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Polski tytuł rozprawy

Metody wykrywania wzorców strukturalno-czasowych w
procesie wytwarzania oprogramowania

Streszczenie

W inżynierii oprogramowania antywzorce projektowe to często występujące
błędne rozwiązania typowych problemów programistycznych lub architekto-
nicznych, zwykle utożsamiane z pewnymi strukturami w kodzie źródłowym
programu. Liczne analizy pokazują wpływ występowania antywzorców na
wyższą liczbę błędów i większe koszty utrzymania systemu. Dlatego metody
wykrywania i eliminowania antywzorców stanowią istotny kierunek badań.

Większość dotychczasowych badań poświęcona była wyszukiwaniu kon-
kretnych obszarów kodu źródłowego, które same stanowią wystąpienie okre-
ślonego antywzorca. W niniejszej rozprawie natomiast wprowadzono poję-
cie reguł czasowo-przestrzennych, które, między innymi, mogą być użyte do
wskazania, w których rejonach kodu źródłowego mogą wystąpić antywzor-
ce w przyszłości. Daje to możliwość przeciwdziałania powstawaniu nowych
antywzorców, zanim jeszcze zostaną one wprowadzone do kodu źródłowego.

Reguły czasowo-przestrzenne w procesie wytwarzania oprogramowania
oparte są o pojęcia: relacji przestrzennej, która odpowiada konkretnym zależ-
nościom wyrażonym w jawnych konstrukcjach języka oprogramowania, oraz
relacji czasowej, związanej z kolejnością wprowadzania przez programistów
zmian do kodu źródłowego. W rozprawie przedstawiono efektywną metodę
adaptacyjnego wyliczania tych relacji w toku procesu rozwoju oprogramowa-
nia.

Przydatność zaproponowanej teorii została empirycznie potwierdzona przez
eksperymenty wykonane na repozytoriach kodu siedmiu systemów typu open-
source.

Słowa kluczowe: Eksploracja repozytoriów oprogramowania, Wnioskowanie
czasowo-przestrzenne, Antywzorce projektowe.



Abstract

In software engineering design anti-patterns are commonly used bad solutions
for a recurring problem in software design. They are frequently equated with
specific structures in the program source code. Ample evidence shows a cor-
relation between existence of anti-patterns and bad properties of the system,
such as higher number of defects or higher maintenance and development
costs. Therefore, methods of identifying and eliminating design anti-patterns
are vital.

A common approach to the problem is to find the exact areas in the source
code which constitute specific anti-patterns. In this thesis we introduce the
concept of spatio-temporal rules, which, among other applications, can be
used to predict in which areas of the source code one can expect some anti-
patterns to occur in the future. It enables one to prevent introducing new
anti-patterns into the source code.

Spatio-temporal rules are based on two concepts: The concept of a spa-
tial relation, which corresponds to certain dependencies expressed by specific
constructs in the programming language, and the concept of a temporal re-
lation, which relates to the order in which changes are implemented in the
source code. An efficient adaptive method of computing these relations along
with the software development process is presented in the thesis.

The proposed method was experimentally validated with the use of data
from version control systems of a few popular open-source projects.

Keywords: Mining software repositories, Spatio-temporal reasoning, Softwa-
re design anti-patterns.

ACM CCS: Software and its engineering~Design patterns, Information
systems~Association rules, Information systems~Data mining, Computing
methodologies~Supervised learning, Software and its engineering~Software
defect analysis, Computing methodologies~Rule learning.
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Glossary

abstract syntax tree A tree that represents the structure of the code writ-
ten in a programming language according to its syntax. Each node in
the tree represents a formal construct in the source code. 84, 85, 91,
99–101, 106, 114

branch A concept from the source code management system: one of many
parallel lines of development of a software system. 21, 181

call graph A type of dependency graph whose edges represent calls between
code entities. 30, 31

class A code entity that is contained in the package and contains methods.
8, 9, 22, 23, 28, 29, 94, 99, 101, 106

code churn A temporal measure defined as the sum of added, modified and
deleted lines in a given source code entity over a given period. 82

code entity Part of the structure of the source code uniquely identified by
its name. 6–9, 11, 22, 23, 85, 86, 94, 107, 109, 113, 137, 170, 180, 182,
235

code smell A structure in the system source code that might potentially
have some bad properties similar to a design anti-pattern. 1, 10, 28, 40,
179, 243

commit A transactional operation of applying changes to the source code
management system, uniquely identified by its revision. Information
about the author, date and the set of source file modifications is assi-
gned to each commit. 10, 20, 21, 33, 59, 60, 78, 89
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complex object An object that has a rich, non-trivial structure and is built
from other objects (complex or simple). Additionally, it can be descri-
bed by simple properties. 11, 18, 19, 45, 58, 59, 88, 94

concept A subset of the information system universe. It aims at representing
some observable phenomena in the set of objects formally described in
the information system. 7, 46

concept drift A phenomenon in mining temporal or sequential data, in
which certain statistical properties of an observed process change over
time, so that the quality of the prediction model can gradually dete-
riorate. 66

core The intersection of all reducts – the set of all attributes that cannot be
removed from an information system without information loss. 57, 58

data sampling The technique of repeatedly writing to log a state of a com-
plex object – once in a given sampling interval. 10, 58

decision table An information system with one selected decision attribute
that, for a given object, determines which decision class it belongs to.
Decision classes usually represent concepts. 46, 156, 165, 173, 177, 183

dependency graph A directional, labeled multigraph that represents de-
pendencies between code entities. The labels denote different kinds of
dependencies, such as inheritance (dependency between classes) or in-
vocation (methods). 6, 84, 85, 89

descriptive task A type of data mining task in which the algorithm extracts
useful knowledge about the nature of analyzed data. The knowledge is
implicitly used to build a predictive model for similar or related data
sets. 44, 63

design anti-pattern A frequently used, conceptual structure in the softwa-
re source code that addresses a common design problem in a bad man-
ner. 3, 6, 9, 10, 27, 28, 40, 86, 116, 125, 127, 128, 137, 156, 158, 160,
166–180, 229, 231, 232, 236–243

design pattern A frequently used, conceptual structure in the software so-
urce code that properly addresses a common design problem. 10, 26,
86, 116, 180
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design rot The phenomenon of gradual degradation of system design. It
can be observed in the systems that undergo a long process of software
development. 37, 38

event Timestamped information about an atomic change of a structure or
properties of a complex object. Events are written to an event log. 17,
33, 44, 58, 59, 80

event logging The technique of writing to log all events that take place
during complex object evolution. 34, 58, 59

feature vector A vector with the values of all attributes for a given element
from the information system universe. 46

field The lowest-level (along with method) code entity considered in this
research. Fields are contained in a class. 9, 23, 94, 101, 105

implicit dependency An actual dependency between code entities which
is not explicitly present in the source code. 74, 81

indiscernibility relation An equivalence relation that pairs such elements
which cannot be discerned from each other, on the basis of a given set
of attributes. 9, 57

information system A commonly used model for representing knowledge
about a series of data in machine learning. In this model each object
from the universe is described by values of the same attributes. 7–9,
11, 46

Integrated Development Environment A tool used by developers to cre-
ate the source code of the system under development. Some IDEs can
record developer activities and thus provide an additional log of the
software development process. 71, 74, 78–81, 167

issue A record stored in the issue tracker. It is characterized by its type
(among other attributes), which may be used to distinguish defect-
s/bugs – a sub-category of issues . 20, 22, 165
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issue tracker A system used to support the software development process,
which stores information about actions taken on the software during
its development (addition of new features, defect fixes, etc.) . 8, 10, 20,
22, 34, 70–72, 74, 76, 88, 89, 91, 92, 165, 180, 245

lower bound The lower approximation of a rough set that represents the
set of those elements which certainly “belong” to it. 10, 56, 121, 182

main development branch The main branch in the source code manage-
ment system, which typically is the basis for future development of new
features in the software system. 21, 108

main entity Central, most important code entity of an instance of design
anti-pattern. 116, 117, 119, 122, 125–128, 131, 134, 135, 159, 180

merge An operation of applying changes done to the source code in one
branch to another branch. 21, 108

method The lowest-level (along with field) code entity considered in this
research. Methods are contained in a class. 8, 22, 23, 29, 94, 101, 105

ontology Formal naming and definition of the types, properties, and interre-
lationships of the entities that exist in a particular domain of discourse.
88

overfitting A situation when a predictive model is too specific so that it
has good quality measures only on the training set. 9, 53, 54

package A code entity that groups classes. 22, 29, 94, 136

predictive task A type of data mining task in which the algorithm produ-
ces a predictive model for identical or related data which it was trained
on . 44, 63

pruning The process of simplification of the classifier - one of the possible
ways of coping with the problem of overfitting. 54, 166

reduct The minimal subset of the set of attributes of an information system
(A) that induces the same indiscernibility relation as A. It represents
the minimal set of attributes that express complete knowledge about
objects in the information system. 7, 57
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refactoring A process of improving the quality of software structure without
changing its external behavior. 36, 37, 77, 79, 80, 82, 83

release The act of submitting a ready-to-use version of software for broader
use by target users. Usually preceded by a longer process of develop-
ment, testing and stabilization. 33, 74, 78, 81

revision A unique identifier of a commit. 6, 10, 20, 21, 33, 34, 168, 180, 181

rough sets A formalism that allows one to represent vague concepts by
providing their upper and lower approximations in the form of the
upper bound and the lower bound. 54, 56, 57, 63, 183

rough software pattern The concept of a static software pattern expres-
sed in a vague manner by its lower and upper bound. 15, 38, 183

SCM The Source Code Management is usually the central system which
stores the current version of the software source code and all modifica-
tions done to it in the past. 10, 22, 34, 59, 70, 72, 74, 76, 80, 81, 88,
92, 97, 108, 115, 126, 165, 174, 180, 245

SCM hook A small script run whenever someone attempts to submit a
commit to the SCM. Among other things, it allows one to enforce
proper SCM and issue tracker synchronization by rejecting commits
without a reference to a valid issue in the issue tracker. 72

snapshot The state of a complex object recorded at a certain point in time.
Used to store temporal data in data sampling. 58

software evolution The process of change in the structure of the software
system that takes place during its development. Formalized as a sequ-
ence of software snapshots. 18, 34, 177, 180–182

software pattern A fragment of software structure that can be e.g. a design
pattern, a design anti-pattern or a code smell. 33, 34, 153, 156

software snapshot The state of the software source code at a given revi-
sion, formalized as a multigraph. 10, 110, 128, 171, 177, 180, 181

source code decay Gradual degradation of the quality of the system source
code. It can be observed in the systems that undergo a long process of
software development. 38
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source code metric A real-valued function defined on a subset of the so-
urce code entities, which is used to assess their quality. 23, 82, 83, 86,
128

source file An elementary unit of the source code seen as a text - a single
file may contain definitions of one or more code entities. 19, 94, 98, 107,
116

spatio-temporal pattern An observable phenomenon in the course of evo-
lution of a complex object, where spatial patterns appear, disappear or
change. 1, 4, 11–13, 15, 19, 49, 92, 93, 103, 152, 169

spatio-temporal relation A relation between two structures that change
over time, such that we can define their spatial relation and temporal
relation between their occurrences. 3, 4, 34, 40, 80, 143–146, 152, 153,
155–158, 160–163, 167, 168, 170, 175, 177–179, 181, 183

spatio-temporal rule A formal rule that describes spatio-temporal pat-
terns. 15, 40, 41, 152, 154–156, 159, 165–168, 171–174, 177, 178, 183,
236, 241

technical debt A situation when software system architecture is not ma-
intained, so that it gradually deteriorates during the implementation
of new features, producing greater maintenance and development co-
sts. Also interpreted as the cost of restoring the quality of software
architecture. 38

temporal pattern An observable phenomenon in the course of evolution of
a complex object – particularly in the evolution of a software system.
13, 18, 33

time series A series of numeric values, usually built in the process of repeti-
tive storage of a measured quantity during the observation of a process.
44, 60–62, 65

universe A set of elements in the information system. 46, 47

upper bound The upper approximation of a rough set that represents the
set of those elements which may “belong” to it. 10, 56, 121, 159, 161,
182
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Chapter 1

Introduction

1.1 Spatio-temporal patterns in software de-
velopment

1.1.1 Patterns in the software development process

Computer systems have not only become a commonplace in virtually all
aspects of our lives, but some, very large systems, which have been develo-
ped for months or even years, can be considered some of the most complex
structures that have so far been created by humans. On a very abstract
level, the structure of a software system can be seen as a very large set of
substructures, connected by various relations, dependencies and interactions.
The network of city streets is a good example of such a structure - we might
look at it as a collection of different junctions connected via different types
of streets. In such a traffic-flow system we may identify some typical sub-
structures, which consist of various interconnected elements which all play
a well-defined role. A roundabout, a cloverleaf interchange junction or a se-
quence of traffic lights set along the main street are good examples of such
substructures. We will call them spatial patterns or static patterns.

If we add a time dimension to the example above, we can conceive of cars
that actually move along the streets. In such a setting we can not only observe
some static patterns (e.g. a traffic jam), but also some temporal phenomena
that happen over a certain period. A good example is the following: “If
cars get stalled in a traffic jam at junction X, then within 5 minutes the
average speed at roads S and T decreases by half and within 10 minutes
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cars at junctions Y and Z get stalled in a traffic jam”. We will call such an
observable phenomenon a temporal pattern.

By analogy, we can identify some spatial and temporal patterns in so-
ftware. Spatial patterns can be found at any point in time if we view a large
structure of a computer system, in particular, its source code. As the sys-
tem is being developed and its structure is modified so that certain static
patterns appear while others disappear, we can observe temporal patterns in
this process.

The methods proposed in this thesis focus on the problem of detecting
both static patterns in the structure of the software system and the temporal
patterns in the course of its development.A spatio-temporal pattern is a term
to describe an observable phenomenon that involves changes of static patterns
in time.

1.1.2 Spatio-temporal patterns modeling

Research presented in this thesis is mostly based on a strict, mathemati-
cal model that describes both static and temporal patterns in the software
development process. The strict formalism of the model, however, while ap-
propriate for computer algorithms, is hardly understandable for humans. In
such case the potential applicability of proposed methods in real-life situ-
ations would be limited. In order to avoid such a drawback, special emphasis
is put on the comprehensibility of the model. Generally speaking, the pro-
posed methods for detection of patterns produce extra knowledge on how
certain patterns evolve over time during the software development process.
The findings are presented in terms of high-level, easy to understand concepts
that directly resemble actual phenomena.

Prof. Lotfi Zadeh, when outlining the notion of information granules
([358]), claims that granulation is one of the fundamental concepts in human
cognition. One of the elementary observations in this and his later works
(e.g. [359]) is the fact that if we want to model a real-world phenomenon
that people need to cope with, we must introduce vague, conceptual units of
computation and be able to operate on them.

Prof. Andrzej Skowron and dr Piotr Synak have proposed a similar view
on the matter, related to a more specific domain of approximate modeling
of temporal data ([318]). The proposition yields a high-level general frame-
work for approximate reasoning about spatio-temporal patterns in complex
data. Among other observations, we can draw three conclusions about how
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to properly construct a mining algorithm in such a context. These are: 1) the
hierarchical structure of machine learning algorithms, 2) incorporation of so-
me form of expert knowledge to describe complex concepts in the algorithm
and 3) the elementary assumption that the model should be based on vague
concepts.

The hierarchical structure of machine learning algorithm is derived from
the elementary observation that when a human expert tries to identify and
describe some patterns in a large complex environment, they do not use
elementary level observations, but rather try to express them in terms of a
high-level, specialist language.

For example, when we use weather forecast models, we do not derive
highest-level concepts, such as “good weather”, or “rainy afternoon”, from
the lowest-level measurable facts, such as inter-particle interaction. On the
contrary, we describe them by using just lower level concepts such as “over-
cast”, “humidity” or “wind direction”, and those come from still lower-level
concepts such as “air mass movements”, “steam convection” or “heat con-
duction”. In the end, the lowest-level of this hierarchy contains measurable
facts, such as wind speed, humidity or temperature, that can be taken di-
rectly from simple sensors. The aforementioned expert knowledge is used to
express inter-relations between concepts in subsequent levels of hierarchy and
potentially some interactions between concepts from the same level.

The structure of experiments presented in this thesis follows, to some
extent, the aforementioned approach. The proposed model, embedded in the
domain of software engineering, is based on simple, measurable facts, which
are then aggregated to different, more complex concepts on different levels
of hierarchy. The vague concepts and the application of expert knowledge is
used in different parts of the proposed method.

1.1.3 Software quality

Know-how on how to properly implement software systems is of vital im-
portance and is widely researched, with thousands of scientific and popular
publications every year. After decades of experience in the development of
large computer systems, a lot has been learned about good and bad prac-
tices in this field. Quite surprisingly, it seems that while the latter are still
frequently applied to newly developed systems, the former sometimes tend
to be forgotten or ignored. Any attempt to better understand why this is the
case seems crucial and could allow us to improve the way we work with com-
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puter systems nowadays. Research presented in this dissertation can help us
better to understand how software is being developed and what the reasons
for common problems are. An appropriate model of spatio-temporal patterns
allows for predicting where and when bad structures or defects may appear
in the source code of a developed software system.

1.2 Main contributions

The problem of detecting static patterns in software structure has been inten-
sely researched in recent years ([102], [175], [302], [321]). A common approach
to automation of the detection process is to use a formalism that describes
the pattern in a formal language (e.g. [338]) and then expresses the struc-
ture of the software system in the same language. Approaches of this kind
are discussed in detail in section 5.2.7. This thesis introduces the concept
of the rough software pattern that copes with the problem of expressing and
detecting vague concepts in the software system structure. For more details,
please refer to Section 6.3.2.

Analysis of software evolution is another very popular research topic
([295]). The focus is typically on the measurement, visualization and other
formal ways of analyzing software evolution, which is in the end used by a
human expert in order to identify and describe its temporal patterns (see
[116] ). The method proposed in this thesis goes one step further: it automa-
tes the process of identification and discovery of both spatial and temporal
patterns with the use of elementary machine learning algorithms. It is based
on the key concept of a spatio-temporal rule, and it is specifically fitted to the
software development domain, so that it can efficiently produce appropriate
models in an adaptive manner when the system is iteratively modified by
developers. For details, please refer to Chapter 6.

Defects, such as ill-structured parts of the source code of software systems,
tend not to be evenly distributed over all the elements. Some source code
elements have a tendency to be more prone to errors. This phenomenon has
been widely researched. The proposed methods vary from simple (sometimes
even trivial) measurements ([195], [284]), to more sophisticated methods,
based on advanced statistical analysis ([233], [71]). A key observation is that
in most cases the proposed methods do not give reasons or even indicators
of defect proneness, since the general research question posed is “density of
what factors is positively correlated with the number of detected defects.”
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(e.g. [166], [167], [351]). One of the research questions posed in this thesis
is formulated differently: “are there any factors that increase the probability
of the appearance of defects in the future”. This question is stated more
specifically in Chapter 3. Chapter 6 presents a framework that enables us to
identify such factors.

1.3 Remainder of this thesis

� Chapter 2 explains concepts in the domain of software engineering and
outlines the view on the software development process used in this
study.

� Chapter 3 explains the motivation for the research with a special focus
on the potential practical applications of the methods described in this
thesis in real-world software development tools. It also outlines research
goals and hypotheses of the present thesis.

� Chapter 4 introduces and - if necessary - formalizes fundamental con-
cepts and notions that are necessary to understand this study.

� Chapter 5 discusses existing literature and methods in similar research
fields. It focuses on both the broader context of mining spatio-temporal
data in general and the specific context of mining data from the software
development process.

� Chapter 6 introduces the pattern mining framework in detail. This
chapter describes the main contribution of this thesis and explains how
it was validated experimentally on data gathered from real-world so-
ftware projects.

� Chapter 7 summarizes the research done for this thesis, draws conclu-
sions and discusses possible future research.

� Appendix A is a report from the execution of all the experiments re-
ferred to in this thesis. It contains information about data, the method
and the result of each experiment. Specific experiments described in
this Appendix are individually referred to from other chapters.

� Appendix B gives instructions on how the experimental results descri-
bed in this thesis can be reproduced.
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Chapter 2

Software development basics

This chapter describes the conceptual domain of the study, by attempting to
characterize

� What the domain of the present thesis is: the evolution of complex
structures in time.

� How software development process is organized, how data about its
execution is stored in various systems. What events can be recorded
during execution of the process.

� What the patterns are in general (both static and temporal) and how
they can be represented and mined from data.

� What kind of patterns (static, temporal) can be present in the software
development process.

Formal definitions of these concepts are given in Chapter 6. A reader familiar
with the topic of software engineering and mining software repositories may
skip directly to chapter resume in Section 2.5.

2.1 Evolution of complex structures

Before we look into the particular domain of the software development pro-
cess, we need a more general view on the specific kind of data used and the
research methods.
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A complex object1, as opposed to a simple object is something that has
an elaborate, non-trivial structure and is built from other objects (complex
or simple). To give an example, we could say that a car is a complex object,
which consists of many other objects, bound together in such a way that they
form a vehicle. The engine is a specific part of the car, but it is itself again a
complex object, whereas a single screw – in most cases – is a simple object.
Each object (complex or simple) has its own characteristics that can usually
be expressed in terms of numeric, textual or symbolic attributes. In the above
example the car is of a certain color, the engine has a certain displacement
and the screw has its diameter. What is especially important in the case of
a complex object, is the fact that the structure of how its parts are related
to each other can also be described by certain attributes. The way in which
the engine is mounted in a car (longitudinal or transverse engine) is neither
an attribute of the car body nor of the engine, but rather it is an attribute
of their relation.

A rich/elaborate structure, such as a complex object, can change over
time. We will call such a process the evolution of the object. The life of any
living organism, e.g. the life of a human being, is a good example of the
evolution of its body. The human body is a complex object that is built of
organs, which in turn are built of tissue, etc. In a lifetime, the body changes
in many different ways, including growth, aging, interaction between different
kinds of tissue or organs. We can observe different temporal phenomena or
processes in the evolution of the body, such as sleep (short-term) or growth
(long-term). We will call them temporal patterns.

Observable effects of the patterns can be measured thanks to attributes.
During the evolution of a complex object, its constituents may change, appear
or vanish. Since objects, their structure and their relations, can be described
in terms of their attributes, we may perceive the evolution of a complex
object as a sequence of values of the attributes. For example, if we take the
weight and height as attributes of the body, the pattern of growth will be
reflected in their continuous increase.

Software constitutes a perfect example of a complex object, and its de-
velopment can be treated as its evolution. We will therefore call this process
software evolution. Moreover, a fragment of a software, which is modified

1Please note that in this context we are not referring to the concept of the object in
the object-oriented programming, but to the general concept of the arbitrary object with
well-defined inner structure.
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over time may also be considered a complex object with its own evolution.
Consequently, the problem of finding spatio-temporal patterns in the softwa-
re development process is a particular case of finding temporal patterns in
the evolution of a complex object.

A formalized model which defines the structure of software and its parts
that are being developed is given in Chapter 6:

Section 6.1.1 introduces the concept of software snapshot, which embodies
the structure of the software source code as a formal complex object.

Section 6.3.1 defines the concept of pattern instance, which can be viewed
as a complex object corresponding to the fragment of the software.

The evolution of such structures is further discussed in Section 6.5.

2.2 Software development process

Software development is a long-lasting process, which involves many pro-
grammers, working together on the development of a computer program.
One can consider this process from a variety of perspectives, including, multi-
agent, social or interaction-centric models.

Firstly, it can be seen as a multi-agent system, where the developers are
autonomous actors, working in a common environment and interacting colla-
boratively according to a certain plan, in order to achieve their common goal.
Since the agents, who take part in the process, are real human beings, each
with a different background, culture or character, the process is also often
investigated as a social phenomenon, with special focus on the inter-human
interactions, where psychological aspects count as much as expert knowledge
in the field of software engineering. The functional view on the process is
more abstract and high-level. In this perspective, one can see a system as a
black box that provides certain functionalities. During the development the
set of functionalities is modified and we only focus on these changes. Last but
not least, one can see the software development process only as data (i.e. the
source code, documentation, etc.) that is created and persists during its exe-
cution, with no reference to the way in which this data was created or what
the goal of creating it was. We will call such a view a technical perspective.

The present thesis takes into account only the technical view. To better
understand the difference, we may take a look at a simple example: When
two developers change a source file, one shortly after the other, assuming
the technical perspective, we are only interested in the modifications of the
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file, with special focus on how the structure of the developed program was
changed. We are not interested in how the two people interacted with each
other before, whether they exchanged some communication, what their in-
tention was, etc. The technical view on the software development process is
explained in more detail in the sections that follow.

2.2.1 Issue tracker (IT)

The issue tracker (IT for short) is a system which is used to support the
software development process. It stores information about actions taken on
the software during its lifetime, as seen from the functional point of view.
A single action is called an issue. The issue has its own specific type and
is supposed to contain all the relevant information about what needs to be
implemented in the system in order to consider the issue complete.

Types of issues used in different systems vary, but there is always one
special kind, called the bug, which describes a known defect in the system.
An issue of such type can be considered finished (or closed) when the defect
is fixed.

The issues in IT have their life-cycles, which consist of several steps,
such as creation, assignment to the person in charge of it, resolution of the
problem and, eventually, closure of the issue. All such actions are recorded
by IT. Therefore, since all tasks must be recorded in detail by IT, one can
treat it as a log of the history of system development.

2.2.2 Source Code Management (SCM) system

Source Code Management System or Source Control System (SCM for short)
is usually a central system which stores the current version of the software
source code and all modifications done in the past. It allows the developers
to apply their changes to a common source code base in a transactional man-
ner. Such modifications are called commits. A commit has a unique identifier,
called revision, which might be just a subsequent number in a sequence. Mo-
reover, it contains the information about timestamp, the information about
the author (called committer), a short textual message entered by him/her
and a list of modifications applied to many files managed by the SCM. Tech-
nically, the commit also contains information about the commit(s) it directly
follows, so it is possible to arrange the commits into partial order. Therefore,
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the log of SCM can be seen as a history of the software development process,
as seen from the technical perspective mentioned in the preceding section.

2.2.3 Branches and merges

Most real-world software systems are developed simultaneously in many pa-
rallel versions, called branches. Typically, there is one main branch (we call it
the main development branch), which contains the most recent development
version of the system. Such a version incorporates important changes that
are implemented and new features which are added, therefore, the system
build from it may become unstable. Stable versions are usually located in
dedicated branches and only small improvements and bug fixes are applied
there. Still, on some occasions changes done in one branch need to be applied
also to another branch or branches. Such an operation is called a merge.

In this research, if not stated otherwise, we assume time to be linear
and, consequently, only analyze software development process in one branch,
technically the main development branch. We also assume that commit done
to the main development branch cannot be later deleted or modified in any
way (e.g. by squashing commits – see [61]). Please note that, since every
branch appears initially as a copy of another branch, the period of analysis
in linear time can be longer than the life of a branch and can actually span
over more branches. Technically, it means that the analyzed fragment of the
software development process can be uniquely identified by a linearly-ordered
set of revisions. This concept is depicted and explained in figures 2.1.

Figure 2.1: The concept of branches and merges in the source control manage-
ment system. Commits are denoted by black spots and subsequent revisions
by vertical lines at the bottom.
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2.2.4 Synchronization between SCM and IT

In Section 2.2.2 we concluded that logs of the SCM can be seen as a technical
track of the process of software development. Similarly, as mentioned in sec-
tion 2.2.1, the issue tracker logs can be seen as the track of the same process,
but from a functional point of view. The question arises how to synchronize
these two views. More precisely: given that issue tracker contains a collection
of functional tasks done in the system, and SCM contains a collection of
changes in its source code, can we tell what changes in the source code were
necessary to complete a particular issue tracker task, or what issue tracker
task was the specific motivation for a particular change recorded by SCM?
There are many approaches that can be taken. Some of them are roughly
described in Section 5.2.1. It is common practice to put the unique identifier
of a related task from the issue tracker to the commit message. By doing
so, the developers bind all changes in SCM to issues recorded in the issue
tracker and consequently provide a virtual synchronization of two different
views of the software development process. For the experiments described in
the thesis that are based on both sources of process log, it is assumed that
the aforementioned practice is always applied and therefore synchronization
between issue tracker and SCM is taken for granted. However, most methods
and experiments are based solely on the logs from SCM. In such case the
requirement of having the synchronization in place can be omitted.

2.2.5 Software structure

So far we have assumed that a version of software is a collection of source
code files. Obviously, the contents of the files have certain semantics that
represent the formal structure of the program in a particular programming
language. On a general level, we assume that the structure of the software is
a graph, where nodes represent implemented logical elements of the source
code and edges represent different dependencies between them. The elements
will be called code entities. Examples of code entities are packages, classes,
methods or procedures and dependencies can be exemplified by calling, using,
including or extending.

These graphs are further discussed in Sections 2.2.6 and 2.2.11.
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2.2.6 Object-oriented programming

Object-oriented programming is a paradigm in which the structure of the
source code consists of objects, which are instances of classes. Each object
stores its own data in fields and provides some functions via its methods. Both
fields and methods are defined in the class, so if two object are instances of
the same class, then they have identical sets of fields and methods. Each
class can inherit from another class (or classes)2. In such case the inheriting
class derives fields and methods from the class it inherits from. The relation
of inheritance cannot contain cycles. This yields a hierarchical structure of
inheritance between multiple classes.

The objects interact with each another by calling their methods. If one
method calls another we can consider that they are connected by some kind of
edge. Therefore, the core structure of the software system implemented in an
object-oriented approach can be seen as a multigraph where nodes represent
objects and edges represent their interaction. This concept is further extended
in Section 2.2.11.

2.2.7 Software source code metrics

Each code entity is defined only by its own source code, which formally is a
string3 from a formal language corresponding to the programming language.

Source code metrics (see [206]) are formally real-valued functions defined
on the set of source codes that correspond to a certain subset of code entities.
Sometimes, for the sake of clarity, we can treat them as the functions defined
directly on the subset of code entities. Therefore, if c denotes an entity,
Source(c) - its source code and M - some metric, the value of metric M
for code entity c is formally M(Source(c)), however, the Source function is
sometimes omitted and M(c) notation is used instead. In the present thesis
we only consider metrics defined for files, classes and methods. The purpose
of using metrics is to quantitatively measure certain quality properties of the
code entities. In most cases, the metrics express complexity of the measured
entity. If for a given entity the value of the metric is very low, then the source
code of the entity can be considered trivial. If the value is very high, then the

2In relation of inheritance, we will call the inheriting class a subclass and the class it
inherits from a superclass.
3Some entities such as packages do not have a source code. For formal model please

refer to Section 6.1.
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source code of the entity can be considered too complicated. More generally,
we might say that each metric has a set of proper values and improper values.
Then we might say that if for a given code entity c, the value of a metric M
is in the proper values set, then c is well implemented with respect to metric
M . On the other hand, if M(c) is in the set of improper values, we say that
c is poorly implemented with respect to M .

Typically, when the metric represents a complexity of the measured entity,
the proper and improper values sets can just be considered separate intervals
of <. In order to simplify the matter even further, we can give a real value
ThrM , which is a threshold that partitions < into two such intervals. In such
case we will say that c is well implemented with respect to M iff M(c) is
below ThrM and c is poorly implemented iff M(c) greater than ThrM .

In both cases, such a strict division into good and poor implementation
can be controversial, especially, when we use a single metric, which is not
a very sophisticated tool. Therefore, in the case with ThrM , it is better
to assume that entities whose value of metric M is close to ThrM , cannot
be reliably assessed as poorly- or well-implemented. Moreover, the specific
threshold may vary slightly depending on the characteristic of the analyzed
system (see [352]). Therefore statement on the quality of implementation is
sound only when the value is significantly below or significantly above the
threshold. This phenomenon is discussed in detail and formally defined in
section 6.3.2. Here we only focus on one example:

Suppose that M is a simple metric which denotes the number of lines
of code in a given source file. If, based on expert knowledge, we set a crisp
threshold for this metric at 500 lines, then a file with 499 lines is considered
well-designed and a file with just 2 lines more is considered to be too large.
Such an approach is obviously too strict. When an experts provide such a
threshold, they rather think that a source file which has significantly less
than 500 lines is of appropriate size, the file with significantly more than 500
lines is overcomplicated, but we cannot judge on the complexity of such file
if its size is close to 500 lines.

In the following paragraph you will find some examples of popular so-
ftware metrics with a short explanation and a rationale for using it. These
particular metrics are used in the formal model described in Chapter 6.

Fan-out is a metric applicable to any code entity. It measures the number
of other entities that the measured entity depends on. When a measured

24



code entity depends on many other entities, it is likely to be affected by any
change done in them. Therefore in a well-designed software system, the value
of this metric should be low.

NPath complexity is a metric applicable to any entity that contains a
runnable block of code. It measures the number of all theoretically possible
acyclic paths along which the execution of the block can go, taking into
consideration all branching instructions in the block. The value of this metric
increases with the complexity of the measured block. When it is too high,
the block is overcomplicated and hard to understand or maintain.

Cyclomatic complexity is a much simpler approximation of the NPath
complexity. Instead of measuring all theoretical possible paths, it simply
measures the number of branching instructions of the measured block.

NCSS stands for Non Commenting Source code Statements and it roughly
represents the number of actual source code lines in a measured code entity.
This metric is not sensitive to different formatting or comments in the source
files - the lines of code are always counted in a normalized way. The metric
is also called LOC - Lines of Code. It is applicable to all code entities.

Object-oriented software metrics

Since object oriented programming is a popular and widely-used paradigm,
suites of especially fitted software metrics have been created. This section
contains examples of popular object-oriented metrics briefly characterized.

Data abstraction is a metric applicable to class and method. It measures
the number of instantiations of other classes in the measured code entity.
When the number of such instantiations is high, then the data structure
used in the measured fragment of the source code is complex, which makes
it hard to understand and maintain.

Depth of inheritance tree is a metric defined for a class. It measures the
number of ancestors of a given class in the class inheritance hierarchy. When
such a hierarchy is too high, then it is hard to understand the responsibility
of a class, since its parts are spread over many ancestors.
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Number of fields is a metric defined for a class. It measures the number
of fields the class possesses. When a class has too many fields, it operates
on data structure that is too large, is harder to understand or maintain and
may break the single-responsibility principle.

Number of methods metric is similar to the number of fields. However,
it measures the number of methods instead of the number of fields. The
rationale is also similar, but instead of measuring how much data a class
possesses, it measures how many functions it provides.

Computing of metrics

When we look at the structure of a source code as a collection of interdepen-
dent and collaborating source code entities, we may divide software metrics
into two categories:

� entity-centric, which concern only a single entity and can be evaluated
on it without knowing the context of other entities that are somehow
related to it.

� relation-centric, which concern relation or collaboration between dif-
ferent entities. Here we have to analyze the structure of dependencies
around the measured entity in order to evaluate the value of the metric.

There is a practical difference between these two types of metrics: the former
is not related to the graph of inter-entity dependencies and therefore it can
be computed solely on the basis of the source code of this entity without
referring to other entities. This difference is further explored in section 6.1.1,
where the formal model is defined in detail. This also has implications on the
complexity of the adaptive algorithms described in Section 6.3.5.

2.2.8 Design pattern

Design pattern is a generic and reusable solution for typical problems in
software design. Design patterns are not strict formalisms or ready-to-use
parts of a system source code. They are rather conceptual ideas and guidelines
on how to cope with a commonly occurring problem. In the context of object
oriented design, the pattern usually describes a set of collaborating objects,
with their roles, relationships and dependencies.
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Generally speaking, the design patterns can be categorized into three
types ([125]):

� Creational design patterns - used in the aspect of creation and initiali-
zation of objects during software run-time.

� Structural design patterns - used in the aspect of a static relation be-
tween collaborating objects.

� Behavioral design patterns - used in the aspect of communication be-
tween entities during program execution.

A few examples of design patterns with short intuition and rationale for
using them are described in the following paragraphs.

Factory method is a creational pattern that allows one to create objects
without knowing their concrete class. The factory pattern encapsulates the
process of object creation, since it may potentially be complex and depend
on context, system configuration and other factors. Moreover, this pattern
reduces coupling between the creator and the created objects ([125]).

Adapter is a structural design pattern which enables one to connect two
incompatible elements of software, by introducing an intermediary element
that can communicate with both of them and translate messages from the
sender to a form comprehensible for the receiver ([125]).

Observer is a behavioral pattern that allows one to broadcast information
about changes of the state of an object to other objects (observers), without
introducing a hard, static dependency between them ([125]).

2.2.9 Design anti-pattern

Design anti-pattern can be seen as a dual concept to the design pattern.
By definition it is a commonly used, bad solution for a recurring problem
in software design. Software developers, when faced with a common design
problem, tend to reinvent some solutions which are well-known for their bad
properties and widely discussed in available literature. This phenomenon
definitely has many sophisticated reasons, which are discussed in a variety of
scientific and popular publications ([64]). While the exact causes are beyond
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the scope of the present thesis, we attempt to find good indicators for the
appearance of some anti-patterns. More details are given in Chapter 3.

The following paragraphs contain a few examples of design anti-patterns
with a short intuition and rationale for using them.

God superclass also known as Base bean is an anti-pattern in object-
oriented design, in which the base class is a collection of numerous utility
methods, used by its subclasses. Such a design breaks some fundamental
concepts of object-oriented programming: The relation between subclass and
superclass does not resemble the actual domain model, the superclass most
probably has many responsibilities and it usually does not store any state
useful for subclasses ([197]).

Brain class is an anti-patten in object-oriented design, in which a class
exposes much complex functionality and does not delegate its parts to other
classes. Conceptually, such a class is a central, over-complicated processing
unit of broad functionality of the system. Such sophisticated code entities
tend not to be extendable and are hard to understand ([259]).

Circular dependency is a situation in which two or more unrelated code
entities are mutually dependent on each other. Such a tight coupling is an
indicator that a single entity cannot be (re-)used separately, and any change
in either of them can cause a domino effect ([365]).

2.2.10 Code smells

Code smell is a property or a structure in a system source code that mi-
ght potentially have some bad characteristic just like a design anti-pattern
([226]). In some sense code smells might be considered “light” anti-patterns
or early stages of development of an anti-pattern. The latter interpretation
is especially interesting when you consider temporal evolution patterns of
code structure. In some studies code-smells and anti-patterns are treated
uniformly (see [180]).

The following paragraphs contain a few examples of code smells with a
short intuition and rationale for using them.
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Refused bequest is a situation in which inherited classes override some
methods, without keeping their upward compatibility ([210]). In such a case
the Liskov substitution principle is violated ([213]).

Large method/class simply denotes a method (respectively: class) that
is very large and therefore hard to understand and maintain.

Method with too many parameters is a method that requires a large
(too large) number of input parameters. Such a definition of method indicates
that it either encapsulates very complex functionality or it does not use all
inputs provided in the parameters.

2.2.11 Graphs in software modeling

In the preceding sections we have mentioned that graphs can be used to
model certain structures in the software source code. We will now focus on
graphs that are frequently used (in particular in this thesis) for modeling
software structure, behavior or semantics.

Dependency graph

Please recall that the logical structure of the source code is built from ele-
ments called code entities. In object-oriented software, the code entity might
be a package, a module, a class/object or a method. Clearly, such entities
are related to each other and there are many types of such relations.

Firstly, there is the relation of containment. It models the fact that one
entity is contained in another, e.g. classes are contained in packages and
methods are contained in classes. Please note that such a relation yields a
hierarchical structure of containers and elements. In our example packages
are the first level of hierarchy, classes - the second and methods - the third.

The second type of relation is a general dependency :

Definition 1. We will say that entity e1 depends on e2, iff e2 is necessary
for e1 to compile and work in a running program.

In other words, if e2 disappears, then e1 neither can be compiled nor work
properly during program execution. For example, if source code of class c1,
declares that it requires class c2 to work, but actually, c2 is never used by c1
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during program run time, then c1 is still dependent on c2. Examples of such
dependencies are given below:

� If the source code of one class contains a reference to another class,
then these two classes are dependent by the reference relation.

� If one method calls another method, then they are dependent by the
calling relation.

� If one class extends another class, then they are dependent by the
inheritance relation.

The above examples show that there are different types of dependencies
between code entities. In order to model such a structure properly, we need
to use a multigraph - a graph with possibly multiple labeled edges between
two nodes. It can also be considered a property graph (see [34]). For the sake
of simplicity, we will use simple graph terms in the following section, while
keeping in mind that two nodes can be connected by more than one edge.
In the following paragraphs you will find definitions of different dependency
graphs used in this research.

Definition 2. For a given version of the software source code, the depen-
dency graph is an edge-labeled multigraph (V,E), such that V is a set of all
code entities in this version of software and (e1, e2, t) ∈ E iff {e1, e2} ⊆ V
and e1 depends on e2 and t is the type of this dependency.

The dependency graph, defined above, is the most general model of de-
pendencies between code entities. The following sections contain definitions
of more specialized dependency graphs.

Call graph

Definition 3. For a given version of software source code, the call graph is
a graph (V,E), such that V is a set of all methods in this version of software
and for any two methods e1, e2 ∈ V (e1, e2) ∈ E iff e1 calls e2.

The above definition refers to a graph that connects methods by a relation
of being called. This primitive construction directly follows the structure of
the source code: the call from one method to the other, is directly placed in
the source code of the calling method. Please recall from section 2.2.11 that
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code entities can be arranged in a hierarchical structure by the relation of
containment. This allows us to define a call graph on any level higher than
the level of methods. For example, we can say that class c1 calls class c2 iff
any method contained in c1 calls a method contained in c2. This yields the
definition of generalized call graph:

Definition 4 (generalized call graph). Let G = (V,E) be a call graph, let
relation C be defined as follows: for any e1, e2 ∈ V , e1Ce2 iff e2 is contained
in e1 or e1 = e2. Let C∗ be a transitive closure of C.
The generalized call graph, derived from (V,E) is a graph (V ′, E ′), such that
V ′ = V , and (e1, e2) ∈ E ′ iff there is an edge (e′1, e

′
2) ∈ E, such that e1C

∗e′1
and e2C

∗e′2.

Conceptually, the generalized call graph introduces the concept of gra-
nular view on the call graph: the elementary facts coming directly from the
source code (calls between methods) define the call dependency on a higher
level (classes, packages), but also cross levels, e.g. from class to package.
Other types of dependencies between code entities can be generalized on the
basis of the transitive closure of the containment relation. We will use this
method in formal constructs defined in Chapter 6.

Inheritance tree

Definition 5. Inheritance tree is such a graph (V,E) that V is a set of all
classes and for c1, c2 ∈ V , (c1, c2) ∈ E iff c1 inherits directly from c2.

Some programming languages allow a class to inherit from more than one
superclass or not to inherit from any class. In such case, the above definition
yields a directed acyclic graph, rather than a tree. However, in this research,
we will focus on programs written in Java, which: 1) enforces that each class
inherits (directly or transitively) from java.lang.Object class, and 2) does
not allow to inherit from more than one class. In this context, the definition
yields a single tree for the complete source code rooted at java.lang.Object.

2.2.12 Spatial relations

Since the structure of the software source code can be represented in gra-
phs, we can consider how some notions of graph theory such as adjacency or
paths relate to the original source code. In a given representation, any two
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subgraphs correspond to specific sub-structures in the source code. Concep-
tually, we can think that if the subgraphs are distant in the graph (e.g. the
length of the shortest path connecting some of their nodes is long or when
such a path does not exist), then the corresponding structures in the code
are loosely dependent on each other. On the other hand, if the graphs are
close (e.g. they have multiple common nodes), then the code structures are
likely to be tightly dependent on each other. This idea yields the concept of
remoteness and closeness of fragments of the source code, which are formally
defined in Sections 6.5.1 - 6.5.3. These two types of relations will be called
spatial relations.

2.3 Temporal aspects of the software deve-
lopment process

Until now we have focused on a static view on the software system, where
no time dimension was considered. This section discusses a temporal aspect
of the software development process.

2.3.1 Temporal dimension

There are two views on the time dimension, when analyzing the temporal
aspect of software: the development time and the run-time. The former view
sees the time during the development of the software system and the latter,
during the execution of the program. An example of a temporal pattern
observable in the first context is the following:“In 90% cases, when file A is
modified by a developer, then file B is modified by the same developer within
an hour”. When thinking in terms of run-time, an example of a temporal
pattern is the following: “When method M1 from object O1 is called, then
within 3 seconds, method M2 from object O2 is called”. Analysis of the run-
time temporal patterns can be a valuable technique for finding some problems
in the source code, e.g. system performance bottlenecks.

