
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Krzysztof Grining

Privacy-Preserving Protocols in Unreliable
Distributed Systems

PhD dissertation

Supervisor
dr hab. Marek Klonowski

Co-Supervisor
dr Małgorzata Sulkowska

Faculty of Fundamental Problems of Technology
Wrocław University of Science and Technology

January 2020

Author’s declaration:
I hereby declare that this dissertation is my own work.

January 14, 2020 .
Krzysztof Grining

Supervisor’s declaration:
The dissertation is ready to be reviewed

January 14, 2020 .
dr hab. Marek Klonowski

Co-Supervisor’s declaration:
The dissertation is ready to be reviewed

January 14, 2020 .
dr Małgorzata Sulkowska

Abstract
This thesis concerns chosen problems of privacy preserving data aggregation. It
is based on differential privacy, which is a mathematically rigorous privacy defi-
nition resilient to post-processing. Differential privacy is connected with random-
ization of the result. The goal is to achieve both sufficient privacy and accuracy.
We are interested in practical scenarios, so we consider aggregation in distributed
systems with unreliable nodes and untrusted aggregator.

First, we analyse current state-of-the-art solution and show that despite good
asymptotical guarantees for the accuracy, in many practical scenarios the errors
are unacceptably high. We present our own fault tolerant privacy preserving data
aggregation protocol which utilizes limited local communication between nodes.
We show that our protocol provides provable level of privacy and far better accu-
racy even when facing massive failures of nodes.

Next, to make our results useful in wider scenarios, we show how to construct
local groups of trust in real-life networks. We consider a distributed system that
consists of nodes which need to constitute a huge, connected group in an efficient
way, using simple operations and without knowledge of global network topology.
We propose and investigate local strategies for constructing large groups of users
with low communication and computation overhead. Moreover, we prove some
properties of real-life networks while formally assuming that they are generated
as a preferential attachment process.

Finally, we took a different approach and focused instead on the privacy definition
itself. We look from different perspective at an, already known, relaxation of dif-
ferential privacy called noiseless privacy. It utilizes the randomness in the data,
which can either come inherently from the data itself, or model the uncertainty
of the Adversary. In contrast to previous work, which focused on asymptotic re-
sults, independent data and specific distributions, we give nonasymptotic privacy
guarantees for any distribution and a wide class of dependencies. We show a way
to combine differential privacy with noiseless privacy and present detailed results
which can be easily applied in real-life scenarios of data aggregation.

Keywords: differential privacy, data aggregation, distributed systems, preferen-
tial attachment graphs, noiseless privacy

3

Streszczenie
Przedmiotem tej rozprawy są wybrane problemy agregacji danych z zachowaniem
prywatności. Rozprawa jest oparta o prywatność różnicową (differential privacy),
która, w odróżnieniu od wcześniejszych definicji prywatności, jest oparta na for-
malizmie matematycznym. Prywatność różnicowa wiąże się z odpowiednią ran-
domizacją wyniku. Interesują nas praktyczne scenariusze, więc rozważamy agre-
gacje w rozproszonych systemach z zawodnymi węzłami i niezaufanym agrega-
torem.

Zaczniemy od przeanalizowania aktualnego rozwiązania problemu i wskazania,
że pomimo dobrych asymptotycznych gwarancji dokładności, w wielu prakty-
cznych scenariuszach błędy wynikające z dodanych szumów są nieakceptowalnie
duże. Następnie proponujemy skonstruowany przez nas protokół, który wyko-
rzystuje ograniczoną, lokalną komunikację pomiędzy węzłami. Pokazujemy, że
nasz protokół zapewnia dowodliwą prywatność oraz jest znacznie dokładniejszy,
nawet gdy wiele węzłów jest zawodnych.

Następnie, aby nasze wyniki były użyteczne w szerszej klasie scenariuszy, pokazu-
jemy jak skonstruować lokalne grupy ufających sobie węzłów w realistycznych
sieciach. Rozważamy rozproszony system składający się z węzłów, które muszą
stworzyć dużą, spójną grupę w sposób efektywny i bez znajomości topologii sieci.
Proponujemy i badamy lokalne strategie konstruowania dużych grup z małym
narzutem komunikacyjnym i obliczeniowym. Ponadto udowadniamy niektóre
własności prawdziwych sieci przy założeniu, że pochodzą z modelu preferential
attachment.

Na koniec koncentrujemy się na samej definicji prywatności. Rozważamy, znane
wcześniej, osłabienie prywatności różnicowej, noiseless privacy, wykorzystujące
ograniczoną losowość danych. Może ona również modelować niepewność adw-
ersarza. W odróżnieniu od istniejących wyników, które skupiały się na wynikach
asymptotycznych, niezależnych danych i konkretnych rozkładach danych, przed-
stawiamy nieasymptotyczne gwarancje prywatności dla dowolnych rozkładów i
szerokiej klasy zależności. Pokazujemy jak połączyć prywatność różnicową z
noiseless privacy oraz przedstawiamy precyzyjne wyniki, które mogą być łatwo
wykorzystane w praktycznych zastosowaniach agregacji danych.

4

Contents

1 Introduction 7
1.1 Thesis Structure . 8
1.2 Notation and Definitions . 10
1.3 Related Literature . 11
1.4 Chosen Mathematical Techniques 15

1.4.1 Characteristic Functions of the Positive Part of a Random
Variable . 15

1.4.2 Graphs and Preferential Attachment Graphs 16
1.4.3 Berry-Esseen Theorem and Stein’s Method 17

1.5 Differential Privacy Concept . 19
1.6 Basic Differential Privacy Techniques 23

1.6.1 Randomized Response 23
1.6.2 Laplace Mechanism . 24
1.6.3 Gaussian Mechanism . 25

2 Fault Tolerant Privacy-Preserving Data Aggregation Without Trusted
Aggregator 26
2.1 Binary Protocol . 27
2.2 Analysis of Binary Protocol . 28

2.2.1 Analytical Approach . 29
2.2.2 Numerical Approach . 43

2.3 Precise Aggregation Algorithm with Local Communication 44
2.3.1 Modified Model . 45
2.3.2 Building Blocks . 46
2.3.3 Protocol Description . 48

2.4 Analysis of PAALC . 50
2.5 PAALC and Binary Protocol Comparison 55

5

3 Amplification of Privacy Using Local Knowledge in Faulty Network 58
3.1 Model . 59
3.2 Security Enhancing Protocols . 61

3.2.1 k-Two Steps Friend Finder Algorithm 62
3.2.2 k-Ask Fat For a Friend Algorithm 64
3.2.3 k-Two Steps Fat Friend Finder 65

3.3 Analytic Results . 66
3.3.1 log n-A3F under Targeted Attack 67
3.3.2 log n− 2S3F under Targeted Attack 70

3.4 Experimental Results . 74
3.4.1 Random Failures . 74
3.4.2 Targeted Adversary . 81

4 Extending Noiseless Privacy 90
4.1 Model . 92

4.1.1 Modeling Privacy of Randomized Data 93
4.1.2 Adversarial Model . 95

4.2 Comparison to Standard Differential Privacy 97
4.3 Explicit Bounds for Independent Data 98

4.3.1 Binomially Distributed Data 98
4.3.2 General Case . 103

4.4 Explicit Bounds for Locally Dependent Data 106
4.5 Adversary with Auxiliary Information 110
4.6 Synergy Between Adversarial Uncertainty and Noise Addition . . 113
4.7 Applications . 117

5 Summary 118

6

Chapter 1

Introduction

The problem of preserving privacy when retrieving some function of data has a
long history. We are becoming gradually more aware about it with increasing
amount of data available. Both the storage capacity and computational power
are growing with tremendous speed. This yields more possibilities to analyse
data about various populations, which is beneficial, but also about specific indi-
viduals, which can be harmful. It may raise some concerns about ones privacy.
To make things worse, having more data from various, often seemingly not con-
nected, sources can make privacy breaches even more threatening. The answer
to these concerns is differential privacy. Unlike previous numerous approaches,
which turned out to be flawed and compromised, this is a mathematically rigor-
ous privacy definition resilient to post-processing. This definition of privacy is the
central concept of this thesis.

Let us imagine a following problem. There is a set of users and each of them
keeps a single value. Analogously, we can think about a database with n records,
each corresponding to a specific user. We have to reveal some aggregated statistic
(say, the sum of all single values) and preserve the privacy of individuals. In
recent years there have been many very promising results, both for the case where
the privacy is governed by a trusted, central authority (database curator) and for
the case where the data is distributed amongst users who do not trust the data
collecting entity.

In this thesis we focus on privacy-preserving protocols in distributed systems.
This is due to the importance of such systems and their growing amount, for ex-
ample mobile users, IoT, smart metering, autonomous vehicles and many others.
Most interesting, and practically useful, case is when the system is unreliable, i.e.,
some of the nodes can fail either randomly or due to some malicious entity. We

7

propose a various approaches, both by devising a new protocol and by proposing
a slightly modified model to improve privacy in such systems.

1.1 Thesis Structure
In Chapter 1 we give a brief introduction to differential privacy, show motivations
behind this definition of privacy and present some classic results. Moreover, we
recall some of the related literature and mathematical techniques. Next, in Chap-
ter 2 we present fault tolerant privacy preserving data aggregation protocol which
utilizes limited local communication between nodes. Furthermore, we analyse
current state-of-the-art solution and show that it has unacceptably high errors in
practical scenarios. To enhance our results from Chapter 2, in Chapter 3 we pro-
pose and investigate local strategies for constructing large groups of users based
only on local relations of trust with low communication and computation over-
head. Finally, in Chapter 4 we consider a slightly different approach, namely
relaxation of differential privacy called noiseless privacy. Chapter 5 is a brief
summary of our results.

Most of the content from this thesis is based on published papers. Below we
give a short description of these results with specifying the contribution of this
thesis’ author. The author of this thesis is partially supported by National Science
Center (Poland) grant UMO-2018/29/B/ST6/02969.

1. [38] “Practical Fault-Tolerant Data Aggregation”, joint work with Marek
Klonowski and Piotr Syga. [38] appeared in Proceedings of International
Conference on Applied Cryptography and Network Security (ACNS 2016),
pp 386-404. This paper is devoted to fault tolerant privacy preserving data
aggregation protocols. We analyse the Binary Protocol presented by Chan
et al. in [17]. We propose a slightly relaxed model and a precise data ag-
gregation protocol called PAALC, that provides provable level of privacy
even when facing massive failures of nodes. The author of this thesis did
the analysis of Binary Protocol and co-authored in PAALC protocol design.

2. [39] “On Practical Privacy-Preserving Fault-Tolerant Data Aggregation”,
extension of [38], joint work with Marek Klonowski and Piotr Syga. [39]
appeared in International Journal of Information Security, June 2019, Vol-
ume 18, Issue 3, pp 285-304. In this extension we do full analysis of the
Binary Protocol presented by Chan et al. in [17]. We analytically show that,

8

despite being considered state-of-the art for privacy-preserving data aggre-
gation in unreliable distributed systems, it has unacceptable magnitude of
errors for most practical applications. We also perform experiments on real
data to compare our protocol and the Binary Protocol. The author of this
thesis did the full error analysis of the Binary Protocol and performed the
experiments.

3. [36] “How to Cooperate Locally to Improve Global Privacy in Social Net-
works? On Amplification of Privacy Preserving Data Aggregation”, joint
work with Marek Klonowski and Małgorzata Sulkowska. [36] appeared
in the Proceedings of 2017 IEEE Trustcom, pp 464-471. In this paper we
propose two protocols which allow to efficiently construct large groups of
users based only on local knowledge and trust. We also show that these pro-
tocols need very little communication overhead. We present the network as
a graph and use so called preferential attachment model, which is known to
naturally emerge in real networks. Moreover, we perform experiments on
real networks. Both protocols were designed by the author of this thesis.

4. [37] “Stronger Trust and Privacy in Social Networks via Local Coopera-
tion”, extension of [36], joint work with Marek Klonowski and Małgorzata
Sulkowska. [37] appeared in Journal of Complex Networks. In this exten-
sion we propose another local protocol to construct large groups of users and
also an approach based on combination of our other two protocols. More-
over, we perform more extensive experiments and formal analysis compared
to conference version. Both the protocol design and experiments were done
by the author of this thesis.

5. [35] “Towards Extending Noiseless Privacy: Dependent Data and More
Practical Approach”, joint work with Marek Klonowski. [35] appeared in
Proceedings of the 2017 ACM on Asia Conference on Computer and Com-
munications Security (AsiaCCS 2017), pp 546-560. In this paper we take
an already existing relaxation of differential privacy called noiseless privacy
and further investigate it. We give non-asymptotic results for independent
data (previously only asymptotic results were known) and also for depen-
dent data which was not previously analysed in this model. Moreover, we
show how to combine standard differential privacy with noiseless privacy
to achieve better results. The author of this thesis did the formal analysis
of both independent and dependent data cases and proposed the method to
combine them with differential privacy.

9

1.2 Notation and Definitions
R - set of real numbers

Z - set of integers

N - set of natural numbers

sign(x) - the sign function

supx∈X(x) - the supremum function

maxx∈X(x) - the maximum function

minx∈X(x) - the minimum function

bxc - the floor function

dxe - the ceiling function

|x| - the absolute value of x

FX(t) - cumulative distribution function of random variable X(
n
k

)
- binomial coefficient

P(A) - probability of event A

P(A|B) - probability of event A under condition B

i.i.d. - independent, identically distributed

X ∼ Bin(n, p) - random variableX with binomial distribution with n trials
and p probability of success, P(X = k) =

(
n
k

)
pk(1− p)n−k

X ∼ N(µ, σ2) - random variable X with normal distribution with mean µ

and variance σ2, with density function f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2

E(X) - expected value of random variable X

Var(X) - variance of random variable X

supp(X) - support of random variable X

10

i - imaginary unit

G(V,E) - graph with set of vertices V and set of edges E

deg(v) - degree of vertex v

N(v) - neighbourhood of vertex v

A \B - set difference

[n] - {1, 2, . . . , n}

G(n, p) - Erdös-Renyí graph

whp (with high probability) - we say that an event happens whp if its prob-
ability pn is a function of n and limn→∞ pn = 1

f(n) ∼ g(n) - means that limn→∞ f(n)/g(n) = 1

Õ (f(n)) - equivalent to O
(
f(n) lnk (f(n))

)
1.3 Related Literature
In this section we present some of the most important papers related to this thesis.
For more references one can see our papers mentioned in Subsection 1.1.

Until recent years, the definition of anonymity or privacy was somewhat diffi-
cult to formulate in a formal way. We want to perform distributed algorithms, use
statistical reasoning about population, but with preserving individual privacy. The
obvious approach of anonymising the data by removing so called personally iden-
tifying information like name, surname or ID number from the public data was,
and still is, the most popular way of preserving privacy. Unfortunately, it is not
sufficient. At first glance it sounds reasonable, because as the data is sanitized and
anonymised, one should not be able to read anything about certain individuals, but
only reason about population. However, an obvious question remains - what is,
and what is not, a personally identifying information then?

It turned out that such approach to privacy can be easily breached. In [65]
the author proposed a simple linkage attack where using anonymised medical
dataset and public voter dataset he was able to retrieve sensitive data about specific
individuals. By comparing ZIP code, date of birth and gender from both datasets
he was able to deanonymise sensitive medical data of some individuals. It became

11

clear that, in reality, there is no such thing as personally identifying information,
or rather that everything should be considered as such. The more data we have,
the more possibilities of clever linkage attacks exist (see [54]).

This observation led to a slightly more formal concept of anonymity in [55],
which describes it as a state of being not identified within a set of subjects, the
“anonymity set”. Similar approach to privacy in context of databases can be seen
in k-anonymity metrics ([60, 61, 66]). That is, the privacy is supposed to be pre-
served as long as each element is revealed in a group of at least k other, identical
elements. In this metric as well as some consecutive concepts like `-diversity [48]
or m-invariance [70], the bigger the “anonymity set” is, the stronger the privacy
guarantees are. Unfortunately, all these definitions of anonymity, even though
they can be considered formal, do not really imply privacy in practice.

In [52] Narayanan and Shmatikov showed that using cleverly devised linkage
attacks and appropriate public information one can retrieve sensitive data from
large, anonymised and sparse datasets. Their key observation is that the real-life
data is often sparse, so any anonymity notion that requires having some number of
”similar” objects does not have much practical value. Additionally, in [3, 53, 51]
there were also spectacular results concerning deanonymisation of social networks
data. The authors were able to deanonymise large social network datasets using
just auxilliary data and initial knowledge about a small subset of the network.
Privacy attacks appeared also in other areas like collaborative filtering (see [16])
or membership inference in machine learning (see [63]).

An attempt to solve the privacy problem in a more formal way appeared
in [21]. Later on, in seminal paper [27] Dwork et al. proposed a formal and
rigid notion of privacy, called differential privacy. However, its precise formula-
tion in the widely used form appeared in [26]. This was based on the intuition
that the only reasonable way of measuring a privacy loss of an individual whose
data we possess is by comparing it to a situation where we do not have data of this
specific individual. This notion of privacy is the key concept in this thesis.

We also need to mention a crucial extension of differential privacy called local
model (or equivalently distributed differential privacy). The foundations of that
model were presented in [42]. Some basic algorithms were discussed in [23, 24].
More advanced problem of heavy hitters and histograms revealing in local model
were presented in [40] and later refined in [9]. Local model for evolving data was
proposed in [41]. Lately a substantially different approach involving shuffling was
presented in [18, 31, 4].

Major part of this thesis consists of analysing specific distributed protocols,
namely data aggregation, under the regime of differential privacy. Data aggrega-

12

tion in distributed networks has been thoroughly studied due to its practical im-
portance. Measuring the target environment, aggregating data and raising alarm
are arguably the three most important functionalities of distributed sensing net-
works. With the increased number of personal mobile devices, the aggregation
becomes of greatest interest among the three. There are several settings consid-
ering data aggregation and they differ in both the abilities and constraints of the
nodes performing the aggregation.

The most obvious example of such protocol is revealing e.g. a sum of val-
ues of users’ data while protecting their privacy. Such aim can be achieved by
using combination of cryptography and the standard technique of adding random
value (a noise) to the aggregated data. Example papers where authors take such
approach are for example [62, 57, 29]. It turns out that the bigger the set of indi-
viduals contributing to the sum, the less noise has to be added to protect privacy of
individuals. Alternatively, having the same level of privacy one can reveal more
exact statistics, without risking privacy breaches, if they refer to a bigger set of
individuals.

Note that most of protocols described fail to provide the correct output even
if only a single user abstains from sending his share of the input. The solution
for dynamic networks have been presented in [17]. Approach based on [62] was
also focused on more advanced processing of aggregated data (e.g., evaluation
and monetization) while protecting privacy of users is discussed in several papers
([1, 30]).

In this thesis we are also analysing various privacy enhancing protocols on
real-life networks. Therefore many different papers concerning such networks
should be pointed as related work. Since the idea of scale free network modeling
appeared, there has been a vast amount of research concerning these, including
[2, 6] which laid foundations for scale free modeling of real networks.

Also worth mentioning are papers which provided rigorous mathematical treat-
ment for scale free networks [14, 15, 13]. More recent work on properties of scale
free networks include [5, 33]. Throughout our theoretical analysis we use some
standard facts concerning random graphs, very comprehensive treatment of these
can be found in [12]. We should also mention papers about community structure
in large networks [45, 68]. Some empirical results can be found in [19].

Our privacy enhancing protocols are connected with the problem of robust-
ness in complex networks, which has also been widely analyzed. To mention a
few papers concerning the robustness and enhancing of robustness in scale free
networks we cite [73, 72, 71]. One should also mention [32] wherein authors
consider adversarial deletion in scale free graphs and [10], where authors improve

13

graph robustness by edge modifications.
Another, substantially different, approach to privacy preserving data aggrega-

tion is to use some relaxation of differential privacy definition to take into account
the adversarial uncertainty. This obviously brings up various problems, like how
to measure such uncertainty and how to provide a formal way of quantifying the
relaxed version of differential privacy. A concept for such relaxation was intro-
duced in [11] and called noiseless privacy. The authors of [11] proposed a new
insight considering relaxation of differential privacy which utilizes the uncertainty
of the Adversary. This was done in contrast to standard differential privacy, which
assumed that the uncertainty has to be injected by a randomized mechanism.

Obviously the notion of differential privacy is quite pessimistic, as we assume
that the Adversary knows almost everything. In some cases it makes differential
privacy unusable in practice. The necessity to add noise to the final output may
render the data completely useless. Imagine situation where we want to do a
taxation audit. The aggregator collects the amount of taxes paid by the individuals
and then publish their sum. After adding a noise, this sum will be different than
the tax due, but now we do not know whether it is because of the noise added, or
if there is some tax evasion undergoing.

This might be an extreme example, but nevertheless, a large magnitude of
noise (say linear of the size of the data itself) would be prohibitive in most prac-
tical situations. One such case is the Binary Protocol from [17], which we thor-
oughly analyse in Section 2.2, where the magnitude of noises for practical cases is
huge, despite good asymptotic properties of the protocol. More comments about
the importancy of having appropriate accuracy, especially considering practical
deployments of differentially private protocols can be found in [47]

There are also other papers that take similar approach, especially [8, 43]. Both
in [8] and [43] the authors proposed a frameworks (called ”coupled-worlds pri-
vacy” and ”Pufferfish”, respectively) for specifying privacy definitions utilizing
adversarial uncertainty. They could be instantiated in various ways, one of which
boils down to noiseless privacy. These are important generalizations of ideas in
[11], however the main goal of its authors is extending and generalising privacy
definitions. Another paper that is related to differential privacy relaxations is [46],
where the authors utilized sampling to enhance privacy. Similarly, in [20] the
authors explore inherent privacy properties of cardinality estimators.

14

1.4 Chosen Mathematical Techniques
In this section we present a few mathematical techniques which are used through-
out this thesis.

1.4.1 Characteristic Functions of the Positive Part of a Ran-
dom Variable

This subsection is devoted to techniques described in [56]. Let X be a real-valued
random variable and ϕ denote its characteristic function, so ϕ(t) = EeitX for all
real t. Denote

(Jaϕ)(t) =
1

2πi

∞∫
−∞

e−iuaϕ(t+ u)
du

u
,

where a is an arbitrary real number. The integral here is understood in principal-
value sense, so that

(Jaϕ)(t) = lim
ε→0,A→∞

(Ja,ε,Aϕ)(t),

where

(Ja,ε,Aϕ)(t) :=
1

2πi

 A∫
ε

e−iuaϕ(t+ u)
du

u
+

ε∫
−A

e−iuaϕ(t+ u)
du

u

 .

Furthermore, we denote
J := J0,

and see that

J =
i

2
H,

where H is the Hilbert transform given by

(Hϕ)(t) :=
1

π

∞∫
−∞

ϕ(s)ds

t− s
.

The author of [56] proves the following

15

Proposition 1. (from [56])

(Jaϕ)(t) =
1

2
E
(
eitXsign(X − a)

)
.

Moreover for all random variables X , a and ε and A such that 0 < ε < A < ∞
we have

|(Ja,ε,Aϕ)(t)| < 1.

First of all, this proposition shows that the integral in (Jaϕ)(t) always exists
as long as ϕ is characteristic function of some random variable X . Secondly,
it yields a useful corollary, which allows to obtain characteristic function of the
positive part of a random variable using characteristic function of this variable and
its Hilbert transform.

Corollary 1. (from [56])

ϕX+(t) = E
(
eitX+

)
=

1

2
[1 + ϕ(t)] + (Jϕ)(t)− (Jϕ)(0) =

=
1

2
[1 + ϕX(t)] +

1

2πi

∞∫
−∞

[ϕX(t+ u)− ϕX(u)]
du

u
,

where ϕ is characteristic function of X and X+ := max(0, X).

1.4.2 Graphs and Preferential Attachment Graphs
In this subsection we will recall both Erdös-Renyí G(n, p) model and preferential
attachment graphs model and also some useful facts and theorems.

Let us first recall the well known G(n, p) model (see e.g. [12]).

Definition 1. We say that a graph is from G(n, p) model if it is constructed by
connecting n nodes such that each possible edge is included in the graph with
probability p independently from every other edge.

In other words, we start with empty graph having n nodes, iterate through all
possible pairs and independently place an edge between each pair with probability
p. Moreover, we recall an important fact about this model.

Fact 1 (from [12]). Let G(n, pn) be a random Erdös-Renyí graph on n vertices.
If pn >

(1+ε) logn
n

for some ε > 0 then G(n, p) is whp connected.

16

Now we present the second model, namely preferential attachment graph.

Definition 2 (Preferential attachment graph). We say that a graph is from the
preferential attachment model with parameter m if it is an effect of the following
process. The initial structure is a connected graph on m0 nodes (m0 ≥ m ≥ 1).
New nodes are added to its structure one at a time. Each new node chooses m
existing vertices and attaches to them according to the degree distribution, i.e. the
probability that it attaches to a node v is equal to deg(v)∑

w deg(w)
, where the sum runs

over all vertices from the present structure.

