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Abstract. We consider the task of deriving a key with high HILL en-
tropy (i.e., being computationally indistinguishable from a key with high
min-entropy) from an unpredictable source.
Previous to this work, the only known way to transform unpredictability
into a key that was ✏ indistinguishable from having min-entropy was via
pseudorandomness, for example by Goldreich-Levin (GL) hardcore bits.
This approach has the inherent limitation that from a source with k bits
of unpredictability entropy one can derive a key of length (and thus HILL
entropy) at most k� 2 log(1/✏) bits. In many settings, e.g. when dealing
with biometric data, such a 2 log(1/✏) bit entropy loss in not an option.
Our main technical contribution is a theorem that states that in the
high entropy regime, unpredictability implies HILL entropy. Concretely,
any variable K with |K| � d bits of unpredictability entropy has the
same amount of so called metric entropy (against real-valued, determin-
istic distinguishers), which is known to imply the same amount of HILL
entropy. The loss in circuit size in this argument is exponential in the
entropy gap d, and thus this result only applies for small d (i.e., where
the size of distinguishers considered is exponential in d).
To overcome the above restriction, we investigate if it’s possible to first
“condense” unpredictability entropy and make the entropy gap small. We
show that any source with k bits of unpredictability can be condensed
into a source of length k with k� 3 bits of unpredictability entropy. Our
condenser simply “abuses” the GL construction and derives a k bit key
from a source with k bits of unpredicatibily. The original GL theorem
implies nothing when extracting that many bits, but we show that in
this regime, GL still behaves like a “condenser” for unpredictability. This
result comes with two caveats (1) the loss in circuit size is exponential in
k and (2) we require that the source we start with has no HILL entropy
(equivalently, one can e�ciently check if a guess is correct). We leave it
as an intriguing open problem to overcome these restrictions or to prove
they’re inherent.

1 Introduction

Key-derivation considers the following fundamental problem: Given a joint dis-
tribution (X,Z) where X|Z (which is short for “X conditioned on Z”) is guar-
anteed to have some kind of entropy, derive a “good” key K = h(X,S) from
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X by means of some e�cient key-derivation function h, possibly using public
randomness S.

In practice, one often uses a cryptographic hash function like SHA3 as the
key derivation function h(.) [Kra10, DGH+04], and then simply assumes that
h(.) behaves like a random oracle [BR93].

In this paper we continue the investigation of key-derivation with provable
security guarantees, where we don’t make any computational assumption about
h(.). This problem is fairly well understood for sources X|Z that have high
min-entropy (we’ll formally define all the entropy notions used in 2 below), or
are computationally indistinguishable from having so (in this case, we say X|Z
has high HILL entropy). In the case where X|Z has k bits of min-entropy, we
can either use a strong extractor to derive a k � 2 log ✏�1 key that is ✏-close to
uniform, or a condenser to get a k bit key which is ✏-close to a variable with
k � log log ✏�1 bits of min-entropy. Using extractors/condensers like this also
works for HILL entropy, except that now we only get computational guarantees
(pseudorandom/high HILL entropy) on the derived key.

Often one has to derive a key from a source X|Z which has no HILL en-
tropy at all. The weakest assumption we can make on X|Z for any kind of key-
derivation to be possible, is that X is hard to predict given Z. This has been
formalized in [HLR07] by saying that X|Z has k bits of unpredictability entropy,
denoted Hunp

s (X|Z) > k, if no circuit of size s can predict X given Z with ad-
vantage > 2�k (to be more general, we allow an additional parameter � > 0,
and Hunp

�,s (X|Z) > k holds if (X,Z) is �-close to some distribution (Y, Z) with
Hunp

s (Y |Z) > k). We will also consider a more restricted notion, where we say
that X|Z has k bits of list-unpredictability entropy, denoted H⇤unps (X|Z) > k,
if it has k bits of unpredictability entropy relative to an oracle Eq which can be
used to verify the correct guess (Eq outputs 1 on input X, and 0 otherwise).4

We’ll discuss this notion in more detail below. For now, let us just mention that
for the important special case where it’s easy to verify if a guess for X is cor-
rect (say, because we condition on Z = f(X) for some one-way function5 f),
the oracle Eq does not help, and thus unpredictability and list-unpredictability
coincide. The results proven in this paper imply that from a source X|Z with
k bits of list-unpredictability entropy, it’s possible to extract a k bit key with
k � 3 bits of HILL entropy

Proposition 1. Consider a joint distribution (X,Z) over {0, 1}n ⇥ {0, 1}m
where

H⇤unps,� (X|Z) > k (1)

4 We chose this name as having access to Eq is equivalent to being allowed to output
a list of guesses. This is very similar to the well known concept of list-decoding.

5 To be precise, this only holds for injective one-way functions. One can generalise
list-unpredictability and let Eq output 1 on some set X , and the adversary wins if
she outputs any X 2 X . Our results (in particular Theorem 1) also hold for this more
general notion, which captures general one-way functions by letting X = f�1(f(X))
be the set of all preimages of Z = f(X).



Let S 2 {0, 1}n⇥k be uniformly random and K = XTS 2 {0, 1}k, then the
unpredictability entropy of K is

Hunp

s/22kpoly(m,n),�(K|Z, S) > k � 3 (2)

and the HILL entropy of K is

HHILL

t,✏+�(K|Z, S) > k � 3 (3)

with6 t = s · ✏7

22kpoly(m,n) .

Proposition 1 follows from two results we prove in this paper.
First, in Section 4 we prove Theorem 1 which shows how to “abuse” the

Goldreich-Levin hardcore bits by generating a k bit key K = XTS from a
source X|Z with k bits of list-unpredictability. It is known that the Goldreich-
Levin theorem [GL89] can be used as to extract from list-unpredictability (this
was used in [HILL99] for the case when Z is a one-way function of X), yet
implies nothing about the pseudorandomness of K|(Z, S) when extracting that
many bits. Instead, we prove that GL is a good “condenser” for unpredictability
entropy: ifX|Z has k bits of list-unpredictability entropy, thenK|(Z, S) has k�3
bits of unpredictability entropy (note that we start with list-unpredictability, but
only end up with “normal” unpredictability entropy). This result is used in the
first step in Proposition 1, showing that (1) implies (2).

Second, in Section 5 we prove our main result, Theorem 2 which states that
any source X|Z which has |X|�d bits of unpredictability entropy, has the same
amount of HILL entropy (technically, we show that it implies the same amount
of metric entropy against deterministic real-valued distinguishers. This notion
implies the same amount of HILL entropy as shown by Barak et al. [BSW03]).
The security loss in this argument is exponential in the entropy gap d. Thus, if
d is very large, this argument is useless, but if we first condense unpredictability
as just explained, we have a gap of only d = 3. This result is used in the second
step in Proposition 1, showing that (2) implies (3). In the two sections below
we discuss two shortcomings of Theorem 1 which we hope can be overcome in
future work.7

On the dependency on 2k in Theorem 1. As outlined above, our first
result is Theorem 1, which shows how to condense a source with k bits of list-
unpredictability into a k bit key having k � 3 bits of unpredictability entropy.

6 We denote with poly(m,n) some fixed polynomial in (n,m), but it can denote dif-
ferent polynomial throughout the paper. In particular, the poly here is not the same
as in (2) as it hides several extra terms.

7 After announcing this result at a workshop, we learned that Colin Jia Zheng proved
a weaker version of this result. Theorem 4.18 in this PhD thesis, which is available
via http://dash.harvard.edu/handle/1/11745716 also states that k bits of unpre-
dictability imply k bits of HILL entropy. Like in our case, the loss in circuit size
in his proof is polynomial in ✏�1, but it’s also exponential in n (the length of X),
whereas our loss is only exponential in the entropy gap � = n� k.



The loss in circuit size is 22kpoly(m,n), and it’s not clear if the dependency on 2k

is necessary here, or if one can replace the dependency on 2k with a dependency
on poly(✏�1) at the price of an extra ✏ term in the distinguishing advantage. In
many settings log(✏�1) is in the order of k, in which case the above di↵erence
is not too important. This is for example the case when considering a k bit key
for a symmetric primitive like a block-cipher, where one typically assumes the
hardness of the cipher to be exponential in the key-length (and thus, if we want
✏ to be in the same order, we have log(✏�1) = ⇥(k)). In other settings, k can be
superlinear in log(✏�1), e.g., if the the high entropy string is used to generate an
RSA key.

List vs. normal Unpredictability. Our Theorem 1 shows how to condense a
source where X|Z has k bits of list-unpredictability entropy into a k bit string
with k�3 bits unpredictability entropy. It’s an open question to which extent it’s
necessary to assume list-unpredictability here, maybe “normal” unpredictability
is already su�cient? Note that list-unpredictability is a lower bound for unpre-
dictability as one always can ignore the Eq oracle, i.e.,Hunp

✏,s (X|Z) > H⇤unp✏,s (X|Z),
and in general, list-unpredictability can be much smaller than unpredictability
entropy.8

Interestingly, we can derive a k bit key with almost k bits of HILL entropy
from a source X|Z which k bits unpredictability entropy Hunp

✏,s (X|Z) > k in two
extreme cases, namely, if either

1. if X|Z has basically no HILL entropy (even against small circuits).
2. or when X|Z has (almost) k bits of (high quality) HILL entropy.

In case 1. we observe that if HHILL

✏,t (X|Z) ⇡ 0 for some t ⌧ s, or equivalently,
given Z we can e�ciently distinguish X from any X 0 6= X, then the Eq oracle
used in the definition of list-unpredictability can be e�ciently emulated, which
means it’s redundant, and thus X|Z has the same amount of list-unpredictability
and unpredictability entropy, Hunp

s,✏ (X|Z) ⇡ H⇤unps0,✏0 (X|Z) for (✏0, s0) ⇡ (✏, s).
Thus, we can use Theorem 1 to derive a k bit key with k � O(1) bits of HILL
entropy in this case. In case 2., we can simply use any condenser for min-entropy
to get a key with HILL entropy k � log log ✏�1 (cf. Figure 2). As condensing
almost all the unpredictability entropy into HILL entropy is possible in the two
extreme cases where X|Z has either no or a lot of HILL entropy, it seems con-
ceivable that it’s also possible in all the in-between cases (i.e., without making
any additional assumptions about X|Z at all).

GL vs. Condensing. Let us stress as this point that, because of the issues
discussed above, our result does not always allow generate more bits with high
HILL entropy than just using the Goldreich-Levin theorem. Out of k bits of
unpredictability, our technique gets k � 3 bits of HILL, whereas GL gives only

8 E.g., let X by uniform over {0, 1}n and Z arbitrary, but independent of X, then for
s = exp(n) we have Hunp

s (X|Z) = n but H⇤unps (X|Z) = 0 as we can simply invoke
Eq on all {0, 1}n until X is found.



k�2 log(1/✏); thus we extract more. However our reduction has a quantitatively
larger loss in circuit size compared to the GL theorem, so that the guaranteed se-
curity (indistinguishability) is against weaker adversaries. In general, the amount
of unpredictability (or any other computational) entropy of X|Z can decrease
when we consider more powerful adversaries.

2 Entropy Notions

In this section we formally define the di↵erent entropy notions considered in this

paper. We denote with Drand,{0,1}
s the set of all probabilistic circuits of size s

with boolean output, and Drand,[0,1]
s denotes the set of all probabilistic circuits

with real-valued output in the range [0, 1]. The analogous deterministic circuits

are denoted Ddet,{0,1}
s and Ddet,[0,1]

s . We use X ⇠✏,s Y to denote computational
indistinguishability of variables X and Y , formally9

X ⇠✏,s Y () 8C 2 Drand,{0,1}
s : |Pr[C(X) = 1]� Pr[C(Y ) = 1]| 6 ✏ (4)

X ⇠✏ Y denotes that X and Y have statistical distance ✏, i.e., X ⇠✏,1 Y , and
with X ⇠ Y we denote that they’re identically distributed. With Un we denote
the uniform distribution over {0, 1}n.

Definition 1. The min-entropy of a random variable X with support X is

H1(X) = � log
2
max
x2X

Pr[X = x]

For a pair (X,Z) of random variables, the average min-entropy of X condi-
tioned on Z is

eH1(X|Z) = � log
2

E
z Z

max
x

Pr[X = x|Z = z] = � log
2

E
z Z

2�H1(X|Z=z)

HILL entropy is a computational variant of min-entropy, where X (conditioned
on Z) has k bits of HILL entropy, if it cannot be distinguished from some Y that
(conditioned on Z) has k bits of min-entropy, formally

Definition 2 ( [HILL99,BSW03,HLR07]). A random variable X has HILL
entropy k, denoted by HHILL

",s (X) � k, if there exists a distribution Y satisfying
H1(Y ) � k10 and X ⇠",s Y .

Let (X,Z) be a joint distribution of random variables. Then X has condi-
tional HILL entropy k conditioned on Z, denoted by HHILL

",s (X|Z) � k, if there

exists a joint distribution (Y, Z) such that eH1(Y |Z) � k and (X,Z) ⇠",s (Y, Z).

9 Let us mention that the choice of the distinguisher class in (4) irrelevant (up to a

small additive di↵erence in circuit size), we can replace D
rand,{0,1}
s with any of the

three other distinguisher classes.
10 The modern definition of HILL entropy is based on min-entropy, following [BSW03]

and subsequent works, although [HILL99] formulated it for Shannon entropy.



Barak, Sahaltiel and Wigderson [BSW03] define the notion of metric entropy,
which is defined like HILL, but the quantifiers are exchanged. That is, instead
of asking for a single distribution (Y, Z) that fools all distinguishers, we only
ask that for every distinguisher D, there exists such a distribution. For reasons
discussed in Section 2, in the definition below we make the class of distinguishers
considered explicit.

Definition 3 ( [BSW03], [FR12]). Let (X,Z) be a joint distribution of ran-
dom variables. Then X has conditional metric entropy k conditioned on Z

(against probabilistic boolean distinguishers), denoted HMetric,rand,{0,1}
",s (X|Z) �

k, if for every D 2 Drand,{0,1}
s there exists a joint distribution (Y, Z) such that

eH1(Y |Z) � k and

|Pr[D(X,Z) = 1]� Pr[D(Y, Z) = 1]| 6 ✏

More generally, for class 2 {rand, det}, range 2 {[0, 1], {0, 1}},
HMetric,class,range

",s (X|Z) � k if for every D 2 Dclass,range
s such a (Y, Z) exists.

Like HILL entropy, also unpredictability entropy, which we’ll define next, can be
seen as a computational variant of min-entropy. Here we don’t require indistin-
guishability as for HILL entropy, but only that the variable is hard to predict.

Definition 4 ( [HLR07]). X has unpredictability entropy k conditioned
on Z, denoted by Hunp

✏,s (X|Z) � k, if (X,Z) is (✏, s) indistinguishable from some
(Y, Z), where no probabilistic circuit of size s can predict Y given Z with proba-
bility better than 2�k, i.e.,

Hunp

s,✏ (X|Z) � k ()
9(Y, Z), (X,Z) ⇠",s (Y, Z) 8C, |C| 6 s : Pr

(y,z) (Y,Z)

[C(z) = y] 6 2�k (5)

We also define a notion called “list-unpredictability”, denoted H⇤unp✏,s (X|Z) � k,
which holds if Hunp

✏,s (X|Z) � k as in (5), but where C additionally gets oracle
access to a function Eq(.) which outputs 1 on input y and 0 otherwise. So, C can
e�ciently test if some candidate guess for y is correct.11

Remark 1 (The ✏ parameter). The ✏ parameter in the definition above is not
really necessary, following [HLR07], we added it so we can have a “smooth”
notion, which is easier to compare to HILL or smooth min-entropy. If ✏ = 0,
we’ll simply omit it, then the definition simplifies to

Hunp

s (X|Z) � k () Pr
(x,z) (X,Z)

[C(z) = x] 6 2�k

11 We name this notion ”list-unpredictability” as we get the same notion when instead
of giving C oracle access to Eq(.), we allow C(z) to output a list of guesses for y,
not just one value, and require that Pr(y,z) (Y,Z)[y 2 C(z)] 6 2�k. This notion is
inspired by the well known notion of list-decoding.



Let us also mention that unpredictability entropy is only interesting if the con-
ditional part Z is not empty as (already for s that is linear in the length of X)
we have Hunp

s (X) = H1(X) which can be seen by considering the circuit C (that
gets no input as Z is empty) which simply outputs the constant x maximizing
Pr[X = x].

Metric vs. HILL. We will use a lemma which states that deterministic real-
valued metric entropy implies the same amount of HILL entropy (albeit, with
some loss in quality). This lemma has been proven by [BSW03] for the uncon-
ditional case, i.e., when Z in the lemma below is empty, it has been observed
by [FR12,CKLR11] that the proof also holds in the conditional case as stated
below

Lemma 1 ( [BSW03,FR12,CKLR11]). For any joint distribution (X,Z) 2
{0, 1}n ⇥ {0, 1}m and any ✏, �, k, s

HMetric,det,[0,1]
✏,s (X|Z) > k ) HHILL

✏+�,s·�2/(m+n)(X|Z) > k

Note that in Definition 2 of HILL entropy, we only consider security against
probabilistic boolean distinguishers (as ⇠✏,s was defined this way), whereas in
Definiton 3 of metric entropy we make the class of distinguishers explicit. The
reason for this is that in the definition of HILL entropy the class of distinguishers
considered is irrelevant (except for a small additive degradation in circuit size,
cf. [FR12, Lemma 2.1]).12 Unlike for HILL, for metric entropy the choice of
the distinguisher class does matter. In particular, deterministic boolean metric

entropy HMetric,det,{0,1}
✏,s (X|Y ) > k is only known to imply deterministic real-

valued metric entropy HMetric,det,[0,1]
✏+�,s (X|Y ) > k � log(��1), i.e., we must allow

for a � > 0 loss in distinguishing advantage, and this will at the same time
result in a loss of log(��1) in the amount of entropy. For this reason, it is crucial
that in Theorem 2 we show that unpredictability entropy implies deterministic
real-valued metric entropy, so we can then apply Lemma 1 to get the same
amount of HILL entropy. Dealing with real-valued distinguishers is the main
source of technical di�culty in the proof of the Theorem 2, proving the analogous
statement for deterministic boolean distinguishers is much simpler.

3 Known Results on Provably Secure Key-Derivation

We say that a cryptographic scheme has security ↵, if no adversary (from some
class of adversaries like all polynomial size circuits) can win some security game
with advantage > ↵ if the scheme is instantiated with a uniformly random
string.13 Below we will distinguish between unpredictability applications, where
12 This easily follows from the fact that in the definition (4) of computational indistin-

guishability the choice of the distinguisher class is irrelevant.
13 We’ll call this string “key”. Though in many settings (in particular when keys are

not simply uniform random strings, like in public-key crypto) this string is not used
as a key directly, but one rather should think of it as the randomness used to sample
the actual keys.



the advantage bounds the probability of winning some security game (a typical
example are digital signature schemes, where the game captures the existential
unforgeability under chosen message attacks), and indistinguishability applica-
tions, where the advantage bounds the distinguishing advantage from some ideal
object (a typical example is the security definition of pseudorandom generators
or functions).

3.1 Key-Derivation from Min-Entropy

Strong Extractors. Let (X,Z) be a source where eH1(X|Z) > k, or equivalently,
no adversary can guess X given Z with probability better than 2�k (cf. Def. 1).
Consider the case where we want to derive a key K = h(X,S) that is statistically
close to uniform given (Z, S). For example, X could be some physical source
(like statistics from keystrokes) from which we want to generate almost uniform
randomness. Here Z models potential side-information the adversary might have
on X. This setting is very well understood, and such a key can be derived using
a strong extractor as defined below.

Definition 5 ( [WZ93], [DORS08]). A function Ext : {0, 1}n ⇥ {0, 1}d !
{0, 1}` is an average-case (k, ✏)-strong extractor if for every distribution (X,Z)
over {0, 1}n ⇥ {0, 1}m with eH1(X|Z) > k and S ⇠ Ud, the distribution of
(Ext(X,S), S, Z) has statistical distance ✏ to (Um, S, Z).

Extractors Ext as above exist with ` = k � 2 log(1/✏) [HILL99]. Thus, from any
(X,Z) where eH1(X|Z) > k we can extract a key K = Ext(X,S) of length
k � 2 log(1/✏) that is ✏ close to uniform [HILL99]. The entropy gap 2 log(1/✏) is
optimal by the so called “RT-bound” [RT00], even if we assume the source is
e�ciently samplable [DPW14].

If instead of using a uniform ` bit key for an ↵ secure scheme, we use a key
that is ✏ close to uniform, the scheme will still be at least � = ↵ + ✏ secure. In
order to get security � that is of the same order as ↵, we thus must set ✏ ⇡ ↵.
When the available amount k of min-entropy is small, for example when dealing
with biometric data [DORS08,BDK+05], a loss of 2 log(1/✏) bits (that’s 160 bits
for a typical security level ✏ = 2�80) is often unacceptable.

Condensers. The above bound is basically tight for many indistinguishability
applications like pseudorandom generators or pseudorandom functions.14 For-
tunately, for many applications a close to uniform key is not necessary, and a
key |K| with min-entropy |K| � � for some small � is basically as good as a
uniform one. This is the case for all unpredictability applications, which includes

14 For example, consider a pseudorandom function F : {0, 1}k ⇥ {0, 1}a ! {0, 1} and a
key K that is uniform over all keys where F(K, 0) = 0, this distribution is ✏ ⇡ 1/2
close to uniform and has min-entropy ⇡ |K|� 1, but the security breaks completely
as one can distinguish F(Uk, .) from F(K, .) with advantage � ⇡ 1/2 (by quering on
input 0, and outputting 1 i↵ the output is 0).



OWFs, digital-signatures and MACs.15 It’s not hard to show that if the scheme
is ↵ secure with a uniform key it remains at least � = ↵2� secure (against the
same class of attackers) if instantiated with any key K that has |K|�� bits of
min-entropy.16 Thus, for unpredictability applications we don’t have to extract
an almost uniform key, but “condensing” X into a key with |K| � � bits of
min-entropy for some small � is enough.

[DPW14] show that a (log ✏�1 + 1)-wise independent hash function Cond :
{0, 1}n⇥{0, 1}d ! {0, 1}` is a condenser with the following parameters. For any
(X,Z) where eH1(X|Z) > `, for a random seed S (used to sample a (log ✏+ 1)-
wise independent hash function), the distribution (Cond(X,S), S) is ✏ close to
a distribution (Y, S) where eH1(Y |Z) > ` � log log(1/✏). Using such an ` bit
key (condensed from a source with ` bits min-entropy) for an unpredictability
application that is ↵ secure (when using a uniform ` bit key), we get security
� 6 ↵2log log(1/✏) + ✏, which setting ✏ = ↵ gives � 6 ↵(1 + log(1/↵)) security,
thus, security degrades only by a logarithmic factor.

3.2 Key-Derivation from Computational Entropy

The bounds discussed in this section are summarised in Figures 1 and 2 in
Appendix A. The last row of Figure 2 is the new result proven in this paper.

HILL Entropy. As already discussed in the introduction, often we want to derive
a key from a distribution (X,Z) where there’s no “real” min-entropy at all
eH1(X|Z) = 0. This is for example the case when Z is the transcript (that can be
observed by an adversary) of a key-exchange protocol like Di�e-Hellman, where
the agreed value X = gab is determined by the transcript Z = (ga, gb) [Kra10,
GKR04]. Another setting where this can be the case is in the context of side-
channel attacks, where the leakage Z from a device can completely determine
its internal state X.

If X|Z has k bits of HILL entropy, i.e., is computationally indistinguishable
from having min-entropy k (cf. Def. 2) we can derive keys exactly as described
above assuming X|Z had k bits of min-entropy. In particular, if X|Z has |K|+
2 log(1/✏) bits of HILL entropy for some negligible ✏, we can derive a key K that
is pseudorandom, and if X|Z has |K|+log log(1/✏) bits of HILL entropy, we can

15 [DY13] identify an interesting class of applications called “square-friendly”, this class
contains all unpredictability applications, and some indistinguishability applications
like weak PRFs (which are PRFs that can only be queried on random inputs). This
class of applications remains somewhat secure even for a small entropy gap �: For
� = 1 the security is � ⇡

p
↵. This is worse that the � = 2↵ for unpredictability

applications, but much better than the complete loss of security � ⇡ 1/2 required
for some indistinguishability apps like (standard) PRFs.

16 Assume some adversary breaks the scheme, say, forges a signature, with advantage �
if the key comes from the distribution K. If we sample a uniform key instead, it will
have the same distribution as K conditioned on an event that holds with probability
2��, and thus this adversary will still break the scheme with probability �/2�.



derive a key that is almost as good as a uniform one for any unpredictability
application.

Unpredictability Entropy. Clearly, the minimal assumption we must make on a
distribution (X,Z) 2 {0, 1}n⇥{0, 1}m for any key derivation to be possible at all
is thatX is hard to compute given Z, that is,X|Z must have some unpredictabil-
ity entropy as in Definition 4. Goldreich and Levin [GL89] show how to generate
pseudorandom bits from such a source. In particular, the Goldreich-Levin theo-
rem implies that if X|Z has at least 2 log ✏�1 bits of list-unpredictability, then
the inner product RTX of X with a random vector R is ✏ indistinguishable from
uniformly random (the loss in circuit size is poly(n,m)/✏4). Using the chain rule
for unpredictability entropy,17 we can generate an ` = k � 2 log ✏�1 bit long
pseudorandom string that is `✏ indistinguishable (the extra ` factor comes from
taking the union bound over all bits) from uniform.

Thus, we can turn k bits of list-unpredictability into k�2 log ✏�1 bits of pseu-
dorandom bits (and thus also that much HILL entropy) with quality roughly
✏. The question whether it’s possible to generate significantly more than k �
2 log ✏�1 of HILL entropy from a source with k bits of (list-)unpredictability
seems to have never been addressed in the literature before. The reason might
be that one usually is interested in generating pseudorandom bits (not just HILL
entropy), and for this, the 2 log ✏�1 entropy loss is inherent. The observation that
for many applications high HILL entropy is basically as good as pseudorandom-
ness is more recent, and recently gained attention by its usefulness in the context
of leakage-resilient cryptography [DP08,DY13].

In this paper we prove that it’s in fact possible to turn almost all list-
unpredictability into HILL entropy.

4 Condensing Unpredictability

Below we state Theorem 1 whose proof is in Appendix B, but first, let us give
some intuition. Let X|Z have k bits of list-unpredictability, and assume we start
extracting Goldreich-Levin hardcore bits A1, A2, . . . by taking inner products
Ai = RT

i X for random Ri. The first extracted bits A1, A2, . . . will be pseudoran-
dom (given the Ri and Z), but with every extracted bit, the list-unpredictability
can also decrease by one bit. As the GL theorem requires at least 2 log ✏�1 bits
of list-unpredictability to extract an ✏ secure pseudorandom bit, we must stop
after k�2 log ✏�1 bits. In particular, the more we extract, the worse the pseudo-
randomness of the extracted string becomes. Unlike the original GL theorem, in
our Theorem 1 we only argue about the unpredictability of the extracted string,
and unpredictability entropy has the nice property that it can never decrease,
i.e., predicting A1, . . . , Ai+1 is always at least as hard as predicting A1, . . . , Ai.

17 Which states that if X|Z has k bits of list-unpredictability, then for any
(A,R) where R is independent of (X,Z), X|(Z,A,R) has k � |A| bits of list-
unpredictability entropy. In particular, extracting ` inner product bits, decreases
the list-unpredictability by at most `.



Thus, despite the fact that once i approaches k it becomes easier and easier to
predict Ai (given A1, . . . , Ai�1, Z and the Ri’s)18 this hardness will still add up
to k �O(1) bits of unpredictability entropy.

The proof is by contradiction, we assume that A1, . . . , Ak can be predicted
with advantage 2�k+3 (i.e., does not have k � 3 bits of unpredictability), and
then use such a predictor to predict X with advantage > 2�k, contradicting the
k bit list-unpredictability of X|Z.

If A1, . . . , Ak can be predicted as above, then there must be an index j s.t.
Aj can be predicted with good probability conditioned on A1, . . . , Aj�1 being
correctly predicted. We then can use the Goldreich-Levin theorem, which tells us
how to find X given such a predictor. Unfortunately, j can be close to k, and to
apply the GL theorem, we first need to find the right values for A1, . . . , Aj�1 on
which we condition, and also can only use the predictor’s guess for Aj if it was
correct on the first j� 1 bits. We have no better strategy for this than trying all
possible values, and this is the reason why the loss in circuit size in Theorem 1
depends on 2k.

In our proof, instead of using the Goldreich-Levin theorem, we will actually
use a more fine-grained variant due to Hast which allows to distinguish between
errors and erasures [Has03] (i.e., cases where we know that we don’t have any
good guess. As outlined above, this will be the case whenever the predictor’s
guess for the first j � 1 inner products was wrong, and thus we can’t assume
anything about the jth guess being correct). This will give a much better quan-
titative bound than what seems possible using GL.

