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Abstract

The dissertation presents both theoretical and practical research on action planning under inconsistent
and incomplete information. The work is firmly rooted in a related research area of beliefs, belief
change and action planning. The proposed solution is based on 4QL, a four-valued query language.
Its initial syntax and semantics are extended by new operations on belief bases and actual planning
machinery. A unique feature of the 4QL language is the presence of truth values t (true), f (false),
i (inconsistent), u (unknown) as well as the unrestricted use of negation in both conclusions and
premises of rules while retaining intuitive results and tractable query evaluation.

Before introducing the actual research results, the theoretical basics of 4QL, belief bases and belief
structures are reminded. Then a 4QLBel language is presented. It is designed to perform doxastic
reasoning on belief bases and belief structures. It extends the 4QL language by introducing a Bel

()
operator which allows to ask queries individually to each element of the belief base and constructing
results as least upper bounds of output sets with respect to 4QL’s information ordering. Using this
operator one can query a belief base for global beliefs shared among all world representations.

Then belief bases are further expanded with rigid and flexible constraints which allow for maintaining
the desired states of knowledge during planning. Violating constraints of a belief base results in the
base always responding with the truth value u for all queries. Moreover, a novel operation on belief
bases, belief shadowing, is introduced. The operation allows for transient change of an agent’s beliefs
using the ones from another belief bases. What makes it unique is, among others, that flexible con-
straints get altered as well which allows for expressing not only a belief change but also a constraints
change.

Finally, an ACTLOG language is introduced, with 4QL’s syntax expanded with the ADL-inspired
action schema where ADL is a well known Action Definition Language. Due to the presence of non-
classical truth values, the language is capable of specifying planning problems under incomplete and
possibly inconsistent information. In particular, inconsistent beliefs can be used in both actions pre-
conditions and planning goals to be achieved. This feature is not commonly found in other planning
engines. The language also allows for conditional effects of actions as well as for using belief op-
erators inside action specifications. Apart from that, composite actions are also introduced utilizing
parallel, sequential and conditional operators. Composite actions not only increase expressiveness
of the language but also can be seen as action templates which can significantly reduce planning
complexity.

All theoretical results presented in the thesis have been implemented as a part of the inter4QL soft-
ware being an open-source interpreter for the 4QL language. As part of the implementation the
language has been extended with 4QLBel constructs introduced in the thesis. Moreover, an experi-
mental ACTLOG planner supporting both normal and composite actions has been introduced. The
implementation details and discussion of proposed solutions are provided. The dissertation uses the
implementation to verify a set of examples with accents put on strengths of the proposed solutions.



Streszczenie

Rozprawa prezentuje zarówno teoretyczne jak i praktyczne wyniki badań w dziedzinie planowania
akcji z wykorzystaniem niepełnej i sprzecznej informacji. Cała praca jest silnie osadzona w pokrew-
nej dziedzinie przekonań, ich zmian oraz planowania akcji. Zaproponowane rozwiązania opierają się
na czterowartościowym języku zapytań 4QL. Jego unikalną cechą jest obecność czterech wartości
logicznych t (true - prawda), f (false - fałsz), i (inconsistent - sprzeczność), u (unknown - niewiedza)
oraz brak ograniczeń w użyciu negacji zarówno w ciałach reguł jak i ich konkluzjach. Wspomniane
cechy nie wpływają jednocześnie na intuicyjność otrzymywanych wyników oraz efektywnie obli-
czalną ewaluację zapytań.

Przed przedstawieniem pierwszych wyników badań, rozprawa przypomina teoretyczne podstawy sa-
mego języka 4QL oraz baz i struktur przekonań. Następnie wprowadzony zostaje język 4QLBel za-
projektowany do wsparcia wnioskowania na bazach i strukturach przekonań. Rozszerza on język
4QL poprzez wprowadzenie operatora Bel

()
opierającego swoją zasadę działania na zadawaniu in-

dywidualnych zapytań do poszczególnych elementów bazy przekonań a następnie na konstruowaniu
ostatecznego wyniku jako kresu górnego zbiorów odpowiedzi (względem porządku informacyjnego
wartości logicznych języka 4QL). Używając tego operatora możliwe jest odpytywanie wspomnia-
nych struktur o globalne przekonania współdzielone pomiędzy wszystkimi reprezentacjami świata.

Bazy przekonań zostają następnie rozszerzone o twarde i elastyczne więzy pozwalające na zacho-
wywanie określonych stanów wiedzy podczas planowania akcji. Złamanie więzów bazy przekonań
skutkuje przełączeniem bazy w tryb odpowiadania wartością logiczną u na wszelkie zapytania do niej
kierowane. Co więcej, wprowadzona zostaje tu również operacja przysłaniania przekonań działająca
na bazach przekonań. Operacja ta pozwala na potencjalnie krótkotrwałą zmianę przekonań agenta
na inne, zdefiniowane w alternatywnej bazie przekonań. Unikalną cechą tego rozwiązania jest, mię-
dzy innymi, wsparcie dla przysłaniania również elastycznej części więzów co pozwala na wyrażanie
zmian nie tylko przekonań ale i więzów.

Następnie rozprawa przedstawia język ACTLOG będący rozszerzeniem języka 4QL o składnię defi-
niowania akcji inspirowaną rodziną języków akcji, w skład której wchodzi język ADL (Action Defini-
tion Language). Z racji użycia logiki zawierającej nieklasyczne wartości logiczne, ACTLOG pozwala
na definiowanie problemów planowania opierających się na niepełnych lub też sprzecznych informa-
cjach. W szczególności, sprzeczne przekonania mogą być używane zarówno w warunkach wstęp-
nych akcji jak i w formule określającej cel planowania. Język ten pozwala również na warunkowe
efekty akcji oraz na użycie operatorów przekonań podczas specyfikowania akcji. Ponadto, rozprawa
przedstawia akcje złożone oparte na operatorach sekwencyjnego, równoległego oraz warunkowego
złożenia akcji. Tego typu akcje nie tylko zwiększają ekspresywność języka ale mogą również być
postrzegane jako szablony planów pozwalające na znaczne ograniczenie złożoności obliczeniowej
samego planowania.

Wszystkie wyniki teoretyczne zawarte w tej rozprawie zostały zaimplementowane w oprogramowa-
niu inter4QL będącym otwartym interpreterem języka 4QL. W ramach implementacji język ten został
rozszerzony o konstrukcje z języka 4QLBel. W skład interpretera wchodzi również planner dostar-
czający eksprymentalne wsparcie dla języka ACTLOG. Szczegóły implementacyjne oraz omówienie
zastosowanych rozwiązań są częścią tej rozprawy. Z drugiej strony, rozprawa używa dostarczonej
implementacji w celach weryfikacji przygotowanych przykładów skupiając się jednocześnie na moc-
nych stronach zaproponowanych rozwiązań.
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8



Publications

Publications of major results from the thesis
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Chapter 1

Introduction and related work

1.1. Beliefs in dynamic environments

Reasoning about the beliefs has a long history. In particular is has been intensively studied and applied
in Knowledge Representation and Reasoning sub-area of AI [106]. One of the popular implementa-
tions of Beliefs in AI is a BDI model [32, 47, 93]. An undeniable feature of BDI-based systems is
their ability of replanning during the actual plan execution to avoid the outdated reasoning results due
to the environment change that happened before or during the execution. The feature makes these
systems very well-suited for dynamic environments where reacting to changes and adjusting the plan
is crucial. At the same time such systems are very fast which makes them appropriate for real-time
or close to real-time applications.

Beliefs and their modifications are intensively tackled in many contexts. A fundamental issue is the
definition of different kinds of beliefs [47, 50, 60, 70, 98, 135] together with sophisticated structures
like belief sets and belief bases [61, 62, 118]. An alternative framework, belief merging, is addressed
in many sources (for an overview see [78]). The authors study merging of a several belief bases
in the presence of integrity constraints. The presented solutions do not allow for inconsistent belief
bases which forces the authors to look for consistency preserving belief merging operators. Also, the
complexity of belief merging is typically high (see [76]).

Generally speaking, when agents act in dynamic environments, belief change/revision/update/merg-
ing is inevitable, creating a multitude of problems of theoretical and applied nature [24, 78, 105]. In
such cases belief update and revision are in the mainstream of the area. For representative approaches
see also [66, 82, 84, 85, 92, 105] and references there. Importantly, belief revision has been found
as one of the most fundamental research topics [57, 63] aiming at consistent and deterministic solu-
tions. Among others, the well known AGM [4] model was developed as a theoretical framework for
adequate belief modification practices. It inspired a large body of work over many years. For surveys
see [51, 52] and references there. A significant amount of AGM extensions and improvements have
been proposed [7, 34, 51, 55] , including paraconsistent ones [111, 127, 128]. Apart from undeni-
able profits, belief modifications can be computationally expensive, and create some other issues, like
underdetermination (inability to determine rules to be defeated). In the case of group beliefs, like in
teamwork, the situation becomes even more complex [47].

When dealing with dynamic environments, it is good to have some kind of protection against un-
wanted belief states - especially when belief updates are automatically generated without any su-
pervision from a human operator. Here integrity constraints appear especially important. Actually,
the idea of constraints is not new in information systems (see, e.g., [33, 69, 77, 109, 115]), where
a distinction between hard and soft constraints might be desirable [97]. Hard constraints cannot be
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violated while soft ones are flexible and often considered as preferences whose violation should be
avoided as long as possible.

In real-world applications, beliefs are contextual, and affected socially, psychologically and emotion-
ally. Some, like “do not harm”, are hardly mutable but others, like “avoid slippery surfaces”, meant
as an indication, are flexible. In fact, known theories of belief update/change/revision/merging do not
distinguish between the rigid and transient beliefs. However, in everyday activities we temporarily
adjust our beliefs to specific situations with no intention to change them radically. Such a shallow
change, not requiring a deeper revision, has been addressed in [21].

The essential problem of belief modeling and formation when information is partly missing and incon-
sistent, is addressed, e.g., in [29–31, 42–44, 74, 90, 101, 110, 111, 126]. To adequately model beliefs
and reasoning about them, epistemic profiles and belief structures have been introduced in [43, 45],
where paraconsistent and paracomplete belief bases are used for transformations of initial raw beliefs
into more abstract, mature ones. Belief dynamics is approached there via epistemic profiles permitting
to model both beliefs related to states of the environment and deliberative processes of agents.

Finally, since the inception of knowledge representation and planning, beliefs have usually been mod-
eled via various combinations of multi-modal logics [47, 50], non-monotonic logics [87, 99], prob-
abilistic reasoning [129] or fuzzy reasoning [137], just to mention some of them. However, most of
those approaches either lack tools for handling incomplete and/or inconsistent information or are too
complex for real-world applications.

1.2. Classical action planning

Action planning has been an important part of artificial intelligence since its very beginning. The
ability of specifying only a desired final environment state together with available actions and letting
the planner figure out the steps needed to achieve the goals gives, without any doubt, outstanding
possibilities in designing advanced systems in both theoretical and practical manners. For example,
it is useful in designing autonomous rescue robots capable of making their own decisions out in the
difficult area without connection to an operator.

Therefore, not surprisingly, an autonomous era is materializing just in front of our eyes with a lot
of researchers actively digging into new possibilities of making devices smarter. Self-driving cars
are gradually making their way into casual traffic, smart assistants are driving our everyday agendas,
businesses are using advanced action planners to reach their goals. Each of theses inventions at some
point derive from the original concept of action planning.

Although the perfect solution has not been yet found, the research resulted with a wide range of spe-
cialized planning engines. The mostly known system that is also believed to be the first major one
is STRIPS (Stanford Research Institute Planning System) which was introduced in 1971 [54]. The
language was highly influenced by a GPS (General Problem Solver) software from 1961 [100] but
addressed some issues that GPS had. For example, it solved the frame problem [94] by a “STRIPS
assumption” (stating that all literals not mentioned in delete set carry over from the before-action to
the after-action state) and introduced action representation. The language and planning engine were
a leading standard for classical planning for over a decade but eventually it became too limited in
terms of expressiveness. This created a space for an ancestor - ADL (Action Definition Language)
which was introduced in [103]. The new language improved its predecessor by allowing the action
effects to be conditional, adding indirect effects to actions (static laws) and dividing actions them-
selves into static and dynamic ones [58]. Moreover, while STRIPS supported only positive literals
in the states of planning, the ADL allowed for negative literals as well. Finally, when knowledge
base is concerned, the ADL applied a concept of Open World Assumption (OWA) which meant that
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truth value of every fact not entailed from the database is assumed to be u. This approach is oppo-
site to STRIPS one which implemented Closed World Assumption (CWA) where every such element
was assumed to be f. Finally a PDDL (Planning Domain Definition Language) language has been
proposed in [95] which initially was designed as a planning-syntax standardization to be used during
the First International Planning Competition. The language itself is based on the ADL and its syntax
is actually very similar. This is not surprising as PDDL is not a single planning engine but rather a
family of requirements for which different planning engines can comply. In particular STRIPS and
ADL comply with some parts of PDDL. This is why the PDDL family of languages is very broad.
Just to name some (except PDDL itself), there is a NDDL [56] - New Domain Definition Language
- which uses timelines and activities instead of states and actions, MAPL [26] - Multi-Agent Plan-
ning Language - which introduces multi-valued state-variables and modal operators or PPDDL [136]
- Probabilistic PDDL - which uses probabilistic effects for planning purposes. It is worth noticing
that PDDL is still being actively used with version 3.0 officially released in [59] which introduced
planning constraints and the most recently released version 3.1 [65, 79, 80].

Classical planning plays undoubtedly a very significant role in the development of this AI branch.
Up to now, modern languages include some version of “precondition”, “add” and “delete” sections
to their action’s schemas which makes these concepts somewhat universal. As the time passes, more
advanced and complicated environments were required to be emulated which included also an in-
complete and inconsistent knowledge (further abbreviated by 3i) sources. Classical engines were not
prepared for such requirements calling for some new approaches.

1.3. Evolution of planning for 3i cases

Planning with incomplete knowledge is currently a broad area of research with examples of publica-
tions including, among others, [49, 73, 114] (see also references there). Theoretical work introduces
many interesting concepts of incomplete knowledge representation - starting from “simple” appli-
cations of OWA to internal knowledge bases and finishing on advanced data representations like
databases containing a set of potentially true worlds with a representation of a real world among them
[8, 13, 25, 112, 130]. Of course, the drawback of such an approach is that planner does not know
which presentation of a world is correct and therefore must perform planning in each representation
independently - and this results in exponential growth of knowledge. Some other works focus on
a much faster solution of representing unknown data with finite sets of first order formulas and treat-
ing actions as transformations working on these formulas rather than on actual world representation
[107, 108].

Approaches like described above still at some point use sets of ground literals (typically having clas-
sical two-valued truth values assigned) as the main knowledge storage. At the same time some plan-
ning systems capable of representing uncertainty tend to use other ways of data representation, e.g.,
Bayesian networks (used for the first time in the CONVINCE expert system [75]). Such approaches
are well-described for example in [102, 119].

As for the inconsistency, for a long time researchers were actually focusing on omitting and remov-
ing inconsistencies from knowledge bases. At some point, however, the paraconsistency started to
become gradually less “avoided” and currently the area is broad. The change has started back in 1989
with [10] and since then paraconsistency is used in both multi-agent systems [1, 2, 6, 138] and in the
planning itself [71]. One can also find a number of articles about handling inconsistency in knowl-
edge bases - see [72] and references there. Several approaches have been proposed but the one most
appealing to us is a usage of so called QC logic (quasi-classical) which in fact is a classical logic with
additional truth values (in the mentioned articles it is true, false, both and unknown - please note a
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direct correspondence with [12]).

Even though the area of research in 3i planning is broad, most of the existing solutions tend to be
based on extending classical planners mentioned earlier. For example, BURIDAN [81] introduces
probability distribution over initial world states, CGP (Conformant Graphplan) [121] applies a smart
Graphplan algorithm to multiple world representations or CNLP (Conditional Non-linear Planner)
[104] uses non-linear planning for managing foreseen uncertainties. Moreover, the majority of con-
temporary planners model unknown and/or inconsistent knowledge using the two-valued classical
logic which is a simplification from our point of view. Of course approaches which introduce multi-
valued logics for expressing incomplete and paraconsistent knowledge exist (with examples of already
mentioned QC logic, [9] which uses Łukasiewicz logic for planning purposes or [86] which extends
SAT-solver with a multi-value logic) but it seems that this branch of research is a bit less expanded
which is visible in “related work” parts of papers in that area.

1.4. More actions using composite actions

Complex (composite) actions refer to action definitions containing other actions using constructions
known from programming languages [96].

Starting at early 1980s, plans have been thought of not only as single sequences of actions, but also as
acyclic graphs with some actions executed in parallel and others perhaps sequentially. An early ap-
proach applying this idea is SIPE (System for Interactive Planning and Execution Monitoring [131])
with later successor SIPE-2 [132]. This planning system explicitly supports parallelism and condi-
tional actions. However, the support of incomplete and inconsistent knowledge is, in our opinion, not
well developed yet in SIPE-based systems recognizing general uncertainty of information represented
by action’s likeliness-of-success parameter.

Since then, parallel actions have been investigated in many works, e.g., in [113] (determining which
actions can be executed in parallel), [83] (developing a planning architecture with parallel action exe-
cutions) or [48] (supporting parallel actions prepared especially for IPC-4 planning contest). A com-
prehensive approach to temporal action specification based on Temporal Action Logic (TAL) has been
developed in a series of papers – see, e.g., [35–37]. TAL-based composite actions with constraints
are investigated in [38].

1.5. Research questions addressed in the thesis

Since the beginning of my PhD studies our goal was to enrich the 4QL language with planning
capabilities. Initially, an approach of extending the inter4QL interpreter with some classical planning
methods was selected and used in first projects [20, 23, 125] (with myself being the author of the
planning software). As the project was strongly based on multi-agent scenarios, soon it became clear
that more advanced planning methodologies should be applied to improve expressiveness. As this was
a time of intensified work on beliefs, belief bases, epistemic profiles and belief structures (with these
entities being exactly designed for such scenarios) the choice was made to try to use them instead
of simple sets of ground literals. Moreover, to our best knowledge, no such other paraconsistent and
paracomplete belief planning solution was, and still is, available which makes it a perfect candidate
for a PhD research area.
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Therefore the following set of research problems has been identified:

• selecting a belief state representation appropriate for planning in the context of incomplete
and/or inconsistent information;

• expanding the original 4QL language with means for reasoning on and querying beliefs in
a tractable manner;

• introducing a constraint mechanism for beliefs to be used during planning by extending the
original definition of belief bases;

• providing a tractable belief change formalism applicable for dynamic and complex environ-
ments;

• specifying action syntax and semantics involving state representation by using paracomplete
and paraconsistent belief bases;

• extending the language of action specification to allow composite actions;

• using the composite actions for specifying plan templates (useful in complex planning prob-
lems);

• implementing the theoretical results by extending the inter4QL interpreter.

One of the important goals has been to retain tractability whenever possible. In particular, this con-
cerns a new formalization of belief bases and querying them together with their transformations by
actions.

This thesis addresses problems listed above starting with the achieved results overview presented in
the next section.

1.6. Discussion of achieved results

The results obtained in the thesis are strongly rooted in a history of action planning and belief change
described earlier in the chapter. This section discusses the results in the context of presented research
area background. Due to the fact that details of the results are yet to be described in further parts of
the dissertation, we will not provide too much details here but rather place the obtained results in the
appropriate context.

1.6.1. Constrained belief bases

Our approach is based on an understanding of belief bases as presented in [43, 45]. First of all, one
defines worlds as finite sets of ground literals. Then belief bases are finite sets of worlds. The intuition
here is that each world is a separate representation of the observed reality. While this sounds like the
approach that has already been described as alternative world sets, our understanding of the worlds
does not specify anything about their relations - these can be alternative worlds or complementary
representations of the same world (e.g. from different cameras or detectors). We give a complete
freedom of modeling in this matter.

Using this understanding, we expand the definition of belief bases by adding a finite set of formulas
of the underlying logic which can be then interpreted as constraints of the belief base. In the thesis
we will use a direct correspondence between a “world representation” in a belief base, a set of ground
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literals, the 4QL’s well-supported model and finally, a module description in the the 4QL syntax. In
fact, each of these elements is just a different representation of the same underlying concept. Such an
expansion of the theoretical definition of belief bases had therefore to result in an expansion of 4QL’s
syntax itself to ensure the expressiveness required for defining belief bases in 4QL. While constraints
themselves are not novel in the AI area, to our best knowledge binding them directly to a belief base
together with conditioning answers to queries based on constraints violation was novel in [21].

We also define a Bel
()

operator which can be used for querying belief bases for beliefs which are
common to each world representation. This sounds similar to a φ operator from [107] but actually
is more subtle. While φ operator only verifies whether a formula is true in every element of a belief
base, the Bel

()
operator calculates the least upper bound (wrt 4QL’s information ordering) of actual

valuations from each world representation. This allows, among others, for deducing inconsistencies
in situations where conflicting data is present in two separate worlds which is very useful in many
situations.

Finally, we specify a lightweight belief shadowing operator capable of altering agent’s beliefs without
actually changing its knowledge base. Such an operator corresponds to suspending some agent’s
beliefs rather than changing them permanently which is a common case in multi-agent scenarios
where cooperation is included. What is worth emphasizing here, constraints of belief bases are also
affected by the shadowing. For this purpose belief base’s constraint set is divided into two parts -
rigid and flexible constraints. While the rigid ones are not overridable, flexible constraints can be
disregarded with shadowing operator. This reflects real life scenarios where in some cases people are
willing to give up some of their beliefs while keeping the others unchanged.

1.6.2. Actions over belief bases

As will be discussed in Chapter 6, the syntax of action definition we propose is, as in many other ap-
proaches, inspired by the original STRIPS/ADL action schema with classical preconditions together
with add and remove sets. However, in our case the formulas can contain constructs from a 4QLBel

language which provides not only native support for non-classical truth values but also additional
operations on belief bases. This allows us to live with inconsistencies and unknown data as first-class
citizens and react to them accordingly as they are expected and welcome.

While in most cases actions act on worlds (sets of ground literals), in our case actions act on the
whole belief bases which makes each action a transformer from one set of worlds into another. Note
that in this case planning can be performed taking into that account multiple worlds at the same time.
The drawback of multiple planning necessity for each world (mentioned in Section 1.3) is of course
also present. However, in our approach we do not just use world representations for incomplete
knowledge purposes but rather treat each world representation as a valid data chunk which potentially
brings more information about the actual environment.

Finally, we propose an application of composite actions idea to our planning framework with three
possible types of such actions: parallel, sequential and conditional ones. Such constructs not only al-
low for easier specification of actions but actually make some problems solvable within our approach.
For example, a problem of table raising where both table sides have to be raised at the same time,
perhaps by two different robots, not to drop a glass standing on top of the table can be solved only by
parallel raising of both table sides. Each sequential execution will fail as one side of the table will be
raised first and the glass will fall. Of course such a limitation can be omitted when a single robot can
perform the action using a specification of an action which internally rises both sides of the table at the
same time. It is not so easy when the action is beyond the capabilities of a single robot. In addition,
having to explicitly specify some actions sounds like a less convenient idea than having a solution
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for composing already-declared actions (especially, that such mechanism has a built-in verification of
constraints for executed sub-actions and appropriate mechanics for correct knowledge base update).

Moreover, composite actions blend well into a research branch connected with plans generation based
on plan templates [133, 134]. Using the syntax of combining atomic actions, one can, in fact, create
a template which will later be applied by the planner to a specific situation. Using such a functionality,
the planning complexity can be significantly reduced what is important in action planning systems.

1.6.3. Planner - theory in practice

Apart from theoretical results, we are also proposing an experimental implementation of the planner
which serves as a proof of concept and has been used for verification of examples provided within
the thesis. The experimental character of the implementation has to be emphasized as no explicit
advanced optimization methods were applied to the algorithms for action planning. Our goal was to
provide a reliable ACTLOG planner generating correct plans for problems specified by a user with a
help of the extended expressiveness of our action specification language (even at the expense of the
calculation times).

Several algorithms are typically used in planning implementations, e.g., forward (progressive) state-
space search, backward (regressive) relevant-states search, A* algorithm, Graphplan algorithm etc.
(for a comprehensive introduction to action planning see [116]). In the current version of the plan-
ner a forward state-space search is implemented what can later be expanded with more advanced
algorithms.

Also, the literature puts a high pressure on heuristics which should be used during state space search-
ing. The planner currently contains five exemplary heuristics. The first two of them are working
locally without using the actual problem goal which, surprisingly, sometimes leads to the improved
performance. The remaining three heuristics base their computations on the truth of the actual plan-
ning goal which directs the whole planning process to satisfying the goal (which, in fact, not always
turns out to be the best strategy) - see heuristics details in Chapter 7 and planning experiments in
Chapter 8.

Although a competition with other planning solutions is not our goal, some comparisons with existing
planning solutions are provided. However, we focus on unique features of our solution rather than
compare general planning performance.

The planner included into the inter4QL interpreter is open-source and available at
http://4ql.org/inter4qlPhD.html.

1.7. Thesis structure overview

The thesis is structured as follows:

• Chapter 2 - an introduction to a background theory:

- A reminder of the original concepts of belief bases and belief structures.

- A theoretical background of the 4QL language.