In this research we focus on patterns in the software development process
rather than software run-time process, therefore when we think about time
dimension, it always means the time that passes during the implementation
of the system by a group of developers.

We can consider different time intervals for the temporal patterns obse-
rved during the software development process. They can be bound to the
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actual time or to events that happen during the process, such as commits,
feature implementations, minor or major system releases. In the first case,
we will typically analyze phenomena that happen during a fixed time period
(e.g. “What temporal patterns were observed last month/week”). In the se-
cond case, we do not limit ourselves to a fixed time, but we define intervals
by the number of different events, which are part of the software development
process. In this context we can ask the question: “What temporal patterns
were observed within the last 100 commits”, or “How changes made to the
structure of the source code were correlated in 10 subsequent minor version
releases.” In the present research the temporal dimension is primarily based
on a commit, i.e. we consider changes to the software done at each revision.

2.3.2 Temporal software development patterns

In the previous sections we have explained the concept of static patterns in
the source code structure, which are, generally speaking, frequently occurring
pieces of a larger structure. To some extent, they can be formally expressed
in terms of graph theory. We have focused on design patterns, anti-patterns
and code smells, as concrete examples of such static patterns. There is one
common context for all of them - they do not consider time dimension by
any means but they are all part of a single snapshot of the system structure,
taken at some point in time.

When considering the time dimension in our analysis of the software de-
velopment process, we may derive a similar concept to such static patterns.
We will call them temporal patterns. Conceptually speaking, these are pheno-
mena, observable over a sufficiently long period, that focus on changes done
to the software structure during its development process. “Every class that
is an instance of god class has 75% chances to become a brain class after
being modified 100 times”, is a good example of a temporal pattern in the
software development process.

Lifespan of a pattern Once a software pattern is introduced to the source
code of a system at a certain commit, it will probably still be present for some
time afterward. When the source code is modified with a commit at a given
revision and we can still observe the pattern, we can say that the pattern was
present at this revision. The set of all revisions in which the specific software
pattern is present in the source code will be called its lifespan. A lifespan
can be partitioned into maximum intervals of consecutive revisions. Such
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intervals will be called occurrences. Two different occurrences of different
software patterns might relate to each other and this is a purely temporal
relation. For example, if a given instance of a brain class is present in the first
and the second revision only, and then another god class is observed in the
fifth and the sixth revision only, we can clearly say that the only occurrence
of the former happened before the only occurrence of the latter. This concept,
together with the above-defined spatial relation is used to define the crucial
notion of a spatio-temporal relation (see Section 6.5).

2.4 Software evolution

Software evolution is a term used in software engineering to describe the pro-
cess of system implementation over time. Usually the main focus of research
in this area is to understand and sometimes formally describe changes in
the structure of software that appear during consecutive releases (see [169]).
Still, some researchers focus on modifications done in fixed periods or be-
tween subsequent revisions. The last, revision-based approach is also used
in this thesis. In this context one of the possible ways of looking at software
evolution is to consider it as a sequence of all versions of the system that were
subsequently created by the developers. Since the structure of a single version
of the software can be represented by a specific multigraph (as described in
section 2.2.11), the evolution can be seen as a sequence of such multigraphs.
Commits are the only possible points in time in which the aforementioned
graphs can change. Therefore, it is natural to assume that the sequence can
be indexed by the revisions (i.e. the unique identifiers of commits). This
conceptual model is formally described in Section 6.1.2.

2.5 Resume

In this chapter we have introduced the basic concepts related to the domain
of this research:

1. We have defined what the software development process is and how
SCM and issue tracker are used in it. We have stated that from the
perspective of this research, logs from these two systems are the only
data used to analyze the process (see Sections 2.2.1-2.2.4).
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2. We have explained the concept of software entity and, basing on that,
we have defined the notion of software structure, especially the structu-
re of object-oriented software, and have shown how it can be modeled
with various multigraphs such as dependency graph, call graph or in-
heritance tree (see Sections 2.2.5 and 2.2.11).

3. We have introduced the concept of spatial relations between different
structures in the software source code and the concept of temporal
relation between such structures (see Section 2.2.12).

4. We have stated that we limit our considerations to linear time only,
even if we analyze a development process on many branches (see Section
2.2.3).

5. We have explained the notion of software evolution and showed that we
will consider it as a sequence of multigraphs indexed by the revisions
of commits done at SCM by the developers (see Section 2.2.11).

6. We have introduced the concept of static software design pattern, anti-
pattern and software metrics (see Sections 2.2.7 - 2.2.10).
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Chapter 3

Motivation, research
hypotheses and goals

This chapter discusses practical motivation and research context for this
thesis. The motivation is understood as a potential practical application of
methods proposed in this thesis to solve real-world problems that arise in
software development. The hypotheses and goals are presented as formalized
statements of these problems in the context of scientific research.

3.1 Motivation

3.1.1 Discovery of evolution patterns for ill-structured
software

Anti-patterns and code smells are considered to be bad structures in software
source code. Their properties and the effect on software maintenance have
been widely described in literature. Still, they do appear in newly implemen-
ted software systems and have a tendency to remain in the code for quite a
long time. This phenomenon has been widely discussed in publications which
offer a variety of hypothetical explanations for such a state. One of the most
frequently mentioned reasons is the fact that anti-patterns are simply difficult
to remove (see [365], [165], [122]). Therefore, easier detection of the threat of
an anti-pattern and the ability to prevent it would be of great value. One of
the methods for improvement of software structure is refactoring, described
in the next paragraph.
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Refactoring is a process of changing the structure of the software source
code in such a way that the whole system does not change its behavior (as
seen from the outside of the system) but internally the properties of the
structure, such as lower complexity, better readability or maintainability,
improve. A good example of refactoring is the decomposition of large and
complex source code entities into a collaboration of a few smaller and less
sophisticated ones.

It is believed that refactoring can be a risky and time-consuming opera-
tion, especially when executed late and broadly [64]. Consequently, it seems
to be beneficial to detect areas for refactoring as early as possible. This leads
us to the first motivation:

(Semi-)automated method for detecting early indicators of bad
structures in the source code We might say that refactoring can be
described as turning a bad structure of the code into a better one. Usual-
ly, developers start such activities late, already when the bad structures are
broad, frequent or complex, and thus harder to eradicate. Therefore, a tool
that warns about deterioration of the structure of the software early, could
help to reduce the risk of building an ill-structured system and reduce the
cost of maintenance.

There appears to be an analogy to the mathematical models for weather
forecasting: they can be seen as tools that warn in advance about dangerous
weather phenomena such as storms: If we know that a storm is expected,
we can implement countermeasures to reduce its negative effects before it
actually arrives. By analogy, when we think about ill-structured software as
a storm, refactoring as a countermeasure, then forecast models are the tools
that warn us about storms. We believe that the research presented in this
thesis is a good basis to build such a tool, because:

� If we know in advance that the system architecture is drifting into
bad direction, we can react and improve it early. This leads to a mo-
re efficient process of software quality improvement and a potential
countermeasure for the design rot.

� We can identify areas for refactoring early. Refactoring started earlier
is easier to execute and less time-consuming.
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3.1.2 Technical debt - hidden cost of software develop-
ment

If software architecture is not maintained during the system lifetime, its
technical condition tends to deteriorate. This leads to higher maintenance
and further development costs. It can be compared to the economical rule
that interest for unpaid loans increases. This is why these costs are called
technical debt.

(Semi-)automated method for helping to reduce the cost of techni-
cal debt. Software companies can balance between “getting in” technical
debt or “paying it off” in order to reduce development or operational costs
in the future. Usually, some predictive analysis is made before taking such
strategic decisions. Some methods described in this thesis cope with the pro-
blem of detecting temporal patterns related to anti-patterns or code smells
and phenomena of design rot and source code decay (see: [108], [165]). We
therefore believe that some methods proposed in this research can be used
to build such a predictive model.

3.1.3 Modeling of approximate patterns in software
development process

Design patterns and anti-patterns play an important role in the practice
of software development. These widely known notions have been mentioned
in numerous publications, both scientific and popular. In most cases, their
definitions are vague and rather conceptual than formal. Any attempt to put
them in a strict mathematical model carries the risk of loosing important
conceptual abstraction.

Rough formalism for descriptions of design (anti-)patterns In this
research we propose a method for describing a design pattern in both forma-
lized and vague way at the same time. The idea is embodied in the concept
of a rough software pattern described in Section 6.3.2.

3.1.4 Automated support for code review process

Code review is an activity in the software development process, in which a
dedicated person validates pieces of the system source code implemented by
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someone else. Research on the code review process shows that only as little
as approximately two-thirds of the flaws can be spotted and reported by a
human reviewer ([360]). Automated artificial intelligence algorithm can iden-
tify some design flaws and bad structures in the source code more efficiently
([367], [255]). Moreover, if such an algorithm is capable of predicting future
potential flaws in the source code, its output can provide valuable informa-
tion for the reviewer. The idea of detecting temporal patterns related to the
evolution of bad structures in the source code can be used to detect such
flaws or to improve the output of existing methods.

Support for code review activities We believe that this research can
provide the foundation for a tool, designed for a human-expert reviewers,
that enables them to focus especially on areas in the source code where bad
structures are likely to appear. We believe a tool of this kind would improve
a flaw detection ratio of such an expert.

3.2 Hypotheses

H1: There are statistically significant temporal patterns
in software development process that can be used to
predict the appearance of anti-patterns

Anti-patterns and bad code smells appear in developed software systems
quite frequently, even though they are widely described in both scientific
and popular literature. Probably, there are situations, which can be observed
early in the software development process, that are early indicators for the
future appearance of anti-patterns in the software structure. Hypothesis H1
states that such situations can be identified and their appearance is a good
discriminator of whether the evolution of the fragment of the source code is
drifting towards bad or good structure.
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H2: Incorporation of expert knowledge can produce mo-
re efficient data mining algorithms in the domain of so-
ftware development process

Hypothesis H2 is related to H1. In a sense, it can be perceived as its specific
extension. It states that incorporation of expert knowledge in the domain
of software engineering (in the typical mining algorithms) can produce a
more efficient method of discovery of spatio-temporal rules in the software
evolution.

3.3 Research goals

G1: Formal model of design (anti-)patterns, code smells,
and their evolution

Goal G1 is to introduce a formalism that enables one to formally represent
design anti-patterns, code smells and their evolution. We assume that such
a model must be founded on graph theory (see Section 2.2.11).

G2: Approximate model to represent static patterns in
software systems

Since software design (anti-)patterns are vague concepts, often without any
strict definition, it is natural to use a formal model with immanent vagueness.
Goal G2 is to define a formal approximate model for the description of spatial
patterns in software design. This is strictly related to goal G1.

G3: Model to represent temporal patterns in software
development process

Goal G3 is similar to G2, but positioned in the domain of temporal evolution
patterns. G3 is to create a formal model that represents temporal relations
between different evolving structures in the software source code. Clearly
G2 and G3 together are related to a formal model for representing spatio-
temporal relations in the software source code.
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G4: Efficient mining algorithm especially fitted to the
domain of software development process

Goal G4 is to create an efficient mining algorithm that would allow for lo-
calizing both structural and temporal patterns in the software development
process. The algorithm should have the following properties:

� It should be capable of using an approximate description of structural
and temporal patterns, as described in goals G2 and G3,

� it should be specifically fitted to the domain of software development
process. This specialization must allow for good quality of detection
or classification, while reducing the computation cost, as described in
Hypothesis H1,

� it should be adaptive, that is, it should be capable of identifying new
spatio-temporal rules during the evolution of the system, without the
need for massive computation.
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Chapter 4

Data mining fundamentals

This chapter defines some fundamental concepts of data analysis techniques
that are either used or referred to in this research. Their comprehension is
necessary to understand Chapter 6, which presents the model and the algo-
rithms that are used to extract knowledge about the software development
process. Readers familiar with topics related to machine learning and data
mining may skip directly to chapter resume in Section 4.4.

4.1 Machine learning

Machine learning ([73]) is a sub-domain of artificial intelligence, which focu-
ses on computer algorithms that learn from data.

Typically, when a computer is intended to perform a certain task, the
programmer must implement a dedicated program. It is the programmer
who should know how the task is to be performed and they should explicitly
formulate it in the form of an algorithm. This is not the case in the domain
of machine learning algorithms. Here, it is the algorithm itself which, in the
process of learning from data, finds a proper way to perform the task. A
rough classification of machine learning algorithms and examples of tasks
they perform are given in the remainder of this section.

4.1.1 Supervised and unsupervised learning

We might assume that the goal of machine learning is to find an unknown
function F that for any input x must provide a valid output y (see [282]).
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In supervised machine learning, the algorithm learns from training data - a
set of previously known examples of valid (x, y) pairs, such that F (x) = y
for all x. Given such input, the algorithm must find a representation of F
that best matches the examples from the training set. We will denote this
representation F ′. Ideally, F ′ = F .

A good example of supervised learning is hand-written digit recognition.
In such a setting, the algorithm is usually given a dictionary of labeled images,
where the image contains a scanned hand-written digit and the label with
the digit. Clearly, the image is the x and the label is the y in our example.

Test data is another set of examples which are used to verify how well F ′

resembles F . Once the algorithm has been trained on the training data and
F ′ is defined, we check for how many x-es from the test data, F ′(x) = F (x)
holds and for how many it does not. Clearly, the higher the first number and
the lower the second number, the better the training process is1.

The difference between supervised and unsupervised machine learning
([146]) is that in the latter case the training set is not available and the
algorithm has to detect the structure of data without it. A typical example
of unsupervised learning task is the clustering problem, where the algorithm
has to partition a large set of objects into several clusters in such a way that
the objects in one cluster are similar to each other, whereas the objects in
two separate clusters are not. Here, the aforementioned function F is defined
on the set of all input objects and has values in the set of clusters. Therefore,
any pair (x, y) ∈ F denotes the fact that object x belongs to cluster y.

Clustering is widely applied in market segmentation strategies, where
customers are divided into several clusters, on the basis of their behavior.
Data about all the activities of customers (such as purchases) is collected
and then a clustering algorithm is run on it so that the customers are divided
into distinct groups, where - slightly simplifying - each group represents a
set of customers with similar market habits and any two customers from
different groups behave differently. With such knowledge, companies can work
on specific sales and marketing strategies tailored for each group.

4.1.2 Data mining

Data mining is a field of computer science whose main goal is to extract
knowledge from massive data sets. It makes use of different methods and

1For more detailed discussion on the quality assessment please refer to section 4.1.4.
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techniques, such as statistical analysis or supervised and unsupervised ma-
chine learning. The practical motivation for using data mining techniques is
to detect initially unknown patterns in the data and then use them to infer
knowledge about the nature of phenomena described by the data. In the end,
the knowledge is typically used in decision support systems.

Predictive and descriptive tasks

Data mining is a very broad and vague concept, but the contexts in which
data mining techniques are used can generally be divided into a set of pre-
dictive tasks and descriptive tasks. In the former case, the algorithm extracts
knowledge from a set of known data and uses it to predict future or unknown
facts about the same or related data. In the latter case, the algorithm is used
to extract knowledge, which is not explicitly used for prediction, but allows
one to understand the source data better.

A good example of a predictive task is classification described in Section
4.1.3. In this case, the data mining algorithm extracts a predictive model
from a set of labeled exemplary objects (training set) and then the model is
used to find an appropriate label for unlabeled objects of the same type. The
aforementioned example of hand-written digit recognition is a valid example
of a classification task. Other examples of such algorithms include regression,
time series analysis or value prediction.

Out of a variety of predictive data mining methods, this research mostly
uses the classification algorithms on specially prepared data. For details,
please refer to section 6.4 and to appendix A.

Examples of descriptive tasks include summarizing, clustering, sequence
discovery or association rule mining. The following paragraphs provide some
intuition and examples of the last two, as they are specifically referred to in
this research.

Sequence discovery

Sequence discovery is a category of temporal pattern mining tasks. In this
setting, the data mining algorithm has to find frequently occurring ordered
sequences in a stream of time-indexed events. For example, these methods are
used to find typical behavioral patterns of users who navigate through web
portals. This application allows us to build e.g. a recommendation system
based on these patterns ([354]). A typical Internet user clicks through many
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articles on a visited website. Since there are usually thousands of articles
available on such a portal and only a small portion of them can be offered
to the user, the server has to decide which should be selected. When we
observe a pattern that within a single session the majority of users who
read article A, B and C subsequently, usually navigate to article D (while
having other options), then probably D should be offered to anyone, who has
already navigated through the “A,B,C” path. Just like sequence discovery
algorithms enable us to understand the behavior of Internet portal users,
so they can help us to understand behavioral patterns of developers, who
take part in the software development process. This analogy is the basis for
possible applications of this research described in Section 7.2.

Association rule mining

Association rule mining is a similar task to sequential data mining, but it
operates in the context of non-temporal data. Simplifying it a bit, it finds
some regular dependencies between different properties from large sets of
data describing complex objects ([27]). If we take the database of all car
models produced in the last five years, and compare their properties such
as size, weight, engine displacement and fuel consumption, then we can pro-
bably conclude that large and heavy cars with large engines have high fuel
consumption. This is an example of an association rule in the database: the
property “fuel consumption” is associated with a set of properties {“size”,
“weight”, “displacement”}. The goal of association rule mining task is to
automatically find such associations in given data sets. A formal definition
of association rules is given in section 4.1.4.

4.1.3 Classification problem

Classification is one of the most common tasks in data mining. The goal
for the algorithm is to assign (classify) any given object to one out of, usu-
ally, a few known categories. Typically, the task falls under the supervised
learning scheme, since in most cases a training set with previously defined
classifications is given. The following paragraphs provide a formalism for the
classification problem which will be used in the following chapters of this
thesis.

Suppose that we have a finite, non-empty set of objects U , each described
by the same finite and non-empty set of attributes A. The values of attributes
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may be of different kinds, including boolean, numeric, symbolic and textual.
Formally, each attribute is a function from U to its respective domain. The
pair S = (U,A) will be called information system and U will be called its
universe. Let a1, a2, . . . ak, be all elements of A, so that A = {a1, a2, . . . , ak}.
For any given x ∈ U we can calculate vector A(x) = (a1(x), a2(x), . . . , ak(x)).
We will call this vector the feature vector of x and denote it as A(x).

The simple constructs of an information system is sufficient to descri-
be (directly or indirectly) a variety of real-world data that is analyzed by
computer systems. The aforementioned example of a set of car models can
be perfectly fitted to this formalism, where U is the set of all models and
“size”, “weight“, “engine displacement” are elements of A. Certain subsets
of U may represent concepts, for example “a well-designed car”, “a safe car”
or “an economical car”. Intuitively, the problem of classification is to tell if
a given object from U belongs to a certain concept or not. The following
paragraphs describe it in greater detail.

Formally, any subset C ⊆ U can represent a concept. If we extend the
set of attributes by adding a new element d, called decision attribute, we
may use it to indicate if a given element of U belongs to C, by putting:
d(x) = x ∈ C. More generally, U can be partitioned into multiple concepts
{Cp}p∈P , and then d is given as d : U → P and for a given x ∈ U it indicates
which concept x belongs to. Such an extended structure D = (U,A, d) is
called decision table and each concept will be called class or decision class.
In a decision table the attributes from A are called conditional attributes.

In this context the problem of classification is to provide such a model
that for any x it can compute the value d(x), based on A(x). In practice
it falls under the pattern of supervised learning, where d is given only on a
(small) training set T ⊂ U and the algorithm (called here classifier) has to
find a valid method to compute d on elements out of T .

In the famous data set Iris ([118]), U is a set of samples of three different
iris flower species (Iris setosa, Iris virginica and Iris versicolor), A represents
the measured length and width of petal and sepal and d indicates which
species the given sample belongs to. The goal of a classifier is to tell the
species of the flower, based on the sizes of petal and sepal.

Exemplary classifier Irrespective of the method used to construct it, a
possible classifier can be expressed in the following sentences: “If the petal
width is below 0.6, then it is Iris setosa. Otherwise, if the petal width is below
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1.7 and the petal length is below 4.9, then it is Iris versicolor. Otherwise, it
is Iris virginica”. This intuitive description represents decision rules which
are described in greater detail in the following section.

4.1.4 Patterns and rules

Let DT = (U, {a1, . . . , ak}, d} be a decision table. A rule can be written in
the form of the following formula :

∧
i ai(x) ∈ Di ⇒ d(x) = v, or, with a free

variable x omitted for the sake of simplicity, as
∧
i ai ∈ Di ⇒ d = v. We will

denote the antecedent of it as φ and the consequent ψ and use a shortened
notation φ ⇒ ψ. Each “ai ∈ Di” clause in φ which puts a constraint on a
single attribute, will be called atomic condition.

In the context of DT , for a given x from U , values of attributes (including
d) are known, and therefore the formula can be interpreted and rewritten
without free variables, so that it becomes a logical sentence. Depending on
its boolean value, we can introduce two notions:

Definition 6. A given object x ∈ U is matched by rule R = (φ⇒ ψ) iff φ is
satisfied for x. The set of elements matched by R will be denoted Match(R).

Definition 7. A given object x supports R = (φ⇒ ψ) iff φ and ψ are both
satisfied for x.

Basing on the two notions, we can derive some elementary quality me-
asures for the rules:

Definition 8. Let s be the cardinality of elements in U that support R.
We will call s an absolute support of R. A support of rule R, denoted by
supp(R) is a fraction of elements that support R in U , given by formula:
supp(R) = s

|U | .

Definition 9. Let the cardinality of a set of elements from x ∈ U that are
matched R be denoted by r. Let the cardinality of a set of elements from
x ∈ U that support R be denoted by s. A confidence of rule R denoted by
conf(R) is given by formula conf(R) = s

r
.

Intuitively, the support measures how well a given rule covers the universe
U and the confidence measures how accurately it describes data in the deci-
sion table. Ideally, we want a rule to have both high confidence and support,
but usually in a particular application, we have to decide if we can sacrifice
one of these characteristics in favor of the other.
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Rule-based classifier

We will say that two rules R1 = φ1 ⇒ ψ1 and R2 = φ2 ⇒ ψ2 are conflicting
on some element x ∈ U , if x is matched by both rules and ψ1 6= ψ2.

A single rule typically matches a small subset of U , a few rules together
can match a larger part of it. For a given set of rules RS = {Ri}i we define
the set matched by them as Match(RS) =

⋃
iMatch(R). Any set of rules

that matches complete U can be used as a classifier, as long as the rules in
RS are not conflicting on any element of U . Indeed: for any element x ∈ U
we can find a rule R =

∧
i ai ∈ Di ⇒ d = v that recognizes it and then puts

v as a classification output for x. We will call such a classifier a rule-based
classifier.

Many approaches can be taken to tackle the problem of rule conflicts in
a rule-based classifier. The simplest one is to ensure that the rules from RS
do not conflict with each other. This can be done by building a decision tree,
briefly described in the following paragraph. Other approaches include vo-
ting ([59]), ordering the set of rules with respect to some rule quality metrics
([163]), naive Bayes approaches, where we try to find the most probable out-
put of the conflicting ones ([74]), or other, more complex methods (e.g. [211],
[47]). This aspect is beyond the scope of this thesis, which just incorporates
existing algorithms to build conflict-free rule-based classifiers.

Decision tree Decision tree is a special form of representing a rule-based
classifier. We may depict it as a binary tree where each internal node contains
one atomic condition and the leaves contain decisions. Then every path from
root to a leaf forms a single rule, where φ is built from conditions from
internal leaves and ψ is defined by the value from the leaf. The conditions
are combined by conjunction, according to the following principle: For a given
node n that contains a condition cond = ai ∈ Di, if a path connects n with
its left child, then take cond, otherwise take ¬cond. The diagram 4.1 shows
an exemplary decision tree.

Human readability There are many different methods and algorithms
for building a classifier from data, including neural networks ([145]), support
vector machines ([82]) or Bayesian networks ([97]). However, rule-based clas-
sifiers have one important property: The model they produce can be used
directly to represent knowledge about data in the form that is immediately
comprehensible for people who do not understand the domain of machine
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Figure 4.1: Exemplary decision tree for the classification of the Iris dataset.

learning. If we take the exemplary classifier for the Iris data set from the
beginning of this section 4.1.3, or an equivalent decision tree from figure 4.1,
they are apparent for anyone who understands how a plant is structured.
Such a person does not need to know what a neuron, kernel function or
probability distribution is. Consequently, we can apply machine learning me-
thods to various domains and treat them not only as tools that help to find
certain patterns, but also as a means to discover domain-specific knowledge.

This research follows the same paradigm: we use rule-based classifiers
to find spatio-temporal patterns in the software development process and
express these patters directly in terms of the software engineering domain.

Classifier quality measures

Frequently, when the classification algorithm is applied to some real world
data, the domain of the decision attribute d is a boolean function that is
the characteristic function of a concept. In this context, the classifier is used
to describe the concept in terms of values of attributes from A. We will
call such a classifier the boolean classifier. Please note that if the co-domain
of d is a finite set, then the general classification problem can easily be
decomposed into a series of boolean classification problems. Indeed: For each
vi ∈ codomain(d), we can build a classifier that recognizes a concept {x ∈
U : d(x) = vi}.

Suppose that we want to build a classifier c, which resembles function
d, whose definition is unknown, but we know its values on a training set.
Ideally, we would like c to be equal to d, but in reality this is hard to achieve,
and we only want to know how “far” c is from d. In order to formalize it, we
need to introduce some notions and quality measures applicable to a boolean
classifier:
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Definition 10. Let DT = (U,A, d) be a decision table, where d : U → {0, 1}
is a binary function. Let c : U → {0, 1} be a classifier for DT . We will say
that a function f : U → {0, 1} accepts x iff f(x) = 1. Otherwise, we will say
that f rejects x. In the context of c:

� True Positive is such an element x ∈ U that both d and c accept it. A
set of all true positives will be denoted TP .

� True Negative is such an element x ∈ U that both d and c reject it. A
set of all true negatives will be denoted TN .

� False Positive is such an element x ∈ U that d rejects it and c accepts
it. A set of all false positives will be denoted by FP .

� False Negative is such an element x ∈ U that d accepts it and c rejects
it. A set of all false negatives will be denoted by FN .

If the classifier is not clear from context, the above notations will be tag-
ged with a subscript. For example TPc stands for a set of true positives for
classifier c.

Intuitively, the true positives, are those elements, which are properly ac-
cepted by c. True negatives are those which are properly rejected by it. False
positives and negatives are elements that are wrongly recognized by c, re-
spectively: accepted or rejected. Ideally, we would like TP and FP to cover
complete U and FP and FN to be empty. In practice, we want FP and FN
as small as possible. This can be quantified:

Definition 11.

� True Positive Rate, denoted by TPR, is given by TPR = |TP |
|TP |+|FN | .

� True Negative Rate, denoted by TNR, is given by TNR = |TN |
|FP |+|TN | .

� False Positive Rate, denoted by FPR, is given by FPR = |FP |
|FP |+|TN | .

� False Negative Rate, denoted by FNR, is given by FNR = |FN |
|TP |+|FN | .
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These elementary measures can be used to assess the quality of a binary
classifier. Clearly, we want the sum TPR + TNR to be close to 1 and both
TNR and TPR - to be close to 0.

Please note that usually a single factor alone is not sufficient to measure
the quality of a classifier. Indeed, if we consider a naive classifier c(x) = 1,
then it has high (read: proper) TPR and low (again: proper) FNR values.
Therefore, we either have to look at all four factors together or we can derive
more generic quality measures from them:

Definition 12 (classification precision and recall).

� Precision, denoted by precision(c), is given by |TP |
|TP |+|FP | .

� Recall, denoted by recall(c), is given by |TP |
|TP |+|FN | .

� Accuracy, denoted by accuracy(c), is given by |TP |+|TN ||U | .

� F-measure (alternatively F1-score), denoted by F−measure(c) or F1(c),

is given by 2×|TP |
2×|TP |+|TN |+|FN | .

Please note that F-measure is actually a harmonic mean of precision and
recall, and accuracy is actually a fraction of correctly classified elements.

Intuitively, recall measures how well the classifier is able to identify all
the instances it should accept. Precision measures how well the classifier
distinguishes accepted and rejected instances. Both accuracy and F-measure
are generic measures that take all factors into account and show how well
the classifier behaves in both accepting and rejecting instances. In general,
however, F1-score is less biased by uneven distribution of decision classes.

Quality measures in information retrieval In the above context we
measure the quality of the classifier by checking how well it identifies indivi-
dual given instances one by one. We may also think of another situation in
which we want the model to return all accepted instances from a large set at
once. Conceptually it can be viewed at as if we want the classifier to tell in
advance all possible instances it would accept. This is a specific context of
information retrieval and the objects given in such a way are called retrieved
objects and are denoted by Retr. The objects that should be accepted are
called relevant objects and are denoted by Rel. If we know these two sets, we
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can compute quality measures such as precision and recall in the following
way:

Definition 13 (information retrieval precision and recall).

� Precision is given by |Retr∩Rel||Retr| .

� Recall is given by |Retr∩Rel||Rel| .

Quality measures for non-binary classifiers If we take a multi-class
decision table DT with a decision table d and a corresponding classifier c,
each row x such that c(x) = d(x) is clearly a properly classified x. We can
treat it as a true positive. In the context of precision we can consider all
other rows to be false positives. This allows us to compute precision and
recall according to the above formulas and consider F1 to be their harmonic
mean. Since accuracy is a fraction of properly classified rows, and we know the
number of such rows, we can easily compute accuracy accordingly. Measures
computed in this way are called micro-averaged-measures or µ-measures (e.g.
µ-accuracy) (see [312]).

In fact, in micro-averaging we only look at the number of true positives
(i.e. properly classified instances) in the multi-class classification. The ideas
of false negatives and false positives cannot be universally defined for all con-
texts. To cope with that problem we may reduce the multi-class problems to
binary sub-problems: Please recall that a multi-class classifier can be decom-
posed into a set of binary classifiers if the number of decision classes is finite.
However, the above formulas for quality measures do not apply directly. In
this case we need a more sophisticated definition:

Given a decision table DT with decision attribute d and decision classes
{d1, . . . , dn}, as well as a corresponding multi-class classifier c, we can take
each class di individually and construct a binary decision table DT i and a
binary classifier ciaccording to the following rules:

� DT i and DT have the same set of conditional attributes, and the set
of objects.

� DT i has decision column di defined by:

di(x) =

1 if d(x) = di

0 otherwise.
(4.1)
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� ci is given by:

ci(x) =

1 if c(x) = di

0 otherwise.
(4.2)

Conceptually, such a classifier assigns only one decision class di and se-
parates it from all other original decision classes. Since ci and DT i are both
binary, we can compute the aforementioned quality measures for each di indi-
vidually. We can then aggregate the results to produce corresponding quality
measures for the original multi-class problem (see [312]): A macro-averaged
measure is simply an arithmetic mean of this measure computed for all indi-
vidual di. For example macro-averaged-F1-score is an arithmetic mean of all
F1-scores computed according to the above construct. The same applies to
precision and recall.

The macro-averaged measures can be biased if the decision classes are not
distributed evenly in a set of objects. To cope with that problem we may use a
weighted average in place of an arithmetic one, and weigh individual measures
by the number of objects with corresponding decision. More specifically, the
weight of a measure computed from DT i and ci is the number of rows x from
DT , such that d(x) = di. We will call such measures weighted measures (e.g.
weighted precision).

4.1.5 Overfitting and pruning

When a machine learning algorithm is building a classifier on a given training
set, it takes available data examples and tries to find some patterns in the
attribute values that are related to the value of the decision attribute. In
this setting, we hope that the available training data is representative and
any knowledge derived from it can be directly generalized to a broader con-
text. Unfortunately, this is not always the case. If the data in the training
set is too specific, then there is a risk of overfitting. This is a situation, in
which the classifier has very good quality measures on the training set, but
it misclassifies many objects located outside.

For example, let us consider that we want to build a classifier that reco-
gnizes a dog breed on the basis of coat color. A rule that says “If the object
has 86 black spots, then it is a Dalmatian” is clearly overfitted. We know
it because we have some domain knowledge of the types of dog coats and
breeds and we can spot that the rule is too specific. It would probably help
us to modify or remove this rule from the classifier, as one that can decrease
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its predictive quality. One of the possible modifications would be to change
its antecedent to “the object has more than 50 black spots” or even “The
object has a large number of black spots“.

The above example clearly shows that the domain expert knowledge can
help us to cope with the problem of classification overfitting. A survey of
similar approaches is given in [357]. Also in this thesis we try to incorpora-
te the software engineering expert knowledge, together with the inherently
approximate model, based on the concept of a rough set, to reduce the risk
of overfitting and increase quality and applicability of extracted knowledge.
Further details are given in the following sections of this chapter as well as
in Section 6.3.2.

There are other methods that address the problem of overfitting (see
[355]). In the case of rule-based classifiers, the methods typically fall under
a single scheme: If the rule is too specific, we remove it from the classifier
or we generalize it. Specificity of the rule can be expressed in terms of its
quality metrics such as length, its support and confidence or rule information
measure (see [362]). This process is called pruning. In the case of a classifier
expressed by a decision tree, the technique is usually realized by removing
some longer branches from the tree, so that paths from root to leaves are
shorter (see [123]).

4.1.6 Discretization

Discretization is one of the techniques used to cope with the problem of data
which is too precise. This often arises from accurate sensors that measure
some actual quantity in the real world. For example it may be a thermome-
ter which measures body temperature. Let us consider two rules that could
model medical knowledge that would enable us to make a diagnosis: R1 =
“When temperature is 38.5◦C and there is a headache then the decision is
influenza” and R2 = “When temperature is 38.75◦C and there is a headache
then the decision is influenza”. They both represent the same portion of me-
dical knowledge, but they are based on different values provided for a given
attribute. Intuitively, we would like to represent this knowledge in a single
rule, similar to ”If temperature is high and there is a headache, the decision
is influenza”. It is not important what the exact value of the temperature
attribute is, it is sufficient to know if it is high or not. Formally, we would
say that it is important if the value of an attribute falls into a certain subset
of the attribute domain. This means that we can modify an information sys-
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tem by replacing the attribute with a new one that only determines which
subset the value belongs to. In the example of body temperature presented
above, we would replace the real-valued interval [35◦C, 42◦C] into a small
set of labels : {′very low′,′ low′,′ normal′,′ above normal′,′ high′,′ very high′},
where each label corresponds to one of subsequent and adjacent intervals of
[35,42] that partition it. The following definition formalizes the concept of
discretization:

Definition 14. Let IS(U,A) be an information system and a ∈ A be an
attribute a : U → D. Let D be partitioned into {Di}i∈I . Let function disc :
D → I be defined as disc(x) = i iff a(x) ∈ Di.

Let us define an attribute adisc, given by adisc(x) = disc(a(x)). We will say
that adisc is a discretization of a, and information system (U,A\{a}∪{adisc})
will be called IS with discretized attribute a.

In data mining we discretize certain attributes, not only to simplify con-
cepts in the data, but also because it may actually improve the quality of
prediction models ([344]). Approaches to the problem of discretization can
be categorized by a few aspects, such as the number of variables, the number
of discretization stages, locality, autonomy and staticness (see [104], [128]).
Some papers (e.g. [264], [347]) mention the use of domain knowledge in the
process of data discretization. In this research we follow this approach and
try to incorporate software engineering knowledge in the discretization of the
respective data.

4.2 Approximation

Typically, machine learning methods are applied in order to model and reason
about real-world phenomena. We can thus describe certain concepts in a
formal model and determine certain dependencies between different concepts.

For example, if we take medical data gathered during patient examina-
tion, we think about concepts such as ’influenza’, ’cold’, ’fever’, ’mild heada-
che’ or ’severe headache’, etc.. Actually, what the doctor does, before making
a diagnosis, is to find some associations between these concepts. Their exper-
tise enables them to know that the concept ’influenza’ is usually related to
the concept of ’fever’ and ’severe headache’.

Please note that all mentioned concepts are not crisp - they all contain so-
me component of uncertainty or fuzziness. We will call them vague concepts.
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In the aforementioned example, we cannot clearly tell where a ’fever’ starts:
If we agree to a certain formal boundary temperature, say 38◦C, we must
accept that 37.999999◦C is not yet a fever, which is clearly counter-intuitive.
Similarly, we cannot easily distinguish between mild and severe headache,
and sometimes it might be difficult to distinguish between influenza and a
cold.

The above example shows that in order to efficiently apply machine le-
arning algorithms in the real-world, we have to cope with the problem of
vagueness not only on the level of data and concepts, but also on the level
of reasoning.

In this research some concepts are derived from the rough set theory,
which is a formalism that allows us to incorporate vague concepts in data
mining models.

4.2.1 Rough sets

A Rough set ([272]) is an extension of a classic set, which incorporates the
concept of vagueness. In a classic set theory, for a given set X, and any
element x, we can tell that either x belongs to X or it does not belong to
it. This is not the case for a rough set: Here we can tell that one of three
options is possible: x may definitely “belong” to it, it may not “belong” to
it, or neither of the two preceding conditions is satisfied for sure. The last
case may be interpreted as an uncertainty, whether x is a member of the set,
or - in other words - that we are not certain if x belongs to it. Referring back
to the previous example, we could say that 37.5◦C does not “belong” to the
set of fever temperatures, 38◦C – does, and in case of 37.75◦C – we cannot
tell. 2

The following paragraphs provide a formal definition of a rough set.

Definition 15. A rough set R = (R,R) is a pair of classic sets such that
R ⊆ R. R is called the upper approximation of R, R is called the lower
approximation and R \R is called the boundary region.

Intuitively, R is a set of the elements that may belong to the rough set,
R is a set of elements that certainly belong to it, and the boundary region
comprises those elements whose containment in R is not certain.

2Another intuitive example from the domain of software engineering was given in section
2.2.7
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The purpose of using rough sets is to express vague concepts in the process
of usually complex and large data analysis. Please recall that information
systems and decision tables, defined in section 4.1.3, are a universal form
of expressing such data. Rough sets can be defined in the context of an
information system, so that they address problems with inconsistent data.

Definition 16. Let IS = (U,A) be an information system. The indiscer-
nibility relation on U with respect to attributes subset B ⊆ A is defined
INDB = {(x, y) : ∀a ∈ B a(x) = a(y)}. INDA will be denoted by IND for
the sake of simplicity.

For any B ⊆ A INDB is an equivalence relation ([271]). Its equivalence
classes will be called indiscernibility classes.

For any crisp set X ⊆ U , we will define the upper approximation of
X as upper(X) = {x ∈ U : [x]IND ∩ X 6= ∅}. Similarly, we will denote
the lower approximation of X as lower(X) = {x ∈ U : [x]IND ⊆ X}. A
rough set R = (lower(X), upper(X)) is an approximation of X. If we put
an X = {(x ∈ U : d(x) = di} for some di, then R is a rough-set-based
approximation of decision class di.

Intuitively, the IND connects such a pair of objects that cannot be di-
scerned from each other on the basis of the values of attributes from the
information system. In other words, the information provided by these attri-
butes is not sufficient to discern objects in the equivalence classes of IND.
The definition of a rough-set-approximation of any set comes from the as-
sumption that the lower and the upper approximation of any concept may
only be built from available indiscernibility classes. We may look at the mat-
ter from a different perspective: The values of attributes are the only available
description means. These means have certain limitations in their expressive-
ness: we are not able to describe concepts with granularity reaching deeper
than the indiscernibility classes.

Please note that different sets of attributes from A define different parti-
tions of U into indiscernibility classes. In the context of IS we may consider
an expressive power of any subset B ⊆ A, by looking how different INDB is
from IND. This leads us to the following definitions:

Definition 17. A subset B ⊆ A is called a reduct iff INDB = IND and
∀C ⊂ B INDB 6= IND.

The intersection of all reducts will be called a core.
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Conceptually, a reduct defines the minimal set of terms of a language
that is necessary to describe and discern all objects from a given information
system without losing information. A core can be understood as the set of
the most important elements of A.

In general, the problem of finding reducts for a given information system
is NP-hard, but there are heuristic algorithms available (see [345]).

4.3 Sequential and temporal data

This section describes selected aspects of temporal data and the problem of
mining temporal patterns. It contains a short discussion on selected problems
related to acquisition of temporal data that are relevant for this research. You
will also find formal definitions of different kinds of temporal patterns and
the tasks of their mining.

4.3.1 Temporal data

Please recall from chapter 1 that temporal data is a representation of phe-
nomena that can be ordered along time dimension or precedence relation.
The types of temporal data can be categorized according to three concerns:
acquisition, time representation and temporal ordering ([39]). The following
paragraph briefly summarizes these aspects.

Temporal data acquisition

Temporal data can be acquired by observing a phenomenon over a certain
period. Without loss of generality, we may assume that we observe a complex
object. There are two possible ways of doing that: event logging and data
sampling.

In the first case, we add a new item in the data, whenever a structure
or property of an element of the complex object changes. We will call such
a situation an event. Events are stored in a log, which is a sequence of log
entries. Each log entry describes a single event, by providing the time when
it was observed and a description of the event with all relevant information
about changes in the structure or properties of the complex object.

In the case of sampling, a complete view of the complex object is periodi-
cally recorded (sampled) as a data item in the form of a snapshot. If there is
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no change in the object between two subsequent samples, then snapshots are
identical. Also, if multiple changes have happened in between, we may not
be able to reconstruct them from the snapshot, as one may be overwritten by
the other. In particular, we can face the so called A-B-A problem, that is a
situation in which the state of an object changes twice between two samples:
first from A to B, then from B to A. In such case, the snapshots are identical,
which may imply that there was no change, which is not true.

In this research we use the event logging approach, in which each event
is bound to a single commit.

Time representation

Representation of time is an important aspect of temporal data. When time is
continuous, then we can virtually assume that observable events are linearly
ordered. In case of discrete time, this is not necessarily true. Additionally,
we know the specific timing of an event only with some finite accuracy. In
the domain of the analysis of the software development process, we usually
assume discrete time, but the linear ordering of events is in fact guaranteed
by the transactional nature of SCM system, which is the source of data.

Temporal ordering

In some cases temporal information available in the data can be limited only
to the elementary precedence relation - either linear or partially ordered. This
is not always a limitation. Sometimes, the timestamp information recorded
in raw data provides only noise and it can be beneficial to remove or at least
discretize it. This is the case when we focus on observation of one complex
objects, whose behavior is dependent on some other object that is irrelevant
for us. A network communication may be a good example: When we investi-
gate the process of inter-systems communication, we are usually interested
only in which order some messages are delivered to different software systems
and we can probably forget about network latency in this communication.

In the proposed model, described in Chapter 6, we generally assume that
precise timestamping of events is not important, and we only consider their
temporal ordering. However, in some topics related to the locality properties
of the software development process, described especially in Appendix A.2,
the exact timing is necessary.
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Allen’s interval algebra

In [30] the author defines algebra and calculus over the set of intervals of
<, which are by convention closed in their lower end and open in the upper
end. The interpretation is that < represents linear time and each interval
corresponds to a continuous period of time. The relations defined in algebra
represent temporal relations between the periods. For example interval X =
[x1, x2) takes place before Y = [y1, y2) (equivalently: Y takes place after X)
iff there is s ∈ < such that x2 < s < y1. The algebra defines 13 different
temporal relations between intervals, which comprise equality and 6 pairs
of invertible relations. We will say that Allen’s relation between X and Y
defined above is non-inverted iff x1 < y1 ∨ (x1 = y1 ∧x2 < y2). Conceptually,
this means that X takes place before a non-degenerated sub-interval of Y . In
other words, Y will last for some time after X has started. The non-inverted
relations of these pairs are given in the following list:

1. X takes place before Y (∃s ∈ < : x2 < s < y1)

2. X meets Y (x2 = y1)

3. X overlaps Y (x1 < y1 < x2 < y2)

4. X starts Y (x1 = y1 ∧ x2 < y2)

5. X contains Y (x1 < y1 < y2 < x2)

6. X is finished by Y (x1 < y1 ∧ y2 = x2)

Each Allen’s operator A has its inversion A−1 (which is also Allen’s operator)
defined by: xAy iff yA−1x.

