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Abstract

This doctoral thesis consist of four parts, in which the properties of operators on non-
reflexive spaces of smooth functions are investigated.

In the second chapter we investigate the existence of a priori estimates for differential
operators in L! norm: for anisotropic homogeneous differential operators 77, ..., T, we
study the conditions under which the inequality

¢
| Ty fll ey S Z 1T | . (ray

Jj=2

holds true. Properties of homogeneous rank one convex functions play a major role in the
subject. We generalize the notions of quasi and rank one convexity to fit the anisotropic
situation.

In the third chapter we prove that every Fourier multiplier on the homogeneous Sobolev
space W} (R?) is a continuous function. This theorem is a generalization of the result of
A. Bonami and S. Poornima for Fourier multipliers, which are homogeneous functions of
degree zero.

In the fourth chapter we construct a linear injection from the linear space of trigono-
metric polynomials on T% with bounded degrees with respect to each variable onto a
suitable subspace LY, C LP(T¢) spanned by characters from E. We establish a quantitative
description of the set E, providing both necessary and sufficient conditions for the afore-
mentioned injection to be an isomorphism in L” norm for 1 < p < co. One can choose the
set £ in such a way that the norm of the isomorphism is arbitrary close to one.

In the fifth chapter we study the properties of the trace operator 7 : W'(Q) — X (Q).
In the case of a domain €2 with a smooth boundary we give a new proof of Peetre theorem, i.e.
we prove that there is no continuous, linear operator S : L!(9Q)) — W}(Q) s.t. TroS = Id.
The proof is amazingly simple and uses only the geometry of Whitney decomposition of {2
and basic properties of classical Banach spaces. In the case when (2 is von Koch’s snowflake,
we use a suitable Whitney decomposition to construct a continuous, linear right inverse of
the trace operator.
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Streszczenie

Ponizsza rozprawa doktorska sklada sie z czterech rozdzialow, w ktorych rozpatrujemy
rozne wlasnosci operatoréw na nierefleksywnych przestrzeniach funkcji gtadkich.

W drugim rozdziale rozpatrujemy problem istnienia oszacowan a priori dla operatow
rézniczkowych w normie L': dla anizotropowo jednorodnych operatoréw rozniczkowcyh
11, ..., Ty, badamy warunki dla ktoérych zachodzi oszacowanie

¢
IT3 fll 2y ey S NT5f 12 wey-
j=2

Wiasnosci funkcji jednorodnych pierwszego stopnia sg kluczowe dla tego zagadnienia. W
tym rozdziale podajemy uogodlnienie quasiwypuklosci i rank one wypukloséci dostosowane
do problemu anizotropowego.

W trzecim rozdziale dowodzimy, ze mnozniki Fourierowskie na jednorodnej przestrzeni
Sobolewa W} (RY) sa funkcja ciagtymi. Ten wynik jest rozszerzeniem wyniku A. Bonami i
S. Poornimy dla mnoznikéw Fouriera, ktore sg funkcjami jednorodnymi stopnia zero.

W czwartym rozdziale konstruujemy liniowe przeksztalecnie réznowartosciowe z
przestrzeni liniowej wielomianow trygonometrycznych z ograniczonymi stopniami wzgle-
dem kazdej wspotrzednej na T% do odpowiedniej podprzestrzeni L}, C LP(T?) rozpietej
przez charaktery z pewnego zbioru £. Podajemy warunki konieczne i dostateczne na to,
zeby powyzsze przeksztalcenie bylo izomorfizmem przestrzeni Banacha w normie L? dla
1 < p < oo. Zaleznie od wyboru zbioru E norma tego izomorfizmu moze by¢ dowolnie

bliska jedynki.

W rozdziale piatym badamy operator $ladu Tr : W} (Q) — X(Q). W przypadku
obszaru (2 z wystarczajgco gltadkim brzegiem podajemy nowy dowdd twierdzenia Peetre,
tzn. dowodzimy, Ze nie istnieje ciagly operator liniowy S : L'(9Q) — W(Q) takich, ze
TroS = Id. Ten dowod jest zaskakujgco prosty. Uzywa jedynie wlasnosci geometrycznych
rozktadu Whitney’a obszaru €2 i wlasnosci klasycznych przestrzeni Banacha. W przypadku
gdy ) bedzie $niezynka von Kocha, wykorzystujemy pokrycie Whitney’a do skonstruowa-
nia ciagltego, liniowego prawego odwrotnego operatora do operatora sladu.
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Chapter 1

Introduction

The dissertation consists of results on the properties of operators on function spaces of
smooth functions equipped with a non-reflexive norm. In functional analysis spaces of an-
alytic functions (e.g. Hardy spaces) and spaces of smooth functions (e.g. Sobolev spaces
and Besov spaces) are especially interesting. While the operators on Hardy spaces are well
studied, our knowledge about Sobolev spaces is unsatisfactory (except the case of reflexive
spaces). The thesis consists of four parts. Each focuses on different properties of aforemen-
tioned operators. Let us briefly describe the content of chapters.

Anisotropic Ornstein noninequalities

The first part is a study of the existence of a priori estimates between differential operators
in L' norm. Let T be differential operators with constant coefficients of order at most m,

Le.
_ § -
7—1.]' - a]7a8 :
|a|l<m

For d > 2 we consider the existence of the following a priori estimate
¢
1T f ||, ey S Z 5 f1l 2, ey, (1.1)
j=2

with constant independent on f € C5°(R?). Here and in what follows “a < b” means “there
exists a constant ¢ such that a < ¢b uniformly”, the meaning of the word “uniformly” will
be clear from the context. Moreover, a ~ b will denote “a < band b < a”.

In the reflexive case 1 < p < oo there is a lot of a priori estimates of the type (L.1). For



example Calderon-Zygmund operators theory (eg. [46]) yields

82
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for 1 < p < oo. However in the non-reflexive case the above inequality is not satisfied.
K. deLeeuw and H. Mirkil [10] have found a necessary and sufficient condition in the case
p = 0. Inequality (1.1) is satisfied for p = oo iff

F (1) =Y 7 (1) F (),

J

where .7 (-) denotes the Fourier transform and y; are bounded measures. The existence of
a priori estimates for p = 1 is much more difficult than for p = oc. In his seminal paper D.
Ornstein [36] considered the case p = 1 and homogeneous differential operators of order

m, i.e.
_ . lo"
T, = E am@ .

|a|=m

He proved that the estimate

¢
T2 f ey S D NT5f e
=2

is satisfied only in the trivial case 7} € span{7}}. His proof was very technical and
involved. Recently new, more comprehensible proofs of this fact appeared [8]], [24], [23]].

Let A be an affine hyperplane in R? that intersects all the positive semi-axes. We call
such a plane a pattern of homogeneity. We call a differential operator A-homogeneous if

_ . A
T; = E :aJ7048 .
aeA

The aim of Chapter 2 is to give a proof of anisotropic version of Ornstein’s theorem.

Theorem. Let A be a pattern of homogeneity in R¢, let {T]}fz1 be A-homogeneous differential
operators. Suppose that all the monomials present inT; have one and the same parity of degree.
If the inequality

l
T3 f | azey S NT5f 2, eey (1.2)
=2

holds true for any [ € C§°(R?), then Ty can be expressed as a linear combination of the
other T}.



The starting point of our argument mimics the approach from [23]. We introduce a
notion of generalized rank one convexity and generalized gradient V. We define a Bellman
function on a suitable space E by the formula

B(e) = inf /Ve—i—V z)) dx
O ekt | Ve V)
0,1]4

for every e € E. We study the properties of B and ultimately we prove that if 77 ¢
span{7};}, such function B does not exist. More precisely, in that case the above func-
tion has to be separately convex (i.e. convex with respect to each variable), homogeneous
of degree one and sign changing. The whole problem reduces to the following theorem.

Theorem. A function ' : R? — R that is separately convex and homogeneous of order one
is non-negative.

In contrast to Ornstein’s original proof, we rather study the properties of Bellman func-
tion than construct a specific function built by a martingale approach. Contents of this
chapter are taken from the article [19].

Continuity of Fourier multipliers on homogeneous Sobolev spaces

In the third chapter we study the properties of translation invariant operators. We call a
function space X (R") translation invariant if every shift operators acts on this space as a
isometry. An operator 7" : X (R") — X (R") is translation invariant if for every v € R”

Tor,=71,0T,

where 7, f(2) = f(z + v). The classical characterization of translation invariant operators
on L'(R") says that T : L'(R") — L'(R™) is translation invariant iff there exists a bounded
measure p such that T'f = u * f for every f € L'(R") ([47]). The Fourier transform of a
measure is a continuous function. Hence, every f € L'(R") satisfies the identity

F(Tf) =mF (),

where m is a suitable continuous function. Let W7 (R") be a Sobolev space, i.e. completion
of smooth functions with compact support on R" with respect to the norm

1 fllwi@ry = [ fllzr@ny + IV Fll2r@ny.-

From Ornstein’s noninequality [36] it follows that the class of translation invariant opera-
tors on W} (R") is wider than the class of convolutions with bounded measures [42]. Let
T : W}(R") — W] (R"™) be translation invariant. From general theory there exists m € L™
s.t.

F(Tf) =mZ (f).



However W} (R"™) is a subset of L!(R™), hence the Fourier transform of a function from the
Sobolev space W (R") is continuous. This yields that the above function m is continuous.
The situation is much more delicate in case of homogeneous Sobolev spaces. We denote by
WL (R™) a space of weakly differentiable functions on R" with integrable gradient. We a
define seminorm on W (R") by the formula

1 i ey = IVl 21y

The quotient by constant functions W (R")/P, with the above norm is a Banach space.
Abusing the notation, we denote this Banach space by W (R").

As usual .7’ denotes the space of Schwartz functions. Let 7" be a translation invariant oper-
ator on Wi (R"). For every such T there exists m € L™ s.t.

F(Tf)=mF(f) Vfe.Z.

We denote by . (W} (R?), W}!(R?)) the space of all such functions m and we call them
Fourier multipliers. We investigate the continuity of functions in .# (W} (R?), W} (R%)).
The aim of this Chapter is to prove the continuity of functions from . (W} (R%), W} (R%)).
The special case when m is a homogeneous function of degree zero, i.e. m(Ax) = m(z),
was studied by A. Bonami and S. Poornima [3]]. In their beautiful proof they show that m
has to be a constant function. The main result of this Chapter is the following.

Theorem. Ifd > 2 andm € .# (W} (R?), W (RY)) thenm € Cy(R).

It is worth to mention that our proof uses the result by A. Bonami and B. Poornima.
Contents of this chapter are taken from the article [22].

Isomorphism between sets of trigonometric polynomials

One of the essential tools used in the proof of the continuity of Fourier multipliers m €
A (WEHRY), WE(RY)) from the third chapter is the estimation of the norm of a linear com-
bination of finite Riesz products. Let {ay } be a sequence of natural numbers s.t. ay11 > 3ay.
We define the finite Riesz product by the formula

R, (x) =TI}_; (1 + cos 2mwayx)

The key estimate used in Chapter [3is an estimate by R. Latata [29] valid for suitable
(very) fast growing sequence {ay}.

1D b Rilleaemy =) Ibyl. (13)
j j

This inequality is a consequence of an inequality for random variables. The transference to
trigonometric case is based on the observation that for sufficiently fast growing a;’s, func-
tions cos(2maxx) mimic independent random variables. The problem is to find the specific



conditions on {ay} such that R; behave like independent random variables with respect to
L' norm. This problem can be considered for much more general polynomials. In Chapter
we investigate what kind of conditions are sufficient for the behavior of trigonometric
polynomials to be similar to that of independent random variables. To be precise, we give

the following definitions. For k € N, B C Z* let L}, (T*) = {f € LP(T*) : supp f C B}.

Definition. For a given sequence of integers T = {7, }nen and a set A C 7 we define sets
E CZand F C Z" (here ZV is a dual group to T%), in the following way:

Fi={x=(\,N,...)eZN : )\, €A},
E:={B€Z: B=) mMforAcF}.

k=1

For L*° norm the theorem below was proved by Y. Meyer [33]. The main result of
Chapter 4 is a proof of sufficiency of the Meyer condition for L! norm.

Theorem. For a given sequence of integers T = {7, }nen and finite set A C [—r, 71| N Z
satisfying

k
| Thet1| >27’Z|7’j| Vk € N,

< 00,

the operator T := LL.(TY) — LE.(T) given by the formula

E :f 27rz l)\jT]',iE>

A€eF

is an isomorphism of Banach spaces.

In fact we prove a generalization of the above to a higher dimension. In [12] M.
Déchamps gave a weaker condition

Z \Ty|2
|

7'H-l|

for the case L. She claimed that this condition also works for L' norm, however her
proof contained a flaw. Nevertheless we show that M. Déchamps condition is necessary for
T to be an isomorphism in L' norm. Moreover in the last subsection we give an example of
a sequence {73} such that 7" defined as in the above theorem is an isomorphism for p = 2
and p = 4. However it is not an isomorphism for p = 3and p = %. Therefore, the conditions



on {7} for which 7" is an isomorphism in L? norm do not interpolate for 2 < p < 4 and in
general without additional conditions do not work for the dual space. Results of this chapter
are based on the unpublished preprint [20]. It is worth to mention that in the special case
of Riesz products the condition could be considerably weakened. In [30] R Latata, P. Nayar
and T. Tkocz proved that ax; > 1.2 10% is enough for the case LP, 1 < p < oo. Finally,
A. Bonami indicated a simple argument which gives a1 > 3ay, for L' norm [4].

Trace operator and its right inverse on planar domains

In the last chapter of the thesis we study the properties of the trace operator. It was proven
by E. Gagliardo [16] that for domains €2 with a smooth boundary 7' : W}(Q2) — L*(9%2)
is onto. It was proved by J. Petree [39] that the trace operator on W} (R, x R") does not
have continuous, linear right inverse. In the first part of the chapter we use the Whitney
decomposition of a domain 2 to give a new proof of Peetre theorem.

Theorem. Let () be a an open domain with Lipschitz boundary and OS2 be a Jordan curve.
Let Tr: W(Q) — LY(0N) be a trace operator. Then there is no continuous, linear operator
S Ll(aQ) — Wl’l(Q> s.t. TS = ]dLl(aQ)-

The proof is amazingly simple. It uses just the geometry of Whitney covering and basic
properties of classical Banach spaces.

In the second part we investigate the trace operator on von Koch’s snowflake Q. In
[17] P. Hajtasz and O. Martio studied the existence of a right inverse operator to trace in the
case of Sobolev spaces WF(Q) for p > 1. They characterized trace space as a generalized
Sobolev space. In this part of thesis we will characterize the trace space of W} (Q). We
use the density of restrictions of Lipschitz functions Lip(R?) in W (Q) to define the trace
space. For Lipschitz functions the operator 7'r is just a restriction to the boundary. We
denote by X (2) the trace space - the completion of T'r(Lip(R?)) with respect to the norm

lgllx(u) = mf{ll fllw) : Trf = g and f € Lip(R*)}.
We prove that X (£2) is isomorphic to Arens-Eels space with respect to the metric
d(z,y) =f{|Vflp: f € Wi(Q), Trf =Ty}
on the boundary, where 1|, , is the characteristic function of an arc [z, y|.

