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Chapter 1

Introduction

The book [of Nature] is written in the mathematical language, (...)

Galileo, 1610

This famous statement, quoted after Kline (1990), is often rephrased as Mathematics is the
language of Science. I like to think about Mathematical Statistics in a similar vein – as the
language of Experimental Science. Whether it is sociological research, drug development or
search for elemental particles, results are established by analysing data based on principals
of Mathematical Statistics. This language, or at least its basics, are understood by the
whole scientific community and its development, together with a precise formulation of
its limitations, is one of many ways in which Mathematics can contribute to the better
understanding of the world around us.

As many languages do, Mathematical Statistics has its dialects, by which I mean different
approaches to performing statistical inference. Among the most important there are two
– classical and Bayesian. They differ in the treatment of the parameter, which guides the
probabilistic mechanism in which data is assumed to be generated. In classical statistics
this parameter is consider to be unknown, but fixed by Nature, whereas Bayesian paradigm
assigns to it a probability distribution called the prior distribution, which is then updated to
the posterior distribution. It is a basis for further inference, like the predictive distribution.

The posterior distribution is obtained by the usage of the Bayes Theorem. Even since high
school the students should be familiar with its discrete form:

P(Bi |A) =
P(A |Bi)P(Bi)∑
j P(A |Bj)P(Bj)

. (1.1)

Thomas Bayes (1702–1761) established a related formula in a special case. He stated and
solved the following problem. ‘Given the number of times in which an unknown event has
happened and failed: Required the chance that the probability of its happening in a single
trial lies somewhere between any two degrees of probability that can be named’. This
comes from his posthumously published paper An essay towards solving a problem in the
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Doctrine of Chances (Bayes, 1763). In a modern, Bayesian language we could translate
it in a following way: compute the posterior probability of the parameter of the Bernoulli
distribution given an independent sample from that distribution. The prior distribution is
implicitly assumed to be uniform on [0, 1]. Hence he solved the continuous form of (1.1)
in this case, as Fienberg et al. (2006) points out. The Bayesian approach is therefore
appropriate nomenclature, since Bayes was the first to apply this form of reasoning to this
class of problems. It was put on a solid mathematical footing by Pierre Simon Laplace
(1749–1827).

The classical theory of statistics started with the works of Ronald Fisher (1890–1962).
By introducing the notion of a parameter, Fisher revolutionised the way the scientific
world thought about inferring from the data. At the time, Bayesian inference was not
an appropriate tool as it was applicable to a very restricted modelling situations in which
the computation of the posterior distribution is doable. This changed with the advent
of high-performance computer hardware and sophisticated Markov Chain Monte Carlo
methods, that allow to approximately sample from the posterior distribution. The latter
were theoretically known to the statisticians since the 1970’s, but they started to use them
when it could be carried out on personal computers (Hjort et al., 2010).

This computational breakthrough also gave the incentive for the development of nonpara-
metric Bayes. The term nonparametric is a bit misleading, as the parameter space is still
present. This time though it is infinite-dimensional, contrary to the traditional, Bayesian
setting. Examples of such parameter spaces include function spaces or spaces of spaces of
probability distributions. The beginning of this non-parametric chapter in the Bayesian his-
tory is often identified with two seminal papers: Ferguson (1973) and Doksum (1974). The
latter introduces neutral-to-the-right processes and the former describes a true celebrity in
the non-parametric Bayesian world, namely the Dirichlet process. It is a random measure
such that its finite dimensional distributions follow the Dirichlet distribution. Soon after
this, Antoniak (1974) suggested how to use this construction to create a model where data
does not necessarily come from a discrete distribution.

As easily anticipated, with great parameter space come great challenges and difficulties.
Rather quickly after admitting infinitely dimensional spaces into the Bayesian world come
examples in which the Bayesian inference does not behave as desired. Standard Bayesian
procedures can be proved to be consistent, i.e. as the amount of information produced
by a specific parameter value increases, the posterior distribution gets concentrated on
this parameter value. One of the fundamental results in this regard for finite-dimensional
parameter space is Doob’s theorem, where the consistency is established using the theory
of martingales. It is not always the case with the non-parametric methods. First coun-
terexamples in infinitely dimensional spaces were given in Diaconis and Freedman (1986a)
and Diaconis and Freedman (1986b).

These examples of inconsistency were rather theoretically involved and did not relate to
any situation that could be encountered by a practitioner. However, since that time math-
ematicians constructed examples of non-parametric Bayesian inconsistency in situations
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much closer to the hearts of a practice-oriented statisticians. One of them is presented in
Miller and Harrison (2014) and concerns the inconsistency of the posterior for the number
of clusters in non-parameteric Bayesian Mixture Models. These are introduced in more
detail in Section 1.2, for now let us just mention that those models can be used for the
inference about the clustering structure and in the aforementioned article the authors show
a large class of situations in which the posterior probability of the number of clusters does
not concentrate on the number of clusters in the mixture, from which the data was sampled
from (Miller and Harrison, 2014, Corollary 1).

The practitioners often need some of summaries of the posterior distribution. In the need
of a specific estimate of a parameter, the Bayesians turn to the decision theory, according
to which they should choose the parameter value that minimises the posterior expected
value of the risk function; the latter is chosen by the investigator. If the 0-1 loss function
is chosen and the parameter space is discrete, the Bayes estimator is simply the mode
of the posterior distribution, also called the maximum a posteriori probability estimator
(MAP). This approach can be fruitfully applied even when the posterior probability is not
continuous (in which case in general the MAP estimator is not a Bayesian estimator). One
of the most prominent examples is the LASSO method for choosing the right coefficients
in linear regression (Tibshirani, 1996); this estimator can be treated as the MAP estimator
when the prior on the linear coefficients is the Laplace distribution.

In the discussion to their article, Miller and Harrison point out that the behaviour of
the MAP (or other Bayesian) estimator is outside the scope of their analysis. This was
the starting point of my research, aimed at investigation of the properties of this MAP
clustering. In the course of my research I slightly altered the question – instead of the
consistency analysis of the MAP estimator for the number of clusters I begun to investi-
gate the number of clusters of the MAP estimator for the whole clustering structure, i.e.
partition of data insto clusters. There were two reasons for that: firstly it seemed more
computationally tractable and secondly it felt at least as important from the practitioner’s
point of view, since in the end of most of the cluster analysis examples we are interested in
the clustering itself, not only the true number of groups. I believe that the results obtained
in that research contribute, even if in a very restricted setting, to the better understanding
of the properties of Bayesian Nonparametric methods for cluster analysis and hopefully
they constitute an ε-brick to the pile of mathematical statistics.

1.1 Organisation of the Dissertation

In the remaining part of Chapter 1 we introduce the main mathematical notions, necessary
for the rest of the dissertation, such as Bayesian Mixture Models (BMMs), the conjugate
exponential model within clusters, the Maximum A Posteriori clustering. Chapter 2 con-
sists of two important sections. In Section 2.1 we prove that in the conjugate exponential
BMM the clusters of the MAP partition must be separated by the contour surfaces of linear
functionals of the sufficient statistics. In other words, if we use the sufficients statistics
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instead of the original data, the clusters become linearly separated, i.e. their convex hulls
are disjoint. In this sense the clusters in the MAP partition can be thought as being defined
by a decent partition of the observation space (where ‘being defined’ means that the data
placed in the same chunk of the observation space are clustered together and ‘decent‘ means
that the chunks are counterimages of convex polytopes under the sufficient statistic). Of
course, the partition of the observation space that defines the MAP clustering can change
as the number of observations increases. Nevertheless it seems interesting to analyse the
posterior probability of clusterings that are defined by a fixed partition of the observation
space (we call such clusterings induced clusterings). In Section 2.2 we derive the formula
for the asymptotic limit (up to a constant) of the logarithm of the posterior probability
of an induced partition in conjugate exponential BMM, when the data is an independent
sample from some probability distribution P , called the input distribution. Interestingly,
the limit does not depend on the prior probability on mixture weights, provided the latter
has a full support on an infinitely dimensional simplex. The aforementioned asymptotic
limit is a function of the partition of the observation space – we call it the ∆P function
(depending also on the specification of the exponential conjugate model), since it is a differ-
ence of two functions that increase their values whenever two chunks of the partitions are
merged. The maximisation of this function represents a trade-off between two tendencies:
fine partitions adjust well to the data but at the same time they are penalized by the prior.
A natural idea there is that the MAP clusterings of the independent sample from P are
related to the partitions of the observation space that maximise the ∆P function. This
line of research was pursued in Rajkowski (2019), where the positive result was proved for
a very specific example of an conjugate exponential BMM, namely the fixed covariance
Gaussian BMM (we later call a Normal-Normal BMM). These findings are presented in
details in Chapter 3. The fixed covariance model clearly imposes severe limitations on
the covariance structure within clusters, rarely met in the real world situations. Models
that differences between the covariance structures of the clusters should perform better
when clusters do have different covariance structures. We attempt to deal with this in the
Normal-Inverse-Wishart model, where we put a prior probability (Inverse-Wishart) on the
within cluster covariance structure as well. At the same time, we observed some undesired
behaviour of the ∆P function for this model. For example when the input distribution is
uniform on a segment, in which case every partition into subsegments gives the same ∆P

score. This is why in Chapter 4 an adjusted Normal-Inverse-Wishart model is considered,
where the concentration parameter of the prior on the covariance structure is increasing
linearly with the number of observations. It turns out that with this model, we can rewrite
some of the results from Chapter 3. Finally, in this case as a limit we obtain a family of
∆P functions that depend on the linear coefficient in the concentration parameter. We can
translate this ∆P functions to their empirical counterparts and hence obtain a convenient
family of score function the measure the performance of data clustering. This can be used
for scoring candidates for partitions proposed by some more ad-hoc methods, like the k-
means. This approach is investigated in numerical simulations, presented towards the end
of Chapter 4.
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1.2 General Framework for BMMs

In this section we introduce the main object of our analysis, which is the Bayesian Mixture
Model. Before stating the precise definition, we give an informal introduction. Amixture of
probability distributions is their convex combination, e.g. 1

2N (0, 1)+ 1
3N (−1, 1)+ 1

6N (1, 1)

is a mixture of three normal distributions. In mixture models we assume that the data
comes from an unknown mixture of distributions. The uncertainty is twofold: we do not
know neither the mixture frequencies nor the component distributions. However, usually
we assume that the latter come from some parametrised family of distributions, but we do
not know the underlying parameters. The approach of this dissertation is Bayesian. We
put a prior distribution both on the mixture frequencies (which is a probability distribution
on the multi-dimensional simplex) and independent and identical priors on the parameters
of the component distribution. Below we show a simple example of a Bayesian Mixture
Model, which is a modification of the mixture of three normal distributions stated earlier
that accounts for the uncertainty. Here Dir(·) means the Dirichlet distribution.

p = (p1, p2, p3) ∼ Dir(1, 1, 1)

θ = (θ1, θ2, θ3)
iid∼ N (0, 10)

x = (x1, . . . , xn) |p,θ iid∼ p1N (θ1, 1) + p2N (θ2, 1) + p3N (θ3, 1).

(1.2)

It is probably a good moment to point out some notational convention. A careful (and,
perhaps, a little pedantic) reader would note that the first two lines of (1.2) do not specify
the joint distribution of p,θ, only their marginal distributions. However it is popular in
Bayesian literature to implicitly assume that the distribution of every new variable is spec-
ified conditionally on the variables previously introduced and if some of those are omitted
in the description, this simply implies a relevant conditional independence statement. In
case of (1.2) we implicitly assume that p and θ are independent.

We are now ready to state the formal definition of the Bayesian Mixture Model in full
generality. Let Θ ⊂ Rp be the parameter space for a single cluster distributions and
{Gθ : θ ∈ Θ} be a family of probability measures on the observation space Rd and assume
that Gθ has a density gθ with respect to the Lebesgue measure. Those are the component
measures, responsible for randomness within clusters. Consider a prior distribution ϑ on
Θ (we will call it the base measure, defining how the parameters of the components are
spread). Let π be a prior probability distribution on the m-dimensional simplex 4m =

{p = (pi)
m
i=1 :

∑m
i=1 pi = 1 and pi ≥ 0 for i ≤ m} (where m ∈ N ∪ {∞}). The observations

x1, . . . , xn ∈ Rd are modelled by

p = (pi)
m
i=1 ∼ π

θ = (θi)
m
i=1

iid∼ ϑ

x = (x1, . . . , xn) |p,θ iid∼
∑m

i=1 piGθi .

(1.3)

This is a Bayesian Mixture Model. If m < ∞ we call the model finite, otherwise it is
(obviously) infinite. In this dissertation we concentrate on the infinite case.

9



The focus of this dissertation is applying Bayesian Mixture Models to detect clusters within
data. Indeed, formula (1.3) can be used to model data clustering; clusters are defined by
deciding which distribution Gθi generated a given data point. To avoid confusion in the
cluster assignment, from now on we assume that the base measure is nonatomic. In order
to formally define the clusters, we need to rewrite (1.3) as

p = (pi)
m
i=1 ∼ π

θ = (θi)
m
i=1

iid∼ ϑ

φ = (φ1, . . . , φn) |p,θ iid∼
∑m

i=1 piδθi
xi |p,θ,φ ∼ Gφi for all i ≤ n.

(1.4)

Then two observations with indices i, j ≤ n are in the same cluster if and only if φi =

φj . In this way the distribution π on the m-dimensional simplex generates a probability
distribution Pπ,n on the partitions of the index set {1, . . . , n} into at most m subsets. We
will use the notation [n] := {1, . . . , n}, which is a popular convention in the literature.
Note that the distribution of φ is invariant to permutation of coordinates which implies
that for any partition I of [n] the probability weight Pπ,n(I) depends only on the block
sizes of I. Following Pitman (2002, Section 2.1) we call such distributions on the space of
partitions of [n] exchangeable.

Let Pπ,n be the exchangeable probability distribution on the space of partitions of [n],
generated by π. We can formulate (1.3) as follows: firstly we generate the partition of
observations into clusters, and then for each cluster we sample actual observations from
the relevant marginal distribution on the data. To formalise this description succinctly, we
introduce some additional notation. If x = (xi)

n
i=1 is a sequence and I ⊆ [n], then xI =

(xi)i∈I is a subsequence of x consisting of the terms at coordinates belonging to I. The
distribution Gϑ,k (k ∈ N) is the marginal distribution of the k-tuple whose coordinates are,
conditionally on θ ∼ ϑ, independently and identically distributed by Gθ. More specifically,
for θ ∼ ϑ, k ∈ N and u = (u1, . . . , uk) | θ

iid∼ Gθ, we denote by Gϑ,k the marginal distribution
of u. Its density is given by

gϑ,k(u1, . . . , uk) :=

∫
Θ

k∏
i=1

gθ(ui)dϑ(θ). (1.5)

Now, (1.3) is equivalent to

I ∼ Pπ,n
xI := (xi)i∈I | I ∼ Gϑ,|I| for all I ∈ I

(1.6)

We stress the fact that the (implicitly) independent sampling on ‘the lowest’ level of (1.6)
relates to the independence between clusters (conditioned on the random partition); within
one cluster the observations are (marginally) dependent. Using the within cluster condi-
tional independence, we can write the density of x conditionally on I:

gϑ,n(x | I) :=
∏
I∈I

gϑ,|I|(xI). (1.7)
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Finally, for further convenience, let

Q(x, I) = Pπ,n(I) · gϑ,n(x | I) (1.8)

be the joint density of the partition and the observation. By Bayes rule, the expression in
(1.8) is also proportional to the posterior probability Pπ,n(I |x) of the partition I given
the observation x.

The expression in Formula (1.8) is proportional to the posterior distribution on the space
of partitions. Therefore, the maximiser of this expression gives the Maximum A Posteriori
clustering and this is what we use as an estimator of the clustering structure.

Such a simplification does lead to loss of information, so does any point summary of the
posterior distribution.

Definition 1.1. TheMaximum A Posteriori (MAP) partition of [n] given x = (x1, x2, . . . , xn)

in a given Bayesian Mixture Model of the form (1.6) is any partition Î of [n] that max-
imises Q(x, I) given by (1.8). In other words, the set of the MAP partitions is given by
argmaxI Q(x, I).

As far as the applications are concerned, it may seem more convenient to speak about
the MAP partition of the data set {x1, . . . , xn}, not the set of indices [n]. However, the
transition from the latter to the former is straightforward, and with our formulation (1.6)
of the Bayesian Mixture Model the definition above is more appropriate.

1.3 The stick-breaking construction

In this dissertation we are concerned about the situation in which the number of mixture
components is not bounded a priori. This is implied by the assumption that the distribution
π of the components’ probability weights has a full support on the infinitely dimensional
simplex 4∞. One of the most popular constructions of such probability distributions is
the stick-breaking construction. It requires a sequence of independent random variables
Vi ∈ (0, 1), i ∈ N that serve as the stick-breaking proportions. For the first probability
p1 we break the segment [0, 1] in proportion V1 : (1 − V1) and take the left part. For the
second probability we take the remaining part and break it in proportion V2 : (1−V2) and
take the left part, and so on. Formally this relationship is described by

p1 = V1,

pk = Vk

k−1∏
i=1

(1− Vi) for k > 1,
(1.9)

and we let π be the distribution of p = (p1, p2, . . .). Note that for this definition to be
valid, we need to ensure that

∑∞
i=1 pi

a.s.
= 1. Since

k∑
i=1

pi = 1−
k∏
i=1

(1− Vi) (1.10)
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the condition
∑∞

i=1 pi
a.s.
= 1 is equivalent to

∞∑
i=1

log(1− Vi)
a.s.
= −∞. (1.11)

A prominent example of random variables V1, V2, . . . that satisfy (1.11) is a family of
independent random variables such that

Vi ∼ Beta(1− β, α+ iβ) for some α > 0 and 0 ≤ β < 1. (1.12)

The proof that (1.11) is satisfied in this case is straightforward, but rather technical and
hence often omitted in the literature. For the completeness of this dissertation we include
it in the Appendix, see Lemma A.1 for details.

With (1.12), the distribution of the random measure
∑∞

i=1 piδθi , where θi |p
iid∼ ϑ, is the cel-

ebrated Pitman-Yor process (Pitman and Yor, 1997), which is a generalisation of the even
more celebrated Dirichlet Process (Ferguson, 1973) – the latter being obtained by taking
β = 0 in (1.11). The idea of the Dirichlet Process and the proof of its existence is consid-
ered the beginning of the Bayesian Nonparametrics and hence it seems only appropriate
to devote a whole subsection for explaining the fundamentals of these notions.

1.3.1 The Dirichlet and the Pitman-Yor processes

The definition of the Dirichlet Process given in Ferguson (1973) is rather abstract. The
Dirichlet Process on X with parameters α > 0 (real number) and ν (a probability distribu-
tion on X ) is defined as a probability measure on the space of all probability distributions
on X such that if H is a random probability on X that is distributed according to this
measure then for any finite measurable partition (A1, . . . , Ak) of X , the random vector(
H(A1), . . . ,H(Ak)

)
has the Dirichlet distribution with parameters αν(A1), . . . , αν(Ak).

The existence of such random measure can be established by an application of the Kol-
mogorov extension theorem, which is not completely straightforward and requires attention
to some measure-theoretical details; see Hjort et al. (2010, Chapter 2.2). If H is distributed
according to the Dirichlet Process with parameters α and ν, we write H ∼ DP(α, ν).

Much more constructive proof of existence was given by Blackwell et al. (1973), where
the Dirichlet Process is obtained using the Generalised Polya Urn Scheme. The scheme
works as follows: firstly we sample X1 ∼ ν and then we let Xn+1 |X1, . . . Xn ∼ νn

α+n ,
where νn = αν +

∑n
i=1 δXi (δx being the Dirac measure concentrated at x; note that

α + n is the normalising constant of νn). In Blackwell et al. (1973), the Dirichlet Process
is proved to be the distribution of the almost sure limit in distribution of νn

α+n . Also a

reverse statement is shown: if H ∼ DP(α, ν) and X1, . . . , Xn |H
iid∼ H, then X1 ∼ ν and

Xn+1 |X1, . . . Xn ∼ νn
α+n . This nice conditional structure of independent samples from a

realisation of the Dirichlet Process makes various Markov Chain Monte Carlo algorithms
efficient, which enables an inference from this conceptually complicated model – this is one
of the reasons of its popularity.
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Sethuraman (1994) formally proved that the distribution of a random measure
∑∞

i=1 piδθi ,
where pi are defined by (1.9) and (1.12) with β = 0 and θi

iid∼ ϑ, is the Dirichlet Process
with parameters α and ϑ. Hence (1.4) can be rewritten as

H ∼ DP(α, ϑ)

φ = (φ1, . . . , φn) |H iid∼ H

xi |p,θ,φ ∼ Gφi independently for all i ≤ n.
(1.13)

This is the Dirichlet Process mixture model, introduced by Antoniak (1974). The result of
Blackwell et al. (1973) allows us to specify the induced probability Pπ,n on the space of
partitions of [n]. This is so called Chinese Restaurant Process, the name coined in Aldous
(1985). The construction goes as follows: imagine that elements of [n] are the clients
waiting in front of a Chinese Restaurant, in which there is potentially infinitely many
tables. Customer 1 chooses any table she wants. Customer 2 chooses another table with
probability proportional to α or joins Customer 1 with probability proportional to 1; thus
those probabilities are α

α+1 and 1
α+1 respectively. In general, the n-th customer chooses an

empty table with probability proportional to α or joins a nonempty table with probability
proportional to the number of other customers sitting there. This description is readily
transformed into the following probability function on the space of all partitions of [n]:

Pπ,n(I) =
α|I|

α(n)

∏
I∈I

(|I| − 1)!, (1.14)

where α(n) = α(α+ 1) . . . (α+ n− 1). The Chinese Restaurant Process can be generalised
in the following way: the n-th customer chooses a table used by ni > 0 customers with
probability proportional to ni − β and she chooses the new table with probability propor-
tional to α + Kβ, where K is the number of already occupied tables. This translates to
the following probability weights of partitions of [n]:

Pπ,n(I) =
α(|I|↗β)

α(n)

∏
I∈I

(1− β)(|I|−1), (1.15)

where α(n↗d) = α(α + d) . . . (α + (n − 1)d). In the seminal paper by Pitman and Yor
(1997) it was proved that (1.15) corresponds to the stick-breaking construction with ‘stick-
breaking proportions’ given by (1.12). A nice and elementary proof of this relationship can
be also found in Lawless and Arbel (2019).

1.4 Conjugate exponential families

In Section 1.3 we dealt with the possible prior distribution on the mixture weights in
Bayesian Mixture Models. In this section we briefly present a natural and computationally
convenient candidates for distributions ν and Gθ (the base and the component measures),
namely conjugate exponential families.

We start with a short reminder of the exponential families. This fundamental class of
statistical models was developed independently by Darmois (1935), Koopman (1936) and
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Pitman (1936) (a genealogical note: the last one being the father of Jim Pitman, respon-
sible, together with Mihael Perman and Marc Yor, for the Pitman–Yor process, described
in Section 1.3.1). Let X ⊆ Rd be the observation space and let Θ ⊆ Rp be the parameter
space. A family of distributions {Gθ : θ ∈ Θ} on X is called p-dimensional exponential fam-
ily if for every θ the probability Gθ has the following density with respect to the Lebesgue
measure:

gθ(x) = h(x) · exp
{
T (x)>η(θ)− B(θ)

}
, (1.16)

where T : X → Rp is a p-dimensional statistic (called natural sufficient statistic) and
h : X → R, B : Θ → R and η : Θ → Rp are some functions. Here we treat elements of
Rk, k = 1, 2, . . . as column vectors and for v ∈ Rk by v> we denote its transpose, so that
T (x)>η(θ) in (1.16) is simply the standard scalar product of T (x) and η(θ) in Rp. Clearly
B in (1.16) is implicitly defined as

B(θ) = log

∫
X
h(x) · exp

{
T (x)>η(θ)

}
dx (1.17)

so that (1.16) is indeed a density function and integrates to 1.

If we let the model be indexed by η = η(θ) rather than θ we obtain the canonical p-
parameter exponential family generated by T and h, in which the density of G′η = Gθ is
given by

g′η(x) = h(x) · exp
{
T (x)>η − A(η)

}
, (1.18)

where
A(η) = log

∫
X
h(x) · exp

{
T (x)>η

}
dx (1.19)

is called the log-partition function. In this case the set

E = {η ∈ Rp : A(η) <∞} (1.20)

is called the natural parameter space. If the natural parameter space is a nonempty open
subset of Rp, we say that the canonical exponential family is regular. Moreover we will use
the term regular for an exponential family {gθ : θ ∈ Θ} (where gθ is given by (1.16)) when
the corresponding canonical form is regular and θ : Θ → E is a bijection. We point out a
minor abuse of notation, as θ and η are treated both as parameters and transformations
between parameter spaces. This convention is standard in the literature and rarely leads
to misunderstandings.

The following result is a standard property of exponential families.

Theorem 1.2 (parts (a) and (b) of Theorem 1.6.3 in Bickel and Doksum (2015)). Con-
sider a canonical exponential family, where the densities are given by (1.18), with the
corresponding log-partition function A(η) and the natural parameter space E. Then

(a) E is a convex set,

(b) A : E → R is a convex function.
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Note that we can treat (1.19) as a definition of a function on Rp with values in R =

R ∪ {−∞,∞}. In this way A remains a convex function in the sense presented in Rock-
afellar (1970) (Section 4). Assuming the terminology from Rockafellar (1970), the natural
parameter space (defined by (1.20)) becomes an essential domain of the log-partition func-
tion A.

In this dissertation we will usually rely on the strict convexity of the log-partition function
A. Another standard result in the theory of exponential families is that the strict convexity
is implied by the identifiability of the canonical parameter, i.e. the fact that different
canonical parameters define different distributions (Bickel and Doksum, 2015, Theorem
1.6.4).

Now we introduce a conjugate exponential family, i.e. an exponential family of distributions
such that if we consider a Bayesian model in which the prior distribution on the parameter θ
comes from this family and the likelihood is given by (1.16), then the posterior distribution
θ |x also belongs to this family.

Suppose that in (1.16) we can write B(θ) as B(θ) = a>B(θ) where a ∈ Rq and B(θ) =

[B1(θ), . . . ,Bq(θ)]
>. Consider a canonical exponential family on Θ, where the densities are

given by

γτ,ζ(θ) := ψ(θ) · exp

{
[η(θ)>,−B(θ)>]

[
τ

ζ

]
− C(τ, ζ)

}
, (1.21)

where τ ∈ Rp and ζ ∈ Rq are the hyperparameters and C(τ, ζ) is the log-partition function,
given by

C(τ, ζ) := log

(∫
Θ
ψ(θ) · exp

{
[η(θ)>,−B(θ)>]

[
τ

ζ

]}
dθ

)
(1.22)

Let Ω be the natural (hyper)parameter space, i.e.

Ω := {(τ, ζ) ∈ Rp × Rq : C(τ, ζ) <∞} (1.23)

(we assume that it is non-empty). It follows that if θ ∼ ϑ, where ϑ has density γτ0,ζ0 for
some (τ0, ζ0) ∈ Ω and x = (x1, . . . , xk) | θ

iid∼ gθ then the joint density of (θ,x) is

γτ0,ζ0(θ)
k∏
i=1

gθ(xi) = ψ(θ)
k∏
i=1

h(xi) · exp

{
[η(θ)>,−B(θ)>]

[
τ0 +

∑k
i=1 T (xi)

ζ0 + ka

]
− C(τ0, ζ0)

}
.

(1.24)
The conditional density of θ |x is proportional to (1.24) as a function of θ. Comparing this
with (1.21) we see that θ |x ∼ γτx,ζk , where τx := τ0 +

∑k
i=1 T (xi) and ζk := ζ0 + ka, i.e.

θ |x ∼ ψ(θ) · exp

{
[η(θ)>,−B(θ)>]

[
τ0 +

∑k
i=1 T (xi)

ζ0 + ka

]
− C

(
τ0 +

k∑
i=1

T (xi), ζ0 + ka
)}

.

(1.25)
As the marginal density of x is the quotient of the joint density of (θ,x) and the conditional
density of θ |x, by dividing (1.24) by (1.25) we get that

x ∼ gϑ,k(x) =
k∏
i=1

h(xi) · exp {C(τx, ζk)− C(τ0, ζ0)} (1.26)
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Note 1.3. This definitions of conjugate exponential family is the multi-dimensional ana-
logue of the definition usually given in standard texts, e.g. Bickel and Doksum, Section
1.6.5, which corresponds to the definition above with q = 1 and a = 1. The multi-
dimensional version is needed in Section 1.4.1 to deal with multivariate normal models.

Convexity assumption. From Theorem 1.2 it follows that the function a>B
(
θ(η)

)
=

B
(
θ(η)

)
= A(η) is a convex function on E . In Section 2.2 we will assume that also

for any (τ0, ζ0) ∈ Ω the function ζ0
>B
(
θ(η)

)
is a convex function on E . (1.27)

We call this assumption a convexity assumption; it is satisfied by all multivariate conjugate
Normal models presented in Section 1.4.1. Moreover, when q = a = 1, the convexity
assumption is equivalent to ζ0 > 0. When ψ(θ) is a constant, this inequality follows from
the definition of Ω. This implication is proved in Diaconis and Ylvisaker, 1979, Theorem
1.

Definition 1.4. Canonical Exponential Family Bayesian Mixture Model is a Bayesian
Mixture Model in which the component density is given by (1.16) and the base density is
(1.21) for some (τ0, ζ0) ∈ Ω.

1.4.1 Example: Conjugate Normal Families

As an example of conjugate exponential family that is commonly used in practice (in the
context of mixture models) we consider Normal Conjugate Families in which the component
distributions Gθ are multivariate Normal. This corresponds to the data being normally
distributed within clusters, which is a rather standard assumption. The cluster location,
i.e. the mean of respective normal distribution, is also assumed to be normally distributed.
Here we consider three possibilities concerning the covariance structure within clusters: it
can be treated as known, unknown or known up to a scaling factor. If it is known, it is
treated as the hyperparameter of the model, and hence the parameter space Θ is just the
space of possible component means, which is Rd, and ϑ is some fixed multivariate Normal
distribution. When the component covariance is unknown, the parameter space becomes
the product of Rd (for mean locations) and the space of d-dimensional positive definite
matrices Sd+ (for covariance structures). The marginal distribution of the covariance pa-
rameter is the Inverse-Wishart distribution. In the case when the components covariance
structure is known up to the scale factor, the marginal distribution of this factor is sim-
ply the Inverse-Gamma distribution. Since some of the results of this dissertation relate
specifically to the Normal mixture model, here we present in detail relevant formulas.

Notation. We use two standard notations to denote the determinant of a square matrix
Λ: det Λ and |Λ|. The latter may seem ambiguous as we also use the symbol | · | to denote
the cardinality of a set and absolute value of a real number. However, the meaning of this
symbol is always clear from the context.
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Notation. To keep the notation precise, we introduce the following convention: if Σ is a
symmetric d×d matrix, then diag(Σ) is the diagonal of Σ, treated as d-dimensional vector,
and low(Σ) is the ‘lower triangular’ part of Σ, treated as a d(d−1)

2 dimensional vector, whose(
(i−1)(i−2)

2 + j
)
-th coordinate is equal to (i, j)-th coefficient of Σ, where i > j. Whenever

this notation occurs it may seem artificial but without it it is difficult to represent relevant
models in the form of exponential families, given by (1.16).