In this thesis we will also use the following result about preferential attachment
graphs which can be found in [33].

Theorem 1. Let us consider the preferential attachment graph model on n vertices
with fixed parameter m. Let p(l|k) denote the probability that a randomly chosen
neighbor of a node of degree k will have degree l. Then

p(l|k)
n→∞−−−→ m(k + 2)

kl(l + 1)
− m

kl

(
2m+ 2

m+ 1

)(k+l−2m
l−m

)(
k+l+2
l

) .
1.4.3 Berry-Esseen Theorem and Stein’s Method
In our analysis there is a necessity to find a bound for distance between given
mean of a random sample and standard normal distribution. Let us first recall the
well known

Fact 2 (Berry-Esseen Theorem). Let X1, . . . , Xn be a sequence of independent
random variables. Let EXi = 0, EX2

i = σ2
i > 0 and E|Xi|3 = ρi < ∞.

We denote σ2 =
∑n

i=1 σ
2
i , let Fn denote the cumulative distribution function of∑n

i=1 Xi
σ
√
n

and let Φ denote the cumulative distribution function of standard normal
distribution. Then

sup
x∈R
|Fn(x)− Φ(x)| 6 C ·

∑n
i=1 ρi

(
∑n

i=1 σ
2
i)

3
2

,

where C 6 0.5591 is a constant.

The upper bound for constant C comes from [67].
We also present Stein’s Method (see for example [7, 59]), which allows to

bound the Kolmogorov distance between two random variables. Firstly, we intro-
duce some notation and facts.

17

Definition 3 (Dependency Neighborhoods). Let {X1, . . . , Xn} be a collection of
random variables. Their dependency neighborhoods are such {Ni}ni=1 that for all
Ni we have Ni ⊂ [n] and Xi is independent of {Xk}k/∈Ni .

Definition 4 (Kolmogorov Distance). Let X and Y be random variables. We
denote their Kolmogorov distance as dK(X, Y) which is defined as

dK(X, Y) = sup
t∈R
|FX(t)− FY (t)| .

Definition 5 (Wasserstein Distance). LetX and Y be random variables. Let µ and
ν be their corresponding probability measures. We denote Wasserstein distance
as dW (X, Y) which is defined as

dW (X, Y) = sup
h∈H

∣∣∣∣∫ h(x)dµ(x)−
∫
h(x)dν(x)

∣∣∣∣ ,
whereH = {h : R→ R : |h(x)− h(y)| 6 |x− y|}.

These are standard probability distribution metrics, their definitions are also
given in [59]. We also recall a useful relation between Kolmogorov and Wasser-
stein distance.

Fact 3 (From [59]). Suppose that a random variable Y has its density bound by
some constant C. Then for any random variable X we have

dK(X, Y) 6
√

2CdW (X, Y).

Moreover, if Y ∼ N (0, 1), then for any random variable X we have

dK(X, Y) 6

(
2

π

) 1
4 √

dW (X, Y).

Lastly, we recall a theorem from [59].

Fact 4 (Theorem 3.6 in [59]). Suppose X1, . . . , Xn are random variables such
that for every i we have EX4

i < ∞, EXi = 0, σ2 = Var (
∑n

i=1Xi) and define
W =

∑n
i=1Xi
σ

. Let the collection X1, . . . , Xn have dependency neighborhoods Ni,
i ∈ [n] and also define D = max16i6n |Ni|. Then, for random variable Z with
standard normal distribution we have

dW (W,Z) 6
D2

σ3

n∑
i=1

E|Xi|3 +
D

3
2

√
28

σ2
√
π

√√√√ n∑
i=1

EX4
i .

18

This fact is obtained by using Stein’s method. Note that the Stein’s method
does not assume anything about joint distribution of dependent subsets, only the
size of the greatest dependent subset.

1.5 Differential Privacy Concept
In this section we describe the idea of differential privacy, which is a fundamental
concept in this thesis, and motivations behind it. Moreover, we recall a few key
definitions from [28].

Motivations Let us first describe the motivations behind differential privacy.
Assume we have a database with data about some population. We want to perform
data analysis on it (e.g. calculate average, maximum, median) to infer facts about
that population. On the other hand, we want to preserve the privacy of the people
from whom we collected the data. The questions we have to ask first are:

• What does loss of privacy mean?

• What are our assumptions about the Adversary who wants to breach the
privacy of our data?

• What kind of external information does the Adversary have? (data from
other sources, public information etc.)

• How to achieve privacy of the data of specific users, yet still give correct (or
close to correct) reponses for the queries?

Note that in this section and throughout the whole thesis by the Adversary we will
mean an abstraction for all the privacy dangers, e.g. external attempt to breach
privacy, internal data theft, malicious user and so on. First, naive, idea is to as-
sume that preserving privacy means that it is impossible to infer anything about
a specific person based on the responses from our database. This is obviously an
approach analogous to semantic security. However, this is an infeasible approach.
Assume we have a database with height of all male humans and therefore we know
the average height of men. Now assume we have access to auxilliary information,
from newspaper for example, which says that Mrs X is 10 centimeters taller than
an average man in a given population. See that such auxilliary information com-
bined with our knowledge from the database is enough to say how tall exactly Mrs
X is. Moreover, her data was not even in the database that we used to breach her

19

privacy, all we needed was an auxilliary information and data theoretically com-
pletely irrelevant to her. Can we really say in such case that database we had lead
to a privacy breach? Obviously we want our data to provide meaningful informa-
tion about some statistics of the population. What about meaningful information
about an individual?

Another classic example why we cannot deny such information is as follows.
Assume we have performed a study that, for the first time, connected smoking
with lung cancer. Mr X has admitted that he is a smoker in last health survey
for the insurance company. After publishing the research, his health insurance
cost has increased significantly. The insurance company connected the published
research with their database and they inferred that Mr X has high risk of lung
cancer. Again, it does not matter whether he was, or was not participating in the
research data collection, yet meaningful information about him was inferred.

What does differential privacy give then, if we cannot prevent inferring mean-
ingful information about individuals using the data? In [28] there is a perfect an-
swer for that. The authors describe differential privacy as the following promise:
“You will not be affected, adversely or otherwise, by allowing your data to be used
in any study or analysis, no matter what other studies, data sets, or information
sources, are available“. In other words, differential privacy focuses on removing
the participation risk - it does not significantly change the outcome of the algo-
rithm whether specific user’s data was in the database or not. See that it is a good
response for previous toy examples. Mr X participating in the research data for
smoking will not significantly change the outcome of the study. That means, when
we are approached and asked to participate in a survey which is differentially pri-
vate, the participation itself will not harm our privacy in any way even though
the study itself might infer something about you, that would happen whether you
participate or not. Moreover, all these guarantees hold even if the Adversary has
any possible auxilliary information about you and every other user collides with
him.

Definitions In standard differential privacy approach we assume that there exists
a trusted curator who holds the data of individuals in a database D, typically
we assume that we have n rows, one for the data of each individual. A privacy
mechanism, or simply a mechanism is an algorithm that takes databaseD, universe
X of data types (set of all possible database rows) and random bits to produce the
output. Let us recall a few definitions from [28]

Definition 6 (Probability Simplex). Given a discrete setB, the probability simplex

20

over B, denoted ∆(B) is

∆(B) =

x ∈ R|B| : ∀i

xi > 0 ∧
|B|∑
i=1

xi = 1

 .

Definition 7 (Randomized Algorithm). A randomized algorithmM with domain
A and discrete range B is associated with a mapping M : A → ∆(B). On input
a ∈ A, the algorithm M outputs M(a) = b with probability (M(a))b for each
b ∈ B.

It is convenient to represent databases as their histograms, namely x ∈ NX ,
where xi represents number of elements in x of type i ∈ X . Such representation
allows us to recall the following

Definition 8 (Distance between databases). The l1 distance between two databases
x and y is ||x− y||1, where

||x||1 =

|X |∑
i=1

|xi|,

is the l1 norm of the database x.

One can easily see that ||x||1 measures the size of the database while ||x−y||1
measures how many records differ between x and y. Now we are ready to present
differential privacy definition, which is a central element of this thesis

Definition 9 (Differential Privacy). A randomized algorithmMwith domain N|X |
is (ε, δ)-differentially private, if for all S ⊆ Range(M) and for all x, y ∈ N|X | such
that ‖x− y‖1 6 1:

P(M(x) ∈ S) 6 exp(ε) · P(M(y) ∈ S) + δ,

where the probability space is over the coin flips of the mechanismM. If δ = 0
we say thatM is ε-differentially private.

One might wonder if randomization of the privacy mechanism is truly neces-
sary. Assume we have a non-trivial (which means there exists at least two inputs
which yield different outputs), deterministic privacy mechanism. Then, as such,
there exists a query and two databases that yield different output under this query.
Changing one row at a time we see that there must exist a pair of databases differ-
ing only on single row, for which the query response is different.

One of the most important properties of differential privacy is immunity to
post-processing. Let us recall the following

21

Definition 10 (Immunity to post-processing). LetM : N|X | → R be a random-
ized algorithm that is (ε, δ)-differentially private. Lef f : R → R′ be an arbitrary
randomized mapping. Then f ◦M : N|X | → R is (ε, δ)-differentially private.

Speaking in an informal way, it means that when an analyst gets the output of
differentially private algorithm, he cannot in any way increase the privacy loss.

Local Model Now we describe the Local Model, also known as distributed dif-
ferential privacy. Recall that in standard differential privacy model we make a
very strong assumption, namely that there is a trusted curator of data, be it either
owner of the database or any trusted third party. Generally, we assume that there
exists an entity which is allowed to see the data without any obfuscation and that
there are secure channels between all users (or other data sources) and this entity.
Obviously, this assumption is troublesome for some practical applications. Some-
times we cannot guarantee to the end user that the curator will never be malicious
or corrupted. There could be a breach in data security before the appropriate dif-
ferential privacy technique was applied, which means the Adversary got access to
data before any obfuscation. There could also be a breach in the communication
channel between user and the database which may allow the Adversary to read his
data. All the benefits of differential privacy are gone in such cases, even though
the official, published data is sanitized and does not compromise privacy. See that,
in some sense, here we consider the curator himself as the Adversary. Despite all
the merits of differential privacy mechanisms with trusted curator, in some cases
we do not want anyone to get access to our clean data, even the entity that collects
and holds it.

The Local Model drops this assumption, which means every user is respon-
sible for adding an appropriate noise to his data (or obfuscating it in other way)
before sending it. In other words, we do not have a trusted party which is autho-
rized to collect the real data and then perform some specific actions to preserve
privacy (e.g. add noise of appropriate magnitude). The users themselves have to
be responsible for securing their privacy by adding noise from some specific dis-
tribution, encrypting the noisy value and then sending it to the Aggregator. This
problem requires combination of both cryptographic and privacy preserving tech-
niques. In such cases we need both distributed computing and various multiparty
computation techniques to ensure the data is collected in a fault-tolerant and cryp-
tographically secure way. Such model makes the privacy problems more complex,
yet far more useful in practical scenarios. Of course, there is a price to pay, as most
often the bounds for accuracy are worse in the local model than in the general one

22

and they require more communication due to cryptographic techniques.
To put it more formally we have the following

Definition 11 (Local Randomizer from [28]). An ε-local randomizerR : X → W
is an ε-differentially private algorithm that takes as input a database of size n = 1.

Definition 12 (LR Oracle from [28]). An LR oracle LRD(·, ·) takes as input an
index i ∈ [n] and an ε-local randomizer R and outputs a random value w ∈ W
chosen according to the distribution R(xi), where xi ∈ D is the element held by
the i-th individual.

Definition 13 (Local Algorithm from [28]). We will call an algorithm ε-local if
it accesses the database D via the oracle LRD, with the following restriction: If
LRD(i, R1), . . . , LRD(i, Rk) are the algorithm’s invocations of LRD on index i,
where each RJ is an εj-local randomizer, then ε1 + . . .+ εk 6 ε.

See that this formally means that in Local Algorithm, each user has to take
care of obfuscating his data and the untrusted aggregator can only collect data via
LR Oracle. Note that due to the composability of differential privacy, it is easy to
see that ε-local algorithms are ε-differentially private.

The Local Model is far more practical than standard, so called centralised,
model. See that nobody other than the data owner has any access to private data
and, as long as the protocol is performed in a cryptographically secure way, the
data stays private even if the aggregator becomes malicious.

1.6 Basic Differential Privacy Techniques
In this section we give examples of some basic differential privacy techniques
such as Randomized Response, Laplace Mechanism and Gaussian Mechanism.
These are the common building blocks for more complex algorithms. Note that
these definitions and techniques are described for example in [28].

1.6.1 Randomized Response
Let us begin with Randomized Response which is a known folklore mechanism.
This is the simplest differential privacy technique which can be easily explained
intuitively even to a non-technical person. Assume we conduct a survey, asking
people in public a ’yes/no’ question, answer to which they probably want to hide,
for example about using illegal drugs.

The algorithm for each user goes as follows:

23

1. Flip a coin

2. If tails, then respond truthfully

3. If heads, then flip a second coin and respond "Yes" if heads and "No" if tails

Claim 1. (from [28]) Randomized response described above is (ln 3, 0)-differentially
private

It is easy to see intuitively, that this algorithm gives so called ’plausible denia-
bility’. Namely that the compromising response could be the effect of random
response, not the actual answer. An important feature of this technique is also that
it can easily be performed locally. Randomized response could be used for exam-
ple in conducting privacy-preserving exit polls when we have two candidates for
election.

Note that we can easily tune the parameters to either have better ε parameter
by increasing the chance for a random response, or the opposite, by decreasing
the chance for a random response, which yields better accuracy.

1.6.2 Laplace Mechanism
In this subsection we briefly show another basic differential privacy mechanism,
known as the Laplace Mechanism which was proposed for the first time in [27].
Here, however, we use more recent definition from [28]. We assume we have a
function f : N|X | → Rk, so a numeric query (e.g. average or sum of our data).
Let us begin with the following

Definition 14 (l1 - sensitivity). The l1-sensitivity of a function f : N|X | → Rk is:

∆f = max
x,y∈NX ;||x−y||1=1

||f(x)− f(y)||1.

The l1 - sensitivity is the magnitude by which a single individual’s data can change
the numeric query at most. Intuitively, the uncertainty we have to introduce into
the response has to be somehow connected with that magnitude. Now let us recall
the following definition

Definition 15 (The Laplace Distribution). The Laplace Distribution (centered at
0) with scale b is a distribution with probability density function:

Lap(x|b) =
1

2b
exp

(
−|x|
b

)
.

24

Note that Laplace distribution is a symmetric counterpart of exponential distribu-
tion. Having defined both Laplace distribution and l1-sensitivity we can proceed
to define the Laplace Mechanism.

Definition 16 (The Laplace Mechanism, from [28]). Given any arbitrary function
f : N|X | → Rk, the Laplace mechanism is defined as:

ML(x, f(·), ε) = f(x) + (Y1, . . . , Yk),

where Yi are i.i.d. random variables drawn from Lap(∆f
ε

).

Most importantly, this mechanism has the following property

Theorem 2. The Laplace mechanism preserves (ε, 0)-differential privacy.

1.6.3 Gaussian Mechanism
We will also present another basic differential privacy mechanism, namely the
Gaussian Mechanism. As in previous subsection we assume that we have a func-
tion f : N|X | → Rk. Let us begin with the following

Definition 17 (l2 - sensitivity). The l2-sensitivity of a function f : N|X | → Rk is:

∆2f = max
x,y∈NX ;||x−y||1=1

||f(x)− f(y)||2.

We can define the Gaussian Mechanism

Definition 18 (The Gaussian Mechanism, from [28]). Given any arbitrary func-
tion f : N|X | → Rk, the Gaussian mechanism is defined as:

ML(x, f(·), ε) = f(x) + (Y1, . . . , Yk),

where Yi are i.i.d. random variables drawn from N(0, σ2).

Now we present theorem from [25].

Theorem 3 (The Gaussian Mechanism, from [28]). Let ε ∈ (0, 1) be arbitrary.
For c2 > 2ln(1.25/δ), the Gaussian Mechanism with parameter σ > c∆2f/ε is
(ε, δ)-differentially private.

25

Chapter 2

Fault Tolerant Privacy-Preserving
Data Aggregation Without Trusted
Aggregator

Aggregation of data is a fundamental problem that has been approached from
different perspectives. In general, this problem has the following setting. There is
a set of users (we can alternatively call them nodes). Each user has some data, for
simplification we can think of it as a numeric, or even boolean, value. There is also
an entity, called aggregator, which calculates some general aggregated statistics
(like an average value) based on users’ data. From privacy perspective, our goal
is to reveal those aggregated statistics while keeping the value of each individual
secret, even if the aggregator is untrusted (e.g., tries to learn input of individual
users). The general notion is to design a protocol that allows the aggregator to
learn a perturbed sum, but no intermediate results (e.g. partial sums).

This chapter is devoted to a fault tolerant privacy preserving data aggregation
protocol which utilizes limited local communication between nodes. As a starting
point we analyse the Binary Protocol presented by Chan et al. in [17]. Comparing
to previous work (see [62]), their scheme guaranteed provable privacy of individ-
uals and fault tolerance. However, we show that despite asymptotic guarantees
the error in the Binary Protocol is unacceptably high for practical applications.

Furthermore, we present a precise data aggregation protocol that provides
provable level of privacy even when facing massive failures of nodes. Moreover,
our protocol requires significantly less computation (limited exploiting of heavy
cryptography) than most of fault tolerant aggregation protocols and offers better
security guarantees which makes it suitable for systems with limited resources

26

(e.g. sensor networks). Most importantly, our protocol significantly decreases the
error (compared to Binary Protocol). However, to obtain our result we relax the
model and allow some limited communication between the nodes. Our approach
is a general way to enhance privacy of nodes in networks that allow such limited
communication.

2.1 Binary Protocol
In [17] the authors proposed a fault tolerant, privacy preserving data aggregation
protocol which has been named Binary Protocol. Its purpose is to allow an un-
trusted Aggregator AGG, to learn the sum of values xi, i ∈ [n], where xi is kept
by the i-th user. Their idea is based on earlier work [62], in particular the Block
Aggregation protocol. Let us first recall some definitions.

Definition 19. (Symmetric Geometric Distribution). Let α > 1. We denote by
Geom(α) the symmetric geometric distribution that takes integer values such that
the probability mass function at k ∈ Z is α−1

α+1
· α−|k|.

Definition 20. (Diluted Geometric Distribution). Let α > 1 and 0 < β ≤ 1. A
random variable has β-diluted Geometric distribution Geomβ(α) if with proba-
bility β it is sampled from Geom(α), and with probability 1− β is set to 0.

The symmetric geometric distribution Geom(α) can be viewed as a discrete
version of Laplace distribution. Note however, that we cannot use the Laplace
distribution as having discrete values is essential for the cryptographic techniques
used in the protocol. The dilution parameter β is the probability that a specific
user will add noise from Geom(α). This is done because, intuitively, we want
at least one user to add a geometric noise of necessary magnitude, but we do not
want too many of these noises to keep the accumulated noise sufficiently small.

Now we briefly recall Block Aggregation protocol from [62].

1. Generate a random secret key ski for each of n users as well as an additional
sk0 given to the Aggregator such that

∑n
i=0 ski = 0.

2. Each user has data xi, generates ri from Diluted Geometric Distribution and
encrypts x̃i = xi + ri using ski.

3. Each user sends x̃i to the Aggregator.

4. After receiving data from all users Aggregator decrypts the sum using sk0.

27

The problem that occurred with Block Aggregation is that whenever a single
user fails to deliver their share, it is impossible for the Aggregator to decrypt the
desired value.

Binary Protocol presented in [17] addresses the incompleteness of the data
by arranging the users in a virtual binary tree. One may visualize each user as a
leaf of a binary tree, with all the tree-nodes up to the root being virtual. In order
to simulate the tree structure, the users and AGG are equipped with appropriate
secret keys and generate random noises for each of the tree-layer. The first layer
consists of the root, second layer consists of its children, and so on. Finally, the
dlog ne + 1st layer consists of the leaves. See that each virtual node corresponds
to a subset of users, who are descendants of this specific virtual node. We will call
such subsets corresponding to virtual nodes segments.

Each user performs Block Aggregation protocol for each of the layers, i.e.
dlog ne + 1 times. For i-th layer, the noise ri has diluted geometric distribution
with different βi parameter. Namely, we have βi = min

(
1
|Bi| ln

1
δ0
, 1
)

, where |Bi|
is the size of segment corresponding to nodes in the layer and δ0 > 0 is a privacy
parameter. If all users present their shares, the problem is reduced to the original
Block Aggregation. The Aggregator may decrypt the root-layer block. However,
if at least one user fails, all blocks containing this user cannot be decrypted due to
lack of necessary secret keys. In order to provide the aggregation of the remaining
users the Aggregator has to find a coverage of the tree from the blocks of different
layers such that all the remaining users are covered and none of the failed users is
included. It is easy to see that such coverage always exists.

Binary Protocol results in O (n log n) communications exchanged in the net-
work and, even more importantly, guarantees Õ

(
(log n)

3
2

)
error. This notion,

however, hides significant constants. In a practical setting, results of [17] are less
satisfying than one would expect. The issues concerning the protocol and the
resulting error are raised in Section 2.2.

2.2 Analysis of Binary Protocol

In this section we will show that the error magnitude in Binary Protocol is un-
acceptable for moderate number of participants. Note that in [17] the authors
assumed that each user, out of n users, has value xi ∈ {0, 1}, which means that
the range of the sum of aggregated data is [0, n]. Thus, error of magnitude γn
shall be regarded very large even for moderate constant γ.

28

The authors of [17] have shown and emphasised that the magnitude of error
is o(n) asymptotically. However, in practical applications we are also interested
in performance of this protocol for moderate values of n, e.g. n 6 214. In this
section we will show that for a reasonable range of values of the number of users
n and number of failures κ the error is prohibitively large with significant proba-
bility. Obviously, as n increases, the Binary Protocol becomes better because of
the asymptotic guarantees. However, our aim here is to show, that if the number of
participants is moderate or the number of failures is significant (e.g. κ = log2(n),
κ = b n

26 c) then the accuracy of Binary Protocol is too low to be used in practical
applications. Furthermore, if the number of users is quite small (i.e. 210 or less),
then even for κ = 5 the errors generated are unacceptably high. We aim to show a
precise magnitude of error in the Binary Protocol. To achieve this, we use subtler
method than these presented by the authors of [17].

2.2.1 Analytical Approach
The size of error depends on the number of failed users and the way they are
distributed amongst all participants. Let us fix n as the number of participants.
Like the authors of [17], throughout this analysis we assume for simplicity that n
is a power of 2. However, our reasoning can be generalized to every n. The error
generated during the Binary Protocol is the sum of all noises in the aggregated
blocks. Throughout this section we will denote δ0 = δ

blog2(n)c+1
, where δ is a

privacy parameter. Before we start our analysis, let us recall the following lemma
which will be useful later on.

Lemma 1 (Wald’s equation (see [50])). Let (Xn)n∈N be a sequence of real-valued,
i.i.d. random variables and letN be a nonnegative integer-value random variable
that is independent of the sequence (Xn)n∈N. Suppose that N and Xn have finite
expected values. Then

E

(
N∑
i=1

Xi

)
= E(N)E(X1).

In Binary Protocol each user adds noise from diluted geometric distribution
for every layer of the tree. This essentially means that they either add geometric
noise with some probability β or no noise at all. Therefore, first we have to show
a formula for the expected value of the number of geometric noises added by
individual nodes. Note that in the original paper the authors gave only asymptotic

29

formulas for the number of generated noises. We give an exact formula in the
following theorem.

Theorem 4. Let Y be a random variable which denotes the number of geometric
noises added during the Binary Protocol. Let κ > 0 and fix n as the number
of participants. Then, the expected value of random variable Y is given by the
following formula:

EY = n− κ+ n ·
log2(n)−1∑

i=1

((
n− n

2i
κ

)(
n
κ

) · (βi − βi+1)

)
,

where βi = min
(

2i

n
ln 1

δ0
, 1
)

.

Proof Consider Binary Protocol described in Section 2.1. Assume that κ > 0
leaves have failed, and they are chosen uniformly at random from all n leaves.
Recall from Section 2.1 that βi = min

(
1
|Bi| ln

1
δ0
, 1
)

is the dilution parameter in
diluted geometric distribution. We assumed that n is a power of 2, therefore

|Bi| =
n

2i
,

because the binary tree is complete. We use random variables Xi to denote the
number of segments (on i-th level of the tree) corresponding to a subset of users
where noone failed. We call a node an aggregating node, if it is a part of the
coverage used by the Aggregator to collect data from working users. We will also
use random variable X∗i to denote the number of aggregating nodes on the i-th
level of the tree. Let us begin with stating and proving the following

Lemma 2. Consider Binary Protocol with fixed κ and n. Let X∗i denote the
number of aggregating nodes on the i-th level of the tree. For i > 1 we have

EX∗i = EXi − 2EXi−1 = 2i ·

((
n− n

2i
κ

)(
n
κ

) − (n− n

2i−1
κ

)(
n
κ

))
.

