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Abstract

This dissertation is devoted to the study of combinatorial properties of the class of monoids
called Hecke—Kiselman monoids, as well as the structure and irreducible representations of
the associated monoid algebras over a field, called Hecke-Kiselman algebras. Every such a
monoid HKg is defined by a presentation depending on a finite graph ©. Here we consider
only finite graphs © with oriented edges.

The case of the Hecke-Kiselman monoid C), associated to an oriented cycle of length
n > 3 is crucial in the investigation of any infinite-dimensional Hecke-Kiselman algebra. We
investigate the surprising ideal structure inside C,, to prove that the associated semigroup
algebra K[C,] is a semiprime Noetherian algebra. The classical ring of quotients is also
described. These results are then applied to characterize the radical of any Hecke—Kiselman
algebra that satisfies a polynomial identity. Note that the latter condition can be expressed
in terms of properties of the corresponding graph. Moreover we characterize all oriented
graphs © for which the algebra K[HKg] is right (left) Noetherian.

Irreducible representations of the Hecke—Kiselman algebra K [C),] associated to an oriented
cycle of length n > 3 are described. They come from either the representations of the
semigroups of matrix type occurring in the quotients of the ideal structure of C), or are
one-dimensional and arise from idempotents in a way similar to the representations of finite
J-trivial monoids. This result is then applied to the general case of Hecke-Kiselman algebras
that satisfy a polynomial identity.

We also find a numerical invariant of the graph © that describes the Gelfand-Kirillov
dimension of the corresponding algebra K[HKg].

Moreover, it is proved that the monoid HKg satisfies a semigroup identity if and only if ©
does not contain two different cycles connected by an oriented path. The explicit construction
of a semigroup identity for the monoid associated to a cycle of any length is described.

The obtained results are illustrated with the Hecke-Kiselman algebras of the monoids Cj
and C} associated to cycles of length 3 and 4.
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Streszczenie

Niniejsza rozprawa po$wiecona jest badaniu wlasnosci kombinatorycznych monoidéw Hecke—
Kislemana oraz struktury i reprezentacji nieprzywiedlnych stowarzyszonych z nimi algebr
potgrupowych, ktore bedziemy nazywaé algebrami Hecke—Kiselmana. Kazdy taki monoid
HKg zadany jest przez prezentacje zwigzang z pewnym skonczonym grafem ©. Wszystkie
rozpatrywane w pracy grafy sa zorientowane.

Okazuje sie, ze przypadek monoidu C), zwiazanego ze zorientowanym cyklem dtugosci n >
3 jest kluczowy w badaniu wtasno$ci dowolnych nieskoniczonych monoidéw oraz algebr Hecke—
Kiselmana. Zbadanie wlasno$ci pewnego waznego lanicucha idealow w (), pozwala nam
udowodni¢, ze algebra polgrupowa K[C),| nad cialem K jest potpierwsza oraz Noetherowska.
Charakteryzujemy w pracy klasyczny pierscienn utamkoéw tej algebry. Nastepnie otrzymane
rezultaty zostaja zastosowane do wyznaczenia radykalu dowolnej algebry Hecke—Kiselmana
K[HKg], ktora spetia tozsamosé wielomianowa. Warunek ten mozna tatwo wyrazi¢ w jezyku
wlasnosci stowarzyszonych graféw. Ponadto podajemy charakteryzacje grafow, dla ktoérych
algebra K[HKg] jest prawostronnie oraz lewostronnie Noetherowska.

Kolejnym rozpatrywanym zagadnieniem sg reprezentacje nieprzywiedlne. W pracy zostaje
udowodnione, ze w przypadku algebry Hecke-Kiselmana K|[C,] nad cialem algebraicznie
domknietym K reprezentacje nieprzywiedlne pochodzg od reprezentacji struktur typu ma-
cierzowego wystepujacych w taricuchu ideatéw w C), lub sa jednowymiarowe i stowarzyszone
z idempotentami w C),, analogicznie do dobrze znanego przypadku reprezentacji skonczonych
J-trywialnych monoidéow. Wynik ten umozliwia opisanie reprezentacji w przypadku dowol-
nych algebr Hecke-Kiselmana spetniajacych tozsamos¢ wielomianowa.

Nastepnie charakteryzujemy wymiar Gelfanda-Kirillova dowolnych algebr Hecke-Kiselmana
za pomocy pewnego numerycznego niezmiennika stowarzyszonych grafow.

Ponadto udowadniamy w pracy, ze monoid HKg spelnia tozsamos¢ potgrupowa wtedy
i tylko wtedy, gdy graf © nie zawiera dwoch réznych cykli potaczonych zorientowana Sciezka
dowolnej dlugosci. Jest to rownowazne temu, ze algebra K[HKg| spetia tozsamosé¢ wielo-
mianowa.

Ostatnia czes$¢ pracy stanowi ilustracje otrzymanych wynikoéw dla przypadku monoidow
C5 i Cy stowarzyszonych z cyklami dhugosci 3 oraz 4.
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Introduction

Many important algebraic structures occurring in mathematics are defined by imposing gen-
erators and relations between them. Celebrated examples include the braid group and the
braid monoid, as well as Iwahori-Hecke algebras of Coxeter groups, that play a significant
role in particular in knot theory, algebraic combinatorics and quantum groups. In these
structures the braid relation, that is the relation xyxr = yxy for generators x and y, and its
various generalizations occur.

The dissertation is concerned with a class of monoids and their monoid algebras given by
finite presentations related to braid relations, depending on associated oriented graphs.

Let © be an oriented finite graph with n vertices, denoted by zi,...,x, with at most
one edge between two vertices and without edges that connect a vertex to itself. Then the
corresponding Hecke-Kiselman monoid HKg is defined as follows.

1) HKg is generated by 1, ..., 1z, with 2? = x; for every i = 1,...,n.
2) If there is an edge x; — z; in ©, then x;x; = x;2,;2; = x;2;2; in the monoid HKe.

3) If vertices x; and x; are not connected by an edge, then the relation x;x; = z;z; is
imposed.

This is a special case of a more general definition of Hecke-Kiselman monoids associated
to the graphs © with both oriented and unoriented edges. If there is an unoriented edge
between z; and x;, then the braid relation z;x;x; = z;x;2; holds in HKeg.

Hecke-Kiselman monoids were introduced by Ganyushkin and Mazorchuk in the pa-
per [18] as a generalization of two classes of finite monoids, one coming from representation
theory and the second occurring in convexity theory, that share certain structural properties.
Various aspects of such monoids, mainly of a combinatorial nature, have been studied in a
series of papers [3-5,10,11,16,18-20,29,33,39,40|.

Our first motivation for the study of Hecke-Kiselman monoids comes from the fact that
these monoids are homomorphic images of 0-Hecke monoids, [42]. The latter come from a
specialization of Iwahori—Hecke algebras, occurring naturally in the representation theory of
Coxeter groups. For an overview we refer the reader to Chapter 5 of [25].

For any set S and a function m : S x S — {1,..., 400} such that m(s,s’) = m(s,s) for
all 5,8 € S and m(s,s’) = 1 if and only if s = &/, the corresponding Coxeter group W is
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given by the (group) presentation
(sesS | (ss)™=) =1forall s,s €S with m(s,s") # +00).

The pair (W, S) is called a Coxeter system. Equivalently, a function m in the above definition
is often presented as an unoriented graph with the set of vertices identified with S and exactly
m(s,s’) — 2 edges between vertices s, s’ € S. Coxeter groups arise in several distant branches
of mathematics. As Weyl groups of root systems, they play an important role in Lie theory,
in the classification of complex semisimple Lie algebras. In certain cases Coxeter groups can
be also interpreted as real reflection groups, [22], interesting from the geometric point of
view. Moreover, several combinatorial aspects have been studied, [7].

Iwahori-Hecke algebras of Coxeter systems are deformations of group algebras of these
groups, depending on the parameter q. More precisely, for a Coxeter system (W, S), the
Iwahori-Hecke algebra H,(W,S) is a unital algebra over a fixed field generated by elements
of the set of generators S, denoted by T (77 = 1) and relations

(Ts —q)(Ts+1) =0, forall s € S

(TSTS/)M(S,S/) = (Ts’Ts)m(s,s’) for all s 7& S/,

where the lower index m(s, s’) indicates the number of factors in the expressions of the form
TTyTs . ... Consequently, for ¢ = 1 we get the group algebra of (W, .S). In the second special
case of the specialization at ¢ = 0, the Iwahori-Hecke algebra is the monoid algebra of the
so-called O-Hecke monoid. For the function m from the definition of a Coxeter group, such a
monoid is generated by the set S and relations of the form s* = s and (85")(s,51) = (5'S)im(s,9)-
It has been proved that there exists a bijection between the elements of a Coxeter group (W, .S)
and of the 0-Hecke monoid coming from this group, [55]. Therefore such a monoid can be
treated as a semigroup analogue of the associated Coxeter group. The representation theory
of 0-Hecke monoids has been characterized by Norton in [42]. These results have been then
used to build a rich combinatorial approach to these representations in [21].

Moreover, slightly different families of algebras related to Coxeter systems are also studied,
such as for example nil-Coxeter algebras, and their generalizations, |26]. Nil-Coxeter algebras
are given by the same relations as in the group algebra of a Coxeter group except for s? = 1,
which is replaced by s? = 0. Introduction of such classes of algebras is motivated in particular
by connections to geometry [15], combinatorics and categorification [26].

Let us also note that the ideal structures inside the Hecke-Kiselman monoids associated
to an oriented cycle of any length discovered in [45] have the flavour of the cell ideals of the
so called affine cellular algebras |27, that play an important role in representation theory of
some classes of algebras, including various Iwahori-Hecke algebras. In this context the study
of Hecke-Kiselman monoids seems to be well-founded because of the possible connections
and applications to those theories.

Both classes of monoids that led to the definition of the Hecke—Kiselman monoids, namely
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0-Hecke monoids and Kiselman’s monoids, are examples of finite monoids that are J-trivial,
[29]. In particular, their irreducible representations admit a nice description, that can be
found for example in [12| and in [53]. In general a characterization of oriented graphs such
that the associated Hecke—Kiselman monoids are [J-trivial is not known. On the other hand,
all finite Hecke—Kiselman monoids associated to oriented graphs and the infinite monoid
associated to an oriented cycle of any length have this property, [18] and [11]. In this
setting the description of irreducible representations of the latter monoid, obtained in the
dissertation, fits into the study of possible generalizations of the representation theory of (not
necessarily finite) J-trivial monoids.

What is more, the class investigated in this dissertation plays certain role in representation
theory of finite dimensional algebras. Namely, it has been proved in [19] that monoids
generated by the so-called projection functors of simple modules over special classes of path
algebras of finite quivers are isomorphic to certain finite Hecke-Kiselman monoids. Moreover,
a categorical approach to the representation theory is investigated in the paper [20] in the
case of Hecke—Kiselman monoids associated to special acyclic graphs.

Hecke—Kiselman monoids are also useful in the study of the mathematical language of
computer simulations. Namely, finite Hecke—Kiselman monoids HKg find a natural realiza-
tion in a combinatorial approach to the so-called sequential dynamical systems defined with
the use of the graph O, [10].

The next motivation to study Hecke-Kiselman monoids comes from connections with
the Yang—Baxter equation. The quantum Yang—Baxter equation is one of the equations
arising in mathematical physics that initiated a rapid development of a wide range of studies
in several branches of mathematics, such as some aspects of Hopf algebras, knot theory and
quantum groups, [24|. As finding all solutions seems to be extremely hard, it was proposed by
Drinfel’d in [13] to study a special class of solutions, called set-theoretic solutions. Since then
the problem has been extensively explored using various methods built (among others) on:
noncommutative rings [51], group theory [14], and semigroup theory [23,32]. In particular, the
so-called structure group, monoid and the algebra that can be associated to any set-theoretic
solution have been proved extremely useful, [14,23|. Tt is well-known that every solution
of the Yang—Baxter equation induces a representation of the braid group. Moreover, the
special class of idempotent solutions, introduced in [32], induces representations of 0-Hecke
monoids and can be used in the study of homological aspects of other important classes of
monoids. Note that in the paper [33] of Lebed certain representations of Hecke-Kiselman
monoids inspired by the Yang-Baxter equation are constructed. Moreover, representations
of the symmetric groups have been already applied in the context of solutions of the Yang—
Baxter equation in [34]. The obtained results justify extending research to wider classes of
associative algebras that could be used to construct new solutions of Yang-Baxter equation.

These were the main motivations for the research project that has lead to the results of
the dissertation. The main aims were to describe structural and combinatorial properties
of Hecke—Kiselman algebras and to built representation theory of these algebras. Most of
the results of the thesis have been published in [45,46,57,58]. However, some other original



results have not been published yet; these include in particular the results of Chapter 7
and of Section 8.5.

Structure and main results of the dissertation

In Chapter 1 we introduce the mathematical notions and the necessary background on
noncommutative ring theory and semigroup theory, that will be used in the further parts of
the thesis. Next, after giving the definition of the Hecke—Kiselman monoids and algebras,
selected known results about the combinatorics on words in these monoids and certain prop-
erties of their algebras are described. These include a description of a Grobner basis and
a characterization of Hecke-Kiselman algebras that satisfy a polynomial identity, stated in
Theorem 1.63 and Theorem 1.72.

Chapter 2 is devoted to the structure of the Hecke—Kiselman monoids C,, associated to
oriented cycles of length n > 3. The importance of this case comes from the fact that the
monoid HKg is finite if and only if the graph O is acyclic. The main results are Theorem 2.1,
Theorem 2.44 and Theorem 2.52. First, a characterization of almost all reduced words in
C, is provided. Tt is then applied to construct a surprising ideal chain inside this monoid
with factors that are, up to finitely many elements, semigroups of matrix type. Lastly, we
prove that the semigroup algebras associated to such semigroups are prime algebras. The
significant part of this chapter is based on the results obtained during author’s master’s
studies. Therefore, instead of providing full proofs, we often outline only the main ideas. On
one hand, this is to explain the nature of the technical auxiliary lemmas, on the other hand,
some of these results are also used in the subsequent parts of the thesis. Section 2.4 contains
theorem proved during author’s PhD studies. The content of this chapter is mostly based on
the paper [45], written jointly with Jan Okninski.

In Chapter 3 the radical of Hecke-Kiselman algebras that satisfy a polynomial identity
is described. Note that this condition can be expressed in terms of the properties of the
corresponding graph. The case of the algebra K[C,] associated to an oriented cycle turns
out to be a crucial step. Using the properties of structures of matrix type from the previous
chapter, it is proved that the algebra is semiprime in this case. As a by-product we describe
the maximal chains of prime ideals and the classical ring of quotients of K[C,,]. We also prove
that this algebra is Noetherian. Finally, we proceed inductively to show that every Hecke—
Kiselman algebra which is PI has a radical which can be described by a certain congruence in
the monoid and the algebra modulo the radical is another Hecke-Kiselman algebra associated
to a subgraph of the original graph, admitting a clear description. The main results are
collected in Theorem 3.3, Theorem 3.5 and Theorem 3.9. The chapter is based on the joint
work with Jan Okninski, [46].

The main result of Chapter 4 is the complete characterization of oriented graphs ©, for
which the Hecke-Kiselman algebra is right (left) Noetherian, Theorem 4.2. As the most
difficult case of the algebra associated to an oriented cycle of any length is resolved in the
previous chapter, Lemma 4.1 is sufficient to complete the proof. The results of this chapter
were obtained in the author’s master’s thesis and were published in [45].
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Chapter 5 is devoted to the irreducible representations of Hecke-Kiselman algebras over an
algebraically closed field that satisfy a polynomial identity. As in the case of other properties,
the case of the algebra K[C,] associated to an oriented cycle is crucial. This chapter starts
with a characterization of idempotents in C,. This result had been known before, but we
characterize reduced forms of idempotents and provide an alternative proof for the sake of
completeness. Then the semigroups of matrix type, discovered inside the monoid C,, in
Chapter 2, are exploited to show that irreducible representations of K[C,] either are induced
by those of semigroups of matrix type or are one-dimensional representations arising from
idempotents in the way similar to that known for finite J-trivial monoids (see [53]). As
a consequence, we are able to characterize all maximal ideals of K[HKg| which satisfies
a polynomial identity. Irreducible representations of such algebras are then described. The
main results of this chapter are collected in Theorem 5.8, Proposition 5.10 and Theorem 5.12.
This work was published in the paper [57].

In Chapter 6 we focus on the growth of algebras. It had been known before that the
Gelfand—Kirillov dimension of any Hecke-Kiselman algebra is either a finite integer or infi-
nite and it is equal to 1 for the algebra associated to an oriented cycle of any length. In
Theorem 6.12 we give a characterization of the Gelfand-Kirillov dimension of K[HKg] in
terms of a numerical invariant of the graph ©. Namely, the dimension is equal to the sum
of the lengths of paths of certain specific type in the graph © and the number of cyclic sub-
graphs of the graph. The obtained theorem relies on the result asserting that Hecke-Kiselman
algebras are automaton, [40]. This part of the dissertation is published in the paper [58].

Chapter 7 is concerned with the semigroup identities of Hecke-Kiselman monoids. The
existence of such an identity in the case of finite monoids can be deduced from known results.
Therefore we focus on the case when the monoid HKg is infinite. Semigroups of matrix type
are used to construct an explicit identity in the case of the monoid C,, associated to a cycle of
any length n, Theorem 7.1. Then an inductive construction is used to prove that the Hecke—
Kiselman monoid satisfies a semigroup identity if and only if the graph does not contain two
different cycles connected by an oriented path, Theorem 7.2. The latter condition is known
to be equivalent to the property that the monoid does not contain free submonoids of rank
2 and also to the fact that the corresponding algebra satisfies a polynomial identity.

Chapter 8 illustrates our main results with the Hecke-Kiselman monoid C5 and the algebra
K|[C3)] associated to the cycle of length 3 and partially with the monoid Cy associated to the
cycle with 4 vertices. Then a subalgebra Z of the centre of K[Cs] such that K[Cj] is a
finite module over Z is described, using two methods. Calculations involve explicit forms of
reduced words representing elements of the semigroups of matrix type inside C3. While we
proved that K[C,] is a finite module over its center for every n > 3, a description of the
center is not known. Thus, we end with several remarks about limitations of the methods
used in this example.






Chapter 1

Preliminaries

In this chapter we recall basic notions and results of ring theory and semigroup theory used
in the thesis. Moreover we present the definition and preliminary results on Hecke—Kiselman
monoids and their algebras.

1.1 Ring theory background

1.1.1 Introduction

Let us introduce the necessary terminology on noncommutative ring theory and theory of
radicals. Note that we will touch only a few selected aspects of the theory that will be
applied in our context. We refer the reader to the book [38| for a comprehensive overview of
the subject.

All considered rings are associative rings, with an identity 1, if not specified otherwise.

If a left or right R-module M has the property that for any ascending chain My C M; C
M, C - -+ of submodules of M there exists an integer n such that M, = M,,.; = ..., then we
say that M satisfies the ascending chain condition on submodules.

Definition 1.1. A left (right) R-module M is Noetherian if it satisfies the ascending chain
condition on submodules. A ring R is left (right) Noetherian, if it is Noetherian when viewed
as a left (right) R-module. Finally, a ring is Noetherian if it is right and left Noetherian.

Example 1.2. 1) Every field is Noetherian.

2) The well-known Hilbert basis theorem states that the polynomial ring R[z] over a
Noetherian ring R is also Noetherian.

3) M, (R) is right Noetherian if and only if R is right Noetherian.

The descending chain condition is defined dually. A left (right) R-module M is Artinian,
if it satisfies the descending chain condition on submodules. In particular, a ring R is right
(left) Artinian if it is Artinian as right (left) R-module. A ring is Artinian if it is right and left
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Artinian. It is easy to check that Z is Noetherian but not Artinian ring. On the other hand,
although these two notions seem to be symmetrical, the famous Hopkins-Levitzki theorem
states that every right Artinian ring is right Noetherian. Let us also note that the following
proposition holds.

Proposition 1.3. If M is a finitely generated left module over a left Noetherian (Artinian)
ring, then M is a Noetherian (Artinian, respectively) module.

1.1.2 Prime rings and prime radical

Definition 1.4. An ideal P of a ring R is said to be prime if for any ideals I, J of R from
IJ C P it follows that I C P or J C P. A ring R is called prime if {0} is a prime ideal in R.

Let us mention an alternative equivalent definition. An ideal P of R is prime if for any
elements a, b the condition aRb C P implies that a € P or b € P. We can also replace in the
definition two—sided ideals with one-sided ideals; that is P is prime if for any two left (right)
ideals I, J from IJ C P it follows that I C P or J C P.

Example 1.5. 1) If Ris a commutative ring, then it is prime if and only if it is an integral
domain.

2) The matrix ring M, (R) over a ring R is prime if and only if R is a prime ring.

A minimal prime ideal of R is any prime ideal in R which does not contain properly any

other prime ideal of R. It can be proved that every prime ideal contains a minimal prime
ideal.

Definition 1.6. The intersection of all prime ideals in a ring R is called the prime radical
of R and will be denoted by P(R).

Example 1.7. 1) If R = K|x]/(2?), then (z) is the only prime ideal and thus P(R) = ().
2) Tt can be proved that P(M,(R)) = M,(P(R)) for any ring R.

It can be proved that P(R) is always a nil ideal of R, that is for every x € P(R) there
exists n > 1 such that 2" = 0. Moreover from the definition it follows that every nilpotent
ideal (that is an ideal I such that I™ = {0} for some n > 1) is contained in P(R).

Definition 1.8. An ideal ) of a ring R is said to be semiprime if for any ideal [ in R the
condition I? C @ implies that I C Q. A ring R is semiprime, if {0} is a semiprime ideal
in R.

An alternative condition involving elements of the ring instead of its ideals is that an
ideal I is semiprime if for any element a € R from aRa C I it follows that a € I. There is
a strong relation between the notions of the prime radical and the semiprime ring. Namely,
the following holds.
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Proposition 1.9. A ring R is semiprime if and only if P(R) = {0}.

From the definitions it is easy to see that any direct product of semiprime rings is
semiprime. Therefore from the previous example we can construct the following example.

Example 1.10. If R; are semiprime rings for ¢ = 1, ...,k then the ring
M, (Ry) X My, (Ry) X -+ x M,, (Rk)

is semiprime.

Note that from the definition of a semiprime ring it follows that for any a € R such that
aRa = 0 we know that a € P(R).

1.1.3 Primitive rings and Jacobson radical

We say that a left (right) R-module M # {0} is simple if it has no submodules different than
{0} and M. The annihilator of a left (right) R-module M is defined as anng(M) = {r € R :
rM = 0} (anng(M) = {r € R : Mr = 0}, respectively). A left (right) R-module M is said
to be faithful if anng(M) = {0}.

Definition 1.11. A ring R is called left (right) primitive if it has a simple faithful left (right,
respectively) module. An ideal P of R is left primitive if R/P is a left primitive ring.

The following useful proposition holds.

Proposition 1.12. Left (right) primitive ideals of R are exactly annihilators of simple left
(right) R-modules.

Example 1.13. 1) If R is a commutative ring, then every simple R-module M is of the
form R/P for a maximal ideal P such that P = anng(M). It follows that left and right
primitive ideals in this case are exactly maximal ideals of R.

2) Every maximal ideal is right and left primitive.

Note that every left (right) primitive ring is prime, but the converse is not true, as
for example the polynomial ring C[x] over complex numbers is prime but not left (right)
primitive.

Definition 1.14. The Jacobson radical of a ring R, denoted by J(R), is the intersection of
all left primitive ideals in R.

Alternatively, the Jacobson radical of R can be characterized as the intersection of anni-
hilators of all simple left (or right) R-modules or as the intersection of all maximal left ideals
in R.

Despite the fact that left primitive ideals occur in the above definition, the notion of the
Jacobson radical is left-right symmetric.
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Example 1.15. 1) If R = K|z]/(2?) for a field K, then J(R) = (x), as (z) is the only
maximal ideal in R.

2) For any ring R it is known that J(M,(R)) = M, (J(R)).

A ring R is called semiprimitive if J(R) = {0}. This notion is analogous to the definition
of a semiprime ring discussed before.

Let us observe that directly from the definition we get the inclusion P(R) C J(R) for
any ring R. In many important cases these two notions of radicals coincide. For example we
have the following.

Proposition 1.16. If R is a left Artinian ring, then J(R) = P(R), and it is a nilpotent
deal.

As in the dissertation we are mainly interested in the case of another class of rings R for
which P(R) = J(R), we do not dwell into the details of the general theory.

1.1.4 Gelfand—Kirillov dimension

Let us introduce the definitions related to the Gelfand—Kirillov dimension, called also GK
dimension, for short. This dimension describes an asymptotic behaviour of the growth of
algebras and is a basic tool in the study of noncommutative algebras.

We restrict our attention to finitely generated algebras over a field K. For the definition
in full generality and for more information we refer the reader to [28]. Let A be a finitely
generated algebra. A generating subspace V of A is any finite dimensional K-subspace such
that A is generated by V as a K-algebra. Such a subspace always exists, as we can consider
the space spanned by the finite set of generators of A.

Definition 1.17. Let A be a finitely generated algebra over a field K and V' be an arbitrary
generating subspace of A. The growth function of A with respect to V' is given by

dy(n) = dimg (V' + ...+ V"),
where V¥ = ling{v, - vy :v; € Vfori=1,... k} for any k > 0, with V° = K.

The growth function depends on the choice of a generating subspace of an algebra. To
obtain an invariant of an algebra we consider the asymptotic behaviour of this function.
Arbitrary non-decreasing functions f,g : N — R, are said to be equivalent, if there are
integer constants ¢y, ca and mq, my such that f(n) < cig(min) and g(n) < cag(man) for all
but finitely many natural numbers n. Then it can be shown, |28, Lemma 2.1|, that if f and
g are equivalent, then limsup,,_, log,, f(n) = limsup,,_, . log, g(n).

It can be easily verified that if V and W are two generating spaces of an algebra A,

then dy and dy are equivalent. Consequently, limsup,,_,. log, dy(n) does not depend on
the choice of V.
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Definition 1.18. The Gelfand-Kirillov dimension of a finitely generated algebra A, which
we will denote by GKdim(A), is defined as follows

GKdim(A) = limsup log,, dy(n),
n—oo
where dy (n) is the growth function of the algebra A with respect to an arbitrary generating
subspace V of A. As explained above, the definition does not depend on the choice of V.

Possible values of the Gelfand-Kirillov dimension are in the set {0} U {1} U [2,00]. In
particular, there exist algebras with a non-integer dimension. Moreover, an algebra is of zero
GK dimension if and only if it is finite dimensional and in the class of finitely generated
commutative algebras GK dimension coincides with the classical Krull dimension (defined as
the supremum of the lengths of chains of prime ideals).

Example 1.19. In the case of the monoid algebra K[M] associated with a finitely generated
monoid M generated by a set Z containing the identity element of M, a generating subspace
can be chosen as V = ling Z. Then the growth function dy is the rate of growth of the
monoid, that is dy(n) = [{m € M : m =my...mg, k < n,m; € Z}|. Consequently, the GK
dimension of the algebra K[M] measures an asymptotic behaviour of the number of elements
of M of at most given length. For instance, if M is an infinite cyclic monoid generated by x,
then we set Z = {1,z} and dy(n) = n + 1. Consequently GKdim(K|[z]) = 1.

The following basic lemma describes the relation between the Gelfand-Kirillov dimension
of the algebra and its subalgebras and homomorphic images.

Lemma 1.20. If S is a subalgebra or a homomorphic image of an algebra R then GKdim(S) <
GKdim(R).

1.1.5 Polynomial identity algebras

In the present section we introduce several classical results on the structure of rings that
satisfy a polynomial identity. We focus only on the theorems that will be useful in the
dissertation.

By an algebra we mean an associative algebra with identity 1. An algebra R over a field
K satisfies a polynomial identity if there exists a non-zero polynomial f(z1,...,x,) in n
non commuting variables z1, ..., x, with coefficients in K such that f(ry,...,r,) = 0 for all
r1,...7, € R. For brevity we then say that R is a Pl-algebra.

Many natural classes of algebras satisfy a polynomial identity, including commutative
algebras, finite dimensional algebras and the algebra M,,(A) of matrices of size n X n over a
commutative algebra A. Indeed, in every commutative algebra the identity xy—yx = 0 holds.
It is the special case of a family of identities, called standard identities, that are satisfied for
any algebra which is finitely generated as a module over its center.
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It is easy to show that any subalgebra and any homomorphic image of a Pl-algebra
satisfies a polynomial identity. The following celebrated theorem, due to Regev, shows that
the class of Pl-algebras is also closed under taking tensor products, see [49, Theorem 6.1.1].

Theorem 1.21 (Regev). The tensor product of two Pl-algebras also satisfies a polynomial
identity.

The case of Pl-algebras that are Noetherian and of finite Gelfand—Kirillov dimension is
of special interest in our setting.

First recall the well-known result of Small, Stafford, Warfield, [52], showing in particular
that the class of Pl-algebras contains all finitely generated algebras with Gelfand-Kirillov
dimension 1.

Theorem 1.22 (Small, Stafford, Warfield). Every finitely generated algebra R of Gelfand—
Kirillov dimension one satisfies a polynomial identity. Moreover, if P(R) is the prime radical
of R, then P(R) is nilpotent and R/P(R) is a finite module over its Noetherian center.

By [28, Theorem 10.10|, the following result about the relationship between the Gelfand—
Kirillov and the classical Krull dimensions of Pl-algebras holds. Recall that the classical
Krull dimension of R, denoted by clKdim(R), is the supremum of the lengths of finite chains
of prime ideals in the algebra R.

Theorem 1.23. If R is a finitely generated prime Pl-algebra, then GKdim(R) = clKdim(R).

It is clear from the facts mentioned in this section that the matrix algebra M, (F'), where
F is a field extension of the field K satisfies a polynomial identity. Anan’in Theorem, [1],
asserts that every algebra from an important class of PI-algebras can be embedded into such
a matrix algebra.

Theorem 1.24 (Anan’in). Let R be a finitely generated right Noetherian PIl-algebra over a
field K. Then R embeds into the matriz ring M, (F) over a field extension F of K, for some
positive integer n.

We say that a ring D is a division ring if every non-zero element has a right and a left
inverse in D. The following Kaplansky theorem, see for instance [50, Theorem 6.1.25], will
be useful in the characterization of representations of Hecke—Kiselman algebras.

Theorem 1.25 (Kaplansky). If R is a left primitive ring satisfying a polynomial identity,
then R is isomorphic to the ring of matrices M,.(D), r > 1, over a division ring D that is
finite dimensional over its center.

Finally, in the class of finitely generated Pl-algebras the prime radical and the Jacobson
radical, introduced in Sections 1.1.2 and 1.1.3, coincide.

Theorem 1.26. If R is a finitely generated algebra over a field that satisfies a polynomial
identity, then J(R) = P(R), where J(R) is the Jacobson radical of R and P(R) is the prime

radical.
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1.1.6 Rings of quotients

Let us introduce the necessary definitions and properties of rings of quotients. The gen-
eral idea is to embed the ring into another one with better properties, by making certain
elements invertible in the new ring. Localization is one of the crucial techniques used in
algebra. One important example is localization of a commutative domain with respect to all
non-zero elements, which is called the field of fractions. Another useful case is localization
of a commutative ring at any prime ideal. Although the analogous constructions in the non-
commutative setting are not always possible, also in this case certain localizations provide a
useful tool in the study of the structure of rings. One such important result is the celebrated
Goldie’s theorem, presented in Theorem 1.32 only in the Noetherian case.

We refer to Chapters 2 and 3 of [38] and Chapter 4 of [30] for further information and
proofs of the presented results. The case of algebras satisfying a polynomial identity is
considered in Chapter 1.7 of [49).

We restrict the discussion to two special cases of rings of quotients, where the multiplica-
tively closed set of "denominators" consists of either so-called regular elements or elements
from the center of the ring.

A subset S of ring R is multiplicatively closed, if S-S C Sand 1€ S.

We say that an element r € R is right regular in R if rs = 0 implies that s = 0 for any
s € R and symmetrically left regular if from equality sr = 0 it follows that s = 0. An element
is regular if it is left and right regular.

Definition 1.27. 1) Let S be a multiplicatively closed subset of a ring R consisting of all
regular elements in R. Then a ring R’ containing R is called a right classical ring of
quotients of R, if elements of S are units in R’ and every element of R’ is of the form
rs~! for some r € R and s € S. We denote this ring of quotients by Q7,(R).

2) Let S be the multiplicatively closed subset of a ring R consisting of all regular elements
contained in the center of R. Then a ring R’ containing R, such that elements of S are
units in R’ and every element of R’ is of the form rs~! for some r € R and s € S, is
called a central ring of quotients, denoted by Q7% (R).

One can define similarly the left analogues of the above definitions.

Note that the right classical ring of quotients does not always exist. For example, let
R = K(xz,y) be the free algebra in two non commuting generators x and y. Then R\ {0}
is multiplicatively closed set consisting of all regular elements. Suppose that Q7 (R) exists.
Then in particular y is unit in Q7 (R), and therefore y 'z can be written in the form rs™*
for some r,s € Q7 (R) such that s # 0. Thus xs = yr in R for some non-zero s, which is
impossible.

If right classical ring of quotients of R exists, then the set S, consisting of all regular
elements, has the property, called the right Ore condition, that for each » € R and s € S,
there exist ' € R and s’ € S such that rs’ = sr/. Similarly, one can also define the left
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Ore condition. It turns out that such conditions are also sufficient for the existence of the
classical right or left ring of quotients.

Theorem 1.28. A right (left) classical ring of quotients QL,(R) exists if and only if the
multiplicatively closed set of reqular elements satisfies the right (left) Ore condition.

On the other hand, a multiplicatively closed set S of regular central elements of a ring R
satisfies evidently the right and left Ore conditions. The central ring of quotients of R always
exists.

A right classical ring of quotients @ of a ring R is universal for homomorphisms o : R — R’
such that «(.S) consists of units of R’, where S is the set of all regular elements of R. Therefore
we get the following remark.

Remark 1.29. If there exists a right classical ring of quotients ) of a ring R then it is
unique up to an isomorphism.

Similarly, a central ring of quotients of a ring R is universal for homomorphisms o : R —
R’ such that a(S) consists of units of R, where S is the set of all regular elements contained
in the center of R. Thus it is also unique up to an isomorphism.

Example 1.30. If R is a Noetherian integral domain then the right classical ring of quotients
Q7,(R) exists. It is enough to show that for any non-zero a,b € R we have aR N bR # {0}.
But if we had aR N bR = {0}, then the sum X,,-10™aR would be direct, contradicting the
Noetherian property. Indeed, if b*arg + - - - + b**™ar,, = 0 for some k and m > 0 such that
To,"m # 0, 7; € R, then because R is an integral domain, —arq = b(ar; + -+ + ab™ r,,) €
aRNbR = {0}, which leads to a contradiction.

In the thesis we will work with the rings that have both right and left rings of quotients.
Then from the universal property satisfied by these rings, we easily get the following lemma.

Lemma 1.31. If right and left classical (central) rings of quotients exist, they are isomorphic.
In this case we speak about the classical ring of quotients (central ring of quotients) and denote

this ring by Qu(R) (Qz(R)).

In the forthcoming sections we are interested in the ring of quotients of Noetherian rings.
Let us recall the famous Goldie’s theorem in the case of Noetherian rings. The theorem gives
the characterization of rings with classical rings of quotients that are semisimple. Recall that
a ring R is semisimple if and only if every right R-submodule of R is a direct summand of R.
It can be proved that a ring R is semisimple if and only if it is left Artinian and semiprimitive.

Theorem 1.32 (Goldie). If R is a Noetherian ring then the following conditions are equiv-
alent.

1) R is a semiprime ring.

2) R has a quotient ring Qu(R) which is semisimple.
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One of the aims of Chapter 3 is to find the classical rings of quotients of certain Hecke—
Kiselman algebras R. The minimal prime ideals P of these algebras will be constructed
and the rings of quotients Q. (R/P) of the quotient rings R/P will be found. Thanks to
the following observation (Corollary 11.44 in [30]), it is then possible to describe the ring of
quotients of the algebra R.

Proposition 1.33. Let R be a semiprime ring with finitely many minimal prime ideals
Py,...,P.. Then R has a classical quotient ring Qq(R) if and only if all R/ P; have classical
quotient rings Qu(R/P;). Moreover, if this is the case, then Qu(R) =[]\, Qu(R/P).

Another natural observation, which can be derived from 3.1.6 in [38], concerning different
rings with the same classical ring of quotients, will be useful.

Lemma 1.34. If R is a prime Noetherian ring, 0 # A is a two-sided ideal of R and S is a
subring of R such that A C S C R then S has the same (right) classical quotient ring as R.

In the present thesis we are interested in the properties of algebras that are PI. Therefore
let us recall the following theorem about the classical and central rings of quotients in the
case of Pl-algebras, see Theorem 1.7.34 in [49].

Theorem 1.35. If R is a Noetherian semiprime Pl-ring then Qz(R) = Qu(R).

1.2 Basics of semigroup theory

The thesis is devoted to the certain class of monoids and their monoid algebras. In particular,
some aspects of semigroup theory are extensively used in the forthcoming chapters. Therefore
we now set up the notation and basic definitions of semigroup theory, with emphasis on the
representation theory of finite semigroups and semigroup identities. For a complete overview
of the topic we refer to the books [9,43,53|.

Definition 1.36. A semigroup is a set S with an associative binary operation, denoted by -,
called multiplication. If a semigroup contains an identity element 1, it is called a monoid.

For a semigroup S, we define S* as a semigroup obtained from S by adding an identity
element 1 to S, if S does not contain an identity and S* = S, otherwise. An element 6 of a
semigroup S is called the zero element, if for every s € S we have -5 = s-0 = 0. By S° we
denote a semigroup S with zero element adjoined.