Normal-Normal (NN)

Here the component covariance matrix is assumed to be known a priori; the component
mean is unknown and this is the parameter on which the prior distribution is set, i.e.
θ = µ, Θ = Rd and x |µ ∼ N (µ,Σ0), where Σ0 is known. The base measure is

µ ∼ N (µ0,Ψ0). (1.28)

The hyperparameters are µ0 ∈ Rd and Ψ0,Σ0 ∈ Sd+. This prior is listed in Gelman et al.
(2013) and it is a rather standard example of a conjugate Bayesian family. Clearly

E (V(x |µ)) = Σ0, V(E (x |µ)) = V(µ) = Ψ0. (1.29)

where V(·) is the (conditional) covariance matrix. The conditional densities are given by

x |µ ∼ (2π)−d/2|Σ0|−1/2 exp
{
−1

2(x− µ)>Σ−1
0 (x− µ)

}
µ ∼ (2π)−d/2|Ψ0|−1/2 exp

{
−1

2(µ− µ0)>Ψ−1
0 (µ− µ0)

} (1.30)

The density of x | θ can be expressed as (1.16) by placing

h(x) = (2π)−d/2|Σ0|−1/2 exp

{
−1

2
x>Σ−1

0 x

}
, T (x) = Σ−1

0 x, η(θ) = µ,

B(θ) =
1

2
µ>Σ−1

0 µ

(1.31)

We get the density of µ in (1.30) expressed as (1.21) by placing

a =

[
diag(Σ−1

0 )

low(Σ−1
0 )

]
, B(θ) =

[
1
2diag(µµ>)

low(µµ>)

]
, ζ0 =

[
diag(Ψ−1

0 )

low(Ψ−1
0 )

]
, τ0 = Ψ−1

0 µ0 (1.32)

and
ψ(θ) = (2π)−d/2, C(τ0, ζ0) =

1

2
log |Ψ0|+

1

2
µ0
>Ψ−1

0 µ0. (1.33)

Plugging (1.33) into (1.26) we get that the marginal density of x = (x1, . . . , xk) in the
Normal-Normal model is given by

gNN,k(x) =
|Ψk|1/2

(2π)dk/2|Ψ0|1/2|Σ0|dk/2
exp

{
− 1

2
W (x)

}
, (1.34)

where
Ψk = (Ψ−1

0 + kΣ−1
0 )−1 and (1.35)
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W (x) =
k∑
i=1

(xi − µ0)>Σ−1
0 (xi − µ0)− k2

(
x− µ0

)>Σ−1
0 ΨkΣ

−1
0

(
x− µ0

)
, (1.36)

in which x is the standard notation for the mean vector 1
k

∑k
i=1 xi. The detailed derivation

of (1.34) from (1.26) can be found in Appendix A.1.1.

Regularity. The regularity of the Normal-Normal model is straightforward. It is already
in its canonical form, and the parameter space Θ = Rd clearly satisfies the definition (1.20)
of the natural parameter space.

Convexity assumption. The proof that the convexity assumption (1.27) is satisfied for
the Normal-Normal model is simple. Let us analyse (1.32). The function a>B

(
θ(η)

)
is

convex on E since it is the log partition function. This is true for any Σ0 ∈ Sd+. It is now
clear that the function ζ0

>B
(
θ(η)

)
is convex as well, which follows from taking Σ0 = Ψ0.

Normal-Inverse-Wishart (NIW)

In this case both the mean and the covariance matrix are unknown. The parameter space
is therefore equal to Θ = Rd × Sd+, where Sd+ is the space of all positive definite, d × d
matrices, that can serve as convariance structures. This can be naturally interpreted as an
open subset of Rp, where p = d(d−1)

2 + d. For θ = (µ,Λ) ∈ Θ the component distribution
is x | θ ∼ N (µ,Λ) and the base measure ϑ on (µ,Λ) is defined by the following conditional
structure

Λ ∼ W−1(ν0 + d+ 1, ν0Σ0)

µ |Λ ∼ N (µ0,Λ/κ0),
(1.37)

where W−1 is the Inverse-Wishart distribution. Here the hyperparameters are κ0, ν0 >

0, µ0 ∈ Rd and Σ0 ∈ Sd+. This model is also listed in Gelman et al. (2013) with a
slightly different parametrisation of the Inverse-Wishart distribution, but we made this
modification to obtain

E (V(x |µ,Λ)) = EΛ = Σ0,

V(E (x |µ,Λ)) = V(µ) = EV(µ |Λ) + VE (µ |Λ) = EΛ/κ0 + V(µ0) = Σ0/κ0,
(1.38)

which is consistent with the Normal-Normal model, described earlier. It is also worth
pointing out that the variance of the (i, j)-th conditional covariance is

Var(V(x |µ,Λ)ij) = Var(Λij) =
(ν0 + 2)σ2

ij + ν0σiiσij

(ν0 + 1)(ν0 − 2)
, (1.39)

where σij are the coefficients of Σ0 (for detailed derivation see e.g. Press (2005)). Hence it
is clear that ν0 can be treated as ‘concentration parameter’ and the larger it is, the more
the random covariance structure of the clusters is concentrated around Σ0.
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The conditional densities are given by

x |µ,Λ ∼ (2π)−d/2|Λ|−1/2 exp
{
−1

2(x− µ)>Λ−1(x− µ)
}

µ |Λ ∼ (2π)−d/2κ
d/2
0 |Λ|−1/2 exp

{
−1

2κ0(µ− µ0)>Λ−1(µ− µ0)
}

Λ ∼
(
|ν0Σ0|

2d

) ν0+d+1
2

Γd

(
ν0+d+1

2

)−1
|Λ|−

ν0+2d+2
2 exp

{
−1

2ν0tr(Σ0Λ−1)
} (1.40)

The density of x | θ can be expressed as (1.16) by placing

h(x) = (2π)−d/2, T (x) =

−
1
2diag(xx>)

− low(xx>)

x

 , η(θ) =

diag(Λ−1)

low(Λ−1)

Λ−1µ

 ,
B(θ) =

1

2
log |Λ|+ 1

2
µ>Λ−1µ

(1.41)

where Γd is the multivariate Gamma function given by

Γd(x) = π
d(d−1)

4

d−1∏
i=0

Γ

(
x− i

2

)
. (1.42)

We get (1.21) by placing

a =

[
1

1

]
, B(θ) =

[
1
2 log |Λ|

1
2µ
>Λ−1µ

]
, ζ0 =

[
ν0 + 2d+ 3

κ0

]
, τ0 =

−
1
2diag(ν0Σ0 + κ0µ0µ0

>)

−low(ν0Σ0 + κ0µ0µ0
>)

κ0µ0


(1.43)

and

ψ(θ) = (2π)−d/2, C(τ0, ζ0) = −d
2

log κ0 −
ν0 + d+ 1

2
log
|ν0Σ0|

2d
+ log Γd

(
ν0 + d+ 1

2

)
.

(1.44)

By an application of (1.26) we get that in this case the marginal density of x = (x1, . . . , xk)

is given by

gNIW,k(x) =
|ν0Σ0|(ν0+d+1)/2κ

d/2
0 Γd

(
νk+d+1

2

)
πdk/2κkd/2Γd

(
ν0+d+1

2

) · det
(

Σ(x)
)−(νk+d+1)/2

, (1.45)

where Γd is the multivariate Gamma function and

νk = ν0 + k, κk = κ0 + k and (1.46)

Σ(x) = ν0Σ0 +

k∑
i=1

(xi − x)(xi − x)> +
κ0k

κk
(x− µ0)(x− µ0)>. (1.47)

This formula can be quickly deduced from Murphy (2007, eq. 266). We also give a detailed
derivation of (1.45) from (1.26) in Appendix A.1.2.
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Regularity. Clearly, η : Θ → Rd(d+3)/2 is an injective function. We now show that
η(Θ) = E . Suppose that η0 ∈ E , i.e.∫

X
exp

{
−1

2
(x− µ0)>Λ−1

0 (x− µ0)

}
<∞, (1.48)

where the d-dimensional vector µ0 and d×d symmetric matrix Λ0 are defined by the equality
η0 = [diag(Λ−1

0 )>, low(Λ−1
0 )>,Λ−1

0 µ0
>]>. It is enough to show that Λ0 (equivalently, Λ−1

0 ) is
positive definite. Suppose the contrary, i.e. that there exist v ∈ Rd such that v>Λ−1

0 v ≤ 0.
Let D = v⊥ ∩ B(0d, 1) and let T = {αv + Λ0w : α ∈ R, w ∈ D} be an infinite cylinder.
Then, for any u ∈ T , u = αv + Λ0w:

u>Λ−1
0 u = (αv + Λ0w)>Λ−1

0 (αv + Λ0w) = α2v>Λ−1
0 v + 2αv>w + w>Λ0w ≤ ‖Λ0‖, (1.49)

since v>Λ−1
0 v ≤ 0, v>w = 0 and w>Λ0w ≤ ‖w‖ · ‖Λ0w‖ ≤ ‖Λ0‖. It follows that for the

infinite cylinder µ0 + T , the value of the function under the integral in (1.48) is bounded
from below by exp{−1

2‖Λ0‖}. This clearly contradicts (1.48) and the regularity follows.

Convexity assumption. By Theorem 1.2 the function B
(
θ(η)

)
= a>B

(
θ(η)

)
is a convex

function of η. This does not imply (1.27) in a straightforward way. However, fix any t > 0

and suppose that the component distribution is x | θ ∼ N (µ, tΛ). Then in (1.41) the
formula for B(θ) becomes B′(θ) = d log t

2 + 1
2 log |Λ| + 1

2tµ
>Λ−1µ and we can leave the

formula for η(θ) untouched by applying a relevant modification of T (x), i.e. T ′(x) =

T (x)/t. Again by Theorem 1.2, the function B′
(
θ(η)

)
is convex, and hence the function

η 7→ 1
2 log |Λ(η)| + 1

2tµ(η)>Λ(η)−1µ(η) is convex (since t log d
2 is a constant). This implies

that [1, 1/t]B
(
θ(η)

)
is a convex function. As the choice of t > 0 was arbitrary, we get

(1.27).

Normal-Inverse-Gamma (NIG)

Note that although the Normal-Inverse-Wishart prior gives more flexibility in terms of the
component covariances, it imposes some modelling restriction, namely the component co-
variance matrix Λ and the covariance matrix of the component mean Λ/κ0 are proportional
random matrices. This is the reason for which here we also consider the Normal-Inverse-
Gamma prior. We were not able to find any reference to it in the literature. It is not listed
in Gelman et al. (2013) and in Murphy (2007, Chapter 6) only its 1-dimensional version is
considered (which can be also treated as a one-dimensional version of the Normal-Inverse-
Wishart model). It only allows a 1-parameter variation of the covariance function, but no
restrictions are imposed on the within-group means, unlike the Normal-Inverse-Wishart
prior.

In Normal-Inverse-Gamma model we assume that the base covariance matrix and the
component covariance matrix are known up to some scaling factor λ ∼ G−1(β0 + 1, β0γ0).
Hence the parameter is θ = (µ, λ), the parameter space is Θ = Rd × R+, the component
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distributions are x |µ, λ ∼ N (µ, λΣ0) and the base measure on (µ, λ) is defined by the
following conditional structure:

λ ∼ G−1(β0 + 1, β0γ0)

µ |λ ∼ N (µ0, λΨ0)
(1.50)

Here the hyperparameters are β0, γ0 > 0, µ0 ∈ Rd and Ψ0,Σ0 ∈ Sd+. With this prior

E (V(x |µ, λ)) = EλΣ0 = γ0Σ0,

V(E (x |µ, λ)) = V(µ) = EV(µ |λ) + VE (µ |λ) = EλΨ0 + V(µ0) = γ0Ψ0.
(1.51)

The conditional densities are given by

x |µ, λ ∼ (2π)−d/2|Σ0|−1/2λ−d/2 exp
{
− 1

2λ(x− µ)>Σ−1
0 (x− µ)

}
µ |λ ∼ (2π)−d/2|Ψ0|−1/2λ−d/2 exp

{
− 1

2λ(µ− µ0)>Ψ−1
0 (µ− µ0)

}
λ ∼ (β0γ0)β0+1Γ(β0 + 1)−1λ−(β0+2) exp {−β0γ0/λ}

(1.52)

The density of x | θ can be expressed as (1.16) by placing

h(x) ≡ (2π)−d/2|Σ0|−1/2, T (x) =

[
−1

2x
>Σ−1

0 x

Σ−1
0 x

]
, η(θ) =

[
1/λ

µ/λ

]
,

B(θ) =
d

2
log λ+

1

2
µ>Σ−1

0 µ/λ

(1.53)

We get (1.21) by placing

a =

 d/2

diag(Σ−1
0 )

low(Σ−1
0 )

 , B(θ) =

 log λ
1
2diag(µµ>)/λ

low(µµ>)/λ

 , ζ0 =

 β0 + 2

diag(Ψ−1
0 )

low(Ψ−1
0 )

 , τ0 =

[
−β0γ0 − 1

2µ0
>Ψ−1

0 µ0

Ψ−1
0 µ0

]
(1.54)

and

ψ(θ) = (2πλ)−d/2, C(τ0, ζ0) = −(β0 + 1) log(β0γ0) + log Γ(β0 + 1) +
1

2
log |Ψ0| (1.55)

Plugging this into (1.26) we get that the marginal distribution of x = (x1, . . . , xk) is given
by

gNIG,k(x) =
(β0γ0)α0 |Ψk|1/2Γ(αk)

(2π)dk/2|Ψ0|1/2|Σ0|k/2Γ(α0)
· β(x)−αk (1.56)

where Ψk is defined by (1.35),

αk = β0 + 1 + kd/2 and (1.57)

β(x) = β0γ0 +
1

2

k∑
i=1

(xi − x)>Σ−1
0 (xi − x) +

1

2
(x− µ0)>kΞk(x− µ0) (1.58)

where
Ξk = (Σ0 + kΨ0)−1 = Ψ−1

0 ΨkΣ
−1
0 . (1.59)

(the second equality in (1.59) is easily established by investigating its inverse). The detailed
derivation of (1.56) from (1.26) can be found in Appendix A.1.3.
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Regularity. Following the lines of the proof of regularity for the Normal-Inverse-Wishart
model, in this case the proof boils down to establishing that if Σ0 is a positive-definite
matrix then the condition∫

X
exp

{
− 1

2λ
(x− µ)>Σ−1

0 (x− µ)

}
dx <∞ (1.60)

implies that λ > 0, which is straightforward.

Convexity assumption. By Theorem 1.2 the function a>B
(
θ(η)

)
is convex for any

choice of d ∈ N and positive definite matrix Σ0. For any fixed β0 > 0 and positive
definite matrix Ψ we can deduce the convexity of ζ0

>B
(
θ(η)

)
by considering d = 2 and

Σ0 = (β0 + 2)Ψ0.

As a final point we note that Normal-Inverse-Gamma prior is a generalisation of the Normal
prior in the sense that (1.50) becomes (1.28) for γ0 = 1 and β0 →∞.
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Chapter 2

Geometry of MAP clustering and
induced partitions

In this chapter we are concerned about two issues – the geometric properties of the MAP
clustering (Section 2.1) and the approximation to the posterior score (1.8) when the data
clustering is defined by a partition of the observation space and the data itself is and inde-
pendently identically distributed sample with a given input distribution. This is explained
in detail in Section 2.2.

In Section 2.1 we present the first important result of this dissertation, about the separation
of clusters in the MAP partition. In Rajkowski (2019, Proposition 1) it was proved that
for the Gaussian fixed covariance BMM model (with the Chinese Restaurant prior on the
space of partitions), the convex hulls of the clusters in the MAP partition are disjoint. In
other words, every two clusters are separated by a hyperplane or linear affine subspace.
Theorem 2.3 generalises that result to the conjugate exponential BMMs and shows how
the separability property of clusters relates to the sufficient statistic T (x) in the conjugate
exponential family. More precisely, in the general case the separation surfaces are the
contour lines of linear functionals of the sufficient statistic.

This separation result for the clusters of the MAP partition implies, loosely speaking, that
the MAP clusters are contained within some decent ‘chunks’ of the observation space.
This motivates us to ‘reverse the optics’ and consider clusterings (that we call induced)
of the data that are defined by an a’priori fixed partition A of the observation space. We
derive an asymptotic limit of the logarithm of the posterior probability (up to a norming
constant) of such induced clusterings, when the data are sampled independently from some
given probability P (we call it the input probability). The result clearly depends on A and
P . The limit is denoted by ∆MP (A), whereM represents the conjugate exponential family
used to build the model. The limit does not depend on the exact specification of the prior
distribution π on the component probabilities (cf. (1.3)), provided that π has a full support
on the infinitely dimensional simplex 4∞.
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2.1 Geometry of the MAP clustering

We start this section by defining what we mean by T -linear separation of clusters.

Definition 2.1. Let Z be a family of subsets of Rd and L a family of real functions
on Rd. We say that Z is separated by L if for every A,B ∈ Z, A 6= B, there exists
LA,B ∈ L such that LA,B(x) ≥ 0 and LA,B(y) < 0 for all x ∈ A, y ∈ B. Moreover,
if L = {a>T (x) + b : a ∈ Rp, b ∈ R} for some function T : Rd → Rp, we say that Z is
T -linearly separated. If T (x) = x, we use the term linear separability for short.

Note 2.2. If a family Z of subsets of Rd is linearly separable, then every pair of elements
of Z is separated (in standard, geometric sense) by a hyperplane. Similarly, if T (x) =

[diag(xx>), low(xx>), x] and Z is T -linearly separable then every pair of elements of Z is
separated (in geometric sense) by a quadratic surface. Hence, in this case we also use the
term quadratic separability.

(a) This family is linearly
separable.

(b) This family is quadrat-
ically separable. It is not
linearly separable.

(c) This family is not
quadratically separable.

Figure 2.1: Illustration of the different types of separability. The family Z in each picture consists
of four sets: stars, sqares, triangles and circles (distinguished also by color).

Notation. For the notational convenience we will use the separability notions also with
respect to the pairs of subsets or sequences of Rd. For example, if x1, . . . , xn ∈ Rd and I, J
are disjoint subsets of [n] then the expression xI is linearly separated from xJ means that
the family

{
{xi : i ∈ I}, {xj : j ∈ J}

}
is linearly separated.

Theorem 2.3. Let x1, . . . , xn ∈ Rd be pairwise distinct and let Î be the MAP partition of
x1, . . . , xn in the conjugate exponential Bayesian Mixture Model, described in Section 1.4,
where the hyperparameter is identifiable. Then the family {xI : I ∈ Î} is T -linearly sepa-
rable.

Theorem 2.3 is a consequence of Lemma 2.4 and Lemma 2.5, which we state and prove
below. A somewhat imprecise description of Lemma 2.4 is the following: it states that in
order to prove the L-separability property of the MAP clustering it is sufficient to show
that for any two clusters of known sizes, if we allow a ‘data exchange’ (that preserves
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the sizes) between these two clusters, the sum of inputs of the resulting clusters to the
log-posterior score is maximised if they are L-separated. Lemma 2.5 shows that linear
separability occurs naturally in some general convex maximisation problem.

Lemma 2.4. Let L be a family of real functions on Rd. Let x1, . . . , xn ∈ Rd and let Î
be the MAP partition for x1, . . . , xn in some Bayesian Mixture Model, given by (1.6). For
U ⊂ [n] and 0 < k < |U| let Îk,U be any subset of U of size k that maximises log gϑ,k(xI) +

log gϑ,l(xU\I), where l = |U| − k and gϑ,k is given by (1.5). In other words let

Îk,U ∈ argmax
I⊂U :|I|=k

(
log gϑ,k(xI) + log gϑ,l(xU\I)

)
. (2.1)

If for U ⊂ [n], 0 < k < |U| and any choice of Îk,U the sets of observations xÎk,U and xU\Îk,U
are separated by L then the whole family {xI : I ∈ Î} is separated by L (where Î is MAP
partition of [n]).

Proof. Firstly note that by the definition of the MAP partition, using (1.8) and (1.7)

Î ∈ argmax
partitions I of [n]

(
logPπ,n(I) +

∑
I∈I

log gϑ,|I|(xI)
)
. (2.2)

Suppose that the assumptions of Lemma 2.4 hold. Suppose that Î is not separated by L.
Then there exist Î , Ĵ ∈ Î such that xÎ and xĴ are not separated by L. Let U = Î ∪ Ĵ
and k = |Î|. Let Ĩ = Îk,U and J̃ = U \ Ĩ. Moreover let Ĩ be a partition of [n] obtained by
replacing Î , Ĵ by Ĩ , J̃ , i.e. Ĩ = Î \ {Î , Ĵ} ∪ {Ĩ , J̃}. Note that Pπ,n(Î) = Pπ,n(Ĩ) (we have
|Î| = |Ĩ| and |Ĵ | = |J̃ |, so we use the exchangeability of Pπ,n). Moreover xÎ and xĴ are
not separated by L so by the assumptions of Lemma 2.4

Î /∈ argmax
I⊂U :|I|=k

(
log gϑ,k(xI) + log gϑ,l(xU\I)

)
(2.3)

and hence, by the definition of Ĩ

log gϑ,k(xĨ) + log fl(xJ̃) > log gϑ,k(xÎ) + log fl(xĴ). (2.4)

This means that

logPπ,n(Ĩ) +
∑
I∈Ĩ

log gϑ,|I|(xI) > logPπ,n(Î) +
∑
I∈Î

log gϑ,|I|(xI), (2.5)

which contradicts the definition of Î and the proof follows.

Lemma 2.5. Let V ⊆ RD be a convex set. Let f : V → R be a strictly concave function
and z1, . . . , zk+l ∈ RD be pairwise distinct. If

∑
i∈I zi ∈ V for every I ⊆ [k + l] such that

|I| = k and
Î ∈ argmin

I⊂[k+l] : |I|=k
f
(∑
i∈I

zi
)

(2.6)

then zÎ and z[k+l]\Î are linearly separable.
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Proof. Consider the set of all possible sums of k distinct vectors zi, i.e. Sk = {
∑

i∈I zi : I ⊂
[k + l], |I| = k} and let ŝk ∈ argmins∈Sk f(s). Since f is strictly concave, then ŝk is a
vertex of the convex hull of Sk, denoted by convSk (see Figure 2.2). This means that
there exist a vector v0 ∈ RD such that ŝk is the furthest sum in the direction of v0, or
formally {ŝk} = argmaxs∈Sk〈s, v0〉 (cf. Moszyńska, 2005, Corollary 3.3.6), where 〈·, ·〉 is the
standard Euclidean scalar product. As the set of such vectors v0 has a non-empty interior,
we can also choose v0 so that 〈zi, v0〉 are all different. Let z(1), . . . , z(k+l) be an ordering
of vectors zi, decreasing ‘in the direction v0’, i.e. {z(1), . . . , z(k+l)} = {z1, . . . , zk+l} and
〈z(i), v0〉 > 〈z(j), v0〉 if i < j. Note that〈∑

i∈I
zi, v0

〉
=
∑
i∈I
〈zi, v0〉 (2.7)

and therefore Î = {z(1), . . . , z(k)}. Thus the sets {zi : i ∈ Î} and {zi : i /∈ Î} are linearly
separated by the hyperplane {u ∈ RD : 〈u, v0〉 = 〈z(k) + z(k+1), v0〉/2}.

Figure 2.2: Illustration of the proof of Lemma 2.5. Left panel: The grey ellipses are the contour
lines of the convex function f . In this example n = 5 and k = 2. Points z1, . . . , z5 are marked as
black points, and sums of their all possible pairs are marked as yellow dots and one red square,
which is the minimiser of f (the blue cross is the origin). The red square is a vertex of the convex
hull of possible sums, and as such is a point furthest in some direction, also marked on the picture.
Right panel: As the red square was the furthest in the highlighted direction, it is the sum of two
points furthest in that direction (orange crosses) and therefore those two points are separated from
others by a line perpendicular in that direction (marked in blue).

Proof of Theorem 2.3. Let U ⊆ [n], k, l ∈ N and Îk,U be as in Lemma 2.4. Plugging the
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formula (1.26) into (2.1) gives:

Îk,U ∈ argmax
I⊂U : |I|=k

(∑
i∈I

log h(xi) + C(τxI , ζk)− C(τ , ζ)+

+
∑
i∈U\I

log h(xi) + C(τxU\I , ζl)− C(τ , ζ)
)

=

= argmax
I⊂U : |I|=k

(∑
i∈U

log h(xi) + C(τxI , ζk) + C(τxU\I , ζl)− 2C(τ , ζ)
)

=

= argmax
I⊂U : |I|=k

(
C(τxI , ζk) + C(τxU\I , ζl)

)
(2.8)

Let ti =

[
T (xi)

a

]
and let t0 =

[
τ

ζ

]
and tU =

∑
i∈U ti. By the assumed identifiability of

the hyperparameter and Bickel and Doksum (2015, Theorem 1.6.4), C is a strictly convex
function. Hence the functions f(t) = C(t0 + t) and f(t) = C(t0 + tU − t) are also strictly
convex and so is their sum, f(t) = f(t) + f(t). Note that

f
(∑
i∈I
ti

)
= C(τxI , ζk) and f

(∑
i∈I
ti

)
= C(τxU\I , ζl) (2.9)

and hence by (2.8) we get
Îk,U ∈ argmax

I⊂U : |I|=k
f
(∑
i∈I
ti

)
. (2.10)

Therefore by Lemma 2.5 we obtain that tÎk,U and tU\Îk,U are linearly separable. This yields
T -linear separability of xÎk,U and xU\Îk,U and the proof follows.

We now list three Corollaries that follow from Theorem 2.3 and the formula for the sufficient
statistic in the Normal models, described in Section 1.4.1. The fact that the hyperparam-
eter is identifiable in these models is straightforward.

Corollary 2.6. Let x1, . . . , xn ∈ Rd be pairwise distinct and let Î be the MAP partition of
x1, . . . , xn in the Normal-Normal Bayesian Mixture Model. Then the family {xI : I ∈ Î}
is linearly separable.

Corollary 2.7. Let x1, . . . , xn ∈ Rd be pairwise distinct and let Î be the MAP partition
of x1, . . . , xn in the Normal-Inverse-Wishart Bayesian Mixture Model. Then the family
{xI : I ∈ Î} is quadratically separable.

Corollary 2.8. Let x1, . . . , xn ∈ Rd be pairwise distinct and let Î be the MAP partition
of x1, . . . , xn in the Normal-Inverse-Gamma Bayesian Mixture Model. Then the family
{xI : I ∈ Î} is quadratically separable. Moreover, in this case every two clusters are
separated (in standard, geometric sense) by a multidimensional ellipse.

2.1.1 Analogy to the properties of the Fisher Discriminant Analysis

Here we would like to draw attention to the aesthetic analogy of Theorem 2.3 to the
properties of the classical Fisher’s Linear or Quadratic Discriminant Analysis.
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Suppose we have access to samples from two heterogenous populations: x1, x2, . . . , xk

and y1, y2, . . . , yl. Then z is observed and we need to classify it as coming from the
population of x’es or y’s. Fisher Discriminant Analysis approach is to assume that both
initial samples are taken from some multivariate normal distributions. If the population
parameters were known and equal to (µ1,Σ1) and (µ2,Σ2) respectively, and the population
frequecies were p1 and p2 then it is a natural (and optimal in the Bayesian sense, cf. Bishop,
2006, Section 1.5.1) decision to classify the new observation to the first group if and only if
p1g(µ1,Σ1)(z) > p2g(µ2,Σ2)(z), where g(µ,Σ) is the density of the N (µ,Σ) distribution. This
easily translates to the following inequality:

1

2
(z − µ2)>Σ−1

2 (z − µ2)− 1

2
(z − µ1)>Σ−1

1 (z − µ1) > log
p2

p1
− 1

2
log
|Σ2|
|Σ1|

. (2.11)

Since we do not have the access to the true theoretical values of pi, µi, Σi (i = 1, 2), we
replace them by their empirical estimates µ̂i and Σ̂i. This does not change the fact that
left-hand side of (2.11) is a quadratic function in z and hence the boundaries of the decision
region are also quadratic surfaces.

If for some reasons we expect the two populations to have the same theoretical covariance
Σ = Σ1 = Σ2, instead of two separate estimators Σ̂1 and Σ̂2 we can consider one pooled
estimator Σ̂. Then (2.11) simplifies to

(µ̂1 − µ̂2)>Σ̂−1z > log
p̂2

p̂1
, (2.12)

the left-hand side being a linear function of z and hence the decision boundaries are now
simply hyperplanes. Thus we arrived at conclusion similar to that implied by our results
concerning the properties of the MAP clustering: with assumption of normality, when the
population covariances are assumed to be the same, the boundaries are linear surfaces,
otherwise they are quadratic.

This analogy can be easily extended to the case of general exponential families. If we
assume that the density gθ is given by (1.16), the comparison p1gθ̂1(z) > p2gθ̂1(z) can be
expressed as (

η(θ̂1)− η(θ̂2)
)>T (z) > log

p2

p1
+ B(θ̂1)− B(θ̂2) (2.13)

which implies that the decision boundaries are the contour lines of a linear functional of
the sufficient statistics T .

It should, however, be stressed that Fisher Discriminant Analysis concerns a different
domain of statistical questions than those considered in this dissertation, namely classifi-
cation, not cluster analysis. Moreover, the tools used to prove Theorem 2.3 were slightly
more involved; among others, it used the convexity of the log-partition function C, whereas
the separability observation for the discriminant analysis is a straightforward consequence
of the formula (1.16).
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2.2 Induced partitions

In this section we assume that the data is an independent sample from some fixed prob-
ability distribution P on Rd, which we will call the input distribution. With the partition
of the observation space fixed, this gives a random sequence of the clustering of indices,
which in turn can be scored by the ‘posterior score’ (1.8). In the following we derive the
asymptotic behaviour of the score. Note that, in the derivation of the model, the observa-
tions are not produced by an (unconditionally) i.i.d. sampling. This (of course) does not
imply any ‘mis-specification’ if we derive asymptotic formulae by considering X1, X2, . . .

as i.i.d. P random vectors; if Pn is the empirical distribution where n observations are
generated using the scheme of the previous section, then Pn

n→∞−→(d) P for some P and, for
asymptotic results, the Strong Law of Large Numbers gives that the same asymptotics will
hold for X1, X2, . . . i.i.d. P .

Of course, only a small class of distributions P can be generated according to the sampling
scheme; these will necessarily be infinite mixtures of normals (and the mixture will have an
infinite number of components). We do not limit ourselves to P that can be generated in
this way and we consider more general input distributions in our analysis of the performance
of the classifier.

Definition 2.9. Let P be a probability distribution on Rd. We say that a family A of
P -measurable subsets of Rd is a P -partition if

• P (A) > 0 for all A ∈ A,

• P
(⋃

A∈AA
)

= 1,

• P (A ∩B) = 0 for all A,B ∈ A, A 6= B.

Notation. Let x = (x1, . . . , xn) be a sequence of vectors in Rd. Let A be a countable
collection of disjoint subsets of Rd. We denote IAn (x) := {JAn : A ∈ A} where JAn = {i ≤
n : Xi ∈ A} (if JAn = ∅, we do not include it in IAn ). If every xi belongs to exactly one
A ∈ A then IAn (x) is a partition of [n]. We say that it is induced by A. The argument x
is often clear from the context and therefore it is sometimes omitted.

Remark 2.10. It is clear by the definition of the P partition that if A is P -partition and
X1, X2 . . .

iid∼ P then almost surely IAn (X1, . . . , Xn) is a partition of [n] for every n ∈ N.

X1

X2

X4

X6

X7 X8
X9

X5

X10 X3

Figure 2.3: In this picture the observation space
X is the rectangle and the partition A is de-
fined by the blue separation curves. The points
X1, . . . , X10 are drawn uniformly from X . The
random partition of {1, 2, . . . , 10} induced by A
is {

{1, 3, 5, 8}, {2, 10}, {4, 9}, {6}, {7}
}
.
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According to Remark 2.10, partitions induced by a P -partition on a random sample from
P are almost surely partitions, and hence we can analyse their posterior probability in the
conjugate exponential Bayesian Mixture models. We investigate the asymptotic limit of
the logarithm of the joint probability given by (1.8). In order to specify the limit, we recall
the notion of convex conjugate.

Definition 2.11. If f is a real function on Rd then the convex conjugate of f is the function
f∗ : Rd → R ∪ {∞}, given by f∗(z) = supx∈Rd

(
z>x− f(x)

)
.

