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Abstract

This doctoral thesis consist of four parts, in which the properties of operators on non-
re�exive spaces of smooth functions are investigated.

In the second chapter we investigate the existence of a priori estimates for di�erential
operators in L1 norm: for anisotropic homogeneous di�erential operators T1, . . . , T`, we
study the conditions under which the inequality

‖T1f‖L1(Rd) .
∑̀
j=2

‖Tjf‖L1(Rd)

holds true. Properties of homogeneous rank one convex functions play a major role in the
subject. We generalize the notions of quasi and rank one convexity to �t the anisotropic
situation.

In the third chapter we prove that every Fourier multiplier on the homogeneous Sobolev
space Ẇ 1

1 (Rd) is a continuous function. This theorem is a generalization of the result of
A. Bonami and S. Poornima for Fourier multipliers, which are homogeneous functions of
degree zero.

In the fourth chapter we construct a linear injection from the linear space of trigono-
metric polynomials on Tdk with bounded degrees with respect to each variable onto a
suitable subspace LpE ⊂ Lp(Td) spanned by characters from E. We establish a quantitative
description of the set E, providing both necessary and su�cient conditions for the afore-
mentioned injection to be an isomorphism in Lp norm for 1 6 p <∞. One can choose the
set E in such a way that the norm of the isomorphism is arbitrary close to one.

In the �fth chapter we study the properties of the trace operator Tr : W 1
1 (Ω)→ X(Ω).

In the case of a domain Ω with a smooth boundary we give a new proof of Peetre theorem, i.e.
we prove that there is no continuous, linear operator S : L1(∂Ω)→ W 1

1 (Ω) s.t. Tr◦S = Id.
The proof is amazingly simple and uses only the geometry of Whitney decomposition of Ω
and basic properties of classical Banach spaces. In the case when Ω is von Koch’s snow�ake,
we use a suitable Whitney decomposition to construct a continuous, linear right inverse of
the trace operator.
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Streszczenie

Poniższa rozprawa doktorska składa się z czterech rozdziałów, w których rozpatrujemy
rózne własności operatorów na niere�eksywnych przestrzeniach funkcji gładkich.

W drugim rozdziale rozpatrujemy problem istnienia oszacowań a priori dla operatów
różniczkowych w normie L1: dla anizotropowo jednorodnych operatorów różńiczkowcyh
T1, . . . , T`, badamy warunki dla których zachodzi oszacowanie

‖T1f‖L1(Rd) .
∑̀
j=2

‖Tjf‖L1(Rd).

Własności funkcji jednorodnych pierwszego stopnia są kluczowe dla tego zagadnienia. W
tym rozdziale podajemy uogólnienie quasiwypukłości i rank one wypukłości dostosowane
do problemu anizotropowego.

W trzecim rozdziale dowodzimy, że mnożniki Fourierowskie na jednorodnej przestrzeni
Sobolewa Ẇ 1

1 (Rd) są funkcją ciągłymi. Ten wynik jest rozszerzeniem wyniku A. Bonami i
S. Poornimy dla mnożników Fouriera, które są funkcjami jednorodnymi stopnia zero.

W czwartym rozdziale konstruujemy liniowe przekształecnie różnowartościowe z
przestrzeni liniowej wielomianów trygonometrycznych z ograniczonymi stopniami wzglę-
dem każdej współrzędnej na Tdk do odpowiedniej podprzestrzeni LpE ⊂ Lp(Td) rozpiętej
przez charaktery z pewnego zbioru E. Podajemy warunki konieczne i dostateczne na to,
żeby powyższe przekształcenie było izomor�zmem przestrzeni Banacha w normie Lp dla
1 6 p <∞. Zależnie od wyboru zbioru E norma tego izomor�zmu może być dowolnie
bliska jedynki.

W rozdziale piątym badamy operator śladu Tr : W 1
1 (Ω) → X(Ω). W przypadku

obszaru Ω z wystarczająco gładkim brzegiem podajemy nowy dowód twierdzenia Peetre,
tzn. dowodzimy, że nie istnieje ciągły operator liniowy S : L1(∂Ω) → W 1

1 (Ω) takich, że
Tr◦S = Id. Ten dowód jest zaskakująco prosty. Używa jedynie własności geometrycznych
rozkładu Whitney’a obszaru Ω i własności klasycznych przestrzeni Banacha. W przypadku
gdy Ω będzie śnieżynką von Kocha, wykorzystujemy pokrycie Whitney’a do skonstruowa-
nia ciągłego, liniowego prawego odwrotnego operatora do operatora śladu.

vii



Podziękowania

Chciałbym podziekować mojemu promotorowi Michałowi Wojciechowskiemu za te nie-
zliczone godziny, które spędził na dyskusjach ze mną o matematyce. Zawsze mogłem liczyć
na twoją pomoc za co Ci serdzecznie dziękuję.

Dziękuje mojej rodzinie za to, że zawsze mnie wspierali i od dzieciństwa wierzyli w moją
pasję. Zawsze wiedziałem, że w razie potrzeby w domu rodzinnym na Skolwinie znajdę
słowa otuchy.

Dimitriemu Stolyarovowi za wspaniały czas spędzony podczas wspólnej pracy.
Naprawdę wiele się wtedy od Ciebie nauczyłem.

Bartoszowi Trojanowi za zainteresowanie mnie nowym działem matematyki i bardzo
cenne porady.

Maciejowi Rzeszutowi za nieocenioną pomoc.

Szczególne podziękowania dla Paula Müllera i Fedora Nazarowa, za ich gościnę i roz-
mowy o matematyce podczas moich wizyt u nich.

Krzysztofowi Barańskiemu za wyrozumiałość i mobilizację.

Instytutowi Matematycznemu PAN, a szczególnie jego dyrektorowi Feliksowi Przytyck-
iemu, za stworzenie idealnych warunków do współpracy doktorantowi z Uniwersytetu.

Doktorantom z pokojów 5020, 5040 i 418 za miło spędzony czas podczas studiów dok-
toranckich.

viii



Contents

1 Introduction 1

2 Anisotropic Ornstein noninequalities 8

2.1 Bellman function and its properties . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Rank one convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Separately convex homogeneous functions and proof of Theorem 2.2 . . . . 19

2.4 Related questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Continuouity of Fourier multipliers on homogenous Sobolev Spaces 25

4 Isomorphism between sets of trigonometric polynomials 37

4.1 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Necessary condition for L1 isomorphism . . . . . . . . . . . . . . . . . . . . 45

4.3 Interesting counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Trace operator and its right inverse on planar domains 50

ix



5.1 Properties of BV (Ω) and trace operator . . . . . . . . . . . . . . . . . . . . . 51

5.2 Proof of Peetre’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Trace operator on von Koch’s snow�ake . . . . . . . . . . . . . . . . . . . . 54

x



Chapter 1

Introduction

The dissertation consists of results on the properties of operators on function spaces of
smooth functions equipped with a non-re�exive norm. In functional analysis spaces of an-
alytic functions (e.g. Hardy spaces) and spaces of smooth functions (e.g. Sobolev spaces
and Besov spaces) are especially interesting. While the operators on Hardy spaces are well
studied, our knowledge about Sobolev spaces is unsatisfactory (except the case of re�exive
spaces). The thesis consists of four parts. Each focuses on di�erent properties of aforemen-
tioned operators. Let us brie�y describe the content of chapters.

Anisotropic Ornstein noninequalities

The �rst part is a study of the existence of a priori estimates between di�erential operators
in L1 norm. Let Tj be di�erential operators with constant coe�cients of order at most m,
i.e.

Tj =
∑
|α|6m

aj,α∂
α.

For d > 2 we consider the existence of the following a priori estimate

‖T1f‖Lp(Rd) .
∑̀
j=2

‖Tjf‖Lp(Rd), (1.1)

with constant independent on f ∈ C∞0 (Rd). Here and in what follows “a . b” means “there
exists a constant c such that a 6 cb uniformly”, the meaning of the word “uniformly” will
be clear from the context. Moreover, a ' b will denote “a . b and b . a“.
In the re�exive case 1 < p < ∞ there is a lot of a priori estimates of the type (1.1). For
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example Calderon-Zygmund operators theory (eg. [46]) yields

‖ ∂2

∂x1∂x2

f‖p . ‖∆f‖p

for 1 < p < ∞. However in the non-re�exive case the above inequality is not satis�ed.
K. deLeeuw and H. Mirkil [10] have found a necessary and su�cient condition in the case
p =∞. Inequality (1.1) is satis�ed for p =∞ i�

F (T1) =
∑̀
j=2

F (Tj) F (µj) ,

where F (·) denotes the Fourier transform and µj are bounded measures. The existence of
a priori estimates for p = 1 is much more di�cult than for p =∞. In his seminal paper D.
Ornstein [36] considered the case p = 1 and homogeneous di�erential operators of order
m, i.e.

Tj =
∑
|α|=m

aj,α∂
α.

He proved that the estimate

‖T1f‖L1(Rd) .
∑̀
j=2

‖Tjf‖L1(Rd)

is satis�ed only in the trivial case T1 ∈ span{Tj}. His proof was very technical and
involved. Recently new, more comprehensible proofs of this fact appeared [8], [24], [23].

Let Λ be an a�ne hyperplane in Rd that intersects all the positive semi-axes. We call
such a plane a pattern of homogeneity. We call a di�erential operator Λ-homogeneous if

Tj =
∑
α∈Λ

aj,α∂
α.

The aim of Chapter 2 is to give a proof of anisotropic version of Ornstein’s theorem.

Theorem. LetΛ be a pattern of homogeneity inRd, let {Tj}`j=1 beΛ-homogeneous di�erential
operators. Suppose that all the monomials present in Tj have one and the same parity of degree.
If the inequality

‖T1f‖L1(Rd) .
∑̀
j=2

‖Tjf‖L1(Rd) (1.2)

holds true for any f ∈ C∞0 (Rd), then T1 can be expressed as a linear combination of the
other Tj .

2



The starting point of our argument mimics the approach from [23]. We introduce a
notion of generalized rank one convexity and generalized gradient ·∇. We de�ne a Bellman
function on a suitable space E by the formula

B(e) = inf
ϕ∈C∞0 ([0,1]d)

∫
[0,1]d

V (e+ ·∇[ϕ](x)) dx

for every e ∈ E. We study the properties of B and ultimately we prove that if T1 /∈
span{Tj}, such function B does not exist. More precisely, in that case the above func-
tion has to be separately convex (i.e. convex with respect to each variable), homogeneous
of degree one and sign changing. The whole problem reduces to the following theorem.

Theorem. A function F : Rd → R that is separately convex and homogeneous of order one
is non-negative.

In contrast to Ornstein’s original proof, we rather study the properties of Bellman func-
tion than construct a speci�c function built by a martingale approach. Contents of this
chapter are taken from the article [19].

Continuity of Fourier multipliers on homogeneous Sobolev spaces

In the third chapter we study the properties of translation invariant operators. We call a
function space X(Rn) translation invariant if every shift operators acts on this space as a
isometry. An operator T : X(Rn)→ X(Rn) is translation invariant if for every v ∈ Rn

T ◦ τv = τv ◦ T,

where τvf(x) = f(x+ v). The classical characterization of translation invariant operators
onL1(Rn) says that T : L1(Rn)→ L1(Rn) is translation invariant i� there exists a bounded
measure µ such that Tf = µ ∗ f for every f ∈ L1(Rn) ([47]). The Fourier transform of a
measure is a continuous function. Hence, every f ∈ L1(Rn) satis�es the identity

F (Tf) = mF (f) ,

where m is a suitable continuous function. Let W 1
1 (Rn) be a Sobolev space, i.e. completion

of smooth functions with compact support on Rn with respect to the norm

‖f‖W 1
1 (Rn) = ‖f‖L1(Rn) + ‖∇f‖L1(Rn).

From Ornstein’s noninequality [36] it follows that the class of translation invariant opera-
tors on W 1

1 (Rn) is wider than the class of convolutions with bounded measures [42]. Let
T : W 1

1 (Rn)→ W 1
1 (Rn) be translation invariant. From general theory there existsm ∈ L∞

s.t.
F (Tf) = mF (f) .
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HoweverW 1
1 (Rn) is a subset of L1(Rn), hence the Fourier transform of a function from the

Sobolev space W 1
1 (Rn) is continuous. This yields that the above function m is continuous.

The situation is much more delicate in case of homogeneous Sobolev spaces. We denote by
Ẇ 1

1 (Rn) a space of weakly di�erentiable functions on Rn with integrable gradient. We a
de�ne seminorm on Ẇ 1

1 (Rn) by the formula

‖f‖Ẇ 1
1 (Rn) = ‖∇f‖L1(Rn).

The quotient by constant functions Ẇ 1
1 (Rn)/P0 with the above norm is a Banach space.

Abusing the notation, we denote this Banach space by Ẇ 1
1 (Rn).

As usual S denotes the space of Schwartz functions. Let T be a translation invariant oper-
ator on Ẇ 1

1 (Rn). For every such T there exists m ∈ L∞ s.t.

F (Tf) = mF (f) ∀f ∈ S .

We denote by M (Ẇ 1
1 (Rd), Ẇ 1

1 (Rd)) the space of all such functions m and we call them
Fourier multipliers. We investigate the continuity of functions in M (Ẇ 1

1 (Rd), Ẇ 1
1 (Rd)).

The aim of this Chapter is to prove the continuity of functions from M (Ẇ 1
1 (Rd), Ẇ 1

1 (Rd)).
The special case when m is a homogeneous function of degree zero, i.e. m(λx) = m(x),
was studied by A. Bonami and S. Poornima [3]. In their beautiful proof they show that m
has to be a constant function. The main result of this Chapter is the following.

Theorem. If d > 2 andm ∈M (Ẇ 1
1 (Rd), Ẇ 1

1 (Rd)) thenm ∈ Cb(Rd).

It is worth to mention that our proof uses the result by A. Bonami and B. Poornima.
Contents of this chapter are taken from the article [22].

Isomorphism between sets of trigonometric polynomials

One of the essential tools used in the proof of the continuity of Fourier multipliers m ∈
M (Ẇ 1

1 (Rd), Ẇ 1
1 (Rd)) from the third chapter is the estimation of the norm of a linear com-

bination of �nite Riesz products. Let {ak} be a sequence of natural numbers s.t. ak+1 > 3ak.
We de�ne the �nite Riesz product by the formula

Rn(x) = Πn
k=1 (1 + cos 2πakx)

The key estimate used in Chapter 3 is an estimate (1.3) by R. Latała [29] valid for suitable
(very) fast growing sequence {ak}.

‖
∑
j

bjRj‖L1(T) '
∑
j

|bj|. (1.3)

This inequality is a consequence of an inequality for random variables. The transference to
trigonometric case is based on the observation that for su�ciently fast growing ak’s, func-
tions cos(2πakx) mimic independent random variables. The problem is to �nd the speci�c
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conditions on {ak} such that Rj behave like independent random variables with respect to
L1 norm. This problem can be considered for much more general polynomials. In Chapter
4 we investigate what kind of conditions are su�cient for the behavior of trigonometric
polynomials to be similar to that of independent random variables. To be precise, we give
the following de�nitions. For k ∈ N, B ⊂ Zk let LpB(Tk) = {f ∈ Lp(Tk) : supp f̂ ⊂ B}.

De�nition. For a given sequence of integers τ = {τn}n∈N and a set A ⊂ Z we de�ne sets
E ⊂ Z and F ⊂ ZN (here ZN is a dual group to Tω), in the following way:

F := {λ = (λ1, λ2, . . .) ∈ ZN : λn ∈ A},

E := {β ∈ Z : β =
∑
k=1

τkλk for λ ∈ F}.

For L∞ norm the theorem below was proved by Y. Meyer [33]. The main result of
Chapter 4 is a proof of su�ciency of the Meyer condition for L1 norm.

Theorem. For a given sequence of integers τ = {τn}n∈N and �nite set A ⊂ [−r, r] ∩ Z
satisfying

|τk+1| > 2r
k∑
j=1

|τj| ∀k ∈ N,

∞∑
j=1

|τj|
|τj+1|

<∞,

the operator T := LpF (TN)→ LpE(T) given by the formula

Tf(x) =
∑
λ∈F

f̂(λ)e2πi〈
∑∞
j=1 λjτj ,x〉

is an isomorphism of Banach spaces.

In fact we prove a generalization of the above to a higher dimension. In [12] M.
Déchamps gave a weaker condition

∞∑
j=1

|τj|2

|τj+1|2
<∞.

for the case L∞. She claimed that this condition also works for L1 norm, however her
proof contained a �aw. Nevertheless we show that M. Déchamps condition is necessary for
T to be an isomorphism in L1 norm. Moreover in the last subsection we give an example of
a sequence {τk} such that T de�ned as in the above theorem is an isomorphism for p = 2
and p = 4. However it is not an isomorphism for p = 3 and p = 4

3
. Therefore, the conditions
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on {τk} for which T is an isomorphism in Lp norm do not interpolate for 2 < p < 4 and in
general without additional conditions do not work for the dual space. Results of this chapter
are based on the unpublished preprint [20]. It is worth to mention that in the special case
of Riesz products the condition could be considerably weakened. In [30] R Latała, P. Nayar
and T. Tkocz proved that ak+1 > 1.2×109ak is enough for the case Lp, 1 6 p <∞. Finally,
A. Bonami indicated a simple argument which gives ak+1 > 3ak for L1 norm [4].

Trace operator and its right inverse on planar domains

In the last chapter of the thesis we study the properties of the trace operator. It was proven
by E. Gagliardo [16] that for domains Ω with a smooth boundary Tr : W 1

1 (Ω) → L1(∂Ω)
is onto. It was proved by J. Petree [39] that the trace operator on W 1

1 (R+ × Rn) does not
have continuous, linear right inverse. In the �rst part of the chapter we use the Whitney
decomposition of a domain Ω to give a new proof of Peetre theorem.
Theorem. Let Ω be a an open domain with Lipschitz boundary and ∂Ω be a Jordan curve.
Let Tr : W 1

1 (Ω) → L1(∂Ω) be a trace operator. Then there is no continuous, linear operator
S : L1(∂Ω)→ W 1,1(Ω) s.t. TS = IdL1(∂Ω).

The proof is amazingly simple. It uses just the geometry of Whitney covering and basic
properties of classical Banach spaces.

In the second part we investigate the trace operator on von Koch’s snow�ake ΩK . In
[17] P. Hajłasz and O. Martio studied the existence of a right inverse operator to trace in the
case of Sobolev spaces W p

1 (Ω) for p > 1. They characterized trace space as a generalized
Sobolev space. In this part of thesis we will characterize the trace space of W 1

1 (ΩK). We
use the density of restrictions of Lipschitz functions Lip(R2) inW 1

1 (ΩK) to de�ne the trace
space. For Lipschitz functions the operator Tr is just a restriction to the boundary. We
denote by X(Ω) the trace space - the completion of Tr(Lip(R2)) with respect to the norm

‖g‖X(ΩK) := inf{‖f‖W 1
1 (Ω) : Trf = g and f ∈ Lip(R2)}.

