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Abstract

Counting lattice paths

Maciej Dziemiańczuk

A lattice path is a finite sequence of points p0, p1, . . . , pn in Z × Z, and a step of the

path is the difference between two of its consecutive points, i.e., pi−pi−1. In this thesis,

we consider lattice paths running between two fixed points and for which the set of

allowable steps contains the vertical step (0,−1) and some number (possibly infinite)

of non-vertical steps (1, k), with k ∈ Z. These paths generalize the well-studied simple

directed lattice paths which are composed of only non-vertical steps.

This thesis is divided into two parts. In the first part (Chapter 2), we show that certain

families of paths with vertical steps can be coded by weighted simple directed lattice

paths (without this vertical step). Several results for paths with vertical steps are

obtained and applied to three special families of paths connected with  Lukasiewicz,

Raney, and Dyck paths. The second part of the thesis (Chapter 3) is devoted to the

study of plane multitrees which are defined as weighted unlabeled rooted trees in which

the order of sons is significant. We show that there is a one-to-one correspondence

between plane multitrees and Raney lattice paths. This correspondence is the main tool

to derive several combinatorial and statistical properties of plane multitrees.

Keywords: lattice paths, plane trees, bijective combinatorics.

AMS MS Classification 2000: 05A15, 05A19, 05C30.
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Streszczenie

Zliczanie ścieżek kratowych

Maciej Dziemiańczuk

Ścieżka kratowa to skończony cia̧g punktów p0, p1, . . . , pn ze zbioru Z × Z, natomi-

ast segment ścieżki to różnica pi − pi−1 dwóch kolejnych punktów ścieżki. W tej

rozprawie badamy ścieżki pomiȩdzy dwoma ustalonymi punktami, dla których zbiór doz-

wolonych segmentów zawiera segment wertykalny (0,−1) oraz pewna̧ przeliczalna̧ liczbȩ

segmentów niewertykalnych (1, k), gdzie k ∈ Z. Ścieżki te uogólniaja̧ dobrze znane z

literatury tak zwane proste ścieżki skierowane (ang. simple directed lattice paths), które

sk ladaja̧ siȩ jedynie z segmentów niewertykalnych.

Niniejsza rozprawa podzielona jest na dwie czȩści. W pierwszej czȩści (Rozdzia l 2),

pokazujemy, że pewne rodziny ścieżek z segmentami wertykalnymi możemy kodować

za pomoca̧ ważonych prostych ścieżek skierowanych. Zaprezentowany zostanie szereg

rezultatów dla ogólnego przypadku, które zostana̧ nastȩpnie zastosowane dla trzech

szczególnych rodzin ścieżek zwia̧zanych ze ścieżkami  Lukasiewicza, Raneya i Dycka.

Druga czȩść rozprawy (Rozdzia l 3) poświȩcona jest badaniu pewnych w lasności mul-

tidrzew porza̧dkowych, które definiuje siȩ jako nieetykietowane ukorzenione drzewa,

w których dodatkowo ustala siȩ porza̧dek synów oraz krawȩdziom przypisuje liczby

naturalne. Zamiast zajmować siȩ bezpośrednio tymi strukturami, pokażemy bijekcjȩ

pomiȩdzy drzewami porza̧dkowymi a ścieżkami Raneya. Dziȩki tej bijekcji otrzymany

zostanie szereg kolejnych wynikow dla multidrzew.

S lowa kluczowe: ścieżki kratowe, drzewa porza̧dkowe, kombinatoryka bijektywna.

Klasyfikacja AMS MSC 2000: 05A15, 05A19, 05C30.
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Notation

Z The set of integers.

N The set of nonegative integers.

[n] The set {1, 2, . . . , n} for n ≥ 1, and [0] = ∅.

nm = n(n− 1) · · · (n−m+ 1) for m ∈ Z, and n0 = 1.

[xn]f(x) The coefficient of xn in the power series expansion of f(x).

Cn The nth Catalan number (p. 2).

V The vertical step (0,−1) (p. 5).

Sk The non-vertical step (1, k) for k ∈ Z (p. 5).

Uk The up step (1, k) for k ≥ 0 (p. 5).

Dk The down step (1,−k) for k ≥ 1 (p. 5).

Ω The set of all non-vertical steps {Sk : k ∈ Z} (p. 5).

Σ A set of steps.

Σ≥k = Σ ∩ {Sk, Sk+1, . . .} for any Σ and k ∈ Z (p. 5).

Λ A set of steps satisfying Λ ⊆ {V, SN , SN−1, . . .} and V,UN ∈ Λ.

Γ = (Λ \ {V }) ∪ {UN , UN−1, . . . , U0, D1} (p. 17).

λ The lattice path with zero steps (the empty path).

µ, π, γ Lattice paths.

f , g, ρ, κ Functions.

#Steps(S ∈ P) The number of occurrences of the step S in paths of P (p. 6).

#Steps(P) The number of all steps in paths of P (p. 6).

Πµ, Πµ(i) List of integer lattice points (p. 14 and p. 51).

ilπ(i), elπ(i) The initial and the ending levels of the ith step of π (p. 51).

ε(π) The function over up steps of the lattice path π (p. 63).
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viii Notation

PΣ(n,−m) The family of m-primary Σ-paths running from (0, 0) to (n,−m) (p. 6).

PΛ,m(x) The generating function of the numbers |PΛ(n,−m)| (p. 37).

FΣ(n,m) The family of free Σ-paths running from (0, 0) to (n,m) (p. 6).

FΛ(x, y) The generating function of the numbers |FΛ(n,m)| (p. 34).

WΛ
Γ (n,−m) The family of weighted m-primary Γ-paths (p. 18).

R(n) The family of Raney paths of length n (p. 7).

RN (n) The family of N -Raney paths of length n (p. 7).

R(m,n, d) The number of (m,n, d)-Raney sequences (p. 63).

T (n) The family of plane multitrees with n nodes (p. 7).

TN (n) The family of N -ary plane multitrees with n nodes (p. 8).

TN (n) The size of TN (n) (p. 8).

LN (n, k) The number of trees in TN (n) which have exactly k leaves (p. 66).

EN (n, k) The number of trees in TN (n) which have exactly k edges (p. 68).

GN (n, d) The number of trees in TN (n) whose root has outdegree d (p. 69).

MN (n, d) The number of nodes with outdegree d in all trees in TN (n) (p. 69).

B(N,n, d) = MN (n, d)/(nTN (n) (p. 71).

J(N,n) =
∑N

d=0 dMN (n, d)/(nTN (n)) (p. 72).

C(m, d, j) A set of certain compositions of the number j (p. 17).

HΛ(m, d, k) A set of certain pairs (p. 17).

wµ(i) The maximal weight of the ith step in a lattice path µ (p. 18).

sonsT (v) The list of sons of a node v in a plane multitree T (p. 50).

α(ψ) The number of additional edges in ψ (p. 61).



Chapter 1

Introduction

A lattice path (or simply a path) is a finite sequence of points p0, p1, . . . , pn in Z×Z. A

step of the path is the difference between two of its consecutive points, i.e., pi − pi−1,

for 1 ≤ i ≤ n. The lattice path can also be represented by the initial point p0 and the

sequence of its steps s1, s2, . . . , sn, which uniquely determine the remaining points of the

path. For instance, the path from Figure 1.1 is

(
(0, 0), (1, 3), (2, 1), (3, 1), (4, 0), (5,−1), (6, 1), (7, 1), (8, 0)

)
,

whose step representation is the initial point (0, 0) and the following sequence of steps:

(
(1, 3), (1,−2), (1, 0), (1,−1), (1,−1), (1, 2), (1, 0), (1,−1)

)
.

Figure 1.1: A lattice path running from (0, 0) to (8, 0).

The literature on lattice paths is very rich. Humphreys [23] refers to more than two

hundred crucial articles. Most of them are related to path enumeration problems and

relationships with other structures.

Some of the most well-known families of lattice paths are those that consist of two types

of steps: (1, 1) and (1,−1). These paths are called Dyck paths. In 1878, Whitworth [40]

used them to describe various combinatorial problems. In 1887, Bertrand [5] formulated

the famous ballot problem, which can be translated into a question about the number

of Dyck paths running from (0, 0) to (u+ d, u− d), where u > d, and that do not touch

1



2 1. Introduction

the x-axis except at the initial point. An example of such a path, for u = 6 and d = 4,

is given in Figure 1.2. André [1] solved this problem and showed that the number of

such paths is equal to(
u+ d

u

)
− 2

(
u+ d− 1

u

)
=

(
u+ d− 1

u

)
u− d
d

. (1.1)

Setting u = n + 1 and d = n in (1.1), we obtain the number of Dyck paths running

from (0, 0) to (2n, 0) and that never go below the x-axis. Their number is equal to the

Catalan number Cn given by

Cn =
1

n+ 1

(
2n

n

)
(n ≥ 0).

Figure 1.2: A Dyck path running from (0, 0) to (10, 2).

The sequence of consecutive Catalan numbers is denoted by A000108 in OEIS [32], and

it starts with the following numbers:

(Cn)n≥0 = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . .).

Simple generalizations of Dyck paths are Motzkin paths, which consist of three types of

steps: (1, 1), (1, 0), and (1,−1). The number of Motzkin paths running from (0, 0) to

(n, 0) that do not go below the x-axis is called the nth Motzkin number [12]. Motzkin

considered these numbers in terms of counting chords. Namely, the nth Motzkin number

is the number of ways of drawing at most n/2 non-intersecting chords between n fixed

points on a circle (see Figure 1.3). For n ≥ 1, this number is equal to

bn/2c∑
k=0

(
n

2k

)
Ck.

Figure 1.3: All the ways of drawing at most two non-intersecting chords between four
fixed points on a circle.

Donaghey and Shapiro [12] provided a representative selection of 14 situations wherein

Motzkin numbers occur in connection with other combinatorial structures such as Dyck

paths, sequences of parentheses, trees with loops, and bipartite graphs. For example,

they showed that the number of legal sequences of parentheses that contain exactly 2n



1. Introduction 3

symbols ( and ) in total and that do not contain a subsequence ((σ)), where σ is a legal

sequence of parentheses, is equal to the (n− 1)th Motzkin number. For example, there

are exactly 9 such legal sequences of 10 parentheses, i.e.,

()()()()(), (()())()(), ()(()())(), ()()(()()), (()()())(),

()(()()()), (()()()()), ((()())()), (()(()())).

 Lukasiewicz paths, named after the Polish logician Jan  Lukasiewicz (1878-1956), repre-

sent another generalization of Dyck paths. A  Lukasiewicz path is a lattice path in which

the set of allowable steps contains all steps of the form (1, k) for k ≥ −1. This structure

was studied by, among others, Viennot [38] and Stanley [33]. Using decompositions of

these paths and generating functions (see Flajolet and Sedgewick [19]), one can show

that the number of  Lukasiewicz paths running from (0, 0) to (n, 0) that do not go below

the x-axis is equal to the Catalan number Cn. These paths are useful in the analysis of

algorithms because of their close relationship with plane trees, which will be discussed

in Chapter 3 of this thesis.

The structure that generalizes all the above-mentioned paths is lattice paths that consist

of steps (1, k) for any k ∈ Z. They are called simple directed paths (see, e.g., Banderier

and Flajolet [2]). They are used as models in the analysis of algorithms and dynamic

data structures [27]. They are also used to describe the behavior of stack structures.

A unified approach to simple directed paths was developed by Banderier and Flajolet

[2]. They showed that the counting generating functions of such paths are algebraic

functions. They also described the asymptotic behavior of these numbers using the

method of singularity analysis.

Weighted (or colored) paths are used in several applications. Deutsch and Shapiro [11]

studied weighted Motzkin paths. Based on their paper, one can deduce that there is a

bijection between a family of certain weighted Motzkin paths and non-weighted Dyck

paths. They also established connections between weighted Motzkin paths, Schröder

paths, and other graph counting problems. Chen et al. [7, 39] studied weighted Motzkin

paths in the context of Riordan arrays and partitions of sets. They proved that there is

a bijection between a certain subfamily of weighted Motzkin paths running from (0, 0)

to (n, 0) and the set of noncrossing linked partitions of the set {1, 2, . . . , n + 1} for

n ≥ 0. They also showed that there is a bijection between weighted Motzkin paths and

non-weighted Schröder paths.

A generalization of weighted  Lukasiewicz paths was studied by Varvak [37]. She showed

that there are several one-to-one correspondences between appropriate weighted  Lukasiewicz

paths and multipermutations, partitions of sets, idempotent functions, and trees. The
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main tool that she used was a connection between weighted  Lukasiewicz paths and con-

tinued fractions (see also Flajolet [17]). Hennessy [22, Sec. 5.3] showed that there are

bijections between certain families of  Lukasiewicz, Schröder, and Motzkin paths.

Lattice paths are also used in the theory of formal languages [13, 18, 20, 28, 29]. Lattice

paths also appear in the theory of queues [6] and in methods of randomly generating

structured objects [4]. Finally, they are used in physics [36] and probability theory [35].

In Chapter 3, we use lattice paths to study the combinatorial and statistical properties of

plane multitrees. Plane trees are well-known structures in combinatorics [8, 9, 11, 25, 30].

There are several equivalent definitions of plane trees, but they are mostly defined as

unlabeled rooted trees in which the order of sons is significant. There is a bijection

between the family of all plane trees with n nodes and the set of  Lukasiewicz paths

running from (0, 0) to (n,−1) in which only the ending point lies below the x-axis (see

Flajolet and Sedgewick [19, Sec. I.5.1]). This bijection implies that the number of plane

trees with n nodes is equal to the Catalan number Cn−1. It is also well known that the

number of plane trees with n nodes and k leaves is equal to the Narayana number (see

Dershowitz and Zaks [8]) given by

1

n− 1

(
n− 1

k

)(
n− 1

k − 1

)
.

Dershowitz and Zaks [8] also showed that the expected number of leaves in a plane tree

with n nodes is n/2 and that the expected number of outcoming edges from the root in

this tree is 3(n− 1)/(n+ 1).

As we have already noted, plane trees are used in computer science due to their close

relationship with  Lukasiewicz codes and polish prefix notation (see, e.g., Sedgewick i

Flajolet [19, Sec. I.5.3]). Computer compilers use such trees as structures to parse

expressions (see Knuth [26, Sec. 2.3]). For instance, the graphical representation of

the expression (c1)((c2)(c3))((c4)(c5)) is the plane tree given on the left-hand side of

Figure 1.4. Let us now consider the case when c2 = c4 and c3 = c5. The expression

can be rewritten as (c1)((c2)(c3))2. To represent these exponents, we assign weights to

the edges of the plane tree. These weights are positive integers and can be drawn as

multiple edges; see the right-hand side of Figure 1.4.

The first mention of plane multitrees is credited to R. Bacher (see the description of the

sequence A002212 in OEIS [32]). He showed that the number of plane multitrees with

n edges is equal to
n∑
k=0

Ck

(
n− 1

k − 1

)
, (n ≥ 0),
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Figure 1.4: A plane tree and multitree with corresponding sequences of parentheses.

Let us present a few first members of the above sequence, from n = 0 to n = 10,

(1, 1, 3, 10, 36, 137, 543, 2219, 9285, 39587, 171369).

This sequence is denoted by A002212 in OEIS [32].

1.1 Definitions

Before we present the results of this dissertation, we introduce our notation. Throughout

the thesis, we will consider lattice paths that consist of steps:

• V = (0,−1) (vertical step),

• Sk = (1, k) for k ∈ Z (non-vertical step).

For convenience, we denote

• Uk = (1, k) for k ≥ 0 (up step),

• Dk = (1,−k) for k ≥ 1 (down step),

• Ω = {Sk : k ∈ Z},

• for any set of steps Σ and k ∈ Z, we write Σ≥k = Σ ∩ {Sk, Sk+1, . . .}.

Definition 1.1. Let Σ be a fixed subset of Ω ∪ {V }. A Σ-path π is a finite sequence of

points p0, p1, . . . , pn in Z× Z such that pi − pi−1 ∈ Σ for i ∈ {1, . . . , n}. For simplicity,

we will represent the path π by the word π1 π2 · · ·πn over the alphabet Σ, where πi =

pi−pi−1. The starting point of π is assumed to be p0 = (0, 0) or is given by the context.

We assume that there is one lattice path, denoted by λ, with no steps; this path will be

called the empty path. We identify an element S ∈ Σ with the Σ-path consisting of one

step S. For k ≥ 1, we will write Sk to denote k consecutive steps S ∈ Σ and S0 = λ.

The length of a path is the number of steps that it contains. For l ∈ Z, by level l we

mean the line y = l.

Example. Let Σ = {U4, U2, U1, U0, D1, V }. An example of a Σ-path running from (0, 0)

to (11,−1) is U4V U
2
1D1V U0V

2U2V
3U2D1U0U1V

2D1 whose graphical representation is

given in Figure 1.5.
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Figure 1.5: A 1-primary path running from (0, 0) to (11,−1).

Definition 1.2. An m-primary Σ-path is a Σ-path running from (0, 0) to some (n,−m),

with n ≥ 0 and m ≥ 0, whose all points, except the possibly last one, lie on or above

the horizontal axis. We call a path primary if it is an m-primary with m ≥ 1. We

will denote by PΣ(n,−m) the family of all m-primary Σ-paths running from (0, 0) to

(n,−m). Additionally, we assume that PΣ(0, 0) = {λ}, where λ is the empty path with

zero steps, and PΣ(0,−m) is the empty set for m ≥ 1.

Example. Let Σ = {U1, U0, D1, D2}. All 1-primary Σ-paths in PΣ(3,−1) are given in

Figure 1.6.

Figure 1.6: All 1-primary paths running from (0, 0) to (3,−1) whose steps belong to
the set {U1, U0, D1, D2}.

Definition 1.3. A free Σ-path is a Σ-path running from (0, 0) to some (n,−m) with

n ≥ 1, m ∈ Z. We will denote by FΣ(n,−m) the family of all free Σ-paths running from

(0, 0) to (n,−m).

Example. All free Σ-paths of FΣ(3,−1), where Σ = {U1, U0, D1, D2}, are given in

Figure 1.7.

Figure 1.7: All free paths running from (0, 0) to (3,−1) whose steps belong to the set
{U1, U0, D1, D2}.

Definition 1.4. Let S be a step in Σ. We denote by #Steps(S ∈ PΣ(n,−1)) the total

number of occurrences of the step S in all paths of PΣ(n,−1) and by #Steps(PΣ(n,−1))

the total number of steps in all paths of PΣ(n,−1).
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Definition 1.5. A Raney path of length n is an Ω-path running from (0, 1) to (n, 0),

n ≥ 1, in which only the ending point of the path lies below level 1. For N ≥ 0, an

N -Raney path of length n is a Raney path that does not contain steps Uk, with k > N .

Let R(n) (respectively RN (n)) denote the family of all Raney (respectively N -Raney)

paths of length n.

Remark. It is worth noting that there is a trivial bijection betweenR(n) and PΩ(n,−1).

The Raney paths start at (0, 1) instead of (0, 0) for reasons that will become clear in

Chapter 3.

Example. All 1-Raney paths of length 3 are given in Figure 1.8.

Figure 1.8: All 1-Raney paths of length 3.

Definition 1.6. A plane tree T is a pair (V,E), where V = {1, 2, . . . , n} is the set of

vertices for some n called the size of T , and E ⊂ V × V is a set of arcs satisfying the

following conditions:

(i) if (u, v) ∈ E, then u < v,

(ii) for every vertex v 6= 1, there is exactly one vertex u such that (u, v) ∈ E,

(iii) if {(u, v1), (u, v2)} ⊆ E, v1 < v2, and w is a descendant of v1, then w < v2.

For every v ∈ V , we denote by Tv the subtree of T rooted in v.

Remark. There are several equivalent definitions of plane trees in the literature. Kemp

[24] defined a plane tree as a rooted unlabeled tree that has been embedded in the plane

such that the relative order of the subtrees at each branch is part of its structure. Flajolet

and Sedgewick [19] defined a plane tree recursively as a root to which a (possibly empty)

sequence of trees is attached. These objects also appear in the literature as ordered trees

(see, e.g., Deutsch and Shapiro [11], Dershowitz and Zaks [8]), where the term ordered

refers to the order of sons. We shall show in Section 3.1 that our definition agrees with

these definitions.

Example. All plane trees with four nodes are given in Figure 1.9.

Definition 1.7. A plane multitree T = (V,E,w) is a plane tree (V,E) in which every

arc e in E is labeled by a positive integer w(e) called the weight of the arc. Let us denote

by T (n) the family of all plane multitrees with n nodes.
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Figure 1.9: All plane trees with four nodes. The root of each tree is on the top, and
the arcs are directed downward.

Throughout this dissertation, we will use an equivalent representation of a plane multi-

tree T = (V,E,w) as a rooted tree, in which

(i) the root is the node with label one,

(ii) every internal node has assigned the order of its sons from left to right based on

the natural order of labels of its sons,

(iii) the set of weighted arcs is represented by the multiset (E,w) (set with repetitions)

of arcs in the following manner. Every arc e = (u, v) weighted by a positive integer

w(e) is transformed into w(e) nonweighted arcs (u, v) called edges. Moreover, one

(the leftmost) of these edges will be called the main edge, and the remaining

w(e)− 1 edges will be called additional edges.

Example. A plane tree T = (V,E,w) with weighted arcs (left) and its corresponding

plane multitree with nonweighted edges (right) are given in Figure 1.10. In this case,

we have V = {1, 2, . . . , 9}, and the multiset (E,w) is

{(1, 2), (1, 2), (1, 6), (1, 7), (2, 3), (2, 3), (2, 3), (3, 4), (3, 5), (7, 8), (7, 9), (7, 9)}.

Figure 1.10: A plane tree with weighted arcs (left) and its corresponding plane mul-
titree with main edges drawn using solid lines and additional edges drawn using dashed

lines (right).

Definition 1.8. Suppose that v ∈ V . Let odeg(v) denote the total number of outgoing

edges from v to its children. We call odeg(v) the outdegree of v. In other words,

odeg(v) is the sum of weights of all arcs outgoing from v. A plane multitree, in which

odeg(v) ≤ N for all v ∈ V , will be called the N -ary plane multitree. For n ≥ 0, let

TN (n) denote the family of N -ary plane multitrees with n nodes, and let TN (n) denote

the size of this family.

