
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Magdalena U. Bogda«ska

Mathematical models for the

dynamics of low-grade gliomas and

their response to therapies
PhD dissertation

Supervisor:

dr hab. Marek Bodnar
Institute of Applied Mathematics and Mechanics

Faculty of Mathematics, Informatics, and Mechanics
University of Warsaw

Co-supervisor:

Dr D. Víctor M. Pérez-García
Institute of Applied Mathematics in Science and Engineering

University of Castilla-La Mancha

Auxiliary supervisor:

dr hab. Monika J. Piotrowska
Institute of Applied Mathematics and Mechanics

Faculty of Mathematics, Informatics, and Mechanics
University of Warsaw

November 2018



Author's declaration:
I hereby declare that this dissertation is my own work.

November 28, 2018

date

....................................................................

Magdalena Bogda«ska

Supervisor's declaration:
The dissertation is ready to be reviewed.

November 28, 2018

date

....................................................................

dr hab. Marek Bodnar

Co-supervisor's declaration:
The dissertation is ready to be reviewed.

November 28, 2018

date

....................................................................

Dr D. Víctor M. Pérez-García

Auxiliary supervisor's declaration:
The dissertation is ready to be reviewed.

November 28, 2018

date

....................................................................

dr hab. Monika J. Piotrowska



Abstract

In this dissertation, mathematical models and methods were used to study the evolution and
the response to treatments of low-grade gliomas. Low-grade gliomas are brain tumours usually
growing slowly but causing death due to their progression to more malignant counterparts.

We constructed macroscopic models of low-grade gliomas' growth in such a way that they
were accurate enough to re�ect available clinical observations and simple enough so that they
could be analysed analytically. The models presented in this thesis were designed in the form of
systems of either ordinary di�erential equations or reaction-di�usion equations complemented
with expressions accounting for the response to treatments.

We studied the proposed models both analytically and numerically. We also showed that the
solutions of the developed mathematical models �t well to the dynamics of low-grade gliomas
of individual patients. On the basis of our validated models, we addressed some problems of
clinical practice. Finally, we derived analytical estimates which could be potentially useful in
assessing tumours aggressiveness and selecting the best therapies.
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Streszczenie

W tej rozprawie modele i metody matematyczne zostaªy wykorzystane do badania wzrostu
i odpowiedzi na leczenie glejaków niskiego stopnia. Glejaki niskiego stopnia s¡ to guzy mózgu,
które zazwyczaj rosn¡ powoli, ale s¡ nieuleczalne. �mier¢ nast¦puje zwykle w konsekwencji
przeksztaªcenia si¦ tych nowotworów w bardziej zªo±liwe formy.

Skonstruowali±my makroskopowe modele wzrostu glejaków niskiego stopnia, które wystar-
czaj¡co dokªadnie odzwierciedlaj¡ dost¦pne obserwacje kliniczne i jednocze±nie s¡ na tyle
proste, »e mogªy by¢ analizowane analitycznie. Modele przedstawione w tej pracy zostaªy sfor-
muªowane w postaci ukªadów równa« ró»niczkowych zwyczajnych lub równa« reakcji-dyfuzji
uzupeªnionych wyra»eniami opisuj¡cymi wpªyw leczenia.

Zbadali±my proponowane modele zarówno analitycznie, jak i numerycznie. Pokazali±my
równie», »e ich rozwi¡zania dobrze dopasowuj¡ si¦ do dynamiki glejaków niskiego stopnia
poszczególnych pacjentów. Na podstawie naszych zwalidowanych modeli zaj¦li±my si¦ pewnymi
problemami praktyki klinicznej. Uzyskali±my analityczne oszacowania, które mog¡ by¢ potenc-
jalnie wykorzystane w ocenie agresywno±ci nowotworów i wyborze najlepszych terapii.
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Resumen

En esta tesis se han desarrollado modelos y utilizado metodología matemática para estudiar
la evolución de gliomas de bajo grado y su respuesta a los tratamientos. Este tipo de cáncer
crece lentamente pero causa la muerte debido a su transformación en formas más agresivas
del tumor.

Se han construido modelos macroscópicos de crecimiento de estos tumores lo su�ciente-
mente precisos como para re�ejar las observaciones clínicas disponibles y al mismo tiempo
sencillos para que su estudio analítico fuera viable. Los modelos presentados en esta tesis
son bien sistemas de ecuaciones diferenciales ordinarias o bien ecuaciones de reacción-difusión
complementadas con expresiones que representan la respuesta a los tratamientos.

Los modelos propuestos se han estudiado tanto analíticamente como numéricamente en esta
tesis. También se ha demostrado que las soluciones de estos modelos describe correctamente
la dinámica de gliomas de bajo grado de pacientes reales. Sobre la base de nuestros modelos
validados, he discutido algunos problemas relacionados con la práctica clínica. Por último, se
han encontrado estimaciones analíticas potencialmente útiles para evaluar la agresividad de los
tumores y elegir las mejores terapias.
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Chapter 1

Introduction

1.1 Motivation

The idea for this dissertation arose thanks to a collaboration with Prof. Víctor M. Pérez-García,
the Head of the Mathematical Oncology Laboratory (University of Castilla-La Mancha, Spain)
that began during an Erasmus internship of the author of this thesis. That internship resulted
in the publication of a research article, which focused on mathematical modelling of the growth
of low-grade gliomas and their response to radiotherapy [1]. Low-grade gliomas (LGGs) are
slowly growing brain tumours that mostly a�ect young patients and usually become fatal,
mostly due to their in�ltration and transformation into more malignant types, known as high-
grade gliomas (HGGs), for detailed information see Section 1.5. Each year around six out
of 100 000 citizens su�er from gliomas worldwide [6]. However, the social impact of these
tumours is highly disproportional to their incidence. Median untreated survival time for HGGs
patients' ranges from 6 months to 1 year and the average years of life lost* for each patient
with HGG is high (20.1 years). Thus, HGG was ranked as the most malignant tumour out
of 17 types of cancer [7]. Even low-grade gliomas, frequently mistagged as benign tumours
due to their very slow proliferation indexes [8, 9], have very poor prognosis� as they can rarely
be cured. The median survival of treated LGG patients is between �ve and ten years [10],
compared with one to two years for treated HGG patients [11]. LGGs have a tremendous
impact on the society also because of the fact that they usually occur in young patients [12],
therefore being the object of strong clinical interest.

In Section 1.5 we explain some of the challenges in making treatment decisions for LGGs.
Unfortunately, it is extremely di�cult to verify an arbitrary number of possible therapy schemes
in vivo as, apart from ethical reasons, it is very time-consuming. Due to the long time of disease
evolution in some of LGGs patients, clinical trials on LGGs require many years to test a single
hypothesis. To give an example, a European clinical trial designed to test the e�cacy of early
versus delayed radiotherapy for LGGs started in 1986 and long-term results were presented in
2005 [13]. Moreover, as Byrne [14] suggested, hypotheses on physical processes sometimes are
even impossible to verify in the biological experiments with the use of existing technology. All
biomedical research is based on the use of experimental models. Unfortunately, so far, no one
has been able to establish cell line which reproduces in mice or rats the behaviour of human

*The average years of life lost is a sum of the di�erences between the actual age at death and the expected age at
death for each person who died of cancer divided by the actual number of deaths for a cancer type studied.

�Patient prognosis refers in general to the likely outcome or course of a disease, the chance of recovery or recurrence.
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LGGs. These are some of the reasons why research on this type of tumours has been very slow
during decades.

In fact, the potential of mathematical models to help in managing medical problems was
the �rst motivation behind the research presented here. Mathematical models may be used
to simulate the tumour growth, drug kinetics, e�ects of di�erent therapies etc . for cohorts of
hypothetical patients, which helps in saving money and time in comparison to �blind� biological
experiments. Obviously, mathematical models alone cannot replace biomedical models (i.e. cell
lines, research animals or clinical trials), but they allow for extrapolation beyond the situations
that were studied originally. It gives a broader picture which might aid in �nding answers for
some cancer-related open questions. Using the mathematical models allows basic researchers
to make an inference of possible mechanisms, falsi�cation of underlying biological processes and
quantitative description of relationships between di�erent components of a system, see e.g. [14,
15, 16] for a review. Clearly, mathematical models are simpli�ed descriptions of reality, which
allow reproducing the behaviour of the original system, but can also provide ways to raise
new hypotheses. To give an example, in [17] the authors exploited a mathematical model to
predict that brain tumours could be labelled as either nodular or in�ltrative due to the size of
tumour bulk and the extent of in�ltrative part (estimated from patients imaging data obtained
with the use of two di�erent imaging modalities). Interestingly, their mathematical model led
to a prediction which group of a tumour (the nodular ones) would bene�t more from radical
surgery.

If the e�ect of therapy is included in a mathematical model, it can give qualitative and some-
times even quantitative predictions of tumours' response to therapies and patients' survival.
The results can help in making individual patients' treatment decisions, �nding appropriate
therapeutical timings and/or fractionations or even the development of new therapies [18].
Properly constructed mathematical models could assist in personalising medicine, which rep-
resents another hallmark of contemporary medicine. This kind of approach has been already
proven to be successful in few cases, e.g. in predicting and monitoring chemotherapy-induced
myelosuppresion [19], and is an emergent �eld of applied mathematics that is expected to
develop further in the future.

Basic researchers working in the area of mathematical oncology (or mathematical biology
in general) usually have one of the following approaches: either they use biological and medical
knowledge only as a source of mathematical problems and do not look for any applications,
or they search for issues of major biomedical importance and open-minded physicians in or-
der to ensure that theoretical results obtained might be exploited for practical, therapeutic
purposes [15]. We are in favour of the second approach, agreeing completely that collabo-
ration between mathematicians and biologists or medical doctors can enhance both areas of
science. As Cohen said �Mathematics is biology's next microscope, only better. Biology is
mathematics' next physics, only better� [20]. These are interdisciplinary collaborations that
enable performing mathematical studies which could be bene�cial in solving cancer-related
problems. Sadly, they are di�cult to establish and maintain because of several obstacles. An
obvious reason for di�culties faced during interdisciplinary work in mathematical biology, in
particular in the so-called �mathematical oncology� [16], is the completely di�erent type of
knowledge in mathematics in comparison to biology or medicine. Even when both basic and
clinical scientists are willing to translational research, they do not necessarily speak the same
language due to di�erent training and experience. Furthermore, the role of mathematics in
generating mechanistic insight into biomedical problems is, in general, less well known than
e.g. in physics and engineering. Mathematical models might seem as esoteric, mysterious
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scienti�c instruments to most biologists and physicians [21]. They have been unintelligible to
most biomedical researchers, therefore it is usually a mathematician who has to acquire an
understanding of main biological processes. Another di�culty is related to di�erent scienti�c
goals. Most biologists and physicians do not consider mathematicians as possible contributors
as, instead of theorems, they look forward to studies designed for therapeutic improvements
[21]. Moreover, in the case of low-grade gliomas, to be analysed here, one has to face the
limitation of data available and the general lack of large cohorts of patients treated in the
same way, see Section 1.5.

Mathematical modelling of LGG growth started roughly 10 years ago and has received
strong attention in the last few years, see e.g. [22, 23, 24, 25, 1, 26, 27]. Unfortunately,
from the clinical point of view, up to now there were very few applicable results derived from
mathematical models of these tumours. Thus, many questions coming from medicine which
could be potentially addressed using mathematical frameworks, still remain without answers.
For instance, timing and dosing of chemotherapy to LGG patients requires a careful planning
that may bene�t from � now absent � rational design based on mathematical modelling.

Furthermore, many mathematical models presented so far to describe gliomas evolution
includes tens or even hundreds of unknown parameters, see e.g. the reviews [15, 18, 16] and
the references therein. Thus, a problem of over�tting appears as excessively complicated
models may �t whatever kind of behaviour is observed. Interestingly, up to now, it has been
possible to extract conclusions useful for clinicians only from simple models , as in e.g. [28, 29],
see also Section 1.6. Still, there is a need for models accounting for the fundamental features
of low-grade gliomas' dynamics and their response to therapies without involving excessive
details on the often unknown speci�c processes but enabling the qualitative understanding of
the phenomena involved.

In this thesis, mathematical models and methods are used to provide insight into low-grade
gliomas and their response to therapies. We construct models that are accurate enough to
re�ect available clinical observations and simple enough so that they can be analysed math-
ematically. We build the models from the bottom up, adding new components only as they
become necessary, starting with the de�nition of a glioma as a mass proliferating without con-
trol, invading locally. Such models of growth are complemented with expressions accounting
for the response of tumours to therapies used nowadays. We formulate macroscopic mod-
els as such models describe the local tumour cell densities or tumour size and may be more
easily adapted to speci�c patient data from our collaborators. We investigate mathematical
properties of the models and derive clinically-relevant suggestions, that can be later tested by
clinicians and/or biologists.

1.2 Structure of the dissertation

The outline of this dissertation is the following. In this chapter we �rst list papers in which
the majority of the results of this thesis were published. Next, we present some introductory
information about characteristics and diagnosis of cancer, focusing on brain tumours. We
describe low-grade gliomas and their typical treatments. We use this information to design our
mathematical models. We also discuss in this chapter the most relevant mathematical models
that have been developed to describe gliomas growth. Finally, we outline the methodology used
in the presented research and describe medical data used to validate our mathematical models
and hypotheses. As an addendum to this introductory chapter we present the mathematical
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notation and acronyms used throughout this thesis. The broader meaning of each abbreviated
term is given at its �rst occurrence within the text.

In the dissertation, we present three di�erent mathematical models. First, in Chap-
ter 2 a macroscopic model of LGG growth and response to chemotherapy is developed. In
Chapter 3 we derive in detail a model to analyse the process of malignant transformation.
Both Chapters 2 and 3 include mathematical analysis of the proposed models. These chap-
ters explore a wide range of patient-speci�c parameters and they also study their role. We
also �t the models to patients data and estimate values of practical interest. We discuss
potential therapeutical implications from the formulated models and obtained estimates. In
Chapter 4 we develop and analyse a model of LGG growth including a spatial component and
response to chemotherapy. Later on, we proceed to estimate the time when malignant transfor-
mation begins for tumours treated with chemotherapy and consider some novel chemotherapy
fractionations. Chapter 5 includes a brief summary of the results obtained.

In Appendix A we add an article describing a model of LGG growth and response to
radiotherapy. Finally, we complement dissertation with Appendix B which includes the most
relevant numerical procedures used to perform numerical simulations of presented mathemat-
ical models and to �t them to patients data.

1.3 List of publications derived from this thesis

The results presented in this dissertation gave rise to the following publications in international
peer-reviewed journals:

[1] V. Pérez-García, M. Bogda«ska, A. Martínez-González, J. Belmonte-Beitia, P. Schucht,
L. Pérez-Romasanta. Delay e�ects in the response of low-grade gliomas to radiotherapy:
a mathematical model and its therapeutical implications. Mathematical Medicine and

Biology. 2015; 32:307�29.

[2] M. U. Bogda«ska, M. Bodnar, J. Belmonte-Beitia, M. Murek, P. Schucht, J. Beck,
V. M. Pérez-García. A mathematical model of low grade gliomas treated with temozolo-
mide and its therapeutical implications. Mathematical Biosciences. 2017; 288:1�13.

[3] M. U. Bogda«ska, M. Bodnar, M. J. Piotrowska, M. Murek, P. Schucht, J. Beck,
A. Martínez-González, V. M. Pérez-García. A mathematical model describes the ma-
lignant transformation of low grade gliomas: Prognostic implications. PLoS One. 2017;
12(8):e0179999.

[4] M. Bodnar, M. J. Piotrowska, M. U. Bogda«ska. Mathematical analysis of generalised
model of chemotherapy for low grade gliomas. Discrete & Continuous Dynamical Sys-

tems - B. 2018 (accepted).

Results presented in [2, 3] are fully included in Chapters 2-3. Publication [1] is included
as Appendix A since it contains the results obtained before the beginning of doctoral studies
of the dissertation author. However, the mathematical modelling approach, together with
numerical methods used in this publication, are similar to those presented in Chapters 2 and 3.
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Thus, the techniques used in [1] were explained in more detail in the context of other models
described here.

1.4 Cancer - a brief characterisation

Cancer is a general term describing a very heterogeneous group of diseases. Each cancer is
formed by anomalous cells that impair tissue homeostasis, a�ecting the proper functioning of
the human body. It can originate almost anywhere in the body. Thus, there are more than
100 cancer types, usually named after the organs or tissues where they form or by the type of
cells that formed them.

There are several key processes occurring in most cancer types, see Figure 1.1. All cancers
are characterised by unchecked growth that progresses toward limitless expansion. Normally,
the rates of new cell growth and old cell death are kept in balance. Old, unneeded and damaged
cells are removed from the human body through a process known as programmed cell death
or apoptosis. In cancer, however, this balance is disrupted as a result of uncontrolled cell
growth or loss of cell's ability to undergo cell suicide. Cancer cells are able to ignore signals
that tell cells to stop dividing or to begin apoptosis.

Deregulating
cellular 
energetics

Inducing 
angiogenesis

Endless 
proliferative
potential

Sustaining 
proliferative 
signalling

Avoiding 
immune 
destruction

Tumour-promoting
inflammation

Activating 
invasion & 
metastatis

Mutations 
& genome 
instability

Resisting 
cell death

--

Cancer
cells

Insensitivity 
to anti-growth 
signals

STOP

Figure 1.1: Hallmarks of cancer. Figure adapted from Hanahan and Weinberg [30].

Cancer cells are capable of spreading by two mechanisms: invasion and metastasis. The
�rst term refers to the direct migration and penetration of cancer cells into neighbouring
tissues. The term �metastasis� describes the ability of cancer cells to penetrate into lymphatic
and/or blood vessels, circulate through them, and then invade other tissues elsewhere in the
body. Gliomas are likely to invade the nearby healthy brain tissue and spread to other parts of
the brain or to the spinal cord, however, they rarely spread to other parts of the body.

Cancer cells might also evade the immune system. Though the immune system normally
removes damaged or abnormal cells, some cancer cells are able to �hide� from it.

Another characteristic of cancer cells is that they may in�uence the normal cells, molecules,
and blood vessels that surround and feed a tumour � an area known as the microenvironment.
For instance, they can induce nearby normal cells to form blood vessels that supply a tumour
with oxygen and nutrients, allowing for tumour expansion. Such a process through which new
blood vessels are formed from pre-existing vessels is called angiogenesis. It occurs in grade
III and IV gliomas and is associated with poor prognosis.
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1.5 Gliomas - an overview with focus on low-grade gliomas

In this dissertation we focus on modelling the growth of gliomas, which are the most frequent
brain tumours. They represent approximately 30% of all central nervous system tumours and
about 80% of all malignant brain tumours [31]. The term �gliomas� refers to astrocytomas
and oligodendrogliomas, which are tumours originating from precursors of supporting glial cells
in the brain (mainly from astrocytes and oligodendrocytes*). These tumours usually arise in
the cerebrum.

In this dissertation, we use gliomas patients' data, described precisely in Section 1.7. We
use mainly two kinds of information concerning individual patients: tumour size measured from
imaging scans and the microscopic results con�rming both the initial diagnosis and later the
transformation into a more malignant tumour. Thus, we introduce here main facts considering
the whole process of diagnosis for brain tumours. Subsequently, we describe LGGs in detail.
We present some of the most important �ndings concerning their response to chemotherapy
and malignant transformation, which are modelled in the dissertation.

Brain tumours imaging. Microscopic examination. Classi�cation

Gliomas are usually diagnosed with the use of imaging techniques coupled with the analysis
of lesion samples extracted from a biopsy. Currently, the main radiological technique used for
brain imaging ismagnetic resonance imaging (MRI), which can produce three-dimensional
images of sections of the body. There are many di�erent types of MRI, see e.g. [32] for review.
T1-weighted MRI (T1), T2-weighted MRI (T2) and Fluid Attenuation Inversion Recovery
(FLAIR) are most common for the purpose of detecting and diagnosing brain tumours. On
T2 and FLAIR scans one can observe peritumoral oedema�, if present, while T1 shows also
regions of necrosis�. T1 is sometimes used with intravenous contrast gadolinium (T1+Gd),
which can show the region of unstable vasculature or hypoxia in white/light grey (�contrast
enhancement�). We show examples of T1 and T2 MRI scans of LGG in Figure 1.2. Later on,
in Figure 1.5 we also present the results of FLAIR and T1+Gd scans made for glioma before
and after its malignant transformation, see detailed description in Section 1.5.

Figure 1.2: T1 (left) and T2 (right) MRI scan of LGG in the frontal lobe. Figure reprinted from [33].�

*Oligodendocytes are responsible mainly for providing a support and insulation to axons, while astrocytes are
providing support to cells forming the blood�brain barrier and providing nutrients to the nervous tissue, among others.

�Oedema (am. edema) is an abnormal accumulation of �uid causing the a�ected tissue to become swollen.
�Necrosis is a type of cell death induced by pathological factors external to the cell or tissue. Regions of necrotic

tissue, indicating a poor prognosis, are present in many aggressive cancers (such as grade IV glioma).
�Reprinted from The Lancet Neurology, 2(7), P. H. Wessels et al., Supratentorial grade II astrocytoma: biological

features and clinical course, 395�403, Copyright (2003), with permission from Elsevier.
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In clinical routine, a sequential follow-up of the tumour evolution and response to therapies
is performed. By comparing imaging scans done over time, medical doctors can observe
a tumour response to a given treatment or �nd out if cancer has relapsed after treatment. In
LGGs database used in this dissertation, two imaging techniques were used to follow LGGs
development: T2 and FLAIR.

If a brain scan suggests the presence of a tumour, a biopsy shall be performed for a proper
diagnosis. It may be done as a separate procedure or at the time the tumour is removed
if surgery is a treatment option. Then, histopathology, i.e. a microscopic examination of
a biopsy or surgical specimen, is carried out. Figure 1.3 presents a histopathological section
of LGG tissue. Under the microscope, cancer tissues have a distinctive appearance (e.g. there
is a large number of irregularly shaped dividing cells). Based on such characteristic traits,
a pathologist determines whether a tumour is benign or malignant and assigns the tumour's
grade. To put it simply, tumour grade tells how abnormal the tumour cells are when compared
to normal, healthy cells. Generally, a low number grade (grade I or II) refers to cancers with
fewer cell abnormalities than those with higher numbers (grade III or IV) and indicates a better
prognosis. Higher-grade cancer may grow and spread more quickly and may require immediate
or more aggressive treatment.

Figure 1.3: Histopathology images of LGGs: astrocytoma (A) and oligodendroglioma (B). Figure
reprinted from [34].*

The most widely accepted system for classifying central nervous system tumours is the
World Health Organisation (WHO) classi�cation [35]. According to the 2007 WHO clas-
si�cation, valid at the beginning of PhD studies of the author, grade I gliomas (pilocytic
astrocytomas) are very rare, non-in�ltrating and curable. They will not be addressed here.
WHO grade II gliomas (oligodendroglioma, astrocytoma) are usually referred to as low-grade
gliomas (LGGs), while WHO grade III gliomas (anaplastic astrocytoma, anaplastic oligo-
dendroglioma, anaplastic oligoastrocytoma) and IV (glioblastoma)� as high-grade gliomas
(HGGs), see [12] for the detailed classi�cation.

After identifying the tissue as cancerous, the pathologist may perform additional tests to
get more information about a tumour. To give an example, an antigen Ki-67 is a marker used
to determine the growth fraction of a given cell population. The fraction of Ki-67-positive
tumour cells (the Ki-67 labelling index, Ki-67 LI) is often correlated with the clinical course of
cancer. In the case of brain tumours, the prognostic value of Ki-67 LI for survival and tumour
recurrence have been proven in uni- and multivariate analysis [36, 37]. In the dataset of our
collaborators, values of Ki-67 LI has been measured for some patients. We compare values of
Ki-67 LI obtained for LGGs patients before and after malignant transformation in Table 3.3 in
Section 3.3.2.

*Reprinted with permission. © (2016) American Society of Clinical Oncology. All rights reserved.
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Finally, a pathologist may examine molecules within organs, tissues or body �uids. Such
examination is called molecular pathology. Its use for cancer patients aids in more accurate
diagnosis, selection of speci�c treatments that are most likely to be e�ective for them and
determining biomarkers with a prognostic value. In the case of brain tumours, status of IDH
1/2 mutations, TP53 mutations, 1p/19q loss and MGMT promoter methylation have been
found to have prognostic value, cf. [38, 39, 40]. It should be noted that from 2016, increased
importance has been given to molecular markers for gliomas, both in terms of determining
a detailed diagnosis and in prognosis [35, 6, 34]. To be speci�c, the status of IDH and 1p/19q
have been included in a new WHO classi�cation of low-grade gliomas. IDH wildtype tumours
(i.e. without IDH 1 or 2 mutations) are known to have a poorer prognosis compared to IDH
mutated tumours. Gliomas with 1p and 19q loss generally have a better prognosis, related to
therapy [41] or not [42]. At the beginning of the presented research, it was not a gold standard
to verify those characteristics, thus, we did not analyse them.

Low-grade gliomas and their treatment

LGGs are rare primary tumours*, usually occurring in frontal and temporal lobes. They usually
grow very slowly, see Figure 1.4 showing proliferating cells in a LGG sample. Nevertheless,
they are almost invariably incurable due to their di�usive in�ltrative nature and often lead to
patient death due to a transformation of a tumour into more aggressive anaplastic form, for
details see Section 1.5.

Figure 1.4: Ki-67 immunostaining in a LGG of a 26-year-old patient. Taking into account that
normal brain cells do not proliferate, those cells that are marked in red are probably the tumour cells.
A labelling index of 4.4% was associated with a survival of 35 months. Figure reprinted from [33].�

Treatment of patients with LGGs brings many controversies to clinicians due to the fact
that these tumours usually a�ect patients between 30 and 45 years old, who, besides seizures,
appear neurologically asymptomatic. Other symptoms (headaches, lethargy, mental changes)
are less common. Thus, the treatment goal is not only to prolong the time of survival, but
also to minimise the side e�ects of aggressive therapies in such a way that these otherwise
healthy and mostly young patients maintain a good quality of life for the longest possible time.
Treatment planning for individual LGG patients is troublesome also because of the diverse
prognoses for patients facing this disease. Some LGGs grow very slowly for years causing
easily-controlled seizures, while others progress rapidly causing major neurological de�cits and
subsequent death. Because of the unpredictable clinical course, there are various treatment
strategies for LGG. On one hand, for some patients a �wait and see� approach is preferred, i.e.
a patient is regularly monitored with imaging MRI while other treatment options are applied

*Primary tumour is a tumour located at the site of origin.
�Reprinted from The Lancet Neurology, 2(7), P. H. Wessels et al., Supratentorial grade II astrocytoma: biological

features and clinical course, 395�403, Copyright (2003), with permission from Elsevier.
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when there occur some changes suggesting tumour progression. On the other hand, some
patients undergo gross total resection* followed by immediate radiotherapy or chemotherapy.
Such management decisions for those tumours (whether and when a patient should receive
resection, radiation therapy or chemotherapy) are usually based on many factors including age,
performance status, the location of a tumour and patient preference [9].

The current standard of care is �rst to perform a maximal resection as it was demonstrated
that the extent of resection is a prognostic factor for LGG patients, see e.g. [10, 43, 44, 39, 45].
At the same time quality of life following surgery has to be taken into account. Thus, the
European Federation of Neurological Societies and European Association for Neuro-oncology
recommended that �surgical resection is the �rst treatment option, with the goal to maximally
resect the tumour mass whenever possible, whilst minimizing post-operative morbidity� [46].

Sadly, due to the in�ltrative nature of gliomas, surgery alone is able to eradicate only
the tumour bulk and consequently, other therapeutic treatments are necessary to control the
disease. There is a trend to use more active treatments and various alternative approaches
have been considered. Post-operative radiotherapy could be a therapeutic option for LGGs,
but it causes long-term neurocognitive toxicity and shows only a moderate impact on patients
overall survival [47, 48, 49]. In this context, there is an increasing interest in the use of
chemotherapeutic agents which could in�uence tumour evolution and at the same time allow
the delay of more aggressive treatments. Chemotherapy tends to be performed early, especially
in the case of clinical and/or radiological progression. Radiation therapy is usually deferred in
LGG patients and proposed usually only for inoperable tumours progressing after chemotherapy
and/or with signi�cant enhancement on post-contrast T1 MRI scans, see for instance [9].

Chemotherapy for LGGs

We now focus on only one type of treatment considered for LGGs � chemotherapy, as we directly
model its therapeutic e�ect in Chapters 2 and 4. Currently, there are two chemotherapeutic
drugs e�ective for the treatment of LGG patients: temozolomide (TMZ) and a combination of
procarbazine, lomustine and vincristine (PCV). About 25-50% of LGGs show chemotherapeutic
responses to treatment with either TMZ or PCV. PCV has been used from the 1970's and has
been suggested as a clinically relevant option especially for some subtypes of anaplastic gliomas
with the 1p/19q codeletion [50, 51]. Unfortunately, it causes signi�cant side e�ects [52, 53].
On the other hand, temozolomide has a better toxicity pro�le than PCV, being well tolerated
by most patients [54, 55, 56], see e.g. [2] for a detailed description. Moreover, in contrast to
PCV, TMZ is administered orally, which is another reason why this drug is a drug of choice
for most LGG patients.

TMZ is a cell-cycle non-speci�c prodrug�, absorbed with almost 100% bioavailability [57].
Details of the mechanism of TMZ action can be found in [58, 59]. A clinical trial by Stupp
et al. showed the e�cacy of TMZ for high-grade gliomas [60]. Other clinical studies have
demonstrated its e�ectivity against both previously irradiated and unirradiated LGGs [61, 62,
56]. In addition, there are reports of cases where neoadjuvant chemotherapy� given to surgically
unresectable tumours has allowed subsequent gross total resection [63, 64], which is of great
importance especially when a tumour is highly in�ltrative or located in eloquent areas. It

*A brain tumour resection is called a �gross total resection� when there is no obvious tumour tissue visible on a brain
scan performed soon after surgery.

�Prodrug � a medication or compound that, after administration, undergoes chemical conversion by metabolic
processes before becoming an active pharmacological agent.

�Neoadjuvant therapy is the administration of therapeutic agents before a main radical treatment intervention.
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has also been reported that TMZ treatment may lead to an important reduction in seizure
frequency in LGG patients [65]. Thus, a prolonged TMZ treatment until evidence of resistance
is a clinically interesting option for selected patients as an up-front or adjuvant treatment.
Clinical trials are on the way to study the e�ect of this treatment on overall survival.

The response of LGGs to chemotherapy has been the subject of many clinical and biological
studies. In some LGG patients, a response to TMZ therapy is observed three months after
the end of the treatment [66, 67]. Moreover, dynamic volumetric studies have shown that
a treatment-related volume decrease can be observed for many months after the chemotherapy
is discontinued [68, 69]. The time to maximum tumour response was reported to be larger than
two years in some cases [70]. Other researchers investigated relations between some molecular
characteristics of LGGs and response to TMZ [71, 62, 69, 72]. However, the crucial question
of the correct timing of chemotherapy remains unanswered, namely whether it should be given
as a �rst-line therapy or when progression has been observed. Another issue to be addressed
is the optimal fractionation of TMZ.

Chemotherapy schedulings. Chemotherapeutic drugs are usually given in sequences called
�cycles� in the oncological terminology [73]. Such a sequence consists of a treatment-period
followed by a rest period. The typical plan of TMZ treatment is to give doses of 150�200 mg
per m2 of patient body surface once per day for 5 days every 28 consecutive days, i.e. �ve days
of doses administration are followed by 23 days of break before the next cycle. The number of
such cycles in clinical practice is usually between 12 and 30 [69, 22, 70], however, it depends
on patient-related characteristics and sometimes the treatment can be stopped earlier due to
the haematological toxicity observed. Such a fractionation scheme was proven to be e�ective
in HGGs and has been subsequently transferred to the management of LGGs [60]. There
have been a few clinical studies on alternative treatment regimens for LGGs. Among others,
in [61] patients were treated in cycles with doses of 75 mg/m2 given daily for 7 weeks followed
by four-week breaks. Some trials on dose escalation [74, 75, 76] intended to overcome the
DNA-repair activity [38, 77]. However, these TMZ regimes were either not e�ective or had to
be rejected because of a high toxicity [78]. Many clinicians conclude that the chemotherapy
fractionation scheme providing the best tumour response and acceptable haematologic toxicity
is still to be determined.

Malignant transformation

The process known as malignant transformation, anaplastic transformation or malignant pro-
gression of LGGs is a transformation of a grade II tumour into a grade III or IV tumour. As
a consequence, it is the main process leading to LGG patients death.

The time of occurrence of malignant transformation di�ers among patients. The results
vary among clinical studies with a 5-year malignancy-free survival rate (that is the period of time
when malignant transformation does not occur) ranging from 30 to 70% [79, 80, 81, 82, 83].
There are reports claiming that all LGGs undergo malignant transformation during their clinical
course, e.g. [33, 84].

In order to con�rm malignant transformation, both data from imaging and pathology re-
port are usually required, cf. Section 1.5. Radiologically, malignant transformation is usually
de�ned based on the appearance of contrast enhancement on MRI scans and/or a histopatho-
logically proven malignant degeneration in tissue acquired during biopsy or resection [82]. It
was reported that LGGs displaying preoperative contrast enhancement had a signi�cant in-
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creased risk of recurrence [82], thus the complete resection of contrast enhancement areas
of a tumour signi�cantly increases the time to phenotypic change [85]. Medical doctors be-
lieve that early detection of malignant transformation could improve the prognosis. Some
indicators of malignant transformation have been suggested, cf. [85, 86, 87, 88], nonetheless,
their signi�cance is still under study. In Figure 1.5 we show the representative slices of MRI
scans of a glioma before and after its malignant transformation. Upper �gures were made
for LGG, lower �gures � for HGG. In the lower panel with images for HGGs, one can observe
a contrast enhancement ring corresponding to part of tumour with increased proliferation and
a dark region being necrotic core. These structures are not present in LGGs. In Figure 1.6 we
additionally show histopathology imaging of both LGG and HGG together with the simpli�ed
illustration of changes leading to malignant transformation.

Figure 1.5: MRI scan of glioma. The initial MRI: FLAIR (A) and T1+Gd (B); the �nal MRI after
malignant transformation: FLAIR (C) and T1+Gd (D). Reprinted from [85].*

1.6 Mathematical models of gliomas

Historical overview. First models for HGGs.

Macroscopic mathematical modelling of tumour growth began with the early simple hypothesis
that the tumour mass increases by a constant fraction in equal time intervals, see [89] for
a review. Such assumption was supported by major experimental and human studies, which
indicated that cancer cells divided at rates that, though varying widely among di�erent cancer
types, were relatively constant over long periods of time in individual cases, see e.g. pioneering

*Reprinted, courtesy of the Mossakowski Medical Research Centre Polish Academy of Sciences and the Polish Asso-
ciation of Neuropathologists under a CC BY-NC-SA 4.0 license (http://creativecommons.org/licenses/by-nc-sa/
4.0/).
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Figure 1.6: Schematic representation of the process of malignant transformation of LGGs. Left and
right images are histopathological sections of tumour tissue, see Section 1.5. Adapted from [37].

work by Collins et al. in [90] and review in [91]. Those observations led to the assumption of
the exponentially growing total number of tumour cells G according to the Malthus model [92]:
dG=dt = G. The parameter  governs the e�ective cell cycle time and its inverse gives an
estimate of the typical tumour cells doubling time. Indeed, if all cells were dividing, the cell cycle
time would equal ln(2)= (which is also the volumetric doubling time, that is the time when
the tumour double its total volume). However, the Malthusian model usually overestimates
the tumour growth in a long-term horizon as it represents a theoretical situation in which there
are no intrinsic limitations on the growth of tumour cells.

The introduction of logistic and Gompertzian growth [93, 94] into the cancer development
models [95, 96, 97] enabled to model the slower growth in the later stages due to the limitation
in nutrient supply in avascular tumours. In such models, the rate of growth slows down as the
cell density increases toward the tissue carrying capacity (understood usually as a maximum
number of cells that can �t in 1mm3 of tissue). On the other hand, such models describing
the evolution of the total number of tumour cells, or equivalently its total size, do not take
into account the spatial arrangement of the cells or their in�ltration in the surrounding tissue.
Thus, especially in modelling more malignant gliomas which do not stay as a compact mass,
terms describing their motility became relevant.

Most of the �rst mathematical models of gliomas accounting for tumour motility were
studied for high-grade gliomas due to their remarkably fast invasion. As far as we know, the
�rst general model describing cellular kinetics was formulated by Murray in the early 1990s,
see Chapter 11 in [98]. This model is based on a mass-balance law, stating that in any
given location, the number of tumour cells increases only by new cells produced by tumour
proliferation or new cells which move into the region. Murray and co-workers [98] proposed
the reaction-di�usion formalism as:

@G(t, x)

@t
= −div (J(t, x)) + S(G(t, x))− T (G(t, x)),

where G(t, x) denotes the glioma cell concentration in position x at time t, J(t, x) is the
di�usion �ux of the cell that follows Fick's law (that is J = −D∇G), S(G) denotes the source
factor, representing the cancerous cell reproduction and �nally T (G) is the treatment factor
accounting for the glioma cell loss due to treatment if present. The initial state of the model
G(0, x) is de�ned as the initial distribution of glioma cells.

In 1995 Tracqui et al. [99] formulated a reaction-di�usion model based on the understanding
of cancer as an uncontrolled proliferation of cells with the capacity to invade and metastasise.
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This model was simpli�ed by taking into account that in practice gliomas do not metastasise
outside the brain, as already stated in Section 1.4. Tracqui proposed that the cells proliferate
at exponential rate, which resulted in the following model:

@G

@t
= ∇ (D∇G) + G.

In many models describing gliomas evolution, a constant rate of di�usion was considered giving
rise to the following model referred to as Skellam equation [100]:

@G

@t
= D∆G + G. (1.1)

From the very beginning of di�usive models, �nding approximate values of parameters was
a crucial task. One of the �rst estimation of parameters  and D from biological data was
done by Silbergeld et al. in [101], where the glioma di�usion coe�cient D was estimated to
be between 10−3cm2/day and 10−2cm2/day and the glioma proliferation rate  was estimated
to be around 10−2 day.

The Murray's group made subsequent improvements in the original model. For instance,
in [102] the original model was modi�ed to mimic the e�ects of resection and the postoperative
glioma dynamics. It successfully represents two major clinical observations. First, it shows that
gliomas in�ltrate so much that it is not possible to cure them by resection alone, independently
of its extent. Second, the extent of surgery is positively correlated with the life expectancy,
see Section 1.5.

A signi�cant contribution to the development of mathematical models for gliomas was
made by Swanson (former PhD student of Murray) and co-workers. Let us comment on some
of her main results. In 2000 Swanson et al. [103] considered di�usion to be a function of
the spatial variable in order to account for brain anatomy and heterogeneity, which was also
addressed in [104, 105, 106]. However, to consider speci�c processes related to migration of
cancerous cells in real patients, one would need detailed imaging data, preferably acquired
using several di�erent imaging modalities.

In [107] Swanson et al. tackled the �rst time an issue of tumour growth beyond the limits
of current medical imaging with mathematical modelling approach. We follow those results in
Chapter 3, where we also introduce an analogue of detection threshold in our model of LGG
growth and transformation based on reaction-di�usion equations.

