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Abstract

We present a collection of results in structural graph theory and the theory of parameterized algorithms,
all of which are based upon understanding the structure of graphs disallowed to contain certain objects
(called obstructions). The results involve the settings of both undirected and directed graphs, and different
notions of graph containment and graph decomposition.
First, we focus on the class of tournaments. We establish the so-called Erdős-Pósa property for (di-

rected) immersions and topological minors, i.e. we prove that for every simple digraph H, k ∈ N, and
tournament T , the following statements hold:

• If in T one cannot find k arc-disjoint immersion copies of H, then there exists a set of OH(k3) arcs
that intersects all immersion copies of H in T .

• If in T one cannot find k vertex-disjoint topological minor copies of H, then there exists a set of
OH(k log k) vertices that intersects all topological minor copies of H in T .

Moreover, for a fixed simple digraph H without isolated vertices, we consider the problem of deleting
arcs from a given tournament to get a digraph which does not contain H as an immersion. We prove that
for every H, this problem admits a polynomial kernel when parameterized by the number of deleted arcs.
Next, we turn our attention to width notions other than the well-established treewidth and we make

an attempt of identification of the related obstructions. In particular we focus on tree-cut width — a
graph parameter corresponding to immersion containment in the following sense: the tree-cut width of a
graph is functionally equivalent to the largest size of a wall contained in it as an immersion. We propose
a new definition of tree-cut width, functionally equivalent to the ones previously existing, but for which
we can prove a tight duality theorem relating it to naturally defined dual objects: appropriately defined
brambles and tangles. Using this result we also design a game characterization of tree-cut width.
We aim towards understanding the width notions and obstructions in the setting of general digraphs

(not necessarily tournaments) as well. We identify an object, which we call an onion star, and explain
the structure of digraphs excluding a fixed onion star as an immersion. The main discovery is that in
such digraphs we can prove directed analogues of some duality statements true in the undirected setting.
Specifically, we show the following two theorems.

• There is a function f : N → N satisfying the following: If a digraph D contains a set X of 2t + 1
vertices such that for any x, y ∈ X there are f(t) arc-disjoint paths from x to y, then D contains
the t-onion star as an immersion.

• There is a function g : N × N → N satisfying the following: If x and y is a pair of vertices in a
digraph D such that there are at least g(t, k) arc-disjoint paths from x to y and there are at least
g(t, k) arc-disjoint paths from y to x, then either D contains the t-onion star as an immersion, or
there is a family of 2k pairwise arc-disjoint paths with k paths from x to y and k paths from y to x.

Finally we consider the class of bipartite permutation graphs and the parameterized complexity of the
(NP-complete) bipartite permutation vertex deletion problem, asking, for a given n-vertex graph, whether
one can remove at most k vertices to obtain a bipartite permutation graph. We analyze the structure
of what we call almost bipartite permutation graphs (the difference being allowing them to contain long
induced cycles) and investigate the structural properties of the shortest hole in such a graph. We use it to
obtain an algorithm for the bipartite permutation vertex deletion problem with running time O(9k · n9),
and also give a polynomial-time 9-approximation algorithm.
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Notation

Here we present the common notions and definitions used throughout the thesis. Note that some additional
chapter-specific objects and concepts will be defined later.

General conventions. Denote by N the set of positive integers. For integers m, n with m ⩽ n we set:
[m,n] := {m,m+ 1, . . . , n},
[[n]] := [0, n] = {0, 1, 2, . . . , n},
[n] := [1, n] = {1, 2, . . . , n},
[−n] := [−n,−1] = {−1,−2, . . . ,−n},
log n := log2 n,

f ⟨n⟩(x) := f(f(. . . f︸ ︷︷ ︸
n times

(x) . . .)), where f is a function whose domain and codomain are equal.

A near-partition of a set Ω is a family X of pairwise-disjoint subsets of Ω such that Ω =
⋃
X . If

moreover all elements of X are nonempty, we call X a partition of Ω.

Graphs. We follow the classical graph theory terminology an assume that the reader is already familiar
with it. All graphs considered in this thesis are finite. Undirected graphs are considered to be simple (i.e.
without loops or parallel edges) unless explicitly stated otherwise. Directed graphs are loopless but allowed
to have parallel arcs as long as the arcs are oriented differently (i.e. there are no multiple arcs with same
head and tail).
For a (possibly directed) graph G we denote:
V (G) the set of all vertices of G,

E(G) the set of all edges of G,

A(G) the set of all arcs of G (if G is directed),

|G| := |V (G)|,
∥G∥ := |V (G)|+ |E(G)| (A(G) if G is directed),
G[X] the subgraph of G induced by set X ⊆ V (G),

i.e. comprising of all vertices in X and all edges/arcs with both endpoints in X,

G−X := G[V (G) \X], where X ⊆ V (G),
G− F the graph (V (G), E(G) \ F ), where F ⊆ E(G) (A(G) if G is directed),
N(x) := {v ∈ V (G) | xv ∈ E(G)} — the neighborhood of x ∈ V (G),
N(X) :=

⋃
x∈X N(x) \X, where X ⊆ V (G),

δ(X) the set of all edges with one endpoint in X and the other in V (G) \X, where
X ⊆ V (G),

degG(x) := |δ({x})| the degree of a vertex x ∈ V (G)
(equal to the number of neighbors of x if G is simple).

We say that two disjoint sets A,B ⊆ V (G) are complete to each other if every a ∈ A is adjacent to
every b ∈ B. Similarly, A and B are anti-complete to each other if every a ∈ A is nonadjacent to every
b ∈ B.
Let G be an undirected graph. A path in G is a connected subgraph of G where every vertex has

degree 2 apart from exactly two vertices of degree one, called the endpoints of the path. A cycle in G is

9



10 NOTATION

a connected subgraph of G where every vertex has degree 2. The length of a path or a cycle is defined
as its edge count. Two vertices connected by a pair of parallel edges (if we allow them) are considered a
cycle of length 2.
An undirected graph G is bipartite if there exists a partition of V (G) into sets X and Y such that

each edge of G has one endpoint in X and another in Y . A bipartite graph is balanced if there exists a
choice of the bipartition classes of G such that the numbers of vertices in the two classes are equal. By
Kn,n we denote the complete balanced graph on 2n vertices.
We denote a complete graph and a cycle on n vertices by Kn and Cn, respectively.
Let u, v ∈ V (G). We say that u and v are at distance k (in G) if k is the length of a shortest path

between u and v in G. For a set of edges F ⊆ E(G), we say that the pair u, v is disconnected by F if u
and v belong to different connected components of G− F .

Digraphs. For a directed graph (digraph) D we denote:
−→
A (X,Y ) := {uv ∈ A(D) : u ∈ X and v ∈ Y }, where X,Y ⊆ V (D),

A(X,Y ) :=
−→
A (X,Y ) ∪

−→
A (Y,X),

tail(a) := u, where a = uv ∈ A(D),
head(a) := v, where a = uv ∈ A(D),
δ+(X) := {a ∈ A(D) : tail(a) ∈ X and head(a) /∈ X}, where X ⊆ V (D),
δ−(X) := {a ∈ A(D) : tail(a) /∈ X and head(a) ∈ X}, where X ⊆ V (D),

(if X = {x}, we omit internal brackets and write δ+(x) and δ−(x), respectively).
A strong component of D is an inclusion-wise maximal induced subgraph C of D that is strongly

connected , that is, for every pair of vertices u and v of C, there are directed paths in C both from u to
v and from v to u.
A directed path is a (not necessarily simple) path in which all edges are consistently oriented. We

remark that in Chapter 6, we will introduce an unusual exact formalization of this definition (treating
a directed path as a sequence of distinct arcs). Regardless of the definition, for a directed (and not
necessarily simple) path P we denote:

first(P ) the first arc on P ,

last(P ) the last arc on P .
A cut in D is a partition (A,B) of V (D). An (a, b)-cut in D, where a, b ∈ V (D), is a cut (A,B) with

a ∈ A and b ∈ B. The size of the cut (A,B) is |δ+(A)| = |δ−(B)|.
The classical theorem of Menger describes the relation between the size of (a, b)-cuts and the number

of arc-disjoint paths connecting a and b.

Theorem (Menger [Men27]).Let D be a finite digraph and let a, b ∈ V (D). The maximum number of
arc-disjoint (a, b)-paths equals the minimum size of an (a, b)-cut.

We remark that Menger’s Theorem is true in the undirected setting as well, and moreover it is valid
for multi(di)graphs (i.e. with parallel edges or arcs allowed).

Theorem (Menger, undirected version).Let G be a finite multigraph and let a, b ∈ V (G). The
maximum number of mutually edge-disjoint paths from a to b equals the minimum number of edges whose
removal disconnects a and b.



Chapter 1

Introduction

Obstruction is one of the central notions in classical and modern structural graph theory, as numerous
vital results have the following generic form: either a graph admits some global structural property, or it
contains a local obstruction (certifying lack of the structure).
The celebrated theorem of Leonhard Euler, sometimes considered to be the inauguration of graph

theory, can be stated in a way resembling the above description: a connected graph either has a circuit
visiting each edge exactly once, or it has a vertex of odd degree [Hie73].
Other classical examples are the theorems characterizing planar graphs due to Kuratowski [Kur30]

and Wagner [Wag37]: either a graph is planar (meaning it can be drawn in the Euclidean plane with no
edge intersections), or it contains at least one of the two canonical obstructions, K5 or K3,3. Note that
the notion of containment is imprecise and can be formalized in several different ways. In Kuratowski’s
theorem we have the so-called topological containment : a graph H is a topological minor of graph G if
there is a map sending vertices of H to mutually different vertices of G and edges of H to mutually
internally vertex-disjoint paths joining the images of respective vertices. In Wagner’s theorem in turn, we
are dealing with minors.
Graph H is a minor of graph G if a subset of V (G) can be decomposed into pairwise disjoint non-

empty sets indexed by V (H) in such a way that each set induces a connected subgraph of G and whenever
uv ∈ E(H), there exists an edge in G joining some vertex from the set corresponding to u with some
vertex from the set corresponding to v. Alternatively, and equivalently, H is a minor of G if it can be
obtained from G by a sequence of edge deletions, vertex deletions, or edge contractions (replacing a pair
of neighbors with a single vertex connected to all other neighbors of the pair).
The Graph Minor series of Robertson and Seymour has brought fundamental understanding to the

minor order on graphs. In particular, by proving that it is a well-quasi-ordering [RS04], they have deeply
generalized Wagner’s result: every class of graphs closed under the operation of taking minors can be
characterized by a finite list of minimal forbidden minors. On the way to that result, they have introduced
and proved numerous notions and theorems still applied and inspiring new research directions in modern
structural graph theory.
The following notion is crucial in the theory of graph minors. Suppose a graph G is represented as

a union of its subgraphs Xi indexed by nodes of a tree T in a way that whenever i, j, k ∈ V (T ) with j
lying on the path from i to k, we have V (Xi) ∩ V (Xk) ⊆ V (Xj). Then the family (Xi)i∈V (T ) is called a
tree-decomposition of G with bags Xi. The treewidth of G is the smallest integer k such that G admits a
tree-decomposition with all bags of size at most k+1. Intuitively, treewidth is a parameter encapsulating
tree-likeness of a graph.
The works of Robertson and Seymour have identified obstructions for a graph to be tree-like. In [RS86]

they have proved that for every planar graph H there exists k ∈ N such that if a graph does not contain
H as a minor, then its tree-width is at most k. Specifically, as forbidding a planar graph causes excluding
a grid minor (of size dependent only on H), this boils down to the celebrated Grid Minor Theorem:
for every grid H, every graph whose treewidth is large enough relative to |H| contains H as a minor. In
essence, large grid minors are obstructions to having low treewidth. The works of Robertson and Seymour
reach far beyond grid minors: in particular their Structure Theorem can be used to describe graphs which
exclude a fixed graph H as a minor [RS03].
Moreover, there is tight duality between treewidth and other obstructions, the so-called brambles and

tangles. A bramble is a family of connected subgraphs of a given graph with the property that the union
of vertex sets of any two of them induces a connected subgraph as well. The order of a bramble is the

11



12 CHAPTER 1. INTRODUCTION

minimum size of a (vertex) set hitting (i.e. having nonempty intersection with) all of its elements. A
tangle of order k is in turn an orientation of (vertex) separations of size smaller than k satisfying a
number conditions (intuitively, each separation is to be oriented towards the part of the graph with more
complicated structure and this orientation needs to be globally consistent).
The precise relationship between the aforementioned objects and treewidth, as proved in part by

Robertson and Seymour in [RS91], and later by Seymour and Thomas in [ST93], is given by equivalence
of the following condition for a graph G and a positive integer k:

• G has no tree decomposition of width < k;
• G has a bramble of order ⩾ k; and
• G has a tangle of order ⩾ k.
A corollary of the above result is an elegant characterization of treewidth in terms of the cops and

robber game, described by Seymour and Thomas in [ST93]. In this game k cops, occupying vertices of
a given graph, aim to catch a robber moving along edges of that graph (both cops and the robber take
turns and move accordingly with a number of technical rules). The result states that k cops can catch
the robber if and only if the treewidth of the graph is less than k.
Understanding graphs of bounded treewidth has also found numerous applications in algorithm design,

especially in the field of parameterized algorithms — it turns out that many problems (NP-)hard in
general become tractable when parameterized by treewidth of a graph. Or even more generally — for
well-structured graphs, e.g. those avoiding certain obstructions.

Beyond minors. Research directions similar to those presented in Graph Minor series have been
undertaken for different notions of graph embeddings than minors. Among them, perhaps most notably,
is the immersion order on graphs. Immersibility is an embedding notion based on edge-disjointness and
edge cuts, as opposed to the notions of minors and of topological minors, which are based on vertex-
disjointness and (vertex) separations.
A graph H is an immersion of a graph G if there exists an injective mapping of vertices of H to

vertices of G sending edges of H to pairwise edge-disjoint paths in G so that every such path connects
images of the endpoints of its corresponding edge. Just as to the minor order, the immersion order is
a well-quasi-ordering on all graphs [RS10], which suggests that a decent structural theory related to
immersions should exist.
In [Wol15] Wollan introduced the graph parameter tree-cut width, which can be considered an analogue

of treewidth for immersions, and proved similar duality theorems, mirroring the Grid Minor theorem of
Robertson and Seymour. More precisely, Wollan proved that there is a functional dependence between
the size of the largest wall that can be immersed in a graph and the tree-cut width of that graph. This
implies that a class of graphs has a bounded tree-cut width if and only if all the graphs from exclude
some fixed subcubic planar graph as an immersion.
Giannopoulou et al. [GPR+21] proposed another, roughly equivalent, way of measuring the graph

complexity corresponding to immersibility. Their way of defining tree-cut decomposition is as follows.
A tree-cut decomposition of a graph G is a tree T and a collection of bags (Xi)i ∈ V (T ) forming a
near-partition of V (G). Thus, every edge e of T naturally corresponds to a partition of V (G) into two
parts, corresponding to unions of bags of the two connected components of T − e. The set of edges of G
crossing this partition is called the adhesion of e. Roughly speaking (and skipping technicalities), a tree-
cut decomposition as above has a bounded width if all of the following quantities are bounded: the size of
each bag, the size of each adhesion, and the degree of each node in T . We remark that Wollan’s original
definition was also based on tree-cut decompositions, but defined in a more convoluted and unmanageable
way.

Digraphs and tournaments. The notions of minors, subdivisions and immersions can be naturally
lifted to the setting of directed graphs. For example a directed graph H can be immersed in a digraph
D if one can find a mapping sending vertices of H to pairwise different vertices of D, and arcs of H
to pairwise arc-disjoint oriented paths in H connecting the images of endpoints (topological minors are
defined in the same way except the paths are required to be vertex-disjoint rather than arc-disjoint).
There has been significant interest in research towards understanding structural properties of those

notions. In particular, Kawarabayashi and Kreutzer [KK15] proved the directed counterpart of the Grid
Minor Theorem, while a series of recent papers [GKKK20, GKKK22] is working towards a directed
analogue of the Structure Theorem. This brings a natural question about existence of a similar structure
theory for directed immersions.
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It seems that so far, not much is known for general digraphs. However, the situation changes when
we restrict our attention to tournaments, i.e. oriented complete graphs. A meaningful structural theory
for tournaments1 with forbidden immersions was pioneered by Chudnovsky, Ovetsky Fradkin, Kim, and
Seymour [COS12, CS11, OS13, OS15, KS15], see also [FP19].
In particular, as proved in the aforementioned works, there are two main width notions for tourna-

ments: cutwidth and pathwidth. Intuitively, both of them can be used to impose a linear layout on the
tournament. The first one is tightly relateed to (directed) immersions as follows: if a tournament T ex-
cludes a digraph H as an immersion, then the cutwidth of T is bounded by a constant depending only on
H. Pathwidth is connected to topological minors and strong minors in the same sense. These structural
results were used for the design of parameterized algorithms for containment problems in tournaments
in [COS12, OS13, FP19].

Hitting-packing duality. A frequent and important kind of problems related to obstructions are those
concerning hitting and packing in various combinatorial contexts.
The first result of this kind in graph theory was delivered by Erdős and Pósa [EP65], who proved that

for every undirected graph G and k ∈ N, one can find in G either k vertex-disjoint cycles, or a set of
O(k log k) vertices that meets all the cycles. This theorem may be viewed as relation between packing and
hitting minor models of a triangle, which suggests the following generalization. We say that H has the
Erdős-Pósa property for minors if there exists a function f such that for every graph G and k ∈ N , one
can find in G either k vertex-disjoint minor models of H, or a set of at most f(k) vertices that meets all
minor models of H. Robertson and Seymour [RS86] proved that a graph H has the Erdős-Pósa property
for minors if and only if H is planar.
Since the work of Erdős and Pósa, establishing the Erdős-Pósa property for different objects in graphs,

as well as finding tight estimates on the best possible bounding functions f , became a recurrent topic
in graph theory and there are still many open problems in this area (cf. a website maintained by Ray-
mond [Ray] for an overview of the current state of knowledge on Erdős-Pósa problems). In particular,
there is still much to be done in the directed setting. The analogue of the result of Erdős and Pósa for
packing and hitting directed cycles was established by Reed et al. [RRST96], while a characterization of
strongly connected digraphs H possessing the Erdős-Pósa property for topological minors was recently
announced by Amiri et al. [AKKW16].

Paremeterized algorithms. In well-structured graphs many algorithmic problems which are hard in
general turn out to be tractable. This can be formalized in the language of parameterized complexity,
where the parameter is usually a small number corresponding to structural complexity of the graph, e.g.
one of its width measures.
Formally, an input of a parameterized problem Π consists of an instance I and a parameter k ∈ N. We

say that Π is fixed parameter tractable (FPT) if there exists an algorithm deciding whether (I, k) is a yes-
instance of Π in time f(k) · |I|O(1), where f is some computable function. Intuitively, the superpolynomial
factor in algorithm’s time complexity is a function of the parameter (which is small in well-structured
graph).
For instance many problems which are NP-hard in general, e.g. Vertex Cover, Hamiltonian

Cycle, Dominating Set, turn out to be FPT when parameterized by treewidth of a graph. In fact, the
celebrated theorem of Courcelle [Cou90] states that every graph property expressible in Monadic Second
Order logic (i.e. allowing quantification over sets of vertices and edges of the graph) is decidable in time
f(k) · n for n-vertex graphs of treewidth k.

Hereditary classes. So far we have not mentioned the perhaps simplest notion of graph containment —
the induced subgraph order. It turns out that classes of graphs closed under taking induced subgraphs, or
— equivalently — closed under vertex deletion, behave particularly well in the context of many standard
computational problems. Such classes are called hereditary.
Due to the practical and theoretical applications, some of such graph classes are particularly intensively

studied. Among them are:

• perfect graphs: graphs in which the size of the largest complete subgraph is equal to the size of the
smallest complete graph in which the given graph is homomorphically embeddable,

1In this line of work, most results concern the class of semi-complete digraphs, which differ from tournaments by allowing
that a pair of vertices can be also connected by two oppositely-oriented arcs. We focus on the setting of tournaments for
simplicity.
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• interval graphs: intersection graphs of intervals on the real line,

• proper interval graphs: intersection graphs of intervals on the real line none of which is contained
in another,

• chordal graphs: intersection graphs of subtrees of a tree,

• function and permutation graphs: intersection graphs of continuous and linear functions, respec-
tively, defined on the interval [0, 1],

• comparability graphs: graphs whose edges correspond to the pairs of vertices comparable in some
fixed partial order < on the vertex set (such an order is called a transitive orientation of the graph),

• co-comparability graphs: the complements of comparability graphs.

It is well known that the class of function graphs corresponds to the class of co-comparability graphs
[GRU83], and the class of permutation graphs corresponds to the intersection of comparability and co-
comparability graphs [PLE71] (see Figure 1.1 for the hierarchy of inclusions).

perfect

intervalproper interval

bipartite

permutation
bipartite
permutation

chordal

comparability

co-comparability

Figure 1.1: Hierarchy of inclusions between selected subclasses of perfect graphs. An arrow from graph
class A to graph class B indicates that A ⊂ B.

Being hereditary is a very useful property in algorithmic design as every such class of graphs can be
uniquely characterized in terms of minimal obstructions: a graph belongs to a class G if and only if it does
not contain any graph from some family F as an induced subgraph. For every graph class introduced
above, a characterization by forbidden subgraphs is known, see [CRST06] for perfect graphs, [LB62] for
interval graphs, [Gal67] for comparability and permutation graphs. However, for all of them, the family
of forbidden subgraphs is infinite and it may also be quite complex.
Polynomial-time algorithms devised for the above-mentioned graph classes can sometimes be adjusted

to also work on graphs that are “close” to graphs from these classes. Usually, the “closeness” of a graph
G to a graph class G is measured by the number of operations required to transform G into a graph from
the class G. In particular we have the following parameterized problem.

G-vertex deletion

Input: A graph G (typically not from G) and a number k
Parameter: k
Output: Is there a set X ⊆ V (G), such that |X| ⩽ k and G−X belongs to G?

We remark that there are closely related variants of this problem, differing by the modifications
allowed: edge deletion problem, edge completion problem, and edge edition problem (the latter allowing
both deletions and additions of edges). For each class of graphs defined above, all four variants of the
modification problem are NP-hard — see [Man08] for references to NP-hardness proofs. In particular,
Lewis and Yannakakis [LY80] showed that the vertex deletion problem into any non-trivial hereditary
class of graphs is NP-hard.
It turns out that characterizations by forbidden structures are sometimes useful to design FPT algo-

rithms for graph modification problems. For example, Cai [Cai96] proposed an FPT algorithm for modifi-
cation problems into classes of graphs characterized by a finite family of forbidden induced subgraphs F .
His algorithm identifies a forbidden structure in the input graph (which can be done in polynomial time
when F is finite) and branches over all possible ways of modifying that structure. Since the families of
forbidden structures are infinite for graph classes introduced above, modification algorithms for these
classes have to be much more sophisticated. For several of them modification problems have satisfactory
solutions:
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• chordal graphs: all four versions of the modification problem are FPT [CM16, Mar10];

• interval graphs: edge completion and edge deletion are FPT [VHPT09, Cao16], vertex deletion is
FPT [CM16], the complexity of edge edition remains open;

• proper interval graphs: all four versions of the modification problem are FPT [Cao17].

On the other hand, it is known that the vertex deletion to perfect graphs is W[2]-hard [HvtHJ+13]. It
is unknown whether comparability graphs, co-comparability graphs, and permutation graphs have FPT
modification algorithms.

Kernelization. Kernelization is a preprocessing routine that identifies and reduces “simple” parts of
an instance of a hard problem. In the parameterized complexity theory we can formalize this concept
as follows. A kernelization procedure (shortly a kernel) for a parameterized decision problem Π is a
polynomial-time algorithm that given an instance (I, k) of Π (k being the parameter), outputs an equiv-
alent instance (I ′, k′) with both k′ and size of I ′ bounded by some computable function of k. If this
function is a polynomial in k, we say that the kernel is polynomial. The search for (polynomial) kernels is
already an established research aera in the field of parameterized algorithms, cf. the monograph of Fomin
et al. [FLSZ19].
One particularly important method in the design of kernelization algorithms is protrusion replacement.

Intuitively, the idea is to find a large protrusion: a piece of graph that is ”simple“ (well structured and
easily resolvable, e.g. of bounded treewidth) and has an easily comprehensible interaction with the rest
of the graph. After finding a protrusion, we may quickly understand and encode its nature with respect
to the problem and replace it with a smaller protrusion with essentially the same functionality (thus
reaching an equivalent instance of the problem). Protrusion-based techniques were originally introduced
by Bodlaender et al. [BFL+16], but by now have become a part of the standard toolbox of kernelization.
We refer the interested reader to [FLSZ19, Part 2] for more information.
A particularly important achievement in the development of protrusion-based kernelization procedures

is the result of Fomin et al. [FLMS12], who gave a polynomial kernel for the Planar F-Deletion
problem. This problem asks, for a fixed family F of graphs containing at least one planar graph, if
from a graph G one can remove at most k vertices to get rid of all minor models of graphs from F .
Fomin et al. gave a polynomial kernel for this problem for every fixed family F as above. Giannopolou et
al. [GPR+21] were able to apply the concept of protrusion in the setting of immersions. They considered
the F-Immersion Deletion problem, where one wishes to hit all immersion models of graphs from F
using a hitting set of edges of size at most k. By loosely following the approach of [FLMS12], Giannopolou
et al. [GPR+21] gave a linear kernel for F-Immersion Deletion for every family F that contains a
subcubic planar graph. Here, the main idea was to adjust the notions of protrusions to the graph parameter
tree-cutwidth and corresponding tree-cut decompositions, which play the same role for immersions as
treewidth and tree decompositions play for minors.
Again the natural question one could ask is whether the understanding of the undirected world can

be used in order to design corresponding kernels for directed graphs.
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Organization of the thesis

The dissertation is divided into three parts, each corresponding to a research project held in a different
group, which led to a publication (or a series of publications). Each chapter corresponds to a different
paper, most of which have already been published. The content of chapters is taken (almost) verbatim
from the corresponding papers.
Part I is devoted to development of structural theory for tournaments with respect to embedding

notions of immersions and topological minors, and is based on works:

[BP22a] Łukasz Bożyk and Michał Pilipczuk. On the Erőds-Pósa property for immersions and
topological minors in tournaments. Discrete Mathematics & Theoretical Computer Sci-
ence, 24(1), 2022;

[BP22b] Łukasz Bożyk and Michał Pilipczuk. Polynomial kernel for immersion hitting in tourna-
ments. In 30th Annual European Symposium on Algorithms (ESA 2022), volume 244 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:17, 2022.

Part II concerns general (directed and undirected) graphs and studies obstructions to immersion-based
properties. This is based on works:

[BDOP22a] Łukasz Bożyk, Oscar Defrain, Karolina Okrasa, and Michał Pilipczuk. On objects dual to
tree-cut decompositions. Journal of Combinatorial Theory, Series B, 157:401–428, 2022;

[BDOP22b] Łukasz Bożyk, Oscar Defrain, Karolina Okrasa, and Michał Pilipczuk. On digraphs with-
out onion star immersions, 2022 (preprint, submitted).

Finally Part III is devoted to results following from a joint work, in which we study the parameterized
complexity of the bipartite permutation vertex deletion problem:

[BDK+22] Łukasz Bożyk, Jan Derbisz, Tomasz Krawczyk, Jana Novotná, and Karolina Okrasa.
Vertex deletion into bipartite permutation graphs. Algorithmica, 84(8):2271–2291, 2022.

The Erdős-Pósa Property for Immersions and Topological Minors in Tourna-
ments

In Chapter 3 we consider the Erdős-Pósa property for immersions and topological minors in tournaments.
The following two definitions formally introduce the properties we are interested in.

Definition. A directed graph H has the Erdős-Pósa property for immersions in tournaments if there
is a function f : N → N, called further a bounding function, such that for every k ∈ N and every
tournament T , at least one of the following holds:

• T contains k pairwise arc-disjoint immersion copies of H; or
• there exists a set of at most f(k) arcs of T that intersects all immersion copies of H in T .

Definition. A directed graph H has the Erdős-Pósa property for topological minors in tournaments if
there is a function f : N → N, called further a bounding function, such that for every k ∈ N and every
tournament T , at least one of the following holds:

• T contains k pairwise vertex-disjoint topological minor copies of H; or
• there exists a set of at most f(k) vertices of T that intersects all topological minor copies of H in
T .
These two properties were investigated by Raymond [Ray18], who proved that as long as H is simple

— there are no multiple arcs with the same head and tail — and strongly connected — for every pair of
vertices u, v, there are directed paths both from u to v and from v to u — the considered Erdős-Pósa
properties hold (Theorems 2 and 3 of [Ray18]).
Raymond asked in [Ray18] whether the assumption that the digraph in question is strongly connected

can be dropped, as it was important in his proof. We answer this question in affirmative by proving
the following.

Theorem A. Every simple directed graph H has the Erdős-Pósa property for immersions in tournaments
with bounding function f(k) ∈ OH(k3).
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Theorem B. Every simple directed graph H has the Erdős-Pósa property for topological minors in tour-
naments with bounding function f(k) ∈ OH(k log k).

Compared to the results reported by Raymond in [Ray18], we also give explicit upper bounds on the
bounding function that are polynomial in k: cubic for immersions and near-linear for topological minors.
The presentation of [Ray18] relies on qualitative results of Chudnovsky et al. [COS12] and of Fradkin and
Seymour [OS13]. These results respectively say the following: If a tournament T excludes a fixed digraph
H as a immersion (respectively, as a topological minor), then the cutwidth of T (respectively, pathwidth) of
T is bounded by a constant cH that depends only onH. Instead of relying on the results of [COS12, OS13],
we point out that we can use their quantitative improvements of Fomin and Pilipczuk [FP19], and thus
obtain concrete bounds on the bounding function that are polynomial in k.
However, the bulk of our work concerns treating directed graphs H that are possibly not strongly

connected. Similarly to Raymond [Ray18], using the results of [FP19] we may restrict attention to tourna-
ments of bounded cutwidth or pathwidth, which in both cases provides us with a suitable linear “layout”
of the tournament. Then we analyze how an immersion or a topological minor copy of H can look in this
layout, and in particular how the strongly connected components of H are ordered by it. The main point
is to focus on every topological ordering of the strongly connected components of H separately. Namely,
we show that for a given topological ordering π, we can either find k disjoint copies of H respecting this
ordering in the layout, or uncover a small hitting set for all copies respecting π. Then taking the union
of the hitting sets for all topological orderings π finishes the proof.
We do not expect the estimates on the bounding function given by Theorems A and B to be optimal. In

fact, on the way to proving Theorem A we establish an improved bound of OH(k2) under the assumption
that H is strongly connected, which suggests that the same asymptotic bound (i.e. quadratic instead of
cubic) should also hold without this assumption. However, to the best of our knowledge, in both cases it
could even be that the optimal bounding function is linear in k. Finding tighter estimates is an interesting
open question.

Polynomial Kernel for Immersion Hitting in Tournaments

The goal of Chapter 4 is to explore the applicability of the structural theory of tournaments for kerneliza-
tion, with a particular focus of developing a sound protrusion-based methodology. For a simple directed
graph H without isolated vertices we define the following parameterized problem:

H-hitting Immersions in Tournaments

Input: A tournament T and a positive integer k.
Parameter: k
Output: Is there a set F ⊆ A(T ), such that |F | ⩽ k and T − F is H-immersion-free?

That this problem is fixed-parameter tractable is proved in [FP19]. Our main result states that for
every fixedH as above,H-hitting Immersions in Tournaments admits a polynomial kernel, of degree
dependent on H. Formally, we prove the following theorem.

Theorem C. For every simple digraph H without isolated vertices there exists a constant c and an
algorithm that given an instance (T, k) of H-hitting Immersions in Tournaments, runs in polynomial
time and returns an equivalent instance (T ′, k) with |T ′| ⩽ c · kc.

On a very high conceptual level, the proof of Theorem C follows the classic blueprint of protrusion-
based kernelization, like in e.g. [FLMS12, GPR+21]. That is, if (T, k) is a given instance of H-hitting
Immersions in Tournaments, we perform the following steps.

• We may assume that the cutwidth of T is bounded polynomially in k, for otherwise in T one can
find k + 1 arc-disjoint immersion models of H; these witness a negative answer to the instance.

• Assuming that T is large — of size superpolynomial in k— but has cutwidth bounded polynomially
in k, we may find in T a large protrusion. Here, a protrusion is an interval I in the vertex ordering σ
witnessing small cutwidth such that σ restricted to I witnesses that T [I] has constant cutwidth, and
there is only a constant number of σ-backward arcs with one endpoint in I and the other outside
of I. These are instantiations of the two desired properties of a protrusion: it has to have bounded
width and communicates with the rest of the graph through a boundary of bounded size.
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• We can replace the obtained protrusion with a strictly smaller one of the same “type”, thus obtaining
a strictly smaller equivalent instance. Applying this strategy exhaustively eventually yields a kernel
of polynomial size.

