal structure of �nite

semigroups.

Theorem 1.43. If S is a �nite semigroup, then it admits a principal series, that is a series

∅ = Si+1 ⊊ Si ⊊ · · · ⊊ S2 ⊊ S1 = S,
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of ideals Sk, such that every factor Sk

/
Sk+1 is either a completely 0-simple semigroup or a

null semigroup (namely, a semigroup with zero multiplication) for k = 1, . . . , i.

It turns out that factors from principal series of a �nite semigroup are related to equiv-

alence classes with respect to Green's relation J . Let us start with the following notations.

If s is an element of a semigroup S, we denote by Js the J -class in S containing s. For any

J -class L of S we denote by J(L) the ideal S1LS1 and I(L) = J(L)\L. Note that if s ∈ I(L)
and t ∈ S, then S1sS1 ⊊ J(L). As S1stS1 ⊆ S1sS1 (S1tsS1 ⊆ S1sS1), it follows that st,

ts /∈ L. Thus I(L) is an ideal in S, if non-empty. Moreover, it is clear that I(L) ⊆ J(L)

is maximal in J(L) in the sense that there are no ideals strictly between I(L) and J(L).

Consequently, it can be proved that J(L)
/
I(L) is either null or a 0-simple semigroup. A

factor J(L)/I(L) which is 0-simple (null) is called a 0-simple (null, respectively) factor of S.

It turns out that factors of every principal series of a �nite semigroup S are of the form

J(L)/I(L) for J -classes L in S.

Corollary 1.44. If S is a �nite semigroup, then it admits a principal series

∅ = Si+1 ⊊ Si ⊊ · · · ⊊ S2 ⊊ S1 = S,

of ideals Sk, such that every factor Sk

/
Sk+1 is of the form J(L)/I(L) for some J -class L

in S for k = 1, . . . , i.

Before we move on to the representations, let us set the necessary de�nitions related to

semigroup algebras.

De�nition 1.45. For a semigroup S consider the vector space over the �eld K with the

basis consisting of elements of S. A structure of a K�algebra in this vector space is given

by the multiplication which is the linear extension of the operation in S. Such an algebra is

denoted by K[S] and is called the semigroup algebra of the semigroup S over the �eld K.

Note that a typical element α of a semigroup algebra K[S] is of the form α = σ1s1+ · · ·+
σksk with 0 ̸= σi ∈ K and pairwise di�erent si ∈ S. Then the support of α is equal to the

set {s1, . . . , sk}.
If a semigroup S contains a zero element θ, then it will be often useful to identify θ with

the zero element of K. Such an algebra, de�ned as K[S]/K[θ] will be denoted by K0[S]

and called the contracted semigroup algebra. As K[S] ∼= K0[S] ⊕ K[θ], algebras K[S] and

K0[S] have similar structural properties. If we consider an ideal I of S, then the quotient

K[S]/K[I] is isomorphic to the contracted algebra K0[S/I].

For brevity, in the context of representations we always assume that the base �eld is

algebraically closed, without further comments.

By EndK(V ) we denote the vector space of all endomorphisms of the �nite-dimensional

linear space V over the �eld K. Then EndK(V ) has the monoid structure under multiplica-

tion.
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De�nition 1.46. A representation of a semigroup M on a (�nite-dimensional) vector space

V over a �eld K is a homomorphism φ :M −→ EndK(V ).

It is clear that this is equivalent to de�ning a semigroup homomorphism M −→Mk(K),

where k = dimK(V ). Every representation of a semigroupM on V can be uniquely extended

to a representation of semigroup algebra K[M ] on V .

Representations φ : K[M ] −→ EndK(V ) and ψ : K[M ] −→ EndK(W ) are said to be

equivalent, if there is a linear isomorphism ρ : V −→ W such that φ(f) = ρ−1ψ(f)ρ for all

f ∈ K[M ]. In the thesis we are interested in representations up to equivalence classes.

Finally, we will sometimes identify representations of K[M ] with (left) K[M ]-modules

without further comments. This is possible thanks to the correspondence described as follows.

If φ : K[M ] −→ EndK(V ) is a representation, then V is left K[M ]-module de�ned as

f · v = φ(f)(v) for every f ∈ K[M ] and v ∈ V . Conversely, if V is a K[M ]-module, then the

induced representation is de�ned as φV : K[M ] −→ EndK(V ) such that φV (f)(v) = f · v,
for every f ∈ K[M ] and v ∈ V . Moreover representations of K[M ] are equivalent if and only

if the corresponding modules are isomorphic.

We say that a representation φ : K[M ] −→ Mn(K) is irreducible if it corresponds to a

simple K[M ]-module.

We now look more closely at the classical theory of irreducible representations of �nite

monoids, known as Cli�ord�Munn�Ponizovskii theory. Namely, there exists a bijection be-

tween the set of equivalence classes of irreducible representations of a �nite monoid and the

set of equivalence classes of irreducible representations of its 0-simple principal factors. We

refer to Chapter 5 of [9] for proofs and Chapter 4 of [53] for another approach.

Recall that ⩽J is an order in the set of Green's J -classes of M de�ned at the beginning

of the present section. We will further write that L ⩽̸J L′ if J(L) ⊈ J(L′).

Let us de�ne a family of representations of a monoid depending on the J -classes in this

monoid.

De�nition 1.47. We say that a representation f : M → Mn(K) of the monoid M has an

apex L for a J -class L, if f(n) ̸= 0 for every (or, equivalently, any) n ∈ L and f(m) = 0 for

all m ∈M such that L ⩽̸J Jm, where Jm is the J -class containing m.

It follows that a representation f with an apex L has the property that f(m) ̸= 0 for

all m ∈ M such that L ⩽J Jm. The �rst part of the main theorem of Cli�ord�Munn�

Ponizovskii theory states that every irreducible representation of a �nite monoid M has an

apex. If f :M →Mn(K) is such a representation with an apex L, then in particular f(m) = 0

for all m ∈ I(L). Therefore f induces a representation f of the factor J(L)
/
I(L). It turns

out that then the principal factor J(L)
/
I(L) has to be 0-simple. Moreover the induced

representation f : J(L)
/
I(L) → Mn(K) is also irreducible. In the opposite direction, for

every J -class L such that J(L)
/
I(L) is 0-simple and for every irreducible representation of

this factor semigroup there exists a unique irreducible representation of M with an apex L.

More precisely, the following theorem holds.
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Theorem 1.48 (Cli�ord, Munn, Ponizovskii). Let M be a �nite monoid.

1) Every irreducible representation of M has an apex.

2) If f : K[M ] → Mn(K) is an irreducible representation with an apex L, then the as-

sociated principal factor is 0-simple and the induced representation f : J(L)
/
I(J) →

Mn(K) is irreducible.

3) For every 0-simple J -class L of M and irreducible representation f : J(L)
/
I(L) →

Mn(K) there exists e ∈ K[L] such that f(e) = In and the formula f(m) = f(me),

for every m ∈ M , de�nes an irreducible representation f : K[M ] → Mn(K) with an

apex L.

4) Two irreducible representations of M are equivalent if and only if they have the same

apex L and induce equivalent representations of MLM
/
I(L).

As an illustration, we apply the theory for �nite J -trivial monoids. We know that then

every J -class L contains exactly one element and the quotient J(L)
/
I(L) = {θ, e} for some

e such that e2 = θ or e2 = e in J(L)
/
I(L). Thus every 0-simple principal factor comes

from an idempotent e2 = e. Every irreducible representation ϕe of {θ, e} such that e2 = e

is one-dimensional and such that ϕe(e) = 1. Then from Theorem 1.48 we know that the

corresponding irreducible representation ofM is such that ϕe(m) = ϕe(me) for every m ∈M .

The following easy proposition, that can be found in [53, Corollary 2.7 (iii)], is useful in

describing the corresponding irreducible representations.

Proposition 1.49. Let M be a J -trivial monoid with an idempotent e ∈M . Then for every

m ∈M we have e ∈MmM if and only if em = m.

For completeness, we give a proof.

Proof. If em = m, then it is clear that e ∈ MmM , as M is a monoid. Assume now that

e ∈ MmM , that is e = xmy for some x, y ∈ M . Then e = exmy and thus MeM = MexM .

From the assumption it follows that e = ex. Consequently, e = e2 = exmy = emy, and thus

MemM =MeM . As M is J -trivial, we get that em = m.

Let us emphasize that the proposition holds for any J -trivial monoid, not necessarily

�nite. Note also that if e /∈ MmM , we get that MeM ⊈ MmM and then ϕe(m) = 0 in the

�nite case.

As a consequence, we get the following characterization.

Example 1.50. There is a bijection between (equivalence classes of) irreducible represen-

tations of a �nite J -trivial monoid M and idempotents in M . For every idempotent e, the

corresponding representation ϕe :M → K is one dimensional and for every m ∈M given by

ϕe(m) =

{
1 if em = e

0 if e /∈MmM
.
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1.2.2 Semigroup identities

Let us recall that for a �nite set X we denote by X∗ the free semigroup generated by X.

Assume that S is a semigroup. We say that S satis�es a semigroup identity of the form u = v,

where u, v are two di�erent words in X∗, if for any semigroup homomorphism φ : X∗ → S

the equality φ(u) = φ(v) holds. Note that if a semigroup satis�es such an identity, then it

also satis�es an identity in two variables, that is an identity such that u = v with u, v ∈ X∗

for a two-element set X.

Example 1.51. The free semigroup in two variables does not satisfy any semigroup identity.

It is natural to investigate the relationship between the existence of semigroup identities

of the semigroup S and polynomial identities in the corresponding semigroup algebra K[S].

In general, if a �nitely generated semigroup S satis�es an identity then its algebra K[S]

does not have to be a PI-algebra. For example, every nilpotent group G satis�es a semigroup

identity, see [35], [41], but the group algebra K[G] is a PI-algebra only if G is abelian-by-�nite

[47], Corollary 5.3.8 and Corollary 5.3.10.

On the other hand, it seems that the following is an open problem.

Problem 1.52. Let S be a �nitely generated semigroup. Assume that the semigroup algebra

K[S] over a �eld K satis�es a polynomial identity (as usual, in this case we say that K[S] is

a PI-algebra). Is it true that the semigroup S satis�es a nontrivial semigroup identity?

The following result is very useful for establishing existence of nontrivial identities in an

important class of semigroups.

Theorem 1.53 (Theorem 6.11 in [44]). Let S be a �nitely generated subsemigroup of the

multiplicative semigroup of the matrix algebra Mn(K) over a �eld K. Then the following

conditions are equivalent.

1. S has no free noncommutative subsemigroups,

2. S satis�es a semigroup identity.

We end the section with the following property of semigroup identities, that can be

extracted from the proof of Lemma 5.3 in [44].

Proposition 1.54. If S is a semigroup and I is an ideal of S such that I and S/I satisfy

semigroup identities, then the semigroup S also satis�es a semigroup identity.

We will later use a concrete construction of a semigroup identity in S from identities in

the ideal and in the quotient. Therefore, let us prove the proposition.

Proof. Let I be an ideal in the semigroup S such that I and S/I satisfy semigroup identi-

ties. As explained earlier we can assume that identities are in two variables. Assume that

u1(x, y) = v1(x, y) is a semigroup identity in S/I and u2(x, y) = v2(x, y) is satis�ed in I.
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Note that we can assume that u2 and v2 are of the same length, changing them into u2v2 and

v2u2, if necessary. Then we claim that

u2(u1(x, y), v1(x, y)) = v2(u1(x, y), v1(x, y))

is a non-trivial identity satis�ed in the semigroup S. Indeed, take any s, t ∈ S. Notice

that u1(s, t) ∈ S \ I if and only if v1(s, t) ∈ S \ I, as u1(s, t) = v1(s, t) ∈ S/I and I is

an ideal in S. Thus if u1(s, t), v1(s, t) ∈ S/I, then u1(s, t) = v1(s, t) ∈ S/I. The equality

u2(u1(s, t), v1(s, t)) = v2(u1(s, t), v1(s, t)) then follows from the assumption that u2 and v2
are of the same length. Moreover, if u1(s, t) ∈ I, then v1(s, t) ∈ I. In this case we have

u2(u1(s, t), v1(s, t)) = v2(u1(s, t), v1(s, t)), because u2(x, y) = v2(x, y) is an identity in the

ideal I. The assertion follows.

1.3 Semigroups and algebras of matrix type

As we have seen in Section 1.2.1, completely 0-simple semigroups can be treated as basic

building blocks of �nite semigroups. It turns out that in the �nite case completely 0-simple

semigroups can be characterized as semigroups of matrix type that satisfy certain additional

conditions. In this section we provide the de�nition of this class of semigroups, the associated

semigroup algebras and describe some of their properties. For the details we refer to [9,

Section 3.2] and [43, Chapter 5]. We also introduce the notion of the semigroups of quotients

related to such semigroups, see [17].

As we will show in Chapter 2 structures of matrix type occur also in the Hecke�Kiselman

monoid associated to an oriented cycle. This will also play a crucial role in further investiga-

tion of the structure and properties of Hecke�Kiselman monoids and their algebras in more

general cases.

De�nition 1.55. Consider a semigroup S, non-empty sets A and B and a matrix P = (pba)

of size B × A over S1 with zero adjoined. Then the semigroup of matrix type, denoted by

M0(S,A,B;P ), consists of all triples of the form (s; a, b), where s ∈ S ∪ {0}, a ∈ A, b ∈ B,
with zero element θ, identi�ed with all triples of the form (0, a, b). Multiplication is de�ned

by (s; a, b) · (s′; a′, b′) = (spba′s
′; a, b′) if pba′ ∈ S1 and θ otherwise.

Semigroup S de�ned in Example 1.42 is a semigroup of matrix type. Indeed, it is clear

that S =M0({e}, [n], [n]; Idn), where {e} is the trivial group, [n] = {1, . . . , n} and Idn is the

identity n× n matrix.

The famous Rees theorem describes all completely 0-simple semigroups as semigroups of

matrix type, that satisfy certain additional conditions.

Theorem 1.56 (Rees theorem). A semigroup is completely 0-simple if and only if it is

isomorphic with a semigroup of matrix typeM0(G,X, Y ;P ) over a group G with zero and a

sandwich matrix P that contains a non-zero entry in every row and in every column.
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In the dissertation we will also investigate properties of the (contracted) semigroup al-

gebras arising from such semigroups. If A and B are �nite sets, the contracted semigroup

algebra of a semigroup of matrix typeK0[M0(S,A,B;P )] can be interpreted as the algebra of

matrices of size A×B overK[S] with standard addition and the multiplication α·β = α◦P ◦β,
where ◦ is the standard matrix product. More generally, for an algebra R, �nite sets A and B

and matrix P over R the algebra of matrix type, denoted byM(R,A,B;P ), is the algebra of

matrices of size A×B with standard addition and multiplication de�ned as X ·Y = X ◦P ◦Y ,
where ◦ is the standard matrix multiplication. If additionally R has an identity and every

row and column of the matrix P contains a unit of R, the algebra M(R,A,B;P ) is called

a Munn algebra. The ideal structure and the prime radical ofM(R,A,B;P ) admit a clear

description in terms of ideals and the radical of R. We refer the reader to [43, Chapter 5] for

the details.

The next useful tools are the notions of a semigroup of quotients and a completely 0-

simple closure of a semigroup. The idea is to embed a given semigroup into a completely

0-simple semigroup, whose structure is in general more approachable.

Let us consider any element a of a completely 0-simple semigroup S. It is known that

either a2 ̸= 0 and then the H-class Ha containing a is a (maximal) subgroup of S or H2
a = 0.

Moreover, if we represent completely 0-simple semigroup as a semigroup of matrix type

M0(G,A,B;P ) , then all H-classes are of the form Hab = {(g; a, b) : g ∈ G} for a ∈ A and

b ∈ B. If pba ̸= 0, the the corresponding H-class Hab is a group with the identity element

e = (p−1
ba ; a, b), isomorphic to G.

We say that a subsemigroup of a completely 0-simple semigroup S is uniform if it intersects

every non-zero H-class of S.
The following de�nition, motivated by the connection between certain rings and com-

pletely 0-simple semigroups, was introduced in [17].

De�nition 1.57. Let S be a subsemigroup of a completely 0-simple semigroup Q. For an

element a in a group H-class of Q, denote by a−1 its inverse in this group. We say that Q is

a completely 0-simple semigroup of quotients of S, if every element q ∈ Q can be written as

q = ab−1 and q = d−1c for some a, b, c, d ∈ S with b2 ̸= 0 and d2 ̸= 0.

Let S be a completely 0-simple semigroupM0(gr(g), X, Y ;P ), where gr(g) is the in�nite

cyclic semigroup generated by g, X, Y are �nite sets and P is a Y ×X matrix with coe�cients

in gr(g)0 that contains non-zero entry in every row and every column. Then consider the

subsemigroup U = M0({g}∗, X, Y ;P ), where {g}∗ is the cyclic semigroup generated by g.

Note that such a subsemigroup is a uniform subsemigroup of S. It can be easily veri�ed that

S is a completely 0-simple semigroup of quotients of U . First note that if pyx′ ̸= 0, then

for any γ ∈ Z we have (gγ;x′, y)−1 = (p−2
yx′g−γ;x′, y) in S. Moreover we know that for any

y ∈ Y , there exists x′ ∈ X such that pyx′ ̸= 0 and similarly we can choose y′ ∈ Y such that

py′x′ ̸= 0. Then for (gk;x, y) ∈ S, we have (gk;x, y) = (gα;x, y′) · ((gγ;x′, y))−1 if and only if

gαpy′x′p−2
yx′gγ = gk. As pyx′ ̸= 0 and py′x′ ̸= 0 it is clear that for any k ∈ Z there exist α, γ > 0
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such that the equality gαpy′x′p−2
yx′gγ = gk holds. Thus we have shown that S is a semigroup

of right quotients of U . The proof for left quotients is similar.

For every uniform subsemigroup U of a semigroup S there exists the smallest completely

0-simple subsemigroup of S containing U , see Proposition 3.1 in [44]. Such a subsemigroup is

called a completely 0-simple closure of U . For instance, in our above example the semigroup

M0(gr(g);X, Y ;P ) is a completely 0-simple closure ofM0({g}∗, X, Y ;P ).

The following lemma will be useful in the calculations of the center of the Hecke�Kiselman

algebra associated to cycle of length 3 in Chapter 8.

Lemma 1.58 (Lemma 2.5.1 in [23]). Let I be an ideal of a semigroup S and let J be a

completely 0-simple semigroup of quotients of I such that J is also a completely 0-simple

closure of I. Then there is a unique semigroup structure on the disjoint union Ŝ = (S \I)∪J
that extends the operation on S.

1.3.1 Representations of Munn algebras

As we have already seen in Section 1.2, in general irreducible representations of a �nite

semigroup come from irreducible representations of 0-simple principal factors. In this section

we characterize irreducible representations of this class of not necessarily �nite semigroups,

following [44, Section 4.2]. Recall that we assume that K is an algebraically closed �eld.

Let φ : G → Mr(K) be a representation of a group G. It induces a representation

φ : M0(G,X, Y ;P ) → M(Mr(K), X, Y ;φ(P )), where φ(P ) = (φ(pyx)) for a sandwich

matrix P = (pyx). Such a representation is given by φ((g;x, y)) = (φ(g);x, y) for every

(g;x, y) ∈M0(G,X, Y ;P ). For any natural number r by X · r and Y · r we denote r disjoint
copies of sets X and Y , respectively. A matrix φ(P ) = (φ(pyx)) with coe�cients in Mr(K)

can be further identi�ed with a matrix P of size (Y ·r)×(X ·r) with coe�cients in K obtained

from φ(P ) by erasing matrix brackets of all entries φ(pyx) of φ(P ). Then the rank of a matrix

P is de�ned as rk(P )) = sup{t : P ∈M(Y ·r)×(X·r)(K) has an invertible t× t submatrix}.
By Corollary 4.25 in [44], it follows that in the case of an algebra of matrix type R̃ =

M(Mr(K), X, Y ;P ) the quotient R̃/P(R̃), where P(R̃) is the prime radical of R̃, is isomor-

phic to Mt(K), provided that t = rk(P ) <∞.

Thus, under certain assumptions, a representation of a group G induces a representation

M0(G,X, Y ;P ) −→Mr(K). The following theorem holds.

Theorem 1.59 ([44], Theorem 4.26). Let S = M0(G,X, Y ;P ) be a semigroup of matrix

type associated to a group G with a sandwich matrix P that has no zero rows or columns.

Assume that φ : G→ Mr(K) is an irreducible representation of G such that rk(P ) = t <∞
for a matrix P as described above. Then the induced map

φ :M0(G,X, Y ;P )→ R̃ =M(Mr(K), X, Y ;φ(P ))→ R̃
/
P(R̃) ≃Mt(K)

is an irreducible representation. Moreover, every irreducible representation of S arises in this
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way and two such representations are equivalent if and only if they are induced by equivalent

representations of G.

Note that the semigroups of matrix type M0(G,X, Y ;P ) ful�lling the assumptions of

Theorem 1.59 are exactly completely 0-simple semigroups, see Theorem 1.56.

1.4 Preliminaries on Hecke�Kiselman monoids and alge-

bras

1.4.1 Introduction

In this section we present some preliminaries of the main objects of interest in the thesis,

that is Hecke�Kiselman monoids and their algebras. After introducing the de�nitions, we

look more closely at combinatorial aspects of this class of monoids and the structural results

on their algebras.

Ganyushkin and Mazorchuk in the paper [18] proposed a study of a new class of monoids,

that is a generalization of two another families of semigroups, called Kiselman's semigroups

and 0-Hecke monoids. These families consist of J -trivial semigroups generated by idempo-

tents and de�ned by presentations related to relations similar to braid relations.

Every Hecke�Kiselman monoid is given by a presentation associated with a simple �nite

graph. A graph is said to be simple �nite, if it has �nitely many vertices and at most one edge

between two di�erent vertices. In particular we do not allow loops, that is edges connecting

a vertex with itself. Although in general both oriented and unoriented edges are allowed,

we restrict our attention to monoids and algebras associated with graphs with only oriented

edges. For any graph Θ, we denote the sets of vertices and edges of Θ by V (Θ) and E(Θ),

respectively.

De�nition 1.60. Let Θ = (V (Θ), E(Θ)) be an oriented �nite simple graph with n vertices,

denoted by x1, . . . , xn. The Hecke�Kiselman monoid HKΘ associated with Θ is given by the

following presentation.

(i) HKΘ is generated by elements x2i = xi, where 1 ≤ i ≤ n,

(ii) if the vertices xi, xj are not connected in Θ, then xixj = xjxi,

(iii) if xi, xj are connected by an arrow xi → xj in Θ, then xixjxi = xjxixj = xixj.

By K[HKΘ] we mean the monoid algebra of HKΘ over a �eld K.

In certain cases the ground �eld K does not play any role in our considerations, and then

we will denote the algebra K[HKΘ] by AΘ.

As all considered graphs are �nite simple and oriented, from now on by a graph we always

mean a simple �nite graph with oriented edges, if not stated otherwise.
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Example 1.61. 1) If the graph Θ consists of one vertex, then HKΘ = ⟨x | x2 = x⟩ has
two elements 1, x.

2) For the graph Θ shown in Figure 1.1, the corresponding Hecke�Kiselman monoid HKΘ,

given by the presentation

⟨x1, . . . , xn | x2i = xi, xixi+1 = xixi+1xi = xi+1xixi+1 for i = 1, . . . , n− 1,

xixj = xjxi for n− 1 ⩾ |i− j| > 1⟩

is the so-called Catalan monoid, [18]. It consists of all functions f : {1, 2, . . . , n+1} −→
{1, 2, . . . , n + 1} which are order�preserving in the sense that f(i) ⩽ f(j) for all i ⩽ j

and order�decreasing, that is f(i) ⩽ i for i ∈ {1, . . . , n+ 1}. Multiplication is given by

the composition of maps. The cardinality of this �nite monoid is the so-called Catalan

number.

x1 x2 xn−1 xn

Figure 1.1: A graph Θ such that HKΘ is the Catalan monoid

3) We denote by Cn the Hecke�Kiselman monoid associated to an oriented cycle of length

n with n ⩾ 3, presented in Figure 1.2.

xn

x4 x1

x3 x2

Figure 1.2: An oriented cycle Θn of length n ⩾ 3

Then Cn is given by the following presentation:

⟨x1, . . . , xn | x2i = xi, xixi+1 = xixi+1xi = xi+1xixi+1 for i = 1, . . . , n− 1,

xnx1 = xnx1xn = x1xnx1,

xixj = xjxi for n− 1 > |i− j| > 1⟩.

It can be proved that if the graph Θ is a disjoint union of Θ1 and Θ2, then HKΘ =

HKΘ1 ⊕HKΘ2 , that is HKΘ is a direct product of HKΘ1 and HKΘ2 , see De�nition 1.40. In

particular, the Hecke�Kiselman monoid HKΘ is the direct product of monoids associated to

connected components of the graph Θ.

28



We say that two graphs Σ, Θ are isomorphic if there exists a bijection f : V (Σ)→ V (Θ)

such that vertices x and y are connected by an oriented (unoriented) edge in Σ if and only if

there is an oriented (unoriented, respectively) edge between f(x) and f(y) in Θ.

The following theorem was proved in [18].

Theorem 1.62. Hecke�Kiselman monoids HKΘ and HKΣ, associated with graphs Θ and Σ,

are isomorphic if and only if the graphs Θ and Σ are isomorphic.

1.4.2 Combinatorics on words

Now we give a brief exposition of combinatorial aspects of Hecke�Kiselman monoids and

algebras.

For any set X let F = ⟨X⟩ be the free monoid generated by this set. Elements of F will

be sometimes called words. The number of occurrences of a generator x ∈ X in a word w is

denoted by |w|x. By the support of w, denoted by supp(w), we mean the set consisting of all

x ∈ X such that |w|x > 0. Moreover, |w| stands for the length of the word w. A word u ∈ F
is said to be a factor of w ∈ F , if w can be written as w = puq for some p, q ∈ F , that is u
is a connected subword of w.

So-called Gröbner bases, see for example [56], provide a basic tool in the study of combina-

torial aspects of commutative and noncommutative algebras given by (�nite) presentations.

We brie�y introduce this notion in the case of semigroup algebras, as the result characterizing

such bases for Hecke�Kiselman algebras will be extensively exploited in our arguments.

Let ⩽ denote the degree-lexicographical order on the free monoid F induced by any well

order on the set of generators X. Then for every f in the free algebra K⟨X⟩, the leading

monomial of f , denoted by f is the largest, with respect to ⩽, monomial occurring in f .

We consider a �nitely generated semigroup algebra A over a �eld K, namely A = K⟨X⟩/I
for some ideal I, which is spanned by elements w − v for some w, v ∈ F . A subset G of the

ideal I is called a Gröbner basis of the algebra A, with respect to ⩽ and the given presentation

of A, if 0 /∈ G, I is generated by G as an ideal and for every f ∈ I, there is g ∈ G such

that the leading monomial g ∈ F of g is a factor of the leading monomial f of f . The set of

normal forms of the algebra A (depending on the chosen presentation and order), denoted by

N(A) consists of all words that are not leading monomials of elements of the ideal I. It can

be veri�ed, that the word w ∈ ⟨X⟩ is normal if and only if it does not have factors that are

leading monomials in elements of the Gröbner basis G. Note that the set N(A) of normal

words forms a linear basis of A.

So-called diamond lemma provides an useful technique for characterizing normal words

in the algebra A, see [6]. Replacing a word w by another word w′ such that w′ ⩽ w, is called

a reduction determined by a pair (w,w′) ∈ F ×F . Such a pair (w,w′) ∈ F ×F is also called

a reduction. We say that f ∈ K⟨X⟩ is T -reduced, where T is any �xed set of reductions, if

the leading monomial of f does not have factors that are the �rst term, called the leading

term, of the pair (w,w′) ∈ T . Bergman's diamond lemma (see [6]) states that under certain
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assumptions the linear span of all monomials that are T -reduced is the set of normal words

N(A) of the algebra A = K⟨X⟩/I, where I = spanK{w − w′ | (w,w′) ∈ T}.
We proceed with the notations useful in the context of combinatorics of Hecke�Kiselman

monoids and algebras. For any oriented graph Θ, t ∈ V (Θ) and w ∈ F = ⟨V (Θ)⟩ we write

w ↛ t if |w|t = 0 and there are no x ∈ supp(w) such that x → t in Θ. Similarly, we de�ne

t ↛ w: again we assume that |w|t = 0 and there is no arrow t → y, where y ∈ supp(w). In

the case when t↛ w and w ↛ t, we write t↮ w. A vertex v ∈ V (Θ) is called a sink vertex

if no arrow begins in v. Analogously one de�nes a source vertex. Sink and source vertices

are called terminal vertices.

We are now in a position to present the characterization of a Gröbner basis of Hecke�

Kiselman algebras, obtained in [40], Theorem 3.1.

Theorem 1.63. Let Θ be a graph with vertices V (Θ) = {x1, x2, . . . , xn}. Extend the natural

ordering x1 < x2 < · · · < xn on the set V (Θ) to the deg-lex order on the free monoid

F = ⟨V (Θ)⟩. Consider the following set T of reductions on the algebra K⟨V (Θ)⟩:

(i) (twt, tw), for any t ∈ V (Θ) and w ∈ F such that w ↛ t,

(ii) (twt, wt), for any t ∈ V (Θ) and w ∈ F such that t↛ w,

(iii) (t1wt2, t2t1w), for any t1, t2 ∈ V (Θ) and w ∈ F such that t1 > t2 and t2 ↮ t1w.

Then the set {w − v, where (w, v) ∈ T} forms a Gröbner basis of the Hecke�Kiselman alge-

bra AΘ.

To emphasize the use of the theorem above, whenever we consider the set N(AΘ) of normal

words of the Hecke�Kiselman algebra AΘ = K[HKΘ] that is obtained via reductions from

the set T , we will say that the elements of N(AΘ) are the reduced words of AΘ.

The next remark, mentioned in many papers (and also clear from Theorem 1.63), is also

relevant.

Remark 1.64. (1) Assume that x ∈ V (Θ) is a vertex such that there are no arrows of the

form z −→ x. Then for every word w ∈ HKΘ the equality xwx = xw holds in HKΘ.

(2) Assume that x ∈ V (Θ) is a vertex such that there are no arrows of the form x −→ z.

Then for every word w ∈ HKΘ the equality xwx = wx holds in HKΘ.

Let us look more closely at the Gröbner basis of the Hecke�Kiselman monoid Cn associated

to the cycle of length n ⩾ 3. Denote its generators by x1, . . . , xn. If i, j ∈ {1, . . . , n} then
xi · · ·xj denotes the product of all consecutive generators from xi up to xj if i < j, or down

to xj, if i > j.

Consider the degree-lexicographic order on ⟨x1, . . . , xn⟩ induced by x1 < · · · < xn. Then

the Gröbner basis can be described by the following theorem from [40].

Theorem 1.65. Let Θ = Cn. Let S be the system of reductions in F consisting of all pairs

of the form
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(1) (xixi, xi) for all i ∈ {1, . . . , n},

(2) (xjxi, xixj) for all i, j ∈ {1, . . . , n} such that 1 < j − i < n− 1,

(3) (xn(x1 · · ·xi)xj, xjxn(x1 · · ·xi)) for all i, j ∈ {1, . . . , n} such that i+ 1 < j < n− 1,

(4) (xiuxi, xiu) for all i ∈ {1, . . . , n} and 1 ̸= u ∈ F such that |u|i = |u|i−1 = 0. Here, we

write i − 1 = n if i = 1, (we say, for the sake of simplicity, that the word xiuxi is of

type (4i)),

(5) (xivxi, vxi) for all i ∈ {1, . . . , n} and 1 ̸= v ∈ F such that |v|i = |v|i+1 = 0. Here we

write i+ 1 = 1 if i = n, (and similarly, we say that the word xivxi is of type (5i)).

Then the set {w − v | for (w, v) ∈ S} is a Gröbner basis of the algebra K[Cn].

Corollary 1.66. Cn can be identi�ed with the monoid R(S) of words in F that are reduced

with respect to the system S, with the operation de�ned for u,w ∈ Cn by u · w = RS(uw),

where RS(uw) is the S�reduced form of the word uw. More precisely, R(S) is the set of

words in F that do not have factors of the form wσ, where σ = (wσ, vσ) ∈ S.

For w, v ∈ F , we write w
(η)−→ v in case w = uwσz, v = uvσz for some u, z ∈ F and an

element (wσ, vσ) of the set S of reductions of type (η). Here (η) may be one of: (1) � (5),

or even more explicitly (4i) or (5i), for some i. More generally, w
(η)−→ v may also denote a

sequence of consecutive reductions of type (η). If clear from the context, w → v will denote

an unspeci�ed sequence of reductions.

Note that for example all words (xn · · ·x1)k, k = 1, 2, . . . are reduced in the monoid Cn.

Thus in particular they are pairwise di�erent. This gives a simple argument to the following

fact, �rst proved in [4].

Proposition 1.67. Hecke�Kiselman monoid Cn associated to cycle of length n ⩾ 3 is in�nite.

The following general easy proposition will be relevant in our work.

Proposition 1.68. If a graph Σ is a subgraph of Θ, then the Hecke�Kiselman monoid HKΣ

is a homomorphic image of HKΘ.

We proceed with a well-known characterization of �nite Hecke�Kiselman monoids associ-

ated with oriented graphs, [4].

If the graph Θn is an oriented graph with vertices x1, . . . , xn and an oriented edge from

xi to xj if and only if i < j, then the corresponding Hecke�Kiselman monoid HKΘn is a �nite

monoid (called Kiselman's monoid), see [18]. It can be veri�ed that every acyclic oriented

graph, that is a graph that does not contain an oriented cycle as a subgraph, is a subgraph of

Θn for some n. Thus from Proposition 1.68 it follows that for any acyclic graph the Hecke�

Kiselman monoid is �nite. Moreover, we also get that the Hecke�Kiselman monoid associated

to a graph containing an oriented cycle of length n ⩾ 3 has an in�nite homomorphic image,

isomorphic to Cn for some n ⩾ 3. Therefore we get the following conclusion.
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Theorem 1.69. If a graph Θ is oriented, then the corresponding Hecke�Kiselman monoid is

�nite if and only if the graph is acyclic, that is it does not contain any oriented cycle.

We emphasise that although the above result is easy to prove, the characterization of �nite

Hecke�Kiselman monoids associated to graphs with both oriented and unoriented edges seems

to be extremely di�cult. Partial results in this direction, obtained in [4] are combinatorially

involved.

Lastly we summarize the relevant material on Green's relations in Hecke�Kiselman monoids.

First, it has been proved in [29, Theorem 22] that Kiselman's monoids are J -trivial.
Thus, as observed in [18], from Remark 1.39 we get the following proposition.

Proposition 1.70. Hecke�Kiselman monoids associated to oriented acyclic graphs are J -
trivial.

Certain combinatorial interpretations of Hecke�Kiselman monoids associated to oriented

cycles are used to obtain that these monoids are also J -trivial in [11, Theorem 4.5.3].

Theorem 1.71. The Hecke�Kiselman monoid associated to an oriented cycle of length n ⩾ 3

is J -trivial.

Let us also mention that the problem of characterization of Green's relations in arbitrary

Hecke�Kiselman monoids is still open.

1.4.3 Background on Hecke�Kiselman algebras

While several papers on Hecke�Kiselman monoids focus on combinatorial and semigroup-

theoretic aspects, we are also interested in the structure of algebras over a �eld associated

with these monoids. Thus we expand the study, started in [39], of the ring-theoretic structure

of Hecke�Kiselman algebras and their representations.

We now outline the main results in this direction. We will focus only on theorems that

will play an important role in the thesis.

Oriented graphs Θ such that the corresponding monoid HKΘ does not contain a free

submonoid of rank 2 have been described in [39]. It turns out that this is strictly related to

the properties of the corresponding algebra AΘ; namely to satisfying a polynomial identity

and being of �nite Gelfand�Kirillov dimension. More precisely, the following theorem has

been proved.

Theorem 1.72. Let Θ be a graph. The following conditions are equivalent.

(1) Θ does not contain two di�erent cycles connected by an oriented path of length ≥ 0,

(2) AΘ is an algebra satisfying a polynomial identity,

(3) GKdim(AΘ) <∞,
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(4) the monoid HKΘ does not contain a free submonoid of rank 2.

This will be extremely useful for us, as we often focus on Hecke�Kiselman algebras that

are PI. If this is the case, strong structural theorems from Section 1.1.5 can be used.

Consider a �nitely generated monoid algebra A = K⟨X⟩/I and an order ⩽ on the free

monoid F = ⟨X⟩ which is compatible with the multiplication in the monoid, that is 1 ⩽ w for

all w ∈ F and from v ⩽ w it follows that uv ⩽ uw and vu ⩽ wu for all u, v, w ∈ F . Then A
is an automaton algebra if the set of normal words N(A) (consisting of all words that are not

leading monomials of elements of the ideal I, as de�ned for deg-lex order in Section 1.4.2) is

a regular language for some presentation and an order compatible with multiplication. That

means that this set is obtained from a �nite subset of F by applying a �nite sequence of

operations of union, multiplication and operation ∗ de�ned by T ∗ =
⋃

i≥0 T
i, for T ⊆ F .