• Chapter 3 - reasoning on belief bases with 4QLBel:

- An introduction of 4QLBel, an extension of 4QL, capable of querying belief bases.

• Chapter 4 - belief shadowing:
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- A belief bases extension with integrity constraints.

- An introduction of a shadowing operator and its semantics.

- A presentation of belief shadowing properties.

• Chapter 5 - an implementation of beliefs:

- Details of inter4QL internals.

- Practical examples of the reasoning about beliefs.

• Chapter 6 - an introduction to ACTLOG:

- An introduction of atomic and composite actions.

- Tractability of the approach.

• Chapter 7 - an implementation of the planner:

- Technical details of inter4QL including the implementation of actions and planner’s overview.

• Chapter 8 - experiments using the planner:

- Comparison of our planner with existing planning solutions.

- Discussion of planning heuristics.

- Example of complex “real-life” planning scenario.

• Chapter 9 - summary and conclusions.
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Chapter 2

Original 4QL and belief bases

The material presented in the chapter originates from the external literature [42, 88, 90, 124] and is
just a reminder of necessary information needed to make the thesis as self-contained as possible. As
a theoretical background for 4QLBel language is analogical to the one for 4QL, suitably modified
fragments of [18, 19] are used, too.

2.1. Under the hood of 4QL

2.1.1. Overview of 4QL’s syntax

The 4QL language [88, 90, 124], is a four-valued rule language designed for reasoning and query-
ing paraconsistent and paracomplete knowledge bases. Apart from providing firm foundations for
paraconsistent knowledge bases and non-monotonic reasoning, it opens the space for a diversity of
applications. For surveys of closely related areas see, e.g., [16, 64]. A unique feature of the 4QL-
based language family is the presence of truth values t (true), f (false), i (inconsistent), u (unknown) as
well as an unrestricted use of negation in both conclusions and premises of rules while retaining intu-
itive results and tractable query evaluation. Though the full definition of 4QL is available in [88, 91],
for clarity we recall the most important constructs of the language.

1 module moduleName:
2 domains: . . .

3 relations: . . .

4 rules: . . .

5 facts: . . .
6 end.

Module 1: Syntax of 4QL modules.

The 4QL program consists of modules, structured as shown in Module 1. Sections domains and
relations are used to specify domains and signatures of relations used in rules. 4QL rules, specified
in the section rules have the following form, where 〈Formula〉 is an arbitrary formula of the logic
presented in Section 2.1.2:

〈Literal〉 :– 〈Formula〉 . (2.1)

Facts, specified in the facts section, are rules with the empty 〈Formula〉 part (being t). In such cases
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we simply write 〈Literal〉. A rule of the form (2.1) is “fired” for its ground instantiations when the
truth value of 〈Formula〉 is t or i.1 As the effect:

– 〈Literal〉 is added to the set of conclusions when the truth value of
〈Formula〉 is t;

(2.2)

– 〈Literal〉 and ¬〈Literal〉 are added to the set of conclusions when
the truth value of 〈Formula〉 is i.

(2.3)

Looking at definitions (2.2) and (2.3) it is worth noting, that the semantics of ‘ :– ’ is formalized in
the 4QL-based languages by a generalization of the Shepherdson’s implication [120] rather than by
the→ connective formalized in (2.7) (see [124]). The implication→ is more suitable for evaluating
formulas while the former one reflects rule evaluation principles (2.2)–(2.3). To define the semantics
of ‘ :– ’ we use ordering ≤s which is a reflexive and transitive closure of f = u < t < i.

The implication , corresponding to ‘ :– ’, is defined by:

(A B)(L, v)
def
= A(L, v) ≤s B(L, v). (2.4)

When the set of truth values is restricted to {t, f, u} or {t, f, i}, the implication is the three valued
implication of [120]. The semantics of rules is given by:

(C :– B)(L, v)
def
= B(L, v) C(L, v). (2.5)

Modules are primarily used for assuring a structural form of a base of rules. If m is a module name,
m.A expresses a reference to m. Semantically, one can view relation symbols within a module m as
(implicitly) extended by prefix ‘m.’. In order to maintain a clear semantics and tractability, a certain
form of acyclicity of references is required, close in spirit to stratification in logic programming and
deductive databases [3] but concerning formulas with the operator ‘∈T ’ rather than negation.

Definition 1 Let M = {m1, . . . ,mk} (k ≥ 1) be a set of modules. By a reference graph of M we
understand a graph 〈M,E〉 such that for mi,mj ∈M :

(mi,mj) ∈ E iff rules in mi contain a subformula of the form mj .α.

If (mi,mj) ∈ E then we say that module mi refers to module mj . C

Definition 2 By a 4QL program we understand a set of 4QL modules whose reference graph is
acyclic. C

Acyclicity of a reference graph of any 4QL program can be determined in deterministic polynomial
time wrt the size of the program. We also assume strong typing in the following sense:

• when a value occurs as an argument of a relation, it has to belong to the domain associated with
that argument;

• when a variable occurs in a rule as an argument in more than one place, all such arguments
have to be specified as belonging to the same domain;

• a domain consists of all values of all modules occurring as relations’ arguments specified as
belonging to that domain.

22



t
|
i
|
u
|
f

i
� �
t f
� �
u

Truth ordering ≤t Information ordering ≤i

Figure 2.1: Orderings on truth values.

2.1.2. Logic behind 4QL

In the syntax of the underlying logic we assume truth constants t, f, i and u, propositional connectives
¬,∨,∧,→ and operators A ∈T,A = t, where A is a formula, T ⊆ {t, f, i, u}, t ∈ {t, f, i, u}.
To define semantics of the logic let us start with truth ordering (see Figure 2.1) on truth values,
denoted by ≤t, being the reflexive and transitive closure of ordering: f < u < i < t.2 Truth ordering
is used to evaluate formulas.

Information ordering ≤i reflects the process of gathering and fusing information. It is used to merge
results concerning the same (perhaps negated) ground literal concluded from different rules, possibly
originating from different information sources. Starting from the lack of information, in the course of
belief acquisition, evidence supporting or denying hypotheses is collected, leading finally to a deci-
sion about its truth value.

For t1, t2 ∈ {f, u, i, t}, the semantics of ¬,∧,∨,→ is given by:

¬f def
= t, ¬u def

= u, ¬i def
= i, ¬t def

= f; (2.6)

t1 ∧ t2
def
= min{t1, t2}; t1 ∨ t2

def
= max{t1, t2}; t1 → t2

def
= ¬t1 ∨ t2; (2.7)

where min,max are the minimum and maximum wrt ≤t.3

We assume that Const is a fixed finite set of constants, Var is a fixed set of variables and Rel is a fixed
set of relation symbols. Following the convention, we begin variable names with upper case letters
and constants with lower case letters.

Definition 3 A literal is an expression of the form R(τ̄) or ¬R(τ̄), with τ being a sequence of
arguments, τ̄ ∈ (Const ∪ Var)k, where k is the arity of R. Ground literals over Const, denoted by

G(Const), are literals without variables, with all constants in Const. If ` = ¬R(τ̄) then ¬` def
= R(τ̄).

For an assignment v : Var −→ Const and a literal `, by `(v) we understand the ground literal obtained
from ` by substituting each variable X occurring in ` by constant v(X). C

Definition 4 The truth value of a literal ` wrt a set of ground literals w and an assignment v, denoted

1That is, the value of 〈Formula〉 contains some truth.
2For motivations behind ≤t see, e.g., [5, 124].
3To justify equalities in (2.6) involving non-classical truth values, let us note that whenever the value of a formula is

unknown (respectively, inconsistent), the value of its negation is unknown (respectively, inconsistent), too. The usage of
minimum and maximum operations is justified in [5, 88, 124]. Such a semantics appears to be natural. It also reflects
intuitions of classical two-valued logic when restricted to classical truth values t, f.
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Let v : Var −→ Const be an assignment, m be a 3i set of ground literals. min,max are respectively
minimum and maximum wrt truth ordering and A,B be formulas. Then:

• t(m, v)
def
= t for t ∈ {f, u, i, t};

• (¬A)(m, v)
def
= ¬(A(m, v));

• (A�B)(m, v)
def
= A(m, v)�B(m, v), for � ∈ {∧,∨,→};

•
(
∀x :D(A(x))

)
(m, v)

def
= min{

(
(a ∈ D)→ A(a)

)
(m, v) | a ∈ Const};

•
(
∃x :D(A(x))

)
(m, v)

def
= max{

(
(a ∈ D) ∧A(a)

)
(m, v) | a ∈ Const};

• (A ∈ T )(m, v)
def
=

{
t when A(m, v)∈T ;
f otherwise;

• (A = t)(m, v)
def
= (A ∈ {t})(m, v);

Table 2.1: Semantics of 4QL formulas.

Truth values Logic
{t, f} Classical propositional logic
{t, u, f} Kleene three-valued K3

{t, i, f} K3 with Priest’s interpretation of the third truth value as i

Table 2.2: The relation of logic behind 4QL to other logics.

by `(w, v), is defined as follows:

`(L, v)
def
=


t if `(v)∈w and (¬`(v)) 6∈ w;
i if `(v)∈w and (¬`(v))∈w;
u if `(v) 6∈ w and (¬`(v)) 6∈ w;
f if `(v) 6∈ w and (¬`(v))∈w. C

Having established the truth value of a single literal `, the definition can be now extended to all
formulas which is done in Table 2.1.

Finally, when the logic we consider is restricted to connectives ¬,∧,∨,→ and projected onto two- or
three-valued calculi, it becomes one of well-known logic – see Table 2.2. This is well justified by the
fact that Kleene three-valued logic K3 is the standard choice for interpreting the third truth value as
u. K3 is also a standard choice for interpreting the third value as i. Indeed, assuming that the reality is
consistent, the value i can also be seen as an indicator of a lack of knowledge: we have contradictory
claims that a given property is both t and f but it is (perhaps temporarily) unknown which claim is
actually the right one.

To complete the understanding of 4QL’s constructs, Table 2.3 provides correspondences between
logical syntax presented in this section and the syntax used in inter4QL interpreter.

2.1.3. Semantics of 4QL (well-supported models)

The semantics of 4QL modules is given by well-supported models as formalized in [91]. A set of
ground literals is a model of a module m if all rules of m, understood as implications (2.5), are
true in the model. Intuitively, a model is well-supported when it consists of ground literals (if any)
assuming that all literals it contains are conclusions of reasoning starting from facts. For any module,
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Logical syntax Syntax of inter4QL
t f i u true false incons unknown
¬ ∧ ∨ - , |
∈T in T

= ≤ ≥ math.eq math.leq math.geq
< > math.lt math.gt

Table 2.3: Correspondences between logical syntax and the inter4QL syntax.

its corresponding well-supported model is uniquely determined [89–91]. Namely, each module can
be treated as a finite set of ground literals and this set can be computed in deterministic polynomial
time [88, 90]. Note that well-supportedness does not entail minimality. This is an intended feature
since in many contexts minimality is not desired [39, 53, 88, 117, 122].

To simplify the presentation, in the current section we assume that all literals are ground and all uni-
versal (existential) quantifiers are substituted by conjunctions (disjunctions) of formulas. In particular,
rather than allowing rules with variables, we consider their ground and quantifier-free instances. The
definition provided here is adopted from [90], where also related intuitions are discussed.

The difficulty in generating well-supported models for 4QL programs depends on deriving conclu-
sions on the basis of facts being temporarily true or false and later becoming inconsistent. We iterate
the following method until no new conclusions are generated:

– generate the least set of conclusions by Datalog-like reasoning;
– retract conclusions based on defeated premises;
– correct (minimally) the obtained set of literals to make all facts and rules true.

The following definitions realize this method,where by Pos(S) (respectively, Pos(L)) we understand
the 4QL program (respectively, the set of literals) obtained from S (respectively, from L) by replacing
each negative literal ¬` by `′, where `′ is obtained from ` by changing relation symbol of ` by a fresh
relation symbol (for simplicity denoted by its primed symbol).

Let us start with the case of modules not referring to any other modules.

Definition 5 Let S be a set of (ground) rules. Then genS is obtained from the least model of Pos(S)
by substituting literals of the form `′ with ¬`. For and X,Y being sets of literals, we define:

δSX(Y )
def
= Y ∪ {`,¬` | there is a rule ‘` :– β.’ ∈ S such that β(X ∪ Y ) = i

and `(X ∪ Y ) 6= i},
∆S(X)

def
= the least fixpoint of δSX ,

correctS(X)
def
= X ∪∆S(X). C

For X being a set of ground literals, let incons(X)
def
= {`,¬` | X(`) = i}.

Definition 6 Let S be a set of (ground) rules. By the set of pre-consequences of a set of literals X of
S, denoted by PreS(X), we understand the set of literals defined by:

PreS(X)
def
= correctS

(
incons(X) ∪ genT (X)

)
,

where T (X)
def
= S − {% ∈ S | concl(%) ∈ incons(X)}. C
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Definition 7 For any set S of (ground) rules, the well supported model of S, denoted by WS, is
defined by WS =

⋃
i>0(PreS)i(genS), where:

(PreS)i(X)
def
=

{
PreS(X) when i = 1;
PreS((PreS)i−1(X)) when i > 1.

C

Let us now consider the case when modules of a 4QL program refer to other modules. Since the refer-
ence graphs of 4QL programs are acyclic, the computation of well-supported models can be organized
by performing the following steps until well-supported models of all modules are computed:

1. compute the well-supported models of modules not referring to other modules;

2. replace formulas involving ‘∈’ by truth values in all modules referring to those with the already
computed well-supported models.4

Let us emphasize that well-supportedness requires the Open World Assumption (OWA): all conclu-
sions have to be explicitly inferred. This is an opposite to the Closed World Assumption (CWA),
where conclusions which are not inferred are assumed to be false. In the 4QL family of languages,
a literal is false when its negation is a consequence of a rule. Otherwise it may be unknown. However,
one can easily (partially or totally) close the world.

2.1.4. Computational complexity of 4QL

While considering complexity issues, the following theorems can be presented and proven as origi-
nally presented in [88–90]. Having a 4QL program P , by #D we denote the sum of the sizes of all
domains of P and by #P we denote the number of modules in P .

In the thesis by complexity we understand data complexity - see [3].

Theorem 1 For every 4QL program P , well-supported models of its modules can be computed in
deterministic polynomial time in max{#D,#P}. C

Theorem 2 The querying problem for 4QL has deterministic polynomial time complexity, i.e., for
every 4QL program P and formula α, the set of all tuples satisfying α in the well-supported model of
P can be computed in deterministic polynomial time in max{#D,#P}. C

Theorem 3 4QL captures deterministic polynomial time over linearly ordered domains. That is,
every polynomially computable query (wrt the size of the database domain) can be expressed in 4QL
with modules and external literals, assuming that a linear order on the database domain is available.

C

2.2. Belief bases and belief structures

Having reminded the most important principles of the 4QL language, let us now recall structures
accompanying reasoning and querying of beliefs (as they will be used extensively across the rest of
the thesis). Let us start with belief bases, which is the most basic concept.

A bottom concept underlying our approach to belief bases, initiated in [43, 45], is that of a world.
Recall, that the worlds are sets of ground literals (i.e., variable-free atomic formulas) representing

4Note that due to the acyclicity of the reference graph, new modules not referring to other modules are obtained in this
step.
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feasible states of affairs. For example, an accident witness could report a victim’s shallow breathing
and leg injury, not being sure how serious the injury is: 3 or 4, in a given scale. In this case, the
following two worlds may represent patient’s conditions, where integers from 0 to 9 represent the
severity degree:

{symptom(victim, leg, injury, 3), symptom(victim, breathing, shallow, 6)}, (2.8)

{symptom(victim, leg, injury, 4), symptom(victim, breathing, shallow, 6)}. (2.9)

Gathering the worlds (2.8) and (2.9) together, we obtain a belief base
{

(2.8), (2.9)
}

representing the
two alternatives. It can be augmented with information about the heart failure and its severity:{

(2.8), (2.9), {symptom(victim, heart, failure, 7)}
}
. (2.10)

Note that worlds can represent alternatives and/or add new information, perhaps originating from an-
other sources. However, belief base designers do not indicate whether a world provides an alternative
or augments other worlds. This implicitly follows from the worlds’ contents.

In many papers, e.g., related to the AGM theory of belief revision (for survey see [105]),5 a belief
base consists of a set of formulas of the underlying logic, not necessarily closed on consequences.
Here we do not consider the consequence relation. By restricting formulas to ground literals we
are able to use querying machinery assigning truth values to the results. This allows us to obtain a
tractable framework also when we allow rules, making the specification of belief bases more uniform
and concise.

As we use truth values t, f, i and u, a belief base becomes a structure capable of storing beliefs orig-
inating from nondeterministic environments. Belief bases are systems’ passive components reacting
on requests and queries via a suitable query processing engine.

Let Const be a fixed finite set of constants. If S is a set then FIN(S) denotes the set of all finite subsets

of S. By C(Const) def
= FIN(G(Const)) we denote the set of all finite sets of ground literals over the

set of constants Const (for definition of ground literal see Definition 3).

Definition 8 By a 3i-world over Const (world with incomplete and/or inconsistent information) we
shall understand a finite set of ground literals with all constants belonging to Const. C

Definition 9 By a belief base over a set of constants Const we understand any finite set ∆ =
{m1, . . . ,mk}, where k ≥ 1 and for i = 1, . . . , k, mi is a 3i-world over Const. In particular,
any finite set ∆ ⊆ C is a belief base. C

Each 3i-worldmi in a belief base represents a feasible or augmenting (perhaps still incomplete and/or
inconsistent) view of the world. For example, a belief base can consist of following three 3i-worlds:
one containing facts based on measurements received from a ground robot’s sensor platform, the
second containing facts interpreting video streams from a drone’s camera while the third representing
views provided by ground operators.

Sets constituting belief bases can be seen as a four-valued generalization of Kripke-like possible
worlds or impossible worlds [110].

Now let us recall belief structures and epistemic profiles as introduced in [42–44].

5AGM is an acronym referring to names of originators of the theory: C. Alchourrón, P. Gärdenfors and D. Makinson [4].
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Definition 10

• By a constituent we understand any set C ∈ C;

• by an indeterministic epistemic profile we understand any function E of the sort FIN(C) −→
FIN(C);

• by an indeterministic belief structure over an indeterministic epistemic profile E we mean BE =
〈C,F〉, where:

– C ⊆ C is a nonempty set of constituents;

– F def
= E(C) is the set of consequents of BE . C

Belief structures represent a complex paraconsistent and paracomplete knowledge representation
structure for agents. In short, epistemic profiles encapsulate agents’ or groups’ reasoning, perception
and communication capabilities, including context-specific methods of both information disambigua-
tion and completion. To make the approach as general as possible, epistemic profiles are mappings
transforming one belief base (constituents) into another belief base (consequents). While constituents
contain sets of beliefs acquired by perception, expert-supplied knowledge, communication and other
ways, consequents contain final, “mature” beliefs or beliefs capturing an updated view on the envi-
ronment. Together with epistemic profiles, constituents and consequents constitute belief structures.
Importantly, belief structures ensure a unified approach to both individual and group reasoning [46].
They have been already applied in argumentation [41] and modeling complex dialogues [40], where
their use led to a simplified and tractable framework.
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Chapter 3

Reasoning about beliefs - 4QLBel

This chapter is based on [18] and uses extensive fragments of the article in an unchanged form.

Let us now present 4QLBel, a rule-based four-valued query language introduced in [18] capable of
paraconsistent and paracomplete doxastic reasoning with belief bases and belief structures. The lan-
guage extends 4QL (described in details in Section 2.1). The use of this particular query language
was suggested in [42–44].

As mentioned in Section 2.2, belief bases consist of finite sets of ground literals what creates a natural
correspondence between 4QL modules and belief bases, thus also between 4QL and belief structures.
However, the original concept of 4QL does not include belief operators nor other constructs useful
in doxastic reasoning. Therefore this chapter defines the syntax and semantics of 4QLBel by intro-
ducing constructs for reasoning about beliefs, belief bases and belief structures. We also rephrase the
tractability results of computing and querying well-supported models for 4QLBel programs from the
analogical result for 4QL.

In order to offer a more flexible formalism, the chapter also extends the definition of semantics of for-
mulas given in [44] by belief operators. Roughly speaking, in addition to referring to belief structures
using belief operators, references to their belief bases (that is their constituents and consequents) are
allowed.

3.1. Base logic meets belief bases

The 4QLBel language inherits most of its features from 4QL (in particular its extended version 4QL+

of [124]) - including underlying logic. For common definitions please see Section 2.1.2 while newly
introduced base logic’s syntax is shown below in Table 3.1. Most of the formulas presented there are
common to both languages but the following new constructs are introduced:

• Bel∆
(
〈Formula〉

)
, expressing beliefs rooted in belief bases (indicated by ∆);

• f(∆).α, allowing one to evaluate Bel
()

-free formulas in belief bases: here f is a mapping
transforming a belief base into a single set of ground literals, e.g., f(∆) may be

⋃
D∈∆D or⋂

D∈∆D (further denoted by
⋃

∆,
⋂

∆, respectively).

In general, f occurring in f(∆).() is an arbitrary information fusion method, intended as a means to
combine information included in 3i-worlds of ∆.
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〈Formula〉 ::= 〈Literal〉 | ¬ 〈Formula〉 | 〈Formula〉 ∧ 〈Formula〉 |
〈Formula〉 ∨ 〈Formula〉 | 〈Formula〉 → 〈Formula〉 |
∀X 〈Formula〉 | ∃X 〈Formula〉 |
〈Formula〉 ∈ 〈TruthV alues〉 |
Bel∆

(
〈Formula〉

)
| f(∆). 〈Formula〉

where:
• 〈Literal〉 represents the set of literals;

• 〈TruthV alues〉 represents nonempty subsets of {t, f, i, u};

• ∆ is a belief base (as formalized in Definition 9),

• f is a mapping transforming a belief base into a (single) finite set of ground literals; if f is
not specified, by default f(∆)

def
=
⋃

∆, i.e., ∆.α
def
= (

⋃
∆).α.

Table 3.1: Syntax of the base logic for 4QLBel.

3.2. The 4QLBel Language

3.2.1. Syntax of 4QLBel

Just like in 4QL, 4QLBel’s basic components are modules. The syntax of the module can be seen in
Table 1 (Page 21) in this thesis. Moreover, 4QLBel also shares the rule format in following form:

〈Literal〉 :– 〈Formula〉 . (3.1)

Note that formulas at the right-hand side of :– can now, among others, have the form f(∆).α. In
cases when ∆ consists of a single set of ground literals represented by a module m, we often write
m.α rather than {m}.α. However, just like in case of 4QL, these references cannot include cycles.
The definition for the reference graph has been already provided for the 4QL language in Definition 1
as part of Section 2.1. The definition of a 4QLBel program can be therefore specified analogously to
the 4QL’s one as presented in Definition 11.

Definition 11 By a 4QLBel program we understand a set of 4QLBel modules whose reference graph
is acyclic. C

3.2.2. Semantics of 4QLBel

The semantics of 4QLBel modules (just like 4QL ones) is given by well-supported (as described in
2.1.3). A 3i-world is a model of a module m if all rules of m, are true in the model. Moreover, each
4QLBel module uniquely specifies its well-supported model, so it can be identified with a 3i-world.
That way:

4QLBel modules have a very important role as a tool for
concise and uniform specification of 3i-worlds.

(3.2)

Indeed, when facts of a module are updated, its well-supported model is changed accordingly. There-
fore, rather than list all facts constituting a 3i-world, one can provide rules reflecting the way in which

30



• (Bel∆
(
t
)
)(v)

def
= t, for t ∈ {t, f, i, u};

•
(
Bel∆

(
α
))

(v)
def
= LUB{α(D, v) | D ∈ ∆};

• (f(∆).α)(v)
def
= α(f(∆), v),

where:
• ∆ is a belief base;

• v :Var−→Const is an assignment of constants to variables;

• α is a first-order formula (for nested Bel
()

s, one starts with the innermost one.)

• LUB denotes the least upper bound wrt the information ordering (see Figure 2.1).

Table 3.2: Semantics of the Bel
()

and f(). operators.

derived facts are obtained on the basis of given facts. For example, facts in a module may indicate
patient’s symptoms while rules may provide diagnoses. Taking the principle (3.2) into account, from
now on modules can appear wherever 3i-worlds are allowed, in particular as elements of ∆.

The semantics of propositional connectives, quantifiers is given in Table 2.1. For for a first order
formula a and a belief base ∆, we define α(∆, v)

def
= α(

⋃
∆, v). The semantics of doxastic operators

is given in Table 3.2.

3.2.3. Complexity of 4QLBel

Complexity theorems for 4QLBel are analogous to the ones for 4QL presented in Section 2.1.4 and can
be proved analogously as results for 4QL [88–90]. For readability, however, we place the theorems
in a rephrased form here.

The intuition behind the complexity results for 4QLBel is as follows. Let us note that worlds, repre-
sented either directly as sets of a ground literals or indirectly as a 4QLBel programs, are computable
in a polynomial time which results from Theorem 1 presented for the 4QL language. Using Theorem
2 one can note, that the same polynomial time is also achieved in the case of queries to such worlds.
As the Bel

()
operator is a series of world queries, the results of these queries have to be merged to

compute its result. One can note, that such operation is also deterministically polynomial with re-
spect to the number of worlds as size of each world is polynomial as well. Therefore the entire Bel

()
operator can be computed in a polynomial time.