Theorem 1 (Condensing Upredictability Entropy). Consider any distri-
bution (X,Z) over {0, 1}n ⇥ {0, 1}m where

H⇤unp✏,s (X|Z) > k

then for a random R {0, 1}k⇥n

Hunp

✏,t (R.X|Z,R) > k ��

where19

t =
s

22k poly(m,n)
, � = 3

5 High Unpredictability implies Metric Entropy

In this section we state our main results, showing that k bits of unpredictability
entropy imply the same amount of HILL entropy, with a loss exponential in the
“entropy gap”. The proof is in Appendix C.

18 The only thing we know about the last extracted bit Ak is that it cannot be predicted
with advantage > 0.75, more generally, Ak�j cannot be predicted with advantage
1/2 + 1/2j+2.

19 We can set � to be any constant > 1 here, but choosing a smaller � would imply a
smaller t.



Theorem 2 (Unpredictability Entropy Implies HILL Entropy). For any
distribution (X,Z) over {0, 1}n ⇥ {0, 1}m, if X|Z has unpredictability entropy

Hunp

�,s (X|Z) > k (6)

then, with � = n� k denoting the entropy gap, X|Z has (real valued, determin-
istic) metric entropy

HMetric,det,[0,1]
✏+�,t (X|Z) > k for t = ⌦

✓
s · ✏5

25� log2 (2�✏�1)

◆
(7)

By Lemma 1 this further implies that X|Z has, for any � > 0, HILL entropy

HHILL

✏+�+�,⌦(t�2/(n+m))
(X|Z) > k

which for ✏ = � = � is

HHILL

3✏,⌦(s·✏7/25�(n+m) log
2
(2�✏�1))

(X|Z) > k
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A Figures

Deriving a (pseudo)random key of length |K| = k � 2 log ✏�1

from a source (X,Z) 2 {0, 1}n ⇥ {0, 1}m where X|Z has k bits (min/HILL/list-unpredictability) entropy
Entropy Entropy quantity and Derive key K of Quality of derived key
type quality of source length k � 2 log ✏�1 as HHILL

✏0,s0(K|Z, S) = k � 2 log ✏�1 = |K|

equivalently
(K,Z, S) ⇠✏0,s0 (U|K|, Z, S)

min eH1(X|Z) = k K = Ext(X,S) ✏0 = ✏ s0 =1
HILL HHILL

�,s (X|Z) = k K = Ext(X,S) ✏0 = ✏+ � s0 ⇡ s
Unpredict. H⇤unp

�,s
(X|Z) = k K = GL(X,S) = STX ✏0 = m✏+ � s0 = s · ✏4/poly(m,n)

Fig. 1. Bounds on deriving a (pseudo)random key K of length |K| = k� 2 log ✏�1 bit
from a source X|Z with k bits of min, HILL or list-unpredictability entropy. Ext is a
strong extractor (e.g. leftover hashing), and GL denotes the Goldreich-Levin construc-
tion, which for X 2 {0, 1}n and S 2 {0, 1}n⇥|K| is simply defined as GL(X,S) = STX.
Leftover hashing requires a seed of length |S| = 2n (extractors with a much shorter
seed |S| = O(log n+ log ✏�1) that extract k� 2 log ✏�1

�O(1) bits also exist), whereas
Goldreich-Levin requires a longer |S| = |K|n bit seed. The above bound for HILL
entropy even holds if X|Z only has k bits of probabilistic boolean metric entropy (a
notion implying the same amount of HILL entropy, albeit with a loss in circuit size),
as shown in Theorem 2.5 of [FR12]

Deriving k bit key K with high HILL entropy from X|Z with k bits (min/HILL/list-unpredictability) entropy
Entropy Entropy quantity and Derive key of Quantity and quality of HILL entropy of K

type quality of soucre length |K| = k as HHILL

✏0,s0(K|Z, S) > k ��

min eH1(X|Z) = k K = Cond(X,S) ✏0 = ✏ s0 =1 � = log log ✏�1

HILL HHILL

�,s (X|Z) = k K = Cond(X,S) ✏0 = ✏+ � s0 ⇡ s � = log log ✏�1

Unpredict. H⇤unp
�,s

(X|Z) = k K = GL(X,S) = STX ✏0 = ✏+ � s0 = s · ✏7/22kpoly(m,n) � = 3

Fig. 2. Bounds on deriving a key of length k with min (or HILL) entropy k�� from
a source X|Z with k bits of min, HILL or unpredictability entropy. Cond denotes a
(log ✏+ 1) wise independent hash function, which is shown to be a good condenser (as
stated in the table) for min-entropy in [DPW14]. The bounds for HILL entropy follow
directly from the bound for min-entropy. The last row follows from the results in this
paper as stated in Proposition 1.

B Proof of Theorem 1

We will use the following theorem due Hast [Has03] on decoding Hadamard code
with errors and erasures.



Theorem 3 ( [Has03]). There is an algorithm LD that, on input l and n and
with oracle access to a binary Hadamard code of x (where |x| = n) with an e-
fraction of errors and an s-fraction of erasures, can output a list of 2l elements
in time O(nl2l) asking n2l oracle queries such that the probability that x is
contained in the list is at least 0.8 if l > log

2
(20n(e + c)/(c � e)2 + 1), where

c = 1� s� e (the fraction of the correct answers from the oracle).

We’ll often consider sequences v1, v2, . . . of values and will use the notation
vba to denote (va, . . . , vb), with vba = ; if a > b. vb is short for vb

1
= (v1, . . . , vb).

We will also use the notation x.y for the dot product.

Proof (of Theorem 1). It’s su�cient to prove the theorem for ✏ = 0, the general
case ✏ > 0 then follows directly by the definition of unpredictability entropy. To
prove the theorem we’ll prove its contraposition

Hunp

t (R.X|Z,R) < k �� ) H⇤unps (X|Z) < k (8)

The left-hand side of (8) means there exists a circuit A of size |A| 6 t such that

Pr
(x,z) (X,Z),r {0,1}k⇥n

[A(z, r) = r.x] > 2�k+� (9)

It will be convenient to assume that A initially flips a coin b, and if b = 0 outputs
a uniformly random guess. This loses at most a factor 2 in A’s advantage, i.e.,

Pr
(x,z) (X,Z),r {0,1}k⇥n

[A(z, r) = r.x] > 2�k+��1 (10)

but now we can assume that for any z, r and w 2 {0, 1}k

Pr[A(z, r) = w] > 2�k�1 (11)

Using the elementary inequality Pr[X > �EX] > (1 � �)EX valid when 0 6
X 6 1 and EX > ✏, in eq.(10) with � = 1

2
gives us

Pr
(x,z) (X,Z)

[ Pr
r {0,1}k⇥n

[A(z, r) = r.x] > 2�k+��2] > 2�k+��2 (12)

We call (x, z) 2 supp[(X,Z)] “good” if

(x, z) is good () Pr
r {0,1}k⇥n

[A(z, r) = r.x] > 2�k+��2 (13)

Note that by eq.(12), (z, x) (Z,X) is good with probability > 2�k+��2.
We will use A to construct a new circuit B of size s = O(t22k poly(n)) where

Pr
(x,z) (X,Z)

[B(z) = x |(x, z) is good] > 1/2 (14)

Now (14) and (12) further gives

Pr
(x,z) (X,Z)

[B(z) = x] = Pr[B(z) = x|(x, z) is good] · Pr[(x, z) is good]

> 2�1 · 2�k+��2 = 2�k+��3 (15)



contradicting the right-hand side of (8), and thus proving the theorem.
We’ll now construct B satisfying (14), for this, consider any good (x, z). Let

R = Rk = (R1, . . . , Rk) be uniformly random and let A = Ak = (A1, . . . , Ak)
where Ai = Ri.x.

Let Â  A(z,R) and define ✏i = PrR[Âi = Ai|Âi�1 = Ai�1]. Using (13) in
the last step

kY

i=1

✏i = Pr
R
[A = Â] = Pr

R
[A(z,R) = R.x] > 2�k+��2

Thus, here exists an i s.t., ✏i > 2
�k+��2

k = 1

2
+� with � ⇡ ��2

k · ln(2)
2

. We fix this
i (we don’t know which i is good, and later will simply try all of them). Then

ERi�1 [ Pr
Ri,Rk

i+1

[Âi = Ai | Âi�1 = Ai�1]] > 1/2 + �

Again using Pr[X > �EX] > (1� �)EX vthis time with � = 0.5+0.5�
0.5+� we obtain

Pr
Ri�1

[ Pr
Ri,Rk

i+1

[Âi = Ai | Âi�1 = Ai�1] > 1/2 + �/2] > �

2
(16)

We call ri�1 good if (note that by the previous equation a random ri�1 is good
with probability > �/2)

ri�1 is good () Pr
Ri,Rk

i+1

[Âi = Ai | Âi�1 = Ai�1] > 1/2 + �/2 (17)

(note that the dependency on ri�1 is in the equation Âi�1 = Ai�1). From now
on, we fix some good ri�1 and assume we know ai�1 = ri�1.x (later we’ll simply
try all possible choices for ai�1).

We define a predictor Pi(ri) that tries to predict ri.x given a random ri (and
also knows z, ri�1, ai�1 as above) as follows

1. Sample random rki+1
 Rk

i+1

2. Invoke Âk  A(z, r(i)). Note that r(i) := (ri�1, ri, rki+1
) consists of the fixed

ri�1, the input ri and the randomly sampled rki+1
.

3. if Âi�1 = ai�1 output Âi, otherwise output ?.

Considering how the output is generated and using (11), which implies Pr[Âi�1 =
ai�1] > 2�i, and (17) we can lower bound Pi’s rate and advantage as

Pr
Ri

[Pi(Ri) 6= ?] = Pr[Âi�1 = ai�1] > 2�i,

Pr
Ri

[Pi(Ri) = Ri.x] > Pr[Âi�1 = ai�1](
1

2
+ �/2). (18)

In terms of Theorem 3, we have a binary Hadamard code with e + c =
Pr[Âi�1 = ai�1], c�e > � ·Pr[Âi�1 = ai�1], which implies that (e+c)/(c�e)2 6
2
i

�2 .



Now Theorem 3 implies that given such a predictor P we can output a list that
contains x with probability > 0.8 in time O(2i poly(m,n)) = O(2k poly(m,n)),
as we assume access to an oracle Eq with outputs 1 on input x and 0 otherwise,
we can find x in this list with the same probability.

Using this, we can now construct an algorithm as claimed in (14) as follows:
B will sample i 2 {1, . . . , k} and then ri�1 at random. Then B calls Pi with all
possible ai�1 2 {0, 1}i�1. We note that with probability �/2k (we lose a factor
k for the guess of i, and �/2 is the probability of sampling a good ri�1) the
predictor Pi will satisfy (18).

If x is not found, B repeats the above process, but stops if x is not found
after 2k/� iterations. The success probability of B is ⇡ (1 � 1/e)0.8 > 0.5 as
claimed, the overall running time we get is O(22k poly(m,n)). ut

C Proof of Theorem 2

It’s su�cient to prove the theorem for � = 0, the case � > 0 then follows directly
by definition of unpredictability entropy. Suppose for the sake of contradiction

that (7) does not hold. That is, HMetric,det,[0,1]
t,✏ (X|Z) < k, which means that

there exists a distinguisher D : {0, 1}n ⇥ {0, 1}m ! [0, 1] of size t that satisfies

ED(X,Z)� ED(Y, Z) > ✏ 8(Y, Z) : eH1(Y |Z) > k. (19)

We will show how to construct an e�cient algorithm that given Z uses D to pre-
dict X with probability at least 2�k, contradicting (6). The core of the algorithm
is the procedure Predictor described below.

Function Predictor(z,D0, `)

Input : z  Z, [0, 2]-valued distinguisher D0

Output: x 2 {0, 1}n

1 b 1, i 1
2 while b 6= 0 and i < ` do
3 x {0, 1}n

4 b BernoulliDistribution(D0(x, z)/2) /* outputs 1 w.p. D
0(x, z)/2

*/
5 if b = 0 then
6 i i+ 1
7 else
8 return x
9 end

10 end
11 return ?

Predictor(Z,D, `) samples an element x 2 {0, 1}n according to some prob-
ability distribution. This distribution captures the following intuition: as the



advantage ED(X,Z)� ED(Y, Z) is positive (as assumed in (19)), we know that
x being the correct guess for X is positively correlated with the value D(x, Z).
The probability that Predictor(Z,D, `) returns some particular value x as guess
for X will be linear in D(x, Z).

Predictor(Z,D, `) may also output ?, which means it failed to sample an x
according to this distribution. The probability of outputting ? goes exponen-
tially fast to 0 as ` grows.

A toy example: predicting X when Z is empty and D is boolean. Suppose that
ED(X) � ED(Y ) > ✏ for all Y such that H1(Y ) > k. And assume that D(.) is
boolean (not real valued as in our theorem). Then Predictor(;,D, `) will output
a guess for X that (if it’s not ?) is a random value x satisfying D(x) = 1.
The probability that this guess for X is correct equals ED(X)/|D| where |D| =P

x D(x). Consider now the distribution Y of min-entropy k that maximizes
ED(Y ). We can assume that Y is flat and supported on those 2k elements x
for which the value D(x) is the biggest possible. Observe that since ED(X) �
ED(Y ) > 0, we have ED(Y ) < 1 and since D is boolean, the support of Y contains
all the elements x satisfying D(x) = 1. Therefore we obtain ED(Y ) = 2�k|D|.
Now we can estimate the predicting probability from below as follows:

Pr[X is predicted correctly] =
ED(X)

|D| > ED(Y ) + ✏

|D| = 2�k +
✏

|D|

The above probability holds for ` = 1, i.e., when predictor never outputs ?.
For e�ciency reasons, we must use a finite, and not too big `. The predictor will

output ? with probability (1� 2�n|D|)` and thus

Pr[we predcit X in time O(` · time(D))] =

✓
2�k +

✏

|D|

◆⇣
1�

�
1� 2�n|D|

�`⌘

With a little bit of e↵ort one can prove that setting ` = 1+2n�k/✏ ⇡ 2�/✏ yields
the success probability 2�k independently of |D|.

Proof in general case - important issues Unfortunately, what we have proven
above cannot be generalized easily to the case considered in the theorem, there
are two obstacles. First, in the theorem we consider a conditional distribution
X|Z (i.e., the conditional part Z is not empty as above). Unfortunately we
cannot simply make the above argument separately for all possible choices Z = z
of the conditional part, as we cannot guarantee that the conditional advantages
✏(z) = ED(X|Z = z, z) � ED(Y |Z = z, z) are all positive; we only know that
their average ✏ = Ez Z✏(z) is positive. Second, so far we assumed that D is
boolean. This would only prove the theorem where the derived entropy in (7) is
against deterministic boolean distinguishers, and this is not enough to conclude
that we have the same amount of HILL entropy as discussed in Section 2.

Actual proof - preliminaries For real-valued distinguishers in the conditional
case, just invoking Predictor(Z,D, `) on a D satisfying (19), will not give a



predictor for X with advantage > 2�k in general. Instead, we first have to trans-
form D into a new distingusiher D0 that has the same distinguishing advantage,
and for which we can prove that the predictor will work.

The way in which we modify D depends on the distribution Y |Z that mini-
mizes the left-hand side of (19). This distribution can be characterized as follows:

Lemma 2 ( [Sko15]). Given D : {0, 1}n ⇥ {0, 1}m ! [0, 1] and a distribution
Z 2 {0, 1}m consider the following optimization problem

max
Y |Z

ED(Y, Z)

s.t. eH1(Y |Z) > k
(20)

The distribution Y |Z = Y ⇤|Z satisfying eH1(Y ⇤|Z) = k is optimal for (20) i↵
there exist real numbers t(z) and a number � > 0 such that for every z

(a)
P

x max(D(x, z)� t(z), 0) = �
(b) If 0 < PY ⇤|Z=z(x) < maxx0 PY ⇤|Z=z(x

0) then D(x, z) = t(z).
(c) If PY ⇤|Z=z(x) = 0 then D(x, z) 6 t(z)
(d) If PY ⇤|Z=z(x) = maxx0 PY ⇤|Z=z(x

0) then D(x, z) > t(z)

Proof. The proof is a straightforward application of the Kuhn-Tucker conditions
given in Appendix. ut

Remark 2. The characterization can be illustrated in an easy and elegant way.
First, it says that the area under the graph of D(x, z) and above the threshold
t(z) is the same, no matter what z is (see Figure 3).
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Fig. 3. For every z, the (green) area under D(·, z) and above t(z) equals �

Second, for every z the distribution Y ⇤|Z = z is flat over the set {x : D(x, z) > t(z)}
and vanishes for x satisfying D(x, z) < t(z), see Fig. 4.
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Fig. 4. Relation between distinguisher D(x, z), threshold t(z) and distribution Y ⇤|Z =
z.

Note that because of “freedom” in defining the distribution on elements x satis-
fying D(x, z) = t(z) (2, point (b)), there could be many distributions Y ⇤|Z cor-
responding to fixed numbers � and t(z) that satisfy the characterization above,
and this way are optimal to (20) with k = eH1(Y ⇤|Z). For the sake of com-
pleteness we characterize bellow the all possible values of k that match to � and
t(z). We note that this fact might be used to modify our nonuniform guessing
algorithm into a uniform one.

Corollary 1. Let D : {0, 1}n⇥{0, 1}m ! [0, 1] and � 2 (0, 1). Let t(z) = t(�, z)
be the unique numbers that satisfy the condition (a) in Lemma 2. Define

k(�) = n� log (Ez Z [1/P(D(U, z) > t(z))]) , (21)

which is a non-decreasing right-continuous function of �. Let also k�(�) =
lim�0!�� k(�0) and k+(�) = lim�0!�+ k(�0) = k(�) be the one-sided limits. Then
for every Y ⇤|Z of min-entropy k = eH1(Y ⇤|Z) fulfilling (b),(c) and (d) we have
k� 6 k 6 k+. Conversely, if k satisfies k� 6 k 6 k+ then there exists a distri-
bution Y ⇤|Z fulfilling (b),(c) and (d) such that eH1(Y ⇤|Z) = k.

Predicting given the thresholds t(z). We use the numbers t(z) to modify D and
then we call the procedurePredictor on the modified distinguisher. Lemma 3
below shows that we could e�ciently predict X from Z, assuming we knew the
numbers t(z) for all z in the support of Z (later, we’ll show how to e�ciently
approximate them)

Lemma 3. Let Y ⇤|Z be the distribution satisfying eH1(Y ⇤|Z) = k and maxi-
mizing ED(Y, Z) over eH1(Y |Z) > k, where k < n and D satisfies (19). Let t(z)
be as in Lemma 2. Define

D
0(x, z) = max(D(x, z)� t(z), 0) (22)



and set ` = 2 · 2n�k✏�1 in the algorithm Predictor. Then we have

Pr (Predictor(Z,D0, `) = X) > 2�k
�
1 + 2k�n✏

�
(23)

Proof. We start by calculating the probability on the left-hand side of(23)

Claim 1 For any20 D
0, the algorithm Predictor outputs X given Z = z with

probability

Pr
X,Z

(Predictor(Z,D0, `) = X|Z = z) = 2�n�1g

✓
ED0(U, z)

2

◆
· ED0(X|Z = z, z)

(24)

where U is uniform over {0, 1}n and g is defined by g(d) = 1�(1�d)`

d (so g(d) ⇡
1/d for large `)

Proof (of Claim). It is easy to observe that

Pr[Predictor(z,D0, `) = x|Predictor(z,D0, `) 6= ?] = D
0(x, z)P

x
D0(x, z)

(25)

In turn, for every round i = 1, . . . , ` of the execution, the probability that Pre-
dictor stops and outputs x0 is equal to Pr[U = x0]D0(x0, z)/2 = 2�n�1D0(x0, z),
the probability that it outputs anything (and thus leaves the while loop) is thus
P

x0 Pr[U = x0] ·
⇣
1� D

0
(x0,z)
2

⌘
= 1� ED0

(U,z)
2

. So the probability of not leaving

the while loop for ` rounds (in this case the output is ?) is

Pr[Predictor(z,D0, `) = ?] = 1�
✓
1� ED0(U, z)

2

◆`

(26)

Combining the last two formulas we obtain

Pr[Predictor(z,D0) = x] = 2�n�1g(ED0(U, z)/2) · D0(x, z) (27)

Hence

Pr[Predictor(z,D0) = X|Z = z] =
X

x

Pr[Predictor(z,D0) = x,X = x|Z = z]

=
X

x

Pr[Predictor(z,D0) = x] Pr[X = x|Z = z]

= 2�n�1g(ED0(U, z)/2)
X

x

D
0(x, z) Pr[X = x|Z = z]

= 2�n�1g(ED0(U, z)/2)ED0(X|Z = z, z)
(28)

and the claim follows. ut
20 We will only use the claim for the distinguisher D

0 as constructed above, but the
claim holds in general.



Now we can see why we cannot apply the algorithm Predictor using the distin-
guisher D satisfying only (19) directly. According to the last formula, the success
probability would be an averaged sum of products g(ED(U, z)) ·ED(X|Z = z, z)
over z. We know the average of the second factors of these products, but in
general cannot compare the values of ED(U, z) for di↵erent z’s. The crucial ob-
servation is that the distinguisher D

0 we defined satisfies the same inequality
(19) as D (though, D0 has the range [0, 2] not [0, 1] as D). Moreover D

0 has a
special form which allows us to simplify expression (23). The details are given
in the next two claims

Claim 2 We have ED0(X,Z)� ED0(Y, Z) > ✏ for all Y |Z : eH1(Y |Z) > k

Proof (of Claim). We argue that (a): ED0(X,Z) � ED0(Y ⇤, Z) > ED(X,Z) �
ED(Y ⇤, Z) and (b): Y ⇤|Z maximizes D0(Y, Z) over eH1(Y |Z) > k. For the proof
of (a), observe that by (22) we have D

0(x, z) > D(x, z)� t(z) for every x and z.
Hence ED0(X,Z) > ED(X,Z)�t(z). Moreover, if D(x, z)�t(z) < 0 then Lemma
2 implies PY ⇤|Z=z(x) = 0 and thus ED0(Y ⇤|Z = z, z) = ED(Y ⇤|Z = z) � t(z).
Hence, for all z we have

ED0(X|Z = z)� ED0(Y ⇤|Z = z, z) > ED(X|Z = z, z)� ED(Y ⇤|Z = z, z)

The proof of (a) follows now by taking the average over z. The proof of (b)
follows by observing that D

0 satisfies the characterization in (2) with t(z) = 0
for all z. ut

Claim 3 The exists a number �0 2 (0, 1) such that ED0(U, z) = �0 for every z.

Proof. Lemma 2 implies
P

x D
0(x, z) = � for every z. We can define �0 = 2�n�

and then it remains to show � < 2n and � > 0. Observe that the case t(z) < 0
in Lemma 2 is possible if and only if PY ⇤|Z=z(x) = maxx0 PY ⇤|Z=z(x

0) for all
x, which means H1(Y ⇤|Z = z) = n. Since k < n, we have t(z) > 0 for at least
one z and then � =

P
x max(D(x, z) � t(z), 0) 6 P

x D(x, z) which essentially
means � 6 2n. Lemma 2 guarantees that � > 0 , therefore we need to show that
� 62 {0, 2n}. Observe that if � = 0 then the condition

P
x D
0(x, z) = � implies

D
0(x, z) = 0 for all x and z, contradicting to Claim 2 because ✏ > 0. In turn,

if � = 2n then from Lemma 2 we get D(·, z) ⌘ 1 and t(z) = 0 for all z such
that t(z) > 0. This is possible only if PY ⇤|Z=z(x) = maxx0 PY ⇤|Z=z(x

0) for all x
which means H1(Y ⇤|Z = z) = n if t(z) > 0. But then H1(Y ⇤|Z = z) = n for
all z which contradicts k < n. ut

To calculate the success probability we need one more observation. The following
claim shows that support of D0 is contained in the support of Y ⇤.

Claim 4 For every z we have

ED0(Y ⇤|Z = z, z) = ED0(U, z) · 2n max
x0

PY ⇤|Z=z(x
0). (29)



Proof (of Claim). By Lemma 2 we obtain that D(x, z) > t(z) only ifPY ⇤|Z=z(x) =
maxx0 PY ⇤|Z=z(x

0) therefore

ED0(Y ⇤|Z = z, z) =
X

x

max(D(x, z)� t(z), 0)PY ⇤|Z=z(x)

=
X

x

max(D(x, z)� t(z), 0)max
x0

PY ⇤|Z=z(x
0),

and the claim follows by the definition of D0. ut

Now we are ready to prove the main result. From Claim 1 and Claim 3 we obtain

Pr (Predictor(Z,D0, `) = X) = 2�n�1Ez Z [g(�0/2) · D0(X|Z = z, z)]

= 2�n�1g(�0/2) · ED0(X,Z) (30)

Claim 2 applied to Y = Y ⇤ yields now the following estimate

Pr (Predictor(Z,D0, `) = X) > 2�n�1g(�0/2) · (ED0(Y ⇤, Z) + ✏) . (31)

Observe that Claim 4, Claim 3, and eH1(Y ⇤|Z) = k imply

ED0(Y ⇤, Z) = Ez Z [D0(Y ⇤|Z = z, z)] = Ez Z

h
ED0(U, z) · 2n max

x0
PY ⇤|Z=z(x

0)
i

= 2n�0 · Ez Z

h
max
x0

PY ⇤|Z=z(x
0)
i
= 2n�k�0 (32)

Plugging this into (31) we get the following bound

Pr (Predictor(Z,D0, `) = X) > 2�n�1g(�0/2) ·
�
2n�k�0 + ✏

�

= 2�k
�
1� (1� �0/2)`

�✓
1 +

2k�n�1✏

�0/2

◆
(33)

To give a lower bound on the success probability it remains to minimize the last
expression over �0 2 (0, 1). This is answered below

Claim 5 Let h(s) = (1 � (1 � s)`)(1 + as�1), where a > 0 and ` > 1 + a�1.
Then h(s) > h(1) = 1 + a for all s 2 [0, 1].

Proof (of Claim). The proof uses standard calculus and is given in the appendix.
ut

Computing t(z) from � So far, we have shown how to construct the predict-
ing algorithm provided that we are given the numbers t(z). Now we will prove
that one can compute them approximately and use successfully in place of the
original ones. We start with a few useful facts about the auxiliary function g
already introduced in Claim 1 in the proof of Lemma 3. Below we summarize its
fundamental properties.

Lemma 4. For ` > 1 the function g(d) = 1�(1�d)`

d on [0, 1] satisfies:



(a) g is continuous at 0 and decreasing
(b) g is convex
(c) for any d2 > d1 we have g(d2) > g(d1)

�
1� `

2
· |d2 � d1|

�

Proof (of Lemma). The proof uses elementary calculus and is referred to the
appendix ut

The entire solution is based on the next two lemmas. The first lemma is based
on the intuition that replacing D by a distinguisher which approximates it close
enough should not a↵ect the success probability of Predictor(Z,D, `) very
much. For technical reasons we present this statement assuming one-sided L1-
approximation. The second lemma describes an e�cient algorithm which obtains
� as a hint on its input and computes approximations for t(z) from below, for
every z.

Lemma 5. Let D1,D2 : {0, 1}n⇥{0, 1}m ! [0, 1] be any two functions satisfying

(a) D2(x, z) > D1(x, z) for all x, z
(b) ED2(U, z)� ED1(U, z) 6 � for all z

Then we have

Pr (Predictor(Z,D2, `) = X) > (1� `�/2)Pr (Predictor(Z,D1, `) = X)
(34)

Proof (of Lemma). We have

Pr (Predictor(z,D2, `) = X|Z = z) = g(ED2(U, z))ED2(X|Z = z, z)

> g(ED2(U, z))ED1(X|Z = z, z), (35)

where the inequality follows from D2 > D1 > 0. The assumptions (a) and (b)
imply |ED1(U, z)� ED2(U, z)| 6 � for every z. From property (c) in Lemma 4 it
follows that

g(ED2(U, z)) > g(ED1(U, z))(1� `�/2)

for every z. Combining the last two estimates we get

Pr (Predictor(z,D2, `) = X|Z = z)

> (1� `�/2) · g(ED1(U, z))ED1(X|Z = z, z)

= (1� `�/2) · Pr (Predictor(z,D1) = X|Z = z) (36)

Taking the average over z  Z completes the proof. ut

Lemma 6. Let D : {0, 1}n ! [0, 1] be any function computable in time s, let
� 2 (0, 1) and t 2 [0, 1] be a number such that Emax(D(U) � t, 0) = �. There
exists a probabilistic algorithm FindThreshold(D,�, �, N) that runs in time

O (log(1/�)N · time(D)) and with probability at least 1�2 log(12/�)e�N�2/3 out-
puts a number t0 such that Emax(D(U)� t0, 0) 2 [�,�+ �]. In particular, t0 6 t.