An expression built recursively from the set of letters from F using operations of union,

multiplication and ∗ is called a regular expression. We refer to [56, Chapter 5] for more

information on the automaton algebras.

From [56, Theorem 3, p. 97] we get the following useful property.

Theorem 1.73. The Gelfand�Kirillov dimension of an automaton algebra is either in�nite

or an integer.

As it will be explained in Chapter 6, in the �nite dimensional case, the dimension is

related to certain forms of regular-expressions representations of the regular languages of

normal words, [54].

The characterization of Gröbner basis of Hecke�Kiselman algebras from Theorem 1.63

leads to the following corollary, obtained in [40], that will be useful in the calculation of the

Gelfand�Kirillov dimension of Hecke�Kiselman algebras in Chapter 6.

Theorem 1.74. For any oriented graph Θ the algebra AΘ is an automaton algebra, with

respect to any deg-lex order on the underlying free monoid of rank n. Consequently, the

Gelfand�Kirillov dimension GKdim(AΘ) of AΘ is an integer if it is �nite.
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Chapter 2

Structure of the Hecke�Kiselman monoid

Cn associated to the cycle of length n ⩾ 3

In the present chapter we focus on the structure of the Hecke�Kiselman monoid Cn associated

to an oriented cycle of length n ⩾ 3. In the �rst section we give a characterization of reduced

forms of all but �nitely many elements of the monoid Cn. This is the key technical tool

used in our approach. Then we apply this characterization to construct an unexpected chain

of ideals inside the monoid with factors that are, up to �nitely many elements, semigroups

of matrix type. The chain is introduced in Section 2.2. Next we investigate semigroups of

matrix type inside the monoid and describe certain involutions of Cn that induce involutions

of the quotients of the chain. The main result is summarized in Theorem 2.44. In the last

part of the chapter we focus on structural properties of these semigroups of matrix type, that

will be extensively used in the investigation of structural properties of the monoid Cn and

its monoid algebra K[Cn] over a �eld K. In particular we show in Theorem 2.52 that the

semigroup algebras associated to these semigroups of matrix type are prime.

Results from Sections 2.1, 2.2 and 2.3 were mainly (all except for Proposition 2.13 and

Corollary 2.31) obtained during the author's master's studies. In most cases we outline the

applied approach and formulate several technical results exploited in the proofs, instead of

providing full proofs. Note that some of the technical results will be also applied in the next

chapters. The detailed proofs can be found in the paper [45]. The content of Section 2.4

(although also published in [45]) is new.

2.1 The form of (almost all) reduced words in Cn

The problem of characterizing the reduced forms of elements of Hecke�Kiselman monoids

has been investigated by several authors, for instance in the papers [5, 33, 40]. In the case

of Kiselman's semigroup certain canonical forms of all elements were introduced in [29] and

then applied to study the properties and representations of this semigroup. In the paper

[40] Gröbner bases have been characterized for any Hecke�Kiselman algebra associated to an
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oriented graph, see Section 1.4.2 for the details. Another approach in the case of the Hecke�

Kiselman monoid associated to a chain or to an oriented cycle of any length is presented

in [33], where a diagrammatic interpretation is used. Note that words obtained in [33] are

not necessarily reduced in the sense that we use in the present thesis.

The aim of this section is to prove that all elements of the monoid Cn, de�ned in Exam-

ple 1.61 3), except for �nitely many words, have a very special reduced form with respect

to the deg-lex order and the reduction system S introduced in Theorem 1.65. This will be

the key to describe the structure and properties of Cn in the next sections, as in view of

Corollary 1.66, we may identify the elements of Cn with the reduced words in F .

Note that it is possible to decide whether a given word from free monoid is in the reduced

form when a Gröbner basis is given, but in general it is hard to characterize all reduced

elements.

We follow the approach of [40], using the language of Gröbner bases and the notation

from Section 1.4.2. Recall that F is the free monoid generated by x1, . . . , xn. By a pre�x

(su�x) of the word w we mean any factor u ̸= 1 such that w = uv (w = vu) for some v.

For every subset Z ⊆ F by suff(Z) (pref(Z), respectively) we denote the set of all su�xes

(pre�xes, respectively) of elements of Z. For any word w ∈ F , by w∞ we mean the in�nite

word ww . . .. The notation introduced after Corollary 1.66 is also used.

Let qn,i = xnx1 · · ·xixn−1 · · ·xi+1 ∈ F , for i = 0, . . . , n− 2 and n ⩾ 3. Here we agree that

qn,0 = xnxn−1 · · · x1. From Corollary 1.66 it follows that the word (qn,i)
k is reduced for every

k ⩾ 0.

For every i = 0, . . . , n− 2 we de�ne two subsets Ai and Bi of F , as follows. First,

Ai = suff({(xks · · ·xs)(xks+1 · · ·xs+1) · · · (xki+1
· · ·xi+1)}),

where s ∈ {0, . . . , i + 1}, ks+1 < ks+2 < · · · < ki+1 ⩽ n − 1, ks ⩽ s and kq > q for

q = s+ 1, . . . , i+ 1.

The convention is that the subset ofAi corresponding to s = i+1 has the form suff({xki+1
· · ·xi+1}),

where ki+1 ⩽ i+ 1. Also, if s = 0 then the corresponding subset of Ai has the form

suff({(xks+1 · · ·xs+1) · · · (xki+1
· · ·xi+1)}), where ks+1 < ks+2 < · · · < ki+1 ⩽ n− 1 and kq > q

for q = s+ 1, . . . , i+ 1.

The set Bi is de�ned by

Bi = pref({xn(x1 · · ·xi1xn−1 · · ·xj1) · · ·xn(x1 · · ·xirxn−1 · · ·xjr)xnxn−1 · · ·xjr+1}),

where r ⩾ 0, ir < ir−1 < · · · < i1 < i+ 1 and i+ 1 < j1 < j2 < · · · < jr+1 ⩽ n.

Here, the subset of Bi corresponding to r = 0 has the form pref({xnxn−1 · · ·xj1}).
The following result characterizes all reduced words that have a factor of the form qn,i.

Theorem 2.1. Assume that w is a reduced word that contains a factor of the form
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xnx1 · · · xixn−1 · · ·xi+1 for some i = 0, . . . , n− 2. Then

w = a(xnx1 · · ·xixn−1 · · ·xi+1)
kb

for some a ∈ Ai, b ∈ Bi and some k ≥ 1. Moreover, all words of this type are reduced.

We will use the following convention. By a block we mean a factor of the form xkj · · · xj,
for some j ∈ {s, . . . , i + 1}, appearing in the elements of the set Ai or a factor of the form

xn(x1 · · ·xikxn−1 · · ·xjk), for k ∈ {1, . . . , r}, or xnxn−1 · · ·xjr+1 , appearing in the elements of

Bi.

The main idea of the proof is to analyse the possible forms of reduced words that satisfy

certain additional restrictions, using the Gröbner basis from Theorem 1.65.

Let us consider the word w = aqkn,ib, where a ∈ Ai, b ∈ Bi and k ⩾ 1. Then a factor

a ∈ Ai is exactly the maximal pre�x of w that does not contain xn. Similarly, b ∈ Bi is

a su�x of w which appears after the last occurrence of the factor qn,i in the word. This

suggests that it is useful to start with investigating possible occurrences of xn in the reduced

words.

Let us recall several technical lemmas from [45] that lead to the description of possible

factors v in the reduced words of the form xnvxn.

Lemma 2.2. If w = xn−1u is a reduced word, where u ∈ F is such that |u|n = 0, then

w = xn−1 · · ·xk for some k ⩾ 1.

Lemma 2.3. If w = xnx1u is a reduced word, where |u|n = 0, then w is of one of the forms

1. w = xnx1x2 · · ·xixn−1 · · ·xj for some 1 ⩽ i < j ⩽ n− 1;

2. w = xnx1x2 · · ·xi for some 1 ⩽ i < n− 1.

Lemma 2.4. If w = xnuxn is a reduced word, where |u|n = 0, then u is of one of the forms

1. u = xn−1 · · ·x1;

2. u = x1 · · ·xixn−1 · · ·xj for 1 ⩽ i < j ⩽ n− 1.

The following lemma shows that in the case where i = 0 or i = n− 2, the reduced words

with a factor qn,i have an extremely simple form.

Lemma 2.5. If a reduced word has a factor of the form xnx1 · · ·xn−1 or xnxn−1 · · ·x1, then
it must be a factor of the in�nite word (xnx1 · · ·xn−1)

∞ or (xnxn−1 · · ·x1)∞.

We refer to [45] for the detailed proofs. The reasoning is based on the repeated use of the

following observation.

Observation 2.6. 1. If xi · · ·xjxk is reduced, where i ⩾ j and k > j, then either i ̸= n

and k ⩾ i+ 1 or i = n, j = 1 and k = n.
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2. If xi · · ·xjxk is reduced, where i ⩽ j and k < j, then either 1 ̸= i = j and k = j − 1 or

j = n and k ∈ {1, n− 1}.

3. If xkxi · · ·xj is reduced, where i ⩽ j and k > i, then either i = j and k = i + 1 or

(i, k) = (1, n).

4. If xkxi · · ·xj is reduced, where i ⩾ j and k < i, then k < j.

5. If xnx1 · · ·xixj is reduced, where 1 ⩽ i ⩽ n− 1, then j ∈ {i+ 1, n− 1}.

We give a proof as an illustration of the computations used in the lemmas dealing with

reduced forms of words in the monoid Cn. Working with the reduction system S from

Theorem 1.65, we follow the notation introduced after Corollary 1.66.

Proof. 1. Let xi · · · xjxk be reduced, where i ⩾ j, k > j and i ̸= n. Suppose that k < i+1.

Then j < k < i + 1 and consequently xi · · ·xjxk has a factor xk · · ·xjxk which can be

reduced, namely xk · · ·xjxk
(5)−→ xk−1 · · ·xjxk. Now assume that i = n. Then, if j > 1

we get as in the previous case that xi · · ·xjxk can be reduced using a reduction of type

(5). Similarly for j = 1 the word is of the form xn · · ·x1xk. Suppose that k ̸= n,

then xn · · ·x1xk has a factor xkxk−1 · · ·x1xk with |xk−1 · · ·x1|k+1 = 0, which leads to a

contradiction.

2. If i = j and k < j, then xjxk is reduced for j ̸= 1 and k = j − 1 or for j = n and

k = 1, as otherwise xjxk
(2)−→ xkxj. Assume now that i < j and k < j. For i < k < j,

the word xi · · ·xjxk has a factor xk · · ·xjxk, which is not reduced. If k < i < j, then

for (k, j) ̸= (1, n) the word has a factor xjxk
(2)−→ xkxj. The assertion follows.

3. Assume �rst that i = j. Then for (i, k) ̸= (1, n) and k ̸= i + 1 we have xkxi
(2)−→ xixk

and thus the word is not reduced. If i < j and k > i, then for (i, k) ̸= (1, n) and

k ̸= i+1 we have a factor xkxi as before. Moreover, if k = i+1, the word has a factor

xi+1xixi+1, which is not reduced.

4. If k ⩾ j, then xkxixi−1 · · ·xj is not in the reduced form, as it contains a factor

xkxi · · ·xk+1xk, such that |xi · · ·xk+1|k−1 = 0.

5. This is a straightforward consequence of reduction of type (3) from Theorem 1.65.

The next lemma will be used to determine the desired shape of the elements of Bi, which

are the endings of the considered class of reduced words.

Lemma 2.7. Let w ∈ F be of the form w = xnx1 · · ·xi1xn−1 · · · xj1xnx1 · · ·xi2xn−1 · · ·xj2,
where 1 ⩽ ip < jp ⩽ n− 1 for p = 1, 2. If w is a reduced word, then

1. i1 ⩾ i2,
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2. j1 ⩽ j2.

Moreover, if i1 = i2 = i, then j1 = i+1 and if j = j1 = j2, then i1 = i2 = j−1. Additionally,

if i1 + 1 = j1 and i2 + 1 < j2, then j2 > j1.

Inequalities in the proof are obtained by excluding non-reduced factors of the form xkwxk,

where k ∈ {1, . . . , n}, |w|k = 0 and |w|k+1 = 0 or |w|k−1 = 0 (where for k = n we set k+1 = 1

and for k = 1 we set k − 1 = n).

Applying the above lemmas to the consecutive factors of the form

xnx1 · · ·xi1xn−1 · · ·xj1xnx1 · · ·xi2xn−1 · · · xj2

we get the following corollary.

Corollary 2.8. If a reduced word w is of the form

uxn(x1 · · ·xi1xn−1 · · ·xj1)xn(x1 · · ·xi2xn−1 · · ·xj2) · · ·xn(x1 · · ·xirxn−1 · · ·xjr)xnv

for some u, v such that |u|n = |v|n = 0, then it follows that

ir ⩽ ir−1 ⩽ · · · ⩽ i1 < j1 ⩽ j2 ⩽ · · · ⩽ jr.

Furthermore, if ik + 1 = jk for some k, then ik = is and jk = js for s = 1, . . . , k − 1.

Moreover, if for some l we have il + 1 < jl, then ir < ir−1 < · · · < il < il + 1 < jl < · · · < jr.

If l > 1, then also il ⩽ il−1 < jl−1 < jl.

The next few lemmas will be used to deal with the shape of the elements of the set Ai,

which are the beginnings of the considered class of reduced words.

Lemma 2.9. Let w be a reduced word such that

w = v(xks · · · xs)uxnx1 · · ·xixn−1 · · ·xi+1,

where i = 1, . . . , n − 3, ks < s ⩽ i + 1, |u|j = 0 for j = 1, . . . , s and |u|n = |v|n = 0. Then

v = xrxr+1 · · ·xks−1 for some r ⩾ 1.

The idea of the proof is to apply Observation 2.6 3, using the assumption that |v|n = 1.

Lemma 2.10. Assume that a reduced word w is of the form

w = u(xks · · ·xs)(xks+1 · · ·xs+1) · · · (xki+1
· · ·xi+1)xnx1 · · ·xixn−1 · · ·xi+1

where s ⩽ i+1, ks ⩾ s, kq > q for q = s+1, . . . , i+1, |u|n = 0. Then suff1(u) ∈ {xks+1, xs−1}.

Let suff1(u) = xj. If j < ks then from Observation 2.6 4 it follows that j ⩽ s − 1.

Moreover, for j > ks + 1 the word w has a factor xjxks which is not reduced.
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Lemma 2.11. Assume that a reduced word w is of the form

w = uxnx1 · · ·xixn−1 · · ·xi+1

for some i ∈ {1, . . . , n− 3}, where |u|n = 0 and u has no factors of the form xl · · ·xj, where
l < j. Then u is of the form

u = (xks · · ·xs)(xks+1 · · ·xs+1) · · · (xki+1
· · ·xi+1),

where s ⩽ i+ 1, ks < ks+1 < · · · < ki+1 ⩽ n− 1, ks ⩾ s, kq > q for q = s+ 1, . . . , i+ 1.

The idea of the proof is to exclude factors of the form xjuxj such that |u|j−1 = 0 or

|u|j+1 = 0, where xj is the su�x of u. Then it is enough to apply Lemma 2.10 several times

together with the assumptions.

Lemma 2.12. If w is a reduced word and w = uxnx1 · · ·xixn−1 · · ·xi+1 for some i =

1, . . . , n− 3 and some u ∈ F such that |u|n = 0, then u is of the form

u = (xks · · ·xs)(xks+1 · · ·xs+1) · · · (xki+1
· · ·xi+1),

where s ⩽ i + 1, ks+1 < ks+2 < · · · < ki+1 ⩽ n − 1 and kq > q for q = s + 1, . . . , i + 1 (but

perhaps ks ⩽ s).

From Lemma 2.11 it follows that u = z(xks+1 · · ·xs+1) · · · (xki+1
· · ·xi+1) for certain z such

that suff2(z) = xj−1xj for certain j and ks+1 < ks+2 < · · · < ki+1 ⩽ n − 1 and kq > q for

q = s+2, . . . , i+1 and ks+1 > s+1. Then applying Lemma 2.10 we get two possible su�xes

of z, one of which can be easily excluded. Then the assertion follows from Lemma 2.9.

We are ready to show how the proof of Theorem 2.1, published in the paper [45], follows

from the above series of technical lemmas.

Proof of Theorem 2.1. From Corollary 1.66 it is clear that all words described in the

statement are reduced.

Let w ∈ F be a reduced word that contains a factor qn,i. By Lemma 2.5 the assertion

holds for i = 0, n−2. Thus we assume further that i ∈ {1, . . . , n−3}. Notice that if the word
w has the form xnx1 · · ·xixn−1 · · · xi+1v for some v ∈ Cn, then we must have pref(v) = xn.

Indeed, if pref(v) = xj for j ⩽ i, then qn,ixj
(4j)−−→ qn,i. Similarly, if i + 1 ⩽ j ⩽ n − 1, then

qn,ixj
(5j)−−→ xnx1 · · · xixn−1 · · ·xj+1xj−1 · · ·xi+1.

From Lemma 2.4 and Lemma 2.7 we know that if i = 1, . . . , n− 3 then w is of the form

u(xnx1 · · ·xi1xn−1 · · ·xj1) · · · (xnx1 · · ·ximxn−1 · · ·xjm)xnv,

for some m, where 1 ⩽ ik < jk ⩽ n− 1 for every k and |u|n = |v|n = 0.

In view of Corollary 2.8 this implies that w is of the form

u(xnx1 · · ·xixn−1 · · ·xi+1)
kxn(x1 · · ·xi1xn−1 · · ·xj1) · · ·xn(x1 · · ·xirxn−1 · · ·xjr)xnv, (2.1.1)
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where ir < ir−1 < · · · < i1 < i + 1 and i + 1 < j1 < j2 < · · · < jr and |u|n = |v|n = 0,

where the factor of the form (x1 · · ·xi1xn−1 · · ·xj1) · · ·xn(x1 · · ·xirxn−1 · · ·xjr) does not have
to occur in w (that is, w can be of the form u(xnx1 · · ·xixn−1 · · ·xi+1)

kxnv) and then we put

r = 0.

Notice that pref1(v) ∈ {x1, xn−1}, since otherwise w contains a factor xnxs for s < n,

which is not reduced.

If pref1(v) = xn−1, Lemma 2.2 implies that v = xn−1 · · ·xjr+1 . Moreover, we must have

jr < jr+1, as otherwise w has a factor xjrxn · · ·xjr+1xjr such that |xn · · · xjr+1|jr−1 = 0, which

is not reduced.

If pref1(v) = x1, then by Lemma 2.3 and Corollary 2.8 we get v = x1 · · · xir+1xn−1 · · ·xjr+1

for ir+1 < ir and jr+1 > jr, if r > 0. If r = 0, then in view of (2.1.1) we have w = pq, where

p ∈ F and

q = xnx1 · · ·xixn−1 · · ·xi+1xnx1 · · ·xi1xn−1 · · · xj1
Corollary 2.8 implies that i1 ⩽ i and j1 ⩾ i+ 1. The desired form of the elements of the set

Bi follows.

Since k ⩾ 1, the desired form of the elements of the set Ai follows by Lemma 2.12. This

completes the proof of Theorem 2.1. □

Now we calculate the size of the set Ai occurring in Theorem 2.1, for every i = 0, . . . , n−2
and n ⩾ 3, that was calculated in [46].

Proposition 2.13. For any i ∈ {0, . . . , n− 2} and n ⩾ 3 we have |Ai| =
(

n
i+1

)
.

Proof. For i = n − 2 the assertion follows from Lemma 2.5. Thus next we assume that

i ⩽ n− 3.

By the description of the set Ai from Theorem 2.1 it is clear that every element w of Ai is

exactly of one of the forms

1. w = (xks · · ·xs)(xks+1 · · ·xs+1) · · · (xki+1
· · ·xi+1) where i + 1 ⩾ s ⩾ 1, s + 1 < ks+1 <

· · · < ki+1 ⩽ n − 1 and s ⩾ ks; for s = i + 1 we assume that w = (xki+1
· · ·xi+1) with

i+ 1 ⩾ ki+1;

2. w = (xks · · · xs)(xks+1 · · ·xs+1) · · · (xki+1
· · ·xi+1) where i + 1 ⩾ s ⩾ 1, s < ks < · · · <

ki+1 ⩽ n− 1;

3. w = 1.

Choose 1 ⩽ s ⩽ i + 1 and 0 ⩽ i ⩽ n − 3. Then the elements w from Case 1. are in

a bijection with strictly increasing sequences (ks, . . . , ki+1) of natural numbers such that

1 ⩽ ks ⩽ s < s + 2 ⩽ ks+1 < · · · < ki+1 ⩽ n − 1. It is easy to see that there exist exactly

s
(
n−s−2
i−s+1

)
sequences of the above form. Similarly, elements w of the form as in Case 2. are

in a bijection with strictly increasing sequences (ks, . . . , ki+1) of natural numbers such that

s+ 1 ⩽ ks < · · · < ki+1 ⩽ n− 1. There are exactly
(
n−s−1
i−s+2

)
such sequences.
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It follows that

|Ai| = 1 +
i+1∑
s=1

((
n− s− 1

i− s+ 2

)
+ s

(
n− s− 2

i− s+ 1

))
.

Thus, it is enough to prove that 1 +
∑i+1

s=1(
(
n−s−1
i−s+2

)
+ s
(
n−s−2
i−s+1

)
) =

(
n

i+1

)
for n ⩾ 3 and

0 ⩽ i ⩽ n− 3.

Moreover, if i = n− 3, then by a direct calculation we get that

1 +
n−2∑
s=1

((
n− s− 1

n− s− 1

)
+ s

(
n− s− 2

n− s− 2

))
=

(
n

n− 2

)
,

as desired.

It is easy to check that

1 +
i+1∑
s=1

((
n− s− 1

i− s+ 2

)
+ s

(
n− s− 2

i− s+ 1

))
=

i+1∑
k=0

(i+ 2− k)
(
n− i− 3 + k

k

)
.

Indeed, substituting k = i + 1 − s in the sum in the left hand side, we get that this sum is

equal to

1 +
i∑

k=0

(
n− i− 2 + k

k + 1

)
+

i∑
k=0

(i+ 1− k)
(
n− i− 3 + k

k

)
=

= 1 +
i+1∑
k=1

(
n− i− 3 + k

k

)
+

i∑
k=0

(i+ 1− k)
(
n− i− 3 + k

k

)
=

=
i+1∑
k=0

(
n− i− 3 + k

k

)
+

i+1∑
k=0

(i+ 1− k)
(
n− i− 3 + k

k

)
=

=
i+1∑
k=0

(i+ 2− k)
(
n− i− 3 + k

k

)
,

as claimed.

We proceed by induction on n to prove that

i+1∑
k=0

(i+ 2− k)
(
n− i− 3 + k

k

)
=

(
n

i+ 1

)
.

For i = 0 and arbitrary n ⩾ 3 we have 1 +
(
n−2
1

)
+
(
n−3
0

)
=
(
n
1

)
and the assertion follows. If

n = 3, then we have 0 ⩽ i ⩽ 0, so the proposition holds.
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Assume now that the equality is true for some n and every i ⩽ n− 3. Consider the sum

i+1∑
k=0

(i+ 2− k)
(
(n+ 1)− i− 3 + k

k

)

for n− 2 > i > 0. Using
(
m+1
k

)
=
(
m
k

)
+
(

m
k−1

)
if k ⩾ 1 and

(
m+1
0

)
=
(
m
0

)
we get

i+1∑
k=0

(i+ 2− k)
(
(n+ 1)− i− 3 + k

k

)
=

=
i+1∑
k=0

(i+ 2− k)
(
n− i− 3 + k

k

)
+

i+1∑
k=1

(i+ 2− k)
(
n− i− 3 + k

k − 1

)
.

From the induction hypothesis it follows that the �rst sum is equal to
(

n
i+1

)
. Substituting

m = k − 1 and j = i− 1 we get

i+1∑
k=1

(i+ 2− k)
(
n− i− 3 + k

k − 1

)
=

j+1∑
m=0

(j + 2−m)

(
n− j − 3 +m

m

)
.

From the induction hypothesis it follows that the above sum is equal to
(
n
i

)
. Now, using(

n
i+1

)
+
(
n
i

)
=
(
n+1
i+1

)
we get

i+1∑
k=0

(i+ 2− k)
(
(n+ 1)− i− 3 + k

k

)
=

(
n

i+ 1

)
+

(
n

i

)
=

(
n+ 1

i+ 1

)
and the assertion follows.

Our next aim is to show that Theorem 2.1 describes all but �nitely many elements of the

monoid Cn. Let us introduce the following crucial notation.

De�nition 2.14. For every i = 0, . . . , n− 2 we denote by M̃i the following set

M̃i = {aqkn,ib ∈ Cn : a ∈ Ai, b ∈ Bi, k ⩾ 1}. (2.1.2)

(the set of reduced forms of elements of Cn that have a factor qn,i). De�ne also M̃ =
⋃n−2

i=0 M̃i.

Corollary 1.66 ensures that two elements w,w′ ∈ M̃ are equal in Cn if and only if the

equality w = w′ holds in the free monoid F generated by x1, . . . , xn. In particular, we can

write M̃ ⊆ Cn. This identi�cation will be often used without further comment.

Proposition 2.15. Cn \ M̃ is a �nite set.

The set Cn \ M̃ consists of all words in Cn that do not contain a factor of the form

qn,i = xnx1 · · ·xixn−1 · · ·xi+1 for i = 0, . . . , n−2. The idea of the proof that there are �nitely
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many such words is to estimate the maximal possible length of reduced words without a

factor qn,i for any i ∈ {0, . . . n − 2}. If xn does not occur in the reduced form of the word

w, then, as factor xiuxi with |u|i−1 is not reduced, it can be proved that |w|m ⩽ m for every

m ∈ {1, . . . , n − 1}. Otherwise, it is possible to estimate the number of occurrences of the

generator xn using the form of any reduced word xnuxn with |u|n = 0 from Lemma 2.4 and

Corollary 2.8. We conclude that there is a number C = C(n) such that if w is in Cn \ M̃ ,

then |w| < C. As there are only �nitely many words w with |w| < C, the assertion follows.

We refer to Section 2 of [45] for the detailed proof.

As a consequence, using the characterization of sets M̃i in De�nition 2.14 we get an

alternative calculation of the Gelfand�Kirillov dimension of the Hecke�Kiselman algebra as-

sociated to an oriented cycle obtained in Example 2 from [39].

Remark 2.16. The Hecke�Kiselman algebra K[Cn] over a �eld K is of the Gelfand�Kirillov

dimension one.

We end the section with an easy observation of independent interest. It will be later

useful in the proofs of various properties of the Hecke�Kiselman monoids Cn by induction

on n.

Lemma 2.17. Assume that y1, y2, . . . , yn−1 are the consecutive vertices of a cyclic graph

Cn−1. Consider an epimorphism ϕ from the free monoid Y = ⟨y1, . . . , yn−1⟩ to the submonoid

⟨x2, . . . , xn−1, xnx1⟩ of F de�ned by

ϕ(yi) =

{
xi+1, for 1 ⩽ i ⩽ n− 2,

xnx1, for i = n− 1.

Then ϕ induces a homomorphism ϕ : Cn−1 −→ Cn given by the formula ϕ(w) = ϕ(w), for

every w ∈ ⟨y1, . . . , yn−1⟩. Moreover, ϕ determines an isomorphism

Cn−1
∼= ⟨x2, . . . , xn−1, xnx1⟩ ⊆ Cn.

Proof. By a straightforward computation it is veri�ed in [40], Lemma 4, that ϕ is a ho-

momorphism. We claim that if a word w = w(y1, . . . , yn−1) is reduced in the sense of the

reduction system S as in Theorem 1.65, de�ned with respect to the deg-lex order extending

y1 < · · · < yn−1 in the free monoid Y = ⟨y1, . . . , yn−1⟩, then the word w(x2, . . . , xn−1, xnx1)

is reduced with respect to the system S in the free monoid F = ⟨x1, . . . , xn⟩.
If w ∈ Y then it is clear that if ϕ(w) contains a factor that is the leading term of a

reduction of type (1) in Theorem 1.65, then also w contains such a factor. Assume that ϕ(w)

contains a factor xjxi of type (2). Then w contains a factor yj−1yi−1. Assume that ϕ(w) has a

factor xiuxi that is of type (4) or (5). If i = 1 or i = n then ϕ(w) has a factor xnx1vxnx1. If v

does not contain x2 (xn−1, respectively) then ϕ
−1(v) does not contain y1 (yn−2, respectively),

and we are done. If i ̸= 1, n, and u does not contain xi+1 (xi−1, respectively) then ϕ
−1(u) does

not contain yi (respectively, yi−2 if i > 2; and if i = 2 then ϕ−1(u) does not contain yn−1), as
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desired. Assume that ϕ(w) contains a factor of the form xn(x1 · · ·xi)xj for i, j ∈ {1, . . . , n}
such that i+ 1 < j < n− 1. Then w contains a factor yn−1(y1 · · · yi−1)yj−1 or yn−1yj−1, and

the assertion follows as well. This proves the claim.

Therefore ϕ is injective. The result follows.

2.2 An ideal chain

Our next goal is to introduce a special ideal chain in the monoid Cn that is strongly related

to certain structures of matrix type. This will be essential when dealing with the structure

and properties of the algebra K[Cn], and consequently of every Hecke�Kiselman algebra, in

the forthcoming sections. We refer to [45, Section 2] for the detailed proofs.

In view of Corollary 1.66 we identify elements of Cn with the (unique) reduced forms of

words in F .

De�nition 2.18. For every i = 0, . . . , n− 2 let us introduce

Ii = {w ∈ Cn : CnwCn ∩ ⟨qn,i⟩ = ∅}.

We also de�ne I−1 = I0 ∪ Cnqn,0Cn.

It is clear that every Ii is an ideal in Cn, if it is non-empty. We claim that In−2 = ∅. This
is a consequence of the following observation.

Lemma 2.19. Let w ∈ Cn. If k = 1, . . . , n then the reduced form of (xk+1 · · · xnx1 · · ·xk)w
is a factor of the in�nite word (xnx1 · · · xn−1)

∞. Moreover (xk+1 · · ·xnx1 · · ·xk)w has a pre�x

of the form xk+1 · · ·xnx1 · · ·xk.

To prove the lemma it is enough to analyse the possible reduced forms of the word

(xk+1 · · ·xnx1 · · ·xk)xj for any index j ∈ {1, . . . , n}. We omit the details.

It follows that for any word w, the reduced form of the element (xnx1 · · ·xn−1)w is a

factor of (xnx1 · · ·xn−1)
∞. Consequently, we know that (xnx1 · · · xn−1)w /∈ In−2. Therefore

we get the following corollary.

Corollary 2.20. In−2 = ∅

A dual version of Lemma 2.19 also holds. In order to prove this, we introduce a natural

involution of the monoid Cn that will be useful also later.

De�nition 2.21. Denote by ⟨x1, . . . , xn⟩ the free monoid generated by x1, . . . , xn. Let τ :

⟨x1, . . . , xn⟩ −→ ⟨x1, . . . , xn⟩ be the involution such that

τ(xi) =

{
xn−i for i ̸= n

xn for i = n
.

It is easy to see that τ preserves the set of de�ning relations of Cn. Hence, it determines an

involution of Cn, also denoted by τ .
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As τ(w(xk+1 · · ·xnx1 · · ·xk)) = xn−kxn−k+1 · · ·xnx1 · · ·xn−k−1τ(w), from Lemma 2.19 we

know that the reduced form of this word is a factor of (xnx1 · · ·xn−1)
∞ with a pre�x of

the form xn−k · · · xnx1 · · ·xn−k−1. It can be easily veri�ed that the image of any factor of

(xnx1 · · ·xn−1)
∞ under τ is also a factor of (xnx1 · · ·xn−1)

∞. Therefore, applying τ to the

element τ(w(xk+1 · · ·xnx1 · · ·xk)), we obtain the following dual version of the lemma.

Lemma 2.22. Let w ∈ Cn. If k = 0, . . . , n−1 then the reduced form of w(xk+1 · · ·xnx1 · · · xk)
is a factor of the in�nite word (xnx1 · · ·xn−1)

∞. Moreover, w(xk+1 · · ·xnx1 · · ·xk) has a su�x

of the form xk+1 · · ·xnx1 · · ·xk.

Let us return to properties of the ideals Ii for i = 0, . . . , n− 3.

Lemma 2.23. Ii+1 ⊆ Ii for i = 0, . . . , n− 3.

It can be veri�ed, using the reductions from Theorem 1.65, that for every i = 0, . . . , n−3

and l ⩾ 1 there exist u, v ∈ Cn such that uqln,iv ∈ ⟨qn,i+1⟩, that is qln,i /∈ Ii+1. Suppose that

there exists w ∈ Ii+1\Ii. Then in particular for some u, v ∈ Cn and l ⩾ 1 we have uwv = qln,i.

Thus there are also u′, v′ for which u′uwvv′ ∈ ⟨qn,i+1⟩, that is w /∈ Ii+1. The assertion follows.

Therefore we get the following chain of ideals in Cn

In−3 ◁ · · · ◁ I0 ◁ I−1 ◁ Cn.

In general, it is di�cult to use the de�nition of the ideals Ii to determine the minimal j

such that a given element w of Cn satis�es w ∈ Ij. In order to prove that certain elements

of Cn are contained in Ii we introduce an auxiliary chain of ideals. It turns out that the

following representation introduced in [4], and generalized in [33], is useful in our setting.

Let Map(Zn,Zn) denote the monoid of all functions Zn −→ Zn, under composition. Consider

the homomorphism f : Cn −→ Map(Zn,Zn) which is de�ned on generators xi of Cn as follows.

f(xi)(m1, . . . ,mn) =

{
(m1, . . .mi−1,mi+1,mi+1, . . . ,mn) for i ̸= n

(m1, . . . ,mn−1,m1 + 1) for i = n.

If w ∈ Cn then the components of f(w)(m1, . . . ,mn) are polynomials in the variables

m1, . . . ,mn. Let supp(f(w)) be the minimal subset N of the set M = {1, . . . , n} such

that for every (m1, . . . ,mn) ∈ Zn the components of f(w)(m1, . . . ,mn) are polynomials de-

pending on the variables with indices from the set N . So | supp(f(w))| denotes the num-

ber of variables on which the value of f(w) depends. For example, if f(w)(m1, . . . ,mn) =

(m1, . . . ,mi−1,mi+1,mi+1, . . . ,mn), then supp(f(w)) = {1, . . . , i − 1, i + 1, . . . , n} and thus

| supp(f(w))| = n− 1.

It can be proved using direct computations and induction on k ⩾ 1 that the value of

| supp(f((qn,i)k))| does not depend on k.

Lemma 2.24. For every k ⩾ 1 and i = 0, . . . , n− 2 we have | supp(f(qkn,i))| = n− i− 1.
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For every i = −1, . . . , n− 2 consider the following set

Qi = {w ∈ Cn : | supp(f(w))| ⩽ n− i− 2}.

Then Qi is an ideal in Cn for i < n−2 because for every x, y, w ∈ Cn we have supp(f(xw)) ⊆
supp(f(w)) and supp(f(wy)) ⊆ supp(f(w)). Thus, we get the following chain of ideals

∅ = Qn−2 ⊆ Qn−3 ⊆ · · · ⊆ Q−1 ⊆ Cn.

This chain is strongly related to the ideals Ij introduced in this section. Indeed, if we had

w ∈ Qi \ Ii, then from the de�nition of Ii for some u, v ∈ Cn we have uwv = qln,i for some

l ⩾ 1. On the other hand, from Lemma 2.24 we know that qln,i /∈ Qi, which implies that also

w /∈ Qi. Therefore we have proved the following.

Lemma 2.25. For every i = 0, . . . , n− 2 we have Qi ⊆ Ii.

Now we exploit Lemma 2.25 to show that certain families of elements are in Ii.

Lemma 2.26. For all n− 1 ⩾ j > i+ 1 ⩾ 1 we have

1. xnx1 · · ·xixn−1 · · · xi+1 ∈ Ii−1;

2. w = xj · · ·xi+2xnx1 · · ·xi+1xn−1 · · ·xj+1 ∈ Ii;

where for j = n− 1 we put w = xn−1 · · ·xi+2xnx1 · · ·xi+1.

The �rst part is a direct consequence of Lemmas 2.25 and 2.26. The second is also based

on Lemma 2.25 and the computation of f(w) for words w as in the lemma.

The following is a direct consequence of the de�nition of the ideals Ii and of Lemma 2.26.

Corollary 2.27. For every i ∈ {0, . . . , n − 2} we have qkn,i ∈ Ii−1 \ Ii. Moreover, for all

i ∈ {1, . . . , n−2} and j ∈ {i+1, . . . , n−1} we have xj · · ·xi+1xnx1 · · ·xixn−1 · · ·xj+1 ∈ Ii−1\Ii.