Definition. Let (Y, dy) be a metric space. We call a function f : Y — R a molecule if it has
finite support and Zer f(y) = 0. Let z,y € Y. We define special type of a molecule - an

atom : myy = 1y — 1y Let m be a molecule, i.e. m = Zj\il AjMyg,y,;. Then the Arens-Eels
norm of m is

J J

|lm|laey) = inf {Z laj|dy (z;,y;) - m = Zajmxjyj} ,



where the infimum is taken over all possible representations of m as a linear combination of
Myq. The Arens-Eels space is the completion of molecules with respect to the norm || - || ag(ay )-

Using the structure of Whitney decomposition of the von Koch’s snowflake we prove
that there a exists metric d such that d = d“, where 0 < o < 1. The existence of the right
inverse to trace operator is a consequence of this fact.

Theorem. Let Tr : W (Qx) — X (Qx) be a trace operator, where X (k) is a trace space
(5.2). There exists a continuous, linear operator S : X (Q) — Wi (Qk) s.t. TroS = Idx(qy)-

The results of this chapter are based on an unpublished joint work with my advisor M.
Wojciechowski.



Chapter 2

Anisotropic Ornstein noninequalities

In his seminal paper [36], Ornstein proved the following: let {T]}§:1 be homogeneous dif-
ferential operators of the same order in d variables (with constant coefficients); if the in-
equality

¢
1T fll 2y ey S Z 15 f N 2, me)
j=2

holds true for any f € C5°(R?), then T} can be expressed as a linear combination of the
other 7. For example, in the statement above, the constant should be uniform with respect
to all functions f. The aim of the present chapter is to extend this theorem to the case
where the differential operators are anisotropic homogeneous; see also [21]], where a partial
progress in this direction was obtained by a simple Riesz product technique.

To formulate the results of this chapter, we have to introduce a few notions. Each differ-
ential polynomial P(0) in d variables has a Newton diagram which matches a set of integral
points in R? to each such polynomial. The monomial ad"* 95" ... ' corresponds to the
point m = (my, ma, ..., my); for an arbitrary polynomial, its Newton diagram is the union
of the Newton diagrams of its monomials.

Let A be an affine hyperplane in R that intersects all the positive semi-axes. We call
such a plane a pattern of homogeneity. We say that a differential polynomial is homogeneous
with respect to A (or simply A-homogeneous) if its Newton diagram lies on A.

Conjecture 2.1. Let A be a pattern of homogeneity in RY, let {Tj}gz1 be a collection of A-
homogeneous differential operators. If the inequality

¢
1T f ey S D NT5f ey
j=2



holds true for any f € Cg°(R?), then Ty can be expressed as a linear combination of the
other T}.

This conjecture may seem to be a simple generalization of Ornstein’s theorem. We warn
the reader that sometimes the anisotropic character of homogeneity brings new difficulties
to inequalities for differential operators (the main is that one lacks geometric tools such
as the isoperimetric inequality, or the coarea formula, etc.). For example, the classical em-
bedding W} (RY) — L a4 due to Gagliardo and Nirenberg had been generalized to the

anisotropic case only in [45] and finally in [27]; if one deals with similar embeddings for
vector fields, the isotropic case was successfully considered in [49] (see also the survey [50]),
and there is almost no progress for anisotropic case (however, see [25] 26]]).

The method we use to attack the conjecture, differs from that of Ornstein (though there
are some similarities). However, it is not new. It was noticed in [8]] that Ornstein’s theorem
is related to the behavior of certain rank one convex functions (for some special operators
this link had already been known, see [18]]). The case d = 2 was considered there. As for
the general case of Ornstein’s (isotropic) theorem, its proof via rank one convexity was an-
nounced in [23] and the proofs are available in [24]. In a sense, we follow the plan suggested

n [23]. However, the notions of quasi convexity, rank one convexity and others should be
properly adjusted to the anisotropic world, we have not seen such an adjustment anywhere.
For all these notions in the classical setting of the first gradient, their relationship with each
other, properties, etc., we refer the reader to the book [9]. There are certain problems in the
general anisotropic case that are not present in the classical setting. For example, the exis-
tence of the elementary laminate is not quite clear, at least, the classical reasoning does not
work. Quasi convexity still implies the rank one convexity, but this requires a new proof.
The approach of rank one convexity reduces Conjecture[2.1]to a certain geometric problem
about separately convex functions (Theorem[2.14) that is covered by Theorem 1 announced

n [23]] (Theorem 1.1 in [[24]). We give a simple proof of this fact, which may seem the sec-
ond advantage of approach in this chapter (though our proof does not give more advanced
Theorem 1 of [23]). We did not know the preprint [24]] almost until the publication of the
present text, and did our work independently. The discussion with the authors of [24] has
shown that though the spirit of our approach in the geometric part is similar to that of [24],
the presentation and details appear to be different.

We will prove a particular case of Conjecture which still seems to be rather general
(in particular, it covers the classical isotropic case).

Theorem 2.2. Let A be a pattern of homogeneity in R, let {T]}ﬁ:1 be A-homogeneous dif-
ferential operators. Suppose that all the monomials present in the T; have one and the same
parity of degree. If the inequality

¢
N T f oy ey S Z 75 f | ) (mey (2.1)

j=2



holds true for any f € Cg°(R?), then Ty can be expressed as a linear combination of the
other T}.

We note that the differential operators here are not necessarily scalar, i.e., one can prove
the same theorem for the case where operators act on vector fields. It is one of the advan-
tages of the general rank one convexity approach. However, to facilitate the notation, we
work on the scalar case.

We outline the structure of the chapter. We begin with restating inequality as an
extremal problem described by a certain Bellman function (if inequality holds, then
the corresponding Bellman function is non-negative). We also study the properties of our
Bellman function (they are gathered in Theorem [2.6), the most important of which is the
quasi convexity. All this material constitutes Section It turns out, that quasi convexity
leads to a softer, but easier to work with, property of rank one convexity. The proof of this
fact is given in Section[2.2] see Theorem[2.9] So, the Bellman function in question is rank one
convex. In Section [2.3] we prove that rank one convex functions homogeneous of order one
are non-negative, which gives us Theorem[2.2] In fact, it suffices to show a similar principle
for separately convex functions on R%, which is formalized in Theorem“ 2.14] This theorem
is purely convex geometric. Finally, we discuss related questions in Section

2.1 Bellman function and its properties

Inequality (2.1) can be rewritten as

inf (Z T30l s, ) = eI Tielln, ) = 0. (22)

peCse([0,1]9)

where c is a sufficiently small positive constant.

Definition 2.3. Suppose that 0%, « € A are all the partial derivatives that are present in
the T; (thus A is a subset of A N Z%). Consider the Hilbert space E with an orthonormal
basis e,, indexed with the set A. For each function ¢ and each point x, we have a mapping

0,145 2 V[gl(z) = > 0°[¢l(x)eq € E.

acA

We call the function V|| the generalized gradient of .

The operator V|| is an analogue of the usual gradient suitable for our problem.

10



Example 2.4. LetT; = 0, forj = 1,...,d. In this case the generalized gradient turns out
to be the usual gradient on the Euclidean space R?.

Example 2.5. Let us take the differential operators

Ti[p] = 0OV ] — 03V [p],  Tu[] = 04000,

Tylg] = 0000],  Tilg] = 90 [y). 23)

We can list all the partial derivatives present in the operators:

A= {6(0’0’2), 8(0’6’0), 8(4’0’0), 8(0’3’1), 8(2’0’1)}.

All the operators T; are A-homogeneous, where A = {x € R*: (z, (3,2,6)) = 12}. In this
case the generalized gradient is of the following form:

Vig] = (0©0[y], 860 ], 9100 ] 903D ], 0EOD[]) € RS,

We also consider the function V : E' — R given by the rule

L

V) = (D Tyel - elfie]). (24)

j=2
here T} are the linear functionals on E such that Tj(e) = 3., cajea if Tj = 3, Ca ;0%
With this portion of abstract linear algebra, we rewrite formula (2.2) as

inf / V(V[e](z)) dx = 0.

peCse([0,1])
[0,1]4

The main idea is to consider a perturbation of this extremal problem, i.e., the function B :
E — R given by the formula

B(e)=  inf / V(e + V]g|(z)) dz. (2.5)
wECSO([O,l]d)[ y
0,1

Theorem 2.6. Suppose that inequality holds true. Then, the function B possesses the
properties listed below.

1. It satisfies the inequalities —||e|| < B(e) < |le|| and B < V.

2. It is one homogeneous, i.e. B(\e) = |\|B(e).

3. It is a Lipschitz function.

11



4. It is a generalized quasi convex function, i.e. for any ¢ € C$°([0,1]¢) and anye € E
the inequality

/ B(e + V[p|(x))dx (2.6)
[0,1)¢

holds true.

Proof. 1) We get the upper estimates on the function B by plugging ¢ = 0 in the formula
for it:

B(e) < / Vie+ Vigl) = V(e) < Jell
[0,1]¢

We obtain the lower bounds on the function B from inequality and the triangle in-
equality:

[ (S ffste+vien] <]

[0,1)¢
[0,1)¢ (J
j=

[0,1]¢ <]

4
> = |Tjel = elThel,

Jj=2

e+ ¥

MN

T]e—i-V ‘—c

7: (V)| - cme\)

I T;(e + Vi) = Z!Tj(v[wm—dﬁd)

=2

[|
o

~

l\.')

[o, 1]d

~

1T (e + Vi) | - IT(VA)]) - cme|)

l\.')

where ¢ € C5°([0,1]%) is an arbitrary function. We take infimum of the above inequality
over all admissible ¢:

¢
—llell S =) |Tje| — c|Tre| < B(e).
=2

2) Since V' is a one homogeneous function, the following equality holds for every A # 0:

B()e) = inf /V()\6+V[90]) inf /|)\|V e+ VA~ gp])

peCe(0.1)4) e ((0,11%)
[0,1)4 0,1)4

12



We know that A™1C5°([0, 1]¢) = C5°([0, 1]%) for every A # 0, therefore

B()e) = inf AV \AR
( 6) @eCég}[O,l]d) / | | (6+ [ 4,0])
[0,1)4

=|A inf /Ve—i—V = |A\|B(e).
M el J V(6 T = e
0,1

3) In order to get the Lipschitz continuity of B, we rewrite the formula for it:

Vee E B(e)= inf V,(e),

peCsE([0.1]4)

where
Vo) = [ Vie+ Vgl
[0,1]4

It follows from the Lipschitz continuity of V' that every function V,, is a Lipschitz function
with the Lipschitz constant bounded by L, where L is the Lipschitz constant of the function
V. For every two points v;,v, € £, we can find a sequence of functions V,, such that
B(v;) = inf,en V,,, (v;) for j € {1,2}. We define

fr(e)= min V, (e).

n=1,2,....k

For every £ € N the function fj is the Lipschitz function with the Lipschitz constant
bounded by L. Hence

|B(v1) — B(va)| = Jim | fr(v1) = fr(va)| < Loy — vaf|.

4) Before we prove the generalized quasi convexity of this function, we need to introduce
some notation. We know that all & € A have common pattern of homogeneity A, thus we
can find a vector v € N? and a number k € N such that (a, y) = k for every a € A.

For every A € R and z € R we denote
Ty = (ANxy, NP, .., N 2y).
For every \ € N we define the partition of the unit cube [0, 1]¢ into small parallelepipeds:

Qy =y +1194[0,\"] foreveryy €Y, where

R1  R2 Rd

_ a., (2L 2 _4
V={yely= (o 1o e

Here Y is the set of “leftmost lowest” vertices of the parallelepipeds (). The parallelepipeds
@, are disjoint up to sets of measure zero and {J, ., @, = [0, 1]. Let us fix ¢ € C5°([0, 1]9).

> forﬁjGNU{O}and/@j<)\'yj}.
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Since V[y] is a uniformly continuous function on [0, 1]? and the diameter of the paral-
lelepipeds (), tends to zero uniformly with the growth of A, we can choose A sufficiently
large to obtain

VyeY Vzue @y  [VIgl(z) = V[pl(v)] < @2.7)

£
L Y
where L is the Lipschitz constant of the function V. Let {1, },cy be a family of functions
in C5°([0, 1]%). For these functions, we use the following rescaling:

Yya(@) = A7y (2 = y)y).

Let us observe that the rescaling (z — y), transforms the cube [0,1]¢ into Q,, thus
supp ¥y n C @y. Moreover, we know that

O [yl () = NTEAEI= 2000 ] (@ — y)n) = 0[] (2 = y)»)
for every o € A. By (2.5), we have

B < [ V(e+ X Vi) + Vi) ds

[0,1)¢ yey
=2 / V(e+ V(@) + Vigl(e) ) de.
yEYQy

We assumed that (2.7) holds, therefore, for arbitrary v, € @), we have the following esti-
mate:

Vet Tala) + Viel(a) da
Qy

</V@+wwmm+vmw»m+mm
Qy

= [Vt T )2 + Tl de + £1Qy).
Qy

, we have

Since A\~ (Z9=17) = 1Qy

[Vl Vi - + Tiglw) de
Qy

:4%y/vw+vwm@+Wﬂ%»w

[0,1]¢

for 2 = (x — y)». Now for every y € Y, v, € (), we can choose 1, such that

[ V(e Fl)6) + Tlel) d= < Ble + Tigl(w) + o

[0,1]¢

14



(this choice depends on v,,, however, we treat v, as of a fixed parameter). We obtain
< 1@y B(e+ V[¢](vy)) + 2¢
yey

from the above inequalities. We take mean integrals of this inequality over each cube @),
with respect to v,,, which gives us

Z B(e+ Vip|(vy))dv, + 2e = , l}dB(e—i-V[go](zz:))da:jLQg.

Since € was an arbitrary positive number, we have proved the generalized quasi convexity

of B. ]

The proof of the fourth point seems very similar to the standard Bellman induction step
(see [34, 137,48, 51]] or any other paper on Bellman function method in probability or har-
monic analysis); moreover, the function B itself is, in a sense, a Bellman function and in-
equality is a Bellman inequality. We suspect that this “similarity” should be more well
studied.

2.2 Rank one convexity

Inequality looks like a convexity inequality. Sometimes it is really the case.

Definition 2.7. We call a vector e, € E a generalized rank one vector if it is of the form
Zz‘“'*'ad %, x€RL ap€ A
acA

Remark 2.8. In Theorem we only consider the case where every o € A has the same
parity as the other elements of A. Therefore, il*1*1%0l ¢ R for every ap,a € A. Hence the
coefficients of the generalized rank one vector are real.

Theorem 2.9. The function B is a generalized rank one convex function, i.e. it is convex in
the directions of generalized rank one vectors.

To prove the theorem, we need two auxiliary lemmas.

Lemma 2.10. Foreveryxz € R and everye, § > 0, there exists a functionl, . s € C5°([0, 1]9)
and a set B C [0, 1] such that the following holds.