Function FindThreshold(D,�, �, N)

Input : D : {0, 1}n ! [0, 1], � 2 (0, 1), parameters �, N
Output: t0 such that Emax(D(U)� t0, 0) 2 [�,�+ �]

1 t�  �1, t+  1
2 repeat
3 t0  (t� + t+)/2
4 x1, . . . , xN  U /* fresh values every time */

5 �0  N�1 PN

j=1 max (D(xj)� t0, 0) /* �0 ⇡ Emax(D(U)� ti, 0) */

6 if �0 > �+ 2�
3 then

7 t�  t0

8 else if �0 < �+ �

3 then
9 t+  t0

10 else
11 return t0

12 end

13 until t+ � t� 6 �

12

14 if t0 < �1 + �

12 then
15 t0  �1
16 return t0

Proof (of Lemma). The idea is pretty simple: given t0 we approximate values
Emax(D(U) � t0, 0) by sampling and by comparing the result with �, we can
find the right value of t0 using binary search. This corresponds to finding a blue
line on Fig. 4 such that the green area above is su�ciently close to �.
The function h(t0) = Emax(D(U) � t0, 0) is clearly non-increasing with respect
to t0 and changes from 1 + ED(U) at t0 = �1 to 0 for t = 1. Moreover, it is
strictly decreasing in a small neighborhood of t0 = t and for all t0 < t. Indeed,
since � > 0 there is at least one x such that D(x) > t. Taking t0 < t00 6
minx:D(x)>t D(x) we see that h(t0) � h(t00) > 2�n(t00 � t0) > 0. Hence, t0 > t
implies Emax(D(U) � t0, 0) < Emax(D(U) � t, 0) = �. This proves the second
part of the statement. Denote by �0i, t

0

i, t
�

i , t
+

i the values assigned in round i to
�0, t0, t�, t+ respectively. Observe that by the Cherno↵ Bound21 and the union
bound over at most log(12/�) rounds of the execution, with probability p =
1 � 2 log(12/�) exp(�N�2/3) we have |�0i � h(ti)| < �

12
for every round i. Note

that with the same probability the algorithm satisfies the invariant property: if
there is t0 2 [t�i , t

+

i ] such that h(t0) 2
⇥
�+ 5�

12
,�+ 7�

12

⇤
and the algorithm jumps

to round i + 1 then t0 2
⇥
t�i+1

, t+i+1

⇤
. Suppose that h(t0) 2

⇥
�+ 5�

12
,�+ 7�

12

⇤
for

some t0 2 [�1, 1]. Now we have two possibilities: either we terminate with ti such
that �i 2

⇥
�+ �

3
,�+ 2�

3

⇤
which means h(ti) 2

⇥
�+ 3�

12
,�+ 7�

12

⇤
and we are done,

or we will eventually find such t0 up to an error �
12
. Since |h(t2)�h(t1)| 6 |t2�t1|

for any t1, t2, the returned number t0 satisfies h(t0) � �
12

6 h(t0) 6 h(t0) +
�
12
,

in particular it satisfies the desired inequality. It remains to consider the case

21 We use the following version: let X1, . . . , XN be [0, 1]-valued independent random
variables, let X =

P
N

i=1 Xi and µ = EX. Then Pr (|X � µ| > �µ) < 2 exp(�µ�2/3)



when either h(t) < �+ 5�
12

for all t or h(t) > �+ 7�
12
. Since h(1) = 0 the second is

clearly impossible. In the first case we have h(t) 6 h(�1) < �+ 5�
12
, which means

that in every round i we have t�i = �1 and either we terminate with ti such that
�0i 2

⇥
�+ �

3
,�+ 2�

3

⇤
which means h(ti) 2

⇥
�+ 3�

12
,�+ 7�

12

⇤
and we are done, or

in every round i we do the assignment t+i+1
= ti which yields ti = �1+2�i+1 and

the main loop halts with ti < �1 + �
12
. The algorithm outputs then �1 which

satisfies the desired inequality, because of the assumption h(�1) < � + 5�
12

and
the trivial inequality h(�1) > 1 > �. ut

Let D
0 be as in Lemma 3. Let t0(z) = FindThreshold(D,�, �, N), define

D00(x, z) = max(D(U, z) � t0(z), 0). Let Pr[bad] be the probability of the event
ED00(U, z) 62 [�,�+ �] (i.e. failure of the algorithm FindThreshold). If the event
bad doesn’t occur then D

00 > D
0 and ED00(U, z) 6 ED0(U, z) + �. Applying the

last two claims we obtain

Pr [Predictor(z,D00, `)] > 2�k
�
1 + 2k�n✏

�
·
✓
1� `�

2

◆
Pr[¬bad] (37)

By the elementary inequality (1 + s)(1 � s/4)2 > 1 valid for s 2 [0, 1], for this
probability to be bigger than 2�k it is enough to require

`�/2 6 2k�n✏/4 (38)

2 log(12/�) exp(�N�2)/3) 6 2k�n✏/4 (39)

The solution for the first inequality is � = O(22(k�n)✏2) which implies � ⌧ ✏.
The second one gives us N = ⌦

�
(1/�)2(log log(1/�) + n� k + log(1/✏)

�
which

can be simplified to N = ⌦
�
(1/�)2(log(1/�)

�
. The total running time equals

(up to a constant factor) the time needed for invoking O (` ·N log(1/�)) =
O
�
(2�/✏)5 log2

�
2�/✏

��
times of the distinguisher D .

D Proof of Lemma 2

Proof. Without losing generality we assume that P(z) > 0 for all z (as for (20)
only the support of Z is relevant). Consider the following linear optimization
program

maximize
Px,z,az

X

x,z

D(x, z)Px,z

subject to �Px,z 6 0, 8(x, z) 2 {0, 1}n ⇥ {0, 1}m
X

x

Px,z �PZ(z) = 0, 8z 2 {0, 1}m

Px,z � az 6 0, z 2 {0, 1}m
X

z

az � 2�k 6 0

(40)



This problem is equivalent to (20) if we define PY,Z(x, z) = Px,z and replace

the condition
P

z maxx PY,Z(x, z) 6 2�k which is equivalent to eH1(Y |Z) > k,
by the existence of numbers maxx PY,Z(x, z) 6 az such that

P
z az 6 2�k. The

solutions of (40) can be characterized as follows:

Claim 6 The numbers (Px,z)x,z, (az)z are optimal for (40) if and only if there
exist numbers �1(x, z) > 0, �2(z) 2 R, �3(x, z) > 0, �4 > 0 such that

(a) D(x, z) = ��1(x, z) + �2(z) + �3(x, z) and 0 = �
P

x �
3(x, z) + �4

(b) We have �1(x, z) = 0 if Px,z > 0, �3(x, z) = 0 if Px,z < az, �4 = 0 ifP
z az < 2�k.

Proof (of Claim). This is a straightforward application of KKT conditions. ut

It remains to apply and simplify the last characterization. Let (P ⇤x,z)x,z and (a⇤z)z
be optimal for (40), where P ⇤x,z = PY ⇤,Z(x, z) and �1(x, z),�2(z),�3(x, z),�4(x)
are the corresponding multipliers given by the last claim. Define t(z) = �2(z) and
� = �4. Observe that for every z we have a⇤z > max

x
P ⇤(x, z) > 2�nPZ(z) > 0

and thus for every (x, z) we have

�1(x, z) · �3(x, z) = 0 (41)

If P ⇤x,z = 0 then in particular P ⇤x,z < a⇤(z) and �3(x, z) = 0, hence D(x, z) 6 t(z)
which proves (c). If P ⇤x,z = maxx0 P ⇤x,z then P ⇤x,z < 0 and �1(x, z) = 0 which
proves (d). Finally observe that (41) implies

max(D(x, z)� t(z), 0) = max(��1(x, z) + �3(x, z), 0) = �3(x, z)

Hence, the assumption
P

x �
3(x, z) = �4 = � proves (a).

Suppose now that the characterization given in the Lemma is satisfied. Define
P ⇤x,z = PY,Z(x, z) and az = maxz PY ⇤,Z(x, z), let �3(x, z) = max(D(x, z) �
t(z), 0), �1(x, z) = max(t(z) � D(x, z), 0) and �4 = �. We will show that these
numbers satisfy the conditions described in the last claim. By definition we have
��1(x, z)+�2(z)+�3(x, z) = D(x, z), by the assumptions we get

P
x �

3(x, z) =
� = �4. This proves part (a). Now we verify the conditions in (b). Note that
D(x, z) < t(z) is possible only if PY ⇤|Z=z(x) = 0 and D(x, z) > t(z) is possible
only if PY ⇤|Z=z(x) = maxx0 PY ⇤|Z=z(x

0). Therefore, if PY,Z(x, z) > 0 then we
must have D(x, z) > t(z) which means that �1(x, z) = 0. Similarly ifPY,Z(x, z) <
maxz PY ⇤,Z(x, z) then D(x, z) 6 t(z) and �3(x, z) = 0. Finally, since we assume
eH1(Y ⇤|Z) = k we have

P
z az = 2�k and thus there is no additional restrictions

on �4. ut

E Proof of Corollary 1

Proof (of Corollary). Let ymax(z) = maxx0 PY |Z=z(x
0). Consider the function

f�
z (x) =

8
><

>:

ymax(z) + �, D0(x, z) > t(z)
1�#{x: D

0
(x.z)>t(z)}·(ymax+�)

#{x: D0(x,z)=t(z)} , D0(x, z) = t(z)

0, D0(x, z) < t(z)

(42)



This function defines a distribution that satisfies

f�
z (x) 6 max

x0
f�
z (x
0) 8x : D0(x, z) 6 t(z) (43)

if and only if � satisfies

1

# {x : D0(x.z) > t(z)} 6 ymax(z) + � 6 1

# {x : D0(x.z) > t(z)} (44)

In particular these conditions are satisfied for � = 0. Suppose now that there are
zi and xi for i = 1, 2 such that 0 < PY ⇤|Z=zi(xi) < max

x0
PY ⇤|Z=z(x

0). Define �

by

� = min

✓
ymax(z1)�

1

# {x : D0(x, z1) > t(z1)}
,

1

# {x : D0(x, z2) > t(z2)}
� ymax(z2)

◆

By Lemma 2 we immediately obtain that � > 0. It follows easily from the
definition of � that the number �� satisfies (44) with z = z1 and that � satisfies
(44) for z = z2. We can see now that if we replace the distribution Y ⇤|Z = z1
by f��z1 and the distribution Y ⇤|Z = z2 by f�

z2 then we obtain the distribution

Y 0|Z satisfying conditions in Lemma 2 and eH1(Y 0|Z) = k. Finally, observe
that � = 1

#{x:D0(x,z2)>t(z2)}
� ymax(z2) means that the distribution Y 0|Z = z2 is

uniform on {x : D0(x.z2) > t(z2)}. In turn, if � = ymax(z1) � 1

#{x:D0(x,z1)>t(z1)}

then the distribution Y 0|Z = z1 is uniform on {x : D0(x, z1) > t(z1)}. ut

F Proof of Claim 5, Lemma 3

Proof. We check that lims!0 h(s) = a` and thus the function h is continuous on
the interval [0, 1]. This means that h attains its minimum at some point s = s0.
There is nothing to prove if s0 2 {0, 1}. Suppose that s0 2 (0, 1). Then we must
have @h

@s

��
s=s0

= 0. The first derivative of the function h is given by the following
formula

@h

@s
=

s`(a+ s)(1� s)`�1 + a
�
(1� s)` � 1

�

s2

=
�a+ (1� s)`�1 (a(1� s) + (a+ s)`s)

s2
(45)

Therefore for s = s0 we obtain (1� s0)`�1 = a
a(1�s0)+(a+s0)`s0

and hence

h(s0) = (1� (1� s0) · (1� s0)
`�1)

�
1 + as�1

0

�

=
(a+ s0)2`

a(1� s0) + (a+ s0)`s0
(46)



Note that the last expression is increasing with respect to ` and that from the
assumption we have ` > 1+a

a+s0
. Using this we obtain

h(s0) >
(a+ s0)(1 + a)

a(1� s0) + (1 + a)s0
= 1 + a (47)

which completes the proof. ut

The lemma follows now immediately by combining (33) and the last claim. ut

G Proof of Lemma 4

Proof (of Lemma). It is easy to see that limd!0+ g(d) = `. We have

@g(d)

@d
=

(1� d)`�1(d(`� 1) + 1)� 1

d2
(48)

Using the inequality 1� d 6 e�d we obtain

@g(d)

@d
6 e�d(`�1) (d(`� 1) + 1)� 1

d2
6 0

Where the second inequality follows from the inequality es > 1 + s applied for
s = d(`� 1). This proves (a). The second derivative is given by

@2g(d)

@d2
= �

(1� d)`�2
�
2 + 2d(`� 2) + d2((`� 2)2 + `� 2)

�
� 2

d3
(49)

Using 1� d 6 e�d and applying the inequality es > 1+ s+ 1

2
s2, which holds for

s > 0, for s = d(`� 1) we obtain

@2g(d)

@d2
= �

(1� d)`�2
�
2 + 2d(`� 2) + d2((`� 2)2 + `� 2)

�
� 2

d3

> � (1� d)`�1
�
2 + 2d(`� 1) + d2(`� 1)2

�
� 2

d3

> �e�d(`�1)
�
2 + 2d(`� 1) + d2(`� 1)2

�
� 2

d3

> �2� 2

d3
= 0, (50)

which proves (b). Finally, note that by convexity we have

g(d2)� g(d1) > (d2 � d1) ·
@g(d)

@d

����
d=d1

. (51)

Since g(d) > 0 and @ ln g(d)
@d = @g(d)

@d /g(d) we can rewrite this as

g(d2)� g(d1)

g(d1)
> (d2 � d1) ·

@ ln g(d)

@d

����
d=d1

. (52)



Note that the function d ! ln g(d) is convex, as the composition of the convex
function g(·) and the convex increasing function ln(·). Therefore,

@ ln g(d)

@d
> @ ln g(d)

@d

����
d=0

= �`� 1

2
(53)

Combining the last two inequalities yields

g(d2)� g(d1)

g(d1)
> � `

2
· (d2 � d1), d2 � d1 > 0. (54)

which completes the proof of (c). ut





Pseudoentropy: Lower-bounds for Chain rules
and Transformations

Krzysztof Pietrzak? and Maciej Skórski??

IST Austria and University of Warsaw

Abstract. Computational notions of entropy have recently found many
applications, including leakage-resilient cryptography, deterministic en-
cryption or memory delegation. The two main types of results which
make computational notions so useful are (1) Chain rules, which quan-
tify by how much the computational entropy of a variable decreases if
conditioned on some other variable (2) Transformations, which quantify
to which extend one type of entropy implies another.
Such chain rules and transformations typically lose a significant amount
in quality of the entropy, and are the reason why applying these results
one gets rather weak quantitative security bounds. In this paper we for
the first time prove lower bounds in this context, showing that existing
results for transformations are, unfortunately, basically optimal for non-
adaptive black-box reductions (and it’s hard to imagine how non black-
box reductions or adaptivity could be useful here).
A variable X has k bits of HILL entropy of quality (✏, s) if there exists a
variable Y with k bits min-entropy which cannot be distinguished from
X with advantage ✏ by distinguishing circuits of size s. A weaker notion
is Metric entropy, where we switch quantifiers, and only require that for
every distinguisher of size s, such a Y exists.
We first describe our result concerning transformations. By definition,
HILL implies Metric without any loss in quality. Metric entropy often
comes up in applications, but must be transformed to HILL for meaning-
ful security guarantees. The best known result states that if a variable X
has k bits of Metric entropy of quality (✏, s), then it has k bits of HILL
with quality (2✏, s · ✏2). We show that this loss of a factor ⌦(✏�2) in
circuit size is necessary. In fact, we show a stronger result that this loss
is already necessary when transforming so called deterministic real val-
ued Metric entropy to randomised boolean Metric (both these variants
of Metric entropy are implied by HILL without loss in quality).
The chain rule for HILL entropy states that if X has k bits of HILL en-
tropy of quality (✏, s), then for any variable Z of length m, X conditioned
on Z has k�m bits of HILL entropy with quality (✏, s · ✏2/2m). We show
that a loss of ⌦(2m/✏) in circuit size necessary here. Note that this still
leaves a gap of ✏ between the known bound and our lower bound.
As in related works on query complexity lower bounds for computa-
tional indistinguishability problems (Dense Model Theorems, Hardcore
Lemmas), the formal proofs are restricted to reductions which query on
same inputs. Overcomming this limitation seems challenging.
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1 Introduction

There exist various information theoretic notions of entropy that quantify the
“uncertainty” of a random variable. A variable X has k bits of Shannon entropy
if it cannot be compressed below k bits. In cryptography we mostly consider min-
entropy, where we say that X has k bits of min-entropy, denoted H1 (X) = k,
if for any x, Pr[X = x]  2�k.

In a cryptographic context, we often have to deal with variables that only
appear to have high entropy to computationally bounded observers. The most
important case is pseudorandomness, where we say that X 2 {0, 1}n is pseudo-
random, if it cannot be distinguished from the uniform distribution over {0, 1}n.

More generally, we say that X 2 {0, 1}n has k  n bits of HILL pseudoen-
tropy [ILL89,HILL99], denoted HHILL

✏,s (X) = k if it cannot be distinguished from
some Y with H1 (Y ) = k by any circuit of size s with advantage > ✏, note
that we get pseudorandomness as a special case for k = n. We refer to k as the
quantity and to (✏, s) as the quality of the entropy.

A weak notion of pseudoentropy called Metric pseudoentropy [BSW03] often
comes up in security proofs. This notion is defined like HILL, but with the
quantifiers exchanged: We only require that for every distininguisher there exists
a distribution Y,H1 (Y ) = k that fools this particular distinguisher (not one
such Y to fool them all).

HILL pseudoentropy is named after the authors of the [HILL99] paper where
it was introduced as a tool for constructing a pseudorandom generator from any
one-way function. Their construction and analysis was subsequently improved
in a series of works [Hol06,HRV10,VZ12]. A lower bound on the number of calls
to the underlying one-way function was given by [HS12].1 More recently HILL
pseudoentropy has been used in many other applications like leakage-resilient
cryptography [NY19,JP14], deterministic encryption [FOR12] and memory del-
egation [CKLR11].

The two most important types of tools we have to manipulate pseudoentropy
are chain rules and transformations from one notion into another. Unfortunately,
the known transformations and chain rules lose large factors in the quality of
the entropy, which results in poor quantitative security bounds that can be
achieved using these tools. In this paper we provide lower bounds, showing that
unfortunately, the known results are tight (or almost tight for chain rules), at
least when considering non-adaptive black-box reductions. Although black-box
impossibility results have been overcome by non black-box constructions in the
past [Bar01], we find it hard to imagine how non black-box constructions or
adaptivity could help in this setting. We believe that relative to the oracles we
construct also adaptive reductions are impossible as adaptivity “obviously” is
no of use, but proving this seems hard. Our results are summarized in Figures 1
and 2.

1 Their ⌦(n/log(n)) lower bound matches existing constructions from regular one-way
functions [GKL93]. For general one-way functions this lower bound is still far of the
best construction [VZ12] making ⇥̃(n3) calls.



Complexity of the adversary. In order to prove a black-box separation, we
will construct an oracle and prove the separation unconditionally relative to this
oracle, i.e., assuming all parties have access to it. This then shows that any
construction/proof circumventing or separation in the plain model cannot be
relativizing, which in particular rules out all black-box constructions [BGS75,
IR88].

In the discussion below we measure the complexity of adversaries only in
terms of numbers of oracle queries. Of course, in the actual proof we also bound
them in terms of circuit size. For our upper bounds the circuits will be of basically
the same size as the number of oracle queries (so the number of oracle queries is
a good indication of the actual size), whereas for the lower bounds, we can even
consider circuits of exponential size, thus making the bounds stronger (basically,
we just require that one cannot hard-code a large fraction of the function table
of the oracle into the circuit).

Transformations. It is often easy to prove that a variable X 2 {0, 1}n has

X 2 {0, 1}n

HMetric,det{0,1}
✏,s (X) = k HMetric,det[0,1]

✏0,s0 (X) = k HMetric,rand{0,1}
✏00,s00 (X) = k HHILL

✏000,s000(X) = k

✏0 = ✏
s0 ⇡ s

(in [RTTV08])

✏000 = 2✏0

s000 = ⌦(s0 · ✏02/(n� k + 1))
(in [BSW03,Sko15a])

Theorem 1:
s00 = O(s0 · ✏02/ln(1/✏0)) necessary
if ✏00 = O(✏0)

✏00 = ✏000

s00 = s000
(by definition)

✏0 = ✏00

s0 = s00
(in [FR12])

✏ = ✏0

s = s0
(by definition)

Fig. 1. Transformations: our bound comparing to the state of art. Our Thm. 1, stating
that a loss of ✏02/ ln(1/✏0) in circuit size is necessary for black-box reductions that show
how deterministic implies randomized metric entropy (if the advantage ✏0 remains in
the same order) requires ✏0 = 2�O(n�k+1) and thus ln(1/✏0) 2 O(n�k+1), so there’s no
contradiction between the transformations from [BSW03,Sko15a] and our lower bound
(i.e., the blue term is smaller than the red one).

so called Metric pseudoentropy against deterministic distinguishers, denoted
HMetric

✏,s
,det{0,1}(X) = k. Unfortunately, this notion is usually too weak to be

useful, as it only states that for every (deterministic, boolean) distinguisher,
there exists some Y with H1 (Y ) = k that fools this particular distinguisher,
but one usually needs a single Y that fools all (randomised) distinguishers, this
is captured by HILL pseudoentropy.

Barak et al. [BSW03] show that any variable X 2 {0, 1}n that has Metric en-
tropy, also has the same amount of HILL entropy. Their proof uses the min-max
theorem, and although it perseveres the amount k of entropy, the quality drops



from (✏, s) to (2✏,⌦(s ·✏2/n)). A slightly better bound
�
2✏,⌦(s · ✏2/(n+ 1� k))

�

(where again k is the amount of Metric entropy), was given recently in [Sko15a].
The argument uses the min-max theorem and some results on convex approxi-
mation in Lp spaces.

In Theorem 1 we show that this is optimal – up to a small factor ⇥((n �
k + 1)/ ln(1/✏)) – as a loss of ⌦(ln(1/✏)/✏2) in circuit size is necessary for any
black-box reduction. Note that for su�ciently small ✏ 2 2�⌦(n�k+1) our bound
even matches the positive result up to a small constant factor.

The high-level idea of our separation is as follows; We construct an oracle
O and a variable X 2 {0, 1}n, such that relative to this oracle X can be dis-
tinguished from any variable Y with high min-entropy when we can make one
randomized query, but for any deterministic distinguisher A, we can find a Y
with high min-entropy which A cannot distinguish from X.

To define O, we first choose a uniformly random subset S 2 {0, 1}n of
size |S| = 2m. Moreover we chose a su�ciently large set of boolean functions
D1(·), . . . , Dh(·) as follows: for every x 2 S we set Di(x) = 1 with probability
1/2 and for every x 62 S, Di(x) = 1 with probability 1/2 + �.

Given any x, we can distinguish x 2 S from x 62 S with advantage ⇡ 2� by
quering Di(x) for a random i. This shows that X cannot have much more than
log(|S|) = m bits of HILL entropy (in fact, even probabilistic Metric entropy)
as any variable Y with H1 (Y ) > m+ 1 has at least half of its support outside
S, and thus can be distinguished with advantage ⇡ 2�/2 = � with one query
as just explained. Concretely (recall that in this informal discussion we measure
size simply by the number of oracle queries)

HMetric

�,1
,rand{0,1}(X) 6 m+ 1

On the other hand, if the adversary is allowed q deterministic queries, then in-
tuitively, the best he can do is to query D1(x), . . . , Dq(x) and guess that x 2 S
if less than a 1/2 + �/2 fraction of the outputs is 1. But even if q = 1/�2, this
strategy will fail with constant probability. Thus, we can choose a Y with large
support outside S (and thus also high min-entropy) which will fool this adver-
sary. This shows that X does have large Metric entropy against deterministic
distinguishers, even if we allow the adversaries to run in time 1/�2, concretely,
we show that

HMetric,det{0,1}
⇥(�),O(1/�2) (X) > n�O(log(1/�))

The adversary. We show impossibility in the non-uniform setting, i.e., for any

input length, the distinguisher circuit can depend arbitrarily on the oracle. Like
in many non-uniform black-box separation results (including [Sim98, LTW07,
RTTV08, Zha11,Wat14]), the type of adversaries for which we can rigorously
prove the lower bound is not completely general - but the necessary restrictions
seem “obviously” irrelevant. In particular, for a given input x (where the adver-
sary is challenged to distinguish) we only allow the queries on x. This doesn’t
seem like a real restriction as the distribution of Di(x0) for any x0 6= x is in-
dependent of x, and thus seems useless to the adversary. However such queries



can make the success probability of the adversary on di↵erent inputs correlated,
which makes the overall (average) advantage hard to analyze2. Moreover, we
assume the adversary makes his queries non-adaptively, i.e., it choses the indices
i1, . . . , iq before seeing the outputs of the queries Di1(x), . . . , Diq (x). As all the
Di’ are identically distributed, this doesn’t seem like a relevant restriction either.

HHILL

✏,s (X) = k

HMetric

✏0,s0 (X|Z) = k0 HHILL

✏00,s00(X|Z) = k0 HHILL�rlx

✏000,s000 (X|Z) = k0 HHILL

✏0000,s0000(X|Z) = k0

s0 ⇡ s
✏0 = ✏ · 2|Z|

k0 = k � |Z|

(in [FR12])

k0 = k � |Z|

✏000 = 2✏
s000 = O

⇣
s · ✏0002/2|Z|

� 2|Z|✏0002
⌘

(in [PS15])

This paper (Theorem 2)

s000 = ⌦
⇣
s · ✏000/2|Z|

⌘
, k0 = k � |Z| necessary

if ✏000 = O(✏)

✏00 = 2✏0

s00 = O
�
s0 · ✏002/(n+m)

�

(by [BSW03])

✏000 = ✏00

s000 = s00

(by definition)

✏0000 = 2✏000

s0000 = s000 � 2|Z|

(in [JP14])

Fig. 2. Chain Rules: our lower bounds comparing to the state of art. In the literature
there are basically three approaches to prove a chain rule for HILL entropy. The first
one reduces the problem to an e�cient version of the dense model theorem [RTTV08],
the second one uses the so called auxiliary input simulator [JP14], and the last one is
by a convex optimization framework [PS15,Sko16a]. The last approach yields a chain
rule with a loss of ⇡ 2m/✏2 in circuit size, where m is the length of leakage Z.

Chain Rules. Most (if not all) information theoretic entropy notions H(.) sat-
isfy some kind of chain rule, which states that the entropy of a variable X, when
conditioned on another variable Z, can decrease by at most the bitlength |Z| of
Z, i.e., H(X|Z) > H(X)� |Z|.

Such a chain rule also holds for some computational notions of entropy. For
HILL entropy a chain rule was first proven in [RTTV08,NY19] by a variant of
the dense model theorem, and was improved by Fuller and Reyzin [FR12]. A
di↵erent approach using a simulator was proposed in [JP14] and later improved
by Vadhan and Zheng [VZ13]. A unified approach, based on convex optimization
techniques was proposed recently in [PS15,Sko16a] achieving best bounds so far.

The “dense model theorem approach” [FR12] proceeds as follows: one shows
that ifX has k bits of HILL entropy, thenX|Z has k�m (where Z 2 {0, 1}m) bits

2 This is also the limitation of the mentioned related works on black-box separation,
and we don’t know the solution for this technical challenge. We state is as an open
problem in Section 5.



of Metric entropy. In a second step one applies a Metric to HILL transformation,
first proven by Barak et al. [BSW03], to argue that X|Z has also large HILL.
The first step loses a factor 2m in advantage, the second another 22m✏2 in circuit
size. Eventually the loss in circuit size is 22m/✏2 and the loss in advantage is 2m,
which in terms of the security ratio size/advantage gives the total loss of 2m/✏2.

A more direct “simulator” approach [VZ13] loses only a multiplicative factor
2m/✏2 in circuit size (there’s also an additive 1/✏2 term) but there is no loss
in advantage. The additive term can be improved to only 2m✏2 as shown in
[PS15,Sko16a].

In this paper we show that a loss of 2m/✏ is necessary. Note that this still
is a factor 1/✏ away from the positive result. Our result as stated in Theorem 2
is a bit stronger as just outlined, as we show that the loss is necessary even if
we only want a bound on the “relaxed” HILL entropy of X|Z (a notion weaker
than standard HILL).

To prove our lower bound, we construct an oracle O(.), together with a joint
distribution (X,Z) 2 {0, 1}n ⇥ {0, 1}m. We want X to have high HILL entropy
relative to O(.), but when conditioning on Z it should decrease as much as
possible (in quantity and quality).

We first consider the case m = 1, i.e., the conditional part Z is just one bit.
For n � ` � m = 1 the oracle O(.) and the distribution (X,Z) is defined as
follows. We sample (once and for all) two (disjoint) random subset X0,X1 ✓
{0, 1}n of size |X0| = |X1| = 2`�1, let X = X0[X1. The oracle O(.) on input x is
defined as follows (below Bp denotes the Bernoulli distribution with parameter
p, i.e., Pr[b = 1 : b Bp] = p).