We prove that X(Ω) is isomorphic to Arens-Eels space with respect to the metric

d(x, y) = inf{|∇f‖L1 : f ∈ W 1
1 (Ω), T rf = 1[x,y]}

on the boundary, where 1[x,y] is the characteristic function of an arc [x, y].
De�nition. Let (Y, dY ) be a metric space. We call a function f : Y → R a molecule if it has
�nite support and

∑
y∈Y f(y) = 0. Let x, y ∈ Y . We de�ne special type of a molecule - an

atom : mxy = 1{x} − 1{y}. Letm be a molecule, i.e. m =
∑M

j=1 ajmxjyj . Then the Arens-Eels
norm ofm is

‖m‖AE(dY ) = inf

{∑
j

|aj|dY (xj, yj) : m :=
∑
j

ajmxjyj

}
,

6



where the in�mum is taken over all possible representations of m as a linear combination of
mpq. The Arens-Eels space is the completion of molecules with respect to the norm ‖ · ‖AE(dY ).

Using the structure of Whitney decomposition of the von Koch’s snow�ake we prove
that there a exists metric d such that d̃ = dα, where 0 < α < 1. The existence of the right
inverse to trace operator is a consequence of this fact.

Theorem. Let Tr : W 1
1 (ΩK) → X(ΩK) be a trace operator, where X(ΩK) is a trace space

(5.2). There exists a continuous, linear operator S : X(ΩK)→ W 1
1 (ΩK) s.t. Tr◦S = IdX(ΩK).

The results of this chapter are based on an unpublished joint work with my advisor M.
Wojciechowski.
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Chapter 2

Anisotropic Ornstein noninequalities

In his seminal paper [36], Ornstein proved the following: let {Tj}`j=1 be homogeneous dif-
ferential operators of the same order in d variables (with constant coe�cients); if the in-
equality

‖T1f‖L1(Rd) .
∑̀
j=2

‖Tjf‖L1(Rd)

holds true for any f ∈ C∞0 (Rd), then T1 can be expressed as a linear combination of the
other Tj . For example, in the statement above, the constant should be uniform with respect
to all functions f . The aim of the present chapter is to extend this theorem to the case
where the di�erential operators are anisotropic homogeneous; see also [21], where a partial
progress in this direction was obtained by a simple Riesz product technique.

To formulate the results of this chapter, we have to introduce a few notions. Each di�er-
ential polynomial P (∂) in d variables has a Newton diagram which matches a set of integral
points in Rd to each such polynomial. The monomial a∂m1

1 ∂m2
2 . . . ∂mdd corresponds to the

point m = (m1,m2, . . . ,md); for an arbitrary polynomial, its Newton diagram is the union
of the Newton diagrams of its monomials.

Let Λ be an a�ne hyperplane in Rd that intersects all the positive semi-axes. We call
such a plane a pattern of homogeneity. We say that a di�erential polynomial is homogeneous
with respect to Λ (or simply Λ-homogeneous) if its Newton diagram lies on Λ.

Conjecture 2.1. Let Λ be a pattern of homogeneity in Rd, let {Tj}`j=1 be a collection of Λ-
homogeneous di�erential operators. If the inequality

‖T1f‖L1(Rd) .
∑̀
j=2

‖Tjf‖L1(Rd)

8



holds true for any f ∈ C∞0 (Rd), then T1 can be expressed as a linear combination of the
other Tj .

This conjecture may seem to be a simple generalization of Ornstein’s theorem. We warn
the reader that sometimes the anisotropic character of homogeneity brings new di�culties
to inequalities for di�erential operators (the main is that one lacks geometric tools such
as the isoperimetric inequality, or the coarea formula, etc.). For example, the classical em-
bedding W 1

1 (Rd) ↪→ L d
d−1

due to Gagliardo and Nirenberg had been generalized to the
anisotropic case only in [45] and �nally in [27]; if one deals with similar embeddings for
vector �elds, the isotropic case was successfully considered in [49] (see also the survey [50]),
and there is almost no progress for anisotropic case (however, see [25, 26]).

The method we use to attack the conjecture, di�ers from that of Ornstein (though there
are some similarities). However, it is not new. It was noticed in [8] that Ornstein’s theorem
is related to the behavior of certain rank one convex functions (for some special operators
this link had already been known, see [18]). The case d = 2 was considered there. As for
the general case of Ornstein’s (isotropic) theorem, its proof via rank one convexity was an-
nounced in [23] and the proofs are available in [24]. In a sense, we follow the plan suggested
in [23]. However, the notions of quasi convexity, rank one convexity and others should be
properly adjusted to the anisotropic world, we have not seen such an adjustment anywhere.
For all these notions in the classical setting of the �rst gradient, their relationship with each
other, properties, etc., we refer the reader to the book [9]. There are certain problems in the
general anisotropic case that are not present in the classical setting. For example, the exis-
tence of the elementary laminate is not quite clear, at least, the classical reasoning does not
work. Quasi convexity still implies the rank one convexity, but this requires a new proof.
The approach of rank one convexity reduces Conjecture 2.1 to a certain geometric problem
about separately convex functions (Theorem 2.14) that is covered by Theorem 1 announced
in [23] (Theorem 1.1 in [24]). We give a simple proof of this fact, which may seem the sec-
ond advantage of approach in this chapter (though our proof does not give more advanced
Theorem 1 of [23]). We did not know the preprint [24] almost until the publication of the
present text, and did our work independently. The discussion with the authors of [24] has
shown that though the spirit of our approach in the geometric part is similar to that of [24],
the presentation and details appear to be di�erent.

We will prove a particular case of Conjecture 2.1, which still seems to be rather general
(in particular, it covers the classical isotropic case).

Theorem 2.2. Let Λ be a pattern of homogeneity in Rd, let {Tj}`j=1 be Λ-homogeneous dif-
ferential operators. Suppose that all the monomials present in the Tj have one and the same
parity of degree. If the inequality

‖T1f‖L1(Rd) .
∑̀
j=2

‖Tjf‖L1(Rd) (2.1)

9



holds true for any f ∈ C∞0 (Rd), then T1 can be expressed as a linear combination of the
other Tj .

We note that the di�erential operators here are not necessarily scalar, i.e., one can prove
the same theorem for the case where operators act on vector �elds. It is one of the advan-
tages of the general rank one convexity approach. However, to facilitate the notation, we
work on the scalar case.

We outline the structure of the chapter. We begin with restating inequality (2.1) as an
extremal problem described by a certain Bellman function (if inequality (2.1) holds, then
the corresponding Bellman function is non-negative). We also study the properties of our
Bellman function (they are gathered in Theorem 2.6), the most important of which is the
quasi convexity. All this material constitutes Section 2.1. It turns out, that quasi convexity
leads to a softer, but easier to work with, property of rank one convexity. The proof of this
fact is given in Section 2.2, see Theorem 2.9. So, the Bellman function in question is rank one
convex. In Section 2.3, we prove that rank one convex functions homogeneous of order one
are non-negative, which gives us Theorem 2.2. In fact, it su�ces to show a similar principle
for separately convex functions on Rd, which is formalized in Theorem 2.14. This theorem
is purely convex geometric. Finally, we discuss related questions in Section 2.4.

2.1 Bellman function and its properties

Inequality (2.1) can be rewritten as

inf
ϕ∈C∞0 ([0,1]d)

(∑̀
j=2

‖Tjϕ‖L1(Rd) − c‖T1ϕ‖L1(Rd)

)
= 0, (2.2)

where c is a su�ciently small positive constant.

De�nition 2.3. Suppose that ∂α, α ∈ A are all the partial derivatives that are present in
the Tj (thus A is a subset of Λ ∩ Zd). Consider the Hilbert space E with an orthonormal
basis eα indexed with the set A. For each function ϕ and each point x, we have a mapping

[0, 1]d 3 x 7→ ·∇[ϕ](x) =
∑
α∈A

∂α[ϕ](x)eα ∈ E.

We call the function ·∇[ϕ] the generalized gradient of ϕ.

The operator ·∇[·] is an analogue of the usual gradient suitable for our problem.
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Example 2.4. Let Tj = ∂xj for j = 1, . . . , d. In this case the generalized gradient turns out
to be the usual gradient on the Euclidean space Rd.

Example 2.5. Let us take the di�erential operators

T1[ϕ] = ∂(2,0,1)[ϕ]− ∂(0,3,1)[ϕ], T2[ϕ] = ∂(4,0,0)ϕ,

T3[ϕ] = ∂(0,6,0)[ϕ], T4[ϕ] = ∂(0,0,2)[ϕ].
(2.3)

We can list all the partial derivatives present in the operators:

A = {∂(0,0,2), ∂(0,6,0), ∂(4,0,0), ∂(0,3,1), ∂(2,0,1)}.

All the operators Tj are Λ-homogeneous, where Λ = {x ∈ R3 : 〈x, (3, 2, 6)〉 = 12}. In this
case the generalized gradient is of the following form:

·∇[ϕ] = (∂(0,0,2)[ϕ], ∂(0,6,0)[ϕ], ∂(4,0,0)[ϕ], ∂(0,3,1)[ϕ], ∂(2,0,1)[ϕ]) ∈ R5.

We also consider the function V : E → R given by the rule

V (e) =
(∑̀
j=2

|T̃je| − c|T̃1e|
)
, (2.4)

here T̃j are the linear functionals on E such that T̃j(e) =
∑

A cα,jeα if Tj =
∑

A cα,j∂
α.

With this portion of abstract linear algebra, we rewrite formula (2.2) as

inf
ϕ∈C∞0 ([0,1]d)

∫
[0,1]d

V ( ·∇[ϕ](x)) dx = 0.

The main idea is to consider a perturbation of this extremal problem, i.e., the function B :
E → R given by the formula

B(e) = inf
ϕ∈C∞0 ([0,1]d)

∫
[0,1]d

V (e+ ·∇[ϕ](x)) dx. (2.5)

Theorem 2.6. Suppose that inequality (2.2) holds true. Then, the function B possesses the
properties listed below.

1. It satis�es the inequalities −‖e‖ . B(e) . ‖e‖ andB 6 V .

2. It is one homogeneous, i.e.B(λe) = |λ|B(e).

3. It is a Lipschitz function.
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4. It is a generalized quasi convex function, i.e. for any ϕ ∈ C∞0 ([0, 1]d) and any e ∈ E
the inequality

B(e) 6
∫

[0,1]d

B(e+ ·∇[ϕ](x)) dx (2.6)

holds true.

Proof. 1) We get the upper estimates on the function B by plugging ϕ ≡ 0 in the formula
for it:

B(e) 6
∫

[0,1]d

V (e+ ·∇[ϕ]) = V (e) . ‖e‖.

We obtain the lower bounds on the function B from inequality (2.2) and the triangle in-
equality:∫

[0,1]d

(∑̀
j=2

∣∣∣T̃j (e+ ·∇[ϕ])
∣∣∣− c ∣∣∣T̃1 (e+ ·∇[ϕ])

∣∣∣ )

>
∫

[0,1]d

(∑̀
j=2

∣∣∣T̃j (e+ ·∇[ϕ])
∣∣∣− c ∣∣∣T̃1 ( ·∇[ϕ])

∣∣∣− c|T̃1e|

)

>
∫

[0,1]d

(∑̀
j=2

|T̃j(e+ ·∇[ϕ])| −
∑̀
j=2

|T̃j( ·∇[ϕ])| − c|T̃1e|

)

=

∫
[0,1]d

(∑̀
j=2

(
|T̃j (e+ ·∇[ϕ]) | − |T̃j( ·∇[ϕ])|

)
− c|T̃1e|

)

> −
∑̀
j=2

|T̃je| − c|T̃1e|,

where ϕ ∈ C∞0 ([0, 1]d) is an arbitrary function. We take in�mum of the above inequality
over all admissible ϕ:

−‖e‖ . −
∑̀
j=2

|T̃je| − c|T̃1e| 6 B(e).

2) Since V is a one homogeneous function, the following equality holds for every λ 6= 0:

B(λe) = inf
ϕ∈C∞0 ([0,1]d)

∫
[0,1]d

V (λe+ ·∇[ϕ]) = inf
ϕ∈C∞0 ([0,1]d)

∫
[0,1]d

|λ|V
(
e+ ·∇[λ−1ϕ]

)
.
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We know that λ−1C∞0 ([0, 1]d) = C∞0 ([0, 1]d) for every λ 6= 0, therefore

B(λe) = inf
ϕ∈C∞0 ([0,1]d)

∫
[0,1]d

|λ|V
(
e+ ·∇[λ−1ϕ]

)
= |λ| inf

ϕ∈C∞0 ([0,1]d)

∫
[0,1]d

V (e+ ·∇[ϕ]) = |λ|B(e).

3) In order to get the Lipschitz continuity ofB, we rewrite the formula for it:

∀e ∈ E B(e) = inf
ϕ∈C∞0 ([0,1]d)

Vϕ(e),

where
Vϕ(e) =

∫
[0,1]d

V (e+ ·∇[ϕ](x))dx.

It follows from the Lipschitz continuity of V that every function Vϕ is a Lipschitz function
with the Lipschitz constant bounded by L, where L is the Lipschitz constant of the function
V . For every two points v1, v2 ∈ E, we can �nd a sequence of functions Vϕn such that
B(vj) = infn∈N Vϕn(vj) for j ∈ {1, 2}. We de�ne

fk(e) = min
n=1,2,...,k

Vϕn(e).

For every k ∈ N the function fk is the Lipschitz function with the Lipschitz constant
bounded by L. Hence

|B(v1)−B(v2)| = lim
k→∞
|fk(v1)− fk(v2)| 6 L‖v1 − v2‖.

4) Before we prove the generalized quasi convexity of this function, we need to introduce
some notation. We know that all α ∈ A have common pattern of homogeneity Λ, thus we
can �nd a vector γ ∈ Nd and a number k ∈ N such that 〈α, γ〉 = k for every α ∈ A.

For every λ ∈ R and x ∈ Rd we denote

xλ = (λγ1x1, λ
γ2x2, . . . , λ

γdxd).

For every λ ∈ N we de�ne the partition of the unit cube [0, 1]d into small parallelepipeds:

Qy = y + Πd
j=1[0, λ−γj ] for every y ∈ Y, where

Y =
{
y ∈ [0, 1]d : y =

( κ1

λγ1
,
κ2

λγ2
, . . . ,

κd
λγd

)
for κj ∈ N ∪ {0} and κj < λγj

}
.

Here Y is the set of “leftmost lowest” vertices of the parallelepipedsQy. The parallelepipeds
Qy are disjoint up to sets of measure zero and

⋃
y∈Y Qy = [0, 1]d. Let us �x ϕ ∈ C∞0 ([0, 1]d).
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Since ·∇[ϕ] is a uniformly continuous function on [0, 1]d and the diameter of the paral-
lelepipeds Qy tends to zero uniformly with the growth of λ, we can choose λ su�ciently
large to obtain

∀ y ∈ Y ∀z, v ∈ Qy | ·∇[ϕ](z)− ·∇[ϕ](v)| 6 ε

L
, (2.7)

where L is the Lipschitz constant of the function V . Let {ψy}y∈Y be a family of functions
in C∞0 ([0, 1]d). For these functions, we use the following rescaling:

ψy,λ(x) = λ−kψy((x− y)λ).

Let us observe that the rescaling (x − y)λ transforms the cube [0, 1]d into Qy, thus
suppψy,λ ⊂ Qy. Moreover, we know that

∂α[ψy,λ](x) = λ−kλ(
∑d
j=1 αjγj)∂α[ψy] ((x− y)λ) = ∂α[ψy] ((x− y)λ)

for every α ∈ A. By (2.5), we have

B(e) 6
∫

[0,1]d

V
(
e+

∑
y∈Y

·∇[ψy,λ](x) + ·∇[ϕ](x)
)
dx

=
∑
y∈Y

∫
Qy

V
(
e+ ·∇[ψy,λ](x) + ·∇[ϕ](x)

)
dx.

We assumed that (2.7) holds, therefore, for arbitrary vy ∈ Qy we have the following esti-
mate:∫

Qy

V
(
e+ ·∇[ψy,λ](x) + ·∇[ϕ](x)

)
dx

6
∫
Qy

V (e+ ·∇[ψy,λ](x) + ·∇[ϕ](vy)) dx+ ε|Qy|

=

∫
Qy

V (e+ ·∇[ψy]((x− y)λ) + ·∇[ϕ](vy)) dx+ ε|Qy|.

Since λ−(
∑d
j=1 γj) = |Qy|, we have∫

Qy

V
(
e+ ·∇[ψy]((x− y)λ) + ·∇[ϕ](vy)

)
dx

= |Qy|
∫

[0,1]d

V (e+ ·∇[ψy](z) + ·∇[ϕ](vy)) dz

for z = (x− y)λ. Now for every y ∈ Y, vy ∈ Qy we can choose ψy such that∫
[0,1]d

V
(
e+ ·∇[ψy](z) + ·∇[ϕ](vy)

)
dz 6 B(e+ ·∇[ϕ](vy)) + ε
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(this choice depends on vy, however, we treat vy as of a �xed parameter). We obtain

B(e) 6
∑
y∈Y

|Qy|B(e+ ·∇[ϕ](vy)) + 2ε

from the above inequalities. We take mean integrals of this inequality over each cube Qy

with respect to vy, which gives us

B(e) 6
∑
y∈Y

∫
Qy

B(e+ ·∇[ϕ](vy))dvy + 2ε =

∫
[0,1]d

B(e+ ·∇[ϕ](x))dx+ 2ε.

Since ε was an arbitrary positive number, we have proved the generalized quasi convexity
ofB.

The proof of the fourth point seems very similar to the standard Bellman induction step
(see [34, 37, 48, 51] or any other paper on Bellman function method in probability or har-
monic analysis); moreover, the function B itself is, in a sense, a Bellman function and in-
equality (2.6) is a Bellman inequality. We suspect that this “similarity” should be more well
studied.

2.2 Rank one convexity

Inequality (2.6) looks like a convexity inequality. Sometimes it is really the case.

De�nition 2.7. We call a vector ex ∈ E a generalized rank one vector if it is of the form∑
α∈A

i|α|+|α0|xαeα, x ∈ Rd, α0 ∈ A.

Remark 2.8. In Theorem 2.2, we only consider the case where every α ∈ A has the same
parity as the other elements of A. Therefore, i|α|+|α0| ∈ R for every α0, α ∈ A. Hence the
coe�cients of the generalized rank one vector are real.

Theorem 2.9. The function B is a generalized rank one convex function, i.e. it is convex in
the directions of generalized rank one vectors.

To prove the theorem, we need two auxiliary lemmas.

Lemma 2.10. For every x ∈ Rd and every ε, δ > 0, there exists a function lx,ε,δ ∈ C∞0 ([0, 1]d)
and a set B ⊂ [0, 1]d such that the following holds.