Theorem 2.12. Consider the infinite conjugate exponential Bayesian Mixture Model, in
which the component measures are given by (1.16) and the base measure is given by (1.21).
Suppose that the exponential family is regular and that the convexity assumption (1.27)
holds. Let P be a probability distribution on Rd, A be a finite P -partition of Rd and
X ∼ P . Assume that EP log h(X) <∞, EP ‖T (X)‖ <∞ and

(i) A∗
(
EP (T (X) |X ∈ A)

)
< ∞, where A∗ is the convex conjugate of the log-partition

function A, given by (1.19),

(ii)
(
rEP (T (X) |X ∈ A), ra

)
∈ int Ω for some r ∈ N, where Ω is the natural hyperpa-

rameter space, defined by (1.23).

Let Q be the joint probability function given by (1.8), in which gϑ,k is given by (1.26). Let
X1, X2, . . .

iid∼ P and X1:n = (X1, . . . , Xn). Then

lim
n→∞

1

n
logQ

(
X1:n,JAn (X1:n)

) a.s.
= EP log h(X) + ∆P (A) (2.14)

where

∆P (A) =
∑
A∈A

P (A) · A∗
(
EP (T (X) |X ∈ A)

)
+
∑
A∈A

P (A) logP (A). (2.15)

The remaining part of this section is devoted to the proof of Theorem 2.12. But now let
us point out its obvious consequence.

Corollary 2.13. Let A1 and A2 be two finite P -partitions of Rd such that ∆P (A1) >

∆P (A2). Let X1, X2, . . .
iid∼ P and let X1:n = (X1, . . . , Xn). With the assumptions of

Theorem 2.12 almost surely there exists N such that

Q
(
X1:n,JA1

n (X1:n)
)
> Q

(
X1:n,JA1

n (X1:n)
)

for n > N (2.16)

Hence, as long as the induced partitions are concerned, the ∆P function is an indicator of
which of these partitions gives larger posterior score given by (1.8), when our data is an
independent sample from the probability distribution P . In this sense we can hope that ∆P

relates somehow to the search of the MAP clustering. Clearly, the MAP clustering is not an
induced one, but since the clusters in this case can be separated by some regular surfaces (cf.
Section 2.1), we can hope that in the limit the MAP clustering can manifest some ‘induced’
behaviour. This idea is successfully applied in Rajkowski (2019) in a very specific setting
of Normal-Normal model and the Chinese Restaurant prior on the space of partitions (this
is described in Chapter 3). For now, let us move to the proof of Theorem 2.12.
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2.2.1 Proof of Theorem 2.12

We start with a well known fact from the Functional Analysis. Since its proof is nice and
short, we present it here for completeness. Let us recall that if µ is a measure on some space
X and p ≥ 1 then by Lp(X , µ) we denote the space of all real functions on X satisfying∫
X |f(x)|pdµ(x) <∞, equipped with the p-norm

‖f‖p =

(∫
X
|f(x)|pdµ(x)

) 1
p

. (2.17)

Moreover, L∞(X , µ) is the space of functions with finite essential supremum (a quantity
that at the same time is the norm in this space), defined by

‖f‖∞ = inf{C ≥ 0: |f(x)| ≤ C for µ-almost every x}. (2.18)

Lemma 2.14. Let (X , µ) be a measurable space. If f ∈ Ln0(X , µ) ∩ L∞(X , µ) for some
n0 > 0 then limn→∞ ‖f‖n = ‖f‖∞.

Proof. Let ε > 0 and letM = ‖f‖∞ and Aε = {x : f(x) > M−ε}. Clearly 0 < µ(Aε) <∞.
Moreover

‖f‖nn ≥
∫
Aε

fndµ ≥ µ(Aε)(M − ε)n. (2.19)

Hence lim infn→∞ ‖f‖n ≥M − ε and, by the arbitrary choice of ε, lim infn→∞ ‖f‖n ≥M .

On the other hand, for n > n0 we have

‖f‖nn =

∫
A1

fndµ+

∫
X\A1

fndµ ≤Mnµ(A1) + ‖f‖n0
n0
, (2.20)

which gives lim supn→∞ ‖f‖n ≤M and the proof follows.

Lemma 2.14 plays central role in the approximation of the n-th root of both factors in
(1.8). However, in both cases the situation is slightly more involved that the one presented
by Lemma 2.14, since in fact we will deal with a sequence of functions fn converging
pointwise to f and our goal will be to show that ‖fn‖n → ‖f‖∞. The proof of this
convergence requires some additional steps and observations.

We split the analysis of the asymptotic limit of the logarithm of the function Q given by
(1.8) into two parts: the asymptotic limit of the logarithm of Pπ,n and the asymptotic
limit of the logarithm of gϑ,n.

Asymptotic limit of logPπ,n This aspect is summarised by Lemma 2.15.

Lemma 2.15. Let P be a probability distribution on Rd and let A be a finite P -partition
of the observation space. Let X,X1, X2, . . .

iid∼ P and X1:n = (X1, . . . , Xn) Let Pπ,n be a
probability distribution on the partitions of [n], generated by the probability distribution π
on 4∞ with a full support. Then

lim
n→∞

n

√
Pπ,n

(
IAn (X1:n)

) a.s.
=
∏
A∈A

P (A)P (A) (2.21)
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Lemma 2.15 follows simply from Lemma 2.16 and the Strong Law of Large Numbers.

Lemma 2.16. Let Pπ,n be a probability distribution on the partitions of [n], generated by
the probability distribution π on 4∞ with a full support. Fix K ∈ N and consider a sequence
of partitions (In)n∈N, where In = {In,1, . . . , In,K} is a partition of [n] (it is possible that
In,i = ∅ for some i ≤ K). Assume that |In,k|/n→ αk > 0 for k ≤ K. Then

lim
n→∞

n

√
Pπ,n(In) =

K∏
k=1

ααkk (2.22)

In order to prove Lemma 2.16, we need a closed-form expression for Pπ,n. This is given by
Lemma 2.17

Lemma 2.17. Let π be a probability distribution on 4∞ that generates the probability Pπ,n
on the space of partitions of [n]. Then for every partition I of [n]

Pπ,n(I) =

∫
4∞

∑
ψ : I1−1→ N

∏
I∈I

p
|I|
ψ(I)dπ(p) (2.23)

where sum ranges over all injective functions from I to N.

Proof. The formula (2.23) may seem rather complicated at first, but its justification is
straightforward. Let us go back to (1.4) and suppose that the weights p = (pi)

∞
i=1 and

the atoms θ = (θi)
∞
i=1 are fixed. We need to know what is the probability that φ =

(φ1, . . . , φn) |p,θ iid∼
∑m

i=1 piδθi induces a partition I. This would mean that for every
I ∈ I all the values φi for i ∈ I are equal to θj for some j ∈ N; let j = ψ(I). The
values ψ(I) must be different for different I ∈ I, otherwise I would not be generated. The
probability of the sequence (φ1, . . . , φn) where φi = θψ(I) for i ∈ I is equal to

∏
I∈I p

|I|
ψ(I).

Since any assignment of clusters to atoms is valid, so for fixed p the probability of I is
equal to

∑
ψ : I1−1→ N

∏
I∈I p

|I|
ψ(I). Since p ∼ π is random, we have to integrate it out and

(2.23) follows.

Proof of Lemma 2.16. Firstly note that for sufficiently large n we have |Ik,n| ≥ 1 for all
k ≤ K. Then in (2.23) we sum functions that depend on exactly K coordinates of p. Let

NK = {(p1, . . . , pK) :
K∑
i=1

pi ≤ 1,∀ipi ≥ 0}. (2.24)

For any ψ : [K]
1−1→ N let πψ be a probability measure on NK defined by

πψ(A) = π
({

(p1, p2, . . .) ∈ 4∞ : (pψ(1), pψ(2), . . . , pψ(K)) ∈ A
})
. (2.25)

In other words, πψ is a push-forward of the π measure in the projection on the coordinates
(pψ(1), pψ(2), . . . , pψ(K)). Now let σ be a measure on NK defined by

σ =
∑

ψ : [K]
1−1→ N

πψ. (2.26)

32



Note that since every summand on the right-hand side of (2.26) is a probability measure,
the measure σ is not a finite measure on NK .

Now we can express (2.23) in the form of an integral on the K-dimensional set NK as

Pπ,n(In) =

∫
NK

K∏
k=1

p
|Ik,n|
k dσ(p1, . . . , pK). (2.27)

Hence

n

√
Pπ,n(In) = n

√√√√∫
NK

K∏
k=1

p
|Ik,n|
i dσ(p1, . . . , pK) = ‖gn‖n (2.28)

where gn(p1, . . . , pK) =
∏K
k=1 p

|Ik,n|/n
k and ‖ · ‖n is the norm in Ln(NK , σ) space.

Since σ is not a finite measure on NK , in the remaining part of the proof we will have to be
careful that the functions we are considering belong to the space Ln(NK , σ) for sufficiently
large n.

Let g(p1, . . . , pK) =
∏K
k=1 p

αk
k and let h(p1, . . . , pK) =

∏K
k=1 pk. Note that∫

NK
h(p1, . . . , pK)dσ(p1, . . . , pK) = Pπ,K

({
{1}, {2}, . . . , {K}

})
≤ 1. (2.29)

Moreover for n > 1/minαi we have gn(p1, . . . , pK) ≤ h(p1, . . . , pK) and therefore g ∈
Ln(NK , σ) for n > 1/minαi. Because g is bounded by 1, we can use Lemma 2.14 to
obtain

lim
n→∞

‖g‖n = ‖g‖∞ = sup
NK

g =
∏
k≤K

ααkk . (2.30)

The equality ‖g‖∞ = supNK g is a consequence of the assumption that π has a full support
on 4∞. The equality supNK g =

∏
k≤K α

αk
k follows in a standard way from the Lagrange

multipliers, the details are left for Lemma A.2 from the Appendix.

We now prove that ‖gn−g‖n → 0. It is not a straightforward consequence of the pointwise
convergence of gn to g since σ is not a finite measure on NK .

Clearly, (|Ik,n|/n−αk/2)→ αk/2 > 0 and hence gng−1/2 → g1/2 pointwise on NK . As NK

is compact, we have uniform convergence as well, which means ‖gng−1/2 − g1/2‖∞ → 0 on
NK .
Let N ∈ N be chosen so that for n > N we have ‖gng−1/2 − g1/2‖∞ < ε and nαk ≥ 2 for
k ≤ K. Then for n > N we have gn/2 ≤ h and

‖gn − g‖nn =

∫
NK
|gn − g|ndσ =

∫
NK
|gng−1/2 − g1/2|ngn/2dσ ≤

≤ εn
∫
NK

gn/2dσ ≤ εn
∫
NK

hdσ ≤ εn,
(2.31)

hence
lim
n→∞

‖gn − g‖n = 0. (2.32)

The result follows from (2.30), (2.32) and the triangle inequality:∣∣‖gn‖n − ‖g‖∞∣∣ ≤ ∣∣‖gn‖n − ‖g‖n∣∣+
∣∣‖g‖n − ‖g‖∞∣∣ ≤ ‖gn − g‖n +

∣∣‖g‖n − ‖g‖∞∣∣. (2.33)
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Asymptotic limit of log gϑ,n The goal of this paragraph is to prove Lemma 2.18, which
together with Lemma 2.15 will easily imply Theorem 2.12.

Lemma 2.18. If P is a probability distribution on Rd, A is a finite P -partition of Rd

and X1, X2, . . .
iid∼ P . Let gϑ,k be the marginal density defined by (1.26) in the regular

exponential family and suppose that the convexity assumption (1.27) holds. Suppose that
EP log h(X) <∞ and for every A ∈ A

(i) A∗
(
EP (T (X) |X ∈ A)

)
< ∞, where A∗ is the convex conjugate of the log-partition

function A,

(ii)
(
rEP (T (X) |X ∈ A), ra

)
∈ int Ω for some r ∈ N.

Then

lim
n→∞

1

n
log gϑ,n

(
X1:n | IAn (X1:n)

) a.s.
= EP log h(X) +

∑
A∈A

P (A) · A∗
(
EP (T (X) |X ∈ A)

)
(2.34)

The proof is an easy consequence of Proposition 2.19, proved later.

Proposition 2.19. Consider the regular exponential family, described in Section 1.4, and
suppose that it satisfies the convexity assumption (1.27). Let x1, x2, . . . be a sequence of
points in supph such that limn→∞

1
n

∑n
i=1 T (xi) = t0 ∈ Rp. Suppose that A∗(t0) <∞ and

for some r ∈ N we have (rt0, ra) ∈ int Ω. Then

lim
n→∞

1

n
C(τx1:n , ζn) = A∗(t0). (2.35)

Proof of Lemma 2.18 using Proposition 2.19.

log gϑ,n(X1:n | IAn ) =
∑
I∈IAn

log gϑ,|I|(XI) =

=
n∑
i=1

log h(Xi) +
∑
I∈IAn

C(τXI , ζ|I|)− |A| · C(τ , ζ) =

=

n∑
i=1

log h(Xi) +
∑
A∈A

C(τX
IAn
, ζ|IAn |)− |A| · C(τ , ζ)

(2.36)

By the Strong Law of Large Numbers |I
A
n |
n → P (A) almost surely and

lim
n→∞

1

n

n∑
i=1

log h(Xi) = EP log h(X) (2.37)

Again, by the Strong Law of Large Numbers, almost surely for every A ∈ A:

lim
n→∞

∑
i∈IAn T (Xi)

|IAn |
= EP (T (X) |X ∈ A) (2.38)
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Hence by (2.36), (2.38) and Proposition 2.19

lim
n→∞

1

n
log f(X1:n | IAn ) =

= lim
n→∞

( 1

n

n∑
i=1

log h(Xi) +
∑
A∈A

|IAn |
n
· 1

|IAn |
C(τX

IAn
, ζ|IAn |)−

|A|
n
· C(τ , ζ)

)
=

= EP log h(X) +
∑
A∈A

P (A) · A∗
(
EP (T (X) |X ∈ A)

)
.

(2.39)

To prove Proposition 2.19 we also need to use Lemma 2.14, but again it is not a straight-
forward application and requires some additional steps.

Proof of Proposition 2.19. Let

ϕn(θ) = exp

{
[η(θ)>,−B(θ)>]

[
τx1:n/n

ζn/n

]}
(2.40)

Consider a measurable space (Θ,Ψ), where Ψ is a measure on Θ with density ψ(θ) with
respect to the Lebesgue measure. In this proof we will consider the spaces Lp(Θ,Ψ), p ≥ 1,
with their norms ‖ · ‖p. It is clear from the formula (1.22) that

1

n
C(τx1:n , ζn) = log ‖ϕn‖n. (2.41)

Now let

ϕ(θ) = exp

{
[η(θ)>,−B(θ)>]

[
t0

a

]}
. (2.42)

Note that, using the regularity assumption

‖ϕ‖∞ = sup
θ∈Θ

exp
{
η(θ)>t0 − B(θ)>

}
= sup

η∈E
exp

{
η>t0 − A(η)

}
= exp{A∗(t0)}. (2.43)

where E is the natural parameter space, defined by (1.20). By (2.41) and (2.43) to conclude
the proof it is enough to show that ‖ϕn‖n → ‖ϕ‖∞. According to Lemma A.3 (stated and
proved in the Appendix), to ensure this convergence it is enough to check the following
conditions:

• ϕ,ϕn ≥ 0 This is straightforward from the definition.

• ‖ϕ‖∞ <∞ This follows from (2.43) and the assumptions.

• ‖ϕ‖r <∞ and ‖ϕn‖r → ‖ϕ‖r It is a consequence of

‖ϕn‖rr = exp
{
C
(rτx1:n

n
,
rζn
n

)}
, ‖ϕ‖rr = exp

{
C
(
rt0, ra

)}
. (2.44)

The function C is convex in Ω and hence continuous in int Ω (Rockafellar, 1970,
Theorem 10.1). As (rt0, ra) ∈ int Ω and

( rτx1:n
n , rζnn

)
→ (rt0, ra), we get ‖ϕ‖rr < ∞

and ‖ϕn‖rr → ‖ϕ‖rr.
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• ‖ϕn − ϕ‖∞ → 0 More verbosely, this is

exp

{
τx1:n

>

n
η(θ)− ζn

>

n
B(θ)

}
L∞(Θ)→ exp

{
t0
>η(θ)− a>B(θ)

}
, (2.45)

which, by the regularity assumption, is equivalent to

exp

{
τx1:n

>

n
η − An(η)

}
L∞(E)→ exp

{
t0
>η − A(η)

}
. (2.46)

in which An(η) = ζn>

n B(θ(η)) = ζ0>

n B(θ(η)) + A(η) is a convex function, by the con-
vexity assumption (1.27) and the fact that a sum of convex functions is a convex
function itself. Of course in (2.46) we have a pointwise convergence, but the space E
can (and, in reasonable cases, is) unbounded and hence to establish uniform conver-
gence we need to make some additional observations. They will base mostly on the
convexity of the log-partition function A.

Let l(η) = t0
>η − A(η); it is a concave function, since the log-partition function

function A is convex. Let ln(η) =
τx1:n

>

n η − An(η); it is a concave function by the
same reasoning. By Corollary 2.3.1 in Bickel and Doksum (2015) there exists η̂ ∈ E
such that l(η̂) = supη∈E l(η) =: M . Fix ε > 0. Let F = {η ∈ E : l(η) ≥ log ε}.
Without loss of generality we can assume that log ε < M so that M ∈ F . Since
E = {η : l(η) > −∞}, F is a compact subset of E (the details of this implication
are left for Lemma A.5). Since ln converges to l pointwise and F is compact, by the
Dini’s theorem we have an uniform convergence of ln to l on F . Hence there exist
N1 ∈ N such that |ln(η)− l(η)| < ε for n > N1 and η ∈ F . In the same way we can
prove that there exists N2 ∈ N such that |eln(η) − el(η)| < ε for n > N2 and η ∈ F .
Let N = max{N1, N2}. For η ∈ E \ F we have l(η) < ε. Note that for n > N we
have ln(η) < l(η) + ε = log ε+ ε for η ∈ ∂F and ln(η̂) > l(η̂)− ε = M − ε. Again, we
will not lose generality by assuming that log ε+ 2ε < M , so that log ε+ ε < M − ε.
It then follows from the concavity of ln that ln(η) < log ε+ε for η ∈ E \F . Therefore
for n > N we have

|eln(η) − el(η)| < eln(η) + el(η) < ε(1 + eε) for η ∈ E \ F ,

|eln(η) − el(η)| < ε < ε(1 + eε) for η ∈ F .
(2.47)

Since ε(1 + eε)→ 0 as ε→ 0, the proof follows.

2.2.2 Properties of the ∆P function

The function ∆P , given by (2.15), consists of two summands, shown below

TP (A) :=
∑
G∈A

P (G) · A∗
(
EP (T (X) |X ∈ G)

)
and HP (A) :=

∑
G∈A

P (G) logP (G)

(2.48)
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Definition 2.20. Let A and B be two partitions of the same space X . We say that A is
finer than B if for every A ∈ A there exist B ∈ B such that A ⊆ B. We can also say that
B is coarser that A. In such case we write A � B; this relation is a partial order in the
space of all partitions of X . We use the same definition with respect to P -partitions of X
(which are not necessarily partitions).

Lemma 2.21. The function TP (A) is decreasing with respect to partial order � on the
space of finite P–partitions of Rd.

Proof. Let A,B be two finite P -partitions of Rd and let A � B. By an easy induction
argument it is enough to show that for A,B ∈ A

P (A)A∗
(
EP (T (X) |X ∈ A)

)
+P (B)A∗

(
EP (T (X) |X ∈ B)

)
≥ P (C)A∗

(
EP (T (X) |X ∈ C)

)
(2.49)

where C = A ∪ B. The log-partition function A is convex (Theorem 1.2) and hence its
convex conjugate A∗ is also convex (Rockafellar, 1970, Theorem 12.2). Therefore

P (A)

P (C)
A∗
(
EP (T (X) |X ∈ A)

)
+
P (B)

P (C)
A∗
(
EP (T (X) |X ∈ B)

)
≥

≥ A∗
(P (A)

P (C)
EP (T (X) |X ∈ A) +

P (B)

P (C)
EP (T (X) |X ∈ B)

)
=

= A∗
(
EP (T (X) |X ∈ C)

)
(2.50)

and that concludes the proof.

Lemma 2.22. The function HP (A) is increasing with respect to partial order � on the
space of finite P–partitions of Rd.

Proof. Let A,B be two finite P -partitions of Rd and let A � B. By an easy induction
argument it is enough to show that for A,B ∈ A

P (A) logP (A) + P (B) logP (B) ≤ P (C) logP (C). (2.51)

We have

P (A) logP (A) + P (B) logP (B)− P (C) logP (C) = P (A) log
P (A)

P (C)
+ P (B) log

P (B)

P (C)
≤ 0

(2.52)
and the proof follows. The last inequality in (2.52) comes from P (A), P (B) ≤ P (C).

Lemma 2.21 and Lemma 2.22 motivate the usage of the symbol ‘∆P ’ – it represents a
function being a difference of two other functions, both decreasing with respect to partition
order. Hence optimizing the ∆P function can be thought as finding a balance between
coarse and fine partitions.

Remark 2.23. Let X ∼ P be a random vector with values in the observation space X
and let A be a P -partition of the observation space. Let X−1(A) = {X−1(A) : A ∈ A}.
Then we can write TP (A) more succinctly (and perhaps more artificially) as

TP (A) = EPA
∗(EP (T (X) |σ(X−1(A)))

)
. (2.53)
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Recall that convex conjugate A∗ of a convex function A is a convex function itself (Rock-
afellar, 1970). Therefore by (2.53) and Jensen’s inequality

TP (A) ≤ EP
(
EP (A∗

(
T (X)

)
|σ(X−1(A)))

)
= EP (A∗

(
T (X)

)
) (2.54)

Note that it is possible that EPA∗
(
T (X)

)
= ∞ (in particular, it may be the case that

A∗
(
T (x)

)
=∞ for all x ∈ Rd, as is the case with the Normal-Inverse-Wishart or Normal-

Inverse-Gamma models). However, if EPA∗
(
T (X)

)
<∞, then (2.54) gives an upper bound

on TP (A), and in turn an upper bound on ∆P (A) (since HP is a non-positive function).

2.2.3 The ∆P function in the Gaussian case

In this section we compute the exact formula for the ∆P function in Bayesian Mixture
Models with conjugate Normal priors, presented in Section 1.4.1. It should be noted that in
these cases this formula could be computed by a direct calculation on the exact formula for
the likelihood. For example, for the Normal-Normal model this direct approach was applied
in Rajkowski, 2019, Lemma 4.5 (for a special case of the Chinese Restaurant Process prior
on the space of partitions). However here we want to apply the more general formula from
Theorem 2.12 and hence our goal is simply to compute the value of A∗

(
EP (T (X) |X ∈

A)
)
for these model specifications. We also check that the assumptions (i) and (ii) of

Theorem 2.12 hold for these models if P is a distribution continuous with respect to
the Lebesgue measure (the regularity and the convexity assumptions were established in
Section 1.4.1).

The following standard result from the theory of exponential families will be useful. It
is a straightforward consequence of Theorem 1.6.4, Theorem 2.3.1 and Corollary 2.3.1 in
Bickel and Doksum (2015).

Theorem 2.24. Suppose P is the canonical exponential family generated by (T, h) and
that

(i) The natural parameter space, E, is open,

(ii) η is identifiable.

Let x be the observed data vector and set t0 = T (x). If CT is the convex support of the
distribution T (X) then η̂ = argmaxη∈E

(
η>T (x)−A(η)

)
exists and is unique if and only if

t0 ∈ C0
T where C0

T is the interior of CT . In such case η̂ satisfies

E η̂

(
T (X)

)
= t0. (2.55)

Corollary 2.25. With the assumptions of Theorem 2.24 we have A∗(t0) = t0
>η̂ − A(η̂),

where η̂ satisfies E η̂T (x) = t0.

Note 2.26. If P is a probability distribution continuous with respect to the Lebesge
measure, A ⊂ Rd is a P -measurable set and T (A) is not a singleton then EP (T (X) |X ∈
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A) ∈ C0
T and hence the assumption (i) of Theorem 2.12 is satisfied. This property is easily

verified by all the Normal models given below, hence we check only the assumption (ii) of
Theorem 2.12.

Normal-Normal

Assumption (ii) of Theorem 2.12. By investigation of (1.32) we have that [τ0, ζ0](µ0,Ψ0) =

[τ0(µ0,Ψ0)>, ζ0(µ0,Ψ0)>]> ∈ Ω for every (µ0,Ψ0) ∈ Rd×Sd+. It is clear that [τ0, ζ0](Rd×Sd+)

is an open subset of Ω and that for every P -measurable A we have
(
E(T (X) |X ∈ A),a

)
∈

[τ0, ζ0](Rd × Sd+), and hence our assumption is satisfied for r = 1.

Computation of A∗
(
EP (T (X) |X ∈ A)

)
. The computation of A∗

(
E(T (X) |X ∈ A)

)
is

also straightforward since η = θ = µ is the natural parameter. Let us recall (1.31) from
which T (x) = Σ−1

0 x and hence
E µT (x) = Σ−1

0 µ. (2.56)

Let t0 = EP (T (X) |X ∈ A). By Theorem 2.24, Σ−1
0 µ̂ = EP (Σ−1

0 X |X ∈ A). By the
linearity of the expected value this implies

µ̂ = EP (X |X ∈ A). (2.57)

Using (2.57) it is straightforward to verify that

t0
>µ̂ = µ̂Σ−1

0 µ̂. (2.58)

By (1.31) we have A(η) = B(θ) = 1
2µ
>Σ−1

0 µ and hence, using (2.58) and Corollary 2.25

A∗(t0) = µ̂Σ−1
0 µ̂− 1

2
µ̂Σ−1

0 µ̂ =
1

2
µ̂Σ−1

0 µ̂ =
1

2
‖EP (RX |X ∈ A)‖2, (2.59)

where R2 = Σ−1
0 . Therefore in the Normal-Normal case the ∆P function is equal to

∆NN
P (A) =

1

2

∑
A∈A

P (A) · ‖EP (RX |X ∈ A)‖2 +H(A). (2.60)

Note that

‖EP (RX |X ∈ A)‖2 = EP (‖RX‖2 |X ∈ A)− trVP (RX |X ∈ A) (2.61)

and ∑
A∈A

P (A)EP (‖RX‖2 |X ∈ A) = EP (‖RX‖2), (2.62)

hence in this case we can reformulate ∆NN
P to

∆NN
P (A) =

1

2
E P (‖RX‖2)− 1

2

∑
A∈A

P (A) · trVP (RX |X ∈ A) +H(A). (2.63)

It then follows that

TP (A) =
1

2
E P (‖RX‖2)− 1

2

∑
A∈A

P (A) · trVP (RX |X ∈ A) ≤ 1

2
E P (‖RX‖2), (2.64)

which could be also obtained from the more general form (2.54).
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Normal-Inverse-Wishart

Assumption (ii) of Theorem 2.12. The hyperparameter space for (µ0,Σ0, ν0, κ0) is
Rd × Sd+ × R+ × R+. The image [τ0, ζ0](Rd × Sd+ × R+ × R+) is open in Ω. If P is a
continuous distribution and P (A) > 0 then EP (XX> |X ∈ A) is positive definite matrix.
Then for r ≥ 2d+ 4 we can express

(
rEP (T (X) |X ∈ A), ra

)
as [τ0, ζ0](µ0,Σ0, ν0, κ0) for

appropriately chosen (µ0,Σ0, ν0, κ0) ∈ Rd×Sd+×R+×R+ (the assumption that r ≥ 2d+4

is important due to the first coordinate of ζ0). In other words,
(
rEP (T (X) |X ∈ A), ra

)
∈

[τ0, ζ0](Rd × Sd+ × R+ × R+), and the proof follows.

Computation of A∗
(
EP (T (X) |X ∈ A)

)
. Recall that the parameter space is Θ =

Rd ×Sd+ and it bijectively corresponds to the natural parameter space E ⊆ R
d(d+3)

2 , where
the bijection is given by η(θ) = η

(
µ,Λ

)
=
(
diag(Λ−1), low(Λ−1),Λ−1µ

)
. (See the beginning

of Section 1.4.1 for the definition of ‘diag’ and ‘low’.) Let x ∼ N (µ,Λ−1). By the well
known properties of the Normal distribution

E ηx = µ

E ηxx
> = Λ−1 + µµ>

(2.65)

Using the formula for T (x) in the NIW model (cf. (1.41)) and the linearity of the expected
value and low and diag operations:

E ηT (x) =

−
1
2diag(E ηxx

>)

− low(E ηxx
>)

E ηx

 =

−
1
2diag(Λ + µµ>)

− low(Λ + µµ>)

µ

 . (2.66)

Let A ⊆ Rd be a P -measurable set and let t0 = EP (T (X) |X ∈ A). Let θ̂ = (µ̂, Λ̂) = θ(η̂).
By Corollary 2.25 and the formula for A(η) = B(θ(η)) in (1.41)

A∗(t0) = t0η̂ − A(η̂) = t0η̂
> − 1

2
log |Λ̂| − 1

2
µ̂Λ̂−1µ̂ (2.67)

Note that Corollary 2.25 we have t0 = E η̂T (x) and hence by (2.66)

t0
>η̂ =

−
1
2diag(Λ̂ + µ̂µ̂>)

− low(Λ̂ + µ̂µ̂>)

µ̂

>
diag(Λ̂−1)

low(Λ̂−1)

Λ̂−1µ̂

 =

= −1

2
diag(Λ̂ + µ̂µ̂>)>diag(Λ̂−1)− low(Λ̂ + µ̂µ̂>)>low(Λ̂−1) + µ̂>Λ̂−1µ̂ =

= −1

2
tr(Λ̂Λ̂−1)− 1

2
tr(µ̂µ̂>Λ̂−1) + µ̂Λ̂−1µ̂ = −d

2
+

1

2
µ̂Λ̂−1µ̂.

(2.68)

Joining (2.67) with (2.68) we obtain

A∗(t0) = −d
2
− 1

2
log |Λ̂| (2.69)

We now write the relationship EP (T (X) |X ∈ A) = t0 = E η̂T (X) using (2.66) and the
formula for T (x) (cf. (1.41)):−

1
2diag(EP (XX> |X ∈ A))

− low(EP (XX> |X ∈ A))

EP (X |X ∈ A)

 =

−
1
2diag(Λ̂ + µ̂µ̂>)

− low(Λ̂ + µ̂µ̂>)

µ̂

 . (2.70)
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From (2.70) we deduce that

Λ̂ = EP (XX> |X ∈ A)− EP (X |X ∈ A)EP (X |X ∈ A)> = VP (X |X ∈ A) (2.71)

and hence, by (2.69)

A∗(t0) = −d
2
− 1

2
log |VP (X |X ∈ A)| (2.72)

Plugging this to (2.48) we get that for Normal-Inverse-Wishart model

∆NIW
P (A) = −1

2

∑
A∈A

P (A) ·
(
d+ log |VP (X |X ∈ A)|

)
+H(A) =

= −d
2
− 1

2

∑
A∈A

P (A) · log |VP (X |X ∈ A)|+H(A)

(2.73)

Note that for any x ∈ Rd we have

A∗(T (x)) = sup
(µ,Λ)∈Rd×Sd+

(
− 1

2
(x− µ)>Λ−1(x− µ)− 1

2
log |Λ|

)
=∞, (2.74)

since we can take µ = x and Λ of arbitrarily small norm. Hence the bound (2.54) for TP
cannot be applied in this case.

Normal-Inverse-Gamma

Assumption (ii) of Theorem 2.12. The hyperparameter space for (µ0,Ψ0, β0, γ0) is
Rd × Sd+ × R+ × R+. The image [τ0, ζ0](Rd × Sd+ × R+ × R+) is open in Ω. For r ≥ 2

we can express
(
rEP (T (X) |X ∈ A), ra

)
as [τ0, ζ0](µ0,Ψ0, β0, κ0) for appropriately chosen

(µ0,Ψ0, β0, γ0) ∈ Rd×Sd+×R+×R+ (the assumption that r ≥ 2 is important due to the first
coordinate of ζ0). In other words,

(
rEP (T (X) |X ∈ A), ra

)
∈ [τ0, ζ0](Rd×Sd+×R+×R+),

and the proof follows.