– If x 2 X0 output a sample of B1/2+�.
– If x 2 X1 output a sample of B1/2��.
– Otherwise, if x 62 X , output a sample of B1/2.

Note that our oracle O(.) is probabilistic, but it can be “derandomized” as we’ll
explain at the beginning of Section 4. The joint distribution (X,Z) is sampled
by first sampling a random bit Z  {0, 1} and then X  XZ .

Given a tuple (V, Z), we can distinguish the case V = X from the case where
V = Y for any Y with large support outside of X (X has min-entropy `, so let’s
say we take a variable Y with H1 (Y |Z) > ` + 1 which will have at least half
of its support outside X ) with advantage ⇥(�) by quering ↵  O(V, Z), and
outputting � = ↵� Z.

– If (V, Z) = (X,Z) then Pr[� = 1] = 1/2 + �. To see this, consider the case
Z = 0, then Pr[� = 1] = Pr[↵ = 1] = Pr[O(X) = 1] = 1/2 + �.

– If (V, Z) = (Y, Z) then Pr[� = 1] = Pr[Y 62 X ](1/2) + Pr[Y 2 X ](1/2 + �) 
1/2 + �/2.

Therefore X|Z doesn’t have `+ 1 bits of HILL entropy

HHILL

�/2,1(X|Z) < `+ 1

On the other hand, we claim that X (without Z but access to O(.)) cannot be
distinguished from the uniform distribution over {0, 1}n with advantage ⇥(�)



unless we allow the distinguisher ⌦(1/�) oracle queries (the hidden constant in
⇥(�) can be made arbitrary large by stetting the hidden constant in ⌦(1/�)
small enough), i.e.,

HHILL

⇥(�),⌦(1/�)(X) = n (1)

To see why (1) holds, we first note that given some V , a single oracle query is
useless to tell whether V = X or V = Un: although in the case where V = X 2
XZ the output O(X) will have bias �, one can’t decide in which direction the
bias goes as Z is (unconditionally) pseudorandom. If we’re allowed in the order
1/�2 queries, we can distinguish X from Un with constant advantage, as with
1/�2 samples one can distinguish the distribution B1/2+� (or B1/2��) from B1/2

with constant advantage. If we just want ⇥(�) advantage, ⌦(1/�) samples are
necessary, which proves (1). While it is easy to prove that for the coin with bias
� one needs O

�
1/�2

�
trials to achieve 99% of certainty, finding the number of

trials for some confidence level in o(1) as in our case, is more challenging. We
solve this problem by a tricky application of Renyi divergences3 The statement
of our “coin problem” with precise bounds is given in Lemma 3.

So far, we have only sketched the case m = 1. For m > 1, we define a random
function ⇡ : {0, 1}n ! {0, 1}m�1. The oracle now takes an extra m�1 bit string
j, and for x 2 X , the output of O(x, j) only has bias � if ⇡(x) = j (and outputs a
uniform bit everywhere else). We define the joint distribution (X,Z) by sampling
X  X , define Z 0 s.t. X 2 XZ0 , and set Z = ⇡(X)kZ 0. Now, given Z, we can
make one query ↵  O(V, Z[1 . . .m � 1]) and output � = ↵ � Z[m], where, as
before, getting advantage � in distinguishing X from any Y with min-entropy
� `+ 1.

On the other hand, given some V (but no Z) it is now even harder to tell if
V = X or V = Y . Not only don’t we know in which direction the bias goes as
before in the case m = 1 (this information is encoded in the last bit Z[m] of Z),
but we also don’t know on which index ⇡(V ) (in the case V = X) we have to
query the oracle to observe any bias at all. As there are 2m�1 possible choices
for ⇡(V ), this intuitively means we need 2m�1 times as many samples as before
to observe any bias, which generalises (1) to

HHILL

⇥(�),⌦(2m�1/�)(X) = n

1.1 Some implications of our lower bounds

Leakage Resilient Cryptography. The chain rule for HILL entropy is a main
technical tool used in several security proofs like the construction of leakage-
resilient schemes [NY19, Pie09]. Here, the quantitative bound provided by the
chain rule directly translates into the amount of leakage these constructions
can tolerate. Our Theorem 2 implies a lower bound on the necessary security
degradation for this proof technique. This degradation is, unfortunately, rather

3 Lower bounds [Zha11,Wat14] also require nontrivial binomial estimates. They were
obtained, however by direct and involved calculations.



severe: even if we just leak m = 1 bit, we will lose a factor 2m/✏, which for a
typical security parameter ✏ = 2�80 means a security degradation of “80 bits”.

Let us also mention that Theorem 2 answers a question raised by Fuller and
Reyzin [FR12], showing that for any chain rule the simultaneous loss in quality
and quantity is necessary4.

Faking Auxiliary Inputs. [JP14, VZ13, Skó16b] consider the question how
e�ciently one can “fake” auxiliary inputs. Concretely, given any joint distribu-
tion (X,Z) with Z 2 {0, 1}m, construct an e�cient simulator h s.t. (X,h(X))
is (✏, s)-indistinguishable from (X,Z). For example [VZ13] gives a simulator h
of complexity O

�
2m✏2 · s

�
(plus additive terms independent of s). This result

has found many applications in leakage-resilient crypto, complexity theory and
zero-knowledge theory. The best known lower bound (assuming exponentially
hard OWFs) is ⌦ (max(2m, 1/✏)). Since the chain rule for relaxed HILL entropy
follows by a simulator argument [JP14] with the same complexity loss, our The-
orem 2 yields a better lower bound ⌦ (2m/✏) on the complexity of simulating
auxiliary inputs.

Dense Model Theorem. The computational dense model theorem [RTTV08]
says, roughly speaking, that dense subsets of pseudorandom distributions are
computationally indistinguishable from true dense distributions. It has found
applications including di↵erential privacy, memory delegation, graph decompo-
sitions and additive combinatorics. It is well known that the worst-case chain
rule for HILL-entropy is equivalent to the dense model theorem, as one can
think of dense distributions as uniform distributions X given short leakage Z.
For settings with constant density, which correspond to |Z| = O (1), HILL and
relaxed HILL entropy are equivalent [JP14]; moreover, the complexity loss in the
chain rule is then equal to the cost of transforming Metric Entropy into HILL
Entropy. Now our Theorem 1 implies a necessary loss in circuit size ⌦

�
1/✏2

�
if

one wants ✏-indistinguishability. This way we reprove the tight lower bound due
to Zhang [Zha11] for constant densities.

2 Basic Definitions

Let X1 and X2 be two distributions over the same finite set. The statistical
distance of X1 and X2 equals SD (X1;X2) =

1

2

P
x |Pr[X1 = x]� Pr[X2 = x]|.

Definition 1 (Min-Entropy). A random variable X has min-entropy k, de-
noted by H1 (X) = k, if maxx Pr[X = x]  2�k .

Definition 2 (Average conditional min-Entropy [DRS04]). For a pair
(X,Z) of random variables, the average min-entropy of X conditioned on Z is

eH1(X|Z) = � log E
z Z

[max
x

Pr[X = x|Z = z]] = � log E
z Z

[2�H1(X|Z=z)]

4 Their question was about chain rules bounding the worst-case entropy, that is bound-
ing HHILL(X|Z = z) for every z. Our result, stated simply for average entropy
HHILL(X|Z), is much more general and applies to qualitatively better chain rules
obtained by simulator arguments.



Distinguishers. We consider several classes of distinguishers. With Drand,{0,1}
s

we denote the class of randomized circuits of size at most s with boolean output
(this is the standard non-uniform class of distinguishers considered in crypto-

graphic definitions). The class Drand,[0,1]
s is defined analogously, but with real val-

ued output in [0, 1]. Ddet,{0,1}
s ,Ddet,[0,1]

s are defined as the corresponding classes
for deterministic circuits. With �D(X;Y ) = |EX [D(X)]�EY [D(Y )] we denote
D’s advantage in distinguishing X and Y .

Definition 3 (HILL pseudoentropy [HILL99,HLR07]). A variable X has
HILL entropy at least k if

HHILL

✏,s (X) � k () 9Y , H1 (Y ) = k 8D 2 Drand,{0,1}
s : �D(X;Y )  ✏

For a joint distribution (X,Z), we say that X has k bits conditonal Hill entropy
(conditionned on Z) if

HHILL

✏,s (X|Z) � k

() 9(Y, Z), eH1(Y |Z) = k 8D 2 Drand,{0,1}
s : �D((X,Z); (Y, Z))  ✏

Definition 4 (Metric pseudoentropy [BSW03]). A variable X has Metric
entropy at least k if

HMetric

✏,s (X) � k () 8D 2 Drand,{0,1}
s 9YD , H1 (YD) = k : �D(X;YD)  ✏

Metric star entropy is defined analogousely but using deterministic real valued
distinguishers

HMetric⇤

✏,s (X) � k () 8D 2 Ddet,[0,1]
s 9YD , H1 (YD) = k : �D(X;YD)  ✏

Relaxed versions of HILL and Metric entropy. A weaker notion of condi-
tional HILL entropy allows the conditional part to be replaced by some compu-
tationally indistinguishable variable

Definition 5 (Relaxed HILL pseudoentropy [GW11,Rey11]). For a joint
distribution (X,Z) we say that X has relaxed HILL entropy k conditioned on Z
if

HHILL�rlx

✏,s (X|Z) � k

() 9(Y, Z 0), eH1(Y |Z 0) = k, 8D 2 Drand,{0,1}
s , : �D((X,Z); (Y, Z 0))  ✏

The above notion of relaxed HILL satisfies a chain rule whereas the chain rule
for the standard definition of conditional HILL entropy is known to be false
[KPW13]. One can analogously define relaxed variants of metric entropy, we
won’t give these as they will not be required in this paper.

Pseudoentropy against di↵erent distinguisher classes. For randomized
distinguishers, it’s irrelevant if the output is boolean or real values, as we can

replace any D 2 Drand,[0,1]
s with a D0 2 Drand,{0,1} s.t. E[D0(X)] = E[D(X)] by



setting (for any x) Pr[D0(x) = 1] = E[D(x)]. For HILL entropy (as well as for its
relaxed version), it also doesn’t matter if we consider randomized or deterministic
distinguishers in Definition 3, as we always can “fix” the randomness to an
optimal value. This is no longer true for metric entropy,5 and thus the distinction
between metric and metric star entropy is crucial.

3 A Lower Bound on Metric-to-HILL Transformations

Theorem 1. For every n, k, m and ✏ such that n > k + log(1/✏) + 4, 1

8
> ✏

and n � 1 � m > 6 log(1/✏) there exist an oracle O and a distribution X over
{0, 1}n such that

HMetric

✏,T
,det{0,1}(X) > k (2)

here the complexity T denotes any circuit of size 2O(m) that makes at most ln(2/✏)
216✏2

non-adaptive queries and, simultaneously,

HMetric

2✏,T 0
,rand{0,1}(X) 6 m+ 1 (3)

where the distinguishers size T 0 is only O(n) and the query complexity is 1.

Let S be a random subset of {0, 1}n of size 2m, where m 6 n � 1, and let
D1, . . . , Dh be boolean functions drawn independently from the following dis-
tribution D: D(x) = 1 on S with probability p if x 2 S and D(x) = 1 with
probability q if x 2 Sc, where p > q and p + q = 1. Denote X = US . We will
argue that the metric entropy against a probabilistic adversary who is allowed
one query is roughly m with advantage ⌦(p�q). But the metric entropy against
non-adaptive deterministic adversary who can make t queries of the form Di(x)
is much bigger, even if t = O

�
(p� q)�2

�
. Let us sketch an informal argument

before we give the actual proof. We need to prove two facts:

(i) There is a probabilistic adversary A
⇤ such that with high probability over

X,D1, . . . , Dh we have �A
⇤
(X,Y ) = ⌦(p � q) for all Y with H1 (Y ) >

m+ 1.
(ii) For every deterministic adversary A making at most t = O

�
(p� q)�2

�

non-adaptive queries, with high probability over X,D1, . . . , Dh we have
�A(X;Y ) = 0 for some Y with H1 (Y ) = n�⇥(1).

To prove (i) we observe that the probabilistic adversary can distinugish between
S and Sc by comparing the bias of ones. We simply let A⇤ forward its input to
Di for a randomly chosen i, i.e.,

A
⇤(x) = Di(x), i [1, . . . , h]

5 It might be hard to find a high min-entropy distribution Y that fools a randomized
distinguisher D, but this task can become easy once D’s randomness is fixed.



With extremely high probability we have Pr[A⇤(x) = 1] 2 [p� �, p+ �] if x 2 S
and Pr[A⇤(x) = 1] 2 [q � �, q + �] if x 62 S for some � ⌧ p � q (by a Cherno↵
bound, � drops exponentially fast in h, so we just have to set h large enough).
We have then Pr[A⇤(X) = 1] > p + � and Pr[A⇤(Y ) = 1] 6 1/2 · (p + q + 2�)
for every Y of min-entropy at least m + 1 (since then Pr[Y 2 S] 6 1/2). This
yields �A

⇤
(X;Y ) = (p� q)/2. In order to prove (ii) one might intuitively argue

that the best a t-query deterministic adversary can do to contradict to (ii), is to
guess whether some value x has bias p or q = 1� p, by taking the majority of t
samples

A(x) = Maj(D1(x), . . . , Dt(x))

But even if t = ⇥(1/(p�q)2), majority will fail to predict the bias with constant
probability. This means there exists a variable Y with min-entropy n�⇥(1) such
that Pr[A(Y ) = 1] = Pr[A(X) = 1]. The full proof gives quantitative forms of (i)
and (ii), showing essentially that “majority is best” and appears in Appendix A.

4 Lower Bounds on Chain Rules

For any n� `� m, we construct a distribution (X,Z) 2 {0, 1}n ⇥ {0, 1}m and
an oracle O(.) such that relative to this oracle, X has very large HILL entropy
but the HILL entropy of X|Z is much lower in quantity and quality: for arbitrary
n� `� m (where |Z| = m, X 2 {0, 1}n), the quantity drops from n to `�m+2
(it particular, by much more than |Z| = m), even if we allow for a 2m/✏ drop in
quality.

Theorem 2 (A lower bound on the chain rule for HHILL�rlx). There exists
a joint distribution (X,Z) over {0, 1}n ⇥ {0, 1}m, and an oracle O such that,

relative to O, for any (`, �) such that n
2
� log(1/�)

2
> m and ` > m+ 6 log(1/�),

we have

HHILL

�/2,T (X) = n (4)

where6 T > c · 2m/� with some absolute constant c but

HHILL�rlx

�/2,T 0 (X|Z) < `+ 1 (5)

where T 0 captures a circuit of size only O(n) making only 1 oracle query.

Remark 1 (On the technical restrictions). Note that the assumptions on ` and
� are automatically satisfied in most interesting settings, as typically we assume
m⌧ n and log(1/�)⌧ n.

6 The class of adversaries here consists of all circuits with the total number of gates,
including oracle gates, at most T . Theorem 2 is also true when the circuit size s is
much bigger than the total number of oracle gates T (under some assumption on s,
`, ✏). For simplicity, we do not state this version.



Remark 2 (A strict separation). The theorem also holds if we insist on a larger
distinguishing advantage after leakage. Concretely, allowing for more than just
one oracle query, the �/2 advantage in (5) can be amplified to C� for any constant
C assuming � is small enough to start with (see Remark 4 in the proof).

The full proof appears in Appendix B. The heart of the argument is a lower
bound on the query complexity for the corresponding “coin problem”: we need
to distinguish between T random bits, and the distribution where we sample
equally likely T independent bits Bp or T independent bits Bq where p = 1

2
+ �

and q = 1� p. (see Appendix C for more details). The rest of the proof is based
on a standard concentration argument, using extensively Cherno↵ Bounds.

5 Open Problems

As shown in Figure 2, there remains a gap between the best proofs for the chain-
rule, which lose a factor ✏2/2|Z| in circuit size, and the required loss of ✏/2|Z|

we prove in this paper. Closing this bound by either improving the proof for the
chain-rule or give an improved lower bound remains an intriguing open problem.

Our lower bounds are only proven for adversaries that make their queries non-
adaptively. Adaptive queries don’t seem to help against our oracle, but rigorously
proving this fact seems tricky.

Finally, the lower bounds we prove on the loss of circuit size assume that the
distinguishing advantage remains roughly the same. There exist results which
are not of this form, in particular – as shown in Figure 2 – the HILL to Metric
transformation from [FR12] only loses in distinguishing advantage, not in circuit
size (i.e., we have s ⇡ s0). Proving lower bounds and giving constructions for
di↵erent circuit size vs. distinguishing advantage trade-o↵s leave many challenges
for future work.

Although the restricted adversary model - querying on same inputs - seems
to be widely accepted, it remains a challenging open problem to rigorously prove
that querying on di↵erent inputs really doesn’t help; not only for the problem
discussed here but also in the case of Dense Model Theorems and Hardcore Sets
Constructions.
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A Proof of Theorem 1

A.1 Majority is best

We prove two statements which are quantitative forms of (i) and (ii) discussed
after the statement of Theorem 1. First we show that the probabilistic adversary
A
⇤ easily distinguishes X from all Y of high min-entropy.

Claim 1 (Probabilistic Metric Entropy of X is small) Let A⇤ be a prob-
abilistic adversary who on input x samples a random i 2 [1, . . . , h], then queries
for Di(x) and outputs the response. Then for any � 6 (p� q)/3 we have

Pr[8Y : H1 (Y ) > m+1, �A
⇤
(X;Y ) > (p�q)/3] > 1�2max(n�1,m+1) exp(�h�2).

(6)

Remark 3 (The complexity of the probabilistic distinguisher). We can chose h in
Claim 1 to be 2n, then A

⇤ is of size O (n) and makes only one query.

Consider now a deterministic adversary A who on input x can make at most t
queries learning Di(x) for t di↵erent i 2 [1, . . . , h]. We claim that

Claim 2 (Deterministic Metric Entropy is big) Suppose that we have n >
k + log(1/✏) + 4 and � = ✏2

2+2✏ .Then for every nonadaptive adversary A which

makes t 6 ln(2/✏)
6(p�q)2 queries we have

Pr
X,D1,...,Dh

⇥
9Y : H1 (Y ) > k, �A(X;Y ) 6 ✏

⇤
> 1� 4 exp(�2m�2). (7)

Setting p�q = 6✏ we see that Equation (2) follows from Claim 1 and Equation (3)
follows from Equation (7) combined with the union bound over all distinguishers.
Note that the right hand side of Equation (7) converges to 1 with the rate
doubly exponential in m, so we can even a↵ord taking a union bound over all
distinguishers of size exponential in m.



Proof (of Claim 1). By a Cherno↵ bound7 and the union bound

Pr
X,D1,...,Dh

[8x 2 Sc : Pr[A⇤(x) = 1] 6 q + �] > 1� 2n�1 exp(�2�2h) (8)

similarly

Pr
X,D1,...,Dh

[8x 2 S : |Pr[A⇤(x) = 1]� p| 6 �] > 1� 2m · 2 exp(�2�2h). (9)

The advantage of A⇤, with probability 1� 2n�1 exp(�2h�2), equals

�A
⇤
(X;Y ) > (p� �)� (p+ �) Pr[Y 2 S]� (q + �) Pr[Y 2 Sc]

> p� q � (p� q) Pr[Y 2 S]� 2�.

Since by the assumption we have Pr[Y 2 S] 6 1

2
, Equation (6) follows.

Proof (of Claim 2). The adversary A non-adaptively queries for Di(x) values for
t distinct i’s and then outputs a bit, this bit is thus computed by a function of
the form

f
�
x,Di1(x)(x), . . . , Dit(x)(x)

�
, (10)

for some fixed boolean function f : {0, 1}n ⇥ {0, 1}t ! {0, 1}. We start by sim-
plifying the event (7) using the following proposition, which gives an alternative
characterization of the deterministic metric entropy.

Lemma 1 ( [BSW03,Sko15b]). Let D be a boolean deterministic function on
{0, 1}n. Then there exists Y of min-entropy at least k such that �D(X;Y ) 6 ✏
if and only if

ED0(X) 6 2n�k ED0(U) + ✏ (11)

holds for D0 2 {D,1�D}

Since |Sc| > 2n�1, we have ED(U) > Ex Sc D(x)/2 for any function D. There-
fore, by Lemma 1, the inequality (7) will be proved if we show that the following
inequality holds:

Pr
X,D1,...,Dh

h
8A0 2 {A,1� A} : E

x S
A
0(x) 6 2n�k�1 E

x Sc
A
0(x) + ✏

i

> 1� 4 exp(�2m�2) (12)

By the union bound, it is enough to show that for A0 2 {A,1� A} we have

Pr
X,D1,...,Dh

h
E

x S
A
0(x) 6 2n�k�1 E

x Sc
A
0(x) + ✏

i
> 1� 2 exp(�2m�2) (13)

In the next step we simplify the expressions Ex S A
0(x) and Ex Sc A

0(x). The
following fact is a direct consequence of the Cherno↵ bound.

7 We use the following version: let Xi for i = 1, . . . , N be independent ran-
dom variables such that Xi 2 [ai, bi]. Then for any positive t we have

PrX1,...,XN

hP
N

i=1 Xi � E
hP

N

i=1 Xi

i
> t

i
6 exp

⇣
2t2PN

i=1(bi�ai)2

⌘
.



Proposition 1. For any function f 2 {0, 1}n ⇥ {0, 1}t ! [0, 1] we have
��� E
x S

f
�
x,Di1(x)(x), . . . , Dit(x)(x)

�
� E f(Un, B

1

p , . . . , B
t
p)
��� 6 � (14)

��� E
x Sc

f
�
x,Di1(x)(x), . . . , Dit(x)(x)

�
� E f(Un, B

1

q , . . . , B
t
q)
��� 6 � (15)

with probability 1� 2 exp(�2 · 2m�2) over the choice of X and D1, . . . , Dh.

For any r = (r1, r2, . . . , rt) 2 [0, 1]t, and any (deterministic or randomized)
function f 2 {0, 1}t ! [0, 1] we denote Erf = Ef(Br1 , . . . , Brt). It is enough to
show that if r, r0 are both chosen from {p, q}t then we have

Erf + � 6 2n�k�1 max(Er0f � �, 0) + ✏. (16)

This inequality will follow by the following lemma (applied to f in the proposition
but considered as a function of {0, 1}t randomized with the first n input bits).

Lemma 2. Suppose that p, q > 0 are such that p+ q = 1. Let f : {0, 1}t ! [0, 1]
be an arbitrary function and let r, r0 2 {p, q}t. Then for any c > 0 we have

Erf 6 exp

✓
(c+ 1)(p� q)2

q
· t
◆
·Er0f + exp(�2c2(p� q)2t).

Proof. The idea of the proof is to show that for most values of z the ratio
Pr[Br = z]/Pr[Br0 = z] is bounded. We have

Pr[Br = z]/Pr[Br0 = z] (17)

= (p/q)#{i:zi=1, ri>r
0
i}�#{i:zi=1, ri<r

0
i} · (q/p)#{i:zi=0, ri>r

0
i}�#{i:zi=0, ri<r

0
i}

= (p/q)#{i:zi=1, ri>r
0
i}�#{i:zi=0, ri>r

0
i}�#{i:zi=1, ri<r

0
i}+#{i:zi=0, ri<r

0
i}

= (p/q)
Pt

i=1(2zi�1)·sgn(ri�r
0
i) (18)

The random variables ⇠i = (2zi � 1) · sgn(ri � r0i) for i = 1, . . . , t, where z is
sampled from Br, are independent with the expectations E⇠i = (2ri�1)sgn(ri�
r0i) 6 p� q. By the Cherno↵ bound for any c > 0 we get

Pr
z Br

"
tX

i=1

(2zi � 1) · sgn(ri � r0i) > (p� q)t+ c(p� q)t

#
6 exp(�2c2(p� q)2t).

(19)

Therefore,

Erf 6 (p/q)(c+1)(p�q)tEr0f + 2 exp(�2c2(p� q)2t) (20)

and the claim follows by observing that p/q = 1 + (p� q)/q 6 exp((p� q)/q).

From Lemma 2 it follows that Equation (16) is satisfied with

� 6 ✏

2 exp ((c+ 1)(p� q)2 · t/q) + 2
(21)



provided that

exp(�2c2(p� q)2 · t) 6 ✏/2 (22)

exp
�
(c+ 1)(p� q)2 · t/q

�
6 2n�k�1 (23)

It is easy to see that Equation (23) and Equation (22) are satisfied if and only if

ln(2/✏)

2c2(p� q)2
6 t 6 (n� k � 3) ln 2 · q

(c+ 1)(p� q)2
.

This inequality can be satisfied if and only if

✏ > 2 · 2(k�n+3)·
2qc2

c+1 .

If we set t = ln(2/✏)
2c2(p�q)2 then Equation (21) becomes

� 6 ✏

(2/✏)
c+1
2qc2 + 2

Choosing c so that 2qc2

c+1
= 1 we see that it is enough to assume ✏ > 2 · 2k�n+3,

any � such that � 6 ✏2

2+2✏ and t ⇡ ln(2/✏)
6(p�q)2 (the constant 6 is sightly bigger than

the exact value, but if Claim 2 holds true for some t then also for t0 < t). This
finishes the proof of Claim 2.

B Proof of Theorem 2

A Remark on The Oracle. For convenience, the oracle O : {0, 1}n ! {0, 1}
we use in the proof is probabilistic, in the sense that it flips some random coins
before answering a query (in particular, making the same query twice might give
di↵erent outputs). We remark that, as the adversaries considered are probabilis-
tic, one can replace this oracle with a deterministic one Odet by assigning to
every possible query x a 2L tuple (x, r), r 2 {0, 1}L of queries (for some su�-
ciently large L), where the output for Odet((x, r)) is sampled according to O(x)
for every r. We can emulate the output distribution O(x) by querying O((x, r))
for a random r. On the other hand, for a random x, even an exponential size
distinguisher will not be able to distinguish Odef((x, ·)) from an oracle which,
when queried on input (x, r) for the first time, samples the output according to
the distribution of O(x).8

Proof (of Theorem 2). We first describe how we construct the distribution (X,Z)
and the oracle O.
8 This can be shown along the lines of the proof that a random exponential size
subset is unconditionally pseudorandom against exponential size distinguishers, see
Goldreich’s book “Foundations of Cryptography – Basic Techniques”, Proposition
3.2.3.



Construction details. We chose at random two disjoint sets X0,X1 ⇢ {0, 1}n
of size 2` and define X = X0 [ X1. Let ⇡ : {0, 1}n ! {0, 1}m�1 be a random
function. The oracle O on input (x, j) 2 X ⇥{0, 1}m�1 outputs a sample of B1/2

(i.e., a uniformly random bit), except if x 2 X and ⇡(x) = j, in this case the
output bit has bias �; If x 2 X0, the oracle outputs a sample of B1/2��, and
otherwise, if x 2 X1, a sample of B1/2+�. We define the joint distribution (X,Z)
by sampling Z 0  {0, 1}, X  XZ0 and setting Z = ⇡(X)kZ 0 (note that X is
uniform in X )

Adversaries. The adversary on input x 2 {0, 1}n makes T non-adaptive queries
(x, j1(x)), . . . , (x, jT (x)) to the oracle. We denote O’s response with R(x) =�
Ri(x, ji(x))

�T
i=1

. The adversary’s final output f(x,R(x)) is computed by a

boolean function f : {0, 1}n ⇥ {0, 1}T ! {0, 1}.
Formal proof. Let R(x) = (R1(x, j1(x)), . . . , RT (x, jT (x))) be the sequences of
the oracle’s responses and Let B(x) = (B1

1/2, . . . , B
T
1/2) be independent random

bits. For every x the number of useful responses, that is indexes i such that
Ri(x, ji(x)) is biased, is defined to be

T (x) =
TX

i=1

[ji(x) = ⇡(x)] (24)

On average we have EO(·) T (x) = T/2m�1. We claim that the adversary actually
learns basically nothing about X : the sequence of oracle outptus is close to the
sequence of unbiased bits. We start by showing that X is pseudorandom for our
adversary.

Claim 3 (X is pseudorandom, even given oracle responses) For any f
and ✏ > 0 we have

���� E
x X

f(x,R(x))� E
x Un

f(x,R(x))

����  ✏+O
�
�2T/2m

�
(25)

with error probability at most O
�
exp (�⌦ (2n�m)) + exp

�
�⌦

�
2`✏2

���
.

Proof. By Lemma 3 and the definition of O, for every x 2 X we obtain

|Ef(x,R(x))� Ef(x,B(x))| =
⇢
O
�
T (x)�2

�
, x 2 X
0, x 62 X (26)

for every boolean function f and some absolute constant hidden under big-Oh.
Thus

��� E
x X

f(x,R(x))� E
x X

f(x,B(x))
��� = O

⇣
E

x X

T (x)�2
⌘

(27)

Note that the random variables f(x,R(x)) for di↵erent values of x are indepen-
dent and similarly f(x,B(x)) for di↵erent values of x are independent. Since the



set X is chosen at random by the Hoe↵ding-Cherno↵ bound we obtain that with
probability 1� 2 exp

�
�⌦

�
2`✏2

��
over O the following holds:

���� E
x X

f(x,B(x))� E
x Un

f(x,B(x))

���� 6 ✏ (28)

Combining Equation (27) and Equation (28) we obtain (with probability 1 �
2 exp

�
�⌦

�
2`✏2

��
over O)

.