Proof First of all, we call a segment in the Binary Protocol tree clean if and
only if there are no failures in this segment. Each node in the tree corresponds
to a specific segment, according to Binary Protocol rules. See that on a certain
tree level, all nodes correspond to segments of the same size, noted here by |Bi|.

30

Throughout this reasoning we will call the root level 0, children of the root are on
level 1 and so on, up to level log2(n) which is the leaves level.

Value held by each user is, in the end, aggregated in exactly one node, which
belongs to some i-th level and corresponds to a specific segment. This user gen-
erates a symmetric geometric noise with probability βi. We want to know the
expected value of the number of noises generated throughout the whole proto-
col. To do this, first we denote the number of clean segments of size |Bi| (cor-
responding to nodes on i-th level of the tree) by a random variable Xi. See that
Xi ∈ {0, 1, . . . , 2i}. Furthermore, we see that:

Xi =
2i∑
j=1

Xi,j,

where

Xi,j =

{
1, if segment j on level i has no failures,
0, otherwise.

This, and the fact that EXi,j = EXi,k for every j, k ∈ {0, . . . , 2i}, allows us to
use linearity of expectation to calculate EXi:

EXi = E

 2i∑
j=1

Xi,j

 = 2iEXi,1 = 2i · P(Xi,1 = 1). (2.1)

Now see that

P(Xi,1 = 1) =

(
n−|Bi|
κ

)(
n
κ

) ,

and also |Bi| = n
2i

, thus plugging these to (2.1) we get

EXi = 2i ·
(
n− n

2i
κ

)(
n
κ

) . (2.2)

See that if node is an aggregating one, it means that it corresponds to a clean
segment, but its parent does not correspond to a clean segment. We can see that
X∗i = Xi−2Xi−1, where i ∈ [log2(n)]. There areXi clean nodes on i-th level but
we have to subtract all the clean nodes from higher level of the tree multiplicated
by 2, because each of these clean nodes on a higher level is parent to two nodes on

31

ith level, which are therefore not aggregating nodes, because their parent is clean.
That gives us

EX∗i = EXi − 2EXi−1 = 2i ·

((
n− n

2i
κ

)(
n
κ

) − (n− n

2i−1
κ

)(
n
κ

))
,

which completes the proof of this lemma. �

Lemma 2 gives us an explicit formula for EX∗i . Now we can proceed to cal-
culating the expected value of the number of geometric noises generated during
the Binary Protocol.

Let Yi be a random variable which denotes the number of noises generated on
i-th level of the tree. On i-th level we aggregate X∗i segments, each of these seg-
ments have 2log2(n)−i users and each of these users generates geometric noise with
probability βi. Therefore we have Yi =

∑2log2(n)−i·X∗i
j=1 Uj , where Uj ∼ Bin(1, βi).

See that (Uj)n∈N and 2log2(n)−i · X∗i satisfy the assumptions of Lemma 1, so we
can apply it and obtain

EYi = E
(
X∗i · 2log2(n)−i) · EU1 = EX∗i · 2log2(n)−i · βi.

Every user is aggregated only on one level, so if we take a sum over all levels of
the tree, we will get all the noises generated during the Binary Protocol. Let Y be
a random variable that denotes the number of noises generated. We have

Y =

log2(n)∑
i=0

Yi,

and we know that if κ > 0, then Y0 = 0, because if at least one user has failed,
then we cannot aggregate all users in the root of the tree. Furthermore, using
linearity of expectation we have

EY =

log2(n)∑
i=1

EYi =

log2(n)∑
i=1

EX∗i · 2log2(n)−i · βi.

32

After straightforward calculations we can get

EY =

log2(n)∑
i=1

EXi · 2log2(n)−i · βi −
log2(n)∑
i=1

2EXi−1 · 2log2(n)−i · βi =

=

log2(n)∑
i=1

EXi · 2log2(n)−i · βi −
log2(n)−1∑

i=0

EXi · 2log2(n)−i · βi+1 =

= EXlog2(n) · βlog2(n) − nβ1EX0 +

log2(n)−1∑
i=1

EXi · 2log2(n)−i · (βi − βi+1) .

Also, as κ > 0, we have X0 = 0 with probability 1. See also that βlog2(n) = 1.
These observations yield the following

EY = EXlog2(n) +

log2(n)−1∑
i=1

EXi · 2log2(n)−i · (βi − βi+1) =

= n ·
(
n−1
κ

)(
n
κ

) +

log2(n)−1∑
i=1

2i ·
(
n− n

2i
κ

)(
n
κ

) · 2log2(n)−i · (βi − βi+1) =

= n− κ+ n ·
log2(n)−1∑

i=1

((
n− n

2i
κ

)(
n
κ

) · (βi − βi+1)

)
.

This gives us a formula for EY and completes the proof of this theorem. �

Now we show a lower bound for the expected number of noises for limited
range of n. We present it in the following

Corollary 2. Let 24 6 n 6 221 and δ = 0.05, then EY has a following lower
bound:

EY > n− κ− n ·

(
e−

8κ
n +

ln(log2(n)+1
δ

)

8
·
(
e−

16κ
n − e−

8κ
n

))
.

Proof We fix δ = 0.05. First observe that for 24 6 n 6 221 we have βlog2(n) =
βlog2(n)−1 = βlog2(n)−2 = 1, as for these levels we have 1

|Bi| · ln(log2(n) + 1) > 1.
Therefore users aggregated in segments of length 1 and 2 generate noise with
probability 1. Furthermore, for i 6 (log2(n) − 3) we have βi < 1. Also, for

33

i 6 (log2(n)− 4) we have βi+1

βi
= |Bi|
|Bi+1| = 2. Another observation is that we can

get an upper bound for (n−
n
2i
κ)

(nκ)
in a following way(

n− n

2i
κ

)(
n
κ

) =
(n · 2i−1

2i
) · (n · 2i−1

2i
− 1) · . . . · (n · 2i−1

2i
− κ+ 1)

n · (n− 1) · . . . · (n− κ+ 1)
=

=

(
2i − 1

2i

)κ
·
n · (n− 2i

2i−1
) · . . . · (n− (κ− 1) · 2i

2i−1
)

n · (n− 1) · . . . · (n− κ+ 1)
6

6

(
2i − 1

2i

)κ
=

(
1− 1

2i

)κ
6 e−

κ

2i ,

where the last inequality comes from the fact that (1 − x) 6 e−x. We can use all
these observations to obtain a lower bound. Let β∗ = ln

(
log2(n)+1

δ

)
. Then

EY = n− κ+ n ·
log2(n)−1∑

i=1

((
n− n

2i
κ

)(
n
κ

) · (βi − βi+1)

)
=

= n− κ− n ·

log2(n)−4∑
i=1

((
n− n

2i
κ

)(
n
κ

) · βi)+

(
n−8
κ

)(
n
κ

) · (1− βlog2(n)−3

) >
> n− κ− n ·

log2(n)−4∑
i=1

(
e−

κ

2i · βi
)

+ e
8κ
n ·
(
1− βlog2(n)−3

) >
> n− κ− n ·

log2(n)−4∑
i=1

(
e
− κ

2log2(n)−4 · βi
)

+ e
8κ
n ·
(
1− βlog2(n)−3

) =

= n− κ− n ·

e− 16κ
n · β

∗

n
·

log2(n)−4∑
i=1

(
2i
)

+ e
8κ
n ·
(
1− βlog2(n)−3

) =

= n− κ− n ·
(
e−

16κ
n · β

∗

n
·
(n

8
− 2
)

+ e
8κ
n ·
(

1− β∗

8

))
>

> n− κ− n ·
(
e−

16κ
n · β

∗

8
+ e

8κ
n ·
(

1− β∗

8

))
=

= n− κ− n ·
(
e−

8κ
n +

β∗

8
·
(
e−

16κ
n − e−

8κ
n

))
.

Which gives lower bound for EY and finishes the proof of this corollary. �

34

Note that if n < 24 then we have βi = 0, which means that every remaining
user has to add noise (even if there are no failures, i.e κ = 0). There is no need to
give a lower bound in that case, because then the number of noisy inputs is exactly
n − κ. Note also that even though we fixed a specific δ that is used broadly in
various papers (including [17]), similar reasoning can be made for different values
of δ.

We use this result to show the following

Example 1. Fix δ = 0.05. We will plot the lower bound for the fraction of nodes
that added noise in Binary Protocol, i.e. lower bound for EY

n
, using Corollary 2.

In Figure 2.1 we assumed κ = log2(n) failures. See that for moderate number of
nodes, the fraction of nodes that actually added noise from geometric distribution
is linear in n. In Figure 2.2 we set κ = n

26 which is still less than 2% failures. The
fraction of users that generated noise is over 17%. Recall that ideally there should
be only a single noise or a constant number of those.

Figure 2.1: Lower bound for EY
n

in Binary Protocol with δ = 0.05, κ = log2(n).

It can easily be seen in the Example 1 that even if the number of failures is
very small (i.e. less than 2% users with failures), the number of noises generated
is linear in n for realistic number of nodes. Note that it does not yet mean that the
size of the error is linear, because the noises could cancel each other out to some
extent.

35

Figure 2.2: Lower bound for EY
n

in Binary Protocol with δ = 0.05, κ = n
26 .

Having an exact formula and also a lower bound for the expected number of
noises generated, we can calculate the error. Let us assume that we have m noises
generated. Recall that each of them comes from symmetric geometric distribution
Geom(α) with α > 1. We denote the sum of all noises as Z. One can easily see
that EZ = 0 due to symmetry of distribution. However the expected additional
error i.e., E|Z| might be, and we will show that it often is, quite large.

Theorem 5. Let m denote the number of noises generated in Binary Protocol,
each coming from Geom(α) distribution for fixed α. Then let Z =

∑m
i=1 Zi be a

random variable which denotes the sum of generated noises. We have

E|Z| =
∞∫

0

4 · α ·m · sin t · (α− 1)2m

t · π · (α2 − 2α cos t+ 1)m+1dt.

Proof Let ϕZi(t) denote the characteristic function of Zi. We have

ϕZi(t) =
(α− 1)2

α2 − α(et + e−t) + 1
=

(α− 1)2

α2 − 2α cos t+ 1
.

Let ϕZ(t) denote the characteristic function of Z. As Zi are i.i.d. random vari-
ables, we get

ϕZ(t) = (ϕZ1)m =

(
(α− 1)2

α2 − 2α cos t+ 1

)m
.

36

We use techniques described in Subsection 1.4.1 to calculate the expected value
of |Z|. We denote Z+ = max(0, Z) and Z− = max(0,−Z). Using Corollary 1
we obtain

ϕZ+(t) = EeitZ+ =
1

2
[1 + ϕZ(t)] +

1

2πi

∞∫
−∞

[ϕZ(t+ u)− ϕZ(u)]
du

u
.

The integral is understood in the principal value sense (see Subsection 1.4.1).
Recall that Z is symmetric, so

|Z| = Z+ + Z− = Z+ + (−Z+) = 2Z+.

Furthermore, we have

E|Z| = 2EZ+ = 2
ϕ′Z+

(0)

i
. (2.3)

We have to calculate the derivative of ϕZ+(t) at 0. It can be done in the following
way

ϕ′Z+
(0) =

ϕ′Z(0)

2
+
d

dt

 1

2πi

∞∫
−∞

[ϕZ(t+ u)− ϕZ(u)]
du

u

 (0)

=
1

2πi

 ∞∫
−∞

[ϕ′Z(t+ u)]
du

u

 (0) =
1

2πi

∞∫
−∞

[ϕ′Z(u)]
du

u
.

(2.4)

Since Z is symmetric then ϕ′Z(0) = 0. Moreover, because EZ exists and is finite,
then E|Z| also has to exist. Therefore the integral has to be finite, so we can use
Lebesgue theorem to swap the order of derivation and integration. We can derive
ϕZ(t) which yields the following

ϕ′Z(t) =
−2 · α ·m · sin t · (α− 1)2m

(α2 − 2α cos t+ 1)m+1 . (2.5)

Combining (2.3), (2.4), (2.5) and observing that ϕ′Z(t)

t
is an even function, we

obtain the following formula for E|Z|

E|Z| =
∞∫

0

4 · α ·m · sin t · (α− 1)2m

t · π · (α2 − 2α cos t+ 1)m+1dt,

which completes the proof of this theorem. �

37

We also show a lower bound for E|Z| in a following

Fact 5. For fixed n and ε, we denote α = ε
log2(n)+1

and m = γn, for γ ∈ (0, 1].

Then, provided that
√

π(α−1)2

4αm
> 2π − 5 we have

E|Z| > cn,ε ·
√
γ · log2(n) ·

√
n

ε
√
π

− 0.1 ,

where cn,ε is a constant, which is at least 1.4 for moderate values of n and ε.

Proof Let us define ω(t)

ω(t) =
4 · α ·m · sin t · (α− 1)2m

π · (α2 − 2α cos t+ 1)m+1 .

We have

E|Z| =
∞∫

0

4 · α ·m · sin t · (α− 1)2m

t · π · (α2 − 2α cos t+ 1)m+1dt =

∞∫
0

ω(t)

t
.

One can easily see that ω(t) is periodic with period 2π. We can therefore consider
splitting the integral into [2kπ, 2(k + 1)π] intervals and try to find an accurate
lower bound for this integral. We have

E|Z| =
∞∑
k=0

 2(k+1)π∫
2kπ

ω(t)

t
dt

 .

Consider any of these integrals for k > 0

2(k+1)π∫
2kπ

ω(t)

t
dt > 0. (2.6)

We will now explain why this inequality holds. First, observe that function ω(t)
is an odd function on the interval [2kπ, 2(k + 1)π]. One can easily see, that ω(t)
is positive on [2kπ, 2kπ + π] and negative on [2kπ + π, 2(k + 1)π]. Furthermore,
the absolute value of ω(t)

t
is greater on the first half of the interval, because of the

38

decreasing factor 1
t
. This yields (2.6), which is true for all these intervals, and we

will use it for all k > 0, so that leaves us with

E|Z| =
∞∑
k=0

 2(k+1)π∫
2kπ

ω(t)

t
dt

 > 2π∫
0

ω(t)

t
dt.

We could use the lower bound (2.6), however there is no point using it on the
whole interval, because we would obtain trivial inequality E|Z| > 0. It requires
slightly subtler handling. Clearly, we could use (2.6) for any interval of type
[π − x, π + x], for x ∈ [0, π]. This yields the following

E|Z| >
2π∫

0

ω(t)

t
dt =

ηα,m∫
0

ω(t)

t
dt+

2π−ηα,m∫
ηα,m

ω(t)

t
dt+

2π∫
2π−ηα,m

ω(t)

t
dt >

>

ηα,m∫
0

ω(t)

t
dt+

2π∫
2π−ηα,m

ω(t)

t
dt,

which is true for every ηα,m ∈ [0, π]. Now see that if ηα,m < π
2
, we can bound the

first integral in a following way
ηα,m∫
0

4αm · sin t · (α− 1)2m

t · π · (α2 − 2α cos t+ 1)m+1dt >

ηα,m∫
0

4αm · cos t · (α− 1)2m

π · (α2 − 2α cos t+ 1)m+1dt,

(2.7)
which follows from the fact that cos t 6 sin t

t
for t ∈ [0, π

2
). Furthermore

2π∫
2π−ηα,m

4αm · sin t · (α− 1)2m

t · π · (α2 − 2α cos t+ 1)m+1dt >

2π∫
2π−ηα,m

4αm · sin t · (α− 1)2m

t · π · (α− 1)2m+2 dt,

(2.8)
which comes from plugging 1 instead of cos t, which makes the function greater
in terms of absolute value, but as it is negative on this interval, it yields a lower
bound. In (2.8) we have, in fact, an integral of sin t

t
multiplied by a constant de-

pending on α and m. There also still remains a problem of choosing ηα,m. First
we can observe that, for small enough ηα,m we have

2π∫
2π−ηα,m

sin t

t
dt > −

η2
α,m

10
.

39

Obviously this holds for ηα,m = 0. Let Si(x) denote the antiderivative of sinx
x

.
After derivating left side we obtain

d (Si(2π)− Si(2π − ηα,m))

dηα,m
= −d (Si(2π − ηα,m))

dηα,m
=

sin (2π − ηα,m)

2π − ηα,m
=

= − sin(ηα,m)

2π − ηα,m
> − ηα,m

2π − ηα,m
.

Derivating the right side yields −0.2ηα,m. We can check when the left side is
greater than the right side

− ηα,m
2π − ηα,m

> −0.2ηα,m,

which is true when
ηα,m 6 2π − 5.

So for ηα,m 6 (2π − 5) we have

2π∫
2π−ηα,m

sin t

t
dt > −

η2
α,m

10
.

Now we pick ηα,m so that

−0.1η2
α,m ·

4αm

π(α− 1)2
= −0.1.

That gives us

ηα,m =

√
π(α− 1)2

4αm
.

Plugging it all to our formula for expected magnitude of noise yields

E|Z| >
ηα,m∫
0

4 · a ·m · cos t · (α− 1)2m

π · (α2 − 2α cos t+ 1)m+1dt− 0.1.

We are now interested in the lower bound for this integral. One can see that

ηα,m∫
0

4 · a ·m · cos t · (α− 1)2m

π · (α2 − 2α cos t+ 1)m+1dt >

ηα,m∫
0

4 · a ·m · cos(ηα,m) · (α− 1)2m

π · (α2 − 2α cos t+ 1)m+1 dt.

40

This inequality is just plugging the smallest possible value of cosine on this inter-
val. Furthermore, we have

ηα,m∫
0

4αm · cos(ηα,m) · (α− 1)2m

π (α2 − 2α cos t+ 1)m+1 dt >

ηα,m∫
0

4αm ·
(

1− η2
α,m

2

)
· (α− 1)2m

π
(
α2 − 2α ·

(
1− t2

2

)
+ 1
)m+1dt.

This bound comes from the fact that cos t >
(

1− t2

2

)
. Let us call the integrand

function g(t). This function has a following anti-derivative G(t):

G(t) =
4(α− 1)2m−2αmt

(
1 + αt2

(α−1)2

)m (
1− η2

α,m

2

)
2F1

(
1
2
, 1 +m, 3

2
,− α·t2

(α−1)2

)
(α2 + α(t2 − 2) + 1)m · π

,

where the 2F1(a, b, c, z) denotes ordinary hypergeometric function (see [69]). One
can easily see, that G(0) = 0. That leaves us with

E|Z| > G(ηα,m)− 0.1 .

G(ηα,m) is quite complicated, but we can greatly simplify it. Let us begin with
taking some of the G(ηα,m) factors

(α− 1)2m−2 ·
(

1 +
α·η2

α,m

(α−1)2

)m
(
α2 + α · (η2

α,m − 2) + 1
)m =

(α− 1)−2 ·
(

1 +
α·η2

α,m

(α−1)2

)m
(

α2

(α−1)2 + α
(α−1)2 · (η2

α,m − 2) + 1
(α−1)2

)m =

=
(α− 1)−2 ·

(
1 +

α·η2
α,m

(α−1)2

)m
(

1 +
α·η2

α,m

(α−1)2

)m = (α− 1)−2 .

Furthermore, we can expand 2F1(a, b, c, z) into Taylor series around 0 in a follow-
ing way:

2F1

(
1

2
, 1 +m,

3

2
,− αt2

(α− 1)2

)
= 1−α(m+ 1)t2

3(α− 1)2
+O(t4) > 1−

α(m+ 1)η2
α,m

3 (α− 1)2 .

Using these two observations we obtain

G(ηα,m) >
4(α− 1)−2 · α ·m · ηα,m ·

(
1− η2

α,m

2

)
·
(

1− α·(m+1)·η2
α,m

3·(α−1)2

)
π

.

41

We can further simplify this by recalling that α = e
ε

log2(n)+1 and m = γn and
observing that the expression

(
1− η2

α,m

2

)
·
(

1− α·(m+1)·η2
α,m

3·(α−1)2

)
is increasing with

n. Let us call this value c∗n. We can fix this for the smallest n that we want to
consider. See that, for example, for n > 27 we have c∗n > 1.43. This leaves us
with

G(ηα,m) >
4c∗n · (α− 1)−2 · α ·m · ηα,m

π
=

=
4c∗n · (α− 1)−2 · α ·m ·

√
π(α−1)2

4αm

π
=

=
2c∗n ·

√
α ·m√

π · (α− 1)
>

2c∗n ·
√
m√

π · (α− 1)
=

2c∗n ·
√
γn

√
π · (e

ε
log2(n)+1 − 1)

>

>
2c∗n ·

√
γn

√
π · (e

ε
log2(n) − 1)

>
ξ log2(n) · 2c∗n ·

√
γn

ε
√
π

,

where ξ is such that eξ·x 6 (1 + x) for x = (1
2 log2(n)

). For example, in case we
have ε = 0.5 and n > 27 it suffices to take ξ = 0.96. In the end we have

G(ηα,m) > cn,ε ·
√
γ · log2(n) ·

√
n

ε
√
π

,

where cn,ε = 2ξc∗n which is, for moderate n and ε, greater than 1.4. In fact, for
ε = 0.5 and n > 27 it is greater than 2. In the end we have

E|Z| > cn,ε ·
√
γ · log2(n) ·

√
n

ε
√
π

− 0.1 ,

which completes the proof of this fact. �

Using Fact 5 we can obtain a following

Example 2. Consider Binary Protocol for δ = 0.05, ε = 0.5, n 6 210 and κ =
log2(n). Let |Z| be the absolute value of all noises aggregated during this protocol.
We have E|Z| > 0.15 ·n. Moreover, if we take κ = n

26 and 26 6 n 6 212 we have
E|Z| > 0.12 · n.

This is an immediate result from the Fact 5, we can see that E|Z|
n

is a decreasing
function of n. Therefore it is enough to plug n = 210 into lower bound for E|Z|
for the first part of the corollary and n = 212 for the second part of the corollary.

42

This clearly shows that even if we consider the lower bound for the number
of noises and their magnitude, the Binary Protocol is far from perfect for many
realistic scenarios, i.e. when the number of participants is moderate. Even worse
conclusions are drawn in Subsection 2.2.2, where we use the exact formulas given
in theorems 4 and 5 to numerically analyze the errors generated in this protocol.

2.2.2 Numerical Approach

In Subsection 2.2.1 we gave both exact formulas and lower bounds for the number
of noises generated and their sum. Here we show that the errors generated are,
in fact, even larger. We use the exact formulas to precisely calculate the errors
numerically. First let us consider the case where n 6 210, κ = blog2(n)c, and
privacy parameters are ε = 0.5, δ = 0.05. See Figure 2.3. It clearly shows that the
error magnitude in Binary Protocol is, in fact, significantly greater than the lower
bound given in Corollary 2, which was 0.15n. Now let 26 6 n 6 212, κ = n

26

and privacy parameters stays the same. See Figure 2.4. Again we can see that
the error magnitude is unacceptably high, greater than 0.2n. Note that the result
itself can be at most n. See that even if we ignore and throw away all the data and
decide about the value for each user via coin toss, it yields an expected error of
at most 0.5n so the same order of magnitude as the Binary Protocol. Moreover,
the noise is independent from the data, so such error could be very problematic,
especially if the sum of the real data is small (e.g o(n)). In such case the noise
could be greater than the data itself. We can also see how great the errors will be
for constant value of κ = 5. See Figure 2.5.

Figure 2.3: Error in Binary Protocol with ε = 0.5, δ = 0.05 and κ = blog2(n)c.

43

Figure 2.4: Error in Binary Protocol with ε = 0.5, δ = 0.05 and κ =
⌊
n
26

⌋
.

Figure 2.5: Error in Binary Protocol with ε = 0.5, δ = 0.05 and κ = 5.

2.3 Precise Aggregation Algorithm with Local Com-
munication

In this part we present an alternative protocol PAALC (Precise Aggregation Al-
gorithm with Local Communication) that in some scenarios offers much better
accuracy of aggregated data when failures occur, while preserving privacy. In
fact, our protocol works in a substantially different way and for slightly modi-
fied model. Thus, despite its performance and accuracy outperforms the original
protocol of Chan et al., they are not fully comparable.

First of all, we assume that users may communicate. Let us stress that the
communication is limited to a small circle of “neighbors”. The idea behind the
presented construction is to take advantage of some natural structures emerging

44

Figure 2.6: Example of a clusterized network with global aggregator (AGG) and
local aggregators (Agg) marked.

in distributed systems. Apart from logical connections between each user and a
server/aggregator there are also some direct links between individual users, be it
either secure channel of communication or trust relation. Clearly, such model is
not adequate for some real-life problems discussed in [17], for example in sensor
fields with unidirectional communication. Thus there are applications where the
original approach without any local communication is the only one possible.