Allen relations are used in this research as a formalism that allows us
to express temporal relations in the software development process. However,
instead of using intervals of <, we use intervals whose ends are represented by
commits in the software evolution. Since the commits are linearly-ordered, all
Allen’s relation described above naturally apply to this context. For details,
please refer to Section 6.5.5.

4.3.2 Time series

Time series is a special type of temporal data, in which data is a sequence
of linearly ordered numbers (usually real-valued). A record of share price at
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a stock exchange is a good example of such data. The following definition
formalizes this concept:

Definition 18. Time series is a sequence of real numbers TS = (vt)t.

The t index in the above definition is associated with time.
We can identify two reasons for which time series is such an important and
widely researched method for the representation of temporal data. Firstly,
this representation can be derived directly from real-world phenomena in
many practical domains without any transformation and pre-processing. If we
take a sensor that measures some real-valued quantity, such as temperature,
vehicle velocity, heartbeat rate, etc., and sample its measurements every fixed
time interval, we get a time series that is a valid record of the observed
process. Secondly, time series is a very simple mathematical concept, to which
we can apply a variety of well-known methods, including statistical analysis
or calculus. The following paragraphs briefly summarize some of them.

Trend analysis and regression Sometimes the values present in a time
series is the record of a process which is known or expected to behave accor-
ding to a simple model, e.g. linearly. In such case we can use regression to
reduce complexity of data and filter the noise. Even if the model is unknown,
regression can be used to find it: If, after finding a regression model, we end
up with a low error, then the output can probably be considered as trivial
for analysis, yet a sufficient approximation of the initial data.

Trend analysis is a similar technique used in the time series analysis. In
this task we want to detect such a model that adequately approximates a
long term behavior of the time series that is not affected by local, short-
term fluctuations. Also here simple linear models are frequently used. These
models are commonly used to analyze e.g. financial data ([325]).

Periodicity detection Real-world phenomena can sometimes behave mo-
re or less periodically. If we sample some measures of such phenomena and
store it in the form of a time series, it should resemble a periodic function.
Simplifying it a bit, such a time series can be decomposed into a trend com-
ponent and periodic fluctuation component. For example, if we take power
consumption in households, we would expect that it periodically changes
through the day in a similar way each day, because we would expect higher
consumption in the morning, and in the afternoon, very low at night, and
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average through the day. We would rather not expect such a periodic daily
fluctuation to be affected by long-term phenomena, such as citizen migra-
tions, that can influence the total number of households using electricity. In
such case, we could rather observe a long-term trend in the data.

In general, the task of periodicity detection in a given time series (vt)
is to find such two time series (trendt) and (periodt) so that: 1) for any t,
vt = trendt + periodt, 2) trendt is close (in terms of e.g. mean quadratic
error) to a given regression function (usually linear) and periodt is close in
the same sense to some periodic function. The period of the aforementioned
periodt series can either be known in advance or it has to be identified as
well in the course of finding such decomposition (see [109]).

Similarity measures for time series If we observe two different proces-
ses and each is recorded in the form of a time series of the same kind (the
same value is measured), then we can ask the question how similar these
processes are, and how the similarity can be mined from both time series.
The problem is that one of the series, as compared to the other one, can be
shifted, scaled or include some irrelevant trend. The similarity measure can
be used to cluster the time series database so that the enormous dimension
of data set can be reduced. This can enable us to efficiently reason about
temporal data and use this knowledge in a prediction model. This general
framework is frequently used to identify some temporal patterns in many
areas, including, but not limited to, financial data analysis ([325]) or energy
consumption models ([164]).

Time series in the software development process

In the software development process time series can be derived from software
metrics: Indeed, if we measure and record the value of a metric at every re-
vision (they cannot change between revisions), we get a time series. Analysis
of such a time series, based on simple regression can be used as one of the
predictors of phenomena in the source code development (see [274]).

4.4 Resume

In this chapter we have introduced some methods of knowledge discovery
that are referred to in this thesis in the context of the software development
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process:

� We have explained the notion of supervised and unsupervised machine
learning and provided exemplary algorithm types for both categories
(see Section 4.1.1).

� We have explained what is a predictive and descriptive task in data
mining (see Section 4.1.2).

� We have analyzed a few typical examples of data mining tasks, with
special focus on classification and rule mining. On this basis we ha-
ve introduced the concept of a rule-based classifier and explained its
human-readability. The tasks were founded on data represented in in-
formation systems or decision tables (see Sections 4.1.3-4.1.4).

� The chapter discusses the problems of overfitting, data inconsistency,
conflicting rules and vague concepts, which lead us to the notion of
approximate modeling. The concept of a rough set is discussed as one
of the approaches to this problem (see Sections 4.1.4-4.1.5).

� Special focus is put on the problems of mining temporal data: We
have introduced the general problem of temporal patterns discovery
and discussed some concepts related to modeling temporal phenomena.
Specifically, Allen’s interval algebra is briefly introduced (see Section
4.3).

� Certain quality measures for both rules and classifiers are explained in
this chapter: starting from elementary ones, such as confidence and sup-
port, to more specialized, such as accuracy or F-measure (see Section
4.1.4).

� Last but not least, the chapter includes some relevant examples from
the domain of software engineering, related to the concepts and notions
explained above.
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Chapter 5

Related work

This chapter discusses work related to this thesis. It is divided into two
sections: Section 5.1 discusses bibliography on classic generic and domain-
agnostic methods, whose elements are used in the present study. Their com-
prehension is necessary to understand the following chapters of this thesis.
A reader familiar with techniques of statistical time series analysis, sequ-
ential data and process mining, as well as structure and graph mining can
skip directly to section 5.2, which provides a thorough description of specific
research into the domain of mining software repositories and the software
development process.

5.1 Related generic work

This section describes work related to temporal pattern mining techniques.
While the topic itself is very broad and exceeds by far the scope of our study,
this section discusses certain concepts and algorithms that are explicitly or
implicitly used in the present thesis or in any of related studies described in
Section 5.2. The comprehension of these concepts is necessary to understand
the following sections.

5.1.1 Process mining

Process mining is a data mining task in which we try to discover an initial-
ly unknown model of a process, by looking at many recorded process logs.
The models can be expressed in terms of finite state automata ([80]), Petri-
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net ([300], [330]), workflow graph ([137]), event-driven process chains ([328],
[234]) or languages typical for the description of business processes such as
YAWL or BPMN ([329], [178], [58]). The techniques employed to discover the
process model usually have a hierarchical structure, where the global model
of the process is built from elementary casual relations between pairs of its
steps. These relations can be constructed on the basis of a simple statistical
analysis of the log. A good example of such an approach is given in [327]. On
the basis of simple statistical analysis of available process logs, the α algo-
rithm described in the paper builds a structure called dependency-frequency
tables (D/F tables). This, in general terms, can be said to measure how often
any pair of events (A,B) appear in the log, so that A directly or indirectly
precedes B. Then, a few simple pre-defined heuristic rules are applied to
reconstruct the dependency-frequency graph from D/F tables. Nodes of the
graph represent event types and the directed edge (A,B) represents the fact
that events A and B are likely to be in a causal relation. Finally, another set
of pre-defined heuristic rules are applied to detect workflow constructs such
as AND/OR-splits or loops. Similar algorithms are also presented in [96],
[207], [231] or [340].

An alternative method is presented in e.g. [232] or [136] where a global,
hierarchical representation of the process is adjusted in the course of the
learning process. The advantage of such an approach is that it allows to
capture non-trivial dependencies between distant steps in the process, such
as non-free choices (i.e. a situation when a split in the process is determined
by some past events). In [232], thanks to a genetic algorithm, the model is
made to evolve so that it best fits to the known process logs. The general idea
of [136] is built atop of a few similarity functions that are used to determine if
two activities in the process can be abstracted to a single higher-level activity.
In simple terms, the similarity functions measure how many spurious process
traces can be generated if the two activities are merged together.

Further reading A good survey of various process mining techniques is
given in [96] or [127].

5.1.2 Item-set mining and frequent episodes mining

The sequential log of a process is not always given in the form of a time series.
Sometimes, rather than in numbers, data is given in terms of symbols from
a non-ordered set. In such context, we can consider certain sub-sequences of
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symbols as patterns and apply mining algorithms to find them in a given
process log. More generally, the pattern can be expressed as a set of partially
ordered events. When the log is known up-front, then the adoption classic
a-priori algorithm ([28], [29]) can be used to find sequential patterns. In [224]
and [225], the authors use this algorithm to predict frequent episodes, defined
as time-bounded occurrences of events ordered according to the given criteria,
in the process understood as a sequence of events. The solution entails using
the sliding window technique, briefly explained in the next paragraph. The
study [141] introduces the sequential pattern tree - a data structure that
provides efficient representation of sequential patterns and can be used to
mine the ones that are frequent. All the aforementioned methods are based
on the “anti-monotonicity” of frequent episodes, i.e. the evident fact that if
a given sequence is frequent, then all its sub-sequences are also frequent and
have equal or greater support. In [162] the authors describe a similar method
for mining complex frequent episodes, which does not require the process to
be linearly ordered.

Further reading A thorough summary of the methods applicable for mi-
ning frequent episodes can be found in [218]

5.1.3 Sliding window

Problems in understanding and mining temporal data may originate from
the fact that sequences of data can be very large or even theoretically infi-
nite, as in the case of data streams. Sliding window (see [341]) is one of the
techniques used to reduce dimensionality of such data. Conceptually, it is
intended to limit the analysis of a potentially very long sequence to a rela-
tively small continuous interval, called window, and repeat the analysis for
different locations of the interval. Usually, the window has a fixed length and
the analysis is done for every possible starting point from the data. One can
imagine that the window is sliding over the data from the first to the last
item. Please note that, in such a setting, two subsequent windows usually
differ by only a few elements, which may be convenient for various adaptive
algorithms. The matter is conceptually shown in figure 5.1.3.

The sliding window can be useful in mining unbounded streams of ve-
ry large data (e.g. [77]), in the presence of concept drift (e.g. [341]) or in
hierarchical decomposition of the mining algorithm (e.g. [200]).
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Figure 5.1: Conceptual presentation of the sliding window technique. At this
particular moment, the window covers only the first 6 items of possibly infi-
nite data stream. In the next step the window will cover items 2-7.

5.1.4 Structure and graph mining

Structure mining is a special task in knowledge discovery which aims at iden-
tifying spatial patterns in structural large scale data. In particular, graph mi-
ning focuses on detecting such patterns in a graph. The matter is thoroughly
described in [25] and the following paragraphs just outline the most relevant
aspects.

Graph isomorphism

Graph isomorphism is the problem of checking if two given graphs are isomor-
phic. Since graphs are an important means of modeling software structure,
the matter has important practical significance in the domain of mining so-
ftware repositories.

So far, it has not been established if the problem is solvable in polyno-
mial time, nor if it is NP-complete. Thus, considering the current state of
knowledge, it should certainly be considered computationally expensive. Yet,
for relatively small graphs, the existing superpolynomial algorithms are prac-
tically efficient. Moreover, there are known polynomial time algorithms for
certain categories of graphs, such as trees or planar graphs, and graphs with
bounded node degree (see [183], [215] or [159]). This fact is particularly im-
portant for software structure mining, as real-life data in this domain usually
yields graphs with reasonably bounded degrees (see 2.2.11). The paper [120]
contains an interesting survey of existing exact-graph-matching algorithms.

Subgraph isomorphism

Subgraph isomorphism is the problem of verifying if the first-given graph
(called pattern) is isomorphic with any subgraph of a second-given graph.
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Despite similarities to the aforementioned graph isomorphism problem, it is
known to be NP-complete ([81]). Here again, for certain types of graphs,
such as certain types of sparse graphs, planar graphs with a fixed pattern or
graphs with bounded node degree and a fixed pattern, the problem can be
solved in polynomial or even linear time (see [253], [110]).

Induced subgraph isomorphism (see [76]) is a slight modification of the
subgraph isomorphism problem, and its decision version is said to check if
the first given graph (G1 - pattern) is isomorphic to an induced subgraph
of a second given graph G2. Formally, this is true if there is a function f
from G1 nodes to G2 nodes such that edge (x, y) exists in G1 iff it exists in
G2. Conceptually, the difference between the two problems is that in induced
subgraph isomorphism, if an edge is absent in G1, we require that the edge
in G2 between the corresponding nodes be also absent. In case of regular
subgraph isomorphism, the edge may or may not be there.

There is a wide range of applications for the algorithms of the two afo-
rementioned problems in the domain of software system analysis. It is used
to find instances of design (anti-)patterns in a large structure of the source
code. This approach is also used in the present study and is described in
detail in Section 6.3.3.

Approximate and non-deterministic graph-matching

In practical applications, when applying mining algorithms to graph data
(derived from e.g. software system structure), it might be sufficient to apply
approximate heuristics to typical (sub-)graph isomorphism problems. Some-
times, it is even more desired to use such a method, because it can be helpful
in reducing noise present in the original graph data. If a graph (or a subgraph)
is approximately equal to another graph, we will say that they match in order
to differentiate this notion from classical definition of isomorphism. You will
find a short description of a few examples of graph matching algorithms in
the following paragraphs.

Distance-based methods originate from string-matching algorithms. The
notion of editorial distance between two textual variants can be generalized
to graph data with the use of elementary graph change operations, such as
deletion, insertion or substitution (for labeled graphs) of both nodes and ed-
ges. In some applications, more sophisticated changes, such as splitting and
merging, are used as well (see [33]). A sequence of change operations applied
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subsequently one after another on a given graph will be called an edit path.
Given the cost of each single change operation, we can define the cost of the
edit path as the sum of costs of all operations included. The definition of the
distance between two graphs G1 and G2 is straightforward: it is the minimal
cost of a change path that transforms G1 to G2. Clearly, we consider G1 and
G2 as matching if the distance between them is low. Algorithms for finding
edit distance between two graphs are typically based on exploring the space
of all possible mappings between nodes and edges, thus they are computa-
tionally expensive, which makes them applicable only for small graphs (see
[66]). Some more computationally effective heuristic methods are based on
the idea of optimizing local search instead of a global one, or of decomposing
the problem of matching large graphs to a set of smaller ones. Both can be
found in [257], [314] or [111].

Further reading A survey of edit-distance based methods for graph mat-
ching is given in [126].

5.1.5 Graph indexing

A special category of graph mining meta-techniques are based on the so called
graph indices. They are particularly useful when pattern graphs need to be
matched against a large database of graphs. Conceptually, the graph index
plays a similar role as the index in a relational database: it allows to reduce
search space to simple objects, such as vectors of real numbers, instead of
more computationally-expensive graphs. Formally, let G be a set of graphs,
function Ind : G→ D is called index iff it satisfies the following property: For
any G1, G2 ∈ G if G1 and G2 are isomorphic then Ind(G1) = Ind(G2). For
practical reasons D must be efficiently filterable and in actual applications
it usually is a vector space: D = <n for some natural n.

The matching algorithm is straightforward: Suppose that for a given pat-
tern graph p we want to find {g ∈ G : p is isomorphic to g} and that Ind(g)
is known for all graphs in G. The search algorithm first computes Ind(p)
and then finds a subset Gp = {g ∈ G : Ind(g) = Ind(p)}. In the case ope-
rations on vectors of real numbers, such filtering can be done in logarithmic
time with respect to the power of G. Moreover, if the Ind is well-suited for
the particular domain, i.e. the probability of having two graphs in G with
the same value of the index is low, then Gp should have substantially lower
power compared to G. The last step is to perform a regular search for p in
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Gp. Actual graph indices can be based on tree decomposition ([363]), paths
enumeration ([131]), frequent subgraphs ([353]) or even algebraic properties
of the adjacency or Laplacian matrices ([70], [216] or [297]). Some specific
graph indices suited for the software development graphs described in Section
2.2.11, are also used in this study. For details, please refer to Section 6.3.3.

Further reading A variety of approaches to graph indexing is discussed
in [25].

5.2 Related work in software development do-
main

This section describes in more detail specific studies in the domain of mining
software repositories and the software development process. This has been
a very popular subject of research for almost two decades, with significant
dedicated conferences such as International Conference on Mining Software
Repositories. The following sections describe a selection of available papers
in the domain arranged into categories related to the present thesis.

5.2.1 Mining software repositories

Mining software repositories (MSR) is a special type of data mining task
which analyzes rich data available in software SCMs, issue tracker, software
documentation, mailing list archives and other data sources that are used
during the software development process. There are different goals, models
and algorithms used in the area of mining software repositories. In [175], the
authors propose a taxonomy which allows one to arrange available research
according to four aspects: type of data mined (code-named what), the purpose
of the approach (why), the methodology (how) and the evaluation method
(quality). Even though the taxonomy is based on papers published some years
ago, the four-aspect classification still holds and with a slight amendment
can be used to roughly categorize up-to-date research in this field (see [302]).
The four aspects are roughly described in the following few paragraphs and
related to the research presented in this thesis.

As regards the “what” aspect, the present thesis is mostly based on data
concerning changes to software structure taken from the logs of SCM system
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and statically computed dependencies. Additionally, it is also partially based
on defect statistics mined from the logs of the JIRA issue tracker1. Other
sources of data mentioned in available papers include: SCM meta-data (e.g.
[105], [117], [311]), bug and issue reports (e.g. [337], [191], [311]), developer’s
activity in Integrated Development Environment (e.g. [294], [219], [293]),
external communication platforms such as e-mails or forums (e.g. [85], [44]).

The purpose of the thesis (the “why” aspect) is thoroughly described in
Section 3.1. Generally, the goal is to be able to identify such temporal patterns
in the software development process that are early indicators of deteriorating
software quality. One can find a rich variety of other motivations for the MSR
research, including, but not limited to:

� tools that improve the general comprehension of the software deve-
lopment process, such as various visualization techniques (see detailed
bibliography in Sections 5.2.6 and 5.2.7) or specialized query languages
(see Section 5.2.7),

� tools to identify the origin of certain patterns or defects in software
structure (see Section 5.2.8),

� models that express temporal patterns (see Section 5.2.3) or temporal
metrics (see Section 5.2.5),

� models for predicting complexity (see Section 5.2.3) or the number of
defects in software (see Section 5.2.8),

� methods for mining non-obvious patterns in software structure (see
Section 5.2.7).

Methods for mining software repositories used in the current thesis (the
“how” aspect) are described in Chapter 6 and are summarized in Section 6.8.
Other similar methods include approaches based on statistical analysis of da-
ta built from both static and temporal metrics (see Sections 5.2.8 and 5.2.5),
various formal models (see Sections 5.2.3 and 5.2.7), numerous variations of
pattern-mining techniques (see Sections 5.2.4 and 5.2.8).

The quality aspect of the MSR taxonomy is related to tools used to eva-
luate experimental output and is arguably the most fuzzy and unstructured
concern. Methods used in MSR approaches include various types of expert as-
sessment (e.g. [100], [147], [228], [243]), statistical evaluation (e.g. [55], [248],
1For details, please refer to Sections 2.2 and 6.1.
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[32]), different methods for acquiring training and test data examples ([283],
[191], [307], [290]). The present thesis describes a range of experiments and
exploits all three types of evaluation methods (primarily the first one). For
details, please refer to Appendices A and B.1.

In the sections below one can find a more detailed description of selected
approaches in the field of mining software repositories, specifically related
to the research described in the thesis. Again, similar or related studies are
grouped together into separate categories and by convention at least one
exemplary study is described more broadly in each category.

Synchronization of different sources of temporal data

Mining software repositories uses data from different temporal sources that,
most commonly, are not synchronized. This appears to be a serious issue in
the research on mining the software development process (see [42]). Therefore,
the task of synchronization of different data sources is frequently taken as a
part of data pre-processing in numerous MSR studies, and this part alone
constitutes the core subject of many scientific articles.

In [42] the authors argue that significant information is lost when data
sources are not synchronized automatically. Their research, based on experi-
mental verification of Mozilla project, indicates that the recall of a heuristic
approach for synchronization of SCM and issue tracker on this project is
about 40% only.

Such observations have lead to the comprehensive introduction of tools
that automate the process of synchronizing the logs from the two systems in
software development. Probably the most popular (and widely used) method
is the so called SCM hooks that does not allow to submit a commit to SCM
if its message does not contain a reference to the corresponding issue in the
issue tracker. Data used in the current thesis comes only from the systems
with such a mechanism in place.

A deeper analysis of the same problem can be found in [56], where the
authors have discussed the phenomenon of the bug-feature bias and commit-
feature bias that were observed in data from open source projects. They
are relevant for the problem of defect origin analysis described in Section
5.2.8. One of their major conclusions is that data is not evenly distributed
over all types of bugs that actually appear in the development of software
systems, which affects accuracy of known defect-prediction systems. Forcing
developers to mark bug-fixing commits is suggested as one of the means to
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cope with the problem, yet the authors suggest that the data acquired in
such a way still might be biased.

The problem of synchronizing logs obtained from different systems is also
addressed in [177], [117], [366], [176], [42] or [311].

Data fetching and representation

All the systems that record a trace during the software development process
constitute a very rich source of data that can be used in further mining.
Therefore, one of the first decisions that a researcher must make is choosing
the way to fetch data from these systems and selecting their representation
to be used in the experiments. This section describes a few approaches to
these two aspects and compares them with the solution used in the thesis.

Generally speaking, fetching and representing data can be categorized
according to four aspects: type of data analysis, granularity, data model and
time model, if applicable. These aspects are roughly described in the following
paragraphs.

Dynamic vs static program analysis Though research in the field of
mining software repositories can be based on various sources of data (see
description at the beginning of this section), it is the program structure that
is most commonly used. The methods of its reconstruction can be divided into
two main categories: static and dynamic approaches (see [302]). In case of the
former, the structure of the program is determined only by a static analysis
of the source code e.g. during compilation. Variations of this technique are
used in [166], [301], [43] or [315]. For further investigation into this topic
please refer to [53]. Dynamic analysis, in which the structure of the program
is reconstructed while the program is running, is used in [214], [57], [251] or
[57]

This research relies on statically-build data created during dedicated
program-source-code parsing. This decision comes from motivation descri-
bed in Chapter 3: On the one hand, it allows the methods described in this
study to be easily applied to real-life software development processes. On the
other hand, this kind of method has been proven to be sufficiently accurate
in the applications related to the thesis (see [129]). A detailed description
can be found in section 6.2.
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Data representation In [193] the authors yield a proposition of an univer-
sal XML representation of data from the software development process. The
model includes information that can be directly taken from commit meta-
data, (e.g. author, time, etc.), information that can be taken from parsing
modified files (e.g. source code structure, source code entities), information
that can be precisely computed on the history for the modified entities, the
number of added or deleted files, past co-change statistics (see Section 5.2.4)
and information that can be computed heuristically (e.g. predicted defect
distribution or bug-origin (Section 5.2.8), implicit dependencies between en-
tities (Section 5.2.7). The proposed format structure of the XML file has not
been widely accepted, yet the concepts proposed in this paper are still discus-
sed and used in research to date (e.g. [217], [317], [348]). The most important
ones are: 1) Universal, SCM and issue tracker-independent representation of
the software development process log, 2) universal, programming language-
agnostic representation of the software structure (various dependency graphs)
and 3) capability of extending raw data with auxiliary information gathered
during additional analyzing or mining raw data.

In this thesis, the exact XML structure recommended in [193] is not
used, instead a model is implemented that perfectly adheres to the three
characteristics outlined above. A detailed description of the model is found
in Section 6.1.

Similar, universal models are also used in [222], [173], [190], [252], [134]
[113], [105], [50], [90], [89], [88], or [177].

Evolution representation In the aspect of software evolution modeling -
some research has also shown an attempt to provide a universal, technology-
and process-agnostic representation of software evolution. Two common ap-
proaches appear in research papers: the ones that represent the evolution as
a sequence of static snapshots (e.g. [134]) or as a sequence of changes (e.g.
[249]).

Another important aspect of the software evolution model is its temporal
resolution, that is, the minimal temporal distance of subsequent versions of
the system source code that can be retrieved from the model. Here, appro-
aches vary from very coarse models build on subsequent software releases
(e.g. [198], [35]) through daily versions (e.g. [249], [252]) up to fine-grained
tracking of elementary editorial changes done by the developers in their In-
tegrated Development Environments (e.g. [293], [292]).
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However, if the model is rich enough and captures the data with sufficient
resolution, the difference between the above representations is just technical,
since there is a function that translates one to the other. To some extent,
this is also the case in the present study, since the model is based on a sequ-
ence of changes of particular files in the system source code, but it contains
enough information to transform this to a sequence of snapshots or trace
inter-commit changes for entities on any level of granularity down to single
methods. For details, please refer to Sections 6.1-6.2.

Another discriminant of evolution models is the first-class entity, whose
history is examined: it varies from complete systems (e.g. [190], [35] or [199])
through components, packages and files (e.g. [349], [91], [103]) down to single
methods or classes (e.g. [130], [350], [1], [144]).

There are also other representations of software evolution that cannot be
easily fitted into the above categorization. For example, in [65] the softwa-
re development process is represented as a graph whose nodes correspond to
commits and edges denote how much the connected commits have in common
(in terms of the number of software entities changed in both commits). This
specific structure can be built adaptively and a simple graph traversal al-
gorithm allows one to calculate a few software development process metrics
efficiently, but does not allow for a reconstruction of the process history.
Other interesting approaches based on graph representation of software evo-
lution are also presented in [49] or [138] where appropriately applied classic
graph algorithms are used to respectively: identify unstable areas of software
structure and find relations between system features and fragments in the
source code that implement it. It appears that to-date there is no common,
widely-adopted model to represent software evolution (see [229]).

5.2.2 Elementary commit statistics

One of the basic empirical methods for understanding the software develop-
ment process, is a statistical analysis of the distribution of simple measurable
properties of the commits, such as time, size, authors, etc. Such analysis al-
lows one to streamline the following more sophisticated research in a more
specific direction.

For example, in [240], the authors report that 10% of commits modify
a single line of code, around 50% modify a maximum of 10 lines of the
code and only as little as 5% modify more than 50 lines of code. A similar
observation has been made based on experiments conducted for this thesis
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(see results in A.2). Additionally, similar statistics for relatively short time
windows (up to 5 days) have been measured. It can be concluded that the
software development process appears to be local in time and local in space
(this topic is discussed in depth in Section 6.2.3). Therefore, an adaptive
algorithm working on a stream of commits should be a more efficient way of
analyzing software evolution data, as compared to an algorithm working on
a stream of software snapshots.

Simple statistical information built directly from the SCM commits is
also used in e.g. [238] and [31], where the authors try to evaluate developers’
expertise in certain areas of the system on the basis of the distribution of the
commits they made, or in [249], where the authors analyze the correlation
between statistics concerning size of change and the number of defects in the
respective source code.

Please note that statistics of this sort are actually very simple tempo-
ral metrics for the software development process. Research on the temporal
metrics in general is reported in this chapter in Section 5.2.5.

5.2.3 Software evolution analysis

Much of the research effort is spent on understanding patterns in software
evolution. This chapter describes important areas of evolution-related topics.

Human expert-aided software evolution analysis

Some research effort has been made to implement tools that extract evolution
knowledge from parsed logs of the SCM or issue tracker systems and present
it in an appropriate form so that it is subject to human expert evaluation
and interpretation. In [326] the authors provide a tool that is founded on
very similar concepts to those presented in this study: Apart from various
dependency graphs, static and evolution metric, they also introduce the con-
cept of origin analysis, which aims at determining history of a single software
entity throughout system evolution, even if the entity has been relocated or
renamed. The goal of the proposed approach is to provide a human expert
with a set of cross-navigable charts and reports so that they can explore and
understand software evolution. A similar approach is also described in [226],
[94], [68] or [336] and a comprehensive survey of such methods can be found
in [115].
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Despite these similarities, there is a significant difference between the
above and the approach taken in the present thesis. While the authors use
the model solely to build the tools that visualize certain temporal metrics
and patterns, this proposal goes further and the knowledge is an input for
machine learning algorithms that extract new knowledge about the evolution.
In other words, it is either the computer which interprets known facts and
infers extra knowledge or this is done by a human expert. Delegating this
task to the computer takes us one step further in efficient comprehension and
monitoring of the software development process. One of the key conclusions of
this thesis is that simple machine learning algorithms used on appropriately
prepared data produce a useful model that can be used to predict system
evolution in a fully automated manner.

Logical models

Temporal logic is a formal tool frequently used to model objects that change
over time. The software development process is not an exception - some
researchers try to build formal models of evolution and then use temporal
logic to formally reason about it. In [134], the authors propose the use of a
formal model to describe static patterns in object-oriented software and apply
temporal logic to extend it so that it is also capable of describing temporal
patterns in software evolution. The expressive power of the proposed language
is shown on a few examples of temporal phenomena that can be useful in
software engineering. A similar language, also built on the basis of temporal
logic, can be found in [322] and [157]. What is common to all these papers
is that the language defined there is not used to automatically reason about
temporal patterns, but rather it is used as a tool for convenient description.
In contrast to that, such automatic reasoning is described in [189], where
the authors use temporal logic to automatically detect certain changes in the
code. The changes are predefined in temporal logic languages and include
typical refactoring operations, such as “removal of a certain field in all classes
that implement a certain interface” . Similar approach is also used in [153].
The temporal aspect is modeled differently in the current study: In order to
model temporal relations between phenomena observed in software evolution,
instead of specific temporal logic (e.g. CTL), we use Allen operators (see
Section 4.3.1).

Logical models are also used to reason about non-temporal properties of
the software source code. For example in [140] or [243] we can see spatial
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pattern instances defined in a formal language. A more sophisticated pro-
blem is addressed in [315], where the authors define a formal logic language
to describe the model of the source code structure and data flow and then
build a static pattern detector based on it. The original solution was imple-
mented with Prolog, but was then exchanged with dedicated SQL queries for
performance reasons. The work is further extended in [338], where the formal
method is used to detect structures in the software source code, which is not
an entirely accurate instance of a given design pattern, but rather its appro-
ximation or variation. This method can be used to understand the structure
of the source code that has been developed for a long time and its original
constructs have been amended by unwanted editions. Similar problem is also
addressed in [140].

Long-term evolution patterns

Research aimed at the problem of detecting temporal patterns in the softwa-
re development process can focus on long-term evolution patterns, that is,
phenomena that can be typically observed between subsequent releases, or
short-term ones, which describe changes that happen between subsequent
commits. This subsection provides a description of studies dealing with the
first category, whereas the following section treats of the second.

The fundamental work [201] (later discussed in e.g. [203], [202]) gives a
categorization of software systems with respect to their use and specification
and discusses the way to understand evolution of each category by means
of Lehman’s laws. The most interesting category is E-type system defined as
“software solving a problem or addressing an application in the real world”,
which is one that Lehman laws most obviously pertain to. The laws include:
The law of continuing change, according to which the system must continu-
ously adapt to changing environments and applications, the law of increasing
complexity and the law of continuous growth according to which the system
naturally and continuously increases its complexity and size and the law of
decreasing quality, according to which the system’s quality will naturally de-
crease along with its evolution. Clearly, the laws yield long-term evolution
patterns, which have been the focus of research. Quite often research is based
on simple statistical properties of software evolution. For example, in [69] the
authors have empirically validated the laws on the basis of the evolution of
popular open-source Integrated Development Environment. The conclusions
supported only a few of Lehman’s Laws (precisely: the laws of continuing
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change, self regulation and continuing growth), and, surprisingly, the law of
declining quality was neither confirmed nor proven wrong. This is attributed
to the specific nature of software, namely, to the fact that it is a community-
developed open-source system. Such systems were also examined in [115],
[305], [132] or [150] and all these papers have drawn similar conclusions.

A more sophisticated method for understanding evolution is given in [149],
where the authors try to validate a model in which software evolution is ap-
proximated as a dynamical system with self-organized criticality. The con-
sequence of such an assumption is that the evolution of such a system is
determined by events that took place in the far past. By doing a statisti-
cal analysis of almost four thousand open source projects, the authors have
proven the model wrong for long-term evolution patterns, but, interestin-
gly, their results indicate that such models tend to be valid for short-term
software development processes.

The matter of long-term evolution patterns is also described in [171],
[40], [116], [98], [296], [334], [83], [124], [265], [72] [152] or [349] and detailed
summary of research on this topic can be found in [151].

Short-term evolution patterns

Research on short-term evolution patterns can be approximately divided into
the following categories: 1) patterns of a developer’s editorial changes, 2)
classification of changes done in a single or in a few subsequent commits,
3) identification of relations between different code modifications. The first
category can be exemplified by [219], where the authors use a support vector
machine model to predict if editorial changes done by a developer inside their
Integrated Development Environment introduce new defects. The model is
built from the simple attributes of a developer change, including their name,
simple and cumulative software metrics, time of occurrence and others. One
interesting conclusion is that such an approach is relatively effective (65-92%
accuracy) when the analyzed history consists of up to approximately 250 past
changes only, which in such context can be considered the threshold length
of short-term evolution pattern. Other papers that fall into this category
include [129], which focuses on identifying source code entities under heavy
development or [156], which concerns typical elementary refactoring done by
developers.

A good example of research from the second category is [155]. The au-
thors build a statistical model based on the change of vector built from
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the values of various software metrics. The model introduces the concept of
metric fluctuation and change fluctuation which are specifically aggregated
values of metric changes evaluated during every commit. The changes are
expressed in terms of entropy, a variety of distances, quartile deviation and
quartile dispersion coefficient. This sophisticated model is eventually used
to classify which software modules are most error-prone, more specifically,
to indicate the top 20% of source code entities with the greatest number of
defects. The model was empirically evaluated on a few open-source systems
and the main conclusion is that introducing metric and change fluctuations
improves classification accuracy by at least 20%. A similar concept, yet with
simpler statistical model, was used in [276]. Other studies in this category
are: [292], where the authors compare the method of identifying refactorings
based on either editorial changes done in Integrated Development Environ-
ment or SCM logs, [289], where short-term evolution patterns are used to find
defects density in software, or [191], where source code syntactical tokens are
used to detect commits that introduce a defect into the system.

The third category can be exemplified by [366], which describes a method
for identifying relations between different source code entities on the basis of
how frequently they appear together in a single transaction. The transaction
is here understood as a short-term pattern that consists of a few, usually
subsequent, commits, which altogether form a structural change. Other stu-
dies in this category include [65], which describes the method of identifying a
relation between different commits on the basis of the semantic change that
they introduce.

Research described in this thesis is more affiliated to the second category:
it analyzes how each commit changes the spatio-temporal relations in softwa-
re structure. However, since these spatio-temporal relations may last for the
entire evolution, in a sense, it also links to the first category.

5.2.4 Co-evolution analysis

Evolution patterns are usually bound to a single code entity or to a system
as a whole. It means that we can treat two code entities as similar if their
evolution has many common events (usually commits). In other words, it
means that they change in a similar manner. Such a common change is called
co-change and existence of many common co-changes is called co-evolution.
If two different code entities co-evolve, then one can deduce that they are
related or similar. Identification of such relations may play an important role
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in understanding global patterns in software evolution. This is, arguably, one
of the most extensively studied paradigms in the area of mining software
repositories.

In general, research might focus on different levels of granularity, starting
from top-most elements, such as systems ([124]), down to methods ([366]).
The method of identifying implicit dependencies on the basis of co-evolution
patterns is described in [273]. In [51] the authors define simple co-change
measures for classes and use it to empirically check what co-changing pat-
terns are related to statically identified instances of design patterns in the
code. In [371], the EROSE recommendation tool is evaluated. In principle
it uses itemset mining technique on commit level to identify the lowest-level
entities coupling. It doesn’t however take into consideration sources of data
other than SCM commits. The tool is part of Integrated Development Envi-
ronment, so that whenever a developer changes a function in the code, the
tool also suggests other places in the code that have previously been modified
along with the one.

Author in ([365]) discusses the method of co-evolution analysis on the
basis of dynamic analysis - the analysis of calls between system elements
during its execution. The approach presented there contains an interesting
concept of using historical data to generate initial set of co-evolving entities,
so that dynamic analysis can be limited to a significantly smaller area.

In [124], Gall et al. propose a preliminary approach of using an item-set
mining algorithm to identify logical coupling between large software entities,
such as programs, on the basis of changes at release level. In [334], the au-
thors define a special vector that contains timestamps of all commits that
modified a given file. A quasi-euclidean2 distance between such vectors re-
presents information on how similarly the files were evolving over time. On
the basis of such a metric, the authors run a clustering algorithm so that,
in the end, we can identify groups of files that were evolving in a similar
way. In this way, we can identify types or categories of file evolution. This
input is then taken to a graphical algorithm that plots evolution categories
on a diagram. We believe that this paper provides a small, yet significant
step forward towards understanding co-evolution. In previously mentioned
methods, research was more focused on identifying the co-change as such,

2Such vectors do not belong to a single euclidean space, so a special construct is needed
to formally define the distance. For an exact definition of this metric please refer to the
original paper.
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here, however, we have a tool that potentially enables us to identify more
fine-grained reasons for the presence of co-evolution and potentially see it as
a temporal, ongoing process that needs further investigation.

5.2.5 Temporal metrics and evolution metrics

Source code metrics (see Section 2.2.7) are used to express a property of a
certain fragment of the source code in the form of a real number. Similar
concepts can be used to express properties of some temporal phenomena,
such as the software development process.

Girba et al. in ([129]) provide a very simple metric that measures how
the number of methods has been changing in a given class during system
evolution. They use it to identify which are the most important parts of the
system source code. Conclusions from their work include an experimentally
validated statement that static metrics, which measure the size or comple-
xity of source code entities, are not suitable to assess the importance of an
entity. Temporal measures tend to outperform them in this category. A si-
milar idea of measuring accumulated changes (usually with the use of code
churn measure) on a software entity in order to approximate its importance
in the system, its further evolution, its defect density, etc., is also present in
[249], [285], [248], [246] or [179]. Related work constructed around temporal
measures bases on developers’ activity history or past defects, is described
in [262] or [135]. Interestingly, also static measures can be used to predict
future evolution of an entity and as such the approach is described in [332]
and a combination of both static and temporal metrics can be found in e.g.
[199].

In [290], the authors build a set of slightly more sophisticated temporal
measures (e.g. the number of authors who modified the source file) in order
to predict if a given software entity is to need refactoring soon. Experimental
results show that the method is quite accurate (both precision and recall over
70%) in distinguishing source files that are not to be refactored. Another
interesting statistical observation mentioned in this work is the fact that
around 12% of commits in reference, open-source projects are refactoring
changes. A similar approach can also be found in [35], [306] or [288].

Evolution metrics which are used to predict the number of defects in a
software entity are also implicitly used in [276] and [275].
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5.2.6 Visualization of evolution patterns

A very common approach to detect evolution patterns in the software de-
velopment process is to use certain visualization techniques. The software
development process is depicted on a graph, diagram, or a picture and cer-
tain software evolution patterns are depicted as specific shapes.

In [117], the authors propose one of the most elementary approaches,
which is a simple graph that shows the growth of the system with respect
to the number of source files added or modified. The graph is then used to
discuss the growth ratio (linear or superlinear), or the proportion of files mo-
dified or added within a given period. In [265], the authors describe their
tool Herodotos, which actually combines sophisticated techniques to detect
certain static patterns, using simple graph generation, which can show e.g.
the number of occurrences of a pattern over time. As suggested, a human
expert can interpret such graphs to determine the correlation between diffe-
rent patterns or to understand the process of their co-occurrence. In [334],
the authors propose an even more sophisticated visualization technique that
allows one to detect the coupling between different files. It allows one to vi-
sually spot certain temporal patterns, such as periods of rapid development,
large refactorings, or logical coupling between groups of files.

A similar method is also described in [51], where the authors use visuali-
zation of evolution patterns to identify co-changes in classes that are part of
an instance of a design pattern.

A more advanced approach is presented in [198], where the author descri-
bes a visualization method that shows an evolution of a single class in the
software source code as a diagram with subsequent rectangles, whose dimen-
sions correspond to values of a source code metrics. In this paper, the author
describes interesting temporal patterns in an evolution of a single class that
can be observed in such a diagram. A situation in which a class appears in a
version of the source code, and disappears from it shortly after is called a day
fly pattern. In the diagram it is visible as a row with only a single rectangle
in it. Similar graphical representations are given for patterns whose name is
inspired by a far analogy to the evolution of stars in space, such as supernova,
white dwarf, red giant, stagnant or pulsar.

What is common to all the aforementioned techniques based on visualiza-
tion, is that the reasoning about the evolution of a software system or entity
has to be done by a human expert who has to spot certain shapes or other
indicators on graphs or gauges. Undoubtedly, while useful for software engi-
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neering, these methods are limited because the crucial part of the analysis
and identification of certain patterns has to be done manually. One of the
motivations for this research was to try to automate this process, so that
some very good ideas proposed in the aforementioned papers can be taken as
an input to an automated machine learning algorithm, so that we can build
a tool that skips the step of visualization and graphical analysis and goes
directly to conclusions about temporal patterns.

Visualization as a core method for understanding software structure and
development is also used in [45], [79], [333], [270], [51] [99], [116], [346], [79]
[326], [92] or [91] and a through summary of the topic can be found in [98].

5.2.7 Static code analysis

Static code analysis (SCA) is a method of analyzing software system only by
observing its source code – without actually executing it. A general scheme
for such a method is constructed as follows: At first the source code is par-
sed so that its structure is represented in abstract syntax tree and various
dependency graphs (see Section 2.2.11). Such a representation allows one to
derive further data about software, both quantitative (e.g. values of software
metrics) and qualitative (e.g. instances of certain spatial patterns in these
graphs). Elementary static code analysis tools are based on statically com-
puted software metrics. For example [67] presents interesting research results
on the method of identifying how readable the source code is. The authors
build a Bayes network with variables denoting very simple, yet not always
widely used, static software metrics (e.g. the number of commas being one of
them) and validate the model against data collected in a survey conducted
among actual developers. The study claims that meaningful identifiers have
little impact on the readability of the source code, which seems contrary to
the findings of classic publications [63] and [62]. This finding is related to
one of the assumptions of the model described in this thesis, since we also
assume that patterns are invariant to names of software entities. For details,
please refer to Section 6.3.2.

A similar approach, where simple, statically computed software metrics
are used to reason about practical source code features (such as readability),
is also presented in [241], [228], [26] or [133], [228].
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SCA for defect prediction

A related category of research papers is dedicated to the use of source-code-
metrics-based static code analysis to predict defects in software. Such an
approach, which started in nineteen seventies with works, such as [230] and
[142], is still popular (e.g. [247], [236], [161], [43], [250]). A good summary of
this type of research can be found in [246], [93], [320] and [174].

SCA for Design (anti-)patterns and smells detection

The area of application of the static code analysis most related to this re-
search is its use in the detection of design patterns and anti-patterns. The
following paragraphs present a few examples of such research. In depth sum-
mary of these methods can be found in [102], [114], [302], [24] or [321].

Elementary applications of static code analysis to detect simple mistakes
and code smells based on analysis are described in [43], [336], [168], [241] or
[243]. The general idea in these papers is always the same: First, the smells
are formally described by a human expert in terms of dependencies between
its constituents and their properties, usually expressed as values of certain
software metrics. Next, the source code is translated into respective graphs
(e.g. abstract syntax tree, dependency graph) and the values of a few software
metrics are computed for code entities represented in the graph. Finally, an
exhaustive search on such a structure is run in order to find occurrences of a
given pattern.

The method proposed in [154] identifies design pattern instances in the
source code in a two-fold process: first static analysis is used a find design
pattern candidates, then dynamic analysis during program execution is used
to validate if these candidates conform to the expected pattern behavior. It is
worth mentioning that the dynamic analysis is still only used to detect static
properties of the software source code structure (e.g. the fact that a certain
software entity is invoking another one). The authors argue that neither
approach alone (i.e. static and dynamic) can produce results of quality close
to the one obtained by combining both of them. However, they also state
that in this particular setting they were able to reach a very low number of
false positives, but the number of true negatives was very large. It shows that
the method might be too selective for real, noisy data, which is also explicitly
confirmed by the authors, who admit that the goal was set to identify exact
matches of the patterns and that the data about identification was given by
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a human expert.
The aforementioned pattern identification techniques are based on a strict

definition of particular design patterns. However, they are, as already men-
tioned in Section 2.2.9, vague concepts of solutions and do not always fall
upon a formal definition. Therefore the question arises if we can efficiently
identify approximate patterns or structures similar to a given pattern. This
problem is addressed in [315], where the authors make an attempt to iden-
tify a few variants of design patterns. The detection concept starts with a
formally defined strict definition of a pattern called canonical form, which is
described in the first-order logic with a language built with simple predicates
that can be extracted from a statically built dependency graph. The graph is
constructed during static code analysis and for some types of dependencies
related to control flow, contains all theoretically possible edges. Moreover,
the formal definitions of a few creational patterns are constructed in such
a way that they are able to identify different variants of a given pattern.
Altogether this yields a method that is capable of very efficient discovery
of approximated design pattern instances. This method is also described in
[338]. In the present thesis the problem of vagueness is addressed in a slightly
different way: The formal description of a design pattern yields a crisp upper
and lower approximation of it. For details, please refer to Sections 6.3.2 and
6.4.