���� E
x X

f(x,R(x))� E
x Un

f(x,B(x))

���� 6 ✏+O
⇣

E
x X

T (x)�2
⌘

(29)

By Equation (26) we have

���� E
x Un

f(x,R(x))� E
x Un

f(x,B(x))

���� 6 O

✓
E

x Un

T (x)�2
◆
. (30)

Now Equations (29) and (30) imply

���� E
x X

f(x,R(x))� E
x Un

f(x,R(x))

���� 6 ✏+O

✓
E

x Un

T (x)�2
◆
. (31)

The random variables T (x) for di↵erent x are independent, bounded by T and
have the first moment EO(T (x)) = T/2m�1. By the multiplicative Cherno↵
bound with probability 1�2 exp (�⌦ (2n�m)) overO it holds that Ex Un T (x) <
2 · T/2m�1. This implies Equation (25) with error probability at most

Perr = O
�
exp

�
�⌦

�
2n�m

��
+ exp

�
�⌦

�
2`✏2

���
.

Claim 4 There exists a distinguisher D : {0, 1}n ⇥ {0, 1}m ! {0, 1} which calls
the oracle O one time and such that for any joint distribution Y, Z 0 over {0, 1}n⇥
{0, 1}m with entropy eH1(Y |Z 0) > `+ 1 it holds that

ED(X,Z)� ED(Y, Z 0) > �

2

with probability 1� 2 exp(�⌦
�
2`�2)

�
).

Remark 4 (Amplified distinguisher). Assuming that T is su�ciently large, we
can modify D by taking the majority vote over T queries on O(x, z). This will
boost the distinguishing advantage from �/2 to C� where C can be an arbitrary
constant (for su�ciently small �).

Proof (of Claim 4). The distinguisher D simply calls the oracle O on the pair
(x, z). The probability that D outputs 1 on input (Y, Z 0) is at most (the proba-



bilities below are over the choice of O and Y, Z 0)

Pr (D(Y, Z 0) = 1) = E
z Z0

Pr (D(Y |Z0=z, z) = 1)

= E
z Z0

[Pr (D(Y, z) = 1 ^ Y 62 X|Z 0 = z)] +

+ E
z Z0

[Pr (D(Y, z) = 1 ^ Y 2 X|Z 0 = z)]

=
1

2
+ � · E

z Z0
[Pr (Y 2 X|Z 0 = z)]

6 1

2
+ � E

z Z0

h
|X | · 2�H1(Y |Z0

=z)
i

=
1

2
+ � · |X | · 2�eH1(Y |Z0

)

which is at most 1

2
+ �

2
. On the other hand we have Pr(D(X,Z) = 1) = 1

2
+ �.

From this we see that the advantage is � on average - but we need stronger
concentration guarantees. Note that Pr(D(X,Z) = 1) =

P
x2S Pr[X = x] ·

D(x, i(x)) can be viewed as a sum of independent random variables. By the
Cherno↵-Hoe↵ding bound we get

Pr
O


Pr(D(X,Z) = 1) > 1

2
+ � � �

8

�
> 1� exp(�⌦

�
2`�2)

�
)

Similarly, Pr(D(Y, Z 0) = 1) =
P

x,z Pr[Y = x, Z 0 = z] · D(x, z0). Since
X

x,z

Pr[Y = x, Z 0 = z]2 =
X

z

X
xPr[Z 0 = z]2 Pr[Y = x|Z 0 = z]2

6
X

z

Pr[Z 0 = z]2�H1(Y |Z0=z)

6 2�
eH1(Y |Z),

the Cherno↵-Hoe↵ding bound implies

Pr
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Pr(D(Y 0, Z) = 1) 6 1

2
+

�

2
+

�

8

�
> 1� exp(�⌦

�
2`�2

�
) (32)

and the result follows.

We set ✏ = �
3
and T = c·2m/✏. Now Claim 4 directly implies Equation (5) whereas

Equation (4) follows, when c is su�ciently small, from Claim 3 by a union bound;
To see this, note that the right hand side of (32) is doubly exponentially close
(in `) to 1, and recall that ` > m + 6 log(1/�). So we can take a union bound
over all O(exp(T ))circuits D of size T and deduce that with high probability the
left hand side of (32) hold for all of them.

C Proof of Lemma 3

Lemma 3 (Lower bounds on the coin problem). Fix � 2 (0, 1/2) and
define p = 1

2
+ � and q = 1� p. Consider the following two experiments:



(a) We flip a fair coin, and depending on the result we toss T times a biased
coin Bp (probability of the head is p) or toss T times a coin Bq (probability
of the head is q). The output is the result of these T flips.

(b) We flip T times a fair coin and output the results.

Then one cannot distinguish (a) from (b) better than with advantage O
�
T �2

�
.

Remark 5. We give a simple proof based on calculating Renyi divergences. This
result can be also derived by more sophisticaed techniques from Fourier analysis
(the generalized XOR lemma).

Before we give the proof, let’s recall some basic facts about Pearson Chi-Squared
Distance. For any two distributions P,Q over the same space, their Chi-Squared
distance defined by

D�2(P k Q) =
X

x

Q(x)

✓
P (x)

Q(x)
� 1

◆2

=
X

x

P (x)2

Q(x)2
� 1 (33)

Now let U1, . . . , Un be independent uniform bits, X1, . . . , Xn be i.i.d. bits where
1 appears with probability p = 1

2
+� and Y1, . . . , Yn be i.i.d. bits where 1 appears

w ith probability q = 1� p = 1

2
� �. We want to estimate the distance between

U = U1, . . . , Un and Z distributed as an equally weighted combination of X =
X1, . . . , Xn and Y = Y1, . . . , Yn. We think of � as a fixed parameter and n as
a growing number. Our statement will easily follow by combining the following
two claims

Claim 5 With U and Z as above, and for n = O
�
��2
�
, it holds that

D�2 (U ;Z) = O
�
n2�4

�
(34)

Claim 6 For any R and uniform U

SD(R k U) 6
q
D�2(R k U), (35)

Indeed, combining these claims we obtain SD(Z k U) = O(n�2) when n =
O
�
��2
�
. Since the left-hand side is bounded by 1, this is true also when n > c��2

for some absolute constant c and the result follows.



Proof (of Claim 5). We have
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(36)

and the result follows by the Taylor expansion (1 + u)n = 1 + nu + O(n2u2)
where nu = O(1) applied to u = 4�2. The bound is valid as long as n = O

�
��2
�
.

Proof (of Claim 6). This inequality follows immediately from the Cauchy-Schwarz
inequality and the definition of D�2 .
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Abstract. For any pair (X,Z) of correlated random variables we can
think of Z as a randomized function of X. If the domain of Z is small,
one can make this function computationally e�cient by allowing it to be
only approximately correct. In folklore this problem is known as simulat-
ing auxiliary inputs. This idea of simulating auxiliary information turns
out to be a very usefull tool, finding applications in complexity theory,
cryptography, pseudorandomness and zero-knowledge. In this paper we
revisit this problem, achieving the following results:
(a) We present a novel boosting algorithm for constructing the simu-

lator. This boosting proof is of independent interest, as it shows
how to handle ”negative mass” issues when constructing probability
measures by shifting distinguishers in descent algorithms. Our tech-
nique essentially fixes the flaw in the TCC’14 paper ”How to Fake
Auxiliary Inputs”.

(b) The complexity of our simulator is better than in previous works,
including results derived from the uniform min-max theorem due to
Vadhan and Zheng. To achieve (s, ✏)-indistinguishability we need the
complexity O

�
s · 25`✏�2

�
in time/circuit size, which improve previ-

ous bounds by a factor of ✏�2. In particular, with we get mean-
ingful provable security for the EUROCRYPT’09 leakage-resilient
stream cipher instantiated with a standard 256-bit block cipher, like
AES256.

Our boosting technique utilizes a two-step approach. In the first step we
shift the current result (as in gradient or sub-gradient descent algorithms)
and in the separate step we fix the biggest non-negative mass constraint
violation (if applicable).

Keywords: simulating auxiliary inputs, boosting, leakage-resilient cryptogra-
phy, stream ciphers, computational indistinguishability

1 Introduction

1.1 Simulating Correlated Information.

Informal Problem Statement Let (X,Z) 2 X ⇥ Z be a pair of correlated
random variables. We can think of Z as a randomized function of X. More
? The full (and updated) version of this paper is available at the Cryptology ePrint
archive and the arXiv archive ({http://arxiv.org/abs/1503.00484}).
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precisely, consider the randomized function h : X ! Z, which for every x outputs
z with probability Pr[Z = z|X = x]. By definition it satisfies

(X,h(X))
d
= (X,Z) (1)

however the function h is ine�cient as we need to hardcode the conditional
probability table of Z|X. It is natural to ask, if this limitation can be overcome

Q1: Can we represent Z as an e�cient function of X?

Not surprisingly, it turns out that a positive answer may be given only in com-
putational settings. Note that replacing the equality in Equation (1) by closeness
in the total variation distance (allowing the function h to make some mistakes
with small probability) is not enough 1. This discussion leads to the following
reformulated question

Q1’: Can we e�ciently simulate Z as a function of X?

Why it matters? Aside from being very foundational, this question is relevant
to many areas of computer science. We will not discuss these applications in
detail, as they are well explained in [JP14]. Below we only mention where such
a generic simulator can be applied, to show that this problem is indeed well-
motivated.

(a) Complexity Theory. From the simulator one can derive Dense Model The-
orem [RTTV08], Impagliazzo’s hardcore lemma [Imp95] and a version of
Szemeredis Regularity Lemma [FK99].

(b) Cryptography. The simulator can be applied for settings where Z models
short leakage from a secret state X. It provides tools for improving and
simplifying proofs in leakage-resilient cryptography, in particular for leakage-
resilient stream ciphers [JP14].

(c) Pseudorandomness. Using the simulator one can conclude results called chain
rules [GW11], which quantify pseudorandomness in conditioned distribu-
tions. They can be also applied to leakage-resilient cryptography.

(d) Zero-knowledge. The simulator can be applied to represent the text ex-
changed in verifier-prover interactions Z from the common inputX [CLP15].

Thus, the simulator may be used as a tool to unify, simplify and improve many
results. Having briefly explained the motivation we now turn to answer the posed
question, leaving a more detailed discussion of some applications to Section 1.6.

1 Indeed, consider the simplest case Z = {0, 1}, define X to be uniform over X =
{0, 1}n, and take Z = f(X) where f is a function which is 0.5-hard to predict by
circuits exponential in n, Then (X,h(X)) and (X,Z) are at least 1

4 -away in total
variation



1.2 Problem Statement

The problem of simulating auxiliary inputs in the computational setting can be
defined precisely as follows

Given a random variables X 2 {0, 1}n and correlated Z 2 {0, 1}`, what
is the minimal complexity sh of a (randomized) function h such that the
distributions of h(X) and Z are (✏, s)-indistinguishable given X, that is

|ED(X,h(X))� ED(X,Z)| < ✏

holds for all (deterministic) circuits D of size s?

The indistinguishability above is understood with respect to deterministic cir-
cuits. However it doesn’t really matter for distinguishing two distributions, where
randomized and deterministic distinguishers are equally powerful2.

It turns out that it is relatively easy3 to construct a simulator h with a
polynomial blowup in complexity, that is when

sh = poly
�
s, ✏�1, 2`

�
.

However, more challenging is to minimize the dependency on ✏�1. This problem
is especially important for cryptography, where security definitions require the
advantage ✏ to be possibly small. Indeed, for meaningful security ✏ = 2�80 or at
least ✏ = 2�40 it makes a di↵erence whether we lose ✏�2 or ✏�4. We will see later
how much ine�cient bounds here may a↵ect provable security of stream ciphers.

1.3 Related Works

Original work of Jetchev and Pietrzak (TCC’14) The authors showed
that Z can be “approximately” computed from X by an “e�cient” function h.

Theorem 1 ([JP14], corrected). For every distribution (X,Z) on {0, 1}n ⇥
{0, 1}` and every ✏, s, there exists a “simulator” h : {0, 1}n ! {0, 1}` such that

(a) (X,h(X)) and (X,Z) are (✏, s)-indistinguishable
(b) h is of complexity sh = O

�
s · 24`✏�4

�

The proof uses the standard min-max theorem. In the statement above we correct
two flaws. One is a missing factor of 2`. The second (and more serious) one is
the (corrected) factor ✏�4, claimed incorrectly to be ✏�2. The flaws are discussed
in Appendix A.

2 If two distributions can be distinguished by a randomized circuit, we can fix a specific
choice of coins to achieve at least the same advantage

3 We briefly sketch the idea of the proof: note first that it is easy to construct a
simulator for every single distinguisher. Having realized that, we can use the min-
max theorem to switch the quantifiers and get one simulator for all distinguishers.



Vadhan and Zheng (CRYPTO’13) The authors derived a version of Theo-
rem 1 but with incomparable bounds

Theorem 2 ([VZ13]). For every distribution X,Z on {0, 1}n ⇥ {0, 1}` and
every ✏, s, there exists a “simulator” h : {0, 1}n ! {0, 1}` such that

(a) (X,h(X)) and (X,Z) are (s, ✏)-indistinguishable
(b) h is of complexity sh = O

�
s · 2`✏�2 + 2`✏�4

�

The proof follows from a general regularity theorem which is based on their uni-
form min-max theorem. The additive loss of O

�
2`✏�4

�
appears as a consequence

of a sophisticated weight-updating procedure. This error is quite large and may
dominate the main term for many settings (whenever s⌧ ✏�2).

As we show later, Theorem 2 and Theorem 1 give in fact comparable security
bounds when applied to leakage-resilient stream ciphers (see Section 1.6)

1.4 Our Results

We reduce the dependency of the simulator complexity sh on the advantage ✏ to
only a factor of ✏�2, from the factor of ✏�4.

Theorem 3 (Our Simulator). For every distribution X,Z on {0, 1}n⇥{0, 1}`
and every ✏, s, there exists a “simulator” h : {0, 1}n ! {0, 1}` such that

(a) (X,h(X)) and (X,Z) are (s, ✏)-indistinguishable
(b) h is of complexity sh = O

�
s · 25` log(1/✏)✏�2

�

Below in Table 1 we compare our result to previous works.

Author Technique Advantage Size Cost of simulating

[JP14] (Theorem 1) Min-Max

✏ s

sh = O
�
s · 24`✏�4

�

[VZ13] (Theorem 2) Complicated Boosting sh = O
�
s · 2`/✏2 + 2`✏�4

�

This paper (Theorem 3) Simple Boosting sh = O
�
s · 25`✏�2

�

Table 1. The complexity of simulating `-bit auxiliary information given required in-
distinguishability strength, depending on the proof technique. For simplicity, terms
polylog(1/✏) are omitted.

Our result is slightly worse in terms of dependency `, but outperforms pre-
vious results in terms of dependency on ✏�1. However, the second dependency
is more crucial for cryptographic applications. Note that the typical choice is
sub-logarithmic leakage, that is ` = o

�
log ✏�1

�
is asymptotic settings4 (see for

example [CLP15]). Stated in non-asymptotic settings this assumption translates
to ` < c log ✏�1 where c is a small constant (for example c = 1

12
see [Pie09]). In

these settings, we outperform previous results.

4 This is a direct consequence of the fact that we want ` to fit poly-preserving reduc-
tions



To illustrate this, suppose we want to achieve security ✏ = 2�60 simulating
just one bit from a 256-bit input. As it follows from Table 1, previous bounds
are useless as they give the complexity bigger than 2256 which is the worst
complexity of all boolean functions over the chosen domain. In settings like
this, only our bound can be applied to conclude meaningful results. For more
concrete examples of settings where our bounds are even only meaningful, we
refer to Table 2 in Section 1.6.

1.5 Our Techniques

Our approach utilizes a simple boosting technique: as long as the condition (a)
in Theorem 3 fails, we can use the distinguisher to improve the simulator. This
makes our algorithm constructive with respect to distinguishers obtained from
an oracle5, similarly to other boosting proofs [JP14,VZ13]. In short, if for a
“candidate” solution h there exists D such that

ED(X,Z)� ED(X,h(X)) > ✏

then we construct a new solution h0 using D and h, according to the equation6

Pr[h0(x) = z] = Pr[h(x) = z] + � · Shift (D(x, z)) + Corr(x, z)

where

(a) The parameter � is a fixed step chosen in advance (its optimal value depends
on ✏ and ` and is calculated in the proof.)

(b) Shift (D(x, z)) is a shifted version of D, so that
P

z Shift (D(x, z)) = 0. This
restriction correspond to the fact that we want to preserve the constraintP

z h(x, z) = 1. More precisely, Shift (D(x, z)) = D(x, z)� Ez0 U` D(x, z)
(c) Corr(x, z) is a correction term used to fix (some of) possibly negative weights.

The procedure is being repeated in a loop, over and over again. The main tech-
nical di�culty is to show that it eventually stops after not so many iterations.

Note that in every such a step the complexity cost of the shifting term is
O
�
2` · size(D)

�
7. The correction term, in our approach, does a search over z

looking for the biggest negative mass, and redistributes it over the remaining
points. Intuitively, it works because the total negative mass is getting smaller
with every step. See Algorithm 1 for a pseudo-code description of the algorithm
and the rest of Section 3 for a proof.

5 The oracle evaluates the distance of the given candidate solution and the simulated
distribution, answering with a distiguisher if the distance is smaller than required.

6 As we already mentioned, we can assume that D is deterministic without loss of
generality. Then all the terms in the equation are well-defined.

7 By definition, it requires computing the average of D(x, ·) over 2` elements



1.6 Applications

Better security for the EUROCRYPT’09 stream cipher. The first con-
struction of leakage-resilient stream cipher was proposed by Dziembowski and
Pietrzak in [DP08]. On Figure 1 below we present a simplified version of this
cipher [Pie09], based on a weak pseudorandom function (wPRF).

K0

x0

K1

F

F

F

F

F

F

F

x1

K3

x2

K2

x3

K4

K5

x5

L0 L2

L1 L3

Fig. 1. The EUROCRYPT’09 stream cipher (adaptive leakage). F denotes a weak
pseudorandom function. By Ki and xi we denote, respectively, values of the secret
state and keystream bits. Leakages are denotted in gray with Li.

Jetchev and Pietrzak in [JP14] showed how to use the simulator theorem to
simplify the security analysis of the EUROCRYPT’09 cipher. The cipher security
depends on the complexity of the simulator as explained in Theorem 1 and
Remark 2. We consider the following setting:

– number of rounds q = 16,
– F instantiated with AES256 (as in [JP14])
– cipher security we aim for ✏0 = 2�40

– � = 3 bits of leakage per round

The concrete bounds for (q, ✏0, s0)-security of the cipher (which roughly speaking
means that q consecutive outputs is (s0, ✏0)-pseudorandom, see Section 2 for a
formal definition) are given in Table 2 below. We ommit calculations as they
are merely putting parameters from Theorem 1, Theorem 2 and Theorem 3 into
Remark 2 and assuming that AES as a weak PRF is (✏, s)-secure for any pairs
s/✏ ⇡ 2k (following the similar example in [JP14]).

More generally, we can give the following comparison of security bounds for
di↵erent wPRF-based stream ciphers, in terms of time-sccess ratio. The bounds
in Table 3 follow from the simple lemma in Section 4, which shows how the
time-success ratio changes under explicit reduction formulas.



Analysis/Authors wPRF security Leakage Advantage ✏0 Size s0

[JP14] (Theorem 1)

256 � = 3 2�40

0

[VZ13] (Theorem 2) 0

this paper (Theorem 3) 266

Table 2. The security of the EUROCRYPT’09 stream cipher, instantiated with
AES256 as a weak PRF of rouhgly k = 256 bits of security. In this settngs only
our new bounds provide non-trivial bounds.

Cipher Analysis Proof techniques Security level Comments
(1) [Pie09] Pseudoentropy chain rules k0

⌧
1
8k large number of blocks

(1) [JP14] Aux. Inputs Simulator (corr.) k0
⇡

k

6 �
5
6�

(1) [VZ13] Aux. Inputs Simulator k0
⇡

k

6 �
1
3�

(1) This work Aux. Inputs Simulator k0
⇡

k

4 �
4
3�

(2) [FPS12] Pseudoentropy chain rules k0
⇡

k

5 �
3
5� large public seed

(3) [YS13] Square-friendly apps. k0
⇡

k

4 �
3
4� only in minicrypt

Table 3. Di↵erent bounds for wPRF-based leakage-resilient stream ciphers. k is the se-
curity level of the underlying wPRF. The value k0 is the security level for the cipher, un-
derstood in terms of time-success ratio. the numbers denote: (1) The EUROCRYPT’09
cipher, (2) The CSS’10/CHESS’12 cipher, (3) The CT-RSA’13 cipher.

1.7 Organization

In Section 2 we discuss basic notions and definitions. The proof of Theorem 3
appears in Section 3.

2 Preliminaries

2.1 Notation

By Ey Y f(y) we denote an expectation of f under y sampled according to the
distribution Y .

2.2 Basic Notions

Indistinguishability Let V be a finite set, and D be a class of deterministic [0, 1]-
valued functions on V. For any two real functions f1, f2 on V, we say that f1, f2
are (D, ✏)-indistinguishable if

8D 2 D :

�����
X

x2V

D(x) · f1(x)�
X

x2V

D(x) · f2(x))

����� 6 ✏

Note that the domain V depends on the context. If X1, X2 are two probability
distributions, we say that they are (s, ✏)-indistinguishable if their probability



mass functions are indistinguishable, that is when
�����
X

x2V

D(x) · Pr[X1 = x]�
X

x2V

D(x) · Pr[X2 = x]

����� 6 ✏

for all D 2 D. If D consists of all circuits of size s we say that f1, f2 are (s, ✏)-
indistinguishable.

Remark 1. This an extended notion of indistinguishability, borrowed from [TTV09],
which captures not only probability measures but also real-valued functions.
A good intuition is provided by the following observation [TTV09]: think of
functions over V as |V|-dimensional vectors then ✏ > |

P
x2V D(x) · f1(x) �P

x2V D(x) · f2(x)| = |hf1 � f2,Di| means that f1 and f2 are nearly orthogonal
for all test functions in D.

Distinguishers In the definition above we consider deterministic distinguishers,
as this is required by our algorithm. However, being randomized doesn’t help in
distinguishing, as any randomized-distinguisher achieving advantage ✏ when run
on two fixed distributions can be converted into a deterministic distinguishers of
the same size and advantage (by fixing one choice of coins). Moreover, any real-
valued distinguisher can be converted, by a boolean threshold, into a boolean
one with at least the same advantage [FR12].

Relative complexity We say that a function h has complexity at most T relative to
the set of functions D if there are functions D1, . . . ,DT such h can be computed
by combining them using at most T of the following operations: (a) multiplication
by a constant, (b) application of a boolean threshold function, (c) sum, (d)
product.

2.3 Stream ciphers definitions

We start with the definition of weak pseudorandom functions, which are com-
putationally indistinguishable from random functions, when queried on random
inputs and fed with uniform secret key.

Definition 1 (Weak pseudorandom functions). A function F : {0, 1}k ⇥
{0, 1}n ! {0, 1}m is an (✏, s, q)-secure weak PRF if its outputs on q random
inputs are indistinguishable from random by any distinguisher of size s, that is

|Pr [D ((Xi)
q
i=1

,F((K,Xi)
q
i=1

) = 1]� Pr [D ((Xi)
q
i=1

, (Ri)
q
i=1

) = 1]| 6 ✏

where the probability is over the choice of the random Xi  {0, 1}n, the choice
of a random key K  {0, 1}k and Ri  {0, 1}m conditioned on Ri = Rj if
Xi = Xj for some j < i.

Stream ciphers generate a keystream in a recursive manner. The security requires
the output stream should be indistinguishable from uniform8.
8 We note that in a more standard notion the entire stream X1, . . . , Xq is indistin-
guishable from random. This is implied by the notion above by a standard hybrid
argument, with a loss of a multiplicative factor of q in the distinguishing advantage.



Definition 2 (Stream ciphers). A stream-cipher SC : {0, 1}k ! {0, 1}k ⇥
{0, 1}n is a function that, when initialized with a secret state S0 2 {0, 1}k,
produces a sequence of output blocks X1, X2, ... computed as

(Si, Xi) := SC(Si�1).

A stream cipher SC is (✏, s, q)-secure if for all 1 6 i 6 q, the random variable Xi

is (s, ✏)-pseudorandom given X1, ..., Xi�1 (the probability is also over the choice
of the initial random key S0).

Now we define leakage resilient stream ciphers, following the “only computation
leaks” assumption.

Definition 3 (Leakage-resilient stream ciphers). A leakage-resilient stream-
cipher is (✏, s, q,�)-secure if it is (✏, s, q)-secure as defined above, but where
the distinguisher in the j-th round gets � bits of arbitrary deceptively chosen
leakage about the secret state accessed during this round. More precisely, before
(Sj , Xj) := SC(Sj�1) is computed, the distinguisher can choose any leakage func-

tion fj with range {0, 1}�, and then not only get Xj, but also ⇤j := fj(Ŝj�1),

where Ŝj�1 denotes the part of the secret state that was modified (i.e., read
and/or overwritten) in the computation SC(Sj�1).

2.4 Security of leakage-resilient stream ciphers.

Best provable secure constructions of leakage-resilient stream ciphers are based
on so called weak PRFs, primitives which look random when queried on random
inputs ([Pie09,FPS12,JP14,DP10,YS13]). The most recent (TCC’14) analysis is
based on a version of Theorem 1.

Theorem 4 (Proving Security of Stream Ciphers [JP14]). If F is a
(✏F , sF , 2)-secure weak PRF then SC

F is a (✏0, s0, q,�)-secure leakage resilient
stream cipher where

✏0 = 4q
p
✏F 2�, s0 = ⇥(1) · sF ✏

04

24�
.

Remark 2 (The exact complexity loss). An inspection of the proof in [JP14]
shows that sF equals the complexity of the simulator h in Theorem 1, with
circuits of size s0 as distingusihers and ✏ replaced by ✏0.

2.5 Time-Success Ratio

The running time (circuit size) s and success probability ✏ of attacks (practical
and theoretical) against a particular primitive or protocol may vary. For this
reason Luby [LM94] introduced the time-success ratio t

✏ as a universal measure
of security. This model is widely used to analyze provable security, cf. [BL13]
and related works.



Definition 4 (Security by Time-Success Ratio [LM94]). A primitive P
is said to be 2k-secure if for every adversary with time resources (circuit size in
the nonuniform model) s, the success probability in breaking P (advantage) is at
most ✏ < s · 2�k. We also say that the time-success ratio of P is 2k, or that is
has k bits of security.

For example, AES with a 256-bit random key is believed to have 256 bits of
security as a weak PRF9.

3 Proof of Theorem 3

For technical convenience, we attempt to e�ciently approximate the conditional
probability function g(x, z) = Pr[Z = z|X = x], rather than building the sam-
pler directly. Once we end with building an e�cient approximation h(x, z), we
transform it into a sampler hsim which on input x outputs z with probability
h(x, z) (this transformation yields only a loss of 2` log(1/✏)). Let X = {0, 1}n
and Z = {0, 1}`. We are going to prove the following fact

For every function g on X ⇥Z which is a X -conditional probability mass
function over Z (that is g(x, z) > 0 for all x, z and

P
z g(x, z) = 1 for

every x), and for every class D of bounded real functions on X ⇥ Z,
closed under complements10 there exists h such that
(a) h is an X -conditional probability mass function over Z
(b) h is of complexity sh = O(24`✏�2) with respect to D
(c) (X,Z) and (X,h(X)) are D-indistinguishable, that is

�����
X

z2Z

E
x⇠X

[D(x, z) · (g(x, z)� h(x, z))]

����� 6 ✏ (2)

The sketch of the construction is shown in Algorithm 1. Here we would like to
point out two things. First, we stress that we do not produce a strictly positive
function; what our algorithm guarantees, is that the total negative mass is small
but as we will see later this is enough. Second, our algorithm performs essentially
same operations for every x, which is why its complexity depends only on Z.
Overall, the procedure has a form of the standard learning algorithm which
iteratively updates the candidate solution; information on how to improve are
provided by distinguishers (see Line 3 and after). The algorithm is actually little
more technical because of handling constraints on the conditional probability
mass function (see Line 7 and after) .

We denote for shortness D(x, z) = D(x, z)� Ez0 UZ D(x, z0) for any D (the
”shift” transformation)
9 We consider the security of AES256 as a weak PRF, and not a standard PRF, because
of non-uniform attacks which show that no PRF with a k-bit key can have s/✏ ⇡ 2k

security [DTT09], at least unless we additionally require ✏� 2�k/2.
10 This is a standard assumption in indistinguishability proofs. We can always extend

the class by adding �D for every D 2 D, which increases the complexity only by 1.



