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Abstract

The classical Białynicki-Birula decomposition states that a smooth algebraic variety X with
an action of Gm can be decomposed into a disjoint sum of locally closed subvarieties, More-
over, each locally closed subvariety in the decomposition admits a locally trivial affine space
fibration over certain connected component of XGm . In particular, this result simplifies vari-
ous cohomological considerations about such varieties.
This dissertation concerns generalizations of the classical Białynicki-Birula decomposition.
We consider an algebraic group G and a dense embedding G ↪ M of G into an algebraic
monoid M. Then for any algebraic space X equipped with an action of G we define a func-
tor DX that parametrizes G-schemes over X for which the action of G extends to an action
M. We can rephrase the classical Białynicki-Birula decomposition in this language by setting
G = Gm and M = A1 and taking for X a smooth algebraic variety with Gm-action.
The functorial approach we propose enables two orthogonal ways of generalizing the orig-
inal Białynicki-Birula result. The first generalizes the embedding Gm ↪ A1 and the other
concerns replacement of smooth algebraic varieties with more general schemes or algebraic
spaces (not necessarily smooth or normal). To address the first generalization we introduce
the class of Kempf’s monoids. In particular, every monoid having reductive group of units is
a Kempf’s monoid. Under this assumptions we obtain the representability of DX and prove
that certain canonical morphism DX → XG is affine. For the smooth case we also prove that
the latter morphism is an affine fibration precisely as in the classical case. In particular, this
gives an independent proof of the original Białynicki-Birula decomposition.

Keywords: algebraic groups, algebraic monoids, formal schemes, Białynicki-Birula decom-
position
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Chapter 1

Introduction

1.1 Historical background and main results

1.1.1 Classical Białynicki-Birula decomposition

This work is concerned with the generalization of the celebrated result of Białynicki-Birula
([BB73, Theorem 4.3]). We explain this classical result over complex number field C for sim-
plicity (Białynicki-Birula proved his result for varieties defined over arbitrary algebraically
closed field). Consider a complex smooth projective variety X with an action of C∗. We may
view X as a projective manifold and for each x in X we define

x0 = lim
t→0

t ⋅ x

Note that this limit exists for every point x in X according to the fact that X is projective.
Moreover, x0 is a fixed point of the C∗-action. Classically the fixed point locus XC∗

of X is a
disjoint union F1, F2, ..., Fn of smooth, closed subvarieties of X. For each i we define

X+
i = {x ∈ X ∣ lim

t→0
t ⋅ x ∈ Fi}

Białynicki-Birula proved the following result.

Theorem. In the situation described above the following assertions hold.

(1) X+
i ∩X+

j = ∅ for i ≠ j.

(2) The map X+
i ↪ X is a locally closed immersion of algebraic varieties for every i.

(3) The canonical map
X+

i ∋ x ↦ lim
t→0

t ⋅ x ∈ Fi

is a morphism of algebraic varieties and moreover, it is a Zariski locally trivial fibration with
fiber Cni for some ni ∈ N. This holds for every i.

The theorem above (and its generalizations to singular varieties) has profound applications
in algebraic geometry. [BBCM13, II, 4.2] contains a survey of classical applications to Betti
numbers and homology. Here we give a sample of recent developments which were based
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on this result. Brosnan ([Bro05]) applied Białynicki-Birula decomposition to obtain decom-
position of motives of isotropic smooth homogeneous projective varieties. Results due to
Jelisiejew on Hilbert schemes ([Jel19a], [Jel19b]) used generalized version of the decompo-
sition as their main tool. There are applications to cell decompositions of quiver varieties
([RW19], [Sau17]), localization formulas in equivariant cohomology ([Web17]) and mirror
theorem for toric varieties ([Iri17]).

1.1.2 Drinfeld’s result

In [Dri13] Drinfeld proposed the following functorial generalization of the classical Białynicki-
Birula result. Let k be a field and let X be an arbitrary algebraic space over k with an action
of Gm. Consider the functor DX on the category of k-schemes defined by the formula

Schk ∋ Y ↦ {γ ∶ A1
k ×k Y → X ∣γ is Gm-equivariant} ∈ Set

There are canonical morphisms of functors

DX X

XGm

iX

rXsX

which we define now. For this let γ ∈ DX(Y) for some k-scheme Y. We define

iX(γ) = γ∣{1}×kY, rX(γ) = γ∣{0}×kY

where 1 ∶ Spec k → A1
k is the inclusion of 1 and 0 ∶ Spec k → A1

k is the inclusion of the zero.
Next if f ∶ Y → X is a morphism which factors through XGm , then we define

sX( f ) = f ⋅ prY

where prY ∶ A1
k ×k Y → Y is the projection. The definition of DX is a functorial reformulation

of the limiting procedure discussed above. In order to provide intuitive justification of this
claim let us make some observations.

• Consider a k-scheme Y and let f ∶ Y → X be a morphism. Then f is a Y-point of X and
the morphism

Gm ×k Y ∋ (t, y) ↦ t ⋅ f (y) ∈ X

is the orbit of Y-point f with respect to the Gm-action. A limiting procedure may be in-
terpreted as the existence of the extension of the morphism above to a Gm-equivariant
morphism A1

k ×k Y → X. This is the motivation for the definition of DX.

• Under this interpretation one may view rX as the morphism sending each Y-point to
its limit Y-point provided that the latter exists.

• Similarly iX can be considered as the inclusion of the space of points that admit limit
into X and sX can be considered as the inclusion of fixed points into the space of points
that have limits.
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The following theorem is one of main results of Drinfeld’s article [Dri13, Theorem 1.4.3].

Theorem. Let X be an algebraic space of finite type over k with an action of Gm. Then

(1) DX is representable by an algebraic space of finite type over k.

(2) The morphism rX is affine.

1.1.3 The research questions

Note that the scheme A1
k is a monoid k-scheme with respect to the canonical operation that

makes the set of its k-points into the abstract monoid k×. Then 0 ∈ k defines the zero of
the monoid k-scheme A1

k . Moreover, the group of units of this monoid k-scheme can be
identified with Gm via canonical open immersion Gm ↪ A1

k . This suggests that one can
generalize Drinfeld’s functorial formulation as follows. Consider a monoid k-scheme M
with zero o. Let G be its group of units. Then G is a group k-scheme. For every k-scheme
(or algebraic space) X with an action of G define the functor DX by the formula

Schk ∋ Y ↦ {γ ∶ M ×k Y → X ∣γ is G-equivariant} ∈ Set

on the category of k-schemes. Clearly one can define morphisms rX, sX and iX of functors as
above. The goal of this work is to provide answers to the following questions.

Question. Is DX representable?

Question. Suppose thatDX is representable and smooth over XG. Is rX locally trivial fibration with
affine spaces as fibers?

1.1.4 The results

Originally Jelisiejew and the author were interested in answering these questions for (lin-
early) reductive monoids. It turns out that both our questions have affirmative answers if X
is a scheme locally of finite type over k and M is a reductive monoid over k. There is even
wider class of Kempf monoids for which this is the case. Precisely the following two theorems
are main results of this thesis.

Theorem A (Corollary 7.8.5). Let G be a group k-scheme and let M be a Kempf monoid having G
as a group of units. Suppose that X is a scheme locally of finite type over k with an action of G. Then
DX is representable by a scheme X+ and rX ∶ X+ → XG is affine and of finite type.

Theorem B (Theorem 7.9.3). Let G be a group k-scheme and let M be a Kempf monoid having G
as a group of units. Let X be a scheme locally of finite type over k with an action of G. Suppose that
x is a point of XG such that the morphism rX ∶ X+ → XG is smooth at sX(x). Then there exist an
open neighborhood V of x in XG and an isomorphism φ ∶ r−1

X (V) → An
V of k-schemes such that the

triangle
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r−1
X (V) An

V

V

φ

the restriction of rX prV

is commutative, where prV is the projection. Moreover, if G is linearly reductive, then one can choose
φ to be M-equivariant with respect to some action of M on An

V .

Note that Theorem A is a generalization of the Drinfeld’s result mentioned above (Subsection
1.1.2). Theorem B shows that the essential feature of the classical Białynicki-Birula decom-
position – that is the fact that the canonical morphism X+ → XG is a Zariski locally trivial
fibration with affine spaces as fibers – holds also for this much more general setup.
In Example 7.10.8 we present an application of Theorems A and B for actions of Gm ×k Gm.

1.2 Main ideas involved in the proof of Theorem A

In order to facilitate the readability of this work and make our main results described above
more intuitive in this and next section we give sketches of proofs of Theorems A and B.
In this section we start by discussing algebraic monoids. Next we introduce formal version
of the Białynicki-Birula functor D̂X and explain briefly the proof of its representability. In
the last subsection we outline, how representability of this functor combined with coherent
completeness and tannakian formalism imply that the canonically defined morphism DX → D̂X
is an isomorphism. Theorem A (i.e. representability of DX) is a consequence of the fact that
DX → D̂X is an isomorphism and representability of D̂X.

1.2.1 Kempf monoids

Let us first delve a little into the theory of algebraic monoids. The category of algebraic
monoids is a rich and beautiful extension of the category of algebraic groups. There are
whole monographs ([Ren06], [CLSW14]) devoted to this subject. In particular, (similarly
to the case of algebraic groups) researchers and pioneers in the field of algebraic monoids
concentrate they efforts on studying reductive monoids. An algebraic monoid M over k is
reductive if the group G of units of M is a reductive algebraic group. Renner in [Ren06,
Theorem 5.4] classifies normal reductive monoids over algebraically closed fields in terms
of pairs (G, Tmax) consisting of a reductive group G and a normal toric monoid Tmax with
maximal torus Tmax of G as the group of units. He proves that if the action of the Weyl group
of Tmax ↪ G extends to Tmax, then there exists a unique (up to an isomorphism) normal re-
ductive monoid M with G as the group of units such that the closure of Tmax in M is Tmax.
Moreover, if Tmax is a monoid with zero, then also M is a monoid with zero.
It turns out, and this is the result due to Rittatore in [Rit98], that the class of reductive
monoids with zero is contained in a larger class of Kempf monoids. By definition a geometri-
cally integral algebraic monoid M with zero o is a Kempf monoid if there exists a central torus
T inside the group of units of M such that its closure cl(T) in M contains o. Representations
of M are more tractable due to existence of the central torus T, which is linearly reductive
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and hence admits semisimple category of representations. Moreover, M is determined by
the formal neighborhood of its zero (Theorem 5.5.8).
In the remaining part of this section and in the next section we fix a Kempf monoid M and
its group of units G. For every n ∈ N let Mn ↪ M be an n-th infinitesimal neighborhood of
the zero o in M.

1.2.2 Formal Białynicki-Birula functor

Let X be a k-scheme equipped with an action of G. For every k-scheme Y we define

D̂X(Y) = {{γn ∶ Mn ×k Y → X}n∈N ∣ ∀n∈N γn is G-equivariant and γn+1∣Mn×kY = γn}

This gives rise to a functor D̂X, which may be intuitively viewed as a formal-geometric ver-
sion of DX. It turns out that the representability of D̂X reduces easily to the algebraiza-
tion in formal M-equivariant geometry. Namely we consider formal M-schemes, i.e., formal
schemes ([FGI05, 8.1.3.2])

Z0 Z1 ... Zn Zn+1 ...

such that each Zn is equipped with action of a monoid k-scheme M, all closed immersions
Zn ↪ Zn+1 are M-equivariant and ZM

n = Z0 for every n ∈ N. For every k-scheme Z with
an action of M the sequence of infinitesimal neighborhoods Ẑ of fixed points ZM in Z is an
example of a formal M-scheme. It turns out that every formal M-scheme is of this form. This
result takes form of an equivalence of categories (Corollary 6.5.6) and is a consequence of the
fact mentioned above that M is determined by {Mn}n∈N. As a consequence we obtain that
D̂X is representable and affine over XG.

1.2.3 Coherent completeness and tannakian formalism

Functors DX and D̂X are related by the canonical morphism DX → D̂X. It is not difficult to
prove that this map is a monomorphism of functors (Theorem 7.7.6). However, its surjectiv-
ity turn out to be a more subtle problem, since it is not clear how to recover topologically an
element DX out of a given element of D̂X. In order to explain this let us inspect the surjectiv-
ity of DX(Spec k) → D̂X(Spec k). A k-point of D̂X is a sequence of morphisms {Mn → X}n∈N.
All these morphisms have their images contained in the infinitesimal neighborhood of XG

and hence they contain information on the infinitesimal neighborhood of XG. If the map
DX(Spec k) → D̂X(Spec k) is surjective, then the family {Mn → X}n∈N can be lifted to a mor-
phism M → X, which existence depends on the topology of X and this (at least in general)
is not encapsulated by the infinitesimal neighborhood of XG. We prove that DX → D̂X is
surjective by the two step argument. Let Z be a scheme representing D̂X. Then Z is a locally
noetherian scheme with an action of M such that Z can be covered by open affine M-stable
subschemes. It follows that for such Z the category of coherent G-sheaves on Z is canon-
ically equivalent with appropriately defined category of coherent G-sheaves on a formal
M-scheme Ẑ consisting of the sequence of formal neighborhoods of fixed points ZM of Z
(Theorem 6.6.1). This type of phenomenon is called coherent completeness in [AHR20] and
it resembles the celebrated Grothendieck’s existence theorem ([FGI05, Theorem 8.4.2]). We
derive from it that there exists a functor

CohG(X) → CohG(Z)

5



Secondly, according to the result due to Hall and Rydh (Theorem 7.5.1) or by preprint by
Jelisiejew and the author (Theorem 7.10.2) there exists a canonical G-equivariant morphism
Z → X which induces the functor discussed above on categories of coherent G-sheaves.
Results of this type, which reconstruct a morphism of schemes f ∶ X → Y (stacks, algebraic
spaces) out of a certain monoidal functors F ∶ Coh(Y) → Coh(X) in such a way that f ∗ ≃ F in
the category of functors, are called tannakian formalisms in this work. This is justified by the
fact that classical Tannaka duality ([Mil17, Note 9.4]) can be interpreted as the reconstruction
of an algebraic group G from its category of linear representations considered as a monoidal
category over vector spaces. From the existence of this G-equivariant morphism Z → X
(or in other words the morphism D̂X → X) one can deduce that each family {γn ∶ Mn ×k
Y → X}n∈N of compatible G-equivariant morphisms can be extended to a G-equivariant
morphism M ×k Y → X (Theorem 7.8.1). This is equivalent with the fact that the natural
transformation DX → D̂X is surjective on every level and from this Theorem A is inferred.

1.3 Main ideas involved in the proof of Theorem B

Theorem B is less demanding and its proof can be explained by referring to the notion of
tubular neighborhoods. A tubular neighborhood in differential topology ([BJ82, Definition
12.10]) is a certain differentiable map from the normal bundle of a submanifold to the ambi-
ent manifold, which induces a diffeomorphism of the normal bundle with the neighborhood
of the submanifold. For differentiable manifolds tubular neighborhoods always exist ([BJ82,
Theorem 12.11]). In the world of schemes they exists affine locally under some additional
smoothness assumptions. Now if rX ∶ X+ → XG is a smooth morphism at sX(x), then in
some affine neighborhood of sX(x) there exists a morphism from the normal bundle of the
closed subscheme sX ∶ XG ↪ X+ to X+. This morphism is étale (it is an analogon of a tubular
neighborhood). Moreover, one can construct this morphism as equivariant with respect to
some toric submonoid of M. Then by some result from formal M-geometry (Theorem 7.9.1)
one can prove that this morphism is an isomorphism and hence rX is locally isomorphic to
vector bundle, which is what Theorem B asserts.

1.4 Relation of this thesis to joint works of Jelisiejew and the au-
thor

Theorems A and B are fruits of the collaboration of Jelisiejew and the author ([JS19], [JS20]).
Let us now explain how approach presented in this thesis deviates from the content of these
two papers.
In [JS19] there is some stress on the notion of the formal M-scheme, but formal geometry is
not studied (due to the usual brevity of research papers) in a systematic way. In particular,
that work does not contain coherent completeness. This lack is filled in the second paper
[JS20], but coherent completeness is studied there somewhat out of the context of formal
geometry. Chapter 6 of this work and its main results (Corollary 6.5.6 and Theorems 6.5.7,
6.6.1) are thought as an exhaustive and unified exposition of the theory of the formal M-
schemes for a Kempf monoid M.
There is also a minor technical difference between coherent completeness studied in [JS20]
and in this thesis. Here we get rid of the notion and usage of Serre subcategories. The reader
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may judge, if this makes our presentation clearer than that of [JS20].
Moreover, there is a key difference between [JS19] and this work. The first relies on affine
étale G-equivariant neighborhoods obtained via the result of Alper, Hall and Rydh ([AHR20,
Theorem 2.6]. This restricts the scope of generality of that paper to linearly reductive monoids.
Here this was eliminated thanks to coherent completeness, tannakian formalism and prop-
erties of Kempf monoids. This makes Corollary 7.8.5 more general with respect to the class
of algebraic monoids for which it holds than its counterpart [JS19, Theorem 6.17].
Thanks to an additional observation in the proof of Corollary 7.8.5 we were able to obtain a
slightly stronger result than [JS20, Theorem 1.1]. Namely Theorem A is derived for schemes
locally of finite type over k and this can be further refined to locally noetherian case if one
accepts unpublished result ([JS20, Theorem A.1]). In contrast [JS20, Theorem 1.1] is restricted
to the quasi-compact case. Here representability is formulated as the isomorphism between
D̂X and DX, which is the original approach of [JS19] and seems natural, but is not expressed
explicitly in [JS20] (again due to brevity).
The proof (in the present thesis) of Theorem B relies on Theorem 7.9.1 and the concept of
the tubular neighborhood known from differential geometry. This is significantly different
from the original approach of [JS19], which was based on affine étale G-equivariant neigh-
borhoods, and [JS20], which does not refer to any results in formal geometry.
Let us also indicate that there are some interesting results of [JS19] and [JS20], which are not
proved in this thesis, but can be obtained by means that are either introduced here or are
based on [AHR20, Theorem 2.6]. In Section 7.10 we give an overview of these other results.

1.5 Overview

Let us now briefly introduce the reader to contents of the thesis. Since this work heavily
relies on functorial language in the sense of Gabriel and Demazure [DG70], we decide to
devote Chapter 2 entirely to introducing this linguistic framework. Next chapter is a short
course on basic results concerning monoid and group k-schemes and their linear represen-
tations. All the results contained there are classical or of auxiliary character with respect to
latter parts of the work. Chapters 4 and 5 are devoted to algebraic groups and monoids. We
proved there or give references to proofs of all results concerning these vast subjects that we
are going to use in the remaining part of this work. In particular, Kempf monoids are intro-
duced and studied in the last section of Chapter 5. The last two chapters contain our main
results and original contributions. In Chapter 6 we study formal M-schemes and prove all
the results concerning their algebraization. Technically it is the heart of this thesis. Then in
Chapter 7, after introducing tannakian formalism, we use results of Chapter 6 to prove our
main theorems according to the plan described in Sections 1.2 and 1.3.
For the readers convenience we included list of symbols at the beginning of this work. More-
over, each chapter starts with short introductory section in which we comment on its con-
tents. We hope that these make the process of reading significantly easier.
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Chapter 2

k-Functors And Presheaves

2.1 Introduction

This chapter is devoted to study k-functors and presheaves on Schk. We introduce elements
of the functorial language that will be used significantly in the following chapters. Mostly
we follow first part of [DG70], but in order to make our presentation self-contained we intro-
duce all notions and add some results from other sources. The reader may find this chapter
tedious and formal. Since it is somewhat obvious that the category of k-functors i.e. the
category of copresheaves on Algk and the category of presheaves on Schk have equivalent
subcategories of Zariski sheaves, she may even find a bit irritating the fact that we express
each notion in these two linguistically different, but geometrically equivalent, settings. Nev-
ertheless this was the only route that we had found to present this material in a clear and
complete way. On the other hand the fact that subcategories of sheaves with respect to
Zariski topology in these two categories are equivalent is not entirely obvious result in the
theory of sheaves.
Throughout this chapter we assume that k is a commutative ring.

2.2 k-functors

Definition 2.2.1. The category Fun(Algk, Set) of copresheaves on Algk is called the category
of k-functors.

Since Spec ∶ Algop
k → Affk is an equivalence of categories, the category of k-functors is

equivalent with the category of presheaves Âffk.
If X and Y are k-functors, then we denote by Mork(X,Y) the class of morphisms X → Y of
k-functors. If σ ∶ X → Y is a morphism of k-functors, then for every k-algebra A we denote
by σA ∶ X(A) →Y(A) the corresponding component of σ.
Let X and Y be A-functors for some k-algebra A. Then we denote by MorA (X,Y) the class
of morphisms of A-functors X → Y. For every A-algebra B and a morphism σ ∶ X → Y of
A-functors we denote by XB, YB, σB the restrictions X∣AlgB

, Y∣AlgB
, σ∣AlgB

of these entities to
the category of B-algebras. We note the following result.
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Fact 2.2.2. Let X and Y be k-functors. Assume that A is a k-algebra, B is an A-algebra, C is an
B-algebra. Then the composition of maps of classes

MorA (XA,YA) MorB (XB,YB) MorC (XC,YC)
σ ↦ σB σ ↦ σC

equals

MorA (XA,YA) MorC (XC,YC)
σ ↦ σC

Definition 2.2.3. Let X and Y be k-functors and suppose that for every k-algebra A the class
MorA (XA,YA) is a set. We define

Mork(X,Y)(A) = MorA (XA,YA)

for every k-algebra A. This is a k-functor. Indeed, for every k-algebra A and A-algebra B we
have a map

Mork(X,Y)(A) ∋ σ ↦ σB ∈ Mork(X,Y)(B)

and according to Fact 2.2.2 these maps make Mork(X,Y) into a k-functor. The k-functor
Mork(X,Y) is called a hom k-functor of X and Y.

Definition 2.2.4. Let X be a k-functor and let A be a k-algebra. Then elements of X(A) are
called A-points of X.

We denote by 1 a k-functor that assigns to every k-algebra a set with one element. Then for
every k-algebra A the restriction 1A is a terminal object in the category of A-functors.
Let X be a k-functor. Suppose that A is a k-algebra and x ∈ X(A). Then x determines a
morphism 1A → XA that for every A-algebra B with structural morphism f ∶ A → B sends
the unique element of 1A(B) to X( f )(x) ∈ XA(B). This gives rise to a bijection

X(A) ≃ MorA (1A,XA)

natural in k-algebra A.

Definition 2.2.5. Let Z,X,Y be k-functors and let σ ∶ Z×X→Y be a morphism of k-functors.
Fix z ∈ Z(A) for some k-algebra A. We denote by iz ∶ 1A → ZA the morphism of A-functors
corresponding to z. Since 1A is a terminal A-functor, σA ⋅ (iz × 1XA) is isomorphic to a mor-
phism σz ∶ XA →YA of A-functors. We call σz the slice of σ along z.

Consider now k-functors X,Y,Z and assume that the internal homMork (X,Y) exists. Let
σ ∶ Z×X→Y be a morphism. Then the family of maps

Z(A) ∋ z ↦ σz ∈ Mork (X,Y) (A)

give rise to a morphism τ ∶ Z→Mork (X,Y) of k-functors. Indeed, for a morphism f ∶ A → B
of k-algebras and z ∈ Z(A) we have

σB ⋅ (iZ( f )(z) × 1XB) = (σA ⋅ (iz × 1XA))B
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and hence σZ( f )(z) = (σz)B. This gives rise to a map Φ of classes

Mork (Z×X,Y) ∋ σ ↦ τ ∈ Mork(Z,Mork(X,Y))

Consider next a morphism τ ∶ Z → Mork(X,Y) of k-functors and define σ ∶ Z ×X → Y by
formula σA(z, x) = (τA(z))A (x) for every k-algebra A and points z ∈ Z(A), x ∈ X(A). Let
f ∶ A → B be a morphism of k-algebras. Then

σB (Z( f )(z),X( f )(x)) = (τB (Z( f )(z)))B (X( f )(x)) = ((τA(z))B)
B (X( f )(x)) =

= (τA(z))B (X( f )(x)) =Y( f ) ((τA(z))A (x)) =Y( f ) (σA(z, x))

Thus σ ∶ Z ×X → Y is a well defined morphism of k-functors. This gives rise to a map Ψ of
classes

Mork(Z,Mork(X,Y)) ∋ τ ↦ σ ∈ Mork(Z×X,Y)

Theorem 2.2.6. Let Z,X,Y be k-functors and assume that the k-functorMork(X,Y) exists. Then
maps Φ and Ψ are mutually inverse bijections and hence they induce a bijection

Mork (Z×X,Y) ≃ Mork(Z,Mork(X,Y))

Proof. Pick a morphism τ ∶ Z→Mork(X,Y) of k-functors. Let A be a k-algebra and z ∈ Z(A).
Let us first prove that Ψ(τ)z = τA(z). Indeed, let f ∶ A → B be a morphism of k-algebras and
x be an element in X(B). Then we have

(Ψ(τ)z)B (x) = Ψ(τ)B (Z( f )(z), x) = (τB (Z( f )(z)))B (x) = ((τA(z))B)
B (x) = (τA(z))B (x)

Hence Ψ(τ)z = τA(z) because B and a B-point x are arbitrary. Now we use this fact and
obtain

(Φ(Ψ(τ)))A (z) = Ψ(τ)z = τA(z)
and hence Φ ⋅Ψ is the identity. On the other hand fix a morphism σ ∶ Z×X → Y. Let A be a
k-algebra and let z ∈ Z(A), x ∈ X(A) be points. Then

(Ψ (Φ(σ)))A (z, x) = (Φ(σ)A(z))A (x) = σA
z (x) = σA(z, x)

Thus Ψ ⋅Φ is the identity map. Therefore, Φ and Ψ are mutually inverse bijections.

2.3 Zariski local k-functors and Zariski sheaves

In this part we use the notion of a Grothendieck topology on a category. For this notion we
refer the reader to [MM94, Chapter III, Section 2, Definition 1].

Definition 2.3.1. Let { fi ∶ Xi → X}i∈I be a family of morphisms of k-schemes. We say that
{ fi}i∈I is a Zariski covering of X if the following conditions are satisfied.

(1) For every i ∈ I the morphism fi is an open immersion of schemes.

(2) The morphism∐i∈I Xi → X induced by { fi}i∈I is surjective.
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The collection of all Zariski coverings on Schk is a Grothendieck pretopology.

Definition 2.3.2. We call the Grothendieck topology generated by the pretopology consisting
of Zariski coverings on Schk the Zariski topology on Schk. A presheaf on Schk that is a sheaf
with respect to Zariski topology on Schk is called a Zariski sheaf.

Let X be a presheaf on the category of k-schemes. By [MM94, Chapter III, Section 4, Proposi-
tion 1] X is a Zariski sheaf if and only if for every k-scheme X and for every Zariski covering
{ fi ∶ Xi → X} of X the diagram

X(X) ∏i∈I X(Xi) ∏(i,j)∈I×I X(Xi ×X Xj)
⟨X( fi)⟩i∈I

⟨X( f ′ij) ⋅ pri⟩(i,j)

⟨X( f ′′ij ) ⋅ prj⟩(i,j)

is a kernel of a pair of arrows, where for every (i, j) ∈ I × I morphisms f ′ij and f ′′ij form a
cartesian square

Xi ×X Xj Xj

Xi X

f ′′ij

fi

f ′ij f j

Now we repeat these definitions for k-algebras and k-functors.

Definition 2.3.3. Let { fi ∶ A → Ai}i∈I be a family of morphisms of k-algebras. We say that
{ fi}i∈I is a Zariski covering of A if the following conditions are satisfied.

(1) For every i ∈ I the morphism Spec fi is an open immersion of schemes.

(2) The morphism∐i∈I Spec Ai → Spec A induced by {Spec fi}i∈I is surjective.

The collection of all Zariski coverings on Algk induces on its opposite category Affk of affine
k-schemes a Grothendieck pretopology.

Definition 2.3.4. We call the Grothendieck topology generated by the pretopology consisting
of Zariski coverings on Affk the Zariski topology on Affk. A k-functor that is a sheaf with
respect to Zariski topology on Affk is called a Zariski local k-functor.

Let X be a k-functor. Again by [MM94, Chapter III, Section 4, Proposition 1] X is a Zariski
local k-functor if and only if for every k-algebra A and for every Zariski covering { fi ∶ A →
Ai} of A the diagram

X(A) ∏i∈I X(Ai) ∏(i,j)∈I×I X(Ai ⊗A Aj)
⟨X( fi)⟩i∈I

⟨X( f ′ij) ⋅ pri⟩(i,j)

⟨X( f ′′ij ) ⋅ prj⟩(i,j)

is a kernel of a pair of arrows, where for every (i, j) ∈ I × I morphisms f ′ij and f ′ij form a
cocartesian square
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A Aj

Ai Ai ⊗A Aj

f j

f ′ij

fi f ′ji

Now we state the main result of this section.

Theorem 2.3.5. Let

Ŝchk the category of k-functors

be the restriction of presheaves on Schk to presheaves on Affk (k-functors) induced by the inclusion
Affk ↪ Schk. Then it induces an equivalence of categories between Zariski sheaves on Schk and
Zariski local k-functors.

Proof. According to [GW10, Proposition 8.8] every representable functor Ŝchk is a Zariski
sheaf. This means that Zariski topology on Schk is subcanonical. Note that Affk is a full
subcategory of Schk and if we consider Schk as a category equipped with Zariski topology,
then Affk satisfies the assumptions of [MM94, Appendix, Section 4, Corollary 3] and the
induced topology on Affk is the Zariski topology. Hence the assertion follows from [MM94,
Appendix, Section 4, Corollary 3].

The notion of creation of limits and colimits ([ML98, Definition on page 112]) is essential to
our discussion below. Recall that Yoneda embedding

Schk Ŝchk

is full and faithful. Moreover, it creates limits. [GW10, Proposition 8.8] states that every
representable functor Ŝchk is a Zariski sheaf. Let

Schk k-functors
P

be the functor defined by the composition of the Yoneda embedding and the restriction
Ŝchk → Âffk. This functor is full, faithful and creates limits and its image consists of Zariski
local k-functors. Thus Theorem 2.3.5 and the discussion above imply that we have the fol-
lowing result.

Theorem 2.3.6. There exists the commutative triangle of functors and categories

Zariski sheaves on Schk Zariski local k-functors

Schk

≃
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where the horizontal functor is an equivalence, the left hand side functor is the Yoneda embedding
and the right hand side functor is the restriction of P to the category of Zariski local k-functors,
which contains its essential image. In particular, both nonhorizontal functors in the diagram are full,
faithful and create limits.

Definition 2.3.7. Let X be a k-scheme. Then the image of X under P is a k-functor given by
formula

Algk ∋ A ↦Mork (Spec A, X) ∈ Set

We call this k-functor the functor of points of X.

Remark 2.3.8. By means of identifications in Theorem 2.3.6 we do not make any formal and
notational distinction between k-scheme X and its functor of points. In particular, we denote
by X the functor of points of a k-scheme X. According to the same result we also do not
distinguish between functor of points as a Zariski local k-functor and as a Zariski sheaf on
Schk.

Definition 2.3.9. Let X be a k-functor (or presheaf on Schk). We say that X is representable or
is a scheme if it is a functor of points of some k-scheme.

Finally let us observe that:

Fact 2.3.10. Let X, Y be k-schemes. ThenMork(X, Y) exists.

Proof. Fix a k-algebra A and observe that the class MorA (XA, YA) of natural transformations
(morphisms of A-functors) is in bijective correspondence (via Yoneda lemma) with the set of
morphisms MorA (Spec A ×k X, Spec A ×k Y) of A-schemes.

2.4 Closed, open k-subfunctors and criterion for representability

Suppose now that A is a k-algebra and a ⊆ A is an ideal. Then we define V(a) = Spec A/a as
a closed subscheme Spec A induced by the quotient morphism A → A/a. We define an open
subscheme D(a) = Spec A ∖V(a) of Spec A.

Definition 2.4.1. Let σ ∶ X → Y be a morphism of k-functors. Assume that for every k-
algebra A and every morphism τ ∶ Spec A → Y of k-functors there exists an ideal a in A and
a morphism τ′ ∶ D(a) → X of k-functors such that the square

D(a) X

Spec A Y

τ′

τ

σ

is cartesian. Then σ is an open immersion of k-functors.

Definition 2.4.2. Let σ ∶ X→Y be a morphism of k-functors. Assume that for every k-algebra
A and every morphism τ ∶ Spec A →Y of k-functors there exist an ideal a in A and morphism
τ′ ∶ V(a) → X such that the square
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V(a) X

Spec A Y

τ′

τ

σ

is cartesian. Then σ is a closed immersion of k-functors.

Now for completeness we state the analogical definitions for presheaves on Schk.

Definition 2.4.3. Let σ ∶ X → Y be a morphism of presheaves on Schk. Assume that for
every k-scheme Y and every morphism τ ∶ Y → Y of presheaves on Schk there exist an open
subscheme X ↪ Y and a morphism τ′ ∶ X → X of presheaves such that the square

X X

Y Y

τ′

τ

σ

is cartesian. Then σ is an open immersion of presheaves on Schk.

Definition 2.4.4. Let σ ∶ X → Y be a morphism of presheaves on Schk. Assume that for
every k-scheme Y and every morphism τ ∶ Y → Y of presheaves on Schk there exist a closed
subscheme X ↪ Y and a morphism τ′ ∶ X → X of presheaves such that the square

X X

Y Y

τ′

τ

σ

is cartesian. Then σ is a closed immersion of presheaves on Schk.

We make an easy observation.

Fact 2.4.5. The class of open (closed) immersions of k-functors (presheaves on Schk) is closed under
base change and composition.

Now we define open covers.

Definition 2.4.6. Let X be a k-functor and {σi ∶ Xi → X}i∈I be a family of open immersions.
Then for every k-algebra A and x ∈ X(A) we have a family of ideals {ai}i∈I defined by carte-
sian squares
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D(ai) Xi

Spec A X

τ′

τ

σi

in which bottom vertical morphism τ ∶ Spec A → X corresponds to x. We say that {σi}i∈I is
an open cover of X if for every k-algebra A and x ∈ X(A) we have

Spec A = ⋃
i∈I

D(ai)

or in other words A = ∑i∈I ai.

Definition 2.4.7. Let X be a presheaf on Schk and {σi ∶ Xi → X}i∈I be a family of open
immersions of presheaves. Then for every k-scheme X and x ∈ X(X) we have a family of
open subschemes {Xi}i∈I of X defined by cartesian squares

Xi Xi

X X

τ′

τ

σi

in which bottom vertical morphism τ ∶ X → X corresponds to x. We say that {σi}i∈I is an open
cover of X if for every k-scheme X and x ∈ X(X) we have

X = ⋃
i∈I

Xi

Remark 2.4.8. Equivalence described in Theorem 2.3.5 identifies the class of open (closed)
immersions of Zariski local k-functors on the one hand and the class of open (closed) im-
mersions of Zariski sheaves on Schk on the other. Moreover, the equivalence preserves and
reflects open covers. We will not need this result, but it is worth noting.

These notions are intertwined in the following elementary yet beautiful result.

Theorem 2.4.9. Let X be (a k-functor) a presheaf on Schk. Then the following are equivalent.

(i) X is representable.

(ii) X is (a Zariski local k-functor) a Zariski sheaf on Schk and there exists an open cover

{σi ∶ Xi → X}i∈I

by k-schemes.

Proof. The case for presheaves on Schk is [GW10, Theorem 8.9]. The case for k-functors is
[DG70, page 18, Théoréme de comparaison, part b] (note that the authors define scheme as
a k-functor satisfying (ii)). Moreover, according to Remark 2.4.8 the two cases considered
above is really a single theorem expressed in different languages.
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Proposition 2.4.10. Let σ ∶ X ↪ Y be a monomorphism of k-functors and let Y be a Zariski local
k-functor. Assume that for every k-algebra A and every morphism τ ∶ Spec A → Y of k-functors
there exist a Zariski local k-functor Z that fits into a cartesian square

Z X

Spec A Y
τ

σ

Then X is a Zariski local k-functor.