When considering a 4QLBel program P , by #D we denote the sum of the sizes of all domains of P
and by #P we denote the number of modules in P .

Theorem 4 For every 4QLBel program P , well-supported models of its modules can be computed in
deterministic polynomial time in max{#D,#P}. C

Theorem 5 The querying problem for 4QLBel has deterministic polynomial time complexity, i.e., for
every 4QLBel program P and formula α, the set of all tuples satisfying α in the well-supported model
of P can be computed in deterministic polynomial time in max{#D,#P}. C

Theorem 6 4QLBel captures deterministic polynomial time over linearly ordered domains. That is,
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every polynomially computable query to a belief base (therefore, to a belief structure, too) can be
expressed in 4QLBel. C

3.3. Specifying Belief Structures in 4QLBel

To implement belief structures using 4QLBel we simply encode constituents and consequents by
4QLBel modules and query them using, among others, the Bel

()
operator indexed by constituents

and consequents, respectively. Epistemic profiles can be defined by auxiliary 4QLBel modules or by
rules directly included in modules specifying consequents.

In order to evaluate Bel
()

-free formulas in belief structures one can use formulas indexed by con-
stituents or consequents, as needed. To illustrate the idea let us consider robots equipped with tem-
perature and pressure sensors together with a camera. In this case beliefs can be formed on the basis
of robots’ perception resulting from sensor measurements and interpretations of camera images.

A natural belief structure for this simple scenario is B with constituents represented by modules
{press, temp, cam} shown in Figure 3.1, where (identifying modules with their well-supported
models):

• press gathers measurements of pressure sensors, press={p(4.0), p(4.6)};

• temp gathers measurements of temperature sensors, temp={t(85), t(82)};

• cam gathers information extracted from camera, cam={p(smoke), ¬p(smoke)}.

1 module press:
2 domains:
3 float pvalue.
4 relations:
5 p(pvalue).
6 facts:
7 p(4.0).
8 p(4.6).
9 end.

1 module temp:
2 domains:
3 integer tvalue.
4 relations:
5 t(tvalue).
6 facts:
7 t(85).
8 t(82).
9 end.

1 module cam:
2 domains:
3 literal detection.
4 relations:
5 p(detection).
6 facts:
7 p(smoke).
8 ¬ p(smoke).
9 end.

Figure 3.1: Sample constituents.

The B’s epistemic profile is encoded by rules in modules f1 and f2 shown in Figure 3.2. The well-
supported models of these modules are consequents of B. They represent two alternative views on
the world: f1={danger()} and f2={danger(),¬danger()}.
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1 module f1:
2 relations:
3 danger().
4 rules:
5 danger() :–
6 ∃ X

(
press.p(X)∧ X≥ 4.3

)
7 ¬danger() :–
8 ∀ X

(
temp.t(X)→ X≤ 60

)
.

9 end.

1 module f2:
2 relations:
3 danger().
4 rules:
5 danger() :–
6 cam.p(fire)∨cam.p(smoke).
7 end.

Figure 3.2: Sample consequents and rules defining an epistemic profile.

Now, for example Bel{f1,f2}
(
danger

)
= i and {press, temp}.(t(10) ∧ ¬p(4.6)) = f (the latter

because
⋃
{press, temp} = {p(4.0), p(4.6), t(85), t(82)}).
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Chapter 4

Belief shadowing and constraints -
4QLBel+

This chapter is based on [21] and uses extensive fragments of the article in an unchanged form.

When beliefs are flexible or change frequently, it hardly makes sense to adjust the entire belief base
accordingly. A better choice is to suspend them for the time being. The belief interference addressed
in this chapter is a potentially transient swap of beliefs called belief shadowing introduced originally
in [21]. For example, when two belief bases participate in reasoning, one of them may turn out to
be more important or up to date. Then, the conflicting part of the “weaker” base may be shadowed
by the “stronger” one. With such phenomena we deal frequently during teamwork and other forms
of cooperation. Individuals joining a group are expected to accept the group beliefs and suspend
their conflicting ones. Therefore, a swap from individual to group beliefs, and then perhaps back, is
needed. Importantly, the ability of shadowing rather than updating, revising or merging beliefs can
result in a substantial improvement of the performance of agent systems relying on doxastic reasoning
what is particularly important from the systems’ engineering point of view.

As a lightweight form of belief change, shadowing may introduce inconsistencies. In the approach
inconsistencies are first class citizens, so much heavier belief revision, often meant as a remedy for
inconsistencies, is not required. Another phenomenon of realistic environments, calling for an atten-
tion, is the unavoidable information incompleteness. Therefore, both paraconsistent and paracomplete
reasoning is needed in the spirit of [68].

Belief bases represent snapshots of the environment and the agents’ mindsets, both evolving over
time. An exemplary high level agents’ belief bases architecture is summarized in Figure 4.1, where,
for 1 ≤ l ≤ k, Bl are belief bases, ml1, . . . ,mlrl , nl1, . . . , nlsl are 4QLBel modules, wl1, . . . , wlrl are
the 3i-worlds being respectively well-supported models of modulesml1, . . .mlrl , solid lines represent
queries among modules, dotted lines represent correspondences between modules and 3i-worlds, and
dashed lines represent agent’s queries. Note that agents may use multiple belief bases, some of which
may be private, some owned by groups, and some may be available to all agents. Query manager may
be a 4QLBel interpreter or another database querying engine.
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Figure 4.1: High level agent’s belief bases architecture.

In AI systems the already mentioned evolution of environment and the agents’ mindset should be su-
pervised, especially when rules are machine learned or data mined in a human-free manner. Achieving
this is possible by introducing integrity constraints. Though they are well-known in database systems
(see Section 1.2), their shadowing is novel, pertaining admissible modes of behavior at desired ab-
straction levels, in a semantically meaningful manner.

The belief shadowing framework is lightweight: (i) the shadowing operator is efficient, (ii) does not
require changes in the belief bases involved, and (iii) does not assume agents’ familiarity with details
of other agents’ belief bases. The requirement (i) is crucial for systems’ performance and for efficient
swapping between contexts in which different shadowings apply. The requirements (ii) and (iii) are
vital in cooperation/teamwork of heterogeneous agents designed by separate parties.

4.1. Belief bases with constraints

Similarly to 4QLBel, the idea of a world is a bottom concept underlying our approach to belief base.
Let us remind that worlds are sets of ground literals (i.e., variable-free atomic formulas) representing
feasible states of affairs. In order to formally define belief bases with constraints, we extend the
Definition 9 by assuming that constraints are their inherent parts.

Definition 12 Let Const be a fixed finite set of constants. By a belief base over a set of constants
Const we understand any pair B = 〈∆, C〉 consisting of:

• ∆ = {m1, . . . ,mk}, where k ≥ 1 and for i = 1, . . . , k, mi is a 3i-world (as defined in
Definition 8);

• C, called constraints of B, being a finite set of (universally closed) formulas of the underlying
logic, which are true in ∆ (for formal definitions, see Section 2.1.2 and Section 4.2). C

Each mi (i = 1..k) in a belief base represents a feasible or augmenting (perhaps still incomplete
and/or inconsistent) view of the world.
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4.2. Logic behind 4QLBel extended for constraints

The syntax of the underlying logic is based on the one from 4QL therefore for common definitions
please see Section 2.1.2. Just like before we assume truth constants t, f, i and u, propositional con-
nectives ¬,∨,∧,→, quantifiers ∀, ∃, operators A ∈T,A = t, where A is a formula, T ⊆ {t, f, i, u},
t ∈ {t, f, i, u} and belief operator BelB

(
A
)

where B is a belief base.

Let v : Var −→ Const be an assignment, B = 〈∆, C〉 be a belief base, m be a 3i-world
and A be a formulas. Then:

• A(∆, v)
def
= A

(⋃
∈∆

m , v
)
;

•
(
BelB

(
A
))

(v)
def
=


LUB{ A(m, v) |m∈∆} when

for all C ∈ C, C(∆, v) = t;
u otherwise;

• A(B, v)
def
=

{
A(∆, v) when for all C ∈ C, C(∆, v) = t;
u otherwise.

Table 4.1: Constraint-ready semantics of Bel
()

-free formulas in 4QLBel.

We may now proceed to the final definition of semantics of Bel
()

-free formulas in 4QLBel- see
Table 4.1. The semantics of operations on belief bases has been extended with actual checks of con-
straint violation. Like in previous analogical definitions, LUB is the least upper bound wrt information
ordering defined in Figure 2.1 (see Page 23). Observe that C, being a constraint, does not contain free
variables, so v in C(∆, v) is redundant. In similar cases we will use C(∆) rather than C(∆, v), and
C(B) rather than C(B, v).

4.3. Discussion on integrity constraints - 4QLBel+

Though belief bases, as introduced in Section 4.1, contain integrity constraints, their use in our frame-
work deserves further discussion. In particular, belief shadowing (introduced in the Section 4.5), sim-
ilarly to belief revision or update, may result in creating undesirable conclusions. To avoid such risky
cases one could construct some specific rules but a much better idea is to formulate a general integrity
constraints which will not require remembering about adding specific rules.

As mentioned in Section 1.2, a concept of integrity constrains is intensively discussed in the liter-
ature which often separates them to hard ones (which cannot be violated by any means) and soft
ones (which are allowed to be violated in some situations). In our case a distinction between non-
shadowable (“hard”) and shadowable (“soft”) constraints also appears useful. To avoid terminological
misunderstandings we shall further call them rigid and flexible ones, respectively.

In rule languages constraints are typically expressed by rules with empty heads expressing what is
disallowed. Dually, in our approach constraints express what should always be true. The separation
between constraints and rules gives the former ones an axiom-like flavor. Constraints can be specified
in modules and in belief bases in two subsections, separating rigid and flexible ones, C = CR ∪ CF .
In inter4QL constraints are defined as shown in Module 2.
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By 4QLBel+ we will denote the rule language obtained from 4QLBel by allowing the constraints sec-
tion.

1 module abc:
2 constraints:
3 rigid: . . .

4 flexible: . . .
5 end.

Module 2: Constraints specification.

The distinction between rigid and flexible constraints does not affect the semantics of CR and CF
unless they appear in the context of the shadowing operator (see Section 4.5). Importantly, we require
constraints to be true (cf. the last item of Table 4.1). This might seem restrictive in a four-valued
framework. However, formulas of the form ‘A ∈ T ’ can be used, so requirements like “A is true or
inconsistent” can easily be expressed by ‘A ∈ {t, i}’ being t when the truth value of A is in the set
{t, i}.
Though specified within modules, constraints may be local (limited to a single module) and global
(span over multiple modules). Local constraints refer solely to relations in the same module. Ac-
cordingly, global constraints can contain literals referring to multiple, perhaps all, modules as long
as references do not create cycles in the reference graph. Technically, to avoid cycles, additional
modules/belief bases can be created as containers for constraints. Such additional structures can be
viewed as being “above” modules referenced by non-local constraints.

We extend Definition 1 from Section 2.1 to deal with constraints as follows:

Definition 13 By the reference graph of a set Π of modules with constraints we mean the reference
graph for Π seen as a 4QLBel program (disregarding constraints), augmented with edges from m to n
whenever constraints of m contain a reference to n, i.e., a subexpression of the form ‘n.’. C

Definition 14 By a 4QLBel+ program we mean a set of 4QLBel modules with constraints such that its
reference graph (in the sense of Definition 13) is acyclic and all constraints in modules are true. C

Note that for every 4QLBel+ program Π, well-supported models of Π’s modules do exist and, as in the
case of 4QLBel programs, are uniquely determined. For a 4QLBel+ module m, by wsm(m) we denote
the well-supported model of m. Using this correspondence between modules and well-supported
models, being themselves 3i-worlds, we can specify any belief base B = 〈∆, C〉 by:

B = 〈m1, . . . ,mk〉 , (4.1)

where m1, . . . ,mk are 4QLBel+ modules. In such a case,

• ∆
def
= {wsm(m1), . . . ,wsm(mk)};

• C consists of all rigid and flexible constraints collected from m1, . . . ,mk.

To simplify notation, we often identify single modules with belief bases, assuming that:

module m represents the belief base 〈m〉. (4.2)

Of course, specifications of belief bases of the form (4.1) inherit all advantages of rule-based speci-
fications. In particular, comparing to Definition 12, 4QLBel+-based specifications are typically much
more concise and easier to understand and maintain.
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4.4. New syntax constructs in 4QLBel+

The 4QLBel+ language, implemented in inter4QL, inherits a fair amount of elements from 4QL, in-
cluding basic program syntax and semantics. It extends the language with a significant elements for
doxastic reasoning, though. This section will cover the newly introduced parts.

First of all, so far we have not defined any syntax for declaring belief bases. This can be done now as
the final definition of a belief base has been already introduced. The inter4QL’s syntax which should
be used for specifying belief bases is specified in Figure 4.2.

1 beliefs beliefBaseName:
2 constraints:
3 // see Section 4.3 . . .
4 worlds:
5 // list of 4QLBel modules specifying 3i-worlds
6 end.

Figure 4.2: Syntax of belief bases.

An important feature of belief bases related to the syntax of 4QLBel+ language is that domains of their
worlds (see Section 2.1 for introduction of domains) become their domains (a belief base is internally
treated as a simple module - in particular it also contains domains), accessible in their constraints. If,
in different worlds, a domain ‘dom’ appears – the corresponding belief base’s domain, ‘dom’, is the
union of all domains ‘dom’ appearing in the belief base’s worlds (assuming the same types of domain
elements).

Mostly for purposes of expressing constraints, 4QLBel+’s implementation introduces an explicit pos-
sibility to use quantifiers and implication in expressions. Table 2.3 provides correspondences between
logical syntax used in Section 4.2 and the syntax used in the inter4QL. The table can be now extended
to match new constructs introduced in 4QLBel+ as presented in Table 4.2.

Logical syntax Syntax of inter4QL
→ ->

∀x: dom forall X: dom
∃x: dom exists X: dom
BelB

( )
Bel[B ]( )

f(B).( ) B.( )

Table 4.2: Correspondences between logical syntax of 4QLBel+ and the inter4QL syntax extending
Table 2.3.

4.5. The Shadowing Operator

To avoid semantical complexity, we treat shadowing as a formal expression rather than a belief base.
However, to simplify presentation, syntactically we treat such formal expressions as belief bases.
Thus, slightly abusing notation, we allow them to occur in the Bel

()
operator. Belief shadowing

is defined by BelB1asB2
(
A
)

intuitively returning BelB2
(
A
)

when it is t, i or f, or BelB1
(
A
)
, when

BelB2
(
A
)

is u. However, suitable constraints have to be validated. If they are not, BelB1asB2
(
A
)

returns u for any query A.
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Belief shadowing, denoted by ‘as’, is a left-associative operation. That is,

B1asB2asB3
def
= (B1asB2)asB3.

To define belief shadowing we need an auxiliary operatoro allowing one to fuse beliefs. Let, in (4.3)
and Definitions 15, 16, B1 =

〈
∆1, C1

R ∪ C1
F

〉
and B2 =

〈
∆2, C2

R ∪ C2
F

〉
be belief bases. Then:

BelB1oB2
(
A
)def
=

{
BelB2

(
A
)

when BelB2
(
A
)
∈{t, f, i};

BelB1
(
A
)

when BelB2
(
A
)

= u.
(4.3)

We are now ready to define integrity constraints and belief shadowing, B1asB2, the central concepts
of our approach.

Definition 15 By integrity constraints of B1asB2 we understand the set C1
R ∪C2

R ∪C2
F with C1

R ∪C2
R

being rigid constraints and C2
F being flexible constraints of B1as B2. C

Definition 16 The belief operator over belief base B1 shadowed by belief base B2, BelB1asB2
( )

, is
defined by:

BelB1as B2
(
A
)def

=


BelB1oB2

(
A
)

when for any C∈C1
R∪ C2

R∪ C2
F ,

C ′(B1) = t
u otherwise,

whereC ′ is obtained fromC by substituting references toB1 in subformulas of the form Bel...B1...
(
. . .
)

by B1o B2. C

Though constraints of belief bases are always true, as required in Definition 14, constraints ofB1asB2

may be unsatisfied for some B1 and B2. When this occurs, we assume that any query to B1asB2

returns the empty set of tuples with the truth value u. Note that some queries may also return u when
constraints are satisfied but B1asB2 contains no facts supporting or denying such queries. These
cases can be distinguished without recalculating constraints, e.g., using the query BelB1asB2

(
t
)

which
returns t when constraints are satisfied and u otherwise.

4.6. Properties of Shadowing and complexity

For any belief bases, B1, B2, the operator BelB1asB2
()

satisfies KD45n axioms [28].

Proposition 1 For any belief bases, B1, B2 and formula A,

BelB1asB2
(
A
)
→ ¬BelB1asB2

(
¬A
)
; (4.4)

BelB1asB2
(
A
)
→ BelB1asB2

(
BelB1asB2

(
A
))

; (4.5)

¬BelB1asB2
(
A
)
→ BelB1asB2

(
¬BelB1asB2

(
A
))
. (4.6)

Note, however, that axioms (4.4)–(4.6) do not have the classical meaning. For example, when the
truth value of A is i, the implication (4.4) holds but it does not mean that (an inconsistent) belief in
A prevents (inconsistent) belief in ¬A. Indeed, in this case, both BelB1asB2

(
i
)

and ¬BelB1asB2
(
¬i
)

are i.
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Complexitywise, similarly to results in Section 3.2.3, we have the following propositions, where for
any 4QLBel+ program P , #D denotes the sum of the sizes of all domains of P ; #P denotes the
number of modules in P .

The intuition for the complexity results here is quite similar to the one presented for the 4QLBel

language in Section 3.2. One can note, that the only difference between belief bases from 4QLBel

language and the ones declared for the 4QLBel+ are constraints and the possibility of performing
a belief shadowing operation. As stated earlier, the constraints are just a formulas of 4QLBel language.
Therefore a verification of the constraints consists of a series of queries to worlds (possibly one world
if constraints are used in a simple module). Each such query can be computed in a polynomial time
as stated in the complexity results for the 4QLBel language. The combination of final results requires
calculating conjunction of all separate responses therefore the whole constraints handling can be
computed in a polynomial time. On the other hand, the computation of the belief shadowing requires
traversing of a shadowing expression and asking polynomial time queries to appropriate belief bases
(or single worlds). The size of that expression is polynomial parameterized with #P . Therefore, also
the whole shadowing operation is computable in deterministic polynomial time.

Proposition 2 For every 4QLBel+ program P , both:

• checking the existence of the well-supported models of modules of P ;

• computing well-supported models of modules of P ,

can be done in PTIME in max{#D,#P}. C

Proposition 3 Given belief bases B1,B2 expressed using modules of a 4QLBel+ program P , the prob-
lem of computing queries involving expressions of the form BelB1asB2

()
has deterministic polynomial

time complexity in max{#D,#P}. C

Since shadowing is defined in terms of belief base queries, as a consequence of the corresponding
result in Section 3.2.3, we have the following proposition.

Proposition 4 Assuming that domains are linearly ordered, every polynomially computable shadow-
ing can be expressed in 4QLBel+. C

From the perspective of systems’ engineering, the above complexity results are important. However,
even tractability does not guarantee scalability over big data. Belief shadowing can be made horizon-
tally scalable when recursive queries are not allowed, assuming that all 4QLBel modules are already
computed and belief bases consist of the resulting 3i-worlds. In this case, Bel

()
-free formulas are

equivalent to first-order (and non-recursive SQL) queries which can be evaluated in a horizontally
scalable manner. Queries involving belief operators can also be easily horizontally distributed (with
a separate thread evaluating a given query in each 3i-world of a given belief base).
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Chapter 5

Implementation of beliefs

One of the important requirements for the thesis was bringing up all theoretical results to life and
testing them in actual use cases. As the whole theoretical work was done using 4QL, the inter4QL
interpreter was a natural choice.1

5.1. History of inter4QL

inter4QL is an interpreter of the 4QL language which had its first release in August 2011 (v1.0) as
a part of M.Sc. thesis [123]. Since then it has been actively developed with bug fixes and new features
implemented until v2.0 was released in August 2013 as part of my M.Sc. thesis [17]. After several
minor releases mostly containing bug fixes, a release of v3.0 was made in March 2016 (see [27]).
It contained a concept of group modules which could be considered as an early version of belief
bases. Querying of this component was done by a voting method which additionally allowed for
customizable voting rules (e.g., #incons > #true+ #false which means responding i for a query
if a number of inconsistent responses from modules contained in the group is higher than the number
of t and f responses added together). This was a step towards information fusion rather than belief
bases. The actual doxastic reasoning was introduced in October 2018 with the v4.0 release.2 The
software introduced a syntax for specifying belief bases with constraints as well as Bel

()
and belief

shadowing operators. Finally, in December 2019 the inter4QL was updated to version 5.0 which
included the support for defining actions and action planning. Since then the interpreter has been
extended with additional planning heuristics and bug fixes resulting in the latest 5.2 version being
released in April 2020. This version of the interpreter was used for verification of the examples in
this thesis.

The implementation details of inter4QL 4.0 (and newer) will be discussed in further sections of the
chapter.

5.2. General architecture

The inter4QL interpreter is written in C++ language and therefore is structuralized into classes with
appropriate relations between them. The UML class diagram of the interpreter is shown in Figure 5.1.
One can distinguish the following main parts of the interpreter:

1Apart from that, I am actively working on and with the interpreter for almost 7 years now so I know it pretty well.
2For a detailed changelog of each version please visit http://4ql.org
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Figure 5.1: Overview of inter4QL 4.0 architecture (simplified).

• Application class - the main class of the interpreter containing the main loop and storing all
data needed for parsing, validating queries and modules, managing the database and reasoning
on it.

• ModuleGeneric class - an interface between Application class and multiple types of modules.

• ModuleExternal class - a class representing external modules e.g. plugins (separate applications
implementing a given interface which can be queried from the interpreter - see [17]).

• ModuleInternal class - a class providing an abstraction layer for modules built into the inter-
preter - e.g. Math (providing mathematical operators) or Bel (internal data provider for the
Bel
()

operator).

• ModuleLocal class - a class representing all user-defined modules declared in a 4QLBel pro-
gram.

• ModuleSum class - a helper class used for calculating a sum of models for belief bases. It is
a sub-class of a ModuleLocal class in order to inherit a querying mechanism (models are
summed during module adding, later querying is the same as for standard local module).

• ModuleGroup class - a class implementing group modules described in Section 5.1.
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• ModuleBelief class - representation of belief bases containing a list of worlds (modules) in-
cluded in it and querying methods.

While looking at the schema please note, that constraints are handled at the ModuleGeneric level
(and not ModuleBelief ). By such a design all modules can be guarded with constraints, not only
belief bases. This is in line with a statement from Section 3.2.2 saying that “[...] modules can appear
wherever 3i-worlds are allowed, in particular as elements of ∆ in a belief base”. In fact, each type of
a module in inter4QL implements a common interface ModuleGeneric which allows for treating all
of the modules (including belief bases) in the uniform manner.

5.3. Summary of the most important data structures and algorithms

5.3.1. Well-supported model

Well-supported models are the heart of each (local) module in inter4QL.3 Whenever a user specifies
a module, a reasoning algorithm is executed to compute such a model. The high-level algorithm of
computing the wsm was already given in Section 2.1.3 but here we will dive a bit more into its internal
implementation details. Algorithm 4 presents a pseudocode of processing a 4QL program, including
a wsm computation.

As modules can reference each other, ordering them before reasoning is crucial. Otherwise we could
evaluate a module which needs data from another module but the referenced module does not yet
have a model ready - this would cause wrong results.

Deriving new literals from rules may introduce inconsistencies invalidating previously inferred data.
Let us illustrate this phenomenon with an example shown in Module 3 dating back to one of the first
publications about 4QL [91].4

1 module ex5:
2 relations:
3 w(literal).
4 o(literal).
5 r(literal).
6 rules:
7 w(x) :- o(x) | r(x).
8 r(x) :- w(x).
9 -o(x) :- r(x).

10 facts:
11 o(x).
12 end.

Module 3: Example of knowledge aggregation

If we try to simulate the Algorithm 4 on Module 3, we will start with a database filled with {o(x)}
(the only fact in the module). The first iteration of the algorithm will add {w(x)} (using the first
rule) - now the model contains two elements: {o(x), w(x)}. The second iteration will add {r(x)}
(using the second rule) and the third will add {−o(x)} (using the third rule). The model contains

3Plugins and beliefs are dynamically computed so technically they do not contain a well-supported model.
4This example is also included as “ex5.4ql” in inter4QL package.
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the following elements now: {o(x),−o(x), w(x), r(x)}. Please note that this is a model of this
module - a minimal model to be exact. Each rule in the module, when evaluated with respect to
this set of ground literals, obtains the truth value t. However, this is not a well-supported model
- the value t assigned to w(x) lost its support in the first rule as its supporting literal o(x) is now
inconsistent. The algorithm will therefore continue with the first rule and add −w(x) to the model
followed by −r(x) (as r(x) looses its support in the second rule). Now the model looks as follows:
{o(x),−o(x), w(x),−w(x), r(x),−r(x)} which is a fixed point of the computation. Please note,
that also here all rules evaluate to t - but now each value assigned to literals is supported by some rule
and the support chain starts from module’s facts.