2.3.1 Modified Model

We assume that the network consists of n users where V = {v1, v2, . . . , vn} de-
notes the set of all users (or their respective vertices) as well as the aggregator
AGG and a set of k < n local aggregators Agg1, . . . , Aggk. Please note that
the local aggregators may be separate entities but without any significant changes
they may be selected from the set of regular users V . The only issue with this
approach is that we have to ensure that the local aggregator is either selected dur-
ing the aggregation round or it cannot fail during a single execution of aggregation
process. We assume that each user is assigned to exactly one local aggregator. We
denote the set of nodes assigned to the local aggregator Aggi by Vi. An example
of the network’s topology is depicted in Figure 2.6.

We can derive a graph G = (V, E) from the network structure, where V are
all the nodes and the set of edges is created based on the ability to establish com-

45

munication (e.g., transmission range in a sensor network, friendship relation in
a social network). Namely, {v, v′} is an edge if and only if v and v′ are neigh-
bors and can communicate via secure private channel. In our protocol we assume
that each node can perform some basic cryptographic operations and has access
to an independent source of randomness. By N(v) we denote a set of such ver-
tices v′ of G that there exists an edge {v, v′}. Security of the protocol described
in Section 2.3.3 depends on the structure of graph G, and how many parties the
adversary can corrupt. Discussion on security of the protocol can be found in
Section 2.4.

Adversary The Adversary may corrupt and therefore control a subsets of users,
local aggregators and the aggregator. He can read all messages the controlled
parties sent or received. Nodes controlled by the Adversary may decide not to
add the noise, even if they should according to the protocol. Note, however, that
sabotaging the whole protocol (e.g. by making the result incorrect or corrupted
in any way) is not the goal of the Adversary. The goal of the Adversary in this
model is to obtain sum of aggregated data for any subset of uncorrupted users with
worse privacy parameters than those guaranteed. If the Adversary cannot obtain
such information, we consider the protocol differential privacy preserving with
appropriate parameters.

2.3.2 Building Blocks
For obtaining high level of data privacy we combine cryptographic techniques
with data perturbation methods typical for research concentrated on differential
privacy of databases. First we recall the Decisional Diffie-Hellman assumption.

Definition 21 (Decisional Diffie-Hellman assumption). Consider a cyclic group
G of order q. Given (g, ga, gb, gc) for a randomly chosen generator g ∈ G and
random a, b, c ∈ 0, . . . , q − 1 for the adversary gab and gc are computationally
indistinguishable.

We say that Decisional Diffie-Hellman problem is hard in group G if the group
satisfies the Decisional Diffie-Hellman assumption.

The first technique we use in our protocol is a homomorphic encryption scheme
based on original ElGamal construction enriched by some extra techniques intro-
duced in [34]. More precisely, encrypted messages can be aggregated and re-
encrypted. Moreover one can add an extra encryption layer to a given ciphertext,
in such way that the message can be decrypted only using both respective keys.

46

Let p denote a large prime number and let G be a group of order p such that the
Decisional Diffie-Hellman problem is hard. Let g be a generator of G. Let sk, sk′

be some private keys and gsk, gsk′ are respective public keys. For the sake of clarity
we skip some technical details (i.e., choice of the group size, generators etc.) as
well as full security discussion of this encryption scheme. These techniques can
be found for example in [34].

Encryption of ’1’

A pair Encsk (1) = (gr, gr·sk) for a random r ∈ Zp is an encryption of 1 using
secret key sk.

Re-encryption

A ciphertext representing 1 can be re-encrypted. Namely, one can get another
ciphertext representing ’1’, without private key. Namely having Encsk (1) =
(gr, gr·sk) one can choose r′ and compute Re(Encsk (1)) = (gr·r

′
, gr·r

′·sk) that
represents 1 as well.

Adding layer of encryption

Having a ciphertext Encsk (1) = (gr, gr·sk) a party having private key sk′ can add
encryption layer to a ciphertext obtaining

Encsk+sk′ (1) = ((gr)r
′
, (gr·sk)r

′ · (gr)r′sk′) = (gr·r
′
, gr·r

′·(sk+sk′)).

Filling the ciphertext

Having Encsk (1) = (gr, gr·sk) for any message m ∈ G one can compute

Encsk+sk′ (m) = (gr, gr·sk ·m).

Partial decryption

Having Encsk+sk′ (m) = (gr·r
′
, gr·r

′·(sk+sk′)m) and a private key sk′ for m ∈ G
one can remove one layer of encryption and obtain

Encsk (m) =

(
gr·r

′
,
gr·r

′·(sk+sk′)m

(gr·r′)sk′

)
= (gr·r

′
, gr·r

′·skm).

47

2.3.3 Protocol Description
During the protocol, we assume that the aggregator AGG has a private key sk,
moreover each of the local aggregators Aggi has its own private key ski. We also
assume that there is a public parameter g, that is a generator of some finite group
G, in which Decisional Diffie-Hellman problem is hard. By Encsk (c) we denote
the encryption structure introduced previously in Section 2.3.2. Let us assume that
each user v has a private value ξv from the range [0, ∆]. Furthermore, we assume
that there are private channels between some of the users (underlying communica-
tion graph). The final aim is to provide AGG the sum

∑
v∈V ξv perturbed in such

a way that the privacy (expressed in terms of differential privacy) of all v ∈ V is
preserved. Clearly, the privacy of users can be endangered both by revealing the
output as well as by collecting information about the aggregation process. The
description of the protocol is presented below.

Setup

• AGG broadcasts to the local aggregators Encsk (1).

• Each of the local aggregators Aggi constructs Encsk+ski
(1) and pub-

lishes it for all users from Vi.

The setup phase is performed only once during network’s lifetime.

Aggregation for node v

• For each node v′ ∈ N(v) generate a random value xvv′ ∈ G.

• Using a private channel send each value xvv′ to the appropriate neigh-
bor v′.

• Having received all xv′v from each of the neighbors, select random rv
from Geomβ(α) and calculate

cv =
∑

v′∈N(v)

xv
′

v −
∑

v′∈N(v)

xvv′ + rv + ξv.

• Compute Re(Encsk+ski
(gcv)) and send it to Aggi.

48

Aggregation for local aggregator Aggi

• Having received Encsk+ski
(gcv) from all nodes from Vi, compute

Encsk (gcv) =

(
gri ,

gri(sk+ski)+cv

gri·ski

)
.

This operations result in obtaining shares:

Encsk (gcv1) = (grv1 , grv1 ·sk+cv1), . . . , Encsk (gcvl) = (grvl , grvl ·sk+cvl),

of all l = |Vi| users from |Vi|.

• Compute

Encsk

(
gcv1+···+cvl

)
=

(
l∏

i=1

gri ,
l∏

i=1

grisk+cvi

)
=
(
g
∑l
i=1 ri , g(

∑l
i=1 ri)sk+

∑l
i=1 cvi

)
.

• Send the value Encsk (gcv1+···+cvl) to the aggregator AGG.

Final aggregation

• Having received the aggregated values from each Vi, for each of those
values AGG calculates yi = g

∑
v∈Vi

cv , using its private key sk for
each i = 1, . . . , k. Then computes

y =
k∏
i

yi =
∏
i

g
∑
v∈Vi

cv = g
∑
v∈V cv .

• Then AGG computes discrete logarithm of y as a final (perturbed)
value being a sum of all

∑
v∈V ξv.

Similarly to previous papers (including [17, 62]), we utilize the following
method: if we know that each user v ∈ V has a value from an interval of moderate
size ξv ∈ [0,∆] then the sum of values of all ξv’s cannot exceed n∆. Thus one

49

can find a discrete logarithm for g
∑
v∈V ξv even if finding a discrete logarithm of gr

is not feasible for a random element r ∈ G. Using Pollard’s Rho method this can
be completed in average time O(

√
n∆). An example of node’s communication is

shown in Figure 2.7. Note that the protocol depends on two security parameters β
and α. They strongly depend on the topology of the underlying graph. We discuss
this issue in Section 2.4.

2.4 Analysis of PAALC
In this section we outline the analysis of the presented aggregation protocol with
respect to correctness, level of privacy provided and error of the result obtained
by the aggregator. The analysis is slightly more complicated since the parameters
of the protocol strongly depend on the underlying network. However, we argue
that they offer very good properties for wide class of networks. We prove that the
proposed protocol guarantees very good accuracy even facing a massive failures
and compromising of nodes. Half of nodes may fail or cooperate with the adver-
sary (in fact this result can be generalized to any constant fraction of users). One
can instantly observe that the analysis can be extended for smaller δ for the price
of moderate increasing of the expected noise.

Note that if a graph guarantees a specific level of privacy then more dense
graph (with some added edges) offers at least the same level of privacy. Thus it is
enough if each user adds some “randomly” chosen neighbors to protect the privacy
in any network. We elaborate more about this in Chapter 3, which is devoted to
such graph enrichments.

Correctness First, let us look at the result obtained by the aggregator AGG
in the last step of the protocol. This is a discrete logarithm of g

∑
v∈V cv . Let us

observe that

∑
v∈V

cv =
∑
v∈V

 ∑
v′∈N(v)

xv
′

v −
∑

v′∈N(v)

xvv′ + rv + ξv


=
∑
v∈V

∑
v′∈N(v)

xv
′

v −
∑
v∈V

∑
v′∈N(v)

xvv′ +
∑
v∈V

ξv +
∑
v∈V

rv =
∑
v∈V

ξv +
∑
v∈V

rv.

The value
∑

v∈V cv is the exact sum of values kept by nodes
(∑

v∈V ξv
)

and sum
of all the noises

(∑
v∈V rv

)
. This leads to two conclusions. First, the result is

50

Figure 2.7: An example of communication in a single aggregation round for node
v. The dotted line marks the set of nodes assigned to a single local aggregator
Agg. Note that neighbors may have different local aggregators.

51

correct. Second, retrieving the data using Pollard’s Rho method (or even brute
force method) is feasible since the absolute value of the first sum has to be smaller
than n∆. One can easily see that the sum of added noises is of the magnitude
O(n) with high probability.

Privacy protection We assume that the encryption scheme Encsk (·) is seman-
tically secure. In particular, in our protocol, the local aggregator AGGi cannot
learn the contributions sent to AGGj for i 6= j without access to keys skj and sk.

Note that all neighboring users exchange a purely random values xv′v ’s that
finally cancel-out, however as long as they remain unknown to the adversary, they
perfectly obfuscate the results sent to the aggregator.

We recall the following fact.

Fact 6. (From [17]) Let ε > 0. Let u, v be integers such that |u− v| ≤ ∆ for fixed
∆ ∈ N+. Let R be a random variable having distribution Geom(exp(ε

∆
)). Then

for any integer k

P[v +R = k] ≤ exp(ε)P[u+R = k].

Moreover, we will call those users that are not being corrupted by the Adver-
sary or prone any kind of failure uncompromised users. Now we can state and
prove

Theorem 6. Let us assume that PAALC with parameter α = exp(ε
∆

) is executed
in the network represented by a graph G = (V,E) and G ′ is a subgraph of G
induced by the set of uncompromised users V H . Moreover we assume that each
user v contributes a value ξv ∈ [0,∆].

If in each connected component S of G ′ there is a user s, such that its added
noise r is taken fromGeom(exp(ε

∆
)), then PAALC preserves computational (ε, 0)-

differential privacy.

Proof Let Ξ =
∑

s∈S ξs and let Ξ′ be the same sum with a changed single value
ξs. By the assumption about the range of the aggregated values we get |Ξ′−Ξ| ≤
∆. Let r be a random variable taken from the symmetric geometric distribution
Geom(exp(ε

∆
)). From Fact 6 we know that P[Ξ + r = k] may differ from P[Ξ′ +

r = k] by at most a multiplicative factor exp(ε). However, because the encryption
scheme is semantically secure, we know that the adversary may learn nothing
more than the sum of all values from the component S. �

52

From this theorem follows next corollary.

Corollary 3. If PAALC is executed on a graph such that a subgraph induced by
the set of uncompromised users V H is connected and with probability at least
1− δ at least one uncompromised user adds its value r from Geom(exp(ε

∆
)) then

PAALC computationally preserves (ε, δ)-differential privacy.

Translating into real terms Theorem 6 with Corollary 3 mean that if the con-
nections between honest users are dense enough and we can somehow guarantee
that at least one honest node adds the noise, the system is secure. The core of the
problem is to judge if a real-world networks are dense enough and what parame-
ters of adding noise are sufficient.

Accuracy The level of accuracy and security in this protocol strongly depends
on the graph topology and chosen security parameters. We consider a G(n, p)
graph, for fixed p where the Adversary controls up to n − m randomly chosen
users.

Theorem 7. Let us consider a random network with n nodes. Each of possible(
n
2

)
connections (edges) is independently added to the network with probability

p ≥ 8 logn
n

. Let S be a subgraph induced by a subset of at leastm ≥ n/2 randomly
chosen nodes. Then S is connected with probability at least 1− 1/n.

Proof Let us note that S is not connected if and only if there exists a subset of
nodes from S with cardinality 1 ≤ k ≤ m/2 such that there is no connection
to any of the remaining m − k nodes. For a given subset of S of cardinality k
probability that no edge connects it to other m− k nodes of S is (1− p)k(m−k).

Let Ak be an event that there exists such a "cut-off" subset of cardinality k.
Using union bound argument we get

P[Ak] ≤ (1− p)k(m−k)

(
m

k

)
.

Probability that S is not connected is equivalent to the event A1 ∪ . . . ∪ Am/2.
Again, using union bound

53

P[A1 ∪ . . . ∪ Am
2

] ≤
m/2∑
k=1

P[Ak] ≤
m/2∑
k=1

(1− p)k(m−k)

(
m

k

)
≤

≤
m/2∑
k=1

(1− p)k
m
2

(
m

k

)
= (?).

Since
(
m
k

)
6 mk we get

(?) ≤
m/2∑
k=1

(
(1− p)

m
2 m
)k ≤ ∞∑

k=1

(
(1− p)

m
2 m
)k

=
(1− p)m/2m

1− (1− p)m/2m
= (??).

Since the function f(x) = axx
1−axx is decreasing for x > − 1

log(a)
(if 0 < a < 1) and

from the assumption that m ≥ n/2 we have

(??) ≤
(1− p)n/4 n

2

1− (1− p)n/2 n
2

.

Applying inequality exp(x) ≥ 1 + x and substituting p = 8 logn
n

we obtain

(??) ≤
exp

(
−8 log(n)

n

)
n
2

1− 1/2
≤ exp

(
− log(n2)

)
n =

1

n
,

which concludes the proof of this theorem.
�

From Theorem 7 we learn that a “typical” network of n nodes with random
connections such that the average number of neighbors is 8 log n = Θ(log n) is
dense enough even if the adversary is able to compromise as much as n/2 nodes.

If we have guaranteed at least n/2 honest (uncompromised and working)
nodes one may note that the probability that none of them adds the noise is at least
(1 − β)n/2. To have (1 − β)n/2 ≤ δ one needs to have β such that log(1 − β) ≤
2 log δ
n

. Since log(1 + x) ≤ x for x > −1 it is enough to use β ≥ 2 log(1/δ)
n

. Clearly
the expected error cannot exceed 2

√
log(1/δ) for β = 2 log(1/δ)

n
.

54

2.5 PAALC and Binary Protocol Comparison
In this section we experimentally compare the Binary Protocol from [17] and our
PAALC described in Section 2.3. We conduct an experiment on real data from
Facebook social network collected in SNAP dataset by Stanford University (see
[44] and [49]), where nodes denote users and edges denote friend relation. We
have 4039 nodes and assume that each user holds one bit of information, i.e. value
xi ∈ {0, 1}. For number of node failures κ ∈ {0, 1, . . . , 200} we check what is
the error size in our protocol with parameters ε = 0.5 and δ = 0.05. Then we
compare it to the Binary Protocol with the same privacy parameters.

Firstly, in Figure 2.8 we can see what is the average fraction of nodes remain-
ing in the giant component after κ node failures. One can easily see, that the over-
whelming majority of nodes remain connected in a single, giant component. Our
protocol will preserve the privacy of these nodes. We emphasize, that the nodes
remaining out of the giant component may be prone to privacy loss. Probability
of being out of the giant component may be also added to the δ parameter.

Figure 2.8: The average fraction of nodes remaining in the giant component after
κ failures.

Observe that the Binary Protocol does not utilize the connections and commu-
nication between users in any way. Our protocol, on the other hand, depends on
the structure of the underlying graph, which means that on more dense dataset it
will perform better than on sparse graph. In Figure 2.9 one can see what is the
size of error in both protocols.

See that the additional error in PAALC is constant, while in the Binary Pro-
tocol the errors are much higher with high probability. Recall that the real sum
of the data is at most 4039 (if all users hold 1). Thus, error of size of magnitude

55

Figure 2.9: Blue line denotes the error in the Binary Protocol, red line denotes the
error in PAALC

103 renders the aggregated data not suitable for statistic inference. On the other
hand, our protocol gives constant error of size approximately 5, which makes the
aggregated data not only private, but also useful for statistical analysis. Unfor-
tunately, our vast error decrease comes at a price of not protecting the privacy
of these nodes which do not belong to the giant component. This, obviously,
is a significant drawback of our protocol. However, it can be mitigated by, for
example enriching the graph with additional edges or doing an additional check
whether specific node belongs to the giant component or not (then the outlying
nodes would have to always add noise).

We again want to emphasize that PAALC and the Binary Protocol are not fully
comparable. The Binary Protocol gives the privacy guarantee to all users and does
not require communication between them. However, it is not robust to failures,
despite the fact that it is designed precisely as a fault tolerant protocol. In par-
ticular, even if less than 5% users are prone to failure, the error in the aggregated
data is too big for the data to remain useful for any reasonable statistical purposes.
On the other hand, PAALC requires some communication (albeit very limited) be-
tween users and, maybe more importantly, strongly depend on the connections be-
tween users (communication channels). The denser the network, the more secure
PAALC is. Without the improvements which we mentioned in previous para-
graph, the privacy of users not belonging to the giant connected component in
PAALC is prone to attacks.

To conclude, in practical setting where we have quite dense network and we
expect more than just a limited, constant number of failures but rather a few per-
cent of failures amongst users, the Binary Protocol returns the aggregated data

56

with such a huge error, that it might not be appropriate for any reasonable statisti-
cal analysis. For such scenarios, if we can pay the price of trust and communica-
tion between some of the nodes, PAALC gives us constant size error, significantly
smaller than the Binary Protocol.

57

Chapter 3

Amplification of Privacy Using
Local Knowledge in Faulty Network

In naturally emerging networks users usually have a limited number of (semi)-
trusted contacts. Clearly, they also have mostly local knowledge about the whole
network. We consider a distributed system that consists of nodes which need to
constitute a huge, connected group in an efficient way and without knowledge of
global network topology.

It has been noticed that to perform some operations (e.g. data aggregation) in
distributed systems, it is often necessary to involve a large number of users. It is
worth mentioning that for real-life applications one has to take into account that
either random failures in the network or an external Adversary could cause some
of the nodes to malfunction. This can lead to the network being disconnected and
some users, or groups of users, isolated.

In this chapter we propose and investigate local strategies for constructing
large groups of users based only on local relations of trust with surprisingly low
communication and computation overhead. Moreover, these strategies are effec-
tive even facing a powerful adversary capable of controlling a vast majority of
users. This is non-trivial property in real-life networks, as those are usually mod-
eled using preferential attachment graphs, which are extremely prone to attacks
on the hub nodes. We show that using our protocols we can achieve similar ro-
bustness as Erdős-Renyí graphs, which, on the contrary, are very resistant against
attacks focused on chosen nodes.

We provide comprehensive tests on datasets representing real-life networks
for our protocols. Moreover, we prove some properties of these networks while
formally assuming that they are generated as a preferential attachment process.

58

There is a vast research showing that complex, real life networks exhibit a struc-
ture that can be modeled by preferential attachment graphs (see for example [2, 6,
64]). We present the preferential attachment model in Subsection 1.4.2.

We believe that our results can be also seen as a contribution to fundamen-
tal observation about the nature of real-life networks. These results may help
to design protocols, whenever it is necessary to gather a big group of users in
highly dynamic or even adversarial settings. From mathematical point of view
our contribution can be seen as a problem of constructing strategies for strength-
ening connectivity of a random graph by adding (locally and independently) some
number of extra edges.

3.1 Model
In this section we introduce a formal model and present definitions and notation
that will be used throughout the chapter.

In a real-life social network there are usually a few well-known and somewhat
trusted parties in the whole community. We model them by fat nodes.

Definition 22 (Set of fat nodes, F). Let G(V,E) be a graph such that |V | = n.
By F ⊂ V we denote a subset of vertices whose degrees vary from an

logn
to bn

logn

for some fixed constants a, b. We call them fat nodes.

Existence of such fat nodes is a phenomenon typical for structures governed
by preferential attachment model and there are relatively few of these nodes (typ-
ically up to log n).

Now, we want to model a situation when some of the nodes in graph may
either be offline due to some random failure or even specifically targeted and de-
stroyed by an external Adversary. We say that a node is healthy if it is neither
corrupted by the Adversary nor offline for any reason. In other words, healthy
node can correctly perform given protocol without revealing any information to
the Adversary.

If the vertex is not healthy we call it unhealthy. We consider all unhealthy
vertices as removed from the graph together with their incident edges. At the same
time we want to prevent healthy nodes from being isolated from the rest of the
network (we aim to have a group of healthy nodes which could constitute a huge,
connected group to be able to perform various security-enhancing protocols on
the network). We propose the following notion of graph robustness in distributed
systems.

59

(a) Initial graph (b) Corrupted nodes (c) Graph after attack

Figure 3.1: Adversarial attack example

Definition 23. We say that a graph is ξ-strong, for 0 6 ξ 6 1, if a subgraph
induced by its healthy nodes has largest connected component of size at least ξn,
where n is the number of healthy nodes.

Example 3. In Figure 3.1 we show an intuition behind both healthy nodes and
ξ-strength of a graph. In the first figure we can see a fully connected network with
all nodes healthy. In the second figure the Adversary has chosen 3 nodes (marked
by red color) to corrupt. Then these nodes and incident edges are removed from
the graph and we are left with 7 nodes out of which 6 are connected. It means that
after the attack ξ-strength of the remaining graph is 6

7
.

If the graph is ξ-strong, it means that there exists a connected structure, that is
not controlled by the Adversary, containing at least ξn out of n nodes. In privacy
settings, this allows to provide a common response secured in such way that the
Adversary cannot observe separate inputs of nodes but the aggregated value of a
large set of nodes.

Obviously the most desired situation is when the graph is 1-strong, which
means that all healthy nodes are connected. Clearly, corruption of a significant
number of nodes can dramatically decrease the ξ-strength. To mitigate the attack
we enrich the graph by adding some edges between users. For practical reasons
all these operations need to be simple (computationally affordable for each node)
and local, namely each node does not have knowledge about the whole network,
it only knows list of its neighbors and, potentially, several fat nodes).

We have a network with underlying graph G = (V,E). We define Disconnec-
tion Game with the Adversary A and protocol P , denoted by DG(G,A,P) in the
following way:

1. The set of edges E is enriched by adding edges chosen between pairs of
unconnected nodes according to protocol P . Rules of adding edges depend

60

on specific game instantiation. This resulting graph is GP = (V,E ∪ EP),
where EP is the set of edges added after P was applied.

2. The Adversary chooses, according to restrictions in this game instantiation
(e.g. is given no information or all the degrees of nodes), a subset C of
nodes. The nodes belonging to C are corrupted and removed from the
graph with their incident edges denoted by EC . Note that the Adversary
knows only the initial graph G so C does not depend on the set EP . This
reflects the assumption that the Adversary does not know the choices and
connections added during protocol P between healthy nodes. The resulting
graph is GA = (V \ C, (E ∪ EP) \ EC).

The outcome of the game is the fraction of nodes belonging to the biggest con-
nected component in graph GA or, in other words, ξ-strength of graph GA.

The game presented in this section is connected with the problem of robust-
ness of the network (see for example [72, 73]). It is, however, worth mentioning
that unlike mentioned papers, we require that the enhancing protocol is done in a
distributed way and without knowledge of global topology of the graph. More-
over, we pick rather strong notion of robustness, namely the size of the largest
connected component.

We assume that the corruption of nodes can either be done in a random way
(Random Failures strategy) or the Adversary can choose to attack nodes with high-
est degrees (Targeted Attack strategy).

• Random Failures - the Adversary chooses subset C of nodes using uniform
distribution. In other words, the subset is chosen uniformly at random out
of all possible subsets of a specific size.

• Targeted Attack - the Adversary chooses subset C of nodes with highest
degrees. In other words, the set of nodes is sorted decreasingly by its degree
and then the Adversary picks m first nodes as subset C. One can easily
see that this strategy is far more destructive for the structure of remaining,
healthy nodes.

3.2 Security Enhancing Protocols
In this section we present three local protocols enriching the set of relations be-
tween users of the network which improve ξ-strength of its structure. We prove

61

their properties both in analytic (Section 3.3) and experimental (Section 3.4) way
for underlying graphs typical for social networks.

3.2.1 k-Two Steps Friend Finder Algorithm

We want to leverage the local knowledge that each node has, namely the list of its
neighbors. The idea is that by asking our neighbor to introduce us to his neighbor
(one can think of it as connecting to a "friend of a friend") an arbitrary node can
improve the chance of being in the big, connected component of a graph. Such
protocol can be performed without any additional knowledge and in a completely
distributed way.