Notions of an ideal and Green’s relations play a fundamental role in semigroup theory. A
subset I of a semigroup S is called a left (right) ideal if ST C I (IS C I, respectively). We
say that [ is a two-sided ideal, if it is a right and a left ideal. For example, for any element
s € S, we can consider a two-sided principal ideal S'sS' in S generated by this element. It
consists of all elements of the form ust for any u,t € S*.
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For every two-sided ideal I of the semigroup S, the Rees quotient semigroup S / I as a set
consists of S\ I U{#}. Tt has a structure of a semigroup, where multiplication is defined for
every s,t € S'\ I as follows

6 otherwise

{stifst%]
S-t:

We assume that for any semigroup S the Rees factor S/0 is the semigroup S with zero
adjoined.

Recall that an equivalence relation o on S is a congruence if sot for s,t € S implies that
suoctu and vsouvt for any u,v € S. For every congruence o on a semigroup S the set of
o-classes is a semigroup. We denote this semigroup by S/o.

Elements m,n of a semigroup S are in Green’s relation R ( £ ) if and only if mS* = nS*
(S'm = S'n, respectively). We say that two elements are in relation H, if they are R and £
related. Lastly, elements m, n of a semigroup S are in the Green’s relation J (are J-related)
if and only if they generate the same two-sided ideal in S, that is STmS! = S'nS?.

Example 1.37. Consider the multiplicative semigroup (M, (K),-) of the n x n matrices over
a field K. Then the following can be proved.

1) Two matrices are J-related of and only if they have the same rank.
2) Two matrices A, B are L-related if and only if they have the same row space.
3) Two matrices A, B are R-related if and only if they have the same column space.

The equivalence class of a given element with respect to Green’s relation J (£, R)
will be called the J-class (L-class, R-class) of an element. In the set of these classes in a
semigroup S let us define a partial order, denoted by <7 (<., <g, respectively), such that
for any two J-classes (<, <gr-classes, respectively) L and L' we have L <7 L’ if and only
it STLST C STL/S! (similarly, L <z L’ if and only if LS C L'S" and L <, L' if and only if
S'L C S'L).

We say that a semigroup S is J-trivial if Green’s relation J is equality, that is S'mSt =
SnSt implies that m = n in the semigroup S. Notions of R-trivial and £-trivial semigroups
are defined analogously.

Example 1.38. Let S be a monoid such that S = {1,e} with identity 1 and such that
e? = e. Tt is clear that S is J-trivial.

Let us note the following useful property of Green’s relation 7.

Remark 1.39. If M is a J-trivial monoid and I is a two-sided ideal in S, then the Rees
quotient semigroup M/I is also J-trivial.

Proof. Let M be a J-trivial monoid and let I be a two-sided ideal in M. Consider u, v
from M/I that generate the same principal ideal, that is for some s,t,p,q € M \ I U {6} we
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have u = svt and v = puq in M/I. If at least one of s,t,p,q is the zero element 6, then it
follows easily that u = v = 6. Otherwise we get that u = svt and v = puq also in M, that is
MuM C MvM and MvM C MubM, respectively. Therefore, as M is J-trivial, u = v in M,
and thus also in M/I. O

One can also define a direct product of semigroups or monoids as follows.

Definition 1.40. For semigroups (monoids) S and T" with operations -g, -7 the direct product
of S and T, denoted by S & T, is the Cartesian product S x T, together with the binary
operation - : (S x T) x (S xT) — S x T such that (s,t) - (s',t') = (s-s &, t-rt'). Then
(Se@T,-) is also a semigroup (monoid).

Now we give a brief exposition of the structure of finite semigroups. In particular we are
interested in the semigroup analogue of the Jordan-Holder theorem. This will be useful in
the study of representation theory of semigroups.

Let us define a class of semigroups that do not have non-trivial two-sided ideals.

Definition 1.41. We say that a semigroup without zero is simple, if it does not contain
ideals other than S. If a semigroup S contains a zero element 6, it is a 0-simple semigroup,
if {0} and S are its only ideals in S and S? # 6.

Note that the condition S? # 6 implies that the semigroup S = {0, a}, where a® = 0, is
not O-simple.

Example 1.42. Let S = {e;; € M,(K) :4,j =1,...,n} U{6} be the semigroup consisting
of all standard basis matrices e;; with 1 in the 7 row and j column and 0 everywhere else and
the zero matrix. Then it can be easily verified that S is a 0-simple semigroup.

2. In the set of idempotents of a

semigroup define a partial order such that e < f if and only if ef = fe = e. Idempotent f

An element e of a semigroup is idempotent if e = e

is called primitive if f £ 0 and e < f implies that e = f or e = 0 for any idempotent e. For
instance, in the semigroup S from Example 1.42 every idempotent of the form e;; is primitive.
A semigroup S is completely O-simple if it is 0-simple and contains a primitive idempotent.
Note that for example any finite 0-simple semigroup is completely O-simple, see [9, Section
2.7].

1.2.1 Finite semigroups, semigroup algebras and their representa-
tions

We are now in a position to present the basic theorem describing the ideal structure of finite
semigroups.

Theorem 1.43. If S is a finite semigroup, then it admits a principal series, that is a series

N=51CSC--CSCS =25,

=
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of ideals Sy, such that every factor Sk/SkH is either a completely 0-simple semigroup or a
null semigroup (namely, a semigroup with zero multiplication) for k =1,... 1.

It turns out that factors from principal series of a finite semigroup are related to equiv-
alence classes with respect to Green’s relation J. Let us start with the following notations.
If s is an element of a semigroup S, we denote by Js the J-class in S containing s. For any
J-class L of S we denote by J(L) the ideal S'LS! and I(L) = J(L)\ L. Note that if s € I(L)
and t € S, then S1sS* C J(L). As S'stS! C S'sSt (S'tsSt C StsSt), it follows that st,
ts ¢ L. Thus I(L) is an ideal in S, if non-empty. Moreover, it is clear that [(L) C J(L)
is maximal in J(L) in the sense that there are no ideals strictly between I(L) and J(L).
Consequently, it can be proved that J(L) / I(L) is either null or a O-simple semigroup. A
factor J(L)/I(L) which is O-simple (null) is called a O-simple (null, respectively) factor of S.
It turns out that factors of every principal series of a finite semigroup S are of the form
J(L)/I(L) for J-classes L in S.

Corollary 1.44. If S is a finite semigroup, then it admits a principal series
P=8411CS S CHhCTS =S5,

of ideals Sy, such that every factor Sk/SkH is of the form J(L)/I(L) for some J-class L
m S fork=1,...,1.

Before we move on to the representations, let us set the necessary definitions related to
semigroup algebras.

Definition 1.45. For a semigroup S consider the vector space over the field K with the
basis consisting of elements of S. A structure of a K—algebra in this vector space is given
by the multiplication which is the linear extension of the operation in S. Such an algebra is
denoted by K[S] and is called the semigroup algebra of the semigroup S over the field K.

Note that a typical element « of a semigroup algebra K[S] is of the form o = o181+ -+
oSk with 0 #£ 0; € K and pairwise different s; € S. Then the support of « is equal to the
set {S1,..., Sk}

If a semigroup S contains a zero element 6, then it will be often useful to identify 6 with
the zero element of K. Such an algebra, defined as K[S]|/K[f] will be denoted by Ky[S]
and called the contracted semigroup algebra. As K[S] = Ky[S] ® K[f], algebras K[S] and
Ky [S] have similar structural properties. If we consider an ideal I of S, then the quotient
K[S]/K|I] is isomorphic to the contracted algebra K,[S/I].

For brevity, in the context of representations we always assume that the base field is
algebraically closed, without further comments.

By Endg (V') we denote the vector space of all endomorphisms of the finite-dimensional
linear space V' over the field K. Then Endg (V') has the monoid structure under multiplica-
tion.
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Definition 1.46. A representation of a semigroup M on a (finite-dimensional) vector space
V over a field K is a homomorphism ¢ : M — Endg (V).

It is clear that this is equivalent to defining a semigroup homomorphism M — M (K),
where k = dimg (V). Every representation of a semigroup M on V' can be uniquely extended
to a representation of semigroup algebra K[M] on V.

Representations ¢ : K[M] — Endg(V) and ¢ : K[M] — Endg(W) are said to be
equivalent, if there is a linear isomorphism p : V. — W such that ¢(f) = p~ ' (f)p for all
f € K[M]. In the thesis we are interested in representations up to equivalence classes.

Finally, we will sometimes identify representations of K[M] with (left) K[M]-modules
without further comments. This is possible thanks to the correspondence described as follows.
If o : K[M] — Endg(V) is a representation, then V is left K[M]-module defined as
f-v=p(f)(v) forevery f € K[M] and v € V. Conversely, if V' is a K[M]-module, then the
induced representation is defined as py : K[M]| — Endg (V') such that oy (f)(v) = f - v,
for every f € K[M] and v € V. Moreover representations of K[M] are equivalent if and only
if the corresponding modules are isomorphic.

We say that a representation ¢ : K[M]| — M, (K) is irreducible if it corresponds to a
simple K[M]-module.

We now look more closely at the classical theory of irreducible representations of finite
monoids, known as Clifford-Munn-Ponizovskii theory. Namely, there exists a bijection be-
tween the set of equivalence classes of irreducible representations of a finite monoid and the
set of equivalence classes of irreducible representations of its 0-simple principal factors. We
refer to Chapter 5 of [9] for proofs and Chapter 4 of [53] for another approach.

Recall that <7 is an order in the set of Green’s J-classes of M defined at the beginning
of the present section. We will further write that L £ L" if J(L) € J(L').

Let us define a family of representations of a monoid depending on the J-classes in this
monoid.

Definition 1.47. We say that a representation f : M — M, (K) of the monoid M has an
apex L for a J-class L, if f(n) # 0 for every (or, equivalently, any) n € L and f(m) = 0 for
all m € M such that L %g Jm, where J,, is the J-class containing m.

It follows that a representation f with an apex L has the property that f(m) # 0 for
all m € M such that L <5 J,. The first part of the main theorem of Clifford-Munn-
Ponizovskii theory states that every irreducible representation of a finite monoid M has an
apex. If f: M — M, (K) is such a representation with an apex L, then in particular f(m) =0
for all m € I(L). Therefore f induces a representation f of the factor J(L)/I(L). It turns
out that then the principal factor J(L)/I(L) has to be 0-simple. Moreover the induced
representation f : J(L)/I(L) — M,(K) is also irreducible. In the opposite direction, for
every J-class L such that J(L)/I(L) is O-simple and for every irreducible representation of
this factor semigroup there exists a unique irreducible representation of M with an apex L.
More precisely, the following theorem holds.
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Theorem 1.48 (Clifford, Munn, Ponizovskii). Let M be a finite monoid.

1) FEvery irreducible representation of M has an apex.

2) If f: KIM| - M,(K) is an irreducible representation with an apex L, then the as-
sociated principal factor is 0-simple and the induced representation f J(L)/I(J) —
M, (K) is irreducible.

3) For every 0-simple J-class L of M and irreducible representation f : J(L)/[(L) —
M, (K) there exists e € K[L] such that f(e) = I, and the formula f(m) = f(me),
for every m € M, defines an irreducible representation f : K[M] — M, (K) with an
apex L.

4) Two irreducible representations of M are equivalent if and only if they have the same
apex L and induce equivalent representations of MLM/I(L).

As an illustration, we apply the theory for finite J-trivial monoids. We know that then
every J-class L contains exactly one element and the quotient J(L)/I(L) = {6, e} for some
e such that e = 6 or ¢*> = e in J(L)/I(L). Thus every O-simple principal factor comes
from an idempotent e = e. Every irreducible representation ¢, of {6, e} such that ¢? = e
is one-dimensional and such that ¢.(e) = 1. Then from Theorem 1.48 we know that the
corresponding irreducible representation of M is such that ¢.(m) = ¢.(me) for every m € M.
The following easy proposition, that can be found in [53, Corollary 2.7 (iii)|, is useful in
describing the corresponding irreducible representations.

Proposition 1.49. Let M be a J-trivial monoid with an idempotent e € M. Then for every
m € M we have e € MmM if and only if em = m.

For completeness, we give a proof.

Proof. If em = m, then it is clear that e € MmM, as M is a monoid. Assume now that
e € MmM, that is e = xmy for some z,y € M. Then e = exmy and thus MeM = MexM.
From the assumption it follows that e = ex. Consequently, e = €2 = exmy = emy, and thus

MemM = MeM. As M is J-trivial, we get that em = m. [

Let us emphasize that the proposition holds for any [J-trivial monoid, not necessarily
finite. Note also that if e ¢ MmM, we get that MeM ¢ MmM and then ¢.(m) = 0 in the
finite case.

As a consequence, we get the following characterization.

Example 1.50. There is a bijection between (equivalence classes of) irreducible represen-
tations of a finite J-trivial monoid M and idempotents in M. For every idempotent e, the
corresponding representation ¢, : M — K is one dimensional and for every m € M given by

lifem=ce
¢e(m): )
0ife g MmM
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1.2.2 Semigroup identities

Let us recall that for a finite set X we denote by X* the free semigroup generated by X.
Assume that S is a semigroup. We say that S satisfies a semigroup identity of the form u = v,
where u, v are two different words in X*, if for any semigroup homomorphism ¢ : X* — §
the equality ¢(u) = ¢(v) holds. Note that if a semigroup satisfies such an identity, then it
also satisfies an identity in two variables, that is an identity such that v = v with u,v € X*
for a two-element set X.

Example 1.51. The free semigroup in two variables does not satisfy any semigroup identity.

It is natural to investigate the relationship between the existence of semigroup identities
of the semigroup S and polynomial identities in the corresponding semigroup algebra K|S].

In general, if a finitely generated semigroup S satisfies an identity then its algebra K[S]
does not have to be a Pl-algebra. For example, every nilpotent group G satisfies a semigroup
identity, see [35], [41], but the group algebra K[G] is a Pl-algebra only if G is abelian-by-finite
[47], Corollary 5.3.8 and Corollary 5.3.10.

On the other hand, it seems that the following is an open problem.

Problem 1.52. Let S be a finitely generated semigroup. Assume that the semigroup algebra
K|[S] over a field K satisfies a polynomial identity (as usual, in this case we say that K[S] is
a Pl-algebra). Is it true that the semigroup S satisfies a nontrivial semigroup identity?

The following result is very useful for establishing existence of nontrivial identities in an
important class of semigroups.

Theorem 1.53 (Theorem 6.11 in [44]). Let S be a finitely generated subsemigroup of the
multiplicative semigroup of the matriz algebra M,(K) over a field K. Then the following
conditions are equivalent.

1. S has no free noncommutative subsemigroups,
2. S satisfies a semigroup identity.

We end the section with the following property of semigroup identities, that can be
extracted from the proof of Lemma 5.3 in [44].

Proposition 1.54. If S is a semigroup and I is an ideal of S such that I and S/I satisfy
semagroup identities, then the semigroup S also satisfies a semigroup identity.

We will later use a concrete construction of a semigroup identity in S from identities in
the ideal and in the quotient. Therefore, let us prove the proposition.

Proof. Let I be an ideal in the semigroup S such that I and S/I satisfy semigroup identi-
ties. As explained earlier we can assume that identities are in two variables. Assume that
ur(z,y) = vi(z,y) is a semigroup identity in S/I and us(x,y) = va(x,y) is satisfied in I.
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Note that we can assume that uy and vy are of the same length, changing them into usvy and
Vous, if necessary. Then we claim that

UQ(ul(l', y)7 Ul(x7 y)) = U2<u1(x7 y)7 Ul(xa y))

is a non-trivial identity satisfied in the semigroup S. Indeed, take any s,¢ € S. Notice
that uy(s,t) € S\ I if and only if vi(s,t) € S\ I, as ui(s,t) = vi(s,t) € S/I and I is
an ideal in S. Thus if ui(s,t),vi(s,t) € S/I, then ui(s,t) = vi(s,t) € S/I. The equality
ug(ur(s,t),v1(s,t)) = va(uy(s,t),vi(s,t)) then follows from the assumption that uy and vy
are of the same length. Moreover, if u;(s,t) € I, then vy(s,t) € I. In this case we have
ug(u1(s,t),v1(s,t)) = va(ui(s,t),v1(s,t)), because us(z,y) = vo(x,y) is an identity in the
ideal I. The assertion follows. O

1.3 Semigroups and algebras of matrix type

As we have seen in Section 1.2.1, completely 0-simple semigroups can be treated as basic
building blocks of finite semigroups. It turns out that in the finite case completely 0-simple
semigroups can be characterized as semigroups of matrix type that satisfy certain additional
conditions. In this section we provide the definition of this class of semigroups, the associated
semigroup algebras and describe some of their properties. For the details we refer to [9,
Section 3.2] and [43, Chapter 5]. We also introduce the notion of the semigroups of quotients
related to such semigroups, see [17].

As we will show in Chapter 2 structures of matrix type occur also in the Hecke—Kiselman
monoid associated to an oriented cycle. This will also play a crucial role in further investiga-
tion of the structure and properties of Hecke-Kiselman monoids and their algebras in more
general cases.

Definition 1.55. Consider a semigroup S, non-empty sets A and B and a matrix P = (ppq)
of size B x A over S! with zero adjoined. Then the semigroup of matrix type, denoted by
MO(S, A, B; P), consists of all triples of the form (s;a,b), where s € SU{0}, a € A, b € B,
with zero element 6, identified with all triples of the form (0, a,b). Multiplication is defined
by (s;a,b) - (s';a',0) = (sppars’; a, ') if ppor € S* and 6 otherwise.

Semigroup S defined in Example 1.42 is a semigroup of matrix type. Indeed, it is clear
that S = M°({e}, [n], [n];1d,,), where {e} is the trivial group, [n] = {1,...,n} and Id, is the
identity n X n matrix.

The famous Rees theorem describes all completely 0-simple semigroups as semigroups of
matrix type, that satisfy certain additional conditions.

Theorem 1.56 (Rees theorem). A semigroup is completely 0-simple if and only if it is
isomorphic with a semigroup of matriz type M°(G, X,Y'; P) over a group G with zero and a
sandwich matriz P that contains a non-zero entry in every row and in every column.
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In the dissertation we will also investigate properties of the (contracted) semigroup al-
gebras arising from such semigroups. If A and B are finite sets, the contracted semigroup
algebra of a semigroup of matrix type Ko[M°(S, A, B; P)| can be interpreted as the algebra of
matrices of size Ax B over K[S] with standard addition and the multiplication a3 = o Pof3,
where o is the standard matrix product. More generally, for an algebra R, finite sets A and B
and matrix P over R the algebra of matrix type, denoted by M(R, A, B; P), is the algebra of
matrices of size A x B with standard addition and multiplication defined as XY = XoPoY,
where o is the standard matrix multiplication. If additionally R has an identity and every
row and column of the matrix P contains a unit of R, the algebra M(R, A, B; P) is called
a Munn algebra. The ideal structure and the prime radical of M(R, A, B; P) admit a clear
description in terms of ideals and the radical of R. We refer the reader to [43, Chapter 5] for
the details.

The next useful tools are the notions of a semigroup of quotients and a completely 0-
simple closure of a semigroup. The idea is to embed a given semigroup into a completely
0-simple semigroup, whose structure is in general more approachable.

Let us consider any element a of a completely 0-simple semigroup S. It is known that
either a* # 0 and then the H-class H, containing a is a (maximal) subgroup of S or H2 = 0.
Moreover, if we represent completely 0-simple semigroup as a semigroup of matrix type
MO(G, A, B; P) , then all H-classes are of the form H,, = {(g;a,b) : g € G} for a € A and
b e B. If pp, # 0, the the corresponding H-class Hy, is a group with the identity element
e = (py,'; a,b), isomorphic to G.

We say that a subsemigroup of a completely 0-simple semigroup S is uniform if it intersects
every non-zero H-class of S.

The following definition, motivated by the connection between certain rings and com-
pletely 0-simple semigroups, was introduced in [17].

Definition 1.57. Let S be a subsemigroup of a completely 0-simple semigroup (). For an
element a in a group H-class of @, denote by a™! its inverse in this group. We say that Q is
a completely 0-simple semigroup of quotients of .S, if every element ¢ € () can be written as
q=ab ! and ¢ = d~'c for some a,b,c,d € S with b?> # 0 and d? # 0.

Let S be a completely 0-simple semigroup M(gr(g), X,Y; P), where gr(g) is the infinite
cyclic semigroup generated by g, X, Y are finite sets and P is a Y x X matrix with coefficients
in gr(g)° that contains non-zero entry in every row and every column. Then consider the
subsemigroup U = M°({g}*, X,Y; P), where {g}* is the cyclic semigroup generated by g.
Note that such a subsemigroup is a uniform subsemigroup of S. It can be easily verified that
S is a completely O-simple semigroup of quotients of U. First note that if p,,» # 0, then
for any v € Z we have (¢7;2/,y)~!

y € Y, there exists 2’ € X such that p,,» # 0 and similarly we can choose y' € Y such that

= (p;f,g_“/;a:’,y) in S. Moreover we know that for any

pywr # 0. Then for (g% z,y) € S, we have (¢%;z,y) = (9% z,v') - ((¢7;2',y))~" if and only if
g“pylxxp;ﬁ,gV = ¢*. As py # 0 and pyr # 0 it is clear that for any k € Z there exist «,y > 0

25



such that the equality g py/x/pym,g'y g* holds. Thus we have shown that S is a semigroup
of right quotients of U. The proof for left quotients is similar.

For every uniform subsemigroup U of a semigroup S there exists the smallest completely
O-simple subsemigroup of S containing U, see Proposition 3.1 in [44]. Such a subsemigroup is
called a completely O-simple closure of U. For instance, in our above example the semigroup
MO(gr(g); X,Y; P) is a completely 0-simple closure of M°({g}*, X,Y; P).

The following lemma will be useful in the calculations of the center of the Hecke—Kiselman
algebra associated to cycle of length 3 in Chapter 8.

Lemma 1.58 (Lemma 2.5.1 in [23|). Let I be an ideal of a semigroup S and let J be a
completely 0-simple semigroup of quotients of I such that J is also a completely 0-simple
closure of I. Then there is a unique semigroup structure on the disjoint union S = (S\1)uJ
that extends the operation on S.

1.3.1 Representations of Munn algebras

As we have already seen in Section 1.2, in general irreducible representations of a finite
semigroup come from irreducible representations of 0-simple principal factors. In this section
we characterize irreducible representations of this class of not necessarily finite semigroups,
following [44, Section 4.2]. Recall that we assume that K is an algebraically closed field.

Let ¢ : G — M, (K) be a representation of a group G. It induces a representation
?: MG, X,Y;P) - M(M.(K),X,Y;p(P)), where o(P) = (p(py.)) for a sandwich
matrix P = (p,;). Such a representation is given by &((¢g;z,v)) = (¢(g9);2,y) for every
(g;2,y) € M°(G, X,Y; P). For any natural number r by X -7 and Y - r we denote r disjoint
copies of sets X and Y, respectively. A matrix p(P) = (p(py.)) with coeflicients in M, (K)
can be further identified with a matrix P of size (Y -r) x (X -7) with coefficients in K obtained
from ¢ (P) by erasing matrix brackets of all entries ¢(py.) of ¢(P). Then the rank of a matrix
P is defined as rk(P)) = sup{t : P € M(y.,yx(x.r)(K) has an invertible ¢ x ¢ submatrix}.

By Corollary 4.25 in [44], it follows that in the case of an algebra of matrix type R =
M(M,(K), X,Y; P) the quotient R/P(R), where P(R) is the prime radical of R, is isomor-
phic to M;(K), provided that t = rk(P) < oc.

Thus, under certain assumptions, a representation of a group G induces a representation
MG, X,Y; P) — M,(K). The following theorem holds.

Theorem 1.59 ([44], Theorem 4.26). Let S = M°(G,X,Y; P) be a semigroup of matriz
type associated to a group G with a sandwich matriz P that has no zero rows or columns.
Assume that ¢ : G — M,(K) is an irreducible representation of G such that rk(P) =t < oo
for a matriz P as described above. Then the induced map

P MG, XY P) = R= M(M(K),X,Y;0(P)) = R/P(R) ~ M,(K)
18 an irreducible representation. Moreover, every irreducible representation of S arises in this
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way and two such representations are equivalent if and only if they are induced by equivalent
representations of G.

Note that the semigroups of matrix type M°(G, X,Y; P) fulfilling the assumptions of
Theorem 1.59 are exactly completely 0-simple semigroups, see Theorem 1.56.

1.4 Preliminaries on Hecke—Kiselman monoids and alge-
bras

1.4.1 Introduction

In this section we present some preliminaries of the main objects of interest in the thesis,
that is Hecke-Kiselman monoids and their algebras. After introducing the definitions, we
look more closely at combinatorial aspects of this class of monoids and the structural results
on their algebras.

Ganyushkin and Mazorchuk in the paper |18] proposed a study of a new class of monoids,
that is a generalization of two another families of semigroups, called Kiselman’s semigroups
and 0-Hecke monoids. These families consist of [J-trivial semigroups generated by idempo-
tents and defined by presentations related to relations similar to braid relations.

Every Hecke-Kiselman monoid is given by a presentation associated with a simple finite
graph. A graph is said to be simple finite, if it has finitely many vertices and at most one edge
between two different vertices. In particular we do not allow loops, that is edges connecting
a vertex with itself. Although in general both oriented and unoriented edges are allowed,
we restrict our attention to monoids and algebras associated with graphs with only oriented
edges. For any graph O, we denote the sets of vertices and edges of © by V(©) and E(O),
respectively.

Definition 1.60. Let © = (V(©), E(O)) be an oriented finite simple graph with n vertices,
denoted by x1,...,x,. The Hecke-Kiselman monoid HKg associated with © is given by the
following presentation.

(i) HKg is generated by elements z? = x;, where 1 <i <mn,
(ii) if the vertices x;, x; are not connected in O, then x;z; = z;x;,
(ili) if z;, x; are connected by an arrow z; — z; in ©, then x;z;v;, = x;x;0; = x;7;.
By K[HKg]| we mean the monoid algebra of HKg over a field K.

In certain cases the ground field K does not play any role in our considerations, and then
we will denote the algebra K[HKg| by Ae.

As all considered graphs are finite simple and oriented, from now on by a graph we always
mean a simple finite graph with oriented edges, if not stated otherwise.
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Example 1.61. 1) If the graph © consists of one vertex, then HKg = (x | 2* = z) has

2)

two elements 1, z.

For the graph © shown in Figure 1.1, the corresponding Hecke-Kiselman monoid HKg,
given by the presentation
(T1,... 20 | %2 = Tj, TiTip1 = TiTi1T; = Tip1 Ty foro=1,...,n—1,
vix; =xjz; forn—12> i —j| > 1)
is the so-called Catalan monoid, [18]. It consists of all functions f : {1,2,...,n+1} —
{1,2,...,n 4+ 1} which are order—preserving in the sense that f(i) < f(j) for all i < j
and order—decreasing, that is f(i) < i for i € {1,...,n+ 1}. Multiplication is given by

the composition of maps. The cardinality of this finite monoid is the so-called Catalan
number.

Figure 1.1: A graph © such that HKg is the Catalan monoid

We denote by C), the Hecke-Kiselman monoid associated to an oriented cycle of length
n with n > 3, presented in Figure 1.2.

Ty < T2

Figure 1.2: An oriented cycle ©,, of length n > 3

Then (), is given by the following presentation:

2 .
(T1, .. 20 | 2 = 4, i = i1 Ty = T Tixp for i =1,...,n — 1,
Tply = Tnl1Tp = T1TpT1,

vix; = xjz; forn —1> |i —j| > 1).

It can be proved that if the graph © is a disjoint union of ©; and ©O,, then HKg =
HKg, ® HKg,, that is HKg is a direct product of HKg, and HKg,, see Definition 1.40. In
particular, the Hecke—Kiselman monoid HKg is the direct product of monoids associated to
connected components of the graph ©.
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We say that two graphs 3, © are isomorphic if there exists a bijection f: V(X) — V(O)
such that vertices x and y are connected by an oriented (unoriented) edge in ¥ if and only if
there is an oriented (unoriented, respectively) edge between f(z) and f(y) in ©.

The following theorem was proved in [18|.

Theorem 1.62. Hecke—Kiselman monoids HKg and HKy;, associated with graphs © and X,
are isomorphic if and only if the graphs © and X are isomorphic.

1.4.2 Combinatorics on words

Now we give a brief exposition of combinatorial aspects of Hecke-Kiselman monoids and
algebras.

For any set X let F' = (X) be the free monoid generated by this set. Elements of F' will
be sometimes called words. The number of occurrences of a generator x € X in a word w is
denoted by |wl|,. By the support of w, denoted by supp(w), we mean the set consisting of all
x € X such that |w|, > 0. Moreover, |w| stands for the length of the word w. A word u € F’
is said to be a factor of w € F, if w can be written as w = puqg for some p,q € F, that is u
is a connected subword of w.

So-called Grébner bases, see for example [56], provide a basic tool in the study of combina-
torial aspects of commutative and noncommutative algebras given by (finite) presentations.
We briefly introduce this notion in the case of semigroup algebras, as the result characterizing
such bases for Hecke—Kiselman algebras will be extensively exploited in our arguments.

Let < denote the degree-lexicographical order on the free monoid F' induced by any well
order on the set of generators X. Then for every f in the free algebra K(X), the leading
monomial of f, denoted by f is the largest, with respect to <, monomial occurring in f.

We consider a finitely generated semigroup algebra A over a field K, namely A = K(X)/I
for some ideal I, which is spanned by elements w — v for some w,v € F. A subset G of the
ideal I is called a Grobner basis of the algebra A, with respect to < and the given presentation
of A, if 0 ¢ G, I is generated by G as an ideal and for every f € I, there is ¢ € G such
that the leading monomial g € F of ¢ is a factor of the leading monomial f of f. The set of
normal forms of the algebra A (depending on the chosen presentation and order), denoted by
N(A) consists of all words that are not leading monomials of elements of the ideal /. It can
be verified, that the word w € (X) is normal if and only if it does not have factors that are
leading monomials in elements of the Grobner basis G. Note that the set N(A) of normal
words forms a linear basis of A.

So-called diamond lemma provides an useful technique for characterizing normal words
in the algebra A, see [6]. Replacing a word w by another word w’ such that w' < w, is called
a reduction determined by a pair (w,w’) € F' x F. Such a pair (w,w’) € F' x F is also called
a reduction. We say that f € K(X) is T-reduced, where T' is any fixed set of reductions, if
the leading monomial of f does not have factors that are the first term, called the leading
term, of the pair (w,w') € T. Bergman’s diamond lemma (see [6]) states that under certain
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assumptions the linear span of all monomials that are T-reduced is the set of normal words
N(A) of the algebra A = K(X)/I, where I = spang{w —w' | (w,w’) € T}.

We proceed with the notations useful in the context of combinatorics of Hecke—Kiselman
monoids and algebras. For any oriented graph O, t € V(0) and w € F = (V(0)) we write
w - t if |w|; = 0 and there are no = € supp(w) such that z — ¢ in ©. Similarly, we define
t - w: again we assume that |w|; = 0 and there is no arrow t — y, where y € supp(w). In
the case when ¢ - w and w - t, we write ¢ «+» w. A vertex v € V(0) is called a sink vertex
if no arrow begins in v. Analogously one defines a source vertex. Sink and source vertices
are called terminal vertices.

We are now in a position to present the characterization of a Grébner basis of Hecke—
Kiselman algebras, obtained in [40], Theorem 3.1.

Theorem 1.63. Let © be a graph with vertices V(©) = {x1,xa, ..., 2, }. Extend the natural
ordering x;1 < xy < +-- < x, on the set V(©) to the deg-lex order on the free monoid
F = (V(0©)). Consider the following set T of reductions on the algebra K(V (0©)):

(1) (twt,tw), for any t € V(O) and w € F such that w - t,
(11) (twt,wt), for any t € V(O) and w € F such that t -+ w,
(ii7) (tywta, tatiw), for any t1,te € V(O) and w € F such that t; > ty and ty «» tyw.

Then the set {w — v, where (w,v) € T} forms a Grobner basis of the Hecke—Kiselman alge-
bra Ae.

To emphasize the use of the theorem above, whenever we consider the set N(Ag) of normal
words of the Hecke—Kiselman algebra Ag = K[HKg] that is obtained via reductions from
the set T', we will say that the elements of N(Ag) are the reduced words of Ag.

The next remark, mentioned in many papers (and also clear from Theorem 1.63), is also
relevant.

Remark 1.64. (1) Assume that 2 € V(0) is a vertex such that there are no arrows of the
form z — x. Then for every word w € HKg the equality xwx = xw holds in HKg.

(2) Assume that x € V(0) is a vertex such that there are no arrows of the form = — z.
Then for every word w € HKg the equality zwx = wx holds in HKg.

Let us look more closely at the Grobner basis of the Hecke-Kiselman monoid C,, associated
to the cycle of length n > 3. Denote its generators by z1,...,x,. If i,7 € {1,...,n} then
x;---x; denotes the product of all consecutive generators from z; up to z; if i < j, or down
to x;, if i > j.

Consider the degree-lexicographic order on (z1,...,z,) induced by z; < --- < z,,. Then
the Grobner basis can be described by the following theorem from [40].

Theorem 1.65. Let © = C,,. Let S be the system of reductions in F consisting of all pairs
of the form
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(1) (x;xi,x;) for alli e {1,...,n},

(2) (xjzi, xiz;) for alli,j € {1,...,n} such that1 < j—i<n—1,

(3) (xn(z1- - mi)xj, w500 (21 - - x;)) for all i,5 € {1,...,n} such thati+1<j<n-—1,
(

(4) (zjuzx;, z;u) for alli € {1,...,n} and 1 # u € F such that |u|; = |u|;i—y = 0. Here, we
write it — 1 =n if i = 1, (we say, for the sake of simplicity, that the word xyuz; is of
type (4i)),

(5) (zyvx;,vz;) for alli € {1,...,n} and 1 # v € F such that |v|; = |v|;41 = 0. Here we
write i + 1 =1 if i =n, (and similarly, we say that the word x;vx; is of type (5i)).

Then the set {w —v | for (w,v) € S} is a Grobner basis of the algebra K[C,].

Corollary 1.66. C,, can be identified with the monoid R(S) of words in F that are reduced
with respect to the system S, with the operation defined for u,w € C, by u - w = Rg(uw),
where Rg(uw) is the S-reduced form of the word uw. More precisely, R(S) is the set of
words in F' that do not have factors of the form w,, where o0 = (w,,v,) € S.

For w,v € F, we write w ﬂ v in case w = uw,z,v = uv,z for some u,z € F and an
element (w,,v,) of the set S of reductions of type (). Here (1) may be one of: (1) — (5),

or even more explicitly (47) or (57), for some i. More generally, w LN may also denote a
sequence of consecutive reductions of type (n). If clear from the context, w — v will denote
an unspecified sequence of reductions.

Note that for example all words (z,,---x1)*, k = 1,2,... are reduced in the monoid C,,.
Thus in particular they are pairwise different. This gives a simple argument to the following
fact, first proved in [4].

Proposition 1.67. Hecke-Kiselman monoid C,, associated to cycle of length n > 3 is infinite.
The following general easy proposition will be relevant in our work.

Proposition 1.68. If a graph X is a subgraph of ©, then the Hecke—Kiselman monoid HKy,
18 a homomorphic image of HKg.

We proceed with a well-known characterization of finite Hecke—Kiselman monoids associ-
ated with oriented graphs, [4].

If the graph ©,, is an oriented graph with vertices x1,...,x, and an oriented edge from
z; to x; if and only if ¢ < j, then the corresponding Hecke-Kiselman monoid HKg, is a finite
monoid (called Kiselman’s monoid), see [18]. It can be verified that every acyclic oriented
graph, that is a graph that does not contain an oriented cycle as a subgraph, is a subgraph of
©,, for some n. Thus from Proposition 1.68 it follows that for any acyclic graph the Hecke—
Kiselman monoid is finite. Moreover, we also get that the Hecke-Kiselman monoid associated
to a graph containing an oriented cycle of length n > 3 has an infinite homomorphic image,
isomorphic to C,, for some n > 3. Therefore we get the following conclusion.
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Theorem 1.69. If a graph © is oriented, then the corresponding Hecke—Kiselman monoid is
finite if and only if the graph is acyclic, that is it does not contain any oriented cycle.

We emphasise that although the above result is easy to prove, the characterization of finite
Hecke—Kiselman monoids associated to graphs with both oriented and unoriented edges seems
to be extremely difficult. Partial results in this direction, obtained in [4] are combinatorially
involved.

Lastly we summarize the relevant material on Green’s relations in Hecke—Kiselman monoids.

First, it has been proved in [29, Theorem 22| that Kiselman’s monoids are J-trivial.
Thus, as observed in [18], from Remark 1.39 we get the following proposition.

Proposition 1.70. Hecke—Kiselman monoids associated to oriented acyclic graphs are [J -
trivial.

Certain combinatorial interpretations of Hecke—Kiselman monoids associated to oriented
cycles are used to obtain that these monoids are also J-trivial in [11, Theorem 4.5.3].

Theorem 1.71. The Hecke-Kiselman monoid associated to an oriented cycle of lengthn > 3
18 J -trivial.

Let us also mention that the problem of characterization of Green’s relations in arbitrary
Hecke-Kiselman monoids is still open.

1.4.3 Background on Hecke—Kiselman algebras

While several papers on Hecke—Kiselman monoids focus on combinatorial and semigroup-
theoretic aspects, we are also interested in the structure of algebras over a field associated
with these monoids. Thus we expand the study, started in [39], of the ring-theoretic structure
of Hecke—Kiselman algebras and their representations.

We now outline the main results in this direction. We will focus only on theorems that
will play an important role in the thesis.

Oriented graphs © such that the corresponding monoid HKg does not contain a free
submonoid of rank 2 have been described in [39]. It turns out that this is strictly related to
the properties of the corresponding algebra Ag; namely to satisfying a polynomial identity
and being of finite Gelfand-Kirillov dimension. More precisely, the following theorem has
been proved.