1. ‖ ·∇[lx,ε,δ]‖ 6 ‖ex‖+ ε.
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2. |B| > 1− δ.

3. The function ·∇[lx,ε,δ]
∣∣
B
with respect to the measure µ = |B|−1dx

∣∣
B
is equimeasurable

with the function cos(2πt)ex, t ∈ [0, 1], i.e.

µ ({ ·∇[lx,ε,δ] ∈ W}) =

∣∣∣∣{t ∈ [0, 1] : cos(2πt)ex ∈ W
}∣∣∣∣

for every Borel setW in E.

Proof. For a given x ∈ Rd we take the same γ and k as in the proof of the fourth point of
Theorem 2.6. We consider the function

lx,ε,δ(ξ) = t−k cos(
d∑
j=1

tγjxjξj)Φ(ξ),

where Φ is the smooth hat function:

Φ(ξ) =

 1 ξ ∈ [2δ′, 1− 2δ′]d,
0 ξ ∈ [0, 1]d\[δ′, 1− δ′]d,
Θ(ξ) ∈ [0, 1] otherwise.

for δ′ su�ciently small (in particular, we need 2(2δ′)d < δ). Similarly to the fourth point of
Theorem 2.6, we de�ne the set of proper parallelepipeds

Yt =

{
Q : Q = (kjvj)j=1,...,d + Πd

j=1[0, wj]; kj ∈ {1} ∪
{
kj ∈ N : kj <

tγjxj
2π
− 1
}}

.

where vj = wj = 2πt−γjx−1
j if xj 6= 0 and vj = δ′, wj = (1 − 2δ′) otherwise. For any δ′,

we can choose t to be so large that∣∣∣ ⋃
Q∈Yt

Q⊂[2δ′,1−2δ′]d

Q
∣∣∣ > 1− δ.

We put B to be this union, i.e. the union of the parallelepipeds Q from the family Yt that
belong to [2δ′, 1− 2δ′]d entirely.

If t is su�ciently large, then for every β ∈ Nd satisfying 0 6 〈β, γ〉 < k, we have

sup
ξ∈[0,1]d

|t−1∂β[Φ](ξ)| 6 ε′. (2.8)

For any β ∈ Nd, the following holds:

∂β

[
cos

(
d∑
j=1

tγjxjξj

)]
= t〈β,γ〉xβ∂β[cos]

(
d∑
j=1

tγjxjξj

)
.
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Since all α ∈ A have the same parity, we either have ∂α[cos](ξ) = (−1)
|α|
2 cos(ξ) for

every α ∈ A or ∂α[cos](x) = (−1)
|α|+1

2 sin(ξ) for every α ∈ A. Without lost of generality
we may assume 2

∣∣|α|, because the functions sine and cosine are equimeasurable on their
periodic domains. Therefore, for every ξ ∈ [0, 1]d and α ∈ A we have

∂α[lξ,ε,δ](ξ) = Φ(ξ)∂α[t−k cos
( d∑
j=1

tγjxjξj
)
]

+
∑

α′+β=α
β 6=(0,0,...,0)

cα′,β t
−k∂α

′

[
cos
( d∑
j=1

tγjxjξj(x)
)]
∂β[Φ]

= Φ(ξ)xα∂α[cos]
( d∑
j=1

tγjxjξj
)

+
∑

α′+β=α
β 6=(0,0,...,0)

cα′,β t
〈α′,γ〉−k∂α

′
[cos]

( d∑
j=1

tγjxjξj(x)
)
∂β[Φ]

= (−1)
|α|
2 xα cos

( d∑
j=1

tγjxjξj
)

+ error,

(2.9)

where the coe�cients cα′,β come from the Leibniz formula. The error is O(ε′) in absolute
value by (2.8) and equals to zero on the set [2δ′, 1−2δ′]d (because the function Φ is constant
there). For every ξ ∈ [0, 1]d we have

·∇[lξ,ε,δ](ξ) =
∑
α∈A

∂α[lξ,ε,δ](ξ)eα =
∑
α∈A

(
(−1)

|α|
2 xα cos(

d∑
j=1

tγjxjξj) + error

)
eα

= ex cos(
d∑
j=1

tγjxjξj) + error.

Thus, for every ξ ∈ [0, 1]d and ε′ su�ciently small, we obtain

‖ ·∇[lξ,ε,δ](ξ)‖ 6 ‖ex‖+ ‖error‖ 6 ‖ex‖+ ε.

Since the error equals to zero on the set [2δ′, 1 − 2δ′]d, it follows from (2.9) that for every
ξ ∈ B we have

·∇[lξ,ε,δ](ξ) = cos(
d∑
j=1

tγjxjξj)ex.

We note that the function cos(
∑d

j=1 t
γjxjξj)ex restricted to any Q ∈ Yt is equimeasurable

(with respect to the measure dx
|Q| onQ) with the function cos(2πt)ex, t ∈ [0, 1], (one can ver-

ify this fact using an appropriate dilation). Since B is a union of several parallelepipeds Q,
the same holds with Q replaced by B.
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Lemma 2.11. Suppose that v : R→ R is a Lipschitz function such that

v(x) 6

1∫
0

v(x+ λ cos(2πt))dt (2.10)

for any x, λ ∈ R. Then, v is convex.

Proof. We are going to verify that v is convex as a distribution, or what is the same, that the
distribution v′′ is non-negative. For that, we multiply inequality (2.10) by a positive function
ϕ ∈ C∞0 (R). Since v is a Lipschitz function, we can integrate it over R:

∫
R

v(x)φ(x)dx 6
∫
R

1∫
0

v(x+ λ cos(2πt))ϕ(x)dtdx

=

∫
R

1∫
0

v(x)ϕ(x− λ cos(2πt))dtdx

=

∫
R

v(x)

1∫
0

(
ϕ(x)− λ cos(2πt)ϕ

′
(x) +

λ2

2
cos2(2πt)ϕ

′′
(x) + o(λ2)

)
dtdx

=

∫
R

v(x)ϕ(x) + v(x)ϕ
′′
(x)

λ2

2

 1∫
0

cos2(2πt)

+ o(λ2)

 dx.

Therefore,

0 6
1

2

 1∫
0

cos2(2πt)dt

∫
R

v(x)φ
′′
(x)dx+

o(λ2)

λ2
.

Letting λ→ 0, we show that v′′ as a distribution satis�es v′′(φ) > 0 for all φ ∈ C∞0 (R) and
φ > 0. From the Schwartz theorem it follows that v′′ is a non negative measure of locally
�nite variation. Thus v′ is an increasing function and therefore v is convex.

Proof of Theorem 2.9. The function B is a generalized quasi convex function, hence it
satis�es (2.6) for every ϕ ∈ C∞0 ([0, 1]d). Let us �x x ∈ Rd, λ ∈ R. We plug λlx,ε,δ into (2.6).
We get (for every e ∈ E)

B(e) 6
∫

[0,1]d

B(e+ ·∇[λlx,ε,δ]) =

∫
B

B(e+ ·∇[λlx,ε,δ]) +

∫
[0,1]d\B

B(e+ ·∇[λlx,ε,δ])

6
∫
B

B(e+ ·∇[λlx,ε,δ]) +O
(
λ(‖e‖+ ‖ex‖+ ε)δ

)
18



from Lemma 2.10. Since ·∇[lx,ε,δ]
∣∣
B

is equimeasurable (B equipped with the measure dx
|B| )

with cos(2πt)ex, ∫
B

B(e+ ·∇[λlx,ε,δ])
dx

|B|
=

∫
[0,1]

B(e+ λ cos(2πt)ex)dt.

Therefore,

B(e) 6 |B|
∫

[0,1]

B(e+ λ cos(2πt)ex)dt+O
(
λ(‖e‖+ ‖ex‖+ ε)δ

)
.

Since for δ → 0, we have |B| → 1, and then

B(e) 6
∫

[0,1]

B(e+ λ cos(2πt)ex)dt. (2.11)

For a �xed e ∈ E, consider the function R 3 s 7→ B(e+ sex). By (2.11),

B(e+ sex) 6
∫

[0,1]

B(e+ sex + λ cos(2πt)ex)dt.

Thus, by Lemma 2.11, the function R 3 s 7→ B(e + sex) is convex (one simply applies
lemma to this function). Since e ∈ E and x ∈ Rd, λ ∈ R were arbitrary, it proves the
generalized rank one convexity of the functionB.

2.3 Separately convex homogeneous functions and proof of Theo-
rem 2.2

Lemma 2.12. Generalized rank one vectors span E.

Proof. Since E is a �nite dimensional Hilbert space, every functional on E is of the form
φ∗(·) = 〈

∑
α∈A aαeα, · 〉. We get

φ∗(ex) =
∑
α∈A

aαx
αi|α|+|α0|

for every x ∈ Rd. If E is not a span of generalized rank one vectors, then there exists a non
trivial φ∗ such that

0 = φ∗(ex) =
∑
α∈A

aαx
αi|α|+|α0|

for every x ∈ Rd. However, xα are linearly independent monomials. Therefore, aα = 0 for
every α ∈ A. Hence φ∗ ≡ 0 and the generalized rank one vectors span E.
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We recall that our aim was to show that T1 is a linear combination of the other Tj . By
comparing the kernels of the T̃j , its is equivalent to the fact that V > 0 everywhere. By the
evident inequality B 6 V , it su�ces to prove that B is non-negative. By Lemma 2.12 and
Theorem 2.9, this will follow from the theorem below. Hence it su�ces to prove Theorem
2.14 to get Theorem 2.2.

De�nition 2.13. A function F : Rd → R is separately convex if it is convex with respect to
each variable.

Theorem 2.14. A function F : Rd → R that is separately convex and homogeneous of order
one is non-negative

Before passing to the proof, we cite Theorem 2.31 of the book [9], which says that a
separately convex function is continuous. This fact will be implicitly used several times in
the reasoning below.

Proof. We proceed by induction. Suppose that the statement of the theorem holds true for
the dimension d − 1, we then prove it for the dimension d. Construct the function G :
Rd−1 → R by the formula

G(x) = F (x, 1), x ∈ Rd−1.

This function is separately convex and convex with respect to radius, i.e. for every x ∈
Rd−1 the function R+ 3 t 7→ G(tx) is a convex function. Indeed, the function F is one
homogeneous and separately convex, thus for t, r > 0 and τ ∈ (0, 1) we have:

τG(tx) + (1− τ)G(rx) = τF (tx, 1) + (1− τ)F (rx, 1)

= (τt+ (1− τ)r)

(
τtF (x, 1

t
) + (1− τ)rF (x, 1

r
)

τt+ (1− τ)r

)
> (τt+ (1− τ)r)F

(
x,

1

τt+ (1− τ)r

)
= F ((τt+ (1− τ)r)x, 1) = G ((τt+ (1− τ)r)x) .

We claim that for each x ∈ Rd−1 the function R 3 t 7→ G(tx) is convex. Since the func-
tionG is continuous, it su�ces to prove thatG(tx)+G(−tx) > G(0) for all t ∈ R. Consider
another function V :

V (x) = lim
t→0+

G(tx) +G(−tx)− 2G(0)

t
, x ∈ Rd−1.

The limit exists due to the convexity with respect to radius. This function V is one homo-
geneous and separately convex. However, it may have attained the value−∞. Fortunately,
this is not the case. If there exists x ∈ Rd such that V (x) = −∞ then the following holds:

2V (0, x2, . . . , xd) 6 V (x1, . . . , xd) + V (−x1, . . . , xd) = −∞.
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Therefore V (0, x2, . . . , xd) = −∞. We repeat the above reasoning with x2, . . . , xd instead
of x1 and we get that V (0) = −∞, but from the de�nition of V we know that

V (0) = lim
t→0+

G(0) +G(0)− 2G(0)

t
= 0.

Hence V (x) is �nite for every x ∈ Rd−1. Thus, by the induction hypothesis, V is non-
negative. So, R 3 t 7→ G(tx) is a convex function.

By symmetry, G(x) +G(−x) > 2F (x, 0). On the other hand, limt→±∞
G(tx)
t

= F (x, 0).
So, the convexity of t 7→ G(tx) gives the inequality |G(x) − G(−x)| 6 2F (x, 0). Adding
these two inequalities, we get that F (x, 1) > 0.

Proof of Theorem 2.2. Assume that inequality (2.1) holds. Then, by Theorem 2.6, the
function B given by (2.5) is Lipschitz, one homogeneous, generalized quasi convex, and
satis�es the inequality B 6 V , where the function V is given by formula (2.4). Then, by
Theorem 2.9,B is a generalized rank one convex function.

Let e ∈ E be an arbitrary point. By Lemma 2.12, e is a linear combination of general-
ized rank one vectors ex1 , ex2 , . . . , exk . We may assume that they are linearly independent.
Consider the function F : Rk → R given by the rule

F (z1, z2, . . . , zk) = B(z1ex1 + z2ex2 + . . .+ zkexk).

By the generalized rank one convexity of B, F is separately convex. It is also one ho-
mogeneous, thus F > 0 by Theorem 2.14. Therefore, B(e) is also non-negative for arbi-
trary e ∈ E.

SinceB > 0, we have V > 0. In such a case, it follows from formula (2.4) that Ker T̃1 ⊃
∩`j=2 Ker T̃j . Therefore, T1 is a linear combination of the other Tj .

2.4 Related questions

Towards Conjecture 2.1. The following statement plays the same role in view of Conjec-
ture 2.1, as Theorem 2.14 plays in the proof of Theorem 2.2.

Conjecture 2.15. Let F : R2d → R be a Lipschitz homogeneous function of order one.
Suppose that for any j = 1, 2, . . . , d the function F is subharmonic with respect to the vari-
ables (xj, xj+d). Then, F is non-negative.
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Indeed, plugging the cosine function into (2.6) as we did in the proof of Theorem 2.9 leads
to “subharmonicity”1 of the functionB in the directions of projections of a generalized rank
one vector onto subspaces generated by odd and even monomials in A correspondingly.
Therefore, Conjecture 2.1 follows from Conjecture 2.15.

We are not able to prove Conjecture 2.15. However, we know the following: in the
case d = 1, the function F is not only non-negative, but, in fact, convex (i.e. a one homo-
geneous subharmonic function is convex). On the other hand, there is no much hope for
simpli�cations: a subharmonic one homogeneous function in R3 (and thus in Rd, d > 3)
can attain negative values, e.g. in R4 one may take the function x21+x22+x23−x24√

x21+x22+x23
.

There are also reasons that di�er from the ones discussed in the present chapter that
may “break” inequality (2.1). One of them is a certain geometric property of the spaces
generated by the operators Tj . Not stating any general theorem or conjecture, we treat an
instructive example. Consider the non-inequality

‖∂2
1∂2f‖L1 . ‖∂4

1f‖L1 + ‖∂2
2f‖L1 . (2.12)

Conjecture 2.1 hints us that it cannot be true. We will disprove it on the torus T2 and
leave to the reader the rigorous formulation and proof of the corresponding transference
principle, whose heuristic form is “inequalities of the sort (2.1) are true or untrue simul-
taneously on the torus and the Euclidean space”. Consider two anisotropic homogeneous
Sobolev spaces W1 and W2, which are obtained from the set of trigonometric polynomials
by completion and factorization over the null-space with respect to the seminorms

‖f‖W1 = ‖∂4
1f‖L1 + ‖∂2

2f‖L1 , ‖f‖W2 = ‖∂2
1∂2f‖L1 + ‖∂4

1f‖L1 + ‖∂2
2f‖L1 .

If inequality (2.12) holds true, then these two spaces are, in fact, equal (the identity operator
is a Banach space isomorphism between these spaces). However, it follows from the re-
sult of [40] (see [53, 54] as well) that W2 has a complemented translation-invariant Hilbert
subspace2, whereas W1 does not, a contradiction.

Martingale transforms. Let S = {Sn}n, n ∈ {0} ∪ N, be an increasing �ltration of �nite
algebras on the standard probability space. We suppose that it di�erentiates L1 (i.e. for
any f ∈ L1(Ω) the sequence E(f | Sn) tends to f almost surely). We will be working with
martingales adapted to this �ltration.
De�nition 2.16. Let α = {αn}n be a bounded sequence. The linear operator

Tα[f ] =
∞∑
j=1

αj−1(fj − fj−1), f = {fn}n is an L1 martingale,

1The “subharmonicity” means that DB > 0 as a distribution, where D is an elliptic symmetric di�erential operator
of second order (with constant real coe�cients); one can then pass to usual subharmonicity by an appropriate change of
variable.

2That means that there exists a subspace X ⊂W2 such that g ∈ X whenever g(·+ t) ∈ X , t ∈ T2, X is isomorphic
to an in�nite dimensional Hilbert space, and there exists a continuous projector P : W2 → X .
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is called a martingale transform.

Our de�nition is not as general as the usual one, and we refer the reader to the book [37]
for the information about such type operators. We only mention that martingale transforms
serve as a probabilistic analogue for the Calderón–Zygmund operators. The probabilistic
version of Conjecture 2.1 looks like this.

Conjecture 2.17. Suppose α1, α2, . . . , α` are bounded sequences. Suppose that the alge-
bras Sn uniformly grow, i.e. there exists γ < 1 such that each atom a of Sn is split in Sn+1

into atoms of probability not greater than γ|a| each. The inequality

‖Tα1f‖L1 .
∑̀
j=2

‖Tαjf‖L1 (2.13)

holds for any martingale f adapted to {Sn}n if and only if α1 is a sum of a linear combination
of the αj and an `1 sequence.

We do not know whether the condition of uniform growth �ts this conjecture. Anyway,
it is clear that one should require some condition of this sort (otherwise one may take Sn =
Sn+1 = . . . = Sn+k very often and loose all the control of the sequences αj on this time
intervals). Again, we are not able to prove the conjecture in the full generality, but will deal
with an important particular case.

Theorem 2.18. Suppose α1, α2, . . . , α` to be bounded periodic sequences. The inequality

‖Tα1f‖L1 .
∑̀
j=2

‖Tαjf‖L1

holds if and only if α1 is a linear combination of the other αj .

Proof. To avoid technicalities, we will be working with �nite martingales (denote the class
of such martingales by M). The general case can be derived by stopping time. Assume
that inequality (2.13) holds true. Consider the Bellman function B : R` → R given by the
formula

B(x) = inf
f∈M

(∑̀
j=2

∥∥xj + Tαj [f ]
∥∥
L1
− c
∥∥x1 + Tα1 [f ]

∥∥
L1

)
.