Input: a list l of parsed modules from a 4QL file
Result: module list out containing modules where each has a well-supported model

computed
1 set out = [] ;
2 while l 6= [] do
3 Select module m which is not referenced by any other module;
4 if m 6= nullptr then
5 remove m from l;
6 set m.database = {}, database_temp = {};
7 add m.facts to m.database;
8 while database_temp 6= m.database do
9 database_temp = m.database;

10 foreach r ∈ m.rule do
11 // (produces possibly many valuations of
12 // variables with assigned logic values)
13 calculate valuations v for r.body wrt m.database;
14 foreach val ∈ v do
15 if val.value = t then
16 valuate r.head with val;
17 add valuated r.head to m.database;
18 else
19 if val.value = i then
20 valuate r.head with val;
21 add valuated r.head and −r.head to m.database;
22 end
23 end
24 end
25 end
26 // here m.database is filled with newly generated literals
27 // let’s store them in database_temp and continue until a fixed point is obtained
28 end
29 add m to out;
30 else
31 throw exception “Cycle in module graph”;
32 end
33 end

Algorithm 4: Overview of implementation of well-supported model computation.
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As for the wsm data storage, the inter4QL is using a map-based data structure. The key of the map
represents a “relation name” and the value is a vector of valuations assigned to the relation. For the
Module 3 the internal knowledge base looks as shown in Figure 5.2.5

D a t a b a s e f o r module ex5 :

Key l o g i c :
Key d a t e _ t i m e :
Key d a t e :
Key s t r i n g :
Key r e a l :
Key l i t e r a l :
TRUE ( x ( l i t e r a l ) ; )
Key i n t e g e r :
Key r :
INCONSISTENT ( x ( l i t e r a l ) ; )
Key w:
INCONSISTENT ( x ( l i t e r a l ) ; )
Key o :
INCONSISTENT ( x ( l i t e r a l ) ; )

Figure 5.2: Internal database structure for module “ex5”.

One can see that the first couple of entries is occupied by domain names built into the inter4QL.
This is where the interpreter gets and stores the knowledge about elements of each domain (for the
discussion of domains see the next subsection). Then entries for relations in the module are kept in
a form of a variable valuation and truth value. In the above example one can see the database contains
the following literals: {o(x),−o(x), w(x),−w(x), r(x),−r(x)} (which matches the example result
above).

5.3.2. Domains

Domains play a very significant role in inter4QL as they not only greatly improve readability but also
split all defined constants into separate sets. As the previous subsection shows, to generate a well-
supported model of a module we need to compute a truth value of a rule’s body which sometimes
needs a couple of iterations over constants in the program. Math operations are the best example
here as they are computed dynamically and therefore need to be grounded. We do not want to force
the user to always ground its calls to mathematical operations so we internally achieve grounding by
filling variables with constants from the 4QL program. This would take a long time if all constants
were just placed in one, common bag.

Please also note, that calculating wsm needs a couple of iterations until a fixed point in calculations
is reached. Repeating such iterations over constants multiple times during the process can add up to
a quite significant time - this is where domains substantially reduce the computational complexity.

For each relation in a 4QL program, the types of its attributes have to be specified. This is required
for the Checker module to type-check all references to relations and report errors when type incom-
patibility occurs. Apart from some default types built into the interpreter (see Figure 5.2), users can

5It can be verified in inter4QL using the debug "database" enable command.
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specify their own labeled type names based on the default ones - see Modules 5, 6.

1 module a:
2 domains:
3 literal module_name.
4 relations:
5 helloFromModule(module_name).
6 name(module_name).
7 rules:
8 helloFromModule(X) :- name(X).
9 facts:

10 name(a).
11 -name(b).
12 end.

Module 5: Exemplary module “a”.

1 module b:
2 domains:
3 literal module_name.
4 relations:
5 helloFromModule(module_name).
6 name(module_name).
7 rules:
8 helloFromModule(X) :- name(X).
9 facts:

10 name(b).
11 -name(a).
12 end.

Module 6: Exemplary module “b”.

Such labeled domains are stored separately from default domains (see Figure 5.3). This means that
all iterations over constants will be limited to the appropriate domain only which improves the time
of computation significantly.

D a t a b a s e f o r module a :

Key d a t e _ t i m e :
Key d a t e :
Key s t r i n g :
Key r e a l :
Key l i t e r a l :
Key i n t e g e r :
Key module_name :
TRUE ( a ( l i t e r a l ) ; )
Key name :
FALSE ( b ( l i t e r a l ) ; )
TRUE ( a ( l i t e r a l ) ; )
Key hel loFromModule :
TRUE ( a ( l i t e r a l ) ; )
Key l o g i c :

Figure 5.3: Internal database structure for module “a”.

Figure 5.3 requires one more explanation. When we look at Module 5 then we see that two literal
constants are actually used in it (“a” and “b”) while in database shown in Figure 5.3 only “a” is
visible. This is caused by following rules of adding an element to a domain:

• only positive literals are used for the initial filling up of the domains (please note, that incon-
sistent facts will also be added as they are specified with both positive and negative literals).

• while reasoning, grounded attributes of a rule’s head are added to domains only if its body
evaluates to either t or i.
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The above assumptions were made during the design of version 2.0 of the interpreter. Intuitively they
are correct - true and inconsistent facts express the presence of some positive part of the knowledge
and therefore their attributes can be added to domains. Negative (and unknown) literals do not contain
such a knowledge. Therefore even if containing some values “in text”, these attribute values should
not be included into domains as they are not “confirmed”. For example, when specifying a fact that
John is not a dog, we do not want John to be included into a domain of dogs.

5.4. Querying belief bases with inter4QL

As one could notice already, beliefs are handled in the interpreter by two major components :

• ModuleBelief class which stores a list of worlds and implements a method of querying them.

• The Bel class (being an internal module) which is responsible for managing logic behind the
Bel
()

operator.

One of the reasons why the case is divided is querying of the belief bases.

Let us recall Table 3.1 (Page 30) which specified two ways of querying a belief base - directly using
the “f” belief base transformer (which transforms a belief base into a single 3i-world) and by using
the Bel

()
operator. The same differentiation is therefore introduced into inter4QL by introducing two

separated implementations of module querying. ModuleBelief contains the implementation of both
methods (either by creating a ModuleSum instance, “filling it” with world modules and querying it
for results or by the standard evaluation of the query in each world module and combining results)
however the Bel class is responsible for selection of the appropriate one in a given case.

Let us look at the actual querying examples. Modules 5, 6 specified earlier can be used as worlds and
Belief Base 7 declares a simple belief base containing these worlds.

1 beliefs c:
2 worlds:
3 a.
4 b.
5 end.

Belief Base 7: Exemplary belief “c”

Below some exemplary queries and outputs of the interpreter are presented:

I n t e r p r e t e r f o r 4 ql , v e r s i o n 5 . 2 , h t t p : / / www. 4 q l . o rg /
# i m p o r t " abcExample . 4 q l " .
Program l o a d e d !
# c . he l loFromModule (X ) .
== R e s u l t s ==
X: a = t r u e
X: b = t r u e

In the above example the problem is loaded and direct query to a belief base is made. To compute the
response, a sum of well-supported models is prepared (containing {name(a),−name(b), name(b),
−name(a), helloFromModule(a), helloFromModule(b)}) and the query is evaluated in this set
giving the result above. Now, let us try with Bel

()
operator:
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# Bel [ c ] ( he l loFromModule (X ) ) .
== R e s u l t s ==
X: a = t r u e
X: b = t r u e

In this case the query needs to be valuated separately with each element from the domain c.literal
(being a sum of domains from modules “a” and “b” and containing {a, b}}). This will make it
a grounded expression acceptable by the Bel

()
operator (note the valuation v in Table 4.1). For

helloFromModule(a). we will receive t from module “a” and u from module “b”. In an analogous
way, helloFromModule(b). will receive u from module “a” and t from module “b”. In both cases
LUB{true, unknown} = true - hence the result above.

# a . name (X ) .
== R e s u l t s ==
X: b = f a l s e
X: a = t r u e
# b . name (X ) .
== R e s u l t s ==
X: b = t r u e
X: a = f a l s e
# c . name (X ) .
== R e s u l t s ==
X: b = i n c o n s i s t e n t
X: a = i n c o n s i s t e n t
# Bel [ c ] ( name (X ) ) .
== R e s u l t s ==
X: b = i n c o n s i s t e n t
X: a = i n c o n s i s t e n t

Now let us look at the relation name. Modules “a” and “b” are locally closing the world here for
the purpose of demonstration. The first two queries show that locally, in separate worlds, each world
has its own view on its name with explicitly denying other names. When enclosed in a belief base
though (another two queries), the general belief about the name is inconsistent as we are getting
contradictory results from each world. These two queries also show, that in this particular case there
is no difference in querying the belief base via the Bel

()
operator and directly, using summed worlds.

However, it it not true in the general case.

# ( c ) . ( name ( a ) | name ( b ) ) .
== R e s u l t s ==
i n c o n s i s t e n t
# Bel [ c ] ( name ( a ) | name ( b ) ) .
== R e s u l t s ==
t r u e
# e x i t
Thanks f o r u s i n g !

The above example of a query differentiates these two ways of belief querying. The first query
uses a sum of world-sets ({name(a),−name(b), name(b), −name(a), helloFromModule(a),
helloFromModule(b)}). In this case name(a) | name(b) transforms to a logical operation i∨ i = i
(the first query’s result).

The second query however, asks name(a) | name(b) to each member of the belief base and applies
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LUB to the results. In this case name(a) | name(b) evaluated in “a” gives t ∨ f = t and analogously
we obtain t from module “b”. The final result is calculated as LUB(true, true) = true. This explains
the difference in results above.

5.5. Constraints by examples

In inter4QL both local and belief modules can declare rigid and flexible constraints, with a syntax
from Module 2, which behave in a way described in Table 4.1. If violated, the constraint will force
the response u to each query. Internally, such constraints are just a lists of expressions which had
to be t in order to allow the queries to be evaluated in the module. For the purpose of constraints
new constructs were introduced to the interpreter - like quantifiers or implication. The improved
expression syntax can be used while declaring constraints and, e.g., in the Bel

()
operator.

Let us add some constraints to our exemplary module “a”:

1 module a:
2 constraints:
3 flexible:
4 exists X:module_name (helloFromModule(X) = false).
5 domains:
6 literal module_name.
7 relations:
8 helloFromModule(module_name).
9 name(module_name).

10 rules:
11 helloFromModule(X) :- name(X).
12 facts:
13 name(a).
14 -name(b).
15 end.

Module 8: Updated module “a”

The constraint introduced to the updated module “a” makes sure that there exists a member of domain
a.module_name which, when applied as argument of relation helloFromModule, evaluates to f. When
we look at members of the domain, we can see that only “a” is there - see Section 5.3.2 for an
explanation:6

# a . module_name (X ) .
== R e s u l t s ==
X: a = t r u e

Therefore there is no domain member for which helloFromModule has the f value which violates the
constraints. All queries to module “a” are now responded with the u value:

# a . name (X ) .
== R e s u l t s ==
unknown

6Negative facts do not add members to domains so “b” was not initially added. It was also not deduced during the
reasoning phase so it did not make its way to the a.module_name domain.
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# Bel [ a ] ( name (X ) ) .
== R e s u l t s ==
unknown

Also queries to a belief base “c” are affected - the belief base behaves now just like it simply was
a “b” world:

# c . he l loFromModule (X ) .
== R e s u l t s ==
X: b = t r u e
# Bel [ c ] ( he l loFromModule (X ) ) .
== R e s u l t s ==
X: b = t r u e
# c . name (X ) .
== R e s u l t s ==
X: a = f a l s e
X: b = t r u e
# Bel [ c ] ( name (X ) ) .
== R e s u l t s ==
X: a = f a l s e
X: b = t r u e
# ( c ) . ( name ( a ) | name ( b ) ) .
== R e s u l t s ==
t r u e
# Bel [ c ] ( name ( a ) | name ( b ) ) .
== R e s u l t s ==
t r u e

Using this method one can control the desired knowledge state in a convenient way. Now, in this
subsection, it is possibly not that interesting as the module is static and it will not change but during
a dynamic action planning some unwanted states are easily achievable and it is convenient to have
a tool to react to them.

5.6. Belief shadowing in inter4QL

As stated in Section 4.5, the shadowing operator provides a lightweight way of temporary changing
of the beliefs. By lightweight we mean that no actual change in database is done. This is also how it
is implemented in inter4QL. The implementation corresponds exactly to definitions given in Section
4.5 - when querying a shadowed belief base, first the right operand of “as” operator is queried and if
it responds with some tuples (having either t, f or i logic values assigned) then these tuples are used as
a response of the whole query (otherwise, the left operand is queried and its responses are returned).
Observe no modifications to databases - all evaluations are temporary and really quick to compute.

We can now look at following example (we are still using Modules 6 and 8):

# ( a a s b ) . ( he l loFromModule (X ) ) .
== R e s u l t s ==
X: b = t r u e
# Bel [ a a s b ] ( he l loFromModule (X ) ) .
== R e s u l t s ==
X: b = t r u e
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Even though the flexible constraints are violated in module “a”, we are still receiving responses as
shown above. It is due to shadowing of flexible constraints described in Section 4.5. Constraints of
an “a as b” belief contain rigid constraints from modules “a” and “b” and flexible ones from module
“b” (note no flexible constraints from module “a” and hence no constraint violation).

As both modules “a” and “b” have facts for relation helloFromModule, in the above example the
response for module “b” is returned. If we extend module “a” with facts accessible only in that
module (e.g., the fact literalReadFrom(a).) then we will obtain following results:

# Bel [ a ] ( l i t e r a l R e a d F r o m (X ) ) .
== R e s u l t s ==
unknown
# Bel [ a a s b ] ( l i t e r a l R e a d F r o m (X ) ) .
== R e s u l t s ==
X: a = t r u e

Note that querying the literal directly from module “a” still suffers from violated constrains and the
response is “unknown”. However, when the module is shadowed with module “b” (which removes
the violated constraint) a meaningful response is obtained.

Of course shadowing is not limited to two belief bases only - one can build any “as” expression which
matches current needs (module “c” below is declared analogously to “b”):

# Bel [ a a s b as c ] ( he l loFromModule (X ) ) .
== R e s u l t s ==
X: c = t r u e
# Bel [ a a s b as c ] ( l i t e r a l R e a d F r o m (X ) ) .
== R e s u l t s ==
X: a = t r u e
# Bel [ a a s ( b as c ) ] ( l i t e r a l R e a d F r o m (X) | he l loFromModule (Y ) ) .
== R e s u l t s ==
X: c , Y: c = t r u e
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Chapter 6

Actions on beliefs - ACTLOG

This chapter is based on [22] and uses extensive fragments of the article in an unchanged form.

Reasoning about actions and change is an essential ingredient of AI systems. Throughout the years
a variety of advanced solutions has been introduced, developed, verified and used in this field (see
Section 1.1 for an overview of the domain). Despite a broad and intensive research on related prob-
lems (see, e.g., [99] and references there), the issue of inconsistent information has rarely been ad-
dressed in this context. However, in informationally complex environments, due to the heterogeneity
of distributed information sources of diverse quality and credibility, inconsistent and incomplete in-
formation is a common phenomenon.

This attitude lies at the heart of our approach and is shared by many researchers. In particular, the
importance of addressing inconsistencies in a robust manner is emphasized in [67] (see also [68]),
where inconsistency robustness is phrased as:

“information system performance in the face of continually pervasive inconsistencies –
a shift from the previously dominant paradigms of inconsistency denial and inconsistency
elimination attempting to sweep them under the rug.”

For related discussion see also, e.g., [14], in particular an overview in [15] where, among others, the
authors point out that:

“inconsistency is useful in directing reasoning, and instigating the natural processes of
argumentation, information seeking, multi-agent interaction, knowledge acquisition and
refinement, adaptation, and learning.”

The ultimate goal of this chapter is to define a planning system that is rich enough to cope with 3i.
The key is to focus on a novel approach to actions’ specification, while keeping in mind a perspective
of automated planning. We are defining a formal language ACTLOG for specifying actions in infor-
mationally complex environments, enjoying the following features:

• concise rule-based specification of actions and their effects in the presence of 3i;

• flexibility in evaluation of formulas in distributed paraconsistent belief bases;

• tractability of computing actions’ preconditions and the resulting belief bases;

• practical expressiveness meaning that all actions (and only such) with preconditions and effects
computable in deterministic polynomial time can be specified in ACTLOG.
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ACTLOG belongs to the 4QL family of four-valued, rule-based languages. It builds on 4QLBel+ (see
Chapter 4), which, in turn, extends the 4QL rule language (see Section 2.1). While 4QL already
permits to flexibly resolve/disambiguate 3i at any level of reasoning, 4QLBel+ includes means for
doxastic reasoning by specifying paraconsistent belief bases with constraints and referring to them in
rules.

6.1. Atomic Actions

Let us now extend 4QLBel+ towards specifying actions. Our approach reflects the general idea of
action definition. As a novelty, an ACTLOG action is a belief bases transformer: a state of the envi-
ronment, expressed as a belief base, is transformed by an action into the resulting belief base. Next,
the use of 4QLBel+ to represent actions’ effects ensures their concise representation which is one
of our important goals. Finally, due to tractability results for 4QLBel (Section 3.2.3) and 4QLBel+

(Section 4.6), effects of actions can be computed in a tractable manner.

All back-end operations like reasoning management is handled by 4QLBel+.

Let us start from defining actions’ specification. The syntax is presented as Action 1, where:

• act is the action name and x̄ are its parameters;

• α(x̄) is an arbitrary formula of 4QLBel+, called the precondition of action act;

• β+(x̄), β−(x̄) are 4QLBel+ programs, representing effects of action act by specifying sets of
literals to be added (β+(x̄)) and to be removed (β−(x̄));

• it is assumed that α, β+ and β− contain no free variables other than those in x̄.

By an instance of action act(x̄) we mean act(ā), where ā is a tuple consisting of constants.

1 action act(x̄):
2 preconditions:
3 α(x̄)
4 postconditions:
5 add:
6 β+(x̄)
7 remove:
8 β−(x̄)

9 end.

Action 1: Syntax of actions in ACTLOG.

Recall that one of our goals is to achieve concise specifications of actions’ pre- and postconditions,
like:

{safe-path(X,Y)︸ ︷︷ ︸
true

, in(X), X 6= Y︸ ︷︷ ︸
true

}move(X,Y){¬in(X)︸ ︷︷ ︸
true

, in(Y )︸ ︷︷ ︸
true

}; (6.1)

{safe-path(X,Y)︸ ︷︷ ︸
inconsistent

, in(X), X 6= Y︸ ︷︷ ︸
true

}move(X,Y){¬in(X)︸ ︷︷ ︸
true

, in(Y)︸︷︷︸
inconsistent

}; (6.2)

{safe-path(X,Y)︸ ︷︷ ︸
unknown

, in(X), X 6= Y︸ ︷︷ ︸
true

}move(X,Y){¬in(X)︸ ︷︷ ︸
true

, in(Y)︸︷︷︸
unknown

}. (6.3)
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Action 2 provides a concise specification of (6.1)–(6.3) in ACTLOG.

1 action move(ID,X,Y):
2 preconditions:
3 safe-path(X,Y) ∈ {t, i, u}∧ position(ID,X) ∧X 6= Y
4 postconditions:
5 add:
6 position(ID, Y) :– safe-path(X,Y).
7 ¬ position(ID,X).
8 remove:
9 position(ID, X).

10 end.

Action 2: A concise specification of (6.1)–(6.3) in ACTLOG.

It is also important to notice that rules in action specification may use operators like, e.g., Bel∆
()

,
referring to belief bases or shadowing expressions. This, among others, allows one to deal with dis-
tributed belief bases. Since such bases are known from the context, we sometimes omit the subscript
indicating a belief base.

Definition 17 Tuples 〈a1, . . . , ak〉 , 〈b1, . . . , bl〉 consisting of variables and/or constants are called
compatible if k = l and, for i = 1, . . . , k, at least one of ai, bi is a variable or both ai, bi ∈ Const and
ai = bi.

Given a 3i-world w, specification expressed as Action 1 and a tuple of constants ā compatible with x̄,
the action act(ā) is executable on w when its precondition α({w}, v) = t, where v assigns constants
ā to variables x̄, respectively.

An action is executable on a belief base ∆, if it is executable on some w ∈ ∆. C

Note that in preconditions of actions (formula α of Action 1) one can use any formula of the form
defined in Table 3.1 (Page 30), in particular involving the Bel

()
operator as well as the operator

‘∈ T ’, allowing one to react to inconsistency and lack of knowledge. Therefore an action can be
executed when the state is inconsistent and/or some/all literals are unknown. Running actions in such
circumstances is a unique feature of ACTLOG.

When action act(ā) is executed, it transforms its input belief base ∆ into the resulting belief base
∆′ as shown in Algorithm 9, where ∆′ represents effects of action act(ā) on ∆.

6.2. Composite Actions

Composite actions’ specifications are important in applications. Apart from simplifying specifica-
tions, they can allow for more efficient plan building. Namely, their use as kinds of templates fre-
quently occurring in a given application area can substantially reduce the branching factor when
searching for plans by avoiding explorations of useless branches. For example the sequence ‘locate-
lift-move’, consisting of three atomic actions, can be used in planning without the necessity to con-
struct this sequence during the planning process.

For simplicity we concentrate on sequential and parallel compositions, and if-then-else operator only.
First, these operations do not increase the number of 3i-worlds within the resulting belief bases.
Second, their use does not affect tractability of the approach.
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Input: action act(ā), specified as Action 1, where ā is a tuple of constants;
belief base ∆;

Result: belief base ∆′ representing effects of executing act(ā) on belief base ∆;
1 set ∆′ = ∅
2 foreach L ∈ ∆ do
3 if action act(ā) is executable on L then
4 set M+ = ∅; set M− = ∅;
5 compute the well-supported model of β+(ā) ∪ L adding to M+

each literal obtained as a consequence of a rule of β+(ā);
6 compute the well-supported model of β−(ā) ∪ L adding to M−

each literal obtained as a consequence of a rule of β−(ā);
7 add the set

(
(L ∪M+) \M−

)
to ∆′

8 else
9 add the set L to ∆′

10 end
11 end

Algorithm 9: Computing effects of actions.

Composite actions are specified as shown in Action 3, where γ is an expression consisting of atomic
actions (with parameters), built using ‘;’ (sequential composition),⇒ (conditional ‘if-then-else’) and
‘||’(parallel composition).

1 action act(x̄):
2 composite:
3 γ(x̄)

4 end.

Action 3: Syntax of composite actions in ACTLOG.

The full syntax of composite actions is given in Table 6.1.

〈Composite〉 ::= 〈Atomic〉 | 〈Composite〉 ; 〈Composite〉 |
〈Formula〉 ⇒ 〈Composite〉

/
〈Composite〉 |

〈Composite〉 || 〈Composite〉

Table 6.1: Syntax of composite actions.

We assume that arguments of actions in γ belong to arguments x̄ of the action act and we disallow
recursion. To formally define this requirement, for a set of action specifications consider a reference
graph 〈V,E〉 where V is a set of nodes labeled by action names and (n1, n2) ∈ E iff n2 occurs in
n1’s composite section. In ACTLOG we only allow action specifications whose reference graph is
acyclic.

Operators ‘;’, ‘⇒’ and ‘||’ transform belief bases into belief bases. Given a belief base ∆, and action
act, by act(∆) we denote the belief base representing effects of act. While the semantics of ‘;’
and ‘⇒’ is rather straightforward, let us explain our approach to ‘||’. When there are no conflicts
between actions act1 and act2, their parallel composition act1||act2 simply adds to 3i-worlds
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literals added by act1 or by act2 and removes literals deleted by act1 or by act2. However, when
there are conflicts (e.g., act1 attempts to add a literal ` and at the same time act2 attempts to remove
it), we solve the conflict by assuming that, in the resulting 3i-world, ` is inconsistent. As an example
of a conflict consider actions pourWater (resulting in removing the literal fire) and lightFire
(resulting in adding fire). In that case, the execution of:

pourWater || lightFire

results in adding fire and ¬fire to the 3i-world, making fire inconsistent. Of course, using 4QLBel+

one can later disambiguate such conflicts, e.g., taking into account the relative strengths of actions (if
known).

Note that in parallel composition act1||act2 both actions are executed when their preconditions
are both true. If this is not the case, one or none of act1, act2 is executed. To make sure that
both actions are actually executed, one can use conditional specification with the condition being the
conjunction of preconditions of act1 and preconditions of act2.

The semantics of action instances is given in Table 6.2.

• For any atomic action instance act, act(∆) = ∆′, where ∆′ is defined by Algorithm 9;

• (act1;act2)(∆)
def
= act2(act1(∆));

• (F ⇒ act1

/
act2)(∆)

def
=

{
act1(∆) when F (∆) = t;
act2(∆) otherwise;

• (act1||act2)(∆)
def
=
{(
M+
act1

(L) ∪M+
act2

(L)
)
\
(
M−act1

(L) ∪M−act2
(L)
)
∪

{`,¬` | ` ∈ (M+
act1

(L) ∩M−act2
(L)) ∪ (M−act1

(L) ∩M+
act2

(L))} | L ∈ ∆
}

;

where, for i ∈ {1, 2}, M+
acti and M−acti refer to sets of literals computed in Algorithm 9

applied to action acti.