Compared to the previous works, the main difficulty is to tame the interaction between a protrusion
and the remainder of the instance. Namely, this interaction is not restricted to a set of vertices or arcs
of constant size: as we work with tournaments, every vertex of a protrusion will necessarily have an arc
connecting it to every vertex outside of the protrusion. The idea is that all but a constant number of those
arcs will be forward arcs in the fixed vertex ordering σ with bounded cutwidth. We call those well-behaved
forward arcs generic, while the remaining constantly many backward arcs are singular. Understanding
the interaction between a protrusion and the rest of the tournament as being governed by few singular
arcs and a large number of well-behaved generic arcs is the crux of our approach.
In particular, while looking for a large replaceable protrusion, we have to be extremely careful when

arguing about how such a protrusion may interact with optimum solutions. Here, a key step is to find
several protrusions that appear consecutively in σ (recall that our protrusions are intervals in σ), have the
same type (in the sense of admitting partial immersions of H), and such that their union is a protrusion
of again the same type. This step is done using Simon Factorization, a tool commonly used in the theory
of automata and formal languages. Simon Factorization was recently used a few times in structural graph
theory [BP20, NOP+21, NORS21, JMPW23], but we are not aware of any previous application in the
context of kernelization.
The application of Simon Factorization is also the only step in the reasoning that causes the degree of

the polynomial bounding the size of our kernel to depend on H. It is an interesting open question whether
this can be improved, or in other words, whether there is a kernel of size at most c·kd, where c may depend
on H but d does not. Judging by the results on hitting immersions in undirected graphs [GPR+21], we
expect that this might be the case.

Objects Dual to Tree-cut Decompositions

In Chapter 5 we are in fact working with multigraphs, (so in the statements of our results one allows
graphs to have parallel edges, but not loops).
We investigate tree-cut width — a graph parameter introduced by Wollan [Wol15] which is an analogue

of treewidth for the immersion order on graphs in the following sense: the tree-cut width of a graph is
functionally equivalent to the largest size of a wall that can be found in it as an immersion.
We believe that despite extensive work on tree-cut width and tree-cut decompositions, the currently

used definitions of width — due to Wollan [Wol15] and to Giannopoulou et al. [GPR+21] — still seem
somewhat unnatural, and hence not completely understood. The main motivation is to find a definition
for tree-cut width that would feel more “right”.
In this chapter we propose a different (but functionally equivalent) measure of the width of a tree-cut

decomposition, and present natural analogues of brambles and tangles (corresponding to edge separations
rather than vertex separations) for which we can state and prove the following result:

Theorem D. For a graph G and a positive integer k, the following conditions are equivalent:
• G has no tree-cut decomposition of width < k;
• G has a bramble of order ⩾ k; and
• G has a tangle of order ⩾ k.

An important aspect that emerged during our work is that tree-cut decompositions naturally have
not one, but two orthogonal width measures. The bag-width is defined as the maximum size of a bag, and
the adhesion-width (roughly) governs the sizes of adhesions. Mirroring this, brambles and tangles have
two measures of order: bag-order and adhesion-order. We can prove the tight duality result also in this
biparametric setting:

Theorem E. For a graph G and positive integers a and b, the following conditions are equivalent:
• G has no tree-cut decomposition of adhesion-width < a and bag-width < b;
• G has a bramble of adhesion-order ⩾ a and bag-order ⩾ b; and
• G has a tangle of adhesion-order ⩾ a and bag-order ⩾ b.

In the hindsight, the biparametric aspect of tree-cut decompositions is visible in the previous defini-
tions [Wol15, GPR+21], but the two parameters were combined into a single width measure in a somewhat
arbitrary way. We believe that handling the two parameters separately actually clarifies the situation.
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Similarly to the setting of treewidth, we can use our duality theorem to give a characterization of
tree-cut width in terms of a search game that we call cops, dogs, and robber game. The game is played
similarly to the standard cops and robber game, with the exception that the a cops are now always placed
on edges of the graph, instead of vertices. Up to technicalities, the robber is always placed on a vertex
and may move freely along paths that avoid edges occupied by cops. Obviously, cops placed on edges
cannot directly catch the robber placed on a vertex, but they also have b dogs for this purpose. Namely,
once the size of the set of vertices to which the robber can possibly move is limited to ⩽ b, the cops can
unleash the dogs on those vertices and immediately catch the robber. We prove the following.

Theorem F. A graph has a tree-cut decomposition with adhesion-width ⩽ a and bag-width ⩽ b if and
only if there is a strategy to catch the robber using a cops and b dogs.

Our proof strategy closely follows the standard way used for the duality theorem for treewidth, but
adjusted to tree-cut decompositions [ST93, Maz13, Die16]. Once all the definitions are rightly set, the
standard and well-understood proof strategy applies without any problems, providing a reasoning that is
conceptually even simpler than that for the treewidth.

Digraphs without Onion Star Immersions

In this chapter (and in all the statements) we are working with multidigraphs — we are allowing parallel
arcs of the same head and tail (but disallowing loops).
The aim of Chapter 6 is to make the first modest steps towards a structure theory for digraphs

excluding a fixed digraph as an immersion. A more specific motivation is to provide opening moves
towards a statement linking directed wall immersions with suitable width measures for digraphs.
We consider the t-onion star: the digraph depicted in Figure 1.2. It is obtained from the star with 2t

leaves by replacing every edge with a triple of arcs; for t edges two of the arcs are oriented towards the
center and one away from the center, and for the remaining t edges we use the reverse orientation. Onion
star has the following property.

. . .
...

Figure 1.2: The onion star.

Observation 1.1. Suppose D is a digraph on t vertices where every vertex has outdegree at most 2 and
indegree at most 1, or vice versa. Then the t-onion star contains D as an immersion.

Therefore, excluding the t-onion star as an immersion, for some fixed t ∈ N, is a weaker condition
than excluding any fixed digraph D satisfying the premise of Observation 1.1; this in particular applies
to any reasonable notion of a directed wall. The t-onion star is a directed analogue of the graph S3,t that
was used by Wollan in [Wol15] as an obstruction commonly found in various avenues of his proof of the
(undirected) Wall Immersion Theorem.
For two vertices x, y in a digraph D, let µ(x, y) be the maximum number of arc-disjoint paths from

x to y that one can find in D. As an opening step of his proof, Wollan proved the following statement.

Theorem 1.2 (Wollan, [Wol15, Lemma 1]). Suppose a graph G contains a set X consisting of t+1
vertices such that for all distinct x, y ∈ X, we have µ(x, y) ⩾ t2. Then G contains the complete graph Kt
as an immersion.
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The proof is a relatively easy application of flow-cut duality, which nonetheless crucially relies on the
undirectedness of the graph. The main result of this chapter is the following weak directed analogue of
Theorem 1.2.

Theorem G. There exists a function f : N → N such that the following holds. Suppose a digraph D
contains a set X consisting of 2t+ 1 vertices such that for all distinct x, y ∈ X, we have µ(x, y) > f(t).
Then D contains the t-onion star as an immersion.

Note that in Theorem G we obtain an obstruction that is weaker than that of Wollan’s: the t-onion
star instead of a complete digraph.
The proof of Theorem G applies the same basic flow-cut strategy as the proof of Theorem 1.2 due to

Wollan, but there is a major issue. For any x, y ∈ X, the premise of Theorem G provides the existence
of a large family Px→y of arc-disjoint paths from x to y, and of a large family Py→x of arc-disjoint paths
from y to x. However, in principle every path of Px→y could intersect every path of Py→x, while for the
aforementioned strategy to work, we need a family containing many arc-disjoint paths from x to y and
many from y to x that are also arc-disjoint between each other. In general digraphs, there is no hope for
exposing such a family: in Figure 1.3 we give an example where µ(x, y) and µ(y, x) can be arbitrarily
large, but one cannot find even two arc-disjoint paths: one from x to y and one from y to x. However, we
prove that the desired statement holds under the assumption of excluding an onion star.

x y

Figure 1.3: An example of a digraph that contains a large family of arc-disjoint paths from x to y (in
blue), a large family of arc-disjoint paths from y to x (in red), but no two arc disjoint paths such that
one goes from x to y, and the other one from y to x.

Theorem H. There exists a function g : N×N→ N such that the following holds. Suppose D is a digraph
and x, y are two distinct vertices in D such that µ(x, y) > g(t, k) and µ(y, x) > g(t, k), for some t, k ∈ N.
Then at least one of the following holds:

• D contains the t-onion star as an immersion;
• in D there is a family of 2k arc-disjoint paths consisting of k paths from x to y and k paths from y
to x.

Theorem H is the main technical component in the proof of Theorem G, and its proof spans most of
the chapter.

Vertex Deletion into Bipartite Permutation Graphs

In Chapter 7 we study the parameterized complexity of the bipartite permutation vertex deletion problem,
which asks, for a given n-vertex graph, whether we can remove at most k vertices to obtain a bipartite
permutation graph. This problem is NP-complete by the classical result of Lewis and Yannakakis [LY80].
We prove the following.

Theorem I. There is an O(9k · |G|9)-time algorithm for instances (G, k) of the vertex deletion into
bipartite permutation graphs problem.



ORGANIZATION OF THE THESIS 21

Our algorithm is based on the characterization of bipartite permutation graphs by forbidden sub-
graphs. Using the characterization, at first, we get rid of forbidden induced subgraphs on at most
9 vertices by branching, which is a standard technique in modification problems on hereditary graph
classes [vtHV13, VHPT09]. We call graphs without these forbidden subgraphs almost bipartite permuta-
tion graphs.
Our main contribution is in the structural analysis of almost bipartite permutation graphs which may

contain holes (on more than ten vertices) in contrast to bipartite permutation graphs. This approach is
partially inspired by the ideas of van ’t Hof and Villanger [vtHV13] who used similar tools in their work on
proper interval vertex deletion problem. We use the result of Spinrad, Brandstädt, and Stewart [SBS87],
who showed that the vertices of every connected bipartite permutation graph G = (U,W,E) can be
embedded into a strip in such a way that the vertices from U are on the bottom edge of the strip, the
vertices from W are on the top edge of the strip, the neighbors N(u) of u occur consecutively on the top
edge of the strip for every u ∈ U (adjacency property), the vertices from N(u)−N(u′) occur consecutively
on the top edge of the strip for every u, u′ ∈ U (enclosure property), and the analogous properties are
satisfied by the vertices in W (see Figure 1.4).

w1 w2 w3 w4 w5 w6 w7 w8 w9

u1 u2 u3 u4 u5 u6 u7 u8 u9

Figure 1.4: Embedding of a bipartite permutation graph (U,W,E) into a strip satisfying the adjacency
and the enclosure properties.

Our structural result asserts that, depending on the parity of the length of the shortest hole, a
connected almost bipartite permutation graph may be naturally embedded in either a cylinder, or a
Möbius strip, locally satisfying adjacency and enclosure properties (see Figure 1.5).

Figure 1.5: An embedding of a connected almost bipartite permutation graph in a cylinder or a
Möbius strip that locally satisfies the adjacency and enclosure properties.

Once we obtain such structure, we show that every minimal vertex cut that destroys all holes lies
near a few consecutive vertices from the shortest hole. This allows us to check all the possibilities where
we can find a minimum cut. Finally, we use a polynomial algorithm for finding maximum flow (and thus
a minimum cut).
The approach used to prove Theorem I can be slightly modified to obtain a 9-approximation algorithm

for the bipartite permutation vertex deletion problem. We show the following.

Theorem J. There exists a polynomial-time 9-approximation algorithm for vertex deletion into bipartite
permutation graphs problem.
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Contribution statements

As already stated, the conceptual content presented herein is composed of parts of joint publications with
no significant changes, and all the main results are fruits of joint research.
In most of the cases it is very difficult to clearly separate the contributions of individual team members,

but in all of them the author has played an active role in proving main theorems. Below follow the
declarations on the author’s roles and activities in the research projects underlying respective publications:

• Erdős-Pósa Property for Immersions and Topological Minors in Tournaments (Chapter 3/[BP22a]):
developement of the main conceptual idea behind proofs of Theorems A and B (i.e. based on
topological orderings), figuring out the way of lifting the proof from undirected minor setting to
the setting of directed embeddings, preparation of most of the write-up.

• Polynomial Kernel for Immersion Hitting in Tournaments (Chapter 4/[BP22b]): active participa-
tion in discussions leading to design of new tools allowing for lifting the protrusion replacement
technique to the setting of tournaments (especially Section 4.1), preparation of most of the write-
up, including design and development of the definitions and statements used to formalize the main
result (Theorem C), delivery of the talk presenting the results at ESA 2022.

• Objects Dual to Tree-cut Decompositions (Chapter 5/[BDOP22a]): active participation in regular
meetings and discussions, especially about the nature and role of tangles, contribution to the write-
up and reviewing the final version of the paper.

• Digraphs without Onion Star Immersions (Chapter 6/[BDOP22b]): active participation in regular
meetings and discussions, participation in the process of formalization of the results, writing (in
particular in the preparation of results presented in Section 6.2 an working out the use of appropriate
Ramsey-type theorems) and reviewing (in particular identification of numerous flaws in former
versions of the main Theorem H).

• Vertex Deletion into Bipartite Permutation Graphs (Chapter 7/[BDK+22]): participation in working
out the conceptually crucial structure around a shortest hole (Section 7.2), contribution to the write-
up and reviewing, delivery of the talk presenting the results at IPEC 2020.



Part I

Immersions in Tournaments





Chapter 2

Preliminaries on Tournaments

In this chapter we introduce basic notions and definitions required in Chapters 3 and 4, in particular
concerning tournaments, their width measures and oriented types of graph containment.

Tournaments. A simple digraph T = (V,A) is called a tournament if for every pair of distinct vertices
u, v ∈ V , either (u, v) ∈ A, or (v, u) ∈ A (but not both). Alternatively, one can represent the tournament
T by providing a pair (σ,

←−
Aσ(T )), where σ : V → [|V |] is an ordering of the set V and

←−
Aσ(T ) is the set

of σ-backward arcs, that is, ←−
Aσ(T ) := { (u, v) ∈ A | σ(u) > σ(v) }.

All the remaining arcs are called σ-forward. If the choice of ordering σ is clear from the context, we will
call the arcs simply backward or forward. For α, β ∈ {0, 1, . . . , |V |}, α ⩽ β, we define

σ(α, β] := {v ∈ V | α < σ(v) ⩽ β}.

Sets σ(α, β] as defined above will be called σ-intervals (or simply intervals, if σ is clear from the context).

Cutwidth. Let T = (V,A) be a tournament and σ be an ordering of V . If I = σ[α, β], we denote

startσ(I) := α and endσ(I) := β.

Moreover, let σ[α] := σ(0, α] and call this interval an α-prefix of σ. The set

cutσ[α] = {(u, v) ∈ A | σ(u) > α ⩾ σ(v)} ⊆
←−
Aσ(T )

is called the α-cut of σ. The width of the ordering σ is equal to max0⩽α⩽|V | | cut[α]|, and the cutwidth
of T , denoted ctw(T ), is the minimum width among all orderings of V .
It is perhaps a bit surprising that in tournaments, there is a very simple algorithm to compute an

ordering of optimum width: just sort the vertices by outdegrees.

Lemma 2.1 (see [BPP18, Ove11]). Let T be a tournament and σ be an ordering of T satisfying the
following for every pair of vertices u and v: if u appears before v in σ, then the outdegree of u is not
smaller than the outdegree of v. Then the width of σ is equal to ctw(T ).

If I = σ(α, β], then we denote

∂+(I) :=
−→
A (I, σ(0, α]) and ∂−(I) :=

−→
A (σ(β, |V |], I).

Note that ∂+(I) ⊆ cutσ[α] and ∂−(I) ⊆ cutσ[β] and therefore |∂+(I)| ⩽ c and |∂−(I)| ⩽ c, where c is
the width of σ. These inclusions may be proper, as the arcs from the set ∂̂(I) :=

−→
A (σ(β, |V |], σ(0, α])

contribute to the cuts but are not incident with I. We define ∂(I) := ∂+(I)∪∂−(I) and call the elements
of ∂(I) I-singular (or simply singular) arcs. Moreover, we define

Γ+(I) :=
−→
A (I, σ(β, |V |]), Γ−(I) :=

−→
A (σ(0, α], I), and Γ(I) = Γ+(I) ∪ Γ−(I),

and call the elements of Γ(I) I-generic (or simply generic) arcs.
If I ′ = V − I where I = σ(α, β], then we call the set I ′ a co-interval and define I ′-singular and

I ′-generic arcs as follows

∂−(I ′) := ∂+(I), ∂+(I ′) := ∂−(I), ∂(I ′) := ∂+(I ′) ∪ ∂−(I ′) = ∂(I),

Γ−(I ′) := Γ+(I), Γ+(I ′) := Γ−(I), Γ(I ′) := Γ−(I ′) ∪ Γ+(I ′) = Γ(I).
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Immersions. A digraph Ĥ is an immersion model (or briefly a copy) of a digraph H if there exists a
mapping φ, called an immersion embedding, such that:

• vertices of H are mapped to pairwise different vertices of Ĥ;

• each arc (u, v) ∈ A(H) is mapped to a directed path in Ĥ starting at φ(u) and ending at φ(v); and

• each arc of Ĥ belongs to exactly one of the paths {φ(a) : a ∈ A(H)}.

If it does not lead to misunderstanding, we will sometimes slightly abuse the above notation by identifying
φ and Ĥ and calling φ the immersion model of H. If the immersion embedding φ is clear for the context,
then for a subgraph C of H we define Ĥ|C to be the subgraph of Ĥ consisting of all the vertices and arcs
participating in the image of C under φ. Note that thus, Ĥ|C is an immersion model of C.
Let H be a digraph. We say that a digraph G contains H as an immersion (or H can be immersed

in G) if G has a subgraph that is an immersion model of H. It is clear that G admits H as an immersion
if and only if there exists an immersion model of H in G in which all arcs are mapped to simple paths.
Digraph G is called H-immersion-free (or H-free for brevity) if it does not contain H as an immersion.
We will use the following result of Fomin and Pilipczuk [FP19].

Theorem 2.2 (Theorem 7.3 of [FP19]). Let T be a tournament which does not contain a digraph H
as an immersion. Then ctw(T ) ∈ O(∥H∥2).

From Theorem 2.2 we can derive the following statements.

Corollary 2.3. For every digraph H there exists a constant cH such that for every H-free tournament
T , we have ctw(T ) ⩽ cH .

Corollary 2.4. Let T be a tournament which does not contain k arc-disjoint immersion copies of a
digraph H. Then ctw(T ) ∈ O(∥H∥2k2).

Proof. LetD be the digraph obtained by taking k vertex-disjoint copies ofH. Clearly, T does not contain
D as an immersion, hence from Theorem 2.2 we conclude that ctw(T ) ∈ O(∥D∥2) = O(∥H∥2k2). □

Pathwidth. Denote by I the set of all nonempty intervals [α, β] ⊆ R such that α, β ∈ Z. If I = [α, β],
denote first(I) := α and last(I) := β. For I, J ∈ I we will write I < J if and only if last(I) < first(J).
For a tournament T = (V,A), a function I : V → I is called an interval decomposition of T if for

every pair of vertices u, v ∈ V such that I(u) < I(v), we have (u, v) ∈ A. In other words, every arc joining
disjoint intervals is forward. For α ∈ Z, the set

vcut[α] := {v ∈ V | α ∈ I(v)}

is called the α-cut of I. The width of the decomposition I is equal to maxα∈Z | vcut[α]|, and the pathwidth
of T , denoted pw(T ), is the minimum width among all interval decompositions of T .
Let us remark here that the definition of pathwidth used in [FP19] is seemingly somewhat different

to the one delivered above: it is based on a notion of a path decomposition, which is a sequence of bags
that correspond to sets {vcut[α] : α ∈ Z} in an interval decomposition. However, it is straightforward to
verify that the definitions are in fact equivalent.
Also, it is easy to see that given an interval decomposition I of a tournament T , one can adjust I to

an interval decomposition I ′ of the same width where no two intervals share an endpoint and no interval
has length 0. Indeed, whenever a subset of intervals all have endpoints at α ∈ Z, then one can shift
those endpoints by pairwise different small reals — positive for the intervals ending at α and negative
for those starting at α — so that they all become different, and then re-enumerate all the endpoints so
that they stay integral. Similarly one can stretch an interval of length 0 which does not share endpoints
with any other interval to an interval of positive length. Therefore, we will assume this property for all
the considered interval decompositions: {first(I(u)), last(I(u))}∩{first(I(v)), last(I(v))} = ∅ for all u ̸= v
and first(I(u)) ̸= last(I(u)) for all u. Moreover, by shifting all the intervals if necessary, we may (and will)
assume that all endpoints correspond to non-negative integers.
If I is an interval decomposition of a tournament T = (V,A), then for α, β ∈ Z we define

I[α, β] := {v ∈ V | I(v) ⊆ [α, β]}.

In other words, I[α, β] is the set of all vertices of T corresponding to intervals entirely contained in [α, β].
Note that if α1 < β1 ⩽ α2 < β2, then I[α1, β1] ∩ I[α2, β2] = ∅. Also, let I[α] := I[0, α].
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Topological minors. Digraph Ĥ is a topological minor model (or a topological minor copy) of a digraph
H if there exists a mapping φ, called a topological minor embedding , such that:

• vertices of H are mapped to pairwise different vertices of Ĥ;
• each arc (u, v) ∈ A(H) is mapped to a directed path in Ĥ starting at φ(u) and ending at φ(v); and
• these paths are internally vertex-disjoint, do not contain any φ(u), u ∈ V (H), as an internal vertex,
and saturate the whole vertex set and arc set of Ĥ. In other words, every arc of Ĥ and every
vertex of Ĥ that is not an image of a vertex of H participates in the image φ(a) of exactly one arc
a ∈ A(H).

If the topological minor embedding φ is clear for the context, then for a subgraph C of H we define Ĥ|C
to be the subgraph of Ĥ consisting of all the vertices and arcs participating in the image of C under φ.
Note that thus, Ĥ|C is a topological minor model of C.
Let H be a digraph. We say that a digraph G contains H as a topological minor if G has a subgraph

that is a topological minor model of H. Digraph G is called H-topological-minor-free if it does not contain
H as a topological minor.
We will use another result of Fomin and Pilipczuk.

Theorem 2.5 (Theorem 7.1 of [FP19]). Let T be a tournament which does not contain a digraph H
as a topological minor. Then pw(T ) ∈ O(∥H∥).

Applying Theorem 2.5 directly to the graph that is the disjoint union of k copies of a fixed digraph,
we can derive the following statement.

Corollary 2.6. Let T be a tournament that does not contain k vertex-disjoint topological minor copies
of a digraph H. Then pw(T ) ∈ O(∥H∥k).

Monoids and Simon factorization. Simon factorization was originally developed by Simon in [Sim90]
and the currently best bounds are due to Kufleitner [Kuf08]. See also the work of Bojańczyk [Boj09] for
a nice exposition; we mostly follow the notation from that source.
Let S be a finite monoid (i.e., a finite set equipped with an associative binary operation · and a neutral

element 1). An element e ∈ S is called idempotent if e · e = e. For a finite alphabet A, by A⋆ we denote
the set of all finite words over A, and a morphism α : A⋆ → S is a function satisfying α(ε) = 1 (ε being
the empty word) and α(w1w2) = α(w1) · α(w2) for every w1, w2 ∈ A⋆. Note that a morphism is uniquely
defined by the images of single symbols from A.
Given an alphabet A and a word w ∈ A⋆, we say that w can be decomposed into words w1, w2, . . .,

wℓ if w = w1w2 . . . wℓ. An unranked rooted tree T labeled with elements of A⋆ is a decomposition tree of
w if:

• the root is labeled with w;
• the label of every non-leaf node can be decomposed into labels of all children of this node (from
left to right);

• the label of every leaf node is an element of A ∪ {ε} (here ε is the empty word).
The degree of a node of a decomposition tree is the number of its sons. Given a monoid S and a morphism
α : A⋆ → S, we say that decomposition w = w1w2 . . . wℓ satisfies the α-idempotent rule if there exists an
idempotent e ∈ S such that

α(w1) = α(w2) = . . . = α(wℓ) = e.

We define an α-factorization forest for a word w ∈ A⋆ as a decomposition tree of w, whose each non-leaf
node with degree greater than 2 corresponds to an α-idempotent rule.

Theorem 2.7 (Factorization Forest theorem of Simon). Let S be a finite monoid, A be a finite
alphabet, and α : A⋆ → S be a morphism. Then every w ∈ A⋆ has an α-factorization forest of height at
most 3|S|.

The following lemma is a direct consequence of Simon Factorization.

Lemma 2.8. Let S be a finite monoid, A be a finite alphabet, and α : A⋆ → S be a morphism. Suppose
w ∈ A⋆ is a word of length at least ℓ3|S|. Then there exists a subword w′ of w and an idempotent e ∈ S
such that w′ = w1w2 . . . wℓ, where wi ∈ A⋆ are nonempty subwords of w and

α(w1) = α(w2) = . . . = α(wℓ) = e.
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Proof (of Lemma 2.8). Fix w ∈ A⋆ of length at least ℓ3|S|. By Theorem 2.7 there exists an α-
factorization forest T for w of height at most 3|S|. Note that if T admits a node of degree at least
ℓ, then the idempotent rule corresponding to this node provides the desired subword w′ and its decom-
position into ℓ non-empty subwords (in the case of degree strictly larger than ℓ, we may concatenate all
subwords whose indices are not smaller than ℓ into a single subword).
We will prove that such node always exists. Suppose for the sake of contradiction that all non-leaf

nodes of T have degree strictly smaller than ℓ. As T has height at most 3|S|, the number of leaves of T
is therefore strictly smaller than ℓ3|S|. On the other hand, each letter of w has a different corresponding
leaf node of T , so there are at least |w| ⩾ ℓ3|S| leaf nodes. The contradiction finishes the proof. □

The intuition behind Lemma 2.8 is as follows. If word w is appropriately long then existence of a
constant-height factorization forest forces existence of a node of large degree (hence corresponding to an
idempotent rule) in this forest.
Note that in the setting of Lemma 2.8, given a word w ∈ A⋆ of length n ⩾ ℓ3|S|, one can easily find

w′ and a suitable decomposition w′ = w1w2 . . . wℓ in time O(|S| · n3) assuming unit cost of operations
in S. Indeed, one can guess e (by trying at most |S| possibilities) and the first position of w′ within w
(by trying n possibilities), and then for every subword w′′ starting at this position compute the longest
possible decomposition of the form w′′ = w1w2 . . . wℓ′ such that α(w1) = . . . = α(wℓ′) = e, if existent.
The latter can be done by a standard left-to-right dynamic programming in time O(n2).



Chapter 3

The Erdős-Pósa Property for
Immersions and Topological Minors
in Tournaments

This chapter is devoted to proving Theorem A and Theorem B, i.e. that all simple digraphs admit the
Erdős-Pósa property for immersions and topological minors in tournaments.

Theorem A (restated). Every simple directed graph H has the Erdős-Pósa property for immersions
in tournaments with bounding function f(k) ∈ OH(k3).

Theorem B (restated). Every simple directed graph H has the Erdős-Pósa property for topological
minors in tournaments with bounding function f(k) ∈ OH(k log k).

Recall that the above theorems strengthen and improve the results of Raymond [Ray18] by giving
better bounding functions and dropping the assumption that H is strongly connected.

3.1 Erdős-Pósa property for immersions

In this section we prove Theorem A. In the following, a subset of arcs F in a digraph D is H-hitting
if the digraph D − F is H-immersion-free. We also fix the constant dctw hidden in the O(·)-notation in
Theorem 2.2; that is, if a tournament T does not contain H as an immersion then ctw(T ) ⩽ dctw∥H∥2.
Note that the constant hidden in the O(·)-notation in Corollary 2.4 is also equal to dctw. Without loss of
generality we assume that dctw is the square of an even integer.
We start with two straightforward observations which will be used several times later on.

Observation 3.1. Suppose Ĥ is an immersion model of a digraph H in a digraph G, and C is a strong
component of H. Then there exists a strong component D of G such that Ĥ|C is a subgraph of D.

Observation 3.2. Let T be a tournament and σ be an ordering of V (T ). Let H be a strongly connected
simple digraph with at least one arc and let Ĥ be an immersion model of H in T . Let v be the vertex of
V (Ĥ) that is last in the ordering σ. Then A(Ĥ) contains a σ-backward arc with tail v.

We now consider two special cases: when H is acyclic and when H is strongly connected. For the
acyclic case, we will use the following corollary of the classic results of Erdős and Hanani [EH63].

Lemma 3.3 (follows from [EH63]). There exists a universal constant deh such that for all positive
integers q, k, in a complete graph on at least deh · q

√
k vertices one can find k pairwise arc-disjoint

complete subgraphs, each on q vertices.

From now on, we adopt the constant deh in the notation.

Lemma 3.4. Let H be an acyclic simple digraph and let T be a tournament such that |T | ⩾ deh ·2|H|
√
k.

Then T contains k arc-disjoint subgraphs isomorphic to H.

29
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Proof. By Lemma 3.3, in T one can find k arc-disjoint subtournaments T1, . . . , Tk, each on 2|H| vertices.
It is well-known that a tournament on 2|H| vertices contains a transitive (i.e. acyclic) subtournament on
|H| vertices. As H is acyclic, it is a subgraph of a transitive tournament on |H| vertices. Hence, each of
T1, . . . , Tk contains a subgraph isomorphic to H, and these subgraphs are arc-disjoint. □

Corollary 3.5. Let H be a simple digraph that is acyclic and let k be a positive integer. Let T be a
tournament that does not contain k arc-disjoint immersion copies of H. Then one can find in T a set of
at most d2eh · 4|H|k arcs that is H-hitting.

Proof. We first consider the corner case when H does not contain any arc. Then T must have less than
|H| vertices, for otherwise repeating any set of |H| vertices k times would yield k arc-disjoint immersion
copies of H. Therefore, T in fact does not contain any immersion copy of H, due to having less vertices,
and the empty set is H-hitting in T .
Hence, let us assume that H contains at least one arc. Observe that |T | < deh · 2|H|

√
k, for otherwise,

by Lemma 3.4, there would exist k arc-disjoint immersion copies of H in T . Since H has at least one arc,
the set A(T ) of all the arcs of T is H-hitting, and this set has size at most

(
deh·2|H|

√
k

2

)
⩽ d2eh · 4|H|k, as

requested. □

We now move to the case when H is strongly connected. Recall that this case was already considered
by Raymond [Ray18], but we give a more refined argument that gives precise upper bounds on the
bounding function. The proof relies on an strategy of finding a cut that separates the immersion copies
of H in a roughly balanced way, and applying induction to each side of the cut. This strategy has been
applied before in the context of Erdős-Pósa properties, see e.g. [FST11].

Lemma 3.6. Let H be a simple digraph that is strongly connected and contains at least one arc, and let
k be a positive integer. Let T be a tournament that does not contain k arc-disjoint immersion copies of
H. Then one can find in T a set of at most 6dctw∥H∥2k2 arcs that is H-hitting.

Proof. We prove the lemma by induction on k. For the base case k = 1, T does not contain any
immersion copy of H, hence the empty set is H-hitting.
Assume then that k ⩾ 2. By Corollary 2.4, there is an ordering σ of V (T ) of width at most dctw∥H∥2k2.

Let α ∈ {0, 1, . . . , |V (T )|} be the largest index such that the tournament T [σ[α]] does not contain ⌈k/2⌉
arc-disjoint immersion copies of H. Since ⌈k/2⌉ < k, by induction there exists a set of arcs F1 of size at
most 6dctw∥H∥2⌈k/2⌉2 that is H-hitting in T [σ[α]].
If α = |V (T )|, or equivalently T [σ[α]] = T , then F1 is in fact H-hitting in T and we are done. Hence,

we assume from now on that α < |V (T )|. By the maximality of α we know that T [σ[α+1]] contains ⌈k/2⌉
arc-disjoint immersion copies of H. It follows that the tournament T − σ[α + 1] does not contain ⌊k/2⌋
arc-disjoint immersion copies of H, for otherwise together we would expose ⌈k/2⌉+⌊k/2⌋ = k arc-disjoint
immersion copies of H in T . By induction, there exists a set of arcs F2 of size at most 6dctw∥H∥2⌊k/2⌋2
that is H-hitting in T − σ[α+ 1].
Let now

F := F1 ∪ F2 ∪ cut[α] ∪ cut[α+ 1].

Observe that F is H-hitting in T . Indeed, since H is strongly connected and has at least one arc,
every immersion copy of H in T that in not entirely contained in T [σ[α]] or T − σ[α + 1] is hit by
cut[α]∪ cut[α+1], whereas immersion copies entirely contained in T [σ[α]] and in T − σ[α+1] are hit by
F1 and F2, respectively. It remains to estimate the size of F :

|F | ⩽ |F1|+ |F2|+ | cut[α]|+ | cut[α+ 1]|
⩽ 6dctw∥H∥2

(
⌈k/2⌉2 + ⌊k/2⌋2

)
+ 2dctw∥H∥2k2

⩽ 6dctw∥H∥2
((
k + 1
2

)2
+
(
k − 1
2

)2)
+ 2dctw∥H∥2k2

= dctw∥H∥2
(
3(k2 + 1) + 2k2

)
⩽ 6dctw∥H∥2k2.

This concludes the inductive proof. □

Actually, in our later proof we will not be able to rely on Lemma 3.6 for the following reason: we
will need the copies to be vertex-disjoint, rather than arc-disjoint. The following statement is tailored to
vertex-disjointness.
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Lemma 3.7. Let H be a simple digraph that is strongly connected and contains at least one arc, and
let k be a positive integer. Further, let T be a tournament with ctw(T ) ⩽ c that does not contain k
vertex-disjoint immersion copies of H. Then one can find in T a set of at most 2(k − 1)c arcs that is
H-hitting.