It is easy to verify that this function is one homogeneous and Lipschitz. Moreover, B is
convex in the direction of (α1

n, α
2
n, . . . , α

`
n) for each n (by the assumption of periodicity,

there is only a �nite number of these vectors); the proof of this assertion is a simpli�cation
of Theorem 2.9 (here we do not have to make additional approximations; however, see [48],
Lemma 2.17 for a very similar reasoning). Thus, by Theorem 2.14, B is non-negative on
the span of {(α1

n, α
2
n, . . . , α

`
n)}n. SinceB(x) 6

∑
j>2 |xj| − c|x1|, the aforementioned span

does not contain the x1-axis. Therefore, α1 is a linear combination of the other αj .
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Case p > 1. Inequality (2.1) may become valid provided one replaces the L1-norm with
the Lp one, 1 < p <∞. Let cp be the best possible constant in the inequality

‖T1f‖pLp(Rd)
6 cp

∑̀
j=2

‖Tjf‖pLp(Rd)
. (2.14)

It is interesting to compute the asymptotics of cp as p→ 1. Some particular cases have been
considered in [2], we also refer the reader there for a discussion of similar questions.

Conjecture 2.19. Let Λ be a pattern of homogeneity in Rd, let {Tj}`j=1 be a collection of Λ-
homogeneous di�erential operators. If T1 cannot be expressed as a linear combination of the
other Tj , then cp & 1

p−1
.

The conjecture claims that if there is no continuity at the endpoint, then the inequality
behaves at least as if it had a weak type (1, 1) there (it is also interesting to study when there
is a weak type (1, 1) indeed). First, we note that this question is interesting even when there
are only two polynomials. Second, this is only a bound from below for cp. Even in the case
of two polynomials, cp can be as big as (p − 1)1−d (and thus the endpoint inequality may
not be of weak type (1, 1), at least when d > 3), see [2] for the example.

As in the previous point, Conjecture 2.19 will follow from the corresponding geometric
statement in the spirit of Theorem 2.14.

Conjecture 2.20. Let F : Rd → R be separately convex p-homogeneous function
(i.e., F (λx) = |λ|pF (x)). Suppose that F (x) 6 |x|p. Then, F (x) & (1− p)|x|p.

Conjecture 2.19 is derived from Conjecture 2.20 in the same way as Theorem 2.2 derived
from Theorem 2.14: one considers the Bellman function (2.5) with the function V given by
the formula

V (e) =
(
cp
∑̀
j=2

|T̃je|p − |T̃1e|p
)
,

proves its generalized quasi convexity, which leads to the generalized rank one convexity,
and then uses Conjecture 2.20 to estimate cp from below.

It is not di�cult to verify the case d = 2 of Conjecture 2.20. Therefore, there exists
a C∞0 -function fp such that

(p− 1)‖∂1∂2fp‖Lp(R2) &
(
‖∂2

1fp‖Lp(R2) + ‖∂2
2fp‖Lp(R2)

)
.
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Chapter 3

Continuouity of Fourier multipliers on
homogenous Sobolev Spaces

We consider the invariant operators on the homogeneous Sobolev spaces on Rd given by
Fourier multipliers. The homogeneous Sobolev space Ẇ 1

1 (Rd) consists of functions on Rd

whose distributional gradient is integrable. A measurable function m : Rd → R is called
a (Fourier) multiplier if the operator given by the formula Tmf = F−1(m · F (f)) is
bounded. Fourier transforms of bounded measures are examples of multipliers. Indeed, the
convolution with a bounded measure is a bounded operator on every translation invariant
space with continuous shifts operators, in particular on the homogeneous Sobolev space.
However, the class of Fourier multipliers on Ẇ 1

1 (Rd) is wider than the class of Fourier
transforms of measures (Proposition 2.2 in [42]). One of the important questions about
the invariant subspaces of L1 is a description of bounded singular operators acting on it
e.g. the Calderon-Zygmund operators are given by multiplier with singularity at zero.
Therefore, the question of the continuity of a multiplier arises quite naturally in the theory.

The simplest case of noncontinuous multipliers was settled by A. Bonami and S.
Poornima who proved that the only homogeneous multipliers of degree zero are the
constants. In their beautiful proof they use very delicate result by Ornstein (cf. [36]) on the
non-majorization of a partial derivative by other derivatives of the same order. While the
class of homogeneous multipliers, containing e.g. Riesz transforms, is the most important
one, the question of the continuity of general multipliers remained open. The aim of this
chapter is to �ll the gap. We prove that any multiplier acting on the homogeneous Sobolev
space with integral norm is a continuous function.

Our proof uses three main ingredients. The �rst one is the Bonami - Poornima result.
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The second is the Riesz product technique which allows us to make the crucial estimates on
the torus group. This would be su�cient for our purpose, provided we are able to transfer
the problem from Rd to Td. Such transference in the case of multipliers on Lp spaces is the
subject of the theorem of deLeeuw (cf. [11]). However, in the case of multipliers on the
homogeneous Sobolev space no version of the deLeeuw transference theorem is known.
We are able to overcome this di�culty due to the special form of functions on which
the multiplier reaches its norm. The question of general deLeeuw type theorem for the
homogeneous Sobolev spaces remains open.
One can ask whether a similar approach could be used to prove the Ornstein’s non-
inequality. Indeed in some special cases this technique works, for more details one can
check [21].

For a formal statement of the main theorem we use standard de�nitions and notations
for classical spaces in particular

· D(Rd) - space of C∞(Rd) functions with compact support on Rd.

· D ′(Rd) - space of distributions on Rd.

· S (Rd) - Schwartz function space on Rd.

· F (·) - Fourier transform on the space of tempered distributions.

· F−1(·) - inverse Fourier transform on the space of tempered distributions.

One can �nd more details on the function spaces mentioned above in [44]. For the de�-
nition of the Fourier transform we follow [47]. As usual, C will denote a generic constant,
whose value can change from line to line.
We write W p

k (Rd) for the Sobolev space, given by

W p
k (Rd) :=

{
f ∈ Lp(Rd) : Dαf ∈ Lp(Rd) for |α| 6 k

}
with the norm

‖f‖W p
k (Rd) :=

∑
06|α|6k

‖Dαf‖Lp(Rd)

whereα is a multi-index andDα is the corresponding distributional derivative and k ∈ N+.
Analogously we write Ẇ k

p (Rd) for the homogeneous Sobolev space, given by

Ẇ p
k (Rd) :=

{
f ∈ D ′(Rd) : Dαf ∈ Lp(Rd) for |α| = k

}
with the seminorm

‖f‖Ẇ p
k (Rd) :=

∑
|α|=k

‖Dαf‖Lp(Rd)
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where α, Dα and k are the same as above. The homogeneous Sobolev spaces are spe-
cial cases of Beppo-Levi spaces which are discussed in [13]. Later we will use the symbol
Ẇ p
k (Rd) to denote the quotient space Ẇ p

k (Rd)/Pk, where Pk stands for the space of poly-
nomials of degree strictly less than k. The space Ẇ p

k (Rd)/Pk with the quotient norm is a
Banach space.
We say that the function m ∈ L∞(Rd) is a Fourier multiplier on X , where X is either
the Lebesgue space, the Sobolev space or the homogeneous Sobolev space Ẇ 1

1 (Rd), if there
exists a bounded operator Tm : X → X such that

F (Tmf) = mF (f) ∀ f ∈ S (Rd).

We use the symbol M (X,X) to denote the space of the Fourier multipliers on X with the
norm

‖m‖M (X,X) := ‖Tm‖ ∀m ∈M (X,X).

Now we can state the main result of this chapter

Theorem 3.1. If d > 2 andm ∈M (Ẇ 1
1 (Rd), Ẇ 1

1 (Rd)) thenm ∈ Cb(Rd).

In the proof we will use the theorem of A. Bonami and S. Poornima on the homogeneous
Fourier multipliers on Ẇ 1

1 (Rd).

Theorem 3.2 (A. Bonami, S. Poornima). Let Ω be a continuous function on Rd\{0}, homo-
geneous of degree zero i.e.

Ω(εx) = Ω(x) ∀x ∈ Rd.

Then
Ω ∈M (Ẇ 1

1 (Rd), Ẇ 1
1 (Rd))⇔ Ω ≡ K ∈ C.

For the proof see [3].

In the next section we prove Theorem 3.1. To focus the attention on the main line of
the proof, some technical lemmas are formulated there without proofs. For the reader’s
convenience proofs of the technical lemmas are given in the last section.

Proof of the Theorem 3.1

Let the functionm ∈M (Ẇ 1
1 (Rd), Ẇ 1

1 (Rd)). Hence ξim(ξ)F (f) (ξ) is a Fourier transform
of an integrable function for every f ∈ S (Rd). Therefore m is a continuous function on
Rd\{0}. Thus it is enough to show the existence of the limit limx→0m(x).
Prior to the proof we need one more de�nition. Let f : Rd → R.
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(*) We say that the function f has almost radial limits at 0 i� for every vector w ∈ Sd−1

there exists a scalar g(w) ∈ R such that for every sequences tk → 0 and wk → w
(tk ∈ R; wk ∈ Sd−1) we have

lim
k→∞

f(tkw
k) = g(w).

Proof of Theorem 3.1. Since m is bounded, there are three possibilities:

Case I The multiplier m has almost radial limits at 0 (*).

Case II The multiplier m does not satisfy condition (*). Then there exists a sequence
{an}n∈N ⊂ Rd, an → 0, a vector v ∈ S1 and two di�erent scalars a and b such
that

lim
n→∞

an

|an|
= v

and one of the following is satis�ed

(a) Symmetric case.

lim
n→∞

m(a2n) = lim
n→∞

m(−a2n) = a,

lim
n→∞

m(a2n+1) = lim
n→∞

m(−a2n+1) = b.
(3.1)

(b) Asymmetric case.
lim
n→∞

m(an) = a,

lim
n→∞

m(−an) = b.

Proof in the Case I

We will use the following lemma, stated in [3], on the pointwise convergence of multipliers.

Lemma 3.3. Let {mk} be a sequence of Fourier multipliers on Ẇ 1
1 (Rd) and assume that the

corresponding operators have commonly bounded norms. If mk converge pointwise to a func-
tionm(·) thenm(·) is a Fourier multiplier on Ẇ 1

1 (Rd).

In the next lemma we use Theorem 3.2 to show that the multipliers satisfying condition
(*) are continuous.

Lemma 3.4. If d > 2 and m ∈ M (Ẇ 1
1 (Rd), Ẇ 1

1 (Rd)) satis�es condition (*), then
limξ→0m(ξ) exists and is �nite.
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Proof. Note �rst that m has the radial limit at 0 (we apply (*) to �xed v = vk = wk). Hence
the formula

Ω(ξ) := lim
n→∞

m(
1

n
ξ).

de�nes a homogeneous function on Rd\{0}. The condition (*) implies continuity of Ω on
Rd\{0}. Indeed

lim
ξk→ξ

Ω(ξk) = lim
ξk→ξ

lim
n→∞

m(
1

n
ξk)

(∗)
= lim

n→∞
m(

1

n
ξ) = Ω(ξ) (3.2)

Since the norm of multipliers from M (Ẇ 1
1 (Rd), Ẇ 1

1 (Rd)) is invariant under rescaling,
the functionsm( 1

n
·) are Fourier multipliers with equal norms. By Lemma 3.3 their pointwise

limit, being bounded and continuous on Rd\{0}, is a Fourier multiplier on Ẇ 1
1 (Rd). Then

Theorem 3.2 implies that Ω is a constant function which in turn means that all radial limits
ofm are equal. In similar way as in (3.2) we check that a function which has all radial limits
equal and satis�es condition (*) is continuous at zero. Hence multiplier m is a continuous
function.

Proof in the Case IIa

From now on we assume that d = 2. This allows us to simplify the notation yet not loosing
the generality. We can also assume, transforming linearly if necessary, that a = 1, b = −1
and v = (1, 0). We will estimate the norm of the multiplier m from the following lemma:

Lemma 3.5. (cf. [55]) There exists constant C > 0 such that for every s ∈ N+, there exists
Ms such that∥∥∥∥∥

s∑
j=1

(−1)j cos
(
2π〈cj, ξ〉

) ∏
16k<j

(
1 + cos

(
2π〈ck, ξ〉

))∥∥∥∥∥
L1(Td)

> Cs (3.3)

whenever {ck}sk=1 ⊂ Zd satis�es
|ck+1| > Ms|ck|.

Remark 3.6. The value of Ms could be derived from [33], where it is proved that whenever∑s
k=1

( |ck|
|ck+1|

)
< ∞ then the expression appearing in the inequality (3.3) is equivalent to the

similar one with functions ξ 7→ cos(2π〈cj, ξ〉) replaced by cosines of certain independent
random variables, for which it follows by the theorem by R. Latała (Theorem 1 in [29]). In [12]
the weaker condition

∑s
k=1

( |ck|
|ck+1|

)2
<∞ is claimed to be su�cient (see Chapter 4 ). Similar

inequality was obtained and used by M. Wojciechowski in [55].

In the rest of the chapter we put N :=
(
| log(Ms)

log(2)
|+ 2

)
.
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Let us assume that the operator Tm corresponding to the multiplier m is bounded. For
every s ∈ N we will construct a function hs with norm bounded by a constant independent
of s, such that

‖Tmhs‖Ẇ 1
1 (Rd) > Cs.

Let ε > 0, be �xed later. We construct the sequence of balls B(ck, rk) and B(−ck, rk) for
k ∈ {1, 2, . . . , s}, such that the following conditions hold:

II-A. |m(ξ)− (−1)k| < ε for ξ ∈ B(ck, rk) ∪B(−ck, rk) for k = 1, 2, . . . , s,

II-B. rn 6 2−Nrn+1 for n = 1, 2, . . . , s− 1,

II-C. cn ∈ Q×Q for n = 1, 2, . . . , s,

II-D. |cn+1| < 2−Nrn for n = 1, 2, . . . , s− 1,

II-E. |cn2 |/|cn1 | 6 1
3s+2s

for n = 1, 2, . . . , s,

II-F. |cn| < 2−N |cn+1| for n = 1, 2, . . . , s− 1,

II-G. |cni | > rn for n = 1, 2, . . . , s and i = 1, 2,

II-H. |cni | < 2−N |cn+1
i | for n = 1, 2, . . . , s and i ∈ {1, 2}.

II-I. B(
∑n

j=1 ζjc
j, r1) ⊂ B(ζnc

k, rk) for ζk ∈ {−1, 1}, ζj ∈ {−1, 0, 1}. and n =
1, 2, . . . , s.

We de�ne sequences {ck} and {rk} by backward induction. There is no problem with
rn because it is chosen always after cn and for II-B and II-G we take it su�ciently small. For
cn note that the conditions II-D and II-F require only that cn is small enough. Conditions
II-A, II-E, II-H will be satis�ed if we take as cn a vector ak with su�ciently large index k s.t.
k ≡ n mod 2. At the end we adjust our choice to the condition II-C: since the rationals are
dense in R and all other inequalities are strict, we can do this in such a way that inequalities
remain valid.
The condition II-I follows from II-B, II-D and II-F. Indeed for k ∈ {1, . . . , s− 1},
ζj ∈ {−1, 0, 1}, j ∈ {1, ..., k − 1} and ζk ∈ {−1, 1} we have

k−1∑
j=1

rj < 2−N
k−1∑
j=2

rj + 2−Nrk < . . . <

(
k∑
j=1

2−Nj

)
rk <

1

2
rk.

Hence ∣∣∣∣∣ζkck −
k∑
j=1

ζjc
j

∣∣∣∣∣ =

∣∣∣∣∣
k−1∑
j=1

ζjc
j

∣∣∣∣∣ <
k−1∑
j=1

∣∣ζjcj∣∣ < k−1∑
j=1

2−Nrj <
1

2
rk. (3.4)
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By condition II-B we have rl < rk
4

for k > l. Therefore by (3.4)

B(
k∑
j=1

ζjc
j, r1) ⊂ B(ζkc

k, rk) ∀k ∈ {1, 2, . . . , s}.

The norm of Tm is invariant under rescaling. Then by condition II-C for �xed smultiplying
cj’s by suitable scalar and rescaling multiplier m by the same scalar, we may assume that
c1, . . . , cs ∈ Z2 and the conditions II-A – II-I are still satis�ed. Note that if q ∈ Z2 has the
representation

q =
s∑
j=1

ζj(q)cj where ζj(q) ∈ {−1, 0, 1}, (3.5)

it is unique. For q ∈ Q2 we denote by χ(q) the number of non zero terms in the represen-
tation (3.5). We de�ne the set

Λs := {q : q =
s∑
j=1

ζj(q)cj; q 6= 0 where ζj(q) ∈ {−1, 0, 1}}. (3.6)

If q, q̃ ∈ Λs are two di�erent vectors then

|q − q̃| > inf |cj| > 1. (3.7)

We will construct a function hs in such a way that one of its derivatives behaves like a Riesz
product. Let

g(t) := max{1− |t|, 0}2

and
G(ξ) := g(ξ1)g(ξ2).

We denote by Rs the modi�ed Riesz product:

Rs(t) := −1 + Πs
k=1(1 + cos(2π〈t , ck〉)

For �xed θ ∈ N+ we de�ne a function Hθ : R2 → R2 by the formula

Hθ(ξ) :=
∑
q∈Λs

1

2χ(q)
G
(
2θ(ξ − q)

)
=
∑
q∈Z2

R̂s(q)G
(
2θ(ξ − q)

)
. (3.8)

Since Rs are densities of periodic measures with uniformly bounded norms and the inverse
Fourier transform of the function G decays su�ciently fast at in�nity we get:

Corollary 3.7. For every θ ∈ N+ the following inequality is satis�ed

‖F−1(Hθ)‖L1(R2) 6 C‖Rs‖L1(T2) 6 C,

where the constant C is independent of s.
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In the next lemma we state another property of Hθ.

Lemma 3.8. There exists θ = θ(s) ∈ N+ such that∥∥∥∥F−1

(
ξ2

ξ1

Hθ

)∥∥∥∥
L1(R2)

6 C

where the constant C is independent of s.

The proof of this fact one can �nd in the Appendix. From now on we put H := Hθ(s).

Remark 3.9. Note that homogeneous, non-constant functions are never multipliers onL1(Rd).
The above lemma holds true only due to the special form ofHθ, mainly the strong concentration
of its support near x1-axis and because of small size of its support.

SinceH is bounded, continuous and has compact support separated from the axis {ξ1 =
0}, the function H

ξ1
is a tempered distribution. We de�ne a tempered distribution h by the

formula
h(ψ) :=

H

x1

(F−1ψ) ∀ψ ∈ S .

By standard properties of the Fourier transform on the space of tempered distributions, we
get

F

(
∂

∂x1

h

)
= H

F

(
∂

∂x2

h

)
=
ξ2

ξ1

H.

(3.9)

We proved that bothH and ξ2
ξ1
H are the Fourier transforms ofL1 functions. Hence equalities

(3.9) mean that h ∈ Ẇ 1
1 (Rd) with the norm bounded by a constant independent of s.

