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Abstract

In this dissertation we discuss numerical simulations of semiconductor devices with the drift-
diffusion model. This model consists of three nonlinear elliptic differential equations known as van
Roosbroeck equations. We consider two variants of discretization of this system with the Compos-
ite Discontinuous Galerkin Method, based on Symmetric Interior Penalty Galerkin method and on
Weakly Over-Penalized Symmetric Interior Penalty method. We discuss these methods in context of
simulations of luminescent devices based on gallium nitride and its mixed compounds. The proposed
methods account for lower regularity of solutions on the interfaces between layers of different mate-
rials. It is shown that for in the equilibrium state regime the discrete problems are well posed and
error estimates for the piecewise-linear finite element spaces in one- and two-dimensional domains are
derived. These error bounds are then verified against results of numerical simulations, which covered
both abstract settings and real semiconductor structures, in equilibrium and non-equilibrium state.
It is also demonstrated that these methods may be used in determination of physical properties of

the luminescent devices. For this purpose, a linearization of the discretized van Roosbroeck equations
based on the Newton method and Picard method was developed. Then the numerical code was devel-
oped, which makes use of these discretizations and the linearization. Since the physical phenomena
related to operation of the gallium nitride laser diodes and light-emitting diodes are not fully un-
derstood, our application allows for modification of the underlying differential model to some extent.
Examples of such modifications and their effects are presented.
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Introduction

The digital revolution, which has been going for last 40 years, has its origins in development of the
semiconductor transistor in 1960s. It was a culmination of a 30 year long research conducted in
Bell Labs aiming at replacing electromechanical switching equipment components with semiconductor
devices[52]. Then the transistors quickly superseded vacuum tubes. They were installed in wide range
of appliances: television sets, radio receivers, communication devices, etc. First calculator based on
semiconductor transistors was introduced in 1963, pocket calculators followed roughly 10 years later.
At the same time minicomputers were developed, followed then in 1970s and 1980s by microcomputers
— machines similar in size and design to currently widespread personal computers. The progress in
this domain was generally possible due to miniaturization.

While transistors have a profound impact on live of modern society, they are not the only applica-
tion of the semiconductors. An important phenomenon within the context of semiconductor material
is the electroluminescence. Electroluminescence is a light emission by a material due to the electric
current. In contrast to the incandescence effect, the light is not generated due to the heat. In semicon-
ductors, it is generated by the radiative recombination of electrons and holes (described in detail in
section 2.6). The electroluminescence was discovered in 1907 by H. J. Round [125], in silicon carbide
(SiC). First SiC light-emitting diode (LED), was reported in 1927 by Losev. Principles of operation
of these diodes were explained in 1951 by Lehovec et al. [65]. Then in 1955 Braunstein obtained
infrared emission from gallium arsenide (GaAs) [16]. Shortly thereafter in 1960s commercial-grade
infrared diodes was introduced by Texas Instruments. Simultaneously first red light-emitting diode
was developed by Holonyak and Bevacqua [58]. In 1970s the red LED technology was mature enough
so that these devices became available in many appliances.

While first gallium nitride (GaN) light-emitting diode was introduced at this time, it took twenty
years to develop high-brightness blue LED by Nakamura et al. [81] in early 1990s. These diodes were
composed of gallium nitride and mixed compounds: indium gallium nitride (InGaN) and aluminum
gallium nitride (AlGaN). For this achievement, Nakamura was awarded the 2014 Nobel prize in physics
jointly with Akasaki and Amano, who had a significant contribution in development of growth of high-
quality gallium nitride [4]. They also introduced efficient p-type doping of GaN with magnesium (Mg)
[3]. In early 2010s the gallium nitride devices matured and became available in commerce.

In parallel to LEDs, the laser diodes (LDs) were also developed. First GaAs infrared laser diodes
were introduced in 1962 by Hall et al. [49] and Nathan et al. [83]. The same year they were followed by
red gallium arsenide phosphide (GaAsP) LDs developed by Holonyak. In 1960s it was discovered that
heterostructures (semiconductor structures composed of layers of different material) are generally
better candidates for LDs than homojunctions (made of a single material). In particular, in early
1970s the quantum wells were introduced [34], increasing greatly the LD efficiency. In a short time
semiconductor LD technology were applied to fiber optic communication and to optical data storage.
The latter then evolved to compact discs and they become commercially available in early 1980s.
These devices used infrared (CDs) and red lasers (DVDs), based on gallium arsenide. In 1996, few
years after introduction of efficient GaN LED, Nakamura demonstrated first gallium nitride blue laser

11
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[82]. In the meantime, the high-pressure growth technology of the low-defect gallium nitride crystal
substrates was developed by Institute of High Pressure Physics of the Polish Academy of Sciences.
These crystals were used by Nakamura in 1999 yielding 30mW LDs with 3000 h lifetime — as opposed
to 300 h and 15mW at the same current for sapphire-supported GaN structures of that time [46]. Due
to further studies of GaN-based LDs, prices of blue and violet semiconductor lasers dropped and these
devices became available on the market. The applications followed: data storage (Blu-ray discs),
digital projectors, solid state lighting, medical equipment, etc.