The following will be crucial for the results of the next section, where we investigate the

sets M̃i ∪ {θ} from De�nition 2.14 after factoring out the ideal Ii.

Theorem 2.28. Let w ∈ Cn. Then for every i ∈ {0, . . . , n − 2} we have qn,iwqn,i ∈ {qkn,i :
k ⩾ 2} ∪ Ii.

Let us make a few comments concerning the proof. For the details we refer to [45]. The

idea is to proceed by induction on the length of the (reduced) word w. The assertion is

clearly true if w is the trivial word 1. For non-trivial w = xjw
′ for some j ∈ {1, . . . , n},

we investigate the reduced form of qn,iwqn,i. We use techniques as in Observation 2.6 to

show that for j ⩽ i the word qn,iwqn,i can be reduced to the word of the form qn,iw
′qn,i

and in this case the assertion holds by the inductive hypothesis. By similar methods we

obtain that for i < j < n the element qn,iwqn,i can be rewritten to the form with a factor
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xj−1 · · ·xi+2xnx1 · · ·xi+1xn−1 · · ·xj, which is contained in Ii in view of Lemma 2.26. If j = n

we analyse a su�x of w. More precisely, we write w = w′′xnw
′ with |w′|n = 0 and use

Lemmas 2.2 and 2.3 to obtain the possible form w′. Then, depending on this form, either we

can apply the inductive hypothesis to end the proof or Lemma 2.26 to show that qn,iwqn,i ∈ Ii.

2.3 Structures of matrix type

Our next aim is to re�ne the information on the ideal chain

∅ = In−2 ◁ In−3 ◁ · · · ◁ I0 ◁ I−1 ◁ Cn

of Cn de�ned in the previous section. We will show that every factor Ij−1/Ij, for j =

0, . . . , n − 2, is, up to �nitely many elements, a semigroup of matrix type over a cyclic

semigroup and also that Cn/I−1 is �nite. Namely, the elements of the family M̃j, described

in De�nition 2.14, with a zero element adjoined, treated as elements of the Rees factor Ij−1/Ij,

form a semigroup of matrix type. Using certain natural involutions on Cn, we will also show

that the corresponding sandwich matrices are square matrices and they are symmetric. In

particular, this means that, for every j, there is a bijection between the sets Aj and Bj, which

is not clear directly from the description obtained in Theorem 2.1. The details of all omitted

proofs can be found in [45, Section 3].

Recall the de�nition of the sets M̃i and M̃ from De�nition 2.14, describing sets arising

from Theorem 2.1. For every i = 0, . . . , n− 2 we write

M̃i = {aqkn,ib ∈ Cn : a ∈ Ai, b ∈ Bi, k ⩾ 1}.

Recall that we identify elements of Cn with the corresponding reduced words. Hence, M̃ =⋃n−2
i=0 M̃i consists of elements of Cn that have (in the reduced form) a factor of the form qn,i,

for some i. Moreover, from Proposition 2.15 we know that almost all elements of Cn are in

this set.

Certain generalizations of the involution from De�nition 2.21 that preserve the ideals Ii−1

and sets M̃i, for i ∈ {0, . . . , n− 2}, will be useful in this context. In particular, they can be

used to establish an internal symmetry of every set M̃i.

De�nition 2.29. Let τ : Cn −→ Cn be the involution de�ned in De�nition 2.21, that is

τ(xi) = xn−i for i ̸= n and τ(xn) = xn. Denote, as before, by ⟨x1, . . . , xn⟩ the free monoid

generated by x1, . . . , xn. Let σ : ⟨x1, . . . , xn⟩ −→ ⟨x1, . . . , xn⟩ be the automorphism such

that σ(xi) = xi+1 for every i = 1, . . . , n, where we put xn+1 = x1. It is easy to check that σ

preserves the set of de�ning relations of Cn. Hence, σ can be viewed as an automorphism of

Cn. Therefore, the map σiτ also is an involution of Cn, for i = 0, . . . , n− 1. We will denote

the involution σi+1τ by χi, for i = 0, . . . , n− 1.

It can be easily computed that χi(qn,i) = qn,i. Moreover, investigating possible reduced
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forms of χi(q
m
n,ib) and χi(aq

m
n,i) for m ⩾ 1, a ∈ Ai, b ∈ Bi, exploiting the fact that χ2

i = id we

get the following important corollary.

Corollary 2.30. The involution χi satis�es: χi(q
k
n,i) = qkn,i for every k ⩾ 1, χi(Ai) =

Bi, χi(Bi) = Ai, and in particular χi(M̃i) = M̃i.

As noticed in Lemma 2.5, if i = 0 or i = n − 2, then reduced words in Cn that have a

factor of the form qn,i must come from the in�nite word (qn,i)
∞. It is then clear that for such

a word s we can �nd w, z ∈ Cn such that wsz ∈ ⟨qn,i⟩. The latter property remains valid for

all i ∈ {0, . . . , n− 2}.
From Corollary 2.30 it follows in particular that χi determines a bijection between the

sets Ai and Bi. Thus, from Proposition 2.13 we know also the cardinality of Bi, which is not

obvious from the de�nitions of these sets.

Corollary 2.31. The set Bi has exactly
(

n
i+1

)
elements, for every i ∈ {0, . . . , n− 2}.

Theorem 2.32. Let i ∈ {0, . . . , n− 2}. Then:

1) for every a ∈ Ai there exists w ∈ Cn such that wa ∈ ⟨qn,i⟩;

2) for every b ∈ Bi there exists w ∈ Cn such that bw ∈ ⟨qn,i⟩.

Note that in view of Corollary 2.30 it is enough to prove assertion 2). Moreover if the

theorem holds for some word then it also holds for every pre�x of this word. We proceed

by induction on the number of blocks in b ∈ Bi, introduced just after the formulation of

Theorem 2.1. We construct a speci�c word v ∈ Cn such that the reduced form of bv is qn,ib
′

with b′ ∈ Bi with smaller number of blocks. Namely, if

b = xn(x1 · · ·xi1xn−1 · · ·xj1) · · ·xn(x1 · · ·xirxn−1 · · ·xjr)xnxn−1 · · ·xjr+1 ,

then v = xi1+1 · · ·xixj1−1 · · · xi+1, where for i1 = i, we put w′ = xj1−1 · · ·xi+1, satis�es the

required conditions. The necessary calculations can be found in [45]. From the inductive

hypothesis we get that for some w′ ∈ Cn we have b′w′ ∈ ⟨qn,i⟩. It follows that bvw′ ∈ ⟨qn,i⟩,
which completes the proof.

As a consequence, we are able to place the set M̃i in the ideal chain from Section 2.2.

Proposition 2.33. For every i ∈ {0, . . . , n− 2} we have M̃i ⊆ Ii−1 \ Ii.

From Corollary 2.27 we know that M̃i ⊆ Ii−1. Moreover from Theorem 2.32 and the

de�nition of Ii it follows that M̃i ⊆ Cn \ Ii.
Applying the above corollary and Proposition 2.15 we get that the sets (Ii−1 \ Ii)\ M̃i are

�nite.

Corollary 2.34. For every i ∈ {0, . . . , n− 2} the set (Ii−1 \ Ii) \ M̃i is �nite.
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By Proposition 2.15 we know that Cn \ M̃ is a �nite set. Moreover, Proposition 2.33

implies that for every i = 0, . . . , n − 2 we have M̃i ⊆ Ii−1 \ Ii ⊆ I−1, so that also M̃ ⊆ I−1.

Our next observation follows.

Corollary 2.35. Cn/I−1 is a �nite semigroup.

Now let us investigate some useful properties of the automorphism σ and the involutions

χi introduced in De�nition 2.21.

Lemma 2.36. For every i ∈ {0, . . . , n − 3} we have σ(Ii) = Ii. Moreover, σ(w) ∈ M̃i for

almost all w ∈ M̃i, if i ∈ {0, . . . , n− 2}.

As σn = id, for the �rst assertion it is enough to to prove that σ(Cn \ Ii) ⊆ Cn \ Ii. If

w ∈ Cn \ Ii, that is for some u, v ∈ Cn we have uwv = qmn,i, then a direct computation shows

that σ(uwv) is of the form aqm−1
n,i b for certain a ∈ Ai, b ∈ Bi. Thus we get the assertion

from Theorem 2.32. The second part now follows from Proposition 2.33 and Corollaries 2.34

and 2.35.

Lemma 2.37. For every i ∈ {1, . . . , n − 2} and every non-negative integer m we have

σmτ(Ii−1 \ Ii) = Ii−1 \ Ii and σmτ(Ii−1) = Ii−1.

First, Corollary 2.30 and the de�nition of the ideals Ii are applied to show that σi+1τ(Ii) =

Ii. Then, as σn = id, it follows that τ(Ii) = Ii for every i ∈ {1, . . . , n − 2}. Consequently,

from Lemma 2.36 we get the assertion.

In the two extreme cases, namely for i = 0 and i = n− 2, the description of M̃i is quite

simple (see Lemma 2.5). In particular, M̃n−2 coincides with the set of all factors of the word

(xnx1 · · ·xn−1)
∞, that contain a factor xnx1 · · ·xn−1. Moreover, from Lemmas 2.19 and 2.22

it can be proved that M̃n−2 is a two-sided ideal in Cn. More precisely, the following holds.

Corollary 2.38. M̃n−2 = Cn(xnx1 · · · xn−1)Cn.

In the second extreme case, namely when i = 0, we have M̃0 ⊆ Cnqn,0Cn ⊆ I−1. Moreover,

equality holds modulo the ideal I0, as proved in the following lemma.

Lemma 2.39. I−1 = M̃0 ∪ I0.

Recall that I−1 is de�ned as I0∪Cnqn,0Cn. Since I−1 is an ideal in Cn and M̃0 ⊆ Cn(qn,0)Cn,

it is clear that M̃0∪ I0 ⊆ I−1. Note also that qn,0 ∈ M̃0. To prove the opposite inclusion, it is

enough to check that M̃0∪ I0 is a two-sided ideal. Moreover, Corollary 2.30 and Lemma 2.37

imply that if M̃0 ∪ I0 is a one-sided ideal, then it has to be also a two-sided ideal. Explicit

computations of reduced forms of wxj for any w ∈ M̃0 and j ∈ {1, . . . , n} are then used to

show that wxj ∈ M̃0 ∪ I0.
We are now in a position to improve slightly the assertion of Theorem 2.32.

Corollary 2.40. Let i ∈ {0, . . . , n− 2}. Then
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1. for every a ∈ Ai there exists w ∈ M̃i such that wa ∈ ⟨qn,i⟩,

2. for every b ∈ Bi there exists v ∈ M̃i such that bv ∈ ⟨qn,i⟩.

Consequently, x 7→ wx is an injective map a⟨qn,i⟩Bi −→ ⟨qn,i⟩Bi, and x 7→ xv is an injective

map Ai⟨qn,i⟩b −→ Ai⟨qn,i⟩.

It is su�cient to prove the �rst part, then the second follows from Corollary 2.30. Con-

sider any u ∈ Cn such that ua = qmn,i for some m ⩾ 1. Such a word exists according to

Corollary 2.40. The idea is to show that for some k ⩾ 1 the element qkn,iu is in M̃i. Words

qkn,iu are pairwise di�erent, for k ⩾ 1 (as qkn,iua = qk+m
n,i from the choice of u). From Corol-

lary 2.15 it follows that for some k ⩾ 1 we have qkn,iu ∈ M̃ . Moreover it can be checked that

qkn,iu ∈ Ii−1 \ Ii and thus w = qkn,iu ∈ M̃ ∩ (Ii−1 \ Ii) = M̃i is such that wa ∈ ⟨qn,i⟩.
Now let us de�ne semigroupsMi of matrix type, with properties described in the beginning

of this section. We know from Theorem 2.28 that if u = aqkn,ib, w = a′qk
′

n,ib
′ ∈ M̃i, then either

uw = aqmn,ib
′ ∈ M̃i for some m ⩾ 2 or uw ∈ Ii. In particular the result implies that the

following semigroups are well-de�ned.

De�nition 2.41. Let i ∈ {0, . . . , n − 2}. Consider the set Mi = M̃i ∪ {θ} with operation

de�ned, for any u = aqkn,ib, w = a′qk
′

n,ib
′ ∈ M̃i, by

uw =

{
aqkn,iba

′qk
′

n,ib
′ if qn,iba

′qn,i ∈ ⟨qn,i⟩
θ if qn,iba

′qn,i ∈ Ii

and wθ = θw = θ for every w ∈ Mi. Then the de�nition is correct and Mi is a semigroup

under this operation.

These semigroups can be interpreted as Rees factor semigroups. Namely, for i ⩽ n − 3,

Ii is an ideal of Cn, and we may consider the factor semigroup Cn/Ii. In other words, Cn/Ii
is the semigroup (Cn \ Ii) ∪ {θ} with zero θ and with operation

s · t =

{
st if st /∈ Ii
θ if st ∈ Ii.

While In−2 = ∅, for every subsemigroup J of Cn we de�ne J/In−2 = J0; the semigroup J

with zero adjoined. Notice that Ji = M̃i ∪ Ii is a subsemigroup of Ii−1 by Theorem 2.28 and

Proposition 2.33. Thus, our de�nition yields Mi = Ji−1/Ii ⊆ Cn/Ii.

In the extreme cases, from Lemma 2.39 we know that I−1/I0 = M0 and Lemma 2.19

implies that M̃n−2 =Mn−2 \ {θ} is an ideal in Cn.

Corollary 2.42. Mi is a semigroup of matrix type. Namely, Mi
∼=M0(Qi, Ai, Bi;Pi), where

Pi is a matrix of size Bi × Ai with coe�cients in ⟨qn,i⟩ ∪ {θ} and Qi is an in�nite cyclic

semigroup generated by qn,i.
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The sandwich matrix Pi = (pba) is de�ned as follows

pba =

{
(qn,i)

α−2 if qn,ibaqn,i = qαn,i ∈ ⟨qn,i⟩
θ if qn,ibaqn,i ∈ Ii.

(2.3.1)

Then it can be veri�ed that the map ϕ : Mi −→ M0(Qi, Ai, Bi;Pi), given by the formula

ϕ(aqkn,ib) = (qkn,i; a, b) and ϕ(θ) = θ, is indeed an isomorphism of the semigroups Mi and

M0(Qi, Ai, Bi;Pi).

Remark 2.43. Assume that qn,ibaqn,i = qαn,i for some a ∈ Ai, b ∈ Bi. Then

qαn,i = χi(q
α
n,i) = χi(qn,i)χi(ba)χi(qn,i) = qn,iχi(a)χi(b)qn,i.

By Corollary 2.30, χi determines a bijection between the sets Ai and Bi. Hence, from the

de�nition of Pi in the formula (2.3.1) it follows that the matrix Pi is symmetric, if the

ordering of the elements of the set Ai corresponds to the ordering of their images under χi.

In particular such an ordering is chosen in all lemmas in Chapter 8.

The main results of this section can be now summarized as follows.

Theorem 2.44. Cn has a chain of ideals

∅ = In−2 ◁ In−3 ◁ · · · ◁ I0 ◁ I−1 ◁ Cn

with the following properties

1. for i = 0, . . . , n−2 there exist semigroups of matrix type Mi =M0(Qi, Ai, Bi;Pi), such

that Mi ⊆ Ii−1/Ii, where Qi is the cyclic semigroup generated by qn,i, Pi is a square

symmetric matrix of size Bi × Ai with |Ai| = |Bi| =
(

n
i+1

)
and with coe�cients in

⟨qn,i⟩ ∪ {θ};

2. for i = 1, . . . , n− 2 the sets (Ii−1/Ii) \Mi are �nite;

3. I−1/I0 =M0;

4. M̃n−2 =Mn−2 \ {θ} ◁ Cn;

5. Cn/I−1 is a �nite semigroup.

We postpone the illustration of the results of this section to Chapter 8. Note that the

main idea of our approach is to use the properties of the sandwich matrices Pi to investigate

the structure of semigroups of matrix type Mi and their algebras. This extends the classical

approach used in the case of �nite semigroups and their algebras, see [9]. The di�culty is

that in general it seems to be extremely hard to calculate the coe�cients of these sandwich

matrices. Despite this, we are still able to derive a number of signi�cant general results

without knowing exactly the coe�cients of Pi.
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2.4 Properties of semigroups of matrix type inside Cn

Our approach to the study of the structure of the Hecke�Kiselman monoid Cn and the monoid

algebra K[Cn], for any �eld K, and n ⩾ 3 is to derive the results from certain properties

of the quotients arising from the ideal chain in Theorem 2.44. Thus, in the present section

we investigate the properties of semigroups of matrix type Mi and their semigroup algebras

K[Mi] over any �eld K.

Lemma 2.45. Mi is a right ideal in Cn/Ii for every i = 0, 1, . . . , n− 2.

Proof. Let aqkn,ib ∈ M̃i and take any generator xr ∈ Cn. Assume that the element aqkn,ibxr is

not in M̃i. We claim that then aqkn,ibxr ∈ Ii. Let b′ be the reduced form of bxr. If b′ = xj b̄

for some word b̄, where j ⩽ i + 1, then using reduction (4) from Theorem 1.65 we get that

aqkn,ib
′ can be reduced to aqkn,ib̄. Therefore we can assume that a pre�x of b′ is equal to xj,

for some j > i + 1. If j < n, then it can be calculated that aqkn,ibxr can be rewritten as a

word with a factor of the form xj−1 · · · xi+2xnx1 · · ·xi+1xn−1 · · ·xj and this element is in Ii
by Lemma 2.26. Let us now consider the case when xn is a pre�x of b′. As we assume that

aqkn,ib
′ /∈ M̃i, this word can be rewritten in Cn as an element without the factor qn,i. From

Theorem 1.65 it is easy to see that to obtain a word without such a factor one has to use a

reduction of type (5). Therefore aqkn,ib
′ can be written as a word with a pre�x of the form

aqkn,ixnvxj, where |xnv|j = |xnv|j+1 = 0. Moreover, for j ⩽ i or j = n − 1 the generator

xj+1 occurs in qn,ixn after xj, thus the reduction of xj of type (5) is not possible in this

case. Therefore n − 1 > j ⩾ i + 1. It follows from Lemma 2.3 that such a pre�x is of the

form aqkn,ixnx1 · · · xj. Therefore this element has a factor xnx1 · · ·xixn−1 · · ·xi+1xnx1 · · ·xj
for some n− 1 > j ⩾ i+1. It can be checked (using the reductions from Theorem 1.65) that

the latter word can be rewritten as an element with the factor xn−1 · · ·xj+1xnx1 · · ·xj, which
is in Ij−1 ⊆ Ii, by Lemma 2.26. The assertion follows.

From Lemma 2.37 and Corollary 2.30 we know that, for every i = 0, . . . , n − 2, the

semigroup Cn/Ii is endowed with a natural involution χi which leaves Mi invariant. Thus

from the above lemma we get the following corollary.

Corollary 2.46. Mi is a two-sided ideal of Cn/Ii for every i = 0, 1, . . . , n− 2.

The main aim of this section is to prove that all algebras K[Mi] are prime. We start with

the extreme cases, namely K[Mn−2] and K[M0].

Remark 2.47. For every n ⩾ 3 the algebras of matrix type K[M0] and K[Mn−2] de�ned for

K[Cn] are prime.

Proof. Write R = K[M0] and suppose that x ∈ R is a non-zero element such that xRx = 0.

Then x can be uniquely written in the form

x =
∑
i∈I

σiuiq
ni
n,0vi,
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for some �nite set I, where σi ̸= 0 are elements of the �eld K, ni ⩾ 0, ui ∈ A0, vi ∈ B0. In

F = ⟨x1, . . . , xn⟩ consider the deg-lex order induced by x1 < · · · < xn. Let u0q
m
n,0v0 be the

leading term in the support of x. We may assume that its coe�cient is equal to 1. From

Theorem 2.1 it follows that u0 and v0 must be a su�x, and a pre�x respectively, of qn,0.

Hence, there exist words p, q such that pu0 = v0q = qn,0 holds in the free monoid F . Then

for all elements w ̸= u0q
m
n,0v0 in the support of x we have qm+2

n,0 = pu0q
m
n,0v0q > pwq in F . If

xRx = 0, then also pxqRpxq = 0. In particular, (pxq)2 = 0. On the other hand in K[M0]

pxq = qm+2
n,0 +

∑
yi<qm+2

n,0

ρiyi,

where i ∈ I \ {0}, ρi ∈ K, yi is the reduced form of the word puiq
ni
n,0viq. In particular, for

every yi we have yi < qm+2
n,0 . Since the reduced form of qm+2

n,0 qm+2
n,0 is q2m+4

n,0 , for every pair

(yi, yj) such that (yi, yj) ̸= (qm+2
n,0 , qm+2

n,0 ) the reduced form yij of yiyj satis�es yij < q2m+4
n,0 . In

particular, the leading term of (pxq)2 is equal to q2m+4
n,0 and it is non-zero. This contradiction

shows that K[M0] is semiprime. This implies that the sandwich matrix P0 is not a zero

divisor in the corresponding matrix ring Mn(K[⟨qn,0⟩]), see Theorem 2.44. Since K[⟨qn,0⟩]
is a domain, it follows from Section 1.3 that K0[M0] is prime. A similar argument can be

applied for K[Mn−2].

It turns out that the the proof in general case is more complicated. To show that K[Mi]

are prime for all i = 0, . . . , n− 2 we will use the following observation.

Proposition 2.48. Assume that t ∈ {1, . . . , n− 3} and α ∈ K0[Mt] is such that αxi = 0 in

K0[Mt] for every i ∈ {1, . . . , n}. Assume also that every w ∈ supp(α) is of the form qkn,tb,

where k ⩾ 1 and b ∈ Bt. Then α = 0.

In order to prove it, we need some preparatory technical lemmas. We assume that t ∈
{1, . . . , n− 3}. Moreover, we will suppose that a non-zero α ∈ K0[Mt] is given that satis�es

the hypotheses of the proposition. The aim is to come to a contradiction.

Roughly speaking, the �rst lemma describes the reduced form of any word of type wxr
for w in block form (see the convention introduced after Theorem 2.1), namely

qn,txn(x1 · · ·xi1xn−1 · · ·xj1) · · ·xn(x1 · · · xikxn−1 · · ·xjk),

where ik < ik−1 < · · · < i1 < t+ 1 < j1 < · · · < jk and xr is such that n− 1 ⩾ r ⩾ jk − 1 or

r ⩽ ik + 1. This means that xr cannot be pushed to the left by using only reductions (2) or

(3) in such a way that wxr = qn,txn(x1 · · · xi1xn−1 · · ·xj1) · · ·xnxr(x1 · · ·xikxn−1 · · · xjk) in Cn.

Lemma 2.49. Let t ∈ {1, . . . , n− 3}. Consider the word w of the form

w = qn,txn(x1 · · ·xi1xn−1 · · ·xj1) · · ·xn(x1 · · ·xikxn−1 · · ·xjk),

where ik < ik−1 < · · · < i1 < t+1 < j1 < · · · < jk. The word qn,t is also assumed to be of the

above type for k = 0. Moreover, in every w we use the convention that i0 = t, j0 = t+1. Let
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r ⩾ t be such that n−1 ⩾ r ⩾ jk−1 or r ⩽ ik+1 (so in the latter case t ⩽ r ⩽ ik+1 ⩽ t+1).

Then the following holds:

1. if n− 1 ⩾ r > jk, then wxr ∈ It;

2. if r = jk, then wxr = w in Cn;

3. if jk = r + 1, then either wxr = w in Cn or the word wxr is reduced;

4. if jk > r + 1, r = t, ik = t − 1, then either (for k = 1) the word wxr has the reduced

form qn,txnx1 · · ·xtxn−1 · · ·xjk or (for k ⩾ 2) wxr ∈ It;

5. if jk > r + 1, r = t, ik = t, then wxr = w in Cn;

6. if jk > r + 1, r = t+ 1, ik = t, then wxr ∈ It.

Proof. Parts 2. and 5. are clear.

To prove part 1., we proceed by induction on k (the number of blocks in the word w).

Let n− 1 ⩾ r > t+ 1. If k = 0 then w = qn,t and

wxr
(5r)−−→ xnx1 · · ·xtxn−1 · · ·xr+1xr−1 · · ·xt+1xr

(2)−→ xnx1 · · ·xt(xr−1 · · · xt+1)(xn−1 · · ·xr)
(3)−→ (xr−1 · · · xt+2)(xnx1 · · · xt+1)(xn−1 · · ·xr).

From Lemma 2.26 we obtain (xr−1 · · ·xt+2)(xnx1 · · ·xt+1)(xn−1 · · · xr) ∈ It, as desired.
So, assume that the assertion holds for every m < k, where k ⩾ 1. Consider

wxr = qn,txn(x1 · · ·xi1xn−1 · · ·xj1) · · ·xn(x1 · · · xikxn−1 · · ·xjk)xr,

for r > jk. Then we have

xn(x1 · · ·xikxn−1 · · · xjk)xr
(5r)−−→ xnx1 · · ·xikxn−1 · · ·xr+1xr−1 · · · xjkxr
(2)−→ xnx1 · · ·xikxr−1 · · ·xjkxn−1 · · · xr

From the assumptions we know that jk > ik+1 and r− 1 < n− 1, so the following reduction

holds:

xnx1 · · · xikxr−1 · · ·xjkxn−1 · · ·xr
(3)−→ xr−1 · · ·xjkxnx1 · · ·xikxn−1 · · ·xr.

By the assumptions jk < r ⩽ n− 1 and jk−1 < jk, so jk−1 < r − 1 ⩽ n− 1. It is an ideal in

Cn, so from the above calculation and the induction hypothesis for the element

v = qn,txn(x1 · · ·xi1xn−1 · · ·xj1) · · ·xn(x1 · · ·xik−1
xn−1 · · ·xjk−1

)

(a word with k − 1 blocks) the following holds in Cn

wxr = vxr−1 · · ·xjkxnx1 · · ·xikxn−1 · · ·xr ∈ It.
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Hence part 1. follows.

To prove part 3., assume that jk = r + 1. Recall that i0 = t and j0 = t + 1. It follows

that for k = 0 we have r = t. In this case qn,txr
(4t)−−→ w. Hence, we can assume that k ⩾ 1.

Then

wxr = qn,txn(x1 · · ·xi1xn−1 · · ·xj1) · · ·xn(x1 · · ·xikxn−1 · · ·xjk)xjk−1.

If jk−1 < jk − 1, then we see that the above word is reduced.

Hence, assume now that jk−1 = jk − 1. Then the word wxr has a factor of the form

xjk−1xnx1 · · ·xikxn−1 · · · xjkxjk−1. If ik + 1 < jk − 1, then

xjk−1xnx1 · · ·xikxn−1 · · ·xjkxjk−1
(4(jk−1))−−−−−→ xjk−1

xnx1 · · ·xikxn−1 · · ·xjk .

It follows that wxr = w, which ends the proof of part 3 in the case ik + 1 < jk − 1.

Finally, if ik + 1 ⩾ jk − 1, then ik < jk−1 = jk − 1 ⩽ ik + 1, so that jk−1 = ik + 1. Hence

ik ⩽ ik−1 < t+1 ⩽ jk−1 implies that ik−1 = ik = t, jk = t+2. It follows that wxr is reduced.

This proves part 3.

In the proof of the remaining assertions (parts 4. and 6.) we can assume that k ⩾ 1,

because for k = 0 it is impossible to have t+ 1 = jk > r + 1 and r ∈ {t, t+ 1}.
To prove part 4., assume that jk > r + 1, r = t, ik = t − 1. Then from the de�nition of

w we obtain that k ∈ {1, 2} and either w = qn,txnx1 · · ·xtxn−1 · · ·xj1xnx1 · · ·xt−1xn−1 · · ·xj2 ,
where j2 > j1 > t+ 1 or w = qn,txnx1 · · ·xt−1xn−1 · · ·xj1 . In the �rst case

wxt
(2)−→ qn,txnx1 · · ·xtxn−1 · · ·xj1xnx1 · · ·xtxn−1 · · ·xj2
(5t)−−→ · · · (51)−−→ (5n)−−→ qn,txn−1 · · ·xj1xnx1 · · ·xtxn−1 · · ·xj2 .

From part 1. applied to qn,t and r = n− 1 we get wxr ∈ It.
In the second case wxt

(2)−→ qn,txnx1 · · ·xtxn−1 · · ·xj1 and the last word is reduced.

To prove part 6., assume that jk > r + 1, r = t + 1, ik = t. Then from the de�nition of

w it follows that k = 1 and

wxt+1
(2)−→ qn,txnx1 · · ·xt+1xn−1 · · ·xj1

(5(t+1))−−−−→ xnx1 · · ·xtxn−1 · · ·xt+2xnx1 · · · xt+1xn−1 · · ·xj1
(5t)−−→ · · · (51)−−→ (5n)−−→ xn−1 · · · xt+2xnx1 · · ·xt+1xn−1 · · ·xj1 ∈ It

by Lemma 2.26. Hence the assertion follows.

We continue under the assumptions of Proposition 2.48. By Theorem 2.1, every w ∈
supp(α) must satisfy one of the following conditions:

(i) xnx1 · · · xis−1xn−1 · · ·xjs−1xnx1 · · ·xisxn−1 · · ·xjs ∈ suff(w), where is < is−1 < t + 1 <

js−1 < js ⩽ n− 1, or is = is−1 = t and js−1 = t+ 1 < js,

(ii) xnx1 · · · xis−1xn−1 · · ·xjs−1xnx1 · · ·xisxn−1 · · ·xjsxnx1 · · · xis+1 ∈ suff(w), where
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is+1 < is < is−1 < t+ 1 < js−1 < js ⩽ n− 1,

or is = is−1 = t > is+1 and js−1 = t+ 1 < js;

or qn,txnx1 · · ·xis+1 ∈ suff(w) with is+1 ⩽ t,

(iii) xnx1 · · ·xis−1xn−1 · · · xjs−1xnxn−1 · · ·xjs ∈ suff(w), where 2 ⩽ is−1 < t+1 < js−1 < js ⩽
n,

(iv) xnx1xn−1 · · · xjs−1xnxn−1 · · ·xjs ∈ suff(w), where 2 ⩽ t+ 1 < js−1 < js ⩽ n,

(v) b = xnxn−1 · · · xjs , where t+ 1 < js ⩽ n,

(vi) b = 1, i.e. w = qkn,t.

Hence, we can write α = α(i) + α(ii) + α(iii) + α(iv) + α(v) + α(vi), where supp(αk) consists

of all words of the form (k) listed above, which are in the support of the element α. We will

prove that for every k ∈ {(i), . . . , (vi)} the element α(k) is zero, which will contradict the

supposition that α ̸= 0.

First, we prove the following result concerning αx1.

Lemma 2.50. Let α be as described above. Then

1. α(vi) = 0;

2. α(i) = α(i),is=1;

3. α(ii) = α(ii),is+1=1,

where α(i) = α(i),is=1+α(i),is>1 and supp(α(i),is=1) consists of all words from the support of α(i)

with is = 1, while supp(α(i),is>1) does not contain such words; similarly α(ii),is+1=1 involves

all words from the support of α(ii) with is+1 = 1 (see the description of α(i), α(ii)).

Proof. We know that αx1 = 0 in K0[Mt]. We calculate the reduced forms of wx1 for all

w ∈ supp(αk), for k ∈ {(i), . . . , (vi)}. It will be more convenient to consider certain su�xes

of the given word w.

� xnx1 · · ·xisxn−1 · · · xjsx1
(41)−−→ xnx1 · · ·xisxn−1 · · ·xjs , so α(i)x1 = α(i);

� xnx1 · · ·xis+1x1
(41)−−→ xnx1 · · ·xis+1 , whence α(ii)x1 = α(ii);

� xnx1 · · ·xis−1xn−1 · · · xjs−1xnxn−1 · · ·xjsx1

(∗)−→

{
xnx1 · · ·xis−1xn−1 · · ·xjs−1xnx1 for js = n

xnx1 · · ·xis−1xn−1 · · ·xjs−1xnx1xn−1 · · ·xjs for js < n,

where (∗) denotes equality in the �rst case and reduction (2) in the second case. We see

that in the �rst case (js = n) the obtained word is reduced of type (ii) with is+1 = 1.

In the second case (js < n) the word is reduced of type (i) with is = 1.
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� xnx1xn−1 · · ·xjs−1xnxn−1 · · ·xjsx1
(2)−→ xnx1xn−1 · · · xjs−1xnx1xn−1 · · ·xjs
(51),(5n)−−−−−→ xn−1 · · ·xjs−1xnx1xn−1 · · · xjs .

In this case the obtained form of the element wx1 has a factor of the form

qn,txn(x1 · · · xi1xn−1 · · ·xj1) · · ·xn(x1 · · · xikxn−1 · · ·xjk)xn−1,

where k = s − 2, jk < n − 1 (notice that s ⩾ 2). Assertion 1. of Lemma 2.49 implies

that wx1 = 0 in K0[Mt] for every w ∈ supp(α(iv)).

� xnxn−1 · · ·xjsx1
(∗)−→

{
xnxn−1 · · ·xjsx1 for js = n

xnx1xn−1 · · ·xjs for js < n,

where (∗) denotes equality in the �rst case and reduction (2) in the second case. We

see that in the �rst case the word wx1 is of the reduced form (ii) with is+1 = 1, whereas

in the second case we obtain a reduced word of type (i) with is = 1.

� qn,tx1
(41)−−→ qn,t, so α(vi)x1 = α(vi).

From the above calculations we see that in K0[Mt]

0 = (α(ii) + α(iii),js=nx1 + α(v),js=nx1) + (α(i) + α(iii),js<nx1 + α(v),js<nx1) + α(vi).

It is clear that the terms from the last component α(vi) are the only terms of type (vi) in

the above sum, so α(vi) = 0. Moreover, reduced forms of elements from α(i) + α(iii),js=nx1 +

α(v),js=nx1 are of type (i), whereas reduced forms of words in the sum α(ii) + α(iii),js<nx1 +

α(v),js<nx1 are of type (ii). It follows that these sums are 0 in K0[Mt]. It is not di�cult to

see that every word from supp(α(iii),js=nx1) and supp(α(v),js=nx1) has a reduced form ending

with xnx1, so α(ii) = α(ii),is+1=1. Similarly, every (reduced) word from supp(α(iii),js<nx1) and

supp(α(v),js<nx1) has a su�x of the form xnx1xn−1 · · ·xj for some j, so α(i) = α(i),is=1. The

assertion follows.

It follows that supp(α) = supp(α(i),is=1) ∪ supp(α(ii),is+1=1) ∪ supp(α(iii)) ∪ supp(α(iv)) ∪
supp(α(v)). Let m = min{js : w ∈ supp(α)}, with js de�ned for every word w as in cases

(i)-(vi) listed before Lemma 2.50. Then n ⩾ m ⩾ t + 1 ⩾ 2. By our assumption on α, also

αxm−1 = 0. We calculate the reduced form of words wxm−1, where w ∈ supp(α). By s(k) we

mean an appropriately chosen su�x of the word from the support of α(k). We consider the

following two cases.

Case I. Assume that m = js.

1. First, suppose that js−1 = js − 1. Then

(a) s(i)xm−1 = xnx1 · · ·xis−1xn−1 · · ·xjs−1xnx1 · · ·xisxn−1 · · ·xjsxjs−1

If is + 1 < js − 1, then s(i)xm−1
(4js)−−→ s(i).
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Otherwise we have is + 1 = js − 1, which implies that js − 2 ⩽ is−1 < js −
1, so it follows easily that is−1 = t, js−1 = t + 1. In this case s(i)xm−1 =

qn,txnx1 · · ·xtxn−1 · · ·xt+1 = q2n,t. Consequently, s(i)xm−1 is of the form (vi) in

this case.

(b) s(ii)xm−1 = xnx1 · · ·xis−1xn−1 · · ·xjs−1xnx1 · · ·xisxn−1 · · ·xjsxnx1xjs−1.

Suppose that js−1 + 1 = js ⩽ 3. Since js−1 ⩾ t + 1, it follows that t = 1 and

s(ii) must be the word xnx1xn−1 · · ·x2xnx1xn−1 · · ·x3xnx1, which is not reduced.

Therefore we can assume that n− 1 ⩾ js > 3 and

s(ii)xm−1
(3)−→ xnx1 · · ·xis−1xn−1 · · · xjs−1xnx1 · · ·xisxn−1 · · ·xjsxjs−1xnx1.

It is clear that the reduced word xnx1 · · ·xis−1xn−1 · · ·xjs−1xnx1 · · · xisxn−1 · · ·xjs
is of the form (ii). From the previous case we obtain

s(ii)xm−1 =

{
s(ii) if is + 1 < js − 1

q2n,txnx1 otherwise .

Thus s(ii)xm−1 has the reduced form either equal to s(ii) or ending with xjxnx1
with j ⩽ m.