Table 6.2: Semantics of composite actions.

6.3. Tractability of the approach

For any ACTLOG specification of an action act(x̄), by #D we denote the sum of sizes of all domains
in the specification, #L stands for the sum of lengths of composite actions specifications and by #M
we denote the number of 4QLBel modules occurring in the specification. For belief base ∆, by #∆
we denote the number of all literals appearing in ∆. Note that #∆ is polynomial in the size of #D
(the size of relations is constant). In real-world applications, #M as well as #D are manageable by
the hardware/database systems used, so is #∆.

The intuition for the complexity results should be added for the ACTLOG as well. One can easily see,
that validating preconditions translates to a simple query to a world and therefore takes a polynomial
time. Computing the effects of the actions, as they are rules, requires computing a well-supported
model in a polynomial time. An action can potentially modify each of the #M modules but at
the same time each modification will impact (add of remove) some polynomially-bounded amount of
literals which makes this operation PTIME as well. Finally, when looking at Table 6.2 one can notice,
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that composite actions do not increase the number of worlds making sure that computing the effects
of actions stays within polynomial computability time.

The following theorems can be proved similarly to analogous results for 4QL (see Section 2.1.4) and
4QLBel (see Sections 3.2.3 and 4.6).

Theorem 7 Let ∆ be a belief base. For every ACTLOG specification of action act(x̄) and a tu-
ple of constants ā, compatible with x̄, the preconditions and effects of act(ā) can be computed in
deterministic polynomial time in max{#D,#L,#P,#∆}. C

Theorem 8 ACTLOG captures deterministic polynomial time over linearly ordered domains. That
is, every atomic action with polynomially computable preconditions and effects can be expressed in
ACTLOG. C
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Chapter 7

Implementation of actions - inter4QL
planner

The implementation of actions caused many new challenges in the development of inter4QL. So
far “only” queryable modules and belief bases were supported. That is, with minor customizations,
the same interfaces could have been used for all types of modules. When actions were introduced,
some changes were required as two completely new entities appeared - actions and planning problem
specifications.

While actions have been described in details (together with their syntax and semantics) in Chapter 6
(based on [22]), the implementation was mostly focusing on specifying a grammar of actions and
providing appropriate data structures to store them. Also, the specification of planning problems
were not that hard to provide as we could base our structure on some STRIPS-like problem definition.
The real challenge appeared when static knowledge base structures from original inter4QL were to
be transformed to dynamically updated states especially in cases where applications of actions were
not linear (e.g., parallel ones). Using the whole belief bases in such a way could lead to long database
handling times during planning. Therefore, a less computationally demanding solution was required.

Moreover, [22] introduced the theoretical part of the planning (with examples) but in fact did not
mention anything about an actual planning method. To provide a software working in a reasonable
time we have selected the forward state-space search method (with some tricks for composite ac-
tions) implemented as a DFS algorithm over world states. Such a choice also allowed to simplify the
implementation due to a less complex planning state handling which was important to us as well.

7.1. Updated architecture

To meet the new requirements, additional classes had to be added to the interpreter. Although actions
and planning problems are not 4QLBel+ modules (they cannot be queried and they do not need to
perform any reasoning), it turns out that storing them as another type of a module is the easiest way
of building that functionality into inter4QL with, at the same time, keeping the original data structure
consistency. For example, by approaching the problem that way, new elements could be passed to
the Checker module without any additional changes to that module (apart from specifying dedicated
constraints for actions and problems, of course).

A representation of actions and planning problems is presented in Figure 7.1. One can see, that apart
from two new classes representing actions and problems, a set of new methods has been added to
a generic module class, dedicated for managing two types of databases containing facts to be added
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Figure 7.1: A simplified overview of the inter4QL architecture.

and removed. These databases have been introduced as a lightweight representations of planning
state. Rather than handling the whole belief base, the planning engine has to deal only with facts that
actually change (for details see Section 7.2).

7.1.1. Planning problem - new entity

The syntax of actions has been already presented in Actions 1 and 3, as part of Chapter 6. Each action
specification in 4QL code corresponds to exactly one ModuleAction and contains all the information
required for action’s application during planning. The definition of a planning problem however was
not defined in papers [19, 22] and therefore is proposed here in Problem 1.

Looking at the planning problem’s syntax, setting up the planning engine calls for providing the
following data:

• a list of beliefs to be used as a base for the planning process;

• a list of actions to be tried on each world in belief list;

• a 4QLBel+ expression describing a goal of the planning;

• heuristics to be used during planning (if not specified, the planner will try to apply actions in
a blind way) - see Section 7.3.
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Apart from the above attributes, the maximum depth of searching has been introduced as the planning
process may create infinite paths and eventually cause planner crashes. Clearly, users should have
a control over this value as they know their planning problems. This attribute is mandatory but may,
of course, be set to a high value. The user has to remember however that the planning process often
requires an exponential time so the higher the value the longer planning process will take. Therefore
some kind of balance is needed.

1 problem name:
2 beliefs:
3 ...
4 actions:
5 ...
6 goal:
7 ...
8 max_depth:
9 ...

10 heuristics:
11 ...
12 end.

Problem 1: Syntax of planning problem in ACTLOG.

7.2. Planning algorithm

7.2.1. Extended data storage

As stated before, the planning algorithm is based on a graph depth-first search (DFS) working on
databases of literals. What is important, the actions do not modify the actual wsm databases of
each module - this could be too expensive in terms of computation time. Instead, each Module-
Generic in the planner contains its own set of two additional databases: to_add_database and
to_remove_database. These databases, just like a wsm, are sets of ground literals organized in
chunks like presented in Subsection 5.3.1. When any ModuleGeneric is queried for facts, the final
output of the query is constructed (as a sum of sets) from the following parts:

1. the result of the query asked in module’s wsm-database after removing all the literals that are
included in to_remove_database;

2. the result of the query asked to to_add_database database after removing all the literals
that are included in to_remove_database.

This way if an action does not modify the database, the queries will be directed to the wsm database
of the module. At the same time, if the action adds a literal to a module’s database, the added element
will appear in the query result as a part of the query described in Point 2. Finally, if the action
removed a literal, it will be removed from queries 1-2 and therefore will not appear in the final result
as expected. One can notice that this would cause literals added and removed by the same action not to
be included in the final database. This is expected as stated in Line 7 of Algorithm 9 where “positive”
effects of actions are handled first and then “negative” ones are processed, effectively removing all
previously processed literals from the result, even these just added.

With this minor optimization, some extensively used planning operation on databases, like making
a copy or restoring them to previous states, are not that time consuming.
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7.2.2. Design overview and justifications

The implemented algorithm consists of the following parts:

• the frame of the algorithm being a standard, recursive implementation of the DFS algorithm;

• the action’s application method for atomic actions;

• the composite action processing algorithm.

Let us now explain why composite and atomic actions are divided into separate parts. This is be-
cause the atomic part was implemented first, using the method of action application described in
Subsection 7.2.5. When composite actions were introduced, it turned out that while conditional and
sequential actions can be processed with the same approach, the parallel actions need a more sophisti-
cated algorithm. Moreover, composite actions can be used as a part of other composite actions which
basically implied the use of a stack of actions to be applied (with some configuration tags between
them).

7.2.3. DFS - the frame of planning

The planning algorithm is constructed using several modules dedicated to different types of actions.
All of them are, however, put in one algorithmic frame being a recursive implementation of a DFS
algorithm summarized in Algorithm 10. The algorithm is executed each time a user requests plan’s
generation via planner’s console.

Please note, that Algorithm 10 is a part of ModuleProblem, so it has a direct access to the class
members listed in Subsection 7.1.1 (like the planning goal and beliefs included in the planning prob-
lem).

The algorithm contains several elements that call for explanations. First of all, one can see dedicated
functions for module/action/valuation selection instead of a simple iteration over lists (Lines 7-11).
It is caused by the existence of planning heuristics (see more in Section 7.3) which may affect the
order of data processing. Then in Line 10 action’s preconditions are evaluated (producing a valuation
of variables) which is described with examples in Subsection 7.2.4. Moving forward, in Line 15 one
can see the process_non_composite function which is responsible for applying atomic action’s
effects to a given world. The detailed description of that part can be found in Subsection 7.2.5. Finally,
in Lines 20 -26 one can see data structures and functions connected with composite action processing
- these elements are described in Subsection 7.2.6.

If the root call of the function returns “false” then “No plan found” message is shown, otherwise
actions read from “plan” string list will be printed on the console. What is important, the additional
list had to be introduced (instead of simply printing action names during exiting recursive call) due to
the fact, that such an approach would print the list backwards (from last to first). To maintain a good
user experience, the actions are printed in a natural order, from first to last, using that additional list
after planning is finished.
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1 Function find_and_apply_action(int step, std::vector<std::string>& plan) : bool
2 foreach belief b in beliefs do
3 if goal evaluates to t in b then
4 return true;
5 end
6 end
7 while belief = selectModule(beliefs) do
8 while world = selectModule(b.worlds) do
9 while action = selectAction(b.actions) do

10 evaluate action.preconditions in world, store result valuation in val
11 while valuation = selectV aluation(val) do
12 if valuation.value = t then
13 set success = false;
14 if action.isComposite = f then
15 process_non_composite(world, action, val);
16 if !violated_constraints(belief) then
17 success = find_and_apply_action(step+ 1, plan);
18 end
19 else
20 composite_stack.push(EXPRESSION,
21 action.get_composite_expression());
22 if !violated_constraints(belief) then
23 success = traverse_composite_expr(composite_stack,
24 add_database_stack, remove_database_stack,
25 step, world, belief, plan);

26 end
27 end
28 if success then
29 plan.push_back(action.get_name() + params)
30 return true
31 end
32 end
33 end
34 end
35 end
36 end
37 return false
38 end

Algorithm 10: The main frame of DFS implementation.
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7.2.4. Action’s preconditions

As presented in Actions 1 and 3 in Chapter 6, apart from add and remove rules, actions can contain
an expression being a precondition of a given action. Preconditions are important not only because
they allow for checking whether the action is executable in some world. Evaluating preconditions
also provides us with valuations of variables together with assigned truth values in such a way, that
whenever a variable in the preconditions are assigned given values, the whole expression will evaluate
to the corresponding truth value.

Let us consider Actions 4 (an atomic one) and 5 (a composite one).

1 action take(WHAT, FROM_WHAT):
2 preconditions:
3 on(WHAT, FROM_WHAT).
4 postconditions:
5 add:
6 hold(WHAT).
7 remove:
8 on(WHAT, FROM_WHAT)
9 end.

Action 4: Simple “take” action.

1 action takeAndPut(WHAT,
FROM_WHAT, ON_WHAT):

2 preconditions:
3 on(WHAT, FROM_WHAT),
4 forall X : object on(X,

ON_WHAT) in {unknown,
false}.

5 composite:
6 take(WHAT, FROM_WHAT);

put(WHAT, ON_WHAT).
7 end.

Action 5: Composite “takeAndPut” action.

For the purposes of the example let us assume, that in our world we have one object (apple), two
places (table and floor) and the apple is currently on the floor. Execution of Action’s 4 preconditions
in such a world will return the following tuples:

# wor ld . on (WHAT, FROM_WHAT) .
== R e s u l t s ==
FROM_WHAT: f l o o r , WHAT: a p p l e = t r u e

As the apple is currently not on the table, it is not included in the result due to its “unknown” truth
value. If we look at the preconditions result for Action 5, the evaluation will generate the following
tuples:

# ( wor ld ) . ( on (WHAT, FROM_WHAT) ,
f o r a l l X : o b j e c t ( on (X, ON_WHAT) i n {unknown , f a l s e } ) ) .
== R e s u l t s ==
FROM_WHAT: f l o o r , WHAT: app le , ON_WHAT: t a b l e = t r u e
FROM_WHAT: f l o o r , WHAT: app le , ON_WHAT: f l o o r = f a l s e
FROM_WHAT: t a b l e , WHAT: app le , ON_WHAT: f l o o r = f a l s e

One can clearly see, that here the unknown relationship between the apple and the table is explicitly
used by the “forall” statement. Interestingly, such preconditions do not allow for taking and putting
the some object on the same place. It is so due to the fact, that during the precondition execution there
is something already on the target place - the object to be moved. This can be a useful feature to limit
the amount of planning paths to take.

After the precondition evaluation, the planner iterates over the result valuations and looks at the action
as if variables in the action were assigned with current values taken from the valuation. Please note,
that there can be several tuples with t assigned - the planner will try each version of the action.
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In our case, the valuated actions to be applied will look as presented in Actions 6 and 7. Please note,
that the attributes of each action (put in parentheses after actions’ names) are also valuated for the
purpose of result presentation. What is important, all attributes of the action have to be grounded by
the preconditions. Otherwise the action will throw a runtime exception during the evaluation.

1 action take(apple, floor):
2 postconditions:
3 add:
4 hold(apple).
5 remove:
6 on(floor, apple)
7 end.

Action 6: Valuated “take” action with effects.

1 action takeAndPut(apple,
floor, table):

2 composite:
3 take(apple, floor); put(apple,

table).
4 end.

Action 7: Valuated “takeAndPut” action.

Such a requirement introduces quite a significant restrictions to specifying composite actions. Let
us imagine, that we just want to provide the planner with a generic template of an action, without
actually valuating the attributes of each action included into it. Such a possibility is also introduced -
the user should just not include the variable in the attribute list of the composite action - see Action 8
(when no preconditions are provided, they are assumed to be always true).

1 action takeAndPut():
2 composite:
3 take(WHAT, FROM_WHAT); put(WHAT, ON_WHAT).
4 end.

Action 8: Composite “takeAndPut” action without preconditions.

In this case the planner will allow the variables to be valuated by the preconditions of the actions
inside. What is important, it will still apply restrictions about the valuations emerging from previous
planning decisions - e.g. “WHAT” value applied by “take” action will have to be the same for the
“put” action as they were defined in sequence.

Moreover, during the result presentation, the information about the assigned values will not be lost as
each composite action is printed out together with its internal actions:1

# e x e c u t e putAppleOnTable .
E x e c u t i n g p l a n n i n g f o r problem putAppleOnTable . . .

P l an found :
1 . t akeAndPut ( ) :
#> t a k e (FROM_WHAT: f l o o r ( l i t e r a l ) , WHAT: a p p l e ( l i t e r a l ) )
#> p u t (WHAT: a p p l e ( l i t e r a l ) , ON_WHAT: t a b l e ( l i t e r a l ) )

1Example used in this subsection can be found in the planner’s package as the example file ex11.4ql
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1 Function process_non_composite(ModuleGeneric m, ModuleAction a, Valuation v)
2 set valuated_rules_to_add = {};
3 foreach Rule r in a.rules_to_add do
4 set valuated_rule = valuate(r, v);
5 add valuated_rule to valuated_rules_to_add;

6 end
7 set valuated_rules_to_remove = {};
8 foreach Rule r in a.rules_to_remove do
9 set valuated_rule = valuate(r, v);

10 add valuated_rule to valuated_rules_to_remove;
11 end
12 set to_add_snapshot_final = make_snapshot(m.to_add_database);
13 set to_remove_snapshot_final = make_snapshot(m.to_remove_database);
14 set to_remove_snapshot = make_snapshot(m.to_remove_database);
15 add valuated_rules_to_add to m.rules;
16 generate new WSM for m
17 foreach Rule r in valuated_rules_to_add do
18 set result_to_add = m.query(r.head);
19 foreach valuation v_add in result_to_add do
20 if v_add.value = t then
21 set valuated_head = valuate(r.head, v_add);
22 add valuated_head to to_add_snapshot_final;
23 remove valuated_head from to_remove_snapshot_final;
24 end
25 end
26 end
27 remove valuated_rules_to_add from m.rules;
28 set m.to_remove_database = to_remove_snapshot;
29 add valuated_rules_to_remove to m.rules;
30 generate new WSM for m
31 foreach Rule r in valuated_rules_to_remove do
32 set result_to_remove = m.query(r.head);
33 foreach valuation v_remove in result_to_remove do
34 if v_remove.value = t then
35 set valuated_head = valuate(r.head, v_remove);
36 add valuated_head to to_remove_snapshot_final;
37 remove valuated_head from to_add_snapshot_final;
38 end
39 end
40 end
41 remove valuated_rules_to_remove from m.rules;
42 set m.to_add_database = to_add_snapshot_final;
43 set m.to_remove_database = to_remove_snapshot_final;
44 generate new WSM for m

45 end

Algorithm 11: Application of atomic action to a module.
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7.2.5. Atomic actions - implementation details

Let us now look at the functionality of applying a single atomic action to a world - see Algorithm 11.
From now on, when we introduce a function without specifying its result type, we assume the function
to return no value (void). The code resembles the generic planning Algorithm 9 from Chapter 7 pretty
closely. Several design decisions have to be justified, however, when looking at the pseudocode. First
of all, as two databases are used (a separate for added literals and another one for facts to be removed),
modification of one database has to imply a contrary modification of the other (when we add a literal
to the positive database, we have to remove the same literal from the negative one) - otherwise literals
removed by an action and later added by another action would never appear in query results.

1 action take(WHAT, FROM_WHAT):
2 preconditions:
3 ...
4 postconditions:
5 add:
6 hold(WHAT).
7 remove:
8 on(WHAT, FROM_WHAT)
9 end.

Action 9: Simple “take” action.

1 action put(WHAT, ON_WHAT):
2 preconditions:
3 ...
4 postconditions:
5 add:
6 on(WHAT, ON_WHAT)
7 remove:
8 hold(WHAT).
9 end.

Action 10: Simple “put” action.

There is also a more serious problem with this approach which can be illustrated using Actions 9
and 10. Let’s assume that during some plan generation the action “put” was applied with argu-
ments “WHAT: apple, ON_WHAT: table” and followed by action “take” valuated with “WHAT:
apple, FROM_WHAT: table”. This means that after putting the apple from the table, module’s “add”
database contains {on(apple, table)} and “remove” database contains {hold(apple)}. Now, during
the application of the “take” action, the algorithm will try to add “hold(apple)” to module’s “add”
database by adding “take” action’s “add” rules to module’s rule set (see Line 15 of Algorithm 11) and
executing reasoning in that module (Line 16). This way only desired action’s effects will be added
to the module’s well-supported model (including “hold(apple)”). Then it will query the module for
heads of “add” rules (Lines 17-18) - so in this case it will query for “hold(apple)” - but the very same
literal that is stored in module’s “remove” database from the previous planning step. The query will
therefore return the empty result and the action will be only partially applied. This result is wrong as
the literal was removed in the previous step of planning and since then has been inferred again.2

The solution to this issue is quite simple - the original reasoning algorithm for local modules had to
be extended with removing newly inferred literals from module’s “remove” database - this way facts
that are added to the module’s well-supported model are not removed from it by previously added
“remove” literals.

Finally, one can see that snapshots of “add/remove” databases are created and restored before calcu-
lation of each part of action’s effects (Lines 12-14, 28 and 42-43). If we look at the Algorithm 9 (Page
58) then we can see, that calculation of “positive” effects of an action and the “negative” ones happen
in the same starting state, with the same state of module’s database. Please note that generating new
well-supported model may change to_remove_database as mentioned in previous paragraph - this
is why the database is restored after calculation of the positive effects. Additionally, a snapshot of
initial databases is done for the sole purpose of adding the effects to it (to_add_snapshot_final and

2The issue was present in first version of the planner, inter4QL 5.0. It is fixed in the latest version - see http://4ql.org
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do_remove_snapshot_final). Adding the positive effects have to be done to a separate database as
they may affect the results for the negative ones. At the very end, the databases with all the effects
applied are set as a new “add/remove” databases for module m.

7.2.6. Composite actions - complex effects

Application of the composite actions require a bit more work as the syntax of composite expressions
can generate trees of actions (composite actions may include other composite actions). Although
processing the leafs of these trees utilizes the same atomic action application algorithm as described
in Subsection 7.2.5, getting to these leafs may require a bit of state juggling which will be described
in this subsection.

Let us remind that the planner needs to support following composite actions: sequential actions (sim-
ply speaking one action has to be executed directly after another), conditional actions (depending on
the evaluation result of the condition, either “then” or “else” action is applied) and parallel actions
(both actions are applied at the same time and the same starting state and the results are combined
using rules described in Table 6.2).

As a data structure for keeping our composite planning state we propose a stack of elements which
can be divided into four major types: START_PARALLEL, RESET_ENV _PARALLEL,
END_PARALLEL and EXPRESSION . The first three types are control elements for parallel
action application containing some additional information required for appropriate state handling.
The fourth one is an expression which can be an actions’ name (either atomic or composite, with
parameters) or a composite expression.

While traversing of the composite expression is nothing more than reading data from a stack, the
magic takes place during the extraction of the composite expression to this stack. The traversing
algorithm does not have to worry about, e.g., checking which action in a conditional one has to be
applied - this is decided while extracting conditional action to the stack. Algorithm 12 presents the
overview of how each type of composite action is extracted.

Sequential and conditional action types are relatively simple. Please note that all elements are pushed
to the stack in a backward order (e.g. for sequential execution first the second action is pushed and
then the first). It is expected as Stack is a type of LIFO queue (Last In - First Out) which means that
elements that are pushed last will pop as first (so the planning order will be correct).

The more complicated logic starts during parallel action application. This can be simplified if we
notice that:

• each parallel action has to start from the same state of database (so we need to store snapshots
of databases somewhere);

• databases with effects of the first parallel action will be needed after the second parallel action
is applied (so we need a link to last parallel control element to put the databases there);

• according to Section 6.2, an action inside a composite one is executed if its preconditions are
true (otherwise one or none of the actions can be executed). To fulfill this, we need to know if
an action in parallel execution is a root action of that execution (for actions extracted from such
roots, e.g., when the root is a composite action, we still want to fail the planning upon failed
preconditions).
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1 Function extract_composite_to_stack(Expression expr, Stack s, ModuleGeneric
w)

2 if expr.type = PARALLEL then
/* Each control element receives it’s own copy of database as

each copy may get modified e.g. during an atomic action

processing. Moreover, each expression here is marked as a

root of a parallel action execution. Note: "push"

expressions below are simplified for readibility. */

3 set to_add_snapshot = make_snapshot(w.to_add_database);
4 set to_remove_snapshot = make_snapshot(w.to_remove_database);
5 s.push(END_PARALLEL, to_add_snapshot, to_remove_snapshot);
6 s.push(EXPRESSION, expr.right_expr);
7 set to_add_snapshot = make_snapshot(w.to_add_database);
8 set to_remove_snapshot = make_snapshot(w.to_remove_database);

/* Here some more things are set - e.g. a pointer to the

corresponding END_PARALLEL element. */

9 s.push(RESET_ENV _PARALLEL, to_add_snapshot, to_remove_snapshot);

10 s.push(EXPRESSION, expr.left_expr);
11 set to_add_snapshot = make_snapshot(w.to_add_database);
12 set to_remove_snapshot = make_snapshot(w.to_remove_database);
13 s.push(START_PARALLEL, to_add_snapshot, to_remove_snapshot);
14 end
15 if expr.type = SEQUENTIAL then
16 s.push(EXPRESSION, expr.right_expr);
17 s.push(EXPRESSION, expr.left_expr);
18 end
19 if expr.type = CONDITIONAL then
20 evaluate expr.condition in w, store result valuation in val
21 if val contains variable assignments then
22 throw runtime exception
23 end
24 if val.value = t then
25 s.push(EXPRESSION, expr.left_expr);
26 else
27 s.push(EXPRESSION, expr.right_expr);
28 end
29 end
30 if expr.type = TERM then
31 s.push(EXPRESSION, expr.get_term());
32 end
33 end

Algorithm 12: Procedure for extracting composite expression to the stack.
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Now, when we know how a composite expressions can be extracted to the stack, we can look at
Algorithm 13 being the main part of a composite action execution.3

1 Function traverse_composite_expr(Stack composite_stack, Stack
add_database_stack, Stack remove_database_stack, int step, ModuleGeneric world,
ModuleGeneric belief, std::vector<std::string>& plan) : bool

2 if composite_stack.empty() then
3 return false
4 end
5 set stack_elem = composite_stack.top();
6 set is_control_elem = false;
7 composite_stack.pop();
8 if stack_elem.type == START_PARALLEL then
9 set is_control_elem = true;

/* Each layer of parallel execution has own layer of

add/remove databases. Let’s prepare them and reset "world"

*/

10 add_database_stack.push(new database);
11 remove_database_stack.push(new database);
12 world.to_add_database = stack_elem.stored_add_database;
13 world.to_remove_database = stack_elem.stored_remove_database;
14 end
15 if stack_elem.type == RESET_ENV _PARALLEL then
16 set is_control_elem = true;

/* First parallel action is done, let’s remove its effects

from database stacks... */

17 to_add_database = add_database_stack.top();
18 add_database_stack.pop();
19 to_remove_database = remove_database_stack.top();
20 remove_database_stack.pop();

/* ... store them in END_PARALLEL element -

RESET_ENV_PARALLEL element has a pointer to END_PARALLEL

... */

21 stack_elem.parallel_end.stored_do_add_partial = to_add_database;
22 stack_elem.parallel_end.stored_do_remove_partial = to_remove_database;