The technology of blue LEDs and LDs matured, but there are still many problems which remain
unsolved. While red and blue LEDs reach above 30% (wall plug) efficiency, green and yellow LEDs
are still under 20% [31]. To produce green light, it is more effective to use a blue diode and then
convert it with a phosphorescent layer to the green light (about 22% efficiency) than to use native
green LEDs. Moreover, GaN-based LEDs exhibit drop in efficiency with increasing current (efficiency
droop) [102], which is attributed to the Auger recombination [53]. This phenomenon is absent in red
GaAs-based LEDs. On the other hand, there is demand on the efficient green lasers, which could be
used in wall projectors with blue and red lasers.

Numerical simulations are the important tool in development of semiconductor devices. Since
our contemporary electronics relies on the semiconductors, there is strong demand on the progress
in this domain. There are various approaches in simulations of such devices, depending on precision,
efficiency and size of a simulated fragment. On the one hand there are so-called ab initio methods,
which are used to investigate properties of elements composed of hundreds of thousands of atoms.
These methods use fundamental laws of physics and they need days or weeks to perform a single
simulation on a computational cluster. On the other hand, there are statistical methods, which
approximate complex interactions of a large number of similar objects by elementary statistical laws.
Among these methods, there is a drift-diffusion theory. In this case the model is straightforward
and it allows to simulate whole semiconductor device on a standard desktop computer. This model
describes two kinds of quasiparticles, electrons and holes, which move in the electric field present in
semiconductor devices. From the mathematical point of view, the model consists of a system of three
nonlinear elliptic differential equations, which are called the van Roosbroeck equations [96].

While the idea of the differential equations dates back to 17th century works of Newton and Leibniz,
the concept gained much significance in the 18th and 19th centuries. Many physical phenomena
was then expressed mathematically as differential equations, e.g. wave equation (d’Alembert, Euler),
exponential growth model (Malthus), heat flow (Fourier), Fick’s laws of diffusion, Maxwell’s equations.
However, exact solution methods for differential equations are available only in idealized cases, which
cover only fragmentary aspects of real physical settings. Until 20th century there was no general,
efficient methods of (approximate) solution of differential problems.

At the turn of 19th century and 20th century, Rayleigh and Ritz proposed to use variational formu-
lation for approximate solutions of the boundary value problem [112]. The idea of utilizing piecewise
linear functions on triangulations was introduced by Courant in 1940s. In 1950s the electronic com-
puters become available, bringing a breakthrough and a new meaning of the numerical solution. Then,
independently of the theoretical analysis, Finite Element Method (FEM) were used for engineering
computations (Turner et al. [114]). On the other hand, in 1960s Finite Element Method was subject
to mathematical research. In particular, piecewise polynomial approximations were studied (Birkhoff
et al. [13]). In 1974, convergence analysis and error bounds for the mixed Finite Element Methods
for saddle problems were introduced by Brezzi [20]. In the early 1980s p-version and hp-version of
Finite Element Method were popularized (Babuska et al. [9, 8]). In classic Finite Element Method
(h-version), convergence is achieved by refining a mesh, when the mesh elements diameter h goes to
zero. In the p-version, the mesh is kept fixed, while the piecewise polynomial degree p is increased.
The hp-version combines these two approaches.
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In 1970s the Penalty method was developed to impose boundary conditions weakly [7, 35]. At the
same time the Discontinuous Galerkin Method (DGM) was introduced by Reed and Hill in 1973 [93],
as they discovered it is better suited for approximate solution of the neutron transport equations than
continuous Finite Element Method. Error bounds was then demonstrated by Leisant and Raviart
in 1974 [66]. More general result for a hyperbolic equation was then introduced by Johnson and
Pitkaranta in 1986 [57]. The Interior Penalty method with discontinuous elements was introduced by
Arnold [5]. At the turn of 1980s and 1990s the interest in Discontinuous Galerkin Method significantly
increased. For example, it has been applied to three-dimensional incompressible steady fluid flows [24],
to time-dependent hyperbolic equations [25], to the compressible Navier-Stokes equations [12] or to
convection-diffusion systems [29]. In 2002, unified analysis of Discontinuous Galerkin Method for
elliptic equations was presented by Arnold et al. [6].