L[ V[lzeslll < llexll + e
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2. |B|=1-6.

3. The function V[l . ] ‘B with respect to the measure |1 = |B|*1dx‘B is equimeasurable
with the function cos(2nt)e,, t € [0, 1], i.e.

p({Vlzes) € W}) = Ht € [0,1] : cos(2t)e, € W}‘

for every Borel set W in E.

Proof. For a given z € R? we take the same + and k as in the proof of the fourth point of
Theorem [2.61 We consider the function

d
lees(€) =t cos(D_ 12;¢;)@(9),
=1
where ® is the smooth hat function:
1 £e28,1— 2(5’]d,
P(E)=1< 0 ¢elo, l]d\[5’, 1-— 6’]d,
o) €10,1] otherwise.

for ¢’ sufficiently small (in particular, we need 2(20')¢ < 4). Similarly to the fourth point of
Theorem[2.6] we define the set of proper parallelepipeds

tix,
Y; = {Q Q = (kj’l)j)j:l ..... d+H?:1[O,’wj]; kj c {1} U {kj € N: kj < 271'] — 1}} .

where v; = w; = 2mt V] Vifz; # 0and v; = &', w; = (1 — 20') otherwise. For any &,
we can choose t to be so large that

‘ U Q‘}l—é.
QEYy

Qc[28/,1-28"14

We put B to be this union, i.e. the union of the parallelepipeds () from the family Y; that
belong to [25’, 1 — 26']? entirely.
If ¢ is sufficiently large, then for every 3 € N satisfying 0 < (3,v) < k, we have

sup [t7107[@](6)] < €' (2.8)
¢e€lo,1]4

For any 3 € N the following holds:
d d
o° [COS (Zt”xﬁ})] :tw’”)xﬁ@ﬁ[cos] (Z t”jxj@) .
j=1 j=1
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Since all & € A have the same parity, we either have 0%[cos|(§) = (—1)% cos(§) for
la]+1

every a € A or 0%[cos|(z) = (—1) = sin(&) for every a € A. Without lost of generality
we may assume 2‘ ||, because the functions sine and cosine are equimeasurable on their
periodic domains. Therefore, for every £ € [0, 1]% and o € A we have

0*[lecs)(€) = B()0°[t " cos (D tVa;E))]

j=1
d
+ Z Cor gt RO [cos (Zt”xjgj(x)) 0° @]
o'+ B=a J=1
8#(0,0,...,0)
d
= O()20"[cos| (> tx;¢)) (2.9)
j=1
d
+ Z Co’ 3 ¢l —kge’ [COS](Zthjfj(x))@B[(b]
o' +B=a Jj=1
B8#(0,0,...,0)

la|

= (—1)2 2% cos Zt’ijjfj) + error,

where the coefficients ¢,/ g come from the Leibniz formula. The error is O(¢’) in absolute
value by and equals to zero on the set [26’, 1 — 25| (because the function ® is constant
there). For every £ € [0, 1]¢ we have

Vle:s](€ Z@ le 0] (€ Z ((_1)3 % cos Zt%;jg] +error) oy

acA acA j=1
d

=e, COS(Z thix;€;) + error.
j=1

Thus, for every ¢ € [0, 1]¢ and ¢’ sufficiently small, we obtain
[V{lees] (O < llexl| + [lerror|| < |le.|| +e.

Since the error equals to zero on the set [28, 1 — 24]4, it follows from that for every

¢ € B we have
d

Vlees](§) = cos(Y_ t738))e,

j=1
We note that the function cos(zd tVx,;€;)e, restricted to any () € Y} is equimeasurable

(with respect to the measure 2= on Q) with the function cos(2nt)e,, t € [0, 1], (one can ver-

IQ \
ify this fact using an appropriate dilation). Since B is a union of several parallelepipeds (),

the same holds with () replaced by B. ]
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Lemma 2.11. Suppose thatv : R — R is a Lipschitz function such that

1
v(z) < /v(m + Acos(27t))dt (2.10)

0

forany z, A € R. Then, v is convex.

Proof. We are going to verify that v is convex as a distribution, or what is the same, that the
distribution v” is non-negative. For that, we multiply inequality (2.10) by a positive function
¢ € C3°(R). Since v is a Lipschitz function, we can integrate it over R:

/ v(@)p(z)dz < / /1 (@ + Acos(2mt))p(x)dtdz

/v(x)go(x — Acos(2nt))dtdx

S

v(x)/ ((p(:c) — Acos(2mt)p () + %20032(27rt)g0” (z) + 0(/\2)> dtdz

L

v(x)p(x) —l—v(m)cp"(x)% /0082(27Tt) +0(\?) | dz.

Therefore,
1

1 "
0< 5 /COSz(Qﬂ't)dt /U(x)gb (x)dx +
0 R
Letting A\ — 0, we show that v” as a distribution satisfies v (¢) > 0 for all ¢ € C3°(R) and

¢ > 0. From the Schwartz theorem it follows that " is a non negative measure of locally
finite variation. Thus v’ is an increasing function and therefore v is convex. [

o(\?)
A2

Proof of Theorem The function B is a generalized quasi convex function, hence it
satisfies for every ¢ € C5°([0,1]%). Let us fix € R, A € R. We plug A, . 5 into (2.6).
We get (for every e € E)

Ble) < / Ble+ VM,_]) = / Ble+ VM) + / Ble+ V[\Ls))

[0,1)¢ 0,1]\B

< / Ble+ V\aes)) + OA(le] + leall +2)0)

18



from Lemma [2.10, Since V[, . 5] | 5 is equimeasurable (B equipped with the measure | B|)
with cos(27t)e,,
/B e+ V[N 5] / B(e + \cos(2nt)e,)dt.
[0,1]
Therefore,
B(e) < |B| / Ble + Acos(2mt)e,)dt + O(A([e] + [lea ]| +£)9).
(0,1]

Since for § — 0, we have | B| — 1, and then

B(e) < / B(e + Acos(2rt)e,)dt. (2.11)

[0,1]

For a fixed e € E, consider the function R 5 s — B(e + se,). By (2.11),

B(e + se;) < / B(e + se, + Acos(2nt)e, )dt.
[0,1]

Thus, by Lemma [2.11} the function R 3 s — B(e + se,) is convex (one simply applies
lemma to this function). Since ¢ € F and z € R% )\ € R were arbitrary, it proves the
generalized rank one convexity of the function B. [

2.3 Separately convex homogeneous functions and proof of Theo-
rem

Lemma 2.12. Generalized rank one vectors span E.

Proof. Since E is a finite dimensional Hilbert space, every functional on E is of the form

0" (1) = (Xaea Galas - ). We get
P (eg) = Za laltlaol

acA

for every € R If E is not a span of generalized rank one vectors, then there exists a non

trivial ¢* such that
(em) — Z aaxaﬂaH"aO‘
acA

for every x € R%. However, 2 are linearly independent monomials. Therefore, a,, = 0 for
every « € A. Hence ¢* = 0 and the generalized rank one vectors span F. O]
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We recall that our aim was to show that 7} is a linear combination of the other 7. By

comparing the kernels of the Tj, its is equivalent to the fact that IV > 0 everywhere. By the
evident inequality B < V/, it suffices to prove that B is non-negative. By Lemma and
Theorem this will follow from the theorem below. Hence it suffices to prove Theorem

to get Theorem

Definition 2.13. A function F' : R? — R is separately convex if it is convex with respect to
each variable.

Theorem 2.14. A function F' : R? — R that is separately convex and homogeneous of order
one is non-negative

Before passing to the proof, we cite Theorem 2.31 of the book [9], which says that a
separately convex function is continuous. This fact will be implicitly used several times in
the reasoning below.

Proof. We proceed by induction. Suppose that the statement of the theorem holds true for
the dimension d — 1, we then prove it for the dimension d. Construct the function G :
R?! — R by the formula

G(z) = F(x,1), xR

This function is separately convex and convex with respect to radius, i.e. for every x €
R?! the function R, > t — G(tz) is a convex function. Indeed, the function F' is one
homogeneous and separately convex, thus for ¢,7 > 0 and 7 € (0, 1) we have:

7G(tx) + (1 — 7)G(rz) = 7F(tz,1) + (1 — 7)F(rz, 1)
~(rt+ (1= ) (PR O )

Tt+ (1 —7)r
> (rt+ (1= 7)r)F <g; Wl_m)

=F((rt+(1—-71)r)z,1) =G ((rt + (1 —7)r)x).

We claim that for each z € R?"! the function R > ¢ + G(tx) is convex. Since the func-
tion G is continuous, it suffices to prove that G(tx)+G(—tx) > G(0) forallt € R. Consider
another function V:

xr e R

V(z) = lim G(tx) + G(—tzx) — 2G(0)
t—0+ t ’

The limit exists due to the convexity with respect to radius. This function V' is one homo-
geneous and separately convex. However, it may have attained the value —oo. Fortunately,
this is not the case. If there exists x € R? such that V(2) = —oo then the following holds:

2V (0,29, ... xq) S V(21,...,2q) + V(=21,...,24) = —00.
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Therefore V (0, xo, ..., x4) = —oo. We repeat the above reasoning with z,, ..., x4 instead
of x1 and we get that V' (0) = —o0, but from the definition of V' we know that

Vo) = G(0) + G(S) —2G/(0)

=0.

Hence V() is finite for every z € R?"!. Thus, by the induction hypothesis, V' is non-
negative. So, R 5 ¢ — G(tx) is a convex function.

By symmetry, G(z) + G(—z) > 2F(z,0). On the other hand, lim;_, 1, €% = F(z,0).
So, the convexity of t — G(tx) gives the inequality |G(z) — G(—x)| < 2F(z,0). Adding
these two inequalities, we get that F'(z,1) > 0. O

Proof of Theorem Assume that inequality holds. Then, by Theorem the
function B given by is Lipschitz, one homogeneous, generalized quasi convex, and
satisfies the inequality B < V, where the function V is given by formula (2.4). Then, by
Theorem [2.9] B is a generalized rank one convex function.

Let e € E be an arbitrary point. By Lemma [2.12] e is a linear combination of general-
ized rank one vectors e, , €,,, ..., €;,. We may assume that they are linearly independent.
Consider the function F' : R¥ — R given by the rule

F(z1,20,...,2,) = B(z1€4, + 20€4, + ... + 2i€s,)-

By the generalized rank one convexity of B, F' is separately convex. It is also one ho-
mogeneous, thus ' > 0 by Theorem Therefore, B(e) is also non-negative for arbi-
trary e € F.

Since B > 0, we have V' > 0. In such a case, it follows from formula (2.4) that Ker T >
ﬂ?ZQ Ker 7). Therefore, T} is a linear combination of the other 7j. O

2.4 Related questions

Towards Conjecture The following statement plays the same role in view of Conjec-
ture[2.1} as Theorem plays in the proof of Theorem[2.2]

Conjecture 2.15. Let ' : R?*® — R be a Lipschitz homogeneous function of order one.
Suppose that for any 7 = 1,2, ..., d the function F' is subharmonic with respect to the vari-
ables (xj,x;14). Then, I is non-negative.
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Indeed, plugging the cosine function into as we did in the proof of Theorem[2.9|leads
to “subharmonicity’{|of the function B in the directions of projections of a generalized rank
one vector onto subspaces generated by odd and even monomials in A correspondingly.
Therefore, Conjecture [2.1]follows from Conjecture [2.15]

We are not able to prove Conjecture However, we know the following: in the
case d = 1, the function F' is not only non-negative, but, in fact, convex (i.e. a one homo-
geneous subharmonic function is convex). On the other hand, there is no much hope for
simplifications: a subharmonic one homogeneous function in R? (and thus in R? d > 3)

. . .4 . witad4al-ad
can attain negative values, e.g. in R* one may take the function o
rit+a3+ag

There are also reasons that differ from the ones discussed in the present chapter that
may “break” inequality (2.1). One of them is a certain geometric property of the spaces
generated by the operators 7). Not stating any general theorem or conjecture, we treat an
instructive example. Consider the non-inequality

1050 f NIy S NOLf NIy + 1102 f ]z, (2.12)

Conjecture hints us that it cannot be true. We will disprove it on the torus T? and
leave to the reader the rigorous formulation and proof of the corresponding transference
principle, whose heuristic form is “inequalities of the sort are true or untrue simul-
taneously on the torus and the Euclidean space”. Consider two anisotropic homogeneous
Sobolev spaces W, and W5, which are obtained from the set of trigonometric polynomials
by completion and factorization over the null-space with respect to the seminorms

Ifllw, = 008 fllza + 105 f s W fllwe = 10702 llzs + 101 fll 2y + 105 12

If inequality holds true, then these two spaces are, in fact, equal (the identity operator
is a Banach space isomorphism between these spaces). However, it follows from the re-
sult of [40] (see [53}54] as well) that W5 has a complemented translation-invariant Hilbert
subspac whereas W, does not, a contradiction.

Martingale transforms. Let S = {S,},, n € {0} UN, be an increasing filtration of finite
algebras on the standard probability space. We suppose that it differentiates L (i.e. for
any f € L;(12) the sequence E(f | S,,) tends to f almost surely). We will be working with
martingales adapted to this filtration.

Definition 2.16. Let & = {a, },, be a bounded sequence. The linear operator

T.[f] = Zajfl(fj — fi=1),  f={fu}n isan Ly martingale,
j=1

"The “subharmonicity” means that DB > 0 as a distribution, where D is an elliptic symmetric differential operator
of second order (with constant real coefficients); one can then pass to usual subharmonicity by an appropriate change of
variable.

2That means that there exists a subspace X C W> such that g € X whenever g(- +1¢) € X, t € T2, X is isomorphic
to an infinite dimensional Hilbert space, and there exists a continuous projector P : Wy — X.
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is called a martingale transform.

Our definition is not as general as the usual one, and we refer the reader to the book [37]]
for the information about such type operators. We only mention that martingale transforms
serve as a probabilistic analogue for the Calderén-Zygmund operators. The probabilistic
version of Conjecture [2.1{looks like this.

Conjecture 2.17. Suppose o', a?, ... o' are bounded sequences. Suppose that the alge-

bras S,, uniformly grow, i.e. there exists v < 1 such that each atom a of S,, is split in Sy, 1
into atoms of probability not greater than +y|a| each. The inequality

¢
1Tor Flly SO 1T flz (2.13)
j=2

holds for any martingale f adapted to{S,.},, if and only if o' is a sum of a linear combination
of the o’ and an (, sequence.

We do not know whether the condition of uniform growth fits this conjecture. Anyway,
it is clear that one should require some condition of this sort (otherwise one may take 5,, =
Spi1 = ... = S,y very often and loose all the control of the sequences o/ on this time
intervals). Again, we are not able to prove the conjecture in the full generality, but will deal
with an important particular case.