Computation of A∗
(
EP (T (X) |X ∈ A)

)
. Similarly to the case of the Normal-Normal

model, let us use R to denote the symmetric matrix that satisfies R2 = Σ−1
0 . Note that

in the Normal-Inverse-Gamma model, in which the distribution of x (given θ = (µ, λ)) is
N (µ, λΣ0), we have

E ηx
>Σ−1

0 x = E η‖Rx‖2 = tr
(
Vη(Rx)

)
+ ‖E ηRx‖2 =

= tr(λId) + ‖Rµ‖2 = dλ+ ‖Rµ‖2.
(2.75)

This, together with the formula for the sufficient statistic T (x) in this model (cf. (1.53))
implies

E ηT (x) =

[
−1

2E ηx
>Σ−1

0 x

Σ−1
0 E ηx

]
=

[
−1

2(dλ+ ‖Rµ‖2)

Σ−1
0 µ

]
. (2.76)

Let t0 = EP (T (X) |X ∈ A). By Theorem 2.24 we have t0 = E η̂T (x), which leads to[
−1

2EP (X>Σ−1
0 X |X ∈ A)

Σ−1
0 E P (X |X ∈ A)

]
=

[
−1

2(dλ̂+ ‖Rµ̂‖2)

Σ−1
0 µ̂

]
. (2.77)

41



in which (µ̂, λ̂) = θ(η̂). By (2.77) we get µ̂ = EP (X |X ∈ A) and

− d

2
λ̂ = −1

2
EP (‖RX‖2 |X ∈ A) +

1

2
‖Rµ̂‖2 = −1

2
trVP (RX |X ∈ A). (2.78)

Note that

t0
>η̂ =

[
−1

2(dλ̂+ ‖Rµ̂‖2)

Σ−1
0 µ̂

]
>

[
1/λ̂

µ̂/λ̂

]
=

= −d
2
− 1

2
‖Rµ̂‖2/λ̂+ ‖Rµ̂‖2/λ̂ = −d

2
+

1

2
‖Rµ̂‖2/λ̂

(2.79)

and hence, by Corollary 2.25, the formula for B(θ) in (1.53) and (2.78)

A∗(t0) =
(
− d

2
+

1

2
‖Rµ̂‖2/λ̂

)
−
(d

2
log λ̂+

1

2
µ̂>Σ−1

0 µ̂/λ̂
)

= −d
2
− d

2
log λ̂ =

= −d
2
− d

2

(
log trVP (RX |X ∈ A)

)
− log d

(2.80)

which leads us to

∆NIG
P (A) = −d

2

(
1− log d

)
− 1

2

∑
A∈A

P (A) · log trVP (RX |X ∈ A) +H(A). (2.81)

Note that, similarly as in the Inverse-Wishart case, for any x ∈ Rd we have

A∗(T (x)) = sup
(µ,λ)∈Rd×R+

(
− 1

2λ
(x− µ)>Σ−1

0 (x− µ)− d

2
log λ

)
=∞, (2.82)

since we can take µ = x and arbitrarily small λ. Hence the bound (2.54) for TP cannot be
applied in this case.

Maximisation of ∆P in the Normal when P = Unif([0, 1])

The ∆P function was derived as a asymptotic limit of the logarithm of the BMM posterior
score of an induced partition, when the data is independently sampled from some distri-
bution P . In our quest of describing the MAP clustering, it therefore seems informative to
consider partitions of the observation space that yield the highest posterior score – which
necessarily are also the maximisers of the ∆P function, as is easily deduced from Corol-
lary 2.13. For the Gaussian models, a computationally tractable example, in which we are
able to describe the maximiser exactly (or prove that it does not exist), is the case when
the input distribution P is the uniform distribution on the segment [0, 1]. Note that in the
one-dimensional case the Normal-Inverse-Wishart and Normal-Inverse-Gamma models are
equivalent and hence we will consider only the former there.

We start with Lemma 2.27 which in the case of the uniform input distribution P will allow
us to narrow the search for the maximiser of the ∆P function in the conjugate Normal
models to the divisions of [0, 1] into subsegments. Basically it says that when a distribution
P is continuous with respect to the Lebsgue measure on a line, then segments are those sets
that minimise the variance given their probability (which is quite natural and expected).
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Lemma 2.27. Let P have a density with respect to the Lebesgue measure on R. Let A
by any P -measurable set and let SA be a closed segment (i.e. a set of the form [a, b] for
a < b) centered at eA := EP (X |X ∈ A) such that P (SA) = P (A). Then VarP (X |X ∈
A) ≥ VarP (X |X ∈ SA) and the equality holds only if P (A \ SA) = P (SA \A) = 0.

Proof. Note that the existence of SA is guaranteed by the continuity of P . Let rA be the
radius of SA (i.e. rA is half the length of segment SA). We have

E (X − eA)21X∈A\SA ≥ E r2
A1X∈A\SA = r2

AP (A \ SA). (2.83)

with the equality only if P (A \ SA) = 0. Similarly

E (X − eA)21X∈SA\A ≤ E r2
A1X∈SA\A = r2

AP (SA \A). (2.84)

Since P (A) = P (SA) we have that P (A \SA) = P (SA \A) and hence, by (2.84) and (2.83)
we get

E (X − eA)21X∈A\SA ≥ E (X − eA)21X∈SA\A. (2.85)

Adding E (X − eA)21X∈A∩SA to the both sides of (2.85) yields

E (X − eA)21X∈A ≥ E (X − eA)21X∈SA ≥ E (X − eSA)21X∈SA , (2.86)

where eSA := E (X |X ∈ SA). By dividing (2.86) by P (A) = P (SA) we get VarP (X |X ∈
A) ≥ VarP (X |X ∈ SA) (with the equality only if P (A \ SA) = 0). This finishes the proof
of Lemma 2.27.

The condition P (A \SA) = P (SA \A) = 0 is equivalent to dP (A,SA) = 0, where dP is the
symmetric distance pseudometric, defined below.

Definition 2.28. Let M be a σ-field on Rd and µ be a measure on (Rd,M). Then the
function dµ : M2 → R defined by dµ(A,B) = µ

(
(A \ B) ∪ (B \ A)

)
is a pseudometric on

M, which by definition means that it is symmetric, nonnegative and satisfies the triangle
inequality. It is called the symmetric difference metric. The fact that it is a pseudometric
is explained in the beginning of Section 13, Chapter III of Doob (1994). Note that since
dµ(A,B) = 0 does not imply A = B, formally dµ is not a metric onM. Although for our
consideration the difference of measure 0 is of no importance, we keep on using the proper
pseudometric term in this context.

The following Corollary 2.29 states that the only possible maximisers of the ∆P function
in the Gaussian case (when P is the uniform distribution on [0, 1]) are basically (up to dP
distance) the divisions of [0, 1] into subsegments.

Corollary 2.29. Consider the function ∆P (A) given by (2.73) or (2.63) and let P be
the uniform distribution on the segment [0, 1]. If Â is any maximiser of ∆P among finite
P -partitions of the segment [0, 1] then dP (A,SA) = 0 for any A ∈ Â, where SA is defined
as in the formulation of Lemma 2.27.
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Proof. Assume that Â = {A1, . . . , AK} is the maximiser of the function ∆P among all finite
P -partitions of [0, 1]. Let us extend the domain of the function ∆P not only to finite P -
partitions of the segment [0, 1], but also to simply finite collections of P -measurable subsets
of [0, 1]. Let S = {SAi : i = 1, . . . ,K}. Since for every A ∈ Â we have P (SA) = P (A) and
VarP (SA) ≤ VarP (A), it follows from the formulas (2.73) and (2.63) that in these cases
∆P (Â) ≤ ∆P (S). Now let S ′ = {S1, . . . , SK} be any partition of the segment [0, 1] into
subsegments such that P (Si) = P (SAi) (i.e. the lengths of segments Si and SAi are the
same). Such partition exists, since

∑K
i=1 P (SAi) =

∑K
i=1 P (Ai) = 1. By the properties

of the uniform distribution we also have VarP (X |X ∈ Si) = VarP (X |X ∈ SAi). It
follows that in the Gaussian case ∆P (S ′) = ∆P (S) ≥ ∆P (Â). On the other hand, Â
is the maximiser of ∆P , so ∆P (S ′) = ∆P (Â). Using the condition for the equality in
Lemma 2.27, we get dP (A,SA) = 0 for every A ∈ Â.

Normal-Normal model. Let S = {S1, . . . , SK} be a partition of [0, 1] into subsegments
of length p1, . . . , pK respectively. Note that VarP (X |X ∈ Si) = p2

i v, where v = 1
12 is the

total variance in the segment, and EP (‖RX‖2) = R2EPX
2 = 1

3 . It follows from (2.63)
that

∆NN
P (S) =

R2

6
− 1

2

K∑
i=1

pi ·R2 · p2
i v +

K∑
i=1

pi log pi. (2.87)

Proposition 2.30. The values of K and p1, . . . , pK (such that
∑K

i=1 pi = 1) that maximise
(2.87) satisfy

K̂ ∈ {bR2vc, dR2ve}, p̂1 = . . . = p̂K̂ =
1

K̂
(2.88)

(where b·c and d·e are the floor and the ceiling functions respectively).

Proof. Although at first sight this seems to be a standard problem solved by the Lagrange
multipliers technique, such approach has some subtle difficulties. To circumvent them
carefully, we will optimize (2.87) ‘locally’, focusing on two segments at a time, leaving
others unchanged.

Let FK(p1, . . . , pK) be the right-hand side of (2.87). We now prove that we increase FK by
replacing arguments (p1, p2) by at least one of (0, p1 +p2) or

(p1+p2

2 , p1+p2

2

)
. More precisely,

we show that

if p1 6= p2 and p1p2 6= 0 then

FK(p1, . . . , pK) < max
{
FK(0, p1 + p2, p3, . . . , pK), F

(p1 + p2

2
,
p1 + p2

2
, p3, . . . , pK

)}
.

(2.89)

Let us consider p1, . . . , pK as fixed and let f(p) = FK(p, p1 + p2 − p, p3, . . . , pK), where
0 ≤ p ≤ p1 + p2. For simplicity of notation, let q = p1 + p2 − p. By direct calculation

f ′(p) = −3R2v

2

(
p2 − q2

)
+ log p− log q. (2.90)
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It follows that

lim
p→0

f ′(p) = −∞, lim
p→p1+p2

f ′(p) =∞, f ′
(
p1 + p2

2

)
= 0. (2.91)

Again, direct calculation leads

f ′′(p) = −3R2v +
1

p
+

1

q
, f ′′′(p) = − 1

p2
+

1

q2
. (2.92)

Hence f ′′′(p) = 0 implies p = q = p1+p2

2 , i.e. there is only one root of f ′′′(p) = 0 on
(0, p1 + p2). By applying Rolle’s theorem twice we get that there are at most two roots of
f ′′(p) = 0 in (0, p1 + p2) and, in turn,

there are at most three roots of f ′(p) = 0 in (0, p1 + p2). (2.93)

Now, from (2.91), (2.93) and standard one-variate analysis we deduce that f(p) achieves
its maximal value for p = 0, p = p1 + p2 or p = p1+p2

2 . By translating this into function
FK , we get (2.89).

Let us come back to the initial problem. The function FK is a continuous function on
the compact set 4K = {(p1, . . . , pK) :

∑K
i=1 pi = 1,∀i≤Kpi ≥ 0}. Therefore it achieves its

maximal value for some (p̂1 . . . , p̂K) ∈ 4K . It follows from (2.89) and the symmetry of FK
that there exist I ⊆ [n] such that p̂i = 1

|I| for i ∈ I and p̂i = 0 for i /∈ I. Note that

FK(p̂1, . . . , p̂K) = F|I|
( 1

|I|
, . . . ,

1

|I|
)

(2.94)

and therefore it is left to maximise FK
(

1
K , . . . ,

1
K

)
for K ∈ N. We have

FK

(
1

K
, . . . ,

1

K

)
=
R2

6
− R2v

2

(
1

K

)2

+ log
1

K
. (2.95)

The function x 7→ R2

6 −
R2v
2x2 − log x has its only extreme value in x0 =

√
R2v, which is

easily established by calculation of the derivative. Hence the optimal number of clusters is
K̂ = bx0c or K̂ = dx0e.

It is worth pointing out that if x0 ∈ N then the variance of every segment becomes simply
1
R2 = Σ0. It can be said that in this case the optimal partition ‘adapts’ itself to the
covariance hyperparameter Σ0.

Normal Inverse-Wishart Let S = {S1, . . . , SK} be a partition of [0, 1] into subseg-
ments of length p1, . . . , pK respectively. Recall that VarP (X |X ∈ Si) = p2

i v, where v = 1
12

is the total variance in the segment. It follows from (2.73) that

∆NIW
P (S) = −d

2
− 1

2

∑
i≤n

pi log(p2
i v) +

∑
i≤n

pi log pi =
log(12)

2
. (2.96)

Hence every partition of [0, 1] into subsegments gives the same ∆NIW
P score. This shows

that the maximiser is not unique in this case and, indeed, we have constructed an infinite
family of maximisers; we can find a maximiser with arbitrarily many clusters.
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The result is quite intuitive; with no prior suggestion of preference, the classifier should
have no reason to express preference between a single cluster [0, 1] and two clusters, [0, 0.5]

and [0.5, 1].
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Chapter 3

Asymptotic Results for MAP
clustering in the Normal-Normal
BMM

In Section 2.2 we showed the approximation to the logarithm of the joint probability
Q of clustering and data (formula (1.8)) in the conjugate exponential BMM, applied to a
dataset sampled independently from some probability distribution P on Rd and a clustering
induced by some finite P -partition of the observation space. This led us to a formulation
of a function ∆P on the space of finite P -partitions of the observation space. Maximisers
of this function are partitions that can induce ‘best’ clusterings in terms of the posterior
score Q. This does not imply that finite P -partitions that maximise the ∆P function will
induce the MAP clustering. In the first place, we do not even know if the MAP clustering
is induced by any partition of the observation space. Potentially this clustering can change
significantly every time a new observation is registered. On the other hand, as showed in
Section 2.1, the MAP clustering possesses nice geometric properties, namely the clusters
are separated by the contour lines of the linear functional of the sufficient statistic in the
model. This can give us a hope that the limit of the MAP clusterings exists and exhibits
some of the properties of the induced partitions. This line of research was pursued in
Rajkowski (2019) with some success, for the Normal-Normal BMM when the prior on the
space of clusterings is the Chinese Restaurant Process, given by (1.14). In this case, when
the input distribution P has a bounded support, then we can connect the limits of the
MAP clusterings to the maximisers of the ∆NN

P function. This chapter presents the details
of this result from Rajkowski (2019).

It is important to underline that for this chapter we restrict our attention to the
Normal-Normal BMM in which the prior on the space of clusterings is the
Chinese Restaurant Process. Here we note that for the Normal-Normal model the
marginal density gNN,k given by (1.34) depends on the mean location hyperparameter µ0

only via the shift x 7→ x−µ0. (This applies also to the two remaining Normal models from
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Section 1.4.1, but this is not the concern of this chapter). Therefore if we are interested
in the clustering properties of the MAP clusterings in this model, we can without loss
of generality consider the case µ0 = 0. The properties for the general case follow by an
easy transition. In this case, using the definitions (1.8) with (1.34) and (1.14) we can
reformulate the score function Q so that it will be more convenient for further analysis.

Remark 3.1. The conditional probability of partition I in the zero-mean Normal-Normal
BMM model with the Chinese Restaurant Process prior on the space of partitions, given
the observation vector x = (xj)

n
j=1, is proportional to

Q̃x(I) := C |I|
∏
I∈I

|I|!
|I|(d+2)/2 detR|I|

· exp
{1

2

∑
I∈I
|I| ·

∥∥R−1
|I|R

2xI
∥∥2
}

(3.1)

where C = α/
√

det Ψ0, R = Σ
−1/2
0 , Rk = (Σ−1

0 + Ψ−1
0 /k)1/2 for k ∈ N, ‖ · ‖ is the standard

Euclidean norm in Rd.

Proof. Firstly note that

Ψ−1
k = kR2

k and hence Σ−1
0 ΨkΣ

−1
0 = R2R

−2
k

k
R2 and det Ψk = k−d(detRk)

−2. (3.2)

It follows from (1.34) that for µ0 = 0:

gNN,k(x | I) = (2π|Σ0|)−dn/2
|Ψk||I|/2

|Ψ0||I|/2
exp

{
− 1

2

n∑
i=1

xi
>Σ−1

0 xi

}
exp

{1

2

∑
I∈I
|I|2xI>Σ−1

0 Ψ|I|Σ
−1
0 xI

}
=

= (2π|Σ0|)−dn/2
|Ψk||I|/2

|Ψ0||I|/2
exp

{
− 1

2

n∑
i=1

‖Rxi‖2
}

exp
{1

2

∑
I∈I
|I|‖R−1

|I|R
2xI‖2

}
=

(3.3)

From (1.14) we can write
Pπ,n(I) ∝ α|I|

∏
I∈I

(|I| − 1)! (3.4)

Now Q̃x(I) ∝ Q(x, I) follows from (3.2), (3.3), (3.4) and the formula (1.8).

The MAP partition of [n] with observed x = (xi)
n
i=1 is of course not affected by the

proportional change of the score formula and hence it is also the maximiser of Q̃x(·).

3.1 Proportional growth of cluster sizes

In the sequel, we assume that observations come from iid sampling (which is pursued
in Section 3.2 and further). The main goal is to prepare the ground for analysing the
limit behaviour of the MAP clustering. To establish this, we want to prove that the
sizes of the clusters in the MAP clustering grow proportionally to the quantity of data.
Proposition 3.2 gives a partial answer. It states that when the sequence of sample ‘second
moments’ is bounded then the size of the smallest cluster in the MAP partition among
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those that intersect a ball of given radius is comparable with the sample size. The proof of
Proposition 3.2 is lengthy and consists of several auxiliary lemmas. It is therefore presented
as a separate subsection.

Proposition 3.2. Let supn
1
n

∑n
i=1 ‖xn‖2 < ∞ and let În be any MAP partition of

(x1, . . . , xn) in Normal-Normal BMM with the Chinese Restaurant prior on the space of
partitions (i.e. any partition that maximises (3.1)). Then

lim inf
n→∞

min{|J | : J ∈ În, ∃j∈J‖xj‖ < r}/n > 0

for every r > 0.
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(c) n = 1000

Figure 3.1: Illustration of Proposition 3.2 and Corollary 3.3. The red circle is arbitrarily fixed
and the clusters it intersects are coloured. The number of observations in each coloured cluster is
proportional to n and the number of these clusters remains bounded as n→∞.

The assumption supn
1
n

∑n
i=1 ‖xn‖2 <∞ allows the data sequence to be unbounded, while

ensuring that it does not grow too quickly. It is easy to see that an assumption of this kind
is necessary, otherwise it would be possible for each new observation to be large enough to
create a new singleton cluster; such example is shown in Proposition 3.12.

A simple consequence of Proposition 3.2 is that under these assumptions the number of
components in the MAP partition that intersect a given ball is almost surely bounded.

Corollary 3.3. If
(

1
n

∑n
i=1 ‖xi‖2

)∞
n=1

is bounded then for every r > 0 the number of
clusters that intersect B(0, r) is bounded, i.e.

lim sup
n→∞

|{J ∈ În : ∃j∈J‖xj‖ < r}| <∞,

where În is the same as in Proposition 3.2.

Proof. The proof follows easily from the fact that the size of the smallest cluster that
intersects B(0, r) is bounded from above by the number of observations divided by the
number of clusters intersecting the ball.

Proof of Proposition 3.2
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For the reader’s convenience the proof is split into three parts. In the subsection which
we denote ‘Preliminary lemmas’, we list some facts which are important for our analysis.
The subsection ‘Important properties of the MAP partition’ presents lemmas regarding the
MAP, which are further used in the subsection ‘Concluding the proof of Proposition 3.2’,
where the actual proof of the main proposition is finally presented.

Preliminary lemmas

Remark 3.4. Let Rm be defined as in the statement of Remark 3.1, then

(a) detRm is a decreasing sequence that converges to detR

(b) if ym → y then Rmym → Ry

Proof. The proof is straightforward and therefore omitted.

Lemma 3.5. Let n1, . . . , nk ∈ N, n1 ≤ n2 ≤ . . . ≤ nk and n =
∑k

i=1 ni = ank + r, where
a ∈ N, r < nk. Then

∏k
i=1 ni! ≤ (nk!)

ank(nk − 1) . . . (nk − r + 1) (if r = 0, the right-hand
side being simply (nk!)

a).

Proof. We prove by induction on nk that the sequence

b = (1, . . . , nk, 1, . . . , nk, . . . , 1, . . . , nk︸ ︷︷ ︸
a

, nk − r + 1, nk − r + 2, . . . , nk)

may be ordered so that it is term-wise not less than c = (1, . . . , n1, 1, . . . , n2, . . . , 1, . . . , nk).
Clearly the existence of such ordering establishes the lemma. For nk = 1 this is self evident.
For nk > 1 we apply ‘greedy’ approach. Assume r > 0 (the case r = 0 follows in a
similar way). Put all nk’s from b in the places of nk, nk−1, . . . , nk−a in c. The fact that
nk ≥ nk−1 ≥ . . . ≥ n1 ensures that it is possible and all of nk − 1, nk−1 − 1, . . . , nk−a −
1, nk−a−1, . . . , n1 are less or equal to nk−1. Therefore we may apply inductive assumptions
to these numbers thus finishing the proof of the lemma.

Lemma 3.6. For every ε > 0 there exist K ∈ N such that if n1, . . . , nk ≤ n/K, where

n =
∑k

i=1 ni, then
n

√∏k
i=1 ni!/n! < ε.

Proof. Assume that n1 ≤ . . . ≤ nk ≤ n/K and let n = ank + r, where 0 ≤ r < nk. By
Lemma 3.5 we get that∏k

i=1 ni!

n!
≤ (nk!)

a(nk − r + 1) . . . nk
n!

≤ 1

1nk
· 1

2nk
· . . . · 1

ank
· 1

(a+ 1)r
≤ 1

(a!)nk
. (3.5)

Therefore
n

√∏k
i=1 ni!

n!
≤ 1

n
nk

√
a!

=
1

n
nk

√
b nnk c!

. (3.6)

For K large enough this might be arbitrarily small, so the proof follows.
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Important properties of the MAP partition

Let us fix a sequence x = (xn)∞n=1 in Rd and let În by any MAP partition of (x1, . . . , xn). In
order to facilitate the analysis, we introduce the following notation: let mn = minJ∈În |J |
and Mn = maxJ∈În |J | be the minimum and the maximum cluster size in the partition În.
Moreover for r > 0 let

m(r)
n = min{|J | : J ∈ În, ‖xJ‖ < r}, M (r)

n = max{|J | : J ∈ În, ‖xJ‖ < r} (3.7)

be the minimal and the maximal cluster size in the partition În among the clusters whose
center of mass lies in B(0, r). Finally let

m[r]
n = min{|J | : J ∈ În,∃j∈J‖xj‖ < r}, M [r]

n = max{|J | : J ∈ În,∃j∈J‖xj‖ < r} (3.8)

be the minimal and the maximal cluster size in the partition În among the clusters that
intersect the ball B(0, r).

Let Jmn , JMn ∈ În satisfy |Jmn | = mn and |JMn | = Mn. We choose Jm,(r)n , JM,(r)
n , Jm,[r]n and

J
M,[r]
n similarly (e.g. Jm,(r)n ∈ În satisfies

∥∥x
J
m,(r)
n

∥∥ < r and |Jm,(r)n | = m
(r)
n ). Note that

this choice may not be unique.

Proposition 3.7. If
(

1
n

∑n
i=1 ‖xi‖2

)∞
n=1

is bounded then lim infn→∞Mn/n > 0.

Proof. Suppose that lim inf Mn/n = 0. Then there exists an increasing sequence (nk)k∈N

such that Mnk/nk < 1/k for every k ∈ N. We now prove that

lim
k→∞

nk

√
Q̃x(Înk)/Q̃x({[nk]}) = 0,

hence obtaining a contradiction with the definition of the MAP partition. By (3.1)

nk

√
Q̃x(Înk)/Q̃x([nk]) =

nk

√
C |Înk |/C ·

nk

√√√√ ∏
J∈Înk

|J |!/nk! · nk

√√√√ nk(d+2)/2 detRnk∏
J∈Înk

|J |(d+2)/2 detR|J |
·

· exp
{ 1

2nk

( ∑
J∈Înk

|J |
∥∥R−1
|J |R

2xJ
∥∥2 − nk

∥∥R−1
nk
R2x[nk]

∥∥2)}
.

(3.9)

Firstly note that

lim sup
k→∞

nk

√
C |Înk |/C = lim sup

k→∞
C(|Înk |−1)/nk ≤ max{1, C}. (3.10)

By Lemma 3.6, it follows that, under the assumptions,

lim
k→∞ nk

√√√√ ∏
J∈Înk

|J |!/nk! = 0. (3.11)
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We have nk
√
nk → 1, Rnk → R and detRnk ≥ detR. Hence

lim sup
k→∞

nk

√√√√ nk(d+2)/2 detRnk∏
J∈Înk

|J |(d+2)/2 detR|J |
≤

lim supk→∞
nk

√
nk(d+2)/2 detRnk

lim infk→∞
nk
√

detR|Înk |
≤ 1

min{1, detR}
.

(3.12)

Recall the inequality between linear and quadratic means which states that for every
sequence α1, . . . , αl of real numbers we have

∣∣∣∑l
i=1 αi
l

∣∣∣ ≤
√∑l

i=1 α
2
i

l
or equivalently: l ·

(∑l
i=1 αi
l

)2
≤

l∑
i=1

α2
i . (3.13)

If we apply (3.13) to every coordinate of vectors y1, . . . , yd ∈ Rd and sum up obtained
inequalities we obtain that

l ·
∥∥∥∑l

i=1 yi
l

∥∥∥2
≤

l∑
i=1

‖yi‖2. (3.14)

Therefore, setting yi = R−1
|J |R

2xi and using the linearity of multiplication by matrix∑
J∈În

|J |
∥∥R−1
|J |R

2xJ
∥∥2 ≤

∑
J∈În

∑
j∈J

∥∥R−1
|J |R

2xj
∥∥2

(3.15)

and hence, using Lemma A.6, we have∑
J∈În

|J |
∥∥R−1
|J |R

2xJ
∥∥2 ≤

∑
J∈În

∑
j∈J

∥∥R−1
|J |R

2xj
∥∥2 ≤

∑
J∈În

∑
j∈J

∥∥R−1R2xj
∥∥2 ≤ ‖R‖22

∑
i∈[n]

‖xi‖2,

(3.16)

where ‖ · ‖2 is a matrix norm induced by ‖ · ‖ (i.e. ‖A‖2 = sup‖x‖=1 ‖Ax‖). From this and
assumptions of the Proposition we can easily deduce that

1

nk

( ∑
J∈Înk

|J |
∥∥R−1
|J |R

2xJ
∥∥2 − nk

∥∥R−1
nk
R2x[nk]

∥∥2) is bounded from above. (3.17)

Gathering (3.9), (3.10), (3.11), (3.12) and (3.17) together, we obtain that

lim sup
k→∞

nk

√
Q̃x(Înk)/Q̃x([nk]) = 0.

Hence there exists a sufficiently large n that satisfies P(În |x) < P({[n]} |x). This is
a contradiction.

Corollary 3.8. If
(

1
n

∑n
i=1 ‖xi‖2

)∞
n=1

is bounded then there exist r0 > 0 such that ‖xJMn ‖ ≤
r0 for all n > 0 (and arbitrary choice of JMn in case of ambiguity).

Proof. By Proposition 3.7 we know that γ := lim infn→∞Mn/n > 0, so there exists N > 0

such that Mn/n > γ/2 for n > N . Suppose that there exists a sequence (nk)
∞
k=1 such that

‖xJMnk‖ ≥ k for all k ∈ N. Note that for nk > N

1

nk

nk∑
i=1

‖xi‖ ≥
1

nk

∑
i∈JMnk

‖xi‖ ≥
1

nk

∥∥∥ ∑
i∈JMnk

xi

∥∥∥ =
Mnk

nk

∥∥xJMnk∥∥ ≥ γ/2 · k, (3.18)
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which, together with the inequality between the arithmetic and quadratic mean, contradicts
the assumption that the sequence

(
1
n

∑n
i=1 ‖xi‖2

)∞
n=1

is bounded. The proof of the Lemma
now follows directly.

Proposition 3.9. If
(

1
n

∑n
i=1 ‖xi‖2

)∞
n=1

is bounded then lim infn→∞m
(r)
n /n > 0 for every

r > 0.

Proof. Firstly note that it is enough to prove the statement of Proposition 3.9 for all r > r0

for some given r0 > 0 – indeed, for fixed n ∈ N, m(r)
n is decreasing with r. We take r0 from

the statement of Corollary 3.8.

Fix r > r0. By the definition of r0 we have JM,(r)
n = JMn , so M (r)

n = Mn and by Proposi-
tion 3.7 lim infn→∞M

(r)
n /n > 0. Now we prove that lim infn→∞m

(r)
n /n > 0. Suppose the

contrary. We show that for sufficiently large n, the posterior probability of Ĵn increases if
we create one cluster out of Jm,(r)n and JM,(r)

n . Let Ĩn be a partition of [n] obtained from
În by joining Jm,(r)n with JM,(r)

n , i.e.

Ĩn = În \ {Jm,(r)n , JM,(r)
n } ∪ {Jm,(r)n ∪ JM,(r)

n }. (3.19)

In order to simplify the notation, we write m,M instead of m(r)
n ,M

(r)
n respectively, re-

membering that they are both functions of n. Similarly let us write xm, xM and xm∪M
instead of x

J
m,(r)
n

,x
J
M,(r)
n

and x
J
m,(r)
n ∪JM,(r)n

. When taking a quotient Q̃x(În)/Q̃x(Ĩn |x)

most factors in (3.1) cancel out, giving

Q̃x(În)

Q̃x(Ĩn)
= C

m!M !

(m+M)!

(
m+M

mM

)(d+2)/2 detRm+M

detRm · detRM
· exp {Dn}1/2 , (3.20)

where

Dn = m
∥∥R−1

m R2xm
∥∥2

+M
∥∥R−1

M R2xM
∥∥2 − (m+M)

∥∥R−1
m+MR

2xm∪M
∥∥2
. (3.21)

By Remark 3.4 we have detRm+M ≤ detRm and detRM ≥ R and hence

detRm+M

detRm · detRM
≤ (detR)−1. (3.22)

Let I be the identity matrix and let U = Ψ−1
0 and V be a symmetric matrix such that

V 2 = R−1U2R−1. Using Lemma A.7 we get

(m+M)I − (m+M)R(R−1
m+M )2R = (m+M)

(
I −RR−2

m+MR
)

=

= (m+M)
(
I −

(
I +R−1U2R−1/(m+M)

)−1
)

=

= V
(
I + V 2/(m+M)

)−1
V

(3.23)

and therefore

(m+M)
∥∥Rxm∪M∥∥2 − (m+M)

∥∥R−1
m+MR

2xm∪M
∥∥2

=

= xm∪M
>RV

(
I + V 2/(m+M)

)−1
V Rxm∪M ≤ ‖V R‖22r2.

(3.24)

53



Moreover it is straightforward to verify that∥∥R−1
m R2xm

∥∥2 ≤
∥∥Rxm∥∥2

,
∥∥R−1

M R2xM
∥∥2 ≤

∥∥RxM∥∥2
, (3.25)

and

m
∥∥Rxm∥∥2

+M
∥∥RxM∥∥2 − (m+M)

∥∥Rxm∪M∥∥2
=

mM

m+M

∥∥R(xm − xM )
∥∥2 ≤

≤ m
∥∥R(xm − xM )

∥∥2 ≤ m‖R‖2(‖xm‖+ ‖xM‖)2 ≤ m‖R‖2 · 4r2,

(3.26)

By Lemma A.6, together with (3.24), (3.25) and (3.26),

Dn ≤ m‖R‖22 · 4r2 + ‖V R‖22r2. (3.27)

Stirling formula, which is valid for every n ∈ N (cf. Feller (1968)), states that
√

2πn(n/e)ne
1

12n+1 < n! <
√

2πn(n/e)ne
1

12n . (3.28)

This gives:

m!M !