Algorithm 1: Construct the Auxiliary Inputs Simulator

input : X -conditional probability function g : X ⇥ Z ! [0, 1], accuracy
parameter ✏ > 0, class D of bounded functions on X ⇥ Z, step �

output: Function h which is ✏-indistinguishable from g under D, add up to
1 for every x, and with total negative mass smaller than O(�|Z|

3)
1 t 0
2 h0(x, z) 1

|Z|
for every x and z

/* as long as Equation (2) fails - simulator not good enough */

while exists D 2 D s.t. Ex⇠X

⇥P
z
D(x, z) ·

�
g(x, z0)� ht(x, z0)

�⇤
> ✏ do

3 Dt+1
 D

4 for z0 2 Z do /* modify using the distinguisher */

5 ht+1(x, z0) ht(x, z0) + � ·Dt+1(x, z0)

6 t t+ 1
7 m 0
8 for z0 2 Z do /* locate the biggest negative point mass */
9 if ht(x, z0) < m then

10 m ht(x, z0)
11 z�  z0

12 ht(x, z�) = 0 /* cut the biggest negative mass */
13 for z0 2 Z do
14 ht(x, z0) ht(x, z0) + m

|Z|�1 /* redestribute the cut mass */

15 return ht(x, z)

Proof. Consider the functions ht. Define h̃t+1(x, z)
def
= ht(x, z) + � ·Dt+1

(x, z).
According to Algorithm 1, we have

ht+1(x, z) = ht(x, z) + � ·Dt+1

(x, z) + ✓t+1(x, z) (3)

with the correction term ✓t(x, z) that be computed recursively as (see Line 12
in Algorithm 1)

✓t(x, z) = 0

✓t(x, z) =

8
<

:
�min

⇣
ht(x, z) + � ·Dt+1

(x, z), 0
⌘
, if z = zt

min
(x)

min

⇣
ht

(x,zt
min(x)))+�·D

t+1
(x,zt

min(x)),0
⌘

#Z�1
if z 6= zt

min
(x)

t = 0, 1, . . .

(4)

where zt
min

(x) is one of the points z minimizing ht(x, z) + � ·Dt+1

(x, z) (chosen
and fixed for every t) . In particular

ht(x, zt
min

(x))) + � ·Dt+1

(x, zt
min

(x)) < 0() 9z : ht(x, z) + � ·Dt+1

(x, z) < 0
(5)

Notation: for notational convenience we indenify the functions Dt(x, z), D
t
(x, z),

✓t(x, z), h̃t(x, z) and ht(x, z) with matrices where x are columns and z are rows.



That is ht
x denotes the |Z|-dimensional vector with entries ht(x, z) for z 2 Z

and similarly for other functions Dt(x, z), D
t
(x, z), ✓t(x, z), h̃t(x, z).

Claim 1 (Complexity of Algorithm 1). T executions of the “while loop” can be
realized with time O (T · |Z| · size(D)) and memory O(|Z|). 11.

This claim describes precisely resources required to compute the function hT for
every T . In order to bound T , we define the energy function as follows:

Claim 2 (Energy function). Define the auxiliary function

�t =
t�1X

i=0

E
x⇠X

h
D

i+1

x ·
�
gx � hi

x

�i
. (6)

Then we have �t = E1 + E2 where

E1 = 1

� Ex⇠X

h�
ht
x � h0

x

�
· gx + 1

2

Pt�1
i=0

�
hi+1

x � hi
x

�2 � 1

2

⇣
(ht

x)
2 �

�
h0

x

�2⌘i

E2 = 1

� Ex⇠X

h
�
Pt�1

i=0
✓i+1

x ·
�
gx � hi+1

x

�
�
Pt�1

i=0
✓i+1

x ·
�
hi+1

x � hi
x

�i

(7)

Note that all the symbols represent vectors and multiplications, including squares,
should be understood as scalar products. The proof is based on simple algebraic
manipulations and appears in Appendix B.

Remark 3 (Technical issues and intuitions). To upper-bound the formulas in
Equation (7), we need the following important properties

(a) Boundedness of correction terms, that is ideally |✓i(x.z)| = O(poly(|Z|) · �).
(b) Acute angle between the correction and the error, that is ✓ix · (gx � hi

x) > 0.

Below we present an outline of the proof, discussing more technical parts in the
appendix.

Proof outline. Indeed, with these assumptions we prove an upper bound on
the energy function, namely

E1 + E2 6 O
�
poly(|Z|) ·

�
t� + ��1

��
, (8)

which follows from the properties (a) and (b) above (they are proved in Claim 4
and Claim 3 below, and the inequality on E1 + E2 is derived in Claim 5). Note
that, except a factor poly(|Z|), our formula (not the proof, though) is identical
to the bound used in [TTV09] (see Claim 3.4 in the eprint version). Indeed, our
theorem is, to some extent, an extension to the main result in [TTV09] to cover
the conditional case, where |X | > 1. The main di↵erence is that we show how to
simulate a short leakage |Z| given X, whereas [TTV09] shows how to simulate

11 The RAM model



Z alone, under the assumption that the distribution of Z is dense in the uniform
distribution (the min-entropy gap being small)12.

Since the bound above is valid for any step t, and since on the other hand
we have t✏ 6 �t after t steps of the algorithm, we achieve a contradiction
(to the number of steps) setting � = ✏/poly(|Z). Indeed, suppose that t✏ 6
A|Z|B(��1 + t�) for some positive constants A,B. Since the step size � can

be chosen arbitrarily, we can set � = ✏
2A|Z|B

which yields t✏
2

6 2A2
|Z|

B

✏ or

t 6 4A2|Z|B✏�2, which means that the algorithm terminates after at most
T = poly(|Z|)✏�2 steps. Our proof goes exactly this way, except some extra
optimization do obtain better exponent A.

We stress that it outputs only a signed measure, not a probability distribu-
tion yet. However, because of property (a) the negative mass is only of order
poly(|Z|)✏ and the function we end with can be simply rescaled (we replace neg-
ative masses by 0 and normalize the function dividing by a factor 1�m where
m is the total negative mass). With this transformation, we keep the expected
advantage O(✏) and lose an extra factor O(|Z|) in the complexity. We can then.
Finally, we need to remember that we construct only a probability distribution
function, not a sampler. Transforming it into a sampler yields an overhead of
O(Z). This discussion shows that it is possible to build a sampler of complexity
poly(|Z|)✏�2 with respect to D. A more careful inspection of the proof shows
that we can actually achieve the claimed bound |Z|5✏�2 (see Remark 4 at the
end of the proof).

Technical Discussion We note that condition (b) somehow means that mass
cuts should go in the right direction, as it is much simpler to prove that Algo-
rithm 1 terminates when there are no correction terms ✓t; thus we don’t want to
go in a wrong direction and ruin the energy gain. Concrete bounds on properties
(a) and (b) are given in Claims 3 and 4.

In Algorithm 1 in every round we shift only one negative point mass (see
Line 12). However, since this point mass is chosen to be as big as possible and

since ht+1 and ht di↵er only by a small term � ·Dt+1

except the mass shift ✓t+1,
one can expect that we have the negative mass under control. Indeed, this is
stated precisely in Claim 3 below.

Claim 3 (The total negative mass is small). Let

NegativeMass(ht(x, ·)) = �
X

z

min(ht(x, z), 0)

be the total negative mass in ht(x, z) as the function of z. Then we have

NegativeMass(ht(x, ·) < |Z|3�. (9)

12 It’s not possible to extend the result from [TTV09] directly, the issue is that the
constraint on the marginal distribution are not preserved. That’s why [JP14] and
this paper require much more extra work.



for every x and every t. In fact, for all x, z and t we have the following stronger
bound

max
z

��min(ht(x, z), 0)
�� < |Z|�.

The proof is based on a recurrence relation that links NegativeMass(ht+1(x, ·)
with NegativeMass(ht(x, ·), and appears in Appendix C.

Claim 4 (The angle formed by the correction and the di↵erence vector is acute).
For every x, t we have Angle

�
✓t+1

x , gx � ht+1

x

�
2
⇥
�⇡

2
, ⇡
2

⇤
.

The proof appears in Appendix D.
Having established Claims 3 and 4 we are now in position to prove a concrete

bound in Equation (8). To this end, we give upper bounds on E1 and E2, defined
in Equation (7), separately.

Claim 5 (Algorithm 1 terminates after a small number of steps.). The energy
function in Claim 2 can be bounded as follows

E1 6 ��1
�
1 + 2|Z|2� + |Z|t�2 + |Z|3t�2

�
, E2 6 2|Z|2t�.

In particular, we conclude that with � = ✏
8|Z|4

the algorithm terminates after at

most t = O(|Z|3)✏�2 steps.

First, note that by Claim 4 we have �
Pt�1

i=0
✓i+1

x ·
�
gx � hi+1

x

�
6 0. Second, by

definition of the sequence (hi)i we have�
Pt�1

i=0
✓i+1

x ·
�
hi+1

x � hi
x

�
= �

Pt�1
i=0

✓i+1

x ·
✓i+1

x �
Pt�1

i=0
�✓i+1

x ·Di+1

x which is at most 2|Z|3t�2, because of Equation (9) (the
sum of absolute correction terms

P
z |✓i+1(x, z)| is, by definition, twice the total

negative mass, and |Di+1

(x, z)| 6 1). This proves that

E2 6 1

�
· 2|Z|3t�2 = 2|Z|3t�.

To bound E1, note that we have to bounds two non-negative terms, namely
1

2

P
i

�
hi+1

x � hi
x

�2
and

�
ht
x � h0

x

�
· gx. As for the first one, we have

�
hi+1

x � hi
x

�2
=
⇣
�D

i+1

x + ✓i+1

x

⌘2
6 2(�D

i+1

x )2 + 2
�
✓i+1

x

�2
,

where the inequality follows by the Cauchy-Schwarz inequality13. We trivially

have
⇣
D

i+1

x

⌘2
6 |Z| (because of |D(x, z)| 6 1). By the definition of correction

terms in Equation (4) we have
�
✓i+1

x

�2
=
P

z(✓
i+1(x, z))2 < 2(✓i+1(x, z0))2,

where ✓i+1(x, z0) is the smallest negative mass , which is at most (2|Z|3�)2

by Equation (9) . Thus, we have
�
hi+1

x � hi
x

�2 6 2|Z|�2 + 8|Z|6�2. To bund�
ht
x � h0

x

�
· gx note that �h0

x · gx 6 0 and that ht
x · gx 6 maxz |ht(x, z)| (because

13 Or cam be concluded from the parallelogram identity (x+ y)2 + (x� y)2 = x2 + y2



g(x, z) > 0 and
P

x g(x, z) = 1 ) which means ht
x · gx 6 1 + 2NegativeMass(ht

x)
(as

P
z max(ht(x, z), 0) = 1 �

P
z min(ht(x, z), 0) = 1 + NegativeMass(ht

x) and
�
P

z min(ht(x, z), 0) = NegativeMass(ht
x) by

P
z max(ht(x, z) = 1 and the defi-

nition of the total negative mass). This allows us to estimate E1 as follows

E1 6 ��1
�
1 + 2|Z|3� + |Z|t�2 + 4|Z|6t�2

�

After t steps, the energy is at least t✏. On the other hand, it at most E1 + E2.
Since |Z|, |Z|3 6 |Z|6, we obtain

t✏ < ��1 + 2|Z|3 + 7|Z|6t�

Since this is true for any positive �, we choose � = ✏
14|Z|6

, which gives us (slightly

weaker than claimed)

t < 32|Z|6✏�2.

Remark 4 (Optimized bounds). By the second part of Claim 3 we have |✓i(x, z)| <
|Z|� for every x, z and i. An inspection of the discussion above shows that this
allows us to improve the bounds on E1, E2

E1 6 ��1
�
1 + 2|Z|2� + |Z|t�2 + |Z|2t�2

�
, E2 6 2|Z|2t�

Setting � = ✏
8|Z|2

we get E1 + E2 6 20|Z|2✏�1 and t 6 20|Z|2✏�2.

This finishes the proof of the claim.
From Claim 5 we conclude that after t = O

�
|Z|2✏�2

�
steps we end up with

a function h = ht that is (s, ✏)-indistinguishable from g, because the algorithm
terminated (and, clearly, has the complexity at most O

�
|Z|3✏�2

�
relative to

circuits of size s (including an overhead of O(|Z|) to compute D from D). To
finish the proof, we need to solve two issues

Claim 6 (From the signed measure to the probability measure). Let ht be the
output of the algorithm. Define the probability distribution

h(x, z) =
max(ht(x, z), 0)P
z0 max(ht(x, z0), 0)

for every x, z. Then ht(x, ·) and h(x, ·) are O(✏)-statistically close for every x.

To prove the claim, we note that
P

z0 max(ht(x, z0), 0) equals 1 + � where � =

NegativeMass(ht(x, ·). Thus we have |h(x, z) � ht(x, z)| 6 |ht(x, z)| · �
1+� . SinceP

z0 |ht(x, z0)| =
P

z0 max(ht(x, z0), 0) �
P

z0 min(ht(x, z0), 0) = 1 + 2�, we getP
|h(x, z)�ht(x, z)| = O(�) which is O(✏) by Claim 3 for � defined as in Claim 5.
Recall that we have constructed an approximating probability measure h for

the probability mass function g, which is not a sampler yet. However, we can fix
it by rejection sampling, as shown below.



Claim 7 (From the pmf to the sampler). There exists a (probabilistic) function
hsim : X ! Z which calls h(x, z) (defined as above) at most O(|Z| log(1/✏))
times and for every x the distribution of its output is ✏-close to h(x, ·).

The proof goes by a simple rejection sampling argument: we sample a point
z  Z at random and reject with probability h(x, z). The rejection probability
in one turn is 1

|Z|
. If we repeat the experiment |Z| log(1/✏)| then the probability

of rejection in every round is only ✏. On the other hand, conditioned on the
opposite event, we get the distribution identical to h(x, ·). So the distance is at
most ✏ as claimed. note that

The last two claims prove that the distribution of hsim(x) is (s,O(✏))-close
to ht

x = ht(x, ·), for every x. Since ht, as a function of x, z is (s, ✏)-close to g,
and g is the conditional distribution of Z|X, we obtain

X,hsim(X) ⇡s,O(✏) X,Z

and the complexity of the final sampler hsim(X) is O(|Z|5✏�2)

4 Time-success ratio under algebraic transformations

In Lemma 1 below we provide a quantitative analysis of how the time-success
ratio changes under concrete formulas in security reductions.

Lemma 1 (Time-success ratio for algebraic transformations). Let a, b, c
and A,B,C be positive constants. Suppose that P 0 is secure against adversaries
(s0, ✏0), whenever P is secure against adversaries (s, ✏), where

s0 = s · c✏C � b✏�B

✏0 = a✏A.
(10)

In addition, suppose that the following condition is satisfied

A 6 C + 1. (11)

Then the following is true: if P is 2k-secure, then P 0 is 2k
0
-secure (in the sense

of Definition 4) where

k0 =

⇢ A
B+C+1

k + A
B+C+1

(log c� log b)� log a, b > 1
A

C+1
k + A

C+1
log c� log a, b = 0

(12)

The proof is elementary though not immediate. It can be found in [Skó15].

Remark 5 (On the technical condition (11)). This condition is satisfied in almost
all applications, at in the reduction proof typically ✏0 cannot be better (meaning
higher exponent) than ✏. Thus, quite often we have A 6 1.
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A More on the flaw in [JP14]

In the original setting we have Z = {0, 1}�. In the proof of the claimed better
bound O

�
s · 23�✏�2

�
there is a mistake on page 18 (eprint version), when the

authors enforce a signed measure to be a probability measure by a mass shifting
argument. The number M defined there is in fact a function of x and is hard
to compute, whereas the original proof amuses that this is a constant indepen-
dent of x. During iterations of the boosting loop, this number is used to modify
distinguishers class step by step, which drastically blows up the complexity (ex-
ponentially in the number of steps, which is already polynomial in ✏). In the
min-max based proof giving the bound O

�
s · 23�✏�4

�
a fixable flaw is a missing

factor of 2� in the complexity (page 16 in the eprint version), which is because
what is constructed in the proof is only a probability mass function, not yet a
sampler [Pie15].

B Proof of Claim 2

We can rewrite Equation (6) as

�t =
1

�
E

x⇠X

"
t�1X

i=0

��
hi+1

x � hi
x

�
� ✓i+1

x

�
·
�
gx � hi

x

�
#

=
1

�
E

x⇠X

"
t�1X

i=0

�
hi+1

x � hi
x

�
·
�
gx � hi

x

�
�

t�1X

i=0

✓i+1

x ·
�
gx � hi

x

�
#

(13)



First, note that

t�1X

i=0

�
hi+1

x � hi
x

�
·
�
gx � hi

x

�
=

=
�
ht
x � h0

x

�
· gx �

t�1X

i=0

hi
x ·
�
hi+1

x � hi
x

�

=
�
ht
x � h0

x

�
· gx +

1

2

t�1X

i=0

�
hi+1

x � hi
x

�
·
�
hi+1

x � hi
x

�
+

� 1

2

t�1X

i=0

�
hi+1

x + hi
x

�
·
�
hi+1

x � hi
x

�

=
�
ht
x � h0

x

�
· gx +

1

2

t�1X

i=0

�
hi+1

x � hi
x

�2 � 1

2

⇣�
ht
x

�2 �
�
h0

x

�2⌘

(14)

As to the second term in Equation (13), we observe that

�
t�1X

i=0

✓i+1

x ·
�
gx � hi

x

�
= �

t�1X

i=0

✓i+1

x ·
�
gx � hi+1

x

�
�

t�1X

i=0

✓i+1

x ·
�
hi+1

x � hi
x

�
(15)

C Proof of Claim 3

Proof (Proof of Claim 3). We start by comparing the total negative mass in

the functions ht+1 = ht +D
t+1

+ ✓t+1 and ht. Suppose first that h̃t(x, z0) < 0
where z0 = zt

min
(x). Since

P
z 6=z0

h̃t+1 = 1 � h̃t+1(x, z0), there exists z1 such

that h̃t+1(x, z1) > 1�h̃t+1
(x,z0)

|Z|�1
> 0. Combining this with Equation (4) we obtain

ht+1(x, z1) = h̃t+1(x, z1) +
h̃t+1(x, z0)

|Z|� 1
> 1

|Z|� 1
(16)



These observations together with Equation (3) give us

X

z2Z

min
�
ht+1(x, z), 0

�
=
X

z2Z

min
⇣
h̃t+1(x, z) + ✓t+1(x, z), 0

⌘

=
X

z2Z\{z0,z1}

min

 
h̃t+1(x, z) +

h̃t+1(x, z0)

|Z|� 1
, 0

!

>
X

z2Z\{z0,z1}

min
⇣
h̃t+1(x, z), 0

⌘
+ (|Z|� 2) · h̃

t+1(x, z0)

|Z|� 1

=
X

z2Z

min
⇣
h̃t+1(x, z), 0

⌘
+ (|Z|� 2) · h̃

t+1(x, z0)

|Z|� 1
� h̃t+1(x, z1)

=
X

z2Z

min
⇣
h̃t+1(x, z), 0

⌘
+min

 
h̃t+1(x, z0)

|Z|� 1
, 0

!

(17)

where the inequality line follows from h̃t+1(x, z0) < 0 and Equation (16). But
by the definition of z0 = zt

min
(x) we have h̃t+1(x, z0) = minz h̃t+1(x, z). Since

this value is negative, we get

h̃t+1(x, z0) 6
1

|Z|� 1
·
X

z2Z

min
⇣
h̃t+1(x, z), 0

⌘
(18)

Combining Equation (17) and Equation (18) we obtain

�
X

z2Z

min
�
ht+1(x, z), 0

�
6 �

✓
1� 1

(|Z|� 1)2

◆X

z2Z

min
⇣
h̃t+1(x, z), 0

⌘
. (19)

Since |ht+1(x, z)� h̃t(x, z)| 6 � by Equation (3), we get the following recursion

�
X

z2Z

min
�
ht+1(x, z), 0

�
6 �

✓
1� 1

(|Z|� 1)2

◆X

z2Z

min
�
ht(x, z), 0

�
+ |Z|�

(20)

which can be rewritten as

NegativeMass
�
ht+1(x, ·)

�
<

✓
1� 1

|Z|2

◆
NegativeMass

�
ht(x, ·)

�
+ |Z|�. (21)

which is in addition trivially true if h̃t+1(x, z) > 0 for all z. Since we have
NegativeMass

�
h0(x, ·)

�
= 0, expanding this recursion till t = 0 gives an up-

per bound |Z|� ·
P

j6t+1

�
1� |Z|�2

�j
which is smaller than by |Z|3� by the

convergence of the geometric series. This finishes the proof of the first part.



To prove the second part, recall that by the definition of z0 we have h̃t+1(x, z0) =
minz h̃t+1(x, z). Suppose that h̃t+1(x, z0) < 0 (that is, there is a negative mass

in eht+1(x, ·)). Now, by the definition of ht+1, we get

max
z

��min(ht+1(x, z), 0)
�� = max

z 6=z0

��min(ht+1(x, z), 0)
��

= max
z 6=z0

�����min

 
eht+1(x, z) +

|eht+1(x, z0)|
|Z|� 1

, 0

!����� .

Suppose that eht+1(x, z) + |eht+1
(x,z0)|

|Z|�1
6 0 for some z. Then, by the definition of

z0, we also have

0 > eht+1(x, z) +
|eht+1(x, z0)|

|Z|� 1

> eht+1(x, z0) +
|eht+1(x, z0)|

|Z|� 1

= �
✓
1� 1

|Z|� 1

◆ ���eht+1(x, z0)
��� .

From this we conclude that for any z we have

min

 
eht+1(x, z) +

|eht+1(x, z0)|
|Z|� 1

, 0

!
> �

✓
1� 1

|Z|� 1

◆ ���eht+1(x, z0)
��� .

and thus

max
z 6=z0

�����min

 
eht+1(x, z) +

|eht+1(x, z0)|
|Z|� 1

, 0

!����� 6
✓
1� 1

|Z|� 1

◆ ���eht+1(x, z0)
���

which means that (still assuming that eht+1(x, z0) < 0)

max
z

��min(ht+1(x, z), 0)
�� 6

✓
1� 1

|Z|� 1

◆
max

z

���min
⇣
eht+1(x, z), 0

⌘��� .

Note that 0 > min
⇣
eht+1(x, z), 0

⌘
> min (ht(x, z), 0) � � by the definition of

ht+1 and eht+1. Then

max
z

��min(ht+1(x, z), 0)
�� 6

✓
1� 1

|Z|� 1

◆
max

z

��min(ht(x, z), 0)
��+ �.

Note that this inequality is true even if eht+1(x, z0) = 0, that is eht+1(x, z) > 0 for
all z as then ht+1(x, z) > 0 for all z. By expanding this recursion, and noticing
that min(h0(x, z), 0) = 0 for all x, z by definition, we get

max
z

��min(ht+1(x, z), 0)
�� 6 �

tX

j=0

✓
1� 1

|Z|� 1

◆j

< |Z|�.



D Proof of Claim 4

Proof. If ✓t+1(x, z) = 0 then there is nothing to prove. Suppose that ✓t+1(x, z) <
0. Let z0 = zt

min
(x). According to Equation (4) we have ✓t+1(x, z0) = �h̃t+1(x, z0)

and ✓t+1(x, z) = h̃t+1
(x,z0)

#Z�1
for z 6= z0. Therefore

✓t+1

x ·
⇣
gx � h̃t+1

x

⌘
= �h̃t+1(x, z0)

⇣
g(x, z0)� h̃t+1(x, z0)

⌘
+

+
X

z 6=z0

h̃t+1(x, z0)

|Z|� 1
·
⇣
g(x, z)� h̃t+1(x, z)

⌘

= �h̃t+1(x, z0)
⇣
g(x, z0)� h̃t+1(x, z0)

⌘

� h̃t+1(x, z0)

|Z|� 1

⇣
g(x, z0)� h̃t+1(x, z0)

⌘
(22)

and

�✓t+1

x · ✓t+1

x = �h̃t+1(x, z0) · h̃t+1(x, z0)

✓
1 +

1

|Z � 1|

◆
. (23)

Putting Equations (22) and (23) together we obtain

✓t+1

x ·
�
gx � ht+1

x

�
= ✓t+1

x ·
⇣
gx � h̃t+1

x

⌘
� ✓t+1

x · ✓t+1

x

= �
✓
1 +

1

|Z|� 1

◆
h̃t+1(x, z0) · g(x, z0)

which is positive because h̃t,r(x, z0) < 0 and g(x, z0) > 0. This proves Claim 4.





Non-Uniform Attacks Against Pseudoentropy?

Krzysztof Pietrzak??, Maciej Skorski? ? ?

IST Austria

Abstract De, Trevisan and Tulsiani [CRYPTO 2010] show that every
distribution over n-bit strings which has constant statistical distance to
uniform (e.g., the output of a pseudorandom generator mapping n�1 to
n bit strings), can be distinguished from the uniform distribution with
advantage ✏ by a circuit of size O(2n✏2).
We generalize this result, showing that a distribution which has less than
k bits of min-entropy, can be distinguished from any distribution with
k bits of �-smooth min-entropy with advantage ✏ by a circuit of size
O(2k✏2/�2). As a special case, this implies that any distribution with
support at most 2k (e.g., the output of a pseudoentropy generator map-
ping k to n bit strings) can be distinguished from any given distribution
with min-entropy k + 1 with advantage ✏ by a circuit of size O(2k✏2).
Our result thus shows that pseudoentropy distributions face basically the
same non-uniform attacks as pseudorandom distributions.

Keywords: pseudoentropy, non-uniform attacks

1 Introduction

De, Trevisan and Tulsiani [DTT10] show a non-uniform attack against any pseu-
dorandom generator (PRG) which maps {0, 1}n�1 ! {0, 1}n. For any ✏ � 2�n/2,
their attack achieves distinguishing advantage ✏ and can be realized by a circuit
of size O

�
2n✏2

�
. Their attack doesn’t even need the PRG to be e�ciently com-

putable.
In this work we consider a more general question, where we ask for attacks

distinguishing a distribution from any distribution with slightly higher min-
entropy. We generalize [DTT10], showing a non-uniform attack which, for any
✏, � > 0, distinguishes any distribution with < k bits of min-entropy from any
distribution with k bits of �-smooth min-entropy with advantage ✏, and where the
distinguisher is of size O(2k✏2/�2). As a corollary we recover the [DTT10] result,

showing that the output of any pseudoentropy generator {0, 1}k ! {0, 1}n can
be distinguished from any variable with min-entropy k + 1 with advantage ✏ by
circuits of size O(2k✏2).

? The full version is available at https://arxiv.org/abs/1704.08678
?? Supported by the European Research Council, ERC consolidator grant (682815 -

TOCNeT).
? ? ? Supported by the European Research Council, ERC consolidator grant (682815 -

TOCNeT).



– From a theoretical perspective, we prove where the separation between pseu-
doentropy and smooth min-entropy lies, by classifying how powerful com-
putationally bounded adversaries can be so they can still be fooled to “see”
more entropy than there really is.

– From a more practical perspective, our result shows that using pseudoen-
tropy instead of pseudorandomness (which for many applications is su�-
cient and allows for saving in entropy quantity [DPW14]), will not give im-
provements in terms of quality (i.e., the size and advantage of distinguishers
considered), at least not against generic non-uniform attacks.

1.1 Notation and Basic Definitions

Two variables X and Y are (s, ✏) indistinguishable, denoted X ⇠s,✏ Y , if for all
boolean circuits D of size |D|  s we have |Pr[D(X) = 1]� Pr[D(Y ) = 1]|  ✏.

The statistical distance of X and Y is d1(X;Y )
def
=
P

x |PX(x)� PY (x)| (where
PX(x)

def
= Pr[X = x]), the Euclidean distance of X and Y is d2(PX ;PY )

def
=pP

x(PX(x)� PY (x))2. A variable X has min-entropy k if it doesn’t take any
particular outcome with probability greater 2�k, it has �-smooth min-entropy
k [RW05], if it’s � close to some distribution with min-entropy k. X has k bits
of HILL pseudoentoentry of quality (s, ✏) if there exists a Y with min-entropy k
that is (s, ✏) indistinguishable from X, we use the following standard notation
for these notions

min-entropy: H1(X)
def
= � logmaxx (Pr[X = x]) .

smooth min-entropy: H�
1
(X)

def
= maxY,d1(X;Y )� H1(Y ) .

HILL pseudoentropy: HHILL

s,✏ (X)
def
= maxY,Y⇠(s,✏)X H1(Y ) .

1.2 Our Contribution

In this work give generic non-uniform attacks on pseudoentropy distributions.
A seemingly natural goal is to consider a distribution X with H1(X)  k bits
of min-entropy, strictly larger HHILL

s,✏ (X) � k + 1 bits of HILL entropy, and then
give an upper bound on s in terms of ✏. This does not work as there are X
where H1(X) ⌧ H

�
1
(X),1 and as by definition H

�
1
(X) = H

HILL

1,� (X), we can

have a large entropy gap H
HILL

1,� (X)�H1(X) even when considering unbounded
adversaries against HILL entropy. For this reason, in our main technical re-
sult Lemma 1 below, we must consider distributions with bounded smooth min-
entropy. This makes the statement of the lemma somewhat technical. In practice,
the distributions considered often have bounded support, for example because
they were generated from a short seed by a deterministic process (like a pseu-
dorandom generator). In this case we can drop the smoothness requirement as
stated in Theorem 1 below.