Proof. Let { fi ∶ A → Ai}i∈I be a Zariski covering of a k-algebra A. For every pair i, j of
elements of I consider a cocartesian square

A Aj

Ai Ai ⊗A Aj

f j

f ′ij

fi f ′ji

Now assume that for every i there we are given an element xi ∈ X(Ai) such that for every
pair i, j ∈ I we have

X( f ′ij)(xi) = X( f ′ji)(xj)
Our goal is to show that there exists a unique A-point x ∈ X(A) such that X( fi)(x) = xi. For
this observe first that the family yi = σAi(xi) for i ∈ I satisfies

Y( f ′ij)(yi) =Y( f ′ji)(yj)

and since Y is a Zariski local k-functor, there exists a unique y ∈Y(A) such that Y( fi)(y) = yi.
Let τ ∶ Spec A → Y be a morphism of k-functors determined by y ∈ Y(A). There exists a
Zariski local k-functor Z that fits into a cartesian square

Z X

Spec A Y

τ′

τ

σσσ′

of k-functors. Since the square is cartesian, we derive that for each i ∈ I there exists zi ∈ Z(Ai)
such that τ′Ai(zi) = xi and σ′Ai(zi) = Spec fi. Moreover, we have

Z( f ′ij)(zi) = Z( f ′ji)(zj)

for every pair i, j ∈ I. Since Z is a Zariski local k-functor, there exists a unique z ∈ Z(A) such
that Z( fi)(z) = zi. Then x = τ′A(z) is a unique element such that X( fi)(x) = xi.
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Corollary 2.4.11. Let X be a k-scheme and let j ∶ X ↪ X be a closed (open) immersion of k-functors
(respectively). Then X is a k-scheme and j ∶ X ↪ X is a closed (open) immersion of k-schemes
(respectively).

Proof. Proposition 2.4.10 implies that X is a Zariski local k-functor. Consider a Zariski cover-
ing { fi ∶ Spec Ai → X}i∈I of X. For each i ∈ I consider the cartesian square

Xi X

Spec Ai X

f ′i

fi

ji j

of k-functors. Then each Xi is a closed (open) subscheme of Spec Ai (this follows by defi-
nition) and { f ′i ∶ Xi → Spec Ai}i∈I is an open cover of X by k-schemes. Since X is a Zariski
local k-functor, Theorem 2.4.9 implies that X is representable. The fact that j ∶ X ↪ X is a
closed (open) immersion of k-schemes follows from the fact that closed (open) immersions
of k-schemes are local on the base and j is a morphism that after base change to an affine
open k-scheme is a closed (open) immersion.

2.5 Closed immersions and hom k-functors

We close this chapter by stating important and nontrivial theorem relating hom k-functors
and closed immersions. For this we need to introduce the following notion.

Definition 2.5.1. Let X be a k-scheme. Suppose that there exists an open affine cover X =
⋃i∈I Xi such that k-algebra Γ(Xi,OXi) is free as a k-module. Then we say that X is a locally free
k-scheme.

Theorem 2.5.2. Let j ∶ Y′ ↪ Y be a closed immersion of k-functors and let X be a locally free k-
scheme. Suppose that the classes MorA (XA,YA) are sets for every k-algebra A. Then the classes
MorA (XA,Y′

A) are sets for every k-algebra A and the morphism

Mork (1X, j) ∶ Mork (X,Y′) →Mork (X,Y)

is a closed immersion of k-functors.

Proof. Note that j is a monomorphism of k-functors and hence for every k-algebra jA is a
monomorphism of A-functors. Thus for every k-algebra A the map of classes

MorA(1XA , jA) ∶ MorA (XA,Y′
A) →MorA (XA,YA)

is injective. This proves that MorA (XA,Y′
A) is a set provided that MorA (XA,YA) is a set.

The main result that

Mork (1X, j) ∶ Mork (X,Y′) →Mork (X,Y)

is a closed immersion of k-functors is [DG70, page 64, Proposition 7.5].
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Remark 2.5.3. If k is a field, then every k-scheme is locally free.
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Chapter 3

Monoid k-Schemes And Their Linear
Representations

3.1 Introduction

In this chapter we introduce monoid k-schemes and their linear representations. We discuss
basic properties of the category of linear representations of affine monoid k-schemes. In our
presentation we closely follow the first chapters of the second part of [DG70]. We add some
material concerning the category of comodules over coalgebras and comparison between
linear representations of an affine monoid k-scheme and its group of units provided that the
canonical inclusion of units into a monoid is a schematically dense open immersion. As we
shall see later this comparison plays a fundamental role in the proof of representability of
Białynicki-Birula functors in the affine case (Theorem 7.8.1). For reader’s convenience we
also recall with complete proofs facts concerning completely reducible representations and
isotypic components. In the last section we prove that quasi-coherent G-sheaves on locally
linear G-schemes can be described in terms of representations of G. In Remark 3.12.4 we
include (what we conceive to be) an intuitive explanation of the notion of G-sheaf.

3.2 Monoid k-functors and monoid k-schemes

We assume that the reader is familiar with notions of a monoid, group etc. in an arbitrary
category with finite products. For definitions and some discussion related to these notions
cf. [ML98, pages 2-5].

Definition 3.2.1. A monoid (group, commutative group) k-functor is a monoid (group, commu-
tative group) object in the category of k-functors.

It is useful to note that monoid (group, commutative group) k-functor structures on a given
k-functor X are in bijective correspondence with lifts of X to the category Mon (Grp, Ab) of
monoids (groups, commutative groups). That is a structure of a monoid k-functor on X is
the same as the following commutative triangle of categories and functors.
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Mon

Algk Set
X

∣ − ∣

Here ∣ − ∣ ∶ Mon → Set denotes the forgetful functor which sends each monoid to its under-
lying set. Analogical descriptions holds for groups and commutative groups.

Definition 3.2.2. Let M be a monoid k-functor. A morphism o ∶ 1 →M of k-functors is called
the zero of M if for every k-algebra A the unique element oA in the image of oA ∶ 1(A) →M(A)
satisfies

oA ⋅m = oA = m ⋅ oA

for every m ∈M(A).

Definition 3.2.3. Let M be a monoid k-functor. Then we denote by M∗ the k-subfunctor of
M defined by

M∗(A) =M(A)∗

for every k-algebra A. This is a group k-functor. We call M∗ the unit group k-functor of M.

Definition 3.2.4. A monoid (group) k-scheme M is a monoid (group) object in the category of
k-schemes. If M is affine, then we say that M is an affine monoid (group) k-scheme.

Corollary 3.2.5. The functor

Schk k-functors
P

induces an equivalence of categories

monoid k-schemes ≃ monoid k-functors representable by k-schemes

Analogically for categories of groups and commutative groups.

Proof. This follows from the fact that P is full, faithful and creates limits (in particular, it
preserves and creates products).

Proposition 3.2.6. Let M be a monoid k-scheme. Then the group k-functor of units M∗ of M is
representable. If M is affine, then M∗ is representable by an affine k-scheme.

Proof. Note that M∗ fits into a cartesian square of k-functors

M∗ 1

M ×M M
µ

e
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where µ ∶ M ×M → M is the multiplication and e ∶ 1 → M is the unit. The functor P creates
limits and hence it creates fiber-products. This implies that M∗ is represented by a unique
(up to an isomorphism) k-scheme M∗ that fit into a cartesian square of k-schemes below.

M∗ Spec k

M ×k M M
µ

e

Note that if M is affine, then, since the diagram of k-schemes above is cartesian and affine
k-schemes are closed under fiber-products, also M∗ is affine.

Definition 3.2.7. Let M be a monoid k-scheme. Then the group k-scheme M∗ is called the
group of units of M.

Finally we employ the opposite monoid functor.

Definition 3.2.8. Let (−)op ∶ Mon → Mon be the opposite monoid functor and let M be
a monoid k-functor. Then the composition Mop = (−)op ⋅M is called the opposite monoid k-
functor of M.

Let us note the following elementary result.

Fact 3.2.9. Let G be a group k-functor. Then a morphism G→ Gop given by formula

G(A) ∋ g ↦ g−1 ∈ G(A)

for k-algebra A is an isomorphism of group k-functors.

3.3 Bialgebras and affine monoid k-schemes

We start here with the general notion of k-coalgebras.

Definition 3.3.1. Let (C, ∆, ξ) be a triple consisting of a module C over k and morphisms

∆ ∶ C → C⊗k C, ξ ∶ C → k

of k-modules such that the following diagrams are commutative.

C C⊗k C C C⊗k C C C⊗k C

C⊗k C C⊗k C⊗k C C⊗k k k⊗k C

∆

∆⊗k 1C

1C ⊗k ∆∆

∆

1⊗k ξ
≃

∆

ξ ⊗k 1C
≃

Then (C, ∆, ξ) is called a k-coalgebra. Morphisms ∆, ξ are called a comultiplication and a counit,
respectively.
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Definition 3.3.2. Let (C1, ∆1, ξ1) and (C2, ∆2, ξ2) are k-coalgebras. Then a morphism f ∶ C1 →
C2 of k-modules is a morphism of k-coalgebras if the following diagrams are commutative.

C1 ⊗k C1 C2 ⊗k C2 C1 C2

C1 C2 k

f ⊗k f

∆2∆1

f

f

ξ1 ξ2

Definition 3.3.3. Let B be a k-module with structures of both k-algebra and k-coalgebra.
Assume that the comultiplication B → B⊗k B and the counit B → k of B are morphisms of
k-algebras. Then we say that B with these structures is a k-bialgebra.

Definition 3.3.4. Let B1, B2 be k-bialgebras and let f ∶ B1 → B2 be a morphism of k-modules.
We say that f is a morphism of k-bialgebras if it is simultaneously morphism of k-algebras and
k-coalgebras.

Theorem 3.3.5. The functor Spec ∶ Algk → Schk induces an equivalence of categories

k-bialgebras ≃ the category of affine monoid k-schemes

Proof. This is an exercise in translation. For details see [DG70, Proposition on page 146].

3.4 Examples of monoid k-functors

In this section we introduce several examples of monoid and group k-functors.

Example 3.4.1. Consider the monoid k-functor that sends each k-algebra A into its additive
group A+. This defines a commutative group k-functor. Since this k-functor is representable
by an affine line Spec k[x], we derive by Corollary 3.2.5 that Spec k[x] carries a structure of a
commutative group k-scheme. We denote this commutative group k-scheme by Ga and call
it the additive group scheme over k.

Example 3.4.2. Consider the monoid k-functor that sends each k-algebra A into its multi-
plicative monoid A×. This defines a commutative monoid k-functor. Again as in Example
3.4.1 this k-functor is representable by Spec k[x] and hence by Corollary 3.2.5 Spec k[x] car-
ries a structure of a commutative monoid k-scheme. We denote this commutative monoid
k-scheme by A1

k and call it the affine line over k. Note that A1
k is the monoid k-scheme with

zero.

Example 3.4.3. Consider the monoid k-functor that sends each k-algebra A into its multi-
plicative group of invertible elements A∗. This defines a commutative group k-functor. This
k-functor is representable by Spec k[x, x−1]. As above we derive by Corollary 3.2.5 that this
k-scheme carries a structure of a commutative group k-scheme. We denote this commutative
group k-scheme by Gm and call it the multiplicative group scheme over k.
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Definition 3.4.4. Let M be a monoid k-functor. Then a morphism M → A1
k of monoid k-

functors is called a character of M.

Remark 3.4.5. Note that Gm is the group of units of A1
k and the canonical monomorphism

Gm ↪A1
k is an open immersion. In particular, it follows that if G is a group k-functor, then a

character of G is a morphism G→ Gm of group k-functors.

The next example plays a fundamental role in theory of linear representations of monoid
k-functors.

Example 3.4.6. Let V be a k-module. We define a k-functor LV . We set

LV(A) = HomA(A⊗k V, A⊗k V) = Homk(V, A⊗k V)

for every k-algebra A. Next for every morphism f ∶ A → B of k-algebras and every morphism
φ ∶ A⊗k V → A⊗k V of A-modules we define LV( f )(φ) as a unique morphism of B-modules
such that the diagram

A⊗k V A⊗k V

B⊗k V B⊗k V

φ

LV(φ)

f ⊗k 1V f ⊗k 1V

is commutative. Note also that for fixed k-algebra A the set of endomorphisms LV(A) of
A-module A ⊗k V is a monoid with respect to the usual composition of endomorphisms.
Moreover, if f ∶ A → B is a morphism of k-algebras, then LV( f ) is a morphism of such
defined monoids. Thus LV admits a structure of a monoid k-functor. We call it the general
linear monoid of V. Note thatLV admits the zero given by the zero morphism A⊗k V → A⊗k V
for every k-algebra A.

Remark 3.4.7. Suppose that V is a finitely generated, projective k-module. Then for each
k-algebra A we have a chain of isomorphisms

LV(A) = Homk (V, A⊗k V) ≃ A⊗k V∨ ⊗k V ≃ HomA(A⊗k V ⊗k V∨, A) ≃

≃ Homk(V ⊗k V∨, A) ≃ Mork (Sym(V ⊗k V∨), A) ≃ Mork (Spec A, Spec Sym(V ⊗k V∨))
Clearly these isomorphisms are natural in A. Hence LV is representable and we denote the
corresponding affine monoid k-scheme by L(V).

Example 3.4.8. For k-module V we define a group k-functor GLV as the group of units of the
general linear monoid L∗V of V. We call this group k-functor the general linear group of V. Note
that

GLV(A) = AutA(A⊗k V, A⊗k V)
for every k-algebra A.

Remark 3.4.9. Suppose that V is a finitely generated, projective k-module. According to
Proposition 3.2.6 and Remark 3.4.7 the group k-functor GLV is representable. The corre-
sponding affine group k-scheme is denoted by GL(V).
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Now we give an important example of a morphism of monoid k-functors.

Example 3.4.10. Suppose that V is a finitely generated, projective k-module of constant rank
n on Spec k. Then the exterior product ⋀n V is a projective module of rank one. Thus for ev-
ery k-algebra A each element of HomA (A⊗k ⋀n V, A⊗k ⋀n V) is the multiplication by some
fixed element of A. This defines a morphism of monoids

LV(A) = HomA(A⊗k V, A⊗k V) HomA(A⊗k ⋀n V, A⊗k ⋀n V) A×φ ↦ ⋀n φ ≃

which is natural in A. Thus we obtain the morphism of monoid k-functors

LV A1
k

det

We call it the determinant of LV .

Remark 3.4.11. Suppose that V is a finitely generated, projective k-module of constant rank
n on Spec k. According to Example 3.4.10 there is the determinant det ∶ LV → A1

k . Pick k-
algebra A and recall that for φ ∈ LV(A) we have φ ∈ GLV(A) if and only if det(φ) ∈ A∗. Thus
we have a cartesian square

GLV Gm

LV A1
kdet

where vertical morphisms are inclusion of units. Since the inclusion of units Gm ↪ A1
k is

an open immersion (Remark 3.4.5), we derive by Fact 2.4.5 that GL(V) is an open subgroup
k-functor of LV or in the language of k-schemes GL(V) ↪ L(V) is an open immersion.

Our last example is also related to determinants.

Example 3.4.12. The identity of A1
k in terms of morphisms of k-functors is a closed immer-

sion 1 ↪ A1
k , where 1 is a terminal k-functor, that for each k-algebra A sends the unique

element of 1(A) to 1 ∈ A×. Suppose that V is a finitely generated, projective k-module of
constant rank n on Spec k. Then a cartesian diagram

SLV 1

LV A1
kdet

defines by Fact 2.4.5 a closed subgroup k-functor SLV of LV . Since LV is representable by
L(V) (Remark 3.4.7), we derive that SLV is representable by an affine group k-scheme SL(V)
which is closed in L(V). We call it the special linear group of V.

The closing part of this section is devoted to opposite monoids of general linear monoids.
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Fact 3.4.13. Let V be a finitely generated, projective k-module. Then we have an identification of
monoid k-functors

Lop
V = LV∨

Proof. Since V is finitely generated and projective, there exists an anti-isomorphism of ab-
stract monoids

HomA (A⊗k V, A⊗k V) ∋ φ ↦ φ∨ ∈ HomA ((A⊗k V)∨, (A⊗k V)∨)

natural in k-algebra A. This means that Lop
V can be identified with LV∨ .

3.5 Linear representations of monoid k-functors

Definition 3.5.1. Let M be a monoid k-functor. A pair (V, ρ) consisting of a k-module V and
a morphism ρ ∶M→ LV of monoid k-functors is called a linear representation of M.

Remark 3.5.2. Observe that L(k) = A1
k . Thus for a monoid functor M the characters of M are

in bijective correspondence with the class of its representations having k as the underlying
k-module.

Definition 3.5.3. Let M be a monoid k-functor and let (V, ρ), (W, δ) be its linear representa-
tions. A morphism φ ∶ V →W of k-modules such that

(1A ⊗k φ) ⋅ ρ(m) = δ(m) ⋅ (1A ⊗k φ)

for every k-algebra A and every m ∈M(A) is called a morphism of linear representations of M.

Let M be a monoid k-functor. We denote by Rep(M) the category of linear representations
of M. This is an additive category.

Definition 3.5.4. Let (V, ρ) be a linear representation of a monoid k-functor M. Then the
k-submodule

VM = {v ∈ V ∣ ρ(m)(1⊗ v) = 1⊗ v for every k-algebra A and every m ∈M(A)}

of V is called the module of invariants of (V, ρ).

If M is a monoid k-functor, then the assignment (V, ρ) ↦ VM gives rise to an additive functor

(−)M ∶ Rep(M) →Mod(k)

Now we describe certain constructions concerning linear representations of monoid k-functors.

Example 3.5.5. Let (V1, ρ1) and (V2, ρ2) be linear representations of monoid k-functors M1
and M2, respectively. Then we define a linear representation of M1 ×M2 with V1 ⊗k V2 as
the underlying k-module that corresponds to a morphism ρ ∶ M1 ×M2 → LV1⊗kV2 of monoid
k-functors given by

ρ (m1, m2) = (ρ1(m1) ⊗A ρ2(m2) ∶ A⊗k V1 ⊗k V2 → A⊗k V1 ⊗k V2)

for (m1, m2) ∈ M1(A) ×M2(A), where A is a k-algebra. This linear representation is called
the outer tensor product of (V1, ρ1) and (V2, ρ2).
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Example 3.5.6. Let (V1, ρ1) and (V2, ρ2) be linear representations of monoid k-functor M.
Then we define a linear representation of M with V1 ⊗k V2 as the underlying k-module given
as the composition of the outer tensor product of (V1, ρ1) and (V2, ρ2) with the diagonal
M ↪M ×M. Explicitly the corresponding morphism ρ ∶ M → LV1⊗kV2 of monoid k-functors
is given by

ρ(m) = (ρ1(m) ⊗A ρ2(m) ∶ A⊗k V1 ⊗k V2 → A⊗k V1 ⊗k V2)

for m ∈M(A), where A is a k-algebra. This linear representation is called the tensor product of
(V1, ρ1) and (V2, ρ2).

Remark 3.5.7. Since k⊗k k ∋ 1⊗ 1 ↦ 1 ∈ k is a canonical isomorphism, we derive by Remark
3.5.2 that for every monoid k-functor M tensor product of two linear representation of M
both having k as the underlying module induces the structure of an abstract monoid on the
class of characters of M.

Example 3.5.8. Let M be a monoid k-functor, let V be k-module and let ρ ∶M→ LV be a mor-
phism of monoid k-functors. Suppose that V is a projective and finitely generated k-module.
Fact 3.4.13 implies that morphism of a monoid k-functors ρop ∶ Mop → Lop

V can be identified
with some morphism ρ∨ ∶ Mop → LV∨ . Hence a pair (V∨, ρ∨) is a linear representation of
Mop. We call it the dual representation of (V, ρ).

Example 3.5.9. Let (V1, ρ1) and (V2, ρ2) be linear representations of a monoid k-functor M.
Suppose that V1 is a finitely generated, projective k-module. Then we have an identification

Homk (V1, V2) = V∨
1 ⊗k V2

of k-modules. By Examples 3.5.5 and 3.5.8 this isomorphism makes Homk(V1, V2) into a
linear representation of Mop ×M.

Example 3.5.10. Let (V1, ρ1) and (V2, ρ2) be linear representations of a monoid k-functor M.
Suppose that V1 is a finitely generated, projective k-module. By Example 3.5.9 Homk(V1, V2)
carries natural structure of a linear representation of Gop ×G. According to Fact 3.2.9 we
deduce that G and Gop are canonically isomorphic. Hence group k-functors Gop ×G and
G ×G are canonically isomorphic. Thus Homk(V1, V2) has a natural structure of a linear
representation of G ×G. By means of the diagonal G → G ×G this induces a structure of
linear representation of G on Homk(V1, V2). We call it the hom representation of (V1, ρ1) and
(V2, ρ2).

Now we prove elementary yet important result.

Proposition 3.5.11. Let (V1, ρ1) and (V2, ρ2) be linear representations of a group k-functor G. Sup-
pose that V1, V2 are a finitely generated, projective k-modules. Then

Homk(V1, V2)G = morphisms of G-representations (V1, ρ1) → (V2, ρ2)

as k-submodules of Homk(V1, V2).

Proof. Let ρ be a morphism from G to the general linear monoid of Homk(V1, V2) determin-
ing the structure of the hom representation of (V1, ρ1) and (V2, ρ2). Pick f ∈ V∨

1 = Homk(V1, k)
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and w ∈ V2. Since f ∶ V1 → k and w ∈ V2, we denote by f w and element of Homk(V1, V2) given
by formula ( f w)(v) = f (v)w for every v ∈ V1. Now fix k-algebra A and g ∈ G(A). Since V1 is
projective and finitely generated, for every k-algebra we have a canonical isomorphism

A⊗k Homk(V1, V2) ∋ 1⊗ φ ↦ 1A ⊗k φ ∈ HomA(A⊗k V1, A⊗k V2)

Examining Example 3.5.10 we deduce that the image of ρ(g)(1⊗ ( f w)) under this isomor-
phism is

ρ2(g) ⋅ (1A ⊗k ( f w)) ⋅ ρ1(g)−1

Since every morphism φ ∈ Homk(V1, V2) is expressible as a sum of morphisms of the form
f w, we infer that the image of ρ(g)(1⊗ φ) under this isomorphism is

ρ2(g) ⋅ (1A ⊗k φ) ⋅ ρ1(g)−1

Thus φ ∈ Homk(V1, V2)G if and only if 1A ⊗k φ = ρ2(g) ⋅ (1A ⊗k φ) ⋅ ρ1(g)−1 for every k-algebra
A and g ∈ G(A). Thus φ is in Homk(V1, V2)G if and only if it is a morphism of linear repre-
sentations (V1, ρ1) → (V2, ρ2).

3.6 Comodules over k-coalgebras

For an affine monoid k-scheme M its linear representations can be described in terms of
vector spaces with some additional structure related to k-coalgebra k[M]. In this section we
introduce the relevant notions.

Definition 3.6.1. Let C be a k-coalgebra with the comultiplication ∆ and the counit ξ. A pair
(V, d) consisting of a k-module V and a morphism d ∶ V → C⊗k V of k-modules such that the
following diagrams are commutative

V C⊗k V V C⊗k V

C⊗k V C⊗k C⊗k V k⊗k V

d

∆⊗k 1V

1C ⊗k dd

d

ξ ⊗k 1V≃

is called a C-comodule. Morphism d is called a coaction of C on V.

Definition 3.6.2. Let C be a k-coalgebra and let (V1, d1), (V2, d2) be two comodules over C. A
morphism of k-modules f ∶ V1 → V2 is a morphism of C-comodules if the diagram

C⊗k V1 C⊗k V2

V1 V2

1C ⊗k f

d2d1

f

is commutative.
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We denote by coMod(C) the category of C-comodules for a k-coalgebra C.
Recall the notion [ML98, Definition on page 112] of a functor creating (co)limits.

Theorem 3.6.3. Let C be a k-coalgebra. Then the forgetful functor coMod(C) → Mod(k) creates
colimits.

Proof. Let ∆, ξ be the comultiplication and the counit of C, respectively. Suppose that I ∋
i ↦ (Vi, di) ∈ coMod(C) is a diagram of C-comodules indexed by some category I. Let V
together with ui ∶ Vi → V for i ∈ I be a colimit of the diagram I ∋ i ↦ Vi ∈ Mod(k). By the
universal property of colimits we deduce that there exists a unique morphism d ∶ V → C⊗k V
such that diagrams

C⊗k Vi C⊗k V

Vi V

1C ⊗k ui

ddi

ui

are commutative for every i ∈ I. In order to verify that diagrams

V C⊗k V V C⊗k V

C⊗k V C⊗k C⊗k V k⊗k V

d

∆⊗k 1V

1C ⊗k dd

d

ξ ⊗k 1V≃

are commutative it suffices to note that for every i ∈ I we have chains of equalities

(1C ⊗k d) ⋅ d ⋅ ui = (1C ⊗k 1C ⊗k ui) ⋅ (1C ⊗k di) ⋅ di =

= (1C ⊗ 1C ⊗k ui) ⋅ (∆⊗k 1Vi) ⋅ di = (∆⊗k 1V) ⋅ d ⋅ ui

and
(ξ ⊗k 1V) ⋅ d ⋅ ui = (1k ⊗k ui) ⋅ (ξ ⊗k 1Vi) ⋅ di = (1k ⊗k ui) ⋅ jVi = jV ⋅ ui

where jW ∶ W → k ⊗k W is the natural isomorphism for every k-module W. Hence (V, d)
is a C-comodule. Suppose now that (W, e) is a C-comodule and wi ∶ Vi → W for i ∈ I is a
family of C-comodule morphisms compatible with the diagram I ∋ i ↦ (Vi, di) ∈ coMod(C).
Since {ui ∶ Vi → V}i∈I form a colimiting cocone for I ∋ i ↦ Vi ∈ Mod(k), there exists a unique
morphism of k-modules f ∶ V →W such that f ⋅ ui = wi. Note that

e ⋅ f ⋅ ui = e ⋅wi = (1C ⊗k wi) ⋅ di = (1C ⊗k f ) ⋅ (1C ⊗k ui) ⋅ di = (1C ⊗k f ) ⋅ d ⋅ ui

for every i ∈ I. Hence e ⋅ f = (1C ⊗k f ) ⋅ d. Thus f is a morphism of C-comodules. Thus (V, d)
together with a family {ui ∶ (Vi, di) → (V, d)}i∈I is a colimit of the diagram I ∋ i ↦ (Vi, di) ∈
coMod(C) of C-comodules. This implies that the forgetful functor coMod(C) → Mod(k)
creates colimits.
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Theorem 3.6.4. Let C be a k-coalgebra such that C is a flat k-module. Then the forgetful functor
coMod(C) →Mod(k) creates finite limits.

Proof. The proof is similar to the proof of Theorem 3.6.3.

Corollary 3.6.5. Let C be a coalgebra over k and assume that C is flat as a k-module. Then coMod(C)
is an abelian category with small colimits.

Proof. This follows from Theorems 3.6.3 and 3.6.4.

Fact 3.6.6. Let (C, ∆, ξ) be a k-coalgebra and let V be a C-comodule with respect to the coaction
d ∶ V → C⊗k V. Suppose that C is flat over k. Then d is a monomorphism of C-comodules (V, d) ↪
(C, ∆).

Proof. Since the diagram

V C⊗k V

C⊗k V C⊗k C⊗k V

d

∆⊗k 1V

1C ⊗k dd

is commutative, it follows that d ∶ (V, d) → (C, ∆) is a morphism of C-comodules. More-
over, (ξ ⊗k 1V) ⋅ d is canonically isomorphic with 1V . Thus d is a split monomorphism in
the category of modules over k. By Theorem 3.6.4 we derive that d is a monomorphism of
C-comodules.

The next result is of fundamental importance.

Theorem 3.6.7. Let C be a k-coalgebra that is free as a k-module. Suppose that V is a C-comodule
over C. Then for every finitely generated k-submodule U ⊆ V there exists a C-subcomodule W of V
such that U ⊆ W and W is a finitely generated k-module.

The theorem follows from the following simple lemma.

Lemma 3.6.7.1. Let C be a k-coalgebra over k that is free as a k-module. Suppose that V is a C-
comodule over C and fix an element v ∈ V. Then there exists a C-subcomodule W of V such that
v ∈ W and W is a finitely generated k-module.

Proof of the lemma. Let {ej}j∈J be a free basis of C over k and let d ∶ V → C ⊗k V be a left
coaction of C on V. Denote by ∆ ∶ C → C⊗k C the comultiplication of C. Then we have

d(v) = ∑
j∈J

ej ⊗ vj

where vj ∈ V are zero for almost all j ∈ J. Next according to

(∆⊗k 1V) ⋅ d = (1C ⊗k d) ⋅ d

29



we derive that equality

∑
j∈J

ej ⊗ d(vj) = (1C ⊗k d)(d(v)) = (∆⊗k 1V)(d(v)) = ∑
j∈J

∆(ej) ⊗ vj ⊆ ∑
j∈J

C⊗k C⊗k k ⋅ vj

holds. This implies that d(vj) ⊆ C⊗k (∑j∈J k ⋅ vj). Hence the k-submodule W of V generated
by v and {vj}j∈J is a C-subcomodule of V. It is finitely generated as a k-module and v ∈ W.

Proof of the theorem. Suppose that U is generated by {v1, ..., vn} as a k-module. For each i pick
a C-subcomodule Wi of V such that Wi is finitely generated as a k-module and vi ∈ Wi. This
can be done by Lemma 3.6.7.1. Next

W = W1 + ...+Wn

is a C-subcomodule of V that is finitely generated as a k-module and contains U.

3.7 Linear representations and comodules

Let M be an affine monoid k-scheme and let ρ ∶ M → LV be a morphism of k-functors, where
V is a k-module. Yoneda Lemma implies that ρ is determined by some element

dρ ∈ Homk (V, k[M] ⊗k V)

Conversely, to a morphism d ∶ V → k[M] ⊗k V there corresponds a morphism of k-functors
ρd ∶ M → LV given by

ρd( f ) = (A⊗k V ∋ 1⊗ v ↦ ( f ⊗k 1V)(d(v)) ∈ A⊗k V)

for every k-algebra A and a morphism of k-algebras f ∶ k[M] → A. Maps

ρ ↦ dρ, d ↦ ρd

are mutually inverse bijections. The following theorem is proved in [DG70, discussion 2.1
on page 173].

Theorem 3.7.1. Let M be an affine monoid k-scheme. Then the correspondence

Rep(M) ∋ (V, ρ) ↦ (V, dρ) ∈ coMod (k[M])

is an isomorphism of categories over Mod(k).

We obtain an interesting consequence of Theorem 3.7.1.

Corollary 3.7.2. Let k be a field. Let (V, ρ) be a linear representation of an affine monoid k-scheme
M. Then for every finitely generated k-subspace U ⊆ V there exists a subrepresentation W of (V, ρ)
such that U ⊆ W and W is a finite dimensional k-space.

Proof. This follows from Theorems 3.7.1 and 3.6.7.

Proposition 3.7.3. Let M be an affine monoid k-scheme and let V be a linear representation of M
with coaction d ∶ V → k[M]⊗k V. Define the morphism p ∶ V → k[M]⊗k V by formula p(v) = 1⊗ v.
Then the following assertions hold.
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(1) p is a coaction of k[M] on V and (V, p) is a trivial linear representation of M.

(2) The sequence of k-modules

0 VM V k[M] ⊗k V
d − p

is exact, where VM is the k-module of invariants of a linear representation (V, d).

Proof. For the proof of (1) note that ρp( f ) = 1A⊗kV for every f ∶ k[M] → A. Thus ρp( f ) is
the identity of LV(A) and hence ρp is a trivial morphism of monoid k-functors. By Theorem
3.7.1 p is a coaction and (V, p) is the trivial representation of M.
Next for the proof of (2) note that v is an invariant of (V, ρd) if and only if for every morphism
f ∶ k[M] → A of k-algebras we have

( f ⊗k 1V)(d(v)) = 1⊗ v

This holds if and only if
( f ⊗k 1V)(d(v)) = ( f ⊗k 1V)(p(v))

for every f . Thus v is an invariant of (V, ρd) if and only if d(v) = p(v). This proves (2).

3.8 Functorial comparison between representations of a monoid
and its group of units

In this section we assume that k is a field. We study the relation between the category
Rep(M) of representations of an affine monoid k-scheme M and the category Rep(G) of
representations of its group of units G. Let i ∶ k[M] → k[G] be the morphism of k-bialgebras
induced by G ↪M. Let us first note the following elementary result.

Fact 3.8.1. Assume that G is open and schematically dense in M. Then i is an injective morphism of
k-algebras.

Proof. This follows from [GW10, Proposition 9.19].

Fact 3.8.2. The forgetful functor Rep(M) → Rep(G) creates colimits and finite limits.

Proof. This follows from Theorems 3.6.3, 3.6.4 and the commutative triangle

Rep(M) Rep(G)

Vectk

of functors.

The theorem below characterizes representations of G which are contained in the image of
the forgetful functor Rep(M) → Rep(G).
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Theorem 3.8.3. Assume that G is open and schematically dense in M. Let V be a G-representation.
Then the following are equivalent.

(i) V is in the image of the forgetful functor Rep(M) → Rep(G).

(ii) The coaction d ∶ V → k[G] ⊗k V factors through i⊗k 1V ∶ k[M] ⊗k V ↪ k[G] ⊗k V.

Proof. In the proof we denote by ∆M and ∆G comultiplications of k[M] and k[G], respec-
tively. We also denote by ξM and ξG counits of k[M] and k[G], respectively. According to
Fact 3.8.1 i is an injective morphism of k-algebras.
Clearly (i) ⇒ (ii). We prove the converse. Suppose that (ii) holds. Let c ∶ V → k[M] ⊗k V be
a unique morphism such that d = (i⊗k 1V) ⋅ c. It suffices to prove that c is the coaction of the
bialgebra k[M] on V. Observe that

(i⊗k i⊗k 1V) ⋅ (1k[M] ⊗k c) ⋅ c = (i⊗k d) ⋅ c = (1k[G] ⊗k d) ⋅ d = (∆G ⊗k 1V) ⋅ d =

= (∆G ⊗k 1V) ⋅ ( (i⊗k 1V) ⋅ c) = ((∆G ⋅ i) ⊗k 1V) ⋅ c = (i⊗k i⊗k 1V) ⋅ (∆M ⊗k 1V) ⋅ c

Since i⊗k i⊗k 1V is a monomorphism, we deduce that (1k[M] ⊗k c) ⋅ c = (∆M ⊗k 1V) ⋅ c. More-
over, we have

(ξG ⊗k 1V) ⋅ d = (ξG ⊗k 1V) ⋅ (i⊗k 1V) ⋅ c = (ξM ⊗k 1V) ⋅ c

and hence (ξM ⊗k 1V) ⋅ c is the canonical isomorphism V ≃ k ⊗k V. Thus c is the coaction
of k[M] and d = (i ⊗k 1V) ⋅ c. Therefore, linear representation (V, d) of G is in the image of
Rep(M) → Rep(G).

Theorem 3.8.4. Assume that G is open and schematically dense in M. Then Rep(M) is a full
subcategory of Rep(G) closed under subobjects and quotients.

Proof. In the proof we denote by ∆M and ∆G comultiplications of k[M] and k[G], respec-
tively. We also denote by ξM and ξG counits of k[M] and k[G], respectively. According to
Fact 3.8.1 i is an injective morphism of k-algebras.
We first prove that Rep(M) is a full subcategory of Rep(G). For this consider representa-
tions V, W of M and their morphism f ∶ V → W as G-representations. Let cV and cW be
coactions of k[M] on V and W, respectively. Our goal is to prove that f is a morphism of
M-representations. Consider the diagram

k[G] ⊗k V k[G] ⊗k W

k[M] ⊗k V k[M] ⊗k W

V W

1k[G] ⊗k f

f

cV

i⊗k 1V

cW

i⊗k 1W

1k[M] ⊗k f
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in which the outer square and the top square are commutative. Our goal is to prove that the
bottom square is commutative. We have

(i⊗k 1W) ⋅ cW ⋅ f = (1k[G] ⊗k f ) ⋅ (i⊗k 1V) ⋅ cV = (i⊗k 1W) ⋅ (1k[M] ⊗k f ) ⋅ cV

Since i ⊗k 1W is a monomorphism, we deduce that cW ⋅ f = (1k[M] ⊗k f ) ⋅ cV . Hence f is a
morphism of M-representations.
Next we prove that Rep(M) is a subcategory of Rep(G) that is closed under subquotients.
Consider an M-representation V and its quotient G-representation q ∶ V ↠W. We show that
W is a quotient M-representation of V. Let cV be the coaction of M on V and let dW be the
coaction of G on W. We have a commutative diagram

k[G] ⊗k V k[G] ⊗k W

k[M] ⊗k V

V W

1k[G] ⊗k q

q

cV

i⊗k 1V

dW

and hence dW(W) is in the image of i⊗k 1W . Thus Theorem 3.8.3 implies that W is a repre-
sentation of M and q is a morphism of M-representations. This shows that Rep(M) is a sub-
category of Rep(G) closed under quotients. Next let j ∶ U ↪ V be a G-subrepresentation of
an M-representation V. By what we proved above the cokernel q ∶ V ↠W of j in Rep(G) is
contained in Rep(M). Since both Rep(M) and Rep(G) are abelian (Corollary 3.6.5) and the
forgetful functor Rep(M) → Rep(G) is exact by Fact 3.8.2, we derive that the kernel of q in
Rep(M) coincides with its kernel in Rep(G). Thus U is an M-representation and j ∶ U ↪ V
is a morphism of M-representations. Hence Rep(M) is the subcategory of Rep(G) closed
under subobjects.