Proof. We proceed by induction on k. Let σ be an ordering of T of width at most c. If T does not
contain any copy of H, then the empty set is H-hitting. This proves the base case k = 1, so from now on
we may assume that k ⩾ 2 and that T contains at least one immersion copy of H.
Let α be the minimum integer satisfying the following: T [σ[α]] contains an immersion copy Ĥ of H.

Let B1 := {(u, v) ∈
←−
Aσ(T ) | σ(u) = α} be the set of backward arcs with tail α and let B := B1 ∪ cut[α].

As B1 ⊆ cut[α− 1], we have |B| ⩽ 2c.
Observe that in T ′ := T [V (T ) \ σ[α]] one cannot find a family of k − 1 vertex-disjoint immersion

copies of H. Indeed, if there was such a family, then adding Ĥ to it would yield a family of k vertex-
disjoint copies of H in T , a contradiction. Hence, by induction hypothesis, in T ′ there is a set S of at
most 2(k − 2)c arcs that is H-hitting. We claim that the set B ∪ S is H-hitting in T . Note that since
|B ∪ S| ⩽ |B|+ |S| ⩽ 2(k − 1)c, this will conclude the proof.
Indeed, suppose that Ĥ ′ is an immersion copy of H in T − (B ∪ S). By Observation 3.1, either

V (Ĥ ′) ⊆ V \ σ[α], or V (Ĥ ′) ⊆ σ[α]. The first case is impossible, because every immersion copy of H in
T ′ contains an arc from S. On the other hand, if V (Ĥ ′) ⊆ σ[α], then by the minimality of α we infer
that σ−1(α) ∈ V (Ĥ ′). Then Observation 3.2 implies that Ĥ ′ needs to contain an arc of B1, again a
contradiction. □

Note that by combining Lemma 3.7 with Corollary 2.4, we obtain a statement analogous to Lemma 3.6,
however with a bound of O(k3) instead of O(k2). This drawback will accordingly affect the final depen-
dency on k in Theorem A.
We now proceed to the main part of the proof, which concerns digraphs that are not acyclic and that

are not necessarily strongly connected.

Lemma 3.8. Let H be a simple digraph that is not acyclic and let k be a positive integer. Let T be a
tournament that does not contain k arc-disjoint immersion copies of H. Then one can find in T a set
consisting of at most 2d3/2ctw · |H|! · |H| · ∥H∥3 · k3 arcs that is H-hitting.

Proof. Let Comps be the family of all strong components of H and let h := |Comps|. Since H is not
acyclic, Comps contains at least one strong component C that is non-trivial , that is, |C| > 1. In particular,
h ⩽ |H| − 1. Further, let Π be the set of all topological orderings of the strong components of H; that
is, the elements of Π are orderings π : Comps → [|Comps|] such that for every arc of H with tail in
C ∈ Comps and head in D ∈ Comps, we have π(C) ⩽ π(D). It is well-known that Π ̸= ∅. Also, note that
|Π| ⩽ h! ⩽ (|H| − 1)!.
Let T = (V,E). By Corollary 2.4, there is an ordering σ of vertices of T of width at most c, where

c := dctw∥H∥2k2.

We also define
s :=

√
dctw · h∥H∥k.

Note that thus, s = h
√
c and s is an even integer, because we assume dctw to be a square of an even

integer.
Let I be the set of all σ-intervals. For I ∈ I, we define

cut−(I) := cut[startσ(I)] and cut+(I) := cut[endσ(I)].

We define functions

I : Comps× [|V |]→ I and A,B : Comps× [|V |]→ Pow
(←−
Aσ(T )

)
,

where Pow(X) denotes the power set of X, as follows:
• I(C,α) is the inclusion-wise minimal σ-interval I such that startσ(I) = α and T [I] contains at least
s vertex-disjoint immersion copies of C. If no such interval exists, we set I(C,α) := σ(α, |V |]. Note
that either way, T [I] does not contain s+ 1 vertex-disjoint immersion copies of C.
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• If C is trivial, then A(C,α) is the set of all backward arcs contained in T [I(C,α)]. If C is non-
trivial, then A(C,α) is a set of arcs that is C-hitting in T [I(C,α)] and is of size at most 2sc, whose
existence follows from Lemma 3.7.

• B(C,α) := cut+(I(C,α)).
Note that if C is trivial, then |I(C,α)| ⩽ s. This implies that |A(C,α)| ⩽

(
s
2

)
⩽ 2sc. Hence, in all cases

we have
|A(C,α)| ⩽ 2sc and |B(C,α)| ⩽ c.

Consider an arbitrary topological ordering π ∈ Π. We define indices α0, α1, . . . , αh and intervals
Iπ,1, Iπ,2, . . . , Iπ,h by induction as follows: α0 := 0 and, for i = 1, 2, . . . , h, we set

Iπ,i := I(π−1(i), αi−1) and αi := endσ(Iπ,i),

where if needed we put endσ(∅) = |V |. Moreover, for i ∈ [h] we define

Aπ,i := A(π−1(i), αi−1) and Bπ,i := B(π−1(i), αi−1).

Our next step is to show that if for some π ∈ Π, each interval Iπ,i contains s vertex-disjoint immersion
copies of H, then we get a contradiction: there are k vertex-disjoint immersion copies of H in T . For this,
we will use the following auxiliary statement.

Claim 3.1. Let G be a graph with vertex set partitioned into disjoint sets V1, . . . , Vh, each of size s.
Suppose that for each pair of indices 1 ⩽ i < j ⩽ h, there are at most s

2

h2 edges with one endpoint in Vi
and second in Vj. Then one can find s/2 pairwise disjoint independent sets I1, . . . , Is/2 in G such that
each independent set It, t ∈ [s/2], contains exactly one vertex from each set Vi, i ∈ [h].

Proof. For each i ∈ [h] let us arbitrarily enumerate the vertices of Vi as vi[0], . . . , vi[s−1]. Consider the
following random experiment: draw independently and uniformly at random numbers t, a1, . . . , ah from
{0, 1, . . . , s− 1}, and let

I := {vi[(t+ ai) mod s] : i ∈ [h]}.
Note that for each fixed pair of indices 1 ⩽ i < j ⩽ h, the probability that there is an edge between
vertices vi[(t+ai) mod s] and vj [(t+aj) mod s] is bounded by 1h2 . By the union bound we infer that I is an
independent set with probability at least 12 . Hence, there is a choice of â1, . . . , âh ∈ {0, 1, . . . , s− 1} such
that conditioned on a1 = â1, . . . , ah = âh, the probability (over the choice of t) that I is an independent
set is at least 12 . In other words, for at least s/2 choices of t, the set {vi[(t + âi) mod s] : i ∈ [h]} is
independent. This gives us the desired family of s/2 pairwise disjoint independent sets. ⌟

Claim 3.2. Suppose that there exists π ∈ Π such that for every i ∈ [h], the tournament T [Iπ,i] contains
s vertex-disjoint immersion copies of π−1(i). Then T contains k vertex-disjoint immersion copies of H.

Proof. Denote Cπ,i := π−1(i). For each i ∈ [h], let Ci be the family of s vertex-disjoint immersion copies
of Cπ,i contained in T [Iπ,i].
Let G be a graph on vertex set C1 ∪ . . . ∪ Cp where for each pair of indices 1 ⩽ i < j ⩽ h and pair of

immersion copies Q ∈ Ci and R ∈ Cj , we put an edge if and only if in T there is arc with tail in R and
head in Q. Note that such an arc is backward in σ and belongs to cut[αi]. Hence, for every pair of indices
i, j as above, G contains at most c edges with one endpoint in Ci and second in Cj .
Noting that c = s

2

h2 , we may apply Claim 3.1 to conclude that G contains s/2 pairwise independent
sets, each consisting of one element from each of the families C1, . . . , Ch. As s/2 ⩾ k, let I1, . . . , Ik be
any k of those independent sets. Now, for each t ∈ [k], we may construct an immersion copy of H
contained in T [

⋃
Q∈It V (Q)] as follows: take the union of subgraphs Q ∈ It, which are immersion copies

of Cπ,1, . . . , Cπ,t, respectively, and for each arc (a, b) of H that is not contained in any of Cπ,1, . . . , Cπ,t,
say a ∈ V (Cπ,i) and b ∈ V (Cπ,j) where we necessarily have i < j, map (a, b) to the single edge between
the corresponding two vertices from the copies of Cπ,i and Cπ,j in It. Note that this edge is oriented
forward in σ, because It is an independent set in G (a backward arc would have generated an edge in G).
Thus, we have constructed k vertex-disjoint copies of H in T . ⌟

If the assumption of Claim 3.2 holds, then we immediately obtain a contradiction and the proof is
finished. Therefore, we may further assume that for every π ∈ Π(H) there exists j ∈ [h] such that Iπ,j
contains less than s vertex-disjoint copies of π−1(j). Observe that this implies that endσ(Iπ,j) = |V |,
hence in particular we have

h⋃
i=1

Iπ,i = V (T ) for each π ∈ Π.
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Let

S :=
⋃
π∈Π

h⋃
i=1

Aπ,i ∪Bπ,i.

Observe that

|S| ⩽ |Π| · |H| · (2sc+ c)
⩽ (|H| − 1)! · |H| · (2s+ 1)c
= |H|! · (2

√
dctw · h∥H∥k + 1) · dctw∥H∥2k2

⩽ 2d3/2ctw · |H|! · |H| · ∥H∥3 · k3,

so to finish the proof it suffices to show that S is H-hitting in T . Let T ′ := T − S.

σ

B1 B2 B3 B4 B
J1 J2 J3 J4

π
12 = t1

3

4 = t2

56

7 = t3 10 = t4

9

8

L1 L2 L3 L4

Figure 3.1: Objects defined in the proof of Claim 3.3 with h = 10, m = 4, n = 3.

Claim 3.3. T ′ is H-immersion-free.

Proof. Let B be the family of all inclusion-wise maximal σ-intervals B satisfying the following property:
for every π ∈ Π and i ∈ [h], either B ⊆ Iπ,i or B∩ Iπ,i = ∅. Call elements of B base intervals and observe
that B is a partition of V (T ′). Let F be the family of all σ-intervals which are disjoint unions of collections
of base intervals. For two disjoint intervals J, J ′ ∈ F , we write J < J ′ if endσ(J) ⩽ startσ(J ′).
Suppose for contradiction that T ′ contains an immersion model Ĥ of H. We fix some immersion

embedding of H in Ĥ, to which we will implicitly refer when considering subgraphs Ĥ|C for C ∈ Comps.
Note that in T ′ there are no backward arcs with endpoints in different intervals from B, as Bπ,i ⊆ S

for every π ∈ Π and i ∈ [h]. Hence, every non-trivial strongly connected subgraph of T ′ must have all
vertices contained in a single base interval. In particular, from Observation 3.1 we infer that for every
non-trivial strong component C ∈ Comps, the subgraph Ĥ|C has all its vertices contained in a single base
interval. Note that this conclusion also holds trivially when C is trivial.
LetB1 < B2 < . . . < Bm be all the base intervals containing subgraphs Ĥ|C for non-trivial components

C ∈ Comps. Consider any partition of V (T ) into intervals J1, J2, . . . , Jm ∈ F such that Bi ⊆ Ji for each
i ∈ [m]. Note that this implies that J1 < J2 < . . . < Jm. For each i ∈ [m], let Compsi ⊆ Comps be the set
of all (including trivial) components C ∈ Comps such that V (Ĥ|C) ⊆ Ji. Note that {Compsi : i ∈ [m]} is
a partition of Comps and each family Compsi contains at least one non-trivial component.
Observe that if C ∈ Compsi and C ′ ∈ Compsi′ , where i ̸= i′, and in H there is an arc (u, v) with

u ∈ V (C) and v ∈ V (C ′), then we necessarily have i < i′. Indeed, the image of (u, v) in the immersion
embedding is a path in T ′ that starts in Ji and ends in Ji′ , while in T ′ arcs with endpoints in different
intervals among {J1, . . . , Jm} always point from an interval with a smaller index to an interval with a
higher index. Therefore, there exists a topological ordering π ∈ Π such that for all i, i′ ∈ [m] satisfying
i < i′, all the components of Compsi appear in π before all the components of Compsi′ . In other words,
there exist integers 0 = t0 < t1 < t2 < . . . < tm = h such that for each i ∈ [m], we have π(Compsi) =
(ti−1, ti] ∩ Z (cf. Figure 3.1). For every i ∈ [m], we define

Li :=
⋃

C∈Compsi

Iπ,π(C).
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Note that Li is a σ-interval belonging to F , because the set Compsi is contiguous in the ordering π.
Furthermore {Li : i ∈ [m]} is a partition of V (T ) and L1 < L2 < . . . < Lm.
Recalling that both {Ji : i ∈ [m]} and {Li : i ∈ [m]} are partitions of V (T ), we can define n to be the

smallest positive integer satisfying
⋃n
i=1 Ji ⊆

⋃n
i=1 Li. By the minimality of n, we have Jn ⊆ Ln.

Recall that Bn ⊆ Jn ⊆ Ln and Bn is a base interval. Therefore, there exists C ∈ Compsn such that
Bn ⊆ Iπ,π(C). If C is non-trivial, then the set of arcs Aπ,π(C) is C-hitting in T [Iπ,π(C)]. This implies that
T ′[Iπ,π(C)] is C-immersion-free, and so is its subgraph T ′[Bn]. However, Bn is the only interval among
{B1, . . . , Bm} that is contained in Iπ,π(C), hence C being a non-trivial component from Compsn implies
that V (Ĥ|C) ⊆ Bn; a contradiction. If C is trivial, then T [Iπ,π(C)]−Aπ,π(C) is acyclic, hence T ′[Iπ,π(C)]
is C ′-immersion-free for every non-trivial component C ′ ∈ Compsn. Since there exists such a non-trivial
component C ′ and it again satisfies V (ĤC′) ⊆ Bn ⊆ Iπ,π(C), we again obtain a contradiction. ⌟

As argued, Claim 3.3 finishes the proof of Lemma 3.8. □

With Lemma 3.8 in place, we can finish the proof of Theorem A.

Proof (of Theorem A). If H has no arcs, then the statement holds trivially for bounding function
f(k) = 0. Hence, from now on assume that H has at least one arc. Suppose T is a tournament that does
not contain k arc-disjoint immersion copies of H. If H is acyclic, then, by Corollary 3.5, we may find in T
a set of at most d2eh ·4|H|k ∈ OH(k) arcs that is H-hitting. On the other hand, if H is not acyclic, then by
Lemma 3.8 we may find in T an H-hitting set of arcs of size at most 2d3/2ctw ·|H|!·|H|·∥H∥3 ·k3 ∈ OH(k3).□

3.2 Erdős-Pósa property for topological minors

In this section we prove Theorem B. The proof follows similar ideas to the ones presented in the previous
section, only adjusted to the setting of interval decompositions. Throughout this section, the notions of
a copy and of hitting will refer to topological minor copies. Let us fix the constant dpw hidden in the
O(·)-notation in Theorem 2.5 and note that the constant hidden in the O(·)-notation in Corollary 2.6 is
also equal to dpw.
Consider first the acyclic case. The following statements are analogues of Lemma 3.4 and Corollary 3.5.

Lemma 3.9. Let H be an acyclic simple digraph let T be a tournament such that |T | ⩾ 2|H|k. Then T
contains k vertex-disjoint subgraphs isomorphic to H.

Proof. Arbitrarily partition the vertex set of T into subsets W1, . . . ,Wk so that |Wi| ⩾ 2|H| for each
i ∈ [k]. Since a tournament on 2|H| vertices contains a transitive subtournament on |H| vertices, which
in turn contains H as a subgraph, we infer that each tournament T [Wi], i ∈ [k], contains a topological
minor copy of H. This gives k vertex-disjoint topological minor copies of H in T . □

Corollary 3.10. Let H be a simple digraph that is acyclic and let k be a positive integer. Let T be a
tournament that does not contain k vertex-disjoint topological minor copies of H. Then one can find in
T a set of at most 2|H|k vertices that is H-hitting.

Proof. By Lemma 3.9 we have |T | < 2|H|k, so we can take the whole vertex set of T as the requested
H-hitting set. □

We now proceed to the strongly connected case and prove an analogue of Lemma 3.6. Note that in
this setting, we can use the strategy from the proof of Lemma 3.6 and directly achieve vertex-disjointness.
Hence, we will need no counterpart of Lemma 3.7.

Lemma 3.11. Let H be a strongly connected simple digraph and let T be a tournament that does not
contain k vertex-disjoint topological minor copies of H. Then in T one can find a set of at most 2dpw∥H∥·
k log k vertices that is H-hitting.

Proof. We proceed by induction on k. In the base case k = 1 there are no copies of H in T , hence we
can take the empty set as an H-hitting set. Let us then assume that k ⩾ 2.
If T does not contain ⌈k/2⌉ vertex-disjoint copies of H, then as ⌈k/2⌉ < k, we may apply the induction

assumption for ⌈k/2⌉. Hence, from now on assume that T contains ⌈k/2⌉ vertex-disjoint copies of T .
By Corollary 2.6, T admits an interval decomposition of width at most dpw∥H∥ · k. Recall that we

may assume that the endpoints of intervals in I correspond to pairwise different nonnegative integers.
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Let α be the largest integer such that T [I[α]] does not contain ⌈k/2⌉ vertex-disjoint copies of H. By the
assumption from the previous paragraph, α is well defined and T [α + 1] contains ⌈k/2⌉ vertex-disjoint
copies of H. It follows that T [I[α+2,∞]] does not contain ⌊k/2⌋ vertex-disjoint copies of H, for otherwise
in total we would obtain ⌈k/2⌉+ ⌊k/2⌋ = k vertex-disjoint copies of H.
By induction assumption, in T [I[α]] and in T [I[α + 2,∞]] we can find H-hitting sets S1 and S2 of

sizes 2dpw∥H∥ · ⌈k/2⌉ log⌈k/2⌉ and 2dpw∥H∥ · ⌊k/2⌋ log⌊k/2⌋, respectively. Let

S := S1 ∪ S2 ∪ vcut[α+ 1].

We claim that S is H-hitting in T . Indeed, since H is strongly connected, every copy of H in T that
does not intersect vcut[α] must be entirely contained either in T [I[α]] or in T [I[α + 2,∞]], and then it
intersects S1 or S2, respectively.
We are left with bounding the size of S. Observe that

|S| ⩽ |S1|+ |S2|+ | vcut[α+ 1]|
⩽ 2dpw∥H∥ (⌈k/2⌉ log⌈k/2⌉+ ⌊k/2⌋ log⌊k/2⌋) + dpw∥H∥k
⩽ 2dpw∥H∥ (k/2 (log⌈k/2⌉+ log⌊k/2⌋) + 1/2 (log⌈k/2⌉ − log⌊k/2⌋)) + dpw∥H∥k
⩽ 2dpw∥H∥ (k log(k/2) + 1/2) + dpw∥H∥k
= dpw∥H∥ (2k log k − 2k + 1 + k) ⩽ 2dpw∥H∥ · k log k.

This concludes the proof. □

We proceed to the main part of the proof, which is is again conceptually very close to the one presented
in the case of immersions. It is arguably simpler, as we work only with vertex-disjointness.

Lemma 3.12. Let H be a simple digraph that is not acyclic and let k be a positive integer. Let T be a
tournament that does not contain k vertex-disjoint topological minor copies of H. Then one can find in
T a set consisting of at most 6dpw · |H|! · ∥H∥ · k log k vertices that is H-hitting.

Proof. Denote T = (V,E). Define Comps, h, Π, topological ordering and (non-)trivial components as
in the proof of Lemma 3.8. Note that the same assertions about these objects apply.
By Corollary 2.6, T admits an interval decomposition I of width at most

p := dpw∥H∥ · k.

Recall that we may assume that the endpoints of the intervals of I are pairwise different nonnegative
integers. Let N be the largest interval end, i.e. N := max{last(I(v)) : v ∈ V }. Define functions

β : Comps× Z→ Z and A, B : Comps× Z→ Pow(V )

as follows:
• β(C,α) is the minimum integer β with the property that interval T [I[α, β]] contains at least k
vertex-disjoint topological minor copies of C. If no such β exists, we set β = N . Note that since we
assume that the endpoints of the intervals in I are pairwise different, in either case T [I[α, β]] does
not contain k + 1 vertex-disjoint topological minor copies of C.

• If C is trivial, then A(C,α) = I[α, β(C,α)]. If C is non-trivial, then A(C,α) is a C-hitting set of
vertices in T [I[α, β(C,α)]] of size at most 2dpw∥H∥ · (k + 1) log(k + 1) ⩽ 5dpw∥H∥ · k log k, whose
existence follows from Lemma 3.11.

• B(C,α) := vcut[β(C,α)].
Note that since p ⩽ 5dpw∥H∥ · k log k, for all C and α we have

|A(C,α)| ⩽ 5dpw∥H∥ · k log k and |B(C,α)| ⩽ p.

Consider an arbitrary π ∈ Π and define indices απ,0, απ,1, . . ., απ,h by induction as follows: απ,0 := 0
and, for i = 1, 2, . . . , h, set

απ,i := β(π−1(i), απ,i−1).

Moreover, for i ∈ [h] we define

Iπ,i := I[απ,i−1, απ,i], Aπ,i := A(π−1(i), απ,i−1) and Bπ,i := B(π−1(i), απ,i−1).
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Note that since no interval in the decomposition I has length 0, sets Iπ,i for i ∈ [h] are pairwise disjoint.
Moreover, since intervals in I have pairwise different endpoints, for all 1 ⩽ i < j ⩽ h, all arcs with one
endpoint in Iπ,i and second in Iπ,j have tail in Iπ,i and head in Iπ,j .
The following statement can be proved using the same arguments as the corresponding claim in the

proof of Lemma 3.8 (that is, Claim 3.2). We simply join the copies of strong components of H by single
forward arcs between intervals Iπ,i.

Claim 3.4. Suppose that there exists π ∈ Π such that for every i ∈ [h], the tournament T [Iπ,i] contains
k vertex-disjoint topological minor copies of π−1(i). Then T contains k vertex-disjoint topological minor
copies of H.

Just as in the proof of Lemma 3.8, due to Claim 3.4 we may now assume that

h⋃
i=1

Iπ,i = V (T ) for each π ∈ Π.

Consider
S :=

⋃
π∈Π

⋃
i∈[h]

Aπ,i ∪Bπ,i.

Since |Π| ⩽ (|H| − 1)! due to H not being acyclic, we have

|S| ⩽ (|H| − 1)! · |H| · (5dpw∥H∥ · k log k + dpw∥H∥ · k) ⩽ 6dpw · |H|! · ∥H∥ · k log k.

So it is enough to prove that S is H-hitting in T . Let T ′ := T − S.

Claim 3.5. T ′ is H-topological-minor-free.

Proof. The proof follows precisely the same steps as the one of Claim 3.3, with minor and straightfor-
ward adjustments (e.g. instead of σ-intervals we consider simply intervals). ⌟

Claim 3.5 finishes the proof of Lemma 3.12. □

Now we can finish the proof of Theorem B.

Proof (of Theorem B). Suppose T is a tournament that does not contain k vertex-disjoint topological
minor copies ofH. IfH is acyclic, then, by Corollary 3.10, we may find in T a set of at most 2|H|k ∈ OH(k)
vertices that is H-hitting. On the other hand, if H is not acyclic, then by Lemma 3.12 we may find in T
an H-hitting set of vertices of size at most 6dpw · |H|! · ∥H∥ · k log k ∈ OH(k log k). □



Chapter 4

Polynomial Kernel for Immersion
Hitting in Tournaments

This chapter is devoted to proving Theorem C, i.e. designing a polynomial-time kernelization procedure
for H-hitting Immersions in Tournaments (with the degree dependent on H).

Theorem C (restated). For every simple digraph H without isolated vertices there exists a constant c
and an algorithm that given an instance (T, k) of H-hitting Immersions in Tournaments, runs in
polynomial time and returns an equivalent instance (T ′, k) with |T ′| ⩽ c · kc.

The proof shows how the protrusion replacement technique can be adapted to work in the world
of tournaments. We mimic and adjust the steps developed in [FLMS12, GPR+21]: first we restrict our
attention to sufficiently large and well-structured tournament (of cutwidth bounded in terms of the
parameter k), then we identify and appropriately define large protrusion — “simple part” whose internal
structure and interaction with the rest of the graph can be efficiently understood and encoded, and finally
we show how to replace it with a protrusion of the same “behavior” with respect to the problem (i.e.
keeping the answer unchanged) and strictly smaller size.
Throughout this chapter we fix a simple digraph H without isolated vertices and an integer k ∈ N. For

a tournament T , a set F ⊆ A(T ) is called a solution if T −F is H-free. Moreover, F is an optimal solution
if it is a solution of the smallest possible size. So (T, k) is a yes-instance of H-hitting Immersions in
Tournaments if and only if in T there exists an optimal solution of size at most k.

4.1 Partial immersions

Our goal in this section is to extend the notion of an immersion to partial immersions. These will be
used to understand possible behaviors of immersion models in a tournament T with respect to different
intervals in an ordering of the vertex set of T . Let then T = (V,A) be a tournament and let σ be an
ordering of V . For now, fix a σ-interval I := σ(α, β].

Definition 4.1. A scattered path in I of size q ⩾ 0 is a sequence P̃ = (Pi)
q
i=1 satisfying the following

properties:

• for each i ∈ [q], Pi is a directed (simple) path of length at least 1 consisting of arcs that belong to
A(T [I]) ∪ ∂(I) ∪ Γ(I);

• paths Pi for i ∈ [q] are pairwise arc-disjoint;

• for every i ∈ [q], i ̸= 1, we have first(Pi) ∈ Γ−(I) ∪ ∂−(I);

• for every i ∈ [q], i ̸= q, we have last(Pi) ∈ Γ+(I) ∪ ∂+(I).

Each term in the sequence (Pi)
q
i=1 will be called a piece of P̃ . The set of arcs of all pieces of P̃ is denoted

A(P̃ ). If first(Pi) ∈ Γ−(I) and last(Pi) ∈ Γ+, then the piece Pi is called generic.

Note that first(P1) is allowed to be an arc in the set A(T [I]) ∪ Γ+(I) ∪ ∂+(I). If it is such, we call the
vertex tail(first(P1)) ∈ I the beginning of P̃ and denote it by start(P̃ ). Similarly, if last(Pq) ∈ A(T [I]) ∪

37
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Γ−(I) ∪ ∂−(I), then we call the vertex head(last(Pq)) the end of P̃ and denote it by end(P̃ ). Note that
the empty sequence is a scattered path of size 0. Also, a scattered path with only one piece, whose both
beginning and end exist, is just a path in T [I]. By PI we denote the family of all scattered paths in I.
We say that a scattered path P̃ = (Pi)

q
i=1 in I can be shortened to a scattered path P̃

′ (or that P̃ ′ is
a shortening of P̃ ) if:

• start(P̃ ) = start(P̃ ′) and end(P̃ ) = end(P̃ ′) (meaning either equal or simultaneously undefined);

• for each piece P ′s of P̃ ′ there exist indices i−s ⩽ i+s such that tail(first(P
′
s)) = tail(first(Pi−s )) and

head(last(P ′s)) = head(last(Pi+s )); and

• whenever s < s′, we have i+s < i
−
s′ and P

′
s appears before P

′
s′ in P̃

′.

Intuitively, shortening of the path means removing some pieces and replacing several contiguous subse-
quences of the pieces with single pieces, keeping the tail of the beginning and the head of the end of the
replaced subsequence. Note that in particular, some pieces of P̃ can be simply omitted in P̃ ′ (other than
the initial and the terminal one).

Definition 4.2. A partial immersion embedding of H in I (or shortly, a partial immersion in I) is a
mapping φ : A(H)→ PI such that

• all scattered paths φ(a) for a ∈ A(H) are pairwise arc-disjoint;

• if tail(a) = tail(a′) then start(φ(a)) and start(φ(a′)) are either equal, or simultaneously undefined;

• if start(φ(a)) and start(φ(a′)) are defined and equal, then tail(a) = tail(a′);

• if head(a) = head(a′) then end(φ(a)) and end(φ(a′)) are either equal, or simultaneously undefined;

• if end(φ(a)) and end(φ(a′)) are defined and equal, then head(a) = head(a′).

Intuitively, we can think of a partial immersion as of a “trace” which some immersion model Ĥ of H in
T “leaves” on the interval I. Some edges of H have images being paths in Ĥ non-incident with I (these
correspond to empty scattered paths in the partial immersion embedding). Some images of arcs of H
come back and forth to I, intersecting with I along a non-empty scattered path (the ordering of paths on
a single scattered path corresponds to the order of their appearance along the image of the respective arc
of H). Finally, some arc images begin or end within I, which corresponds to the case when the beginning
or the end of a scattered path is defined and is a vertex of I.
We call a partial immersion φ′ in I a shortening of φ in I if for every a ∈ A(H), the scattered path

φ′(a) is a shortening of φ(a). We call φ minimal if there is no shortening of φ with at least one scattered
path of strictly smaller size. Note that φ may be minimal even if some piece of some φ(a) can be replaced
by a different single piece with equal first and last vertices. Shortening which does not decrease the size
of any scattered path will be called trivial.
Note that each immersion model φ of H in T is a partial immersion in V (T ), in which all scattered

paths φ(a), a ∈ A(H), are paths in T beginning and ending at φ(tail(a)) and φ(head(a)), respectively.
Moreover, each partial immersion φ in I gives rise to a natural partial immersion of H in J ⊆ I in which
all paths φ(a) where a ∈ A(H) are “trimmed” to scattered paths consisting of precisely those arcs which
are incident with J .
Formally, let I and J be σ-intervals such that J ⊆ I. If P is a path in I, then define the trace P |J

of P on J to be the scattered path consisting of all arcs of P incident with J , arranged in the order of
appearance along P . If P̃ = (Pi)

q
i=1 is a scattered path in I, then define the trace P̃ |J of P̃ on J to be the

concatenation of scattered paths Pi|J . The trace φ|J of a partial immersion φ of H in I on J is defined
by setting φ|J(a) = (φ(a))|J for every a ∈ A(H).
Consider any σ-intervals I1, I2 with the property that there exist α, β, γ ∈ {0, 1, . . . , |V |} such that

I1 = σ(α, γ] and I2 = σ(γ, β]. We will call such a pair of intervals consecutive. Equivalently, two disjoint
intervals are consecutive if their union I = I1 ∪ I2 is a σ-interval as well. Let P̃1 be a scattered path in
I1 and P̃2 be a scattered path in I2. We say that P̃1 and P̃2 are compatible if

• A(P̃1) ∩A(I1, I2) = A(P̃2) ∩A(I1, I2);

• the set of pieces whose arc set is A(P̃1) ∪ A(P̃2) can be ordered to form a scattered path P̃ in I
with the property that all pieces of P̃i appear in P̃ in the same order as they do in P̃i, for i = 1, 2.
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Every P̃ described above will be called a gluing of P̃1 and P̃2. Note that a gluing is not necessarily
uniquely defined, which can be seen particularly well when A(P̃1) ∩ A(I1, I2) = A(P̃2) ∩ A(I1, I2) = ∅
— in this case the pieces of both paths can be “shuffled” in any way only keeping the order of pieces
originating from the same path.

Observation 4.1. If P̃1 is compatible with P̃2 and P̃ ′2 is a shortening of P̃2, then there exists a shortening
P̃ ′1 of P̃1 such that P̃

′
1 and P̃

′
2 are compatible and every gluing of them is a shortening of some gluing of

P̃1 and P̃2.

Proof. To construct P̃ ′1 from P̃1 it is enough to omit the pieces which do not share arcs with P̃
′
2. □

We will say that two partial immersions φ1 in I1 and φ2 in I2 are compatible if there exists a partial
immersion φ in I such that φ1 = φ|I1 and φ2 = φ|I2 , or — in other words — that for every a ∈ A(H) the
scattered path φ(a) is a gluing of φ1(a) and φ2(a). We will call every such φ a gluing of φ1 and φ2. Note
that a gluing is not necessarily uniquely defined. Denote the set of all gluings of φ1 and φ2 by φ1 ⊕ φ2.
Observation 4.2. If φ ∈ φ1 ⊕ φ2 and φ is minimal, then φ1 and φ2 are minimal.

Proof. Suppose that φ1 is not minimal. Then there exists a shortening φ′1 of φ1 which has a strictly
smaller total number of pieces. For every a ∈ A(H) the scattered path φ′1(a) is compatible with some
scattered path φ′2(a) obtained by omitting several pieces in φ2(a). In particular, the collection of all such
φ′2(a) — call it φ

′
2 — is a partial immersion compatible with φ

′
1 that is a shortening of φ2. Any gluing

belonging to φ′1 ⊕ φ′2 is a shortening of φ with a strictly smaller total number of pieces — contradiction.
An analogous reasoning can be applied upon supposing that φ2 is not minimal. □

The notions of a scattered path, partial immersion and trace can be naturally extended to co-intervals,
by applying all definitions verbatim. If I is a σ-interval and I ′ = V − I is the corresponding co-interval,
then partial immersions φ1 in I and φ2 in I ′ are compatible if there exists an immersion φ in T such that
φ1 = φ|I and φ2 = φ|I′ . Again, every such φ is called a gluing of φ1 and φ2.