All those models of gliomas developed before 2008 were based on the assumption that
glioma cells can reproduce in an exponential manner. In our models for LGGs, we take into
account that LGGs may evolve slowly for many years (see Section 1.5) and thus, we describe
tumour proliferation using logistic law. However, we use exponential growth to derive analytical
approximations for short time-horizons. In Section 3.4 we use a modi�cation of model (1.1)
to determine analytical estimate of tumour growth before malignant transformation, while in
Sections 2.4.3 and 2.4.6 we use an ODE with exponential growth term to estimate time of
response to chemotherapy and change in tumour volume caused by chemotherapy.

Fisher-Kolmogorov equation

In 2008 Swanson and colleagues [28, 108] took into account the limits on the tumour growth
in the longer time-frame. It was assumed that tumour cell concentration changes over time
due to net proliferation and net di�usion of cancer cells. The net proliferation rate  is the
di�erence between proliferation and apoptosis of tumour cells. Cell migration was assumed
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to be a random walk, corresponding to Fickian di�usion characterised by a constant di�usion
coe�cient D, what leads to the so-called Fisher-Kolmogorov equation (FKE):

@G

@t
= D∆G + G(1− G). (1.2)

In Eq. (1.2) G(t, x) describes the tumour cell density as a function of time t and the spatial
position x . It is measured in units of the maximal cell density allowed in the tissue. The
model formulation is completed by zero �ux boundary conditions which impose no migration
of cells beyond the brain boundary [99] and initial conditions G(0, x) = G0(x) where G0(x) is
a nonnegative function de�ning the initial spatial distribution of cancerous cells.

This equation was �rst derived in 1937 to describe the spread of an advantageous gene in
a spatially extended population [109, 110]. This model is already well-described in the literature
and has been used in a variety of contexts: to study �ame propagation and nuclear reactors,
autocatalytic chemical reactions, problems in neurophysiology, ecology, and in general phase
transition problems [111]. FKE is a simple example of non-linear reaction-di�usion equation.
Owing to its nonlinearity, explicit solutions cannot be found in general. Even for the simplest
version of the FKEs only a limited number of solutions are known for speci�c parameter
values [112, 113]. However, the problem of existence, form and stability of travelling waves
have been well-studied. Kolmogorov, Petrovsky and Piscounov in [110] considered a one-
dimensional case and proved that if the initial function G0 is monotone and continuous with
G0(x) = 1 for x < a and G0(x) = 0 for x > b, where −∞ < a < b < ∞, then the solution
evolves into a travelling wave with minimum speed cmin = 2

√
D . The travelling wave solution

means that the solution switches from the equilibrium state G = 0 to the equilibrium state
G = 1. In fact, in [110] the authors considered the model after scaling, or, equivalently, the
case of  = D = 1. In general for any c > 0, there exists a unique right-going traveling
wave with speed c connecting the state G0(x) = 1,G ′0(x) = 0 for x → −∞ to the state
G0(x) = 0,G ′0(x) = 0 for x → ∞. For c > 2

√
D , the wave is a monotonically decreasing

function of x , while for c < 2
√
D it is oscillatory. McKean [114], using probabilistic methods,

showed that under appropriate assumptions these travelling waves are stable with respect to
small perturbations. In Chapter 4 we study the existence of travelling wave solutions in a system
of two coupled Fisher-Kolmogorov-type equations.

It was veri�ed that the use of FKE for modelling gliomas can have major practical impli-
cations. FKE is a very simple model but its usefulness comes from the fact that it enables
to obtain quantities of medical interest. As already stated, the typical tumour cells doubling
time can be estimated as the inverse of the proliferation rate . Parameters of FKE given by
Eq. (1.2) quantify the overall biological aggressiveness of gliomas and are known to be highly
correlated to patients' survival and response to therapies, see e.g. [115]. Interestingly, in [29]
authors measure model-de�ned parameters based on pretreatment MRIs of 32 HGG patients.
The results indicate that dynamic insight from routinely obtained pretreatment imaging may
be quantitatively useful in characterizing the survival of individual patients with glioblastoma,
the most malignant type of glioma.

Some authors even believe that the values of those kinetic parameters may be correlated
with genetic indicators of tumour response to treatments, cf. [17] for HGGs. Moreover, the
ratioD= has been suggested to have the potential to estimate the mass of glioma undetectable
on MRI scans [106]. A very interesting feature of FKE is also the well-known fact that there
arise a front propagating at the asymptotic (constant) speed of v∗ = 2

√
D . This property

of a model' solutions is in a very good agreement with the observed fact that the mean
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glioma diameter grows at an approximately constant speed (before the onset of malignant
transformation), see [116, 117, 69] and Figure 1.7. The median LGG growth speed was
estimated in various studies to be around 4 mm per year, cf. [118] and the table in [116].
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Figure 1.7: Evolution of mean tumour diameter for 19 LGG patients from the diagnostic MRI till the
last follow-up MRI (or the last MRI before malignant transformation). Figure adapted from [117].

Fisher�Kolmogorov equation became the classical model for modelling glioma growth. To
give an example, in [28] a model based on FKE was used to describe HGGs evolution after
surgical resection. In order to validate proposed concept, they used a data from a single pre-
treatment MRI scan and overall survival for 70 patients. Note that having data from only
one MRI scan, authors were not able to estimate two main parameters (D and ). Thus,
they veri�ed the outcomes for a large cohort of virtual patients. They concluded that the
concordance between survivals for real and virtual patients suggested that the mathematical
model was realistic enough to allow for a precise de�nition of the e�ectiveness of individualised
treatments.

In the last decade, the simple FKE model has been extended to describe many di�erent
phenomena, e.g. [119, 120, 121]. For instance, in [23] Swanson et al. introduce proliferation-
invasion-hypoxia-necrosis-angiogenesis model to include the e�ects of angiogenic factors and
lack of oxygen observed in HGGs. In a very recent report [122] authors allow additionally
the model parameters to depend on the oxygen concentration. Importantly, the model results
can be directly compared to in vivo data obtained using anatomic and molecular imaging
modalities.

However, most of the mathematical studies of glioma growth apply only to HGGs and
some speci�c processes characteristic for that kind of tumours. Let us recall that LGGs
have less phenotypic and genotypic variability than HGGs. They neither display phenomena
such as angiogenesis, hypoxia or necrosis, because their low cellular density does not lead to
oxygen de�cits. Consequently, there is no need to incorporate the evolution of vasculature
and concentration of nutrients into their dynamics. Thus, a simple Eq. (1.2) may be expected
to successfully describe the growth of this kind of tumours. Indeed, it has been extensively
used also to describe LGGs dynamics, see e.g. [106, 25, 123, 1, 124]. We describe two of
those studies in the following subsection and treat FKE as a base for modelling LGG growth
in Chapters 3 and 4.
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Models for LGGs

To our knowledge, the �rst study containing quantitative data of LGGs evolution in time,
opening the door to macroscopic mathematical modeling of this kind of tumours was done in
2003 by Mandonnet et al. in [117]. The authors performed careful measurements of tumour
sizes at subsequent MRI scans made for 27 untreated LGG patients. They investigated the
evolution of estimated tumours diameters in time to verify whether there was any pattern in
their growth. It turned out that the growth of tumours diameter could be accurately �tted
using linear mixed-e�ects regression*. It was concluded that untreated LGGs often appear
to be �stable� on crude visual analysis, however they grow continuously and at a relatively
predictable rate, see Figure 1.7. These results were con�rmed using the same conditions on
a larger group of 143 patients. The analysis of serial MRIs of those patients showed individual
velocities of diametric expansion ranging from 1 up to 36 mm/year with an average rate of
4.4 mm/year [115].

Based on the above results, in 2008 the members of the same research group built a model
based on Skellam equation (1.1) [106]. Such a simple model shows that the velocity of
diametric expansion is constant [125, 102], thus, it allowed characterising LGGs dynamics from
serial MRIs. The product of model parameters D is related to tumour kinetics and enables
the prediction of tumour growth in its premalignant phase. Mandonnet et al. claimed that the
ratio D= determined the tumour spatial extent, as discussed also in [126]. Thus, it could
be potentially used to determine the non-visible part of the tumour, however a validation
of this idea and speci�c methodology is still missing. Nonetheless, that work was of great
signi�cance as it showed that tumour dynamics can be predicted using information derived
from non-invasive imaging techniques coupled with mathematical model.

An interesting question that arises is how long LGGs take to reach a clinically detectable
size. The answer can be useful to develop screening strategies for early detection.

Interestingly, Gerin et al. in [25] used FKE to study the possible time of �tumour birth�.
They considered the possible time frame between tumour biological onset (time when �rst
tumour cells began to proliferate and migrate) and time of tumour radiological discovery
(corresponding to time when the tumour was diagnosed and was visible on imaging scans).
Their modelling approach assumed saturated tumour growth described by logistic growth and
initial tumour distribution described by Gaussian function. We use similar basic assumptions
on LGGs growth in our model presented in Chapter 3.

Gerin et al. used analytical solution of Skellam equation (that is neglected saturation term)
to provide estimates on the time of tumour genesis from MRI data of patients diagnosed with
low-grade gliomas. Based on the patients' age at time of �rst MRI examination, two types
of tumours were identi�ed: very slowly growing tumours that appear during adolescence and
slowly growing tumours that appear later, during early adulthood. Further, the model results
suggest that low-grade gliomas become visible on MRI without clinical revelation at a mean
patient age of 25�30 years. Although this model provided a description of genesis and growth
of low-grade gliomas, predictions on the appearance of malignancy that commonly occur in
gliomas were not possible. That is the problem we address in Chapter 3.

Another interesting model of LGGs growth was developed by Badoual et al. in [123].
That model consists of reaction-di�usion equation describing the tumour growth and an ODE
governing the evolution of tumour-associated oedema. In that paper the authors consider also

*A mixed-e�ects regression model consists of two parts: �xed-e�ects, that are usually the conventional linear
regression part, and the random e�ects associated with individual experimental units drawn at random from a population.
In [117] the random e�ects were included to account for a di�erent tumour size at the time of diagnosis.
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the e�ect of radiotherapy. They make a simplifying assumption that radiotherapy acts once
at a given time point (corresponding to the onset of actual treatment) instead of considering
it in the whole time-frame of treatment. With such a mathematical description it turned
out to be possible to obtain a satisfactory �t to patients data and explain quantitatively the
delay in tumour regrowth after radiotherapy. That model predicts strong correlation between
high proliferation indexes and low gain in survival attained with the use of radiotherapy. It
is a similar conclusion to our obtained earlier in [1], where we claimed that tumours with
lower proliferation indexes have longer time of response to radiotherapy than those with higher
proliferation rates.

Models of chemotherapy for LGGs

In general, for solid tumours, mathematical models have considered di�erent chemotherapy-
related factors such as drug di�usion, uptake/binding, clearance and their e�ect on cell cycle
progression (see e.g. [127, 128, 129, 130]). Many mechanistic mathematical models have been
developed to improve the design of chemotherapy regimes (see e.g. [131] for a summary).
However, only few models have considered chemotherapy of LGGs.

To our knowledge, one of the �rst models addressing the response of LGGs to chemothe-
rapy was proposed by Ribba et al. in [22]. In that model the tumour before the onset of
treatment is considered to be a mixture of two types of cells: proliferating cells P (growing
in a logistic manner with a constant rate) –P , and non-proliferating quiescent cells Q. Ribba
et al. assume that a chemotherapeutic drug has a homogeneous distribution in brain and that
its concentration C decays with a constant rate KDE. The authors assert that chemotherapy
treatment directly kills proliferating cells, but only damages quiescent cells which, in a conse-
quence, become damaged quiescent cells QP . Those damaged quiescent cells can either repair
their damage and become proliferative glioma cells P or die due to irreparable DNA damage.
The model in [22] was developed in the form of the following system of four ODEs:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

dC

dt
= −KDE · C,

dP

dt
= –P · P

 
1− P + Q+ QP

K

!
+ kQP P · QP − kPQ · P − ‚PKDE · CP ,

dQ

dt
= kPQ · P − kPQ · P − ‚QKDE · CQ,

dQP
dt

= ‚QKDE · CQ− kQP P · QP − ‹QP · QP .

(1.3)

Parameters ‚P , ‚Q denote rates of DNA damages in proliferative and quiescent tissue, respec-
tively. The parameter ‹QP describes death of damaged quiescent cells, whereas kQP P refers to
the rate of repairment of damaged quiescent cells and their phenotype switching to proliferative
state.

System (1.3) is quite complex and includes ten parameters. Some of them are very di�cult
(if possible) to measure or to estimate based on available data, cf. [15], which is a strong
limitation for possible application of this model. In contrast, our model, developed in [2]
and described in Chapter 2, is constructed with a minimal number of parameters allowing for
a potential future use in practice. Still, using a model simpler from mathematical perspective
and with a smaller number of parameters we were able to e�ectively �t the evolution of
real-patients' tumours and their response to chemotherapy.
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Another drawback of the model constructed by Ribba et al. is that it does not represent
realistically the administration of chemotherapy drug. Constant level of drug present in treated
tumour seem not to be the most appropriate mathematical description of chemotherapy ad-
ministered orally in cycles, see Section 1.5 for details.

Moreover, the model proposed in [22] was intended to re�ect LGGs response not only
to chemotherapy with TMZ, but also to chemotherapy with PCV and radiotherapy. This
seems to be a small oversimpli�cation as radiotherapy is well-known to act di�erently from
chemotherapy and, moreover, there are clinical recognised mathematical models capable of
describing tumours' response to radiotherapy su�ciently well, see e.g. [132, 1]. In [1] we
developed mathematical model of LGGs response to radiotherapy modifying the mathematical
framework already used for describing radiotherapy e�ect on other tumours.

The model of Ribba et al. was later extended by Mazzocco et al. in [133] where the
authors took into account the possibility of acquired resistance to drug. That model was also
used to �nd more e�cient schemes for LGG chemotherapy with PCV in [134], however the
authors raised their conclusions based solely on the results of simulations of that model.

Models of malignant transformation of LGGs

As far as we know, the only mathematical model accounting for the malignant transformation
of LGGs was formulated by Swanson et al. in [23]. In that work a system of di�erential
equations was proposed to describe the evolution of three types of glioma cells (normoxic
C, hypoxic h and necrotic n) with a vascular component v and an antiangiogenic factor a:8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

@C

dt
= ∇ (D(1− T )∇c) + c(1− T ) + ‚hV − ˛c(1− V ) + ¸nnc ,

@h

dt
= ∇ (D(1− T )∇h)− ‚hV + ˛c(1− V )− (¸hh(1− V ) + ¸nnh) ,

@n

dt
= ¸hh(1− V ) + ¸nn(c + h + v),

@v

dt
= ∇ (Dv (1− T )∇v) + —

a

Km + a
v(1− T )− ¸nnv ,

@a

dt
= ∇ (Da∇a) + ‹cc + ‹hh − q—

a

Km + a
v(1− T )− !av − –a,

V =
v

c + h + v
,

T =
c + h + v + n

k
.

(1.4)

Interestingly, the authors argued that the accumulation of genetic mutations is not neces-
sary for malignant progression and the growth kinetics parameters alone can drive the glioma
transformation. This conclusion seems to be related to the one stated by us in [3], where
we assumed that it may be a tumour growth beyond some critical level that triggers sig-
ni�cant changes in tumour tissue and malignant transformation visible as phenotypic switch
(that is transition to di�erent tumour subpopulation described by increased growth kinetics
parameters), see Chapter 3.

The main drawbacks of the model in [23] are its complexity and the fact that some of
the underlying biological assumptions are not completely realistic. For instance, according
to Swanson et al. model, normoxic cells convert directly not only to hypoxic, but also to
necrotic ones, which, according to our knowledge, is not in a full agreement with biological
observations.
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1.7 Methodology

In this dissertation, we formulate macroscopic mathematical models that mimic the growth
of LGGs, their response to chemotherapy and the process of malignant transformation into
their higher-grade counterparts. In order to do so, we assume that tumours belonging to that
class share similar patterns of growth and similar qualitative response to chemotherapy. We
base our models on existing mathematical models proposed for these brain tumours. In each
chapter, we also specify biological and medical facts which were used to develop each of our
models separately, apart of the ones described in Sections 1.4 and 1.5.

Mathematical models constructed in this thesis are single- or multi-phenotype using either
reaction-di�usion or ordinary di�erential equations (ODEs). Due to nonlinear terms and com-
plex dependencies, explicit solutions are impossible to �nd in a general case. Thus, we study
their mathematical properties, we use numerical methods to simulate models solutions, and
we observe dependencies on models' parameters. We validate models with patients data and
perform models simpli�cations to formulate clinically-interesting hypotheses.

Mathematical analysis of models

Mathematical analysis of the proposed models is a relevant task in this dissertation. We verify
various mathematical properties of the models, starting from the existence and uniqueness
of solutions. We investigate the models' dynamics in the asymptotic case. We study how
the long-time behaviours of the models' solutions depend on the parameters' values. We use
Hartman-Grobman theorem [135] and Lyapunov theorem [136] to verify the local asymptotic
stability of steady states. In Chapter 2 we use Dulac criterion [135] to exclude the existence
of periodic solutions in the case of constant chemotherapy function. Poincare-Bendixson
theorem [135] is used to prove the global stability of tumour-free steady state when additional
conditions are satis�ed (see Theorem 2.11). We also use Brouwer theorem [137] to justify
the existence of periodic solutions for some speci�c cases of periodic treatment function. We
also prove that di�usion-driven instability does not appear in the reaction-di�usion model
described in Chapter 3. In Chapter 4 we study the modi�cation of the ODE system described
in Chapter 2. We analyse fast and slow system and study the existence of a heteroclinic solution
in the case of two saddle steady states. Using Fredholm alternative theorem, we prove the
existence of so-called travelling wave solution.

As already stated, models formulated in the dissertation, though simple, in general do not
have known analytical solutions allowing for the direct calculation of the clinically relevant
quantities. Hence, using analytical methods, the original model equations are simpli�ed in
such a way that behaviour is similar quantitatively, but the computation of an explicit solution
is possible. Consequently, we derive estimations which could be potentially useful in assessing
tumours aggressiveness or selecting the best therapies.

Models validation

An extremely signi�cant part of this dissertation is the validation of proposed models. There
are few studies containing systematic and quantitative measurements of LGG growth rates
which provide key information for the development and validation of macroscopic mathematical
models, see [115]. Here we validate formulated models using patients data.
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Patients data. For the conduction of this research, we had an access to the glioma patients
database* of Bern University Hospital provided by medical doctors from the Department of
Neurosurgery, due to a courtesy of Prof. Dr. med. Philippe Schucht, Prof. Dr. med. Jürgen
Beck, Dr. med. Michael Murek. This database contained volumetric longitudinal data of
patients diagnosed with gliomas and followed at the Bern University Hospital between 1990
and 2013. Patients were followed using MRI T2 or FLAIR, see Section 1.5 for details.

Radiological glioma growth was quanti�ed there by manual measurements of tumour diam-
eters on successive MRI scans. The three largest tumour diameters (D1, D2, D3) according
to three reference orthogonal planes (axial, coronal and sagittal planes) were measured and
tumour volumes were estimated using the ellipsoidal approximation: V = (D1 ·D2 ·D3)=2, fol-
lowing the standard clinical practice at the time when this data has been collected [138, 106].

For some patients, additional data were available (Ki-67 LI, per cent of tumour cells show-
ing overexpression of p53-protein, IDH-1-Mutation, MGMT-Promoter Methylation Status), as
such measurements were found to be associated with either prognosis or response to some
treatments, cf. Section 1.5. Nevertheless, in order to be able to prepare speci�c models for
di�erent molecular subtypes, one should dispose of data of a large cohort of patients with dis-
tinct molecular characteristics. Clearly, in this dissertation we treat LGGs as one disease entity
as they all share similar pattern of growth and have similar qualitative response to therapies.

As mentioned before, there is a lack of large cohorts of LGG patients treated in the same
way. The total number of LGGs patients in the mentioned database is 82. Among those
cases 32 patients had con�rmed malignant transformation, see Section 1.5 for criteria, and
18 patients were treated with chemotherapeutic agent TMZ, modelled in Chapter 2. More-
over, for �tting mathematical models, some additional conditions need to be satis�ed, see
Sections 2.3.2 and 3.3.2.

We believe that mathematical models which may be useful in practice should be constructed
in such a way that all parameters have biological interpretations. Thus, values of some of them
can be taken from the literature, but some should certainly be patient-speci�c and need to be
estimated using proper experimental or clinical data. For that purpose, we exploit volumetric
patients data from the database described above. We use numerical methods to calculate and
minimise the error between the model simulations' outcome and the data.

Model �tting to patients data. To compare the results of model simulations with patients'
data, �rst we need to choose how to assess the model �t and calculate the di�erence between
the model output and measured tumour size. Let us recall the well-known method of least
squares, credited to Gauss and Legendre [139]. Formally, it is assumed that a given dataset
consists of n points (data pairs) (xi , yi) with i ∈ {1, : : : , n}, where xi is an independent
variable and yi is a dependent variable whose value is found by observation. While �tting our
patients' data, an independent variable is the time of MRI, while a dependent variable � tumour
size (mean diameter or volume) estimated from the respective MRI scan. The mathematical
model is assumed to have a general form f (x ,˛), where m adjustable parameters are held in
the vector ˛. In our case ˛ would contain some patient- or treatment-speci�c parameters. For
each data point, the corresponding residual ri is computed as:

ri = yi − f (xi ,˛).

*A clinical study no. 2039 was developed to provide data. The study was approved by Kantonale Ethikkommission
Bern (Bern, Switzerland), the approval number: 07.09.72. The patients' data was anonymised.
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The standard least-squares method �nds the most appropriate parameter values by minimising
the sum S of squared residuals:

S =
nX
i=1

ri
2.

However, that procedure results in outlying points being given disproportionately large weight-
ing. Thus, in many practical applications, the relative residuals are considered and the value
to be minimised is, therefore, the following:

S =
nX
i=1

 
yi − f (xi ,˛)

yi

!2

. (1.5)

The resulting method is called �relative least squares�. Throughout this thesis, while performing
model �tting to patients data, we use relative least squares method taking also into account
additional constraints. To be speci�c, we typically assume that the parameters values fall into
ranges determined from appropriate literature.

In order to �nd parameters values minimising the sum of squared residuals we use two
methods. In Chapter 2, where at most two parameters are �tted at once, we use built-in
Matlab function �lsqnonlin� [140]. In Chapter 3 where we need to �t four parameters at once
we use a particle swarm optimisation (PSO) algorithm. The latter algorithm was created
by Kennedy, Eberhart and Shi [141, 142] and implemented in Matlab with a constriction
factor introduced by Clerc and Kennedy [143]. In short, PSO is a computational method for
optimising a problem by iteratively improving a candidate solution with respect to a certain
measure of quality. PSO solves a problem by having a population of particles (solutions) that
moves around in the search space in�uenced by their own best past location and the best past
location of the whole swarm or a close neighbour. Taking a swarm of particles enables to avoid
being trapped in a local optimum. This technique has an immense scope of applications, see
e.g. [144] for a review, among others in parameter estimation, solving optimisation problems
and feature selection problems.

Numerical analysis of models

To solve systems of reaction-di�usion equations numerically we use the standard Matlab PDE
solver pedpe, see [145], while for simulating ODEs we use solver ode45 based on the Runge-
Kutta 4th-order method [146].

We analyse numerous simulations of our mathematical models for di�erent possible values
of parameters. The dependence between model output and parameters values is veri�ed on
the base of thorough analysis of model behaviour for a broad range of parameter values. We
also study which parameters have the largest e�ect on the dynamics of tumours growth and
virtual patients' prognosis.

In Chapter 3 we perform sensitivity analysis. This method allows testing robustness
of models solutions with respect to all uncertainties. In order to use this method, �rst we
assure the proper distribution of all parameters of the model and subsequently, we study their
impact on the time when malignant transformation begins and the predicted time left to death.
Sensitivity analysis is performed using the SaSAT package, implemented in Matlab by Hoare
et al. [147].

Numerical methods are used not only for the �tting our mathematical models to patients
data. We also present the results of models` simulations that do not correspond to any patient
case. In such situations, we follow e.g. [148, 126] and write �virtual patients� . We also refer
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to virtual tumours as tumours evolving according to the simulations of a mathematical model
for speci�c values of parameters, such as initial tumour size, proliferation rate, motility rate,
rate of response to therapy, similarly as done by many authors, see e.g. [107, 126, 98, 149].
Summing up, a virtual tumour is a solution of a mathematical model which does not describe
any speci�c patient from our database but describe a hypothetical patient, called a virtual
patient.

Based on cohorts of virtual patients we formulate hypotheses, concerning LGGs treatment,
that could be veri�ed in clinical studies in the future. Thus, we address questions such as:
�What are the quantitative indicators re�ecting tumour intrinsic behaviour that can be observed
and measured in clinical practise?� or: �Which quantities have prognostic values for response
to treatment?�. Based on obtained formulas, see Section 1.7, as well as numerical studies
of virtual patients cohorts we propose new ideas (e.g. alternative treatment schemes) to be
considered for LGGs.

1.8 Notation and acronyms

We introduce the following notation:
� R+ = (0, +∞),

� R+
0 = [0, +∞),

� (R+
0 )2 = [0, +∞)× [0, +∞),

� F (a−) = limx→a− F (x), F (a+) = limx→a+ F (x) for any function F : R→ R and a ∈ R,
� {a} � fractional part of a non-negative real number a.

Throughout the thesis we also use the following abbreviations:
� ODE � ordinary di�erential equation,
� PDE � partial di�erential equation,
� FKE � Fisher-Kolmogorov equation,

� LGG � low-grade glioma,
� HGG � high-grade glioma,
� WHO � World Health Organisation,
� MRI � magnetic resonance imaging,
� MTD � mean tumour diameter,
� FTB � fatal tumour burden,
� OS � overall survival,
� TMZ � a chemotherapy drug temozolomide,
� PCV � a chemotherapy drug combination including procarbazine, lomustine and vin-
cristine,

� CSF � cerebrospinal �uid,
� Ki-67 LI � Ki-67 labelling index,
� tRP � time to radiological progression,
� tOMT � time of the onset of malignant transformation.

They are described at the time of �rst occurrence.
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Chapter 2

Mathematical model of response to

chemotherapy

In this part of thesis we develop a simple mathematical model for LGG growth and response
to chemotherapy that �ts very well with longitudinal volumetric data of patients diagnosed
with LGGs. We also verify the mathematical properties of the model proposed. Interestingly,
the model suggests that the response of the tumour to chemotherapy may be related to its
aggressiveness. We also provide an approximate explicit formula for the time of maximal
tumour response to chemotherapy. This equation may be helpful to clinicians in selecting
patients who will bene�t most from early treatment and �nding the best personalised therapy.

2.1 Formulation of mathematical model

2.1.1 Dynamics of tumour cells

In order to keep our description as simple as possible we build a continuous macroscopic model
assuming that the tumour grows due to net cell division with coe�cient  such that its inverse
gives an estimate of the typical cell doubling time. In general the rate of growth is described by
f (P=K), where P is a mean tumour cell number, K is carrying capacity and f represents the
space available for tumour cells to proliferate. The simplest choice for the proliferative term
is to assume that the evolution of tumour mean cell number P (t) is governed by a logistic
growth [94]. In such a case function f takes the following form:

f

 
P

K

!
= 1− P

K
. (2.1)

We take into account a fact that the speci�c form of LGGs' growth function remains unknown.
Thus, for the purpose of mathematical analysis we consider a broader class of possible functions
f describing tumour growth and we impose the following assumptions:

(A1) f : R+
0 → R of class C1 on (0, +∞),

(A2) f (1) = 0, f strictly decreasing,
(A3) either

(a) f (0) = 1 or
(b) limv→0+ f (v) = +∞, limv→0+ vf (v) = 0 and f (0) = 0.
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Note that if tumour growth is modelled by logistic term (2.1), then assumptions (A1), (A2)
and (A3a) are ful�lled. On the other hand, if one consider Gompertzian law of growth [93] with
f (P=K) = − ln(P=K), then the assumptions (A1), (A2) and (A3b) are ful�lled.

We complement the equation for the mean number of functionally alive tumour cells P (t)

with an equation for the evolution of the mean number of cells irreversibly damaged by chemo-
therapy D(t). This type of model has been used successfully to describe the e�ect of radio-
therapy on LGGs [1, 150], see also Appendix A. We model the response to chemotherapy in
a similar way since a key feature of glioma response to both chemo- and radiotherapy is delayed
cell death. In many studies it has been observed that TMZ-induced damage leads to cell death
long after the end of therapy [68, 151, 69, 70]. It has been veri�ed in vitro that the glioma
cells death after administration of TMZ is induced most typically in one of the post-treatment
cell cycles [152] due to futile mismatch repair cycles (see e.g. [58] for a detailed description of
this mechanism). Thus, in line with this biological evidence we assume that irreversibly dam-
aged tumour cells try to enter mitosis with the same probability as those active, but die after
a mean value of k such attempts, which results in the growth rate f

“
P+D
K

”
for proliferative

cells and the death rate − 
k
f
“
P+D
K

”
for damaged cells. Of note, due to our assumptions on

function f , per capita growth of proliferating cells P in our model decreases with the increase
of the total tumour mass P + D. The mean number of cells damaged by the drug in a time
unit is considered to be proportional to the concentration of the drug in the tumour tissue
C multiplied by the average number of proliferating tumour cells with the rate ¸, measuring
the in�uence of TMZ on cells. The above assumptions lead to the following set of equations

Ṗ = P · f
 
P +D

K

!
− ¸PC,

Ḋ = −
k
D · f

 
P +D

K

!
+ ¸PC,

(2.2)

where t ∈ R+
0 . We assume that initially (at time t = 0, taken to be the start of the

tumour observation) the tumour has a certain mass P0 and before t = 0 no treatment was
administered, thus, there are no damaged cells. Those assumptions imply the following initial
conditions of system (2.2):

P (0) = P0, D(0) = 0. (2.3)

2.1.2 Kinetics of chemotherapy drug

The systemic pharmacokinetic and pharmacodynamic properties of TMZ has been studied in
detail in several studies [153, 154]. Baker et al. [153] described the concentrations of TMZ,
MTIC and AIC in plasma in detail. Ostermann et al. [154] collected data on TMZ concentra-
tion from blood and cerebrospinal �uid (CSF) obtained via lumbar puncture in patients with
malignant gliomas.

However due to the physiological separation of brain and tumour from both blood and CSF
(through blood-brain, blood-tumour, blood-CSF and CSF-tumour barriers) the amount of drug
reaching the tumour di�ers from the amount of drug circulating in blood and CSF [155, 156].
Therefore, instead of describing a complicated mechanism with many unknown parameters
based on data collected from blood or CSF, we choose a simpler dynamics based directly on
the brain tissue data. Thus, we base our model on data from the study by Portnow et al. [157]
who examined TMZ concentration in intracerebral microdialysis samples from peritumoural
brain interstitium obtained from patients with central nervous system tumours.
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With regard to chemotherapy pharmacokinetics, we assume, as usual [158, 22], that the
concentration C of TMZ measured in units of days, decays exponentially due to the drug
clearance with a constant rate –. It is consistent with the fact that TMZ has linear pharma-
cokinetics [57].

TMZ reaches a maximal drug concentration in the brain about two hours after administra-
tion [78, 157, 153], what is very short in comparison to the time scale of tumour evolution in
the model (of the order of years). Thus, we may treat the whole time of oral drug administra-
tion, absorption and transport to the brain as a discontinuous change in the drug concentration
that occurs at given administration times. Such a formulation of the problem enables also the
following mathematical analysis and estimations.

Here we assume that in general chemotherapy consists of a sequence of doses d1, d2, : : : , dn
given at times 0 ≤ t1 < t2 < : : : < tn, which we model as impulses due to assumptions given
above. As a consequence, we obtain an impulsive ODE for C:

Ċ(t) = −–C,

C(0) = C0,

C(tj) = C(t−j ) + Cj ,

(2.4)

where t ∈ R+
0 and Cj is the fraction of the dose dj which reaches the tumour tissue, accounting

for drug loss during transport to the brain. Note that such a model allows to represent the
situation in which after the start of observation at time 0 chemotherapy is deferred (then
t1 > 0 and C0 = 0) or it begins at time 0 (then t1 = 0 and C0 = C1).

Typically TMZ treatment for LGGs' patients is planned in such a way that doses of 150�
200 mg per m2 of patient body surface are given once per day for 5 days every 28 consecutive
days, a sequence that it is called �cycle� in the oncological terminology, see Section 1.5. Let us
consider a general chemotherapy fractionation scheme such that p equal doses are given every
r days in cycles of length T . We intend to compute the value of chemotherapy concentration
for every time t ∈ R+

0 .
In order to do so, �rst we solve system (2.4) assuming that Cj = C0 and tj = jT with

j ∈ {1, 2, : : :}. Such a system describes a chemotherapy concentration when constant drug
doses C0 are given in equal time intervals T . Moreover, we assume that the concentration
of chemotherapy between subsequent cycles of length T is described by an auxiliary function
h to be de�ned in what follows. Function C solving system (2.4) just before the cycle number
m attains the value:

C(jT−) = C0h(T )
“

1 + e−T– + : : :+ e−(j−1)T–
”

= C0h(T )
1− e−jT–

1− e−T–
.

Using a recursive procedure we get

C(t) = C0h(t − jT ) + C(jT−)e−(t−jT )– = C0

 
h(t − jT ) + h(T )

1− e−jT–

1− e−T–
e−(t−jT )–

!

= C0

 
h(t − jT ) + h(T )

e−(t−jT )–

1− e−T–

!
− C0h(T )

e−t–

1− e−T–
,

for t ∈ [jT , (j + 1)T ). From the de�nition of fractional part of a non-negative real number,
we have

t − jT =
„
t

T
−
—
t

T

�«
T =

(
t

T

)
T .
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If the number of chemotherapy cycles is in�nite we can represent C in the following way:

C(t) = C0

 
h ({t=T}T ) + h(T )

e−{t=T}T–

1− e−T–

!
− C0h(T )

e−t–

1− e−T–
. (2.5)

Now let us derive the explicit formula of the function h describing the concentration of
drug in the �rst cycle assuming that unit doses are given. Thus, h is a solution of system:

ḣ(t) = −–h,

h(0) = 1,

h(ti) = 1 + h(t−i ),

(2.6)

where t ∈ [0,T ], ti = i r with i ∈ {0, : : : , (p − 1)r}. At times of discontinuity we have:

h(i r−) = e−r–
“

1 + e−r– + : : :+ e−(i−1)r–
”

= e−r–
1− e−i r–

1− e−r–
.

Solving system (2.6) we obtain

h(t) =

8<:e
−t– e(bt=rc+1)r–−1

er–−1
, for t ∈ [0, (p − 1)r),

e−t– epr–−1
er–−1

, for t ∈ [(p − 1)r ,T ],
(2.7)

what gives us the explicit form of function (2.5). Note that, due to the fact that h given by
Eq. (2.7) is bounded, function given by Eq. (2.5) tends to a periodic function:

C0

 
h ({t=T}T ) + h(T )

e−{t=T}T–

1− e−T–

!

for t → +∞ . Following [159] let us recall the subsequent de�nition.

De�nition 2.1. We say that a function C : R+
0 → R is an asymptotically periodic function

with a period T if there exist functions Cper,Crest : R+
0 → R such that Cper is periodic with

a period T , Crest
t→+∞−−−−→ 0 and

C(t) = Cper(t) + Crest(t).

0 45 90
t

0

0.5

1

asymptotically periodic function
periodic function

Figure 2.1: Examples of periodic and asymptotically periodic functions given by Eqs. (2.5) and (2.8),
respectively with function h given by Eqs. (2.7).

Thus, function given by Eq. (2.5) with h as in Eq. (2.7) is an asymptotically periodic
function with period T with

Crest(t) = −C0h(T )
e−t–

1− e−T–
= −C0e−T–+(p−1)r–−t– 1− e−pr–

(1− e−r–) (1− e−T–)
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and

Cper(t) =

8<:C0h(t) + C0h(T ) e−t–

1−e−T–
, t ∈ [0,T ),

Cper ({t=T}T ) , t ≥ T .
(2.8)

We also compute the mean value of Cper to be used later in proving the convergence of model
solutions. We have

C̄ =
1

T

Z T

0
Cper(t)dt =

C0

T

0@p−2X
j=0

Z (j+1)r

jr
e−t–

e(j+1)r– − 1

er– − 1
dt +

Z T

(p−1)r
e−t–

epr– − 1

er– − 1
dt

1A
+
C0

T

Z T

0
h(T )

e−t–

1− e−T–
dt =

C0p

–T
.

(2.9)

Figure 2.1 presents an example of asymptotically periodic function given by Eq. (2.5) and
periodic function given by Eq. (2.8) with h as in Eqs. (2.7). Note that asymptotically periodic
functions can represent many di�erent chemotherapy schedules, among others the typical one
described and considered in Section 2.1.2.

To sum up, we present two alternative mathematical models for the description of chemo-
therapy: (i) a system of impulsive ordinary di�erential equations (2.4) for �nite number of
chemotherapy doses t1, : : : , tn and (ii) asymptotically periodic function (2.5) describing the
drug concentration when in�nite number of chemotherapy cycles are given.

It is important to emphasise that system (2.2) intends to describe the e�ect of �rst-line
chemotherapy, since after the treatment resistant phenotypes arise leading to the acquisition
of drug resistance. Thus, a detailed analysis of second-line chemotherapy would require the
introduction of more phenotypes in the model and is beyond the scope of this research.

2.2 Mathematical analysis of the chemotherapy model

For the purpose of mathematical analysis, without loss of generality we assume that the drug
administration starts at time t1 = 0. We discuss the behaviour of system (2.2) for the following
cases of chemotherapy administration:
(a) constant in�nite chemotherapy,
(b) chemotherapy administered periodically:

� with �nite number of cycles,
� with in�nite number of cycles.

Let us rescale the variables of system (2.2) by taking

x =
P

K
, y =

D

K
, z =

¸


C, s = t (2.10)

to get the system:
ẋ(s) = xf (x + y)− xz ,

ẏ(s) = − 1

k
yf (x + y) + xz ,

(2.11)

with initial conditions:
x(0) = x0, y(0) = 0. (2.12)

The system governing evolution of rescaled concentration of chemotherapy (2.4) is now of the
form:

ż(s) = −—z ,

z(0) = z0,

z(sj) = z(s−j ) + z0,

(2.13)
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where

z0 =
¸


C0, — =

–


. (2.14)

In this section we study system (2.11) with the general form of the function f satisfying the
assumptions (A1)�(A3). We study the dynamics of resulting general model, showing that this
dynamics is in some sense similar independently of the choice of the speci�c growth function.
Moreover, we take into account the possibility that one of the tumour cells populations makes
better use of the resources. Thus, we consider the more general term describing the prolife-
ration of glioma cells, that is instead of term xf (x + y) we consider xf (x + ‚y) with ‚ > 0

describing competition between cells x and y . Values of ‚ ∈ (0, 1) are used to represent the
case when LGG proliferative cells are less competetive than the damaged cells, while ‚ > 1

describes the opposite case. Thus, we study the following generalisation of system (2.11):

ẋ(s) = xf (x + ‚y)− z(s)x ,

ẏ(s) = −1

k
yf (x + ‚y) + z(s)x ,

(2.15)

with initial conditions:
x(0) = x0, y(0) = 0,

where f satis�es assumptions (A1)-(A3).

Proposition 2.1. Let f satisfy (A1)-(A2) and z : R+
0 → R+

0 be continuous, bounded and

non-negative function. Then, for any non-negative initial condition
“
x(0), y(0)

”
solutions to

system (2.15) exist for all t ≥ 0. Moreover, if f additionally satis�es (A3a) or x(0) > 0 or

y(0) > 0, then the solution is unique.