We give an example of a monoid k-scheme with non dense group of units and show that
Theorem 3.8.4 does not hold for such monoids.

Example 3.8.5. Consider the subscheme N of A2
k = A1

k ×k A1
k defined by the equation

(x − y) ⋅ x = 0

Note that N is a submonoid scheme of the product A1
k ×k A1

k with respect to coordinatewise
multiplication. The origin of the affine plane A2

k is the zero of N. The unit group N∗ of N is
isomorphic with Gm. Its closure is a submonoid scheme L of N isomorphic with the affine
line A1

k as a monoid k-scheme. Moreover, L is the irreducible component of N. There is also
another irreducible component, which we denote by L. Note that both L and L are isomor-
phic as k-schemes equipped with an action of N∗.
Swapping L and L gives rise to a N∗-equivariant automorphism of N which is not N-
equivariant. This implies that there exists an automorphism of k[N] as a linear represen-
tation of N∗ which is not in the image of the functor Rep(N) → Rep(N∗). In particular, the
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functor Rep(N) → Rep(N∗) is not full.
Note that L ↪ N is a closed N∗-stable subscheme, which is not N-stable. Hence k[N] ↠ k[L]
is a quotient representation of k[N] as the representation of N∗, but it is not its quotient as a
representation of N.

It turns out that under the assumption that G is open and schematically dense in M the
inclusion of representations of M into representations of G admits left adjoint. This result
plays the fundamental role in the proof of representability of Białynicki-Birula functor in the
affine case.

Theorem 3.8.6. Assume that G is open and schematically dense in M. Let V be a linear rep-
resentation of G. There exists an M-representation W and a surjective morphism q ∶ V ↠ W
of G-representations such that for every M-representation U and a morphism f ∶ V → U of G-
representations there exists a unique morphism f̃ ∶ W → U of M-representations making the triangle

V U

W

q

f

f̃

commutative.

Proof. Assume first that V is finite dimensional as a vector space over k. Let K be a set of
G-subrepresentations of V that consists of all K ⊆ V such that linear representation V/K of
G carries the structure of M-representation. Clearly K ≠ ∅ because V ∈ K. Since V is finite
dimensional, there exists a finite subset {K1, ..., Kn} ⊆ K such that

n
⋂
i=1

Ki = ⋂
K∈K

K

Then a morphism

V/ ( ⋂
K∈K

K) ∋ v ↦ (v mod Ki)1≤i≤n ∈
n
⊕
i=1

V/Ki

is a monomorphism and hence by Theorem 3.8.4 the quotient W = V/ (⋂K∈K K) is an M-
representation. Let q ∶ V ↠ W be the canonical epimorphism. Consider now a morphism
f ∶ V → U of G-representations, where U is an M-representation. Then im( f ) is a G-
subrepresentation of U and by Theorem 3.8.4 we derive that im( f ) is an M-representation.
This implies that ker( f ) is in K. Hence f factors through q. Thus there exists a unique mor-
phism f̃ ∶ W → U of G-representations such that f̃ ⋅ q = f . This completes the proof in the
case when V is finite dimensional over k.
Now consider the general V. Let F be the set (partially ordered by inclusion) of all fi-
nite dimensional G-representations of V. According to Corollary 3.7.2 we deduce that V =
colimF∈FF. By the case considered above we deduce that for every F in F there exists a uni-
versal morphism qF ∶ F → WF of G-representations into an M-representation WF. Note that
if F1 ⊆ F2 are two elements of F , then

34



F1 WF1

F2 WF2

qF1

qF2

Thus {WF}F∈F together with morphisms WF1 →WF2 for F1 ⊆ F2 in F form a diagram indexed
by the poset F . The category Rep(M) has small colimits by Corollary 3.6.5 and we define
W = colimF∈FWF. This is also a colimit of this diagram in the category Rep(G) by Fact 3.8.2.
We also define q = colimF∈FqF ∶ V = colimF∈FF → W. Since a colimit of a family of epimor-
phisms is an epimorphism, we derive that q is an epimorphism of G-representations. Sup-
pose now that f ∶ V → U is a morphism of G-representations and U is an M-representation.
Then f∣F uniquely factors through qF for every F in F . Hence by universal property of col-
imits we derive that f factors through q in a unique way. This completes the proof.

3.9 Irreducible representations

In this section we assume that k is a field.

Definition 3.9.1. Let V be a linear representation of an affine monoid k-scheme M. Then V
is irreducible if it has no proper nonzero subrepresentations.

Corollary 3.9.2. Let V be an irreducible representation of an affine monoid k-scheme M. Then V is
of finite dimension over k.

Proof. This is a consequence of Corollary 3.7.2.

Fact 3.9.3. Let V, W be irreducible representations of an affine monoid k-scheme M. If f ∶ V →W is
a morphism linear representations, then either f = 0 or f is an isomorphism.

Proof. Note that ker( f ) is a subrepresentation of an irreducible representation V. Thus either
ker( f ) = 0 or ker( f ) = V. If ker( f ) = 0, then f is injective and im( f ) ⊆ W is nonzero. Since
im( f ) is a subrepresentation of an irreducible representation W, we derive that im( f ) = W.
Hence f is an isomorphism. If ker( f ) = V, then f is equal to zero.

Definition 3.9.4. Let V be a linear representation of an affine monoid k-scheme M. Then V
is completely reducible if it is the sum of its irreducible subrepresentations.

Theorem 3.9.5. Let V be a representation of an affine monoid k-scheme M. Then the following are
equivalent.

(i) V is completely reducible.

(ii) Every monomorphism of linear representations with V as the codomain splits.

Moreover, the class of completely reducible representations of M is closed under subrepresentations
and quotients.
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For a better logical organization of the proof we extracted from it the following result.

Lemma 3.9.5.1. Let V be a linear representation of an affine monoid k-scheme M. Assume that every
monomorphism of linear representations with V as the codomain splits. Let W be a subrepresentation
of V. Then every monomorphism of linear representations with W as the codomain splits.

Proof of the lemma. Let j ∶ W ↪ V be the inclusion. Suppose also that i ∶ U ↪W is a monomor-
phism of representations. Then the assumption implies that j ⋅ i splits. This means that there
exists a morphism r ∶ V ↠ U of representations such that r ⋅ (j ⋅ i) = 1U . Then r ⋅ j ∶ W ↠ U is a
left inverse of i. Thus i splits. Since i is an arbitrary monomorphism with W as the codomain,
we infer that the assertion holds.

Proof of the theorem. Assume that (i) holds and let W be a subrepresentation of V. Consider
the family

U = {U ⊆ V ∣U is a subrepresentation of V and U ∩W = {0}}

By Zorn’s lemma there exists a maximal element of U with respect to inclusion. Suppose
that U is maximal in U . Pick an irreducible subrepresentation K of V. If K ∩ (U +W) = {0},
then (U + K) ∩W = {0}. Since U ⊆ U + K and U + K is a subrepresentation of V, it follows
from the fact that U is maximal in U that K ⊆ U, but this is contradiction with the fact that
K∩(U +W) = {0}. Therefore, K∩(U +W) ≠ {0}. Since K∩(U +W) is a nonzero subrepresen-
tation of K, we deduce that K = K ∩ (U +W). Hence K is a subrepresentation of U +W. Since
V is the sum of its irreducible subrepresentations and K was chosen arbitrarily, we derive
that V ⊆ U +W. Hence V is a direct sum of W and U. Thus the inclusion W ↪ V splits. This
completes the proof of (i)⇒ (ii).
Next we prove that (ii) ⇒ (i). By Corollary 3.7.2 it suffices to show that every finite dimen-
sional subrepresentation of V is the sum of its irreducible subrepresentations. By Lemma
3.9.5.1 it suffices to assume that V is finite dimensional. Let W be the sum of all irreducible
subrepresentations of V. Then V is a direct sum of W and some subrepresentation U. Clearly
U is finite dimensional. If U is nontrivial, then it has a minimal nonzero subrepresentation.
This subrepresentation is an irreducible subrepresentation of V not contained in W. This is
a contradiction. Hence U = {0} and thus V is completely reducible.
Note that by Fact 3.9.3 the quotient of a representation that is a sum of its irreducible sub-
representation also admits this property. By Lemma 3.9.5.1 the property (ii) is inherited by
subrepresentations. This completes the proof.

Definition 3.9.6. Let M be an affine monoid k-scheme. We denote by Irr(M) the collection
of all isomorphism classes of irreducible representations of M.

Definition 3.9.7. Let V be a representation of an affine monoid k-scheme M. Consider the
sum soc(V) of all irreducible subrepresentations of V. Then soc(V) is the largest completely
reducible subrepresentation of V. We call it the socle of V.

Theorem 3.9.8. Let V be a representation of an affine monoid k-scheme. For each λ ∈ Irr(M) let
V[λ] be a sum of all irreducible subrepresentation of V which are contained in λ. Then

soc(V) = ⊕
λ∈Irr(M)

V[λ]
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The theorem is a consequence of the following result.

Lemma 3.9.8.1. Let V be a representation of M such that

V =
n
∑
i=1

Ki

where Ki are irreducible for each 1 ≤ i ≤ n. If K is an irreducible subrepresentation of V, then K is
isomorphic with one of {K1, ..., Kn}.

Proof of the lemma. Since K is a subrepresentation of V, we derive by Theorem 3.9.5 that there
exists an epimorphism q ∶ V ↠ K such that q∣K = 1K. Then for some i the morphism q∣Ki

is
nontrivial. By Fact 3.9.3 this implies that K and Ki are isomorphic.

Proof of the theorem. Note that
soc(V) = ∑

λ∈Irr(M)
V[λ]

by definition of soc(V). Moreover, if λ ∩ (λ1 ∪ ...∪ λn) = ∅, then subrepresentation

V[λ] ∩ (V[λ1] + ...+V[λn])

must be zero. Indeed, if it is nonzero, then according to Theorem 3.9.5 it would be nonzero
and completely reducible. Hence it would contain some irreducible subrepresentation K and
then by Lemma 3.9.8.1 we would have K ∈ λ ∩ (λ1 ∪ ...∪ λn). This is a contradiction.

Definition 3.9.9. Let V be a representation of an affine monoid k-scheme M. Then the decom-
position of Theorem 3.9.8 is called the isotypic decomposition of soc(V) and for every λ ∈ Irr(λ)
subrepresentations V[λ] is called the isotypic component of V of type λ.

Fact 3.9.10. Let M be an affine monoid k-scheme. Let f ∶ V → W be a morphism of representations
of M. Then

f (V[λ]) ⊆ W[λ]

for every λ in Irr(M).

Proof. Fix λ ∈ Irr(M). By Fact 3.9.3 f (V[λ]) is the sum of irreducible subrepresentations
contained in λ. Thus f (V[λ]) ⊆ W[λ].

Proposition 3.9.11. Let M, N be affine monoid k-schemes. Suppose that V is a representation of
both M and N and assume that their actions on V commute. Assume that V is completely reducible
as a representation of N and consider the isotypic decomposition

V = ⊕
λ∈Irr(N)

V[λ]

Then for every λ in Irr(N) the subspace V[λ] is an M-subrepresentation of V.
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Proof. Consider morphisms ρ ∶ M → LV and δ ∶ N → LV determining the structure of V as
representation of M and N, respectively. Fix k-algebra A and m ∈ M(A). Consider A⊗k V as a
tensor product (Example 3.5.6) of N-representation V with A as the trivial N-representation.
We claim that ρ(m) ∶ A⊗k V → A⊗k V is an endomorphism of this N-representation. For this
consider k-algebra B and n ∈ N(B). Since actions of M and N on V commute, we derive that

(1B ⊗k ρ(m)) ⋅ (1A ⊗k δ(n)) = (1A ⊗k δ(n)) ⋅ (1B ⊗k ρ(m))

Since this holds for every k-algebra B and every n ∈ N(B), we deduce that indeed ρ(m) is an
endomorphism of A⊗k V as a representation of N. Next we have

(A⊗k V) [λ] = A⊗k V[λ]

for every λ ∈ Λ. Thus by Fact 3.9.10 we have

ρ(m) (A⊗k V[λ]) ⊆ A⊗k V[λ]

for every λ in Irr(N). This holds for every k-algebra A and m ∈ M(A). Hence V[λ] is an
M-subrepresentation of V.

Corollary 3.9.12. Let M be an affine monoid k-scheme and let G be its group of units. If G ↪ M
is open and schematically dense, then Rep(M) → Rep(G) sends irreducible representations to
irreducible representations and the induced map Irr(M) → Irr(G) of classes is an injection.

Proof. If V is irreducible as a representation of M, then by Theorem 3.8.4 it is also irreducible
as a representation of G. Now if V, W are two irreducible representations of M which are
isomorphic as representations of G, then again by Theorem 3.8.4 they are isomorphic as
representations of M. Thus the induced map Irr(M) → Irr(G) is injective.

Definition 3.9.13. Let M be an affine monoid k-scheme. We say that category Rep(M) is
semisimple if every representation of M is completely reducible.

Corollary 3.9.14. Let M be an affine monoid k-scheme and let G be its group of units. If G ↪M is
open and schematically dense and Rep(G) is semisimple, then Rep(M) is semisimple.

Proof. Let V be a representation of M. Then V is a sum of its irreducible G-subrepresentations.
By Theorem 3.8.4 we infer that all these irreducible subrepresentations of V with respect to
G are M-representations of V. According to Corollary 3.9.12 we derive that V is a sum of its
irreducible M-subrepresentations. Hence V is completely reducible representation of M.

3.10 Actions of monoid k-functors and fixed points

This section is devoted to introducing actions of monoid k-functors and related topics.

Definition 3.10.1. Let M be a monoid k-functor and let X be a k-functor. Suppose that α ∶
M×X → X is a morphism of k-functors such that there are commutative diagrams
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M×M×X M×X 1 ×X M×X

M×X X X

µ × 1X

α

1M × α α

e × 1X

α

1X

where µ ∶ M ×M → M is the multiplication and e ∶ 1 → X is the identity of M. Then α is
called an action of M on X.

Definition 3.10.2. Let M be a monoid k-functor and let X1,X2 be k-functors equipped with
actions α1, α2 of M, respectively. Consider a morphism σ ∶ X1 → X2 of k-functors such that
the diagram

M×X1 M×X2

X1 X2

1M × σ

σ

α1 α2

is commutative. Then σ is called an M-equivariant morphism of k-functors.

Definition 3.10.3. Let X be a k-functor equipped with an action α ∶ M ×X → X of a monoid
k-functor M. Consider a k-subfunctor Z of X. Then Z is called M-stable if the restriction of α
to M×Z factors through Z.

Using our convention (Remark 2.3.8) all these notions apply to monoid k-schemes. In par-
ticular, we have the following notion.

Definition 3.10.4. Let X be a k-scheme equipped with an action a ∶ M ×k X → X of a monoid
k-scheme M. Consider a locally closed subscheme Z of X. Then Z is called M-stable if the
restriction of a to M ×k Z factors scheme-theoreticaly through Z.

Definition 3.10.5. Let M be a monoid k-scheme and let a ∶ M ×k X → X be an action of M on
a k-scheme X. Then we define a subpresheaf XM of X by

XM(Y) = { f ∈ Mork(Y, X) ∣ f is M-equivariant for Y with the trivial M-action}

for every k-scheme Y. Then XM is called the fixed point presheaf of M-scheme X.

Fact 3.10.6. Let M be a monoid k-scheme and let X be a k-scheme with an action of M. Then XM is
a Zariski sheaf.

Proof. Let a be an action on X and prZ ∶ M ×k Z → Z denote the projection on Z for every
k-scheme Z.
Consider a k-scheme Y and let Y = ⋃i∈I Yi be an open cover of Y. Suppose that { fi ∶ Yi →
X}i∈I is a family of morphisms such that for each i morphism fi is M-equivariant when
Yi is considered with the trivial action of M. Moreover, assume that fi ∣Yi∩Yj

= f j ∣Yi∩Yj
for

any pair i, j ∈ I. Since X is a Zariski sheaf (Remark 2.3.8), we derive that there exists a
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unique morphism f ∶ Y → X of k-schemes such that f∣Yi
= fi for i ∈ I. It suffices to verify

that f is M-equivariant as a morphism defined on Y with the trivial action of M. Since
M ×k Y = ⋃i∈I M ×k Yi is an open cover and

( f ⋅prY)∣M×kYi
= fi ⋅prYi

= a ⋅ (1M ×k fi) = (a ⋅ (1M ×k f ) )∣M×kYi

we derive that f ⋅prY = a ⋅ (1M ×k f ). This completes the proof.

3.11 Locally linear M-schemes

The class of locally linear schemes generalizes affine k-schemes equipped with actions of
monoid k-schemes. Similarly to affine k-schemes with actions of monoid k-schemes locally
linear schemes can be studied efficiently by means of representations theory.

Definition 3.11.1. Let M be a monoid k-scheme and let X be a k-scheme with an action of M.
Suppose that each point of X admits an open affine M-stable neighborhood. Then we say
that X is a locally linear M-scheme.

Proposition 3.11.2. Assume that k is a field. Let M be a monoid k-scheme and let X be a k-scheme
with an action of M. Suppose that Z is a closed M-stable subscheme of X defined by the ideal with
nilpotent sections. Consider an open subset U of X. Then the following are equivalent.

(i) U is M-stable.

(ii) The intersection U ∩ Z is M-stable.

Proof. Let a ∶ M×k X → X be the action of M on X. Fix an open subset U of X. If U is M-stable,
then U∩Z is M-stable and this proves that (i)⇒ (ii). So suppose that U∩Z is M-stable. Since
ideal of Z has nilpotent sections and k is a field, we derive that closed immersions U ∩Z ↪ U
and M ×k (U ∩ Z) ↪ M ×k U induce homeomorphisms on topological spaces. Consider the
commutative diagram

M ×k U X

M ×k (U ∩ Z) U ∩ Z

a∣M×kU

where the bottom horizontal arrow is the induced action on U ∩ Z and vertical morphisms
are homeomorphisms. The commutativity of the diagram implies that a (M ×k U) is con-
tained set-theoretically in U. Since U is open in X, we derive that morphism of schemes
a∣M×kU factors through U. Hence U is M-stable. This completes the proof of (ii)⇒ (i).

Corollary 3.11.3. Assume that k is a field. Let M be a monoid k-scheme and let X be a k-scheme
with an action of M. Suppose that Z is a closed M-stable subscheme of X defined by the nilpotent
ideal. Consider an open subset U of X. Then the following are equivalent.

(i) U is M-stable and affine.
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(ii) U ∩ Z is M-stable and affine.

Proof. Since ideal of Z is nilpotent, we derive that U is affine if and only if U ∩ Z is affine.
This combined with Proposition 3.11.2 yields the result.

Corollary 3.11.4. Assume that k is a field. Let M be a monoid k-scheme and let X be a k-scheme
with an action of M. Suppose that Z is a closed M-stable subscheme of X defined by the nilpotent
ideal. Then X is locally linear M-scheme if and only if Z is locally linear M-scheme.

Proof. This is a consequence of Corollary 3.11.3.

3.12 Quasi-coherent G-sheaves on locally linear G-schemes

Line bundles with G-equivariant structure were studied extensively by Mumford in his ge-
ometric invariant theory [MFK94, Definition 1.6 on page 30]. Here we study G-equivariant
sheaves on locally linear G-schemes for an affine group k-scheme G.

Definition 3.12.1. Let G be a group k-scheme and let X be a k-scheme with an action a ∶
G ×k X → X of G. We denote by π ∶ G ×k X → X the projection. Consider a pair (F , τ)
consisting of a quasi-coherent sheaf F on X and an isomorphism τ ∶ a∗F → π∗F . We call it a
quasi-coherent G-sheaf on X if the following equality

(µ × 1X)∗τ = π∗
23τ ⋅ (1G ×k a)∗ τ

holds, where µ ∶ G ×k G → G is the multiplication on G and π2,3 ∶ G ×k G ×k X → G ×k X is
the projection on the last two factors.

Definition 3.12.2. Let G be a group k-scheme and let X be a k-scheme with an action a of
G. We denote by π ∶ G ×k X → X the projection. Let (F1, τ1) and (F2, τ2) be quasi-coherent
G-sheaves on X. Suppose that φ ∶ F1 → F2 is a morphism of quasi-coherent sheaves on X
such that the square

a∗F1 π∗F1

a∗F2 π∗F2

τ1

τ2

a∗φ π∗φ

is commutative. Then φ is a morphism of quasi-coherent G-sheaves on X. We denote by QcohG(X)
the category of quasi-coherent G-sheaves and call it the category of quasi-coherent G-sheaves on
X.

Definition 3.12.3. Let G be a monoid k-scheme and let X be a locally noetherian k-scheme
with an action of G. Then a quasi-coherent G-sheaf (F , τ) is coherent G-sheaf ifF is coherent.
Coherent G-sheaves form a full subcategory of QcohG(X). We denote it by CohG(X) and call
it the category of coherent G-sheaves on X.
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Remark 3.12.4. The notion of quasi-coherent G-sheaf is often considered nonintuitive. Some
discussion that is useful in understanding the concept is contained in [MFK94, page 30 im-
mediately after Definition 1.6]. There is also a highly abstract level of considerations which
sheds light on it. We discuss it now without going into technical details. Let us start with a
formally less complex structures than schemes. Suppose that G is a topological group and
X is a topological space on which G acts. Consider also a sheaf F of sets on X. The con-
struction ([MM94, Chapter II, Section 6]) of the space étale of F shows that one can consider
F (via appropriate equivalence of categories) as a topological space ∣F∣ → X over X. Next if
a ∶ G ×X → X is an action, then the pullback a−1(F) of F corresponds to a cartesian square

∣a−1(F)∣ ∣F∣

G ×X X

ã

a

Moreover, if π ∶ G × X → X is the projection, then ∣π−1(F)∣ = G × ∣F∣ and an invertible
morphism τ ∶ a−1F → π−1F gives rise to a homeomorphism ∣τ∣ ∶ ∣a−1F∣ → ∣π−1F∣ = G × ∣F∣
over G ×X. Now it turns out that τ satisfies the equality

(µ × 1X)−1τ = π−1
23 τ ⋅ (1G ×k a)−1 τ

(where µ and π23 have their usual denotations) if and only if in the commutative diagram

G × ∣F∣ = ∣π−1(F)∣ ∣a−1(F)∣ ∣F∣

G ×X X

∣τ−1∣ ã

a

the composition of two top horizontal maps is a continuous map that defines an action of G
on ∣F∣. Thus morphisms τ satisfying equality above correspond to these actions of G on ∣F∣
which are defined over a.
Now in case of quasi-coherent sheaves there is no geometric construction of étale space, that
will make every quasi-coherent sheaf on X it into a k-scheme over X. Despite of this there
is an abstract machinery of fibered categories (see also Section 7.2) that enables with respect to
some abstracted properties to conceive a quasi-coherent sheaf F on a k-scheme X as some
analogon of a space over X. In his excellent notes [FGI05, Part 1, Subsection 3.2.1] on fibered
categories Vistoli constructs a fibered category Qcoh → Schk of quasi-coherent sheaves over k-
schemes. Then in [FGI05, Part 1, Subsection 3.8] he explains how; given a category, an object
B in its base equipped with an action of a group object G and an object E over B; to define
an action of G on E compatible with the action of G on B. Application of this notion to
Qcoh → Schk, k-scheme X with a scheme group action G and a quasi-coherent sheaf F on X
yields precisely the structure of quasi-coherent G-sheaf with F as the underlying sheaf.

Remark 3.12.5. Let X be a k-scheme equipped with an action of a group k-scheme G. Then
there exists a structure of monoidal category on QcohG(X) such that the forgetful functor
QcohG(X) → Qcoh(X) is a strict monoidal functor. Moreover, if f ∶ X → Y is a G-equivariant
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morphism of k-schemes equipped with G-actions, then f ∗ ∶ Qcoh(Y) → Qcoh(X) induces a
cocontinuous, monoidal functor f ∗ ∶QcohG(Y) →QcohG(X). Now if X is locally noetherian,
then CohG(X) is a monoidal subcategory of QcohG(X) and if f ∶ X → Y is a G-equivariant
morphism of locally noetherian k-schemes with G-actions, then f ∗ ∶ QcohG(Y) → QcohG(X)
restricts to a functor f ∗ ∶ CohG(Y) → CohG(X).
The properties above are elementary and their proofs are straightforward. One can also em-
ploy the machinery of fibered categories (see Remark 3.12.4) to prove them. This essentially
boils down to the statement that the category Qcoh→ Schk is fibered in monoidal categories.

Proposition 3.12.6. Let G be a group k-scheme and let X be a k-scheme equipped with an action a
of G. Suppose that τ ∶ a∗F → π∗F is a morphism of quasi-coherent sheaves on G ×k X. Then the
following are equivalent.

(i) The equalities
(µ × 1X)∗τ = π∗

23τ ⋅ (1G ×k a)∗ τ, ⟨e ⋅ q, 1X⟩∗τ = 1F

hold, where q ∶ X → Spec k is the unique morphism and e ∶ Spec k → G is the identity.

(ii) (F , τ) is a quasi-coherent G-sheaf.

Proof. Assume that (i) holds. Let p ∶ G → Spec k be the unique morphism. Since G is a group
k-scheme, there exists a morphism i ∶ G → G of k-schemes such that

µ ⋅ ⟨1G, i⟩ = e ⋅ p = µ ⋅ ⟨i, 1G⟩

and i ⋅ i = 1G. Then

1π∗F = π∗⟨e ⋅ q, 1X⟩∗τ = ((e ⋅ p) ×k 1X)∗ τ = (⟨i, 1G⟩ ×k 1X)∗(µ ×k 1X)∗τ =

= (⟨i, 1G⟩ ×k 1X)∗(π∗
23τ ⋅ (1G ×k a)∗ τ) = (⟨i, 1G⟩ ×k 1X)∗π∗

23τ ⋅ (⟨i, 1G⟩ ×k 1X)∗ (1G ×k a)∗ τ =

= τ ⋅ (⟨i, 1G⟩ ×k 1X)∗ (1G ×k a)∗ τ

Therefore, τ is a split epimorphism. Similarly we have

1a∗F = a∗⟨e ⋅ q, 1X⟩∗τ = ⟨1G, a⟩∗ ((e ⋅ p) ×k 1X)∗ τ =

= ⟨1G, a⟩∗(⟨1G, i⟩ ×k 1X)∗(µ ×k 1X)∗τ = ⟨1G, a⟩∗(⟨1G, i⟩ ×k 1X)∗(π∗
23τ ⋅ (1G ×k a)∗ τ) =

= ⟨1G, a⟩∗(⟨1G, i⟩ ×k 1X)∗π∗
23τ ⋅ ⟨1G, a⟩∗(⟨1G, i⟩ ×k 1X)∗ (1G ×k a)∗ τ =

= ⟨1G, a⟩∗(⟨1G, i⟩ ×k 1X)∗π∗
23τ ⋅ τ

Thus τ is a split monomorphism. Therefore, if (i) holds, we deduce that τ is an isomorphism
and hence (F , τ) is a quasi-coherent G-sheaf.
Assume now that (ii) holds. Then (µ × 1X)∗τ = π∗

23τ ⋅ (1G ×k a)∗ τ. Thus

⟨e ⋅ q, e ⋅ q, 1X⟩∗(µ × 1X)∗τ = ⟨e ⋅ q, 1X⟩∗τ

and
⟨e ⋅ q, e ⋅ q, 1X⟩∗(π∗

23τ ⋅ (1G ×k a)∗ τ) = ⟨e ⋅ q, 1X⟩∗τ ⋅ ⟨e ⋅ q, 1X⟩∗τ

Hence ⟨e ⋅ q, 1X⟩∗τ = ⟨e ⋅ q, 1X⟩∗τ ⋅ ⟨e ⋅ q, 1X⟩∗τ. Since τ is an isomorphism, we derive that
⟨e ⋅ q, 1X⟩∗τ = 1F .
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Let G be an affine group k-scheme. We describe quasi-coherent G-sheaves on locally linear
G-schemes.

Theorem 3.12.7. Let G be an affine group k-scheme and let X be a k-scheme equipped with an action
a of G that makes X a locally linear G-scheme. Let π ∶ G×k X → X be the projection. Suppose that F
is a quasi-coherent sheaf on X. Assume that γ ∶ F → a∗π∗F is a morphism of quasi-coherent sheaves
on X. Then the following are equivalent.

(i) For every G-stable open affine subscheme U of X consider the morphism

F(U) → k[G] ⊗k F(U)

determined as the composition of Γ (U, γ) with the identification

Γ(G ×k U, π∗F) = k[G] ⊗k F(U)

Then this morphism is a coaction of k[G] on F(U).

(ii) Let τ be the image of γ under the isomorphism

HomOX (F , a∗π∗F) HomOG×k X (a∗F , π∗F)

for a∗ ⊣ a∗. Then (F , τ) is a quasi-coherent G-sheaf on X.

Proof. Let µ ∶ G ×k G → G be the multiplication and e ∶ Spec k → G be the unit of the group
k-scheme structure on G. Moreover, we denote by π23 ∶ G ×k G ×k X → G ×k X the projection
on the last two factors and by q ∶ X → Spec k the unique morphism.
Let τ be the image of γ under the bijection

HomOX (F , a∗π∗F) HomOG×k X (a∗F , π∗F)

for a∗ ⊣ a∗. Fix an open G-stable affine subscheme U of X. Let c be the morphism

F(U) → k[G] ⊗k F(U)

determined as the composition of Γ (U, γ) with the identification

Γ(G ×k U, π∗F) = k[G] ⊗k F(U)

Next observe that γ = a∗τ ⋅ ηF , where ηF ∶ F → a∗a∗F is the unit of a∗ ⊣ a∗. Thus c is the
composition of

Γ (G ×k U, τ) ⋅ Γ (U, ηF)

with the identification Γ(G ×k U, π∗F) = k[G] ⊗k F(U). Note that Γ (U, ηF) (s) = a∗s for
every s in F(U). Fix now s in F(U). Suppose that

c(s) =
n
∑
i=1

ai ⊗ si
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where ai ∈ k[G] and si ∈ F(U) for all i. Then

(1k[G] ⊗k c)(c(s)) =
n
∑
i=1

ai ⊗ c(si) =
n
∑
i=1

(Γ (G ×k G ×k U, π∗
23τ) (ai ⊗ a∗si)) =

= Γ (G ×k G ×k U, π∗
23τ) ( (1G ×k a)∗ c(s)) =

= (Γ (G ×k G ×k U, π∗
23τ) ⋅ Γ (G ×k G ×k U, (1G ×k a)∗ τ))( (1G ×k a)∗ a∗s)) =

= Γ(G ×k G ×k U, π∗
23τ ⋅ (1G ×k a)∗ τ)( (1G ×k a)∗ a∗s))

and

(∆G ⊗k 1F(U))(c(s)) = (µ ×k 1X)∗ c(s) = Γ (G ×k G ×k U, (µ ×k 1X)∗τ) ( (µ ×k 1X)∗ a∗s)

where ∆G is the comultiplication of k[G]. Since s is an arbitrary section of F over U, we
derive that

(1k[G] ⊗k c) ⋅ c = (∆G ⊗k 1F(U)) ⋅ c

if and only if

Γ(G ×k G ×k U, π∗
23τ ⋅ (1G ×k a)∗ τ) = Γ (G ×k G ×k U, (µ ×k 1X)∗τ)

Next suppose that ξG ∶ k → k[G] is the counit of k[G]. Then

n
∑
i=1

ξG(ai) ⋅ si = ⟨e ⋅ q, 1X⟩∗c(s) = Γ(U, ⟨e ⋅ q, 1X⟩∗τ)(⟨e ⋅ q, 1X⟩∗a∗s) = Γ(U, ⟨e ⋅ q, 1X⟩∗τ)(s)

Since s is arbitrary section of F over U, we derive that (ξG ⊗k 1F(U)) ⋅ c is isomorphic with
1F(U) if and only if

Γ(U, ⟨e ⋅ q, 1X⟩∗τ) = 1F(U)

Thus c is a coaction of k[G] if and only if

Γ(G ×k G ×k U, π∗
23τ ⋅ (1G ×k a)∗ τ) = Γ (G ×k G ×k U, (µ ×k 1X)∗τ)

and
Γ(U, ⟨e, 1X⟩∗τ) = 1F(U)

Now X is a locally linear G-scheme. Hence X has an open cover by G-stable open affine
subsets like U. From this assumption we deduce that (i) is equivalent with the fact that
formulas

π∗
23τ ⋅ (1G ×k a)∗ τ = (µ ×k 1X)∗τ, ⟨e, 1X⟩∗τ = 1F

hold. By Proposition 3.12.6 it follows that these these formulas hold if and only if (ii) holds.
Thus assertions (i) and (ii) are equivalent.

Remark 3.12.8. Theorem 3.12.7 gives rise to the description of the category QcohG(X), where
X is a k-scheme equipped with an action a ∶ G ×k X → X of affine group k-scheme G that
makes it into a G-linear scheme. We give now details of this description. Denote by π ∶
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G ×k X → X the projection. Objects of QcohG(X) are pairs (F , γ) consisting of a quasi-
coherent sheaf F on X and a morphism γ ∶ F → a∗π∗F of quasi-coherent sheaves on X such
that for every open G-stable affine subscheme U of X morphism

Γ(U, γ) ∶ F(U) → k[G] ⊗k F(U)

is a coaction of the bialgebra k[G]. Now if (F1, γ1) and (F2, γ2) are two objects of QcohG(X),
then a morphism φ ∶ (F1, γ1) → (F2, γ2) is a morphism φ ∶ F1 → F2 of quasi-coherent sheaves
on X such that the square

F1 a∗π∗F1

F2 a∗π∗F2

γ1

γ2

φ a∗π∗φ

is commutative. Moreover, if X is locally noetherian, then analogical description is valid for
CohG(X).

The next two examples are consequences of Remark 3.12.8.

Example 3.12.9. Consider Spec k as a k-scheme with the trivial action of an affine group k-
scheme G. Then QcohG(Spec k) is isomorphic with Rep(G). If k is a field, then CohG(Spec k)
is isomorphic with the category Repf(G) of finite dimensional representations of G.

The example above can be generalized.

Example 3.12.10. Let G be an affine group k-scheme and let X be a k-scheme equipped with
the action of G given by the projection π ∶ G ×k X → X. Suppose that F is a quasi-coherent
sheaf on X. Then to give a structure of G-sheaf on F is the same as to give a morphism
F → π∗F of quasi-coherent sheaves on X such that for every open affine subscheme U the
induced morphism

F(U) → k[G] ⊗k F(U)

is the coaction of k[G]. In other words to give a structure of G-sheaf on F is the same
as to give a structure of G-representation on F(U) for every open affine subscheme U of
X in such a way that the restriction morphism F(U) → F(V) becomes a morphism of G-
representations for every pair U ⊆ V of open affine subschemes of X. In this way we obtain
a description of QcohG(X) and CohG(X) if X is locally noetherian.
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Chapter 4

Algebraic Groups

4.1 Introduction

We introduce elements of the theory of algebraic groups. There are two main results of this
chapter. The first is a classical theorem which states that the image of an algebraic group
under a morphism of algebraic groups is a closed algebraic subgroup. The other concerns
the representability of XG for group schemes over k. Note that classically [DG70, Thèoréme
3.6 on page 165] this result was known for separated schemes. Result that we present here
(Theorem 4.5.1) is slightly more general and its proof is based on some mixture of ideas of
Drinfeld ([Dri13, Proposition 1.2.2]) and the original approach of Gabriel and Demazure. In
the last two sections of this chapter we study linearly reductive groups and tori.
Throughout this chapter we assume that k is a field.

4.2 Functions on products of quasi-compact and semi-separated schemes

Definition 4.2.1. Let Y be a scheme and let X be a Y-scheme. If the diagonal X → X ×Y X is
affine, then we say that X is semi-separated over Y.