Theorem 1.72. Let © be a graph. The following conditions are equivalent.
(1) © does not contain two different cycles connected by an oriented path of length > 0,
(2) Ag is an algebra satisfying a polynomial identity,
(3) GKdim(Ag) < oo,

32



(4) the monoid HKg does not contain a free submonoid of rank 2.

This will be extremely useful for us, as we often focus on Hecke—Kiselman algebras that
are PIL. If this is the case, strong structural theorems from Section 1.1.5 can be used.

Consider a finitely generated monoid algebra A = K(X)/I and an order < on the free
monoid F' = (X)) which is compatible with the multiplication in the monoid, that is 1 < w for
all w € F and from v < w it follows that uv < uw and vu < wu for all u,v,w € F. Then A
is an automaton algebra if the set of normal words N(A) (consisting of all words that are not
leading monomials of elements of the ideal I, as defined for deg-lex order in Section 1.4.2) is
a regular language for some presentation and an order compatible with multiplication. That
means that this set is obtained from a finite subset of F' by applying a finite sequence of
operations of union, multiplication and operation * defined by T* = (J,5, 1", for T C F.
An expression built recursively from the set of letters from F' using opgrations of union,
multiplication and * is called a regular expression. We refer to |56, Chapter 5| for more
information on the automaton algebras.

From [56, Theorem 3, p. 97| we get the following useful property.

Theorem 1.73. The Gelfand—Kirillov dimension of an automaton algebra is either infinite
or an wnteger.

As it will be explained in Chapter 6, in the finite dimensional case, the dimension is
related to certain forms of regular-expressions representations of the regular languages of
normal words, [54].

The characterization of Grobner basis of Hecke-Kiselman algebras from Theorem 1.63
leads to the following corollary, obtained in [40|, that will be useful in the calculation of the
Gelfand-Kirillov dimension of Hecke-Kiselman algebras in Chapter 6.

Theorem 1.74. For any oriented graph © the algebra Ao is an automaton algebra, with
respect to any deg-lex order on the underlying free monoid of rank n. Consequently, the
Gelfand-Kirillov dimension GKdim(Ag) of Ae is an integer if it is finite.
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Chapter 2

Structure of the Hecke—Kiselman monoid
C), associated to the cycle of length n > 3

In the present chapter we focus on the structure of the Hecke—Kiselman monoid C,, associated
to an oriented cycle of length n > 3. In the first section we give a characterization of reduced
forms of all but finitely many elements of the monoid C),. This is the key technical tool
used in our approach. Then we apply this characterization to construct an unexpected chain
of ideals inside the monoid with factors that are, up to finitely many elements, semigroups
of matrix type. The chain is introduced in Section 2.2. Next we investigate semigroups of
matrix type inside the monoid and describe certain involutions of C), that induce involutions
of the quotients of the chain. The main result is summarized in Theorem 2.44. In the last
part of the chapter we focus on structural properties of these semigroups of matrix type, that
will be extensively used in the investigation of structural properties of the monoid C,, and
its monoid algebra K[C,] over a field K. In particular we show in Theorem 2.52 that the
semigroup algebras associated to these semigroups of matrix type are prime.

Results from Sections 2.1, 2.2 and 2.3 were mainly (all except for Proposition 2.13 and
Corollary 2.31) obtained during the author’s master’s studies. In most cases we outline the
applied approach and formulate several technical results exploited in the proofs, instead of
providing full proofs. Note that some of the technical results will be also applied in the next
chapters. The detailed proofs can be found in the paper [45]. The content of Section 2.4
(although also published in [45]) is new.

2.1 The form of (almost all) reduced words in C),

The problem of characterizing the reduced forms of elements of Hecke—Kiselman monoids
has been investigated by several authors, for instance in the papers [|5,33,40|. In the case
of Kiselman’s semigroup certain canonical forms of all elements were introduced in [29] and
then applied to study the properties and representations of this semigroup. In the paper
[40] Grébner bases have been characterized for any Hecke—Kiselman algebra associated to an
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oriented graph, see Section 1.4.2 for the details. Another approach in the case of the Hecke—-
Kiselman monoid associated to a chain or to an oriented cycle of any length is presented
in [33], where a diagrammatic interpretation is used. Note that words obtained in [33]| are
not necessarily reduced in the sense that we use in the present thesis.

The aim of this section is to prove that all elements of the monoid C),, defined in Exam-
ple 1.61 3), except for finitely many words, have a very special reduced form with respect
to the deg-lex order and the reduction system .S introduced in Theorem 1.65. This will be
the key to describe the structure and properties of €, in the next sections, as in view of
Corollary 1.66, we may identify the elements of C,, with the reduced words in F.

Note that it is possible to decide whether a given word from free monoid is in the reduced
form when a Grobner basis is given, but in general it is hard to characterize all reduced
elements.

We follow the approach of [40], using the language of Grobner bases and the notation
from Section 1.4.2. Recall that F' is the free monoid generated by z,...,x,. By a prefix
(suffix) of the word w we mean any factor u # 1 such that w = uv (w = vu) for some v.
For every subset Z C F by suff(Z) (pref(Z), respectively) we denote the set of all suffixes
(prefixes, respectively) of elements of Z. For any word w € F, by w® we mean the infinite
word ww . ... The notation introduced after Corollary 1.66 is also used.

Let ¢ = xpxy - - 2Tp—1 -+ Tip1 € F,fori =0,...,n—2 and n > 3. Here we agree that
4n0 = Tply_1 - -+ x1. From Corollary 1.66 it follows that the word (g,;)" is reduced for every
k> 0.

For every ¢ = 0,...,n — 2 we define two subsets A; and B; of F', as follows. First,

A = Sl ({(@n, -~ 2) (@hy - Te1) - (g i),

where s € {0,...,i+ 1}, kyp1 < kspo < -+ < kiy1 < n—1, ks < s and k, > ¢ for
g=s+1,...,1+1.

The convention is that the subset of A; corresponding to s = i+41 has the form suff({zs,,, - - zi11}),
where k; 1 <17+ 1. Also, if s = 0 then the corresponding subset of A; has the form

suff({(zr,, - Tst1) - (Thyyy -+ @ig1)}), where kgpq < kgpo <+ <kipr <n—1and kg > ¢
forg=s+1,...,i+ 1.

The set B; is defined by

Bi = pref({xn(xl e Iilxn—l e x]l) e xn(:[;l e x’irl‘n—l . e ij)xnxn—l e 'Ijr+1}>’

where r 20,4, <1, 1 < - <1 <i+landi+1<7j; <jo<---<Jpy1 <N
Here, the subset of B; corresponding to r = 0 has the form pref({z,z,—1 -2, }).

The following result characterizes all reduced words that have a factor of the form g,,.

Theorem 2.1. Assume that w is a reduced word that contains a factor of the form
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TpTy - Tily_1 Ty for some1=0,...,n—2. Then
_ kb
W= a(TpT1 - TiTp-1" " Tit1)

for some a € A;, b € B; and some k > 1. Moreover, all words of this type are reduced.

We will use the following convention. By a block we mean a factor of the form zy, - - - z;,

for some j € {s,...,i+ 1}, appearing in the elements of the set A; or a factor of the form
Tp(T1 - T4y Ty - -2, ), for k€ {1,...,7}, or x,2p_1 -~ ,,, appearing in the elements of
B;.

The main idea of the proof is to analyse the possible forms of reduced words that satisfy
certain additional restrictions, using the Grobner basis from Theorem 1.65.

Let us consider the word w = aqﬁyib, where a € A;, b € B; and k£ > 1. Then a factor
a € A; is exactly the maximal prefix of w that does not contain z,. Similarly, b € B; is
a suffix of w which appears after the last occurrence of the factor g,; in the word. This
suggests that it is useful to start with investigating possible occurrences of x,, in the reduced
words.

Let us recall several technical lemmas from [45] that lead to the description of possible
factors v in the reduced words of the form x,vx,,.

Lemma 2.2. If w = z,_ u is a reduced word, where uw € F is such that |ul, = 0, then
W= Tp_1- T for some k > 1.

Lemma 2.3. If w = z,z1u is a reduced word, where |ul, = 0, then w is of one of the forms
1. w=z,2129 - TiTp_1---x; for some 1 <1 <j<n—1;
2. W= xpx1T9--x; for somel <i<n—1.

Lemma 2.4. If w = z,ux, is a reduced word, where |ul, = 0, then u is of one of the forms
1. u=xp 1 213
2. U=T1TTp_y -2 for 1 <i<j<n—1L

The following lemma shows that in the case where i = 0 or + = n — 2, the reduced words
with a factor ¢,; have an extremely simple form.

Lemma 2.5. If a reduced word has a factor of the form x,xy---x,_1 or T,xn,_1---x1, then
it must be a factor of the infinite word (x,x1 -+ 2, 1) or (TpTp_1---x1)>

We refer to [45] for the detailed proofs. The reasoning is based on the repeated use of the
following observation.

Observation 2.6. 1. If x;---z;x; is reduced, where ¢ > j and k > j, then either i # n
and k>i+1lori=mn,j=1and k =n.
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2. fx; -2z is reduced, where ¢ < j and k < j, then either 1 #i=jand k=7 —1 or
j=nand ke {1,n—1}.

3. If xpx;---x; is reduced, where ¢ < j and k > ¢, then either ¢ = j and Kk =7+ 1 or
(i,k) = (1,n).

4. If xpx; - - - x; is reduced, where ¢ > j and k < 4, then £ < j.
5. If w2y - - - wyx; is reduced, where 1 <i<n—1, then j € {i+1,n—1}.

We give a proof as an illustration of the computations used in the lemmas dealing with
reduced forms of words in the monoid C,,. Working with the reduction system S from
Theorem 1.65, we follow the notation introduced after Corollary 1.66.

Proof. 1. Let ;- - - z;xy be reduced, where ¢ > j, k > j and 7 # n. Suppose that k < i41.
Then j < k < i+ 1 and consequently z; - - - x;x;, has a factor xy, - - - x;24 which can be
reduced, namely xj, - - - x4 @) Tp—1 - T;Tx. Now assume that ¢ = n. Then, if j > 1
we get as in the previous case that z; - - - x 25, can be reduced using a reduction of type
(5). Similarly for j = 1 the word is of the form x, ---xjx;. Suppose that k& # n,
then x,, - - - x1x) has a factor xpag_q - x1x) With |xg_1 -+ 21|gr1 = 0, which leads to a
contradiction.

2. If i = j and k < j, then x;z; is reduced for j # 1 and k = j — 1 or for j = n and

. 2 . . . . .
k =1, as otherwise z;xy, @), xpxj. Assume now that 7 < j and k < j. Fori < k < j,
the word x; - - - x;x has a factor x, - - - 24, which is not reduced. If k <4 < j, then

for (k, j) # (1,n) the word has a factor x;z @), zx;. The assertion follows.

3. Assume first that ¢ = j. Then for (i, k) # (1,n) and k # i + 1 we have zyx; @, Ty,
and thus the word is not reduced. If i < j and k > i, then for (i,k) # (1,n) and
k # 14 1 we have a factor z,z; as before. Moreover, if kK =i+ 1, the word has a factor
Ti112;Ti11, which is not reduced.

4. It k& > j, then zpx;x;_1---2; is not in the reduced form, as it contains a factor
TpT; -+ Tpy1Tk, such that |z; - xpiq1]p_1 = 0.

5. This is a straightforward consequence of reduction of type (3) from Theorem 1.65.
[

The next lemma will be used to determine the desired shape of the elements of B;, which
are the endings of the considered class of reduced words.

Lemma 2.7. Let w € F' be of the form w = 2,1+ TjTp1 - TjTpT1 - TigTp—1"* Tjy,
where 1 <4, < jp, <n—1forp=1,2. If wis a reduced word, then

1. i1 2 1,
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2. J1 < Ja2-

Moreover, if i1 = is = i, then j1 = 1+ 1 and if j = j1 = ja, then iy = iy = j—1. Additionally,
if i1+ 1 =71 and is + 1 < jo, then jo > 7;.

Inequalities in the proof are obtained by excluding non-reduced factors of the form zpway,
where k € {1,...,n}, |w|x = 0 and |w|x+1 = 0 or |w|x—; = 0 (where for k =n weset k+1 =1
and for k =1 we set k — 1 =n).

Applying the above lemmas to the consecutive factors of the form

TpT1 - Tiy Lot - L5y T TigTn_1 - T
we get the following corollary.
Corollary 2.8. If a reduced word w s of the form
u$n(x1 ST T 'le)ﬁn(llh S Ty T sz) . xn(xl Xy T 'ﬂfjr)lfnv
for some u,v such that |u|, = |v|, =0, then it follows that
b S < S <SS < g

Furthermore, if i + 1 = ji for some k, then iy = is and jx, = js fors=1,... k— 1.
Moreover, if for some | we have i;,+1 < j;, then i, < t,_1 < - - < <iy+1<5< <.
If 1l > 1, then also iy < i1 < Ji—1 < Ji-

The next few lemmas will be used to deal with the shape of the elements of the set A;,
which are the beginnings of the considered class of reduced words.

Lemma 2.9. Let w be a reduced word such that
w = U(l'ks s $S)U$n$1 X1t T,

wherei=1,....n—3, ks <s<i+1, |ul; =0 for j=1,...,s and |u|, = |v|, = 0. Then
V= ZpXypyq - Th,—1 for somer > 1.

The idea of the proof is to apply Observation 2.6 3, using the assumption that |v|,, = 1.

Lemma 2.10. Assume that a reduced word w is of the form
w fr— u(xks DY xS)(l’k‘S+1 DY ‘%’S—"—l) DY (xk7/+1 ... xz—i—l)xnxl PR xzxn_l DR xl—'—l

where s <i+1, ks > s, kg > q forq=s+1,...,i+1, |u],, = 0. Thensuft;(u) € {zg,11,25-1}

Let suff;(u) = x;. If j < ks then from Observation 2.6 4 it follows that j < s — 1.
Moreover, for j > ks + 1 the word w has a factor z;x;, which is not reduced.
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Lemma 2.11. Assume that a reduced word w is of the form
W= ULpT1 " TjTpy_1"" 'xi-f—l

for some i € {1,...,n— 3}, where |u|, =0 and u has no factors of the form x,-- - x;, where
[ <j. Then u is of the form

u = (xks .. .x8)<xks+1 .. .x8+1) o e (‘I.ki+1 .. .xi+1)7

where s <141, ks <ksp1 < - <kipn<n—1,k;=>s,k;>qforq=s+1,...,i+1

The idea of the proof is to exclude factors of the form z;ux; such that |ul;—; = 0 or
|ulj+1 = 0, where x; is the suffix of u. Then it is enough to apply Lemma 2.10 several times
together with the assumptions.

Lemma 2.12. If w is a reduced word and w = ux,Ty-- X;Tp_1- Tirq for some i =
1,...,n—3 and some u € F such that |u|, =0, then u is of the form

w= (Th, o ) (Thyyy - Tarr) o (Thgyy o Tiga),s

where s < i+ 1, key1 < ksyo < -+ <kipr <n—1andk,>q forq=s+1,...,i+1 (but
perhaps ks < s).

From Lemma 2.11 it follows that v = z(zk,,, - - Te41) - - - (@ky,, - - Tig1) for certain z such
that suffy(2) = z;_12; for certain j and ksy1 < ksyo < -+ < kjp1 < n—1and k, > ¢ for
q=s+2,...,i+1and ks;; > s+ 1. Then applying Lemma 2.10 we get two possible suffixes
of z, one of which can be easily excluded. Then the assertion follows from Lemma 2.9.

We are ready to show how the proof of Theorem 2.1, published in the paper [45], follows
from the above series of technical lemmas.

Proof of Theorem 2.1. From Corollary 1.66 it is clear that all words described in the
statement are reduced.

Let w € F be a reduced word that contains a factor ¢,;. By Lemma 2.5 the assertion
holds for i = 0,n—2. Thus we assume further that i € {1,...,n—3}. Notice that if the word
w has the form z,x; - z;x,_1 - z;41v for some v € C,,, then we must have pref(v) = x,.
Indeed, if pref(v) = z; for j < i, then g, ;x; ), qn,i- Similarly, if i +1 < j < n — 1, then

(55)
AniT; ~5 BTy Ty CTj1 i1 Tyl
From Lemma 2.4 and Lemma 2.7 we know that if i = 1,...,n — 3 then w is of the form

u($nxl e xilxnil . e x]l) PN (Inl’l . e ximmnil N I‘jm>$nvu

for some m, where 1 < i), < jp < n — 1 for every k and |ul, = |v|,, = 0.
In view of Corollary 2.8 this implies that w is of the form

U(TpT BT 1 Tig1) T (T T T xy) e T (T T Ty Ty, )0, (2.101)
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where i, < i, < - <@ <i+landi+1<j < jo <--- <y and |ul, = |v], =0,
where the factor of the form (zy - 2,21 2j) - xp(21 - 25, Tp1 - - - ;) does not have
to occur in w (that is, w can be of the form u(x,x1 - - 22, 1 - - - 2441)*2,v) and then we put
r=20.

Notice that pref,(v) € {z1,2,-1}, since otherwise w contains a factor z,xs for s < n,
which is not reduced.

If pref,(v) = ,-1, Lemma 2.2 implies that v = x,,_y---x;,,. Moreover, we must have
Jr < Jr+1, as otherwise w has a factor x; x,, - - - x; 412, such that |z, - - x;,41];,—1 = 0, which
is not reduced.

If pref, (v) = x1, then by Lemma 2.3 and Corollary 2.8 we get v =21+ -2, Tn_1 - Tj,,,
for i,41 < i, and jr1 > j., if r > 0. If r = 0, then in view of (2.1.1) we have w = pq, where
p € F and

q = Tpdy " TiTp-1"" " Ti41Tnd1 " " L3 Tp—1 """ Ljy

Corollary 2.8 implies that i1 <7 and j; > ¢ + 1. The desired form of the elements of the set
B; follows.

Since k > 1, the desired form of the elements of the set A; follows by Lemma 2.12. This
completes the proof of Theorem 2.1. [J

Now we calculate the size of the set A; occurring in Theorem 2.1, for every ¢ =0,...,n—2
and n > 3, that was calculated in [46].

Proposition 2.13. For any i € {0,...,n— 2} and n > 3 we have |A;| = (Zfl)

Proof. For i = n — 2 the assertion follows from Lemma 2.5. Thus next we assume that
1 <n—3.

By the description of the set A; from Theorem 2.1 it is clear that every element w of A; is
exactly of one of the forms

Low= (g, 2s)(@hyyy - Tog1) - (Thyyy - Tigr) Where i +1 > 5 > 1, s +1 < kgyy <

- < ki1 <n—1and s > kg for s =i+ 1 we assume that w = (2, , - -~ 2541) with
i+ 12k

2. w = (T, T) Ty - Tog1) Ty - Tig1) Where 1 +1 2> 5> 1, s <k < -+ <
kivi <n—1;

3. w=1.

Choose 1 < s < i+ 1and 0 < ¢ < n—3. Then the elements w from Case 1. are in
a bijection with strictly increasing sequences (ks,..., k1) of natural numbers such that
1<k <s5<s+2< ke <+ < kipqp <n—1. It is easy to see that there exist exactly
s(?__j;f) sequences of the above form. Similarly, elements w of the form as in Case 2. are
in a bijection with strictly increasing sequences (ks, ..., k;y1) of natural numbers such that

s+ 1< ks < -+ <kiy1 <n—1. There are exactly (”_3_1

FS”) such sequences.
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It follows that
i+l
n—s—1 n—s—2
A +;<(z’—s+2)+s(i—s+1>)

Thus, it is enough to prove that 1 + Zlﬁ((?:;:;) +s(7757) = () for n > 3 and
0<e<n—3.

Moreover, if i = n — 3, then by a direct calculation we get that
S n—s—1 n—s—2 n
1 =
+;((n—3—1>+8<n—3—2)> (n—Q)’
It is easy to check that

i+1 i+1 .
n—s—1 n—s—2 n—1—3+k
1 E :E 2 —k )
+s:1 ((i—s+2)+s(i—s+1>) (i+ )( k )

k=0

as desired.

Indeed, substituting £ = 7 + 1 — s in the sum in the left hand side, we get that this sum is

equal to
i n—i—2+k ! n—1—3+k
1 +1—k =
+;< kot 1 )+,§(H >< k )
it+1 . i .
n—1—3+k ) n—1i—3+k
k=1 k=0
i+1 . i+1 .
_ <n—z;3+k’)+ (z+1—k)(n_7/;3+k):
k=0 k=0
i+1
—— k
_ (z+2—k)(n zk3+ >’
k=0
as claimed.

We proceed by induction on n to prove that
i+1 .

—i1—3+k
Z(z’+2—k)<n e ):(”)
— k 141

For « = 0 and arbitrary n > 3 we have 1 + ("12) + ("53) = (’11) and the assertion follows. If
n = 3, then we have 0 < ¢ < 0, so the proposition holds.
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Assume now that the equality is true for some n and every ¢ < n — 3. Consider the sum
i+1 .
1)—i—3+k
Z(’i+2_k)((n+ )-i-5+ )

k=0

for n —2 >4 > 0. Using (m,jl) =)+ () ifk>1and (mgrl) = (7)) we get

Sfu+2_m<m+1yz—3+%):

= Siu+2—m(n_i;3+k)+§5@+2—k%f‘2:?+k>

k=0 k=1

From the induction hypothesis it follows that the first sum is equal to (lﬁl) Substituting

m=k—1and j=17—1 we get
i+l . j+1 .
, n—t—3+k , n—j—3+m
2—k = 2 — )
Sivz=n("T ) = e (M P

From the induction hypothesis it follows that the above sum is equal to (’Z) Now, using
n n n+1

(z’+1) +(7) = (zjrrl) we get

ak (n+1)—i—3+k n n n+1

D (i+2-k) = (. +(.)=1.

k 1+ 1 1 1+ 1

k=0

and the assertion follows. O]

Our next aim is to show that Theorem 2.1 describes all but finitely many elements of the
monoid C,. Let us introduce the following crucial notation.

Definition 2.14. For every i = 0,...,n — 2 we denote by M; the following set
M; = {agi b€ Cya € A b€ Bk > 1} (2.1.2)
(the set of reduced forms of elements of C), that have a factor g, ;). Define also M = U?;()? Mi.

Corollary 1.66 ensures that two elements w,w’ € M are equal in C, if and only if the
equality w = w’ holds in the free monoid F' generated by x1,...,x,. In particular, we can
write M C C,,. This identification will be often used without further comment.

Proposition 2.15. C,, \ M is a finite set.

The set C), \ M consists of all words in C,, that do not contain a factor of the form
Qni = TpT1 - TiTp_1 - Tiy1 for 2 =0, ..., n—2. The idea of the proof that there are finitely
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many such words is to estimate the maximal possible length of reduced words without a
factor ¢, for any ¢ € {0,...n —2}. If z,, does not occur in the reduced form of the word
w, then, as factor x;uz; with |u|;_; is not reduced, it can be proved that |w|,, < m for every
m € {1,...,n — 1}. Otherwise, it is possible to estimate the number of occurrences of the
generator x, using the form of any reduced word x,uz, with |u|, = 0 from Lemma 2.4 and
Corollary 2.8. We conclude that there is a number C' = C(n) such that if w is in C, \ M,
then |w| < C. As there are only finitely many words w with |w| < C, the assertion follows.
We refer to Section 2 of [45] for the detailed proof.

As a consequence, using the characterization of sets M; in Definition 2.14 we get an
alternative calculation of the Gelfand-Kirillov dimension of the Hecke-Kiselman algebra as-
sociated to an oriented cycle obtained in Example 2 from [39].

Remark 2.16. The Hecke—Kiselman algebra K[C,] over a field K is of the Gelfand—Kirillov
dimension one.

We end the section with an easy observation of independent interest. It will be later
useful in the proofs of various properties of the Hecke—Kiselman monoids C),, by induction

on n.
Lemma 2.17. Assume that y1,%s,...,Yn_1 are the consecutive vertices of a cyclic graph
Cr—1. Consider an epimorphism ¢ from the free monoid Y = (y1,...,yn—1) to the submonoid

(xo, ..., Tp_1,xn21) of F defined by

o(yi) =

Tit1, fOT’nggn—Q,
Tpxy, fori=n—1.

Then ¢ induces a homomorphism ¢ : C,_1 — C,, given by the formula ¢(w) = ¢(w), for

every w € (Y1,...,Yn—1). Moreover, ¢ determines an isomorphism

Cn,1 = <.T2, . ,an,l,xnm) - Cn

Proof. By a straightforward computation it is verified in [40], Lemma 4, that ¢ is a ho-
momorphism. We claim that if a word w = w(yi,...,y,—1) is reduced in the sense of the
reduction system S as in Theorem 1.65, defined with respect to the deg-lex order extending
y1 < -+ < Yp_1 in the free monoid Y = (y1,...,yn_1), then the word w(xs, ..., x, 1, 21)
is reduced with respect to the system S in the free monoid F' = (z1,...,x,).

If w € Y then it is clear that if ¢(w) contains a factor that is the leading term of a
reduction of type (1) in Theorem 1.65, then also w contains such a factor. Assume that ¢(w)
contains a factor x;z; of type (2). Then w contains a factor y;_1y,—1. Assume that ¢(w) has a
factor z;ux; that is of type (4) or (5). If i = 1 or i = n then ¢(w) has a factor z,x1vx,21. If v
does not contain zs (z,_1, respectively) then ¢~1(v) does not contain y; (y,_», respectively),
and we are done. If i # 1,n, and u does not contain x;,; (z;_1, respectively) then ¢~ (u) does
not contain y; (respectively, y;_» if i > 2; and if i = 2 then ¢~ (u) does not contain y, 1), as
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desired. Assume that ¢(w) contains a factor of the form z,(xq - --;)x; for i,5 € {1,...,n}
such that i +1 < j < n — 1. Then w contains a factor y,—1(y1 - - - ¥i—1)yj—1 OF Yn_1Y;—_1, and
the assertion follows as well. This proves the claim.

Therefore ¢ is injective. The result follows. O]

2.2 An ideal chain

Our next goal is to introduce a special ideal chain in the monoid C,, that is strongly related
to certain structures of matrix type. This will be essential when dealing with the structure
and properties of the algebra K[C,], and consequently of every Hecke—Kiselman algebra, in
the forthcoming sections. We refer to [45, Section 2| for the detailed proofs.

In view of Corollary 1.66 we identify elements of C,, with the (unique) reduced forms of
words in F.

Definition 2.18. For every i =0,...,n — 2 let us introduce
I ={w e C, : CLwC,, N {g,;) = 0}.

We also define I_y = Iy U Cy,¢p,0Ch.

It is clear that every I; is an ideal in C,,, if it is non-empty. We claim that I,,_o = (). This
is a consequence of the following observation.

Lemma 2.19. Let w € C,,. If k = 1,...,n then the reduced form of (Tyi1 - Tpx1 - Tp)wW
is a factor of the infinite word (xpx1 - Tp_1). Moreover (Tgiq - Tpxy -+ Tp)w has a prefix
of the form xp,q - Tpxy -+ - Tp.

To prove the lemma it is enough to analyse the possible reduced forms of the word
(Thg1 -+ - Ty - - - )z for any index j € {1,...,n}. We omit the details.

It follows that for any word w, the reduced form of the element (x,z;---x, 1)w is a

factor of (z,xq---x,-1)®. Consequently, we know that (z,z;---z,—1)w ¢ I,_5. Therefore
we get the following corollary.

Corollary 2.20. I,,_, =1

A dual version of Lemma 2.19 also holds. In order to prove this, we introduce a natural
involution of the monoid C,, that will be useful also later.

Definition 2.21. Denote by (z1,...,x,) the free monoid generated by zi,...,x,. Let 7 :

(x1,...,Tn) —> (21, ...,x,) be the involution such that
Tpy fori#n
T(2) = , :
Tp fori=n

It is easy to see that 7 preserves the set of defining relations of C),. Hence, it determines an
involution of C,,, also denoted by 7.

45



As T(w(Tpy1 - Ty -+ Tk)) = Ty pTy—gt1 Ty -+ Tpgp—17(w), from Lemma 2.19 we
know that the reduced form of this word is a factor of (z,x;---x,_1)> with a prefix of
the form x, ;- - x,21---x,_r_1. It can be easily verified that the image of any factor of
(xpwy - x,-1) under 7 is also a factor of (x,z1 -z, 1)°. Therefore, applying 7 to the
element 7(w(xgy1 -+ T2y -+ x)), we obtain the following dual version of the lemma.

Lemma 2.22. Letw € C,,. Ifk =0,...,n—1 then the reduced form of w(xp 1 - Ty -+ T)
is a factor of the infinite word (x,xq - - xy—1)®. Moreover, wW(Tgiy - Tpxy - - ) has a suffix
of the form xyp,q - Tpxy -+ - Tp.

Let us return to properties of the ideals I; for ¢ = 0,...,n — 3.
Lemma 2.23. [, C I, fort1=0,...,n — 3.

It can be verified, using the reductions from Theorem 1.65, that for every i =0,...,n—3
and [ > 1 there exist u,v € C,, such that ug, ;v € (gn,+1), that is ¢',; ¢ ;1. Suppose that
there exists w € I;;1\ /;.- Then in particular for some u,v € C,, and | > 1 we have vwv = qf“
Thus there are also v/, v’ for which vw'uwvv" € (g,i11), that is w ¢ I, ;. The assertion follows.

Therefore we get the following chain of ideals in C,

In73<]"'<][0<1171<10n-

In general, it is difficult to use the definition of the ideals I; to determine the minimal j
such that a given element w of C,, satisfies w € I;. In order to prove that certain elements
of C), are contained in I; we introduce an auxiliary chain of ideals. It turns out that the
following representation introduced in [4], and generalized in [33], is useful in our setting.
Let Map(Z",7Z") denote the monoid of all functions Z" — Z", under composition. Consider
the homomorphism f : C,, — Map(Z", Z™) which is defined on generators z; of C,, as follows.

(M, ...my_1, Mi1, Miy1,...,my) fori#n
flz)(my,...,my) = {

(my,...,my_1,my + 1) for i = n.

If w € C, then the components of f(w)(my,...,m,) are polynomials in the variables
mi,...,m,. Let supp(f(w)) be the minimal subset N of the set M = {1,...,n} such
that for every (mq,...,m,) € Z" the components of f(w)(my,...,m,) are polynomials de-
pending on the variables with indices from the set N. So |supp(f(w))| denotes the num-
ber of variables on which the value of f(w) depends. For example, if f(w)(mq,...,m,) =
(M, ... mMi—1, Mig1, Mis1, ..., My), then supp(f(w)) = {1,...,i—1,i+1,...,n} and thus
| supp(f(w))| =n—1.

It can be proved using direct computations and induction on £ > 1 that the value of
| supp(f((¢n.i)*))| does not depend on k.

Lemma 2.24. For every k> 1 and i =0,...,n — 2 we have |supp(f(q},;))| =n—i—1.
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For every ¢« = —1,...,n — 2 consider the following set
Qi = {w € Gy, : [supp(f(w))| <n —i—2}.

Then Q; is an ideal in C,, for ¢ < n—2 because for every z,y, w € C,, we have supp(f(zw)) C
supp(f(w)) and supp(f(wy)) € supp(f(w)). Thus, we get the following chain of ideals

@IanQanf?)g"'nglgCn'

This chain is strongly related to the ideals I; introduced in this section. Indeed, if we had
w € @Q; \ I;, then from the definition of I; for some u,v € C,, we have uwv = qu- for some
[ > 1. On the other hand, from Lemma 2.24 we know that qﬁm ¢ (Q;, which implies that also
w ¢ @Q;. Therefore we have proved the following.

Lemma 2.25. For every i =0,...,n — 2 we have Q; C I,.

Now we exploit Lemma 2.25 to show that certain families of elements are in ;.
Lemma 2.26. Foralln—12>j>1+1>1 we have

1. xpxy - 2Ty Tjp1 € ;15

2. W =1Tj  Tip2Tn®1 " Tip1Tp—1 - Tjp1 € [;;
where for j =n —1 we put w = x,_1++ TiyoXpT1 -+ Tiy1.

The first part is a direct consequence of Lemmas 2.25 and 2.26. The second is also based
on Lemma 2.25 and the computation of f(w) for words w as in the lemma.
The following is a direct consequence of the definition of the ideals I; and of Lemma 2.26.

Corollary 2.27. For every i € {0,...,n — 2} we have qu- € I,_1 \ ;. Moreover, for all
ie{l,...,n—2}andj € {i+1,...,n—1} we have x; - - - ;10,1 -+ TiTp_1 -+ Tj1 € L1\ L.

The following will be crucial for the results of the next section, where we investigate the
sets M; U {0} from Definition 2.14 after factoring out the ideal I;.

Theorem 2.28. Let w € C,. Then for every i € {0,...,n — 2} we have ¢,;wq,; € {qs, :
k>2}UI,.

Let us make a few comments concerning the proof. For the details we refer to [45]. The
idea is to proceed by induction on the length of the (reduced) word w. The assertion is
clearly true if w is the trivial word 1. For non-trivial w = z;w’ for some j € {1,...,n},
we investigate the reduced form of g, ;wgq,;. We use techniques as in Observation 2.6 to
show that for j < i the word ¢, ,wq,; can be reduced to the word of the form ¢, w'q,;
and in this case the assertion holds by the inductive hypothesis. By similar methods we
obtain that for ¢« < j < n the element ¢, ;wgq,; can be rewritten to the form with a factor
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Tj_1-* TipoTn®1 - Tiy1Tp_1 - - - Tj, Which is contained in [; in view of Lemma 2.26. If j = n
we analyse a suffix of w. More precisely, we write w = w”z,w’ with |w'|, = 0 and use
Lemmas 2.2 and 2.3 to obtain the possible form w’. Then, depending on this form, either we
can apply the inductive hypothesis to end the proof or Lemma 2.26 to show that g, ,wgq,; € I,.

2.3 Structures of matrix type
Our next aim is to refine the information on the ideal chain
(Z): n72<][n73<]"'<110<1171<10n

of C, defined in the previous section. We will show that every factor I,_,/I;, for j =
0,...,n — 2, is, up to finitely many elements, a semigroup of matrix type over a cyclic
semigroup and also that C,,/I_; is finite. Namely, the elements of the family Mj, described
in Definition 2.14, with a zero element adjoined, treated as elements of the Rees factor I;_,/1;,
form a semigroup of matrix type. Using certain natural involutions on C,,, we will also show
that the corresponding sandwich matrices are square matrices and they are symmetric. In
particular, this means that, for every j, there is a bijection between the sets A; and B;, which
is not clear directly from the description obtained in Theorem 2.1. The details of all omitted
proofs can be found in [45, Section 3|.

Recall the definition of the sets M; and M from Definition 2.14, describing sets arising
from Theorem 2.1. For every ¢ = 0,...,n — 2 we write

Recall that we identify elements of C),, with the corresponding reduced words. Hence, M =
U?:_OQ M, consists of elements of C,, that have (in the reduced form) a factor of the form g, ;,
for some i. Moreover, from Proposition 2.15 we know that almost all elements of C,, are in
this set.

Certain generalizations of the involution from Definition 2.21 that preserve the ideals I;
and sets M;, for i € {0,...,n — 2}, will be useful in this context. In particular, they can be
used to establish an internal symmetry of every set M;.

Definition 2.29. Let 7 : C,, — C,, be the involution defined in Definition 2.21, that is

7(x;) = x,_; for i # n and 7(x,) = z,,. Denote, as before, by (z1,...,xz,) the free monoid
generated by xq,...,2,. Let o : (z1,...,2,) — (21,...,2,) be the automorphism such
that o(z;) = x;1 for every i = 1,...,n, where we put x,,1 = ;. It is easy to check that o
preserves the set of defining relations of C,,. Hence, o can be viewed as an automorphism of
C,. Therefore, the map o'7 also is an involution of C,,, for i = 0,...,n — 1. We will denote
the involution o**17 by v;, for i =0,...,n — 1.

It can be easily computed that x;(gn;) = ¢n;. Moreover, investigating possible reduced
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forms of x;(q;b) and x;(aqy;) for m > 1, a € A, b € By, exploiting the fact that x7 = id we
get the following important corollary.

Corollary 2.30. The involution x; satisfies: xi(qk;) = qi; for every k > 1, x;(A;) =

Bi, xi(B;) = A, and in particular x;(M;) = M;.

As noticed in Lemma 2.5, if ¢ = 0 or ¢ = n — 2, then reduced words in C,, that have a
factor of the form g, ; must come from the infinite word (g, ;). It is then clear that for such
a word s we can find w, z € C,, such that wsz € (g,;). The latter property remains valid for
all i € {0,...,n —2}.

From Corollary 2.30 it follows in particular that y; determines a bijection between the
sets A; and B;. Thus, from Proposition 2.13 we know also the cardinality of B;, which is not
obvious from the definitions of these sets.

Corollary 2.31. The set B; has exactly (H’:l) elements, for every i € {0,...,n—2}.
Theorem 2.32. Leti € {0,...,n—2}. Then:

1) for every a € A; there exists w € C, such that wa € (gn;);

2) for every b € B; there exists w € C,, such that bw € (gy,.;).

Note that in view of Corollary 2.30 it is enough to prove assertion 2). Moreover if the
theorem holds for some word then it also holds for every prefix of this word. We proceed
by induction on the number of blocks in b € B;, introduced just after the formulation of
Theorem 2.1. We construct a specific word v € (), such that the reduced form of bv is ¢, ;t/
with &' € B; with smaller number of blocks. Namely, if

b = a’:n(xl LY lexn—l ... ‘r]1> ... x71/(x1 ... "'Ij'L»px'rL—l DY ijv)xnxTL—l ... x]r+17

then v = ;412251 - - 41, Where for 44 = i, we put v’ = x;,_1 - 2,41, satisfies the
required conditions. The necessary calculations can be found in [45]. From the inductive
hypothesis we get that for some w’ € C,, we have b'w’ € (g,,). It follows that bvw’ € (),
which completes the proof.