Types of intervals. The key ingredient of our analysis is a constant-size encoding of the set of possible
“behaviors” of partial immersions in intervals.
A σ-interval I shall be called ℓ-long if |I| ⩾ ℓ. Further, we shall call I c-flat if |∂+(I)| ⩽ c, |∂−(I)| ⩽ c,

and σ restricted to T [I] has width at most c.
Note that if I = σ(α, β] is 2r-long, then the intervals I−r := σ(α, α + r] and I

+
r := σ(β − r, β] are

disjoint. On the other hand, if I is c-flat, then we can color all backward arcs incident with I with at most
3c colors in such a way that each γ-cut of σ restricted to those arcs contains arcs of mutually different
colors. This can be achieved e.g. by greedy coloring the γ-cuts for consecutive γ = α, . . . , β+1. Formally,
there exists a function ξ :

←−
Aσ(T )∩A(I, V )→ [3c] such that for every γ ∈ [|V |− 1] and every two distinct

arcs a1, a2 ∈ cutσ[γ] ∩A(I, V ) we have ξ(a1) ̸= ξ(a2). In the following fix such a function.
Definition 4.3. Let φ be a partial immersion in an interval I that is 2r-long and c-flat. For each a ∈
A(H) we define the (r, c)-type τ (r,c)(φ(a)) of the scattered path φ(a) = (Pi)

q
i=1 as the following sequence

of length 2q:

(f−(first(P1)), f+(last(P1)), f−(first(P2)), f+(last(P2)), . . . , f−(first(Pq)), f+(last(Pq))),

where the functions f± : A(T [I]) ∪ ∂(I) ∪ Γ(I)→ [−3c] ∪ [r] ∪ {X,H} are defined as follows

f−(a) =


−ξ(a) if a ∈ ∂−(I),
σ(head(a))− α if a ∈ Γ−(I) and head(a) ∈ I−r ,
X if a ∈ Γ−(I) and head(a) /∈ I−r ,
H otherwise;

f+(a) =


−ξ(a) if a ∈ ∂+(I),
r + σ(tail(a))− β if a ∈ Γ+(I) and tail(a) ∈ I+r ,
X if a ∈ Γ+(I) and tail(a) /∈ I+r ,
H otherwise.

Let S be the set of all terms of the sequences (τ (r,c)(φ(a)))a∈A(H), where by term we mean a value with an
assigned position (i.e. equal values in different sequences are considered different terms). The (r, c)-type
of φ is the collection of types τ (r,c)(φ) = (τ (r,c)(φ(a)))a∈A(H) equipped with a pair of equivalence relations
(R−, R+) on the set S ∪ [3c] defined as follows.
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• If a piece P1 of φ(a1) and a piece P2 of φ(a2) satisfy head(first(P1)) = head(first(P2)), then the
corresponding terms in τ (r,c)(φ) (elements of the set {X} ∪ [r] with assigned positions in respective
sequences) are in relation R−.

• If a piece P of φ(a) is such that head(first(P )) is the tail of a singular arc of color x ∈ [3c], then
the corresponding term in τ (r,c)(φ) is in relation R− with x.

• Analogously, if tail(last(P1)) = tail(last(P2)), then the terms f+(last(P1)) and f+(last(P2)) are in
relation R+. And x ∈ [3c] is in relation with all terms corresponding to tails of ends of paths which
are simultaneously the head of the singular arc of color x.

Let us provide some intuition on what kind of information is stored in the type of φ defined above.
First of all, the entire “singular interface” of this partial immersion is kept, i.e. in the type we remember
precisely the singular arcs used to enter or exit I when traversing along each scattered path φ(a). Moreover,
if we enter or exit I with a generic arc, we remember the precise vertex of entry/exit inside I, but only
if it is close enough to the “border” of I (i.e. within the first or last r vertices in σ). Otherwise we
remember the respective entry/exit as “generic”, which is marked by the marker X. Moreover, we keep
the information about whether the scattered path begins or ends inside I — the marker H represents
that a vertex of H is mapped under the partial immersion embedding to a vertex within I. Finally if
the extreme (first or last) arcs of some pieces are generic and have the same first/last vertex in I, we
remember this fact in the equivalence relations R±. We shall need this information to be able to “glue”
two partial immersions without using the same generic gluing arc for different pieces. The incidence with
singular arcs is also stored to avoid a situation when one attempts a generic gluing along a singular arc.
The reason for colors being stored as negative integers is purely technical — it ensures that [r]∩[−3c] = ∅.
An (r, c)-type is any collection of sequences of even lengths over the set [−3c] ∪ [r] ∪ {X,H} indexed

by A(H) and equipped with a pair of equivalence relations (R−, R+) on the union of the set of all terms
of these sequences and [3c]. An I-admissible (r, c)-type is every type τ such that there exists a partial
immersion φ in I such that τ = τ (r,c)(φ). The size of a type is the sum of lengths of its sequences (i.e. it
does not depend on the equivalence relations).
Let γr be a function mapping each element from the set [r] onto the single marker X, and identity

otherwise. Intuitively, the function γr keeps only the information about generic nature of the end of a
piece, and “forgets” about the closeness of this vertex to the boundary. We say that an (r, c)-type τ ′ is
a shortening of an (r, c)-type τ if for every a ∈ A(H) the sequence γr(τ ′a) is a subsequence of γr(τa) and
the two sequences have the same first and last terms.
The following observation is a direct consequence of the definition of shortening of a partial immersion.

Observation 4.3. If a partial immersion φ′ of (r, c)-type τ ′ is a shortening of a partial immersion φ of
(r, c)-type τ , then τ ′ is a shortening of τ .

Definition 4.4. An I-admissible (r, c)-type τ is called minimal (in I) if there is no I-admissible type τ ′

of strictly smaller size that would be a shortening of τ .

Observation 4.4. Let φ be a partial immersion in I of (r, c)-type τ . Then φ is minimal if and only if τ
is minimal in I.

Proof. If φ is not minimal, then for any nontrivial shortening φ′ of φ, τ (r,c)(φ′) is a shortening of τ of
strictly smaller size. Conversely, if τ is not minimal, then there exists an I-admissible type τ ′ of strictly
smaller size. Every partial immersion φ′ of type τ ′ is a nontrivial shortening of φ. □

We now observe that in a minimal partial immersion on an interval I, all scattered paths will be
relatively small, that is, will visit I only a bounded number of times.

Lemma 4.5. Suppose that F ⊆ A(T ) has the property that |F | ⩽ f , I is 4∥H∥(c+f +1)-long and c-flat,
and a partial immersion φ in I is minimal and disjoint with F . Then for every a ∈ A(H) the scattered
path φ(a) has size at most 2c+ 3.

Proof. We will show that every partial immersion φ disjoint with F can be shortened to a partial
immersion φ′ disjoint with F in which every path φ(a) has at most one generic piece. This will yield the
desired result as every nongeneric piece of φ(a) which is neither the initial, nor the terminal one, contains
at least one arc from the set ∂(I), which is of size not exceeding 2c (as I is c-flat).
Take an arbitrary φ disjoint with F . For every a ∈ A(H), let φ(a) = (P ai )

qa
i=1. Let i

−
a be the smallest

index i such that first(P ai ) ∈ Γ−(I) (if there is no such index, we put i−a = ∞). Similarly, let i+a be the



4.1. PARTIAL IMMERSIONS 41

greatest index i such that last(P ai ) ∈ Γ+(I) (or i+a = −∞ if no such index exists). Note that if i < i−a or
i > i+a , then P

a
i is not generic, so∣∣∣∣∣∣

⋃
a∈A(H)

⋃
i/∈[i−a ,i+a ]

{P ai }

∣∣∣∣∣∣ ⩽ ∥H∥ · (2c+ 2).
The set on the left-hand side of the above inequality comprises of pieces that we will keep unchanged

in φ; we will show a way to shorten φ by replacing the subsequence (P ai )
i+a
i=i−a
with a single generic piece

for each φ(a) for which this subsequence is nonempty (if i−a > i
+
a , then φ(a) has no generic pieces). This

will conclude the proof as the new piece will be the only generic one.
Let

G = Γ(I) ∩
⋃

a∈A(H)

⋃
i/∈[i−a ,i+a ]

A(P ai ),

so in particular |G| ⩽ ∥H∥ · (2c+2) as each piece P ai with i /∈ [i−a , i+a ] contains at most one generic arc in
Γ(I). Since I is 2∥H∥(c+f+1)-long, we may find in I a subset J of vertices not incident with F ∪G∪∂(I)
such that |J | ⩾ ∥H∥. Indeed,

|I| ⩾ 4∥H∥(c+ f + 1) ⩾ 2f + 2(c+ 1)∥H∥+ 2c+ ∥H∥ ⩾ 2|F |+ |G|+ |∂(I)|+ ∥H∥.

Now assign to each a ∈ A(H) a different vertex v(a) ∈ J . We can use these vertices are “pivots” for the
newly constructed generic pieces. Indeed, for every a ∈ A(H) such that i−a ⩽ i+a consider the path

P a± = (tail(first(P
a
i−a
)), v(a))(v(a), head(last(P a

i+a
))).

This path is well-defined as the two arcs it consists of are generic (because v(a) was chosen not to
be incident with ∂(I)). Moreover, it is edge-disjoint with G ∪ F and with all other P a′± (a′ ̸= a), as
v(a) ̸= v(a′). Inserting paths P a± in place of the subsequences described above gives a desired shortening
and finishes the proof. □

Remark 4.1. In all the results throughout this chapter ∥H∥ can actually be replaced with ∥H∥ − |H|
(i.e. the number of arcs of H). The weakening of these results does not substantially affect the main
theorem and is meant to make the presentation more clear.

We call an (r, c)-type τ short if for every a ∈ A(H) the length of τ(φ(a)) is at most 4c+ 6.

Corollary 4.6. For r ⩾ 1 we have the following:

1. If an interval I is 4∥H∥(r + c)-long and c-flat, and a partial immersion φ in I is minimal, then
τ (r,c)(φ) is short.

2. For every pair of integers r, c ∈ N there is a constant t(r, c) such that there are exactly t(r, c) short
(r, c)-types. In particular, for any interval I as above, there are at most t(r, c) different I-admissible
minimal (r, c)-types.

Proof. It is enough to take F = ∅ in Lemma 4.5 to see that the lengths of sequences τ (r,c)(φ(a)) for
a ∈ A are uniformly bounded by 2(2c + 3). To prove that the number of types is bounded in terms of
r and c it is now enough to observe that the number of different equivalence classes R+, R− is so. The
last claim is true as these are the equivalence classes introduced on a set of size bounded in terms of r
and c. □

Let I1, I2 be two consecutive c-flat, 2(r + c)-long σ-intervals and I = I1 ∪ I2. We say that two (r, c)-
types τ1 of I1 and τ2 of I2 are compatible if there exists a partial immersion φ in I such that φ|I1 and
φ|I2 are compatible, φ|I1 has type τ1, and φ|I2 has type τ2.
The gluing of the types τ1 ⊕ τ2 is defined as the set of all (r, c)-types of all such φ. The following

lemma proves that this definition is correct, i.e. that types of two immersions store enough information
to ensure the possibility of gluing them.

Lemma 4.7. Let I1, I2 be two consecutive c-flat, 4∥H∥(r + c)-long σ-intervals and I = I1 ∪ I2. If two
(r, c)-types τ1 of I1 and τ2 of I2 are compatible, then for every partial immersion φ1 in I1 of type τ1 and
for every partial immersion φ2 in I2 of type τ2, the immersions φ1 and φ2 are compatible.
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Proof. By the definition of compatible types, we have at least one pair of compatible partial immersions
η1 in I1 and η2 in I2, of types τ1 and τ2 respectively. Consider any η ∈ η1⊕η2. We will use η as a “model”
for understanding how to successfully glue φ1 and φ2.
Fix a ∈ A(H) and mappings πi sending the pieces of path ηi(a) to the corresponding pieces of path

φi(a), in accordance with the equality of types, where i = 1, 2. Moreover, color in η(a) all arcs contained
in A(I1, I1) ∪ ∂+(I1) ∪ Γ−(I1) blue, all arcs contained in A(I2, I2) ∪ ∂−(I2) ∪ Γ+(I2) green, and all other
arcs (i.e. the “gluing” arcs in A(I1, I2)) red. Thus, every piece in η(a) consists of alternating (and possibly
empty) green and blue paths with a red arc between each two consecutive paths of different colors.
Suppose that some piece P of η(a) contains a red arc e. Assume that the maximal monochromatic

nonred subpath of P directly preceding this arc is blue and the maximal monochromatic nonred subpath
of P directly following this arc is green (the reasoning in the other case is analogous). Then the blue path
is a subpath of some piece P1 of η1 and the green path is a subpath of some piece P2 of η2, where the
only difference is the arc e and possibly the other extreme arcs (if they are colored red as well). We will
show that we may directly glue pieces π1(P1) of φ1 and π2(P2) of φ2 using the arc

e′ = (tail(last(π1(P1))), head(first(π2(P2))))

and moreover — that such gluing can be performed simultaneously in all places corresponding to red
arcs of η. This yields a construction of a gluing φ ∈ φ1⊕φ2 therefore certifying the desired compatibility.
Moreover, τ (r,c)(φ) = τ (r,c)(η) and η was chosen arbitrarily, which implies that the types of immersions
being glued are enough to determine all possible types of gluings.
First of all note that if the arc e is singular of color x, then this fact is stored in the equivalence

relations R+ of τ (r,c)(η1) and R− of τ (r,c)(η2). Therefore, by the equality of types of ηi and φi, the arc e′

is singular of color x as well, hence e′ = last(π1(P1)) = first(π2(P2)) and the gluing is possible.
If e is generic then, again by the respective equivalence relations, no other generic gluing arc joins

vertices tail(last(P1)) and head(last(P1)). This means that e′ is generic and does not correspond to any
other red arc of η than e. Therefore again the gluing along this arc can be performed. □

Boundaried intervals and signatures. In the process of replacing protrusions we will need to con-
sider intervals not as subsets of an ordered vertex set of a larger tournament, but as standalone structures
which can be used to replace one another. We introduce the notion of an (r, c)-boundaried interval to
enable such considerations.

Definition 4.5. An (r, c)-boundaried interval is a digraph D on vertex set V (D) = S+∪I∪S− equipped
with an ordering σI of I. Furthermore, we require the following:

• |I| ⩾ 4∥H∥(r + c);

• D[I] is a tournament;

• σI has width at most c;

• S− ⊆ [3c]× {−} and S+ ⊆ [3c]× {+};

• each vertex of S+ has only one incident arc and this arc belongs to the set
−→
A (I, S+);

• each vertex of S− has only one incident arc and this arc belongs to the set
−→
A (S−, I).

The r-boundary of D is the pair of sets I− and I+ consisting of the first and the last r vertices of I in
σI , respectively. For D defined above, we will shortly write D = I ∪ S±.

Note that this notion emulates a 4∥H∥(r+ c)-long c-flat interval I in the following sense. Arcs whose
heads are contained in S+ correspond to ∂+(I), and arcs whose tails are contained in the set S− correspond
to ∂−(I). The names of the auxiliary vertices in S± correspond to the ξ-colors of the respective backward
arcs. The r-boundary consists of precisely those vertices whose generic entry or exit is remembered in
the (r, c)-type of a partial immersion.
Formally, every 4∥H∥(r + c)-long c-flat σ-interval I in T can be uniquely encoded with an (r, c)-

boundaried interval D(r,c)(I), whose structure resembles the structure of T [I] and ∂(I) as follows:

• the vertices and arcs of I are kept along with their ordering in T ;

• every singular arc a ∈ ∂±(I) is mapped to an arc joining (ξ(a),±) ∈ S± with the endpoint of a
contained in I;
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• the projection of S± onto the first coordinate is precisely {ξ(a) | a ∈ ∂±(I)}.

The notion of a partial immersion can be naturally adjusted to the setting of boundaried intervals.
The only difference is the lack of the “generic interface” i.e. there are no auxiliary edges in boundaries
intervals used to emulate Γ(I). These can be, however, emulated by storing the information from the
type (marker X or number in [r] if the generic arc is incident with the r-boundary, and the equivalence
relations R±) instead of the identity of particular generic arcs. Formally, a piece of a scattered path
in (r, c)-boundaried interval can begin or end with an element in {X} ∪ [r] instead of a generic arc. In
particular, this slightly modified variant of partial immersions can be equipped with precisely the same
definition of admissible (r, c)-type as in the former case.

Definition 4.6. An (r, c)-signature is a subset of the set of all short (r, c)-types. The (r, c)-signature
Σ(r,c)(I) of a 4∥H∥(r + c)-long c-flat σ-interval I is the set of all I-admissible minimal (r, c)-types. The
(r, c)-signature Σ(r,c)(D) of an (r, c)-boundaried interval D = I∪S± is the set of all I-admissible minimal
(r, c)-types.

The intuition behind this definition is that if I is appropriately long and flat, then the signature of
I stores the information about all possible interactions of I with minimal partial immersions. Note that
Σ(r,c)(D(r,c)(I)) = Σ(r,c)(I).
We say that two (r, c)-boundaried intervals I ∪ S± and I ′ ∪ S′± are exchangeable if they have equal

(r, c)-signatures, S± = S′± (both intervals use precisely the same colors on the boundary), and the
incidence structure of r-boundaries of those intervals with backward arcs is the same, i.e. for every i ∈ [r]
the set of colors of singular arcs incident with both S∓ and the i-th vertex of I± is the same as analogously
defined set of colors for i-th vertex of I ′±. Intuitively this means that in T we may replace the interval I
with I ′.

Corollary 4.8. For every pair of integers r, c ∈ N there is a constant s(r, c) such that there are exactly
s(r, c) different (r, c)-signatures.

Proof. We may set s(r, c) = 2t(r,c), where t(r, c) is the constant provided by Corollary 4.6. □

For future discussion of algorithmic aspects, we will need the following observation.

Lemma 4.9. Consider r and c fixed and let T , σ, and I be as in Definition 4.6. Then given T , σ, and
I, the signature Σ(r,c)(I) can be computed in polynomial time.

Proof. It suffices to decide, for every short (r, c)-type τ , whether τ is I-admissible. This can be done in
polynomial time using the algorithm for rooted immersion containment of Fomin and Pilipczuk (Theorem
9.1 in [FP19]). □

Let S(r,c) be the set of all (r, c)-signatures; we have |S(r,c)| = s(r, c), where s(r, c) is the constant
given by Corollary 4.8. Let S(r,c)σ be the set of those (r, c)-signatures which are equal to Σ(r,c)(I) for some
σ-interval I, i.e. contain only I-admissible minimal (r, c)-types. Then S(r,c)σ ⊆ S(r,c), so |S(r,c)σ | ⩽ s(r, c).
We argue that Sr,cσ has a structure of a semigroup in the following sense.

Lemma 4.10. Let I1, I2 be two 4∥H∥(r + c)-long c-flat σ-intervals such that I = I1 ∪ I2 is a c-flat
σ-interval. Then Σ(r,c)(I) is uniquely determined by Σ(r,c)(I1) and Σ(r,c)(I2).

Proof. It is enough to prove that:
(i) for every τ ∈ Σ(r,c)(I) there exist τ1 ∈ Σ(r,c)(I1) and τ2 ∈ Σ(r,c)(I2) which are compatible and
τ ∈ τ1 ⊕ τ2; and

(ii) for every two compatible τ1 ∈ Σ(r,c)(I1) and τ2 ∈ Σ(r,c)(I2) and every τ ∈ τ1 ⊕ τ2 that is minimal
in I, we have τ ∈ Σ(r,c)(I).
For the proof of (i) take a minimal partial immersion φ in I with τ (r,c) = τ . We know that τ ∈

τ (r,c)(φ|I1)⊕ τ (r,c)(φ|I2), so it is enough to prove that φ|I1 and φ|I2 are minimal. But this follows directly
from Observation 4.2.
For the proof of (ii) note that τ1 ⊕ τ2 consists only of I-admissible types. □

Lemma 4.10 implies that the set S(r,c)σ ∪ {0} can be endowed with an associative binary product
operation such that for every two consecutive intervals I1, I2, the product of their signatures is the
signature of their union I1 ∪ I2. Formally, we set the product for all pairs of consecutive intervals as
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above; Lemma 4.10 ensures that this is well-defined. Next, for all pairs of elements τ1, τ2 ∈ Sr,cσ for which
their product is not yet defined, we set τ1 · τ2 = 0. Also, we set 0 = 0 · 0 = 0 · τ = τ · 0 for all τ ∈ S(r,c)σ .
In this way, S(r,c)σ ∪ {0} becomes a monoid; the empty signature is the neutral element of multiplication.
By Lemma 2.8 we obtain the following.

Corollary 4.11. Suppose I is a c-flat 4∥H∥(r + c)ℓ3s(r,c)-long σ-interval. Then there exists a sequence
of consecutive 4∥H∥(r+c)-long c-flat σ-intervals (Ii)ℓi=1 whose (r, c)-signatures are equal and equal to the
signature of their union. Moreover, given r, c, T , σ, and I, such a sequence can be found in polynomial
time.

Proof. Let (Xi)ℓ
3s(r,c)

i=1 be an arbitrary sequence of consecutive 4∥H∥(r+c)-long c-flat σ-intervals included
in I. Note that Σ(r,c)σ : A∗ → S(r,c) is a properly defined morphism, sending a single interval to its
signature and a concatenation of two consecutive intervals to the unique signature of their union (which
is not 0). Applying Lemma 2.8 finishes the proof; the algorithmic statement follows from the remark after
Lemma 2.8. □

4.2 Finding protrusions

In order to find an appropriately large subgraph of T which does not “affect” the behavior of T with
respect to H-hitting Immersions in Tournaments, we roughly proceed as follows. First, we find a
suitable ordering σ of V (T ) and an appropriately long interval X in σ such that X has a constant-size
singular interface towards the remainder of T . Then, inside X, we find (again, an appropriately long)
subinterval I of a very specific structure: I can be divided into 2k+3 subintervals with the same signatures
as itself. This is where we use Simon Factorization through Corollary 4.11. In the next part we use this
extra structure to prove that one of these subintervals can be replaced with a strictly smaller replacement
in such a way that after the substitution, we obtain an equivalent instance of the problem.
We proceed to a formal implementation of this plan. The first lemma gives the ordering σ and the

interval X.

Lemma 4.12. Let T be a tournament with ctw(T ) ⩽ c and |T | ⩾ (2c+ 1)(x+ 1)(k + 1). If T contains
at most k arc-disjoint immersion copies of H, then there exists an ordering σ of V (T ) and an H-free
σ-interval X such that |X| ⩾ x and X is cH-flat with respect to σ.
Moreover, given T, k, c, x as above, one can in polynomial time either conclude that T contains more

than k arc-disjoint immersion copies of H, or find an ordering σ and an interval X satisfying the above
properties.

Proof. We first argue the existential statement, and then address the algorithmic aspects at the end.
Let σ0 be an ordering of V (T ) of width ctw(T ) ⩽ c. Consider any k + 1 vertex-disjoint σ0-intervals,

each containing at least (2c+ 1)(x+ 1) vertices. By assumption, at least one of them, say I, induces an
H-free graph. Let B = ∂(I). Then |B| ⩽ 2c.
Note that we have ctw(T [I]) ⩽ cH by Corollary 2.3. Let σI be an ordering of vertices of I of width

ctw(T [I]) and let σ be the ordering obtained from σ0 by reordering I according to σI , that is,
• If u, v ∈ I then σ(u) < σ(v) ⇐⇒ σI(u) < σI(v).
• If u /∈ I or v /∈ I, then σ(u) < σ(v) ⇐⇒ σ0(u) < σ0(v).
Consider the set

I−B := I −
(
{tail(a) | a ∈ ∂+(I)} ∪ {head(a) | a ∈ ∂−(I)}

)
,

i.e. the vertices in I which are not incident with B. Since |B| ⩽ 2c, we have that |I−B | > (2c+ 1)x and
I−B is the union of at most 2c + 1 σ-intervals. Hence, at least one of these intervals has size at least x.
Call it X.
Let

I− := {v ∈ I | σ(v) < σ(w) for every w ∈ X} and I+ = I − I− −X.

Note that as no arc from B is adjacent to X,
−→
A (X, I−) contains precisely all σ-backward arcs in T with

tail in X, and
−→
A (I+, X) contains all those with head in X. On the other hand, both

−→
A (X, I−) and

−→
A (I+, X) have size bounded by the width of σI , which is at most cH . It follows that X is cH -flat with
respect to σ.
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As for the algorithmic aspect, an ordering σ0 with optimum width can be computed using Lemma 2.1.
Then we can divide σ0 into k + 1 disjoint σ0-intervals of size at least (2c + 1)(x + 1) each, and for each
of them check in polynomial time whether it induces an H-free subtournament using the algorithm
from [FP19]. If this check fails for each of the intervals, we may terminate the algorithm and conclude
that T contains k + 1 arc-disjoint copies of H. Otherwise, we have one interval I such that T [I] is H-
free, and it is straightforward to turn the remainder of the reasoning into a polynomial-time algorithm
computing σ and X. □

In the remainder of this section let x ⩾ 4∥H∥, r, c be fixed positive integers. Moreover, let T be a
tournament for which there exists an optimal solution of size at most k and let σ be an ordering of T .
Finally let X be an H-free c-flat x(3c + k + 1)(2k + 3)3s(r,c)-long σ-interval. We assume that there is a
coloring ξ mapping all σ-backward arcs incident to X to colors in [3c] such that not two such arcs of the
same color participate in the same σ-cut.
We may apply Corollary 4.11 to X to find a collection of 2k + 3 consecutive σ-intervals Ii with

|Ii| = x(3c+k+1) for all i ∈ [2k+3] such that all Ii have equal (r, c)-signatures, and this common signature,
call it Σ, is equal to the (r, c)-signature of their union I. Then I is an H-free c-flat x(3c+ k+1)(2k+3)-
long σ-interval. That such I can be found in polynomial time (given r, c, x, T , X, σ, and ξ) follows from
Corollary 4.11.
Now comes a key step in the proof: we argue that from the equality of types of I, I1, . . . , I2k+3 it

follows that every optimum solution will contain a bounded number of arcs incident with I.

Lemma 4.13. For every optimal solution F ⊆ A(T ), we have |F ∩A(I, V (T ))| ⩽ 2c.

Proof. Fix an optimal solution F . By assumption, |F | ⩽ k.
Define

F⋆ = (F −A(I, V (T ))) ∪ ∂(I).

That is, F⋆ is obtained from F by removing all arcs incident with I and replacing them with all I-singular
arcs. We will prove that F⋆ is a solution in T . Observe that since F is optimal, this will imply that

|F ∩A(I, V (T ))| = |F | − |F −A(I, V (T ))|
⩽ |F⋆| − |F −A(I, V (T ))| = |F⋆ ∩A(I, V (T ))| = |∂(I)| ⩽ 2c,

and in consequence we may set X⋆ := I.
Suppose for the sake of contradiction that F⋆ is not a solution in T , i.e. there exists an immersion

model φ of H in T − F⋆. We may choose φ so that φ|I is minimal. As

|I| ⩾ x(3c+ k + 1) ⩾ 4∥H∥(c+ (2c+ k) + 1) ⩾ 4∥H∥(c+ |F⋆|+ 1),

by Lemma 4.5 we have that τ (r,c)(φ|I) is short. Note that φ is incident with I for otherwise it would have
not been hit by F , contradicting F being a solution. Moreover, A(φ) ∩A(I, V (T )) ⊆ Γ(I) as all singular
arcs incident with I are in F⋆ which is disjoint with φ.
Observe that since each of the at most k arcs in F is incident with at most 2 intervals Ij , there

exists i ∈ [2k + 3] such that i ̸= 1, i ̸= 2k + 3, and Ii is not incident with F . Pick vertices vα ∈ V (I1),
vω ∈ V (I2k+3) which are not incident with ∂(I) ∪ ∂(Ii) ∪ F . This is possible since

|I1|, |I2k+3| ⩾ 3c+ k + 1 > c+ c+ k ⩾ |∂(I)|+ |∂(Ii)|+ |F | ⩾ |∂(I) ∪ ∂(Ii) ∪ F |.

By equality of signatures of I and Ii and the shortness of τ (r,c)(φ|I), we conclude that there exists a
partial immersion φ′ in Ii of the same type as φ|I , which moreover has a purely generic boundary (i.e.
does not contain any I-singular arcs).
Now it is enough to observe that we can connect φ′ with φ|T−I to get an immersion of H in T disjoint

with F . We shall use vα and vω as pivots for two-arc generic paths, similarly as in the proof of Lemma 4.5.
In other words, to enrich φ′ and φ|T−I to a full immersion model of H, we insert a collection of two-arc
generic paths with middle vertices in vα or vω, joining vertices on φ′ with vertices on φ|T−I .
Formally, for every a ∈ A(H) for which φ(a) is incident with both I and T − I we do the following.

Consider all arcs used for gluing φ|I(a) with φ|T−I(a). As argued above, all these arcs are generic. For
each such arc g ∈ Γ+(I) consider the piece P of the scattered path φ(a) with g = last(P ) and let P ′ be
the corresponding piece of the corresponding (via equality of the (r, c)-types) scattered path φ′(a). Now
replace the arc last(P ′) with a two-arc path

(tail(last(P ′)), vω)(vω, head(g))
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joining P ′ with the piece Q of φ|T−I(a) which is glued in φ along g to P . Finally remove g from Q. We
perform a similar replacement for each g ∈ Γ−(I) (changing the roles in each pair first/last, head/tail,
vα/vω). The choice of vα and vω ensures that the new connections are arc-disjoint and disjoint with F .□

We define a digraph T ◦ based on T and I = I1 ∪ . . . ∪ I2k+3 as follows: start with T , and

• remove all vertices of I2;

• for every arc a ∈ ∂+(I2), replace a with an arc with the same head as a and tail in a fresh vertex
s+ξ(a);

• for every arc a ∈ ∂−(I2), replace a with an arc with the same tail as a and head in a fresh vertex
s−ξ(a).

We call the constructed graph a c-boundaried co-interval. The intuition of this construction is as follows.
We pinch off one of the 2k + 3 intervals and keep the singular arc interface in a fashion similar as in
(r, c)-boundaried intervals. The only difference is that we do not keep track of the r-boundary vertices.
Now we can define the gluing of T ◦ with an (r, c)-boundaried interval B = I ∪ S± with signature Σ,

simply by identifying the singular arcs of the same color (note that different vertices from S± can be
therefore mapped to the same vertex) and completing the obtained structure to a tournament by making
all missing arcs generic. Note that in order for this to be well-defined, we need to require that the sets
of colors of the singular arcs in T ◦ and in B are identical — if it is so, we will say that T ◦ and B are
compatible. Also, note that we require that the signature of B is Σ: that is, the possible types of partial
immersions present in B are exactly the same as in the substituted interval I2.
Denote by T ◦ ⊕B the tournament obtained from gluing T ◦ and B. Note that in this tournament we

have naturally defined ordering of vertices: in T ◦ it is inherited from the ordering σ of T and within B
it is inherited from the ordering σI of the boundaried interval. Finally all the vertices of the substituted
interval appear in the ordering between the two interval parts (prefix and suffix) of the co-interval. The
following observation is obvious.

Observation 4.14. If two exchangable (r, c)-boundaried intervals B = I ∪ S± and B′ = I ′ ∪ S± are
compatible with T ◦, then the (r, c)-signatures of I in T ◦ ⊕B and I ′ in T ◦ ⊕B′ are equal.

We now observe, by inspecting the proof of Lemma 4.13, that if in I we replace one of its subintervals
with an exchangeable interval, then the conclusion of Lemma 4.13 — that the modified I ′ will still have
constant incidence with every optimal solution in T — will still hold. Let us summarize this section with
putting together these observations and recalling all needed assumptions.

Corollary 4.15. Suppose that x ⩾ 4∥H∥, r, c are fixed positive integers, T is a tournament of for which
there exists an optimal solution of size at most k and σ is an ordering of T . Suppose further that X is an
H-free c-flat x(3c+k+1)(2k+3)3s(r,c)-long σ-interval with all incident σ-backward arcs colored according
to ξ with colors [3c] so that no two arcs of the same color participate in the same σ-cut.
Then there exists an (r, c)-signature Σ, a c-boundaried co-interval T ◦ of this signature, and an (r, c)-

boundaried interval B = I ∪S± such that T = T ◦⊕B and moreover for every B′ = I ′∪S′± exchangeable
with B and for every optimal solution F ⊆ A(T ′) where T ′ = T ◦ ⊕ B′ we have: |F ∩ A(I ′, T ′)| ⩽ 2c.
Moreover, given x, r, c, T , σ, and X, such Σ, T ◦, and B can be computed in polynomial time.

Proof. It is enough to see that the argument from the proof of Lemma 4.13 can be applied to both T
and T ′ to obtain constant incidence of any optimum solution with I (and I ′). Constant incidence with
an interval means in particular constant incidence with each of its subintervals. As for the algorithmic
statement, it follows directly from Corollary 4.11 and Lemma 4.9. □

4.3 Replacing protrusions

In the entire section we fix c := cH , where cH is the constant from Corollary 2.3, and r := 6∥H∥c.
Moreover we assume that x ⩾ 4∥H∥; the precise value of x will be determined later.

