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Abstract

Matrix methods in transcriptomic and metabolomic data analysis

In this dissertation we walk through various approaches of modelling and analysis
of transcriptomic and metabolomic data. The dissertation opens with an introduc-
tion of the current state of the art in the context of high-throughput data along with
genetic background description. We look through current technologies that are used
for obtaining transcriptomic data as well as computational methods and tools for
their analysis including various methods for decomposition of transcriptomic signal
and integration with metabolomic knowledge. Throughout the main three chapters
of this dissertation we discuss specific experimental settings and data for which ad-
equate methods for transcriptomic and metabolomic data analysis are derived and
applied. Each of these chapters presents a different computational method for infer-
ence of biological knowledge, and is supported with a case-study based on real life
experimental data. Finally, results from joint work with Baylor Collage of Medicine
concerning the role of FOXF1 gene in lungs disease are closing the dissertation.

Streszczenie

Metody macierzowe w analizie danych transkryptomicznych i metabolomicznych

W niniejszej rozprawie omawianych jest kilka podejść do modelowania i analizy
danych transkryptomicznych. Pracę otwiera krótki wstęp do obecnego stanu wiedzy
dotyczącegowysokoprzepustowych danychwraz z ogólnymwprowadzeniemdo gene-
tyki. Omówione zostają obecnie używane technologie do gromadzenia danych tran-
skryptomicznych, jak również obliczeniowe metody ich modelowania i analizy, w
szczególności dotyczących dekompozycji sygnału transkryptomicznego oraz jego in-
tegracji z wiedzą metabolomiczną. W ramach trzech głównych rozdziałów rozprawy
dyskutowane są specyficzne scenariusze i dane eksperymentalne, do których zostają
opracowane i zastosowane odpowiedniemetody analizy danych transkryptomicznych.
Każdy z rozdziałów prezentuje pewną metodę obliczeniową służącą pozyskiwaniu
wiedzy biologicznej oraz jej zastosowanie w konkretnym studium przypadku używa-
jącym danych eksperymentalnych. Ostatecznie, wyniki pochodzące ze współpracy
z Baylor Collage of Medicine dotyczące roli genu FOXF1 w rozwoju chorób płuc za-
mykają zasadniczą część rozprawy.
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1
Introduction

“Nothing in life is to be feared, it is only to be

understood. Now is the time to understand more, so

that we may fear less.”
— Maria Skłodowska-Curie

The rapid progress of biotechnological methods naturally entails the necessity
to introduce new, sophisticated bioinformatical methods intended for anal-
ysis of fast-growing amounts of biomedical and molecular data. These data
are mostly obtained using high-throughput technologies (Reuter et al., 2015),

which can be briefly described as automatic screening procedures for conduction of ex-
periments such that large scale repetition becomes feasible. In the field of bioinformatics
and systems biology, these technologies aim to perform an exact screening of cell biology
and determine its molecular picture by the means of: genome structure (genomics), tran-
scriptome composition (transcriptomics), structure and functions of proteins (proteomics),
activity of chemical processes involving metabolites (metabolomics), and others (see Fig-
ure 1.1). In the brackets were given fields of study in biology dealing with the analysis of
a specific type of data. They all constitute the family of -omics sciences that all together
aim to characterize and quantify available data in the context of structure, function, and
dynamics of a cell, an organism or a population (Hasin et al., 2017).

From the above distinguished types of fields, in particular, we want to focus on tran-
scriptomics (Lowe et al., 2017) and metabolomics (Riekeberg and Powers, 2017) and the
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corresponding types of data. It is worth noting, that these types were already used number
of times as a source of knowledge in the research conducted in various fields of studies,
e.g. general biology (Watson et al., 2015; Shin et al., 2018), personalized medicine (Li et al.,
2016), cancer diagnosis (Ren et al., 2016; Yang et al., 2017) or classification (Borgan et al.,
2010) and understanding aetiology of other diseases (Stempler et al., 2014; Borrageiro et al.,
2018).

In this dissertation, we are about to present and describe novel computational frame-
works, methods and algorithms dedicated to analysis of transcriptomic and metabolomic
data. Additionally, each of these methodological ideas is accompanied by results from
different biomedical case-studies carried on different types of data obtained using vari-
ous high-throughput technologies. Simultaneously, we hope to prove that its scientific
value constitutes a significant contribution to the interdisciplinary world of bioinformat-
ics by both development of computational methods and algorithms that help to investigate
biomedical data, as well as better understanding of molecular biology processes.

Nonetheless, before we start a thorough presentation of the results contained in this
work, let us prepare a certain terminology that will allow us to better comprehend the
interdisciplinary language of bioinformatics. For this purpose, we will briefly recall some
concepts in the field of cell genetics and biology, that are used for precise description and
understanding of the problems we are facing in the further course of the work.

1.1. Genetic Background

All known living organisms are defined by genomes, that contain all the genetic information
that is required for their growth, development, functioning, and reproduction. This genetic
information is encoded by monomeric units called nucleotides, that are organic molecules
composed of: a nitrogenous base, a five-carbon sugar (ribose or deoxyribose), and at least
one phosphate group: cytosine [C], guanine [G], adenine [A], thymine [T] (or alternatively
uracil [U]). To simplify the notation, we usually designate a nucleotidemolecule by its phos-
phate group (e.g. by C we mean 2′-deoxycytidine 5′-triphosphate nucleotide). Nucleotides
bind together into a chain polymer structure by covalent bonds between the sugar of one
nucleotide and the phosphate of the next one. A polynucleotide chain composed of A, C,
G, T nucleotides forms a DNA (deoxyribonucleic acid) molecule. If a polynucleotide chain
is composed of A, C, G, U (i.e. uracil instead of thymine) it constitutes a RNA (ribonucleic
acid) molecule.

In living organisms, RNA naturally is found in a form of a single-stranded structure,
that may fold onto itself. Alternatively, DNA usually exists as two polynucleotide chains
coiled around each other and bound together by hydrogen bounds between two nucleotides
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Figure 1.1: Genetic information flow in the human cell. The figure outlines the subsequent stages during the genotype–phenotype
mapping. At each step a molecular information is processed leading from genetic code contained in an individual’s genotype, through
various genetic and epigenetic processes, to observable traits of the individual.

following base pairing (complementarity) rules (A together with T and C with G) forming
a double helix. Such form of DNA is a chemical description of what constitutes whole
genome sequences.

When it comes to its organisation, in eukaryotes, genome is composed of one or more
linear DNA chromosomes. Chromosomes are composed of two chromatin fibers, each made
of nucleosomes, that are parts of DNA strand (around 200 nucleotides) attached andwrapped
around eight core histones and interconnected by sections of linker DNA (around 50 nu-
cleotides). Thanks to packaging proteins such complex genome structure is properly placed
and organized in the cell’s nucleus.

Within genomes we can distinguish segments of nucleotides that contain biological in-
formation and code for a molecule that has a function (i.e. protein or functional non-coding
RNA). Such sequence is called gene. In order for a protein to be produced from a gene a
bunch of processes has to occur. The first step is the transcription process, which is coor-
dinated by specific enzymes and proteins and results in copying a content of a single gene
onto a RNAmolecule. If the RNA is a codingmolecule, it carries a genetic information about
polypeptide sequence and is calledmRNA (messanger RNA), otherwise it is a non-coding or

15



functional RNA. In case of mRNA molecules, they are subjected to translation process, that
results in production of a polypeptide chain. Then, a polypeptide chain is folded into its
characteristic and functional three-dimensional structure. Finally, if necessary, the protein
is transferred to the place of demand and is used according to its purpose by participation
in various biochemical reactions within intra- or extra-cellular space.

Here, hopefully one can notice, that there are many levels at which molecular activ-
ity can be measured and quantified. Specifically, the set of all mRNA (or RNA in general
according to the experiment setting) molecules in a cell or population of cells constitutes
its transcriptome. By analogy proteome is a set of all proteins and metabolome a set of all
metabolites within a scope of interest (e.g. cell, tissue, organism).

1.2. Genotype-Phenotype Gap and Motivation

Naturally, the above description could have been much more detailed, however, for the
purpose of this dissertation it should be sufficient for proper understanding of all problems
that will be formulated further on. Nonetheless, there is also an additional reason why it
is good to get familiar with the biological context and nomenclature that are inseparable
from the bioinformatical background of this work. Namely, to get to know and understand
the value of computational and algorithmic potential of computer science in the field of
modern molecular biology.

In (Alberch, 1991), for the first time the author suggests the existence of a mapping
between genotype (gr. γένος - descendant, offspring, race; τύπος - mark, reflection, impres-
sion), i.e. an organism’s full hereditary information, and phenotype (gr. φαίνω - appear,
shine), i.e. an organism’s actual observed properties, such as morphology, development, or
behaviour. Later on, others also discussed the role of genotype in the observable pheno-
type of an individual (Pigliucci, 2010; Gjuvsland et al., 2013) and the problem is still open. A
simple, everyday life example of how this relationship is inscrutable are monozygous (i.e.
identical), who share the same genotype, yet they never share the same phenotype, because
even their fingerprints are never fully identical. How is that possible? In this work, we will
consequently address questions about how different molecular layers related to a genotype,
e.g. transcriptome or metabolome, influence the observable phenotypic properties such as
forms of activity in cell populations, cell type or cancer morphological subtypes.

Therefore, apart from the theoretical aspect of presenting novel algorithms and com-
putational methods, the common goal, from the biological point of view, of all scientific
projects described later in the dissertation, is to deepen, even to a small extend, our un-
derstanding of the genotype-phenotype relationship. In the following sections, we briefly
describe methods that were used and obtained results in various attempts to understand
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this relationship.

1.3. Main Results

As already mentioned, all of the results presented in this dissertation are an interdisci-
plinary blend, meaning that we propose new computational methods, that can be applied
to specific biological problems. Therefore, each of the next four chapters formulates spe-
cific biological questions that we try to answer in an unprecedented way. In each case,
we provide a description of a solution that we found and an accompanying case-study that
we have carried based on real biomedical data. In short, the results in the dissertation are
organized as follows.

Decomposition of Transcriptomic Signal

In Chapter 2 we focus on the problem of transcriptomic signal decomposition for averaged
measurements of transcriptional activity in homogeneous populations of cells. Generally,
in most studies that focus on tracking transcriptional changes caused by specific experi-
mental conditions, researchers use samples that are composed of many cells. In such ex-
perimental setting, the information referring to high and low activity of genes is evaluated
analysing the behaviour of relatively large population of cells by averaging its properties.
However, even assuming perfect sample homogeneity with respect to cell type, different
sub-populations of cells can exhibit diverse transcriptomic profiles, as they may follow dif-
ferent regulatory/signalling pathways. The purpose of the study presented in this chapter
is to provide a novel methodological scheme to account for possible internal, functional
heterogeneity in homogeneous cell lines, including cancer ones.

We propose a computational workflow to infer the proportion between sub-populations
of cells that are expected to manifest various functional behaviour in a given sample. We
assume, that the observed transcriptomic activity Ai,j of a specific gene i and a sample j

can be modelled as a sum of activities of gene i in each of k sub-populations Wi,l, where
1 ≤ l ≤ k, scaled by the proportion Hl,j of corresponding sub-population with respect to
the whole sample:

Ai,j =
k∑

l=1

Wi,lHl,j + Ei,j

where Ei,j is the approximation error. Building on this premise, we incorporate two types
of non-negative matrix factorization algorithms by (Erkkila et al., 2010) and (Brunet et al.,
2004) along with biological expert knowledge and come up with a method called MPH
(Molecular Process Heterogeneity), that allows to estimate: (i) transcriptomic profile of a
specific molecular process carried by a cell; (ii) proportion of molecular activities ongoing
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in homogeneous populations of cells. Additionally, the method can help in discovering
potential biomarkers of a molecular process, which is a challenging task in modern medical
diagnostics.

The MPH method was validated using data from transcriptome measurements of homo-
geneous neuroblastoma cell line performed with RNA microarrays technology. The ex-
periment aimed to examine cell viability in two experimental conditions: treatment with
C2–ceramide and C2–seramide accompanied by PJ34 PARP inhibitor. An advantage of the
presented methodology is the fact, that it can be easily applied to RNA-seq or single-cell
RNA-seq data. Moreover, it complements standard tools to indicate most important net-
works from transcriptomic data and in particular could be useful in the analysis of cancer
cell lines affected by biologically active compounds or drugs.

The results presented in this chapter are already published in the paper (Gogolewski
et al., 2017) along with an additional case-study of Ovarian Cancer cells.

Latent Structure and Noise Reduction

In the next chapter, we are interested in extracting the systematic patterns from transcrip-
tomic data in an unsupervised manner. Naturally, there are numerous different approaches
to accomplish this task. In our work, we started from the robust PCA (RPCA) algorithm sug-
gested by (Candès et al., 2011).

Formally, RPCA algorithm aims to decompose the input matrix A, into low-rank matrix
L and sparse matrix S components by minimizing the following optimization problem:

min
L,S
||L||∗ + λ1||S||1, where A = L+ S

where ||A||∗ is the nuclear norm of matrixA and ||A||1 is the first norm of a vectorized ma-
trix A. Originally, the algorithm was applied to the image analysis from video surveillance
frames and aimed to distinguish fixed and varying parts of the images. Since in transcrip-
tomic data we can also think of common and changing patterns, we decided to adapt the
original algorithm to biomedical data, thus two extensions of RPCA algorithm were devel-
oped.

First, we present a truncated version of the mentioned RPCA (tRPCA) algorithm. Our
extension draws from the truncated version of SVD algorithm, which means that compared
to the original A = UΣV ∗ decomposition, we calculate only the desired number (k) of
column vectors ofU and row vectors of V ∗ corresponding to the k largest singular values of
Σ. This extension makes the algorithm faster and more memory efficient than the original
RPCA algorithm. Additionally, since this version of the algorithm imposes an additional
constraint on the maximum rank of the L matrix of resulting decomposition, it enables
possibility to specify the expected dimensionality of the background, fixed part of the data.
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Next, since biomedical data are by nature influenced by the biological fluctuations of
various nature the supposed, fixed part of low-rank L matrix will inevitably carry an un-
wanted stochastic effect. For this reason, we introduce another extension of the tRPCA
algorithm by an additional reduction of dense noise using the L2 regularization (tRPCAL2).
Unlike both RPCA and tRPCA that only consider a low-rank L and sparse S matrices, the
proposed algorithm extracts a noise E matrix inherent in modern genomic data. In such
setting, the optimisation problem is extended to the following form:

A = L+ S + E

min
L,S,E

||L||∗ + λ1||S||1 + λ2||E||F

where ||A||F is the Frobenius norm of matrix A. In order to solve this minimization prob-
lem we extend the Alternating Direction procedure and introduce an additional threshold
operator E , that coordinates the content of E matrix.

In the last part of Chapter 3 we demonstrate the usefulness of the proposed theory. Our
methods are applied to the peripheral blood mononuclear cell (PBMC) single cell RNA-seq
data. In particular, we report how the clustering of a low-rank L matrix showcases better
classification of unlabelled single cells. Moreover, possibility of cell subtypes detection and
co-expression patterns detection are also presented. Finally, we point out how the proposed
variants are well-suited for high-dimensional and noisy data that are routinely generated
in genomics.

The major part of the results presented in this chapter are already published in the
proceedings of the 14th International Symposium on Bioinformatics Research and Applica-
tions (ISBRA) 2018 (Gogolewski et al., 2018b). Additionally, after invitation to publish the
extended article, it is currently under review in the Journal of Computational Biology.

Overrepresented Structure of Metabolic Networks

It is known, that the huge amount of biological data gained from many different sources
open up new possibilities in data integration. Nonetheless, process of integration should
be carried with caution regarding the broadly understood problems of overfitting and over-
learning. In Chapter 4 we present two types of results.

On one hand, we show how integration of metabolic and transcriptomic knowledge
may lead to statistical redundancy, which results in artefact discoveries, that as a matter
of fact can be supported by literature. This result has a meta-scientific value, because it
shows how scientific reports can introduce knowledge imbalance in mathematical models
describing biological phenomena. To show-case this problem, we present an example of
integration of RNA-seq data with the genome-scale model of human metabolism RECON
2.2 (Swainston et al., 2016) and describe the outcome of this study. The obtained results
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suggest existence of metabolomic biomarkers that can clearly distinguish various groups
of cancerous patients by specific metabolic activity pattern. Moreover, we are able to sup-
port our results by the literature. However, as a counter-example to all discoveries, we also
present an analysis carried on random dataset. The obtained result proved that all obser-
vations should be treated as artefacts resulting from the information embedded in the used
model.

Therefore, to overcome this problem, later on in the chapter we suggest a possible bias
reduction technique, which we further on validate using the Renal Cell Carcinoma (RCC)
TCGA dataset. Thanks to the bias reduction we were able to to provide a reliable metabolic
description of known morphological RCC subtypes. Furthermore, we suggest a possible
existence of poor-prognosis cluster of patients, which is characterized by common low ac-
tivity of drug transporting enzymes important in chemotherapy.

We hope that the work presented in this chapter would be a warning sign, which re-
minds other researchers that the integration models should be carefully prepared. Other-
wise, it should not be surprising, that if assumptions of a model are based on the current
literature reports, it is not surprising that their outcomes can be supported by the same
literature.

The main results described in this chapter were presented at the 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM) and are published in the conference
proceedings (Gogolewski et al., 2018a). Additionally, extension of the work to single-cell
RNA-seq data was also presented at the Workshop on Computational Advances for Single-

Cell Omics Data Analysis during the 2018 IEEE International Conference on Computational

Advances in Bio and medical Sciences (ICCABS) (Gogolewski and Gambin, 2018).