As a consequence, we are able to place the set M; in the ideal chain from Section 2.2.

Proposition 2.33. For every i € {0,...,n — 2} we have M; C I,_y \ I,.

From Corollary 2.27 we know that M, C I,_y. Moreover from Theorem 2.32 and the
definition of I; it follows that M; C C, \ ;.

Applying the above corollary and Proposition 2.15 we get that the sets (I;_; \ I;) \ M; are
finite.

Corollary 2.34. For everyi € {0,...,n — 2} the set (I,_y \ I;) \ M; is finite.

49



By Proposition 2.15 we know that C,, \ M is a finite set. Moreover, Proposition 2.33
implies that for every ¢ = 0,...,n — 2 we have M; C I; 1\ I; C I_4, so that also M C I_;.
Our next observation follows.

Corollary 2.35. C,,/1_1 is a finite semigroup.

Now let us investigate some useful properties of the automorphism ¢ and the involutions
X: introduced in Definition 2.21.

Lemma 2.36. For every i € {0,...,n — 3} we have o(I;) = I,. Moreover, o(w) € M; for
almost all w € M;, if i € {0,...,n —2}.

As 0" = id, for the first assertion it is enough to to prove that o(C, \ I;) C C,, \ I;. If
w € C, \ I;, that is for some u,v € C,, we have uwv = q7;, then a direct computation shows
that o(uwv) is of the form aqgjlb for certain a € A;, b € B;. Thus we get the assertion
from Theorem 2.32. The second part now follows from Proposition 2.33 and Corollaries 2.34
and 2.35.

Lemma 2.37. For every ¢ € {1,...,n — 2} and every non-negative integer m we have
O'mT(Ii_l \ ]z) = 1;—1 \ Iz and O'mT(IZ'_l) = Ii—1~

First, Corollary 2.30 and the definition of the ideals I; are applied to show that o*™17(I;) =
I;. Then, as o™ = id, it follows that 7(I;) = I; for every i € {1,...,n — 2}. Consequently,
from Lemma 2.36 we get the assertion.

In the two extreme cases, namely for ¢ = 0 and ¢« = n — 2, the description of M; is quite
simple (see Lemma 2.5). In particular, M,,_5 coincides with the set of all factors of the word
(xpx1 -+ xy_1)%, that contain a factor z,z; - - x,_1. Moreover, from Lemmas 2.19 and 2.22
it can be proved that M,_ is a two-sided ideal in C,. More precisely, the following holds.

Corollary 2.38. M,_, = Co(Tpxy Tp1)Chp.

In the second extreme case, namely when ¢ = 0, we have MO C Cngn,oCpn € I_1. Moreover,
equality holds modulo the ideal Iy, as proved in the following lemma.

Lemma 2.39. [_; = ]\2[0 U 1.

Recall that I_; is defined as IyUC,,q,, 0C,,. Since I_; is an ideal in C,, and M, C Cr(gn0)Ch,
it is clear that My U Iy C I_;. Note also that dno € M,. To prove the opposite inclusion, it is
enough to check that My U I, is a two-sided ideal. Moreover, Corollary 2.30 and Lemma 2.37
imply that if My U I, is a one-sided ideal, then it has to be also a two-sided ideal. Explicit
computations of reduced forms of wz; for any w € My and j € {1,...,n} are then used to
show that wx; € MO U Iy.

We are now in a position to improve slightly the assertion of Theorem 2.32.

Corollary 2.40. Leti € {0,...,n —2}. Then
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1. for every a € A; there exists w € M; such that wa € (Gni),
2. for every b € B; there exists v € Mz such that bv € (qn;).

Consequently, © — wzx is an injective map al{qn;)B; — (qni)Bi, and © — xv is an injective
map Ai(qni)b — Ai{qn)-

It is sufficient to prove the first part, then the second follows from Corollary 2.30. Con-
sider any u € C, such that ua = q;; for some m > 1. Such a word exists according to
Corollary 2.40. The idea is to show that for some & > 1 the element ¢& v is in M;. Words

k wice di koo okt
qy ;u are pairwise different, for & > 1 (as g, ;ua = q,;

™ from the choice of u). From Corol-
lary 2.15 it follows that for some k£ > 1 we have qﬁﬂ.u € M. Moreover it can be checked that
g8 u € Iy \ I; and thus w = ¢¥ ju € M N (I_1 \ ;) = M, is such that wa € (g,;).

Now let us define semigroups M; of matrix type, with properties described in the beginning
' € M, then either

of this section. We know from Theorem 2.28 that if u = ag}; ;b,w = (JL’qE:Z

uw = aq,' b’ € M; for some m > 2 or uw € I;. In particular the result implies that the
following semigroups are well-defined.

Definition 2.41. Let i € {0,...,n — 2}. Consider the set M; = M, U {6} with operation
defined, for any u = aqﬁ}ib, w = a’q,’jjib’ € M;, by

a%liiba/q?]ilib, if Gn,iba' ¢ € (qn,)
uw = ’ ’

0 if gn,iba'qn; € I;

and wf = Ow = 0 for every w € M;. Then the definition is correct and M; is a semigroup
under this operation.

These semigroups can be interpreted as Rees factor semigroups. Namely, for ¢ < n — 3,
I; is an ideal of C),, and we may consider the factor semigroup C,,/I;. In other words, C,/I;
is the semigroup (C,, \ I;) U {0} with zero 6 and with operation

st =
0 lfStEIZ

While I,,_, = @, for every subsemigroup J of C,, we define J/I, o = JY; the semigroup J
with zero adjoined. Notice that J; = ]\;[i U I; is a subsemigroup of I;_; by Theorem 2.28 and
Proposition 2.33. Thus, our definition yields M; = J;_1/I; C C, /1.

In the extreme cases, from Lemma 2.39 we know that [ /Iy = My and Lemma 2.19
implies that M,_o = M,_5 \ {6} is an ideal in C,,.

Corollary 2.42. M; is a semigroup of matriz type. Namely, M; = M°(Q;, A, Bi; P;), where
P, is a matriz of size B; x A; with coefficients in (gn;) U {0} and Q; is an infinite cyclic
semigroup generated by gy, ;.
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The sandwich matrix P; = (py,) is defined as follows

a—2 : o
Qn,i if gnibagn; = g5 ; € (qn,i
Pha = {( ) o € lns) (2.3.1)

9 lf Qn,ibG/Qn,i S ]z

Then it can be verified that the map ¢ : M; — M%(Q;, A;, Bi; P;), given by the formula
¢(aq§7ib) = (qgi;a,b) and ¢(0) = 6, is indeed an isomorphism of the semigroups M, and
MO(Qi,Ath’;Pi)-

Remark 2.43. Assume that ¢, ;bag,,;, = G for some a € A;,b € B;. Then

G = Xi(@ns) = Xi(@ni) Xi(0a) Xi(@ni) = Gn,iXi(a)Xi(D)Gn,i-

By Corollary 2.30, x; determines a bijection between the sets A; and B;. Hence, from the
definition of P; in the formula (2.3.1) it follows that the matrix P, is symmetric, if the
ordering of the elements of the set A; corresponds to the ordering of their images under y;.
In particular such an ordering is chosen in all lemmas in Chapter 8.

The main results of this section can be now summarized as follows.

Theorem 2.44. C, has a chain of ideals
D=1, o<1, 5<---<ly<al;<C,

with the following properties

1. fori=0,...,n—2 there erist semigroups of matriz type M; = M°(Q;, A;, Bi; P;), such
that M; C I,_1/1;, where Q; is the cyclic semigroup generated by qn;, P; is a square
symmetric matriz of size B; X A; with |A;| = |B;| = (H’fl) and with coefficients in

(qn,i) U {0}
2. fori=1,...,n—2 the sets (I;_1/1;) \ M; are finite;
3. /1o = My;
4. M, oy =M, 5\ {0} < Cy;
5. C,/I_1 is a finite semigroup.

We postpone the illustration of the results of this section to Chapter 8. Note that the
main idea of our approach is to use the properties of the sandwich matrices P; to investigate
the structure of semigroups of matrix type M; and their algebras. This extends the classical
approach used in the case of finite semigroups and their algebras, see |9]. The difficulty is
that in general it seems to be extremely hard to calculate the coefficients of these sandwich
matrices. Despite this, we are still able to derive a number of significant general results
without knowing exactly the coefficients of P;.
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2.4 Properties of semigroups of matrix type inside C),

Our approach to the study of the structure of the Hecke—Kiselman monoid ), and the monoid
algebra K[C,], for any field K, and n > 3 is to derive the results from certain properties
of the quotients arising from the ideal chain in Theorem 2.44. Thus, in the present section
we investigate the properties of semigroups of matrix type M; and their semigroup algebras
K[M;] over any field K.

Lemma 2.45. M; is a right ideal in C,/1I; for everyi=0,1,...,n—2.

Proof. Let ag® ;b € M; and take any generator z, € C,,. Assume that the element ag® bz, is

not in M;. We claim that then aqﬁyibxr € I;. Let b’ be the reduced form of bz,. If V/ = z;b
for some word b, where j < i + 1, then using reduction (4) from Theorem 1.65 we get that
aqgib’ can be reduced to aqﬁ,iE. Therefore we can assume that a prefix of b’ is equal to z;,
for some j > ¢+ 1. If j < n, then it can be calculated that aq,’fbﬂ»bxr can be rewritten as a
word with a factor of the form x;_y -z p02n21 -+ - 24 17p—1 - - x; and this element is in ;
by Lemma 2.26. Let us now consider the case when x,, is a prefix of . As we assume that
aqub’ ¢ M;, this word can be rewritten in C,, as an element without the factor Q. From
Theorem 1.65 it is easy to see that to obtain a word without such a factor one has to use a
reduction of type (5). Therefore ag) b’ can be written as a word with a prefix of the form
aqh ;xavy, where |z,0]; = |z,v[;41 = 0. Moreover, for j < i or j = n — 1 the generator
Ty occurs in g, after x;, thus the reduction of x; of type (5) is not possible in this
case. Therefore n —1 > j > ¢+ 1. It follows from Lemma 2.3 that such a prefix is of the
form aqﬁﬂ-xnxl ---xj. Therefore this element has a factor z,x; - x;xp_1 - Tip1Tpx1 -+ 75
for some n—1 > j > i+ 1. It can be checked (using the reductions from Theorem 1.65) that
the latter word can be rewritten as an element with the factor z,,—y - - - z; 412,21 - - - 7, which

isin [;_; C I;, by Lemma 2.26. The assertion follows. m

From Lemma 2.37 and Corollary 2.30 we know that, for every ¢ = 0,...,n — 2, the
semigroup C,,/I; is endowed with a natural involution x; which leaves M; invariant. Thus
from the above lemma we get the following corollary.

Corollary 2.46. M; is a two-sided ideal of C,/I; for everyi=0,1,...,n—2.

The main aim of this section is to prove that all algebras K[M;| are prime. We start with
the extreme cases, namely K[M,, 5] and K[M,].

Remark 2.47. For every n > 3 the algebras of matrix type K[M,] and K[M, o] defined for
K|[C,] are prime.

Proof. Write R = K[M,] and suppose that = € R is a non-zero element such that xRz = 0.
Then x can be uniquely written in the form

.
r= E OiiGy, o Vi,

icl
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for some finite set I, where o; # 0 are elements of the field K, n; > 0, u; € Ag, v; € By. In
F = (xy,...,x,) consider the deg-lex order induced by z; < -+ < z,,. Let UoQp 0V0 be the
leading term in the support of x. We may assume that its coefficient is equal to 1. From
Theorem 2.1 it follows that up and vy must be a suffix, and a prefix respectively, of ¢, .
Hence, there exist words p, ¢ such that puy = v9q¢ = ¢, holds in the free monoid F'. Then
for all elements w # woq,ovo in the support of z we have q;:”arz = pugq,ovoq > pwq in F. If

xRz = 0, then also prqRprq = 0. In particular, (prq)> = 0. On the other hand in K[M,]

_m+2
Prq = qpo” + E PiYi,
vi<qnd?

where i € I\ {0}, p; € K, y; is the reduced form of the word pu;q,,v;q. In particular, for

every y; we have y; < ¢7'¢”. Since the reduced form of ¢/'fq¢? is g2+, for every pair
(vi,y;) such that (y;,y;) # (q;’farQ, q,’Zfa“z) the reduced form y;; of y;y; satisfies y;; < q,%‘“‘. In

particular, the leading term of (pzq)? is equal to qifg”“ and it is non-zero. This contradiction

shows that K [M,] is semiprime. This implies that the sandwich matrix Py is not a zero
divisor in the corresponding matrix ring M, (K[(gn0)]), see Theorem 2.44. Since K[(gs0)]
is a domain, it follows from Section 1.3 that K,[Mj] is prime. A similar argument can be
applied for K[M,,_,]. O

It turns out that the the proof in general case is more complicated. To show that K[M,]
are prime for all = 0,...,n — 2 we will use the following observation.

Proposition 2.48. Assume thatt € {1,...,n — 3} and o € Ky[M;] is such that ax; =0 in
Ko[My] for every i € {1,...,n}. Assume also that every w € supp(w) is of the form g b,
where k > 1 and b € B;. Then a = 0.

In order to prove it, we need some preparatory technical lemmas. We assume that t €
{1,...,n — 3}. Moreover, we will suppose that a non-zero a € Ky[M,] is given that satisfies
the hypotheses of the proposition. The aim is to come to a contradiction.

Roughly speaking, the first lemma describes the reduced form of any word of type wz,
for w in block form (see the convention introduced after Theorem 2.1), namely

QH,txn(wl [P xilxn_l .. x]l) .o xn(ml PN xikxn_l e I]k)’

where i < i1 <--- <1 <t+1<j;<---<jpand x,issuchthat n—1>r > g, —1or
r < i + 1. This means that z, cannot be pushed to the left by using only reductions (2) or
(3) in such a way that wz, = ¢, 1 2n (X1 Ty Tp1 - Tjy) - TpXp (X1 - - Ty Ty - - - 5, ) in O,

Lemma 2.49. Let t € {1,...,n — 3}. Consider the word w of the form
w = qn’txn(xl PR xilxn_l “ e x]l> “ e xn(xl PP Iikxn—l e ‘r]k>7

where i, < i1 < - <1 <t+1<7j <---<Jp. The word g, 1s also assumed to be of the
above type for k = 0. Moreover, in every w we use the convention that 1o =t,jo =1t+1. Let
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r>tbesuchthatn—1>21r 2> j,—1 orr <ig+1 (soin the latter caset <r < ip+1<t+1).
Then the following holds:

1. ifn—12>2r > j, then wx, € I;;
2. if r = ji, then wx, = w in C;
3. if jp =7+ 1, then either wx, = w in C,, or the word wx, is reduced;

4. if jr>r—+1, r=t, i, =t—1, then either (for k = 1) the word wz, has the reduced

form quixny - 2Ty -y or (for k > 2) wa, € Iy;

5 if jr>r+1,r=t, iy =t, then wr, = w in Cy;

D

cifge>r+ 1, r=t+1, i =t, then wx, € 1.

Proof. Parts 2. and 5. are clear.
To prove part 1., we proceed by induction on k (the number of blocks in the word w).
Let n—1>2r>t+1. If k=0 then w = ¢,; and

(57) (2)
WLy — Tply - Tyl Tpp 1Tyl ** Ty 1 Ty~ TPy Ty Ty -+ Tpge1 ) (Tpm1 - 2)

3
9, (Tr—1 Tpp2)(@n®1 - Tp1) (X1 -+ - ).

From Lemma 2.26 we obtain (x,_1 - - Tyyo)(Tp21 -+ Tpy1) (Tpo1 - - - T) € Iy, as desired.
So, assume that the assertion holds for every m < k, where k£ > 1. Consider

Wy = Qa1 Ty Ty Tgy) - T (T4 Ty Tyt - T3, ) Ty

for r > jx. Then we have
(57)
T (L1 - T Tyt Ty )Ty — Tp@1* Ty L1+ L1 Ty *  * Ty T

(2)
H xnml ... wlkmrfl DY '/'L'jkx’nfl DY x’)"

From the assumptions we know that j, > i, +1 and r —1 < n— 1, so the following reduction

holds:
(3)
Tp@y - LjyTpoq = Ljy Tyl Ty — Tp1 " Lj Tl LiyTp—1 " Tp.

By the assumptions jy <7 <n—1and jx_1 < Jg, 80 jp_1 <r—1<n—1. [; is an ideal in
C,, so from the above calculation and the induction hypothesis for the element

/l) — qn7txn(xl DY mllxn—l ... x]l) ... xn(xl .o .. ka_lxn_l DY ‘/I;jk_l)
(a word with k& — 1 blocks) the following holds in C,,
WLy = VTp_1 " Tj Tl "+ TipTp—1 - Tp € Iy
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Hence part 1. follows.
To prove part 3., assume that j, = r + 1. Recall that 7c =t and jo =t + 1. It follows

. 4t
that for £ = 0 we have » = ¢. In this case g, 2, Q w. Hence, we can assume that & > 1.
Then
WTy = Qn,txn(xl L Xp—1 'le) U mn(xl L Tp—1 xjk)xjk—l-

If k1 < Jx — 1, then we see that the above word is reduced.
Hence, assume now that j,_1 = 7, — 1. Then the word wx, has a factor of the form
T, 1Tp®1 " TjyTp—1 - L5 Tj—1. I i +1 < jp — 1, then
(4(jr—1))
T 1Tp®1 " Tjy 1"+ LjLjp—1 ——> Tjp_ TpL1 " Tip T " - Tjy.-

It follows that wx, = w, which ends the proof of part 3 in the case ip + 1 < j, — 1.
Finally, if i, +1 > jr — 1, then iy, < jr_1 = j — 1 < 7 + 1, so that j._; = i + 1. Hence
e <ip_1 < t+1 < jp_q implies that i,y = i, = ¢, jr =t + 2. It follows that wz, is reduced.
This proves part 3.

In the proof of the remaining assertions (parts 4. and 6.) we can assume that k£ > 1,
because for & = 0 it is impossible to have t + 1 = j, > r+ 1 and r € {t,t + 1}.

To prove part 4., assume that 5, > r+ 1, r =1t, i =t — 1. Then from the definition of
w we obtain that k € {1,2} and either w = g 12,%1 - - T4Tp—1 - - T T T1 -+ Tp1 Ty -+ Ty,
where jo > 51 >t 41 or w = ¢n1Tp%1 - T4—12p—1 - - - 4, . In the first case

(2)
Wy — QntTp®y - Ttlp—1 - Tj Tl TeTp—1 " Tjy

(58 (D) (5m)

? QntTn—1" " TjTpl1: Tylp_1 - Tj,.

From part 1. applied to g,; and r = n — 1 we get wz, € I,.
In the second case wzy ﬂ QntTn1 "+ TyTp—1 - - - T; and the last word is reduced.

To prove part 6., assume that j, >r+ 1, r =t + 1, iy, = t. Then from the definition of
w 1t follows that £k = 1 and

(2) (5(t+1))
wﬂjt+1 H qn,txnxl .. $t+1xnfl .. le % xnxl o .. Q:txnfl DR xt+2‘rn'r1 .. xt+1‘rn71 DR Ijl

(5t)  (51) (5m)

Tpo1* Teg2Tp®1 - Tep1Tp—1 " Tj € Iy
by Lemma 2.26. Hence the assertion follows. O

We continue under the assumptions of Proposition 2.48. By Theorem 2.1, every w €
supp(«) must satisfy one of the following conditions:

(1) Tpx1-- @i, (Tp_1 - Tj,  Tp&1 - T Tpoy - - x5, € suff(w), where iy < i,y <t4+1<
Js—1 < Js gn—l; or is =151 :tandjsfl =t+1 < Js

(1) @y T4 Ty Tjy BTy~ T T - -~ Tj,TpT1 - -~ T, € suff(w), where
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Z-s-|-1<2.s<7;s—1<t—i_1<js—1 <j5<n_17
oris =151 =1>1gy1 and jo_1 =t +1 < jg;

O Qn iy -~ T, ., € suff(w) with igq <,

(ili) zpxy - 2y XTp_1 - Tj,_  TnTp_q - T, € suff(w), where 2 < i,y <t4+1 < jo_1 < js <
n?

(iv) zpx1Tp_1 - Tj,  TpnTp_y - - xj, € suff(w), where 2 <t +1 < j_1 < js <,
(v) b=xpTp_1---xj,, where t +1 < j; < n,
(vi) b=1,1e. w=q},

Hence, we can write a = ay + i) + Qi) + Q) + Q) + Qui), Where supp(oy,) consists
of all words of the form (k) listed above, which are in the support of the element . We will
prove that for every k € {(i),...,(vi)} the element ) is zero, which will contradict the
supposition that a # 0.

First, we prove the following result concerning ax;.

Lemma 2.50. Let o be as described above. Then
1. oy =0;
2. Qi) = Qi) =15
3. Qi) = Q(4)ig1=1>

where ay = Q=1+ @) i1 and supp(o)i,=1) consists of all words from the support of o
with iy, = 1, while supp(a(i),is>1) does notl contain such words; similarly o) ;.. ,—1 involves

all words from the support of ayy with is1q =1 (see the description of oy, i)

Proof. We know that ax; = 0 in Ky[M,;]. We calculate the reduced forms of wz; for all
w € supp(ay), for k € {(7),...,(vi)}. Tt will be more convenient to consider certain suffixes
of the given word w.

(41)
® Tply:: Tj,Tp-1-" "Tj,T1 — TpT1 - Ti;Tp—1"""Tj,, SO Oé(i)Il = O./(Z)7

(41)
® Tply-- Ti, 11 — TpTy - Tigyqs whence Q)1 = Q(44);

® I, xi871xn71 e xj571xnxn71 [N :C].le

ﬂ) {xnxl STy Ty Ty, TpXy fOT js =m0
T Tiy Tp1 " Tj,_  Tn@1Tp_1 -~ - T , for js <mn,
where (%) denotes equality in the first case and reduction (2) in the second case. We see
that in the first case (js = n) the obtained word is reduced of type (i7) with is = 1.
In the second case (js < n) the word is reduced of type (i) with i; = 1.
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(2)
® TnTiTp—1"" " Tj,_TpTp—1"""TjT1 — TpliTn—1"""Tj,_ TpT1Tp—1"" " Tj

s

(51),(5n)
— Tp-1"Tj_ 1 TpT1Tp—1" " Tj,.

S

In this case the obtained form of the element wx; has a factor of the form

Qn,txn<x1 Ly Tp—1 le) e xn(ml R TR 7V R mjk)mnfla

where k = s — 2, jp < n — 1 (notice that s > 2). Assertion 1. of Lemma 2.49 implies
that wzy = 0 in Ko[M,] for every w € supp(ay)).

() | TpTp_1---xj,21 for jo=n

® TpTn—1-" "TjT1 — { )
TpT1Tp_1 -~ - xj, for js <mn,

where (%) denotes equality in the first case and reduction (2) in the second case. We

see that in the first case the word wz is of the reduced form (ii) with i,,; = 1, whereas

in the second case we obtain a reduced word of type (i) with i, = 1.

(41)
® (ntT1 —7 Gnit, SO Qui)T1 = Q(yi)-

From the above calculations we see that in Ko[M,]
0= (a@) + Qi) jo=n1 + Q). je=n®1) + (A6) + Qi) jo<nT1 + Q) jo<n®1) + i)

It is clear that the terms from the last component o, are the only terms of type (vi) in
the above sum, so o, = 0. Moreover, reduced forms of elements from o) + o) j,=nT1 +
Q(v),j,=nT1 are of type (i), whereas reduced forms of words in the sum oy + i) j,<n®1 +
Q) j,<n®1 are of type (ii). It follows that these sums are 0 in Ko[M;]. It is not difficult to
see that every word from supp(o i), j,=n®1) and supp(o (), ,=n1) has a reduced form ending
with 2,21, S0 () = Qi) i, =1. Similarly, every (reduced) word from supp(oyii,j,<n1) and
supp(a(vms@xl) has a suffix of the form z,z12,_---x; for some j, so au) = a,,=1. The
assertion follows. O

It follows that supp(a) = supp(oy),i,=1) U supp(iy,i,,1=1) U SUpp(iz)) U supp(oysy)) U
supp(oy)). Let m = min{j, : w € supp(a)}, with j, defined for every word w as in cases
(i)-(vi) listed before Lemma 2.50. Then n > m > ¢+ 1 > 2. By our assumption on «, also
arp—1 = 0. We calculate the reduced form of words wx,,_1, where w € supp(a). By sy we
mean an appropriately chosen suffix of the word from the support of a ;). We consider the
following two cases.

Case I. Assume that m = j,.

1. First, suppose that j,_; = j, — 1. Then

(a) SHTm—1 = Tpd1 " Tj,_ 1 Tp—1" " Lj—1TLnpd1 """ Tj;Tp-1" " TjLj—1

Ifis+1<js—1, then 5(i)Tm—1 M S(4)-
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Otherwise we have is + 1 = j, — 1, which implies that j, — 2 < i, < js —

1, so it follows easily that i,y = t,j,_1 = t + 1. In this case spTp,—1 =
ntTpT1 - Tilp_1 - Tppp = qfht. Consequently, S()@n—1 is of the form (vi) in
this case.

(b) (i) Tm—1 = Tp@1 -+ Ti_ Tpo1 - Tj,_ Tn@1 - Ti L1 Tj,TnT1Lj 1.
Suppose that j,_1 +1 = js < 3. Since j,_1 > t + 1, it follows that ¢ = 1 and
Sy must be the word x, 712, 1+ T22pT12y_1 - X37,71, Which is not reduced.
Therefore we can assume that n —1 > j, > 3 and

(3)
S(ii)Tm—1 — > TpT1" " Tiy 1 Tp—1"""Tj, 1 TpT1" " TijTp—1" " Tj,Tj,—1TpL1.

It is clear that the reduced word w,x1 - @, Tp_1-- T, TpT1 - Ty Tpo1- - T;
is of the form (i7). From the previous case we obtain

s

say ifis +1<js—1
S(ii)Tm—1 = ) '
4 +TnT1 Otherwise .

Thus 5 Zm—1 has the reduced form either equal to s; or ending with z;x,7;
with j < m.

(4(js—1))
(€) S(ii),(iv), () Tm—1 = Tj,—1TpTp_1 - Tj,Tj—1 ———— Lj,_1TpTn_1 - Tj,. It follows

that for every w of the form (¢ii), (iv) or (v) we have wx,,_; = w.
2. Secondly, assume that js_; < js — 1. Then

(a) for every w of the form (i) wx,, 1 is reduced;

(b) since js — 1 > js_1 > 2, then

S(ii),i”l:lxmfl = Tply - .I'Z'S_lflﬁn,1 s */Ejs_lxnl'l cee I’isxn,1 R [K’jsiL'nJ,’lejsfl
(3)
— T Lig 1 p—1""Tj, 1 Tpd1 " TijTp-1"" Tj,Lj—1TpT1.
It follows that the reduced form of ww,,_;, where w € supp(oi),,,,=1), has a
suffix of the form z;z,2; with 7 <m;
(c) similarly, it is clear that wx,, ; is reduced for every w € supp(ay), where k €

{(iid), (iv), (v)}-

3. Assume that su)Tm—1 = @niTpnT1Tm—1. In this case m = j, = t+ 1. Ift = 1,

. . 4
then sgpry = sy in Cp. Moreover, if ¢ > 3 then g, ;r,7174 ﬂ> GntTnT1, SO also

S(i)Ts = S(is)- Finally, if £ = 2, it is easy to see that wz; is in the reduced form.
We summarize the foregoing observations as follows.
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Corollary 2.51. Let m = j, be as described above. Consider an element w from the support

of Q)is=15 Aiii), X(v) OT A(y)-

1.

2.

Assume now that w is in the support of oy

3.

/.

5.

If jo—1 =7js — 1, then wx,, 1 = w in C, or wx,,_1 is of the form (vi).
If o1 < js — 1, then wx,,_1 is reduced.

is41=1"

If gnixnxy € suff(w), then either (for t # 2) wx,—1 = w in C,, or wry,_1 has the
reduced form q%xnxlxg, for some M > 1.

If jo_1 = js — 1, then either wx,,_1 = w in C,, or wx,,_1 1s of the form q%ianL‘l, where
M > 1.

If js—1 < js — 1, then w = vx,x1 for some reduced word v and wx,,_1 has the reduced

form vx,_1x,11.

In particular, words from the supports of o i,=1, Qii)is1=1, Qii), Qiv) and oy multiplied

by xp,—1 have reduced forms ending with x,_1 ... x;, T;T,21 or T;x,T1T2, where j < m.

Case II. Now assume that m < j,. In particular m — 1 <n — 1.

We claim that if w is a word in the support of o) ;,—1, (i), Q(iv) OF Q(r), then wxy,_; is 0

in KoM, or its reduced form has a suffix of the form z,_; - - - z; for some j > m. Moreover,

if w is in supp(ays) i, =1), then wr,_; is 0 or suff (wry,—1) = Tp—1 - - - ;2,21 for some j > m.
The idea is to reduce words by pushing x,,_; to the left and then to use Lemma 2.49. By

wy we denote a suffix of a word of type (k).

()

W) -1 = QnpTp (L1 T4 Ty -+ X5, ) - T T1 - - Ty Ty - - - Tj, ) Tp—1. As long as jy—
I1>m—1>i,+1(k=1,...,s4+1) we use reductions (2) and (3) to push z,,_; to the
left. After this procedure we obtain a word with a prefix vx,,_1, where v is exactly a
word from Lemma 2.49, for some ko and r = m — 1. By the assumption j, # m (hence,
it is impossible that kg = s and ji, = r + 1), so applying Lemma 2.49 we obtain that
W(;)Trm—1 is either in I; or its reduced form ends with x,_; ---x;,, j, > m.

Since t + 1 < m < j,, we must have w # ¢*,x,r;. Then
W) Tm—1 = Tpx1 " Tjy 1 Tpn—1 """ Tj,_1TnT1 " TjgTpn-1 " TjTpl1lm—1-

If m —1 =1, then wg;Tm_1 = wy) in Oy, and hence it has a suffix z,_1 -+ -z, 2,71,
Js > m.

If m —1=2, then j, > 3 and ¢t < 2. From the form of w;, we see that in this case
is > 1 and of course i, < 2. It follows that i, = 2. Then

(42),(41),(4n)
W) Tm—1 — 7 TpT1" " Tj,_ 1 Tp—1"" " Tj,_1Tn—-1"""Tj,TnT1T2.
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Applying assertion 1. of Lemma 2.49, it follows that this word is in I;.

If m—1 > 2 then s xm—1 Q) Tp®1 - Ty Ty Tj  TpT1 - Ty Tp1 * T Ty 1 Ty 1.
Using the observation made in the previous case and Lemma 2.49, we get that either
Wi Tm—1 € Iy or its reduced form has a suffix x,,_; - - - 2, 2,21, for j, > m.

(c) Every word w € supp(a i) )Usupp () )Usupp(oyy)) can be written as w = v, &p—q - - - 5,

where v has a block form as in Lemma 2.49. Then wx,,_{ ﬂ VT 1Ty Ty—1 - - - Ty,

Pushing z,,_1 to the left by using reductions (2) and (3) we can apply Lemma 2.49.
It follows that either wz,,—1 € I; or its reduced form has a suffix z,x,_1---x;,, for
Js > m.

This completes the proof of the claim made at the beginning of Case II.

By our assumptions (of Proposition 2.48), we know that ax,,_1 = 0 in Ko[M;|. From the
above discussion it follows that for every w € supp(«) either wz,,_; is 0 (and it is possible
only if m < j,) or a suffix of the reduced form of wx,,_; is equal to z;x,21, x;x,212 (only
if w € supp(ag))), or to xp_1 - --x;. Moreover, j < m if and only if in the word w we have
js = m (see the description of possible types of words). From the property that az,, 1 =0
it follows that after multiplying by x,, 1 the sum of all elements of the support of a with
Jjs = m vanishes.

Assume that v, z are reduced words such that js, = j;. = m (here js,, js. are defined for
v and z as in the list of possible types (i)-(vi) listed before Lemma 2.50) and vz,,_1 = 22,1
holds in C,,. We will now use the proof of Corollary 2.51 to conclude that v = z. Let u be
the reduced form of vz,,—1 = 2T;_1.

e Assume u is of type (i), (iii), (iv) or (v).
If w has a suffix z,,_1, then it follows that j,_; < js —1 and vx,,_1, 22,,_1 are reduced,
so that v = z. Otherwise vx,,_1 = v and zx,,_1 = 2, so also v = z.

e Assume u is of type (vi).

Then j, 1 = j; — 1 and z = v are of the form ¢z, 21 2 1 ... Tiyo.

e Assume u is of type (ii).

If m # t+ 1, then it follows that suff(u) = z;z,2, for j € {m — 1,m}. If j = m, then
V= VTp,_1 and zx,,_1 = z in C,,, so the assertion holds. If j = m —1, it follows that for
v = Vox,T1, we have vx,,_1 = Vox,,_12,21 in C, and the latter word is in the reduced
form. It is clear that v = z also in this case.

Otherwise m =t + 1. Then, as j, = m =t + 1, we are in the case as in part 3. of
Corollary 2.51. It is clear that in this case if vx,,_1 = zx,,_1, then v = 2.

We have shown that for every pair of words v,z with j,, = js. = m if vo,_1 = 22,1,
then v = z. This implies that supp(a) has no words with j, = m, which contradicts the
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definition of m. Hence, the assertion of Proposition 2.48 has been proved.

For any K-algebra A, recall that by P(A) we denote the prime radical of A.
Theorem 2.52. For everyt =0,1,...,n— 2, the algebra Ko[M,] is prime.

Proof. In view of Remark 2.47, Ky[M,,_s] and K,[M,] are prime. In particular, the result
holds for n = 3. We proceed by induction on n. Assume that n > 3. Moreover, we may
assume that 1 <t <n—3.

First, we show that K,[M;] is semiprime. Suppose that aKo[M;Ja = 0 for some non-zero
a € Ko[M]. Then, by Theorem 2.28, for every u,w € M; we have supp(uaw) C a(g,)b
for some a € A;,b € B;. By Corollary 2.40, if uaw # 0, then there exist v/, w’ € M, such
that 0 # v'uoww' € (gnt), and vuaww' € P(K[(gnt)]) = 0. It follows that uaw = 0 for
every u,w € M;. Thus, either aM; = 0 or M;aw = 0 for some w € M, such that aw # 0.
This means that « o P, =0 or P, o aw = 0 (o stands for the ordinary matrix multiplication,
where Ko[M,] is interpreted as a subset of the matrix algebra M4,/ (K[(¢ns)]). Since P, is
a symmetric matrix by Remark 2.43, we may assume that a o P, = 0 for some non-zero
a € Ky[M,]. Then a can be chosen so that supp(a) C a(g,)B; for some a € A;. Hence,
Corollary 2.40 allows us to assume that supp(a) C (g,)B;. Finally, we may assume that
| supp(«)| is minimal possible.

We claim that ax; = 0 in Ky[M,]. By Corollary 2.46, ax1M; = 0 in Ko[M,;]. From
the proof of Lemma 2.50 we know that a,r1 = 0 in Ko[M;] and vy € (gns) By for every
v € supp(a) \ supp(ay)). So, awx; inherits the hypotheses on a. Therefore, the minimal
choice of a allows us to assume that o,y = 0. Moreover, azy € K[(zo,...,Tn 1, Tn21)].
But, from Lemma 2.17 we know that the latter is isomorphic to K[C,_1]. Moreover, under
this identification, supp(ax) is contained in a single row of the matrix structure Mt(fl_l)
defined for the monoid C),_; as in Definition 2.41. It is easy to see that alet(ffl) =0in
KO[Mt(ffl)]. The inductive hypothesis implies that czy = 0. This proves the claim.

From Lemma 2.36 it follows that replacing « by qﬁytoc, for some k > 1, if necessary, we
may assume that o(«) € Ky[M;] and hence we get that o(«) lies in a single row of the matrix
structure Ko[M;]. In other words, there exists a € A; such that supp(c(«®)) € a(gn:)Bi.
Then, by Corollary 2.40, there exists z € M, such that supp(zo(a)) C (gn+)B:. The proof
of Lemma 2.50 implies that for every w € supp(co(«)) either wzy € a{g,.)B; or wry = 0 in
Ko[M,;]. Therefore, by the previous paragraph, zo(«)x; = 0. Hence, Corollary 2.40 implies
that also o(ax,) = o(a)x; = 0. Consequently, ax, = 0.

Repeating this argument, we get that ax; = 0 in Ky[M,] for every i = 1,...,n. From
Proposition 2.48 it now follows that a = 0, a contradiction. Thus, we have proved that
Ko[M,] is semiprime. This implies that the sandwich matrix P, is not a zero divisor (in the
corresponding matrix ring M, (K[{(g,.)]), where n; = |A¢|). Since K[(¢,+)] is a domain, it is
known that Ko[M;] must be prime, see [43, Chapter 5|. O
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It follows that every matrix P;,t = 0,...,n — 2, has a non-zero determinant, which seems
to be inaccessible by a direct proof.

Corollary 2.53. Sandwich matrices P; are invertible in M,,(K(¢n;)) for alli=0,...,n—2
and n > 3.

63



64



Chapter 3

The radical of the PI Hecke—Kiselman
algebras

In the present chapter we continue the study of the structure of Hecke-Kiselman algebras
over a field K. Namely, it is shown that the algebra associated to oriented cycle of any
length is semiprime and its central localization is a finite direct product of matrix algebras
over the field of rational functions K (z). More generally, the radical is described in the case
of PI-algebras, and it is shown that it comes from an explicitly described congruence on the
underlying Hecke-Kiselman monoid. Moreover, the algebra modulo the radical is again a
Hecke—Kiselman algebra and it is a finite module over its center. The content of this chapter
was published in the paper [46].