Proof. The local existence of solutions of system (2.15) for every initial data from (R+
0 )2

follows from the continuity of the function of the right-hand side of the system in (R+
0 )2.

Moreover, the right-hand side of system (2.15) is a C1 function in (R+
0 )2 or in (R+

0 )2 \{(0, 0)}
or, if assumption (A3a) holds, even in a whole (R+

0 )2. This fact implies uniqueness of solutions
in the respective set.

Note that in the case of function satisfying condition (A3b) we may loose uniqueness of
solutions if x(0) = 0 and y(0) = 0 (e.g. if we take f (v) = 1=

√
v and z = 0).

It is straightforward to �nd out that

Lemma 2.2. Function z : R+
0 → R+

0 solving system (2.13) is continuous on R+
0 .

The asymptotic behaviour of system (2.15) under the e�ect of a �nite number of chemo-
therapy doses is easy to obtain.

Theorem 2.3. If z is continuous on R+
0 and z(s) → 0 for s → +∞, then the solutions of

system (2.15) tend to point (1, 0).

Proof. As function x is bounded and z(s)→ 0 for s → +∞, then x(s)z(s)→ 0 for s → +∞.

As a consequence ẏ(s) < 0 for su�ciently large time. Thus, it is easily seen that y(s) → 0

and x(s)→ 1 as s → +∞.

As a consequence we arrive at

Proposition 2.4. The solutions of system (2.11),(2.13) after the end of a treatment tend to

(1, 0).
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Proof. When no drug is given for time s ≥ sn (with n being the index of the last dose), then

z(s) = z(sn) exp(−—(s − sn))→ 0 as s → +∞.

Using Theorem 2.3 we obtain the assertion of the theorem.

This behaviour is not surprising and can be interpreted as patient death due to drug
clearance and tumour regrowth.

Theorem 2.5. For ‚ > 1 set Ω = (R+)2 is a positively invariant set for system (2.15) with
f ful�lling conditions (A1)-(A3) and non-negative initial conditions.

Proof. Notice that the right-hand side of system (2.15) is a continuous function of x and y for
both assumptions (A3a) and (A3b).
Let then (x0, y0) ∈ Ω be the initial point for t0 = 0. We know that the unique solution
exists on some time interval [0, t∗). If Ω is not an invariant set, then there exists such initial
condition and time t1 > 0 for which the solution reaches the boundary of Ω. Therefore,
either limt→t1 x(t) = 0 or limt→t1 y(t) = 0. However, the function of the right-hand side of
system (2.15) show that if x(t1) = 0, then ẋ(t1) = 0 and if y(t1) = 0, then ẏ(t1) ≥ 0. When
assumption (A3a) holds, this would compromise the uniqueness of solutions. When assumption
(A3b) holds, from the fact that points (0, y) with y ≤ 0 are repelling we deduce that none of
the solutions starting from the inside of Ω1 reaches the boundary of this set. Therefore, the
solution of system (2.15) cannot leave the set Ω.

If ‚ ≤ 1, then there exists a bounded invariant set of system (2.15).

Theorem 2.6. For ‚ ≤ 1 set Ω1 = {(x , y) ∈ R2 : x > 0, y > 0, x + ‚y < 1} is a positively

invariant set for system (2.15) with f ful�lling conditions (A1)-(A3) and non-negative initial

conditions.

Proof. One shows the non-negativity of x and y in a similar way as in the proof of Theorem
2.5. Thus, here we need only to show that solutions do not cross the line x + ‚y = 1 for
‚ < 1. For

u = x + ‚y , (2.16)

we have

u̇(s) =
f (u)

k
((k + 1)x − u) + (‚ − 1)zx . (2.17)

Clearly, Eq. (2.17) is a non-autonomous di�erential equation with x being a non-negative
function of time, and it has unique solutions. Moreover, u ≡ f −1(0) is a solution of Eq. (2.17)

for ‚ = 1. For ‚ < 1 we have u̇
˛̨̨̨
u=1

= (‚ − 1)zx < 0 and the solutions tend towards

the interior of Ω1. As a consequence, for all (x0, y0) ∈ Ω1, solutions of system (2.15) stay in
Ω1 when ‚ ≤ 1.

Proposition 2.7. Consider the solutions of system (2.15) such that initial data (x0, y0) ful�ls

x0 + ‚y0 = 1. For ‚ < 1 they tend toward the interior of set Ω1, for ‚ = 1 they stay on the

line x + ‚y = 1, for ‚ > 1 they repel from set Ω1.

Proof. The assertion of the theorem follows immediately from the proof of Theorem 2.6.
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2.2.1 Existence and stability of the steady states for constant chemotherapy
function

Now, before we study the dynamics of system (2.15) in the case when the function z is
asymptotically periodic, we consider the case when the function z is constant. With some
abuse of the notation we write z(s) ≡ z . Although this case seems to be an oversimpli�cation
of the real process, it is a preliminary step needed for the latter analysis. In order to �nd steady
states (x̄ , ȳ) of system (2.15) with z(s) ≡ z , we solve a system of equations:

x̄ f (x̄ + ‚ȳ)− zx̄ = 0,

−1

k
ȳ f (x̄ + ‚ȳ) + zx̄ = 0.

(2.18a)

(2.18b)

From Eq. (2.18a) we get that either x̄ = 0 or f (x̄ + ‚ȳ) = z . Clearly, assumption (A2) allows
to invert function f . Thus, for x̄ = 0 ȳ equals 0 or f −1(0)=‚ = 1=‚. For f (x̄ + ‚ȳ) = z

Eq. (2.18b) implies that ȳ = kx̄ . As a result, system (2.15) with z(s) ≡ z has at most three
steady states:

P1 = (0, 0), P2 = (0, 1=‚) , P3 = (ex , k ex),

with ex = f −1(z)=(1 + k‚). Clearly, steady state P3 exists if and only if f −1(z) > 0, that
is z < f (0+) (see assumptions (A2) and (A3)). It should be stressed that assumption (A3b)
implies the existence of steady state P3 for all z > 0. Otherwise, that is when (A3a) holds,
steady state P3 exists only if z < 1. Let us denote

‹ = f −1(z)|f ′(f −1(z))|. (2.19)

Clearly the existence of P3 implies positivity of ‹.

Theorem 2.8. Consider system (2.15) with f ful�lling conditions (A1)-(A3) and z(s) ≡ z .

Then the steady state

(i) P1 is locally stable for z ≥ f (0+) and unstable for 0 < z < f (0+),

(ii) P2 is locally unstable,

(iii) P3 (if it exists) is locally

� stable for z ≥ ‹ or ‚ < 1 + k+1
k

z
‹−z ,

� unstable for z < ‹ and ‚ > 1 + k+1
k

z
‹−z ,

where ‹ is given by Eq. (2.19).

Proof. The Jacobi matrix of right-hand side function of system (2.15) with z(s) ≡ z calculated
at arbitrary steady state P = (x̄ , ȳ) reads

J(P ) =

"
f (x̄ + ‚ȳ) + x̄ f ′(x̄ + ‚ȳ)− z ‚x̄f ′(x̄ + ‚ȳ)

− 1
k
ȳ f ′(x̄ + ‚ȳ) + z − 1

k
(f (x̄ + ‚ȳ) + ‚ȳ f ′(x̄ + ‚ȳ))

#
.

Assume �rst, that assumption (A3b) holds. Then for x + ‚y < f −1(z) we have ẋ > 0. Thus,
the solution to (2.15) leaves the set

n
(x , y) : x + ‚y < f −1(z)

o
which implies that P1 and P2

are unstable.
On the other hand, if assumption (A3a) holds, the Jacobi matrix at P1 equals

J(P1) =

"
f (0)− z 0

z − 1
k
f (0)

#
=

"
1− z 0

z − 1
k

#
.

Clearly in that case for z > 1 both eigenvalues of J(P1) are real and negative, thus, P1 is
a stable node. On the contrary, for z < 1 one of the eigenvalues becomes positive, thus, P1 is
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a saddle. Now, we prove that P1 is locally stable if z = 1. Because z = 1, f is decreasing and
f (0) = 1 (see (A2)-(A3a)), thus, ẋ(s) ≤ 0. The function x is non-increasing and bounded
from below, thus, it has a limit x̂ as s → +∞. We have x̂ = 0 or x̂ + ‚y = 1. However, the
latter case is impossible if x(0) is su�ciently close to 0. In fact, if x(0) = x0 is close to zero,
then derivative ẏ ≤ x0 − yf (x0 + ‚y) is negative for su�ciently large y . Thus, P1 is locally
stable for z = 1. In Figure 2.2 we present examples of phase portraits for that case.
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Figure 2.2: Phase portrait of system (2.15) with z(s) ≡ 1 and f (x + ‚y) = 1− x − ‚y in case when:
(left) ‚ < 1, (centre) ‚ = 1, (right) ‚ > 1. Dashed curves represent null-clines.

If assumption (A3a) holds, assumption (A2) implies that for steady state P2 we have:

J(P2) =

"
f (1)− z 0

− 1
k‚
f ′(f −1(0)) + z − 1

k
(f (1) + f ′(f −1(0)))

#
=

24 −z 0

− f ′(1)
k‚

+ z − 1
k
f ′(1)

35 .

The eigenvalues of J(P2) are −z and − 1
k
f ′(1). As f is strictly decreasing (see assumption

(A2)), P2 is a saddle independently of the model parameters.
As far as P3 is considered assumptions (A2) and (A3) imply:

J(P3) =

" exf ′(f −1(z)) ‚ exf ′(f −1(z))

z − exf ′(f −1(z)) − z
k
− ‚ exf ′(f −1(z))

#
=

24 − ‹
1+k‚

−‚ ‹
1+k‚

z + ‹
1+k‚

− z
k

+ ‚ ‹
1+k‚

35 .

Stability of steady state P3 depends on the value of trace and determinant of Jacobi matrix:

tr(J(P3)) = −
 
z

k
+ (1− ‚)

‹

1 + k‚

!
,

det(J(P3)) =
z

k

‹

1 + k‚
+ ‚z

‹

1 + k‚
=

z‹

1 + k‚

„
‚ +

1

k

«
=
z‹

k
.

Consequently, the characteristic polynomial of the matrix J(P3) equals

–2 +

 
z

k
+ (1− ‚)

‹

1 + k‚

!
–+

z‹

k
. (2.20)

The steady state P3 is asymptotically stable if conditions

z

k
> (‚ − 1)

‹

1 + k‚
,

z‹

k
> 0,

(2.21a)

(2.21b)

hold. Clearly condition (2.21b) is always ful�lledand condition (2.21a) is equivalent to condition
‚k(‹− z) < k‹+ z . Hence, for z ≥ ‹ steady state P3 is asymptotically stable, as in that case
we have k‹ + z > 0. On the other hand, if z < ‹ steady state P3 is asymptotically stable
provided that ‚ < 1 + k+1

k
z
‹−z . This completes the proof.
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We now determine conditions under which the type of steady state P3 changes. Steady state
P3 can be either a node or a focus depending on the relation between the model parameters.
Let us denote

k1 =
(z − ‹)2

4z‹
,

‚1 =
−z2 + 3kz‹ + z‹ + k‹2 − 2‹(1 + k)

√
kz‹

k ((z − ‹)2 − 4kz‹)
,

‚2 =
−z2 + 3kz‹ + z‹ + k‹2 + 2‹(1 + k)

√
kz‹

k ((z − ‹)2 − 4kz‹)
.

(2.22)

(2.23)

(2.24)

Theorem 2.9. Let f satisfy assumptions (A1)-(A3), z(s) ≡ z , and the steady state P3 of

system (2.15) exists. Then the steady state P3 is a node in the following cases:

(i) z > ‹ and

� k < k1 or 0 < ‚ < ‚1,

(ii) z < ‹,

� 0 < ‚ < ‚1 or (‚ > ‚2 and 0 < k < k1).

P3 is a focus if:

(i) z > ‹, k > k1 and ‚ > ‚1 or

(ii) z < ‹,

� k > k1 and ‚ > ‚1 or

� 0 < k < k1 and ‚1 < ‚ < ‚2,

where k1, ‚1, ‚2 are given by Eqs. (2.22)�(2.24).

Proof. We study the determinant ∆ of quadratic equation (2.20). We have:

∆ =

 
z

k
+

1− ‚
1 + k‚

‹

!2

− 4
z‹

k
=
„
z

k

«2

+

 
‚ − 1

1 + k‚
‹

!2

+ 2
1− ‚

k(1 + k‚)
z‹ − 4

z‹

k
.

To determine the sign of ∆ we determine the sign of ∆̃ = k2(1 + k‚)2∆, which equals:

∆̃ = ((1 + k‚)z)2 + ((‚ − 1)k‹)2 + 2(1− ‚)(1 + k‚)kz‹ − 4(1 + k‚)2kz‹ =

= (1 + k2‚2 + 2k‚)z2 + (1 + ‚2 − 2‚)k2‹2 − 2
“

1 + ‚ + 3k‚ + k‚2 + 2k2‚2
”
kz‹

= (z2 + ‹2 − 2z‹ − 4kz‹)k2‚2 + 2(z2 − 3kz‹ − z‹ − k‹2)k‚ +
“
z2 + k2‹2 − 2kz‹

”
=
“

(z − ‹)2 − 4kz‹
”
k2‚2 + 2

“
z2 − 3kz‹ − z‹ − k‹2

”
k‚ + (z − k‹)2 .

We obtain quadratic function of ‚ with a discriminant equal to:

∆‚ = 4k2
»

(z(z − ‹)− k‹(3z + ‹))2 −
“

(z − ‹)2 − 4kz‹
”

(z − k‹)2
–

= 4k2
»
(z − ‹)2

“
z2 − (z − k‹)2

”
− 2kz‹(z − ‹)(3z + ‹) + k2‹2(3z + ‹)2 + 4kz‹ (z − k‹)2

–
= 4k3‹

»
(z − ‹)2(2z − k‹) + 2z

“
2 (z − k‹)2 − (z − ‹)(3z + ‹)

”
+ k‹(3z + ‹)2

–
.

Combining terms with 2z and k‹ we arrive at

∆‚ = 4k3‹
»
2z
“

2‹2 − 4kz‹ + 2k2‹2
”

+ k‹
“

8z2 + 8z‹
” –

= 16k3z‹3(2k + 1 + k2)

= 16k3z‹3(1 + k)2.

Note that ∆‚ is always positive as all parameters are positive, thus, ∆‚(‚) has two real square
roots given by Eqs. (2.23) and (2.24).
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We introduce notation:

a =
“

(z − ‹)2 − 4kz‹
”
k2, b = 2

“
z2 − 3kz‹ − z‹ − k‹2

”
k , c = (z − k‹)2 > 0.

Clearly, if a > 0 then ‚1 < ‚2, otherwise ‚2 ≤ ‚1. We use Vieta's formulas to verify the sign
of ‚1 and ‚2. We see that

a > 0 ⇐⇒ k < k1,

b > 0 ⇐⇒ k <
z(z − ‹)

‹(3z + ‹)
:= k2.

Note that k1 is positive for all positive values of z and ‹, while k2 is negative for z < ‹. Thus,
we consider two cases: z ≥ ‹ and z < ‹.

First for z ≥ ‹ we have k1 ≤ k2. Indeed, using de�nition of k1 and k2 we have

k1 ≤ k2 ⇐⇒ (z − ‹)2(3z + ‹) ≤ 4z2(z − ‹) ⇐⇒ 0 ≤ z2 + 2z‹ + ‹2 = (z + ‹)2.

For 0 < k < k1 both expressions a and b are positive, thus, both square roots of ∆‚ are
negative. As a consequence, for all positive values of ‚ and 0 < k < k1 determinant ∆̃(‚) is
positive and steady state P3 is a node. For k > k1 coe�cient a is negative and ‚2 < 0 < ‚1.
Thus, for ‚ > ‚1 determinant ∆̃(‚) is negative and steady state P3 is a focus, while if
0 < ‚ < ‚1 steady state P3 is a node.

Second for z < ‹ we consider two cases: k > k1 or 0 < k < k1 (as k2 < 0 < k1 and
we assumed that k is positive). If k > k1 and z < ‹ we arrive at the same conclusion as for
k > k1 and z ≤ ‹. If 0 < k < k1 we have that a > 0, b < 0 and consequently both square
roots of ∆‚ are positive. Determinant ∆̃(‚) is negative when ‚ ∈ (‚1, ‚2), thus, P3 is a focus.
When 0 < ‚ < ‚1 or ‚ > ‚2, steady state P3 is a node.

Figure 2.3: Sketch presenting the character of steady state P3 depending on considered cases: (left)
z ≥ ‹; (right) z < ‹. Blue and white areas represent sets of parameters for which P3 is a node or
focus, respectively. Dots denote region where P3 is stable, no pattern � region where P3 is unstable.

In Figure 2.3 we graphically illustrated the assertion of Theorem 2.9 presenting the character
and stability of steady state P3 depending on parameters k and ‚. Note that for k = z=‹ we
have ‚1 = 0, while for k = z=(4‹) equality ‚1 = 1 holds. In addition, condition ‚ ≤ 1 yields
stability of steady state P3 (if it exists).

Additionally, in Figure 2.4 we present exemplary phase portraits with null-clines represented
by dashed curves for ‚ = 1 and f (x + y) = 1 − x − y , which results in a logistic model. In
that case steady state P1 is either stable node if z > 1 or saddle if z < 1. P2 is a saddle
independently of model parameters. P3 is locally stable as both conditions (2.21a) and (2.21b)
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hold (as ‚ = 1). To be speci�c, P3 is a stable node when k < z
4(1−z)

and a stable focus when
k > z

4(1−z)
. In Figures 2.5 and 2.6 we present exemplary phase portraits with null-clines for

f (x + ‚y) = 1 − x − ‚y in a case when z < 1 and z > 1, respectively. The phase portraits
drawn numerically agrees with the analytical results presented in Theorems 2.8 and 2.9.
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Figure 2.4: Phase portrait of system (2.15) with z(s) ≡ z , f (x + ‚y) = 1 − x − ‚y and ‚ = 1 in
case when: (left) the positive steady state P3 does not exist, z = 1.3, k = 0.5, (centre) P3 is a stable
node, z = 0.4, k = 0.15, (right) P3 is a stable focus, z = 0.3, k = 0.9. Dashed curves represent
null-clines.
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Figure 2.5: Phase portrait of system (2.15) with z(s) ≡ z < 1, f (x + ‚y) = 1 − x − ‚y and either
‚ < 1 (left) or ‚ > 1 (right). Dashed curves represent null-clines.
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Figure 2.6: Phase portrait of system (2.15) with z(s) ≡ z > 1, f (x + ‚y) = 1 − x − ‚y and either
‚ < 1 (left) or ‚ > 1 (right). Dashed curves represent null-clines.

Lemma 2.10. Let f satisfy assumptions (A1)-(A3), z(s) ≡ z , and the steady state P3 ex-

ists. If ‚ ≤ 1 then there is no periodic solution to system (2.15) in the interior of a set

Ω2 = {(x , y) : x ≥ 0, y ≥ 0, x + ‚y ≤ 1}.
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Proof. To prove that system (2.15) has no periodic solutions we use Dulac criterion [135].
We consider a variable u de�ned by Eq. (2.16). Then system (2.15) with z(s) ≡ z has the
following form:

ẋ(t) = x(f (u)− z),

u̇(t) =
f (u)

k
((k + 1)x − u) + (‚ − 1)zx .

(2.25)

Let us denote by F the right-hand side function of system (2.25) and let us take the function
 (x , u) = 1

xf (u)
as a Dulac function [160]. We calculate:

div( F ) =
@

@x

"
1

xf (u)
x(u − z)

#
+

@

@u

"
1

xf (u)

 
f (u)

k
((k + 1)x − u) + (‚ − 1)zx

!#

= − 1

xk
+
z (1− ‚)

f 2(u)
f ′(u).

The expression above for ‚ ≤ 1 has the same sign (negative and non-zero) almost everywhere
in Ω. As a consequence, system (2.25) does not have closed orbits.

Theorem 2.11. Let f satisfy assumptions (A1)-(A2), z(s) ≡ z , and ‚ ≤ 1.

(i) If f satisfy additionally (A3a) and z ≥ 1 all trajectories of system (2.15) starting in

{(x , y) : x ≥ 0, y ≥ 0, x + ‚y < 1} converge to P1.

(ii) If z < 1 or f satis�es (A3b), all trajectories of system (2.15) starting in {(x , y) : x >

0, y ≥ 0, x + ‚y < 1} converge to P3.

Proof. The assertion of the theorem follows from Lemma 2.10, the Poincare-Bendixson theo-
rem [135] together with the analysis of the phase portraits.

2.2.2 The case of asymptotically periodic chemotherapy function

Now let us study the asymptotic behaviour of system (2.15) when function z is not constant
and is given by

z(s) = zper(s) + zrest(s), (2.26)

following De�nition 2.1, being asymptotically periodic with period eT . We show that for any
asymptotically periodic function z such that mean value of this function converges to a value
not smaller than 1, the solutions of system (2.15) tend to steady state P1.

Theorem 2.12. Let f satisfy assumptions (A1)�(A2), (A3a) and z be an asymptotically

periodic function with period eT in the sense of De�nition 2.1. If

z̄ =
1eT
Z eT

0
zper(s)ds ≥ 1,

and the integral
Z +∞

0
zrest(s)ds is convergent, then the solution of system (2.15) converges

to P1.

Proof. Due to the fact that f is decreasing, ‚ > 0, x and y are non-negative we have
xf (x + ‚y) ≤ xf (x) and as a consequence

ẋ = x (f (x + ‚y)− z(s)) ≤ x (f (x)− z(s))
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holds. The Gronwall inequality implies

x(s) ≤ x(0) exp
„Z s

0
(f (x(v))− z(v)) dv

«
= x(0) exp

„Z s

0
((f (x(v))− 1) + (1− zper(v))− zrest(v)) dv

«
.

We divide the integrand into three components. First includes function depending only
on x , second � periodic function on the interval which length is a multiplication of period
and in the last component we group the remaining terms. To this end for any s ≥ 0 we �nd
m ∈ N ∪ {0} and s̃ ∈ [0, eT ) such that s = m eT + es and we rewrite the last inequality in the
following manner

x(s) ≤ x(0)A(s)BmE(s),

where

A(s) = exp
„
−
Z s

0
(1− f (x(v))) dv

«
,

Bm = exp

 Z es+meT
es (1− zper(v)) dv

!
= exp

„
m eT (1− z̄)

«
,

E(s) = exp

 Z es
0

(1− zper(v)) dv

!
exp

„
−
Z s

0
zrest(v)dv

«
.

Note that E(s) is uniformly bounded because es ∈ [0, eT ) and the integral
Z +∞

0
zrest(s)ds is

convergent.
First, consider z̄ > 1. Then A(s) ≤ 1 as f is decreasing and x(s) ≥ 0 for all times s. More-

over,

Bm = exp
„
−m eT (z̄ − 1)

«
0 as s → +∞.

Thus, x(s)→ 0 as s → +∞.
Now, assume that z̄ = 1. Then Bm = 1. As x(s) ≥ 0 for all s and f is decreasing, we haveZ +∞

0
(1− f (x(v))) dv ≤ +∞. If this integral is convergent, then due to the boundedness of

derivative of f (x(s)), (1− f (x(s)))→ 0 holds for s → +∞. As a consequence, x(s)→ 0 as
s → +∞ due to the continuity of f . On the other hand, the divergence of the integral implies
A(s) → 0 as s → +∞. This proves that x(s) → 0 as s → +∞ because E(s) is uniformly
bounded, as stated before.

We have proved that x(s)→ 0 and consequently y(s)→ 0 as s → +∞.

The model behaviour for z̄ < 1 is more complex. Numerical simulations suggest that the
steady state P1 is repulsive in that case, see an example in Figure 2.7. However, if z(s) is
a periodic function and its values remain inside the interval (0, 1), then we can prove the
existence of a periodic solution.

Theorem 2.13. Let f satisfy assumptions (A1)�(A2), (A3a), z be a periodic function with

period T , and ‚ ≤ 1. If there exist zm and zM such that 0 < zm ≤ z(t) ≤ zM < 1 for all

positive t, then there exists a periodic solution to system (2.15) with a period eT .
Proof. For convenience we consider system (2.15) in variables x and u, which has the following
form:

ẋ(s) = x(f (u)− z(s)),

u̇(s) =
f (u)

k
((k + 1)x − u) + (‚ − 1) xz(s).

(2.27)
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Figure 2.7: Evolution of x in time due to system (2.15) for z̄ < 1. The parameters values were:

‚ = 1, k = 10 and z(s) = 0.98(1 + sin
“

2Πs= eT”) with eT = 50.

Moreover, Theorem 2.6 allows us to limit our considerations to the set:

Ωu = {(x , u) ∈ R2 : 0 < x ≤ u ≤ 1}.

For any (x0, u0) ∈ Ωu we de�ne the operator

Φ(s, x , u) =
„
x(s; x0, u0), u(s; x0, u0)

«
, ΦeT (x , u) = Φ( eT , x , u),

where
„
x(s; x0, u0), u(s; x0, u0)

«
is a solution of system (2.27) with initial condition x(0) = x0,

u(0) = u0. Note that if some (x0, u0) ∈ Ωu is a �xed point for the operator ΦeT : Ωu → Ωu

then, due to the assumption of periodicity of z , solution of system (2.27) with initial condition
(x0, u0) is periodic.

We use the Brouwer theorem [137] to show that such �xed point of the operator ΦeT
exists. To this end, we show that there exists a convex compact subset K ⊂ Ωu such that
ΦT (K) ⊂ K. Note that a closure of Ωu is not a good choice because it contains steady states
of system (2.27).

Vector �eld corresponding to system (2.27) is the following one:

Fz(s) =

"
x(f (u)− z(t)),

f (u)

k

„
(k + 1)x − u

«
+ (‚ − 1)xz(s)

#
.

Let us divide the set Ωu in four sets

Ω1 =

(
(x , u) ∈ R2 :

u

1 + ‚k
≤ x ≤ u, 1− zm ≤ u ≤ 1

)
,

Ω2 =

(
(x , u) ∈ R2 : 0 ≤ x ≤ u

1 + ‚k
, 1− zM ≤ u ≤ 1

)
,

Ω3 =

(
(x , u) ∈ R2 : 0 ≤ x ≤ u

1 + ‚k
, 0 ≤ u ≤ 1− zM

)
,

Ω4 =

(
(x , u) ∈ R2 :

u

1 + ‚k
≤ x ≤ u, 0 ≤ u ≤ 1− zm

)
.

Now, we de�ne the border of the set K. Let ’1 be a trajectory of system (2.15) with z ≡ zm
and arbitrary chosen initial condition (x0, x0) ∈ Ω1 for time [0, s∗], where s∗ is the �rst point
t > 0 at which this trajectory reaches the boundary of Ω1. Because of the direction vector �eld
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Fzm (which is independent of time) in Ω1, the trajectory ’1 reaches the line (» + ‚)x = »u

at s∗. Let us call this point (x1, u1). Let ’2 be a trajectory of system (2.15) with z ≡ zM
and initial condition (x1, u1) for time [0, s∗∗], where s∗∗ is the �rst point t > 0 such that the
trajectory ’2 reaches the boundary of Ω2. Because of the direction vector �eld FzM (which
is independent of time) in Ω2, the trajectory ’2 reaches the line u = 1 − zM . Denote this
point (x2, u2). As ’3 we denote the line that connects points (x2, u2) with (x2, u3) lying on
the line u = (1 + ‚k)x , thus, u3 = (1 + ‚k)x . We denote by ’4 the horizontal line between
(x2, u3) and (u3, u3). Finally, we denote the line connecting points (u3, u3) and (x0, x0) by ’5.
Obviously, the curve Γ = ’1 ∪’2 ∪’3 ∪’4 ∪’5 appoints a convex set in Ωu. We denote the
set bounded by this curve (with the boundary) by K, compare Figure 2.8.

 

Figure 2.8: Sketch of set K (dotted region) de�ned in proof of Theorem 2.13. Blue points denote
points (x0, x0), (x1, u1), (x2, u2), (x2, u3) and (u3, u3).

We show, that if (x(0), u(0)) ∈ K then for all s ≥ 0 (x(s), u(s)) ∈ K, where (x(s), u(s))

is a solution of system (2.15). Two parts of the boundary of K are the trajectories of sys-
tem (2.15) with z ≡ z∗, where z∗ = zm or z∗ = zM . The normal vector to such trajectory
pointing towards the interior of K is

~n(z∗) =

"
− f (u)

„
(»+ 1)x − »u

«
− (‚ − 1)xz∗, x(f (u)− z∗)

#
.

Let (x(s), u(s)) be a solution of (2.15) and assume that for some s∗ it reaches the set ’1∪’2.
Then, the scalar product of the vector tangent to the trajectory with the normal vector ~n is

〈Fz(s), ~n〉 = xf (u)(z(s)− z∗)
„

(»+ 1)x − »u + (‚ − 1)x
«

.

Assume now, that (x(s∗), u(s∗)) ∈ ’1. Then, z∗ = zm, hence, z(s) ≥ zm and (»+ ‚)x −
»u ≤ 0 as ’1 ⊂ Ω1. Thus, 〈Fz(s), ~n〉 ≥ 0. Similarly, if (x(s∗), u(s∗)) ∈ ’2 then z∗ = zM ,
hence, z(s) ≤ zM and (» + ‚)x − »u ≥ 0 as ’2 ⊂ Ω2. Thus, again 〈Fz(s), ~n〉 ≥ 0. Note,
that in Ω3 we have ẋ(s) > 0. Similarly, in Ω4 the derivative of u is positive. Thus, on the
lines ’3 and ’4, the vectors of the vector �eld points towards the interior of K. Finally, it
is easy to see that on ’5 the vector �eld is also pointing towards the interior of K because
as it was shown before, solutions x(s), y(s) are positive and u(s) = x(s) + ‚y(s) ≤ 1.
This implies that solution of (2.15) that starts in K cannot leave this set. And therefore,
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ΦeT (K) ⊂ K. In Figure 2.8 we present the sketch of the set K, curves ’i , i = 1, : : : , 5, and
sets Ωj , j = 1, 2, 3, 4.

Thus, the Brouwer theorem yields existence of a �xed point of ΦT , and thus, a periodic
solution of (2.27).

2.3 Numerical results

In this section we show that model (2.2) �ts well to the patients data as well as study numer-
ically how the model behaviour depends on parameters. For the purpose of model �tting to
patients data and numerical analysis we will assume the logistic model of tumour growth as
it is typically done for that kind of tumours, thus, we consider f to be as in Eq. (2.1). Note
that taking an average cell volume, we can easily treat the tumour mass P + D as the total
tumour volume, which is easier to compare with results obtained from MRI scans, usually used
in brain tumour diagnosis and follow-up observation.

2.3.1 Values of the model parameters

To work with system (2.2) and function f as in Eq. (2.1) we need to provide realistic values
for the model parameters. All parameters of the model are assumed to be positive due to their
biological interpretation.

The saturation coe�cient K for LGG growth will be set to the volume of a sphere of
diameter 10 cm reported to be the maximal mean tumour diameter observed in LGG patients
[69]. In fact, patient death usually occurs when the tumour reaches a critical size called the
fatal tumour burden considered to be in high-grade glioma models to be around 6 cm in
diameter [108, 102] We will use this value subsequently in order to analyse di�erent outcomes
of virtual patients.

We can estimate the rate of drug decay – using values of TMZ half-life clearance time t1=2.
From the de�nition of t1=2 and assuming exponential decay as in system (2.2) we have

1

2
= e−–t1=2 .

To account also for the drug loss during transport to the brain we calculate value Cj of the
maximal dose dj reaching the tumour as

Cj = ˛ · dj · b, (2.28)

where ˛ is the fraction of TMZ getting to 1ml of brain interstitial �uid (from a unit dose) and
b is a surface of a patient body with j ∈ {1, : : : , n} and n being the total number of doses
d administered. Then Cj can be interpreted as an e�ective dose per fraction.

Standard dose per day is 150 mg per m2 of patient body surface, which is usually around
1.6 m2 for women and 1.9 m2 for men [161] with an average of 1.7 m2 [162]. Then in the
case of the standard chemotherapy scheme we will �x dose dj = d = 150 mg/m2 and e�ective
dose Cj = C0 = ˛ · d · b.

The parameter ˛ can be calculated using the value of maximal TMZ concentration Cmax

for a dose of 150 mg/m2 taken from the literature [78, 157]. Assuming that time to reach
peak drug concentration in the brain is negligible (equals 0.85-2h) in comparison to the time
scale of the model, we set the drug concentration C0 in the moment of its administration to
the value Cmax.

A summary of the biological parameter values is presented in Table 2.1.
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Table 2.1: Biological parameters describing TMZ concentration in brain.

Parameter Description Value, references
t1=2 TMZ half-life clearance time '2h [78]
Cmax mean peak TMZ concentration 0.6 —g/ml [157]

in brain interstitium
– rate of decay of TMZ 0.3466/h Calculated

from [78, 157]
˛ fraction of TMZ getting 2.1 · 10−6/ml (m) Estimated

to brain interstitium 2.5 · 10−6/ml (w) from [78, 157]

2.3.2 Model �tting to patients data

To test if our simple model given by system (2.2) with function f as in Eq. (2.1) is able to
re�ect the dynamics of LGG response to chemotherapy, we have used the model to describe
volumetric longitudinal data of patients followed at the Bern University Hospital, see details in
Section 1.7. In this study we selected data on 18 patients who had been treated with TMZ out
of a total number of 82 LGGs patients, see Table 2.2. The inclusion criteria for patients for
the purpose of model �tting in this study included:

(i) biopsy/surgery con�rmed LGG (astrocytoma, oligoastrocytoma or oligodendroglioma),
according to the WHO classi�cation at the time of diagnosis,

(ii) availability of at least 2 MRI scans before the onset of TMZ treatment,
(iii) no other treatment given in the period of study,
(iv) availability of at least 4 MRI scans after TMZ onset with at least one after the end of

the chemotherapy.

Seven patients satis�ed these criteria. All patients in this group received more than 4 TMZ cy-
cles and the mean duration of TMZ treatment was 6.26 months.

Table 2.2: Characteristics of patients treated with TMZ

Age at diagnosis, mean (st. deviation), yr 47.19 (7.54)
Sex, M/F 14/4
Histology at diagnosis

Oligodendroglioma 7
Oligoastrocytoma 9
Astrocytoma 1
Unknown 1

Type of surgery
Biopsy 10
Resection 9

Radiotherapy 8
Chemotheraphy (CT) 18

Age at CT onset, mean (st. deviation), yr 51.8 (8.35)
Time from surgery to CT, mean (st. deviation), yr 3.7 (4)
Second-line CT 8

The rate of tumour cell proliferation , the coe�cient k describing the delay in damaged
cell death and the parameter of TMZ-cell kill strength ¸ were considered to be tumour-speci�c
and �tted for each patient. Thus, only three parameters are unknown and the others are taken
as in Table 2.1.

Note that until the beginning of the treatment D ≡ 0,C ≡ 0, thus, the tumour growth is
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governed by a simple logistic equation:

P (t) =
KP0et

K − P0 (1− et)
. (2.29)

Thus, to estimate the parameter  we used patient data before the start of TMZ administration
since it is the only relevant parameter during that time. The initial tumour volume P0 in this
equation was �xed to be the volume from �rst MRI scan done after surgery. Then, having
obtained the value of , MRI data after the onset of chemotherapy was used to estimate
parameters ¸ and k in system (2.2). To simulate system (2.2), we have used the standard
Matlab ODE solver based on the Runge-Kutta 4th-order method. Model �tting was done on
the basis of a relative least squares method, cf. Section 1.7, using built-in MATLAB function
lsqnonlin [140].

Figure 2.9 shows both the real tumour volume data obtained from the MRI scans (circles)
together with the best �t (solid line) obtained with system (2.2), where function f was de�ned
by Eq. (2.1). Parameters values obtained by model �tting to patient data and the number of
TMZ cycles applied to each patient are listed in Table 2.3. The model dynamics �t the real
volumetric tumour evolution well, showing an impressive agreement with a minimal number
of parameters for patients with delayed response to chemotherapy. The minimal value of
the �tted proliferation rate for some patients is one order of magnitude smaller than values
(1 − 5) · 10−3 day−1 observed in other studies [25, 1, 26] as in these studies the model for
tumour growth also considered a di�usive term. Some of the tumours were relatively large,
however no formation of neoangiogenesis or necrotic core was observed.

Table 2.3: Values of parameters �tted for each patient in the study and the number of TMZ
cycles applied, together with the minimal doses dmin that should be applied according to
Theorem 2.12

Patient id TMZ cycles  (/day) ¸ (ml/—g/day) k dmin (mg/m2)
10 13 0.00022 0.199094 0.075644 12.8999
25 4 0.002416 1.387798 0.272291 20.3232
57 10 0.000338 0.17367 0.019279 22.7203
108 5 0.001761 0.971918 0.555867 21.1520
151 12 0.000701 0.236439 0.257806 34.6115
159 11 0.000136 0.279911 0.025617 5.4218
170 15 0.001652 0.203217 0.002087 94.9012

mean 10 0.001032 0.49315 0.172656 24.4299
st. deviation 4.0852 0.00090228 0.485383 0.203174 �

2.3.3 Tumours with faster response have worse prognosis

We have also studied how the tumour response depends on parameters �tted, see Figu-
res 2.11 and 2.12. We denote by �time to radiological progression� tRP the time when the
tumour attains its minimum volume after the chemotherapy onset and starts regrowing. We
refer to �growth delay� as the time for which the tumour volume equals the initial one when
regrowing after the therapy, see [1]. We refer to �early response� when tRP is attained shortly
after the end of chemotherapy and �no response� when there was no decrease in tumour
volume.

In case of frequent MRI scans these times can be easily obtained from model simulations
and compared with the values obtained from patient's MRI volumetry. It can be estimated
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Figure 2.9: Tumour volume evolution for selected patients treated with TMZ. The beginning and
the end of TMZ treatment are marked with vertical dashed lines. There are shown the volumes
calculated from MRI scans (circles) and from the �tted mathematical model (solid lines). The number
of TMZ cycles and the values of parameters were di�erent for each patient as indicated in Table 2.3.
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Figure 2.10: Virtual tumour volume evolution after the onset of TMZ treatment for di�erent values
of parameters. We considered 12 cycles of TMZ delivered using the standard procedure (see Sec-
tion 2.1.2) for virtual patients with LGG of initial volume 40 cm3 and with k = 0.5. (left) Parameter
¸ was �xed to value 0.8ml/—g/day, 1 = 0.006=day, 2 = 0.003=day. (right) Parameter  was �xed
to value 0.003/day, ¸1 = 0.4ml/—g/day, ¸2 = 0.8ml/—g/day. The horizontal dotted lines correspond
to tumour sizes equal to the fatal tumour burden.
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Figure 2.11: Characteristic times of tumour response for di�erent proliferation rates  and di�erent
levels of TMZ cell kill strength ¸. We considered 12 cycles of TMZfor virtual patients with LGG of
initial volume 40 cm3. (left) Results for  = 0.0008/day, k = 0.3 and ¸ ∈ [0.1, 1]ml/—g/day. (right)
Results for ¸ = 0.8ml/—g/day, k = 0.3 and  ∈ [0.7, 8]× 10−3/day.