Source code metrics are frequently used as the key input in design anti-
pattern detection. In a typical approach code entities are described by a
vector of values of corresponding metrics and statistical analysis or machine
learning is used on such a table to identify any correlations (see [36]). Such
an approach scales well, as we are able to gather large-scale training data
labeled by experts ([204], [205]).

In [148] the authors describe the study of a composite pattern identifica-
tion technique. The term relates to the structure in the software source code
that contains overlapping instances of two or more different design patterns.
The method is based on specific types of static metrics built atop simple
metrics, such as the number of attributes or the number of methods, all
computed on the basis of static code analysis. Conclusions include an ob-
servation that certain pairs of design patterns appear more frequently than
others. Moreover, an interesting method of pruning weakly overlapping of
pairs of patterns is described, which actually yields a proximity measure be-
tween instances of design patterns. A similar concept is also used in this
thesis: the concept of closeness, and specifically overlapping closeness, de-
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scribed in Sections 6.5.1-6.5.2. The main difference is that in this study these
notions are also defined in the entire evolution, rather than in a single static
state of software.

Architecture mining

Architecture mining is a special type of structure mining, which is specific
to the domain of software elements. Its goal is to detect unknown software
architecture elements by looking at the source code. It is usually applied to
legacy systems with poor or non-existing technical documentation and its
goal is to understand the system design principles and high-level structure.
It is mostly based on the methods of static code analysis described above.
However, other methods of mining are used more broadly, and, what is mo-
re, the goal is usually to identify large-scale patterns, built of grand software
entities, such as modules or packages. The summary of the matter and a
categorization of various approaches can be found in [235] or [304]. The fol-
lowing paragraphs give a few examples of different types of methods used to
mine system architecture.

The first category consists of simple graph analysis techniques, such as
clustering or finding connected components that are applied to the usually
statically built dependency graph. This is done in order to find main system
constituents. Such an approach can be found in [212], [23], [310], [75], [143],
[227], [172] or [331].

The second category consists of methods that are used to identify an a-
priori known architectural pattern in the structure of the system. Such an
approach is conceptually very similar to the methods discussed previously in
this section. However, the definition of patterns refers to the substructures
of the system that are relevant to its decomposition (e.g. use of Enterprise
Java Beans) or concern very large, global patterns (e.g. decomposition into
layers). Examples of such research can be found in [364], [196], [304] or [263].

The third category contains methods that enable an expert to understand
the architectural structure of the analyzed system. This approach includes
various formal query languages (e.g. [157], [181] or a very general view in
[237]) statistics (e.g. [181]) and visualizations ([45], [46], [98] or [91]).
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Architecture query languages

One of the aspects of an architecture mining task is the definition of conve-
nient query language that can be used to find certain patterns in system
structure. The approach described ranges from graph-defined queries, thro-
ugh various ontologies to predicate-based logical languages.

In [304], the author proposes an interesting approach for approximate
mining of architectural patterns. The query in the Architecture Query Lan-
guage (AQL) is given as a graph that represents the pattern to be found. The
execution of the query is realized by finding the maximal assignment in the
target graph with a queue of bounded length. According to the paper, the
experimental results show that such a heuristic method is practically efficient,
which means that the average accuracy of the pattern recovery evaluated on
six mid-size software systems reached 65 − 70%. A similar approach, where
software structure queries are given in the form of a graph, is given in [181].

In [193], the authors propose a universal language for describing chan-
ges in software repositories, which, basing on SCM logs, builds structural
information on software entities modified in the commits. The general idea
has also been discussed in [182], where the authors describe a set of diffe-
rent ontologies used to describe both structure and evolution of the software
systems, or in [187] and [209], where semantic web technologies are used to
combine and query a few data sources related to the software development
process.

The model used in this thesis (see Section 6.1), though similar to the abo-
ve, introduces a higher-order concept. A data fetching algorithm (described
in Section 6.2), is based on the same input (SCM logs and issue tracker logs
together), but the output produces a structure that represents the evolution
of a dependency graph of the software system. We believe that this relati-
vely small difference yields an important change in thinking about software
evolution: It brings the analysis of software development process to the le-
vel of understanding changes in the complex object on both intra-entity and
inter-entity modifications.

5.2.8 Defect prediction

Defect prediction is a classification problem in the domain of software sys-
tems. Its goal is to predict the number of defects (informally known as bugs)3

3We will use the term bug and defect interchangeably.
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in particular areas of the software source code before they are identified and
reported by users or testers. As reported in [195], typically as much as 10%
of files are significantly more error-prone, than the remaining ones, and this
observation has been confirmed by empirical studies on various software sys-
tems (e.g. [313]). This allows us to rephrase the goal of defect prediction in
more approximate manner as the identification of a subset of software entities
that contain significantly more defects than others. In the following sections
we discuss a few diverse examples of defect prediction research, aimed on one
of the two aforementioned goals.

A bug is typically fixed with some modification in the source code, which
is introduced in a specific commit. Identification of commit which introduced
the defect may be more challenging (see Section 5.2.8), but, simplifying it
a bit, we may assume that there is usually a previous commit that actually
introduced the bug into the code. This perspective allows us to consider bugs
to be a spatio-temporal phenomenon in the software development process.
Therefore, the methods described in this thesis can be potentially used as one
of the methods of defect prediction. For more details, please refer to Section
6.7.4.

Complexity metrics

Research on defect prediction is often focused on the analysis of the correla-
tion between various complexity metrics for a given entity and the number
of defects identified or fixed in it. This is based on the intuitive assumption
that more complex entities are harder to maintain and contain more defects.
The research method typically falls under the same scheme: various metrics
(both static and temporal) computed on the software entities are analyzed
together with post-factum information about the number of defects present
in it, most typically by analyzing bugs in the issue tracker. Then, statistical
analysis is applied to such data in order to identify an association between
metric values and error-proneness. Such an approach is described in [246],
[245], [249], [309] or [274]. In-depth summary of these methods can be found
in [175], [320] or [160].

Dependency graph analysis

A different approach is based on the analysis or specific traversal of depen-
dency graphs, built from the system source code.
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In [365], the author analyzes how changes done in one system are corre-
lated to defects in systems that depend on it. The experimental data proves
that there is such a correlation, and this phenomenon is called a domino ef-
fect. The research presented in the referred study is limited to the granularity
of complete systems.

In [370] and [368], the authors propose a few methods of analyzing a fine-
grained dependency graph for the prediction of software defects. The variety
of approaches ranges from simple supervised learning on the adjacency matrix
of the graph, to more sophisticated ones that use specific domain knowledge
and dedicated metrics (called network measures) combined with statistical
analysis. What is common to both methods is an experimentally proven
hypothesis that estimating defect proneness of a given software entity can be
done on the basis of the properties of its neighborhood. In fact, both papers
argue that this is the approach that provides better prediction results.

In [166], the authors mine instances of anti-patterns in the source code
and, by simple statistical analysis, show that the software entities that are
either part of an anti-pattern or entities that depend on any part of an anti-
pattern tend to have a higher number of defects.

A detailed survey of various approaches to defect localization based on
graph mining techniques is also described in [107], [160] or [320].

In [195], the authors experimentally validate a hypothesis that bugs are
introduced into the system “near” to each other. The nearness is defined in
terms of 1) changed-entity locality, 2) new-entity locality, 3)temporal locali-
ty and 4) spatial locality, which correspond to specific respective hypotheses
that new defects will appear in an entity that: 1) was recently changed, 2)
was recently added, 3) had a defect recently fixed in it and 4) is dependent
on another entity that had a defect recently fixed in it. The realization of the
method is based on very simple concepts of BugCache, FixCache, ChangeCa-
che, which are structures used to store recent bug fixes and modifications in
the software source code. Despite its simplicity, the methods show to be very
efficient in defect prediction. Depending on source data the authors report
73%-95% accuracy of predicting future faults at file level and 46%-72% at
the level of the source code entity. Much simpler, yet similar approach is pre-
sented in [44]. In general, we can state that these two approaches are based
on the concept of spatial and temporal nearness of bugs, which is similar to
our framework presented in Section 6.5.
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Defect origin analysis

Prediction of defects focuses on the estimation of number or, in more com-
plex cases, distribution of defects in software, on the basis of some facts from
the software development process. The Defect origin analysis is slightly dif-
ferent – it takes a more detailed look at the process and its main focus is
to understand what was the reason for the introduction of bugs that have
already been identified, and it is more related to the aforementioned origin
analysis.

Elementary research in the topic, such as analysis of distribution in the
software development process, shows that e.g. bugs tend to be introduced by
larger changes (in terms of the number of lines modified in a single commit)
(see [249]) or that more bugs are introduced on Friday (see [311]). Another,
more advanced method is given in [41] or [194], where the authors use more
semantic and low-level insight into the modifications made. Here the identi-
fication of the origin of a defect starts when the defect is actually fixed. The
fix is identified by meta-data taken from the issue tracker and it is trans-
lated into a certain change in the source code viewed at as either text or
abstract syntax tree. Once this is done, the algorithm scans the development
history backwards to identify such a commit that actually made a reverse
modification in the source code. Many variants of this method have been ana-
lyzed and experimentally validated (e.g. [298], [86] or [256]). The reported
F-score spans from 0.44 to 0.77, but the method does not cope well with bugs
which have external origin such as change in external API, or are actually
introduced with multiple, unrelated changes to the program source code (see
[299]). The bug origin analysis is used in the concept of spatio-temporal bug
prediction mentioned in Section 6.7.4.

5.3 Resume

This chapter provides a selection of available literature on the topics related
to this study. The first part describes canonical or generic data mining algo-
rithms, which are directly or indirectly used in this thesis, and are listed at
the beginning of this chapter.

The second part, starting from Section 5.2, discusses a narrower area
of research in the general domain of mining software development process.
It also provides a rough comparison of our study with related work, with
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explanation of some major differences and a few particular motivations and
decisions. The most important ones are listed below:

� Acquisition of data from such software processes, where issue tracker
SCM are technically synchronized (see Section 5.2.1).

� Limiting source code analysis to statical procedures only (see Section
5.2.1).

� A general, system- and programming-language-agnostic representation
of source code structure that can be enriched with the additional in-
formation derived from its development process (see Section 5.2.1).

� A general concept of the adaptive algorithm and respective data struc-
tures used to analyze the software system development process (see
Section 5.2.2).

� Identification of spatio-temporal patterns in the software development
process that are correlated with general bad quality of the software
system (see Section 5.2.1).

� A concept of the analysis of hierarchical, multi-level and approximate
spatial patterns in the system source code (see Sections 5.2.3 and 5.2.7).

� Further automation of already described meta-concepts of software sys-
tem analysis by replacing some tasks done by a human expert with ap-
propriately fitted machine learning algorithm (see Sections 5.2.3, 5.2.4
and 5.2.6).
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Chapter 6

Mining spatio-temporal rules in
software evolution

This chapter describes the main contribution of this thesis: the proposed
framework consists of a data representation model with appropriately suited
mining algorithms, which are used to detect spatio-temporal patterns in the
software development process. A reader should be familiar with the concepts
explained in Chapters 2, 4 and 5. In the following sections you will find a
detailed description of:

� the algorithms used in this research to acquire the data from software
repositories and other systems used in the software development pro-
cess.

� the abstract model for representing the structure and evolution of a
software system,

� the adaptive algorithm for building and updating the model along with
the process,

� the machine-learning-based methods for detecting spatio-temporal pat-
terns in the software development process,

� proposals of applications of the framework to other domains,

� a reference to the experiments that were carried out to validate effi-
ciency of the proposed methods.
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6.1 Data representation

This section describes in detail the proposed model for the representation of
the software development process and discusses its crucial properties.

6.1.1 Software snapshot

Software snapshot is a formal model that represents a static version of the
software system source code at a given point in time. If we treat the developed
software system as a complex object, the software snapshot may be viewed
as a state of a complex object. A time-labeled sequence of software snapshots
models the software evolution process.

Given the source code of a system at a given revision r, let Entr be the set
of all code entities present in it. Technically, since this research is based on the
systems implemented in Java, and the granularity of the source code analysis
ranges from packages (the most coarse-grained) up to methods and fields (the
most fine-grained), we put: Entr = Packr∪Filesr∪Classr∪Methr∪Fieldr,
where: Packr denotes the set of all packages, Filesr denotes the set of all
source files, Classr denotes the set of all classes (including interfaces), Methr
denotes the set of all methods and Fieldr denotes the set of all fields present
in the software source code at revision r.

Let Dep Types = {contain, parameter, extend, call, implement, refer,
type, variable} denote the types of dependencies between software entities.
Depsr ⊆ Entr × Entr ×Dep Types is a multi-relation1 that represents the
edges of a labeled multigraph of dependencies between software entities from
Entr. For better comprehension we will define Depsr as a relation, while
keeping in mind that each tuple in this relation (which corresponds to a single
relation between two code entities described in Definition 19) has its arity
which can be greater than one. Consequently, the same two entities can be
in the same type of relation multiple times (e.g. one method can call another
method more than once, one method can have two different parameters of
the same type, etc.).

Definition 19. Dependency relation Depsr ⊆ Entr × Entr × Deps Types
is given by:

1Multi-relation is a multi-set of tuples (as opposed to set of tuples in canonical relation).
Consequently it encodes a multigraph instead of graph.

94



� A tuple (e1, e2, contain) ∈ Depsr iff the source code of the entity repre-
sented by e2 is contained in the source code of the entity represented by
e1 or when a type (class or interface) represented by e2 is contained in
package represented by e1,

� a tuple (e, c, variable) ∈ Depsr iff the body of the entity represented by
e declares a variable of type represented by class c,

� a tuple (m, c, parameter) ∈ Depsr iff the method represented by entity
m declares a formal parameter of type represented by c,

� a tuple (c1, c2, extend) ∈ Depsr iff the class represented by c1 is a sub-
class of the class represented by c2,

� a tuple (c1, c2, implement) ∈ Depsr iff the class represented by c1 is an
implementation of the interface represented by c2,

� a tuple (e,m, call) ∈ Depsr iff the body of the entity represented by e
contains a call of a method represented by the method entity m,

� a tuple (e, f, refer) ∈ Depsr iff the body of the entity represented by e
contains a reference to the field represented by the field entity f ,

� a tuple (f, c, type) ∈ Depsr iff c represents a class that is a declared
type of the field represented by f or a declared return type of a method
declared by f .

Let LJava denote the set of strings that represent valid pieces of Java
source code that define a source code entity, and let R denote all revisions of
an analyzed system. The function Sourcer :

⋃
r∈R Filesr∪Classr∪Methr →

LJava ∪ {⊥} encodes the source code of entities according to the definition
6.1:

Sourcer(e) =


⊥ if e is not present at

revision r,
the source code of e at
revision r

otherwise.
(6.1)

For a fixed finite set of software metrics M , Metrr : (Filesr ∪ Classr ∪
Methr)×M → <∪{⊥} is a function that encodes the values of the metrics
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for applicable source code entities available at revision r and is given by:

Metrr(e,m) =


⊥ if Sourcer(e) = ⊥
m(Sourcer(e)) if m is applicable to e,
⊥ otherwise.

(6.2)

The ⊥ used in the above definitions is a special symbol that conceptually
corresponds to non-existing context (e.g. a source code of non-existing file
does not exist or a metric value for non-existing source code does not exist).

Basing on the preceding definitions we say that a software snapshot at
revision r is a tuple :

SSnr = (Entr, Depsr,Metrr)

Please note that SSnr can be treated as a vertex-labeled and edge-labeled
multigraph (property graph) where:

� Entr is a set of vertices, and each vertex is uniquely identified by
the absolute name and type of an entity it corresponds to (e.g. ’ja-
va.lang.String’, class)) ,

� Depsr is a multi-set of labeled edges, with labels from Dep Types. We
will say that entities e1 and e2 are connected by an edge with label t
iff (e1, e2, t) ∈ Depsr.

� Metrr is the vertex-labeling of the graph, where the label of the node
is a vector of the values of its metrics. If M = {m1, . . . ,mn}, then the
label of entity e is the vector (Metrr(e,m1), . . .Metrr(e,mn)).

A simplified structure (Entr, Depsr) without metrics is an edge-labeled mul-
tigraph.

For the sake of simplicity the Depsr relation will be decomposed in the
following binary relations according to the following definitions:

� (e1, e2) ∈ Contr iff (e1, e2, contain) ∈ Depsr,

� (e1, e2) ∈ Paramr iff (e1, e2, parameter) ∈ Depsr,

� (e1, e2) ∈ Extr iff (e1, e2, extend) ∈ Depsr,

� (e1, e2) ∈ Callr iff (e1, e2, call) ∈ Depsr,
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� (e1, e2) ∈ Impr iff (e1, e2, implement) ∈ Depsr.

� (e1, e2) ∈ Refr iff (e1, e2, refer) ∈ Depsr,

� (e1, e2) ∈ Typr iff (e1, e2, type) ∈ Depsr,

so that Depsr = Contr×{contain}∪Paramr×{param}∪Extr×{extend}∪
Callr × {call} ∪ Impr {implement} ∪Refr × {refer} ∪ Typr × {type}.

The SSn will denote the set of all possible triplets of such a construction,
which correspond to the formally valid source code of a program written in
Java. In the above definitions, the SSn structure, indexed by revision r,
reflects the structure of the complete source code of an analyzed system at
revision r. Other elements of SSn are used further in this chapter and the
same notation is used in these cases. For any SSn? ∈ SSn, the sub-sets
Pack?, F iles?, Class?,Meth? and relations
Deps?, Cont?, Param?, Ext?, Impl?, Call?, Ref?, T yp? will be defined likewi-
se. The mutual correspondence should be clear from context and by conven-
tion all symbols will share common upper and lower indexes. For example
Methaddi will denote the set of entities representing the methods from the
multigraph SSnaddi

6.1.2 Software evolution

Please recall from Section 2.2 that it is possible to extract such a fragment
of a software development process, which represents consistent work on the
system arranged along a linear timeline. Technically it is represented by a
linearly ordered set of revisions R. In such a setting, the series (SSnr)r∈R is
a formal model for software evolution.

Conceptually, a software snapshot is a structure that contains information
about all packages, classes and methods, their properties and inter-relations
relevant for this research at a given revision. Thus, software evolution is a
representation of changes in this structure that take place during the software
development process. Such a model is used as the basis of the theory and the
experiments discussed in this thesis. In the following paragraphs you will find
more technical information on how it is built from the SCM logs.
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6.2 Raw data fetching

The following subsections explain technical means used to construct software
evolution from the source code.

6.2.1 Single revision parsing

This subsection describes the process of constructing SSn structure for a
given, fixed revision r.

Software snapshot evaluation context

Usually the source code of any program can rely on additional libraries,
which are provided in a pre-compiled form, so their source code is not always
available. Yet, the structure of software in such libraries must be known to
such an extent that allows it to be referred to from the source code of other
systems. In particular, in Java, all packages, classes, methods and fields, as
well as their mutual relations, are known. It means that relations of type
{contain, parameter, extend, type}, as defined in Section 6.1.1, between so-
ftware entities originating from the external library are known. Therefore,
the structure of external libraries, whose entities may be referred to from
the source code of the analyzed system, can be represented by a structure
similar to the SSn, with the contents limited only to the information that is
actually available. We will call such structure the context and denote it by
Ctx. Formally

Ctx = (Entc, Depsc,Metrc),

where Entc, Depsc and Metrc are defined in the same way as for the software
snapshot in Section 6.1.1, but:

� if a metric m for entity e is unknown, then Metrc(m, e) = {⊥}

� if relation d ∈ Dep Types is unknown then Depsc ∩ (Entc × Entc ×
{d}) = ∅

The following paragraphs describe the method of constructing SSnr from
the source files of the system at revision r, in a given context Ctx.
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Source files

First, all sub-folders that contain a non-test source code written in Java are
scanned for files with extension .java. A list of such files directly yields
the set Filesr. Technically, the set of folders with non-test files is in-general
evaluated by a heuristic that takes only such file whose path satisfies the
following conditions: 1. It contains sub-strings ‘‘/src/’’ and ‘‘/java/’’
2) 2. does not contain sub-string ‘‘/test/’’ before sub-string ‘‘/java/’’.
On rare occasions the set of source folders can be adjusted to the particular
source code layout. In such case it becomes part of the configuration for a
given data set. The problem of identifying the source files in a given software
system is a trivial technical task and will not be considered further in this
thesis.

All files from Filesr are parsed and the contents of each is represented
in the form of a abstract syntax tree for further scanning. The function
Sourcer defined in equation 6.1 is used to retrieve the source code of a file
and the abstract syntax tree is computed from the source code according to
the language specification ([260]).

Packages

If the abstract syntax tree derived from file f contains a node with a package
declaration, the corresponding element p is added to the Packr set and the
Depsr relation is extended with respective (p, f , contain) tuple.

Classes and Fields

Further on, the abstract syntax tree is scanned for nodes that represent a
declaration of a Java class or interface (including inline and anonymous ones).
This is done so that appropriate elements can be added to Classr and Depsr
can be extended with appropriate (c1, c2, contain) triplets. Additionally,
if the class declaration contains a reference to a super-class or interface,
appropriate (c1, c2, extend) or (c1, c2, implement) tuple is added to the
Depsr to represent this fact. The c2 may not be defined in any source code
file and may come from Ctx (i.e. c2 ∈ Entc). In such case c2 is added to the
Entr.

If the class contains a declaration of a field, then a new element is added
to Fieldr and an appropriate tuple (c, f , contain) is added to Depsr, where
c represents the currently parsed class and f represent the field. Since the
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type of the field must be provided in the declaration, then appropriate tuple
(f, t, type) is added to Depsr, where f represents the field and t represents
the type of the field but only when t is represented in the source code of the
analyzed system or it is represented by an entity from Ctx, i.e. t ∈ Entc. In
the latter case, t is added to the Entr.

Methods

In the course of further abstract syntax tree traversal, for each class c, no-
des representing method declaration within it are translated into elements of
Methr and appropriate tuples (c, m, contain) are added to Depsr, where c
and m represent, respectively, the class and the method in this class. Techni-
cally, the proposed model contains a simplification: Within a single class, all
overloaded methods with the same name and the same number of arguments
(called equinominal methods) are contracted to one element of Methr. This
is motivated by the fact that, typically, if a class contains two overloaded me-
thods, they functionally represent the same operation but, due to technical
reasons, depend on different arguments (see [38]). With additional discrimi-
nation based on the number of parameters, this simplification produces very
insignificant error (see Appendix A.1.1).

Lastly, the header of each method m is analyzed so that:

1. if the method returns a type represented by the class entity c, the tuple
(m, c, type) is added to Depsr, if c is either represented in a source code
file or it comes from the context,

2. if the method contains a formal parameter of a type represented by the
class entity c and c is represented in the source code of the analyzed
system or comes from the context, the tuple (m, c, parameter) is added
to Depsr,

In both cases the c may not be defined in any source code file but may come
from Ctx. In such a situation, c is added to Entr. The procedure of finding
method entities has some practical simplifications: 1. methods that override
methods from java.lang.Object, such as toString, hashCode and equals are
ignored; 2. constructors are treated as methods, with no return type (which
is other than java “void” type).
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Call graph and field references

The last part of the abstract syntax tree traversal is scanning all the body
blocks inside methods and classes. This translates each AST node that re-
presents a method call or a field reference into respective tuples in Depsr
relation according to the following rule: If the body of the inner-most entity
e, for each maximal AST sub-tree that corresponds to the java expression
that can be written as ε1.ε2.(. . .).εn, where each εi corresponds to either a
class, variable, field or a method call, then such expression is analyzed to
extract appropriate Depsr tuples. Please note that in valid Java program
source code: 1. such a decomposition is unambiguous, 2. the declared type of
each variable/field is known and we know this type of inheritance hierarchy,
3. the declared return type of each method is known (we will call it the type
of method for the consistency of notation) and we know this type of inheri-
tance hierarchy. For each sub-expression εi−1.εi, given that the type of εi−1

is represented by a software entity ci−1:

� if the εi corresponds to a field in ci−1, represented by a software entity
f , a pair (e, f) is added to Refr.

� If εi corresponds to a method of ci−1, represented by a software entity
m, then a pair (e,m) is added to Callr.

Similarly:

� If ε1 is a field represented by an entity f then (e, f) is added to Refr.

� If ε1 is a method represented by an entity m then (e,m) is added to
Callr.

When the type of any εi corresponds to a type that is not represented in the
Entr (i.e. it is neither defined in the source code nor in the context), then the
analysis of such an expression is skipped and, consequently, the information
about inter-entity dependencies coming from it is lost.

The above procedure is based on the following simplifying assumptions:

� Call graph analysis based on declared types only.
The called method is inferred only by evaluating the declared type of
the called object. Given the example from Listing 6.1:
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Listing 6.1: Declared vs. runtime type
1 public class MyClass {
2 public void myMethod ( ) {
3 Number num = new BigDecimal ( ) ;
4 num. toS t r i ng ( ) ; // <= a c t u a l c a l l

the method call in line 4 is translated to the entry that represents the
fact “method myMethod of class MyClass calls a method toString of a
class Number”, because the declared type of variable num is Number,
even though it is clear that the actual type is BigDecimal - a subclass
of Number. The motivation for such a simplification comes from the
fact that the actual type of the callee cannot always be determined at
compilation time. Therefore, a consistent approach is taken to consider
the declared type, since this information is always available during the
static code analysis.

� Contraction of equinominal methods.
As mentioned above, the equinominal methods are contracted to a sin-
gle software entity. This also influences the call graph reconstruction.
For example, the following code excerpt:

Listing 6.2: Equinominal methods
1 public class MyClass {
2 public void myMethod ( ) {
3 BigDecimal . valueOf ( ”123” ) ;
4 BigDecimal . valueOf (123L ) ;

is translated into such a subgraph that represent the fact “method my-
Method of class MyClass calls a single method valueOf of class BigDe-
cimal twice”. The justification for this simplification is given above, but
also comes from experimental validation: It turns out that the fraction
overloaded methods among all methods can exceed 4%, but fraction
of overloaded methods with the same number of arguments does not
exceed 0.75% (see Table A.1). A problem can arise if two equinominal
methods declared in a single class return two different types. In such
case it is impossible to determine a corresponding pair in Typr relation.
In order to cope with such an ambiguity, the following rule is used: The
return type of a method entity, which corresponds to more than one
actual method declaration in the source code, is set to the most specific
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class, that is, a super-class of all return types used in such a declara-
tion. For example, the code from excerpt 6.3 produces a single method
entity named myMethod with return type java.lang.Number as it is a
common super-class of Double and Integer.

Listing 6.3: Equinominal methods with different return type

1 public class MyClass {
2 public Double myMethod( St r ing s ) { . . . }
3 public I n t e g e r myMethod(Number s ) { . . . }

In practice the problem of equinominal methods with different return
type is negligible, as such situations happen very infrequently. The
experiment described in A.1 shows that the number of equinominal
methods with different return types usually does not exceed 1o/oo of
the total number of methods (see experimental validation in Appendix
A.1.1). Similar simplification is also proposed in [60].

� Pruned references to external entities.
The source code of a program written in Java may depend on classes
that are defined outside of it, usually in some external library. The li-
sting 6.2 is a good example here: the class java.math.BigDecimal used
in the code comes from the Java runtime library and is never defined in
the source code. The class or method that is referenced in the program
source code but is not defined in it is called respectively: external class
and external method, most generally: external entity. Please note that
external method can only be contained in an external class. As the
research described in this thesis relates to the identification of spatio-
temporal patterns only within the developed system, the references to
external libraries are irrelevant. Therefore, once the SSnr graph is con-
structed, all nodes that originate from external libraries are removed,
together with all edges adjacent to them. We will call this procedu-
re pruning references to external entities. It allows us to simplify the
model: Thus, in the following considerations we omit external entities
entirely. We assume that entities in any software snapshot and context
come only from the source code of the analyzed system. For technical
reasons in two specific cases we preserve information that could be lost
after external references are pruned. Namely: when a method return
type is void or if a method is a constructor. This is done so that we can
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discern these cases from a situation when a method returns an external
type that was pruned.

Software Metrics evaluation

The function Metrr encodes the values of certain software metrics for all
applicable entities from Entr. Some of them have been mentioned already in
Section 2.2.7. The following list contains all metrics used in this research and
briefly describes their definition and the technical means of their calculation.
If not stated otherwise, the computation of the metrics was done with the
use of Checkstyle - a tool for static code analysis. For details, please see [6].

� Data abstraction coupling
This metric is applicable for class entities and measures how many in-
stances of other classes are instantiated within the source code of a
given class. The higher the value is, the more direct external depen-
dencies the class has, making it more unstable.

� Fan out
A metric similar to Data abstraction coupling, which measures the num-
ber of classes a given class depends on. Again, high number of such de-
pendencies makes the class more vulnerable to modifications in other
areas of the source code, which makes it more unstable.

� Cyclomatic complexity and NPath complexity
These two metrics measure the complexity of a code block. Cycloma-
tic complexity, based on the classic work [230], denotes the number
of decision point instructions within the body block increased by 1.
The NPath complexity (see [254]) denotes the theoretical maximum
number of different acyclic execution paths that could go through the
code block. Both metrics measure how complex the structure of the
source code fragment is. Clearly, the difficulty of understanding and
maintaining the code increases with their value.

� Number of lines of source code in entity
This simple metric measures how many lines of code a given file, class
or method take. Technically, the evaluations do not count empty lines
or lines with comments, so that it approximates the actual size of the
respective source code fragment.
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� Lack of cohesion of methods (LCOM1, LCOM2, LCOM3, LCOM4,
TCC)
LCOM is a suite of software metrics that evaluate the design of a gi-
ven class by quantitative analysis of relations between its methods and
fields (see [78]).

LCOM1 is defined as the difference between powers of two sets: the set
of all pairs of different methods that use a non-empty disjoint set of
class fields and the set of all pairs of different methods that use at least
one field altogether. If the result is negative, the value of this metric is
set to 0.

LCOM2 and LCOM3 metrics, defined for the class and the formulae
to evaluate them, are based on the following notions: m - the number
of methods in a class, A - set of fields of a class, ma the number of
methods that refer to field a:

LCOM2 = 1− Σa∈Ama
m ∗ |A|

LCOM3 =
m− 1

|A|Σa∈Ama
m− 1

LCOM2 corresponds to the fraction of methods that do not refer to a
specific field normalized over all fields. LCOM3 is similarly normalized
with respect to fields and methods.

LCOM4 (see [158]) is expressed in terms of a graph of inter-method
dependencies. We say that two methods are adjacent iff one of them
calls the other one or there is at least one field used by both methods.
The number of connected components in such a graph is the value of
LCOM4.

Conceptually, all these metrics measure to what extent the behavior of
the class (methods) depends on its state (fields). If all methods depend
on all fields, then the value of all metrics reaches its minimum. The
values grow when a class can be easily divided to independent parts,
operating on a separated subset of fields and providing a separated
subset of methods, each having own, separated responsibility. Such a
situation may indicate a design smell - a violation of principle of single
responsibility for a class, or simply lack of cohesion in methods.
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Instead of looking at relations between methods and fields within a
single class, we can also measure the relation between its methods in
a similar manner, with the use of Tight Class Cohesion (TCC) metric
(see [52]). It is defined as the number of pairs of methods that invoke
each other divided by the number of all such pairs.

Technically, the value of LCOM and TCC metrics can be evaluated
during the analysis of the abstract syntax tree of a single class. Clearly,
only two types of information must be extracted: the inter-method call
and the use of a variable within the body of the method. The former
is part of Callr set and the latter is available in Refr. If one of the
above formulae is undefined (e.g. when a class does not have fields),
the respective metric value is ⊥ (see Section 6.1.1).

All the above metrics can be directly evaluated solely from the source code
of the entity they apply to. They therefore satisfy the property described in
section 2.2.7, where each metric is defined as the function that, given the
source code of an entity, produces the value of the metric for this entity. This
fact is significant for the method of adaptive evaluation of function Metr?

described in section 6.2.3.

Metrics not derivable from the source code There are some popular
software metrics that cannot be evaluated solely from the source code of the
respective entity, as they require some additional context information. Two
such examples are:

� Depth of inheritance tree (DIT)
This metric is applicable to the class only and it measures the number
of nodes on the path in the inheritance tree from the node representing
the java.lang.Object class to the node representing the given class.
Large value of this metric indicates a deep inheritance tree, which might
indicate the presence of Yo-yo design anti-pattern . Technically, the
value of this metric can be calculated directly from the Extr set.

� Fan in (FI)
A metric dual to the Fan out. It measures the number of other classes
that depend on a given class. The greater the value, the more likely it
is that a change in the class will affect other fragments of the software
source code.
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According to what has been explained in the previous paragraph, such
metrics are not encoded by Metr? function. Yet, in practice their value can be
easily evaluated in the proposed model. Indeed: For a given class c represented
by a node n ∈ Ent?:

� DIT is the number of nodes on the longest path starting at n and built
only from the edges of type extend. This path is usually very short and
its length typically does not exceed 7 (see Appendix A.4.3).

� FI is the number of other nodes of the generalized call graph (see De-
finition 4), which are connected with a direct edge to n. It is sufficient
to traverse only direct neighbors of n to compute this metric.

Since the value of the two metrics can be trivially and efficiently compu-
ted once the SSn graph is constructed, we will typically assume, for the
sake of consistency, that Metr can encode all metrics. On occasion, when
this distinction makes an important difference, DIT and FI will be treated
separately.

6.2.2 Single revision parsing formalism

For a given fixed SCM and the aforementioned experiment configuration
with the list of source folders, the procedure of building the SSnr can be
formally represented by a function that, given the revision r, returns the
tuple SSnr. In fact, this function is actually expressed as a deterministic
program that is part of this thesis and is described in Appendix B.5.

Please recall that the procedure starts with determining the set of files
that yield the Filesr set, which is the only input for later phases of the
process of building the SSnr structure. It means that the aforementioned
program can be split into two subsequent subprograms: the first, which finds
the set of files, and the second one, which builds upon it a SSnr by analyzing
the contents of the files.

Therefore, if we denote: by F the set of all possible source files in the
evolution of analyzed system and by LJava the set of strings that correspond
to a valid source code of code entity in Java2, we may assume that there is
a function FP : P (F)×LJava

F ×SSn→ SSn that, given the set of files
F and a context, builds a tuple

FP (F, Source, Ctx) = (F ∪ EntF , DepsF ,MetrF ) (6.3)
2same as in section 6.1.1
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according to the algorithm described in section 6.2.1. Here EntF is a set
of entities declared in source code files F . The function FP represents the
procedure of parsing, interpreting and transforming the list of source code
files into corresponding SSn structure. Clearly, for any revision r

FP (Filesr, Sourcer, (∅, ∅, ∅)) = SSnr.

The function FP is used for building the evolution model described in
the following sections.

6.2.3 Fetching evolution data

The previous section explains technical means to build a software snapshot
for a given fixed revision. Given that we have a method for finding a linearly-
ordered set of revisions R, the naive method for computing the software
evolution is straightforward and entails evaluating SSnr for each r ∈ R
separately. However, the algorithm can be more efficient, as it can make
use of the fact that R is linearly ordered and usually the changes between
two subsequent revisions are limited (see experimental results in A.2). The
following subsections describe the means used to compute R and (SSnr)r∈R
in such a manner.

Extracting revisions list

The method of determining the list of revisions used in this research is tri-
vial, based on the fact that all the projects that served as a source of data
for the experiments used the concept of the main development branch (see
[106]). Accordingly, the SCM of the project contains one dedicated branch
that represents the main line of system development history (main branch).
All changes that are being developed in other branches must be eventually
merged to the main branch, so that all commits done in all other branches
become visible in the main branch. Therefore, if we omit all other branches,
we can consider that SCM contains only one main branch, with perfectly
linear order on the commits. In such a setting the method for determining
R is straightforward: Given a SCM and the main branch, we need to take
from it all the commits. We assume that the source code at each revision
is formally correct. Therefore, if the source code does not compile at some
revision due to some bug, we treat such a revision as non-existent.

108



Adaptive software snapshot evaluation

A single commit usually modifies a tiny fragment of the system source co-
de. This fact has been experimentally validated in experiments described in
Appendix A.2, which show that in the analyzed software history 76 − 99%
(depending on the software project) commits do not modify more than 10 fi-
les. Moreover, the average number of modified files ranges from 3.97 to 16.47,
depending on the project.

Consequently, we might expect with great probability that two subsequent
software snapshots are to a large extent identical. Therefore, one can be
derived from the other by computing only the tiny difference between them.
This concept is formalized below.

Evolution parsing formalism In the preceding paragraphs we considered
a formalism that describes the state of a software source code at a given point
in time. Technically, the changes done in subsequent commits modify the files
that constitute the source code, and the location and contents of these files
define the actual logical structure of the source code that yield the complete
SSn. To be able to track the changes, we must discern the unique identity of
each code entity from its internal contents. For example, when a file content
is modified within a commit in such a way that the name of the class defined
in it is modified, then logically, the class with the old name is removed, the
class with a new name is added, while the file is present in both versions. The
following list contains the formal definitions of identity of each code entity
present in a software snapshot.

1. Packages are uniquely identified by their full name.

2. Files are uniquely identified by their path, relative to the path of the
source folder they belong to.

3. Classes, including anonymous3, nested and inner classes, are uniquely
identified by their full name, consisting of the full name of the software
entity they are directly contained in and their local name.

4. Methods and fields are uniquely identified by their full name consisting
of the full name of the entity they are declared in, their local name and
the number of their formal parameters (in case of methods).

3In Java anonymous classes have a unique technical name ([260]).
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Listing 6.4: Example of unique identity of method

1 package p ;
2 class MyClass {
3 class MyInnerClass {
4 public void myMethod ( ) {}
5 public void myMethod( int i ) {}
6 }
7 }

Example According to the above rules the two methods declared in Li-
sting 6.4 are identified by ’p.MyClass#MyInnerClass#MyMethod#0’ and
’p.MyClass#MyInnerClass#MyMethod#1’ respectively.

Files affected by a commit Assume that r1 and r2 are two subsequent
revisions from the software development process and SSnr1 and SSnr2 are
the respective software snapshots. Let Filesaddr1,r2 = Filesr2 \ Filesr1 , denote
the set of software source code files that were added in r2. Let Filesremr1,r2 =
Filesr2\Filesr1 , denote the set of software source code files that were removed
at revision r2. Let Filesmodr1,r2 ⊆ Filesr1 ∩Filesr2 denote the set of source code
files whose contents were modified in r2.

A transitive closure of a binary relation R will be denoted R∗. The nota-
tion Deps∗? ⊆ Ent? ×Ent? ×Dep Types will be called the transitive closure

of Deps? relation and will denote: Deps∗?
def
≡Cont∗? × {contain} ∪ Param∗? ×

{parameter} ∪ Ext∗? × {extend} ∪ Imp∗? × {implement} ∪ Call∗? × {call} ∪
Typ∗? × {type} ∪Ref ∗? × {refer}.

Conceptually, a file affects another if changes done in the first one may
change the semantics of the source code of the second one. We will limit the
semantics only to the construction of the software snapshot, as defined in
Section 6.2.2.

Definition 20. We will say that file f1 is affected by file f2 at revision r iff
f1 = f2 or there are software entities e1, e2 such that (e1, f1) ∈ Cont∗r and
one of the following conditions is met:

1. (e2, f2) ∈ Cont∗r and (e1, e2) ∈ Callr ∪Refsr
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2. there are classes c1, c2 such that (e2, f2), (e2, c1) ∈ Cont∗r and (c1, c2) ∈
Ext∗r.

For a given set of files F ⊆ Filesr the set of files affected by F at revision
r will be denoted Affr(F ) =

⋃
f∈F{x : x is affected by f at revision r}.

Definition 21 (Affected entity). Let Filesmodr1,r2 and Filesremr1,r2 denote the set
of files whose contents was modified between revisions r1 and r2 and the
set of files which were removed between revision r1 and r2 respectively. Let
Filesaffr1,r2 = Affr1(Filesmodr1,r2 ∪ Files

rem
r1,r2

) denote the set of files affected at
revision r1 by files that were modified or removed in r2.

We will say that entity e is affected by revision r2, which follows re-
vision r1 if it is transitively contained in file f (i.e. (e, f) ∈ Cont∗r) and
f ∈ Filesaffr1,r2.

Adaptive evaluation of software snapshot The following paragraphs
lead to the conclusion that SSnr2 can be adaptively and efficiently evaluated
on the basis of preceding SSnr1 with the use of information about files that
were added or removed or whose contents changed at revision r2.

We will introduce a special software snapshot SSn∆
r1,r2

, which will concep-
tually represent a fragment of the structure of the source code that changes
between revisions r1 and r2.

Definition 22. A (r1, r2)-differential snapshot is defined as:

SSn∆
r1,r2

= FP (Filesaffr1,r2 ∪ Files
add
r1,r2
\ Filesremr1,r2 , Sourcer2 , SSnr1)

In this definition, the function FP defined in Section 6.2.2 is used with
Sourcer2 as a second argument and SSnr1 as a context argument. It means
that we evaluate a fragment of the source code (precisely: a source code of
affected and added files) at revision r2 in the context of a software snapshot
from revision r1. Since the context is represented by SSnr1 , no entities from
it come from the external library. Therefore, these entities are not pruned
from SSn∆

r1,r2
, as it is described in Section 6.2.1.

Theorem 1. SSnr2 can be constructed
from SSnr1 , F iles

add
r1,r2

, F ilesremr1,r2 , SSn
∆
r1,r2

without use of Sourcer2 function.

Proof.

Claim 1.1. Entr2 can be determined from SSnr1 , F iles
add
r1,r2

, F ilesremr1,r2 , SSn
∆
r1,r2
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Proof of Claim 1.1.

Clearly, Filesr2 = Filesr1 ∪ Filesaddr1,r2 \ Files
rem
r1,r2

.
1) Entity e ∈ Packr2 iff there is a file f ∈ Filesr2

such that (e, f) ∈ Cont∗r2. It is possible if one of the following conditions is
met:

1. f /∈ Files∆
r1,r2
∧ f ∈ Filesr1 ∧ (e, f) ∈ Cont∗r1

2. f ∈ Files∆
r1,r2
∧ (e, f) ∈ (Cont∆r1,r2)∗

Since all the above conditions are directly encoded in SSnr1 or SS∆
r1,r2

and
they are mutually exclusive (since a file either is or is not a member of
Files∆

r1,r2
), Packr2 is determinable from these structures.

2) Entity e ∈ (Classr2 ∪Methr2 ∪ Fieldr2) iff there is a file f ∈ Filesr2
such that (f, e) ∈ Cont∗r2. It is possible if one of the following conditions is
met:

1. f ∈ Files∆
r1,r2
∧ (f, e) ∈ (Cont∆r1,r2)∗

2. f /∈ Files∆
r1,r2
∧ f ∈ Filesr1 ∧ (f, e) ∈ Cont∗r1

Similarly, all the above conditions are directly encoded SSnr1 or SS∆
r1,r2

and
they are mutually exclusive. Therefore Classr2, Methr2 and Fieldr2 are de-
terminable from these structures.