3.1 The radical and Noetherian property of K|C,| for any
n >3

Now we are in a position to study the radical of the Hecke-Kiselman algebra K[C,,] associated
to an oriented cycle of length n > 3. Note that from Theorem 1.72 we know that K[C,] is
PI. Therefore its prime radical and Jacobson radical coincide, see Theorem 1.26. We also
show that the algebra is right and left Noetherian.

Let us set the notation from the previous chapters. We use the Grobner basis characterized
in Theorem 1.65 and identify elements of the monoid C,, with their reduced forms from
Theorem 2.1 without further comments. Inside C, there are special n — 1 sets, denoted
by M; for i = 0,...,n — 2, as in Definition 2.14 and their sum U?:_OQ M; is denoted by M.
Recall that the complement C,, \ M is finite. Moreover, in C,, there is a chain of ideals ) =
I, o<1, _3<---al_1 with the surprising properties described in Theorem 2.44. In particular,
recall that by M; we denote certain semigroup of matrix type inside the quotient I; /I; for
i =0,...,n—2. Tt is isomorphic to M°({(gn,), Ai, Bi; P;) for certain sets |A;| = |B;| = (,7)
and the sandwich matrix P; that is not a zero-divisor in M,,(K(g,;)) (Corollary 2.53). From
Theorem 2.52 we know that the contracted semigroup algebras Ky[M;]| are prime.
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We start with a further investigation of properties of the algebras Ko[M;].

Lemma 3.1. For every n > 3 and i € {0,...,n — 2} the algebra Ky[M;] does not have
non-zero finite dimensional ideals.

Proof. Let J be a non-zero ideal in Ky[M;]. Then, as from Theorem 2.52 we know that this
algebra is prime, there exist v,w € M; such that vJw # 0. Indeed, if we had M;JM; = 0,
then also Ko[M;|JKy[M;] = 0. On the other hand, as Ky[M;] is a prime algebra, then it
follows that either Ko[M;] = 0 or J = 0, which leads to a contradiction. Hence, the matrix
type structure of Ky[M;] implies simply (see also Corollary 2.40) that there exist v/, w" € M;
such that 0 # vvJww' C K|g,,]. Then, clearly, J N K[g,,;| is infinite dimensional and
consequently, also J has infinite dimension. O]

In the next lemma we exploit the properties of M;, primeness of the algebras Ky[M;] and
the fact that C), is J-trivial, see Theorem 1.71, to show that the radical of K[C,,] is zero.

Lemma 3.2. Assume that J is a finite dimensional ideal of K[C,]. Then J = 0. In
particular, the left annihilator A = {a € K[C,] : aK[M] = 0} of K[M] in K[C,] is zero.

Moreover, K[C,] is a semiprime algebra.

Proof. Suppose that J # 0 is a finite dimensional ideal of K|[C,]. First, we claim that a
non-zero element o € J can be chosen so that for every i = 1,...,n we have wx; = w for all
w € supp(a) or ax; = 0.

Since J is finite dimensional, the set Z consisting of all k-tuples {z1,..., 25}, such that
supp(8) = {z1,..., 25} for some 0 # 5 € J and s > 1 is finite. Let 0 # « € J be such that
| supp(«)| is minimal possible. Let supp(a) = {vy, ..., v}

Let R denote the Green’s relation on the monoid C,,, that is two elements z,y of C,
are in this relation if and only if zC,, = yC,,. Consider the R-order <z on C,; in other
words, we write w < v if wC,, C v(C,,, see Section 1.2. Then define a relation < on C’,’f by:
(up, ... ug) 2 (wy,...,wg) if u; <g w; forevery i =1,... k.

Now, by the choice of «, for every x € C,, we have that either ax = 0 or supp(az) =
{1z, ..., vpx} and in the latter case (v1z, ..., vpx) < (v1,..., V). Since the set Z introduced
above is finite, we may further choose an element « for which the k-tuple (vy,...,vx) is
minimal possible with respect to <. Then v;Rv;x for every <. Since the monoid C), is
J-trivial by Theorem 1.71 it follows that for every j we either have wz; = w for every
w € supp(a) or aur; = 0, as claimed.

Next, assume that § € K[C,] is a non-zero element such that wz; = w holds in C,, for
every w € supp(f). Then |w|; > 0 for every such w. Write w = wpxjw;, for some reduced
words wp, wy such that |wq|; = 0. We claim that then |wi|, = 0. Indeed, if w; = uz,v with
|v|, = 0, then wzy; = woxuz,vr, and then the only possible reduction that allows to decrease
the length of this word (needed in order to get wz; = w in C,,) is of the form zyzz1 — 214,
where z is a prefix of ux,v containing uz,. But then we do not get wx; = w in C,, because

66



x1 appears after the last occurrence of z, in the reduced form of wx;, a contradiction. So
|wi|, = 0, as claimed.

Assume first that |w], > 0. Write w = sx,tzyw,, for some reduced words s,t (so wy =
sx,t) such that |t|, = 0. Then also |t|; = 0 because w is reduced. Hence, either wz, =
Stptriwir, is a reduced word with |wz,|, > 2 (if |[twy],—1 > 0) or wx, = w in C, and the
reduced form of wz, = w does not end with generator z,, (if [tw;|,—1 = 0).

Next, consider the case when |w|, = 0. It is clear that in this case wz, is a reduced
word, and |wz,|, = 1. Together with the previous paragraph of the proof this implies that
wz, # w'z, in C, for all w,w’ € supp(fF) with w # w'.

We have proved that the hypotheses on g imply that Sz, # 0.

Now, we apply this observation to the element . Because of the choice of o, we get that
if ax; = «a then ax,, = a. Using linear extension of the automorphism o from Definition 2.29,
and noting that o(«), as an element of the finite dimensional ideal o(.J) of K[C,,], inherits the
hypotheses on a, we get that o(«a)r; = o(a), so that o(a)z,, = o(«), by the above argument
applied to o(«) in place of a. Thus, az,_; = a, by applying o~ !. Repeating this argument
several times, we then get ax; = o for every j. A similar argument shows that if ax, # 0

for some k, then ax; # 0 for every j. However, a = az,x122- - 2,1 € J N K[M,_5], (see
Lemma 2.19), a finite dimensional ideal of K[Mn_g], because 2,21 -+ Tn_1 € M, o C M and
M,_ is an ideal of C,, as we know from Corollary 2.38. Therefore, Lemma 3.1 implies that
a = 0. This contradiction shows that we may assume that ax; = 0 for every j.

Let w € supp(a) be maximal with respect to the order <g. If z; is the last letter of the
(reduced form of the) word w then, as ax; = 0, we have w = wz; = w'z; in C,, for some
w' € supp(a) such that w # w’. This implies that w <z w’, so by the choice of w we get
w = w', a contradiction. Therefore J = 0.

Let A= {a € K[C,] : aK[M] = 0} be the left annihilator of K[M] in K[C,]. Suppose
that 0 # 3 € AN K[M]. Let i be the minimal integer such that supp(8) N M; # 0.
Passing to K[C,]/I;, we get a non-zero element 3 € Ko[M;] such that SK,[M;]3 = 0. From
Theorem 2.52 it then follows that 5 = 0, which leads to a contradiction. Thus ANK[M] = 0.
Similarly, suppose that there exists 0 # vy € P(K[C,]) N K[M]. Take minimal integer i such
that supp(y) N M; # (. Passing to K[C,]/I; as before, we get 0 # 7 € P(K,[C,/L]) N
Ko[M;] € P(Ko[M;]). This contradicts Theorem 2.52. So P(K[C,])NK[M] = 0 and it follows
that A and P(K[C,]) are finite dimensional, because C,, \ M is finite (Proposition 2.15).

Hence, the assertion follows. O

As a corollary we can easily prove that the Hecke-Kiselman algebra associated to an
oriented cycle of any length is right and left Noetherian. The main result of the present
section states as follows.

Theorem 3.3. The Hecke—Kiselman algebra K[C,] associated to an oriented cycle of length
n = 3 1s a semiprime Noetherian Pl-algebra.

Proof. From Remark 2.16 we get that K[C,] has Gelfand—Kirillov dimension 1, see also
Example 2 of [39]. In view of Lemma 3.2, we thus know that K[C,] is a semiprime algebra of
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Gelfand—Kirillov dimension 1. Applying Theorem 1.22 we conclude that K[C,,] is a PI-algebra
and a Noetherian algebra as a finite module over its Noetherian center. O]

3.2 Prime ideals and the ring of quotients of K|[C,]

Now our aim is to describe the prime spectrum and characterize the classical ring of quotients
of the algebra K[C,], for any n > 3.
We start with the definition of a family of ideals in K[C,,] that, as we will show, consists of
all minimal primes of the algebra.

For any ¢ = 0,...,n — 2, let J; be a maximal among all ideals of K[C,] such that
I; C J; and the intersection Klg,;] N J; is zero. Such an ideal exists from Zorn’s lemma, as
K¢, N1 =0.

Theorem 3.4. An ideal J; defined above is uniquely defined for i = 0,...,n — 2. Moreover
ideals J; are the only minimal prime ideals in K|C,| and JoN JyN---N J,_9 = 0.

Proof. Suppose that for some a,b € K[C,,| we have a K[C,]b C J; and a,b ¢ J;, contradicting
the primeness of J;. Then, from J; C J; + (a), J; € J; 4+ (b) and from the definition of .J;
it follows that there exist non-zero v and w in (J; + (a)) N Klgn.] and (J; + (b)) N Kgn]s
respectively. As K|g,;] is an integral domain, it follows that 0 # vw € (J; + (a))(J; + (b)) N
Klgni] € J; N K|gn,], which contradicts J; N Kg, ;] = 0. Therefore every J; is prime.

We know that J; N K[g,;] = 0 and thus K|[g, ;| embeds into the quotient K[Cn]/Ji. More-
over, GKdim K[C,,] = 1. It follows from Example 1.19 and Lemma 1.20 that GKdim K[C,,] / J;
GKdim K[z] = 1. Then, as GKdim K[C,] = 1, we know that GKdim K'[C,]/J; = 1. There-
fore we get from Theorem 1.23 that 1 = clKdim K[C,]/J; = GKdim K[C,,]/J; =
GKdim K[C,], so J; is a minimal prime ideal of K[C,,].

We claim that that ideals J; are the only minimal prime ideals in K[C,] and (/- J; = 0.
First observe that as K[g,;] N K[I;] = 0, algebra K|g,;] embeds into K[C,]/K[I;]. We
also know that Ko[M;] <« K[C,,]/K|[I;] is a prime algebra (Theorem 2.52). Moreover, from
Theorem 2.28 it follows that ¢, ,Ko[M;]¢n; € K[gn:]. Denote by J; the image of J; in
K[Cn]/K[IZ-]. Then J; is a prime ideal of K[Cn]/K[Ii] and thus g,;(Ko[M;] N J)gn; C
K|qni) N J;. Therefore K|g, ] N.J; = 0 implies that K[M,] N .J; = 0.

Denote by J the intersection J = JoNJiN...NJ,_s. Suppose that a € JﬂK[M] is a non-
zero element. Then we can write & = ag + ... + a,_o, where ay, € K[Mk] for every k. Take
minimal ¢ such that o; # 0. Then i = n—2 would imply a = «,, 5 € K[Mn,g] NJ = 0, which
leads to a contradiction. Therefore i < n — 2. Consider 0 # ; = o — (11 + ... + ap_2).
On the one hand, we have that a; € K[]\NL] On the other hand «a;41 + ... + ;o €

KM+ ...+ K[M,_5] € K[I;] C J; and thus o — (j11 + ... + a—2) € J;. Therefore
0 # a; € K[M;] N J; = 0. The obtained contradiction shows that J N K[M] = 0, as claimed.
As C,, \ M is finite, we get that J is a finite dimensional ideal of K[C,]. From Lemma 3.2 it

follows that J = 0.
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Now, for any prime ideal @ of K[C,], from JoNnJ;N---NJ,_o C Q it follows that J; C @
for some i. Thus the ideals J; are the only minimal prime ideals in K[C,]. Consequently, for
every i the ideal J; is uniquely defined. m

Now we are in a position to characterize the classical quotient ring of K[C,,].

Theorem 3.5. The classical quotient ring of the semiprime Noetherian Pl-algebra K|[C,],
for any n > 3, is isomorphic to H?:_OQ M,,(K(x)), where n; = (lﬁl), fori=0,...,n—2.

Recall that the classical quotient ring of a semiprime Noetherian Pl-algebra is its central
localization, see Theorem 1.35.

Proof. Let J; be a minimal prime ideal of K[C,] as in Theorem 3.4. It follows from the
proof of this theorem that Ky[M;] is a prime algebra such that Ko[M;] < K[C,]/J;. Thus the
classical rings of quotients of Ko[M,] and K[C,]/J; are equal, see Lemma 1.34.

Moreover, from Corollary 2.53 it is known that all sandwich matrices P; are invertible,
when treated as matrices in M, (K (gyi)) = M,,(K(z)). Thus from [43, Proposition 4.13| we
know that the algebra of matrix type M°(K(gy.), Ai, Bi; P;) is isomorphic to M, (K (q,,)),
where n;, = (zzl) and this algebra is the classical ring of quotients of the prime algebra
Ko[M;] = MY(K[Qi], A, Bi; P;), where @Q; is the cyclic semigroup generated by ¢, ;. Conse-
quently, Qu(KI[Cy]/J;) = M, (K (z)), where n; = (,},).

From Proposition 1.33 and Theorem 3.4 we obtain that K[C,] has the classical ring of
quotients which is isomorphic to H?:_(? M, (K(x)), where n; = (Z.fl), fori =0,...,n — 2.
This completes the proof of the theorem. n

We continue with the investigation of the prime spectrum of K[C,]. As a consequence
of theorem of Kaplansky (Theorem 1.25) we also obtain that primitive ideals are exactly
maximal ideals in our case.

Theorem 3.6. Every maximal chain of prime ideals in the Hecke—Kiselman algebra K[C,,]
s of the form J; C P fori=20,...,n—2, for prime ideals J; as above and a maximal ideal

P in K|[C,], depending on i. Every mazimal ideal Q in K[C,] contains J; for some i. Left
(right) primitive ideals in K[C,]| are precisely the mazimal ideals.

Proof. From Theorem 3.4 we know that .J; are the only minimal prime ideals of K[C,].
Moreover, the algebra K[C,] is a Noetherian semiprime Pl-algebra of Gelfand—Kirillov di-
mension one, Theorem 3.5. As we explained in the proof of Theorem 3.4, we have that
clKdim K'[C,]/J; = GKdim K[C,]/J; = 1, so J; is not a maximal ideal of K[C,]. Hence,
for every i € {0,...,n — 2} there exists a prime ideal P such that J; € P. Then from the
definition of the classical Krull dimension we have clKdim K[C,,]/P = 0 and, as K[C,]/Pis a
finitely generated prime ring which is PI, we get that cIKdim K[C,,] /P = GKdim K[C,,] / P.
Now GKdim K[C,]/P = 0 implies that K[C,]/P is a finite dimensional prime algebra.
Therefore P is a maximal ideal in K[C,] by Exercise 10.4 in [31]. Clearly for every ¢ there
may be many maximal ideals P containing J;. In particular, from Kaplansky theorem, (left)
right primitive ideals of K[C,] are exactly such ideals P. O
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Let us note that in Chapter 5 we will show that the maximal ideals of K|[C,] play an
important role in the study of irreducible representations of the algebra. Therefore we will
further investigate certain properties of these ideals in the next chapter.

3.3 General case

Our second main result describes the radical of a Hecke—Kiselman algebra K[HKg], as well
as the algebra modulo the radical, in the case of Pl-algebras. So, assume that © is a finite
oriented graph such that K[HKg] is a Pl-algebra. This is equivalent to saying that © does
not contain two cyclic subgraphs (i.e. subgraphs which are cycles) connected by an oriented
path, Theorem 1.72.

Recall that the Jacobson radical of a finitely generated Pl-algebra R is nilpotent, see
Theorem 1.26. However, we note that for R = K[HKg] this can also be derived from our
proof.

We start with the definition of a congruence on HKg that will be crucial in the description
of the radical. For the basic definitions see Section 1.2.

Definition 3.7. Denote by p the congruence on HKg generated by all pairs (zy,yz) such
that there is an arrow z — y that is not contained in any cyclic subgraph of ©. If there is
no such a pair then we assume that p is the trivial congruence.

Example 3.8. Let © be an oriented graph presented in Figure 3.1.

5
. .
S,

Figure 3.1: A graph © such that K[HKg] has non-trivial radical

Then the congruence p is the congruence generated by pairs (yix1,21y1), (2122, 2221),
(2123, 2321) and (x321, 2123). Moreover, the semigroup HKg /p = HKg/, where ©' is the
graph in Figure 3.2.
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Figure 3.2: A graph ©' such that HKg /p = HKe/

For any congruence o on a semigroup S by I(o) we denote the ideal in the semigroup
algebra K[S] (where K is a field) which is the K-span of the set of elements of the form s —¢
for all pairs (s,t) € S x S with sot. Such an ideal is the kernel of the natural epimorphism
K[S] — K[S/o].

Let © be an oriented graph such that K[HKg]| is PI. Denote by ©' the subgraph of ©
obtained by deleting all arrows © — y that are not contained in any cyclic subgraph of ©.
Then HKgr = HKg /p and from Theorem 1.72 it follows that the connected components of
©’ are either singletons or cyclic subgraphs. In particular, the algebras of such connected
components are semiprime, see Theorem 3.3. We are now in a position to state the main
result.

Theorem 3.9. Assume that © is a finite oriented graph such that K[HKg) is a Pl-algebra.
Let © be the subgraph of © obtained by deleting all arrows x — y that are not contained in
any cyclic subgraph of © and let p be the congruence on HKg from Definition 3.7. Then

1. the Jacobson radical J(K[HKe]) of K[HKg] is equal to the ideal I(p) determined by p,

2. K[HKe|/J(K[HKg]) = K[HKe/| and it is the tensor product of algebras K[HKg,] of
the connected components ©1,...,0,, of ©, each being isomorphic to K & K or to the
algebra K[C}], for some j > 3,

3. K[HKe/] is a finitely generated module over its center.

Proof. Suppose that a vertex z € V(0©) is a source vertex. In other words, there is an arrow
x — y for some y € V(O) but there are no arrows of the form z — x. For any w € HKg
consider the element § = (xy — yx)w(xy — yx) € K[HKg]. Since x is a source vertex,
we know that xvr = zxv in HKg for every v € HKg. Hence zwry = zwy, zwyr = zwy
(Remark 1.64). Similarly, zywxy = rywy and xywyr = xywy. Therefore § = 0. It follows
that 2y — 2y € P(K[HKg)).

If x is a sink, that is there is an arrow z — x for some z € V(©) but there are no arrows
of the form x — y in the graph ©, a symmetric argument shows that zz — zax € P(K[HKg])
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for all z such that 2 — z in ©. Let p; be the congruence generated by all pairs (zy, yx) such
that x or y is either source or sink and there is an arrow z — y that is not contained in
any cyclic subgraph of ©. Equivalently, we may consider the graph I'y obtained by erasing
in © all such arrows * — y and z — z as above. Then K[HKr,| = K[HKg|/I(p1). We have
shown that I(p;) C P(K[HKg]). Repeating this argument finitely many times we easily get
that I(p) C P(K[HKg]) (and our argument shows that I(p) is nilpotent, because O is finite).

Since we know that J (K [HKg]|) = P(K[HKg]), to prove the first assertion of the theorem
it is now enough to check that K[HKg/] is semiprime. HKg is the direct product of all HKg,,
where ©;, i = 1,...,m, are the connected components of ©'. From Theorem 1.72 we know
that each HKg, is either a band with two elements (if ©; has only one vertex) or it is
isomorphic to Cy for some k > 3. In the former case K[HKg,] = K @ K, in the latter
K[HKe,] is a finitely generated module over its center, see Theorem 1.22. It follows that
K[HKe/] is a direct product of tensor products of algebras that are all finitely generated
modules over their center. Thus K[HKe/] is a finitely generated module over its center.

Let @; be the classical ring of quotients of K[HKg,]. If ©; = C,,, for some m,; then
we know that (); is a central localization of the form described in Theorem 3.5. Clearly,
HKe is the direct product [[;, HKe,. Then in the localization @ = @ ® -+ ® @, of
K[HKe] = )", K[HKe,] each of the factors is isomorphic to K@ K or to H;”ZO_Q M, (K(x)),
where r; = ( ) Therefore, () is isomorphic to a finite direct product of rings isomorphic to

J'+il
matrix rings over certain commutative Noetherian integral domains. Thus it is a semiprime
Noetherian ring. From Proposition 10.34 in [30] it follows that K [HKe/| is semiprime, because
@ is its central localization. It is now clear that K[HKe/] = K[HKg]/P(K[HKg]). The result

follows. O
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Chapter 4

Noetherian property of Hecke—Kiselman
algebras

In this section we characterize Noetherian Hecke—Kiselman algebras K[HKg] of arbitrary
oriented graphs ©. Recall that in Theorem 3.3 it has been proved that the algebra K[C,]
is right and left Noetherian for every n > 3. Therefore we start the present chapter with
a description of some simple obstacles to the Noetherian property of the Hecke—Kiselman
algebras associated to graphs that are cycles with one adjoined arrow. As a consequence, we
are able to characterize Noetherian Hecke—Kiselman algebras in Theorem 4.2. The results of
this chapter are published in [45].

Lemma 4.1. Let © be the graph obtained by adjoining the arrow y — x1 to the cyclic graph
Cn: ©1 — 9 — -+ — T, — T1, as shown in Figure 4.1. Then the monoid HKg does not
satisfy the ascending chain condition on left ideals, and it does not satisfy the ascending chain
condition on right ideals.

Figure 4.1: A graph © such that K[HKg] is not Noetherian

Proof. Write wy, = (x,xp_1 - - -xl)ky, for k =1,2,.... Tt is clear that w; cannot be rewritten
in the monoid HKg except for applying relations of the form z? = x;,4*> = y. Therefore

w ¢ Uf;ll w; HKg for k£ > 2. Hence, HKg does not satisfy acc on right ideals.
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Let ¢ : (z1,...,2,,y) — (x1,...,2,) be the homomorphism such that ¢(w) is obtained
from w by erasing all occurrences of y (compare with Proposition 1.68). Consider the fol-
lowing subsets of the free monoid F = (z1,...,2,,y): Zp = {¢ 7 ((aair - 22)*) | i; >
1 for every j}, for k =1,2,..., and

Ry, = {wyvz | w € (21, 22),v € (T2, Y)(71,Y), 2 € Zy, [wv|y > 1}.

We claim that Ry is closed under defining relations of the monoid HKg. It is easy to see that
the set R}, is closed under relations of the form z = 22 and under xz = zx for generators z, z
not connected in the graph © (the only such factors of a word u € Ry can be of the form
yx;, x;y, where j > 2). Moreover, u does not have factors of the form z;z; with i =3,...,n
and j # i+ 1 (modulo n). So we do not have to consider relations x;z;112; = T; 11241 =
x;xiq fore =2 ... n. It is also easy to see that every relation yz1y = yx1, x1yx1 = yx; and
r1yr1 = yr1y leaves Ry invariant. Finally, every relation xox129 = 2129, T12221 = 2129 and
T1ToX1 = XToX1Xo leaves Ry invariant. This proves the claim.

Define v, = x120y(x12,, - - - 29)¥, for k = 1,2,.... Notice that vy € Ry, but v, ¢ FR; for
i < k. It follows that vy ¢ Uf;ll HKg v;, for every k > 2. Therefore HKg does not satisfy acc
on left ideals. N

Now we are in a position to prove the main theorem.
Theorem 4.2. Let © be a finite oriented graph. Then the following conditions are equivalent
1) K[HKg)] is right Noetherian,
2) K[HKg| is left Noetherian,
3) each of the connected components of © is either an oriented cycle or an acyclic graph.

Proof. Assume that condition 3) is satisfied. From Theorem 1.72 we know that HKg is a
Pl-algebra. In order to prove conditions 1) and 2) we proceed by induction on the number
k of connected components of ©. If £ =1 then the assertion follows from Theorem 3.3 and
from the fact that HKg is finite if O is an acyclic graph (Theorem 1.69). Assume that k& > 1.
Let ©; be a connected component of © and let O, = ©\ ©;. Clearly, HKg is a direct product
of HKg, and HKg,, so that K[HKg] = K[HKg,| ® K[HKg,]. By the induction hypothesis,
HKg, is (right and left) Noetherian and it is a Pl-algebra, for i = 1,2. Then K[HKg] is
a Noetherian algebra by [2], Proposition 4.4 (which says that every finitely generated right
Noetherian Pl-algebra is a universally right Noetherian algebra).

Assume that 3) is not satisfied. Then © contains a subgraph © that is of the form
described in Lemma 4.1 or the graph ©” obtained from ©' by inverting all arrows. It is easy
to see that in this case K[HKeg/|, respectively K[HKg~|, is a homomorphic image of K[HKg)].
Moreover, ©" and ©” are antiisomorphic. Therefore, Lemma 4.1 implies that K[HKg] is
neither right nor left Noetherian. The result follows. O]
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From the proof it actually follows that the conditions in Theorem 4.2 are satisfied if and
only if the monoid HKg has acc on right (left) ideals.

Since K[C,] is a Pl-algebra (Theorem 1.72), we derive the following consequence from
Theorem 1.24 of Anan’in. It is of interest in view of the results on faithful representations of
various special classes of Hecke—Kiselman monoids, obtained in several papers, for instance
[16,18,29].

Corollary 4.3. If an oriented graph © satisfies the conditions of Theorem 4.2, then K[HKg)]
embeds into the matriz algebra M,.(L) over a field L, for some r > 1.

Proof. 1f the graph O satisfies the conditions of Theorem 4.2, then K[HKg] is a tensor product
of finitely many Pl-algebras. From Regev Theorem 1.21 we know that the algebra K[HKg]
is also a Pl-algebra. Thus, the assertion follows from Theorem 1.24 and Theorem 4.2. O]
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Chapter 5

Irreducible representations of PI
Hecke—Kiselman algebras

The chapter is devoted to irreducible representations of Hecke—Kiselman algebras that satisfy
polynomial identities. It turns out that the case of the algebra associated to an oriented cycle
is a crucial step. To characterize representations in this case we revisit the ideal structure
from Theorem 2.44. The structures of matrix type M, occurring in the quotients have the
flavour of the principal factors of a finite semigroup, thus we are able to build a class of
irreducible representations of ), from the representations of these factors. It turns out that
the remaining representations arise from idempotents in C),, in a way similar to that known
for the so-called J-trivial finite monoids, see [53| and Example 1.50. In the present chapter
we consider Hecke—Kiselman algebras K[HKg| over an algebraically closed field K. We
assume without additional comments that the graph © does not contain two different cycles
connected by an oriented path. This condition is equivalent to the fact that the corresponding
Hecke-Kiselman algebra satisfies a polynomial identity, see Theorem 1.72. The results have
already been published in the paper [57].

5.1 Idempotents in C),

We are going to characterize all idempotents in the Hecke-Kiselman monoid associated to
the cycle of length n. This will be an intermediate step in our approach to a description of all
irreducible representations of this monoid. Recall that idempotents in the Hecke—Kiselman
monoids associated to any oriented graph have been characterized in [16]. We provide an
alternative proof for monoids associated to an oriented cycle of any length.

In this case the result relies on Theorem 1.71 and on the characterization of idempotents
in the Hecke-Kiselman monoids which do not contain any oriented cycles, described in [1§]
with the use of [29]. More precisely, the following theorem describes idempotents in the
Hecke—Kiselman monoid associated to any acyclic graph.

77



Theorem 5.1 ([18], Theorem 1 (iii), [29]|, Proposition 11). Assume that I' is an oriented
graph with the set of vertices {1,...,n} such that if i — j in " then i < j. Then HKr has
exactly 2" idempotents. More precisely, every idempotent is of the form ex, where for every
X C{1,...,n} such that X = {iy,...,i;} with iy < iy < --- < ij, we denote by ex the
element x;, -, (for X =0 we set ex = 1).

Let us recall from Section 1.4.2 that for any word w in the free monoid by its support
we mean the set of generators that occur in w. Note that the supports of any two words
representing the same element in the HeckeKiselman monoid are equal. Therefore, the
support of an element of the Hecke-Kiselman monoid can be defined as the support of any
word in the free monoid representing this element.

Let C), be the Hecke-Kiselman monoid associated to the cycle of length n with the cor-
responding set of generators {z1,...,x,}.

We start with the following crucial observation.

Lemma 5.2. Idempotents in C,, are not of full support, that is there are no idempotents in
which all generators occur.

Proof. Suppose that e is an idempotent of full support in the monoid C),,. Then we claim
that ex; = e for i = 1,...,n. Indeed, as e has full support, e is of the form e;z;es for
some elements e; and e;. Then equalities e = €2 = ee x,;eo imply that eC,, = ee;C, and
eC,, = eeyx;C,. Moreover, the monoid C,, is J-trivial, see Theorem 1.71. Therefore e = ee;
and e = eejx;. Consequently e = ex;, as claimed.

It follows that e = ex,x129 - x,_1. From the description of the family Mn_g in Defini-
tion 2.14 we get that x,z1--- 2,1 € M, 5 = Mn_QU{H} and therefore, from Theorem 2.44 4,
€ = eTnTiTy - - Tn_q is also in M,_o. On the other hand M,_s = M°(Qy_2, Ap_2, Bn_2; Pu_>)
is the semigroup of matrix type associated to cyclic semigroup generated by g, ,,—2 and a ma-
trix P,_o with coefficients in the monoid generated by g, ,—2 with zero adjoined. Such a
semigroup does not contain non-zero idempotents, which contradicts e € M,_5. The asser-
tion follows. O

We are ready to list the reduced forms of all idempotents in C),, using Lemma 5.2 and
Theorem 5.1.

From Lemma 5.2 every idempotent in C), is not of full support. Therefore the full subgraph
I (of the cycle) whose vertices correspond exactly to the support of an idempotent is an
acyclic graph. Moreover such an idempotent can be treated as an idempotent in the Hecke—
Kiselman monoid HK with maximal possible support. Theorem 5.1 implies that there exists
exactly one such idempotent. To find its form, we need to order the set of vertices V(I') in
such a way that if ¢ — j in IV then i < j. Denote V(I") = {iy,... i} with i3 < -+ < .
Let us consider two cases.

1) If {1,n} € V(I") then the arrow n — 1 is not in I", hence ¢ — j in I" implies that
1< 7.
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2) If {1,n} C V(I") then there exists ¢t € {1,...,k — 1} such that 1,...,¢t € V(I) and
t+1¢ V(I"). In particular, the arrow ¢ — ¢ 4+ 1 is not contained in I'". Therefore, it
is possible to shift vertices of the cycle graph in such a way that the the arrow n — 1
is not contained in the graph I with shifted indices. Formally, I is isomorphic to the
acyclic subgraph ¥ of the cycle of length n such that V(3) = {iyy1 — ¢, 000 —t, ... i —
tyin+(n—t),ia+(n—t),...,i+ (n—1t)}, via the isomorphism i; — i; —t if i; > t and
i; — i; +n —t otherwise, for j = 1,... k. As i;yq > ¢t + 1, it follows that 1 ¢ V(X)
and then this case reduces to case 1). The form of idempotents in HKp in this case
follows, using Theorem 5.1, from the described isomorphism between ¥ and I".

Therefore, we have proved the following:

Corollary 5.3. Idempotents in C,, are exactly the elements that can be written in the form
ex for some X C{1,... ,n} such that X # {1,...,n}, where ex is defined as follows.

1) If X =0 then ex = 1.

2) If {1,n} € X #0, then ex = x;, @, - - - x;, where X = {iy, ..., 4;} with iy <iy < --- <

;.

3) If {1,n} C X, let k € {1,...,n— 1} be such that {1,2,...,k} C X and k+1 ¢ X.
Then ex = x;, -+, @1 -~ x where is =n and X = {1,... ki, ..., is} withk+ 1<
1 <<l =n.

We now place idempotents from C), in the chain of ideals [; for : = —1,...,n — 2 from
Theorem 2.44.

Proposition 5.4. For every idempotent ex in C,, such that | X| > 2 we have ex € I x5\
Iix|—1. Moreover x; & 1_y fori e {1,...,n}.

Proof. To prove the first statement, we will use the homomorphism f : C,, — Map(Z™,7")
defined after Lemma 2.23 in Section 2.2. We also follow the notation introduced in this
section. From Lemma 2.25 we get that to show that ex € I|x|— it is enough to check that
ex € @x|—2. This follows from the following technical lemma.

Lemma 5.5. Assume that w = x;, - - - x;, € Cy, is such that for every 5,1 € {1,... k} if j <!
then 0 < iy —i; <n—1ori;—i > 2. Then supp(f(w)) ={1,...,n} \ {i1,... 9%}

Proof. We proceed by induction on the length of w. If |w| = 1 the claim is a straightforward
consequence of the definition of supp(f(w)), see Section 2.2. Assume now that the assertion
holds for some k—1, where k > 2. Consider the word w = z;, - - - ;, € C,, satistying the condi-
tion from the lemma. Then f(w)(ma,...,m,) = f(x;)(f(zi, -2, ) (M1, ..., my)). Applying
the inductive hypothesis to the word w' = z;, ---z;, we obtain that supp(f(z, - -2;,)) =
{1,...,n}\{ia, ..., ix}. Moreover, as iy # i; for | > 2, we know that f(x;, - -2y, )(m, ..., my,)

has m;, on the i;th coordinate. It is enough to check that m;, does not occur on any other
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coordinate of f(x;,---x;, )(m1,...,my,). Indeed, every f(z;) changes only jth coordinate of
the sequence on which it acts. Therefore, f(w')(my,. .., m,) could have m;, on the coordinate
different than ¢;th, only if m;, had been rewritten firstly on the (i; — 1)th coordinate in the
case i1 # 1 or on the nth coordinate if i; = 1. Thus we get that either z;, ; € {x;,,..., 2, } or
iy =1 and x, € {z4,,...,2; }, which is not true as 4, —i; € {—n+1,...,-2}U{l,...,n—2}
for every [ > 1. It follows that supp(f(w)) = supp(f(w)\{ir} = {1,...,n}\ {1, ..., ix}. O

Remark 5.6. Elements satisfying conditions of Lemma 5.5 are exactly idempotents of C),
described in Corollary 5.3.

Proof. Let w = z;, - - -z, € C,, be a (reduced) word in C,, such that for every j,l € {1,...,k}
if j <lthenO< i —ij <n—1ori;—i =2 Ifip < -+ < i then (i1,4) # (1,n)
and thus w is indeed of the form 2) from Corollary 5.3. Let 1 < s < k be such that
W= Ty - T Ty, o Tiy, where 4p < - -+ <'ig but 4511 > 15, Then we know that iy —is > 2.
It follows that iy = n and i,,1 = 1, as otherwise the word w would contain a non-reduced
factor of type (2) in Theorem 1.65. Thus w = x;, - - - &, 2125, - - - ¥;,. From Lemma 2.3 and
the fact that |z; ., -, |; = 0 for j = {i1 —1,n — 1} it then follows that w is of the form 3)
in Corollary 5.3. The assertion follows. O]

To continue with the proof of Proposition 5.4 note that from the remark and Lemma 5.5
we get that | supp(f(ex))| = n—|X]|, and thus ex € Ix|_, for | X| > 2. Let us now check that
ex ¢ Ix|-1. We have an automorphism o of C,, such that o(z;) = x;41 forevery i =1,...,n
(where we agree that x,.; = x1), see Definition 2.29. By Lemma 2.36, it has the property
that o(I;) = I; fori € {0,...,n—3}. Applying the automorphism o a few times if necessary,
we may assume that the idempotent ex is of the form z;, -- -y, with 43 < -+ < 4; and
i; = n — 1. Indeed, if ex = x;, -+, is such that 4; < --- < 4; and (i1,4;) # (1,n), then

0" 1 (ex) = Tn—(i;41)4i1 * " Tne(ij+1)+i, 18 Of the required form as 1 <n — (i; +1) +i, <n
for k =1,...,7. Moreover, if ex = z;, - z; v - -2 With K+ 1 < 43 < .-+ < 1, then
o" 1 Rex) = @i ko1 Tiy ko 1Tpk1Tp-1, a8 N+ 1 < i;+n—k—1< 2n and thus

0" 1"*(ex) is of the required form in this case, as well.
So, let ex be of the form z;, ---x;; with 4; < --- <; and i; = n — 1. Then consider the
element

W = (T4 1Ti, 2+ T1)(Tig—1Tiy 2+ Ta) * +- ($ij—1$¢j—2 S Tg).

Note that if 4, = k for some 1 < k < j then iy = 1,...,4 = k. If iy = k then by
(@i,—1%i,—2 - - - x5) we understand the trivial word.

Since x;,,,, -+ ¥;; commutes with z; -z, form=1,... 5 — 1, the element exw can be
written in C,, in the form

(‘rilxil—l oo I1)<xi2xi2—l e x2)(xi3xi3_1 oo 1'3) oo (xijxij—l oo (1;])

From the description of the sets A; in Theorem 2.1, it follows directly that exw € A,_;.
Theorem 2.32 gives that there exists u € C, such that uexw = (g, ;—1)" for some N > 1.

80



By the definition of the ideal I;_; this implies that ex ¢ [;_1 = I)x|-1. The assertion follows.
The second part of the proposition is clear from the definition of I_;. O

5.2 Irreducible representations of the Hecke—Kiselman al-
gebra K|[C)]

Our aim is to investigate the irreducible representations of the Hecke-Kiselman algebra
K|[C,]. Let us recall that the field K is algebraically closed.

Our approach is based on Theorem 2.44. Although monoids C), are infinite for all n > 3,
the general idea is motivated by the representation theory of finite semigroups. Namely, as
explained in Section 1.2.1 if S is a finite semigroup, then the irreducible representations of
S can be obtained in terms of irreducible representations of the 0-simple principal factors of
the semigroup S, which are semigroups of matrix type, see Theorem 1.48.