1
1

3

0.004 

T
im

e 
(y

ea
rs

)

, (ml/7g/day)

0.7

5

; (1
/day)0.0025

0.001 0.4

1
1

10

0.004 

T
im

e 
(y

ea
rs

)

, (ml/7g/day)

0.7

20

; (1
/day)0.0025

0.001 0.4

Figure 2.12: Characteristic times of tumour response for di�erent proliferation rates  and di�erent
levels of TMZ cell kill strength ¸. We considered 12 cycles of TMZwith k = 0.3. Values of time to
radiological progression (left), growth delay and overall survival (right) are shown for virtual patients
with LGG of an initial volume of 40 cm3.

with an error of an order of the time between two subsequent MRI scans. We have also
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Figure 2.13: Time to radiological progression and overall survival of LGGs patients treated with TMZ.
Patients were divided into two groups: in the �rst, denoted by circles, patients were treated with
TMZ for less than 10 months (average: 5.72, st. deviation: 3.8), in the second group, denoted by
triangles, patients were treated with TMZ for more than 10 months (average: 13.65, st. deviation:
3.14).

computed the estimate of overall survival (OS) as the time until reaching the fatal tumour
burden de�ned in Section 2.3.1. We have considered only the cases of virtual tumours whose
volumes decreased below the volume at TMZ onset. Note that for the purpose of analysis
of response to TMZ, OS is computed for virtual tumours responding to TMZ and without
any other treatment in the following course of disease. Therefore, in general, the obtained
OS could be overestimated and thus should not be compared to the values of real-patients
survival.

After performing many simulations for di�erent initial values and chemotherapy schemes,
we conclude that both larger proliferation rate  and smaller TMZ cell kill strength ¸, lead to
an earlier response to TMZ treatment. A more systematic study is shown in Figure 2.10 for
two speci�c parameter sets, providing representative examples. Virtual patients who responded
earlier to TMZ (had smaller tRP) had a faster regrowth and reached the fatal tumour burden
earlier. Thus, a shorter tRP is an indicator of worse prognosis.

Are these model features also present in the patient's data? Figure 2.13 shows how the
overall survival rate correlates with the time to radiological progression. For the purpose of
this analysis we also included patients with only one MRI scan before treatment with TMZ in
the patient group indicated in Section 2.3.2. At the same time we excluded (i) two patients in
which only two MRI scans were available after the end of chemotherapy showing no tumour
regrowth and (ii) one patient treated with TMZ for only 1.5 month showing no response.
For each patient tRP was estimated as the time to the MRI scan in which tumour volume
was the smallest after the onset of treatment. Due to the substantially di�erent duration of
TMZ treatments we divided patients into a group receiving less than 10 TMZ cycles and those
receiving 10 or more cycles.

The Spearman rank correlation coe�cient between tRP and OS equals 1 for data of patients
treated with TMZ for less than 10 months and 0.9047619 for those treated with TMZ for longer
time. The exact Spearman coe�cient test signi�cance levels equal 0.008333 and 0.002282
for right-tailed tests for group of patients treated with less and more than 10 cycles of TMZ,
respectively. This result indicates a positive correlation between tRP and OS. The signi�-
cance levels were calculated using R. Data on overall survival is right-censored, however the
results suggest that the early regrowth of the tumour after chemotherapy is related to its
aggressiveness. Despite therapies used after progression, those tumours that responded faster
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to TMZ treatment progressed faster, suggesting either larger proliferation potential and/or
smaller TMZ cell kill strength.

2.3.4 Tumours with smaller response have worse prognosis

We study whether change in tumour volume after chemotherapy can be also an indicator
of prognosis. In order to do so, based on the results of simulations we estimate tumour
volume decrease at time to radiological progression and verify whether it correlates with tumour
aggressiveness. Let us de�ne the relative tumour volume decrease ∆V as

∆V =
P1 − VRP

P1

, (2.30)

where P1 is tumour volume just before the onset of chemotherapy and VRP is tumour volume
at the time to radiological progression. We suggest using such a relative di�erence as it does
not depend on initial tumour size.

Figure 2.14 shows how the tumour volume decrease ∆V depends on tumour-speci�c pa-
rameters:  and ¸. Based on numerous simulations of system (2.2) we deduce that a virtual
patient with smaller volume decrease is more aggressive in terms of proliferation potency or
resistance to chemotherapy, thus, its prognosis is worse.
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Figure 2.14: Relative tumour volume decrease for di�erent proliferation rates  and di�erent levels
of TMZ cell kill strength ¸. We considered 12 cycles of TMZfor virtual patients with LGG of initial
volume 40 cm3.

We also try to verify whether such relation exists in a real life. In Figure 2.15 we present how
the overall survival rate relates with the relative volume decrease for the same set of patients
data as in Section 2.3.3. Correlation rate between tumour volume decrease and overall survival
equals 0.6. Thus, in general, patients who had smaller response to chemotherapy (that is ∆V

is smaller) have worse prognosis.

2.4 Analytical estimates of tumour response to chemotherapy

2.4.1 Survival fraction

Up to now our numerical analysis has been based on simulations of system (2.2) with function
f as in Eq. (2.1). We can calculate the fraction of tumour cells eliminated by a single dose of
chemotherapy, which in the context of radiotherapy is usually referred to as �survival fraction�.
To do so, we assume that the time of drug absorption, distribution and elimination from the
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Figure 2.15: Relative volume decrease and overall survival of LGGs patients treated with TMZ.

human body is much shorter than the doubling time of the tumour cell population, what is
true for LGGs. Therefore, focusing on short-term e�ects of the drug we may neglect the term
describing tumour proliferation. Consequently the size of damaged cells population remains
zero and we consider instead the simpli�ed model

Ṗ (t) = −¸PC,

Ċ(t) = −–C

with initial condition:
P (0) = P0, C(0) = C0.

For time before the second drug administration we have

C(t) = C0e−–t ,

P (t) = P0 exp
„
¸

–
C0

“
e−–t − 1

”«
.

Then we de�ne a function Sf describing the survival fraction as follows

Sf (t) =
P (t)

P0

= exp
„
¸

–
C0

“
e−–t − 1

”«
.

Thus, for long times t � 1=– we obtain the formula

Sf = exp
„
−¸
–
C0

«
.

Survival fraction depends exponentially on the TMZ cell kill strength ¸, the e�ective dose
C0 and inversely on the time of exposure to chemotherapy –. This formula is similar to the
linear term in the linear-quadratic model describing the e�ect of a single dose of radiotherapy
on cells [132].

2.4.2 Generalised chemotherapy fractionation scheme

In the following subsection we compute analytical estimates for the tRP as a function of the
model parameters. We study a broad range of chemotherapy fractionation schemes in which
the interval between doses (typically 1 day) is larger than the time of whole dose elimination
(reported to be around 7h [163]) and the typical damage repair times (of the order of a few
hours [132]), so that one dose does not alter the e�ect of the next one.
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Without loss of generality, we can assume that the drug administration starts at time
t1 = 0, as in Section 2.2. In agreement with clinical practise, we assume all drug doses to
be equal. Thus, dj = d for j ∈ {1, : : : , n} with n being the total number of doses. The
e�ective dose per fraction C0 is calculated as in Section 2.3.1. In order to obtain analytical
estimates let us introduce the following notation. Each chemotherapy cycle is described by
three parameters: the cycle duration T (measured in days), the number of doses per cycle
p, and the interval between doses in each cycle r (measured in days). We assume that pr ≤ T .
The total number of TMZ cycles in such a general fractionation scheme equals

j
n
p

k
and the

times of drug administration are

tj = (j − 1)r +m
“
T − pr

”
, (2.31)

where m =
—
j − 1
p

�
is the number of completed chemotherapy cycles before dose given in

time tj , j ∈ {1, : : : , n}. Then m ∈ {0, : : : , b(n − 1)=pc} and

j = pm + i , (2.32)

i being the index of a dose within each TMZ cycle, i ∈ {1, : : : , p}.
This de�nition allows for the description of many di�erent chemotherapy schemes, in-

cluding those in which administration of drug doses in a cycle is followed by some break
(as T can be greater than pr). For instance, in the clinical trial described in [61] patients
were treated with TMZ given daily for seven weeks followed by four-week breaks. For that
study we would take T = 77, r = 1, p = 49 and the drug would be administered at days
t1 = 0, t2 = 1, t3 = 2, : : : , t49 = 48, t50 = 77, t51 = 78 etc . In order to characterise the stan-
dard fractionation scheme described in Section 2.1.2 we would take T = 28, r = 1, p = 5.

Let us recall that system (2.2) describing the growth of proliferative and damaged tumour
cells after rescaling takes the following form (2.11):

ẋ(s) = xf (x + y)− xz ,

ẏ(s) = −1

k
yf (x + y) + xz ,

with initial conditions (2.12):
x(0) = x0, y(0) = 0.

The evolution of concentration of chemotherapy (2.4) after rescaling is of a form (2.13)

ż(s) = −—z ,

z(0) = z0,

z(sj) = z(s−j ) + z0,

(2.34)

where

z0 =
¸


C0, — =

–


.

The rescaled dose z0 is assumed to be given at times s1 = 0, s2 = t2, : : : , sn = tn.

2.4.3 Time of response to chemotherapy

As already mentioned, one of the main observable characteristics of the tumour response to
therapy is the time to radiological progression, i.e. the time until the tumour starts regrowing.
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In our mathematical framework it is the time tRP at which the total tumour mass attains its
minimum, i.e. P (tRP) +D(tRP) = min

t≥tn
{P (t) +D(t)}. In terms of rescaled variables we look

for sRP such that
x(sRP) + y(sRP) = min

s≥sn
{x(s) + y(s)} .

We focus only on cases of tumours responding to chemotherapy with ¸ > 0, thus, showing
a radiologically visible decrease in total volume. Therefore, in our approach, in which only
�rst-line chemotherapy is described and resistant cells do not arise, tumour progression occurs
after the end of chemotherapy (sRP � sn) provided tumour growth is slow, as happens in the
case of LGGs. Thus, we try to derive explicit formulae approximating x and y for s � sn.

We assume that initial tumours sizes are small and, as a consequence, we approximate
function f by its value f (0) = 1. Thus, Eq. (2.11) takes the simpler form

ẋ(s) = x − xz ,

ẏ(s) = − 1

k
y + xz

(2.35)

with initial conditions: x(0) = x0, y(0) = 0. Then for rescaled time sRP we have ẋ(sRP) +

ẏ(sRP) = 0, therefore

x(sRP) =
1

k
y(sRP). (2.36)

Clearly, system (2.35) with Eqs. (2.34) are a set of ODEs with impulses, the functions x and
y being continuous, and z being discontinuous at times s2, : : : , sn. Since dose clearance time
is about two hours we may assume that each dose is cleared in one day, then, in the rescaled
units z((sj + )−) ≈ 0 for j ∈ {1, : : : , n}. Therefore, we approximate

z(s) ≈

8<:z0e−—(s − sj) s ∈ (sj , sj + ),

0 for other s,
(2.37)

where j = max
i∈{1,:::,n}

{si ≤ s} . Let us de�ne

w(s) =
Z s

0
z(t)dt,

w0 = w() =
Z 

0
z(t)dt =

z0

—

“
1− e−—

”
.

We should emphasise that for s > s2, w(s) 6= z0

“
1− e−—s

”
=— due to the administration of

the next drug dose. Furthermore, from Eq. (2.37) we have

w(s) =
Z s‘

0
z(t)dt +

Z s

s‘
z(t)dt = w(s‘) +

Z s−s‘

0
z(t)dt ≈ (‘− 1)w0 + w(s − s‘)

≈

8<: (‘− 1)w0 + z0

—

„
1− e−—(s − s‘)

«
s − s‘ ≤ ,

‘w0 otherwise,

(2.38)

where ‘ = max
i∈{1,:::,n}

{s ≥ si} . Hence, for s > sn+ we have that w(s) ≈ nw0 and the formulae

for rescaled proliferating and the damaged part of tumour take the form

x(s) = x0es − w(s) = x0es − nw0 ,

y(s) =
Z s

0
e−

s−t
k x(t)z(t)dt.

(2.39)
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We look for sRP which ful�ls condition (2.36). Using Eqs. (2.39) we have

kek̃sRP − nw0 =
Z sRP

0
e
ekt − w(t)z(t)dt,

sRP =
1ek
24nw0 + ln

„
1

k

Z sRP

0
e
ekt − w(t)z(t)dt

«35, (2.40)

where ek = 1 +
1

k
.

As a result of approximations (2.37) and (2.38) we conclude that the integral term in Eq. (2.40)
for s ≥ sn +  readsZ s

0
e
ekt − w(t)z(t)dt =

nX
j=1

z0

Z sj+

sj
e
ekt − w(t)e−—(t − sj)dt

= z0

nX
j=1

e−(j − 1)w0 + eksj Z sj+

sj
e
(ek − —)(t − sj) + z0

—

„
e−—(t − sj) − 1

«
dt

= z0

0@ nX
j=1

e−(j − 1)w0 + eksj1AZ 

0
e
(ek − —)t + z0

—

“
e−—t − 1

”
dt. (2.41)

Using Taylor expansion of an exponential function for t < 1=— we approximate

e−—t − 1 ≈

8<:−—t 0 ≤ t < 1=—,

−1 t ≥ 1=—,

and obtainZ 

0
e
(ek − —)t + z0

—

“
e−—t − 1

”
dt ≈

Z 1
—

0
e(ek − —)t − z0tdt +

Z 

1
—

e
(ek − —)t − z0

— dt

=
1ek − —− z0

0@e
ek−—−z0

— − 1

1A+
1ek − —

0@e
(ek − —)− z0

— − e
ek−—−z0

—

1A
=

1

(ek − —− z0)(ek − —)

24z0e
ek−—−z0

— − ek + —+ (ek − —− z0)e
(ek − —)− z0

—

35. (2.42)

To compute the sum term in Eq. (2.41) we need the relation between dose indexes j and the
times of their administration sj . Taking into consideration assumptions from Section 2.4.2 and
Eqs. (2.31)-(2.32) we get

sj =
h
(i − 1)r +mT

i
,

where m ∈ {0, : : : , b(n − 1)=pc} is the number of completed chemotherapy cycles before dose
given in time sj , j ∈ {1, : : : , n} and i ∈ {1, : : : , p} is an index of dose within the TMZ cycle.
We now assume that chemotherapy treatment is not interrupted during the cycle, that is
bn=pc ∈ Z. As a result m ∈ {0, : : : , bn=pc − 1} and from now on, for simplicity, we omit the
�oor and obtain

nX
j=1

exp
“
−(j − 1)w0 + eksj”

=
n=p−1X
m=0

pX
i=1

exp
“
m
“
−pw0 + ekT”+ (i − 1)(−w0 + ekr)”

=
1− e

“
−pw0 + ekT” n

p

1− e−pw0 + ekT · 1− e

“
−w0 + ekr” p

1− e−w0 + ekr , (2.43)
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where n is the total number of doses and n=p is the total number of chemotherapy cycles as
previously stated. Then using Eqs. (2.40), (2.41) and (2.42) we get

sRP =
nw0ek +

1ek ln

8<:z0e
ek−—−z0

— − ek + —+
“ek − —− z0

”
e

“ek − —” − z0

—

9=;

+
1ek ln

8>>>>><>>>>>:
z0

 
1− e

“
−pw0 + ekT” n

p

! 
1− e

“
−w0 + ekr” p!

k
„

1− e−pw0 + ekT«„1− e−w0 + ekr« “ek − —− z0

” “ek − —”
9>>>>>=>>>>>;

.

In terms of the initial time scale, the time to tumour progression can be estimated as tRP =

sRP=, giving the �nal result

tRP =
nw0ek +

1ek ln
A1A2

A3

, (2.44)

where

A1 = z0e(ek−—−z0)=— − ek + —+
“ek − —− z0

”
e(ek−—)−z0=—,

A2 = z0

„
1− e(−w0+ekr)p«„1− e(−pw0+ekT)n=p

«
,

A3 = k
“ek − —− z0

” “ek − —” „1− e−w0+ekr«„1− e−pw0+ekT«

and ek = 1 + 1=k , — = –=, z0 = ¸C0=, w0 = ¸C0

“
1− e−–

”
=–. Eq. (2.44) gives the

time to radiological progression as a function of parameters with relevant biological and/or
therapeutical meaning. Since tRP is a metric of practical relevance, it is very interesting that
it is possible to estimate its value analytically. Note that we have made only few assumptions
and estimate (2.44) holds for any function f such that f (0) = 1.

Although formula (2.44) is an approximation of the exact explicit formula for tRP, we can
simplify it further to get the simplest possible version which preserves the properties of the
original one and can be used to answer clinically relevant questions. In order to do so, we take
the same parameters values as in Section 2.3.1. Taking – = ln 2=2 h ≈ 8.32 per day, we can
assume that

e−— = e−– ≈ 0.0003 ≈ 0.

Thus, we have:

w0 =
¸C0

–

“
1− e−–

”
≈ ¸C0

–
, (2.45)

and taking value C0 = 0.6—g/ml we get:

z0

—
=
¸


C0 ·



–
=
¸

–
· 0.6—g/ml ≈ 0.

We assume that w0 is relatively small in comparison to ekr , thus,
1− e

−
“
w0 − ekr” p ≈ 1− e

ekrp.

Due to the fact that ekrp, ekr are small and much smaller than 1 we may use the Taylor
expansion with respect to variable r , obtaining:

1− e
ekrp ≈ −ekrp, 1− e

ekr ≈ −ekr .
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Moreover, we observe that ek is small compared with —, thus, we neglect this term obtaining:

A1 ≈ z0e
1
k—
−1 + —,

A2 ≈ −z0
ekrp „1− e(−pw0+ekT) np

«
,

A3 ≈ k—2ekr „1− e−pw0+ekT« .

As — � 1 and z0 is small (as dose C0 is small due to possible toxicity e�ects), then
z0 exp(1=k—− 1)� —. Therefore, we omit the �rst term obtaining: A1 ≈ — and

A1A2

A3

≈
−—z0

ekrp „1− e(−pw0+ekT) np
«

k—2ekr “1− e−pw0+ekT” = −z0p

—k

1− e(−pw0+ekT) np

1− e−pw0+ekT
In the latter simpli�cations we do not neglect terms nw0 and pw0 as they can be large.
However, using Eq. (2.45) we obtain:

tRP ≈
n¸C0ek– +

1ek ln

8>>>><>>>>:
¸C0p

 
1− e

−n¸C0

–
+ ekT n

p

!

–k

 
1− e−p

¸C0

–
+ ekT!

9>>>>=>>>>; . (2.46)

2.4.4 Validation for the standard chemotherapy protocol

Eqs. (2.44) and (2.46) have been obtained via a number of approximations, and thus, it is
relevant to compare those predictions with the results of the original system (2.2) and real
patient data.

To do the latter we �rst �x the treatment parameters to match those routinely used for
TMZ therapeutic schedules. Since TMZ is given on 5 consecutive days in cycles consisting of
28 days, we get p = 5, T = 28, r = 1. Taking dose per fraction to be 150 mg/m2 and the
other parameters as in Section 2.3.1 we can then estimate the time to radiological progression
for the individual patients studied previously (accounting for the number of cycles received by
each patient), cf. Section 2.3.2.

Figure 2.16 shows how well formula (2.44) estimates the response to chemotherapy for
three patients chosen from our database. The task of comparing simulation results with real
patients MRI data requires a lot of caution. In particular, we need to take into account the
limitations of calculations of tumour volume using the method of three largest diameters. The
method is only an approximation of real tumour volume and its accuracy is limited by slice
thickness, changes in head position [164] or even by perception of medical doctor who calculate
these diameters. In the future we hope that MRI data will be analysed through automatic
segmentation, e.g. with algorithm suggested by Porz et al. [165] and the real tumour volume
will be calculated more accurately.

Moreover, we validate the obtained formulas by calculating the relative error with respect
to results of simulations of system (2.2). Figure 2.17 presents relative di�erences between tRP

from estimated formulas (2.44,2.46) and simulations of system (2.2) for varying parameters,
suggesting a very good approximation.

2.4.5 The study of response for other chemotherapy protocols

We have also veri�ed that Eqs. (2.44) and (2.46) provide a good approximation of tRP for
system (2.2) for other fractionation schemes. Figure 2.18 shows some examples.
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Figure 2.16: Tumour volume evolution for three patients treated with TMZ. Vertical dashed lines
mark the start and the end of TMZ treatment. Circles denote the volumes obtained from MRI scans
and solid lines the results of the best �t using system (2.2). The times to radiological progression
computed using Eq. (2.44) and (2.46) are marked with vertical black dashed-dotted and blue dotted
lines, respectively, showing a very good agreement with the data and the simulations of system (2.2).

2.4.6 Tumour volume decrease after chemotherapy

Motivated by the results of Section 2.3.4 we also estimate the relative tumour volume decrease.
Using Eqs. (2.36), (2.39) and assuming that sRP � sn we arrive at:

(x + y)(sRP) = (k + 1)x(sRP) = (k + 1)x0 exp (sRP − nw0) . (2.47)

Thus, tumour volume VRP at time tRP equals:

VRP = (P +D)(tRP) = K(x + y)(sRP) = (k + 1)P1 exp (sRP − nw0) .

Using Eqs. (2.45) and (2.46) we approximate:

VRP ≈ (k + 1)P1 exp

8>>>><>>>>:
n¸C0ek– +

1ek ln

0BBBB@
¸C0p

 
1− e

−n¸C0

–
+ ekT n

p

!

–k

 
1− e−p

¸C0

–
+ ekT!

1CCCCA− n¸C0

–

9>>>>=>>>>;

= (k + 1)P1 exp

 
− n¸C0

(k + 1)–

!0BBBB@
¸C0p

 
1− e

−n¸C0

–
+ ekT n

p

!

–k

 
1− e−p

¸C0

–
+ ekT!

1CCCCA
1ek

.

Finally we obtain the following estimate of relative volume decrease de�ned in Eq. (2.30):

∆V ≈ 1− (k + 1) exp

 
− n¸C0

(k + 1)–

!0BBBB@
¸C0p

 
1− e

−n¸C0

–
+ ekT n

p

!

–k

 
1− e−p

¸C0

–
+ ekT!

1CCCCA
1ek

. (2.48)

We verify goodness of this estimate, comparing it with the results of various simulations of
original mathematical model (2.2). Figure 2.19 shows di�erences in tumour volume decrease
estimated from simulations and formula (2.48).

2.5 Discussion

Up to now there have been a great deal of relevant research into the pharmacokinetic/pharma-
codynamic properties of TMZ [153, 78, 154, 157], its speci�c mechanism of action [58, 152, 59,
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Figure 2.17: Relative percentage di�erences between tRP calculated from simulations of system (2.2)
and estimated formulas: (2.44) and (2.46) indicated by black dashed-dotted and blue dotted lines,
respectively. We considered 12 cycles of TMZ as in standard fractionation scheme (see Section 2.3.1)
for a virtual patient with LGG of initial volume 40 cm3. (top) Results for  = 0.0004/day, ¸ =
0.4ml/—g/day, k ∈ [0.02, 1] (left) and  = 0.0008/day, ¸ = 0.8ml/—g/day, k ∈ [0.02, 1] (right).
(centre) Results for ¸ = 0.8ml/—g/day, k = 0.3,  ∈ [0.2, 8]×10−3/day (left) and ¸ = 0.4ml/—g/day,
k = 0.6,  ∈ [0.2, 3] × 10−3/day (right). (bottom) Results for  = 0.0004/day, k = 0.3, ¸ ∈
[0.15, 1.5]ml/—g/day (left) and  = 0.0008/day, k = 0.6, ¸ ∈ [0.3, 1.5]ml/—g/day (right).

163] and modelling its concentration dynamics in vitro and in vivo [166, 167, 168]. However
there are fewer mathematical studies of patient response to TMZ in LGGs, see our discussion
in Section 1.6.

Here we intended to construct a mathematical model which would enable understanding
of delayed response to chemotherapy observed in LGGs without using an excessive number of
unknown parameters. Cells were assumed to grow logistically, chemotherapy drug kinetics and
its e�ect on glioma cells was based on TMZ concentration in brain tissue [157] and clinical
observations [151, 69, 70]. Note that even the authors of the very complicated model [168],
constructed for the purpose of describing pharmacokinetics and pharmacodynamis of TMZ,
validated their model for human cerebral tumours on the basis of data of Portnow et al. [157].
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Figure 2.18: Tumour volume evolution for virtual patients simulated from system (2.2). Times to
radiological progression estimated from Eq. (2.44) and (2.46) are marked with vertical black dashed-
dotted and blue dotted lines, respectively. Values of parameters were k = 0.5, ¸ = 0.4ml/—g/day and
 = 0.005=day. The start and the end of TMZ treatment are marked with vertical dashed lines. (left)
9 TMZ cycles of 34 days with doses given every 2 days for a total of 10 doses per cycle. The dose
per fraction was d=100 mg/m2. (right) 18 TMZ cycles of 77 days with doses given every 7 days for
a total of 10 doses per cycle. The dose per fraction was d=50 mg/m2. Relative di�erences between
times free of progression calculated from Eq. (2.44) and estimated from simulations were 0.026756
and 0.025303 years, respectively. Relative di�erences between times free of progression calculated
from Eq. (2.46) and estimated from simulations were 0.0053011 and 0.024816 years, respectively.

It is remarkable that a simple model such as the one presented here with essentially only three
unknown parameters (¸, , k) is able to describe the response of real patients to a variable
number of cycles of TMZ.

The model also shows a correlation between a short time to radiological progression and
a poor virtual patient outcome. We may conclude that time to radiological progression can
be useful as a measure of tumour aggressiveness due to its dependence on tumour-speci�c
parameters: proliferation rate  and TMZ cell kill strength ¸ (see Figures 2.11, 2.12). Our
data on patients treated with �rst-line TMZ suggests likewise that despite other therapies
used in the follow-up, patients who had shorter estimated tRP had worse prognosis. Such
observation has been made for radiotherapy [169, 170], but so far no similar analysis of response
to TMZ has been done. The velocity of tumour decrease after radiotherapy (or equivalently
time to radiological progression) is strongly associated with the risk of rapid progression and
poor overall survival. Here we suggest a similar result for the response to chemotherapy, namely
that short time to radiological progression results in shorter overall survival.

This outcome makes us think of the possibility of using chemotherapy to probe tumours,
hence providing estimates of tumour-speci�c parameters  and ¸. We could apply a small
number of cycles of TMZ causing minimal toxicity and monitor the radiological tumour re-
sponse to chemotherapy. At least two measurements before and three after TMZ onset would
be necessary to assure the reasonable measurement error. We predict that the time horizon
would be of around 2 years from the time of the �rst MRI scan. We believe it could be fea-
sible as even up to now there were patients with MRI done three times a year. Based on our
database we presume that there will be no progression at this time horizon. Such a procedure
can be used as a novel way to assess tumour aggressiveness. Our mathematical model suggests
that tumours attaining their minimal volume early after a short course of TMZ treatment (has
shorter tRP) may be more aggressive, therefore, in such cases the remaining TMZ doses have
to be �nished as soon as possible and other therapeutic options (further surgery if feasible or
radiotherapy) should be considered. Such a concept can be supported also by the in vitro re-

54



1 4 7
; (1/day) #10-3

0

0.25

0.5

D
iff

er
en

ce
 in

 "
 V

 (
%

)

0.2 1.5 3
; (1/day) #10-3

0

0.35

0.7

D
iff

er
en

ce
 in

 "
 V

 (
%

)
0.2 0.8 1.5

, (ml/7g/day)

0

0.2

0.4

D
iff

er
en

ce
 in

 "
 V

 (
%

)

0.3 0.8 1.5
, (ml/7g/day)

0

0.25

0.5

D
iff

er
en

ce
 in

 "
 V

 (
%

)

0.5 1
k

0

0.25

0.5

D
iff

er
en

ce
 in

 "
 V

 (
%

)

0.5 1
k

0

0.2

0.4

D
iff

er
en

ce
 in

 "
 V

 (
%

)

Figure 2.19: Relative percentage di�erences between ∆V calculated from simulations of system (2.2)
and Eq. (2.48). We considered 12 cycles of TMZfor a virtual tumour of initial volume 40 cm3.
(top) Results for  = 0.0004/day, ¸ = 0.4ml/—g/day, k ∈ [0.02, 1] (left) and  = 0.0008/day,
¸ = 0.8ml/—g/day, k ∈ [0.02, 1] (right). (centre) Results for ¸ = 0.8ml/—g/day, k = 0.3,
 ∈ [0.2, 8]× 10−3/day (left) and ¸ = 0.4ml/—g/day, k = 0.6,  ∈ [0.2, 3] × 10−3/day (right).
(bottom) Results for  = 0.0004/day, k = 0.3, ¸ ∈ [0.15, 1.5]ml/—g/day (left) and  = 0.0008/day,
k = 0.6, ¸ ∈ [0.3, 1.5]ml/—g/day (right).

sults of Roos et al. [152], who have showed that higher proliferation rates accelerated apoptosis
after TMZ treatment, i.e. a shorter tRP.

This idea resembles that described in [1], but with chemotherapy instead of radiother-
apy. Although the modelling principles are similar, from the clinical point of view the use of
TMZ is a much more interesting as a way to probe a tumour than the use of radiotherapy as
its side-e�ects are larger, long-term and non-reversible. Moreover, radiotherapy is known to
induce changes in the MRI scans due to in�ammation which may distort the analysis of the
tumour response. Finally, TMZ is easily managed because it is administered orally.

We have also performed a mathematical analysis of a more general model. We take into
account the possibility that a more general tumour growth function may �t better to the
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individual patients data. Thus, we only assume its general properties (determining its shape)
and consequently consider a broader class of possible functions. In addition, we incorporate
a new component to tumour growth term � a parameter describing the e�ectiveness of the
competition between damaged cells and proliferating ones.

We prove the existence and uniqueness of solutions together with the existence of the
invariant set. We study the long time behaviour of the model depending on its parameters,
including the ones describing chemotherapy e�ect. We discus stability of the steady states
for constant chemotherapy and we prove the condition under which the trivial steady state is
asymptotically stable in the case of periodic treatment. We also show that there exist periodic
solutions for some speci�c cases of periodic treatment function.

Our generalised model given by system (2.15) together with Theorem 2.12 make us think
of possible therapeutical implications. Theorem 2.12 gives us the optimality condition, i.e.
that the model solutions converge to the zero steady state for z̄ ≥ 1. Such condition refers to
the situation when some concentration of drug is present in the bloodstream and in the tissues
and its mean in�uence on the tumour is greater or equal the proliferation rate. Note that in
the chemotherapy scheme most frequently used for LGG patients equal doses of TMZ (namely
150 mg per m2 of body surface area) are administered. However, it has been noted, both
in clinical and mathematical studies [171, 61, 172, 74, 22, 173], that such a dose seems not
to be the most appropriate for slowly-growing LGGs. Theorem 2.12 suggests the possibility
of estimation of the minimal dose d allowing to eradicate tumour under assumption that
drug doses are administered in�nitely many times and that tumour cells do not acquire drug
resistance. Clearly, in real life one should focus on treatment schemes with �nite time horizons.
However, a signi�cantly prolonged chemotherapies could be considered such as therapies lasting
until obtaining an expected response to treatment. In [174], Khasraw et al. report cases of
LGGs patients for whom chemotherapy treatment administered for even 5-8 years did not
cause serious side e�ects. Thus, on the basis of this clinical study we presume that prolonged
chemotherapy could remain safe for LGG patients. In addition, Mannas et al. conclude
that long-term chemotherapy with TMZ could be considered a therapeutic option as long as
appropriately monitoring is assured [175].

Now, we use theory developed in this chapter to estimate minimal e�ective dose in the case
of long time treatments. In order to do so, we use parameters values estimated in Table 2.1.
Parameters ¸, that describes the e�ectiveness of the drug, and  providing the proliferation
rate of LGG were assumed to be patient-speci�c, thus, we used ranges of parameters as in
Table 2.3. Finally, considering model rescaling (2.10) and de�nition of fraction of drug dose
acting on tumour tissue given by Eq. (2.28), we have

z̄ =
p

T–
· ¸

˛bd ≥ 1 =⇒ d ≥ T–

p¸˛b
, (2.49)

where p = 5 and T = 28 are the values mimicking the standard chemotherapy scheme. Hence,
we estimate that minimal eradication dose is between 5.42 mg and 94.9 mg per m2 of body
surface area for pairs of patient-speci�c parameters (,¸) estimated for patients, cf. Table 2.3.
Clearly, dose of 5.42 mg is signi�cantly smaller than the dose that is administered in a clinical
practice. This result suggests that metronomic therapy* could be a good option for successful
treatment of selected patients. There have been already several studies analysing metronomic
chemotherapy for HGGs, see e.g. [178, 179]. As for LGGs, Lashkari et al. in [172] studied

*Metronomic chemotherapy is a schedule consisting of many, equally spaced and generally low doses of chemother-
apeutic drug without extended rest periods, see e.g. [176, 177].
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two alternative treatments with smaller TMZ dose. The authors concluded that metronomic
regimens of TMZ may result in better LGGs response comparing to the conventional regimen,
however there is a need for randomised clinical trials to verify this result. Also recent observa-
tions of the bene�ts of metronomic chemotherapy with other drug (vinblastine) administered
for a limited number of LGG patients may be related to our analysis [180]. Our result also
indicates that more patient speci�c therapy schemes should be designed to obtain the best
e�ectiveness. It also points out that the proper dosing should be decided on the basis of
tumour-speci�c characteristics. We would also like to underline that doses smaller than those
calculated from Eq. (2.49) could not be e�ective in treating LGGs in an in�nite time horizon,
consequently they should not be considered for the realistic, �nite time schemes.

However, in reality one also need to take into account the possibility of drug resistance,
that can be acquired by tumour, which is beyond the phenomena explored here. In the future
we plan to extend the model in order to be able to broaden the possible applicability of this
results and address other clinically-driven problems such as drug resistance or cytoxicity, being
a strongly limiting factor of any chemotherapy. Such a task would require inclusion of more
terms and variables in the model and more biomedical data in order to validate the model and
estimate model' parameters. In particular, the main cytotoxic e�ects induced by TMZ are due
to haematologic toxicity [56, 163, 181, 182]. In order to include them in considered model, one
would require additional data from systematic blood morphological patients tests, preferably
before and during the treatment with TMZ. Moreover, in [183, 184] it has been discussed
that TMZ e�ectiveness in treating gliomas is limited not only due to cytotoxicity, but also
due to the drug in�uence on endothelial cells. If we wish to include also that phenomenon
in our model we would need to consider additional variable in the system. Consequently, the
model should be calibrated with additional data. Having proper model of toxicity we would
be able to �nd the minimal doses and minimal frequency of therapy such that the solution
(namely tumour mass) stays below a given threshold and the chemotherapy does not cause too
large side e�ects. Unfortunately, at the moment, we do not have an access to patients TMZ
cytotoxicity data nor the quantitative data reporting this speci�c drug e�ect on endothelial
cells.

On the other hand, it is known that the e�ect of acquiring resistance can be modelled
in various ways, see e.g. [185, 186, 187, 188] and references therein. However the selection
of suitable approach needs to be deeply investigated, mainly by taking into account available
data and the possibility of veri�cation of obtained results.

To conclude, we plan further studies aimed to �nd the best possible way to build and
validate models describing the above phenomena in more detail which would also be used to
address questions concerning LGG which remain open.
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Chapter 3

Mathematical model of malignant

transformation

In this chapter, we formulate a mathematical model describing the growth of LGG and the
process of its transformation to a more malignant higher-grade counterpart, see Section 1.5
for the description of malignant transformation. We prove the existence, uniqueness and non-
negativity of solutions of the proposed system of reaction-di�usion equations as well as study
the stability of space homogeneous steady states and show that Turing instabilities do not
arise. We �t the proposed model to patients data and discuss the important relations between
model parameters and patient prognosis. Furthermore, we provide estimates of LGG radius
and the time when malignant transformation could begin.

3.1 Formulation of mathematical model

Our mathematical model describes the change of the tumour cell density in time and space
due to the interplay of net proliferation and net di�usion of cancer cells, as in some previous
works [98, 29, 1, 124].

Various researchers have suggested that malignant transformation of LGGs may be induced
by a high cell density focus [1, 23, 189, 120, 121]. As a result of elevated cellular density,
tumour cells may start having a limited access to nutrients that causes major changes in the
tumour microenvironment, including vessels damage, generation of hypoxic foci, stabilisation
of hypoxia-dependent signalling molecules like hypoxia-inducible factor-1 (HIF-1) and increase
of genomic instability [190, 191, 119, 120]. These changes lead to the appearance of more
aggressive tumour cell phenotypes and/or additional mutations, see also Figure 1.6.

Thus, we base our model of malignant transformation on the assumption that the �rst step
in this phenotypic transition is the growth of the tumour density beyond a certain critical level
Lcrit initiating a non-reversible damage to the microenvironment [121]. Beyond that point,
hypoxia arises and angiogenesis is triggered. However, this microvasculature is aberrant and
leads to both chronic and acute hypoxia events. This abnormal vasculature plays a key role in
the development of more aggressive phenotypes [119, 192] and an enhanced genetic instability.

Malignant transformation cannot be reversed, once the transformation is triggered, cells
cannot change their phenotype to a less aggressive one because of the accumulation of new mu-
tations. We assume that after the onset of malignant transformation the process of acquiring
a more aggressive high-grade behaviour by glioma cells requires some time fi .
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The behaviour of cells before and after transformation di�ers from one another , which
is re�ected in the model by di�erent proliferation and motility rates (L,DL and H,DH for
LGG and HGG, respectively). The density of LGG cells is described by a non-negative function
L : R+

0 × Ω→ R, where Ω describes the brain domain under consideration. The spatiotemporal
density of the more malignant (transformed) cells is described by a function H : R+

0 ×Ω→ R.
Then, the full mathematical model for the evolution of both tumour cells populations is given
by the following system of Fisher�Kolmogorov�type equations:

@L

@t
= LL

“
1− L+H

K

”
+DL∆L− 1

fi
S
“
L+H
K

”
L, (3.1a)

@H

@t
= HH

“
1− L+H

K

”
+DH∆H + 1

fi
S
“
L+H
K

”
L (3.1b)

with initial conditions:

L(0, x) = L0(x) ∈ C2
“

Ω̄
”

, H(0, x) = 0 (3.1c)

and homogeneous von Neumann boundary conditions:

@L

@n

˛̨̨̨
˛
@Ω

=
@H

@n

˛̨̨̨
˛
@Ω

= 0. (3.1d)

All model parameters are assumed to be positive due to their possible biological interpretation.
In this chapter we express critical glioma density triggering malignant transformation Lcrit in
terms of the maximal cellular density K, that is Lcrit = ˛K for some ˛ ∈ (0, 1). Function
S : R→ [0, 1], used to describe the malignant transformation of LGG cells to HGG cells,
is assumed to be a C2 function of total glioma density measured in the units of maximal
cell density K. We assume that that S(T ) = 0 for T < ˛ − ∆crit, S(T ) is increasing for
T ∈

h
˛ − ∆crit,˛ + ∆crit

i
and S(T ) = 1 for T > ˛ + ∆crit, where ∆crit is the width (or

sensitivity) of the switch function. The speci�c forms of the initial function L0 and the switch
function S taken for numerical simulations are given in Section 3.3.