(c) s(iii),(iv),(v)xm−1 = xjs−1xnxn−1 · · ·xjsxjs−1
(4(js−1))−−−−−→ xjs−1xnxn−1 · · ·xjs . It follows

that for every w of the form (iii), (iv) or (v) we have wxm−1 = w.

2. Secondly, assume that js−1 < js − 1. Then

(a) for every w of the form (i) wxm−1 is reduced;

(b) since js − 1 > js−1 ⩾ 2, then

s(ii),is+1=1xm−1 = xnx1 · · ·xis−1xn−1 · · ·xjs−1xnx1 · · ·xisxn−1 · · ·xjsxnx1xjs−1

(3)−→ xnx1 · · ·xis−1xn−1 · · ·xjs−1xnx1 · · ·xisxn−1 · · ·xjsxjs−1xnx1.

It follows that the reduced form of wxm−1, where w ∈ supp(α(ii),is+1=1), has a

su�x of the form xjxnx1 with j ⩽ m;

(c) similarly, it is clear that wxm−1 is reduced for every w ∈ supp(αk), where k ∈
{(iii), (iv), (v)}.

3. Assume that s(ii)xm−1 = qn,txnx1xm−1. In this case m = js = t + 1. If t = 1,

then s(ii)xt = s(ii) in Cn. Moreover, if t ⩾ 3 then qn,txnx1xt
(4t)−−→ qn,txnx1, so also

s(ii)xt = s(ii). Finally, if t = 2, it is easy to see that wxt is in the reduced form.

We summarize the foregoing observations as follows.
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Corollary 2.51. Let m = js be as described above. Consider an element w from the support

of α(i),is=1, α(iii), α(iv) or α(v).

1. If js−1 = js − 1, then wxm−1 = w in Cn or wxm−1 is of the form (vi).

2. If js−1 < js − 1, then wxm−1 is reduced.

Assume now that w is in the support of α(ii),is+1=1.

3. If qn,txnx1 ∈ suff(w), then either (for t ̸= 2) wxm−1 = w in Cn or wxm−1 has the

reduced form qMn,2xnx1x2, for some M ⩾ 1.

4. If js−1 = js− 1, then either wxm−1 = w in Cn or wxm−1 is of the form qMn,txnx1, where

M ⩾ 1.

5. If js−1 < js − 1, then w = vxnx1 for some reduced word v and wxm−1 has the reduced

form vxm−1xnx1.

In particular, words from the supports of α(i),is=1, α(ii),is+1=1, α(iii), α(iv) and α(v) multiplied

by xm−1 have reduced forms ending with xn−1 . . . xj, xjxnx1 or xjxnx1x2, where j ⩽ m.

Case II. Now assume that m < js. In particular m− 1 < n− 1.

We claim that if w is a word in the support of α(i),is=1, α(iii), α(iv) or α(v), then wxm−1 is 0

in K0[Mt] or its reduced form has a su�x of the form xn−1 · · · xj for some j > m. Moreover,

if w is in supp(α(ii),is+1=1), then wxm−1 is 0 or suff(wxm−1) = xn−1 · · ·xjxnx1 for some j > m.

The idea is to reduce words by pushing xm−1 to the left and then to use Lemma 2.49. By

w(k) we denote a su�x of a word of type (k).

(a) w(i)xm−1 = qn,txn(x1 · · ·xi1xn−1 · · ·xj1) · · ·xn(x1 · · ·xisxn−1 · · ·xjs)xm−1. As long as jk−
1 > m− 1 > ik +1 (k = 1, . . . , s+1) we use reductions (2) and (3) to push xm−1 to the

left. After this procedure we obtain a word with a pre�x vxm−1, where v is exactly a

word from Lemma 2.49, for some k0 and r = m− 1. By the assumption js ̸= m (hence,

it is impossible that k0 = s and jk0 = r + 1), so applying Lemma 2.49 we obtain that

w(i)xm−1 is either in It or its reduced form ends with xn−1 · · ·xjs , js > m.

(b) Since t+ 1 ⩽ m < js, we must have w ̸= qMn,txnx1. Then

w(ii)xm−1 = xnx1 · · ·xis−1xn−1 · · ·xjs−1xnx1 · · ·xisxn−1 · · ·xjsxnx1xm−1.

If m − 1 = 1, then w(ii)xm−1 = w(ii) in Cn, and hence it has a su�x xn−1 · · ·xjsxnx1,
js > m.

If m − 1 = 2, then js > 3 and t ⩽ 2. From the form of w(ii) we see that in this case

is > 1 and of course is ⩽ 2. It follows that is = 2. Then

w(ii)xm−1
(42),(41),(4n)−−−−−−−→ xnx1 · · ·xis−1xn−1 · · ·xjs−1xn−1 · · · xjsxnx1x2.
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Applying assertion 1. of Lemma 2.49, it follows that this word is in It.

Ifm−1 > 2 then s(ii)xm−1
(3)−→ xnx1 · · ·xis−1xn−1 · · · xjs−1xnx1 · · ·xisxn−1 · · ·xjsxm−1xnx1.

Using the observation made in the previous case and Lemma 2.49, we get that either

w(ii)xm−1 ∈ It or its reduced form has a su�x xn−1 · · ·xjsxnx1, for js > m.

(c) Every word w ∈ supp(α(iii))∪supp(α(iv))∪supp(α(v)) can be written as w = vxnxn−1 · · ·xjs ,
where v has a block form as in Lemma 2.49. Then wxm−1

(2)−→ vxm−1xnxn−1 . . . xjs .

Pushing xm−1 to the left by using reductions (2) and (3) we can apply Lemma 2.49.

It follows that either wxm−1 ∈ It or its reduced form has a su�x xnxn−1 · · ·xjs , for
js > m.

This completes the proof of the claim made at the beginning of Case II.

By our assumptions (of Proposition 2.48), we know that αxm−1 = 0 in K0[Mt]. From the

above discussion it follows that for every w ∈ supp(α) either wxm−1 is 0 (and it is possible

only if m < js) or a su�x of the reduced form of wxm−1 is equal to xjxnx1, xjxnx1x2 (only

if w ∈ supp(α(ii))), or to xn−1 · · ·xj. Moreover, j ⩽ m if and only if in the word w we have

js = m (see the description of possible types of words). From the property that αxm−1 = 0

it follows that after multiplying by xm−1 the sum of all elements of the support of α with

js = m vanishes.

Assume that v, z are reduced words such that jsv = jsz = m (here jsv , jsz are de�ned for

v and z as in the list of possible types (i)-(vi) listed before Lemma 2.50) and vxm−1 = zxm−1

holds in Cn. We will now use the proof of Corollary 2.51 to conclude that v = z. Let u be

the reduced form of vxm−1 = zxm−1.

� Assume u is of type (i), (iii), (iv) or (v).

If u has a su�x xm−1, then it follows that js−1 < js− 1 and vxm−1, zxm−1 are reduced,

so that v = z. Otherwise vxm−1 = v and zxm−1 = z, so also v = z.

� Assume u is of type (vi).

Then js−1 = js − 1 and z = v are of the form qMn,txnx1 · · ·xtxn−1 . . . xt+2.

� Assume u is of type (ii).

If m ̸= t+ 1, then it follows that suff(u) = xjxnx1 for j ∈ {m− 1,m}. If j = m, then

v = vxm−1 and zxm−1 = z in Cn, so the assertion holds. If j = m−1, it follows that for

v = v0xnx1, we have vxm−1 = v0xm−1xnx1 in Cn and the latter word is in the reduced

form. It is clear that v = z also in this case.

Otherwise m = t + 1. Then, as js = m = t + 1, we are in the case as in part 3. of

Corollary 2.51. It is clear that in this case if vxm−1 = zxm−1, then v = z.

We have shown that for every pair of words v, z with jsv = jsz = m if vxm−1 = zxm−1,

then v = z. This implies that supp(α) has no words with js = m, which contradicts the
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de�nition of m. Hence, the assertion of Proposition 2.48 has been proved.

For any K-algebra A, recall that by P(A) we denote the prime radical of A.

Theorem 2.52. For every t = 0, 1, . . . , n− 2, the algebra K0[Mt] is prime.

Proof. In view of Remark 2.47, K0[Mn−2] and K0[M0] are prime. In particular, the result

holds for n = 3. We proceed by induction on n. Assume that n > 3. Moreover, we may

assume that 1 ⩽ t ⩽ n− 3.

First, we show that K0[Mt] is semiprime. Suppose that αK0[Mt]α = 0 for some non-zero

α ∈ K0[Mt]. Then, by Theorem 2.28, for every u,w ∈ Mt we have supp(uαw) ⊆ a⟨qn,t⟩b
for some a ∈ At, b ∈ Bt. By Corollary 2.40, if uαw ̸= 0, then there exist u′, w′ ∈ Mt such

that 0 ̸= u′uαww′ ∈ ⟨qn,t⟩, and u′uαww′ ∈ P(K[⟨qn,t⟩]) = 0. It follows that uαw = 0 for

every u,w ∈ Mt. Thus, either αMt = 0 or Mtαw = 0 for some w ∈ Mt such that αw ̸= 0.

This means that α ◦ Pt = 0 or Pt ◦ αw = 0 (◦ stands for the ordinary matrix multiplication,

where K0[Mt] is interpreted as a subset of the matrix algebra M|At|(K[⟨qn,t⟩]). Since Pt is

a symmetric matrix by Remark 2.43, we may assume that α ◦ Pt = 0 for some non-zero

α ∈ K0[Mt]. Then α can be chosen so that supp(α) ⊆ a⟨qn,t⟩Bt for some a ∈ At. Hence,

Corollary 2.40 allows us to assume that supp(α) ⊆ ⟨qn,t⟩Bt. Finally, we may assume that

| supp(α)| is minimal possible.

We claim that αx1 = 0 in K0[Mt]. By Corollary 2.46, αx1Mt = 0 in K0[Mt]. From

the proof of Lemma 2.50 we know that α(iv)x1 = 0 in K0[Mt] and vx1 ∈ ⟨qn,t⟩Bt for every

v ∈ supp(α) \ supp(α(iv)). So, αx1 inherits the hypotheses on α. Therefore, the minimal

choice of α allows us to assume that α(iv) = 0. Moreover, αx1 ∈ K[⟨x2, . . . , xn−1, xnx1⟩].
But, from Lemma 2.17 we know that the latter is isomorphic to K[Cn−1]. Moreover, under

this identi�cation, supp(αx1) is contained in a single row of the matrix structure M
(n−1)
t−1

de�ned for the monoid Cn−1 as in De�nition 2.41. It is easy to see that αx1M
(n−1)
t−1 = 0 in

K0[M
(n−1)
t−1 ]. The inductive hypothesis implies that αx1 = 0. This proves the claim.

From Lemma 2.36 it follows that replacing α by qkn,tα, for some k ⩾ 1, if necessary, we

may assume that σ(α) ∈ K0[Mt] and hence we get that σ(α) lies in a single row of the matrix

structure K0[Mt]. In other words, there exists a ∈ At such that supp(σ(α)) ⊆ a⟨qn,t⟩Bt.

Then, by Corollary 2.40, there exists z ∈ Mt such that supp(zσ(α)) ⊆ ⟨qn,t⟩Bt. The proof

of Lemma 2.50 implies that for every w ∈ supp(σ(α)) either wx1 ∈ a⟨qn,t⟩Bt or wx1 = 0 in

K0[Mt]. Therefore, by the previous paragraph, zσ(α)x1 = 0. Hence, Corollary 2.40 implies

that also σ(αxn) = σ(α)x1 = 0. Consequently, αxn = 0.

Repeating this argument, we get that αxi = 0 in K0[Mt] for every i = 1, . . . , n. From

Proposition 2.48 it now follows that α = 0, a contradiction. Thus, we have proved that

K0[Mt] is semiprime. This implies that the sandwich matrix Pt is not a zero divisor (in the

corresponding matrix ring Mnt(K[⟨qn,t⟩]), where nt = |At|). Since K[⟨qn,t⟩] is a domain, it is

known that K0[Mt] must be prime, see [43, Chapter 5].
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It follows that every matrix Pt, t = 0, . . . , n− 2, has a non-zero determinant, which seems

to be inaccessible by a direct proof.

Corollary 2.53. Sandwich matrices Pi are invertible in Mni
(K(qn,i)) for all i = 0, . . . , n− 2

and n ⩾ 3.
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Chapter 3

The radical of the PI Hecke�Kiselman

algebras

In the present chapter we continue the study of the structure of Hecke�Kiselman algebras

over a �eld K. Namely, it is shown that the algebra associated to oriented cycle of any

length is semiprime and its central localization is a �nite direct product of matrix algebras

over the �eld of rational functions K(x). More generally, the radical is described in the case

of PI-algebras, and it is shown that it comes from an explicitly described congruence on the

underlying Hecke�Kiselman monoid. Moreover, the algebra modulo the radical is again a

Hecke�Kiselman algebra and it is a �nite module over its center. The content of this chapter

was published in the paper [46].

3.1 The radical and Noetherian property of K[Cn] for any

n ⩾ 3

Now we are in a position to study the radical of the Hecke�Kiselman algebraK[Cn] associated

to an oriented cycle of length n ⩾ 3. Note that from Theorem 1.72 we know that K[Cn] is

PI. Therefore its prime radical and Jacobson radical coincide, see Theorem 1.26. We also

show that the algebra is right and left Noetherian.

Let us set the notation from the previous chapters. We use the Gröbner basis characterized

in Theorem 1.65 and identify elements of the monoid Cn with their reduced forms from

Theorem 2.1 without further comments. Inside Cn there are special n − 1 sets, denoted

by M̃i for i = 0, . . . , n − 2, as in De�nition 2.14 and their sum
⋃n−2

i=0 M̃i is denoted by M̃ .

Recall that the complement Cn \ M̃ is �nite. Moreover, in Cn there is a chain of ideals ∅ =
In−2 ◁ In−3 ◁ · · · ◁ I−1 with the surprising properties described in Theorem 2.44. In particular,

recall that by Mi we denote certain semigroup of matrix type inside the quotient Ii−1/Ii for

i = 0, . . . , n− 2. It is isomorphic toM0(⟨qn,i⟩, Ai, Bi;Pi) for certain sets |Ai| = |Bi| =
(

n
i+1

)
and the sandwich matrix Pi that is not a zero-divisor in Mn(K(qn,i)) (Corollary 2.53). From

Theorem 2.52 we know that the contracted semigroup algebras K0[Mi] are prime.
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We start with a further investigation of properties of the algebras K0[Mi].

Lemma 3.1. For every n ⩾ 3 and i ∈ {0, . . . , n − 2} the algebra K0[Mi] does not have

non-zero �nite dimensional ideals.

Proof. Let J be a non-zero ideal in K0[Mi]. Then, as from Theorem 2.52 we know that this

algebra is prime, there exist v, w ∈ Mi such that vJw ̸= 0. Indeed, if we had MiJMi = 0,

then also K0[Mi]JK0[Mi] = 0. On the other hand, as K0[Mi] is a prime algebra, then it

follows that either K0[Mi] = 0 or J = 0, which leads to a contradiction. Hence, the matrix

type structure of K0[Mi] implies simply (see also Corollary 2.40) that there exist v′, w′ ∈Mi

such that 0 ̸= v′vJww′ ⊆ K[qn,i]. Then, clearly, J ∩ K[qn,i] is in�nite dimensional and

consequently, also J has in�nite dimension.

In the next lemma we exploit the properties of M̃i, primeness of the algebras K0[Mi] and

the fact that Cn is J -trivial, see Theorem 1.71, to show that the radical of K[Cn] is zero.

Lemma 3.2. Assume that J is a �nite dimensional ideal of K[Cn]. Then J = 0. In

particular, the left annihilator A = {α ∈ K[Cn] : αK[M̃ ] = 0} of K[M̃ ] in K[Cn] is zero.

Moreover, K[Cn] is a semiprime algebra.

Proof. Suppose that J ̸= 0 is a �nite dimensional ideal of K[Cn]. First, we claim that a

non-zero element α ∈ J can be chosen so that for every i = 1, . . . , n we have wxi = w for all

w ∈ supp(α) or αxi = 0.

Since J is �nite dimensional, the set Z consisting of all k-tuples {z1, . . . , zs}, such that

supp(β) = {z1, . . . , zs} for some 0 ̸= β ∈ J and s ⩾ 1 is �nite. Let 0 ̸= α ∈ J be such that

| supp(α)| is minimal possible. Let supp(α) = {v1, . . . , vk}.
Let R denote the Green's relation on the monoid Cn, that is two elements x, y of Cn

are in this relation if and only if xCn = yCn. Consider the R-order ≤R on Cn; in other

words, we write w ≤R v if wCn ⊆ vCn, see Section 1.2. Then de�ne a relation ⪯ on Ck
n by:

(u1, . . . , uk) ⪯ (w1, . . . , wk) if ui ≤R wi for every i = 1, . . . , k.

Now, by the choice of α, for every x ∈ Cn we have that either αx = 0 or supp(αx) =

{v1x, . . . , vkx} and in the latter case (v1x, . . . , vkx) ⪯ (v1, . . . , vk). Since the set Z introduced

above is �nite, we may further choose an element α for which the k-tuple (v1, . . . , vk) is

minimal possible with respect to ⪯. Then viRvix for every i. Since the monoid Cn is

J -trivial by Theorem 1.71 it follows that for every j we either have wxj = w for every

w ∈ supp(α) or αxj = 0, as claimed.

Next, assume that β ∈ K[Cn] is a non-zero element such that wx1 = w holds in Cn for

every w ∈ supp(β). Then |w|1 > 0 for every such w. Write w = w0x1w1, for some reduced

words w0, w1 such that |w1|1 = 0. We claim that then |w1|n = 0. Indeed, if w1 = uxnv with

|v|n = 0, then wx1 = w0x1uxnvx1 and then the only possible reduction that allows to decrease

the length of this word (needed in order to get wx1 = w in Cn) is of the form x1zx1 → zx1,

where z is a pre�x of uxnv containing uxn. But then we do not get wx1 = w in Cn because
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x1 appears after the last occurrence of xn in the reduced form of wx1, a contradiction. So

|w1|n = 0, as claimed.

Assume �rst that |w|n > 0. Write w = sxntx1w1, for some reduced words s, t (so w0 =

sxnt) such that |t|n = 0. Then also |t|1 = 0 because w is reduced. Hence, either wxn =

sxntx1w1xn is a reduced word with |wxn|n ⩾ 2 (if |tw1|n−1 > 0) or wxn = w in Cn and the

reduced form of wxn = w does not end with generator xn (if |tw1|n−1 = 0).

Next, consider the case when |w|n = 0. It is clear that in this case wxn is a reduced

word, and |wxn|n = 1. Together with the previous paragraph of the proof this implies that

wxn ̸= w′xn in Cn for all w,w′ ∈ supp(β) with w ̸= w′.

We have proved that the hypotheses on β imply that βxn ̸= 0.

Now, we apply this observation to the element α. Because of the choice of α, we get that

if αx1 = α then αxn = α. Using linear extension of the automorphism σ from De�nition 2.29,

and noting that σ(α), as an element of the �nite dimensional ideal σ(J) of K[Cn], inherits the

hypotheses on α, we get that σ(α)x1 = σ(α), so that σ(α)xn = σ(α), by the above argument

applied to σ(α) in place of α. Thus, αxn−1 = α, by applying σ−1. Repeating this argument

several times, we then get αxj = α for every j. A similar argument shows that if αxk ̸= 0

for some k, then αxj ̸= 0 for every j. However, α = αxnx1x2 · · · xn−1 ∈ J ∩K[M̃n−2], (see

Lemma 2.19), a �nite dimensional ideal of K[M̃n−2], because xnx1 · · · xn−1 ∈ M̃n−2 ⊆ M̃ and

M̃n−2 is an ideal of Cn, as we know from Corollary 2.38. Therefore, Lemma 3.1 implies that

α = 0. This contradiction shows that we may assume that αxj = 0 for every j.

Let w ∈ supp(α) be maximal with respect to the order ≤R. If xj is the last letter of the

(reduced form of the) word w then, as αxj = 0, we have w = wxj = w′xj in Cn, for some

w′ ∈ supp(α) such that w ̸= w′. This implies that w ≤R w′, so by the choice of w we get

w = w′, a contradiction. Therefore J = 0.

Let A = {α ∈ K[Cn] : αK[M̃ ] = 0} be the left annihilator of K[M̃ ] in K[Cn]. Suppose

that 0 ̸= β ∈ A ∩ K[M̃ ]. Let i be the minimal integer such that supp(β) ∩ M̃i ̸= ∅.
Passing to K[Cn]/Ii, we get a non-zero element β ∈ K0[Mi] such that βK0[Mi]β = 0. From

Theorem 2.52 it then follows that β = 0, which leads to a contradiction. Thus A∩K[M̃ ] = 0.

Similarly, suppose that there exists 0 ̸= γ ∈ P(K[Cn]) ∩K[M̃ ]. Take minimal integer i such

that supp(γ) ∩ M̃i ̸= ∅. Passing to K[Cn]/Ii as before, we get 0 ̸= γ ∈ P(K0[Cn/Ii]) ∩
K0[Mi] ⊆ P(K0[Mi]). This contradicts Theorem 2.52. So P(K[Cn])∩K[M̃ ] = 0 and it follows

that A and P(K[Cn]) are �nite dimensional, because Cn \ M̃ is �nite (Proposition 2.15).

Hence, the assertion follows.

As a corollary we can easily prove that the Hecke�Kiselman algebra associated to an

oriented cycle of any length is right and left Noetherian. The main result of the present

section states as follows.

Theorem 3.3. The Hecke�Kiselman algebra K[Cn] associated to an oriented cycle of length

n ⩾ 3 is a semiprime Noetherian PI-algebra.

Proof. From Remark 2.16 we get that K[Cn] has Gelfand�Kirillov dimension 1, see also

Example 2 of [39]. In view of Lemma 3.2, we thus know that K[Cn] is a semiprime algebra of
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Gelfand�Kirillov dimension 1. Applying Theorem 1.22 we conclude thatK[Cn] is a PI-algebra

and a Noetherian algebra as a �nite module over its Noetherian center.

3.2 Prime ideals and the ring of quotients of K[Cn]

Now our aim is to describe the prime spectrum and characterize the classical ring of quotients

of the algebra K[Cn], for any n ⩾ 3.

We start with the de�nition of a family of ideals in K[Cn] that, as we will show, consists of

all minimal primes of the algebra.

For any i = 0, . . . , n − 2, let Ji be a maximal among all ideals of K[Cn] such that

Ii ⊆ Ji and the intersection K[qn,i] ∩ Ji is zero. Such an ideal exists from Zorn's lemma, as

K[qn,i] ∩ Ii = 0.

Theorem 3.4. An ideal Ji de�ned above is uniquely de�ned for i = 0, . . . , n− 2. Moreover

ideals Ji are the only minimal prime ideals in K[Cn] and J0 ∩ J1 ∩ · · · ∩ Jn−2 = 0.

Proof. Suppose that for some a, b ∈ K[Cn] we have aK[Cn]b ⊆ Ji and a, b /∈ Ji, contradicting
the primeness of Ji. Then, from Ji ⊊ Ji + (a), Ji ⊊ Ji + (b) and from the de�nition of Ji
it follows that there exist non-zero v and w in (Ji + (a)) ∩ K[qn,i] and (Ji + (b)) ∩ K[qn,i],

respectively. As K[qn,i] is an integral domain, it follows that 0 ̸= vw ∈ (Ji + (a))(Ji + (b)) ∩
K[qn,i] ⊆ Ji ∩K[qn,i], which contradicts Ji ∩K[qn,i] = 0. Therefore every Ji is prime.

We know that Ji∩K[qn,i] = 0 and thus K[qn,i] embeds into the quotient K[Cn]
/
Ji. More-

over, GKdimK[Cn] = 1. It follows from Example 1.19 and Lemma 1.20 thatGKdimK[Cn]
/
Ji ⩾

GKdimK[x] = 1. Then, as GKdimK[Cn] = 1, we know that GKdimK[Cn]
/
Ji = 1. There-

fore we get from Theorem 1.23 that 1 = clKdimK[Cn]
/
Ji = GKdimK[Cn]

/
Ji =

GKdimK[Cn], so Ji is a minimal prime ideal of K[Cn].

We claim that that ideals Ji are the only minimal prime ideals in K[Cn] and
⋂n−2

i=0 Ji = 0.

First observe that as K[qn,i] ∩ K[Ii] = 0, algebra K[qn,i] embeds into K[Cn]
/
K[Ii]. We

also know that K0[Mi] ◁ K[Cn]
/
K[Ii] is a prime algebra (Theorem 2.52). Moreover, from

Theorem 2.28 it follows that qn,iK0[Mi]qn,i ⊆ K[qn,i]. Denote by Ji the image of Ji in

K[Cn]
/
K[Ii]. Then Ji is a prime ideal of K[Cn]

/
K[Ii] and thus qn,i(K0[Mi] ∩ Ji)qn,i ⊆

K[qn,i] ∩ Ji. Therefore K[qn,i] ∩ Ji = 0 implies that K[M̃i] ∩ Ji = 0.

Denote by J the intersection J = J0∩J1∩ . . .∩Jn−2. Suppose that α ∈ J∩K[M̃ ] is a non-

zero element. Then we can write α = α0 + . . . + αn−2, where αk ∈ K[M̃k] for every k. Take

minimal i such that αi ̸= 0. Then i = n−2 would imply α = αn−2 ∈ K[M̃n−2]∩J = 0, which

leads to a contradiction. Therefore i < n − 2. Consider 0 ̸= αi = α − (αi+1 + . . . + αn−2).

On the one hand, we have that αi ∈ K[M̃i]. On the other hand αi+1 + . . . + αn−2 ∈
K[M̃i+1] + . . . + K[M̃n−2] ⊆ K[Ii] ⊆ Ji and thus α − (αi+1 + . . . + αn−2) ∈ Ji. Therefore

0 ̸= αi ∈ K[M̃i] ∩ Ji = 0. The obtained contradiction shows that J ∩K[M̃ ] = 0, as claimed.

As Cn \ M̃ is �nite, we get that J is a �nite dimensional ideal of K[Cn]. From Lemma 3.2 it

follows that J = 0.
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Now, for any prime ideal Q of K[Cn], from J0∩J1∩ · · · ∩Jn−2 ⊆ Q it follows that Ji ⊆ Q

for some i. Thus the ideals Ji are the only minimal prime ideals in K[Cn]. Consequently, for

every i the ideal Ji is uniquely de�ned.

Now we are in a position to characterize the classical quotient ring of K[Cn].

Theorem 3.5. The classical quotient ring of the semiprime Noetherian PI-algebra K[Cn],

for any n ⩾ 3, is isomorphic to
∏n−2

i=0 Mni
(K(x)), where ni =

(
n

i+1

)
, for i = 0, . . . , n− 2.

Recall that the classical quotient ring of a semiprime Noetherian PI-algebra is its central

localization, see Theorem 1.35.

Proof. Let Ji be a minimal prime ideal of K[Cn] as in Theorem 3.4. It follows from the

proof of this theorem that K0[Mi] is a prime algebra such that K0[Mi] ◁K[Cn]
/
Ji. Thus the

classical rings of quotients of K0[Mi] and K[Cn]
/
Ji are equal, see Lemma 1.34.

Moreover, from Corollary 2.53 it is known that all sandwich matrices Pi are invertible,

when treated as matrices in Mni
(K(qn,i)) ∼= Mni

(K(x)). Thus from [43, Proposition 4.13] we

know that the algebra of matrix typeM0(K(qn,i), Ai, Bi;Pi) is isomorphic to Mni
(K(qn,i)),

where ni =
(

n
i+1

)
and this algebra is the classical ring of quotients of the prime algebra

K0[Mi] =M0(K[Qi], Ai, Bi;Pi), where Qi is the cyclic semigroup generated by qn,i. Conse-

quently, Qcl(K[Cn]
/
Ji) ∼= Mni

(K(x)), where ni =
(

n
i+1

)
.

From Proposition 1.33 and Theorem 3.4 we obtain that K[Cn] has the classical ring of

quotients which is isomorphic to
∏n−2

i=0 Mni
(K(x)), where ni =

(
n

i+1

)
, for i = 0, . . . , n − 2.

This completes the proof of the theorem.

We continue with the investigation of the prime spectrum of K[Cn]. As a consequence

of theorem of Kaplansky (Theorem 1.25) we also obtain that primitive ideals are exactly

maximal ideals in our case.

Theorem 3.6. Every maximal chain of prime ideals in the Hecke�Kiselman algebra K[Cn]

is of the form Ji ⊊ P for i = 0, . . . , n− 2, for prime ideals Ji as above and a maximal ideal

P in K[Cn], depending on i. Every maximal ideal Q in K[Cn] contains Ji for some i. Left

(right) primitive ideals in K[Cn] are precisely the maximal ideals.

Proof. From Theorem 3.4 we know that Ji are the only minimal prime ideals of K[Cn].

Moreover, the algebra K[Cn] is a Noetherian semiprime PI-algebra of Gelfand�Kirillov di-

mension one, Theorem 3.5. As we explained in the proof of Theorem 3.4, we have that

clKdimK[Cn]
/
Ji = GKdimK[Cn]

/
Ji = 1, so Ji is not a maximal ideal of K[Cn]. Hence,

for every i ∈ {0, . . . , n − 2} there exists a prime ideal P such that Ji ⊊ P . Then from the

de�nition of the classical Krull dimension we have clKdimK[Cn]
/
P = 0 and, as K[Cn]

/
P is a

�nitely generated prime ring which is PI, we get that clKdimK[Cn]
/
P = GKdimK[Cn]

/
P .

Now GKdimK[Cn]
/
P = 0 implies that K[Cn]

/
P is a �nite dimensional prime algebra.

Therefore P is a maximal ideal in K[Cn] by Exercise 10.4 in [31]. Clearly for every i there

may be many maximal ideals P containing Ji. In particular, from Kaplansky theorem, (left)

right primitive ideals of K[Cn] are exactly such ideals P .
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Let us note that in Chapter 5 we will show that the maximal ideals of K[Cn] play an

important role in the study of irreducible representations of the algebra. Therefore we will

further investigate certain properties of these ideals in the next chapter.

3.3 General case

Our second main result describes the radical of a Hecke�Kiselman algebra K[HKΘ], as well

as the algebra modulo the radical, in the case of PI-algebras. So, assume that Θ is a �nite

oriented graph such that K[HKΘ] is a PI-algebra. This is equivalent to saying that Θ does

not contain two cyclic subgraphs (i.e. subgraphs which are cycles) connected by an oriented

path, Theorem 1.72.

Recall that the Jacobson radical of a �nitely generated PI-algebra R is nilpotent, see

Theorem 1.26. However, we note that for R = K[HKΘ] this can also be derived from our

proof.

We start with the de�nition of a congruence on HKΘ that will be crucial in the description

of the radical. For the basic de�nitions see Section 1.2.

De�nition 3.7. Denote by ρ the congruence on HKΘ generated by all pairs (xy, yx) such

that there is an arrow x → y that is not contained in any cyclic subgraph of Θ. If there is

no such a pair then we assume that ρ is the trivial congruence.

Example 3.8. Let Θ be an oriented graph presented in Figure 3.1.

z2 z3

z1

y1 x3

x1 x2

Figure 3.1: A graph Θ such that K[HKΘ] has non-trivial radical

Then the congruence ρ is the congruence generated by pairs (y1x1, x1y1), (z1z2, z2z1),

(z1z3, z3z1) and (x3z1, z1x3). Moreover, the semigroup HKΘ /ρ ∼= HKΘ′ , where Θ′ is the

graph in Figure 3.2.
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·z2 ·z3

·z1

·y1 x3

x1 x2

Figure 3.2: A graph Θ′ such that HKΘ /ρ ∼= HKΘ′

For any congruence σ on a semigroup S by I(σ) we denote the ideal in the semigroup

algebra K[S] (where K is a �eld) which is the K-span of the set of elements of the form s− t
for all pairs (s, t) ∈ S × S with sσt. Such an ideal is the kernel of the natural epimorphism

K[S]→ K[S/σ].

Let Θ be an oriented graph such that K[HKΘ] is PI. Denote by Θ′ the subgraph of Θ

obtained by deleting all arrows x → y that are not contained in any cyclic subgraph of Θ.

Then HKΘ′ ∼= HKΘ /ρ and from Theorem 1.72 it follows that the connected components of

Θ′ are either singletons or cyclic subgraphs. In particular, the algebras of such connected

components are semiprime, see Theorem 3.3. We are now in a position to state the main

result.

Theorem 3.9. Assume that Θ is a �nite oriented graph such that K[HKΘ] is a PI-algebra.

Let Θ′ be the subgraph of Θ obtained by deleting all arrows x → y that are not contained in

any cyclic subgraph of Θ and let ρ be the congruence on HKΘ from De�nition 3.7. Then

1. the Jacobson radical J (K[HKΘ]) of K[HKΘ] is equal to the ideal I(ρ) determined by ρ,

2. K[HKΘ]/J (K[HKΘ]) ∼= K[HKΘ′ ] and it is the tensor product of algebras K[HKΘi
] of

the connected components Θ1, . . . ,Θm of Θ′, each being isomorphic to K ⊕K or to the

algebra K[Cj], for some j ⩾ 3,

3. K[HKΘ′ ] is a �nitely generated module over its center.

Proof. Suppose that a vertex x ∈ V (Θ) is a source vertex. In other words, there is an arrow

x → y for some y ∈ V (Θ) but there are no arrows of the form z → x. For any w ∈ HKΘ

consider the element β = (xy − yx)w(xy − yx) ∈ K[HKΘ]. Since x is a source vertex,

we know that xvx = xv in HKΘ for every v ∈ HKΘ. Hence xwxy = xwy, xwyx = xwy

(Remark 1.64). Similarly, xywxy = xywy and xywyx = xywy. Therefore β = 0. It follows

that xy − xy ∈ P(K[HKΘ]).

If x is a sink, that is there is an arrow z → x for some z ∈ V (Θ) but there are no arrows

of the form x→ y in the graph Θ, a symmetric argument shows that xz − zx ∈ P(K[HKΘ])
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for all z such that z → x in Θ. Let ρ1 be the congruence generated by all pairs (xy, yx) such

that x or y is either source or sink and there is an arrow x → y that is not contained in

any cyclic subgraph of Θ. Equivalently, we may consider the graph Γ1 obtained by erasing

in Θ all such arrows x→ y and z → x as above. Then K[HKΓ1 ]
∼= K[HKΘ]/I(ρ1). We have

shown that I(ρ1) ⊆ P(K[HKΘ]). Repeating this argument �nitely many times we easily get

that I(ρ) ⊆ P(K[HKΘ]) (and our argument shows that I(ρ) is nilpotent, because Θ is �nite).

Since we know that J (K[HKΘ]) = P(K[HKΘ]), to prove the �rst assertion of the theorem

it is now enough to check that K[HKΘ′ ] is semiprime. HKΘ′ is the direct product of all HKΘi
,

where Θi, i = 1, . . . ,m, are the connected components of Θ′. From Theorem 1.72 we know

that each HKΘi
is either a band with two elements (if Θi has only one vertex) or it is

isomorphic to Ck for some k ⩾ 3. In the former case K[HKΘi
] ∼= K ⊕ K, in the latter

K[HKΘi
] is a �nitely generated module over its center, see Theorem 1.22. It follows that

K[HKΘ′ ] is a direct product of tensor products of algebras that are all �nitely generated

modules over their center. Thus K[HKΘ′ ] is a �nitely generated module over its center.

Let Qi be the classical ring of quotients of K[HKΘi
]. If Θi = Cmi

for some mi then

we know that Qi is a central localization of the form described in Theorem 3.5. Clearly,

HKΘ′ is the direct product
∏m

i=1HKΘi
. Then in the localization Q = Q1 ⊗ · · · ⊗ Qm of

K[HKΘ′ ] ∼=
⊗m

i=1K[HKΘi
] each of the factors is isomorphic toK⊕K or to

∏mi−2
j=0 Mrj(K(x)),

where rj =
(
mi

j+1

)
. Therefore, Q is isomorphic to a �nite direct product of rings isomorphic to

matrix rings over certain commutative Noetherian integral domains. Thus it is a semiprime

Noetherian ring. From Proposition 10.34 in [30] it follows thatK[HKΘ′ ] is semiprime, because

Q is its central localization. It is now clear that K[HKΘ′ ] ∼= K[HKΘ]/P(K[HKΘ]). The result

follows.
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Chapter 4

Noetherian property of Hecke�Kiselman

algebras

In this section we characterize Noetherian Hecke�Kiselman algebras K[HKΘ] of arbitrary

oriented graphs Θ. Recall that in Theorem 3.3 it has been proved that the algebra K[Cn]

is right and left Noetherian for every n ⩾ 3. Therefore we start the present chapter with

a description of some simple obstacles to the Noetherian property of the Hecke�Kiselman

algebras associated to graphs that are cycles with one adjoined arrow. As a consequence, we

are able to characterize Noetherian Hecke�Kiselman algebras in Theorem 4.2. The results of

this chapter are published in [45].