Numerical modelling of semiconductor devices with the drift-diffusion model has been performed
since 1964, when Gummel [47] proposed a numerical algorithm for simulations of silicon transistors,
which was based on the simple iteration method. Various methods were then used for discretization of
the van Roosbroeck equations, for example Finite Difference Method (FDM) [101], Box method [10],
Finite Element Method [30]. Special variants of discretizations were developed [75].

The problem, in a broad form, is posed as follows: find u∗, v∗, w∗, such that

−∇ (ε∇u∗) + eu
∗−v∗ − ew∗−u∗ = k1, (1)

−∇(µneu
∗−v∗∇v∗)−Q(u∗, v∗, w∗)(ew

∗−v∗ − 1) = 0, (2)

−∇(µpew
∗−u∗∇w∗) +Q(u∗, v∗, w∗)(ew

∗−v∗ − 1) = 0. (3)

Equations (1)–(3) are called van Roosbroeck equations (or drift-diffusion equations). Functions
ε(x), µn(x), µp(x), k1(x) are material parameters and Q(x, u, v, w) is an operator depending on the
semiconductor material. Here we would like to emphasize main problems with numerical solution
of this system. Equation (1) is called the Poisson equation. It is the most elementary among these
equations from the numerical point of view, as it is nonlinear only due to its right hand side. The
remaining two equations (2), (3) additionally have nonlinear coefficients, which fluctuate strongly. It
makes these equations and also the whole system very difficult to solve. A detailed discussion of the
drift-diffusion equations is presented in sections 1.2 and 2.5.

An analysis of the existence of solutions for the drift-diffusion equations is presented in [54].
Homogeneous Neumann and general Dirichlet boundary conditions were considered. The proof of
existence bases on Schauder fixed point theorem. A mapping with a stationary point related to the
solution of the drift-diffusion system. The discrete case is also considered. The follow-up article
[56] treats about properties of the mapping introduced in previous paper [54]. Authors consider
both differential and discrete problem, with Finite Element Method discretization. Error bounds are
presented, and the convergence is analyzed.

Additionally in [62] it is shown that under constrains on boundary values the mapping mentioned
in previous articles is a contraction. Then, due to Banach theorem, the simple iteration algorithm
converges to a solution of the van Roosbroeck equations. Regularity properties of the considered
functions are discussed in detail.

A comprehensive information about solution of drift-diffusion system is presented in [75]. Several
discretizations are considered. Existence of discrete equations are shown. The methods are considered
on various meshes in one and two dimensions.

Numerical methods for simulations of semiconductor devices are described in [91]. First problem
discussed is choice of unknown variables: carrier concentrations, scaled concentrations, σ-variables,
quasi-Fermi levels and Slotboom variables are considered. Methods of solution the nonlinear system,
i.e. Gummel method and the Newton method are discussed. Some modifications of the Newton
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method are proposed, like scaling of a step and exploiting of symmetric positive definite Jacobian.
Discretizations by Finite Different Method and Finite Volume Method are considered. Many examples
of numerical simulations in two dimensions are given.

Algorithms for acceleration of simple iteration method are proposed in [61]. Presented ideas are
devoted for increasing efficiency of Gummel’s iteration. Chebyshev and Richardson accelerations
determine coefficients of the three-term linear combination. Both of the methods rely on eigenvalues
of Jacobian of considered transformation. On the other hand, Nonlinear Minimal Residual scheme
uses similar approach as GMRES iteration and does not require estimates on eigenvalues. However
the latter is more complicated for implementation.

Solution of drift-diffusion system formulated in Slotboom variables is considered in [80]. Such
choice of variables leads to with three nonlinear elliptic differential equations, similar to ones based on
quasi-Fermi levels. However, these variables expose strongly exponential character (see [91]). To avoid
overflows and underflows, local scaling technique is used. The scaling is specific to Finite Element
Method discretization. Algorithm is presented with the assumption of zero recombination. Simulation
examples are also presented.

Neumann-Neumann domain decomposition scheme for decoupled drift-diffusion system is consid-
ered in [97]. Authors focus on study p-n diodes under high reverse bias, imposing impact ionization
recombination. Choice of variables is discussed. The iteration comprise of the Newton method for
Poisson equation and simple iteration for continuity equations. Several numerical examples are given.
Also convergence slowdown of Gummel method for high recombinations is indicated.