Interdisciplinary Cooperation for Biomedicine

In the final Chapter 5, we briefly discuss the results from bioinformatical analysis, mostly
focused on feature selection in the context of various data from experiments aiming to un-
derstand the role of FOXF1 gene in the lungs development as well as origins of the alveolar
capillary dysplasia withmisalignment of pulmonary veins (ACDMPV) lungs developmental
disorder. Additionally, we describe the results from the bioinformatical analysis concern-
ing the effect of FOXF1 knock-in and up-regulation of its transcriptional activity. Finally,
we present the comparative analysis of minisatelite distribution in different species and its
potential role as a source of DNA replication errors.

All the work from this chapter is a result of interdisciplinary collaboration with the
Baylor Collage of Medicine and are part of already published articles: (Dharmadhikari et al.,
2014, 2016).
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Scientific Collaboration

It should be noted, that in each work that was conducted and presented within this disser-
tation different co-workers and scientific groups were involved.

The group of prof. Strosznjader from the Mossakowski Medical Research Centre, Polish
Academy of Sciences conducted all the lab experiments and provided data from microarray
experiments for the case-study presented in Chapter 2. Similarly, prof. Lesyng and his
group supported the biological part of this study by interpretation and comments on the
results of computational analysis. The group of prof. Stankiewicz from Baylor Collage of
Medicine coordinated the research for the purpose of which all the bioinformatical analyses
that are presented in Chapter 5 were conducted. Finally, in the cooperation with the group
of Le Rouzic, PhD we were working on a side project related to the evolution of mobile
genetic elements.

Additionally, individual researchers were involved in conducting the studies presented
in this work and published in corresponding articles presented at the end of this chapter.
Thework presented in (Gogolewski et al., 2017) was supported by biologistsW.Wronowska
and A. Lech who participated in biological interpretation and description of all results. M.
Sykulski helped in the design and implementation of the algorithms in (Gogolewski et al.,
2018b), while N.C. Chung introduced the usage of scRNA-seq data. Next, M. Kostecki re-
implemented the algorithm used in (Gogolewski et al., 2018a) and helped in the structural
analysis of RECON 2.2 model. Finally, prof. A. Gambin mentored, inspired and coordinated
all the work presented in the whole dissertation and the published articles based on the
dissertation’s content.

Here, let us also note, that all figures used in the dissertation come from author’s own
articles or are his own unpublished graphics.
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2
Non-negative Matrix Factorization in

Subcellular Heterogeneity

“Peace is not unity in similarity but unity in

diversity, in the comparison and conciliation of

differences.”
— Mikhail Gorbachev

Heterogeneity (gr. ἕτερος - other, another, different; γένος - generation,
genealogy) is a general property, that can be considered on many levels,
in many different contexts. In particular, heterogeneity is a property that
describes many phenomena of molecular biology or medicine. Various mu-

tations at the same loci causing the same phenotype effect are called locus heterogeneity.
Consequently, different alleles within the same gene causing similar phenotype response
define allelic heterogeneity. Whilst, heterogeneous medical condition in medicine are med-
ical conditions that have several etiologies (e.g. diabetes). In other words, heterogeneity is a
diversity within a population of objects, samples or phenomena, in the context of some spe-
cific property, or group of properties that is used to distinguish some sub-populations. The
measure of heterogeneity can be quantitative or qualitative, however most of the time the
aim would be to describe the proportion of sub-populations within population in question.
The natural opposite of heterogeneity is homogeneity (gr. ὅμοιος - similar), thus similarity,
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or even identity, according to the given characteristic of a population. For the purpose of
this chapter, we focus on a population of cells.

2.1. Levels of Heterogeneity in Populations of Cells

Naturally, a population of cells has many levels on which heterogeneity can be observed.
The fundamental and most intuitive diversity among group of cells may be determined by
their cell type. As an example we can think of a blood sample, but any other tissue can be
considered. The most general distinction of blood cells distinguishes: erythrocytes, leuko-
cytes, thrombocytes. However, we can think of more specific divisions, e.g. related to
specialization of a cell in the context of signalling cascades of the immune system. These
may be grouped into following sub-populations: neutrophils, eosinophils, basophils, lym-
phocytes, monocytes; within which we can distinguish further divisions.

What is worth noting at this point, is the meaning of an outcome of the gene expression
measurement performed on a cell population composed of various cell types. Naturally, we
can think of gene expression of a blood sample, but in fact it is an average expression of
a heterogeneous population, because each cell follows an average pattern of gene activity
related to its cell type. Therefore, the outcome of a gene expression level measurement may
be considered as a weighted average of activity of each sub-population defined by its cell
type.

So far, in the literature, a couple of methods were proposed to deal with the problem of
mixed cell types in biological samples, i.e. tissues. Mostly they are based on the expression
matrix decomposition and yield the already mentioned information:

• proportions of different cell types in a given sample;

• expression profiles specific for each detected cell type.

As an example, in (Repsilber et al., 2010) authors introduce the method based on the least
squares non-negative matrix factorization for discovery of cell-specific marker genes with
noisy signals because of varying cell-type proportions in a sample. The state of the art
in computational methods for determination of sample cellular content and cell-specific
expression profiles is summarized in (Shen-Orr and Gaujoux, 2013).

Nonetheless, in this chapter, we take another step into the complexity of the cell na-
ture. Let us consider a population of cells that is homogeneous in terms of their common
cell type. Now, the unity at the cellular level guarantees that the gene expression measure-
ment is cell type independent or, in other words, cell type specific. However, we already
know that throughout its life a cell undergoes specific molecular processes, that are respon-
sible for: growth, intra- and extracellular signalization, metabolism, fate decisions, etc. It is
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the activity of molecular processes that may incorporate activity of various groups genes,
which will influence the observed transcriptomic profile of the population. We expect the
sub-cellular, functional activity to be the main source of the heterogeneity within a homo-
geneous population of cells with respect to their cell type.

However, if we want to look for the characteristics of molecular processes it is reason-
able to use additional knowledge about gene regulatory networks or signalling cascades
and pathways. In case of the reconstruction of regulatory networks from mRNA expres-
sion data a plethora of methods was proposed, but none of them brought a spectacular
success, which proves the complexity of the problem. In particular, (Zhang et al., 2012)
presented a method considering the path consistency algorithm based on the conditional
mutual information. Also some improvements of the standard path consistency algorithms
have already been proposed, such as the elimination of the gene ordering problem (Aghdam
et al., 2015). The other approach proposed by (Dojer et al., 2006) successfully applies dy-
namic Bayesian networks for the gene regulatory network inference based on the perturbed
gene expression data.

On the other hand, the results and discoveries collected from numerous studies led to
the systematization of our understanding of cell communication methods. So far, there are
several knowledge bases summarizing scientific reports in this field. For this reason, we
decided to explore the already existing knowledge on the regulome and the signalome to
provide an insight into the heterogeneity of molecular processes in a type heterogeneous
cell populations.

Therefore, themethodology proposed in this chapter complements the abovementioned
ideas for cell type heterogeneity detection by inference about gene regulatory networks
activity. Its main objective is to examine the functional heterogeneity of a given cell popu-
lation sample, assumed to be homogeneous, through the quantification of the intensity of
molecular processes occurring in it. Since, the whole idea behind this approach is based on
the non-negative factorization of gene expression matrix, let us first briefly describe this
family of algorithms.

2.2. Non-Negative Matrix Factorization

Historically, the first approach to decomposition of a matrix into non-negative factors ap-
peared as positive matrix factorization (Paatero and Tapper, 1994) and was popularized as
non-negative matrix factorization (NMF) by (Lee and Seung, 1999). In general, NMF tech-
niques can be described as an unsupervised learning paradigm involving the approximative
decomposition of a non-negative matrix A ∈ Rm,n

+ into a product of two non-negative ma-
trices,W ∈ Rm,k

+ andH ∈ Rk,n
+ . Since, in case of matrices multiplication the dimensions of
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the factors may be significantly lower than the product, the value of k may, and is, expected
to be less thanm and n. This simple observation constitutes the basis and main objective of
NMF, to generate factors with significantly reduced dimensions compared to the original
data matrix. Additionally, thanks to the non-negativity constraint, the approach obtains
the parts-based representation of input data, which corresponds to the general premise,
that perception of the whole is based on perception of its parts.

When it comes to specific realizations of this paradigm, there are few ways and restric-
tions in which NMF can be approached, thus we will shortly comment on them to have an
overview of possible realization of this paradigm.

In most cases, NMF is formulated as an approximative, minimization problem: Given
an input matrix A and cost function F find non-negative matricesW andH that minimize
the function F (V,WH). The cost function F is usually set to the squared error or the
Kullback–Leibler divergence for positive matrices and the minimization problem is usually
solved using iterative algorithms. There are also more restricted versions, e.g. convex NMF,
which restricts the columns ofW to convex combinations of theA vectors, which results in
improved data representation ofW and higher sparsity ofH (Thurau et al., 2011). Moreover,
constraint may require columns of H to sum up to 1, which can be easily interpreted as a
proportion or probability matrix. On the other hand, there are also Bayesian approaches
based on a normal likelihood and exponential priors, and derive an efficient Gibbs sampler
to approximate the posterior density of the NMF factors (Schmidt et al., 2009).

Even though not all possibilities were described, one can see, that the spectrum of possi-
ble approaches to NMF algorithms is broad. However, in this study we will take advantage
of approximative NMF, trying to represent the input data A in the form of a product of W
and H matrices, both of given low rank k along with a residual. This rank constraint is
meant to detect an inner, expected structure of our data. Additionally, it allows to cluster
the columns of A into k clusters, using the entries of H as cluster indicators.

The NMF was already used in biomedical data analysis and in particular for analysis
of transcriptomic data. Various methods were successfully applied to mRNA microarray
data for classification and identification of signatures. In (Brunet et al., 2004) NMF was
used to cluster cancer-related microarray data by sample morphology in three different
case studies. The algorithm based on non-smooth NMF was proposed by (Carmona-Saez
et al., 2006) to identify coherent substructures composed by sets of genes mainly expressed
in samples related to the same tumour type. Aiming for estimation of cell-type proportions
of heterogeneous tissue samples (Erkkila et al., 2010) proposed Bayesian approach to NMF.
(Jia et al., 2015) used discriminant NMF in order to perform gene ranking on RNA-seq data.
Also in the context of single-cell transcriptomic data NMFwas applied to study the problem
of identifying cell-type sub-populations by analysis of their transcriptomic profiles (Shao
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and Hofer, 2017), as well as, thorough joint analysis of single-cell RNA-seq and single-cell
ATAC-seq data (Duren et al., 2018).

2.3. Aproximation of Molecular Processes Activity

As we can see, NMF has already been used in various aspects of transcriptomic data anal-
ysis. Here, we propose an approach, in which we sequentionally put together two already
mentioned NMF algorithms that previously were used in the analysis of the proportion of
cell types in a heterogeneous population of cells, i.e. tissue. Namely, DSection suggested
by (Erkkila et al., 2010) and ssKL from (Brunet et al., 2004).

Both of these algorithms aimed to find the best approximation of a gene expression
matrix A ∈ Rm,n

+ with m genes and n samples as a product of two matrices: W ∈ Rm,k
+

and H ∈ Rk,n
+ of a given rank k. This factorization can be simply formulated as an matrix

equation:

A = WH + E.

Originally, the rank k was related to the number of expected cell types in the n analysed
samples. However, by analogy, we reformulate this assumptions, so that they infer the
knowledge about the number of molecular processes conducted in the populations of cells
composing n type-homogeneous cells. Therefore, a column Wj = (W1,j,W2,j, ...,Wm,j) of
W is expected to describe a process-specific transcriptomic activity pattern, thusWi,j is an
expression value of i-th gene for j-th process characteristic profile. Consequently, a col-
umnHj = (H1,j, H2,j, ..., Hk,j) ofH is interpreted as vector of contributions (proportions,
weights) of each process to cells population representing the sample, thus Hi,j is a linear
combination coefficient with which i-th profile contributes to the observed expression of
j-th sample. Finally, E ∈ Rm,n is a residual matrix. In the above setting expression Ai,j

of i-th gene in j-th sample can be formulated as linear combination of gene activities from
each profile:

Ai,j =
k∑

l=1

Wi,lHl,j + Ei,j

Let us now shortly describe both NMF algorithms that we make use of in the context of
proposed workflow that infers heterogeneity of molecular processes. Both algorithms were
originally formulated and dedicated to analyse heterogeneous tissue samples. However, for
the purpose of further description of the workflow, they are expressed in terms of molecular
processes conducted by cells.
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Bayesian NMF

DSection algorithm (Erkkila et al., 2010) is an unsupervised approach to the matrix decom-
position problem. The only knowledge, that is expected as an input, is the initial, a priori

proportion of cell molecular activities within analysed sample. The algorithm estimates
both cell-specific transcriptome and cell proportions using the Markov Chain Monte Carlo
approach.

In the context of our problem, assume expression data matrixA ∈ Rm,n is given, with n

cell-type homogeneous samples, described with expression level measurements ofm genes.
Each sample is assumed to be a population of cells, out of which each cell is involved in one
of the k expectedmolecular processes, constituting k sub-populations that are characterized
by the conducted process. For each sample j the a priori knowledge pj = (p1,j, ..., pk,j)

about proportions of cells with specific function is assumed to be given. Then the expression
Ai,j of the i-th gene in j-th sample is modelled as:

Ai,j = WipTj =
k∑

l=1

Wi,lpl,j + Ei,j

where Wi = (Wi,1, ...,Wi,k) describes the pure expression pattern of i-th gene in each of k
cell sub-populations (i.e. representing unique molecular activity) and ϵi,j ∼ N

(
0, 1

λi

)
is a

normally distributed noise reflecting replication noise with variance 1
λi
, for some constant

λi. In other words, Ai,j is sum of weighted activities of gene i in all possible molecular
processes, plus a normally distributed noise term. In this setting, the likelihood of Ai,j can
be described as:

Ai,j|pj,Wi, λi ∼ N

(
k∑

l=1

Wi,lpl,j,
1

λi

)
Note that the replication variance, 1

λi
, is modelled as heteroscedastic across genes and ho-

moscedastic across conducted molecular processes. Finally, assuming i.i.d. measurements
of Ai,j (which naturally may not always be the case) the joint data (D =

∑
i,j Ai,j) likeli-

hood in factorized form can be formulated as:

f(D|θ) =
m∏
i=1

n∏
j=1

f(yi,j|pj,Wi, λi)

where θ represents all model parameters, i.e. θ =
∪

i,j(pj,Wi, λi). Note that the prior p
corresponds to the matrix H from the general description of NMF approach introduced in
the beginning of this subsection.

More detailed description of further prior specifications, sampler construction and pos-
terior sampling, i.e. probability of acceptance of one step in constructed mixed Gibbs and
Metropolis-Hastings sampler can be found in the Methods section and Supplementary Ma-
terial of (Erkkila et al., 2010). In our approach, the main task of DSection algorithm is to
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determine the similarities between samples and probable clusters and suggest genes that
distinguish each cluster by their activity pattern.

Iterative NMF

On the other hand, the ssKL algorithm draws from an approach that is based on iteratively
computed approximation of a desired decomposition. In our case the algorithm is supported
by a list of marker genes characteristic for each expected molecular function that are meant
to be active in the samples of interest and regulate its observed transcriptome. Specifically,
the factorization A ∼ WH , given a desired rank k of W and H , thus expected number of
cell sub-populations, starts with a random initialization of W and H matrices which are
then iteratively, updated to minimize a divergence functional:

F(A,W,H) =
∑
i,j

Ai,j log
(

Ai,j

(WH)i,j

)
− Ai,j + (WH)i,j

The approximation in the algorithm is performed in two steps using the coupled divergence
equations:

Hi,j ← Hi,j

∑
t Wt,i

Xt,j

(WH)t,j∑
k Wk,i

Wt,i ← Wt,i

∑
j Hi,j

Xt,j

(WH)t,j∑
l Hi,l

It should be emphasized that even though the algorithm does not need to necessarily con-
verge to the same solution on each run, see (Brunet et al., 2004) for details, in our case-study
the method turned out to provide consistent and robust results throughout repetitive runs.

As it was already stated, both of the above algorithms originally referred to the iden-
tification of cell-type specific transcriptomic profiles composing the investigated sample.
However, we will show that these methods, can be successfully used along with signalomic
knowledge to determine the process activity-related proportions and markers in cell-type
homogeneous samples that are characterized by the heterogeneity of undergoingmolecular
processes.

2.4. Composition of the Workflow

Finally, let us formulate the main result of this chapter. Our main goal, as it was already
stated, is to infer some knowledge about the heterogeneity of molecular processes in sam-
ples that are homogeneous at the level of cell type and described in terms of their transcrip-
tomic signal. This inference is achieved by estimation of the proportion in which different
sub-populations bring their transcriptomic activity to the activity observed in the analysed
type-homogeneous sample (i.e population of cells forming this sample).
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We assume that there exist at least two different molecular processes, each manifested
by different transcriptional activity of a specific cell sub-population conducting a given
process. Specifically, the proportion should be understood as a qualitative contribution of
each sub-population into the transcriptomic signal observed in the data retrieved from the
whole sample.

Alongwith the proportions, we determine transcription patterns specific for eachmolec-
ular activity. Again, it should be mentioned that values assigned to the expression of each
gene in the patterns are not strictly levels of transcription, in the sense of values gath-
ered, e.g. from microarray assays, but rather correspond to the trends observed in detected
sub-populations.

Therefore, to quantify the composition of the sample, we adapted the computational
framework called CellMix designed originally for the decomposition of a gene expression
matrix from heterogeneous samples (Gaujoux and Seoighe, 2013). The framework decom-
poses an expression matrix into components representing the description of different tis-
sues, that were mixed in the sample. Here, since we assume the homogeneity at the level
of cell type (as we will study samples obtained from a cell line), the decomposition is ex-
pected to reveal the heterogeneity at the level of molecular processes. Figure 2.1 presents
the outline of the MPH (molecular processes heterogeneity) method.