Now we estimate the norm of Tmh from below. Since Tm : Ẇ 1
1 (R2)→ Ẇ 1

1 (R2), obviously
∂
∂x1
Tmh ∈ L1(R2). We denote by P the periodization of the function ∂

∂x1
Tmh. It is only the

fact that, when the function is in L1(Rd), then its periodization is in L1(Td). We have

‖Tmh‖Ẇ 1
1 (R2) >

∥∥∥∥ ∂

∂x1

Tmh

∥∥∥∥
L1(R2)

> ‖P‖L1(T2). (3.10)

One can check that the function P is a polynomial given by the formula

P (ξ) =
∑
p∈Λs

m(p)H(p)e2πi〈p,ξ〉. (3.11)

We put

a(p) :=

{
(−1)kH(p) when p ∈ Λs and p ∈ B(ck, rk) ∪B(−ck, rk),
0 otherwise.
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Since Λs is a �nite set, the function

Z(ξ) :=
∑
p∈Z2

a(p)e2πi〈p,ξ〉

is a polynomial. By the triangle inequality,

‖P‖L1(T2) > ‖Z‖L1(T2) − ‖P − Z‖L1(T2). (3.12)

By the conditions II-I and II-A, all coe�cients ofZ di�er by at most ε from the corresponding
coe�cients of P . Since both polynomials have no more then 3s non-zero coe�cients, we
get

‖Z − P‖L1(T2) 6 ε3s. (3.13)

It is easy to verify that

Z(ξ) =
s∑
j=1

(−1)j cos
(
2π〈cj, ξ〉

) ∏
16k<j

(
1 + cos

(
2π〈ck, ξ〉

))
.

By the condition II-F and Lemma 3.5,

‖Z‖L1(T2) > Cs.

Combining now successively (3.10), (3.12) and (3.13), we get

‖Tmh‖Ẇ 1
1 (R2) > Cs− ε3s.

Setting ε = C3−s−1s
‖Tmh‖Ẇ 1

1 (R2) > Cs

which by the uniform boundedness of ‖h‖Ẇ 1
1 (R2) proves that T is unbounded.

Proof in Case IIb

The proof in this case is very similar to Case IIa. The only di�erence is that, due to lack of
symmetry, we have to replace Lemma 3.5 by its asymmetric counterpart. We will use the
following result from [55].

Lemma 3.10. There exist C > 0 such that for every n ∈ N+ there exists M = M(n) such
that for any sequence {ck}nk=1 ⊂ Zd, which satis�es

|ck+1| > M |ck|,

following inequality holds

‖
n∑
j=1

e2πi〈cj ,ξ〉
∏

16k<j

(
1 + cos

(
〈2πck, ξ〉

))
‖L1(Tr) > Cn.
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For �xed ε > 0 we construct the sequence of ballsB(cn, rn) andB(−cn, rn) satisfying
conditions II-B – II-I and

II-A′ . |m(ξ)− 1| < ε forB(cn, rn) and |m(ξ)| < ε for ξ ∈ B(−cn, rn) and n = 1, 2, . . . , s.

The inductive construction is similar as in the Case IIa. Then, similarly as in the Case IIa,
we de�ne θ(s) and h, and we get

‖h‖Ẇ 1
1 (R2) 6 C,

where the constant C > 0 independent of s. Analogously as in the Case IIa we de�ne
polynomial P by (3.11) and by similar reasons

‖Tmh‖Ẇ 1
1 (R2) > ‖P‖L1(T2).

Then we put

a(p) :=

{
H(p) when p ∈ Λs and p ∈ B(ck, rk),

0 otherwise ,

where k ∈ {1, 2, . . . , s}. The function a(·) di�ers from its analogue from Case IIa. We
de�ne a polynomial Z by

Z(ξ) :=
∑
p∈Z2

a(p)e2πi〈p,ξ〉.

It is easy to check that

Z(ξ) =
2n∑
j=1

e2πi〈cj ,ξ〉
∏

16k<j

(
1 + cos

(
2π〈ck, ξ〉

))
,

and similar reasoning as in the Case IIa (3.13) gives

‖P‖L1(T2) > ‖Z‖L1(T2) − ε3s.

By Lemma 3.10,
‖Z‖L1(T2) > Cs.

Hence
‖Tmh‖Ẇ 1

1 (R2) > Cs− ε3s,

and setting ε = C3−s−1s we get

‖Tmh‖Ẇ 1
1 (R2) > Cs

which by uniform boundedness of ‖h‖Ẇ 1
1 (R2) proves that T is unbounded.
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Proof of Lemma 3.8

We begin with two lemmas. We study the operator given by su�ciently smooth multiplier
acting on a subspace of L1 functions with compactly supported Fourier transform. Let k be
the smallest even number greater then dd

2
e, d > 2. We �x function η ∈ C∞0 supported in

ball of radius 1.

Lemma 3.11. Let 0 < ε 6 r < 1 and f ∈ Ck+1(B(0, r)) with all derivatives of order less
than or equal to k vanishing at 0. Then the following inequality holds

‖F−1(ηεf)‖L1(Rd) 6 C(η, d) ε

 ∑
|α|=k+1

|Dαf(0)|+ o(ε)

 , (3.14)

where ηε(x) := η(εx).

Proof. We recall that for such k the left hand side is bounded up to a constant by ‖ηf‖Wk
1

(cf. [47]). By the Leibniz Formula, it is su�cient to prove that all derivatives Dβf are
dominated by

∑
|α|=k+1 |Dαf(0)| + o(ε) for |β| 6 k on B(0, ε). This is a consequence of

Taylor’s Formula.

Dβf(x) =
∑

|α|6k+1−|β|

Dα+βf(0)xα + o(|x|k+1−|β|)

=
∑
|α|=k+1

Dαf(0) + o(ε).
(3.15)

Lemma 3.12. Let 0 < ε 6 r 6 1 and f ∈ Ck+1(B(0, r)) then the following inequality holds

‖F−1(ηεf)‖L1(Rd) 6 C(η, d)

|f(0)|+ ε

 ∑
|α|6k+1

|Dαf(0)|

+ o(ε)

 . (3.16)

Proof. Writing f as the sum of a polynomial of degree k and a function satisfying the as-
sumptions of the previous lemma, we see that it is su�cient to consider only polynomials
and by linearity monomials. For f(ξ) = (2iπξ)α, we have

‖F−1(ηεf)(x)‖L1 = ‖εd+|α|Dαη(
x

ε
)‖L1 6 C(η)εα. (3.17)

Hence inequality (3.16) follows.

Now we can prove the Lemma 3.8.
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Proof. of Lemma 3.8.
By the de�nition of Hθ we see that its support is contained in the union of disjoint balls of
radius r with centered in points of Λs. Radius r depends only on the parameter θ, so we can
choose it as small as we wish. Let ηq ∈ C∞ be rescaled and translated copies of the same
function η with supp ηq ⊂ B(q, 2r) and ηq(ξ) = 1, ξ ∈ B(q, r) for every q ∈ Λs. The
following identity holds

ξ2

ξ1

Hθ(ξ) =
∑
φ∈Λs

ηq(ξ)
ξ2

ξ1

Hθ(ξ). (3.18)

By the condition II-G (page 30) the function f = ξ2
ξ1

satis�es conditions of Lemma 3.12 on
these balls. Hence for r small enough by the triangle inequality, (3.16), and (3.18)

‖F−1(ηqfH
θ)‖L1(R2) 6 C(η)

∑
q∈Λs

|f(q)|+ ε

 ∑
|α|6k+1

|Dαf(q)|

+ o(ε)


· ‖F−1(Hθ)‖L1(R2).

By conditions II-E and II-H,∣∣∣∣q2

q1

∣∣∣∣ =

∣∣∣∣∣ck2 +
∑k−1

j=1 ζjc
j
2

ck1 +
∑k−1

j=1 ζjc
j
1

∣∣∣∣∣ 6 k|ck|
|ck1| −

∑k−1
j=1 |c

j
1|

6
s

3

∣∣∣∣ck1ck2
∣∣∣∣ 6 1

2 · 3s
.

Since |Λs| 6 3s we can choose su�ciently small ε > 0 such that

‖F−1(
ξ2

ξ1

Hθ)‖L1(R2) 6 C‖F−1(Hθ)‖L1(R2),

where the constant C does not depend on s.
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Chapter 4

Isomorphism between sets of
trigonometric polynomials

It is an easy observation that for any two trigonometric polynomials of one variable p(t)
and q(t) the Lp norm of the polynomial p(t) + e2πiNtq(t) tends to the Lp norm of the two
variables polynomial p(t)+e2πisq(t). It is a consequence of the fact that character with high
oscillation mimics an independent Steinhaus variable. Based on this observation Y. Meyer
proposed in [33] that the formula

f(x) =
∑
n∈J

ane
2πi

∑k
j=1 njxj → Tf(z) =

∑
n∈J

ane
2πi

∑k
i=1 τjnjz,

where x = (x1, ..., xj), provides an Lp-isomorphism between the space of k-variables
trigonometric polynomials with spectrum contained in k-cube J = [−1, 1]k ∩ Zk and the
invariant subspace of one variable polynomials if the sequence τj increase rapidly enough.
This statement is established in [33] for p =∞ and sequence of positive integers τj s.t.

∞∑
j=1

τj
τj+1

<∞ and τj+1 > 3τj

Later M. Déchamps [12] improved this result extending the spectrum to k-hyperrectangle∏
j[−rj, rj] ∩ Zk and the sequence τj s.t.

∞∑
j=1

(
rjτj
τj+1

)2

<∞ and τj+1 >
π

2
(rj + 1)τj

In both articles the extensions to 1 6 p < ∞ seams to be incomplete. In the last section
of this chapter we indicate why the use of duality and interpolation in this problem is a
delicate matter.
The purpose of this chapter is to prove that under the Meyer’s condition, the formula from
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the beginning of the chapter for 1 6 p < ∞ de�nes an isomorphism. We also give an
extensions of this fact to the isomorphism of multidimensional tori and we clarify the role
of size and cardinality in quantitative condition.

We study the equivalence between �nite dimensional spaces of trigonometric polynomi-
als de�ned on Td with spaces of trigonometric polynomials de�ned on Tdk. Let τ = {τi}ki=1

be a given family of integer vectors, where τi = (τi,1, . . . , τi,d). We investigate the operator

f(x) =
∑
λ

aλe
2πi〈(λ1,...,λk),(x1,...,xk)〉 → Tf(z) =

∑
λ

aλe
2πi〈

∑k
i=1 τjλj ,z〉 ∀ x ∈ Tdk, z ∈ Td,

(4.1)
where x = (x1, . . . , xk), with suitably chosen λ = (λ1, . . . , λk) ∈ Zdk. To be more precise
we introduce following notation.

De�nition 4.1. Let k ∈ N and A ⊂ Zk

LpA(Tk) = {f ∈ Lp(Tk) : supp f̂ ⊂ A}.

De�nition 4.2. For a given sequence of d-tuples of integers τ = {τn}n∈N and family of sets
A = {An}n∈N ( An ⊂ Zd) we de�ne sets E ⊂ Zd and F ⊂ ZN (here ZN is a dual group to
TN), in the following way:

F := F (A ) = {λ = (λ1, λ2, . . .) ∈ (Zd)N : λn ∈ An},

E := E(A , τ) = {β ∈ Zd : β =
∑
k=1

τkλk for λ ∈ F}, (4.2)

where by τkλk we denote pointwise product i.e. τkλk = (τk,1λk,1, . . . , τk,dλk,d), τk =
(τk,1, . . . , τk,d) and λk = (λk,1, . . . , λk,d).

The main result of this chapter is following:

Theorem 4.3. For a given sequence of d-tuples of integers τ = {τn}n∈N and family of sets
A = {An}n∈N (An ⊂ Zd) satisfying

An ⊂ [−rn, rn]d,

‖τk+1‖∞ > 2
k∑
j=1

rj‖τj‖∞ ∀k ∈ N,

∞∑
j=1

#Aj+1‖τj‖∞rj
min

k∈{1,...,d}
|τj+1,k|

<∞,

(4.3)

the operator T := TA ,τ : LpF (TN)→ LpE(Td) given by the formula

Tf(x) =
∑
λ∈F

f̂(λ)e2πi〈
∑∞
j=1 λjτj ,x〉 (4.4)

is an isomorphism of Banach spaces.
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Remark 4.4. If we assume that∪An is bounded set it is enough to assume geometric growth
of τ and the l1 summability of a sequence j 7→ ‖τj‖∞

min
k∈{1,...,d}

|τj+1,k|
. If

2d
#Aj+1‖τj‖∞(rj + 1)

min
k∈{1,...,d}

|τj+1,k|
< 1

for every j ∈ N then

K−1‖f‖L1
F (TN) 6 ‖Tf‖L1

E(T) 6 K‖f‖L1
F (TN)

where the constant K depends only on the value of
∑∞

j=1
#Aj+1‖τj‖∞rj

min
k∈{1,...,d}

|τj+1,k|
.

Remark 4.5. Theorem 1 holds for polynomials with values in Banach spaces as well. All the
steps of the proof could be repeated verbatim for trigonometric polynomials with Banach
space coe�cients.

For �xed �nite set of characters one can choose a sequence τ growing so fast that the
following holds.

Corollary 4.6. Let A ⊂ Zd be a �nite set. Then there exists φ : A→ Z s.t. the operator∑
λ∈A

aλe
2πi〈λ,z〉 →

∑
λ∈A

aλe
2πiφ(λ)x

is a (1 + ε)-isometry.

The chapter is organized as follows. In the �rst section we will prove three elementary
lemmas about approximation of trigonometric polynomials by simple functions. Section 2
contains the proof of the Theorem 4.3. In Section 3 we establish a necessary condition for
p=1. In the last section we show an example of a sequence τ and family of sets A such
that T is an isomorphism for p = 2 and p = 4 but fails to be an isomorphism for p = 3
and p = 4/3. This shows that one has to be very careful using interpolation and duality
arguments to �nd this type of criteria. For examples of applications of such criterion we
refer the reader to [29],[55].

Auxiliary lemmas

We begin with the estimate on the approximation of trigonometric polynomial by simple
functions.
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Lemma 4.7. Let s,N ∈ Zd and f be a trigonometric polynomial on Tdk. Assume that the
degrees with respect to the last d variables of the polynomial f are controlled by the coordinates
of s i.e. degzi (f) 6 |si|, where z = (z1, . . . , zi). Let

f̃(y′, z) =
∑
n∈Nd

nj6|Nj |−1

χ
In

(z)−
∫
In

f (y′, z) dz ∀ y′ ∈ Td(k−1) , z ∈ Td,

where In =
[
n1

|N1| ;
n1+1
|N1|

]
× · · · ×

[
nd
|Nd|

; nd+1
|Nd|

]
. Then

∣∣∣‖f‖Lp(Tdk) − ‖f̃‖Lp(Tdk)

∣∣∣ 6 d ‖s‖∞
min

j∈{1,...,d}
|Nj|
‖f‖Lp(Tdk).

Proof. We estimate the di�erence of Lp norms of the functions by the norm of its partial
derivatives. We use the fact that the optimal constant in Poincare’s inequality on a convex
set is dominated by its diameter (see eg. [38], [1]).∣∣∣‖f‖Lp(Tdk) − ‖f̃‖Lp(Tdk)

∣∣∣p 6 ‖f − f̃‖pLp(Tdk)

=
∑
n∈Nd

nj6|Nj |−1

∫
Td(k−1)

∫
In

∣∣∣∣f(y′, x)−−
∫
In

f (y′, z) dz

∣∣∣∣p dxdy′
6

∑
n∈Nd

nj6|Nj |−1

∫
Td(k−1)

diam(In)p
∫
In

|∇zf(y′, z)|p dzdy′.

Since diam(In) > min
j∈{1,...,d}

|Nj| we get

∣∣∣‖f‖Lp(Tdk) − ‖f̃‖Lp(Tdk)

∣∣∣p 6 1

min
j∈{1,...,d}

|Nj|p
‖∇zf‖pLp(Tdk)

,

where ∇zf is the gradient of the function f with respect to last d variables. Using Bern-
stein’s inequality ( see eg. [56])∥∥ ∂

∂zi
f
∥∥
Lp(Tdk)

6 degzi (f) ‖f‖Lp(Tdk).

We get from the triangle inequality

‖∇zf‖Lp(Tdk) 6 d max
j∈{1,...,d}

∥∥ ∂

∂zj
f
∥∥
Lp(Tdk)

6 d max
j∈{1,...,d}

degzj (f) ‖f‖Lp(Tdk) 6 d ‖s‖∞‖f‖Lp(Tdk).
(4.5)
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Hence∣∣∣‖f‖Lp(Tdk) − ‖f̃‖Lp(Tdk)

∣∣∣ 6 1

min
j∈{1,...,d}

|Nj|
‖∇zf‖Lp(Tdk) 6

d ‖s‖∞
min

j∈{1,...,d}
|Nj|
‖f‖Lp(Tdk)

Lemma 4.8. Let fn ∈ Lp(Td) be a trigonometric polynomial for every n ∈ A. We de�ne

w(y′, y, z) =
∑
n∈A

e2πi〈n,y〉fn(y′, z) ∀ y′ ∈ Td(k−1) ∀ y, z ∈ Td.

Then
‖w‖Lp(Td(k+1)) 6

∑
n∈A

‖fn‖Lp(Tdk) 6 #A‖w‖Lp(Td(k+1)).

Proof. The left hand side is just a triangle inequality. We get the right hand side by summing
for n ∈ A the following inequalities.∫

Tdk
|fn|pdy′dz =

∫
Tdk

∣∣∣∣∫
Td
e−2πi〈n,y〉wdy

∣∣∣∣p dy′dz
6
∫
Tdk

∫
Td
|w|p dydy′dz = ‖w‖p

Lp(Td(k+1))
.

Lemma 4.9. Let trigonometric polynomials fn ∈ Lp(Tdk) satisfy degzj (fn) 6 sj for n ∈ A
and j ∈ {1, . . . , d}. Let

w(y′, z) :=
∑
n∈A

e2πi〈Nn,z〉fn(y′, z) ∀ y′ ∈ Td(k−1) ∀ vz ∈ Td,

w(y′, y, z) :=
∑
n∈A

e2πi〈n,y〉fn(y′, z) ∀ y′ ∈ Td(k−1) ∀ y, z ∈ Td.

This pair of functions satis�es the estimates1− 2d
#A‖s‖∞
min

j∈{1,...,d}
|Nj|

 ‖w‖L1(Td(k+1)) 6 ‖w‖L1(Tdk) (4.6)

and

‖w‖L1(Tdk) 6

1 + 2d
#A‖s‖∞
min

j∈{1,...,d}
|Nj|

 ‖w‖L1(Td(k+1)).