Remark 4.2.2. Let Y be a scheme. Every separated Y-scheme is semi-separated.

Example 4.2.3 (Semi-separated scheme that is not separated). Let o be the origin of the affine
line A1

k . Consider the following pushout diagram in the category of k-schemes.

A1
k ∖ {o} A1

k

A1
k X

Then X is an affine line with double origin. The diagonal X → X ×k X is affine but not a
closed immersion. Hence X is semi-separated but not separated.

Theorem 4.2.4. Let X, Y be quasi-compact and semi-separated k-schemes. Denote by πX and πY
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projections from X ×k Y to X and Y, respectively. Let F and G be quasi-coherent sheaves on X and Y,
respectively. Then the canonical morphism

Γ(X,F)⊗k Γ(Y,G) ∋ s⊗ t ↦ π∗
Xs⊗π∗

Yt ∈ Γ (X ×k Y, π∗
XF ⊗OX×kY π∗

YG)

is an isomorphism.

The theorem follows from the following result.

Lemma 4.2.4.1. Let X, Y be k-schemes and let {Vi}n
i=1 be a finite open cover of Y. Suppose that the

canonical morphism

Γ(X,F)⊗k Γ (Vi ∩Vj,G) → Γ (X ×k (Vi ∩Vj) , π∗
XF ⊗OX×kY π∗

YG)

is an isomorphism for any two (not necessarily distinct) i, j ∈ {1, ..., n}. Then the canonical morphism

Γ(X,F)⊗k Γ(Y,G) → Γ (X ×k Y, π∗
XF ⊗OX×kY π∗

YG)

is an isomorphism.

Proof of the lemma. For each i ∈ {1, ..., n} we have the restriction

ri ∶ Γ (X ×k Y, π∗
XF ⊗OX×kY π∗

YG) → Γ (X ×k Vi, π∗
XF ⊗OX×kY π∗

YG)

and we denote by pi the restriction Γ (Y,G) → Γ (Vi,G) tensored with Γ(X,OX) over k. For
i, j ∈ {1, ..., n} we have the restriction

ri,j ∶ Γ (X ×k Vi, π∗
XF ⊗OX×kY π∗

YG) → Γ (X ×k (Vi ∩Vj) , π∗
XF ⊗OX×kY π∗

YG)

and we denote by pi,j the restriction Γ (Vi,G) → Γ (Vi ∩Vj,G) tensored with Γ(X,F) over k.
Consider the commutative diagram

Γ (X ×k Y, π∗
XF ⊗OX×kY π∗

YG) ⊕n
i=1Γ (X ×k Vi, π∗

XF ⊗OX×kY π∗
YG) ⊕1≤i<j≤nΓ (X ×k (Vi ∩Vj) , π∗

XF ⊗OX×kY π∗
YG)

Γ (X,F)⊗k Γ (Y,G) ⊕n
i=1Γ (X,F)⊗k Γ (Vi,G) ⊕1≤i<j≤nΓ (X,F)⊗k Γ (Vi ∩Vj,G)

⟨ri⟩n
i=1

⟨ri,j ⋅ pri⟩1≤i<j≤n

⟨rj,i ⋅ prj⟩1≤i<j≤n

⟨pi⟩n
i=1

⟨pi,j ⋅ pri⟩1≤i<j≤n

⟨pj,i ⋅ prj⟩1≤i<j≤n

≃ ≃

in which vertical arrows are canonically defined. Moreover, by assumptions right and mid-
dle vertical arrows are isomorphisms. Note also that both rows are kernel diagrams. Indeed,
for the top row this follows from the sheaf property of π∗

XF ⊗OX×kY π∗
YG and for the bottom

row this follows from the fact that Γ(X,F) is flat over k (k is a field) together with the sheaf
property of G. These imply that the left vertical arrow is an isomorphism and this completes
the proof.

Proof of the theorem. The statement holds, if X, Y are affine. Note that semi-separatedness of a
scheme over a field (commutative ring) is equivalent to the fact that intersection of every pair
of its open affine subschemes is affine. Now Lemma 4.2.4.1 implies that the result holds if
X is affine and Y is quasi-compact and semi-separated over k. Next by symmetry in Lemma
4.2.4.1, we derive that the result holds if X, Y are quasi-compact and semi-separated over
k.
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Corollary 4.2.5. Let X, Y be quasi-compact and semi-separated k-schemes. Denote by πX and πY
projections from X ×k Y to X and Y, respectively. Then the canonical morphism

Γ(X,OX) ⊗k Γ(Y,OY) ∋ f ⊗k g ↦ π#
X( f ) ⋅π#

Y(g) ∈ Γ (X ×k Y,OX×kY)

is an isomorphism.

Corollary 4.2.6. Let Schqc,ss
k be the category of quasi-compact and semi-separated schemes over k.

Then the contravariant functor

Schqc,ss
k ∋ X ↦ Γ(X,OX) ∈ (Algk)

op

preserves products.

Proof. This is a reformulation of Corollary 4.2.5.

4.3 General properties of groups schemes over a field

In this section we prove some elementary properties of group schemes over a field.

Proposition 4.3.1. Let G be a group scheme over k. Then G is a separated k-scheme.

Proof. Consider a morphism f ∶ G ×k G → G given on A-points g1, g2 of G by formula

(g1, g2) ↦ g1 ⋅ g−1
2

where A is a k-algebra. Note that we have a cartesian square

G Spec k

G ×k G G
f

δG e

where δG is the diagonal of G, the top horizontal arrow G → Spec k is the structure morphism
and e ∶ Spec k → G is the identity of G. Since base change of a closed immersion is a closed
immersion, we derive that δG is a closed immersion if e is a closed immersion. Since G is a
k-scheme and k is a field, it follows that every morphism Spec k → G of k-schemes is a closed
immersion (every k-point in a scheme over k is closed). In particular, e is a closed immersion
and hence G is separated.

Remark 4.3.2. Let G be a group k-functor and let α ∶ G ×X → X be an action of G on X.
Consider an isomorphism φ ∶ G×X→ G×X of k-functors given by

G(A) ×X(A) ∋ (g, x) ↦ (g, g−1x) ∈ G(A) ×X(A)

for every k-algebra A. Then the triangle
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G×X G×X

X

φ

πX a

is commutative.

Corollary 4.3.3. Let G be a group scheme over k and let a ∶ G ×k X → X be an action of G on a
k-scheme X. Then a is isomorphic with the projection πX ∶ G ×k X → X.

Proof. This is a consequence of Remark 4.3.2.

Corollary 4.3.4. Let G be a group scheme over k and let a ∶ G ×k X → X be an action of G on
k-scheme X. Then a is faithfully flat.

Proof. This is a direct consequence of Corollary 4.3.3 and the fact that each group scheme G
over a field k is faithfully flat.

4.4 Algebraic groups and their actions

There is some ambiguity in literature concerning the notion of algebraic group. Some discus-
sion related to this topic can be found in [Mil17, Notes on page 12]. In this work we decided
to define this notion as in [Mil17] and [DG70].

Definition 4.4.1. Let G be a group scheme over k. If G is locally of finite type over k, then
we say that G is a locally algebraic group over k. We say that G is an algebraic group over k if it is
of finite type over k.

Corollary 4.4.2. Let G be a locally algebraic group over k and let a ∶ G ×k X → X be an action of G
on k-scheme X. Then a is universally open.

Proof. By Corollary 4.3.3 the action a is isomorphic with the projection πX ∶ G×k X → X. Since
G is locally algebraic group over k the projection πX is locally of finite type and flat. Thus
by [GW10, Theorem 14.33] πX is universally open. Hence also a is universally open.

Remark 4.4.3. According to [GW10, Corollary 5.45] the projection πX ∶ Y ×k X → X is univer-
sally open regardless of finiteness assumptions on Y.

Corollary 4.4.4. Let G be a locally algebraic group over k and let a ∶ G ×k X → X be an action of
G on k-scheme X. If U is an open subscheme of X, then a (G ×k U) is the smallest open G-stable
subscheme of X containing U.

Proof. First note that by Corollary 4.4.2 a(G×k U) is indeed an open subscheme of X. Denote
it by G ⋅U. Observe that

a (G ×k G ⋅U) = a((1G ×k a)(G ×k G ×k U)) =
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= a((µ ×k 1X)(G ×k G ×k U)) = a(G ×k U) = G ⋅U

This implies that a∣G×kG⋅U factors through G ⋅U and hence this open subscheme is G-stable.
It remains to prove that G ⋅U is contained in every open G-stable subscheme W of X which
contains U. Note that for such W we have

G ⋅U = a(G ×k U) ⊆ a(G ×k W) ⊆ W

Thus the proof is complete.

Definition 4.4.5. Let G be a locally algebraic group over k and let a ∶ G×k X → X be an action
of G on k-scheme X. Fix an open subset U of X. Then we denote by G ⋅U the smallest open
G-stable subscheme of X. We call it the G-stable hull of U.

Definition 4.4.6. A morphism of schemes f ∶ X → Y is an fpqc-morphism if f is faithfully flat
and for every open affine subscheme V of Y there exists a quasi-compact open subscheme U
of X such that f (U) = V.

The notion of fpqc-morphism is introduced in [FGI05, Definition 2.34]. Its importance lies in
the fact that most interesting classes of morphisms of schemes descend along fpqc-morphism
([FGI05, Proposition 2.36]).

Corollary 4.4.7. Let G be a locally algebraic group over k and let a ∶ G ×k X → X be an action of
G on k-scheme X. If U is an open subscheme of X, then the restriction G ×k U → G ⋅U of a is an
fpqc-morphism.

Proof. Corollaries 4.3.4 and 4.4.3 show that G ×k U → G ⋅U is faithfully flat and open. Hence
according to [FGI05, (iii) of Proposition 2.35] the morphism in question is fpqc.

Theorem 4.4.8. Let G be a locally algebraic group over k, let X, Y be k-schemes with G-actions and
let f ∶ X → Y be a G-equivariant morphism. Suppose that P is a property of morphisms of k-schemes
such that the following conditions hold.

(1) P is local on the base.

(2) P is closed under base change.

(3) P descends along fpqc base change.

Then there exists the largest open subset of Y such that the restriction f −1(V) → V of f is in P and it
is G-stable.

Proof. Note that the existence of V follows from (1). We denote by f̃ the restriction of f to
f −1(V) → V. We also denote by f̂ ∶ G ⋅ f −1(V) → G ⋅V the restriction of f . Since the square

G ×k f −1(V) X

G ×k V Y

action of G

action of G

1G ×k f̃ f
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is cartesian (this can be checked on k-functors of points), we derive by Corollary 4.4.4 that
the square

G ×k f −1(V) G ⋅ f −1(V)

G ×k V G ⋅V

action of G

action of G

1G ×k f̃ f̂

is cartesian. The assumption (2) implies that 1G ×k f̃ is in P. Since the bottom horizontal
morphism is fpqc by Corollary 4.4.7, we deduce by (3) that f̂ is in P. Since V is the largest
open subset of Y such that the restriction f −1(V) → V of f is in P and

f −1 (G ⋅V) = G ⋅ f −1(V)

we derive that G ⋅V ⊆ V. Hence V = G ⋅V, which means that V is G-stable.

Now we prove the fundamental result.

Theorem 4.4.9. Let f ∶ H → G be a morphism of locally algebraic groups over k. Suppose that f
is of finite type. Let i ∶ K → G be the scheme-theoretic image of f and let g ∶ H → K be the unique
morphism of schemes such that f = i ⋅ g. Then the following assertions hold.

(1) K is a closed subgroup k-scheme of G.

(2) g is a surjective morphism of group schemes over k.

Proof. Since f is quasi-compact, we deduce that i ∶ K ↪ G is a closed immersion determined
by the kernel of f # ∶ OG → f∗OH ([GW10, Proposition 10.30]) and g# ∶ OK → g∗OH is an
injective morphism of sheaves. Moreover, the fact that f is quasi-compact implies that g is
quasi-compact. Fix two affine open subschemes V, W of K. We derive by Corollary 4.2.5 and
Proposition 4.3.1 that the square

OK×kK(V ×k W) OH×kH (g−1(V) ×k g−1(W))

OK(V) ⊗kOK(W) OH (g−1(V))⊗kOH (g−1(W))

(g ×k g)#
V×kW

g#
V ⊗k g#

W

≃ ≃

is commutative, where vertical arrows are canonical isomorphisms. This implies that the
morphism (g ×k g)# of sheaves is injective. Consider the commutative diagram
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H ×k H K ×k K G ×k G

H K G

g ×k g

g

νH νG

i ×k i

i

where νG and νH are morphisms determined by formula (x1, x2) ↦ x−1
1 ⋅ x2 on k-functors of

points. Commutativity of the diagram implies that we have equality

( (νG)∗ (i ×k i)∗ (g ×k g)# ) ⋅ ( (νG)∗ (i ×k i)# ) ⋅ ν#
G = (i∗g∗ (νH)# ) ⋅ (i∗g#) ⋅ i#

of morphism of sheaves. This equality together with injectivity of (g ×k g)# implies that the
kernel of

(νG ⋅ (i ×k i) )# = ( (νG)∗ (i ×k i)# ) ⋅ ν#
G

contains ker(i#). Thus νG ⋅ (i ×k i) factors through i. Hence there exists a unique morphism ν
such that the square

K ×k K G ×k G

K G

ν νG

i ×k i

i

is commutative. This implies that i ∶ K ↪ G is a closed subgroup k-scheme of G. Indeed,
if k1, k2 are A-points of K for some A-algebra, then the commutativity of the square above
implies that the A-point k−1

1 ⋅ k2 of G is the A-point of K and this is well known criterion for
subgroup. Since i is a monomorphism and

i ⋅ ν ⋅ (g ×k g) = νG ⋅ (i ×k i) ⋅ (g ×k g) = i ⋅ g ⋅ νH

we derive that ν ⋅ (g ×k g) = g ⋅ νH. Hence g is a morphism of group schemes over k. It
remains to prove that g ∶ H → K is surjective. Recall that g is of finite type and g# is injective.
Note that these properties are preserved under base change to an algebraic closure of k.
Moreover, the surjectivity of morphism descends along faithfully flat base change. Thus we
may assume that k is algebraically closed. By [GW10, Theorem 10.20] and the fact that g is of
finite type, we deduce that g (H) is a constructible subset locally on K. Since g# is injective,
we derive that set-theoretic image g (H) ⊆ K is dense. Thus g (H) is dense and locally
constructible. Hence there exists an open and dense subset V of K such that V ⊆ g (H).
Since k is algebraically closed and K is locally algebraic, we may pick a k-point v in V. Since
V ⊆ g (H), we deduce that v ∈ g (H) and thus v−1 ∈ g (H). Hence

W = v−1 ⋅V ⊆ g (H) ⋅ g (H) ⊆ g (H)

Thus W is an open neighborhood of the identity in K, dense in K and contained in g (H).
Next

g(H) ⊆ g (H) ⋅W ⊆ g (H) ⋅ g (H) ⊆ g (H)
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Thus g(H) is open in K. Now if u ∈ K ∖ g (H) is a k-point, then

u ⋅ g (H) ∩ g (H) = ∅

as two distinct left cosets of an open subgroup g (H) in K are disjoint. This is contradiction,
because u ⋅ g (H) is an open neighborhood of u and g (H) is dense in K. Therefore, g (H) is an
open subset of K that contains all its k-points. Since k is algebraically closed and K is locally
algebraic, this implies that the closed subset K ∖ g (H) is empty. Thus g is surjective.

4.5 Representability of fixed points for group schemes over a field

Theorem 4.5.1. Let G be a group scheme over k and let a ∶ G ×k X → X be an action of G on a
k-scheme X. Suppose that one of the following assertions hold.

(i) X is separated.

(ii) G is a geometrically connected, locally algebraic group.

Then the fixed point functor XG is a closed subscheme of X.

The following result is based on Theorem 2.5.2 and plays the fundamental role in the proof.

Lemma 4.5.1.1. Let X, Y be k-schemes and let a ∶ Y ×k X → X be a morphism of k-schemes. Suppose
that one of the following assertions hold.

(1) X is separated.

(2) For every open subscheme U of X we have a (Y ×k U) ⊆ U

Consider k-subfunctor Xa of X given by formula

A ↦ { f ∶ Spec A → X ∣ a ⋅ (1Y ×k f ) = prX ⋅ (1Y ×k f ) }

where A is a k-algebra and prX ∶ Y ×k X → X is the projection. Then Xa is representable by a closed
subscheme of X.

Proof of the lemma. In the proof we identify k-schemes with their k-functors of points (Remark
2.3.8). We use internal homs for k-functors representable by k-schemes. Note that by Fact
2.3.10 they exists.
Assume first that X is separated. Consider a morphism

⟨a, prX⟩ ∶ Y ×k X → X ×k X

By Theorem 2.2.6 we deduce that ⟨a, prX⟩ corresponds to a morphism σ ∶ X →Mork (Y, X ×X)
of k-functors. Since X is separated, the diagonal δX ∶ X → X ×k X is a closed immersion. This
implies that δX is a closed immersion of k-functors. The fact that Y is locally free over k
(Remark 2.5.3) and Theorem 2.5.2 imply that

Mork (1Y, δX) ∶ Mork (Y, X) ↪Mork (Y, X ×X)

is a closed immersion of k-functors. Consider now a cartesian square
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Xa Mork (Y, X)

X Mork (Y, X ×X)
σ

j Mork (1Y , δX)

of k-functors. Fact 2.4.5 implies that j ∶ Xa → X is a closed immersion of k-functors. Observe
that j ∶ Xa ↪ X is precisely the inclusion of the k-subfunctor described in the statement.
Corollary 2.4.11 completes the proof of (1).
Now suppose that a (Y ×k U) ⊆ U for every open subscheme U of X. For every open sub-
scheme denote by aU ∶ Y ×k U → U the restriction of a. Let U be an open affine cover of X.
Let j ∶ Xa ↪ X be a monomorphism of k-functors in the statement. For each U in U we have
a cartesian square

UaU Xa

U X

jU j

where U ↪ X is the inclusion and UaU ↪ Xa interprets UaU as an open k-subfunctor of Xa.
Since each U is separated, by virtue of (1) each jU ∶ UaU ↪ U is a closed immersion of k-
schemes. Since U is an open cover of X, it follows by simple argument that j ∶ Xa ↪ X is a
closed immersion of k-functors. By virtue of Corollary 2.4.11 this proves (2).

Lemma 4.5.1.2. Let f ∶ H → G be a morphism of locally algebraic groups over k. Suppose that the
following assertions hold.

(1) The morphism
ÔG,eG → ÔH,eH

induced by f # is an isomorphism.

(2) f is a monomorphism of k-schemes.

Then f is an open immersion.

Proof of the lemma. Note that f is locally of finite type. The assertion (1) implies that f is étale
in eH. Let K be an algebraic closure of k and let us use the following notation:

GK = Spec K ×k G, HK = Spec K ×k H, fK = 1Spec K ×k f

Consider the étale locus U of fk. Then U is an open subscheme of HK containing the identity
of GK. Moreover, for every K-point h of HK we have a commutative square
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HK GK

HK GK

fK

fK

h ⋅ (−) fK(h) ⋅ (−)

where h ⋅ (−) and fK(h) ⋅ (−) are isomorphisms of K-schemes. This proves that h ⋅U ⊆ U.
Hence U contains all K-rational points of HK. Therefore, the complement of U in HK is a
closed subset and does not contain K-points. Since HK is a scheme locally of finite type
over an algebraically closed field K, this proves that the complement of U is empty. Hence
U = HK. This shows that fK is étale and by faithfully flat descent also f is étale. Since étale
monomorphisms are open immersions, we derive that f is an open immersion.

Proof of the theorem. If (1) holds, then the statement follows directly from Lemma 4.5.1.1 if
Y = G and a is the action of G on X.
Suppose now that (2) holds. That is G is a geometrically connected, locally algebraic group
over k. In the proof we use Theorem 2.3.6 and view XG as a Zariski local k-functor. For each
n ∈ N we define

Gn = SpecOG,eG/m
n+1
eG

where e is the unit of G. Then Gn is the n-th infinitesimal neighborhood of e in G. Denote by
pn ∶ Gn ×k X → X the projection on the second factor. Let an ∶ Gn ×k X → X be the morphism
induced by a. Note that for every open subscheme U of X we have an (Gn ×k U) ⊆ U. By
Lemma 4.5.1.1 it follows that the k-functor given by

Algk ∋ A ↦ { f ∶ Spec A → X ∣ an ⋅ (1Gn ×k f ) = prn ⋅ (1Gn ×k f ) } ∈ Set

is representable by a closed subscheme Zn of X. Consider now the quasi-coherent ideal In
of Zn inside X. Define

I = ∑
n∈N

In

Let i ∶ Z ↪ X be a closed subscheme of X determined by I. This means that Z is the scheme-
theoretic intersection inside X of closed subschemes Zn for n ∈ N. We show that Z represents
the fixed point functor. For this assume that A is a k-algebra and f ∶ Spec A → X is a mor-
phism of k-schemes such that f is an A-point of the fixed point functor. This is equivalent
with

a ⋅ (1G ×k f ) = prX ⋅ (1G ×k f )
From this equality we deduce that

an ⋅ (1Gn ×k f ) = prn ⋅ (1Gn ×k f )

for every n ∈ N and hence f factors through Zn for every n ∈ N. Hence f −1(In)A = 0 for
every n ∈ N. Thus f −1(I)A = 0 and we derive that f factors through Z. This proves that
the fixed point functor is a k-subfunctor of the functor of points of Z. It suffices to prove
that Z is G-fixed. For this consider the morphism a∣G×kZ ∶ G ×k Z → X. By Theorem 2.2.6 it
corresponds to a morphism σ ∶ G →Mork (Z, X) of k-functors. The fact that Z is locally free
over k (Remark 2.5.3) and Theorem 2.5.2 imply that Mork (1Z, i) is a closed immersion of
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k-functors. Therefore, the composition of a closed immersion 1 ↪ Mork (Z, Z) determined
by 1Z (1 is the terminal k-functor) withMork (1Z, i) is a closed immersion of k-functors (by
Fact 2.4.5). Consider a cartesian square

H 1

Mork (Z, Z)

G Mork (Z, X)
σ

j

Mork (1Z , i)

determined by 1Z

We derive that j ∶ H ↪ G is a closed immersion of k-functors. Note that an A-point g of G is
contained in H(A) if and only if the action of g on XA restricts to identity on its A-subfunctor
ZA. From this description it follows that H is a subgroup k-functor of G, which fixes Z inside
X. We denote by H locally algebraic group over k representing H. We deduce that j ∶ H ↪ G
is a closed immersion of locally algebraic groups. By definition of i ∶ Z ↪ X, we derive that
the morphism of local k-algebras

ÔG,eG → ÔH,eH

induced by j# is an isomorphism. Hence by Lemma 4.5.1.2 j is an open immersion of locally
algebraic groups. Thus j is both open and closed immersion. Since G is geometrically con-
nected, we deduce that j is an isomorphism. Thus j is an isomorphism and this means (by
virtue of the description of A-points of H above) that Z is fixed by G.

4.6 Linearly reductive and reductive algebraic groups

In this section we recall an important class of affine group k-schemes defined by the semisim-
plicity of their categories of linear representations. Let G be an affine group k-scheme and
let ∆G ∶ k[G] → k[G]⊗k k[G] be the corresponding comultiplication. If K is a field over k and
G is a group scheme over k, then we denote Spec K ×k G by GK. Recall also that for any two
linear representations of G there exists a tensor product (Example 3.5.6).

Proposition 4.6.1 ([Jan03, 3.4 and 3.7]). Let G be an affine group k-scheme. Then a functor

Vectk ∋ V ↦ (k[G] ⊗k V, ∆G ⊗k 1V) ∈ Rep(G)

is right adjoint to the forgetful functor Rep(G) → Vectk.

Corollary 4.6.2. Let G be an affine group k-scheme. For every vector k-space V the G-representation

(k[G] ⊗k V, ∆G ⊗k 1V)

is an injective object of Rep(G).
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Proof. The functor
Vectk ∋ V ↦ (k[G] ⊗k V, ∆G ⊗k V) ∈ Rep(G)

is right adjoint to the forgetful functor Rep(G) → Vectk by Proposition 4.6.1. Moreover,
the forgetful functor Rep(G) → Vectk is exact. Right adjoint to an exact functor between
abelian categories sends injective objects to injective objects. Since every vector space over
k is injective, we derive that (k[G] ⊗k V, ∆G ⊗k 1V) is an injective object in Rep(G) for every
vector space V over k.

Proposition 4.6.3 ([Jan03, 3.7]). Let V be a representation of an affine group k-scheme G with
respect to coaction c ∶ V → k[G] ⊗k V. Denote by Vtr the trivial representation of G with V as the
underlying vector k-space. Then

k[G] ⊗k V ∋ f ⊗ v ↦ f ⋅ c(v) ∈ k[G] ⊗k Vtr

is an isomorphism of tensor products of G-representations.

Corollary 4.6.4. Let G be an affine group k-scheme and let V be a G-representation. Then the tensor
product k[G] ⊗k V of G-representations is an injective object in Rep(G).

Proof. This is a consequence of Corollary 4.6.2 and Proposition 4.6.3.

Theorem 4.6.5. Let G be an affine group k-scheme. Then the following are equvalent.

(i) Rep(G) is semisimple.

(ii) Let k be a trivial G-representation and let i ∶ k ↪ k[G] be the inclusion of constant functions.
Then i is a split monomorphism of G-representations.

Proof. In order to prove (i) ⇒ (ii) it suffices to note that in semisimple abelian categories all
monomorphisms split.
Suppose that (ii) holds. Pick a G-representation V. Since i ∶ k ↪ k[G] is a split monomor-
phism, we derive that the tensor product

i⊗k V ∶ k⊗k V ↪ k[G] ⊗k V

is a split monomorphism. By Corollary 4.6.4 we know that k[G] ⊗k V is an injective object of
Rep(G). Hence V ≃ k⊗k V is an injective object of Rep(G), because it is a direct summand
of k[G] ⊗k V. Thus every object of Rep(G) is injective and hence every object of Rep(G) is
completely reducible by Theorem 3.9.5. This completes the proof of the implication (ii) ⇒
(i).

Proposition 4.6.6. Let G be an affine group k-scheme and let V be a representation of G. Then for
every field K over k the natural map of vector spaces over K

K⊗k VG → (K⊗k V)GK

is an isomorphism.

Proof. By Proposition 3.7.3 we have a left exact sequence of k-vector spaces defining invari-
ants
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0 VG V k[G] ⊗k V
c − p

where c ∶ V → k[G] ⊗k V is the coaction and p ∶ V → k[G] ⊗k V is the trivial coaction defined
by formula p(v) = 1⊗ v for every v ∈ V. Now tensoring the sequence with K over k yields a
left exact sequence

0 K⊗k VG K⊗k V (K⊗k k[G]) ⊗K (K⊗k V)
cK − pK

where cK is the coaction on K⊗k V induced by c and pK is the trivial coaction on K⊗k V. This
shows that K⊗k VG → (K⊗k V)GK is an isomorphism.

Theorem 4.6.7. Let G be an affine group k-scheme. Then the following are equvalent.

(i) Rep(G) is semisimple.

(ii) The category Rep(GK) is semisimple for every field extension K of k.

(iii) The category Rep(GK) is semisimple for some field extension K of k.

(iv) The category Rep(GK) is semisimple for some algebraically closed field extension K of k.

Proof. Implications (i) ⇒ (ii), (ii) ⇒ (iii) and (iii) ⇒ (iv) follow from Theorem 4.6.5, since
split monomorphisms are preserved by flat base changes.
Suppose now that (iv) holds. Fix a finite dimensional representation V of G. Let W be an
arbitrary subrepresentation of V and denote by j ∶ W ↪ V the inclusion. Let Homk(V, W)
and Homk(W, W) be equipped with the usual structures (Example 3.5.10) of representations
of G, then Homk(j, 1W) is a surjective morphism of representations. This means that

HomK(1K ⊗k j, 1K ⊗k 1W) ∶ HomK(K⊗k V, K⊗K W) ↠HomK(K⊗k W, K⊗k W)

is surjective morphism of representations of GK. Since Rep(GK) is semisimple, we derive
that the functor of invariants (−)GK is exact. Hence the induced morphism

HomK(1K ⊗k j, 1K ⊗k 1W)GK ∶ HomK(K⊗k V, K⊗K W)GK ↠HomK(K⊗k W, K⊗k W)GK

of K-vector spaces is surjective. According to Proposition 4.6.6, we deduce that the mor-
phism

1K ⊗k Hom(j, 1W) ∶ K⊗k Homk(V, W)G ↠ K⊗k Homk(W, W)G

is surjective. By faithfully flat descent and Proposition 3.5.11, we derive that

HomG(j, 1W) ∶ HomG(V, W) = Homk(V, W)G ↠Homk(W, W)G = HomG(W, W)

is surjective. This means that there exists a morphism of representations r ∶ V →W such that
r ⋅ j = 1W . Hence j splits. Therefore, every representation of G of finite dimension over k is
completely reducible. Since every representation of G is a sum of its finitely dimensional
subrepresentations (Corollary 3.7.2), we derive that every representation of G is a sum of
its completely reducible subrepresentations. Hence every representation of G is completely
reducible and this means that Rep(G) is semisimple abelian category.
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Definition 4.6.8. Let G be an affine group k-scheme and suppose that equivalent conditions
of Theorem 4.6.7 are satisfied for G. Then we say that G is a fully reducible group over k.

Definition 4.6.9. Let G be a fully reducible group k-scheme. Suppose that G is smooth and
algebraic over k. Then we say that G is a linearly reductive group over k.

Recall [Mil17, 6.46] that there is an important class of reductive algebraic groups extending
classical semisimple algebraic groups.

Theorem 4.6.10 ([Mil17, Corollary 22.43, 22.46]). Let G be a geometrically integral algebraic
group over k. If G is linearly reductive, then it is reductive.

4.7 Tori

Definition 4.7.1. Let T be an affine algebraic group over k. Suppose that there exists n ∈ N

such that for every algebraically closed extension K of k there exists an isomorphism

TK ≃ Spec K ×k Gm ×k Gm ×k ...×k Gm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

of group schemes over K. Then T is called a torus over k.

Example 4.7.2. If T ≃ Gm ×k Gm ×k ...×k Gm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

, then T is a torus. We call tori T of this form split

tori. Clearly
k[T] = k[x1, x−1

1 , ..., xn, x−1
n ]

as k-algebra and for every m = (m1, ..., mn) ∈ Zn we define χm = xm1
1 ⋅ ... ⋅ xmn

n . Then

k[T] = ⊕
m∈Zm

k ⋅ χm

and χm can be identified with a character T → Gm given by

k[Gm] = k[x, x−1] ∋ x ↦ χm ∈ k[T]

This gives rise to a decomposition of k[T] as the representation of T into one-dimensional
representations of T. Since every one-dimensional representation is irreducible, we derive
that k[T] is completely reducible representation of T. Hence by Fact 3.6.6 and Theorem
3.9.5 we deduce that every representation of T is completely reducible and thus T is linearly
reductive algebraic group. Moreover, this also implies that every irreducible representation
of T corresponds to a character and hence Irr(T) = Zn. Note that by Remark 3.5.7 there is
a canonical structure of an abstract monoid on a set of characters of of T. Thus Irr(T) has a
structure of a monoid. It is easy to verify that Irr(T) ≃ Zn as an abstract monoids, where Zn

as the free abelian group of rank n is an abstract monoid.

Example 4.7.3. Let
S1 = Spec k[x, y]/(x2 + y2 − 1)

be a scheme over k. Then for every k-algebra A we have

S1(A) = {(u, v) ∈ A ×k A ∣u2 + v2 = 1}
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There is also a morphism S1 × S1 → S1 of k-functors given by

S1(A) × S1(A) ∋ ((u1, v1), (u2, v2)) ↦ (u1u2 − v1v2, u1v2 + u2v1) ∈ S1(A)

for every k-algebra A. This makes S1 into a group k-functor. Thus S1 with the group structure
described above is an affine algebraic group over k. We call it the circle group over k.
Now suppose that char(k) ≠ 2 and K is an algebraically closed extension of k. Consider an
element i ∈ K such that i2 = −1. For every K-algebra A we have a map

S1(A) ∋ (u, v) ↦ u + iv ∈ A∗

First note that this map is bijective. Indeed, its inverse is given by

A∗ ∋ a ↦ (1
2
(a + a−1),

1
2i

(a − a−1)) ∈ S1(A)

Moreover, the map S1(A) → A∗ is a homomorphism of abstract groups. Thus S1 resricted to
the category AlgK of K-algebras is isomorphic with Spec K×k Gm as a group k-functor. Hence

Spec K ×k S1 ≃ Spec K ×k Gm

as algebraic group schemes over K. Hence S1 is a torus over k.
Now assume that k = R. Then abstract groups

S1(R) = {z ∈ C ∣ ∣z∣ = 1} ⊆ C∗, R∗

are not isomorphic. Indeed, the left hand side group has infinite torsion subgroup and the
right hand side group has torsion subgroup equal to {−1, 1}. This implies that over R alge-
braic groups S1 and Gm are not isomorphic. Hence S1 is not a split torus over R.

Corollary 4.7.4. Let T be a torus over k. Then T is a linearly reductive algebraic group.

Proof. Pick an algebraically closed extension K of k. Then TK is a split torus and hence by
Example 4.7.2 it is a linearly reductive group. Theorem 4.6.7 implies that T is fully reducible.
It is also smooth over k as TK is smooth. Hence T is a linearly reductive group over k.
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Chapter 5

Algebraic Monoids

5.1 Introduction

Thanks to our previous discussion (Section 3.8) it is useful to know when the group of units
is open and schematically dense in a monoid k-scheme. This is addressed in Theorem 5.2.4
and Corollary 5.2.5. The other results of this chapter concern the representability of XM

for a geometrically integral, algebraic monoid over k. We include here a short discussion
of toric monoids (affine toric varieties). The most important part of this chapter is devoted
to the wide class of Kempf monoids. This class contains properly reductive monoids with
zero (Corollary 5.5.4 and Example 5.5.5) and is precisely the class of monoids for which we
generalize Białynicki-Birula decomposition.
In this chapter k is a field.

5.2 The unit group of an algebraic monoid

Definition 5.2.1. Let M be a monoid k-scheme. If M is of finite type over k, then we say that
M is an algebraic monoid over k.

Fact 5.2.2. Let M be an algebraic monoid over k. Then its group of units G is an algebraic group
over k.

Proof. Recall from the proof of Proposition 3.2.6 that G fits into a cartesian square

G Spec k

M ×k M M
µ

e

where µ is the multiplication and e ∶ Spec k → M is the unit of M. Thus G is a closed
subscheme of a scheme M ×k M of finite type over k. Thus G is of finite type over k.
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Out first goal is to prove that under quite general assumptions the group of units of an
algebraic monoid is open. For this we prove a basic result on generic finiteness.

Theorem 5.2.3. Let f ∶ X → Y be a dominant morphism of finite type between irreducible noetherian
schemes. Suppose that η is a generic point and assume that the generic fiber f −1(η) is finite. Then
there exists an open and nonempty subset V of Y such that the restriction f −1(V) → V of V is finite.

For the proof we need the following local version of the theorem.

Lemma 5.2.3.1. Let A be a noetherian ring such that Spec A is irreducible and let B be an A-algebra
of finite type. Suppose that p is the unique minimal prime ideal of A and assume that k(p) ⊗A B is
finite over k(p), where k(p) denotes the residue field of p in A. Then there exists s ∈ A ∖ p such that
Bs is a finite As-module.

Proof of the lemma. Let b1, ..., bn be generators of B as an A-algebra. Then

bi = bi modpB

for 1 ≤ i ≤ n are generators of B/pB as an A/p algebra. Since k(p) ⊗A B is finite over k(p) for
each i there exists a positive integer mi and a polynomial

fi(x) = si,mi x
mi + si,mi−1xmi−1 + ...+ si,0 ∈ (A/p) [x]

such that si,mi ≠ 0 and fi(bi) = 0. Let s ∈ A be an element such that

s modp = s1,m1 ⋅ s2,m2 ⋅ ... ⋅ sn,mn

Clearly s ∈ A ∖ p and Bs/ (pB)s = (B/pB)s is a finite As-algebra. Hence there exists a finite
As-submodule M of Bs such that

Bs = M + (pB)s = M + pBs

Since A is noetherian and p is the unique minimal ideal, we deduce that p is nilpotent. Hence
there exists N ∈ N such that pN = 0. Thus

Bs = M + pBs = M + pM + p2Bs = ... = M + pM + ...+ pN−1M + pN Bs = M + pM + ...+ pN−1M

is a finite As-module.