3.2 Mathematical analysis of the model

For the purpose of mathematical analysis of system (3.1) it is convenient to rescale time and
space. Let us take

u (t̃, x̃) = L (t̃, x̃) =K, v (t̃, x̃) = H (t̃, x̃) =K,

where
t̃ = Ht and x̃ =

q
H=DH x

are the rescaled time and space variables, respectively. In new variables system (3.1) reads

@u

@t
= D∆u + u

“
1− u − v

”
− ‚S(u + v)u, (3.2a)

@v

@t
= ∆v + v

“
1− u − v

”
+ ‚S(u + v)u, (3.2b)

where we have omitted tildes to simplify notation, (t, x) ∈ [0, +∞) × Ω, D = DL=DH,
‚ = 1=(fiH) and  = L=H. We consider von Neumann boundary condition

@u

@~n

˛̨̨̨
˛
@Ω

=
@v

@~n

˛̨̨̨
˛
@Ω

= 0 (3.2c)
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and initial condition
u(0, x) = u0(x) ∈ [0, 1], v(0, x) = 0. (3.2d)

Note that D ∈ (0, 1) and  ∈ (0, 1) due to the assumption that proliferation rate and motility
rate are higher for HGGs cells. The set Ω is an open subset of Rn with a smooth boundary.
We also assume that initial function u0 ∈ C2

“
Ω̄
”
.

Theorem 3.1. There exists local unique classical solution to system (3.2).

Proof. The reaction term of system (3.2) and initial conditions are C2 functions, thus, solution
to system (3.2) exists locally and is unique due to general properties of reaction-di�usion
systems, see e.g. Theorem 3.3.3. in [193].

Theorem 3.2. For (t, x) ∈ [0, +∞) × Ω we have u(t, x), v(t, x) ≥ 0, where (u, v) is the

classical solution to system (3.2). Moreover, if initial condition u0(x) ≤ 1 we have u(t, x) ≤ 1

for all (t, x) ∈ [0, +∞)× Ω.

Proof. First, notice that for u ≡ 0 Eq. (3.2b) takes the following form:

@v

@t
= ∆v + v(1− v),

which is a FKE. Together with non-negative initial condition and von Neumann boundary
condition, a solution to this equations is non-negative. From non-negativity of function S we
obtain the non-negativity of v .

Knowing that v(t, x) ≥ 0 for (t, x) ∈ [0, +∞)×Ω, we conclude that the solution of FKE

@u

@t
= D∆u + u(1− u),

with von Neumann boundary condition is a sub-solution of Eq. (3.2a). Similarly, u(t, x) ≡ 0 is
a super-solution. As a consequence, using the basic properties of FKE and invariant rectangle
theorem (cf. [194]) we deduce that u(t, x) ∈ [0, 1] for all (t, x) ∈ [0, +∞)× Ω.

Note that the solution v of system (3.2) does not have to be bounded by 1.

Example. Let us assume that Ω = [−R,R] for some R ∈ R+ and consider new variable
w = u + v . Then, system (3.2) is of a form:

@u

@t
= D∆u + u(1− w)− ‚S(w)u,

@w

@t
= ∆w + (D − 1)∆u +

“
(− 1)u + w

”
(1− w),

(3.3)

with boundary condition given by Eq. (3.2c). Let us consider initial condition given by:

u(0, x) = u0(x), w(0, x) ≡ 1, (3.4)

where function u0(x) equals a − x2 for some a ∈ (0, 1) and for x ∈ (−›, ›) and outside this
set we extend function a− x2 smoothly and monotonically. Thus, we have

@w

@t

˛̨̨̨
x=0

= 2(1−D),

which is positive due to assumption that 0 < D < 1. As a consequence, the solution w of the
system (3.3) increases above value 1.

60



This example shows the limit of possible use of system (3.2). Set [0, 1]× [0, 1] is not invari-
ant for system (3.2) in the case of non-zero di�usion coe�cient, i.e. even if initial functions
are within the square [0, 1] × [0, 1], the model solutions could leave it. As a consequence,
the model should not be used for some speci�c cases when the tumour cells' density is very
close to its maximal possible value. However, as stated at page 58, the motivation behind the
formulation of the original system (3.1) was to describe quantitatively the process of malig-
nant transformation of LGGs and we do not focus here on the description of growth of already
transformed HGG cells. The growth of the tumour composed mostly of HGG cells, which
is signi�cantly di�erent from the behaviour of LGG, has been studied thoroughly in various
research papers, see Section 1.6.

It is known that in the case of systems of two or more reaction-di�usion equations a much
larger range of possible phenomena can occur than in the case of one reaction-di�usion equa-
tion. Alan Turing observed that a steady state that is stable for ODE system can become
unstable with respect to small spatial perturbations in the presence of di�usion. Then di�u-
sion is a driving force of the spatial pattern that occurs in the real world for instance in the
form of �ngerprints, strips on zebra and skin patterns on �shes. Such phenomenon is called
Turing bifurcation or Turing instability, see for instance [98, 195].

Following [98], we determine the stability of spatially homogeneous steady states of sys-
tem (3.2) and the equivalent space homogeneous model:

@u

@t
= u

“
1− u − v

”
− ‚S(u + v)u,

@v

@t
= v

“
1− u − v

”
+ ‚S(u + v)u

(3.5)

together with initial condition (3.2d). System (3.5) has two steady states:

P1 = (0, 0) and P2 = (0, 1).

Proposition 3.3. Steady states P1 and P2 of system (3.5) are unstable and locally stable,

respectively.

Proof. In order to verify the stability of steady states P1 and P2, we study the behaviour of
the linearisation of the system (3.5) near those equilibrium points. The Jacobi matrix of the
right-hand side function of system (3.5) calculated at the steady state P = (ū, v̄) reads

J(P ) =

24“1− 2ū − v̄)− ‚S(ū + v̄)− ‚S′(ū + v̄)ū −ū − ‚S′(ū + v̄)ū

−v̄ + ‚S(ū + v̄) + ‚S′(ū + v̄)ū 1− ū − 2v̄ + ‚S′(ū + v̄)ū

35 .

Thus, Jacobi matrices at the steady states P1 and P2 are

J(P1) =

"
 0

0 1

#
, J(P2) =

"
−‚ 0

‚ − 1 −1

#
,

respectively. We establish the asymptotic stability of steady states using the Hartman�Grobman
theorem. P1 is an unstable node as both eigenvalues of J(P1) are real and positive. On the
other hand, J(P2) has real negative eigenvalues, and hence, P2 is a stable node.

Proposition 3.4. The local stability of spatially homogeneous steady states P1 and P2 of

system (3.2) is the same as for system (3.5) with initial condition (3.2d).
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Proof. In order to verify the stability of spatially homogeneous steady states of system (3.2)
we linearise it around the steady state, obtaining for i ∈ {1, 2} system:

@z

@t
= J(Pi)z + D̃∆z , eD =

"
D 0

0 1

#
.

Thus, we need to study the following matrices:

J(Pi)− k2

"
D 0

0 1

#

for i ∈ {1, 2} and any wave number k being eigenvalue of Laplacian, i.e. k is the eigenvalue
of the problem

∆W + k2W = 0

with zero �ux boundary condition on Ω, see e.g. [98, 196]. The values of k depend on the
space Ω, however here we do not need to �nd the exact values of k . For the corresponding
reaction-di�usion system (3.2) zero is always the eigenvalue of Laplacian, as we consider von
Neumann boundary conditions. As a result, the stability of steady state P1 is the same as in
the case of system without di�usion. It is also true for P2 which is locally stable for system
(3.5), but also for system (3.2), as k2 ≥ 0.

As a consequence of Proposition 3.4 we conclude that for both of spatially homogeneous
steady states of system (3.2) the di�usion-driven instability is impossible.

Theorem 3.5. Let Ω ⊂ Rn be an open set with a smooth boundary. Then system (3.2) does
not exhibit Turing instabilities.

3.3 Numerical results

In what follows, we assume that the switch function S, describing the malignant transformation
in system (3.1), have a form inspired by [119]:

S(T ) =

8>>>><>>>>:
0 for T < ˛ −∆crit

0.5

"
1 + coth(1) tanh

 
T − ˛
∆crit

!#
for T ∈

h
˛ −∆crit,˛ + ∆crit

i
1 for T > ˛ + ∆crit,

(3.6)

where T is the total tumour density expressed in the units of maximal cellular density K, ˛ is
the fraction of maximal cellular density triggering malignant transformation and ∆crit is the
width (or sensitivity) of the switch function.

System (3.1) was simulated using the standard Matlab PDE solver pdepe. Since the bulk
dynamics of FK-type equations does not depend much on the spatial dimensionality (see [192]
for a similar example) we chose to simulate model equations in a one-dimensional domain. In
order to avoid the boundary e�ects and focus on the dynamics of the tumour bulk, we took
the computational domain Ω to be 10 cm which is much larger than the typical tumour sizes.

As in [98, 25] we assume that initial cells' density distribution is a Gaussian one with a mean
cell density h0 at the centre of the tumour x = 0, i.e.

L0(x) = h0 exp

 
−x

2

ff

!
, (3.7)

where ff is a measure of the spread of LGG cells.
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3.3.1 Values of the model parameters

System (3.1) with a function S de�ned by Eq. (3.6) and initial condition for LGG cells given
by function (3.7) has nine parameters describing the dynamical properties of the two glioma
cells compartments and the phenomenon of malignant transformation.

The maximal tumour density K is estimated by taking the typical astrocyte size to be
about 10 —m in diameter leading to a value 108cells/mm3 [197, 108].

The parameters L, DL and H, DH quantify the overall biological aggressiveness of gliomas
growth, e.g. proliferation rates L and H are based on the observable values of tumour cells
doubling times. We assume the LGG proliferation rate L to be larger than 0.0001/day,
which is ten times smaller than the smallest proliferation rate observed in the study of Gerin
et al. [25]. As an upper bound for L we take a value 0.008/day, which is the smallest value
of proliferation rate estimated for HGGs [29]. The di�usion coe�cient for LGGs is chosen in
the range between 0.0003 and 0.008mm2/day. These values are, respectively, around three
times smaller than minimal and three times larger than the maximal values for LGG di�usion
coe�cients estimated in [25]. For HGG cells, we assume that they proliferate with a typical
rate 0.042/day observed in this kind of tumours, see e.g. [198, 29] and move with di�usion
coe�cient between 0.0008 and 0.9mm2/day. These values are close to minimal and maximal
di�usion rates estimated in [29].

The value of critical density Lcrit triggering microenvironment damage and the malignant
transformation is taken to be around 60% of the carrying capacity K, in agreement with the
previous estimates [1, 26]. The switch function sensitivity ∆crit is arbitrarily chosen to be 5%.

The time fi needed for a high grade tumour to arise corresponds to the time required for
the development of hypoxia in the presence of a high cellularity, the generation of transient
hypoxic events leading to the development of more aggressive phenotypes and higher genetic
instability leading to new mutations. We can estimate fi to be of the order of a few months
(100�200 days) [3].

In order to estimate the tumours' sizes evolution in time on the basis of our reaction-
di�usion system, we introduce the natural notion of �detection threshold�, i.e. the minimal
tumour cell density that can be detected as tumour tissue. In T2/FLAIR imaging sequences
the delineated abnormality corresponds to the presence of oedema, see [199]. In LGGs, oedema
correlates locally with the presence of glioma cells [189]. We assumed, in line with previous
works [108, 23, 200], that the T2/FLAIR signal is detectable above a certain local cell-density
threshold. The analysis of biopsies in LGG patients suggests that the detection threshold for
gliomas should be �xed between 10 and 20% of the maximal local tissue density K [189]. In
the following, similarly to [108, 124], we assume that the threshold of detection of gliomas
d equals 0.16K, what allows to calculate the diameter of the radiologically detectable part of
the simulated tumour due to system (3.1).

The tumour cell density h0 leading to relevant symptoms and disease detection is di�cult
to estimate as it can vary broadly depending on the tumour location. The normal physiological
value of cellularity of brain tissue is around 10-15%. LGGs are characterised by an increased
cellularity with respect to the healthy brain tissue. We assume that the minimal mean density
leading to glioma diagnosis is around 0.3K as in [26]. Note that such value is bigger than the
presumed value of the detection threshold d . This choice implies that the symptoms occur
when the tumour cells density is 30% of the maximal tissue density. Thus, we impose the initial
mean density h0 to be no smaller than 0.3K. On the other hand, as we consider only tumours
before malignant transformation, h0 should be smaller than Lcrit − ∆critK = 0.57K, which
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corresponds to minimal density causing the onset of LGG cells transformation, as discussed
previously.

Typical values together with units and the references used in this chapter are summarised
in Tables 3.1 and 3.2.

Table 3.1: Typical parameter values for system (3.1)

Param. Description Value Units References

K carrying capacity 108 cells/mm3 [197]
(maximal cellular density)

H proliferation rate of HGG cells 0.042 1/day [29, 198]
d detection threshold 0.16K cells/mm3 [189, 108, 23]
Lcrit tumour cell density 0.6K cells/mm3 [26]

causing malignant transformation
∆crit switch function sensitivity 0.05 cells/mm3 Assumed
fi time of change to HGG phenotype 100 days Estimated

Table 3.2: Ranges of �tted parameters for system (3.1)

Param. Description Range Units References

h0 initial mean LGG cell density 0.3K�0.57K cells/mm3 [26]
L proliferation rate of LGG cells 0.0001�0.008 1/day [25, 29]
DL di�usion rate of LGG cells 0.0003�0.008 mm2/day [25]
DH di�usion rate of HGG cells 0.0008�0.9 mm2/day [29, 125, 108, 102]

3.3.2 Model �tting to patients data

A retrospective study of the volumetric growth of LGGs was developed to verify the potential of
the mathematical model to describe the malignant transformation. Initially, for the presented
study 82 patients diagnosed with LGG and followed with MRI scans were considered, see details
in Section 1.7. The criteria for patient inclusion in this study were:
(i) �rst biopsy/surgery con�rmed LGG (astrocytoma, oligoastrocytoma or oligodendroglio-

ma), according to the WHO classi�cation at the time of diagnosis,
(ii) second biopsy/surgery con�rmed HGG (anaplastic oligodendroglioma, anaplastic astro-

cytoma, anaplastic oligoastrocytoma or glioblastoma),
(iii) availability of at least 5 MRI scans before the histological con�rmation of the malignant

transformation,
(iv) no treatment given in the period of study,
(v) no decrease of total tumour size observed in the absence of treatment.

Among all considered patients, 32 had con�rmed malignant transformation and 8 satis�ed all
of the inclusion criteria of the study. Table 3.3 summarises the included patients data.

Radiological glioma growth was quanti�ed by the measurements of the tumour diameter
on successive T2 (or FLAIR) MRI scans as described in Chapter 1. Longitudinal data of mean
tumour diameter evolution was used to �t the parameters of system (3.1). We �xed the initial
condition (3.7) on the basis of the �rst MRI scan for each patient. Namely, for each patient
the variance of LGG cells distribution was computed through

ff = −r 2
0 = ln

 
d

h0

!
, (3.8)
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Table 3.3: Characteristics of patients selected in the study

Age at diagnosis, mean (st. deviation), 37.89 (13.66)
Sex, M/F 3/5
Histology at diagnosis

Oligodendroglioma 2
Oligoastrocytoma 2
Astrocytoma 4

Ki-67 LI at diagnosis, mean (st. deviation) 4.71% (1.72%)
Histology after malignant transformation

Anaplastic oligodendroglioma 4
Anaplastic astrocytoma 4

Ki-67 LI after malignant transformation, mean (st. deviation) 14.25% (4%)

where r0 is the radius of a tumour calculated from the �rst MRI scan considered in the study,
d is the detection threshold and h0 is the mean cell density. Parameters h0, L, DL andDH were
considered to be patient-speci�c, and thus, �tted for each patient. The remaining parameters
were chosen as described in Section 3.3.1. The error between measured tumour sizes and
model outputs for each patient was based on the relative least squares method. The �tted
parameters were obtained as a result of the sum of squared relative residuals minimalisation
performed through particle swarm optimisation algorithm, cf. Section 1.7. For the purpose of
�tting LGGs evolution, 100 iterations of this algorithm were computed for each patient and
the size of a swarm in each iteration step was set to be 100. For each patient, the set of �tted
parameters (h0, L,DL,DH) were �tted at once with starting point chosen visually.

For each patient included in the study, we show in Figure 3.1 both the real tumour diameter
longitudinal data obtained from the MRI scans and the results of �tting to system (3.1).
Parameters values obtained by model �tting to patients data together with errors of �t are
listed in Table 3.4. The model dynamics shows a very good agreement with the real dynamics
despite the use of a minimal number of parameters.

Table 3.4: Model parameters �tted for each patient and errors of �ts

patient id h0=K L (/day) DL (mm2/day) DH (mm2/day) error

60 0.3404 0.001223 0.001227 0.004056 0.38%

61 0.3005 0.000253 0.000306 0.894292 0.21%

65 0.5435 0.000447 0.000858 0.745564 0.14%

66 0.5371 0.000243 0.000550 0.008817 0.08%

141 0.4613 0.001789 0.003597 0.015512 0.19%

165 0.5692 0.000553 0.0007558 0.001919 0.83%

195 0.4602 0.000764 0.007971 0.173277 0.45%

211 0.4144 0.002387 0.007383 0.087882 0.02%

mean 0.4533 0.0009 0.0028 0.2414 0.2875%
(virtual patient)

st. deviation 0.0973 0.0008 0.0031 0.3639 0.2622%

3.3.3 Evolution of virtual patients' tumours

The typical evolution of a virtual tumour governed by system (3.1) is presented in Fig-
ures 3.2 and 3.3. Parameters h0, L, DL, DH of the virtual patient were �xed to the
mean values of parameters �tted to patients data, see Table 3.4. The initial condition for
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Figure 3.1: Tumour diameter evolution for patients with con�rmed malignant transformation of LGG.
The diameters calculated from MRI scans (red circles) and from the �tted mathematical model
(3.1) (solid blue lines) are shown. The vertical black dashed lines mark the times when malignant
transformation was con�rmed histopathologically. The values of parameters ff, h0, L, DL, DH were
di�erent for each patient (see Table 3.4). The parameter ff was calculated using Eq. (3.8). Other
parameters values are listed in Table 3.1.
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the simulation is
L(0, x) = h0 exp

“
−x2=235.012

”
, H(0, x) = 0

with x measured in mm, what gives an initial tumour diameter of 31.278 mm, being the
mean value of initial tumour diameters of patients selected for model �tting. The remaining
parameters used in the simulations are �xed as listed in Table 3.1 and in penultimate row of
Table 3.4.

When the cell density of LGG cells (Figures 3.2(a) and 3.3(a)) reaches the critical level
(Figure 3.3(b)) HGG cells appear and start growing (Figure 3.3(c)) until they completely
dominate the dynamics (Figure 3.2(b) and Figure 3.3(d)). This change in a cellular density is
observed in patients as an appearance or a signi�cant increment in contrast-enhancing areas
in post-contrast T1+Gd MRI scans in the areas where the malignant transformation occurs. It
also causes a considerable increase in the total tumour mass that is re�ected in solutions of our
model, see Figure 3.3 and also visible in di�usion-weighted imaging in the form of a restriction
of the water mobility in the corresponding tumour areas [201]. Moreover, after some time the
tumour is almost completely composed of the high-grade tumour cells as observed in clinical
practice and also re�ected by our model.

Figure 3.2: Spatiotemporal simulations of the malignant transformation of LGGs. Pseudocolour plots
represent densities of (a) LGG cells, (b) HGG cells and (c) total (LGG + HGG) population with
maximal density rescaled to 1. The vertical and horizontal axes correspond to the time in years and
space in mm, respectively. A virtual tumour evolves according to system (3.1) with initial condition
and the values of parameters as in Section 3.3.3.

3.3.4 LGG proliferation rate determines prognosis

To correlate the numerical simulations with the patient prognosis we assume that a tumour of
a certain size is not compatible with life as stated, among others, in [108, 102]. This critical
size is usually referred to as �fatal tumour burden�. In this chapter, we �x the value of the
fatal tumour burden to be equal to the tumour of 8 cm in diameter. Although this is critically
dependent on tumour location, in general, this is believed to be a reasonable approximation.
The assumed value of fatal tumour burden is larger than the value suggested in previous studies
of HGG growth with the use of mathematical models [108, 102] due to the fact that in our
database there were reported tumours of diameter even greater than 7.5 cm. Moreover, the
slow evolution of LGGs allows the brain to remap neurological functions to other brain areas
enabling these tumours to grow to larger sizes in comparison to HGGs. In our mathematical
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Figure 3.3: Snapshots of the evolution of the LGG and HGG cells densities solving system (3.1) for
the parameter values and initial conditions as described in Section 3.3.3. The densities of LGG cells
L(x , t) (red dashed lines), HGG cells H(x , t) (blue dotted lines) and the total tumour (black solid
line) are shown. The horizontal blue lines correspond to the value Lcrit (solid line), Lcrit −∆crit (blue
dotted line) and Lcrit +∆crit (blue dashed-dotted line). The value of the detection threshold is marked
with dashed horizontal lines. Results are shown for time t equal (a) 12, (b) 20, (c) 22 and (d) 25
months.

framework, we treat the time ranging from the virtual tumour detection to the time when it
reaches the fatal tumour burden size as the estimate of overall survival, cf. Section 2.3.3.

Based on numerical simulations of system (3.1) we conclude that the parameter L has
a large in�uence on the overall survival of virtual patients, estimated as described in Sec-
tion 2.3.3. Figure 3.4 presents overall survival as a function of both proliferation rates for
LGG and HGG in the absence of any treatment and the remaining parameters �xed to the
mean values obtained from �t to real patients data (in the penultimate row of Table 3.4).
We observe that changes in H have a minor e�ect on survival. However, a modi�cation of
L, the proliferation rate in the slowly growing stage of the disease, a�ects very signi�cantly
the virtual patient survival. For the mean value of proliferation rate L = 0.0009/day, overall
survival for virtual patients varies from 3.7222 years (for H = 0.008/day) to 2.1944 years (for
H = 0.08/day). For the typical value of H = 0.042/day (see Table 3.1) virtual patient sur-
vival varies from 22.2778 years (for L = 0.001/day) to 1.0556 year (for L = 0.008/day). This
is an expected outcome of the model since in previous works [115, 116, 118, 124] it has been
shown that the velocity of LGG growth is a prognostic factor for malignant transformation-free
survival and overall survival. It is also re�ected in our model.

This is an interesting result which can have an in�uence on treatment planning as nowa-
days in many cases more intensive therapies such as radiotherapy or even signi�cantly less
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Figure 3.4: Overall survival for virtual patients with di�erent proliferation rates of LGG and HGG cells
evolving as indicated by system (3.1). The initial tumour cell densities and parameters for virtual
patients were taken as in Section 3.3.3.

toxic chemotherapy are still reserved until there are signs of radiological progression to HGG
(e.g. spots of contrast enhancement on T1+Gd MRI scans), cf. Section 1.5.

Although an inclusion of treatment into the model and further analysis are needed, our
results indicate that preventing or delaying malignant transformation should be the main ob-
jective of LGGs care. Thus, it may be better to use more aggressive interventions earlier than
to wait and treat already transformed and fast-growing tumours. One can base the treat-
ment decisions on the estimates of the tumour aggressiveness and predicted time to malignant
transformation which can be obtained from imaging [1, 2], taking into account also the lev-
els of cytotoxicity induced. This is in line with recent results suggesting that one may get
a substantial therapeutical bene�t by the use of protracted therapies instead of waiting for the
malignant transformation to occur [26, 134].

3.3.5 The role of the rate of phenotypic change

Intuitively, time fi gives an order of magnitude of the time to complete malignant transfor-
mation once the density reaches the critical level. Figure 3.5 shows the dependence of the
virtual patient survival on the parameter fi for our standard set of parameters described in
Section 3.3.3. In our simulations, the choice of this parameter does not essentially in�uence
survival which di�ers within the range of 3 months, which is not signi�cant when compared
to the average survival of LGGs, being of the order of years [10]. Since the major component
of survival time is given by the survival before the malignant transformation, this time adds
only weeks or at most a few months to the total survival. For the other sets of parameters,
the results are very similar.

3.3.6 Sensitivity analysis

To study the e�ects of parameter value uncertainties for system (3.1) we perform sensi-
tivity analysis, described in Section 1.7. We allow variation in the following parameters:
L, H,DL,DH, r0, h0. Each of these parameters' values is sampled from a uniformly distributed
random variable within the respective range. Ranges of parameters h0, L,DL,Dh considered
for sensitivity analysis are taken as in Table 3.2. The range of parameter r0 is given by the
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Figure 3.5: Relation between the characteristic time of phenotypic change fi and overall survival for
virtual patients. The initial tumour cell densities and parameters' values are taken as in Figure 3.2.

minimal and maximal value of initial tumour radius of patients described in Section 3.3.2, thus,
r0 ∈ [6, 25]mm, whilst the range of H is �xed to be [0.008, 0.08]/day as observed in the study
of HGGs [29]. The remaining parameters' values are taken as in Table 3.1.

In order to perform sensitivity analysis �rst we generate 1000 samples using Latin Hypercube
Sampling algorithm. To measure the linear associations between the result and each parameter
we compute Spearman's partial rank correlation coe�cients.

Firstly, we focus on the sensitivity of the onset of malignant transformation, thus, we
neglect the tumour evolution after the appearance of the HGG phenotype. As a consequence,
we take into account the following parameters: L,DL, h0, r0.

Secondly, we consider the sensitivity of the overall survival calculated for virtual tumours
as described in Section 3.3.4. We study the in�uence of parameters L, H,DL,DH, r0, h0.

Main sensitivity analysis results are shown in Figure 3.6 and Table 3.5. As far as the onset
of malignant transformation is considered, it correlates negatively with proliferation rate L and
the initial mean LGG cell density h0. There are no strong relations between di�usion rate DL or
initial tumour radius r0 with the independent variable (onset of malignant transformation).
Overall survival is observed to have a strong correlation only with L and h0, both of them
are negative. All of the computed correlation coe�cients were statistically signi�cant at the
signi�cance level 0.005.

Table 3.5: Correlation rates between overall survival and onset of malignant transformation
and model parameters

model overall onset of malignant
parameter survival transformation

L -0.877 -0.905
h0 -0.823 -0.908
H -0.526 �
DH -0.47 �
r0 -0.211 -0.212
DL 0.096 0.172
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Figure 3.6: The results of sensitivity analysis. We show the dependence between LGG cells' prolifera-
tion rate L and the onset of malignant transformation (top left), initial mean tumour density h0 and
onset of malignant transformation (top right) for 1000 virtual patients with di�erent values of dif-
fusion rates DL and initial tumour diameters r0. The dependences between LGG cells' proliferation
rate L and overall survival (bottom left), initial mean tumour density h0 and overall survival (bottom
right) were plotted for 1000 virtual patients with di�erent values of HGG cells' proliferation rate H and
di�usion rates DH.

3.4 Analytical estimates of LGG growth and malignant transfor-

mation

3.4.1 Estimates of LGG growth

We assume that initially, until the onset of malignant transformation, the tumour is composed
of LGG cells, and thus, its evolution is described by a single FKE:

@L

@t
= LL

 
1− L

K

!
+DL∆L (3.9a)

with initial condition:
L(0, x) = L0(x), (3.9b)

where the function L0 is given by Eq. (3.7), that is

L0(x) = h0 exp

 
−x

2

ff

!
.

We consider Eq. (3.9a) with no-�ux boundary condition:

@L

@n

˛̨̨̨
˛
@Ω

= 0, (3.9c)
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see also system (3.1). For convenience throughout this section, we use  and D instead of L
and DL.

We assume that until malignant transformation, glioma total density is smaller than the
maximal cellular density in the brain. Therefore, in Eq. (3.9a) we neglect the non-linear term
and approximate the solution L to system (3.9) by a solution u to the following equation
referred to as Skellam equation [100]:

ut = u +D∆u (3.10)

together with free boundary condition and the initial condition

u(0, x) = L0(x),

cf. Eq. (3.9b).
Let us denote by ‹(x) the Dirac distribution centered at x = 0. Note that function L0 given

by Eq. (3.7) is a solution of Eq. (3.10) with initial condition

u(−t̄, x) = ‘0‹(x)

and free boundary condition at time t = −t̄.
If t̄ is the initial time for Eq. (3.10), then the solution in one spatial dimension is given by:

u(t̄ + t, x) =
‘0

2
q
ıD(t̄ + t)

e(t̄+t)e−
x2

4D(t̄+t) . (3.11)

We calculate the values of parameters ‘0 and t̄ by comparing Eq. (3.11) with Eq. (3.7)
describing glioma distribution at the time of �rst MRI scan. Then the measure of the dispersion
ff and the mean tumour density h0 at time t̄ are given by:

h0 =
‘0

2
√
ıDt̄

et̄ , ff = 4Dt̄. (3.12)

Using (3.12) we eliminate t̄ and ‘0 from (3.11), obtaining

u(t̄ + t, x) =
‘0et̄

2
√
ıDt̄

s
t̄

t̄ + t
ete−

x2

4Dt̄
· t̄
t̄+t = h0et

s
ff

ff + 4Dt
e−

x2

ff+4Dt . (3.13)

One should bear in mind that t̄, ‘0 and Dirac delta are only mathematical tools used
here to estimate the onset of malignant transformation. Due to the limitations of continuous
macroscopic models, time t̄ cannot be directly interpreted as a time from the �tumour birth�
till the �rst MRI. Possibly some stochastic model would be a more realistic method to describe
a tumour growth in its initial stage (when it is impossible to diagnose and detect through
imaging techniques). However, the study of tumour growth when there are very few mutated
cells is out of the scope of this thesis and here we use a simpli�cation outlined above.

Hence, we approximate the tumour cell density after diagnosis by the explicit solution of
Eq. (3.10):

u(t, x) = h0et
s

ff

ff + 4Dt
e−

x2

ff+4Dt . (3.14)

The virtual tumour is detectable at time t if maxx u(t, x) ≥ d . Clearly it is detectable for all
positive times if

min
t≥0

max
x
u(t, x) = min

t≥0
u(t, 0) =

@

@t
u(t, 0) ≥ d .
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For

ff > 2D (3.15)

the function u(t, 0) is increasing and the tumour starts growing for time greater than 2D−ff
4D

.
Finally when the condition

u(t, 0) = h0e
2D−ff

4D

r
ff

2D
≥ d

holds we can calculate the evolution of tumour radius by �nding such r that

u(t, r(t)) = d .

Consequently, the analytical formula for the tumour radius reads

r(t) =2t
q
D

0@1− ln(ff + 4Dt)

2t
+

1

t

 
ff

4D
+

1


ln

 
h0

d

√
ff

!!
+

− ff ln(ff + 4Dt)

8Dt2
+

ff

4Dt2
ln

 
h0

d

√
ff

!1A1=2

.

(3.16)

Next, calculating the �rst derivative of r with respect to time we obtain the tumour growth
velocity:

r ′(t) =
2
√
D

„
1− ln(ff+4Dt)

4t
+ 1

2t

„
ff

4D
+ 1


ln
“
h0

d

√
ff
”
− 1

2

««
r

1− ln(ff+4Dt)
2t

+ 1
t

“
ff

4D
+ 1


ln
“
h0

d

√
ff
””
− ff ln(ff+4Dt)

8Dt2 +
ff ln( h0

d

√
ff )

4Dt2

. (3.17)

Clearly, the formulae for the tumour radius and tumour growth velocity are rather complex.
Thus, we now derive approximations of these formulae for the cases when t � 1 and t � 1.
First, we investigate the long-time behaviour of Eqs. (3.16) and (3.17). In this case, using
Taylor expansion, we have

ln(ff + 4Dt) = ln
„

4Dt
„

1 +
ff

4Dt

««
= ln t + ln(4D) + ln

„
1 +

ff

4Dt

«
= ln t + ln(4D) +

ff

4Dt
+ o

„
1

t

«
. (3.18)

Plugging Eq. (3.18) into Eq. (3.16), using asymptotic approximation and keeping only terms
of order equal or higher than 1=t we obtain

r(t) = 2t
q
D

0@1− ln t

4t
+

1

2t

 
ff

4D
+ ln

„
h0

d

√
ff
«
− ln 4D

2

!
+ o

„
1

t

«1A.

The use of similar methods leads to the formula for the velocity:

r ′(t) = 2
q
D

 
1− 1

4
· 1

t
+ o

„
1

t

«!
.

This result shows that tumour radius asymptotically grows with a speed slower than the
asymptotic velocity of FKE, where the �rst correction term is equal to 1=(4t). This means
that for large times the lack of restriction on the density leads to slower tumour growth. This
might seem a surprising result, but in fact, it not so. In the regions of elevated tumour cells'
density, cell division is slower due to the competition. On the other hand, high cell density also
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forces tumour cells to move to the area with a lower density which leads to a faster increase
of tumour radius.

The behaviour of the tumour radius and velocity for small times is also relevant. Since in
that regime the maximal tumour density is relatively small, we expect better agreement of the
results with those of the full model. In order to obtain an asymptotic approximation of the
tumour radius for t � 1 we expand the right-hand side of Eq. (3.16) in Taylor series around
t = 0, obtaining

ln(ff + 4Dt) = ln

 
ff

 
1 +

4D

ff
t

!!
= lnff+ln

 
1 +

4D

ff
t

!
= lnff+

4D

ff
t+o(t), as t → 0.

Neglecting the terms of order higher than t and using Eq. (3.8) to eliminate ln(h0=d) we arrive
at

r(t) = r0

 
1 +

1

2

 
4D

ff
+
ff− 2D

r 2
0

!
t + o(t)

!
. (3.19)

Finally using the same techniques as before for approximation of tumour radius, we derive the
approximation of the velocity of the tumour growth as t → 0:

r ′(t) =
2D

ff
r0 +

ff− 2D

2r0
+ t

0@4D

ff
· ff−D

r0
− r0

4

 
4D

ff
+
ff− 2D

r 2
0

!2
1A+ o(t).

It is interesting to note that the tumour growth velocity depends on r0, i.e. on the term
ln(h0=d). In particular, for ff > D there exists a ratio h0=d for which this velocity is minimal
and equals 2D

ff
r0 + ff−2D

2r0
. It is easily seen that for t → 0 the value of tumour radius and

tumour growth velocity tend to r0 and 2D
ff
r0 + ff−2D

2r0
, respectively. In Figure 3.7 we compare

the results obtained using FKE, Skellam model and the asymptotic formula (3.19) for the
parameters values estimated for patients indicated in Section 3.3.2.

3.4.2 Estimates of malignant transformation

Here we intend to provide some analytical estimates for the onset of malignant transformation.
The onset of malignant transformation can be estimated directly from numerical simulations
of Eq. (3.9a), let us denote it as tOMT . On the other hand, instead of considering partial
di�erential equations, we would like to obtain a simple algebraic formula.

Based on Eq. (3.14) we can estimate the time tOMT,S of the onset of malignant transfor-
mation as the time when the LGG cell density hits the value Lcrit − ∆crit. Let us recall that
h0 < Lcrit − ∆crit, see Section 3.3.1. As the function u attains its maximum at x = 0, we
calculate tOMT,S in the following way:

Lcrit −∆crit = h0etOMT,S

s
ff

ff + 4DtOMT,S

,

2tOMT,S = ln

0@ Lcrit −∆crit

h0

!2  
1 +

4D

ff
tOMT,S

!1A . (3.20)

The right-hand side of Eq. (3.20) is a convex function of tOMT,S, thus, it have unique solutions.
The solution of Eq. (3.20) exists when the condition

ff ≥ 2D

holds, compare condition (3.15).
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Figure 3.7: Evolution of LGGs diameter � results based on the simulations of FKE (3.9a) (black solid
line), analytical equation of radius evolution (3.16) (red dashed-dotted line) according to Skellam
model (3.10) and asymptotic behaviour of radius as t → 0 (3.19) (blue dotted line). The verti-
cal dashed line denotes the time when malignant transformation was con�rmed histopathologically.
The model parameters and initial conditions are the same as in Figure 3.1 for patients indicated in
Section 3.3.2.
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We observe that tOMT,S strongly depends on tumour density at the point where the cellular
density is the highest. For su�ciently small LGG cell di�usion coe�cient we can approxi-
mate the evolution of tumour density at x = 0 by the logistic equation. Thus, we consider
L(0, t) ≤ u(t), where u is a solution to

ut = u
„

1− u

K

«
(3.21a)

with initial condition given by the density in the centre of the tumour:

u(0) = h0. (3.21b)

Solving system (3.21), we obtain the lower estimate of onset of malignant transformation:

tOMT,L =
1


ln

 
(Lcrit −∆crit) (1− h0)

h0 (1− (Lcrit −∆crit))

!
. (3.22)

This estimate is expected to be good for small di�usion rates of LGG cells. For larger di�usion
rates estimation given by Eq. (3.20) is a better one for considered ranges of parameters,
compare Figure 3.8. Thus, we propose to estimate tOMT analytically as

tOMT ≈ max
n
tOMT,S, tOMT,L

o
. (3.23)

0.05 0.1 0.15

Di usion rate (mm2/day)

0

2

4

6

O
n
s
e
t 

o
f 

m
a
li
g
n
a
n
t

tr
a
n

s
fo

rm
a
ti

o
n
 (

y
e
a
rs

)

Figure 3.8: Estimates of the onsets of malignant transformation: tOMT (black solid line), tOMT,S (blue
dotted line) and tOMT,L (red dashed-dotted line) for virtual patients with di�erent values of di�usion
rate D. The initial tumour cell densities and other parameters' values are taken as in Figure 3.2.

We have computed the estimates of the onset of malignant transformation for six patients
for which the occurrence of malignant transformation was observable radiologically in tumour
size, see Figure 3.9. Our work shows that all estimated onsets of malignant transformation
appear in a medically viable time period. We can observe a signi�cant delay from the onset
of malignant transformation to the visible change in the velocity of tumour radius growth.
A natural explanation is that there is a visible increase in the detectable tumour size when the
signi�cant part of a tumour is formed by already transformed cells.

3.5 Discussion

In this chapter, we addressed the process of malignant transformation of low-grade gliomas,
which is the main reason for the disease lethality. The early detection of malignant transfor-
mation could improve the therapeutical management and prevent the misdiagnosis of tumour
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Figure 3.9: Evolution of tumour diameter due to system (3.1) together with the clinical data as
in Figure 3.1, the estimation of the onset of malignant transformation calculated using simulations
of Eq. (3.9a) (vertical black solid lines), Eq. (3.22) (red dashed-dotted lines) and Eq. (3.20) (blue
dotted lines). We also show the percentages of HGG cells in total tumour mass calculated based
on the results of simulations. The time scale of simulation ends when malignant transformation was
con�rmed histopathologically. Model parameters and initial conditions were the same as in Figure 3.1
for the �rst six patients in this study (dashed lines).

grade. It can have major therapeutic implications, namely the tumour with undetected malig-
nant transformation would be treated less aggressively than necessary.

Recently it has been hypothesised that malignant transformation may be triggered by the
change of the tumour microenvironment due to the elevation of the cell density in speci�c
tumour areas [150, 1, 26, 121]. Here for the �rst time, we try to use this concept in a quanti-
tative way to describe the full process of the malignant transformation from a LGG to a HGG.
We describe this process in a minimal way using a model of two coupled FKEs in which total
tumour density is a driving force of phenotypic change. Interestingly, the model is able to
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reproduce the main features of the transition from low-grade into high-grade glioma. We pre-
sume that in our mathematical framework we can treat a tumour consisting of both LGG and
HGG cells (see Figure 3.7) as WHO grade III glioma, which is an intermediate tumour stage
between LGG (grade II) and secondary glioblastoma (grade IV) both histologically and at the
molecular levels [202, 203]. Grade III gliomas, compared to grade II tumours, are more cellular,
demonstrate more atypia, and mitoses are seen. However, unlike glioblastomas, they lack vas-
cular proliferation and necrosis on pathologic evaluation. The di�erence between grade III and
grade IV gliomas is also re�ected in the patients' overall survival [204, 205] and prognosis.