It could happen that the constant in (4.6) is negative. We consider such situation in
Remark 4.10.
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Proof. Let us de�ne functions

w̃(y′, y, z) :=
∑
n∈A

e2πi〈n,y〉f̃n(y′, z) ∀ y′ ∈ Td(k−1) , ∀ y, z ∈ Td,

w̄(y′, z) :=
∑
n∈A

e2πi〈Nn,z〉f̃n(y′, z) ∀ y′ ∈ Td(k−1) ,∀ z ∈ Td,

where functions f̃n are de�ned as in Lemma 4.7. By the triangle inequality,∣∣‖w‖Lp(Tdk) − ‖w‖Lp(Td(k+1))

∣∣ 6 ∣∣‖w‖Lp(Tdk) − ‖w̄‖Lp(Tdk)

∣∣
+
∣∣‖w̃‖Lp(Td(k+1)) − ‖w̄‖Lp(Tdk)

∣∣
+
∣∣‖w‖Lp(Td(k+1)) − ‖w̃‖Lp(Td(k+1))

∣∣ . (4.7)

Again by the triangle inequality,∣∣‖w‖Lp(Tdk) − ‖w̄‖Lp(Tdk)

∣∣+
∣∣‖w‖Lp(Td(k+1)) − ‖w̃‖Lp(Td(k+1))

∣∣ 6 2
∑
n∈A

‖fn − f̃n‖Lp(Tdk).

Hence by the de�nition of f̃k,n, Lemma 4.7 and Lemma 4.8,∣∣‖w‖Lp(Tkd) − ‖w̄‖Lp(Tkd)

∣∣+ ∣∣‖w‖Lp(Td(k+1)) − ‖w̃‖Lp(Td(k+1))

∣∣
6 2d

#A‖s‖∞
min

j∈{1,...,d}
|Nj|
‖w‖L1(Td(k+1)).

(4.8)

For the second term of the right hand side of (4.7) we have

‖w̄‖p
Lp(Tdk)

=

∫
Tkd
|w̄(y′, z)|pdy′ dz

=

∫
Td(k−1)

∑
m∈Nd

mu6|Nu|−1

∫
Im

∣∣∣∣∣∑
n∈A

e2πi〈Nn,z〉f̄n(y′, z)

∣∣∣∣∣
p

dz dy′

The function f̃n(y′, ·) is a constant on every d-parallelotope Im form ∈ Zd∩{mj 6 |Nj|−1}
and every y′ ∈ Td−1. We denote this value by hn(m, y′). We have following identity.

‖w̄‖p
Lp(Tdk)

=

∫
Td(k−1)

∑
m∈Nd

mu6|Nu|−1

∫
Im

∣∣∣∣∣∑
n∈A

e2πi〈Nn,z〉hn(m, y′)

∣∣∣∣∣
p

dz dy′

=
d∏

u=1

|Nu|−1

∫
Td(k−1)

∑
m∈Nd

mu6|Nu|−1

∫
Td

∣∣∣∣∣∑
n∈A

e2πi〈n,y〉hn(m, y′)

∣∣∣∣∣
p

dy dy′

=

∫
Td(k−1)

∫
Td

∑
m∈Nd

mu6|Nu|−1

|Im|

∣∣∣∣∣∑
n∈A

e2πi〈n,y〉hn(m, y′)

∣∣∣∣∣
p

dy dy′.
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The summands of the inner sum equal to the integrals of a constant functions. Since
hn(m, y′) = fn(y′, z) for z ∈ Im,

‖w̄‖p
Lp(Tdk)

=

∫
Td(k−1)

∫
Td

∑
m∈Nd

mu6|Nu|−1

∫
Im

∣∣∣∣∣∑
n∈A

e2πi〈n,y〉fn(y′, z)

∣∣∣∣∣
p

dz dy dy′

=

∫
Td(k+1)

∣∣∣∣∣∑
n∈A

e2πi〈n,y〉f̄dn(y′, z)

∣∣∣∣∣
p

dz dy dy′

=

∫
Td(k+1)

|w̃|pdz dy dy′ = ‖w̃‖p
Lp(Td(k+1))

.

The above equality together with (4.7) and (4.8) gives∣∣‖w‖Lp(Tdk) − ‖w‖Lp(Td(k+1))

∣∣ 6 2d
#A‖s‖∞
min

j∈{1,...,d}
|Nj|
‖w‖Lp(Td(k+1))

which implies the lemma.

4.1 Proof of Theorem 4.3

Let f ∈ LpF (TN) be a trigonometric polynomial, which depends only on �rst s×d variables.
Then, by the de�nition of T we have,

Tf(z) =
∑

(λ1,...,λs,0,0,...)∈F

f̂(λ1, . . . , λs)e
2πi〈

∑s
j=1 τjλj ,z〉 ∀ z ∈ Td,

which can be rewritten in the form

w1(z) := Tf(z) =
∑
n∈As

e2πi〈τsn,z〉g1,n(z),

where g1,n are suitable polynomials with degzi (g1,n) 6
∑s−1

t=1 rt|τt,i| 6
∑s−1

t=1 rt||τt||∞. By
Lemma 4.9, 1− 2d #As

∑s−1
t=1 rt||τt||∞

min
i∈{1,...,d}

|τs,i|

 ‖w2‖Lp(T2d) 6 ‖w1‖Lp(Td) (4.9)

and

‖w1‖Lp(Td) 6

1 +
2d#As

∑s−1
i=1 rt‖τt‖∞

min
i∈{1,...,d}

|τs,i|

 ‖w2‖Lp(T2d),
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where
w2(y1, z) =

∑
(λ1,...,λs,0,0,...)∈F

f̂(λ1, . . . , λs)e
2πi〈λs,y1〉e2πi〈

∑s−1
j=1 τjλj ,z〉,

for y1, z ∈ Td. Similarly as in the case k = 1 we proceed for k > 1. We obtain trigonometric
polynomials of the form

wk(y
′, z) :=

∑
(λ1,...,λs,0,0,...)∈F

f̂(λ1, . . . , λs)e
2πi〈(λs,...,λs−k+1),y′〉e2πi〈

∑s−k
j=1 τjλj ,z〉, (4.10)

for all y′ ∈ Td(k−1) and z ∈ Td. This could be rewritten as

wk(y
′, z) =

∑
j∈Ak

e2πi〈τs−k+1j,z〉gk,j(y
′, z)

where polynomials gk,j satisfy degzu (gk,j) 6
∑s−k

j=1 rj|τj,u|. By Lemma 4.9,

(1−K(k)) ‖wk+1‖Lp(Td(k+1)) 6 ‖wk‖Lp(Tdk) 6 (1 +K(k)) ‖wk+1‖Lp(Td(k+1)),

where constant K(k) is given by

K(k) = 2d #As−k+1

∑s−k
j=1 rj‖τj‖∞

min
i∈{1,...,d}

|τs−k+1,i|
.

Combining the above inequalities for k = 1, ..., s− 1 we get

s−1∏
j=1

(1−K(j))‖ws‖Lp(Tds) 6 ‖Tf‖Lp(Td) 6
s−1∏
j=1

(1 +K(j))‖ws‖Lp(Tds),

The constant 1 − K(j) could be negative for some j. We consider such case in Remark
4.10. For now we assume that 1−K(j) > 0. Note that ws equals f up to a permutation of
variables. Hence ‖ws‖Lp(Tds) = ‖f‖Lp(Tds). Since Aj, rj, τj satisfy (4.3) we have

∞∑
k=1

K(k) =
∞∑
k=1

2
√
d #An−k+1

∑n−k
j=1 rj‖τj‖∞

min
i∈{1,...,d}

‖τn−k+1,i‖∞
6 C

∞∑
k=1

#Ak rk−1‖τk−1‖∞
min

i∈{1,...,d}
|τk,i|

<∞.

Hence there exists a constant K independent on n such that

K−1‖f‖Lp(Tdn) 6 ‖Tf‖Lp(Td) 6 K‖f‖Lp(Tdn), (4.11)

Remark 4.10. It could happen that the �rst few constants K(j) are larger than 1. Since∑
K(j) is convergent, there is only a �nite number of them. In this case we replace the

respective induction steps by trivial estimates of the norm depending on isomorphism of
�nitely dimensional spaces
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4.2 Necessary condition for L1 isomorphism

In this section we investigate a necessary condition on the operator T of the form (4.1) to
be an isomorphism in L1 norm. We are looking for a condition expressed in terms of a
summability of a sequence |τj |

|τj+1| . We show that `2 summability is necessary. More precisely
for every family A of uniformly bounded sets Ai s.t. #Ai > 2 there exists a sequence
τj such that

∑ |τj |2
|τj+1|2 = +∞ but

∑ |τj |p
|τj+1|p < +∞ for every p > 2 and the operator T

corresponding to τ is not an isomorphism. Our argument is a slight modi�cation of an idea
of F. Nazarov, which proves the necessity of a geometric growth of |τk| ([35]).
For simplicity we assume that d = 1 and Ai = {−1, 1} but the similar construction works
in general case. We choose sequence

τk =

{
( l! )3 k = 2l,

( l! )3 2b
√
kc k = 2l + 1.

For n ∈ N we de�ne a trigonometric polynomial fn by

fn(x) =
2n∏
j=1

sin(2πτjx) ∀x ∈ T.

If T given by (4.1) is an isomorphism then there is a constant independent on n such that

‖fn‖L1
E(T) > C1‖Tf‖L1

F (T2n) =

∫
T2n

∣∣∣∣∣
2n∏
j=1

sin(2πxj)

∣∣∣∣∣ dx1 · · · dx2n = ‖ sin(2πx)‖2n
L1(T).

We are going to apply now Theorem 4.3 for the sequence τ̃ = {τ2n}n∈N and the sequence
of sets B = {Bk}, where Bk =

{
−2b
√
kc,−1, 1, 2b

√
kc
}

. We get the following bounds
on a norm of fn with constants independent on n.

‖fn‖L1(T) 6 C2

∫
Tn

∣∣∣∣∣
n∏
j=1

sin(2πxj) sin(2π 2b
√
jcxj)

∣∣∣∣∣ dx1 · · · dxn

=
n∏
j=1

‖ sin(2πx) sin(4πb
√
jcxj)‖L1(T).

It is now enough to show that for su�ciently large k,

‖sin(2πx) sin(4πkx)‖L1(T) 6 (1− c

k2
)‖ sin(2πx)‖2

L1(T) = (1− c

k2
)

(
2

π

)2

, (4.12)

because this implies a contradiction:

C3 6
n∏
j=1

‖ sin(2πx) sin(4πb
√
jcxj)‖L1(T)

‖ sin(2πx)‖2
L1(T)

6 C4

n∏
j=n0

(1− c

j
)
n→∞−−−→ 0.
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To show (4.12) we split the integral over the interval [0,1] into a sum of integrals over
intervals of length equal to the period of the second function.∫ 1

0

| sin(2πx) sin(4πkx)|dx =
1

2π

∫ 2π

0

| sin(t) sin(2kt)|dt

=
1

π

∫ π

0

sin(t)| sin(2kt)|dt

=
1

π

k−1∑
j=0

∫ j+1
k
π

j
k
π

sin(t)| sin(2kt)|dt

=
1

π

∫ π
k

0

k−1∑
j=0

sin(t+
jπ

k
)| sin(2kt)|dt.

By the formula for the sum of sines.∫ 1

0

| sin(2πx) sin(4πkx)|dx =
1

π

∫ π
k

0

cos(t− π
2k

)

sin( π
2k

)
| sin(2kt)|dt

=
1

π2

∫ 2π

0

π cos(x−π
2k

)

2k sin( π
2k

)
| sin(x)|dx

6
1

π2

∫ 2π

0

π cos(π
k
)

2k sin( π
2k

)
| sin(x)|dx

=
4

π2
+

∫ 2π

0

(
π cos(π

k
)

2k sin( π
2k

)
− 1

)
| sin(x)|dx

Since
lim
k→∞

k2

(
π cos(π

k
)

2k sin( π
2k

)
− 1

)
=
−11π2

24

the Lebesgue dominated convergence theorem gives for su�ciently large k∫ 1

0

| sin(2πx) sin(4πkx)|dx 6
4

π2

(
1− 11π4

12k2

)
.

4.3 Interesting counterexample

In this section we will �nd a family of sets A = {Aj}N, sequence τ = {τj}j∈N and 2 6
p < r < q such that TA ,τ (4.1) is an isomorphism between LpE(T) and LpF (TN) and between
LqE(T) and LqF (TN) but TA ,τ is not an isomorphism between LrE(T) and LrF (TN) for every
p < r < q. Moreover it fails to be an isomorphism for a dual exponent r = q

q−1
.

We start by proving stronger version of the Theorem 4.3 for exponents q, which are even
natural numbers, and sets Aj = {0, 1}. We will show that in this case it is enough to have
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geometrical growth of the sequence τ for T being isometry between spaces LqE(T) and
LqF (TN). We proof auxiliary lemma which is counterpart of Lemma 4.9 for the special case
q = 2j and a sets of analytic polynomials.

Lemma 4.11. For j ∈ N,q = 2j and f1, f0 analytic trigonometric polynomials onT satisfying
j degz (fi) < Nk we have

‖f0(z) + e2πiNkzf1(z)‖Lq(T) = ‖f0(z) + e2πiyf1(z)‖Lq(T2) ∀ z, y ∈ T.

Proof. Let us observe this simple equality

‖f0(z) + e2πiNkzf1(z)‖L2j(T) = ‖
(
f0(z) + e2πiNkzf1(z)

)j ‖2
L2(T)

=

∥∥∥∥∥
j∑
s=0

e2πisNkzf s1 (z)f j−s0 (z)

(
j
s

)∥∥∥∥∥
2

L2(T)

(4.13)

Since
degz

(
f s1 (z)f j−s0 (z)

)
6 jmax{degz (f0) , degz (f1)} < Nk

we have
degz

(
f s1 (z)f j−s0 (z)

)
+ sNk < (s+ 1)Nk+1.

Hence every exponent occurs in no more than one element of the sum on the right hand side
of (4.13), because f0, f1 are analytic. Changing e2πisNkz to e2πisy in this sum is an injective
operation on exponents. Hence from Plancherel’s formula we have∥∥∥∥∥

j∑
s=0

e2πisNkzf s1 (z)f j−s0 (z)

(
j
s

)∥∥∥∥∥
2

L2(T)

=

∥∥∥∥∥
j∑
s=0

e2πisyf s1 (z)f j−s0 (z)

(
j
s

)∥∥∥∥∥
2

L2(T2)

= ‖
(
f0(z) + e2πiyf1(z)

)j ‖2
L2(T2)

= ‖f0(z) + e2πiyf1(z)‖L2j(T2)

We proof following theorem

Theorem 4.12. Let q = 2j be an even natural number. For sequence of natural numbers
{τn}n∈N and family of sets {An}n∈N satisfying

An = {0, 1},
τk+1 > (j + 1)τk ∀k ∈ N,

(4.14)

the operator T : LqF (TN)→ LqE(T) given by the formula (4.1) is an isometry.
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Proof. The line of argument is analogous to the proof of the Theorem 4.3. We take a trigono-
metric polynomial f ∈ LqF (TN) which depends only on �rst s variables. We de�ne poly-
nomials wk the same way as in Theorem 4.3. So w1(z) = Tf(z) and they satisfy formula
(4.10). Since Aj = {0, 1} we use following representation of the polynomial wk

wk(y
′, z) = gk,0(y′, z) + e2πiτkzgk,1(y′, z) ∀ y ∈ Tk ∀zT

and for j ∈ {0, 1}

degz (gk,j) 6
s−k+1∑
u=1

τu 6
k−1∑
u=1

(j + 1)−uτs−k+1 < τs−k+1
j + 1

j
<

1

j
τs−k+2

Hence from Lemma 4.11 we get

‖wk+1(y′, yk, z)‖pLp(Tk+2)
=

∫
Tk−1

‖wk+1(y′, ·, ·)‖pLp(T2)dy
′

=

∫
Tk−1

‖gk,0(y′, z) + e2πiykgk,1(y′, z)‖pLp(T2)dy
′

=

∫
Tk−1

‖gk,0(y′, z) + e2πiτkzgk,1(y′, z)‖pLp(T)dy
′

= ‖wk(y′, z)‖pLp(Tk)

We remember that ‖ws‖Lp(Ts) = ‖f‖LpF (TN) and we get

‖Tf‖LpE(T) = ‖w1‖Lp(T) = ‖w2‖Lp(T2) = · · · = ‖ws‖Lp(Ts) = ‖f‖LpF (TN)

If we take p = 2 and q = 4, Aj = {0, 1} and sequence

τk =

{
(l!)2 k = 2l,

(l!)2 5 k = 2l + 1.
(4.15)

Obviously sequence τ and family A satisfy assumptions of Theorem 4.12 for p = 2 and
q = 4. Now we adapt the reasoning from third section to this case. For every n ∈ N we
take trigonometric polynomial f

fn(x) =
2n∏
j=1

(1 + e2πi τj x) ∀x ∈ T.

Once again since if TA ,τ is an isomorphism for the sequence τk and Lr-norm, we get

C−1
1 ‖1 + e2πix‖2n

Lr(T) 6 ‖fn‖Lr(T) 6 C1‖1 + e2πix‖2n
Lr(T)

Let us observe that

fn(x) =
n∏
j=1

(1 + e2πi τ2j x)(1 + e2·5πi τ2j x) ∀x ∈ T.
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Let τ̃ = {τ2k}k∈N and B = {Bk}k∈N, where Bk = {0, 1, 5, 6}. We have chosen τ2k in such
a way that the assumptions of the Theorem 4.3 are satis�ed for TB,τ̃ . Similarly as in last
section we get

C−1
2 ‖(1 + e2πix)(1 + e2·5πix)‖nLr(T2) 6 ‖fn‖Lr(T) 6 C2‖(1 + e2πix)(1 + e2·5πix)‖nLr(T2)

Therefore for every natural number n we get with constant C3 > 0 independent on n s.t.

C−1
3 6

(
‖(1 + e2πix)(1 + e2·5πix)‖Lr(T2)

‖1 + e2πix‖2
Lr(T)

)n

6 C3.

Above inequality could be satis�ed for every n ∈ N if only if

‖(1 + e2πix)(1 + e2·5πix)‖Lr(T2) = ‖1 + e2πix‖2
Lr(T).

From numerical approximation it follows that

‖1 + e2πix‖2
L3(T) ≈ 2.25901,

‖(1 + e2πix)(1 + e2·5πix)‖L3(T2) ≈ 2.25812

and

‖1 + e2πix‖2

L
4
3 (T)
≈ 1.76593473,

‖(1 + e2πix)(1 + e2·5πix)‖
L

4
3 (T2)

≈ 1.77176422.

Hence for r = 3 and r = 4/3 from (4.15) we get that TA ,τ of the form (4.1) fails to be an
isomorphism.
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Chapter 5

Trace operator and its right inverse on
planar domains

It was shown by Gagliardo ([16]) that the trace operator transforms space W 1
1 (Ω) onto

L1(∂Ω) for domains with regular boundary. From this theorem imediately arises a question
whether there exists a right inverse operator to the trace, i.e. a continuous, linear operator
S : L1(∂Ω) → W 1

1 (Ω) s.t. Tr ◦ S = Id. It turns out that in general such operator does
not exist. This was proved by Peetre ([39]). In his paper he has shown the non-existence of
right inverse to the trace for a half plane. From that by straightening the boundary one can
deduce non-existence for Ω with a smooth boundary. More recent proofs can be found in
[41], [5]. In this chapter we present an extraordinary simple proof based on geometry of a
Whitney covering and basic properties of classical Banach spaces.