Since Packr2 , F ilesr2 , Classr2 ,Methr2and Fieldr2 can be determined from
SSnr1 and SSn∆

r1,r2
, so can the entire Entr2. �

Claim 1.2. Depsr2 \(Entr2×Entr2×{calls, refer}) can be determined from
SSnr1 , F iles

add
r1,r2

, F ilesremr1,r2 , SSn
∆
r1,r2

Proof of Claim 1.2. The relation Deps? is defined in such a way that for
any entities e1, e2 and t ∈ Dep Types \ {call, refer}, such that e1 is not a
package, the (e1, e2, t) ∈ Deps? can be determined only by the analysis of the
source code of the file in which e1 is contained, given that e1 and e2 are known
up front. Indeed: In Java, if a class c1 extends another class c2, then this
relation must be declared within the source code of c1, (in the file in which c1

is declared) and this declaration must unambiguously point at c2. The same
argument also works for class implementing an interface and the interface
extending an interface. Similarly: a declaration of field or variable, method
return type or parameter formal type, must contain an unambiguous type
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of the respective code entity. From the above facts we can conclude that if a
software entity e1 is not a package and there is an entity e2 such that (e1, e2) ∈
Cont∗r2, then e1 and e2 must be declared in the same source file. Therefore,
if an entity e1 is not a package and it is transitively contained in a file f ∈
Filesr2, then all relations (e1, e2, t), such that t ∈ Dep Types \ {call, refer}
are defined in Depsr1, if f /∈ Files∆

r1,r2
or in Deps∆

r1,r2
otherwise. It means

that Depsr2 \ ((Entr2 \ Packr2) × Entr2 × {call, refer}) can be determined
from SSnr1 , F iles

add
r1,r2

, F ilesremr1,r2 , SSn
∆
r1,r2

According to the definition from Section 6.2.2 each source code file can
contain at most one definition of a package, which uniquely determines the
contain relation for the file. Moreover, if (p, f, t) ∈ Depsr2 and p is a package,
then: 1. f is a file, 2. t = contain. Therefore for any package p, p ∈ Packr2
if one of the following conditions is met:

1. There is a file f ∈ Filesr1 \(Filesremr1,r2∪Files
∆
r1,r2

) and (p, f, contain) ∈
Depsr1

2. There is a file f ∈ Files∆
r1,r2

and (p, f, contain) ∈ Deps∆
r1,r2

Moreover for any file f , (p, f, contain) ∈ Depsr2 if exactly the same condi-
tions are met. Since these conditions can be derived from
SSnr1 , F iles

add
r1,r2

, F ilesremr1,r2 , SSn
∆
r1,r2

, we can conclude proof of claim. �

Claim 1.3. Callr2 and Refr2 can be determined on the basis of
SSnr1 , F iles

add
r1,r2

, F ilesremr1,r2 , SSn
∆
r1,r2

Proof of Claim 1.3. According to the description from section 6.2.1, if:

1. m denotes a method with name methodName,

2. defined in entity e2 within source code file f2 (i.e. (m, e2) ∈ Contr2 and
(m, f2) ∈ Cont∗r2 )

3. e1 is an entity defined in file f1 (i.e. (e1, f1) ∈ Cont∗r2)

then (e1,m, call) ∈ Depsr2 iff the source code of entity e1 at revision r2

contains a Java language expression in form:

ε.methodName(. . .)

Where the type of expression ε corresponds to the type represented by e2.
The expression ε must have the form : ε1.ε2.(. . .).εn,
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where each εi corresponds to either a class, a variable, a field or a method.
Where applicable, we will equate εi with the respective entity for the sake of
simplicity. Such expressions are evaluated during the traversal of the abstract
syntax tree of the body of e1, which is part of traversal of the abstract syntax
tree of f1, as described in section 6.2.1.

If there is such i that the type of εi is different at revision r2 than it was
in r1, it means that the source code of a file fεi in which εi was declared at
revision r1 (i.e. (εi, fεi) ∈ Cont∗r1) must be modified (i.e. fεi ∈ Filesmodr1,r2) or
there is a class cεi in which εi is directly contained (i.e. (εi, cεi) ∈ Contr1).

In both cases f1 ∈ Filesaffr1,r2, according to Definition 20. In such case,
(e1,m) ∈ Callr2 iff (e1,m) ∈ Call∆r1,r2

If the type of all εi is identical at revision r1 and r2, then the abstract
syntax tree traversal of such expression at r2 must produce exactly the same
elements of Callr2 as it produces at revision r1 when Callr1 is produced.
Consequently, in such case (e1,m) ∈ Callr2 iff (e1,m) ∈ Callr1

Clearly, when f1 ∈ Filesaddr1,r2, then (e1,m) ∈ Callr2 iff (e1,m) ∈ Call∆r1,r2.
Therefore, we can conclude:

� if f1 /∈ Files∆
r1,r2

then (e1,m) ∈ Callr2 iff (e1,m) ∈ Callr1

� if f1 ∈ Files∆
r1,r2

then (e1,m) ∈ Callr2 iff (e1,m) ∈ Call∆r1,r2
Since these conditions can be computed from

SSnr1 , F iles
add
r1,r2

, F ilesremr1,r2 , SSn
∆
r1,r2

, so can the entire Callr2.
The reasoning about Refr2 is analogous, since the definition of affected

file and the procedure of traversing the abstract syntax tree during the evalu-
ation of FP function is symmetric with respect to call and refer dependency
types. Therefore, without repeating a rephrased proof from the above, we can
state that Refr2 can be derived from SSnr1 , F iles

add
r1,r2

, F ilesremr1,r2 , SSn
∆
r1,r2

. �

Claim 1.4. Metrr2 can be determined from
SSnr1 , F iles

add
r1,r2

, F ilesremr1,r2 , SSn
∆
r1,r2

.

Proof of Claim 1.4. For a file f ∈ Filesr2: If f /∈ Filesaddr1,r2 ∪ Files
mod
r1,r2
\

Filesremr1,r2 then the contents of f in r2 are the same as they were in r1. Since
the metric can be computed from the source code only4, therefore for any
metric m Metrr2(e,m) = Metrr1(e,m) for any e such that (e, f) ∈ Cont∗r1

In the opposite case f ∈ Files∆
r1,r2

holds. In such case for any metric m
Metrr2(e,m) = Metr∆

r1,r2
(e,m) for any e such that (e, f) ∈ Cont∗r2. Since

4Please note a special case of FI and DIH metrics described in Section 6.2.1.
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both conditions are encoded in SSnr1 , F iles
add
r1,r2

, F ilesremr1,r2 , SSn
∆
r1,r2

, Metrr2
can also be derived from it. �

The proof of Theorem 1 is a direct consequence of Claims 1.1, 1.2, 1.3
and 1.4.

Theorem 1 has significant consequences in practical applications of the
model proposed in this thesis. It is related to the efficient and adaptive con-
struction of software evolution. The statement “without the use of Sourcer2
function” is just a formal way of saying that we do not need to parse the
entire source code at revision r2. It is sufficient to parse only files affected
by this commit. Conceptually, it means that building a software snapshot is
relatively inexpensive if the software snapshot that preceded it in the softwa-
re evolution has been built previously. The following list describes sufficient
steps to build Filesaffr1,r2 , once SSnr1 is known:

� Take Filesmodr1,r2 and Filesremr1,r2 from the logs of the SCM,

� Find all vertices of SSnr1 that are reachable from elements of Filesmod

by following edges only from reversed Contr1 relation. Store all visited
nodes in Entaff . The set contains all software entities that are transi-
tively contained in modified files.

� Find all nodes in SSnr1 that are reachable from Entaff by following
a path that starts with a positive number of edges with label extend,
and ends with one edge contain. These are members of classes that
inherit from classes already present in Entaff . Add all such elements
to Entaff .

� Find all vertices of SSnr1 that are reachable from elements of Entaff

by following edges only from reversed Callr1 ∪Refr1 relation. Store all
visited nodes in Entcall. The set contains all software entities that are
calling or referring at least one entity from Entaff .

� Find all vertices of SSnr1 that are reachable from elements of Entcall

by following edges only from Contr1 relation. Store all visited nodes
that represent files in F . The set contains only files that contain a call
or a reference to entities from Entcall, which, by definition, is Filesaff ,
therefore Filesaffr1,r2 = F .
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The number of visited nodes in such an algorithm is theoretically large, but in
practice it rarely exceeds 5-10% of the total number of source files, according
to the results of the experiment A.2.2.

Once the set of affected files is known, we can compute the differential
snapshot, according to Definition 22 and then build SSnr2 according to the
rules described in the proof of Theorem 1. This yields an effective method
of adaptive construction of (SSnr)r along the development of the analyzed
system.

6.3 Mining static software patterns

In this section we conceptually explain and formally define the problem of
finding software pattern instances.

6.3.1 Software pattern instance

Please recall from Section 2.2.8 that design patterns and design anti-patterns
are certain conceptual structures in the software. Given a software snapshot,
we can semi-formally say that they are certain subgraphs.

In the following deliberations, we discern two notions considered in the
context of SSn: the pattern and the pattern instance. The former is an arbi-
trary subset of subgraphs of SSn corresponding to the concept described by
(frequently informal) specification, whereas the latter is a specific subgraph
SSn. For example, the pattern is a set defined by the concept ‘a class with
cyclomatic complexity over 100, calls a method with less than 2 lines of co-
de’, whereas its instance in SSn is each subgraph PI = (VPI , EPI ,MetrPI)
of SSn such that:

1. VPI = {c,m} where c, m are class and method respectively.

2. Metr(c, Cyclomatic) > 100 and Metr(m,NCSS) < 2

3. (c,m, call) ∈ E,

4. EPI and MetrPI are respective subsets of E and Metr induced by VPI .

Formally, the pattern is an arbitrary subset of the set of subgraphs of SSn
and each of its elements is the pattern’s instance5.
5We will later slightly extend the notion of pattern instance with the main entity
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Pattern instance identity

In Section 6.1.1 we have defined the function Source? to discern software
entity and its source code, so that we can observe the changes of the entity
over time. Similarly, we want to be able to observe changes of instances of
software patterns, therefore each instance must be uniquely identified over
time.

Main entity of pattern instance

In order to uniquely define the identity of the pattern instance we will intro-
duce the notion of the main entity, which is one selected node that can be
specifically appointed in the subgraph. This is motivated by the fact that the
definitions of software anti-patterns are hardly ever symmetric and only one
entity plays in it a crucial role. For example, an informal definition of Blob:
”A class with too many complex methods”, refers to more than one entity
(i.e. class, methods contained in it) but clearly the entity corresponding to
the class is the main element of this pattern. Therefore, the formal repre-
sentation of each instance of this pattern is a subgraph, which contains one
entity with the class (c), the number of complex methods ({mi}i) contained
in c. Intuitively, in such a graph it is c that will be considered the main entity.
A more formal definition of the main entity can be found in Section 6.3.2. If a
pattern instance has a main entity, then the identity of this instance is given
by the type of pattern and the name of the main entity. Please note that
even if the structure of the corresponding subgraph changes over revisions,
such identity may remain intact.

However, some types of static patterns, (e.g. circular dependency), do not
have a single selected entity. In such cases we assume that the identity of the
pattern instance is given by the set of names of all entities contained in the
corresponding subgraph.

6.3.2 Software pattern mining formalism

Some previous examples of a pattern are crisp and all its instances can be
precisely found in any software snapshot by a trivial search. Yet, actual design
anti-patterns are usually vague. A good example is the Swiss army knife
(see [343]) which is a ’class with many complex unrelated functionalities’. In

described in Section 6.3.1 and containment-completeness from Definition 23.
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this case there is no straightforward method of translating such an informal
concept into graph-theoretical terms.

Definition 23 (containment-completeness). We will say that subgraph g =
(Vg, Eg) of SSn is containment-complete, if for any e1 ∈ Vg if there is a node
e2 ∈ V such that e2 is contained in e1 in SSn then e2 ∈ Vg.

Since the structure of software is represented as a graph, it is natural to
assume that pattern instances are simply specific subgraphs, as explained in
preceding paragraphs. For practical reasons we will assume that such graph
must be containment-complete, which is a natural way of looking at the
structure of software: If we extract a fragment of the structure source code,
we also want all its sub-structures to be extracted for completeness (e.g. if we
extract a single class as a part, we want also the methods and fields of this
class to be extracted). Therefore, unless stated otherwise, in the following
paragraphs a subgraph always means a containment-complete subgraph.

Formalism for mining static patterns

Let P(SSn) denote the set of all containment-complete subgraphs of a graph
SSn. In the context of SSn, the pattern P can be any subset of P ⊆ P(SSn),
and the pattern instance is each subgraph g ∈ P . The problem of mining
static software patterns can be therefore defined as follows:

Formally, we can say that the problem of mining software pattern S, is
to find such a deterministic program PS (called classifier), which, given any
SSn ∈ SSn, outputs the set of instances of the pattern in SSn, provided
that the program can query its input only for the following properties of the
SSn graph:

� the set of nodes, edges and their types,

� the set of edges adjacent to the given node,

� the set of nodes adjacent to the given edge,

� the value of the Metr function for any input.

Additionally, we will assume that the classifier must be invariant to the
change of the names of the entities, just like software metrics (see Section
2.2.7) are. This is a simplifying assumption, since some researchers (e.g. [243])
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also use lexical properties that are derived from the names of the software
entities. Yet, as empirically shown in the experiments in Appendix A.5.1, the
simplified model presented in this thesis can be comparable and sometimes
even better in terms of classification quality, when compared to the state of
the art software pattern mining algorithms.

In contexts where the identity of a pattern instance is needed, we will
also assume that the classifier also outputs the main entity of each re-
turned subgraph, if applicable. Formally, we will expect that PS(SSn) =
{(P1, e1), . . . , (Pm, em)}, where {P1, . . . , Pm} forms a complete set of instan-
ces of pattern S in SSn, and for each i ei is a main entity of Pi, if Pi has
one or ⊥ otherwise. Yet, we omit this aspect in other contexts, for the sake
of simplicity.

Suppose that for given software we have a list of all instances of a certain
software pattern, e.g. given by an expert. If we parse the source code of
this software to build a corresponding software snapshot SSn, the list maps
naturally to certain subset S of subgraphs of SSn. Ideally, the classifier PS
should be able to output exactly S. In such case we will say that S is defined
by PS. In practice, this is not always the case, and the difference between S
and PS(SSn) allows us to determine the quality of classification of PS e.g.
by means of measures described in Section 4.1.4.

An equivalent definition is that the classifier can be constructed on the
basis of the characteristic function of the output set. Suppose that the pro-
gram P ′S can accept any element of P(SSn) as an input, it can query the
SSn graph according to the rules described above and it outputs either 1 or
0 according to the following rule:

P ′S(x) =

1 if x ∈ S
0 otherwise.

In such case we will also say that P ′S defines S, and for any x such that
P ′S(x) = 1 we will say that P ′S finds x. In the following paragraphs we use
both definitions of the classifier interchangeably.

Definable and indefinable patterns

Naturally, a question arises if all software patterns can be properly identified
by a classifier program, given that it can only query the structure of the SSn
graph according to the rules defined above. In the following paragraphs we
will discuss this matter formally.
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Definition 24. Let S ⊆ P(SSn) be a pattern. We will say that S is definable
if there is a classifier PS such that PS(SSn) = S. In the opposite case S is
indefinable.

Fact 1. Not all sets are definable.

Listing 6.5 contains an example of software whose structure contains in-
definable patterns.

Listing 6.5: exemplary software, whose structure contains indefinable pat-
terns.

1 class A{}
2 class B{}

The corresponding software snapshot consists of just two isolated nodes -
representing classes A and B respectively. Since software metrics are invariant
of any rename of the software entities, the values of respective metrics for
these two classes must be equal. Therefore, no classifier can discern A and
B, which clearly means that singleton sets of subgraphs induced by either
{A} or {B} are indefinable.

Fact 2. The following sets are definable:

� ∅

� P(SSn)

Proof. � The classifier that always outputs 0 defines ∅.

� The classifier that always outputs 1 defines P(SSn).

Fact 3. If A and B are definable sets then all the following sets are also
definable:

� −A

� A ∪B

� A ∩B

Proof. Suppose that P ′A defines A and P ′B defines B. Therefore clearly:
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� P ′−A(x)
def
≡ 1− P ′A(x) defines −A,

� P ′A∪B(x)
def
≡max(P ′A(x), P ′B(x)) defines A ∪B,

� P ′A∩B(x)
def
≡min(P ′A(x), P ′B(x)) defines A ∩B.

Definition 25. For any pattern S:
Any definable set X such that X ⊆ S is called the sub-approximation of

S.
Any definable set X such that S ⊆ X is called the super-approximation

of S.

Theorem 2. For any pattern S ∈ P(SSn) there are definable sets S and S
such that:

� S ⊆ S ⊆ S

� There is no other definable set X such that S ⊂ X ⊂ S

� There is no other definable set X such that S ⊂ X ⊂ S

Proof. Let S = {X : X is super-approximation of X} and
S = {X : X is sub-approximation of X}. Since SSn is finite, so S and S

are. Therefore,

sup(S)
def
≡ ⋃x∈S x and inf(S)

def
≡ ⋂x∈S x are definable according to the Fact

3. Clearly, sup(S) ⊆ S ⊆ inf(S).
Suppose that there is definable X such that sup(S) ⊂ X ⊂ S. Since X

is definable and X ⊂ S, X ∈ S. In such a case X ⊆ ⋃x∈S = sup(S), which
is contrary to the assumption above. Consequently, such X does not exist.

By analogy, we can prove that there is no X such that S ⊂ X ⊂ inf(S)
In the end we can put: S = sup(S) and S = inf(S)

S is the greatest sub-approximation and will be called the lower appro-
ximation of S and S is the least super-approximation and will be called the
upper approximation of S. They conceptually represent the most accurate
sub (respectively: super) approximation of pattern S that any classifier can
potentially produce.
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The difference S \ S will be called the boundary region of S and it con-
ceptually represents such subgraphs of SSn that cannot be either included
in or excluded from to S by any classifier.

6.3.3 Graph-isomorphism-based mining

The above definitions of the mining problem refer to a general program which
given any software snapshot identifies all instances of a certain software pat-
tern. Arguably the most natural way of implementing it is based on the
SUBGRAPH-ISOMORPHISM problem. Formally if M = {m1, . . . ,mn} is
a set of software metrics, RS = (VRS , ERS ,MetrS) is a labeled reference
graph, where MetrS is a function6 MetrS : VRS × M → P (< ∪ {⊥})
that provides the labeling of vertices in VRS , according to the convention
defined in Section 6.1.1: i.e. each vertex v ∈ VRS is labeled by a vector
(MetrS(v,m1), . . . ,MetrS(v,mn)). For a given software snapshot SSn =
(Ent,Deps,Metr) we will say that a subgraph s ∈ P(SSn), whose set of ver-
tices and edges is denoted Vs and Es, matches RS iff: (Vs, Es) is isomorphic to
(VRS , ERS) where the isomorphism is given by i : VRS → Vs and the following
metrics condition holds: ∀v ∈ VRS ,m ∈M Metr(i(v),m) ∈MetrS(v,m).

We will say that the set of all subgraphs of SSn that match RS is defined
by RS. The corresponding program is straightforward: Given a SSn in SSn

the program first computes the set of subgraphs isomorphic to (VRS , ERS),
and then removes such elements of this set which do not satisfy the metrics
condition. Such an approach is valid, yet very inefficient in practice, since
in practical applications the number of nodes that satisfy the metrics con-
dition in the complete SSn graph tends to be very low, in some cases not
exceeding 1%. This observation has been experimentally validated in Experi-
ment A.5.2. Therefore, a more efficient heuristic is to filter the entities by the
metrics condition first and then to search for pattern instances only among
specific, relatively small subgraphs, which contain such filtered nodes. Con-
ceptually, it means that costly SUBGRAPH-ISOMORPHISM heuristics may
be applied to only small fragments of the entire SSn graph. Moreover, usu-
ally, specific metric condition concerns the main entity of the anti-pattern
(see Section 6.3.1), which in practice puts a constraint on the isomorphism
function. Detailed description of the heuristics based on this concept is given

6Please note different symbols: P(X) denotes the set of containment-complete subgra-
phs of X, while P (Y ) denotes the power set of Y .
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in section 6.4.
Section 6.2.3 describes a method for adaptive evaluation of software-

evolution structure, which typically requires re-applying the costly FP func-
tion to a small fragment of source code files (see A.2 for experimental valida-
tion). This adaptive heuristic provides the SSnri structure for the series of
subsequent revisions (ri). This fact, combined with the previous observation
that metric filters allow to significantly reduce the cost of mining certain
pattern instances, leads to the conclusion that there is a more efficient heu-
ristic method for mining series of software pattern instances indexed by the
revisions. Conceptually: at each revision it is sufficient to check if entities
modified in this revision satisfy the metrics condition and only then apply
SUBGRAPH-ISOMORPHISM algorithm on a small subgraph around them.
This concept is further considered in Section 6.2.3. In the following sec-
tions we introduce a more general framework for defining and measuring the
complexity of classifiers.

6.3.4 Complexity of pattern mining

We will measure the complexity of the classifier by the number of queries
about the SSn graph it has to use in order to produce the output. The
following definitions yield a formal concept that will allow us to provide
some estimation on the complexity of classifiers described in this thesis. In the
above formalism we have used the concept of a program that can query entire
SSn in order to determine if a given, potentially very small subgraph is an
instance of a pattern. Intuitively and practically, such a program can probably
query only a bounded neighborhood of a subgraph given as input to be able to
produce a deterministic output. The following definitions provide some formal
constructs that will enable us to estimate how small such neighborhood can
be:

Definition 26 (d-reachable nodes). Let Vs ⊆ V be a sub-set of nodes from
graph SSn = (V,E) and d = (di)i=1...n be a finite sequence of labels from
Dep Types. d-reachable nodes from s, is a set of nodes (Vs

d−→) such that:
x ∈ (Vs

d−→) iff at least one of the following conditions holds:

� x ∈ Vs

� There is k ∈ {1, . . . , n+ 1} such that SSn contains a path (v1, . . . vk)
where v1 ∈ Vs and for each 1 < j ¬ k SSn contains edge (vj−1, vj) or
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edge (vj, vj−1) of type dj−1

Intuitively, nodes d-reachable from Vs contain only the vertices that can
be reached by a path that starts at a node from s and follows edges (in
either direction) according to the sequence of labels from d. In the following
sections we will also use a dual term:

Definition 27 (reverse d-reachable nodes). Given symbols as in Definition
26 reverse d-reachable nodes from Vs is (Vs

d←−) def= {x : there exists a node
e ∈ Vs such that e is d-reachable from x}.

These two notions are explained by Figure 6.1.

Figure 6.1: In this exemplary graph nodes with vertical stripes (e1-e4) are
(call, refer)-reachable from node e. Node e5 is (extend, param)-reverse-
reachable from node e.

Definition 28 (D-surrounding of a graph). Let s = (Vs, Es) ∈ P(SSn) be a
subgraph of SSn = (V,E) and D = {D1, . . . , Dk} be a finite set of sequences
of labels from Dep Types, as given in definition 26. A D-surrounding of s is
a subgraph of SSn induced by set of nodes

⋃
i={1,...,k}(Vs

Dk−→)

Definition 29 (reverse D-surrounding of a graph). Given symbols as in
Definition 28, reverse D-surrounding of graph s is a subgraph induced by
nodes that are reverse Di reachable from a node from Vs for any i ∈ 1, . . . , k.
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Definition 30 (D-bounded classifier). Let D be defined as in Definition 28
and P be a classifier. We will say that P is D-bounded if it satisfies the
following conditions:

� for any SSn ∈ SSn and for any s ∈ P(SSn), P only queries about
nodes or edges that are contained in the D-surrounding of s to produce
the output.

� if s is the pattern instance and e is its main entity then P queries only
about nodes or edges that are contained in the D-surrounding of graph
induced by {e} to produce the output.

The following fact is a straightforward consequence of Fact 3 and Defini-
tion 30:

Fact 4. Let PA be a DA-bounded classifier that defines A and Let PB be
a DB-bounded classifier that defines B. In such case there exists a (DA ∪
DB)-bounded classifier for A ∪B and A ∩B.

Section 6.4 contains strict definitions of classifiers for a few popular de-
sign anti-patterns, followed by observations that they are D-bounded with
some relatively compact D. In the following sections we argue that there are
efficient heuristics to find entities which may be the main entities of a pat-
tern instance and we show that these are infrequent. Next, we combine the
concept of D-bounded classifier to produce a heuristically-efficient classifier
for popular design anti-patterns in such a way that it checks for the existence
of the instance of a pattern only within a D-surrounding of each main enti-
ty-candidate.

6.3.5 Adaptive mining of pattern instances

In Section 6.2.3 we have shown that the construction of a following softwa-
re snapshot in software evolution can be implemented adaptively and thus
leverage the fact that typically only very limited fragment of the system so-
urce code changes in two subsequent revisions (see Appendix A.2). Similar
construct also applies to mining the instances of software patterns. Suppose
that r1 and r2 are two subsequent revisions and the set of instances of so-
ftware patterns at revision ri is denoted by Instri . Let C be a D-bounded
classifier for some known D, as described in Definition 30. Moreover, let Fri
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be a sub-set of entities at revision ri with such a property that if a pattern
instance PI at revision ri matches C then the main entity of PI is in Fri .

Figure 6.2 shows the conceptual procedure of finding Instr2 , when Instr1
(r1 precedes r2) is known: At first, SCM logs are analyzed to find the set
of files affected by commit r2 (arrow 1) and then to find entities affected by
revision r2 (arrow 2). Please recall that these two steps, described in Section
6.2.3 are part of regular adaptive construction of software evolution presen-
ted therein. Experiments described in Appendix A.2 show that the number
of affected entities is typically relatively small.
In the next step (arrow 3) the set of all entities that are reverse D-reachable
from at least one affected entity is computed, which yields the first approxi-
mation of the set of candidates for main entities of pattern instances defined
by C. This set will be denoted Cand1. Experiment A.4.1 shows that the
number of such entities tends to be relatively small.
In the following step (arrow 4) all such candidate-entities are further filtered
according to the metrics filter defined in Section 6.4(technically we will repre-
sent this filtering by intersection with Fr2 set), which produces a final set of
candidates for the main entities (Cand2). In this case experiment A.5.2 shows
that again the number of such entities is typically very small. In short, the
Cand2 set is the set of entities D-reachable from entities reverse D-reachable
from entities affected by revision r2, which satisfy the metric condition for
C. At the end, the classifier C is applied on the subgraph induced by Cand2.

Theorem 3. Let r1, r2, C, D, Fr2, Cand1, Cand2, Instr1 and Instr2 be
defined as above. If a pattern instance PI of type defined by C with main
entity is present in revision r2, at least one of the conditions holds:

� PI was present in r1 and none of the nodes of PI is reverse reachable
from any entity affected by r2.

� C finds PI in the subgraph induced by Cand2.

Proof. Evaluation of C(PI) queries SSnr2 about nodes that are D-reachable
from some node of PI and edges adjacent to such nodes. If none of the nodes
of PI is reverse D-reachable from any entity affected by r2, it will never
query about any entity affected by r2 or its adjacent edges. Therefore, all
queries of C produce the same result in r1, which means that PI was present
in r1.

If pattern PI was not present in r1 and is present in r2, it means that its
main entity m ∈ Fr2 must be reverse D-reachable from nodes affected by r2,
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because C is D-bounded. Moreover, P will only query D-surrounding of m,
which is contained in Cand2, in order to produce a deterministic output.

If pattern PI was present in r1 and is not present in r2 it means that its
main entity m must be reverse D-reachable in r1 from some entity that is
affected by r2. If m is present in r2 and m ∈ Fr2 then C will query only nodes
D-reachable from m (and their adjacent edges), which are all contained in
Cand2. Consequently, C allowed to query Cand2 will not find it. If m is not
present in r2 or m /∈ Fr2 then clearly C will not find PI in r2.

Theorem 3 yields a straightforward method for adaptive mining of pattern
instances in software evolution: In order to produce Instr2 from Instr1 it is
sufficient to subtract pattern instances with at least one entity reverse D-
reachable from entities affected by r2 and then add all instances found by
C on the subgraph induced by Cand2. As mentioned earlier in this section,
experiments show that typically these operations need to be performed on
very small subgraphs (precisely: on subgraphs built from a very small subsets
of nodes).

Figure 6.2: The concept of adaptive mining of pattern instances.

6.4 Definable patterns for anti-patterns and
code smells

In this Section we present a set of heuristic methods of finding instances of
a few popular design anti-patterns which are based on the model described
earlier in this chapter (see Sections 6.3.2 - 6.3.5). The formal method for
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measuring the complexity of these algorithms is described in Section 6.3.5
and conceptually is based on the fact that only a limited fragment of the
entire SSn graph must be visited, along specific paths, starting at specific
nodes. Each of the following Subsections 6.4.1-6.4.7 describes a method for
finding instances of a single type of design anti-pattern and its complexity in
the aforementioned terms. Each method is derived from available studies from
the related work mentioned in the respective subsection. It has been adopted
to the software snapshot model described in this thesis and improved, where
applicable. The specific constants in each definition (e.g. thresholds for source
code metrics) were taken from original work or manually calibrated to fit to
the reference data described in Section 6.7.1 in terms of F1.

For greater clarity, the algorithms for finding the instances of static anti-
patterns in the following subsections are explained in terms of graphs, so-
ftware entities, software engineering and the Java programming language.
Yet, all these descriptions can be formalized according to the rules described
in Section 6.3.2. In most cases the description refers to a single class which
clearly is the main entity of the respective pattern.

6.4.1 Anemic entities

Anemic entities (sometimes called data classes) are classes which only store
data and do not provide any functionality (see [121], [287]). A straightfor-
ward, naive approach for detecting this pattern is to take classes which have:
many fields, only accessor methods (i.e. methods with single line of code,
which refer to only a single field and have cyclomatic and npath complexity
equal to one), default and possibly an initializing constructor. This heuristic
turns out be inaccurate, since experimental validation (see Appendix A.5.1)
shows that there are anemic entities which have methods that effectively sho-
uld be considered accessors but do not satisfy the above condition (e.g. they
contain some validation or initialization logic) or a constructor with excessive
logic. Therefore, we need to define two notions: an effectively trivial method
and complex constructor.

A method m is effectively trivial if :

1. The class c in which m is contained has field f of type t such that m
refers to f and either m has 1 argument of type t and void return type
or it has 0 arguments and return type t,

2. m has at most 5 lines of code,
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3. m has cyclomatic complexity not greater than 3.

The constructor con contained in c is complex if:

1. The number of arguments of con exceeds the number of fields contained
in c,

2. the lines of code in con exceeds 150% of the number of fields contained
in c,

3. the cyclomatic complexity of con exceeds 150% of the number of fields
contained in c.

This allows us to provide a definable pattern for anemic entity: A class is
an anemic entity iff:

1. it has more than 8 fields,

2. it has more than 8 methods,

3. all methods but one are trivial or effectively trivial,

4. there are no complex constructors contained in c,

5. all subclasses of c satisfy the above four conditions.

A classifier that does not check the 5 condition is clearly {(contain)}-
bounded. Since the arguments must be checked for all classes in the hierarchy
of an examined class entity, we can conclude with the following fact:

Fact 5. Let H be the maximum depth of inheritance tree of any class in the
entire evolution of the software, and let DH = {(contain) , (extend, contain)

, . . . , (

H times︷ ︸︸ ︷
extend, . . . , extend, contain) }. The above classifier for anemic-entity

is DH-bounded.

The maximum depth of the inheritance tree H tends to be low and in
the analyzed systems does not exceed 7. Therefore the proposed classifier for
Anemic entity is efficient. Both these statements are experimentally validated
by experiments described in Appendix A.4.3.
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6.4.2 Swiss army knife

A Swiss Army Knife (SAK for short), is an excessively complex class in-
terface. It is present when e.g. the creator attempts to provide a method
for all possible uses of the class or make a single class serve many complex
unrelated functions. Methods described or referenced in [241], [244], [342]
and [243] provide a semi-formal description of the pattern as a class with
many unrelated methods with high complexity which implements many inter-
faces. Clearly, this can be translated to the graph-theoretical language in the
context of a software snapshot: a class with many interfaces corresponds to
each node such that paths which start from it and contain edges of type
extend and implement reach many nodes which represent interface entity.
A complex method is simply a method with high values of the complexity
metrics such as NPath complexity or cyclomatic complexity. Additionally, if a
class is intended to serve many purposes, one can expect that it has methods
that are being called by many other classes. This conceptual description can
be translated in the following formal definition of a definable pattern which
approximates the SAK anti-pattern:

Definition 31 (foreign call). For a given entity e a foreign call is each edge
(caller, callee) such that:

1. (caller, callee) ∈ call,

2. (e, callee) ∈ Cont,

3. there are no nodes sup1, sup2 such that (sup1, e) ∈ Cont∗ or e = sup1

and (sup2, caller) ∈ Cont∗ and {(sup1, sup2), (sup2, sup1)}∩Ext∗ 6= ∅.

Conceptually, a foreign call is a call of a method from a member of another
class hierarchy.

Swiss Army Knife is a class c that satisfies the following conditions:

1. c has more than 6 methods,

2. the value of metric LOC for c exceeds 150,

3. the sum of cyclomatic complexity of methods contained in c exceeds
30,

4. the sum of NPath complexity of methods contained in c exceeds 120,
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5. the number of effectively non-trivial methods contained in c multiplied
by the average NPath complexity of such methods exceeds 160,

6. the number of methods called by a foreign call exceeds 2,

7. the number of foreign calls exceeds 7.

In order to say if a given class c is a main entity of an instance of SAK,
it is sufficient to visit all its superclasses and subclasses, all their methods
and calls of these methods. In terms of SSn graph traversal, if we know
that the maximum depth of an inheritance tree in the entire evolution of a
system is bounded by some constant H, then we may define a bounded set of
sequences of edges in the following manner: DH = {(contain, call, contain),
(extend, contain, call, contain) , . . . ,

(

H times︷ ︸︸ ︷
extend, . . . , extend, contain, call, contain) }

We may now conclude with the following fact:

Fact 6. The above classifier for the Swiss Army Knife is DH-bounded

6.4.3 God class and Brain class

God class (also called Blob) and Brain class are similar anti-patterns that
refer to classes that provide too much complexity and tend to centralize logic
of some area of the system. The difference between God class and Brain
class is that the former is a large controller class that depends on data from
surrounding classes whereas the latter does not use the data from other
classes, tends to be more cohesive and encapsulates the logic in its own
complex methods (see [228], [258], [342], [174]). Consequently, a God class is
a class that: 1. has many complex methods and fields 2. does not use data
from other classes, i.e. it neither refers to fields of other classes nor calls
trivial methods of other classes 3. tends to call its own methods.

A Brain class is a class that: 1. has many complex methods and fields
2. uses data from other classes, i.e. refers to fields of other classes or calls
accessor methods of other classes 3. tends to call its own methods 4. tends to
have ’controller’ methods: either just a few complex ones or more moderately
complex ones. These informal concepts can be translated in the following
definable patterns:
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God class

Entity c is considered a god class iff:

1. c calls more than 7 effectively trivial methods of other classes,

2. proportion of the number of effectively trivial methods of other classes
called by c to the number of other methods of other classes called by c
exceeds 0.6,

3. the sum of cyclomatic complexity of its non-trivial methods exceeds 55,

4. the value of the metric tight class cohesion does not exceed 0.3.

Clearly, to determine if a given class c satisfies the above definition, it
is sufficient to traverse SSn along all paths that start at c and have conse-
quent edge labels contain, call, refer. Therefore, we can conclude with the
following fact:

Fact 7. This classifier for God class is {(contain, call, refer)}-bounded.

Brain class

Entity c is considered brain class iff

1. c is not god class, as defined in the preceding subsection,

2. c has more than 2 non-trivial methods with more than 4 outgoing edges
of type call and more than 15 lines of code (controller methods),

3. c calls more than 5 trivial methods of other classes,

4. proportion of the number of trivial methods of other classes called by c
to the number of non-trivial methods of other classes called by c does
not exceed 0.6,

5. the number of calls to trivial methods divided by the number of lines
of the source of c is smaller than 0.2,

6. the value of tight class cohesion metric for c does not exceed 0.5,
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7. One of the following conditions is true: (a) sum of cyclomatic com-
plexity of methods contained in c exceeds 50 and the value of NCSS
metric for c exceeds 400 or (b) sum of cyclomatic complexity of me-
thods contained in c exceeds 90 and the value of NCSS metric for c
exceeds 50.

By analogy to the god class classifier, on the basis of Fact 4, we can
conclude with the following fact:

Fact 8. This classifier for Brain class is (contain, call, refer)-bounded.

6.4.4 Base bean

Base bean is a class which only provides utility methods for its subclasses.
A method m contained in class c is an utility method iff:

� m is neither a constructor nor a trivial method,

� m does not refer any field contained in c,

� there is no s such that (c, s) ∈ Ext∗ and m references a field contained
in s,

� there are no such s, f , cal such that s = c or (c, s) ∈ Ext∗ and (s, f) ∈
Cont and (cal, f) ∈ Ref and (m, cal) ∈ call,

� the return type of m is not void,

� if (cal,m) ∈ call then there is s such that (s, c) ∈ Ext∗ and (s, cal) ∈
Cont.

Conceptually, a utility method is a non-trivial method that does not modify
state or orchestrate other methods of the class it is defined in or any of its
ancestors and is used only by its descendants.

A class c is base bean iff:

� it has more than 2 utility methods,

� the number of descendants of c (i.e. the power of {e : (e, c) ∈ Ext∗}) is
at least 5,
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� the number of incoming edges of type call to utility methods contained
in c exceeds 2.

Clearly, to tell if a class c is an instance of a Base Bean, it is sufficient to
query about 1. methods and fields contained in c, 2. return types of methods
contained in c 3. methods contained in all subclasses and superclasses of c,
4. fields referenced by all aforementioned methods 5. callers and callees of all
aforementioned methods.

If we assume that H denotes the maximum depth of an inheritance tree
in the entire evolution of the system, then we can construct the following
finite set

DH = {(contain, call)} ∪ {(contain, type)} ∪ {(extend, contain, refer)}

∪ {(extend, contain, call)} . . . ∪ {(
Htimes︷ ︸︸ ︷

extend, . . . , extend, contain, refer)}

∪ {(
Htimes︷ ︸︸ ︷

extend, . . . , extend, contain, call)}
and conclude with the following fact:

Fact 9. The above classifier for base bean is DH-bounded

6.4.5 Yo-yo

A YoYo is a pattern where the flow control is scattered over overcomplica-
ted inheritance structure, so that in order to understand the algorithm in
the source code, one has to switch between many classes within a common
inheritance tree (see [319], [316], [342]). This highly informal definition can
be rephrased to graph-theoretical terms: There are many edges of type call
or refer between nodes which are directly contained in nodes that form a
tree from edges of type extend. A precise definable pattern for YoYo is: A
subgraph induced by nodes Y = {e1, . . . , en} is a YoYo with main entity e1

iff:

� Each pair (ei, ej) ∈ Y × Y is connected by a path constructed from
edges of type extend, where each edge is treated as undirected,

� the longest path between any two nodes from Y constructed from such
edges exceeds 5,

� The number of edges (m1,m2) of type call such that m2 is not a trivial
method and {(ei,m1), (ej,m2)} ⊆ Cont, i 6= j exceeds 5.
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� there is no super-set of nodes Y ′ ⊇ Y such that graph induced by Y ′

satisfies the above three conditions.

The main entity e1 of this graph is the class that does not have a superclass
(the above conditions guarantee that there is always exactly one such class).

In order to determine if a given class is the main entity of an instance
of a YoYo Pattern, it is sufficient to visit all classes in its inheritance hie-
rarchy (extend edge), methods contained in all these classes (contain edges)
and calls of these methods (call edges). Therefore we can conclude with the
following fact:

Fact 10. Let H be the maximum depth of any inheritance tree in the entire
software evolution and let DH be defined as follows: DH = {(contain, call)}

∪ {(extend, contain, call)} ∪ . . . ∪ {(
Htimes︷ ︸︸ ︷

extend, . . . , extend, contain, call)}. The
above classifier for YoYo is DH-Bounded

6.4.6 Data Clumps

A Data Clump is code smell that occurs when a group of data items are being
passed together in the source code (see [122], [268], [266], [361]). This infor-
mal definition can be rephrased in software engineering terms as: a group of
methods, with substantial portion of identical parameters, such that any two
are connected by an invocation chain. The corresponding definable pattern
is:

Let parameters(m) = {p ∈ Ent : (m, p) ∈ Params} A set of method en-
tities M = {m1, . . . ,mn} is a Data Clump iff:

� n exceeds 3,

� for at most one mi LOC(mi)  5,

� |parameters(mi)| exceeds 3 for each i

� for each pair (mi,mj) such that i 6= j and (mi,mj) ∈ call, |parameters(mi)∩
parameters(mj)| = min(|parameters(mi)|, |parameters(mj)|)

� there is no such superset of M that satisfies the above conditions
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In order to tell if a given method m is a part of Data Clump it is sufficient to
traverse paths that start at m and have edges with label call and to visit all
nodes that are connected via parameter edge to one of the nodes on traversed
paths. Therefore, we can conclude with the following fact:

Fact 11. Let call path between methods (m1,m2) be a path without cyc-
les constructed from method nodes with edges labeled only by call, so that
no shorter path with the same property connects m1 and m2. Let C deno-
te the maximum length of any call path in the entire evolution and let DC
be defined as follows: DC = {(parameter)} ∪ {(call, parameter)} ∪ . . . ∪

{(
Ctimes︷ ︸︸ ︷

call, . . . , call, parameter)}
The above classifier for Data Clumps is DC-bounded.

Experiment A.4.3 shows that the constant C does not exceed 12, which
makes the proposed classifier efficient.

6.4.7 Circular dependency

Circular dependency is a relation between two or more software entities trans-
itively contained in different unrelated packages which either call each other
directly or indirectly to function properly. We can translate this into graph
theoretical terms:

A pair of classes (c1, c2) form a circular dependency iff:

� there exist two different packages p1, p2 such that {(c1, p1), (c2, p2)} ⊆
Cont∗ and neither p1 is a subpackage of p2 nor p2 is a subpackage of p1,

� there are two methods m1,m2, such that {(m1, c1), (m2, c2)} ∈ Cont,

� there is a path build from edges labeled call from m1 to m2 and another
such path from m2 to m1.

In order to tell if two classes form a circular dependency it is sufficient
to check what package they are transitively contained in, find all methods
contained in them and then find call paths of these methods. We can therefore
conclude with the following fact:

Fact 12. Let call path be defined as in Fact 11 and Let C denote the ma-
ximum length of a call path in the entire evolution and let T denote the
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maximum length of a path with “contain” edges in the entire evolution. Let

DT be defined as follows: DT = {(
T times︷ ︸︸ ︷

contain, . . . , contain}

∪ {(contain,
Ctimes︷ ︸︸ ︷

call, . . . , call)}
The above classifier for Circular dependency is DT -bounded.

6.4.8 Alternative design anti-pattern detection methods

The average precision and recall of the proposed method is 0.87 and 0.85
respectively. Detailed experimental result is described in Appendix A.5.1.
The results in specific context are comparable to current state-of-the-art so-
lutions. When looking at individual type of a design anti-pattern, the model
described in this research was outperformed by other methods described be-
low: The detection algorithm described in [220] that was applied to Xerces
dataset, when identifying the instances of the Blob anti-pattern has preci-
sion/recall at 0.95/0.95 respectively, while the model proposed in this thesis
is noticeably less accurate with the result at 0.91/0.69 respectively. On the
argouml dataset the same difference is 0.97/0.84 vs 0.9/0.76. The algorithm
proposed in [220] is based on the support-vector machines classifier applied
to the 60-dimensional space built from the values of sophisticated software
metrics. Such an approach produces very accurate classification. However,
kernel functions may be hard to understand for people not familiar with
specific mathematical knowledge. Contrary to that, classifiers based on de-
finable patterns use straightforward terms directly attached to the structure
of the source code of the system. Such rules are easily comprehensible and
modifiable for potential beneficiaries – the software engineers. A method de-
scribed in [241], one of the current state-of-the-art detection algorithms, also
uses similarly simple rules, but is based on richer model, which also includes
lexical properties such as specific names of code entities. It outperforms our
method in detecting instances of Blob in Xerces dataset in terms of recall
(1.0 vs 0.69) but is slightly worse in terms of precision (0.87 vs 0.91).