Proof of the theorem. Pick an open, nonempty, affine neighborhood W of η. Since f is of finite
type, we derive that

f −1(W) =
n
⋃
i=1

Ui

where each Ui is nonempty open affine subscheme of X and moreover, the morphism Ui →
W induced by f is of finite type. According to Lemma 5.2.3.1 for each i there exists an open,
affine and nonempty subscheme Wi ⊆ W such that the morphism f −1(Wi)∩Ui →Wi induced
by f is finite. Thus replacing W by the intersection of W1, ..., Wn we may assume that each
Ui →W is finite. Consider

F = f −1(W) ∖U1
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Then F is a closed subset of f −1(W) and it does not contain the generic point ξ of X. Since
each restriction Ui →W of f is finite, we derive that f (Ui ∩ F) is closed in W for every 1 ≤ i ≤ n
and does not contain η = f (ξ). This last assertion follows from the fact that f is dominant.
Thus f (F) is a closed subset of W and η /∈ f (F). Hence V = W ∖ f (F) is an open neighborhood
of η and f −1(V) ⊆ U1. Thus the restriction f −1(V) → V of f is finite.

Theorem 5.2.4. Let M be a geometrically integral algebraic monoid k-scheme. Suppose that G is the
group of units of M and i ∶ G ↪M is the canonical monomorphism. Then i is an open immersion.

Proof. Assume that k is algebraically closed. Denote by µ ∶ M ×k M → M and e ∶ Spec k → M
the multiplication and the unit, respectively. By Fact 5.2.2 G is an algebraic group over k.
Since M is integral and of finite type over k, we derive that M ×k M is integral and

dim (M ×k M) = 2 ⋅dim (M)

Moreover, µ is surjective (which can be checked on k-functors of points). Pick any irreducible
component Z of µ−1(e). By [GW10, Lemma 14.109] we deduce

dim (Z) ≥ dim (µ−1(η))

where η is the generic point of M. Since

dim (µ−1(η)) = dim (M ×k M) −dim (M) = 2 ⋅dim (M) −dim (M) = dim (M)

we deduce that dim (Z) ≥ dim(M). Moreover, we have G ≃ µ−1(e) as k-schemes and this
isomorphism is given by the restriction π ∶ µ−1(e) → G to µ−1(e) of the projection pr ∶ M ×k
M → M on the first factor (this can be checked on k-functors of points, see also Proposition
3.2.6). Thus each irreducible component Z of G is of dimension at least dim(M). Now
we fix an irreducible component Z of G and consider it as a closed subscheme of G with
reduced structure. Then the morphism i∣Z ∶ Z ↪ M is a monomorphism of finite type and
dim(Z) ≥ dim(M). Hence i∣Z is dominant. Since i is a monomorphism, this implies that G
has only one irreducible component and i ∶ G ↪ M is dominant. By Theorem 5.2.3 there
exists an open and nonempty subset V of M such that the morphism i−1(V) ↪ V induced
by i is finite. Finite monomorphisms are closed immersions. Dominant, closed immersions
with codomain an integral scheme are isomorphisms. Thus i−1(V) → V is an isomorphism.
Now observe that there exists a canonical action of G on M and i ∶ G ↪ M is G-equivariant
with respect to this action. Thus Theorem 4.4.8 implies that there exists the largest open
subscheme W of M such that i−1(W) → W is an isomorphism of k-schemes and moreover,
W is G-stable. Since V ⊆ W, we derive that W is nonempty. Hence i−1(W) is a nonempty
G-stable open subscheme of G. Therefore, i−1(W) = G and i ∶ G ↪M is an open immersion.
If k is not algebraically closed, then we pick an algebraically closed extension K of k and
consider 1Spec K ×k i. This is an open immersion according to the case considered above. By
faithfully flat descent i is an open immersion.

The more general result for algebraically closed fields is [Bri14, Theorem 1]. It seems that
Theorem 5.2.4 is a consequence of this more general theorem. Since for our purposes the
case of geometrically integral monoids suffices, we decide for self-containment to give its
proof.
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Corollary 5.2.5. Let M be a geometrically integral, algebraic monoid over k. Then the inclusion
G ↪M of the group of units is schematically dense open immersion.

Let us also note the following theorem, which proof is exactly the analogue of the proof of
the fact that every affine algebraic group is linear.

Theorem 5.2.6 ([DG70, Corollaire 3.5 on page 183]). Let M be an affine, algebraic monoid k-
scheme. There exists a finite dimensional vector space V over k and a closed immersion

M ↪ L(V)

of algebraic monoids.

We state the following result, which is both useful and interesting.

Theorem 5.2.7 ([Bri14, Theorem 2]). Let M be a geometrically integral algebraic monoid over a
field k and let G be an group of units of M. If G is affine, then M is affine.

Definition 5.2.8. Let M be a geometrically integral algebraic monoid over k and let G be its
group of units. If G is (linearly) reductive, then M is called a (linearly) reductive monoid over
k.

Corollary 5.2.9. Let M be a linearly reductive monoid over k. Then M is reductive.

Proof. This follows from definition and Theorem 4.6.10.

By definition every reductive group is affine. Hence using Theorem 5.2.7 we deduce the
following result.

Corollary 5.2.10. Let M be a reductive monoid over k. Then M is affine.

5.3 Representability of fixed points for algebraic monoids

Proposition 5.3.1. Let M be a monoid k-scheme and let G be its group of units. Suppose that X is
a k-scheme with an action of M. If G is open and schematically dense in M, then subpresheaves XM

and XG of X are equal.

Proof. Consider a morphism f ∶ Y → X of k-schemes which is G-equivariant when Y is
considered with the trivial action of G. It suffices to show that f is M-equivariant when Y
is considered with the trivial action of M. Since both XG and XM are Zariski sheaves by
Fact 3.10.6, we deduce that it suffices to assume that f (Y) is contained in some affine open
subscheme U of X. Consider now the kernel (the equalizer) Z ↪M ×k X of a pair

M ×k Y X
a ⋅ (1M ×k f )

f ⋅ prY
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In general this kernel is a locally closed subscheme of X, but since f (Y) ⊆ U and U is sepa-
rated, we deduce that Z is actually a closed subscheme of M×k X. Moreover, by assumption
f is G-equivariant. Hence G×k X is contained in Z. According to the fact that k is a field, we
infer that G×k X is open and schematically dense in M×k X. Thus Z is equal to M×k X. This
means that f is M-equivariant.

Corollary 5.3.2. Let M be a geometrically integral, algebraic monoid k-scheme and let G be its group
of units. Then XM = XG and the canonical inclusion XM ↪ X is a closed immersion.

Proof. By Fact 5.2.2 G is an algebraic group over k. According to Corollary 5.2.5 we derive
that G ↪M is schematically dense, open immersion. Thus Proposition 5.3.1 imply that sub-
presheaves XG and XM of X are equal. Corollary 5.2.5 and the fact that M is geometrically
integral imply that G is geometrically integral and hence it is geometrically connected. Thus
by Theorem 4.5.1 we deduce that XG ↪ X is a closed immersion of k-schemes.

5.4 Toric monoids

Definition 5.4.1. Let T be a torus over k and let T be a geometrically integral, algebraic
monoid having T as the group of units. Then T is a toric monoid over k.

Corollary 5.4.2. Let T be a toric monoid over k. Then T is a linearly reductive monoid over k.

Proof. This follows from Corollary 4.7.4.

Corollary 5.4.3. Let T be a toric monoid over k. Then T is an affine algebraic monoid over k.

Proof. This follows from Corollaries 5.4.2 and 5.2.9.

Theorem 5.4.4. Let T be a toric monoid over k with group of units T and let K be an algebraically
closed extension of k. Suppose that N is a dimension of T.

(1) The group of characters of TK is isomorphic to ZN and there exists an abstract submonoid S
of ZN such that the open immersion

TK = Spec ( ⊕
m∈ZN

K ⋅ χm) ↪ Spec (⊕
m∈S

K ⋅ χm) = TK

is induced by the inclusion S ↪ZN .

(2) Let {Vλ}λ∈Irr(T) be a set of irreducible representation of T such that Vλ is in isomorphism class
λ. For every λ there exists a finite subset Aλ of ZN such that

K⊗k Vλ = ⊕
m∈Aλ

K ⋅ χm

If λ is in Irr(T), then Aλ is a subset of S. Moreover, we have

ZN = ∐
λ∈Irr(T)

Aλ

and Aλ0 = {0}, where λ0 is the class of the trivial representation of T.

66



(3) If T has a zero, then there exists a homomorphism f ∶ ZN → Z of abelian groups such that
f∣S∖{0} > 0. In particular, f induces a closed immersion

Spec K ×k Gm = Spec K[Z] ↪ Spec ( ⊕
m∈ZN

K ⋅ χm) = TK

of group K-schemes that extends to a zero preserving closed immersion A1
K ↪ TK of monoid

K-schemes.

Proof. Since T is a torus, we know that

TK = Spec K ×k Gm ×k Gm ×k ...×k Gm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N times

= Spec ( ⊕
m∈ZN

K ⋅ χm)

by Example 4.7.2 and hence

TK = Spec (⊕
s∈S

K ⋅ χs)

for some abstract submonoid S of ZN . Moreover, the open immersion TK ↪ TK is induced
by the inclusion S ↪ZN . This proves (1).
We have an identification

k[T] = ⊕
λ∈Irr(T)

Vnλ

λ

of T-representations, where nλ ∈ N∖ {0} for each λ. Thus

⊕
m∈ZN

K ⋅ χm = K⊗k k[T] = ⊕
λ∈Irr(T)

(K⊗k Vλ)nλ

This implies that nλ = 1 for every λ and moreover, we derive that

K⊗k Vλ = ⊕
m∈Aλ

K ⋅ χm

for some finite set Aλ ⊆ ZN . We also have Aλ0 = {0} and Aλ ⊆ S ∖ {0} for λ ∈ Irr(T). This
proves (2).
Since T admits a zero, we derive that

m = ⊕
m∈S∖{0}

K ⋅ χs ⊆ ⊕
m∈ZN

K ⋅ χm

is an ideal. This implies that S ∖ {0} is closed under addition. In particular, there exists a
homomorphism of abelian groups f ∶ ZN →Z such that f∣S∖{0} > 0. This implies (3).

5.5 The class of Kempf monoids

In this section we introduce important class of monoid k-schemes, which contains all re-
ductive monoids over k. We recall first the classical result concerning good quotients with
respect to actions of linearly reductive groups on affine algebraic schemes over k.
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Theorem 5.5.1. [[BBCM13, Theorem 5.4 and discussion below its statement]] Let X be an affine
k-scheme of finite type equipped with an action of a linearly reductive algebraic group G. Consider
the morphism π ∶ X → Y of affine k-schemes induced by the inclusion Γ(X,OX)G ↪ Γ(X,OX).
Then the following assertions hold.

(1) Y is of finite type over k.

(2) If Z1 and Z2 are disjoint, G-stable and closed subschemes of X, then π(Z1) and π(Z2) are
disjoint.

(3) π is surjective.

(4) If we consider Y as a k-scheme with the trivial G-action, then π is G-equivariant morphism.

(5) If p ∶ X → W is a G-equivariant morphism and W is a k-scheme with the trivial G-action,
then p uniquely factors through π.

Now we are ready to prove the following result.

Theorem 5.5.2. Let M be a reductive algebraic monoid over k and let G be a group of units of M.
Assume that M admits a zero o. Then there exists a central torus T in G such that o ∈ cl(T).

Proof. By assumption G is a reductive group. According to [Mil17, Corollary 17.62 and No-
tation 12.29] its centre Z(G) is an algebraic group of multiplicative type and the largest
subtorus T of Z(G) is the solvable radical R(G) of G. In particular, the quotient group G/T
has trivial solvable radical and hence it is a semisimple algebraic group. Now T is linearly
reductive (Corollary 4.7.4). Thus by Theorem 5.5.1 we obtain a quotient π ∶ M ↠ Q of M
by the action of T. Note also that T is central in M as it is central in G. Next the fact that
T is central in M, the fact that M is geometrically integral and Theorem 5.5.1 imply that Q
is a geometrically integral, affine and algebraic monoid k-scheme with zero. Moreover, π is
a surjective morphism of algebraic monoids over k. According to Theorem 5.2.4 we derive
that the group of units Q∗ is an open subscheme of Q. From the fact that G ↪ M is dom-
inant we derive that the restriction π∣G ∶ G → Q is dominant. Thus π induces a dominant
morphism of geometrically integral algebraic groups G → Q∗. Next Theorem 4.4.9 implies
that π(G) = Q∗. Theorem 5.2.6 implies that there exists a closed immersion of monoids
i ∶ Q ↪ L(V) for some finite dimensional vector k-space V. Thus i ⋅π∣G composed with the
determinant det ∶ L(V) →A1

k (Example 3.4.10) induces a character of G (that is a morphism
of algebraic groups G → Gm) that factors through the quotient morphism G↠ G/T, but G/T
is a semisimple algebraic group and hence it has only trivial characters. Therefore, the char-
acter of G constructed above is trivial. Hence i(Q∗) = i ⋅π(G) is contained in the algebraic
subgroup SL(V) of L(V) (Example 3.4.12). Next i induces a morphism of algebraic groups
Q∗ ↪ SL(V) and by Theorem 4.4.9 we infer that i(Q∗) is closed in SL(V). Since SL(V) is
closed in L(V), we derive that i(Q∗) is closed in L(V) and hence it is also closed in Q. On
the other hand we proved that is open in Q. Monoid Q is integral and hence it is connected.
Thus Q∗ = Q which means that Q is a group k-scheme. Moreover, Q is a monoid k-scheme
with zero. This is only possible if Q is Spec k. Therefore, the categorical quotient π ∶ M → Q
consists of a single k-rational point. Thus by (2) in Theorem 5.5.1 the closure of every orbit
of T in M contains the zero o. In particular, o ∈ cl(T).

This theorem motivates the following definition.
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Definition 5.5.3. Let M be a geometrically integral, affine algebraic monoid over k. Assume
that M admits a zero o and let G be the group of units of M. Suppose that there exists a
central subtorus T of G such that its closure contains o. Then we say that M is a Kempf
monoid over k.

Let us note for the future reference the following reformulation of Theorem 5.5.2.

Corollary 5.5.4. Let M be a reductive monoid over k. Then M is a Kempf monoid.

Now we give an example of a Kempf monoid which is not reductive.

Example 5.5.5 (Kempf monoid with nonreductive group of units). Let n be a positive integer.
Consider the algebraic group Bn of invertible upper triangular n × n matrices. Its k-functor
is given as follows

Algk ∋ A ↦ {M ∈ Mn×n(A) ∣ M is upper triangular and invertible} ∈ Grp

Let Bn be the closure of Bn in the algebraic monoid of all n × n matrices Mn. Then Bn is
an affine, geometrically integral algebraic monoid over k with zero (it contains zero matrix).
Actually Bn (or better to say its k-functor of points) consists of all upper triangular n × n
matrices. The group of units of Bn is Bn and hence it is solvable. Moreover, the center of Bn
contains the one-dimensional split torus Gm consisting of scalar matrices in Mn. The closure
of this torus in Bn contains zero matrix and hence Bn is the Kempf monoid.

Let us discuss some properties of Kempf monoids. We first note the following.

Proposition 5.5.6. Let M be a Kempf monoid over k and let T be a central torus of M such that
cl(T) contains o. Then the closure T of T in M with reduced subscheme structure is a closed toric
submonoid k-scheme of M containing zero.

Proof. The multiplication µ on M induces a morphism µ∣T×kT ∶ T ×k T → M. Since scheme-

theoretic image of µ(T ×k T) is contained in T and T ×k T is open and schematically dense in
T ×k T, we deduce that µ∣T×kT factors through the closed subscheme T. Thus µ restricts to a

multiplication ν ∶ T ×k T → T and hence T ↪ M is closed immersion of monoid k-schemes.
Clearly T is geometrically integral as a scheme-theoretic closure of a geometrically integral
scheme T. The fact that the zero o of M is contained in T follows by definition.

Corollary 5.5.7. Let M be a Kempf monoid over k. Fix an algebraically closed field K over k. Then
there exists a closed immersion

i ∶ A1
K ↪ Spec K ×k M

of monoid K-schemes sending the zero of A1
K to the zero of MK = Spec K ×k M.

Proof. This follows from Proposition 5.5.6 and (3) in Theorem 5.4.4.

Theorem 5.5.8. Let M be a Kempf monoid over k with group G of units and let j ∶ Z ↪ M be a
locally closed G-stable subscheme of M. Then the following are equivalent.

(i) For every n ∈ N the n-th infinitesimal neighborhood Mn of the zero o in M is contained in Z.
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(ii) j is an isomorphism.

We first consider the following special case.

Lemma 5.5.8.1. Let U be an open G-stable subscheme of M. If o is a point of U, then U = M.

Proof of the lemma. Fix i ∶ A1
K ↪ Spec K ×k M as in Corollary 5.5.7. Denote

Spec K ×k M, Spec K ×k G, Spec K ×k U

by MK, GK, UK, respectively. We also denote by oK the zero of MK (it is a K-point lying over
o). Note that i (Gm,K) ⊆ GK. Fix a field L over K and a morphism j ∶ Spec L ↪ MK. Next
consider the composition

A1
L = A1

K ×K Spec L MK ×k MK MK
i ×K j

µK

f

where the second morphism µK ∶ MK ×k MK → MK is the multiplication. Clearly f is Gm,L-
equivariant. Hence f −1(UK) is an open Gm,L-stable subscheme of A1

L. It contains the zero
of A1

L because oK ∈ UK by assumption. Since the only open Gm,L-stable subscheme of A1
L

containing the zero is A1
L, we derive that f −1(UK) = A1

L. Thus the image of j is in UK. Hence
UK = MK because j ∶ Spec L → MK and L are arbitrary. By faithfully flat descent, we derive
that U = M.

Proof of the theorem. Assume that (i) holds. Since o is a point in Z, we have a surjective mor-
phism j# ∶ OM,o ↠OZ,o of local rings. Both schemes Z, M are noetherian and hence we have
a commutative square

ÔM,o ÔZ,o

OM,o OZ,o

ĵ#

j#

where vertical morphisms are injective. Since Mn ⊆ Z for every n ∈ N, we derive that ĵ# is
an isomorphism. Hence j# is injective and thus it is an isomorphism. This implies that there
exists an open neighborhood V of o in M such that V ⊆ Z. Let G ⋅V be the G-stable hull of V
in M. From the fact that j is G-equivariant, we deduce that G ⋅V ⊆ Z. By Lemma 5.5.8.1 we
infer that G ⋅V = M because o ∈ V ⊆ G ⋅V. This shows that Z = M. Thus we have (i)⇒ (ii).
The implication (ii)⇒ (i) is obvious.

We use the proposition below frequently in the following chapters.
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Proposition 5.5.9. Let M be a monoid k-scheme with zero o and let X be an M-scheme. Then the
following assertions hold.

(1) Assume that XM is a closed subscheme of X. The multiplication by zero o ⋅ (−) ∶ X → X
factors through XM inducing an M-equivariant retraction rM ∶ X ↠ XM.

(2) Assume that XM is a closed subscheme of X. If N is a submonoid k-scheme of M and o is a
k-point of N, then rM = rN. In particular, XM and XN coincide.

(3) If M is a Kempf monoid and X is a locally linear M-scheme, then rM is an affine morphism.

(4) If M is a Kempf monoid, X is a locally noetherian, locally linear M-scheme and ideal of XM

in X is nilpotent, then rM is a finite morphism.

Proof. The multiplication o ⋅ (−) ∶ X → X factors as an M-equivariant epimorphism X ↠ XM

composed with a closed immersion XM ↪ X (this can be checked on k-functors of points).
The M-equivariant epimorphism X ↠ XM corresponds to an M-equivariant morphism rM ∶
X ↠ XM of k-schemes such that rM restricted to XM is the identity 1XM . This proves (1).
For the proof of (2) note that o ⋅ (−) ∶ X → X is defined in exactly the same manner for M and
N (provided that o is a k-point of N). Thus rM = rN.
Note that if M is a Kempf monoid, then by Corollary 5.3.2 XM is a closed subscheme of X.
In particular, rM is well defined by (1).
Now we prove (3). Suppose that M is a Kempf monoid and X is a locally linear M-scheme.
We prove that o ⋅ (−) ∶ X → X is an affine morphism. Since X is a locally linear M-scheme,
it suffices to prove that the preimage under o ⋅ (−) ∶ X → X of an open affine M-stable
subscheme U of X is affine. We prove that this preimage is equal to U. For this pick a
point x in X such that o ⋅ x ∈ U. Let j ∶ Spec k(x) ↪ X be the inclusion of x into X. Consider
the M-equivariant morphism f ∶ Mk(x) → X given by the composition

Mk(x) = M ×k Spec k(x) M ×k X X
1M ×k j

a

f

where a ∶ M×k X → X is the action. Since o ⋅ x ∈ U, we derive that f −1(U) contains the zero of
the Kempf monoid Mk(x) over k(x). Moreover, f −1(U) is open and M-stable subscheme of
Mk(x). Thus Theorem 5.5.8 implies that f −1(U) = Mk(x) and hence x ∈ U. This proves that the
preimage under o ⋅ (−) ∶ X → X of U is a subset of U. On the other hand we have o ⋅U ⊆ U as
U is M-stable. Thus this preimage is equal to U. Therefore, o ⋅ (−) ∶ X → X is affine. Since the
composition of rM with a closed immersion XM ↪ X is o ⋅ (−) and hence an affine morphism,
we derive that rM is affine. This completes the proof of (3).
We prove (4). From (3) we know that rM is an affine morphism. Hence rM ∶ X ↠ XM

corresponds to some quasi-coherent algebra A on XM. Moreover, the embedding XM ↪ X
corresponds to the surjection A ↠ OXM with nilpotent ideal I ⊆ A. Assume that In = 0.
Then we have a filtration

0 = In ⊆ In−1 ⊆ ... ⊆ I ⊆ A

with factors Ik/Ik+1 for k = 0, 1, ..., n − 1. Since X is locally noetherian, we derive that each
Ik/Ik+1 is a finite typeA-module. Hence each factor is a finite type module overA/I = OXM .
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Thus A has the finite filtration which factors are coherent sheaves on XM. Therefore, A is a
coherent algebra on XM and this shows that rM is finite.
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Chapter 6

Formal M-Schemes And Their
Algebraizations

6.1 Introduction

This is the first of two chapters in this work, where essentially new results are presented. In
this chapter we study formal schemes

Z0 Z1 ... Zn Zn+1 ...

such that each Zn is equipped with action of a monoid k-scheme M, all closed immersions
Zn ↪ Zn+1 are M-equivariant and ZM

n = Z0 for every n ∈ N. We call them formal M-schemes.
The basic problem in formal geometry since Grothendieck’s introduction of this subject con-
cerns algebraization of formal objects (for the excellent exposition of this topic we refer to
[FGI05, Part 4]). In this chapter we solve the problem of algebraization of formal M-schemes
in the case when M is a Kempf monoid over k.
In this chapter k is a field.

6.2 Some 2-categorical limits

In this technical section we discuss certain categorical 2-limits. Framework introduced here
enables to define in a precise manner categories of equivariant coherent sheaves on for-
mal schemes. Since we are using monoidal categories and functors, we refere the reader
to [ML98, Chapter VII] for definitions of these notions.
Consider a category C and an endofunctor T ∶ C → C. Our goal is to construct certain 2-
categorical limit associated with a pair (C, T). Consider pairs (X, u) consisting of an object
X of C and an isomorphism u ∶ T(X) → X in C. If (X, u) and (Y, w) are two such pairs, then
a morphism f ∶ (X, u) → (Y, u) is a morphism f ∶ X → Y in C such that the following square
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T(X) X

T(Y) Y

u

w

T( f ) f

is commutative. This data give rise to a category C(T). There exists a forgetful functor
π ∶ C(T) → C that sends a morphism f ∶ (X, u) → (Y, w) to f ∶ X → Y. Moreover, there exists a
natural isomorphism σ ∶ T ⋅π ⇒ π such that the component of σ on an object (X, u) of C(T)
is u. The next result states that the data above form a certain 2-categorical limit.

Theorem 6.2.1. Let (C, T) be a pair consisting of a category and an endofunctor T ∶ C → C. Suppose
that D is a category, P ∶ D → C is a functor and τ ∶ T ⋅ P ⇒ P is a natural isomorphisms. Then there
exists a unique functor F ∶ D → C(T) such that P = π ⋅ F and σF = τ.

Proof. Suppose that F ∶ D → C(T) is a functor such that P = π ⋅ F and σF = τ. Pick an object X
of D. Then we have π (F(X)) = P(X) and σF(X) = τX. This implies that

F(X) = (P(X), τX ∶ T(P(X)) → P(X))

Next if f ∶ X → Y is a morphism in D, then we derive that π(F( f )) = P( f ). Hence F( f ) =
P( f ). This implies that there exists at most one functor F satisfying the properties above.
Note also that formulas

F(X) = (P(X), τX ∶ T(P(X)) → P(X)) , F( f ) = P( f )

for an object X inD and a morphism f ∶ X → Y inD, give rise to a functor that satisfy P = π ⋅ F
and σF = τ. This establishes existence and the uniqueness of F.

Assume now that the pair (C, T) consists of a monoidal category C and a monoidal endo-
functor T. Then there exists a canonical monoidal structure on C(T). We define (−)⊗C(T) (−)
by the formula

(X, u) ⊗C(T) (Y, w) = (X⊗C Y, (u⊗C w) ⋅mX,Y)

where
mX,Y ∶ T (X⊗C Y) → T(X) ⊗C T(Y)

is the tensor preserving isomorphism of T. We also define the unit

IC(T) = (I, T(I) ≃ I)

where isomorphism T(I) ≃ I is precisely the unit preserving isomorphism of the monoidal
functor T. The associativity natural isomorphism for (−) ⊗C(T) (−) and right, left units for
IC(T) in C(T) are associativity natural isomorphism and right, left units for C, respectively.
The structure makes a functor π ∶ C(T) → C strict monoidal and σ a monoidal natural iso-
morphism. The next result states that the data with these extra monoidal structure form a
2-categorical limit in the 2-category of monoidal categories.
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Theorem 6.2.2. Let (C, T) be a pair consisting of a monoidal category and its monoidal endofunctor
T ∶ C → C. Suppose that D is a monoidal category, P ∶ D → C is a monoidal functor and τ ∶ T ⋅ P⇒ P
is a monoidal natural isomorphism. Then there exists a unique monoidal functor F ∶ D → C(T) such
that P = π ⋅ F and σF = τ as monoidal functors and monoidal transformations.

Proof. As follows from (the proof of) Theorem 6.2.1

F(X) = (P(X), τX ∶ T(P(X)) → P(X)) , F( f ) = P( f )

for an object X in C and a morphism f ∶ X → Y in C. Suppose now that F admits a structure
of a monoidal functor such that P = π ⋅ F as monoidal functors. Let

{mF
X,Y ∶ F(X⊗D Y) → F(X) ⊗C(T) F(Y)}X,Y∈C , φF ∶ F(ID) → IC(T)

be the data forming that structure. Since π is a strict monoidal functor and P = π ⋅ F as
monoidal functors, we derive that for any objects X, Y of C

π(mF
X,Y) ∶ P(X⊗D Y) → P(X) ⊗C P(Y)

is the tensor preserving isomorphism mP
X,Y ∶ P(X ⊗D Y) → P(X) ⊗C P(Y) of the monoidal

functor P. By the same argument

π(φF) ∶ P(ID) → IC(T)

is the unit preserving isomorphism φP ∶ P(ID) → IC(T) of P. Thus we deduce that for any
objects X, Y of C we have mF

X,Y = mP
X,Y and φF = φP. This implies that there exists at most

one monoidal functor F such that P = π ⋅ F as monoidal functors. On the other hand define
mF

X,Y = mP
X,Y for objects X, Y in C and φF = φP. We check now that F equipped with these data

is a monoidal functor. Fix objects X, Y in C. The square

T (P (X⊗D Y)) P (X⊗C Y)

T (P(X) ⊗C P(Y)) P(X) ⊗C P(Y)

τX⊗CY

(τX ⊗C τY) ⋅mP(X),P(Y)

T (mP
X,Y) mP

X,Y

is commutative due to the fact that τ ∶ T ⋅ P ⇒ P is a monoidal natural isomorphisms. This
implies that mF

X,Y is a morphism in C(T). It follows that mF
X,Y is a natural isomorphism and

due to the definition of associativity in C(T), we derive its compatibility with mF
X,Y. Similarly,

since the square

T (P (ID)) P (ID)

T (IC) IC

τID

φT

T (φP) φP
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is commutative, we deduce that φF is a morphism in C(T). By definition of left and right unit
in C(T), we derive their compatibility with φF. This finishes the verification of the fact that
F with {mF

X,Y}X,Y∈C and φF is a monoidal functor. Definitions of {mF
X,Y}X,Y∈C and φF show

that the identities P = π ⋅ F holds on the level of monoidal structures. Since the 2-forgetful
functor from 2-category of monoidal categories into 2-category of categories is faithful on
2-cells, the identity σF = τ of natural isomorphisms is also the identity of monoidal natural
isomorphisms.

Theorem 6.2.3. Let (C, T) be a pair consiting of a category and its endofunctor T ∶ C → C. Assume
that T preserves colimits. Then the following assertions hold.

(1) π ∶ C(T) → C creates colimits.

(2) Suppose that D is a category, P ∶ D → C a functor preserving small colimits and τ ∶ T ⋅ P⇒ P
a natural isomorphisms. Then the unique functor F ∶ D → C(T) such that P = π ⋅ F and
σF = τ preserves small colimits.

Proof. Let I be a small category and D ∶ I → C(T) be a diagram such that the composition
π ⋅D ∶ I → C admits a colimit given by the cocone (X,{gi}i∈I). Since T preserves colimits, we
derive that (T(X),{T(ui)}i∈I) is a colimit of T ⋅π ⋅ D ∶ I → C. Now σD ∶ T ⋅π ⋅ D → π ⋅ D is a
natural isomorphism. Hence there exists a unique arrow u ∶ T(X) → X such that u ⋅ T(gi) =
gi ⋅σD(i) for i ∈ I. Clearly u is an isomorphism and hence (X, u) is an object of C(T). Moreover,
the family {gi}i∈I together with (X, u) is a colimiting cocone over D. This proves (1). Now
(2) is a consequence of (1).

Now we apply the results above to certain more general diagrams of categories.

Definition 6.2.4. A diagram

... Cn+1 Cn ... C2 C1 C0
Fn+1 Fn Fn−1 F2 F1 F0

of categories and functors is called a telescope of categories.

Definition 6.2.5. Let

... Cn+1 Cn ... C2 C1 C0
Fn+1 Fn Fn−1 F2 F1 F0

be a telescope of monoidal categories and monoidal (finitely) cocontinuous functors. Then
a 2-categorical limit of the telescope consists of a monoidal category C, a family of monoidal
(finitely) cocontinuous functors {πn ∶ C → Cn}n∈N and a family of monoidal natural isomor-
phisms {σn ∶ Fn+1 ⋅πn+1 ⇒ πn}n∈N such that the following universal property holds. For any
monoidal category D, family {Pn ∶ D → Cn}n∈N of (finitely) cocontinuous monoidal functors
and a family {τn ∶ FnPn+1 ⇒ Pn}n∈N of monoidal natural isomorphisms there exists a unique
monoidal (finitely) cocontinuous functor F ∶ D → C satisfying Pn = πn ⋅ F and (σn)F = τn for
every n ∈ N.

Corollary 6.2.6. Let
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... Cn+1 Cn ... C2 C1 C0
Fn+1 Fn Fn−1 F2 F1 F0

be a telescope of monoidal categories and monoidal (finitely) cocontinuous functors. Then its 2-limit
exists.

Proof. We decompose the task of constructing its 2-limit as follows. First note that one may
form a product C = ∏n∈N Cn. Next the functors {Fn}n∈N induce an endofunctor T = ∏n∈N Fn ×
t, where 1 is the terminal category (it has single object and single identity arrow) and t ∶ C0 →
1 is the unique functor. Consider the category C(T). We define {πn ∶ C(T) → Cn}n∈N to be a
family of functors given by coordinates of π ∶ C(T) → C and {σn ∶ Fn ⋅πn+1 ⇒ πn}n∈N to be a
family of natural isomorphisms given by coordinates of σ ∶ π ⋅ T ⇒ π. Now this data form a
2-limit of the telescope by compilation of Theorem 6.2.2 and Theorem 6.2.3.

It is worth to extract from previous results a more concrete description of the 2-limit of a
telescopes of categories.

Remark 6.2.7 (2-limit of a telescope). Consider a telescope

... Cn+1 Cn ... C2 C1 C0
Fn+1 Fn Fn−1 F2 F1 F0

of categories. Then its 2-limit is the category that can be described as follows. Its objects are
pairs ({Xn}n∈N,{un}n∈N) consisting of a sequence {Xn}n∈N such that Xn is an object of Cn for
every n ∈ N and a sequence {un}n∈N such that un ∶ Fn(Xn+1) → Xn is an isomorphism in Cn
for every n ∈ N. Next if ({Xn}n∈N,{un}n∈N) and ({Yn}n∈N,{wn}n∈N) are two objects in the
2-limit, then a morphism between them consists of a sequence { fn}n∈N of morphisms such
that fn ∶ Xn → Yn is a morphism in Cn for every n ∈ N and squares

Fn(Xn+1) Xn

Fn(Yn+1) Yn

un

wn

Fn( fn+1) fn

that are commutative for every n ∈ N.

6.3 Formal M-schemes

We introduce formal schemes equipped with actions of monoid k-schemes.

Definition 6.3.1. Let M be a monoid k-scheme. A formal M-scheme consists of a sequence
Z = {Zn}n∈N of M-schemes together with M-equivariant closed immersions

Z0 Z1 ... Zn Zn+1 ...

satisfying the following assertions.
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(1) We have Z0 = ZM
n for every n ∈ N.

(2) Let In be an ideal of OZn defining Z0. Then for every m ≤ n the subscheme Zm ⊂ Zn is
defined by Im+1

n .

Example 6.3.2. Let M be a monoid k-scheme and let Z be an M-scheme. Suppose that ZM is
a closed subscheme of Z. Consider its quasi-coherent ideal I.. Then for every n ∈ N ideal In

is quasi-coherent ideal and its vanishing scheme V(In) is an M-stable closed subscheme of
Z. Hence

V(I) V(I2) ... V(In) ...

is a formal M-scheme. We denote it by Ẑ.

Definition 6.3.3. Let M be a monoid k-scheme and let Z = {Zn}n∈N be a formal M-scheme.
We say that Z is locally noetherian if for all n ∈ N schemes Zn are locally noetherian.

Definition 6.3.4. Let M be a monoid k-scheme. Suppose that Z = {Zn}n∈N andW = {Wn}n∈N

are formal M-schemes. Then a morphism f ∶ Z → W of formal M-schemes consists of a family
of M-equivariant morphisms f = { fn ∶ Zn →Wn}n∈N such that the diagram

Z0 Z1 ... Zn Zn+1 ...

W0 W1 ... Wn Wn+1 ...

f0 f1 fn fn+1

is commutative.

Remark 6.3.5. There is certain subtlety concerning pullback functors of coherent G-sheaves
and this is the right place to elaborate on it. Suppose that X, Y, Z are locally noetherian k-
schemes on which group k-scheme G acts. Let f ∶ X → Y and g ∶ Y → Z be G-equivariant
morphisms. Then we have (Remark 3.12.5) three monoidal functors

(g ⋅ f )∗ ∶ CohG(Z) → CohG(X), g∗ ∶ CohG(Z) → CohG(Y), f ∗ ∶ CohG(Y) → CohG(X)

It is not the case that (g ⋅ f )∗ = f ∗ ⋅ g∗. It is rather the case that there is a canonical isomor-
phism (g ⋅ f )∗ ≃ f ∗ ⋅ g∗ of monoidal functors.

Definition 6.3.6. Let M be a monoid k-scheme and let G be its group of units. Let Z =
{Zn}n∈N be a locally noetherian formal M-scheme. Then we have the corresponding tele-
scope of monoidal categories

... CohG(Zn+1) CohG(Zn) ... CohG(Z2) CohG(Z1) CohG(Z0)

and finitely cocontinuous monoidal functors given by restricting G-equivariant coherent
sheaves to closed G-subschemes. Then we define a category CohG(Z) of coherent G-sheaves on
Z as a monoidal category which is a 2-limit of the telescope above. This category is defined
uniquely up to a monoidal equivalence by Corollary 6.2.6.
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Fix now a monoid k-scheme M and let G be its group of units. Let Z be a locally noetherian
k-scheme with action of M and suppose that ZM is a closed subscheme of Z. Let I be the
ideal sheaf of ZM in Z. We have a commutative diagram

V(I) V(I2) ... V(In) ...