/* ... and prepare clean databases for second parallel action

(and reset "world") */

23 add_database_stack.push(new database);
24 remove_database_stack.push(new database);
25 world.to_add_database = stack_elem.stored_add_database;
26 world.to_remove_database = stack_elem.stored_remove_database;
27 end

3For more details one can investigate the ModuleProblem.cc source file in inter4QL’s source code. Function names in
provided pseudocodes are the same as in the file so they are easy to find.
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28

29 if stack_elem.type == END_PARALLEL then
30 set is_control_elem = true;

/* Second parallel actions is done. Let’s remove its effects

from database stack */

31 to_add_second = add_database_stack.top();
32 add_database_stack.pop();
33 to_remove_second = remove_database_stack.top();
34 remove_database_stack.pop();

/* We have effects from the first action stored from

RESET_ENV_PARALLEL */

35 to_add_first = stack_elem.stored_do_add_partial;
36 to_remove_first = stack_elem.stored_do_remove_partial;

/* Now we have to build final results from effect’s of both

actions. This function puts combined results into

"to_add_first" */

37 combine_parallel_parts(to_add_first, to_remove_first, to_add_second,
38 to_remove_second);

/* Let’s reset the world to original state. */

39 world.to_add_database = stack_elem.stored_add_database;
40 world.to_remove_database = stack_elem.stored_remove_database;

/* Apply results either to "world" or to databases on parallel

stack (if this is an embedded parallel call). */

41 if add_database_stack.empty() then
42 database_to_add = world.to_add_database;
43 else
44 database_to_add = add_database_stack.top();
45 end

/* Only "add" database is filled. "Remove" databases has

alredy been used in combine_parallel_parts for prevention

of adding certain literals to "to_add_first". */

46 add to_add_first to database_to_add;

47 end
48 if is_control_elem then
49 if !violated_constraints(belief) then
50 set success = false;
51 if add_database_stack.empty() then
52 success = find_and_apply_action(step+ 1, plan);
53 else
54 success = traverse_composite_expr(composite_stack,
55 add_database_stack, remove_database_stack,
56 step, world, belief, plan);

57 end
58 if success then
59 return true
60 end
61 end
62 end
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63

64 if stack_elem.type == EXPRESSION then
65 set expression = stack_elem.expression();
66 if expression.type == TERM then

/* The expression is a term so it is action’s name. */

67 set action_module = get_module(expression.expr);
68 evaluate action_module.preconditions in world, store result valuation in val
69 if val.empty() == true then
70 if !disallow_failed_preconditions then
71 continue planning without applying action_module;

/* If planning returned "true" then add action’s name

to "plan" list with information about failed

preconditions. */

72 end
73 else

/* Checking whether action is composite or atimic and

iteration over valuations (world and action modules

are already set) are almost the same as in Algorithm

10. Differences are described below. */

74 apply action_module to the world by iterating over val;
75 end
76 else

/* The expression is a composite one - we need do extract

it further. */

77 extract_composite_to_stack(expression.expr);
78 if !violated_constraints(belief) then
79 set success = traverse_composite_expr(composite_stack,
80 add_database_stack, remove_database_stack,
81 step, world, belief, plan);
82 if success then
83 add function name to plan
84 return true
85 end
86 end
87 end
88 end
89 put stack_elem back to composite_stack;
90 restore add_database_stack and remove_database_stack;
91 return false;
92 end

Algorithm 13: Non-trivial part (parallel actions processing) of the composite expression travers-
ing procedure.
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Line 74 of the Algorithm 13 requires some explanation. As most of the code is exactly the same as in
Algorithm 10, this common part has been truncated to a single line to avoid duplications. However,
there are some differences between these algorithms so we will explain that now. First of all, if there
is something on any of the database stacks ("add_database_stack" or "remove_database_stack") then
action’s effects will not be added directly to the world but rather will be put to the databases on these
stacks. Because of that, the results of parallel sub-actions will be put into appropriate temporary
databases and later will be combined together before putting them to the actual world (or to the next
databases from the stack in the case of nested parallel actions). Apart from that, Algorithm 10 decides
whether to continue planning using find_and_apply_function or traverse_composite_expr bas-
ing only on the type of the action. Within Line 74, however, the traverse_composite_expr function
is used when the composite_stack is not empty. Otherwise, if no more actions are prepared to
be executed in a composite mode then the execution returns to a default state and proceeds with
find_and_apply_function.

Also Line 90 should be described in more details. In that line none of the previous executions (nei-
ther control elements nor expressions) finished with a successful plan and the stack_elem was al-
ready put back to the stack (the algorithm may read it again with different valuation of variables).
Therefore restoring databases on the stack is crucial as otherwise some leftovers may influence fu-
ture action’s effects. To restore them correctly, the algorithm has to do the reverse operations than
extract_composite_to_stack function. So if the stack_elem’s type is "START_PARALLEL" then
we should pop one element from both "add_database_stack" and "remove_database_stack". In the
case of the "RESET_ENV_PARALLEL" we need to pop one element from both stacks and put empty
databases instead. Finally, for "END_PARALLEL" it is sufficient just to put empty databases to both
stacks.

As one can see, the traverse_composite_expr acts like a custom execution of the original DFS
frame algorithm. The recursive style has been preserved here as well so that both algorithms could
integrate in a simplest possible manner. Traversing of the composite expression does not increment
the step number as the whole execution represents an application of a single action (hence single
step number). Also, please note that the goal is not checked within the function and is verified after
composite action is fully applied (in next call of find_and_apply_function as shown in Algorithm
10).

In theory, integrating both algorithms into one iterative function with a single stack is possible and
could be a nice exercise to perform. From the practical point of view however, creating such a huge
blob of code will decrease the readability significantly. Changing the recursive style to the iterative
one is of course beneficial due to execution depth point of view. However, taking the experimen-
tal character of the implementation into account, it does not seem extremely important as it seems
sufficient for our applications.

Not surprisingly, the very important part in Algorithm 13 plays the correct restoring of the status
after failed planning iteration. When executing parallel actions, databases on stack are modified and
eventually popped from the stack to be used in combine_parallel_parts function. If the planning
was later unsuccessful, then the flow will return to the iteration over valuations to try the next one -
but the databases on the stack will be missing (as it was popped in previous valuation try). This is
why both keeping the stack size consistent and also clearing the databases between each try is crucial
for obtaining correct results.

The only part missing here is the combine_parallel_parts function which takes effects of two par-
allel actions and combine them using instructions given in Table 6.2 - see Algorithm 14. Nothing
unusual can be spotted there. Firstly, positive effects of the first action are altered with data provided
from negative effects of the first and the second actions. Then positive effects of the second action are
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migrated to the the first database but only if they were not removed by the the second action (if re-
moved by first one, they will receive the “inconsistent” value and still be migrated). Finally, “remove”
databases are merged.

When all functions from this subsections are put together, a common algorithm for composite actions
emerges. Of course the description has been presented to some extent of detail, leaving some subtle
details to be discovered in the actual source code.

1 Function combine_parallel_parts(database to_add_first, database to_remove_first
, database to_add_second, database to_remove_second)

2 foreach touple t in to_add_first do
3 foreach valuation v in t.valuations do

/* Literal added by first action but removed by the second

*/

4 if v exists in to_remove_second then
5 set v.value = inconsistent;
6 end

/* Literal added and removed by the first action */

7 if v exists in to_remove_first then
8 set v.value = unknown;
9 end

10 end
11 end
12 foreach touple t in to_add_second do
13 foreach valuation v in t.valuations do

/* Literal added by second action but removed by the first

*/

14 if v exists in to_remove_first then
15 add v to to_add_first with value "inconsistent"
16 end

/* Literal added by second action and not removed by it */

17 if v exists in to_remove_second with value other than "true" then
18 add v to to_add_first with value "true"
19 end
20 end
21 end
22 foreach touple t in to_remove_second do
23 foreach valuation v in t.valuations do

/* Simply rewrite literals */

24 add v to to_remove_first with value v.value
25 end
26 end
27 end

Algorithm 14: Function combining effects of parallel actions.
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7.3. Planning heuristics in inter4QL

The planning algorithm presented in the previous section is based on searching the whole space of
states so that eventually it will find a solution. Of course, this may take a significant amount of time.
This problem was also widely recognized in the literature. Researchers were trying to find some ways
to guide the algorithms during their computations. The approach could, e.g., be based on defining
some conditions or functions which, if optimized during planning by selecting the best actions, will
potentially direct the algorithm to the solution faster then during a blind search (and possibly produce
more optimized plan).

The planner implemented as a part of this PhD thesis is an experimental one, but during the implemen-
tation and testing it was clear that blind search can be still improved (as even simple planning could
take non-proportionally long time). Therefore some improvements have been done in the planning
algorithm to improve planning times and produced plans.

As a result five heuristics were implemented:

• “disallow_failed_preconditions” - disallows continuation of planning with failed preconditions
during parallel action execution (effectively limiting planning time);

• “composite_first” - do not iterate over actions in order as they are defined, place composite
actions first on the list;

• “goal_probing” - based on rating the goal’s “truth level” after action’s application and sorting
the actions on basis of the rating (turning the blind planning into a goal-oriented one); it does
not look at global situation though, i.e., sorting is done within each step only;

• “increase_rating_only” and “strict_increase_rating_only” - improvements for the “goal_probing”
heuristic. Given valuation during the planning phase is allowed to be applied only if its goal rat-
ing is greater or equal (for “increase_rating_only”) or greater (for “strict_increase_rating_only”)
than rating used in the previous planning step. Please note, that a usage of any of these heuris-
tics automatically enables “goal_probing”.

In addition one can choose a “random” option. In this case the planning algorithm does not sim-
ply iterate over beliefs/worlds/actions/valuation but rather selects them randomly (can be combined
with “composite_first”). It is a variation of a blind search algorithm. It is mainly introduced for
a comparison purposes.

7.3.1. Data-reordering heuristics

“Random” and “composite_first” methods are the ones that are focusing on reordering the data during
planning. In theory, without them each planning should take approximately the same amount of time
and internally visit the data in the same order. However, due to the C++ internals, this is not true in
practice. As highlighted before in Subsection 5.3.1, the databases internally are C++ maps (unordered
multimaps, to be exact). These maps store pointers to planner’s entities (and even though the map is
said to be an unordered one, it seems to be internally sorting the data based on the pointer addresses)
which means that during each run of the planner different addresses can be assigned to valuations and
therefore the order of valuations is different. This results in a significant time differences between
different runs of the planner on the same planning problem (one run can take 1.5 seconds and the
other 6 seconds because of the mentioned behavior).
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Therefore, to normalize this a bit, data-reordering heuristics were introduced. Their job is to eliminate
the internal data ordering fluctuations and potentially provide a better average planning time.

As composite actions can be seen as action templates, sometimes it is better to try them first, rather
than spending time on atomic actions. This is where “composite_first” heuristics proves to be useful.
It can also be combined with the “random” one resulting in composite actions to be randomized
separately and used first, before randomized atomic actions.

7.3.2. Goal-oriented planning

By default, actions are ordered either as they were defined in a 4QL file or they are mixed with one or
many data-reordering heuristics. The literature, however, mentions heuristics dedicated to directing
the planning towards the goal and this is what “goal_probing” heuristic is implemented for. If used,
data-reordering heuristics become meaningless as each valuation gets its own rating and is sorted
separately based on the actual rating value.

This heuristics is based on a goal rating which measures to what extent the goal is satisfied. The rating
is calculated as presented in Table 7.1.

Let v : Var −→ Const be an assignment, w be a 3i-world and A,B be formulas. Then:

•
(
rating(t)

)
(w, v)

def
=

{
2 when t = t
0 otherwise;

for t ∈ {f, u, i, t};

•
(
rating(A)

)
(w, v)

def
=

{
2 when A(w, v) = t
0 otherwise;

•
(
rating(¬A)

)
(w, v)

def
=

{
2 when A(w, v) = f
0 otherwise;

•
(
rating(A ∧B)

)
(w, v)

def
=
(
rating(A)

)
(w, v) +

(
rating(B)

)
(w, v)

•
(
rating(A ∨B)

)
(w, v)

def
= max{

(
rating(A)

)
(w, v),

(
rating(B)

)
(w, v)}

Table 7.1: Formula rating calculation rules.

Simply speaking, a rating for a formula is assigned the value 2 if the formula evaluates to t in a given
world w. Ratings are summed within conjunction of formulas and a maximum of ratings is selected
for a disjunction of these. Please note, that the definition does not distinguish special types of formulas
like quantified ones or implications as the rating is based only on the value the formula evaluates to.

The introduction of ratings requires a slight modification of the planning algorithm. Most of the mod-
ifications take place in find_and_apply_function function. Instead of simply selecting an action
for application and proceeding with planning, the algorithm checks actions preconditions, applies the
action and sets a flag that goal probing is ongoing. When this flag is set, the first encountered goal
check (meaning the closest execution of find_and_apply_function function) will always return
“false” (no matter whether the goal is satisfied or not) and apart from that, will return goal’s rating
(the rating will be changed to 9999 if the goal is satisfied). This means, that the algorithm will probe
one step ahead (trying one atomic action or one composite action, no matter how complex it is).
When all actions are tested, they are sorted with respect to goal rating and executed (normally this
time) starting with the most promising one.

The modifications are also required in traverse_composite_expr function as otherwise composite
actions will remain deaf to the rating hints and would have to be reapplied blindly. Of course such
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a blind application would be assigned with an appropriate goal rating, but internally each atomic
action will not know how to order its valuation to get to that highest rating. This is why we introduce
composite_ratings map storing the information about:

• the current step of planning;

• the current step inside of traverse_composite_expr call;

• belief and world name;

• current action’s name;

• current action’s parameters;

• rating assigned to the above data.

Such information is enough to uniquely identify the valuation applied during composite action han-
dling. What is important, each entry stores the maximum rating that can be obtained for the current
action. This means that the deeper recursive executions may improve the ratings for shallower ones if
better goal rating was found. Because of that, orderings made on these shallower calls will select the
best valuations first and then move to the worse ones.

In practice the entries in the map can look like this:4

Adding key " 0 . 2 . t a k e . env . e n v i r o n m e n t . t a b l e ( l i t e r a l ) . c ( l i t e r a l ) .
0 . 3 . p u t . env . e n v i r o n m e n t . c ( l i t e r a l ) . b ( l i t e r a l ) . "
t o d a t a b a s e wi th r a t i n g : 4

Adding key " 0 . 2 . t a k e . env . e n v i r o n m e n t . t a b l e ( l i t e r a l ) . c ( l i t e r a l ) . "
t o d a t a b a s e wi th r a t i n g : 4

The above keys added to the map inform that, if in planning step 0 and composite step 2 we apply
action “take” in belief “env” and world “environment” with parameters “table” and “c” then the best
rating so far would be 4. This rating can be achieved if in the next composite step we execute action
“put” with attributes “c” and “b”. Observe, that the best rating from a deeper execution is assigned to
the shallower one (if it better than the one already stored there) in order to allow the valuation selector
function to select the best valuation starting from the very beginning of composite processing.

The computation of goal’s rating is achieved by extending standard expression evaluation algorithm.
Except from truth value, it is now also capable of returning expression’s rating using rules from
Table 7.1.

Global valuation ordering

One can notice, that although the valuations are sorted within one planning step, there is still a pos-
sibility that one locally best valuation will lure the planning engine to a deep and useless path with
actually lower goal ratings ahead. To avoid that, two additional heuristics were introduced: “in-
crease_rating_only” and “strict_increase_rating_only”. Using these heuristics, a provider of a plan-
ning problem can indicate that planning should go only in a direction of increasing ratings or strictly
increasing ratings. Thanks to such information, the planner is able to cut worse paths at the very
beginning of the planning.

4To enable such logs in the planner please execute debug "probing" enable. and start the planning problem.
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Please note two problems with composite actions here. Firstly, the composite_ratings map is con-
structed in a way that the same “best” rating is kept on the whole composite path. This means, that
such actions would never be applicable if “strict_increase_rating_only” is enabled. To fix this, in
traverse_composite_expr function only, we always allow for equal ratings (which seems logical
as whole composite action is treated as one). Secondly, if the rating threshold would be updated on
each step of composite action handling, we would set it to the best achievable rating during the very
first step and then ignore everything that is lower than that - which is obviously wrong. Fortunately,
the solution here is easy - only ratings calculated after the whole successfully applied actions should
affect the threshold. Therefore it is always updated before execution of atomic actions handling and
before the whole composite action checking.
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Chapter 8

Actions in action

All of the chapters so far where guiding the reader through the internals of the beliefs, belief bases,
actions and finally implementation to the point where all these ideas can be tested in some practical
applications. The chapter is divided into three subsections containing discussions on three different
scenarios. The first two scenarios are focusing on the comparison between ACTLOG and already
existing, well known planning engine - PDDL. These two sections also provide a comparison of the
planning performance using heuristics built into the planner. The third scenario is a bit different
as it presents an actual realistic situation of bomb defusing where robots are usually used. Apart
from presenting the scenario only, the third section will propose and discuss an ACTLOG’s action set
dealing with the situation.

It is important to mention here that all commands and programs presented in the chapter are included
into the release of inter4QL interpreter available at http://4ql.org/inter4qlPhD.html.1 The reader can
switch to the interpreter to experiment on his own with the modules and verify the results.

Times presented in the chapter were gathered using 2018’s Apple MacBook Air computer (1,6 GHz
Intel Core i5, 8 GB DDR3 RAM) and, of course, may differ from the times obtained on other com-
puters.

8.1. Scenario 1 - raising the table

The scenario is available in the file “example10.4ql” in the inter4QL’s package.

The scenario is quite simple - we have a table standing in the middle of a room. On the table there
is a glass with a water. The goal is to raise the table without flipping over the glass and spilling the
water. If a robot raises only one side of the table, the glass will obviously fall or flip over. This is
why we assume here, that the robot has two arms and can raise both sides of the table simultaneously
- this is the key to the success.

Representation in ACTLOG

Let’s now look at the actual specification of the scenario in ACTLOG starting with the module “envi-
ronment” storing the current state of the world during planning:

module e n v i r o n m e n t :

1Each section will point to a specific example file in interpreter’s package. Please follow instructions on the web page
or interpreter’s “help” command output to load them and experiment.
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domains :
l i t e r a l e l e m e n t .
l i t e r a l s i d e .
l i t e r a l s t a t .

r e l a t i o n s :
r a i s e d ( s i d e ) .
s t a t u s ( s t a t ) .

f a c t s :
s i d e ( l e f t ) .
s i d e ( r i g h t ) .
s t a t ( ok ) .
s t a t ( f a i l ) .
− s t a t u s ( f a i l ) .

end .

One can see that we have two sides of the table - left and right. Both of the sides can be raised and
the status of each side will be described by the “raised” relation. If both sides are raised with respect
to scenario’s constraints, the status of the planning will be changed to ok (fail otherwise). One can
note, that adding additional artificial “status” is not needed as planning goal can directly check the
required conditions also containing inconsistencies and partial knowledge. However, this scenario is
also meant to present unique abilities of the planner.

As stated earlier, planning operates on belief bases so we define the following belief base:

b e l i e f s env :
c o n s t r a i n t s :
r i g i d :

( r a i s e d ( l e f t ) i n { t r u e , i n c o n s } ,
r a i s e d ( r i g h t ) i n { t r u e , i n c o n s } )

|
( r a i s e d ( r i g h t ) i n {unknown } ,

r a i s e d ( l e f t ) i n {unknown } ) .
wo r l d s :

e n v i r o n m e n t .
end .

The above belief base contains one world “environment” but also includes a constraint for this prob-
lem. The only rigid constraint here is responsible for keeping the state safe by defining safe as “both
sides of the table are raised or none sides of the table are raised”. All other states of the environment
violate the constraints and discontinue planning.

Finally, we need actions:

a c t i o n r a i s e L e f t ( ) :
/ / c a n n o t r a i s e t w i c e . . .
p r e c o n d i t i o n s :

r a i s e d ( l e f t ) i n {unknown } ,
add :

r a i s e d ( l e f t ) .
/ / a r t i f i c i a l remove − j u s t t o t e s t i n c o n s i s t e n c y
remove :

r a i s e d ( r i g h t ) .
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end .

a c t i o n r a i s e R i g h t ( ) :
/ / c a n n o t r a i s e t w i c e . . .
p r e c o n d i t i o n s :

r a i s e d ( r i g h t ) i n {unknown } .
add :

r a i s e d ( r i g h t ) .
/ / a r t i f i c i a l remove as w e l l . . .
remove :

r a i s e d ( l e f t ) .
end .

These actions are self explanatory. The only unusual specifications here are a bit artificial “remove”
sections. Removing them will, of course, not affect the correctness of the specification but it intro-
duces inconsistency which shows how easily the planner can deal with inconsistent planning goals
(let us remind, that if one action in parallel execution adds a literal to a database and the other removes
it then the final output of the action adds the literal with a truth value i).

The above actions will not be able to fulfill the goal’s requirements though. We need an action that
will raise both sides of the table at the same time. We can define such an atomic action (call it, e.g.,
raiseBothSides) and combine the above “add” and “remove” sections into one. This, however, will
not correspond with the natural feeling of the atomic action (such raiseBothSides action does not feel
atomic any more, it in fact contains two separate actions artificially squeezed into one).

This is, among others, why composite actions were introduced. The following action looks and feels
much better:

a c t i o n r a i s e B o t h ( ) :
c o m p o s i t e :

r a i s e L e f t ( ) | | r a i s e R i g h t ( )
end .

This composite action represents exactly our intentions - we would like to “execute two separate
actions at the same time”. Each action will check its precondition independently and fail if needed
(also independently from the other allowing for only partial action execution).

Finally we define status reporting (introduced mainly for testing if-then-else composite actions):

a c t i o n addOK ( ) :
add :

s t a t u s ( ok ) .
end .

a c t i o n addFAIL ( ) :
add :

s t a t u s ( f a i l ) .
end .

a c t i o n v e r i f y R a i s e ( ) :
c o m p o s i t e :

/ / i f => t h e n / e l s e
r a i s e d ( l e f t ) = incons ,
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r a i s e d ( r i g h t ) = i n c o n s
=> addOK ( ) / addFAIL ( )

end .

The planning problem definition is following:

problem r a i s e T a b l e :
b e l i e f s :

env .

a c t i o n s :
r a i s e L e f t .
r a i s e R i g h t .
r a i s e B o t h .
v e r i f y R a i s e .

g o a l :
s t a t u s ( ok ) , − s t a t u s ( f a i l )

max_depth :
10

h e u r i s t i c s :
none .

end .

Please note that addOK and addFail actions are not included into the planning problem. They are lo-
cally used by verifyRaise composite action but do not affect the planning times for the whole problem
(the planner does not have to iterate through them in each step).

Representation in PDDL

For comparison let us present the same problem (without artificial elements added) implemented in
PDDL. The PDDL planning problems consist of two separate files: planning domain definition and
problem definition (in ACTLOG we can have both elements in one 4QL file). To verify the PDDL
specification we have used an online PDDL planner at http://solver.planning.domains.

The “domain” part of the problem definition can be inspected below:

( d e f i n e ( domain TABLE_DOMAIN)
( : r e q u i r e m e n t s : n e g a t i v e−p r e c o n d i t i o n s : s t r i p s )
( : p r e d i c a t e s

( r a i s e d L e f t )
( r a i s e d R i g h t )
( none )

)

( : a c t i o n r a i s e L e f t
: p r e c o n d i t i o n

( and
( n o t ( r a i s e d L e f t ) )
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( n o t ( r a i s e d R i g h t ) )
)

: e f f e c t ( r a i s e d L e f t )
)

( : a c t i o n r a i s e R i g h t
: p r e c o n d i t i o n

( and
( n o t ( r a i s e d L e f t ) )
( n o t ( r a i s e d R i g h t ) )

)
: e f f e c t ( r a i s e d R i g h t )
)

)

Although the domain defined above is rather standard in PDDL, let us discuss some parts of it which
may not be obvious. First of all, please note the “requirements” section. PDDL is a general planning
language so its features have been divided into plug-ins. Due to this decision, the user can adjust
the tools as much as possible to fit the current application. Therefore, for example, to be able to
use the “NOT” operator in preconditions, we have to include a special “:negative-preconditions” re-
quirement.2 Also, planning features have been extracted with two most common ones being “:strips”
(STRIPS-based planning algorithm) and “:adl” (extensions to STRIPS containing quantified expres-
sions and conditional effects of actions). In this particular application the pure STRIPS is sufficient.

Actions defined above correspond almost directly to the ones declared in ACTLOG in the previous
subsection. The difference is that the logic underneath PDDL is two-valued which implied two-valued
action preconditions. Moreover, “raise” actions defined in ACTLOG do not explicitly check the status
of the other side of the table as the constraints make sure that either both sides of the table are raised
or not. Here using the same mechanism was, unfortunately, not possible. Theoretically, starting with
version 3.0, PDDL supports the “:constraints” command defined in planning problems which would
be ideal here but due to some unknown reasons we were not able to make this running (producing
“segmentation fault” in the planning engine). Therefore we changed the constraint approach to an
explicit check of both sides of the table directly in action’s preconditions (for PDDL only). However,
the corresponding 4QL file can be easily modified to match this approach.