(m+M)!
≤
√

2π

(
mM

m+M

)1/2 mmMM

(m+M)(m+M)
e ≤
√

2πe

(
mM

m+M

)1/2 (m
M

)m
. (3.29)

Now by applying (3.22), (3.27) and (3.29) to (3.20) we obtain that for constants C ′ and
C ′′, given by

C ′ = C
√

2π(detR)−1 exp{‖V R‖22r2}, C ′′ = exp{‖R‖22 · 4r2}, (3.30)

such that

lim inf
n→∞

Q̃x(În)

Q̃x(Ĩn)
≤ lim inf

n→∞
C ′
(
m+M

mM

)(d+1)/2(mC ′′
M

)m
= 0, (3.31)

as lim infn→∞m/M → 0. Hence there exist n such that the posterior probability of În
is smaller than the posterior probability of Ĩn. This contradicts the definition of În and
finishes the proof of the Lemma.

Concluding the proof of Proposition 3.2

Assume that
(

1
n

∑n
i=1 ‖xi‖2

)∞
n=1

is bounded. We want to prove that lim infn→∞m
[r]
n /n > 0

for every r > 0.

Take r0 from the statement of Corollary 3.8. Note that, as in proof of Proposition 3.9 it is
enough to prove the statement of Proposition 3.2 for r > r0.

Fix r > r0. Suppose that lim infn→∞m
[r]
n /n = 0 and let (nk)

∞
k=1 be a sequence such that

limk→∞m
[r]
nk/nk = 0. This implies that

lim
k→∞

∥∥x
J
m,[r]
nk

∥∥ =∞ (3.32)

(otherwise we would obtain a contradiction with Proposition 3.9). Let

Ian = {j ∈ Jm,[r]n : ‖xj‖ ≤ r}, Ibn = {j ∈ Jm,[r]n : ‖xj‖ > r}. (3.33)
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Consider a partition Ĵn obtained from În by taking Ian from J
m,[r]
n and adding it to JMn ,

i.e.
Ĵn = În \ {Jm,[r]n , JMn } ∪ {Jm,[r]n \ Ian, JMn ∪ Ian}. (3.34)

When taking a quotient Q̃x(În)

Q̃x(Ĵn)
most factors in (3.1) cancel out, giving

Q̃x(În)

Q̃x(Ĵn)
=

(a+ b)!M !

b!(a+M)!

(
b(a+M)

(a+ b)M

)(d+2)/2 detRb · detRa+M

detRa+b · detRM
· exp

{
1

2
Ďnk

}
, (3.35)

where M = |JMnk |, a = |Iank |, b = |Ibnk | (in order to simplify the notation we skip the index
nk) and

Ďnk = (a+ b)
∥∥R−1

a+bR
2xa∪b

∥∥2
+M

∥∥R−1
M R2xM

∥∥2−

− b
∥∥R−1

b R2xb
∥∥2 − (a+M)

∥∥R−1
a+MR

2xa∪M
∥∥2
.

(3.36)

in which xa∪b = xIank∪I
b
nk

and we define xb,xM ,xa∪M similarly. Note that

(a+ b)!M !

b!(a+M)!
=

(b+ 1)(a)

(M + 1)(a)
<

b+ 1

M + 1

k→∞−→ 0, (3.37)

since limk→∞(a + b)/nk = limk→∞m
[r]
nk/nk = 0 and lim infnM/n > 0. For the similar

reason
b(a+M)

(a+ b)M
<
a+M

M

k→∞−→ 1. (3.38)

Moreover, by Remark 3.4 we have

detRb · detRa+M

detRa+b · detRM
≤ detR2

1

detR2
. (3.39)

Now let us investigate Ďn. The notation is easier after a linear substitution yi = R2xi (so
that yI = R2xI), hence obtaining

Ďnk = (a+b)
∥∥R−1

a+bya∪b
∥∥2

+M
∥∥R−1

M yM
∥∥2−b

∥∥R−1
b yb

∥∥2− (a+M)
∥∥R−1

a+Mya∪M
∥∥2
. (3.40)

Note that

(a+ b)
∥∥R−1

a+bya+b

∥∥2 − b
∥∥R−1

b yb
∥∥2

= (a+ b)
∥∥∥R−1

a+b

( a

a+ b
ya +

b

a+ b
yb

)∥∥∥2
− b
∥∥R−1

b yb
∥∥2

=

=
1

a+ b

∥∥R−1
a+b(aya + byb)

∥∥2 − b
∥∥R−1

b yb
∥∥2 ≤

=
1

a+ b

(
a2
∥∥R−1

a+bya
∥∥2

+ 2ab
∥∥R−1

a+bya
∥∥∥∥R−1

a+byb
∥∥+ b2

∥∥R−1
a+byb

∥∥2−

− b(a+ b)
∥∥R−1

b yb
∥∥2)

=

=
1

a+ b

(
a2
∥∥R−1

a+bya
∥∥2

+ 2ab
∥∥R−1

a+bya
∥∥∥∥R−1

a+byb
∥∥− ybT1yb

)
(3.41)

where T1 = b(a + b)R−2
b − b

2R−2
a+b. For two positive definite matrices M1,M2 we write

M1 �M2 when M1 −M2 is positive definite. If A,B are two invertible matrices then

A−1 −B−1 = B−1(B −A)A−1 (3.42)
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and hence

Ta,b = b(a+ b)(R2 + U2/b)−1 − b2
(
R2 + U2/(a+ b)

)−1
=

= b2(a+ b)(bR2 + U2)−1 − b2(a+ b)
(
(a+ b)R2 + U2

)−1
=

= b2(a+ b)
(

(bR2 + U2)−1 −
(
(a+ b)R2 + U2

)−1
)

=

= ab2(a+ b)
(
(a+ b)R2 + U2

)−1
R2(bR2 + U2)−1 =

= ab
(
R2 + U2/(a+ b)

)−1
R2(R2 + U2/b)−1.

(3.43)

Note that by a direct calculation:

(R2 + U2/b)R−2
(
R2 + U2/(a+ b)

)
� (R2 + U2)R−2

(
R2 + U2

)
(3.44)

and hence, by Lemma A.6 (d) and (3.43)

Ta,b � ab(R2 + U2)−1R2(R2 + U2)−1. (3.45)

Let T0 be a symmetric, positive definite matrix such that T 2
0 = (R2 +U2)−1R2(R2 +U2)−1.

Using (3.41) and (3.45) we have that

(a+ b)
∥∥R−1

a+bya+b

∥∥2 − b
∥∥R−1

b yb
∥∥2 ≤ 1

a+ b

(
a2
∥∥R−1

a+bya
∥∥2

+ 2ab
∥∥R−1

a+bya
∥∥∥∥R−1

a+byb
∥∥− ab∥∥T0yb

∥∥2)
=

= a
( a

a+ b

∥∥R−1
a+bya

∥∥2
+

b

a+ b

(
2
∥∥R−1

a+bya
∥∥∥∥R−1

a+byb
∥∥− ∥∥T0yb

∥∥2)) ≤
≤ a

( a

a+ b

∥∥R−1ya
∥∥2

+
b

a+ b

(
2
∥∥R−1ya

∥∥∥∥R−1yb
∥∥− ∥∥T0yb

∥∥2))
.

(3.46)

Let νA be the minimal eigenvalue of the square matrix A. Then for any symmetric, positive
definite matrix A and vector v we have νA‖v‖ ≤ ‖Av‖ ≤ νA‖v‖ and νA = ν−1

A−1 . Hence,
by (3.46)

(a+b)
∥∥R−1

a+bya+b

∥∥2−b
∥∥R−1

b yb
∥∥2 ≤ a

(
ν−2
R

a

a+ b

∥∥ya∥∥2
+

b

a+ b

∥∥yb∥∥(2ν−2
R

∥∥ya∥∥−ν2
T0

∥∥yb∥∥))
(3.47)

Similarly we note that

M
∥∥R−1

M yM
∥∥2 − (a+M)

∥∥R−1
a+Mya∪M

∥∥2 ≤

= M
∥∥R−1

M yM
∥∥2 − 1

a+M

(
a2
∥∥R−1

a+Mya
∥∥2

+ 2aMya
>R−2

a+MyM +M2
∥∥R−1

a+MyM
∥∥2)

=

=
1

a+M

(
(a+M)M

∥∥R−1
M yM

∥∥2 − a2
∥∥R−1

a+Mya
∥∥2 − 2aMya

>R−2
a+MyM −M2

∥∥R−1
a+MyM

∥∥2) ≤
≤ 1

a+M

(
M
(
(a+M)

∥∥R−1
M yM

∥∥2 −M
∥∥R−1

a+MyM
∥∥2)− 2aMya

>R−2
a+MyM

)
.

(3.48)

Using (3.42) again, we can write

(a+M)R−2
M −MR−2

a+M = (a+M)(R2 + U2/M)−1 −M
(
R2 + U2/(a+M)

)−1
=

= M(a+M)(MR2 + U2)−1 −M(a+M)
(
(a+M)R2 + U2

)−1
=

= M(a+M)
(

(MR2 + U2)−1 −
(
(a+M)R2 + U2

)−1
)

=

= aM(a+M)
(
(a+M)R2 + U2

)−1
R2(MR2 + U2)−1 =

= a
(
R2 + U2/(a+M)

)−1
R2(R2 + U2/M)−1.

(3.49)
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By direct calculation

(R2 + U2/M)R−2
(
R2 + U2/(a+M)

)
� R2 (3.50)

and hence, by Lemma A.6 (d) and (3.49) we get

(a+M)R−2
M −MR−2

a+M � aR
−2. (3.51)

By (3.48) and (3.51)

M
∥∥R−1

M yM
∥∥2 − (a+M)

∥∥R−1
a+Mya∪M

∥∥2 ≤ 1

a+M

(
aM

∥∥R−1yM
∥∥2 − 2aMya

>R−2
a+MyM

)
=

= a
M

a+M

(∥∥R−1yM
∥∥2 − 2ya

>R−2
a+MyM

)
≤

≤ a M

a+M

(∥∥R−1yM
∥∥2

+ 2
∥∥R−1

a+Mya
∥∥ · ∥∥R−1

a+MyM
∥∥) ≤

≤ a M

a+M

(∥∥R−1yM
∥∥2

+ 2
∥∥R−1ya

∥∥ · ∥∥R−1yM
∥∥).

(3.52)

Joining (3.47) and (3.52) we get that

Ďnk ≤ a
(
ν−2
R

a

a+ b

∥∥ya∥∥2
+

b

a+ b

∥∥yb∥∥(2ν−2
R

∥∥ya∥∥− ν2
T2

∥∥yb∥∥)+
+

M

a+M

(∥∥RyM∥∥2
+ 2
∥∥R−1ya

∥∥ · ∥∥R−1yM
∥∥)) (3.53)

By the triangle inequality

b

a+ b

∥∥yb∥∥ ≥ ∥∥ya∪b∥∥− a

a+ b

∥∥ya∥∥ ≥ ν2
R

∥∥xa∪b∥∥− a

a+ b
ν2
R

∥∥ya∥∥ ≥
≥ ν2

R

∥∥xa∪b∥∥− a

a+ b
ν2
Rr

2.
(3.54)

Hence, by (3.32)

lim
k→∞

b

a+ b

∥∥yb∥∥ =∞. (3.55)

Note that in particular limk→∞
∥∥yb∥∥ =∞ and since

∥∥ya∥∥ ≤ νR2

∥∥xa∥∥ ≤ νR2r we have

lim
k→∞

(
2ν−2

R

∥∥ya∥∥− ν2
T2

∥∥yb∥∥) = −∞. (3.56)

Moreover
∥∥yM∥∥ ≤ νR2

∥∥xM∥∥ ≤ νR2r and therefore by (3.53), (3.54), (3.39) and (3.56) we
have

lim
k→∞

Dnk = −∞ (3.57)

By taking (3.35) and using (3.37), (3.38) and (3.57) we obtain that limk→∞
Q̃x(Înk )

Q̃x(Ĵnk )
= 0.

This is a contradiction, from which the result follows.
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3.2 Clustering Randomly Generated Data

Let P be a probability distribution on (Rd,B) and let (Xn)∞n=1 be a sequence of independent
copies of a random variable X with distribution P . Now let În by any MAP partition
of (X1, . . . , Xn) (i.e. any maximiser of (3.1); in case of ambiguity just choose one at
random). Then În goes a random partition of [n]. Note that if EP ‖X‖4 <∞ then by the
Strong Law of Large Numbers almost surely 1

n

∑n
i=1 ‖Xi‖2 → EP ‖X‖2 <∞ and therefore

the assumptions of Proposition 3.2 are satisfied almost surely. Useful corollaries of this
observation are listed below.

Corollary 3.10. If EP ‖X‖4 <∞ then almost surely for every r > 0

(a) lim infn→∞min{|J | : J ∈ În,∃j∈J‖Xj‖ < r}/n > 0.

(b) the number of clusters in În that intersect B(0, r) is bounded.

An easy consequence of Corollary 3.10 is

Corollary 3.11. If the support of P is bounded then almost surely

(a) lim infn→∞min{|J | : J ∈ În}/n > 0.

(b) |În| is bounded.

Proof. If the support of P is bounded then E ‖X4‖ < ∞. Therefore we can use Corol-
lary 3.10 where we take r sufficiently large so that B(0, r) contains the support of P .

The assumptions of Corollary 3.11 cannot be relaxed to those of Corollary 3.10. It turns out
that there exists a probability distribution P with a countable number of atoms sufficiently
far apart, whose probabilities are chosen so that E ‖X‖4 <∞ and almost surely the most
recent observation creates a singleton in the sequence of MAP partitions infinitely often,
i.e. there exists a sequence (nk)

∞
k=1 such that {xnk} ∈ Înk . This violates part (a) of

Corollary 3.11.

Proposition 3.12. If d = 1 and α = T = Σ = 1 then for P =
∑∞

m=0 q(1−q)mδ18m , where
q = (2 · 18)−1, almost surely lim infn→∞m(În) = 1.

Proof. Take d = 1 and α = Ψ0 = Σ0 = 1. Then Rk =
√

k+1
k . Let y1, . . . , yn ∈ Rd and

y = (y1, . . . , yn). Take any partition J of [n]. Let Jn ∈ J be the cluster containing
n and assume that |Jn| ≥ 2. Let Jn,{n} be obtained by creating a singleton out of n,
i.e. Jn,{n} = J \ {Jn} ∪ {Jn \ {n}, {n}}. By (3.1) it is easy to show that the quotient
Q̃y(Jn,{n})/Q̃y(J ) is equal to

hJn(y1, . . . , yn) =
1

|Jn| − 1

√
|Jn|+ 1

2|Jn|
exp

{
y2
n

4
+

(
∑
yJn\{n})

2

2|Jn|
− (

∑
yJn)2

2(|Jn|+ 1)

}
. (3.58)

The exponent in the formula above is equal to

y2
n

|Jn| − 1

4(|Jn|+ 1)
− yn

∑
yJn\{n}

|Jn|+ 1
+

(
∑
yJn\{n})

2

2|Jn|(|Jn|+ 1)
, (3.59)
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which is a convex quadratic function of yn. Now, since |Jn| ≥ 2, it follows that

|Jn| − 1

4(|Jn|+ 1)
≥ 1

12
and

∣∣∣∑yJn\{n}

|Jn|+ 1

∣∣∣ ≤ |yJn\{n}|. (3.60)

Now let L = 2 · 184 and x̃m = 18m. We show that if

n ≤ Lm+1, yn ≥ x̃m, and |y1|, . . . , |yn−1| ≤ x̃m−1 (?)

then hJn(y1, . . . , yn) > 1 (regardless of Jn) and hence in MAP partition for [n] based on
data (yi)

n
i=1 singleton {n} forms a separate cluster. Assume (?). Note that if n ≤ Lm+1

and |y1|, . . . , |yn−1| ≤ x̃m−1 then by (3.58), (3.59) and (3.60) we obtain that

hJn(y1, . . . , yn) ≥ 1

Lm+1

√
1

2
exp

{
1

12
y2
n − x̃m−1yn

}
. (3.61)

Let us denote the right-hand side of (3.61) by l(yn). Now l(yn) ≥ 1 is equivalent to

1

12
y2
n − x̃m−1yn −

(
(m+ 1) logL+ (log 2)/2

)
≥ 0. (3.62)

By the properties of the quadratic function, (3.62) is implied by

yn ≥ 6
(
x̃m−1 +

√
x̃2
m−1 +

1

3

(
(m+ 1) logL+ (log 2)/2

) )
. (3.63)

It can be easily proved by induction that 3x̃2
m−1 >

1
3

(
(m+ 1) logL+ (log 2)/2

)
for m ≥ 2

(note that the left-hand side is geometric with respect to m, while the right-hand side is
linear) and therefore

6
(
x̃m−1 +

√
x̃2
m−1 +

1

3

(
(m+ 1) logL+ (log 2)/2

) )
< 18x̃m−1 = x̃m (3.64)

and as yn ≥ x̃m we have that hJn(y1, . . . , yn) > 1.

Note that if (yn)∞n=1 is a sequence whose terms belong to {x̃m : m ∈ N} then if for some
m ∈ N

n ≤ Lm+1, yn ≥ x̃m, and y1, . . . , yn−1 < yn (?′)

then condition (?) holds with some m′ ≥ m (the one that satisfies x̃m′ = yn). Indeed,
if (?′) is satisfied and yn = x̃m′ then as y1, . . . , yn−1 < yn we have y1, . . . , yn−1 ≤ x̃m′−1,
moreover x̃m′ = yn ≥ x̃m and hence m′ ≥ m and n ≤ Lm+1 ≤ Lm

′+1 and hence (?) is
satisfied.

We now give an example of probability weights (pm)m≥1 such that the following probability
distribution P =

∑∞
m=1 pmδx̃m has a finite fourth moment and if (Xn)∞n=1

iid∼ P then (?′)
happens almost surely infinitely many times. Let q = L−1 and pm = (1− q)qm−1. It is
straightforward to check that in this case P has finite fourth moment, as

∞∑
m=1

pmx̃
4
m = (1− L−1)

∞∑
m=1

(18m)4

(2 · 184)m−1
= 184(1− L−1)

∞∑
m=1

1

2m−1
<∞. (3.65)
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Now let sm =
∑m

i=1 pi = 1− qm. Then sLmm = (1− L−m)L
m → e−1. Let

nm =
m∑
i=0

Li =
Lm+1 − 1

L− 1
< Lm+1 (3.66)

and let Am be an event defined by

Am = { max
nm−1≤i<nm

Xi ≥ x̃m} =
⋃

nm−1≤i<nm

{Xi ≥ x̃m}. (3.67)

Then the probability of Am is equal to 1−sLmm−1 which converges to 1−e−L. By the Borel-
Cantelli Lemma, it follows that almost surely infinitely many of the events Am happens.
Let (xn)∞n=1 be a realisation of (Xn)∞n=1 and let (mk)

∞
k=1 be an increasing sequence of all

indices m for which Am hold. Now let

n̂m = min{nm−1 ≤ n < nm : xn = max
nm−1≤i<nm

xi}. (3.68)

Let (ki)
∞
i=1 be an increasing sequence of indices such that xn̂k < xn̂ki for k < ki (such

sequence exists since x̃m → ∞). We now show that for every i ∈ N the condition (?′) is
satisfied with n = n̂mki and m = mki . Note that, by the definition, n̂m < nm and hence,
using (3.66), n̂mki < nmki < Lmki+1. By the definition of mk, xn̂mk ≥ x̃mk for k ∈ N, and
hence xn̂mki ≥ x̃mki . Finally, setting m(l) = min{m ∈ N : nm > l}, we have

for l < n̂mki we have


xl < xn̂mki

if m(l) = mki ,

xl ≤ xn̂m(l)
< xn̂mki

if m(l) = mk for some k < ki,

xl < x̃m(l) < x̃mki ≤ xn̂mki otherwise,
(3.69)

This proves that almost surely the MAP partition creates a new cluster out of a new
observation infinitely many times.

3.3 Convergence of the MAP partitions

Corollary 2.13 gives us a convenient characterisation of the partitions of Rd that in the
limit induce the best possible partitions of sets [n]. At this stage however we do not
know yet if the best induced partitions relate to overall best partitions, namely the MAP
partitions. A natural question is if the behaviour of the MAP partition resembles the
induced classification introduced in Section 2.2, as the sample size goes to infinity, and
under what conditions. This section presents partial answers in this regard, concerning
the Normal-Normal BMM with the Chinese Restaurant Process prior on the space of
clusterings. Recall that in this case Corollary 2.7 guarantees that the clusters in the
MAP clustering are linearly separated. In other words, the convex hulls of the clusters
in the MAP partition are disjoint. Moreover in this model we already know what is the
asymptotic limit of the logarithm of the posterior probability, which for an easier reference
and correspondence to our main formula (3.1) is given below.
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Lemma 3.13. Let A be a finite P -partition of Rd consisting of Borel sets with positive P
measure. Let X1, . . .

iid∼ P . Then almost surely

n

√
QX1:n

(
IAn (X1:n)

)
' n

e
exp

{
∆NN
P (A)

}
, (3.70)

where ∆NN
P (A) is given by (2.60).

Proof. Relation (3.70) could be established by an examination of Theorem 2.12 and the
relation between Qx(I) and Q(x, I). For the sake of the remaining part of this chapter,
we choose a more straightforward approach a compute the limit directly.

We abuse the notation slightly and denote pIAn = |IAn |/n for A ∈ A. By the Strong Law of
Large Numbers the sequence (Xn)∞n=1 almost surely satisfies pIAn → pA > 0. By Stirling
formula∏

I∈IAn

(npI)! '
∏
I∈IAn

[ (npI
e

)npI √
2πnpI

]
=
√

2πn
|IAn |
√∏
I∈IAn

pI ·
(n
e

∏
I∈IAn

ppII
)n (3.71)

from which it follows by the Strong Law of Large Numbers that n

√∏
I∈IAn (npI)! ' n

e

∏
I∈IAn p

pI
I '

n
e

∏
I∈A p

pA
A . Note that since IAn has at most |A| elements,

lim
n→∞

n
√
C |IAn | = 1 and lim

n→∞ n

√ ∏
I∈IAn

|I|(d+2)/2 detR|I| = 1. (3.72)

It follows from the Strong Law of Large Numbers that XIAn
→ E (X |X ∈ A) for A ∈ A

almost surely. It follows that

lim
n→∞

1

n

∑
I∈IAn

|I|
∥∥R−1
|I|R

2XI

∥∥2
=
∑
A∈A

pA
∥∥RE (X |X ∈ A)

∥∥2
. (3.73)

Applying (3.71), (3.72) and (3.73) together with (2.60) to the formula (3.1) for IA com-
pletes the proof of the Lemma.

Since the clusters in the MAP partition are convex sets, it seems promising to try to analyse
the posterior score Q of the MAP partition in the way similar to the analysis of the induced
partition. In order to do so, we would like to have a form of ‘uniform law of large numbers’
with respect to the family of convex sets. More precisely if P is a probability distribution
on Rd and X1, X2, . . .

iid∼ P , for Pn = 1
n

∑n
i=1 δXi we need the following to hold:

lim
n→∞

sup
C convex

∣∣Pn(C)− P (C)
∣∣ = 0 almost surely. (∗)

In other words we require that the class of convex sets is a Glivenko-Cantelli class with
respect to P . A convenient condition for this to hold is given in Elker et al. (1979), Example
14:

Lemma 3.14. If for each convex set C the boundary ∂C can be covered by countably many
hyperplanes plus a set of P -measure zero, then (∗) holds for P .
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In particular, it can easily be seen that the assumptions of Lemma 3.14 are satisfied if P
has a density with respect to Lebesgue measure λd on Rd (since in this case the Lebesgue
measure λd of the boundary of any convex set is 0, and hence is also P measure 0).

Apart from uniformly approximating the probabilities of convex sets with their empirical
counterparts, we will also need to do a similar estimation for the conditional expected
values. This can be done, provided we take into account convex sets whose probability is
separated from 0. This is stated as Lemma 3.15, whose proof is left for the Appendix.

Lemma 3.15. If P satisfies (∗) and for X ∼ P we have EP ‖X‖2 < ∞ then for every
δ > 0 we have

lim
n→∞

sup
C convex
P (C)>δ

∥∥En(X |X ∈ C)− EP (X |X ∈ C)
∥∥ = 0 almost surely. (3.74)

We can now formulate a functional relation between the posterior probability of the MAP
partition and the value of the function ∆NN

P on the family of convex hulls of the sets in
the MAP partition, i.e. Ân =

{
conv{Xj : j ∈ J} : J ∈ Î

}
, where convA is the convex

hull of the set A. Note that Ân is not necessarily a P -partition, since it is possible that
P
(⋃

A∈Ân A
)
< 1. Regardless of that fact it is possible to compute ∆NN

P (Ân), according
to the formula (2.60).

Lemma 3.16. Assume that P has bounded support and satisfies (∗). Let X1, . . . ∼ P and
let Ân =

{
conv{Xj : j ∈ I} : I ∈ Î

}
, where convA is the convex hull of the set A. Then

almost surely
n

√
QX1:n

(
În(X1:n)

)
' n

e
exp{∆NN

P (Ân)}.

Proof. From Corollary 3.11 (a) we know min{npI : I ∈ În} → ∞. By applying Stirling
formula to each factor (npI)! and taking into account that by Corollary 3.11 (b) the number
of factors is bounded, we obtain that

∏
I∈În

(npI)! '
∏
I∈În

(npI
e

)npI √
2πnpI =

(n
e

)n√
2πn

|În|−1
√∏
I∈În

pI ·

∏
I∈În

ppII

n

. (3.75)

By definition the elements of Ân are convex and hence by Lemma 3.14 the frequencies
pI for I ∈ In approximate the respective probabilities of sets in Ân uniformly. We also
use the fact that the function

∑
pi log pi is continuous on the compact set 4K and hence

it is uniformly continuous. Hence, as (|În|)∞n=1 is bounded almost surely, it follows that
n

√∏
I∈În(npI)! ' n

e

∏
I∈În p

pI
I '

n
e

∏
A∈Ân p

pA
A . By applying a similar argument to the

remaining part of formula (3.1), the result follows by Lemma 3.15 (its assumptions about
the probabilities being separated from 0 are satisfied thanks to Corollary 3.11 (a)).

Now we investigate the convergence of the sequence Ân defined in Lemma 3.16. In order to
do so we need a topology on relevant subspaces of 2R. We begin by recalling two standard
metrics used in this context.
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Definition 3.17. Let D be a class of closed subsets of Rd. Then the function %H : D2 → R
defined by

%H(A,B) = inf{ε > 0: A ⊆ (B)ε, B ⊆ (A)ε},

where (X)ε = {x ∈ Rd : dist(x,X) < ε}, is a metric on D. It is called the Hausdorff
distance. The fact that it is a metric follows from Moszyńska, observation 1.2.1.

The two following theorems are crucial for establishing the limits of maximisers. Theo-
rem 3.18 is Theorem 3.2.14 in Moszyńska (2005); it ensures the existence of %H -converging
subsequence in every bounded sequence of convex sets. Theorem 3.19 is a straightfor-
ward consequence of Theorem 12.7 in Valentine (1964) (in the latter P is taken to be the
Lebesgue measure). It states that when P has a density with respect to the Lebesgue
measure then the Hausdorff metric restricted to the space of closed and convex sets K is
stronger than the symmetric difference metric.

Theorem 3.18. The space (K, %H) is finitely compact (i.e. every bounded sequence has
a convergent subsequence).

Theorem 3.19. If P is continuous with respect to the Lebesgue measure then convergence
in %H implies convergence in dP in the space K.

Note that the Hausdorff and symmetric difference metrics (cf. Definition 2.28) are defined
on sets. However we are interested in MAP partitions, which are families of sets. Therefore
it is convenient to extend the definitions of these metrics to families of sets, as presented
below. Lemma A.12 ensures that the desirable properties of compactness are preserved by
such extension.

Definition 3.20. Let d be a pseudometric on the family of sets F . For K ∈ N we define
FK(F) to be the space of finite subfamilies of F that have at most K elements. Moreover
A = {A(1), . . . , A(k)} ∈ FK(F) and B = {B(1), . . . , B(l)} ∈ FK(F) we define

d̄(A,B) = min
σ∈ΣK

max
i≤K

d(A(i), B(σ(i))), (3.76)

where ΣK is the set of all permutations of [K] and we assume A(i) = ∅ and B(j) = ∅ for
i > k or j > l respectively.

Now assume that P has bounded support. Then by Theorem 3.18 and Lemma A.12 it
follows that (Ân)∞n=1 has convergent subsequences which have a limit under %H (note that
as the support of P is bounded, sets Â are also bounded in the %H metric). Let us denote
the (random) set of their limits by E. Note that by Theorem 3.18 each family in E consists
of convex, closed sets. If we assume that P is continuous with respect to the Lebesgue
measure then it follows from Lemma 3.16 together with Theorem 3.19 that E consists of
finite P -partitions that maximise the function ∆NN

P . We state this as Theorem 3.21

Theorem 3.21. Assume that P has bounded support and is continuous with respect to
Lebesgue measure. Then every partition in E is a finite P -partition that maximises ∆NN

P .

63



Proof. Take any E = {E(1), . . . , E(K̃)} ∈ E and assume that it is a limit of (Ânk)∞k=1 in %H .
By Theorem 3.19 the sequence (Ânk)∞k=1 converges to E also in dP . Since for every k ∈ N
every two sets in the family Ânk are disjoint and hence their intersection has P measure 0.
Therefore by the continuity of the intersection with respect to dP (Doob (1994), Chapter
III, Formula (13.3)) we get that P (E(i) ∩ E(j)) = 0 for 1 ≤ i < j ≤ K̃.

To prove that E is a P -partition it is left to show that P (
⋃
E) = 1 (we denote

⋃
E =⋃

E∈E E). Suppose this is not the case. It means that E0 = Rd \
⋃
E is an open set with

positive probability. Therefore it includes a ball B′ of positive probability. Since B′ is a
convex set, we get pJB′n → pB′ > 0 and therefore there exist n′ ∈ N such that Xn′ ∈ B′.
This is not possible, since Xn′ ∈

⋃
Ân for every n ≥ n′ and therefore Xn′ ∈

⋃
E , which is

a contradiction.

By Lemma 3.16 and the continuity of ∆NN
P with respect to the metric dP we obtain:

n

√
QX1:n(În) ' exp{∆NN

P (Ân)} ' exp{∆NN
P (E)}. (3.77)

Now take any finite P -partition A. We can assume that each Xn belongs to exactly one
of the sets in A, pJAn → pA and XJAn → E (X |X ∈ A) for A ∈ A (it just requires adding
a countable number of conditions on the infinite iid sequence with distribution P , each of
which is satisfied almost surely). By definition of În and Lemma 3.13 we get

n

√
QX1:n(În) ≥ n

√
QX1:n(JAn ) ' exp{∆NN

P (A)}. (3.78)

Equations (3.77) and (3.78) together give us ∆NN
P (E) ≥ ∆NN

P (A) which proves that E is
a finite partition that maximises ∆NN

P .

Let M∆ be the set of all P -partitions that maximise the ∆NN
P function. Proposition 3.22

states that this set is nonempty and the symmetric distance dP from M∆ to the families
of convex hulls Ân of clusters in the MAP clusterings converges to 0.

Proposition 3.22. Assume that P has bounded support and is continuous with respect to
Lebesgue measure. Then M∆ 6= ∅ and almost surely infM∈M∆

dP (Ân,M)→ 0.

Proof. Let Kr be the space of all closed and convex subsets of B(0, r). Note that M∆ is
closed in (FK(Kr), dP ) as an intersection of the set of maximisers of M∆ in (FK(Kr), dP )

and the subspace of P -partitions, both of them being closed subspaces of (FK(Kr), dP ).
By Theorem 3.21 we know that E ⊆M∆. Now the proof of Proposition 3.22 follows from
simple, topological Lemma 3.23, given below.