A different kind of problem is considered in [21]. Authors present generalized Gummel scheme for
optimization of a doping profile for a given device. The profile is optimized to attain certain current
densities for given bias.

Application of Gummel method with electron/hole mobility dependent on electrostatic field is
presented in [23]. Upwind and weighted finite difference schemes in one dimension are considered.
Modifications are also proposed for higher dimensions and for Finite Element Method.

Gummel method and coupled Newton method are compared in [64]. Simulation of organic semi-
conductor devices are considered. Standard drift-diffusion model is enhanced by modified carrier
concentration statistic, due to disorder in organic devices. Both constant and non-constant mobilities
are considered. Discretization is performed by Finite Volume Method. Carrier concentrations and
electrostatic potential are used as unknown functions. For both methods iteration starts from the
equilibrium state, for which the initial approximation is available. Then applied voltage is increased
gradually, and a result from previous potential step is an initial approximation for the next step. Nu-
merical simulations for constant mobilities reveal that for the Newton method the iteration number
for single potential step is approximately five, and is is independent of the bias. On the other hand,
in Gummel method the iteration number depends linearly on applied voltage, reaching approximately
200 iterations for 10 V.

The problem we discuss is the discretization of the van Roosbroeck equations. As mentioned, Finite
Difference Method and Finite Element Method discretizations are successfully used for this system
since the second half of 20th century [101, 92]. However, design of the semiconductor devices has been
substantially changed over time. Initially semiconductor transistors or diodes were made from a single
material (e.g. silicon) divided into layers with different doping level. In terms of parameters, these
conditions were reflected by variations of a possibly discontinuous k1 function, while ε, µn, µp were
constant. On the contrary, contemporary semiconductor devices, like blue laser diodes (see figure 1),
consist of layers of different semiconductor material deposited one on another. Recent designs involves
also change of the material through one layer. The material parameters, like ε, µn, µp, are no longer
constant, in general they are discontinuous. However, these discontinuities are localized on the layers’
interfaces and inside a layer these parameters are constant or, in general, smooth functions.
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Figure 1: Example of a gallium nitride semiconductor laser structure. Device is made of planar layers
of semiconductor materials. Claddings are composed of alternating GaN/AlGaN layers. Active part
of the device consists of 5 InGaN quantum wells, separated by barriers with lower indium content.
Layers’ widths are given in angstroms: 1 Å = 0.1 nm.

Thus to obtain a good precision, it would be advantageous to use a discretization which takes into
account such localized lack of regularity and which allows to exploit higher regularity inside layers.
A natural discretization method for such a problem would be the Discontinuous Galerkin Method
[94, 90]. However, this method by its nature imposes much more degrees of freedom in the simula-
tions to allow for discontinuities, leading to slower and more memory-consuming simulations. Since
the physical layers of semiconductor devices are of regular shape, it is feasible to use the Composite
Discontinuous Galerkin Method [37] (CDGM, see section 1.3), which is a hybrid between Continuous
and Discontinuous Galerkin Method. It allows to divide the domain into subdomains, on which the
standard continuous Finite Element Method is used, and on the interfaces between these subdomains
it uses the Interior Penalty method, thus accounting for discontinuities there. This approach allows to
greatly reduce number of additional degrees of freedom, as they are only needed on the interfaces. In
addition, Composite Discontinuous Galerkin Method does not require conforming grids on the inter-
faces, thus allowing for nonconforming meshes between subdomains. This is beneficial in simulations
of semiconductor devices, as it allows for an easy mesh adaptation in certain layers without affecting
others.
The Composite Discontinuous Galerkin Method is currently successfully developed and used for

various problems, for example elliptic eigenvalue problems [43], parabolic problems [73], Darcy flow
in homogeneous porous media [71]. A FETI–DP-type method for Composite Discontinuous Galerkin
Method in two dimensions was proposed in [38].
The Discontinuous Galerkin Method (see section 1.1.2) is closely related to Finite Element Method

[19, 28], which provides a framework to numerically approximate solutions of ordinary/partial differ-
ential equations. The rough idea of the Finite Element Method is as follows. One start with a
differential equation in a weak (variational) form [40], posed in some (infinite dimensional) function
space. We call this a differential problem. Then a finite dimensional subspace is chosen and the
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analogous problem is posed in this subspace. We call it a discrete problem. The discrete problem
may utilize the same formulation as the differential problem, with infinite dimensional space replaced
with the finite-dimensional subspace. The discrete problem is then solved by finding coefficients of
unknown function in a given base of the discrete space. If the problem is linear, it may be reduced to
a matrix equation. There are many general methods of numerical solution of such equations (see for
example [45]), in particular building preconditioners adapted to Finite Element Method problems (cf.
[113]). If the problem is nonlinear, some form of linearization must be used, like the Banach iteration
or the Newton method [33].