The node which wants to improve its chances of being in the big component
asks its friend (chosen uniformly at random from list of its neighbours) to recom-
mend it yet to another friend. Namely, our new friend is a former "friend of a
friend" that is temporarily added to the list of connections as a separated contact
used for privacy-preserving actions. Note that due to computational or commu-
nication cost, some nodes might not want to actively participate in the protocol.
Still, however, they could be used as "friend of a friend" and therefore their chance
to remain in the largest connected component would increase. This procedure is
iterated k times, namely each participating node asks k randomly chosen friends
for recommendations. That would result in obtaining (at most) k new friends.
Note that sometimes it might happen that a specific "friend of a friend" will be
recommended more than once.

Formally speaking, every node that wants to actively participate in the protocol
performs (k times) a random walk of length two starting from himself. Note that
one could propose different length of the random walk, our choice of length is to
minimize communication and keep the protocol as local as possible.

Definition of the k-Two Steps Friend Finder (k-2SFF, for short) is presented
as Algorithm 1. This is a procedure for each node v, initially m = k if node is
participating or m = 0 otherwise. Moreover, N denotes the array consisting of
the neighbors of node v. We will also denote N [i] as i-th element of an array. By
rand(a, b) we denote a function that returns integer chosen uniformly at random
from {a, a+1, . . . , b−1}. Here we also briefly describe messages used throughout
the protocol

• REQ<v> - message requesting for a friend recommendation for node v,

• FRD<v> - message consisting of a friend (node v) recommendation,

62

• EDG<v> - message consisting of a connection proposition from node v,

• ACK<v> - message acknowledging a connection proposition to node v.

1 foreach node v do
2 while true do
3 if received msg = REQ <u> then
4 1. r← rand(0, |N[v]|).
5 2. Send message ”FRD <N[r]>” to node u.
6 else if received msg = FRD <u> then
7 1. Send message ”EDG <v>” to node u.
8 else if received msg = EDG <u> then
9 1. Add u to list of neighbors.

10 2. Send message ”ACK <v>” to node u.
11 else if received msg = ACK <u> then
12 1. Add u to list of neighbors.
13 2. m← m - 1.
14 else if m > 0 then
15 1. r← rand(0, |N[v]|).
16 2. Send message ”REQ <v>” to node N[r].

Algorithm 1: k-2SFF

Note that k-2SFF can be performed by a node without any global knowledge
of the underlying graph, except its neighbors. Moreover, it can be done in a fully
distributed manner, with O(kn′) messages sent in the network, where n′ ≤ n is
the number of nodes participating in the protocol.

Example 4. In Figure 3.2 we show an example for 2-2SFF. In Figure 3.2a one
can see the initial graph. In the next picture one node, marked by green color, is
performing the 2-2SFF protocol and creates two friend connections, also marked
by green color. Then, in the rightmost picture we see graph with two added edges.
Now see in Figure 3.3 how the attack would look like. First we see initial, but
already enriched graph, then the Adversary chooses nodes to corrupt (marked by
red color, same ones as in Figure 3.1 in previous section). See that this time,
the remaining structure is connected, there are no isolated nodes. Finally one
can see in Figure 3.4 the outcome after the attack. In Figure 3.4a we see the
result in case where one node used 2-2SFF, while in Figure 3.4b we see the case

63

(a) Initial graph, with a sin-
gle node starting 2-2SFF pro-
cedure (green)

(b) Querying neighbors
(c) Newly established edges
addition

Figure 3.2: Example for 2-2SFF protocol.

(a) Enriched graph (b) Corrupted nodes (c) Graph after attack

Figure 3.3: Adversarial attack example after 2-2SFF protocol has been applied.

where no protocol was applied. This example clearly shows that our protocol
helps preventing the nodes from being isolated after the attack.

3.2.2 k-Ask Fat For a Friend Algorithm
The approach in this protocol is substantially different to previous one. Here we
want to rely on the preferential attachment properties of real networks. Namely,
this time we leverage the existence of fat nodes (see Definition 22) in preferential
attachment graphs. We assume that they are globally known. The idea is that if
we ask a known fat node for a friend, the received friend recommendation would
have a more uniform distribution across all nodes. In consequence, the set of con-
nections made by asking a fat node would create a subgraph which has a structure
similar to a classic Erdös-Renyí graph.

k-Ask Fat For a Friend (k -A3F) goes as follows. Every participating node
(similarly as with previous algorithm, due to various reasons it might be that some

64

(a) Enriched graph after attack (b) Initial graph after attack

Figure 3.4: Comparison of the outcome for adversarial attack example when 2-
2SFF protocol was, and was not applied.

nodes do not want to participate actively) has to choose uniformly at random one
fat node from the common list and ask for an address of one of its neighbors
chosen at random. As previously, this is a procedure for each node v, initially
m = k if node is participating or m = 0 otherwise. Messages were explained in
previous subsection. Formally, k -A3F protocol is presented as Algorithm 2.

See that in this protocol we rely on knowledge about existing fat nodes, ability
to send a message to them and their willingness to perform the protocol for the
benefit of the whole network.

3.2.3 k-Two Steps Fat Friend Finder

This protocol is in some sense a combination of both previous approaches. We
want to use the existence of fat nodes but do not assume knowledge about them or
ways to communicate with them. Instead of randomly choosing a friend to ask for
recommendation, we want to introduce a bias towards asking friends with higher
degree. That means nodes with more connections will be asked more frequently
to mediate between two nodes. See that most of the nodes have connection to at
least one fat node, which have substantially higher degree than other nodes. This
will result in significant number of queries being sent to a fat node, which again
results in more uniform structure of graph induced by new connections.

The participating node has to choose friend to get recommendation, as in
2SFF. However, this time it is not done uniformly, but based on the number of con-
nections that its neighbor has. As before, this procedure is being independently

65

1 foreach node v do
2 while true do
3 if received msg = REQ <u> then
4 1. r← rand(0, |N[v]|).
5 2. Send message ”FRD <N[r]>” to node u.
6 else if received msg = FRD <u> then
7 1. Send message ”EDG <v>” to node u.
8 else if received msg = EDG <u> then
9 1. Add u to list of neighbors.

10 2. Send message ”ACK <v>” to node u.
11 else if received msg = ACK <u> then
12 1. Add u to list of neighbors.
13 2. m← m - 1.
14 else if m > 0 then
15 1. r← rand(0, |F|).
16 2. Send message ”REQ <v>” to node F[r].

Algorithm 2: k -A3F

iterated k times. That would result in obtaining at most k new connections. Note
however, that we give weights only to choose the mediating friend. Afterwards,
this chosen friend gives the recommendation uniformly at random. Otherwise this
algorithm would be prone to targeted attacks (see Section 3.4).

Algorithm k-Two Steps Fat Friend Finder (k-2S3F, for short) is presented as
Algorithm 3. Again, this is a procedure for each node v, initially m = k if node
is participating or m = 0 otherwise. By W we denote the array of neighbors
weights. Moreover, randWeighted(V, W) is a function that takes array of vertices
V , array of their weights W and returns item randomly chosen from array of
vertices with probability proportional to weights.

Note that here we assume only that each node knows their friends’ number of
connections and do not assume any global knowledge of the network.

3.3 Analytic Results
In this section we formally analyse some specific, most interesting cases of our
protocols in a general model. Other cases are also considered in the next section,
where we do experimental analysis of our protocols.

66

1 foreach node v do
2 while true do
3 if received msg = REQ <u> then
4 1. r← rand(0, |N[v]|).
5 2. Send message ”FRD <N[r]>” to node u.
6 else if received msg = FRD <u> then
7 1. Send message ”EDG <v>” to node u.
8 else if received msg = EDG <u> then
9 1. Add u to list of neighbors.

10 2. Send message ”ACK <v>” to node u.
11 else if received msg = ACK <u> then
12 1. Add u to list of neighbors.
13 2. m← m - 1.
14 else if m > 0 then
15 1. u← randWeighted(N[v], W).
16 2. Send message ”REQ <v>” to node u.

Algorithm 3: k-2S3F

3.3.1 log n-A3F under Targeted Attack
Let us analyse the log n-A3F with Adversary knowing the topology of graph G
in advance thus attacking the nodes with the highest degree. We consider G =
(V,E) to be generated as a preferential attachment graph. One of properties of
such graphs is existence (whp) of a group of vertices (we call them fat nodes, see
Section 3.1) having high degrees which combined neighborhoods cover whp the
linear number of vertices from V .

Thus, let us assume throughout this subsection the following. Let F ⊂ V be
the subset of fat nodes, with fixed constants a and b (see definition in Section 3.1).
Furthermore, as the Adversary uses Targeted Attack strategy, this is the set of
vertices that will be corrupted by the Adversary. By NF we denote the neigh-
borhood of F without vertices from F , thus NF =

⋃
f∈F N(f) \ F . Let us also

denote ω = |F |
logn

. We assume also that |V \ (F ∪ NF)| 6 αn for some constant
0 < α < 1. Let Vα = V \ (F ∪NF).

To begin our analysis, let us consider the case in which all vertices want to
participate in the log n-A3F Protocol.

Theorem 8. If ωa < 1 − α then after executing log n-A3F for all vertices in

67

G = (V,E) we obtain GA = (V \ F, (E ∪ EP) \ EC) which is whp 1-strong.
(Recall that EP is the set of edges added during the protocol execution and EC is
the set of edges incident to vertices from F .)

Proof Note that the set of vertices of GA satisfies V \ F = NF ∪ Vα. Moreover,
NF and Vα are disjoint. First, let us concentrate on the set NF . Let u, v ∈ NF . Let
f ∈ F be such that {f, v} ∈ E. Let us estimate the probability that there exists
an edge {u, v} (denote this event by [u↔ v]). Let [u→ v] denote the event that
u established an edge {u, v} during the protocol. For some ε > 0 and sufficiently
big n we get

P([u→ v]) ≥ 1−
(

1− 1

ω log n

1

deg(f)

)logn

≥

1−
(

1− 1

ω log n

log n

an

)logn

≥

1− e−
logn
ωan ≥ log n

ωan+ log n
≥ (1 + ε) log (|NF |)/|NF |.

(3.1)

Note that 1/(ω log n deg(f)) is the lower bound for the probability that v es-
tablishes an edge {v, u} in a single step of the protocol. Indeed, f does not
need to be the only neighbor of v in F . The second inequality follows from
the bounds for deg(f). The third and fourth inequalities follow from the fact that
(1 + x) 6 ex for all x ∈ R. The last inequality follows because ωa < 1 − α
and |NF | = (1 − α)n − ω log n. Since each vertex creates new edges during
the protocol independently from other vertices, we have P([u ↔ v]) = P([u →
v]) + P([v → u]) − P([u → v])P([v → u]). Of course, the lower bound (3.1)
is true also for [v ↔ u] for all u, v ∈ NF . We can think that the subgraph of
G induced on NF (denote it by G(NF)) decomposes into Erdős-Renyí G(NF , p),
where p ≥ (1 + ε) log (|NF |)/|NF |, and some remaining random graph. Thus
G(NF) will inherit some monotone properties of G(NF , p), among others, it will
be connected whp. Since the Adversary corrupts the nodes with the highest de-
grees, namely the whole set F , all the vertices from NF will stay in GA. Thus we
have proved the existance (whp) of a giant component (which contains G(NF)) of
size at least |NF | = (1− α)n− ω log n in GA.

Now, let us concentrate on the set Vα. Let us estimate the probability that a
vertex v ∈ Vα is not connected with G(NF) (denote this event by [v 6↔ G(NF)]).
What needs to happen is that whenever the fat node sends to v the id of u, u needs

68

to be a fat node as well. Since there are ω log n fat nodes and their degrees are at
least an/ log n, we obtain

P([v 6↔ G(NF)]) ≤
(

ω log n

an/ log n

)logn

=

(
ω(log n)2

an

)logn

.

Vertices from Vα act during the protocol independently and the above probability
is vanishing, so we can simply estimate the probability that all vertices from Vα
are connected with G(NF) (denote this event by [Vα ↔ G(NF)]) and show that it
happens whp:

P([Vα ↔ G(NF)]) ≥

1−

(
ω(log n)2

an

)logn
αn

n→∞−−−→ 1.

Thus whp GA is connected. �

Now, let us discuss the following case: β fraction of vertices from Vα and γ
fraction of vertices from NF take part in the protocol. Note that we do not care
about vertices from F because they are going to be corrupted and their incident
edges will not appear in GA eventually.

Theorem 9. If ωa < 1−α and ωb > γ(1−α) then after executing log n-A3F for
vertices as described above onG = (V,E) we obtainGA = (V \F, (E∪EP)\EC)
which is whp (1− (1− β)α)-strong.

Proof Let ÑF denote the set of vertices from NF which take part in the protocol
(|ÑF | = γ|NF |). Even though the vertices from NF \ ÑF do not take part in the
protocol, they can be chosen as those to whom vertices from ÑF establish new
edges. Let us estimate the probability that v ∈ NF \ ÑF will not get connected
to any vertex from ÑF during the execution of the protocol (denote this event by
[v 6↔ G(ÑF)]). Let f be such that f and v are neighbors in G. We have

P([v 6↔G(ÑF)]) ≤
(

1− 1

ω log n · deg(f)

)γ|NF | logn

≤
(

1− 1

ωbn

)γ|NF | logn

≤

≤ e−(γ logn|NF |)/(ωbn) = n−γ(1−α)/(ωb)nlogn/(bn)

(compare 3.1).

69

Now, let us estimate the probability that all vertices from (NF \ ÑF) are going
to be connected with G(ÑF) (denote this event by [(NF \ ÑF) ↔ G(ÑF)]). We
get

P([(NF \ ÑF)↔ G(ÑF)]) ≥
(
1− n−γ(1−α)/(ωb)nlogn/(bn)

)(1−γ)|NF |
=

=
(
1− n−γ(1−α)/(ωb)nlogn/(bn)

)(1−γ)((1−α)n−ω logn) n→∞−−−→ 1

since ωb > γ(1− α). Thus again whp G(NF) is connected.
By calculations analogous to those from Theorem 8 we also get that all vertices

from Vα which participate in the protocol (denote this set by Ṽα) are connected
with G(NF) whp. We proved that whp GA has a giant component containing
NF ∪ Ṽα, such that |NF ∪ Ṽα| = (1 − α)n − ω log n + βαn. This completes the
proof.

�

3.3.2 log n− 2S3F under Targeted Attack

Below we present the formal analysis of log n− 2S3F protocol. Throughout this
subsection we assume that every node applies the security protocol and that we
handle again with the Adversary knowing the topology of the network thus attack-
ing fat nodes. We again formally represent our network by preferential attachment
graph, however now we set m = 2 (see Definition 2).

The results can only be better if we dealt with denser graphs (for m > 2). We
omit the case m = 1, since then the resulting structure of preferential attachment
process is simply a tree.

Recall that we denote the set of fat nodes by F . In this subsection we assume
that |F | = ω log n for some constant ω. It is a justified assumption about preferen-
tial attachment structure which follows from its scale-free property. The set of fat
nodes F is, as in previous subsection, being corrupted by the Adversary. We also
assume again that the neighborhood of fat nodes (we denote it by N(F)) covers
whp the linear number of vertices from V .

Throughout this subsection we are going to use Fact 1 and Theorem 1 from
Subsection 1.4.2. What we want to prove in this subsection is that the structure
of preferential attachment graph with parameter m = 2 is whp ξ-strong for some
constant ξ ∈ (0, 1) after applying log n − 2S3F protocol if we struggle with the
Adversary corrupting fat nodes. First, let us state a few auxiliary lemmas.

70

Lemma 3. Let F denote the set of fat nodes and let f ∈ F . Let Cf ⊂ N(f) be a
set such that v ∈ Cf if and only if deg(v) ≤ (log n)1−ε for some ε > 0. Then

E|Cf | ∼
(

1− 2

(log n)1−ε

)
dn

log n

for some d ∈ [a, b].

Remark 1. Of course, if E|Cf | ∼
(

1− 2
(logn)1−ε

)
dn

logn
we can write simply E|Cf | ∼

dn
logn

. However, later on we will be interested also in the expected size of the
leftover, namely E[|N(f) \ Cf |] ∼ 2

(logn)1−ε
dn

logn
. Therefore we leave the factor(

1− 2
(logn)1−ε

)
in Lemma 3.

Proof Since f is a fat node we have deg(f) = |N(f)| = dn/ log n for some
d ∈ [a, b]. We work with a preferential attachment graph with parameter m = 2,
so every vertex has degree at least 2. We have

E|Cf | = |N(f)|
b(logn)1−εc∑

l=2

p(l|deg(f)),

where p(l|deg(f)) is the probability that a randomly chosen neighbor of f will
have degree l. By Theorem 1 and the fact that

(
deg(f)+l−4

l−2

)
∼ (deg(f)+l−4)l−2

(l−2)!
and(

deg(f)+l+2
l

)
∼ (deg(f)+l+2)l

l!
we get

p(l|deg(f)) ∼ 2(deg(f) + 2)

deg(f)l(l + 1)

(
1− l + 1

deg(f) + 2

(
6

3

)(deg(f)+l−4
l−2

)(
deg(f)+l+2

l

))

∼ 2

l(l + 1)

(
1− 20(l − 1)l(l + 1)

deg(f)3

)
∼ 2

l(l + 1)
,

thus

E|Cf | ∼
dn

log n

b(logn)1−εc∑
l=2

2

l(l + 1)
.

Since
∑∞

l=2
2

l(l+1)
= 1 and

∑∞
l=d(logn)1−εe

2
l(l+1)

= 2/d(log n)1−εe we get

E|Cf | ∼
(

1− 2

(log n)1−ε

)
dn

log n
.

�

71

Remark 2. Note that we always have |Cf | ≤ dn
logn

. On the other hand the neigh-
borhood of f is a significant part of the whole graph, thus partly preserving the
characteristics of scale-free structures. Among others, the fraction of vertices of
degree k goes for large values of k as k−λ for some constant λ > 1, which means
that the number of nodes of degree greater than (log n)1−ε (for some ε > 0) in
N(f) is negligible. Therefore we can write not only E|Cf | ∼ dn

logn
but even

|Cf | ∼ dn
logn

whp.

Lemma 4. Let F denote the set of fat nodes and let f ∈ F . Let Cf be defined
as in Lemma 3. Let GCf be the graph induced on the set Cf after applying the
log n− 2S3F protocol . Then GCf is whp connected.

Proof Let u, v ∈ Cf . Let us estimate P[u → v] - the probability that u has es-
tablished a new connection with v while applying the log n−2S3F protocol. Note
that the probability that it happens in a single query is at least 1/((log n)1−εdeg(f))
(indeed, u is of degree at most (log n)1−ε, so 1/(log n)1−ε is the lower bound for
the probability that u chooses f while 1/deg(f) is the probability that f sends
back v as his friend). Since deg(f) = dn/ log n for some d ∈ [a, b] and u sends
log n independent queries, we get

P[u→ v] ≥ 1−
(

1− 1

(log n)1−εdeg(f)

)logn

= 1−
(

1− (log n)ε

dn

)logn

≥ 1− (1/e)(logn)1+ε/dn ≥ 1− 1

1 + (log n)1+ε/dn
=

(log n)1+ε

dn+ (log n)1+ε
.

Note that the connections that appear during the protocol execution are established
independently from each other. Therefore we can think of them as of the edges of
Erdös-Renyí graphG(|Cf |, pn) with pn ≥ (logn)1+ε

dn+(logn)1+ε . For sufficiently large nwe

have pn ≥ (logn)1+ε

dn+(logn)1+ε ≥ (1+ε) logn
n

. Thus by Fact 1 G(|Cf |, pn) is whp connected
(indeed, by Remark 2 we have whp |Cf | ∼ dn

logn
). �

What we get from Lemma 3 and Lemma 4 is that if we look at the neighbor-
hood of any fat node f (which is of the size dn/ log n for some d ∈ [a, b]) after
the log n − 2S3F protocol execution, we will find there whp a subgraph Cf of
the size ∼ dn

logn
which is connected. We will call the set Cf a cloud of f . What

we are going to show next is that the clouds of all fat nodes intersect and that
their total size is whp linear in n. This will give us the desired ξ-strength - even if
the Adversary disables all fat nodes, we are left with intersecting clouds forming
connected subgraph of size which is whp linear in the number of honest nodes.

72

Lemma 5. The number of vertices belonging to all the clouds of fat nodes is whp
linear in n.

Proof By the assumptions of this subsection, the neighborhood of all fat vertices
covers whp the linear number of vertices in V . We have whp |N(F)| = γn
for some positive constant γ ∈ (0, 1). For any fat node f of degree dn/ log n
(d ∈ [a, b]) we have by Lemma 3 and Remark 2 that the number of vertices not
belonging to the cloud of f is whp ∼ 2

(logn)1−ε
dn

logn
. The number of clouds is

ω log n for some constant ω and bn/ log n is the upper bound for the degree of
any fat node. We get that the number of vertices belonging to all the clouds of fat
nodes is whp at least ∼ γn− ω log n 2

(logn)1−ε
bn

logn
which is linear in n. �

Theorem 10. The clouds of all fat nodes from F form whp a connected subgraph.

Proof We are going to show that the statement of this theorem follows from the
process of building the preferential attachment graph. The whole structure is built
in n steps (where one step is adding one vertex to the graph). After n/2 steps we
can already see the structure whose characteristics are analogous to those in the
full structure, among others, we already have ∼ log n fat nodes, each of degree
at most bn/ log n. Now, let us consider those vertices from the cloud Cf which
arrived after time n/2. Recall that by Remark 2 the number of vertices in Cf is
whp ∼ dn

logn
(f is of degree dn/ log n). We assume that at least δ dn

logn
of them

appeared after step n/2, where δ is some positive constant. Note that each of
those vertices has at least one more edge apart from the one connecting it to f .
With probability at least β

logn
for some constant β it is the edge attaching it to the

other particular fat node (after step n/2 every fat node has already the degree of
the order n

logn
and the sum of all degrees is already linear in n).

Now, we will show that vertices of Cf which came after step n/2 are whp
attached to all the other clouds as well. This will finish the proof. We have ω log n
clouds, name them Cv1 , Cv2 , . . . , Cvk . At least δ dn

logn
vertices from Cf come after

step n/2 and the probability that such a vertex attaches also to the other particular
cloud is at least β/ log n. For j ∈ {1, 2, . . . , k}, the probability that Cf will not
be connected with Cvj is at most

(
1− β

log n

)δ dn
logn

< (1/e)
βδdn

(logn)2 .

73

By the union bound the probability that there exists j ∈ {1, 2, . . . , k} such that
Cf is not attached to Cvj is at most

ω log n(1/e)
βδdn

(logn)2
n→∞−−−→ 0.

Thus the probability that Cf is attached to all the clouds is at least

1− ω log n(1/e)
βδdn

(logn)2
n→∞−−−→ 1.

�

Corollary 4. The structure of preferential attachment graph with m = 2 after ap-
plying log n− 2S3F protocol is whp 1-strong by the attack of targeted Adversary
who corrupts all fat nodes.

3.4 Experimental Results

We present experimental results conducted on real data of Epinions social
network collected in SNAP dataset by Stanford University (see [44] and [58]).

This is a who-trust-whom online social network of a general consumer re-
view site Epinions.com. Members of the site can decide whether to ”trust” each
other. All the trust relationships interact and form the Web of Trust which is then
combined with review ratings to determine which reviews are shown to the user.
This network has 75, 879 nodes and 508, 837 edges where nodes denote users of
Epinions.com site and edges denote trust relation.

3.4.1 Random Failures
First we consider the Random Failures model. We assume that corrupted nodes
(or in other words, nodes which are prone to failure) are distributed in a uniform
way across the whole network.

k-A3F Protocol

Initially we assume that all nodes participate in the protocol, namely each node
does k queries which consist of randomly choosing one of the fat nodes and asking
for randomly chosen neighbor of that node. Obviously, the larger k, the higher

74

safety of the nodes. Here we fixed the number of the nodes considered fat to
blog(n)c = 16. It means that 16 nodes which have the highest degree in the
initial graph are on the common list of ’fat nodes’. Note that due to real network
properties (namely preferential attachment) these nodes have significantly higher
degree than the average node degree in this graph.

In Figure 3.5 one can see the performance of A3F on Epinions social network
graph under Random Failures model. We can see how the network behaves with-
out any enrichment, and with k = 1, 5, 10, 15. Note that on the x-axis we have the
percentage of corrupted nodes. With k = 15 queries, almost 90% of remaining
nodes are in the largest connected component despite a large number of failures.

Figure 3.5: k-A3F under Random Failures model.

75

Despite these somewhat optimistic results, it is quite unrealistic to assume
that all users want to participate, so we want to weaken this assumption. We still
demand high level of security, at least for the participating users. We assumed
k = 15 and q = 0.1, 0.25, 0.5 fractions on nodes participating. In Figure 3.6 we
have shown the results for 15-A3F with partial participation.