The procedure starts with the routine processing of the raw data from the microarray
experiments resulting in normalized, filtered (i.e. quality controlled) expressions for each
experimental scenario. Then, for the further analysis we select only these genes that dif-
ferentiate the experimental conditions in the considered study in a statistically significant
manner.

The next step is the already introduced DSection algorithm (i.e. an unsupervised stage
of matrix decomposition) (Erkkila et al., 2010). Since It requires the starting proportions as
an a priori knowledge for Bayesian model there are two options to provide it: (i) use an
expert knowledge about functional activity composition of samples, (ii) generate random
proportions table. This step provides an information about specific gene profiles detected
during the decomposition of the input expression matrix A. Intuitively, one can think of
this step as a form of clustering procedure - the algorithm points out samples described
by similar transcription patterns and consequently by potentially similar contributions of
functional activities, given the presumed proportion table. From these transcriptomic pat-
tern profiles statistically significant genes are selected, then annotated and validated using
DAVID tool (Huang et al., 2009). Finally, these genes constitute a marker list for each pro-
file describing specific functions and/or pathways currently active in the population of cells
under the study.

These lists of marker genes are then used as an input to the second decomposition phase
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that is based on the ssKL algorithm. These marker genes are meant to provide a transcrip-
tomic pattern that should be followed in case of specific molecular activities. The outcome
of this step is twofold:

• a matrix of estimated proportions of functionally homogeneous cell sub-populations
in the analysed samples (H),

• a pattern of gene expression per molecular activity defining each sub-populations
within sample (W ).

Results of this step are validated using the dedicated in vitrowet-lab assay (in our case study
the MTT assay is used to evaluate the level of proliferation). Finally, marker genes from
the previous step were assessed whether they characterize specific functions.

The presented MPH workflow was used to verify a hypothesis that was addressed in the
conducted experiment. With this experiment, the aim was to computationally quantify the
influence of PJ34 PARP inhibitor on the viability of the C2–ceramide treated cells. The
biological hypothesis claims that PJ34 poses a cytoprotective character.

Finally, thanks to our approach that determines function-specific transcriptomic pro-
files, we provide the most important markers characterizing concrete cellular functions.
Here, it should be emphasized that the knowledge about gene regulation in cancerous cells
is still quite vague and selection of novel biomarkers for specific cellular processes might
improve our understanding of cancer development mechanisms and is the strongest aspect
of the proposed worflow.

2.5. Validation: Case-Study of Neuroblastoma Cell Line

In order to verify the proposed methodology we have used the experimental data that in-
vestigated the activity of cells in samples derived from neuroblastoma cell line. Various ex-
perimental conditions were examined to determine the effect of C2–ceramide and changes
resulting from co-treatment with the PARP1 inhibitor: PJ34. First, we provide some details
of the wet experiments.

Cell Culture Experiments

The human neuroblastoma cell line SH-SY5Y was obtained from American Type Culture
Collection (ATCC); Cells were maintained at 37◦C in a humidified incubator containing 5%
CO2, cultured in MEM/F-12 Ham Nutrient Mixtures (1:1) (Biowest) supplemented with 15%
heat-inactivated FBS (Cytogen), 1% penicillin/streptomycin and 2mM glutamine (Sigma-
Aldrich). Prior to treatment, the cells were cultivated in low serum medium (2% FBS).
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(a) The MPH algorithm

Cell line

Treatment

Transcriptomic 
microarray analysis

Functional analysis

          Typical approach                   MPH approach  

Average 
functional  profile

Proportions of 
functional profiles

(b) Experimental design

Figure 2.1: An overview of the concept presented in this chapter: (a) an insight into the workflow of the MPH method, (b) the general
use case of our algorithm.

SH-SY5Y cells were cultivated for 3, 6 and 24 hours in the following experimental set-
tings supplied with: (i) 25µM C2–ceramide d18:1/2:0 (Enzo Life Sciences); (ii) 25µM C2–
ceramide d18:1/2:0 (Enzo Life Sciences) and 20µM PARP1 inhibitor PJ34 (Sigma-Aldrich);
(iii) pure medium for control samples. The experiment was done in three replicates. After
3, 6 and 24 hours of cultivation cells were collected and RNAwas purified using Affymetrix
PrepEasy RNA spin KIT. The whole-transcript analysis were conducted using Affymetrix
Human Gene 2.1 ST Array Plates. Gene lists were annotated and analysed using QIAGEN’s
Ingenuity Pathway Analysis tools1.

After treating SH-SY5Y cells with different compounds, cell viability was evaluated
using 2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT; Thermo
Fisher Scientific). Representative samples were collected from each experimental setting,
MTT was added to all of the wells. The cells were incubated at 37◦C for 2 h, followed by
cell lysis and spectrophotometric measurement at 595 nm.

Estimation of Proliferative and Apoptotic Activity

Here, we assume that, the expression level for each gene is the result of an expression
activity in two distinct cell sub-populations. In our case study, based on the wet experiment
setting, one of them consists of actively dividing, proliferating cells and the second one
consists of cells with activated apoptotic signalling pathways. Building on this premise,

1 www.qiagen.com/ingenuity, IPA®, QIAGEN Redwood City
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Figure 2.2: Expression patterns of marker genes for the presented case study of neuroblstoma. The panel describes activity of 12 genes
related to the positive regulation of the cell death processes (depicted with a blue stripe) and 11 genes related to the positive regulation of
proliferation mechanisms (red stripe). Each column corresposnds to specific experimental condition (time point and treatment), which
is described by the column label.
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the decomposition of the expression matrix yields the proportions of the characterized cells
sub-populations.

Marker Genes Selection

In order to assure the computational efficiency of used algorithmic solutions, we first reduce
the number of analysed genes. We use only genes that differentiate experimental conditions
in a statistically significant way according to the two-sample T-test with p-value less than
0.05. Such filtering resulted in 3983 genes that were used in the further decomposition
analysis.

According to the presented workflow, we first answered the question if samples pro-
files for such selected genes exhibit any specific inner structure. Application of DSection
algorithm determined a decomposition of the expression matrix. Taking into consideration
the character of our experimental data and provided assays, which track specific activity of
cells, we set the prior knowledge as a uniform proportion of two functional sub-populations
constituting the samples.

Annotation of the genes that differentiate well between two obtained profiles (i.e. top
500 genes with the highest fold change), was performed using DAVID tool (Huang et al.,
2009). It provides groups of marker genes characteristic for each profile based on the func-
tional enrichment analysis. This classification was systematically verified using literature
reports on each gene function. For the subsequent analysis only genes known to enhance
particular process were selected.

In the analysed case study of neuroblastoma we end up with the marker genes for: (i)
proliferation regulation including 11 genes: CD24, NRP1, TNS3, MYC, CD38, CCNA2, FGF7,
MST1R, MYCN, ETS1, EDNRA; (ii) cell death related regulation including 12 genes: DDIT3,
ERN1, JUN, SQSTM1, SMPD1, TGFB1, PRNP, CEBPB, NQO1, NR4A1, CTSB, ZMAT3.

The expression patterns of all selected marker genes can be investigated in Figure 2.2,
while their full names are given in the Table 2.1. Additionally, a bunch of tests was per-
formed to detect how the outcome of the MPH method is dependent on the number of marker
genes used in the ssKL step. It turned out that a set of 10–12 most differentiating genes
between expected sub-populations is sufficient to keep the resulting estimation of their pro-
portion in the sample at the robust level. Therefore, additional marker genes, characterized
by lower fold change between sub-populations, were a secondary knowledge for the MPH
workflow.
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Cell death Proliferation
Symbol Name Symbol Name
DDIT3 DNA Damage Inducible Transcript 3 CD24 CD24 Molecule
ERN1 Endoplasmic Reticulum To Nucleus Signal-

ing 1
NRP1 Neuropilin 1

JUN Jun Proto-Oncogene, AP-1 Transcription
Factor Subunit

TNS3 Tensin 3

SQSTM1 Sequestosome 1 MYC V-MycAvianMyelocytomatosis Viral Onco-
gene Homolog

SMPD1 Sphingomyelin Phosphodiesterase 1 CD38 CD38 Molecule
TGFB1 Transforming Growth Factor Beta 1 CCNA2 Cyclin A2
PRNP Prion Protein FGF7 Fibroblast Growth Factor 7
CEBPB CCAAT/Enhancer Binding Protein Beta MST1R Macrophage Stimulating 1 Receptor
NQO1 NAD(P)H Quinone Dehydrogenase 1 MYCN V-MycAvianMyelocytomatosis Viral Onco-

gene Neuroblastoma Derived Homolog
NR4A1 Nuclear Receptor Subfamily 4 Group A

Member 1
ETS1 ETS Proto-Oncogene 1, Transcription Fac-

tor
CTSB Cathepsin B EDNRA Endothelin Receptor Type A
ZMAT3 Zinc Finger Matrin-Type 3

Table 2.1: Lists of functional marker genes that were used in the analysis of Neuroblastoma cells activity. The above two lists are
composed of indicator genes known to be characteristic for the cell death and proliferation processes.

Estimation of Functional Heterogeneity

During the next phase, the obtainedmarker genes sets were used for ssKLmethod to predict
the final proportion of different cell activities in the analysed samples. In both case studies
we observed significant differences in fractions of cells exhibiting investigated behaviours
(see Figure 2.3).

In order to validate presented methods and significance of their outcomes we have per-
formed the log-likelihood ratio test. It was measured how much better the complex model
with more degrees of freedom (assuming heterogeneous population) fits the data than the
hypothesis assuming homogeneous population (H0). Namely, assuming that X is a vector
of gene expression levels our null and alternative hypotheses are:

H0 : X ∼ N (µ1, σ
2
1) (2.1)

H1 : X ∼ p · N (µ1, σ
2
1) + (1− p) · N (µ2, σ

2
2)

We used the Expectation-Maximization (EM) algorithm to estimate the best parameters
and calculate the likelihood for both models.

Since there are only three measurements per experimental condition, statistical confir-
mation of our results is hard to provide (i.e. on three samples there is no basis for rejection
of null hypothesis: sample represents uni-modal normal distribution). Nevertheless, in or-
der to provide at least partial statistical justification of our results, using k-means algorithm,
for each experimental condition we have clustered all genes that were used in the analysis.
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6 h Control C2–cer C2–cer + PJ34
Proliferation 0.521 0.526 0.525 0.458 0.458 0.469 0.404 0.423 0.422
Cell death 0.479 0.474 0.475 0.542 0.542 0.531 0.596 0.577 0.578

Table 2.2: The proportion of cells in the population exhibiting specific molecular processes estimated by the MPH method.

Such clustering provided larger samples with common expression pattern that could have
been analysed with EM algorithm. An effective size of the sample for EM algorithm was
set to 100, determining the number of expected clusters in k-means equal to 40.

In each experimental condition for most of the clusters the likelihood ratio test rejected
the H0 in favour of the H1. For C2–supplied experiment H0 was rejected 37 (with mean
p-value: 6.6 · 10−4), 39 (1.2 · 10−3), 39 (4.4 · 10−4) times (out of 40 cases) for 3rd, 6th and 24th

hour of experiment, respectively. Similarly, for the above time points in PJ34+C2–supplied
experiment H0 was rejected in 36 (3.8 · 10−4), 39 (3.4 · 10−4), 38 (8.0 · 10−4) cases and for
control samples in 38 (8.2 · 10−4), 39 (1.0 · 10−3), 39 (1.5 · 10−3).

In case of C2–supplied experiment the hypothesis of the H0 model was rejected in
favour of the M1 model in 798 (3h of experiment), 824 (6h), 759 (24h) out of 1000 cases,
with mean pvalues 4.244 · 10−3, 3.883 · 10−3, 5.720 · 10−3 in respective time points.

Same verification procedurewas performed for the control samples and PJ34+C2–supplied
experiments, all resulting in 751 up to 811 rejectedH0 models in all time points, with mean
pvalues from (4.224 · 10−3, 4.851 · 10−3) interval.

These results suggest that, indeed, in each experimental condition, it was reasonable to
expect that the observed expression level is a composition of signals from different sources.

In most of the analysed experimental variants our results were consistent with the re-
sults of biological assays and the literature based predictions.

Concerning the neuroblastoma cell line we have shown that in the control environment
the fraction of proliferating cells is higher than in both experimental conditions, which
was expected and consistent with MTT assay. Moreover, we observe that the reaction to
external treatment is the strongest in the 6th hour time frame, and seems to stabilize around
24th hour.

Interesting fact is related to our results concerningC2–ceramide andC2–ceramide+PJ34
experiments on the fraction of proliferating cells, since it varies from the results obtained
using the MTT assay. Our computational method suggests that PARP inhibition along
with C2–ceramide supplementation results in lower proliferation abilities than in experi-
ment without the inhibition. This fact was not detected in our MTT assay probably due to
its limitations, as well as in the analogous experiment presented in (Czubowicz and Strosz-
najder, 2014).
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Figure 2.3: The comparison of the experimental results (left) with the theoretical estimation of functional proportions in sub-populations
(right). The figure compares behaviour in the 6th hour of the SH-SY5Y neuroblastoma experiment.

The predicted proportions for each sample are presented in Table 2.2. What is worth
emphasizing is the behaviour of replicates for given time and setting which is stable (i.e.
average standard deviation ≈ 0.01).

Functional Validation

The additional validation of our results was performed using the classical approach to the
functional analysis of transcriptomic data. We intend to verify if profiles detected by ap-
plication of the MPH method are consistent with general, average tendencies indicated by
functional analysis tools. In order to identify molecular and cellular functions altered by
treatments we performed core analysis using Ingenuity Pathway Analysis tool (IPA). The
statistics for themost influenced functions reported in this section are listed in the Table 2.3.

In our case study 3983 genes were selected for further analysis as distinguishing three
experimental conditions, i.e. control, C2–ceramide treated and both C2–ceramide and PJ34
treated.

IPA analysis revealed significant enrichment in the Cellular Growth and Proliferation in
both C2–ceramide and C2 with PJ34 treated cells this category was on the second position
afterCellularMovement in C2 variant andCellular Development. According to the p-value in
cells treated with C2 and PJ34 proliferation of tumor cell lines was the first affected function
and proliferation of neuronal cells was on the third position. In the C2–ceramide treated
cells proliferation of cells was on the second position. It should be emphasized that in both
variants proliferation scored very low p-value what indicates high data enrichment. On the
basis of Z-score its activation was decreased in comparison to control samples. According
to activation Z-score in C2–ceramide treated cells the highest decrease was designated for
the functions related to the organization of cytoskeleton and cytoplasm, however proliferation
of cancer cells was the third decreased function. While increased activation was predicted
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Molecular function Z-score p-value

C2

Proliferation of cells -2.520 4.97E-11

Proliferation of cancer cells -3.136 2.26E-05

Apoptosis 2.039 2.07E-04

C2 + PJ34

Proliferation of tumor cell lines -0.760 7.34E-09

Proliferation of neuronal cells -1.808 4.70E-08

Cell survival -2.661 1.87E-03

Proliferation of cells -2.417 1.77E-06

Necrosis 2.482 1.34E-04

Cell death 3.338 6.48E-03

Apoptosis 3.777 7.44E-04

Table 2.3: Levels of statistical significance of each molecular function that was detected by IPA.

for the functions as: morbidity or mortality and organismal death, apoptosis was the fourth
function. In the second experimental variant (C2–ceramide with PJ34) in the top of the
relevant decreased functions were those related to cellular movement and development of
neurons (e.g. formation of cellular protrusions, development of neurons). However activation
of cell survival and proliferation of cells was predicted to be decreased in comparison to
control calls. What is more, in this experimental variant necrosis, cell death and apoptosis

were in the top of activated functions.
On the basis of the above findings, we conclude that the effect of the C2–ceramide

enhanced by the PARP inhibition, affects both the ability of cells to divide, cellular viability
as well as genetically controlled reorganization of cellular shape. This intriguing discovery
should be subjected to the further analysis.

Discovery of Novel Marker Genes

In the last step of the MPH method we selected newmarkers which characterize cellular sub-
populations of our interest. New markers were selected according to the top differences in
genes involvement in the functional expression profiles supported by biological knowledge.

Themethod revealed that neuroblastoma cells which entered the cell death pathway are
characterized by activation of EGR1, VEGF and GDF15. While the EGR1 is known to posses
proapoptotic properties (Yu et al., 2007), VEGF and GDF15 are usually described as pro-
survival proteins (Mackenzie and Ruhrberg, 2012; Wang et al., 2013). Nevertheless, recently
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it was reported that over expression of GDF15 (which is also observed in our experiment)
induces apoptosis of breast cancer cells (Kadara et al., 2006). There is also some evidence
that VEGF stimulates apoptosis through the ERK1/2 signaling pathway (Ferrari et al., 2012).
We believe that these three proteins provide unique markers for the ceramide–induced
death of the neural cancer cells.

Simultaneously, some interesting genes were reported as significantly down-regulated
in the proliferation profile. One of them is ASCL1, that in gthe literature was reported
to play a direct role in promoting progenitor proliferation in the ventral telencephalon
(Hardwick et al., 2015), as well as, to coordinate gene expression in both proliferating and
differentiating progenitors along the neuronal lineage (Raposo et al., 2015). Furthermore,
activation of CHRM3 was shown to promote the proliferation of BPH cells (Wang et al.,
2016) and is one of the most silenced genes in the proliferation profile. Based on the gene
expression patterns from the W matrix, the most differentiating genes characterizing each
functional profile were determined. These genes are listed in the Table 2.4 along with their
fold changes based on raw gene expression levels.