This study consists of two aspects of simulations of semiconductor devices with the van Roosbroeck
equations. The mathematical part is devoted to the discretization of the nonlinear Poisson equation
(1) in R

d, d ∈ {1, 2}. We focus on two versions of the Composite Discontinuous Galerkin Method,
based on Symmetric Interior Penalty Galerkin method [94] and on Weakly Over-Penalized Symmetric
Interior Penalty method [17]. To our best knowledge, the composite version of the latter method has
not been introduced prior to this study.

First we introduce both methods in context of the linear elliptic differential equations. They share
common meshes and discrete spaces. In spirit of Composite Discontinuous Galerkin formulation, a
polygonal region Ω is divided into sub-polygons Ωi. We use mesh which is matching in every Ωi and
nonmatching across interfaces ∂Ωi ∩ ∂Ωj . Therefore functions of the discrete spaces are continuous in
subdomains Ωi, and discontinuous on the interfaces.

It is assumed that each Ωi is related to a physical layer of uniform semiconductor material, such
that the interfaces between physical layers are located on interfaces ∂Ωi ∩ ∂Ωj. This assumption
implies that coefficients of the van Roosbroeck equations are also discontinuous on the interfaces.

This approach is beneficial due to the following reasons. First, the physical division of a given
device is determined by its geometry and thus it is known a priori. It is therefore natural to use
this knowledge and to pick Ωi appropriately, to confine discontinuities of the elliptic coefficients to
interfaces ∂Ωi ∩ ∂Ωj. Moreover, the physical purpose of each layer provides a hint on whether a mesh
on this layer should be thick or thin. Since the mesh is nonmatching on interfaces, it may be chosen
independently for each Ωi as needed. In addition, the composite Discontinuous Galerkin discretization
is superior to the standard Discontinuous Galerkin Method in terms of memory footprint, as multiple
values must be stored only on the interfaces, not for the whole mesh.

The Composite Discontinuous Galerkin Method is characterized by presence of interfacial and
boundary terms in the weak formulation, which are absent in the original elliptic problem. These
terms emerge as the consequence of the Green formula, which cannot be used on Ω due to insufficient
regularity of discrete space functions. On the other hand, it may be applied to each Ωi, leading to these
interfacial terms which do not cancel out. These terms can later be symmetrized to make use of robust
algorithms for solving symmetric linear systems. Moreover, artificial penalty terms are introduced, to
control discontinuities on the interfaces not present in the differential solutions.

In the Weakly Over-Penalized Symmetric Interior Penalty method, terms due to Green formula
are absent for a price of higher penalty coefficients. This way the method is easier to analyze and to
implement, but it has worse numerical properties.

The first problem we must face is that solutions of differential problem are in Sobolev space
H1(Ω), while discrete solutions are not. To estimate approximation error norm, we would like to
embed discrete solutions and differential solutions in some more general space. Then we pass to the
discrete formulation of the nonlinear Poisson equation. We adapt already established linear discrete
problems to this particular nonlinear case and we prove that the resulting problems are well-posed.

Before proceeding to the error estimates, we discuss the interpolation error measured in broken
norm. Generally for the norm used in composite version of Symmetric Interior Penalty Galerkin
method the result is well known, but we are not aware of similar result for the Composite Weakly
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Over-Penalized Interior Penalty method. We prove both estimates, as the proofs share their main
part. Unfortunately the estimate for the latter method is not optimal, mostly due to increased
penalty coefficients. For the original Weakly Over-Penalized Interior Penalty method, this problem
was remedied by specific choice of the interpolant. This solution however cannot be generalized to
nonmatching meshes.

At this moment we would have the sufficient instruments for establishing of the error estimates of
discrete solutions for both considered methods. The proof of these estimates is based on the fact that
broken norms related to respective discretizations is strongly bounded with the formulations of the
discrete problems.

In addition to the theory, we developed a numerical software for solving the van Roosbroeck equa-
tions. This software uses the discretization methods discussed in this thesis and it allows to perform
a convergence study of these discretizations as well as to perform simulations of the semiconductor
devices. This application operates both in equilibrium state and in non-equilibrium state, thus it can
numerically solve full van Roosbroeck system.