Example. We have T2(4) = 14, and all trees of T2(4) are given in Figure 1.11.
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Figure 1.11: All 2-ary plane multitrees with four nodes.

1.2 Results of the thesis

Results of Chapter 2

Chapter 2 is devoted to the study of two families of primary and free Λ-paths, where Λ

is an arbitrary set of lattice steps satisfying Λ ⊆ {V, SN , SN−1, . . .} and SN , V ∈ Λ for

any fixed N ≥ 0. The results of this part originate from the paper [16].

In Section 2.2, we define a special family WΛ
Γ (n,−m) of weighted m-primary Γ-paths,

where

Γ = (Λ \ {V }) ∪ {UN , . . . , U0, D1}.

In Section 2.3, we show (Theorem 2.10) that there is a bijection between the family

PΛ(n,−m) of m-primary Λ-paths and WΛ
Γ (n,−m) for every m,n ≥ 0.

This implies that the additional vertical steps V in the paths of PΛ(n,−m) can be coded

using the weights of steps in paths without V . From the combinatorial point of view,

lattice paths in WΛ
Γ (n,−m) have a simpler structure than do the paths in PΛ(n,−m).

Recall that the paths of WΛ
Γ (n,−m) are simple directed paths, and note that they are

essentially one-dimensional objects. There are many results for simple directed paths

that have already been described in the literature. The classical work here is the paper

of Banderier and Flajolet [2]. Therefore, using the bijection mentioned above, we can

apply some of these results to Λ-paths. For instance, simple directed paths can be

easily decomposed into shorter subpaths, and this decomposition property provides a

straightforward method of calculating generating functions that count these paths.

In Section 2.4, we establish the following connections between 1-primary Λ-paths and

free Λ-paths. We prove (Theorem 2.17 and Theorem 2.18) that for n ≥ 1, we have

|PΛ(n,−1)| = 1

n

(∣∣FΛ(n,−1)
∣∣− ∣∣FΛ(n, 0)

∣∣)
=

1

n

Nn+1∑
j=0

(
n+ j − 1

j

)∣∣FΛ\{V }(n, j − 1)
∣∣.
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Further, we show (Theorem 2.19 and Theorem 2.20) that for n ≥ 1,

#Steps(V ∈ PΛ(n,−1)) = |FΛ(n, 0)|,

#Steps(Sk ∈ PΛ(n,−1)) = |FΛ(n− 1,−k − 1)|, (Sk ∈ Λ),

#Steps(PΛ(n,−1)) = |FΛ(n,−1)|.

In Section 2.5, we provide various results for Λ-paths. We show (Theorem 2.22) that

the numbers of free and 1-primary Λ-paths are given by the following formulas:

|FΛ(n,m)| = [xNn−m]
1

(1− x)n+1

( ∑
Sk∈Λ

xN−k
)n
, (n ≥ 1,m ∈ Z),

|PΛ(n,−1)| = 1

n
[xNn+1]

1

(1− x)n

( ∑
Sk∈Λ

xN−k
)n
, (n ≥ 1).

We also derive certain statistical properties of Λ-paths. Any Γ-path running from (0, 0)

to (n,m) has exactly n steps. The number of steps in a Λ-path running between the

same points is equal to or greater than n. We show (Corollary 2.23) that the expected

number of steps in a path of PΛ(n,−1) is equal to

n · |FΛ(n,−1)|
|FΛn,−1)| − |FΛ(n, 0)|

, (n ≥ 1).

In Section 2.6, we use the bijection from Section 2.3 to derive a functional equation for

the generating function PΛ,m(x) =
∑

n≥0 |PΛ(n,−m)|xn. We show (Theorem 2.27) that

PΛ,0(x) = 1 + δΛ,0xPΛ,0(x) + xPΛ,0(x)
N∑
k=1

k∑
d=1

|HΛ(0, d, k)|
∑
M

d∏
j=1

PΛ,mj (x),

PΛ,m(x) = δΛ,mx+ x
N∑
k=0

k+1∑
d=1

|HΛ(m, d, k)|
∑
M

d∏
j=1

PΛ,mj (x), (m ≥ 1),

for some constants δΛ,m and |PΛ(m, d, k)| depending on Λ (see Section 2.6).

In Sections 2.7 – 2.9, we consider three cases for the set of steps Λ. These examples are

connected with the well-known families of lattice paths from the literature. We apply to

them the general results from the previous sections and see that several of the examples

take on a simple form. Namely, for fixed N,K ≥ 0, we consider

1.  Lukasiewicz paths with the set of steps Γ1 = {UN , UN−1, . . . , U0, D1} and gen-

eralized  Lukasiewicz paths with vertical steps Λ1 = {V,UN , UN−1, . . . , U0, D1}
(Section 2.7),
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2. Raney paths with the set of steps Γ2 = {UN , UN−1, . . . , U0, D1, D2, . . .} and gen-

eralized Raney paths with vertical steps Λ2 = {V,UN , UN−1, . . . , U0, D1, D2, . . .}
(Section 2.8),

3. Paths with the set of steps Γ3 = {UN , . . . , U0, D1, DK} and generalized Dyck paths

with vertical steps Λ3 = {V,UN , DK} (Section 2.9),

In Section 2.7, we show (Theorem 2.30) that the functional equation for the generating

function PΛ1,m(x) that counts paths in PΛ1(n,−m) according to n is

PΛ1,0(x) = 1 + xPΛ1,0(x)
N∑
k=0

(1 + PΛ1,1(x))k,

PΛ1,1(x) = x

N+1∑
k=0

(1 + PΛ1,1(x))k.

We show (Theorem 2.34) that for m ∈ Z and n ≥ 1,

|FΛ1(n,m)| =
bNn−m
N+2

c∑
k=0

(−1)k
(
n

k

)(
(N + 2)(n− k)−m

2n

)
,

|PΛ1(n, 0)| = (−1)n +
n∑
j=1

bNj+1
N+2

c∑
k=0

(−1)k+n−j

j

(
j

k

)(
(N + 2)(j − k)

2j − 1

)
,

|PΛ1(n,−1)| = 1

n

bNn+1
N+2

c∑
k=0

(−1)k
(
n

k

)(
(N + 2)(n− k)

2n− 1

)
.

In Section 2.8, we show (Theorem 2.37) that

|FΛ2(n,m)| =
(

(N + 2)n−m
2n

)
, (n ≥ 0,m ∈ Z),

|PΛ2(n,−1)| = 1

n

(
(N + 2)n

2n− 1

)
, (n ≥ 1).

We show that the expected number of vertical steps in a path in PΛ2(n,−1) is equal to

(Nn+ 1)/2 and that the expected number of all steps in a path in PΛ2(n,−1) is equal

to ((N + 2)n+ 1)/2.

In Section 2.9, we show (Theorem 2.40) that for all m ∈ Z and n ≥ 1, we have

|FΛ3(n,−m)| =
bNn+m
N+K

c∑
k=0

(
n

k

)(
n(N + 1)− k(N +K) +m

n

)
,

|PΛ3(n,−1)| = 1

n

bNn+1
N+K

c∑
k=0

(
n

k

)(
n(N + 1)− k(N +K)

n− 1

)
.
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Results of Chapter 3

Chapter 3 is devoted to the study of the combinatorial and statistical properties of plane

multitrees. The results of this part originate from the paper [15]. The main tool that

will be used in Chapter 3 is a bijection between plane multitrees and Raney paths.

Namely, in Section 3.2, we show (Theorem 3.8) that for all N ≥ 0 and n ≥ 1, there

is a bijection between the family RN (n) of N -Raney paths of length n and the family

TN+1(n) of (N + 1)-ary plane multitrees with n nodes. From the combinatorial view of

point, Raney paths have a simpler structure than do plane multitrees. Therefore, the

obtained results for Raney paths will be translated to the corresponding properties of

plane multitrees.

In Section 3.3, we define a bijection between N -Raney paths of length n and the (N −
1, n, 1)-Raney sequences (Lemma 3.23). Using this bijection, we show (Theorem 3.24)

that the number TN (n) of N -ary plane multitrees with n nodes is equal to

TN (n) =
1

n

(
Nn

n− 1

)
, (N ≥ 1, n ≥ 1).

In Sections 3.4 – 3.7, we use the two above-mentioned bijections to obtain certain results

for plane multitrees. Namely, for the family TN (n) of all N -ary plane multitrees with n

nodes, we consider the following numbers:

1. LN (n, k) = number of such trees with exactly k leaves,

2. EN (n, k) = number of such trees with exactly k edges,

3. GN (n, d) = number of such trees in which the root has d outgoing edges, and

4. MN (n, d) = total number of nodes that have d outgoing edges in all such trees.

Let 0d = 0 for d > 0, and 00 = 1, we show that

LN (n, k) =
1

n

(
n

k

) n−k∑
s=0

(−1)s
(
n− k
s

)(
N(n− k − s)

n− 1

)
, (Th. 3.26)

EN (n, k) =
1

n

n−1∑
i=1

i∑
j=0

(−1)j
(
n

i

)(
i

j

)(
k − i

n− i− 1

)(
k − jN − 1

i− 1

)
, (Th. 3.28)

GN (n, d) =
N − 1 + d

(N − 1)(n− 1) + d

(
N(n− 1) + d− 2

n− 2

)
, (Th. 3.30)

MN (n, d) =

(
N(n− 1) + d− 1 + 0d

n− 2 + 0d

)
, (Th. 3.31)

In Section 3.7, we study the statistical properties of plane multitrees. We prove (Theo-

rem 3.34) that

lim
N→∞

lim
n→∞

MN (n, 0)

nTN (n)
= lim

n→∞
lim
N→∞

MN (n, 0)

nTN (n)
=

1

e
.



Chapter 2

Lattice paths with vertical steps

This chapter is devoted to the study of lattice paths consisting of non-vertical steps

Sk = (1, k) for k ∈ Z and vertical step V = (0,−1). We fix a nonnegative integer N and

take an arbitrary set of steps Λ satisfying Λ ⊆ {V, SN , SN−1, . . .} and SN , V ∈ Λ. In

Sections 2.1 – 2.2, we give some preliminary properties of primary paths in PΛ(n,−m)

and define the family WΛ
Γ (n,−m) of weighted m-primary Γ-paths. In Section 2.3, we

show that there is a bijection between PΛ(n,−m) and WΛ
Γ (n,−m) for every m,n ≥ 0.

In Section 2.4, we establish some connections between primary and free Λ-paths. In

Sections 2.5 – 2.6, we provide some results for Λ-paths. In Sections 2.7 – 2.9, we apply

the general results from the previous sections to three special families of lattice paths

that contain vertical steps.

2.1 Decomposition of primary paths

Let Σ be a set of steps satisfying Σ ⊆ {V, SN , SN−1, . . .} for any fixed N ≥ 0. Re-

call that an m-primary Σ-path is a lattice path running from (0, 0) to some fixed

(n,−m) with m,n ≥ 0 whose points, except the last one, lie on or above the x-axis.

We denote by PΣ(n,−m) the family of all m-primary Σ-paths running from (0, 0) to

(n,−m) (see Definition 1.2 on page 6). An example of a 1-primary Σ-path, where

Σ = {V,U6, U5, . . . , U0, D1, D2}, is given in Figure 2.1.

We assume that PΣ(0, 0) = {λ}, where λ is the empty path with zero steps, and

PΣ(0,−m) is the empty set for m ≥ 1. For n = 1, we have

PΣ(1,−m) =


{SkV k+m : Sk ∈ Σ≥−m} if m ∈ {0, 1} and V ∈ Σ,

{S−m} ∩ Σ if m ∈ {0, 1} and V 6∈ Σ,

{S−m} ∩ Σ if m ≥ 2.

13
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Figure 2.1: A 1-primary path µ running from (0, 0) to (7,−1). Lattice points given
by Πµ are depicted using open circles.

Let µ = µ1 · · ·µt be an m-primary Σ-path in PΣ(n,−m) such that m ≥ 0 and n ≥ 2.

Because µ has at least two non-vertical steps, the first step µ1 is Uh for certain h ≥
0. The path runs from (0, 0) to (m,−n); thus, it passes through the points (x1, h),

(x2, h− 1), . . . , (xh+t,−m) ∈ R× Z such that they are chosen to be the left-most ones,

i.e., xi = min{x : µ passes through (x, h− i+ 1)}. Note that x1 = 1, and some xi may

not be integers. Let us denote by Πµ the list of these points such that both coordinates

are integers arranged in order from left to right. For instance, all the points of Πµ for

the path µ given in Figure 2.1 are marked by open circles. In the following, we show

how Πµ determines the decomposition of µ.

Figure 2.2: The decomposition of an m-primary path µ with m ≥ 1. All points in
Πµ are marked by open circles.

First, suppose that m ≥ 1 and Πµ = (p1, p2, . . . , pr). Note that pr is the ending point

of µ. Cutting µ at points in Πµ, we obtain µ = Uh α
(1) α(2) · · ·α(r−1) where α(i) is the

subpath of µ between points pi and pi+1 for 1 ≤ i ≤ r− 1. Moreover, each α(i) is either

the vertical step V or a path that contains at least one non-vertical step. Suppose that

exactly d of α(1), . . . , α(r−1) are not vertical steps and denote them by µ(1), . . . , µ(d).

Observe that for 1 ≤ i ≤ d, the ending point of µ(i) is the first point that lies below the

initial one. It follows that µ(i) is an mi-primary Σ-path in PΣ(ni,−mi), where mi is the

difference between the y-coordinates of the initial and the ending points of µ(i), and ni

is the number of non-vertical steps in µ(i). Note that mi ≥ 1 and ni ≥ 1. Observe that

µ(i) may contain vertical steps if V ∈ Σ, however, it starts with non-vertical step.
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Hence, µ can be rewritten as

µ = UhV
c1 µ(1) V c2 µ(2) · · ·V cd µ(d) V cd+1 . (2.1)

where 1 ≤ d ≤ h+ 1, and for 1 ≤ i ≤ d, we have µi ∈ PΣ(ni,−mi) with mi, ni ≥ 1, and

c1, c2, . . . , cd+1 ≥ 0 (see Figure 2.2 for d = 3). Moreover, because the entire path µ is an

m-primary path and only the ending point of µ lies below the x-axis, we conclude that

the last subpath µ(d) is an md-primary path with md ≥ m. It follows also that if m ≥ 2,

then the last step of µ is a down step and cd+1 = 0.

Example. Let µ be the path given in Figure 2.3. This path is decomposable as µ =

U3V µ
(1)V µ(2), where µ(1) = U2U0D1V U1D2, µ(2) = U2D3.

Figure 2.3: A 1-primary Σ-path running from (0, 0) to (8,−1). Lattice points deter-
mining the decomposition of the path are drawn using open circles.

Figure 2.4: The decomposition of a 0-primary path π. Points of Ππ are marked by
open circles.

Next, suppose that m = 0 and Πµ = (p1, p2, . . . , pr). Note that pr may not be the ending

point of µ. In fact, pr is the first point after the first step of µ in which µ touches the

x-axis (see Figure 2.4). Let us denote by γ the subpath of µ between pr and the ending

point of µ. An analysis similar to that in the case m ≥ 1 shows that cutting µ at the

points p1, p2, . . . , pr in Πµ, we obtain

µ = UhV
c1 µ(1) V c2 µ(2) · · ·V cd µ(d) V cd+1 γ, (2.2)

for certain d such that 0 ≤ d ≤ h, and for 1 ≤ i ≤ d, we have µ(i) ∈ PΣ(ni,−mi) with

mi, ni ≥ 1, we have γ ∈ PΣ(nd+1, 0) with nd+1 ≥ 0, and c1, . . . , cd+1 ≥ 0 (see Figure 2.4

for d = 2).

Definition 2.1. Let µ ∈ PΣ(n,−m). If n ≥ 2, then the first step of µ is Uh for certain

h ≥ 0 and µ is decomposable as in (2.1) (for m ≥ 1) or in (2.2) (for m = 0). The shape
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of the path µ is the triple (m, d, k), where k = h− c1− c2− · · · − cd+1. Additionally, for

n = 1 and m ∈ {0, 1}, we define the shape of UhV
h+m ∈ PΣ(1,−m) to be (m, 0, 0).

Example. Let µ be the path given in Figure 2.5. The path is decomposable as µ =

U3µ
(1)V µ(2)γ, where µ(1) = D1, µ(2) = U1U0D1V , and γ = U0U2D1D1. The shape of µ

is (0, 2, 2). The shape of the path given in Figure 2.3 is (1, 2, 1).

Figure 2.5: A 0-primary Σ-path running from (0, 0) to (9, 0). Lattice points which
determine the decomposition of the path are drawn using open circles.

Note that if the set of steps Σ does not contain the vertical step V , then the decompo-

sition of an m-primary Σ-path µ, with m ≥ 1, is given by

µ = Uk µ
(1)µ(2) · · ·µ(d), (2.3)

where each µ(i) is in PΣ(ni,−mi) for certain mi, ni ≥ 1 (see Figure 2.6 for d = 3). If

m = 0, then the decomposition of a 0-primary Σ-path µ is given by

µ = Uk µ
(1)µ(2) · · ·µ(d)γ, (2.4)

where each µ(i) is in PΣ(ni,−mi) for certain mi, ni ≥ 1, and γ ∈ PΣ(nd+1, 0) with

nd+1 ≥ 0. It is worth noting that if µ(i) has at least two non-vertical steps, then it is

again decomposable into shorter subpaths.

Figure 2.6: A 1-primary Σ-path running from (0, 0) to (10,−1) that does not contain
vertical steps. Lattice points that determine the decomposition of the path are drawn

using open circles.

Lemma 2.2. Let µ = µ1µ2 · · ·µt ∈ PΣ(n,−m), with m ≥ 0 and n ≥ 1. Suppose that

µi = Uh, with h ≥ 0, and µi connects two lattice points (j, l) and (j + 1, l+ h) for some

j and l such that 0 ≤ j ≤ n− 1 and l ≥ 0.

(i) If m > 0 or l 6= 0, then µi uniquely determines the nonempty p-primary Σ-subpath

of µ in which µi is the first step and p ≥ 1.

(ii) If m = 0 and l = 0, then µi uniquely determines the shortest nonempty 0-primary

Σ-subpath of µ in which µi is the first step.
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Proof. (i) Recall that µ is the path running from (0, 0) to (n,−m). It follows that there

is at least one point (x, y) ∈ Z× Z in µ such that x > j and y < l. Suppose that (x, y)

is the first such point with the minimal first coordinate (see Figure 2.7). Assume that

µ′ = µiµi+1 · · ·µi+r is the subpath of µ running from (j, l) to (x, y). Because the ending

point of µ′ is the first point that lies below the initial point, we conclude that µ′ is the

only p-primary subpath, with p ≥ 1, in which µi is the first step.

Figure 2.7: An up step in an m-primary path with m ≥ 1.

(ii) If m = 0 and l = 0, then there is at least one point (x, 0) in µ such that x >

j. Suppose that (x, 0) is the first such point with the minimal first coordinate (see

Figure 2.8). Assume that µ′ = µiµi+1 · · ·µi+r is the subpath of µ running from (j, l) to

(x, 0). Because the initial and ending points of µ′ are the only two points that lie on

the x-axis and because there are no points below the x-axis, we conclude that µ′ is the

shortest 0-primary subpath in which µi is the first step.

Figure 2.8: An up step in a 0-primary path that starts at the x-axis.

2.2 Weighted primary paths

Recall that Λ ⊆ {V, SN , SN−1, . . .} such that SN , V ∈ Λ for fixed N ≥ 0. We set

Γ = (Λ \ {V }) ∪ {UN , UN−1, . . . , U0, D1}. (2.5)

Note that even though the set Λ does not contain all up steps between U0 and UN , the

set Γ does. Recall that Λ≥k denotes the set {Sh ∈ Λ : h ≥ k} for k ∈ Z.

Definition 2.3. For m, d ≥ 0 and 0 ≤ k ≤ N , let

HΛ(m, d, k) =
{

(h, c) : Uh ∈ Λ≥k, c ∈ C(m, d, h− k)
}
,
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where C(m, d, j) is the set of compositions of the number j into d + 1 parts defined as

follows:

C(m, d, j) =
{

(c1, c2 . . . , cd+1) :
d+1∑
i=1

ci = j, ci ≥ 0, and cd+1 = 0 if m ≥ 2
}
.

Definition 2.4. Let n ≥ 1, m ≥ 0, and µ = µ1 µ2 · · ·µn ∈ PΓ(n,−m). Let wµ be the

function wµ : {1, 2, . . . , n} → Z defined as follows. For every i ∈ {1, . . . , n},
if µi = Dp, then we set

wµ(i) =

{
|Λ≥−1| if p = 1,

1 if p ≥ 2,
(2.6)

if µi = Uh, then we set

wµ(i) = |HΛ(p, d, k)|, (2.7)

where (p, d, k) is the shape of the shortest 0-primary subpath of µ ∈ PΓ(n, 0) in which

µi is the first step if µi starts at the x-axis and m = 0 (see Lemma 2.2 (ii)); otherwise,

(p, d, k) is the shape of the unique primary subpath of µ in which µi is the first step (see

Lemma 2.2 (i)). We call wµ(i) the maximal weight of µi. The weight of µ, denoted by

w(µ), is the product wµ(1)wµ(2) · · ·wµ(n).

Definition 2.5. A weighted m-primary Γ-path is a pair (µ, v) such that

(i) µ is an m-primary Γ-path in PΓ(n,−m), with m ≥ 0 and n ≥ 1, and

(ii) v is a sequence of integers v1, . . . , vn such that 1 ≤ vi ≤ wµ(i) for i ∈ {1, . . . , n}.

For m ≥ 0 and n ≥ 1, let WΛ
Γ (n,−m) denote the set of all weighted m-primary Γ-paths

in PΓ(n,−m). We assume that WΛ
Γ (0, 0) = {λ}, and WΛ

Γ (0,−m) = ∅ for m ≥ 1.

For all m ≥ 0 and n ≥ 1, we have

|WΛ
Γ (n,−m)| =

∑
µ∈PΓ(n,−m)

w(µ).