We have also studied the analytical properties of the proposed model. We proved the global
existence, non-negativity and uniqueness of solutions. As observed in vivo the model suggests
that asymptotically all tumour cells transform into more aggressive HGG phenotype. We also
showed that the di�usion-driven instability does not appear in the model. We believe that it is
a biologically viable situation as spatial patterns and heterogeneity in glioma density should be
a result of brain anisotropy rather than the processes of tumour growth and transformation.

We were also able to �t the model to the retrospective volumetric data of LGG patients
who had undergone malignant transformation and obtained a very good agreement. Based
on this results we can treat our new model as a �rst step in the investigation of malignant
transformation as a function of patient-speci�c coe�cients. From the practical point of view,
the most interesting application of the model is to study its dynamics before malignant trans-
formation as its early detection could improve prognosis. We believe that the knowledge of
the approximated time of this transformation and its early detection could improve prognosis
and help in making clinical decisions [204, 5].

We suggest combining the use of early imaging and the results of mathematical modelling.
To be speci�c, �rst we simpli�ed our model of evolution of LGGs and obtained analytical
equations for tumour radius and velocity before the onset of malignant transformation. As
a result, we were able to provide an early approximation of the onset of malignant transfor-
mation based on the patient-speci�c parameters. Although Eq. (3.23) looks complex, this
formula is a signi�cant simpli�cation as instead of considering, in fact, a system of partial
di�erential equations, we deal with an algebraic equation. Based on this formula and retro-
spective volumetric patients data, we have been able to compute post-hoc estimates of the
onset of malignant transformation using the values of �tted parameters for individual patients.
All estimated onsets of malignant transformation appear in a medically viable time period.
However, there has been a signi�cant delay from these times to times when the visible change
in the velocity of tumour radius growth could be observed. It suggests that there is a visible
increase in detectable tumour size when the already transformed cells form the substantial
part of a tumour. Importantly, the obtained values do not overestimate medically con�rmed
malignant transformation time. Thus, we can interpret the estimated values as the earliest
times when malignant transformation could occur.

Let us note that the estimated time of onset of malignant transformation depends crucially
on three biologically relevant parameters: proliferation rate, motility rate and mean initial
density. The last one is essential to estimate in an unambiguous way the time of malignant
transformation before it occurs. In general, we would like to provide predictions of time to
malignant transformation for individual patients using data of only a few medical examinations
(MRI scans). However, our research shows that in order to do so, we would need imaging
data from which an initial tumour density could be estimated. Clearly, the proliferation and
di�usion rates for LGG cells could be estimated from a few MRI scans (possibly three) using
e.g. a standard linear regression method. Subsequently, having parameters describing initial
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LGG density and tumour growth rates, the estimate of malignant transformation time can be
computed very easily from Eq. (3.23). In such a way, combining the modelling approach and
imaging, one would be possibly able to predict non-invasively the malignant transformation.
Interestingly, Hathout et al. in [124] using the methodology from the previous works, e.g. [29],
estimated mean proliferation and motility rate based on results of two MRI scans for contrast-
enhancing grade II astrocytoma and found out that those kinetics rates were signi�cantly
higher in the tumours that transformed to grade III or IV gliomas. It has been discussed
recently that using di�erent MRI modalities it may be possible to identify tumours undergoing
malignant transformation [206] and predict if the risk of rapid malignant transformation is
large [207, 85, 86]. The use of perfusion-weighted and di�usion-weighted MRI should be
considered for broader use due to its potential [207, 85, 86, 208]. We believe that by continuing
the research on both advances in the analysis of imaging data and mathematical modelling we
would also be able to predict successfully malignant transformation.

Using such an approach, the results obtained from imaging data and the proposed model
may open avenues for the treatment personalisation. In particular, fast-growing tumours or
those which initial density was found to be signi�cant should be followed with imaging thor-
oughly and early treatments strategies should be taken into account. One could consider
planning treatments in advance for the time of predicted malignant transformation. By eradi-
cating glioma cells either by surgery or chemotherapy, the tumour cells density will be reduced
resulting in prolonged malignant transformation-free survival and as a consequence overall
survival, as well.

We also believe that further understanding of the dynamics of the malignant transformation
of LGGs may enable the development of more e�ective treatment strategies aimed at prolonging
recurrence and delaying the arising of malignancy. Thus, further studies aimed at improving the
understanding of the evolution of the malignant transformation, coupling multimodal imaging
with mathematical models and studying the impact of optimised therapeutical schedules on
the time to malignant transformation are necessary.
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Chapter 4

Model of LGG growth with di�usion

and response to chemotherapy.

Alternative chemotherapy

fractionations

In Chapter 2 we have studied a system of ODEs describing the evolution of LGGs' volumes and
response to chemotherapy. However, in the course of this research, we have identi�ed malignant
transformation as the key process leading to major symptoms and subsequent patient death,
cf. Chapters 1 and 3. It is believed that treatment of LGGs patients should be personalised
according to the risk of malignant transformation. In Chapter 3 we have constructed a simple
model relating the onset of malignant transformation with the increased local density of tumour
cells. As a consequence of those results, we note that possibly a more e�ective treatment could
be the one which delays the onset of malignant transformation the most. To study the evolution
of LGGs local density, we consider the model of LGGs growth with motility term and response
to chemotherapy. We intend to study a model of continuous chemotherapy (thus, di�erent
from the one proposed earlier in Chapter 2) administered to tumours that evolve not only due
to proliferation, but also di�usion (that was not included there). We study the obtained model
analytically and investigate the existence of travelling waves. Due to practical motivations,
we also study whether the onset of malignant transformation could be deferred using some
speci�c chemotherapy treatment schedules.

4.1 Travelling waves in the model of LGG growth with di�usion

and response to chemotherapy

We modify system (2.2) with function f as in Eq. (2.1) by including a term describing motility
of tumour cells with a constant rate ‹. Thus, we consider the system:

@P

@t
= ‹∆P + P

 
1− P +D

K

!
− ¸CP ,

@D

@t
= ‹∆D − 

k
D

 
1− P +D

K

!
+ ¸CP ,

(4.1)
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where P (t, x) denotes the local density of proliferating tumour cells, D(t, x) � local density
of irreversibly damaged tumour cells for (t, x) ∈ [0, +∞) × Ω and ∆ =

Pn
j=1 @

2=@x2
j . In

general, Ω is assumed to be an open subset of Rn with a smooth boundary. System (4.1) is
complemented by non-negative initial conditions and homogeneous von Neumann boundary
conditions. We assume here the constant concentration C of chemotherapy drug acting on
a tumour.

At the outset, for the purpose of the mathematical analysis, we rescale system (4.1) by
taking eP = P=K, eD = D=K, et = t, ex =

q

‹
· x . Omitting the tildes for simplicity we arrive

at the non-dimensional system:

@P

@t
= ∆P + P (1− P −D)− zP ,

@D

@t
= ∆D − 1

k
D(1− P −D) + zP ,

(4.2)

where z = ¸C= with von Neumann boundary conditions

@P

@~n

˛̨̨̨
˛
@Ω

=
@D

@~n

˛̨̨̨
˛
@Ω

= 0 (4.3)

and initial conditions
P (0, x) ∈ [0, 1], D(0, x) = 0. (4.4)

We postulate that initial function is of class C2 on Ω̄.

Theorem 4.1. There exists local unique classical solution to system (4.2)�(4.4).

Proof. The reaction term of system (4.2)�(4.4) and initial conditions are C2 functions, thus,
solution to system (4.2)�(4.4) exists locally and is unique due to general properties of reaction-
di�usion systems, see e.g.Theorem 3.3.3. in [193].

In Chapter 2, among others, we have studied the dynamics of system (2.11), which for
f given by Eq. (2.1) is an equivalent of system (4.2) without di�usion, i.e. a system of the
form:

dP

dt
= P (1− P −D)− zP ,

dD

dt
= −1

k
D(1− P −D) + zP .

(4.5)

We recall that system (4.5) has at most three steady states:
� (0, 0) which is either a stable node for z > 1 or a saddle for z < 1,
� (0, 1) which is a saddle,
� (ex , k ex) which exists for z < 1 and is either a stable node or stable focus,

see Section 2.2 for details. Thus, for system (4.2) there exists a heteroclinic orbit connecting
steady states (0, 1) and (0, 0) provided that z < 1. This heteroclinic orbit is {P = 0}× [0, 1],
see also Figure 2.4.

Now, we verify whether for system (4.2) with z < 1 there exist travelling waves which
connect the two uniform steady state solutions (0, 1) and (0, 0). From now on, for simplicity,
we assume that Ω ⊂ R.

By travelling wave we mean a wave which propagates with constant speed # without
changing the shape [112], i.e. we look for the solutions P (t, x), D(t, x) of system (4.2)
corresponding to the front

P (t, x) = U(x + #t), D(t, x) = V (x + #t),
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and satisfying boundary conditions:

P (t,−∞) = 0, D(t,−∞) = 1,

P (t, +∞) = 0, D(t, +∞) = 0.

In short, we use geometric singular perturbation theory (to be speci�c the Fenichel invariant
manifold theory [209, 210]) to prove that such waves exist for su�ciently large speed #. First,
we show the existence of an invariant manifold for the ODE system describing the desired
front [210]. Next, we study the dynamics of the new perturbed system in this invariant
manifold. Finally, we employ Fredholm alternative to prove the existence of the front in this
invariant manifold [211]. A similar method has been used to prove the existence of travelling
wave solutions in [212, 211, 210], to cite a few.

We introduce a new variable w = x + #t, # ∈ R denoting wave speed and postulate

P (t, x) = U(w), D(t, x) = V (w).

Thus, based on system (4.2) we derive an ODE system describing dynamics of U(w) and
V (w):

U ′′ − #U ′ + U(1− U − V − z) = 0,

V ′′ − #V ′ − 1

k
V (1− U − V ) + zU = 0

(4.6)

with boundary conditions:
U(−∞) = 0, V (−∞) = 1,

U(+∞) = 0, V (+∞) = 0.

Note that partial di�erential equations in x and t in system (4.2) become ordinary di�erential
equations (4.6) in w . We consider a small perturbation, thus, we assume that #2 � 1 and
denote › := 1

#2 � 1, ‰ = w
#

= w
√
› . Then system (4.6) for U(‰) and V (‰) reads:

›U‰‰ − U‰ + U(1− U − V − z) = 0,

›V‰‰ − V‰ −
1

k
V (1− U − V ) + zU = 0

(4.7)

with conditions:

U(−∞) = 0, V (−∞) = 1, U(+∞) = 0, V (+∞) = 0,

where U‰ and V‰ denote derivative of U and V with respect to the variable ‰. De�ningM = U‰,
N = V‰ we recast system (4.7) into a so-called �slow system�:

U‰ = M,

›M‰ = M − U(1− U − V − z),

V‰ = N,

›N‰ = N +
1

k
V (1− U − V )− zU.

(4.8a)

(4.8b)

(4.8c)

(4.8d)

Let “ = ‰=› = #w , then U“ = ›U‰, M“ = ›M‰ and we obtain a system:

U“ = ›M,

M“ = M − U(1− U − V − z),

V“ = ›N,

N“ = N +
1

k
V (1− U − V )− zU,

(4.9)
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which is called �dual fast system� associated to the slow system (4.8), cf. [211].
For › = 0 from Eqs. (4.8b) and (4.8d) we have

M = U(1− U − V − z),

N = −1

k
V (1− U − V ) + zU,

thus, the evolution of U and V is described by a system of two ODEs:

U‰ = U(1− U − V − z),

V‰ = −1

k
V (1− U − V ) + zU.

(4.10)

Clearly, system (4.10) has the same dynamic properties as system (4.5). For › = 0 we de�ne
a set:

M0 =


(U,M, V ,N) : M = U(1− U − V − z), N = −1

k
V (1− U − V ) + zU

ff
,

which is a two-dimensional submanifold on R4. Subsequently we study a perturbationM› of
manifoldM0, which is invariant for the �ow of system (4.9). Its existence for su�ciently small
› > 0 is guaranteed by Fenichel �rst theorem [210].

De�nition 4.1. We say that M0 is a normally hyperbolic manifold if the linearisation of

system (4.9) at each point in M0 restricted to M0 (i.e. for › = 0) has exactly dimM0

eigenvalues on the imaginary axis.

Theorem 4.2 (Fenichel �rst theorem). LetM0 be a normally hyperbolic manifold. There

exists su�ciently small › > 0 for which there exists a manifold M› which is within distance

› ofM0 and is di�eomorphic toM0. Furthermore,M› is locally invariant under the �ow of

system (4.9) and of class Cp for any p < +∞.

In order to use Theorem 4.2, we prove thatM0 is a normally hyperbolic manifold. Jacobi
matrix of the linearisation of system (4.9) for › = 0 has the following form:

J(U, V ) =

266664
0 0 0 0

2U + V + z − 1 1 U 0

0 0 0 0

−V
k
z 0 1

k
(1− U − 2V ) 1

377775 . (4.11)

Matrix (4.11) has two double eigenvalues: –1 = 0 and –2 = 1. As a consequence, M0 is
normally hyperbolic. Thus, for su�ciently small › > 0 there exists a perturbation M› of
manifoldM0 with properties given above.

Now we study the model dynamics on manifold M›. As U, V are slow variables and
M,N are fast variables, the manifoldM› can be represented in the following way:

M› = {(U,M, V ,N) ∈ R4 : M = U(1− U − V − z) + g ›(U, V ),

N = −1

k
V (1− U − V ) + zU + h›(U, V )},

(4.12)

for some functions g ›(U, V ), h›(U, V ) ∈ Cp, p < +∞ such that

g 0(U, V ) = h0(U, V ) = 0 (4.13)
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and the equations describing the evolution of U and V inM› are given by:

U‰ =U(1− U − V − z) + g ›(U, V ),

V‰ =− 1

k
V (1− U − V ) + zU + h›(U, V ).

(4.14)

We di�erentiate equations in (4.12) describing M and N and obtain

M‰ = (1− U − V − z) · U‰ − U (U‰ + V‰) +
@g ›(U, V )

@U
U‰ +

@g ›(U, V )

@V
V‰

= U‰(1− 2U − V − z)− UV‰ +
@g ›(U, V )

@U
U‰ +

@g ›(U, V )

@V
V‰,

N‰ = −1

k
V‰(1− U − V ) +

1

k
V (U‰ + V‰) + zU‰ + +

@h›(U, V )

@U
U‰ +

@h›(U, V )

@V
V‰.

Now, taking into account Eqs. (4.14) and the fact that U‰ = M, V‰ = N (see Eqs. (4.8a) and
(4.8c)), we have:

M‰ = (U(1− U − V − z) + g ›(U, V )) (1− 2U − V − z)

+ U
„

1

k
V (1− U − V )− zU − h›(U, V )

«
+
@g ›(U, V )

@U
M +

@g ›(U, V )

@V
N

= (1− U − V − z) ((1− 2U − V − z)U + g ›(U, V ))

+ U
„

1

k
V (1− U − V )− zU − g ›(U, V )− h›(U, V )

«
+
@g ›(U, V )

@U
M +

@g ›(U, V )

@V
N,

N‰ = −1

k
(1− U − V )

„
−1

k
V (1− U − V ) + zU + h›(U, V )

«
+

1

k
V
„
U(1− U − V − z) + g ›(U, V )− 1

k
V (1− U − V ) + zU + h›(U, V )

«
+ z (U(1− U − V − z) + g ›(U, V )) +

@h›(U, V )

@U
U‰ +

@h›(U, V )

@V
V‰

=
1

k
(1− U − V )

„
1

k
(1− U − 2V ) + U(V − z)− h›(U, V )

«
+ z (U(1− U − V − z) + g ›(U, V )) +

1

k
V (g ›(U, V ) + h›(U, V ))

+
@h›(U, V )

@U
M +

@h›(U, V )

@V
N.

We substitute the obtained equations on M‰ and N‰ to Eqs. (4.8b) and (4.8d) and compute
that g › and h› satisfy the following partial di�erential equations:

g ›(U, V ) = ›

"
(1− U − V − z) ((1− 2U − V − z)U + g ›(U, V ))

+ U
„

1

k
V (1− U − V )− zU − g ›(U, V )− h›(U, V )

«
+
@g ›(U, V )

@U
M +

@g ›(U, V )

@V
N

#
,

h›(U, V ) = ›

"
1

k
(1− U − V )

„
1

k
(1− U − 2V ) + U(V − z)− h›(U, V )

«
+ z (U(1− U − V − z) + g ›(U, V )) +

1

k
V (g ›(U, V ) + h›(U, V ))

+
@h›(U, V )

@U
M +

@h›(U, V )

@V
N

#
.

(4.15)
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We expand h› and g › in Taylor series around › = 0, obtaining

g ›(U, V ) =g 0(U, V ) + ›
@g 0(U, V )

@›
+ : : :+

›n−1

(n − 1)!

@n−1g 0(U, V )

@›n−1
+ ›nRgn (›),

h›(U, V ) =h0(U, V ) + ›
@h0(U, V )

@›
+ : : :+

›n−1

(n − 1)!

@n−1h0(U, V )

@›n−1
+ ›nRhn(›),

where Rgn ,Rhn are such that lim›→0R
g
n (›) = 0 and lim›→0R

h
n(›) = 0. Clearly, due to (4.13)

we have g 0(U, V ) = h0(U, V ) = 0. Now, using Eqs. (4.15), we calculate partial derivatives of
g › and h› with respect to ›, arriving at:

@g 0(U, V )

@›
=U

"
(1− U − V )

 
1− 2U − k − 1

k
V − 2z

!
+ z2

#
,

@h0(U, V )

@›
=

1

k
(1− U − V )

„
1

k
(1− U − 2V ) + U(V − z)

«
+ zU(1− U − V − z).

Hence, Taylor series of g › and h› have the following forms:

g ›(U, V ) =U

"
(1− U − V )

 
1− 2U − k − 1

k
V − 2z

!
+ z2

#
›+ O

“
›2
”

,

h›(U, V ) =

"
1

k
(1− U − V )

„
1

k
(1− U − 2V ) + U(V − z)

«
+ zU(1− U − V − z)

#
›

+ O
“
›2
”

.

(4.16)

We substitute Eqs. (4.16) omitting terms of the order of ›2 to system (4.14) to obtain the
approximate equations:

U‰ =U(1− U − V − z) + U

"
(1− U − V )

 
1− 2U − k − 1

k
V − 2z

!
+ z2

#
›,

V‰ =− 1

k
V (1− U − V ) + zU

+

"
1

k
(1− U − V )

„
1

k
(1− U − 2V ) + U(V − z)

«
+ zU(1− U − V − z)

#
›,

(4.17)

which approximate the dynamics on the manifoldM› for su�ciently small ›.
Now, let us denote by (U0, V0) the solution of system (4.17) for › = 0, that is

d

d‰
U0 = U0(1− U0 − V0 − z),

d

d‰
V0 = −1

k
V0(1− U0 − V0) + zU0.

(4.18)

Clearly, system (4.18) is equivalent to system (4.5). Consequently, there exists a heteroclinic
orbit connecting the steady state (0, 1) and (0, 0). For › > 0 system (4.17) has steady states

P1 = (0, 1) and P2 =
„

0,
›

k + 2›

«
.

Note that ›=(k + 2›)→ 0 for ›→ 0. Thus, it is su�cient to show that for a su�ciently small
› > 0 there exist a heteroclinic orbit connecting the steady states P1 and P2 of system (4.17).
This orbit corresponds to a travelling wave solution of system (4.2). To �nd such a connection
we write:

U = U0 + ›U1,

V = V0 + ›V1.
(4.19)
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In what follows, we determine the dynamics of U1 and V1. Substituting new variables (4.19)
to system (4.17) we get

U‰ =U0(1− U0 − V0 − z) + ›U1(1− 2U0 − V0 − z)− ›U0V1

+ ›U0

"
(1− U0 − V0)

 
1− 2U0 −

k − 1

k
V0 − 2z

!
+ z2

#
+ O(›2),

V‰ =− 1

k
V0(1− U0 − V0) + zU0 − ›

1

k
(V1(1− U0 − 2V0)− U1V0) + ›zU1

+ ›

"
1

k
(1− U0 − V0)

„
1

k
(1− U0 − 2V0) + U0(V0 − z)

«
+ zU0(1− U0 − V0 − z)

#
+ O(›2).

Clearly, U‰ = d
d‰
U0 + › d

d‰
U1 and V‰ = d

d‰
V0 + › d

d‰
V1. Moreover, as (U0, V0) satisfy the system

(4.18), omitting terms of the order of ›2, we have:

d

d‰
U1 =U1(1− 2U0 − V0 − z)− V1U0 + U0

"
(1− U0 − V0)

 
1− 2U0 −

k − 1

k
V0 − 2z

!
+ z2

#
d

d‰
V1 =U1

„
1

k
V0 + z

«
− 1

k
V1(1− U0 − 2V0) + zU0(1− U0 − V0 − z)

+
1

k
(1− U0 − V0)

„
1

k
(1− U0 − 2V0) + U0(V0 − z)

«
.

We rewrite the system of equations governing U1 and V1 in the following way:

d

d‰

"
U1

V1

#
−
"

1− 2U0 − V0 − z −U0
1
k
V0 + z − 1

k
(1− U0 − 2V0)

# "
U1

V1

#
=

"
f1(U0, V0)

f2(U0, V0)

#
, (4.20)

where

f1(U0, V0) =U0

"
(1− U0 − V0)

 
1− 2U0 −

k − 1

k
V0 − 2z

!
+ z2,

#

f2(U0, V0) =zU0(1− U0 − V0 − z) +
1

k
(1− U0 − V0)

„
1

k
(1− U0 − 2V0) + U0(V0 − z)

«
.

Transforming steady states P1 and P2 using Eqs. (4.19) we get:

P1 = (0, 1) + › · (0, 0), P2 = (0, 0) + › ·
„

0,
1

k + 2›

«
.

Thus, our aim is to prove that system (4.20) has a solution satisfying the conditions:

lim
‰→±∞

U1(‰) = lim
‰→−∞

V1(‰) = 0, lim
‰→+∞

V1(‰) =
1

k + 2›
.

Note that function

F (‰) =
1

k + 2›
· 1

1 + e−‰

satis�es conditions

lim
‰→−∞

F (‰) = 0, lim
‰→+∞

F (‰) =
1

k + 2›
.

Thus, we make the change of variables V1 = W1 + F . System (4.20) now reads

d

d‰

"
U1

W1

#
−
"

1− 2U0 − V0 − z −U0
1
k
V0 + z − 1

k
(1− U0 − 2V0)

# "
U1

W1

#
=

"
h1(U0, V0, ‰)

h2(U0, V0, ‰)

#
, (4.21)
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where

h1(U0, V0, ‰) = f1(U0, V0)− 1

k + 2›
· 1

1 + e−‰
U0

h1(U0, V0, ‰) = f2(U0, V0) +
1

k + 2›
· 1

1 + e−‰

"
−1

k
(1− U0 − 2V0)− e−‰

1 + e−‰

#
.

As a consequence, we verify the existence of solution of system (4.21) with homogeneous
boundary conditions:

lim
‰→±∞

U1(‰) = lim
‰→±∞

W1(‰) = 0.

As previously said, in order to do so, we use the Fredholm alternative as formulated in [213].
Suppose that L is a linear di�erential operator acting on a subspace of L2(R2) of square-
integrable functions. Given the standard inner product 〈·, ·〉 on L2(R2):

〈f , g〉 =
Z +∞

−∞
(f (‰), g(‰)) d‰,

where (·, ·) is the Euclidean inner product on R2, the adjoint linear operator L∗ is de�ned as:

〈f ,Lg〉 = 〈L∗f , g〉.

Fredholm alternative theorem states that the inhomogeneous equation

Lf = h

has a solution if and only if condition

〈�, h〉 = 0

is ful�led for all � satisfying the homogeneous equation:

L∗� = 0.

In our case, the linear operator L is de�ned by the left-hand side of system (4.21). We
claim that system (4.21) has a solution if and only if equationZ +∞

−∞

 
s1(‰)h1(U0, V0, ‰) + s2(‰)h2(U0, V0, ‰)

!
d‰ = 0 (4.22)

holds for all solutions (s1, s2) of the adjoint problem:

d

d‰

"
s1

s2

#
=

"
−1 + 2U0 + V0 + z − 1

k
V0 − z

U0
1
k

(1− U0 − 2V0)

# "
s1

s2

#
(4.23)

with boundary conditions:
lim

‰→±∞
s1(‰) = lim

‰→±∞
s2(‰) = 0.

Recall that (U0, V0) corresponds to the heteroclinic solution of system (4.18). Letting ‰ → −∞
we have that (U0, V0) → (0, 0), then the matrix in system (4.23) is a constant one with
eigenvalues equal:

–1 = z − 1, –2 =
1

k
.

Eigenvalue –1 is negative due to our assumption that z < 1, while –2 is positive. Thus,
when ‰ → −∞ any solution of system (4.23), other than the zero solution, is a sum of two
exponentially increasing and decreasing functions. Therefore, the only solution of the adjoint
problem (4.23) in space L2(R2) is (s1, s2) ≡ (0, 0). Thus, condition (4.22) holds and we arrive
at the following result:
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Theorem 4.3. If z < 1 and # � 1, there exists a su�ciently small " > 0 such that

for every › ∈ (0, "], system (4.2) admits a travelling wave solution P (t, x) = U(x + #t),

D(t, x) = V (x+#t) satisfying boundary conditions: U(−∞) = 0, V (−∞) = 0, U(+∞) = 0,

V (+∞) = 1.

4.2 Estimate of malignant transformation for LGGs treated with

chemotherapy

Now, we assume that concentration of chemotherapeutic drug C in system (4.1) is not a con-
stant, but it is a function of time, representing more realistically the decay of chemotherapeutic
drug concentration after each of its administrations, to be described in details later on. We
would like to verify if it is possible to get any suggestion on improving chemotherapy frac-
tionations protocols based on our mathematical modelling approach. If an objective of the
treatment is to delay the onset of malignant transformation for as long as possible, then we
would like to be able to estimate onset of malignant transformation as a function of some
parameters describing tumour growth and the chemotherapy fractionation scheme. Like in
Chapter 3, we want to estimate tOMT as the time when the LGG cell density hits the critical
value Lcrit triggering malignant transformation. However, such a goal is very di�cult to achieve
on a basis of system (4.1) with arbitrary non-constant function C. Thus, we simplify this sys-
tem. To this end, �rstly we neglect the evolution of damaged cells in time assuming that their
death is faster than the proliferation of undamaged cells. Hence, system (4.1) reduces to an
equation:

@P

@t
= ‹∆P + P

 
1− P

K

!
− ¸CP (4.24a)

complemented with initial condition:

P (0, x) = P0(x) ≥ 0 (4.24b)

and homogeneous von Neumann boundary condition.
Secondly, recall our assumption that malignant transformation is directly related to LGG

density at the centre of a tumour, cf. Chapters 1 and 3. Thus, in our problem, we focus only
on the evolution of tumour cell density P at the centre of a tumour (for x = 0). We would
like to derive a reasonably good estimation L(t) of this density P (t, 0) for each time t. Note
that if L is the solution of an ODE of a form:

dL

dt
= L

 
1− L

K

!
− ¸CL (4.25a)

with initial condition:

L(0) = max
x∈Ω

P0(x), (4.25b)

then the solution of system (4.24) ful�ls the inequality 0 ≤ P (t, x) ≤ L(t) for all t and x . It
follows from the simple fact that for t = 0 we take maxx∈Ω P0(x). Consequently, L is a rea-
sonably good upper bound of tumour cell density P . In particular, it is an upper bound for
the density at the centre of a tumour. Subsequently instead of Eq. (4.24a) we use Eq. (4.25a)
to describe the local density of LGG cells in its centre. We complement Eq. (4.25a) with an
equation describing the local concentration of chemotherapy drug. As in Chapter 2, we assume
that the drug is distributed homogeneously within a tumour and concentration of the drug
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decays exponentially. We consider chemotherapy consisting of n equal doses administered at
times 0 ≤ t1 < t2 < : : : < tn. Without loss of generality, we assume that the drug adminis-
tration starts at time t1 = 0. Moreover, we assume that drug is administered in equal time
intervals r , thus

ti = (i − 1)r for i ∈ {1, : : : , n}. (4.26)

By C0 we denote the e�ective part of dose acting on a tumour and L1 denotes LGG cell density
at the centre of the tumour at the time of the �rst dose administration t1 measured in the
units of the maximal cell density K. Then, taking eL = L=K and omitting tildes for simplicity,
the model to be considered here is of the following form:

dL

dt
= L (1− L)− ¸CL,

dC

dt
= −–C

(4.27a)

with initial conditions

L(t1) = L1 > 0, C(t1) = C0 > 0 (4.27b)

and function C satisfying

C(ti) = C(t−i ) + C0 for i ∈ {2, : : : , n}. (4.27c)

As previously, all model parameters and initial conditions are assumed to be positive.

Remark. Note that if we solve an ODE of the following general form:

dL

dt
= L(1− L)− F (t)L,

with initial condition L(0) = L1 > 0, where a function F describes chemotherapy drug
concentration and action on tumour cells, we obtain

L(t) =

8<:exp
„Z t

0
(F (s)− )ds

«
·
24 1

L1

−
Z t

0



exp
“R s
t0

(F (‰)− )d‰
”ds

359=;
−1

.

Therefore, we simplify the description of chemotherapy. We take into account that the
standard dose of the chemotherapeutic drug is almost completely absorbed within less than
a day from the time of its administration, see e.g. [163]. Thus, we divide the period between
subsequent doses in two parts in such a way that in the �rst one (of the length ›) drug
concentration decays to zero and in the second � equals zero. Then we approximate the
function C in the following way:

C(t) ≈

8<:C0e−–(t − ti) t ∈ [ti , ti + ›),

0 for other t,

for i ∈ {1, ..., n}. Furthermore, in order to obtain a possibly simple form of the solution of
system (4.27), instead of describing the drug concentration by exponential decay function, we
use the mean value C̄ of function C in each time interval [ti , ti + ›), that is

C̄ =
1

›

Z ti+›

ti
C(s)ds =

1

›

Z ti+›

ti
C0e−–(s−si )ds =

1

›

Z ›

0
C0e−–sds =

C0

–›

“
1− e−–›

”
.
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Thus, we arrive at the following form of the model describing the temporal evolution of tumour
density at the centre of a tumour:

dL

dt
=

8<:L(1− L)− ¸C̄L for t ∈ [ti , ti + ›),

L(1− L) for t ∈ [ti + ›, ti+1) and t ≥ tn + ›
(4.28a)

with initial condition
L(t1) = L1, (4.28b)

where times ti are given by Eq. (4.26).
System (4.28) can be solved analytically.
For i ∈ {2, : : : , n} we denote the solution of system (4.28) at time ti by Li . We also

introduce the following notation

“ = er−¸C̄›,

” =
1

− ¸C̄

„
¸C̄e(−¸C̄)› − 

«
.

(4.29)

Note that “ is positive. On the other hand, the sign of ” is not �xed.

Theorem 4.4. Solution of system (4.28) is of a form:

L(t) =

8>>>>>>><>>>>>>>:

− ¸C̄


»
1 +

“
−¸C̄
Li
− 1

”
e(¸C̄−)(t−ti )

– for t ∈ [ti , ti + ›),

1

1 +
“

1
L(tj+›)

− 1
”

e−(t−(tj+›))
for t ∈ [tj + ›, tj+1) and t ≥ tn + ›,

(4.30a)

(4.30b)

where i ∈ {1, : : : , n}, j ∈ {1, : : : , n − 1} and Li satis�es the following relation:

Li+1 =
“Li

1 + (“ + ”)Li
. (4.31)

Proof. Solving system (4.28) for time t ∈ [ti , ti + ›] we have:

L(t) =
− ¸C̄


»
1 +

“
−¸C̄
Li
− 1

”
e(¸C̄−)(t−ti )

–
and

L(ti + ›) =
− ¸C̄


»
1 +

“
−¸C̄
Li
− 1

”
e(¸C̄−)›

– .

The solution for time t ∈ [ti + ›, ti+1] and t ≥ tn + › is of a form:

L(t) =
1

1 +
“

1
L(ti+›)

− 1
”

e−(t−(ti+›))

and consequently we have

Li+1 =
1

1 +
“

1
L(ti+›)

− 1
”

e−(r−›)
=

1

1 +

"


−¸C̄

“
1 +

“
−¸C̄
Li
− 1

”
e(¸C̄−)›

”
− 1

#
e(›−r)

=
1

1 + 1
Li

e¸C̄›−r +
„


−¸C̄

„
1− e(¸C̄−)›

«
− 1

«
e(›−r)

=
er−¸C̄›Li

1 +

"
er−¸C̄› + 1

−¸C̄

„
¸C̄e(−¸C̄)› − 

« #
Li

.
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Using the de�nition of “ and ”, see Eqs. (4.29), we arrive at Eq. (4.31), which �nishes the
proof.

Now let us study the dynamics of the discrete system de�ned by Eq. (4.31). There exist
two �xed points of Eq. (4.31):

L̄1 = 0, L̄2 =
“ − 1

“ + ”
. (4.32)

As the dynamics of Eq. (4.31) depends on the sign of “ + ”, we state the following

Lemma 4.5. If  < ¸C̄, then

” > 0 ⇐⇒ › >
1

− ¸C̄
ln
„


¸C̄

«
and

“ + ” > 0 ⇐⇒
0@” > 0 ∨ r >

1



24¸C̄›+ ln

 
− ¸C̄e(−¸C̄)›

− ¸C̄

!351A .

Proof. The assertion follows from the direct computations and positiveness of “.

As we are studying the tumour growth in the rescaled variables, we are interested in solutions
in [0, 1].

Theorem 4.6. Let L1 ∈ (0, 1). A solution of Eq. (4.31)
� converges to L̄1 if “ < 1 and

� “ + ” > 0 or

� L̄2 > 1,

� converges to L̄2 if “ > 1 and L̄2 < 1,

� increases and there exists i0 ≥ 2 such that Li0 > 1 or Li0 < 0 if

� “ > 1 and L̄2 > 1 or:

� “ < 1 and L1 > L̄2.

The solution of Eq. (4.31) is the following:

Li =
“ i−1L1

1 + 1−“i−1

1−“ (“ + ”)L1

(4.33)

for i ≥ 2.

Proof. Di�erence equation Eq. (4.31) have at most two non-negative �xed points: L̄1 = 0

and L̄2 = (“ − 1)=(“ + ”). Recall that “ is positive. Thus, steady state L̄2 is positive if either
“ > 1 and “ + ” > 0 or 0 < “ < 1 and “ + ” < 0.

Let us study the asymptotic behaviour of Eq. (4.31). In order to do that, we investigate
the right-hand side of Eq. (4.31), that is a function:

g(L) =
“L

1 + (“ + ”)L
. (4.34)

Clearly, the derivative of g :

g ′(L) =
“

(1 + (“ + ”)L)2 .

is positive and g ′(0) = “ as well.
First consider the case “ < 1 and “ + ” > 0. It is easy to see that for such parameters

values we have L̄2 < 0 and Li > 0 (from the assumption that L1 > 0). As the derivative
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of g is a decreasing function, the graph of g (see Figure 4.1a) lies below the line y = L,
thus, Li+1 < Li for all i > 0. The sequence (Li)i∈N is decreasing and bounded from below by
0, thus, it has a limit. Fixed point L̄2 =∈ [0, 1], thus, Li → L̄1 = 0.

Second, we study the case “ < 1 and “ + ” < 0. Now, the derivative of g is an increasing
function and the graph of g lies below the line y = L for L < L̄2, see Figure 4.1b. Thus,
if L1 < L̄2, then the sequence (Li) is decreasing and converges to 0. On the other hand, if
L1 > L̄2, the sequence (Li) is increasing taking values greater than −1

“+”
and later � negative

values.

Third, we investigate the dynamics of Eq. (4.31) for “ > 1 and “ + ” > 0. For such
parameters values the derivative of g is an increasing function and the graph of function g lies
above the line y = L for L < L̄2 and below this line for L > L̄2. Moreover, we have g(L) < L̄2

for L < L̄2 and g(L) > L̄2 for L > L̄2, see Figure 4.1c. As a consequence, if Li < L̄2, then
Li < Li+1 < L̄2, while condition L̄2 < Li+1 < Li holds if Li > L2. This proves that sequence
(Li) converges to L̄2. However if L̄2 > 1 (i.e. 1 + ” < 0), then L̄2 cannot be attained from
above (as L1 < 1).

Finally, we consider the case “ > 1 and “ + ” < 0. In that case L̄2 < 0. The derivative of
g is increasing and the graph of g lies above the line y = L, see Figure 4.1d. Consequently,
the sequence (Li) is increasing, and thus, divergent.

(a) “ < 1 and “ + ” > 0, L̄2 < 0 (b) “ < 1 and “ + ” < 0

(c) “ > 1 and “ + ” > 0 (d) “ > 1 and “ + ” < 0, L̄2 < 0

Figure 4.1: Graph of function g de�ned by Eq. (4.34) together with line y = L and auxiliary lines.

Now, let us prove the form of solution of Eq. (4.31). Firstly, formula (4.33) is easily seen to
be a solution of Eq. (4.31) for i = 2. Secondly, let us assume that it is a solution of Eq. (4.31)
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for some m ≥ 2. As a consequence, we have:

Lm+1 =
“Lm

1 + (“ + ”)Lm
=

“mL1

1 + 1−“m−1

1−“ (“ + ”)L1

·
0@1 + (“ + ”) · “m−1L1

1 + 1−“m−1

1−“ (“ + ”)L1

1A−1

=
“mL1

1 + (“ + ”)L1

“
1−“m−1

1−“ + “m−1
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“mL1

1 + 1−“m
1−“ (“ + ”)L1

.

Thus, by mathematical induction the formula (4.33) is a solution of Eq. (4.31) for i ≥ 2.

Now, based on the obtained solution L, we derive estimation for time tOMT of the onset of
malignant transformation. Clearly, we assume that at the beginning of treatment L1 < Lcrit,
otherwise, we would deal with already-transformed virtual HGG. Moreover, from now on, unless
stated otherwise, we assume that

− ¸C̄ < 0,

that is one can observe a tumour mass decrease as long as there is some concentration of
chemotherapeutic drug present in the tumour tissue. As a consequence of this assumption,
the onset of malignant transformation occurs either when chemotherapy is �nished and all the
drug is cleared from the body, i.e. tOMT ≥ tn + ›, or it occurs in the time interval [tk + ›, tk+1)

with
k = max

n
i : 1 ≤ i < n,Li < Lcrit

o
.

To estimate tOMT we need to know whether value Lcrit would be attained during treatment or
after its end. From Theorem 4.6 we know that value Lcrit could be attained before the end of
chemotherapy in any of the following cases:
(C1) “ > 1 and “ + ” < 0,
(C2) “ > 1, “ + ” > 0 and L̄2 > Lcrit,
(C3) 0 < “ < 1, “ + ” < 0 and 0 < L̄2 < L1 < Lcrit,
see also Figure 4.1. In the remaining cases value Lcrit would be attained after the last dose
administration. Thus, we need to focus on cases (C1)�(C3) and compute index k of the last
chemotherapy dose before the onset of malignant transformation. In order to do so, we solve
inequality Li < Lcrit using Eq. (4.33), arriving at

“ i−1L1

 
1 +

“ + ”

1− “ Lcrit

!
< Lcrit

 
1 +

“ + ”

1− “ L1

!
. (4.35)

Note that, because of the form of L̄2, Eq. (4.35) is equivalent to:
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As we consider cases (C1)-(C3), we arrive at

i < 1 +
1

r − ¸C̄›
ln

0@Lcrit

“
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”
L1
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”
1A .