Definition 4.7. Protrusion is any (r, c)-boundaried interval X = I∪S± which is H-free and x(3c+k+1)-
long. For brevity we will refer to X as to I. The set Σ(r,c)(X) is the signature of the protrusion.
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Let T be a tournament equipped with a vertex ordering σ and let I be an H-free interval and such
that T = T ◦ ⊕X, where X is a protrusion of signature Σ. Let I ⊆ V (T ) be the interval defined by the
protrusion. Fix the coloring ξ of σ-backward arcs incident with I.
Recall that from Corollary 4.15 follows that for every (r, c)-boundaried co-interval T ◦ compatible with

X if T ◦ ⊕X admits an optimal solution F of size not greater than k, then there are at most 2c arcs in
F incident with X.
For every protrusion X = I ∪ S± define a function fX : 2S

(r,c) → {0, 1, 2, . . . , 2c} ∪ {∞} as follows:
fX(S) is the minimum number of arcs in A(I, I) needed to hit all partial immersions in I whose signatures
belong to S, or ∞ if this number is greater than 2c.
We introduce an equivalence relation ∼ on the set of all protrusions. Let X = I ∪ S±, X ′ = I ′ ∪ S′±.

We say that X ∼ X ′ if:

• S± = S′±;

• Σ(r,c)(X) = Σ(r,c)(X ′); and

• fX(S) = fX′(S) for every S ⊆ S(r,c).

Note that the number of equivalence classes of ∼ is finite and bounded by a constant depending only
on H. This means that if in each class we pick a representative with the minimal number of vertices
(call each such element a small protrusion), then all small protrusions will have size bounded from above
uniformly by a constant sH depending on the digraph H only.
Same arguments as in the proof of Lemma 4.9 give the following.

Lemma 4.16. Given protrusions X and X ′ it can be decided in polynomial time whether X ∼ X ′.

We now argue that equivalent protrusions are replaceable.

Lemma 4.17. Suppose that T = T ◦ ⊕ X is a tournament satisfying the conclusion of Corollary 4.15,
where X is a boundaried (r, c)-interval of signature Σ and T ◦ is a c-boundaried co-interval which is
compatible with X.
Then for every X ′ such that X ∼ X ′, the optimal solution in T ◦ ⊕X is of size not greater than k if

and only if the optimal solution in T ◦ ⊕X ′ is of size not greater than k.

Proof. We will prove the forward implication only; the proof of the other one is completely analogous
due to the symmetry of the roles of X and X ′.
Let F be an optimal solution in T and suppose that |F | ⩽ k. Let

F0 = F −A(X,V (T )), F1 = F ∩A(V (T ) \X,X) and FX = F ∩A(X,X).

By the assumption that T = T ◦ ⊕X satisfies the conclusion of Corollary 4.15, we have |F1 ∪ FX | ⩽ 2c.

Claim 4.1. Every X-generic arc of F1 is incident with the r-boundary of X.

Proof (of claim). Suppose for the sake of contradiction that in F1 there exists an X-generic arc g not
incident with the r-boundary of X. This means that this arc is incident with an internal vertex of X, i.e.
the vertex being σ-smaller than all vertices in X+r and σ-larger than all vertices in X

−
r .

By the optimality of F we conclude that in T − (F − g) there exist immersion models of H, and
moreover each such model uses the arc g. Let us choose such model φ with the property that the partial
immersion φ|X cannot be non-trivially shortened. We will show a way to “reroute” the generic connection
containing g to avoid F , all X-singular arcs and all other generic arcs used in φ. This way we expose an
immersion model of H in T − F , which is a contradiction.
This is the part of the proof where the r-boundary of X (and keeping track of the r-boundaries in the

definition of types) comes into play. In the beginning of this section we picked r large enough to ensure
the existence of a “pivot” vertex, which can be used for rerouting.
Suppose that g ∈ Γ+(X); the case g ∈ Γ−(X) is analogous. Denote v = tail(g). Note that at most 4c

vertices of X+r are incident with F1 ∪ FX , as |F1 ∪ FX | ⩽ 2c. Moreover |
−→
A (X+r , {v})| ⩽ c, because X is

c-flat. The number of vertices of X+r incident with ∂
−(X) also does not exceed c.

For every a ∈ A(H) the number of arcs on φ|X(a) with tail in v does not exceed 1 as otherwise φ|X(a)
could be non-trivially shortened contradicting minimality of φ|X . So the number of arcs in Γ+(X)∩ (F1∪
FX ∪A(φ|X)) incident with X+r is not greater than ∥H∥. Together this means that if

r > 6c+ ∥H∥,
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which is true, then there exists a vertex vω ∈ X+r which is not incident with any of the special arcs
mentioned above. The arc (v, vω) exists and is not contained in F ∪ A(φ). Neither is the arc joining vω
with the respective vertex in T −X. The arc g may therefore be replaced by a path composed of the two
arcs described above. And so we have obtained an immersion model of H in T − F , a contradiction. □

Let S be the set of all short types τ such that every X-admissible partial immersion of type τ
intersects with FX . Because fX(S) = fX′(S), we know that there exists a set FX′ of arcs of A(X ′)
in T ′ := T ◦ ⊕ X ′ such that |FX′ | ⩽ |FX | and each partial immersion whose type is in S intersects
with FX′ . Let F ′1 ⊆ A(T ′ − X ′, X ′) be the set directly corresponding to F1 by a natural bijection that
maps each singular arc of to the singular arc of the same color, and each generic arc to a generic arc
whose the endpoint in T ◦ is the same and the other endpoint has the same index in the respective r-
boundary (by Claim 4.1, this endpoint must belong to the respective boundary). We will prove that the
set F ′ := F0 ∪ F ′1 ∪ FX′ is a solution in T ′, thereby completing the proof due to |F ′| ⩽ |F |.
Suppose for the sake of contradiction that there exists an immersion model φ of H in T ′−F ′. Choose

one such that φ|X′ is minimal. Therefore, by Lemma 4.5, φ|X′ is short. Moreover τ (r,c)(φ|X′) /∈ S, so in T
there exists a partial immersion φX in X which is disjoint with F and such that τ (r,c)(φX) = τ (r,c)(φ|X′).
We will show a way to reconstruct an immersion model of H in T from φX and φ|T◦ which will be disjoint
with F and hence will give the desired contradiction. We may follow closely the strategy used in the proof
of Lemma 4.7, taking an additional care about ensuring disjointness with F .
We know that φX is disjoint with F , so for sure the direct gluing along singular arcs is possible, as it

was so with φ|X′ and φT◦ . Moreover, gluing along generic arcs with one endpoint u on the r-boundary
of X and the other one v in T ◦ is possible since the arc uv is generic, not incident with F and will not
have to be introduced more than once (this is “guarded” by the equivalence relations R±). □

We are now set up with all tools needed to prove our main theorem.

Proof (of Theorem C). We prove that provided |T | > C · kC , where the constant C will be defined
later, one can compute an instance (T ′, k) equivalent to (T, k) and satisfying |T ′| < |T |. The conclusion
will follow from applying such reduction (at most) |T | times.
First of all note that from Theorem 2.2 for a digraph being a disjoint union of k exemplars of H, we

conclude that if T does not contain k arc-disjoint immersion copies of H, then ctw(T ) ⩽ c0k2 for some
constant c0 (depending on H). In particular, it follows that if ctw(T ) > k2c0 (which can be established
in polynomial time using Lemma 2.1), then T is a no-instance. So from now on we may assume that
ctw(T ) ⩽ c0k2.
Let c = cH , r = 6∥H∥c, x′ = max {4∥H∥, sH + 1} and x = x′(3c + k + 1)(2k + 3)3s(r,c), where

s(r, c) is defined in Corollary 4.8. Let C be a constant satisfying CkC ⩾ (2k2c0 + 1)(x + 1)(k + 1), e.g.
C = max{3s(r, c) + 4, 53s(r,c) · 3c0 · 4x′ · (6c+ 2)}.
Suppose that T is a tournament satisfying ctw(T ) ⩽ k2c0 and |T | > CkC . Applying Lemma 4.12, we

either conclude that T admits more than k arc-disjoint copies of H (so (T, k) is a no-instance), or find an
ordering σ of V (T ) and an H-free c-flat x-long σ-interval J . Both conclusions can be effectively gained
in polynomial time.
In the latter case, we may use Corollary 4.11 in a manner described in Section 4.2 to find in J an

H-free c-flat x′(3c + k + 1)(2k + 3)-long σ-interval I of (r, c)-signature Σ, which can be decomposed to
2k + 3 consecutive x′(3c+ k + 1)-long σ-intervals Ii, each of (r, c)-signature Σ. Both I and Σ are found
in polynomial time.
Let T = T ◦ ⊕X be the decomposition where T ◦ is a c-boundaried co-interval and X = (I2 ∪ S±,Σ)

is a protrusion corresponding to I2. Clearly, X is compatible with T ◦. Using Lemma 4.16 we may check
in polynomial time all small protrusions to find one X ′ such that X ′ ∼ X. Let us define T ′ = T ◦ ⊕X ′.
By Lemma 4.17 we conclude that (T ′, k) is an instance of H-hitting Immersions in Tournaments

equivalent to (T, k). Moreover as |X ′| ⩽ sH < |X|, we have that |T ′| < |T |. □
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Chapter 5

Objects Dual to Tree-cut
Decompositions

The goal of this chapter is to introduce a variant of the definition of tree-cut width that is functionally
equivalent to the existing ones, but which can be related to naturally defined dual objects: brambles and
tangles.
In Section 5.1 we enrich the notation for the purpose of this chapter and discuss the definitions of

tree-cut width of Wollan [Wol15] and of Giannopoulou et al. [GPR+21]. In Section 5.2 we introduce
our notion of width of a tree-cut decomposition and define the dual objects: brambles and tangles.
Section 5.3 is devoted to the proofs of Theorems D and E. In Section 5.4 we derive Theorem F: the game
characterization of tree-cut width

Theorem D (restated). For a graph G and a positive integer k, the following conditions are equivalent:
• G has no tree-cut decomposition of width < k;
• G has a bramble of order ⩾ k; and
• G has a tangle of order ⩾ k.

Theorem E (restated). For a graph G and positive integers a and b, the following conditions are
equivalent:

• G has no tree-cut decomposition of adhesion-width < a and bag-width < b;
• G has a bramble of adhesion-order ⩾ a and bag-order ⩾ b; and
• G has a tangle of adhesion-order ⩾ a and bag-order ⩾ b.

Theorem F (restated). A graph has a tree-cut decomposition with adhesion-width ⩽ a and bag-width
⩽ b if and only if there is a strategy to catch the robber using a cops and b dogs.

Throughout this chapter we allow the existence of parallel edges (multiple edges with same pair of
endpoints) but we do not allow loops (edges with both endpoints at the same vertex). Note in particular
that this slightly modifies the meaning of the word graph in the statements of presented results.

5.1 Preliminaries

Edge separations. Let G be a graph. An (edge) separation2 in G is a near-partition {A,B} of V (G)
that has two elements, called the sides. The order of the separation {A,B} is |δ(A)|= |δ(B)|. Separations
of order at most 2 are called thin, whereas those of order at least 3 are called bold.

3-edge-connectedness. Two vertices u and v in a graph G are 3-edge-connected if there exist three
edge-disjoint paths connecting u and v. By Menger’s Theorem, the relation of 3-edge-connectedness is
an equivalence relation on V (G). We will denote this relation by ∼3CC; the graph G will always be clear
from the context. The equivalence classes of ∼3CC are called the 3-edge-connected components of G.
2We remark that most of literature in structural graph theory use term separation for a vertex separation, that is a pair

{A,B} of subsets of vertices with A∪B = V (G) and no edge between A \B and B \A. Throughout this work we will solely
work with edge separations as defined above, hence for brevity we call them simply separations.
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A set of vertices X ⊆ V (G) is 3-edge-connected in G if the vertices of X are pairwise 3-edge-connected
in G. Equivalently,X is 3-edge-connected if it is entirely contained in a single 3-edge-connected component
of G.
Suppose ∼ is an equivalence relation on the vertex set of G. We define the quotient graph G/∼ as

follows. The vertices of G/∼ are the equivalence classes of ∼, and each edge uv of G with u ̸∼ v gives
rise to one edge AB in G/∼, where A and B are the equivalence classes of ∼ to which u and v belong,
respectively. Note that thus, the number of parallel edges in G/∼ connecting a pair A,B of equivalence
classes of ∼ is equal to the number of edges in G whose one endpoint is in A and the other is in B. Also,
edges of G whose endpoints belong to the same equivalence class of ∼ do not contribute to the edge set
of G/∼.
In Subsection 5.3.2 we will study the structure of the quotient graph G/∼3CC, for any graph G.

Immersions. The notion of an undirected immersion is analogous to the directed one considered in
part I. We say that a graph G admits a graphH as an (unoriented) immersion if there exists an immersion
model of H in G: an embedding φ defined on the vertices and edges of H as follows:

• φ maps vertices of H to pairwise different vertices of G;
• φ maps each edge e of H with endpoints u and v to a path in G with endpoints φ(u) and φ(v); and
• paths in {φ(e) : e ∈ E(H)} are pairwise edge-disjoint.

Walls are central to the notions presented in this chapter. A k× k wall (cf. Figure 5.1) is a graph on 2k2
vertices, constructed from k (horizontal) paths P1, . . . , Pk. Each Pi has vertex set {vi1, . . . , vi2k} where vij
and vij+1 are adjacent for all 1 ⩽ j ⩽ 2k − 1, and there are the following additional edges between the
paths:

• vijv
i+1
j if i, j are odd, 1 ⩽ i < k, 1 ⩽ j ⩽ 2k;

• vijv
i+1
j if i, j are even, 1 ⩽ i < k, 1 ⩽ j ⩽ 2k.

P1

P2

P3

P4

P5

P6

Figure 5.1: The 6× 6 wall.

Tree-cut width. We now recall the concept of tree-cut width, as defined by Wollan [Wol15], and then
give an equivalent definition proposed by Giannopoulou et al. [GPR+21]. First, we need a notion of a
decomposition.

Definition 5.1 (Tree-cut decomposition). A tree-cut decomposition of a graph G is a pair T =
(T,X ) such that T is a tree and X = {Xt ⊆ V (G) | t ∈ V (T )} is a near-partition of the vertex set of G,
indexed by the nodes of T : for every node t ∈ V (T ), we call bag of t its associated set Xt in X .

We now introduce some useful definitions, which will eventually lead to a concept of the width of a
tree-cut decomposition. Let us fix a tree-cut decomposition T = (T,X ) of a graph G. For a pair of vertices
u, v of G (not necessarily distinct), the trace of {u, v} in T is the (unique) path in T connecting the node
s satisfying u ∈ Xs, and the node t satisfying v ∈ Xt. Note that if u = v, then the trace of {u, v} consists
of only one node, the one whose bag contains u. The trace of an edge of G is the trace of its endpoints.
For an edge st of T , the adhesion of st, denoted adh(st), is the set of all edges of G whose traces

contain st. Equivalently, an edge uv ∈E(G) belongs to adh(st) if and only if the node s′ satisfying u ∈Xs′
and the node t′ satisfying v ∈Xt′ lie in different connected components of T −st. An edge st of T is called
thin if | adh(st)| ⩽ 2, and bold otherwise. In the notation adh(·), the decomposition T can be specified in
the subscript if it is not clear from the context.
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Next, for each node t of T we define the torso Gt. Intuitively, Gt is obtained from G by identifying,
for every connected component C of T − t, all the vertices residing in the bags of C into a single vertex.
Formally, Gt is defined as the quotient graph G/∼t, where ∼t is an equivalence relation on V (G) defined
as follows: u ∼t v if either u = v or u ̸= v and the trace of {u, v} in T does not contain t.
Finally, the 3-center G̃t of the torso Gt is obtained from Gt by iteratively suppressing vertices of

degree at most 2 in Gt, but only those that do not belong to Xt. Here, to suppress a vertex of degree
at most 2 means to either delete it, provided it had at most one neighbor, or delete it and add an edge
connecting its two former neighbors, provided it had exactly two neighbors. It is not hard to see that the
order of performing the suppressions does not matter. However, note that the suppression of a vertex of
degree 2 can reduce the degree of another vertex outside of Xt, leading in turn to its suppression.
With all these notions in place, we can recall the definition of tree-cut width originally proposed by

Wollan in [Wol15].

Definition 5.2 (Wollan’s tree-cut width). The Wollan’s width of a tree-cut decomposition T =(T,X )
of a graph G is defined as

max
(
{| adh(e)| : e ∈ E(T )} ∪ {|V (G̃t)| : t ∈ V (T )}

)
.

The Wollan’s tree-cut width of G is the minimum width of a tree-cut decomposition of G.

In order to simplify arguments in their study of algorithmic problems related to immersions, Gianno-
poulou et al. introduced in [GPR+21] an alternative definition of tree-cut width. Let G be a graph and
T = (T,X ) be a tree-cut decomposition of G. They define, for every node t of T , the following quantity:

wt := |Xt|+ |{t′ ∈ NT (t) : | adh(tt′)| ⩾ 3}|.

They then propose the following adjustment of the definition of tree-cut width, which they show to be
equivalent to Wollan’s tree-cut width.

Definition 5.3 (GPRTW’s tree-cut width). The GPRTW’s width of a tree-cut decomposition T =
(T,X ) of a graph G is defined as

max
(
{| adh(e)| : e ∈ E(T )} ∪ {wt : t ∈ V (T )}

)
.

The GPRTW’s tree-cut width of G is the minimum width of a tree-cut decomposition of G.

Theorem 5.1 ([GPR+21]). For every graph G, the GPRTW’s tree-cut width of G and the Wollan’s
tree-cut width of G are equal.

We point out that the equality described in Theorem 5.1 does not apply for every single tree-cut
decomposition separately: there are tree-cut decompositions whose Wollan’s width and GPRTW’s width
differ. An example can be obtained by taking a complete binary tree of depth ⩾ 3 as the graph G, and
constructing a tree-cut decomposition T of G whose underlying tree is a star. The bag of the center of
T consists of the unique vertex of G of degree 2, while every other vertex of G is placed in a different
leaf bag of T . It is easy to verify that T has Wollan’s width 3, while its GPRTW’s width is |V (G)|−12 .
There is no contradiction between this example and the statement of Theorem 5.1: the proof provided
in [GPR+21] applies a modification of the given decomposition in order to get the desired bound.
Finally, let us recall the main result of [Wol15]: a grid theorem for tree-cut width and immersions. By

Theorem 5.1, we may state it equivalently in terms of GPRTW’s tree cut-width and in terms of Wollan’s
tree-cut width.

Theorem 5.2 ([Wol15]). There exists a function f : N→ N such that every graph that does not contain
a k × k wall as an immersion has Wollan’s (or GPRTW’s) tree-cut width at most f(k).

5.2 Objects

In this section we introduce our definition of tree-cut width and relate it to Wollan’s definition. Next, we
define the dual objects — brambles and tangles — and state our main result.
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Figure 5.2: A tree-cut decomposition (right) of a graph (left). Bold adhesions are depicted in blue, while
thin adhesions are in green. Red numbers stand for sizes of bags, and black number for sizes of adhesions.

5.2.1 Tree-cut decompositions

The idea is to use the same notion of tree-cut decompositions, as introduced in Definition 5.1, but to
redefine the width. We do it as follows.
Let T = (T,X ) be a tree-cut decomposition of a graph G. The adhesion of a node t ∈ V (T ) is defined

as the union of adhesions of bold edges incident to t, namely,

adh(t) :=
⋃
{adh(st) : s is such that st ∈ E(T ) and | adh(st)| ⩾ 3} .

We point that even if an edge e of G participates in the adhesions of two bold edges of T incident to t, e
is counted only once when computing the cardinality of the adhesion of t. Also note that since only bold
edges contribute to the adhesion of a node, for each t ∈ V (T ) we have either | adh(t)| = 0 or | adh(t)| ⩾ 3.
This is illustrated in Figure 5.2.
We now present our concept of width. The key aspect is that we will work with two separate width

measures, respectively corresponding to the adhesions and to the bags.

Definition 5.4 (Adhesion-width and bag-width). Let T = (T,X ) be a tree-cut decomposition of a
graph G. The adhesion-width of T and the bag-width of T are respectively defined as

aw(T ) = max
t∈V (T )

| adh(t)| and bw(T ) = max
t∈V (T )

|Xt|.

Obviously, we can combine the two width measures into one by taking the maximum, and thus we
arrive at our proposition for the notion of tree-cut width.

Definition 5.5 (ab-tree-cut width). The ab-tree-cut width of a graph G is the least number k such
that G has a tree-cut decomposition with adhesion-width ⩽ k and bag-width ⩽ k.

Thus, we have now three notions of tree-cut width: Wollan’s tree-cut width (Definition 5.2) and
GPRTW’s tree-cut width (5.3) that are equivalent, and the ab-tree-cut width (Definition 5.5). Let us
note that, similarly to Wollan’s definition, the new notions of width are closed under taking immersions.

Proposition 5.3. Let G be a graph that contains a graph H as an immersion. Suppose G admits a
tree-cut decomposition with adhesion-width ⩽ a and bag-width ⩽ b, for some positive integers a, b. Then
so does H.

Proof. Let T = (T,X ) be a tree-cut decomposition of G with aw(T ) ⩽ a and aw(T ) ⩽ b. Fix an
immersion model φ of H in G and for each t ∈ V (T ) define Yt := φ−1(Xt) ⊆ V (H) to be the set of
vertices of H whose images are contained in the bag Xt. We prove that T ′ := (T, {Yt}t∈V (T )) is a tree-cut
decomposition of H with the desired properties.
Note that {Yt}t∈V (T ) is a near-partition of V (H). As φ maps vertices of H injectively, we have

|Yt| ⩽ |Xt| for every t ∈ V (T ), which implies bw(T ′) ⩽ bw(T ). Observe that the trace in T ′ of an edge
e ∈ E(H) with endpoints u and v is contained in the union of traces in T of edges of the path φ(e).
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Moreover, for every edge st ∈ E(T ), if e is an edge of H in adhT ′(st) with endpoint u and v, then there
is at least one edge f on the path φ(e) with f ∈ adhT (st).
Consider a partial function η : E(G)⇀E(H) defined as follows: if f ∈ E(G) belongs to φ(e) for some

e ∈ E(H), then we set η(f) := e, and otherwise f is not in the domain of η. Note that the validity of this
definition is asserted by the fact that the paths in {φ(e) : e ∈ E(G)} are pairwise edge-disjoint. With this
notion in place, the observations from the previous paragraph show that

adhT ′(st) ⊆ η (adhT (st)) for every st ∈ E(T ).

This implies that
adhT ′(t) ⊆ η (adhT (t)) for every t ∈ V (T ).

It follows that aw(T ′) ⩽ aw(T ), as required. □

5.2.2 Comparison with original tree-cut width

We now verify that our new definition is functionally equivalent to the one of Wollan. Formally, we prove
the following statement which involves the adjusted definition of tree-cut width proposed by Giannopoulou
et al.

Theorem 5.4. Let G be a graph and T be a tree-cut decomposition of G. Then:
• If T has GPRTW’s width k, then T has adhesion-width ⩽ k2 and bag-width ⩽ k.
• If T has adhesion-width a and bag-width b, then T has GPRTW’s width ⩽ a+ b+ 2.

Proof. We show the first implication. Let us assume that T has GPRTW’s width k. In particular, we
have max{| adh(e)| : e ∈ E(T )} ⩽ k and max{wt : t ∈ V (T )} ⩽ k. Since by definition wt ⩾ |Xt| for any
t ∈ V (T ), we immediately obtain that T has bag-width ⩽ k. Concerning the adhesion-width, note that
|{t′ ∈NT (t) : | adh(tt′)|⩾ 3}|⩽ k for every t ∈ V (T ). Since in addition | adh(tt′)|⩽ k for every tt′ ∈ E(T ),
we get that T has adhesion-width ⩽ k2.
We now show the other implication. Suppose that T has adhesion-width a and bag-width b. If a = 0

then T only contains thin adhesions, and we deduce that GPRTW’s width is bounded by the size of a
largest bag in T , plus the size of a largest thin adhesion in T . Hence T has GPRTW’s width ⩽ b+2 in that
case. Otherwise by definition, a ⩾ 3. Clearly, | adh(e)| ⩽ a for every e ∈ E(T ) in that case. Since for every
t ∈ V (T ), wt is bounded by the size of Xt plus the size of the adhesion of t, we conclude that GPRTW’s
width is bounded by the maximum of the following two quantities: the largest size of an adhesion of an
edge in T , and the largest cumulated size of Xt and the adhesion of t, for a node t in T . This is bounded
by max(a, a+ b), hence the conclusion. □

By combining Theorem 5.4 and Theorem 5.1, we immediately get the following.

Corollary 5.5. Let G be a graph and let k and ℓ be the Wollan’s tree-cut width and the ab-tree-cut width
of G, respectively. Then

k

2
− 1 ⩽ ℓ ⩽ k2.

From Corollary 5.5 we infer that Theorem 5.2 is also true for ab-tree-cut width.

5.2.3 Brambles

We now move to the first definition of a dual object: a bramble. First, we introduce slabs, which are
elements from which the brambles are composed.

Definition 5.6 (Slabs). A slab in a graph G is a pair (H,K) where H is a connected subgraph of G
and K, called the core of the slab, is a non-empty subset of vertices of H that is 3-edge-connected in G.
Two slabs (H,K) and (H ′,K ′) touch if they intersect on their cores, that is, K ∩K ′ ̸= ∅.

With slabs in place, brambles are defined as follows.

Definition 5.7 (Brambles). A bramble in a graph is a family of pairwise touching slabs.

Note that since 3-edge-connectedness is transitive, all cores of all the slabs in a bramble must be
contained in a single 3-connected component of the graph G.
Next, we need to define the order of a bramble. Mirroring the situation in Definition 5.4, there will

be two notions of an order: one corresponding to adhesions and one corresponding to the bags. For the
first one, we need an appropriate notion of hitting a slab.
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Figure 5.3: The separations (A1, B1), . . . , (A4, B4) form a star; A1 is in green and B1 in blue.

Definition 5.8 (Disconnecting sets). Let G be a graph and (H,K) be a slab in G. A set of edges
F ⊆ E(G) disconnects (H,K) if there are two vertices u, v ∈K that are disconnected by F ∩E(H) in H.
Further, F is a disconnecting set for a bramble B if F disconnects every slab in B.

Note that if the core K of a slab (H,K) has size 1, then there is no edge subset that disconnects
(H,K). We now proceed with defining the order(s) of a bramble.

Definition 5.9 (Orders of a bramble). Let B be a bramble in a graph G. The adhesion-order of B
is the minimum size of a disconnecting set for B, or +∞ if no such disconnecting set exists. The bag-
order of B is defined as min(H,K)∈B |K|, or +∞ if B is empty. The order of B is the minimum of the
adhesion-order and the bag-order of B.

5.2.4 Tangles

We now move to the second definition of a dual object: a tangle. For this, we need to take a closer look
at (edge) separations. The following definitions are essentially taken from the presentation in the book
of Diestel [Die16], which in turns cites the work of Diestel and Oum [DO21] as the source of inspiration.
Let us fix a graph G. Consider a separation {A,B} of G. With such a separation we can associate

two oriented separations (A,B) and (B,A). We say that the oriented separation (A,B) points toward B.
For a set S of separations, define S⃗ := {(A,B), (B,A) : {A,B} ∈ S} as the set of all oriented separations
associated with the elements of S. An orientation of a set S of separations is a subset L ⊆ S⃗ which
contains precisely one oriented separation associated with every element of S. We say that L avoids a
collection Σ of sets of oriented separations if no subset of L belongs to Σ.
A set σ of oriented separations is consistent if it does not simultaneously contain separations (A,B)

and (C,D) such that B∩D = ∅. Intuitively, this means that there are no two separations in σ that “point
away” from each other. A non-empty consistent set of oriented separations σ is a star if A ∩ C = ∅ for
all distinct (A,B), (C,D) ∈ σ. A star is illustrated in Figure 5.3.
For a positive integer a, we let Sa be the set of all separations of order < a in G. Further, for a positive

integer b, we let Σa,b be the set of all stars σ ⊆ S⃗a satisfying the following conditions:∣∣∣⋃{δ(A) : (A,B) ∈ σ and |δ(A)| ⩾ 3}∣∣∣ < a,∣∣∣⋂{B : (A,B) ∈ σ}∣∣∣ < b.
We can now present the definition of a tangle.

Definition 5.10 (Tangles). For a pair of positive integers a and b, an (a, b)-tangle is a consistent
orientation of Sa that avoids Σa,b. We will say that an (a, b)-tangle has adhesion-order a, bag-order b,
and order min(a, b).

5.2.5 Main result

All the pieces are now set and we can state our main result.

Theorem E (restated). For any graph G and positive integers a and b, the following are equivalent:
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(A1) G has a bramble of adhesion-order ⩾ a and bag-order ⩾ b;

(A2) G has a tangle of adhesion-order ⩾ a and bag-order ⩾ b;

(A3) G has no tree-cut decomposition of adhesion-width < a and bag-width < b.

When cast to the variants of definitions with a single parameter, Theorem E takes the following form.

Theorem D (restated). For any graph G and a positive integer k, the following are equivalent:

(B1) G has a bramble of order ⩾ k;

(B2) G has a tangle of order ⩾ k;

(B3) G has ab-tree-cut width ⩾ k.

5.3 Proof of Theorem E

In this section we prove Theorem E. The outline is as follows. First, we verify that all the three statements
always hold for b= 1, which proves the theorem in this case. Hence, for the remainder of the proof we may
assume that b ⩾ 2. Then, in successive subsections we prove implications (A1)⇒(A2), (A2)⇒(A3), and
(A3)⇒(A1), in this order. The first two implications are rather straightforward, while the main weight
of the proof lies in the last implication. In particular, the subsection containing its proof is preceded by
an analysis of the structure of 3-edge-connected components in an arbitrary graph.

Proof (of Theorem E for b = 1). We show that when b=1, all three conditions (A1), (A2), and (A3)
hold for every positive integer a.
For (A1), fix some vertex v and consider the bramble consisting of one slab (H,K) where K = {v}

and H = G[{v}]. This bramble has bag-order 1 and adhesion-order +∞. Hence (A1) holds for b = 1 and
any positive integer a.
For (A2), we argue similarly. Let a be any positive integer. Fix any vertex v and consider the orientation

L of Sa defined as follows: for {A,B} ∈ Sa, we include (A,B) in L provided v ∈ B, and otherwise we
include (B,A). Clearly L is consistent and avoids Σa,1, because every separation in L points towards the
side that contains v. So L is an (a, 1)-tangle, as required.
Finally, (A3) trivially holds for b = 1 and any positive integer a, because G is assumed to be non-

empty. □

Therefore, for the remainder of the proof we assume that b ⩾ 2.

5.3.1 Easy implications

Proof (of Theorem E, (A1)⇒(A2)). Let B be a bramble of adhesion-order ⩾ a and bag-order ⩾ b,
where b ⩾ 2.
We claim that for each separation {A,B} in Sa, exactly one of the sides A and B contains the core K

of at least one slab (H,K) ∈ B as a subset. Indeed, if none of A and B contained such a core, then δ(A)
would be a disconnecting set for B. Since |δ(A)| < a, this is a contradiction. On the other hand, if both A
and B contained cores of some slabs from B, then these cores would not intersect, again a contradiction.
We construct a tangle L in G by orienting every separation {A,B} ∈ Sa so that it points to the part

that contains the core of at least one slab from B. Note that L is consistent, because otherwise B would
contain two slabs with disjoint cores. It remains to prove that L avoids Σa,b.
For contradiction, suppose that there exists a star σ ⊆ L such that∣∣⋃{δ(A) : (A,B) ∈ σ and |δ(A)| ⩾ 3}∣∣ < a, (5.1)∣∣⋂{B : (A,B) ∈ σ}∣∣ < b. (5.2)

Let
F :=

⋃
{δ(A) : (A,B) ∈ σ and |δ(A)| ⩾ 3}.

Consider any slab (H,K) ∈ B. Since the bag-order of B is at least b, we have |K| ⩾ b. By (5.2), there
exists a separation (A,B) ∈ σ such that A and K intersect. Note that it cannot happen that K ⊆ A,
because (A,B) ∈ L, so A cannot fully contain any core of a slab from B. We infer that δ(A) disconnects
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the slab (H,K). Since K is 3-edge-connected in G, this in particular implies that |δ(A)|⩾ 3. So δ(A)⊆ F
and F disconnects (H,K). Since the slab (H,K) was chosen arbitrarily from B, we conclude that F
is a disconnecting set for B. However, now (5.1) stands in contradiction with the assumption that the
adhesion-order of B is at least a. □

Proof (of Theorem E, (A2)⇒(A3)). Suppose toward a contradiction that G admits a tree-cut de-
composition T = (T,X ) with aw(T ) < a and bw(T ) < b, as well as a tangle L with adhesion-order ⩾ a
and bag-order ⩾ b.
First, note that for every edge ab ∈ E(T ) we can define a separation {A,B} of G, where A consists

of all vertices u such that the node of T whose bag contains u lies in the same connected component of
T − ab as a, and B = V (G) \ A. Since aw(T ) < a, it follows that the order of {A,B} is smaller than a,
that is, {A,B} ∈ Sa. Hence, exactly one of (A,B) and (B,A) belongs to L. Define an orientation T⃗ of the
tree T as follows: orient ab towards b if (A,B) ∈ L, and towards a otherwise. Since T has less edges than
nodes, it follows that in T⃗ there exists a node r whose outdegree in T⃗ is zero. In other words, every edge
incident to r in T points toward r in T⃗ . Thus, the set σ of oriented separations corresponding to the edges
incident to r forms a star in Sa. Since T has adhesion-width < a and bag-width < b, we immediately get
that σ ∈ Σa,b. Hence L does not avoid Σa,b, a contradiction. □

5.3.2 Structure of 3-edge-connected components

Before we proceed to the proof of the last implication, we need to prove some auxiliary results about
tree-cut decompositions of a graph and its 3-edge-connected components.
Consider a graph G and let ∼3CC be the equivalence relation on V (G) defined as being in the same

3-edge-connected component. We define

G3CC := G/∼3CC.