Proliferation Cell Death
Symbol FC C2 vs Ctrl FC C2+PJ34 vs Ctrl MPH FC Symbol FC C2 vs Ctrl FC C2+PJ34 vs Ctrl MPH diff
CCNA2 -1,1364 -1,3851 -17,0672 VEGF 2,6949 2,6949 16,6204
CD24 -1,7220 -2,8525 -17,0372 EGR1 5,1068 5,1068 16,5110
EDNRA -1,5799 -2,6204 -16,6104 TNFRSF12A 1,2625 1,2625 14,5569
TXNIP -2,9561 -3,4103 -16,2651 ZMAT3 1,0242 1,0242 14,3831
ASCL1 -1,3991 -4,0648 -15,1861 GDF15 9,8706 9,8706 14,1468
TNS3 -1,1940 -1,7839 -14,6120 CCL2 1,1454 1,1454 14,0414

TNFAIP6 -1,5649 -3,1068 -13,2426 TGFB1 1,5269 1,5269 13,9349
NRP1 -1,4113 -2,2428 -12,1654 NQO1 1,1745 1,1745 12,8296
GPR22 1,1253 -2,1723 -11,5563 CTSB 1,3108 1,3108 12,8086
MYC -1,4409 -3,2422 -11,5151 SQSTM1 1,5379 1,5379 12,7907
MYCN -1,1138 -1,1003 -11,4693 ZFP36 2,0750 2,0750 12,5204
CHRM3 -1,3253 -1,8256 -11,1344 NAB2 1,7434 1,7434 11,9886
HAND1 -1,3617 -1,5946 -10,9796 SMPD1 1,3307 1,3307 11,7540
DACH1 -1,4785 -1,7276 -10,9221 CEBPB 1,6915 1,6915 11,6918
ARRDC4 -1,8176 -2,1476 -10,9033 ERN1 1,5739 1,5667 11,5677

Table 2.4: List of top 15 genes characterizing activity of proliferation and cell death processes. Columns contain: gene symbols, fold
change of C2 over control and C2+PJ34 over control (based on the transcriptomic data) and activity difference based on function char-
acteristic profiles obtained from MPH method.

Discussion of the Results

In this chapter, a novel approach to the analysis of transcriptomic data from cellularly ho-
mogeneous samples aiming to describe their functional heterogeneity was proposed. The
main innovation of this idea is based on a simple, yet important, assumption that in a pop-
ulation of cells each individual cell conducts its own molecular function. Consequently,
in a type-homogeneous population of cells, the heterogeneity can be found at sub-cellular,
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molecular process level. Moreover, each cell in a population may response in a different
way to an external stimuli. These observations resulted in the development of the MPH
method that estimates the proportion of cell sub-populations conducting specific cellular
functions along with their transcriptomic description.

The above description of our results prove that our function characteristic profiles de-
rived from the computational interpretation of transcriptomic data are functionally consis-
tent. We have concluded that they actually correspond to the molecular sub-populations
of both ovarian cancer and Neuroblastoma cells that were studied.

Using the MPH method and its results we were able to support the C2–ceramide related
hypotheses based on the literature. Both experimental and computational experiments con-
firm that in the presence of C2–ceramide the cell death processes increase their activity and
the fraction of proliferating cells is lower than in the control sample. The same trends were
detected between the control and second experimental condition (C2–ceramide + PJ34).
The control sample manifests higher proliferation activities and repressed cell death pro-
cesses. However, our computational analysis suggests that the PARP inhibitor (PJ34) does
not increase the cell viability in populations supplied with the C2–ceramide. This fact is not
consistent with the results from the MTT assay reported in (Czubowicz and Strosznajder,
2014).

However, since the functional analysis provided in the results section supports our com-
putational results we suppose that the cause for this inconsistence may be the assay used to
measure cells viability. TheMTT assay depends on concentration and activity of NAD(P)H-
dependent cellular enzymes (Bernas and Dobrucki, 2002), while PARP actively reduces the
concentration of NAD(P)H (Canto et al., 2015). We suspect that the discrepancy between the
results of the MPH method and the MTT assay may result from PARP dependent changes in
NAD(P)H balance, PARP related silencing of cellular oxidative stress or might have other
unknown cause. We suggest further verification of PJ34 effect on ceramide induced cell
death.

Summarizing, the MPH method provides insightful interpretation of transcriptomic data,
which is consistent with literature and functional analysis performed by IPA tools. How-
ever, in addition it expands our knowledge on the composition of the measured transcrip-
tomic signal by the microarray experiments. We approximate the differences in gene ex-
pression levels for cells performing various molecular process and the proportions in which
they are mixed.

The successful functional validation justify the applicability of the proposed novel ap-
proach to the analysis of transcriptomic data retrieved from homogeneous samples. We
illustrate that the methods, used previously at the cellular level to determine the input of
each cell type on the finally observed transcriptome, can be applied to the problem of a
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sub-cellular, regulatory nature. The method itself is stable, computationally efficient and
provides statistically significant outcome.

Finally, it should be noted that methods that engage the non-negative matrix factor-
ization (NMF) techniques are also applicable in case of RNA-seq data analysis. Various
modifications of NMF have been lately used for the inference from the RNA-seq results.
For simple detection of the most differentiating genes between experimental and control
ones, a method called discriminant NMF (DNMF) was suggested. The DNMF incorporates
the Fisher’s criterion into NMF by maximizing the distance among any samples from dif-
ferent experimental conditions, meanwhile minimizing the dispersion between any pairs
of samples in the same class (Jia et al., 2015).

Additionally, the already presented DSection method was used by (Dozmorov et al.,
2015) to describe the contribution of different cell types in systemic lupus erythematosus
(SLE) pathogenesis where transcriptomic data were provided from RNA-seq experiments.
Also, it should be mentioned that apart from the NMF there are other approaches to deter-
mination of cell-specific transcriptome, e.g. quadratic programming approach suggested
by (Gong et al., 2011). Nevertheless, none of these techniques were used to attempt the
sub-cellular task that we address in this chapter. That is why we believe that the MPH ap-
proach is not only novel, but also highlights the fact that transcriptome analysis usually
is based on multi-level assumptions and simplifications, which may obfuscate some subtle
facts important in many biomedical aspects (e.g. diagnosis, drug resistance etc.).

2.6. Conclusions

In this study, we presented a novel methodological approach to quantify the functional
heterogeneity of a homogeneous cell population based on transcriptomic data. To reach
this aim, we adopted the methods originally proposed for quantification of cell propor-
tions in heterogeneous tissue samples (e.g. mixed tissues) from expression data. Our model
framework exploits the methodology designed for RNA expression microarrays applied for
heterogeneous tissues. However, it should be emphasized that our novel approach can also
be effectively applied to RNA-seq data by adapting the procedures proposed in (Li and Xie,
2013; Gong and Szustakowski, 2013).

The presented and discussed case study was focused on the role of C2–ceramide in me-
diating cell death processes in neuroblastoma cells. Our computational method quantified
the activity of C2–ceramide in time and its influence on cell metabolic activity in a consis-
tent way with the MTT assay. Finally, the method allowed to obtain biologically relevant
results describing the biologically meaningful interdependence between C2–ceramide and
the PJ34 compound. In this case, the specificity of molecular experiment, requires the use
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of additional methods to verify the results of the MTT assay referring to cells viability.
Here, it should be mentioned that the presented framework could be further improved.

Both DSection and ssKL procedures are characterized by the bias towards discrimination
based mainly on fold changes in a given expression data set. One should note, that in
the current implementation the ssKL method prevents the use of markers that differ on
the direction of expression changes. The appropriate improvement of the decomposition
method can constitute a very useful strategy for further research.
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3
Low-rank Matrix Estimation of

Transcriptomic Signal

“Everything should be made as simple as possible,

but no simpler.”
— Albert Einstein

Seqencing technologies are constantly improving and, thanks to that, new and
more efficient methods dedicated to the field of transcriptomics are emerging.
In the previous chapter, we discussed the problem of gene expression measure-
ments performed on a bulk sample, that is a sample composed of many different

cells. In such case, the variability among cells may occur on different levels. In the lit-
erature, the most explored field covers the problem of a sample consisting of various cell
types e.g. tissue. Moreover, it is known that the transcriptomic pattern differs between cell
types. Therefore, the gene expression level measurements performed on different samples,
collected from the potentially same tissue site, may vary depending on the proportion of
different cell types in these samples. On the other hand, this variability may be detected
only at the sub-cellular level related to the activity of molecular processes and functions.
Our remedy to the second possibility is the MPH method that helps to track the functional
composition of sample, quantitative differences in proportions of cells and the most char-
acteristic genes for a molecular process.
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As already mentioned, the improvement of the high-throughput technologies is signif-
icant and reached the level of single cell resolution. Therefore, all computational methods,
that aim to reconstruct and understand the composition of transcriptomic signal derived
from a bulk sample, can be substituted with more adequate experimental techniques of
gene expression measurements. One of the latest experimental alternatives is the single-
cell RNA sequencing (sc-RNA seq), which has an unprecedented capability to evaluate the
RNA content of an individual cell. This property naturally makes it possible to describe
differences between various cell types at more precise level.

However, as usual in such cases, a new type of data entails the possibility, or sometimes
necessity, of introducing new methods and techniques for their processing and analysis. In
this chapter an algorithm dedicated to the analysis of scRNA-seq data is introduced along
with a data analysis case study. The main aims of the algorithm is to retrieve the regularity
of genes activity among cells, as well as, to filter out those probes or samples, that break
the expected pattern of expression.

3.1. High-throughput Technologies in Transcriptomics

Modern medicine and biology rely on the constant progress among the high-throughput
technologies. There exists a vast pallet of -omics fields, that try to deepen our understat-
ing of the complex biological world including transcriptomic, genomic, metabolomic, pro-
teomic, etc. Thanks to huge amounts of data derived from high-throughput experiments
in all of these fields and suitable statistical methods applied to them, we are able to draw
conclusions about various biological phenomena on many levels. Starting from organism
development, its evolution and proliferation (Fritz et al., 2013; Beller and Oliver, 2006)
through cell specialization events, fate decisions and its cycle progression (von Kriegsheim
et al., 2009; Usoskin et al., 2015; Chu et al., 2016; Qiu et al., 2017) up to genome dynamics,
its organization and regulatory mechanism (Wang et al., 2010; Ewing and Kazazian, 2010;
Tang et al., 2009). Among multiple fields that benefit from advances in the Next Generation
Sequencing (NGS), transcriptomics is the branch that has developed significantly (Spies and
Ciaudo, 2015).

As we have discussed in the previous Chapter, conventionally, bulk RNA-seq data, that
are analysed using microarray or RNA-seq techniques, provide mean gene expression val-
ues from a large number of cells in that biological sample. However, a mixture of multiple
cells that often have different functions or origins may hide relevant information, carry
high variance related to their cellular composition, and might not be reproducible in sepa-
rate studies (Novelli et al., 2008; Wills et al., 2013; Gogolewski et al., 2017).

Nonetheless, during the last few years there was a notable progress in a field of single
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cell experiments and in particular single cell RNA-seq (scRNA-seq) where introduction of
new protocols allowed scientists to determine a transcriptome of a single cell (Tang et al.,
2009; Wang and Navin, 2015; Liu and Trapnell, 2016; Ramskold et al., 2012). A generalized
protocol of scRNA-seq experiments involves following steps:

• Isolation of individual cells from a provided sample;

• Extraction of the RNA content and whole-genome-amplification (WGA);

• Construction of sequencing libraries;

• Sequencing using a chosen next-generation sequencer.

Each of these steps can be conducted in few alternative ways, which are described and
compared in details in the literature (Shapiro et al., 2013; Wang and Song, 2017; Ziegenhain
et al., 2017). In order to have an idea about how the experimental pipeline works and how
the biological material is processed into data see the Figure 3.1 that summarizes it.

Thanks to scRNA-seq we are now able to perform statistical data analysis and more
accurately describe the transcriptional activity of individual cells, pointing out important
or even crucial behaviors concerning cell fate decisions, specialization or cycle progression
according to its type or origin (Ramskold et al., 2012).

3.2. Unsupervised Data Analysis for Single Cell RNA-seq

So far, in the literature there are described many studies that have carried out a broad anal-
ysis of scRNA-seq data from different perspectives. One of the most intensively explored
approaches are the unsupervised techniques which allow to: reduce the dimensionality and
visualize the data (Bartenhagen et al., 2010; DeTomaso and Yosef, 2016), deduce the inner
structure of the data often by finding a latent structure or variables, clustering and dis-
covering other sources of variability generated by unknown mechanisms (e.g. biological
or technical) (Usoskin et al., 2015; Ramskold et al., 2012; Li et al., 2009; Chung and Storey,
2015; Ilicic et al., 2016).

First of all, using the relatively basic, but very popular and constantly studied Princi-
pal Component Analysis (PCA) method was sufficient for discovery of various cell biology
facts. The PCA was used through clustering to track Definite Endoderm cells and explain
their linage from Embryonic Stem Cells (Chu et al., 2016). Similarly, the classification of
sensory neuron types was done using PCA (Usoskin et al., 2015). In (Ilicic et al., 2016),
authors use PCA to find potentially damaged cells. The other linear unsupervised meth-
ods were also used to analyze scRNA-seq data: SVD in discovery of melanoma circulating
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Figure 3.1: The general pipeline of the single cell RNA seq experiments. The figure presents main steps in a protocol for the single cell
sequencing. First, cells need to be isolated, then the RNA content needs to be retrieved. Next, the RNA material is reverse transcribed
and turned into cDNA, to be finally amplified. The amplified genetic content is then gathered into a library and sequenced. Finally, the
sequenced data are ready for the further bioinformatical and statistical analysis.

tumor cells marker genes techniques (Ramskold et al., 2012), ICA in describing the trajec-
tories of cell fate decisions (Trapnell et al., 2014). Furthermore, non-linear methods such as
reversed graph embedding (RGE), t-distributed stochastic neighbor embedding (tSNE) were
used to classification (Qiu et al., 2017) but also visualization (DeTomaso and Yosef, 2016) of
scRNA-seq data. Finally, there are also other matrix factorization methods. Non-negative
factorization was used for cell types classification (Shao and Hofer, 2017; Zhu et al., 2017)
and pseudo-time cells ordering (Wang et al., 2017b), while (Witten et al., 2009) use the pe-
nalized matrix decomposition to correlate gene activity with DNA copy number change in
breast cancer.

However, to the best of our knowledge, there does not exist a matrix decomposition
method that provides information about truncated low-rank component that explains the
most significant variability in the data along with its sparse signal and remaining low-
importance signal or noise. Furthermore, robust PCA (RPCA) proposed in (Candès et al.,
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2011) as well as extensions presented in this chapter have not been applied to scRNA-seq
data. The promising results of our study justify the usefulness of this novel approach, es-
pecially in the context of the analyzed high-dimensional scRNA-seq data.

In the next section, the detailed description of RPCA algorithm is introduced along with
novel extensions that are suitable for analysis of transcriptomic data.

3.3. Truncated Robust PCA with L2 Regularization

PCA is one of the most popular methods for dimension reduction and unsupervised learn-
ing. Given a dataset A containing m samples described by n variables, the main objective
of PCA is to find a linear transformation, which maps each sample from the matrix A onto
a new coordinate system. In this new system, the coordinates, corresponding to princi-
pal components, are ordered by decreasing variances explained. With such representation,
we can reduce the dimensionality of our data with a minimal loss of information as well
as determine important sources of variability. However, PCA has its limitations. With
an increasing size and sparsity of genomic data, PCA becomes inefficient. Furthermore,
the outcome of PCA may be easily biased by outliers, which is not an expected behaviour.
The following extensions are an attempt to reduce these limitations during the analysis of
high-dimensional data.

Robust PCA.

Our work is based on the decomposition algorithm proposed by (Candès et al., 2011) called
robust PCA (RPCA). The aim of the RPCA is to decompose the input matrix A, into low-rank
matrix L and sparse matrix S components. Simultaneously, the algorithm should minimize
the following optimization problem:

min
L,S
||L||∗ + λ1||S||1, where A = L+ S

Here we denote ||A||∗ as the nuclear norm of matrix A and ||A||1 as the first norm of a
vectorized A matrix which are given by the following formulas:

||A||∗ =
∑

σi = tr
(√

AAT
)

||A||1 =
∑
i,j

|aij|

In their work, authors discuss the assumptions that matrix A should follow for the decom-
position to exist. Moreover they prove that the parameter λ1 can be set to 1/

√
min (m,n),

where m,n are dimensions of the input matrix A, which, under weak probabilistic as-
sumptions, guarantees a proper decomposition into low-rank and sparse components as
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m,n → ∞ (Candès et al., 2011). However, it is shown that the spectrum of feasible values
of λ1 parameter is broader.

In order to solve the above optimization problem, as proposed in (Yuan and Yang, 2009),
we use an implementation of a special case of the Alternating Directions method, which
belongs to a more general class of augmented Lagrangian (AGL) multiplier algorithms. In
general, the approach is based on minimizing the following AGL operator with respect to
L and S matrices alternately:

l(L, S, Y ) = ||L||∗ + λ1||S||1 +
⟨
Y,A− L− S

⟩
+

µ

2
||A− L− S||2F

where Y is the Lagrange multiplier matrix, the inner product of matrices
⟨
·, ·
⟩
is defined as

the trace of their product, i.e.
⟨
A,B

⟩
= tr(ABT ), ||A||F is the Frobenius norm of the form

||A||F =
√∑

i,j a
2
i,j and µ is the penalty coefficient.

The outline of the solution is presented in the Algorithm 1, in which two shrinkage
operators are used:

Sτ (x) = sgn(x) ·max(|x| − τ, 0)

Dτ (X) = USτ (Σ)V ∗

where τ is the shrinkage threshold value and UΣV ∗ is the SVD of matrix X . Operator
Sτ when applied to a matrix is equivalent to Sτ applied to each of the matrix elements.

In case of initialization of theµ parameter and convergence condition, we setµ = m·n
4·||A||1 ,

as suggested in (Yuan and Yang, 2009) and terminate the algorithm when ||A− L− S||F ≤
δ||A||F where δ = 10−7. The implementation of the RPCA algorithm, that we further extend
in this work, is publicly available, stable R package in CRAN repository (Sykulski, 2015).