Finally, we estimate tOMT to occur after k-th dose administration with

k =

8>>><>>>:
min

8<:
66641 +

1

r − ¸C̄›
ln

0@Lcrit

“
1− L1

L̄2

”
L1

“
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”
1A7775 , n

9=; for cases (C1)-(C3),

n otherwise.

(4.36)
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Now, solving L(tOMT) = Lcrit for tOMT, from Eq. (4.30b) we obtain the following relation:

1 +

 
1− L(tk + ›)

L(tk + ›)

!
e−(tOMT−tk−›) =

1

Lcrit

and consequently:

tOMT = tk + ›− 1


ln

0@ 1− Lcrit

1− L(tk + ›)

L(tk + ›)

Lcrit

1A.

Finally, from assumption (4.26), the time of the onset of malignant transformation can be
estimated by the following formula:

tOMT = (k − 1)r + ›− 1


ln

0@ 1− Lcrit

1− L(tk + ›)

L(tk + ›)

Lcrit

1A, (4.37)

with k de�ned by Eq. (4.36).
We study the estimate of tOMT given by Eq. (4.37) for the realistic set of parameters

values. To be speci�c, we take values of LGG proliferation rates , TMZ-cell kill strength
¸, initial LGG density at the centre of the tumour L1 and critical LGG density triggering
malignant transformation Lcrit used in Section 3.3.1, cf. [3]. Recall that due to rescaling L is
dimensionless variable, consequently L1 and Lcrit as well. We assume that parameters C0 and
– have the same values as provided in Section 2.3.1. We also take into account that the drug
is acting on the tumour during 12h as for that time we obtained a reasonably good agreement
with the results of system (4.27). The possible number of doses is within the range 10�150
indicated by clinical reports, see e.g. [69, 22, 70]. The values and ranges of parameters are
summarised in Table 4.1.

Table 4.1: Values and ranges of biological and clinical parameters used in the mathematical
model of LGG evolution and response to chemotherapy

Parameter Value Description

 0.0001�0.008/day proliferation rate of LGG cells
L1 0.3�0.57 initial mean LGG cell density
Lcrit 0.6 LGG cell density causing malignant transformation
¸ 0.1�1.5ml/—g/day TMZ-cell kill strength
C0 0.6—g/ml initial TMZ concentration in brain interstitium
– 0.3466/h rate of decay of TMZ
› 12h time of whole dose elimination
n 10�150 total number of administered drug doses

First, we verify the goodness of our estimation. To do so, we compare the results from
simulations of system (4.27) and Eq. (4.37) for di�erent values of model parameters, see
Figure 4.2. We would like to underline that sharp increases in di�erence in tOMT estimations
appeared only for such parameters values that tOMT occurs before the end of the treatment.
In other words, the resulting treatments are not optimal for such parameters ranges, and thus,
should not be taken into account while attempting to select the best treatment scenario.

In Figure 4.3 we show how estimated onset of malignant transformation depends on patient-
speci�c parameters, i.e. tumour proliferation rate  and TMZ-cell kill strength ¸. For �xed
, it seems that tOMT is smaller for smaller ¸ rates, that is malignant transformation occurs
sooner for virtual tumours which are less sensitive to chemotherapy. On the other hand, for
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Figure 4.2: Relative percentage di�erences between tOMT calculated from Eq. (4.37) and from simu-
lations of system (4.27). We considered 60 doses of TMZ and assumed that L1 = 0.35.

�xed ¸, greater proliferation rates imply shorter time to malignant transformation, i.e. greater
velocity of tumour growth is associated with malignant transformation occurring earlier. These
results of our model seem to be self-evident and they are in a full agreement with biological
observations. Yet, to our knowledge, they have been not considered in a treatment planning
of LGGs.

In clinical practice, it could be di�cult to control value of ¸, however, proliferation
rate  can be predicted on the basis of few initial post-surgical MRI scans, as discussed pre-
viously in Section 3.5. Thus, for �xed unit dose and a total number of doses we can study if
there is any better possible chemotherapy fractionation scheme if di�erent velocities of tumour
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r = 1 and number of doses equals 60.
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Figure 4.4: Pseudocolour plot representing onset of malignant transformation (tOMT) estimated from
Eq. (4.37) for di�erent proliferation rates  and breaks r between subsequent doses for the case when
L1 = 0.4, ¸ = 0.1 and number of doses equals 60.

growth are considered. We present in Figures 4.4 and 4.5 the exemplary results, which show
the general relation between tOMT and r for di�erent values of . It seems that the current
standard break between subsequent doses (i.e. one day) may be the best one only for relatively
big proliferation rates. In fact to treat HGGs with higher proliferation rates chemotherapy doses
have been originally administered every day. Historically, a rule �maximum tolerated doses in
minimal time� has been widely applied for malignant tumours. However, LGG is usually not
a fast-growing tumour, for which this rule has been established. Figures 4.4 and 4.5 suggest
that for slowly growing tumours with small proliferation rates possibly a fractionation scheme
with larger breaks between doses should be considered. Such a chemotherapy with prolonged
time between subsequent doses is called a �protracted chemotherapy�, cf. e.g. [26]. In Fig-
ure 4.5 we see that if chemotherapy is applied in a protracted manner a potential increase in
time when malignant transformation starts could be around a year. Such an idea is breaking
well-established concept. However, it becomes easier to understand if we notice that in the
case of a very slow growing tumour, applying drug doses every day may simply mean attacking
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Figure 4.5: Onset of malignant transformation estimated from Eq. (4.37) (dotted lines) and from sim-
ulations of system (4.27) (black circles) for di�erent breaks r between subsequent doses for  = 0.002
(left) and  = 0.004 (right). The remaining parameters were: ¸ = 0.7,L1 = 0.4, and number of
doses equals 30.

the same tumour cells many times.
On the other hand, the break between subsequent doses cannot be too large, see Fig-

ure 4.5, as in such situations malignant transformation may already begin during the total
treatment time. It is due to the fact that in such cases the break between doses r is so large
that a tumour starts regrowing when there is no drug in tumour tissue, that is in times of
length r − ›. Thus, taking a too large break between doses leads to a sharp drop of the time
of malignant transformation onset and even a worse outcome than for treatment with doses
given every day. Hence, the choice of proper spacing between doses needs to be cautiously
and carefully studied.

4.3 Discussion

In this chapter, we considered �rst a reaction-di�usion system (4.1) describing LGG growth
and response to constant chemotherapy. Of our interest was especially the question of the
existence of travelling wave solutions. We proved the existence of such front using singular
geometric perturbation theory [209, 210].

Later on, in Section 4.2 we have modi�ed system (4.1) in such a way that chemotherapy is
described more realistically by some function of time. Motivated by results of Chapter 3, the
model was simpli�ed in order to obtain an analytical estimate of the onset of malignant
transformation for patients treated with chemotherapy. We obtained an explicit formula and
veri�ed its goodness, see Figure 4.2. We also performed a study on how does estimated tOMT

depends on the model parameters and break between subsequent doses.
We believe that such outcomes could have a potential application in selecting better chemo-

therapy schedules for di�erent patients in the future. Our results indicate that the treatment
fractionation scheme could be optimised by changing the duration of the treatment or the
break between subsequent doses. We propose to consider increasing the break between doses
administered to LGG patients. The predicted increase in tOMT obtained by this simple modi-
�cation depends on the tumour proliferation rate and can be around one year which may be
signi�cant especially for faster-growing LGGs.

On the basis of current clinical studies, we presume that such a prolongation of chemo-
therapy would remain safe for LGG patients. Khasraw et al. report cases of LGGs patients
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for which chemotherapy treatment administered for even 5-8 years did not cause serious side
e�ects [174]. Moreover, Mannas et al. conclude that long-term chemotherapy with TMZ
could be considered a therapeutic option as long as appropriate monitoring is assured [175].

We hope that in the next few years it will be possible to verify the e�ectiveness of such
schedules in vivo, leading to next clinical steps. Some studies on prolonged chemotherapies with
increased breaks between subsequent cycles like [61, 214] give us promising results to follow
in this direction. Our results are also in line with research presented in [134], where authors
study previously designed mathematical model of response to PCV, another chemotherapeutic
drug for gliomas see Section 1.5. Mazzocco et al. conclude that only prolonging the break
between subsequent cycles of drug administration can lead to improvement in virtual patients
overall survival of around a year.

In this chapter, we have considered administration of a �xed number of doses equal to
the standard dose of 150mg/m2. However, the obtained formulation of the simpli�ed model
allows also to consider di�erent doses of chemotherapy. Unfortunately, in order to do so, we
would need, currently unavailable, reliable information about di�erent TMZ doses distributions
obtained from brain tissue, just as is in the case of the standard dose, cf. [78, 157]. Thus,
we hope that the presented results will lead to further research on optimised chemotherapy
fractionations for individual LGG patients.
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Chapter 5

Summary

In this dissertation, we developed macroscopic mathematical models describing several aspects
of the growth dynamics of low-grade gliomas and their response to chemotherapy. As explained
in Chapter 1, low-grade gliomas (abbreviated as LGGs) are brain tumours having a poor
prognosis and causing a premature death for almost all patients. The clinical course of this
disease is usually very di�cult to predict. Some of these tumours remain stable for years, while
others progress rapidly into their more malignant counterparts known as high-grade gliomas,
which induce the appearance of major neurological de�cits and, eventually, death.

Up to now only few studies have been intended to describe LGG growth and its response
to therapies using a mathematical framework, for details see Section 1.6. Some of the mathe-
matical models presented so far take into account a large number of quantities which are very
di�cult, or impossible, to measure or estimate. Models proposed in this thesis are based on
biological and clinical studies concerning LGGs and all models' parameters have a clear bio-
logical meaning. Most of them were estimated from the appropriate data or literature and at
most four parameters were considered to be patient-speci�c. Such a �minimalistic approach�
enabled to �t the models' solutions to re�ect the growth kinetics of individual patients, ob-
taining very good results. We validated our models using LGGs patients' data provided by
our collaborators from Bern University Hospital, for details see Section 1.7. Importantly, we
performed mathematical analysis of our models and studied various quantities of potential
practical interest.

In Chapter 2 we formulated a mathematical model describing LGGs growth and their
response to temozolomide, a speci�c chemotherapeutic drug currently used to treat these
tumours. The model was developed in the form of two ODEs describing the evolution of two
populations of LGG cells: proliferating and damaged by chemotherapy. Such an approach was
chosen to characterise the prolonged response of LGGs to cytotoxic treatments, which lasts
months or sometimes even years after the end of therapy. A drug dynamics was modelled
directly by an impulsive ODE, allowing to realistically model the way chemotherapy drugs
are administered in the clinical practice. Recall that other mathematical models for glioma
response to chemotherapy did not focus on a very realistic description of chemotherapy drug
administration, see Section 1.6.

We investigated the mathematical properties of the proposed model with a general form
of tumour growth function. In particular, we proved the existence and uniqueness of solutions.
We showed that there exists a compact set invariant with respect to the evolution of the model
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in a case when initial conditions and model parameters ful�l given conditions. We showed that
the long-term behaviour of the model is similar for di�erent choices of the speci�c growth
function. To be speci�c, we showed that in the case of constant treatment, the conditions for
stability of existing steady states are the same for Gompertz type and logistic type of tumour
growth function, cf. Theorem 2.8. In addition, we also considered drug concentration to be
described by an asymptotically periodic function, which is a generalisation of the previously
proposed one [2]. In Theorem 2.12 we indicated the condition under which the trivial steady
state is asymptotically stable in the case of asymptotically periodic treatment. Based on
this result, we provided estimations of suggested minimal e�ective doses for individual LGG
patients. Finally, we showed that in some cases of periodic treatment there exist periodic
solutions.

We used numerical analysis methods, see Appendix B, to solve our system and analyse the
dependence of the model dynamics on parameters values. It turned out that our ODE model
with logistic growth function not only re�ected the fundamental phenomena on LGGs growth
and response to chemotherapy but also �tted well to volumetric data of LGG patients treated
with chemotherapy. We also studied various quantities of practical meaning, among others
the time to radiological progression, de�ned as the time when a tumour attains its minimum
volume after the chemotherapy and subsequently starts regrowing. Investigating a wide range
of possible values of parameters, we concluded that virtual tumours having a shorter time to
radiological progression after chemotherapy may be more aggressive. Such a behaviour was also
noticeable in LGGs patients data and has been previously observed likewise for LGGs treated
with radiotherapy [1, 116]. We suggested that estimated time to radiological progression can
be useful as a measure of tumour aggressiveness and a possible indicator of tumour prognosis.

Through simpli�cations made to the original model, we managed to estimate the time to
radiological progression as a function of the relevant biological and therapeutic parameters.
The obtained formula given by Eq. (2.46) may be helpful in designing improved personalised
treatment schedules, due to its dependence on tumour-speci�c parameters.

On the basis of our mathematical model, we also proposed a probing procedure which could
be considered in clinical practice. We suggested applying a small number of chemotherapeutic
drug doses and monitoring the tumour response to verify tumour's characteristics. The latter
treatment decisions would depend on the observed time of maximal response. Tumours attain-
ing their minimal volume early after a short course of chemotherapy treatment may be more
aggressive, thus the remaining drug doses should be �nished as soon as possible and other
therapeutic options (further surgery if feasible or radiotherapy) should be considered. In the
opposite case of slowly-responding tumours, it seems that after such a probing procedure the
rest of treatment might be delayed (as these tumours seem to be less aggressive).

In Chapter 3 we described mathematically the process of malignant transformation, i.e. the
switch of low-grade gliomas to high-grade gliomas. Based on biological observations, we raised
the hypothesis that malignant transformation may be induced by changes in tumour microen-
vironment happening as a result of increased tumoural density. Such assumption led us to
a formulation of a system of two reaction-di�usion equations coupled by a switch function
describing the transition from low-grade glioma phenotype to a more malignant one, charac-
terised by larger both proliferation and motility rates. We showed the existence, uniqueness
and non-negativity of solutions of the proposed model. We demonstrated the local stability
of homogeneous steady states of the system in the case of zero and non-zero di�usion coef-
�cient. We also investigated the stability of space homogeneous steady states and showed in
Theorem 3.5 that no di�usion-driven instabilities occur in the system, which is a biologically
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viable result.
As the model was developed with a minimal number of adjustable parameters, we were

able to successfully �t its solutions to data describing the evolution of tumours which un-
derwent malignant transformation. Subsequently, using numerical simulations and performing
sensitivity analysis, we studied how the patient-speci�c parameters in�uence the long-term
prognosis. We found out that the initial cell density at the centre of a tumour and rate of LGG
cells growth are the parameters which have the biggest in�uence on both time to malignant
transformation and overall survival.

These results suggest that the main goal of LGGs care should be the possible prevention
or delay in appearing malignant transformation. Thus, we focused on studying analytically
the tumour dynamics in the time horizon before the onset of malignant transformation. We
discussed a possible model simpli�cation in this period of time. Using a solution of Skellam
equation we derived explicit formulae for the evolution of radius of the detectable part of
a tumour and the velocity of its growth. Due to practical motivations, we also determined an
analytic formula for the time of malignant transformation onset as a function of patient-speci�c
parameters. Finally, we discussed the possible ways to apply some of these results in clinical
oncology practice. We believe that by coupling detailed radiological imaging information with
mathematical estimation derived in Chapter 3, malignant transformation could be predicted
in a non-invasive way. Such a prediction could have a huge impact on treatment planning for
low-grade glioma patients.

Motivated by the above results, in Chapter 4 we studied a reaction-di�usion system
capable of describing both the process of malignant transformation and the tumour response
to chemotherapy. It was based on both models presented in Chapters 2 and 3. We studied
the system analytically proving the existence and uniqueness of solutions. In the case of
constant chemotherapy, using Fredholm alternative theorem, among others, we also showed
that travelling wave solutions exist for some parameters values, see Theorem 4.3.

Afterwards, we used that model to investigate possibly improved chemotherapy fraction-
ations. Usually, while studying theoretically the possible more e�ective treatment schedules,
researchers aim at minimising the total tumour size or the total number of cells. However, in
the case of LGGs, the total tumour size does not have to be related with the tumour aggres-
siveness or responsiveness to treatments. There have been reported cases of large tumours
that remain stable for long periods of time and small tumours growing very fast. However,
it seems unquestionable that after the malignant transformation onset the mean velocity of
tumour growth increases signi�cantly. Thus, it appears that the possible delaying of malignant
transformation is an alternative goal potentially applicable in selecting treatment schemes for
LGGs patients.

We proceeded to estimate the time of malignant transformation onset for virtual patients
treated with a �xed number of chemotherapeutic drug doses. In order to do so, we considered
the evolution of local tumour density at the centre of a tumour. In Theorem 4.4 we derived the
solution of the resulting ODE system. We also studied the long-term dynamics of the obtained
di�erence equation describing the density of tumour cells at the centre of a tumour at times of
the drug administration, see Theorem 4.6. Afterwards, we proposed an estimate of the onset of
malignant transformation for virtual patients treated with a �xed number of chemotherapeutic
drug doses. We investigated the dependence of obtained estimate on model parameters and
treatment scheme. Based on numerical simulations, we suggested that a better treatment
outcome could be possibly attained only by increasing the break between subsequent doses.
We also discussed the feasibility of such a solution.
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We conclude that therapy schemes designed on the basis of tumour-speci�c characteristics
may lead to signi�cant improvements (even of the order of a year) in therapy e�ectiveness. We
hope that optimised cancer treatment protocols on the basis of mathematical models, such
as the ones presented in this dissertation, may become in the future a standard element of
personalised medicine.

In each chapter, we presented results suggesting some novel strategies for LGG care. How-
ever, they require meticulous veri�cation in an experimental setting. Both in vitro and in vivo

experiments are being planned to verify the outcomes of this thesis and study their possible
use in practice. In the future, having more speci�c experimental or clinical data would enable
to include in our mathematical models more phenomena (such as acquiring drug resistance or
toxicity) and address other clinically-driven questions, see e.g. discussion in Section 2.5.

The results of this dissertation were published in four scienti�c articles in peer-reviewed
high-ranked international journals and in a number of proceedings of national and interna-
tional conferences (e.g. in AIMS Conference on Dynamical Systems, Di�erential Equations
and Applications, Quadrennial Meeting of the World Federation of Neuro-Oncology Societies,
International Seminar on Statistics and Clinical Practice, BIOMAT International Symposium
on Mathematical and Computational Biology). In the nearest future, the results presented in
Chapter 4 will be submitted to other peer-reviewed journals. Additionally, in Appendix A we
included the �rst publication of the thesis author presenting the model of low-grade gliomas
growth and response to radiotherapy, which actually led to the following study of mathematical
models for LGGs presented in this dissertation.
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Low-grade gliomas (LGGs) are a group of primary brain tumours usually encountered in young patient
populations. These tumours represent a difficult challenge because many patients survive a decade or
more and may be at a higher risk for treatment-related complications. Specifically, radiation therapy is
known to have a relevant effect on survival but in many cases it can be deferred to avoid side effects
while maintaining its beneficial effect. However, a subset of LGGs manifests more aggressive clinical
behaviour and requires earlier intervention. Moreover, the effectiveness of radiotherapy depends on the
tumour characteristics. Recently Pallud et al. (2012. Neuro-Oncology, 14, 1–10) studied patients with
LGGs treated with radiation therapy as a first-line therapy and obtained the counterintuitive result that
tumours with a fast response to the therapy had a worse prognosis than those responding late. In this
paper, we construct a mathematical model describing the basic facts of glioma progression and response
to radiotherapy. The model provides also an explanation to the observations of Pallud et al. Using the
model, we propose radiation fractionation schemes that might be therapeutically useful by helping to
evaluate tumour malignancy while at the same time reducing the toxicity associated to the treatment.

Keywords: low-grade gliomas; radiotherapy; mathematical model of tumour response.

1. Introduction

Low-grade glioma (LGG) is a term used to describe WHO grade II primary brain tumours of astrocytic
and/or oligodendroglial origin. These tumours are highly infiltrative and generally incurable but have
a median survival time (ST) of >5 years because of low proliferation (Pignatti et al., 2002; Pouratian
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& Schiff, 2010). While most patients remain clinically asymptomatic besides seizures, tumour transfor-
mation to aggressive high-grade glioma is eventually seen in most patients.

Management of LGG has historically been controversial because these patients are typically young,
with few, if any, neurological symptoms. Historically, a wait and see approach was often favoured in
most cases of LGG due to the lack of symptoms in these mostly young and otherwise healthy adults.
The support for this practice came from several retrospective studies showing no difference in outcome
(survival, quality of life) if therapy was deferred (Olson et al., 2000; Grier & Batchelor, 2006). Other
investigations have suggested a prolonged survival through surgery (Smith et al., 2008). In this absence
of a randomized controlled trial, recently published studies may provide the most convincing evidence
in support of an early surgery strategy (Jakola et al., 2012) and waiting for the use of other therapeutical
options such as radiotherapy and chemotherapy. However, the decision on the individual treatment strat-
egy is based on a number of factors including patient preference, age, performance status and location
of tumour (Ruiz & Lesser, 2009; Pouratian & Schiff, 2010).

As to radiation therapy the clinical trial by Garcia et al. (2004) showed the advantage of using
radiotherapy in addition to surgery. However, the timing of radiotherapy after biopsy or debulking is
debated. It is now well known that immediate radiotherapy after surgery increases the time of response
(progression-free survival), but does not seem to improve overall survival while at the same time induc-
ing serious neurological deficits as a result of normal brain damage (Van den Bent, 2005). Overall
survival depends more on patient- and tumour-related characteristics such as age, tumour grade, histol-
ogy and neurological function than the details of the plan of radiotherapy treatment. Radiotherapy is
usually offered for patients with a combination of poor risk factors such as age, sub-total resection and
diffuse astrocytoma pathology (Higuchi et al., 2004).

Mathematical modelling has the potential to select patients who may benefit from early radiother-
apy. Also it may help in developing specific optimal fractionation schemes for selected patient sub-
groups. However, despite its enormous potential, mathematical modelling has had a limited use with
strong focus on some aspects of radiation therapy (RT) for high-grade gliomas (Barazzuol et al., 2010;
Konukoglu et al., 2010; Rockne et al., 2010; Bondiau et al., 2011). Up to now, no ideas coming from
mathematical modelling have been found useful for clinical application.

There is thus a need for models accounting for the fundamental features of LGG dynamics and
their response to radiation therapy without involving excessive details on the -often unknown- specific
processes but allowing the qualitative understanding of the phenomena involved. The availability of
systematic and quantitative measurements of LGG growth rates provides key information for the devel-
opment and validation of such models (Pallud et al., 2012a,b).

In this paper, we present a simple mathematical model capturing the key features seen in the response
of LGGs to radiation. Our model incorporates the basic elements of tumour dynamics: infiltration and
invasion of the normal brain by the tumour cells, proliferation and tumour cell death in response to
therapy. Radiation therapy is included in an almost parameter-free way that captures the essentials of
the dynamics and explains the relationship between proliferation, response to the therapy and prognosis
as recently reported by Pallud et al. (2012b).

In addition to explaining the counterintuitive observations of Pallud et al. (2012b) the model pre-
sented in this paper can be used to explore different radiation regimes. The analysis to be presented in
this paper suggests the possibility of using radiation therapy with palliative intent and also to test what
the tumour response is and help the oncologists in making the best possible decisions on when and how
to act on the tumour.

Our plan in this paper is as follows. First, in Section 2 we present our model accounting for tumour
cell dynamics and the response of the tumour cells to radiation. Next in Section 3, we present the results
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of the numerical simulations of the model in different scenarios and study the dependence of the model
on the different parameters. In Section 4, we display some analytical estimates of the typical dynamics
of the tumour response to radiation. In Section 5, we discuss some hypothesis suggested from the model
that may be useful for therapy. Finally, in Section 6 we summarize our conclusions.

2. Mathematical model for the response of LGGs to radiotherapy

2.1 Tumour cell compartment

In the last years there has been a lot of activity on mathematical models of glioma progression
(Stamatakos et al., 2006a,b; Frieboes et al., 2007; Murray, 2007; Swanson et al., 2008; Bondiau et al.,
2008; Eikenberry et al., 2009; Tanaka et al., 2009; Wang et al., 2009; Konukoglu et al., 2010; Rockne
et al., 2010; Pérez-García et al., 2011; Badoual et al., 2012; Gu et al., 2012; Hatzkirou et al., 2012;
Martínez-González et al., 2012; Pérez-García & Martínez-González, 2012; Painter and Hillen, 2013).
In this paper, we will consider a model for the compartment of tumour cells of the simplest possi-
ble type: a Fisher–Kolmogorov (FK) type equation (Murray, 2007). More complicated models such as
single-cell-based models would allow one, in principle, to follow the individual movement of the trans-
formed astrocytes through the brain parenchyma. However, considering that the basic rules behind a
model are more important than the model details, we have discarded both the use of on-lattice models,
which are not realistic when cell motion is considered, and off-lattice models, which assume fixed cell
geometries and/or incorporate unknown cell–cell interactions. Besides, these models often require the
estimation of a large number of unknown parameters and the determination of initial cell configurations,
which are extremely difficult to validate in in vivo experiments and/or using clinical data. Thus, to keep
our description as simple as possible, we have opted for a continuous model as follows:

∂C

∂t
= DΔC + ρ(1 − C)C, (2.1a)

C(x, 0) = C0(x), (2.1b)

where C(x, t) is the tumour cell density as a function of time t and the spatial position x and it is
measured in units of the maximal cell density allowed in the tissue C∗ (typically around 103 cell/cm);
Δ =∑n

j=1 ∂2/∂x2
j is the n-dimensional Laplacian operator.

By D, we denote the diffusion coefficient accounting for the average cellular motility measured in
mm2/day assumed in this paper to be constant and spatially uniform. Migration in gliomas is not simple
and in fact many authors have proposed that the highly infiltrative nature of human gliomas recapitu-
lates the migratory behaviour of glial progenitors (Dirks, 2001; Suzuki et al., 2002). Here we assume,
as in most models, that glioma cell invasion throughout the brain is basically governed by a standard
Fickian diffusion process. More realistic and complicated diffusion terms in gliomas should probably
be governed by fractional (anomalous) diffusion (Fedotov et al., 2011) or other more elaborate terms
(Deroulers et al., 2009) to account for the high infiltration observed in this type of tumours (Onishi
et al., 2011) and the fact that cells do not behave like purely random walkers and may actually remain
immobile for long time periods before being compelled to migrate to a more favourable place. In addi-
tion, in real brain there are spatial inhomogeneities expected in the parameter values such as different
propagation speeds in white and gray matter, and anisotropies (e.g. on the diffusion tensor with pref-
erential propagation directions along white matter tracts). Many papers have incorporated these details
(Clatz, 2005; Jbadi et al., 2005; Bondiau et al., 2008; Konukoglu et al., 2010; Painter and Hillen, 2013)
mostly with the intention to make patient-specific progression predictions. However, the main limitation
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is the lack of information on the (many) patient-specific unknown details, which has limited progress
in that direction. Thus, in order to simplify the analysis and focus on the essentials of the phenomena,
we have chosen to study the model in one spatial dimension and in isotropic media. It is interesting that
up to now only the simplest models such as those given by Equations (2.1) have been used to extract
conclusions useful for clinicians (Swanson et al., 2008; Wang et al., 2009).

The choice of 1D diffusion intends to incorporate qualitatively diffusion phenomena in the simplest
possible way. Front solutions of the 1D FK equation have been extensively studied and are known
to propagate with a minimal speed c = 2

√
ρD when starting from still initial data (Murray, 2007). It is

interesting that the 1D model recapitulates the most relevant -for us-phenomenology observed in higher-
dimensional scenarios. First, it is obvious and well known that front (invasion wave) solutions of the
1D FK equation also solve higher-dimensional version of the equation (Brazhnik and Tyson, 2000; Xin,
2000). Moreover, those solutions are asymptotically stable (Sattinger, 1976; Xin, 2000), which means
that, unlike other more complicated non-symmetrical solutions (Brazhnik and Tyson, 2000), they do
arise as limits of non-symmetric initial data. It is also well known that radially symmetric (in 2D) or
spherically symmetric (in 3D) travelling wave solutions of FK do not exist in high dimensions but
that symmetric fronts also develop in those scenarios with a non-constant speed that depends on the
local curvature R (Brazhnik and Tyson, 2000; Volpert & Petrovskii, 2009). As the front grows with
time, the now radius-dependent front speed is given by c(R) = c − D/R(t). Thus, growing symmetric
multidimensional solutions with large curvature radii (R → ∞) grow with the same speed as 1D fronts
(Volpert & Petrovskii, 2009; Gerlee and Nelander, 2012).

In this paper, we are interested on the description of LGGs that typically are very extended when
diagnosed, thus the initial data radius is large and fronts are well developed by then. Although during the
initial stages of tumour development the dimensionality may play a relevant role, for spatially extended
tumours the effect of using higher-dimensional operators is not expected to be substantial.

Moreover, some of the phenomena to be described later in this paper are found to be essentially
independent of diffusion and a very good qualitative agreement will be found between our simplified
analysis and the growth dynamics of the mean tumour diameter. Taking into account all these evidences,
we will keep the system 1D, since our intention is not to provide a detailed quantitative description of
the processes -that in any way would be beyond the reach of a simple model such as FK- but instead
to provide a qualitative description of the dynamics in the simplest possible way. As we will discuss in
detail later, this approach will lead to a simple yet qualitatively correct description of the response of
LGGs to radiotherapy.

The parameter ρ in Equation (2.1) is the proliferation rate (1/day), its inverse giving an estimate of
the typical cell doubling times. We have chosen a logistic type of proliferation leading to a maximum
cell density C(x, t) = 1. Finally, the tumour evolves from an initial cell density given by the function
C0(x) in an unbounded domain, so we implicitly assume it to be located initially sufficiently far from
the grey matter.

A very interesting feature of model Equations (2.1) is the well-known fact that a tumour front arises
propagating at the asymptotic (constant) speed of v∗ = 2

√
Dρ, which is in very good agreement with the

observed fact that the tumour mean diameter grows at an approximately constant speed (Pallud et al.,
2012a).

While many other mathematical models of gliomas incorporate different cell phenotypes, e.g. nor-
moxic (proliferative) and hypoxic (migratory) phenotypes, such as in Martínez-González et al. (2012),
Hatzkirou et al. (2012) and Pérez-García & Martínez-González (2012), here we focus our attention on
LGGs and as such will consider a single (dominant) tumour cell phenotype. In our model, we do not
include the possible existence of different tumour cell populations with different sensitivities to therapy
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such as stem cells, since the function and mechanisms of stem cells in glioblastoma are yet under debate
(Barrett et al., 2012; Chen et al., 2012).

2.2 Response to radiation

Radiation therapy has been incorporated in different forms to mathematical models of high-grade glioma
progression (Barazzuol et al., 2010; Konukoglu et al., 2010; Rockne et al., 2010; Bondiau et al., 2011).
In this paper, we want to focus our attention on LGGs whose response to radiation is very different from
the one observed in HGGs. Radiation therapy in LGGs typically induces a response that prolongs for
several years after therapy.

Very interesting quantitative data on the response of LGGs to radiation have been reported in a ret-
rospective study by Pallud et al. (2012a). The authors studied patients diagnosed with grade II LGGs
treated with first-line radiotherapy before evidence of malignant transformation. Patients with a post-RT
velocity of diametric expansion (VDE) (Pallud et al., 2012a) slower than −10 mm/year were taken as
a subgroup of slowly growing LGGs. Patients with a post-RT VDE of −10 mm/year or faster were
included in the group of fast-growing LGGs. The authors concluded that the post-RT VDE was signif-
icantly faster in the group with high proliferation. Also, in the patients with an available pre-RT VDE,
the low pre-RT VDE subgroup presented a slower VDE at imaging progression. With regard to the ST,
post-radiotherapy VDE carried a prognostic significance on ST, as the fast post-radiotherapy tumour
volume decrease (VDE at −10 mm/year or faster) was associated with a significantly shorter survival
than slow post-radiotherapy tumour volume decrease (VDE slower than −10 mm/year).

The very slow response to radiotherapy, leading to tumour regression lasting for several years is
difficult to understand in the context of the standard linear quadratic model in which damage is instan-
taneous and leads to cell death early after radiation therapy. However, a key aspect of the cell response
to radiation is that irradiated cells usually die because of the so-called mitotic catastrophe after complet-
ing one or several mitosis cycles (Van der Kogel & Joiner, 2009). This means that slowly proliferating
tumours, as in the case of LGGs with typical low proliferation indexes between 1% and 5% in patholog-
ical analyses, need a very long time to manifest the accumulated cell damage that cannot be repaired.

Thus, in order to capture in a minimal way the response of the tumour to radiation, we will com-
plement Equation (2.1) for the density of functionally alive tumour cells C(x, t) with an equation for
the evolution of the density of irreversibly damaged cells after irradiation Cd(x, t). Our model for the
evolution of both tumour cell densities will be given by the equations

∂C

∂t
= DΔC + ρ(1 − C − Cd)C, (2.2a)

∂Cd

∂t
= DΔCd − ρ

k
(1 − C − Cd)Cd . (2.2b)

The first equation is a Fisher–Kolmogorov-type equation describing the evolution of tumour cells
C(x, t). The saturation term includes the total tumour cell density, i.e. both the functional tumour cells
and those damaged by radiation Cd(x, t). The evolution of cells irreversibly damaged by radiation is
given by Equation (2.2b). As is well described in the literature (Van der Kogel & Joiner, 2009), most
of these cells behave normally until a certain number of mitosis cycles; thus we will consider that,
after an average of k mitosis cycles, these cells die resulting in a negative proliferation. The longer ST
kτ , with τ = 1/ρ being the tumour population doubling time, results in a reduced proliferation poten-
tial ρ/k, which is the coefficient used for the negative proliferation term. Thus, the parameter k in
Equation (2.2b) has the meaning of the average number of mitosis cycles that damaged cells are able to
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complete before dying. As with the normal population, the number of cells entering mitosis depends in
a non-linear way on both tumour cell populations (cf. last term in Equation (2.2b)).

We will assume a series of radiation doses d1, d2, . . . , dn given at times t1, t2, . . . , tn. The initial data
for the first subinterval will be given by the equations

C(x, t0) = C0(x), (2.3a)

Cd(x, t0) = 0. (2.3b)

The evolution of the tumour follows then Equations (2.2) until the first radiation dose d1, given at time
t1. The irradiation results in a fraction of the cells (surviving fraction) able to repair the radiation-induced
damage given by Sf (d1) and a fraction 1 − Sf (d1) of cells unable to repair the accumulated damage, thus
feeding the compartment of irreversibly damaged cells. The subsequent evolution of the populations is
again given by Equations (2.2) until the next RT dose is given. In general, after each irradiation event
we obtain

C(x, t+j ) = Sf (dj)C(x, t−j ), (2.3c)

Cd(x, t+j ) = Cd(x, t−j ) + [1 − Sf (dj)]C(x, t−j ), (2.3d)

where Sf (dj) is the survival fraction after a dose of radiation dj, i.e. the fraction of damaged tumour
cells after irradiation that are not able to repair lethal damage and are incorporated to the compartment
of damaged cells. For the doses to be considered independent, the interval between doses (typically 1
day) has to be larger than the typical damage repair times (of the order of hours). The evolution of both
cell densities between irradiation events is given by the partial differential equations (PDEs) (2.2).

2.3 Parameter estimation

Equations (2.2) together with the initial conditions for each subproblem (2.3) define completely the
dynamics of an LGG in the framework of our simplified theoretical approach.

We have chosen the parameters to describe the typical growth patterns of LGG. For the prolifer-
ation rate we have chosen typical values to be small and around ρ = 0.003 day−1 (see e.g. Badoual
et al., 2012), which give doubling times of the order of a year. Specifically, we have considered values
ranging from ρ = 0.001 day−1 for very slowly growing LGGs to ρ = 0.01 day−1. For the cell diffusion
coefficient we have taken values around D = 0.0075 mm2/day (Jbadi et al., 2005). This choice, together
with the previously chosen ρ, leads to asymptotic tumour diameter growth speeds given by v = 4

√
Dρ

of the order of several millimetres per year, in agreement with typical diametric growth speeds of LGGs
(Pallud et al., 2012a). However, the fact that the asymptotic speed is only reached when the tumour cell
density is around 1 may require taking larger values of D to match the real growth speeds.

With regards to the radiobiological parameters, gliomas being very resistant to radiation, we have
taken values in the range Sf (1.8 Gy) ≡ SF1.8 ∼ 0.9 considering the median survival fraction value 0.83
after one dose of 2 Gy given by Barazzuol et al. (2010) .

Finally, the average number of mitosis cycles completed before the mitotic catastrophe occurs is
difficult to estimate. This parameter intends to summarize in a single number a complex process in
which a cell hit by radiation and its progeny die after some more mitosis cycles leading to a final
extinction after a variable time. Death by mitotic catastrophe implies a minimal value of k = 1 and,
to allow for some more time, we may choose values in the range k = 1 − 3 (Van der Kogel & Joiner,
2009). We will show later that the choice of this parameter has a limited effect on the model dynamics
and that, in standard fractionation schemes, there may be biological reasons to take it as k = 1.
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Table 1 Typical values of the biological parameters in the model of LGG evolution

Variable Description Value (Units) References

C∗ Maximum tumour cell
density

106 cell/cm2 Swanson et al. (2008)

D Diffusion coefficient for
tumour cells

0.01 mm2/day Jbadi et al. (2005)

ρ Proliferation rate 0.00356 day−1 Badoual et al. (2012)
SF1.8 Survival fraction for 1.8 Gy ∼0.9 Barazzuol et al. (2010)
k Average number of mitosis

cycles completed before
the mitotic catastrophe

1–3 Van der Kogel & Joiner (2009)

Our typical choices for the full set of model parameters is summarized in Table 1.
In this paper, we will fix the dose per fraction in agreement with the standard fractionation schemes

for LGGs to be 1.8 Gy; the only relevant parameter is the survival fraction SF1.8, which will be taken to
be around SF1.8 ∼ 0.9, as discussed above. In many examples, we will choose the radiotherapy scheme
as the standard fractionation of a total of 54 Gy in 30 fractions of 1.8 Gy over a time range of 6 weeks
(5 sessions per week from Monday to Friday).

3. Results

3.1 Computational details

We have studied the evolution of the tumour diameter using our model Equations (2.2) and (2.3). To
solve the PDEs we have used standard second order finite differences both in time and space. Since
the tumour diameter in the framework of this model tends to grow linearly in any spatial dimension
we have focused on the simplest 1D version of the model. We have checked with simulations in higher
dimensions that the dynamics is essentially the same and thus have sticked to the simplest possible
model. To avoid boundary effects and focus on the bulk dynamics, we have assumed our computational
domain to be much larger than the tumour size.

In each simulation, we have computed the tumour diameter as the distance between the points for
which the density reaches a critical detection value Cth that provides a signal in the T2 (or FLAIR)
MRI sequence. Although which is that precise value is a debated question and in fact depends on the
thresholds used in the images, we have assumed that Cth ∼ 0.05 − 0.07. This is in agreement with the
reported value of cellular density about 0.16 for detection (Swanson et al., 2008) and a normal tissue
density of about 0.1. In agreement with previous studies we take a fatal tumour burden (FTB) size of
6 cm in diameter (Swanson et al., 2008; Wang et al., 2009). As parameters containing useful information
we have computed: the time in which the tumour starts regrowing after the therapy, usually called in
clinical practice time to tumour progression (TTP), the time for which the tumour size equals its initial
size -denoted as growth delay (GD)- and the time for which the tumour size equals the FTB or ST.