Our goal now is to understand the structure of G3CC. First, we observe that G3CC has no non-trivial
3-edge-connected components.

Lemma 5.6. In G3CC, no two different vertices are 3-edge-connected.

Proof. Consider any two different vertices A and B of G3CC. Recall that A and B are two different
3-edge-connected components of G, hence let us pick arbitrary vertices a ∈ A and b ∈ B. Since a and b
belong to different 3-edge-connected components of G, there exists a separation {A′, B′} of G of order
< 3 such that a ∈ A′ and b ∈ B′. Note that since the order of {A′, B′} is < 3, every 3-edge-connected
component C of G has to be entirely contained either in A′ or in B′. In particular, A ⊆ A′ and B ⊆ B′.
Thus, {A′, B′} naturally induces a separation {Â, B̂} of G3CC defined by placing each C ∈ V (G3CC) in Â
provided C ⊆ A′, and in B̂ provided C ⊆ B′. Clearly, A ∈ Â, B ∈ B̂, and the order of {Â, B̂} is the same
as of {A′, B′}. This means that {Â, B̂} witnesses that A and B are not 3-edge-connected in G3CC. □

It appears that the structure of graph satisfying the condition stated in Lemma 5.6 can be nicely
described: they are cacti. More precisely, a cactus is a graph where every 2-(vertex)-connected component
is either a single edge or a cycle (here, we allow cycles of length 2, that is, pairs of parallel edges). We
have the following observation, which is essentially (up to technical details in definitions) known in the
literature [Din76, MNS17].

Lemma 5.7. A graph G is a cactus if and only if no two different vertices of G are 3-edge-connected.

Proof. Assume first that G is a cactus. Take any two different vertices u, v of G and for contradiction
suppose that there are three edge-disjoint paths P1, P2, P3 connecting u and v. Let u1, u2, u3 be the
vertices directly succeeding u on P1, P2, P3, respectively. Within the closed walk P1 ∪ P2 one can find
a cycle that contains u, u1, and u2, which witnesses that all these three vertices belong to the same 2-
connected component of G. The same can be argued about the triple u, u2, and u3, so all the four vertices
u, u1, u2, and u3 belong to the same 2-connected component of G. However, the first edges of P1, P2, P3
are pairwise different, which means that u has degree at least 3 within this 2-connected component. This
contradicts the assumption that G is a cactus.
Assume now that G is not a cactus, which means that there exists a 2-connected component C of G

that is neither a single edge nor a cycle. This means that C has a vertex of degree 3, say u. Let e1, e2, e3
be an arbitrary triple of distinct edges of C incident to u, and let u1, u2, u3 be the other endpoints of
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e1, e2, e3, respectively. Since C is 2-connected, C − u is connected, hence in C − u there exists a tree T
whose set of leaves is {u1, u2, u3}. Now T with vertex u and edges e1, e2, e3 added is a graph consisting
of u, another vertex v of degree 3 (a leaf of T if two of u1, u2, u3 are equal, or an internal node of T
otherwise), and 3 internally vertex-disjoint paths connecting u and v. Since this graph is a subgraph of
G, it follows that u and v are 3-edge-connected in G. □

By combining Lemma 5.6 and Lemma 5.7 we get the following.

Corollary 5.8. For any graph G, the graph G3CC is a cactus.

We now relate the ab-tree-cut width of a graph G with the ab-tree-cut width of its 3-edge-connected
components. For this, we need to associate with each 3-edge-connected component A a suitable torso of
A, which is a graph that reflects connections between vertices of A that are realized either by edges within
A or paths that are internally disjoint with A. Formally, the torso of A is the graph torso(A) obtained
from G as follows. Observe that for every connected component Z of G−A, there are at most two edges
in G having one endpoint in Z and the other in A. Then, for every such component Z,

• remove Z completely, provided Z has at most one neighbor in A; or
• remove Z and replace it with a new edge fZ connecting the neighbors of Z in A, provided Z has
exactly two neighbors in A.

Note that this second operation does not create loops. The edge fZ is called the replacement edge of the
component Z.
We have the following simple observations about the torso operation.

Lemma 5.9. For every graph G and a 3-edge-connected component A of G, the graph G contains torso(A)
as an immersion.

Proof. It suffices to map every vertex of A to itself, every edge of G[A] to itself, and every replacement
edge fZ to any path in G that connects the endpoints of fZ and has all the internal vertices in Z. □

Lemma 5.10. For every graph G and a 3-edge-connected component A of G, the graph torso(A) is 3-
edge-connected.

Proof. Consider any pair of vertices u, v ∈ A. Since A is 3-edge-connected in G, there are three edge-
disjoint paths P1, P2, P3 in G that connect u and v. These can be naturally projected to paths Q1, Q2, Q3
in torso(A) as follows: for every maximal subpath of Pi, i ∈ {1, 2, 3}, whose all internal vertices do not
belong to A, say they belong to some connected component Z of G − A, replace this subpath with the
replacement edge fZ . It can be easily seen that each connected component Z of G − A will participate
in at most one such replacement, because there are at most two edges connecting Z with A. Hence,
Q1, Q2, Q3 remain edge-disjoint and u and v are 3-edge-connected in torso(A). □

The next theorem is the main outcome of this section. Intuitively, it will allow us to focus on a single
3-edge-connected component of G when constructing a bramble of high order. A statement in the work
of Wollan that mirrors this step is [Wol15, Lemma 5].

Theorem 5.11. Let G be a graph and a, b be two positive integers. Then G admits a tree-cut decompo-
sition of adhesion-width ⩽ a and bag-width ⩽ b if and only if for every 3-edge-connected component A of
G, the same can be said about the graph torso(A).

Proof. The forward implication follows by combining Lemma 5.9 with Proposition 5.3. We are left with
proving the backward implication.
Assume then that for every 3-edge-connected component A of G, there is a tree-cut decomposition

T A = (TA,XA) of torso(A) such that aw(T A) ⩽ a and bw(T A) ⩽ b. The goal is to to “glue” the de-
compositions T A into a single tree-cut decomposition T of G so that the guarantees about the width
measures are preserved. The gluing will be done along the graph G3CC, which by Corollary 5.8 is a cactus.
We execute the gluing as follows. Fix any spanning forest of G3CC and let S be its edge set. Further,

let R = E(G3CC) \ S be the remaining edges of G3CC. Note that R contains exactly one edge from every
2-connected component C of G3CC that is a cycle (that is, is not a single edge). Call this edge rC .
Recall that in the construction of G3CC = G/∼3CC, every edge of G3CC originates in some edge of

G that connects two different 3-edge-connected components. Let α : E(G3CC) → E(G) be this origin
mapping: α(e) is the edge of G from which e originates. Note that α is injective.
We construct a forest T from trees TA as follows. First, take the disjoint union of trees TA. Then,

consider every edge e ∈ S, say with endpoints A,B ∈ V (G3CC). Let u and v be the endpoints of α(e),
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where u ∈A and v ∈B. Clearly, there are nodes p ∈ V (TA) and q ∈ V (TB) such that u ∈XAp and v ∈XBq .
Then add the edge pq to the forest T , and call this edge γ(e). This concludes the construction of T . It is
easy to see that since S is a forest and each TA is a tree, T is also a forest.
We now associate the nodes of T with bags X = {Xs : s ∈ V (T )} inherited from decomposition T A

in the natural manner: if a node s of T originates from the tree TA, then we set Xs := XAs . Since 3-edge-
connected components of G form a partition V (G), it follows that X is a near-partition of V (G). Thus,
T := (T,X ) is3 a tree-cut decomposition of G.
It remains to analyze the width measures of T . Since the bags are directly taken from decompositions

T A, which have bag-width ⩽ b, we immediately see that bw(T )⩽ b. The argument for the adhesion-width
is a bit more complicated, because the adhesions may actually change during gluing.
We first show the following claim about connectedness in G3CC and in G.

Claim 5.1. Let A be a 3-edge-connected component of G and let C be a connected component of G3CC−A.
Then the vertices of

⋃
D∈V (C)D lie in the same connected component of G−A.

Proof. Let Ĉ :=
⋃
D∈V (C)D. Suppose for contradiction that there is a partition {L,R} of Ĉ such that in

G there is no edge with one endpoint in L and second in R and L, R are non-empty. Since C is connected
in G3CC, there must exist a 3-edge-connected component B ∈ V (C) such that both L ∩ B and R ∩ B
are non-empty. Pick any u ∈ L ∩ B and v ∈ R ∩ B. Since B is 3-edge-connected in G, there are three
edge-disjoint paths P1, P2, P3 in G connecting u and v. Note that in G there are at most 2 edges with
one endpoint in Ĉ and the other outside of Ĉ: these are the images of the at most two edges between A
and C under α. At most two of the paths P1, P2, P3 can contain any of these at most two edges, hence
one of them, say P1, must have all the vertices contained in Ĉ. But then P1 contains an edge with one
endpoint in L and second in R, a contradiction. □

Claim 5.1 provides us with an understanding of the replacement edges in torsos of the 3-edge-connected
components of G. Precisely, let A be a 3-edge-connected component of G and let C be any 2-connected
component of G3CC that is a cycle and contains A. By Claim 5.1, all the vertices of

⋃
D∈V (C)\{A} V (D)

lie in the same connected component of G−A. Call this component ZA(C). Note that since C ranges over
all 2-connected components of G3CC that are cycles containing A, the components ZA(C) are pairwise
different. Finally, if e1, e2 are the two edges of C that are incident to A, then the replacement edge of
ZA(C) in torso(A) connects the endpoints of α(e1) and α(e2) that lie in A, or is non-existent if these
endpoints coincide.
Using all these observations we can understand the traces of edges of G in the decomposition T . For

an edge e of G, by traceT (e) we mean the edge set of the trace of e in T . Similarly, if e is an edge of
torso(A), for some 3-edge-connected component A, then traceT A(e) is the edge set of the trace of e in T A.
The following claim explains how the traces of the edges of G behave in T . The proof is a straightforward
check using the observations presented above, hence we omit it. It can be followed on Figure 5.4.

Claim 5.2. Let e be an edge of G with endpoints u and v, and let A and B be the 3-edge-connected
components of G such that u ∈ A and v ∈ B. Then:

• If A = B, then
traceT (e) = traceT A(e).

• If A ̸= B and α−1(e) ∈ S, then
traceT (e) = {γ(α−1(e))}.

• If A ̸= B and α−1(e) ∈ R, say e = rC for some 2-connected component C of G3CC that is a cycle,
then

traceT (e) =
⋃

D∈V (C)

traceT D
(
fZD(C)

)
∪

⋃
g∈E(C)\{e}

{γ(g)}.

Here, if the replacement edge fZD(C) does not exist, we take ∅ for the corresponding trace.

For a 3-edge-connected component A we define a mapping ηA : E(torso(A))→ E(G) as follows:
• If e is not a replacement edge, then set ηA(e) = e.

3Formally, we required tree-cut decompositions to be trees and not just forests, but we can always add arbitrary edges
to make T connected without increasing any of the width measures.
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Figure 5.4: A close look at the trace of α(rC).

• If e is a replacement edge, say e = fZ for some connected component Z of G−A, then observe that
there is a unique 2-connected component C of G3CC that is a cycle containing A and for which
Z = ZA(C). Then set ηA(e) = α(rC).

With this notation in place, Claim 5.2 immediately gives the following characterization of adhesions in
T .

Claim 5.3. Let e be an edge of T . Then:
• If e = γ(g) for some edge g ∈ S, say belonging to a 2-connected component C of G3CC that is a
cycle, then

adhT (e) = {α(g), α(rC)}.
• If e ∈ E(TA) for some 3-edge-connected component A, then

adhT (e) = ηA (adhT A(e)) .

From the first point of Claim 5.3 it follows that all edges of T that originate from the spanning forest
S are thin in T , hence they do not contribute to the adhesions of the nodes of T . Then, from the second
point of Claim 5.3 we observe that | adhT (s)| ⩽ | adhT A(s)| for every node s of T that originates from
TA. Since aw(T A) ⩽ a for every 3-edge-connected component A, it follows that aw(T ) ⩽ a. □

5.3.3 From the non-existence of a decomposition to a bramble

We are now ready to prove the last implication of Theorem E. The proof closely follows the line of
argumentation for the treewidth case presented by Diestel in [Die16], which in turn is based on a proof
by Mazoit [Maz13].

Proof (of Theorem E, (A3)⇒(A1)). Assume that G has no tree-cut decomposition of adhesion-
width <a and bag-width <b. We deduce by Theorem 5.11 that there exists a 3-edge-connected component
A of G such that every tree-cut decomposition T of torso(A) satisfies at least one of the conditions:
aw(T ) ⩾ a or bw(T ) ⩾ b. We will construct a suitable bramble using the component A. Denote GA :=
torso(A) for brevity.
A tree-cut decomposition T = (T,X ) of GA shall be called good if for every node t, we have

adhT (t) < a, and

if |Xt| ⩾ b, then t is a leaf of T .

In other words, a good tree decomposition has adhesion-width < a, and the only nodes whose bags are
allowed to be of size ⩾ b are the leaves. If T = (T,X ) is a good tree-cut decomposition and a leaf t of T
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C D

Ĉ D̂

Figure 5.5: A separation {Ĉ, D̂} of GA such that |δ(Ĉ)| = |δ(D̂)| = |P|. Edges in δ(Ĉ) are depicted in
bold.

satisfies |Xt| ⩾ b, then Xt shall be called a petal of T . Note that the assumption that GA has no tree-cut
decomposition of adhesion-width < a and bag-width < b implies that every good tree-cut decomposition
of GA has a petal.
Our first goal is to construct a bramble BA of adhesion-order ⩾ a and bag-order ⩾ b in GA. For this,

letM⊆ 2A be the family of all petals of all good tree-cut decompositions of GA. Further, let F ⊆M be
an inclusion-wise minimal subfamily ofM satisfying the following two conditions:
(i) For each good tree-cut decomposition T of GA, F contains at least one petal of T .
(ii) F is upward-closed: if C,D ∈M are such that C ⊆ D and C ∈ F , then also D ∈ F .
We observe the following.

Claim 5.4. Suppose C is an inclusion-wise minimal element of F . Then there exists a good tree-cut
decomposition T C of GA such that C is a petal of T C , and moreover C is the only petal of T C that
belongs to F .

Proof. Observe that since C is an inclusion-wise minimal element of F , the family F \ {C} is upward-
closed, that is, satisfies (ii). As F is inclusion-wise minimal subject to satisfying both (ii) and (i), it
follows that F \ {C} does not satisfy (i), which implies the claim. □

The next claim is the key observation.

Claim 5.5. The elements of F pairwise intersect.

Proof. Suppose otherwise: there exist sets C,D ∈ F that are disjoint. By possibly replacing each of
C and D by its subset, we may assume that C and D are inclusion-wise minimal elements of F . By
Claim 5.4, there exist good tree-cut decompositions T C = (TC ,XC) and T D = (TD,XD) of GA such
that C is the only petal of T C that belongs to F and D is the only petal of T D that belongs to F . Let
tC be the leaf of TC whose bag is C, and define tD analogously.
Let P be a maximum-size family of edge-disjoint paths in GA connecting C with D. By Menger’s

theorem, there exists a separation {Ĉ, D̂} of GA such that |δ(Ĉ)|= |δ(D̂)|= |P|. In particular, every path
P ∈ P contains exactly one edge in δ(Ĉ), all the vertices on P before this edge belong to Ĉ, and all the
vertices on P after this edge belong to D̂. This is illustrated in Figure 5.5.
We now construct a decomposition T = (T,X ) of GA as follows. Construct T by taking the disjoint

union of TC and TD, removing the nodes tC (from TC) and tD (from TD), and adding the edge sCsD,
where sC is the unique neighbor of tC in TC and sD is the unique neighbor of tD in TD. (Note here
that sC and sD exist, as otherwise either C = A or D = A, implying that the other one is empty, but
every element of F has size at least b ⩾ 2.) Next, define the bags X = {Xt : t ∈ V (T )} as follows: for
every node t originating from TC we set Xt := XCt ∩ D̂, and for every node t originating from TD we set
Xt := XDt ∩ Ĉ. Thus, {Xt : t ∈ V (TC) \ {tC}} is a near-partition of D̂ and {Xt : t ∈ V (TD) \ {tD}} is a
near-partition of Ĉ, implying that X is a near-partition of A. So T is a tree-cut decomposition of GA.
We now bound the adhesion-width of T . Similarly as before, for an edge e, the edge set of the trace

of e in T is denoted by traceT (e); similarly for decompositions T C and T D. Observe that for every edge
e of G, say with endpoints u and v, the trace of e in T can be characterized as follows.

• If u, v ∈ Ĉ, then traceT (e) = traceT D (e).
• If u, v ∈ D̂, then traceT (e) = traceT C (e).
• Suppose u ∈ Ĉ and v ∈ D̂. Then there exists a path P ∈ P such that e lies on P . Let PC be the
prefix of P consisting of edges with at least one endpoint in Ĉ, and PD be the suffix of P consisting
of edges with at least one endpoint in D̂ (thus, E(PC) ∩ E(PD) = {e}). Then



5.3. PROOF OF THEOREM E 63

traceT (e) ⊆

 ⋃
f∈E(PC)

traceT C (f) \ {tCsC}

 ∪
 ⋃
f∈E(PD)

traceT D (f) \ {tDsD}

 ∪ {sCsD}.
Let ηC : E(GA)⇀ E(GA) be a partial function defined as follows:

• each edge e with both endpoints in Ĉ is mapped to itself;
• each other edge e is not in the domain of ηC , unless it belongs to some path P ∈ P, in which case
it is mapped to the unique edge of P with one endpoint in Ĉ and the other in D̂.

Define a partial function ηD : E(GA)⇀E(GA) symmetrically using D̂ instead of Ĉ. Then from the above
characterization of traces it follows that:

• For each node t ∈ V (TC), we have

adhT (t) ⊆ ηD (adhT C (t)) .

• For each node t ∈ V (TD), we have

adhT (t) ⊆ ηC (adhT D (t)) .

Since both T C and T D have adhesion-width < a, it follows that aw(T ) < a.
Finally, observe that every bag in T is a subset of a bag originating either from T C or from T D. Since

non-leaf nodes of T originate from non-leaf nodes of T C and T D, it follows that only the leaves of T may
have bags of size ⩾ b, hence T is good. Further, for every leaf t of T , the bag at t in T is either a subset
of a leaf bag in T C other than C, or a subset of a leaf bag in T D other than D. Since C and D are the
only petals of T C and T D, respectively, that belong to F , and F is upward-closed, it follows that T has
no petals that belong to F . This is a contradiction with property (i) of F . □

We can now define the bramble BA as follows: for each connected subgraph H of GA such that
V (H) ∈ F , include the slab (H,V (H)) in BA. Note that since GA is 3-edge-connected by Lemma 5.10,
these are indeed slabs in GA. Further, Claim 5.5 shows that BA is a bramble. We now verify the orders
of BA.

Claim 5.6. BA has adhesion-order ⩾ a.

Proof. Consider any set of edges F ⊆ E(GA) satisfying |F |< a. Construct a tree-cut decomposition T F
of GA as follows. For each connected component D of GA−F , construct a node tD with V (D) as its bag.
Finally, construct a root node r with an empty bag and make it adjacent to all the nodes tD. (Thus, the
tree underlying T F is a star with r being the center.) Since the adhesions of all the nodes are contained
in F , it follows that aw(T F ) < a. Further, every node other than r is a leaf, and r’s bag is empty, so
we conclude that T F is a good tree-cut decomposition of GA. By property (i) of F , there is a connected
component D of GA−F such that V (D) ∈ F . Observe that the slab (D,V (D)) has been included in BA
and E(D)∩F = ∅, so in particular this slab is not disconnected by F . Since F was chosen arbitrarily, we
conclude that BA has no disconnecting set of size < a. □

Claim 5.7. BA has bag-order ⩾ b.

Proof. It suffices to note that every element of F is a petal of some good tree-cut decomposition of GA,
and hence has size ⩾ b. □

Now that the bramble BA in GA is constructed, we can modify it to obtain a bramble B in G. Consider
any slab (H,K) ∈ BA and recalling that H is a subgraph of GA, construct a subgraph H ′ of G from H as
follows: for every replacement edge present in H, say edge fZ for some connected component Z of G−A,
replace fZ by an arbitrary path connecting the endpoints of fZ that has all internal vertices in Z. Note
that H ′ remains connected and K, as a subset of A, is 3-edge-connected in G. Hence (H ′,K) is a slab in
G. We define B as the set of all slabs (H ′,K) obtained from slabs (H,K) ∈ BA as described above.
Since the cores of slabs did not change, B is a bramble in G and its bag-order is the same as that

of BA, which is ⩾ b. To see that the adhesion-order of B is not smaller than that of BA, observe the
following: if F ′ ⊆ E(G) is a disconnecting set for B, then replacing every edge of F ′ with an endpoint
outside of A, say in a component Z of G−A, with the replacement edge fZ , turns F ′ into a disconnecting
set F for B such that |F | ⩽ |F ′|. Therefore, we conclude that B is a bramble in G of adhesion-order ⩾ a
and bag-order ⩾ b. □
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5.4 Cops, dogs, and robber game

In this section we use the equivalence provided by Theorem E to give a characterization of ab-tree-cut
width expressed in terms of an analogue of the cops and robber game, which we call the cops, dogs, and
robber game.
The game is played on a graph G by two players, one controlling cops and dogs, and the other

controlling the robber. There are two parameters of the game:
• the number of cops a; and
• the number of dogs b.

The game starts with the robber player placing the robber at some vertex r0. At all times, the cops
occupy a set F consisting of at most a edges of G. This set is initially empty, that is, F0 = ∅. Then the
players proceed in rounds. Each round i ∈ {1, 2, 3, . . .}, consists of the following steps:

• The cop player announces a set of edges Fi of size ⩽ a to which the cops will move in this round.
• The robber player moves the robber from vertex ri−1 to any vertex ri which is reachable from
ri−1 by a path in G which does not pass through any edge occupied by a cop that does not move,
that is, a path that does not intersect Fi−1 ∩ Fi. However, we also require that ri and ri−1 are
3-edge-connected in G.

• The cops execute the announced move.
Note that so far the dogs do not get to play, but they are important in the winning condition. Namely,
after every round the players verify to how many vertices the robber could potentially move, that is,
how many vertices of G are 3-edge-connected with ri and can be reached from ri by a path that avoids
the edges of Fi. If this number is ⩽ b, then the cop player can unleash the b dogs on those vertices and
immediately catch the robber, thus winning the game. The robber player wins the game if she can avoid
getting caught indefinitely.
Note that the restriction about 3-edge-connectedness of the moves essentially means that the robber

is confined to the 3-edge-connected component of G to which r0 belongs.
We say that a graph G is searchable by a cops and b dogs, if there exists a strategy for the cop player

to win the game using a cops and b dogs. The main result of this section is the following equivalence.

Theorem F (restated). Let G be a graph and a, b be positive integers. Then G is searchable by < a
cops and < b dogs if and only if G has a tree-cut decomposition of adhesion-width < a and bag-width < b.

Proof. First, observe again that if b = 1, then both statements trivially do not hold for every positive
integer a. Therefore, we shall assume that b ⩾ 2.
We show the left-to-right implication by proving its contrapositive. Assume that G has no tree-cut

decomposition with adhesion-width < a and bag-width < b. We describe a winning strategy for the robber
player to win against < a cops and < b dogs.
By Theorem E, in G there exists a bramble B of adhesion-order ⩾ a and bag-order ⩾ b. The robber

player will maintain the following invariant: if at the end of round i the robber is placed at vertex ri,
then there is a slab (Hi,Ki) ∈ B such that ri ∈ Ki and (Hi,Ki) is not disconnected by Fi (the set of
edges occupied by the cops at the end of round i). Since F0 = ∅, to have this invariant satisfied at the
start of the game, it suffices that the robber player chooses r0 to be any vertex from the core of any slab
(H0,K0) ∈ B.
We now explain how the invariant is maintained in round i of the game. When the cop player announces

the new set Fi to which the cops will move, the robber chooses any slab (Hi,Ki) that is not disconnected
by Fi. Such a slab exists by the assumption that the adhesion-order of B is at least a and b ⩾ 2. Since
B is a bramble, the cores Ki−1 and Ki intersect. The robber player can therefore choose any vertex
ri ∈ Ki−1 ∩Ki. As the invariant was satisfied in round i− 1, the set Fi−1 ∩ Fi (in fact, even Fi−1) does
not disconnect ri−1 from ri within Hi−1. Since ri−1, ri ∈ Ki−1 and Ki−1 is 3-edge-connected in G, we
conclude that it is allowed for the robber to move from ri−1 to ri, and this move is duly executed by the
robber player.
To see that in this way the robber player can evade being caught indefinitely, observe that provided

the invariant is maintained, after round i the robber is allowed to move from ri to any vertex of Ki. As
the bag-order of B is ⩾ b, we have |Ki| ⩾ b, hence < b dogs are never sufficient to catch the robber if she
follows the described strategy.
We now proceed to the right-to-left implication. This amounts to describing a strategy for < a cops

and < b dogs to search G, assuming that G has a tree-cut decomposition T = (T,X ) satisfying aw(T )< a
and bw(T ) < b.
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Let us root the tree T in an arbitrary node, which naturally imposes an ancestor-descendant relation
in T . After round 0, when we have F0 = ∅, in rounds 1, 2, 3, . . . the cop player will select nodes t1, t2, t3, . . .
so that each ti+1 is a child of ti, and play

Fi := adhT (ti).

While doing this, the cop player will maintain the following invariant: after round i, either she has already
won, or the robber must be placed at a vertex that belongs to a bag of a (strict) descendant of ti.
The strategy for maintaining the invariant is simple. In round 1 the cop player chooses t1 to be the

root of T , while in round i ⩾ 2 she chooses ti to be the child of ti−1 such that ri−1 belongs to the bag
of either ti−1 or any of its descendants. We now verify that the invariant is maintained after round i; we
do this only for i ⩾ 2, as for i = 1 the check is almost the same. For brevity, let Ti be the subtree of T
rooted at ti.
First, observe that either the edge titi−1 is thin in T , or

adh(titi−1) ⊆ adh(ti) ∩ adh(ti−1) = Fi ∩ Fi−1.

In either case, the robber cannot move from ri−1 to any vertex w outside of
⋃
s∈V (Ti)Xs, because either w

and ri−1 are not 3-edge-connected in G, or every path connecting ri−1 with w intersects Fi∩Fi−1. Hence,
the robber player must choose ri ∈

⋃
s∈V (Ti)Xs. However, if she chooses ri ∈ Xti , then she immediately

loses after this round: the set of vertices to which the robber can move once the cops are on Fi would be
confined to a subset of Xti , which is of size < b. Hence, to avoid being captured the robber player must
choose ri to be a vertex contained in a bag of a strict descendant of ti, and the invariant is maintained.
To see that following the strategy results in catching the robber, observe that eventually the cop

player will chose ti to be a leaf of T . Then she wins, as there is no vertex at which the robber can be
placed after this round. □

A graph is k-searchable if it is searchable by k cops and k dogs. Theorem F then implies the following.

Corollary 5.12. A graph has ab-tree-cut width ⩽ k if and only if it is k-searchable.





Chapter 6

Digraphs without Onion Star
Immersions

The motivation behind the results presented in this chapter was to define an appropriate directed coun-
terpart of tree-cut width and tree-cut decompositions — in a way allowing to build a sound structural
theory based on natural duality statements. This goal was not reached, since the directed setting turns
out to deviate significantly from the undirected one.
However, we are able to identify an obstruction (cf. Figure 6.1) for which we can state and prove two

duality results corresponding to the opening steps in Wollan’s proof of the (undirected) Wall Immersion
Theorem [Wol15]. These results are Theorems G and H.

Theorem G (restated). There exists a function f : N → N such that the following holds. Suppose a
digraph D contains a set X consisting of 2t + 1 vertices such that for all distinct x, y ∈ X, we have
µ(x, y) > f(t). Then D contains the t-onion star as an immersion.

Theorem H (restated). There exists a function g : N× N→ N such that the following holds. Suppose
D is a digraph and x, y are two distinct vertices in D such that µ(x, y) > g(t, k) and µ(y, x) > g(t, k), for
some t, k ∈ N. Then at least one of the following holds:

• D contains the t-onion star as an immersion;
• in D there is a family of 2k arc-disjoint paths consisting of k paths from x to y and k paths from y
to x.

Throughout the chapter we allow the existence of parallel arcs (multiple arcs with the same pair of
endpoints), but we do not allow loops (arcs with both endpoints at the same vertex). Note that this in
particular affects the way the word digraph should be understood.

6.1 Preliminaries

Paths. For the purpose of this chapter, a path in a digraph D is a sequence (a1, a2, . . . , ak) of pairwise
distinct arcs of D with the property that head(ai) = tail(ai+1) for every i ∈ [k − 1]. Given a path P =
(a1, a2, . . . , ak) we put first(P ) := a1, last(P ) := ak, and A(P ) := {a1, a2, . . . , ak}. Path P is simple if
head(ai) = tail(aj) if and only if j = i + 1, i.e., if the tail of the first arc and the heads of all arcs form
k+1 distinct vertices. Let <P be the natural linear order of A(P ) defined by ai <P aj if and only if i < j.
We define trimmed paths:

P (→ ai) := (a1, a2, . . . , ai−1),
P (→ ai] := (a1, a2, . . . , ai),
P (ai →) := (ai+1, ai+2, . . . , ak),
P [ai →) := (ai, ai+1, . . . , ak),
P (ai, aj) := (ai+1, ai+2, . . . , aj−1).

If s = tail(a1) and t = head(ak), then P is called an (s, t)-path. If P is a family of paths and Q is a path,
then we put A(P) :=

⋃
P∈P A(P ) and P(Q) := {P ∈ P | A(P ) ∩ A(Q) ̸= ∅}. For two arc-disjoint paths

67
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P = (p1, . . . , pn) and Q = (q1, . . . , qm) such that head(pn) = tail(q1), we denote by PQ the concatenation
of P and Q, i.e., the path (p1, . . . , pn, q1, . . . , qm).
If P and Q are two families of paths in a digraph D, then by intersection graph of the pair (P,Q)

we mean the undirected bipartite graph with bipartition classes P, Q, and an edge between P ∈ P and
Q ∈ Q if P and Q have at least one common arc.

Onions. Let t ⩾ 1. An onion4 is the digraph
−→
O which consists of two vertices x and y, two arcs yx

and one arc xy. The vertices x and y are called roots of the onion, with x being also called the sink of
the onion, and y being the source of the onion. If φ is an immersion model (cf. Chapter 2) of

−→
O in D,

then the vertices φ(x), φ(y) of D will be called roots (accordingly sink and source) of this immersion. A
t-onion-star is the digraph

−→
St with the set of vertices {x, y1, . . . , yt, z1, . . . , zt} and set of arcs

⋃t
i=1Ai,

where each Ai consists of single arcs yix and xzi, and double arcs xyi and zix (see Figure 6.1).

y1

y2
yi

. . .

...

. . .

...

z2

x

x y

zt

zi

yt

z1

Figure 6.1: An onion (left) with sink x and source y and a t-onion-star (right). Blue and red arcs are
incoming and outgoing arcs of x, respectively.

Observe that the graph
−→
St[{y1, . . . , yt, z1, . . . , zt}] is arcless and for every i = 1, 2, . . . , t, the graphs−→

St[{x, yi}] and
−→
St[{x, zi}] are onions. Moreover, x is the source of

−→
St[{x, yi}] and the sink of

−→
St[{x, zi}].

Ramsey-type results for bipartite graphs. Let n be a positive integer. By b(n) we denote the
minimum integer such that in every balanced graph on 2b(n) vertices, with bipartition classes X and Y ,
either there exists an induced subgraph isomorphic to Kn,n, or there exist two sets A ⊆ X,B ⊆ Y , each
of size n, that are anti-complete to each other. The existence of b(n) for each n follows from [Tho82].

Theorem 6.1 (Thomason [Tho82]). For every n ⩾ 1 we have b(n) ⩽ 2n(n− 1) + 1.

In other words, if a bipartite graph G has sufficiently many vertices then we can always find in it two
sets of size n, each contained in a different bipartition class, that are either complete or anti-complete to
each other. In the same flavor, the following classical result of Kővári, Sós and Turán [KST54] gives a
lower bound on the number of edges of a (not necessarily bipartite) graph G so that it contains a large
complete balanced subgraph.

Theorem 6.2 (Kővári, Sós, Turán [KST54]). There exists a function c : N→ (0,∞) such that if an
n-vertex graph G has at least c(k)n2−1/k edges for some k ∈ N, then it contains Kk,k as a subgraph.

6.2 Onion Harvesting Lemma

This section is devoted to the proof of Lemma 6.3, the main conceptual piece of this chapter.
Let P be a family of paths in a digraphD and let x∈ V (D). We say that P starts at x if for every P ∈P

it holds that tail(first(P )) = x, and that it ends at x if for every P ∈ P it holds that head(last(P )) = x.
Consider a pair (P,Q) where P and Q are families of pairwise arc-disjoint simple paths in D such that
there exists x ∈ V (D) with P starting at x and Q ending at x. We say that (P,Q) is a well-crossing pair
4We note that onions are directed variants of pumpkins, which were studied e.g. in [JPS+14].
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rooted at x (or simply well-crossing pair) if for every P ∈ P and Q ∈ Q we have A(P )∩A(Q) ̸= ∅, i.e., if
the intersection graph of (P,Q) is complete.