Z

in the category of k-schemes with M-actions. Thus we have a diagram of finitely cocontinu-
ous monoidal functors (Remark 3.12.5)

CohG(V(I)) CohG(V(I2)) ... CohG(V(In)) ...

CohG(Z)

which by Remark 6.3.5 is commutative up to canonically defined isomorphisms of functors.
By Corollary 6.2.6 this induces a unique finitely cocontinuous monoidal functor CohG(Z) →
CohG(Ẑ). The fact that the diagram above is commutative only up to a canonical isomor-
phisms makes 2-categorical limits (in the sense of the previous section) indispensable.

Definition 6.3.7. Let Z be a locally noetherian M-scheme such that ZM is a closed subscheme
of Z. Let G be a group of units of M. Then the finitely cocontinuous monoidal functor
CohG(Z) → CohG(Ẑ) defined above is called the comparison functor.

Corollary 6.3.8. Let M be a monoid k-scheme and let Z = {Zn}n∈N be a formal M-scheme. Then Zn
is a locally linear M-scheme for every n ∈ N.

Proof. Let In be an ideal defining Z0 in Zn. Since Z is a formal M-scheme, we derive that
In+1

n = 0 and clearly Z0 is a locally linear M-scheme. Thus we apply Corollary 3.11.4 and
derive that Zn is a locally linear M-scheme for every n ∈ N.

Corollary 6.3.9. Let M be a Kempf monoid over k and let Z = {Zn}n∈N be a formal M-scheme. Then
Z is a part of the commutative diagram

Z0 Z1 ... Zn ...

Z0r0 = 1Z0

r1
rn

in which vertical morphisms rn ∶ Zn ↠ Z0 are affine M-equivariant morphisms induced by multi-
plications by zero of M (Proposition 5.5.9) such that rn ∣Z0 = 1Z0 . Moreover, the following assertions
hold.

(1) If Z is locally noetherian, then every rn is finite.
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(2) If N is a submonoid k-scheme of M containing the zero of M, then Z is a formal N-scheme.

Proof. This is an immediate consequence of Corollary 6.3.8 and Proposition 5.5.9.

6.4 Quasi-coherent G-sheaves on schemes affine over bases with
trivial action of G

In order to address algebraization of formal M-schemes we need to rephrase the notion of
quasi-coherent G-sheaf in the case of G-schemes which are affine over schemes with triv-
ial action of G. This description enables to use representation theory of G in studying G-
sheaves.

Remark 6.4.1. Let G be an affine group k-scheme and let X be a k-scheme equipped with an
action a ∶ G ×k X → X of G. Suppose that r ∶ X → Y is a G-equivariant morphism to a trivial
G-scheme. Assume that r is affine. Then X = Spec YA, where A is a quasi-coherent algebra
on Y and the action a corresponds to the morphism A → k[G] ⊗kA of algebras over OY such
that for every open affine subscheme V of Y its restriction

A(V) → k[G] ⊗kA(V)

to sections over V is the coaction of k[G] on A(V). Now suppose that F is a quasi-coherent
G-sheaf on X with respect to γ ∶ F → a∗π∗F (Remark 3.12.8), where π ∶ G ×k X → X is the
projection. Then r∗F = M is a quasi-coherent sheaf on Y which is an A-module and r∗γ
is the morphism M → k[G] ⊗kM of quasi-coherent sheaves on Y such that the following
assertions hold.

(1) For every open affine subscheme V of Y the restriction

M(V) → k[G] ⊗kM(V)

to sections over V is the coaction of k[G] onM(V).

(2) M→ k[G] ⊗kM is the morphism of A-modules, where k[G] ⊗kM carries the struc-
ture of an A-module induced by the restriction of scalars A → k[G] ⊗kA along action
a.

Let G be an affine monoid k-scheme and let X be a k-scheme equipped with the trivial action
of G. Fix λ in Irr(G) and a quasi-coherent G-sheaf F on X. We define a quasi-coherent
G-subsheaf F[λ] of F by formula

U ↦ F(U)[λ]

for every open affine subscheme U of X. HereF(U)[λ] is the isotypic component (Definition
3.9.9) of the representation F(U) of G (Example 3.12.10) corresponding to λ. Fact 3.9.10
together with the fact that G-acts trivially on X imply that this gives rise to a quasi-coherent
subsheaf of F .

Definition 6.4.2. We call F[λ] the isotypic component of F corresponding to λ.
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Fact 6.4.3. Let G be an affine group k-scheme and let X be a k-scheme equipped with the trivial action
of G. Suppose that F1,F2 are quasi-coherent G-sheaves on X. Fix λ1, λ2, η1, ..., ηn in Irr(G) and
assume that

Vλ1 ⊗k Vλ2 ≃
n
⊕
i=1

Vηi

as G-representations, where by Vλ we denote the irreducible representation in class λ ∈ Irr(G). Then

(F[λ1] ⊗OX F2[λ2])[λ] = 0

for λ /∈ {η1, ..., ηn}.

Proof. Consider an open affine subscheme U of X. The canonical surjection

Γ(U,F1)[λ1] ⊗k Γ(U,F2)[λ2] Γ(U,F1)[λ1] ⊗OX(U) Γ(U,F2)[λ2]

is a morphism of G-representations. Since Vλ1 ⊗k Vλ2 ≃ ⊕n
i=1 Vηi , we derive by uniqueness of

isotypic decomposition (Theorem 3.9.8) that

(Γ(U,F1)[λ1] ⊗k Γ(U,F2)[λ2])[λ] = 0

for λ ≠ ηi and 1 ≤ i ≤ n. This implies that (Γ(U,F1)[λ1] ⊗OX(U) Γ(U,F2)[λ2])[λ] = 0 for
λ /∈ {η1, ..., ηn}. Since U is an arbitrary affine open subscheme of X, we deduce that the
statement holds.

6.5 Algebraization of formal M-schemes over Kempf monoids

Now we are ready to prove results concerning algebraizations of formal M-schemes for Kempf
monoids.

Theorem 6.5.1. Let M be a Kempf monoid and let Z = {Zn}n∈N be a formal M-scheme. Then there
exists a locally linear M-scheme Z such that Ẑ is isomorphic to Z . Moreover, we have that

Z = colimn∈NZn

in category of M-schemes affine over Z0.

Setup. The monoid M is affine and admits a zero o. By Corollary 6.3.9 a formal M-scheme
Z = {Zn}n∈N corresponds to a sequence of surjections

... An+1 An ... A1 A0 = OZ0

of quasi-coherent algebras on Z0 such that the following assertions hold.

(1) For each n ∈ N we fix a morphism An → k[M] ⊗k An such that for every open affine
neighborhood U of Z0 its restriction

An(U) → k[M] ⊗kAn(U)

to sections on U is a coaction of k[M] on An(U).
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(2) For every n ∈ N the epimorphism An+1 ↠An preserves the coaction described in (1).

(3) The morphism An ↠A0 is the surjection inducing ZM
n ↪ Zn for every n ∈ N.

(4) A0 ↪ An ↠A0 is an isomorphism for every n ∈ N.

(5) If In is the kernel ofAn ↠A0 inAn, then Im+1
n is the kernel ofAn ↠Am for m ≤ n and

n ∈ N.

Since M is a Kempf monoid, there exists a closed subgroup T of the center Z(G) of the
unit group G of M such that T is a torus and by Proposition 5.5.6 the closure T of T with
reduced structure is a closed toric submonoid of M with zero. We derive by Corollary 6.3.9
that ZT

n = Z0 = ZM
n for every n ∈ N. Let {Vλ}λ∈Irr(T) be a set of irreducible representations of

T such that Vλ is contained in λ.

Lemma 6.5.1.1. Let λ be in Irr(T). Then there exists nλ ∈ N such that for each n > nλ and any
λ1, ..., λn ∈ Irr(T) ∖ {λ0} the representation

n
⊗
i=1

Vλi

has trivial isotypic component of type λ. We have nλ0 = 0, where λ0 is an isomorphism type of the
trivial representation of T.

Proof of the lemma. Let K be an algebraically closed extension of k. Pick Aλ and f as in Theo-
rem 5.4.4 and define

nλ = sup
m∈Aλ

f (m)

Fix n > nλ. We have

K⊗k Vλ1 ⊗k ...⊗k Vλn = ⊕
(m1,...,mn)∈Aλ1

×k ...×k Aλn

K ⋅ χm1+...+mn

and since m1, ...mn ∈ Aλ1 ∪ ...∪ Aλn ⊆ S ∖ {0} we derive that

f (m1 + ...+mn) = f (m1) + ...+ f (mn) ≥ n > nλ = sup
m∈Aλ

f (m)

This implies that isotypic component of Vλ1 ⊗k ...⊗k Vλn corresponding to λ is trivial.

Lemma 6.5.1.2. Fix λ in Irr(T). Then An+1[λ] ↠ An[λ] is an isomorphism for n ≥ nλ.

Proof of the lemma. For λ /∈ Irr(T) we have An+1[λ] = An[λ] = 0. This follows from Theorem
3.8.3 and from the observation that by definition for every open affine subset U of Z0 we
have the coaction of k[T] on An+1(U) and An(U) induced by the coaction of k[M] on these
algebras.
Fix λ ∈ Irr(T). By Lemma 6.5.1.1 and Fact 6.4.3 we derive that

(In+1 ⊗OZ0
In+1 ⊗OZ0

...⊗OZ0
In+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+1 times

[λ] = 0

for every n ≥ nλ. Next the multiplication
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(In+1 ⊗OZ0
In+1 ⊗OZ0

...⊗OZ0
In+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+1 times

An+1

is a morphism of quasi-coherent T-sheaves with image In+1
n+1 . Thus we derive that In+1

n+1 [λ] = 0
for n ≥ nλ. Hence the kernel of An+1[λ] ↠ An[λ] is trivial.

Proof of Theorem 6.5.1. According to Proposition 3.9.11 and the fact that T is central in M we
derive that An[λ](U) is a linear representation of M for every open affine U of Z0. For
λ ∈ Irr(T) we define

A[λ] = An[λ]

where n ≥ nλ as in Lemma 6.5.1.2. Note that A[λ] = 0 for λ /∈ Irr(T). We set

A = ⊕
λ∈Irr(T)

A[λ]

Since ZT
n = ZM

n = Z0 by Corollary 6.3.9, we deduce that A[λ0] = A0 = OZ0 canonically (where
λ0 is the trivial T-representation). Note that A is a quasi-coherent sheaf on Z0 with coac-
tion of k[M] on each sections over affine open U of Z0 (by definition A is a direct sum of
such sheaves). Actually A = limn∈NAn in the category of quasi-coherent sheaves on Z0 with
coaction of k[M]. We construct the OZ0-algebra structure on A. For this pick λ1, λ2 ∈ Irr(T).
Consider irreducible representations Vλ1 and Vλ1 in classes λ1 and λ2, respectively. Suppose
that η1, ..., ηs are finitely many classes in Irr(T) such that Vλ1 ⊗k Vλ2 can be completely decom-
posed onto irreducible representation in these classes (T is linearly reductive by Corollary
5.4.2). According to Fact 6.4.3 we deduce that the image of the multiplication

An[λ1] ⊗OZ0
An[λ2] An

is contained in⊕s
i=1An[ηi]. By Lemma 6.5.1.2 all these multiplications for

n ≥ sup{nλ1 , nλ2 , nη1 , ..., nηs}

can be identified. Now we define

A[λ1] ⊗OZ0
A[λ2] →

s
⊕
i=1
A[ηi] ⊆ A

as a morphism induced by the multiplication morphism for any n ≥ sup{nλ1 , nλ2 , nη1 , ..., nηs}.
This gives an OZ0-algebra structure on A. So A is in fact the limit of {An}n∈N in the category
of quasi-coherent algebras on Z0 with coaction of k[M]. This implies that

Z = Spec Z0A = colimn∈NZn

in the category of schemes affine over Z0 and equipped with an action of M. Note that
from the description of A it follows that for every n ∈ N we have a surjective morphism
pn ∶ A ↠ An of algebras. We denote its kernel by Jn and we put J = J0. We have

J = ⊕
λ∈Irr(T)∖{λ0}

A[λ]
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Recall that we denote by In the kernel of An ↠ A0 = OZ0 for n ∈ N. Then In = J /Jn. Fix
m ∈ N and consider n ∈ N such that n ≥ m. Since Z is a formal M-scheme, the sheaf Im+1

n is
the kernel of the morphism An ↠Am. Thus

Jm/Jn = Im+1
n = (J m+1 +Jn)/Jn

BothJm andJ m+1 are Irr(T)-graded by their isotypic T-components and for given λ ∈ Irr(T)
and for n ≥ nλ the isotypic component Jn[λ] is zero by Lemma 6.5.1.2. Hence Jm = J m+1

for every m ∈ N. Thus Ẑ = Z and, since the canonical affine morphism Z → Z0 is M-
equivariant and Z0 is equipped with the trivial action of M, we deduce that Z a locally
linear M-scheme.

Theorem 6.5.2. Let M be a Kempf monoid. Suppose that Z is a locally linear M-scheme such that
Ẑ = {Zn}n∈N and

Z = colimn∈NZn

in the category of M-schemes affine over ZM, where Z is affine over ZM via the canonical affine
retraction rZ ∶ Z → ZM (Proposition 5.5.9). If W is a locally linear M-scheme and Ŵ and Ẑ are
isomorphic as formal M-schemes, then W and Z are M-equivariantly isomorphic.

Proof. Let rW ∶ W → WM be the affine retraction (Proposition 5.5.9). We also denote Ŵ =
{Wn}n∈N. Note that we have an identification Wn ≃ Zn of M-schemes for every n ∈ N. By
the universal property of colimits there exists an M-equivariant morphism f ∶ Z → W such
that rW ⋅ f = rZ and f∣Zn is isomorphic to the closed immersion Wn ↪W for every n ∈ N. We
consider now Z and W as M-schemes affine over the same base ZM = WM equipped with
the trivial M-action. Then Z, W correspond to quasi-coherent algebras A,B on ZM = WM,
respectively, and moreover, there are quasi-coherent ideals I ⊆ A, J ⊆ B such that

A/I = OZM = OWM = B/J

Then f corresponds to a morphism h ∶ B → A of quasi-coherent algebras such that h(J ) ⊆ I
and for every n ∈ N morphism h induces an isomorphism

B/J n+1 ≃ A/In+1

of quasi-coherent algebras. Moreover, for every open affine subscheme U of ZM = WM

morphism h is a morphism of canonically defined k[M]-comodules A(U) → B(U). Pick
now an algebraically closed extension K of k and a zero preserving closed immersion A1

K ↪
Spec K ×k M of monoid K-schemes (Corollary 5.5.7). Then we have induced N-gradings on

K⊗kA = AK = ⊕
i∈N

AK[i], K⊗k B = BK = ⊕
i∈N

BK[i]

and hK = 1K ⊗k h is a N-graded homomorphism of algebras. Since the closed immersion of
monoid K-schemes considered above is zero preserving and according to Proposition 5.5.9,
we deduce that

Spec K ×k ZM = (Spec K ×k Z)MK = (Spec K ×k Z)A1
K

as K-schemes and hence

IK = K⊗k I =⊕
i>0
AK[i], JK = K⊗k J =⊕

i>0
BK[i]
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Moreover, hK induces isomorphisms of N-graded algebras

BK/J n+1
K ≃ AK/In+1

K

for every n ∈ N. These imply that for every i ∈ N morphism hK[i] ∶ BK[i] → AK[i] is an
isomorphism and hence hK is an isomorphism. By faithfully flat descent we deduce that h
is an isomorphism of quasi-coherent algebras on ZM = WM. Thus f is an M-equivariant
isomorphism.

Corollary 6.5.3. Let M be a Kempf monoid. Suppose that Z and W are locally linear M-schemes such
that Ẑ and Ŵ are isomorphic as formal M-schemes. Then Z and W are M-equivariantly isomorphic.

Proof. This is a consequence of Theorems 6.5.1 and 6.5.2.

Example 6.5.4. Let M be a Kempf monoid and let Y be a k-scheme. We consider Y as an
M-scheme with the trivial M-action. Since M is a Kempf monoid it admits the zero o. For
every n ∈ N let Mn be the n-th infinitesimal neighborhood of o in M. Note that Mn is a
closed M-stable subscheme of M for every n ∈ N. Hence we have a formal M-scheme

M0 M1 ×k Y ... Mn ×k Y Mn+1 ×k Y ...

Observe that M×k Y is a locally linear M-scheme and it is the unique locally linear M-scheme
such that M ×k Y
⋀

= {Mn ×k Y}n∈N
by Corollary 6.5.3.

Previous results make it possible to prove a correspondence between M-equivariant mor-
phisms of locally linear M-schemes and morphisms of corresponding formal M-schemes.

Corollary 6.5.5. Let M be a Kempf monoid and let Z, W be locally linear M-schemes. Then the
canonical map

MorM(Z, W) Mor(Ẑ, Ŵ)

is a bijection, where MorM(Z, W) is the class of M-equivariant morphisms Z →W and Mor(Ẑ, Ŵ)
is the class of morphisms of formal M-schemes.

Proof. Suppose that Ẑ = {Zn}n∈N and Ŵ = {Wn}n∈N. Consider a morphism { fn ∶ Zn →
Wn}n∈N of formal M-schemes. Since the retraction onto fixed points in Proposition 5.5.9 is
given by the multiplication by zero of M, we derive that the square

Zn Wn

Z0 W0

fn

f0

rZ
n rW

n

is commutative for n ∈ N, where rW
n and rZ

n are canonical retractions. Hence for every n ∈ N

we have a diagram
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Zn Wn ×W0 Z0 Wn

Z0 W0

fn

pn qn

f0

rZ
n

rn rW
n

v

in which the rightmost square is cartesian and pn ∶ Zn →Wn ×W0 Z0 is the unique morphism
that makes the diagram commutative. Now since rW

n is affine by (3) of Proposition 5.5.9, we
derive that rn ∶ Wn ×W0 Z0 → Z0 is affine as its base change. Our goal is to show that there
exists a unique morphism p ∶ Z →W ×W0 Z0 such that the square

Z W ×W0 Z0

Zn Wn ×W0 Z0

p

pn

is commutative. Corollary 6.5.3 and Theorem 6.5.1 imply that

Z = colimn∈NZn

in the category of M-schemes which are affine over Z0. Thus by the universal property of
colimits we deduce that p exists. Now composing p with the morphism q ∶ W ×W0 Z0 → W
coming from the cartesian square

W ×W0 Z0 W

Z0 W0

q

f0

r rW

we obtain an M-equivariant morphism f = q ⋅ p ∶ Z →W. By construction f∣Zn induces fn for
every n ∈ N and by uniqueness of p we infer that f is a unique M-equivariant morphism
with this property. This completes the proof.

Corollary 6.5.6. Let M be a Kempf monoid over k. Then the functor

category of locally linear M-schemes category of formal M-schemes
Z ↦ Ẑ

is an equivalence of categories.
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Proof. The fact that the functor is essentially surjective follows from Theorem 6.5.1. It is also
full and faithful by Corollary 6.5.5.

Theorem 6.5.7. Let M be a Kempf monoid and let Z be a locally linear M-scheme. Suppose that
r ∶ Z → ZM is the canonical retraction. If the formal M-scheme Ẑ is locally noetherian, then r is of
finite type.

Proof. Since r is affine (Proposition 5.5.9), we derive that A = r∗OZ is a quasi-coherent M-
algebra on ZM. We denote by J the ideal of A that corresponds to the closed immersion
ZM ↪ Z. We know that the formal M-scheme

ZM = Spec ZMA/J ... Spec ZMA/J n+1 Spec ZMA/J n+2 ...

is locally noetherian. Hence J /J n+1 is A/J n+1-module of finite type. Thus {J i/J i+1}1≤i≤n
are finite type A/J -modules. Thus the filtration

0 ⊆ J n/J n+1 ⊆ ... ⊆ J /J n+1 ⊆ A/J n+1

has factors that are of finite type over OZM = A/J . This implies that A/J n+1 is a coherent
OZM -algebra for every n ∈ N. The claim that r is of finite type is local on ZM, hence we
may assume that ZM is quasi-compact. This reduces the question to the noetherian ZM. The
sheaf J /J 2 ⊆ A/J 2 is coherent over OZM . Since ZM is noetherian, there exists coherent
OZM -subsheafM⊆ J such that the morphismM↠J/J 2 is surjective. Fix an algebraically
closed extension K of k and denote

AK = K⊗kA,JK = K⊗k J ,MK = K⊗kM

Since M is a Kempf monoid by Corollary 5.5.7 there exists a closed immersion A1
K ↪ MK of

monoid K-schemes that preserve zero. This implies that we have N-gradingAK = ⊕i≥0AK[i]
that gives rise to the action of A1

K. Moreover, by Proposition 5.5.9 we deduce that

Spec K ×k ZM = (Spec K ×k Z)MK = (Spec K ×k Z)A1
K

as K-schemes. This shows that JK = K ⊗k J = ⊕i≥1AK[i] is an ideal with positive grading.
We have surjectionMK ↠JK/J 2

K . By graded version of Nakayama’s lemma, the ideal JK is
generated byMK. Then by induction on degrees we deduce that AK is generated byMK as
a K ⊗k OZM -algebra. Thus 1Spec K ×k r is of finite type and by faitfully flat descent also r is of
finite type.

6.6 Coherent sheaves on locally noetherian formal M-schemes over
Kempf monoids

We prove an M-equivariant version of Grothendieck’s existence theorem in formal geometry
([FGI05, Theorem 8.4.2]). In Definition 6.3.7 we introduced the comparison functor. Now we
show that under noetherian hypothesis this functor is an equivalence.
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Theorem 6.6.1. Let M be a Kempf monoid with group of units G and let Z be a locally linear M-
scheme. Suppose that r ∶ Z → ZM is the canonical retraction. If Z is locally noetherian, then the
comparison functor

CohG(Z) → CohG(Ẑ)

is an equivalence of monoidal categories.

Setup. Since M is a Kempf torus, there exists a central closed torus T in G such that the
scheme-theoretic closure T of T in M contains the zero. By Proposition 5.5.9 morphism r
is affine and we pick a quasi-coherent algebra A = r∗OZ on ZM. We denote by J the ideal
of A that corresponds to the closed immersion ZM ↪ Z. Then OZM = A/J and since r is a
retraction, we derive that A = OZM ⊕J as OZM -modules. Next Ẑ is locally noetherian (this
follows from the fact that Z is locally noetherian). By Remark 6.4.1 and Remark 6.2.7 an
object of CohG(Ẑ) corresponds to a sequence of surjections

... Mn+1 Mn ... M1 M0

of coherent sheaves on ZM such that the following assertions hold.

(1) Mn is a module over A/J n+1 for every n ∈ N.

(2) J n+1Mn+1 is the kernel of the epimorphismMn+1 ↠Mn for every n ∈ N.

(3) For each n ∈ N there exists a morphismMn → k[G] ⊗kMn such that for every open
affine neighborhood U of ZM its restriction

Mn(U) → k[G] ⊗kMn(U)

to sections on U is a coaction of k[G] onMn(U).

(4) Mn → k[G] ⊗kMn is the morphism of A-modules, where k[G] ⊗kMn carries the
structure of an A-module induced by the restriction of scalars along the morphism
A/J n+1 → k[G] ⊗kA/J n+1 that corresponds to the action of G on Zn.

(5) For every n ∈ N the epimorphismMn+1 ↠ Mn preserves the coaction described in
(3).

We fix an algebraically closed field K containing k. By Theorem 5.4.4 there exists a closed
immersion Spec K ×k Gm ↪ TK of group K-schemes that induces zero preserving closed im-
mersion A1

K ↪ TK of monoid K-schemes. By Proposition 5.5.9 we have

Spec K ×k ZM = (Spec K ×k Z)MK = (Spec K ×k Z)TK = (Spec K ×k Z)A1
K

This implies that
AK = K⊗kA =⊕

i≥0
AK[i], JK = K⊗k J =⊕

i≥1
AK[i]

where gradation is induced by the action of A1
K. For every n ∈ N the action of Spec K ×k Gm

on K⊗kMn induced by the closed immersion Spec K ×k Gm ↪ TK ↪ GK of group K-schemes
gives rise to a gradation

K⊗kMn =⊕
i∈Z

(K⊗kMn) [i]
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Let {Vλ}λ∈Irr(T) be a set of irreducible representations of T such that Vλ is contained in
λ ∈ Irr(T). As above for each λ we denote by Mn[λ] the isotypic component of Mn cor-
responding to λ.

Lemma 6.6.1.1. The following assertions hold.

(1) There exists i0 ∈ Z such that for every n ∈ N we have (K⊗kMn) [i] = 0 for i < i0.

(2) For every i ∈ Z there exists ni ∈ N such that for all n ≥ ni the surjection (K⊗kMn+1) [i] ↠
(K⊗kMn) [i] is an isomorphism.

(3) For every λ in Irr(T) there exists a finite subset Bλ ⊆ Z such that

K⊗k Vλ = ⊕
i∈Bλ

(K⊗k Vλ) [i]

Define nλ = supi∈Bλ
ni ∈ N. Then for all n ≥ nλ the surjection Mn+1[λ] ↠ Mn[λ] is an

isomorphisms.

Proof of the lemma. Fix n ∈ N and consider the decomposition K⊗kMn = ⊕i∈Z (K⊗kMn) [i].
Since K ⊗kMn is a coherent K ⊗k OZM -module and the decomposition consists of modules
over K⊗kOZM , we derive that there are only finitely many i ∈ Z such that (K⊗kMn) [i] ≠ 0.
Hence we may write K⊗kMn = ⊕i≥in (K⊗kMn) [i] for some in ∈ Z such that (K⊗kMn) [in] ≠
0. Moreover, we know that the kernel of the surjection

K⊗kMn+1 = ⊕
i≥in+1

(K⊗kMn+1) [i] ↠⊕
i≥in

(K⊗kMn) [i] = K⊗kMn

is J n+1
K (K⊗kMn+1) and hence is contained in⊕i≥(in+1+n+1) (K⊗kMn+1) [i]. This implies that

(K⊗kMn) [i] = (K⊗kMn+1) [i] for in+1 ≤ i ≤ in+1+n. In particular, we have (K⊗kMn) [in+1] =
(K⊗kMn+1) [in+1] ≠ 0 and thus in+1 ≥ in. This shows that in ≥ i0 for every n ∈ N and (1) is
proved. Now the surjection

K⊗kMn+1 =⊕
i≥i0

(K⊗kMn+1) [i] ↠⊕
i≥i0

(K⊗kMn) [i] = K⊗kMn

induces an isomorphism for i-th graded component, where i0 ≤ i ≤ i0 + n. Hence for fixed
i ∈ Z there exists ni ∈ N such that for all n ≥ ni the surjection (K⊗kMn+1) [i] ↠ (K⊗kMn) [i]
is an isomorphism. Thus we proved (2).
Fix now λ in Irr(T) and let Vλ be an irreducible representation in class λ. Since K ⊗k Vλ

is a finite dimensional vector space over K, there exists a finite subset Bλ ⊆ Z such that
(K⊗k Vλ) [i] ≠ 0 if i ∈ Bλ. Now define nλ = supi∈Bλ

ni. The surjection K ⊗kMn+1 ↠ K ⊗kMn
induces an isomorphism (K⊗kMn+1) [i] ≃ (K⊗kMn) [i] for every i in Bλ. Thus for n ≥ nλ

the surjectionMn+1 ↠Mn induces an isomorphismMn+1[λ] ≃ Mn[λ]. This completes the
proof of (3).

Proof of Theorem 6.6.1. Fix a coherent G-sheaf {Mn}n∈N on Ẑ described as in the setup above.
For fixed λ in Irr(T) we defineM[λ] = Mn[λ] for any n ≥ nλ, where nλ ∈ N is as in (3) of
Lemma 6.6.1.1 (in particular,M[λ] does not depend on n ≥ nλ). Next we define

M= ⊕
λ∈Irr(T)

M[λ]
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By Proposition 3.9.11 for every n ∈ N and λ ∈ Irr(T) sheaf Mn[λ] admits a structure of a
G-sheaf. Therefore,M is a quasi-coherent G-sheaf of OZM -modules. We now show thatM
admits a canonical structure of an A-module. For this pick λ1 and λ2 in Irr(T). Consider
the irreducible representations Vλ1 and Vλ1 in classes λ1 and λ2, respectively. Suppose that
η1, ..., ηs are finitely many classes in Irr(T) such that Vλ1 ⊗k Vλ2 can be completely decom-
posed into irreducible representations contained in classes η1, ..., ηs. According to Fact 6.4.3
the image of the multiplication A[λ1] ⊗OZM Mn[λ2] → Mn is contained in ⊕s

i=1Mn[ηi]. By
(3) of Lemma 6.6.1.1 all these multiplications for n ≥ sup{nλ1 , nλ2 , nη1 , ..., nηs} can be identi-
fied. Now we define

A[λ1] ⊗OZM M[λ2] →
s
⊕
i=1
M[ηi] ⊆M

as a morphism induced by the multiplication morphism for any n ≥ sup{nλ1 , nλ2 , nη1 , ..., nηs}.
This gives an A-module structure onM. Denote K⊗kM byMK. Note that the combination
of (2) and (3) of Lemma 6.6.1.1 show that

MK[i] = (K⊗kMn) [i]

for n ≥ ni and i ≥ i0, where i0 ∈ Z and ni ∈ N are as in Lemma 6.6.1.1. By (1) of Lemma 6.6.1.1
we have

⊕
λ∈Irr(T)

M[λ]K =MK =⊕
i≥i0
MK[i]

We show that M/J n+1M = Mn for every n ∈ N. Fix n ∈ N. By faithfully flat descent it
suffices to show that

(MK/J n+1
K MK) [i] = (K⊗kMn) [i]

for every i ∈ Z. Let us fix i ∈ Z. Pick m greater than supi0≤j≤i nj and n. Then

MK[j] = (K⊗kMm) [j], (J n+1
K MK)[j] = (J n+1

K (K⊗kMm) )[j]

for i0 ≤ j ≤ i. SinceMm/J n+1Mm =Mn as m ≥ n, we derive that

(MK/J n+1
K MK) [i] =MK[i]/(J n+1

K MK)[i] =

= (K⊗kMm) [i]/(J n+1
K (K⊗kMm) )[i] = (K⊗kMn) [i]

and this completes the proof of our claim. Next we prove thatM is an A-module of finite
type. Since this question is local on ZM, we may assume that this scheme is noetherian.
ClearlyM[λ] is a coherent OZM -module for each λ ∈ Irr(T). Now we may pick λ1, ..., λr in
Irr(T) such that we have a surjection

r
⊕
j=1
M[λj] ↠M/JM =M0

induced by the canonical surjectionM↠M/JM =M0. Let

G =
r
⊕
j=1
M[λj]
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be a OZM -submodule ofM. Then G is a coherent OZM -module. We derive that

M= G +JM

Since JK = ⊕i≥1AK[i] andMK = ⊕i≥i0MK[i], graded Nakayama lemma proves thatMK =
∑j≥1J

j
K ⋅ GK. Thus GK generatesMK as an AK-module. By faithfully flat descent we deduce

that G generatesM as anA-module. Since G is a coherentOZM -module, we derive thatM is
an A-module of finite type. All these facts imply thatM corresponds to a coherent G-sheaf
on Z such that its image under the comparison functor CohG(Z) → CohG(Ẑ) is a coherent
G-sheaf on Ẑ with G-structure described by {Mn}n∈N. Hence the comparison functor is
essentialy surjective. Note also that

M= limn∈NMn

in the category of sheaves of OZM -modules. Now we are going to prove that CohG(Z) →
CohG(Ẑ) is full and faithful. For this consider a commutative diagram

... Mn+1 Mn ... M1 M0

... Nn+1 Nn ... N1 N0

fn+1 fn f1 f0

that represents the morphism in CohG(Ẑ) (Remark 6.2.7). This means that fn is a morphism
of A/J n+1-modules and preserves the k[G]-coactions for every n ∈ N. Next suppose that N
is an A-module with k[G]-coaction that corresponds to an object of CohG(Z) which image
under the comparison functor yields {Nn}n∈N. We define f ∶ M → N as follows. We pick
λ ∈ Irr(T) and set f [λ] ∶ M[λ] → N[λ] to be fn[λ] ∶ Mn[λ] → Nn[λ] for sufficiently large
n ∈ N. By (3) of Lemma 6.6.1.1 this definition makes sense and by construction of an A-
module structure on M and N gives rise to a morphism of A-modules that preserves the
k[G]-coactions. Moreover, we have

f = limn∈N fn

in the category of sheaves of OZM -modules. Thus f is a unique morphism of sheaves of
OZM -modules such that the square

M Mn

N Nn

f fn

is commutative for every n ∈ N. Next denote K⊗k f = fK and fix i ∈ Z. Then by (2) and (3) of
Lemma 6.6.1.1 we have

fK[i] = (1K ⊗k fn)[i]
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for sufficiently large n ∈ N. Fix now n ∈ N. According to (1) of Lemma 6.6.1.1 for i ∈ Z we
may pick m ≥ n such that

fK[j] = (1K ⊗k fm)[j]

for all j ≤ i. Thus

fK[i]mod (J n+1
K MK)[i] = (1K ⊗k fm)[i]mod (J n+1

K (K⊗kMm))[i] = (1K ⊗k fn)[i]

Since i ∈ Z is arbitrary, we derive that

fK modJ n+1
K MK = (1K ⊗k fn)

By faithfully flat descent we deduce that fn = (1A/J n+1 ⊗A f ) for every n ∈ N. Therefore, f is
a unique morphism in CohG(Z) such that its image under the comparison functor is { fn}n∈N.
This completes the proof that the comparison functor is full and faithful. We proved that it
is essentially surjective above. Thus the comparison functor is an equivalence of categories.
According to the definition the comparison functor is monoidal. Hence it is an equivalence
of monoidal categories.
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Chapter 7

Białynicki-Birula Decompositions

7.1 Introduction

In this chapter we finally employ previously obtained results to establish Białynicki-Birula
decomposition for general schemes locally of finite type over k. In the first four sections we
introduce fibered categories and principal G-bundles and then state beautiful theorem of
Hall and Rydh ([HR19]) that enables to construct morphisms of stacks from finitely cocon-
tinuous monoidal functors between their categories of coherent sheaves. The main result of
these considerations is Theorem 7.5.5 which follows from the fact that the comparison func-
tor CohG(Z) → CohG(Z) is an equivalence (Theorem 6.6.1) combined with tannakian formal-
ism (Corollary 7.5.4). In eight section we employ results of Section 3.8 to prove the repre-
sentability of the algebraic Białynicki-Birula functor in affine case and then using techniques
of algebraization from the previous chapter we prove that the formal Białynicki-Birula func-
tor is always representable for Kempf monoids. Then Theorem 7.5.5 implies that algebraic
Białynicki-Birula decomposition exists for an arbitrary Kempf monoid M and a scheme X
locally of finite type over k with an action of units of M. The ninth section is devoted to
smoothness of Białynicki-Birula decomposition. We close this chapter by discussing results
of Jelisiejew and the author ([JS19], [JS20]) not covered in this thesis and by giving some
application of the generalized Białynicki-Birula decompositions.

7.2 Fibered categories

Let C be a locally small category. In order to make our notation in this section clear we
denote by hC ∶ C ↪ Ĉ the Yoneda embedding for C. In particular, if X is an object of C, then
hCX denotes the presheaf representable by X.
We fix a functor p ∶ E → B. Consider a morphism φ ∶ ξ → η of E such that p(φ) = f and
f ∶ X → Y. We depict this situation by the square diagram
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ξ η

X Y

φ

f

Note that to every such square there corresponds a commutative square

hEξ hEη

hBX ⋅ p hBY ⋅ p

hEφ

(hBf )p

pmor pmor

of presheaves on E , where pmor are maps induced by p on sets of morphisms.

Definition 7.2.1. Consider a square

ξ η

X Y

φ

f

We call the square cartesian and φ a cartesian morphism with respect to p if the corresponding
square of presheaves on E is cartesian in the category of presheaves.