Lemma 4.1. Let Θ be the graph obtained by adjoining the arrow y → x1 to the cyclic graph

Cn: x1 → x2 → · · · → xn → x1, as shown in Figure 4.1. Then the monoid HKΘ does not

satisfy the ascending chain condition on left ideals, and it does not satisfy the ascending chain

condition on right ideals.

y

xn x1

xn−1 x2

x3

Figure 4.1: A graph Θ such that K[HKΘ] is not Noetherian

Proof. Write wk = (xnxn−1 · · ·x1)ky, for k = 1, 2, . . .. It is clear that wk cannot be rewritten

in the monoid HKΘ except for applying relations of the form x2i = xi, y
2 = y. Therefore

wk /∈
⋃k−1

i=1 wi HKΘ for k ⩾ 2. Hence, HKΘ does not satisfy acc on right ideals.
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Let ϕ : ⟨x1, . . . , xn, y⟩ −→ ⟨x1, . . . , xn⟩ be the homomorphism such that ϕ(w) is obtained

from w by erasing all occurrences of y (compare with Proposition 1.68). Consider the fol-

lowing subsets of the free monoid F = ⟨x1, . . . , xn, y⟩: Zk = {ϕ−1((xi11 x
in
n · · ·x

i2
2 )

k) | ij ⩾
1 for every j}, for k = 1, 2, . . ., and

Rk = {wyvz | w ∈ ⟨x1, x2⟩, v ∈ ⟨x2, y⟩⟨x1, y⟩, z ∈ Zk, |wv|2 ⩾ 1}.

We claim that Rk is closed under de�ning relations of the monoid HKΘ. It is easy to see that

the set Rk is closed under relations of the form x = x2 and under xz = zx for generators x, z

not connected in the graph Θ (the only such factors of a word u ∈ Rk can be of the form

yxj, xjy, where j ⩾ 2). Moreover, u does not have factors of the form xjxi with i = 3, . . . , n

and j ̸= i + 1 (modulo n). So we do not have to consider relations xixi+1xi = xi+1xixi+1 =

xixi+1 for i = 2, . . . , n. It is also easy to see that every relation yx1y = yx1, x1yx1 = yx1 and

x1yx1 = yx1y leaves Rk invariant. Finally, every relation x2x1x2 = x1x2, x1x2x1 = x1x2 and

x1x2x1 = x2x1x2 leaves Rk invariant. This proves the claim.

De�ne vk = x1x2y(x1xn · · ·x2)k, for k = 1, 2, . . .. Notice that vk ∈ Rk but vk /∈ FRi for

i < k. It follows that vk /∈
⋃k−1

i=1 HKΘ vi, for every k ⩾ 2. Therefore HKΘ does not satisfy acc

on left ideals.

Now we are in a position to prove the main theorem.

Theorem 4.2. Let Θ be a �nite oriented graph. Then the following conditions are equivalent

1) K[HKΘ] is right Noetherian,

2) K[HKΘ] is left Noetherian,

3) each of the connected components of Θ is either an oriented cycle or an acyclic graph.

Proof. Assume that condition 3) is satis�ed. From Theorem 1.72 we know that HKΘ is a

PI-algebra. In order to prove conditions 1) and 2) we proceed by induction on the number

k of connected components of Θ. If k = 1 then the assertion follows from Theorem 3.3 and

from the fact that HKΘ is �nite if Θ is an acyclic graph (Theorem 1.69). Assume that k > 1.

Let Θ1 be a connected component of Θ and let Θ2 = Θ\Θ1. Clearly, HKΘ is a direct product

of HKΘ1 and HKΘ2 , so that K[HKΘ] ∼= K[HKΘ1 ] ⊗K[HKΘ2 ]. By the induction hypothesis,

HKΘi
is (right and left) Noetherian and it is a PI-algebra, for i = 1, 2. Then K[HKΘ] is

a Noetherian algebra by [2], Proposition 4.4 (which says that every �nitely generated right

Noetherian PI-algebra is a universally right Noetherian algebra).

Assume that 3) is not satis�ed. Then Θ contains a subgraph Θ′ that is of the form

described in Lemma 4.1 or the graph Θ′′ obtained from Θ′ by inverting all arrows. It is easy

to see that in this case K[HKΘ′ ], respectively K[HKΘ′′ ], is a homomorphic image of K[HKΘ].

Moreover, Θ′ and Θ′′ are antiisomorphic. Therefore, Lemma 4.1 implies that K[HKΘ] is

neither right nor left Noetherian. The result follows.
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From the proof it actually follows that the conditions in Theorem 4.2 are satis�ed if and

only if the monoid HKΘ has acc on right (left) ideals.

Since K[Cn] is a PI-algebra (Theorem 1.72), we derive the following consequence from

Theorem 1.24 of Anan'in. It is of interest in view of the results on faithful representations of

various special classes of Hecke�Kiselman monoids, obtained in several papers, for instance

[16,18,29].

Corollary 4.3. If an oriented graph Θ satis�es the conditions of Theorem 4.2, then K[HKΘ]

embeds into the matrix algebra Mr(L) over a �eld L, for some r ⩾ 1.

Proof. If the graphΘ satis�es the conditions of Theorem 4.2, thenK[HKΘ] is a tensor product

of �nitely many PI-algebras. From Regev Theorem 1.21 we know that the algebra K[HKΘ]

is also a PI-algebra. Thus, the assertion follows from Theorem 1.24 and Theorem 4.2.
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Chapter 5

Irreducible representations of PI

Hecke�Kiselman algebras

The chapter is devoted to irreducible representations of Hecke�Kiselman algebras that satisfy

polynomial identities. It turns out that the case of the algebra associated to an oriented cycle

is a crucial step. To characterize representations in this case we revisit the ideal structure

from Theorem 2.44. The structures of matrix type Mi occurring in the quotients have the

�avour of the principal factors of a �nite semigroup, thus we are able to build a class of

irreducible representations of Cn from the representations of these factors. It turns out that

the remaining representations arise from idempotents in Cn, in a way similar to that known

for the so-called J -trivial �nite monoids, see [53] and Example 1.50. In the present chapter

we consider Hecke�Kiselman algebras K[HKΘ] over an algebraically closed �eld K. We

assume without additional comments that the graph Θ does not contain two di�erent cycles

connected by an oriented path. This condition is equivalent to the fact that the corresponding

Hecke�Kiselman algebra satis�es a polynomial identity, see Theorem 1.72. The results have

already been published in the paper [57].

5.1 Idempotents in Cn

We are going to characterize all idempotents in the Hecke�Kiselman monoid associated to

the cycle of length n. This will be an intermediate step in our approach to a description of all

irreducible representations of this monoid. Recall that idempotents in the Hecke�Kiselman

monoids associated to any oriented graph have been characterized in [16]. We provide an

alternative proof for monoids associated to an oriented cycle of any length.

In this case the result relies on Theorem 1.71 and on the characterization of idempotents

in the Hecke�Kiselman monoids which do not contain any oriented cycles, described in [18]

with the use of [29]. More precisely, the following theorem describes idempotents in the

Hecke�Kiselman monoid associated to any acyclic graph.
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Theorem 5.1 ([18], Theorem 1 (iii), [29], Proposition 11). Assume that Γ is an oriented

graph with the set of vertices {1, . . . , n} such that if i −→ j in Γ then i < j. Then HKΓ has

exactly 2n idempotents. More precisely, every idempotent is of the form eX , where for every

X ⊆ {1, . . . , n} such that X = {i1, . . . , ij} with i1 < i2 < · · · < ij, we denote by eX the

element xi1 · · ·xij (for X = ∅ we set eX = 1).

Let us recall from Section 1.4.2 that for any word w in the free monoid by its support

we mean the set of generators that occur in w. Note that the supports of any two words

representing the same element in the Hecke�Kiselman monoid are equal. Therefore, the

support of an element of the Hecke�Kiselman monoid can be de�ned as the support of any

word in the free monoid representing this element.

Let Cn be the Hecke�Kiselman monoid associated to the cycle of length n with the cor-

responding set of generators {x1, . . . , xn}.

We start with the following crucial observation.

Lemma 5.2. Idempotents in Cn are not of full support, that is there are no idempotents in

which all generators occur.

Proof. Suppose that e is an idempotent of full support in the monoid Cn. Then we claim

that exi = e for i = 1, . . . , n. Indeed, as e has full support, e is of the form e1xie2 for

some elements e1 and e2. Then equalities e = e2 = ee1xie2 imply that eCn = ee1Cn and

eCn = ee1xiCn. Moreover, the monoid Cn is J -trivial, see Theorem 1.71. Therefore e = ee1
and e = ee1xi. Consequently e = exi, as claimed.

It follows that e = exnx1x2 · · ·xn−1. From the description of the family M̃n−2 in De�ni-

tion 2.14 we get that xnx1 · · ·xn−1 ∈Mn−2 = M̃n−2∪{θ} and therefore, from Theorem 2.44 4,

e = exnx1x2 · · ·xn−1 is also in M̃n−2. On the other handMn−2 =M0(Qn−2, An−2, Bn−2;Pn−2)

is the semigroup of matrix type associated to cyclic semigroup generated by qn,n−2 and a ma-

trix Pn−2 with coe�cients in the monoid generated by qn,n−2 with zero adjoined. Such a

semigroup does not contain non-zero idempotents, which contradicts e ∈ M̃n−2. The asser-

tion follows.

We are ready to list the reduced forms of all idempotents in Cn, using Lemma 5.2 and

Theorem 5.1.

From Lemma 5.2 every idempotent in Cn is not of full support. Therefore the full subgraph

Γ′ (of the cycle) whose vertices correspond exactly to the support of an idempotent is an

acyclic graph. Moreover such an idempotent can be treated as an idempotent in the Hecke�

Kiselman monoid HKΓ′ with maximal possible support. Theorem 5.1 implies that there exists

exactly one such idempotent. To �nd its form, we need to order the set of vertices V (Γ′) in

such a way that if i −→ j in Γ′ then i < j. Denote V (Γ′) = {i1, . . . , ik} with i1 < · · · < ik.

Let us consider two cases.

1) If {1, n} ⊈ V (Γ′) then the arrow n −→ 1 is not in Γ′, hence i −→ j in Γ′ implies that

i < j.
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2) If {1, n} ⊆ V (Γ′) then there exists t ∈ {1, . . . , k − 1} such that 1, . . . , t ∈ V (Γ′) and

t + 1 /∈ V (Γ′). In particular, the arrow t −→ t + 1 is not contained in Γ′. Therefore, it

is possible to shift vertices of the cycle graph in such a way that the the arrow n −→ 1

is not contained in the graph Γ′ with shifted indices. Formally, Γ′ is isomorphic to the

acyclic subgraph Σ of the cycle of length n such that V (Σ) = {it+1− t, it+2− t, . . . , ik−
t, i1+(n− t), i2+(n− t), . . . , it+(n− t)}, via the isomorphism ij 7→ ij − t if ij > t and

ij 7→ ij + n − t otherwise, for j = 1, . . . , k. As it+1 > t + 1, it follows that 1 /∈ V (Σ)

and then this case reduces to case 1). The form of idempotents in HKΓ′ in this case

follows, using Theorem 5.1, from the described isomorphism between Σ and Γ′.

Therefore, we have proved the following:

Corollary 5.3. Idempotents in Cn are exactly the elements that can be written in the form

eX for some X ⊆ {1, . . . , n} such that X ̸= {1, . . . , n}, where eX is de�ned as follows.

1) If X = ∅ then eX = 1.

2) If {1, n} ⊈ X ̸= ∅, then eX = xi1xi2 · · ·xij where X = {i1, . . . , ij} with i1 < i2 < · · · <
ij.

3) If {1, n} ⊆ X, let k ∈ {1, . . . , n − 1} be such that {1, 2, . . . , k} ⊆ X and k + 1 /∈ X.

Then eX = xi1 · · · xisx1 · · ·xk where is = n and X = {1, . . . , k, i1, . . . , is} with k + 1 <

i1 < · · · < is = n.

We now place idempotents from Cn in the chain of ideals Ii for i = −1, . . . , n − 2 from

Theorem 2.44.

Proposition 5.4. For every idempotent eX in Cn such that |X| ⩾ 2 we have eX ∈ I|X|−2 \
I|X|−1. Moreover xi /∈ I−1 for i ∈ {1, . . . , n}.

Proof. To prove the �rst statement, we will use the homomorphism f : Cn −→Map(Zn,Zn)

de�ned after Lemma 2.23 in Section 2.2. We also follow the notation introduced in this

section. From Lemma 2.25 we get that to show that eX ∈ I|X|−2 it is enough to check that

eX ∈ Q|X|−2. This follows from the following technical lemma.

Lemma 5.5. Assume that w = xi1 · · ·xik ∈ Cn is such that for every j, l ∈ {1, . . . , k} if j < l

then 0 < il − ij < n− 1 or ij − il ⩾ 2. Then supp(f(w)) = {1, . . . , n} \ {i1, . . . , ik}.

Proof. We proceed by induction on the length of w. If |w| = 1 the claim is a straightforward

consequence of the de�nition of supp(f(w)), see Section 2.2. Assume now that the assertion

holds for some k−1, where k ⩾ 2. Consider the word w = xi1 · · ·xik ∈ Cn satisfying the condi-

tion from the lemma. Then f(w)(m1, . . . ,mn) = f(xi1)(f(xi2 · · ·xik)(m1, . . . ,mn)). Applying

the inductive hypothesis to the word w′ = xi2 · · ·xik we obtain that supp(f(xi2 · · ·xik)) =

{1, . . . , n}\{i2, . . . , ik}. Moreover, as i1 ̸= il for l ⩾ 2, we know that f(xi2 · · ·xik)(m1, . . . ,mn)

has mi1 on the i1th coordinate. It is enough to check that mi1 does not occur on any other
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coordinate of f(xi2 · · ·xik)(m1, . . . ,mn). Indeed, every f(xj) changes only jth coordinate of

the sequence on which it acts. Therefore, f(w′)(m1, . . . ,mn) could havemi1 on the coordinate

di�erent than i1th, only if mi1 had been rewritten �rstly on the (i1 − 1)th coordinate in the

case i1 ̸= 1 or on the nth coordinate if i1 = 1. Thus we get that either xi1−1 ∈ {xi2 , . . . , xik} or
i1 = 1 and xn ∈ {xi2 , . . . , xik}, which is not true as il− i1 ∈ {−n+1, . . . ,−2}∪{1, . . . , n−2}
for every l > 1. It follows that supp(f(w)) = supp(f(w′))\{i1} = {1, . . . , n}\{i1, . . . , ik}.

Remark 5.6. Elements satisfying conditions of Lemma 5.5 are exactly idempotents of Cn

described in Corollary 5.3.

Proof. Let w = xi1 · · ·xik ∈ Cn be a (reduced) word in Cn such that for every j, l ∈ {1, . . . , k}
if j < l then 0 < il − ij < n − 1 or ij − il ⩾ 2. If i1 < · · · < ik, then (i1, ik) ̸= (1, n)

and thus w is indeed of the form 2) from Corollary 5.3. Let 1 ⩽ s < k be such that

w = xi1 · · ·xisxis+1 · · ·xij , where i1 < · · · < is but is+1 > is. Then we know that is+1− is ⩾ 2.

It follows that is = n and is+1 = 1, as otherwise the word w would contain a non-reduced

factor of type (2) in Theorem 1.65. Thus w = xi1 · · ·xnx1xis+2 · · ·xik . From Lemma 2.3 and

the fact that |xis+2 · · ·xik |j = 0 for j = {i1− 1, n− 1} it then follows that w is of the form 3)

in Corollary 5.3. The assertion follows.

To continue with the proof of Proposition 5.4 note that from the remark and Lemma 5.5

we get that | supp(f(eX))| = n−|X|, and thus eX ∈ I|X|−2 for |X| ⩾ 2. Let us now check that

eX /∈ I|X|−1. We have an automorphism σ of Cn such that σ(xi) = xi+1 for every i = 1, . . . , n

(where we agree that xn+1 = x1), see De�nition 2.29. By Lemma 2.36, it has the property

that σ(Ii) = Ii for i ∈ {0, . . . , n− 3}. Applying the automorphism σ a few times if necessary,

we may assume that the idempotent eX is of the form xi1 · · ·xij with i1 < · · · < ij and

ij = n − 1. Indeed, if eX = xi1 · · · xij is such that i1 < · · · < ij and (i1, ij) ̸= (1, n), then

σn−1−ij(eX) = xn−(ij+1)+i1 · · ·xn−(ij+1)+ij is of the required form as 1 ⩽ n− (ij + 1) + ik < n

for k = 1, . . . , j. Moreover, if eX = xi1 · · ·xisxnx1 · · ·xk with k + 1 < i1 < · · · < is then

σn−1−k(eX) = xi1−k−1 · · ·xis−k−1xn−k−1 · · ·xn−1, as n + 1 ⩽ ij + n − k − 1 < 2n and thus

σn−1−k(eX) is of the required form in this case, as well.

So, let eX be of the form xi1 · · ·xij with i1 < · · · < ij and ij = n − 1. Then consider the

element

w = (xi1−1xi1−2 · · ·x1)(xi2−1xi2−2 · · ·x2) · · · (xij−1xij−2 · · ·xj).

Note that if ik = k for some 1 ⩽ k ⩽ j then i1 = 1, . . . , ik = k. If ik = k then by

(xik−1xik−2 · · ·xk) we understand the trivial word.

Since xim+1 · · ·xij commutes with xim−1 · · ·xm for m = 1, . . . , j − 1, the element eXw can be

written in Cn in the form

(xi1xi1−1 · · ·x1)(xi2xi2−1 · · ·x2)(xi3xi3−1 · · ·x3) · · · (xijxij−1 · · ·xj).

From the description of the sets Ai in Theorem 2.1, it follows directly that eXw ∈ Aj−1.

Theorem 2.32 gives that there exists u ∈ Cn such that ueXw = (qn,j−1)
N for some N ⩾ 1.
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By the de�nition of the ideal Ij−1 this implies that eX /∈ Ij−1 = I|X|−1. The assertion follows.

The second part of the proposition is clear from the de�nition of I−1.

5.2 Irreducible representations of the Hecke�Kiselman al-

gebra K[Cn]

Our aim is to investigate the irreducible representations of the Hecke�Kiselman algebra

K[Cn]. Let us recall that the �eld K is algebraically closed.

Our approach is based on Theorem 2.44. Although monoids Cn are in�nite for all n ⩾ 3,

the general idea is motivated by the representation theory of �nite semigroups. Namely, as

explained in Section 1.2.1 if S is a �nite semigroup, then the irreducible representations of

S can be obtained in terms of irreducible representations of the 0-simple principal factors of

the semigroup S, which are semigroups of matrix type, see Theorem 1.48.

Moreover the Hecke�Kiselman monoid Cn is J -trivial, Theorem 1.71. Representation

theory of �nite J -trivial monoids (more generally �nite R-trivial monoids) can be easily

described, see Corollary 5.7 in [53] or [12]. In particular, in the J -trivial case representations
can be parametrized by idempotents, Example 1.50. We will construct two types of repre-

sentations of K[Cn]: those coming from the representations of K0[Mi], and those related to

the idempotents in Cn. The sandwich matrices Pi are invertible as matrices in Mni
(K(qn,i)),

see Corollary 2.53. Recall that here K(qn,i) stands for the �eld of rational functions in the

indeterminate qn,i, and thus K0[Mi] are almost Munn algebras, Section 1.3. Simple modules

over such algebras can be described, see Section 1.3.1. In Section 5.3 we will extend this

result to our setting.

If P is a maximal ideal of K[Cn], then from Theorem 1.25 K[Cn]/P ≃ Mr(D) for r ⩾ 1

and a division algebra D. On the other hand, as explained in the proof of Theorem 3.6,

GKdim(K[Cn]/P ) = clKdim(K[Cn]/P ) = 0 and thus K[Cn]/P is �nite dimensional. There-

fore, assuming that the �eld K is algebraically closed, we get D = K. In particular, the

irreducible representation corresponding to the maximal ideal P is the natural homomor-

phism K[Cn]→ K[Cn]
/
P . Conversely, the kernel of any irreducible representation of K[Cn]

is a (left) primitive ideal. Therefore, by Theorem 3.6, it is also a maximal ideal of K[Cn].

Consequently, there exists a bijection between maximal ideals and irreducible representations

of the algebra. Bearing that in mind we describe the representation theory of K[Cn] using

both: maximal ideals and direct constructions of irreducible representations, interchangeably.

First, we are going to prove that every maximal ideal in K0[Mi] extends to a maximal

ideal in the algebra K[Cn].

Proposition 5.7. Assume that I is a maximal ideal in K0[Mi]. Then there exists a unique

maximal ideal Ĩ in K[Cn] such that π(Ĩ) ∩ K0[Mi] = I and K0[Mi]/I ≃ K[Cn]/Ĩ, where

π : K[Cn]→ K[Cn]/K[Ii] is the natural homomorphism.

Proof. We treat the semigroup Mi as a subsemigroup in Ii−1/Ii. Then we know from
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Corollary 2.46 that Mi is a two-sided ideal in Cn/Ii. Let I be the ideal in K0[Mi] such

that the algebra K0[Mi]/I is simple. Then, as K0[Mi] is an ideal in K0[Cn/Ii], we have

that I ⊆ K0[Cn/Ii]IK0[Cn/Ii] ⊆ K0[Mi]. Therefore either I = K0[Cn/Ii]IK0[Cn/Ii] or

K0[Cn/Ii]IK0[Cn/Ii] = K0[Mi]. On the other hand

(K0[Cn/Ii]IK0[Cn/Ii])
3 ⊆

(K0[Cn/Ii]IK0[Cn/Ii])I(K0[Cn/Ii]IK0[Cn/Ii]) ⊆
K0[Mi]IK0[Mi] ⊆ I.

It follows that I = K0[Cn/Ii]IK0[Cn/Ii]. Therefore I = π−1(I) is an ideal inK[Cn], where

π : K[Cn]→ K[Cn]/K[Ii] is the natural homomorphism. Moreover, from π(I) ∩K0[Mi] = I

(as Mi \ {0} = M̃i ⊆ Ii−1 \ Ii) we get that K0[Mi]/I ◁ K[Cn]/I. As K0[Mi]/I is a simple PI-

algebra, by Kaplansky Theorem 1.25 it follows that K0[Mi]/I is an algebra with an identity.

What is more, it is an ideal of K[Cn]/I, so that K0[Mi]/I = (K[Cn]/I) · f for a central

idempotent f . Indeed, let f be the identity of K0[Mi]/I. Then for any x ∈ K[Cn]/I we have

fx, xf ∈ K0[Mi]/I and thus fx = fxf = xf , that is f is central idempotent. As K0[Mi]/I

is simple, it follows that K0[Mi]/I = (K[Cn]/I)f . If we consider the natural epimorphism

φ : K[Cn] ↠ (K[Cn]/I)·f then Ĩ = kerφ is an ideal inK[Cn] such thatK[Cn]/Ĩ ≃ K0[Mi]/I.

The uniqueness of the ideal Ĩ is a direct consequence of the construction because Ī is the

ideal of K[Cn] generated by I.

The next step is to investigate any irreducible representation of the algebra K[Cn], not

necessarily arising from the representation of K0[Mi] in the way described by Proposition 5.7.

Let us consider any maximal ideal P of K[Cn]. Recall that the minimal prime ideals Ji
(i = 0, . . . , n− 2) of K[Cn] have been described in Theorem 3.4. From Theorem 3.6 we know

that, Ji ⊆ P for some i ∈ {0, . . . , n − 2} and thus also Ii ⊆ P (Ii ⊆ Ji from the de�nition).

Take the minimal i ⩾ 0 such that Ii ⊆ P . Then either K[M̃i] ⊈ P or K[M̃i] ⊆ P .

Assume �rst that K[M̃i] ⊈ P . Then P ∩K[M̃i] ̸= {0}, as otherwise P ∩K[qn,i] = {0} and
Ii ⊆ P which, together with maximality of the ideal P and the de�nition of Ji, implies that

P = Ji. That contradicts Theorem 3.6. Then π(P ) ∩K0[Mi] ̸= {0}, where π is the natural

homomorphism K[Cn] → K[Cn]
/
K[Ii], is an ideal in K0[Mi] such that K0[Mi]

/
(π(P ) ∩

K0[Mi])◁K[Cn]/P ≃Mj(K) for some j ⩾ 1. Therefore we get thatK0[Mi]
/
(π(P )∩K0[Mi]) =

K[Cn]/P . In particular, in this case the maximal ideal P comes from a maximal ideal in

K0[Mi], in the way described in Proposition 5.7.

Now, let us consider the second case, namely K[M̃i] ⊆ P .

If i = 0 and I−1 ⊆ P , then every irreducible representation corresponding to the maximal

ideal P comes from the irreducible representation of the �nite monoid Cn

/
I−1. As Cn is a

J -trivial monoid, also Cn/I−1 is J -trivial, as explained in Remark 1.39. From Section 5.1 it

follows that there are exactly n+ 1 idempotents in Cn \ I−1 (generators x1, . . . , xn and 1).

By Example 1.50, there exists a bijection between isomorphism classes of irreducible

representations of the monoid Cn/I−1 and idempotents e ∈ Cn \ I−1. More precisely, let e be
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such an idempotent and consider I(e) = {m ∈ Cn/I−1 : e /∈ (Cn/I−1)m(Cn/I−1)}, that is the
ideal of non-generators of the principal ideal (Cn/I−1)e(Cn/I−1). Then the corresponding

one-dimensional irreducible representation φe : K[Cn/I−1]→ K is given for m ∈ Cn/I−1 by

φe(m) =

{
0 if m ∈ I(e)
1 otherwise

.

Moreover, di�erent idempotents lead to non-isomorphic representations.

Then the induced irreducible representation of K[Cn] is given by K[Cn] ↠ K[Cn/I−1]
φe−→

K and thus leads to a maximal ideal P in K[Cn] associated to e. All possible maximal ideals

P such that I−1 ⊆ P are of the above form. In addition, for di�erent idempotents e ∈ Cn\I−1

we get di�erent ideals. Indeed, from Proposition 1.49, it follows that for every idempotent

e and m ∈ Cn/I−1 we have m /∈ I(e) if and only if em = e. Therefore if I(e) = I(f) for

idempotents e and f , then e /∈ I(f) and f /∈ I(e), that is fe = f and ef = e. We get that

f and e are J �related in the J -trivial monoid Cn/I−1, which means that e = f . It follows

that for di�erent idempotents we get di�erent maximal ideals P .

Assume now that K[M̃i] ⊆ P and i > 0, that is Ii−1 ⊈ P . Consider the �nite semigroup

Ii−1

/
(Ii ∪ M̃i). In this case every simple K[Cn]-module with annihilator P is also a simple

K[Ii−1

/
(Ii∪ M̃i)]-module. From Theorem 1.48 it follows that every such a module W has an

apex, that is an idempotent e ∈ Ii−1

/
(Ii ∪ M̃i) satisfying conditions eW ̸= 0 and K[I(e)] =

Ann(W ), where I(e) = {w ∈ Ii−1

/
(Ii ∪ M̃i) : e /∈ (Ii−1

/
(Ii ∪ M̃i))w(Ii−1

/
(Ii ∪ M̃i))}. From

the description of idempotents in Section 5.1 it is clear that there exists an idempotent

e ∈ Ii−1

/
(Ii ∪ M̃i). Using the characterization of simple K[Ii−1

/
(Ii ∪ M̃i)]-modules and

knowing that there are �nitely many idempotents in Ii−1

/
(Ii∪M̃i), we can choose a minimal

one with respect to the J �relation, de�ned in Section 1.2, in Ii−1 \ (Ii∪ M̃i) such that e /∈ P .
Next, consider the ideal Ne = Ii ∪ M̃i ∪ I(e) in Cn, where I(e) = {w ∈ Cn : e /∈ CnwCn}.

The monoid Cn is J -trivial and from Proposition 1.49 we have that for every m ∈ Cn either

em = e or m ∈ I(e) ⊆ Ne and symmetrically either me = e or m ∈ I(e). It follows that

K[Ne] ⊆ P , {θ, e} is a two-sided ideal in Cn/Ne and thus in particular K[Cn]
/
K[Ne] ≃

Ke⊕ (K[Cn]
/
K[Ne])(1− e). Therefore in this case the irreducible representation φ of K[Cn]

is one-dimensional and given by K[Cn] ↠ K[Cn/Ne]
φe−→ K, where for any m ∈ Cn \Ne

φe(m) =

{
1 if em = e

0 if em ∈ Ne

.

As in the previous case, for every choice of an idempotent e ∈ Ii−1\(M̃i∪Ii) we get a di�erent
maximal ideal Pe and in such a way we get all maximal ideals in this case.

Thus we have proved the following theorem.

Theorem 5.8. Let φ : K[Cn] → Mj(K) be an irreducible representation of the Hecke�

Kiselman algebra K[Cn] over an algebraically closed �eld K. If φ(K[In−3]) ̸= 0 set i = n−2.
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Otherwise take the minimal i ∈ {−1, . . . , n− 3} such that φ(K[Ii]) = 0.

1) If i ⩾ 0 then

a) either φ(K[M̃i]) ̸= 0 and the representation φ is induced by a representation of

K0[Mi] as described in Proposition 5.7;

b) or φ(K[M̃i]) = 0 and the representation φ is one-dimensional and induced by an

idempotent e ∈ Ii−1 \ Ii. For any m ∈ Cn it is given by

φ(m) =

{
1 if em = e

0 if em ∈ Ne

,

where Ne = Ii∪M̃i∪I(e) is the ideal in Cn such that I(e) = {w ∈ Cn : e /∈ CnwCn}.

2) If i = −1 then the representation φ is one-dimensional and induced by an idempotent

e ∈ Cn \ I−1. It is given for m ∈ Cn by

φ(m) =

{
0 if m ∈ I(e) ∪ I−1

1 otherwise
,

where I(e) = {m ∈ Cn \ I−1 : e /∈ (Cn/I−1)m(Cn/I−1)}.

5.3 Irreducible representations of K0[Mi]

In view of Theorem 5.8, in order to complete our discussion of irreducible representations

of K[Cn], the �nal step is to characterize irreducible representations of K0[Mi]. Recall that

the �eld K is algebraically closed. We start with a construction of certain family of such

representations using the representation theory of Munn algebras, see Section 1.3.1. To

characterize irreducible representations of semigroups Mi = M0(Qi, Ai, Bi;Pi) we cannot

use Theorem 1.59 directly, as the in�nite cyclic semigroup Qi generated by qn,i is not a

group. On the other hand, note that Qi is contained in the cyclic group generated by qn,i,

denoted by gr(qn,i). As we prove in the next two propositions, all representations of Mi come

from representations of the semigroup of matrix type associated to such a group gr(qn,i), sets

Ai, Bi and the sandwich matrix Pi. Moreover, every irreducible representation of the latter

semigroup restricts to a representation of Mi.

Proposition 5.9. Consider the semigroup of matrix type Mi = M0(Qi, Ai, Bi;Pi) from

Theorem 2.44. Then for every λ ∈ K∗ there exists a unique irreducible representation ψλ :

K0[Mi] → Mr(K), for some 1 ⩽ r ⩽ |Ai|, induced by the irreducible representation of

gr(qn,i) such that qn,i 7→ λ. Such a representation is the restriction of the representation

φλ :M0(gr(qn,i), Ai, Bi;Pi)→Mr(K) described in Theorem 1.59 coming from the mentioned

irreducible representation of gr(qn,i).
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Proof. We know that |Ai| = |Bi| and the sandwich matrix Pi, is invertible as a matrix in

Mni
(K(qn,i)), see Corollary 2.53. Therefore, every algebra K0[Mi] embeds into the algebra

of matrix type K0[M0(gr(qn,i), Ai, Bi;Pi)] ≃M(K[qn,i, q
−1
n,i ], Ai, Bi;Pi).

For any λ ∈ K∗ consider the homomorphism φλ : K[qn,i] −→ K such that qn,i 7→ λ. Every

such a homomorphism extends to an irreducible representation of the group gr(qn,i). There-

fore, from Theorem 1.59, it induces an irreducible representationM(K[qn,i, q
−1
n,i ], Ai, Bi, Pi)→

M(K,Ai, Bi;P i) → Mr(K), which is an epimorphism, where P i = (pb,a) with pb,a = φ(pb,a)

for every a ∈ Ai, b ∈ Bi. The map φλ : M(K[qn,i, q
−1
n,i ], Ai, Bi;Pi) → M(K,Ai, Bi;P i) is

given by φλ(q
k
n,i; a, b) = (λk; a, b) for all k ∈ Z, a ∈ Ai, b ∈ Bi. It is enough to check that the

restriction of the above map to K0[Mi] is also an epimorphism, as then it gives an irreducible

representation ψλ : K0[Mi]→Mr(K). To show this, let us notice that for any α ∈ K, a ∈ Ai,

b ∈ Bi we have (αλ
−1qn,i; a, b) ∈ K0[Mi] and φλ(αλ

−1qn,i; a, b) = αλ−1(λ; a, b) = (α; a, b). The

claim now follows from the fact thatM(K,Ai, Bi;P i)→Mr(K) is also an epimorphism.

From the de�nition of the sets Ai, Bi that can be found before Theorem 2.1 it follows that

the trivial word 1 is in both sets Ai and Bi. Therefore, using formula (2.3.1) for coe�cients

of sandwich matrices Pi = (pba) of the semigroups of matrix type Mi from the proof of

Corollary 2.42, we get that p11 = 1. Then M1,1 = {(qkn,i; 1, 1) ∈ Mi : k ⩾ 1} ⊆ Mi is

isomorphic to the in�nite cyclic semigroup.

The irreducible representations of Mi described in Proposition 5.9 come from representa-

tions of the completely 0�simple closure of Mi, namely cl(Mi) =M0(gr(qn,i), Ai, Bi;Pi). In

particular, the image of (qn,i; 1, 1) is equal to λe for an idempotent matrix e of rank 1 and

some λ ∈ K∗. Now we show that every irreducible representation of Mi is of such a form

and extends to a representation ofM0(gr(qn,i), Ai, Bi;Pi).

Proposition 5.10. Every irreducible representation φ : K0[Mi]→Mr(K) of K0[Mi] is such

that φ(qn,i; 1, 1) = λe, where λ ∈ K∗ and e is an idempotent of rank 1. Such a representation

φ can be uniquely extended to an irreducible representation of K0[M0(gr(qn,i), Ai, Bi, Pi)].

Consider any irreducible representation φ : K0[Mi]→Mr(K), whereMi =M0(Qi, Ai, Bi;Pi).

In particular, as K is algebraically closed, the representation is onto. The �rst step of the

proof is to investigate the image of M1,1 under φ.

Let us notice that φ(M1,1) is non-zero. Indeed, suppose that in particular φ(qn,i; 1, 1) =

0. For any (qkn,i; a, b) ∈ Mi either pba = 0 or pba = qαn,i for some α ⩾ 0. In the �rst

case φ((qkn,i; a, b)
N0) = φ(0; a, b) = 0 for N0 ⩾ 2 and in the latter we have (qkn,i; a, b)

N0 =

(q
N0k+(N0−1)α
n,i ; a, b) with N0k + (N0 − 1)α ⩾ 3 for N0 ⩾ 3. Moreover, from the de�nition

(equation 2.3.1) of sandwich matrices Pi it follows that p11 = 1. Therefore, if φ(qn,i; 1, 1) = 0,

we would have φ((qkn,i; a, b)
N0) = φ(qn,i; a, 1)φ(q

Nba
n,i ; 1, 1)φ(qn,i; 1, b) = 0, where Nba = N0k +

(N0− 1)α− 2 ⩾ 1 for all N0 ⩾ 3. Then φ(Mi) would be nil and thus nilpotent in the monoid

(Mr(K), ·), see Proposition 2.14 in [44], which leads to a contradiction. A similar argument

shows that φ(qn,i; 1, 1) cannot be nilpotent.
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Lemma 5.11. The image φ(K[M1,1]) is a commutative integral domain. Consequently,

φ(K[M1,1]) ≃ K.

Proof. As noted above, we have p11 = 1 in the sandwich matrix Pi, which implies that

K[M1,1] is isomorphic to K[qn,i]qn,i and in particular φ(K[M1,1]) is commutative.

Suppose now that φ(K[M1,1]) is not an integral domain, that is uv = 0 for some non-zero

u, v ∈ φ(K[M1,1]) with u = φ(α), v = φ(β), where α = (f ; 1, 1), β = (g; 1, 1). De�ne ideals

in K0[Mi] as follows:

I = {y = (yab) ∈ K0[Mi] : yab ∈ K[qn,i]f for all a ∈ Ai, b ∈ Bi},

J = {y = (yab) ∈ K0[Mi] : yab ∈ K[qn,i]g for all a ∈ Ai, b ∈ Bi}.

Then IJ ⊆ {y = (yab) ∈ K0[Mi] : yab ∈ K[qn,i]fg for all a ∈ Ai, b ∈ Bi} and as φ(I) ̸= 0,

φ(J) ̸= 0, it follows that φ(I) = φ(J) =Mr(K). Therefore,

φ((qn,i; 1, 1)IJ(qn,i; 1, 1)) = φ(qn,i; 1, 1)Mr(K)φ(qn,i; 1, 1) ̸= 0.