Lemma 3.23. Let (X , d) be a finitely compact metric space, D ⊆ X a closed set and
(an)∞n=1 a bounded sequence in X . If every converging subsequence of (an)∞n=1 has a limit
in D then dist(an, D)→ 0, where dist(·, ·) is the distance function, i.e.

dist(x,D) = inf
y∈D

d(x, y).
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Proof. Suppose that lim sup dist(an, D) > 0. Then there exist a subsequence (ank)∞k=1 and
ε > 0 such that dist(ank , D) > ε > 0. This contradicts the fact that (ank)∞k=1 as a bounded
sequence in X has a converging subsequence whose limit must belong to the closed set
D.

It can be shown that as the norm of the within group covariance matrix tends to 0,
the variance of the conditional expected value gains larger importance in maximising the
function ∆NN

P in formula (2.60) and this variance increases as the number of clusters
increases. Therefore by manipulating the within group covariance parameter, when the
input distribution is bounded it is possible to obtain an arbitrarily large (but fixed) number
of clusters in the MAP partition as n → ∞, as Theorem 3.24 states. This is also an
indication of the inconsistency of the procedure used since it implies that when the input
comes from a finite mixture of distributions with bounded support, then setting the Σ

parameter too small leads to an overestimation of the number of clusters. This corresponds
to some extent to the starting point of our research, which was the inconsistency result for
the number of clusters of Miller and Harrison (2014), described in the introduction.

Theorem 3.24. Assume that P has bounded support and is continuous with respect to
Lebesgue measure and let X1, X2, . . .

iid∼ P . Then almost surely for every K ∈ N there
exists an ε > 0 and n0 ∈ N such that if ‖Σ0‖ < ε and n > n0 then |În(X1:n)| > K.

Proof. Fix K > 0. For α > 0 let Ψ(α) be defined as

Ψ(α) := inf
A∈Kr
P (A)≥α

sup
A1,A2∈B
A1∪A2=A
A1∩A2=∅

P (A1) · P (A2) · ‖EP (X |X ∈ A1)− EP (X |X ∈ A2)‖2 (3.79)

In Lemma A.13 we carefully prove an intuitive fact that Ψ(α) > 0 for α > 0.

We now prove that for ε = 1
8eΨ(K−1) if ‖Σ‖ < ε then every finite maximiser of the ∆NN

P

function is of size larger than K. Take any finite partition A of Rd that consists of at most
K convex sets with positive P measure. Let A ∈ A be the set of the largest probability
in A; note that P (A) ≥ K−1. By definition of Ψ we can divide A into two sets A1, A2

(A1 ∪A2 = A, A1 ∩A2 = ∅) such that

P (A1) · P (A2) · ‖EP (X |X ∈ A1)− EP (X |X ∈ A2)‖2 > Ψ(K−1)/2. (3.80)

Let A′ = A ∪ {A1, A2} \ {A}. Then

∆NN
P (A′)−∆NN

P (A) =
1

2

(
P (A1)‖R · EP (X |X ∈ A1)‖2 + P (A2)‖R · EP (X |X ∈ A2)‖2−

− P (A)‖R · EP (X |X ∈ A)‖2
)
− P (A1) log

1

P (A1)
− P (A2) log

1

P (A2)
+ P (A) log

1

P (A)
.

(3.81)

It is straightforward to verify that p log p−1 ∈ [0, 1
e ] for p ∈ [0, 1] and, since

P (A1)EP (X |X ∈ A1) + P (A2)EP (X |X ∈ A2) = P (A)EP (X |X ∈ A) (3.82)
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we have

P (A1)‖R · EP (X |X ∈ A1)‖2 + P (A2)‖R · EP (X |X ∈ A2)‖2 − P (A)‖R · EP (X |X ∈ A)‖2 =

=
P (A1)P (A2)

P (A)
‖R · (EP (X |X ∈ A1)− EP (X |X ∈ A2))‖2.

(3.83)

Therefore by (3.81) and Lemma A.13 we get

∆NN
P (A′)−∆NN

P (A) ≥ P (A1)P (A2)

P (A)
‖R · (EP (X |X ∈ A1)− EP (X |X ∈ A2))‖2 − 2e−1 ≥

≥ P (A1)P (A2)

P (A)

1

‖R−1‖2
‖EP (X |X ∈ A1)− EP (X |X ∈ A2)‖2 − 2e−1 =

=
P (A1)P (A2)

P (A)

1

‖Σ‖
‖EP (X |X ∈ A1)− EP (X |X ∈ A2)‖2 − 2e−1 ≥

≥ ε−1P (A1)P (A2)‖EP (X |X ∈ A1)− EP (X |X ∈ A2)‖2 − 2e−1 ≥

≥ ε−1Ψ(K−1)/2− 2e−1 > 2e−1 > 0.

(3.84)

Hence A is not a maximiser of ∆NN
P function.

Now let X1, X2, . . .
iid∼ P and Ân be the family of convex hulls of groups of observations

defined by the sequence of the MAP partitions based on X1, . . . , Xn (where the MAP
partitions were computed in the model with the within group covariance matrix of the
norm less than ε). Suppose that there exists a subsequence (ni)

∞
i=1 such that |Âni | ≤ K

for i ∈ N. By the compactness of the space (FK̃(Kr), %H) (cf. Lemma A.12) we get that
there is a subsequence (Ânij ) that is convergent in this space to a P -partition E of Rd

which is a maximiser of ∆NN
P (cf. Theorem 3.21). By our previous analysis, |E| > K. On

the other hand the probabilities of sets in Ân are separated from 0 (this is a consequence
of Corollary 3.10) and this yields a contradiction.
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Chapter 4

Normal-Inverse-Wishart with
linearly increasing concentration

In Chapter 3, we presented a careful analysis of the Normal-Normal BMM model, where
the theoretical covariance structure of each cluster was assumed to be the same and known
in advance. The example of a uniform input distribution illustrates that the within-cluster
covariance is strongly influenced by the prior covariance parameter. When this is not the
same for each cluster, or if the ‘correct’ hyper parameter value is not known in advance,
then this model performs poorly; Proposition 3.24 illustrates that under hyperparameter
misspecification, the model can behave very poorly.

To circumvent this, we place an Inverse Wishart prior over the within-cluster covariance
parameter, but the naive application of such a prior produces a model which, when applied
to a uniform input distribution, gives the same maximising value for the objective for
any division of [0, 1] into connected pieces. The problem is that the parameter space for
this non-parametric Bayes model is too large. Hence, we investigate priors which have a
regularising effect; to obtain a suitable objective as an asymptotic limit, we consider prior
distributions which depend on the number of observations.

It turns out that the only dependence on n which gives the regularising effect that we
require is the Normal-Inverse-Wishart model (1.37) with ν0 = α + λn for parameters α
and λ, while keeping the expected within cluster covariance fixed as Σ0. More explicitly,
we consider the asymptotic limit when, for a sample size n, the prior is

Λ ∼W−1
(
α+ λn+ d+ 1, (α+ λn)Σ0

)
µ |Λ ∼ N

(
µ0,

1

κ0
Λ
)
. (4.1)

This leads to a parametrised family of objectives, which depend on the parameter λ. For
fixed Σ0 letting λ range between 0 and +∞ gives a whole range of objectives, where
λ = +∞ corresponds to the situation of the previous chapter, where the within-cluster
covariance is fixed as Σ0. When λ > 0 (inequality strict), we can adapt the methods of the
previous chapter (with fixed within-cluster covariance) and prove corresponding results.

The first important result in this chapter is the analogue of the formula (2.73) for the
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adjusted Normal-Inverse-Wishart model.

Proposition 4.1. Let P be a probability distribution on Rd and let X1, X2, . . .
iid∼ P . Let

A be a finite P -partition. Let gaNIW,n be defined by (1.45) with ν0 = ν0(n) = α + λn,
where λ > 0. Then

lim
n→∞

n

√
Q
(
X1:n, IAn (X1:n)

) a.s.
= (2π)−

d
2 exp{∆aNIW

P,λ (A)}, (4.2)

where

∆aNIW
P,λ (A) = −1

2
log |Σ0| −

d

2
−

− 1

2

∑
A∈A

(
P (A) + λ

)
log
∣∣∣ λ

P (A) + λ
Id +

P (A)

P (A) + λ
Σ−1

0 VP (X |X ∈ A)
∣∣∣+HP (A)

(4.3)

The proof follows immediately from Lemma 2.15 and Lemma 4.2.

Lemma 4.2. Let P be a probability distribution on Rd and let X1, X2, . . .
iid∼ P . Let A be

a finite P -partition. Let gaNIW,n be given by (1.45), where ν0 = ν0(n) = α+λn for λ > 0.
Then

lim
n→∞

n

√
gaNIW,n

(
X1:n | IAn (X1:n)

)
(4.4)

a.s.
= |Σ0|−1/2(2eπ)−d/2 ·

∏
A∈A

∣∣∣ λ

P (A) + λ
Id +

P (A)

P (A) + λ
Σ−1

0 VP (X |X ∈ A)
∣∣∣−(P (A)+λ

)
/2

Proof of Lemma 4.2. Let JAn := {i ≤ n : Xi ∈ A}, for short. For J ⊂ [n] let pJ = |J |/n.
Moreover let εn,i = α+d+1−i

n . By Stirling formula

Γd

(
|JAn |+ ν0 + d+ 1

2

)
a.s.' πd(d−1)/4

d−1∏
i=0

[√
πn(pJAn + λ+ εn,i)

(
n(pJAn + λ+ εn,i)

2e

)n(p
JAn

+λ+εn,i)

2 ]
.

(4.5)
Hence

n

√
Γd

(
|JAn |+ ν0 + d+ 1

2

)
a.s.'

d−1∏
i=0

(
n(pJAn + λ+ εn,i)

2e

) (p
JAn

+λ+εn,i)

2

. (4.6)

For any fixed i ≤ d

∏
A∈A

(
n(pJAn + λ+ εn,i)

2e

) (p
JAn

+λ+εn,i)

2

=

=
( n

2e

) (1+|A|λ+|A|εn,i)
2

∏
A∈A

(
pJAn + λ+ εn,i

) (p
JAn

+λ+εn,i)

2 a.s.'

a.s.'
( n

2e

) (1+|A|λ)
2

∏
A∈A

(pA + λ)
(pA+λ)

2 ,

(4.7)
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where we used the fact that nεn,i → 1. Thus, by (4.7) and (4.6)

n

√√√√∏
A∈A

Γd

(
|JAn |+ ν0 + d+ 1

2

)
a.s.'
( n

2e

) d(1+|A|λ)
2

∏
A∈A

(pA + λ)
d(pA+λ)

2 , (4.8)

Similarly, using nεn,i → 1 again we can show that

n

√
Γd

(
ν0 + d+ 1

2

)
'

d−1∏
i=0

(
n(λ+ εn,i)

2e

) (λ+εn,i)

2

'
(
nλ

2e

) (λd)
2

(4.9)

Also, the following statement hold

n

√
|ν0Σ0|(ν0+d+1)/2 ' (nλ)dλ/2|Σ0|λ/2 (4.10)

From (4.9) and (4.10) we get

n

√√√√ |ν0Σ0|(ν0+d+1)/2

Γd

(
ν0+d+1

2

) '
(
|Σ0|
(2e)d

)λ/2
. (4.11)

Clearly

lim
n→∞

n

√
κ0

κ0 + |JAn |
= 1. (4.12)

By the Strong Law of Large Numbers we have that

lim
n→∞

1

|JAn |
∑
i∈JAn

(xi − xA)(xi − xA)> = VP (X |X ∈ A) a.s. for A ∈ A (4.13)

and hence, recalling the definition (1.47) of Σ(x), for A ∈ A

∣∣Σ(XJAn
)
∣∣ = |JAn |d ·

∣∣∣ν0Σ0

|JAn |
+

∑
i∈JAn (xi − xA)(xi − xA)>

|JAn |
+
k0(xA − µ0)(xA − µ0)>

k0 + |JAn |

∣∣∣ =

= ndpdJAn
·
∣∣∣ν0Σ0

|JAn |
+

∑
i∈JAn (xi − xA)(xi − xA)>

|JAn |
+
k0(xA − µ0)(xA − µ0)>

k0 + |JAn |

∣∣∣
(4.14)

Let

V̂A,n =
ν0Σ0

|JAn |
+

∑
i∈JAn (xi − xA)(xi − xA)>

|JAn |
+
k0(xA − µ0)(xA − µ0)>

k0 + |JAn |
(4.15)

Then for εn = d+1+α
n ,

n

√∣∣Σ(XJAn
)
∣∣(|JAn |+ν0+d+1)/2

= (ndpdJAn
|V̂A,n|)

(p
JAn

+λ+εn)/2
. (4.16)

It follows that

n

√∏
A∈A

∣∣Σ(XJAn
)
∣∣(|JAn |+ν0+d+1)/2

= nd(1+|A|λ+|A|εn)
∏
A∈A

(pdJAn
|V̂A,n|)

(p
JAn

+λ+εn)/2
. (4.17)
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Note that by the Strong Law of Large Numbers

lim
n→∞

(pdJAn
|V̂A,n|)

(p
JAn

+λ+εn)/2
= P (A)d

(∣∣∣∣ λ

P (A)
Σ0 + VP (X |X ∈ A)

∣∣∣∣)(P (A)+λ)/2

. (4.18)

Using (4.17) and (4.18), together with the fact that nεn → 1, we obtain

∏
A∈A

n

√∣∣Σ(XJAn
)
∣∣(|JAn |+ν0+d+1)/2 a.s.' nd(1+|A|λ)

∏
A∈A

(
P (A)d

∣∣∣∣ λ

P (A)
Σ0 + VP (X |X ∈ A)

∣∣∣∣)(P (A)+λ)/2

=

= nd(1+|A|λ)
∏
A∈A

(
(P (A) + λ)d

∣∣∣∣ λ

P (A) + λ
Σ0 +

P (A)

P (A) + λ
VP (X |X ∈ A)

∣∣∣∣)(P (A)+λ)/2

=

= nd(1+|A|λ)|Σ0|(1+|A|λ)/2
∏
A∈A

(
(P (A) + λ)d

∣∣∣∣ λ

P (A) + λ
Id +

P (A)

P (A) + λ
Σ−1

0 VP (X |X ∈ A)

∣∣∣∣)(P (A)+λ)/2

(4.19)

The proof follows from plugging (4.8), (4.11), (4.12) and (4.19) into (1.45).

Let us highlight important differences between the formulas (4.3) (the objective to be
maximised when λ > 0) and (2.73) (the limiting objective as λ→ 0). Equation (4.3) may
be expressed equivalently as:

∆aNIW
P,λ (A) =

1

2
|A| · λ log |Σ0| −

d

2
−

− 1

2

∑
A∈A

(
P (A) + λ

)
log
∣∣∣ λ

P (A) + λ
Σ0 +

P (A)

P (A) + λ
VP (X |X ∈ A)

∣∣∣+
∑
A∈A

P (A) logP (A).

(4.20)

When λ > 0, the ‘variance’ part now contains a convex combination of the true within-
cluster covariance matrix VP (X |X ∈ A) and the apriori expected value of the within-
cluster covariance Σ0.

For λ = 0, the log-determinant is multiplied by the probability P (A), while for λ > 0,
this multiplier is (P (A) + λ) and the sum over all A ∈ A is not an expected value, unlike
for λ = 0,. The general formula also has a term that depends linearly on the number of
clusters in the partition A, which disappears when λ = 0.

The quantity 1
2 log |Σ0|, is independent of the partition A and is therefore irrelevant for

the problem of finding a maximiser.

We now consider what happens to the objective (4.3) when λ→∞.

Proposition 4.3. Let A be any partition of Rd and P a probability measure. Then, up to
constants (i.e. differences which do not depend on the partition)

(a) for fixed A the function λ 7→ ∆P,λ(A) is decreasing;

(b) limλ→∞∆P,λ(A) = −1
2 log |Σ0|−1

2

∑
A∈A P (A)tr(Σ−1

0 VP (X |X ∈ A))+
∑

A∈A P (A) logP (A).
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Proof of Proposition 4.3. We start with a crucial lemma.

Lemma 4.4. Let x0 > 0 and let Σ be a symmetric, d×d matrix such that Id+ Σ
x is positive

definite for all x ≥ x0. Then

(i) x 7→ x log
∣∣∣Id + Σ

x

∣∣∣ is an increasing function on (x0,∞)

(ii) limx→∞ x log
∣∣∣Id + Σ

x

∣∣∣ = tr(Σ)

Proof. Let λ1, . . . , λd be the eigenvalues of the matrix Σ. Then the eigenvalues of the
matrix Id + Σ

x are (1 + λi
x ) > 0 for i ≤ d and x ≥ x0. Therefore

lim
x→∞

x log
∣∣∣Id +

Σ

x

∣∣∣ = lim
x→∞

d∑
i=1

x log

(
1 +

λi
x

)
=

d∑
i=1

λi = tr(Σ). (4.21)

The fact that x 7→ x log
∣∣∣Id+ Σ

x

∣∣∣ is increasing follows from the fact that each of the functions

x log
(

1 + λi
x

)
is increasing (regardless of the sign of λi).

This is key to establishing Proposition 4.3. Firstly note that∣∣∣ λ

P (A) + λ
Id +

P (A)

P (A) + λ
Σ−1

0 VP (X |X ∈ A)
∣∣∣ =

= |Σ−1
0 |
∣∣∣ λ

P (A) + λ
Σ0 +

P (A)

P (A) + λ
VP (X |X ∈ A)

∣∣∣ =

= |Σ−1/2
0 |

∣∣∣ λ

P (A) + λ
Σ0 +

P (A)

P (A) + λ
VP (X |X ∈ A)

∣∣∣|Σ−1/2
0 | =

=
∣∣∣ λ

P (A) + λ
Id +

P (A)

P (A) + λ
Σ
−1/2
0 VP (X |X ∈ A)Σ

−1/2
0

∣∣∣
(4.22)

By Lemma 4.4 we have that∑
A∈A

(
P (A) + λ

)
log
∣∣∣ λ

P (A) + λ
Id +

P (A)

P (A) + λ
Σ−1

0 VP (X |X ∈ A)
∣∣∣ =

=
∑
A∈A

(
P (A) + λ

)
log
∣∣∣Id +

P (A)

P (A) + λ
(Σ
−1/2
0 VP (X |X ∈ A)Σ

−1/2
0 − Id)

∣∣∣ (4.23)

is increasing in λ (plug x = P (A) + λ, x0 = P (A), Σ = Σ
−1/2
0 VP (X |X ∈ A)Σ

−1/2
0 − Id)

and

lim
λ→∞

∑
A∈A

(
P (A) + λ

)
log
∣∣∣ λ

P (A) + λ
Id +

P (A)

P (A) + λ
Σ−1

0 VP (X |X ∈ A)
∣∣∣ =

= lim
λ→∞

∑
A∈A

(
P (A) + λ

)
log
∣∣∣Id +

P (A)

P (A) + λ
(Σ
−1/2
0 VP (X |X ∈ A)Σ

−1/2
0 − Id)

∣∣∣ =

=
∑
A∈A

tr
(
P (A)(Σ

−1/2
0 VP (X |X ∈ A)Σ

−1/2
0 − Id)

)
=

=
∑
A∈A

P (A)tr(Σ−1
0 VP (X |X ∈ A))− d,

(4.24)
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which concludes the proof of Proposition 4.3.

Note that part (b) of Proposition 4.3 gives (up to a constant) the same objective to be
maximised as ∆NN

P (cf. (2.63)). Therefore, as λ ranges from ∞ down to 0, we have
a continuous transition between the fixed within-cluster covariance Σ0 and a classifier
which does not include any prior information at all on the within-cluster covariance; the λ
parameter gives a continuous transition between the fixed covariance Normal-Normal and
the Normal-Inverse-Wishart models.

Proposition 4.5. Let HP (A) be defined as in (2.48). If VP (X) <∞ then for any λ > 0

the function ∆aNIW
P,λ (A) −H(A) is a bounded function on the space of all P -partitions of

Rd.

Proof of Proposition 4.5. For any P -partitionA of the observation space (cf. Lemma A.14)
we have ∑

A∈A
P (A)VP (X |X ∈ A) � VP (X), (4.25)

where � is the Löwner partial order, i.e. A � B if and only if B−A is nonnegative definite.
If A � B then CAC> � CBC> for any positive definite matrix C. Since Σ

−1/2
0 is positive

definite and symmetric, we get∑
A∈A

P (A)Σ
−1/2
0 VP (X |X ∈ A)Σ

−1/2
0 � Σ

−1/2
0 VP (X)Σ

−1/2
0 , (4.26)

Since the trace of a matrix is increasing with respect to the Löwner partial order, (4.26)
yields ∑

A∈A
P (A)tr(Σ−1/2

0 VP (X |X ∈ A)Σ
−1/2
0 ) ≤ tr(Σ−1/2

0 VP (X)Σ
−1/2
0 ). (4.27)

Let ωA,i be the i-th largest eigenvalue of the matrix Σ
−1/2
0 VP (X |X ∈ A)Σ

−1/2
0 . Clearly

ωA,i ≥ 0. Then by (4.27) we get

∑
A∈A

d∑
i=1

P (A)ωA,i ≤ tr(Σ−1/2
0 VP (X)Σ

−1/2
0 ). (4.28)

Note that the eigenvalues of λ
P (A)+λId + P (A)

P (A)+λΣ
−1/2
0 VP (X |X ∈ A)Σ

−1/2
0 are λ

P (A)+λ +
P (A)

P (A)+λωA,i and hence for every A ∈ A

det

(
λ

P (A) + λ
Id +

P (A)

P (A) + λ
Σ
−1/2
0 VP (X |X ∈ A)Σ

−1/2
0

)
=

d∏
i=1

(
λ

P (A) + λ
+

P (A)

P (A) + λ
ωA,i

)
.

(4.29)
By (4.29)

log

∣∣∣∣ λ

P (A) + λ
Id +

P (A)

P (A) + λ
Σ
−1/2
0 VP (X |X ∈ A)Σ

−1/2
0

∣∣∣∣ =

d∑
i=1

log

(
λ

P (A) + λ
+

P (A)

P (A) + λ
ωA,i

)
.

(4.30)
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For every x > −1 we have log(1 + x) ≥ x− x2

2 , hence

log

(
λ

P (A) + λ
+

P (A)

P (A) + λ
ωA,i

)
≥ P (A)

P (A) + λ
(ωA,i − 1)− 1

2

(
P (A)

P (A) + λ

)2

(ωA,i − 1)2.

(4.31)
Since ωA,i ≥ 0 and

∑
A∈A P (A) = 1, we get

∑
A∈A

d∑
i=1

(P (A) + λ)
P (A)

P (A) + λ
(ωA,i − 1) =

∑
A∈A

d∑
i=1

P (A)(ωA,i − 1) ≥ −d. (4.32)

On the other hand∑
A∈A

d∑
i=1

(P (A) + λ)

(
P (A)

P (A) + λ

)2

(ωA,i − 1)2 =
∑
A∈A

d∑
i=1

P (A)2

P (A) + λ
(ωA,i − 1)2 ≤

≤ 1

λ

∑
A∈A

d∑
i=1

P (A)2(ωA,i − 1)2 =
1

λ

∑
A∈A

d∑
i=1

P (A)2(ω2
A,i − 2ωA,i + 1) ≤

≤ 1

λ

∑
A∈A

d∑
i=1

P (A)2(ω2
A,i + 1) ≤ 1

λ

∑
A∈A

d∑
i=1

P (A)2ω2
A,i +

d

λ
≤

≤ 1

λ

(∑
A∈A

d∑
i=1

P (A)ωA,i

)2

+
d

λ

(4.28)
≤ 1

λ
tr(Σ−1/2

0 VP (X)Σ
−1/2
0 )2 +

d

λ
.

(4.33)

By joining (4.30) with (4.31), (4.32) and (4.33), we get that∑
A∈A

(
P (A) + λ

)
log
∣∣∣ λ

P (A) + λ
Id +

P (A)

P (A) + λ
Σ
−1/2
0 VP (X |X ∈ A)Σ

−1/2
0

∣∣∣ ≥
≥ −d− 1

2λ

(
tr(Σ−1/2

0 VP (X)Σ
−1/2
0 )2 + d

)
.

(4.34)

Which, together with an obvious inequality
∑

A∈A P (A) logP (A) ≤ 0 and (4.22), finishes
the proof.

4.1 Linear growth of clusters

In Chapter 3 we considered Normal-Normal model, where the within-cluster covariance Σ0

is fixed and known. We showed that if the prior on the space of partition is the Chinese
Restaurant Process (cf. (1.14)) and the data sequence is bounded then the size of the
smallest cluster grows linearly with the number of observations and hence the number of
clusters in the MAP partition is bounded from above. In this section we show that the
techniques from Chapter 3 can be used to prove the linear growth of cluster size in the
model (4.1) when λ > 0. This is encapsulated in the following result:

Proposition 4.6. Let x = (xn)∞n=1 be a bounded infinite sequence of points in Rd. Con-
sider the model (4.1) and the standard Chinese Restaurant prior on the space of partitions.
Let În be the MAP partition of x1:n. Then

lim inf
n→∞

min
I∈În

|I|
n
> 0. (4.35)
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Corollary 4.7. With the assumptions and notation of Proposition 4.6 the number of clus-
ters in the MAP partition is almost surely bounded, i.e.

lim sup
n→∞

|În| <∞. (4.36)

We now prove Proposition 4.6.

4.1.1 Proof of Proposition 4.6

We present some preliminaries; the proof is given later in this subsection.

Dealing with the maximal cluster

The first step to prove Proposition 4.6 is showing that in the MAP partition the size of
the maximal cluster is proportional to the number of observations.

Lemma 4.8. With the assumptions and notation of Proposition 4.6 we have

lim inf
n→∞

max
I∈În

|I|/n > 0. (4.37)

Proof. The proof requires Lemma 4.11, which is stated and proved below. This presents a
comparison with the single cluster partition (all observations belong to the same cluster)
and shows that for any sequence of partitions where minI∈În |I|/n goes to 0, the single
cluster partition gives (asymptotically) a larger value for the objective.

Lemma 4.8 is then a straightforward consequence of this, since if (4.37) is not satisfied
then the posterior probability of În is less than the posterior probability of {[n]} (all n
observations belong to a single cluster) for sufficiently large n, contradicting the definition
of the MAP partition.

Lemma 4.11 is quite subtantial and to prove it, we need some additional lemmas.

We first establish an upper bound.

Lemma 4.9. Let (xn)∞n=1 be an infinite sequence of points in Rd. Let gaNIW,n be defined
by (1.45), with ν0 = α + λn, where λ > 0 (as in Proposition 4.6). Let (In)∞n=1 be any
sequence of partitions. Then

lim sup
n→∞

n

√
gaNIW,n(x1:n | In) <∞. (4.38)

Proof. Let us rewrite (1.45), bearing in mind that ν0 = α + λn. To improve notation, let
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β = α+ d+ 1.

gaNIW,n(x1:n | In) = π−
dn
2

 |(α+ λn)Σ0|
β+λn

2 κ
d
2
0

Γd
(β+λn

2

)
|In| ·

·
∏
I∈In

Γd

(β + λn+ |I|
2

)
(κ0 + |I|)−

d
2 det (Σ(xI))

−β+λn+|I|
2 ,

(4.39)

where

Σ(u) = (α+ λn)Σ0 +
k∑
i=1

(ui − u)(ui − u)> +
κ0k

κ0 + k
(u− µ0)(u− µ0)>. (4.40)

Then (4.39) can be written as:

gaNIW,n(x1:n | In) = π−
dn
2

∏
I∈I

Γd

(
β+λn+|I|

2

)
Γd
(β+λn

2

) (
κ0

κ0 + |I|

) d
2
∣∣∣ Σ−1

0

α+ λn
Σ(xI)

∣∣∣−β+λn
2
∣∣Σ(xI)

∣∣− |I|2 .
(4.41)

From Equation (A.65) we have for every I ∈ In

Γd

(
β+λn+|I|

2

)
Γd
(β+λn

2

) <

(
β + λn+ |I|

2

) |I|d
2

. (4.42)

Note that
Σ(u) � (α+ λn)Σ0. (4.43)

By (4.42) and (4.43)

gaNIW,n(x1:n | In) ≤ π−
dn
2

∏
I∈I

(
β + λn+ |I|

2

) |I|d
2 ∣∣(α+ λn)Σ0

∣∣− |I|2 =

=
(π

2

)− dn
2
∏
I∈I

∣∣∣ α+ λn

β + λn+ |I|
Σ0

∣∣∣− |I|2 <
(π

2

)− dn
2
∣∣∣ λ

β + λ+ 1
Σ0

∣∣∣−n2 .
(4.44)

Hence
n

√
gaNIW,n(x1:n | In) <

(π
2

)− d
2
∣∣∣ λ

β + λ+ 1
Σ0

∣∣∣− 1
2
, (4.45)

which is finite, thus establishing the lemma.

We now establish a lower bound for the single cluster partition.

Lemma 4.10. With the assumptions of Proposition 4.6

lim inf
n→∞

n

√
gaNIW,n(x1:n | {[n]}) > 0. (4.46)

Proof. Equation (4.41) with the single cluster In = {[n]} gives:

gaNIW,n(x1:n | {[n]}) = π−
dn
2

Γd

(
β+λn+n

2

)
Γd
(β+λn

2

) (
κ0

κ0 + n

) d
2
∣∣∣ Σ−1

0

α+ λn
Σ(x1:n)

∣∣∣−β+λn
2
∣∣Σ(x1:n)

∣∣−n2 .
(4.47)
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Note that

lim
n→∞

n

√(
κ0

κ0 + n

) d
2

= lim
n→∞

exp

{
− d

2n
log

(
1 +

n

κ0

)}
= 1. (4.48)

Assume that ‖xi‖ ≤ r for some r > 0 and all i ∈ N. By Lemma A.8, Lemma A.9 and the
triangle inequality

|Σ(x1:n)/n| ≤ ‖Σ(x1:n)/n‖d ≤
(∥∥α+ λn

n
Σ0

∥∥+ (2r)2 +
κ0

n
(2r)2

)d
(4.49)

and hence
lim sup
n→∞

|Σ(x1:n)/n| ≤
(∥∥λΣ0

∥∥+ (2r)2
)d
. (4.50)

As a consequence of (4.50)

lim inf
n→∞

n

√∣∣∣ Σ−1
0

α+ λn
Σ(x1:n)

∣∣∣−β+λn
2 ≥

(
lim sup
n→∞

∣∣∣ nΣ−1
0

α+ λn

∣∣∣)−λ2 (lim sup
n→∞

∣∣∣Σ(x1:n)/n
∣∣∣)−λ2 =

=
∣∣∣Σ−1

0

λ

∣∣∣−λ2 (lim sup
n→∞

∣∣∣Σ(x1:n)/n
∣∣∣)−λ2 > 0.

(4.51)

Using Equation (A.65)

Γd

(
β+λn+n

2

)
Γd
(β+λn

2

) ∣∣Σ(x1:n)
∣∣−n2 > (β + λn+ n− d

2e

)nd
2 ∣∣Σ(x1:n)

∣∣−n2 =

=

(
β + λn+ n− d

2ne

)nd
2 ∣∣Σ(x1:n)/n

∣∣−n2 (4.52)

and hence, again using (4.50)

lim inf
n→∞

n

√√√√Γd

(
β+λn+n

2

)
Γd
(β+λn

2

) ∣∣Σ(x1:n)
∣∣−n2 ≥ (λ+ 1

2e

) d
2
(

lim sup
n→∞

∣∣Σ(x1:n)/n
∣∣− 1

2

)
> 0. (4.53)

Plugging (4.48), (4.51) and (4.53) into (4.47) establishes the result.

Lemma 4.11. Under the assumptions of Proposition 4.6, if (In)∞n=1 is a sequence of
partitions such that

lim inf
n→∞

max
I∈In

|I|/n = 0 (4.54)

then

lim inf
n→∞

n

√
Q(In,u1:n)

Q({[n]},u1:n)
= 0. (4.55)

(Q(·, ·) is the joint probability of observations and their partition, given by (1.8)).