Theorem 2.18. Suppose o', a?, ..., o to be bounded periodic sequences. The inequality

¢
T flly S Y 1T fll,
j=2

holds if and only if o' is a linear combination of the other o

Proof. To avoid technicalities, we will be working with finite martingales (denote the class
of such martingales by M). The general case can be derived by stopping time. Assume
that inequality holds true. Consider the Bellman function B : R — R given by the
formula

)= jof (Z s + Tl = el + T,

It is easy to verify that this functlon is one homogeneous and Lipschitz. Moreover, B is
convex in the direction of (al, a2, ..., a’) for each n (by the assumption of periodicity,
there is only a finite number of these vectors); the proof of this assertion is a simplification
of Theorem (here we do not have to make additional approximations; however, see [48]],
Lemma 2.17 for a very similar reasoning). Thus, by Theorem B is non-negative on
the span of {(a,,, a2, ..., a;,) }n. Since B(x) < 3., 75| —

does not contain the z1-axis. Therefore, ! is a linear combination of the other o/. O
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Case p > 1. Inequality (2.1) may become valid provided one replaces the L;-norm with
the L, one, 1 < p < oc. Let ¢, be the best possible constant in the inequality

1T 12 gy < o S NTIIE g (214)

y4
=2

It is interesting to compute the asymptotics of ¢, as p — 1. Some particular cases have been
considered in [2], we also refer the reader there for a discussion of similar questions.

Conjecture 2.19. Let A be a pattern of homogeneity in R%, let {Tj}f:1 be a collection of A-
homogeneous differential operators. If T} cannot be expressed as a linear combination of the
otherT}, then c, 2 1

~y p—l

The conjecture claims that if there is no continuity at the endpoint, then the inequality
behaves at least as if it had a weak type (1, 1) there (it is also interesting to study when there
is a weak type (1, 1) indeed). First, we note that this question is interesting even when there
are only two polynomials. Second, this is only a bound from below for ¢,. Even in the case
of two polynomials, ¢, can be as big as (p — 1)' ™ (and thus the endpoint inequality may
not be of weak type (1, 1), at least when d > 3), see [2] for the example.

As in the previous point, Conjecture will follow from the corresponding geometric
statement in the spirit of Theorem

Conjecture 2.20. Let ' : R? — R be separately convex p-homogeneous function
(i.e, F(Ax) = |M\PF(z)). Suppose that F(x) < |x|P. Then, F(x) = (1 — p)|x|P.

Conjecture is derived from Conjecture in the same way as Theorem|[2.2]derived
from Theorem one considers the Bellman function (2.5) with the function V' given by
the formula

¢
Vie) = (e D I Tyel” = [Tiel? ).
j=2

proves its generalized quasi convexity, which leads to the generalized rank one convexity,
and then uses Conjecture to estimate ¢, from below.

It is not difficult to verify the case d = 2 of Conjecture Therefore, there exists
a Cg°-function f, such that

(0 = D102 folr, 2 (102 lleym) + 1080l e ).
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Chapter 3

Continuouity of Fourier multipliers on
homogenous Sobolev Spaces

We consider the invariant operators on the homogeneous Sobolev spaces on R? given by
Fourier multipliers. The homogeneous Sobolev space W} (IR%) consists of functions on R¢
whose distributional gradient is integrable. A measurable function m : R? — R is called
a (Fourier) multiplier if the operator given by the formula T,,f = Z '(m - Z (f)) is
bounded. Fourier transforms of bounded measures are examples of multipliers. Indeed, the
convolution with a bounded measure is a bounded operator on every translation invariant
space with continuous shifts operators, in particular on the homogeneous Sobolev space.

However, the class of Fourier multipliers on W} (R?) is wider than the class of Fourier
transforms of measures (Proposition 2.2 in [42]). One of the important questions about
the invariant subspaces of L' is a description of bounded singular operators acting on it
e.g. the Calderon-Zygmund operators are given by multiplier with singularity at zero.
Therefore, the question of the continuity of a multiplier arises quite naturally in the theory.

The simplest case of noncontinuous multipliers was settled by A. Bonami and S.
Poornima who proved that the only homogeneous multipliers of degree zero are the
constants. In their beautiful proof they use very delicate result by Ornstein (cf. [36]) on the
non-majorization of a partial derivative by other derivatives of the same order. While the
class of homogeneous multipliers, containing e.g. Riesz transforms, is the most important
one, the question of the continuity of general multipliers remained open. The aim of this
chapter is to fill the gap. We prove that any multiplier acting on the homogeneous Sobolev
space with integral norm is a continuous function.

Our proof uses three main ingredients. The first one is the Bonami - Poornima result.
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The second is the Riesz product technique which allows us to make the crucial estimates on
the torus group. This would be sufficient for our purpose, provided we are able to transfer
the problem from R? to T¢. Such transference in the case of multipliers on L spaces is the
subject of the theorem of deLeeuw (cf. [11]). However, in the case of multipliers on the
homogeneous Sobolev space no version of the deLeeuw transference theorem is known.
We are able to overcome this difficulty due to the special form of functions on which
the multiplier reaches its norm. The question of general deLeeuw type theorem for the
homogeneous Sobolev spaces remains open.

One can ask whether a similar approach could be used to prove the Ornstein’s non-
inequality. Indeed in some special cases this technique works, for more details one can

check [21]].

For a formal statement of the main theorem we use standard definitions and notations
for classical spaces in particular

©

(R?) - space of C*°(R?) functions with compact support on R?.

!

9

RY) - space of distributions on R%.

(
(

S

R?) - Schwartz function space on R,

Y

(+) - Fourier transform on the space of tempered distributions.

Y

~1(.) - inverse Fourier transform on the space of tempered distributions.

One can find more details on the function spaces mentioned above in [44]. For the defi-
nition of the Fourier transform we follow [47]. As usual, C' will denote a generic constant,
whose value can change from line to line.

We write W} (R?) for the Sobolev space, given by

WZ(RY) = {f € L?(R?) : D*f € LP(R?) for |a| < k}

with the norm

Ifllwresy == > IID*fllpome

0< || <k

where v is a multi-index and D is the corresponding distributional derivative and £ € N*.
Analogously we write Wé" (R?) for the homogeneous Sobolev space, given by

WP(RY) = {feZ'RY : D*f € LP(R?) for |a| = k}
with the seminorm

1 iz = D 1D ll1oeay

|a|=k
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where o, D* and k are the same as above. The homogeneous Sobolev spaces are spe-
cial cases of Beppo-Levi spaces which are discussed in [13]. Later we will use the symbol
WP (RR?) to denote the quotient space W/ (RY)/ 22", where £* stands for the space of poly-
nomials of degree strictly less than k. The space W7 (R?)/2* with the quotient norm is a
Banach space.

We say that the function m € L*(R?) is a Fourier multiplier on X, where X is either
the Lebesgue space, the Sobolev space or the homogeneous Sobolev space W (R?), if there
exists a bounded operator 7}, : X — X such that

F(Tnf) =mZ (f) Y fe S RY.

We use the symbol .Z (X, X) to denote the space of the Fourier multipliers on X with the

norm
Imll.acexy = ITnll - Ym e #(X, X).

Now we can state the main result of this chapter

Theorem 3.1. Ifd > 2 andm € .4 (W} (RY), W (R?)) then m € Cy(R?).

In the proof we will use the theorem of A. Bonami and S. Poornima on the homogeneous
Fourier multipliers on W} (R9).

Theorem 3.2 (A. Bonami, S. Poornima). Let Q2 be a continuous function on R%\ {0}, homo-

geneous of degree zero i.e.
Qex) = Q(x) Va c R

Then . _
Qe (WHRY, WHRY)) & Q=K € C.

For the proof see [3].

In the next section we prove Theorem To focus the attention on the main line of
the proof, some technical lemmas are formulated there without proofs. For the reader’s
convenience proofs of the technical lemmas are given in the last section.

Proof of the Theorem

Let the function m € . (W} (R%), W] (R?)). Hence &m(&).% (f) (£) is a Fourier transform
of an integrable function for every f € .#(R?). Therefore m is a continuous function on
R\ {0}. Thus it is enough to show the existence of the limit lim,_,o m(x).

Prior to the proof we need one more definition. Let f : RY — R.
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(*) We say that the function f has almost radial limits at 0 iff for every vector w € S%!
there exists a scalar g(w) € R such that for every sequences t;, — 0 and w* — w
(tr € R; w* € S%!) we have

lim f(tw") = g(w).

k—o0

Proof of Theorem[3.1 Since m is bounded, there are three possibilities:

Case I The multiplier m has almost radial limits at 0 (¥).

Case II The multiplier m does not satisfy condition (*). Then there exists a sequence

{a"}nen C R% a” — 0, a vector v € S' and two different scalars a and b such
that

a”
lim — =wv
n—00 |an|

and one of the following is satisfied

(a) Symmetric case.

limm(a®) = limm(—a*) =a,
lim m(a®"*") = lim m(—a®"*') =b.
n—oo n—oo
(b) Asymmetric case.

lim m(a") =a,

n—oo

lim m(—a"™) =b

n—oo

Proof in the Case I

We will use the following lemma, stated in [3], on the pointwise convergence of multipliers.

Lemma 3.3. Let {m;} be a sequence of Fourier multipliers on W (R?) and assume that the
corresponding operators have commonly bounded norms. If my, converge pointwise to a func-
tion m(-) then m(-) is a Fourier multiplier on W (R?).

In the next lemma we use Theorem [3.2to show that the multipliers satisfying condition
(*) are continuous.

Lemma 3.4. If d > 2 and m € . #(WLHRY), W (RY)) satisfies condition (*), then
limg_,o m(&) exists and is finite.
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Proof. Note first that m has the radial limit at 0 (we apply (*) to fixed v = v* = w¥). Hence
the formula

Q(¢) = lim m(%ﬁ).

n—00

defines a homogeneous function on R%\{0}. The condition (*) implies continuity of 2 on

RA\{0}. Indeed

lim Q(&;,) = lim lim m(— Ek) Y Jim m(lé) =Q(§) (3.2)

£.—€ £, —En—oo n—o00 n

Since the norm of multipliers from .# (W' (R%), W} (R%)) is invariant under rescaling,
the functions m(%) are Fourier multipliers with equal norms. By Lemmatheir pointwise
limit, being bounded and continuous on R?\{0}, is a Fourier multiplier on W} (R?). Then
Theorem [3.2/implies that 2 is a constant function which in turn means that all radial limits
of m are equal. In similar way as in we check that a function which has all radial limits
equal and satisfies condition (*) is continuous at zero. Hence multiplier m is a continuous
function. 0

Proof in the Case IIa

From now on we assume that d = 2. This allows us to simplify the notation yet not loosing
the generality. We can also assume, transforming linearly if necessary, thata = 1,6 = —1
and v = (1,0). We will estimate the norm of the multiplier m from the following lemma:

Lemma 3.5. (cf. [55]) There exists constant C' > 0 such that for every s € N7, there exists
M, such that

S

Z<_1)j cos (2m(c’, €)) H (14 cos (2m(c*, €)))

j=1 1<k<j

> COs (3.3)

L (T4)

whenever {c*};_, C Z% satisfies

" > M| cF|.
Remark 3.6. The value of M could be derived from [33], where it is proved that whenever
Sy (‘ k+1|) < 00 then the expression appearing in the inequality (3.3) is equivalent to the

similar one with functions & — cos(2w(c’, €)) replaced by cosines of certain independent
random variables, for which it follows by the theorem by R. Latata (Theorem 1 in [29]). In [12]
the weaker condition ), _, (|c|’f—‘k*|1|)2 < o0 is claimed to be sufficient (see Chapter). Similar

inequality was obtained and used by M. Wojciechowski in [55].

r2)

In the rest of the chapter we put N := <| l?fg
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Let us assume that the operator 7}, corresponding to the multiplier m is bounded. For
every s € N we will construct a function A, with norm bounded by a constant independent
of s, such that

[ Tohs|lyia ey 2 Cs.

Let ¢ > 0, be fixed later. We construct the sequence of balls B(c*, ;) and B(—c*, ;) for
k€ {1,2,...,s}, such that the following conditions hold:

I-A. |m(€) — (=1)k| < efor &€ € B(c*, 1) UB(—c*,ry) fork =1,2,...,s,
I-B. r, <2 Vr, forn=1,2,...,5s -1,

I-C. "€ QxQforn=1,2,...,s,

I-D. |¢"™ <27 Np, forn=1,2,...,5s—1,

I-E. |c5|/|c]| < goag forn =1,2,... s,

II-F. |c"| < 27| forn =1,2,...,s — 1,

I-G. |¢}| >rpforn=1,2,...,sandi = 1,2,

I-H. |c?| < 27| forn =1,2,...,sandi € {1,2}.

-1 B(Y', ¢¢/,m) C B(Guck,ry) for o € {~1,1}, ¢; € {~1,0,1}. and n =
1,2,...,s.

We define sequences {c*} and {r;} by backward induction. There is no problem with
T, because it is chosen always after ¢ and for II-B and II-G we take it sufficiently small. For
c" note that the conditions II-D and II-F require only that c" is small enough. Conditions
II-A, II-E, II-H will be satisfied if we take as c" a vector a* with sufficiently large index k s.t.
k =n mod 2. At the end we adjust our choice to the condition II-C: since the rationals are
dense in R and all other inequalities are strict, we can do this in such a way that inequalities

remain valid.
The condition II-I follows from II-B, II-D and II-F. Indeed for k€ {1,...,s— 1},
GG e{-1,0,1},je{l,....,k— 1} and ¢, € {—1,1} we have

k—1 k-1 k
_ _ N 1
E 7’]'<2NE Tj+2NT’k<...<<E 2NJ>Tk<§Tk.
]:1 ]:2 ]:1
Hence

K
Gt =) e
j=1

k—1 ‘
> G
j=1

k—1 A k—1 1
< ; ¢el| < ;2”@ < 5Tk (3.4)
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By condition II-B we have 7; < % for k > [. Therefore by (3.4)

k
B(> (;d. 1) CB(Gef,ry) Yk e{1,2,... s},

J=1

The norm of 7}, is invariant under rescaling. Then by condition II-C for fixed s multiplying
¢’’s by suitable scalar and rescaling multiplier m by the same scalar, we may assume that
c',..., ¢’ € 7Z? and the conditions II-A — II-I are still satisfied. Note that if ¢ € Z? has the
representation

q-= ZC] CJ where CJ( ) S {_1707 1}7 (35)

it is unique. For ¢ € Q? we denote by x(q) the number of non zero terms in the represen-
tation (3.5). We define the set

Ayi={q:q= Zgj(q)cf;q # 0 where ¢;(q) € {~1,0,1}}. (3.6)
j=1

If g, q € A, are two different vectors then

lg—q| > inf || > 1. (3.7)

We will construct a function h in such a way that one of its derivatives behaves like a Riesz
product. Let
g(t) == max{l — [¢],0}"

and
G(§) == g(&)g(&)
We denote by R, the modified Riesz product:

Ry(t) := =1+ II;_, (1 + cos(2n(t, c"))

For fixed § € N* we define a function H? : R? — R? by the formula

H(©) = Y 5G (@E-0) = Y R(@)G (2 - a). (39)

qeis q€7?