Our software, called pmicro, has two variants. Let us first discuss the one-dimensional variant. This
application is written in mixed Octave/Matlab and C/C++ languages, with most computationally
intensive parts written in C/C++, including the discretization. The logic is written in Octave/Matlab.
The aim of such approach is to achieve a satisfactory trade-off between efficiency and code complexity.
Low complexity provides ease of modification of the application, allowing alteration of the underlying
mathematical/physical model. This variant is our main tool in simulations of gallium nitride lumi-
nescent devices. These devices have two contacts, located on the opposite sides of the structure, so
one-dimensional model provides satisfactory results in many cases. In this application we use the van
Roosbroeck equations accounting for various physical parameters of the semiconductor material (dis-
cussed in detail in section 2.5). During our study, we consequently expanded the underlying model by
introducing additional physical phenomena: radiative and nonradiative recombination, trap-assisted
tunneling, polarization effect and optical generation. Besides of IV characteristics (current versus
voltage), which can be easily derived from the simulated electrical properties, we also estimate the
light emission using radiative recombination rate, which allows us to calculate light-output, estimate
optical power and losses.

Second variant of our software implements two-dimensional model. We use this application mainly
in convergence study of discretizations discussed in this thesis. The code is written mostly in C/C++
and it uses PETSc library for numerical linear algebra. Unfortunately the Composite Discontinuous
Galerkin Method discretizations are not widely deployed in popular Finite Element Method libraries, so
a library for such discretization is implemented by us. The two-dimensional code accounts for simplified
van Roosbroeck equations used in analysis of the methods as well as for full drift-diffusion equations
used in physical simulations. However, the latter model does not cover full range of phenomena
implemented in one-dimensional model.

During our early simulations we faced a problem of linearization of the discretized nonlinear van
Roosbroeck equations. Our first choice was the Banach/Picard iteration, where the original system
was substituted by decoupled linear equations. Unfortunately this method was unsatisfactory, as the
number of iterations was highly dependent on device/material parameters, varying from hundreds to
millions. We also tried the Gummel method, which is similar, but it consists of decoupled nonlinear
equations. This method, well tested for silicon devices in 1980s, turned out to be unsatisfactory for
many devices simulated by us due to strong coupling of the subsequent equations in case of gallium
nitride based luminescent devices, mostly related to high recombination rate and doping. We finally
turned to the Newton method for a coupled system, which give a satisfactory results, in particular the
iteration number which do not vary much with physical parameters. However, we use also a variant of
backtracking method. In backtracking, as well as in stopping conditions, we make use of the Banach
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iteration. This approach in many cases improves the number of iteration and more importantly it
often prevents divergence of the Newton method.

The second part of this research consists of simulation of the semiconductor devices based on
gallium nitride. For these simulations we used one-dimensional variant of our software, as mentioned
before. We start our simulations with p-n homojunctions. These simple structures are the starting
points in design of complex luminescent devices like light-emitting diodes or laser diodes. These initial
simulations are supposed to create basic intuition related to GaN p-n diodes as well as to fine-tune
our software, as the development of pmicro was performed gradually, along with simulations. The
gallium nitride structures are characterized by strong doping. Especially the magnesium doping in
p-type region may reach concentrations 1× 1019 cm−3 or more. Numerically this is a problem as it
increases coupling between drift-diffusion equations. On the other hand, GaN is a wide bandgap
semiconductor, and therefore the concentration of minority carriers in the equilibrium state is very
low. This leads to vast difference in concentration of carriers, electrons or holes, between n-type
region and p-type region. It poses another numerical difficulty, as then coefficients of the continuity
equations vary by several orders of magnitude. Therefore simulations of such elementary gallium
nitride semiconductor devices has already introduced severe numerical problems, which could only get
worse with device’s complexity.

Since the drift-diffusion model accounts for the electrical properties, our initial simulations focus
on I-V diagrams. For gallium nitride p-n homojunctions, we observe three cases: reverse bias, when
the current is more or less constant, low forward bias, when current is exponential in bias and high
forward bias, when this dependence becomes linear. This situation is more complicated when more
layers are introduced, like an undoped layer or quantum well between n-type region and p-type region,
and also if we take into account nonradiative recombination mechanisms, like recombination on trap
levels (Shockley-Read-Hall recombination, SRH) or Auger recombination. For a given structure, a
dominating recombination channel may vary with the bias, altering I-V characteristics. We take a
closer look on the SRH recombination. It has two aspects: contribution to the total recombination
and additional electrostatic charge due to trap levels. We find the latter effect negligible. On the
contrary, the SRH recombination rate may be significant. This mechanism of recombination is often
dominating in the low bias regime, especially if we take into account the trap-assisted tunneling. In
GaN diodes, where doping is significant and the depleted layer is narrow, there are high electrostatic
field involved for low biases, which increases ratio of the carrier tunneling to the trap level. Our sim-
ulations demonstrates better agreement between theory and experiment if the trap-assisted tunneling
is taken into account, especially for low/moderate forward biases.