Remark. Note that if we look at the value of wµ(i) as the number of ways to color

the ith step of µ, we see that w(µ) is the number of ways to color the entire path

µ ∈ PΓ(n,−m) according to the weight function w.

Proposition 2.6. For all m, d ≥ 0 and 0 ≤ k ≤ N , we have

|HΛ(m, d, k)| =
∑

Uh∈Λ≥k

(
h− k + d− εm

h− k

)
, (2.8)
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where εm = 0 if m ∈ {0, 1} and εm = 1 if m ≥ 2.

Proof. Recall that N is the maximal integer h such that Uh ∈ Λ. Let us partition the set

HΛ(m, d, k) into pairwise disjoint classes Ak, Ak+1, . . . , AN such that Ah contains such

pairs whose first element is h. If Uh /∈ Λ≥k, then Ah is empty. If Uh ∈ Λ≥k, then the

size of Ah is the number of compositions of h− k into d+ 1 parts for m ∈ {0, 1} or into

d parts for m ≥ 2. In both cases, zero parts are allowed. Therefore, |Ah| =
(
h−k+d−εm

h−k
)
,

and the results follow.

Corollary 2.7. If {UN , UN−1, . . . , U0} ⊂ Λ, then for all d ≥ 0 and 0 ≤ k ≤ N , we have

|HΛ(m, d, k)| =

{ (
N−k+d+1

d+1

)
if m ∈ {0, 1},(

N−k+d
d

)
if m ≥ 2.

(2.9)

Proof. Let us consider the size of HΛ(m, d, k) for m ∈ {0, 1}. By Proposition 2.6 and

using the properties of the binomial coefficients, we obtain

∑
Uh∈Λ≥k

(
h− k + d− 0

h− k

)
=

N∑
h=k

(
h− k + d

h− k

)
=

(
N + d− k + 1

d+ 1

)
.

We show the second formula in the same manner.

Example. Let Λ = {U2, U1, U0, D1, V } and Γ = Λ \ {V }. Let (µ, v) ∈ WΛ
Γ (8,−1) such

that µ = U2D1U1U0D1D1U0D1 and v = (v1, . . . , v8). Let us calculate the range of each

vi. We have four down steps D1, i.e., µ2, µ5, µ6, µ8, and four up steps µ1, µ3, µ4, µ7. If

µi = D1, then 1 ≤ vi ≤ |Λ≥−1| = 4. If µi is an up step, then we calculate the shortest

primary subpath in which µi is the first step (see Lemma 2.2). Having the shape of this

subpath, we apply Proposition 2.6 to obtain the maximal value for vi. We have

1 ≤ v1 ≤ |HΛ(1, 3, 2)| = 1, 1 ≤ v3 ≤ |HΛ(1, 2, 1)| = 4,

1 ≤ v4, v7 ≤ |HΛ(1, 1, 0)| = 6, 1 ≤ v2, v5, v6, v8 ≤ |Λ≥−1| = 4.

The weight of µ is w(µ) = wµ(1) · · ·wµ(n) = 36864.

There are several examples of weighted Σ-paths in the literature. Two of the most

well-known are the weighted Motzkin and weighted Lukasiewicz paths mentioned in

Section 1. Recall that a (w1, w2, w3)-Motzkin path is a Motzkin path in which there are

wk types of the step Sk−2 for k ∈ {1, 2, 3}.

Example. If Λ = {U1, U0, V } and Γ = {U1, U0, D1}, then the paths of WΛ
Γ (n,−1) are

(2, 3, 1)-Motzkin paths considered by Chen and Wang [39]. These paths run from (0, 0)

to (n,−1), where each step D1 has two types, each step U0 has three types, and each
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step U1 has one type. Note that in this case, every subpath that starts with U0 has the

shape (1, 1, 0), and every subpath that starts with U1 has the shape (1, 2, 1). In the class

WΛ
Γ (n, 0), the maximal weights of D1 and U1 are 2 and 1, respectively. The maximal

weight of U0 depends on where it starts, namely, whether it starts on the x-axis. For a

U0 that starts on the x-axis, the maximal weight is |HΛ(0, 0, 0)| = 2, and for a U0 that

starts above the x-axis, the maximal weight is |HΛ(1, 1, 0)| = 3. This class is exactly the

class of the large (2, 3, 1)-Motzkin paths considered by Chen and Wang [39]. For m ≥ 2,

the families PΓ(n,−m) and WΛ
Γ (n,−m) are empty.

Example. If Λ = {U1, V } and Γ = {U1, U0, D1}, then the paths of WΛ
Γ (n,−1) are

(1, 2, 1)-Motzkin paths considered by Deutsch and Shapiro [11]. In this case, there are

two types of the step U0, one type of D1, and one type of U1.

Lemma 2.8. Let m ≥ 1, n ≥ 2, d ≥ 1, and 0 ≤ k ≤ N . Suppose that for 1 ≤
i ≤ d, we have µ(i) ∈ PΓ(ni,−mi) and π(i) ∈ PΛ(ni,−mi), with mi, ni ≥ 1, and

m1 +m2 + · · ·+md − k = m, and 1 + n1 + · · ·+ nd = n. Let (h, c) ∈ HΛ(m, d, k), with

c = (c1, . . . , cd+1). We have

µ = Uk µ
(1) µ(2) · · ·µ(d) ∈ PΓ(n,−m) (2.10)

if and only if

π = Uh V
c1 π(1) V c2 π(2) · · ·V cd π(d) V cd+1 ∈ PΛ(n,−m). (2.11)

Proof. We first show that µ and π end at the same points (see Figure 2.9). The first

step of µ is Uk. The first step of π is Uh such that h ≥ k, and there is some number of

vertical steps between subpaths π(i). Let us denote by (x(µ), y(µ)) and (x(π), y(π)) the

ending points of µ and π, respectively. Observe that π and µ have the same number of

non-vertical steps. Indeed, for 1 ≤ i ≤ d, the number of non-vertical steps in µ(i) is that

of π(i). Thus, x(µ) = x(π). Let us now compute

y(µ) = k −m1 − · · · −md,

y(π) = h−m1 − · · · −md − c1 − · · · − cd+1.

Because (h, c) is the pair inHΛ(m, d, k) (see Definition 2.3), we have k = h−c1−· · ·−cd+1.

Thus, y(µ) = y(π) = −m. Recall that V ∈ Λ, and h is such an integer that Uh ∈ Λ.

Thus, the entire path π is a Λ-path. On the other hand, for 0 ≤ k ≤ N , we have Uk ∈ Γ

(see Definition 2.5); therefore, µ is a Γ-path.

Finally, we must show the following: (i) if µ is a primary path, i.e., only the ending

point lies below the x-axis, then so is π, and (ii) if π is a primary path, then so is µ. To
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Figure 2.9: An illustration of Lemma 2.8 for d = 2. The left path is µ given by (2.10),
and the right path is π given by (2.11).

see (i), observe that md ≥ m and cd+1 = 0 if m ≥ 2. Moreover, all points except the

first one in the subpath UhV
c1π(1) · · ·V cd−1π(d−1)V cd lie weakly above the initial point

of π(d). Similarly, to see (ii), observe that if m = 1, then md ≥ 1, and if m ≥ 2, then

cd+1 = 0 and md ≥ m. All points except the first one in the subpath Ukµ
(1) · · ·µ(d−1)

lie weakly above the initial point of µ(d).

Remark. The above-mentioned lemma is for m-primary paths with m ≥ 1. We now

state the analogue of this result for m = 0.

Lemma 2.9. Let n ≥ 2, d ≥ 0, and 0 ≤ k ≤ N . Suppose that for 1 ≤ i ≤ d, we have

µ(i) ∈ PΓ(ni,−mi) and π(i) ∈ PΛ(ni,−mi), with mi, ni ≥ 1, and m1 +m2 + · · ·+md = k.

Suppose that γ ∈ PΓ(nd+1, 0), γ′ ∈ PΛ(nd+1, 0), with nd+1 ≥ 0, and 1+n1 + · · ·+nd+1 =

n. Let (h, c) ∈ HΛ(0, d, k), with c = (c1, . . . , cd+1). We have

µ = Uk µ
(1) µ(2) · · ·µ(d)γ ∈ PΓ(n, 0) (2.12)

if and only if

π = Uh V
c1 π(1) V c2 π(2) · · ·V cd π(d) V cd+1γ′ ∈ PΛ(n, 0). (2.13)

Proof. This can be proved in much the same way as Lemma 2.8. The only difference

is due to the presence of the additional subpaths γ and γ′ which are possibly empty

0-primary path (see Figure 2.10 for d = 2).

2.3 Bijection between weighted Γ-paths and Λ-paths

Recall that Λ ⊆ {V, SN , SN−1, . . .} such that SN , V ∈ Λ, and Γ = (Λ \ {V }) ∪
{UN , UN−1, . . . , U0, D1}, for fixed N ≥ 0. Let us denote

PΛ =
⋃
m≥0

⋃
n≥0

PΛ(n,−m), WΛ
Γ =

⋃
m≥0

⋃
n≥0

WΛ
Γ (n,−m).
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Figure 2.10: An illustration of Lemma 2.9 for d = 2. The left path is µ given by
(2.12), and the right path is π given by (2.13).

Theorem 2.10. For all m ≥ 0 and n ≥ 0, we have

|WΛ
Γ (n,−m)| = |PΛ(n,−m)|.

Proof. To prove the assertion, we shall

• define a map f :WΛ
Γ → PΛ (Definition 2.11 on page 22),

• define a map g : PΛ →WΛ
Γ (Definition 2.13 on page 25), and

• prove that for all m ≥ 0 and n ≥ 0, the map f :WΛ
Γ (n,−m)→ PΛ(n,−m) is the

inverse function of g : PΛ(n,−m)→WΛ
Γ (n,−m) (Lemma 2.15 on page 28).

Definition 2.11. The map f :WΛ
Γ → PΛ.

The definition is recursive. Let (µ, v) be a weighted path in WΛ
Γ (n,−m), with v =

(v1, . . . , vn). For n = 0, we have WΛ
Γ (0, 0) = {λ}, and we set f(λ) = λ. If n = 1 and

m = 0, then µ = U0, and 1 ≤ v1 ≤ |HΛ(0, 0, 0)|. Suppose that (h, c) is the v1th pair in

HΛ(0, 0, 0). Note that c = (h). We set

f((U0, v)) = UhV
h. (2.14)

If n = 1 and m = 1, then µ = D1, and 1 ≤ v1 ≤ |Λ≥−1|. Suppose that Sh is the v1th

step in Λ≥−1. We set

f((D1, v)) = ShV
h+1. (2.15)

If n = 1 and m ≥ 2, then µ = Dm and v1 = 1. We set

f((Dm, v)) = Dm. (2.16)

For n ≥ 2 and m ≥ 1, suppose that the first step of µ is an up step Uk and that the

entire path can be decomposed as follows (see Section 2.1 for more details):

µ = Uk µ
(1)µ(2) · · ·µ(d), (2.17)
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where each µ(i) is in PΓ(ni,−mi) for certain mi, ni ≥ 1. The shape of µ (see Defini-

tion 2.1) is (m, d, k). Let us decompose the sequence of weights v = (v1, . . . , vn) into

v1 and d subsequences v(1), v(2), . . . , v(d) of consecutive elements of v according to the

lengths of µ(1), . . . , µ(d). Specifically,

v = (v1, v2, . . . , vs(1)︸ ︷︷ ︸
v(1)

, vs(1)+1, . . . , vs(2)︸ ︷︷ ︸
v(2)

, . . . vs(d−1)+1, . . . , vs(d)︸ ︷︷ ︸
v(d)

), (2.18)

where s(i) = 1+n1 +n2 + · · ·+ni for 1 ≤ i ≤ d. The weight of the first step is v1, which

is an integer in {1, 2, . . . , |HΛ(m, d, k)|} (see (2.7)). Suppose that (h, c) is the v1th pair

in HΛ(m, d, k), with c = (c1, c2, . . . , cd+1). We set

f((µ, v)) = Uh V
c1 π(1) V c2 µ(2) · · ·V cd π(d) V cd+1 , (2.19)

where π(i) = f((µ(i), v(i))) for 1 ≤ i ≤ d (see Figure 2.11 for d = 3).

Figure 2.11: Action of the function f on a weighted m-primary Γ-path with m ≥ 1.
The function f changes the first up step Uk into Uh, adds h− k vertical steps between

subpaths, and changes each (µ(i), v(i)) into π(i).

Similarly, for n ≥ 2 and m = 0, suppose that µ can be decomposed as follows:

µ = Uk µ
(1)µ(2) · · ·µ(d) γ, (2.20)

where each µ(i) is in PΓ(ni,−mi) for certain mi, ni ≥ 1, and γ is a possibly empty

0-primary path in PΓ(nd+1, 0) (see Section 2.1). The shape of µ is (0, d, k). As in the

case m ≥ 1, we decompose the sequence of weights v into v1 and d + 1 subsequences

v(1), . . . , v(d+1) according to the lengths of µ(1), . . . , µ(d), and γ in the same way as in

(2.18). Note that if γ is the empty path, then v(d+1) is the empty sequence. The weight
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of the first step is v1 ∈ {1, 2, . . . , |HΛ(m, d, k)|} (see (2.7)). Suppose that (h, c) is the

v1th pair in HΛ(m, d, k) and c = (c1, c2, . . . , cd+1). We set

f((µ, v)) = Uh V
c1 π(1) V c2 π(2) · · ·V cd π(d) V cd+1 γ ′, (2.21)

where π(i) = f((µ(i), v(i))) for 1 ≤ i ≤ d and γ ′ = f(γ, v(d+1)) (see Figure 2.12 for d = 2).

Figure 2.12: Action of the function f on a weighted 0-primary Γ-path. The function
f changes the first up step Uk into Uh, adds h − k vertical steps between subpaths,

changes each (µ(i), v(i)) into µ(i), and changes (γ, v(d+1)) into γ′.

Lemma 2.12. For all m ≥ 0 and n ≥ 1, if (µ, v) ∈ WΛ
Γ (n,−m), then f((µ, v)) ∈

PΛ(n,−m).

Proof. The proof is by induction on n. Let π = f((µ, v)). If n = 1, then we have

µ = Sm. By (2.14), (2.15), and (2.16), we see that π ∈ PΛ(1,−m).

For n ≥ 2, suppose that π is given by (2.19) for m ≥ 1 or by (2.21) for m = 0.

Recall that for 1 ≤ i ≤ d, the path (µ(i), v(i)) is in WΛ
Γ (ni,−mi). Additionally, if

m = 0, then (γ, v(d+1)) is in WΛ
Γ (nd+1, 0). By the induction hypothesis, for 1 ≤ i ≤ d,

the subpath π(i) = f((µ(i), v(i))) is an mi-primary path in PΛ(ni,−mi), and if m =

0, then γ′ = f((γ, v(d+1))) is a 0-primary path in PΛ(nd+1, 0). Recall that µ is an

m-primary path in PΓ(n,−m). The weight v1 of the first step of µ is an integer in

the set {1, 2, . . . , |HΛ(m, d, k)|}, where (m, d, k) is the shape of µ. Therefore, applying

Lemma 2.8 for m ≥ 1 or Lemma 2.9 for m = 0, we see that the entire path π is an

m-primary Λ-path in PΛ(n,−m).

Example. Let Λ = {V,U6, U5, . . . , U0, D1, D2} and Γ = Λ \ {V }. Take (µ, v) ∈
WΛ

Γ (7,−1), where µ = U4D2U0D1U1D2D1 (see the left-hand side of Figure 2.13) and
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v = (v1, . . . , v7). The path is decomposable as µ = U4 µ
(1)µ(2)µ(3)µ(4), where

µ(1) = D2, µ(2) = U0D1, µ(3) = U1D2, µ(4) = D1,

v(1) = (v2), v(2) = (v3, v4), v(3) = (v5, v6), v(4) = (v7).

Thus, the shape of the path µ is (1, 4, 4). By (2.7), v1 ∈ {1, 2, . . . , |HΛ(1, 4, 4)|}, where

|HΛ(1, 4, 4)| = 21 (see Corollary 2.7). Suppose that the v1th pair in the set HΛ(1, 4, 4)

is (6, c), where c = (0, 0, 1, 1, 0) is the composition of 2 into 5 parts. Thus,

f((µ, v)) = U6V
0π(1)V 0π(2)V 1π(3)V 1π(4)V 0,

where π(i) = f(µ(i), v(i)) for i ∈ {1, 2, 3, 4}. If we suppose that

π(1) = D2, π(2) = U1V D1, π(3) = U2D2V, π(4) = U1V
2,

then the final path f((µ, v)) is given on the right-hand side of Figure 2.13.

Figure 2.13: A weighted Γ-path (left) ofWΛ
Γ (7,−1) and corresponding Λ-path (right)

of PΛ(1, 7) under the function f .

Definition 2.13. The map g : PΛ →WΛ
Γ .

The definition is recursive. Let π be a path in PΛ(n,−m). For n = 0, we have PΛ(0, 0) =

{λ}, and we set g(λ) = λ. If n = 1 and m = 0, then π = UhV
h for certain Uh ∈ Λ.

Suppose that the pair (h, (h)) is the v1th pair in HΛ(0, 0, 0). We set

g(UhV
h) = (U0, (v1)). (2.22)

If n = 1 and m = 1, then π = ShV
h+1 for certain Sh ∈ Λ≥−1. Suppose that Sh is the

v1th step in Λ≥−1. We set

g(UhV
h+1) = (D1, (v1)). (2.23)

If n = 1 and m ≥ 2, then π = Dm. We set

g(Dm) = (Dm, (1)). (2.24)
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For n ≥ 2 and m ≥ 1, suppose that the first step of π is an up step Uh and that the

entire path π can be decomposed as follows (see Section 2.1 for more details):

π = UhV
c1π(1)V c1π(2) · · ·V cdπ(d)V cd+1 , (2.25)

where each π(i) is in PΛ(ni,−mi) for certain mi, ni ≥ 1. The shape of π is (m, d, k),

where k = h− c1 − · · · − cd+1. Let c = (c1, . . . , cd+1) and suppose that (h, c) is the v1th

pair in HΛ(m, d, k). Let g(π(i)) = (µ(i), v(i)) for i ∈ {1, . . . , d}. We set

g(π) =
(
Uk µ

(1) µ(2) · · ·µ(d), v
)
, (2.26)

where v = (v1, v2, . . . , vn) is the concatenation of v1, v(1), . . . , v(d−1), and v(d) (see Fig-

ure 2.14 for d = 3).

Figure 2.14: Action of the function g on an m-primary Λ-path. The function g
changes the first up step Uh into Uk, removes all h− k vertical steps between subpaths

π(i), and changes each π(i) into (µ(i), v(i)).

Similarly, for n ≥ 2 and m = 0, suppose that π can be decomposed as follows,

π = UhV
c1π(1)V c1π(2) · · ·V cdπ(d)V cd+1γ ′, (2.27)

where each π(i) is in PΛ(ni,−mi) for certain mi, ni ≥ 1, and γ ∈ PΛ(nd+1, 0) for certain

md+1 ≥ 0. The shape of π is (m, d, k), where k = h−c1−· · ·−cd+1. Let c = (c1, . . . , cd+1)

and suppose that (h, c) is the v1th pair in HΛ(m, d, k). Let g(γ ′) = (γ, v(d+1)), and

g(π(i)) = (µ(i), v(i)) for i ∈ {1, . . . , d}. We set

g(π) =
(
Uk µ

(1) µ(2) · · ·µ(d) γ, v
)
, (2.28)
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where v = (v1, v2, . . . , vn) is the concatenation v1 v
(1)v(2) · · · v(d+1) (see Figure 2.15 for

d = 2). Note that if γ ′ is the empty path, then v(d+1) is the empty sequence.

Figure 2.15: Action of the function g on a 0-primary Λ-path. The function g changes
the first up step Uh into Uk, removes all h − k vertical steps between subpaths π(i),

changes each π(i) into (µ(i), v(i)), and changes γ′ into (µ, v(d+1)).

Example. As in the previous example, let Λ = {V, S6, S5, . . . S−2} and Γ = Λ \ {V }.
Let π ∈ PΛ(7,−1) be the path given on the right-hand side of Figure 2.13. The path π

is decomposable as U6 π
(1)π(2)V π(3)V π(4), where

π(1) = D2, π(2) = U1V D1, π(3) = U2D2V, π(4) = U1V
2.

The shape of π is (1, 4, 4) and c = (0, 0, 1, 1, 0). Let g(π(i)) = (µ(i), v(i)) for i ∈ {1, 2, 3, 4},
and suppose that

µ(1) = D2, µ(2) = U0D1, µ(3) = U1D2, µ(4) = D1,

v(1) = (v2), v(2) = (v3, v4), v(3) = (v5, v6), v(4) = (v7).

In Example 2.3, we have assumed that the pair (6, c) is the v1th element in HΛ(1, 4, 4).

Thus g(π) = (µ, v), where v = v1v
(1)v(2)v(3)v(4) and µ = U4 µ

(1) µ(2) · · ·µ(4). The

resulting path µ is given on the left-hand side of Figure 2.13.

Lemma 2.14. For all m ≥ 0 and n ≥ 1, if π ∈ PΛ(n,−m), then g(π) ∈ WΛ
Γ (n,−m).

Proof. The proof is by induction on n and goes in much the same way as the proof of

Lemma 2.12. Let (µ, v) = g(π). If n = 1, then we have π = ShV
h+m for m ∈ {0, 1} or

π = Dm for m ≥ 2. By (2.22), (2.23), and (2.24), we see that (µ, v) ∈ WΛ
Γ (1,−m).
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For n ≥ 2, suppose that the weighted path (µ, v) is given by (2.26) for m ≥ 1 or by (2.28)

for m = 0. Recall that for 1 ≤ i ≤ d, the path π(i) is in PΛ(ni,−mi). Additionally, if

m = 0, then γ′ ∈ PΛ(nd+1, 0). By the induction hypothesis, for 1 ≤ i ≤ d, the subpath

(µ(i), v(i)) = g(π(i)) is a weighted mi-primary path in WΛ
Γ (ni,−mi). Additionally, if

m = 0, then (γ, v(d+1)) = g(γ′) is a weighted 0-primary path inWΛ
Γ (nd+1, 0). Recall that

π is an m-primary path in PΛ(n,−m) and the pair (h, c) belongs to HΛ(m, d, k), where

(m, d, k) is the shape of π. Therefore, applying Lemma 2.8 for m ≥ 1 or Lemma 2.9 for

m = 0, we see that the entire path (µ, v) is a weighted m-primary Γ-path inWΛ
Γ (n,−m).