Since R, are densities of periodic measures with uniformly bounded norms and the inverse
Fourier transform of the function GG decays sufficiently fast at infinity we get:

Corollary 3.7. For every 0 € NT the following inequality is satisfied
1FHH) @2y < ClIRs|1r2) < C,

where the constant C' is independent of s.
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In the next lemma we state another property of H°.

Lemma 3.8. There exists = 0(s) € N* such that

J‘*lée
H” (&H)

where the constant C' is independent of s.

<C
L1(R?)

The proof of this fact one can find in the Appendix. From now on we put H := H).

Remark 3.9. Note that homogeneous, non-constant functions are never multipliers on L' (R%).
The above lemma holds true only due to the special form of H®, mainly the strong concentration
of its support near x1-axis and because of small size of its support.

Since H is bounded, continuous and has compact support separated from the axis {£; =
0}, the function g is a tempered distribution. We define a tempered distribution A by the
formula

W) = L(FY) e

T
By standard properties of the Fourier transform on the space of tempered distributions, we

get
0
al  “2 - H
7 <3l‘1h)

06
y&%@_&ﬂ

We proved that both A and g—fH are the Fourier transforms of L' functions. Hence equalities

mean that i € W] (R?%) with the norm bounded by a constant independent of s.
Now we estimate the norm of T},,h from below. Since T;,, : W} (R?) — W} (R?), obviously
52-Trh € L'(R?). We denote by P the periodization of the function ;2-T,,h. It is only the

fact that, when the function is in L!(IR%), then its periodization is in L*(T%). We have

9
85171

(3.9)

Tnh > [|P||L,(12)- (3.10)

Tty > |
Lt (RQ)

One can check that the function P is a polynomial given by the formula

P(&) = > m(p)H(p)e*™P*. (3.11)
PEAS
We put
a(p) i= { TV H(P) whenp € Asand p € B(eh, i) U B(~¢t, i),
' 0 otherwise.
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Since A, is a finite set, the function

§ CL 2m (p,€)

pEZ?
is a polynomial. By the triangle inequality,
1Py 2 21 orrz) = 1P = Z][ o r2). (3.12)

By the conditions II-Iand II-A, all coefficients of Z differ by at most ¢ from the corresponding
coefficients of P. Since both polynomials have no more then 3° non-zero coefficients, we
get

”Z — P”Ll('p) < e3°. (3.13)

It is easy to verify that
Z T cos (2m(c, €)) H (14 cos (2m(c*, €))).
=1 1<k<j

By the condition II-F and Lemma [3.5]

| Z]| 1 (r2) = Cs.

Combining now successively (3.10), (3.12) and (3.13), we get

| Thlyir ey > C's — €3°.

Setting ¢ = C37°" s
[ Tnhllvi g2y = C's

which by the uniform boundedness of ||| 1 g2y proves that T" is unbounded.

Proof in Case IIb

The proof in this case is very similar to Case Ila. The only difference is that, due to lack of
symmetry, we have to replace Lemma [3.5| by its asymmetric counterpart. We will use the
following result from [[55]].

Lemma 3.10. There exist C' > 0 such that for everyn € N7 there exists M = M (n) such
that for any sequence {c*}7_, C Z%, which satisfies

" > M,

following inequality holds

|| 262wi<cj7§> H (1 + cos ((27TC]€7€>)) ||L1(TT) = Cn.
=1

1<k<y
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For fixed ¢ > 0 we construct the sequence of balls B(c", r,,) and B(—c", r,) satisfying
conditions II-B - II-I and

I-A'. |m(€) — 1| < e for B(c",r,) and |m(§)| < efor€ € B(—c*,r,)andn =1,2,...,s

The inductive construction is similar as in the Case Ila. Then, similarly as in the Case Ila,

we define 0(s) and h, and we get

where the constant C' > 0 independent of s. Analogously as in the Case Ila we define
polynomial P by and by similar reasons

1T Pllvirg 2y 2 [1P]] 1 72)-

Then we put
a(p) = { H(p) whenp € Ayandp € B(c*, ry),

0 otherwise ,

where k € {1,2,...,s}. The function a(-) differs from its analogue from Case Ila. We
define a polynomial Z by
Z a(p 271'1 (p, 5

pEZ2

It is easy to check that
n
Z 2mi(e) ) H (1+ cos (2m(c*, €))) ,
=1 1<k<j
and similar reasoning as in the Case Ila gives
”P”Ll(']l‘Q) 2 HZ”Ll(?l‘Q) — 835.

By Lemma [3.10]
||Z||L1('IF2) 2 Cs.

Hence
HTthWII(R2) = Cs— 538,

and setting e = C'37°"'s we get

I Tnhllyiry 2y = C's

which by uniform boundedness of |41 z2) proves that T is unbounded. O
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Proof of Lemma 3.8

We begin with two lemmas. We study the operator given by sufficiently smooth multiplier
acting on a subspace of L' functions with compactly supported Fourier transform. Let k be
the smallest even number greater then (%W, d > 2. We fix function n € C§° supported in
ball of radius 1.

Lemma 3.11. Let0 < ¢ < 7 < 1 and f € C**(B(0,7)) with all derivatives of order less
than or equal to k vanishing at 0. Then the following inequality holds

1F 7 0Pl reay < Cpd) e [ Y [D*F(0)] +o(e) | (3.14)
|a|=k+1

where n.(x) := n(cx).

Proof. We recall that for such k the left hand side is bounded up to a constant by |7 f][y

(cf. [47]). By the Leibniz Formula, it is sufficient to prove that all derivatives D?f are
dominated by 31—, [D*f(0)| + o() for |3] < k on B(0,¢). This is a consequence of
Taylor’s Formula.

Df(x)= > DPF0)2* + of|a| )
|| <k+1-18] (3.15)
= Y D*f(0)+o(e).
jedl=k-+1
[

Lemma 3.12. Let0 < ¢ <r < 1l and f € C**Y(B(0, 7)) then the following inequality holds

|77 0 Dlpge) < Cn.d) | 7@+ | D D)) +o(e) |- @16)

|| <k+1

Proof. Writing f as the sum of a polynomial of degree k and a function satisfying the as-
sumptions of the previous lemma, we see that it is sufficient to consider only polynomials
and by linearity monomials. For f(&) = (2i7&)®, we have

— o (0% T o
177 e H) @), = e D*n(D)lle, < Clm)e (3.17)
Hence inequality follows. O

Now we can prove the Lemma [3.8]
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Proof. of Lemma 3.8

By the definition of H? we see that its support is contained in the union of disjoint balls of
radius r with centered in points of A. Radius  depends only on the parameter 6, so we can
choose it as small as we wish. Let 1, € C be rescaled and translated copies of the same
function n with suppn, C B(q,2r) and n,(§) = 1, £ € B(q,r) for every g € A,. The
following identity holds

2H(©O = 3 O HE). (318)
1 fvrd &1

By the condition II-G (page [30) the function f = % satisfies conditions of Lemma [3.12{on
these balls. Hence for r small enough by the triangle inequality, (3.16)), and (3.18)

17 (g fHO) 1@y < Cm) D 1f @]+ | Y 1Df@)] | +ole)

gEA;s la|<k+1
NFTHH) 10 g2y

By conditions II-E and II-H,

k=1 .
Q2| C§+Zj:1 C]C; < /{Z|Ck| s ﬁ < 1
- k— N fe— X PR s”

al |+ G| g -l 3 el 203

Since |A4| < 3° we can choose sufficiently small £ > 0 such that
_1,6 _
|7 l(gﬂe)HLl(R?) < CIFHH) 1 ey,

where the constant C' does not depend on s. ]
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Chapter 4

Isomorphism between sets of
trigonometric polynomials

It is an easy observation that for any two trigonometric polynomials of one variable p(t)
and ¢(t) the L? norm of the polynomial p(t) + ¢**N?q(t) tends to the L” norm of the two
variables polynomial p(t) +e*™q(t). It is a consequence of the fact that character with high
oscillation mimics an independent Steinhaus variable. Based on this observation Y. Meyer
proposed in [33]] that the formula

f(z) = Z ne®™ Zia1 T Tf(z) = ZaneQ’”ZLWW,

neJ neJ
where © = (z1,...,2;), provides an LP-isomorphism between the space of k-variables
trigonometric polynomials with spectrum contained in k-cube J = [—1,1]* N Z* and the

invariant subspace of one variable polynomials if the sequence 7; increase rapidly enough.
This statement is established in [33] for p = oo and sequence of positive integers 7; s.t.
o0
7j
—— < 00 and Tity1 = 3T;
=1 Tj+1
Later M. Déchamps [[12] improved this result extending the spectrum to k-hyperrectangle
[Li[=rj 0 ZF and the sequence 7; s.t.

Z <#> < 00 and Ti41 =

In both articles the extensions to 1 < p < oo seams to be incomplete. In the last section
of this chapter we indicate why the use of duality and interpolation in this problem is a
delicate matter.

The purpose of this chapter is to prove that under the Meyer’s condition, the formula from

(’f’j + 1)7—j

SE
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the beginning of the chapter for 1 < p < oo defines an isomorphism. We also give an
extensions of this fact to the isomorphism of multidimensional tori and we clarify the role
of size and cardinality in quantitative condition.

We study the equivalence between finite dimensional spaces of trigonometric polynomi-
als defined on T with spaces of trigonometric polynomials defined on T%. Let 7 = {7;}}_,
be a given family of integer vectors, where 7, = (7,1, ..., 7;.4). We investigate the operator

Za P2 (AL AR, (@ 12n)) TF(z) = Zakem(zgﬂ:mxj@ Ve Tdk, e Td’

)
(4.1)
where x = (z1, ..., 1), with suitably chosen A\ = (\1,...,\;) € Z%. To be more precise
we introduce following notation.

Definition 4.1. Letk € N and A C ZF
LA(TF) = {f € LP(T*) : supp fc A}

Definition 4.2. For a given sequence of d-tuples of integers T = {7, }nen and family of sets
A = { A, nen (An C Z2) we define sets E C 74 and I C ZN (here ZY is a dual group to
TV), in the following way:

F:=F()={A= 0\, ,...) € (ZY . N, € A},

E:=E(d,r)={B€Z' : B=> mX\forAeF}, (4.2)
k=1
where by T\, we denote pointwise product i.e. TN = (Tk1Me1s-- - ThdMed)s Tk =

(Tk71, Ce 77—k,d) and)\k = (/\k,h .. '7)‘k7d>'

The main result of this chapter is following:

Theorem 4.3. For a given sequence of d-tuples of integers T = {7, }nen and family of sets
o = { A nen (A, C Z9) satisfying

An C [_rna Tn]da
k
ITesilloo >2 ) rliTillee VR EN,
Z (4.3)
Z #AJ+1||TJ||oo7"J < o0,
o emin [T
the operator T := Ty : L%(TN) — LL,(T?) given by the formula
Tf Z f 27rz l)\]’T]’,iE> (44)

A€eF

is an isomorphism of Banach spaces.
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Remark 4.4. If we assume that UA,, is bounded set it is enough to assume geometric growth
71l o

of 7 and the [' summability of a sequence j — — Bt
i LRSS

Qd#AJ’HHTjHoo(?“j +1) -

min |71k
ke{lv---7d}| ’

for every j € N then

KﬁleHL},(’]I‘N) < T flly ey < KNy

where the constant K depends only on the value of 77, #dimlirylloers
ke{

Remark 4.5. Theorem 1 holds for polynomials with values in Banach spaces as well. All the

steps of the proof could be repeated verbatim for trigonometric polynomials with Banach
space coeflicients.

For fixed finite set of characters one can choose a sequence 7 growing so fast that the
following holds.

Corollary 4.6. Let A C Z¢ be a finite set. Then there exists ¢ : A — 7 s.t. the operator

Z a/\e27ri<>\,z> N Z a)\e27riq5()\):p

AEA A€A

is a (1 + €)-isometry.

The chapter is organized as follows. In the first section we will prove three elementary
lemmas about approximation of trigonometric polynomials by simple functions. Section 2
contains the proof of the Theorem In Section 3 we establish a necessary condition for
p=1. In the last section we show an example of a sequence 7 and family of sets & such
that 7" is an isomorphism for p = 2 and p = 4 but fails to be an isomorphism for p = 3
and p = 4/3. This shows that one has to be very careful using interpolation and duality
arguments to find this type of criteria. For examples of applications of such criterion we
refer the reader to [29],[55].

Auxiliary lemmas

We begin with the estimate on the approximation of trigonometric polynomial by simple
functions.
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Lemma 4.7. Let s, N € Z% and f be a trigonometric polynomial on T%. Assume that the
degrees with respect to the last d variables of the polynomial f are controlled by the coordinates
of s i.e.deg, (f) < |si|, where z = (21,...,2). Let

> in(z)][ fW,2)dz Yy €TV zeT
I”L

neNd
n;<IN;[—1

. ng . nqg+1l
X [—| TN } Then

d||s]
—Ilfllm Tdk).-
|N| (Tk)

]6{1

<

1 ooy = 1l coan

Proof. We estimate the difference of LP norms of the functions by the norm of its partial
derivatives. We use the fact that the optimal constant in Poincare’s inequality on a convex
set is dominated by its diameter (see eg. [38]], [1]).

~ p
1 1 zoerary = I | zorany | < IS = Il any

= / / (v, ) ][ [, 2)dz d:vdy
d Tdk-1) J 1,
"J<ﬁ$| 1
< Z /Td(k ) diam(/ i \V.f(, 2)|P dzdy.
d n
“ﬂ<ﬁ$| 1

. am (L) > N
Since diam(/,,) je?ll,l..r.l,d} |N;| we get

p‘<
h IN [P
JE{l, d

[l sogzany = 1171l zogaany V=15

where V. f is the gradient of the function f with respect to last d variables. Using Bern-
stein’s inequality ( see eg. [56])

0
||8_ZifHLP(Tdk) < degzi (f) HfHLp('erk).

We get from the triangle inequality

9
1V:Fliorany < d_max (7= F] o

(4.5)
<d jonax deg. (f) [[fllzr(rary < d|[sllooll 1l Lo(rary.-

-----
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Hence

1 d sloc
V. < — e
A IVafllonea < ‘N|||f||m<w>

JE{L,....d} | ]’ Je{l, od

SNl Lo rary — ||f||Lp(1rdk) <

Lemma 4.8. Let f,, € LP(T?) be a trigonometric polynomial for everyn € A. We define
wly' y,2) =Y ULy, 2) Yy €Ty 2 eT
neA

Then
Hw”LP(Td(kH)) < Z ||fn||Lp(1rdk) < #AHIUHLP(Td(kH))-

neA

Proof. The left hand side is just a triangle inequality. We get the right hand side by summing
for n € A the following inequalities.
/ e —2mi(n,y) wdy
Td

[ fapaya: = [
Tdk ']I'dk

S R

dy’dz

]

Lemma 4.9. Let trigonometric polynomials f,, € LP(T) satisfy deg. (fn) < sjforne A
andj € {1,...,d}. Let

w(y', z) = Z TNz £ (1) 2) Vy' e TN vz e T,

neA

wlyy,2) =Y VLY, 2) Yy e T Yy 2 e T

neA

This pair of functions satisfies the estimates

#A 5] oo
L— Qd% lwll L1 pacerny < [lw]| g cpar) (4.6)
je{l,.d}
and
#A8]| 0o
[w]| g1 (rary < 1+2d% Jwll 1 (race+n).
Je{l,...d

It could happen that the constant in (4.6) is negative. We consider such situation in
Remark [4.100
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Proof. Let us define functions

Wy y.2) =Y UL 2 Yy e T Yy 2 eT
neA

By, 2) =Y NI ) Yy e T v eT?,
neA

where functions f, are defined as in Lemma By the triangle inequality,

‘HwHLf’(Td’“) - HwHLP(’]l‘d<k+1>)’ < ‘HwHLP(Tdk) — Hu‘)HLp(Tdk)‘
+ |10l o pack11y — || Locpary | (4.7)
+ H|wHL1’(Td(k+1)) - HID||Lp(Td(k+1))| .