Then we pass to simulations of light-emitting diodes (LEDs) and laser diodes (LDs). In this scope
two additional aspects are important. First is the polarization effect, which is present in the gallium
nitride based devices. A modification of the underlying discretization was necessary to include the
polarization charges on interfaces between different material (discussed in detail in section 3.3). On
the other hand, in case of LEDs and LDs we have to estimate the light-output, efficiency and energy
loss. The light-output is generally proportional to the radiative recombination rate in the quantum
wells. This value is predicted by the drift-diffusion model. Other channels of recombination, i.e.
nonradiative recombination or even radiative recombination outside of quantum wells contributes to
energy loss.

We start with a problem of aluminum content in the electron blocking layer (EBL). EBL is usually
placed between the active region (quantum wells and barriers) and a p-type region. It is a barrier,
which is supposed to prevent electrons form escaping the active region. Unfortunately this layer also
blocks holes to some extent, thus making it too high unfavorable. In simulations we show that the
efficiency of a devices is increasing with aluminum content only to certain value, then it remains
constant. However, increasing the aluminum content further leads to higher resistance of the device
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and smaller light-output. Then we pass to the magnesium doping level in p-type region. It is shown
that insufficient doping results in high resistance due to unscreened polarization charges. We also
analyze dependence of number of quantum wells on the resistance of a device.
Van Roosbroeck equations can also account for optical generation of carriers. We present such

simulations in context of quaternary AlInGaN alloy.
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In this part we will derive two variants of the CDGM discretizations. First one bases on Symmetric
Interior Penalty Galerkin (SIPG) method [19]. This method was introduced in [37] for the linear elliptic
equations. Besides of features mentioned previously, the discrete form for this method is symmetric,
what is advantageous when solving linear equations. Our equations are not linear, but still this feature
will be useful in context of the linearization method we use.

Second discretization we propose is similar, but it bases on Weakly Over-Penalized Symmetric
Interior Penalty (WOPSIP) [17]. This method is also symmetric, and it has very simple form, which
is helpful in analysis and implementation. On the other hand, due to higher penalty parameter it may
perform worse in numerical simulations.

We focus our theoretical analysis of CDGM variants on the equilibrium state solutions of the van
Roosbroeck equations in R and R

2. The equilibrium state is a simplified case, where only the first
equation is to be solved. It corresponds to the physical state when there is no energy transfer between
a device and the environment, in particular the device is disconnected from the power source. We
limit our analysis to this case, as the proof framework used in this paper, which is borrowed from the
DGM analysis of the Navier-Stokes problem [115], imposes the uniqueness of the solution, which is
not guaranteed in the non-equilibrium state.

In our analysis, we focus on linear P1 element. This choice is made to simplify the analysis
and implementation. While there are many computer libraries and frameworks for FEM and DGM
discretizations, none that we are aware of supports CDGM out of the box. In particular, it is not
possible to define separate meshes across subdomains. Therefore we develop our own framework,
which currently support only linear P1 element.

The main problem with the van Roosbroeck system is the nonlinearity. Depending on a device
composition and design, the coefficients of the latter two equations may vary by several orders of
magnitude. There are various approaches for solving this system. They may involve decoupling,
Banach iteration [76, ], Newton method [61], etc. An important step is the choice of unknown variables.
According to [92], there is a variety of possible unknown function sets for the van Roosbroeck equations.
Each set provides certain balance between nonlinearity of the equations and exponential character of
the unknown functions. It may seem like the choice of so-called Slotboom variables is preferable, as
they provide least degree of nonlinearity. However, it also imposes enormous variations of the unknown
functions (like [1, 1084], see [92]). We will therefore use the quasi-Fermi level formulation, which makes
the equations highly nonlinear, but unknown functions do not express the exponential character.

The van Roosbroeck equations used in simulations of realistic devices depend on many material
parameters, generation/recombination coefficients, technical parameters, etc. In the theoretical study,
we would like to focus on the mathematical aspect of the Discontinuous Galerkin Method discretization
of the underlying equations. Since there is no obvious generalization, which covers every possible case,
for analysis we will focus on standard version widely used in the literature [54, 30, 61, 76]. The problem
will be formulated in section 1.2.