Theorem 5.1. Let Ω be an open domain with Lipschitz boundary and ∂Ω be a Jordan curve.
Let Tr : W 1

1 (Ω) → L1(∂Ω) be a trace operator. Then there is no continuous, linear operator
S : L1(∂Ω)→ W 1,1(Ω) s.t. TS = IdL1(∂Ω).

In [17] Hajlasz and Martio studied the existence of a right inverse to trace operator in
the case of Sobolev spaces W p

1 (Ω) for p > 1. They characterize trace space as a generalized
Sobolev space. However this characterization does not work for p=1. The behavior of the
trace space changes dramatically for the domains with fractal boundary. In the third section
we use the structure of a speci�c Whitney covering of ΩK - domain bounded by the von
Koch’s curve, we show that in this case the trace space of W 1

1 (ΩK) is isomorphic to Arens-
Eels space with a suitable metric. Surprisingly, based on this observation we are able to
construct a right inverse operator to the trace operator. The theorem below is the main
result of this chapter.

Theorem5.2. Let Tr : W 1
1 (ΩK)→ X(ΩK) be a trace operator, whereX(ΩK) is a trace space

(5.2). There exists a continuous, linear operator S : X(ΩK)→ W 1
1 (ΩK) s.t. Tr◦S = IdX(ΩK).
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In the following section we de�ne the trace operator, trace space and auxiliary properties
BV (Ω) needed in the proof.

5.1 Properties of BV (Ω) and trace operator

From now on we assume that Ω ⊂ R2, ∂Ω is a Jordan curve. Our approach to Theorem
5.1 up to technical di�erences works in higher dimensions. However in the proof of the
Theorem 5.2 the properties of two dimensional euclidean space are crucial. We de�ne the
trace operator and the trace space forW 1

1 (Ω). Let us recall a notion of (slightly generalized)
Whitney covering of Ω.

De�nition 5.3. We call the family of polygons A a Whitney decomposition of an open set
Ω ⊂ R2 if it satis�es:

1. For A ∈ A the boundaries ∂A are uniformly bi-lipschitz.

2.
⋃
Q∈AA = Ω and elements of A have pairwise disjoint interiors.

3. C−1 vol2A 6 dist(A, ∂Ω)n 6 C vol2(A)

4. If ∂A ∩ ∂B has a positive one dimensional Hausdor� measure then

(a) C−1 6 vol2(A)
vol2(B)

6 C .

(b) C−1 6 l(∂A)
l(∂B)

6 C

(c) C−1l(∂A) 6 l(∂A ∩ ∂B) 6 C−1l(∂A),

where l(·) denotes length of a curve, and vol2 denotes the area of the polygon.

5. For a given polygon A ∈ A there exists at most N polygons B ∈ A s.t. ∂A ∩ ∂B 6= ∅.

For the purpose of this chapter we will also assume that polygons of A are uniformly star
shaped in the following sense

6. For every A ∈ A there exists a point x ∈ A and positive numbers λ, τ s.t. B(x, λ) ⊂
A ⊂ B(x, λ), λ

τ
is �xed and the polygon is star shaped with respect to x. We call such

point a center of A.

Let A be such covering then we can de�ne a graph describing it’s geometry.
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De�nition 5.4. Let A be a Whitney decomposition. We call a graph G := G(A) =
(V (A), E(A)) =: (V,E) a graph of A if V := A and {A,B} ∈ E only if boundaries
of A and B have intersection of positive one dimensional Hausdor� measure.

Then we introduce a special subspace of BV (Ω).

De�nition 5.5. Let A be a Whitney decomposition of Ω. We de�ne the following subspaces
of BV (Ω)

BVA,0 = {F ∈ BV (Ω) : ∀A ∈ A
∫
A

F (x)dx = 0}

and
BVG = {f ∈ BV (Ω) : ∀A ∈ A f |A = fA ∈ R}

It is a known fact that for a given Whitney decomposition the space BVA,0 is a comple-
mented subspace of BV (Ω). A proof of this fact can be found in ([43],[14]).

Lemma 5.6. For any domain Ω:

BV (Ω) = BVA,0 ⊕BVG.

Let us observe that we can easily calculate the norm of function f ∈ BVG.

‖f‖BVG := ‖f‖BV (Ω) '
∑
A∈V

|fA| vol2(A) +
∑

{A,B}∈E

|fA − fB| l(∂A ∩ ∂B)

In their unpublished preprint Derezinski, Nazarov, Wojchiechowski [15] have proven that
there is a spanning tree of the graph G(A) with a desirable properties i.e.

Lemma 5.7. If Ω is simply connected planar domain and A is its Whitney decomposition.
Then there exists spanning tree T = (VT , ET ) of the graph G(A) s.t.

1. for every f ∈ ˙BV G(Ω)

‖f‖BVG ' ‖f‖BVT :=
∑
A∈VT

|fA| vol2(A) +
∑

{A,B}∈ET

|fA − fB| l(∂A ∩ ∂B) (5.1)

2. for every point x on the boundary there is a in�nite branch br(x) of T s.t. br(x) ∼= Z+

and dist(An, x) → 0 as n → ∞, where An ∈ br(x). For a sequence of real numbers
{aAn} we call a limit limn→∞ aAn a limit along the branch br(x).

We will call such tree a Whitney tree of A
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It follows immediately that BVG ∼= BVT , where BVT is a set BVG with the norm
‖ · ‖BVT . Using the above notation we de�ne trace of f ∈ W 1

1 (Ω). Since Ω is a domain
with a Jordan curve as boundary it follows from Koskela, Zhang theorem ([28]) that restric-
tions of Lipschitz function Lip(R2) are dense in W 1

1 (Ω). For f ∈ C(Ω) ∩W 1
1 (Ω) we de�ne

the trace operator as a restriction of f to the boundary. We de�ne a trace space X(Ω) as
completion of a space Tr(C(Ω) ∩W 1

1 (Ω)) with respect to the norm ‖ · ‖X , where

‖g‖X(Ω) := inf{‖f‖W 1
1 (Ω) : Trf = g and f ∈ C(Ω) ∩W 1

1 (Ω)}. (5.2)

Since Lipschitz functions on Ω are dense inW 1
1 (Ω) we can de�ne trace operator on a whole

space W 1
1 (Ω). It is obvious that Tr : W 1

1 (Ω) → X(Ω) is a continuous linear operator and
it is surjective. We want to extend the trace operator to the BV (Ω).

Lemma 5.8. There exists a continuous, linear operator Φ : BVG → W 1
1 (Ω) s.t. for every

A ∈ A
fA = −

∫
A

f(y)dy = −
∫
A

Φ(f)(y)dy + o(dist(A, ∂Ω)). (5.3)

Proof. Let φ be a molli�er, i.e. φ ∈ C∞(R2,R+), suppφ ⊂ B(0, 1) and
∫
B(0,1)

φ = 1. We
de�ne an operator Φ with the formula

Φ(f)(x) =

∫
Ω

f(x− t)φ
(

t

c dist2(x,Ω)

)
1

c2 dist4(x,Ω)
dt

This formula de�nes a continuous operator from BVG to W 1
1 (Ω). Let us observe that by

the de�nition of Φ, Φ(f)(x) = fA for every x ∈ H(A, 1 − c dist(x,Ω)2) which implies
(5.3). Therefore the trace spaces of W 1

1 (Ω) and BV (Ω) are identical and Tr : BV (Ω) →
X(Ω).

Let P : BV (Ω) → BVG be a projection from BV (Ω) onto BVG. We de�ne
T̃ r : BV (Ω)→ X(Ω) by the formula

T̃ rf = TrΦ (Pf) ∀ f ∈ BV (Ω).

If f ∈ C(Ω)∩W 1
1 (Ω) then the function Φ (Pf) is continuous on Ω. Therefore its trace is a

restriction of Φ (Pf) to the boundary. However the value of the restriction at point x ∈ ∂Ω
for the function from C(Ω) is equal to the limit of −

∫
A

Φ(Pf(y))dy along the branch br(x).
From (5.3) and the de�nition of the space BVT

Φ(P (f))(x) = f(x) ∀x ∈ ∂Ω.

Since f ∈ C(Ω) ∩ W 1
1 (Ω) are dense in W 1

1 (Ω) and T̃ rf = Trf the operator T̃ r is an
extension of the trace operator to BV (Ω). We will abuse the notation and from now on we
will denote T̃ r by Tr. From the de�nition of trace it follows that

Trf = 0 ∀ f ∈ BVA,0 (5.4)
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5.2 Proof of Peetre’s theorem

In this section we will give a proof of Theorem 5.1.

Proof. Since Ω has Lipschitz boundary by theorem of Gagliardo X(Ω) ∼= L1(∂Ω) - space of
functions integrable with respect to the 1-dimensional Hausdor� measure. Let us denote by
P : BV (Ω)→ BVG the projection ontoBVG. Assume there exist S : L1(∂Ω)→ W 1

1 (Ω) ⊂
BV (Ω) s.t. Tr ◦ S = IdL1(∂Ω). Then the following diagram is commutative

L1(∂Ω) BV (Ω) L1(∂Ω)

BVG

S

P

Tr

Tr

From (5.4) and Gagliardo theorem we conclude that Tr|BVA(Ω) is onto L1(∂Ω). On the
other hand, Tr ◦ P ◦ S = IdL1(∂Ω). Hence L1(∂Ω) is isomorphic to a subspace of BVG.
The de�nition of BVG implies that BVG is isomorphic to a subspace of `1(V ) ⊕ `1(E) ∼=
`1. Since the measure on the boundary is non atomic, L1(∂Ω) ∼= L1(T). However, it is
well known that L1 could not be embedded in `1. (To see this, note that by Khintchine
inequality, Radamacher functions span `2 in L1 space. The space `2 could not be embedded
in `1 because, every subspace of `1 contains a copy `1 ([32], Proposition 1.a.11).

5.3 Trace operator on von Koch’s snow�ake

Let ΩK be a domain bounded by von Koch’s curve. Since ΩK is simply connected and von
Koch’s curve is a Jordan curve, we can use all the properties from the �rst section. It is
enough to show that there exists a right inverse S : X(Ω) → BVG to the trace on BVG
because then Φ ◦ S : X(Ω) → W 1

1 (Ω) and Tr ◦ Φ ◦ S = IdX(Ω), where Φ is an operator
from Lemma 5.8.
It is a well known fact that ΩK satis�es Poincare inequality (eg. [6]). Therefore∥∥∥∥f −−∫

ΩK

f(y)dy

∥∥∥∥
L1(Ω)

6 |∇f |Ω,

where |µ|Ω is a total variation of a measure µ on Ω. This inequality implies
BVG ∼= ˙BV T ⊕ R,
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where
˙BV T = {f ∈ BVG : −

∫
ΩK

f(y)dy = 0}

with the total variation of gradient as the norm. In this case the norm is equal to

‖f‖ ˙BV T
=

∑
{A,B}∈ET

|fA − fB|l(∂A ∩ ∂B).

Similarly X(Ω) = R⊕ Ẋ(Ω) for a quotient space Ẋ(Ω) = X/P0, where P0 is the space of
constant functions on ΩK . We reduce the problem to �nding the right inverse operator to
the trace Tr : ˙BV T → Ẋ(Ω). We know that for all g ∈ Ẋ(Ω),

‖g‖Ẋ(Ω) = inf{‖f‖ ˙BV T
: Trf := g}

We will show that for a carefully chosen Whitney covering. We introduce the following
notation

De�nition 5.9. For a given tree T by R := R(T ) we will denote the root of T . For a vertex
A ∈ VT by Dn(A) we denote descendants of A of order exactly n and we put Dn = Dn(R).
For a vertex A ∈ VT by A ↓ we denote its unique father. We will denote by D↑ (A) the set of
all descendants of A i.e. D↑(A) =

⋃
nDn(A).

We take a covering AK as shown on the Figure 5.1. This covering of von Koch’s
snow�ake is easy to describe if we look at its Whitney tree TK . The root of TK is a six
pointed star with six "pants" shaped descendants. We denote it by R. In this tree there are
three types of polygons/vertices. The aforementioned root, "pants" shaped polygons and
"palace" shaped polygons. The type of a vertex describes direct descendants of this vertex
(Figure 5.2). Polygons in Dn+1 are similar to polygons from Dn with a scale 1

3
. The tree TK

is the tree from Lemma 5.7. Hence for such Whitney covering the norm of ˙BV TK satis�es

‖f‖ ˙BV TK
'

∞∑
n=1

∑
A∈Dn

|fA − fA↓|3−n

Further we will use above formula as a norm on ˙BV TK . We want to study the norm on
Ẋ(Ω). To be precise, we want to de�ne and calculate the norm of ‖

∑
j aj1[xj ,yj ]‖Ẋ(Ω).

De�nition 5.10. Let us denote by D∞(A) a cylinder of A, i.e. D∞(A) = {x ∈ ∂Ω : A ∈
br(x)}. We call an arc rational if there exists a �nite sequence A1, ..., Ak ∈ VTK s.t. [x, y] :=
∪kn=1D∞(An) and we say that points x,y are rational points.

For a given arc [x, y] there exist a sequence of verticesAk ∈ VTK s.t. [x, y] =
⋃
kD∞(Ak)

and sets D∞(Ak) are pairwise disjoint. Moreover this sequence can be taken maximal in
the sense that if vertex A is in the sequence then there exists z ∈ D∞(A ↓), which is

55



Figure 5.1: Self similar Whitney decomposition of von Koch’s snow�ake

Figure 5.2: On the left "pants" shaped polygon and its descendants, on the right "palace" shaped
polygon and its descendants
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not in [x, y]. Such sequence is unique for [x, y]. Let n(k) be a natural number such that
Ak ∈ Dn(K). We introduce a auxiliary metric on the boundary ∂ΩK

dK(x, y) =
∑
k

3−n(k).

It is easy to check that dK(x, y) is a metric equivalent to the two dimensional euclidean
metric. We prefer this metric over euclidean metric because it is a monotone function on
an arc [x, y] with respect to the natural order on the arc.

De�nition 5.11. We call a function F linear on the arc [x, y] if there exists a ∈ R such that
F (t) = a dK(x, t) for every t ∈ [x, y].

In the lemma below we show that for every rational arc and linear function on this arc
there exists its "good" extension to ˙BV TK .

Lemma 5.12. For every rational points x, y ∈ ∂Ω, let function F be a linear function on the
arc [x, y]. There exists h ∈ ˙BV TK such that

1. ‖h‖ ˙BV (Ω) . ‖F‖∞dK(x, y),

2. F (z) = lim
A∈br(z)
A→z

−
∫
h(y)dy ∀ z ∈ ∂Ω.

Proof. Without loss of generality we assume that F (t) = dK(t, x). Every rational arc [x, y]

can be written as a �nite sum
⋃M
k=1D∞(Ak) in a unique way s.t. sets D∞(Ak) are pairwise

disjoint and the sequenceAk has the minimal cardinality of all sequence which cover [x, y].
From this assumption it is clear that #{Ak : Ak ∈ Dn} 6 10. Let us put

hA =

{
inf{F (z) : br(z) ∈ D∞(A)} A ∈ ∪kD↑(Ak),

0 otherwise.

Clearly along every in�nite branch br(z) the limit of lim
A∈br(z)
A→z

hA exists and it is equal to

F (z). We need to estimate the total variation of h. Observe that due to linearity of the
function F there are positive numbers {bi}5

i=1, {ci}3
i=1 s.t. for every pants shaped polygon

A ∈ Dn ∩
⋃M
k=1D∞(Ak) we have

1

3n

∑
Q∈D1(A)

|h(A)− h(Q)| = 1

3n

5∑
i=1

bi
3n

6 max
i
bi

#D1(A)

9n
.

Similarly for palace shaped polygon B

1

3n

∑
Q∈D1(B)

|h(B)− h(Q)| = 1

3n

3∑
i=1

ci
3n

6 max
i
ci

#D1(B)

9n
.
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Let ρ := max{b1, . . . , b5, c1, c2, c3}. We can prove inductively that #Dj(A) . 4j . There-
fore we have following estimate on the variation on the subtree D ↑ (Ak), starting with
A ↓

1

3n(k)−1
|fAk − 0|+

∞∑
i=1

∑
Q∈Di(Ak)

|hB − hB↓|
1

3n(k)−1+i
6 ρ

∞∑
j=n(k)

#Dj−n(k)(A)

9j

.
∞∑

j=n(k)

4j−n(k)

9j
.

1

9n(k)

. ‖F‖∞
1

3n(k)

We sum above inequalities over all Ak and we get

‖h‖ ˙BV (Ω) 6 ‖F‖∞dK(x, y).

In the lemma below we prove the existence of a class of functions in ˙BV , which have
desirable properties and every function from this class provides a good approximation of
the norm of its trace on the boundary.

Lemma 5.13. Let x, y ∈ ∂Ω. There are a sequences of functions fn ∈ ˙BV (Ω), gn ∈ C(ΩK)∩
˙BV (ΩK), and hn ∈ ˙BV (Ω)s.t.

1. fn = hn + gn,

2. For every z ∈ ∂Ω, 1[x,y](z) = lim
A∈br(z)
A→z

−
∫
A
f(y)dy,

3. ‖gn‖ ˙BV (Ω) 6 (1 + 1
n2 )‖Trgn‖Ẋ(ΩK).

4. Trgn is a Cauchy sequence in Ẋ(Ω)

5. ‖hn‖ ˙BV (Ω) 6
1
n2 .

6. ‖fn‖ ˙BV (Ω) 6 (1 + 1
n2 )‖Trgn‖Ẋ(ΩK) + 1

n2 .

Proof. We use Lemma 5.12. For every ε and every rational arc [x, y], the characteristic func-
tion of [x, y] can be written as sum of a Lipschitz function g and a four linear functions
p1, ..., p4, with supports in arcs [t1, x], [x, s1], [t2, y], [y, t2] respectively. Moreover ti, si are
rational, |ti − si| 6 ε and the linear functions pi are bounded uniformly with respect to
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ε. Hence from the above lemma for every linear function pi there exists a function f i s.t
‖f i‖ ˙BV (Ω) 6 Cε and for every z ∈ ∂Ω

lim
A∈br(z)
A→z

f iA = pi(z).

Any Lipschitz extension of g to ΩK is in W 1
1 (ΩK). Hence g is in the trace space. From the

de�nition of the trace space there exists a gε ∈ C(ΩK) ∩ ˙BV (ΩK) such that

‖gε‖ ˙BV (ΩK) 6 (1 + ε)‖g‖Ẋ(ΩK),

T rgε = g.