Again by the triangle inequality,

llwlloezary = @] opary| + [l pocpacesny = 18] oeravsny] < 2D 1 fn = Fall zogran-
neA

Hence by the definition of f;m, Lemma and Lemma ,

H|7~U||LP(de) - HwHLP(’ﬂ‘kd)‘ + “|w||LP(Td<k+1>) — (||| Lo (pace+1)y
#A|8]loo (4.8)
< 2dT|]Vj|HU)HL1(Td(k+1)).

je{l,....d}

For the second term of the right hand side of we have

il e = [0/ 2) Py dz
'H'kd

_/Td(kl) Z /n

mu<|Nu\ 1

26271'1 (Nn,z) fn y Z) dZdy

neA

The function f,,(¢/, -) is a constant on every d-parallelotope I, form € ZN{m; < |N;|—1}
and every ' € T¢"!. We denote this value by h,(m,1’). We have following identity.

o= fos 2 ]2
12r 2o, Td(k-1) I,

mug\Nu\ 1

d
_ -1
_H\Nuy /W_D Z /

mu<|Nu| 1

/w 1) /Td Z [ o] Z iy hn(m, y)

meNd neA
My <| Ny |—1

p

27rz an)h ( dZdy,

n(m,y')

neA

dy dy’

26271'1 ,y m y)

neA

p

dy dy'.
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The summands of the inner sum equal to the integrals of a constant functions. Since
hn(m,y') = fuly/, 2) for z € I,

p
e Y DS / S e f ()| dedydy
Td(k—1) JTd Inm neAd
mu<|Nu\ 1
p
= / > e fl 2)| dzdy dy
Tak+1) neA

B /< @ dz dy dy = 19|, g

The above equality together with and gives

#A|s|
‘HUJHLP(W) - Hw|’LP(Td<k+1>)‘ < Qdmﬂwﬂmmd%ﬂn
je{l,....d}
which implies the lemma. [

4.1 Proof of Theorem

Let f € L%.(TY) be a trigonometric polynomial, which depends only on first s x d variables.
Then, by the definition of 7" we have,

Tf(z) = S T, A STy e T
(A1y--425,0,0,... ) EF

which can be rewritten in the form

wi(z) =Tf(z) = Z 62”i<75"’z>gl7n(z),

’I’LEAS

where gy ,, are suitable polynomials with deg, (g1,,) < >/, rt]Tt <> TtHTtHOO By
Lemma (4.9

2d #A, 30 il |7l oo

cfin 17

1—

| wal| Lo (r2ay < [Jwil|pecray (4.9)

and

Qd#A Z TtHTtHoo

min |TSZ|
i€{1,...,d}

|wi]|Lperey < | 1+ [ wa| Lo (r24y,
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where

way,2) = > F.. Al 2riEininAe),
(A1,--25,0,0,... ) EF

for 31, 2 € TY. Similarly as in the case k = 1 we proceed for k > 1. We obtain trigonometric
polynomials of the form

W (y/’ Z) — Z ]?O‘la o )\8)62771'(()\5,...,/\57“1)7y’>e2m‘(2§;f Tj)\j,z>’ (4.10)
(AMyeXs,0,0,..)EF

for all 3/ € T**~1) and z € T?. This could be rewritten as

wk(y',z) _ Z €2wi(737k+1j,z>gk,j(y/’Z)

JEAL
where polynomials gy ; satisfy deg, (gk,;) < Zj L T3] Tjul- By Lemma
(1= K (k) lwrsall ooy < Nwell zoeary < (1 + K (R)) lwiesal] poracn),

where constant K (k) is given by

—k
> i1 Till7illoo

min_ |7y k414 .
ie{1,....d} | !

K(k> =2d #As_p41

Combining the above inequalities for £ = 1, ..., s — 1 we get

s—1

s—1
H(l — K(G))wsll zocrasy < NTflzo(ray < H 1+ K (5))[Jws]| o res),
7=1

j=1

The constant 1 — K (j) could be negative for some j. We consider such case in Remark
For now we assume that 1 — K'(j) > 0. Note that w; equals f up to a permutation of
variables. Hence ||w;||p(asy = || f|| 1o (Tas). Since Aj,7;, 7; satisfy (4.3) we have

> > 2V/d #A,_ 7175l A -
ZK(k) d# szj 1 Till7l] Z # krzl”fn1||7k 1[0 < o0

k=1 k=1 Z.Egljfl’d} | Tr—k+1,ill oo o }|Tk,i|

Hence there exists a constant K independent on n such that

K fllzoerany < T fllporay < K| f || o cpany, (4.11)

Remark 4.10. It could happen that the first few constants K'(j) are larger than 1. Since
> K (j) is convergent, there is only a finite number of them. In this case we replace the
respective induction steps by trivial estimates of the norm depending on isomorphism of
finitely dimensional spaces
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4.2 Necessary condition for L! isomorphism

In this section we investigate a necessary condition on the operator 7" of the form (4.1) to

be an isomorphism in L' norm. We are looking for a condition expressed in terms of a
\ il

nk We show that /2 summability is necessary. More precisely

for every family <7 of unlformly bounded sets A; s.t. #A; > 2 there exists a sequence

7; such that > |T|Ti T = too but nl" < 400 for every p > 2 and the operator T’
J

i1

corresponding to 7 is not an 1s0m0rphlsm Our argument is a slight modification of an idea
of F. Nazarov, which proves the necessity of a geometric growth of |7 | ([35]).

For simplicity we assume that d = 1 and A; = {—1, 1} but the similar construction works
in general case. We choose sequence

oy k=2l
T’“‘{(z!)%wm k=20+1.

For n € N we define a trigonometric polynomial f,, by
= Hsin(27r7ja:) Ve eT.

If T given by (4.1) is an isomorphism then there is a constant independent on n such that

2n

Hsin(?mz:j)
j=1

We are going to apply now Theorem [4.3|for the sequence 7 = {7, },en and the sequence
of sets # = { By}, where By, = {—QL\/EJ, 1,1, 2|Vk| } We get the following bounds

on a norm of f,, with constants independent on n.

Cs . Hsin(?wxj)sin(ZWQL\/ﬂxj)

[ fallyemy 2 CLUIT SNl Ly vy = /Tzn

day - - - dg, = || sin(2mz) |7 )

| fallzremy < dxy - - dx,,

~ [T bsntzme)sintanl el

It is now enough to show that for sufficiently large £,

2
[sin(27z) sin(4mkz)|| 1 (g < (1 — E)H sm(27mc)||L1 =(1- %) (;) : (4.12)

because this implies a contradiction:

u (2 4 |z )|| z oo
< [l <o qlu - 5 =0

|| sin(27x) ||2L1(’]1‘) Pt J
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To show (4.12) we split the integral over the interval [0,1] into a sum of integrals over
intervals of length equal to the period of the second function.

1 1 2T
/ [sin(2ma) sin(dmke) dr = o / | sin(t) sin (2%t)|dt
0 T Jo

1 iy
! / sin(t)| sin(2kt)|dt
0

™

— %Z / 7 sin(t)| sin(2kt) |t

1 [k ‘
_ ! / *>sin(e+ 2 sin(2ke)at
0

By the formula for the sum of sines.

1 1 = t— =
/ | sin(27z) sin(drka)|dz — — / © 08U =50 okt
0 0

T sin(5;)
_ 1 /27r %’Sin(l‘)‘dl’
72 2k sin(g;)
1 2 s
<— / TG | ()|
72 Jo 2ksin(gg)
4 [ meos(f)
- = T 1) |sin(@)|d
72 +/0 <2ksin(i) ) |sin(z)ld

Since

L 12 ( mcos(%) ) —1172

1m A = —
2k sin(g;) 24

the Lebesgue dominated convergence theorem gives for sufficiently large k&

! 4 117!
/0 | sin(27x) sin(4mkz)|dx < — <1 - TZ‘Z) :

4.3 Interesting counterexample

In this section we will find a family of sets &/ = {A;}xy, sequence 7 = {7;};ey and 2 <
p <r <gsuchthat T, , is an isomorphism between L%,(T) and L%.(T") and between
L%(T) and L%(TY) but T\, is not an isomorphism between L', (T) and L% (TV) for every
p < r < q. Moreover it fails to be an isomorphism for a dual exponent r = q%l.

We start by proving stronger version of the Theorem [4.3| for exponents ¢, which are even

natural numbers, and sets A; = {0, 1}. We will show that in this case it is enough to have
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geometrical growth of the sequence 7 for T being isometry between spaces L%L(T) and
L%(TY). We proof auxiliary lemma which is counterpart of Lemma for the special case
q = 2j and a sets of analytic polynomials.

Lemma 4.11. Forj € N,q = 2j and f1, fo analytic trigonometric polynomials on T satisfying
jdeg, (fi) < Ni we have

1fo(z) + €™ fr(2)|zamy = 1fo(2) + €™ fr()poery Y2,y €T.

Proof. Let us observe this simple equality

1 fo(2) + €2 1 ()| pasmy = || (fol2) + ™™ f1(2)) 32y

J , , ; (4.13)
= 2o (287 (2) ( X )
s=0 12(T)
Since '
deg, (f7(2)f5 "(2)) < jmax{deg, (fo),deg, (fi)} < N
we have

deg, (f3(2)f7*(2)) + 5N < (5 + DN

Hence every exponent occurs in no more than one element of the sum on the right hand side
of (4.13), because f;, fi are analytic. Changing e2™*"+* to ¢2™Y in this sum is an injective
operation on exponents. Hence from Plancherel’s formula we have

S e (1) T e e (7)) 2

= rx(m)  Mls=0 L3(T2)
= || (fo(2) + €™ f1(2)) I Z2(r2)
= [|fo(2) + €™ f1(2)]| r23 (r2)

We proof following theorem

Theorem 4.12. Let ¢ = 2j be an even natural number. For sequence of natural numbers
{Tn }nen and family of sets { A, } nen satisfying

An = {07 1}7

4.14
Th+1 Z(j—l-l)Tk VkEN, ( )

the operator T : L% (TY) — L%(T) given by the formula is an isometry.
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Proof. The line of argument is analogous to the proof of the Theorem(4.3] We take a trigono-
metric polynomial f € L%(T") which depends only on first s variables. We define poly-
nomials wy, the same way as in Theorem So wy(z) = Tf(z) and they satisfy formula
(4.10). Since A; = {0, 1} we use following representation of the polynomial wy,

wi(Y', 2) = gro(y', 2) + € gy, 2) VyeTFVT
and for j € {0,1}

T
I

s—k+1
E : —u
degz gk,] Tu 1) Ts—kt1 < Ts—k+1

u=1

Hence from Lemma we get

j+1 1
< stkarZ

e
Il
fa

||wk+1(y,’yk’ Z>||Z£P(’H"“+2) - /k—l Hwk‘H(y,? " ')HLP ’]I‘2
= /Tk1 lgro(¥s 2) + €™ gi 1 (), z)||’2p(T2)dy’

— [ k(6’2 + 005

- ||wk(y Z)HLP (T*)

We remember that ||ws|[zs(rs) = || f]| 2 (rv) and we get
ITfllzemy = llwillory = wellLecrzy = -+ - = lJwslloqrsy = |l 22, comy
[
If we take p = 2 and ¢ = 4, A; = {0, 1} and sequence
e k=2,
k= { (25 k=241 (4.15)

Obviously sequence 7 and family o7 satisfy assumptions of Theorem for p = 2 and
q = 4. Now we adapt the reasoning from third section to this case. For every n € N we
take trigonometric polynomial f

2n

fulz) = [0 +€m7) Vo eT.

j=1
Once again since if T, , is an isomorphism for the sequence 75, and L"-norm, we get
Crlt+ €™ < fnllra < Cilll + €™ (12

Let us observe that

fu(z) = H(l 4 T2 TY(] A 2O T Vx € T.

J=1
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Let 7 = {7or fren and B = { By}, oy, Where By, = {0,1,5,6}. We have chosen 7, in such
a way that the assumptions of the Theorem |4.3| are satisfied for 7’3 >. Similarly as in last
section we get

Cy ' I+ ™) (L + e ™ )| Lo oy < Ml fullrery < Coll (14 ™) (1 + €*°7) || 1o e

Therefore for every natural number n we get with constant C's > 0 independent on n s.t.

1 2mix 1 2-5mix ” "
C?)_lg(H( + ) (1t e >||mz>>

|| 1 + 627ria: ||%T(T)

< Cs.

Above inequality could be satisfied for every n € N if only if
11+ ™) (1 + ™) || rery = (114 €770 ).
From numerical approximation it follows that
1+ eémuigm ~ 2.25901,

(14 ™) (1 + e*°™)|| 312y ~ 2.25812

and
|1+ e*™™||%, =~ 1.76593473,
L3(T)

[1(1+ e*™)(1 4 e*°7) ~ 1.77176422.

”L%(T?)

Hence for 7 = 3 and r = 4/3 from we get that 7' , of the form fails to be an

isomorphism.
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Chapter 5

Trace operator and its right inverse on
planar domains

It was shown by Gagliardo ([16]) that the trace operator transforms space Wi ({2) onto
L'(99) for domains with regular boundary. From this theorem imediately arises a question
whether there exists a right inverse operator to the trace, i.e. a continuous, linear operator
S LY 9Q) — WH(Q) st. Tr oS = Id. It turns out that in general such operator does
not exist. This was proved by Peetre ([39]). In his paper he has shown the non-existence of
right inverse to the trace for a half plane. From that by straightening the boundary one can
deduce non-existence for ) with a smooth boundary. More recent proofs can be found in
[41]], [5]. In this chapter we present an extraordinary simple proof based on geometry of a
Whitney covering and basic properties of classical Banach spaces.

Theorem 5.1. Let 2 be an open domain with Lipschitz boundary and OS2 be a Jordan curve.
Let Tr : W(Q) — L'(09Q) be a trace operator. Then there is no continuous, linear operator
S Ll(aQ) — WI’I(Q) s.t. TS = IdLl(QQ).