In all other cases, detection algorithms based on definable patterns de-
scribed in section 6.4 turn out to produce at least as accurate classification,
as compared to existing research in the field: In [228] authors report a ”strict
accuracy” of 0.8. The average precision/recall of method described in [37]
is 0.79/0.78 respectively. In [241] average precision/recall is 0.61/0.93 while
at best it reaches 0.87/1.0. Method described in [287], in which additional,
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Ref. method
Quality of detection with definable patterns:

Best Average
precision recall F1 precision recall F1

[335] 0.1 0.47 0.16 0.1 0.4 0.16
[308] 0.78 0.31 0.44 0.18 0.24 0.21
[139] 0.86 1.0 0.92 0.2 0.33 0.25
[324] 1.0 1.0 1.0 0.2 0.33 0.25
[54] 1.0 0.96 0.98 1.0 0.89 0.94
[48] 1.0 1.0 0.98 0,77 0.62 0.67
[356] 1.0 1.0 0.98 0,93 1.0 0.96

Table 6.1: Comparison of the quality of detection of design patterns.

temporal information is also used to detect static patterns, the reported pre-
cision/recall is 0.78/0.61. A method described in [186], based on Bayesian
network reaches 0.7/0.9 in terms of precision/recall. As a systematic review
of available literature states (see [302]), the majority of published research
articles on automatic identification of design anti-patterns does not provi-
de a report on accuracy measures, or reference data (see [323], [205]), thus
cannot be directly compared with this research. Yet, similar methods have
also been applied to detect dual structures: i.e. design patterns. A report
produced by [54] compares a few state-of-the-art detection algorithms, which
when applied to individual software systems and patterns, produce excellent
recall or both precision and recall (see. [241], [335], [139], [324]). Details of
this comparison are summarized in Table 6.1.

6.5 Spatial and temporal relations

The following subsections define formal constructs that allow us to specify the
concept of spatial and temporal relations between software pattern instances
in software evolution.
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6.5.1 Spatial relations of pattern instances

Overlapping and distance between patterns

Given two instances of patterns we will define two notions that enable us to
define a spatial relation between them and answer the question how “close”
they are to each other in the software structure. Let T ⊆ Deps Types be a
subset of types of inter-code-entity dependencies.

For any SSn = (Ent,Deps,Metr) SSn|T , is a subgraph of SSn with
only these edges which are labeled with an element of T . Formally:

SSn|T = (Ent,Deps ∩ (Ent× Ent× T )),Metr) (6.4)

Let PI1 = (V1, E1,Metr1), P I2 = (V2, E2,Metr2) be two instances of
patterns. The overlapping of PI1 and PI2 is given by:

Ov(PI1, P I2) =
|V1 ∩ V2|
|V1 ∪ V2|

(6.5)

The distance with respect to T between PI1 and PI2 is given by:

d(PI1, P I2, T ) = minv1∈V1,v2∈V2dist(v1, v2, SSn|T ) (6.6)

where dist(a, b,G) is the distance between vertices a and b measured as the
length of the shortest path between them in the multigraph G treated as
undirected graph.7

Conceptually, the overlapping measures to what extent the two pattern
instances share common vertices, and the distance measures the shortest path
between any two vertices from both instances, such that the path can only
be constructed with edges with labels from T . The graph-theoretic represen-
tation of the structure of software is taken directly from actual constructs of
the source code. Therefore, conceptually, overlapping and distance measure
how dependent on each other the respective software structures are.

The notion of distance is, in a specific sense, invariant to the revision: The
formulas primarily rely on the sets of vertices of the two subgraphs, which
typically appear in more than one revision. This means that we can evaluate
the formula at any revision r as long as SSnr contains all vertices from both

7This makes dist symmetric.
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pattern instances. This yields the notion of distance at revision r:

dr(PI1, P I2, T ) =

+∞ if (V1 ∪ V2) \ Entr 6= ∅
minv1∈V1,v2∈V2dist(v1, v2, SSnr|T ) otherwise

(6.7)
and evolution-wide-distance:

devol(PI1, P I2, T ) = minr∈Revoldr(PI1, P I2, T ), (6.8)

where evol is the evolution of the system corresponding to the revisions in
Revol.

Similarly, we can define overlapping at revision and evolution-wide over-
lapping :

Ovr(PI1, P I2) =

0 if (V1 ∪ V2) \ Entr 6= ∅
Ov(PI1, P I2) otherwise

(6.9)

Ovevol(PI1, P I2) = maxr∈RevolOvr(PI1, P I2) (6.10)

These constructs enable us to tell how distant from each other the two
pattern instances are, in the entire software evolution, even if they never
appear together in a single revision.
Let us formulate some obvious observations on the above definitions:

Fact 13. Ov(PI1, P I2) > 0 iff for any X d(PI1, P I2, X) = 0

Fact 14. Ovr(PI1, P I2) > 0 iff for any X dr(PI1, P I2, X) = 0

Fact 15. Ovevol(PI1, P I2) > 0 iff for any X devol(PI1, P I2, X) = 0

Fact 16. If the revisions in the evolution form a linear order
(r1 < r2 < . . .) and evi is a sub-evolution corresponding to revisions (r1, . . . , ri)
then for any two pattern instances PI1, P I2:
Ovevi(PI1, P I2) ¬ Ovevj(PI1, P I2), for any i < j
devi(PI1, P I2, X)  devj(PI1, P I2, X) for any i < j,X

6.5.2 Closeness and remoteness of pattern instances

In the following sections we will assume that there is a fixed Dep Types ⊇
T = {call, refer, type} , unless stated differently. The definitions from prece-
ding sections enable us to define the notion of closeness of pattern instances
in two flavors:
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Definition 32 (closeness of pattern instances). For two pattern instances
PI1, P I2 and the entire evolution evol we will say that:

1. PI1 and PI2 are d-distance-close iff devol(PI1, P I2, T )  d

2. PI1 and PI2 are o-overlapping-close iff Ovevol(PI1, P I2)  o

For greater simplicity, if the parameters d and o are clear from context
we will say that the pattern instances are distance-close or overlapping-close.
Moreover, if the type of closeness is clear, or the statement is valid for any
type of closeness, we will just say that the pattern instances are close.

Remoteness between pattern instances

We will also consider concepts that are dual to closeness:

Definition 33 (remoteness of pattern instances). We will say that two pat-
tern instances are d-distance-remote if they are not d-distance-close. We
will say that two pattern instances are o-overlapping-remote if they are not
o-overlapping-close.

The following observations are straightforward consequences of facts 13 -
15 and the above definitions:

Fact 17. If two pattern instances are overlapping-close then they are also
d-distance-close for any positive d.

Fact 18. If two pattern instances are d-distance-close then they are also
x-distance-close for any valid x > d.

Fact 19. If two pattern instances are d-distance-remote then they are also
x-distance-remote for any valid x < d

Fact 20. Relations of distance-closeness and overlapping-closeness are sym-
metric and reflexive.

6.5.3 Neighborhood and faraway of pattern instance

The relation of closeness between pattern instances can be naturally extended
to closeness of software entity and to the set of software entities close to
pattern instance:

141



Definition 34 (neighborhood of pattern instance). We will say that entity
e is close ( d-distance-close) to pattern instance PI1, iff there exists another
pattern instance PI2 = (V2, E2), such that PI1 and PI2 are d-distance-close
and e ∈ V2. The set of entities close to PI1 will be called the neighborhood
of PI1.

Definition 35. Let V be subset of entities present in the evolution of the
system. We will say that set V is close ( d-distance-close) to pattern instance
PI1 iff V is the subset of neighborhood of PI1

Similarly, we can define dual concepts:

Definition 36 (faraway of pattern instance). We will say that entity e is
remote ( d-distance-remote) to pattern instance PI1, iff there exists ano-
ther pattern instance PI2 = (V2, E2), such that PI1 and PI2 are d-distance-
remote and e ∈ V2. The set of entities remote to PI1 will be called the faraway
of PI1.

Definition 37. Let V be a subset of entities present in the evolution of the
system. We will say that set V is remote ( d-distance-remote) to pattern
instance PI1 iff V is the subset of faraway of PI1

Please note that the preceding definitions 34-37 make sense only for di-
stance closeness (remoteness), as the defined notions become trivial for over-
lapping closeness.

Closeness test and remoteness test

Checking if two pattern instances are close at a certain revision is a stra-
ightforward algorithm: In case of overlapping closeness, it is just simple
arithmetic on the power of sets which can be computed with elementary
set-theoretical operations on the sets of pattern-instance nodes. In case of d-
distance-closeness it is a matter of specific BFS traversal with bounded depth,
which starts at entities of any pattern instance. We will use a formal con-
struct named closeness test, which is a program that, given three arguments:
two pattern instances and the software snapshot, returns 1 if these two pat-
tern instances are close in the given software snapshot and 0 otherwise. We
will additionally assume that the program can query the software snapshot
about nodes and edges in SSn according to rules defined in Section 6.3.2. If
the type of closeness is important we will use the term distance-closeness test
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or overlapping-closeness test and if the distance threshold (d) or overlapping
thresholds (o) are important, we will use the term d-distance-closeness test
or o-overlapping-closeness test respectively.

We will also consider the dual concept of remoteness test (distance-
remoteness test, overlapping-remoteness test, d-distance-remoteness test, o-
overlapping-remoteness test), which is a program that returns complement
to 1 of the respective closeness test. Conceptually, one can think of these
remoteness tests as if they were the negation of their respective closeness
tests.

6.5.4 Pattern instance lifespan

Preceding sections contain definitions which lead to the notion of closeness - a
kind of spatial relation between pattern instances. In the following paragraphs
we will also formalize temporal relations between software patterns.

Let PI be an instance of a pattern P present in some SSnr. If for any
other r′ SSnr′ contains the same pattern instance (i.e. pattern with the same
identity - see Section 6.3.1), then we say that r′ belongs to the lifespan of PI.
The set of all revisions that belong to the lifespan of PI will be denoted by
L(PI). Conceptually, the lifespan is the time in which a particular pattern
instance was present in the system. Clearly, each lifespan can be expressed as
a set-theoretical sum of maximum intervals of revisions fromR, whereR is the
linearly-ordered set of all revisions in the evolution of the observed software.
For a given pattern P , the set of all such intervals in all distinct instances of
P will be called the occurrences of P and denoted by Occ(P ) and each such
interval will be called the occurrence of P . Clearly, L(PI) =

⋃
l∈Occ(PI) l.

6.5.5 Temporal and spatio-temporal relations

Let PI1 and PI2 be two different pattern instances of two different patterns
P1 and P2. Given two intervals l1 ∈ Occ(PI1) and l2 ∈ Occ(PI2), we can name
a temporal relation between them in terms of the Allen algebra operators (see
Section 4.3.1, [30]). This allows us to define the concept of spatio-temporal
relations.

Definition 38 (close-spatio-temporal relation). Let PI1, PI2, l1, l2 be defi-
ned as above and let A be Allen operator. Pairs (PI1, l1) and (PI2, l2) are in
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A-close-spatio-temporal relation iff PI1 and PI2 are close and l1 and l2 are
in A relation.

When the intervals are not important we will say that PI1 and PI2 are
in A-close-spatio-temporal relation.

Definition 39 (remote-spatio-temporal relation). Given symbols as in De-
finition 38, we will say pairs (PI1, l1) and (PI2, l2) are in A-remote-spatio-
temporal relation iff PI1 and PI2 are remote and l1 and l2 are in A relation.

When the intervals are not important we will say that PI1 and PI2 are
in A-remote-spatio-temporal relation.

Fact 21 (inverted spatio-temporal-relation). For any pattern instances
PI1, P I2 and their respective occurrences l1, l2

1. (PI1, l1) and (PI2, l2) are in A-close-spatio-temporal relation iff (PI2, l2)
and (PI1, l1) are in A−1-close-spatio-temporal relation

2. (PI1, l1) and (PI2, l2) are in A-remote-spatio-temporal relation iff
(PI2, l2) and (PI1, l1) are in A−1-remote-spatio-temporal relation

If we look at a single occurrence of a pattern instance, we may analyze
how other pattern instances are related to it in a spatio-temporal manner.
We will formalize these relations with the notion of the relative occurrences
of a pattern:

Definition 40 (close relative occurrences). Let lPI11 be an occurrence of pat-
tern instance PI1, A be Allen operator.

Occclose
[lPI11 ,A]

(P2) denotes the set of all occurrences (PI2, l
PI2
2 ) in the evolu-

tion such that:

� PI2 6= PI1,

� The type of PI2 is P2,

� (PI1, l
PI1
1 ) and (PI2, l

PI2
2 ) are in A-close-spatio-temporal relation.

The set Occclose
[lPI11 ,A]

(P2) will be called close occurrences of P2 relative to

lPI11 by A.

Definition 41 (remote relative occurrences). Let lPI11 be an occurrence of
pattern instance PI1, A be Allen operator.

Occremote
[lPI11 ,A]

(P2) denotes the set of all occurrences (PI2, l
PI2
2 ) in the evolu-

tion such that:
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� PI2 6= PI1,

� The type of PI2 is P2,

� (PI1, l
PI1
1 ) and (PI2, l

PI2
2 ) are in A-remote-spatio-temporal relation.

The set Occremote
[lPI11 ,A]

(P2) will be called remote occurrences of P2 relative to

lPI11 by A.

Example 1. The example depicted in Figure 6.3 conceptually explains some
of the above notions: Pattern Instance PI or type P is observed only at
revision Revn, therefore its occurrences consist only of a single interval, which
contains only Revn. Let us denote this interval lPI . Consequently, Occ(PI) =
{(Revn, Revn]} and L(PI) = {Revn}.

Another pattern instance PI ′ of type P ′ is present only in revision Rev1

(let us denote its only occurrence as lPI′). Since Rev1 < Rev2 < Revn, lPI′
and lPI are in the < ( takes place before) Allen’s relation. The darker oval
represents a 1-distance-neighborhood of PI, which, since all entities that con-
stitute PI in Revn are present in all revisions in the software evolution, can be
mapped to all these revisions. In Rev1 some of entities of PI ′ are also part of
this neighborhood. Consequently, PI and PI ′ are in 1-distance-closeness spa-
tial relation. Moreover, Occclose[lPI ,′<′](P

′) = {lPI′} and Occclose[lPI′ ,′>′](P ) = {lPI}.
According to definitions 40 and 41, all other Occx[y,z](t) sets, for all valid
x, y, z, t are empty.

The spatio-temporal relation relays on the concept of spatial relation (i.e.
closeness or remoteness) and temporal relations (i.e. Allen operators). In the
following sections we will show that both can be efficiently evaluated in an
adaptive manner along software evolution.

6.5.6 Adaptive mining of spatial relations

A spatial relation is technically either a closeness or remoteness relation be-
tween pattern instances. It is a symmetric and reflexive binary relation. In
this section we will prove that the information about spatial relations can be
easily computed adaptively, along with software evolution. Technically, the
remoteness relation is complement of the closeness relation8. Therefore, if we
8Please note that in the experiments described in this thesis the closeness rela-

tion is always computed with parameters other than the remoteness relation. We use

145



Figure 6.3: The concept of spatio-temporal relation between pattern instan-
ces: Pattern instances PI and PI’ are in ’takes place before’-close-spatio-
temporal relation, with respect to 1-distance-closeness.

are able to efficiently compute the closeness relation, we are also able to com-
pute the remoteness relation. For this reason, the arguments in the following
paragraphs will focus on the closeness relation only. The remoteness relation
will be mentioned only where the duality plays a non-trivial role.

Definition 42 (d-neighborhood of pattern instance in sub-evolution). Let
Ndi (PI) denote the set of entities that were at most d-distance-close to some
entity from PI in the sub-evolution evi, corresponding to revisions (r1, . . . , ri).
Formally: e ∈Ndi (PI) iff there exists a revision rj, such that j ¬ i and at re-
vision j there is entity ePI , which is a node of PI and is d-distance-close to e.
We will call Ndi (PI) the d-neighborhood of PI in sub-evolution (r1, . . . , ri)9.

The following facts are straightforward consequences of Definitions 42 and
32:

Fact 22. If any two pattern instances are d-distance-close then their d-
neighborhoods have non-empty intersection in some sub-evolution.

Fact 23. If two pattern instances are overlapping-close then their
0-neighborhoods have non-empty intersection in some sub-evolution.

dc-distance-closeness and dr-distance-remoteness relation where dc ¬ dr − 1. Therefore,
in each experiment which is based on both closeness (C) and remoteness (R), the R is
actually dual to a closeness relation different than C.
9Please note similar Definition 34, which defines a spatial neighborhood at single revi-

sion only. Here we define it for subevolution.
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Fact 24. For any fixed PI , (Ndi (PI),Ndi+1(PI), . . .) form a set-theoretical
chain, i.e. Ndi (PI) ⊆Ndi+1(PI) for any valid revisions ri, ri+1

Fact 25. Any fixed pattern instances PI1, PI2 are d-distance-remote in sub-
evolution (r1, . . . , ri) if none of the nodes of PI2 is the element of Ndi (PI1).

Adaptive evaluation of pattern instance neighborhoods

We will show that Ndi+1(PI) can be efficiently computed from Ndi (PI) and
some additional information available only in SSnri+1 :

If there is a pattern instance PI that is present in revision ri+1 and was
not present in any previous revisions, then Ndi+1(PI) is simply the set of
entities d-distance-close to entities of PI in SSnri+1 .

If PI was present in ri and none of its entities is d-distance close to an
entity affected by revision ri+1, then Ndi+1(PI) must be equal to Ndi (PI).

If PI was present in ri and at least one of its entities is d-distance-close
to an entity affected by revision ri+1, then Ndi+1(PI) can be computed by
finding nodes of SSnri+1 which are connected by a path not longer than d to
some entity of PI at ri+1.

The consequence of the preceding statements is that, given that Ndi (PI)
is known, in order to find Ndi+1(PI), it is sufficient to traverse a subgraph at
revision ri+1, with entities that are at most d-distance close to entities affected
by revision ri+1 or are d-distance close to PI. This is typically a very small
graph. This statement is empirically validated in Experiment A.4.1.

The above considerations can be concluded with the statement that d-
neighborhood of any pattern instance can be efficiently and adaptively com-
puted along the evolution of the system.

Adaptive evaluation of close pattern instances

Let {r1, r2, . . .} denote a linearly-ordered set of revisions with a convention:
ri < rj iff i < j, let evi denote the sub-evolution of the system corresponding
to the revisions r1, . . . ri, and let Ci denote the set of all pairs of different
pattern instances that were close in the sub-evolution evi. We will show that
Ci+1 can be easily computed from Ci, neighborhoods of pattern instances
and the closeness test.

Fact 26. (Ci)i=1,2,... forms a set-theoretical chain, i.e. Ci ⊆ Ci+1 for any
valid revisions ri and ri+1.
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Proof. According to the fact 16, for any i < j, T ⊆ Dep Types and any two
pattern instances PI1, P I2, Ovevi(PI1, P I2) ¬ Ovevj(PI1, P I2) and
devi(PI1, P I2, T )  devj(PI1, P I2, T ). Closeness of PI1 and PI2 can either
denote that their evolution-wide overlapping is over a certain fixed threshold
or that their evolution-wide distance is below a certain fixed threshold. Con-
sequently, if {PI1, P I2} ∈ Ci then {PI1, P I2} ∈ Cj for any j > i.

As a consequence of Fact 26, in order to show how Ci is constructed from
Ci−1, it is sufficient to show what new elements are added to it at revision
ri. We will use the following Lemma 4 to find them in an efficient manner.

Lemma 4. If PI1 and PI2 be two pattern instances such that:

1. they were not d-distance-close at revision ri−1,

2. they are d-distance-close at revision ri,

3. the set of entities in PI1 does not change at revision ri,

4. the set of entities in PI2 does not change at revision ri,

then there must be an entity e affected by revision ri such that in subevolution
evi e is in d-distance-neighborhood of PI1 and d-distance-neighborhood of
PI2.

Proof. Suppose that PI1 and PI2 are not d-distance-close at revision ri−1

and this condition does not hold at revision ri. Then at revision ri there is a
non-directed path that starts at some entity of PI1, has at most d edges and
ends at some entity of PI2. If at revision ri there is no affected entity that is
in the d-distance-neighborhood of PI1, then no path of length d starting at
entity from PI1 contains an affected entity. Consequently, all such paths must
contain exactly the same entities as in revision ri−1. Therefore, PI2 cannot
be reached from any entity of PI1 by such path. This leads to a contradiction
with the assumption that PI1 and PI2 are close. Therefore, there must be
an e affected by revision ri such that e is in d-distance-neighborhood of PI1.
Since the definition of closeness is symmetric (see Fact 20), the same entity
must also be in d-distance-neighborhood of PI2.

If a pair (PI1, P I2) ∈ Ci \ Ci−1 then pattern entities PI1 and PI2 were
not close in ri−1 but are close in ri. According to Lemma 4, the set of entities
in one of the pattern instances changed or there is an entity e that is affected
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by revision ri and is in d-distance-neighborhood of both instances. This also
applies to overlapping closeness, according to Facts 13-15 and 18.

The above considerations allow us to outline a pseudo-algorithm that
produces Ci from Ci−1:

First, the pseudo-algorithm finds pattern instances that might be close
to a pattern instance at revision ri but were not close to it in revision ri−1.
We will call this set candidate instances. Clearly, it contains:

� pattern instances that were not present in ri−1 but are present in ri

� pattern instances whose set of nodes changed in revision ri

� pattern instances that are d-distance-close to an entity affected by re-
vision ri

According to Lemma 4, candidates do not contain any other elements.
Next, the algorithm finds d-distance-neighborhood of each element from

candidate instances and checks if it contains at least one entity from another
pattern instance. If it does, and the corresponding pair of pattern instances
is not an element of Ci−1 then it is added to the set of candidate pairs.
According to Facts 13-15, 18 and 22 and 24, Ci \ Ci−1 cannot contain any
other elements.

Finally, each element of candidate pairs is tested against closeness test.
If such pair passes the test, it is added to Ci.

This pseudo-algorithm, in order to produce Ci, needs to know: 1. Ci−1

2. Affected entities 3. Their d-distance-neighborhoods 4. d-distance-neigh-
borhoods of pattern instances that were not present in revision ri−1 or whose
set of nodes changes in revision ri.

Experiments A.2.2 and A.4.1 show that the first two sets are typically
very small, Experiment A.4.2 and A.3 show that the last two sets are also
typically very small. This makes the proposed adaptive method efficient in
practical application.

6.5.7 Adaptive mining of temporal relations

The preceding Subsection 6.5.6 explained how spatial relations can be ef-
ficiently computed in an adaptive manner along the evolution of software.
In this section we will show that also temporal relations can be computed
likewise.
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Adaptive evaluation of pattern instances lifespans

As we observe a certain pattern instance PI in the evolution at a point in
time ri we know if it was present in revisions r1, . . . ri, but we do not yet
know if it will be present at ri+1. Therefore, we do not know if an interval
that ends at ri is a part of the occurrences of PI. This can be decided only at
revision ri+1, given that PI is not present in it. This observation allows us to
construct a sweep line method for adaptive evaluation of pattern instances
lifespans. To simplify notions described in this and the next sections we will
assume that the evolution of the analyzed system starts with artificial rinitial
revision which precedes all other revisions and ends with artificial rfinal that
follows all other revisions, such that SSnrinitial and SSnrfinal are empty and
consequently do not contain any pattern instances.

Let the triplet O = (PI, rstart, rend) denote the fact that pattern instance
PI occurred in all revisions [rstart, rend] and the interval is maximal, i.e. both
conditions hold:

1. PI was not present in rstart−1

2. PI was not present in rend+1

Let O′i, denote the set of all such facts that were true in the sub-evolution
from revision r1 to revision ri. By convention we will consider O′0 = ∅

Let Oi, denote the set of all triplets (PI, rstart, rend) such that there is a
pattern instance PI and the interval (rstart, rend) is the element of Occ(PI)10

in the sub-evolution from revision r1 to revision ri−1. By convention we will
consider O0 = O1 = ∅.

There is a subtle, yet important difference between O′i and Oi: As Oi re-
fers to the evolution that ends at ri−1 and it encodes actual occurrences of
pattern instances in this evolution, it can be properly evaluated at revision
ri, as we know which pattern instances “disappeared” at this revision. Con-
trary to that, O′i refers to the evolution that ends at ri and it also encodes
the candidates for occurrences of pattern instances that may become actual
occurrences in later revisions.

We will show how the pair (Oi+1,Oi+1) can be adaptively evaluated from
O′i and Oi.

10see Section 6.5.4 for the definition of the lifespan and occurrences (Occ) of pattern
instance.
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Fact 27. Oi ⊆ O′i, for any valid revision ri

Fact 28. (Oi)i=1,2,... forms a set-theoretical chain, i.e. Oi ⊆ Oj for any i < j
and valid revisions ri, rj.

Theorem 5. The pair (Oi+1,O
′
i+1) can be computed from the pair (Oi,O′i)

and the set of pattern instances at revision ri+1.

Proof. For any pattern instance PI, the following statements hold:

� If PI is present at ri+1 and it was not present at ri then
(PI, ri+1, ri+1) ∈ O′i+1 \O′i

� If PI is present at ri+1 and it was present at ri then a O′i contains
exactly one element (PI, x, ri) for some x. This element is not member
of O′i+1, but (PI, x, ri+1) is.

� If PI is not present at ri+1 and it was present at ri then a O′i contains
exactly one element (PI, x, ri) for some x. In this case (PI, x, ri) ∈
Oi+1 \Oi and (PI, x, ri) ∈ O′i+1.

Please note that at revision ri+1 for any pattern instance PI we can check
if it was present at ri, since this is equivalent to the existence of element
(PI, x, ri) in O′i for some x. Therefore, if we know pattern instances present
at revision ri+1, we can easily transform pair (Oi,O′i) to (Oi+1,O

′
i+1), according

to the rules derived from the above three statements:

� If PI is present at ri+1 and it was not present at ri then a new triplet
(PI, ri+1, ri+1) must be added to O′i.

� If PI is present at ri+1 and it was present at ri then aO′i contains exactly
one element (PI, x, ri) for some x. This element must be replaced with
(PI, x, ri+1) in O′i+1.

� If PI is not present at ri+1 and it was present at ri then a O′i contains
exactly one element (PI, x, ri) for some x. In this case (PI, x, ri) must
be added to Oi+1.

According to the definitions of O′i and Oi and Facts 27-28, applying these
three rules on pairs for all pattern instances present at ri or ri+1 on (Oi,O′i)
transforms it to (Oi+1,O

′
i+1)
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Theorem 5 yields a simple adaptive algorithm for the evaluation of oc-
currences for all pattern instances in the software evolution. Indeed: it is
sufficient to start with empty sets O′ and O, and transform them with each
revision according to the rules described in the proof. It is necessary to know
pattern instances at each revision, but this can also be done in an adaptive
manner, according to Theorem 3 from Section 6.3.5.

6.6 Mining spatio-temporal patterns in so-
ftware

6.6.1 Spatio-temporal rules

In Sections 6.5.1 and 6.5.5 we have defined the concept of a spatio-temporal
relation between pattern instances. In this section we define the related notion
of spatio-temporal rule.

Definition 43 ((A, l, d)-neighborhood). Let PI be some pattern instance of
pattern P and let l be some maximal interval from the lifespan of PI, A be
some Allen algebra operator and d  0 be the distance threshold. Let Ent

denote the set of all entities that were present in at least one revision in
the evolution of the system and let R denote the set of all revisions in this
evolution. The (A, l, d)-neighborhood of PI is the set of pairs (E, (r1, r2)),
E ∈ P (Ent), r1, r2 ∈ R such that:

1. for any entity e ∈ E, e is present in all revisions from r1 to r2,

2. l and (r1, r2) are in A relation,

3. E is d-distance-close to PI.

Definition 44 ((A, l, d)-faraway of pattern instance). Let PI,A, l, d and Ent

be given as in Definition 43. The (A, l, d)-faraway of PI is the set of pairs
(E, (r1, r2)), E ∈ P (Ent), r1, r2 ∈ R such that:

1. for any entity e ∈ E, e is present in all revisions from r1 to r2,

2. l and (r1, r2) are in A relation,

3. E is d-distance-remote to PI.
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If the distance threshold d is clear from context, we will use simpler
notation: (A, l)-neighborhood and (A, l)-faraway.

Fact 29. Let A, P , l, PI be defined as above. (A, l, dn)-neighborhood of PI
and (A, l, df )-faraway of PI are disjoint for any distance thresholds such that
df  dn  0.

The notions of (A, l, d)-neighborhood (A, l, d)-faraway may appear very
complex, but conceptually they just define “spatio-temporal areas” in the
entire software evolution where one could find an occurrence of other pat-
tern instance which is in respectively: A-close- and A-remote-spatio-temporal
relation. This intuitive concept is formalized in the following facts:

Fact 30. Let PI,A, l and d be defined as in Definition 43 and let lPI2 be
an occurrence of some pattern instance PI2 different than PI. The following
statements are equivalent:

� (PI2, lPI2) is in A-d-distance-closeness spatio-temporal relation with
(PI, l),

� there is pair (E, (r1, r2)) in (A, l, d)-neighborhood of PI, such that PI2

is 0-overlapping-close to E and lPI2 = (r1, r2).

Fact 31. Let PI,A, l and d be defined as in Definition 43 and let lPI2 be
an occurrence of some pattern instance PI2 different than PI. The following
statements are equivalent:

� (PI2, lPI2) is in A-d-distance-remoteness spatio-temporal relation with
(PI, l),

� there is pair (E, (r1, r2)) in (A, l, d)-faraway of PI, such that PI2 is
0-overlapping-close to E and lPI2 = (r1, r2).

If we take one type of software pattern (e.g. YOYO), and then consider
all its instances in the evolution of the system, we may compute respective
(A, l?, d)-neighborhoods and (A, l?, d)-faraways for these instances, for some
fixed A and d. Clearly, these spatio-temporal areas will “cover” a certain
fragment of the entire evolution.

The question arises, how big this fragment is. If it is very small, then we
may hypothesize that typically instances of this type of pattern (YOYO) are
much more likely to appear only in specific areas of the source code.
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This conceptual description is a motivation for the concept of spatio-
temporal rule, which is formalized in the following paragraphs in two man-
ners: quantitative and qualitative. In the first, we just consider existence of
at least one (A, l, d)-neighborhood that covers a given area. In the more ad-
vanced second one, we also take into consideration how many such different
(A, l, d)-neighborhoods cover this area.

For the sake of simplicity in the following paragraphs we assume that
there are two fixed distance thresholds: dr > dc > 0 (respectively: remoteness
and closeness) and we simplify some of the notions: Unless stated explicitly:
dc-distance-closeness will be called just closeness, dr-distance-remoteness
will be called remoteness, (A, l, dc)-neighborhood will be called
(A, l)-neighborhood, (A, l, dr)-faraway will be called (A, l)-faraway, etc.

Qualitative approach

Definition 45. Let T be a type of software pattern, A be Allen-algebra ope-
rator, Ev be the software evolution, s ∈ {closeness, remoteness}. A triplet
(T,A, s) will be called a spatio-temporal clause. An interpretation of the clau-
se in Ev, denoted as |=Ev (T,A, s) is:

� the sum of all (A, l)-neighborhoods of pattern instances PI such that:
PI is of type T and l is the maximum interval in the lifespan of PI in
Ev, if s = closeness or

� the sum of all (A, l)-faraways of pattern instances PI such that: PI
is of type T and l is the maximum interval in the lifespan of PI in Ev,
if s = remoteness

A conjunction of clauses (T1, A1, s1), . . . , (Tn, An, sn), denoted by (T1, A1, s1)∧
. . . ∧ (Tn, An, sn) will be interpreted in the Ev as

⋂
i=1,...,n |=Ev (Ti, Ai, si).

Definition 46 (spatio-temporal rule). An expression

(T1, A1, s1) ∧ (T2, A2, s2) ∧ . . . ∧ (Tn, An, sn)→ Td,

where Td is a type of software pattern will be called spatio-temporal rule.
Let PI = (VPI , EPI) be a pattern instance of type T , and lPI be a maximal
interval which defines one occurrence of this pattern. We will say that this
occurrence is covered by this spatio-temporal rule iff there exists a pair (E, l)
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in the interpretation of the left-hand side of the rule such that PI is 0-
overlapping-close to E and lPI = l.

If, additionally T = Td, we will say that this pattern instance supports
this spatio-temporal rule.

The notions of clause, rule and their interpretation are explained concep-
tually in Example 2 below.

Quantitative approach

In the previous paragraph we have constructed a spatio-temporal rule with
the use of a clause that was interpreted as existence of at least one spatio-
temporal relation. A question arises how many such relations actually exist.
This leads to the concept of a quantitative clause:

Definition 47. Let T , A, Ev, s be defined as in Definition 45. Moreover,
let N ⊆ N be a sub-set of natural numbers.

A triplet (T,A, s,N) will be called a quantitative clause. Its interpretation
in Ev (denoted as |=Ev (T,A, s,N)) will be given by the following definition:
(E, l) ∈ (|=Ev (T,A, s,N)) iff there exists n ∈ N and n different pattern
instances of type T (PI1, . . . , P In) with respective maximal lifespan intervals
(l1, . . . , ln) such that:

� (E, l) is in (A, li)-neighborhood of PIi for each 1 ¬ i ¬ n, if s =
closeness or

� (E, l) is in (A, li)-faraway of PIi for each 1 ¬ i ¬ n, if s = remoteness.

Fact 32. (|=Ev (T,A, s, {1})) = (|=Ev (T,A, s))

Informally, we can say that (|=Ev (T,A, s, {n})) is a space of spatio-
temporal areas in the software evolution that are in respective spatio-temporal
relation to n different pattern instances of type T .

The conjunction of clauses and spatio-temporal rule can be defined in the
quantitative approach analogously: For a given rule

(T1, A1, s1, N1) ∧ . . . ∧ (Tn, An, sn, Nn)→ Td

and a pattern instance PId = (VPId , EPId) of type T present in this evolution
during some maximal interval l such that there exists a pair (E, l) in the in-
terpretation of the left-hand side of the rule and PId is 0−overlapping−close
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to E, we will say that this occurrence is covered by this rule. Additionally,
when T = Td we will say that this occurrence supports this rule.

The notions of clause, rule and their interpretation are explained concep-
tually in Example 2 below.

The previous paragraphs define the notion of a spatio-temporal rule and
its interpretation in the system evolution. These construct allow us to use
spatio-temporal rules to predict occurrences of design anti-patterns in the
system evolution. In the following sections we explain how the rules can be
mined in the course of the software development process.

6.6.2 Construction of decision table

In this section we will describe a method for mining spatio-temporal rules
from the data that encodes all spatio-temporal relations between pattern
instances in the evolution of the system. The following paragraphs describe
the steps that lead to a set of such rules.

At first, the knowledge about spatio-temporal relations is formalized as
a decision table. Conceptually, each row in this table corresponds to a single
continuous interval from the lifespan of a pattern instance PI of some pattern
P . The type of P stands for the decision in this row and other attributes
describe the number of spatio-temporal relations of PI and other pattern
instances in the evolution of the analyzed system. Formally, other attributes
(i.e. condition attributes) are labeled by the pair (A, t)close or (A, t)remote

where A is one of the non-inverse Allen’s algebra relations (see Section 4.3.1)
and t is the type of software pattern. In the row that represents an interval
lPI11 of a pattern, the value of attribute (A, t)close is the power of Occclose

[lPI11 ,A]
(t)

set and the value of attribute (A, t)remote is the power of Occremote
[lPI11 ,A]

(t) set11.

We will call these types of conditional attributes the closeness attributes
and the remoteness attributes respectively. Definition of Occclose

[lPI11 ,A]
(t) and

Occremote
[lPI11 ,A]

(t) relies on the underlying closeness relation: the former directly,

while the latter indirectly, by a dual remoteness relation. Please note that
these are two different relations: technically they are dc-distance-closeness
and dr-distance-remoteness for some fixed dc ¬ dr − 1, as mentioned earlier
in this chapter.

Conceptually, the greater the power of the former set, the more related the

11These two sets are defined in Section 6.5.4 in Definitions 40 and 41.
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occurrence represented by the row to other instances by the corresponding
close spatio-temporal relation. Similarly, the greater the power of the latter
set, the more related the occurrence represented by the row to other instances
by the corresponding remote spatio-temporal relation.

Please note that the consequence of Fact 32 is that this decision table en-
codes the information about spatio-temporal relations in both a quantitative
and a qualitative manner, as the concepts defined in Section 6.6.1. Indeed:
the value in each cell encodes the number of respective spatio-temporal re-
lations which yields a quantitative view. Yet a discretization of the table in
which each value v is changed to 1 iff v > 0 produces a corresponding decision
table with a binary attribute which yields a qualitative view.

Example 2. Suppose that in the evolution of the system with revisions
(r1, . . . , r6) only the following pattern instances were observed:

1. Instance of Blob pattern observed in revisions r5 and r6, denoted by
Blob1,

2. instance of YoYo pattern observed in revisions r1 and r2, denoted by
Y oY o1,

3. instance of YoYo pattern observed in revisions r2 and r3, denoted by
Y oY o2.

4. instance of Swiss Army Knife (SAK) pattern observed in revisions r1 -
r3, denoted by SAK1.

Moreover, let us suppose that Blob1 is close to Y oY o1 and close to Y oY o2 and
it is remote to SAK1 in the evolution. In such a setting, the row corresponding
to the pattern instance Blob1 has the form presented in Table 6.2:

(Meets, YoYo)cl. (Before, YoYo)cl. (Before, SAK)rem. . . . decision
0 2 1 0 . . . 0 ’Blob’

Table 6.2: Exemplary row from the decision table that encodes all spatio-
temporal relations in the software evolution. SAK denotes Swiss Army Knife,
cl. denotes close and rm. denotes remote.

Since the only two closeness-spatio-temporal relations observed in the evo-
lution both correspond to two distinct facts that an instance of YoYo pattern

157



is before Blob1, the value in the corresponding cell is 2. Similarly, the evo-
lution contained only one remote-spatio-temporal relation: Blob1 is remote
to instance of Swiss Army Knife SAK1, which was observed before Blob1,
the value of the corresponding cell is 1. As no other instances are in any
spatio-temporal relation with Blob1, all remaining cells have value 0.

Let us consider the following quantitative and quantitative spatio-temporal
rules:

(Y oY o,Before, cl.) ∧ (SAK,Before, rem.)→ Blob (6.11)

(Y oY o,Meets, cl.) ∧ (Y oY o,Before, cl.) ∧ (SAK,Before, rem.)→ Y oY o (6.12)

(Y oY o,Before, cl., {2})→ SAK (6.13)

(Y oY o,Before, cl., {3, 4, 5})→ SAK (6.14)

� Qualitative rule 6.11 covers Blob1 and is supported by it, which is equ-
ivalent to the fact that the occurrence of Blob1 is in the interpretation
of this rule (see Definition 46).

� Qualitative rule 6.12 has empty interpretation, since all elements in
the interpretation of its first clause has form (X, (r3, y)) or (X, (r4, y))
for some X and y and all elements in the interpretation of the last
clause has form (X, (r5, y)) or (X, (r6, y)) for some X, y. Thus, their
intersection is empty.

� Quantitative rule 6.13 is covered by Blob1 but it does not support it
(see Definition 47). The interpretation of this rule consist of valid pairs
(E, (rstart, rend)), where rstart ∈ {r5, r6} and E is a set of valid entities
which are elements of N6(Y oY o1) ∩N6(Y oY o2) (see Definition 42).

� The interpretation of the left hand side of the quantitative rule 6.14 is
empty, as the evolution contains only two distinct occurrences of YoYo
instances.

6.6.3 Decision table with arbitrary rows

In the above construction of the decision table both rows and columns may
be said to correspond to the static patterns of a specific type (practically to
design anti-patterns): Each row corresponds to a single occurrence of pattern
instance and its type defines the decision, whereas each column is related to
specific spatio-temporal relations with static patterns of specific type. One
can imagine a different definition of the table, where the rows represent the
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occurrences of static patterns of a different type to those which define the
columns. In fact, in order to construct such a table, we need to be able to
specify sets Occclose

[lPI11 ,A]
(t) and Occremote

[lPI11 ,A]
(t) for each row. Both these sets rely

on the following concepts: type and unique identity (Section 6.3.1), closeness
(Section 6.5.2), lifespan (Section 6.5.4). In other words, if we define these
concepts for a set of subgraphs of (SSn)i, we can represent them as rows in
the decision table, according to the above definitions. In the following para-
graph, we will do so in order to introduce the concept of random equivalent.
We will also use a similar approach in other applications (see Section 6.7.4).

Random equivalents

The decision table described in Section 6.6.2 is used to mine spatio-temporal
rules. Supervised machine learning algorithms require labeled training data
where each example is given an appropriate decision class (label). In general,
the number of examples with different decision classes should be similar so
that the mining algorithm does not produce a biased model. In fact, the
problem of unbalanced training data is a separate, broad area of knowledge
(see [170]).

In some experiments described later in this section, we try to train a model
that will discern occurrences of certain design anti-patterns from occurrences
of other similar subgraphs of SSn. In order to do so, we will introduce a special
kind of a static pattern, called random equivalent.

Definition 48 (Random equivalent). For a given pattern instance PI con-
tained in software snapshot SSn, such that the type of PI is t, the random
equivalent of PI is every containment-complete subgraph G of SSn such that:
1. The number of nodes in G is equal to the number of nodes in PI 2. G is
not an element of the upper bound of t in SSn.

The conventions described in the following paragraphs will allow us to
introduce the notions of: type, uniqueness, occurrence and lifespan of random
equivalent, so that they can be treated uniformly with other static patterns
in the algorithms described in this chapter:

Let G be a random equivalent of a pattern instance PI of type t. We
will consider that the type of G is NOT t (e.g. NOT Blob, when PI is an
instance of Blob). Please recall from Section 6.3.1 that each pattern instance
is uniquely identified by its type and the name of its main entity. We will
uniquely identify each random equivalent by its type and the set of names of
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entities that comprise its vertices. We will say that such random equivalent is
present in revision r iff all its nodes are present in SSnr and a containment-
complete subgraph induced by these nodes is not in the upper bound of t in
SSnr. This definition of the presence of random equivalent at a given revision
is the basis of the notions of occurrence and lifespan which are defined as in
Section 6.5.4. Since random equivalents at a given revision r are subgraphs
of SSnr, and we have defined their uniqueness, all variants of remoteness
and closeness with corresponding remoteness and closeness tests (defined in
Section 6.5.2) apply to them identically as they apply to other static patterns.
Therefore, in the following paragraphs, unless explicitly stated otherwise, the
term pattern instance may refer to both random equivalent and the instance
of a design anti-pattern.

Decision table with random equivalents

As explained earlier in this section, the DT decision table encodes spatio-
temporal relations of each occurrence of a static pattern with other occurren-
ces of static patterns. As we have defined the identity, the occurrences and
lifespan of random equivalent, we can relate the notion of relative occurrence
of the random equivalent in the way it was defined for other static patterns
in this section. Consequently, we can represent all spatio-temporal relations
of any random equivalent in a separate row of the decision table described
earlier in this section. However, the types of random equivalents are not used
to construct additional columns.

Clearly, a typical software snapshot contains significantly more random
equivalents than instances of software design anti-patterns. The motivation
for adding extra rows to the decision table is to have balanced decision classes.
Therefore, we will only add rows that correspond to just a few randomly
selected random equivalents that resemble - to some extent - design anti-
patterns. Details on the criteria of choice are described in Section 6.6.4.

A decision table with rows related to occurrences of random equivalents
will be called decision table with random equivalents. Please note that such a
decision table only contains additional rows, but the number of columns does
not change, as we do not add additional columns for each type of a random
equivalent.
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Grouping decision classes

In the above construction of the decision table with random equivalents, each
row corresponds to an individual occurrence of either random equivalent or
an anti-pattern. Each of them has its type. In some situations we need to
equate some types of such patterns, which corresponds to equating respecti-
ve decision classes in the decision table. Arguably the simplest example is a
situation when all types of anti-patterns are equated, as are all types of ran-
dom equivalents. In such case we might say that the table implicitly encodes
spatio-temporal areas where an instance of an anti-pattern may occur from
the spatio-temporal areas where they are absent.

We assume that when two types of anti-patterns T1 and T2 are equ-
ated, so are the types of corresponding random equivalents: NOT T1 and
NOT T2 respectively. According to the description in Section 6.6.4 below,
the procedure of constructing the decision table is twofold: first, the table
contains rows which correspond to actual occurrences of anti-patterns, and
then it is completed with rows corresponding to randomly selected random
equivalents, which ensures a balanced distribution of certain decision clas-
ses. When certain types of anti-patterns are to be equated, this second step
must be carried out carefully, so that selected random equivalents are actual
counter-examples of either of the equated types of anti-patterns. Therefore,
in this case we require that each random equivalent of type NOT T1 is also
outside of the upper bound of T2.