We shall prove that, for every t ⩾ 1, if a digraph D contains a well-crossing pair (P,Q) with both
families P and Q sufficiently large (in terms of t), then D admits a t-onion-star as an immersion. This is
formalized by the following lemma.

Lemma 6.3 (Onion Harvesting Lemma). Let t ⩾ 1 be an integer and D be a digraph. There exists
a function F : N → N with the following property: if in D there exists a well-crossing pair (P,Q) with
|P| ⩾ F (t) and |Q| ⩾ F (t), then in D there exists an immersion model of a t-onion-star.

Let (P,Q) be a well-crossing pair. In the following, we call crossing of (P,Q) an arc e that belongs
to A(P ) ∩ A(Q) for some P ∈ P and Q ∈ Q, and specify P -crossing (resp. Q-crossing, (P,Q)-crossing)
for a crossing of (P,Q) contained in P (resp. Q, A(P ) ∩ A(Q)). A crossing e is (P,Q)-safe (or simply
safe) if there exist at least |Q|/3 paths in Q\ {Q} whose <P -minimal crossing with P precedes e in <P .
Otherwise, it is said to be (P,Q)-dangerous (or simply dangerous). We say that a path P is Q-dangerous
if it contains a dangerous (P,Q)-crossing. If a path Q ∈ Q is trimmed to Q, then we say that P is
Q-dangerous if there exists a dangerous (P,Q)-crossing belonging to Q.

In order to prove Lemma 6.3, we will repeatedly “harvest” immersions of single onions rooted at the
root of (P,Q), keeping appropriately large well-crossing pairs disjoint with previously found onions to
enable gaining new ones.

Lemma 6.4. Let n⩾ 1 be an integer. There exists a function f : N→ N with the following property: If in
a digraph D there exists a well-crossing pair (P,Q) rooted at x with |P| = f(n) and |Q| = f(n), then in
D there exist an immersion model φ of an onion with source x, and a well-crossing pair (P∗,Q∗) rooted
at x with |P∗| = n, |Q∗| = n such that:

• A(P∗) ⊆ A(P), and A(Q∗) ⊆ A(Q);
• all paths in P∗ ∪Q∗ are arc-disjoint with φ;
• no arc in A(P∗) ∩A(Q∗) has the sink of φ for tail.

Proof (of Lemma 6.4). Let c be the function from Theorem 6.2. Define functions g and f by:

g(n) = max
{
8,
⌈
1
2
(16c(2n))2n

⌉}
, f(n) = max

{
6n, 3 ·

⌈
1
4
(36c(g(n)))g(n)

⌉}
.

Note that since the values of f are divisible by 3, so are the sizes of P and Q for (P,Q) a well-crossing
pair satisfying the assumptions of the lemma.

In the following, we consider one such pair (P,Q) rooted at a vertex x and fix Q ∈ Q. Let e be the
<Q-smallest arc of Q such that |P(Q(e→))|= |P|/3. Observe that e is a crossing satisfying |P(Q[e→))|=
|P(Q(e→))| + 1. Let Q := Q[e→). We distinguish two cases depending on the number of Q-dangerous
paths in P(Q). These cases are depicted in Figure 6.2 and Figure 6.3, respectively.

Case 1. Suppose that P(Q) contains at least two Q-dangerous paths. Let d be the <Q-greatest
dangerous crossing in Q and let P2 be the path such that d is a (P2, Q)-crossing. Then d belongs to
Q. Let d′ be the <P2 -smallest (P2, Q)-crossing belonging to Q(e

′ →). Clearly since d is dangerous and
belongs to Q, d′ must be dangerous (with possibly d = d′). Let e′ be the <Q-greatest dangerous crossing
in A(Q) \ A(P2) and let P1 ∈ P(Q) \ {P2} be the path such that e′ is a (P1, Q)-crossing (with possibly
e = e′).
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P1

x

Q

d

e′
e

d′ P2

y

Figure 6.2: The situation of Case 1 when e ̸= e′ and d ̸= d′. Paths of P are depicted in black, Q is in red
and Q-crossings are in thick red. An onion immersion model with source x and sink y is underlined in
gray.

Let y = tail(d′). We claim that the (x, y)-paths P1(→ e′]Q(e′, d′), P2(→ d′) and the (y, x)-path Q[d′→)
form an immersion model φ of an onion with source x and sink y. Observe that P1(→ e′] is arc-disjoint
with Q(e′ →) as e′ is the <Q-greatest dangerous (P1, Q)-crossing, and having a safe (P1, Q)-crossing in
A(P1(→ e′])∩A(Q(e′→)) would imply that e′ is also safe, a contradiction. Similarly, the <P2-minimality
of d′ asserts that P2(→ d′) is arc-disjoint with Q[e′→). Note that these arguments hold even if e= e′ and
d = d′. Finally, Q(e′, d′) and Q[d′ →) are arc-disjoint as Q is simple. Hence, the path P1(→ e′]Q(e′, d′)
is a well-defined (although not necessarily simple) (x, y)-path, and paths P1(→ e′]Q(e′, d), P2(→ d′), and
Q[d′ →) are pairwise arc-disjoint, yielding an immersion model φ of an onion with source x in D.
Let Q◦ ⊆Q be the set of paths which are arc-disjoint both with P1(→ e′] and P2(→ d′] (so in particular

Q /∈ Q◦). Since e′ and d′ are both dangerous, |Q◦| > |Q|− |Q|/3−|Q|/3 = |Q|/3 ⩾ 2n by the definition of
f . Let us pick an arbitrary collection P∗ ⊆ P \ {P1, P2} of paths not intersecting Q[e′ →) with |P∗| = n.
Such a collection exists as |P(Q(e →))| = |P|/3 yielding 23 |P| ⩾ 4n candidate paths for P

∗. Note that
each path in such a collection has at most one arc whose tail is y (as the paths are simple), so there are
at most |P∗| = n arcs in A(Q◦) ∩ A(P∗) whose tail is y. Let Q∗ ⊆ Q◦ comprise of any n paths disjoint
with these arcs. Clearly, since P∗ ⊆ P and Q∗ ⊆ Q, (P∗,Q∗) is a well-crossing pair. Hence φ, P∗ and Q∗
satisfy all the desired properties.
Case 2. Suppose that there is at most one Q-dangerous path in P(Q). Let S be the set of those paths

in P(Q) whose all crossings with Q are safe, and let

S := {P (→ min<P {A(P ) ∩A(Q)}) | P ∈ S} .

This is the set of paths from S trimmed so that they start at x, have no arcs in common with Q and are
maximally long. Since |P(Q)| = |P|/3 + 1 and there is at most one dangerous path in P(Q), we derive
|S| = |S| ⩾ |P(Q)| − 1 = |P|/3. We shall first exhibit large well-crossing subfamilies of S and Q.

P1

x

Q

P2

e

e1

e2
y

Figure 6.3: The situation of Case 2. Paths in S are depicted in blue, Q is in red and Q-crossings are in
thick red. Paths P1 and P2 are those of Claim 6.2. An onion immersion model with source x and sink y
is underlined in gray.
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Claim 6.1. There exist subfamilies S ′ ⊆ S, Q′ ⊆ Q\{Q} such that |S ′| = g(n), |Q′| = g(n) and (S ′,Q′)
is well-crossing.

Proof (of claim). Let G be the intersection graph of (S,Q). By definition, each trimmed path P in
S originates from a path P in S whose (P,Q)-crossings e within Q are safe, i.e., there are at least |Q|/3
distinct paths among Q\{Q} crossing P before e with respect to <P . Since moreover |S| ⩾ |P|/3, we get

|E(G)| =
∑
P∈S
degG(P ) ⩾

∑
P∈S

|Q|
3

⩾
|P|
3
· |Q|
3
=
(
f(n)
3

)2
.

Note in addition that 43f(n) =
|P|
3 + |Q| ⩽ |V (G)| ⩽ 2f(n). By Theorem 6.2 there exists a constant

c1 = c(g(n)) such that if

|E(G)| ⩾ c1 · |V (G)|2−
1
g(n) ,

then G contains Kg(n),g(n) as a subgraph, corresponding to the desired well-crossing pair (S ′,Q′). For
the above inequality to hold it is enough to guarantee that

|E(G)|
|V (G)|2

⩾
c1

|V (G)|
1
g(n)
. (6.1)

By |V (G)| ⩽ 2f(n) and |E(G)| ⩾ 1
9f(n)

2 we first get

|E(G)|
|V (G)|2

⩾
1
9f(n)

2

4f(n)2
=
1
36
. (6.2)

From the definition of f it follows that f(n) ⩾ 3
4 (36c1)

g(n), so equivalently

1
36

⩾
c1(

4
3f(n)

) 1
g(n)
. (6.3)

Moreover, |V (G)| ⩾ 4
3f(n) gives

c1(
4
3f(n)

) 1
g(n)

⩾
c1

|V (G)|
1
g(n)
. (6.4)

Putting together inequalities eq. (6.2), eq. (6.3), eq. (6.4), we obtain eq. (6.1), which finishes the proof.□

Consider the pair (S ′,Q′) given by Claim 6.1 and let S ′ be the set of paths in S from which S ′
originates (i.e., the paths from S ′ before trimming). For two distinct paths P1, P2 ∈ S ′, we denote

Q′(P1, P2) := {R(max<R{A({P1, P2}) ∩A(R)} →) | R ∈ Q′} .

This is the set of paths from Q′ trimmed so that they end at x, have no arcs in common with P1 or P2
and are longest possible.

Claim 6.2. There exist distinct P1, P2 ∈S ′ and subfamilies P◦⊆S ′, Q◦⊆Q′(P1, P2) such that |P◦|=2n,
|Q◦| = 2n and (P◦,Q◦) is well-crossing.

Proof (of claim). Let k := g(n) = |Q′|= |S ′|= |S ′|. Choose a pair {P1, P2} ⊆ S ′ uniformly at random
(from the set of all

(
k
2

)
two-element subsets). Let Q′ := Q′(P1, P2) and let G be the intersection graph

of (S ′,Q′). Clearly, |Q′| = |Q′| = k. For R ∈ Q′ let NR be the random variable denoting the number of
paths P ∈ S ′ such that A(R) ∩A(P ) ̸= ∅, i.e., the degree of R in G.
Fix R ∈ Q′ and let R ∈ Q′ be the path from which R originates (i.e., the untrimmed counterpart of

R). For every P ∈ S ′ let a(P ) := max<R{A(P ) ∩A(R)} be the <R-greatest common arc of P and R. As
(S ′,Q′) is well-crossing, the k-element set {a(P ) | P ∈ S ′} ⊆ A(R) is naturally linearly ordered by <R.
Label all paths from S ′ with numbers from 1 to k accordingly with the order of appearance of arcs a(P )
on R, and let ℓ(P ) be the label of P . Note that NR ⩾ k−max(ℓ(P1), ℓ(P2)) and for every i= 0, 1, . . . , k−1,

P(max(ℓ(P1), ℓ(P2)) = i+ 1) =
i(
k
2

) .
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By a straightforward computation we obtain

ENR =
k−1∑
i=0

P(NR = k − i− 1)(k − i− 1) =
1(
k
2

) k−1∑
i=0

i(k − i− 1) = k − 2
3
.

Note that the distribution of NR depends only on labels of P1 and P2 and since these are chosen ran-
domly, for different R,S ∈ Q′ the variables NR, NS are identically distributed. By the above observations
and since k = g(n) ⩾ 8, we have

E|E(G)| ⩾ E
∑
S∈Q′
NS ⩾ k · k − 2

3
⩾

(
k

2

)2
.

It follows that there exists a choice of P1, P2 such that

|E(G)| ⩾
(
g(n)
2

)2
. (6.5)

Similarly as in the proof of Claim 6.1, we observe by Theorem 6.2 that there exists a constant c2 = c(2n)
such that if

|E(G)| ⩾ c2 · |V (G)|2−
1
2n ,

then G contains K2n,2n as a subgraph, corresponding to the desired well-crossing pair (P◦,Q◦). For the
above inequality to hold it is enough to guarantee that

|E(G)|
|V (G)|2

⩾
c2

|V (G)| 12n
.

This is obtained observing that

|E(G)|
|V (G)|2

=
|E(G)|
4(g(n))2

⩾
1
16

⩾
c2

(2g(n))
1
2n
=

c2

|V (G)| 12n
,

where the first inequality follows from eq. (6.5), and the second inequality follows from the definition of
g ensuring that g(n) ⩾ 1

2 (16c2)
2n. □

Consider P1, P2 and (P◦,Q◦) as in the claim above and denote ei =min<Pi{A(Q)∩A(Pi)} for i= 1, 2.
Assume without loss of generality that e1 <Q e2, i.e., that the <P1-smallest (P1, Q)-crossing is further
from x on Q than the <P2-smallest (P2, Q)-crossing. Let y = tail(e2). By the choice of e1 and e2, the
(x, y)-paths P2(→ e2), P1(→ e1]Q(e1, e2) and the (y, x)-path Q[e2 →) are arc-disjoint and hence form an
immersion model φ of an onion with source x and sink y. Moreover, this model is disjoint with A(P◦∪Q◦)
as Q◦ ⊆ Q′ with Q′ arc-disjoint with both P1 and P2.
The last step (to ensure that y will not be the tail of a crossing in the found well-crossing pair) is

performed similarly as in the first case: we pick an arbitrary collection P∗ of exactly n paths among the
2n paths in P◦, and select a subfamily Q∗ consisting of n paths which do not contain crossings of tail y
among the 2n paths in Q◦.
This concludes the proof of Lemma 6.4. □

Now, we observe that by iterating Lemma 6.4 t times, we can obtain an immersion model of a digraph
consisting of t onions with a common source.

Corollary 6.5. Let n, t be positive integers. Suppose that in a digraph D there exists a well-crossing pair
(P,Q) rooted at x with |P| = |Q| = f ⟨t⟩(n), where f is the function from Lemma 6.4. Then in D there
exists a family H of t arc-disjoint immersion models of onions with common source x, whose all sinks
are pairwise different, and a well-crossing pair (P∗,Q∗) rooted at x with |P∗| = n, |Q∗| = n such that all
paths in P∗ ∪Q∗ are arc-disjoint with every element of H.

Proof. Put P0 := P and Q0 := Q. For i = 0, 1, . . . , t− 1 let us apply Lemma 6.4 to the pair (Pi,Qi) to
get an immersion model of an onion φi+1 with sink yi+1, and a well-crossing pair (Pi+1,Qi+1).
Now it is enough to take P∗ = Pt, Q∗ = Qt and H = {φi}ti=1. Indeed, to see that the sinks y1, . . . , yt

are distinct, recall that for every i ∈ {0, . . . , t− 1} no arc in A(Pi+1) ∩A(Qi+1) has yi+1 as a tail. Since
A(Pi) ⊆ A(Pj), and A(Qi) ⊆ A(Qj) for every 0 ⩽ j ⩽ i, vertices y1, . . . , yi do not appear as tails of arcs
in A(Pi)∩A(Qi), hence yi+1 must be distinct from y1, . . . , yi. The remaining properties of the immersion
model are straightforward to verify. □



6.3. PROOFS OF THEOREMS G AND H 73

An analogous lemma can be designed to enable finding onions whose sink (not source) is x. The proof
basically follows from reversing all arcs in the arguments delivered previously.

Corollary 6.6. Let n, t be positive integers. Suppose that in a digraph D there exists a well-crossing pair
(P,Q) rooted at x with |P| = |Q| = f ⟨t⟩(n), where f is the function from Lemma 6.4. Then in D there
exists a family H of t arc-disjoint immersion models of onions with common sink x, whose all sources
are pairwise different, and a well-crossing pair (P∗,Q∗) rooted at x with |P∗| = n, |Q∗| = n such that all
paths in P∗ ∪Q∗ are arc-disjoint with every element of H.

Proof. It is enough to apply Corollary 6.5 to the digraph
←−
D , in which each arc of D is replaced with

a reversed arc, and to the (swapped) well-crossing pair (
←−
Q ,
←−
P ) consisting of families of reversed paths

from Q and P, respectively. □

Finally, we use Corollary 6.5 and Corollary 6.6 to prove Lemma 6.3.

Proof (of Lemma 6.3). Take F (t) = f ⟨4t⟩(1), where f is the function satisfying Lemma 6.4. Let x be
the root of the pair (P,Q). Applying Corollary 6.5 to D, (P,Q), n = f ⟨2t⟩(1) and 2t (in place of t) we
find a family H+ = {φ+i }2ti=1 of 2t arc-disjoint immersion models of onions with source x and mutually
different sinks {yi}2ti=1, along with a well-crossing pair (P∗,Q∗) in which both families have size at least
f ⟨2t⟩(1) and are arc-disjoint with elements of H+. Now applying Corollary 6.6 to D, (P∗,Q∗), n = 1 and
2t (in place of t), we find a family H− = {φ−j }2tj=1 of 2t arc-disjoint immersion models of onions with sink
x and mutually different sources {zj}2tj=1. Moreover, A(H+)∩A(H−) = ∅. It now remains to note that it
is possible to find two sets I, J ⊆ [2t] such that |I| = |J | = t and {yi : i ∈ I}∩ {zj : j ∈ J} = ∅. The union
of immersions φ+i where i ∈ I and φ

−
j where j ∈ J forms an immersion of a t-onion-star. □

6.3 Proofs of Theorems G and H

We are ready to prove our main theorems. We will first prove Theorem H and then Theorem G.

Proof (of Theorem H). We define

g(t, k) = 2N (N − 1) + 1

where N = max{k, F (t)} and F is the function given by Lemma 6.3. Let P and Q be families of pairwise
arc-disjoint simple paths such that elements of P start at x and end at y, elements of Q start at y and
end at x, and min{|P|, |Q|} ⩾ g(t, k).
By Theorem 6.1 applied to the intersection graph of (P,Q), there exist families P ′ ⊆ P and Q′ ⊆ Q

of paths such that |P ′|, |Q′| ⩾ N and either (P ′,Q′) is a well-crossing pair, or A(P ′) ∩A(Q′) = ∅. In the
first case, we conclude by Lemma 6.3 the existence of an immersion model of a t-onion-star in D. As of
the second outcome, it is precisely as desired. □

Proof (of Theorem G). Define function f as

f(t) = 2t · g⟨4t
2⟩

t (2),

where gt(k) := g(t, k) is the function from Theorem H.
We arbitrarily enumerate the vertices of X as y, x1, . . . , x2t. Consider an auxiliary digraph D′ obtained

from D by adding a single vertex v, f(t)2t arcs vxi and
f(t)
2t arcs xiv for every i ∈ [2t]. First, observe that

in D′ there exists a family of f(t) arc-disjoint (v, y)-paths. Indeed, let P ′ be the maximum family of arc-
disjoint (v, y)-paths, and let k be the size of P ′. By Menger’s Theorem, there exists a (v, y)-cut (A,B) of
size k. Since |δ+(v)| = f(t), we have k ⩽ f(t). Observe that if k < f(t), then A \ {v} ≠ ∅, which implies
that there exists i ∈ [2t] such that xi ∈ A. However, in such a case, (A \ {v}, B) is an (xi, y)-cut in D of
size k < f(t) contradicting the assumption of the theorem. Hence, |P ′| = f(t). By a symmetric argument
we obtain the existence of a family Q′ of f(t) arc-disjoint (y, v)-paths in D′. Clearly, we can assume that
P ′ and Q′ consist of simple paths.
Let P and Q respectively denote the families of paths P ′ and Q′ once every path has been restricted to

the arcs of D. Note that each P ∈P (resp. Q∈Q) is an (x, y)-path (resp. (y, x)-path) for some x∈X\{y}.
Moreover, for every i ∈ [2t], the number of (xi, y)-paths in P (resp. (y, xi)-paths in Q) is precisely f(t)2t .
Hence, if we denote by Pi the subset of P that consists of (xi, y)-paths, for every i ∈ [2t], we have that
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|Pi| = f(t)2t = g
⟨4t2⟩
t (2). Similarly, by Qi we denote the subset of Q that consists of (y, xi)-paths, and for

every i ∈ [2t] we have that |Qi| = g⟨4t
2⟩

t (2).
Let p ∈ [4t2]. We fix an arbitrary order on the elements of [2t] × [2t], and for the p-th element (i, j)

we proceed as follows. We apply Theorem H to Pi and Qj for n = g⟨4t
2−p+1⟩

t (2). Either we conclude that
there exists an immersion model of a t-onion-star in D, or replace Pi and Qj by their subsets P ′i and Q′i of
size g⟨4t

2−p⟩
t (2). Clearly the theorem holds if the first case occurs. In the other case, for every i′ ̸= i, j′ ̸= j,

we reduce sets Pi′ and Qj′ arbitrarily so that each of them contain exactly g⟨4t
2−p⟩

t (2) paths, and proceed
to the next iteration.
After 4t2 iterations, if no onion-star immersion model is found, for every i the families Pi and Qi have

precisely g⟨0⟩(2) = 2 elements each. Let Si = Pi ∪ Qi and S =
⋃
i∈[2t] Si. We observe that paths from S

are now pairwise arc-disjoint, and each Si contains two paths xi → y and two paths y → xi for every
i ∈ [2t]. Hence, there exists an t-onion-star immersion model in D, with center being y. This concludes
the proof. □
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Chapter 7

Vertex Deletion into Bipartite
Permutation Graphs

This chapter is devoted to proving Theorems I and J.

Theorem I (restated). There is an O(9k · |G|9)-time algorithm for instances (G, k) of the vertex dele-
tion into bipartite permutation graphs problem.

Theorem J (restated). There exists a polynomial-time 9-approximation algorithm for vertex deletion
into bipartite permutation graphs problem.

7.1 Posets and comparability graphs

A partially ordered set (shortly partial order or poset) is a pair P = (X,⩽P ) that consists of a set X and a
reflexive, transitive, and antisymmetric relation ⩽P on X. For a poset (X,⩽P ), let the strict partial order
<P be a binary relation defined on X such that x <P y if and only if x ⩽P y and x ̸= y. Equivalently,
(X,<P ) is a strict partial order if <P is irreflexive and transitive. Two elements x, y ∈ X are comparable
in P if x ⩽P y or y ⩽P x; otherwise, x, y are incomparable in P . A linear order L = (X,⩽L) is a partial
order in which every two elements x, y ∈ X are comparable. The strict linear order (X,<L) associated
with L is a binary relation defined in a way that x <L y if and only if x ⩽L y and x ̸= y.
Let P = (X,⩽P ) be a poset. A linear order L = (X,⩽L) is called a linear extension of P if ⩽P ⊆ ⩽L.

Given a family of posets P = {Pi = (X,⩽Pi) : i ∈ I}, we say that P is the intersection of P if for every
x, y ∈X we have x ⩽P y if and only if x ⩽Pi y for every i ∈ I. The dimension of a poset P is the minimal
number of linear extensions of P that intersect to P . In particular, we say that P is two-dimensional if
it is the intersection of two linear extensions of P .
For a graph G = (V,E), a pair (V,<) is a transitive orientation of G if and only if < is a transitive

and irreflexive relation on V that satisfies either u < v or v < u iff uv ∈ E for every u, v ∈ V .
A comparability graph (incomparability graph) of a poset P = (X,⩽P ) has X as the set of its ver-

tices and the set including every two vertices comparable (incomparable, respectively) in P as the set
of its edges. Note the following: if (X,⩽P ) is a poset, then (X,<P ) is a transitive orientation of the
comparability graph of P . A graph G = (V,E) is a comparability graph (co-comparability graph) if G is a
comparability (incomparability, respectively) graph of some poset defined on V . So, G is a comparability
graph if and only if G admits a transitive orientation. A graph G is a permutation graph if and only if G
and the complement of G are comparability graphs [PLE71] (or equivalently, G and the complement of
G admit transitive orientations). Baker, Fishburn, and Roberts [BFR72] proved that G is a permutation
graph if and only if G is the incomparability graph of a two-dimensional poset.

7.2 The structure of (almost) bipartite permutation graphs

The characterization of bipartite permutation graphs presented below was proposed by Spinrad, Brandstädt,
and Stewart [SBS87].
Suppose G = (U,W,E) is a connected bipartite graph. A linear order (W,<W ) satisfies adjacency

property if for each vertex u ∈ U , the set N(u) consists of vertices that are consecutive in (W,<W ). A

77
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linear order (W,<W ) satisfies enclosure property if for every pair of vertices u, u′ ∈ U such that N(u) is
a subset of N(u′), vertices in N(u′) − N(u) occur consecutively in (W,<W ). A strong ordering of the
vertices of U ∪W consists of linear orders (U,<U ) and (W,<W ) such that for every (u,w′), (u′, w) ∈ E,
where u, u′ ∈ U and w,w′ ∈ W , it holds that u <U u′ and w <W w′ imply (u,w) ∈ E and (u′, w′) ∈ E.
Note that (as G is connected) whenever (U,<U ) and (W,<W ) form a strong ordering of U ∪W , (U,<U )
and (W,<W ) satisfy the adjacency and enclosure properties.

Theorem 7.1 (Spinrad, Brandstädt, Stewart [SBS87]). The following three statements are equiv-
alent for a connected bipartite graph G = (U,W,E):

(a) (U,W,E) is a bipartite permutation graph.

(b) There exists a strong ordering of U ∪W .

(c) There exists a linear order (W,<W ) of W satisfying adjacency and enclosure properties.

An example of a bipartite permutation graph G = (U,W,E) with linear order w1 <W w2 <W . . . <W
w8 <W w9 of the vertices of W which satisfies the adjacency and the enclosure properties is shown in
Figure 1.4 (reproduced below for convenience).

w1 w2 w3 w4 w5 w6 w7 w8 w9

u1 u2 u3 u4 u5 u6 u7 u8 u9

Figure 1.4 (reproduced): Embedding of a bipartite permutation graph (U,W,E) into a strip satysfying
the adjacency and the enclosure properties.

Another characterization of bipartite permutation graphs can be obtained by listing all minimal
forbidden induced subgraphs for this class of graphs. Such a list can be compiled by taking all odd cycles
of length ⩾ 3 (forbidden structures for bipartite graphs) and all bipartite graphs from the list of forbidden
structures for permutation graphs obtained by Gallai [Gal67]. The whole list is shown in Figure 7.1.

T2 X2 X3

C2k for k ⩾ 3 K3 C2k+1 for k ⩾ 2

Figure 7.1: Forbidden structures for bipartite permutation graphs.

7.2.1 Almost bipartite permutation graphs

The goal of this section is to characterize graphs which do not contain small forbidden subgraphs for the
class of bipartite permutation graphs. Following the terminology of van ’t Hof and Villanger [vtHV13] we
call such graphs almost bipartite permutation graphs.

Definition 7.1. A graph G = (V,E) is an almost bipartite permutation graph if G does not contain T2,
X2, X3, K3, or Ck for k ∈ [5, 9] as induced subgraphs.

Suppose G = (V,E) is a connected almost bipartite permutation graph. By hole we mean an induced
cycle on at least five5 vertices. We say that a hole is even (or odd) if it contains even (resp. odd) number
of vertices. We say that X ⊆ V is a dominating set if X ∪N(X) = V (G).
5We deviate here from the generally accepted convention defining holes as chordless cycles of length at least 4. I.e., for

the purpose of this chapter, C4 is not a hole.
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Proposition 7.2. The vertex set of every hole in G is a dominating set.

Proof. Let C = {c0, c1, . . . , cm−1} be a hole in G. Hence, m ⩾ 10. Suppose, for a contradiction, that
there exists a vertex in the set V \ (C ∪ N(C)). As G is connected, there must exist v ∈ V at distance
two from C. Let w ∈ N(v)∩N(C) and let cj be a neighbor of w in C. We now look at the neighborhood
of w. As G contains no triangle, wcj−1 and wcj+1 are non-edges. Moreover, as G contains no copy of T2,
vertex w is adjacent to at least one of cj−2 and cj+2, say cj−2. Thus, w is nonadjacent to cj−3. Therefore,
the set {cj−3, cj−2, cj−1, cj , cj+1, w, v} induces a copy of X2 in G, which leads to a contradiction. □

Let C be a shortest hole in G, m be the length of C, and c0, c1, . . . , cm−1 be the consecutive vertices
of C, m ⩾ 10. In the remaining part of the paper we use the following notation with respect to C. For
any integral number i by ci we denote the unique vertex ci mod m from the cycle C. For any two different
vertices ci, cj in C, by the set of all vertices between ci and cj from C we mean the set {ci, ci+1, . . . , ci+k},
where k is the smallest natural number such that ci+k = cj . Note that this notion is not symmetric, i.e.,
the set of all vertices between cj and ci from C contains ci, cj and all the vertices from C that are not
between ci and cj .

Proposition 7.3. For every vertex v ∈ V either:

(1) N(v) ∩ C = {ci} for some i ∈ [[m− 1]], or

(2) N(v) ∩ C = {ci, ci+2} for some i ∈ [[m− 1]].

Proof. Since C is an induced cycle, (2) clearly holds for the vertices from C, so let v be a vertex in
V \ C. As C is a dominating set, by Proposition 7.2, vertex v has at least one neighbor in C. If v has
exactly one neighbor in C, then (1) holds and we are done. So assume that it has more than one neighbor.
We now distinguish two cases. First, suppose that there exist two vertices cj , cℓ ∈ N(v) ∩ C at distance
at least three in C such that v has no neighbor in the set of vertices between cj and cl, except cj and cl.
Then, {cj , cj+1, . . . , cℓ, v} induces a cycle C ′ on at least five vertices in G. As cj and cℓ are at distance at
least three in C, C ′ is shorter than C. In particular, C ′ contradicts either G containing no copy of Cℓ,
for ℓ ∈ {5, . . . , 9}, or C being a shortest hole in G. Therefore, this case never occurs.
Hence, v has either (i) exactly two neighbors in C and those are at distance two as there is no triangle

in G, so (2) holds, or (ii) C has an even number of vertices and v is adjacent to every second vertex
of C. It remains to show that the latter never occurs. Indeed, if it does, then without loss of generality
c0 ∈ N(v). But observe that since C has at least ten vertices, the set {c0, c1, c2, c3, c4, c6, v} induces a
copy of X3. This concludes the proof. □

Given Proposition 7.3, for every i ∈ [[m − 1]] we can set Ai =
{
v ∈ V : N(v) ∩ C = {ci−1, ci+1}

}
and

Bi =
{
v ∈ V :N(v)∩C = {ci}

}
. Note that sets A0, B0, . . . , Am−1, Bm−1 form a partition of V . Moreover,

for every i ∈ [[m− 1]] we have ci ∈ Ai. Following our notation, for any integer i by Ai and Bi we denote
the sets Ai mod m and Bi mod m, respectively. Furthermore, for every i ⩽ j we set:

AG[i, j] =
{
Ai ∪Bi+1 ∪Ai+2 ∪Bi+3 ∪ . . . ∪Aj−1 ∪Bj if j − i is odd,
Ai ∪Bi+1 ∪Ai+2 ∪Bi+3 ∪ . . . ∪Bj−1 ∪Aj if j − i is even,

BG[i, j] =
{
Bi ∪Ai+1 ∪Bi+2 ∪Ai+3 ∪ . . . ∪Bj−1 ∪Aj if j − i is odd,
Bi ∪Ai+1 ∪Bi+2 ∪Ai+3 ∪ . . . ∪Aj−1 ∪Bj if j − i is even,

and VG[i, j] = AG[i, j] ∪BG[i, j].

We write just A[i, j], B[i, j], and V [i, j], respectively, instead of AG[i, j], BG[i, j], and VG[i, j], when
there is no confusion.
We now characterize the neighborhoods of the vertices in sets Ai and Bi, see also Figure 7.2.

Proposition 7.4. Let i ∈ [[m− 1]]. Then:

(1) Ai and Bi are independent sets.

(2) For every u ∈ Ai and every w ∈ Bi we have uw ∈ E.

(3) For every u ∈ Ai we have Bi ⊆ N(u) ⊆ B[i− 2, i+ 2].

(4) For every w ∈ Bi we have Ai ⊆ N(w) ⊆ A[i− 2, i+ 2].
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u

w

ci−2

ci−1

ci

ci+1

ci+2

Bi−2

Ai−2

Ai−1

Bi−1

Bi

Ai

Ai+1

Bi+1

Bi+2

Ai+2

Figure 7.2: A possible neighborhood of u in Ai and w in Bi.

Proof. Statement (1) follows trivially from the fact that G contains no triangle. To show statement (2),
assume for contradiction that uw /∈E for some u ∈Ai and some w ∈Bi. Since u ∈Ai, we have N(u)∩C =
{ci−1, ci+1}, and since w ∈ Bi we have N(w) ∩ C = {ci}. Hence, the set {ci−2, u, ci, ci+2, ci−1, w, ci+1}
induces an X2 in G, which cannot be the case.
To prove statements (3) and (4), consider a graph G induced by the set U ∪W , where

U = A[i− 2, i+ 2] and W = B[i− 2, i+ 2].