Moreover the Hecke—Kiselman monoid C,, is J-trivial, Theorem 1.71. Representation
theory of finite J-trivial monoids (more generally finite R-trivial monoids) can be easily
described, see Corollary 5.7 in [53] or [12]. In particular, in the J-trivial case representations
can be parametrized by idempotents, Example 1.50. We will construct two types of repre-
sentations of K[C,]: those coming from the representations of K,[M;], and those related to
the idempotents in C),. The sandwich matrices P, are invertible as matrices in M, (K (¢..)),
see Corollary 2.53. Recall that here K (g, ;) stands for the field of rational functions in the
indeterminate g, ;, and thus Ko[M;] are almost Munn algebras, Section 1.3. Simple modules
over such algebras can be described, see Section 1.3.1. In Section 5.3 we will extend this
result to our setting.

If P is a maximal ideal of K[C,], then from Theorem 1.25 K[C,]/P ~ M, (D) for r > 1
and a division algebra D. On the other hand, as explained in the proof of Theorem 3.6,
GKdim(K[C,]/P) = cIKdim(K|[C,]/P) = 0 and thus K[C,]/P is finite dimensional. There-
fore, assuming that the field K is algebraically closed, we get D = K. In particular, the
irreducible representation corresponding to the maximal ideal P is the natural homomor-
phism K[C,] — K[C,]/P. Conversely, the kernel of any irreducible representation of K[C,,]
is a (left) primitive ideal. Therefore, by Theorem 3.6, it is also a maximal ideal of K|[C,,].
Consequently, there exists a bijection between maximal ideals and irreducible representations
of the algebra. Bearing that in mind we describe the representation theory of K[C,] using
both: maximal ideals and direct constructions of irreducible representations, interchangeably.

First, we are going to prove that every maximal ideal in Ky[M;] extends to a maximal
ideal in the algebra K[C,].

Proposition 5.7. Assume that I is a mazimal ideal in Ko[M;]. Then there exists a unique
mazimal ideal I in K[C,] such that w(I) N Ko[M;] = I and Ko[M;)/I ~ K[C,]/I, where
7 K[C,] — K|[C,]/K|L] is the natural homomorphism.

Proof. We treat the semigroup M; as a subsemigroup in I;_;/I;. Then we know from
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Corollary 2.46 that M; is a two-sided ideal in C,/I;. Let I be the ideal in K[M;] such
that the algebra K,[M;]/I is simple. Then, as Ky[M;] is an ideal in K,[C,/I;], we have
that I C Ko[C,/L]IKy[C,/I;] € Ko[M;]. Therefore either I = Ky[C,/L]|IK,[Cy/1;] or
Ko[Cy /LI Ky[C, /1] = Ko[M;]. On the other hand

(Ko[C /L) Ko[C,/ I])* C
(Ko[Cn/ LITKo[Cr /L)) (Ko [Crn ) LT Ko[Cr ) Ii]) €
KO[MZ-][KO[MZ-] c .

It follows that I = Ko[C,,/I;]1Ko[C,/1;]. Therefore I = 7—1(I) is an ideal in K[C,], where
7 : K[C,] — K[C,])/K|[I] is the natural homomorphism. Moreover, from 7 (1) N Ko[M;] = I
(as M; \ {0} = M; C I,_; \ I) we get that Ko[M;]/I<K[C,]/T. As Ko[M;]/I is a simple PI-
algebra, by Kaplansky Theorem 1.25 it follows that Ky[M;]/I is an algebra with an identity.
What is more, it is an ideal of K[C,]/I, so that Ko[M;]/I = (K[C,]/I) - f for a central
idempotent f. Indeed, let f be the identity of Ky[M;]/I. Then for any x € K[C,]/I we have
fr,xf € Ko[M;]/I and thus fx = fof = o f, that is f is central idempotent. As Ky[M;]/]
is simple, it follows that Ko[M;]/I = (K[C ./1)f. If we consider the natural epimorphism
¢ : K[C,] — (K[C,]/T)- fthen[ — ker ¢ is an ideal in K[C,,] such that K[C,,]/T ~ Ko[M;]/I.
The uniqueness of the ideal I is a direct consequence of the construction because I is the
ideal of K[C,,] generated by I. O

The next step is to investigate any irreducible representation of the algebra K[C,], not
necessarily arising from the representation of Ky[M;] in the way described by Proposition 5.7.
Let us consider any maximal ideal P of K[C,]. Recall that the minimal prime ideals .J;
(i=0,...,n—2) of K[C,] have been described in Theorem 3.4. From Theorem 3.6 we know
that, J; C P for some i € {0,...,n — 2} and thus also I; cr (I; C J; from the definition).
Take the minimal i > 0 such that I; C P. Then either K[M;] ¢ P or K[M;] C P.

Assume first that K [M;] ¢ P. Then PNK[M;] # {0}, as othervvlse PN K[gn:] = {0} and
I; € P which, together Wlth maximality of the ideal P and the definition of J;, implies that
P = J;. That contradicts Theorem 3.6. Then 7(P) N Ko[M;] # {0}, where 7 is the natural
homomorphism K[C,] — K[C,]/K|I;], is an ideal in Ko[M;] such that Ko[M;]/(m(P) N
Ko[M;])<K[C,,)/ P ~ M;(K) for some j > 1. Therefore we get that Ko[M;] /(7 (P)NKo[M,;]) =
K[C,]/P. In particular, in this case the maximal ideal P comes from a maximal ideal in
Ko[M;], in the way described in Proposition 5.7.

Now, let us consider the second case, namely K[M;] C P.

Ifi=0and I_; C P, then every irreducible representation corresponding to the maximal
ideal P comes from the irreducible representation of the finite monoid C,, / I_{. AsC, is a
J-trivial monoid, also C,,/1_; is J-trivial, as explained in Remark 1.39. From Section 5.1 it
follows that there are exactly n + 1 idempotents in C), \ I_; (generators z1,...,z, and 1).

By Example 1.50, there exists a bijection between isomorphism classes of irreducible
representations of the monoid C,,/I_; and idempotents e € C,, \ I_;. More precisely, let e be
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such an idempotent and consider I(e) = {m € C,/I_1 : e ¢ (C,,/I_1)m(C,/I_1)}, that is the
ideal of non-generators of the principal ideal (C,/I_1)e(C,/I_1). Then the corresponding
one-dimensional irreducible representation ¢, : K[C,/I_1| — K is given for m € C,,/I_1 by

ou(m) {0 if m € 1(e)

1 otherwise

Moreover, different idempotents lead to non-isomorphic representations.

Then the induced irreducible representation of K[C,] is given by K[C,] = K[C,/I_1] <%
K and thus leads to a maximal ideal P in K[C,] associated to e. All possible maximal ideals
P such that I_; C P are of the above form. In addition, for different idempotents e € C,,\ I_4
we get different ideals. Indeed, from Proposition 1.49, it follows that for every idempotent
e and m € C,/I_; we have m ¢ I(e) if and only if em = e. Therefore if I(e) = I(f) for
idempotents e and f, then e ¢ I(f) and f ¢ I(e), that is fe = f and ef = e. We get that
f and e are J-related in the J-trivial monoid C,,/I_;, which means that e = f. It follows
that for different idempotents we get different maximal ideals P.

Assume now that K[]\;[z] C Pand i >0, that is I,y € P. Consider the finite semigroup
Lo J(L; U M;). In this case every simple K[C,]-module with annihilator P is also a simple
K[Ii_l/(fi U ]\;[,-)]—module. From Theorem 1.48 it follows that every such a module W has an
apex, that is an idempotent e € I;_ /(1; U M;) satisfying conditions eW #0 and K[T( )] =
Ann(W), where T(e):{wefi,l/(IiUM) e ¢ (Lima/(I; U M;))w(I;— 1/ :))}. From
the description of idempotents in Section 5.1 it is clear that there exists an 1dempotent
e € Ii1/(I; U M;). Using the characterization of simple K[I;_ 1 /(L; U M;)]-modules and
knowing that there are finitely many idempotents in Il_l/ (L; U M, i), we can choose a minimal
one with respect to the J-relation, defined in Section 1.2, in I,_; \ (I; U M;) such that e ¢ P.

Next, consider the ideal N, = I; U M; U I(e) in C,, where I(e) = {w € C,, : e ¢ CpwC,,}.
The monoid C), is J-trivial and from Proposition 1.49 we have that for every m € C), either
em = e or m € I(e) C N, and symmetrically either me = e or m € I(e). It follows that
K[N.] C P, {f,¢} is a two-sided ideal in C,,/N, and thus in particular K[C,]/K[N,
Ke® (K[C,]/K[N.])(1—e). Therefore in this case the irreducible representation ¢ of K[C,,]
is one-dimensional and given by K[C,] - K|[C,/N,] £+ K, where for any m € C,, \ N,

lifem=c¢e
QOE(m): )
0if em € N,

As in the previous case, for every choice of an idempotent e € I;_;\ (]\;[Z UI;) we get a different
maximal ideal P, and in such a way we get all maximal ideals in this case.
Thus we have proved the following theorem.

Theorem 5.8. Let ¢ : K[C,] — M;(K) be an irreducible representation of the Hecke-
Kiselman algebra K[C,| over an algebraically closed field K. If o(K|[I,_3]) # 0 set i = n—2.
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Otherwise take the minimal i € {—1,...,n — 3} such that p(K[I;]) = 0.
1) Ifi >0 then

a) either o(K[M;]) # 0 and the representation o is induced by a representation of
Ko[M;] as described in Proposition 5.7;

b) or o(K[M;]) = 0 and the representation ¢ is one-dimensional and induced by an
idempotent e € I;_1 \ 1;. For any m € C,, it is given by

lifem=ce
pm) =9 :
0 if em € N,

where N, = LUM;UI(e) is the ideal in C,, such that I(e) = {w € C,, : e ¢ C,wC,}.

2) If i = —1 then the representation ¢ is one-dimensional and induced by an idempotent
e€ Cy\ I_1. It is given for m € C,, by

0 difmelle)ul,
p(m) = .
1 otherwise

where I(e) = {m € C,\ Iy :e ¢ (Cp/I_1)m(C, /1 4)}.

5.3 Irreducible representations of Ky[M;]

In view of Theorem 5.8, in order to complete our discussion of irreducible representations
of K[C,], the final step is to characterize irreducible representations of Ky[M;]. Recall that
the field K is algebraically closed. We start with a construction of certain family of such
representations using the representation theory of Munn algebras, see Section 1.3.1. To
characterize irreducible representations of semigroups M; = M°%(Q;, A;, B;; P;) we cannot
use Theorem 1.59 directly, as the infinite cyclic semigroup ); generated by g¢,; is not a
group. On the other hand, note that (); is contained in the cyclic group generated by g, ;,
denoted by gr(g,:). As we prove in the next two propositions, all representations of M; come
from representations of the semigroup of matrix type associated to such a group gr(g, ), sets
A;, B; and the sandwich matrix P;. Moreover, every irreducible representation of the latter
semigroup restricts to a representation of M,;.

Proposition 5.9. Consider the semigroup of matriz type M; = M°Q;, A;, Bi; P;) from
Theorem 2.44. Then for every A € K* there exists a unique irreducible representation 1y :
Ko[M;] — M.(K), for some 1 < r < |A;], induced by the irreducible representation of
gr(qn:) such that gn; — A. Such a representation is the restriction of the representation
Py s M°(gr(qni), Ai, Bi; P) — M,.(K) described in Theorem 1.59 coming from the mentioned
irreducible representation of gr(qn.;)-
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Proof. We know that |A;| = |B;| and the sandwich matrix P, is invertible as a matrix in
M, (K(qn.)), see Corollary 2.53. Therefore, every algebra Ky[M;] embeds into the algebra
of matrix type Ko[M®(gr(gns), Ai, Bi; P))] ~ M(K|qn, q,], Ai, Bi; P).

For any A € K* consider the homomorphism ¢, : K[g,;] — K such that g, ; — \. Every
such a homomorphism extends to an irreducible representation of the group gr(g,;). There-
fore, from Theorem 1.59, it induces an irreducible representation M(K[gn,;, g, i, Ai, Bi, P) —
M(K, A;, B;; P;) = M,(K), which is an epimorphism, where P; = (p,,) with b, , = ¢(p.q)
for every a € A;, b € B;. The map 3, : M(K[qnﬁi,q;ﬂl‘],Ai,Bi;H) — M(K, Ay, Bi; Py) is
given by @,(q ;;a,b) = (\*;a,b) for all k € Z, a € A;,b € B;. It is enough to check that the
restriction of the above map to Ky[M;] is also an epimorphism, as then it gives an irreducible
representation ¢ : Ko[M;] — M,.(K). To show this, let us notice that for any o € K, a € A;,
b € B; we have (aA™'q,;a,b) € Ko[M;] and B, (aX" q,4;a,b) = aA"'(X\;a,b) = (a;a,b). The
claim now follows from the fact that M (K, A;, By; P;) — M,(K) is also an epimorphism. [

From the definition of the sets A;, B; that can be found before Theorem 2.1 it follows that
the trivial word 1 is in both sets A; and B;. Therefore, using formula (2.3.1) for coefficients
of sandwich matrices P; = (py,) of the semigroups of matrix type M; from the proof of
Corollary 2.42, we get that p;; = 1. Then Myy = {(¢f;1,1) € M; : k > 1} C M; is
isomorphic to the infinite cyclic semigroup.

The irreducible representations of M; described in Proposition 5.9 come from representa-
tions of the completely 0-simple closure of M;, namely cl(M;) = M®(gr(q,;), Ai, Bi; P;). In
particular, the image of (g,;;1,1) is equal to Ae for an idempotent matrix e of rank 1 and
some A € K*. Now we show that every irreducible representation of M; is of such a form
and extends to a representation of M%(gr(gn), As, Bi; ;).

Proposition 5.10. Every irreducible representation ¢ : Ko[M;| — M,(K) of Ko[M;] is such
that ©(qn.i;1,1) = Xe, where X € K* and e is an idempotent of rank 1. Such a representation
¢ can be uniquely extended to an irreducible representation of Ko[M°(gr(gns), Ai, Bi, Pi)].

Consider any irreducible representation ¢ : Ko[M;] — M, (K), where M; = M°(Q;, A;, B;; P;).
In particular, as K is algebraically closed, the representation is onto. The first step of the
proof is to investigate the image of M;; under .

Let us notice that ¢(Mj ;) is non-zero. Indeed, suppose that in particular ¢(g,.;1,1) =
0. For any (¢f;a,b) € M; either py, = 0 or py, = ¢, for some o > 0. In the first
case ¢((q};:a,b)") = ¢(0;a,b) = 0 for Ny > 2 and in the latter we have (¢} ;a,b)N0 =
( T]Z‘;H(No_l)a;a, b) with Nok + (No — 1)ae > 3 for Ny > 3. Moreover, from the definition
(equation 2.3.1) of sandwich matrices P; it follows that p;; = 1. Therefore, if p(g,;;1,1) =0,
we would have w((qu;;a, b)No) = ©(qn.i; a, 1)g0(q2f’;“; 1, 1)¢(qni; 1,0) = 0, where Ny, = Nok +
(No—1)aa—2 > 1 for all Ny > 3. Then ¢(M;) would be nil and thus nilpotent in the monoid
(M,(K),-), see Proposition 2.14 in [44], which leads to a contradiction. A similar argument

shows that ¢(gy;1,1) cannot be nilpotent.
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Lemma 5.11. The image (K[Mi.]) is a commutative integral domain. Consequently,
@(K[Ml,l]) ~ K.

Proof. As noted above, we have p;; = 1 in the sandwich matrix P;, which implies that
K[M, 1] is isomorphic to K[g,]g,; and in particular o(K[M;,]) is commutative.

Suppose now that ¢(K[M;;]) is not an integral domain, that is uv = 0 for some non-zero
u,v € p(K[M,]) with u = ¢(a), v = ¢(8), where o = (f;1,1), 5 = (g9;1,1). Define ideals
in Ko[M;] as follows:

I ={y = (Yap) € Ko[M;] : yap € K[qns)f for all a € A;,b € B},

J={y = (Yyaw) € Ko[M;] : Ya» € Klgn.]g for all a € A;,b € B;}.

Then IJ C {y = (yap) € Ko[Mi] : yap € K|gnilfg for all @ € A;,b € B;} and as p(I) # 0,
o(J) # 0, it follows that (1) = ¢(J) = M, (K). Therefore,

@((Qn,i; 17 1>IJ<Qnm 17 1)) = @(Qn,i; 17 1)MT(K)90((]71,17 17 1) 7& O

uv = 0, which leads to a contradiction. Consequently, ¢(K[M;]) is a finite dimensional do-
main and, as K is algebraically closed, it follows that o(K[M;,]) ~ K. O

Now we are ready to prove Proposition 5.10.

Proof. As explained earlier, if we denote ¢ = (¢,,;1,1), then ¢(q) is non-zero and not nilpo-
tent. Therefore from Proposition 1.3 in [44] it follows that for k big enough ¢(q)* lies in a
maximal subgroup of the monoid (M, (K),). Then ¢ : ¢"Ko[M;]q" — »(q)*M,.(K)p(q)* and
(@) M, (K)p(q)* = eM,(K)e for some idempotent e, see Lemma 1.10 in [44]. Moreover, by
Lemma 5.11, ¢"K[M;]¢" is contained in a commutative ring K[M; 1], thus it follows that

rk(e) = 1. Now, we have that ¢(q) = ¢ <%0 O) g~! for a matrix ag € M,(K), such that
3]
p € {1,...,r}, rk(a}) = rk(ap), a nilpotent matrix a; € M,_,(K), where g € GI.(K) and
f o
w(d") =g (Cz)o 8) gt As p(¢") € eM,(K)e for an idempotent e of rank 1, it follows

that p = 1 and we can assume that ay € K*. Moreover, if a; € M,_;(K) is non-zero, then

k
g <%0 8) gl g (%0 c?) gt € p(K[M]), so dimg ¢(K[My,]) > 2, which contradicts
1

the assertion of Lemma 5.11. Thus in particular ¢(g,.;1,1) = Xe for A € K* and e is an
idempotent with rk(e) = 1.

Now consider the irreducible representation ¢ : Ko[M;| — M, (K) such that ¢(g,;1,1) = Xe.
As M; = {(qy;a,b) : m > 1,a € A;,;b € B;} and the sandwich matrix P; has p;; = 1, we have
e(qra,b) = o(qnia, De(q) %1, 1)0(gnis 1,0) = ©(gni; a, 1) 2e@(gn,; 1,b) for m > 3.
Let us define the extension @ : Ko[M°(97(qns), As, Bi; Pi)] — M,(K) for any (g, ;;a,b),
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where p € Z, a € A;, b € B; by

(¢ 3a,b) = @(qni; a, DA ?ep(gn i3 1,b).

To verify that @ is a homomorphism take any (g}, ;;a,b), (¢ a, V') € Ko[M;]. Then either

(¢h 530, ) (g @' V) = (g™ ™30, V) 3 o = g% o1 (g 55.0,0) (g3 @/, V) = 0 if pror = 0.
In the first case also (¢,;1,0) - (gns;d',1) = (g, nb‘““ 1,1). We then get

)

@(qim;a, b)@(qg"i;a/,b') @ (Gn,i; @, 1>>‘172690((qm3 1,0) - (gnis ', 1))A™ %e ©(gni; 1,0) =
= @(anisa. DN Pep(gny ™ L DA™ Pep(gu 1Y) =
= @(qni; a, AT 2 ep(g,, 51,0) =

=( H'ernb“';a,b').

Moreover (qu.;a, b)(gn;a’,0") = 0 if and only if (gn;1,0)(gns;a’,1) = 0, and thus in the
second case

@(QL,N a, b)gO(qn ) a bl) ((qn i @ b) (q;rfw CLI, b,)) = 0.

Therefore @ is a homomorphism. Let us denote N; = {(q,’;i;a,b) ck >3,a € A;b €
B;} € M;. Then Ko[N;] is an ideal in Ko[M;] and it is clear that B|x v = ©lkoni-
Moreover ¢(Ko[N;]) = M,(K) and in particular o(f) = 1 for some f € Ky[N;]. Then for
any g € Ko[M;] we have p(g9) = ¢(9)e(f) = ¢(gf). Tt follows that ¢ is uniquely determined
by ¢|kon,]- Therefore @|x,nr,) = ¢, in other words the irreducible representation ¢ can be
extended to the representation @ of Ko[M°(gr(gn.), Ai, Bi; P;)]. From Theorem 1.59 it follows
that every irreducible representation of Ko[M°(gr(gni), Ai, Bi; P;)] is uniquely determined
(up to equivalence) by its value on the element (g, ;;1,1) € M;. Therefore the extension of
the constructed representation is unique. O

5.4 Irreducible representations of PI Hecke—Kiselman al-
gebras

In this section we describe irreducible representations of arbitrary Hecke-Kiselman algebras
satisfying a polynomial identity. Recall from Theorem 1.72, that this condition can be
characterized by the property that the corresponding graph does not contain two cyclic
subgraphs (that is subgraphs which are oriented cycles) connected by an oriented path.

The radical of the algebra K[HKg]|, denoted by J(K[HKg)), in this case was described
in Theorem 3.9. Assume that ©’ is the subgraph of © obtained by deleting all arrows x — y
that are not contained in any cyclic subgraph of ©. Every connected component of ©’ is
either a singleton or an oriented cycle. Then K[HKe|/J(K[HKg]) = K[HKg/| and it is the
tensor product of algebras K[HKg,] of the connected components O, ...,0,, of © each
being isomorphic to K @ K or to the algebra K[C;], for some j > 3.
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Theorem 5.12. Assume that © is a finite oriented graph such that K[HKe] is a Pl-algebra
and © is the subgraph of © as described above, with the connected components O, ...,0,,.

Then the mazimal ideals of K[HKg] are in a bijection with maximal ideals of K[HKg].
The latter mazximal ideals are of the form

m

S K[HKe,]® - ® K[HKe, ,] ® P, ® K[HKe,,,] ® - - ® K[HKe,]

i=1

for mazimal ideals P; of K[HKg,].

In particular, from Theorem 5.12 and the Kaplansky theorem (Theorem 1.25) it follows
that all irreducible representations of the Hecke-Kiselman algebra K[HKg| are determined
by representations of the algebras associated to the connected components O4,...,0,, of
the subgraph ©" obtained by erasing all arrows not contained in any cyclic subgraph of ©.
Every such component is either an oriented cycle of length 7 > 3 or a singleton. Note that
maximal ideals (irreducible representations) of K [C;] have been characterized in Theorem 5.8
and Section 5.3 and if ©; is a singleton, then K[HKg,] = K @& K has two obvious maximal
ideals.

Then every irreducible representation of K[HKg] is of the form

K[HKg] — K[HKe,] ® - ® K[HKe, | = M,,(K) ® - ® M, (K) = M,,..,. (K),

where the first map is a natural epimorphism K[HKe] — K[HKe]/J (K[HKe]) ~ K[HKg, |®
- ® K[HKe,,], and the second homomorphism is the natural homomorphism ¥y ® - - - ® ¥,
for the irreducible representations v; : K[HKg| — M, (K) for i =1,...,m.

Proof of Theorem 5.12. As we know that K[HKe|/J(K[HKe]) = K[HKe/] it is clear that
there exists a one-to-one correspondence between maximal ideals of K[HKg] and those of
K[HKe].

So, it remains to find all maximal ideals in K[HKg/|. Assume that ©" has only two
connected components, that is K[HKe/| = Ry ® Ry, where R; = K[HKg,] are isomorphic to
either K[C}], for some j > 3, or K @ K. The general case can be proved analogously. Let P
be a maximal ideal of K[HKg/] and 7 : Ry ® Ry — (R; ® Rs)/P the natural projection. Since
R ® Ry is a Pl-algebra over an algebraically closed field, from Kaplansky theorem it follows
that (R; ® Ry)/P ~ M,(K) for some r > 1. Denote R} = n(R; ® K) and Ry = 7(K ® Ry).
Recall that the Jacobson radical of a finitely generated Pl-algebra is nilpotent, as mentioned
in Section 3.3. We claim that the algebras R; are semisimple. Indeed, let N;/P be a nilpotent
ideal in R;. Then N;(1® Ry) is a nilpotent ideal in K[HKeg/], as N1(1 ® Ry) = (1 ® Ry)N;.
It follows that N; = 0 and R; is semisimple, as it is finite dimensional. A symmetric
argument shows that R, is also semisimple. If R; was not simple, then it would contain a
non-trivial central idempotent. This idempotent would be then also central in K[HKe/]/P,
a contradiction. Therefore R; ~ M, (K) for i = 1,2. Projection 7 : K[HKe/] — K[HKe/|/P
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factors through K[HKe/] = R, ® Ry = K[HKe/]/P. Moreover, as Ry @ Ry ~ M,,,(K), 7
is an isomorphism. Then we can assume that 7 : K[HKg/| - M,.(K) where r = ryry. If we
denote m = 7|g, ok and Ty = 7|ker,, then ker(m;) = P; are maximal ideals in R;. It can be
easily checked that P = P, ® Ry + Ry ® Ps.

Conversely, if P = Py® Rs+ R1® P, for maximal ideals Pi<R;, Po<Ry, then (Ri®Ry)/P ~
Ri/P; ® Ry/Ps. As R; are finitely generated Pl-algebras it follows that R;/P; ® Ry/Py ~
M, (K)® M,,(K) ~ M,,,,(K). Therefore P is indeed a maximal ideal in K[H K¢/|. O
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Chapter 6

Gelfand—Kirillov dimension of
Hecke-Kiselman algebras

In this chapter we describe the Gelfand—Kirillov dimension of Hecke-Kiselman algebras as-
sociated to oriented graphs in terms of numerical invariants of the underlying graph. The
results of this chapter come from [58]. Our main theorem can be seen as a natural continua-
tion of in [39, Theorem 1|, see Theorem 1.72. The methods rely extensively on the property
discovered in [40], namely on the fact that Hecke—Kiselman algebras are automaton.

6.1 Growth of automaton algebras

Now let us restrict our attention to automaton algebras. Recall from Section 1.4.3 that an
algebra A is automaton if its set of normal forms N(A) (with respect to certain set of genera-
tors and an ordering in this set) is a regular language. What is more, from Theorem 1.73 we
know that the Gelfand-Kirillov dimension of every algebra with this property is infinite or
it is an integer. The value of GK dimension is related to certain forms of regular-expression
representations of the regular languages of normal words in the algebra. We reformulate the
results of |[54] in the language of normal forms and Gelfand-Kirillov dimension. In particular,
we sketch the idea of an alternative proof of Theorem 3 from [54], omitting interpretation of
regular languages as those recognised by finite automaton.

Following notation from |54], recall that the density function of a regular language L C
(X), where (X) is the free monoid over the set X, is defined as p.(n) = |L N X™|, that is
the number of elements in L of length n. Given two functions f(n) and g(n), we say that
f(n) is O(g(n)) if there are positive constants C' and ng such that f(n) < Cg(n) for every
n = ng. Function f(n) is Q(g(n)) if there is a sequence n; — oo of natural numbers and
positive constant C' such that f(n;) > Cg(n;) for every i > 1.

The density function pya) of the regular language N (A) of normal words of an automaton
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algebra A satisfies
dy(n) = prea (i),
i=1

where dy is the growth function of A with respect to the generating subspace V' spanned by
the chosen generators of A. Consequently, the density function is O(n*~1) for some k > 1
precisely when the growth function of A with respect to the chosen set of generators is O(n*)
and thus GKdim(A) < k.

The operation * defined by T* = J;5, 1", for T C F, will be sometimes called a Kleene
star. Similarly we define T+ = J,o, 7% for T C F. If T = {w} for some w € F, then we
write 7% = w* and TT = w™. -

It can be checked that languages L described by regular expressions with minimal number
of nested star operator equal at least two (for example of the form (u*w*)* for some non-
trivial words u,w such that one is not a power of another) have exponentially many words
of length n for infinitely many n. On the other hand, if an automaton algebra has finite
GK dimension, from Theorem 1.73 it follows that the number of normal words of length at
most n is O(n*) for some k > 0. As a consequence, in this case N(A) can be described by
expressions without nested Kleene stars. We get, using so-called disjunctive normal form,
that N(A) can be represented as a finite union of expressions vow; viw;,vs . .. vs_w; v, for
some s > 0. Moreover, as it is shown in [54], a regular-expression representation can be
chosen in such a way that s < k, provided that A has GK dimension at most k. It may be
also easily checked that the growth of a finite sum of such expressions with s < k is at most
k. Theorem 3 in [54] can be now rephrased as follows.

Theorem 6.1. The Gelfand-Kirillov dimension of an automaton algebra A is not bigger
than k for some k > 0 if and only if the set of normal words N(A) can be represented as a
finite union of reqular expressions of the following form

* * *
VoW;, V1W;, V2 . . . Vs—1W,; Vs, (6.1.1)

with vy, ..., vs € F, w;,...,w;, € F and 0 < s < k.

Unfortunately representation of the form (6.1.1) is not unique. Moreover, without further
assumptions we cannot conclude that GK dimension is equal to the maximal number s
occurring in the description as in the theorem, as illustrated by the following example.

Example 6.2. The polynomial algebra A = K{z| is generated by the set {1,z}. Let us
choose the well ordering in (x) compatible with multiplication such that z* < 2! if and only
if £ < {. Then the set of normal words N(A) can be represented by the regular expression x*.
This set can be also described by x*z*. The growth function dy associated with a generating
subspace V = ling {1, 2} is given by dy(n) = n + 1. Thus we get GKdim(A) = 1.

In the next simple observation we show, following Lemma 1 in [54], that under certain nat-
ural assumptions the rate of growth of a set described by an expression (6.1.1) is polynomial
of degree s.
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Observation 6.3. If a regular expression vowjv;wivs . .. v,_1wivs has the property that for
any two different substitutions of non-negative powers of words wy,...,ws we get distinct
words, then number d(n) of words of length at most n in the language described by this
expression is 2(n?®).

Proof. From the assumptions every element w of this family of words is uniquely determined
by s non-negative integers (nq,...,ns) such that w = vow viwyvy ... vs_jwW"vs. The num-
ber of words of length at most n is thus not smaller than the number of elements of the set
{(n, ..o onm) g € Zy,ng + -+ + ng < “F1}, where ¢ is the length of the word vy - - - v,
and K is the maximum of lengths of w;, : = 1,...,s. For all n such that K divides n — q
the cardinality of such a set is (%Z“), which is a polynomial of degree s. The assertion
follows. O

6.2 The main result

Now we focus on the Gelfand-Kirillov dimension of Hecke-Kiselman algebras associated to
oriented graphs. As the result does not depend on a field K we will denote the algebra
K[HKg] associated to a field K by Ag. The reasoning relies on two results known earlier.
Namely, in the paper [39] algebras of finite Gelfand-Kirillov dimension have been character-
ized. Namely, Hecke—Kiselman algebra Ag has finite GK dimension if and only if the graph
does not contain two different oriented cycles connected by an oriented edge of length > 0,
see Theorem 1.72. Moreover, as it has been proved in [40], algebras Ag associated to oriented
graphs © are automaton for any choice of degree-lexicographic order on the underlying free
monoid. We will also investigate the combinatorics of words in the Hecke-Kiselman monoids.
In this context Grobner bases of the algebras Ag from paper [40] will be extensively used. To
emphasize the use of Theorem 1.63, whenever we consider the set N(Ag) of normal words of
the Hecke—Kiselman algebra Ag that is obtained via reductions from the set T, we will say
that the elements of N(Ag) are the reduced words of Ag.

Recall from Section 1.4.2 that for any oriented graph © with a set of vertices denoted by
X,te X and w € F = (X) we write w - t if |w|; = 0 and there are no x € supp(w) such
that x — ¢ in ©. Similarly, we define t -» w: we assume that |w|, = 0 and there is no arrow
t — y, where y € supp(w). In the case when ¢t - w and w - t, we write t <» w. Let us
recall that a vertex v € X is a sink vertex if no arrow begins in v. Analogously one defines
a source vertex. Sink and source vertices are called terminal vertices.

In the reminder of this section we assume that an oriented graph © does not contain
two different cycles connected by an oriented path of length > 0, which means that the
corresponding Hecke-Kiselman algebra Ag has finite GK dimension. From Theorem 1.74
and results from Section 6.1, to determine this dimension we need to investigate regular
expressions of the form (6.1.1) describing normal words in the algebra.

If a graph © is acyclic, then the corresponding monoid is finite and consequently, the
Gelfand-Kirillov dimension of underlying algebra is zero, see Theorem 1.69.
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Every vertex of © that belongs to some cycle will be called a cycle vertex, or a cycle
generator of HKg. Any vertex that is not a cycle vertex will be called a non-cycle vertex
(respectively a non-cycle generator).

We begin with a general observation which says that in any family of normal words of
the form (6.1.1) factors w;‘j correspond to certain words with the support in one of the cycles
of the graph ©.

Observation 6.4. Let © be a graph such that Ag is of finite Gelfand—Kirillov dimension.
Let C1,...,Cy be the set of disjoint simple cycles in O, where C; is of the form

Ty —> Xog —> ... > Ty, — L1,

for some n; > 3 and 1 < [ < k. Assume any degree-lexicographic order on F' such that
we have x < y for some = € C, and y € C; if and only if either r < s, or if (r = s and
T = Ty, Y = Tgp, for p < q). Assume that for some 1 # w € F, the words w™ € F are
reduced with respect to the reduction set 7" in Theorem 1.63 (constructed with respect to
the chosen deg-lex order) for every m > 1. Then w is a factor of the infinite word of the
form (qn ;) of full support, where ;1 — 2o — ... — &y — 2 is one of the cycles C} with
N =ny, qnv; = an(z1...2)(xN—1 ... 2i41) and @ € {0,..., N — 2}. Here we assume that

gqNo = TNTN-1---T1-

Proof. Let w # 1 be such that the word w™ is reduced for every m > 1. Suppose that
y € supp(w) is a non-cycle vertex of ©. First, we will show that then the support of w would
also contain either a source or sink vertex. If y is not a terminal vertex, from conditions (i)
and (ii) in Theorem 1.63, it follows that there exist uy, 2z, € V(0©), uy # z1, such that u; — y,
21 < y in © and wy, 2z, € supp(w). Similarly, if u; is not a sink vertex, then there exists
ug € supp(w) such that uy — uy. Symmetrically, if z; is not a source vertex, then zy < 27 in
© for some zy € supp(w). Moreover {uy,us} N{z1,22} = 0, because y is a non-cycle vertex
and 2o ¢ {y, 21}, ua ¢ {y,u1}. We continue this procedure until at least one of the chosen
vertices is either terminal or cycle vertex. As the graph is finite, after finitely many steps we
obtain a path ug — -+ = u; >y — 21 = -++ — 2z, such that uy, ..., us, 21, ..., 2 € supp(w)
and either u, is a cycle vertex, or a source vertex and, similarly, either z, is a cycle vertex, or
a sink vertex. From Theorem 1.72 and the assumption that Ag is of finite Gelfand—Kirillov
dimension, the graph © does not contain two cycles connected by a path and thus it follows
that us and 2, cannot be both cycle vertices. Therefore, either u, is a source or z, is a sink, as
claimed. However, according to Theorem 1.63 a sink or source vertex may occur in a reduced
word at most once. Since w? is reduced and contains at least two occurrences of u; and z,,
they cannot be terminal vertices, which leads to a contradiction.

We have proved that the entire support of w consists of cycle generators. Call these cycles
Ci,...,C, Since the Gelfand-Kirillov dimension of Ag is finite, no vertex can belong to
two cycles and if two elements in the support of w belong to different cycles, they are not
connected in © by an oriented path. From Theorem 1.63 and from the assumed deg-lex
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order on F' it follows that w = wjw; ... w,, where supp(w,) C V(C;,) for pairwise different
cycles C;, for p=1,...,q. Yet, as w™ is reduced, for all m > 1 it easily follows that ¢ = 1,
so the support of w belongs entirely to a single cycle. Say that this cycle C' is of the form
x4 — Ty — ... = Ty — x1. Suppose that there exists x; which is not in the support
of w. Take an index ¢ such that z; ¢ supp(w) but x;_; € supp(w), where for i = 1 we
take 1 — 1 = N. Then w? contains a factor of the form x; juz;_; such that x; ¢ supp(u).
From the description of the Grobner basis in Theorem 1.63 it follows that then w? is not
reduced. This means that supp(w) = {z1,...,zx}. From Proposition 2.15 it follows that
if w™ is reduced for every n > 1, then for some m > 1 the word w™ is of the form aq}“v7ib,
where ¢ € {0,...,N — 2}, k > 1 and a and b are members of an explicitly described finite
families of words from Theorem 2.1. Then, from the assumption, w?™ has the reduced form
aq]’@7ibaqﬁv’ib. In particular, this word has a factor gy, and therefore, from Theorem 2.1, it
follows that ba is either of the form gy ; or the trivial word 1. Consequently, as w is a prefix
and suffix of w™ = agy ;b, it is also a factor of the infinite word of the form (qx;)* for some
i €{0,..., N —2}. The assertion holds. O

From the observation it follows in particular that if there are no cyclic subgraphs in the
graph, then a regular language of normal words of the corresponding algebra is described by
expressions without Kleene stars. Thus, applying Theorem 1.73, we get an alternative proof
that Hecke—Kiselman algebra of acyclic graph is finite dimensional.

After an introductory observation concerning words in the Hecke—Kiselman monoids with
the property that their positive powers are in the reduced form, we find the maximal possible
number of occurrences of certain non-cycle generators in reduced words in Ag. We are
interested in those non-cycle vertices that are connected by an oriented path with at least
one cyclic subgraph. As we will show, GK dimension depends only on such vertices.

Definition 6.5. A full subgraph ©’ of a graph © whose set of vertices consists of all cycle
vertices and all vertices connected with at least one cycle by an oriented path will be called
the maximal cycle-reachable subgraph of ©.

Example 6.6. In the graph © presented below, the maximal cycle-reachable subgraph is the
full subgraph represented by solid edges.