6.6.4 Adaptive evaluation of spatio-temporal relations

In Sections 6.5.6 and 6.5.7 we have shown that pattern instances and the
maximal intervals in their lifespan can be computed adaptively, along the
system evolution. In this section we present a similar construct for building
a decision table with random equivalents.

Let (r1, r2, . . .) be linearly-ordered revisions in the software evolution,
where ri < rj iff i < j. Let DTi be the decision table constructed according
to the method described in Section 6.6.2, which encodes all spatio-temporal
relations between pattern instances that were present in sub-evolution during
revisions r1, . . . ri−1. By convention, we assume that D0 is empty and we
assume that DTi contains rows that corresponds to occurrences that end not
later than at revision ri−1.

Fact 33. For a fixed row and a fixed closeness conditional attribute ac, revi-
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sions ri < rj the value of ac in DTi is not greater than its value in DTj.

Fact 34. For a fixed row and a fixed remoteness conditional attribute ar,
revisions ri < rj the value of ar in DTi is not lower than its value in DTj.

Let DT ′i denote the extended version of the decision table DTi in which
each row is extended with three additional attributes, which uniquely iden-
tify the occurrence of the corresponding pattern instance.
Namely: (PI, rstart, rend), where rstart denotes the first revision of the occur-
rence, rend – its last revision and PI – the pattern instance. Please note
that in this context the uniqueness of the pattern instance PI is given by its
identity, even if the instance can change over time (see Section 6.3.1).

In the following paragraphs we show that DT ′i can be adaptively com-
puted from DT ′i−1, the set of pattern instances present at revision ri and
other structures, which can also be computed adaptively according to the
descriptions in the preceding sections.

Theorem 6. Let ri, DT ′i , be defined as above, evi denote the sub-evolution of
the system in revisions (r1, . . . , ri), Oi and O′i be defined as in Section 6.5.7.
Let Ci denote the set of all pairs of pattern instances that were close in evi,
with respect to the closeness relation that defines the closeness attributes in
DT ′i . Let Cremotei denote the set of all pairs of pattern instances that were
close in evi, with respect to the closeness relation that defines the remoteness
attributes in DT ′i . DT

′
i can be computed from DT ′i−1, Oi−1, Ci−1, Cremotei−1 , Oi,

Ci, Cremotei .

Proof. We will show what changes need to be done to DT ′i−1 to transform it
into DT ′i .

A new row can appear in DT ′i if there is a new occurrence of a pattern
instance that ends at revision ri−1. It is equivalent to the fact that Oi contains
a triplet (PI, rstart, ri−1) that was not the element of Oi−1, for the pattern
instance PI and some revision rstart.

The three additional columns of DT ′i can be taken directly from the tri-
plet (PI, rstart, ri−1). A decision attribute comes directly from the type of
PI. The value of a (A, t)close attribute is the number of other occurrences
of pattern instance of type t that are in A-closeness-spatio-temporal relation
with (PI, (rstart, ri−1)). Each such occurrence must be represented by exactly
one row of DT ′i . If we take any other row of DT ′i , where additional attributes
have values (PI2, r1, r2), we can tell 1. if PI and PI2 are close in evi, by
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checking if Ci contains a corresponding pair. 2. what is Allen’s relation be-
tween (rstart, ri−1) and (r1, r2). 3. what is the type of PI2. This information
is sufficient to compute the value of each attribute (A, t)close in the newly
added row. By analogy, we can tell if two pattern instances are remote by
checking if Cremotei does not contain a corresponding pair. Therefore we can
also compute the value of each (A, t)remote attribute.

So far we have proven that DT ′i−1, Oi−1, Oi, Ci, Cremotei is sufficient to
construct new rows in DT ′i that were not present in DT ′i−1.

To complete the proof we will show that changes in the conditional attri-
butes of other rows can be updated on the basis of available information:

Suppose there is an occurrence of pattern instance PI, with a correspon-
ding row in DT ′i−1 with additional attributes (PI, rstart, rend), rstart < rend <
ri−1 and a conditional attribute labeled by (A, t)close such that the value of
this attribute changes in this row in DT ′i . This is possible iff:

1. there is a pattern instance PI ′ of type t which is close to PI in evi−1

and

2. an occurrence (rstart′ , rend′) of PI ′ of type t is in A Allen relation to
(rstart, rend)

and at least one of the two conditions did not hold at revision ri−2. It is
possible iff:

1. PI ′ was not close to PI at revision ri−2 or

2. the occurrence (rstart′ , rend′) was not yet known at this revision (i.e.
r′end = ri−1), which is equivalent to the statement that Oi\Oi−1 contains
a triplet (PI, rstart′ , rend′).

In the latter case we know that the triplet (PI ′, rstart′ , rend′) corresponds
to a newly created row in DT ′i , which is covered above, since according to
Fact 21, each spatio-temporal relation between (PI, (rstart, rend)) and
(PI ′, (rstart′ , rend′)) corresponds to inverted spatio-temporal relation between
(PI ′, (rstart′ , rend′)) and (PI, (rstart, rend)).

In the former case Ci \Ci−1 contains a pair {PI, PI ′}. If we look at row
from DT ′i such that its additional attributes are (PI ′, rstart′ , rend′) for some
rstart′ , rend′ , we can determine the Allen’s relation between (rstart, rend) and
(rstart′ , rend′), and the type of PI ′. Therefore for each such case we can find
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a corresponding closeness attribute and increase it by 1 in the row related to
the triplet (PI, rstart, rend).

Similarly: suppose there is an occurrence of pattern instance PI, with
a corresponding row in DT ′i−1 with additional attributes (PI, rstart, rend),
rstart < rend < ri−1 and some conditional attribute labeled by (A, t)remote

such that the value of this attribute changes in this row in DT ′i . This is
possible iff:

1. there is a pattern instances PI ′ of type t which is remote to PI in evi−1

and

2. some occurrence (rstart′ , rend′) of PI ′ of type t is in A Allen relation to
(rstart, rend)

and at least of the two conditions did not hold at revision ri−2. It is possible
iff:

1. PI ′ was not remote to PI at revision ri−2 or

2. the occurrence (rstart′ , rend′) was not yet known at this revision (i.e.
r′end = ri−1), which is equivalent to the statement that Oi\Oi−1 contains
a triplet (PI, rstart′ , rend′).

In the latter case we know the triplet (PI ′, rstart′ , rend′) corresponds to a
newly created row in DT ′i , which is covered above.

In the former case Cremotei−1 \Cremotei contains a pair {PI, PI ′}. If we look
at row from DT ′i such that its additional attributes are (PI ′, rstart′ , rend′) for
some rstart′ , rend′ , we can determine the Allen’s relation between (rstart, rend)
and (rstart′ , rend′), and the type of PI ′. Therefore, we can find a corresponding
remoteness attribute and decrease it by 1 in the row related to the triplet
(PI, rstart, rend).

Theorems 1, 3, 5 and 6, together with supporting Fact 26, yield an adap-
tive algorithm for evaluating the DT ′ decision table along with the evolution
of the system: We start with empty DT ′0 and with each revision we modify it
according to the rules described in the proof of Theorem 6. In practice, the
cost of computation at each revision depends on the number of entities af-
fected by it and changes in the sets Instri (Section 6.3.5), Oi (Section 6.5.7),
Ci and Cremotei (Section 6.5.6). The changes of these sets in subsequent re-
visions tend to be very small. This statement is experimentally validated in
experiments described in Appendices A.2-A.4.2.
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Running a regular rule-based classification algorithm on the decision table
produces a set of classification rules which are in fact spatio-temporal rules.
This concept is further explored in the following section, which describes a few
possible applications of this model together with their empirical validation.

6.7 Empirical validation of the proposed mo-
del

This section describes how the proposed formal framework was validated
empirically in a few different applications.

6.7.1 Data used in experiments

The research described in this thesis was validated on the history of the
development of a few popular open source projects, whose source code is ma-
intained in publicly available SCM, which was Subversion ([4]) or Git ([2]),
and whose issues are tracked in a publicly available issue tracker, which pre-
dominantly was Jira ([3]) or Bugzilla ([22]). Some of the methods described
in this thesis require both data sources. In such case, it is assumed to be
synchronized by a procedure described in section 2.2.4, so that each commit
is always bound to one or more issues from the issue tracker. The data that
was used covers at least three years of active development from an early stage
and it includes at least 5000 commits in the main development branch (with
one exception described below).

Detailed information about specific software systems is given in the fol-
lowing list:

� ArgoUML ([5], [11], [10]) is a simple, old-fashioned UML editor, which
used to be very popular. The SCM of this software (along with Xer-
ces2j and JHotDraw) is frequently used as the source of data in mining
software repositories research. The analyzed evolution of this software
spans from January 1998 to December 2011.

� Wildfly ([20], [19], [18]) is a popular Java application server. The ana-
lyzed evolution of this software spans from June 2010 to June 2013.
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� Xerces2j ([21], [9], [8]) is a popular Java XML Parser. The analyzed
evolution of this software spans from November 1999 to May 2008.

� JHotDraw ([7], [14]) is a Java framework for 2D graphics. The analyzed
evolution of this software spans from October 2000 to November 2012.
The software was actively developed in this period, but the number of
corresponding revisions was as little as 670.

� Elasticsearch ([13], [12]) is a popular search engine. The analyzed evo-
lution of this software spans from February 2010 to September 2017.

� Lucene-solr ([16], [15], [8]) is a popular search engine. Its analyzed
evolution spans from September 2001 to November 2016.

� Struts1 ([17], [9], [8]) is a formerly popular java web framework. Its
analyzed evolution spans from May 2000 to December 2008.

6.7.2 Prediction of potential design anti-patterns

In this section we describe the method of using spatio-temporal rules to find
spatio-temporal areas where certain types of design anti-patterns are likely
to appear. The method is conceptually presented in Figure 6.4: Arrow 1 cor-
responds to the process of training the spatio-temporal rules on the training
evolution, according to the description in Section 6.6.4. Arrow 2 corresponds
to the interpretation of spatio-temporal rules in the context of test evolution,
according to the description in Section 6.6.1. Arrow 3 corresponds to the en-
coding of all spatio-temporal relations from the test evolution, according to
the description in Sections 6.6.2-6.5.6. Arrow 4 corresponds to the verifica-
tion of the prediction quality described below. Taking this approach, we mine
the spatio-temporal rules on the data derived from the evolution of the tra-
ining system and then check how well these rules describe spatio-temporal
relations from the test system.

Classification algorithm

In this research we use a C4.5 ([303]) unpruned decision tree algorithm to
mine spatio-temporal rules. It produces a set of non-conflicting rules (see
Section 4.1.4). Each clause in the rules that are thus produced matches De-
finition 47. To be more precise, it takes the form (T,A, s,N), where each N
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Figure 6.4: Conceptual presentation of the validation of detection framework:
1 – spatio-temporal rules mining, 2 – interpretation of the rules in test evo-
lution, 3 – finding occurrences of pattern instances and their spatio-temporal
relations 4 – verification of prediction quality.

can be either: 1. N = {n ∈ N : n ¬ nthresh} or 2. N = {n ∈ N : n > nthresh},
where nthresh is a natural number. This means that such rules can be inter-
preted unambiguously according to definitions given in Section 6.6.1 in any
subevolution of any software.

Prediction of occurrences of design anti-pattern

Facts 30 and 31 provide an equivalence between appropriate spatio-temporal
relations, which are used to construct the decision table and interpretation
of spatio-temporal rules given in Definitions 45-47. In practice, this means
that if spatio-temporal rules have good prediction quality on the test deci-
sion table, their interpretation accurately aims at areas where corresponding
design anti-patterns occur in the test evolution. In particular, it can be used
to predict where certain design anti-pattern may occur in the future, which
is a potential application of the proposed framework in automated tools12

which support the software development process.
The theory outlined earlier in this chapter, specifically Theorems 1, 3 and

6, allow us to state that spatio-temporal rules can be efficiently computed
along with the evolution of the system in an adaptive manner. At a given
revision r we can take spatio-temporal rules mined from the subevolution that
ends at r, compute its interpretation and then select these spatio-temporal
areas that cover revisions after r. Another way of looking at the matter is that

12For example tools built into Integrated Development Environment.
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the revision r, which separates training data from test data, slides forward
along with new commits. The training data is a sub-evolution before r and
test data is the sub-evolution that starts with r. In such a setting, if we
consider r to be the present moment, the test data can be perceived as the
future evolution of the system.

6.7.3 The quality of spatio-temporal prediction

The proposed framework was empirically validated on the data derived from
the evolution of systems listed in Section 6.7.1. Every dataset was used as
a training evolution and tested against all other datasets. When the same
dataset was used as training and test data, the training evolution was built
from the first 70% revisions, and the test evolution – from the last 30% of
revisions of the entire system history. This was done to simulate the detection
of future occurrences of design anti-patterns, according to the description
from the preceding paragraph.

The framework was tested in many configurations summarized in Table
6.3. Detailed results are given in Appendix A.6.1.

As we can see, the results of identification of individual types of design
anti-patterns, have very high precision and at least moderate recall. Outstan-
dingly good results are reported for AnemicEntity. We can hypothesize that
this is related to the fact that AnemicEntity appears to be a repellent static
pattern (see Section 6.7.4 below). The average F1 score for prediction of a
single type of a design anti-pattern is 0.81.

The last two rows of Table 6.3 compare two configurations: 1. where all
types of design anti-pattern are equated, which means that the algorithm
has to predict areas where some design anti-patterns are, without telling
their type, and 2. where each type of design anti-pattern was a separate
decision class and the algorithm has to discern spatio-temporal areas with
their occurrences. We can see that in the latter case the prediction quality is
significantly worse. However, in terms of F1-score, the quality of prediction
when all types of design-anti patterns were equated is 0.84, which makes it
better than the average prediction of individual types.

6.7.4 Applicability to other domains

The preceding sections described the formal framework for encoding spatio-
temporal relations in the evolution of the system, mining the spatio-temporal
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Configuration Avg. precision Avg. recall reference table
DataClump 1,00 0,75 A.13
SwissArmyKnife 0,84 0,57 A.14
AnemicEntity 1,00 0,94 A.15
BaseBean 1,00 0,74 A.16
Blob 0,99 0,51 A.17
YoYo 1,00 0,65 A.18
CircularDependency 0,98 0,58 A.19
BrainClass 1,00 0,81 A.20
any-pattern 0,94 0,72 A.21
differentiate 0,92 0,39 A.22

Table 6.3: The average quality of prediction of spatio temporal areas where
occurrences of certain design patterns may appear. Rows with the names of
the anti-pattern relate to the experiment where the model was trained to pre-
dict only this single type. The configuration called “any-pattern” corresponds
to the experiment where all types of design-patterns were equated. The con-
figuration called “differentiate” corresponds to the experiments where each
type of a design-pattern was a separate decision class.

rules and assessing their predictive quality in the matter of predicting occur-
rences of popular design anti-patterns. Yet, the proposed method is more
versatile and with some modifications can be applied to other tasks as well.
The following sections describe exemplary applications and conclusions from
the experiments described in this thesis.

Good and poor predictors of spatio-temporal patterns

In some configurations of the experiments described in Appendix A.6, the
training and test data came from two different software systems. We can ob-
serve that the prediction quality is generally significantly better when we use
certain systems to train the model. We can call these systems good predictors.
By analogy: systems, whose use in this manner produces poor prediction qu-
ality can be called poor predictors ([369] discusses similar concepts). If we
take into account the configuration with the best F1 measure described in the
preceding paragraph, we can observe that: Wildfly and ArgoUML are good
predictors (average F1=0.95) and JHotdraw is a bad predictor (F1=0.62).

In the case of systems like [7], this can be expected, since the available
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evolution of the system is relatively short (see Section 6.7.1), but in the
case of other systems this phenomenon might be connected to the type of
the system or the specific development process. The nature of this matter
appears to be an interesting problem for further research.

Applicability to defect prediction

Please recall from Section 5.2.8 that defect prediction is a task in mining
software repositories whose goal is to predict the number and the location of
defects in the system source code. According to (e.g. [166], [167]), a depen-
dency to an anti-pattern instance makes a class more likely to contain a bug.
In terms of this thesis (see Section 6.5.2) this can be rephrased: entities from
neighborhoods of instances of design anti-patterns are more likely to have
a bug than those from their faraways. This view is based solely on spatial
relations in the code. The question arises if spatio-temporal relations can be
just as useful for defect prediction.

In Section 6.6.3 we have defined conditions that allow us to encode the
spatio-temporal relations in the entire evolution between instances of design
anti-patterns and other subgraphs. These are: 1. ability to uniquely identify
the subgraph in each revision of the evolution 2. ability to define its lifespan.
In the following paragraphs we show how these two notions can be defined
for occurrences of defects in the software system. Conceptually, we assume
that each defect has only a single occurrence that starts at the revision in
which the defect was introduced and ends at the revision that actually fixes
the problem. Please recall from Sections 2.2.1, 2.2.2 and 2.2.4 that in the
software development process we may identify which commits are actual
fixes of a defect in the software (informally: bugfixes) and which files are
modified in it. We can heuristically assume that such a bugfix is always the
final revision in the occurrence of a defect. The method of finding the initial
revision when a defect occurred in the source code13 may be based on more
complex assumptions briefly described in the following paragraphs. They also
describe different perspectives on the matter of defining which code entities
constitute SSn? subgraph that represents the bug.

Single revision lifespan In arguably the most simplified approach we
may consider that each bugfix is a sole isolated occurrence of a defect, whose

13It is the problem of bug-origin described in Section 5.2.8.
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lifespan is limited to only a single revision. In such a setting the problem of
unique identification of such a subgraph is trivial, as it is only present in a
single revision and it may be identified by the set of all entities which are
modified in the revision. This approach may be enhanced by splitting such
a subgraph into its connected components, and treating each as a separate
instance of the bug. Again, the identity of such a connected component is
given by the set of all its nodes.

Heuristic identification of lifespan In the approach described in the
previous paragraph the temporal range of the defect is related to the actual
timing of the bugfix rather than to the entire presence of the defect in the
source code of the system. To overcome this limitation one needs to find out
when the specific bug was actually introduced. Certain heuristics mentioned
in Section 5.2.8 can be helpful in this respect. A method proposed in [311],
with additional improvements described in [194], identifies the origin of the
bug by (simplifying a bit) finding a commit that introduced or changed the
same lines in the source code that were modified in the bugfix commit. There
are many variants of this method (see [299]), some of them also related to
the structure of the source code, such as software snapshot, rather than to its
textual contents (see [95]). Therefore, we can heuristically identify the bug-
introducing commit by finding the revision which changes the same entities
that are modified in the bugfix. In such a setting the occurrence of a defect
consist of revision between bug-introducing commit and the bugfix.

Improved static patterns detection

Section 6.4 describes purely static methods that identify instances of certain
design anti-patterns in a given software snapshot. Such a software snapshot
is always part of broader software evolution and we can mine certain spatio-
temporal rules in this software evolution, as described in Section 6.6. From
the interpretation of these rules (see Section 6.6.1) for a given revision r
and any type of pattern T , we can derive two “areas” of the SSnr graph:
Where instances of T are likely to be present, and where they are unlikely to
be present. Consequently, we can use spatio-temporal rules to improve the
identification quality of any static classifier.

Static detectors described in Section 6.4 can tell if a given subgraph is an
instance of a specific design anti-pattern, but spatio-temporal rules, described
in Section 6.6.4, can tell if this subgraph is in a spatio-temporal area, where
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one can expect an instance of the same design anti-pattern. These two out-
puts can be combined into a single compound classifier. Formally: Let C be
a static classifier of type T , as defined in Definition 30, R+ =

{
R+

1 , . . . , R
+
n

}
be a set of spatio-temporal rules with decision T , R− =

{
R−1 , . . . , R

−
n

}
be

a set of spatio-temporal rules with decision NOT T , SSnr be a software
snapshot at revision r, which is an element of software evolution Ev and let
G ∈ P(SSnr).

We will say that G is covered by a spatio-temporal rule Ri at revision r if
there are two revisions rstart ¬ r ¬ rend such that all nodes of G are present
in all revisions in the interval (rstart, rend) and occurrence (G, (rstart, rend)) is
covered by Ri. With this notation we can define the following compound
classifiers for a fixed revision r:

C+R+
(G) =

1 if C(G) = 1 and G is covered by a rule from R+

0 otherwise
(6.15)

C−R
−

(G) =

1 if C(G) = 1 and G is covered by none of the rules from R−

0 otherwise
(6.16)

Conceptually, C+R+
(G) is a classifier that considers a given graph to be

an instance of a specific pattern only if both conditions hold: it has a specific
static structure defined by C and it appears in a specific spatio-temporal
area defined by positive rules from R+.
Analogously: C−R

−
(G) is a classifier that considers a given graph to be an

instance of a specific pattern only if both conditions hold: it has a specific sta-
tic structure defined by C and it appears outside of specific spatio-temporal
area defined by negative rules from R−.

We can further combine the following two classifiers into another one:

C−R
−+R+

(G) =

1 if C−R
−

(G) = 1 and C−R
−

(G) = 1
0 otherwise

(6.17)

Conceptually, this combines the static classifier C with the knowledge
about both positive and negative spatio-temporal rules in software evolution.
Clearly, such a compound classifier can reduce the number of false positives
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but also increase the number of false negatives, thus it does not necessarily
improve the quality of static classification. In practice, it appears that such a
construct improves the classification quality by an average of 4% in terms of
F1 measure, if we mine the spatio-temporal rules from the very beginning of
the software evolution and use them to identify static patterns in a separate,
final period of this evolution. Details of a respective experiment is given in
Appendix A.6.2

Attractors and repellents

The decision table described in Section 6.6.2 provides information about all
spatio-temporal relations in software evolution. In particular, we can use it to
derive the number of pairs of close occurrences of pattern instances. Formally,
for any two T1, T2 such that T1 and T2 are types of design anti-pattern, we
can tell from the decision table the total number of pairs (o1, o2) such that
o1 is the occurrence of a pattern instance of type T1 and o2 is the occurrence
of a pattern instance of type T2 and these pattern instances are close. We
will call each such pair an attracting premise for (T1, T2). Analogously we
can tell from the decision table the number of pairs (o

′
1, o

′
2) such that o

′
1 is

the occurrence of a pattern instance of type T1 and o
′
2 is the occurrence of a

pattern instance of type T2 and these pattern instances are remote. We will
call all such pairs repelling premise for (T1, T2). If the number of attracting
premises is significantly higher than the number of repelling premises for
some (T1, T2), that these types “attract” each other, so that it is more likely
to find an instance of T1 close to T2 or T2 close to T1. If the number of repelling
premises is significantly higher, we can expect that these types “repel” each
other. To measure this in a formal manner, we introduce the concept of
attraction ratio:

Definition 49. Let T1 and T2 be two different types of design anti-patterns,
Attract(T1,T2) denote the number of attracting premisses between T1 and T2,
Repell(T1,T2) denote the number of repelling premisses between T1 and T2.

The Attraction ratio of T1 and T2 is

Repell(T1,T2) − Attract(T1,T2)

Attract(T1,T2) +Repell(T1,T2)

The attraction ratio measures how biased a given pair of design anti-
patterns is towards the attracting or repelling relation. Clearly, the value of
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this ratio can span form -1 (if we only derived attracting premisses) to +1
(if we only derived repelling premises). The value of it is 0 if the number of
both types of premisses is equal.

As experimentally validated, Anemic Entity is the most repelling type of
a design anti-pattern, as it has attraction ratio greater than 0.6 with three
other types, and with all other types – the value is around 0.2. YoYo seems to
be generally the most attracting type, but with only one exception of the pair
(YoYo, CircularDependency), which is the pair with the greatest attracting
ratio observed (0.78). For details, please refer to Experiments A.7.

6.8 Resume - overall pattern detection fra-
mework

This chapter describes the overall framework of mining and using spatio-
temporal rules in the software development process, which is a key contribu-
tion of the current thesis.

� Section 6.1 provides information about the formal model of represen-
tation of the software structure and its evolution.

� Section 6.2 explains how this model can be built in an effective adaptive
manner from data available in the actual systems such as SCM.

� Section 6.3 provides a formalism for the detection of static patterns,
such as design anti-patterns. A formal framework for expressing the
complexity of such detection is also provided as well as an efficient
adaptive method of finding static patterns in the course of software
evolution.

� Section 6.4 describes detection methods for a few popular design anti-
patterns together with their complexity, both expressed in a formal
manner described in Section 6.3.

� Section 6.5 explains how a single static pattern can be viewed in time,
along with the evolution of the software. Based on that, concepts of
spatial relations between two static patterns is formally introduced,
namely: closeness and remoteness (see Sections 6.5.1 - 6.5.3).
Also temporal relations between static patterns are formally defined

174



and a combination of the two: the spatio-temporal relation between
patterns, which is one of key concepts in this thesis (Sections 6.5.4 -
6.5.5).

� Sections 6.5.6 - 6.5.7 describe in a formal manner how spatial, temporal
and spatio-temporal relations can be computed in an efficient adaptive
manner along with software development.

� Sections 6.6.1 and 6.7.3 define spatio-temporal rules and their interpre-
tation in a formal manner and provide means to assess their quality in
given software evolution.

� Sections 6.6.2 - 6.6.4 describe an efficient adaptive method of mining
spatio-temporal rules in the course of software evolution.

� Sections 6.7 - 6.7.4 describe how the framework for mining spatio-
temporal rules was empirically validated to detect occurrences of design
anti-patterns and provide a few other examples of its other uses.
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Chapter 7

Conclusions

The thesis presents a formal framework that enables us to gather, model
and predict spatio-temporal phenomena in the life of a system under de-
velopment. It starts with the representation of the structure of the source
code of a system in the form of a property multigraph (see Section 6.1). Sec-
tion 6.2.1 describes some simplifications which make the graph-theoretical
model different from the respective semantic of the programming language.
They make certain computations easier and, as experimentally validated in
experiments described in Appendix A.1, they produce insignificant error in
practical applications.

The model also includes a formal method for identifying instances of
design anti-patterns in software, which are also described in graph-theoretical
terms. In general, this can be as hard as the SUBGRAPH-ISOMORPHISM
problem (See Section 6.3.3). However, incorporation of some domain expert
knowledge in the field of software engineering described in Section 6.3.5,
allows us to build a heuristic that appears to be very efficient in the practical
application of mining a few popular design anti-patterns. This statement has
been empirically confirmed by experiments described in Appendix A.5.2.

Section 6.3.4 introduces a formal measure of complexity of a static pattern
detection, which is based on the number of nodes that have to be visited to
tell if a given subgraph is an instance of that pattern. A generalized version of
this problem is equivalent to regular navigational query in property graphs
([291]), but again the use of domain knowledge allows us to produce an
efficient heuristic in the specific application of mining design anti-patterns.
Its effectiveness has been empirically validated by experiments described in
Appendix A.4.

176



One of the applications of this research is a set of classifiers for a few
popular design anti-patterns, defined in the aforementioned formalism and
described in Section 6.4. Their effectiveness has been empirically validated
and compared to other published solutions in experiments described in Ap-
pendix A.5.1.

The fundamental concept of this thesis is a formal framework for de-
scribing and mining spatio-temporal relations between different instances of
design anti-patterns. If comprises two different notions: closeness of pattern
instances described in Section 6.5.21 and temporal relations between these
instances described in Section 6.5.5. These concepts are then further used to
introduce the notion of spatio-temporal relations and spatio-temporal rules,
described in Sections 6.5.6 - 6.6.1. The above leads to the key contribution
of this thesis: a method of predicting where and when instances of certain
design anti-patterns can occur in the entire evolution of the software system,
described in Sections 6.7.2-6.7.3. The experiments described in Appendix A.6
yield an empirical proof that the proposed method is capable of predicting
such areas.

The framework can also be used for other applications such as defect
prediction or improved, multi-aspect static pattern detection described in
Section 6.7.4. In particular, the quality of static pattern detection can be
improved on average by 4% in terms of F1 measure, when we take the mi-
ned spatio-temporal rules into account. This statement has been empirically
confirmed in the experiment described in Appendix A.6.2.

The spatio-temporal rules describe the knowledge about spatio-temporal
relations in software development. This model seems to be quite precise,
as evidence from experiments described in Appendix A.6 suggest. Thus, we
can analyze the structure of these rules, or the decision table they were
mined from (see description in Sections 6.6.2-6.6.3) and use it to derive new
concepts. Attractor and repellent design anti-patterns described in Section
6.7.4 are examples of such concepts.

Much attention in this thesis is paid to adaptivity of the proposed algori-
thms, understood in such a way that, after every commit, only a little compu-
tation is needed to have up-to-date data about spatio-temporal relations and
spatio-temporal rules in software evolution. The adaptivity concepts are em-
bedded in: 1. Adaptive construction of software snapshot after each commit
(see Section 6.2.3 and Theorem 1 specifically) 2. Adaptive mining instances

1In fact two different types of closeness are defined.
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of design anti-patterns (see Section 6.3.5 and Theorem 3 specifically). 3. Ad-
aptive evaluation of spatial relations between pattern instances (see Section
6.5.6). 4. Adaptive evaluation of spatio-temporal relations (see Section 6.5.7
and Theorem 6 specifically). The above adaptive solutions, together with
locality properties, whose nature is shown in experiments described in Ap-
pendix A.2, yield effective heuristic methods for mining spatio-temporal rules
in the software development process.

7.1 Verification of hypotheses and goals

We can now conclude with a reference to the research hypotheses and goals
outlined in Chapter 3. Please recall their statements:

� H1: There are statistically significant temporal patterns in the
software development process that can be used to predict the
appearance of anti-patterns

� H2: Incorporation of expert knowledge can produce more ef-
ficient data mining algorithms in the domain of software de-
velopment process

� G1: Formal model of design (anti-)patterns, code smells, and
their evolution

� G2: Approximate model to represent static patterns in so-
ftware systems

� G3: A model to represent temporal patterns in the software
development process

� G4: Efficient mining algorithm especially fitted to the domain
of software development process

The experiments described in Appendix A.6 prove that we can efficiently
predict where and when certain instances of design anti-patterns will be
found, with an average of 0.81 F1 score (see Appendix A.6). Two simplifying
assumptions are necessary to obtain such a result: Firstly, we cannot precisely
predict graphs that correspond to actual pattern instances, in fact, we can
only predict areas (i.e. broader graphs) that are 0-overlapping-close to them
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(see Section 6.5.1). Secondly, in some experiments, we have to group certain
types of design anti-pattern (see Section 6.6.3 and Appendix A.6 for details).
In other words, we cannot predict if a certain single type of pattern is likely
to appear in a given area, but we can predict that an instance of one of a
few types of a design anti-patterns is likely to appear in it. With the above
disclaimers we can consider H1 hypothesis to be confirmed.

In purely theoretical terms, some problems described in this research
are as hard as SUBGRAPH-ISOMORPHISM (see Section 6.3.3) or regular
navigational queries in graphs (see Section 6.3.4). However, some specific
simplifications based on expert knowledge from the domain of software de-
sign and engineering produce efficient heuristics. These include the analysis
of the locality properties in the software development process (see Section
6.2.3 and Appendix A.2), the upper bounds on the length of paths in the
SSn graph (see Section 6.3.4 and Appendix 30, A.4.3) and the use of graph
indices based on software metrics (see Section 6.3.5 and Appendix A.5.2). All
provide an efficient heuristic to mine pattern instances in software along its
development. This allows us to state that hypothesis H2 is confirmed. Ad-
ding the adaptivity concepts referenced earlier in this chapter and described
in detail in Sections 6.2.3, 6.3.5, 6.5.6 and 6.5.7, which are also founded on
the software engineering domain knowledge, allows us to state that goal G4
is also achieved.

Section 6.3 provides a formal model for static patterns, including code
smells and design anti-patterns. Section 6.4 contains definable patterns of a
few popular design anti-patterns. Sections 6.5.4 - 6.5.5 define a formal model
for the lifespan of static patterns and their mutual spatio-temporal relations.
Given the above, we can conclude that goals G1 and G3 are achieved.

The approximate nature of the model is introduced in a twofold manner
in this thesis: First - there is a formal graph-theoretical model described in
Section 6.1 with intended simplifications described in Section 6.2.1. Second
- there is an explicit approximate formalism of definable patterns described
in Section 6.3.2. Consequently, goal G2 is clearly achieved.

7.2 Future Work

This section presents potential extensions of the framework presented in this
thesis and possible further research.
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7.2.1 Different sources of data

Raw data used in this research comes from publicly available SCMs and issue
trackers of a few open-source, community-implemented software systems cre-
ated in Java programming language (see Section 6.7.1). All these assumptions
could be changed: Firstly, one can use the evolution of software that is not
open-source and is developed by small commercial teams. There is evidence
that such software tends to evolve differently (see [51], [112], [119], [132],
[208], [273]). Secondly, one could use data from more software-development-
supporting tools than just SCMs and issue trackers. These include e.g. test
reports ([239]), messages ([84]) or even activities of particular developers
([286], [262]). Lastly, our framework, which is designed specifically to model
the structure of a program written in Java (see Section 6.1), can be applied to
software created in another programming language with some necessary mo-
difications. Arguably, these modifications would be insignificant in the case
of object-oriented languages. Adaptation to other paradigms (e.g. functio-
nal languages) would require significant reworking of the software snapshot
structure.

7.2.2 Advanced model for pattern instance

In simple terms, the model of the structure of the software system used in
this thesis is a multigraph and design patterns are represented as its specific
subgraphs (see Section 6.1.1). The formalism for mining the design patterns
is based on the assumption that we only consider the structure of the graph,
i.e. the names of the nodes are ignored (see Section 6.3.2). In other words, the
model is based only on the structural properties of the graphs. This assump-
tion simplifies the formal framework, while keeping the quality comparable
to current state-of-the-art algorithms in the domain of design anti-pattern
detection (see Section 6.4.8 and Appendix A.5.1). Yet, there is evidence that
information embedded in the names of code entities (lexical properties) can
be used to improve the accuracy of detection (see [188], [192], [214], [243]).

The concept of the lifespan of a pattern instance, described in Section
6.5.4, is founded on the assumption that each instance of the design anti-
pattern can be identified at different revisions of software evolution. Techni-
cally, it is based on the uniqueness of the name of the main entity between
different revisions. This makes it vulnerable to e.g. changes of the name of
an entity in a certain revision. There are heuristics available which cope
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with that problem, and many of them require both structural and lexical
properties of the source code (see [349], [339], [350]). A potential further
development of the framework proposed in this thesis is related to embed-
ding in it lexical properties and to creating a more elaborate concept of the
lifespan of a pattern instance.

7.2.3 Different view on time in software development
process

Non-linear time

In this study it is assumed that the development of the system is done in a
single branch only and that all commits can be ordered linearly. This is a key
assumption, which allows us to build adaptive algorithms of mining spatio-
temporal relations (see Section 6.3.5, 6.5.6 and 6.5.7). In fact, software is
sometimes developed in multiple, parallel branches, and commits in these
branches may interleave over time dimension (see [106]). An extension of the
proposed framework so that it can cover a non-linear development process is
a possible area for further research.

Time resolution

Another possible modification is related to the resolution of time in the ana-
lyzed process. We have assumed that software evolution is a sequence of
software snapshots indexed by all revisions ordered linearly. Then, we ha-
ve analyzed changes between each revision. However, in the model and the
theorems described in Chapter 6 it is not necessary for the revisions to be
subsequent, it is sufficient that the later is after the former. It means that
we may look at changes in the software that are made over arbitrary units
of time, provided that each contains at least one revision. Furthermore, this
may potentially be extended to some process mining techniques (see Sec-
tion 5.1.1), such as hierarchical mining. This would be possible if we could
partition the software evolution into subsequent chunks, where each chunk
consisted of a group of subsequent revisions, then mine spatio-temporal re-
lations on each chunk individually, and then aggregate them on the level of
all the chunks.
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Definition of temporal relation

Allen’s algebra, described in Section 4.3.1, is a helpful formalism, but it can
arguably be too simplifying when it is used to model temporal relations be-
tween intervals of revisions in the software development process. For example,
it cannot measure temporal proximity between intervals. Please note that re-
lation between the separated intervals of revisions are indiscernible in terms
of Allens theory in two cases: when they are separated by a single commit
and when they are separated by thousands of commits. Thus Allen’s algebra
could be replaced by alternative formalism, which would incorporate more
accurate model of temporal relations.

Sequential patterns

The temporal relation described in Section 6.5.5 enables us to express a
relation between only two occurrences of static patterns. Arguably, some of
the techniques of process mining described in Section 5.1.1, such as sequential
pattern mining algorithms, may be used to extend the proposed framework
so that it can also capture more sophisticated temporal phenomena in the
software development process.

7.2.4 Local concepts of closeness and remoteness

We have assumed in this research that two code entities are close if they were
close in any revision in the past. Similarly, two entities are remote, if there
is no revision in which they were close (see Section 6.5.1). This allows us to
construct efficient adaptive algorithms described in Section 6.5.6. In a sense
it makes the relation of closeness and remoteness global. This assumption
might be right for short-lived or not intensively developed software systems,
but it might be oversimplifying in the case of very long software evolutions.
To minimize this effect, one could change the notion of closeness to make it
more “local in time”. This could potentially be done with the use of a sliding
window described in Section 5.1.3.

7.2.5 Rough-software-pattern

In order to define the notion of a random-equivalent (see Section 6.6.3), we
have used concepts of definable and indefinable patterns, super- and sub-
approximation and upper bound and lower bound described in Section 6.3.2.
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They are clearly inspired by the rough sets theory (see [271]). Unlike the
original, however, they are herein derived from the structural indiscernibi-
lity of graphs rather than from the indiscernibility derived from the actual
information system. Since the said graphs represent the structure of the so-
urce code of a software system, we can introduce a generalized concept of
rough software pattern, which itself is arguably an independent area of future
research.

7.2.6 Adaptive mining of spatio-temporal rules

In the proposed framework, the spatio-temporal rules are mined in a quasi-
adaptive manner: the actual decision table that describes spatio-temporal
relations is built adaptively (see Section 6.6.4) and then a rule-based algo-
rithm is run on it. This method is efficient, since the decision table is small
compared to the original data from software evolution. However, the method
can be extended in such a way that actual spatio-temporal rules are also
computed in a fully adaptive manner. This should be possible as the facts
about new spatio-temporal relations are constructed adaptively in each revi-
sion in an iterative manner (see Sections 6.5.7, 6.5.6 and 6.6.4). This means
that these facts can be put into a stream of data, and then we can probably
use an algorithm of mining rules from data streams (see [101], [223], [87]).
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paring and experimenting machine learning techniques for code smell
detection. Empir Software Eng, 21(3):1143–1191, June 2016.

[37] F. Arcelli Fontana and M. Zanoni. A tool for design pattern detec-
tion and software architecture reconstruction. Information Sciences,
181(7):1306–1324, Apr. 2011.

186



[38] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Lan-
guage, 4th Edition. Addison-Wesley Professional, fourth edition, Aug.
2005.

[39] G. Atluri, A. Karpatne, and V. Kumar. Spatio-Temporal Data Mining:
A Survey of Problems and Methods. ACM Comput. Surv., 51(4):83:1–
83:41, Aug. 2018.

[40] L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, and M. Di Penta.
An empirical study on the evolution of design patterns. In Proceedings
of the the 6th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC-FSE ’07, pages 385–394, Dubrovnik, Cro-
atia, 2007. ACM.

[41] L. Aversano, L. Cerulo, and C. Del Grosso. Learning from bug-
introducing changes to prevent fault prone code. In Ninth International
Workshop on Principles of Software Evolution: In Conjunction with the
6th ESEC/FSE Joint Meeting, IWPSE ’07, pages 19–26, Dubrovnik,
Croatia, 2007. ACM.

[42] K. Ayari, P. Meshkinfam, G. Antoniol, and M. Di Penta. Threats
on building models from CVS and Bugzilla repositories: The Mozilla
case study. In Proceedings of the 2007 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’07, pages 215–
228, Richmond Hill, Ontario, Canada, 2007. ACM.

[43] D. Baca, B. Carlsson, and L. Lundberg. Evaluating the cost reduction
of static code analysis for software security. In Proceedings of the Third
ACM SIGPLAN Workshop on Programming Languages and Analysis
for Security, PLAS ’08, pages 79–88, Tucson, AZ, USA, 2008. ACM.

[44] A. Bacchelli, M. D’Ambros, and M. Lanza. Are Popular Classes More
Defect Prone? In D. Rosenblum and G. Taentzer, editors, Fundamental
Approaches to Software Engineering, volume 6013 of Lecture Notes in
Computer Science, pages 59–73. Springer Berlin / Heidelberg, Berlin,
Heidelberg, 2010.

[45] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi treemaps for the
visualization of software metrics. In Proceedings of the 2005 ACM

187



Symposium on Software Visualization, SoftVis ’05, pages 165–172, St.
Louis, Missouri, 2005. ACM.

[46] C. Bartoszuk, G. Timoszuk, R. Dabrowski, and K. Stencel. On Visual
Assessment of Software Quality. e-Informatica Software Engineering
Journal, 8(1):7–26, 2014.

[47] J. G. Bazan and M. Szczuka. The rough set exploration system. In
Transactions on Rough Sets III, pages 37–56. Springer, 2005.

[48] M. L. Bernardi, M. Cimitile, and G. Di Lucca. Design Pattern Detec-
tion Using a DSL-driven Graph Matching Approach. J. Softw. Evol.
Process, 26(12):1233–1266, Dec. 2014.

[49] J. Bevan and E. J. Whitehead. Identification of Software Instabilities.
In Proceedings of the 10th Working Conference on Reverse Engineering,
WCRE ’03, Washington, DC, USA, 2003. IEEE Computer Society.

[50] J. Bevan, E. J. Whitehead, S. Kim, and M. Godfrey. Facilitating so-
ftware evolution research with kenyon. SIGSOFT Softw. Eng. Notes,
30(5):177–186, Sept. 2005.

[51] J. M. Bieman, A. A. Andrews, and H. J. Yang. Understanding Change-
Proneness in OO Software Through Visualization. In Proceedings of the
11th IEEE International Workshop on Program Comprehension, IWPC
’03, Washington, DC, USA, 2003. IEEE Computer Society.

[52] J. M. Bieman and B.-K. Kang. Cohesion and reuse in an object-oriented
system. ACM SIGSOFT Software Engineering Notes, 20(SI):259–262,
Aug. 1995.

[53] D. Binkley. Source Code Analysis: A Road Map. In 2007 Future of So-
ftware Engineering, FOSE ’07, pages 104–119, Washington, DC, USA,
2007. IEEE Computer Society.

[54] A. Binun and G. Kniesel. DPJF - Design Pattern Detection with High
Accuracy. In 2012 16th European Conference on Software Maintenance
and Reengineering, pages 245–254, Szeged, Hungary, Mar. 2012. IEEE.

188



[55] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu. Fair and balanced?: Bias in bug-fix datasets. In Proce-
edings of the the 7th Joint Meeting of the European Software Engine-
ering Conference and the ACM SIGSOFT Symposium on The Foun-
dations of Software Engineering, ESEC/FSE ’09, pages 121–130, Am-
sterdam, The Netherlands, 2009. ACM.

[56] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu. The promises and perils of mining git. In Proceedings
of the 2009 6th IEEE International Working Conference on Mining
Software Repositories, volume 0 of MSR ’09, pages 1–10, Washington,
DC, USA, 2009. IEEE Computer Society.

[57] S. Boroday, A. Petrenko, J. Singh, and H. Hallal. Dynamic analysis
of java applications for multithreaded antipatterns. In Proceedings of
the Third International Workshop on Dynamic Analysis, WODA ’05,
pages 1–7, St. Louis, Missouri, 2005. ACM.

[58] J. C. Bose, W. M. P. van der Aalst, I. Žliobaite, and M. Pechenizkiy.
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[167] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, F. Khomh, and M. Zulkernine.
Evaluating the impact of design pattern and anti-pattern dependencies
on changes and faults. Empirical Software Engineering, 21, Mar. 2015.

[168] S. G. James. An Interactive Interface for Refactoring Using Sour-
ce Transformation. In First International Workshop on Refactoring:
Achievements, Challenges, Effects (REFACE’03), 2003.

[169] P. Jamshidi, M. Ghafari, A. Ahmad, and C. Pahl. A Framework
for Classifying and Comparing Architecture-centric Software Evolution
Research. In 2013 17th European Conference on Software Maintenance
and Reengineering, pages 305–314, Genova, Mar. 2013. IEEE.