Algorithm 1 RPCA by Alternating Directions
1: procedure RPCA(λ1)
2: S0, Y0 ← 0; µ > 0

3: while not converged do

4: compute Li+1 = Dµ−1(A− Si + µ−1Yi)

5: compute Si+1 = Sλ1µ−1(A− Li+1 + µ−1Yi)

6: compute Yi+1 = Yi + µ · (A− Li+1 − Si+1)

7: end while

8: end procedure

Truncated Version of RPCA.

First, we consider a truncated version of the algorithm, which calculates the L matrix in
the L + S decomposition in such a way that it is of a given rank k or the lowest possible
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rank grater than k0, for which the problem has a solution that meets all its criteria. In order
to achieve that behavior, we use the truncated version of SVD (implementation from the
irlba R package (Baglama et al., 2018)) instead of a full SVD and iteratively modify the µ

parameter according to the following rule:

µ−1
i+1 = max(c · µ−1

i , σk+1)

where σk is the k-th singular value from the truncated SVD and c < 1 is the AGL constraints
penalty growth rate.

The change of µ is significant for the algorithm convergence. As µ−1
i decreases, both

threshold operators shrink less elements in S and singular values of L. Furthermore, the
increase of the penalty coefficient for A = L+ S speeds up the convergence. However, in
theory, AGL algorithm converges to the constraint problem even when µ−1

i ̸→ 0. Simulta-
neously, when µ−1

i+1 is set to the value of σk+1 we increase k, i.e. the number of computed
SVD vectors, which is the expected rank of L matrix in i-th iteration of the algorithm.

Algorithm 2 truncated-RPCA
1: procedure tRPCA(λ1, k0, c)
2: S0, Y0 ← 0; µ0 > 0; k = k0

3: while not converged do

4: compute Li+1 = Dµ−1
i
(A− Si + µ−1

i Yi)

5: compute Si+1 = Sλ1µ
−1
i
(A− Li+1 + µ−1

i Yi)

6: compute Yi+1 = Yi + µi · (A− Li+1 − Si+1)

7: compute µ−1
i+1 = max(c · µ−1

i , σk+1)

8: if µ−1
i == σk+1 then increase k

9: end if

10: end while

11: end procedure

The Algorithm 2 significantly reduces the computation time compared to the original
RPCA, while preserving its accuracy. However, in the case of biomedical data, the decom-
position into low-rank and sparse matrices is not always feasible or easily obtainable. The
input matrix usually has more than a few k significant singular values that may come from
biological activities, technical reasons, or other unknown sources. This prevents the re-
covery of low-rank component as when subtracted from the input A matrix, they do not
constitute a sparse matrix. We may interpret these perturbations in the Lmatrix as a noise
or low-importance information. Since it does not have a sparse nature, we extend the de-
composition intoL+S+E, where the matrixE contains a dense noise controlled for using
the L2 norm on vectorized matrix A (i.e. Frobenius norm).
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Noise Reduction for tRPCA.

In order to relax the assumptions on the input matrix we introduce an additional matrix E
to the decomposition. Now, the extended problem can be reformulated as follows:

A = L+ S + E

min
L,S,E

||L||∗ + λ1||S||1 + λ2||E||F

In this setting, theE matrix is meant to contain the information of low importance or noise,
which is mostly carried by the lowest singular values in the SVD decomposition of Lmatrix.
To solve this problem we extend the Alternating Directions approach and we minimize the
newly defined AGL operator also with respect to the E matrix:

l(L, S,E, Y ) = ||L||∗ + λ1||S||1 + λ2||E||F+

+
⟨
Y,A− L− S − E

⟩
+

µ

2
||A− L− S − E||2F

In order to find E matrix that minimizes l, we solve ∂l
∂E

= 0. First, since ∂||L||∗
∂E

= ∂||S||1
∂E

= 0

we can write:
∂l(L, S,E, Y )

∂E
= λ2

∂||E||F
∂E

+
∂
⟨
Y,A− L− S − E

⟩
∂E

+
µ

2

∂||A− L− S − E||2F
∂E

Let us reduce each of the partial derivatives. By definition of the Frobenius norm, for any
i, j we can write:

∂||E||F
∂Ei,j

=
∂
√∑

i,j E
2
i,j

∂Ei,j

=
1

2
√∑

i,j E
2
i,j

· 2Ei,j =
Ei,j

||E||F

thus, consequently, for E we have:

∂||E||F
∂E

=


∂||E||F
∂E1,1

∂||E||F
∂E1,2

. . . ∂||E||F
∂E1,n

∂||E||F
∂E2,1

∂||E||F
∂E2,2

. . . ∂||E||F
∂E2,n

... ... . . . ...
∂||E||F
∂Em,1

∂||E||F
∂Em,2

. . . ∂||E||F
∂Em,n

 =


E1,1

||E||F
E1,2

||E||F
. . . E1,n

||E||F
E2,1

||E||F
E2,2

||E||F
. . . E2,n

||E||F... ... . . . ...
Em,1

||E||F
Em,2

||E||F
. . . Em,n

||E||F

 =
E

||E||F

Next, let us observe that based on additive property of the matrix transposition operator (
(A+B)T = AT + BT ) and the fact that the trace tr is a linear operator (tr (cA+B)T =

tr (A) + tr (B)) we can write:⟨
Y,A− L− S − E

⟩
= tr

(
Y (A− L− S − E)T

)
=

= tr
(
Y
(
AT − LT − ST − ET

))
=

= tr
(
Y AT − Y LT − Y ST − Y ET

)
=

= tr
(
Y AT

)
− tr

(
Y LT

)
− tr

(
Y ST

)
− tr

(
Y ET

)
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three of these components are independent on E, thus their derivatives with respect to E

are ∂ tr(Y AT )
∂E

=
∂ tr(Y LT )

∂E
=

∂ tr(Y ST )
∂E

= 0 and we can write:

∂
⟨
Y,A− L− S − E

⟩
∂E

=
∂ tr

(
Y ET

)
∂E

= Y

because the k-th element on a trace of Y ET is of the form
∑n

l=1 Yk,lEl,k and thus the i-th
row and the j-th column of ∂ tr(Y ET )

∂E
has the value:

∂
∑m

k=1

∑n
l=1 Yk,lEl,k

∂Ei,j

=
m∑
k=1

n∑
l=1

∂Yk,lEl,k

∂Ei,j

= Yi,j

Finally, the last component is simply derivative of quadratic function since the square of
the Frobenius norm of a matrix is just a sum of squares of the matrix, thus:

∂||A− L− S − E||2F
∂E

=
∂
∑

i,j (Ai,j − Li,j − Si,j − Ei,j)
2

∂E
= 2 (A− L− S − E)

Gathering it all together we have:

∂l(L, S,E, Y )

∂E
= λ2

E

||E||F
+ Y + µ (A− L− S − E)

equating this value to 0, to find E minimizing the l operator, and ordering the equation we
get:

E

(
λ2

||E||F
+ µ

)
= Y + µ(A− L− S)

Now, let C = Y +µ(A−L−S). Then ∃d∈RE = d ·C and we can reformulate and simplify
the equation:

d · C
(

λ2

||d · C||F
+ µ

)
= C

C

(
d · λ2

||d · C||F
+ d · µ− 1

)
= 0

Assuming that C ̸= 0 we have

d · λ2

|d|||C||F
+ d · µ = 1

Now we finally, determine the value of d. First, if d < 0 we get a contradiction, because
from − λ2

||C||F
+ d · µ = 1 we calculate d as d = ||C||F+λ2

µ||C||F
> 0. On the other hand, for d > 0

we have:
d =
||C||F − λ2

µ||C||F
=

1

λ2

(
1− λ2

||C||F

)
> 0

which holds for ||C||F ≥ λ2.
Therefore, the matrix that minimizes the operator l with respect to E has the following

analytical formula:

E =
1

µ

(
1− λ2

||Y + µ(A− L− S)||F

)
· (Y + µ(A− L− S))
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Based on this observation we define an operator:

Eτ (X) = max
(
0, 1− τ

||X||F

)
·X

which describes how to determine the matrix E which minimizes the l operator.
Finally, we extend the algorithm of tRPCA by applying the defined operator Eτ . In our

approach, we apply the operator twice, both, after minimization with respect to L and S,
in order to filter out the potential mismatched components from both matrices. It is worth
to emphasize, that in case of large λ2 > ||C||F we end up with the previously introduced
tRPCA procedure. Moreover, in every iteration we adjust k parameter to be a minimal value
such that Dµ−1 operator can be properly applied. Algorithm 3 presents the pseudo-code of
the whole decomposition procedure, which we call tRPCAL2.

Algorithm 3 truncated-RPCA with L2 regularization
1: procedure tRPCAL2(λ1, λ2, k0, c)
2: S0, Y0, E0 ← 0; µ0 > 0; k = k0

3: while not converged do

4: compute Li+1 = Dµ−1
i
(A− Si−Ei + µ−1

i Yi)

5: compute E∗
i+1 = Eλ2µ

−1
i
(A− Si − Li+1 + µ−1

i Yi)

6: compute Si+1 = Sλ1µ
−1
i
(A−E∗

i+1 − Li+1 + µ−1
i Yi)

7: compute Ei+1 = Eλ2µ
−1
i
(A− Si+1 − Li+1 + µ−1

i Yi)

8: compute Yi+1 = Yi + µi · (A−Ei+1 − Li+1 − Si+1)

9: compute µ−1
i+1 = max(c · µ−1

i , σk+1)

10: if µ−1
i == σk+1 then increase k

11: else k = 1 + argmaxj (σj > µ−1
i+1)

12: end if

13: end while

14: end procedure

Low-Rank Matrix Clustering.

In order to examine the resulting decomposed matrix A = L+S+E we use the following
clustering procedure. Since L is a low-rank matrix (of rank k) with a known SVD decom-
position L = UΣV ∗, we cluster all cells by their k dimensional representation UΣ using
the K-means algorithm, with the most suitable number of clusters (Macqueen, 1967; Har-
tigan and Wong, 1979; Lloyd, 1982). To visualize the clustering outcome in 2-dimensions,
we apply the t-SNE algorithm (van der Maaten, 2014).
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3.4. Single Cell Transcriptomic Data

In this study, we analysed the publicly available single cell RNA-seq datasets by 10x Ge-
nomics (https://www.10xgenomics.com/solutions/single-cell/). Specifically, our resultswere
obtained using the scRNA-seq datasets experiments performed on peripheral bloodmononu-
clear cells (PBMCs) from a healthy donor. PBMCs are primary cells with relatively small
amounts of RNA (1pg RNA/cell). The final dataset contains 2.7k individual single cells,
sequenced on Illumina NextSeq 500 with approx. 69k reads per cell.

Along with the 2.7k PBMCs dataset, we have used the scRNA-seq data retrieved from
homogeneous samples of specific cell types that constitute the PBMC sample. Each type-
specific dataset has over 90% of purity for each subtype by Fluorescence Activated Cell
Sorting (FACS) (Basu et al., 2010). The transcriptomes were used in (Zheng et al., 2017)
and described the following cell types and subtypes: CD14+ Monocytes, CD56+ Natural
Killer cells, CD19+ B cells, CD34+ cells and subfamilies of T cells: CD8+ Cytotoxic T cells,
CD8+/CD45RA+ Naive Cytotoxic T cells, CD4+/CD45RO+ Memory T cells, CD4+ Helper
T cells (see Fig. 3.2).

Each of the above datasets is given in the form of a count matrix A, where the i-th row
represents a gene and the j-th column represents an individual cell. The value of aij is the
number of counts of the i-th gene for the j-th cell. Since our method is meant to filter out
the sparse signal in S and the dense noise in E, we do not apply the typical quality control
step. All cells are used in the analysis and we expect all perturbations (e.g. biological or
technical outliers or fluctuations) that break the linear behavior to be captured by S + E

component of the decomposition.
Additionally, for each dataset, we filter out genes that had zero counts for all cells in a

given set. Finally, the number of counts for each cell was normalized by its total number
of counts and log-scaled. Furthermore, on the processed 2.7k PBMCs data matrix is con-
sequently denoted as A. Out of over 32k genes, 16634 genes that had non-zero number of
counts mapped for at least one cell are retained.

Test Set Construction.

In order to test our method, we set the labelling of cells from the PBMCs dataset. For
each available type-specific dataset, we calculate its average transcriptome. However, since
the correlation between averaged subtype-specific transcriptomes within T-cell family is
relatively high, for the purpose of this work, we label the cells with one of the five possible
types: (i) Monocytes, (ii) Natural Killers, (iii) B cells, (iv) T cells, (v) Unknown. T cells family
transcriptome is designated as an average among all T cells subtypes transcriptomes.

The criteria for labelling consist of two conditions. First, a cell is assumed to be of
an unknown type if it does not correlate with any of the given profiles with a Pearson
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Figure 3.2: PBMC cells overview. (a) Schematic representation of t-SNE projection of 68k PBMCs dataset with cell subtypes clusters
detected by correlation to type-specific transcriptomes adapted from (Zheng et al., 2017). (b) The correlation heatmap of all PBMCs
type-specific (averaged, normalized, log-scaled) transcriptomes.

correlation > 0.5. Second, the cell is assumed to be of a specific type if the difference
between its correlation and correlations with other types is greater than a threshold value
set to 0.025, otherwise it is assumed to be unknown.

Even though there are no transcriptomic profiles available for other cell types, such
as Megakaryocytes (depicted in Fig. 3.2a) we are aware that they may exist in our dataset
and thus expect to find them using our decomposition method. Please note that the above
described correlation-based labelling in case of 68k PBMC dataset resulted in low percent
of clearly assigned cell types, thus all results are presented for 2.7k cells. In the following
section, we present the outcome of the analysis of the data using our truncated version of
RPCA with Gaussian noise reduction.

3.5. Validation: Case-Study of Single Cell RNA-seq Data

Theproposed trPRCAL2 explains the input data (A) in terms of compressed, low-rank infor-
mation (L), sparse signal (S) and noise (E). To validate ourmethod on real data and evaluate
its suitability for genomic data analysis, we use the scRNA-seq 2.7k PBMCs dataset. We re-
port that tRPCAL2 algorithm converged after 49 iterations, taking about 97 sec (compared
to 20 sec PCA from R prcomp). Due to the high background variance, tRPCA and RPCA did
not converge before 1000 iterations. All algorithms were run on AMD Opteron(tm) Proces-
sor 6380, 64 x 2.5GHz CPU, 256GB RAM, Gentoo Linux.
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Clustering via Low-Rank Matrix.

First, we validate the quality of the dimension reduction by clustering cells basing on
their low-rank representation in the L matrix. Using the hierarchical clustering algo-
rithm (Johnson, 1967;Murtagh, 1985) we determined 5 clusters, whichwere visualized using
t-SNE (van der Maaten, 2014) (see Fig. 3.4). In contrast to the expected cell types (derived
from correlation with type-characteristic transcriptomes), we observed that the obtained
clustering determines four main families of cells from the PBMCs dataset. Additionally,
one more cluster separating NK and T cell family clusters was discovered. The cluster is
described by increased activity of CD8A and CD8B (Bonferroni adjusted p-value < 10−3)
and regular activity of CD4, CD45 and CD25 genes in contrast to other cells. This character-
istics suggests a cluster of cells mostly composed od CD8+ T cytotoxic cells and explains its
similarity to NK cells (Zheng et al., 2017; Ohkawa et al., 2001). Other dimension reduction,
clustering and visualization techniques were also compared, e.g. PCA, Isomap (Tenenbaum
et al., 2000) or SIMLR (Wang et al., 2017a), but since their quality was at most comparable
we present results for the commonly used and already mentioned t-SNE algorithm.

Figure 3.4: Clustering of 2.7k PBMCs. In both panels, cells are visualized using t-SNE (perplexity=35) ran on the 10-dimensional rep-
resentation of the original input data (A) derived from L matrix. (a) Colours correspond to cell types inferred from correlation of each
cell original transcriptome (columns ofA) with type-specific PBMCs transcriptomes. We have determined: 630 Monocytes (orange), 251
B-cells (pink), 437 Natural Killer cells (blue) and 700 T-cells (yellow). Remaining 682 (gray) are assumed to be an unknown or tentative
type. (b) Colours correspond to 5 clusters determined by hierarchical clustering method. Colours of the clusters correspond between
predicted and original clusters for clarity.

Next, we compared our method of dimension reduction with the method analogous to
the one used in (Zheng et al., 2017). With SVD, we calculate top 10 singular values (in
pursuance of the L matrix rank) of the PBMC data matrix (A) using R irlba package.
Then, the input data was approximated through the reduced 10-dimensional space. We
perform the hierarchical clustering of all cells for the most characteristic marker genes
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Figure 3.5: CD14 and FCGR3A activity levels. Panels present the activity of monocytes marker genes. (a) and (b) figures present the
activity of CD14 and FCGR3A genes among all cells, respectively. The level of gene activity (lowest to highest) is spanned from red,
through black, to green color scale.

per cell type (selected from the literature) on the described SVD-based approximation and
the L matrices. The aim is to verify how well the dimensionality reduction preserves the
most reliable, biological information related to type-specific marker genes. It appeared
that not only the L matrix guarantees more accurate clustering, but also it contains more
pronounced differences of the signal between clusters of both cells and genes, Fig. 3.3.

Monocyte Subtypes and Co-Expression Detection.