On the other hand φ((qn,i; 1, 1)IJ(qn,i; 1, 1)) ⊆ φ((K[qn,i]fg; 1, 1)) = 0, as φ((f ; 1, 1)(g; 1, 1)) =

uv = 0, which leads to a contradiction. Consequently, φ(K[M1,1]) is a �nite dimensional do-

main and, as K is algebraically closed, it follows that φ(K[M1,1]) ≃ K.

Now we are ready to prove Proposition 5.10.

Proof. As explained earlier, if we denote q = (qn,i; 1, 1), then φ(q) is non-zero and not nilpo-

tent. Therefore from Proposition 1.3 in [44] it follows that for k big enough φ(q)k lies in a

maximal subgroup of the monoid (Mn(K), ·). Then φ : qkK0[Mi]q
k → φ(q)kMr(K)φ(q)k and

φ(q)kMr(K)φ(q)k = eMr(K)e for some idempotent e, see Lemma 1.10 in [44]. Moreover, by

Lemma 5.11, qkK0[Mi]q
k is contained in a commutative ring K[M1,1], thus it follows that

rk(e) = 1. Now, we have that φ(q) = g

(
a0 0

0 a1

)
g−1 for a matrix a0 ∈ Mp(K), such that

p ∈ {1, . . . , r}, rk(a20) = rk(a0), a nilpotent matrix a1 ∈ Mr−p(K), where g ∈ Glr(K) and

φ(qk) = g

(
ak0 0

0 0

)−1

g−1. As φ(qk) ∈ eMr(K)e for an idempotent e of rank 1, it follows

that p = 1 and we can assume that a0 ∈ K∗. Moreover, if a1 ∈ Mr−1(K) is non-zero, then

g

(
ak0 0

0 0

)
g−1, g

(
a0 0

0 a1

)
g−1 ∈ φ(K[M1,1]), so dimK φ(K[M1,1]) ⩾ 2, which contradicts

the assertion of Lemma 5.11. Thus in particular φ(qn,i; 1, 1) = λe for λ ∈ K∗ and e is an

idempotent with rk(e) = 1.

Now consider the irreducible representation φ : K0[Mi]→Mr(K) such that φ(qn,i; 1, 1) = λe.

AsMi = {(qmn,i; a, b) : m ⩾ 1, a ∈ Ai, b ∈ Bi} and the sandwich matrix Pi has p11 = 1, we have

φ(qmn,i; a, b) = φ(qn,i; a, 1)φ(q
m−2
n,i ; 1, 1)φ(qn,i; 1, b) = φ(qn,i; a, 1)λ

m−2eφ(qn,i; 1, b) for m ⩾ 3.

Let us de�ne the extension φ : K0[M0(gr(qn,i), Ai, Bi;Pi)] → Mr(K) for any (qpn,i; a, b),
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where p ∈ Z, a ∈ Ai, b ∈ Bi by

φ(qpn,i; a, b) = φ(qn,i; a, 1)λ
p−2eφ(qn,i; 1, b).

To verify that φ is a homomorphism take any (qln,i; a, b), (q
m
n,i; a

′, b′) ∈ K0[Mi]. Then either

(qln,i; a, b)(q
m
n,i; a

′, b′) = (q
l+m+nba′
n,i ; a, b′) if pba′ = q

nba′
n,i or (qln,i; a, b)(q

m
n,i; a

′, b′) = θ if pba′ = 0.

In the �rst case also (qn,i; 1, b) · (qn,i; a′, 1) = (q
nba′+2
n,i ; 1, 1). We then get

φ(qln,i; a, b)φ(q
m
n,i; a

′, b′) = φ(qn,i; a, 1)λ
l−2eφ((qn,i; 1, b) · (qn,i; a′, 1))λm−2eφ(qn,i; 1, b

′) =

= φ(qn,i; a, 1)λ
l−2eφ(q

nba′+2
n,i ; 1, 1)λm−2eφ(qn,i; 1, b

′) =

= φ(qn,i; a, 1)λ
l+m+nba′−2eφ(qn,i; 1, b

′) =

= φ(q
l+m+nba′
n,i ; a, b′).

Moreover (qln,i; a, b)(q
m
n,i; a

′, b′) = θ if and only if (qn,i; 1, b)(qn,i; a
′, 1) = θ, and thus in the

second case

φ(qln,i; a, b)φ(q
m
n,i; a

′, b′) = φ((qln,i; a, b)(q
m
n,i; a

′, b′)) = 0.

Therefore φ is a homomorphism. Let us denote Ni = {(qkn,i; a, b) : k ⩾ 3, a ∈ Ai, b ∈
Bi} ⊆ Mi. Then K0[Ni] is an ideal in K0[Mi] and it is clear that φ|K0[Ni] = φ|K0[Ni].

Moreover φ(K0[Ni]) = Mr(K) and in particular φ(f) = 1 for some f ∈ K0[Ni]. Then for

any g ∈ K0[Mi] we have φ(g) = φ(g)φ(f) = φ(gf). It follows that φ is uniquely determined

by φ|K0[Ni]. Therefore φ|K0[Mi] = φ, in other words the irreducible representation φ can be

extended to the representation φ ofK0[M0(gr(qn,i), Ai, Bi;Pi)]. From Theorem 1.59 it follows

that every irreducible representation of K0[M0(gr(qn,i), Ai, Bi;Pi)] is uniquely determined

(up to equivalence) by its value on the element (qn,i; 1, 1) ∈ Mi. Therefore the extension of

the constructed representation is unique.

5.4 Irreducible representations of PI Hecke�Kiselman al-

gebras

In this section we describe irreducible representations of arbitrary Hecke�Kiselman algebras

satisfying a polynomial identity. Recall from Theorem 1.72, that this condition can be

characterized by the property that the corresponding graph does not contain two cyclic

subgraphs (that is subgraphs which are oriented cycles) connected by an oriented path.

The radical of the algebra K[HKΘ], denoted by J (K[HKΘ]), in this case was described

in Theorem 3.9. Assume that Θ′ is the subgraph of Θ obtained by deleting all arrows x→ y

that are not contained in any cyclic subgraph of Θ. Every connected component of Θ′ is

either a singleton or an oriented cycle. Then K[HKΘ]/J (K[HKΘ]) ∼= K[HKΘ′ ] and it is the

tensor product of algebras K[HKΘi
] of the connected components Θ1, . . . ,Θm of Θ′, each

being isomorphic to K ⊕K or to the algebra K[Cj], for some j ⩾ 3.
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Theorem 5.12. Assume that Θ is a �nite oriented graph such that K[HKΘ] is a PI-algebra

and Θ′ is the subgraph of Θ as described above, with the connected components Θ1, . . . ,Θm.

Then the maximal ideals of K[HKΘ] are in a bijection with maximal ideals of K[HKΘ′ ].

The latter maximal ideals are of the form

m∑
i=1

K[HKΘ1 ]⊗ · · · ⊗K[HKΘi−1
]⊗ Pi ⊗K[HKΘi+1

]⊗ · · · ⊗K[HKΘm ]

for maximal ideals Pi of K[HKΘi
].

In particular, from Theorem 5.12 and the Kaplansky theorem (Theorem 1.25) it follows

that all irreducible representations of the Hecke�Kiselman algebra K[HKΘ] are determined

by representations of the algebras associated to the connected components Θ1, . . . ,Θm of

the subgraph Θ′ obtained by erasing all arrows not contained in any cyclic subgraph of Θ.

Every such component is either an oriented cycle of length j ⩾ 3 or a singleton. Note that

maximal ideals (irreducible representations) of K[Cj] have been characterized in Theorem 5.8

and Section 5.3 and if Θi is a singleton, then K[HKΘi
] ∼= K ⊕K has two obvious maximal

ideals.

Then every irreducible representation of K[HKΘ] is of the form

K[HKΘ]→ K[HKΘ1 ]⊗ · · · ⊗K[HKΘm ]→Mr1(K)⊗ · · · ⊗Mrm(K)
≃−→Mr1···rm(K),

where the �rst map is a natural epimorphismK[HKΘ]→ K[HKΘ]
/
J (K[HKΘ]) ≃ K[HKΘ1 ]⊗

· · · ⊗K[HKΘm ], and the second homomorphism is the natural homomorphism ψ1⊗ · · · ⊗ψm

for the irreducible representations ψi : K[HKΘ]→Mri(K) for i = 1, . . . ,m.

Proof of Theorem 5.12. As we know that K[HKΘ]/J (K[HKΘ]) ∼= K[HKΘ′ ] it is clear that

there exists a one-to-one correspondence between maximal ideals of K[HKΘ] and those of

K[HKΘ′ ].

So, it remains to �nd all maximal ideals in K[HKΘ′ ]. Assume that Θ′ has only two

connected components, that is K[HKΘ′ ] = R1 ⊗ R2, where Ri = K[HKΘi
] are isomorphic to

either K[Cj], for some j ⩾ 3, or K ⊕K. The general case can be proved analogously. Let P

be a maximal ideal of K[HKΘ′ ] and π : R1⊗R2 → (R1⊗R2)/P the natural projection. Since

R1⊗R2 is a PI-algebra over an algebraically closed �eld, from Kaplansky theorem it follows

that (R1 ⊗ R2)/P ≃Mr(K) for some r ⩾ 1. Denote R̄1 = π(R1 ⊗K) and R̄2 = π(K ⊗ R2).

Recall that the Jacobson radical of a �nitely generated PI-algebra is nilpotent, as mentioned

in Section 3.3. We claim that the algebras R̄i are semisimple. Indeed, let N1/P be a nilpotent

ideal in R̄1. Then N1(1⊗ R2) is a nilpotent ideal in K[HKΘ′ ], as N1(1⊗ R2) = (1⊗ R2)N1.

It follows that N1 = 0 and R̄1 is semisimple, as it is �nite dimensional. A symmetric

argument shows that R̄2 is also semisimple. If R̄i was not simple, then it would contain a

non-trivial central idempotent. This idempotent would be then also central in K[HKΘ′ ]/P ,

a contradiction. Therefore R̄i ≃Mri(K) for i = 1, 2. Projection π : K[HKΘ′ ]→ K[HKΘ′ ]/P
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factors through K[HKΘ′ ]
π̄1−→ R̄1⊗ R̄2

π̄2−→ K[HKΘ′ ]/P . Moreover, as R̄1⊗ R̄2 ≃Mr1r2(K), π̄2
is an isomorphism. Then we can assume that π : K[HKΘ′ ] ↠ Mr(K) where r = r1r2. If we

denote π1 = π|R1⊗K and π2 = π|K⊗R2 , then ker(πi) = Pi are maximal ideals in Ri. It can be

easily checked that P = P1 ⊗R2 +R1 ⊗ P2.

Conversely, if P = P1⊗R2+R1⊗P2 for maximal ideals P1◁R1, P2◁R2, then (R1⊗R2)/P ≃
R1/P1 ⊗ R2/P2. As Ri are �nitely generated PI-algebras it follows that R1/P1 ⊗ R2/P2 ≃
Mr1(K)⊗Mr2(K) ≃Mr1r2(K). Therefore P is indeed a maximal ideal in K[HKΘ′ ].
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Chapter 6

Gelfand�Kirillov dimension of

Hecke�Kiselman algebras

In this chapter we describe the Gelfand�Kirillov dimension of Hecke�Kiselman algebras as-

sociated to oriented graphs in terms of numerical invariants of the underlying graph. The

results of this chapter come from [58]. Our main theorem can be seen as a natural continua-

tion of in [39, Theorem 1], see Theorem 1.72. The methods rely extensively on the property

discovered in [40], namely on the fact that Hecke�Kiselman algebras are automaton.

6.1 Growth of automaton algebras

Now let us restrict our attention to automaton algebras. Recall from Section 1.4.3 that an

algebra A is automaton if its set of normal forms N(A) (with respect to certain set of genera-

tors and an ordering in this set) is a regular language. What is more, from Theorem 1.73 we

know that the Gelfand�Kirillov dimension of every algebra with this property is in�nite or

it is an integer. The value of GK dimension is related to certain forms of regular-expression

representations of the regular languages of normal words in the algebra. We reformulate the

results of [54] in the language of normal forms and Gelfand�Kirillov dimension. In particular,

we sketch the idea of an alternative proof of Theorem 3 from [54], omitting interpretation of

regular languages as those recognised by �nite automaton.

Following notation from [54], recall that the density function of a regular language L ⊆
⟨X⟩, where ⟨X⟩ is the free monoid over the set X, is de�ned as pL(n) = |L ∩ Xn|, that is
the number of elements in L of length n. Given two functions f(n) and g(n), we say that

f(n) is O(g(n)) if there are positive constants C and n0 such that f(n) ⩽ Cg(n) for every

n ⩾ n0. Function f(n) is Ω(g(n)) if there is a sequence ni → ∞ of natural numbers and

positive constant C such that f(ni) ⩾ Cg(ni) for every i ⩾ 1.

The density function pN(A) of the regular language N(A) of normal words of an automaton
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algebra A satis�es

dV (n) =
n∑

i=1

pN(A)(i),

where dV is the growth function of A with respect to the generating subspace V spanned by

the chosen generators of A. Consequently, the density function is O(nk−1) for some k ⩾ 1

precisely when the growth function of A with respect to the chosen set of generators is O(nk)

and thus GKdim(A) ⩽ k.

The operation ∗ de�ned by T ∗ =
⋃

i≥0 T
i, for T ⊆ F , will be sometimes called a Kleene

star. Similarly we de�ne T+ =
⋃

i≥1 T
i for T ⊆ F . If T = {w} for some w ∈ F , then we

write T ∗ = w∗ and T+ = w+.

It can be checked that languages L described by regular expressions with minimal number

of nested star operator equal at least two (for example of the form (u∗w∗)∗ for some non-

trivial words u,w such that one is not a power of another) have exponentially many words

of length n for in�nitely many n. On the other hand, if an automaton algebra has �nite

GK dimension, from Theorem 1.73 it follows that the number of normal words of length at

most n is O(nk) for some k ⩾ 0. As a consequence, in this case N(A) can be described by

expressions without nested Kleene stars. We get, using so-called disjunctive normal form,

that N(A) can be represented as a �nite union of expressions v0w
∗
i1
v1w

∗
i2
v2 . . . vs−1w

∗
isvs for

some s ⩾ 0. Moreover, as it is shown in [54], a regular-expression representation can be

chosen in such a way that s ≤ k, provided that A has GK dimension at most k. It may be

also easily checked that the growth of a �nite sum of such expressions with s ≤ k is at most

k. Theorem 3 in [54] can be now rephrased as follows.

Theorem 6.1. The Gelfand�Kirillov dimension of an automaton algebra A is not bigger

than k for some k ⩾ 0 if and only if the set of normal words N(A) can be represented as a

�nite union of regular expressions of the following form

v0w
∗
i1
v1w

∗
i2
v2 . . . vs−1w

∗
isvs, (6.1.1)

with v0, . . . , vs ∈ F , wi1 , . . . , wis ∈ F and 0 ⩽ s ⩽ k.

Unfortunately representation of the form (6.1.1) is not unique. Moreover, without further

assumptions we cannot conclude that GK dimension is equal to the maximal number s

occurring in the description as in the theorem, as illustrated by the following example.

Example 6.2. The polynomial algebra A = K[x] is generated by the set {1, x}. Let us

choose the well ordering in ⟨x⟩ compatible with multiplication such that xk < xl if and only

if k < l. Then the set of normal words N(A) can be represented by the regular expression x∗.

This set can be also described by x∗x∗. The growth function dV associated with a generating

subspace V = linK{1, x} is given by dV (n) = n+ 1. Thus we get GKdim(A) = 1.

In the next simple observation we show, following Lemma 1 in [54], that under certain nat-

ural assumptions the rate of growth of a set described by an expression (6.1.1) is polynomial

of degree s.
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Observation 6.3. If a regular expression v0w
∗
1v1w

∗
2v2 . . . vs−1w

∗
svs has the property that for

any two di�erent substitutions of non-negative powers of words w1, . . . , ws we get distinct

words, then number d(n) of words of length at most n in the language described by this

expression is Ω(ns).

Proof. From the assumptions every element w of this family of words is uniquely determined

by s non-negative integers (n1, . . . , ns) such that w = v0w
n1
1 v1w

n2
2 v2 . . . vs−1w

ns
s vs. The num-

ber of words of length at most n is thus not smaller than the number of elements of the set

{(n1, . . . , nm) : ni ∈ Z+, n1 + · · · + ns ⩽ n−q
K
}, where q is the length of the word v0 · · · vs

and K is the maximum of lengths of wi, i = 1, . . . , s. For all n such that K divides n − q
the cardinality of such a set is

(n−q
K

+s
s

)
, which is a polynomial of degree s. The assertion

follows.

6.2 The main result

Now we focus on the Gelfand�Kirillov dimension of Hecke�Kiselman algebras associated to

oriented graphs. As the result does not depend on a �eld K we will denote the algebra

K[HKΘ] associated to a �eld K by AΘ. The reasoning relies on two results known earlier.

Namely, in the paper [39] algebras of �nite Gelfand�Kirillov dimension have been character-

ized. Namely, Hecke�Kiselman algebra AΘ has �nite GK dimension if and only if the graph

does not contain two di�erent oriented cycles connected by an oriented edge of length ⩾ 0,

see Theorem 1.72. Moreover, as it has been proved in [40], algebras AΘ associated to oriented

graphs Θ are automaton for any choice of degree-lexicographic order on the underlying free

monoid. We will also investigate the combinatorics of words in the Hecke�Kiselman monoids.

In this context Gröbner bases of the algebras AΘ from paper [40] will be extensively used. To

emphasize the use of Theorem 1.63, whenever we consider the set N(AΘ) of normal words of

the Hecke�Kiselman algebra AΘ that is obtained via reductions from the set T , we will say

that the elements of N(AΘ) are the reduced words of AΘ.

Recall from Section 1.4.2 that for any oriented graph Θ with a set of vertices denoted by

X, t ∈ X and w ∈ F = ⟨X⟩ we write w ↛ t if |w|t = 0 and there are no x ∈ supp(w) such

that x→ t in Θ. Similarly, we de�ne t↛ w: we assume that |w|t = 0 and there is no arrow

t → y, where y ∈ supp(w). In the case when t ↛ w and w ↛ t, we write t ↮ w. Let us

recall that a vertex v ∈ X is a sink vertex if no arrow begins in v. Analogously one de�nes

a source vertex. Sink and source vertices are called terminal vertices.

In the reminder of this section we assume that an oriented graph Θ does not contain

two di�erent cycles connected by an oriented path of length ⩾ 0, which means that the

corresponding Hecke�Kiselman algebra AΘ has �nite GK dimension. From Theorem 1.74

and results from Section 6.1, to determine this dimension we need to investigate regular

expressions of the form (6.1.1) describing normal words in the algebra.

If a graph Θ is acyclic, then the corresponding monoid is �nite and consequently, the

Gelfand�Kirillov dimension of underlying algebra is zero, see Theorem 1.69.
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Every vertex of Θ that belongs to some cycle will be called a cycle vertex, or a cycle

generator of HKΘ. Any vertex that is not a cycle vertex will be called a non-cycle vertex

(respectively a non-cycle generator).

We begin with a general observation which says that in any family of normal words of

the form (6.1.1) factors w∗
ij
correspond to certain words with the support in one of the cycles

of the graph Θ.

Observation 6.4. Let Θ be a graph such that AΘ is of �nite Gelfand�Kirillov dimension.

Let C1, . . . , Ck be the set of disjoint simple cycles in Θ, where Cl is of the form

x1,l → x2,l → . . .→ xnl,l → x1,l,

for some nl ⩾ 3 and 1 ≤ l ≤ k. Assume any degree-lexicographic order on F such that

we have x < y for some x ∈ Cr and y ∈ Cs if and only if either r < s, or if (r = s and

x = xp,r, y = xq,r, for p < q). Assume that for some 1 ̸= w ∈ F , the words wm ∈ F are

reduced with respect to the reduction set T in Theorem 1.63 (constructed with respect to

the chosen deg-lex order) for every m ⩾ 1. Then w is a factor of the in�nite word of the

form (qN,i)
∞ of full support, where x1 → x2 → . . . → xN → x1 is one of the cycles Ck with

N = nk, qN,i = xN(x1 . . . xi)(xN−1 . . . xi+1) and i ∈ {0, . . . , N − 2}. Here we assume that

qN,0 = xNxN−1 . . . x1.

Proof. Let w ̸= 1 be such that the word wm is reduced for every m ⩾ 1. Suppose that

y ∈ supp(w) is a non-cycle vertex of Θ. First, we will show that then the support of w would

also contain either a source or sink vertex. If y is not a terminal vertex, from conditions (i)

and (ii) in Theorem 1.63, it follows that there exist u1, z1 ∈ V (Θ), u1 ̸= z1, such that u1 → y,

z1 ← y in Θ and u1, z1 ∈ supp(w). Similarly, if u1 is not a sink vertex, then there exists

u2 ∈ supp(w) such that u2 → u1. Symmetrically, if z1 is not a source vertex, then z2 ← z1 in

Θ for some z2 ∈ supp(w). Moreover {u1, u2} ∩ {z1, z2} = ∅, because y is a non-cycle vertex

and z2 /∈ {y, z1}, u2 /∈ {y, u1}. We continue this procedure until at least one of the chosen

vertices is either terminal or cycle vertex. As the graph is �nite, after �nitely many steps we

obtain a path us → · · · → u1 → y → z1 → · · · → zr such that u1, . . . , us, z1, . . . , zr ∈ supp(w)

and either us is a cycle vertex, or a source vertex and, similarly, either zr is a cycle vertex, or

a sink vertex. From Theorem 1.72 and the assumption that AΘ is of �nite Gelfand�Kirillov

dimension, the graph Θ does not contain two cycles connected by a path and thus it follows

that us and zr cannot be both cycle vertices. Therefore, either us is a source or zr is a sink, as

claimed. However, according to Theorem 1.63 a sink or source vertex may occur in a reduced

word at most once. Since w2 is reduced and contains at least two occurrences of us and zr,

they cannot be terminal vertices, which leads to a contradiction.

We have proved that the entire support of w consists of cycle generators. Call these cycles

C1, . . . , Cq. Since the Gelfand�Kirillov dimension of AΘ is �nite, no vertex can belong to

two cycles and if two elements in the support of w belong to di�erent cycles, they are not

connected in Θ by an oriented path. From Theorem 1.63 and from the assumed deg-lex
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order on F it follows that w = w1w2 . . . wq, where supp(wp) ⊆ V (Cip) for pairwise di�erent

cycles Cip for p = 1, . . . , q. Yet, as wm is reduced, for all m ≥ 1 it easily follows that q = 1,

so the support of w belongs entirely to a single cycle. Say that this cycle C is of the form

x1 → x2 → . . . → xN → x1. Suppose that there exists xi which is not in the support

of w. Take an index i such that xi /∈ supp(w) but xi−1 ∈ supp(w), where for i = 1 we

take i − 1 = N . Then w2 contains a factor of the form xi−1uxi−1 such that xi /∈ supp(u).

From the description of the Gröbner basis in Theorem 1.63 it follows that then w2 is not

reduced. This means that supp(w) = {x1, . . . , xN}. From Proposition 2.15 it follows that

if wn is reduced for every n ⩾ 1, then for some m ⩾ 1 the word wm is of the form aqkN,ib,

where i ∈ {0, . . . , N − 2}, k ⩾ 1 and a and b are members of an explicitly described �nite

families of words from Theorem 2.1. Then, from the assumption, w2m has the reduced form

aqkN,ibaq
k
N,ib. In particular, this word has a factor qN,i and therefore, from Theorem 2.1, it

follows that ba is either of the form qN,i or the trivial word 1. Consequently, as w is a pre�x

and su�x of wm = aqkN,ib, it is also a factor of the in�nite word of the form (qN,i)
∞ for some

i ∈ {0, . . . , N − 2}. The assertion holds.

From the observation it follows in particular that if there are no cyclic subgraphs in the

graph, then a regular language of normal words of the corresponding algebra is described by

expressions without Kleene stars. Thus, applying Theorem 1.73, we get an alternative proof

that Hecke�Kiselman algebra of acyclic graph is �nite dimensional.

After an introductory observation concerning words in the Hecke�Kiselman monoids with

the property that their positive powers are in the reduced form, we �nd the maximal possible

number of occurrences of certain non-cycle generators in reduced words in AΘ. We are

interested in those non-cycle vertices that are connected by an oriented path with at least

one cyclic subgraph. As we will show, GK dimension depends only on such vertices.

De�nition 6.5. A full subgraph Θ′ of a graph Θ whose set of vertices consists of all cycle

vertices and all vertices connected with at least one cycle by an oriented path will be called

the maximal cycle-reachable subgraph of Θ.

Example 6.6. In the graph Θ presented below, the maximal cycle-reachable subgraph is the

full subgraph represented by solid edges.

Figure 6.1: A graph Θ with the maximal cycle-reachable subgraph represented by solid edges

Let us recall that we assume that graph Θ does not contain two di�erent cycles connected

by an oriented path. In particular, for any vertex x ∈ V (Θ′) that is not contained in any
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cycle, if there exists a path from x to a cycle (from a cycle to x, respectively), then all paths

between x and all cycles are from x to the cycles (from the cycles to x, respectively).

We agree that for any vertex x there exists exactly one path of length 0 with the end (or

beginning) in x.

Lemma 6.7. Let Θ be an oriented graph with cycles denoted by C1, . . . , Ck, and let Θ′ be its

maximal cycle-reachable subgraph. For every vertex x ∈ V (Θ′) \ (V (C1)∪ . . .∪ V (Ck)) either

all oriented paths between x and any cycle lead from x into cycles or all lead from cycles into

x. Denote by kx the number of oriented paths in Θ of non-negative length with the end in the

vertex x in the �rst case, and the number of oriented paths of non-negative length with the

beginning in x in the latter case. Then, in every reduced word in HKΘ, the element x occurs

at most kx times.

Proof. Let x be any vertex contained in the maximal cycle-reachable subgraph Θ′ of the graph

Θ but not contained in the cycles C1, . . . , Ck. Assume �rst that there are oriented paths from

the cycles into x. To prove the statement we proceed by induction on the maximal length

l(x) of a path starting at x in the graph Θ.

If l(x) = 0 then x is a sink vertex in the graph Θ and thus there are no edges starting at

x. Then for any w ∈ HKΘ we have xwx = wx (see Remark 1.64) and thus x can occur at

most once in any reduced word.

Assume now that l(x) > 0 for some x ∈ V (Θ′) \ (V (C1) ∪ . . . ∪ V (Ck)) and let z1, . . . , zm
be the set of all vertices in Θ such that there is an edge x→ zi for every i = 1, . . . ,m. Then

from the de�nition of the maximal cycle-reachable subgraph it follows that all z1, . . . , zm are

also in Θ′. Moreover, for i = 1, . . . ,m we have l(zi) < l(x). By the inductive hypothesis

every zi occurs in any reduced word at most kzi times, where kzi is number of paths starting

at zi. We know that if a word of the form xwx with |w|x = 0 is reduced in HKΘ then

in particular x → y for some y ∈ supp(w), as otherwise x ↛ w and xwx = wx in HKΘ.

It follows that at least one of z1, . . . , zm occurs between any two generators x. As already

explained, every zi occurs in any reduced word at most kzi times. Therefore x can occur at

most kz1 + . . .+ kzm +1 times in any reduced word. On the other hand, in Θ there is exactly

one path of length 0 starting at x. Every other path starting from x uniquely determines a

path starting from one of z1, . . . , zm and every path p starting at zi de�nes a path starting

with x → zi and followed by p. Thus, in total there are exactly kz1 + . . . + kzm + 1 paths

starting from x in the graph Θ. The assertion follows.

The case where there exist paths from x to a cycle can be treated by a symmetric argu-

ment, using induction on the maximal length of a path that ends in x.

Note that for every non-cyclic vertex x in the maximal cycle-reachable subgraph Θ′ such

that all paths between x and the cycles lead from the cycles into x (from x into the cycles,

respectively) the number kx of all paths in Θ starting (ending, respectively) at x is the same

as the number of such paths in Θ′.

Our next step is to use Lemma 6.7 to show that every regular expression of the form

w∗
1v1w

∗
2 . . . vs−1w

∗
s which describes reduced words in the algebra AΘ can be expressed using
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at most certain number of stars. To do so we need to introduce certain order in the set of

vertices of Θ. For the rest of the present section we will assume that such an order had been

chosen.

De�nition 6.8 (Order on vertices of the graph). Let Θ be a graph with the cycles C1, . . . Ck

of length n(j) ⩾ 3 for j = 1, . . . , k and let Θ′ be its maximal cycle-reachable subgraph. For

every vertex x of Θ′ that is not contained in any cycle, denote by kx, as before, the number

of oriented paths of length ⩾ 0 in Θ with either the end or the beginning in x, depending on

the direction of paths between x and the cycles. In the set of these vertices de�ne any order

such that if kx < ky holds, then y < x.

Let Cj be of the form x1,j → · · · → xn(j),j → x1,j for some n(j) ⩾ 3 and j = 1, . . . , k. In

the set of all cycle vertices introduce the order such that xi,j < xl,m if ether j < m or j = m

and i < l. Moreover, assume that all cycle vertices are smaller than any vertex outside the

cycles.

Finally, choose any order in the set of vertices of Θ that are not in Θ′, for example such

that all these vertices are bigger than the vertices of Θ′.

Let us note that it is possible to de�ne the number kx for non-cycle vertices from Θ′, and

the order which satis�es all above conditions, provided that the graph Θ does not contain

two di�erent cycles connected by an oriented path.

In the next technical lemma we characterize the possible form of a family of reduced

words described by w∗vw∗, with supp(w) ⊆ V (Cn) for some n.

Lemma 6.9. If a family of reduced words is described by a regular expression of the form

u∗vw∗ with supp(u), supp(w) ⊆ V (Cn) for a cycle Cn, then either v contains a vertex con-

nected by an edge with Cn or this family of words can be expressed by a sum of �nitely many

regular expressions of the form pr∗q or p, for some words p, q and r.

Proof. Let u∗vw∗ be the regular expression describing reduced words with supp(u), supp(w) ⊆
V (Cn) for a cycle Cn. First we claim that either supp(v) ⊆ V (Cn) or v contains a non-cycle

vertex. Indeed, by De�nition 6.8 of the order on the vertices of Θ and the fact that the graph

does not contain two di�erent cycles connected by an oriented path, generators corresponding

to the vertices from di�erent cycles commute. Consequently, every reduced word w such that

supp(w) ⊆ V (C1) ∪ · · · ∪ V (Ck) has elements from di�erent cycles grouped in such a way

that if w = w1 · · ·wj with wi ∈ V (Cn(i)) and wl ∈ V (Cn(l)), then n(i) ⩽ n(l) for all i < l.

Thus if the family of words u∗vw∗ is reduced and such that supp(u), supp(w) ⊆ V (Cn), then

either supp(v) ⊆ V (Cn) or v contains a non-cycle generator.

Let us now consider the �rst case, that is u∗vw∗ consists of reduced words and supp(u),

supp(v), supp(w) ⊆ V (Cn). We proceed to show that then u∗vw∗ can be expressed as

a �nite sum of expressions with at most one Kleene star. From Observation 6.4 it fol-

lows that u and w are factors of the in�nite words (xN(x1 . . . xl1)(xN−1 . . . xl1+1))
∞ and

(xN(x1 . . . xl2)(xN−1 . . . xl2+1))
∞ , denoted shortly by q∞N,l1

and q∞N,l2
, for some l1, l2 ∈ {0, . . . , N−

2}, where N is a number of vertices of cycle Cn. Moreover, as there exist j, k,m ⩾ 1 and
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l ∈ {0, . . . , N − 2} such that ujvwk is of the form aqmN,lb, it follows that l = l1 = l2. Fur-

thermore, v is a factor of the same in�nite word (xN(x1 . . . xl)(xN−1 . . . xl+1))
∞. Thus we can

write u = aqα1
N,lb, v = aqβN,lb

′ and u = a′qα2
N,lb

′ for non-negative αi, β and words a, a′, b, b′ that

are su�xes and pre�xes of the word qN,l, respectively, of length at most N − 1. Thus both

ba and b′a′ are either the trivial word 1 or are of the form qN,l. Then u
∗vw∗ is equal to the

set {aql1β1+l2β2+β3

N,l b′ : l1, l2 ⩾ 0}, for some positive integers βi (i = 1, 2, 3), where β1 = α1 if

ba = 1 and β1 = α1 + 1 otherwise, and β2 = α2 if b
′a′ = 1 and β2 = α2 + 1 otherwise. From

Proposition 2.2 in [48] it follows that there exist a positive integer n0 and a �nite set D such

that {l1β1 + l2β2 + β3} = {n0 + kd : k ⩾ 0} ∪D, where d = gcd (β1, β2). We thus get easily

that u∗vw∗ can be written as a �nite sum of regular expressions with at most one star ∗.
Now assume that a family of reduced words described by u∗vw∗ is such that v contains a

non-cycle vertex and supp(u), supp(w) ⊆ V (Cn). We can write v = vszvc for words vs, vc and

a non-cycle vertex z such that supp(vc) ⊆
k⋃

j=1

V (Cj). Suppose that z is not connected by an

edge with a cycle Cn. Consider the �rst occurrence of a vertex x such that x ∈ V (Cn) in the

word vcw. Then the word vw contains a factor of the form zv′x with supp(vc) ⊆
⋃
j ̸=n

V (Cj).

Furthermore, x < z and zv′ ↮ x. Consequently, vw contains a factor which can be reduced

using reduction (iii) from Theorem 1.63. The obtained contradiction shows that for every

family of reduced words of the form u∗vw∗ with supp(u), supp(w) ⊆ V (Cn) and supp(v) ⊈
V (Cn), for a cycle Cn, factor v contains at least one vertex connected by an edge with Cn.

Thus, the result follows.

We are now ready to estimate Gelfand�Kirillov dimension, using Theorem 1.73.

Corollary 6.10. If Θ is an oriented graph with the cycles C1, . . . , Ck such that the corre-

sponding Hecke�Kiselman algebra has �nite Gelfand�Kirillov dimension, then

GKdimAΘ ⩽
k∑

j=1

∑
x∈Aj

kx + 1

 ,

where Aj consists of all vertices of Θ that are connected by an edge with the cycle Cj for

j = 1, . . . , k.

Proof. From Theorem 6.1 we know that the set of normal (reduced) words of AΘ is a �nite

union of regular expressions of the form v0w
∗
i1
v1w

∗
i2
v2 . . . vs−1w

∗
isvs. Moreover, it is enough

to prove that every family of such form can be expressed as a regular expression with s ⩽∑k
j=1

∑
x∈Aj

(kx + 1).

From Observation 6.4 for every n we have supp(wn) ⊆ V (Cj(n)), for some j(n) ∈ {1, . . . , k}
and wn are factors of the word (xN(x1 . . . xi)(xN−1 . . . xi+1))

∞ of full support, where x1 →
x2 → . . .→ xN → x1 is one of the cycles Cj with N = n(j) and i ∈ {0, . . . , N − 2}.

By Lemma 6.9 we can rewrite the considered family of words in such a way that between

any two wi, wj (i, j ∈ {1, . . . , s}) such that supp(wi), supp(wj) ⊆ V (Cn) for some n ∈
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{1, . . . , k} there is a non-cycle vertex z which is connected by an edge with Cn, that is

z ∈ An. By Lemma 6.7, all vertices z with this property occur at most
∑

x∈An
kx times

in total in any reduced word of AΘ. Consequently, in the regular expression of the above

form, for every j = 1, . . . , k, factors of the form w∗ with supp(w) ⊆ V (Cj) occur at most∑
x∈Aj

kx + 1 times. As for every n ∈ {1, . . . , s} we have that supp(wn) ⊆ V (Cn(j)) for

some n(j), it follows that s ⩽
∑k

j=1

(∑
x∈Aj

kx + 1
)
. Therefore, from Theorem 6.1 we get

GKdimAΘ ⩽
∑k

j=1

(∑
x∈Aj

kx + 1
)
, as claimed.

Our next step is to construct a family of reduced words of the algebra AΘ described by

a regular expression with exactly s =
∑k

j=1

(∑
x∈Aj

kx + 1
)
stars and such that for di�erent

substitutions of stars with positive integers we get di�erent elements. As for every word w

we have w∗w = w+, we will write w+ instead of w∗w and we refer to the number of stars in

the regular expression even if + is used.

Let Θ be a graph with cycles C1, . . . , Ck of the length ij ⩾ 3 for j ∈ {1, . . . , k}. Denote
by Θ′ the maximal cycle-reachable subgraph of Θ. We assume that the set of vertices of Θ

is ordered as in De�nition 6.8.

We construct a family of reduced words in HKΘ via an insertion process that is described

below.