Lemma 2.15. We have f−1 = g.

Proof. The proof is by induction on n. For n = 0, we have PΛ(0, 0) =WΛ
Γ (0, 0) = {λ},

and PΛ(0,−m) =WΛ
Γ (0,−m) = ∅, for m > 0.

(i) First, we prove that for every path (µ, v) ∈ WΛ
Γ (n,−m), with m ≥ 0 and n ≥ 1,

we have g(f((µ, v))) = (µ, v). Let π = f((µ, v)). For n = 1, if m ≥ 0 and S−m 6∈ Γ,

then WΛ
Γ (1,−m) is empty. If S−m ∈ Γ, then µ = S−m and v = (v1). If m = 0, then

1 ≤ v1 ≤ |HΛ(0, 0, 0)|. Further, π = UhV
h, where (h, (h)) is the v1th pair in the set

HΛ(0, 0, 0). On the other hand, we have g(π) = (U0, (v1)), as claimed. If m = 1, then

µ = D1 and 1 ≤ v1 ≤ |Λ≥−1|. Thus, π = ShV
h+1, where Sh is the v1th step in Λ≥−1.

On the other hand, g(π) = (D1, (v1)) = µ, as claimed. If m ≥ 2, then µ = Dm and

v1 = 1. Thus, π = Dm, which implies g(π) = (µ, v1).

Herein, assume that n ≥ 2 and suppose that

µ = Uk µ
(1) µ(2) · · ·µ(d) for m ≥ 1,

µ = Uk µ
(1)µ(2) · · ·µ(d) γ for m = 0,

where µ(i) ∈ PΓ(ni,−mi) for certain mi, ni ≥ 1, and γ is a possibly empty path path

in PΓ(nd+1, 0) for certain nd+1 ≥ 0. The shape of µ is (m, d, k) in both cases. We also

decompose the sequence of weights v into v1 and v(1), . . . , v(d), and possibly v(d+1) for

m = 0, according to the lengths of µ(i) of γ if m = 0. Note that 1 ≤ v1 ≤ |HΛ(m, d, k)|.
Assume that (h, c) is the v1th pair in HΛ(m, d, k) and c = (c1, . . . , cd+1). On the one

hand, by the definition of f , we have

π = Uh V
c1 π(1)V c1π(2) · · ·V cdπ(d)V cd+1 for m ≥ 1,

π = Uh V
c1 π(1)V c1π(2) · · ·V cdπ(d)V cd+1γ′ for m = 0,
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where π(i) = f((µ(i), v(i))) for 1 ≤ i ≤ d; additionally, γ′ = f((γ, v(d+1))) if m = 0. On

the other hand, π = f((µ, v)) can be uniquely decomposed (see Section 2.1) as

π = UhV
ρ1 π̂(1)V ρ2 π̂(2) · · ·V ρt π̂(t)V ρt+1 for m ≥ 1,

π = UhV
ρ1 π̂(1)V ρ2 π̂(2) · · ·V ρt π̂(t)V ρt+1 γ̂′ for m = 0,

for certain primary Λ-paths π̂(1), . . . , π̂(t) and a possibly empty 0-primary Λ-path γ̂′.

Now, we shall show that these two decompositions of π are the same in the sense that

d = t, for 1 ≤ i ≤ d, we have ci = ρi, π
(i) = π̂(i), and γ′ = γ̂′. First, observe that

π(1) = f((µ(1), v(1))) is a nonempty m1-primary path in PΓ(n1,−m1) that starts with

a non-vertical step. This implies that UhV
c1 = UhV

ρ1 , and c1 = ρ1. Next, the ending

points of µ(1) and µ̂(1) are the first points of π that lie below the ending point of UhV
c1 .

This implies that π(1) = π̂(1). Continuing in this fashion, we show that ci = ρi and

π(i) = π̂(i) for 1 ≤ i ≤ d, t = d, and γ′ = γ̂′.

By the induction hypothesis, we see that g(f((µ(i), v(i))) = (µ(i), v(i)) for 1 ≤ i ≤ d.

Additionally, if m = 0, then g(f((γ, v(d+1))) = (γ, v(d+1)). According to the above

assumption that (h, c) is the v1th pair in HΛ(m, d, k), the resulting path g(π) is

g(π) =
(
Uk µ

(1)µ(2) · · ·µ(d), v
)

for m ≥ 1,

g(π) =
(
Uk µ

(1)µ(2) · · ·µ(d) γ, v
)

for m = 0,

where v is the concatenation of v1, v
(1), . . . , v(d), and possibly the empty sequence v(d+1)

for m = 0. Therefore, g(f((µ, v))) = (µ, v).

(ii) Now, we prove f(g(π)) = π for every π ∈ PΛ(n,−m), where m ≥ 0 and n ≥ 1. Let

(µ, v) = g(π). For n = 1 and m = 0, we have π = UhV
h, for certain up step Uh in

Λ≥0. Assume that (h, (h)) is the v1th pair in the set H(0, 0, 0), which is Λ≥0 in this case.

By the definition of g, we see that g(π) = (U0, (v1)). On the other hand, the definition

of f yields f((µ, v)) = UhV
h, which is π, as claimed. For n = 1 and m = 1, we have

π = ShV
h+1 for certain Sh ∈ Λ≥−1. Further, because Sh is the v1th step in Λ≥−1, we

have g(π) = (D1, (v1)), and f(g(π)) = ShV
h+1, as claimed. If m ≥ 2 and Dm ∈ Λ, then

π = Dm and g(π) = (Dm, (1)). It follows that f(g(π)) = π.

Herein, assume that n ≥ 2 and suppose that the path π can be decomposed as in

(2.25) for m ≥ 1 or (2.27) for m = 0. The shape of µ is (m, d, k) in both cases. Let

c = (c1, c2, . . . , cd+1) and k = h − c1 − c2 − · · · − cd+1. Assume that (h, c) is the v1th
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pair in H(m, d, k). By the definition of g, we have

g(π) =
(
Uk µ

(1) µ(2) · · ·µ(d), v
)

for m ≥ 1,

g(π) =
(
Uk µ

(1) µ(2) · · ·µ(d)γ, v
)

for m = 0,

where (µ(i), v(i)) = g(π(i)) for 1 ≤ i ≤ d and possibly the empty path (γ, v(d+1)) = g(γ′).

Further, v is the concatenation of v1, v
(1), . . . , v(d), and possibly the empty sequence

v(d+1) for m = 0. On the other hand, if (µ, v) = g(π), then µ can be decomposed as

µ = Uk µ̂
(1) µ̂(2) · · · µ̂(t) for m ≥ 1,

µ = Uk µ̂
(1) µ̂(2) · · · µ̂(t)γ̂ for m = 0,

for certain primary subpaths µ(i) ∈ PΓ(ni,−mi) such that mi, ni ≥ 1 for i ∈ {1, . . . , t},
and possibly the empty 0-primary path γ̂ for m = 0. We need to show that d = t,

µ(i) = µ̂(i) for 1 ≤ i ≤ d, and γ = γ̂ if m = 0. For 1 ≤ i ≤ d, the path µ(i) and µ̂(i)

are primary paths. Observe that if m ≥ 1, then every m-primary path cannot be a

prefix of any other m-primary path. For 1 ≤ i ≤ d, we have mi ≥ 1, which implies that

µ(1) = µ̂(1). It follows that µ(2) = µ̂(2), and so on up to µ(d) = µ̂(d), and thus t = d.

Additionally, if m = 0, then γ = γ̂.

By the induction hypothesis, we have f(g(π(i))) = π(i) for 1 ≤ i ≤ d, and f(g(γ′)) = γ′

if m = 0. Under the assumption that (h, c) is the v1th pair in H(m, d, k), we show that

f(µ) = π and conclude that f(g(π)) = π.

2.4 Primary and free paths

Let a be a sequence of n integers a1, . . . , an that sums to one. A partial sum of a is

the sum a1 + · · · + ak for every k ∈ {1, . . . , n}. Raney [31] showed that there is only

one cyclic shift a′ = (ak, ak+1, . . . , an, a1, . . . , ak−1) of a such that every partial sum of

a′ is positive (see also Graham et al. [21, p. 360]). Moreover, these cyclic shifts are all

different. This lemma also appears in the literature as the cycle lemma [10]. For our

purposes, we reformulate this lemma as follows.

Lemma 2.16 (Raney lemma [31]). Let b = (b1, . . . , bn) be a sequence of integers whose

sum is −1. There is only one cyclic shift b′ of b such that every partial sum of b′ except

the total sum is nonnegative. Moreover, these shifts are all different.

Proof. Observe that if we rearrange the terms of b in reverse order and negate them,

then we obtain the sequence (−bn,−bn−1, . . . ,−b1), whose sum is +1, and from the
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Raney lemma, we see that there is only one cyclic shift of such a modified sequence that

has the property that every partial sum except the total sum is nonnegative.

Recall that Λ ⊆ {V, SN , SN−1, . . .} such that V, SN ∈ Λ for fixed N ≥ 0. The Raney

lemma implies that

|PΛ\{V }(n,−1)| = 1

n
|FΛ\{V }(n,−1)|, (n ≥ 1). (2.29)

We extend this connection between 1-primary and free (Λ \ {V })-paths to the corre-

sponding families of Λ-paths with vertical steps.

Theorem 2.17. Let Λ ⊆ {V, SN , SN−1, . . .} such that SN , V ∈ Λ for fixed N ≥ 0. For

n ≥ 1, we have

|PΛ(n,−1)| = 1

n

(
|FΛ(n,−1)| − |FΛ(n, 0)|

)
. (2.30)

Proof. Any 1-primary path π in PΛ(n,−1) has exactly n non-vertical steps and some

number of vertical steps between them. Note that the first step of π is not V . This

implies that π can be represented as Sa1V
b1Sa2V

b2 · · ·SanV bn for some integers a1, . . . , an

in the set {k : Sk ∈ Λ} and b1, . . . , bn ≥ 0. Let α = (a1−b1, a2−b2, . . . , an−bn). The total

sum of members of α is −1, and every partial sum, except the total sum, is nonnegative.

Let β = (β1, . . . , βn) be a sequence of n subpaths βi = Sci V
di such that Sci ∈ Λ, di ≥ 0,

and (c1 − d1) + (c2 − d2) + · · · + (cn − dn) = −1. Observe that β designates a free

Λ-path running from (0, 0) to (n,−1) in which the first step is non-vertical. Consider all

n cyclic shifts of β. The Ranney lemma implies that every two of these n cyclic shifts

are different and that there is exactly one cyclic shift of β that designates a 1-primary

Λ-path. Moreover, any free Λ-path running from (0, 0) to (n,−1) in which the first

step is non-vertical can be represented by such a sequence β. Therefore, the number

of 1-primary paths in PΛ(n,−1) is equal to 1/n times the number of sequences β. The

number of sequences β is |FΛ(n,−1)| − |FΛ(n, 0)|, which gives the desired formula.

Theorem 2.18. Let Λ ⊆ {V, SN , SN−1, . . .} such that SN , V ∈ Λ for fixed N ≥ 0. For

n ≥ 1 and m ∈ Z, we have

|FΛ(n,−m)| =
Nn+m∑
j=0

(
n+ j

j

)
|FΛ\{V }(n, j −m)|, (2.31a)

|PΛ(n,−1)| = 1

n

Nn+1∑
j=0

(
n+ j − 1

j

)
|FΛ\{V }(n, j − 1)|. (2.31b)

Proof. First, we show (2.31a). The number of vertical steps in a path of FΛ(n,−m)

is an integer in {0, 1, . . . , Nn+m}. Therefore, we partition the family FΛ(n,−m) into
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pairwise disjoint subfamilies A0, A1, . . . , ANn+m such that Aj contains these in which

the number of vertical steps is j. To calculate the size of Aj , observe that adding j

vertical steps to any free (Λ \ {V })-path (without vertical steps) running from (0, 0) to

(n, j −m), we obtain a free path in FΛ(n,−m). Any such path has n non-vertical steps

and those j vertical steps may be added between them on s ways, where s is the number

of solutions of a0 + a1 + · · · + an = j, with a0, . . . , an ≥ 0. Therefore, the size of Aj is(
n+j
j

)
times the size of FΛ\{V }(n, j −m).

The second equality (2.31b) follows directly from (2.30) together with (2.31a), i.e.,

|PΛ(n,−1)| = 1

n

Nn+1∑
j=0

(
n+ j

j

)
|FΛ\{V }(n, j−1)| −

Nn+1∑
j=1

(
n+ j−1

j − 1

)
|FΛ\{V }(n, j−1)|


=

1

n

|FΛ\{V }(n,−1)|+
Nn+1∑
j=1

((
n+ j

j

)
−
(
n+ j−1

j−1

))
|FΛ\{V }(n, j−1)|


=

1

n

|FΛ\{V }(n,−1)|+
Nn+1∑
j=1

(
n+ j − 1

j

)
|FΛ\{V }(n, j − 1)|

 ,

and the formula follows.

Theorem 2.19. Let Σ ⊆ {V, SN , SN−1, . . .} for fixed N ≥ 0, and n ≥ 1. Recall that

#Steps(S ∈ PΣ(n,−1)) denotes the total number of occurrences of the step S in all

paths of PΣ(n,−1).

(i) If V ∈ Σ, then #Steps(V ∈ PΣ(n,−1)) = |FΣ(n, 0)|.

(ii) If Sk ∈ Σ, then #Steps(Sk ∈ PΣ(n,−1)) = |FΣ(n− 1,−k − 1)|.

Proof. Let S be a fixed step in Σ, and let us introduce the temporary notation

F =

{
FΣ(n, 0) if S = V,

FΣ(n− 1,−k − 1) if S = Sk for certain k ∈ Z.

We define the function φ from the set of all occurrences S in the paths of PΣ(n,−1) to

the set F as follows. Let π ∈ PΛ(n,−1), and suppose that π has exactly d steps S and

d ≥ 1. For each p ∈ {1, . . . , d}, the path π can be represented as

π = π(1)S π(2)S · · ·S π(p−1)S π(p)︸ ︷︷ ︸
α

S π(p+1)S · · ·π(d)S π(d+1)︸ ︷︷ ︸
β

, (2.32)

for certain possibly empty subpaths π(1), π(2), . . . , π(d+1) (see Figure 2.16). We set

φ(π, p) = β α, (2.33)
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where α and β are defined as in (2.32). To show that φ is a bijection, we need to show

that φ(π, p) is a path in F , and every path µ in F can be uniquely decomposed as

µ = βα in such a way that αSβ ∈ PΣ(n,−1).

Figure 2.16: Three 1-primary Σ-paths (upper paths) and the results for the function
φ from the proof of Theorem 2.19 (lower paths) for three cases: S = V (left), S = Uk
(center), and S = Dk (right). The minimal points (x, y) are denoted by open circles.

First, observe that φ(π, p) removes only one step S of π, which implies that the result is

a free path in F . Next, suppose that (x, y) is the leftmost point of φ(π, p) such that y

is the minimal level (the horizontal line) that the path reaches. We shall prove that the

path φ(π, p) reaches (x, y) exactly after the last step of β. Recall that π is a primary Σ-

path running from (0, 0) to (n,−1) in which only the ending point lies below the x-axis.

Thus, π reaches the lowest level exactly after part π(d+1) in (2.32). It follows that α is

a path that does not go below the x-axis. On the other hand, only the ending point of

β reaches the lowest level. It follows that p− 1 is the number of steps S of φ(π, p) that

lie to the right of (x, y).

Let γ be a free Σ-path in F and γ = βα such that the last point of the subpath β lies at

the leftmost minimal level reached by γ. We set φ−1(γ) to be the pair (αSβ, p), where

p is the number of steps S in α plus one.

Theorem 2.20. Let Σ ⊆ {V, SN , SN−1, . . .}. If n ≥ 1, then #Steps(PΣ(n,−1)) =

|FΣ(n,−1)|, where #Steps(PΣ(n,−1)) denotes the total number of all steps in the paths

of PΣ(n,−1).

Proof. We show that there is a bijection ψ from the set of all steps in the paths of

PΣ(n,−1) to the set of paths in FΣ(n,−1). Take a path µ in PΣ(n,−1) and suppose

that µ = µ1 · · ·µr. Letting k ∈ {1, 2, . . . , r}, we set

ψ(µ, k) = µk µk+1 · · ·µr µ1 µ2 · · ·µk−1.
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It is clear that ψ(µ, k) ∈ FΣ(n,−1). Next, we give a map ζ from FΣ(n,−1) to the set

of all steps in the paths of PΣ(n,−1). Let π ∈ FΣ(n,−1) and π = π1 · · ·πr. Let us

represent π as the sequence ŝ = (ŝ1, ŝ2, . . . , ŝr) of integers according to the rule

ŝi =

{
k if πi = Sk for certain k ∈ Z,
−1 if πi = V.

The sum of the sequence ŝ is −1. Therefore, the modified Raney lemma (Lemma 2.16)

implies that there is only one cyclic shift s = (s1, . . . , sr) of ŝ such that each of its

partial sums except the total sum is nonnegative. Moreover, this cyclic shift s uniquely

determines an index k such that the cyclic shift (sk, sk+1, . . . , sr, s1, . . . , sk−1) of s is the

original sequence ŝ. Now, if we change the terms of the sequence s back into steps, we

obtain a primary Σ-path µ. This implies that for every free path π in FΣ(n,−1), we have

uniquely associated a path µ in PΣ(n,−1) and an index k such that φ(µ, k) = π.

2.5 Counting paths in a general case

Recall that Λ ⊆ {V, SN , SN−1, . . .} such that V, SN ∈ Λ for fixed N ≥ 0. In this section,

we consider the case where the set of steps Λ may contain infinitely many down steps.

First, let us observe that for n ≥ 0,m ≤ Nn, and (m,n) 6= (0, 0), the last step of every

free path in FΛ(n,m) is V or Sk ∈ Λ for certain k ∈ Z. The remaining steps of the path

designate a free path in FΛ(n,m + 1) or FΛ(n − 1,m − k), respectively. This implies

that the number of free Λ-paths running from (0, 0) to (n,m) satisfies the following

recurrence relation:

(i) we have |FΛ(0, 0)| = 1;

(ii) for all n < 0 or m > Nn, we have |FΛ(n,m)| = 0; and

(iii) for all n ≥ 0 and m ≤ Nn such that (n,m) 6= (0, 0), we have

|FΛ(n,m)| = |FΛ(n,m+ 1)|+
∑
Sk∈Λ

|FΛ(n− 1,m− k)|. (2.34)

Observe that the second condition (ii) ensures that for all n,m ≥ 0, even though Λ has

infinitely many down steps, the sum on the right-hand side of (2.34) is finite.

Let us define a bivariate generating function

FΛ(x, y) =
∑
m≥0

∑
n≥0

|FΛ(n,Nn−m)|xnym. (2.35)
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Following Wilf [41], we denote by [xn]f(x) the coefficient of xn in the power series

expansion of f(x). Similarly, we denote by [xnym]f(x, y) the coefficient of xnym in the

power series expansion of the bivariate generating function f(x, y). For instance, using

this notation, we have

[xnym]FΛ(x, y) = |FΛ(n,Nn−m)|,

[xnyNn−m]FΛ(x, y) = |FΛ(n,m)|,

[xn]FΛ(x, y) =
∑
m≥0

|FΛ(n,Nn−m)|ym.

Proposition 2.21. We have

FΛ(x, y) =
(

1− y − x
∑
Sk∈Λ

yN−k
)−1

. (2.36)

Proof. This directly follows from the recurrence relation (2.34). Namely, substituting

m−Nn for m in (2.34), we obtain

|FΛ(n,Nn−m)| = |FΛ(n,Nn−m+ 1)|+
∑
Sk∈Λ

|FΛ(n− 1, Nn−m− k)|.

Multiplying both sides by xnym and summing over all n,m ≥ 0 such that (m,n) 6= (0, 0),

we obtain the following functional equation:

FΛ(x, y)− 1 = yFΛ(x, y) + x
∑
Sk∈Λ

yN−kFΛ(x, y).

Simplifying the formula, we obtain (2.36).

Theorem 2.22. For all n ≥ 1 and m ∈ Z, we have

|FΛ\{V }(n,m)| = [yNn−m]
( ∑
Sk∈Λ

yN−k
)n
, (2.37a)

|FΛ(n,m)| = [yNn−m]
1

(1− y)n+1

( ∑
Sk∈Λ

yN−k
)n
, (2.37b)

|PΛ(n,−1)| = 1

n
[yNn+1]

1

(1− y)n

( ∑
Sk∈Λ

yN−k
)n
. (2.37c)

Proof. We first show (2.37a). Let µ be a free (Λ \ {V })-path running from (0, 0) to

(n,m) and µ = Sa1Sa2 · · ·San , where each Sai ∈ Λ and a1 + · · ·+ an = m. Recall that

N is the maximal integer h such that Sh ∈ Λ. It follows that µ can be represented as

SN−b1SN−b2 · · ·SN−bn , where bi = N − ai, and bi is a nonnegative integer in {N − k :

Sk ∈ Λ}. Moreover, the sum b1 + · · ·+ bn is Nn−m.
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On the other hand, every sequence (c1, c2, . . . , cn) of n nonnegative integers such that

ci ∈ {N − k : Sk ∈ Λ} and whose sum is Nn − m uniquely determines a free (Λ \
{V })-path SN−c1SN−c2 · · ·SN−cn in FΛ\{V }(n,m). This correspondence is a one-to-one

correspondence; therefore, instead of directly counting free paths in FΛ\{V }(n,m), we

derive the number of sequences of n nonnegative integers over {N − k : Sk ∈ Λ}, whose

sum is Nn −m. This number is equal to the coefficient of yNn−m in the power series

expansion of (
∑

Sk∈Λ y
N−k)n, as claimed.