Proof. From the definition,

Q(In,u1:n)

Q({[n]},u1:n)
=

gaNIW,n(u1:n | In)Pπ,n(In)

gaNIW,n(u1:n | [n])Pπ,n({[n]})
. (4.56)
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From Lemma 4.9 and Lemma 4.10, the denominator of (4.57) is bounded from below and
the numerator bounded from above; hence:

lim sup
n→∞

n

√
gaNIW,n(u1:n | In)

gaNIW,n(u1:n | [n])
<∞. (4.57)

For the Chinese Restaurant Process:

Pπ,n(In)

Pπ,n({[n]})
=

α|In|n

α
∏
I∈In |I|

∏
I∈In |I|!
n!

(4.58)

By Lemma 3.6, under the assumption (4.54) we get

lim inf
n→∞

n

√∏
I∈In |I|!
n!

= 0. (4.59)

Moreover

lim sup
n→∞

n

√
α|In|n

α
∏
I∈In |I|

≤ lim sup
n→∞

n

√
α|In|n

α
≤ α (4.60)

(by considering the ‘worst case’ |In| = n). By plugging (4.59) and (4.60) into (4.58), we
get

lim inf
n→∞

n

√
Pπ,n(In)

Pπ,n({[n]})
= 0. (4.61)

The inequality (4.61) together with (4.57), applied to (4.56) concludes the proof.

Proof of Proposition 4.6

We are now in a position to give the proof. Let β = α + d + 1. Suppose that the
smallest cluster of the maximising partition grows sub-linearly in n. Let Ĩn be the partition
obtained by joining the smallest and the largest cluster; let us denote the sizes of these
clusters by mn and Mn. By the assumptions lim infn→∞mn/n = 0 and by Lemma 4.8
lim infn→∞Mn/n =: γ > 0. Assume that the sequence x is contained in a ball of radius
r, centered at the origin, i.e. ‖xi‖ ≤ r for all i ∈ N. The ratio gaNIW,n(u1:n | În)

gaNIW,n(u1:n | Ĩn)
may be

written as:

gaNIW,n(u1:n | În)

gaNIW,n(u1:n | Ĩn)
= AnBnCnDnEn, (4.62)
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where

An =

(
κ0(κ0 +mn +Mn)

(κ0 +mn)(κ0 +Mn)

) d
2

, Bn =
Γd

(
β+λn+mn

2

)
Γd

(
β+λn+Mn

2

)
Γd
(β+λn

2

)
Γd

(
β+λn+mn+Mn

2

) ,

Cn =

(
|(α+ λn)Σ0|∣∣Σ(xImin)

∣∣
)(β+λn)/2

, Dn =

(∣∣Σ(xImin∪Imax)
∣∣∣∣Σ(xImin)

∣∣
)mn/2

, En =

(∣∣Σ(xImin∪Imax)
∣∣∣∣Σ(xImax)

∣∣
)(β+λn+Mn)/2

(4.63)

Clearly limn→∞mn/Mn = 0 and, from (1.47) with ν0 = α + λn, (α + λn)Σ0 � Σ(xImin),
so

lim sup
n→∞

An ≤ 1 and Cn ≤ 1. (4.64)

By Equation (A.65)

Γd

(
β+λn+mn

2

)
Γd
(β+λn

2

) <

(
β + λn+mn

2

)dmn/2
and

Γd

(
β+λn+mn+Mn

2

)
Γd

(
β+λn+Mn

2

) >

(
β + λn+mn +Mn − d

2e

)dmn/2
,

(4.65)
and hence, for sufficiently large n (such that Mn ≥ d)

Bn ≤
(

e(β + λn+mn)

β + λn+mn +Mn − d

)dmn/2
≤
(
e(β + λ+ 1)

λ

)dmn/2
. (4.66)

Let

An = (α+ λn)Σ0 +
∑
i∈Imax

(xi − xImax)(xi − xImax)>

Bn =
∑
i∈Imin

(xi − xImin∪Imax)(xi − xImin∪Imax)>

Cn =
κ0(mn +Mn)

κ0 +mn +Mn
(xImin∪Imax − µ0)(xImin∪Imax − µ0)>

Dn =
∑
i∈Imax

(xi − xImin∪Imax)(xi − xImin∪Imax)> −
∑
i∈Imax

(xi − xImax)(xi − xImax)>

(4.67)

Then
Σ(xImax) � An, Σ(xImin∪Imax) = An +Bn + Cn +Dn. (4.68)

Hence, by Lemma 4.4

|Σ(xImin∪Imax)|
|Σ(xImax)|

≤ |An +Bn + Cn +Dn|
|An|

=
∣∣Id+(Bn+Cn+Dn)A−1

n

∣∣ ≤ etr((Bn+Cn+Dn)A−1
n

)
(4.69)

so

En ≤ e
tr
(

(Bn+Cn+Dn)
(

An
β+λn+Mn

)−1)
(4.70)
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We now have

tr(Bn) = tr(
∑
i∈Imin

(xi − xImin)(xi − xImin)>) =
∑
i∈Imin

tr
(
(xi − xImin)(xi − xImin)>

)
=

=
∑
i∈Imin

∥∥xi − xImin

∥∥2 ≤ mn(2r)2

tr(Cn) =
κ0(mn +Mn)

κ0 +mn +Mn
‖xImin∪Imax − µ0‖2 ≤ κ0(2r)2.

(4.71)

Moreover it is straightforward to compute that

Dn = Mn(xImax∪Imin − xImax)(xImax∪Imin − xImax)> (4.72)

and

xImax∪Imin − xImax =
mn

mn +Mn
xImin +

Mn

mn +Mn
xImax − xImax =

=
mn

mn +Mn
(xImin − xImax)

(4.73)

and hence

tr(Dn) ≤ Mnm
2
n

(mn +Mn)2
tr
(
(xImin − xImax)(xImin − xImax)>

)
≤ mn(2r)2. (4.74)

By (4.71) and (4.74)
tr(Bn + Cn +Dn) ≤ (2mn + κ0)(2r)2. (4.75)

Moreover (using a natural upper bound Mn ≤ n)

An
β + λn+Mn

� α+ λn

β + λn+Mn
Σ0 �

λ

β + λ+ 1
Σ0 (4.76)

Thus
tr
(( An

β + λn+Mn

)−1
)
≤ β + λ+ 1

λ
tr(Σ−1

0 ) (4.77)

By Lemma A.10 (part (a)), (4.75) and (4.77)

tr
(
(Bn + Cn +Dn)

(
An

β + λn+Mn

)−1 )
≤ (2mn + κ0)(2r)2β + λ+ 1

λ
tr(Σ−1

0 ). (4.78)

Equations (4.70) and (4.78) give

log En ≤ (2mn + κ0)(2r)2β + λ+ 1

λ
tr(Σ−1

0 ) (4.79)

Note that by Lemma A.8

|Σ(xImin∪Imax)| ≤
∥∥Σ(xImin∪Imax)

∥∥d (4.80)

and, using the triangle inequality and Lemma A.9∥∥Σ(xImin∪Imax)
∥∥ ≤ (α+ λn)‖Σ0‖+ (mn +Mn)(2r)2 +

κ0

κ0 +mn +Mn
(2r)2 ≤

≤ (α+ λn)‖Σ0‖+ 4(mn +Mn + 1)r2.
(4.81)
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Using (4.81) and (4.80) we get

|Σ(xImin∪Imax)|
|Σ(xImin)|

≤
(
(α+ λn)‖Σ0‖+ 4(mn +Mn + 1)r2

)d
|(α+ λn)Σ0|

=

=

(
‖Σ0‖+ 4mn+Mn+1

α+λn r2
)d

|Σ0|
≤
(
‖Σ0‖+ 8

λr
2
)d

|Σ0|
.

(4.82)

Putting together (4.64), (4.66), (4.79) and (4.82) and plugging it to (4.62) we obtain that
for sufficiently large n

gaNIW,n(u1:n | În)

gaNIW,n(u1:n | Ĩn)
≤ eκ0(2r)2 β+λ+1

λ
tr(Σ−1

0 )

[(
e(β + λ+ 1)

(
‖Σ0‖+ 8

λr
2
))d/2

λd/2|Σ0|1/2
e2(2r)2 β+λ+1

λ
tr(Σ−1

0 )

]mn
.

(4.83)
It is easily seen that

Pπ,n(În)

Pπ,n(Ĩn)
= α

(mn − 1)!(Mn − 1)!

(mn +Mn − 1)!
≤ α mn!(Mn − 1)!

(mn +Mn − 1)!
≤ α

(
mn

Mn − 1

)mn
(4.84)

As lim infn→∞
mn
Mn

= 0, then taking into account (4.83) and (4.84) we get

lim inf
n→∞

gaNIW,n(u1:n | În)

gaNIW,n(u1:n | Ĩn)

Pπ,n(În)

Pπ,n(Ĩn)
= 0, (4.85)

which contradicts the definition of the MAP partition. This is a contradiction and hence
the result is established.

4.2 From asymptotic formulae to score functions

In Section 2.2 we derived a score function ∆aNIW
P,λ for partitions of the observation space,

based on asymptotics of the posterior probability of partitions. The prior distribution over
the within-cluster covariance contains a parameter Σ0, which is the expected within-cluster
covariance. There is another parameter λ; the degrees of freedom of the inverse Wishart
distribution are ν0 = α+ λn, where α is a non-negative constant and λ > 0 is a constant.
The parameter λ gives the strength of dependence on Σ0; for small λ the within-cluster
covariance structure can vary substantially from Σ0, while for λ =∞, each within-cluster
covariance structure is exactly Σ0.

By the score function we mean a function that can be used to assess a clustering proposal.
For example, between-cluster variance is a reasonable score function, which is maximised by
the k-means algorithm. In the context of our research, a natural idea for a score function is
an asymptotic formula ∆aNIW

P,λ , where P is the distributional limit of empirical probability

distributions P̂n = 1
n

∑n
i=1 δXi , where X1, . . . , Xn

iid∼ P . We approximate ∆aNIW
P,λ (A) by

∆aNIW
P̂n,λ

(A). Note that ∆aNIW
P̂n,λ

(A) depends on the sample only through the estimates

of set probabilities P̂n(A) = 1
n |{i : Xi ∈ A}| and estimates of the conditional covariance

structures

VP̂n
(X |X ∈ A) =

1

n

∑
i : Xi∈A

XiXi
> −

 1

n

∑
i : Xi∈A

Xi

 1

n

∑
i : Xi∈A

Xi

>. (4.86)
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Therefore, ∆
P̂n,λ

approximates ∆P,λ well if and only if P̂n(A) approximates P (A) well for
each A ∈ A and VP̂n

(X |X ∈ A) approximates VP (X |X ∈ A) well for each A ∈ A.

Let J be a partition of indices from 1 to n which defines the clustering
{
{xi : i ∈ J} : J ∈

J
}
of the data x1, . . . , xn. The score for this clustering is:

∆̂λ(J ) =− 1

2

∑
J∈J

(
P̂n(xJ) + λ

)
log
∣∣∣ λ

P̂n(xJ) + λ
Id +

P̂n(xJ)

P̂n(xJ) + λ
Σ−1

0 V̂n(xJ)
∣∣∣+

+
∑
J∈J

P̂n(xJ) log P̂n(xJ).

(4.87)

where
P̂n(xJ) =

|J |
n
, V̂n(xJ) =

1

n

∑
i∈J

(xi − xJ)(xi − xJ)>. (4.88)

The score formula (4.87) is obtained from ∆P̂n,λ
(·) by dropping the additive constant

−1
2 log |Σ0| − d

2 .

In the λ = 0 limit, the objective is:

∆̂0(J ) = −1

2

∑
J∈J

P̂n(xJ) log |V̂n(xJ)|+
∑
J∈J

P̂ (xJ) log P̂ (xJ) +
1

2
log |Σ0|. (4.89)

Note that, no matter what the within-cluster variance actually is, if |J | < d for some J ∈ J
then |V̂n(xJ)| = 0 and hence ∆̂0(J ) =∞.

The results of applying this strategy to score the cluster proposals of simulated datasets are
contained in Chapter 5. We now discuss some considerations which give a suitable lower
bound on the number of data points needed per cluster so that (4.87) gives a reasonable
estimate of (4.3). The worst case scenario is λ = 0.

Conditioned on belonging to the same cluster, observations are i.i.d. normal. LetX1, X2, . . . , Xn ∼
N (µ,C), where µ ∈ Rd and C ∈ Rd×d+ . Let Ĉ be the maximum likelihood estimator of the
covariance matrix, i.e.

Ĉ =
1

n

n∑
i=1

XiXi
> −

(
1

n

n∑
i=1

Xi

)(
1

n

n∑
i=1

Xi

)
>. (4.90)

According to Goodman (1963), for n ≥ d:

nd

detC
det Ĉ ∼

d∏
i=1

Zi, (4.91)

where Z1, . . . , Zd are independent random variables and Zi ∼ χ2
n−i+1. Therefore

log det Ĉ ∼ log detC − d log n+
d∑
i=1

logZi. (4.92)

If Y ∼ Gamma(α, β) then E log Y = ψ(α) − log β and Var log Y = ψ1(α), where ψ and
ψ1 are digamma and trigamma functions respectively (ψ(α) = Γ′(α), ψ1(α) = ψ′(α)). As
Zi ∼ Gamma(n−i+1

2 , 1
2), we get

E logZi = ψ

(
n− i+ 1

2

)
− log

1

2
, Var logZi = ψ1

(
n− i+ 1

2

)
. (4.93)
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Putting (4.92) and (4.93) together, we get

E log det Ĉ = log detC +
d∑
i=1

(
ψ

(
n− i+ 1

2

)
− log

n

2

)
Var log det Ĉ =

d∑
i=1

ψ1

(
n− i+ 1

2

) (4.94)

By Alzer (1997) for x > 0 we have |ψ(x)− log x| < 1
2x and hence for i = 1, 2, . . . , d∣∣∣ψ(n− i+ 1

2

)
− log

n

2

∣∣∣ < ∣∣∣ψ(n− i+ 1

2

)
− log

n− i+ 1

2

∣∣∣+
∣∣∣ log

n− i+ 1

2
− log

n

2

∣∣∣ <
<

1

n− i+ 1
+ log

(
1 +

i− 1

n− i+ 1

)
<

i

n− i+ 1
.

(4.95)

This implies that ∣∣E log det Ĉ − log detC
∣∣ ≤ d2

n− d+ 1
. (4.96)

Due to Guo and Qi (2013) we have ψ1(x) < e
1
x − 1 and so

Var log det Ĉ < d
(
e

1
n−d+1 − 1

)
. (4.97)

The bias τn,d =
∑d

i=1

(
ψ
(
n−i+1

2

)
− log n

2

)
is relatively large for small sample sizes. Taking

these considerations into account (especially (4.96)) we propose a rule of thumb in which
the approximation should be applied is where the number of observations in every cluster
is of order d2.

4.3 Summary and Perspectives for Future Work

By introducing a linear dependence of the concentration parameter in the Normal-Inverse-
Wishart model on the number of observation we allowed to pass more prior knowledge
about then within-cluster covariance structure into the model. In this setting we were able
to show that in the MAP clustering for an infinite and bounded sequence of data, the size of
clusters grows proportionally with the number of observations and, in turn, the number of
clusters is bounded (Proposition 4.6 and Corollary 4.7). We also computed the asymptotic
limit of the posterior of an induced partition (Proposition 4.1) and we established some
properties of the limit (Lemma 4.4 and Proposition 4.5). Finally, in Section 4.2 we suggest
how to use the empirical of the limit to score cluster proposals (the experimental analysis
of this approach is contained in Chapter 5).

In future work we intend to establish an analogue of Theorem 3.21 for this adjusted Normal-
Inverse-Wishart model. Moreover we plan to investigate further the clustering properties
of the ∆aNIW

P,λ function (and its empirical equivalent). An interesting starting point is the
property of the ∆NIW

P function when P is the uniform distribution on [0, 1]. As we showed
towards the end of Chapter 2, every partition of [0, 1] into subsegments maximises the
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∆NIW
P function. We plan to show that for the ∆aNIW

P,λ function, the maximiser is unique
(just like with the ∆NN

P function, cf. Proposition 2.30) and to investigate the limit as
λ→ 0. This may be thought of analogously to the ‘viscosity solution’ that is often popular
in partial differential equations; a p.d.e. may have many solutions when the viscosity
parameter is 0 in situations where there is uniqueness for positive viscosity. The solution
to the inviscid equation which is of interest often corresponds to solving the equation with
viscosity and letting the viscosity parameter tend to 0. Letting lambda go to zero in the
problem defined by (4.1) sometimes gives a particular solution of the problem where the
prior is a traditional prior, which does not depend on n. By choosing Σ0 as the total
covariance matrix, this should give the solution with the smallest number of clusters that
solves the λ = 0 problem.
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Chapter 5

Experimental Results

In Chapter 4 we derived a score function and indicated the quantity of data required to
ensure that the ‘empirical’ score function approximates well the limit of log posterior. We
now give some examples to show the clusterings favoured by this score function.

Of course, the problem of finding the clustering which maximised the score function is
computationally far too demanding even with relatively modest examples, so we derive
candidate clusterings by other means and then see which are favoured by the score function.

In our examples, we will propose clusterings using the K-means algorithm and apply the
score function, to see (a) which value of K gives the greatest score and (b) whether the
‘true’ clustering gives a greater score than the best K-means clustering.

We have two hyperparameters to consider; Σ0, which is the a-priori expected within-
cluster covariance mean and which gives the strength of the prior assessment. The other
hyperparameter is λ that controls the strength of the prior information on the within-
cluster covariance.

In practise, we find that the total covariance matrix of the entire data set gives a good value
for Σ0. This prevents the score function from favouring too many clusters; if the parameter
λ is sufficiently small, neither is the number of clusters underestimated. The single-cluster
solution gives a good reference point; with this choice of Σ0, the score function for a single
cluster is 0. Indeed, let [n] = {1, . . . , n} then:

∆̂P,λ({[n]}) = −1

2

(
P̂ (x[n]) + λ

)
log
∣∣∣ λ

P̂ (x[n]) + λ
Id +

P̂ (x[n])

P̂n(x[n]) + λ
V̂n(x[n])

−1V̂n(x[n])
∣∣∣+

+ P̂n(x[n]) log P̂n(x[n]) =

= −1

2

(
P̂ (x[n]) + λ

)
log |Id|+ P̂n(x[n]) log P̂n(x[n]) = 0,

(5.1)

since P̂n(x[n]) = 1. Therefore, for different clusterings, it can easily be seen whether or not
the clustering gives a better or worse score than for the single-cluster solution.
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5.1 Metrics for Clustering

For two proposed clusterings, it is important to be able to decide whether they are close
to each other or whether they differ markedly. It is useful to have measures of divergence
between clusterings. We consider two metrics, presented in Wade et al. (2018): if J1 and
J2 are two partitions of the set [n] then

• (Binder loss) fB(x) = x2 and

dB(J1,J2) =
∑
J1∈J1

fB(|J1|/n)+
∑
J2∈J2

fB(|J2|/n)−2
∑

J1∈J1,J2∈J2

fB(|J1∩J2|/n) (5.2)

• (Variation of Information) fV I(x) = x log x and

dV I(J1,J2) =
∑
J1∈J1

fV I(|J1|/n) +
∑
J2∈J2

fV I(|J2|/n)− 2
∑

J1∈J1,J2∈J2

fV I(|J1 ∩ J2|/n)

(5.3)

Recall the mathematical definition of a metric; d is a metric if d ≥ 0, d(A,B) = d(B,A),
d(A,B) ≤ d(A,C) + d(B,C) for any A,B,C. The fact that both, the Binder loss and
the Variation of Information, are metrics on the space of clusterings is listed in Wade
et al. (2018) as Property 1. The proof of this property for the Variation of Information is
contained in Meilă (2007) and the proof for the Binder loss, as the authors of Wade et al.
(2018) points out, follows from the fact that this can be consider as a Hamming distance
between the indicator representations of the clusterings.

Let 0n and 1n be the n-cluster and 1-cluster partitions of [n] respectively. By Property 4
in Wade et al. (2018) we have that for any partitions J1 and J2 of [n]

dB(J1,J2) ≤ dB(0n,1n) = 1− 1

n
and dV I(J1,J2) ≤ dV I(0n,1n) = logn (5.4)

To put these distances on the same scale, we consider their normalised versions, i.e.
d̄B(J1,J2) = dB(J1,J2)/dB(0n,1n) and d̄V I(J1,J2) = dV I(J1,J2)/dV I(0n,1n).

We now illustrate the performance of the score function by considering several data sets.

5.2 Example: Simulated mixtures of Gaussians

For our first example, we generate n = 104 data points according to the generation scheme
for cluster assignment, cluster distribution and within-cluster observation, which we modify
by truncating the stick-breaking construction at some small level K = 5 (so that 5 is
the true number of clusters). We therefore have the true underlying distribution; the
within-cluster distribution, the generating mechanism for each cluster and the theoretical
proportions for each cluster. We know the ‘true’ cluster assignment.
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For various values of K, K = 1, . . . , 12, we run the K-means algorithm (Steinhaus (1956),
MacQueen et al. (1967)) to obtain clusterings (Figure 5.1) and we score them using our
score function ∆̂λ, for a selection of 15 λ values, which include λ = 0 and λ = ∞. The
results are presented on Figure 5.2.

Note that all the plots start from the origin, since ∆̂λ({1, . . . , n}) = 0 by (5.1). Also, other
than for the single-cluster solution, the respective plots do not coincide, since Proposi-
tion 4.3 (a) establishes that ∆λ,P (A) is decreasing in λ for any fixed A.

When we do not place constraints on the minimum acceptable cluster size, the number of
clusters is clearly overestimated for small λ.

As the value of λ increases, the score converges to the ∆̂∞ function, which is the empirical
equivalent of the Delta function that was analysed in Chapter 3, in this case the clusters
tend to adjust themselves to the covariance matrix Σ0. Since we have set Σ0 equal to the
total covariance matrix, it is not surprising that ∆̂∞ favours the partition with just one
cluster.

Recall that Figure 5.2 gives the scores of the clusterings produced by the K-means algo-
rithm for different values of K. The true value of K is 5, yet the K-means clustering into 5

clusters performs badly; for a large range of values for λ, the ∆λ scores shown on Figure 5.2
gives a local maximum for 3 clusters and, would suggest either the 8-mean clustering or
the 3-mean clustering produced by K-means.

Since we know the true clustering structure in this case, we can compute the normalised
distances between the various K-means solutions and the true clustering. The 8-means
solution was closest to the true partition according to both metrics (Binder loss and Vari-
ation of Information). The information is given in the plot (Figure 5.3) in the shaded
area. Note that the normalised distance values are transformed by a decreasing function
F and hence the larger outputs correspond to ‘better’ partition, so that it corresponds to
the behaviour of ∆λ function. The details of the transformation are given in the caption
of Figure 5.3.

Another informative part of Figure 5.3 are black segments that represent the relation
between the maximal score of the ∆̂λ function among K-means proposals for different
values of λ and the ∆̂λ of the true clustering. It should be noted that for λ < .5 the true
partition is scored higher than the best K-means proposal.

This indicates two things: (a) the ∆̂ score function gives higher scores to ‘correct’ partitions
and (b) in this example, the K-means algorithm is not performing very well; none of the
partitions chosen by K-means were close to the true partition.

In this example, there are well-defined clusters, but K-means has not found them. If these
clusterings are scored using the formula then the ‘true’ clustering scores more highly than
any of the K-means clusterings.

Figure 5.4 presents another representative example (regardless of the data dimension) of
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the behaviour of the ∆̂λ score function for mixture of Gaussians and illustrates the following
properties:

• If the true clustering is not detected by the K-means algorithm (which is often the
case when the covariance structure varies between clusters and when a within-cluster
covariance Λ exhibits substantial correlation - i.e.

∣∣∣∣ Λij√
|ΛiiΛij |

∣∣∣∣ is close to 1 for some

i, j) then the true clustering has a higher score than any of the K-means clusterings,
at least for λ ∈ [0, λ̄] for some λ̄ < 1.

• If the true clustering is not detected by the K-means algorithm then the maximisers
of ∆̂0 score do not always correspond to the K-means clustering proposal closest to
the true clustering according to some metric. On the other hand, usually there is a
range [λ1, λ2] such that for λ within this range the partition selected as maximiser
for ∆̂λ is the proposal which is closest to the true clustering.

• The number of clusters in the maximiser of the ∆̂λ function tends to be a non-
increasing function of λ. However, this is not always the case, as shown on Figure 5.5.

5.3 Example: The Fisher Iris Data

In this section we investigate the performance of the ∆̂λ function on the standard, 4-
dimensional iris dataset. For a reminder, the dataset contains information about 3 species
of irises, 50 observation each. We use the suggestions of the K-means algorithm for K =

1, 2, . . . , 10 and score them using ∆̂λ function for a selection of 50 values of the λ parameter.
We include this example to show that, as the theory suggests, our method is not well
suited for a relatively small sample sizes. The cluster sizes in the 10-means clustering are
23, 22, 19, 18, 17, 16, 12, 11, 8 and 4. Clearly the within group covariance structure in
4-dimensional space cannot be estimated with samples of this size. We should not expect
good results under such circumstances, as indicated by the considerations in Section 4.2.

The results are presented in Figure 5.6 (see Section 5.2 for the detailed description of the
diagnostic plot) and they support these predictions. There is a significant instability in
the behaviour of the score function, just as the theory suggests.

We do not have access to a larger database concerning irises. Instead we decide to mimic
the original sample by generating a mixture of Gaussians. We analyse a realisation of
size 104 of the mixture of three 4-dimensional Gaussian distribution, with the same mean-
covariance structure as the original dataset. The results are shown on Figure 5.7. Here
the ∆̂λ score function nicely detects the best clustering proposal suggested by K-means
(K = 3) and its value is lower than the score of the true clustering.

This example confirms that the ∆̂λ score should not be used when there is not enough
information to estimate the covariance structure of the clusters.
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Figure 5.1: TheK-means clustering proposals for the mixture of Gaussians example. The boundary
of convex hulls of clusters are shown in green.
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λ = 0

λ = 0.00017

λ = 0.00043

λ = 0.00081

λ = 0.0013

λ = 0.0021

λ = 0.0032
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Figure 5.2: The ∆̂λ scores of the mixture of Gaussians example. The maximal values of different
∆̂λ curves for different λ values are denoted by black points. The λ parameters were chosen so
that the values of ∆̂λ for the 12-means clustering proposal are evenly spread.
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Figure 5.3: Diagnostic plot relevant to Figure 5.2. As before, the maximal values of different ∆̂λ

curves for different λ values are denoted by black points. Black segments beginning with these
black points end with the ∆̂λ value of the true clustering for relevant λ. This means that whenever
those segments have a positive slope, the true clustering is scored higher that any of the K-means
proposal. Two black plots on the grey background represent F (b̃k) (squares) and F (ṽk) (triangles),
where b̃k and ṽk represent the normalised Binder or VoI distances of the k-means proposal to the
true clustering and F (x) = .04

.01+x is a decreasing transformation. The formula of the transformation
was chosen so that the results fit nicely into [0, 1] interval (note the secondary y-axis labels on the
right). Simply using F (x) = 1 − x was not a good idea since relatively small distance values are
quite common and difficult to distinguish visually. The points representing maximal values are
painted black and respective K-means proposals are the closest (according to relevant distance
measures) to the true clustering.
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Figure 5.4: A representative example of the behaviour for the ∆̂λ score function. The data dimen-
sion is 4, the number of observations is 104 and the cluster sizes in the true clustering were 3046,
1914, 297, 1555, 311, 1051 and 1826. Here F (x) = .04

.01+x .
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Figure 5.5: An example of the number of clusters of the maximiser of the ∆̂λ function among the
K-means proposal not being a non-decreasing function of λ. Here F (x) = .04

.01+x .
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Figure 5.6: The diagnostic plot for the iris dataset. Here F (x) = .01
.001+x .
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Figure 5.7: The diagnostic plot for the artificial mixture of Gaussians that mimics the mean-
covariance structure of the iris dataset. Here F (x) = .035

.001+x .
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Appendix A

Auxiliary Results

We start by fixing some notation.

Notation. If (an)∞n=1 and (bn)∞n=1 are real sequences, we write

• an ' bn if limn→∞
an
bn

= 1.

• an � bn if 0 < lim infn→∞
an
bn
≤ lim supn→∞

an
bn
<∞.

• an � bn if lim supn→∞
an
bn
<∞.

• an = o(bn), if limn→∞
an
bn

= 0.

Analogous notation is used when a, b : R+ → R are real functions.

• We denote the convex hull of ∆K and the origin by

NK = {(p1, . . . , pK) :
K∑
k=1

pk ≤ 1,∀k≤Kpk ∈ [0, 1]}. (A.1)

• If x ∈ Rd, by ‖x‖ we mean the standard Euclidean norm. If Σ ∈ Rd×d is a matrix,
then ‖Σ‖ is the operator norm, i.e.

‖Σ‖ = sup
x∈Rd\0

‖Σx‖/‖x‖. (A.2)

Lemma A.1. Let (Vi)
∞
i=1 be a sequence of random variables such that Vi ∼ Beta(1−β, α+

iβ) for some α > 0 and 0 ≤ β < 1. Then
∑∞

i=1 log(1− Vi)
a.s.
= −∞.

Proof. If β = 0 then Vi
iid∼ Beta(1, α). Since P(Vi <

1
2) > 0, by the Borel-Cantelli lemma

we deduce that almost surely log(1− Vi) < − log 2 for infinitely many indices i and hence∑∞
i=1 log(1− Vi)

a.s.
= −∞.

For β > 0 note that by the concavity of the logarithm and the Jensen’s inequality we get

E log(1− Vi) ≤ logE (1− Vi) = log
(

1− 1− β
α+ (i− 1)β + 1

)
. (A.3)
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Since log
(

1 − 1−β
α+(i−1)β+1

)
' − 1−β

α+(i−1)β+1 and the series
∑∞

i=1
1−β

α+(i−1)β+1 is divergent,

then by the limit comparison test the series
∑∞

i=1 log
(

1 − 1−β
α+(i−1)β+1

)
is also divergent

and therefore by (A.3) and the linearity of the expected value

E
∞∑
i=1

log(1− Vi) = −∞. (A.4)

We now prove that for X ∼ Beta(a, b) then

Var logX = ψ1(a)− ψ1(a+ b), (A.5)

where ψ1 is the trigamma function, defined by ψ1(z) = (log Γ(z))′′. Let fa,b(x) = 1
B(a,b)x

a−1(1−
x)b−1 be the density of the Beta(a, b) distribution. Consider the parameter b as fixed and
recall the definition of the Fisher information value for a single-parameter family of dis-
tributions:

I(a) =
(
E
∂

∂a
log fa,b(X)

)2
(A.6)

It is a standard property of the Fisher information value (Bickel and Doksum, 2015, Propo-
sition 3.4.4) that

Var
∂

∂a
log fa,b(X) = I(a) = −E ∂2

∂a2
log fa,b(X), (A.7)

Computing the exact formulas of the right- and left-hand sides of (A.7), we obtain

Var
∂

∂a
log fa,b(X) = Var logX and E

∂2

∂a2
log fa,b(X) =

∂2

∂a2

1

B(a, b)
. (A.8)

Since B(a, b) = Γ(a)Γ(b)
Γ(a+b) , we easily obtain that ∂2

∂a2
1

B(a,b) = ψ1(a + b) − ψ1(a). Now (A.5)
follows from (A.7) and (A.8).

By Abramowitz and Stegun, Formula 6.4.12 we get ψ1(z) = 1
z + 1

2z2 + o( 1
z2 ). Hence by

(A.5)

Var log(1− Vi) = ψ1(α+ iβ)− ψ1

(
α+ (i− 1)β + 1

)
' C

i2
(A.9)

for some constant C. This means that
∞∑
i=1

Var log(1− Vi) <∞ (A.10)

(again using the limit comparison test). Equations (A.4) and (A.10), together with an easy
application of the Chebyshev inequality, imply that

∑n
i=1 log(1 − Vi)

P→ −∞. According
to Gut, Theorem 3.3.5, convergence in probability implies convergence almost surely for a
monotone sequence. The result follows.