Now let us look at the planning problem itself:

( d e f i n e ( problem RAISE_TABLE )
( : domain TABLE_DOMAIN)
( : i n i t

( none )
)
( : g o a l

(AND
( r a i s e d L e f t )
( r a i s e d R i g h t )

)
)

)

2Interestingly, the online planning engine did not report any errors when this was not included. However, to be aligned
with the PDDL documentation, I am leaving it in the code.
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Here, the one main difference between PDDL and ACTLOG can be spotted. Namely, the initial state
of the planning is built into the PDDL’s problem definition. In ACTLOG the initial well-supported
models of the modules included in the belief base define the initial state. Apart from that, it seems that
the PDDL parser does not allow for missing or empty “init” command so we created an additional
“none” predicate to mitigate this.

Let us now look at the output of the planning engine:

BFS s e a r c h comple t ed
P l a n n e r found 0 p l a n ( s ) i n 0 .328 s e c s .

As one can see, PDDL does not seem to allow parallel action execution. Unfortunately, it also does
not allow for defining complex actions which could provide a hint to the planning engine that some
of the actions are worth to be tried together. This case can be of course fixed by adding the following
action:

( : a c t i o n r a i s e B o t h
: p r e c o n d i t i o n

( and
( n o t ( r a i s e d L e f t ) )
( n o t ( r a i s e d R i g h t ) )

)
: e f f e c t ( and ( r a i s e d L e f t ) ( r a i s e d R i g h t ) )

)

Now the output look as follows:

IW s e a r c h comple t ed
0 . 0 0 1 0 0 : ( r a i s e b o t h )
P l a n n e r found 1 p l a n ( s ) i n 0 .286 s e c s .

What is also interesting here, the PDDL planning engine changes planning methods on the basis of
the problems passed to it. During the first try it was using the BFS algorithm (Breadth-First Search)
which stores more statuses in the memory at the same time but finds an optimal plan for a given
problem. In the second try the engine utilized the IW algorithm (Iterative Width) which consists of a
sequence of BFS calls parameterized with a constant iterated with each call. The constant is used for
limiting the “novelty” parameter of a state during search (with “novelty” of a state being defined as
a size of the smallest tuple of facts that hold in that state for the very first time since the start of the
planning process). In other words, each BFS call within IW algorithm is given with constant k and
prunes all the states which “novelty” parameter greater then k. For more details please see, e.g., [11].

Heuristics in the scenario

Let us now return to the ACTLOG’s specification for the scenario. If we execute it in the version
described in this section, we will end up with planner’s output analogical to following one:

# e x e c u t e r a i s e T a b l e .
E x e c u t i n g p l a n n i n g f o r problem r a i s e T a b l e . . .

P l an found :
1 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( )
#> r a i s e R i g h t ( )
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2 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( ) − f a i l e d p r e c o n d i t i o n s
#> r a i s e R i g h t ( ) − f a i l e d p r e c o n d i t i o n s
3 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( ) − f a i l e d p r e c o n d i t i o n s
#> r a i s e R i g h t ( ) − f a i l e d p r e c o n d i t i o n s
4 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( ) − f a i l e d p r e c o n d i t i o n s
#> r a i s e R i g h t ( ) − f a i l e d p r e c o n d i t i o n s
5 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( ) − f a i l e d p r e c o n d i t i o n s
#> r a i s e R i g h t ( ) − f a i l e d p r e c o n d i t i o n s
6 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( ) − f a i l e d p r e c o n d i t i o n s
#> r a i s e R i g h t ( ) − f a i l e d p r e c o n d i t i o n s
7 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( ) − f a i l e d p r e c o n d i t i o n s
#> r a i s e R i g h t ( ) − f a i l e d p r e c o n d i t i o n s
8 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( ) − f a i l e d p r e c o n d i t i o n s
#> r a i s e R i g h t ( ) − f a i l e d p r e c o n d i t i o n s
9 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( ) − f a i l e d p r e c o n d i t i o n s
#> r a i s e R i g h t ( ) − f a i l e d p r e c o n d i t i o n s
1 0 . v e r i f y R a i s e ( ) :
#> addOK ( )

P l a n n i n g took 66 m i l l i s e c o n d s .

Here DFS (Depth-First Search) is always trying to go as deep as possible and perform the search there
first. In general, this is not a good feature for a planning algorithm but on the other hand the planning
state required to be used can contain only differences between module models in consecutive planning
steps (opposite to the need of storing full module in case of e.g. BFS algorithm to be able to return
to that state at any time). To balance the reasonable implementation simplicity and to avoid planning
outputs as shown above, planning heuristics were introduced.

“disallow_failed_preconditions”

The first heuristics to be discussed is “disallow_failed_precondition”. Let us remind that, as specified
in Subsection 6.2, not always both actions in a parallel execution are applied due to failed precon-
ditions. It is possible that one of none of these actions are executed which in fact can make such
composite action the empty one - this is the case in current scenario. Of course, the appropriate
action’s preconditions should be used to avoid this but one more possibility was introduced being
the “disallow_failed_precondition” planning heuristic. Using this option, planning output looks as
follows:

P l an found :
1 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( )
#> r a i s e R i g h t ( )
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2 . v e r i f y R a i s e ( ) :
#> addOK ( )

P l a n n i n g took 27 m i l l i s e c o n d s .

In this particular scenario the heuristics fixed the issue and the obtained plan is optimal. In general
case however, using this heuristics may completely block the possibility of finding the plan or may
not provide optimal plan if other action’s preconditions are not well defined.

This is why the heuristic is provided for the user (just like the “:requirements” section in PDDL
domains) so that the user can decide whether such functionality can improve plans and planning
times or break the planning problem.

“composite_first”

In this scenario the “composite_first” heuristics does not have any influence on the efficiency of the
produced plan. Please note, that the problem with the original plan is caused by a feature of parallel
actions which allows them to be partially applied. This happens only when “verifyRaise” action is
applied before the “raiseBoth” one. This means that the order of these composite actions is important.
Due to its design, “composite_first” heuristic is not able to influence the order of actions within the
composite collection so the generated plan suffers from the same inefficiency as the original plan.

At the same time please note, that the optimal plan consists of composite actions only. Therefore using
this heuristic improves planning time which is decreasing from around 70 milliseconds to around 50.

“random”

Randomization of applied actions and valuations cannot be easily judged in this scenario. Of course
it can lead to providing an optimal plan but couple of seconds later it may cause planning to last 3.5
seconds and return a non-optimal plan:

# e x e c u t e r a i s e T a b l e .
E x e c u t i n g p l a n n i n g f o r problem r a i s e T a b l e . . .

P l an found :
1 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( )
#> r a i s e R i g h t ( )
2 . v e r i f y R a i s e ( ) :
#> addOK ( )

P l a n n i n g took 33 m i l l i s e c o n d s .

# e x e c u t e r a i s e T a b l e .
E x e c u t i n g p l a n n i n g f o r problem r a i s e T a b l e . . .

P l an found :
1 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( )
#> r a i s e R i g h t ( )
2 . r a i s e B o t h ( ) :
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#> r a i s e L e f t ( ) − f a i l e d p r e c o n d i t i o n s
#> r a i s e R i g h t ( ) − f a i l e d p r e c o n d i t i o n s
3 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( ) − f a i l e d p r e c o n d i t i o n s
#> r a i s e R i g h t ( ) − f a i l e d p r e c o n d i t i o n s
4 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( ) − f a i l e d p r e c o n d i t i o n s
#> r a i s e R i g h t ( ) − f a i l e d p r e c o n d i t i o n s
5 . v e r i f y R a i s e ( ) :
#> addOK ( )

P l a n n i n g took 3559 m i l l i s e c o n d s .

This method cannot be reliably used as a way of improving returned plans but can be really good
for testing the quality of provided planning problems. When randomization is enabled, all orders
assigned to actions and valuations during problem writing (by a user) and parsing (be the planner)
is lost so planning may enter paths that were not explicitly assumed by the creator of the planning
problem. For example, over 3.5 second planning time was caused by repetitions of “verifyRaise”
action which was causing useless planning paths with “status(fail)” added to database at the very
beginning of the path. Therefore, even if further planning found a solution, the goal could not be
satisfied. Such issues can be then fixed using appropriate preconditions or planning constraints.3

“goal_probing”

Goal probing is the most advanced heuristic in the planner. As described in the previous chapter, it
applies an action for testing purposes only, calculates goal’s rating and orders actions for an execution
based on these ratings. In the case of this scenario it works well.

Please note, that the problem with the plan generated for this scenario follows from the fact, that
first we raise both sides of the table and then we can have potentially endless sequence of empty
“raiseBoth” actions applied until finally the goal is verified by “verifyRaise” action. The problem
results from the fact that empty “raiseBoth” action has the same priority as “verifyRaise” action. We
can change that using “goal_probing” heuristic.

Initially, the planner has a choice from “raiseBoth” and “verifyRaise” actions (all other actions will
be assigned with rating -50 due to failed constraints). The rating of “raiseBoth” equals 2 (due to
“-status(fail)” literal) while rating of “verifyRaise” is calculated to be 0 (“-status(fail)” no longer
evaluates to true) - the planner will therefore choose “raiseBoth” for evaluation. When the table
is raised, the goal rating of each empty “raiseBoth” does not change (it is still 2) while rating of
“verifyRaise” action jumps to 4 as both parts of the goal evaluate to true (in fact, the final rating, due
to fulfilled goal, will be changed to 9999 as highlighted in Subsection 7.3.2). This is why the plan
will always be optimal:

P l an found :
1 . r a i s e B o t h ( ) :
#> r a i s e L e f t ( )
#> r a i s e R i g h t ( )
2 . v e r i f y R a i s e ( ) :
#> addOK ( )

3The planner provides a way of inspecting the planning process using the “debug” command. One can enable debug
logs before the actual execution to see what values are checked and in which order.
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P l a n n i n g took 53 m i l l i s e c o n d s .

The price for the optimal plan is the planning time being almost twice higher than without the probing.
It is visible in this small example but with problems complex enough (see next two scenarios) it turns
out that it is worth paying some time for good planning hints (saved time exceeds the time spent on
probing significantly).

Please note that using “increase_rating_only.” and “strict_increase_rating_only.” does not influence
the result here as we are initially start with a negative rating threshold which is then updated to 2 after
“raiseBoth” and to 4 after “verifyRaise” (so the path is already strictly increasing).

8.2. Scenario 2 - BLOCKS-4-0 problem from IPC 2000 planning contest

The scenario is available in the file “example13.4ql” in the inter4QL’s package.

Planning contests play a very significant role in the development process of planning engines. Devel-
opers around the world annually prepare their planners to compete in a series of planning problems.
Some engines (like PDDL) were created especially with such contests in mind which makes the com-
petition a serious and important event for planner creators.

Although competing in such a contest would be a great experience, the inter4QL planner is devel-
oped as a proof of concept rather than a fully developed tool ready to compete with mature engines
developed for many years by international communities. However, the planning problems used in
competitions are inspiring and are the important benchmarks for testing our solutions.

Our second test scenario is an IPC’s (International Planning Competition) problem from year 2000
called BLOCKS-4-0. The idea is the following: we have 4 blocks laying on the table (called A, B, C
and D) and one robotic arm which can take and put the block either on the table or on another block.
The goal of the planning problem is to stack the blocks in a way that B is on A, C is on B and D is on
C (with A staying on the table).

The scenario does not seem very complicated but this in fact is a good its feature. Its simplicity
makes it a good sandbox for discussing different heuristics. Moreover, it shows, that despite some
limitations our planner is capable of approaching problems from planning contests which is a positive
prognostics for future ACTLOG’s development.

Representation in ACTLOG

Just like in the case of the previous scenario, let us start with defining the planning world - both the
actual module which will store the planning state but also a belief base which will be used in the
planning:

module e n v i r o n m e n t :
domains :

l i t e r a l e l e m e n t .
l i t e r a l s i d e .
l i t e r a l s t a t .

r e l a t i o n s :
on ( e lement , e l e m e n t ) .
ho ld ( e l e m e n t ) .

f a c t s :
on ( d , t a b l e ) .
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on ( c , t a b l e ) .
on ( b , t a b l e ) .
on ( a , t a b l e ) .

end .

b e l i e f s env :
c o n s t r a i n t s :

r i g i d :
/ / t a b l e must n o t s t a n d on a n y t h i n g e l s e . . .
f o r a l l X: e l e m e n t ( on ( t a b l e , X) i n { f a l s e , unknown } ) .
/ / t a b l e must n o t be h e l d . . .
ho ld ( t a b l e ) i n { f a l s e , unknown } .

wo r l d s :
e n v i r o n m e n t .

end .

Again, here we have some planning constraints which allow for keeping the state of planning consis-
tent. In this planning problem we do not want to take nor hold the table and we do not want the table
to stand on anything (even though such state does not explicitly emerge from actions defined later, it
is still worth defining general rules of the world).

Now we have to define some actions that will move the blocks:

a c t i o n t a k e (WHAT, FROM_WHAT) :
p r e c o n d i t i o n s :

/ / you can t a k e s t h i f :
/ / − you a r e n o t h o l d i n g a n y t h i n g r i g h t now
/ / − i t i s on some th ing
/ / − t h e r e i s n o t h i n g on t o p of i t
f o r a l l X: e l e m e n t ( ho ld (X) i n { f a l s e , unknown } ) ,

on (WHAT, FROM_WHAT) i n { t r u e , i n c o n s } ,
f o r a l l X: e l e m e n t ( on (X, WHAT) i n { f a l s e , unknown } ) .

add :
/ / we a r e now h o l d i n g i t !
ho ld (WHAT) .

remove :
/ / t h a t t h i n g s t o p s b e i n g on s t h
on (WHAT, FROM_WHAT) .

end .

a c t i o n p u t (WHAT, ON_WHAT) :
p r e c o n d i t i o n s :

/ / you can p u t s t h i f :
/ / − you a r e h o l d i n g i t
/ / − t h e r e i s n o t h i n g p l a c e d on t h e d e s t i n a t i o n
/ / − you a r e n o t t r y i n g t o p u t s t h on i t s e l f
ho ld (WHAT) i n { t r u e , i n c o n s } ,

f o r a l l X: e l e m e n t ( on (X, ON_WHAT) i n { f a l s e , unknown } ) ,
−math . eq (WHAT, ON_WHAT) .

add :
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/ / ou r t h i n g i s now on s t h . . .
on (WHAT, ON_WHAT) .

remove :
/ / we a r e n o t h o l d i n g i t anymore . . .
ho ld (WHAT) .

end .

Please note complex action preconditions. They are necessary to correctly select an object to take/put
as missing preconditions can cause, e.g., an object with something on top to be taken. Again, the
specification here may be a bit too complex for the tackled problem (in the original problem solution
those quantified formulas were simply represented by “clear” relation stating that nothing is on top of
a “clear” brick) but again, this is to show several features of the planner in one place.

What is missing here is planning problem:

problem b r i c k s 4 :
b e l i e f s :

env .

a c t i o n s :
t a k e .
p u t .

g o a l :
on ( a , t a b l e ) , on ( b , a ) , on ( c , b ) , on ( d , c )

max_depth :
6

h e u r i s t i c s :
none .

end .

Now, using this planning problem the planner has all it needs to perform planning. We will discuss
the obtained plans below.

Representation in PDDL

As this scenario is directly taken from the IPC 2000 contest, the PDDL solution is available on the
Internet. However, it is placed there in a more advanced form then needed for this particular problem
so we will cite here only relevant parts of the solution. Let us start with domain file:

( d e f i n e ( domain BLOCKS)
( : r e q u i r e m e n t s : s t r i p s )
( : p r e d i c a t e s

( on ? x ? y )
( o n t a b l e ? x )
( c l e a r ? x )
( handempty )
( h o l d i n g ? x )

)
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( : a c t i o n pick−up
: p a r a m e t e r s ( ? x )
: p r e c o n d i t i o n ( and ( c l e a r ? x ) ( o n t a b l e ? x ) ( handempty ) )
: e f f e c t

( and ( n o t ( o n t a b l e ? x ) )
( n o t ( c l e a r ? x ) )
( n o t ( handempty ) )
( h o l d i n g ? x ) ) )

( : a c t i o n s t a c k
: p a r a m e t e r s ( ? x ? y )
: p r e c o n d i t i o n ( and ( h o l d i n g ? x ) ( c l e a r ? y ) )
: e f f e c t

( and ( n o t ( h o l d i n g ? x ) )
( n o t ( c l e a r ? y ) )
( c l e a r ? x )
( handempty )
( on ? x ? y ) ) )

The domain declares five relations: “on”, “ontable”, “clear”, “handempty” and “holding”. It can
be noticed, that while ACTLOG solution uses negation extensively, the PDDL’s one tends to stay
in a non-negative world and defines separate relation for each state (e.g. “handempty” instead of
checking if “holding” is false). Apart from that the PDDL actions are quite similar to the ones defined
in ACTLOG.

Let us now look at the problem file:

( d e f i n e ( problem BLOCKS−4−0)
( : domain BLOCKS)
( : o b j e c t s D B A C )
( : INIT

(CLEAR C) (CLEAR A) (CLEAR B) (CLEAR D)
(ONTABLE C) (ONTABLE A) (ONTABLE B) (ONTABLE D)
(HANDEMPTY)

)
( : g o a l (AND (ON D C) (ON C B) (ON B A ) ) )

)

The problem definition basically specifies the same as ACTLOG but in a different way - bricks here
are explicitly added to object list while in ACTLOG they are automatically added to the appropriate
domain in a module. Similarly as in Scenario 1, the initial state of the world is given in the problem
while in ACTLOG’s approach it is passed via the module (and can even be inferred automatically).

When we run the problem in planning engine we obtain the following output:

IW s e a r c h comple t ed
0 . 0 0 1 0 0 : ( p ick−up b )
0 . 0 0 2 0 0 : ( s t a c k b a )
0 . 0 0 3 0 0 : ( p ick−up c )
0 . 0 0 4 0 0 : ( s t a c k c b )
0 . 0 0 5 0 0 : ( p ick−up d )
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0 . 0 0 6 0 0 : ( s t a c k d c )
P l a n n e r found 1 p l a n ( s ) i n 0 .452 s e c s .

Execution on the remote server does the job, the whole plan is ready within half a second. Let us now
look at how ACTLOG is dealing with that problem.

Heuristics in the scenario

Let us try to execute the “bricks4” problem from the “ex13.4ql” file using the ACTLOG planner:

# i m p o r t " . . / examples / ex13 . 4 q l " .
Program l o a d e d !
# e x e c u t e b r i c k s 4 .
E x e c u t i n g p l a n n i n g f o r problem b r i c k s 4 . . .

P l an found :
1 . t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: b ( l i t e r a l ) )
2 . p u t (WHAT: b ( l i t e r a l ) , ON_WHAT: a ( l i t e r a l ) )
3 . t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: c ( l i t e r a l ) )
4 . p u t (WHAT: c ( l i t e r a l ) , ON_WHAT: b ( l i t e r a l ) )
5 . t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: d ( l i t e r a l ) )
6 . p u t (WHAT: d ( l i t e r a l ) , ON_WHAT: c ( l i t e r a l ) )

P l a n n i n g took 1562 m i l l i s e c o n d s .

It seems that it is not so bad. We have an optimal plan obtained in less that 1.6 seconds (without
any heuristics applied). However, there is a small trick used here - in the planning problem we have
defined “max_depth” to be 6 which matches the length of the optimal plan.4 As there are no other
plans with such length, the planner correctly and quickly finds the optimal answer. If we change the
value to, e.g., 10, the plans still remain correct, but are not optimal any more (similarly to Scenario
1):

P l an found :
1 . t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: c ( l i t e r a l ) )
2 . p u t (WHAT: c ( l i t e r a l ) , ON_WHAT: b ( l i t e r a l ) )
3 . t a k e (FROM_WHAT: b ( l i t e r a l ) , WHAT: c ( l i t e r a l ) )
4 . p u t (WHAT: c ( l i t e r a l ) , ON_WHAT: d ( l i t e r a l ) )
5 . t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: b ( l i t e r a l ) )
6 . p u t (WHAT: b ( l i t e r a l ) , ON_WHAT: a ( l i t e r a l ) )
7 . t a k e (FROM_WHAT: d ( l i t e r a l ) , WHAT: c ( l i t e r a l ) )
8 . p u t (WHAT: c ( l i t e r a l ) , ON_WHAT: b ( l i t e r a l ) )
9 . t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: d ( l i t e r a l ) )
1 0 . p u t (WHAT: d ( l i t e r a l ) , ON_WHAT: c ( l i t e r a l ) )

P l a n n i n g took 6661 m i l l i s e c o n d s .

Let us leave the planning depth limit set to 10 and see if we can help here with any of the heuristics.

4Note, that planners used in the international contests have a timeout features as well, e.g., the one that we are using for
PDDL planning times out after 10 seconds by default.
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“disallow_failed_preconditions” and “composite_first”

There are no composite actions in the scenario so these heuristics do not affect the output plan.

“random”

As stated in the previous Scenario, random planning does not provide repeatable good results. The
more complex the planning problem and longer the output plans are, the less probable is that random
guessing will “hit” the optimal spot. Even if planning time can be sometimes shortened a bit, the
produced plans are usually still not optimal.

Plan length Planning time (s)
10 27.047
8 27.527
10 30.359
10 75.145
10 7.998
10 36.618
10 4.652
10 1.434
10 38.282
10 63.113

Table 8.1: Comparison of 10 planning tries using Scenario 2 and “random” method.

Table 8.1 presents a comparison of 10 tries of random planning executions with obtained plan length
and planning time. It is clearly visible that apart from the lack of optimal plans there, planning times
can be really high - in practice the “random” heuristic is therefore nothing more than a nice benchmark
for maximum planning times.

“goal_probing”

Probing the goal, although extremely efficient in some cases, in others can not only be unhelpful
but even can make planning time much worse. When we look at planning goal “on(a, table), on(b,
a), on(c, b), on(d, c)” then we can see, that the initial goal rating for it is 2 due to “on(a, table)”.
Therefore although taking “a” to hand will have the smallest rating (equal to 0), all other actions will
have exactly the same goal rating and the planning will not move in a correct direction (placing “c”
on “b” is as good as placing “b” on “a”). In this sense, goal probing, despite good intentions, can
even direct into unsuccessful paths.

Even if we introduce a composite template of action which automatically takes and puts the brick, it
will not improve the situation as the same problem as before holds - placing “c” on “b” is as promising
as placing “b” on “a”.5

5Goal probing proves itself to be extremely efficient in a similar problem of reversing a brick tower (“table -> c -> b ->
a” to “table -> a -> b -> c”). The description and implementation can be found and tested using file “ex10.4ql” included
into a planner package. The heuristic allows for limiting the planning time from almost 5 seconds to 180 milliseconds and
always returns an optimal plan there. However, we have decided that showing limitations of the implementation is far more
interesting than presenting only successful applications so we leave these experiments to the reader.
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“increase_rating_only” and “strict_increase_rating_only”

If we look closely at the planning goal of this problem then we can see that the plan should fill the goal
“from left to right”, constantly increasing the rating of it. Unfortunately, we have two separate actions
for taking and putting (where putting can actually increase the goal rating) which is why we cannot
use “strict_increase_rating_only” directly (“No plan found (planning took 195 milliseconds).”). On
the other hand, using “increase_rating_only” does not really help as the planning engine will stay for
a while in the area where rating is equal to 2 and then will move towards the goal (plan will be correct
but not optimal).

Fortunately, we know that if we take something we will always put it so we can make a hint to the
planner about that. Let us extent the action set with following “template” action (we do not tell the
planner anything about the valuations - we just let it know that “put” goes after “take”):

a c t i o n takeAndPutCompos i t e ( ) :
c o m p o s i t e :

t a k e (WHAT, FROM_WHAT) ; p u t (WHAT, ON_WHAT)
end .

This action is treated by the planning engine as a single atomic one which means that it should always
increase the goal rating. Therefore “goal_probing” improved with “strict_increase_rating_only” is
ideal to be used here:

P l an found :
1 . t akeAndPutCompos i t e ( ) :
#> t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: b ( l i t e r a l ) )
#> p u t (WHAT: b ( l i t e r a l ) , ON_WHAT: a ( l i t e r a l ) )
2 . t akeAndPutCompos i t e ( ) :
#> t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: c ( l i t e r a l ) )
#> p u t (WHAT: c ( l i t e r a l ) , ON_WHAT: b ( l i t e r a l ) )
3 . t akeAndPutCompos i t e ( ) :
#> t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: d ( l i t e r a l ) )
#> p u t (WHAT: d ( l i t e r a l ) , ON_WHAT: c ( l i t e r a l ) )

P l a n n i n g took 575 m i l l i s e c o n d s .

The plan here will always be optimal and the time of computations is quite decent (max_depth is
still set to 10) as for a relatively slow laptop.

Work smart, not hard

Using planning heuristics is nice but in some cases we could try to use the characteristics of the
planning problem itself. In this particular case one can notice, that we would like to put a brick only
on the top of a tower - starting with “a” being the top. So if we mark “a” as “top” in our planning
environment, then we may upgrade the “put” action as follows:

a c t i o n putOnTop (WHAT, ON_WHAT) :
p r e c o n d i t i o n s :

ho ld (WHAT) i n { t r u e , i n c o n s } , t o p (ON_WHAT) .
add :

/ / our t h i n g i s now on s t h . . .
on (WHAT, ON_WHAT) .

96



t o p (WHAT) .
remove :

/ / we a r e n o t h o l d i n g i t anymore . . .
ho ld (WHAT) .
t o p (ON_WHAT) .

end .