To prove (2.37b), we use the bivariate generating function (2.36) to obtain

∑
m≥0

|FΛ(n,Nn−m)|ym = [xn]FΛ(x, y) =
1

(1− y)n+1

( ∑
Sk∈Λ

yN−k
)n
, (2.38)

and (2.37b) follows. To show (2.37c), we apply (2.30) to obtain |PΛ(n,−1)| = (|FΛ(n,−1)|−
|FΛ(n, 0)|)/n. Substituting (2.37b) and simplifying, we obtain the formula.

Corollary 2.23. Let n ≥ 1. The expected number of vertical steps in a path of PΛ(n,−1)

is equal to

n · |FΛ(n, 0)|
|FΛ(n,−1)| − |FΛ(n, 0)|

. (2.39)

The expected number of all steps in a path of PΛ(n,−1) is equal to

n · |FΛ(n,−1)|
|FΛ(n,−1)| − |FΛ(n, 0)|

. (2.40)

Proof. The expected number of vertical steps in a path of PΛ(n,−1) is equal to the

number of all vertical steps in all paths of PΛ(n,−1) divided by the number of paths in

PΛ(n,−1). By Theorem 2.19, this number is equal to |FΛ(n, 0)|/|PΛ(n,−1)|. Applying

(2.30) we obtain the first formula. On the other hand, the expected number of all

steps in a path of PΛ(n,−1) is equal to the number of steps in all paths of PΛ(n,−1)

divided by the number of paths in PΛ(n,−1). By Theorem 2.20, this number is equal

to |FΛ(n,−1)|/|PΛ(n,−1)|. Applying (2.30) we obtain the second formula.

2.6 Counting paths with a finite set of steps

In this section, we consider the case wherein the set of steps Λ is finite. Namely, through-

out this section, we assume that Λ ⊆ {V, SN , SN−1, . . . , S−K} such that SN , S−K , V ∈ Λ

for fixed N,K ≥ 0.

First, let us observe that for all m > max{1,K} and n ≥ 0, the set PΛ(n,−m) is empty.

In addition, note that if K = 0, then the last step of every path in PΛ(n,−1), with

n ≥ 1, is the vertical step V . It is worth noting that we study primary Λ-paths under
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the assumption that PΛ(0, 0) = {λ}, where λ is the empty path, and PΛ(0,−m) = ∅ for

m ≥ 1. Thus, |PΛ(0, 0)| = 1 and |PΛ(0,−m)| = 0 for m ≥ 1.

Proposition 2.24. Let n ≥ 1. If K = 0, then |PΛ(n, 0)| = |PΛ(n,−1)|. If K = 1, then

|PΛ(n, 0)| = (−1)n +

n∑
j=1

(−1)n−j |PΛ(j,−1)|. (2.41)

Proof. If K = 0, then Λ does not contain any down step. Thus, the last step of any

path in PΛ(n,−1) is V . It follows that the remaining steps of the path form a path in

PΛ(n, 0) and the formula follows.

Similarly, if K = 1, then Λ contains only one down step, i.e., D1. Thus, the last step of

any path in PΛ(n,−1) is D1 or V . It follows that |PΛ(n,−1)| = |PΛ(n−1, 0)|+|PΛ(n, 0)|
for n ≥ 1, |PΛ(0,−1)| = 0, and |PΛ(0, 0)| = 1. Moving the term |PΛ(n − 1, 0)| to the

left-hand side, we obtain a recurrence relation for |PΛ(n, 0)|. Iterating this recurrence

we derive the required sum.

Proposition 2.25. For n ≥ 1, if K ≥ 2 and K = m, then |PΛ(n,−K)| = |PΛ(n−1, 0)|.

Proof. This follows from the observation that the last step of any m-primary Λ-path

running from (0, 0) to (n,−m), where m = K and K ≥ 2, is DK . Removing this step

we obtain a 0-primary Λ-path running from (0, 0) to (n− 1, 0).

Definition 2.26. For m ≥ 0, let

PΛ,m(x) =
∑
n≥0

|PΛ(n,−m)|xn. (2.42)

Subsequently, we obtain the functional equation for the generating function PΛ,m(x).

However, first, let us introduce the following necessary notation:

δΛ,m =

{
|Λ≥−m| if m ∈ {0, 1},
|Λ ∩ {Dm}| if m ≥ 2.

(2.43)

Theorem 2.27. Let Λ ⊆ {V, SN , SN−1, . . . , S−K} such that UN , DK , V ∈ Λ for fixed

N,K ≥ 0. For 1 ≤ m ≤ max{1,K}, we have

PΛ,0(x) = 1 + δΛ,0xPΛ,0(x) + xPΛ,0(x)

N∑
k=1

k∑
d=1

|HΛ(0, d, k)|
∑
M

d∏
j=1

PΛ,mj (x),

PΛ,m(x) = δΛ,mx+ x

N∑
k=0

k+1∑
d=1

|HΛ(m, d, k)|
∑
M

d∏
j=1

PΛ,mj (x),

(2.44)
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where the summation range M is over all solutions of

1 ≤ m1, . . . ,md−1 ≤ K, m ≤ md ≤ K, m1 + · · ·+md = k +m. (2.45)

Proof. By Theorem 2.10, the number of m-primary Λ-paths in PΛ(n,−m) is equal to

the number of weighted m-primary Γ-paths in WΛ
Γ (n,−m), where Γ = (Λ \ {V }) ∪

{D1, U0, . . . , UN}. It follows that

PΛ,m(x) =
∑
n≥0

|WΛ
Γ (n,−m)|xn.

Every path in WΛ
Γ (n,−m) consists of (only non-vertical) steps from Γ, and the decom-

position of such paths directly translates to the functional equation for the generating

function that counts these paths according to the length.

First, let m = 0 and (µ, v) ∈ WΛ
Γ (n,−m). If n = 0, then µ = λ, and thus, the constant

term of PΛ,0(x) is one. If n = 1, then µ = U0 and v = (v1) such that 1 ≤ v1 ≤ |Λ≥0|.
For n ≥ 2, suppose that µ is decomposable as

µ = Uk µ
(1) · · ·µ(d) γ,

for certain 0 ≤ d ≤ k ≤ N and that (i) for 1 ≤ i ≤ d, we have µ(i) ∈ PΓ(ni,−mi) for

certain mi, ni ≥ 1, (ii) γ ∈ PΓ(nd+1, 0) for certain nd+1 ≥ 0, and (iii) m1 + · · · + md =

k+m and 1 +n1 + · · ·+nd+1 = n (see (2.4) in Section 2.1). Recall that the weight of µ

is the product of the maximal weights of steps µ1, . . . , µn and that the maximal weight

of the first step µ1 = Uk is |HΛ(m, d, k)|.

For m, d, k ≥ 0 and 1 ≤ m1, . . . ,md ≤ K such that m1 + · · ·+md = k+m and md ≥ m,

let us denote by Am1,...,md
m,d,k (n) the number of weighted paths (µ, v) inWΛ

Γ (n,−m), where

µ has the decomposition given by (2.4) for m = 0 or given by (2.3) for m ≥ 1. Observe

that if k = 0 and n ≥ 2, then µ = U0γ, and thus, d = 0 and γ ∈ PΓ(nd+1, 0), with

nd+1 ≥ 1. It follows that

A0,0,0(n) = [xn]|HΛ(0, 0, 0)|x(PΛ,0(x)− 1) = [xn]|Λ≥0|x(PΛ,0(x)− 1).

For k ≥ 1 and d ≥ 1, we have

Am1,...,md
0,d,k (n) = [xn]

(
|HΛ(0, d, k)|xPΛ,m1(x)PΛ,m2(x) · · ·PΛ,md(x)

)
PΛ,0(x).
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Summing over all possible shapes (m, d, k) and m1, . . . ,md satisfying (2.45), we obtain

PΛ,0(x) = 1 + |Λ≥0|x+ |Λ≥0|x(PΛ,0(x)− 1) +

+ x

(
N∑
k=1

k∑
d=1

|HΛ(m, d, k)|
∑
M

PΛ,m1(x)PΛ,m2(x) · · ·PΛ,md(x)

)
PΛ,0(x).

Simplifying, we obtain the required functional equation for the case m = 0.

Similarly, we show the functional equation for PΛ,m(x) for m ≥ 1. We only note that

in this case the constant term of PΛ,m(x) is zero, the number of paths in WΛ
Γ (1,−m)

is δΛ,m, and for n ≥ 2, according to the decomposition of an m-primary Γ-path, with

m ≥ 1 (see (2.3) in Section 2.1), we have 1 ≤ d ≤ k + 1 and

Am1,...,md
m,d,k (n) = [xn]|HΛ(m, d, k)|xPΛ,m1(x)PΛ,m2(x) · · ·PΛ,md(x).

Corollary 2.28. If K ∈ {0, 1}, then

PΛ,0(x) = 1 + |Λ≥0|xPΛ,0(x) + xPΛ,0(x)
N∑
k=1

∑
Uh∈Λ≥k

(
h

k

)
PΛ,1(x)k,

PΛ,1(x) = |Λ≥−1|x+ x

N∑
k=0

∑
Uh∈Λ≥k

(
h+ 1

k + 1

)
PΛ,1(x)k+1,

(2.46)

Proof. First, we apply Theorem 2.27. Further simplifications follow from the assumption

that K ∈ {0, 1}. In this case, observe that any 0-primary Γ-path in which the first step

is Uk decomposes into exactly k nonempty 1-primary Γ-paths and possibly the empty 0-

primary Γ-path. Similarly, any 1-primary path in which the first step is Uk decomposes

into exactly k + 1 nonempty 1-primary Γ-paths.

2.7  Lukasiewicz paths

In this section, we consider Λ1 = {V,UN , UN−1, . . . , U0, D1} for fixed N ≥ 0. Accord-

ing to (2.5), we set Γ1 = Λ1 \ {V }. Recall that Γ1-paths are N - Lukasiewicz paths.

 Lukasiewicz paths are the well-known families of lattice paths [19, 33, 37, 38]. It is

worth noting that 1- Lukasiewicz paths are Motzkin paths [3, 11, 12].

First, observe that because D1 is the only down step in Λ1 and Γ1, for all m ≥ 2 and

n ≥ 0, the families WΛ1
Γ1

(n,−m) and PΛ1(n,−m) are empty. Let us consider the family
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WΛ1
Γ1

(n,−m) of weighted N - Lukasiewicz paths for m ∈ {0, 1}. Let (µ, v) ∈ WΛ1
Γ1

(n,−m),

where µ = µ1 · · ·µn and v = (v1, . . . , vn).

• For n = 0, we have WΛ1
Γ1

(0, 0) = {λ} and WΛ1
Γ1

(0,−1) = ∅.

• For n = 1, we have WΛ1
Γ1

(1,−m) = {(S−m, (v1)) : 1 ≤ v1 ≤ N + 1 +m}.

• For n ≥ 2 and m = 0, if the first step of µ is Uk, then µ = Uk µ
(1) · · ·µ(k) γ, where

each µ(i) is a 1-primary Γ1-path, and γ is a 0-primary Γ1-path. The weight v1 of

the first step µ1 satisfies

1 ≤ v1 ≤ wµ(1) = |HΛ1(0, k, k)| =
(
N + 1

k + 1

)
.

• For n ≥ 2 and m = 1, if the first step of µ is Uk, then µ = Uk µ
(1) · · ·µ(k+1), where

each µ(i) is a 1-primary Γ1-path. The weight v1 of the first step µ1 satisfies

1 ≤ v1 ≤ wµ(1) = |HΛ1(1, k + 1, k)| =
(
N + 2

k + 2

)
.

Recall that the weight of the entire path µ is w(µ) = wµ(1) · · ·wµ(n). The weight

function wµ(i) (see Definition 2.4) in this case is defined as follows. For each i ∈
{1, . . . , n}, we have

wµ(i) =


N + 2, if µi = D1,(
N+2
k+2

)
if µi = Uk and (m = 1 or µi starts above the x− axis),(

N+1
k+1

)
if µi = Uk and (m = 0 and µi starts at the x− axis).

(2.47)

Theorem 2.29. For all m ∈ {0, 1} and n ≥ 0, the number of weighted N - Lukasiewicz

paths in WΛ1
Γ1

(n,−m) is equal to the number of non-weighted paths in PΛ1(n,−m).

Specifically,

|PΛ1(n,−m)| =
∑

µ∈PΓ1
(n,−m)

w(µ) = |WΛ1
Γ1

(n,−m)|.

Proof. By Theorem 2.10, we see that for Λ1 = {V,UN , . . . , U0, D1} and Γ1 = Λ1 \ {V },
there is a bijection between PΛ1(n,−m) and WΛ1

Γ1
(n,−m).

Remark. It is worth noting that the weight function over the steps in Γ1 in a 0-primary

Γ1-path depends on the step Uk, N , and whether the path starts on the x-axis. For a

1-primary Γ1-path, the weight function only depends on the step Uk and N .
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Theorem 2.30. For m ∈ {0, 1}, let Pm(x) =
∑

n≥0 |PΛ1(n,−m)|xn. We have

P0(x) = 1 + xP0(x)
N∑
k=0

(1 + P1(x))k, (2.48a)

P1(x) = x

N+1∑
k=0

(1 + P1(x))k. (2.48b)

Proof. We apply Theorem 2.27 for the set of steps Λ1 = {V,UN , UN−1, . . . , U0, D1}. If

m = 0, then the shape of each path µ ∈ PΓ1(n, 0) is (0, k, k). If m = 1, then the shape

of each path µ ∈ PΓ1(n,−1) is (1, k + 1, k). Further, each µ(i) in the decomposition of

µ is a 1-primary Γ1-path, and thus, there is only one solution of (2.45). Therefore, the

functional equation (2.44) simplifies as follows:

P0(x) = 1 + (N + 1)xP0(x) + xP0(x)

N∑
k=1

|HΛ1(0, k, k)|(P1(x))k

= 1 + (N + 1)xP0(x) + xP0(x)
N∑
k=1

(
N + 1

k + 1

)
(P1(x))k

= 1 + xP0(x)

N∑
k=0

(
N + 1

k + 1

)
(P1(x))k

= 1 + x
P0(x)

P1(x)

N+1∑
k=1

(
N + 1

k

)
(P1(x))k

= 1 + x
P0(x)

P1(x)

(
(1 + P1(x))N+1 − 1

)
and the formula follows. The formula for P1(x) can be proved in much the same way.

Corollary 2.31. If N = 1, then

P0(x) =
1− x−

√
1− 6x− 3x2

2x(1 + x)
, P1(x) =

1− 3x−
√

1− 6x− 3x2

2x
.

Proof. Applying Theorem 2.30 for N = 1, we obtain 0 = 3x+ (3x− 1)P1(x) + xP1(x)2.

There are two solutions of this functional equation, P±1 (x) = (1−3x±
√

1− 6x− 3x2)/2x.

According to the initial value |PΛ1(0,−1)| = 0, the correct one is P−1 (x). On the other

hand, by Theorem 2.30 for m = 0, we obtain P0(x) = 1/(1− 2x− xP1(x)).

Proposition 2.32. [14, Eq. 30a] If N = 1, then

∑
n≥0

|FΛ1(n, 0)|xn =
1√

1− 6x− 3x2
,
∑
n≥0

|FΛ1(n,−1)|xn =
1− x−

√
1− 6x− 3x2

2x
√

1− 6x− 3x2
.
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Proposition 2.33. For all A,B,C ≥ 0, we have

(1± xA)B

(1− x)C
=
∑
n≥0

bn/Ac∑
k=0

(±1)k
(
B

k

)(
C + n− kA− 1

C − 1

)
xn. (2.49)

Proof. Let us first consider the generating function (1− xA)B/(1− x)C . Because this is

the product of two generating functions, we start with the Cauchy product, and

(1− xA)B

(1− x)C
=

B∑
i=0

(−1)i
(
B

i

)
xAi

∑
j≥0

(
C + j − 1

j

)
xj

=

AB∑
i=0

δA,i(−1)i/A
(
B

i/A

)
xi
∑
j≥0

(
C + j − 1

C − 1

)
xj

=
∑
n≥0

n∑
k=0

δA,k(−1)k/A
(
B

k/A

)(
C + n− k − 1

C − 1

)
xn

=
∑
n≥0

bn/Ac∑
k=0

δA,kA(−1)k
(
B

k

)(
C + n− kA− 1

C − 1

)
xn,

where δi,j = 1 if i|j and δi,j = 0 if i 6 |j. In the same manner we can obtain the formula

for the plus sign.

Theorem 2.34. Let Λ1 = {V,UN , UN−1, . . . , U0, D1}. For all m ∈ Z and n ≥ 1, we

have

|FΛ1(n,m)| =
bNn−m
N+2

c∑
k=0

(−1)k
(
n

k

)(
(N + 2)(n− k)−m

2n

)
, (2.50a)

|PΛ1(n,−1)| = 1

n

bNn+1
N+2

c∑
k=0

(−1)k
(
n

k

)(
(N + 2)(n− k)

2n− 1

)
, (2.50b)

|PΛ1(n, 0)| = (−1)n +

n∑
j=1

bNj+1
N+2

c∑
k=0

(−1)k+n−j

j

(
j

k

)(
(N + 2)(j − k)

2j − 1

)
. (2.50c)

Proof. Applying (2.37b) for the set Λ1 = {V,UN , UN−1, . . . , U0, D1}, we obtain

|FΛ1(n,m)| = [xNn−m]
1

(1− x)n+1

( N∑
k=−1

xN−k
)n

= [xNn−m]
(1 + x+ x2 + · · ·+ xN+1)n

(1− x)n+1

= [xNn−m]
(1− xN+2)n

(1− x)2n+1
.
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Using Proposition 2.33, we obtain (2.50a). Similarly, we apply (2.37c) and Proposi-

tion 2.33 to get (2.50b). Having the formula for the number of paths in PΛ1(n,−1), we

use Proposition 2.24 to get (2.50c).

Corollary 2.35. The number of vertical steps in the set of paths PΛ1(n,−1) is equal to

b Nn
N+2
c∑

k=0

(−1)k
(
n

k

)(
(N + 2)(n− k)

2n

)
.

The number of all steps in the set of paths PΛ1(n,−1) is equal to

bNn+1
N+2

c∑
k=0

(−1)k
(
n

k

)(
(N + 2)(n− k) + 1

2n

)
.

Proof. The first formula follows from Theorem 2.19 and Theorem 2.34. The second one

from Theorem 2.20 and Theorem 2.34.

Example. If N = 1, then

(|FΛ1(n, 0)|)n≥0 = (1, 3, 15, 81, 459, 2673, 15849, 95175, 576963, . . .) (A122868)

(|FΛ1(n,−1)|)n≥0 = (1, 6, 33, 189, 1107, 6588, 39663, 240894, . . .) (A260774)

(|PΛ1(n, 0)|)n≥0 = (1, 2, 7, 29, 133, 650, 3319, 17498, 94525, . . .) (A064641)

(|PΛ1(n,−1)|)n≥0 = (0, 3, 9, 36, 162, 783, 3969, 20817, 112023, . . .) (A156016)

The numbers starting with A denote corresponding sequences in OEIS [32].

2.8 Raney paths with vertical steps

In this section, we consider the case where the set of steps Λ2 contains infinitely many

down steps. Namely, we set Λ2 = {V, SN , SN−1, . . .} for fixed N ≥ 0. According to

(2.5), we set Γ2 = {SN , SN−1, . . .}. Recall that Γ2-paths are N -Raney paths considered

in Chapter 3. It turns out that even though the set of steps Λ2 contains infinitely many

down steps, several formulas that count these paths have a simple form.

For m ≥ 0 and n ≥ 0, let us consider the family WΛ2
Γ2

(n,−m) of weighted N -Raney

paths. If n = 0, then WΛ2
Γ2

(0, 0) = {λ} and WΛ2
Γ2

(0,−m) = ∅ for m ≥ 1. For n ≥ 1,

let (µ, v) ∈ WΛ2
Γ2

(m,n), where µ = µ1 · · ·µn. Recall that the weight of the path µ is

w(µ) = wµ(1) · · ·wµ(n). By Corollary 2.7, for each i ∈ {1, . . . , n}, we have
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(i) if µi = Dp, then

wµ(i) =

{
N + 2 if p = 1,

1 if p ≥ 2,

(ii) if µi = Uk is the first step of the uniquely determined subpath σ of µ in which µi

is the first step (see Lemma 2.2 (i) and (ii)), and if the shape of σ is (p, d, k), then

wµ(i) =

(
N − k + d+ 1− εp

N − k

)
,

where εp = 0 if p ∈ {0, 1} and εp = 1 if p ≥ 2.

Theorem 2.36. For all m ≥ 0 and n ≥ 0, the number of weighted N -Raney paths in

WΛ2
Γ2

(n,−m) is equal to the number of non-weighted paths in PΛ2(n,−m). Specifically,

|PΛ2(n,−m)| =
∑

µ∈PΓ2
(n,−m)

w(µ) = |WΛ2
Γ2

(n,−m)|.

Proof. This follows from Theorem 2.10 for Λ2 and Γ2.

Theorem 2.37. Let Λ2 = {V, SN , SN−1, . . .}. For all m ∈ Z and n ≥ 1, we have

|FΛ2(n,m)| =
(

(N + 2)n−m
2n

)
, (2.51a)

|PΛ2(n,−1)| = 1

n

(
(N + 2)n

2n− 1

)
. (2.51b)

Proof. Applying Theorem 2.22 for Λ2 = {V, SN , SN−1, . . .}, we obtain

|FΛ2(n,m)| = [xNn−m]
1

(1− x)n+1
(1 + x+ x2 + · · · )n = [xNn−m]

1

(1− x)2n+1
.

Using the binomial expansion, we derive the number of free Λ2-paths. Similarly, applying

Theorem 2.22, we obtain the number of 1-primary Λ2-paths.

Corollary 2.38. The expected number of vertical steps in a path of PΛ2(n,−1) is equal

to (Nn + 1)/2. The expected number of all steps in a path in PΛ2(n,−1) is equal to

((N + 2)n+ 1)/2.