In [17] Hajlasz and Martio studied the existence of a right inverse to trace operator in
the case of Sobolev spaces W] (Q2) for p > 1. They characterize trace space as a generalized
Sobolev space. However this characterization does not work for p=1. The behavior of the
trace space changes dramatically for the domains with fractal boundary. In the third section
we use the structure of a specific Whitney covering of {25 - domain bounded by the von
Koch’s curve, we show that in this case the trace space of W!(Q) is isomorphic to Arens-
Eels space with a suitable metric. Surprisingly, based on this observation we are able to
construct a right inverse operator to the trace operator. The theorem below is the main
result of this chapter.

Theorem 5.2. LetTr : W} (Qx) — X (k) be a trace operator, where X (1) is a trace space
(5.2). There exists a continuous, linear operator S : X (Q) — Wi (Qk) s.t. TroS = Idx(qy)-
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In the following section we define the trace operator, trace space and auxiliary properties

BV (2) needed in the proof.

5.1 Properties of BV ({2) and trace operator

From now on we assume that ) C R?, 0N is a Jordan curve. Our approach to Theorem
up to technical differences works in higher dimensions. However in the proof of the
Theorem [5.2| the properties of two dimensional euclidean space are crucial. We define the
trace operator and the trace space for W} (). Let us recall a notion of (slightly generalized)
Whitney covering of (2.

Definition 5.3. We call the family of polygons A a Whitney decomposition of an open set
Q C R? if it satisfies:

1. For A € A the boundaries A are uniformly bi-lipschitz.

NS

- Ugea A = 2 and elements of A have pairwise disjoint interiors.

“

C~1voly A < dist(A,00)" < Cvoly(A)

H

. If0A N OB has a positive one dimensional Hausdorff measure then

-1 vola(A)
(@) C7° < ol (B) S C.

-1 1(0A)
() 1 < 194 < 0

(©) C~(DA) < I(OANIB) < C1(DA),

where [(-) denotes length of a curve, and vol, denotes the area of the polygon.

5. For a given polygon A € A there exists at most N polygons B € A s.t. 9AN OB # (.

For the purpose of this chapter we will also assume that polygons of A are uniformly star
shaped in the following sense

6. For every A € A there exists a point v € A and positive numbers \, T s.t. B(x,\) C
A C B(z, M), % is fixed and the polygon is star shaped with respect to x. We call such
point a center of A.

Let A be such covering then we can define a graph describing it’s geometry.
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Definition 5.4. Let A be a Whitney decomposition. We call a graph G = G(A) =
(V(A),E(A)) =: (V,E) a graph of Aif V := A and {A, B} € FE only if boundaries
of A and B have intersection of positive one dimensional Hausdorff measure.

Then we introduce a special subspace of BV (€2).

Definition 5.5. Let A be a Whitney decomposition of (). We define the following subspaces
of BV (Q)

BVao={F € BV(Q):VAE A / F(z)dz = 0}
A

and

BVG:{fEBV(Q):VAGA f|A:fAER}

It is a known fact that for a given Whitney decomposition the space BV, is a comple-
mented subspace of BV (). A proof of this fact can be found in ([43]],[14]).

Lemma 5.6. For any domain ():

BV (Q) = BV ® BVg.

Let us observe that we can easily calculate the norm of function f € BV.

1flBve = £ lBvey = Y [fal vola(A)+ Y |fa— f5] OANOB)

AeV {A,B}eE

In their unpublished preprint Derezinski, Nazarov, Wojchiechowski [15] have proven that
there is a spanning tree of the graph G(.A) with a desirable properties i.e.

Lemma 5.7. If () is simply connected planar domain and A is its Whitney decomposition.
Then there exists spanning tree T = (V, Et) of the graph G(A) s.t.

1. for every f € BV o(Q)

1 llsve = [ llBve == D 1fal vola(A) + Y [fa— fsl (OANDB)  (5.)

AeVrp {A,B}eEr
2. for every point x on the boundary there is a infinite branch br(z) of T s.t. br(x) 2 Z.
and dist(A,,x) — 0 asn — oo, where A,, € br(z). For a sequence of real numbers
{aa, } we call a limitlim,,_,o, a4, a limit along the branch br(z).

We will call such tree a Whitney tree of A
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It follows immediately that BV = BVy, where BV is a set BV with the norm
| - l|Bv;- Using the above notation we define trace of f € W{(Q). Since 2 is a domain
with a Jordan curve as boundary it follows from Koskela, Zhang theorem ([28]) that restric-
tions of Lipschitz function Lip(IR?) are dense in W} (). For f € C(Q) N W(2) we define
the trace operator as a restriction of f to the boundary. We define a trace space X ({2) as
completion of a space Tr(C(Q2) N WL(Q)) with respect to the norm || - || x, where

9l x @ = wf{||fllwi) : Trf = gand f € C(Q) N W[ (Q)}. (5.2)

Since Lipschitz functions on (2 are dense in TV}!(2) we can define trace operator on a whole
space W (Q). It is obvious that T'r : W} (Q2) — X () is a continuous linear operator and
it is surjective. We want to extend the trace operator to the BV (€2).

Lemma 5.8. There exists a continuous, linear operator ® : BVgy — W(Q) s.t. for every

Ac A
Fam ][ f(y)dy = ][ B(f)(y)dy + ofdist(A, 00)). (53)

Proof. Let ¢ be a mollifier, ie. ¢ € C°(R? R, ), supp$ C B(0,1) and fB(O N ¢ =1. We
define an operator ¢ with the formula

o(f)(x) = /Q fle—1)¢ (cdist;(:c, Q)) c? disti(:c,mdt

This formula defines a continuous operator from BV to W}(Q2). Let us observe that by
the definition of ®, ®(f)(x) = f4 for every x € H(A,1 — cdist(x,Q)?) which implies
(5.3). Therefore the trace spaces of W} () and BV () are identical and Tr : BV (Q) —
X(Q). O

Let P : BV(2) — BVg be a projection from BV (Q2) onto BVi. We define
Tr: BV(Q) — X(2) by the formula

Trf=Tr®(Pf) VY feBV(Q).

If f € C(Q) N W(Q) then the function ® (Pf) is continuous on (. Therefore its trace is a
restriction of ® (P f) to the boundary. However the value of the restriction at point z € 952
for the function from C(Q) is equal to the limit of f, ®(P f(y))dy along the branch br(z).
From and the definition of the space BVr

O(P(f))(x) = f(z) Vo e of.

Since f € C(Q) N W () are dense in W} (Q2) and Trf = Trf the operator Tr is an
extension of the trace operator to BV (€2). We will abuse the notation and from now on we
will denote T'r by T'r. From the definition of trace it follows that

Trf=0 Vfe BV (5.4)
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5.2 Proof of Peetre’s theorem

In this section we will give a proof of Theorem5.1]

Proof. Since € has Lipschitz boundary by theorem of Gagliardo X () = L'(99) - space of
functions integrable with respect to the 1-dimensional Hausdorff measure. Let us denote by
P : BV(Q2) — BV the projection onto BV. Assume there exist S : L'(9Q) — W}(Q) C
BV (Q) s.t. Tr o S = Idp1(s0). Then the following diagram is commutative

S Tr

LY(09) BV(Q) LY(09)
BVg

From and Gagliardo theorem we conclude that Tr|py, (o) is onto L'(92). On the
other hand, Tr o P o S = Id1(9q). Hence LY(09) is isomorphic to a subspace of BVj.
The definition of BV implies that BV{; is isomorphic to a subspace of (1(V) @ (}(E) =
('. Since the measure on the boundary is non atomic, L'(9Q) = L!(T). However, it is
well known that L' could not be embedded in ¢!. (To see this, note that by Khintchine
inequality, Radamacher functions span ¢? in L' space. The space /? could not be embedded
in /! because, every subspace of ¢! contains a copy ¢! ([32], Proposition 1.a.11). O

5.3 Trace operator on von Koch’s snowflake

Let 2 be a domain bounded by von Koch’s curve. Since ) is simply connected and von
Koch’s curve is a Jordan curve, we can use all the properties from the first section. It is
enough to show that there exists a right inverse S : X ({2) — BV to the trace on BV
because then ® 0 S : X(Q) — W{(Q) and Tr o ® 0 S = Idx(q), where ® is an operator
from Lemma[5.8

It is a well known fact that {2k satisfies Poincare inequality (eg. [6]). Therefore

’ f=+ Ffly)dy

Qp
where |u]q is a total variation of a measure y on ). This inequality implies

BV;~ BV, @R,

L)
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where

BVy={feBVy: : fy)dy = 0}

with the total variation of gradient as the norm. In this case the norm is equal to

1 fll gy, = Z |fa— fB|ll(0ANOB).

{A,B}EET

Similarly X (©2) = R @ X () for a quotient space X (Q) = X /Py, where P, is the space of
constant functions on {2x. We reduce the problem to finding the right inverse operator to
the trace T'r : BV — X (). We know that for all g € X(Q),

91l %) = Wt f Nl gy, - T f = g}

We will show that for a carefully chosen Whitney covering. We introduce the following
notation

Definition 5.9. For a given tree I’ by R := R(T') we will denote the root of T'. For a vertex
A € Vr by D,,(A) we denote descendants of A of order exactly n and we put D,, = D,,(R).
For a vertex A € Vi by A | we denote its unique father. We will denote by D1 (A) the set of
all descendants of A i.e. DT (A) = J,, Dn(A).

We take a covering Ay as shown on the Figure This covering of von Koch’s
snowflake is easy to describe if we look at its Whitney tree 7. The root of T is a six
pointed star with six "pants” shaped descendants. We denote it by 2. In this tree there are
three types of polygons/vertices. The aforementioned root, "pants" shaped polygons and
"palace" shaped polygons. The type of a vertex describes direct descendants of this vertex
(Figure . Polygons in D, are similar to polygons from D,, with a scale % The tree Tk

is the tree from Lemma Hence for such Whitney covering the norm of BV, satisfies

||f||B'VTK = Z Z |fa— far 37"

n=1 AGDn

Further we will use above formula as a norm on BV r,.. We want to study the norm on
X(£2). To be precise, we want to define and calculate the norm of || >, a; 11, 41l x(q)-

Definition 5.10. Let us denote by D (A) a cylinder of A, i.e. Dyo(A) = {z € 002 : A €
br(z)}. We call an arc rational if there exists a finite sequence Ay, ..., Ay € Vi, s.t. [x,y] =
UF_ Do (A,) and we say that points x,y are rational points.

For a given arc [z, y] there exist a sequence of vertices Ay, € Vi, s.t. [x,y] = U, Doo(Ak)
and sets D, (Ay) are pairwise disjoint. Moreover this sequence can be taken maximal in
the sense that if vertex A is in the sequence then there exists 2 € D, (A ), which is
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Figure 5.1: Self similar Whitney decomposition of von Koch’s snowflake

Figure 5.2: On the left "pants" shaped polygon and its descendants, on the right "palace" shaped
polygon and its descendants
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not in [z,y|. Such sequence is unique for [z, y]. Let n(k) be a natural number such that
Ay, € Dy We introduce a auxiliary metric on the boundary 0§

di(z,y) = Z S

k

It is easy to check that di(x,y) is a metric equivalent to the two dimensional euclidean
metric. We prefer this metric over euclidean metric because it is a monotone function on
an arc [x, y| with respect to the natural order on the arc.

Definition 5.11. We call a function F' linear on the arc |x,y) if there exists a € R such that
F(t) = adg(x,t) foreveryt € [x,y].

In the lemma below we show that for every rational arc and linear function on this arc
there exists its "good" extension to BV 7.

Lemma 5.12. For every rational points x,y € 052, let function I be a linear function on the
arc [x,y|. There exists h € BV r,. such that

L 1Ml pv(q) S 1Fllocdi (x, ),

2. F(z) = Aéibrﬁz)f h(y)dy — Vze€ 0.

A—z

Proof. Without loss of generality we assume that F'(t) = dg (¢, x). Every rational arc [z, y]
can be written as a finite sum | i~ , Doo(A) in a unique way s.t. sets Do (Ay) are pairwise
disjoint and the sequence Ay, has the minimal cardinality of all sequence which cover [z, y].
From this assumption it is clear that #{ A, : Ay € D,,} < 10. Let us put

- { inf(F(z) :br(=) € Dua(A)} A€ UDH(AL),

0 otherwise.

Clearly along every infinite branch br(z) the limit of Alibrr% )h A exists and it is equal to
ebr(z
A=z

F(z). We need to estimate the total variation of h. Observe that due to linearity of the
function F there are positive numbers {b;}>_,, {c;}?_, s.t. for every pants shaped polygon
A€ D, NUpL, Doo(Ay) we have

1 1 b; D,(A
LY ) - hQ) = 5 D0 < e P
QeD1(A) i=1
Similarly for palace shaped polygon B
1 1 ¢ #D,(B
LY B @)= Y S < O
QeD1(B) =1
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Let p := max{by,..., bs, ¢1, ¢2, c3}. We can prove inductively that #D;(A) < 47. There-
fore we have following estimate on the variation on the subtree D1 (Ay), starting with

Al

D;_
04 Y Wl < p 3 FPmld)

1=1 QeD;(Ay) j=n(k)
© j—n(k)
< i < 1
~ Qi ™~ on(k)
j=n(k)
1
<Pl

We sum above inequalities over all A; and we get

1Pl vy < [1Elloodi (, y)-

In the lemma below we prove the existence of a class of functions in B'V, which have
desirable properties and every function from this class provides a good approximation of
the norm of its trace on the boundary.

Lemma 5.13. Letx,y € 0S2. There are a sequences of functions f,, € BV(Q), g, € C(Q%)N
BV (Qk), and h,, € BV (Q)s.t.

~

. fn:hn+gn:

Forevery z € 99, 1},,(z) = Ahbm £ f(y)dy,
S r
A—z

N

“w

lgnll 5y () < (14 2 ITrgnl % 0s0)-

b

Trg, is a Cauchy sequence in X (Q)

1

N

||hn||B'V(Q) <

S

Ifallvi@) < (14 21T rgnll o) + 72

Proof. We use Lemmal5.12] For every ¢ and every rational arc [z, y], the characteristic func-
tion of [z,y| can be written as sum of a Lipschitz function g and a four linear functions
p1, ..., P4, With supports in arcs [t1, 2|, [z, s1], [t2, ], [y, t2] respectively. Moreover t;, s; are
t; — s;| < € and the linear functions p; are bounded uniformly with respect to

58



e. Hence from the above lemma for every linear function p; there exists a function f s.t
||fZHB'v(Q) < Ce and for every z € 0f)

Any Lipschitz extension of g to Q is in W' (). Hence g is in the trace space. From the
definition of the trace space there exists a g. € C'({2x) N BV (2 ) such that

||95||B'V(QK) <1+ E)HQHX(QK)>

Trg. = g.
Since g. is in C'(Q) we have Ahbrn £, 9:(y)dy = g(z). Therefore the function f = g. +
S r
Aax

_, /" = g + h. has desired properties. The limits along br(z) of -(y)dy exists and
S =g prop g 4 9=(y)dy
are equal to 11, () for every z € 00 and

1 lsy < (T +)llgllx o + Ce

where the term Ck is the estimate on the norms of the functions f*. For every n we choose
suitable € and we get desired properties. The sequence 7'rg, is Cauchy sequence. Indeed
for a given function g, and m > n there exists a continuous piecewise linear function ¢
with support on a small set on the boundary s.t.

q+Trg, =Trgn,
From Lemma there exist a function § € BV () with a small norm such that
Tr(gn+ ) = Trgm
The size of the support of ¢ depends only on g,,. Therefore
177G = Trgmll %) < €

for sufficiently large n, m. ]

The Cauchy sequence {g, } defines an element in g € X(9). From the analogous argu-
ment as in the above Lemma if f € BV (12) satisfies 1, ,)(2) = hm fA y)dy for every z

A—)z

on the boundary then T'r f = g. To simplify notation we denote g = 1, ,). From the point
6. of the Lemma[5.13] it follows

||9||X(Q) = ggo ||T7"9n||X(Q) = 7}1320 ||fn||B'V(Q)

Since the projection from BV onto BV . preserves the trace, we may assume that functions
fn are from BV7,. Therefore the function g = }_, a;1[z;,y;], whose arcs [z;,y;] are
rational, satisfies

19000y = E{[| fll gy, = f € Land Trf = g},
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where . € BV 1, consists of such f that the limit Alibrr% : fa exist for every x € 02 and it
cbr(zx
A—z

is equal to T'r f(z).