One can rephrase definition above in terms of presheaves as follows. Morphism φ ∶ ξ → η is
cartesian with respect to p if the square

MorE(ζ, ξ) MorE(ζ, η)

MorB(p(ζ), p(ξ)) MorB(p(ζ), p(η))

MorE (1ζ , φ)

MorB (1p(ζ), p(φ))

pmor pmor

of sets is cartesian for every object ζ of E .

Fact 7.2.2. Let p ∶ E → B be a functor, let f ∶ X → Y be a morphism of B and let η be an object of
E . Suppose that φ1 ∶ ξ1 → η, φ2 ∶ ξ2 → η are morphisms of E that are cartesian with respect to p and
assume that p(φ1) = p(φ2). Then there exists a unique morphism θ ∶ ξ1 → ξ2 such that φ1 = φ2 ⋅ θ.
Moreover, θ is an isomorphism.

Proof. There exists a unique natural transformation σ ∶ hEξ1
→ hEξ2

such that hEφ1
= hEφ2

⋅ σ.
Moreover, σ is a natural isomorphism. Since hE ∶ E → Ê is full and faithful, we derive that
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there exists a unique morphism θ ∶ ξ1 → ξ2 such that hEθ = σ. Then θ satisfies the assertion.

Definition 7.2.3. Let p ∶ E → B be a functor, let f ∶ X → Y be a morphism of B and let η be
an object of E such that p(η) = Y. A pair (ξ, φ) such that ξ is an object of E and φ ∶ ξ → η is a
morphism of E is called a pullback of η along f if the following conditions are satisfied.

(1) p(φ) = f

(2) φ is cartesian morphism of p.

Note that Fact 7.2.2 implies that pullbacks are unique up to a unique isomorphism.

Definition 7.2.4. Let p ∶ E → B be a functor. Then p is a fibered category if and only if for every
morphism f ∶ X → Y of B and every object η of E such that p(η) = Y there exists a pullback
of η along f . If p ∶ E → B is a fibered category, then we say that E is fibered over B with respect
to p.

Now we give some examples of fibered categories. The first is prototypical for the notion of
a fibered category. It shows that any category B with fiber products gives rise in a canonical
way to a fibered category over B with cartesian arrows as cartesian squares in B.

Example 7.2.5 (the fibered category of arrows). Let B be a category. We define the category
Arr(B) of arrows of B as follows. Objects of Arr(B) are morphisms π ∶ X̃ → X of B. Now if
π ∶ X̃ → X and ψ ∶ Ỹ → Y are objects of Arr(B), then a morphism π → ψ is a pair ( f , φ) such
that f ∶ X → Y and φ ∶ X̃ → Ỹ are morphisms in B making the square

X̃ Ỹ

X Y

φ

f

π ψ

commutative. There exists a functor pArr(B) ∶ Arr(B) → B given by formula pArr(B)(( f , φ)) =
f . Suppose now that f ∶ X → Y and ψ ∶ Ỹ → Y are morphisms of B and there exists a
commutative square

X̃ Ỹ

X Y

φ

f

π ψ

It is a direct consequence of the definition that ( f , φ) is a cartesian morphisms of pArr(B) if
and only if the square above is cartesian. Thus pArr(B) is a fibered category provided that B
admits fiber products.

Definition 7.2.6. Suppose that p1 ∶ E1 → B and p2 ∶ E2 → B are fibered categories. Then
a functor F ∶ E1 → E2 is a morphism of fibered categories if the following two assertions are
satisfied.

(1) p1 = F ⋅ p2 or in other words F is a functor over B.
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(2) Image under F of a cartesian morphism of p1 is a cartesian morphism of p2.

Next example is closely related to the previous one, but is of more topological flavour.

Example 7.2.7 (the fibered category vector bundles). Recall that Top denotes the category
of topological spaces. We define a category VectBundR of real vector bundles as follows.
Objects of VectBundR are topological R-vector bundles π ∶ V → X. Now if π ∶ V → X and
ψ ∶ W → Y are topological R-vector bundles, then a morphism π → ψ is a pair ( f , φ) such
that f ∶ X → Y and φ ∶ V → W are continuous maps making the square

V W

X Y

φ

f

π ψ

commutative and moreover, φ induces an R-linear map on fibers i.e. for each point x in X
map φ induces an R-linear map π−1(x) → ψ−1 ( f (x)). We have the functor VectBundR →
Arr(Top) that forgets about R-vector bundle structure. Since topological vector bundles
are stable under continuous change of base, we deduce (according to description of carte-
sian squares in Example 7.2.5) that the composition of this forgetful functor with pArr(Top) ∶
Arr(Top) → Top is the fibered category. Thus we have a commutative triangle

VectBundR Arr(Top)

Top
pArr(Top)

and the functor VectBundR → Arr(Top) is a morphism of fibered categories.

Definition 7.2.8. Suppose that p1 ∶ E1 → B, p2 ∶ E2 → B are fibered categories and assume that
F1, F2 ∶ E1 → E2 are morphisms of fibered categories. A natural transformation τ ∶ F1 → F2 such
that p2τ is the identity transformation of p1 is called a natural transformation of morphisms of
fibered categories.

7.3 Example: Principal G-Bundles

We devote this whole section to another class of examples of fibered categories. We fix a
category with finite limits B and a group object G of B. We denote by µ ∶ G ×G → G and
e ∶ 1 → G the multiplication and unit of G, respectively.

Definition 7.3.1. Let P be an object of B equipped with an action of G, let T be an object of B
with the trivial action of G and let π ∶ P → T be an G-equivariant morphism with respect to
these G-actions. We say that a G-equivariant morphism π is a trivial principal G-bundle on T
if there exists a G-equivariant isomorphism φ ∶ P → G × T such that G × T is equipped with
an action of G given by µ × 1T and the triangle
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P G × T

T

φ

π prT

is commutative.

Definition 7.3.2. Let P be an object of B equipped with an action of G, let T be an object of
B with trivial action of G and let π ∶ P → T be a G-equivariant morphism with respect to
these G-actions. Consider a sieve S ([MM94, page 37]) on T. For every arrow h ∶ T̃ → T in S
we construct a cartesian square

h∗P P

T̃ T
h

πh π

in B. We consider h as a G-equivariant morphism with respect to trivial G-actions on T
and T̃. Then there exists a unique action of G on h∗P which makes πh into a G-equivariant
morphism in such a way that the square consists of objects of B with G-actions and G-
equivariant morphisms. Suppose that G-equivariant morphism πh is a trivial principal G-
bundle on T̃ for every h in S. Then we say that S trivializes π.

In the remaining part of this section we fix a Grothendieck topologyJ onB ([MM94, Chapter
III, Section 2, Definition 1]), which is by definition a collection of families {J (X)}X∈B of
sieves (called covering sieves) that satisfy certain conditions.

Definition 7.3.3. Let P be an object of B equipped with an action of G, let T be an object of B
with trivial action of G and let π ∶ P → T be a G-equivariant morphism with respect to these
G-actions. Suppose that there exists a covering sieve S in J (T) that trivializes π. Then π is
called a principal G-bundle with respect to J .

Now we define a category BG that depends on the site (B,J ). Its objects are principal G-
bundles with respect to J and if π ∶ P → T, ψ ∶ Q → Z are principal G-bundles with respect to
J , then a morphism π → ψ is a pair ( f , φ) such that f ∶ T → Z and φ ∶ P → Q are morphisms
in B such that φ is G-equivariant and the square

P Q

T Z

φ

f

π ψ

is commutative. We have a functor pBG ∶ BG → B given by pBG(( f , φ)) = f . Let ψ ∶ Q → Z
be a principal G-bundle with respect to J and let f ∶ T → Z be a morphism. Consider the
cartesian square
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f ∗Q Q

T Z

φ

f

π ψ

in B. Then there exists a unique action of G on f ∗Q such that the square above consists of
G-equivariant morphisms (T, Z are equipped with trivial G-actions). Moreover, with respect
to this action ψ ∶ f ∗Q → T becomes a principal G-bundle with respect to J . Indeed, if S is in
J (Z) and S trivializes ψ, then its pullback f ∗S trivializes π and is an element of J (T) (by
definition of Grothendieck topology). This shows that pBG ∶ BG → B is a fibered category.
Moreover, we have a functor BG → Arr(B) that forgets about G-actions. Hence there exists
a commutative triangle

BG Arr(B)

B

pBG pArr(B)

According to Example 7.2.5 and description of cartesian morphisms of pBG the functor BG →
Arr(B) described above is a morphism of fibered categories.

Definition 7.3.4. pBG ∶ BG → B is called the fibered category of principal G-bundles with respect
to J .

Suppose that X is an object of B equipped with an action of G. We define a category [X/G]
depending on action of G on X and the topology J as follows. Its objects are pairs (π, α)
such that π is a principal G-bundle with respect to J and α is a G-equivariant morphism.
We depict such pairs by diagrams

P X

T

α

π

Suppose that (π ∶ P → T, α ∶ P → X) and (ψ ∶ Q → Z, β ∶ Q → X) are two such objects.
Then a morphism (π, α) → (ψ, β) is a morphism ( f , φ) ∶ π → ψ in BG such that α = β ⋅ φ.
We have a functor prX,BG ∶ [X/G] → BG which sends (π, α) to π. We denote by p[X/G] ∶
[X/G] → B the composition of this functor prX,BG ∶ [X/G] → BG with pBG ∶ BG → B. By
description of cartesian morphisms of pBG we deduce that p[X/G] is a fibered category. We
have a commutative triangle

[X/G] BG

B

prX,BG

p[X/G] pBG

and the functor prX,BG ∶ [X/G] → BG described above is a morphism of fibered categories.
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Note that if 1 is a terminal object of B equipped with trivial action of G, then we have a
canonical isomorphism [1/G] ≃ BG of categories over B.

Definition 7.3.5. p[X/G] ∶ [X/G] → B is called the quotient fibered category of X with respect to
J .

7.4 2-fiber products of groupoids and quotient fibered categories

In this section we introduce the notion of a 2-fiber product. This notion plays an important
role in subsequent section. Consider a diagram of categories and their functors

C1

C2 Cg2

g1

Then we define a category C1 ×C C2 as follows. Objects of C1 ×C C2 are triples (x, y, u) such that
x is an object of C1, y is an object of C2 and u ∶ g1(x) → g2(y) is an isomorphism in C. Now
if (x1, y1, u1) and (x2, y2, u2) are objects of C1 ×C C2, then a morphism (x1, y1, u1) → (x2, y2, u2)
in C1 ×C C2 is a pair (v ∶ x1 → x2, w ∶ y1 → y2) of morphisms in the ordinary (strict) categorical
product C1 × C2 such that the square

g1(x1) g2(y1)

g1(x2) g2(y2)

u1

u2

g1(v) g2(w)

is commutative in C. The composition of morphisms is the same as in C1 × C2. Moreover,
there are functors

π1 ∶ C1 ×C C2 → C1, π2 ∶ C1 ×C C2 → C2

given by

π1 ((x, y, u)) = x, π1 ((v, w)) = v, π2 ((x, y, u)) = y, π2 ((v, w)) = w

There also exists a canonical natural isomorphism σ ∶ g1 ⋅ π1 → g2 ⋅ π2 given by σ(x,y,u) = u.
This makes the square

C1 ×C C2 C1

C2 C

π1

g2

π2 g1

commutative up to σ.

Definition 7.4.1. The category C1 ×C C2 together with data consisting of π1, π2, σ is called the
2-fiber product of the diagram

99



C1

C2 Cg2

g1

Definition 7.4.2. Consider the square with the 2-fiber product

C1 ×C C2 C1

C2 C

π1

g1

π2 g2

If Φ ∶ C → C1 ×C C2 is an equivalence of categories, then it induces the square

C C1

C2 C

π1 ⋅Φ

g1

π2 ⋅Φ g2

of categories and functors, which is commutative up to a natural isomorphism. We call such
squares a 2-cartesian squares.

Remark 7.4.3. It is crucial for the reasons which will be clear in the next section to note
that 2-fiber products admits certain 2-universal property similar to the (one dimensional)
universal property of the usual fiber product. For details see [Ols16, 3.4.9 and especially
discussion at the beginning of page 82], where this universality is discussed for groupoids,
but this restriction is not serious. There is no need to further discuss it here. It suffices to
note that this 2-universal property is preserved by equivalences of categories and hence it
holds for all 2-cartesian squares.

Remark 7.4.4. Note that in Section 6.2 we introduced another class of 2-categorical limits.
They can be described in terms of 2-fibered products. Indeed, note that the category C(T)
from the beginning of Section 6.2 can be described as the 2-fiber product of the diagram

C

C C

1C

T

In particular, this implies that 2-limits of telescopes have not only the one dimensional uni-
versal property described there, but they also admit certain 2-categorical universal property
(Remark 7.4.3). This property is also preserved by equivalences of categories.

Now we come back to discussion of quotient fibered categories. We fix a category with
finite limits B and a group object G of B. We denote by µ ∶ G × G → G and e ∶ 1 → G
the multiplication and unit of G, respectively. In the remaining part of this section we fix
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a Grothendieck topology J on B. Let X, Y be objects of B equipped with actions of G. We
denote by Mor ([X/G], [Y/G]) the following groupoid. Its objects are morphisms [X/G] →
[Y/G] of fibered categories over B. Its arrows are isomorphisms of morphisms of fibered
categories (Definition 7.2.8). Let ⋆ be the category with one object and the identity morphism.
Consider now the 2-fiber product

MorBG ([X/G], [Y/G]) Mor([X/G], [Y/G])

⋆ Mor([X/G], BG)⋆ ↦ prX,BG

Mor(1[X/G], prY,BG)

of groupoids, where

prX,BG ∶ [X/G] → BG, prX,BG ∶ [Y/G] → BG

are canonical functors. This defines the groupoid MorBG ([X/G], [Y/G]).

Remark 7.4.5. The groupoid MorBG ([X/G], [Y/G]) can be described explicitly as follows.
Its objects are pairs (F, τ), where F ∶ [X/G] → [Y/G] is a morphism of fibered categories and
τ ∶ prX,G → prY,G ⋅ F is a natural isomorphism defined over B (see Definition 7.2.8). An arrow
(F1, τ1) → (F2, τ2) in MorBG ([X/G], [Y/G]) is a natural isomorphism σ ∶ F1 → F2 over B such
that prY,Gσ = τ2 ⋅ τ−1

1 .

After this formal introduction we show that under some mild assumptions on Grothendieck
topology J fibered category p[X/G] ∶ [X/G] → B encapsulates all essential information con-
cerning the action of G on X. In the theorem below we denote the set of G-equivariant
morphisms X → Y by MorG (X, Y) and consider it as a discrete groupoid.

Theorem 7.4.6. Let J be a Grothendieck topology on B and assume that representable presheaves
on B are separated with respect to J . Let X, Y be objects of B equipped with G-actions. Then there
exists an equivalence

MorG (X, Y) ≃ MorBG([X/G], [Y/G])

of groupoids that sends a G-equivariant morphism f to a pair ([ f /G], 1prX,G), where the functor

[ f /G] ∶ [X/G] → [Y/G]

is given by

P X P Y

T T

d

π

f ⋅ d

π
F

Proof. Consider first a morphism F ∶ [X/G] → [Y/G] of fibered categories such that prY,G ⋅ F
is equal to prX,G. In other words F is strictly over BG. We show that for such F there exists
a unique G-equivariant f ∶ X → Y such that F = [ f /G]. Denote by aX, aY actions of G on
X, Y, respectively. Moreover, for every object T of B we denote by qT ∶ T → 1 the unique
morphism into a terminal object of B. We first describe certain object of [X/G]. Observe
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that (G × X, µ × 1X) is an object of B equipped with an action of G. Next the projection
prX ∶ G × X → X can be considered as a G-equivariant morphism from this G-object to X
with the trivial action of G. Since the square

G ×G ×X G ×X

G ×X X

1G × aX

aX

µ × 1X aX

is commutative, we derive that aX is a G-equivariant morphism (G ×X, µ × 1X) → (X, aX).
This gives (prX, aX) the structure of an object of [X/G]. The functor F sends (prX, aX) to
some object of [Y/G]. This object is necessarily of the form (prX, α) for some G-equivariant
morphism α ∶ (G ×X, µ × 1X) → (Y, aY). Indeed, this follows from the fact that F is strictly
over BG. Now if F = [ f /G] for some G-equivariant morphism f as it is described in the
statement, then α = f ⋅ a and hence f = α ⋅ ⟨e ⋅ qX, 1X⟩ (recall that e ∶ 1 → G is the unit mor-
phism). This proves that f is unique. Our goal is to show that it exists. That is our goal
is to show that a morphism f = α ⋅ ⟨e ⋅ qX, 1X⟩ is G-equivariant and determines F as it is de-
scribed in the statement. First we fix some object T of B and the projection prT ∶ G × T → T
considered as a trivial principal G-bundle. Let (prT, c) be an object of [X/G]. Then c is a G-
equivariant morphism c ∶ (G × T, µ × 1T) → (X, aX). Functor F sends (prT, c) to some object
(prT, γ). We claim that γ = f ⋅ c. Let pr23 ∶ G×G× T → G× T be the projection on the last two
factors. There are diagrams

G ×G × T G × T X G ×G × T G ×X X

G × T T G × T X

µ × 1T

prT

pr23 prT

c 1G × c

c

pr23 prX

aX

representing morphisms

(prT, µ × 1T) ∶ (pr23, c ⋅ (µ × 1T)) → (prT, c) , (c, 1G × c) ∶ (pr23, aX ⋅ (1G × c)) → (prX, aX)

in [X/G]. Moreover, c is G-equivariant (G × T, µ × 1T) → (X, aX) and hence we derive that
c ⋅ (µ × 1T) = aX ⋅ (1G × c). Thus the morphisms in [X/G] described above have common
domain. Since F is strictly over BG, we derive that their images under F are

G ×G × T G × T Y G ×G × T G ×X Y

G × T T G × T X

µ × 1T

prT

pr23 prT

γ 1G × c

c

pr23 prX

α
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This implies that γ ⋅ (µ × 1T) = α ⋅ (1G × c). We deduce that

γ = γ ⋅ (µ × 1T) ⋅ ⟨e ⋅ qG×T, 1G×T⟩ = α ⋅ (1G × c) ⋅ ⟨e ⋅ qG×T, 1G×T⟩ = α ⋅ ⟨e ⋅ qX, 1X⟩ ⋅ c = f ⋅ c

and the claim is proved. We apply this to α to derive that α = f ⋅ aX. Next recall that α ⋅
(µ × 1X) = aY ⋅ (1G × α) because α is a G-equivariant morphism (G ×X, µ × 1X) → (Y, aY).
Thus

aY ⋅ (1G × f ) = aY ⋅ (1G × α) ⋅ (1G × ⟨e ⋅ qX, 1X⟩) = α ⋅ (µ × 1X) ⋅ (1G × ⟨e ⋅ qX, 1X⟩) = α

Hence f ⋅ aX = α = aY ⋅ (1G × f ). Thus f is G-equivariant and F is given as in the statement
on the subcategory of [X/G] consisting of trivial principal G-bundles. Now consider any
principal G-bundle π ∶ P → T with respect to J and let d ∶ P → X be a G-equivariant
morphism to (X, aX). We know that F sends (π, d) to some object of [Y/G] of the form
(π, δ). It suffices to prove that δ = f ⋅ d. For this consider a sieve S in J (T) such that S
trivializes π. Pick h ∶ T̃ → T in S and a cartesian square

h∗P P

T̃ T

h′

h

πh π

Then (πh, d ⋅ h′) is an object of [X/G]. Since F is strictly over BG, we derive that F(πh, d ⋅ h′) =
(πh, δ ⋅h′). By definition πh is a trivial G-bundle. Thus (from what we proved above) we have

δ ⋅ h′ = f ⋅ d ⋅ h′

This holds for pullback h′ of every h in S along π. These pullbacks {h′}h∈S generate the sieve
π∗S on P and hence the formula

δ ⋅m = f ⋅ d ⋅m
holds for every morphism m in π∗S . Moreover, π∗S is a covering sieve on the site (B,J ).
According to the assumption on J we infer that hBP = MorB (−,P) ∶ Bop → Set is a separated
presheaf with respect to J . Thus the formula

δ ⋅m = f ⋅ d ⋅m

which holds for every m in π∗S implies that δ = f ⋅ d. Therefore, if F ∶ [X/G] → [Y/G] is
a morphism of fibered categories such that prY,G ⋅ F = prX,G, then F = [ f /G] for a unique
f ∈ MorG(X, Y).
Now suppose that (F, τ) is an arbitrary object of MorBG ([X/G], [Y/G]). Consider a princi-
pal G-bundle π ∶ P → T with respect to J and let d ∶ P → X be a G-equivariant morphism.
Then F sends (π, d) to some (ψ ∶ Q → T, δ ∶ Q → Y) in [Y/G]. Next we have a commutative
triangle

P Q

T

τ(π,d)

π ψ
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and τ(π,d) is a G-equivariant isomorphism. We construct a morphism Fstrict ∶ [X/G] → [Y/G]
of fibered categories such that prY,G ⋅ Fstrict is equal to prX,G. We define it by formula

P X P Y

T T

d

π

δ ⋅ τ(π,d)

π
Fstrict

This is well defined according to the fact that F is a morphism of fibered categories and τ is
an isomorphism prX,G → prY,G ⋅ F defined over B. It follows from the definition of Fstrict that
it is defined strictly over BG. Moreover, τ induces an isomorphism of objects (Fstrict, 1prX,G)
and (F, τ) of MorBG([X/G], [Y/G]). Combining this with the first part of the our argument
we deduce that every object (F, τ) of MorBG([X/G], [Y/G]) is isomorphic to an object of the
form ([ f /G], 1prX,G) for some G-equivariant morphism f ∶ X → Y. Hence the functor

MorG (X, Y) →MorBG([X/G], [Y/G])

in the statement is essentially surjective.
It remains to prove that if f1, f2 ∶ X → Y are G-equivariant and ([ f1/G], 1prX,G) ≃ ([ f1/G], 1prX,G)
as objects of MorBG([X/G], [Y/G]), then f1 = f2. For this observe that an isomorphism
σ ∶ [ f1/G] → [ f2/G] of morphisms of fibered categories such that prY,G ⋅ σ = 1prX,G is the
identity. Hence [ f1/G] = [ f2/G] and thus f1 = f2.

7.5 Tannakian formalism for quotient stacks

In this section we discuss an application of the main result of [HR19]. For this we need to
briefly discuss algebraic stacks, although for our purposes there is no need to use seriously
any technicalities of this language. We refer the interested reader to the excellent exposition
[Ols16] of this subject. We note the following facts.

(1) An algebraic stack is a category fibered over Schk satisfying certain extra conditions
described in [Ols16, Definition 4.6.1] and [Ols16, Definition 8.1.4]. By [Ols16, Defini-
tion 8.2.1, Example 8.2.3] there are well defined notions of locally noetherian, noetherian
and excellent algebraic stacks.

(2) A morphism of algebraic stacks is a morphism of fibered categories over Schk. If X and
Y are algebraic stacks, then we denote by Mork (X ,Y) the corresponding category of
morphisms.

(3) For every locally noetherian algebraic stack X there exists an abelian monoidal cat-
egory Coh(X) of coherent sheaves on X ([Ols16, Definition 9.1.14]). If X and Y are
locally noetherian algebraic stacks, then we denote by Homr,⊗,≃ (Coh(X),Coh(Y)) the
groupoid of right exact, monoidal functors Coh(X) → Coh(Y) with monoidal natural
isomorphisms as morphisms.

(4) If f ∶ X → Y is a morphism of locally noetherian algebraic stacks, then f induces the
functor f ∗ ∶ Coh(Y) → Coh(X) such that f ∗ ∈ Homr,⊗,≃ (Coh(Y),Coh(X)).

(5) Let G be a smooth algebraic group over k and let X be a k-scheme equipped with an
action of G. We consider Schk as a Grothendieck site with respect to étale topology
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([Ols16, Example 2.1.13]). The quotient fibered category [X/G] with respect to this
topology is an algebraic stack by [Ols16, Example 8.1.12].

(6) In (5) if the k-scheme X is locally noetherian (noetherian, excellent), then [X/G] is a
locally noetherian (noetherian, excellent) by [Ols16, Definition 8.2.1, Example 8.2.3]
and [Ols16, Example 8.1.12].

(7) In (5) if the k-scheme X is locally noetherian, then there exists an equivalence of
monoidal categories Coh ([X/G]) ≃ CohG(X) ([Ols16, Exercise 9.H]) induced by the
pullback along the canonical morphism X → [X/G]. Moreover, this equivalence is
functorial with respect to G-equivariant morphisms. That is if Y is another locally
noetherian k-scheme with action of G and f ∶ X → Y is a G-equivariant morphism,
then f induces a morphism [ f /G] ∶ [X/G] → [Y/G] as in Theorem 7.4.6 and the square

Coh([Y/G]) Coh([X/G])

CohG(Y) CohG(X)

[ f /G]∗

f ∗

≃ ≃

of categories and functors is commutative.

(8) According to [HR19, paragraph after Theorem 1.1 on page 2] an algebraic stack X has
affine stabilizers if the diagonal of X has affine fibers. If G is smooth and affine over k,
then [X/G] has affine stabilizers according to discussion in [Ols16, Example 8.1.12].

Let us state the main result of [HR19].

Theorem 7.5.1 ([HR19, Theorem 1.1]). LetX be a noetherian algebraic stack with affine stabilizers.
For every locally excellent algebraic stack T the functor

Mor (X ,T ) Homr,⊗,≃ (Coh(T ),Coh(X))
f ↦ f ∗

is an equivalence of categories.

Keeping our previous remarks in mind we deduce the following result.

Corollary 7.5.2. Let G be a smooth and affine algebraic group over k and let X, Z be k-schemes
equipped with an action of G. Suppose that Z is noetherian and X is locally of finite type over k.
Then

Mor ([Z/G], [X/G]) Homr,⊗,≃(Coh([X/G]),Coh([Z/G]))
f ↦ f ∗

is an equivalence of categories.

Proof. Note that [Z/G] is a noetherian algebraic stack according to (5) and (6). It has affine
stabilizers according to (8). Similarly by (5) the stack [X/G] is an algebraic stack. Moreover,
it is locally excellent according to the fact that X is locally excellent (it is locally of finite type

105



over k and k is a field) and (6). Then by Theorem 7.5.1 we derive that the functor in the
statement is an equivalence of categories.

Remark 7.5.3. Let Spec k be a point equipped with the trivial action of a smooth and affine
group G. Then (7) together with Example 3.12.9 imply that Coh([Spec k/G]) can be identified
with the category Repf(G) of finite dimensional representations of G.

Corollary 7.5.4. Let G be a geometrically integral, affine algebraic group over k and let X, Z be k-
schemes equipped with an action of G. Suppose that Z is noetherian and X is locally of finite type over
k. We denote by p∗X ∶ Repf(G) → CohG(X) and p∗Z ∶ Repf(G) → CohG(Z) the functors induced
by G-equivariant morphisms pX ∶ X → Spec k and pZ ∶ Z → Spec k, respectively (see Remark 7.5.3).
Then the square

MorG (Z, X) Homr,⊗,≃(CohG(X),CohG(Z))

⋆ Homr,⊗,≃(Repf(G),CohG(Z))

f ↦ f ∗

⋆ ↦ p∗Z

Homr,⊗,≃(p∗X , 1CohG(Z))

of groupoids and their functors, which is commutative up to canonical natural isomorphism given by
f ∗ ⋅ p∗X ≃ p∗Z for every G-equivariant morphism f ∶ Z → X, is a 2-cartesian square.

Proof. G is smooth as it is geometrically integral algebraic group. Since in étale topology
every representable presheaf is a sheaf, Theorem 7.4.6 shows that the square

MorG (Z, X) Mor([Z/G], [X/G])

⋆ Mor([Z/G], BG)

f ↦ [ f /G]

⋆ ↦ prZ,BG

Mor(1[Z/G], prX,BG)

is a 2-cartesian square. Next Corollary 7.5.2 and Remark 7.4.3 imply that the square

MorG (Z, X) Homr,⊗,≃(Coh([X/G]),Coh([Z/G]))

⋆ Homr,⊗,≃(Coh([Spec k/G]),Coh([Z/G]))

f ↦ [ f /G]∗

⋆ ↦ [pZ/G]∗

Homr,⊗,≃([pX/G]∗, 1Coh([Z/G]))

is 2-cartesian. Next (7) combined with Remarks 7.5.3 and 7.4.3 show that
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MorG (Z, X) Homr,⊗,≃(CohG(X),CohG(Z))

⋆ Homr,⊗,≃(Repf(G),CohG(Z))

f ↦ f ∗

⋆ ↦ p∗Z

Homr,⊗,≃(p∗X , 1CohG(Z))

is 2-cartesian.

Finally we are ready to state a consequence of Tannakian formalism and Theorem 6.6.1 that
is essential to our proof of existence of Białynicki-Birula decomposition.

Theorem 7.5.5. Let M be a Kempf monoid with the group G of units. Consider a noetherian, locally
linear M-scheme Z and let X be a scheme locally of finite type over k equipped with an action of G.
Denote by {Zn}n∈N the formal M-scheme Ẑ (Example 6.3.2). Then the canonical map of sets

MorG(Z, X) → lim
n∈N

MorG(Zn, X)

is bijective.

Proof. Theorem 6.6.1, Definition 6.3.6 and Remark 7.4.4 imply that CohG(Z) is a 2-limit of
the telescope

... CohG(Zn+1) CohG(Zn) ... CohG(Z2) CohG(Z1) CohG(Z0)

and this 2-limit has a 2-categorical universal property, which implies that

Homr,⊗,≃(CohG(X),CohG(Z)) = lim
n∈N

Homr,⊗,≃(CohG(X),CohG(Zn))

and
Homr,⊗,≃(Repf(G),CohG(Z) = lim

n∈N
Homr,⊗,≃(Repf(G),CohG(Zn))

where lim stands for 2-limit. By Corollary 7.5.4 we have a 2-cartesian square

MorG (Z, X) Homr,⊗,≃(CohG(X),CohG(Z))

⋆ Homr,⊗,≃(Repf(G),CohG(Z))

f ↦ f ∗

⋆ ↦ p∗Z

Homr,⊗,≃(p∗X , 1CohG(Z))

and for each n ∈ N the square
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MorG (Zn, X) Homr,⊗,≃(CohG(X),CohG(Zn))

⋆ Homr,⊗,≃(Repf(G),CohG(Zn))

f ↦ f ∗

⋆ ↦ p∗Zn

Homr,⊗,≃(p∗X , 1CohG(Zn))

is also 2-cartesian. Moreover, there are morphisms of these squares induced by closed G-
equivariant immersions Zn ↪ Z for n ∈ N. Since 2-limits commute with each other as their
one-dimensional cousins, we derive that 2-limit of the sequence of 2-cartesian squares

MorG (Zn, X) Homr,⊗,≃(CohG(X),CohG(Zn))

⋆ Homr,⊗,≃(Repf(G),CohG(Zn))

f ↦ f ∗

⋆ ↦ p∗Zn

Homr,⊗,≃(p∗X , 1CohG(Zn))

is the 2-cartesian square

MorG (Z, X) Homr,⊗,≃(CohG(X),CohG(Z))

⋆ Homr,⊗,≃(Repf(G),CohG(Z))

f ↦ f ∗

⋆ ↦ p∗Z

Homr,⊗,≃(p∗X , 1CohG(Z))

Thus the canonical functor

MorG(Z, X) → lim
n∈N

MorG(Zn, X)

is an equivalence of categories. Since the categories on both sides are discrete (are sets), we
derive that this functor is actually a bijective map.

The result above is also a consequence of [AHR20, Proposition 5.19] combined with Theo-
rem 6.6.1. Actually the proof presented above is essentially the original proof of [AHR20,
Proposition 5.19]. We present it for self-containment of this work.

7.6 Białynicki-Birula functors

In this section we fix a group k-scheme G. Let M be a monoid k-scheme with zero o such
that G is its group of units.

Definition 7.6.1. Let X be a k-scheme equipped with an action of G. For every k-scheme Y
(considered as G-scheme with the trivial G-action) we define

DX(Y) = {γ ∶ M ×k Y → X ∣γ is G-equivariant}
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This gives gives rise to a subpresheaf DX of Mork (M ×k (−), X) ∶ Schop
k → Set. We call it the

Białynicki-Birula functor of X.

Fact 7.6.2. Let X be a scheme equipped with an action of G. Then DX is a Zariski sheaf.

Proof. Mork (M ×k (−), X) is a Zariski sheaf and if we glue G-equivariant morphisms, then
the result is G-equivariant. This shows that DX is a Zariski subsheaf of Mork (M ×k (−), X).

Remark 7.6.3. Let X be a k-scheme equipped with an action of G. Then there are canonical
morphisms of functors

DX X

XG

iX

rXsX

which we define now. For this let γ ∈ DX(Y) for some k-scheme Y and we denote by q ∶ Y →
Spec k the unique morphism. We define

iX(γ) = γ∣{e}×kY = γ ⋅ ⟨e ⋅ q, 1Y⟩

and
rX(γ) = γ∣{o}×kY = γ ⋅ ⟨o ⋅ q, 1Y⟩

where e ∶ Spec k → M is the unit of M and o ∶ Spec k → M is the zero. Next if f ∶ Y → X is a
morphism in XG(Y), then we define

sX( f ) = f ⋅ prY

where prY ∶ M ×k Y → Y is the projection. Finally note that rX ⋅ sX = 1XG .

Remark 7.6.4. Let X be a k-scheme equipped with an action of G. Then M acts on DX.
Indeed, fix k-scheme Y, γ ∈ DX(Y) and m ∈ M(Y). Then we define the product

mγ = γ ⋅ ⟨m, 1Y⟩

and this determines an action of M on DX. Moreover, with respect to this action iX is G-
equivariant and rX, sX are M-equivariant (XG is equipped with the trivial action of M).

Remark 7.6.5. Let X, Y be k-schemes equipped with actions of G and let f ∶ X → Y be a
G-equivariant morphism, then there exists a morphism of functors D f ∶ DX → DY given by

D f (γ) = f ⋅ γ

for every element γ of the functor DX. Moreover, D f preserves the action of M described in
Remark 7.6.4 above.
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Let X be a k-scheme equipped with an action of G. It is useful to discuss subsheaves of DX
defined by closed G-stable subschemes of X.

Theorem 7.6.6. Let X be a k-scheme equipped with an action of the affine group k-scheme G. Suppose
that G is open and schematically dense in an affine monoid k-scheme M. If j ∶ Z ↪ X is a closed G-
stable subscheme of X, then the square

DZ DX

Z X

Dj

j

iZ iX

is cartesian in the category of presheaves on Schk.

Proof. The fact that the square is commutative follows by examination of definitions in Re-
marks 7.6.3 and 7.6.5. Pick a k-scheme Y, f ∶ Y → Z and γ ∈ DX(Y) such that j ⋅ f = iX(γ).
This is depicted in the diagram

γ

f j ⋅ f = γ∣{e}×kYj

iX

Our goal is to show that there exists a unique G-equivariant morphism η ∶ M ×k Y → Z such
that Dj(η) = γ and iZ(η) = f . This is depicted by the diagram

η γ = j ⋅ η

f = η∣{e}×kY

Dj

rU

It suffices to prove that γ factors through j. First note that the assumption γ∣{e}×kY = j ⋅ f
implies that

γ∣G×kY = j ⋅ aZ ⋅ (1G ×k f )

where aZ ∶ G ×k Z → Z is the action. This implies that γ∣G×kY factors through j. Consider
scheme-theoretic preimage γ−1(Z). Then γ−1(Z) is a closed G-stable (as an inverse image
of a G-stable closed subscheme under the G-equivariant morphism) subscheme of M ×k Y,
which contains G ×k Y. Since G is open, schematically dense in M and k is a field, we derive
that G ×k Y is open and schematically dense in M ×k Y. Thus γ−1(Z) = M ×k Y and hence γ
factors through j.

In order to prove any interesting results in the spirit of Theorem 7.6.6 which concerns open
G-stable subschemes, we need to assume that M is a Kempf monoid.
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Theorem 7.6.7. Let X be a k-scheme equipped with an action of the group G of units of a Kempf
monoid M. If j ∶ U ↪ X is an open G-stable subscheme of X, then the square

DU DX

UG XG

Dj

jG

rU rX

is cartesian in the category of presheaves on Schk.