Step 1. First we insert subsequent vertices contained in the cycle-reachable subgraph Θ′

of the graph Θ that are not cycle vertices to certain words, starting from the trivial word

1. At every step a chosen generator y is inserted at the beginning of the word and directly

after every vertex of the (previously constructed) word that is connected by an edge with y.

Every vertex y occurs exactly ky times in the constructed word. Note that at this stage the

resulting word is not necessarily reduced. The procedure is described precisely as follows.

As Θ does not contain two di�erent cycles connected by an oriented path, either there is

at least one terminal vertex y with ky = 1 or the graph is a disjoint union of cycles C1, . . . , Ck.

If the latter case holds we set w′ = 1, where 1 is a trivial word and go to Step 2.

Now we consider the case when there are some terminal vertices in Θ′. Note that a vertex

y from Θ′ is terminal exactly if ky = 1. Let y
(1)
1 < . . . < y

(1)
n1 be the set of all vertices in Θ′

such that k
y
(1)
i

= 1 and de�ne

w1 = y
(1)
1 y

(1)
2 · · · y(1)n1

.

Next, take the biggest (with respect to the order de�ned in De�nition 6.8) vertex y(2) ∈
V (Θ′) that is not contained in any cycle of the graph and that has not been used yet in

w1. We can assume that all paths between the cycles and y(2) lead from the cycles into y(2).

Otherwise, all such paths lead from y(2) into the cycles and the reasoning is symmetric. If

for some non-cycle vertex z ∈ V (Θ′) we have y(2) → z, then kz < ky(2) and thus y(2) < z.

By the choice of y(2) it follows that z ∈ {y(1)1 , . . . , y
(1)
n1 }. Moreover, there are exactly ky(2) − 1

(recall that ky(2) is the number of paths starting at z) generators in w1 that are connected

by an edge with y(2). Let w2 be the word that is formed from w1 by inserting the generator
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y(2) in such a way that it is the �rst letter of w2 and y
(2) also directly follows in w2 every y

(1)
j

that is connected by an edge y(2) → y
(1)
j with y(2) in Θ′. Generator y(2) occurs in w2 exactly

ky(2) times. Additionally, every generator z used in the word w2 occurs in this word exactly

kz times.

Similarly, if we have already constructed the word wi for some i > 1, then in the next step

we insert to this word several copies of the largest non-cycle generator y(i+1) ∈ V (Θ′) that is

not in the support of wi yet. In the word wi every generator z occurs kz times. We know that

every z such that y(i+1) < z is already in the support of wi. In particular every generator z

for which kz < ky(i+1) is in wi. As explained above, we can assume that all directed paths

connecting the cycles and y(i+1) start from the cycles. Therefore, if we have y(i+1) → p in the

graph Θ′, then p ∈ supp(wi). De�ne the word wi+1 by inserting y(i+1) to wi at the beginning

and also directly after every generator z ∈ supp(wi) such that y(i+1) → z in Θ′. In such a

word wi+1 the element y(i+1) occurs exactly
∑

y(i+1)→z

kz + 1 times. Let us note that all paths

starting at y(i+1) in the graph Θ are either the path of length 0 or are uniquely determined

by a path starting at z for some z such that y(i+1) → z. Consequently, in the word wi+1 the

element y(i+1) occurs exactly
∑

y(i+1)→z

kz + 1 = ky(i+1) times.

After �nitely many steps as described above we get a word w′ whose support contains

every non-cycle generator z of Θ′ and with the property that every z ∈ supp(w′) occurs in

w′ exactly kz times.

Step 2. Now we insert cycle vertices into the word w′ constructed in Step 1. The idea

relies on a slight modi�cation of the previous step. Namely, we insert regular expressions of

the form w0w
∗w1 with supp(w0), supp(w1), supp(w) ⊆ V (Cj) (w0 and w1 vary depending on

the insertion place), for a cycle Cj, at the beginning of the constructed regular expression

and directly after every vertex connected by an edge with Cj. The procedure is repeated for

every cycle, starting from the cycle with the biggest vertices in the sense of ordering from

De�nition 6.8. It can be precisely described as follows.

For every cycle Ci (i = 1, . . . , k) with vertices x1,i, . . . , xn,i for some n ⩾ 3 denote by ci
the reduced word of the form x1,i · · ·xn,i.

We can write w′ = v1 · · · vm+1, where every vi is the word of minimal possible length that

ends with an element zi connected by an edge with the cycle Ck (possibly with vm+1 = 1)

for i = 1, . . . ,m. Note that we have m =
∑

x∈Ak
kx if Ak is non-empty and m = 0 otherwise.

For every vertex zi connected by an edge with the cycle Ck of length n, we may choose

j(i) ∈ {1, . . . , n} such that either zi → xj(i),k or xj(i),k → zi. Then we de�ne the regular

expression (that is certain family of words) rk as follows:

c+k (x1,k . . . xj(1)−1,k)v1(xj(1),k · · ·xn,k)c+k (x1,k . . . xj(2)−1,k) · · ·
· · · c+k (x1,k . . . xj(m)−1,k)vm(xj(m),k · · ·xn,k)c+k vm+1.

In this expression Kleene star ∗ occurs exactly mk =
∑

x∈Ak
kx + 1 times, where Ak consists

of all vertices x that are connected by an edge with the cycle Ck in Θ′. If Ak is empty, that
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is there are no vertices connected by an edge with the cycle Ck and w′ = v1 we de�ne the

regular expression r1 as c
+
k v1. Then we also assume that

∑
x∈Ak

kx = 0 and thus Kleene star

∗ occurs exactly 1 =
∑

x∈Ak
kx + 1 times.

Next we repeat this procedure for every cycle of the graph Θ. More precisely, at every

step we rewrite the constructed regular expression rj as v1 · · · vm+1, where v1, . . . , vm are

regular expressions of minimal possible length that end with an element zi connected by an

edge with the cycle Cj−1 (perhaps with vm+1 = 1). If there are no vertices connected by an

edge with Cj−1, we set rj = v1, that is m = 0. Note that we have m =
∑

x∈Aj−1
kx, where

for empty Aj−1 we put
∑

x∈Aj−1
kx = 0. For every vertex zi connected by an edge with the

cycle Cj−1 of length n, we may choose j(i) ∈ {1, . . . , n} such that either zi → xj(i),j−1 or

xj(i),j−1 → zi. Then de�ne the regular expression rj−1 as:

c+j−1(x1,j−1 . . . xj(1)−1,j−1)v1(xj(1),j−1 · · · xn,j−1)c
+
j−1(x1,j−1 . . . xj(2)−1,j−1) · · · (6.2.1)

· · · c+j−1(x1,j−1 . . . xj(m)−1,j−1)vm(xj(m),j−1 · · ·xn,j)c+j−1vm+1.

As before, if Aj−1 is empty, we set rj−1 = c+j−1rj. Then expression rj−1 contains exactly

mj−1 = mj +
∑

x∈Aj−1
kx + 1 Kleene stars.

This way we construct a regular expression r1 that contains exactlym1 = m2+
∑

x∈A1
kx+

1 =
∑k

j=1

(∑
x∈Aj

kx + 1
)
stars. We will show that r1, treated as a family of words, consists

of reduced words of HKΘ. This will be crucial to get the lower bound for the Gelfand�Kirillov

dimension of the algebra AΘ.

Lemma 6.11. Words (6.2.1) are reduced in AΘ with respect to the system introduced in

Theorem 1.63. Consequently, GKdimAΘ ⩾
∑k

j=1

(∑
x∈Aj

kx + 1
)
.

Proof. We claim that no leading term of reductions of the form (i)�(iii) listed in Theorem 1.63

appears as a factor of a word w from the family described by the regular expression r1.

We start with reductions of type (i) and (ii). First consider any factor of w of the form

tvt for some generator t and any word v such that t /∈ supp(v). We need to show that then

there are vertices x, y ∈ supp(v) such that x→ v and v → y.

Assume �rst that t is a cycle vertex, let t ∈ V (Cj) for a cycle Cj with vertices x1,j, . . . , xn,j
and some j ∈ {1, . . . , k}. Consider the image of elements of the family described by a regular

expression (6.2.1) under the natural projection φj : HKΘ → HKCj
onto the Hecke�Kiselman

monoid associated to the cycle Cj, such that φj(x) = 1 for all x /∈ V (Cj).

By the construction, every such image is a factor of (x1,j · · ·xn,j)∞. Thus if t is a cycle

vertex xi, then xi−1, xi+1 ∈ supp(v), where for i = 1 and i = n we set i−1 = n and i+1 = 1,

respectively. In particular it is then impossible to have t ↛ v or t ↚ v. Therefore, we may

consider any t that is not in the cycle and we claim that in every factor tvt the set supp(v)

contains elements p and q connected by an edge with t such that t→ p and q → t.

Note that every sink or source vertex x either is not contained in the maximal cycle-

reachable subgraph Θ′ of the graph or kx = 1. Consequently, it occurs at most once in every
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word described by the considered regular expression. Thus we know that t is neither a sink

nor a source vertex.

Now assume that t is non-cycle and not terminal vertex from Θ′. Assume �rst that all

oriented paths connecting t with the cycles lead from the cycles to t. For any z → t contained

in the graph Θ′ we have z < t. From the construction of the family of words it follows that

such z is inserted into the word between any two occurrences of t, that is z ∈ supp(v) and

the leading term from the reduction (i) in Theorem 1.63 is impossible. The other way round,

the generator t is inserted into the regular expression at the beginning and directly after

any vertex y such that t → y (y are inserted before t). In particular, all such generators y

occur between any two t's. It follows directly that no leading term of a reduction of type (ii)

appears as a factor of w. The case when all oriented paths lead from t to the cycles can be

handled in much the same way.

Now we consider reductions of type (iii). We claim that w does not contain any factor

t1vt2 such that t1 > t2 and t2 ↮ t1v. If t1 is contained in any of the cycles, then t1 > t2
implies that also t2 is a cycle vertex.

Let a word w be described by a regular expression (6.2.1). By the construction, for every

factor of w of the form pxi,j, where xi,j is a cycle vertex and p is a word such that p ↮ xi,j,

the word p consists of cycle vertices xl,m such that m < j. In particular we have g < xi,j for

every g ∈ supp(p). Thus there is no factor of the above form with t2 being a cycle element.

In consequence, we can assume that both t1 and t2 are non-cycle vertices.

We claim that no word wi from the �rst part of the construction of regular expression r1
has a factor of type (iii) from Theorem 1.63. To do so, we proceed by induction on i. First

observe that the assertion holds for i = 1, as generators in w1 are in the increasing order.

Hence, assume that the claim holds for some wi and denote by y(i+1) the vertex inserted in

the next step, that is supp(wi+1) \ supp(wi) = {y(i+1)}. Then every factor t1vt2 such that

t1 > t2 and t2 ↮ t1v in wi+1 would have t2 = y(i+1) because by the inductive hypothesis wi

does not have such factors and all elements of supp(wi) are bigger than y
(i+1). On the other

hand, in wi+1 the element directly before y(i+1) is connected by an edge with y(i+1). Thus in

wi+1 every factor of the form t1vy
(i+1) with t1 > y(i+1) is such that the last generator of t1v

is connected by an edge with y(i+1). The inductive assertion holds.

Consequently, we know that the word w′, built in the �rst step of the construction, does

not contain factors of type (iii). The regular expression r1 is obtained from w′ by inserting

only cycle generators. Every factor t2vt1 with t2 > t1 and t2 ↮ t1w would therefore start or

end with a cycle vertex, that is either t1 or t2 is a cycle vertex. This is not possible as we

explained earlier. We have proved that any w described by the regular expression r1 does

not contain factors of the form (iii) in the Theorem 1.63, as claimed. The �rst part of lemma

follows.

As every word described by the regular expression r1 is reduced, two di�erent words are

equal in the algebra AΘ if and only if they are equal as elements of free monoid generated by

the vertices of Θ. Moreover, every word w in the set denoted by r1 is uniquely determined by
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m positive integers (n1, . . . , nm), wherem =
∑k

j=1

(∑
x∈Aj

kx + 1
)
and n1, . . . , nm are powers

of consecutive words c contained in cycles corresponding to + in (6.2.1). From Observation 6.3

it follows that the number of elements of length at most n in r1 is Ω(n
m). Consequently, we

get that GKdimAΘ ⩾
∑k

j=1

(∑
x∈Aj

kx + 1
)
.

Corollary 6.10 and Lemma 6.11 are summarized in the following theorem that describes

the Gelfand�Kirillov dimension of the Hecke�Kiselman algebra associated to any oriented

graph without two di�erent cycles connected by an oriented path.

Theorem 6.12. Let Θ be an oriented graph with the cycles C1, . . . , Ck for some k ⩾ 1 without

two di�erent cycles connected by an oriented path. In particular, for any non-cyclic vertex x

connected by an oriented path with a cycle either all paths between x and cycles are directed

from x into the cycles or all begin at the cycles. Denote by Aj the set of vertices of the graph

that are connected by an edge with the cycle Cj for j = 1, . . . , k. For any x ∈ Aj let kx be

the number of oriented paths of length ⩾ 0 in Θ that start with x if all paths between Cj and

x start with the cycle vertices and oriented paths that end with x otherwise. Then

GKdimAΘ =
k∑

j=1

∑
x∈Aj

kx + 1

 ,

where
∑

x∈Aj
kx+1 is equal to 1 if Aj is an empty set. Lastly, if the graph Θ does not contain

any cycle, then GKdimAΘ = 0.

6.3 An example

Let us illustrate concepts from Theorem 6.12 and its proof for the oriented graph Θ presented

in the picture.

y2 y3 y6

y1 y5

x3,1 y4 x3,2

x1,1 x2,1 x1,2 x2,2

Figure 6.2: A graph Θ with the maximal cycle-reachable subgraph marked by solid edges

The maximal cycle-reachable subgraph Θ′ is the full subgraph of Θ with all vertices
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except y6. The edges of Θ
′ are denoted by solid arrows, whereas the complement is denoted

by dashed ones.

For the non-cycle vertices inΘ′ named as in the picture we have: ky2 = ky3 = ky4 = ky5 = 1

and ky1 = 3. Denote the cycle with vertices xi,1, i = 1, 2, 3 by C1 and let C2 be the cycle

x1,2 → x2,2 → x3,2 → x1,2. Then the sets A1 and A2 consisting of the vertices connected by

an edge with the cycles are A1 = {y1, y4} and A2 = {y4, y5}. We get that
∑

x∈A1
kx + 1 = 5

and
∑

x∈A2
kx + 1 = 3.

From Theorem 6.12 we obtain the following corollary.

Corollary 6.13. The Gelfand�Kirillov dimension of the Hecke�Kiselman algebra AΘ asso-

ciated to the graph Θ in Figure 6.2 is 8.

Following Lemma 6.11 let us construct a family of reduced words in AΘ described by a

regular expression with exactly 8 Kleene stars.

In the set of vertices of Θ we introduce the following order.

� Cycle vertices are such that x1,1 < x2,1 < x3,1 < x1,2 < x2,2 < x3,2.

� For non-cyclic vertices we may choose any order such that y1 is the smallest one. Assume

that y1 < y2 < y3 < y4 < y5 < y6.

� All cycle vertices are smaller than non-cyclic ones, that is x3,2 < y1.

Then the word w′ without cycle vertices built in the �rst part of the construction is of the

form y1y2y1y3y1y4y5. Note that each element yj of the support of this word occurs in it exactly

myj times. Next denote by ci the word x1,ix2,ix3,i for i = 1, 2. We have that every vertex of c1
is smaller than any vertex of c2. The regular expression r2 is c

+
2 y1y2y1y3y1y4c

+
2 x1,2x2,2y5x3,2c

+
2 .

Finally, the regular expression r1 with exactly 8 stars and consisting of reduced words has

the following form:

(c+1 x1,1x2,1)(c
+
2 )y1(x3,1c

+
1 x1,1x2,1)y2y1(x3,1c

+
1 x1,1x2,1)y3y1(x3,1c

+
1 x1,1)y4(x2,1x3,1c

+
1 )(c

+
2 x1,2x2,2)y5(x3,2c

+
2 ).

The consecutive factors of w′ constructed in the �rst step are underlined for clarity.
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Chapter 7

Semigroup identities of Hecke�Kiselman

monoids

In the present chapter we focus on semigroup identities in Hecke�Kiselman monoids. First

we characterize �nite graphs Θ such that the monoid HKΘ satis�es a non-trivial identity.

The second aim is to discover certain concrete identities satis�ed by such monoids. Bases

of identities holding in the monoids associated to certain class of acyclic graphs have been

described in [3]. In particular, a concrete identity of the Hecke�Kiselman monoid associated

to any �nite oriented graph which is acyclic can be derived. Namely, in this case the Hecke�

Kiselman monoid is a homomorphic image of the Kiselman's semigroup Kn, for some n ⩾ 2.

Therefore, for example, if the acyclic graph Θ has n vertices, then the identity (xy)nx = (xy)n

is satis�ed in HKΘ. Recall from Theorem 1.69 that the Hecke�Kiselman monoid associated

to an oriented graph is �nite if and only if the graph is acyclic. Thus we focus on the case

of monoids associated to oriented graphs containing a cycle, i.e. in�nite Hecke�Kiselman

monoids.

Let us recall several results useful in the context of semigroup identities of Hecke�Kiselman

monoids. Theorem 1.72 in particular characterizes oriented graphs Θ such that the monoid

HKΘ contains a free submonoid of rank 2. It follows from this theorem that if the the graph

Θ contains two di�erent cycles connected by an oriented path, then HKΘ does not satisfy

any semigroup identity. We will show that if the graph does not contain such subgraph, then

a semigroup identity holds in the corresponding Hecke�Kiselman monoid.

Our result can be put in a broader perspective. Namely, we will show that the answer

to Problem 1.52 is positive in the case of Hecke�Kiselman monoids associated to oriented

graphs.

One of important classes of semigroups are subsemigroups of the multiplicative semigroup

of matrices over a �eld. Theorem 1.53 provides a useful characterization of �nitely generated

semigroups of this type that satisfy semigroup identities. To apply this theorem in the case

of Hecke�Kiselman monoids, Anan'in Theorem 1.24, which gives a su�cient condition for

a PI-algebra to embed into the matrix ring over a �eld, turns out to be helpful. Finally,

we will use a very transparent characterization of Noetherian Hecke�Kiselman algebras, ob-
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tained in Theorem 4.2.

7.1 Identities in the monoid associated to an oriented cy-

cle

As we will prove in the main theorem, identities in Hecke�Kiselman monoids HKΘ in the

general case can be constructed from those in the monoids associated to oriented cycles and

to graphs with exactly one vertex and no edges, that are subgraphs of the given graph Θ.

In the latter case the possible identity is clear from the de�nition. Therefore we start with

the identities in the monoid associated to an oriented cycle. Let us denote by Cn the Hecke�

Kiselman monoid associated to a cycle of length n ⩾ 3. Exploring the ideal chain in Cn

described in Theorem 2.44 and using Lemma 3.5 from [16] we construct explicitly a semi-

group identity in this monoid.

First, let us recall from Theorem 2.44 that in Cn there exists a chain of ideals ∅ = In−2 ⊆
In−3 ⊆ · · · ⊆ I−1 ⊆ Cn and semigroups of matrix type Mi ⊆ Ii−1/Ii for i = 0, . . . , n − 2,

such that the sets (Ii−1/Ii) \Mi and Cn/I−1 are �nite. We denote by M̃i the set Mi \ {θ},
treated as a subset of Cn. Then for all i ∈ {0, . . . , n − 2} we have |(Ii−1/Ii) \ Mi| ⩽ N ,

where N = |Cn \
⋃n−2

i=0 M̃i| + 1 is the constant from the proof of Proposition 2.15. From

Lemma 3.5 (1) in [16] it follows that for every word s of full support (that is, all generators of

Cn occur in s) positive powers s, s2, . . . are pairwise di�erent. Therefore, for any s ∈ Ii−1/Ii
of full support there exists k ⩽ N such that sk ∈ M̃i ∪ Ii and similarly for any s ∈ Cn/I−1

of full support there exists k ⩽ N such that sk ∈ I−1. It follows from Corollary 2.46 in the

�rst case that sN is also either in M̃i or in Ii and in the latter case sN ∈ I−1. Note that N

depends only on n, but is independent of s ∈ Cn of full support and i ∈ {0, . . . , n − 2}. In

what follows we assume without loss of generality that N ⩾ n− 1.

Theorem 7.1. Let us de�ne the following family of words in the free semigroup {s, t}∗ of

rank 2.

f
(1)
1 (s, t) = sN tNs2N , f

(1)
2 (s, t) = s2N tNsN

f
(i)
1 (s, t) = f

(1)
1

(
f
(i−1)
1 (s, t), f

(i−1)
2 (s, t)

)
, f

(i)
2 (s, t) = f

(1)
2

(
f
(i−1)
1 (s, t), f

(i−1)
2 (s, t)

)
for i ⩾ 2.

Then the Hecke�Kiselman monoid Cn satis�es the identity

f
(n−1)
1 ((st)N , (ts)N) = f

(n−1)
2 ((st)N , (ts)N)

for any n ⩾ 3.

Proof. The construction of an identity relies on the proof of Proposition 1.54. Namely, it

can be obtained from this proof that if an identity u(s, t) = v(s, t) is satis�ed in the quotient

S/J for an ideal J of S, and f(s, t) = g(s, t) holds in J , where f and g have the same length,

then f(u(s, t), v(s, t)) = g(u(s, t), v(s, t)) is an identity in the semigroup S.

106



Let L◁Cn consist of all words of full support. Then in the monoid Cn there exists a chain

of ideals

∅ = (In−2 ∩ L) ⊆ (In−3 ∩ L) ⊆ · · · ⊆ (I−1 ∩ L) ⊆ Cn.

Therefore, it is su�cient to construct identities in the quotients (Ii−1 ∩ L)/(Ii ∩ L) for

i = 0, . . . , n − 2, where in the case i = n − 2 we set (In−3 ∩ L)/(In−2 ∩ L) = (In−3 ∩ L),
and in Cn/(L ∩ I−1). We will show that in every quotient (Ii−1 ∩ L)/(Ii ∩ L) the identity

f
(1)
1 (s, t) = f

(1)
2 (s, t) is satis�ed. For brevity, let us denote Ii ∩ L = Li for i = −1, . . . , n− 2.

As explained in the beginning of this section, there exists N such that for every w ∈ Ln−3

we have wN ∈ M̃n−2 ∪ In−2 = M̃n−2, where Mn−2 = M̃n−2 ∪ {θ} is the semigroup of ma-

trix type M0(Qn−2, An−2, Bn−2;Pn−2) associated to the in�nite cyclic semigroup Qn−2, see

Theorem 2.44. In particular for any s, t ∈ Mn−2 the word sts is either 0 or both s and

sts are contained in a maximal subgroup, isomorphic to Z, of the completely 0-simple clo-

sure of Mn−2, see Section 1.3. Therefore ssts = stss is satis�ed in the semigroup Mn−2.

Consequently, s2N tNsN = sN tNs2N is an identity in Ln−3.

Similarly, let us construct an identity in the quotient Li/Li+1 for i ∈ {−1, . . . , n− 4}. As
already explained, for every w ∈ Li we have w

N ∈ M̃i+1∪Ii+1. Therefore for any s, t ∈ Li/Li+1

either at least one of sN , tN is in Ii+1 and then both s2N tNsN and sN tNs2N lie in Ii+1 and

thus are zero in Li/Li+1 or s
N , tN ∈Mi+1, where Mi+1 is the semigroup of matrix type over

an in�nite cyclic semigroup. Then, as in the previous case, we have s2N tNsN = sN tNs2N .

Therefore s2N tNsN = sN tNs2N is an identity in Li/Li+1.

Consequently f
(n−2−i)
1 (s, t) = f

(n−2−i)
2 (s, t) is an identity in Li for i = −1, . . . , n− 3.

Lastly, let us construct an identity in the quotient Cn/L−1. For any s, t ∈ Cn/L−1 if

st, or equivalently ts, is of full support, then (st)N and (ts)N are both in L ∩ I−1 = L−1.

Otherwise, from Lemma 3.5 (2), in [16], it follows that (st)N = (ts)N is the zero element

of the �nite Hecke�Kiselman monoid HKΘ associated to the acyclic full subgraph Θ of the

oriented cycle of length n, whose vertices are exactly the generators occurring in the word st

(or equivalently ts). Therefore (st)N = (ts)N is the identity in Cn/L−1.

The assertion of the theorem now follows from the fact that f
(n−1)
1 (s, t) = f

(n−1)
2 (s, t) is

the identity in L−1 and (st)N = (ts)N in Cn/L−1.

Note that, as we will show in Section 8.4 in the case of the cycle of length 3, the identity

from Theorem 7.1 is not necessarily of the smallest possible degree. For example, it is

sometimes possible to construct an identity as in the proof of the theorem, with the constant

N smaller than this calculated from the estimate in the proof of Proposition 2.15.

7.2 General case

As before, by Θ we understand a �nite oriented graph. For any such a graph Θ let us denote

by V (Θ) the set of its vertices and by E(Θ) the set of its edges. We identify elements of the

monoid HKΘ with the set of reduced words from the free monoid generated by V (Θ), using
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the Gröbner basis from Theorem 1.63.

Remark 1.64, describing a convenient reduction of the words of the form xwx in HKΘ, for

x ∈ V (Θ) and any word w such that x is terminal (there are no arrows x −→ z or z −→ x

in the graph Θ) will be used in the proof of Theorem 7.2.

Consider the homomorphism φ : HKΘ −→ HKΘ given by φ(y) = y for all y ∈ V (Θ) such

that y ̸= x and φ(x) = 1, where x is a �xed vertex such that there are no arrows of the form

z −→ x ( x −→ z, respectively). For any word w in the free monoid generated by the set V (Θ)

denote by w the image of w under such a homomorphism. Then for any w ∈ HKΘ and a

word v ∈ HKΘ that contains the generator x in the support we get from Remark 1.64 that

vw = vw (wv = wv, respectively) in HKΘ.

We are now in a position to prove the main theorem, which provides an a�rmative

solution of the Problem 1.52 in the case of Hecke�Kiselman algebras.

Theorem 7.2. For a �nite oriented graph Θ the following conditions are equivalent.

(1) Θ does not contain two di�erent cycles connected by an oriented path of length ⩾ 0,

(2) the Hecke�Kiselman monoid HKΘ satis�es a semigroup identity.

Proof. As mentioned in the introduction, implication (2) =⇒ (1) follows directly from Theo-

rem 1.72 and the fact that the free submonoid of rank 2 does not satisfy a semigroup identity.

To prove that if condition (1) holds then the monoid HKΘ satis�es a semigroup identity we

proceed by induction on the number of edges in the graph Θ that are not contained in any

cyclic subgraph of Θ (that is, a subgraph which is an oriented cycle). Let us denote this

number by nΘ.

If nΘ = 0, then from the hypothesis (1) it follows that the graph Θ is a disjoint union

of oriented cycles and graphs with exactly one vertex and no edges. It follows then from

Theorem 4.2 and Theorem 1.72 that K[HKΘ] is a �nitely generated right Noetherian PI-

algebra. Consequently, it embeds into a matrix ring over a �eld, see Theorem 1.24. As HKΘ

is a �nitely generated monoid, we can assume that HKΘ ⊆Mn(L) for some �nitely generated

�eld L. From the Theorem 1.72 and Theorem 1.53 it follows that in this case the monoid

HKΘ satis�es a semigroup identity. Moreover, such an identity can be explicitly constructed

from the identities satis�ed in monoids associated to cyclic subgraphs of the graph Θ and

identities of the monoids associated to subgraphs of Θ with exactly vertex and no edges. The

identities in the �rst case were obtained in Theorem 7.1, whereas monoids of the latter type

satisfy the identity st = ts.

Assume now that nΘ > 0. From the description of the graph Θ and the assumption

nΘ > 0 it follows that there exists a vertex x that is either a source vertex or a sink vertex.

In other words, x is such a vertex that either there is an arrow x −→ y for some y ∈ V (Θ) but

there are no arrows of the form z −→ x (x is a source vertex) or there is an arrow y −→ x for

some y ∈ V (Θ) but there are no arrows of the form x −→ z (x is a sink vertex).
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Let x be a source vertex. Consider the subgraph Θ0 ⊆ Θ such that V (Θ0) = V (Θ) \ {x}
and E(Θ0) consists of all edges from E(Θ) that are of the form y −→ z where y ̸= x, that is Θ0

is the graph Θ with vertex x and all edges of the form x −→ y for some y ∈ V (Θ) removed. By

the induction hypothesis we know that HKΘ0 admits a semigroup identity α(s, t) = β(s, t)

for some di�erent words α, β from the free monoid generated by s and t. From Remark 1.64

it follows that in the reduced form of elements of HKΘ the generator x occurs at most once.

In other words, every reduced element is of the form either w ∈ HKΘ0 or wxv, where w, v

are elements of HKΘ0 . It is clear that if s, t ∈ HKΘ0 , then also α(s, t), β(s, t) ∈ HKΘ0 and by

the de�nition the identity α(s, t) = β(s, t) holds in HKΘ in this case.

Assume now that s, t ∈ HKΘ are such that either s or t contains x. As without loss of

generality we can assume that α and β both contain s and t, this is equivalent to the condition

that the reduced form of α(s, t) is wxv, where w, v ∈ HKΘ0 and to the condition that the

reduced form of β(s, t) is pxq, where p, q ∈ HKΘ0 . For a word w ∈ HKΘ let us denote

by w the image of w under the homomorphism φ described in the comments before the

formulation of Theorem 7.2. From those comments we get that α(s, t)β(s, t) = α(s, t)β(s, t)

and α(s, t)α(s, t) = α(s, t)α(s, t). Moreover, it is clear that α(s, t) = α(s, t) = β(s, t) =

β(s, t), as s, t can be treated as elements of HKΘ0 . Therefore α(s, t)β(s, t) = α(s, t)β(s, t) =

α(s, t)α(s, t) = α(s, t)α(s, t), that is the following identity is satis�ed

α(s, t)β(s, t) = α(s, t)α(s, t). (7.2.1)

Symmetric arguments applied to the case when x is a sink vertex show that the following

identity holds

β(s, t)α(s, t) = α(s, t)α(s, t). (7.2.2)

It follows easily that the identity

α(s, t)β(s, t)α(s, t) = α(s, t)α(s, t)α(s, t)

holds for any s, t ∈ HKΘ. This proves the inductive assertion.

Note that the proof allows us to construct inductively an identity in HKΘ, for any graph

Θ as in the theorem, from identities satis�ed in the Hecke�Kiselman monoid associated to

an oriented cycle.
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Chapter 8

Working example: Hecke�Kiselman

algebras K[C3] and K[C4]

Now we illustrate the results of the previous chapters for Hecke�Kiselman monoids and

algebras associated to cycles with small number of vertices, that is for the cycle of length 3

and of length 4. Moreover, we describe a subalgebra Z of the Hecke�Kiselman algebra K[C3]

of the center of K[C3] such that K[C3] is a �nitely generated module over Z.

8.1 Structure of the monoid C3

Let us start with the description of the structure of the monoid C3. For simplicity, write

x1 = a, x2 = b, x3 = c. Recall that

C3 = ⟨a, b, c : a2 = a, b2 = b, c2 = c, ab = aba = bab, bc = bcb = cbc, ca = cac = aca⟩.

From Theorem 1.65 in the case of K[C3] it follows that the set {aa−a, bb− b, cc− c, cac−
ca, aca− ca, bcb− bc, cbc− bc, aba− ab, bab− ab} forms a Gröbner basis of the algebra K[C3]

with respect to the deg-lex order induced by a < b < c. Let us list the set of reductions in

the following way

(1) (aa, a), (bb, b), (cc, c);

(2) (cac, ca), (cbc, bc), (bab, ab);

(3) (bcb, bc), (aba, ab), (aca, ca).

For w, v ∈ ⟨a, b, c⟩ write w −→ v in case v can by obtained from w by unspeci�ed reductions.

Reduction of a word w of type (η), where (η ∈ {1, 2, 3})) means that w can be rewritten as

v, where w = uwσz, v = uvσz for some u, z ∈ {a, b, c}∗ and an element (wσ, vσ) of the set S

of reductions of type (η). In this case we also write that w = v in K[C3], if unambiguous.

As a natural consequence we obtain the following observation.
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Lemma 8.1. The reduced form of every element of C3 is a factor of one of the following

in�nite words: (cab)∞, (cba)∞.

From Theorem 2.44, applied for n = 3, we get that the monoid C3 has an ideal chain

I0 ⊆ I−1,

such that I0 = {w ∈ C3 : C3wC3 ∩ ⟨cba⟩ = ∅} and I−1 = I0 ∪ M̃0, where M̃0 consists of all

factors of (cba)∞, that have cba as a subfactor. Moreover, we denote by M̃1 a set consisting

of all factors of (cab)∞ that have a subfactor cab.

Lemma 8.2. Let T be the cyclic semigroup generated by t = cab. Then M1 = (C3cabC3)
0

is a semigroup of matrix typeM0(T,A1, B1;P1), where A1 = {1, b, ab}, B1 = {1, c, ca}, with
sandwich matrix (with coe�cients in T 1)

P1 =

1 1 1

1 1 t

1 t t

 .

Similarly, for I−1 we have

Lemma 8.3. Let S be the cyclic semigroup generated by s = cba. Then the semigroup

M0 = I−1/I0 is a semigroup of matrix typeM0(S,A0, B0;P0), A0 = {1, a, ba}, B0 = {1, c, cb},
with sandwich matrix (with coe�cients in S1 ∪ {θ})

P0 =

1 1 θ

1 θ s

θ s s

 .

Recall that the rows of Pi are indexed by the set Bi, and columns by the set Ai. For

simplicity, we identify the elements of these sets with 1, 2, 3, in the order in which these

elements were listed. For example, the (3, 3)-entry of the sandwich matrix P0 corresponds to

the pair (cb, ba).

The above two lemmas follow directly from Theorem 2.44. To indicate computations

that are used to determine the coe�cients of the sandwich matrices, let us focus on P0. For

simplicity, if α ∈ A0, β ∈ B0, then we write

pβα =

{
(cba)βα(cba) if βα ∈ ⟨s⟩
θ if βα ∈ I0,

that is if pβα = sk, then pβα = sk−2 and if pβα = θ, then also pβα = θ. Then, for example

p(cb)(ba) = (cba)cbba(cba)
(1)−→ (cba)cba(cba)

(2)−→ (cba)3. So, p(cb)(ba) = s.

Recall from Chapter 2 that M̃i are subsets of C3, whereas Mi = M̃i ∪ {θ} with θ being

the zero element, are subsemigroups in the quotients, Mi ⊆ Ii−1/Ii.
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We derive the following consequence for the algebras K0[M0] and K0[M1].

Corollary 8.4. Algebras K0[M0] and K0[M1] are of matrix type. Namely, we have K0[M1] =

M(K[T ], A1, B1;P1) and K0[M0] =M(K[S], A0, B0;P0), where T and S are the cyclic semi-

groups generated by t = cab and s = cba, respectively.

It is easy to see that detP1 = −(t− 1)2 ̸= 0 and detP0 = −s(s+ 1) ̸= 0, whence P1 and

P0 are not zero divisors in M3(K[T ]) and M3(K[S]). From standard results about algebras

of matrix type, see also Section 1.3, we obtain the following.

Corollary 8.5. Semigroup algebras K0[M0] and K0[M1] are prime.

8.2 Structure of the monoid C4

For simplicity, we write x1 = a, x2 = b, x3 = c, x4 = d. Recall that C4 has the following

presentation

C4 = ⟨a, b, c, d : a2 = a, b2 = b, c2 = c, d2 = d, ab = aba = bab, bc = bcb = cbc,

cd = cdc = dcd, da = dad = ada, ac = ca, bd = db⟩.

The form of the sets A0, B0, A1, B1, A2, B2 follows directly from Theorem 2.1.

Lemma 8.6. If an element of C4 has a factor of the form w0 = dcba, w1 = dacb or w2 = dabc

then it is of the form αiw
k
i βi, with k ⩾ 1, αi ∈ Ai, βi ∈ Bi, where

1. A0 = {1, a, ba, cba}, B0 = {1, d, dc, dcb};

2. A1 = {1, b, cb, acb, ab, bacb}, B1 = {1, d, da, dac, dc, dacd};

3. A2 = {1, c, bc, abc}, B2 = {1, d, da, dab}.

From Theorem 2.44 we know that C4 has a chain of ideals

∅ = I2 ⊆ I1 ⊆ I0 ⊆ I−1,

with semigroups of matrix type M0, M1 and M2, such that

1. M2 = (C4dabcC4)
0 ⊆ I1/I2 and the set (I1/I2) \M2 is �nite,

2. M1 = {α(dacb)kβ : α ∈ A1, β ∈ B1, k ⩾ 1} ∪ {θ} ⊆ I0/I1 and the set (I0/I1) \M1 is

�nite,

3. M0 = {α(dcba)kβ : α ∈ A0, β ∈ B0, k ⩾ 1} ∪ {θ} = I−1/I0,

4. C4 \ I−1 is �nite, where I−1 = I0 ∪ C4dcbaC4.

We present these structures of matrix type below. A simple veri�cation is left to the reader.
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Lemma 8.7. Let Q2 be the cyclic semigroup generated by s = dabc. Then the ideal generated

by s in C4, with a zero adjoined, that is M2 = (C4dacbC4)
0, is a semigroup of matrix type

M0(Q2, A2, B2;P2), where A2 = {1, c, bc, abc}, B2 = {1, d, da, dab}, with sandwich matrix

(with coe�cients in Q1
2)

P2 =


1 1 1 1

1 1 1 s

1 1 s s

1 s s s

 .