Figure 3.6: 15-A3F under Partial Participation and Random Failures model. The
top figure shows 10% participation, middle shows 25% participation and bottom
50% participation.

Security implications The most interesting thing is the fact that the safety level
amongst the participating nodes in case of partial participation is virtually the

76

same as the safety level when all nodes participate. This fact is very important
from the practical point of view. It gives users a choice - whether they want
to sacrifice their safety and not participate in the protocol, or participate in the
protocol and be safe no matter what other users choose as long as at least some
fraction (say 10%) decides to participate in the protocol.

k-2SFF Protocol

Now we focus on the k-2SFF Protocol in the case of Random Failures. Initially
we assume that all nodes launch the k-2SFF Protocol, namely each node does k
random walks of length 2 to establish extra connections.

In Figure 3.7 we show how the k-2SFF Protocol performs on Epinions social
network graph under Random Failures model. Similarly as before, we show the
behavior of the network without any enrichment, and with k = 1, 5, 10, 15. Note
that on the x-axis we have the percentage of corrupted nodes. This time, with
k = 15, around 70% of remaining nodes are in the largest connected component
even if up to 90% vertices were corrupted.

Now we are interested in the performance of 2SFF in the case where only a
fraction of users wants to participate. In Figure 3.8 we show some experimental
results when a part of nodes participates, only. Here we assume k = 15 and
q = 0.1, 0.25, 0.5 fraction of participating nodes. That is, q · n nodes participate
in 15-2SFF protocol. Then we are interested what is the fraction of participating
users that belong to the biggest component and how it compares to the situation
when all users do participate.

Note that in the case where q = 0.1 there is a significant decrease of security.
Namely, with massive number of failures, we have around 30% nodes in biggest
component in comparison to 70% in the full participation case. Note that even
if we consider only the subset of participating nodes, then the fraction of nodes
belonging to biggest component amongst them is below 40%. The security indeed
improves with greater q, yet still even if we consider only the participating nodes,
the results are significantly worse than when all users participate. Thus this pro-
tocol turned out to be useful in communities if we know that strong majority of
nodes is willing to use it.

k-2S3F Protocol

This subsection is devoted to k-2S3F Protocol for Random Failures case. As in
previous experiments, first we assume that all nodes actively participate in the pro-

77

Figure 3.7: k-2SFF under Random Failures model.

tocol, namely each node chooses a neighbor (neighbor with more connections has
higher probability due to weights) and chosen neighbor sends him a connection,
this time chosen uniformly at random.

In Figure 3.9 we show how the k-2S3F Protocol performs on Epinions social
network graph under Random Failures model. We show the network without any
enrichment, and with k = 1, 5, 10, 15. Note that on the x-axis we have the per-
centage of corrupted nodes. With k = 15, almost 80% of remaining nodes are in
the largest connected component even with 90% corrupted nodes. One can easily
see that for up to around 20% failures, even 5 iterations of protocol are sufficient
to have almost every node belonging to the largest connected component.

78

Figure 3.8: 15-2SFF under Partial Participation and Random Failures model. The
top figure shows 10% participation, middle shows 25% participation and bottom
50% participation.

Comparison

After presenting all protocols under Random Failures regime, here we show a
comparison of all these approaches. We pick k = 15, and compare A3F, 2SFF
and 2S3F. We also consider a combined approach of 5 - A3F and 10 - 2S3F. This
decreases pressure on fat nodes, which might be desired in systems where fat
nodes do not have appropriate resources. The number of asked connections is
15, so this approach has exactly the same budget as others, yet it tries to leverage
benefits of both A3F and 2S3F. It turned out to be a very promising strategy.

79

Figure 3.9: k-2S3F under Random Failures model.

In Figure 3.10 we show how all protocols behave under Random Failures. See
that the best one is obviously A3F, yet combination of A3F and 2S3F turns out to
be almost as effective, yet with less dependency on fat nodes.

A glance at the figures in this subsection is enough to see that k-A3F performs
better than other protocols under Random Failures regime. See for example that
for 90% failures the A3F protocol gives approximately 85% nodes belonging to
the largest connected component, while 2SFF gives only 75%. Moreover, the
cutoff and therefore non-negligible deterioration of the fraction of nodes in the
biggest component happens for greater fraction of failures than in k-2SFF or k-
2S3F protocol.

Intuitively, these differences in the results stem from the fact that in A3F we
leverage naturally emerging preferential attachment models in real, complex net-
works, while 2SFF does not really utilize this fact. Connecting to neighbors of
fixed, high-degree set of nodes massively improves robustness of real networks.

80

Figure 3.10: Comparison of all protocols for k = 15.

3.4.2 Targeted Adversary

In this subsection we present experiments conducted under far stronger adversary
that can corrupt nodes of the highest degree. Namely, the adversary sorts the list
of nodes by degree and corrupts k of them with largest degrees.

Note that the adversary only has access to the initial graph, before enrich-
ment. Obviously, for a specific instance of the graph one could possibly devise a
more clever way of attack, however this strategy seems to be optimal in general.
Note that complex networks which resemble preferential attachment features are
extremely prone to such attacks.

k-A3F protocol

In Figure 3.11 one can see the performance of k-A3F on Epinions social network
graph under Targeted Adversary model. As previously, we show the behavior of

81

the network without any enrichment, and for the cases where k = 1, 5, 10, 15.
Note that on the x-axis we have the percentage of corrupted nodes and this time
it ranges from 0 to 30% instead of 0− 90% due to the Adversary’s strength. This
time, with k = 15 queries, approximately 85% of remaining nodes are in the
biggest component for up to 30% corruptions and over 95% of nodes are in the
largest connected component for up to 15% corruptions.

Figure 3.11: k-A3F under Targeted Attack.

As previously, we want to see how the protocol behaves if we assume that
only a fraction of non-corrupted users participate actively. We assumed k = 15
and q = 0.1, 0.25, 0.5 fraction of nodes participating. In Figure 3.12 we show the
results for A3F with partial participation under Targeted Adversary regime.

82

Figure 3.12: Partial 15-A3F under Targeted Attack. The top figure shows 10%
participation, middle shows 25% participation and bottom 50% participation.

Figure 3.12 is probably the most striking one due to the fact that in all three
cases, one can easily see that the fraction of nodes belonging to the largest con-
nected component amongst the actively participating nodes is almost the same as
when all nodes participate. This is a very desirable feature of k-A3F because it
gives the user a natural choice - participate in the protocol, which costs some com-
putational resources, but be in the largest connected component independently of
the choices of other nodes or do not participate, but then you are facing serious
risk of ending up disconnected from the largest connected component.

83

k-2SFF protocol

In Figure 3.13 we show how k-2SFF performs on Epinions social network graph
under Targeted Adversary model. We can see how the network behaves without
any enrichment, and with k = 1, 5, 10, 15. Note that without enrichment the frac-
tion of nodes in the largest connected component falls to almost 0 for 20% failures.
In other words, if the adversary destroys 20% nodes of highest degree, the remain-
ing graph consists only of very small components. On the other hand, see that for
up to 5% corruptions, k = 15 gives almost 100% nodes in the biggest component.
Even for 30% corruption, the fraction of nodes in the biggest component is con-
siderably large (approximately 60%). Recall that without enrichment under such
a strong adversary there is virtually no large connected component whatsoever.

Let us investigate the protocol if we assume that only a fraction of non-corrupted
users participate actively. We assumed k = 15 and q = 0.1, 0.25, 0.5 fraction of
nodes participating. In Figure 3.14 we have shown the results for k-2SFF with
partial participation under Targeted Adversary regime.

An interesting difference between the results for this model and Random Fail-
ures can be seen in this figure. Namely, the fraction of nodes belonging to the
largest connected component amongst those who participate is only slightly greater
than amongst those who do not participate. This is highly undesired, as it gives
no notion of improvement and benefit of participating actively in the protocol. A
node could decide that it is pointless to waste precious resources and rather hope
that the others would participate actively. See that even if half of the users ac-
tively participate, the fraction of nodes in the largest connected component are
significantly smaller than when all nodes participate.

These results for k-2SFF under Targeted Adversary are somewhat unsatisfac-
tory, yet, as mentioned previously, this kind of adversary is extremely powerful
for networks based on preferential attachment, and performing k-2SFF does not
change graph structure strongly enough to defend against this kind of attack.

k-2S3F Protocol

In Figure 3.15 we show how the k-2S3F Protocol performs on Epinions social
network graph under Targeted Attack adversarial model. We present the network
without any enrichment, and with k = 1, 5, 10, 15. With k = 15, around 65% of
remaining nodes are in the largest connected component for 30% corrupted nodes.
On the positive side, for up to 10% failures, most of the remaining nodes belong
to the largest connected component even under such a strong adversary.

84

Figure 3.13: k-2SFF under Targeted Attack.

Now we assume that only a fraction of non-corrupted users participate ac-
tively. We assumed k = 15 and q = 0.1, 0.25, 0.5. In Figure 3.16 we have shown
the results for k-2S3F with partial participation under Targeted Adversary regime.

We can see that similarly as in 2SFF, results are not very satisfying. On
the positive side, for 50% participation we can see similar behaviour as in A3F,
namely percentage of safe nodes amongst those who participate is similar as in
the situation when all participate.

85

Figure 3.14: Partial 15-2SFF under Targeted Attack. The top figure shows 10%
participation, middle shows 25% participation and bottom 50% participation.

Comparison

After presenting all protocols under Targeted Attack regime, we show a compar-
ison of all these approaches. We assume k = 15, and compare A3F, 2SFF and
2S3F. Moreover, we also consider a combined approach of 5 - A3F and 10 - 2S3F.
Note that this decreases pressure on the fat nodes, which might be desired, es-
pecially in systems where fat nodes do not have appropriate resources. One can
see that, the number of asked connections is 15, so this approach has exactly the
same budget as others, yet tries to leverage the advantages of both A3F and 2S3F
strategies.

86

Figure 3.15: k-2S3F under Random Failures model.

In Figure 3.17 we show how all protocols behave under Targeted Attack. See
that this time, the combination of A3F and 2S3F turned out to be the most effective
strategy.

Of course the results for both protocols are obviously worse than for Ran-
dom Failure model, which is not surprising. However, they still give a significant
improvement of the size of the largest connected component. Moreover, in the
regime of Targeted Adversary, the k-A3F has a very interesting property of assur-
ing almost the same fraction of nodes belonging to the largest connected compo-
nent for participating fraction of nodes (even if only 10% of users participate) as
in the case where all users participate.

This regime shows that k-A3F is indeed a very powerful enrichment to the
graph structure. Moreover, combining it with 2S3F makes it even more powerful.
Note that we went from no large connected component for 20% failures to almost
90% nodes belonging to the largest connected component amongst the actively

87

Figure 3.16: Partial 15-2S3F under Targeted Attack. The top figure shows 10%
participation, middle shows 25% participation and bottom 50% participation.

participating nodes even if only 10% of users participate. This scenario shows
a significant improvement of security which is gained via our protocol for those
who actively participate in it. Note that the difference between the performance
of k-2SFF and k-A3F is strongly connected with utilizing preferential attachment
in real networks.

88

Figure 3.17: Comparison of all protocols for k = 15.

89

Chapter 4

Extending Noiseless Privacy

The standard differential privacy has an obvious drawback which is a necessity of
adding a carefully calibrated noise to the final answer to the query. This approach
is not always satisfactory, as in some cases we may need to have the exact ag-
gregated statistic. Moreover, adding noise, especially individually in distributed
case, may lead to significant errors in the aggregated statistic. Finally, adding
noise, specifically from a non-standard distribution, can be technically problem-
atic – especially when the aggregated data may come from small, computationally
constrained devices. These facts lead to a somewhat reluctant adaptation of the
differential privacy notion in real life applications, despite its undeniable merits.
In this chapter we consider relaxation of differential privacy previously presented
in [11] called noiseless privacy. The intuition behind the noiseless privacy ap-
proach is that in real life scenarios it might be too pessimistic to assume that the
Adversary knows almost every record in the database. This assumption seems far
too strong, yet it stands at the heart of standard differential privacy. Indeed, re-
vealing the exact average worldwide income should not do any harm to privacy of
any single individual. However, according to differential privacy definition, that
would be unacceptable. Intuitively we realize that if an average income (or other
value) of a ”large” set of participants is revealed, it does not automatically mean
that there was a privacy breach understood in a practical, common sense way.
These intuitions have already been considered in a few papers, namely [8, 11, 43]
to mention the most significant ones, where the authors propose relaxations of the
differential privacy model. These relaxations utilize the randomness in the data,
which can either come inherently from the data itself, or model the uncertainty
of the Adversary. This is contrary to differential privacy which assumes that the
Adversary colludes with every other participant.

90

Unfortunately, previous results are mostly only asymptotic which makes it
hard to use in practice, due to unknown constants which may hide the real size of
privacy parameters. On the other hand, we focused on detailed, non-asymptotic
analysis of the relaxed model to give explicit bounds for privacy parameters.
Moreover, for the few non-asymptotic results in [11] we show that our methods
give better bound for privacy parameters. Furthermore, we also give results for
data with (limited) dependencies. We want to emphasize that we present the
noiseless privacy model in a slightly different way, which seems to be simpler and
more convenient.

We focus on extending the types of data which have good noiseless privacy
parameters, on introducing dependencies in the data and combining noiseless pri-
vacy with standard approach. Moreover, we present detailed results which can be
easily applied in real-life scenarios of data aggregation. One could use the notion
of noiseless privacy, especially the explicit results given in this chapter, to get rid
of, or at least decrease, the noise in privacy preserving data aggregation protocols.
To the best of our knowledge, the idea of combining standard differential privacy
techniques with adversarial uncertainty was not explored before. Intuitively we
can think that in the case where the data has much randomness, we should be able
to add less noise than in the case where the data is deterministic from the Adver-
sary’s perspective. We give explicit bounds for privacy parameters which allows
us to explore the synergy between differential privacy methods and noiseless pri-
vacy approach. We describe and analyse this synergy in Section 4.6.

Our results

• We extend the paradigm of utilizing adversarial uncertainty for the case of
dependent data (Theorems 13 and 15).

• We explore the synergy between standard differential privacy methods and
noiseless privacy approach (Theorem 16).

• We propose an adversarial model (Subsection 4.1.2) and explicit procedure
for preserving privacy (Figure 4.6).

• We give improved and explicit (non-asymptotic) bounds for the privacy pa-
rameters (Theorems 12 and 14).

We believe that our contribution is a step towards more practical constructions
of privacy protocols which utilize adversarial uncertainty. Note that, for the first
time, we consider a wide class of dependent data. Moreover, our results state that

91

the party responsible for privacy does not need to know neither the exact structure
of dependencies nor the exact distribution of the data (i.e. joint distribution). Up-
per bounds for the size of the greatest dependent subset and the sum of centralised
third moments (or fourth in case of dependent data) are sufficient to use our re-
sults in practice. To achieve it, we used different methods than those used in the
context of adversarial uncertainty before.

In Section 4.1 we explain the motivations, recall the idea of utilizing adver-
sarial uncertainty from [11] in a way that is more convenient for presenting our
results and provide some formalism that can be seen as an extension of differen-
tial privacy notion. We also introduce and discuss our adversarial model and some
possible applications. In the next sections we present our results. In Section 4.3
we focus on the case where from the Adversary’s perspective the aggregated data
is a set of independent random values. Most important is the case discussed in
Section 4.4, where we allow the Adversary to know a priori some dependencies
between data. Note however, that the data owner do not have to know the ex-
act dependencies in the data. Then in Section 4.5 we discuss situation where the
Adversary has an exact knowledge of the values of some subset of data values.
Finally in Section 4.6 we explore the idea of combining adversarial uncertainty
with standard differential privacy approach.

4.1 Model
In the system there are n users that may represent different types of parties (orga-
nizations, individuals or even sensing devices). Each of them holds a data record
xi (for simplicity we assume that it is a single value). The goal is to aggregate
the data and reveal some statistics (say, sum of the values). Note that the database
may either be a centralized one or a distributed one where users themselves have
to generate some output according to a distributed protocol. See that in terms of
privacy definition, both these cases are equivalent. They differ in algorithmic ap-
proach to these problems and Adversary’s capabilities. Here we introduce some
notation

• data - the set of n values (held either by different parties or by a single
curator) which we want to aggregate (e.g. compute the sum of these values)
and reveal the obtained statistic to the public,

• compromised users - the subset of data about which the adversary has full
knowledge, namely he knows the exact values in this subset,

92

• data owner - the party that is responsible for preserving privacy of the data
by designing an appropriate algorithm, choosing protocol parameters ac-
cording to the expected power of the Adversary (or upper bounds for them)
or deciding whether specific privacy parameters are sufficient or if they have
to be combined with external noise.

4.1.1 Modeling Privacy of Randomized Data
We use a privacy model in which the data (or at least part of it) is considered
random from the Adversary’s perspective, coming from a specific distribution.
This kind of approach is quite natural in many scenarios, namely the Adversary’s
knowledge is usually limited. However, it needs a different definition of privacy
than standard differential privacy as in [28], because we have to take into account
randomized inputs. Following the notion introduced in [11] we call this approach
noiseless privacy. Before we show its formal definition, we need to introduce the
following

Definition 24 (Adjacent Random Vectors). LetX = (X1, . . . , Xn) be an arbitrary
random vector and let X ′ be other random vector. Let X∗ be a random variable.
We will say that vectors X and X ′ are adjacent if and only if

X ′ = (X1, . . . , Xi, X∗, Xi+1, . . . , Xn),

or
X ′ = (X1, . . . , Xi−1, Xi+1, . . . , Xn),

for any i ∈ {1, . . . , n}.
This essentially captures the notion of data vectors adjacency similar to the

one in [28], but for random variables rather than deterministic values. See that if
for some deterministic adjacent vectors x and x′ we haveX = x andX ′ = x′ with
probability 1, then this definition of adjacency is the same as in [28]. Note that we
could as well define adjacency in such a way that instead of adding or removing
a vector element, we could simply change its value. This is just the matter of
choice and a few straightforward technical changes in proofs. Continuing, we can
introduce the following

Definition 25 (Data sensitivity). We will say that data vector X = (X1, . . . , Xn)
and mechanism M have data sensitivity ∆ if an only if

|M(X)−M(X ′)| 6 ∆,

almost surely for every vector X ′ that is adjacent to X .

93

Note that this bears close resemblance to the l1-sensitivity defined in [28].
More detailed comparison of noiseless privacy and standard differential privacy
can be found in Section 4.2.

We can formally define noiseless privacy in the following way

Definition 26 (Noiseless Privacy). We say that a privacy mechanism M for a
random vector X = (X1, . . . , Xn) preserves noiseless privacy with parameters
(ε, δ) if for all B ⊆ Range(M) and any random vector X ′ such that X and X ′ are
adjacent we have

P(M(X) ∈ B) 6 eεP(M(X ′) ∈ B) + δ.

Intuitively, this definition says that if data can be considered random, then
the outcome of the coin flip of any single user does not significantly change the
result of deterministic mechanism M , whether the user is added to the result, or
removed from it. This is very similar to standard differential privacy, however
here the data itself is considered randomized and therefore impacting the privacy
parameters. We will use abbreviation (ε, δ)-NP to denote noiseless privacy with
parameters ε and δ.

Clearly, this model of privacy is a coherent extension of differential privacy.
We see it as a generalization of the known differential privacy definition that can
be useful for some real life scenarios. See that in Remark 3 we explained that
this model is indeed more general than differential privacy, but if we fix the data
as deterministic, it is essentially the same definition. Moreover, in Section 4.6
we show how the standard differential privacy methods can be combined with
noiseless privacy approach.

Whether or not (and to what extent) particular data can be considered random
is of course an important problem to be solved by the data holder, but we do not
focus on it in our research. Note that also other papers in this line of research has
not yet dealt with this problem which may be a very interesting question for future
work.

See that in noiseless privacy, random data has natural self-hiding properties,
even though the mechanisms are deterministic. Instead of relying on the ran-
domness of mechanism (as in the standard differential privacy methods), we can
sometimes rely on the inherent randomness of the data itself. Deterministic algo-
rithms have an obvious benefit of not introducing any errors (which are inevitable
in standard differential privacy approach due to the randomness introduced), so
the answer to a query is exact.

94

The most common and useful deterministic mechanism would be simply sum-
ming all the data. We explore the privacy parameters of mechanism M(X) =
sum(X) for any distribution of the data vector X , a wide class of dependencies
in the data and the adversarial model defined in Subsection 4.1.2.

4.1.2 Adversarial Model
We assume that the Adversary:

• may know the exact data of at most some fraction 0 6 γ < 1 of the users,

• may know the correct distribution (but not the value itself) of the data of the
rest of users (note that the distribution for each user might be different),

• may know the dependencies between some of the data values (if there are
any), but only in subsets of size at most D.

Let us now discuss and justify these assumptions. First of all, one can easily
see that in standard differential privacy we essentially assume that the Adversary
knows the exact data of all users except one. Here we relax this by giving an
upper bound on the number of users which are compromised. See that in realistic
scenarios it is not very plausible that the Adversary indeed knows almost every
data record. On the other hand, we still give him quite a lot of power, namely we
assume that he knows the distributions of the data, but not the exact values. From
the point of view of the Adversary, data is a vector of (at least n − γn) random
variables with known distribution and some known (at most γn) data values. See
that in sections 4.3 and 4.4 we assume for simplicity that the Adversary does not
know any exact values (so γ = 0). We discuss this in Section 4.5 where we show
how to extend our results for the case where the Adversary knows any arbitrary
γn exact values.

In real-life data it is quite common to have some dependencies involved. More-
over, the Adversary might know about them. To propose a realistic model for
noiseless privacy, one has to take it into account. In our model we give the Adver-
sary the precise knowledge about all dependencies in subsets of size at most D.
That essentially means that he does not have an insight into dependencies of sub-
sets of size greater than D. Note that it might be the case that such dependencies
do not exist (the data might really have all dependent subsets of size at most D),
or simply the Adversary does not know about these dependencies and cannot uti-
lize them. Obviously in standard differential privacy notion we do not care about

95

the distribution of data, whether it is dependent or not. Here, on the other hand,
due to the necessity of utilizing the inherent randomness in data instead of adding
external noises, we must take it into account.

See that there is an asymmetry between the Adversary and other users and
even the data owner. We assume that the Adversary has power of knowing the
exact dependencies (of size at most D), while neither users nor the data owner
have to know neither the dependencies nor the joint distribution of the data. The
parameter necessary to use our results is the upper bound for D. Note that the
data owner might do some tests for independence of the data (or subsets of the
data), using standard statistical methods for testing independence, e.g. χ2-test.
Information about the upper bound for the size of dependent subsets might also
come from strictly engineering knowledge, say due to physical proximity of the
subset of sensors or some social knowledge, say subset of users having the same
age. This approach to dependencies essentially boils down to the known notion of
dependency neighborhoods defined in Subsection 1.4.3.

Observe that the definition of dependency neighborhoods actually says that for
specificXi we know that it is independent of those that are not in its neighborhood.
We want to give a general approach to local dependencies scenario, so in our
analysis we do not assume anything about joint distributions of the dependent
subsets (the dependency in subset might even mean ’equality’) .

To sum it up, we present a formal definition of adversarial model.

Definition 27. We will denote a specific instantiation of adversarial model for
data vector X by AdvX(D, γ), where

• D is an upper bound for the size of the greatest dependent subset,

• γ is the upper bound for the fraction of the data which values the Adversary
exactly knows,

• the Adversary knows the distribution of data vector X .

We believe that while our adversarial model gives significantly less power to
the Adversary than in standard differential privacy notion (which basically gives
the Adversary almost full knowledge of the data), they still are reasonable and
applicable in real-life scenarios. One important remark is that we do not need to
predict the exact Adversary’s knowledge about the dependencies. We only need to
know the maximum size of dependency neighborhood, namely the size of largest
non-independent subset of data. In fact, we only need an upper bound for that

96

size. Same with the fraction of data values which the Adversary knows. To apply
our results, which are presented in the next sections, one will also need a lower
bound for the variance of data and upper bound for the sum of third and fourth
centralized moments for the specific data vector.

4.2 Comparison to Standard Differential Privacy

Clearly noiseless privacy is an extension of the standard differential privacy that is
applicable to the case when we can assume that the observer/attacker may treat the
raw data of users (before being processed) as random variables. In particular if we
assume that all data items are concentrated in single points (i.e, P(Xi = xi) = 1
for all i) we get the original (ε, δ)-differential privacy.

While the standard differential privacy definition guarantees immunity against
attacks based on auxiliary information (e.g. from publicly available datasets or
even personal knowledge about an individual participating in the protocol), the
noiseless privacy is more general as we can either assume that the adversary has
no auxiliary information, or assume that there is an upper bound on the size of
subset of database entries about which he has some external knowledge. Note that
if we assume full auxiliary information noiseless privacy becomes completely un-
acceptable, which is very intuitive, as the whole notion of adversarial uncertainty
demands that the adversary does not have full knowledge. Moreover, it is often too
pessimistic to assume that the adversary knows everything except for the single
data record which privacy he wants to breach.