Proof. This follows from Corollary 2.23 and Theorem 2.37.

Example. If N = 1, then

(|FΛ2(n, 0)|)n≥0 = (1, 3, 15, 84, 495, 3003, 18564, 116280, . . .) (A005809)

(|PΛ2(n,−1)|)n≥0 = (0, 3, 10, 42, 198, 1001, 5304, 29070, 163438, . . .) (A007226)



2. Lattice paths with vertical steps 45

2.9 Dyck paths with vertical steps

In this section, we consider the set of steps Λ3 = {V,UN , DK} for fixed N,K ≥ 1.

According to (2.5), we set Γ3 = {UN , UN−1, . . . , U0, D1, DK}. Recall that if N = K = 1,

then Γ3-paths are Motzkin paths and (Λ3 \ {V })-paths are Dyck paths.

For m ≥ 0 and n ≥ 0, let us consider the family WΛ3
Γ3

(n,−m) of weighted Γ3-paths.

For n = 0, we have WΛ3
Γ3

(0, 0) = {λ} and WΛ3
Γ3

(0,−m) = ∅. For n ≥ 1, let (µ, v) ∈
WΛ3

Γ3
(n,−m), where µ = µ1 · · ·µn. Recall that the weight of µ is w(µ) = wµ(1) · · ·wµ(n).

By Definition 2.4, for each i ∈ {1, . . . , n}, we have

(i) if µi = Dp, then

wµ(i) =


2 if p = 1 and K = 1,

1 if p = 1 and K > 1,

1 if p ≥ 2.

(ii) if µi = Uk is the first step of the uniquely determined subpath σ of µ in which µi

is the first step (see Lemma 2.2 (i) and (ii)), and the shape of σ is (p, d, k), then

wµ(i) =

(
N − k + d− εp

N − k

)
, (2.52)

where εp = 0 if p ∈ {0, 1} and εp = 1 if p ≥ 2.

Theorem 2.39. For all m ≥ 0 and n ≥ 0, the number of weighted Γ3-paths in

WΛ3
Γ3

(n,−m) is equal to the number of non-weighted paths in PΛ3(n,−m). Specifically,

|PΛ3(n,−m)| =
∑

µ∈PΓ3
(n,−m)

w(µ) = |WΛ3
Γ3

(n,−m)|.

Proof. This follows from Theorem 2.10.

Theorem 2.40. For all m ∈ Z and n ≥ 1, we have

|FΛ3(n,m)| =
bNn−m
N+K

c∑
k=0

(
n

k

)(
n(N + 1)− k(N +K)−m

n

)
, (2.53a)

|PΛ3(n,−1)| = 1

n

bNn+1
N+K

c∑
k=0

(
n

k

)(
n(N + 1)− k(N +K)

n− 1

)
. (2.53b)

Proof. Applying Theorem 2.22 for the set Λ3 = {V,UN , DK}, we see that |FΛ3(n,m)| =
[xNn−m](1 + xN+K)n/((1 − x)n+1). Using Proposition 2.33, we obtain the formula for

the number of free Λ3-paths. Similarly, using Theorem 2.22, we obtain the second

formula.
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Corollary 2.41. For n ≥ 0, if K = 1, then

|PΛ3(n, 0)| = (−1)n +
n∑
j=1

bNj+1
N+1

c∑
k=0

(−1)n−j

j

(
j

k

)(
(N + 1)(j − k)

j − 1

)
.

Proof. This follows from Proposition 2.24 and Corollary 2.40.

Corollary 2.42. For m ≥ 0, let Pm(x) =
∑

n≥0 |PΛ3(n,−m)|xn. We have

P0(x) = 1 + xP0(x) + xP0(x)
N∑
k=1

k∑
d=1

(
N − k + d

d

)∑
M

d∏
j=1

Pmj (x),

Pm(x) = δmx+ x
N∑
k=0

k+1∑
d=1

(
N − k + d− εm

N − k

)∑
M

d∏
j=1

Pmj (x),

(2.54)

where δm, M , and εp are defined in (2.43), (2.45), and (2.52), respectively.

Corollary 2.43. If N = K = 1, then

P0(x) =
1−
√

1− 4x− 4x2

2x(1 + x)
P1(x) =

1− 2x−
√

1− 4x− 4x2

2x

Proof. This can be proved in much the same way as Corollary 2.31. We only note

that the functional equation for P1(x) is now 0 = 2x + (2x − 1)P1(x) + xP1(x)2 and

P0(x) = 1/(1− x− xP1(x)).

Example. If N = K = 1, then

(|FΛ3(n, 0)|)n≥0 = (1, 2, 8, 32, 136, 592, 2624, 11776, 53344, 243392, . . .) (A006139)

(|FΛ3(n,−1)|)n≥0 = (1, 4, 16, 68, 296, 1312, 5888, 26672, 121696, . . .) (A179191)

(|PΛ3(n, 0)|)n≥0 = (1, 1, 3, 9, 31, 113, 431, 1697, 6847, 28161, 117631, . . .) (A052709)

(|PΛ3(n,−1)|)n≥0 = (0, 2, 4, 12, 40, 144, 544, 2128, 8544, 35008, 145792, . . .) (A025227)

The numbers starting with A denote corresponding sequences in OEIS [32].



Chapter 3

Raney paths and plane multitrees

This chapter is devoted to the study of plane multitrees. In Section 3.1, we introduce

the concept of similar plane trees (resp. multitrees). In Section 3.2, we show that there

is a bijection between the set T (n) of plane multitrees with n nodes and the set R(n)

of Raney paths running from (0, 1) to (n, 0). In Section 3.3, we prove that there is a

bijection between the set RN (n) of N -Raney paths running from (0, 1) to (n, 0) and

the family of (N − 1, n, 1)-Raney sequences. In Sections 3.4 – 3.7, we apply these two

above-mentioned bijections to derive several combinatorial and statistical properties of

plane multitrees.

3.1 Similar plane trees and multitrees

As we have already noted in Chapter 1, there are several equivalent definitions of plane

trees in the literature (see the remark after Definition 1.6 on page 7). Most often they are

defined as rooted unlabeled trees in which every internal node has additionally specified

a liner order of its sons (see, e.g., Flajolet and Sedgewick [19]). This linear order is

equivalent to an embedding of the tree in the plane.

It is worth pointing out that we define plane trees (see Definition 1.6) as rooted directed

trees in which labels of vertices satisfy certain properties and these properties give an

order of sons for every internal node. In this section, we define the concept of similar

plane trees which shows that our definition of plane trees agrees with other definitions of

plane trees that appear in the literature. However, first, we give some intuitions about

plane trees.

47
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Remarks. Let T be a plane tree such that T = (V,E).

1. If we ignore directions of the arcs of T , then we obtain an undirected tree (acyclic

and connected). Herein, we shall assume that the vertex 1 is the root of the plane

tree and every arc (u, v) ∈ E is going from the father u to its son v.

2. For every internal node v ∈ V , its sons are ordered. We will assume that these

sons are ordered from left to right. This order is equivalent to an embedding of

the tree in the plane, thus, we shall omit numbers of vertices on figures.

3. Recall that we denote by Tv the subtree of T rooted at the vertex v. If Tv is a

subtree with exactly m vertices, then these vertices are in the set {x : v ≤ x <

v +m}.

4. For every v ∈ V , if v has exactly s sons v1 < v2 < · · · < vs, then for every

i ∈ {1, . . . , s − 1}, the subtree Tvi has the size vi+1 − vi, all vertices of Tvi are in

the set {x : vi ≤ x < vi+1}, the subtree Tvs has the size v+m−vs, and all vertices

of Tvs are in the set {x : vs ≤ x < v +m}, where m is the size of the tree Tv.

5. Suppose that we have a rooted undirected tree T and the sons of every vertex are

ordered. Suppose that we change every edge {u, v} where u is the father of v into

the arc (u, v). If we number the vertices of such a modified tree using the depth

first search algorithm, then we obtain a plane tree.

Definition 3.1. Let Tu and Sv be two subtrees of plane trees T and S, respectively.

The trees Tu and Sv are similar if they have the same height h and

1. h = 0, or

2. h > 0 and for some s, we have

(a) u has exactly s sons u1 < u2 < · · · < us,

(b) v has exactly s sons v1 < v2 < · · · < vs, and

(c) for every i ∈ {1, . . . , s}, the subtrees Tui and Svi are similar (see Figure 3.1).

Figure 3.1: Two plane subtrees Tu (left) and Sv (right) with its sons.

Example. Let T be the left tree in Figure 3.2, and S be the right tree in Figure 3.2.

Both roots of T and S have three sons, i.e., 2 < 5 < 6 and 2 < 3 < 6, respectively.

However, the leftmost subtree T2 of T is not similar to the leftmost subtree S2 of S.

Indeed, T2 and S2 have different height. Thus, T and S are not similar.
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Figure 3.2: Two plane trees that are not similar.

Lemma 3.2. Let Tu and Sv be two subtrees of plane trees T and S, respectively. If Tu

and Sv are similar and m = v− u, then the function hm(x) = x+m is an isomorphism

between Tu and Sv.

Proof. The proof is by induction on the height h. If h = 0, then Tu and Sv have exactly

one vertex and hm maps u to v. Now, we assume that h > 0. First, observe that hm

maps u on v. Suppose that u has exactly s sons u1 < u2 < · · · < us, and that v has

exactly s sons v1 < v2 < · · · < vs. We shall show that for 1 ≤ i ≤ s, hm maps ui to vi.

Suppose that Tu has d vertices. These vertices are in the set {x : u ≤ x < u + d} (see

the remarks at the beginning of this section). The leftmost son u1 of u is u+ 1 and the

leftmost son v1 of v is v+1, thus, hm maps u1 to v1, as claimed. By (c) in Definition 3.1,

for 1 ≤ i ≤ s, the subtrees Tui and Svi are similar. Thus, by the induction hypothesis,

we have vi+1 − vi = ui+1 − ui, which implies that Tui and Svi have the same number of

nodes. Therefore, for 1 ≤ i ≤ s, the function hm maps ui to vi.

Finally, for 1 ≤ i ≤ s, the function hm maps the subtree Tui onto Svi , and, by the

induction hypothesis, we see that hm restricted to Tui is an isomorphism. Thus, the

function hm is an isomorphism between Tu and Sv.

Remark. It is clear that the following statement is also true. If hm is an isomorphism

between Tu and Sv, then Tu and Sv are similar.

Lemma 3.3. If two plane trees T = (VT , ET ) and S = (VS , ES) are similar, then T = S.

Proof. In this case the identity function h0 is an isomorphism.

Definition 3.4. Let Tu and Sv be two subtrees of plane multitrees T and S, respectively.

The multitrees Tu and Sv are similar if they have the same height h and

1. h = 0, or

2. h > 0 and for some s, we have

(a) u has exactly s sons u1 < u2 < · · · < us,

(b) v has exactly s sons v1 < v2 < · · · < vs, and
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(c) for every i ∈ {1, . . . , s}, the weight of the arc (u, ui) is equal to the weight of

(v, vi), and the subtrees Tui and Svi are similar (see Figure 3.3).

Figure 3.3: Two plane sub-multitrees Tu (left) and Sv (right) with its corresponding
subtrees.

Lemma 3.5. If two plane multitrees T = (VT , ET , wT ) and S = (VS , ES , wS) are similar,

then T = S.

Proof. This can be proved in much the same way as Lemma 3.2 for h0(x).

Definition 3.6. Let v be an internal node of a plane multitree T . Suppose that v has

s sons v1 < v2 < · · · < vs and w((v, vj)) = mj for j ∈ {1, . . . , s}. Let sonsT (v) denote

this list of the sons of v represented as follows:

sonsT (v) = (vm1
1 , vm2

2 , . . . , vmss ).

Example. Let T be the right tree given in Figure 3.2, we have sonsT (1) = (21, 32, 61).

3.2 Bijection between Raney paths and plane multitrees

Recall that T (n) (resp. TN (n)) denotes the family of plane multitrees (resp. N -ary

plane multitrees) with n nodes and R(n) (resp. RN (n)) denotes the family of Raney

paths (resp. N -Raney paths) of length n.

Figure 3.4: A 5-Raney path π running from (0, 1) to (10, 0). All the points of the list
Ππ(3) are marked using open circles. These points lie weakly between the initial ilπ(3)

and ending elπ(3) levels of π3.
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Definition 3.7. Let π = π1 · · ·πn ∈ R(n). Suppose that πi is an up step Uk and

that πi connects two lattice points (u, l) and (u + 1, l + k). We denote by ilπ(i) and

elπ(i) the initial level y = l and the ending level y = l + k, respectively. If ilπ(i) = l,

then π passes through the points (x1, l + k), (x2, l + k − 1), . . . , (xk+1, l) ∈ R × Z such

that x1 < · · · < xk+1 are chosen to be the leftmost ones, i.e., xj = min{x : x ≥
i and π passes through (x, k − j + 1)}. Note that some of these points may not have

the first coordinate integer. Let us remove them and denote by Ππ(i) the list of the

remaining points (both coordinates are integers).

Example. Let π = U3D2U5U1D3U1D2D2U1D3 (see Figure 3.4). We have π3 = U5,

ilπ(3) = 2, elπ(3) = 7, and Ππ(3) = ((3, 7), (5, 5), (7, 4), (8, 2)). The points of Ππ(3) are

marked using open circles in Figure 3.4.

Theorem 3.8. For all N ≥ 0 and n ≥ 1, we have

|RN (n)| = |TN+1(n)|. (3.1)

Proof. For n = 1 and N ≥ 0, we have R(1) = RN (1) = {D1}. Both T (1) and TN+1(1)

contain only one plane multitree with one node and zero edges, as claimed. To prove

the assertion for n ≥ 2, we shall

• define a map ρn : R(n)→ T (n) (Definition 3.10 on page 52),

• define a map κn : T (n)→ R(n) (Definition 3.14 on page 57),

• prove that ρn is the inverse function of κn (Lemma 3.18 on page 61), and

• prove that for every N ≥ 0, the map ρn limited to RN (n)→ TN+1(n) is a bijection

(Corollary 3.19 on page 63).

To define maps between Raney paths and plane multitrees, we use an abstract data

structure called stack which is understood as a list S of a finite number of objects

s1, s2, . . . with two following operations: push an element a to S which adds the object

a to S as the first element of S, and pop from S which returns and removes the first

element in S. By the top of S we mean the first element of S. Let a, b be two different

elements and a ∈ S. We say that a is above b in S if b 6∈ S or the index of a is smaller

than the index of b in S.

Definition 3.9. Suppose that T = (V,E,w) is a plane multitree such that V =

{1, 2, . . . , n} for some n ≥ 1 and in which (E,w) is the multiset of edges. Take i ∈ V and

suppose that there is an arc (i, j) in E and j is the maximal such number. By joining

the node i to its rightmost son in E we mean adding the additional edge (i, j) to the

multiset (E,w) of edges. In other words, we increase the weight w((i, j)) by one.
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Example. Let T = (V,E,w) be the left tree given in Figure 3.5. Joining 1 to its

rightmost son in E adds the arc (1, 5) to the multiset (E,w) of edges, or in other words,

increases the value w((1, 5)) from 1 to 2. Joining 2 to its rightmost son in E adds the

arc (2, 3) to the multiset (E,w). The final tree after this two operations is the right tree

given in Figure 3.5.

Figure 3.5: A plane multitree (left) and the plane multitree formed from the left
one after the operation of joining nodes 1 and 2 to its rightmost son (right). The new

additional edges are drawn using dotted lines.

Definition 3.10. The map ρn : R(n)→ T (n) for n ≥ 2.

Let π = π1 · · ·πn ∈ R(n), with n ≥ 2. We specify the plane multitree ρn(π) = (V,E,w)

in n consecutive steps. First, we set V = {1, 2, . . . , n} and E = ∅. Let Sρ be the empty

stack of nodes.

Step 1. We have π1 = Uk for some k ≥ 0. Push k+ 1 copies of the node 1 to Sρ and set

1 to be the root of T .

Step i for i ∈ {2, 3, . . . , n}. Pop the node from Sρ and denote it by ν. Add the arc (ν, i)

to E and set w((ν, i)) = 1. We have two following cases:

(a) if πi = Uk for some k ≥ 0, then push k + 1 copies of the node i to Sρ,

(b) if πi = Dk for some k ≥ 1, then pop k − 1 nodes from Sρ and join each of

them to its rightmost son in E.

Remarks.

1. There is a one-to-one correspondence between the elements on the stack Sρ and

the edges of T . If an element is pushed to the stack Sρ, then it corresponds to the

upper end of an edge. If an element ν is popped at the beginning of the ith step,

then it forms the main edge (ν, i). This edge is added to E and w((ν, i)) is set to

1. If an element ν is popped in part (b), then the additional edge (ν, j) is added to

E and j is the rightmost son of ν (in the tree built so far). The edge (ν, j) already

exists in E and the weight of (ν, j) is increased by one.

2. At the beginning of the ith step for i ∈ {2, 3, . . . , n}, the vertex i is joined with its

father which is the node just popped from the stack. If πi = Uk, then k+ 1 copies

of the node i are pushed to the stack. This determines that odeg(i) = k + 1 in

the final tree. If πi = Dk, then the node i is set to be a leaf and k − 1 nodes are

popped from the stack. These k − 1 popped nodes form additional edges in the
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tree. Moreover, they are added to the vertices on the path leading from the father

of the node (i + 1) to i if i < n or from the root to n if i = n (see Lemma 3.11

given below).

Example. The four pictures (1)–(4) in Figure 3.6 present the first four steps of ρ6

acting on the path π = U5D3U2D2D2D1. In picture (i) for i ∈ {1, 2, 3, 4}, we have the

fragment π1 · · ·πi of the path π (left on the figure) and the fragment of the tree ρ6(π)

built so far (right on the figure). Solid lines in the trees represent edges of E, dotted arcs

correspond to the content of the stack Sρ. The top of the stack is represented using an

open circle. The numbers below the Raney path represent labels of nodes on the stack

Sρ and the numbers in circles are the elements on the top of the stack. The final plane

multitree ρ6(π) is given in Figure 3.7.

Figure 3.6: The first four steps of ρ6 acting on the path U5D3U2D2D2D1 (see Example
given above for more details).

Figure 3.7: A 5-Raney path π (left) and the plane multitree ρ6(π) (right).

Lemma 3.11. Let n ≥ 2 and 1 ≤ i ≤ n. Suppose that π1 · · ·πi is a lattice path running

from (0, 1) to (i, s). Suppose that (E,w) and Sρ are the multiset of arcs and the stack,

respectively, after the i steps of ρn acting on π.

(i) The stack Sρ contains s copies of nodes.
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(ii) If i < n, then all nodes on the stack Sρ lie on the path ψ leading from the root 1

to the father of the node i + 1 in the final tree ρn(π). Moreover, these nodes lie

on the path and the stack Sρ in the same order and every edge of ψ has the weight

equal to one in the tree built so far.

(iii) The path leading from the root 1 to the node i is the rightmost path in the tree built

so far.

(iv) The triple ({1, 2, . . . , i}, E, w) (i.e. the tree built up to the step i) is a plane mul-

titree.

Proof. The proof is by induction on i. A simple verification shows that (i)–(iv) are

satisfied for i = 1. Indeed, the path π1 = Uk begins at (0, 1), ends at (1, k + 1), and the

stack Sρ contains only k + 1 copies of the node 1. On the other hand, a tree with one

node and zero arcs is a plane multitree. Let i ∈ {2, 3, . . . , n} and consider the ith step

of ρn(π).

(i) If πi = Uk, then we pop one node from Sρ and push exactly k + 1 new nodes to Sρ.

Therefore, the size of Sρ is s + k. On the other hand, the path π1 · · ·πi ends at level

s + k, as claimed. If πi = Dk, then we pop one plus k − 1 nodes from Sρ. Thus, the

total number of nodes in Sρ is s− k. On the other hand, the path π1 · · ·πi ends at level

s− k, as claimed.

(ii), (iii) At the beginning of the ith step, we pop a node ν from Sρ, add the main arc

(ν, i) to E, and set w((ν, i)) = 1. If πi is an up step, then we push some number of

copies of the node i to Sρ. Before this operation, all nodes of Sρ lay on the path leading

from the root to the father of i, thus, now all nodes on the stack lie on the path leading

from the root to i. In this case i will be the father of i+ 1 in the final tree. Moreover,

we have not changed the weight of any arc and the path leading from the root to i is

still the rightmost path in the constructed tree. If πi is a down step, then we pop some

number of nodes from the stack. The top of the stack is now the father of the node i+ 1

in the final tree. Thus, all remaining nodes on the stack lie on the path leading from the

root to the father of i+ 1. Moreover, the joining operation possibly changed the weight

of the arcs in the path leading from the father of i+ 1 to the node i, thus, the weight of

the arcs in the path ψ was not changed, as claimed. Finally, the path from the root to

i is the rightmost one in the tree constructed up to the step i.

(iv) At the beginning of the ith step, we pop a node ν from the stack and add an arc

(ν, i). The stack contains nodes that labels are smaller than i and thus ν < i. Moreover,

as we have already shown, ν lies on the rightmost path of the tree, thus, the new added

node i is added to the right of that path. Therefore, (i)–(iii) of Definition 1.6 hold and

T ′ = ({1, 2, . . . , i}, E ∪ {(ν, i)}, w) is a plane multitree. If πi = Uk, then we only add
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some nodes to the stack and the structure of the tree is not changed. Thus, T ′ is a plane

multitree, as claimed. If πi = Dk, then we pop k − 1 nodes from the stack and join

them to their rightmost sons in E. Because every node in {1, 2, . . . , i} has the father,

the joining operation is well defined and it only changes the weight function w on the

set of arcs E. Hence, the resulting tree i a plane multitree.

Corollary 3.12. For n ≥ 2, if π ∈ R(n), then ρn(π) ∈ T (n).

Proof. This follows from Lemma 3.11 (iv) for i = n.

Figure 3.8: On the left: an up step πi = Uk in a Raney path π with the elements of
Ππ(i) drawn using open circles. The points of Ππ(i) lie weakly between the initial ilπ(i)
and the ending elπ(i) levels (drawn using dotted lines) of the step πi. On the right: a

fragment of the multitree ρn(π) with the vertex i and its sons.