Lemma 8.8. Let Q1 be the cyclic semigroup generated by s = dacb. Then M1 is a semigroup

of matrix typeM0(Q1, A1, B1;P1) where A1 = {1, b, cb, acb, ab, bacb}, B1 = {1, d, dc, dac, da, dacd},
with sandwich matrix (with coe�cients in Q1

1 ∪ {θ})

P1 =



1 1 θ θ 1 θ

1 1 θ s θ s

θ θ θ s s s

θ s s s s θ

1 θ s s θ θ

θ s s θ θ s2


.

Lemma 8.9. Let S be the cyclic semigroup generated by s = dcba. Then M0 is a semigroup

of matrix typeM0(Q0, A0, B0;P0), where s = dcba, A0 = {1, a, ba, cba}, B0 = {1, d, dc, dcb},
with sandwich matrix

P0 =


1 1 θ θ

1 θ θ s

θ θ s s

θ s s θ

 .

We get the following consequence.

Corollary 8.10. Algebras K0[M2], K0[M1] and K0[M0] are algebras of matrix type. Namely,

K0[M2] =M(K[Q2], A2, B2;P2), K0[M1] =M(K[Q1], A1, B1;P1) andK0[M0] =M(K[Q0], A0, B0;P0),

where Q2, Q1, Q0 are the cyclic semigroups generated by s2 = dabc, s1 = dacb, and by

s0 = dcba, respectively.

A direct computation shows that detP2 = −(s2 − 1)3 ̸= 0. Similarly, one can see that

detP1 = −s31(s1 + 1)3 ̸= 0 and detP0 = −s20(s0 − 1) ̸= 0, so that the matrices Pi are not

zero divisors in the corresponding matrix rings Mni
(K[Qi]), for i ∈ {0, 1, 2}. Therefore, as

in Corollary 8.5, we get

Corollary 8.11. Semigroup algebras K0[M2], K0[M1] and K0[M0] are prime.

Note that we proved in Theorem 2.52 that all algebras K0[Mt] coming from monoids

Cn, n ⩾ 3 are prime. However, the proof for arbitrary n is much more involved, since the

determinants of the corresponding matrices cannot be easily computed.
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8.3 Irreducible representations of K[C3]

Let us illustrate the results of Chapter 5 with the case of the Hecke�Kiselman monoid C3 as-

sociated to the cycle of length 3. We start with the representations induced by the irreducible

representations of the semigroups of matrix type inside the Hecke�Kiselman algebra K[C3]

described in Lemmas 8.2 and 8.3. They are the restrictions of the representations of the com-

pletely 0-simple closures ofMi, isomorphic toM0(gr(t), A1, B1;P1) andM0(gr(s), A0, B0;P0)

for M1 and M0, respectively. Irreducible representations of the latter come from the repre-

sentations of their maximal subgroups. In our case, these maximal subgroups are in�nite

cyclic groups, as described in Section 5.3. Here we use the classical approach presented in

Chapter 5.4 of [9], in particular Theorem 5.37, with certain computations omitted.

For any semigroup S, we denote by S0 the semigroup S with zero element adjoined.

For every �xed λ ∈ K∗ we consider the irreducible representation ψλ of M1 described in

Proposition 5.9. It is induced by the representation of the cyclic group gr(t) given by t 7→ λ. If

λ ̸= 0, 1, we have that P 1 is a matrix of rank 3 and therefore we get a family of representations

ψλ : K0[M1] → M3(K). In this case the epimorphismM(K,A1, B1;P 1) → M3(K) is given

by A 7→ A ◦ P 1. Therefore, the representation ψλ is given for every (tk;x, y) ∈M1 by

(tk;x, y) 7→M(λk;x,y) ◦

1 1 1

1 1 λ

1 λ λ

 ,

where ◦ is the standard matrix multiplication and M(λk;x,y) ∈M3(K) is the matrix with the

only non-zero entry (x, y) equal to λk.

For λ = 1 the matrix P 1 is of rank 1 and therefore we get the one-dimensional repre-

sentation ψ1 : K0[M1] → K, such that ψ1(t
k;x, y) = 1 for all k ⩾ 1, x ∈ A1, y ∈ B1, see

Theorem 5.37 in [9].

Similarly, for every �xed λ ∈ K∗ consider the irreducible representation ψλ of M0 (see

Lemma 8.3) described in Proposition 5.9. It is induced by the representation of gr(t) given

by t 7→ λ. If λ ̸= 0,−1 then we have that P 0 is a matrix of rank 3 and therefore we get a

family of representations ψλ : K0[M0] → M3(K). The representation ψλ is given for every

(sk;x, y) ∈M0 by

(sk;x, y) 7→M(λk;x,y) ◦

1 1 0

1 0 λ

0 λ λ

 ,

where ◦ is the standard matrix multiplication and M(λk;x,y) ∈M3(K) is the matrix with the

only non-zero entry (x, y) equal to λk.

Moreover, for λ = −1 the matrix P 0 = (pyx) has rank 2 and therefore the corresponding

representation ψ−1 : K0[M0]→ M2(K) is two-dimensional. To give a formula for this repre-

sentation we use Theorem 5.37 from [9]. Firstly, we determine rx ∈ K and qy ∈ K for x ∈ A0
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and y ∈ B0 satisfying the condition

qyrx = ψ̃−1(pyx)− ψ̃−1(py1 · p1x)

for x ∈ {1, a, ba} and y ∈ {1, c, cb}, where ψ̃−1 : gr(s)
0 → K is the map such that ψ̃−1(s

k) =

(−1)k for all k ∈ Z and ψ̃−1(0) = 0. Namely, (r1, ra, rba) = (0,−1,−1) and (q1, qc, qcb) =

(0, 1, 1) satisfy this condition. Consequently, we obtain that the representation ψ−1 is given

by

(sk;x, y) 7→

(
ψ̃−1(p1xs

kpy1) ψ̃−1(p1xs
k)qy

rxψ̃−1(s
kpy1) rxψ̃−1(s

k)qy

)
,

for all k ∈ Z, x ∈ {1, a, ba} and y ∈ {1, c, cb}.

Note also that for λ = 0 and any i the induced homomorphismK0[Mi]→M(K,Ai, Bi;Pi)

is the zero map.

From the results in Section 5.1 it follows that {1, a, b, c, ab, bc, ca} is the set of idempotents

in C3 and 1, a, b, c ∈ C3\I−1, ab, bc, ca ∈ I0\I1 (note that I1 = ∅). Thus, we get (Theorem 5.8)

that irreducible representations of K[C3] either come from the representations of K0[M0]

or K0[M1] described above or are one-dimensional representations associated to one of the

idempotents in the monoid C3.

8.4 Semigroup identity

Now we apply the results of Chapter 7 to construct a semigroup identity in C3.

From the description of reduced words in C3 in Lemma 8.1 and the de�nitions of semi-

groups of matrix typeM0 andM1, it follows easily that for every word w ∈ C3 of full support

w2 ∈ M̃0 ∪ M̃1. Thus, in the construction of a semigroup identity in C3 from Theorem 7.1

we can set N = 2. Therefore in C3 the identity u(s, t) = v(s, t) is satis�ed, where

u(s, t) = ((st)4(ts)4(st)8)2((st)8(ts)4(st)4)2((st)4(ts)4(st)8)4

v(s, t) = ((st)4(ts)4(st)8)4((st)8(ts)4(st)4)2((st)4(ts)4(st)8)2.

As we noted in Chapter 7, straightforward application of the proof of Theorem 7.1 leads to

an identity which is not necessarily of the smallest possible order. Indeed, in the case of cycle

of length 3 the constant N from the proof of Theorem 7.1, equal to |C3 \ (M̃0 ∪ M̃1)|, is 18.
On the other hand, for every word w ∈ C3 of full support we have that w2 ∈ M̃0 ∪ M̃1 and

thus N = 2 can be used in our construction.
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8.5 Center of K[C3]

From Theorem 1.22 and Lemma 3.2 it follows that the algebra K[C3] is a �nite module over

its center. Therefore it is a natural problem to characterize the center of this algebra. As it

seems to be di�cult to �nd the whole center of K[C3], our aim is to describe a subalgebra Z

of the center of K[C3] such that K[C3] is a �nitely generated module over Z.

Recall from Section 8.1 that M̃0 consists of all factors of (cba)
∞ that contain cba, whereas

M̃1 is an ideal of C3 generated by cab.

Let us start with the following simple modi�cation of Theorem 2.28 in the case of the

monoid C3, that can be proved by a straightforward computation.

Lemma 8.12. For every word w ∈ C3 we have (cba)w(cba) ∈ {(cba)k : k ⩾ 2} ∪ M̃1.

Consider the subsemigroup of C3 of the form S3 = M̃0 ∪ M̃1. From the above lemma it

follows that S3/M̃1 is isomorphic to I−1/I0 =M0.

In particular we can replace the ideal I0 with M1 in Lemma 8.3, obtaining the following

result.

Lemma 8.13. Let S be the cyclic semigroup generated by s = cba. Then the semigroupM0 =

S3/M̃1 is a semigroup of matrix typeM0(S,A0, B0;P0), A0 = {1, a, ba}, B0 = {1, c, cb}, with
sandwich matrix (with coe�cients in S1 ∪ {θ})

P0 =

1 1 θ

1 θ s

θ s s

 .

Let us consider the completely 0-simple closure of the subsemigroup M1 = (C3cabC3)
0;

it is isomorphic toM0(gr(t), A1, B1;P1), see Section 1.3. Then, by Lemma 1.58 we know that

there is a unique semigroup structure on the disjoint union Ŝ3 = (S3\M̃1)∪M0(gr(t), A1, B1;P1)

that extends the operation from S3. Indeed, M̃1 is an ideal of the semigroup S3 and

M0(gr(t), A1, B1;P1) is a completely 0-simple semigroup of quotients of M1. Then K[Ŝ3] =

K[S3 \ M̃1] + K[M0(gr(t), A1, B1;P1)], with K[Ŝ3]/K[M0(gr(t), A1, B1;P1)] isomorphic to

K0[M0], where by K[S3 \ M̃1] + K[M0(gr(t), A1, B1;P1)] we mean the direct sum of linear

subspaces.

Algebras K0[M0] and K[M0(gr(t), A1, B1;P1)] are of matrix type. Namely, K0[M0] =

M(K[S], A0, B0;P0) and K0[M1] =M(K[t, t−1], A1, B1;P1) where S is the cyclic semigroup

generated by s = cba and K[t, t−1] is the Laurent polynomials ring, where t = cab.

As already noted, matrices P1 and P0 are invertible as matrices inM3(K(t)) andM3(K(s)),

respectively. We have

P−1
1 =

1

t− 1

 t θ −1
θ −1 1

−1 1 θ
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and

P−1
0 =

1

s(s+ 1)

 s2 s −s
s −s s

−s s 1

 .

Moreover, we know thatM(K(t), A1, B1;P1) andM(K(s), A0, B0;P0) are isomorphic to

M3(K(t)) and M3(K(s)), respectively. Isomorphisms M3(K(t))→M(K(t), A1, B1;P1) and

M3(K(s))→M(K(s), A0, B0;P0) are given by x 7−→ x◦P−1
i , where ◦ is the standard matrix

multiplication, see [44, Proposition 4.13].

Therefore

Z(M(K(t), A1, B1;P1)) = K(t)P−1
1 and Z(M(K(s), A0, B0;P0)) = K(s)P−1

0 .

It follows that

K[t]t(t− 1)P−1
1 = K[t]t

 t θ −1
θ −1 1

−1 1 θ

 ⊆ Z(M(K[T ], A1, B1;P1)

and

K[s]s2(s+ 1)P−1
0 = K[s]s

 s2 s −s
s −s s

−s s 1

 ⊆ Z(M(K[S], A0, B0;P0).

Conversely, we know that

Z(M(K[T ], A1, B1;P1)) = Z(M(K(t), A1, B1;P1)) ∩M(K[T ], A1, B1;P1))

and

Z(M(K[S], A0, B0;P0) = Z(M(K(s), A0, B0;P0)) ∩M(K[S], A0, B0;P0)).

It then follows that if

f(t)P−1
1 =


f(t)t
t−1

θ −f(t)
t−1

θ −f(t)
t−1

f(t)
t−1

−f(t)
t−1

f(t)
t−1

θ

 ∈M(K[T ], A1, B1;P1),

then f(t) = t(t− 1)g(t) for some g(t) ∈ K[t], that is

K[t]t(t− 1)P−1
1 = K[t]t

 t θ −1
θ −1 1

−1 1 θ

 = Z(M(K[T ], A1, B1;P1).
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Similarly, we have

K[s]s2(s+ 1)P−1
0 = K[s]s

 s2 s −s
s −s s

−s s 1

 = Z(M(K[S], A0, B0;P0).

Elements of ⟨t⟩(t− 1)P−1
1 correspond to elements of the algebra K[C3] of the form

tk = (cab)k+1 − (cab)kca− b(cab)kc+ b(cab)kca− ab(cab)k + ab(cab)kc,

for k ⩾ 1.

Similarly, ⟨s⟩s(s+ 1)P−1
0 correspond to elements of K[C3] of the form

sk = (cba)k+2 + (cba)k+1c− (cba)k+1cb+ a(cba)k+1 − a(cba)k+1c+ a(cba)k+1cb−
−ba(cba)k+1 + ba(cba)k+1c+ ba(cba)kcb

for k ⩾ 1.

We want to use the structures of matrix type within K[S3] to characterize the center of

K[S3]. To �nd the elements of this center it is more convenient to consider the following

extension of the algebra K[S3] and of the algebra K[Ŝ3] introduced after Lemma 8.13.

Lemma 8.14. R = K[S3 \ M̃1] +M(K(t), A1, B1;P1) (direct sum as a subspaces) has

a natural structure of an algebra, which extends the structure of K[Ŝ3] = K[S3 \ M̃1] +

K[M0(gr(t), A1, B1;P1)].

Proof. We need to de�ne q · p and p · q, where q ∈ K[S3 \ M̃1] and p ∈M(K(t), A1, B1;P1).

By linearity we can assume that q ∈ S3 \ M̃1 and p is of the form ( tk

g(t)
;x, y), where k ⩾ 0,

tk

g(t)
∈ K(t), x ∈ A1, y ∈ B1. Then it is clear that tk

g(t)
can be written in the form tk

g(t)
= tp̃(t)t

for p̃(t) = tk−2

g(t)
∈ K(t) and p = (t;x, 1) · (p̃(t); 1, 1) · (t; 1, y) inM(K(t), A1, B1;P1). Therefore

we can identify K(t) with the H-class H1,1 = {(f(t); 1, 1) : f(t) ∈ K(t)}. It follows that

M(K(t), A1, B1;P1) is the disjoint union⋃
i∈A1,j∈B1

aiH1,1bj ∪ {θ},

where ai ∈ {(t; 1, 1), (t; b, 1), (t; ab, 1)}, bi ∈ {(t; 1, 1), (t; 1, c), (t; 1, ca)}. Let us denote by

t̂ the word cab in the monoid C3. Because M1 is an ideal in S3 and t̂ ∈ M1, we know

that qxt̂, t̂yq ∈ M1 ⊆ M(K(t), A1, B1;P1). Let us de�ne q · p = (qxt̂) · (p̃(t)t; 1, y) and

p · q = (tp̃(t);x, 1) · (t̂yq), where qxt̂ and t̂yq mean products in S3 and · is the product in

the algebra M(K(t), A1, B1;P1). It follows from the arguments very similar to the proof

of Lemma 2.5.1 in [23] (see also Lemma 1.58) that this operation is associative. Moreover,

the construction in the latter lemma shows that the de�nition extends the structure of the
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algebra on K[Ŝ3].

Our aim is to use this lemma to understand how elements of the centers of algebras

of matrix type correspond to the center of K[S3]. We know that M(K(t), A1, B1;P1), iso-

morphic to M3(K(t)), is an ideal of the algebra R = K[S3 \ M̃1] +M(K(t), A1, B1;P1)

(see the proof of Lemma 8.14) and M(K(t), A1, B1;P1) has the unit of the form e =

P−1
1 . Therefore R = (1 − e)R ⊕ eR with (1 − e)R = K[S3 \M1] ⊆ M(K(s), A0, B0;P0),

eR = M(K(t), A1, B1;P1) and K[S3] ↪→ K[Ŝ3] ⊆ R. From the proof of Theorem 3.5 we

know that K[S3] and K[C3] have the same classical (central) ring of quotients, which is

isomorphic to M3(K(s)) × M3(K(t)). Therefore Z(K[S3]) ⊆ Z[K[C3]) ⊆ Z(M3(K(s)) ×
M3(K(t))). Similarly, K[S3] and R have the same classical (central) ring of quotients and

thus also Z(K[S3]) ⊆ Z(R) = Z((1− e)R)⊕ Z(eR). We know that Z((1− e)R)⊕ Z(eR) ∼=
Z(M(K[S], A0, B0;P0)) ⊕ Z(M(K(t), A1, B1;P1)). It follows that the inclusion K[S3] ↪→
M(K(s), A0, B0;P0) +M(K(t), A1, B1;P1) is given by x 7−→ (1 − e)x + ex. As we have

already seen linK{tk : k ⩾ 1} = Z(M(K[T ], A1, B1;P1) = Z(eR) ∩K[S3]. Secondly, Z((1−
e)R)∩K[S3] is given by elements of the form x−ex, where x ∈ Z(M(K(s), A0, B0;P0))∩K[S3]

and ex ∈ K[S3], that is Z((1− e)R) ∩K[S3] = linK{sk − P−1
1 sk : k ⩾ 1} ∩K[S3]. Therefore

we get that

Z = Z(K[S3]) = linK{sk − P−1
1 sk : k ⩾ 1} ∩K[S3] + linK{tk : k ⩾ 1}.

It turns out that for every k ⩾ 1 we have sk − P−1
1 sk ∈ K[S3]. We start with an easy

computational lemma.

Lemma 8.15. (1) If k ⩾ 1 is odd, then

(a) b(cba)k = b(cab)
k−1
2 ca;

(b) ca(cba)k = (cab)
k+1
2 ;

(c) (cba)kb = (cab)
k+1
2 ;

(d) (cba)kca = b(cab)
k−1
2 ca.

(2) If k ⩾ 1 is even, then

(a) b(cba)k = b(cab)
k
2 ;

(b) ca(cba)k = (cab)
k
2 ca;

(c) (cba)kb = b(cab)
k
2 ;

(d) (cba)kca = (cab)
k
2 ca.

Proof. In each case we proceed by induction on k using the relations in K[C3]. For instance,

consider case (a). For k = 1 we have b(cba) −→ bca = b(cab)0ca. Assume now that the

assertion holds for some k ⩾ 1. If k + 1 is even using the inductive step we get b(cba)k+1 =

b(cba)kcba −→ b(cab)
k−1
2 cacba −→ b(cab)

k−1
2 cab = b(cab)

k+1
2 . Similarly, for odd k+1 we calculate

b(cba)k+1 = b(cba)kcba = b(cab)
k
2 cba −→ b(cab)

k
2 ca. This proves the inductive assertion.
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Let us denote uk = (cab)k+1+b(cab)kca+ab(cab)kc and vk = b(cab)kc+(cab)kca+ab(cab)k.

Then in particular tk = uk − vk.

Proposition 8.16. For every k ⩾ 1 we have P−1
1 sk ∈ K[S3]. More precisely, if k = 2n for

some n ⩾ 1 we have P−1
1 s2n = un, and for k = 2n−1, where n ⩾ 1 we get that P−1

1 s2n−1 = vn.

Proof. We start with the calculation of (t− 1)P−1
1 sk ⊆ K[C3]. The element (t− 1)P−1

1 can

be interpreted as t0 = cab − ca − bc + bca − ab + abc ∈ K[C3]. We aim to �nd the reduced

form of t0sk.

1. cab · sk
Using reductions we get that cabba −→ caba −→ cab. It follows that

cab(((cba)k+1c−a(cba)k+1c)+(a(cba)k+1cb−(cba)k+1cb)+(−ba(cba)k+1+a(cba)k+1)) = 0.

Therefore

cab · sk = cab((cba)k+2 + ba(cba)k+1c+ ba(cba)kcb).

2. −ca · sk
Using the fact that cacba −→ caba and caa −→ ca we get that

−ca · sk = −ca(a(cba)k+1 + ba(cba)k+1c+ ba(cba)kcb).

3. −bc · sk
Similarly, we have bca(cba)k+1 = bcba(cba)k+1, bca(cba)k+1c = bcba(cba)k+1c, bc(cba)k+1cb =

bcba(cba)kcb and therefore

−bc · sk = −bc((cba)k+2 + (cba)k+1c+ a(cba)k+1cb).

4. bca · sk
Using the reductions it is easy to check that bca(cba)k+2 = bcaba(cba)k+1, bca(cba)k+1c =

bcaa(cba)k+1c, bca(cba)k+1cb = bcaa(cba)k+1cb and we get that

bca · sk = bca(a(cba)k+1 + ba(cba)k+1c+ ba(cba)kcb).

5. −ab · sk
We have that ab(cba)k+1c = aba(cba)k+1c, ab(cba)k+1cb = aba(cba)k+1cb, a(cba)k+1 =

aba(cba)k+1. Thus

−ab · sk = −ab((cba)k+2 + ba(cba)k+1c+ ba(cba)kcb).

6. abc · sk
One can check that abca(cba)k+1 = abcba(cba)k+1, abca(cba)k+1c = abcba(cba)k+1c,
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abc(cba)k+1cb = abcba(cba)kcb, so

abc · sk = abc((cba)k+2 + (cba)k+1c+ a(cba)k+1cb)

Moreover the following holds: cabba(cba)k+1c = caba(cba)k+1c, cabba(cba)kcb = caba(cba)kcb,

b(cba)k+2 = bca(cba)k+1, ab(cba)k+2 = abc(cba)k+2, abba(cba)k+1c = abc(cba)k+1c, bcab(cba)kcb =

bca(cba)k+1cb.

It follows that

t0sk =cab(cba)
k+2 − ca(cba)k+1 − bc(cba)k+2 − bc(cba)k+1c+ bcab(cba)k+1c+

+ bcab(cba)kcb− ab(cba)kcb+ abca(cba)k+1cb.

If k is even then using Lemma 8.15 we calculate that

t0sk = (cab)
k+4
2 − (cab)

k+2
2 − b(cab)

k
2 ca+ b(cab)

k+2
2 ca− ab(cab)

k
2 c+ ab(cab)

k+2
2 c.

It follows that t0sk corresponds to the matrixt
k+2
2 (t− 1) θ θ

θ θ t
k
2 (t− 1)

θ t
k
2 (t− 1) θ

 .

Therefore for even k the element P−1
1 sk = u k

2
and in particular P−1

1 sk ∈ K[S3] in this case.

Similarly, for odd k we have

t0sk = (cab)
k+3
2 ca− (cab)

k+1
2 ca− b(cab)

k+1
2 c+ b(cab)

k+3
2 c− ab(cab)

k+1
2 + ab(cab)

k+3
2 .

It follows that t0sk corresponds to the matrix θ θ t
k+1
2 (t− 1)

θ t
k+1
2 (t− 1) θ

t
k+1
2 (t− 1) θ θ

 .

Thus for odd k the element P−1
1 sk = v k+1

2
and in particular P−1

1 sk ∈ K[S3] in this case

too.

We obtain the following characterization of the center of K[S3].

Corollary 8.17. The center Z of K[S3] is equal to linK{tk : k ⩾ 1}+ linK{s2k−1− vk : k ⩾
1}+ linK{s2k − uk : k ⩾ 1}.
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It is also possible to calculate the center of K[S3] in a slightly more direct way. We will

show that the center Z is equal to linK{tk : k ⩾ 1}+linK{s2k−1−vk : k ⩾ 1}+linK{s2k−uk :
k ⩾ 1}, as in Corollary 8.17.

The following few remarks will be crucial. As we have already explained every element

of the center Z(K[S3]) is contained in the center of the Hecke�Kiselman algebra K[C3]. It

follows that w ∈ Z(K[S3]) if and only if it commutes with every generator of C3. Moreover,

the image of w under the natural projection K[S3] → K[S3]/K[M1] = K0[M0] is in the

center of K0[M0]. That means that every element of the center of K[S3] is of the form

w = w1 +
∑

k βksk, where w1 ∈ K[M1], sk ∈ K[M0] and βk ∈ K for every k. The idea is to

investigate the equations of the form aw = wa, bw = wb and cw = wc.

Recall that uk = (cab)k+1+ b(cab)kca+ ab(cab)kc and vk = b(cab)kc+(cab)kca+ ab(cab)k.

Then in particular tk = uk − vk.

We know that w is of the form w1+
∑

k βksk, where w1 ∈ K[M1], sk ∈ K[M0] and βk ∈ K
for every k. Every w1 can be written in the following form

w1 =
∑

i∈A1,j∈B1

(
∑
ki,j⩾1

αi,ji(cab)
ki,jj)

(1) Firstly we will see what follows from the equality aw = wa. It is easy to check that

for any v ∈ {(cab)∗, ab(cab)∗, (cab)∗ca, ab(cab)∗ca} we have av = va, so we can skip

terms of these forms in our equation. Moreover for every k ⩾ 1 we know that ask −
ska ∈ K[M1]. Therefore the only elements of the support of ask that are left are

{aba(cba)k+1, aba(cba)k+1c, aba(cba)kcb} and the only elements of the support of ska

that will not be cancelled are {(cba)k+1ca, a(cba)k+1ca, ba(cba)kca}.

Using Lemma 8.15 we calculate that the remaining part of βkask is of the form{
βkab(cab)

k
2 c for even k;

βkab(cab)
k+1
2 c for odd k.

Similarly, the remaining part of βkska is of the following form

{
βkb(cab)

k+1
2 ca for odd k;

βkb(cab)
k
2 ca for even k.
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Hence, equality aw = wa is equivalent to∑
αb,1ab(cab)

kb,1 +
∑

α1,c(cab)
k1,cc+

∑
αb,cab(cab)

kb,cc+
∑

αb,caab(cab)
kb,caca

+
∑

αab,cab(cab)
kab,cc+

∑
2|k

βkab(cab)
k
2 c+

∑
2∤k

βkab(cab)
k+1
2 c =

∑
αb,1b(cab)

kb,1 +
∑

α1,c(cab)
k1,cca+

∑
αb,cb(cab)

kb,cca+
∑

αb,cab(cab)
kb,caca

+
∑

αab,cab(cab)
kab,cca+

∑
2|k

βkb(cab)
k
2 ca+

∑
2∤k

βkb(cab)
k+1
2 ca.

Therefore

(i) αb,1 = 0;

(ii) α1,c = 0;

(iii)
∑
αb,caab(cab)

kb,caca =
∑
αab,cab(cab)

kab,cca;

(iv)
∑
αb,cab(cab)

kb,cc+
∑
αab,cab(cab)

kab,cc+
∑

2|k βkab(cab)
k
2 c+

∑
2∤k βkab(cab)

k+1
2 c =

0;

(v)
∑
αb,cb(cab)

kb,cca+
∑
αb,cab(cab)

kb,caca+
∑

2|k βkb(cab)
k
2 ca+

∑
2∤k βkb(cab)

k+1
2 ca =

0.

From (iii) it follows that we can assume that αb,ca = αab,c := αi. Therefore it is easy

to see that (iv) and (v) are equivalent.

(2) Now we investigate equality bw = wb, assuming that αb,1 = 0, α1,c = 0 and αb,ca =

αab,c := αi.

It is easy to check that for any v ∈ {b(cab)∗c, ab(cab)∗, ab(cab)∗c} we have bv = vb, so

we can skip terms of these forms in our equation. Moreover for every k ⩾ 1 we know

that ask − ska ∈ K[M1]. Therefore the only elements of the support of bsk that are

left are {b(cba)k+2, b(cba)k+1c, b(cba)k+1cb} and the only elements of the support of skb

that will not be cancelled are {(cba)k+2b, a(cba)k+1b, ba(cba)k+1b}.

Using Lemma 8.15 we calculate that the remaining part of βkbsk is of the form{
βkb(cab)

k
2 ca for even k;

βkb(cab)
k+1
2 ca for odd k.

Similarly, the remaining part of βkskb is of the following form

{
βk(cab)

k+3
2 for odd k;

βk(cab)
k+2
2 for even k.
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Hence, we get the following equation∑
α1,1b(cab)

k1,1 +
∑

α1,cab(cab)
k1,caca+

∑
αb,cab(cab)

kb,caca

+
∑

αab,caab(cab)
kab,caca+

∑
2|k

βkb(cab)
k
2 ca+

∑
2∤k

βkb(cab)
k+1
2 ca =

∑
α1,1(cab)

k1,1 +
∑

α1,ca(cab)
k1,ca+1 +

∑
αb,cab(cab)

k1,ca+1

+
∑

αab,caab(cab)
kab,ca+1 +

∑
2|k

βk(cab)
k+2
2 +

∑
2∤k

βk(cab)
k+3
2 .

Therefore

(i)
∑
α1,1b(cab)

k1,1 =
∑
αb,cab(cab)

k1,ca+1;

(ii)
∑
α1,cab(cab)

k1,caca+
∑
αb,cab(cab)

kb,caca+
∑

2|k βkb(cab)
k
2 ca+

∑
2∤k βkb(cab)

k+1
2 ca =

0;

(iii) αab,ca = 0;

(iv)
∑
α1,1(cab)

k1,1 +
∑
α1,ca(cab)

k1,ca+1 +
∑

2|k βk(cab)
k+2
2 +

∑
2∤k βk(cab)

k+3
2 = 0.

From (i), (iii) and part (1) we get that

w1 =
∑
i

αi((cab)
i+1 + b(cab)ica+ ab(cab)i+1c) +

∑
αab,1ab(cab)

kab,1+

+
∑

α1,ca(cab)
k1,caca+

∑
αb,cb(cab)

kb,cc.

It follows also from (i) that (ii) and (iv) are equivalent.

(3) Now we investigate equality cw = wc, assuming parts (1) and (2).

It is easy to check that for any v ∈ {b(cab)∗c, (cab)∗ca, b(cab)∗ca} we have cv = vc, so

we can skip terms of these forms in our equation. Moreover for every k ⩾ 1 we know

that csk − skc ∈ K[M1]. Therefore the only elements of the support of csk that are left

are {ca(cba)k+1, ca(cba)k+1c, ca(cba)k+1cb} and the only elements of the support of skc

that will not be cancelled are {(cba)k+1cbc, a(cba)k+1cbc, ba(cba)kcbc}.

Using Lemma 8.15 we calculate that the remaining part of βkcsk is of the form{
βk(cab)

k+2
2 for even k;

βk(cab)
k+3
2 for odd k.

Similarly, the remaining part of βkskc is of the following form

{
βkab(cab)

k+1
2 c for odd k;

βkab(cab)
k
2 c for even k.
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Hence, we get the following∑
αi((cab)

i+1 + b(cab)ica+ (cab)i+1c) +
∑

αab,1(cab)
kab,1+1+

+
∑
2|k

βk(cab)
k+2
2 +

∑
2∤k

βk(cab)
k+3
2 =

=
∑

αi((cab)
i+1c+ b(cab)ica+ ab(cab)ic) +

∑
αab,1ab(cab)

kab,1c+

+
∑
2|k

βkab(cab)
k
2 c+

∑
2∤k

βkab(cab)
k+1
2 c

Therefore we have

(i)
∑
αi(cab)

i+1 +
∑
αab,1(cab)

kab,1+1 +
∑

2|k βk(cab)
k+2
2 +

∑
2∤k βk(cab)

k+3
2 = 0;

(ii)
∑
αiab(cab)

ic+
∑
αab,1ab(cab)

kab,1c+
∑

2|k βkab(cab)
k
2 c+

∑
2∤k βkab(cab)

k+1
2 c = 0.

It is clear that equations (i) and (ii) are equivalent.

Equalities (3(i)) and (2(iv)) give us that {α1,ca : α1,ca ̸= 0} = {αab,1 : αab,1 ̸= 0}.
Moreover, from (1(iv)) and (2(ii)) it follows that {α1,ca : α1,ca ̸= 0} = {αb,c : αb,c ̸= 0}.
Lastly, we have that if {α1,ca : α1,ca ̸= 0} = {αab,1 : αab,1 ̸= 0} = {αb,c : αb,c ̸= 0}, then
(1(iv)), (1(v)), (2(ii)), (2, (iv)), (3(i)) and (3(ii)) are equivalent.

More precisely, we get that w = w1 +
∑

k βksk, where

w1 =
∑
i

αi((cab)
i+1 + b(cab)ica+ ab(cab)i+1c) +

∑
j

γj(ab(cab)
j + (cab)jca+ b(cab)jc)

and ∑
i

αi(cab)
i +
∑
j

γj(cab)
j +
∑
2|k

βk(cab)
k
2 +

∑
2∤k

βk(cab)
k+1
2 = 0.

Comparing coe�cients of (cab)n it follows that αn + β2n−1 + β2n + γn = 0 for any n ⩾ 1.

Therefore w ∈ Z(K[S3]) if and only if

w =
∑
i

αiti +
∑
k

β2k−1(s2k−1 − uk) +
∑
k

β2k(s2k − uk)

for some αi, βj ∈ K, where

uk = (cab)k+1 + b(cab)kca+ ab(cab)kc

and

vk = b(cab)kc+ (cab)kca+ ab(cab)k.

It follows that Z(K[S3]) = linK{tk : k ⩾ 1}+ linK{s2k−1 − uk : k ⩾ 1}+ linK{s2k − uk :
k ⩾ 1}.
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We found the center Z of the algebra K[S3] that is contained in the center of the algebra

K[C3]. As mentioned at the beginning of the present section, the algebra K[C3] is a �nite

module over its center. Moreover, as we shall prove, K[C3] is a �nite module over the

characterized part of the center.

Corollary 8.18. Hecke�Kiselman algebra K[C3] is a �nite module over Z.

Proof. From Theorem 3.3 it follows that K[S3] is a (�nitely generated) semiprime algebra

of Gelfand�Kirillov dimension 1 and therefore it is �nitely generated module over its center

Z, see Theorem 1.22. We know that C3 \ S3 is �nite, so K[S3] ⊆ K[C3] is �nite module

extension. Thus K[C3] is �nite module over Z.

8.5.1 Limitations of the method

Let us consider the general case of the Hecke�Kiselman monoid Cn associated to the cycle

of length n, for any n ⩾ 3. In contrast to the relatively simple form of the elements of C3,

the characterization of almost all elements of Cn, for any n ⩾ 3, obtained in Theorem 2.1

is quite complicated. Therefore it would be di�cult to �nd the center of K[Cn] by direct

computations, as in the second method used in the case of K[C3].

On the other hand, the structures of matrix type hidden in the monoid Cn, see Theorem 2.44,

could be used to characterize the center in the general case. Namely, one can consider the

subsemigroup Sn =
⋃n−2

i=0 M̃i in the monoid Cn. The set Cn \ Sn is �nite for every n ⩾ 3, see

Proposition 2.15. Thus it is clear that an analogue of Corollary 8.18 holds in the general case,

that is the Hecke�Kiselman algebra K[Cn] is a �nite module over the center Z of K[Sn]. We

know that M̃n−2 is an ideal in Sn and an analogue of Lemma 8.14 can also be proved. More

precisely, the sum of linear subspaces R = K[Sn \M̃n−2]+M(K(tn−2), An−2, Bn−2;Pn−2) has

a natural structure of algebra, which extends the structure of K[Sn]. To �nd the center of

M(K[Tn−2], An−2, Bn−2;Pn−2) in particular we have to calculate the inverse of the sandwich

matrix Pn−2 ∈ Mn(K(tn−2)) which however seems to be extremely hard in the general case.

To �nd the center of K[Sn \ M̃n−2] it would be natural to consider �rst M̃n−3 ⊆ Sn \ M̃n−2,

then M̃n−4 ⊂ Sn \ (M̃n−2 ∪ M̃n−3) and so on. Unfortunately several problems occur. Firstly,

for n > 3 the subset Sn \ M̃n−2 is no longer a subsemigroup in Sn and moreover if w ∈ Mi

and u ∈ Sn then wu, uw are not necessarily in Mi for i ̸= n− 2 (for example it can be easily

checked that (xnqn−3)(xn−1 · · ·x2xnq1) ∈ Mn−2). Secondly, the exact form of the sandwich

matrices Pi ∈ M( n
i+1)

(K(ti)) is really di�cult to calculate and thus also we do not know

the inverses of these matrices. Therefore the arguments described in this chapter cannot be

generalized directly.
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