Since any edge with two endpoints in U (or two endpoints in W ) could be extended by some vertices
from {ci−2, ci−1, ci, ci+1, ci+2} to an odd cycle of length ⩽ 7 in G, the graph G[U ∪W ] is bipartite with
bipartition classes U and W .
To see that (3) holds, first note that Bi ⊆ N(u) by statement (2). Therefore, suppose that u has a

neighbor v in the set V \ (U ∪W ).
Consider the case when v ∈Aj for some j /∈ [i−2, i+2]. Since N(u)∩C = {ci−1, ci+1} and N(v)∩C =

{cj−1, cj+1}, u, v and the vertices between cj+1 and ci−1 in C as well as u, v and the vertices between
ci+1 and cj−1 in C induce cycles in G of length ⩽ m − 2. Since |C| ⩾ 10, at least one from these cycles
has length ⩾ 6, and as such it cannot occur in G.
So suppose v ∈ Bj for some j /∈ [i−2, i+2]. Since N(v)∩C = {cj}, u, v and the vertices between ci+1

and cj in C as well as u, v and the vertices between cj and ci−1 in C induce holes in G of length ⩽m−2,
and as such they cannot occur in G. So, N(u) ⊆W , which completes the proof of statement (3).
Statement (4) is proved by similar arguments. □

Proposition 7.4 asserts that all the neighbors of the vertices from Ai and from Bi are contained in
the set B[i − 2, i + 2] and A[i − 2, i + 2], respectively. The next proposition describes the relations that
hold between the neighborhoods of the vertices from B[i− 2, i+ 2] restricted to the set Ai and between
the neighborhoods of the vertices from A[i− 2, i+ 2] restricted to the set Bi.
We say that two sets X and Y are comparable if X an Y are comparable with respect to ⊆-relation

(i.e. X ⊆ Y or Y ⊆ X holds).

Proposition 7.5. Let i ∈ [[m− 1]]. For (i± 2, i± 1) ∈ {(i− 2, i− 1), (i+ 2, i+ 1)}, the following hold:

(1) For every w,w′ ∈ Bi±2 ∪Ai±1 the sets N(w) ∩Ai and N(w′) ∩Ai are comparable.
Moreover, if w ∈ Bi±2 and w′ ∈ Ai±1, then N(w) ∩Ai ⊆ N(w′) ∩Ai.

(2) For every u, u′ ∈ Ai±2 ∪Bi±1 the sets N(u) ∩Bi and N(u′) ∩Bi are comparable.
Moreover, if u ∈ Ai±2 and u′ ∈ Bi±1, then N(u) ∩Bi ⊆ N(u′) ∩Bi.

Proof. To prove (1), we consider the case (i±2, i±1) = (i−2, i−1), as the other one follows by symmetry.
Suppose that w,w′ ∈Bi−2∪Ai−1 are such that neither N(w)∩Ai ⊆N(w′)∩Ai nor N(w′)∩Ai ⊆N(w)∩Ai
holds. It means that there are u, u′ ∈Ai such that wu ∈ E, w′u′ ∈ E, wu′ /∈ E, and w′u /∈ E. Since w,w′ ∈
Bi−2∪Ai−1, we have ci−2w, ci−2w′ ∈ E and ci−4w, ci−3w, ci−4w′, ci−3w′ /∈ E. Furthermore, ww′ /∈ E and
uu′ /∈E as G contains no triangle. Consequently, the set {ci−3, w, w′, ci−4, ci−2, u, u′} induces a copy of T2
in G, which cannot be the case. Moreover, if w ∈Bi−2, w′ ∈Ai−1, then since ci ∈ (N(w′)∩Ai)\(N(w)∩Ai),
the latter statement holds.
To show (2), we again only consider the case (i±2, i±1) = (i−2, i−1). Suppose that u, u′ ∈Ai−2∪Bi−1

are such that neither N(u′)∩Bi ⊆ N(u)∩Bi nor N(u)∩Bi ⊆ N(u′)∩Bi holds. It means that there are
w,w′ ∈ Bi such that uw, u′w′ ∈ E and u′w, uw′ /∈ E. Since u, u′ ∈ Ai−2 ∪Bi−1, we have uci−1, u′ci−1 ∈ E
and uci+1, u′ci+1 /∈ E. Furthermore, uu′ /∈ E and ww′ /∈ E as G contains no triangle. Hence, the set
{ci−1, w, w′, ci+1, u, ci, u′} induces a copy of X3 in G, which cannot be the case.
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To see the second part of the statement, assume that N(u) ∩ Bi ⊈ N(u′) ∩ Bi for some u ∈ Ai−2,
u′ ∈ Bi−1. That is, there is w ∈ Bi such that uw ∈ E and u′w /∈ E. In particular, it means that u ̸= ci−2.
Note that uci−1, u′ci−1 ∈ E. Consequently, the set {ci−3, ci−2, ci−1, ci, u, u′, w} induces a copy of X3 in
G, which is a contradiction. □

Proposition 7.5 allows us to order vertices of Ai based on two properties. We now define relation <Ai
which combines them and we show that <Ai is a partial order (see Figure 7.3 for an illustration). We
define for every u, u′ ∈ Ai:

u <Ai u
′ iff

there is w ∈ Bi−2 ∪Ai−1 such that u ∈ N(w) and u′ /∈ N(w), or
there is w ∈ Ai+1 ∪Bi+2 such that u′ ∈ N(w) and u /∈ N(w),

Similarly, we define a relation <Bi for every w,w
′ ∈ Bi:

w <Bi w
′ iff

there is u ∈ Ai−2 ∪Bi−1 such that w ∈ N(u) and w′ /∈ N(u), or
there is u ∈ Bi+1 ∪Ai+2 such that w′ ∈ N(u) and w /∈ N(u).

u1 u2 u3 u4 u5 u6 u7

Ai

Bi−2 Ai−1 Ai+1 Bi+2

Figure 7.3: The neighborhoods of the vertices from Bi−2 ∪Ai−1 ∪Ai+1 ∪Bi+2 restricted to Ai. We have
u1 <Ai {u2, u3} <Ai u4 <Ai u5 <Ai u6 <Ai u7.

Proposition 7.6. The following statements hold for every i ∈ [[m− 1]]:

(1) (Ai, <Ai) is a strict partial order. Moreover, u, u
′ ∈ Ai are incomparable in (Ai, <Ai) if and only if

N(u) = N(u′).

(2) (Bi, <Bi) is a strict partial order. Moreover, w,w
′ ∈ Bi are incomparable in (Bi, <Bi) if and only

if N(w) = N(w′).

Proof. Let i∈ [[m−1]] be fixed. To prove that (Ai, <Ai) is a strict partial order, we need to show that <Ai
is irreflexive and transitive. The irreflexivity follows from the definition, in aim to show transitivity, we first
prove that <Ai is antisymmetric. Suppose for a contradiction that there are u, u

′ ∈ Ai such that u <Ai u′,
and u′<Ai u. Suppose u<Ai u

′ is witnessed by a vertex w ∈Bi−2∪Ai−1 such that u∈N(w) and u′ /∈N(w);
the other case w ∈Ai+1∪Bi+2 is analogous. By Proposition 7.5.(1), there is no w′ ∈Bi−2∪Ai−1 such that
u′ ∈ N(w′) and u /∈ N(w′). Hence, since u′ <Ai u, there must be a vertex w′ ∈ Ai+1 ∪Bi+2 such that u ∈
N(w′) and u′ /∈N(w′). We have uci+1, u′ci+1 ∈ E and uci+2, u′ci+2, uci+3, u′ci+3 /∈ E as {u, u′} ⊆ Ai. We
have also wci+1, wci+2, wci+3, w′ci+1, w′ci+3 /∈E and w′ci+2 ∈E as w ∈Bi−2∪Ai−1 and w′ ∈Ai+1∪Bi+2.
Moreover, uu′, ww′ /∈ E, by Proposition 7.4. Consequently, the set {w,w′, ci+1, ci+3, u, u′, ci+2} induces a
copy of X2 in G, which cannot be the case.
To show transitivity, suppose for a contradiction that there are vertices u, u′, u′′ ∈Ai such that u<Ai u′

and u′ <Ai u
′′, but u <Ai u

′′ does not hold. Suppose u <Ai u
′ is witnessed by a vertex w ∈ Bi−2 ∪Ai−1

such that u ∈ N(w) and u′ /∈ N(w); the other case w ∈ Ai+1 ∪Bi+2 is symmetric. We have u′′ ∈ N(w) as
otherwise u<Ai u

′′, by definition. Suppose u′<Ai u
′′ is witnessed by a vertex w′ ∈Bi−2∪Ai−1∪Ai+1∪Bi+2.

Note that if w′ ∈Bi−2∪Ai−1, then u′′ /∈N(w′) and u′ ∈N(w′), which enforces also u ∈N(w′) as u <Ai u′
and we already proved that <Ai is antisymmetric. Thus, u∈N(w′) and u′′ /∈N(w′), which shows u<Ai u′′.
Hence, we must have w′ ∈ Ai+1 ∪ Bi+2, and so u′ /∈ N(w′) and u′′ ∈ N(w′). Moreover, u ∈ N(w′) as
otherwise u <Ai u

′′. As {u′, u′′} ⊆ Ai, w ∈ Bi−2 ∪ Ai−1, and w′ ∈ Ai+1 ∪ Bi+2, we have u′u′′, ww′ /∈ E,
by Proposition 7.4. Consequently, {w,w′, ci+1, ci+3, u′, u′′, ci+2} induces a copy of X2 in G, which is not
possible. We conclude that (Ai, <Ai) is a strict partial order.
By definition, if N(u) = N(u′), then u and u′ are incomparable in (Ai, <Ai). Hence, for the second

statement of (1), it is enough to show that N(u) ̸= N(u′) implies that u and u′ are comparable in
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(Ai, <Ai). Let w be a vertex such that wu ∈ E and wu′ /∈ E. By Proposition 7.4.(2) and (3), w ∈
Bi−2 ∪ Ai−1 ∪ Ai+1 ∪ Bi+2. However, if w ∈ Bi−2 ∪ Ai−1 then u <Ai u′ and if w ∈ Ai+1 ∪ Bi+2 then
u′ <Ai u, by definition. Hence, u and u

′ are comparable in <Ai .
The proof of (2) is similar. For antisymmetry, suppose that we have w,w′ ∈Bi such that w <Bi w′ and

w′<Bi w. Let w<Bi w
′ and w′<Bi w be witnessed by u and u

′ from Ai−2∪Bi−1∪Bi+1∪Ai+2, respectively.
Analogously to (1), by Proposition 7.5.(2), we can assume that u ∈ Ai−2 ∪ Bi−1 and u′ ∈ Bi+1 ∪ Ai+2
and uw, u′w ∈ E, uw′, u′w′ /∈ E. Observe that the set {ci−1, w, w′, ci+1, u, ci, u′} induces a copy of X3 in
G, a contradiction.
For transitivity of <Bi , suppose that for some w,w

′, and w′′ ∈ Bi we have w <Bi w′ and w′ <Bi w′′,
but w <Bi w

′′ does not hold. By symmetry of the proof of (1), we reach the case u ∈ Ai−2 ∪ Bi−1 and
u′ ∈ Bi+1 ∪ Ai+2, uw, uw′′, u′w, u′w′′ ∈ E and uw′, u′w′ /∈ E. Then, one can easily check that the set
{w′, w′′, ci+1, u, ci, u′, ci+2} induces a copy of X2 in G, a contradiction.
Now, assume that N(w) ̸= N(w′). Without loss of generality assume that there exists u ∈ Ai−2 ∪

Bi−1 ∪Bi+1 ∪Ai+2 such that u ∈ N(w) \N(w′). Analogously as before, observe that if u ∈ Ai−2 ∪Bi−1
then w <Bi w

′ and if u ∈ Bi+1∪Ai+2 then w′ <Bi w. Therefore, w and w′ are comparable, which finishes
the proof. □

Finally, for every i ∈ [[m − 1]] we order arbitrarily the elements inside every antichain of (Ai, <Ai)
and of (Bi, <Bi), obtaining strict linear orders (Ai, <Ai) and (Bi, <Bi). We introduce a binary relation
≺ defined on the set V , such that v ≺ v′ for v, v′ ∈ V if one of the following conditions holds for some
i ∈ [[m− 1]]:

• v, v′ ∈ Ai, v <Ai v′, and v, v′ are consecutive in (Ai, <Ai),

• v, v′ ∈ Bi, v <Bi v′, and v, v′ are consecutive in (Bi, <Bi),

• v is the maximum of (Ai, <Ai) and v′ is the minimum of (Bi+1, <Bi+1),

• v is the maximum of (Bi, <Bi) and v′ is the minimum of (Ai+1, <Ai+1).

Informally, to get an embedding of G into a cylinder (when the shortest hole is even) or into a Möbius
strip (when the shortest hole is odd) which locally satisfies the adjacency and the enclosure properties,
we place the vertices v, v′ satisfying v ≺ v′ next to each other, v before v′ assuming that the border of
the cylinder or the Möbius strip are oriented as shown in Figure 1.5 (reproduced below for convenience).
In what follows we extend ≺ relation as follows:

• For every V ′ ⊊ V by <V ′ we denote the transitive closure of ≺ restricted to V ′,

• For v, v′ ∈ V we set v <cl v′ if v, v′ ∈ A[i − 2, i + 2] and v <A[i−2,i+2] v′ for some i ∈ [[m − 1]] or
v, v′ ∈ B[i− 2, i+ 2] and v <B[i−2,i+2] v′ for some i ∈ [[m− 1]].

Finally, the following lemma characterizes the global structure of an almost bipartite permutation
graph.

Figure 1.5 (reproduced): An embedding of a connected almost bipartite permutation graph in a cylinder
or a Möbius strip that locally satisfies the adjacency and enclosure properties.
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Lemma 7.7. Let i, j be such that i ⩽ j, |j− i| =m− 3. Let U = A[i, j] and W = B[i, j]. Then G[U ∪W ]
is a bipartite permutation graph with bipartition classes U and W .
Moreover, (U,<U ) and (W,<W ) are strict linear orders that satisfy the adjacency and enclosure

properties in G[U ∪W ].

Proof. Proposition 7.4 asserts there is no edge between a vertex in V [j−1, j] and a vertex in V [i, i+1].
In particular, G[U ∪W ] is a bipartite graph and (U,<U ) and (W,<W ) are strict linear orders. Given
Theorem 7.1.(c), to prove the lemma we need to show that (W,<W ) satisfies the adjacency and enclosure
properties in G[U ∪W ].
To prove the adjacency property, consider u ∈ Ak ⊆ U for some suitable k. Recall that by Proposi-

tion 7.4.(3), Bk ⊆ N(u) ⊆ B[k − 2, k + 2]. To show that N(u) consists of consecutive vertices in W it
suffices to note that:

• if w ∈ Ak+1, w′ ∈ Bk+2 and uw′ ∈ E then uw ∈ E, by Proposition 7.5,

• if w,w′ ∈ Ak+1 (resp. w,w′ ∈ Bk+2) are such that w <Ak+1 w′ (resp. w <Bk+2 w′) and uw′ ∈ E,
then uw ∈ E, by Proposition 7.6,

and that analogous statements hold by symmetry for the part of N(u) contained in Ak−1 ∪ Bk−2. If
u ∈ Bk ⊆ U , the case analysis is similar (one needs to swap letters A and B in the reasoning above).
Therefore, the adjacency property is proved.
To show that (W,<W ) satisfies the enclosure property assume for a contradiction that there are

w,w′, w′′ ∈W and u, u′ ∈ U such that N(u′) ⊆ N(u), w <W w′ <W w′′ and uw, uw′, uw′′ ∈ E, u′w′ ∈ E,
and u′w, u′w′′ /∈ E.

Claim 7.1. There is k ∈ [i, j] such that either u, u′ ∈ Ak, or u, u′ ∈ Bk.

Proof. If u∈Bk, then since N(u′)∩C ⊆N(u)∩C = {ck}, we have u′ ∈Bk, so the claim holds. Therefore,
assume that u ∈ Ak, and suppose that u′ /∈ Ak. Then N(u′) ∩ C ⊆ N(u) ∩ C = {ck−1, ck+1}. Assuming
u <U u

′ (the other case is symmetric), we have that u′ ∈ Bk+1. Due to Proposition 7.4 and w′ <W w′′
we have w′, w′′ ∈ A[k − 1, k + 2]. Moreover, as we already proved that N(u′) is consecutive in (W,<W )
(adjacency property), and ck+1 ∈ N(u′), we have ck+1 <W w′′. Therefore w′′ ∈ Ak+1 ∪Bk+2. Note that:

• if w′′ ∈Bk+2, then, since uw′′ ∈E, we have that w′′ ∈N(u)∩Bk+2. However, by Proposition 7.5.(2),
we have N(u) ∩Bk+2 ⊆ N(u′) ∩Bk+2, so it implies that u′w′′ ∈ E, a contradiction,

• if w′′ ∈ Ak+1, then by Proposition 7.4.(2) we would have u′w′′ ∈ E, a contradiction.

This concludes the proof of claim. ⌟

Suppose u, u′ ∈ Ak. Since u′w, u′w′′ /∈ E and u′ck−1, u′ck+1 ∈ E, we have by adjacency property
of (W,<W ) that w <W ck−1 <W ck+1 <W w′′. Therefore, we must have w ∈ Bk−2 ∪ Ak−1 and w′′ ∈
Ak+1 ∪Bk+2. Observe that w′′ witnesses that u′ <Ak u by definition, however, w witnesses the opposite,
that is u <Ak u

′. We have a contradiction by Proposition 7.6.
Suppose u, u′ ∈ Bk. An analysis, which is analogous to the one in the previous case (again, it is

enough to swap letters A and B in that reasoning above), gives us that we must have w ∈ Ak−2 ∪Bk−1
and w′′ ∈ Bk+1 ∪Ak+2. Again, we obtain a contradiction by the definition of <Bk and Proposition 7.6.□

Lemma 7.7 provides an interesting view on classification of almost bipartite permutation graphs.
Specifically, if m is even, then the graph may be drawn on a cylinder, whose boundary consists of two
closed curves, one of which traverses the vertices of A0, B1, . . . Am−2, Bm−1, and the second one — the
vertices of B0, A1, . . . , Bm−2, Am−1. If in turn m is odd, then the graph can be represented on a Möbius
strip, whose boundary traverses the vertices of A0, B1, . . . , Bm−2, Am−1 and then B0, A1, . . . Am−2, Bm−1.
In both cases we draw the vertices of Ai and of Bi on the opposite side of the strip according to the
orders given by <Ai and <Bi , for i ∈ [[m− 1]] (recall Figure 1.5).
The following definitions are taken from [vtHV13]. A hole cut of G is a vertex set X ⊆ V such that

G−X is a bipartite permutation graph. Lemma 7.7 asserts that for every i ∈ [[m− 1]] the set V [i, i+ 1]
is a hole cut in G. A hole cut X of G is minimum if G does not have a hole cut whose size is strictly
smaller than the size of X. A hole cut X of G is minimal if any proper subset of X is not a hole cut in G.
The next proposition describes the structure of every hole in G.
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Proposition 7.8. Suppose C ′ is a hole of length t in G for some t ⩾ m. Then, the consecutive vertices
of C ′ can be labeled by c′0, c

′
1, . . . , c

′
t−1 so as the following conditions hold (the indices are taken modulo

k):

• c′ic′i+1 ∈ E for every i ∈ [[t− 1]],

• c′i <cl c′i+2 for every i ∈ [[t− 1]],

• {c′′ ∈ C ′ : c′i <cl c′′ <cl c′i+2} = ∅ for every i ∈ [[t− 1]].

Proof. Let c′0, c
′
1, c
′
2, . . . , c

′
t−1 be consecutive vertices of C

′ denoted in such a way that c′0 <cl c
′
2. We can

assume it, since c′0, c
′
2 ∈ N(c′1), thus, by Proposition 7.4.(3) and (4), both c′0, c′2 belong to A[ℓ− 2, ℓ+ 2]

or both belong to B[ℓ− 2, ℓ+ 2] for some ℓ ∈ [[m− 1]].
Now, we show that if there exists j ∈ [[t − 1]] such that c′j <cl c′j+2, then c′j+1 <cl c′j+3. Suppose, for

contradiction that c′j <cl c
′
j+2 and c

′
j+1 ≮cl c′j+3. Let i ∈ [[m−1]] be such that c′j+2 ∈ Ai∪Bi. Similarly, as

c′j+1, c
′
j+3 ∈N(c′j+2), either c′j+1, c′j+3 ∈B[i−2, i+2] if c′j+2 ∈Ai or c′j+1, c′j+3 ∈A[i−2, i+2] if c′j+2 ∈Bi.

In both cases, Lemma 7.7 implies that <cl restricted to V [i−4, i+2] is a strong ordering of G[V [i−4, i+2]].
Moreover, c′j+1, c

′
j+3 are comparable in <cl, by Proposition 7.4.(3) or (4), and the definition of <cl. Since

we assumed that c′j+1 ≮cl c′j+3, we must have c′j+3 <cl c′j+1, and from Theorem 7.1.(b) we get that
c′jc
′
j+3 ∈ E, so C ′ has a chord — contradiction. Therefore c′j <cl c′j+2 implies c′j+1 <cl c′j+3 for every

integer j. Applying the above observation repeatedly for j = 0, 1, 2, . . ., we get that c′0 <cl c
′
2 <cl c

′
4 <cl . . .

and c′1 <cl c
′
3 <cl c

′
5 <cl . . .

For the last property, suppose for the sake of contradiction that there exists j /∈ {i, i + 2} such that
c′i <cl c

′
j <cl c

′
i+2 (clearly, j ̸= i+1, since c′i+1 belongs to the opposite side of the local bipartition). Then,

by Lemma 7.7, c′jc
′
i+1 ∈ E due to the adjacency property. But then the edge c′jc′i+1 is a chord in C ′. This

completes the proof. □

The structure of holes described above implies that for every i ∈ [[m− 1]] the sets A[i− 2, i+ 2] and
B[i− 2, i+2] are hole cuts. We use this observation to prove the following statement about minimal hole
cuts in G.

Proposition 7.9. Every minimal hole cut X in G is fully contained in the set V [i − 2, i + 2] for some
i ∈ [[m− 1]].

Proof. Let X be a minimal hole cut. Since X is minimal, we can choose elements z1, x1, x2, z2 in V
such that the following conditions hold:

• we have z1 ≺ x1 ⩽cl x2 ≺ z2, the set X ′ = {x : x1 ⩽cl x ⩽cl x2} is non-empty and is contained in
X, and the elements z1, z2 are not in X.

Note that either {z1, z2} ∪ X ′ ⊆ B[i − 2, i + 2] or {z1, z2} ∪ X ′ ⊆ A[i − 2, i + 2] for some i ∈ [[m − 1]].
Otherwise, we have B[j, j + 3] ⊆ X ′ or A[j, j + 3] ⊆ X ′ for some j ∈ [[m − 2]]. However, Proposition 7.8
and Proposition 7.4.(3) and (4) imply that the sets A[j, j + 3] and B[j, j + 3] are hole cuts for every
j ∈ [[m− 1]]. Otherwise, the set A[j, j + 3] (B[j, j + 3]) is contained in the neighbourhood of some vertex
of a hole avoiding A[j, j+3] (B[j, j+3], respectively) in G and the neighborhood of this vertex intersects
also Bj−1 and Aj+4 (Aj−1 and Bj+4, respectively), which cannot be the case due to Proposition 7.4.(3)
and (4). So, we have either B[j, j +3] = X ′ = X or A[j, j +3] = X ′ = X as X is a minimal hole cut. But
then, we have X ⊆ V [j, j + 3], which completes the proof of our claim.
Therefore, for the rest of the proof we assume {z1, z2} ∪X ′ ⊆ B[i− 2, i+ 2]; the other case is proved

similarly. Moreover, we may assume that i is picked such that:

• z1 ∈ B[i− 2, i], z2 ∈ B[i, i+ 2], and X ′ ⊆ B[i− 2, i+ 2].

See Figure 7.4 for an illustration.
Suppose Y ′ is the set consisting of all the neighbors of both z1 and z2; that is, Y ′ = N(z1) ∩N(z2).

Clearly, we have Y ′ ⊆ A[i− 2, i+ 2]. To complete the proof of the proposition, we show that:

• every element of Y ′ is a member of X,

• X ′ ∪ Y ′ is a hole cut in G.
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Figure 7.4: Illustration of the proof: the cycle C ′ is marked with a dashed line. The set X ′ is shaded.

Then, since X ′ ⊆ X, we have X ′ ∪ Y ′ = X by minimality of X and consequently X ⊆ V [i− 2, i+ 2]. So,
it remains to prove the claims about the set Y ′.
Suppose we have y ∈ Y ′ such that y /∈ X. We fix some x ∈ X ′. Clearly, since X is a minimal hole cut,

there is a hole C ′ in G− (X \ {x}). Note that C ′ must contain x. Suppose c′0, . . . , c′ℓ−1 for some ℓ ⩾ 9 are
consecutive vertices in C ′ chosen such that c′j <cl c

′
j+2 for every j ∈ [[ℓ− 1]] (indices are taken modulo ℓ).

Now we pick p, q ∈ [[ℓ − 1]] such that c′p <cl z1 ⩽cl c′p+2 and c′q ⩽cl z2 <cl c′q+2. Since x ∈ C ′, we have
c′p+2 ⩽cl x and x ⩽cl c

′
q. Note that c

′
p+1 is adjacent to z1 and c

′
q+1 is adjacent to z2 due to the adjacency

property. Next we replace in C ′ all the vertices between c′p+2 and c
′
q (inclusive; this set includes x) with

the vertices z1, y, z2 and we obtain a cycle C ′′ containing no elements from X. Clearly, we can easily find
a hole among the elements from C ′′ that avoids all the elements from X. E.g. we can consider a shortest
“noncontractible” subcycle of C ′′ (i.e. not contained in any set of the form V [t+1, t]). It will be chordless
and of length ⩾ 5 (since m ⩾ 10). This yields a contradiction as X is a hole cut.
To prove the second claim, suppose there is a hole C ′ in G− (X ′ ∪ Y ′). By Proposition 7.8 there are

c′1, c
′
2, c
′
3 ∈ C ′ such that c′1 <cl X ′ <cl c′3 and c′1, c′3 ∈ N(c′2). However, since c′1 ⩽cl z1 <cl z2 ⩽cl c′3 and

c′1, c
′
3 ∈ N(c′2), we have z1 ∈ N(c′2) and z2 ∈ N(c′2). So, we have c′2 ∈ Y ′, which is a contradiction. □

7.3 Proof of Theorem I

The aim of this section is to provide a complete proof of Theorem I using structural results from the
previous section. Let us start by showing that the Bipartite Permutation Vertex Deletion problem
can be decided in polynomial time on almost bipartite permutation graphs.

Lemma 7.10. Let (G, k) be an instance of Bipartite Permutation Vertex Deletion where G is
an n-vertex almost bipartite permutation graph. Then whether (G, k) is a yes-instance can be decided in
time O(n6).

Proof. If G is a bipartite permutation graph, (G, k) is a yes-instance, thus, we are done in this case,
e.g. by using the linear time recognition algorithm of [SBS87]. If G is not connected, we can consider each
connected component independently and, at the end, we compare k with the total number of deleted
vertices over all components. Let G′ be a connected r-vertex component of G such that G′ is not a
bipartite permutation graph (otherwise, clearly, no vertex needs to be deleted). Let C = {c0, . . . , cm−1}
be a shortest hole in G′ (it exists as G′ is not a bipartite permutation graph). It can be found in time
O(r6) as follows. We iterate over all possible four-element subsets S = {v1, v2, v3, v4} of V (G′). For these
S for which G′[S] is an induced P4, with consecutive vertices v1, v2, v3, v4, we construct a graph G̃′ by
removing the vertices from (N(v2) ∪N(v3)) \ {v1, v4} (note that v2 and v3 also get removed). Then we
find a shortest v1-v4-path in G̃′ in time O(r2).
Having found C, we may introduce the notation concerning structure around C (i.e. as in Section 7.2.

By Proposition 7.9, every minimal hole cut X in G′ is contained in the set V ′ = VG′ [i− 2, i+2] for some
i ∈ [[m− 1]]. Therefore, we may check all the possibilities where a minimal cut is contained. For every i,
we run an algorithm for finding a maximum flow in the following digraph Hi.
Digraph Hi has the vertex set V ′ × {in, out} ∪ {s, t} and arc set consisting of:

• all arcs of the form (u, out)(v, in), where uv is an edge of G′[V ′],

• s(v, in) if there exists u ∈ VG′ [i− 4, i− 3] such that uv is an edge of G′,

• (u, out)t if there exists v ∈ VG′ [i+ 3, i+ 4] such that uv is an edge of G′,

• (u, in)(u, out) for all u ∈ V ′.
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Set capacities of arcs of the form (u, in)(u, out) to 1 and capacities of all the remaining arcs to ∞
(practically |VG′ |). It is readily seen that minimum (s, t)-cut in the defined network Hi corresponds to a
minimum hole cut in G′[V ′] (arc of unit capacity (u, in)(u, out) naturally corresponds to the vertex u of
G′).
Therefore it remains to apply any classical max-flow algorithm to eachHi for i∈ [[m−1]] and remember

the smallest size kG′ of minimal (s, t)-cuts. This can be performed in time O(m · (|V ′|+ 2) · (|EG′[V ′]|+
2|V ′|)2) = O(r6) [EK72]. Finally, (G, k) is a yes-instance if and only if the sum of remembered sizes kG′
over the all considered connected components G′ is at most k. Clearly, the total running time is O(n6).□

We now propose the algorithm. Given an n-vertex graph G= (V,E) and number k, we want to answer
the Bipartite Permutation Vertex Deletion problem. We say that (G, k) is the initial instance.
We split our algorithm into two parts. The first part consists of a branching algorithm for deletion to
almost bipartite permutation graphs. The output of the first part is a set of instances (G′, k′) where G′ is
an almost bipartite permutation graph and 0⩽ k′ ⩽ k (or no-answer is no such instance exists) such that
the initial instance (G, k) is a yes-instance if and only if at least one of these instances is a yes-instance.
In the second part, the algorithm runs an O(n6)-time algorithm for Bipartite Permutation Vertex
Deletion for each instance (G′, k′) output by the first phase.
Let us start with the first part. We say that X ⊆ V is a forbidden set if G[X] is isomorphic to one of

the graphs: K3, T2, X2, X3, C5, C6, C7, C8, C9. We define the following rule.

Rule : Given an instance (G, k), k ⩾ 1, and a minimal forbidden set X, branch into |X| instances,
(G− v, k − 1) for each v ∈ X.

Starting with the initial instance, the algorithm applies the rule exhaustively. In other words, the algorithm
forms a branching tree with leaves corresponding to instances (G′, k′) where k′ = 0 or G′ is an almost
bipartite permutation graph. Clearly, as at least one vertex from each forbidden set must be removed
from G, the initial instance is a yes-instance if and only if at least one of the leaves is a yes-instance.
The algorithm continues to the second part only with leaves (G′, k′) such that G′ is an almost bipartite

permutation graph (as otherwise, the leaf is a no-instance). It runs the algorithm described in Lemma 7.10
to find if G′ can be transformed into a bipartite permutation graph by using at most k′ vertex deletions.
It either finds a yes-instance or concludes after checking all the instances that there is no solution; that
is, the initial instance is a no-instance.
We note that such a branching into a bounded number of smaller instances is a standard technique,

see e.g., [vtHV13] for more details.
We now analyze the running time of the whole algorithm. In the first part, observe that the branching

tree has depth at most k and has at most 9k leaves, as k decreases by one whenever the algorithm branches
and each of the listed forbidden subgraphs has at most nine vertices. Therefore the total number of nodes
in the branching tree is O(9k). Moreover, in each node (G′′, k′′) the algorithm works in time O(n9) as
it checks if G′′ contains a forbidden set of size at most 9. So, the first part works in time O(9k · n9). In
the second part, the algorithm does a work O(n6) in each of at most 9k leaves, by Lemma 7.10. Thus,
the second part works in time O(9k · n6). We conclude that the total running time of our algorithm for
Bipartite Permutation Vertex Deletion is O(9k · n9).

7.4 Proof of Theorem J

In this section, we provide a proof of Theorem J. The idea of the algorithm is very similar to the FPT
algorithm described in Lemma 7.10.
Let G = (V,E) be a graph and let Y ⊆ V be a subset of vertices of G such that G− Y is a bipartite

permutation graph. We want to construct a set Z ⊆ V in polynomial time such that G−Z is a bipartite
permutation graph and |Z| ⩽ 9|Y |. We construct Z as follows. We start with Z = ∅. Then, as long as
G − Z contains a set X isomorphic to one of K3, T2, X2, X3, C5, C6, C7, C8, C9 we add all vertices of X
to Z. Observe that Y ∩X ̸= ∅ and |X| ⩽ 9.
After this step G− Z is an almost bipartite permutation graph. Note that |Z| ⩽ 9|Z ∩ Y |. We find a

shortest hole C = {c0, . . . , cm−1} in G − Z and find a minimum hole cut X as described in Section 7.3.
Since Y − Z is a hole cut in G − Z we have |X| ⩽ |Y − Z|. We add X to Z. Observe that G − Z is a
bipartite permutation graph.
Since K3, T2, X2, X3, C5, C6, C7, C8, C9 have at most 9 vertices, we have that |Z| ⩽ 9|Y |. This implies

that the above algorithm is a 9-approximation algorithm. It runs in polynomial time because finding
small forbidden subgraphs can be done in polynomial time and finding a minimum hole cut in an almost
bipartite permutation graph can be done in polynomial time.
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