Using such an upgrade, planning algorithm will always keep a single tower top in planning status and
therefore will know exactly where to put the next brick:

P l an found :
1 . t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: b ( l i t e r a l ) )
2 . putOnTop (WHAT: b ( l i t e r a l ) , ON_WHAT: a ( l i t e r a l ) )
3 . t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: c ( l i t e r a l ) )
4 . putOnTop (WHAT: c ( l i t e r a l ) , ON_WHAT: b ( l i t e r a l ) )
5 . t a k e (FROM_WHAT: t a b l e ( l i t e r a l ) , WHAT: d ( l i t e r a l ) )
6 . putOnTop (WHAT: d ( l i t e r a l ) , ON_WHAT: c ( l i t e r a l ) )

P l a n n i n g took 288 m i l l i s e c o n d s .

Here we also get an optimal plan, without any heuristics enabled. Note that in practical applications
one should give as much information about the problem to the planner as possible. If we know that
we are building a tower, we can give that knowledge to an agent that will be planning how to do it.

8.3. Scenario 3 - defusing a bomb in ACTLOG

The scenario is available in the file “example14.4ql” in the inter4QL’s package.

This is the most sophisticated scenario in the chapter - this is why we will not be providing a PDDL
comparison for it. As we saw in previous two scenarios, PDDL sometimes cannot cope with problems
in a way we would like it to. Moreover, we deal with partial and potentially inconsistent beliefs being
outside of the scope of PDDL.

The scenario presents the following situation: we have a building with doors and paths between
rooms. Doors may be opened or closed and paths may be blocked or not (we can assume that this is
a war zone where some parts of the building have collapsed). What is important here, in the building
some evil person has planted a bomb which may cause far bigger damage when exploded - this is
why it has to be defused.

For achieving the goal we have a robot with two arms and two cameras capable of reaching the bomb
and defusing it. However, the robot was organized in a quick manner (bomb is ticking) so the quality
of its camera components is not the highest possible - the cameras often report different readings for
the same places.

To defuse the bomb, the robot has to get to the room where it is located. There the robot will see that
the bomb has 3 cables (red, green and blue) where one or many has to be cut to defuse the bomb. For
the purposes of the simulation, the combination defusing the bomb consists of red and green cables
cut at the same time. The bomb type is known, so the combination is also known during the problem
specification.

Figure 8.1 shows the overview of building’s plan with doors and paths visible. One can see that the
building has 3 doors and 3 paths with following statuses:

• door1 - both cameras report different statuses (door “open” status is inconsistent);
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Figure 8.1: Building overview with reading errors visible.

• door2 - one camera reports closed door and the other reports no door at all;

• door3 - both cameras report open door;

• path1 - both cameras report unblocked path;

• path2 - one camera reports blocked path and the other does not report the path at all;

• path3 - both cameras report the path as blocked.

One can notice, that reaching the goal in the building defined as in Figure 8.1 is not possible - the
path from “D” to “E” is blocked. The robot has a belief not to move through blocked paths but when
being close to the goal it can shadow it and try to ram the obstacle to get to the bomb (finalizing the
mission is so important that robot damages do not count as much). Similarly, even though the robot
may have inconsistent data about doors, it will still try to go through them. This is how it can get from
room “A” to “B” even when both cameras report different information and effectively do not allow
for deducing a consistent belief about the door’s state.

Representation in ACTLOG

Usually in robotic systems, we have an external sensor driver which is responsible for loading the
data to the planning application. As we did not try to run this on an actual robot (yet), we need some
4QL modules to emulate the cameras. Here is the first camera:

module camera1 :
domains :

l i t e r a l p l a c e .
l i t e r a l i d _ d o o r .
l i t e r a l i d _ p a t h .

r e l a t i o n s :
p a t h ( p l a c e , p l a c e , i d _ p a t h ) .
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door ( p l a c e , p l a c e , i d _ d o o r ) .
c l o s e d ( i d _ d o o r ) .
b l o c k e d ( i d _ p a t h ) .
bombAt ( p l a c e ) .

r u l e s :
door (X, Y, ID ) :− door (Y, X, ID ) .
p a t h (X, Y, ID ) :− p a t h (Y, X, ID ) .

f a c t s :
door ( a , b , door1 ) .
door ( b , c , door3 ) .
p a t h ( c , d , p a t h 1 ) .
p a t h ( b , d , p a t h 2 ) .
p a t h ( d , e , p a t h 3 ) .
−c l o s e d ( door1 ) .
−c l o s e d ( door3 ) .
−b l o c k e d ( p a t h 1 ) .
b l o c k e d ( p a t h 2 ) .
b l o c k e d ( p a t h 3 ) .
bombAt ( e ) .

end .

The second camera (truncated as domains, relations and rules are exactly the same) is:

module camera2 :
. . .
f a c t s :

door ( a , b , door1 ) .
door ( a , c , door2 ) .
door ( b , c , door3 ) .
p a t h ( c , d , p a t h 1 ) .
p a t h ( d , e , p a t h 3 ) .
c l o s e d ( door1 ) .
c l o s e d ( door2 ) .
−c l o s e d ( door3 ) .
−b l o c k e d ( p a t h 1 ) .
b l o c k e d ( p a t h 3 ) .
bombAt ( e ) .

end .

Now we need to combine cameras into a single belief base to be then able to query for robot’s beliefs
about the world:

b e l i e f s s e n s o r s :
wo r l d s :

camera1 .
camera2 .

end .

The camera modules alone do not include any inconsistency, but when combined into one belief base,
they introduce quite chaotic image of the world:

# Bel [ s e n s o r s ] ( b l o c k e d (X ) ) .
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== R e s u l t s ==
X: p a t h 2 = t r u e
X: p a t h 3 = t r u e
X: p a t h 1 = f a l s e
# Bel [ s e n s o r s ] ( c l o s e d (X ) ) .
== R e s u l t s ==
X: door1 = i n c o n s i s t e n t
X: door3 = f a l s e
X: door2 = t r u e

Please note, that even though camera 2 does not see “path2”, its existence is still reported due to the
combination of inputs from both cameras.

Sensors are outside of our main planning route - they only provide data to the robot. We still need
a belief base which will contain information about robot’s position and other important elements of
the environment, like the bomb. Let us start with the world representation itself:

module wor ld :
. . .
r e l a t i o n s :

a t ( p l a c e ) .
v i s i t e d ( p l a c e ) .

. . .
f a c t s :

a t ( a ) .
end .

One can see that we have two main information chunks here: where the robot currently is and where
it was in the past. The second information corresponds directly to the approach shared during analysis
of the Scenario 2 stating, that if we know about some characteristics of a problem, we should give it
to the planning engine to use. This is the case here: we know that robot does not have to return to the
rooms it has already visited so we are explicitly marking those with a “visited” flag. This improves
the planning performance substantially.

Now, as we are able to store the position of the robot, we should also have a place to keep information
about the bomb:

module bomb :
domains :

l i t e r a l c o l o r .
l i t e r a l p l a c e .
l i t e r a l o b j e c t .

r e l a t i o n s :
c u t ( c o l o r ) .
t i c k i n g ( o b j e c t ) .
d e f u s e d ( o b j e c t ) .

r u l e s :
−c u t (X) :− c o l o r (X ) .

f a c t s :
t i c k i n g ( bomb ) .
c o l o r ( r e d ) .
c o l o r ( g r e e n ) .
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c o l o r ( b l u e ) .
end .

As described in the scenario, we have three cables which can be cut to defuse the bomb. By default,
all cables are not cut (their status is known so we close the world locally here). The question remains
how to store the combination of the cables to be cut to defuse the bomb. It turns out, that together
with creating a belief base for planning purposes, we can find the combination inside it:

b e l i e f s e n v i r o n m e n t :
c o n s t r a i n t s :

r i g i d :
wor ld . a t (X) −> wor ld . v i s i t e d (X) = unknown .
bomb . c u t ( r e d ) = i n c o n s −> bomb . c u t ( g r e e n ) = incons ,

−bomb . c u t ( b l u e ) .
bomb . c u t ( g r e e n ) = i n c o n s −> bomb . c u t ( r e d ) = incons ,

−bomb . c u t ( b l u e ) .
−bomb . c u t ( b l u e ) .

wo r l d s :
bomb .
wor ld .

end .

There are several interesting aspects here. First of all one can see that the belief base contains two
modules which provide a view on two complete different parts of the world. This has been already
stated in Section 2.2 that worlds in a belief base can either provide complementary views on the same
world (like above) or alternative views on the same world (like “sensors” belief base). This scenario
provides both examples. Secondly, the rigid constraints of the belief base are here used to disallow the
robot to return to already visited nodes. Please note, that this happens automatically, we do not need
to provide any explicit rules. Finally, the bomb’s defuse combination is also stored in the constraints
here which will cause failure on each planning path where robot cuts other cables that red and green
(what is important - at the same time).

There is still one environmental module left to be presented. As stated in scenario’s description, the
robot can ignore potential blockade on a path if it is close enough to the planning goal. To achieve
this, we need a module that will provide altered (shadowed) information about statuses of paths:

module i g n o r e B l o c k e d :
domains :

l i t e r a l i d _ p a t h .
r e l a t i o n s :

b l o c k e d ( i d _ p a t h ) .
f a c t s :

−b l o c k e d ( p a t h 3 ) .
−b l o c k e d ( p a t h 2 ) .
−b l o c k e d ( p a t h 1 ) .

end .

Using the above module the robot can shadow its belief about blockade status of path and try to force
its way through an blocked path:

# Bel [ s e n s o r s a s i g n o r e B l o c k e d ] ( b l o c k e d (X ) ) .
== R e s u l t s ==
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X: p a t h 1 = f a l s e
X: p a t h 3 = f a l s e
X: p a t h 2 = f a l s e

Now, having the environmental modules done, we may proceed to the actual actions - starting with
the ones used for moving around the building:

a c t i o n t a k e _ p a t h (FROM_WHERE, TO_WHERE ) :
p r e c o n d i t i o n s :

a t (FROM_WHERE) ,
Bel [ s e n s o r s ] ( p a t h (FROM_WHERE, TO_WHERE, ID ) ) ,
Bel [ s e n s o r s ] ( b l o c k e d ( ID ) ) = f a l s e .

add :
a t (TO_WHERE ) .
v i s i t e d (FROM_WHERE) .

remove :
a t (FROM_WHERE) .

end .

a c t i o n g o _ t h r o u g h _ d o o r (FROM_WHERE, TO_WHERE ) :
p r e c o n d i t i o n s :

a t (FROM_WHERE) ,
Bel [ s e n s o r s ] ( door (FROM_WHERE, TO_WHERE, ID ) ) ,
Bel [ s e n s o r s ] ( c l o s e d ( ID ) ) = f a l s e .

add :
a t (TO_WHERE ) .
v i s i t e d (FROM_WHERE) .

remove :
a t (FROM_WHERE) .

end .

The actions state that the robot can go through the path if the path is believed to exist and not to be
blocked. Of course it can take the path only if it is in a room “connected” with the path. Similarly,
the robot can go through the door if the door is believed to exist and be opened.

Unfortunately, due to camera flaws there are not many useful doors and paths in the sense of the
above actions. The door can either not exist or its status can be reported in an inconsistent way. In the
situation of inconsistent status of existing door, the robot is instructed to try to go through the door:

a c t i o n f o r c e _ t h r o u g h _ d o o r (FROM_WHERE, TO_WHERE ) :
p r e c o n d i t i o n s :

a t (FROM_WHERE) ,
Bel [ s e n s o r s ] ( door (FROM_WHERE, TO_WHERE, ID ) ) ,
Bel [ s e n s o r s ] ( c l o s e d ( ID ) ) = i n c o n s .

add :
a t (TO_WHERE ) .
v i s i t e d (FROM_WHERE) .

remove :
a t (FROM_WHERE) .

end .
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As the door is usually constructed from soft materials, a robot (made of metal) can force through
it without much harm. The situation with blocked paths is a bit different as the blockade is usually
made out of rocks and bricks which may damage the outer armor of the robot. However, the robot is
instructed to care more about the mission success than its own safety only if the goal is really close.
This is why the robot is equipped with following action:

a c t i o n f o r c e _ t h r o u g h _ p a t h _ t o _ g o a l (FROM_WHERE, TO_WHERE ) :
p r e c o n d i t i o n s :

a t (FROM_WHERE) ,
Bel [ s e n s o r s ] ( bombAt (TO_WHERE) ,

p a t h (FROM_WHERE, TO_WHERE, ID ) ) ,
Bel [ s e n s o r s a s i g n o r e B l o c k e d ] ( b l o c k e d ( ID ) ) = f a l s e .

add :
a t (TO_WHERE ) .
v i s i t e d (FROM_WHERE) .

remove :
a t (FROM_WHERE) .

end .

Please note, that robot’s true beliefs about the environment are not changed - they are just shadowed
for a while to allow it to ram through blocked path. This may happen only if the bomb is in the
destination room - otherwise, the robot will try to find another way.

Finally, when the robot is in the room together with a bomb, it can proceed to defusing it. It has a
following set of actions to be used here:

a c t i o n c u t C a b l e (COLOR ) :
p r e c o n d i t i o n s :

Bel [ s e n s o r s ] ( bombAt (X) ) ,
wor ld . a t (X) , t i c k i n g ( bomb ) ,
−c u t (COLOR ) .

add :
c u t (COLOR ) .

end .

a c t i o n cutTwoCables ( ) :
c o m p o s i t e :

c u t C a b l e (COLOR1) | | c u t C a b l e (COLOR2)
end .

The “cutTwoCables” action is, just like in case of Scenario 2, just a template function which suggests
the robot to try to cut two cables at the same time - it does not say anything about the colors (in fact
COLOR1 can be equal to COLOR2, the action is not disallowing it).

Finally, after the job done the robot should notify the remote crew about the success (they will notice
the failure by themselves):

a c t i o n n o t i f y D e f u s e ( ) :
p r e c o n d i t i o n s :

c u t ( g r e e n ) = incons , c u t ( r e d ) = incons , −c u t ( b l u e ) .
add :

d e f u s e d ( bomb ) .
remove :

103



t i c k i n g ( bomb ) .
end .

Please note, that the status after the defusing is in fact inconsistent. It is due to the fact, that the
world was locally closed here and then we have actually cut the cables - by fusing true with false
inconsistency appeared. It can be easily seen that this inconsistency is rather artificial. Indeed, it
is kept here to emphasize that inconsistent goals of planning are nothing unusual and the ACTLOG

planner can deal with them without any issues. The “notifyDefuse” action is added here only because
it is always nice to report a success. The precondition of the action could be placed as planning goal
in problem’s definition and the planning will also work without any problems.

Finally, we need a planning problem:

problem defuse_bomb :
b e l i e f s :

e n v i r o n m e n t .

a c t i o n s :
t a k e _ p a t h .
g o _ t h r o u g h _ d o o r .
f o r c e _ t h r o u g h _ d o o r .
f o r c e _ t h r o u g h _ p a t h _ t o _ g o a l .
c u t C a b l e .
cu tTwoCables .
n o t i f y D e f u s e .

g o a l :
d e f u s e d ( bomb )

max_depth :
10

h e u r i s t i c s :
none .

end .

The planning problem finalizes the “implementation” of the scenario in ACTLOG. Let us now look
how it works.

Heuristics in the scenario

Running a planning process for a problem defined exactly as in previous subsection creates a correct,
but inefficient plan:

P l an found :
1 . cu tTwoCables ( ) :
#> c u t C a b l e ( ) − f a i l e d p r e c o n d i t i o n s
#> c u t C a b l e ( ) − f a i l e d p r e c o n d i t i o n s
2 . cutTwoCables ( ) :
#> c u t C a b l e ( ) − f a i l e d p r e c o n d i t i o n s
#> c u t C a b l e ( ) − f a i l e d p r e c o n d i t i o n s
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3 . cutTwoCables ( ) :
#> c u t C a b l e ( ) − f a i l e d p r e c o n d i t i o n s
#> c u t C a b l e ( ) − f a i l e d p r e c o n d i t i o n s
4 . cutTwoCables ( ) :
#> c u t C a b l e ( ) − f a i l e d p r e c o n d i t i o n s
#> c u t C a b l e ( ) − f a i l e d p r e c o n d i t i o n s
5 . f o r c e _ t h r o u g h _ d o o r (FROM_WHERE: a ( l i t e r a l ) ,

TO_WHERE: b ( l i t e r a l ) )
6 . g o _ t h r o u g h _ d o o r (FROM_WHERE: b ( l i t e r a l ) ,

TO_WHERE: c ( l i t e r a l ) )
7 . t a k e _ p a t h (FROM_WHERE: c ( l i t e r a l ) , TO_WHERE: d ( l i t e r a l ) )
8 . f o r c e _ t h r o u g h _ p a t h _ t o _ g o a l (FROM_WHERE: d ( l i t e r a l ) ,

TO_WHERE: e ( l i t e r a l ) , )
9 . cu tTwoCables ( ) :
#> c u t C a b l e (COLOR: r e d ( l i t e r a l ) )
#> c u t C a b l e (COLOR: g r e e n ( l i t e r a l ) )
1 0 . n o t i f y D e f u s e ( )

P l a n n i n g took 58909 m i l l i s e c o n d s .

Also the time of planning is long (even for a rather slow laptop). Let us see whether heuristics will
improve the situation. We will omit the “random” method as it already proved itself not to provide
good results.

“composite_first”

As the final optimal plan uses composite actions at the very end of the planning, using this heuristic
here causes a result completely opposite to the desired one. Just to indicate how bad this scenario
with “composite_first” heuristic is, let us state, that the produced plan is exactly the same as in case
of no heuristics at all but planning takes around 140 seconds.

“goal_probing”

Unluckily, in the case of such big scenarios which contain so isolated planning goal, the goal does not
really reflect the statuses obtained at the beginning (or even in the middle) of the planning process.
This is why goal probing does not have any chance here as most of the time it has no data to use
while ordering the actions and valuations (goal rating is usually equal to 0). This makes the heuristic
basically very similar to no heuristics at all (except from application of the last action, of course, but
it is preceded by a huge tree of state searching built completely blindly). The same applies to “in-
crease_rating_only” and “strict_increase_rating_only”. Therefore with this scenario these heuristics
appear not helpful.

“disallow_failed_preconditions”

When looking at the plan, the only issue with it seems to be caused by allowed empty preconditions
for parallel actions. Therefore not surprisingly, disallowing that ends up in producing a correct and
optimal plan in a reasonable time:

P l an found :
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1 . f o r c e _ t h r o u g h _ d o o r (FROM_WHERE: a ( l i t e r a l ) ,
TO_WHERE: b ( l i t e r a l ) )

2 . g o _ t h r o u g h _ d o o r (FROM_WHERE: b ( l i t e r a l ) ,
TO_WHERE: c ( l i t e r a l ) )

3 . t a k e _ p a t h (FROM_WHERE: c ( l i t e r a l ) , TO_WHERE: d ( l i t e r a l ) )
4 . f o r c e _ t h r o u g h _ p a t h _ t o _ g o a l (FROM_WHERE: d ( l i t e r a l ) ,

TO_WHERE: e ( l i t e r a l ) , )
5 . cu tTwoCables ( ) :
#> c u t C a b l e (COLOR: r e d ( l i t e r a l ) )
#> c u t C a b l e (COLOR: g r e e n ( l i t e r a l ) )
6 . n o t i f y D e f u s e ( )

P l a n n i n g took 1647 m i l l i s e c o n d s .

In fact the “disallow_failed_preconditions” heuristic fixes all the issues with the action definitions.
The planning problem is generally well defined and does not need additional support from e.g. goal
probing. Please note, that the “visited” relation is directing the navigation around the building and
actions have well-defined preconditions - all except from the “cutTwoCables” action. Please note that
adding a simple precondition to it stating that this action is allowed to be applied only in rooms with
a bomb will fix the problem as well. This shows the great responsibility of a user which can either
work with a planning engine by specifying actions based on the understanding of planning principles
or can work against the engine and leave big parts of the state space not guarded in any way. These
unguarded spaces are where the planner can spend long time on searching for (possibly inefficient)
solutions. Minimizing the state space with some heuristics is a good approach but there is no heuristic
working with all planning problems as clearly shown in this chapter.
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Chapter 9

Summary and conclusions

The thesis presents the results of four years of both theoretical and implementational work. All of
the theoretical results achieved (and a part of a doxastic practical ones) have been published in four
articles [18, 19, 21, 22] and received a positive feedback from a research community. The planner
part was left as an original contribution to be presented in the thesis together with a set of planning
experiments and problems.

Let us now briefly summarize all the results presented in the thesis.

9.1. Original contributions of the thesis’ author

First of all, theoretical results included in papers [18, 19, 21, 22] have been obtained as an effect of
cooperation with other co-authors. The thesis author’s contribution to the papers depends on partic-
ipating in discussions leading to the published concepts and their formalization as well as providing
the published experimental results based on the author’s implementation. Therefore the author’s sig-
nificant involvement into the key results of the research allows him to include the articles into this
PhD thesis with an appropriate explanatory note.

The whole implementation and experimental work, including most of the scenarios and examples
included in [19, 21, 22] as well as in the inter4QL interpreter are the original contributions of the
thesis’ author. Of course, there was a continuous interaction between implementation-oriented and
theoretical work. In particular, the final syntax of proposed constructs is a good example of such an
interaction.

9.2. Theoretical results achieved

When the work presented in the thesis has started, the logic underlying the inter4QL interpreter (ver-
sion 3.2 back then) contained the full support for paraconsistent and paracomplete reasoning. At that
same time an articles about belief bases, belief structures and epistemic profiles have been published
[42, 43, 45, 90] (the author of the thesis was not involved in that work). This made a good opportunity
to set the next steps: extending 4QL with the Bel

()
operator, proposing belief shadowing, defining

the ACTLOG language and developing a planner.

To achieve the expected goals, first the logic had to be extended to allow reasoning and querying of
belief bases which resulted in an 4QL’s extension, 4QLBel [18]. With this part ready, the first version
of ACTLOG, based on the 4QLBel, has been proposed with atomic actions only [19]. Then, in 2018,
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belief shadowing was introduced together with constraints for belief bases enclosed into 4QLBel+

language [21]. The 4QLBel+ language was then a base for extending the ACTLOG language with
parallel actions in 2019 [22] which became a final logical background for this PhD thesis.

Of course throughout all of the articles the tractability of the reasoning and querying of the belief
bases was underlined as this is a very important feature of the solutions. Tractability of quite advanced
features is an important motivation of the presented approach.

9.3. The practical results

The development of the inter4QL interpreter matches strongly the article publishing milestones from
the previous section. When 4QLBel+ language was published, the implementation for version 4.0
has been finalized. The version included a support for belief bases, Bel

()
operator, belief shadow-

ing and constraints for both modules and belief bases. Belief bases were not changing module’s
well-supported models, they were aggregating them. Also the lightweight belief shadowing was not
changing the knowledge base but rather provided a support for smart queries to the appropriate belief
bases/modules. On top of that a condition for constraints had to be added to querying methods and
the full coverage for 4QLBel+ could be provided.

Next, when the improved ACTLOG was published, the second phase of the implementation was
started. As the articles did not say anything about the actual planning algorithms (except from an
overview of action application method), several design decisions had to be made balancing the com-
plexity of the implementation and the usability of the solution. As a result, in December 2019 the
inter4QL 5.0 has been proposed as a support for composite and atomic actions. Soon it became clear
that the blind planning used in this first implementation, although providing correct plans, took a sig-
nificant amount of time and could produce inefficient plans in the cases when planning problems were
really broad. This is why five months later versions 5.1 and 5.2 were proposed containing a set of
planning heuristics which improve the planner’s performance.

9.4. Further development possibilities

Currently the planner covers all of the research requirements set in the articles gathered in this thesis.
When the thesis is finalized, the planner is half a year old but even now can approach problems from
planning contests. The list of the possible improvements include:

• unifying the memory management in ModuleProblem.cc and the rest of the planner;

• introduction of multi-threading to the planner;

• implementation of other planning algorithms - like A* or BFS.

The planning performance is what makes a planning engine usable in practice. The performance
area of improvements is very broad here. First of all, the planner (just like the original inter4QL)
is a single-thread application which in the current state of technology prevents it from being used in
a larger scale applications. Also, sacrificing some of the simplicity in storing of the planning state,
some of the more efficient state-search algorithms could be used instead of the DFS. E.g., BFS could
be used instead. Though it uses more memory during computations and needs to keep copies of whole
databases as a planning state, it will always find an optimal solution wrt the restricted plan’s size.
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The area of planning heuristics is also worth further investigation, for example allowing for an auto-
matic heuristic selection. Right now the provider of the planning problem needs to understand it and
select the heuristic matching the issues observed during the planning. Possibly this process can be
somehow automated.

Also, the underlying logic itself has a broad potential for further expansion. The set of composite
actions can be expanded, e.g., with finite loops. The planning itself is also not considering full belief
structures now - possibly this is a path that can be checked.

Definitely, there is a room for further development of the 4QL language family and inter4QL itself.
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[18] Białek, Ł., Dunin-Kęplicz, B., Szałas, A.: Rule-based reasoning with belief structures. In:
Kryszkiewicz, M., et.al. (eds.) Proc. ISMIS’2017. LNAI, vol. 10352, pp. 229–239. Springer
(2017)
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