Remark 5.14. In the above lemmas we abuse the notation a bit. For rational points x there
are two branches br(x). If we look at a finite linear combination of characteristic functions of
arcs, the are finitely many points (endpoints of segments) on which the limits over this two the
branches are different. However they are equal to the value of the trace either on left or right
side of that endpoint. Further in the chapter we are only interested in branches which contain
some specific vertex A. Hence we are interested only in one of the problematic branches and it
is clear what we mean by the limit.

We want to characterize the space X (Qx ). We introduce, a metric on von Koch’s curve
by formula

d(@,y) = Lyl @)
where 1|, 4 is a characteristic function of an arc on the von Koch’s curve which connects =
and y. It does not matter which one of the two arcs we take because the difference between
their characteristic functions is a constant. Further in the proof it will be clear which one
of arc is considered. Since || - || x(q, is @ norm, d is a metric on the boundary. For a given
metric space (Y, dy ) we define the Arens-Eels space ([52]).

Definition 5.15. Let (Y, dy ) be a metric space. We call a function f : Y — R a molecule if
it has finite support and . f(y) = 0. Letz,y € Y. We define special type of a molecule
- an atom : My, = 1, — 1,, where 1, is a characteristic of a set a. Let m be a molecule, i.e.

M .
m = zjzl ajMy,y,, then the Arens-Eels norm of m is

lm|| ag(ay) = inf {Z lajldy (x,y;) :m = Zajmzjyj} ,

J J
where the infimum is taken over all possible representations of m as a sum of my,. The Aerens-
Eels space is the completion of molecules with respect to the norm || - || ag-

We want to show that X (Q) is isomorphic to the Arens-Eels space with the metric d.

We will denote by M (d) linear space of molecules. It is a non complete norm space. By the

definition its dense it is dense in AF/(d). We define the candidate for the isomorphism on
the a linearly dense subsets of both spaces. We set U : AE(d) — X (k) by the formula

\If(mmy) = ]1[96721] Va,ye 0. (5.5)

Lemma 5.16. U : AE(d) — X (Qx) is an isomorphism between Banach spaces.

Proof. By triangle inequality and the definitions of d(x, y) and Arens-Eels space, it follows
that W is continuous

() x0x) < 1fllap@- (5.6)
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In the trace space we have following density result.

Lemma 5.17. ®(M(d)) is dense in X (Q).

Proof. From [28] we know that restrictions of Lipschitz functions on R* are dense in
W1 (k). Therefore Lipschitz functions are dense in X (Qx). Hence for any f € X (k)
there exist a sequence of Lipschitz functions f, s.t.

Jim 1f = Fallx @) = 0-

So it is enough to approximate Lipschitz functions with piecewise constant functions. Let
[ be a Lipschitz function. We define function g, = > f(2;)1(, ,,,], Where x; are rational
points of order k i.e. A € Dy st. [2;,2j41] = Doo(A). Similarly as in Lemma [5.12] we
define function

ha=1inf{f(z) — gi(2) : z € Dyo(A)}

Let K be Lipschitz constant of a function of f. It is easy to check inductively that # D, < 4*.
We repeat the approach from Lemma Following estimate is satisfied

Left hand side tens to zero with & — oco. Hence W (M (d)) is dense in X (Q). O

To show that W is an isomorphism we need to prove the estimate from below on the
norm of W(m). The next auxiliary lemma reduces our problem to a finite tree.

Lemma 5.18. Let f € L and Trf(z) = ¢ for every z € [z, y]. Function f € L given by the
formula

= | c Dy (A) C [x,y],

Ja= fa in a opposite case,

satisfies 3
HfHB'VTK < HfHB'VTK-

Proof. Fix Ay € Vr such that D (Ay) C [z,y]. Without loss of generality we assume
that f4, = 0 and ¢ = 1. If B is a descendant of A it follows from the definition that
Doo(B) C [2,y]-

We can assume that for B € D1 (Ag) the value fp does not exceed one. Indeed if B is
such that fz; < 1and fp > 1 then we define an auxiliary function A

. _{ I Q=BorQeD?t(B)C vy,
.

fo in a opposite case,
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Function h has the same trace as f and differs from f only on D1 (B). Since

|fBy — fBl > |fBy — 1

and h is constant on D7 (B) it follows that

HhHB'vTK < HfHB'VTK-

We can assume that f is monotone (non-decreasing) on D1 A) with respect to descendancy
relation i.e. if B € Df(Ay) and C'is a descendant of B then fp < fc. Indeed suppose that
fo < fg < 1for some C' € D;(B). Since for functions in L the value of trace T'r f(z) is
defined as limit along br(x), but for # € D, (A) the limit is one. Therefore on every branch
br(x) s.t. x € Dy (C') there exists a vertex () such that fo > fp and fg; < fg. We denote
by w(C) the set of all such vertices. Let 7'(C') be a tree with a root C' and set of leafs equal
to {@Q }: Q € w(C)}. We define auxiliary function p by the formula

_ fB Q € VT(C),
Pa fo in a opposite case,

On the tree T'(C) the variation of p is equal to the weighted sum of differences on leafs.
However for every @ € w(C')

o — ol = |fo — 8l = |fq — faul-

Therefore

Pllsvs, < 1, -

We have reduced our problem to the set of functions Y (f) C Lst. h € Y(f) iffitis a
non-decreasing function on D1 (Ay) with respect to descendancy relation, hgy = fp for
every B € Vp, \D1(Ap) and T'r h(xz) = 1 for z € D (Ap). We introduce a partial order on
Y (f).For h, z € Y(f)

h=z & VAe€Vn ha<za and |zlgy, <Ihlgy,, -

If C C Y(f) is a chain with respect to the relation < then it has an upper bound in Y'(f).
Indeed the function z € Y(f) defined by the formula

ZA = Supug
uelC
is an upper bound. Function z is a supremum of non-decreasing functions hence it is non-
decreasing. If every non-decreasing sequence b is convergent to one as k — oo then
sup,, b® converges to one. Therefore z has the same trace as functions in Y (f). In particular
Trh:=1forxz € Dy (Ap). By the definition if u < v then ug < vg for every @ € Vi, and
the total variation ||v|| 5y, < ||u||gy.. . Therefore for every n we can choose a sequence
Tx Tk

fEeY(f) st

. k . o .
khjgo f HBVTK = 522 HuHBVTK'
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and lim fé = 2 for every Q) € U?Zl D;. Therefore following estimate is satisfied
n
SN g — sl < inf JJul
' 3J Q QLI = wel BV
Jj=1 QeD;
Taking limit with n — oo we get

Since every chain in Y (f) has an upper bound in Y (f) by the Kuratowski-Zorn Lemma,
there exists element of Y'(f) maximal with respect to <. Let w € Y(f) be a maximal
element. By the monotonicity of w, it follows that wg; < wq for every () € DT(Ay). Since
for every ) € Vr, the set of direct descendants D; (Q)) has at least three elements,

1 1
wgy, —wol + ) 3lws —wol = wq —wqy + > FWs —wq

BeD1(Q) BeD1(Q)
#D1(Q)
== "5 )wg —wou + Z
BeD1( Q)
#D,(Q) .
> (11— — "=
( 3 . 61%111(1@)(103)
~ WoL Z
BeDq( Q)

Function w is maximal with respect to =<, hence wg = mingep, (@) wp for every @ € DT
(Ag). Therefore there is an infinite branch br(z) st + € Dy (Ap) and w is constant on
br(z) N D1(Ap). However for z € D (Ayp) the limit over any branch br(x) is equal to one.
Hence hp = 1 for every B € D1(Ap). We have proven that changing the values of f to
one on the descendants of Ay does not increase the total variation. It remains to consider
the value at the point Ay. By the triangle inequality and the fact that for every vertex @,
#D1(Q) > 3 we have

1
|Faor = Faol + ) gl = faoil = [fany — 1.

BeD;(A)

Therefore changing the value of f on Aj and its descendants to one, will not increase the
total variation. Since only assumption on Ay was that D, (Ag) C [z, y] we have desired
estimate

Il 5vr, < 1fllsvy, -

Lemma 5.19. Let Ay € D,, and [x,y] = D (Ay) then

cZ(x, y) =3"". (5.7)
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Proof. Forany f € BV, st. Trf = 1z, we define

i 1 Deo(A) C [z, 9],
f=9 Jfa A € Dy, k < ny,
0 in a opposite case.

From the Lemma it follows that

1l 5ve, < 1FllBv.,

However

. 1 1 1
W llsve, =50 Do 1faor = Fsl = g5 (Fa = 1+ 1fagl) > 55
BeD;(Aol)

The right hand side of the inequality is a total variation of a function p

1 Doo(A) C [z, y],
PA=1 0 ina opposite case.

Let us observe that the set of functions ) i a;jl; where z;, y; are rational, is dense

z;5,95)>

in X (Q). Indeed for every irrational arc [z, 1] there exist a sequence of points t,, z, s.t.

1
H]l[z,y} - ]l[tn,zn]“X(QK) S 3

Similarly we observe that molecules Mgy, where x;,y; are rational, are dense in
Arens-Eels space.

We fix g = >, a;1y; ), where arcs [z;,y;] are rational and pairwise disjoint. Let f € L
be any function such that 7r f = g. There exists ny = ny(g) such that for A € D, either
there exist an arc [z, y;] s.t. Doo(A) C [z},y,] or Doo(A) and |J[zk, yi] are disjoint. We
define function W f € L by

a; Doo(A) C [xﬁyj]
Wfi=4{ 0 Doo(A) Nl 93] = 0,
fa in other cases.

It is easy to observe that Trf = TrW f. Moreover from Lemma it follows that
W sy, <Ifllsvg, -
Therefore
inf{HfHB~VTK :Trf =g} = inf{||f||B-VTK :Trf=gand f =W f}.

Since we minimize the total variation over the set {Trf = gand f = W f}, the values
fa are fixed for A € Dy, k > ng. Therefore the total variation on this set is a function
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of finitely many variables. Moreover it is a piecewise linear function with finitely many
pieces. Therefore the minimum is attained. We denote the total variation minimizer by 1.
We define by 14 € BV 7,

A {1 Be D71 (A),

B~ 0 in other cases.

Therefore from Abel summation formula

v=vr+Y > (a—ta)rt

j=1 AeD,
A simple calculation gives us
no
||¢HB’VTK = Z Z a4 — byl ”’VAHB'VTK- (5.8)
j=1 AeD,

The function |[¢)[| 5y, minimize the variation for a given trace, hence
K

||T7‘f||X(QK) = ||¢||B'VTK~
Therefore from (5.8),

ITr Ol = D D 14— tay| d(w(A), y(A))

jzl AeDn

> ’ Mgy, HAE(J)

~M

Therefore ¥ is an isomorphism of Banach spaces. [

We have proven that the trace space is isomorphic to the Arens-Eels space.

We will characterize AE(d) further.

Lemma 5.20. AF(d) is isomorphic to (!

Proof. In order to characterize AF/(d) we introduce another metric on the von Koch’s
curve. The von Koch’s curve is constructed inductively. The induction starts with a triangle
and every segment of the triangle is replaced with a piecewise linear curve w. This curve
is made of from 4 segments. In the next step every old segment is replaced with a rescaled
copy of w. Every segment is indexed in the following way. The segment .S, is replaced
with segments S, ¢, S3 1, 52,2, 1.3
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X,2 X,3

I ={z = (z1,22...) s &y € {0,1,2},2; € {0,1,2,3} fori > 1} is a set of all infinite
indices of segments in the von Koch’s curve construction. For every point = € 90 there is
a corresponding index i(z) € I such that segments Si(@)1,.i(z), — T as k — oo. We define
a bijection between set of indices and a one dimensional Torus with the euclidean metric

oo.
Z
4]

Tz{y:y—. ) € 1}.

j=2
Every x € 00 has a unique index in T. Abusing notation we denote it by i(x). We can
define a metric on 02k by

As is easily on a Figure if A € D, is a "pants" shaped polygon then D, (A) = [z, y],
where d(i(y),i(z)) = ;. It is so because its descendants cover two segments of n-th
generation. Similarly if A is a "palace" shaped polygon, d(i(y),i(z)) = 1. In any of the
above cases we have

1
0 T 4nlog,(3)

d(x,y) =~ ~ d(w, y)* ).

For rational points x, y we define

fl) .:{ 1 Do(A) C [z,y],
A . 0

otherwise.

Obviously Tr fl#¥ .= 1z, Since x,y are rational, there exists unique finite sequence of
{Ai}rer C Vr, such that f#¥ = 3 44 Let m = min{n : 3 k A, € D,}. From the
definition of f[*¥ we deduce that y* have disjoint support, and for every n there are at
most 10 polygons in { Ay }xe; N D,,. Therefore

y) = Zd(x(Ak)ay(Ak)) < 102% ~ 4%
k i=m

and we have analogous estimate for d. Hence

1 1

~ log,(3)
3m 4m10g4(3) - d(.%',y) o

d(z,y) ~

Therefore AF(d) = AE(d#:®)). Since 0 < log,(3) < 1 the claim of the lemma follows
from the theorem below,

Theorem 5.21. Let N € N and X is isometric to infinite compact subset of RN. If d, d are
metrics on X s.td ~ d* for0 < a < 1 then the space AE(d) is isomorphic to (*.
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The case N=1 was proven by Z. Ciesielski [7]] and for NV > 1 the above Theorem follows
from Theorem 3.5.5 and Theorem 3.3.3 in [52]. O

Therefore X (Q) is isomorphic to ¢'. Let X (Qk) = span{e;}. From the definition of
the trace space for every e; there exists f; € BV r, such that || f;|| Bvr, S 2|l€ill % (o) and
Trf; = e;. Hence the S given by the formula

7

is the desired right inverse operator with ||S|| = 2. Indeed

Tr (S (Z aie,»)) =Tr (Z aif,) = Zae

This concludes the proof of Theorem
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