Lemma A.2. Let αi > 0 for i ≤ K and
∑K

i=1 αi = 1. Let g(p1, . . . , pK) =
∏K
k=1 p

αk
k .

Then supNK g =
∏
k≤K α

αk
k .
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Proof. As αi > 0 for i ≤ K, the function g is continuous and, because NK is compact in RK ,
it achieves its extreme values. Let p̂ = (p̂1, . . . , p̂K) ∈ NK satisfy g(p̂K) = supNK g. Clearly,
p̂ ∈ ∆K . Indeed, otherwise s =

∑K
i=1 p̂i < 1, p̂/s ∈ NK and g(p̂/s) = g(p̂)/s > g(p̂),

which contradicts the definition of p̂. Since g is nonnegative on ∆K and it is equal to 0 on
the boundary of ∆K , we know that p̂ is in the interior of ∆K . The function g is positive on
the interior of ∆K , so by considering the function log(g) and using the Lagrange multipliers,
we got that p̂ satisfies

0 = (αi log pi)
′ + λ =

αi
pi

+ λ (A.11)

for i ≤ K and some λ ∈ R. Hence pi’s are proportional to αi’s, and because
∑K

i=1 αi = 1,
we get that p̂i = αi and the proof follows.

Lemma A.3. Let Y be a measurable space and r ∈ N. Let f ∈ Lr(Y) ∩ L∞(Y) and
f, fn ≥ 0 for n ≥ 1. Assume that ‖fn‖r → ‖f‖r and ‖fn − f‖∞ → 0. Then

‖fn‖n → ‖f‖∞.

Proof. Fix ε > 0. By Lemma 2.14 ‖f‖n → ‖f‖∞ and hence there exist N1 such that∣∣‖f‖n − ‖f‖∞∣∣ < ε for n > N1. (A.12)

By the assumptions there exists N2 such that

‖fn − f‖∞ < ε for n > N2 (A.13)

and, using Lemma A.4, there exist N3 for which

‖fn − f‖r ≤ r
√

2‖f‖r + ε for n > N3. (A.14)

It is clear that for any function g and n > r we have

‖g‖nn =

∫
Y
|g|n ≤ ‖g‖n−r∞

∫
Y
|g|r = ‖g‖n−r∞ ‖g‖rr (A.15)

and hence, placing g = fn − f and taking the n-th root

‖fn − f‖n ≤ ‖fn − f‖
n−r
n∞ · ‖fn − f‖

r
n
r . (A.16)

Pulling (A.12), (A.13), (A.14) and (A.16) together we obtain that for n > max{N1, N2, N3, r}∣∣‖fn‖n − ‖f‖∞∣∣ ≤ ∣∣‖fn‖n − ‖f‖n∣∣+
∣∣‖f‖n − ‖f‖∞∣∣ ≤

≤ ‖fn − f‖n + ε ≤

≤ ε
n−r
n
(
r
√

2‖f‖r + ε
) r
n + ε

(A.17)

and hence
lim sup
n→∞

∣∣‖fn‖n − ‖f‖∞∣∣ ≤ 2ε. (A.18)

As the choice of ε > 0 was arbitrary, the proof follows.
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Lemma A.4. Let Y be a measurable space and let r ∈ N. Let f ∈ Lr(Y) and f, fn ≥ 0

for n ≥ 1. Assume that ‖fn‖r → ‖f‖r. Then

lim sup
n→∞

‖f − fn‖r ≤ r
√

2‖f‖r.

Proof. We start with the case r = 1. For any function g let g+(x) = g(x)1g(x)≥0 and
g−(x) = −g(x)1g(x)<0. Let dn = f − fn. Note that

‖dn‖1 = ‖d+
n ‖1 + ‖d−n ‖1. (A.19)

Moreover
‖fn‖1 − ‖f‖1 = ‖d+

n ‖1 − ‖d−n ‖1 (A.20)

and since f, fn ≥ 0 we have d+
n ≤ f and

‖d+
n ‖1 ≤ ‖f‖1. (A.21)

Using (A.19), (A.20) and (A.21), together with the assumption ‖fn‖1 → ‖f‖1, we get

lim sup
n→∞

‖dn‖1 = lim sup
n→∞

(
2‖d+

n ‖1 − (‖fn‖1 − ‖f‖1)
)
≤ 2‖f‖1 (A.22)

and that finishes the proof of the case r = 1.

For general r ∈ N we use the obvious equality ‖g‖rr = ‖gr‖1 for g ≥ 0. From the assump-
tions ‖f1

n‖1 → ‖f r‖1, which implies

lim sup
n→∞

‖f rn − f r‖1 ≤ 2‖f r‖1 = 2‖f‖rr. (A.23)

It is clear that for any z ≥ 0 and r ∈ N we have zr ≤ (z + 1)r − 1 and hence for any
x ≥ y > 0, by placing z = x

y − 1 and multiplying by yr we get |x − y|r ≤ |xr − yr|. But
this inequality is symmetric with respect to x, y, so it is valid for any x, y > 0 and – by
considering the obvious case x = 0 or y = 0 – for any x, y ≥ 0. It then follows that

‖fn − f‖rr =

∫
Y
|fn − f |r ≤

∫
Y
|f rn − f r| = ‖f rn − f r‖1. (A.24)

We finish the proof by joining (A.23) and (A.24).

Lemma A.5. Let f be a strictly convex function on Rk with values in R∪ {−∞,∞}. Let
U be the essential domain of f , i.e. U = {x ∈ Rk : f(x) < ∞} and assume that U is an
open subset of Rk. If there exists x0 ∈ U such that f(x0) = infx∈U f(x) then for every
a ∈ R the set Ua := {x ∈ Rk : f(x) ≤ a} is a compact subset of U .

Proof. Without loss of generality assume that x0 = 0k and f(x0) = 0. The theorem
obviously holds for a < 0. Fix a ≥ 0. Clearly Ua ⊆ U . As f is convex, it is continuous in
U (cf. Rockafellar, 1970, Theorem 10.1) and hence Ua is a closed set. It is left to prove that
it is bounded. Take ε > 0 such that B(0, ε) ⊆ U and let M = infx∈∂B(0,ε) f(x). Clearly,
by the convexity of f : f(x) > M ‖x‖

ε for x /∈ B(0, ε). Therefore Ua ⊆ B(0, εM ) and the
proof follows.
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A.1 Detailed computations of marginal distributions from
Section 1.4.1

A.1.1 Normal-Normal

If Σ is a symmetric matrix and v =

[
diag(Σ0)

low(Σ0)

]
, let M(v) = Σ. We can rewrite the formula

for C(τ, ζ) in (1.33) in a more direct form as

C(τ, ζ) =
1

2
log |M(ζ)|−1 +

1

2
τ>M(ζ)−1τ (A.25)

We have

τx = Ψ−1
0 µ0 +

k∑
i=1

Σ−1
0 xi = Ψ−1

0 µ0 + kΣ−1
0 x,

ζk =

[
diag(Ψ−1

0 )

low(Ψ−1
0 )

]
+ k

[
diag(Σ−1

0 )

low(Σ−1
0 )

]
=

[
diag(Ψ−1

k )

low(Ψ−1
k )

] (A.26)

and therefore by (A.25)

C(τx, ζk) =
1

2
log |Ψk|+

1

2
(Ψ−1

0 µ0 + kΣ−1
0 x)>Ψk(Ψ

−1
0 µ0 + kΣ−1

0 x). (A.27)

Hence

C(τx, ζk)−C(τ, ζ) =
1

2
log
|Ψk|
|Ψ0|

+
1

2
(Ψ−1

0 µ0 + kΣ−1
0 x)>Ψk(Ψ

−1
0 µ0 + kΣ−1

0 x)− 1

2
µ0
>Ψ−1

0 µ0.

(A.28)
We also have

k∏
i=1

h(xi) = (2π)−dk/2|Σ0|−k/2
k∏
i=1

exp

{
−1

2
xi
>Σ−1

0 xi

}
(A.29)

Note that if A,B are two invertible matrices of the same size and C = (A+B)−1 then

ACA−A = ACA−AC(A+B) = −ACB = BCB − (A+B)CB = BCB −B (A.30)

By plugging A = Ψ−1
0 and B = kΣ−1

0 into the left-hand, the middle and the right-hand
parts of (A.30) we get

Ψ−1
0 ΨkΨ

−1
0 −Ψ−1

0 = −kΨ−1
0 ΨkΣ

−1
0 = k2Σ−1

0 ΨkΣ
−1
0 − kΣ−1

0 (A.31)

Hence

(Ψ−1
0 µ0 + kΣ−1

0 x)>Ψk(Ψ
−1
0 µ0 + kΣ−1

0 x)− µ0
>Ψ−1

0 µ0 =

= µ0
>(Ψ−1

0 ΨkΨ
−1
0 −Ψ−1

0 )µ0 + 2kµ0
>Ψ−1

0 ΨkΣ
−1
0 x+ k2xΣ−1

0 ΨkΣ
−1
0 x =

= µ0
>(k2Σ−1

0 ΨkΣ
−1
0 − kΣ−1

0 )µ0 − 2µ0
>(k2Σ−1

0 ΨkΣ
−1
0 − kΣ−1

0 )x+ k2xΣ−1
0 ΨkΣ

−1
0 x =

= −kµ0Σ−1
0 µ0 + 2kµ0Σ−1

0 x+ k2
(
xΣ−1

0 ΨkΣ
−1
0 x− 2µ0

>Σ−1
0 ΨkΣ

−1
0 x+ µ0

>Σ−1
0 ΨkΣ

−1
0 µ0

)
=

=
( k∑
i=1

xi
>Σ−1

0 xi −
k∑
i=1

(xi − µ0)>Σ−1
0 (xi − µ0)

)
+ k2(x− µ0)>Σ−1

0 ΨkΣ
−1
0 (x− µ0)

(A.32)

Plugging (A.28) and (A.29) into (1.26) gives us (1.34).
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A.1.2 Normal-Inverse-Wishart

Let ζ =

[
ζ(1)

ζ(2)

]
and for τ =

−
1
2diag(Λ)

−low(Λ>)

µ

 let τ (1) =

[
−1

2diag(Λ)

−low(Λ>)

]
and τ (2) = µ. Moreover

let M̃(τ (2)) = Λ. Then

C(τ, ζ) = −d
2

log ζ(2)−ζ
(1) − d− 2

2
log

∣∣∣M̃(τ (1))− 1
ζ(2)

(
τ (2)

) (
τ (2)

)>∣∣∣
2d

+log Γd

(
ζ(1) − d− 2

2

)
.

(A.33)

Note that

M̃(τ
(1)
x )− 1

ζ
(2)
k

(
τ

(2)
x

)(
τ

(2)
x

)
> =

=
(
ν0Σ0 + κ0µ0µ0

> +

d∑
i=1

xixi
>
)
− 1

κ0 + k

(
κ0µ0 +

d∑
i=1

xi
)(
κ0µ0 +

d∑
i=1

xi
)> =

= ν0Σ0 +
d∑
i=1

xixi
> − kxx> + kxx> − 1

κ0 + k

(
κ0µ0 + kx

)(
κ0µ0 + kx

)> + κ0µ0µ0
> =

= Σ(x)

(A.34)

where Σ(x) is given by (1.47). Putting together (A.34) and (A.33) and applying this to
(1.26) yields (1.45).

A.1.3 Normal-Inverse-Gamma

For τ =

[
a

v

]
, where a ∈ R, v ∈ Rd let τ (1) = a, τ (2) = v. Similarly, for ζ =

[
b

w

]
, where

b ∈ R and w ∈ Rd(d+1)/2 let ζ(1) = b and ζ(2) = w. If Σ is a symmetric matrix and

v =

[
diag(Σ0)

low(Σ0)

]
, let M(v) = Σ. Then

C(τ, ζ) = −(ζ(1)− 1) log
(
− τ (1)− 1

2
τ (2)M(ζ(2))−1τ (2)>

)
+ log Γ(ζ(1)− 1)− 1

2
log |M(ζ(2))|

(A.35)
We have

M(ζ
(2)
k ) = Ψ−1

0 + kΣ−1
0 = Ψ−1

k (A.36)

By applying (A.31) we get

(Ψ−1
0 µ0 + kΣ−1

0 x)>Ψk(Ψ
−1
0 µ0 + kΣ−1

0 x)− µ0
>Ψ−1

0 µ0 − kx>Σ−1
0 x = (x− µ0)>kΞk(x− µ0)

(A.37)
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and hence

−τ (1)
x − 1

2
τ

(2)
x M(ζ

(2)
k )−1τ

(2)
x
> =

=
(
β0γ0 +

1

2
µ0
>Ψ−1

0 µ0 +
1

2

k∑
i=1

xi
>Σ−1

0 xi

)
− 1

2
(Ψ−1

0 µ0 + kΣ0x)>Ψk(Ψ
−1
0 µ0 + kΣ0x) =

= β(x).

(A.38)

By applying (A.35), (A.36) and (A.38) to (1.26) we obtain (1.56).

A.2 Linear algebra

Lemma A.6. Symmetric, positive definite matrices have the following properties

(a) the sum of symmetric positive definite matrices is symmetric positive definite.

(b) the inverse of symmetric positive definite matrix is symmetric positive definite.

(c) for each symmetric positive matrix A there exist an uniquely defined symmetric positive
matrix B such that A = B>B. We use the notation B = A1/2.

(d) if A,B are symmetric positive definite matrices and also A−B is symmetric positive
definite then B−1 −A−1 is symmetric positive definite.

(e) if A,B are positive definite then det(A+B) ≥ detA.

Proof. Let A,B ∈ Rd,d.

(a) If A,B are symmetric then A+B is also symmetric. If A,B are positive definite then
for every x ∈ Rd \ {~0} we have x>(A+ B)x = x>Ax+ x>Bx > 0 and hence A+ B is
also positive definite.

(b) If A is symmetric then A−1 is also symmetric. If A is positive definite then by
Theorem 7.1 from Zhang (2011) it may be expressed as U∗diagλ1, . . . , λdU where
U is unitary matrix and U∗ its conjugate transpose and λ1, . . . , λd > 0. Therefore
A−1 = U∗diagλ−1

1 , . . . , λ−1
d U and again by using Theorem 7.1 we obtain that A−1 is

positive definite.

(c) Since if A is a symmetric matrix then A>A = A2 and this point is an easy consequence
of Theorem 7.4 in Zhang (2011).

(d) Let P be a symmetric matrix that satisfy P 2 = B. Positive definiteness of A − B is
equivalent to x′Ax > x′Bx for all x ∈ Rd. By substituting y = Px this is equivalent
to y′P−1AP−1y > y′y for all y ∈ Rd. Note that P−1AP−1 is positive definite (as a
product of positive definite matrices) and hence it can be expressed as U∗ΛU . But
then the latest condition can be expressed as z′z > z′U∗Λ−1Uz for all z ∈ Rd which
in the same way is equivalent to the positive definiteness of B−1 −A−1.
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(e) This is clearly equivalent to det(I+BA−1) ≥ det(I) = 1. As BA−1 is positive definite
then for every eigenvalue λ of I + BA−1 we have λ = v′(I + BA−1)v > 1, where v is
its eigenvector of norm 1. Therefore the determinant of I +BA−1 is also greater than
1.

Lemma A.7. If A is a square matrix then I − (I +A2)−1 = A(I +A2)−1A.

Proof. We have

(I +A2)−1 +A2(I +A2)−1 = (I +A2)(I +A2)−1 = I, (A.39)

and hence
I − (I +A2)−1 = A2(I +A2)−1. (A.40)

Using the formula for the inverse of a product, (AB)−1 = B−1A−1 we get(
A2(I +A2)−1

)−1
= (I +A2)A−2 = A−2 + I, (A.41)

and hence A2(I +A2)−1 = (A−2 + I)−1. Similarly(
A(I +A2)−1A

)−1
= A−1(I +A2)A−1 = A−2 + I, (A.42)

and the proof follows.

Lemma A.8. If Σ ∈ Rd×d is symmetric, positive definite then |Σ| ≤ ‖Σ‖d, where |.|
denotes determinant and ‖.‖ denotes operator norm.

Proof. Let 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λd be the eigenvalues of the matrix Σ. Then

|Σ| =
d∏
i=1

λi and ‖Σ‖ = λd, (A.43)

and the result follows.

Lemma A.9. Let u ∈ Rd. Then ‖uu>‖ = ‖u‖2.

Proof. By the Cauchy-Schwarz inequality, for any v ∈ Rd we have

‖(uu>)v‖2 =
(
(uu>)v

)>(uu>)v = (v>u)(u>u)(u>v) ≤ ‖u‖2(u>v)2 ≤ ‖u‖4‖v‖2. (A.44)

The inequality becomes an equality for v = u and the result follows.

Lemma A.10. Here we present some well-known properties of the trace. If A,B are
symmetric, positive definite d× d matrices then

(i) tr(AB) ≤
√

tr(A2)tr(B2)

100



(ii) tr(A2) ≤ tr(A)2

(iii) tr(A−1) ≤ d2tr(A)−1

As a result:

(a) tr(AB) ≤ tr(A)tr(B)

(b) tr(A−1) ≥ dtr(A)−1.

Proof. Part (i) is a Cauchy-Schwarz inequality that can be applied since tr(AB) is a scalar
product on the space of symmetric matrices, as is easily demonstrated. Part (ii) is a
consequence of the fact that the trace is a sum of eigenvalues, which are positive for
positive definite matrices, and that the eigenvalues of A2 are the squares of eigenevalues
of A. Part (iii) is the inequality between arithmetic and harmonic means applied to the
eigenvalues of A. Part (a) follows easily from parts (i) and (ii), and part (b) follows from
(a) by setting B = A−1.

A.3 Proof of Lemma 3.15

This is a straightforward consequence of the definition En(X |X ∈ C) = EnX1X∈C/Pn(C)

and the following Lemma A.11.

Lemma A.11. If P satisfies (∗) and for X ∼ P we have EP ‖X‖2 <∞ then P satisfies

lim
n→∞

sup
C convex

∥∥EnX1X∈C − EPX1X∈C
∥∥ = 0 almost surely. (∗∗)

where Enf(X) =
∫
X f(X)dPn = 1

n

∑n
i=1 f(Xi).

Proof. Let K be the space of all convex sets. If A is a set, then K∩A := {K ∩A : K ∈ K}.
Let x(i) (i ≤ d) be the i-th coordinate of vector x. We now prove that for every r > 0

lim
n→∞

sup
C∈K∩[−r,r]d

∣∣EnX(1)1X∈C − EPX(1)1X∈C
∣∣ = 0. (A.45)

Fix r > 0 and C ∈ K∩ [−r, r]d. For m ∈ N and −m ≤ k ≤ m−1 let Cmk = C∩ [rk/m, r(k+

1)/m)× Rd−1. Then

∣∣∣EPX(1)1X∈C −
m−1∑
k=−m

r
k

m
P (Cmk )

∣∣∣ ≤ r

m
P (C) ≤ r

m
. (A.46)

It follows from the same reasoning

∣∣∣EnX(1)1X∈C −
m−1∑
k=−m

r
k

m
Pn(Cmk )

∣∣∣ ≤ r

m
for every n ∈ N. (A.47)
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Now choose ε > 0 and m > r/ε. Note that Cmk are convex sets (as intersections of convex
sets) and hence by (∗) we may choose N so that for n > N and any convex C ′ we have
that |Pn(C ′)− P (C ′)| < ε/(2m) and hence

∣∣∣ m−1∑
k=−m

r
k

m
P (Cmk )−

m−1∑
k=−m

r
k

m
Pn(Cmk )

∣∣∣ ≤ m−1∑
k=−m

r
|k|
m
|P (Cmk )− Pn(Cmk )| <

<
m−1∑
k=−m

r
ε

2m
< rε.

(A.48)

By combining (A.46), (A.47) and (A.48) we obtain that |EnX(1)1X∈C − EPX(1)1X∈C | <
(2 + r)ε for n > N and since the choice of N does not depend on C, (A.45) follows.

We now prove that almost surely

lim
n→∞

sup
C∈K

∣∣EnX(1)1X∈C − EPX(1)1X∈C
∣∣ = 0. (A.49)

The same result for the remaining coordinates of (∗∗) follows in the same way, from which
follows the statement of the Lemma. Note that the function r 7→ EP |X(1)|1X/∈[−r,r]d is
decreasing to 0 as r goes to infinity. By the Strong Law of Large Numbers almost surely
limn→∞En|X(1)|1X/∈[−K,K]d = EP |X(1)|1X/∈[−K,K]d for every K ∈ N.

Fix C ∈ K and ε > 0. Since limK→∞EP |X(1)|1X/∈[−K,K]d = 0 it follows that there exist
K ∈ N such that EP |X(1)|1X/∈[−K,K]d < ε and limn→∞En|X(1)|1X/∈[−K,K]d < ε. The
latter means that there exist n1 such that En|X(1)|1X/∈[−K,K]d < ε for every n > n1. By
(A.45) there exist n2 ∈ N such that for every n > n2∣∣EnX(1)1X∈C∩[−K,K]d − EPX(1)1X∈C∩[−K,K]d

∣∣ < ε. (A.50)

Therefore for n > max{n1, n2} we get∣∣EnX(1)1X∈C − EPX(1)1X∈C
∣∣ < ∣∣EnX(1)1X∈C∩[−K,K]d − EPX(1)1X∈C∩[−K,K]d

∣∣+
+ En|X(1)|1X/∈[−K,K]d + EP |X(1)|1X/∈[−K,K]d < 3ε

(A.51)

Because n1, n2 do not depend on C, (A.49) follows, which finishes the proof of the Lemma.

Lemma A.12. If (F , d) is a pseudometric space then (FK(F), d̄) is also a pseudometric
space. Moreover, if (F , d) is finitely compact then (FK(F), d̄) is also finitely compact.

Proof. Assume that (F , d) is a (pseudo)metric space. We prove that (FK(F), d̄) is also a
(pseudo)metric space. Take any A = {A(1), . . . , A(k)} ∈ FK(F) and B = {B(1), . . . , B(l)} ∈
FK(F). By definition

d̄(A,B) = min
σ∈ΣK

max
i≤K

d(A(i), B(σ(i))) ≥ 0, (A.52)
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since d(A(i), B(j)) ≥ 0 for any i, j ≤ K (as in the definition we assume that A(i) = ∅ and
B(j) = ∅ for i > k or j > l respectively). Let C = {C(1), . . . , C(l)} ∈ FK(F) and let σ1, σ2

and σ3 be permutations of [K] that satisfy

d(A,B) = max
i≤K

d(A(i), B(σ1(i))) and d(B, C) = max
i≤K

d(B(i), C(σ2(i))) (A.53)

Note that d(A(i), B(σ1(i))) + d(B(σ1(i)), C(σ2(σ1(i)))) ≥ d(A(i), C(σ2(σ1(i)))) and hence

d(A,B) + d(B, C) = max
i≤K

d(A(i), B(σ1(i))) + max
i≤K

d(B(σ1(i)), C(σ2(σ1(i)))) ≥

≥ max
i≤K

(
d(A(i), B(σ1(i))) + d(B(σ1(i)), C(σ2(σ1(i))))

)
≥

≥ max
i≤K

d(A(i), C(σ2◦σ1(i))) ≥ d(A, C)

(A.54)

and the triangle inequality follows. This means that d is a pseudometric on FK .

Now assume that (F , d) is finitely compact. Let (An)∞n=1 be a sequence in FK(F) and let
An = {A(1)

n , A
(2)
n , . . . , A

(kn)
n }. As the sequence (kn)∞n=1 is bounded by K we may choose

a subsequence Ank and K̃ ∈ N such that |Ank | = K̃ for every k ∈ N. Consider the
sequence (A

(1)
nk )∞k=1. This sequence is bounded (as (An)∞n=1 is bounded). Therefore it has

a subsequence (A
(1)
nkl

)∞l=1 converging in d to A(1) ∈ F . Now we consider (A
(2)
nkl

)∞l=1 and
again we choose a subsequence (Anklm

)∞m=1 converging in d to A(2) ∈ F . By iterating this

procedure K̃ times we obtain a family Â = {A(1), . . . , A(K̃)} of ‘limiting’ sets. It is easy to
verify that the final subsequence of (An)∞n=1 converges in d̄ to Â, which finishes the proof.

Lemma A.13. If P is a measure on (Rd,B) with bounded support and absolutely continu-
ous with respect to the Lebesgue measure then Ψ(α) > 0 for every α > 0, where Ψ is given
by (3.79).

Proof. Fix α > 0. As an easy consequence of Theorem 3.19 we obtain that P (·) is a
continuous function in (Kr, %H). Therefore Kαr := {A ∈ Kr : P (A) ≥ α} is a closed (as
a counterimage of closed half-line in continuous transformation) subspace of compact (by
Theorem 3.18) topological space, therefore it is compact itself.

Assume that the support of P is contained in the ball B(0, r) and without losing generality
assume that r > 1. Consider the function

ϕ(A) = sup
A1,A2∈B
A1∪A2=A
A1∩A2=∅

P (A1) · P (A2) · ‖EP (X |X ∈ A1)− EP (X |X ∈ A2)‖2 (A.55)

in the compact topological space (Kr, %H). We prove that this function is continuous.

Firstly note that if C ∈ Kαr then ‖EPX1X∈C‖ ≤ rP (C). From this it can be easily seen
that for every ε > 0 there exist δ > 0 such that for A,B ∈ Kαr if dP (A,B) < δ then
‖EP (X |X ∈ A)− EP (X |X ∈ B)‖ < ε.
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Fix 0 < ε < 1. There exist δ1 < ε such that if A,A′ ∈ Kαr and dP (A,A′) < δ1 then
‖EP (X |X ∈ A) − EP (X |X ∈ A′)‖ < ε/2. There exist δ2 such that if A,A′ ∈ Kr and
%H(A,A′) < δ2 then dP (A,A′) < δ1 (this is because of Theorem 3.19 and the fact that
(Kαr , %H) is compact and therefore the continuity implies the uniform continuity). Let us
take A,A′ ∈ Kαr such that %H(A,A′) < δ2. Let A1, A2 ∈ Kαr be such that A1 ∩ A2 = ∅,
A1 ∪A2 = A and

ϕ(A)− ε ≤ P (A1) · P (A2) · ‖EP (X |X ∈ A1)− EP (X |X ∈ A2)‖2 (A.56)

Consider A′1 = (A′ \A2) ∪A1 and A′2 = A′ ∩A2. Then A′1 ∩A′2 = ∅, A′1 ∪A′2 = A′ and

dP (A1, A
′
1), dP (A2, A

′
2) ≤ dP (A,A′) ≤ δ1. (A.57)

Therefore |P (Ai) − P (A′i)| < δ1 < ε, ‖EP (X |X ∈ Ai) − EP (X |X ∈ A′i)‖ < ε/2 for
i = 1, 2. This implies that

‖EP (X |X ∈ A′1)− EP (X |X ∈ A′2)‖ ≤ ‖EP (X |X ∈ A′1)− EP (X |X ∈ A1)‖+

+ ‖EP (X |X ∈ A1)− EP (X |X ∈ A2)‖+ ‖EP (X |X ∈ A2)− EP (X |X ∈ A′2)‖ ≤

≤ ‖EP (X |X ∈ A1)− EP (X |X ∈ A2)‖+ ε.

(A.58)

Since pi := |P (Ai)| ≤ 1 and d := ‖EP (X |X ∈ A1)− EP (X |X ∈ A2)‖ ≤ 2r, we get∣∣P (A′1) · P (A′2) · ‖EP (X |X ∈ A′1)− EP (X |X ∈ A′2)‖2−

− P (A1) · P (A2) · ‖EP (X |X ∈ A1)− EP (X |X ∈ A2)‖2
∣∣ <

< (p1 + ε)(p2 + ε)(d+ ε)2 − p1p2d =

= d2(p1ε+ p2ε+ ε2) + (2dε+ ε2)(p1 + ε)(p2 + ε) < 32r2ε.

(A.59)

By (A.56) and (A.59) we obtain

ϕ(A)−ε−32r2ε ≤ P (A′1) ·P (A′2) ·‖EP (X |X ∈ A′1)−EP (X |X ∈ A′2)‖2 ≤ ϕ(A′). (A.60)

By symmetry we get ϕ(A′)−ε−32r2ε ≤ ϕ(A) which means that |ϕ(A)−ϕ(A′)| < (1+32r2)ε

for %H(A,A′) < δ2 which proofs the continuity of ϕ in the topological space (Kαr , %H).
Therefore by Weierstrass Theorem we get that

inf
A∈Kr
P (A)≥α

ϕ(A) = ϕ(A0) (A.61)

for some A0 ∈ Kr such that P (A0) ≥ α. It is easy to see that ϕ(A0) > 0 (it is enough
to divide A0 into two subsets of positive measure by a hyperplane so that the center of
masses of two parts do not coincide) and the Lemma follows.

Lemma A.14. Let A ∩B = ∅, C := A ∪B. Then

P (A)VP (A) + P (B)VP (B) � P (C)VP (C) (A.62)

where � is the Löwner partial order, i.e. M1 �M2 iff M2 −M1 is non-negative definite.
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Proof. Let e1(A) = EX1A(X) and e2(A) = EXX>1A(X) where X ∼ P . Then

VP (A) =
e2(A)

P (A)
− e1(A)e1(A)>

P (A)2
. (A.63)

Note that the functions P, e1, e2 are additive, hence

P (C)VP (C)− P (A)VP (A)− P (B)VP (B) =

=

(
e2(C)− e1(C)e1(C)>

P (C)

)
−
(
e2(A)− e1(A)e1(A)>

P (A)

)
−
(
e2(B)− e1(B)e1(B)>

P (B)

)
=

=
e1(A)e1(A)>

P (A)
+
e1(B)e1(B)>

P (B)
− e1(C)e1(C)>

P (C)
=

=
e1(A)e1(A)>

P (A)
+
e1(B)e1(B)>

P (B)
−
(
e1(A) + e1(B)

)(
e1(A) + e1(B)

)>
P (A) + P (B)

=

=
P (A)P (B)

(P (A) + P (B))

(
e(A)

P (B)
− e(B)

P (A)

)(
e(A)

P (B)
− e(B)

P (A)

)
>.

(A.64)

The last matrix in (A.64) is clearly non-negative definite and the proof follows.

But firstly we introduce a lemma which collects some key equalities and asymptotic results
that will be used heavily in the proofs.

Lemma A.15. For any x > d and z > 0(
x+ z − d

2e

) zd
2

<
Γd
(
x+z

2

)
Γd
(
x
2

) <

(
x+ z

2

) zd
2

. (A.65)

Proof. As proved in Kečkić and Vasić (1971) for y > x > 1

yy−1

xx−1
ex−y <

Γ(y)

Γ(x)
<
yy−

1
2

xx−
1
2

ex−y. (A.66)

Hence for any u = x− d+ 1, x− d+ 2, . . . , x

Γ
(
u+z

2

)
Γ
(
u
2

) >

(
u+z

2

)u+z
2
−1(

u
2

)u
2
−1

e−
z
2 =

(
1 +

z

u

)u
2
−1
(
u+ z

2

) z
2

e−
z
2 >

(
u+ z

2e

) z
2

>

(
x+ z − d

2e

) z
2

.

(A.67)

and

Γ
(
u+z

2

)
Γ
(
u
2

) <

(
u+z

2

)u+z
2
− 1

2(
u
2

)u
2
− 1

2

e−
z
2 =

(
1 +

z

u

)u
2
(

1 +
z

u

)− 1
2

(
u+ z

2

) z
2

e−
z
2 <

< e
z
2

(
1 +

z

x

)− 1
2

(
x+ z

2

) z
2

e−
z
2 =

(
x+ z

x

)− 1
2
(
x+ z

2

) z
2

<

(
x+ z

2

) z
2

.

(A.68)

The proof follows from (A.67), (A.68) and the definition of the multivariate Gamma func-
tion.
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