Figure 6.1: A graph © with the maximal cycle-reachable subgraph represented by solid edges

Let us recall that we assume that graph © does not contain two different cycles connected
by an oriented path. In particular, for any vertex x € V(©’) that is not contained in any
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cycle, if there exists a path from z to a cycle (from a cycle to x, respectively), then all paths
between x and all cycles are from x to the cycles (from the cycles to x, respectively).

We agree that for any vertex = there exists exactly one path of length 0 with the end (or
beginning) in .

Lemma 6.7. Let © be an oriented graph with cycles denoted by C4, ..., Cy, and let © be its
mazximal cycle-reachable subgraph. For every verter x € V(0')\ (V(Cy)U...UV(Cy)) either
all oriented paths between x and any cycle lead from x into cycles or all lead from cycles into
x. Denote by k, the number of oriented paths in © of non-negative length with the end in the
vertex x in the first case, and the number of oriented paths of non-negative length with the
beginning in x in the latter case. Then, in every reduced word in HKg, the element x occurs
at most k, times.

Proof. Let x be any vertex contained in the maximal cycle-reachable subgraph ©’ of the graph
© but not contained in the cycles C1, ..., Cy. Assume first that there are oriented paths from
the cycles into x. To prove the statement we proceed by induction on the maximal length
[(x) of a path starting at x in the graph ©.

If [(x) = 0 then z is a sink vertex in the graph © and thus there are no edges starting at
z. Then for any w € HKg we have zwzx = wx (see Remark 1.64) and thus = can occur at
most once in any reduced word.

Assume now that [(z) > 0 for some x € V(0')\ (V(Cy)U...UV(Cy)) and let z1,..., 2z,

be the set of all vertices in © such that there is an edge © — z; for every ¢ = 1,...,m. Then
from the definition of the maximal cycle-reachable subgraph it follows that all zq, ..., z,, are
also in ©’. Moreover, for i = 1,...,m we have I(z;) < l(z). By the inductive hypothesis

every z; occurs in any reduced word at most k,, times, where k,, is number of paths starting
at z;. We know that if a word of the form zwz with |w|, = 0 is reduced in HKg then
in particular x — y for some y € supp(w), as otherwise * - w and zwzr = wz in HKe.
It follows that at least one of z,..., 2z, occurs between any two generators x. As already
explained, every z; occurs in any reduced word at most k., times. Therefore x can occur at
most k,, +...+ k., + 1 times in any reduced word. On the other hand, in © there is exactly
one path of length 0 starting at . Every other path starting from x uniquely determines a
path starting from one of z1,..., 2, and every path p starting at z; defines a path starting
with + — z; and followed by p. Thus, in total there are exactly k., + ...+ k., + 1 paths
starting from x in the graph ©. The assertion follows.

The case where there exist paths from x to a cycle can be treated by a symmetric argu-
ment, using induction on the maximal length of a path that ends in z. O]

Note that for every non-cyclic vertex z in the maximal cycle-reachable subgraph © such
that all paths between x and the cycles lead from the cycles into x (from z into the cycles,
respectively) the number k, of all paths in © starting (ending, respectively) at x is the same
as the number of such paths in ©’.

Our next step is to use Lemma 6.7 to show that every regular expression of the form
wiviw; ... vs_qwi which describes reduced words in the algebra Ag can be expressed using
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at most certain number of stars. To do so we need to introduce certain order in the set of
vertices of ©. For the rest of the present section we will assume that such an order had been
chosen.

Definition 6.8 (Order on vertices of the graph). Let © be a graph with the cycles C1, ... Cy
of length n(j) > 3 for j = 1,...,k and let ©’ be its maximal cycle-reachable subgraph. For
every vertex x of © that is not contained in any cycle, denote by k., as before, the number
of oriented paths of length > 0 in © with either the end or the beginning in x, depending on
the direction of paths between x and the cycles. In the set of these vertices define any order
such that if &k, <k, holds, then y < x.

Let C; be of the form x;; — -+ — x,(j); — 71 for some n(j) > 3and j =1,..., k. In
the set of all cycle vertices introduce the order such that x; ; < x;,, if ether j <m or j =m
and ¢ < [. Moreover, assume that all cycle vertices are smaller than any vertex outside the
cycles.

Finally, choose any order in the set of vertices of © that are not in ©’, for example such
that all these vertices are bigger than the vertices of ©’.

Let us note that it is possible to define the number k, for non-cycle vertices from ©’, and
the order which satisfies all above conditions, provided that the graph © does not contain
two different cycles connected by an oriented path.

In the next technical lemma we characterize the possible form of a family of reduced
words described by w*vw*, with supp(w) C V(C,,) for some n.

Lemma 6.9. If a family of reduced words is described by a reqular expression of the form
w*ow* with supp(u),supp(w) C V(C,) for a cycle C,,, then either v contains a vertex con-
nected by an edge with C,, or this family of words can be expressed by a sum of finitely many
reqular expressions of the form pr*q or p, for some words p,q and r.

Proof. Let u*vw* be the regular expression describing reduced words with supp(u), supp(w) C
V(C,) for a cycle C,. First we claim that either supp(v) C V(C,,) or v contains a non-cycle
vertex. Indeed, by Definition 6.8 of the order on the vertices of © and the fact that the graph
does not contain two different cycles connected by an oriented path, generators corresponding
to the vertices from different cycles commute. Consequently, every reduced word w such that
supp(w) € V(Cy) U --- U V(Cy) has elements from different cycles grouped in such a way
that if w = w; ---w; with w; € V(Cy)) and w; € V(Cyy), then n(i) < n(l) for all i < [.
Thus if the family of words u*vw* is reduced and such that supp(u),supp(w) C V(C,,), then
either supp(v) C V(C,,) or v contains a non-cycle generator.

Let us now consider the first case, that is u*vw* consists of reduced words and supp(u),
supp(v), supp(w) C V(C,). We proceed to show that then u*vw* can be expressed as
a finite sum of expressions with at most one Kleene star. From Observation 6.4 it fol-
lows that u and w are factors of the infinite words (xy(z1...2)(zNn_1...2;,41)) and
(n (@1 .. 2,)(TN_1 - - T1p41))> , denoted shortly by ¢37;, and ¢3,,, for some Il € {0,..., N—
2}, where N is a number of vertices of cycle C,,. Moreover, as there exist j, k,m > 1 and
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1 €{0,...,N — 2} such that w/vw* is of the form agy b, it follows that | = I; = I,. Fur-
thermore, v is a factor of the same infinite word (xy(z1 ... 2)(xy_1...21341))°. Thus we can
write u = aqy',b, v = aqﬁ,vlb’ and u = a'qy7 b’ for non-negative a;, 8 and words a, d’, b, that
are suffixes and prefixes of the word gy, respectively, of length at most NV — 1. Thus both
ba and b'a’ are either the trivial word 1 or are of the form ¢y;. Then u*vw* is equal to the
set {aqé\l,gﬁbﬂﬁ&b’ : 11,1y = 0}, for some positive integers 3; (i = 1,2,3), where §; = a if
ba =1 and 5, = a; + 1 otherwise, and 5y = an if b'a’ = 1 and 55 = ay + 1 otherwise. From
Proposition 2.2 in [48] it follows that there exist a positive integer ng and a finite set D such
that {161 + lsfa + B3} = {no + kd : k > 0} U D, where d = ged (51, B2). We thus get easily
that u*vw* can be written as a finite sum of regular expressions with at most one star *.
Now assume that a family of reduced words described by u*vw™* is such that v contains a

non-cycle vertex and supp(u), supp(w) C V(C,,). We can write v = vszv, for words vs, v, and
k
a non-cycle vertex z such that supp(v.) C |J V(C;). Suppose that z is not connected by an

=1
edge with a cycle C,,. Consider the first ocjcurrence of a vertex x such that = € V(C,,) in the
word v.w. Then the word vw contains a factor of the form zv'z with supp(v.) C |J V(C}).
n
Furthermore, x < z and zv" «+» x. Consequently, vw contains a factor which can b]: reduced
using reduction (iii) from Theorem 1.63. The obtained contradiction shows that for every
family of reduced words of the form u*vw* with supp(u),supp(w) € V(C,) and supp(v) €
V(C,), for a cycle C,, factor v contains at least one vertex connected by an edge with C,.

Thus, the result follows. ]
We are now ready to estimate Gelfand-Kirillov dimension, using Theorem 1.73.

Corollary 6.10. If © is an oriented graph with the cycles Ci,...,Cy such that the corre-
sponding Hecke—Kiselman algebra has finite Gelfand—Kirillov dimension, then

GKdim Ao <Y | Y ko+1],

j=1 \z€A;

where A; consists of all vertices of © that are connected by an edge with the cycle C; for
j=1,... k.

Proof. From Theorem 6.1 we know that the set of normal (reduced) words of Ag is a finite
union of regular expressions of the form wvow; viw; vy ... vs_ 1w vs. Moreover, it is enough
to prove that every family of such form can be expressed as a regular expression with s <
> Daca; (ke +1).

From Observation 6.4 for every n we have supp(w,) € V(Cj)), for some j(n) € {1,... k}
and w, are factors of the word (zn(z1...2;)(xn_1...2441)) of full support, where x; —
Ty — ... —= oy — z7 is one of the cycles C; with N =n(j) and ¢ € {0,..., N — 2}.

By Lemma 6.9 we can rewrite the considered family of words in such a way that between
any two w;, w; (1,7 € {1,...,s}) such that supp(w;),supp(w;) C V(C,) for some n €
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{1,...,k} there is a non-cycle vertex z which is connected by an edge with C,, that is
z € A,. By Lemma 6.7, all vertices z with this property occur at most ExeAn k. times
in total in any reduced word of Ag. Consequently, in the regular expression of the above
form, for every j = 1,...,k, factors of the form w* with supp(w) C V(C;) occur at most
erAJ_ kr + 1 times. As for every n € {1,...,s} we have that supp(w,) C V(Cy)) for

some n(j), it follows that s < Z?Zl <erA7_ k. + 1). Therefore, from Theorem 6.1 we get

GKdim Ag < Zle (ZmeAJ_ ky + 1), as claimed. O

Our next step is to construct a family of reduced words of the algebra Ag described by
a regular expression with exactly s = 25:1 (er 4, ke + 1) stars and such that for different
substitutions of stars with positive integers we get different elements. As for every word w
we have w*w = w*, we will write w™ instead of w*w and we refer to the number of stars in
the regular expression even if + is used.

Let © be a graph with cycles Cy, ..., Cy of the length i; > 3 for j € {1,...,k}. Denote
by © the maximal cycle-reachable subgraph of ©. We assume that the set of vertices of ©
is ordered as in Definition 6.8.

We construct a family of reduced words in HKg via an insertion process that is described
below.

Step 1. First we insert subsequent vertices contained in the cycle-reachable subgraph ©’
of the graph © that are not cycle vertices to certain words, starting from the trivial word
1. At every step a chosen generator y is inserted at the beginning of the word and directly
after every vertex of the (previously constructed) word that is connected by an edge with y.
Every vertex y occurs exactly &, times in the constructed word. Note that at this stage the
resulting word is not necessarily reduced. The procedure is described precisely as follows.

As O does not contain two different cycles connected by an oriented path, either there is
at least one terminal vertex y with £, = 1 or the graph is a disjoint union of cycles C1, ..., C.
If the latter case holds we set w’ = 1, where 1 is a trivial word and go to Step 2.

Now we consider the case when there are some terminal vertices in ©’. Note that a vertex
y from ©' is terminal exactly if k, = 1. Let ygl) <...< y7(111) be the set of all vertices in ©’
such that k:yl(l) = 1 and define

1 1
wy =y My -y,

Next, take the biggest (with respect to the order defined in Definition 6.8) vertex y?
V(©’) that is not contained in any cycle of the graph and that has not been used yet in
w,. We can assume that all paths between the cycles and 3 lead from the cycles into y%.
Otherwise, all such paths lead from y® into the cycles and the reasoning is symmetric. If
for some non-cycle vertex z € V(©') we have y® — z, then k. < k,e and thus y® < .
By the choice of y®? it follows that z € {ygl), e ,yq(lll)}. Moreover, there are exactly k@ — 1
(recall that ky(2> is the number of paths starting at z) generators in w; that are connected
by an edge with y®. Let w, be the word that is formed from w; by inserting the generator
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y® in such a way that it is the first letter of wy and y® also directly follows in w, every y'"

J
)

that is connected by an edge y® — y:" with y® in ©’. Generator y® occurs in w, exactly

k@ times. Additionally, every generaftor z used in the word wsy occurs in this word exactly
k, times.

Similarly, if we have already constructed the word w; for some ¢ > 1, then in the next step
we insert to this word several copies of the largest non-cycle generator y+" € V(©') that is
not in the support of w; yet. In the word w; every generator z occurs k, times. We know that
every z such that y(+tY) < z is already in the support of w;. In particular every generator z
for which k. < k,u+1) is in w;. As explained above, we can assume that all directed paths
connecting the cycles and y(*Y start from the cycles. Therefore, if we have y*) — p in the
graph ©', then p € supp(w;). Define the word w;,, by inserting y*") to w; at the beginning
and also directly after every generator z € supp(w;) such that y+" — 2 in ©’. In such a
word w;,1 the element y(”l) occurs exactly >k, + 1 times. Let us note that all paths

ylitl) 2
starting at 4+ in the graph © are either the path of length 0 or are uniquely determined
by a path starting at z for some z such that y(*1) — z. Consequently, in the word w;,; the

element y(+Y occurs exactly >, k. 4+ 1= k,G+1) times.
Y+
After finitely many steps as described above we get a word w’ whose support contains

every non-cycle generator z of ©’ and with the property that every z € supp(w’) occurs in
w’ exactly k. times.

Step 2. Now we insert cycle vertices into the word w’ constructed in Step 1. The idea
relies on a slight modification of the previous step. Namely, we insert regular expressions of
the form wow*w; with supp(wy), supp(wy), supp(w) C V(C;) (we and w; vary depending on
the insertion place), for a cycle C;, at the beginning of the constructed regular expression
and directly after every vertex connected by an edge with C;. The procedure is repeated for
every cycle, starting from the cycle with the biggest vertices in the sense of ordering from
Definition 6.8. It can be precisely described as follows.

For every cycle C; (i = 1,...,k) with vertices z1,,...,x,; for some n > 3 denote by ¢;
the reduced word of the form ;- - z,;.

We can write w’ = vy - - - v, 41, where every v; is the word of minimal possible length that
ends with an element z; connected by an edge with the cycle Cy (possibly with v, = 1)
fori=1,...,m. Note that we have m =} _,

For every vertex z; connected by an edge with the cycle C} of length n, we may choose
j(i) € {1,...,n} such that either 2, — ;% or ;) — 2. Then we define the regular

k, if Ay is non-empty and m = 0 otherwise.

expression (that is certain family of words) ry as follows:

cg(xlyk .. 'ij(1)—1,k)U1(Ij(1),k . -xnvk)cz(xlvk .. .Ij(z)_Lk) ce

e 'C$(l’1,k e xj(m)—l,k:)”m(xj(m),k T In,k)CzUerL

In this expression Kleene star x occurs exactly my = ZmeAk k. + 1 times, where A; consists
of all vertices x that are connected by an edge with the cycle Cy in ©’. If A, is empty, that
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is there are no vertices connected by an edge with the cycle C} and w' = v; we define the
regular expression r; as c?ul. Then we also assume that erAk k., = 0 and thus Kleene star
* occurs exactly 1=3" Kk, + 1 times.

Next we repeat this procedure for every cycle of the graph ©. More precisely, at every
step we rewrite the constructed regular expression r; as v;---vy41, Where vy,..., v, are
regular expressions of minimal possible length that end with an element z; connected by an
edge with the cycle Cj_; (perhaps with v,,,41 = 1). If there are no vertices connected by an
edge with Cj_;, we set r; = vy, that is m = 0. Note that we have m = Za:eAj,l k., where
for empty A;_; we put ZxEAj—l k., = 0. For every vertex z; connected by an edge with the
cycle Cj_; of length n, we may choose j(i) € {1,...,n} such that either z; — x4 ;_1 or

Tj(i),j—1 — Z. Then define the regular expression r;_; as:

Cj+_1<'r1,jfl . xj(l)_ld_l)vl (xj(l),j—l cee $n7j,1>cj»+_1<$1’j,1 . xj(?)—l,j—l) cee (621)

+ +
s (T ) —1,5-1)Um (Tjem) o1 T ) Vmer -

As before, if A;_; is empty, we set 7,1 = c}llrj. Then expression r;_; contains exactly
mj_1 =m; + erA]’—l k, + 1 Kleene stars.
This way we construct a regular expression 7 that contains exactly m; = mao+3) . A, Rt

1= Z?Zl <erAj ky + 1) stars. We will show that rq, treated as a family of words, consists
of reduced words of HKg. This will be crucial to get the lower bound for the Gelfand—Kirillov
dimension of the algebra Ag.

Lemma 6.11. Words (6.2.1) are reduced in Ag with respect to the system introduced in
Theorem 1.63. Consequently, GKdim Ag > S5 (erA]- kg + 1).

j=1
Proof. We claim that no leading term of reductions of the form (i)—(iii) listed in Theorem 1.63
appears as a factor of a word w from the family described by the regular expression 7;.

We start with reductions of type (i) and (ii). First consider any factor of w of the form
tut for some generator ¢ and any word v such that ¢ ¢ supp(v). We need to show that then
there are vertices x,y € supp(v) such that x — v and v — y.

Assume first that ¢ is a cycle vertex, let t € V(C;) for a cycle C; with vertices x4 ;, ..., 2,
and some j € {1,...,k}. Consider the image of elements of the family described by a regular
expression (6.2.1) under the natural projection ¢; : HKg — HK¢, onto the Hecke-Kiselman
monoid associated to the cycle C}, such that ¢;(x) =1 for all x ¢ V(C}).

By the construction, every such image is a factor of (xy;---x,;)*. Thus if ¢ is a cycle
vertex x;, then x;_1,x;11 € supp(v), where fori =1landi=nweseti—1=nandi+1=1,
respectively. In particular it is then impossible to have ¢ - v or t <~ v. Therefore, we may
consider any t that is not in the cycle and we claim that in every factor tvt the set supp(v)
contains elements p and ¢ connected by an edge with ¢ such that ¢ — p and ¢ — ¢.

Note that every sink or source vertex x either is not contained in the maximal cycle-
reachable subgraph ©' of the graph or k, = 1. Consequently, it occurs at most once in every
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word described by the considered regular expression. Thus we know that ¢ is neither a sink
nor a source vertex.

Now assume that ¢ is non-cycle and not terminal vertex from ©’. Assume first that all
oriented paths connecting ¢ with the cycles lead from the cycles to t. For any z — t contained
in the graph ©' we have z < t. From the construction of the family of words it follows that
such z is inserted into the word between any two occurrences of ¢, that is z € supp(v) and
the leading term from the reduction (i) in Theorem 1.63 is impossible. The other way round,
the generator t is inserted into the regular expression at the beginning and directly after
any vertex y such that ¢ — y (y are inserted before ¢). In particular, all such generators y
occur between any two t’s. It follows directly that no leading term of a reduction of type (ii)
appears as a factor of w. The case when all oriented paths lead from ¢ to the cycles can be
handled in much the same way.

Now we consider reductions of type (iii). We claim that w does not contain any factor
tivty such that t; > ty and t9 «» tyv. If t; is contained in any of the cycles, then t; > t,
implies that also t5 is a cycle vertex.

Let a word w be described by a regular expression (6.2.1). By the construction, for every
factor of w of the form pz; ;, where z;; is a cycle vertex and p is a word such that p < z; ;,
the word p consists of cycle vertices x;,, such that m < j. In particular we have g < z; ; for
every g € supp(p). Thus there is no factor of the above form with ¢, being a cycle element.

In consequence, we can assume that both ¢; and ¢, are non-cycle vertices.

We claim that no word w; from the first part of the construction of regular expression r;
has a factor of type (iii) from Theorem 1.63. To do so, we proceed by induction on i. First
observe that the assertion holds for ¢« = 1, as generators in w; are in the increasing order.
Hence, assume that the claim holds for some w; and denote by y+? the vertex inserted in
the next step, that is supp(wii1) \ supp(w;) = {y@*V}. Then every factor t;vt, such that
t1 >ty and ty +» t1v in w41 would have t, = y+1) because by the inductive hypothesis w;
does not have such factors and all elements of supp(w;) are bigger than y“*!). On the other
hand, in w;,1 the element directly before y*+Y is connected by an edge with 4. Thus in
w; 41 every factor of the form vy with ¢; > y*+Y is such that the last generator of t1v
is connected by an edge with 4+, The inductive assertion holds.

Consequently, we know that the word w’, built in the first step of the construction, does
not contain factors of type (iii). The regular expression 71 is obtained from w’ by inserting
only cycle generators. Every factor tovty; with to >ty and ¢y «» tyw would therefore start or
end with a cycle vertex, that is either #; or ¢y is a cycle vertex. This is not possible as we
explained earlier. We have proved that any w described by the regular expression r; does
not contain factors of the form (iii) in the Theorem 1.63, as claimed. The first part of lemma
follows.

As every word described by the regular expression r; is reduced, two different words are
equal in the algebra Ag if and only if they are equal as elements of free monoid generated by
the vertices of ©. Moreover, every word w in the set denoted by r; is uniquely determined by
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m positive integers (nq, ..., n,,), where m = Zle (erAj k. + 1) and ny,...,n,, are powers
of consecutive words ¢ contained in cycles corresponding to * in (6.2.1). From Observation 6.3
it follows that the number of elements of length at most n in r; is Q(n™). Consequently, we

get that GKdim Ao > 24, (X,eq ko +1). O

Jj=1

Corollary 6.10 and Lemma 6.11 are summarized in the following theorem that describes
the Gelfand-Kirillov dimension of the Hecke-Kiselman algebra associated to any oriented
graph without two different cycles connected by an oriented path.

Theorem 6.12. Let © be an oriented graph with the cycles Cq, . .., Cy for some k > 1 without
two different cycles connected by an oriented path. In particular, for any non-cyclic vertex x
connected by an oriented path with a cycle either all paths between x and cycles are directed
from x into the cycles or all begin at the cycles. Denote by A; the set of vertices of the graph
that are connected by an edge with the cycle C; for j =1,... k. For any x € A; let k, be
the number of oriented paths of length > 0 in © that start with x if all paths between C; and
x start with the cycle vertices and oriented paths that end with x otherwise. Then

k

GKdimAg =Y | Y ko +1],

J=1 :EE.Aj
where erAj ky+1 is equal to 1 if A; is an empty set. Lastly, if the graph © does not contain
any cycle, then GKdim Ag = 0.
6.3 An example

Let us illustrate concepts from Theorem 6.12 and its proof for the oriented graph © presented
in the picture.

Yo Y3 Ys
\ / T
U1 Ys
3,1 / Ya \ 3,2
11 > Toq T1,2 7 T22

Figure 6.2: A graph © with the maximal cycle-reachable subgraph marked by solid edges

The maximal cycle-reachable subgraph ©’ is the full subgraph of © with all vertices
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except yg. The edges of © are denoted by solid arrows, whereas the complement is denoted
by dashed ones.

For the non-cycle vertices in ©’ named as in the picture we have: k,, = k,, = k,, = k,, =1
and k,, = 3. Denote the cycle with vertices z;1, 1 = 1,2,3 by C; and let C5 be the cycle
T1 — Tog — Tga — T12. Lhen the sets A4; and Ay consisting of the vertices connected by
an edge with the cycles are A; = {y1,y4} and Ay = {ys,y5}. We get that >, k, +1=15
and )5 4 ke +1=3.

From Theorem 6.12 we obtain the following corollary.

Corollary 6.13. The Gelfand—Kirillov dimension of the Hecke—Kiselman algebra Ag asso-
ciated to the graph © in Figure 6.2 is 8.

Following Lemma 6.11 let us construct a family of reduced words in Ag described by a
regular expression with exactly 8 Kleene stars.
In the set of vertices of © we introduce the following order.

e Cycle vertices are such that x17 < 231 < 231 < 212 < T2 < T32.

e For non-cyclic vertices we may choose any order such that y; is the smallest one. Assume
that y1 <y2 <y3 <ys < ys < ys-

e All cycle vertices are smaller than non-cyclic ones, that is z32 < y;.

Then the word w’ without cycle vertices built in the first part of the construction is of the
form y19291y3y1y4ys. Note that each element y; of the support of this word occurs in it exactly
my,, times. Next denote by ¢; the word xy ;22,73 ; for i = 1,2. We have that every vertex of ¢;
is smaller than any vertex of c;. The regular expression ry iS ¢3 Y1Y2y1Y3Y1Y4C3 12T 2Y5T32C5 -
Finally, the regular expression r; with exactly 8 stars and consisting of reduced words has
the following form:

(CT$1,1!E2,1)(C;)ﬂ($3,10;r$1,1$2,1)y291(I3,1Cf$1,1$2,1)y3yl (1‘3,1CTI1,1)%@2,@3,10?)(C;$1,2$2,2)%($3,2C;)'

The consecutive factors of w’ constructed in the first step are underlined for clarity.
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Chapter 7

Semigroup identities of Hecke—Kiselman
monoids

In the present chapter we focus on semigroup identities in Hecke-Kiselman monoids. First
we characterize finite graphs © such that the monoid HKg satisfies a non-trivial identity.
The second aim is to discover certain concrete identities satisfied by such monoids. Bases
of identities holding in the monoids associated to certain class of acyclic graphs have been
described in [3]. In particular, a concrete identity of the Hecke—Kiselman monoid associated
to any finite oriented graph which is acyclic can be derived. Namely, in this case the Hecke—
Kiselman monoid is a homomorphic image of the Kiselman’s semigroup K, for some n > 2.
Therefore, for example, if the acyclic graph © has n vertices, then the identity (zy)"z = (zy)"
is satisfied in HKg. Recall from Theorem 1.69 that the Hecke—Kiselman monoid associated
to an oriented graph is finite if and only if the graph is acyclic. Thus we focus on the case
of monoids associated to oriented graphs containing a cycle, i.e. infinite Hecke-Kiselman
monoids.

Let us recall several results useful in the context of semigroup identities of Hecke—Kiselman
monoids. Theorem 1.72 in particular characterizes oriented graphs © such that the monoid
HKg contains a free submonoid of rank 2. It follows from this theorem that if the the graph
© contains two different cycles connected by an oriented path, then HKg does not satisfy
any semigroup identity. We will show that if the graph does not contain such subgraph, then
a semigroup identity holds in the corresponding Hecke—Kiselman monoid.

Our result can be put in a broader perspective. Namely, we will show that the answer
to Problem 1.52 is positive in the case of Hecke—Kiselman monoids associated to oriented
graphs.

One of important classes of semigroups are subsemigroups of the multiplicative semigroup
of matrices over a field. Theorem 1.53 provides a useful characterization of finitely generated
semigroups of this type that satisfy semigroup identities. To apply this theorem in the case
of Hecke-Kiselman monoids, Anan’in Theorem 1.24, which gives a sufficient condition for
a Pl-algebra to embed into the matrix ring over a field, turns out to be helpful. Finally,
we will use a very transparent characterization of Noetherian Hecke—Kiselman algebras, ob-
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tained in Theorem 4.2.

7.1 Identities in the monoid associated to an oriented cy-
cle

As we will prove in the main theorem, identities in Hecke-Kiselman monoids HKg in the
general case can be constructed from those in the monoids associated to oriented cycles and
to graphs with exactly one vertex and no edges, that are subgraphs of the given graph ©.
In the latter case the possible identity is clear from the definition. Therefore we start with
the identities in the monoid associated to an oriented cycle. Let us denote by C,, the Hecke—
Kiselman monoid associated to a cycle of length n > 3. Exploring the ideal chain in C),
described in Theorem 2.44 and using Lemma 3.5 from [16] we construct explicitly a semi-
group identity in this monoid.

First, let us recall from Theorem 2.44 that in C,, there exists a chain of ideals § = I,,_5 C
I, 3 C--- C I, C C, and semigroups of matrix type M; C I, 1/I; for i = 0,...,n — 2,
such that the sets (I;_1/I;) \ M; and C,,/I_; are finite. We denote by M; the set M; \ {0},
treated as a subset of C,. Then for all i € {0,...,n — 2} we have |(I,_1/;) \ M;| < N,
where N = |C,, \ Ul—J M;| + 1 is the constant from the proof of Proposition 2.15. From
Lemma 3.5 (1) in [16] it follows that for every word s of full support (that is, all generators of
C,, occur in s) positive powers s, s?, ... are pairwise different. Therefore, for any s € I, /I,
of full support there exists & < N such that s* € M; U I; and similarly for any s € C,,/1_1
of full support there exists k < N such that s* € I_;. Tt follows from Corollary 2.46 in the
first case that sV is also either in Mi or in I; and in the latter case s’ € I_;. Note that N
depends only on n, but is independent of s € C,, of full support and i € {0,...,n —2}. In
what follows we assume without loss of generality that N > n — 1.

Theorem 7.1. Let us define the following family of words in the free semigroup {s,t}* of
rank 2.
1(1)(3,75) = NV 2N, fz(l)(s, t) = 2NNl

1000 = 17 (H06 0. 476 0) 0,0 = 17 (060, 47 s.0) Jori =2,
Then the Hecke-Kiselman monoid C,, satisfies the identity

AN, (ts)Y) = A"V (st)N, (ts)N)

for any n > 3.

Proof. The construction of an identity relies on the proof of Proposition 1.54. Namely, it
can be obtained from this proof that if an identity u(s,t) = v(s,t) is satisfied in the quotient
S/J for an ideal J of S, and f(s,t) = g(s,t) holds in J, where f and g have the same length,
then f(u(s,t),v(s,t)) = g(u(s,t),v(s,t)) is an identity in the semigroup S.
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Let L<C), consist of all words of full support. Then in the monoid C,, there exists a chain
of ideals
=T, oNL)C ([, 3sNL)C---C(I.yNL)CC,.

Therefore, it is sufficient to construct identities in the quotients (I;_y N L)/(I; N L) for
i =0,...,n— 2, where in the case i = n —2 we set ([,_3NL)/(I,.oNL)= ([,_3NL),
and in C,/(L N I_;). We will show that in every quotient (I;_; N L)/(I; N L) the identity
fl(l)(s, t) = fg(l)(s,t) is satisfied. For brevity, let us denote I; "L = L; fori=—1,...,n — 2.
As explained in the beginning of this section, there exists N such that for every w € L, 3
we have w € M, 5 U I,_o = M,_o, where M,,_5 = M,_ U {6} is the semigroup of ma-
trix type M%(Q,_2, An_2, Bn_2; Pu_2) associated to the infinite cyclic semigroup @, _o, see
Theorem 2.44. In particular for any s,t € M, _ the word sts is either 0 or both s and
sts are contained in a maximal subgroup, isomorphic to Z, of the completely 0-simple clo-
sure of M, o, see Section 1.3. Therefore ssts = stss is satisfied in the semigroup M,, s.
Consequently, s?VtVs™ = sNtV 52N is an identity in L, _s.

Similarly, let us construct an identity in the quotient L;/L;, for i € {—1,...,n—4}. As
already explained, for every w € L; we have w¥ € Miﬂ Ul;+1. Therefore for any s,t € L;/L; 1
either at least one of sV, t" is in I,;; and then both s?V#Vs" and sVtVs*V lie in I;,, and
thus are zero in L;/L;1 or sN N € M;,,, where M;,, is the semigroup of matrix type over
an infinite cyclic semigroup. Then, as in the previous case, we have s?VtVsV = NN g2V,
Therefore s?VtV sV = sNtNs2V is an identity in L;/L;y;.

Consequently f">™(s,¢) = f"*7(s,) is an identity in L; for i = —1,...,n — 3.

Lastly, let us construct an identity in the quotient C,,/L_;. For any s,t € C,,/L_; if
st, or equivalently ts, is of full support, then (st)" and (ts)" are both in LNI | = L_;.
Otherwise, from Lemma 3.5 (2), in [16], it follows that (st) = (ts)" is the zero element
of the finite Hecke-Kiselman monoid HKg associated to the acyclic full subgraph © of the
oriented cycle of length n, whose vertices are exactly the generators occurring in the word st
(or equivalently ts). Therefore (st) = (ts)V is the identity in C,/L_;.

The assertion of the theorem now follows from the fact that f" (s, ) = fi" (s, ) is
the identity in L_; and (st)Y = (ts)Y in C,/L_;. O

Note that, as we will show in Section 8.4 in the case of the cycle of length 3, the identity
from Theorem 7.1 is not necessarily of the smallest possible degree. For example, it is
sometimes possible to construct an identity as in the proof of the theorem, with the constant
N smaller than this calculated from the estimate in the proof of Proposition 2.15.

7.2 General case

As before, by © we understand a finite oriented graph. For any such a graph O let us denote
by V(©) the set of its vertices and by E(©) the set of its edges. We identify elements of the
monoid HKg with the set of reduced words from the free monoid generated by V(0), using
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the Grobner basis from Theorem 1.63.

Remark 1.64, describing a convenient reduction of the words of the form zwz in HKg, for
z € V(0) and any word w such that x is terminal (there are no arrows ¢ — z or z — @
in the graph ©) will be used in the proof of Theorem 7.2.

Consider the homomorphism ¢ : HKg — HKg given by ¢(y) = y for all y € V(©) such
that y # « and p(z) = 1, where z is a fixed vertex such that there are no arrows of the form
z = x (& — z, respectively). For any word w in the free monoid generated by the set V(©)
denote by w the image of w under such a homomorphism. Then for any w € HKg and a
word v € HKg that contains the generator = in the support we get from Remark 1.64 that
vw = vw (wv = Wo, respectively) in HKg.

We are now in a position to prove the main theorem, which provides an affirmative
solution of the Problem 1.52 in the case of Hecke-Kiselman algebras.

Theorem 7.2. For a finite oriented graph © the following conditions are equivalent.
(1) © does not contain two different cycles connected by an oriented path of length > 0,

(2) the Hecke-Kiselman monoid HKg satisfies a semigroup identity.

Proof. As mentioned in the introduction, implication (2) = (1) follows directly from Theo-
rem 1.72 and the fact that the free submonoid of rank 2 does not satisfy a semigroup identity.
To prove that if condition (1) holds then the monoid HKg satisfies a semigroup identity we
proceed by induction on the number of edges in the graph © that are not contained in any
cyclic subgraph of © (that is, a subgraph which is an oriented cycle). Let us denote this
number by ng.

If ng = 0, then from the hypothesis (1) it follows that the graph © is a disjoint union
of oriented cycles and graphs with exactly one vertex and no edges. It follows then from
Theorem 4.2 and Theorem 1.72 that K[HKg] is a finitely generated right Noetherian PI-
algebra. Consequently, it embeds into a matrix ring over a field, see Theorem 1.24. As HKg
is a finitely generated monoid, we can assume that HKg C M,,(L) for some finitely generated
field L. From the Theorem 1.72 and Theorem 1.53 it follows that in this case the monoid
HKg satisfies a semigroup identity. Moreover, such an identity can be explicitly constructed
from the identities satisfied in monoids associated to cyclic subgraphs of the graph © and
identities of the monoids associated to subgraphs of © with exactly vertex and no edges. The
identities in the first case were obtained in Theorem 7.1, whereas monoids of the latter type
satisfy the identity st = ts.

Assume now that ng > 0. From the description of the graph © and the assumption
ne > 0 it follows that there exists a vertex z that is either a source vertex or a sink vertex.
In other words, z is such a vertex that either there is an arrow x — y for some y € V(0) but
there are no arrows of the form z — x (z is a source vertex) or there is an arrow y — x for
some y € V(O) but there are no arrows of the form x — z (x is a sink vertex).
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Let x be a source vertex. Consider the subgraph ©y C © such that V(0y) = V(0) \ {z}
and E(©y) consists of all edges from FE(O) that are of the form y — z where y # x, that is ©g
is the graph © with vertex x and all edges of the form x — y for some y € V(©) removed. By
the induction hypothesis we know that HKg, admits a semigroup identity a(s,t) = 5(s,t)
for some different words «, 8 from the free monoid generated by s and ¢. From Remark 1.64
it follows that in the reduced form of elements of HKg the generator x occurs at most once.
In other words, every reduced element is of the form either w € HKg, or wzv, where w,v
are elements of HKg,. It is clear that if s,¢ € HKg,, then also a(s,t), 8(s,t) € HKg, and by
the definition the identity a(s,t) = ((s,t) holds in HKg in this case.

Assume now that s,t € HKg are such that either s or ¢ contains z. As without loss of
generality we can assume that o and 8 both contain s and ¢, this is equivalent to the condition
that the reduced form of a(s,t) is wzv, where w,v € HKg, and to the condition that the
reduced form of [3(s,t) is pzq, where p,q € HKg,. For a word w € HKg let us denote
by w the image of w under the homomorphism ¢ described in the comments before the

formulation of Theorem 7.2. From those comments we get that (s, t)5(s,t) = a(s,t)B(s,t

and «a(s,t)a(s,t) = als,t)a(s,t). Moreover, it is clear that a(s,t) = «a(5,t) = B(5,t) =
(s,t), as 5,t can be treated as elements of HKg,. Therefore (s, t)S(s,t) = a(s,t)5(s, t)

(s,t)a(s,t) = a(s,t)a(s,t), that is the following identity is satisfied

~—

=

o

a(s,t)B(s,t) = as,t)a(s,t). (7.2.1)

Symmetric arguments applied to the case when x is a sink vertex show that the following
identity holds
B(s,t)a(s,t) = a(s,t)a(s,t). (7.2.2)

It follows easily that the identity
as, t)B(s, t)a(s,t) = a(s, t)a(s, t)a(s,t)
holds for any s,t € HKg. This proves the inductive assertion. O

Note that the proof allows us to construct inductively an identity in HKg, for any graph
© as in the theorem, from identities satisfied in the Hecke—Kiselman monoid associated to
an oriented cycle.
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Chapter 8

Working example: Hecke—Kiselman
algebras K |Cs] and K|CY]

Now we illustrate the results of the previous chapters for Hecke—Kiselman monoids and
algebras associated to cycles with small number of vertices, that is for the cycle of length 3
and of length 4. Moreover, we describe a subalgebra Z of the Hecke-Kiselman algebra K[C5]
of the center of K[C3] such that K[C3] is a finitely generated module over Z.