Remark 3. See that in the standard differential privacy definition (e.g. [28]) we
essentially want

P(M(X) ∈ B|X = x) 6 eεP(M(X ′) ∈ B|X ′ = x′) + δ,

where x and x′ are adjacent, deterministic vectors.
This captures the notion of neighboring databases. Our approach is indeed a relax-
ation of that definition, as we do not necessarily condition the data to have some
fixed, deterministic value. We treat the data inputs as random variables. In par-
ticular, if we have X = x with probability 1 then our model collapses to standard
differential privacy.

Differential privacy has some very useful properties. First of all, it is im-
mune to post-processing, so the adversary cannot get any additional information,

97

and consequently cannot increase the privacy loss by convoluting the result of a
mechanism with some deterministic function.

Noiseless privacy is, similarly to standard differential privacy, resilient to post-
processing.

Fact 7. Let privacy mechanism M and a random vector X be such that M(X) is
(ε, δ)-NP. Let f : R→ R′ be an arbitrary randomized mapping. Then f (M(X))
is also (ε, δ)-NP.

Proof As in [28] we prove this fact for a deterministic function f : R→ R′. The
result follows because any randomized mapping can be decomposed into a convex
combination of deterministic functions. Such combination of noiselessly private
functions is also noiselessly private. Fix any adjacent pair of vectors X and X ′.
Let T = {r ∈ R : f(r) ∈ S} and fix S ⊂ R′. We have

P(f(M(X)) ∈ S) = P(M(X) ∈ T) 6

6 eεP(M(X ′) ∈ T) + δ = eεP(f(M(X ′)) ∈ S) + δ.

�

Another important property of differential privacy is its composability. There
has been an extended discussion concerning composability of noiseless privacy
and its derivatives in [8, 11, 43].

4.3 Explicit Bounds for Independent Data

In this section we consider noiseless privacy for independent data. We aim to
show explicit bounds for general case. Throughout this section we assume that
we have a database X which consists of n values so X = (X1, . . . , Xn).

4.3.1 Binomially Distributed Data

Let us consider a simple, warm-up scenario, where Xi are i.i.d. random variables
and Xi ∼ Bin(1, p). We want to aggregate the sum of all these variables so we
set the mechanism as M(X) =

∑n
i=1Xi ∼ Bin(n, p). First, let us prove a useful

lemma

98

Lemma 6. Let M ∼ Bin(n, p). Fix an arbitrary λ > 0 such that (np − λ) > 0
and (np+λ) < n. Let u ∈ [np−λ, np+λ]∩Z and let v ∈ Z such that |u−v| = 1.
Then for

ε =


λ
n

(
1+ 1

λ

1−p −
1

λ
n
−p

)
, p 6 1

2
,

λ
n

(
1+ 1

λ

p
− 1

λ
n
−(1−p)

)
, p > 1

2
,

we have
P(M = u) 6 eεP(M = v).

Proof We want to bound P(M=u)
P(M=v)

, where |u − v| = 1 and M ∼ Bin(n, p). Fur-
thermore, we know that u ∈ [np − λ, np + λ] ∩ Z. First observe that we get the
biggest ratio either for the smallest or greatest possible u. If p 6 1

2
we get the

biggest ratio for the smallest possible u and if p > 1
2

then we get the biggest ratio
for the largest possible u. Therefore it remains to check these two cases, calculate
ε1 and ε2 and pick ε = max(ε1, ε2).

Let us begin with the case where p 6 1
2
. One can easily check that the greatest

possible ratio is for u = dnp − λe and v = (u − 1). We can bound it in the
following way

P(M = dnp− λe)
P(M = dnp− λe − 1)

=
n− dnp− λe+ 1

dnp− λe
· p

1− p
6

6
n− np+ λ+ 1

np− λ
· p

1− p
=

=
1 + λ+1

n(1−p)

1− λ
np

6
exp(λ+1

n(1−p))

1− λ
np

.

Ultimately we are interested in the natural logarithm of that ratio. We have

ε1 = ln

(
exp(λ+1

n(1−p))

1− λ
np

)
=

λ+ 1

n(1− p)
− ln

(
1− λ

np

)
6

6
λ+ 1

n(1− p)
− 1 +

1

1− λ
np

= λ

(
1 + 1

λ

n(1− p)
+

1

np− λ

)
=

=
λ

n

(
1 + 1

λ

1− p
− 1

λ
n
− p

)
,

where the inequality comes from the fact that (1− 1
x
) 6 ln(x) for x > 0. See also

that 1− λ
np
> 0, because we assumed that (np− λ) > 0. Note that we picked the

99

biggest possible ratio, so for p 6 1
2

it is true for every u ∈ [np − λ, np + λ] ∩ Z
that

P(X = u)

P(X = v)
6 eε1 ⇐⇒ P(X = u) 6 eε1P(X = v),

where |u − v| = 1. Now let us assume that p > 1
2
. In that case the greatest

possible ratio is for u = (np+λ) and v = (u+1). One can easily see, that we can
simply consider Bin(n, 1 − p) and apply exactly the same reasoning as before.
That leaves us with

ε2 =
λ

n

(
1 + 1

λ

p
− 1

λ
n
− (1− p)

)
.

We conclude that for a fixed λ we have the following:

ε =


λ
n

(
1+ 1

λ

1−p −
1

λ
n
−p

)
, p 6 1

2
,

λ
n

(
1
p
− 1+ 1

λ
λ
n
−(1−p)

)
, p > 1

2
.

In the end we found ε, such that for all u ∈ [np− λ, np+ λ] ∩ Z and |u− v| = 1
it holds that

P(X = u) 6 eεP(X = v),

which concludes the proof of this lemma. �

Now we can state a theorem which shows that i.i.d. binomial data has very
strong noiseless privacy properties for a wide range of parameters.

Theorem 11. Let X = (X1, . . . , Xn) where Xi ∼ Bin(1, p) are i.i.d. random
variables. Let M(X) =

∑n
i=1Xi and fix δ ∈ (0, 1). Moreover, let us assume that

p ∈
(√

ln(2
δ)

2n
, 1−

√
ln(2

δ)
2n

)
. Then for

ε =



√
ln(2

δ)
2n

1+
√

2

n ln 2
δ

1−p − 1√
ln(2

δ)
2n
−p

 , p 6 1
2
,

√
ln(2

δ)
2n

1+
√

2

n ln 2
δ

p
− 1√

ln(2
δ)

2n
−(1−p)

 , p > 1
2
,

100

M(X) is (ε, δ)-NP. On the other hand, if ε > 0 is fixed, then for

δ =


2 exp

(
−2np2

(
1− 1

eε(1−p)+p

)2
)
, p 6 1

2
,

2 exp

(
−2n(1− p)2

(
1− 1

eεp+(1−p)

)2
)
, p > 1

2
,

M(X) is (ε, δ)-NP.

Proof Let us begin with the first case, where δ is fixed. One obvious observation

is that M(X) ∼ Bin(n, p). Let λ =

√
n ln 2

δ

2
. Note that λ > 0, np + λ < n

and np − λ > 0. Using Chernoff bound (see for example [22]) for binomial
distribution we get

P(M(X) > np+ λ) + P(M(X) 6 np− λ) 6 2 exp

(
−2λ2

n

)
= δ,

as we want to limit the tail probability by parameter δ. Let us denote the set
S = {dnp − λe, . . . , bnp + λc}, which is exactly the support of M(X) without
the tails which probability we just bounded by δ. Now we have to show that, apart
from these tails, for given ε the following holds

∀B⊂S
(∣∣∣∣ln(P(M(X) ∈ B)

P(M(X ′) ∈ B)

)∣∣∣∣ 6 ε

)
.

It is easy to see that instead of considering all subsets of S, we can consider only
the single values, because taking a single value with a bigger ratio yields worst
case bound. For that we can use Lemma 6. We indeed have M(X) ∼ Bin(n, p).

Moreover, we have λ =

√
n ln 2

δ

2
so (np − λ) > 0 and (np + λ) < n. See also

that for Xi ∼ Bin(1, p) i.i.d. we have data sensitivity 1. One can easily see that
adding or removing a single data point can change the sum at most by 1, therefore

we consider u and v such that |u − v| = 1. Observe that λ
n

=

√
ln(2

δ)
2n

, therefore
we have

ε =


λ
n

(
1+ 1

λ

1−p −
1

λ
n
−p

)
, p 6 1

2
,

λ
n

(
1+ 1

λ

p
− 1

λ
n
−(1−p)

)
, p > 1

2
.

Applying Lemma 6 for M(X), λ and ε we obtain that

P(M(X) = u) 6 eεP(M(X) = v),

101

for u ∈ S and |u− v| 6 1. Therefore M(X) is (ε, δ)−NP , namely we have

P(M(X) ∈ S) 6 eεP(M(X ′) ∈ S) + δ,

where X and X ′ are adjacent vectors and ε = ε(n, p, δ). The addition of δ comes
from the fact that we bound the tails of M(X).

Now we assume that we have a fixed ε > 0. Let α = eε and w = p
1−p . We use

similar reasoning as in Lemma 6. First let us consider p 6 1
2
. We are interested in

the greatest integer k smaller than np, which does not satisfy the following

P(M(X) = k)

P(M(X) = k − 1)
6 α.

We have

P(M(X) = k)

P(M(X) = k − 1)
=
n− k + 1

k
· w > α ⇐⇒ k <

w(n+ 1)

α + w
.

Now let us pick λk = µ− k > µ− (n+1)w
α+w

where µ = np. We will bound the tail
using Chernoff bound

P (M(X) 6 µ− λk) 6 exp

(
−2λ2

k

n

)
<

< exp

−2
(
µ− (n+1)w

α+w

)2

n

 =

= exp

(
−2np2

(
1− n+ 1

n
· 1

α(1− p) + p

)2
)
<

< exp

(
−2np2

(
1− 1

α(1− p) + p

)2
)
.

Now see that

P(M(X) 6 µ− λk) + P(M(X) > µ+ λk) 6

6 2 exp

(
−2np2

(
1− 1

eε(1− p) + p

)2
)

= δ.

102

When p > 1
2

we can do similar symmetric reasoning as before, we obtain

P(M(X) 6 µ− λk′) + P(M(X) > µ+ λk′) 6

6 2 exp

(
−2n(1− p)2

(
1− 1

eεp+ (1− p)

)2
)

= δ,

where k′ is the smallest integer larger than npwhich does not satisfy the following

P(M(X) = k′)

P(M(X) = k′ + 1)
6 α.

This concludes the proof, because we bounded the subset of possible values which
did not satisfy our required ratio. In the end we have

P(M(X) ∈ S) 6 eεP(M(X ′) ∈ S) + δ.

�

Let us observe that in Theorem 11 for constant parameters p and δ we get

ε = O
(

1√
n

)
. It is also worth noting that for p close to

√
ln 2
δ

2n
or 1−

√
ln 2
δ

2n
, ε can

be large, although as long as p is constant, ε still approaches 0 with n→∞.
Similarly, for p very close to 0 or 1 and for small n, the value of δ can be large.

Nevertheless we see that δ is decreasing exponentially to 0 with n → ∞, so for
sufficiently large n we still get very small values of δ.

As one can see in figures 4.1 and 4.2, our Theorem does not only give non-
asymptotical, explicit parameters (both for the case where ε is fixed and the case
where δ is fixed), but also, due to slightly more careful reasoning, our bound is
tighter than the bound which authors of [11] have implicitly shown in their proof.

That was just a warm-up scenario to show how does noiseless privacy work
with simple data distribution. Let us move to a more interesting model where
users’ data has different, but still independent distributions.

4.3.2 General Case
From now on we do not assume any specific distribution of the data. First let
us recall Theorem 5 from Subsection 1.6.3. See that it can also be stated in the
following way, which will be useful for us throughout this subsection

103

Figure 4.1: ε = 0.5, p = 0.95, red dashed line is guarantee for parameter δ in
paper [11], blue thick line is guarantee from our Theorem 11.

Figure 4.2: ε = 1, p = 0.2, red dashed line is guarantee for parameter δ in
paper [11], blue thick line is guarantee from our Theorem 11.

Corollary 5. Fix ε ∈ (0, 1) and δ > 0 and denote the data sensitivity ∆. For

random variable Z ∼ N (0, σ2), where σ >
∆
√

2 ln(1.25
δ

)

ε
we have

P [u+ Z ∈ S] 6 eεP [v + Z ∈ S] + δ,

104

where u and v are any real numbers such that |u− v| 6 ∆.

Now we present the general theorem for independent data

Theorem 12. Let X = (X1, . . . , Xn) where Xi’s are independent random vari-
ables. Let µi = EXi, σ2

i = Var(Xi), σ2 =
∑n
i=1 σ

2
i

n
and E|Xi|3 < ∞ for every

i ∈ [n]. Let M(X) =
∑n

i=1(Xi). Assume that
√

∆2 ln(n)
nσ2 < 1, where ∆ is the data

sensitivity of M(X). Then for ε such that√
∆2 ln(n)

nσ2
< ε < 1,

and

δ =
1.12

∑n
i=1 E|Xi − µi|3

(nσ2)
3
2

(1 + eε) +
5

4
√
n
,

Proof To prove this theorem, we use Corollary 5 and Fact 2 from Subsection 1.4.3.
Let u, v ∈ supp(M(X)) and let |u − v| 6 ∆. For any set B we can denote
Bu = {b + u : b ∈ B}. For simplicity let us, for now, assume that µi = 0 for
every i. From assumptions we also know that E|Xi|3 <∞ for every i, so we can
use Fact 2. Let Z ∼ N (0, nσ2). For every Bu we have

P (M(X) ∈ Bu) 6 P (Z ∈ Bu) + 2dk(M(X), Z) 6 P (Z ∈ Bu) + 2δ1,

where δ1 is the rate of convergence described in Fact 2. Recall that√
∆2 ln(n)

nσ2
< ε < 1,

and let δ2 = 5
4
√
n

. See that

√
nσ >

∆
√

2 ln(1.25
δ2

)

ε
=

∆
√

lnn

ε
⇐⇒ ε >

√
∆2 · lnn
nσ2

.

See that Z ∼ N (0, nσ2) and |u− v| 6 ∆ so we can use Corollary 5:

P (Z ∈ Bu) + 2δ1 6 eεP (Z ∈ Bv) + 2δ1 + δ2.

Now we have to return to our initial distribution. Again, we use Fact 2.

eεP (Z ∈ Bv) + 2δ1 + δ2 6 eεP (M(X) ∈ Bv) + 2δ1(1 + eε) + δ2.

105

Note that for simplicity we assumed EXi = 0. See that for Yi = (Xi−µi), where
µi = EXi the proof is still correct. Recall from Fact 2 that δ1 6

0.56
∑n
i=1 E|Xi−µi|3

(
∑n
i=1 σ

2
i)

3
2

.

Now see that

2δ1(1 + eε) + δ2 6
1.12

∑n
i=1 E|Xi − µi|3

(
∑n

i=1 σ
2
i)

3
2

(1 + eε) +
5

4
√
n

= δ.

Therefore

P(M(X) ∈ Bu) 6 eεP(M(X) ∈ Bv) + δ,

which concludes that M(X) is (ε, δ)-NP. �

Theorem 12 gives us very general notion of privacy parameters for summing
independent data. Note that we assumed nothing about the distribution of the data,
apart from being independent. The only values we need to know is the variance
and sum of appropriate central moments (or upper bounds for these values). Data
independence is obviously a strong (and generally false) assumption in real world,
but it is commonly used. However, we will also work with dependent data in the
next section. We also present an example.

Example 5. We consider a data vector X = (X1, . . . , Xn), where Xi’s are in-
dependent random variables. Let ∆ = 30. Let σ2 =

∑n
i=1 σ

2
i

n
= 4. Let also∑n

i=1 E|Xi − µi|3 = 3 · n. We use mechanism M(X) =
∑n

i=1 Xi. Using The-
orem 12 we obtain that it is (ε, δ)-NP when ε < 1. Figure 4.3 shows how the ε
decreases with n, while Figure 4.4 shows how δ decreases with n. Note that the
conditions of Theorem 12 are satisfied from n approximately the size of 2000 in
this case.

We can see that for n around 10000 parameter δ is smaller than 0.05, which
is a constant widely used in differential privacy literature, and decreases further.
Also, note that for n > 10000 the parameter ε is below 0.5 which also is a widely
used constant in differential privacy papers (see for example [17]). Clearly, the
parameters keep improving with more users.

4.4 Explicit Bounds for Locally Dependent Data
In the previous section we gave a general treatment for privacy parameters of inde-
pendent variables. However, in many cases the data has some local dependencies

106

Figure 4.3: Parameter ε in Example 5.

Figure 4.4: Parameter δ in Example 5.

involved. Imagine a situation where we want to collect the data of yearly salary
from former students of a specific university. Say, those that finished their edu-
cation at most 5 years ago. Our goal is to obtain the average yearly salary of all
students that finished their education during last five years. Now one can easily
see that there will be some local dependencies between the participants as some
of the students might work in the same company, launch a startup together or just

107

work in the same field. This will affect their salary and therefore make it locally
dependent. Such dependencies are modeled using dependency neighborhoods no-
tion, which we defined in Subsection 1.4.3.

As previously, we want to take the sum of all our data and show privacy pa-
rameters for this mechanism. We are going to take a similar approach as in The-
orem 12. That is, we want to bound the distance between the distribution of sum
of our data and normal distribution. Then, using standard differential privacy
properties of normal distribution (described in Corollary 5) we derive privacy pa-
rameters. However, this time we cannot use Berry-Esseen theorem to bound the
mentioned distance, as the data is not independent. Instead, we use Stein’s method
(see Subsection 1.4.3), which allows to bound the Kolmogorov distance between
two random variables. Apart from that, the presented reasoning is very similar to
the one Theorem 12.

Theorem 13. Let X = (X1, . . . , Xn), where Xi’s are, possibly dependent, ran-
dom variables and M(X) =

∑n
i=1(Xi). Let EXi = µi and EX4

i < ∞. Assume
there are dependency neighborhoodsNi, i ∈ {1, . . . , n}, andD = max16i6n |Ni|.
Let σ2 = Var(M(X)) and data sensitivity of M(X) be ∆. We also assume that

0 <
√

∆2 ln(n)
σ2 < 1. Then for ε such that√

∆2 ln(n)

σ2
< ε < 1,

and

δ = c(ε)

√√√√√D2

σ3

n∑
i=1

E|X∗i |3 +
D

3
2

√
26

σ2
√
π

√√√√ n∑
i=1

E (X∗i)4 +
5

4
√
n
,

where X∗i = (Xi − µi) and

c(ε) = 2(1 + eε)

(
2

π

) 1
4

,

M(X) is (ε, δ)-NP.

Proof To prove this theorem, we use Kolmogorov and Wasserstein distances,
which were defined in Subsection 1.4.3 in Definition 4 and Definition 5 and
also facts stated in Subsection 1.4.3, namely Fact 3 and Fact 4. Let u, v ∈
supp(M(X)) and |u − v| 6 ∆. For set B let us denote Bu = {b + u : b ∈ B}.

108

Moreover, throughout the proof we denote Bu
σ

= { b
σ

: b ∈ Bu}. For simplic-
ity let us, for now, assume that EXi = 0 for every i. Let Y ∼ N (0, 1) and
Z ∼ N (0, σ2). For every Bu we have

P (M(X) ∈ Bu) = P
(
M(X)

σ
∈ Bu

σ

)
6 P

(
Y ∈ Bu

σ

)
+ 2dK

(
M(X)

σ
, Y

)
=

= P (Z ∈ Bu) + 2dK

(
M(X)

σ
, Y

)
.

Recall that √
∆2 ln(n)

σ2
< ε < 1,

and let δ1 = 5
4
√
n

. See that

σ >
∆
√

2 ln(1.25
δ2

)

ε
=

∆
√

lnn

ε
⇐⇒ ε >

√
∆2 · lnn
σ2

.

Therefore we can use the property of the normal distribution stated in Corollary 5.

P (Z ∈ Bu) + 2dK

(
M(X)

σ
, Y

)
6 eεP (Z ∈ Bv) + 2dK

(
M(X)

σ
, Y

)
+ δ1.

Now we have to return to our initial distribution.

eεP (Z ∈ Bv) + 2dK

(
M(X)

σ
, Y

)
+ δ1 6

6 eεP (M(X) ∈ Bv) + 2dK

(
M(X)

σ
, Y

)
(1 + eε) + δ1.

So far we have

P (M(X) ∈ Bu) 6 eεP (M(X) ∈ Bv) + 2dK

(
M(X)

σ
, Y

)
(1 + eε) + δ1.

We use Fact 3 to obtain

dK

(
M(X)

σ
, Y

)
6

(
2

π

) 1
4

√
dW

(
M(X)

σ
, Y

)
109

Recall that we assumed EXi = 0 and EX4
i < ∞. Moreover, one can see that for

X∗i = (Xi − µi), where µi = EXi the proof is still correct. From Fact 4 we have

dW

(
X

σ
,Z

)
6
D2

σ3

n∑
i=1

E|X∗i |3 +
D

3
2

√
26

σ2
√
π

√√√√ n∑
i=1

E (X∗i)4.

Summing it up we obtain

2dK

(
X

σ
,Z

)
(1 + eε) + δ1 6 2(1 + eε)

(
2

π

) 1
4

√
dW

(
X

σ
,Z

)
+

5

4
√
n
6

6 c(ε)

√√√√√D2

σ3

n∑
i=1

E|X∗i |3 +
D

3
2

√
26

σ2
√
π

√√√√ n∑
i=1

E (X∗i)4 +
5

4
√
n

= δ,

where

c(ε) = 2(1 + eε)

(
2

π

) 1
4

.

Therefore we have

P(X ∈ Bu) 6 eεP(X ∈ Bv) + δ,

which concludes that M(X) is (ε, δ)-NP. �

4.5 Adversary with Auxiliary Information
So far we have not discussed the auxiliary information of the Adversary, as we
assumed that he only knows the correct distribution of the data vector and de-
pendencies in the data (if they exist). We would like to extend our results from
sections 4.3 and 4.4 to take into account the adversary’s knowledge about the exact
values of at most fraction γ of users. Let us assume that the auxiliary information
of the Adversary consists of all records (values) of a subset Γ of the data. Let
|Γ| = γ · n. Instead of n users contributing to adversarial uncertainty, we will
have (1− γ) · n users who, due to randomness in their data, make the aggregated
value private. This is stated in the following observation

Observation 1. Let us consider the Adversary with knowledge of exact values of
all records of a subset Γ of the data. Let |Γ| = γ · n. All previous theorems in

110

this chapter can be easily adapted to such Adversary by considering data of size
(1− γ)n instead of n. This essentially captures the fact that all other users (about
whom the Adversary has no information) still contribute to the adversarial uncer-
tainty. Moreover, if we assume that the Adversary has auxiliary information about
every record of the data (that is |Γ| = n) then this model collapses to standard dif-
ferential privacy, where no uncertainty comes from the data itself. This shows that
indeed the standard differential privacy is a special, most pessimistic, case of this
model.

Let us first introduce an extension to Theorem 12, which takes into account
the Adversary’s knowledge about the exact values of fraction of users.

Theorem 14. Let X = (X1, . . . , Xn), where Xi’s are independent random vari-
ables. Assume that the Adversary knows the exact values of users with indexes
Γ ⊂ [n], where |Γ| = γn. Let µi = EXi, σ2

Γ =
∑
i∈[n]\Γ Var(Xi)

(1−γ)n
and E|Xi|3 < ∞

for every i ∈ [n]. Let M(X) =
∑n

i=1Xi. Assume that
√

∆2 ln((1−γ)n)

(1−γ)nσ2
Γ

< 1, where
∆ is the data sensitivity of M(X). Then for ε such that√

∆2 ln((1− γ)n)

(1− γ)nσ2
Γ

< ε < 1,

and

δ =
1.12

∑
i∈[n]\Γ E|Xi − µi|3(∑

i∈[n]\Γ Var(Xi)
) 3

2

(1 + eε) +
5

4
√
n
,

M(X) is (ε, δ)-NP.

Proof Proof of this theorem is analogous to the proof of Theorem 12, with the
single difference that only non-compromised users contribute to the adversarial
uncertainty, namely variance of the sum consists of the uncompromised users vari-
ance. Therefore when using Berry-Esseen theorem we have smaller variance than
in the case where γ = 0. �

Note that in the proof we assume that we know which subset of users is compro-
mised. This might obviously be unknown to the data owner, so we can assume the
worst case, namely that the compromised subset Γ is the subset of size γn with
the greatest variance. Then the theorem holds, no matter which users are really
compromised. Similarly we can introduce an extension to Theorem 13.

111

Theorem 15. Let X = (X1, . . . , Xn), where Xi’s are, possibly dependent, ran-
dom variables and M(X) =

∑n
i=1Xi. Assume that the Adversary knows the

exact values of users with indexes Γ ⊂ [n], where |Γ| = γn. Let EXi = µi and
EX4

i < ∞. Assume there are dependency neighborhoods Ni, i ∈ [n], where
D = max16i6n |Ni|. Let σ2

Γ = Var(X \ Γ) and data sensitivity of M(X) be ∆.