Lemma 3.13. Let π = π1 · · ·πn ∈ R(n), with n ≥ 2. Let T = (V,E,w) = ρn(π). If

πi = Uk is an up step of π and Ππ(i) = ((x1, y1), . . . , (xs, ys)), then

sonsT (i) =
(
(x1 + 1)y1−y2 , (x2 + 1)y2−y3 , . . . , (xs−1 + 1)ys−1−ys , (xs + 1)ys−ilπ(i)+1

)
,

(see Figure 3.8).

Proof. By Lemma 3.11, the y-coordinate of the ending point of π1 · · ·πi is equal to the

size of the stack Sρ after i steps of ρn(π). The elements of the stack Sρ are the indexes of

up steps of π. Indeed, only in up steps we push new nodes to the stack. By Lemma 3.11

(i), at the beginning of the ith step, the stack has ilπ(i) elements. In the ith step, the

function ρn pops one element from Sρ and pushes k + 1 copies of the node i. Hence,

after i steps of ρn, the size of the stack is elπ(i) and the first k+ 1 elements on the stack

are the copies of the node i. The jth copy of the node i, for 1 ≤ j ≤ k + 1, will remain

on the stack until it will be popped in the first step r of ρn(π), with r > i, in which one

of the two following conditions holds:

1. πr is a step (up or down) that starts at the level elπ(i)−j+1. In this case, the copy

of the node i is popped at the beginning of the rth step of ρn(π) and corresponds

to the main edge (i, r), and thus the node r will be a son of i. Moreover, the

starting point of πr is on the list Ππ(i).
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2. πr is a down step that starts above the level elπ(i) − j + 1 and ends below this

level. In this case, the copy of the node i is popped in part b) of the rth step of

ρn(π) and corresponds to an additional edge (i, p), where p is the rightmost son of

i in the constructed multitree so far, i.e., after these first r steps of ρn(π).

Figure 3.9: On the left: the Raney path π running from (0, 1) to (9, 0), the numbers
below the path on the line x = i represent labels of nodes on the stack Sρ after i steps.

The top of the stack is drawn using open circle. On the right: the final tree ρ9(π).

Therefore, the content of the stack Sρ can be directly restored from the path (see Fig-

ure 3.9 and Example just below the proof). Namely, suppose that after i steps of

ρn(π), the stack Sρ contains elπ(i) nodes (v1, v2, . . . , velπ(i)) and v1 is on the top (see

Figure 3.10). For each j ∈ {1, 2, . . . , elπ(i)}, we have

vj = max
{
k : 1 ≤ k ≤ i, πk is an up step, ilπ(k) ≤ elπ(i)− j + 1 ≤ elπ(k)

}
.

Figure 3.10: The stack Sρ (right) after 8 steps of ρ9 acting on the path
U3U2D3U2D1U1U1U0D6 (left). The top of the stack is drawn using an open circle.

The first k + 1 nodes on the stack Sρ are the copies of the node i and each of them will

be popped in next steps of ρn(π) in case (a) or in case (b) given above. Observe that

the list of points Ππ(i) contains exactly these lattice points that are the starting points

of steps πr (up or down) and for which the copy of the node i is popped in the case (a).

For j ∈ {1, . . . , s}, the point (xj , yj) in Ππ(i) is the starting point of πxj+1 and thus the

node (xj + 1) will be a son of i in the final tree.

Hence, the list Ππ(i) determines the list of sons of the node i in ρn(π). Namely, because

Ππ(i) = ((x1, y1), . . . , (xs, ys)), we see that the node i will have exactly s sons (x1 +1) <

(x2 + 1) < · · · < (xs + 1). Moreover, in the final tree ρn(π), the weight of the arc
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(i, xj + 1) will be equal to the difference yj − yj+1 for j < s and ys + 1− ilπ(i) for j = s

(see Figure 3.8). Indeed, in the (x1 + 1)th step, we add the main edge (i, x1 + 1) and

then in some steps t, with x1 + 1 ≤ t ≤ x2, we add y1 − y2 additional edges (i, x1 + 1),

because x1 + 1 is the rightmost son of i so far. In the (x2 + 1)th step, we add the next

main arc (i, x2 + 1) and then in some steps t, with x2 + 1 ≤ t ≤ x3, we add y2 − y3

additional edges (i, x2 + 1), because x2 + 1 is the rightmost son of i so far. And so on,

until all copies of the node i are popped from the stack.

Example. Let π = U3U2D3U2D1U1U1U0D6 (see Figure 3.9). We have π3 = U3 and

Ππ(3) = ((3, 5), (5, 3), (6, 2)). After the 2nd step of ρ9(π), the stack Sρ contains exactly

two copies of the node 1. In the 3rd step, the function ρ9(π) pops one node 1 and pushes

4 copies of the node 3 to the stack Sρ. Thus, after the 3rd step, the content of the stack

is (3, 3, 3, 3, 1) and 3 is on the top. The first copy of the node 3 (the top) will be popped

at the beginning of the 4th step and it will correspond to the main edge (3, 4), the second

copy of 3 will be popped in part b) of 5th step and it will correspond to the additional

edge (3, 4), the third copy of 3 will be popped at the beginning of 6th step and it will

correspond to the main edge (3, 6), and the last copy of 3 will be popped at the beginning

of 7th step and it will correspond to the main edge (3, 7). Thus, sonsT (3) = (42, 61, 71),

where T = ρ9(π).

Definition 3.14. The map κn : T (n)→ R(n) for n ≥ 2.

Let T = (V,E,w) ∈ T (n) and V = {1, 2, . . . , n}, with n ≥ 2. We specify κ(T ) = π =

π1 · · ·πn in the following n steps. First, we set the beginning of π to be the lattice point

(0, 1) and set Sκ to be the empty stack of nodes.

Step 1. We have odeg(1) = d for some d ≥ 1. Set π1 = Ud−1 and push the d sons

(possibly repeated) of 1 to Sκ in order from right to left (leftmost son is on the

top).

Step i for i ∈ {2, 3, . . . , n}. Pop the node from Sκ and denote it by ν. We have two

following cases:

(a) if odeg(ν) = d and d ≥ 1, then set πi = Ud−1 and push all these d sons

(possibly repeated) of ν to Sκ in order from right to left (leftmost son is on

the top),

(b) if odeg(ν) = 0, then set πi = Dr+1, where r is the number of nodes above

(i + 1) in Sκ if i < n or r is the number of all remaining nodes on the Sκ if

i = n, and pop these r elements from Sκ (in the sequel we shall see that in

such case if i < n, then the node i+ 1 is on the stack).

Remarks.
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(i) The map κ traverses the plane multitree T according to the depth-first search

algorithm (DFS for short) and visits nodes of T according to their labels. Namely,

in the ith step, 2 ≤ i ≤ n, the popped node ν is exactly the node i (see Lemma 3.15

given below). Suppose that the root of T has s sons v1 < v2 < · · · < vs. First,

DFS visits the root v of the tree and recursively traverses the subtree Tv1 rooted in

v1. After visiting all nodes of Tv1 , DSF recursively traverses the subtree Tv2 rooted

in v2, and so on. After visiting all subtrees of the root, DFS ends the search.

(ii) There is a one-to-one correspondence between the elements on the stack Sκ and

the arcs of T . The nodes on the stack correspond to the lower ends of the arcs. In

the first step, the nodes pushed to the stack correspond to the arcs outgoing from

1. As we have noted in (i), in the ith step, the popped node ν is exactly the node

i. If the node i is not a leaf, then we push its outgoing edges to the stack. If i is

a leaf, then we pop all nodes above (i+ 1) in Sκ if i < n or all remaining nodes if

i = n, respectively. Moreover, these nodes lie on the path leading from the father

of (i + 1) to i, or from the root to n if i = n (see Lemma 3.15). Thus, they were

visited in the previous steps and correspond to the additional edges.

(iii) The map κn changes every leaf into a down step and every internal node into an

up step. Moreover, if i ∈ V is an internal node of T , then the list sonsT (i) uniquely

determines the list of points Ππ(i) (see Lemma 3.17 given below for more details).

Figure 3.11: The first four steps of κ6(T ) for the tree T given in Figure 3.7. Dotted
lines correspond to the content of the stack Sκ. The top of the stack is represented
using an open circle. The numbers below the Raney path represent labels of nodes on
the stack Sκ and the numbers in circles are the elements on the top of the stack. The

complete Raney path κ6(T ) is U5D3U2D2D2D1.

Example. The four pictures (1)–(4) in Figure 3.11 present the first four steps of κ6

acting on the tree given in Figure 3.7.
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Remark. Recall that Ω-path is a lattice path that consists of steps in the set Ω =

{(1, k) : k ∈ Z} (see Definition 1.1 on page 5). Note that a Raney path of length n is

an Ω-path running from (0, 1) to (n, 0) in which only the ending point of the path lies

below the line y = 1.

Lemma 3.15. Let n ≥ 2 and 1 ≤ i ≤ n. Suppose that the stack Sκ after i steps of κ(T )

contains s nodes.

(i) The path π1 · · ·πi is an Ω-path running from (0, 1) to (i, s).

(ii) If i < n, then the top of the stack Sκ is the node i+ 1. Moreover, if i+ 1 is a leaf

and i+ 1 < n, then the node i+ 2 is on the stack.

(iii) The stack Sκ contains only these nodes whose fathers lie on the path leading from

the root to i, moreover, if i < n, then these nodes also lie on the path leading from

1 to the father of i+ 1. Moreover, they lie on the path and the stack in the same

order, more precisely, if a path leading from the root to the father of v is shorter

than the path from the root to the father of u 6= v, then u is nearer to the top of

the stack than v does, if these paths have the same length, then u is nearer to the

top if u < v.

(iv) The stack Sκ contains all sons u of the nodes of the path leading from the root to

the node i such that u > i. The stack does not contain nodes that are to the left

from the path.

Proof. The proof is by induction on i. A simple verification shows that the claim is

true for i = 1. Indeed, if odeg(1) = s, then the stack Sκ contains s elements. All these

elements satisfy (ii)–(iv), the top is 2, and the path π1 = Us−1 starts at (0, 1) and ends

at (1, s), as claimed. Let i ∈ {2, 3, . . . , n} and consider the ith step of κ.

(i) If odeg(i) = k and k ≥ 1, then we pop one node, push k nodes, and set πi = Uk−1.

It follows that the stack contains now s+ k − 1 nodes and the path π1 · · ·πi runs from

(0, 1) to (i, s + k − 1), as claimed. If odeg(i) = 0, then we pop r + 1 nodes in total,

where r is the number of nodes above i+ 1 on Sκ, and we set πi = Dr+1. It follows that

the stack contains now s− r − 1 nodes and π1 · · ·πi runs from (0, 1) to (i, s− r − 1), as

claimed.

(iii)-(iv) By the induction hypothesis, after the (i − 1)th step, the fathers of nodes on

Sκ lie on the path leading from 1 to (i− 1). The top of Sκ is now i and Sκ contains only

these nodes whose fathers lie on the path leading from 1 to the father of i. Therefore, if

odeg(i) > 0, then we push all sons of i to Sκ from left to right, and the results follows.

On the other hand, if odeg(i) = 0, then we pop nodes above (i+ 1) in Sκ, which yields

that the remaining nodes on Sκ also lie on the path leading from 1 to i and if i < n,
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then on the path leading from 1 to the father of i+ 1. Moreover, the sons of all vertices

staying on the path leading from the root to the node i are on the stack.

(ii) If odeg(i) > 0, then the leftmost child of i is i + 1, and thus after the ith step, the

top of the stack is i+ 1. If odeg(i) = 0, then we pop all nodes above i+ 1 from Sκ and

the top of the stack is now i+1. By the induction hypothesis, we see that the node i+1

is on the stack. In both cases, if i+ 1 is a leaf, then the structure of the plane multitree

ensures that the node i+ 2 is a son of a node on the path leading from the root to the

node i. Thus, from the property (iv), we see that i+ 2 is on the stack.

Corollary 3.16. For n ≥ 2, if T ∈ T (n), then κn(T ) ∈ R(n).

Proof. The stack Sκ becomes empty only after the n steps of κn. By Lemma 3.15 for

i = n, we see that κn(T ) is a Raney path running from (0, 1) to (n, 0) in which only the

ending point lies below the line y = 1.

Lemma 3.17. Let n ≥ 2 and T = (V,E,w) ∈ T (n), where V = {1, 2, . . . , n}. Let

π = π1 · · ·πn = κn(T ). If i ∈ V is an internal node and sonsT (i) = (vm1
1 , vm2

2 , . . . , vmss ),

then

Ππ(i) =
(
(v1 − 1, y1), (v2 − 1, y2), . . . , (vs − 1, ys)

)
,

where yj = mj +mj+1 + · · ·+ms − 1 + ilπ(i) for j ∈ {1, . . . , s}.

Proof. Suppose that after i − 1 steps of κn, the stack Sκ contains exactly l nodes. By

Lemma 3.15 (i), this number is the y-coordinate of the ending point of π1 · · ·πi−1. Thus,

l = ilπ(i). Because the node i is an internal one and because odeg(i) = m1+m2+· · ·+ms,

we conclude that at the beginning of the ith step of κn, we pop the node i, push exactly

odeg(i) possibly repeated sons of the node i, and set πi = Uk−1, where k = odeg(i).

Thus, π1 · · ·πi−1πi ends at (i, l+ k− 1) and Sκ contains now l+ k− 1 nodes, where the

first k ones are all the sons of the node i, i.e.,

Sκ = (v1, . . . , v1︸ ︷︷ ︸
m1

, v2, . . . , v2︸ ︷︷ ︸
m2

, · · · , vs, . . . , vs︸ ︷︷ ︸
ms

, . . .︸︷︷︸
the remaining l−1 nodes

).

Recall that every node on the stack corresponds to the lower end of an edge in E, and

it can be popped in one of two following cases: a) at the beginning of the rth step,

with r > i, as the main edge, and b) in the part (b) of the rth step, with r > i, as an

additional edge. It is clear that for j ∈ {1, . . . , s}, the first appearance of vj on the stack

Sκ corresponds to the main edge (i, vj) and the remaining nodes vj correspond to the

additional edges (i, vj) (see Figure 3.12).
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By Lemma 3.15 (ii), the first appearance of the node vj will be popped at the beginning

of (vj)th step, thus, after (vj − 1) steps of κn, the size of the stack will be equal to

y′j = mj +mj+1 + · · ·+ms + l− 1. Therefore, the path π1 · · ·πvj−1 will end at the point

(vj − 1, y′j). Moreover, this point is the first point on the level y′j reached by the path

π1 · · ·πvj−1 weakly to the right of the line x = i, i.e.,

vj − 1 = min{k : k ≥ i, the path crosses the point (k, y′j)}.

Thus, (vj − 1, y′j) is the point of Ππ(i). Moreover, the list Ππ(i) contains only these s

points determined by the first occurrences of v1, v2, . . . , vs.

Figure 3.12: The stack Sκ (center) after 2 steps of κ acting on the plane multitree
T (left) and points of Ππ(2) determined by the list of sonsT (2). Additional edges are
drawn using dotted lines. The first appearances of sons of the node 2 on the stack Sκ

are drawn using open circles.

Example. Let T = (V,E,w) be the plane multitree with 8 nodes given in Figure 3.12.

The node 2 is an internal node and sonsT (2) = (32, 5, 72). The stack Sκ after 2 steps of

κ contains 7 nodes (3, 3, 5, 7, 7, 2, 8) (see the center of Figure 3.12) and the first 5 nodes

of the stack determine Ππ(2) = ((2, 7), (4, 5), (6, 4)).

Let ψ be a path of a plane multitree and Eψ be a set of edges of ψ. We set

α(ψ) =
∑
e∈Eψ

(w(e)− 1). (3.2)

Note that α(ψ) denotes the number of additional edges in ψ. For instance, we have

α(ψ) = 3, where ψ is the path leading from the root 1 to the node 4 in the tree given in

Figure 1.10.

Lemma 3.18. For n ≥ 2, the map ρn : R(n)→ T (n) is a bijection.

Proof. We shall show that for any π ∈ R(n) and T ∈ T (n), we have (i) κn(ρn(π)) = π

and (ii) ρn(κn(T )) = T .
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(i) Take π = π1 · · ·πn ∈ R(n), with n ≥ 2. Let T = (V,E,w) = ρn(π), with V =

{1, 2, . . . , n} and µ = µ1 · · ·µn = κn(ρn(π)). We shall show that for j ∈ {1, . . . , n}, we

have π1 · · ·πj = µ1 · · ·µj . The proof is by induction on j. Let j = 1. If π1 = Uk, then

odeg(1) = k + 1 which implies µ1 = Uk, as claimed. Next, let 1 < j ≤ n and assume

that π1 · · ·πj−1 = µ1 · · ·µj−1. Suppose that πj = Dk, the case where πj is an up step is

handled as π1. Let us consider the jth step of ρn. We add a main edge (ν, j) to E, set

w((ν, j)) = 1, and set the node j to be a leaf in final tree ρn(π). Next, we pop exactly

k − 1 nodes from Sρ and join each of them to their rightmost son in the constructed

set of edges E. Note that these nodes lie on the path ψ leading from the father of the

node (j + 1) to the node j or from the root to the node i if i = n in the final tree ρn(π)

(see Lemma 3.11). This joining operation increases the weight of arcs in the path ψ and

whose weight before this operation were everywhere equal to one. Moreover, the weight

of these arcs will not be changed in the further steps. Thus, α(ψ) = k − 1 in the final

tree ρn(π).

On the other hand, let us consider the jth step of κ acting on T = ρn(π). The node j

is a leaf in T , therefore, we set µj = Dr+1, where r is the number of nodes above the

element (j + 1) in Sκ if j < n or the number of all remaining nodes in Sκ if j = n.

Moreover, these nodes designate additional edges in the path ψ leading from the father

of the node (j + 1) to j or from the root to the node j if j = n. We pop these nodes

from Sκ. Now the top of the stack is the node j + 1 if j < n or the stack is empty

if j = n. Moreover, now, the stack Sκ does not contain any of nodes of the path ψ.

Thus, α(ψ) = r, r = k − 1 and µj = Dk. From the above for j = n, we conclude that

κn(ρn(π)) = π.

(ii) Let T = (VT , ET , wT ) ∈ R(n), with VT = {1, 2, . . . , n}. Let R = (VR, ER, wR) =

ρn(κn(T )), with VR = {1, 2, . . . , n}. First, observe that for every i ∈ {1, . . . , n}, the node

i is a leaf in T if and only if i is a leaf in R. Indeed, only leaves are mapped to down steps

and vice versa. Similarly, the node i is an internal node in T if and only if i is an internal

node in R. Finally, we must show that if i is an internal node, then sonsT (i) = sonsR(i).

Let π = π1 · · ·πn = κ(T ) and suppose that sonsT (i) = (vm1
1 , vm2

2 , . . . , vmss ). First, by

Lemma 3.17,

Ππ(i) = ((x1, y1), (x2, y2), . . . , (xs, ys)),

where for j ∈ {1, . . . , s}, we have xj = vj − 1 and yj = mj +mj+1 + · · ·+ms− 1. Next,

by Lemma 3.13, we obtain that sonsR(i) is given as follows:

sonsR(i) =
(
(x1 + 1)y1−y2 , (x2 + 1)y2−y3 , . . . , (xs−1 + 1)ys−1−ys , (xs + 1)ys+1

)
=
(
vm1

1 , vm2
2 , . . . , v

ms−1

s−1 , vmss
)

= sonsT (i).
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Hence, T = R and thus T = ρn(κn(T )).

Corollary 3.19. For all N ≥ 0 and n ≥ 2, the map ρn : RN (n) → TN+1(n) is a

bijection.

Proof. Observe that for every up step Uk, the map ρn produces a node with outdegree

k+1. Conversely, for every node with outdegree k ≥ 1, the map κn produces an up step

Uk−1. Therefore, every N -Raney path of length n is mapped to an (N + 1)-ary plane

multitree with n nodes and vice versa.

Now, we shall present a few useful properties of the bijection ρn that will play an essential

role in the enumeration of plane multitrees in the next sections.

Definition 3.20. Take π ∈ R(n) and suppose that π has exactlym up steps Uu1 , . . . , Uum .

Let ε(π) denote the sum (u1 + 1) + · · ·+ (um + 1).

Corollary 3.21. Let π ∈ R(n) and T = ρn(π).

1. The number of nodes with outdegree d ≥ 1 in T equals the number of up steps Ud+1

in the path π.

2. The number of internal nodes in T equals the number of all up steps in π.

3. The number of leaves in T equals the number of all down steps in π.

4. The number of edges in T equals ε(π).

3.3 Raney sequences and Raney paths

In this section we show that there is a one-to-one correspondence between N -Raney

paths and (m,n, d)-Raney sequences. Let m, d ≥ 1 and n ≥ 0, originally, an (m,n, d)-

Raney sequence is a sequence of mn + d integers in the set {1, 1 −m} that sums to d,

and its every partial sum is positive (see Graham et al. [21, p. 360]). For our purposes,

we shall use a simple modification of this notation.

Definition 3.22. For m, d ≥ 1 and n ≥ 0, an (m,n, d)-Raney sequence is a sequence of

(mn+ d) integers a1, a2, . . . , amn+d satisfying

(i) ai ∈ {−1,m− 1} for 1 ≤ i ≤ mn+ d,

(ii) a1 + a2 + · · ·+ amn+d = −d, and

(iii) a1 + a2 + · · ·+ ai > −d for 1 ≤ i < mn+ d.

Let R(m,n, d) denote the number of all (m,n, d)-Raney sequences.
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Example. An example of a (3, 2, 1)-Raney sequence is (2,−1, 2,−1,−1,−1,−1). An

example of a (4, 2, 3)-Raney sequence is (−1, 3,−1,−1,−1,−1, 3,−1,−1,−1,−1).

If n = 0, then there is only one (m, 0, d)-Raney sequence (a1, . . . , ad) = (−1,−1, . . . ,−1).