8.1 Structure of the monoid C5

Let us start with the description of the structure of the monoid C3. For simplicity, write
r1 = a, x5 = b, x3 = c. Recall that

Cs = (a,b,c:a*=a,b* =b,c* = ¢,ab = aba = bab, bc = bcb = cbe, ca = cac = aca).

From Theorem 1.65 in the case of K[Cs] it follows that the set {aa —a,bb—b, cc— ¢, cac—
ca, aca — ca, beb — be, cbe — be, aba — ab, bab — ab} forms a Grobner basis of the algebra K[Cs]
with respect to the deg-lex order induced by a < b < c. Let us list the set of reductions in
the following way

(1) (aa,a), (bb,b), (cc,c);
(2) (cac,ca), (cbe,be), (bab, ab);
(3) (bed,be), (aba,ab), (aca, ca).

For w,v € (a, b, c) write w — v in case v can by obtained from w by unspecified reductions.
Reduction of a word w of type (1), where (n € {1,2,3})) means that w can be rewritten as
v, where w = uw, z,v = uv,z for some u,z € {a,b, c}* and an element (w,,v,) of the set S
of reductions of type (n). In this case we also write that w = v in K[Cj], if unambiguous.
As a natural consequence we obtain the following observation.
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Lemma 8.1. The reduced form of every element of Cs is a factor of one of the following
infinite words: (cab)®, (cba)™.

From Theorem 2.44, applied for n = 3, we get that the monoid C3 has an ideal chain
I C 14,

such that Iy = {w € C3 : C3wC5N (cba) = 0} and Iy = Iy U My, where M, consists of all
factors of (cba)™, that have cba as a subfactor. Moreover, we denote by M; a set consisting
of all factors of (cab)® that have a subfactor cab.

Lemma 8.2. Let T be the cyclic semigroup generated by t = cab. Then M; = (C3cabCs)°
is a semigroup of matriz type M°(T, Ay, By; Py), where Ay = {1,b,ab}, By = {1,¢c,ca}, with
sandwich matriz (with coefficients in T")

1 11
P=1111
1 ¢t 1

Similarly, for I_; we have

Lemma 8.3. Let S be the cyclic semigroup generated by s = cba. Then the semigroup
My = I_1/Iy is a semigroup of matriz type M°(S, Ay, By; Py), Ao = {1,a,ba}, By = {1,c,cb},
with sandwich matriz (with coefficients in S* U {0})

11 6
POZ 1 60 s
0 s s

Recall that the rows of P; are indexed by the set B;, and columns by the set A;. For
simplicity, we identify the elements of these sets with 1,2,3, in the order in which these
elements were listed. For example, the (3, 3)-entry of the sandwich matrix P, corresponds to
the pair (cb, ba).

The above two lemmas follow directly from Theorem 2.44. To indicate computations
that are used to determine the coefficients of the sandwich matrices, let us focus on Fy. For
simplicity, if « € Ap, 8 € By, then we write

| (cba)Ba(cba) if Ba € (s)
Pre=14 if Ba € Iy,

-2

that is if ps, = s*, then pg, = s*72 and if pg, = 0, then also pg, = 6. Then, for example

D(cb)(va) = (cba)cbba(cba) Q) (cba)cba(cba) ﬂ (cba)®. S0, P(eb)(ba) = S-

Recall from Chapter 2 that M; are subsets of Cs, whereas M; = M; U {6} with 6 being
the zero element, are subsemigroups in the quotients, M; C I;_1/1;.
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We derive the following consequence for the algebras K[My] and Ko[M;].

Corollary 8.4. Algebras Ko[My] and Ko[M;] are of matriz type. Namely, we have Ko[M;] =
M(KIT], Ay, By; Pr) and Ko[My] = M(K]|S], Ao, Bo; Py), where T and S are the cyclic semi-
groups generated by t = cab and s = cba, respectively.

It is easy to see that det P, = —(t — 1)? # 0 and det Py = —s(s + 1) # 0, whence P, and
Py are not zero divisors in M3(K[T]) and M;(K[S]). From standard results about algebras
of matrix type, see also Section 1.3, we obtain the following.

Corollary 8.5. Semigroup algebras Ko[My| and Ko[M;] are prime.

8.2 Structure of the monoid C;

For simplicity, we write z1 = a, x5 = b, 3 = ¢, x4 = d. Recall that C; has the following
presentation

Cy={(a,b,c,d:a*=a,b*=b,c* = c,d* = d,ab = aba = bab, bc = bcb = cbc,
cd = cde = ded, da = dad = ada, ac = ca, bd = db).
The form of the sets Ag, By, A1, By, Aa, By follows directly from Theorem 2.1.

Lemma 8.6. If an element of Cy has a factor of the form wy = dcba, wy = dach or wy = dabc
then it is of the form c;wkB;, with k > 1, a; € A;, B; € B, where

1. Ao ={1,a,ba,cba}, By = {1,d,dc,dcb};
2. Ay = {1,b,cb,ach, ab, bacb}, By = {1,d,da,dac,dc, dacd};
3. Ay ={1,¢,be,abc}, By = {1,d,da,dab}.
From Theorem 2.44 we know that C has a chain of ideals
D=L CI CIClI,,
with semigroups of matrix type My, My and Ms, such that
1. My = (CydabcCy)® C I, /I, and the set (I;/I5) \ M, is finite,

2. My = {a(dacb)*B : a € Ay, 8 € B,k > 1} U{0} C Iy/I, and the set (Iy/1,) \ M, is
finite,

3. Mo = {a(dcba)kﬁ Qe A07ﬁ € BQ, k 2 1} U {9} = I—1/107
4. 04 \ ]_1 is ﬁnite, where ]_1 = ]0 U C’4dcbaC4.

We present these structures of matrix type below. A simple verification is left to the reader.

113



Lemma 8.7. Let ()5 be the cyclic semigroup generated by s = dabc. Then the ideal generated
by s in Cy, with a zero adjoined, that is My = (CydacbCy)°, is a semigroup of matriz type
MO(Qo, Ay, Bo; P), where Ay = {1,¢,bc,abc}, By = {1,d,da,dab}, with sandwich matriz
(with coefficients in Q3)

PQZ

—_ = =

11
11
1 s
s s

®»w » » =

Lemma 8.8. Let ()1 be the cyclic semigroup generated by s = dacb. Then M is a semigroup
of matriz type M°(Q1, Ay, By; P1) where Ay = {1,b, b, acb, ab, bacb}, By = {1,d, dc, dac, da, dacd},
with sandwich matriz (with coefficients in Q] U {0})

P =

w DD LW DD ==
W L DD D
D W W »w »w D

DO »w D

ST DI~
DI » D

[

S

Lemma 8.9. Let S be the cyclic semigroup generated by s = dcba. Then My is a semigroup
of matriz type M°(Qq, Ao, Bo; By), where s = dcba, Ay = {1, a,ba,cba}, By = {1,d,dc, dcb},
with sandwich matriz

Py =

> DD = =
w > D =
®» »n D> D
O »w D

We get the following consequence.

Corollary 8.10. Algebras Ko[Ms], Ko[M;]| and Ko[My] are algebras of matriz type. Namely,

Ko[Ms] = M(K[Qq], Az, Ba; P2), Ko[My] = M(K[Q1], A, By; Pr) and Ko[Mo] = M(K[Qol, Ao, Bo; Fy),
where Qo,Q1, Qo are the cyclic semigroups generated by s, = dabc, s1 = dacb, and by

so = dcba, respectively.

A direct computation shows that det P, = —(sy — 1)® # 0. Similarly, one can see that
det P, = —s3(s; + 1) # 0 and det Py = —s2(so — 1) # 0, so that the matrices P; are not
zero divisors in the corresponding matrix rings M, (K[Q;]), for i € {0,1,2}. Therefore, as
in Corollary 8.5, we get

Corollary 8.11. Semigroup algebras Ko[Ms|, Ko|M;]| and Ko[My] are prime.

Note that we proved in Theorem 2.52 that all algebras Ky[M;] coming from monoids
C,, n > 3 are prime. However, the proof for arbitrary n is much more involved, since the
determinants of the corresponding matrices cannot be easily computed.
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8.3 Irreducible representations of K[C}3]

Let us illustrate the results of Chapter 5 with the case of the Hecke—Kiselman monoid C5 as-
sociated to the cycle of length 3. We start with the representations induced by the irreducible
representations of the semigroups of matrix type inside the Hecke-Kiselman algebra K[Cs]
described in Lemmas 8.2 and 8.3. They are the restrictions of the representations of the com-
pletely O-simple closures of M;, isomorphic to M°(gr(t), A1, By; P) and MO(gr(s), Ag, Bo; Py)
for My and M,, respectively. Irreducible representations of the latter come from the repre-
sentations of their maximal subgroups. In our case, these maximal subgroups are infinite
cyclic groups, as described in Section 5.3. Here we use the classical approach presented in
Chapter 5.4 of [9], in particular Theorem 5.37, with certain computations omitted.

For any semigroup S, we denote by S° the semigroup S with zero element adjoined.

For every fixed A € K* we consider the irreducible representation 1, of M; described in
Proposition 5.9. It is induced by the representation of the cyclic group gr(t) given by t — A. If
A # 0,1, we have that P, is a matrix of rank 3 and therefore we get a family of representations
Uy : Ko[Mi] — Ms3(K). In this case the epimorphism M(K, Ay, By; P1) — M3(K) is given
by A+ Ao P;. Therefore, the representation 1y is given for every (t*;z,y) € M; by

1 11
(t* x,y) — Mokgpyo {1 1 A,
I A A

where o is the standard matrix multiplication and Mk, .y € M3(K) is the matrix with the
only non-zero entry (z,y) equal to A*.

For A\ = 1 the matrix P; is of rank 1 and therefore we get the one-dimensional repre-
sentation v : Ko[M;] — K, such that ¢, (t*;z,y) = 1 forall k > 1, v € Ay, y € By, see
Theorem 5.37 in [9].

Similarly, for every fixed A € K* consider the irreducible representation v, of My (see
Lemma 8.3) described in Proposition 5.9. It is induced by the representation of gr(¢) given
by t — A. If A # 0, —1 then we have that Py is a matrix of rank 3 and therefore we get a
family of representations ¢, : Ko[My] — M;3(K). The representation 1, is given for every
(s¥;2,y) € My by

> > O

1 1
(Sk; l’,y) = M(Ak;x,y) ol O
0 A

where o is the standard matrix multiplication and Mk, .y € M3(K) is the matrix with the
only non-zero entry (z,y) equal to A\*.

Moreover, for A = —1 the matrix Py = (Py) has rank 2 and therefore the corresponding
representation ¢_ : Ko[My] — My(K) is two-dimensional. To give a formula for this repre-
sentation we use Theorem 5.37 from [9]. Firstly, we determine r, € K and ¢, € K for z € Ay
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and y € By satisfying the condition

qyTy = w—l(pya:) - w—l(pyl : plx)

for x € {1,a,ba} and y € {1, ¢, cb}, where by gr(s)? — K is the map such that by (s%) =
(=1)* for all k € Z and ¥_1(0) = 0. Namely, (r1,74,70a) = (0,—1,—1) and (q1, ¢, q) =
(0,1,1) satisfy this condition. Consequently, we obtain that the representation 1_; is given
by

shx,Y — —
Tx¢—1(3kpy1) T:c@/)—l(sk)%

forall k € Z, x € {1,a,ba} and y € {1, ¢, cb}.

Note also that for A = 0 and any i the induced homomorphism Ky[M;] — M(K, A;, B;; ;)
is the zero map.

( k )*—) (ﬁ(plxskpyl) ﬁ(p115k>q?J> ’

From the results in Section 5.1 it follows that {1, a, b, ¢, ab, bc, ca} is the set of idempotents
in Csand 1,a,b,c € C3\I_1, ab,bc, ca € Ip\I; (note that I; = (). Thus, we get (Theorem 5.8)
that irreducible representations of K[Cs5] either come from the representations of K[M)]
or Ky[M;i] described above or are one-dimensional representations associated to one of the
idempotents in the monoid Cs.

8.4 Semigroup identity

Now we apply the results of Chapter 7 to construct a semigroup identity in Cj.

From the description of reduced words in C3 in Lemma 8.1 and the definitions of semi-
groups of matrix type My and My, it follows easily that for every word w € Cj of full support
w? € My U M. Thus, in the construction of a semigroup identity in Cj from Theorem 7.1
we can set N = 2. Therefore in Cj the identity u(s,t) = v(s,t) is satisfied, where

u(s, ) = ((st)*(ts)"(st)*)*((st)"(ts)* (st)")*((st)" ()" (s)%)"

v(s, 1) = ((st)"(ts)"(st)) (1) (ts)"(st)")* ((st)"(ts)" (st)")".

As we noted in Chapter 7, straightforward application of the proof of Theorem 7.1 leads to
an identity which is not necessarily of the smallest possible order. Indeed, in the case of cycle
of length 3 the constant N from the proof of Theorem 7.1, equal to |Cs \ (Mo U M;)], is 18.
On the other hand, for every word w € C3 of full support we have that w? € My U M, and
thus N = 2 can be used in our construction.
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8.5 Center of K[(}]

From Theorem 1.22 and Lemma 3.2 it follows that the algebra K[C5] is a finite module over
its center. Therefore it is a natural problem to characterize the center of this algebra. As it
seems to be difficult to find the whole center of K[Cs], our aim is to describe a subalgebra Z
of the center of K[C3] such that K[C3] is a finitely generated module over Z.

Recall from Section 8.1 that M consists of all factors of (cba)™ that contain cba, whereas
M, is an ideal of Cy generated by cab.

Let us start with the following simple modification of Theorem 2.28 in the case of the
monoid Cj3, that can be proved by a straightforward computation.

Lemma 8.12. For every word w € Cs we have (cba)w(cba) € {(cba)* : k > 2} U M.

Consider the subsemigroup of C5 of the form S3 = M,y U M;. From the above lemma it
follows that S3/M; is isomorphic to I_1 /Iy = M.

In particular we can replace the ideal Iy with M; in Lemma 8.3, obtaining the following
result.

Lemma 8.13. Let S be the cyclic semigroup generated by s = cba. Then the semigroup My =
Ss/ M, is a semigroup of matriz type MO(S, Ao, Bo; Py), Ao = {1,a,ba}, By = {1,c, cb}, with
sandwich matriz (with coefficients in S* U {0})
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Let us consider the completely O-simple closure of the subsemigroup M; = (C3cabCs)°;
it is isomorphic to MO(gr(t), Ay, By; Py), see Section 1.3. Then, by Lemma 1.58 we know that
there is a unique semigroup structure on the disjoint union S5 = (S5\M;)UM(gr(t), A1, By; P))
that extends the operation from S;. Indeed, M; is an ideal of the semigroup S3 and
MO(gr(t), Ay, By; Py) is a completely O-simple semigroup of quotients of M;. Then K[é\g] =
K[S5 \ My] + K[M°(gr(t), Ay, By: Py)], with K[S5]/K[M°(gr(t), A1, By; P,)] isomorphic to
Ko[Mp)], where by K[Ss\ M| + K[M°(gr(t), Ay, By; P)] we mean the direct sum of linear
subspaces.

Algebras Ko[M,| and K[M°(gr(t), Ay, By; P1)] are of matrix type. Namely, Ky[M,] =
M(K[S], Ao, Bo; Py) and Ko[M;] = M(K]|t,t7Y], Ay, By; Py) where S is the cyclic semigroup
generated by s = cba and K|[t, '] is the Laurent polynomials ring, where ¢ = cab.

As already noted, matrices P; and Py are invertible as matrices in M3(K (t)) and M3(K (s)),
respectively. We have



and

Moreover, we know that M(K(t), Ay, By; P1) and M(K(s), Ag, Bo; Py) are isomorphic to
M;3(K(t)) and M3(K(s)), respectively. Isomorphisms M3(K (t)) — M(K(t), A1, By; P1) and
Ms(K (s)) — M(K(s), Ay, Bo; Py) are given by x — 20 P!, where o is the standard matrix
multiplication, see [44, Proposition 4.13].

Therefore

Z(M(K(t), Ay, B;; P)) = K(t)P; and Z(M(K (s), Ao, Bo; Po)) = K(s)Py .

It follows that

t 0 -1
Kttt —1)P ' =Kt | 6 -1 1 | CZ(M(K[T], Ay, By; Pr)
1 1
and
82 S —S
K[s|s*(s+ )Pyt = Kls]s | s —s C Z(M(KIS], Ay, Bo: Py).
—s S8 1

Conversely, we know that
Z(M(KI[T], Ay, By; Pr)) = Z(M(K (1), Ay, By; Pr)) N M(K(T], Ay, By; Pr))

and
Z(M(KIS], Ao, Bo; Po) = Z(M(K(s), Ao, Bo; Fo)) N M(K[S], Ao, Bo; o))

It then follows that if

OISR ()
t—1 : t_tl

f(t)Pl_l = 0 ;{(1) g €M<K[T]7Al7Blapl)a
Tl =



Similarly, we have
K[s]s?(s+ )Py ' =K[s]s | s —s s | = Z(M(K][S], Ao, Bo; ).

Elements of (t)(t — 1)P; " correspond to elements of the algebra K [Cs] of the form
ty = (cab)*™ — (cab)¥ca — b(cab)*c + b(cab)*ca — ab(cab)* + ab(cab)’c,

for k > 1.
Similarly, (s)s(s + 1)P; ' correspond to elements of K[Cs] of the form

s = (cba)"? + (cba)* e — (cba)* b + a(cba) !t — a(cba) e + a(cba)* ' eb—

—ba(cba)** 4 ba(cba)* ¢ + ba(cba)*ch

for k > 1.

We want to use the structures of matrix type within K[S3] to characterize the center of
K[S;]. To find the elements of this center it is more convenient to consider the following
extension of the algebra K[S;] and of the algebra K[Ss] introduced after Lemma 8.13.

Lemma 8.14. R = K|[S5 \ M| + M(K(t), Ay, By; Py) (direct sum as a subspaces) has
a natural structure of an algebra, which extends the structure of K[Ss] = K[Ss \ M| +
K[./\/lo(gr(t), Al, Bh Pl)]

Proof. We need to define ¢ - p and p - ¢, where ¢ € K[S3 \ ]\Zfl] and p € M(K(t), Ay, By; Py).
tk

By linearity we can assume that ¢ € S3\ M; and p is of the form (m;x,y), where k£ > 0,

% € K(t), x € A1, y € B;. Then it is clear that % can be written in the form % = tp(t)t
tk72

for p(t) = 50 € K(t)and p= (t;z,1)-(p(¢); 1,1)- (¢t;1,y) in M(K(t), Ay, By; P1). Therefore
we can identify K(t) with the H-class Hip = {(f(¢);:1,1) : f(t) € K(t)}. It follows that

M(K(t), Ay, By; Py) is the disjoint union

U aiHl,lbj U {9},

1€A1,JEB

where a; € {(t;1,1),(t;b,1), (t;ab, 1)}, b; € {(t;1,1),(¢;1,¢),(t;1,ca)}. Let us denote by
t the word cab in the monoid C53. Because M; is an ideal in S3 and te M, we know
that qzt,tyqg € My C M(K(t), A1, By; P). Let us define ¢ - p = (qat) - (p(t)t; 1,y) and
p-q= (tp(t);x,1) - (fyq), where gzt and fyq mean products in S and - is the product in
the algebra M(K(t), Ay, By; P1). Tt follows from the arguments very similar to the proof
of Lemma 2.5.1 in [23] (see also Lemma 1.58) that this operation is associative. Moreover,
the construction in the latter lemma shows that the definition extends the structure of the
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algebra on K[Sj). O

Our aim is to use this lemma to understand how elements of the centers of algebras
of matrix type correspond to the center of K[Ss3]. We know that M(K(t), Ay, By; Py), iso-
morphic to M;z(K(t)), is an ideal of the algebra R = K[S; \ M| + M(K(t), Ay, By; P))
(see the proof of Lemma 8.14) and M(K(t), Ay, By; P1) has the unit of the form e =
P!, Therefore R = (1 — e)R @ eR with (1 —e)R = K|[S3 \ My] € M(K(s), Ay, Bo; Py),
eR = M(K(t), Ay, Bi; P,) and K|[S3] < K[S5] € R. From the proof of Theorem 3.5 we
know that K[S;] and K[C3] have the same classical (central) ring of quotients, which is
isomorphic to M3(K(s)) x M3(K(t)). Therefore Z(K[Ss]) C Z[K[Cs]) € Z(M3(K(s)) x
M3(K(t))). Similarly, K[S3] and R have the same classical (central) ring of quotients and
thus also Z(K[S3]) C Z(R) = Z((1 —e)R) & Z(eR). We know that Z((1 —e)R) & Z(eR) =
Z(M(KIS], Ao, Bo; Py)) @ Z(M(K (t), A1, By; Pr)). Tt follows that the inclusion K[S3] <
M(K (s), Ao, Bo; Py) + M(K(t), A1, By; P1) is given by © — (1 — e)z + ex. As we have
already seen ling{ty : k > 1} = Z(M(KI[T], Ay, By; P1) = Z(eR) N K[Ss3]. Secondly, Z((1 —
e)R)NK[Ss] is given by elements of the form z—ex, where z € Z(M (K (s), Ao, Bo; Po))NK[Ss5]
and ex € K|[Ss], that is Z((1 —e)R) N K[Ss] = ling{sy — P; ‘s : k > 1} N K[Ss]. Therefore
we get that

Z = Z(K[Sg]) = ZZ"I”LK{Sk — PflSk k = 1} N K[Sg} + lmK{tk ck = 1}

It turns out that for every k > 1 we have s, — P, 's; € K|[S3]. We start with an easy
computational lemma.

Lemma 8.15. (1) If k> 1 is odd, then

k— 1

(a) b(cba)* = b(cab

)z
(b) ca(cha)* = (cab)”
(¢) (cba)*b = (cab)'s ;

,_. M‘_’, m

(d) (cba)rca = b(cab) T ca.

(
(2) If k > 1 is even, then

(a) b(cba)* = b(cab
(b) ca(cba)* = (cab
(c) (cba)*b = b(cab
(d) (cba)*ca = (cab)

Proof. In each case we proceed by induction on k using the relations in K [Cs]. For instance,

~—

N

~—

ca;

~—

wlx NIF o NE
-

*)
IS

consider case (a). For kK = 1 we have b(cba) — bca = b(cab)’ca. Assume now that the
assertion holds for some kE>1.Ifk + 1 is even using the inductive step we get b(cba)f*1 =
b(cha)kcba — b(cab) ' cacba — b(cab) = cab = b(cab)"=" . Similarly, for odd k+1 we calculate
b(cha)k*+1 = b(cba)*cba = b(cab)s cba — b(cab)? ca. This proves the inductive assertion. [
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Let us denote ug, = (cab)*™ 1 +b(cab)kca+ab(cab)kc and vy = b(cab)*c+ (cab)*ca+ab(cab)*.
Then in particular t, = up — vy.

Proposition 8.16. For ecvery k > 1 we have P 's; € K|[Ss]. More precisely, if k = 2n for
somen = 1 we have Pl_lsgn = Uy, and for k = 2n—1, wheren > 1 we get that Pl_lsQn,l = U,.

Proof. We start with the calculation of (t — 1)P; 's, € K[Cs]. The element (t — 1)P; " can
be interpreted as ty = cab — ca — bc + bea — ab + abe € K|[Cs]. We aim to find the reduced
form of tysy.

1. cab- sy,
Using reductions we get that cabba — caba — cab. It follows that

cab(((cba) ' c—a(cba)" )+ (a(cba)*  cb—(cba)* T eb)+(—ba(cba)*  +a(cba) 1)) = 0.

Therefore
cab - s = cab((cba)** + ba(cba)* ¢ + ba(cba)*cb).

2. —ca - s
Using the fact that cacba — caba and caa — ca we get that

—ca - s, = —ca(a(cba)™ ' + ba(cba)* e + ba(cba)*cb).

3. —bc- s
Similarly, we have bca(cba)*™! = beba(cba) L, bea(cba)* e = beba(cba)* e, be(cba)k+ieb =
beba(cba)kch and therefore

—be - sy = —be((cba)*? + (cba)* e + a(cba)* eb).

4. bea - sy,
Using the reductions it is easy to check that bea(cba)**2 = beaba(cba) *1, bea(cba) e =
beaa(cba)*+1e, bea(cba)k+eb = beaa(cba)+1eb and we get that

bea - s, = bea(a(cba)*™ + ba(cba) e + ba(cba)*cb).

5. —ab- sy
We have that ab(cba) e = aba(cba) e, ab(cba)*cb = aba(cba)*Lcb, a(cba) 1 =
aba(cba)*t. Thus

—ab - s, = —ab((cba)*? + ba(cba)* e 4 ba(cba)kcb).

6. abc- s,
One can check that abca(chba)* = abcba(cba)*™, abca(cba)*'c = abcba(cba)* e,
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abe(cba)**tteb = abeba(cba)kch, so

abe - sy = abe((cba)* 2 + (cba)* e + a(cba) i cb)

Moreover the following holds: cabba(cba)**'c = caba(cba)**'c, cabba(cba)*ch = caba(cba)kcb,
b(cba)* 2 = bea(cba) 1, ab(cba)* 2 = abe(cba)* 2, abba(cba)* e = abe(cba) e, beab(cba)*ch =
bea(cba)*+eb.

It follows that

tose =cab(cba)*? — ca(cba)"™ — be(cba)*? — be(cba) e + beab(cba) e
+ beab(cba)*cb — ab(cba)*cb + abea(cba) ™ cb.
If k£ is even then using Lemma 8.15 we calculate that
k+4 k+2

tosy = (cab) 2 — (cab) = — b(cab)gca + b(cab) T ca — ab(cab) 2c+ ab(cab)

It follows that tys; corresponds to the matrix

(= 1) 0 0
0 0 t2(t—1)
0 t2(t—1) 0

Therefore for even k the element P 's; = ui and in particular P 's, € K[Ss] in this case.

Similarly, for odd k& we have
tosy = (cab) 3 ca — (cab) 3 ca—b(cab) 5 c+b(cab) 5 c—ab(cab) Ea —l—ab(cab)

It follows that tys, corresponds to the matrix

0 7 t2 (t—1)
0 £ (t—1) 9
£t —1) 0 9

Thus for odd k& the element Pl_lsk = Vrp and in particular Pl_lsk € K|[Ss] in this case
too. ]

We obtain the following characterization of the center of K[Ss].

Corollary 8.17. The center Z of K[Ss] is equal to ling{ty : k > 1} + ling{sor_1 —vp : k >
1} + ling{sor —ug : k > 1}.
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It is also possible to calculate the center of K[S3] in a slightly more direct way. We will
show that the center Z is equal to ling{ty : k > 1} +ling{sop_1—vg : k = 1} +ling{sor —uy :
k > 1}, as in Corollary 8.17.

The following few remarks will be crucial. As we have already explained every element
of the center Z(K[Ss]) is contained in the center of the Hecke—Kiselman algebra K[C3]. It
follows that w € Z(K|[Ss)) if and only if it commutes with every generator of Cs. Moreover,
the image of w under the natural projection K|[S3] — K[Ss]/K[M;] = Ko[My] is in the
center of Ko[My]. That means that every element of the center of K[Ss] is of the form
w = wy + Y, Brsk, where wy € K[M], s, € K[M] and f), € K for every k. The idea is to
investigate the equations of the form aw = wa, bw = wb and cw = wec.

Recall that uy, = (cab)*™! +b(cab)*ca + ab(cab)¥c and vy = b(cab)*c+ (cab)*ca + ab(cab)*.
Then in particular t; = ug — vy.

We know that w is of the form wy + ), Brsk, where wy € K[M;], s, € K[M,] and B, € K
for every k. Every w; can be written in the following form

wi= Y (D augicab)™j)

i€A1,jEB1 ki >1

(1) Firstly we will see what follows from the equality aw = wa. It is easy to check that
for any v € {(cab)*,ab(cab)*, (cab)*ca, ab(cab)*ca} we have av = va, so we can skip
terms of these forms in our equation. Moreover for every £ > 1 we know that asp —
sga € K[M,]. Therefore the only elements of the support of asj that are left are
{aba(cba)* 1, aba(cba)* e, aba(cba)kchb} and the only elements of the support of spa
that will not be cancelled are {(cba)**1ca, a(cba)*ca, ba(cba)*ca}.

Using Lemma 8.15 we calculate that the remaining part of Siasy is of the form

ESERNNTES

C
+1

Brab(cab)zc for even k;
Brab(cab) 2 ¢ for odd k.

Similarly, the remaining part of Sgsia is of the following form

{ﬁkb(cab)k;lca for odd k;

Brb(cab)? ca for even k.
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Hence, equality aw = wa is equivalent to

Z v 1ab(cab)™ + Z .o (cab)ec + Z v cab(cab)ec + Z y ca@b(cab)™ e ca
+ Z gy cab(cab)erec + Z Brab(cab)?c + Z Brab(cab) ™+ ¢ =

2lk Ak

Z amb(cab)kbvl + Z a17c(cab)k1*cca + Z Ozb,cb(cab)kb’cca + Z Ozb,cab(cab)kbywca
+ Z Qap,cab(cab)Feca + Z Bkb(cab)gca + Z ﬁkb(cab)%ca.

2/k 2k
Therefore

(1 Qp1 = 0;
(ii

(iii

Q1= 0;

32 i caab(cab)veeca = 37 agp cab(cab)tr-ca;

(iv) 2= apeab(cab)™ec+ 37 agpcab(cab)ferec+ 3, Brab(cab) Set > o, Brab(cab) e =
0;

(v) 3 cb(cab)vecat-37 apeab(cab) e ca+ 37, Brb(cab)
0.

)
)
)
)

k
2

ca+3 oy Brb(cab) ea

From (i7i) it follows that we can assume that ap e, = gy := a;. Therefore it is easy
to see that (iv) and (v) are equivalent.

(2) Now we investigate equality bw = wb, assuming that o1 = 0, ;. = 0 and apq =
Qgp,c = Q.
It is easy to check that for any v € {b(cab)*c, ab(cab)*, ab(cab)*c} we have bv = vb, so
we can skip terms of these forms in our equation. Moreover for every k£ > 1 we know
that as, — sga € K[M;]. Therefore the only elements of the support of bs, that are

left are {b(cba)**2 b(cba)* e, b(cba)*+1eb} and the only elements of the support of s3b
that will not be cancelled are {(cba)**2b, a(cba)* b, ba(cba)*+1b}.

Using Lemma 8.15 we calculate that the remaining part of SBibs; is of the form

Brb(cab)
Bib(cab) % ca for odd k.

ca for even k;

Ead [SIE

Similarly, the remaining part of Sgsib is of the following form

{@(cab)( for odd k;

E
w

2
k42

Br(cab) 2 for even k.
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Hence, we get the following equation

Z a1b(cab)™ + Z 1 cab(cab)* e ca + Z i cab(cab)eeaca
* Z Qap,catb(cab) oo ca + Z Bib(cab)?ca + Z Brb(cab) % ca =

20k Ak

Z a1 (cab)™ + Z Q1 ca(cab)Feett 4 Z tp cab(cab)Freet!
2 uncadb(cab)" 4 ] Bileab) S + 3 fileat) F.

2|k 2k
Therefore

(1) 3" agib(cab)r = 37 ay ob(cab)Freat;

(ii) D a1 cab(cab)?eaca+ ay cab(cab)rsea ccH—ZQ‘k Bkb(cab)gcajtzm Br.b(cab) B e
0;

(iii) agbea = 0;
(iv) - ari(cab)™t + 37 a ca(cab) et 4 22|k Bk(cab)% + Zm ﬁk(calﬁ% = 0.

From (7), (éii) and part (1) we get that
wyp = Z ozi((cab)z‘+1 + b(cab)ica + ab(cab)i—i—lc) + Z aab,lab(cab)k“bvl—k
+ Z alyca(cab)kl’c“ ca + Z ab7cb(CCLb)kb’Cc,

It follows also from (i) that (i) and (iv) are equivalent.

(3) Now we investigate equality cw = wc, assuming parts (1) and (2).

It is easy to check that for any v € {b(cab)*c, (cab)*ca, b(cab)*ca} we have cv = ve, so
we can skip terms of these forms in our equation. Moreover for every k£ > 1 we know

that csy — spc € K[M;]. Therefore the only elements of the support of cs; that are left

are {ca(cba)**, ca(cba)k*Le, ca(cba)* teb} and the only elements of the support of sic

that will not be cancelled are {(cba)**1cbe, a(cba)**icbe, ba(cba)kcbe}.

Using LLemma 8.15 we calculate that the remaining part of fics; is of the form

Bi(cab)™s* for even k;
5k(cab)% for odd k.

Similarly, the remaining part of Sgsic is of the following form

{ﬁkab(cab)k;rlc for odd k;

Brab(cab)z ¢ for even k.
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Hence, we get the following

Zai((cab)zﬂrl + b(cab)ica + (cab)ile) + Zaabl Cab>kab,1+1+

+Zﬁk cab —i—Zﬁk cab

2lk 2k

= Z ai((cab) ™ e+ b(cab)'ca + ab(cab)'c) + Z apab(cab)kabt et
+ Z Brab(cab) e + Z Brab(cab) e

2/k Ak
Therefore we have

(1) 3 ai(cab)™ + 3 gy (cab)kavatt 4 > ok Br(cab) ™" + D otk Br(cab) 'z O;
(ii) > czab(cab)ic+ >~ agpiab(cab)kavic + > ok Brab(cab)?c + PP Brab(cab) " ¢ = 0.
It is clear that equations (i) and (ii) are equivalent.

Equalities (3(z)) and (2(iv)) give us that {10 @ 1 # 0} = {Qw1 @ aw1 # 0}
Moreover, from (1(iv)) and (2(ii)) it follows that {a1 e @ @10 # 0} = {e @ ape # 0}.
Lastly, we have that if {a1c0 @ @100 # 0} = {1 © @1 # 0} = {we © ap # 0}, then
(1(iv)), (1(v)), (2(i1)), (2, (iv)), (3(7)) and (3(ii)) are equivalent.

More precisely, we get that w = wy + ), Brsk, where

wy = Z ;i ((cab)™ 4 b(cab)'ca + ab(cab)™c) + Z 7, (ab(cab)? + (cab)’ ca + b(cab)’c)

and

Zaz (cab)* —i—Z% (cab)’ +Zﬁk cab%—i-ZBk cab = 0.

20k Ak

Comparing coefficients of (cab)™ it follows that v, + Ban_1 + Pon + 7, = 0 for any n > 1.
Therefore w € Z(K|[S;)) if and only if

w = Z a;t; + Z Bok—1(S2k—1 — ug) + Z Bok(S2k — )
; A 2

for some o, 5; € K, where
uy = (cab)*** + b(cab)*ca + ab(cab)*c

and
v = b(cab)c + (cab)*ca + ab(cab)*.

It follows that Z(K[Ss]) = ling{ty : k > 1} + ling{sop—1 — ug : k = 1} + ling{sor, — uy :

k> 1),
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We found the center Z of the algebra K[S;] that is contained in the center of the algebra
K[Cs]. As mentioned at the beginning of the present section, the algebra K[Cs] is a finite
module over its center. Moreover, as we shall prove, K[C3] is a finite module over the
characterized part of the center.

Corollary 8.18. Hecke—Kiselman algebra K[Cs] is a finite module over Z.

Proof. From Theorem 3.3 it follows that K[S3] is a (finitely generated) semiprime algebra
of Gelfand-Kirillov dimension 1 and therefore it is finitely generated module over its center
Z, see Theorem 1.22. We know that Cj \ S; is finite, so K[S3] € K[Cs] is finite module
extension. Thus K[Cj] is finite module over Z. O

8.5.1 Limitations of the method

Let us consider the general case of the Hecke-Kiselman monoid C), associated to the cycle
of length n, for any n > 3. In contrast to the relatively simple form of the elements of Cj,
the characterization of almost all elements of C),, for any n > 3, obtained in Theorem 2.1
is quite complicated. Therefore it would be difficult to find the center of K[C),| by direct
computations, as in the second method used in the case of K[Cj).

On the other hand, the structures of matrix type hidden in the monoid C),, see Theorem 2.44,
could be used to characterize the center in the general case. Namely, one can consider the
subsemigroup S,, = U;:OQ M, in the monoid C,,. The set C,, \ S, is finite for every n > 3, see
Proposition 2.15. Thus it is clear that an analogue of Corollary 8.18 holds in the general case,
that is the Hecke-Kiselman algebra K[C,,] is a finite module over the center Z of K[S,]. We
know that M,,_, is an ideal in S,, and an analogue of Lemma 8.14 can also be proved. More
precisely, the sum of linear subspaces R = K|S, \ ]\;[n,g] + M(K(t,—2), Ap_2, By_2; P,_2) has
a natural structure of algebra, which extends the structure of K[S,]. To find the center of
M(K|[T,-3], Ap—2, By—2; P,—2) in particular we have to calculate the inverse of the sandwich
matrix P, o € M, (K(t,_2)) which however seems to be extremely hard in the general case.
To find the center of K[S,, \ MH,Q] it would be natural to consider first M,,_5 C S, \ M, _,
then M, , C S, \ (]\;[n,g U ]\7[71,3) and so on. Unfortunately several problems occur. Firstly,
for n > 3 the subset S, \ Mn_g is no longer a subsemigroup in S,, and moreover if w € M;
and u € S, then wu, uw are not necessarily in M; for i # n — 2 (for example it can be easily
checked that (2,¢,—3)(Tp_1- - T2xnq1) € My_o). Secondly, the exact form of the sandwich
matrices P, € M<i:1)(K(ti)) is really difficult to calculate and thus also we do not know
the inverses of these matrices. Therefore the arguments described in this chapter cannot be
generalized directly.
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