Assume that
√

∆2 ln((1−γ)n)

σ2
Γ

< 1. Then for ε such that√
∆2 ln((1− γ)n)

σ2
Γ

< ε < 1,

and

δ = c(ε)

√
D2

σ3
Γ

M3
X +

D
3
2

√
26

σ2
√
π

√
M4

X +
5

4
√

(1− γ)n
,

where
M3

X =
∑
i∈[n]\Γ

E|Xi − µi|3,

M4
X =

∑
i∈[n]\Γ

E (Xi − µi)4,

c(ε) = 2(1 + eε)

(
2

π

) 1
4

,

M(X) is (ε, δ)-NP.

Proof Here also the proof is analogous to the proof of Theorem 13, and also the
difference is that only non-compromised users contribute to adversarial uncer-
tainty, namely variance of the sum consists of the uncompromised users variance.
When we bound the Kolmogorov distance (using Stein’s method) between the
sum and a normal distribution, we use one with smaller variance (namely vari-
ance of X \ Γ) than in the case where γ = 0. �

As in the previous theorem, a practitioner can assume the worst case, namely
that the compromised subset Γ is the subset of size γn with the greatest variance.
These simple extensions of our previous theorems give us a complete insight into
noiseless privacy in adversarial model presented in Subsection 4.1.2. The owner of
the data (or any party responsible for the privacy in central or distributed database)
can give his users a rigorously proved guarantee that as long as at most a fraction γ

112

of users is compromised and (in dependent case) if the size of the greatest depen-
dent subset is at most D, then the privacy parameters are at least as good (we have
shown the upper bound for the parameters) as given in Theorem 14 if the data is
independent or in Theorem 15 if there are dependencies (known to the Adversary)
in the data.

4.6 Synergy Between Adversarial Uncertainty and
Noise Addition

In previous sections we have shown what are the privacy parameters for the ran-
domness inherently present in the data. However, it is easy to imagine that in many
cases the amount of randomness (adversarial uncertainty) might be too small to
ensure desired size of privacy parameters. Does it mean that in such case we have
to step back and use only standard differential privacy methods? Fortunately, it
does not. It turns out that the proofs of our theorems are constructed in such a way,
that it is possible to extend them to the case where we add some noise to increase
the randomness in the data. Even more importantly, it is also easy to quantify how
much noise has to be added to improve privacy of the data to the desired parameter
in our adversarial model.

To the best of authors knowledge, so far there has not been any approach in
the privacy literature to combine the idea of utilizing adversarial uncertainty (ran-
domness in data) and standard approach which is adding appropriately calibrated
noise. The idea of adding noise to already somewhat random data is quite sim-
ple, yet it needs to be carefully analysed so that one may know exactly how much
does it enhance the privacy. It is intuitively very natural to think that the more
randomness is present in the data, the less noise (or none, if the randomness itself
is enough) we have to add to satisfy desired level of privacy. However, to become
a state-of-the-art approach to preserving privacy, this intuition has to be formally
introduced, rigorously quantified and proved. We introduce the following

Theorem 16. Let X = (X1, . . . , Xn) where Xi’s are random variables such that
Var(X) = σ2. Let M(X) be (ε1, δ)-NP with data sensitivity ∆. Let ξ be an
unbiased noise of variance σ2

ξ . Then M∗(X) = M(X + ξ) is (ε, δ)-NP, where

ε =

√
∆2 ln(n)

σ2 + σ2
ξ

,

as long as 0 < ε < 1.

113

Proof This formula can be obtained in a straightforward manner from our previ-
ous proofs. Similarly as in theorems 14 and 15 one can easily see that the sum of
data with added noise has variance σ2 + σ2

ξ , because the noise is independent of
the data. Therefore appropriate normal random variables to which we bound the
distance of our sum (as in Berry-Esseen theorem and Stein’s method) will have
greater variance, which in turn gives smaller ε. �

This approach is similar to the case where the adversary has information about
exact values of some fraction of the data, but this time we add variance instead of
subtracting it. Improving δ parameter by adding noise seems to be more difficult,
as it might require different approach to previous theorems. We leave it as an
interesting problem for future work. After this theorem we can also present a
useful observation

Observation 2. We can state Theorem 16 in a different way, namely for a fixed
privacy parameter ε, the necessary variance of the noise to achieve desired level
of privacy is

σ2
ξ = max

(
∆2 ln(n)− ε2σ2

ε2
, 0

)
.

This observation is obtained by using Theorem 16 and straightforward algebraic
manipulations.

We also give more specific observation concerning noise having Laplace dis-
tribution, which is a common technique in standard differential privacy approach
(see for example [28]).

Observation 3. Let X = (X1, . . . , Xn) be a data vector, the data sensitivity
is ∆ and Var(

∑n
i=1Xi) = σ2. We consider mechanism M(X) which, due

to adversarial uncertainty has certain privacy parameters (ε1, δ). We show that
M∗(X) = M(X + ξ) where ξ ∼ Lap(∆

ε2
) preserves privacy with parameters

(ε, δ), where

ε =

√
ε2

1 · ε2
2 · ln(n)

2ε2
1 + ε2

2 ln(n)
.

This observation is obtained by application of Theorem 16 for ξ ∼ Lap(∆
ε2

).
Theorem 16 allows the party responsible for preserving privacy to enhance

parameter ε of the data itself by using standard methods of differential privacy.
See that the noise necessary to achieve the desired level of privacy is smaller
compared to using standard differential privacy methods. It is due to the fact, that
we already have some level of privacy due to the inherent randomness present

114

in the data. We conclude our discussion concerning synergy between adversarial
uncertainty and differential privacy approach by showing a following

Example 6. We consider a data vectorX = (X1, . . . , Xn) and mechanismM(X)
having the data sensitivity ∆ = 10 and Var(M(X)) = σ2 = n

10
. We enhance the

privacy by adding Laplace noise of variance σ2
ξ . Using Theorem 16 and Observa-

tion 2 we can compute what is the necessary variance of noise to obtain privacy
parameter ε = 0.2 depending on the number of users. See Figure 4.5. See that we
have also plotted the variance of noise using differential privacy approach, namely
Laplace mechanism (see [28]). We can see that in this example, for n up to around
1050 we have to apply standard differential privacy mechanism. Moreover, for n
greater than approximately 1350 we know from our previous results that noise is
unnecessary, because the data has sufficient privacy parameters due to inherent
randomness. Most interesting, in terms of synergy of adversarial uncertainty and
differential privacy methods is the case where n is between 1050 and 1350. Here
one can see that adding significantly less noise than using standard differential
privacy approach is sufficient to obtain desired parameter ε = 0.2.

To sum up all our results, we present a flowchart, which shows on high level of
abstraction how should the data owner approach the problem of preserving privacy
in a general manner. See Figure 4.6.

Figure 4.5: Example 6, red dashed line shows the variance of necessary noise for
Laplace mechanism using standard differential privacy. Blue thick line shows the
variance of necessary noise after taking into account the adversarial uncertainty.

115

Figure 4.6: A flowchart for privacy preserving in a general way.

116

4.7 Applications
• The notion of noiseless privacy and our bounds for privacy parameters are

useful especially in distributed case for two reasons. First, in distributed
systems quite often the noises which have to be added by users render the
data practically useless (too much disturbance). Second, in such systems it
is more common to assume that the Adversary does not have full knowl-
edge, i.e. can know only some fraction of the data. See that, if the noiseless
privacy assumptions are met and the privacy parameters are satisfying, one
could for example run protocols from [62, 17] with only the cryptographic
part, without adding noises to the values. The noises added in standard ap-
proach turn out to be too large for practical applications in various scenarios
(see [39]).

• The idea of noiseless privacy can be used for a wide range of applications
including networks of sensing environmental parameters, smart metering
(e.g, electricity) or clinical research. Most important, however, is that in all
these areas there are natural cases, where we can make some assumptions
about the knowledge of the Adversary.

• Assume we have a cloud service which holds shopping preferences of its
users. The data is distributed amongst many servers which are completely
separated from each other. We assume that some of these servers became
compromised, which means that, say at most 50 percent of the values are
known to the Adversary. We might know that the greatest dependent subset
of our data has size at most D. This yields model (AdvX(D, γ)) for known
(or at least upper bounded) γ, D and distributions of the rest of the data.

117

Chapter 5

Summary

In this thesis we focused on improving privacy in unreliable distributed systems
under differential privacy regime. We achieved it by proposing new protocols,
both for privacy preserving aggregation and for improving the density of graph,
which in turn improves privacy. We also proposed a different approach to make
privacy more practical, which can decrease the magnitude of noise needed for data
aggregation. This might be especially useful in unreliable distributed systems, as
they tend to require a lot of noise to maintain satisfying privacy parameters.

• Our fault tolerant, privacy preserving aggregation protocol offers much bet-
ter precision than current solutions. In order to obtain this, we allowed
limited communication between the nodes. Moreover, the protocol greatly
benefits from having sufficiently dense network of users. This assumption
deviates from the classic model. We provided a precise analysis of accu-
racy of the data aggregation protocol presented in [17]. It turned out that, in
many cases, its accuracy may not be sufficient even if the number of faults
is moderate. We experimentally compared both protocols. From the theo-
retical point of view the important question is about the possible trade-offs
between privacy protection, volume of communication and possible accu-
racy of the results of aggregation.

• Above mentioned protocol works best if performed on a dense graph. We
presented how to improve the size of the largest connected component under
massive adversarial attack and demonstrated why this observation is impor-
tant for a wide range of applications. Moreover, our methods are concep-
tually simple and can be performed locally, i.e. with minimal knowledge

118

about the global network. We proved that the presented methods are effi-
cient in preferential-attachment graphs, which are commonly believed to be
an accurate model of various real-life networks including social interaction
networks, World Wide Web, airline networks and many other. Finally, we
confirmed our observations using experiments on graphs of real networks.
Note also that our protocols improve security of participating individuals,
but the level of privacy is improved also for other users.

• We have also taken a slightly different approach at making privacy more
practical. Namely, we continued already existing work concerning relax-
ation of differential privacy called noiseless privacy, which utilizes adversar-
ial uncertainty. We have shown an explicit bounds for privacy parameters.
We have presented specific model of privacy (similar, but more practically
useful than the one given in the seminal paper [11]) and introduced model of
the adversary. To the best of our knowledge, in the papers concerning lever-
aging inherent randomness in the data there were only asymptotic results so
far. By showing an explicit bounds for privacy parameters, we have made
the whole idea more approachable in practice. Another important contribu-
tion of this paper is approaching dependent data, namely using the notion
of dependency neighborhoods. We give privacy parameters bounds for any
distribution and a wide class of dependencies. The data owner only has to
plug the variance of the data (or the lower bound for variance), data sen-
sitivity (which is also necessary in standard differential privacy approach)
and appropriate central moments. Then he can give a specific privacy guar-
antee to its users that as long as at most γ is compromised and as long as the
greatest dependent subset has size D. We wanted to make these theorems
usable not only by the privacy experts, but any developer or specific domain
expert. Furthermore, we have shown how does the standard differential pri-
vacy approach combines with the notion of inherent randomness in the data.
It turns out that if the data is more ’random’, then less noise is necessary to
achieve specific privacy parameter.

Our goal for all these techniques, used separately or combined, was to make them
not only correct and interesting from the theoretical point of view, but also rel-
atively easy to use in practice. Therefore, they could lead to faster adoption
of mathematically rigorous approach to privacy preservation in practical appli-
cations.

119

Bibliography

[1] Gergely Ács and Claude Castelluccia, I have a dream! (differentially private
smart metering), International Workshop on Information Hiding, Springer,
2011, pp. 118–132.

[2] Réka Albert and Albert-László Barabási, Statistical mechanics of complex
networks, Reviews of Modern Physics 74 (2002), no. 1, pp. 47–101.

[3] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg, Wherefore art thou
r3579x?: anonymized social networks, hidden patterns, and structural
steganography, Proceedings of the 16th ACM International Conference on
World Wide Web, 2007, pp. 181–190.

[4] Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim, The privacy
blanket of the shuffle model, arXiv preprint arXiv:1903.02837 (2019).

[5] Albert-László Barabási, Scale-free networks: a decade and beyond, Science
325 (2009), no. 5939, pp. 412–413.

[6] Albert-László Barabási and Eric Bonabeau, Scale-free networks, Scientific
American 288 (2003), no. 5, pp. 50–59.

[7] Andrew Barbour and Louis Hsiao Yun Chen, An introduction to Stein’s
method, vol. 4, World Scientific, 2005.

[8] Raef Bassily, Adam Groce, Jonathan Katz, and Adam Smith,
Coupled-worlds privacy: Exploiting adversarial uncertainty in statistical
data privacy, IEEE 54th Annual Symposium on Foundations of Computer
Science (FOCS), 2013, pp. 439–448.

[9] Raef Bassily and Adam Smith, Local, private, efficient protocols for succinct
histograms, Proceedings of the 47th Annual ACM Symposium on Theory of
Computing (STOC), 2015, pp. 127–135.

120

[10] Alina Beygelzimer, Geoffrey Grinstein, Ralph Linsker, and Irina Rish,
Improving network robustness by edge modification, Physica A: Statistical
Mechanics and its Applications 357 (2005), no. 3, pp. 593–612.

[11] Raghav Bhaskar, Abhishek Bhowmick, Vipul Goyal, Srivatsan Laxman, and
Abhradeep Thakurta, Noiseless database privacy, International Conference
on the Theory and Application of Cryptology and Information Security,
Springer, 2011, pp. 215–232.

[12] Béla Bollobás, Random graphs, Modern Graph Theory, Springer, 1998,
pp. 215–252.

[13] Béla Bollobás and Oliver Riordan, The diameter of a scale-free random
graph, Combinatorica 24 (2004), no. 1, pp. 5–34.

[14] Béla Bollobás, Oliver Riordan, Joel Spencer, Gábor Tusnády, et al., The
degree sequence of a scale-free random graph process, Random Structures
& Algorithms 18 (2001), no. 3, pp. 279–290.

[15] Béla Bollobás and Oliver M. Riordan, Mathematical results on scale-free
random graphs, Handbook of Graphs and Networks: From the Genome to
the Internet (2003), pp. 1–34.

[16] Joseph Calandrino, Ann Kilzer, Arvind Narayanan, Edward Felten, and
Vitaly Shmatikov, "You might also like": Privacy risks of collaborative
filtering, 2011 IEEE Symposium on Security and Privacy, 2011, pp. 231–
246.

[17] T.-H. Hubert Chan, Elaine Shi, and Dawn Song, Privacy-preserving stream
aggregation with fault tolerance., Financial Cryptography, Lecture Notes in
Computer Science, vol. 7397, Springer, 2012, pp. 200–214.

[18] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim
Zhilyaev, Distributed differential privacy via shuffling, Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Springer, 2019, pp. 375–403.

[19] Aaron Clauset, Cosma Rohilla Shalizi, and Mark Newman, Power-law
distributions in empirical data, SIAM review 51 (2009), no. 4, pp. 661–703.

121

[20] Damien Desfontaines, Andreas Lochbihler, and David Basin, Cardinality
estimators do not preserve privacy, Proceedings on Privacy Enhancing Tech-
nologies 2019 (2019), no. 2, pp. 26–46.

[21] Irit Dinur and Kobbi Nissim, Revealing information while preserving
privacy, Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, 2003, pp. 202–210.

[22] Devdatt P Dubhashi and Alessandro Panconesi, Concentration of measure
for the analysis of randomized algorithms, Cambridge University Press,
2009.

[23] John Duchi, Michael Jordan, and Martin Wainwright, Local privacy and
statistical minimax rates, IEEE 54th Annual Symposium on Foundations of
Computer Science, 2013, pp. 429–438.

[24] John Duchi, Martin Wainwright, and Michael Jordan, Local privacy and
minimax bounds: Sharp rates for probability estimation, Advances in Neural
Information Processing Systems, 2013, pp. 1529–1537.

[25] Cynthia Dwork, Differential privacy: A survey of results, Theory and Appli-
cations of Models of Computation, Springer, 2008, pp. 1–19.

[26] Cynthia Dwork, Differential privacy, Encyclopedia of Cryptography and Se-
curity (2011), pp. 338–340.

[27] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith,
Calibrating noise to sensitivity in private data analysis, Proceedings of 3rd
Theory of Cryptography Conference (TCC), 2006, pp. 265–284.

[28] Cynthia Dwork and Aaron Roth, The algorithmic foundations of differential
privacy, Foundations and Trends in Theoretical Computer Science 9 (2014),
no. 3-4, pp. 211–407.

[29] Keita Emura, Hayato Kimura, Toshihiro Ohigashi, and Tatsuya Suzuki,
Privacy-preserving aggregation of time-series data with public verifiability
from simple assumptions and its implementations, The Computer Journal
62 (2018), no. 4, pp. 614–630.

[30] Zekeriya Erkin, Juan Ramón Troncoso-Pastoriza, Reginald Lagendijk, and
Fernando Pérez-González, Privacy-preserving data aggregation in smart

122

metering systems: An overview, IEEE Signal Processing Magazine 30
(2013), no. 2, pp. 75–86.

[31] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Ku-
nal Talwar, and Abhradeep Thakurta, Amplification by shuffling: From local
to central differential privacy via anonymity, Proceedings of the 30th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2019, pp. 2468–2479.

[32] Abraham Flaxman, Alan Frieze, and Juan Vera, Adversarial deletion in a
scale free random graph process, Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2005, pp. 287–292.

[33] Babak Fotouhi and Michael G. Rabbat, Degree correlation in scale-free
graphs, European Physical Journal B 86 (2013), pp. 510–530.

[34] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson, Universal
re-encryption for mixnets, Cryptographers‘ Track at the RSA Conference,
Springer, 2004, pp. 163–178.

[35] Krzysztof Grining and Marek Klonowski, Towards extending noiseless
privacy: Dependent data and more practical approach, Proceedings of the
12th ACM on Asia Conference on Computer and Communications Security
(AsiaCCS), 2017, pp. 546–560.

[36] Krzysztof Grining, Marek Klonowski, and Małgorzata Sulkowska, How
to cooperate locally to improve global privacy in social networks? On
amplification of privacy preserving data aggregation, Proceedings of the 16th
IEEE International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), 2017, pp. 464–471.

[37] Krzysztof Grining, Marek Klonowski, and Małgorzata Sulkowska, Stronger
trust and privacy in social networks via local cooperation, Journal of Com-
plex Networks (2019).

[38] Krzysztof Grining, Marek Klonowski, and Piotr Syga, Practical
fault-tolerant data aggregation, International Conference on Applied Cryp-
tography and Network Security (ACNS), Springer, 2016, pp. 386–404.

[39] Krzysztof Grining, Marek Klonowski, and Piotr Syga, On practical privacy
preserving fault tolerant data aggregation, International Journal of Informa-
tion Security 18 (2019), no. 3, pp. 285–304.

123

[40] Justin Hsu, Sanjeev Khanna, and Aaron Roth, Distributed private heavy
hitters, International Colloquium on Automata, Languages, and Program-
ming, Springer, 2012, pp. 461–472.

[41] Matthew Joseph, Aaron Roth, Jonathan Ullman, and Bo Waggoner, Local
differential privacy for evolving data, Advances in Neural Information Pro-
cessing Systems, 2018, pp. 2375–2384.

[42] Shiva Prasad Kasiviswanathan, Homin Lee, Kobbi Nissim, Sofya Raskhod-
nikova, and Adam Smith, What can we learn privately?, SIAM Journal on
Computing 40 (2011), no. 3, pp. 793–826.

[43] Daniel Kifer and Ashwin Machanavajjhala, Pufferfish: A framework for
mathematical privacy definitions, ACM Transactions on Database Systems
(TODS) 39 (2014), no. 1, pp. 1–36.

[44] Jure Leskovec and Andrej Krevl, SNAP Datasets: Stanford large network
dataset collection, http://snap.stanford.edu/data, June 2014.

[45] Jure Leskovec, Kevin Lang, Anirban Dasgupta, and Michael Mahoney,
Community structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters, Internet Mathematics 6 (2009), no. 1,
pp. 29–123.

[46] Ninghui Li, Wahbeh Qardaji, and Dong Su, On sampling, anonymization,
and differential privacy or, k-anonymization meets differential privacy, Pro-
ceedings of the 7th ACM Symposium on Information, Computer and Com-
munications Security, 2012, pp. 32–33.

[47] Katrina Ligett, Seth Neel, Aaron Roth, Bo Waggoner, and Steven Wu,
Accuracy first: Selecting a differential privacy level for accuracy constrained
ERM, Advances in Neural Information Processing Systems, 2017, pp. 2566–
2576.

[48] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthura-
makrishnan Venkitasubramaniam, `-diversity: Privacy beyond κ-anonymity,
Proceedings of the 22nd International Conference on Data Engineering,
2006, pp. 24–36.

[49] Julian J McAuley and Jure Leskovec, Learning to discover social circles in
ego networks., NIPS, vol. 2012, 2012, pp. 548–556.

124

[50] Michael Mitzenmacher and Eli Upfal, Probability and computing:
randomization and probabilistic techniques in algorithms and data analysis,
Cambridge University Press, 2017.

[51] Arvind Narayanan, Elaine Shi, and Benjamin Rubinstein, Link prediction
by de-anonymization: How we won the kaggle social network challenge,
International Joint Conference on Neural Networks, 2011, pp. 1825–1834.

[52] Arvind Narayanan and Vitaly Shmatikov, Robust de-anonymization of large
sparse datasets, 29th IEEE Symposium on Security and Privacy, 2008,
pp. 111–125.

[53] Arvind Narayanan and Vitaly Shmatikov, De-anonymizing social networks,
arXiv preprint arXiv:0903.3276 (2009).

[54] Arvind Narayanan and Vitaly Shmatikov, Myths and fallacies of personally
identifiable information, Communications of the ACM 53 (2010), no. 6, pp.
24–26.

[55] Andreas Pfitzmann and Marit Köhntopp, Anonymity, unobservability, and
pseudonymity - a proposal for terminology, Designing Privacy Enhancing
Technologies, Springer, 2001, pp. 1–9.

[56] Iosif Pinelis, Characteristic function of the positive part of a random variable
and related results, with applications, Statistics & Probability Letters 106
(2015), pp. 281–286.

[57] Vibhor Rastogi and Suman Nath, Differentially private aggregation of
distributed time-series with transformation and encryption, Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data,
pp. 735–746.

[58] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos, Trust
management for the semantic web, International Semantic Web Conference,
Springer, 2003, pp. 351–368.

[59] Nathan Ross, Fundamentals of Stein’s method, Probab. Surv 8 (2011), pp.
210–293.

[60] Pierangela Samarati, Protecting respondents identities in microdata release,
IEEE Transactions on Knowledge and Data Engineering 13 (2001), no. 6,
pp. 1010–1027.

125

[61] Pierangela Samarati and Latanya Sweeney, Generalizing data to provide
anonymity when disclosing information, Proceedings of the 17th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), 1998, p. 188.

[62] Elaine Shi, Richard Chow, T-H. Hubert Chan, Dawn Song, and Eleanor Ri-
effel, Privacy-preserving aggregation of time-series data, Proceedings of the
18th Network and Distributed System Security Symposium (NDSS), 2011.

[63] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov,
Membership inference attacks against machine learning models, 38th IEEE
Symposium on Security and Privacy, 2017, pp. 3–18.

[64] Steven Strogatz, Exploring complex networks, Nature 410 (2001), no. 6825,
pp. 268–276.

[65] Latanya Sweeney, Weaving technology and policy together to maintain
confidentiality, The Journal of Law, Medicine & Ethics 25 (1997), no. 2-
3, pp. 98–110.

[66] Latanya Sweeney, k-anonymity: a model for protecting privacy, Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10
(2002), pp. 557–570.

[67] I.S. Tyurin, A refinement of the remainder in the lyapunov theorem, Theory
of Probability & Its Applications 56 (2012), no. 4, pp. 693–696.

[68] Remco van der Hofstad, Random graphs and complex networks, Cambridge
Series in Statistical and Probabilistic Mathematics (2016).

[69] WolframResearch, Hypergeometric2F1, 2011, http://
functions.wolfram.com/HypergeometricFunctions/
Hypergeometric2F1.

[70] Xiaokui Xiao and Yufei Tao, M-invariance: towards privacy preserving
re-publication of dynamic datasets, Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, pp. 689–700.

[71] Yang Yang, Zhoujun Li, Yan Chen, Xiaoming Zhang, and Senzhang Wang,
Improving the robustness of complex networks with preserving community
structure, PLOS ONE 10 (2015), no. 2.

126

[72] Haotian Zhang, Elaheh Fata, and Shreyas Sundaram, A notion of robustness
in complex networks, IEEE Transactions on Control of Network Systems 2
(2015), no. 3, pp. 310–320.

[73] Jichang Zhao and Ke Xu, Enhancing the robustness of scale-free networks,
Journal of Physics A: Mathematical and Theoretical 42 (2009), no. 19.

127