We have studied a broad range of parameter values corresponding to the possible range of realistic
values in the framework of our simple description of the tumour dynamics and its response to radiother-
apy. We have also taken different types of initial data ranging from more localized (such as gaussian
initial profiles) to more infiltrative (such as sech-type functions). In what follows, we summarize our
results.
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(a)

(b)

Fig. 1. (a) Tumour diameter evolution for two different values of the proliferation: ρ = 0.00356 day−1, ρ = 0.00712 day−1.
Other parameter values are: D = 0.0075 mm2/day, critical detection value Cth = 0.07, SF1.8 = 0.90 and k = 1. The initial tumour
cell densities are taken as Cd (x, 0) = 0, C(x, 0) = 0.4 sech(x/6), with x measured in millimetres, which gives an initial tumour
diameter of 28.8 mm. Radiotherapy follows the standard scheme (6 weeks with 1.8 Gy doses from Monday to Friday) and starts
at time t = 0. Circles denote measurements every three months that would correspond to a close follow-up of the patient. The
upper dashed line (horizontal) shows the FTB size taken through this paper to be 6 cm, as discussed in the text. (b) Evolution of
the tumour cell amplitudes A(t) = maxx |C(x, t)| and B(t) = maxx |Cd (x, t)| during the first 200 days showing the early response
to the therapy for ρ = 0.00356 day−1.

3.2 Tumour proliferation rate determines the response to radiotherapy

In a first series of simulations, we have studied the dependence of the evolution of the tumour diame-
ter on the proliferation rate. Figure 1(a) shows the evolution of the tumour diameter for two different
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proliferation rates ρ = 0.00356 day−1 and ρ = 0.00712 day−1 (Fig. 1). In the first case of low prolif-
eration, the tumour responds more slowly to therapy as measured by the speed of tumour regression
(decrease in size) but the total response time is significantly longer, the TTP being 16.9 months against
8.2 months in the later case. Also the GDs is 14.7 months for the faster proliferating tumour against 29.9
months for the less proliferative one. Finally the ‘virtual patient’ with the slowly proliferating tumour
survives much longer than that with the more proliferative one. This is just an example of a tendency
shown in all of our simulations where ‘more aggressive tumours respond earlier to the therapy’.

It is remarkable that this fact is in full agreement with the results from Pallud et al. (2012b). Our
model based on reasonable biological assumptions leads to a long remission time (e.g. in Fig. 1 of about
3 years), much larger than the treatment duration (6 weeks) and negatively correlated with the tumour
proliferation rate. As a second relevant finding, also seen in the results shown by Pallud et al. (2012b),
we observe that tumours responding faster have also shorter re-growth time.

Figure 1(b) shows the dynamics of the maximum density of tumour cells (A(t) = maxx C(x, t)) and
damaged tumour cells (B(t) = maxx Cd(x, t)). As could be expected, the amplitude of functionally alive
tumour cells decreases during the therapy with the exception of the breaks in the weekends when a
small increase is seen and correspondingly the amplitude of damaged tumour cells grows after every
irradiation and for the full treatment period (6 weeks = 42 days). After t = 42 days the population of
tumour cells starts a slow recovery, while the population of damaged cells declines in a much longer
time scale. However, the width of the total tumour population evolves only in the slow time scale and
does not display any effects during the treatment period.

It is important to emphasize that this behaviour is not the result of a fortunate choice of the parame-
ters but a generic behaviour as we have confirmed through a large number of simulations covering the
full clinically relevant parameter space. As an example, in Fig. 2 we show how the variation of ρ over a
broad range of values leads to the same conclusion. Larger proliferation values accelerate the response
but lead to earlier re-growth and, as such, shorter GDs and STs (Fig. 2(a)). Our simulations also point
out that the maximum volume reduction is only weakly dependent on the proliferation rate ρ (Fig. 2(b)),
the smaller the proliferation rates the larger being the maximum reduction in diameter. This fact is also
in very good agreement with the results of Pallud et al. (2012b) (see e.g. Fig. 2 bottom of their paper).

3.3 The role of the number of mitosis cycles before clonogenic cell death

It is well known that most cells die after irradiation through the so-called mitotic catastrophe, i.e. due to
incomplete mitosis, after completing one or several mitosis cycles. However, the specific choice of the
parameter k is not a priori obvious although a number between one and three is to be expected a priori
from previous experience in vitro (Van der Kogel & Joiner, 2009). To get some information on how our
model’s results depend on this parameter, we have explored numerically the range k = 1–3.

Our results are summarized in Fig. 3. First, in Fig. 3(a) we show typical evolutions of the
tumour diameter for three different values of k = 1 (triangles), k = 2 (squares) and k = 3 (circles) for
ρ = 0.00712 day−1. It is clear that although the diameter reduction depends on k (Fig. 3(b)), the specific
choice of this parameter does not affect the more relevant parameters such as the GD and the total sur-
vival (see Fig. 3(a,c)). From this and other simulations, we think the specific choice of this parameter
does not have a crucial role on the dynamics of clinically relevant features.

In addition, although in vitro irradiation of cells with a single dose allows cells to complete a few
mitosis cycles, the accumulation of many doses in real treatment schedules implies that a typical cell
receives a lot of DNA damage. This will probably make it very difficult for cells in vivo to progress
after the first mitosis, thus making it reasonable to take k = 1. This fact, together with the previous result
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(a)

(b)

Fig. 2. Dependence of the (a) ST (solid line), GD (dashed line), TTP (dotted line) and (b) maximal reduction in diameter as
a function of ρ. The curves summarize the outcome of many individual simulations with initial data Cd (x, 0) = 0, C(x, 0) =
0.2 exp(−x4/81920), with x measured in millimetres, which gives an initial tumour diameter of 33.80 mm. Radiotherapy follows
the standard scheme (6 weeks with 1.8 Gy doses from Monday to Friday) and starts at time t = 0. Other parameters used in the
simulations are as in Fig. 1.

on the independence of the clinically relevant endpoints on k makes the choice of k = 1 a reasonable
assumption not expected to have a relevant impact on the final results.

3.4 The role of cell motility

We have also analysed the role of the variation of the cell motility (invasion) parameter D. The typical
outcome of several simulations for different values of this parameter is shown in Fig. 4. It is clear from
Fig. 4(a) that cell motility does not affect too much the dynamics of the response to the therapy except
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(a)

(b) (c)

Fig. 3. (a) Tumour diameter evolution for three different values of k = 1 (triangles), k = 2 (squares) and k = 3 (circles) for ρ =
0.00712 day−1. Other parameters are as in Fig. 2. The upper dashed line (horizontal) corresponds to the FTB size. Radiotherapy
follows the standard scheme (6 weeks with 1.8 Gy doses from Monday to Friday) and starts at time t = 0. It is clear that, for
this set of parameters, the ST does not depend on k despite the differences in the maximum diameter reduction achieved by the
therapy. (b) Maximum diameter reduction for different values of the mean number of mitosis cycles completed before cell death
with k between 1 and 3. (c) ST and GD as a function of k.

for long times because of the effect of the mobility on the asymptotic VDE v = 4
√

ρD. This manifests in
the independence of the TTP and GD on D and the relevant impact of this parameter on the ST (Fig 4(b)).

3.5 Deferring radiotherapy does not affect ST

One clinical fact on radiotherapy of LGGs that has been proved in the last years is that deferring radio-
therapy has no significant impact on the ST (Bauman et al., 1999; Van den Bent, 2005). To test if our
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(a)

(b)

Fig. 4. (a) Tumour diameter evolution for three different values of D = 0.001 mm2day−1 (circles), D = 0.007 mm2day−1 (trian-
gles) and D = 0.021 mm2day−1 (squares) for ρ = 0.00356 day−1. Other parameters and initial data are as in Fig. 2. Radiotherapy
follows the standard scheme (6 weeks with 1.8 Gy doses from Monday to Friday) and starts at time t = 0. It is clear that, for this
set of parameters, the early response to the therapy does not depend on D, while the asymptotic growth does (b) ST, GD and TTP
as a function of D. Only the ST depends substantially on the cell motility D.

model presents this behaviour, we have run several series of simulations with different delays in the
start of the radiotherapy and compared the outcome. Typical results are shown in Fig. 5. The results of
the model fully agree with this very well-known fact, which gives us more confidence in the model’s
predictive power, despite its simplicity.
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(a)

(b)

Fig. 5. Evolution of an initial tumour density given by C(x, 0) = 0.2 exp(−x2/(2w2)), Cd (x, 0) = 0 for w = 6, with (x, w) being
measured in millimetres, and parameter values D = 0.01 mm2/day, ρ = 0.004 day−1, SF1.8 = 0.9 and k = 1. Radiotherapy follows
the standard scheme (6 weeks with 1.8 Gy doses from Monday to Friday) and starts at a given time TRT after the beginning of the
simulation for t = 0. Shown are (a) Tumour diameter evolution for three different values of TRT = 6 months (solid line, circles),
TRT = 18 months (dashed line, squares), TRT = 30 months (dotted line, triangles). (b) ST (solid line), GD (dashed line) and TTP
(dotted line) as a function of the delay TRT in the start of radiotherapy.
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Fig. 6. Tumour diameter evolution for parameter values D = 0.007 mm2/day, ρ = 0.00356 day−1, initial data as in Fig. 1 and two
different fractionations of the total dose. The solid line corresponds to the tumour evolution under 30 doses of 1.8 Gy given from
Monday to Friday for six consecutive weeks starting 1 week after t = 0. The dashed line corresponds to the tumour diameter
evolution under the same fractionation scheme for the first three weeks and then deferring the remaining 15 doses for 1 year.
Despite the time of response being shorter, the final ST is the same in both fractionation schemes.

3.6 Splitting doses does not affect ST

We have studied the response of the tumour to radiotherapy under many different fractionation schemes,
maintaining the dose per fraction to be 1.8 Gy. Surprisingly, all of the studied fractionations lead to very
similar results for the virtual patient’s ST. A typical example is shown in Fig. 6.

Although we have not tried every possible combination, this fact points out the difficulty of con-
structing specific fractionation schemes leading to a better outcome than those currently in use. How-
ever, the results of Fig. 6 have interesting potential practical applications as will be discussed in
Section 5.

4. Some analytical estimates

The model equations given by Equations (2.2), though simple, do not have known analytical solutions
allowing for the direct calculation of the clinically relevant quantities, i. e. the TTP (tTTP), the GD (tGD)
and the time to FTB. Even for the simplest version of the Fisher–Kolmogorov equations only a limited
number of solutions are known for specific parameter values (Ablowitz & Zeppetella, 1979; Murray,
2007).

Here, we present some back-of-the-envelope calculations that may help in getting a qualitative idea
of the typical dynamics of the tumour response to radiation. The basic idea behind our estimates is
that, during some time after irradiation, the dominant component of the dynamics is the refilling of
the compartment of the proliferating tumour cells, and diffusion acts on a longer time scale, being
responsible for the asymptotic front speed (see e.g. Fig. 4(a)) but having only a negligible influence
both on the TTP and the GD (Fig. 4(b)).
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We will assume the tumour densities shortly after irradiation to be small enough to allow for the non-
linear terms to be neglected (it is in agreement with the low cellularity characteristic in LGG histologic
samples). This is obviously true for the tumour compartment whose typical cell densities after irradiation
are small until the tumour refills the space. With regard to the damaged tumour cell compartment its
maximal density is of the order of the maximal initial tumour cell density (about 0.3–0.4) but decays in
space to smaller cell densities and will be assumed to contribute only through the leading linear terms.

As a final assumption, we will assume the total treatment time to be short in comparison with
the typical proliferation times so that the effect of the radiotherapy will be incorporated through a
modification of the pretreatment tumour cell density C0(x). Thus, for our rough estimates we will take

C(x, 0) = Sn
f C0(x), (4.1a)

Cd(x, 0) = (1 − Sn
f )C0(x). (4.1b)

Our set of hypothesis leads to a very simple evolution law for the total densities, valid for short times:

C(x, t) ≈ Sn
f C0(x) eρt, (4.2a)

Cd(x, t) ≈ (1 − Sn
f )C0(x) e−ρt/k , (4.2b)

so that, for some time after the therapy, the total tumour cell density CT (x, t) can be roughly approxi-
mated by

CT (x, t) ≈ [Sn
f eρt + (1 − Sn

f ) e−ρt/k]C0(x), (4.3)

where A(t) ≡ Sn
f eρt + (1 − Sn

f ) e−ρt/k provides an estimate of the tumour maximum density as a function
of time. From this simple formula, we can estimate the GD time since it would correspond to the time
tGD > 0 such that

Sn
f eρtGD + (1 − Sn

f ) e−ρtGD/k ≈ 1. (4.4)

Although Equation (4.4) is an algebraic equation with no simple explicit solutions by the time re-growth
occurs, we can expect the first term to have a very small contribution, while the second one would
dominate, which gives

tGD ≈ 1

ρ
log

(
1

Sn
f

)
≈ n(1 − Sf )

ρ
. (4.5)

This equation incorporates the fact that the GD time does not depend much on the diffusion parameter
D (see e.g. Fig. 4(b)), nor on the number of mitosis cycles before cell death for damaged cells (see e.g.
Fig. 3(c)), and points out a direct simple dependence of this time on the survival fraction, number of
doses and proliferation parameter. Moreover, the dependence of tGD on ρ is ∼ 1/ρ, which resembles
closely the dependence depicted in Fig. 2. We can also get estimates for the TTP since it corresponds to
the point of minimum amplitude, corresponding to the time tTTP such that A′(tTTP) = 0,

d

dt
[Sn

f eρt + (1 − Sn
f ) e−ρt/k] = 0, (4.6)

which leads to

tTTP = 1

ρ(1 + 1/k)
log

(
1 − Sn

f

Sn
f

)
� n(1 − Sf )

ρ(1 + 1/k)
(4.7)
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(a)

(b)

Fig. 7. Comparison of the estimates for tGD (circles) and tTTP (squares) obtained from Equations (4.5) and (4.7) and their exact
values (lines) obtained from numerical simulations of Equations (2.2) in different scenarios. In all cases D = 0.007 mm2/day,
Sf = 0.9 and k = 1 and initial data are as in Fig. 1. (a) Dependence on the proliferation parameter ρ for a fixed number of doses
n = 30 following the standard fractionation scheme. (b) Dependence on the number of doses n for fixed ρ = 0.002 day−1.

While these estimates are obtained as rough approximations for the response to radiation, they pro-
vide a very reasonable agreement with the results of direct numerical simulations of Equations (2.2).
For instance, in Fig. 7(a), we compare the results for the GD and TTP provided by Equations (4.5) and
(4.7) with the results from Equations (2.2) for a typical set of parameters and varying the proliferation
parameter ρ. In Fig. 7(b), we compare the predictions for tTTP and tGD given by Equations (4.5) and
(4.7) for different values of the number of radiation fractions n, with the simulations of the full PDEs.
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In addition to these quantities, it is possible to use Equation (4.3) to get estimates for the conditions
of response to therapy (A′(0) < 0), i.e.

A′(0) = ρSn
f − ρ(1 − Sn

f )/k < 0. (4.8)

This leads to the result that an estimate for the minimal number of doses leading to a response is about

n > − log(1 + k)

log Sf
. (4.9)

Interestingly, this number is independent of ρ and, for the typical values of Sf used in our simula-
tions, we get a minimal number of sessions around 7 and 9. We have compared this estimate with
the results of direct simulations of Equations (2.2) and found a very good agreement. For instance,
taking typical initial data and parameter values C(x, 0) = 0.4 sech(x/11), ρ = 0.00356 day−1, k = 1,
D = 0.0075 mm2/day and Sf = 0.92, we get a response for n � 10 that is very close to the theoretical
estimate computed from Equation (4.9), which is n � 9. The same happens for other parameter choices.

Finally, neither the GD as given by Equation (4.5) nor the TTP (4.7) depends on the initial amplitude
or time t0. This means that radiation can be deferred with no effect on these quantities, which matches
very well the behaviour observed in Fig. 5(b).

5. Discussion and therapeutical implications

The intention of this paper is to propose a simple mathematical model adding radiation therapy in a
minimal way to the simplest model of tumour progression. Despite its simplicity, the model reproduces
many of the well-known facts of RT of LGGs as well as the recent results by Pallud et al. (2012b). The
fact that the model reproduces so well what is known makes us wonder if it can be used to obtain any
new information and/or to propose novel ideas with the potential of translational application. In this
section we make several proposals based on the mathematical model.

The first one is based on the fact, discussed in Section 3.6, that deferring part of the treatment does
not affect ST. This concept opens the door to dose fractionation approaches where part of the radiation is
given right after surgery as an adjuvant therapy and the remaining radiation is given on progression (or
later), thus controlling early the tumour while deferring in time the appearance of side effects. A specific
way of implementing this idea would be to complete the radiation therapy exactly when the tumour size
is minimal so that the irradiated volume is substantially smaller than initially and the side effects due
to the so-called volume effect would be reduced. Thus, instead of waiting till the tumour has extended
substantially, the first dose would be given right after resection and the second one on minimal volume.
The fact that the tumour volume irradiated would be smaller might allow for the consideration of dose
escalation protocols while maintaining the side effects under control.

A second implication of our model is that delivery of a reduced radiation dose larger than the mini-
mal response dose (e.g. 30 Gy) should have a verifiable effect on tumour size. Monitoring the response
of the tumour to radiation, one could get an idea of its malignancy due to the relation between response
time and proliferation, and correlate the finding with the proliferation index obtained through immuno-
histochemistry when available. The toxicity of this approach for the normal brain is low since 30 Gy
is about the same level of the prescriptions for even full-brain irradiation under metastatic spreading, a
dose that is very well tolerated by the brain.
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Having an early estimate of the tumour aggressiveness is a potentially interesting information since,
in addition to making survival estimates (from the tumour parameters ρ, D), it would allow to discrim-
inate tumours that are not as benign as initially thought. A first reason is that the tumour may have
transformed to some degree into a more malignant one. This happens sometimes when the histological
analysis is old, and by the time RT starts the tumour has become malignant. A different relevant source
of error on diagnosis is sampling error if the histology was obtained through biopsy. In fact, biopsy
is known to underestimate glioma grade in roughly 30% of cases (Muragaki et al., 2008) due to local-
ized malignant transformation outside the biopsy location. Those tumours with high proliferation values
obtained from the mathematical modelling should be expected to have early (radiological) malignant
transformation and then MRIs should be taken at shorter intervals, as suggested e.g. by Pallud et al.
(2012b) for fast-growing tumours. A final therapeutic option for those tumours with fast growth and/or
expected early malignant transformation should be to consider another surgery (if feasible) or to start
chemotherapy.

Thus, taking together our two ideas, we could make specific recommendations: for tumours with a
high risk of malignant transformation, i.e. short re-growth time, our suggestion would be to complete
the full radiation dosing, while for those growing slowly one could wait either until the malignant
transformation or to the point where the tumour starts re-growing.

6. Conclusions

In conclusion, in this paper we have constructed a mathematical model combining the standard Fisher–
Kolmogorov dynamics for tumour cells with a model for the response to radiation based on radiobi-
ological facts. Our equations provide a theoretical link between proliferation and response to therapy,
which is one of the main results of this paper. The model predicts that tumours with high proliferation
will respond faster to RT than those with slower proliferation values. However, this regression would
only be transient and a regrowth is expected early in those tumours responding faster. This fact, despite
being somewhat counterintuitive, has been confirmed in very recent retrospective studies by Pallud et al.
(2012b). The model also displays the observed behaviour that deferring RT does not affect ST.

The equations allow one to obtain analytical estimations for the GD time, TTP and conditions of
response to therapy such as the minimal number of doses leading to a response.

In addition to describing the known features of the response of LGGs to radiotherapy, the model
allows one to get interesting predictions that may be amenable to further research. One of them is to
follow a split-dose approach with a fraction of the total amount of radiation being given after surgery
and the remaining on progression. This methodology would allow one to get information on the tumour
growth parameters that may lead to estimates of the expected time to malignant transformation, survival,
etc., while at the same time reducing toxicity.

We hope that our results will stimulate further collaborative studies directed to improve the quality
of life of patients suffering from this devastating disease.
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Appendix. Study of the system without diffusion

A.1 Motivation and simplified model

The main focus of the paper is the obtention of results on LGG progression that is related to the tumour
size if the transition to malignancy is not taken into account. However, it is interesting to note that a lot
of information on the kinetic part of equations (2.2) can be obtained. Thus, in this appendix, we will
study the pair of ordinary differential equations

dA

dt
= ρ(1 − A − B)A, (A.1a)

dB

dt
= −ρ

k
(1 − A − B)B, (A.1b)

where now both A(t) and B(t) are positive functions depending only on time and describing the evo-
lution of both tumour cell populations in systems without spatial inhomogeneities. The effect of radio-
therapy given at times (t1, . . . , tn) with doses (d1, . . . , dn) and survival fractions (Sf (d1), . . . , Sf (dn)) in
this simplified model is given by the equations

A(t+j ) = Sf (dj)A(t−j ), (A.2a)

B(t+j ) = B(t−j ) + [1 − Sf (dj)]A(t−j ). (A.2b)

A.2 Analysis of equations (A.1)

Since Equations (A.1) correspond to an autonomous planar dynamical system, the possible dynamics in
the phase space can be completely understood. First of all, note that there are two families of equilibria.
First, the equilibrium point with (A, B) = (0, 0) and then the line of points R satisfying A + B = 1, with
A, B > 0. The first one is a saddle point, thus unstable and means that tumour cells tend to regrow no
matter how small is their density. With regards to those in R = {(a, 1 − a), 0 < a < 1}, the Jacobian
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Fig. A1. Phase portrait of the dynamical system (A.1). Shown are the velocity field (arrows) and some orbits (blue) including
some heteroclinic orbits connecting unstable equilibrium points on R with stable equilibria on the same set (blue). Also in red are
shown the stable and unstable manifold of the point (0,0) (located on the axes), and the manifold of equilibria R. The red lines
determine the limits of the invariant region S.

matrix reads

J(R) = ρ

( −a −a
(1 − a)/k (1 − a)/k

)
. (A.3)

The eigenvalues of this Jacobian matrix are given by

λ1 = 0, λ2 = ρ

k
(1 − a) − ρa,

and the corresponding eigenvectors are (1, −1) and (1, −(1 − a)/ka), respectively (for λ2 |= 0). The
equilibrium points on R are non-hyperbolic points. If a < 1/(k + 1), then the fixed point (a, 1 − a)

possesses a local unstable manifold and a local centre manifold. Otherwise, (a, 1 − a) has a local stable
manifold and a local centre manifold. Thus, to get a heteroclinic orbit joining two points, say (a1, 1 − a1)

and (a2, 1 − a2), with a2 > a1, it is a necessary condition that a2 > 1/(k + 1) and a1 < 1/(k + 1).
A straightforward application of the centre manifold theory shows that the centre manifold of R is

the same set, i.e. W c(R) = R. Moreover, the points of R satisfying a < 1/(k + 1) are unstable, while
the points over the centre manifold satisfying a > 1/(k + 1) are stable.

The explicit form of the equation of the orbits can be obtained from Equations (A.1)

dA

dB
= −k

A

B
(A.4)

which leads to
ABk = C, (A.5)

with C = A0Bk
0, where A(0) = A0 > 0, B(0) = B0 > 0. Thus, the orbits correspond to hyperbolas. Some

orbits together with the velocity field are shown in Fig. A1. We want to note that the centre manifold is
given by the red line joining the points (1, 0) and (0, 1).



DELAY EFFECTS IN RADIOTHERAPY OF LGG 329

The feasible region of our model is the set

S = {(A, B) : A, B > 0, A + B � 1}.
Since the set S is bounded by the centre manifold and by the line orbits of the saddle point A = 0 and
B = 0, it is straightforward to see that the region S is an invariant region, that is, all the orbits inside
S belong to S for all times t ∈R. Therefore, all the orbits inside S start and end in the centre manifold
(except for the line orbits asymptotically approaching the saddle point (0, 0) for t = ±∞).

A.3 Exact solutions

It is interesting to note that in special cases it is possible to compute some explicit solutions for equa-
tions (A.1). One of the most relevant cases corresponds to k = 1, which, as has been discussed through
the paper, is the biologically most relevant situation. In that case, substituting the orbits equation,
AB = C, in (A.1b), we obtain

∫
dB

(B − 1/2)2 + C − 1/4
= ρ(t − t0). (A.6)

It is interesting to note that, for solutions starting in the feasible region A + B � 1, a simple calcu-

lation shows that 0 < C < 1
4 . Let us define Q+ =

√
1
4 − C < 1

2 . In that case, we can compute explicitly

the integrals in Equation (A.6) to obtain

B(t) = 1

2
− Q+ tanh[Q+ρ(t − t0)], (A.7a)

A(t) = C

1/2 − Q+ tanh[Q+ρ(t − t0)]
. (A.7b)

In the phase space, these solutions correspond to hyperbolas inside the region S.
For the limit case C = 1

4 , Equations (A.6) can also be solved explicitly to obtain

B(t) = 1

2
− 1

ρ(t − t0)
, (A.8a)

A(t) = 1

2 − 4/ρ(t − t0)
. (A.8b)

This is a special case, since the solutions correspond to hyperbolas through the point ( 1
2 , 1

2 ), which
is a point of the centre manifold and for which λ2 = 0.

For completeness, we also present the solutions for the case C > 1
4 . In that case the solutions corre-

spond to hyperbolas outside the region S. Defining Q− =
√

C − 1
4 , we obtain

B(t) = 1

2
+ Q− tan[Q−ρ(t − t0)], (A.9a)

A(t) = C

1/2 + Q− tan[Q−ρ(t − t0)]
. (A.9b)



Appendix B

Numerical procedures

B.1 Numerical procedures for model of response to chemotherapy

We present functions used to solve model given by system (2.2) with function f as in Eq. (2.1)
and �t its parameters.

main

function main

% Estimating model parameters based on data of LGGs treated with chemotherapy

[time_beforeCT, vol_beforeCT, vol_afterCT, time_afterCT, time_med, n_cycles, ...

t_beforeCT, time, out_per_day, delay, index0, time_to_CTend] = data_159();

[K,lambda,dose_eff,rho0,alpha0,k0] = parameters_man();

%%

% estimation of tumour growth before the onset of chemotherapy treatment

% that is till index0 defined from patients data

resultP=zeros(size(time));

P0=vol_beforeCT(1);

tic

[rho,err_rho]= estim_rho(time_beforeCT,vol_beforeCT,rho0,K);

toc

fprintf('Estimation before chemotherapy onset: rho = %f, error: %f\n', rho, err_rho)

resultP(1:index0)=calculateP(t_beforeCT,P0,rho,K);

P1=resultP(index0);

params0=[alpha0,k0];

params2=[rho,K,lambda,dose_eff];

%%

% initial guess of parameters alpha and k

[~,~,Total0]=calculateP_D(time,n_cycles,index0,out_per_day,params0,params2,P1);

Total0(1:index0)=resultP(1:index0);

diff=(vol_afterCT-Total0(time_afterCT.*out_per_day))./vol_afterCT;

err0=sum(sum(diff.^2));

fprintf('Starting values: alpha = %f, k = %f, error: %f\n', alpha0, k0,err0);
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tic

[params,err1] = estim_alpha_k(vol_afterCT, time_afterCT, time, n_cycles, index0, ...

out_per_day, params0, params2, P1);

toc

alpha=params(1);

k=params(2);

fprintf('Results of fit: alpha = %f, k = %f, error: %f\n', alpha, k, err1);

% compute solution for estimated parameters

[~,~,Total]=calculateP_D(time,n_cycles,index0,out_per_day,params,params2,P1);
Total(1:index0)=resultP(1:index0);

end

calculateP

function solP=calculateP(t,P0,rho,K)

% calculating solution of logistic equation

% describing tumour growth before the onset of chemotherapy treatment

solP=P0*exp(rho*t)./(1+P0/K*(exp(rho*t)-1));

end

calculateP_D

function [solP,solD,Total] = ...

calculateP_D(time,n_cycles,index0,out_per_day,params,params2,P1)

% calculating solution of system

% describing tumour growth from the onset of chemotherapy treatment

alpha=params(1);

k=params(2);

rho=params2(1);

K=params2(2);

lambda=params2(3);

dose_eff=params2(4);

function f=F(~,y)
f=zeros(size(y));

C=y(1); P=y(2); D=y(3);

% right-hand side of the system

f(1)=-lambda*C;

f(2)= (1-(P+D)/K).*P*rho-alpha*P.*C;

f(3)= -(1-(P+D)/K).*D*rho/k + alpha*P.*C;

end

resultC=zeros(size(time));

resultD=zeros(size(time));

resultP=zeros(size(time));

resultP(index0)=P1;

for cycle=1:n_cycles

% first solve system for the first 4 days of drug administration

% 28 is the length of the cycle

% out_per_day - number of outputs per day

for j=1:4
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index=(index0-1)+28*out_per_day*(cycle-1)+(j-1)*out_per_day+1;

if index<length(time)

C0=resultC(index)+dose_eff;

P0=resultP(index);

D0=resultD(index);

sol=ode45(@F, [time(index), time(index+out_per_day)], [C0,P0,D0]);

result=deval(sol, time(index:index+out_per_day));

resultC(index:index+out_per_day)=result(1,:);

resultP(index:index+out_per_day)=result(2,:);

resultD(index: index+out_per_day)=result(3,:);

end

end

index1=index0-1+28*out_per_day*(cycle-1)+4*out_per_day;

if index<length(time)

if cycle<n_cycles

indeks2=index0+28*out_per_day*cycle+1;

% solve for the time from the last dose till the next cycle

else

indeks2=time(end)*out_per_day+1;

% solve for the time from the last dose till the end of the time of

% observation

end

C0=resultC(index1)+dose_eff;

P0=resultP(index1);

D0=resultD(index1);

sol=ode45(@F, [time(index1), time(indeks2)], [C0,P0,D0]);

result=deval(sol,time(index1:indeks2));

resultC(index1:indeks2)=result(1,:);

resultP(index1:indeks2)=result(2,:);

resultD(index1:indeks2)=result(3,:);

end

end

solP=resultP(index0:(time(end)*out_per_day+1));

solD=resultD(index0:(time(end)*out_per_day+1));

Total=resultP+resultD;

end

estim_rho

function [rho,err_rho]=estim_rho(time_beforeCT,vol_beforeCT,rho0,K)

% Finding best value of parameter rho using relative least squares method

% based on initial guess - value rho0

P0=vol_beforeCT(1);

function y=diff_volumes(rho)

y=(vol_beforeCT-calculateP(time_beforeCT,P0,rho,K))./vol_beforeCT;

end

options=optimset('TolX',1e-13,'MaxFunEvals',8000);

[rho,err_rho]=lsqnonlin(@diff_volumes,rho0,0.0001, 0.008, options);
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end

estim_alpha_k

function [params,err] = estim_alpha_k(vol_afterCT, time_afterCT, time, n_cycles, ...

indeks0, out_per_day, params0, params2, P1)

% Finding best value of parameters alpha and k using relative least squares method

% based on initial guesses stored in params0

t=time_afterCT.*out_per_day;

function z=estim(params)

[~,~,Total]=calculateP_D(time,n_cycles,indeks0,out_per_day,params,params2,P1);
Total_afterTMZ=Total(t);

z=(Total_afterTMZ-vol_afterCT)./Total_afterTMZ;

end

options=optimset('TolX',1e-10,'MaxFunEvals',8000,'TolFun',1e-15);

[params, err]=lsqnonlin(@estim,params0,[0.0001, 0.0005],[3, 1],options);

end

B.2 Numerical procedures for model of malignant transformation

We present functions used to solve system (3.1) and �t its parameters.

EstimationPSO_malignant_transf_main

function EstimationPSO_malignant_transf_main

% Fitting values of h_0,rho_l,D_l, D_h to patients data with PSO algorithm

%% PATIENT DATA

id=165;

[time_med,time_total,diams_med,date_transform,r0]= patients_data(id);

%% FIXED PARAMETERS

d_thres=0.16;

tau_lh=100;

Lcrit=0.6;

Delta_crit=0.05*Lcrit;

rhoh= 0.042;

params_fixed=[d_thres,tau_lh, Lcrit, Delta_crit, rhoh];

%% SIMULATION SPACE DOMAIN (mm)

L = 50; % Tissue size 100 mm=10cm

Nx = 1000;

x = linspace(-L,L,Nx); % Simulation domain (mm)

%% TIME MESH

dt = 10; % Time step (days) - for visualisation

t=(0:dt:time_total(end)+dt);

%% PARAMETERS TO ESTIMATE - INITIAL VALUES
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h0= 0.56;

Dl= 0.0004;

rhol= 0.0005;

Dh=0.08;

params0=[h0,rhol,Dl,Dh];

%% INITIAL SOLUTION

sol=LH_sol(t,x,params_fixed,params0,r0);

diams= diameter(x,sol,d_thres);

visualisation_diam(t,diams,diams_med,time_med,date_transform,1);

%% INITIAL ERROR

err0 = error_h0_rhol_Dl_Dh(params0, params_fixed, diams_med,time_med, x, r0);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% FITTING h0, rhol, Dl, Dh

% we will save results of fitting to a file every

n_iter=100;

step_size=5;

n_steps = floor(n_iter/step_size);

if (n_steps*step_size == n_iter)

steps = step_size*ones(1,n_steps);

else

steps = step_size*ones(1,n_steps+1);

steps(end) = n_iter-n_steps*step_size;

end

filename = sprintf('id_%d.txt',id);

fileID = fopen(filename,'a');

fprintf(fileID,'Before: error: %2.10f%%,\nh_{0}=%1.5e, rho_{l} = %1.5e, D_{l} = ...

%1.5e, D_{h} = %1.5e.\n', 100*err0,h0,rhol,Dl,Dh);

fclose(fileID);

addpath('../../PSO');

for i=1:length(steps);

tic

[paramsF,errF] = estimPSO_h0_rhol_Dl_Dh(params_fixed,params0, ...

diams_med,time_med, x, r0, steps(i));

toc

h0=paramsF(1);

rhol=paramsF(2);

Dl=paramsF(3);

Dh=paramsF(4);

krok = i*step_size;

fileID = fopen(filename,'a');

fprintf(fileID,'\nIteration: %4.d, h_0 = %1.10e, rho_{l} = %1.10e, ...

D_{l}=%1.10e, D_{h}=%1.10e, error: %2.10f%%\n', 30+krok, h0, rhol, Dl, ...

Dh, 100*errF);

fclose(fileID);

params0=[h0, rhol, Dl, Dh];

end

fprintf('Fit: h_0 = %.10f, rho_{l} = %.10f, D_{l}=%10f, D_{h}=%10f, error: ...

%f%%\n', h0, rhol, Dl, Dh,100*errF);

fileID = fopen(filename,'a');

fprintf(fileID,'\nAfter fit: h_{0} = %1.10e, rho_{l} = %1.10e, D_{l}=%1.10e, ...

D_{h}=%10f, error: %2.10f%%\n', h0, rhol, Dl, Dh, 100*errF);

fclose(fileID);

%% solve model with selected parameters
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sol=LH_sol(t,x,params_fixed,paramsF,r0);

diams= diameter(x,sol,d_thres);

end

LH_solve

function solution=LH_solve(time,x,params_fixed,params_estim,r0)

% Calculating the solution of system describing malignant transformation of LGGs

d_thres=params_fixed(1);

tau_lh=params_fixed(2);

Lcrit=params_fixed(3);

Delta_crit=params_fixed(4);

rhoh=params_fixed(5);

h0=params_estim(1);

rhol=params_estim(2);

Dl=params_estim(3);

Dh=params_estim(4);

invDelta_crit = 1/Delta_crit;

sigma=-r0^2/log(d_thres/h0);

Slhp = @(T) 0.5*(1+tanh((T-Lcrit)*invDelta_crit));

cr1 = Slhp(Lcrit-Delta_crit);

cr2 = Slhp(Lcrit+Delta_crit);

crwsp = 1/(cr2-cr1);

Slh=@(T) min([max([(Slhp(T)-cr1)*crwsp,0]),1]);

options=odeset('RelTol',1e-5,'AbsTol',1e-8);

solution = pdepe(0, @pdex1pde, @pdex1ic, @pdex1bc, x, time, options);

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% system of PDEs to solve %

%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [c,f,s] = pdex1pde(~,~,u,DuDx)
% right-hand side of the system

c=[1; 1];

f=[Dl; Dh].*DuDx;

L=u(1); H=u(2);

s1= (1-(L+H)).*L*rhol-Slh(L+H)/tau_lh*L;

s2= (1-(L+H)).*H*rhoh + Slh(L+H)/tau_lh*L;

s=[s1; s2];

end

% boundary conditions

function [pl,ql,pr,qr] = pdex1bc(~,~,~,~,~)
pl = [0;0];

ql = [1;1];

pr = [0;0];

qr = [1;1];

end

% initial conditions

function u0=pdex1ic(y)

L0=h0*exp(-y.^2/sigma);

H0=zeros(size(y));

u0=[L0;H0];
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end

end

diameter

function diam = diameter(x,sol,threshold)

% Calculating diameter of visible part of tumour

% (density is above given treshold)

% based on solution of system of PDEs computed with the use of LH_solve

% and stored in variable "sol"

Nt = length(sol(:,1,1));

Nx = length(x);

diam = zeros(size(sol(:,1,1)));

m=0;

for j=1:Nt

layer = sol(j,:,1)+sol(j,:,2);

if (layer(end)>threshold)

ind1 = Nx;

else

ind1 = find(layer>threshold,1,'last');

end

if (layer(1)>threshold)

ind0 = 1;

else

ind0 = find(layer>threshold,1,'first');

end

if isempty(ind1)

x1 = 0;

elseif ind1<Nx

x1=x(ind1) + (threshold-layer(ind1))*(x(ind1+1)-x(ind1))/ ...

(layer(ind1+1)-layer(ind1));

else

x1 = x(end);

end

if isempty(ind0)

x0 = 0;

elseif ind0>1

x0=x(ind0-1) + (threshold-layer(ind0-1))*(x(ind0)-x(ind0-1))/ ...

(layer(ind0)-layer(ind0-1));

else

x0 = x(1);

end

diam(j) = (x1 - x0)*(1+(m>0)); %mm

end

end

error_h0_rhol_Dl_Dh
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function errTotal = error_h0_rhol_Dl_Dh(params_estim, params_fixed, ...

diams_med,time_med, x, r0)

% Calculating the total difference between model solution and patient data

threshold=params_fixed(1);

sol=LH_solve(time_med,x,params_fixed,params_estim,r0);

diam_model=diameter(x,sol,threshold);

if (length(diam_model)==length(diams_med))

errTotal=sum(((diam_model.'-diams_med)./diams_med).^2);

else

errTotal = Inf;

end

estimPSO_h0_rhol_Dl_Dh

function [pF,errF] = estimPSO_h0_rhol_Dl_Dh(params_fixed,params_estim, ...

diams_med,time_med, x, r0, niter)

% estimating values of model parameters with PSO

initial=params_estim;

h0lower=0.3; %lower bound for h0

h0upper=0.57; %upper bound for h0 equals Lcrit-Deltacrit

rhollower=0.0001;

rholupper=0.008;

Dllower=0.0003;

Dlupper=0.008;

Dhlower=0.0008;

Dhupper=0.9;

lb=[h0lower, rhollower, Dllower, Dhlower]; %lower bounds for parameters

ub=[h0upper, rholupper, Dlupper, Dhupper]; %upper bounds for parameters

if nargin>=6

opt = PSOSET('Display', 'iter','MAX_ITER', niter, 'TOLFUN', 1e-12);

else

opt = PSOSET('Display', 'iter');

end

[pF, errF] = PSO('error_h0_rhol_Dl_Dh',initial, lb, ub, opt, ...

params_fixed,diams_med,time_med,x,r0);

% pF stores values of h0, rhol, Dl, Dh

end
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