The literature suggests existence of at least three subtypes of monocytes in PBMCs (Ziegler-
Heitbrock et al., 2010). Their characterization can be based on the presence of CD14 (coded
by CD14 gene) and CD16 (coded by FCGR3A, FCGR3B genes) clusters of differentiation: (i)
the classicalmonocytewith high activity of CD14 (CD14++ FCGR3A−); (ii) the intermediate
monocyte with high activity of CD14 and low activity of FCGR3A (CD14++ FCGR3A+); (iii)
the non-classical monocyte with low activity of CD14 and co-expressed FCGR3A (CD14+

FCGR3A++).
Interestingly, such classification of subtypes can be found using the low rank signal

from the Lmatrix (see Fig. 3.5). The activity of CD14 is almost uniquely distributed among
the cluster of monocyte cells and, simultaneously, the activity of FCGR3A changes with
the gradient defining the cell subtype progression among all monocytes. Moreover, Fig. 3.6
shows how the original expression values are distributed among decomposition matrices.
The sparse peaks of activity are stored in S and the linear part in L. E matrix contained
remaining noise of mean 0 and the standard deviation of order 10−4 for both CD14 and
FCGR3A.
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Figure 3.6: Co-expression patterns. The distribution of the original expression levels among S and L matrices for marker genes of
monocytes (top) and B-cells (bottom). Consecutive panels present: (i) the normalized, log-transformed input data from A matrix; (ii)
low-rank signal in L matrix; (iii) sparse signal in S matrix. In each panel cells (x-axis) are sorted by the activity level (y-axis) of first
marker gene (CD14 for Monocytes and CD79A for B-cells).

Additionally, the low-rank L matrix well tracks and recovers co-expression patterns
between genes. Namely, the activity of B cells can be detected by the presence of CD79
heterodimer composed of CD79A and CD79B proteins (Chu and Arber, 2001). Their co-
expression measured in terms of correlation was at the level of 0.227, while after the de-
composition their low-rank signal had correlation of level 0.995 (see Fig. 3.6). Similarly, the
correlation between FCGR3A and GNLY characterizing Natural Killer cells (Crinier et al.,
2018) increased from 0.400 to 0.949. Naturally, these observations are possible thanks to
filtering out the sparse and noise signals. Nonetheless, this type of information is retrieved
by the proposed method in an unsupervised manner, and may suggest new co-expression
patterns.

Sparse Signal Interpretation.

Thepresence of megakaryocytes in our PBMC dataset, reported in the population of PBMCs
sample from (Zheng et al., 2017), was not evident using the low-rankLmatrix. Even though,
a small cluster of cells of unknown type was separated by t-SNE (see Fig.3.4) and an anal-
ogous cluster depicted in Fig. 3.2a for 68k PBMCs data). Aiming in Megakaryocytes de-
tection, we performed the hierarchical clustering on the subset of unknown type cells and
only genes that had at least one non-zero entry in the sparse S matrix. This resulted in
recovery of a well-separated cluster of 9 cells. Further analysis confirmed that the cluster
is characterized by high over-expression of PF4 gene, which is a well known marker for
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mature megakaryocytes (Adachi et al., 1991), in comparison to other unknown cell types.

3.6. Noise Reduction and Algorithm Parameters.

Finally, we want to discuss the importance of the noise matrix E and selection of λ1 and λ2

parameters. The final decomposition quality, in terms of information distribution among
three matrices, is mainly based on the choice of these crucial parameters.

For the purpose of this study, we have set λ1 = 0.016 and λ2 = 10.0, which resulted in
theL+S+E decomposition characterized by the norms of vectorizedmatrices summarized
in the Table 3.1. Selection of the mentioned values was supported by the grid-based search

|| · ||∗ || · ||1 || · ||2
L 5.753 3398.162 4.265

S 60.289 60.289 2.826

E 57.881 2670.012 1.440

Table 3.1: Summary of all norm values calculated for each matrix resulting from the L+S+E decomposition with initial parameters set
to λ1 = 0.016 and λ2 = 10.0.

through the parameter space. We have run tRPCAL2 decomposition on the PBMC data for
150 different, evenly distributed, pairs (λ1, λ2) ∈ [0.001, 0.05]× [5, 15] setting µ0 = 147.28

using the improved formula for the initiation of the µ0 parameter that takes into account
the sparsity of an input data matrix A with k rows and l columns:

µ0 =
|{ai,j : ai,j ̸= 0}|
4 · k · l ·

∑
i,j |ai,j|

The new formula is thus a ratio of the percent of non-zero values to 4 times the sum of
absolute values in the data matrix. To determine the order of magnitude and search ranges
for both parameters we have made use of the theory described in (Candès et al., 2011) as
well as estimations based on the properties of the AAT matrix trace operator.

Since tRPCAL2 algorithm mixes L1 and L2 norms, which describe different mathemati-
cal properties and in this sense are incomparable, the final decomposition depends not only
on relative or absolute values of chosen λ parameters, but also on distributions of elements
in the decomposed matrix. In order to approximate the relationship between λ1 and λ2 and
their influence on the final composition of L, S and E matrices we summarized the results
from simulation study and we conclude about properties such as: the rank of the resulting
L matrix, relative and absolute sparsity of the S matrix, Fig. 3.7.

First, we systematize the boundary behaviours of the tRPCAL2 algorithm. Namely,
when both λ1 → ∞ and λ2 → ∞ the decomposition will result in L = A, S = E = 0.
Next, for fixed λ1 and λ2 → 0 the information shifts to E matrix and E = A,L = S = 0.
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Figure 3.7: Properties of the algorithm. Each row presents value of some measurement as a function of product (left) and quotient (right)
of λ1 and λ2 parameters, that tRPCAL2 was run with. (a) Norm values of each matrix and the objective function value. (b) the number
of singular values of L matrix (top) and logarithm of sparsity (percent of non-zero matrix entries) of S matrix (bottom). On each plot
orange line corresponds to λ parameters finally used in our study.
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Similarly, fixed λ2 and λ1 → 0 results in S = A,L = E = 0 (see Fig. 3.7a). Although
intuitive, these observations depend on different convergence rate, and thus flow of the
information among resulting matrices. Here, based on the described set of simulations (see
Fig 3.7b), we indicate several observations regarding signal distribution: (i) the rank of ma-
trix L increases sub-linearly as a function of λ1 and fixed λ2; (ii) polynomially as a function
of λ2 and fixed λ1; (iii) for fixed λ2 sparsity (percent of non-zero elements) of S decreases
exponentially as a function of λ1.

Finally, we observed that the distribution of the E matrix elements is a mixture of
zero-centered Gaussian and low-variance Gaussian distributions concentrated around non-
negative, λ2-dependent value. We reason, that since tRPCAL2 is an optimization of linear
combination of norms, E matrix captures parts of low-rank and sparse components bring-
ing such mixture. One way to overcome this effect was described in (Zhang et al., 2016)
through their truncated nuclear norm minimization for RPCA.

More formal investigation of the tRPCAL2 theoretical properties with respect to λ1, λ2

and L, S,E matrices could be of high interest in terms of future research.

3.7. Conclusions

In this chapter, we introduce an extension of robust PCA. We propose to decompose the
input matrix into low-rank L, sparse S and noise E components. Thanks to the reduction of
noise using the L2 penalty, we restore the inner structure of the matrix. Our results suggest
that our algorithms may better approximate the underlying systematic variation in the in-
put data, as well as recognize the sparse perturbation signal of the data. We present the case
study based on the scRNA-seq data from 2.7k PBMCs. The method provides relatively fast
and accurate dimension reduction and clustering of the high-dimensional data detecting
different subtypes within a given cell type, co-expression patterns and novel subtypes.

One possible direction for the further research is to derive precise formulas for λ1 and
λ2 parameters that guarantee optimal solutions of the decomposition problem. So far,
simulation-based selection of the parameters is time consuming. Ideally, selection method
of λ parameters should result in the most natural L+S+E decomposition, taking into ac-
count user’s expectations in terms of, for example, Bayesian priors to relative magnitudes,
and to other components’ statistics. The applicability of our method to other types of data
we also see as a promising direction of a further research. Preliminary results of video and
image analysis, not described in this paper, suggest that the method can be successfully har-
nessed in the field of video-surveillance and image analysis. The current implementation
of the tRPCAL2 algorithm is available on-line: https://github.com/macieksk/rpca as
a development R package.
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4
Integrative Analysis of Metabolic

Landscape Matrix

“Essentially, all models are wrong, but some are

useful.”
— George E. P. Box

The huge amount, of biological data gained from many different sources opens
up new possibilities alongside with some dangers in data integration. The
latter are not so widely taken into account. In this chapter, we are going to see
what problems may arise with integration of metabolomic knowledge with

gene expression datasets. We analyse common pitfalls and provide solutions, exemplifying
them by a case study of the renal cell carcinoma (RCC).

In particular we provide a metabolic description of knownmorphological RCC subtypes
and suggest a possible existence of poor-prognosis cluster of patients, which are character-
ized by common low activity of drug transporting enzymes important in chemotherapy.

Finally, the goal of this work is also to point out the problem that arises from integration
of high-throughput data with inherently biased manually curated low-throughput data. In
such cases overrepresented information may potentially overshadow the non-trivial dis-
coveries.
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4.1. Introduction

As we have already mentioned in the previous chapters, it can be easily observed, that in
the past two decades the technological progress has provided a huge amount of biomedical
data from various molecular levels (the so-called -omics data). Consequently, our under-
standing of biological processes gets more profound. These facts open up a broad field of
data integration, that aims to infer from various data taking into account known biological
dependencies between them.

The modern studies and corresponding literature emphasize the significant role of inte-
gration of various -omics data for better comprehension of a phenomenon of interest (Huang
et al., 2017). However, these integration procedures, thanks to a wider perspective, are not
only meant to provide a new insight into a specific phenomena, but above all should con-
stitute a deeper understanding of the genotype-phenotype mapping, that was recalled in
the introduction of this thesis. The principal aim of all integrative studies is thus a better
description of the relationship between genotype and phenotype layers (Gjuvsland et al.,
2013). Importantly, each unique set of -omics data can be integrated using various statistical
methods, and thus may result in an unprecedented outcome. As a consequence, each year a
number of reviews are published to track and summarize the current state of the art in the
field of -omics integration, which one can check for more detailed discussions (Wanichtha-
narak et al., 2015; Fondi and Lio, 2015).

Even though, as presented in the literature, there exists a plethora of methods designed
for integration of transcriptomic and metabolomic data and their usage has provided in-
teresting biological outcomes, in our work we want to focus on a particular problem of
transcriptomic and metabolomic data integration. We report an interesting phenomenon
related to the analysis of individual metabolic networks supported by transcriptomic data.
To the best of our knowledge, yet, no one has commented on the bias that the structure of a
metabolic network can introduce when used along with integrative methods, in particular
when used in the context of the flux balance analysis (FBA) (Orth et al., 2010).

Integration Strategies for Transcriptomic and Metabolomic Data.

One of the first attempts to this type of integration was suggested by (Covert and Palsson,
2002), where authors infer the binary enzymatic activity from the transcriptomic contin-
uous signal. Next, a cascade of methods was proposed to harness transcriptomic data for
analysis of metabolic networks. Among the most discussed methods we can point out:
E-Flux (Colijn et al., 2009), GIMME, (Becker and Palsson, 2008) GIMMEp (Bordbar et al.,
2012), iMAT (Zur et al., 2010), INIT (Agren et al., 2012), MADE (Jensen and Papin, 2011),
mCADRE (Wang et al., 2012), PROM (Chandrasekaran and Price, 2010), RELATCH (Kim
and Reed, 2012). Apart from some minor details, fundamentally these approaches differ at
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three basic levels:

• inferring enzymatic activity from transcriptomic data;

• inferring flow capacity boundaries from transcriptomic data;

• number of samples needed to create a mathematical model.

Thesemethods alongwith their other features, were broadly discussed and compared in few
reviews where detailed descriptions can be found (Mardinoglu and Nielsen, 2012; Masoudi-
Nejad and Asgari, 2015; Kim and Lun, 2014; Blazier and Papin, 2012). Therefore, here, we
focus on a summary of what type of biomedical outcomes they have provided so far.

Using this type of models, where a general metabolic network becomes context-specific
through integration with a transcriptome of specific tissue or organism few groups of re-
searchers have already reported some interesting discoveries. With nearly 2000 samples
of breast tumor researchers discovered a novel poor prognosis cluster characterized by lo-
cal production of serotonin along with active extracellular matrix and membrane remod-
elling reactions (Leoncikas et al., 2016). In (Li et al., 2010), by integrating transcriptomic
knowledge with human metabolic network authors suggest a supervised method to predict
novel drug-target interaction. In their work they predict related metabolic reactions and
enzyme targets for approved cancer drugs, and predict drug targets with statistically high
confidence rate. Reconstruction of a genome-scale metabolic models for 126 human tis-
sues and cell types including healthy and tumor type was derived using the Recon 1 human
metabolic network along with transcriptomic data (Wang et al., 2012). Among all, the set of
models includes 26 tumour-specific models accompanied by their normal counterparts, in
particular 30 models of brain tissue subtypes were determined. Finally, using the modified
version of iMAT, differential fatty acid uptake into mitochondria along with arachidonic
acid and eicosanoid metabolism were suggested to explain different proliferative rates and
invasiveness between PC-3/M (highly proliferative, cancer stem cells) and PC-3/S (highly
invasive, epithelial-mesenchymal-transition-like properties) subpopulations derived from
prostate cancer cell line (Marin deMas et al., 2018). In summary, the general biomedical aim
of this approach is to model the gene-protein-reaction interactions in a form of a metabolic
network and infer multiple biological properties, e.g. post-transcriptional gene activities
or intensity and activity of metabolic reactions, that can explain the nature of analyzed
sample.

In this chapter, we want to draw attention to a specific bias related to the task of data
integration and analysis using general metabolic networks along with transcriptomic data.
First, we present how the structure of a metabolic network can easily increase the impor-
tance of specific groups of enzymatic reactions, which may lead to incomplete or question-
able conclusions. Next, in order to cope with that obstacle, we suggest a possible routine
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that can eliminate the unwanted bias preserving the metabolic knowledge obtained from
integration procedure. Finally, we present results from the analysis of the TCGA kidney
cancer dataset, that point out reactions discriminating patients in the context of observed
clinical factors. Additionally, we report discovery of a poor-prognosis cluster of patients
along with its characterization.

4.2. Human Metabolism Modelling

In this section of the chapter, we describe in details the topological and structural properties
of the most recent version of the model of human cell metabolic network (RECON 2.2).
Next, wewill describe how to personalise a general metabolic network using an information
about transcriptomic activity.

RECON 2.2: The Human Genome-Scale Metabolic Reconstruction

In general, a metabolic network is a set of reactions among elements of a given set of
metabolites. Each reaction may be associated with a specific genetic rule that needs to
be met in order for reaction to occur. If a reaction has no genetic rule assigned it can
be triggered whenever all substrates are available. A genetic rule usually describes which
genes/proteins need to be active/present in the system to carry out the reaction. In par-
ticular, a rule may require simultaneous presence of several enzymes (e.g. the transfer
of L-Oh-Proline by the Apical Imino Amino Acid Transporters in Kidney And Intestine re-
quires both Transmembrane Protein 27 and Solute Carrier Family 6) or alternative enzymes
that can catalyze the reaction. (e.g efflux of 2-hydroxy-atorvastatin-lactone into bile that
is supported by ATP binding cassette subfamily C member 2 or subfamily B member 1).
Finally, each reaction has also a lower and upper bound describing minimal and maximal
flow of metabolites through this reaction.

On the other hand, formally, the network can be considered as a Petri net with con-
ditional (gene rules) transitions (reactions) of places (metabolites), where by a conditional
transition we mean additional boolean formula that needs to be met in order for transition
to occur (see Figure 4.2 for the example).

In our study we use the human genome-scale metabolic reconstruction model, RE-
CON 2.2 (Swainston et al., 2016). The model describes 7785 reactions (transitions), out of
which 4742 depend on a genetic rule (condition) and these are called enzymatic reactions.
Next, each genetic rule is a boolean formula in a disjunctive normal form (DNF), where each
boolean variable corresponds to binary activity state (active or not) of one of 1670 unique
genes. Additionally, there are 2654 metabolites distributed among 10 compartments. In
total, we consider 6048 compartment-specific metabolites (see Table 4.1 and Figure 4.1).
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all reactions 7785

enzymatic 4742
transport 3043
exchangea 701
demandb 44
reverse 3782
directed 4003

all metabolites 6048
unique substances 2654

boundary 722
compartments 10

all genetic rules 4742

simple rules 2912
complex rules 1830
unique rules 1341
unique genes 1670

Table 4.1: Summary of the RECON 2.2 metabolic model. aexchange reactions describe in- and outflow of metabolites through the system
boundary; b demand reactions are intra-network, unlimited sinks or sources of metabolites degradation or production.

Personalized Genome-Scale Metabolic Models

In order to construct a sample-specific metabolic model from a general metabolic network
for a given transcriptomic pattern the following procedure is applied. First, specify ther-
modynamic conditions describing acceptable capacity of reactions fluxes, i.e. set minimal
and maximal flow levels through each reaction. Next, evaluate each genetic rule, based on
the transcriptomic data to decide which reactions can occur in the initial model (see an
example in Figure 4.2). Finally, the obtained model can be further studied. In our work,
we formulate a linear programming problem to find a steady-state flux distribution. This
procedure provides two types of information. First, it suggests new pattern of fulfilment
among genetic rules (binary valued), where each change, in contrast to the original value,
can be considered as a post-transcriptional change. Second, it outputs a vector of fluxes
that met the criteria of the linear problem that was solved. These fluxes can provide an
information about metabolic reactions or pathways that are mostly exploited given such
expression pattern.