1 Consider an X which is basically uniform over {0, 1}n, but has mass � on one par-
ticular point, then log ��1 = H1(X) ⌧ H

�

1(X) = n.



Lemma 1 (Nonuniform attacks against pseudoentropy). Suppose that
X 2 {0, 1}n does not have k bits of �-smooth min-entropy, i.e., H�

1
(X) < k,

then for any ✏ we have

H
HILL

Õ(2k✏2��2),✏
(X) < k

where Õ(·) hides a factor linear in n.

Theorem 1. Let f : {0, 1}k ! {0, 1}n be a deterministic (not necessarily e�-
cient) function. Then we have

H
HILL

Õ(2k✏2),✏
(f(Uk))  k + 1.

more generally, for any X over {0, 1}n with support of size  2k

H
HILL

Õ(2k✏2),✏
(X)  k + 1.

Remark 1 (Concluding best attacks against PRGs). For the special case n = k+1
we recover the bound for pseudorandom generators from [DTT10].

Proof (Proof of Theorem 1). The theorem follows from Lemma 1 when � = 1/2;
consider any X with support of size  2k, then H

�
1
(X)  k + 1, as no matter

how we cut probability mass of 1 � � = 1/2 over 2k elements, one element will
have the weight at least 2�k�1.

1.3 Proof Outline

A Weaker Result as a Ball-Bins Problem We outline the proof of a some-
what weakened version of Theorem 1 in the language of balls and bins. For every
Y of min-entropy k0 = k+⌦(1) we want to distinguish Y from X = f(Uk). Sup-
pose for simplicity that Y is flat and f is injective, so that X is also flat. Our
strategy will be to hash the points randomly into two bins and take advantage
of the fact that the average maximum load is closer to 1

2
when we sample from

Y than when drawing from X. The reason is that Y has more balls, so by the
law of large numbers, we expect the load to be “more concentrated” around the
mean.

Think of throwing balls (inputs x) into two bins (labeled by �1 and 1). If
the balls come from the support of X, the expected maximum load (over two
bins) equals ⇡ 2k�1 +

p
2/⇡ · 2k/2. Similarly, if the balls come from the support

of Y , then maximum load is 2k
0
�1 +

p
2/⇡ · 2k0/2. In terms of the average load

(the load normalized by the total number of balls)

AverageMaxLoad(X) ⇡ 0.5 +
p
2/⇡ · 2�k/2 w.h.p. when drawing from X

AverageMaxLoad(Y ) ⇡ 0.5 +
p
2/⇡ · 2�k0/2 w.h.p. when drawing from Y

As k0 = k +⌦(1) we obtain (with good probability)

AverageMaxLoad(X)� AverageMaxLoad(Y ) = ⌦(2�k/2).



Letting D be one of these bins assignments we obtain a distinguisher with ad-
vantage ✏ = ⌦(2�k/2). To generate the assignments e�ciently we relax the as-
sumption about choosing bins and assume only that the choices of bins are
independent for any group of ` = 4 balls. The fourth moment method allows us
to keep su�ciently good probabilistic guarantees on the maximum load.

The General Case by Random Walk Techniques

A high-level outline and comparison to [DTT10] Below in Figure 1 we sketch
the flow of our argument.

X has no smooth-min entropy k

large bias between X and Y on only 2k elements

d2(X;Y ) = ⌦(2�
k
2 ) (Euclidean distance)

random attack advantage
✏ ⇡ d2(X;Y )

for any X,Y (Lemma 7)

a random distinguisheer D achieves ✏ = ⌦
⇣
2�

k
2

⌘

✏ = ⌦
⇣
T�

1
2 2�

k
2

⌘
for a random D restricted to one slice

✏ = T ·⌦
⇣
T�

1
2 2�

k
2

⌘
by composing advantages from all slices

(needs O(T ) advice)

arbitrary ✏ in size 2
k
2 ✏ (by manipulating T )

weak randomness for distinguishers and slices is enough
(4-wise independence works!)

domain partitioned randomly into T slices

for any fixed Y of min-entropy at least k

random walks moment inequalities
(see Sections 2.1 to 2.3)

Corollary 9

Corollaries 7 and 8

Corollary 6

Lemma 5 and Corollary 3

Lemma 6 and Corollary 4

Corollary 5

Figure 1: The map of our proof.

Our starting point is the proof from [DTT10]. They use the fact that a
random mapping D : {0, 1}n ! {�1, 1} likely distinguishes any two distributions

X and Y over {0, 1}n with advantage being the Euclidean distance d2(X;Y )
def
=pP

x(PX(x)� PY (x))2.
For any X and Y with constant statistical distance

P
x |PX(x) � PY (x)| =

⇥(1) (which is the case for the PRG setting where Y = Un andX = PRG(Un�1))
this yields a bound ⌦

�
2�

n
2

�
. This bound can be then amplified, at the cost of



extra advice, by partitioning the domain {0, 1}n and combining corresponding
advantages (advice basically encodes if there is a need for flipping the output).
Finally one can show that 4-wise independence provides enough randomness for
this argument, which makes sampling D e�cient. Our argument deviates from
this approach in two important aspects.

The first di↵erence is that in the pseudoentropy case we can improve the
advantage from ⌦

�
2�

n
2

�
, where n is the logarithm of the support of the variables

considered, to ⌦
⇣
2�

k
2

⌘
, where k is the min-entropy of the variable we want to

distinguish from. The reason is that being statistically far from any k-bit min-
entropy distributions implies a large bias on already 2k elements. This fact (see
Lemma 5 and Corollary 3, and also Figure 3) is a new characterization of smooth
min-entropy of independent interest.

The second subtlety arises when it comes to amplify the advantage over the
partition slices. For the pseudorandomness case it is enough to split the domain
in a deterministic way, for example by fixing prefixes of n-bit strings, in our
case this is not su�cient. For us a “good” partition must shatter the 2k-element
high-biased set, which can be arbitrary. Our solution is to use random partitions,
in fact, we show that using 4-universal hashing is su�cient. Generating base
distinguishers and partitions at the same time makes probability calculations
more involved.

Technical calculations are based on the fourth moment method, similarly as
in [DTT10]. The basic idea is that for settings where the second and fourth
moment are easy to compute (e.g. sums of independent symmetric random vari-
ables) we can obtain good upper and lower bounds on the first moment. In
the context of algorithmic applications these techniques are usually credited
to [Ber97]. Interestingly, exploiting natural relations to random walks, we show
that calculations immediately follow by adopting classical (almost one century
old) tools and results [MZ38,Khi24]. Our technical novelty is an application of
moment inequalities due to Marcinkiewicz-Zygmund and Paley-Zygmund, which
allow us to prove slightly more than just the existence of an attack. Namely we
generate it with constant success probability.

Advantage ⌦(2�k/2) Consider any X with �-smooth min-entropy smaller than
k. This requirement can be seen as a statement about the “shape” of the distri-
bution. Namely, the mass of X that is above the threshold 2�k equals at least
�, that is

X

x

max(PX(x)� 2�k, 0) > �.

For an illustration see Figure 2.
We construct our attack based on this observation. Define the advantage of a
function D for distributions X and Y as

Adv
D(X;Y ) =

�����
X

x

D(x)(PX(x)� PY (x))

�����



d1(PX ; 2�k
|⌅) > �

PY (x) 6 2�k

�

2�k

PX

PY

Figure 2: An intuition behind the attack. Random ±1-weights make the bias
equal to the `2-distance of PX and PY . This distance can be bounded in terms
of the `1 distance, which concentrates mass di↵erence � on less than 2k elements
(the region in gray).

(writing also Adv
D

S when the summation is restricted to a subset S). Consider a
random distinguisher D : {0, 1}n ! {�1, 1}. Random variables D(x) for di↵erent
x are independent, have zero-mean and second moment equal to 1. Therefore
the expected square of of the advantage, over the choice of D, equals

E
⇣

Adv
D(X;Y )

⌘2�
= E

�����
X

x

D(x)(PX(x)� PY (x))

�����

2

=
X

x

(PX(x)� PY (x))
2

Let S be the set of x such that PX(x) > 2�k. For any Y of min-entropy at least
k we obtain

X

x2S

(PX(x)� PY (x))
2 >

X

x2S

(PX(x)� 2�k)2

> |S|�1

 
X

x2S

�
PX(x)� 2�k

�
!2

> 2�k�2

where the first inequality follows because PY (x) 6 2�k < PX(x) for x 2 S,
the second inequality is by the standard inequality between the first and second
norm, and the third inequality follows because we showed that Pr[X 2 S] >
|S| · 2�k + � (illustrated in Figure 2) which also implies |S|�1 > 2�k.

By the previous formula on the expected squared advantage this means that

E
⇣

Adv
D(X;Y )

⌘2�
> 2�k�2

for at least one choice of D. This implies

Adv
D(X;Y ) > 2�

k
2 �.



A random D as defined would be of size exponential in n, but since we used
only the second moment in calculations, it su�ces to generate D(x) as pairwise
independent random variables. By assuming 4-wise independence – which can
be computed by O(n2) size circuits – we can prove slightly more, namely that
a constant fraction of generated D’s are good distinguishers. This property will
be important for the next step, where we amplify the advantage assuming larger
distinguishers.

Amplifying the advantage by slicing the domain Consider a random and equitable
partition {Si}Ti=1

of the set {0, 1}n. From the previous analysis we know that a
random distinguisher achieves advantage ✏ = d2(PX ;PY ) over the whole domain.
Note that (for any, not necessarily random partition {Si}i) we have

(d2(PX ;PY ))
2 =

TX

i=1

(d2(PX ;PY |Si))
2

where d2(PX ;PY |Si) is the restriction of the distance to the set Si (by restricting
the summation to Si). From a random partition we expect the mass di↵erence
between PX and PY to be distributed evenly among the partition slices (see
Figure 3(b)). Based on the last equation, we expect

d2(PX ;PY |Si) ⇡
d2(PX ;PY )p

T

to hold with high probability over {Si}i. In fact, if the mass di↵erence is not well

PX

PY

S1

S2

(a) An example of a “bad” partition.
Almost all advantage is captured by one
partition slice S1.

PX

PY

S1

S2

(b) An example of a “good“ partition.
The advantage is evenly distributed
among slices S1, S2.

Figure 3: Illustration of good and bad partitions.

balanced amongst the slices (in the extreme case, concentrated on one slice) our
argument will not o↵er any gain over the previous construction (see Figure 3(a)).



By applying the previous argument to individual slices, for every i we can

obtain an advantage Adv
D

Si
(X;Y ) = ⌦

⇣
(T�

1
2 2�

k
2 )�
⌘
when restricted to the set

Si (with high probability over the choice of D and {Si}i). Now if the sets Si are
e�ciently recognizable, we can combine them into a better distinguisher. Namely
for every i we chose a value �i 2 {�1, 1} such that D’s advantage (before taking
the absolute value) restricted to Si has sign �i, and set

D̂(x) = �iD(x), where i is such that x 2 Si,

then the advantage equals (with high probability over D and the Si’s)

Adv
D̂(X;Y ) =

TX

i=1

Adv
D

Si
(X;Y ) = ⌦

⇣
T

1
2 2�

k
2 �
⌘

We need to specify a 4-wise independent hash for D, another 4-wise independent
hash for deciding in which of the T slices an element lies, and T bits to encode
the �i’s. Thus for a given T the size of D̂ will be T + Õ(n). Using the above
equation, we then get a smooth tradeo↵ s = O(2k✏2��2) between the advantage
✏ and the circuit size s. This discussion shows that to complete the argument we
need the following two properties of the partition (a) the mass di↵erence between
PX and PY is (roughly) equidistributed among slices and (b) the membership
in partition slices can be e�ciently decided.

E�cient slicing using 4-wise independence To complete the argument, we as-
sume that T is a power of 2, and generate the slicing by using a 4-universal hash
function h : {0, 1}n ! {0, 1}log T . The i-th slice Si is defined as {x 2 {0, 1}n :
h(x) = i}. These assumptions are enough to prove that

EAdv
D̂

Si
(X;Y ) = ⌦

⇣
T�

1
2 d2(PX ;PY )

⌘
= ⌦

⇣
T�

1
2 2�

k
2 �
⌘
.

Interestingly, the expected advantage (left-hand side) cannot be computed di-
rectly. The trick here is to bound it in terms of the second and fourth moment.
The above inequality, coupled with bounds on second moments of the advantage

Adv
D̂

Si
(obtained directly), allows us to prove that

Pr

"
TX

i=1

Adv
D̂

Si
> ⌦(1) · T 1

2 2�
k
2 �

#
> ⌦(1).

This shows that there exists the claimed distinguisher D̂. In fact, a constant
fraction of generated (over the choice of D and {§i}i) distinguishers D̂’s works.

Random walks From a technical point of view, our method involves computing
higher moments of the advantages to obtain concentration and anti-concentration
results. The key observation is that the advantage written down as

Adv
D

Si
(X;Y ) =

�����
X

x

(PX(x)� PY (x))1Si(x)D(x)

�����



which can be then studied as a random walk

Adv
D

Si
(X;Y ) =

�����
X

x

⇠i,x

�����

with zero-mean increments ⇠i,x = (PX(x) � PY (x))1Si(x)D(x). The di↵erence
with respect to classical model is that the increments are only `-wise independent
(for ` = 4). However, the classical moment bounds still apply (see Sections 2.2
and 2.3 for more details).

2 Preliminaries

2.1 Interpolation Inequalities

Interpolation inequalities show how to bound the p-th moment of a random
variable if we know bounds on one smaller and one higher moment. The following
result is known also as log-convexity of Lp norms, and can be proved by the
Hölder Inequality

Lemma 2 (Moments interpolation). For any p1 < p < p2 and any bounded
random variable Z we have

kZkp 6 (kZkp1)
✓ (kZkp2)

1�✓

where ✓ is such that ✓
p1

+ 1�✓
p2

= 1

p , and for any r we define kZkr = (E |Z|r)
1
r .

Alternatively, we can lower bound a moment given two higher moments.
This is very useful when higher moments are easier to compute. In this work
will bound first moments from below when we know the second and the fourth
moment (which are easier to compute as they are even-order moments)

Corollary 1. For any bounded Z we have E |Z| > (E |Z|
2)

3
2

(E |Z|4)
1
2
.

2.2 Moments of random walks

For a random walk
P

x ⇠(x), where ⇠(x) are independent with zero-mean, we have

good control over the moments, namely E |
P

x ⇠(x)|
p = ⇥(1) · (

P
x Var(⇠(x)))

p
2

where constants depend on p. This result is due to Marcinkiewicz and Zygmund
[MZ38] who extended the former result of Khintchine [Khi24]. Below we notice
that for small moments p it su�ces to assume only p-wise independence (most
often used versions assume fully independence)

Lemma 3 (Strengthening of Marcinkiewicz-Zygmund’s Inequality for
p = 4). Suppose that {⇠(x)}x2X are 4-wise independent, with zero mean. Then



we have

1p
3

 
X

x2X

Var(⇠(x))

! 1
2

6E
�����
X

x2X

⇠(x)

����� 6
 
X

x2X

Var(⇠(x))

! 1
2

E
�����
X

x2X

⇠(x)

�����

2

=
X

x2X

Var(⇠(x))

 
X

x2X

Var(⇠(x))

!2

6E
�����
X

x2X

⇠(x)

�����

4

6 3

 
X

x2X

Var(⇠(x))

!2

The proof appears in Section 4.1.

2.3 Anticontentration bounds

Lemma 4 (Paley-Zygmund Inequality). For any positive random variable
Z and a parameter ✓ 2 (0, 1) we have

Pr [Z > ✓EZ] > (1� ✓)2
(EZ)2

EZ2
.

By applying Lemma 4 to the setting of Lemma 3, and choosing ✓ = 1
p
3
we obtain

Corollary 2 (Anticoncentration for walks with 4-wise independent in-
crements). Suppose that {⇠(x)}x2X are 4-wise independent with zero-mean,
then we have

Pr

2

4
�����
X

⇠(x)

����� >
1

3

 
X

Var(⇠(x))

! 1
2

3

5 >
1

17
.

where the summation is over x 2 X .

3 Proof of Lemma 1

Lemma 5 (Characterizing smooth min-entropy). For any random vari-
able X with values in a finite set X , any � and k we have the following equivalence

H�
1
(X) > k ()

X

x2X

max
�
PX(x)� 2�k, 0

�
6 �.

The proof appears in Section 4.2. We will work with the following equivalent
statement



Corollary 3 (No smooth min-entropy k implies bias w.r.t. distribu-
tions of min-entropy k over at most 2k elements). We have H

�
1
(X) < k

if and only if there exists a set S of at most 2k elements such that
X

x2S

|PX(x)� PY (x)| > �

for all Y of min-entropy at least k.

Proof (Proof of Corollary 3). The direction (= trivially follows by the defi-
nition of smooth min-entropy. Now assume H

�
1
(X) < k. Let S be the set of

all x such that PX(x) > 2�k, then |S| < 2k, and moreover by Lemma 5 we
have

P
x2S

�
PX(x)� 2�k

�
> �. In particular for any Y of min-entropy k (i.e.,

PY (x) 6 2�k for all x) X

x2S

(PX(x)� PY (x)) > �

Lemma 6 (Bias implies Euclidean distance). For any distributions PX , PY

on X and any subset S of X we have

 
X

x2S

(PX(x)� PY (x))
2

! 1
2

> |S|�1/2
X

x2S

|PX(x)� PY (x)| .

Proof. By the Jensen Inequality we have

|S|�1

 
X

x2S

(PX(x)� PY (x))
2

!
>

 
|S|�1

X

x2S

|PX(x)� PY (x)|
!2

which is equivalent to the statement.

Corollary 4 (No smooth min-entropy implies Euclidean distance to
min-entropy distributions). Suppose that H�

1
(X) < k. Then for any Y of

min-entropy at least k we have
�P

x |PX(x)� PY (x)|2
� 1

2 > 2�
k
2 �.

Proof (Proof of Corollary 4). It su�ces to combine Lemma 6 and Corollary 3.

By Corollary 2 we conclude that the advantage of a random distinguisher for
any two measures (in our case PX and PY ) equals the Euclidean distance.

Lemma 7 (The advantage of a random distinguisher equals the Eu-
clidean distance). Let {D(x)}x2{0,1}n be 4-wise independent as indexed by x
and such that D(x) outputs a random element from {�1, 1}. Then for any set S
we have

�����
X

x2S

D(x)(PX(x)� PY (x))

����� >
1

3
· d2(PX ;PY |S)

with probability 1

17
over the choice of D (the result actually holds for any measures

in place of PX , PY ).



For our case, that is the setting in Lemma 6, we obtain

Corollary 5 (A random attack achieves ⌦
�
2�k�

�
with significant prob-

ability). For X,Y as in Corollary 4, and D as in Lemma 7 we have AdvD(X;Y ) �
1

3
· 2� k

2 � w.p. 1

17
over D.

3.1 Partitioning the domain into T slices

Let h : {0, 1}n ! [1 . . . 2t], where t = dlog T e, be a 4-universal hash function.
Define Si = {x : h(x) = i}, �(x) = PX(x)� PY (x) and consider advantages on
slices Si

Adv
D

Si
(X;Y ) =

�����
X

x

�(x)D(x)1Si(x)

�����

The following corollary shows that on each of our T slices, we get the advan-
tage T�

1
2 2�

k
2 �. The proof appears in Section 4.3.

Corollary 6 ((Mixed) moments of slice advantages). For D, {Su}u as
above and every i, j

ED,{Su}u
Adv

D

Si
(X;Y ) > 3�

1
2T�

1
2 · d2 (PX ;PY )

ED,{Su}u

⇣
Adv

D

Si
(X;Y )AdvDSj

(X;Y )
⌘
6 T�1 · d2(PX ;PY )

2

(the statement is valid for arbitrary measures in place of PX , PY ).

Denote Z =
P

i Adv
D

Si
(X;Y ). Using Lemma 4 with ✓ = 1

p
3
where we compute

EZ2 and EZ according to Corollary 6 we obtain Pr
h
|Z| > 1

p
3
· E |Z|

i
> 1

17
.

Bounding once again E |Z| as in Corollary 6 we get

Corollary 7 (Total advantage on all parition slices). For X,Y as in
Corollary 4, D and Si defined above we have

Pr
D,{Su}u

"
TX

i=1

Adv
D

Si
(X;Y ) > 1

3
· T 1

2 2�
k
2 �

#
> 1

17
.

(for general X,Y the lower bound is ⌦(1) · T 1
2 · d2(PX ;PY )).

The corollary shows that the total absolute advantage over all partition slices, is
as expected. Since {Si}i is a partition we have

TX

i=1

Adv
D

Si
(X;Y ) =

TX

i=1

�����
X

x2Si

(PX(x)� PY (x))D(x)

����� =
X

x

(PX(x)� PY (x))D(x)�(x)

where for �i
def
= sgn

�P
x2Si

(PX(x0)� PY (x))D(x)
�
(the sign of the advantage

on the i-th slice) we define �(x) = �i where Si contains x. This shows that by



”flipping“ the distinguisher output on the slices we achieve the sum of individual
advantages. Since the bit �(x) can be computed with O(T ) + Õ(n) advice (the
complexity of the function i ! �i plus the complexity of finding i for a given x)
we obtain

Corollary 8 (Computing total advantage by one distinguisher). For
X,Y as in Corollary 4, D and {Si}i defined above there exists a modification

to D which in time Õ(n) and advice O(T ) achieves advantage 1

3
· T 1

2 2�
k
2 � with

probability 1

17
.

Finally by setting ✏ = T
1
2 2�

k
2 � and manipulating T we arrive at

Corollary 9 (Continue tradeo↵). For any ✏ there exists T such that the dis-
tinguisher in Corollary 8 has advantage ✏ and circuit complexity s = O

�
2k✏2��2

�
.

4 Omitted Proofs

4.1 Proof of Lemma 3 (Strengthening of Marcinkiewicz-Zygmund’s
Inequality for p = 4)

Let Z =
P

x ⇠(x). Since ⇠(x) are (in particular) 2-wise independent with zero
mean, we get

E
 
X

x

⇠(x)

!2

=
X

x,y

E (⇠(x)⇠(y)) =
X

x=y

E (⇠(x)⇠(y)) =
X

x

Var(⇠(x)).

(the summation taken over x, y 2 X ). The fourth moment is somewhat more
complicated

E
 
X

x

⇠(x)

!4

=
X

x1,x2,x3,x4

E (⇠(x1)⇠(x2)⇠(x3)⇠(x4))

=
X

x1=x2=x3=x4

E (⇠(x1)⇠(x2)⇠(x3)⇠(x4))+

+ 3
X

x1=x2 6=x3=x4

E (⇠(x1)⇠(x2)⇠(x3)⇠(x4))

=
X

x

E ⇠(x)4 + 3
X

x 6=y

E ⇠(x)2 E ⇠(y)2

= 3

 
X

x

E ⇠(x)2
!2

� 2
X

x

E ⇠(x)4

The second equality follows because whenever ⇠(x) occurs in an odd power, for
example x = x1 6= x2 = x3 = x4, the expectation is zero (this way one can
simplify and bound also higher moments, see [SSS93]). It remains to estimate



the first moment. By Corollary 1 and bounds on the second and fourth moment
we have just computed we obtain

1p
3
·
 
X

x2X

Var(⇠(x))

! 1
2

6 E
�����
X

x2X

⇠(x)

�����

and the upper bound follows by Jensen’s Inequality (with constant 1).

4.2 Proof of Lemma 5 (Characterizing smooth min-entropy)

Suppose that H�
1
(X) > k. then, by definition, there is Y such that H1(Y ) > k

and
P

x:PX(x)>PY (x) PX(x) � PY (x) 6 �. Since all the summands are positive

and since PY (x) 6 2�k, ignoring those x for which PY (x) < 2�k yields
X

x:PX(x)>2�k

PX(x)� PY (x) 6 �.

Again, since PY (x) 6 2�k we obtain
X

x:PX(x)>2�k

PX(x)� 2�k 6 �,

which finishes the proof of the ”=)“ part.
Assume now that �0 =
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and therefore we have
P

x2X
max

�
2�k � PX(x), 0

�
> �0. By this observation we

can construct a distribution Y by shifting �0 of the mass of PX from the set
S� = {x : PX(x) > 2�k} to the set {x : 2�k > PX(x)} in such a way that we
have PY (x) 6 2�k for all x. Thus H1(Y ) > k and since a �0 fraction of the mass
is shifted and redistributed we have d1(X;Y ) 6 �0. This finishes the proof of the
”(=“ part.

4.3 Proof of Corollary 6 ((Mixed) moments of slice advantages)

For shortness denote �(x) = PX(x)� PY (x) and Adv
D

Si
= Adv

D

Si
(X;Y ).

For any fixed i we apply Lemma 3 to the family fx = �(x)D(x)1Si(x) which
is 4-wise independent, zero-mean, and with the second moment T�1

P
x �(x)2.

We obtain

EAdv
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Si
> 3�
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X

x

�(x)2
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which is the first inequality claimed in the corollary. In turn, again by Lemma 3

E
⇣
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D

Si

⌘2
= T�1 ·

X

x

�(x)2.

Since this holds for any i, by Cauchy-Schwarz we get for any i, j

EAdv
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E
⇣
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⌘2
· E
⇣
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D
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6 T�1 ·

X

x
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which proves the second inequality in the corollary.
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Abstract. Metric entropy is a computational variant of entropy, often
used as a convenient substitute of HILL Entropy, slightly stronger and
standard notion for entropy in cryptographic applications. In this paper
we develop a general method to characterize metric-type computational
variants of entropy, in a way depending only on properties of a chosen
class of test functions (adversaries). As a consequence, we obtain a nice
and elegant geometric interpretation of metric entropy. We apply these
characterization to simplify and modularize proofs of some important re-
sults, in particular: (a) computational dense model theorem, (b) deriva-
tion of the improved version of Leftover Hash Lemma and (c) equivalence
between unpredictability entropy and HILL entropy for short strings.

1 Introduction

1.1 Computational Entropy

Entropy. Entropy, as a measure of uncertainty or randomness, is a fundamen-
tal notion in information-theory. The most known metric of entropy is Shannon
Entropy [Sha48]. For cryptographic applications such as extracting randomness,
it is more convenient to work with so called min-entropy, which gives an up-
per bound on the probability that computationally unbounded adversary can
guess a value sampled according to a given distribution. A slightly weaker but
also very useful, especially in the context of hashing, is the notion of collision
entropy which upperbounds the probability that two independent samples of a
given distribution collide.

Defining computational variants of entropy. Computational analogues
of entropy can be defined in di↵erent ways. In any case, we need to formalize
that a distribution has, from a computational point of view, the same of almost
the same properties like a distribution having “true” information-theoretic en-
tropy. This might be based on hardness of compressing-decompressing, hardness
of prediction or hardness of distinguishing. In this paper we follow the last ap-
proach, which is most widely used. A good survey of di↵erent entropy notions
and their properties can be found in [BSW03] and [Rey11]. We stress that, con-
trarily to the information-theoretic case, for computational entropy it’s not only
the amount of entropy that matters but also its quality is important.
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Computational Indistinguishability. Indistinguishability is a fundamental
concept in computational complexity and cryptography. For two distributions
X,Y taking values in the same space, a class D of [0, 1]-valued functions (refer-
eed to as the “attackers class”) and a parameter ✏ (refereed to as the “distin-
guishing advantage”), we say that X and Y are (D, ✏)-indistinguishable if for all
D 2 D we have |ED(X) � ED(Y )| 6 ✏. An attacker D can distinguish X and
Y if ED(X) � ED(Y ) > 0 or ED(X) � ED(Y ) < 0, and the far from 0 this
di↵erence is, the better “advantage” he achieves. Sometimes we want to define
indistinguishability between two sets X and Y of probability distributions. We
can formalize this by saying that no single adversary D can achieve bigger than
0 advantage for every pair (X,Y ) where X comes from X and Y comes from Y.
Since the expectation ED(X) can be thought as the scalar product of vectors
representing D and the distribution of X, the concept of indistinguishability is
exactly the same concept as the idea of separating hyperplanes.

Computational Entropy. Having formalized the concept of “computational
closeness”, one can define the “computational” entropy, called also pseudoen-
tropy, of a distribution X by one of the following ways:

(a) (stronger) X is computationally indistinguishable from a single distribu-
tion having required amount of information-theoretic entropy (min-entropy,
Shannon Entropy etc.)

(b) (weaker) is computationally indistinguishable from a set of all distributions
having required amount of information-theoretic entropy.