Proof. The fact that the square is commutative follows by examination of definitions in Re-
marks 7.6.3 and 7.6.5. Pick a k-scheme Y, f ∈ UG(Y) and γ ∈ DX(Y) such that jG( f ) = rX(γ).
This is depicted in the diagram

γ

f j ⋅ f = γ∣{o}×kY
jG

rX

Our goal is to show that there exists a unique G-equivariant morphism η ∶ M ×k Y → U such
that Dj(η) = γ and rU(η) = f . This is depicted by the diagram

η γ = j ⋅ η

f = η∣{o}×kY

Dj

rU

For this it suffices to prove that γ factors through j. Consider W = γ−1(U). Note that W is an
open G-stable (as an inverse image of a G-stable open subscheme under the G-equivariant
morphism) subscheme of M ×k Y, which contains {o} ×k Y. Theorem 5.5.8 asserts that for
every geometric point y of Y we have Wy = Mk(y), where Wy is the fiber over y of the projec-
tion M ×k Y → Y restricted to W. Since W is an open subscheme of M ×k Y, this implies that
W = M ×k Y and hence γ factors through j.

As we shall see below both theorems are extremely useful properties of Białynicki-Birula
functors.

7.7 Formal Białynicki-Birula functors

We introduce a formal version of the Białynicki-Birula functor, which enables us to apply
formal geometry. We fix a group k-scheme G. Let M be a monoid k-scheme with zero o such
that G is its group of units.
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Definition 7.7.1. For every n ∈ N let Mn ↪ M be an n-th infinitesimal neighborhood of o in
M. Let X be a k-scheme equipped with an action of G. For every k-scheme Y (considered as
a G-scheme with the trivial G-action) we define

D̂X(Y) = {{γn ∶ Mn ×k Y → X}n∈N ∣ ∀n∈N γn is G-equivariant and γn+1∣Mn×kY = γn}

This gives gives rise to a functor D̂X. We call it the formal Białynicki-Birula functor of X.

Remark 7.7.2. Let X, Y be k-schemes equipped with actions of G and let f ∶ X → Y be a
G-equivariant morphism, then there exists a morphism of functors D̂ f ∶ D̂X → D̂Y given by

D̂ f ({γn}n∈N) = { f ⋅ γn}n∈N

for every element γ of the functor D̂X.

Remark 7.7.3. Let X be a k-scheme equipped with an action of G. Then there exists a canon-
ical morphism of functors DX → D̂X given by

γ ↦ {γ∣Mn×kY}n∈N

for every γ ∈ DX(Y) and every k-scheme Y.

Remark 7.7.4. Let X be a k-scheme equipped with an action of G. We define a morphism
r̂X ∶ D̂X → XG by formula

D̂X(Y) ∋ {γn}n∈N ↦ γ0 ∈ XG(Y)

for every k-scheme Y. This morphism fits into a commutative triangle

DX D̂X

XG

rX r̂X

where the horizontal morphism is described in Remark 7.7.3.

The next result is analogous to Theorem 7.6.7, although its proof is much simpler.

Proposition 7.7.5. Let X be a k-scheme equipped with an action of the group G. If j ∶ U ↪ X is an
open G-stable subscheme of X, then the square

D̂U D̂X

UG XG

Dj

jG

r̂U r̂X

is cartesian in the category of presheaves on Schk.
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Proof. The fact that the square is commutative follows by examination of definitions in
Remark 7.7.2. Pick a k-scheme Y, f ∈ UG(Y) and {γn}n∈N ∈ D̂X(Y) such that jG( f ) =
r̂X({γn}n∈N)). This is depicted in the diagram

{γn}n∈N

f j ⋅ f = γ0
jG

r̂X

Our goal is to show that there exists a unique family of G-equivariant morphism ηn ∶ Mn ×k
Y → U for n ∈ N such that D̂j({ηn}n∈N) = {γn}n∈N and r̂U({ηn}n∈N) = f . This is depicted by
the diagram

{ηn}n∈N {γn}n∈N = {j ⋅ ηn}n∈N

f = η0

Dj

rU

For this it suffices to prove that γn factors through j for every n ∈ N. Note that all maps
{γn}n∈N are equal set-theoretically and γ0 = j ⋅ f factors through j. Thus γn factors through j
for every n ∈ N.

Theorem 7.7.6. Let G be a group k-scheme and M be a Kempf monoid having G as a group of units.
Suppose that X is a k-scheme equipped with an action of G. Then the canonical morphism DX → D̂X
is a monomorphism of presheaves.

For the proof it is useful to make the following observation (essentially the same observation
was made in the proof of Theorem 7.6.6).

Lemma 7.7.6.1. Let X be a k-scheme equipped with an action of a monoid k-scheme M. Suppose
that j ∶ Z ↪ X is a closed G-equivariant immersion, where G is a group of units of M. If G is
schematically dense in M, then the action of G on Z extends to the action of M in such a way that j
becomes M-equivariant.

Proof of the lemma. Let a ∶ M ×k X → X be the action of M on X. Since j is G-equivariant, we
derive that G ×k Z ⊆ a−1(Z). Moreover, G ×k Z is open and schematically dense in M ×k Z.
Hence M ×k Z ⊆ a−1(Z) and thus a∣M×kZ factors through j ∶ Z ↪ X.

Proof of Theorem 7.7.6. Let Y be a k-scheme and let γ, η ∶ M ×k Y → X be G-equivariant mor-
phisms. Suppose that γ∣Mn×kY = η∣Mn×kY for every n ∈ N. Consider the kernel (equalizer)
j ∶ E ↪ M ×k Y of the pair (γ, η). Then E admits an action of G such that j is G-equivariant
locally closed immersion and Mn ×k Y ⊆ E for every n ∈ N. Fix a point y in Y. Let My and Ey
be fibers of the projection pr ∶ M ×k Y → Y and pr ⋅ j, respectively. Then Ey ⊆ My is a locally
closed Gy-equivariant subscheme, where Gy = G×k Spec k(y). Since My = M×k Spec k(y) is a
Kempf monoid over k(y) with group of units Gy and moreover, Ey contains all infinitesimal
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neighborhoods of the zero in My, we deduce by Theorem 5.5.8 that Ey = My. This implies
that a locally closed immersion j ∶ E ↪ M ×k Y is bijective. Hence it is a closed immersion.
Now Lemma 7.7.6.1 implies that E is a locally linear M-scheme and j is M-equivariant. Note
that j induces an isomorphism Ê ≃ M ×k Y

⋀

of formal M-schemes. Hence according to Corol-
lary 6.5.6 we infer that j is an isomorphism. This proves that γ = η. Therefore, the map

DX(Y) → D̂X(Y)

is injective. As Y is arbitrary we infer that the canonical morphismDX → D̂X of Remark 7.7.3
is a monomorphism of presheaves.

7.8 Representability of Białynicki-Birula functor for Kempf monoids

In this section we prove that Białynicki-Birula functors are representable under mild as-
sumptions (Theorem A). We start with proving representability for affine G-schemes.

Theorem 7.8.1. Let M be an affine monoid k-scheme with open and schematically dense group of
units G. Suppose that X is an affine k-scheme equipped with an ation of G. ThenDX is representable
and iX is a closed immersion of k-schemes.

Proof. Since X is an affine k-scheme, the action of G on X corresponds to the coaction of k[G]
by c ∶ Γ(X,OX) → k[G] ⊗k Γ(X,OX). Note that c is a morphism of k-algebras. By Theorem
3.8.6 there exists a universal morphism q ∶ Γ(X,OX) ↠ W of G-representations into an M-
representation. Let I ⊆ Γ(X,OX) be the ideal generated by ker(q). Fix f in I. Then

f =
n
∑
i=1

gi ⋅ fi

where gi ∈ k[G] and fi ∈ ker(q) for 1 ≤ i ≤ n. Then

c( f ) = c(
n
∑
i=1

gi ⋅ fi) =
n
∑
i=1

c(gi) ⋅ c( fi) ⊆ (k[G] ⊗k Γ(X,OX)) ⋅ (k[G] ⊗k ker(q)) ⊆ k[G] ⊗k I

Thus c(I) ⊆ k[G] ⊗k I and hence I is a G-representation. Consider

X+ = V(I) = Spec Γ(X,OX)/I X

Since Γ(X,OX)/I is the quotient G-representation of W, we deduce by Theorem 3.8.4 that
Γ(X,OX)/I is an M-representation. Hence X+ is a k-scheme equipped with an action of M
and X+ ↪ X is G-equivariant. Suppose now that Y is an affine k-scheme. Then M ×k Y is an
M-scheme with respect to the left-hand side action of M and hence Γ(M ×k Y,OM×kY) is an
M-representation. Now Theorem 3.8.6 implies that if γ ∶ M ×k Y → X is a G-equivariant
morphism, then a morphism γ# ∶ Γ(X,OX) → Γ(M ×k Y,OM ×k Y) of k-algebras and G-
representations factors through q ∶ Γ(X,OX) ↠W and thus by construction of I we have

114



Γ(X,OX) Γ(X,OX)/I Γ(M ×k Y,OM ×k Y)
f

γ#

for some morphism f of k-algebras and G-representations. Since both Γ(X,OX)/I and Γ(M×k
Y,OM ×k Y) are M-representations and by Theorem 3.8.4 the subcategory Rep(M) ⊆ Rep(G)
is full, we derive that f is a morphism of M-representations. Thus f corresponds to a unique
M-equivariant morphism η ∶ M ×k Y → X+ such that the diagram

X+

M ×k Y X
γ

η

is commutative. Now this result can be extended to an arbitrary k-scheme Y, since Mork(M×k
(−), X+) is a Zariski sheaf and a morphism that is M-equivariant locally on the domain is M-
equivariant. Thus for every k-scheme Y we have a bijection

DX(Y) ∋ γ ↦ η ∈ {M-equivariant morphisms M ×k Y → X+}

Since we also have a bijection

{M-equivariant morphisms M ×k Y → X+} ∋ η ↦ η∣{e}×kX+ ∈ Mork(Y, X+)

and both this bijections are natural, we derive that DX is represented by X+ and moreover,
iX ∶ DX → X is a closed immersion X+ ↪ X.

Corollary 7.8.2. Let G be a group k-scheme and let M be a Kempf monoid having G as a group of
units. Suppose that X is a k-scheme equipped with an action of G such that there exists a family U of
open affine G-stable open subschemes of X such that functors {UG}U∈U form an open cover of XG.
Then DX is representable.

Proof. Note that G is affine group k-scheme as a unit group of an affine monoid M (Proposi-
tion 3.2.6). Moreover, M is a Kempf monoid and hence G is open and schematically dense
in M by Corollary 5.2.5. By Theorem 7.8.1 each DU is representable by a k-scheme. On the
other hand by Theorem 7.6.7 for each U ∈ U we have a cartesian square

DU DX

UG XG

rU rX
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of functors. This implies that {DU ↪ DX}U∈U is an open cover ofDX as a pullback of an open
cover {UG ↪ XG}U∈U . Hence Fact 7.6.2 and Theorem 2.4.9 imply that DX is representable.

Corollary 7.8.3. Let G be group k-scheme and let M be a Kempf monoid having G as a group of
units. Suppose that X is a locally linear G-scheme. Then DX is representable.

Proof. This is a consequence of Corollary 7.8.2. Indeed, X admits a cover U by open G-stable
affine subschemes. Then {UG}U∈U is an open cover of XG.

Now we prove representability of formal Białynicki-Birula functor for arbitrary schemes
with action of G and by Tannakian formalism we obtain general result concerning repre-
sentability of Białynicki-Birula functor.

Theorem 7.8.4. Let G be a group k-scheme and let M be a Kempf monoid having G as a group of
units. Suppose that X is a k-scheme equipped with an action of G. Then the following results hold.

(1) D̂X is representable. Moreover, the morphism r̂X ∶ D̂X → XG is affine and if X is locally
noetherian, then it is of finite type.

(2) If X is of finite type over k, then the canonical morphism DX → D̂X is an isomorphism of
functors.

Proof. Consider the ideal I in OX corresponding to a closed subscheme XG of X. We define
Xn as a closed subscheme of X determined by the ideal In and we denote by In the ideal of
X0 in Xn. Then X̂ = {Xn}n∈N is a formal G-scheme. Moreover, by Corollary 6.3.8 each Xn is
a locally linear G-scheme and hence by Corollary 7.8.3 there exists a k-scheme Zn equipped
with M-action that represents DXn . Note that the square

Zn Zn+1

Xn Xn+1

in in+1

is cartesian according to Theorem 7.6.6 for each n ∈ N. This implies that the subscheme of
zeros of an ideal i−1

n+1In
n+1 ⋅ OZn+1 in Zn+1 is Zn. Since the square

Z0 Zn+1

X0 Xn+1

i0 in+1
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is cartesian as a combination of cartesian squares, we derive that the vanishing closed sub-
scheme of i−1

n+1In+1 ⋅ OZn+1 in Zn+1 is Z0. Note that

(in+1In+1 ⋅ OZn+1)
n = i−1

n+1In
n+1OZn+1

Thus Z = {Zn}n∈N is a formal scheme. According to Remarks 7.6.4 and 7.6.5, we derive that
it is a formal M-scheme. Now the commutative diagram

Z0 ... Zn Zn+1 ...

X0 ... Xn Xn+1 ... X

i0 in in+1

shows that {in}n∈N is a morphism of formal G-schemes. Since M is a Kempf monoid, Corol-
lary 6.5.6 implies that there exists a locally linear M-scheme Z such that Ẑ = {Zn}n∈N. Here
our argument ramifies. We first provide the proof of (1) and later deal with (2).

(1) Consider a k-scheme Y and a family {γn ∶ Mn ×k Y → X}n∈N ∈ D̂X(Y). Note that
γn uniquely factors through Xn and hence there exists a unique M-equivariant mor-
phism δn ∶ Mn ×k Y → Zn. Hence the family {δn}n∈N is a morphism

M0 ×k Y ... Mn ×k Y Mn+1 ×k Y ...

Z0 ... Zn Zn+1 ...

δ0 δn δn+1

of a formal M-schemes. According to Corollary 6.5.6 there exists a unique M-equivariant
morphism δ ∶ M×k Y → Z such that δ∣Mn×kY induces δn ∶ Mn ×k Y → Zn for every n ∈ N.
Note that δ as an M-equivariant morphism is uniquely determined by a morphism
η = δ∣{e}×kY of k-schemes, where e ∶ Spec k →M is the unit of M. This proves that

D̂X(Y) ∋ {γn ∶ Mn ×k Y → X}n∈N ↦ η ∈ Mork(Y, Z)

is a bijection natural in Y. Thus D̂X is represented by Z. Note that r̂X ∶ D̂X → XG is
represented by the canonical retraction rZ ∶ Z → ZM = XG (Proposition 5.5.9). Hence
r̂X is affine (Proposition 5.5.9). If X is locally noetherian, then Ẑ = Z is a locally
noetherian formal M-scheme and hence by Theorem 6.5.7 we derive that r̂X is of finite
type.

(2) Assume that X is of finite type over k. Then Z is noetherian formal M-scheme and
Theorem 6.5.7 implies that the canonical retraction (Proposition 5.5.9) r ∶ Z → ZM =
XG is of finite type. Since XG is closed subscheme of X, we derive that Z is of finite
type over k. Theorem 7.5.5 implies that there exists a unique G-equivariant morphism
f ∶ Z → X such that for every n ∈ N we have a commutative square
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Zn Z

Xn X

in f

Consider a k-scheme Y and a family {γn ∶ Mn ×k Y → X}n∈N ∈ D̂X(Y). Then γn factors
through the composition of in ∶ Zn → Xn and the closed immersion Xn ↪ X for every
n ∈ N. Thus a family {γn}n∈N determines and is determined by a unique family
{δn ∶ Mn ×k Y → Zn}n∈N of M-equivariant morphisms. As above Corollary 6.5.6 shows
that there is an M-equivariant morphism δ ∶ M ×k Y → Z such that δ∣Mn×kY induces δn
for every n ∈ N. Define γ = f ⋅ δ. Then γ ∶ M ×k Y → X is a G-equivariant morphism
and γ∣Mn×kY = γn for every n ∈ N. This shows that the map

DX(Y) → D̂X(Y)

is surjective for every k-scheme Y. By Theorem 7.7.6 we derive that it is injective and
hence the canonical morphism DX → D̂X is an isomorphism.

It is easy to strengthen (2) in Theorem 7.8.4.

Corollary 7.8.5. Let G be a group k-scheme and M be a Kempf monoid having G as a group of
units. Suppose that X is a scheme locally of finite type over k equipped with an action of G. Then the
canonical morphism DX → D̂X is an isomorphism. In particular, DX is representable and rX ∶ DX →
XG is affine and of finite type.

Proof. Let a ∶ G×k X → X be an action of G on X. Consider an open affine subscheme V of X.
Then a induces a surjective morphism aV ∶ G ×k V ↠ G ⋅V (Corollary 4.4.4). Since G ×k V is
affine k-scheme, it is quasi-compact. The image of a quasi-compact topological space under
a continuous map is quasi-compact. Thus G-stable hull G ⋅V of V is quasi-compact. Since X
is locally of finite type over k, we derive that G ⋅V is of finite type over k. This proves that
X admits an open cover U by an open G-stable subschemes of finite type over k. By Remark
7.7.4 we have a commutative triangle

DX D̂X

XG

rX r̂X

and according to Theorem 7.6.7 and Proposition 7.7.5 for every U in U base change of the
triangle above along open immersion UG ↪ XG yields a triangle
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DU D̂U

UG

rU r̂U

in which the horizontal morphism DU → D̂U is an isomorphism by (2) in Theorem 7.8.4
and the fact that U is a G-scheme of finite type over k. Since D̂X is representable by (1) in
Theorem 7.8.4, it follows thatDX is representable and the canonical morphismDX → D̂X is an
isomorphism of functors. Thus rX and r̂X are isomorphic and this completes the proof.

7.9 Smoothness of Białynicki-Birula decomposition

The result below, which is interesting in its own sake, plays crucial role in our proof of the
smoothness of Białynicki-Birula decomposition.

Theorem 7.9.1. Let M be a Kempf monoid over k and let f ∶ X → Y be an M-equivariant morphism
between locally linear M-schemes. Assume that Y is locally noetherian. Suppose that the following
assertions hold.

(1) The morphism f M ∶ XM → YM is an isomorphism.

(2) The commutative square

XM X

YM Y

f M f

is cartesian.

(3) XM is contained in the étale locus of f .

Then f is an isomorphism.

Proof. Let { fn ∶ Xn → Yn}n∈N be the morphism X̂ → Ŷ induced by f on formal M-schemes.
By Corollary 6.5.6 it suffices to prove that { fn}n∈N is an isomorphism. For this it suffices to
prove that each fn is an isomorphism. Since f is étale at each point of X0 = XM, it is also étale
on some open neighborhood U of X0. Étale morphisms are open and hence f (U) = V is an
open subscheme of Y. Let f ′ ∶ U → V be the restriction of f . Note that Xn ⊆ U and Yn ⊆ V for
every n ∈ N. The assumption (2) implies that each square

Xn X

Yn Y

fn f
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is cartesian. Hence also the square

Xn U

Yn V

fn f ′

is cartesian for every n ∈ N. Thus fn is étale for every n ∈ N. Finally, by assumption (1)
morphism f0 is an isomorphism. Now fix n ∈ N and consider a diagram

Y0 X0 Xn

Yn Yn

f−1
0

fn

1Yn

sn

Since fn is étale, there exists a unique morphism sn ∶ Yn → Xn that makes the diagram com-
mutative. Thus fn admits a section sn. Section of every morphism of schemes is locally
closed and hence sn is locally closed. Moreover, fn induces the isomorphism f0 and hence it
is a homeomorphism on underlying topological spaces. Thus sn is a homeomorphism. This
implies that sn is a surjective closed immersion of k-schemes. For every point x in Xn the étale
morphism fn induces an isomorphism f̂ #

n ∶ ÔXn,x → OYn, fn(x)
⋀

. Clearly ŝ#
n ∶ OYn, fn(x)
⋀

→ÔXn,x
is its inverse and thus sn induces isomorphism on completions of local rings. Note that for
every y ∈ Yn we have a commutative diagram

ÔYn,y OXn,sn(y)
⋀

OYn,y OXn,sn(y)

ŝ#
n

s#
n

in which vertical arrows are injective due to the fact that Xn and Yn are locally noetherian
(this follows from the assumption that Y is locally noetherian). Since ŝ#

n is an isomorphism,
we infer that s#

n is injective. Therefore, it is both injective and surjective (sn is a closed immer-
sion). Thus s#

n ∶ OYn,y → OXn,sn(y) is an isomorphism. This holds for every y ∈ Yn. Hence sn is
an isomorphism of k-schemes and this implies that fn is an isomorphism of k-schemes.

In the remaining part of this section we fix a Kempf monoid M over k with the group G of
units. We also fix a k-scheme X with an action of G. If DX is representable, then we denote
by X+ a unique (up to an isomorphism) k-scheme that represents it. According to Remark
7.6.3 we have a commutative diagram
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X+ X

XG

iX

rXsX

where rX ⋅ sX = 1XG .

Corollary 7.9.2. Assume that X is locally of finite type over k. Then X+ exists and rX ∶ X+ → XG is
an affine morphism of finite type.

Proof. This follows from Corollary 7.8.5.

Theorem 7.9.3. Let X be a scheme locally of finite type over k. Suppose that x is a point of XG such
that the morphism rX ∶ X+ → XG is smooth at sX(x). Then there exist an open neighborhood V of x
in XG and an isomorphism φ ∶ r−1

X (V) →An
V of k-schemes such that the triangle

r−1
X (V) An

V

V

φ

the restriction of rX prV

is commutative, where prV is the projection. Moreover, if G is linearly reductive, then one can choose
φ to be M-equivariant with respect to some action of M on An

V .

For the proof we need the following result.

Lemma 7.9.3.1. Consider a commutative diagram of k-schemes

V

X1 X2

V

s1 s2

f

r1 r2

in which r1 ⋅ s1 = 1V , r2 ⋅ s2 = 1V and s1, s2 are closed immersions. Suppose that r1 is smooth at each
point in the image of s1. Let I1 and I2 be ideals corresponding to s1, s2 respectively. Assume that f
induces an isomorphism I2/I2

2 ≃ I1/I2
1 of quasi-coherent sheaves on V. Then f is étale at each point

in the image of s1.

Proof of the lemma. Let si(V) be the closed subscheme of Xi given by the image of si for i = 1, 2.
Note that f is a morphism of schemes over V as r1 = r2 ⋅ f and hence we may consider
the cotangent morphism f ∗ΩX2/V → ΩX1/V associated with f . Since we have the canonical
identification of s∗1 f ∗ with s∗2 , we derive that there exists a diagram
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0 I2/I2
2 s∗2 ΩX2/V Ωs2(V)/V 0

s∗1 f ∗ΩX2/V

0 I1/I2
1 s∗1 ΩX1/V Ωs1(V)/V 0

induced by f #

=

s∗1 (cotangent map of f)

in which rows are conormal sequences corresponding to closed immersions s2 and s1, respec-
tively. Note that for i = 1, 2 these conormal sequences are exact due to the fact that ri ⋅ si = 1V
is a smooth morphism ([Gro67, Proposition 17.2.5]). Moreover, Ωsi(V)/V = 0 for i = 1, 2 again
by the fact that ri ⋅ si = 1V . Thus the diagram above reduces to the square

I2/I2
2 s∗2 ΩX2/V

s∗1 f ∗ΩX2/V

I1/I2
1 s∗1 ΩX1/V

≃

≃

induced by f #

=

s∗1 (cotangent map of f)

in which both horizontal arrows are isomorphisms. We claim that this square is commuta-
tive. For this fix an open affine subscheme U of X2 and a regular function a ∈ OX2(U). Then
the application of top horizontal arrow and then two consecutive rightmost vertical arrows
in the square to a modI2

2(U) ∈ I2(U)/I2(U)2 is depicted in the following diagram.

a modI2
2(U) s∗2 dX2/V(a)

s∗1 f ∗dX2/V(a)

s∗1 dX1/V( f #(a))

Here dX2/V(a) is the relative differential over V of a function a and dX1/V( f #(a)) is a relative
differential over V of a function f #(a). On the other hand the application of leftmost vertical
arrow and then bottom horizontal arrow in the square to a modI2

2(U) ∈ I2(U)/I2(U)2 is
depicted in the following diagram.
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a modI2
2(U)

f #(a)modI2
1(U) s∗1 dX1/V( f #(a))

Hence results are equal and the square is commutative. The leftmost vertical arrow in the
square is a morphism I2/I2

2 → I1/I2
1 induced by f and hence it is an isomorphism by as-

sumption. Since (as we noticed) both horizontal sides of the square are isomorphism, we
derive that all morphisms in the square are isomorphisms. Therefore, pullback s∗1 f ∗ΩX2/V →
s∗1 ΩX1/V of the cotangent map f ∗ΩX2/V → s∗1 ΩX1/V along s1 is an isomorphism. Since r1 is
smooth at each point in the image of s1, we derive by [Gro67, Corollaire 17.11.2] that f is
étale at every point of s1(V).

Proof of Theorem 7.9.3. Since rX is smooth at sX(x) and its smooth locus is open, there exists
an open affine neighborhood V of x in XG such that rX is smooth at every point of sX(V). By
Corollary 7.9.2 morphism r−1

X (V) → V is affine and of finite type. Hence it corresponds to a
morphism of k-algebras A → B of finite type, where A = Γ(V,OXG) and B = Γ(r−1

X (V),OX+).
In these terms sX restricted to a morphism V → r−1

X (V) corresponds to a surjection B ↠ A.
We denote its kernel by b. Since rX ⋅ sX restricted to V is 1V , the conormal sequence

0 b/b2 A⊗B ΩB/A ΩA/A 0

is split exact ([Gro67, Proposition 17.2.5]). Moreover, rX is smooth at every point in sX(V).
Thus A ⊗B ΩB/A is a finitely generated projective A-module. Hence b/b2 is projective and
finitely generated A-module. Shrinking V we may assume that b/b2 is a free A-module of
rank n ∈ N. Consider central closed subtorus T of G such that the zero of M is contained
in the toric monoid T. Clearly the action of M on r−1

X (V) induces an action of T. Moreover,
by Proposition 5.5.9 we derive r−1

X (V)T = V = r−1
X (V)M. Hence B and b are representations

of T. Hence also b/b2 is a representation of T. Since T is linearly reductive, we deduce
by Corollary 3.9.14 that Rep(T) is semisimple. Thus the canonical surjection b ↠ b/b2 of
representations of T admits a right inverse s ∶ b/b2 → b in category Rep(T). Let Sym(b/b2)
be the symmetric A-algebra of b/b2. Then s induces a morphism Sym(b/b2) → B of A-
algebras. Since b/b2 is a representation of T, b/b2 is a free A-module of rank n and s is
a morphism of T-representations, we derive that An

V = Spec Sym(b/b2) admits an action
of T and the morphism φ ∶ r−1

X (V) → An
V induced by s is T-equivariant. Note that the

isotypic component of b/b2 corresponding to the trivial representation of T is zero and hence
this holds for the direct sum Sym(b/b2)>0 of all positive symmetric powers. Therefore, the

canonical monomorphism (An
V)T ↪An

V is isomorphic to the zero section V ↪An
V of An

V as

the trivial vector bundle over V. Thus φT is an isomorphism and moreover, the square
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V r−1
X (V)

V An
V

φT φ

in which the top horizontal arrow is the restriction of sX is commutative. By construction
we derive that φ induces an isomorphism between b/b2 and I/I2, where I is the ideal of
the zero section V ↪ An

V . Since r−1
X (V) → V is smooth at each point of sX(V), we derive

by Lemma 7.9.3.1 that φ is étale at every point in sX(V). Thus T-equivariant morphism
φ ∶ r−1

X (V) → An
V between locally linear T-schemes satisfies the assumptions of Theorem

7.9.1. Since An
V is locally noetherian (V is of finite type over k), Theorem 7.9.1 implies that φ

is an isomorphism.
If G is linearly reductive, then Rep(M) is semisimple by Corollary 3.9.14. Thus s ∶ b/b2 → b
can be chosen in category Rep(M). Since φ is induced by s, it becomes M-equivariant with
respect to some action of M on An

V .

7.10 Summary of other results concerning Białynicki-Birula decom-
position

In this section we give an overview of other results and comment on proofs and techniques
used so far. Our goal is to present a complete survey of the current state of knowledge con-
cerning generalized Białynicki-Birula decompositions.
We start by discussing Kempf monoids. As we noted in Corollary 5.5.4 each reductive
monoid with zero is a Kempf monoid. We learned from Brion that this important result
is due to Rittatore [Rit98]. Concerning representability and other properties of Białynicki-
Birula functors we state here the following theorem, which shows that at least for normal
linearly reductive monoids (this class contains all normal reductive monoids in characteris-
tic zero) one can always restrict attention to linearly monoids with zero.

Theorem 7.10.1 ([JS19, Theorem 3.22]). Let M be a linearly reductive and normal monoid over k
with the group of units G. Let F be the intersection of all closed G-stable subschemes of M. Assume
that F admits a k-point (this is automatically satisfied if k is perfect). Let N be the stabilizer of a
k-point in F and let N be its closure in M. Then the following assertions hold.

(1) The group N is linearly reductive and geometrically connected.

(2) N is a linearly reductive monoid with zero and with N as the group of units. It is normal.

(3) If X is a k-scheme with action of G, then the map

DM
X (Y) ∋ γ ↦ γN×kX ∈ DN

X (Y)

defined for every k-scheme Y is an isomorphism of presheaves; whereDM
X ,DN

X denote Białynicki-
Birula functors for M and N, respectively.

When it comes to representability of Białynicki-Birula functors, we have one comment con-
cerning our proof of Theorem 7.8.4. Note that our proof relies on the beautiful Theorem 7.5.1
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due to Hall and Rydh. Inspired by this results and by earlier results of Brandenburg and
Chirvasitu [BC14] Jelisiejew and the author obtain the following:

Theorem 7.10.2 ([JS20, Theorem A.1]). Let X be a quasi-compact quasi-separated G-scheme. Let Y
be a G-scheme. Let F ∶QcohG(X) →QcohG(Y) be a cocontinuous tensor functor and let α ∶ F ⋅ p∗X →
p∗Y be an isomorphism of functors Rep(G) → QcohG(Y). Then there exists a unique G-equivariant
morphism f ∶Y → X such that (F, α) ≃ ( f ∗, α f ).

Using this (unpublished) theorem one can strengthen Theorem 7.8.4 by replacing the as-
sumption that X is of finite type over k with the assumption that it is noetherian. This propa-
gates to Corollary 7.8.5, which then holds under the assumption that X is locally noetherian.
For linearly reductive monoids M with zero Jelisiejew and the author were able to prove
representability of Białynicki-Birula for algebraic spaces locally of finite type.

Theorem 7.10.3 ([JS19, Theorem 6.17]). Let M be a linearly reductive monoid with zero and with
the group of units G. Let X be an algebraic space locally of finite type over k equipped with an action of
G. Then the canonical morphismDX → D̂X is an isomorphism and both presheaves are representable.

Now we discuss smoothness of the decomposition. Theorem 7.9.3 is an interesting result, al-
though the assumption that rX is smooth at sX(x) might be problematic to verify in practice.
In linearly reductive case there is a remedy for this.

Theorem 7.10.4 ([JS19, Corollary 7.3]). Let M be a linearly reductive monoid with zero and with
the group of units G. Let X be a smooth variety with action of G. Then X+, XG are smooth and rX
is a smooth morphism at the image of sX.

The theorem above can be obtained by rather elementary means. In the article [JS19] it was
a consequence of a far more general result.

Theorem 7.10.5 ([JS19, Theorem 7.1]). Let M be a linearly reductive monoid with zero and with
G as its group of units. Assume that X is a G-scheme locally of finite type over k and let f ∶ X → Y
be a G-equivariant smooth morphism. Then D f ∶ DX → DY is smooth.

Crucial step in the proof to this general result depends on the following theorem presented
in the beautiful work of Alper, Hall and Rydh.

Theorem 7.10.6 ([AHR20, Theorem 2.6]). Let X be a quasi-separated algebraic space, locally of
finite type over k, and with an action of an affine algebraic group G over k. Let x be a k-point of X
with linearly reductive stabilizer Gx. Then there exists an affine scheme W with an action of G and
a G-equivariant étale neighborhood W → X of x.

Finally in the classical Białynicki-Birula decomposition morphism iX ∶ X+ → X is a locally
closed immersion on each irreducible component. The following result addresses this fea-
ture.

Theorem 7.10.7 ([JS19, Proposition 7.6]). Let X be a geometrically normal variety over k and let
M be a reductive monoid with zero. Suppose that Z is an irreducible component of X+ considered
as a closed subscheme with reduced structure. Then the restriction iX ∣Z ∶ Z → X is a locally closed
immersion.
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Note that the proof of this theorem in [JS19] is based on a result due to Trautman [Tra92],
which holds for general reductive group. Thus the theorem above holds for reductive monoids.
Finally we give an application of generalized Białynicki-Birula decompositions discussed in
this work.

Example 7.10.8. Let X be a smooth, quasi-projective scheme over k. Suppose that Gm acts on
X with finitely many fixed points. Then Theorems 7.9.3 and 7.10.4 imply that X+ (defined for
Gm ⊆ A1

k) is a disjoint sum of finitely many affine spaces (often called cells) corresponding to
fixed points of the action. This also follows from classical Białynicki-Birula result.
Assume now that X is equipped with two commuting actions of Gm. Denote them by ai
for i = 1, 2. Suppose that a1 and a2 admit the same fixed point locus F ⊆ X which consists
of finitely many points. Let x0 be a point of F. Next suppose that Wi for i = 1, 2 is a cell
over x0 of the Białynicki-Birula decomposition (defined for Gm ⊆ A1

k) with respect to ai.
Then as we noted above Wi is isomorphic (as k-scheme) with an affine space. According
to Theorem 7.10.7 we may view Wi as a locally closed subscheme of X. We are going to
prove that the intersection W1 ∩W2 is also isomorphic to an affine space. For this consider
the action a ∶ Gm ×k Gm → X induced by a1, a2 and apply the Białynicki-Birula decomposition
with respect to the monoid A2

k which contains (in a canonical way) Gm ×k Gm as its group of
units. Let W be a cell of this Białynicki-Birula decomposition corresponding to fixed point
x0 of Gm ×k Gm. Similarly as above, from Theorems 7.9.3 and 7.10.4 we deduce that W is an
affine space. Therefore, it suffices to prove that

W = W1 ∩W2

By definition W represents the functor

D1(Y) = {γ ∶ A2 ×k Y → X ∣γ is Gm ×k Gm-equivariant and γ ({(0, 0)} ×k Y) = {x0}}

Moreover note that W1 ∩W2 = W1 ×X W2 and hence W1 ∩W2 represents the functor

D2(Y) = {γ ∶ (A2 ∖ {(0, 0)}) ×k Y → X ∣ γ is Gm ×k Gm-equivariant and
γ({(0, 1)} ×k Y) = {x0} = γ({(1, 0)} ×k Y) }

Consider γ ∈ D2(Y). Let U be an open affine and Gm ×k Gm-stable neighborhood of x0 (it
exists according to the classical result of Sumihiro [CLS11, Theorem 3.1.7]). Since γ({0} ×k
A1

k ×k Y) = {x0} = γ(A1
k ×k {0}×k Y), we deduce as in the proof of Theorem 7.6.7 that γ factors

through U. Next we have a cocartesian (pushout) square

Gm ×k Gm A1
k ×k Gm

Gm ×k A1
k A2

k

in the category of affine k-schemes with actions of Gm×k Gm. Hence we can extend γ uniquely
to a morphism γ ∶ A2

k ×k Y → U. Thus there exists the unique morphism γ̃ ∶ A2
k ×k Y → X

which extends γ. This proves that functors D1 and D2 are isomorphic over X. Thus W =
W1 ∩W2.
Note that the assumption that the cells W1 and W2 correspond to the same fixed point is
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essential. Indeed, consider the projective line P1
k with two actions of Gm given by formulas

a1(t, [x0, x1]) = [tx0, x1] and a2(t, [x0, x1]) = [t−1x0, x1]. These two actions commute and their
schemes of fixed points coincide. Then the cells for a1 are

A1
k ≃ {[x0, x1] ∈ P1

k ∣ x1 ≠ 0}, {[1, 0]}

and the cells for a2 are
A1

k ≃ {[x0, x1] ∈ P1
k ∣ x0 ≠ 0}, {[0, 1]}

The intersection of an a1-cell {[x0, x1] ∈ P1
k ∣ x1 ≠ 0} corresponding to [0, 1] and an a2-cell

{[x0, x1] ∈ P1
k ∣ x0 ≠ 0} corresponding to [1, 0] is isomorphic to Gm as a k-scheme. Hence it is

not an affine space.
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