If n ≥ 1, then one can observe that every (m,n, d)-Raney sequence has exactly n terms

valued by m − 1 and (m − 1)n + d terms valued by −1. Using the Raney lemma

(see Lemma 2.16 on page 30), we see that the number R(m,n, 1) of all (m,n, 1)-Raney

sequences is

R(m,n, 1) =
1

mn+ 1

(
mn+ 1

n

)
(m ≥ 1, n ≥ 0). (3.3)

Indeed, having the family of all sequences of mn + 1 integers in the set {−1,m − 1}
that sum to −1, exactly 1/(mn + 1) of them have all partial sums nonnegative (see

Graham et al. [21, p. 360] for more details). This result can be generalized to the case

of (m,n, d)-Raney sequences for any d ≥ 1. Observe that an (m,n, d)-Raney sequence

σ is the concatenation of exactly d sequences σ(1), . . . , σ(d) such that each σ(i) is an

(m,ni, 1)-Raney sequence for some ni ≥ 0 and n1 + · · · + nd = n. It follows that there

are exactly d cyclic shifts of any sequence of mn+ d integers in the set {−1,m− 1} that

sums to −d such that the property (iii) from Definition 3.22 is satisfied. Therefore (see

[21, Eq. (7.70)]),

R(m,n, d) =
d

mn+ d

(
mn+ d

n

)
(m ≥ 1, d ≥ 1, n ≥ 0). (3.4)

Lemma 3.23. For n ≥ 1 and N ≥ 0, there is a bijection between (N + 1, n, 1)-Raney

sequences and N -Raney paths of length n.

Proof. Let σ = (b1, . . . , bNn+n+1) be an (N + 1, n, 1)-Raney sequence of integers in the

set {−1, N}. The sum of σ is −1 and for any 1 ≤ i < Nn+n+1, we have b1+· · ·+bi ≥ 0.

The sequence σ has exactly n terms equal to N . Moreover, b1 = N , therefore, we can

partition σ into n subsequences σ(1), . . . , σ(n) in the following way:

σ =

(
N,−1, . . . ,−1︸ ︷︷ ︸

σ(1)

, N,−1, . . . ,−1︸ ︷︷ ︸
σ(2)

, . . . , N,−1, . . . ,−1︸ ︷︷ ︸
σ(n)

)
. (3.5)

For i ∈ {1, . . . , n}, let si denote the sum of σ(i). Observe that each σ(i) corresponds to

the lattice step (1, si) and this step is in {Sk = (1, k) : k ≤ N}. Because the property

(iii) of Definition 3.22 is satisfied, the path ((1, s1), . . . , (1, sn)) is an N -Raney path of

length n. On the other hand, every N -Raney path in RN (n) can be represented as

(3.5), and thus, corresponds to an (N + 1, n, 1)-Raney sequence. It is clear that this

correspondence is one-to-one.
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Theorem 3.24. For all N ≥ 1 and n ≥ 1, the number TN (n) of N -ary plane multitrees

with n nodes is equal to

TN (n) =
1

Nn+ 1

(
Nn+ 1

n

)
=

1

n

(
Nn

n− 1

)
. (3.6)

Furthermore, TN (n) is equal to the number of (N − 1)-Raney paths of length n.

Proof. By Theorem 3.8, for all N ≥ 1 and n ≥ 1, |RN−1(n)| = |TN (n)| = TN (n). On

the other hand, by Lemma 3.23, |RN−1(n)| is equal to the number of (N,n, 1)-Raney

sequences. Using (3.3), we obtain the required formula.

Example. Let us calculate the size of T2(4). Using (3.6) yields

T2(4) =
1

4

(
8

3

)
= 14,

and all of these 2-ary plane multitrees with 4 nodes are given in Figure 1.11 on page 9.

Independently of (3.6), it is easy to observe that for all n ≥ 1 and N ≥ 1, we have

T1(n) = TN (1) = 1, TN (2) = N, TN (3) = N2 +

(
N

2

)
.

Lemma 3.25. For all 0 ≤ d ≤ N and n ≥ 2, the number of N -Raney paths of length n

in which the first step is Ud is equal to

N + d+ 1

N(n− 1) + d+ 1

(
(N + 1)(n− 1) + d− 1

n− 2

)
. (3.7)

Proof. Let A be the family of Raney paths running from (0, 1) to (n, 0) in which the

first step is Ud. Take π = π1 · · ·πn ∈ A and observe that π′ = π2 · · ·πn forms a Σ-path

running from (1, d+1) to (n, 0) in which Σ = {SN , SN−1, . . .} and only the ending point

lies below the line y = 1. Let B be the family of (N + 1, n, d + 1)-Raney sequences in

which the first term is N . Using the idea of the bijection from the proof of Lemma 3.23,

we shall show that there is a one-to-one correspondence between A and B.

Namely, let us remove the first step in every path in A. Thus, A contains now the family

of all Σ-paths running from (1, d+ 1) to (n, 0) in which only the ending point lies below

the line y = 1. Every path π′ ∈ A has n−1 steps π2, . . . , πn in Σ and can be represented

as the sequence of steps ((1, s2), (1, s3), . . . , (1, sn)), where each si ∈ {N,N−1, . . .}. The

sum s2 + s3 + · · ·+ sn is −d− 1 and every partial sum of (s2, s3, . . .n), except the total

sum, is greater than −d−1. Therefore, using the idea from the proof of Lemma 3.23, we

show that π′ can be represented as (3.5), and thus corresponds to an uniquely determined
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Raney sequence in B. On the other hand, every Raney sequence in B corresponds to a

path in A, and therefore, |A| = |B|.

To calculate the size of B, observe that the first term of any (N + 1, n− 1, d+ 1)-Raney

sequence is either N or −1. The number of these (N + 1, n− 1, d+ 1)-Raney sequences

in which the first term is −1 is R(N + 1, n− 1, d). Indeed, if we remove this first −1, we

obtain a Raney sequence that sums to −d. Thus, |B| = R(N + 1, n− 1, d+ 1)−R(N +

1, n− 1, d). Using (3.4) and simplifying the result we obtain the required formula.

3.4 Counting multitrees by leaves

Taking into account two previous sections we derive certain enumerating functions on

plane multitrees. We start with the restriction on the number of leaves. For all N ≥ 1

and 1 ≤ k ≤ n, let LN (n, k) denote the number of N -ary plane multitrees with n

nodes and exactly k leaves. For instance, L2(4, 2) = 6 and all of such trees are given in

Figure 3.13.

Figure 3.13: All 2-ary plane multitrees with 4 nodes and exactly 2 leaves.

Theorem 3.26. For all N ≥ 1 and 1 ≤ k ≤ n, we have

LN (n, k) =
1

n

(
n

k

) n−k∑
s=0

(−1)s
(
n− k
s

)(
N(n− k − s)

n− 1

)
. (3.8)

Proof. By Corollary 3.21, the number of N -ary plane multitrees with k leaves is equal

to the number of (N − 1)-Raney paths with exactly k down steps. Similarly as in

the proof of Lemma 3.23, we change an (N − 1)-Raney path ((1, s1), . . . , (1, sn)) into

(N,n, 1)-Raney sequence

σ =
(
N − 1,−1, . . . ,−1︸ ︷︷ ︸

σ(1)

, N − 1,−1, . . . ,−1︸ ︷︷ ︸
σ(2)

, . . . , N − 1,−1, . . . ,−1︸ ︷︷ ︸
σ(n)

)
,

where si is the sum of the subsequence σ(i) for i ∈ {1, . . . , n}. A down step in a

Raney path uniquely corresponds to a subsequence δ = (N − 1,−1,−1, . . . ,−1), where

the number of (−1)’s is greater than N − 1, in a Raney sequence. Let us treat the

sequence σ as a placement of (N − 1)n+ 1 indistinguishable balls (elements −1) into n

distinguishable boxes (formed by (N − 1)’s).
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First, let A be the number of placements of (N − 1)n+ 1 indistinguishable balls into n

distinguishable boxes such that exactly k of them contain more than N − 1 balls. Every

such placement corresponds to an Σ-path running from (0, 1) to (n, 0) that has exactly

k down steps and Σ = {SN−1, SN−2, . . .}. By the Raney lemma (see Lemma 2.16 on

page 30), we see that only 1/n of these placements correspond to the paths in which

only the ending point lies below the line y = 1. Therefore, LN (n, k) = A/n.

To calculate A, we fix k boxes on
(
n
k

)
ways and fill each of them by N balls. The

remaining ((N − 1)(n − k) − k + 1) balls are placed into n boxes with the restriction

that each of these n − k unfixed boxes can contain at most N − 1 balls. Now, we use

the inclusion-exclusion principle. Let A(i1, . . . , is) denote the number of ways to place

((N−1)(n−k)−k+1) balls into n boxes such that each of the boxes indexed by i1, . . . , is

contains at least N balls. The remaining balls ((N − 1)(n− k)− k + 1− sN) balls are

placed in n boxes in all possible ways. Recall that the number of placements of a balls

into b boxes in all possible ways is
(
a+b−1
b−1

)
. Therefore, A(i1, . . . , is) =

(
N(n−k−s)

n−1

)
. By

the inclusion-exclusion principle,

A =

(
n

k

) n−k∑
s=0

(−1)s
∑

1≤i1<···<is≤n−k
A(i1, . . . , is),

and the result follows.

Example. The array (L2(i, j))i,j for 1 ≤ i ≤ 8 and 1 ≤ j ≤ 5, is



1 0 0 0 0

2 0 0 0 0

4 1 0 0 0

8 6 0 0 0

16 24 2 0 0

32 80 20 0 0

64 240 120 5 0

128 672 560 70 0


.

This arrays is denoted by A091894 in OEIS [32].

Corollary 3.27. For N ≥ 1 and 1 ≤ k ≤ n, the number of N -ary plane multitrees with

k internal nodes is

LN (n, n− k) =
1

n

(
n

k

) k∑
s=0

(−1)s
(
k

s

)(
N(k − s)
n− 1

)
. (3.9)
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3.5 Counting multitrees by edges

In this section, we consider another restriction on the family of N -ary plane multitrees

with n nodes. Namely, we derive the number of these plane multitrees that have a

fixed number of edges. For N,n, s ≥ 1, let EN (n, s) denote the number of N -ary plane

multitrees with n nodes and s edges. For instance, we have E2(4, 4) = 6 (see Figure 3.14).

Figure 3.14: All 2-ary plane multitrees with 4 nodes and exactly 4 edges.

Theorem 3.28. For all N,n, s ≥ 1, we have

EN (n, s) =
1

n

n−1∑
i=1

i∑
j=0

(−1)j
(
n

i

)(
i

j

)(
s− jN − 1

i− 1

)
. (3.10)

Proof. By Corollary 3.19, the number of N -ary plane multitrees with n nodes is the

number of (N − 1)-Raney paths of length n. By Corollary 3.21, we see that the number

of edges in a plane multitree T with n nodes is equal to ε(π) (see Definition 3.20 on

page 63), where π = ρn(T ) and ρn is a bijection from Section 3.2. Therefore, instead of

counting N -ary plane multitrees with n nodes and s edges, we shall find the size of the

family, denoted by A, of (N − 1)-Raney paths π of length n for which ε(π) = s.

Every (N − 1)-Raney path has at least one and at most (n− 1) up steps. Therefore, we

partition the family A into n − 1 subsets A1, . . . , An−1 according to the number of up

steps. Every path π in Ai has i up steps and (n− i) down steps. There are
(
n
i

)
ways to

choose the indexes of these i up steps of π. Suppose that Uu1 , . . . , Uui are the up steps of

π. Because ε(π) = s, we have u1 + · · ·+ ui + i = s and each uj ∈ {0, 1, . . . , N − 1}. The

number of ways to fix these u1, . . . , ui is
∑i

j=0(−1)j
(
i
j

)(
s−jN−1
i−1

)
, and may be obtained by

the exclusion-inclusion principle in much the same way as in the proof of Theorem 3.26.

We only note that in this case, we have (s − i) balls which we need to put in i boxes

such that every box can contain at most N − 1 balls.

Having fixed up steps, we need to fix down steps. Suppose that Dd1 , . . . , Ddn−i are the

down steps of π ∈ Ai. Observe that the sum d1+· · ·+dn−i is equal to ε(π)−i+1 = s−i+1

and each dj is a positive integer. Thus, the number of determining such sequences is(
s−i

n−i−1

)
. Observe that not every placement of these up and down steps gives a Raney

path in which only the ending point lies below the line y = 1. By the Raney lemma,
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only 1/n of these placements form Raney paths. Therefore,

|Ai| =
1

n

(
n

i

) i∑
j=0

(−1)j
(
i

j

)(
s− jN − 1

i− 1

)(
s− i

n− i− 1

)
,

and EN (n, s) = |A1|+ · · ·+ |An−1|.

Example. The array (E2(i, j))i,j≥0 is denoted by A091869 in OEIS [32]. Let us show

the array (E3(i, j))i,j for 1 ≤ i, j ≤ 8,



0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0

0 2 4 3 2 1 0 0

0 0 5 12 15 13 6 3

0 0 0 13 40 64 64 49

0 0 0 0 36 135 255 320

0 0 0 0 0 104 456 1011

0 0 0 0 0 0 309 1554


.

Corollary 3.29. For N ≥ 1 and n ≥ 1, the number of N -ary plane trees (without

additional edges) with n nodes is

EN (n, n− 1) =
1

n

n−1∑
i=1

i∑
j=0

(−1)j
(
n

i

)(
i

j

)(
n− jN − 2

i− 1

)
. (3.11)

Remark. These numbers are considered by Takacs [34] and appear in OEIS [32] as the

sequences A001006 (N = 2), A036765 (N = 3), A036766 (N = 4).

3.6 Counting nodes with specified outdegree

For N ≥ 1, n ≥ 1, and 0 ≤ d ≤ N , let GN (n, d) denote the number of N -ary plane

multitrees whose root has outdegree d, and let MN (n, d) denote the number of nodes of

outdegree d in all N -ary plane multitrees with n nodes. For instance, G2(4, 2) = 9, and

there are M2(4, 2) = 21 nodes with outdegree 2, M2(4, 1) = 15 nodes with outdegree 1,

and M2(4, 0) = 20 nodes with outdegree 0 (leaves) in all 2-ary plane multitrees with 4

nodes (see Figure 3.15).

Theorem 3.30. For 1 ≤ d ≤ N and n ≥ 2, we have

GN (n, d) =
N + d− 1

(N − 1)(n− 1) + d

(
N(n− 1) + d− 2

n− 2

)
, (3.12)
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Figure 3.15: All 2-ary plane multitrees with four nodes. Nodes with outdegree 2 are
drawn using open circles.

GN (1, 0) = 1, GN (1, d) = 0 for d ≥ 1, and GN (n, 0) = 0 for n ≥ 2.

Proof. Let us consider the family of all N -ary plane multitrees with n nodes whose

root has outdegree d. By Corollary 3.21, we see that the number of them is equal to

the number of (N − 1)-Raney paths of length n in which the first step is Ud−1. Using

Lemma 3.25, we obtain the required formula.

Theorem 3.31. For 1 ≤ d ≤ N and n ≥ 2, we have

MN (n, 0) =

(
N(n− 1)

n− 1

)
, (3.13a)

MN (n, d) =

(
N(n− 1) + d− 1

n− 2

)
, (3.13b)

MN (1, 0) = 1, MN (n, 0) = 0 for n ≥ 2, and MN (1, d) = 0 for d ≥ 1.

Proof. (a) Assume d = 0 and observe that MN (n, 0) =
∑n

k=0 k LN (n, k). Let us de-

note by f(z) the power series
∑

n≥0

∑n
k=0 k LN (n, k)zn. With this notation, we have

MN (n, 0) = [zn]f(z). To obtain the formula, we use the so-called Snake Oil Method de-

veloped by Wilf [41, Sec. 4.3] and apply the basic properties of the binomial coefficients.

Relabeling k → n− k, we obtain

f(z) =
∑
n≥0

n∑
k=0

n−k∑
s=0

(−1)s
(
n− 1

n− k

)(
n− k
s

)(
N(n− k − s)

n− 1

)
zn

=
∑
n≥0

∑
k≥0

k∑
s=0

(−1)s
(
n− 1

k

)(
k

s

)(
N(k − s)
n− 1

)
zn

=
∑
k≥0

k∑
s=0

(−1)s
(
k

s

)(
N(k − s)

k

)∑
n≥0

(
N(k − s)− k
n− 1− k

)
zn

=
∑
s≥0

∑
k≥s

(−1)k−s
(
k

s

)(
Ns

k

)
zk+1(1 + z)Ns−k
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=
∑
s≥0

(
Ns

s

)
zs+1(1 + z)(N−1)s

∑
k≥0

(−1)k
(

(N − 1)s

k

)
zk(1 + z)−k

=
∑
s≥0

(
Ns

s

)
zs+1(1 + z)(N−1)s

(
1− z

1 + z

)(N−1)s

=
∑
s≥0

(
Ns

s

)
zs+1.

(b) Fix d ∈ {1, 2, . . . , N}. To calculate the number of nodes of outdegree d in all N -

ary plane multitrees of n nodes, observe that any such node in a plane multitree T

uniquely corresponds to an up step Ud−1 in the path π = ρn(T ) under the bijection from

Section 3.2. Therefore, the required number is equal to the number of all occurrences of

the step Ud−1 in all (N − 1)-Raney paths of length n.

We apply Theorem 2.19 from Chapter 2 to obtain this number. First, we set Σ to be

{SN−1, SN−2, . . .}. Observe that there is a simple one-to-one correspondence between

the family of 1-primary Σ-paths in PΣ(1, n) (see Definition 1.2 on page 6) and the family

RN−1(n) of (N − 1)-Raney paths of length n. Therefore, by Theorem 2.19, the number

of steps Ud−1 in all paths of RN−1(n) is |FΣ(d, n− 1)|, where FΣ(d, n− 1) is the family

of free Σ-paths running from (0, 0) to (n− 1,−d) (see Definition 1.3 on page 6). Finally,

by Theorem 2.22, we obtain

|FΣ(d, n− 1)| = [y(N−1)(n−1)+d]
( ∑
Sk∈Σ

yN−1−k
)n−1

= [y(N−1)(n−1)+d]
1

(1− y)n−1
.

Using the binomial theorem, the result follows.

3.7 Statistical properties of plane multitrees

In this section we derive some statistical properties of plane multitrees. Namely, for

N ≥ 1 and n ≥ 1, let us consider the family of all nodes in all N -ary plane multitrees

with n nodes. The size of this family is nTN (n). For 0 ≤ d ≤ N , let B(N,n, d) denote

the ratio of the number of these nodes with outdegree d to the number of all nodes, i.e.,

B(N,n, d) =
MN (n, d)

nTN (n)
. (3.14)

Note that nB(N,n, d) is the expected number of nodes with outdegree d in an N -ary

plane multitree of n nodes. Next, for N ≥ 1 and n ≥ 1, let J(N,n) denote the expected
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outdegree of a node in an N -ary plane multitree of n nodes, i.e.,

J(N,n) =
1

nTN (n)

N∑
d=0

dMN (n, d). (3.15)

Corollary 3.32. For all n ≥ 2 and 1 ≤ d ≤ N , we have

B(N,n, 0) =
(Nn−N)n−1

(Nn)n−1 , (3.16a)

B(N,n, d) = (n− 1)
(Nn− 1−N + d)n−2

(Nn)n−1 , (3.16b)

where am = a(a− 1) · · · (a−m+ 1) for m ≥ 1, and a0 = 1.

Proof. The formulas directly follow from Theorem 3.24 and Theorem 3.31.

Remark. Dershowitz and Zaks [8] showed that the expected number of leaves in a plane

tree (without additional edges) with n nodes is n/2. By (3.16a), the expected number

of leaves in an N -ary plane multitree with n nodes is

(Nn−N)n−1

N(Nn− 1)n−2 . (3.17)

Lemma 3.33. For 1 ≤ d ≤ N and n ≥ 1, we have

lim
n→∞

B(N,n, 0) =

(
1− 1

N

)N
, (3.18a)

lim
N→∞

B(N,n, 0) =

(
1− 1

n

)n−1

, (3.18b)

lim
n→∞

B(N,n, d) =
1

N

(
1− 1

N

)N−d
, (3.18c)

lim
N→∞

B(N,n, d) = 0. (3.18d)

Proof. We show (3.18a). For n ≥ N + 2, we can reduce the fraction (3.16a) and rewrite

it as (Nn − n + 1)N ((Nn)N )−1. Next, we extract n from every term of products in

nominator and denominator to get

nN

nN
(N − 1 + 1/n)(N − 1 + 0/n) · · · (N − 1− (N − 2)/n)

N(N − 1/n) · · · (N − (N − 1)/n)
.

If n→∞, then the above tends to ((N − 1)/N)N , as claimed. The same method works

for the other limits.
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Theorem 3.34. We have

lim
N→∞

lim
n→∞

B(N,n, 0) = lim
n→∞

lim
N→∞

B(N,n, 0) =
1

e
, (3.19)

where e stands here for the base of the natural logarithm.

Proof. This directly follows from Lemma 3.33. We only need to recall that

lim
n→∞

(
1 +

a

n

)n+b
= ea,

for any real numbers a, b.

Theorem 3.35. For N ≥ 1, we have

lim
n→∞

J(N,n) = N

(
1− 1

N

)N+1

+ 1. (3.20)

Proof. Applying (3.6) and (3.13b) in (3.15), we obtain

J(N,n) =
(n− 1)

(Nn)n−1

N∑
d=1

d · (Nn−N + d− 1)n−2.

For n ≥ N + 2, the falling factorials in the sum share common terms. A simple calcu-

lation yields that the dth summand can be rewritten as d · (Nn−N + d− 1)d−1(Nn−
N)n−N−1(Nn − n + 1)N−d. If we divide (Nn −N)n−N−1 by (Nn)n−1, then we obtain

1/(Nn)N . Therefore,

J(N,n) =
(n− 1)

(Nn)N

N∑
d=1

d · (Nn−N + d− 1)d−1(Nn− n+ 1)N−d.

Extracting n from every term and taking the limit of the result, we obtain the sum of

N geometric progressions

lim
n→∞

J(N,n) =
(N − 1)N

NN+1

N∑
d=1

d

(
N

N − 1

)d
.

Using standard methods, we obtain the required formula.
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