Both approaches turn out to be useful. Setting the underlying information-
theoretic entropy measure to be the min-entropy, for case (a) we obtain the
notion of HILL entropy [HILL99] which directly generalizes the notion of pseu-
dorandomness, whereas for case (b) we get the notion of the so called Metric
Entropy [BSW03]. Roughly speaking, with HILL entropy one generalizes most of
information-theoretic facts about entropy, into the computational setting. Met-
ric entropy is commonly thought as a less intuitive and understood notion than
HILL entropy. Quite surprisingly it has been proven to be technically more con-
venient in many problems. The typical approach is to work with metric entropy
and to convert it to HILL entropy (which is possible with some loss in qual-
ity [BSW03]). For example, the use of metric entropy simplifies and improves
the proof of the computational variant of the dense model theorem [FOR12],
applicable in leakage-resilient cryptography [DP08]. Notions of pseudoentropy
have found also important applications in general complexity theory, for exam-
ple in [VZ12] a HILL-like variant of Shannon entropy is used to simplify the
construction of a PRG from a one-way function. These two examples show also
that the notion of pseudoentropy is a key ingredient of important or even break-
through results and as such is worth of studying.

Worst Case Distributions. In problems which involve computational indis-
tinguishability it is often convenient to know the distributions which makes the
attacker’s advantage maximal. This distribution is typically subjected to some
entropy restrictions. In particular, one might ask the following question
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Given D and X, what is the best (minimal) attacker advantage |�D| =
|ED(X)�ED(Y )| over all distributions Y of entropy as least k?

An answer to this question yields a bound on how (computationaly) close is X
to the set of all distributions of entropy k. Such problems arises naturally where
one uses HILL and Metric entropy, see for instance [BSW03,CKLR11,VZ12].

1.2 Our Results

Summary of our contribution. As mentioned, the concept of characterizing
the “worst case” distribution which optimizes the attacker advantage is very com-
mon, thought not always explicitly stated [BSW03,CKLR11,FOR12,RTTV08].
In this paper we give a uniform treatment of this idea and use to obtain charac-
terizations for pseudoentropy and other interesting corollaries.

Characterizing Metric Pseudoentropy via Optimizing Attacker’s
Advantage. Using standard constrained optimization techniques, we develop
a general method to characterize metric-type pseudoentropy. A characterization
is based on explicitly calculating the distribution which minimizes the attacker’s
advantage, subject to entropy constraints. These characterizations could be used
in studying properties of variants of pseudoentropy based on entropy di↵erent
than min-entropy. In particular, they could be applied in studying the problem
of comparing the amount of metric pseudoentropy against deterministic and
randomized adversaries, or verifying the so called “chain rule”. We also unify
the definitions of metric and HILL entropy in a nice geometric way.

Applications: the power of pseudoentropy characterizations. Our
technique leads to interesting corollaries besides the basic properties of pseu-
doentropy. From the characterization of metric pseudo-entropy we immediately
obtain the computational Dense Model Theorem [RTTV08,DP08,FOR12] Ex-
tending our characterization into the conditional case when side information is
available to the attacker, we reprove equivalence between unpredictability and
indistinguishability based definition of pseudoentropy for short strings [VZ12].
Finally, from the characterization of collision-pseudoentropy we derive the im-
proved Leftover Hash Lemma [BDK+11]. Our results show that metric entropy
is a powerful tool which deserves the systematic study.

2 Preliminaries

Entropy notions. The min-entropy of a distribution X equals H1(X) =
� log(maxx Pr[X = x]). The collision entropy ofX isH2(X) = � log(

P
x Pr[X =

x]2). If there is side information Z, we define the average conditional min-entropy

[DORS08] of X given Z by eH1(X|Z) = � log(Ez Z maxx Pr[X = x|Z = z]).

Computational advantage. The advantage of an attacker D in distinugish-
ing random variables X and Y , which take values in the same space, is defined
to be �D(X;Y ) = ED(X)�ED(Y ).
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Computational Entropy. There is many ways to define computational ana-
logues of entropy. We follow the most popular approach, which is based on the
concept of computational indistinguishability.

Definition 1 (HILL Pseudoentropy [HILL99]). Let X be a distribution
with the following property: there exists Y of min-entropy at least k such that for
all circuits D of size at most s we have |�D(X;Y )| 6 ✏. Then we say that X has

k bits of HILL min-entropy of quality (s, ✏) and denote by HHILL,(s,✏)
1 (X) > k.

Remark 1 (HILL entropy against di↵erent circuits classes). It is known that
for HILL entropy all kind of circuits: deterministic boolean, deterministic real
valued and randomized boolean, are equivalent (for the same size s). That’s why
we can abbreviate the notation and omit declaring circuits type in Definition 1.

Definition 2 (Metric Pseudoentropy [BSW03]). Let X be a distribution
with the following property: for every deterministic boolean (respectively: deter-
ministic real valued or boolean randomized) circuit D of size at most s there exists
Y of min-entropy at least k such that |�D(X;Y )| 6 ✏. Then we say that X has
k bits of deterministic (respectively: deterministic real valued or boolean ran-

domized) metric min-entropy of quality (s, ✏) and denote by HM,det{0,1},(s,✏)
1 (X)

(respectively: HM,det[0,1],(s,✏)
1 (X) and HM,rand{0,1},(s,✏)

1 (X)).

Definitions of HILL and metric entropy for entropy notions di↵erent than min-
entropy, for instance collision entropy can be obtained by replacing min-entropy
with collision entropy in Definition 1 and Definition 2.

Remark 2 (Metric Entropy against di↵erent circuits class). For metric min-
entropy, it does not matter if the deterministic circuits are boolean or real val-
ued (see [Rey11] and the errata of [BSW03]). However, this is not true for the
conditional case and does not extend to other entropy notions.

Computational Entropy - Side information. Sometimes we assume that
information Z correlated to X might be available to an adversary.

Definition 3 (Conditional HILL Pseudoentropy [HLR07]). Let X,Z
be a joint distribution with the following property: there exists Y of average
conditional min-entropy at least k given Z such that for all circuits D of size at
most s we have |�D(X,Z;Y, Z)| 6 ✏. Then we say that X given Z has k bits of

HILL min-entropy of quality (s, ✏) and denote by HHILL,(s,✏)
1 (X|Z) > k.

Remark 3 (HILL entropy against di↵erent circuits classes). Similarly to Re-
mark 2, here all kinds of circuits: deterministic boolean, deterministic real valued
and randomized boolean, are equivalent (for the same size s).

Definition 4 (Conditional Metric Pseudoentropy [FOR12]). Let X,Z
be a joint distribution with the following property: for every deterministic boolean
(respectively: deterministic real valued or boolean randomized) circuit D of size
at most s there exists Y of average conditional min entropy at least k given Z
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such that |�D(X,Z;Y, Z)| 6 ✏. Then we say that X given Z has k bits of deter-
ministic (respectively: deterministic real valued or boolean randomized) metric

min-entropy of quality (s, ✏) and denote by HM,det{0,1},(s,✏)
1 (X|Z) (respectively:

HM,det[0,1],(s,✏)
1 (X|Z) and HM,rand{0,1},(s,✏)

1 (X|Z)).

There is a variant of conditional pseudoentropy where (X,Z) is required to be
computationally close to (Y, Z 0) but Z 0 is not necessarily the same as Z. This no-
tion is called the “relaxed” HILL entropy [Rey11] and denoted byHHILL�rlx,(s,✏) (X)
(for metric variants HM�rlx,det{0,1},(s,✏) (X) and HM�rlx,det[0,1],(s,✏) (X) ). Typ-
ically we want Z to be the same as Z 01 but this relaxed notion is also use-
ful [GW11, Rey11]. It satisfies the so called chain rule, a property desired in
leakage-resilient cryptography, which doesn’t hold for HILL entropy [KPW13].

Relations between HILL and Metric Pseudoentropy. For any “reason-
able” notion of (information-theoretic) entropy, metric and HILL variants are
equivalent up to some loss in quality parameters s, ✏.

Lemma 1 (HILL vs Metric Pseudoentropy, [BSW03]). Let H be an
entropy notion which is concave2. Then for any n-bit random variable X we
have

HHILL,(s0,✏0) (X) > HM,det[0,1],(s,✏) (X)

where � 2 (0, 1) is arbitrary, s0 = O
�
s · �2/n

�
and ✏0 = ✏ + �. The same is true

for conditional pseudoentropy and relaxed pseudoentropy, with s0 = O
⇣
s · �2

n+m

⌘

where m is the length of Z.

3 Characterizing Metric Pseudoentropy

In what follows we assume that H is a concave entropy notion (like min-entropy
or collision entropy), and that all distributions and distinguishers are over {0, 1}n.

3.1 Connections to separating hyperplanes

We start with the following simple observation, which gives a nice geometrical
formulation of the definition of pseudo-entropy. We say that the sets X and Y of
probability distributions are (D, ✏)-indistinguishable if there exists no adversary
D such that |ED(X) � ED(Y )| > ✏ for all X 2 X and all Y 2 Y. It is easy to
see that if X and Y are convex and if D is closed under complements (that is
D 2 D implies 1�D 2 D) then this is equivalent to

There is no D 2 D such that: ED(X)�ED(Y ) > ✏ for all X 2 X, Y 2 Y.
1 For instance, when Z represents information that adversary might have learned
2 That is, a convex combination of distributions with entropy at least k is a distribution
with entropy at least k. This assumption is fulfilled for most notions, for example
for all Renyi entropies which include min-entropy and collision entropy
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We can interpret the expectation ED(X) as the scalar product hD,PXi by
identifying D and distributions of X with the vectors in R2

n

. Hence we can
write the above condition as

There is no D 2 D such that: hD,PX �PY i > ✏ for all X 2 X, Y 2 Y,

which means that the distinguisher D is precisely a separating hyperplane. If D
is a circuit class, X = {X} and Y = {Y : H(Y ) > k} we obtain3

Corollary 1 (Alternative definitions of metric and HILL entropy). Let
X be an n-bit random variable and let H be a concave entropy notion. Then

(a) HHILL,(s,✏) (X) > k i↵ X is (D, ✏)-indistinguishable from some Y of entropy
H at least k, where D is the class of boolean circuits4 of size s with n-inputs.

(b) HM,det{0,1},(s,✏) (X) > k i↵ X is (D, ✏)-indistinguishable from the set of all
Y of entropy H at least k,

where D is the class of all deterministic boolean circuits of size s with n-inputs
(analogously for randomized and deterministic real valued circuits).

3.2 Reduction to constrained optimization

By the “geometric” view on pseudoentropy, given in Corollary 1, we obtain the
following characterization of pseudoentropy.

Lemma 2 (Characterization of metric pseudoentropy). Let X and H be
as in Corollary 1. Then HM,det{0,1},(s,✏) (X) > k, respectively HM,det[0,1],(s,✏) (X) >
k if and only if for every boolean (respectively real valued) deterministic circuit
D of size at most s we have

ED(X) 6 ED(Y ⇤) + ✏,

where Y ⇤ is optimal to the following optimization problem

maximize
Y

ED(Y )

s.t. H(Y ) > k
. (1)

This results is useful if we can solve the optimization problem in Equation (1).
In the next subsections we explain how to solve it in general and discuss the two
concrete and simple cases: min-entropy and collision entropy.

3 We can assume that the class circuits of size at most s is closed under complements
because every complement is of size at most s + 1. Formally we need to start with
size s0 = s+ 1 but we omit this negligible di↵erence

4 Randomized or deterministic- it makes no di↵erence
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3.3 Maximizing expectations under convex constraints

We can characterize optimal solutions of (1) in terms of Lagrange multipliers.
Due to convexity, the characterization is both: necessary and su�cient.

Lemma 3 (Maximizing expectation under convex constraints). Let D
be a real-valued vector in Rd and f be a di↵erentiable convex real-valued function
on Rd. Assume that a is a number such that minp f(p) < a where the minimum
is over all probability vectors, and consider the following optimization program

maximize
(pi)i

X

i

Dipi

s.t.

8
>>><

>>>:

f(p) 6 a

�pi 6 0
X

i

pi = 1

. (2)

Then a feasible point p = p⇤ is optimal to (2) if and only if there exist �1 >
0,�2 > 0 and �3i 2 R for i = 1, . . . ,m such that the following relations hold

Di = �1(rf(p⇤))i � �3i + �2 for i = 1, . . . ,m (3)

and the following complementary conditions are satisfied:

pi · �3i = 0

(f(p)� a) · �1 = 0
(4)

Proof. The Slater Constraint Qualification holds, by the assumption on a, and
we have strong duality. In other words, the first order Karush-Kuhn-Tucker
condition is su�cient and necessary [BV04]. The numbers �1,�2,�3i are exactly
KKT multipliers for the convex program in Equation (2), and Equation (3)
states that the gradient of the objective function is a combination of gradients
of constraints. The condition in Equation (4) means that we take only active
constraints into account. Finally, to the inequality constraints we assign non-
negative multipliers which explains the requirement �1 > 0 and �3i > 0. ut

Remark 4. If f is not di↵erentiable, we replace the gradient of f in optimality
conditions by the subdi↵erential of f , which always exists for a convex function.

3.4 Characterization of metric min entropy

For H = H1 we obtain from Lemma 3 the following simple characterization of
pseudoentropy based on min-entropy (see [BSW03] for a restricted variant). The
proof appears in Appendix A.

Theorem 1 (Characterization of metric min-entropy). Let X be an n-bit

r.v.. Then HM,det{0,1},(s,✏)
1 (X) > k, respectively HM,det[0,1],(s,✏)

1 (X) > k if and
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only if for every boolean (respectively real valued) deterministic circuit D of size
at most s with n inputs we have

ED(X) 6 ED(Y ⇤) + ✏,

where Y ⇤ is uniform over the set of 2k values of x which correspond to the biggest
values of D(x).

Extending Lemma 3 by additional constraints to cover the case of side informa-
tion, we obtain the characterization of conditional metric entropy, commeting in
Appendix B on its proof.

Theorem 2 (Characterization of conditional metric min-entropy). Let

X and Z be, respectively, n and m-bit random variables. Then HM,det{0,1},(s,✏)
1 (X) >

k (respectively HM,det[0,1],(s,✏)
1 (X) > k) i↵ for every boolean (respectively real

valued) deterministic circuit D of size at most s on {0, 1}n+m we have

ED(X,Z) 6 ED(Y ⇤, Z) + ✏,

for Y ⇤ such that Y ⇤|Z = z is uniform over the set {D(x, z) > t(z)} for every z,
where the thresholds t(z) satisfy the following two conditions

E
x Un

Emax(D(x, z)� t(z)) = const for all z

E
z Z

[1/# {x : D(x, z) > t(z)}] 6 2�k 6 E [1/# {x : D(x, z) > t(z)}] .

3.5 Characterization of metric collision entropy

The characterization of the worst-case collision entropy distribution is slightly
di↵erent. It is proportional to a distinguisher, after taking a threshold. The proof
appears in Appendix C.

Theorem 3 (Characterization of metric collision entropy).

Let X be an n-bit r.v. and k < n be integer. Then HM,det{0,1},(s,✏)
2

(X) > k,

respectively HM,det[0,1],(s,✏)
2

(X) > k if and only if for every boolean (respectively
real valued) deterministic circuit D of size at most s with n inputs, we have

ED(X) 6 ED(Y ⇤) + ✏,

where Y ⇤ is of colision entropy k such that � · PY ⇤(x) = max(D(x) � t, 0) for
some t 2 R and � > 0.

Remark 5. Note that t is a solution of ED0(U)2 = 2n�k
�
ED0(U)

�2
where

D0(x) = max(D(x) � t, 0) and � = 2n ED0(U). It follows that ED0(Y ⇤) =
2n�k ED0(U) = ED0(U) +

p
VarD0(U) ·

p
2n�k � 1.
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4 Applications

4.1 Computational Dense Model Theorem

We say that a distribution A is �-dense in B if we have Pr[A = x] 6 Pr[B =
x]/�. The Dense Model Theorem is the statement of the following form: if X
is (s, ✏)-indistinguishable from the uniform distribution R and X 0 is �-dense
in X, then there exists a distribution R0 which is �-dense in R and is (s0, ✏0)-
indistinguishable from X 0, where s0 and ✏0 depends as explicit functions on s
and ✏. In this sense, R is a dense “model” for X 0. The dense model theorem
was proved first by Tao and Ziegler [TZ08]. It’s e�cient versions5 have found
important applications in complexity theory and cryptography [RTTV08,DP08,
FOR12], see also [TTV09]. Below we recall a version with improved parameters,
stated in language of pseudoentropy and called the “leakage lemma”:

Theorem 4 (Leakage Lemma [DP08,FOR12]). Let X be an n-bit random

variable such that HHILL,(s,✏)
1 (X) > k and let Z be correlated with X. Then

we have HHILL,(s0,✏0)
1 (X|Z=z) > k0 where k0 = k � log(1/Pr[Z = z]), s0 =

O
�
s · �2/n

�
and ✏0 = ✏/Pr[Z = z] + �, for any � 2 (0, 1).

The lemma states that the amount of pseudoentropy due to leakage of t bits
of information decreases roughly by t, hence its name. The original proof was
simplified by the use of metric entropy [FOR12]. We show how it can be simplified
even further: just few lines using the basic facts about metric entropy!

Proof. If we can prove that

HM,det{0,1},(s,✏/Pr[Z=z]))
1

(X|Z=z) > HM,det{0,1},(s,✏)
1

(X)� log(1/Pr[Z = z])

then the result will follow by Lemma 1 and Remark 2. Note that by Theorem 1

for any X we have HM,det{0,1},(s,✏)
1 (X) > k if and only if ED(X) 6 |D|

2k
+ ✏ for

all boolean D of size at most s. From this we get

ED(X|Z=z) 6 ED(X)/Pr[Z = z] 6 |D|/2k Pr[Z = z] + ✏/Pr[Z = z]

for any D. Since the characterization is also su�cient, the results follows. ut

4.2 Equivalence of HILL Entropy and Unpredictability Entropy for
short strings

Unpredictability entropy. The notion of unpredictability entropy is based
on the (assumed) hardness of guessing X given auxiliary information Z. More
formally, we have HUnp,s(X|Z) > k if and only if no adversary of size at most s
can predict X given Z better than with probability 2�k. For Z independent of
X or of the relatively short length, this reduces to the min-entropy of X6.

5 With the loss at most poly(1/�) in s and ✏. In the original proof the loss is exp(1/�)
6 Provided that s > 2mn so that the adversary can hardcore his best guess.
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Seperation from HILL entropy. If f is a one-way function, U is the uniform
distribution and X = U,Z = f(U) then we see that X|Z has large amount of
unpredictability. It is also easy to see that X|Z has almost no HILL entropy.

Equivalence for short strings. On the positive side, using metric entropy
and the characterization in Theorem 2, we reprove the following result of Vadhan
and Zheng who established the equivalence when X is short7

Theorem 5 ( [VZ12]). Suppose that X and Z are, respectively, n and m-bit

random variables. Then HHILL,(s0,✏)
1 (X|Z) & HUnp,s(X|Z) with s0 = s

poly(2n,1/✏) .

The original proof is based on a result similar to Theorem 2 proved in a much
more complicated way. We note that this part is a trivial consequence of KKT
optimality conditions and also simplify the rest of the proof.

Proof (Sketch). We prove thatHM,det[0,1],(s0,✏)
1 (X|Z) < k impliesHUnp,s(X|Z) <

k. Suppose not, then we have ED(X,Z) � ED(Y, Z) > ✏ for all Y such that
eH1(X|Z) > k. Let Y ⇤ be the distribution which minimizes this expression,
that is which maximizes ED(Y, Z). Let t(z) be as in Theorem 2 and denote
D0(x, z) = max(D(x, z) � t(z), 0) and let � =

P
x D
0(x, z) (according to Theo-

rem 2 this sum does not depend on z). Consider the following predictor A:

On input z sample x according to the probability Pr[A(z) = x] = D0(x, z)/�

Note that Y ⇤|Z=z is uniform over the set {x : D0(x, z) > 0}. By Theorem 2 (the
su�ciency part) it follows that Y ⇤ is also maximal for D. For every z we have
ED0(Y ⇤|Z=z, z) = ED(Y ⇤|Z = z, z) � t(z). We have also ED0(X|Z=z, z) >
ED(X|Z=z, z)� t(z) by the definition of D0. This proves

ED0(X,Z)�ED0(Y, Z) > ✏ for all Y such that eH1(X|Z) > k.

It is easy to observe that

Pr
z Z

[A(Z) = X] =
ED0(X,Z)

�
> E

z 


ED0(Y |Z=z, z)P

x D
0(x, z)

�
> E

z Z
2�H1(Y ⇤

|Z=z)

which is at least 2�k. The circuit D0(x, z) is of complexity 2m · size(D), which is
too big. However, if the domain of x is small, we can approximate the numbers
t(z) given � from relations in Theorem 2 (and even �, from the second relation,
for the uniform setting). Indeed, knowing that Emax(D(U, z) � t(z)) = �, we
estimate Emax(D(U, z) � t) for fixed t and then find a “right” value t = t(z)
by the binary search. This way for every z we can approximate D0(·, z), and
hence the distribution Pr[A(z) = x], up to a maximal error � ⌧ 2�k and with
overwhelming probability 1 � exp(�poly(1/�)), using poly(1/�) samples of D.
On average over z we predict X with probability 2�k � � ⇡ 2�k. ut
7 Logarithmically in the security parameter
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4.3 Improved Leftover Hash Lemma for square-secure applications

In the key derivation problem we want to derive a secure m-bit key for some ap-
plication P from an imperfect source of randomness X. The generic approach is
to use a randomness extractor. However, as implied by the RT-bounds [RTS00],
the min-entropy in X needs to be at least m + 2 log(1/✏) if we want the de-
rived key to be ✏-secure. Fortunately, as shown by Barak et. al [BDK+11], for
many cryptographic applications, one can reduce this loss by half, that is to
L = log(1/✏). To this end, they introduce the class of square-secure applica-
tions, where the squared advantage, over the uniform choice of keys, of every
bounded attacker is small8. This class contains for example all unpredictabil-
ity applications, stateless chosen plaintext attack secure encryption and weak
pseudo-random functions. The reduction of entropy loss follows by combining
universal hashing with the following lemma

Lemma 4 ( [BDK+11]). For a function D : {0, 1}` ! [�1, 1] and X 2 {0, 1}`
of collision entropy k we have

ED(X) 6 ED(U`) +
p
VarD(U`) ·

p
2`�k � 1.

To see this, let WinA(r, h), for arbitrary attacker A 2 A, be the probability that
A breaks the key r given in addition9 h and let DA(r, h) = WinA(r, h)� 1

2
be its

advantage. Let X be any n-bit random variable of min-entropy m+log(1/✏). We
apply a randomly chosen universal hash function10 H from n to m bits. It is easy
to see thatH(X), H is a distribution with collision entropym+log |H|�log(1+✏).
From the lemma it follows now that

EDA(H(X), H) 6 EDA(U,H) +
p
VarDA(U,H) ·

p
✏

If we assume that maxh EDA(U, h) 6 ✏ (which means ✏-security against A with
the uniform key) and that maxh EDA(U, h)2 6 � with � = O (✏) (which means
�-square-security against A with the uniform key) then we achieve O(✏) security
for the extracted key, with entropy loss only log(1/✏).

An alternative proof. We show that Theorem 3 implies Lemma 4. Indeed,
set k = ` and ✏ = 0 in Theorem 3. Let Y ⇤ be the distribution of collision
entropy at least k = ` which maximizes ED(Y ), and let t, � and D0 be as in the
characterization. Denote S = {x : D(x) > t} and let D|S be the restriction of

D to the set S. Note that Y ⇤|S d
= Y ⇤ maximizes D|S and D|S(x) = D0|S(X)+ t

for every x 2 S. By Remark 5 we get

ED(X) 6 ED(Y ⇤) = ED|S(Y ⇤|S) = ED|S(US) +
p
VarDS(US) ·

q
|S|2�k � 1.

8 Which essentially means that the probability that an attacker break the key is con-
centrated over keys

9 For the uniformly chosen key this doesn’t help the adversary, at least in the nonuni-
form model

10 A family H functions from n to m bits is universal if Prh H[h(x) = h(x0)] = 2�m

for x 6= x0
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We show that one can replace S by the {0, 1}` on the right hand side. This will
follow by the following general lemma

Lemma 5. Let X be a random variable, c > 1 be a constant and S be an event
of probability P(S) > c�1. Then

E[X|S] +
p
Var[X|S] ·

p
cP(S)� 1 6 E[X] +

p
Var[X] ·

p
c� 1 (5)

The proof follows by a few algebraic manipulations and is omitted.

4.4 Some further applications

Lower bounds on square security. Using the characterization from Theo-
rem 3 one can derive some non-trivial lower bounds on square-security needed
for key derivation. We discuss this problem in a separate paper.
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A Proof of Theorem 1

Consider the maximization program in Lemma 2 for a given D and under the
min-entropy entropy. We identify functions and measures over n-bit strings with
vectors in Rd where d = 2n.

For the min-entropy case the objective is as in Equation (2) and the con-
straints are f(p) = maxi pi 6 2�k,

P
i pi = 1 where p represents a probability

vector. Since p is non-di↵erentiable but convex, we should use subgradients in
place of gradients in Lemma 3. But instead of using the convex optimization
machinery we give an elementary argument. It is well-known that a min-entropy
distribution is a convex combination of flat sources, and since the expectation is
linear we conclude that it is maximized on a flat source. Now clearly it makes
sense to associate this flat source with biggest values of D. Note that for non-
integer values of k this is till true except that “flat” source is actually uniform
on b2kc values and has one extra point with the “remainder” positive mass of
2�kb2kc.

This proves that the expectation of a given distinguisher D, under the min
entropy constraint, is maximized by a distribution Y ⇤ of the form as in Theo-
rem 1. The characterization claimed in the theorem follows now by Lemma 2.

B Proof of Theorem 2

We proceed as before, considering the maximization program in Lemma 2 but
under the average conditional min-entropy constraints. The characterization of
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the maximizing distribution Y ⇤ appears already, along with a detailed proof, in
the paper [SGP15] (Lemma 2 in the appendix11). It also essentially reproves a
result implict in [Zhe14]. By this characterization (also based on KKT multi-
pliers) the optimal Y ⇤|Z is such that for thresholds t(z) as in Theorem 2 we
put Y ⇤|Z = z to have zero mass when D(x, z) < t(z), make it uniform when
D(x, z) > t(z) and put the smaller (pointwise smaller than maxx Pr[Y ⇤ = x])
mass arbitrarily over the set D(x, z) = t(z). To guarantee we can have a distrib-
uton of conditional entropy k we need to satisfy

E
z Z

[1/# {x : D(x, z) > t(z)}] 6 2�k 6 E [1/# {x : D(x, z) > t(z)}] .

where the right-hand side reflects the freedom in choosing the distribution on
{x : D(x, z) = t(z)}.

This proves that the expectation of a given distinguisher D, under the con-
ditional min-entropy constraint, is maximized by a distribution Y ⇤ of the form
as in Theorem 2. The characterization claimed in the theorem follows now by
Lemma 2.

C Proof of Theorem 3

Consider the maximization program in Lemma 2 for a given D and under the
collision entropy. We identify functions and measures over n-bit strings with
vectors in Rd where d = 2n. For collision entropy the constraint f reads as
f(p) =

P
i p

2

i , and a = 2�k. The gradient of f at p equals 2p, and thus by
Lemma 3 the point p is optimal if and only if for all coordinates i we have

Di = 2�1 · pi � �3i + �2

where �3 is non-negative and �3ipi = 0. In case there are many maximas p we
can choose such that f(p) = a, that is the entropy is exactly k. Now we argue
that we can assume �1 6= 0. Indeed, otherwise we have Di = �2 whenever pi > 0,
so that D is constant on the support of p. The support S of p has at least 2k

elements because Jensen’s inequality |S|�1 = |S|�1
P

i2S p2i >
�
|S|�1

P
i2S pi

�2

implies |S| > 2k (this is true for each concave entropy notion). If this is the case
we can take p0 which is uniform over 2k elements and it is also the optimum
(the objective is still the value of D). We then have Di = 2�1 · p0i + �2 for i
in the support of p0 and some �1 > 0,�2 2 R (we can take �1 = 1 and choose
�2 accordingly). For the remaining values of i (outside the support of p0) the
value of Di cannot be bigger (as otherwise p0 and p wouldn’t be optimal) so that
finally we can write Di = 2�1 · p0i + �2 � �3i where �3i equals zero when p0i > 0
and is non-negative otherwise. We conclude that we can assume �1 6= 0.

We now rewrite the first-order condition as

2�1 · pi = Di � �2 + �3i

11 The paper is also a chapter of this thesis.
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If pi 6= 0 then we have �3i = 0 so that 2�1 · pi = Di � �2. If pi = 0 then
0 = 2�1 · pi = Di � �2 + �3i > Di � �2. Summing up, we can write

2�1 · pi = max (Di � �2, 0)

This proves that the expectation of a given distinguisher D, under the colision
entropy constraint, is maximized by a distribution Y ⇤ of the form as in Theo-
rem 3 (use pi as Y ⇤, set � := 2�1 > 0 and t = �2). The characterization claimed
in the theorem follows now by Lemma 2.
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