TCGA Transcriptomic Data

In this study we have used 20 RNA-seq transcriptomic datasets provided by TCGA, each
composed of cancerous and control samples and accompanied by clinical data, that provide
a palette of categorical and numerical values describing all samples. Apart from tumorous
samples there are also control (derived from the healthy tissue) samples, which allow to
track potential, cancer-specific markers. For the purpose of our work, each dataset was
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Figure 4.1: The figure presents an outline of the reactions distribution in the metabolic model of RECON 2.2. There are 9 inter-
cellular compartments depicted and the additional boundary component which represents external entry and exit of metabolites into
the metabolism network model. Each line connecting two compartments represents all reactions that involve metabolites from these
compartments. The number of these reactions and their direction is assigned to each line. To keep the figure readable, for less than 10
reactions we use a dotted, thinner line.

subjected to a standard preprocessing routine with recount R package. Next, only genes
that are composing genetic rules in the RECON 2.2 model were selected. Finally, we select
a number of 5 read counts to be a threshold for a gene to be considered as active.

In the presented case study we used the kidney cancer dataset (Renal Cell Carcinoma,
RCC; 897 tumor, 129 normal samples) Tumor tissues were also classified by their morpho-
logical type subtype into four groups: 527 Clear Cell RCC, 290 Papillary RCC, 66 Chromo-
phobe RCC and 14 unclassified RCC samples. For 201 patients the survival data were also
available. Additionally, we used the brain cancer dataset (707 samples) a showcase of a
biased clustering results. The above procedure resulted in 20 binary activity matrices that
were used to create sample-specific metabolic network models. Importantly, each cancer
type is supported by clinical data, that provide a palette of categorical and numerical values
including: cancer subtype, morphology, survival time, etc.
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Gene Activity Reactions

G1: 0 R1 : M1 +M2
G1∨G2−−−−→M4 R4 : M1

G3−−→M3 +M4

G2: 1 R2 : M3
G3−−→M2 R5 : M4

⊤−−−→M1

G3: 1 R3 : M1
G1∧G3−−−−→M2 R6 : M4

G1∨G2∧G3−−−−−−→M3

Individual Model

R1 R2 R3 R4 R5 R6

M1 M2 M3 M4

G1 ∨G2 G3 G1 ∧G2 G3 ⊤ G1 ∨G2 ∧G3

Figure 4.2: An example of metabolic network with genetic rules. The example is composed of five reactions Ri among four metabolites
Mj . Among these reactions there are four enzymatic that are coordinated by enzymes related to three specific genes Gk . All arrows
describe the flow of metabolites through reactions according to the above list of reactions. Using the gene activity pattern, a general
network can be turned into transcriptom specific and represented as a Petri net with conditional transactions. Here we can see that
inactivity of gene G1 results in silencing (dotted line) reaction R3, which represses the production of metabolite M2 in the system.

Steady-State Fluxes Distribution

In order to determine the activity state of each reaction in a personalized model we make
use of the approach proposed by (Shlomi et al., 2008).

max
v,y+,y−

∑
r∈A

(y+r + y−r ) +
∑
r∈I

y+r s.t. (a)

S · v = 0 (b)
vmin ≤ v ≤ vmax (c)
vmin,r(1− y+r ) ≤ vr − y+r r ∈ A (d)
vmax,r(1− y−r ) ≥ vr + y−r r ∈ A (e)
vmin,r(1− y+r ) ≤ vr r ∈ I (f)
vmax,r(1− y+r ) ≥ vr r ∈ I (g)
v ∈ Rm, y+r , y

−
r ∈ {0, 1}

(4.1)

First we process the RNA-seq data and use it to determine the state of genetic rules of
the metabolic network, as described in the previous subsection. Specifically, each gene is
assumed to be active (1) or in-active (0) and used to evaluate the boolean genetic rule as a
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standard logical expression. As a result, each enzymatic reaction r belongs to one of two
disjoint sets: active A or inactive I reactions.

Next, we formulate a mixed-integer linear programming (MILP) problem (see Equa-
tion 4.1) and solve it using Gurobi solver (Gurobi Optimization, 2018). The goal is to maxi-
mize an objective function (4.1a) with respect to stoichiometric (4.1b), thermodynamic (4.1c)
and transcriptomic (4.1d-g) constraints. The solution of the described problem provides a
sample-specific, binary vector of activity states for all reactions (both enzymatic and trans-
ports) which we refer to as a metabolic landscape. For detailed description see the Methods
section in (Shlomi et al., 2008).

4.3. Binary Data Analysis

In the literature there are described various statistical methods that are specifically dedi-
cated to the analysis of binary data, such as non-negative matrix factorization (Zhang et al.,
2007), sparse logistic PCA method proposed by (Lee et al., 2010) or variational method for
the factorization of 0–1 data, employing independent beta latent densities (Li, 2005).

Nonetheless, in our case, in order to explore the data, track the potential latent vari-
ables and visualize results we use the standard principal component analysis (PCA), which
provides numerically stable and robust results and is also used to define a function for sep-
arating variables selection.

PCA Loadings-based Variables Selection

Let M ∈ {0, 1}m×n be a binary data matrix with m observations and n variables, L =

(L(1), ..., L(n)) be a loadings matrix and P scores (or principal components) matrix, satisfy-
ing P = ML. By definition P is a representation of M in a new basis that is composed of
vectors of L. For the purpose of binary landscapes analysis, we construct a set of highest
valued coordinates from first k directions of the rotation matrix. The general parametrized
function L describes the selection procedure:

Lf,k(L) =
k∪

i=1

{
j : |L(i)

k | ≥ f
(
L(i)
)}

where f is the function determining the threshold for the value of a coordinate to be as-
sumed significant and k is the number of vectors from loading matrix that are considered.
The function is used to find the groups of redundant groups reactions activities.

We have also used two measures to determine differentiating variables in our datasets.
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Figure 4.3: Comparison of the first three principal components of metabolic landscapes determined for brain cancer (left) and random
(right) datasets. In both cases samples form well-separating clusters that can be identified by the activity pattern of overrepresented
gene rules. For the brain dataset: SLC7A9 and SLC28A3. For the random dataset: SLC7A6 and SLCO1B1.

Jaccard Index

Let z ∈ {0, 1}n, we define z1 =
∑
i

zi and z0 =
∑
i

(1− zi). The Jaccard Index (JI) of two

binary vectors J : {0, 1}n × {0, 1}m → [0, 1] is defined as:

J (x, y) = min (x1, y1) +min (x0, y0)

max (x1, y1) +max (x0, y0)

The index evaluates to 0 when two vectors don’t share any element, increases with an in-
creasing number of shared elements between vectors and reaches 1when vectors have both
the same elements and the same lengths. JI is used to determine differentiating reactions
between two groups of samples.

Tanimoto Similarity

Tanimoto similarity measure (TSM) of two binary vectors T : {0, 1}n × {0, 1}n → [0, 1] is
defined as:

T (x, y) = n− |{i : xi ̸= yi}|
n+ |{i : xi ̸= yi}|

The measure evaluates to 0 when two vectors differ at each coordinate, increases with
an increasing number of compatible coordinates, reaching 1 when vectors are equal. TSM
measures the distance between metabolic landscapes.
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4.4. Integrative Analysis of Cancer Data

Our first step was to apply the procedure suggested by (Shlomi et al., 2008) to the cohort
of TCGA data in order to verify if there exists a common metabolic pattern among various
types of tumors, or alternatively, if there exist specific metabolic biomarkers that may be
useful during diagnosis procedures.

Universal Metabolic Biomarkers for Various Cancer Types

Our preliminary results suggested that, surprisingly, each data set has from 2 up to 4 clearly
separable clusters of patients. In 13 out of 20 cancer landscapes datasets samples we identify
on average 180 differentiating reactions separating samples into four clusters. Additionally,
in remaining 7 landscape datasets there are on average 95 reactions differentiating samples
into two clusters (see Figure 4.3 for an example based on brain cancer dataset). Moreover,
it turned out, that almost all (>95%) discriminating (using Lmax,2 function) reactions these
clusters are coordinated by two main enzymes that are encoded by: SLCO1A2 (solute car-
rier organic anion transporter family member 1A2, coordinating superfamily of 94 Amino
Acid-Polyamine-Organocation superfamily reactions (Jack et al., 2000)) and SLC7A9 (so-
lute carrier family 7 member 9, coordinating superfamily of 79 Resistance-Nodulation-Cell
Division reactions (Tseng et al., 1999)) genes. These observations may lead to a conclusion
that cancers in general have natural subfamilies that can be described by the activity of
specific groups of metabolic reactions and thus also activity of particular enzyme encod-
ing genes. Activation of SLCO1A2 is related to the development and functioning of the
immune system, organismal system for calibrated responses to potential internal or inva-
sive threats and was highly over expressed in breast cancer tissues (Zhou et al., 2015). On
the other hand, SLC7A9 enables the transportation of substances (such as macromolecules,
small molecules, ions) into, out of or within compartments of a cell, or between cells. Ad-
ditionally, as a co-enzyme with SLC3A1 coordinates group of five transportation/exchange
reactions of L-Cystine, L-Alanine and L-Ornithine, that were also detected as differenti-
ating the cancer data. This observation implies activation of SLC3A1, that was recently
reported to promote breast cancer tumorigenesis (Jiang et al., 2017).

4.5. Metabolic Network Structure Bias

Even though the above literature reports may sound promising, we report another obser-
vation related to the analysis performed on a dataset with 500 randomly generated gene
activities that were subjected to the metabolic analysis (see the right panel of Figure 4.3).
Even though the gene activity dataset does not include any relevant informationwe are able
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to identify two groups of reactions differentiating samples into four well-separable clusters.
This observations, undoubtedly, put in question all results related to clustering of metabolic
landscapes performed on all cancer datasets, since the analysis infers about knowledge that
does not come from the data but from the topology and structure of metabolic network.

The analysis of the RECON 2.2 network structure revealed that there exist groups of re-
actions that are associatedwith the same genetic rule (top 10most common genetic rules are
related to over 900 reactions). Even though these reactions are biologically non-redundant
(each of them is functional), they cause statistical redundancy which introduces network
bias and may lead to biologically irrelevant conclusions. For this reason we propose two
methods of bias reduction. The aim is to transform the data so that the statistical analysis
does not detect artificially induced data separation, but rather may result in a discovery of
subtle differences in metabolic activity between samples possibly related to novel metabolic
biomarkers.

Due to the discovery of artifacts in a metabolic landscape analysis we propose the fol-
lowing pipeline of procedures, that aims to reduce the statistical redundancy resulting from
the RECON 2.2 network structure.

Computational Procedure for Bias Reduction

First, we process the RNA-seq transcriptomic data, convert it to gene activity matrix using
the threshold of 5 counts. The matrix is used to create a personalized metabolic network
model, formulate a MILP problem and solve it with Gurobi solver. The solution is composed
of sample-specific metabolic landscapes, which are subjected to statistical analysis. The
analysis of data is initiated by verification if redundancy among groups of reactions exists
(using the L function) and its removal, if needed.

The data transformation is based on aggregating the activity state for groups of reac-
tions with respect to compartments to which belong their substrates and products. Namely,
each reaction is labeled with a name of form s1...sk-p1...pj , where s1, ...sk and p1, ..., pj are
alphabetically ordered names of compartments that, respectively, substrates and products
belong to. Next, all reactions with the same genetic rule and assigned label are aggregated
into one represent reaction with the level of activity equal to the average of activities in the
group.

Finally, inference from the transformed data structure through hierarchical cluster-
ing using binary distance measures (e.g. TSM), correlation with clinical data, selection
of discriminatory features and functional analysis of determined clusters is performed. The
source code of scripts and functions used in the described workflow are available on Github
https://github.com/storaged/metabolic-landscape
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4.6. Validation: Bias Reduction for Renal Cell Carcinoma

In order to validate the proposed workflow we perform the metabolic landscape analy-
sis on the TCGA dataset of Renal Cell Carcinoma. After performing the bias reduction
we report significant improvement in samples clustering, both in the sense of unwanted
network structure-dependent clusters composition and correlation with clinical data. (see
Figure 4.4). We remove the amplified activity pattern of reactions coordinated by the same
genetic rule, that influenced the clustering of samples in an unwanted way. After the reduc-
tion there are no significant, discriminating reactions associated with the same genetic rule.
This step also results in more reliable clustering of data according to clinical observations,
e.g. normal or tumor tissue type or morphological type of a tumor sample.

Biomarkers of Renal Cell Carcinoma

The results of our analysis of the Renal Cell Carcinoma (RCC) TCGA dataset are consis-
tent with latest reports, that indicate SLC6A3 as a experimentally confirmed biomarker
for RCC (Hansson et al., 2017). The transcriptomic signal of SLC6A3 in our data is clearly
discriminating biomarker of Clear Cell RCC subtype (6.89 logFC)

However, thanks to the analysis of metabolic landscapes we suggest further potential
biomarkers that correspond to specific, known RCC subtypes (Muglia and Prando, 2015).
The literature so far reports CXCL16 gene as a significantly expressed in papillary RCC
with others still waiting for their validation (McGuire and Fitzpatrick, 2009). Nonethe-
less, the analysis of metabolic landscapes suggests two transport reactions that discrimi-
nate the Papillary RCC subtype. Both of them are supported alternatively by the already
reported SLC6A3 or SLC6A2, other member of the same Solute Carrier family. The trans-
portation activity state of dopamine and norepinephrine via sodium symport between cy-
toplasm and extracellular space are well separating the Papillary RCC subtype from other
samples. Namely, these reactions are predicted to be inactive in Papillary samples. Our
results report 247 out of 291 (≈ 85%) papillary samples and 42 out of 737 (≈ 6%) other sam-
ples characterized by inactivation of these reactions. This observation, is also confirmed
by pure transcriptomic data, which suggests down regulation of both genes (-3.62 and -2.2
logFC of SLC6A2 and SLC6A3, respectively) for papillary samples. This observation sug-
gests simultaneous drop of activity of both SLC6A2 and SLC6A3 as a potential diagnostic
biomarker.

In case of Chromophobe RCC (ChRCC) subtype, before the bias reduction two genetic
rules were in fact separating this subtype from other cancer samples: (i) extracellular space
and cytoplasm exchange reactions supported by the complex of SLC3A1 and SLC7A9 (5
reactions involving L- Cystine, L-Alanine and L-Leucine) and (ii) reactions controlled by
SLC7A9 that is involved in 79 reactions. However, after the bias reduction, we find two
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additional biomarker candidates: inactivation of sodium-dependent transport of (i) phos-
phate, supported by SLC17A1 and (ii) ascorbate supported by SLC23A1. Inactive phosphate
and ascorbate transport characterizes, respectively, 65 and 62 out of 66 ChRCC samples and
45 and 28 out of 774 other tumor samples. Even though in the literature reports it is still not
clear how the phosphate transportation or concentration level and absorption via SLC23A1
of ascorbate influences the cancer cells (Wohlrab et al., 2017). We point these factors, both
reaction activity and transcriptomic/proteomic levels, as possible biomarkers of ChRCC.

Poor Prognosis Cluster

Finally, we report a candidate for new subtypes resulting from the statistical and functional
analysis of metabolic landscape clusters. Based on samples clustering after the bias reduc-
tion we have further studied the obtained 6 clusters of samples. Among them, there are
four homogeneous clusters composed mainly of: healthy tissues (Control), Chromophobe
RTCC subtype (Chr-basal), Clear Cell RTCC (CC-basal) and Papillary RTCC (Pap-basal).
Even though, the pattern of remaining two clusters was not related to their morphological
type we have noticed a statistically significant (p-value: 0.002) difference in survival time
in one of the clusters (see Figure 4.5), which we address as a poor prognosis cluster.

Since the unknown clusters are mixture of Clear Cell and Papillary subtypes, we per-
formed a differential analysis of four clusters (using also CC-basal and Pap-basal) in order
to describe a metabolic as well as genetic nature of this cluster. We determined a set of
106 differentiating reactions coordinated by four genes: OAT2 (3), PRODH2 (4), PKLR (5)
and SLC1A2 (94). Among these reactions we report orotate-glutamate antiport, uptake of
allopurinol and oxypurinol by the hepatocytes, mitochondrial proline Oxidase (NAD) and
dehydrogenase and reactions involved in pyruvate metabolism. Genes coordinating these
reactions reveal a specific expression pattern of the poor prognosis cluster, i.e. low expres-
sion and consequent inactivation of corresponding reactions.

Additionally, we performed the functional analysis of top 100 differentiating genes, us-
ing DAVID on-line tool. The analysis provided a consistent output indicating functions and
keywords commonly related to modifications in transport and symport reactions highlight-
ing transmembrane transport activity. Finally, pathway analysis performed with KEGG
implies deregulations in Glycan Biosynthesis and Metabolism pathway.

The above observations can be preliminarily verified with literature reports. In the
context of metabolomics, abnormalities in Glycan Biosinthesis that we observe were re-
ported as a significant factor of cancer cells phenotype and biology almost two decades
ago (Brockhausen, 1999). Moreover, the poor prognosis properties can be influenced by
low activity of SLC1A2 belonging to the Organic-anion-transporting polypeptide (OATP)
family, because it is responsible for transport of anticancer drugs (e.g. methotrexate used
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in chemotherapy) (Thakkar et al., 2015) and overall uptake of. Similarly, low expression
of OAT2 was reported to influence a poor response to antitumor UFT-based chemotherapy
in colorectal cancer patients (Nishino et al., 2013). Loss of PRODH2 was also reported in
cancer (Loayza-Puch and Agami, 2016), however no links with cancer prognostics were re-
ported. The above summary may constitute an introductory justification for the possible
existence of the poor prognosis cluster in RCC mainly conditioned by the chemoresistance
dictated by the activity of its potential biomarker genes.

4.7. Conclusions

Concluding, in this chapter we recall an important, yet barely discussed, data analysis and
integration problem of twofold nature. Using the TCGA datasets and metabolic network
model we presented how bioinformatical and statistical data analysis may lead to outwardly
interesting biological and medical observations, which may be justified by the literature
reports. However, not only do we prove these observations are the inevitable consequence
of the model assumptions (as genetic rules induce clusters artificially), but also remind that
these assumptions conceal the current state of knowledge about cell metabolism, as many
discovery claims may testify.