Since gε is in C(Ω) we have lim
A∈br(x)
A→x

−
∫
A
gε(y)dy = g(x). Therefore the function f = gε +∑4

i=1 f
i = gε + hε has desired properties. The limits along br(z) of −

∫
A
gε(y)dy exists and

are equal to 1[x,y](z) for every z ∈ ∂Ω and

‖f‖ ˙BV 6 (1 + ε)‖g‖Ẋ(ΩK) + Cε,

where the term Cε is the estimate on the norms of the functions f i. For every n we choose
suitable ε and we get desired properties. The sequence Trgn is Cauchy sequence. Indeed
for a given function gn and m > n there exists a continuous piecewise linear function q
with support on a small set on the boundary s.t.

q + Trgn = Trgm,

From Lemma 5.12 there exist a function q̃ ∈ ˙BV (Ω) with a small norm such that

Tr(gn + q̃) = Trgm

The size of the support of q depends only on gn. Therefore

‖Trgn − Trgm‖Ẋ(Ω) 6 ε

for su�ciently large n,m.

The Cauchy sequence {gn} de�nes an element in g ∈ Ẋ(Ω). From the analogous argu-
ment as in the above Lemma if f ∈ ˙BV (Ω) satis�es 1[x,y](z) = lim

A∈br(z)
A→z

−
∫
A
f(y)dy for every z

on the boundary then Trf = g. To simplify notation we denote g = 1[x,y]. From the point
6. of the Lemma 5.13 it follows

‖g‖Ẋ(Ω) = lim
n→∞

‖Trgn‖Ẋ(Ω) = lim
n→∞

‖fn‖ ˙BV (Ω)

Since the projection from ˙BV onto ˙BV TK preserves the trace, we may assume that functions
fn are from ˙BV TK . Therefore the function g =

∑
j aj1[xj, yk], whose arcs [xj, yj] are

rational, satis�es

‖g‖Ẋ(ΩK) ' inf{‖f‖ ˙BV TK
: f ∈ L and Trf = g},
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where L ⊂ ˙BV TK consists of such f that the limit lim
A∈br(x)
A→x

fA exist for every x ∈ ∂Ω and it

is equal to Trf(x).
Remark 5.14. In the above lemmas we abuse the notation a bit. For rational points x there
are two branches br(x). If we look at a �nite linear combination of characteristic functions of
arcs, the are �nitely many points (endpoints of segments) on which the limits over this two the
branches are di�erent. However they are equal to the value of the trace either on left or right
side of that endpoint. Further in the chapter we are only interested in branches which contain
some speci�c vertex A. Hence we are interested only in one of the problematic branches and it
is clear what we mean by the limit.

We want to characterize the space Ẋ(ΩK). We introduce, a metric on von Koch’s curve
by formula

d̃(x, y) := ‖1[x,y]‖Ẋ(ΩK),

where 1[x,y] is a characteristic function of an arc on the von Koch’s curve which connects x
and y. It does not matter which one of the two arcs we take because the di�erence between
their characteristic functions is a constant. Further in the proof it will be clear which one
of arc is considered. Since ‖ · ‖Ẋ(ΩK) is a norm, d̃ is a metric on the boundary. For a given
metric space (Y, dY ) we de�ne the Arens-Eels space ([52]).
De�nition 5.15. Let (Y, dY ) be a metric space. We call a function f : Y → R a molecule if
it has �nite support and

∑
y∈Y f(y) = 0. Let x, y ∈ Y . We de�ne special type of a molecule

- an atom : mxy = 1x − 1y, where 1a is a characteristic of a set a. Let m be a molecule, i.e.
m =

∑M
j=1 ajmxjyj , then the Arens-Eels norm ofm is

‖m‖AE(dY ) = inf

{∑
j

|aj|dY (xj, yj) : m :=
∑
j

ajmxjyj

}
,

where the in�mum is taken over all possible representations ofm as a sum ofmpq. The Aerens-
Eels space is the completion of molecules with respect to the norm ‖ · ‖AE .

We want to show that Ẋ(ΩK) is isomorphic to the Arens-Eels space with the metric d̃.
We will denote by M(d̃) linear space of molecules. It is a non complete norm space. By the
de�nition its dense it is dense in AE(d̃). We de�ne the candidate for the isomorphism on
the a linearly dense subsets of both spaces. We set Ψ : AE(d̃)→ Ẋ(ΩK) by the formula

Ψ(mxy) = 1[x,y] ∀ x, y ∈ ∂ΩK . (5.5)

Lemma 5.16. Ψ : AE(d̃)→ Ẋ(ΩK) is an isomorphism between Banach spaces.

Proof. By triangle inequality and the de�nitions of d̃(x, y) and Arens-Eels space, it follows
that Ψ is continuous

‖Ψ(f)‖Ẋ(ΩK) 6 ‖f‖AE(d̃). (5.6)
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In the trace space we have following density result.

Lemma 5.17. Φ(M(d̃)) is dense in Ẋ(ΩK).

Proof. From [28] we know that restrictions of Lipschitz functions on R2 are dense in
W 1

1 (ΩK). Therefore Lipschitz functions are dense in Ẋ(ΩK). Hence for any f ∈ Ẋ(ΩK)
there exist a sequence of Lipschitz functions fn s.t.

lim
n→∞

‖f − fn‖Ẋ(ΩK) = 0.

So it is enough to approximate Lipschitz functions with piecewise constant functions. Let
f be a Lipschitz function. We de�ne function gk =

∑
f(xj)1[xj ,xj+1], where xj are rational

points of order k i.e. ∃A ∈ Dk s.t. [xj, xj+1] = D∞(A). Similarly as in Lemma 5.12 we
de�ne function

hA = inf{f(z)− gk(z) : z ∈ D∞(A)}

LetK be Lipschitz constant of a function of f . It is easy to check inductively that #Dk . 4k.
We repeat the approach from Lemma 5.12. Following estimate is satis�ed

‖h‖BVTK . K
4k

32k

Left hand side tens to zero with k →∞. Hence Ψ(M(d̃)) is dense in Ẋ(ΩK).

To show that Ψ is an isomorphism we need to prove the estimate from below on the
norm of Ψ(m). The next auxiliary lemma reduces our problem to a �nite tree.

Lemma 5.18. Let f ∈ L and Trf(z) = c for every z ∈ [x, y]. Function f̃ ∈ L given by the
formula

f̃A =

{
c D∞(A) ⊂ [x, y],
fA in a opposite case,

satis�es
‖f̃‖ ˙BV TK

6 ‖f‖ ˙BV TK
.

Proof. Fix A0 ∈ VT such that D∞(A0) ⊂ [x, y]. Without loss of generality we assume
that fA0 = 0 and c = 1. If B is a descendant of A0 it follows from the de�nition that
D∞(B) ⊂ [x, y].

We can assume that for B ∈ D ↑ (A0) the value fB does not exceed one. Indeed if B is
such that fB↓ 6 1 and fB > 1 then we de�ne an auxiliary function h

hQ =

{
1 Q = B or Q ∈ D↑ (B) ⊂ [x, y],
fQ in a opposite case,
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Function h has the same trace as f and di�ers from f only on D↑ (B). Since

|fB↓ − fB| > |fB↓ − 1|

and h is constant on D↑ (B) it follows that

‖h‖ ˙BV TK
< ‖f‖ ˙BV TK

.

We can assume that f is monotone (non-decreasing) onD↑(A0) with respect to descendancy
relation i.e. if B ∈ D↑(A0) and C is a descendant of B then fB 6 fC . Indeed suppose that
fC < fB < 1 for some C ∈ D1(B). Since for functions in L the value of trace Trf(x) is
de�ned as limit along br(x), but for x ∈ D∞(A) the limit is one. Therefore on every branch
br(x) s.t. x ∈ D∞(C) there exists a vertex Q such that fQ > fB and fQ↓ < fB . We denote
by ω(C) the set of all such vertices. Let T (C) be a tree with a root C and set of leafs equal
to {Q ↓: Q ∈ ω(C)}. We de�ne auxiliary function p by the formula

pQ =

{
fB Q ∈ VT (C),
fQ in a opposite case,

On the tree T (C) the variation of p is equal to the weighted sum of di�erences on leafs.
However for every Q ∈ ω(C)

|pQ − pQ↓| = |fQ − fB| > |fQ − fQ↓|.

Therefore
‖p‖ ˙BV TK

< ‖f‖ ˙BV TK
.

We have reduced our problem to the set of functions Y (f) ⊂ L s.t. h ∈ Y (f) i� it is a
non-decreasing function on D↑ (A0) with respect to descendancy relation, hB = fB for
every B ∈ VTK\D↑(A0) and Tr h(x) = 1 for x ∈ D∞(A0). We introduce a partial order on
Y (f). For h, z ∈ Y (f)

h � z ⇔ ∀A ∈ VTK hA 6 zA and ‖z‖ ˙BV TK
6 ‖h‖ ˙BV TK

.

If C ⊂ Y (f) is a chain with respect to the relation � then it has an upper bound in Y (f).
Indeed the function z ∈ Y (f) de�ned by the formula

zA = sup
u∈C

uA

is an upper bound. Function z is a supremum of non-decreasing functions hence it is non-
decreasing. If every non-decreasing sequence bkα is convergent to one as k → ∞ then
supα b

k
α converges to one. Therefore z has the same trace as functions in Y (f). In particular

Tr h := 1 for x ∈ D∞(A0). By the de�nition if u � v then uQ 6 vQ for everyQ ∈ VTK and
the total variation ‖v‖ ˙BV TK

6 ‖u‖ ˙BV TK
. Therefore for every n we can choose a sequence

fk ∈ Y (f) s.t.
lim
k→∞
‖fk‖ ˙BV TK

= inf
u∈C
‖u‖ ˙BV TK

.
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and lim fkQ = zQ for every Q ∈
⋃n
j=1Dj . Therefore following estimate is satis�ed

n∑
j=1

∑
Q∈Dj

1

3j
|zQ − zQ↓| 6 inf

u∈C
‖u‖ ˙BV TK

Taking limit with n→∞ we get

‖z‖ ˙BV TK
< inf

u∈C
‖u‖ ˙BV TK

.

Since every chain in Y (f) has an upper bound in Y (f) by the Kuratowski-Zorn Lemma,
there exists element of Y (f) maximal with respect to �. Let w ∈ Y (f) be a maximal
element. By the monotonicity of w, it follows that wQ↓ 6 wQ for every Q ∈ D↑(A0). Since
for every Q ∈ VTK the set of direct descendants D1(Q) has at least three elements,

|wQ↓ − wQ|+
∑

B∈D1(Q)

1

3
|wB − wQ| = wQ − wQ↓ +

∑
B∈D1(Q)

1

3
wB − wQ

= (1− #D1(Q)

3
)wQ − wQ↓ +

∑
B∈D1(Q)

1

3
wB

> (1− #D1(Q)

3
) min
B∈D1(Q)

(wB)

− wQ↓ +
∑

B∈D1(Q)

1

3
wB.

Function w is maximal with respect to �, hence wQ = minB∈D1(Q) wB for every Q ∈ D↑
(A0). Therefore there is an in�nite branch br(x) s.t x ∈ D∞(A0) and w is constant on
br(x)∩D↑(A0). However for x ∈ D∞(A0) the limit over any branch br(x) is equal to one.
Hence hB = 1 for every B ∈ D↑(A0). We have proven that changing the values of f to
one on the descendants of A0 does not increase the total variation. It remains to consider
the value at the point A0. By the triangle inequality and the fact that for every vertex Q,
#D1(Q) > 3 we have

|fA0↓ − fA0|+
∑

B∈D1(A)

1

3
|1− fA0↓| > |fA0↓ − 1|.

Therefore changing the value of f on A0 and its descendants to one, will not increase the
total variation. Since only assumption on A0 was that D∞(A0) ⊂ [x, y] we have desired
estimate

‖f̃‖ ˙BV TK
6 ‖f‖ ˙BV TK

.

Lemma 5.19. Let A0 ∈ Dn and [x, y] = D∞(A0) then

d̃(x, y) = 3−n. (5.7)
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Proof. For any f ∈ ˙BV TK s.t. Trf = 1[x,y] we de�ne

f̃ =

 1 D∞(A) ⊂ [x, y],
fA A ∈ Dk, k 6 n0,
0 in a opposite case.

From the Lemma 5.18 it follows that

‖f̃‖ ˙BV TK
6 ‖f‖ ˙BV TK

However

‖f̃‖ ˙BV TK
>

1

3n

∑
B∈D1(A0↓)

|fA0↓ − fB| >
1

3n
(|fA0↓ − 1|+ |fA0|) >

1

3n
.

The right hand side of the inequality is a total variation of a function p

pA =

{
1 D∞(A) ⊂ [x, y],
0 in a opposite case.

Let us observe that the set of functions
∑

j aj1[xj ,yj ], where xj, yj are rational, is dense
in Ẋ(ΩK). Indeed for every irrational arc [x, y] there exist a sequence of points tn, zn s.t.

‖1[x,y] − 1[tn,zn]‖Ẋ(ΩK) .
1

3n
.

Similarly we observe that molecules
∑

j ajmxjyj , where xj, yj are rational, are dense in
Arens-Eels space.
We �x g =

∑
j aj1[xj ,yj ], where arcs [xj, yj] are rational and pairwise disjoint. Let f ∈ L

be any function such that Trf = g. There exists n0 = n0(g) such that for A ∈ Dn0 either
there exist an arc [xj, yj] s.t. D∞(A) ⊂ [xj, yj] or D∞(A) and

⋃
[xk, yk] are disjoint. We

de�ne function Wf ∈ L by

WfA =


aj D∞(A) ⊂ [xj, yj]
0 D∞(A) ∩

⋃
j[xj, yj] = ∅,

fA in other cases.

It is easy to observe that Trf = TrWf . Moreover from Lemma 5.18 it follows that

‖Wf‖ ˙BV TK
6 ‖f‖ ˙BV TK

.

Therefore

inf{‖f‖ ˙BV TK
: Trf = g} = inf{‖f‖ ˙BV TK

: Trf = g and f = Wf}.

Since we minimize the total variation over the set {Trf = g and f = Wf}, the values
fA are �xed for A ∈ Dk, k > n0. Therefore the total variation on this set is a function
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of �nitely many variables. Moreover it is a piecewise linear function with �nitely many
pieces. Therefore the minimum is attained. We denote the total variation minimizer by ψ.
We de�ne by γA ∈ ˙BV TK

γAB =

{
1 B ∈ D ↑ (A),
0 in other cases.

Therefore from Abel summation formula

ψ = ψR +

n0∑
j=1

∑
A∈Dn

(ψA − ψA↓) γA.

A simple calculation gives us

‖ψ‖ ˙BV TK
=

n0∑
j=1

∑
A∈Dn

|ψA − ψA↓| ‖γA‖ ˙BV TK
. (5.8)

The function ‖ψ‖ ˙BV TK
minimize the variation for a given trace, hence

‖Trf‖Ẋ(ΩK) = ‖ψ‖ ˙BV TK
.

Therefore from (5.8), (5.7)

‖Tr ψ‖Ẋ(ΩK) '
n0∑
j=1

∑
A∈Dn

|ψA − ψA↓| d(x(A), y(A))

> ‖
∑
j

ajmxjyj‖AE(d̃)

Therefore Ψ is an isomorphism of Banach spaces.

We have proven that the trace space is isomorphic to the Arens-Eels space.

We will characterize AE(d̃) further.

Lemma 5.20. AE(d̃) is isomorphic to `1

Proof. In order to characterize AE(d̃) we introduce another metric on the von Koch’s
curve. The von Koch’s curve is constructed inductively. The induction starts with a triangle
and every segment of the triangle is replaced with a piecewise linear curve w. This curve
is made of from 4 segments. In the next step every old segment is replaced with a rescaled
copy of w. Every segment is indexed in the following way. The segment Sx is replaced
with segments Sx,0, Sx,1, Sx,2, Sx,3.
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x x,1

x,2 x,3

x,4

I = {x = (x1, x2 . . .) : x1 ∈ {0, 1, 2}, xi ∈ {0, 1, 2, 3} for i > 1} is a set of all in�nite
indices of segments in the von Koch’s curve construction. For every point x ∈ ∂ΩK there is
a corresponding index i(x) ∈ I such that segments Si(x)1,...,i(x)k → x as k →∞. We de�ne
a bijection between set of indices and a one dimensional Torus with the euclidean metric

T = {y : y =
i(x)1

3
+
∞∑
j=2

i(x)j
4j

i(x) ∈ I}.

Every x ∈ ∂ΩK has a unique index in T. Abusing notation we denote it by i(x). We can
de�ne a metric on ∂ΩK by

d(x, y) := dT(i(x), i(y)).

As is easily on a Figure 5.1, if A ∈ Dn is a "pants" shaped polygon then D∞(A) = [x, y],
where d(i(y), i(x)) = 2

4n
. It is so because its descendants cover two segments of n-th

generation. Similarly if A is a "palace" shaped polygon, d(i(y), i(x)) = 1
4n

. In any of the
above cases we have

d̃(x, y) ' 1

3n
=

1

4n log4(3)
' d(x, y)log4(3).

For rational points x, y we de�ne

f
[x,y]
A :=

{
1 D∞(A) ⊂ [x, y],
0 otherwise.

Obviously Trf [x,y] := 1[x,y]. Since x, y are rational, there exists unique �nite sequence of
{Ak}k∈I ⊂ VT , such that f [x,y] =

∑
k γ

Ak . Let m = min{n : ∃ k Ak ∈ Dn}. From the
de�nition of f [x,y] we deduce that γAk have disjoint support, and for every n there are at
most 10 polygons in {Ak}k∈I ∩Dn. Therefore

d(x, y) =
∑
k

d(x(Ak), y(Ak)) 6 10
∑
i=m

1

4i
' 1

4m
.

and we have analogous estimate for d̃. Hence

d̃(x, y) ' 1

3m
=

1

4m log4(3)
' d(x, y)log4(3).

Therefore AE(d̃) ∼= AE(dlog4(3)). Since 0 < log4(3) < 1 the claim of the lemma follows
from the theorem below,

Theorem 5.21. Let N ∈ N and X is isometric to in�nite compact subset of RN . If d, d̃ are
metrics on X s.t d̃ ' dα for 0 < α < 1 then the space AE(d̃) is isomorphic to `1.

66



The case N=1 was proven by Z. Ciesielski [7] and for N > 1 the above Theorem follows
from Theorem 3.5.5 and Theorem 3.3.3 in [52].

Therefore Ẋ(ΩK) is isomorphic to `1. Let Ẋ(ΩK) = span{ei}. From the de�nition of
the trace space for every ei there exists fi ∈ ˙BV TK such that ‖fi‖ ˙BV TK

6 2‖ei‖Ẋ(ΩK) and
Trfi = ei. Hence the S given by the formula

S

(∑
i

aiei

)
=
∑
i

aifi

is the desired right inverse operator with ‖S‖ = 2. Indeed

Tr

(
S

(∑
i

aiei

))
= Tr

(∑
i

aifi

)
=
∑
i

aiei.

This concludes the proof of Theorem 5.2.
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