[170] N. Japkowicz. The Class Imbalance Problem: Significance and Strate-
gies. In In Proceedings of the 2000 International Conference on Artifi-
cial Intelligence (ICAI, pages 111–117, 2000.

[171] M. Jazayeri. On Architectural Stability and Evolution. In Proceedings
of the 7th Ada-Europe International Conference on Reliable Software
Technologies, Ada-Europe ’02, pages 13–23, London, UK, UK, 2002.
Springer-Verlag.

[172] K. Jeet and R. Dhir. Software Architecture Recovery Using Genetic
Black Hole Algorithm. SIGSOFT Softw. Eng. Notes, 40(1):1–5, Feb.
2015.

[173] H. Kagdi. Improving change prediction with fine-grained source code
mining. In Proceedings of the Twenty-Second IEEE/ACM International
Conference on Automated Software Engineering, ASE ’07, pages 559–
562, Atlanta, Georgia, USA, 2007. ACM.

[174] H. Kagdi, M. L. Collard, and J. I. Maletic. Towards a taxonomy of ap-
proaches for mining of source code repositories. MSR ’05: Proceedings
of the 2005 international workshop on Mining software repositories,
30:1–5, May 2005.

[175] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution. 2007.

201



[176] H. Kagdi, J. I. Maletic, and B. Sharif. Mining Software Repositories
for Traceability Links. In Proceedings of the 15th IEEE International
Conference on Program Comprehension, pages 145–154, Washington,
DC, USA, 2007. IEEE Computer Society.

[177] H. Kagdi, S. Yusuf, and J. I. Maletic. Mining Sequences of Changed-
files from Version Histories. In Proceedings of the 2006 International
Workshop on Mining Software Repositories, MSR ’06, pages 47–53,
Shanghai, China, 2006. ACM.

[178] A. Kalenkova, W. van der Aalst, I. Lomazova, and V. Rubin. Process
mining using BPMN: Relating event logs and process models. Software
& Systems Modeling, pages 1–30, 2015.

[179] N. Karunanithi. A neural network approach for software reliability
growth modeling in the presence of code churn. pages 310–317, Denver,
CO, USA, 1993.

[180] A. Kaur and G. Dhiman. A Review on Search-Based Tools and Tech-
niques to Identify Bad Code Smells in Object-Oriented Systems. In
N. Yadav, A. Yadav, J. C. Bansal, K. Deep, and J. H. Kim, editors,
Harmony Search and Nature Inspired Optimization Algorithms, volume
741, pages 909–921. Springer Singapore, Singapore, 2019.

[181] R. Kazman and Carrière. Playing Detective: Reconstructing Software
Architecture from Available Evidence. Automated Software Engine-
ering, 6(2):107–138, Apr. 1999.

[182] I. Keivanloo. Online Sharing and Integration of Results from Mining
Software Repositories. In Proceedings of the 34th International Con-
ference on Software Engineering, ICSE ’12, pages 1644–1646, Zurich,
Switzerland, 2012. IEEE Press.

[183] P. Kelly. A congruence theorem for trees. Pacific Journal of Mathe-
matics, 7(1):961–968, Mar. 1957.

[184] M. Kessentini, S. Vaucher, and H. Sahraou. Reference data. http:
//www.iro.umontreal.ca/sahraouh/papers/ASE2010/, Jan 2022.

202

http://www.iro.umontreal.ca/ sahraouh/papers/ASE2010/
http://www.iro.umontreal.ca/ sahraouh/papers/ASE2010/
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G. Antoniol, and E. Aimeur. Reference data. http://www.ptidej.
net/download/experiments/ase12/, Jan 2022.

[222] J. Maletic and M. L. Collard. Supporting source code difference analy-
sis. In Software Maintenance, 2004. Proceedings. 20th IEEE Interna-
tional Conference On, pages 210–219. IEEE, 2004.

[223] C. Manapragada, G. I. Webb, and M. Salehi. Extremely Fast Deci-
sion Tree. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1953–1962,
London United Kingdom, July 2018. ACM.

[224] H. Mannila and H. Toivonen. Discovering Generalized Episodes Using
Minimal Occurrences. In 2nd International Conference on Knowledge
Discovery and Data Mining, pages 146–151, 1996.

[225] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of Frequent
Episodes in Event Sequences. Data Min. Knowl. Discov., 1(3):259–289,
Jan. 1997.
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Appendix A

Detailed description of
experiments

This chapter presents the results of experiments conducted within this rese-
arch and referenced in the preceding chapters. Each section provides specific
information about ways to reproduce a respective experiment. General in-
structions on the reproduction of all experiments is given in Appendix B.

A.1 Software snapshot model simplifications

A.1.1 Equinominal methods

Table A.1 shows how many methods were overloaded in the source code of the
analyzed system. The cell in the column labeled Name presents the fractions
of overloaded methods relative to the total number of all methods declared
in a given source code. The cell in the column labeled Name + arguments
presents similarly defined fractions of overloaded methods such that at least
one of the overloading methods has the same number of arguments. The cell
in the column labeled Name + arguments + return type presents similarly
defined fractions of overloaded methods such that at least one of the over-
loading methods has the same number of arguments and a different return
type. As the model proposed in this thesis equates overloaded methods with
the same number of arguments, the values in the last two columns show
what fraction of the actual source code is wrongly represented in the model
and how it affects the evaluation of the call graph, respectively. The error
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Dataset Name Name + argu-
ments

Name + argu-
ments + return
type

JHotDraw 3,06% 0,20% 0,00%
ArgoUML 1,58% 0,17% 0,02%
Wildfly 1,60% 0,18% 0,08%
Elasticsearch 4,23% 0,73% 0,57%
Lucene solr 2,34% 0,26% 0,11%
Xerces 2,61% 0,32% 0,08%
Struts 2,73% 0,10% 0,04%

Table A.1: The fraction of equinominal methods in experimentally used data.

appears to be insignificant. To reproduce this experiment run class Unino-
mialMethodsCountExperient.

A.2 Locality properties

Experiments in this section validate locality properties described in Section
6.2.3.

A.2.1 Size of a typical commit

Table A.2 shows the distribution of the number of files which are modified
within a single commit. The values in the cells give information what fraction
of all commits satisfy the condition: “the number of files modified in the
commit was within the range specified in the column header”.

The table shows that in the course of development of the analyzed sys-
tems, the number of files modified by a commit is typically relatively low,
depending on the system: not exceeding 5 files in the case of 64-96%, and not
exceeding 10 files in the case of 76-99% commits. The total number of sour-
ce code files in these systems ranges from thousands to tens of thousands,
making the relative size of a change very insignificant. To reproduce this
experiment run class LocalityPropertiesExperiment.
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Size of commit [0-5] (5-10] (10-25] (25-50] (50-100]
JHotDraw 64% 12% 11% 8% 5%
ArgoUML 96% 3% 1% 0% 0%
Wildfly 70% 12% 10% 5% 3%
Elasticsearch 79% 9% 8% 4% 1%
Lucene solr 90% 4% 4% 1% 1%
Xerces 90% 5% 3% 1% 1%
Struts 86% 6% 5% 2% 1%

Table A.2: The approximate distribution of the number of source code files
modified within a single commit.

A.2.2 Size of Filesaff? set

The practical savings from the use of adaptive algorithm described in section
6.2.3, are directly related to the fraction of files that are affected1 by a single
commit. To be more precise, we can say that it is the fraction of all such files
relative to the number of all files in the program source code.

This experiment verifies the fraction of files affected by a single commit.
Technically, it analyzes the number of files in the Filesaff(r1,r2) relative to the
number of files Filesr1 , where r1 and r2 are consecutive revisions. Please
recall from section 6.2.3 that the adaptive construction of system evolution
is motivated by the fact that only files from Filesaff? need to be parsed
at each revision. Thus, the smaller this set, the more efficient the adaptive
algorithm. The results of this experiments are presented in table A.3: Cells
in this table give information on the fraction of commits that satisfy the

following condition: ”the ratio of
|Filesaff(r1,r2)|
|Filesr1 |

satisfies the condition from the
column header, where the revision of the commit is r2 and the preceding
revision in software evolution is r1.”

For example, the value 57% in the cell in row JHotDraw and column ¬ 5%
indicates that in 86% of all commits in the analyzed evolution of JHotDraw
system, the power of Filesaff? was within 0 and 5% of the power of Files
right before the commit”. Other cells in the table can be read accordingly.

To reproduce the experiment, run class AffectedClassesSizeExperiment.

1The definition of affected file is given in 6.2.3.
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Dataset ¬ 5% ¬ 10% ¬ 25% ¬ 50%
JHotDraw 57% 70% 83% 91%
ArgoUML 87% 93% 97% 99%
Wildfly 72% 85% 95% 98%
Elasticsearch 79% 88% 95% 98%
Lucene solr 81% 89% 96% 99%
Struts 99% 99% 99% 99%
Xerces 86% 94% 98% 99%

Table A.3: The approximate distribution of the power of Filesaff relative to
the number of files in the analyzed system.

A.2.3 Volume of a fragment of a system under deve-
lopment

The preceding experiments refer to the volume of modification in the system
source code that are performed within a single commit. Yet, there still mi-
ght be a situation when many frequent commits altogether modify a large
fragment of the system source code, while each separately modifies only a
small portion. Naturally, in such case the benefits arising from the adaptive
evaluation of the software evolution are reduced.

This experiment shows what fraction of the system source code is typically
under development. For each commit c that took place at time t and period
length p (e.g. p = 1hour) we can calculate how many files were modified in
c and all other commits that preceded c and took place after time t − p.
Selected results are presented in Table A.4. Each column defines a condition
on the number of modified files. Each row is associated with a certain fixed
period. Each cell gives the fraction of commits which satisfy the condition
indicated by the column in the period designated by the row.

For example the value 67% in the first cell shows that 67% of commits
in the analyzed evolution of JHotDraw satisfied the condition: “the number
of files modified in the commit and later than 1h before it did not exceed
50”. Clearly, large values of data presented in the table implicitly indicate
the efficiency of an adaptive algorithm described in section 6.2.3, as they
mean that at the same time only a small fraction of the system source code
is being modified. This conceptual characteristic is called temporal locality.
Any analyzed system usually bears this characteristic.

An interesting observation that can be drawn from this experiment is
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that evolutions of some systems, namely: Wildfly and Elasticsearch, tend to
lack temporal locality. One can hypothesize that this is due to the fact that
both systems are popular, open-source, community-developed initiatives with
large numbers of active committers (around 350 and 1700, respectively). To
reproduce the experiment run class LocalityPropertiesExperiment.

A.3 Pattern instances changing over time

This experiment validates statements from Section 6.5.6, by showing how
often a pattern instance changes the set of its entities between subsequent
revisions.

We say that a pattern instance is entity-modified by revision r if it is
present at revision r and at the revision that directly precedes r and the set of
entities of this pattern entity differs between these two revisions. (see Section
6.3.1 for formal definitions). Let pair (i, r) denote the fact that a pattern
instance with identity i was present at revision r in the analyzed system.
Table A.5 shows the fraction of such pairs where the pattern instance with
identity i was entity-modified by revision r. To reproduce this experiment,
run class ChangeOfPatternInstanceEntitiesSizeExperiment.

A.4 D-bounded classifiers

This section describes experiments related to the concept of D-bounded clas-
sifier defined in Section 6.3.4.

A.4.1 The fraction of software entities that are
D-reachable from affected entity

Table A.6 shows the approximate distribution of the fraction of entities that
are D-reachable from an affected entity, where D corresponds to the respec-
tive classifier for design anti-pattern defined in Section 6.4. Usually, in all
considered types of a design anti-pattern in at least half of all revisions the
fraction of such entities did not exceed 1%. To reproduce this experiment run
class SizeOfGraphBoundedByPathStartingAtAffectedEntitiesExperiment.
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Number of files ¬ 50 ¬ 100 ¬ 250 ¬ 500
JHotDraw

1 hour 67% 83% 94% 96%
2 hours 67% 82% 93% 96%
1 day 59% 77% 92% 96%
3 days 50% 73% 91% 96%

Wildfly
1 hour 4% 7% 14% 25%
2 hours 4% 7% 14% 25%
1 day 4% 7% 14% 25%
3 days 3% 6% 12% 22%

ArgoUML
1 hour 82% 91% 97% 99%
2 hours 80% 90% 96% 97%
1 day 67% 85% 95% 96%
3 days 45% 70% 93% 96%

Elasticsearch
1 hour 13% 15% 20% 26%
2 hours 12% 15% 20% 26%
1 day 10% 14% 19% 26%
3 days 10% 14% 19% 26%

Lucene solr
1 hour 74% 84% 94% 97%
2 hours 72% 84% 93% 97%
1 day 51% 72% 91% 97%
3 days 23% 48% 84% 97%

Xerces
1 hour 75% 85% 94% 98%
2 hours 71% 84% 93% 98%
1 day 69% 79% 91% 97%
3 days 65% 72% 84% 97%

Struts
1 hour 72% 77% 80% 88%
2 hours 81% 77% 80% 83%
1 day 86% 73% 98% 99%
3 days 86% 61% 98% 99%

Table A.4: The fraction of commits that modify the number of files given in
column headers.
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Dataset
Fraction of entity-modified
pattern instances

Elasticsearch 2 o/oo

JHotDraw 5 o/oo

Lucene solr 1 o/oo

Struts 2 o/oo

Wildfly 6 o/oo

Others 0 o/oo

Table A.5: The fraction of entity-modified pattern instances in the entire
evolution of the analyzed systems

A.4.2 Fraction of entities that are 1-distance-close to
the instance of some anti-pattern

This experiment empirically validates the efficiency of adaptive heuristics de-
scribed in Section 6.6 and 6.5.6. The values given in table A.7, show that,
typically, in as many as 99% of cases only less than 5% of software entities
are 1-distance-close to a pattern instance. This statement does not hold for
Struts, for which we can state that always the number of entities 1-distance-
close to a pattern does not exceed 10% and 25% of the number of all entities
respectively. To reproduce this experiment run class StaticPatternsNeighbor-
hoodSizeExperiment.

A.4.3 Longest containment, call and inheritance paths

Efficient evaluation of some metrics (see Section 6.2.1) and complexity of so-
me classifiers of design anti-patterns (see Section 6.4) rely on three numbers:

� H - the maximum depth of inheritance tree, which is equal to the length
of the longest path in SSn built from edges labeled extend,

� T - the maximum depth of containment relation, which is equal to the
length of the longest path in SSn built from edges labeled contain and

� C - the maximum length of call path. Here a call path is every path
that: connects any two nodes e1 and e2, is built from edges labeled
call only and there is no shorter path built only from call edges that
connects e1 and e2.
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Dataset Paths for pattern ¬ 1% ¬ 2% ¬ 5% ¬ 10%

argouml

SAK 82% 83% 83% 86%
YOYO 89% 89% 91% 93%
BB 83% 83% 84% 86%
ANEMIC 83% 84% 89% 92%
BC/Blob 83% 83% 86% 90%

lucene

SAK 73% 73% 73% 73%
YOYO 83% 83% 88% 89%
BB 73% 73% 74% 75%
ANEMIC 73% 73% 75% 76%
GC/BC/Blob 73% 73% 74% 74%

elasticsearch

SAK 53% 54% 56% 58%
YOYO 58% 60% 66% 68%
BB 54% 55% 57% 59%
ANEMIC 56% 59% 63% 74%
BC/Blob 55% 57% 61% 68%

jhotdraw

SAK 44% 44% 46% 69%
YOYO 60% 62% 71% 74%
BB 44% 45% 51% 57%
ANEMIC 44% 46% 52% 59%
BC/Blob 44% 45% 48% 56%

struts

SAK 68% 68% 71% 71%
YOYO 69% 70% 70% 72%
BB 69% 71% 73% 76%
ANEMIC 71% 74% 78% 81%
BC/Blob 71% 73% 76% 80%

wildfly

SAK 39% 39% 42% 45%
YOYO 53% 55% 58% 60%
BB 40% 45% 50% 56%
ANEMIC 48% 52% 56% 59%
BC/Blob 42% 47% 54% 59%

xerces

SAK 69% 71% 71% 73%
YOYO 72% 72% 74% 74%
BB 70% 71% 73% 73%
ANEMIC 70% 71% 73% 75%
BC/Blob 70% 71% 73% 75%

Table A.6: The approximate distribution of the number of entities that are
D-reachable from affected entities. The values in the cells show the fraction
of all revisions in system evolution in which the number of all entities that
are D-reachable from an affected entity (see Definition 21) does not exceed
the threshold given in the cell. D in the above definition corresponds to the
paths related to the classifier of a specific design anti-pattern, as defined
in Section 6.4, where: SAK=Swiss Army Knife, BC=Brain Class, BB=Base
Bean, ANEMIC=Anemic Entity. For example: the value 82% in segment
related to argouml, column ”¬ 1%” and row SAK, means that in 82% of
revisions in the evolution of argouml software (see Section 6.7.1) the number
of entities that were DH − reachable from an entity affected did not exceed
1% of all entities, where DH is defined as in Fact 6 (the Fact states that the
classifier for Swiss Army Knife is DH-bounded).
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Dataset ¬ 1% ¬ 2% ¬ 5% ¬ 10% ¬ 25%
JHotDraw 91% 99% 100% 100% 100%
ArgoUML 62% 84% 100% 100% 100%
Wildfly 100% 100% 100% 100% 100%
Lucene solr 90% 94% 99% 100% 100%
elasticsearch 75% 98% 99% 100% 100%
Struts 72% 90% 99% 100% 100%
Xerces 11% 29% 42% 44 % 100%

Table A.7: The approximate distribution of the fraction of entities (relative
to the number of all software entities) which are at most 1-close to a pattern
instance during the entire software evolution. The values in the cells corre-
spond to the fraction of all occurrences of pattern instances in which the
fraction of entities 1-distance-close to the instance of a pattern indicated by
the row did not exceed the threshold indicated in the column.

Tables A.8, A.9 and A.10 show respectively: the distribution of inheritance
depth, the distribution of containment depth and the distribution of call path
length in the entire evolution of systems analyzed in this research.

Inheritance depth does not exceed 7 and classes with DIT > 4 tend to
be very infrequent. The depth of containment relation does not exceed 5 and
3 is by far the most frequent value. The maximum length of a call path does
not exceed 12 and such paths longer than 6 are very infrequent.

To reproduce the computation of the these values run class HiearchyDep-
thDitributionExperiment, class ContainmentDepthDistributionExperiment and
class CallDepthDistributionExperiment respectively.

A.5 Static pattern detection

A.5.1 Quality of detection of exemplary patterns

Table A.11 shows the quality of classification of selected anti-patterns and
code smells according to definable patterns described in Section 6.4. These
models were tested on datasets described in Section 6.7.1 and experimentally
validated against expert tagging described in Appendix B.1. To reproduce
this result run class FindStaticPatternsExperiment with property INCLU-
DE SPATIO TEMPORAL RULES=false.
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Dataset 0 1 2 3 4 5 6 7 8
JHotDraw 77% 18% 4% 2% 0% - - - -
ArgoUML 44% 34% 15% 5% 1% 0% - - -
Xerces 55% 21% 12% 7% 4% 2% - - -
Wildfly 80% 14% 4% 2% 0% 0% 0% - -
Elasticsearch 50% 19% 18% 7% 4% 2% 0% 0% -
Lucene solr 40% 30% 19% 8% 3% 0% - - -
Struts 45% 31% 14% 7% 2% 1% - - -

Table A.8: The approximate distribution of the depth of inheritance tree in
the entire evolution of the analyzed systems. Each cell provides information
on the fraction of classes from the source code of the system represented by
the row which have the depth of inheritance tree represented by the column.
“-” in the cell means that there are no classes with a respective depth. Please
note that this depth is measured only within the source code of the system.
Therefore, a class which inherits from java.lang.Object has depth = 0.

Dataset 2 3 4 5
JHotDraw 13% 87% 0% -
ArgoUML 13% 87% 0% -
Xerces 9% 91% 0% -
Wildfly 19% 81% 0% -
Elasticsearch 14% 86% 0% -
Lucene solr 16% 84% 0% -
Struts 10% 90% 0% -

Table A.9: The approximate distribution of the depth of containment in the
entire evolution of the analyzed systems. Each cell provides information on
the fraction of entities from the source code of the system represented by the
row that have containment depth represented by the column. “-” in the cell
means that there are no entities with a respective depth.
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Dataset 1 2 3 4 5 6 7 8 9 10 11 12
JHotD. 100 98 80 36 8 1 0 0 - - - -
Argo. 100 99 77 28 6 1 0 0 - - - -
Xerces 99 97 77 34 7 0 0 0 0 - - -
Wildfly 100 100 93 64 29 9 2 0 0 0 0 0
Elastic. 100 100 83 37 10 2 0 0 0 0 - -
Lucene s. 100 99 79 26 6 1 0 0 - - - -
Struts 99 96 79 45 17 6 1 0 - - - -

Table A.10: The approximate distribution of the length of call paths in the
entire evolution of the analyzed systems. Each cell provides information about
the percent of methods from the source code of the system represented by
the row that have an outgoing call path of a length not smaller than the
value in the column header. For example 98 in the cell “JHotDraw\2” means
that 98% of all methods from JHotDraw was a starting node of a call path
whose length was at last 2. “-” in the cell means that there were no respective
methods.

A.5.2 Index-based search

Table A.12 shows the experimental validation of the concept of metrics filter
described in Section 6.3.3. Each row represents a type of software pattern
and a simple metrics-based filter, which corresponds to the definition of re-
spective classifier described in Section 6.4. They are correlated in such a way
that each instance of the pattern must contain a node representing the code
entity, whose metrics satisfy the condition given in the second column. For
example, each instance of the YoYo pattern must contain a class whose depth
of inheritance tree exceeds 5. The cells with numeric data show what frac-
tion of software entities satisfy the metrics filter condition in the respective
dataset. To reproduce this result run class MetricsSelectivityExperiment.
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Argo Uml 0.78/1.0 0.90/0.76 N/A 0.71/0.88 N/A 1.0/1.0 1.0/1.0
Elasticsearch 0.78/0.99 0.83/0.9 0.99/0.96 0.71/0.88 0.87/0.84 0.98/1.0 1.0/1.0
JHotDraw 1.0 /0.91 1.0/1.0 0.28/0.0 N/A 0.0/0.0 N/A N/A
Lucene 0.86/1.0 0.88/0.9 N/A 0.97/1.0 0.95/0.78 1.0/1.0 N/A
Struts 0.99/1.0 N/A 0.98/0.1 N/A N/A N/A N/A
Wildfly 0.94/1.0 0.92/1.0 0.99/1.0 1.0/1.0 N/A N/A 1.0/1.0
Xerces 0.8/0.89 0.91/0.69 0.99/0.84 N/A N/A 0.98/1.0 N/A

Table A.11: The table shows the quality of detection of instances of the
design anti-patterns defined in columns in the source code defined by the
row. The static detection methods described in Section 6.4 were used without
spatio-temporal enhancement described in Section 6.7.4. Each cell contains
two numbers: precision/recall. N/A in the cell indicates that there were no
instances.

A.6 Quality of prediction of spatio-temporal
rules

A.6.1 Detecting occurrences of design patterns

The following Tables A.13 - A.22 present the quality of the method for pre-
dicting occurrences of pattern instances by spatio-temporal rules. This is the
experimental validation of the key contribution of the present thesis. Each
row corresponds to the system whose evolution was used to train the classi-
fier according to the description in Section 6.6 with 1-distance-closeness and
2-distance remoteness as a basic spatial relations. Each column corresponds
to a system whose evolution was used to verify the quality of prediction of
the rules. Each cell contains a respective pair: (precision/recall) which de-
scribes the quality of prediction of the rules trained on the evolution of the
system from the row on the evolution of the system from the column. These
measures are computed according to the description in Section 6.7.3. For the
experiments with more than two decision classes, an averaged precision/re-
call is given in the cell, according to the description in Section 4.1.4. On the
diagonal, when the test and training system are the same, the training data
was derived from the first 70% revisions of the system evolution and the test
data was built from the remaining 30%. The caption of each table explains
what types of design anti-patterns were equated. The classifiers were tra-
ined to detect occurrences of various types of design anti-patterns or sets of
these, if they were equated according to the description in Section 6.6.3. To
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X
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s

Data Clump NOA > 3 5% 7% 5% 5% < 1% 6% 7%

Swiss Army
Knife

NOM > 6, MLOC >
150

2% 1% 2% 2% < 1% < 1% 5%

Blob CY CL > 55, FA > 7 2% 2% 2% 2% 2% < 1% 6%

YoYo DIT > 5 < 1% 2% 1% < 1% < 1% < 1% 2%

Brain Class CLOC > 150,
NOM > 15, FA > 5

10% 7% 12% 10% 4% 3% 18%

Anemic Entity NOM > 8, NOF > 8, 12% 9% 3% 13% 6% 9% 18%

Table A.12: Selectivity of metrics-based filter to find upper approximation of
popular anti-patterns as an example of graph-index search. NOA = Number
Of Arguments, NOM = Number Of Methods, NOF = Number Of Fields,
MLOC = Lines Of Code in Method(s), CYCL = Cyclomatic complexity, FA
= Fan out, CLOC = Lines Of Code in Class.

reproduce these results run class EvolutionSplitSpatioTemporalRulesPredic-
tionQualityExperiment with parameters set according to the following rules:

� To check prediction quality of a single specific type of design anti-
pattern (Tables A.13 - A.20), set parameter
DECISION MAPPING MODE to the name of the pattern. For exam-
ple, to check the prediction quality of Blob,
set DECISION MAPPING MODE=”Blob”.

� To check prediction quality when all types of design anti-patterns are
equated(Table A.21), set parameter DECISION MAPPING MODE=
”any-pattern”,

� To check prediction quality when no types of design anti-patterns are
equated(Table A.22), set parameter DECISION MAPPING MODE=
”differentiate”,

� To check prediction quality when some types of design anti-patterns
are equated, set parameter
DECISION MAPPING MODE=”combine”, and set parameter
PARAM DECISION CLASS COMBINATION to a string where types
of design anti-patterns to equate are separated by # and separate de-
cision classes are separated by ;. For example, if you want to equate
Blob with YoYo and, independently, Base Bean with Data Clumps, set
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argouml N/A N/A N/A N/A N/A N/A N/A
xerces N/A 1.0/ 0.4 1.0/0.01 1.0/0.67 0/ 0.0 N/A 0.0/ 0.0
struts N/A 0/ 0.0 0/ 0.0 0/ 0.0 0/ 0.0 N/A 0/ 0.0
elasticsearch N/A 1.0/0.99 1.0/0.97 1.0/0.99 1.0/0.98 N/A 1.0/ 1.0
jhotdraw N/A 0/ 0.0 0/ 0.0 0/ 0.0 0/ 0.0 N/A 0/ 0.0
lucene-solr N/A N/A N/A N/A N/A N/A N/A
wildfly N/A 0/ 0.0 0/ 0.0 0/ 0.0 0/ 0.0 N/A 0/ 0.0

Table A.13: Quality of prediction of design anti-pattern ParamDataClump.
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argouml 1.0/0.78 1.0/ 0.0 0.8/0.04 1.0/0.94 1.0/0.28 1.0/0.93 1.0/0.91
xerces 0.99/0.95 1.0/0.89 1.0/0.71 1.0/0.94 1.0/0.96 1.0/0.93 1.0/0.91
struts 0.99/0.94 0.8/ 0.0 1.0/0.93 0.99/0.94 1.0/0.02 1.0/0.93 1.0/0.91
elasticsearch 1.0/ 0.5 1.0/0.42 1.0/0.28 1.0/ 0.7 1.0/ 0.9 1.0/0.59 1.0/0.92
jhotdraw 0/ 0.0 0/ 0.0 0/ 0.0 0/ 0.0 0/ 0.0 0/ 0.0 0/ 0.0
lucene-solr 1.0/0.96 1.0/0.98 1.0/0.93 0.99/0.95 1.0/0.96 0.99/ 0.9 1.0/0.91
wildfly 1.0/0.46 1.0/0.22 1.0/0.23 0.99/0.16 0.5/0.01 1.0/0.42 1.0/0.77

Table A.14: Quality of prediction of design anti-pattern SwissArmyKnifePat-
tern.

PARAM DECISION CLASS COMBINATION=
”Blob#Yoyo;BaseBean#DataClump”.

Please note that according to the scheme described in B.6, you first need
to run class MineSpatioTemporalRulesExperiment with the same parame-
ters, to be able to run class EvolutionSplitSpatioTemporalRulesPredictio-
nQualityExperiment (i.e. output of the former class must be stored in a file
so that the latter class can read this file).
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argouml 1.0/0.99 N/A N/A 0.99/0.98 N/A N/A 1.0/0.93
xerces N/A N/A N/A N/A N/A N/A N/A
struts N/A N/A N/A N/A N/A N/A N/A
elasticsearch 1.0/0.97 N/A N/A 1.0/0.99 N/A N/A 1.0/0.93
jhotdraw N/A N/A N/A N/A N/A N/A N/A
lucene-solr N/A N/A N/A N/A N/A N/A N/A
wildfly 0.99/0.92 N/A N/A 1.0/0.95 N/A N/A 1.0/0.84

Table A.15: Quality of prediction of design anti-pattern AnemicEntityPat-
tern.
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argouml 1.0/0.78 N/A N/A 1.0/0.94 N/A 1.0/0.93 1.0/0.91
xerces N/A N/A N/A N/A N/A N/A N/A
struts N/A N/A N/A N/A N/A N/A N/A
elasticsearch 1.0/ 0.5 N/A N/A 1.0/ 0.7 N/A 1.0/0.59 1.0/0.92
jhotdraw N/A N/A N/A N/A N/A N/A N/A
lucene-solr 1.0/0.96 N/A N/A 0.99/0.95 N/A 0.99/ 0.9 1.0/0.91
wildfly 1.0/0.46 N/A N/A 0.99/0.16 N/A 1.0/0.42 1.0/0.77

Table A.16: Quality of prediction of design anti-pattern BaseBeanPattern.
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argouml 1.0/0.76 1.0/0.74 N/A 1.0/0.59 1.0/0.16 0.99/0.45 1.0/0.45
xerces 1.0/ 0.5 1.0/0.77 N/A 1.0/0.59 1.0/0.16 0.99/0.45 1.0/0.41
struts N/A N/A N/A N/A N/A N/A N/A
elasticsearch 0.99/0.48 1.0/0.74 N/A 0.99/0.75 0.92/0.15 1.0/0.55 1.0/0.32
jhotdraw 0.98/0.58 0.99/0.74 N/A 0.99/0.59 1.0/0.15 0.99/0.45 1.0/ 0.6
lucene-solr 1.0/0.26 1.0/0.76 N/A 1.0/0.79 1.0/0.18 1.0/0.69 1.0/0.26
wildfly 0.96/0.33 1.0/0.24 N/A 0.99/0.59 1.0/0.87 1.0/0.54 1.0/ 0.8

Table A.17: Quality of prediction of design anti-pattern BlobPattern.
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argouml 1.0/ 0.7 1.0/0.65 N/A 1.0/0.52 N/A 1.0/0.86 N/A
xerces 1.0/0.87 0.99/0.65 N/A 1.0/0.79 N/A 1.0/0.18 N/A
struts N/A N/A N/A N/A N/A N/A N/A
elasticsearch 0.99/0.62 0.99/0.34 N/A 1.0/0.74 N/A 0.99/0.78 N/A
jhotdraw N/A N/A N/A N/A N/A N/A N/A
lucene-solr 1.0/0.47 0.99/0.74 N/A 1.0/0.83 N/A 0.99/0.73 N/A
wildfly N/A N/A N/A N/A N/A N/A N/A

Table A.18: Quality of prediction of design anti-pattern YoYoPattern.
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argouml N/A N/A N/A N/A N/A N/A N/A
xerces N/A 0.99/0.98 N/A 1.0/0.01 N/A 0.8/ 0.0 1.0/0.96
struts N/A N/A N/A N/A N/A N/A N/A
elasticsearch N/A 1.0/0.98 N/A 1.0/0.99 N/A 1.0/0.98 1.0/0.96
jhotdraw N/A N/A N/A N/A N/A N/A N/A
lucene-solr N/A 1.0/ 0.4 N/A 1.0/0.97 N/A 1.0/0.87 1.0/0.96
wildfly N/A 1.0/0.01 N/A 0.95/0.03 N/A 1.0/0.03 1.0/0.19

Table A.19: Quality of prediction of design anti-pattern CircularDependen-
cyPattern.
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argouml N/A N/A N/A N/A N/A N/A N/A
xerces N/A N/A N/A N/A N/A N/A N/A
struts N/A N/A N/A N/A N/A N/A N/A
elasticsearch N/A N/A N/A 1.0/0.96 1.0/0.92 1.0/0.92 N/A
jhotdraw N/A N/A N/A 0.99/0.96 1.0/0.93 1.0/0.92 N/A
lucene-solr N/A N/A N/A 1.0/0.17 1.0/0.93 1.0/0.55 N/A
wildfly N/A N/A N/A N/A N/A N/A N/A

Table A.20: Quality of prediction of design anti-pattern BrainClassPattern.
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argouml 0.97/0.75 0.99/0.72 1.0/ 1.0 0.99/0.98 1.0/ 1.0 1.0/ 1.0 0.99/0.85
xerces 0.99/0.67 0.99/0.93 0.94/0.65 0.99/0.84 0.9/0.11 0.99/0.63 0.97/0.17
struts 1.0/ 1.0 0.99/ 1.0 0.96/0.74 0.98/0.25 0.0/ 0.0 0.98/0.13 1.0/ 1.0
elasticsearch 0.99/0.67 0.99/0.79 0.98/0.76 0.99/0.88 0.9/0.11 0.99/0.56 0.97/0.17
jhotdraw 0.96/0.35 0.97/0.24 0.57/0.04 0.99/0.99 0.5/0.04 0.99/ 1.0 0.99/0.96
lucene-solr 0.99/0.98 0.98/0.42 0.98/0.98 0.99/0.97 1.0/ 1.0 0.99/0.97 0.99/ 0.9
wildfly 1.0/ 1.0 0.99/ 1.0 1.0/ 1.0 1.0/ 1.0 1.0/ 1.0 0.99/ 1.0 1.0/ 1.0

Table A.21: Quality of prediction of instances of any design anti-pattern
(types of design anti-patterns are indiscernible).
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argouml 0.97/0.76 0.99/0.75 1.0/0.53 0.95/0.03 1.0/0.16 0.98/0.19 1.0/0.19
xerces 0.95/0.09 1.0/0.98 1.0/0.38 1.0/0.97 0.98/0.94 1.0/0.07 0.91/0.05
struts 1.0/0.15 1.0/0.98 1.0/0.91 0.99/0.73 1.0/0.38 0.99/0.95 1.0/0.11
elasticsearch 0.98/0.36 1.0/0.35 0.97/0.45 0.99/0.75 0.97/0.83 0.99/0.57 1.0/0.64
jhotdraw 0.5/ 0.0 0.99/ 0.6 1.0/0.76 0.9/0.02 1.0/0.18 0.92/0.03 1.0/0.54
lucene-solr 0.95/0.17 1.0/0.32 0.96/0.38 0.99/0.42 0.5/0.01 0.99/0.44 0.99/0.89
wildfly 0.8/0.07 0.57/ 0.0 0.0/ 0.0 0.9/0.02 0.75/0.03 0.87/0.03 0.85/0.09

Table A.22: Quality of prediction of different design anti-patterns (each type
of design anti-pattern is a separate decision class).
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Spatial Spatio-temporal
Dataset Pattern Precision/Recall Precision/Recall Change of F1
elastic BaseBean 0.71 / 0.88 1.0 / 0.54 0.89
argouml BLOB 0.9 / 0.76 1.0 / 0.76 1.05
elastic BLOB 0.83 / 0.9 1.0 / 0.88 1.08
Xerces BLOB 0.91 / 0.69 1.0 / 0.69 1.04
elastic BrainClass 0.87 / 0.84 1.0 / 0.81 1.05
argouml SAK 0.78 / 1.0 1.0 / 0.94 1.11
elastic SAK 0.78 / 0.99 1.0 / 0.99 1.14
Lucene SAK 0.86 / 1.0 1.0 / 0.92 1.04
Xerces SAK 0.8 / 0.89 1.0 / 0.65 0.94
Xerces YoYo 0.98 / 1.0 1.0 / 0.99 1.01

Average 1.04

Table A.23: Impact of spatio-temporal rules on static prediction quality

A.6.2 Static pattern detection improved with spatio-
temporal rules

Section 6.7.4 explains how spatio-temporal rules can improve detection quali-
ty of static patterns. Table A.23 shows the cases, when the result of detection
was different. In two cases the quality decreased by 6-11%, and in all other ca-
ses it improved by 1-14% in terms of F1. There was an average improvement
of 4%. To reproduce the experiment run class FindStaticPatternsExperiment
with input property INCLUDE SPATIO TEMPORAL RULES = true

A.7 Attractors and repellents

Table A.24 shows the attraction coefficient between different types of design
anti-patterns, defined in Section 6.7.4. To reproduce this result, run class
AttractorsAndRepellentsExperiment.
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DataCl N/A +0,20 N/A N/A -0,14 +0,05 +0,10
SAK +0,20 N/A N/A -0,14 +0,05 +0,10
AnEnt +0,20 +0,20 +0,63 +0,60 +0,67
BasBe N/A -0,14 +0,05 +0,10
Blob -0,14 +0,05 +0,10
YoYo +0,78 -0,32
CircDep +0,77
BrainCl

Table A.24: Attraction coefficient (see Section 6.7.4) between different ty-
pes of design anti-patterns. DataCl = DataClump, SAK = SwissArmyKnife,
AnEnt = AnemicEntity, BasBe = BaseBean, CircDep = CircularDependen-
cy, BrainCl = BrainClass,
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Appendix B

Experimental reproduction

B.1 Expert tagging

In order to be able to determine the quality of mining design anti-pattern in
given software, we need to have reference data with all its actual instances in
the analyzed software. This data is frequently provided by an external oracle,
which typically is a human expert. Such expert tagging used in this research
is available in [279] and was derived from openly available data of this kind
(see [323]): [185], [269], [267], [221], [242], [184].

The expert data was constructed from the mentioned data in such a way
that a subgraph was considered an instance of a respective design anti-pattern
if it was marked so in at least one of the available data sets. Only when a
certain type was not covered in any of the original data sets (e.g. YoYo), then
such instances were manually appointed by an expert. It must be mentioned
that in [241], which is research bound to data [242], the authors imply that if
a certain structure of software appears to be a code smell, but it is required
by the external library, e.g. implementation of Java SAX parser (see [261]),
it should not be considered an instance of respective code smell. Contrary to
that, in our research such cases were not excluded from expert tagging, since
we believe that a structure should be considered an instance of a design anti-
pattern according to its immanent nature (see [122]). However, we excluded
the source files that are automatically generated by a script (e.g. language
stemmers in lucene-solr), as this kind of files are not created by developers.
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B.2 Source code

The source code of the experiments conducted in the course of this thesis is
available at [281]. File readme.md from this archive provides information on
how to run it.

B.3 Environment for experiments

This section describes technical environment required to reproduce the re-
sults presented in this thesis. All experiments described were conducted on
Windows 10 with Java JDK 11. All git SCM repositories must be cloned
to a common folder pointed by system variable REPO DIR (e.g. if %RE-
PO DIR%=c:\repos, then Xerces scm must be cloned to c:\repos\xerces,
argouml must be cloned to c:\repos\argouml, etc.)
A script setEnv.bat available at [280] clones all data used in this research to
%REPO DIR% folder (see Section 6.7.1). Expert tagging for static patterns
detection described in Sections 6.4 and 6.7.4 must be located in a folder
pointed by system variable DATA DIR. Again, each analyzed system will
have in it one dedicated sub-folder. The reference contents of all sub-folders
are given in [279]. Two additional folders are required to store preproces-
sed data necessary for indirect use in many experiments. A system variable
EVOLUTIONS DIR must point to the folder where software evolutions, de-
scribed in Section 6.1, will be stored in the form of XML files. Detailed
description of this mechanism is given in Section B.5. Each sub-folder of
%EVOLUTIONS DIR% must contain information about the evolution of a
single system. The logs of SCM of each system are translated into XML re-
presentation of SSn iteratively, revision by revision. Since this process may
be time-consuming, it may be interrupted at each revision and then resumed
from the same revision. Therefore, each sub-folder of EVOLUTIONS DIR
also contains a configuration file with information necessary to resume the
process. The template of such configuration is available at [277]. A system
variable TEMP WORKING DIR must point to a temporary folder where
data passed between dependent experiments will be stored in dedicated files.
No sub-folders or files are required in this folder. Because of large amo-
unts of data, it is required that volumes in which EVOLUTIONS DIR and
TEMP WORKING DIR are located must have at least 100GB of free space.
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B.4 Running the experiments

This section provides general remarks on running the experiments imple-
mented in the source code mentioned above in Section B.2. Specific remarks
required to run an individual experiment are included in the section devoted
to this experiment in Appendix A.

Each experiment described in this thesis has a corresponding java class
that implements interface Experiment, which defines one method:

void run(ExperimentInput input, ExperimentOutput output)

In order to reproduce the experiment one has to invoke this method on
an instance of the respective class. The first argument of this method is
used to pass input parameters, which control the experiment. A description
of parameters specific to a given experiment is given in the javadoc of the
respective class (see [278]). Exemplary code of running an experiment with
one parameter is given in Listing B.1.

Listing B.1: Example: running an experiment with one parameter
1 // experiment c o n f i g u r a t i o n = s e t t i n g the parameters
2 ExperimentInput input = new ExperimentInput ( ) ;
3 input . s e tProper ty (PARAM INCLUDE SPATIO TEMPORAL RULES, true ) ;
4 input . s e tProper ty (EVOLUTION NAME PROP, ” lucene=s o l r ” ) ;
5
6 // running the experiment
7 ExperimentOutput output = new ExperimentOutput ( ) ;
8 new FindStat icPatternsExper iment ( ) . run ( input , output ) ;

B.5 Software evolution serialization

The initial experiment to run is SerializeHistoryExperiment. It fetches logs
from SCM and issue tracker of a given system and it translates into XML re-
presentation of ssn. We will call this process software evolution serialization.
The produced XML file will be used as the source of data for most of the
other experiments. Since this computation is time- and resource-consuming,
it should be executed for each analyzed system separately. Please note that
serialization is equivalent to running the FP function defined in Section 6.2.2.
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Figure B.1: Dependencies between experiments. Reproduction of experiments
should be executed in the order defined by the arrows. Sys. Vari, setEnv.bat, unzip –

see Section B.3. SerHistExp = class SerializeHistoryExperiment, StSpTempRelExp = class StoreSpatioTemopralRela-

tionsExperiment, MinSpTempRulExp = class MineSpatioTemporalRulesExperiment, AttrRepExp = class AttractorsAn-

dRepellentsExperiments, LocPropExp = class LocalityPropertiesExperiment, UniMethCntExp = class UninomialMethod-

sCountExperient, AffClExp = class AffectedClassesSizeExperiment, StPatNeiExp = class StaticPatternsNeighborhoodSi-

zeExperiment, ChngOfPIEntExp = class ChangeOfPatternInstanceEntitiesSizeExperiment, DBoundClExp = class Size-

OfGraphBoundedByPathStartingAtAffectedEntitiesExperiment, SpTempRulPrQuExp = class EvolutionSplitSpatioTem-

poralRulesPredictionQualityExperiment, HierDepthExp= class HiearchyDepthDitributionExperiment, ContDepthExp =

class ContainmentDepthDistributionExperiment, CallPathExp = class CallDepthDistributionExperiment, BugFixAnExp

= class BugfixAnalysisExperiment, StSpDecTblExp = class StoreSpatioTemporalDecisionTableExperiment, AttrRepExp

= class AttractorsAndRepellentsExperiment, FindStPatExp = class FindStaticPatternsExperiment, StSpTempRul class

StoreSpatioTemporalRulesForStaticPatternDetectionExperiment

B.6 Dependencies between experiments

Figure fig:Dependencies of experiment outlines the dependencies between
different experiments. By convention arrows show precedence in the order of
experiments, i.e. the item pointed by an arrow can only be run after all other
items connected to the other end of the arrow were run previously.
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