To overcome this problem we propose a computational procedure for metabolic land-
scapes data processing and further analysis. We present an outcome of Renal Cell Carci-
noma case-study, that proves the importance of thought-out data analysis and reasoning.
Additionally, we report a possible existence of poor prognosis cluster of patients charac-
terized by the low activity of drug transporting enzymes and thus possibly limited activity
of absorption reactions.
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5
Biomedical Applications

“When finally interpreted, the genetic messages

encoded within our DNA molecules will provide the

ultimate answers to the chemical underpinnings of

human existence.”
— James D. Watson

Bioinformatics is one of these fields of science, in which we can explore the
meaning and significance of interdisciplinarity. When computational methods
meet real-life, medical cases, and can help the world of medicine in diagnosis
or therapeutics, we can assume that our work is going in the right direction.

In this chapter, we will see the results from scientific cooperation with Baylor Collage
of Medicine. Our contribution includes results from transcriptomic data analysis, as well
as some additional types of bioinformatical analysis of data related to the FOXF1 gene, for
which all the specific functions have not yet been fully determined. However, our studies
contributed to better understanding of its role for the organism from early state of em-
bryonic development and the consequences that bring the manipulations of its expression
pattern and copy number.
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Figure 5.1: Schematic representation of position of FOXF1 on the chromosom 16 presented on the upper panel. The location is marked
with blue stripe and arrow at 16q24.1. Additionally, the bottom panel shows the exon-intron organisation of the 3938 nucleotides
long FOXF1 gene. The coding regions within the exons are depicted with light blue color, while darker one corresponds to non-coding
sequences.

5.1. Biological Background of the FOXF1 Gene

In the genomic context FOXF1 (Forkhead Box F1) gene is quite well recognized. Its specific
chromosomal location, on the current genome assembly GRCh38/hg38, is determined as
chr16:86,510,527-86,515,418, cytogenic band 16q24.1, which is the long arm at position
24.1 (see Figure 5.1).

FOXF1 is a protein coding gene and it belongs to the forkhead family of transcription
factors, which means it is responsible for binding to specific regions of DNA and helping
in activity control of other genes. The family is additionally characterized by a distinct
forkhead domain. All the specific functions of this gene have not yet been well-determined.
Nonetheless, it is known to play a significant role in the pulmonary genes regulation and
development of pulmonary mesenchyme as well as embryonic tissue development from
which blood vessels of the lung arise (Maeda et al., 2007).

From the signalling perspective, It is related to Embryonic and Induced Pluripotent Stem
Cell Differentiation Pathways and Lineage-specific Markers and FOXA2/FOXA3 transcrip-
tion factor pathways (Mahlapuu et al., 2001). Consequently, when undergoing point mu-
tations or genomic deletions, the gene is reported to be associated with Alveolar Capillary
Dysplasia With Misalignment Of Pulmonary Veins (ACDMPV) and Persistent Fetal Circu-
lation Syndrome diseases (Slot et al., 2018; Shaw-Smith, 2010). Heterozygous deletions and
point mutations in the FOXF1 gene locus were found in more than 40% of patients with
ACDMPV (Stankiewicz et al., 2009).

In this chapter, we present the results of the FOXF1 overexpression analysis and its
consequences affecting the process of lung development. Additionally, starting from an
identification of FOXF1 duplication adjacent to a large minisatellite, we will present the
result of bioinformatical analysis of minisatellites of size greater than 1 kb among various
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species, which demonstrated both its evolutionarily instability and population polymor-
phism that, possibly,may lead to structural variation due to DNA replication errors.

5.2. Hi-C and Transcriptomic Analysis of FOXF1 Knock-In

When it comes to expression patterns of FOXF1, its expression in fetal and adult lungs,
placenta, and prostate was reported by (Bozyk et al., 2011; van der Heul-Nieuwenhuijsen
et al., 2009; Hellqvist et al., 1996). FOXF1 heterozygous point mutations and genomic dele-
tions have been reported in newborns with the neonatally lethal lung developmental dis-
order, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) with
or without defects involving heart, gastrointestinal, or genitourinary systems (Sen et al.,
2013; Bishop et al., 2011). Previous studies have also shown FOXF1 to be epigenetically
inactivated in breast cancer (with potential role as a tumor suppressor gene) (Lo et al.,
2010) and overexpressed in basal cell carcinoma, medulloblastoma, and rhabdomyosar-
coma (Armeanu-Ebinger et al., 2011; Wendling et al., 2008). Finally, overexpression was
also tracked in lung fibroblasts from patients with idiopathic pulmonary fibrosis (Melboucy-
Belkhir et al., 2014). As one can see, while effects of the loss of function of FOXF1 in cancer
and lung disease are well systematized, no gain-of-function mutations have been identified
and effects of the overexpression of FOXF1, specifically in the context of lung development,
are not currently known.

To study the effects of FOXF1 overexpression in lung development, biologists generated
a FOXF1 overexpression mouse model by knocking-in a Cre-inducible FOXF1 allele into
the ROSA26 (R26) locus. The Cre/lox site-specific recombination system is an laboratory
tool for the generation of conditional somatic mouse mutants. The mice were phenotyped
using micro-computed tomography (micro-CT), head-out plethysmography, ChIP-seq and
transcriptome analyses, immunohistochemistry, and lung histopathology, out of which we
have analysed ChIP-seq and transcriptomic data.

Statistical Analysis of Transciprtomic Microarray Data

The microarray data were analysed using the lumi bioconductor package (Du et al., 2008),
normalized by robust spline normalization and transformed using variance stabilization
transformation (VST). Two-sample T-test was applied to determine differentially expressed
genes between R26FOXF1; Tie2-cre and the R26-LSL-FOXF1 lung groups. Differential ex-
pression p-values were adjusted for false discovery rates (FDR). Fold changes were calcu-
lated using reverse VST. Although our sample size was relatively small for parametric tests,
we justified the use of T-tests in this study by large effect sizes of our analysis (De Winter,
2013). DAVID tool (Huang et al., 2009) was used for gene ontology and pathway analyses.
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Figure 5.2: Consensus FOXF1 binding motif identified from analysis of DNA sequences underlying ChIP-seq peaks. The figure was
generated using the on-line WebLogo tool (http://weblogo.berkeley.edu/logo.cgi).

The performed statistical analyses of transcriptomes from microarray studies showed
1242 deregulated genes in R26FOXF1; Tie2-cre lungs compared to lungs from littermate
controls (FDR< 0.05, absolute fold-change≥ 1.2). 519 genes (41.79%)were down-regulated
and 723 genes (58.21%) were up-regulated. DAVID analyses identified gene ontology terms
related to protein transport, protein localization, cell adhesion, and blood vessel morpho-
genesis to be associated with the deregulated genes. Some of the downregulated genes
included IGFBP3, PPARG, RCAN1 and PRKCDBP, which were already reported as related
to lungs development and functioning. Here it is worth to highlight, that IGFBP3 and
PRKCDBP are also inversely upregulated in ACDMPV lungs (Sen et al., 2014), suggest-
ing that these genes might be relevant to the role of FOXF1 in the pathology of ACDMPV.
On the other hand among upregulated genes were FGFR2, EGFL7 and ROBO4. Interest-
ingly, upregulated FGFR2 is associatedwith nitrofen-induced pulmonary hypoplasia (Fried-
macher et al., 2012),while EGFL7 is shown to cause embryonic lethality due to impaired
angiogenesis in mice (Nichol et al., 2010). Finally, ROBO4 is a vascular specific receptor
known to inhibit endothelial migration (Park et al., 2003). Additionally, using a threshold
of 1.2-fold-change, comparison of the R26FOXF1;Tie2-cre microarray dataset with FOXF1
knock-out P0.5 lung dataset from (Sen et al., 2014) revealed 165 genes to be commonly
deregulated in both datasets. These genes are potential targets of FOXF1 in the lung, as
their expression changes reciprocally with the loss or gain of FOXF1.

Bioinformatical Analysis of ChIP-Seq Data

The second analysis was conducted ChIP-Seq data, that shortly speaking is a method used
to analyze protein interactions with DNA. In a nutshell, ChIP-seq combines chromatin im-
munoprecipitation (ChIP) with DNA sequencing (seq) to track the binding sites of DNA-
associated proteins. In our study it is used to map global binding sites precisely for any
protein of interest.

Biologists performed an experiment for two biological replicates of pooled E18.5 and
control samples and used The Rubicon ThruPlex DNA-Seq library preparation system to
prepare ChIP-Seq libraries for sequencing on the Illumina HiSeq sequencing system. We
mapped the sequence reads on to the mm10 mouse genome using Bow-tie2 tool (Langmead
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Figure 5.3: Visualization of peak calling procedure near CDH5 gene (approx. 150kb downstream) with important peaks highlighted in
orange on the horizontal axis. Note, the strong conservation of peaks between replicates. Moreover, the peaks are easily observable
compared to the background signal of the control sample.

and Salzberg, 2012). The obtained percentage of uniquely mapped reads was 77.85, 73.10
and 73.10%, respectively, for the two biological replicates and input control samples, which
is an acceptable level according to (Bailey et al., 2013). Next, we performed the peak calling
procedure using the Model-based Analysis of ChIP-Seq (MACS2) tool (Zhang et al., 2008)
and assessed it using IDR-score (Li et al., 2011). After detection of 696 peak regions, we
have identified the consensus FOXF1 binding motif from the DNA sequences underlying
the peaks 5.2.

Finally, the functional analysis of selected peak regionswas performed using theGREAT
tool (McLean et al., 2010) and classification of genes common to the ChIP-seq and microar-
ray datasets was done using LungGENS (Du et al., 2015).

Conducted ChIP-seq analysis in E18.5 wild-type lungs identified binding of FOXF1 in
the proximity of genes involved in biological processes such as blood vessel, cardiovascular
and embryonic development. Among the genes associated with multiple FOXF1 binding
sites, CDH5 and ITGB1 are genes involved in endothelial cell development (see Figure 5.3).
Recently, it was shown that ITGB1 controls CDH5 localization and blood vessel stabil-
ity (Yamamoto et al., 2015). Additionally, NRP1 signaling has previously been shown to
be essential for fetal pulmonary development (Joza et al., 2013). Another forkhead gene,
FOXA2 has been described to be required for the transition to breathing at birth (Wan
et al., 2004).

When the FOXF1 ChIP-seq data were compared to the FOXF1 knock-in and knock-
out microarray datasets, 11 genes were found to have binding sites for FOXF1 and were
reciprocally deregulated in the microarray datasets. These included the genes ARHGAP18,
SOX11, ZSWIM6, TNFRSF19, EDNRB, GHR, 2510009E07RIK, OSTF1, SMARCA2, SLIT2
and NUP210. Interestingly, SOX11−/− mice exhibit lung hypoplasia and die at birth (Sock
et al., 2004). GHR signaling is involved in early lung growth, oxidative protection, and lipid
metabolism in the developing lung (Beyea et al., 2006). These genes could potentially be
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Figure 5.4: Cross-species visualization of syntenic sequences of the 8.6 kb minisatellite on chromosome 16q24.1. The figure presents
the variation of motifs among different species and their conservation. Repeat sequences are represented as a row of multicolour strips
and each strip maps to a particular group of motifs. The descending intensity of the color used to code the particular motif indicates the
increasing number of differences from the motif corresponding to that color (mutational and deleterious differences are represented by
upper and lower part of the strip, respectively). To increase the clarity of the figure, the human sequence was shortened to ∼4.1 kb, and
divided into two rows. Moreover, the rat and dog sequences are represented by one of the insertional translocation sequences (Table
5.1).

direct targets of FOXF1 in the embryonic and early postnatal lung.
Summarising, our ChIP-seq and transcriptome analyses in E18.5 lungs identified SOX11,

GHR, EDNRB, and SLIT2 as potential downstream targets of FOXF1. This interdisciplinary
study shows that overexpression of the highly dosage-sensitive FOXF1 impairs lung de-
velopment and causes vascular abnormalities. This has important clinical implications
when considering potential gene therapy approaches to treat disorders of FOXF1 abnor-
mal dosage, such as ACDMPV.

5.3. Minisatelites and Their Impact on DNA Replication

Four unrelated cases with duplications of 16q24.1 chromosomal site containing the entire
FOXF1 were analysed by an interdisciplinary team. We are particularly interested in a
fourth patient with speech and motor delay, and borderline intellectual disability. There
was identified an ∼1.7 Mb FOXF1 duplication adjacent to a large minisatellite. By min-
isatelite we understand a Variable Number Tandem Repeat (VNTR) with repeat units be-
tween 10 and 100 nucleotides (nt) are defined as minisatellites. Additionally, we consider
microsatellites with less than nine nt and macrosatellites with repeat units greater than 100
nt. VNTRs are extremely unstable, with mutation rates 10-100,000 times higher than non-
repeat sequences. They tend to be highly polymorphic, expanding or contracting due to
DNA strand replication or recombination slippage. The structure of the duplication, from
the studied patient, was complex and arose de novo on the maternal chromosome. Probably,
this was a consequence of a DNA replication error, that was initiated by the adjacent large
tandem repeat.
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To determine the occurrence of polymorphism in the minisatellite region in the gen-
eral population, the Database of Genomic Variants: Structural Variation track in the UCSC
genome browser was used. Orthologous VNTR sequences to the minisatellite sequence in
other genomes were obtained using the convert and blat functions in the UCSC genome
browser. In the reference human genome, the large minisatellite is 8,688 kb in size, con-
sisting of imperfect repeats of 33 bp sequence CAGGGCCCCCCGGATAATCCTCACTGT-
TACACT. The orthologous VNTRs of this minisatellite in several species are much shorter
and range from 597 bp in Chimp to 2,644 bp in Rhesus (see Table 5.1), demonstrating its
high instability during the evolution of the human genome.

In order to visualize syntenic (i.e. occurring on the same chromosome) sequences from
the Table 5.1, main repeating motifs were extracted from each syntenic sequence and the
pairwise alignment of themwas done. Next, repeats composing each sequencewere aligned
to form one set consisting off all existing motifs among the considered species. Resulting
set was clustered into several groups using the greedy clustering algorithm: the most nu-
merous motifs were assumed to be centres, whilst number of differences was assumed to
be the metric. Finally, each sequence was represented as a row of multicolour stripes and
each strip maps onto particular group of motifs (see Fig. 5.4).

Interestingly, the duplication in the considered patient case mapping distal and adja-
cent to a large minisatellite contains in its junction fragment, truncated segments of this
minisatellite. This minisatellite turns out to be highly polymorphic in the general popula-
tion, with many deletions and duplications, indicating that it contracts and expands. The
orthologous VNTRs of this minisatellite in several species are much shorter and range from
597 bp in Chimp to 2644 bp in Rhesus (see Figure 5.4, and Table 5.1), demonstrating its high
instability during the evolution of the human genome.

Summarizing, this systematic form of data mining through genomes of different species
along with biomedical interpretation of the collected data by our co-workers revealed an
evolutionarily unstable and highly polymorphic minisatellite on 16q24.1. They propose
that instability of minisatellites greater than 1 kb can lead to genomic structural variation
due to DNA replication errors, which was supported by the case of studied patients. The
lack of any pulmonary symptoms in the patient also suggests relatively benign paediatric
pulmonary consequences of FOXF1 overexpression due to constitutional duplications.
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6
Conclusions

“The measure of greatness in a scientific idea is the

extent to which it stimulates thought and opens up

new lines of research.”
— Paul Dirac

In this dissertation several related topics in high-throughput data analysis have
been approached with particular emphasis on transcriptomic and metabolomic data.
Namely, we have discussed the analysis of expression activity data of cell-type ho-
mogeneous samples. We have introduced MPH method that enables estimation of the

proportion of different sub-population conducting the same functional activity and their
corresponding transcriptomic pattern. Next, two extensions of the robust PCA (RPCA) de-
composition algorithm have been proposed. The first one is a truncated version of the al-
gorithm (tRPCA) and the other (tRPCAL2) takes into account the dense noise component in
the decomposition. Further on, we have analysed the transcriptomic data through integra-
tion with metabolomic data. For the needs of this task, we have introduced the procedure
reducing the bias related to metabolic networks and approaches to feature selection in bi-
nary data. Finally, the results of two downstream bioinformatical analyses carried out for
the purpose of cooperation with the Baylor Collage of Medicine have been were presented
in the last chapter. For this purpose various bioinformatical tools have been used to infer
from transcriptomic, ChIP-seq and microsatelite data.

As the reader could have noticed the presented scope of research is highly interdisci-
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plinary. On one hand, we have theoretical approaches, methods and algorithms related to
the matrix analysis and decomposition were presented, and on the other, each was sup-
ported by a case study with transcriptomic data from different high-throughput technolo-
gies. It is undeniable that it is the nowadays way in which the achievements of computer
science supported by modern biology and biotechnology will set the direction for the field
of bioinformatics.

Therefore, this work is naturally an input into the field of computer science, data analy-
sis, feature selection and matrix decomposition techniques. However, let us hope that it is
also a source of novel methods and workflows that constitute at least a small contribution
to our understanding of the genotype–phenotype mapping mentioned in the Introduction.

To conclude let us recall the question stated by Walter Gilbert who received the Nobel
Prize in Chemistry in 1980 for teaching us how to sequence DNA.

In the year 2020 you will be able to go into the drug store,

have your DNA sequence read in an hour or so,

and given back to you on a compact disc so you can analyse it.

To what extent he made a mistake by stating this sentence is a secondary matter. It is
clear that with the current direction and intensity of research, the existence of the described
reality is only a matter of time. Interesting seems to be a much more general question.
Where, if there are any, are the limits of our comprehension of the reality that surrounds us,
and in particular of the mechanisms that drive its living part? Are the capabilities of science
unlimited, or alternatively there are realities beyond the cognitive abilities? Although it is
difficult to respond to these questions, it seems that a form of an answer is to broaden
the boundaries of science as far as possible, even by conducting research that has been
presented in this dissertation.
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