The van Roosbroeck equations are elliptic, thus in section 1.3.2.1 we present standard weak problem
in this case. This general weak problem is a basis of the Composite Discontinuous Galerkin Method
(CDGM) discretizations [37], presented in section 1.3.

By a coarse grid we call the partition {Ωi}Ni=1 of the domain Ω. Then we consider families of FEM
discretizations Xhi(Ωi), parameterized with hi → 0. The CDGM discrete space Xh(Ω) is composed
of Xhi(Ωi), with h := max hi → 0. Note that the coarse partition does not change with h. In section
1.3.2 we present the discrete operators, which comprise of the part corresponding to the variational
formulation inside subdomains Ωi and penalty terms on the interfaces and on ∂Ωi.

After introduction of discretizations for linear equations, in section 1.4 we use introduced spaces
and operators to discretize van Roosbroeck equation for equilibrium state. We show the existence
and uniqueness of discrete solutions. Then in section 1.5 we introduce the interpolation operator and
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Figure 1.1: Example of a discontinuous interpolant on the interface with nonconforming grids. Blue
— function to be interpolated on the interface ∂Ω1 ∩ ∂Ω2, green — interpolation in Xh1(Ω1), red —
interpolation in Xh2(Ω2).

we discuss interpolation errors. There is an important difference between R and R
2 domain in this

aspect. Despite using the DGM, in one dimension we can easily define an interpolation operator so
that interpolants of continuous functions are also continuous. This is not the case in two dimensions
in general, due to nonconformity of grids on interfaces (see figure 1.1).

In sections 1.6, 1.7 we present the error estimates for the proposed discretizations. To prove the
error estimates for the discretization proposed by us, we would like to use similar approach to presented
in [115] for the Navier-Stokes equation.

In addition to the analysis presented for the equilibrium state regime, we also discuss existence of
the discrete solutions for the general case (section 4.C). Unfortunately these results are limited to one
dimensional CWOPSIP discretization, due to the maximum principles discussed there, which are not
feasible for CSIPG nor for two-dimensional CWOPSIP.

1.1 Finite Element Method basics

We start with an introduction to the discretization of differential equations with Finite Element
Method. It is a foundation for the Composite Discrete Galerkin Method, which we introduce in
section 1.3. In this introduction we present only selected results, which are relevant to the scope of
this thesis.

1.1.1 Continuous Finite Element Method

The Finite Element Method [19, 28] provides a formalism for finding approximate solutions of the
ordinary/partial differential equations in a finite dimensional space. It is a particular case of the Ritz-
Galerkin methods. The basic idea of these methods is to substitute an infinite-dimensional functional
domain of a given differential problem with a finite-dimensional discrete spaces and to limit the initial
problem to these spaces. Upon choosing some basis of a given discrete space, the discrete problem
becomes a system of algebraic equations. The characteristic feature of the continuous Finite Element
Method is particular choice of the basis of the discrete space.
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Figure 1.2: Examples of meshes composed of triangular elements: a nonconforming mesh (left) and a
conforming mesh (right).

In this introduction, we focus on the standard continuous Finite Element Method, with a discrete
space consisting of piecewise-linear continuous functions. We start with a definition of a mesh.

Definition 1.1.1. Let Ω ⊂ R
d, d ∈ {1, 2} be a polygonal domain, and let Th be a division of Ω into

polygons, where h is the maximum element diameter. We say that Th is a mesh if the intersection of
any two elements of Th is either empty or it is a set of measure zero.

Definition 1.1.2. Let Th be a mesh. If intersection of any two elements of Th is either empty, a vertex
or an edge, then the mesh Th is called a conforming mesh. Otherwise it is called a nonconforming
mesh.

Note that due to definition of the conforming mesh, if x is a vertex of any τ1 ∈ Th, and if x ∈ ∂τ2
for some τ2 ∈ Th, then x is also a vertex of τ2. An example of a conforming/nonconforming mesh is
demonstrated in figure 1.2.

Definition 1.1.3. We say that Th is a triangulation of Ω ⊂ R
d, d ∈ {1, 2} if:

• Th is a conforming mesh.

• Every element τ ∈ Th is a triangle (if d = 2) or an interval (if d = 1).

Definition 1.1.4. Let Th be a triangulation of Ω ⊂ R
d, d ∈ {1, 2}. We define nodes of the mesh Th

as
Nh = {x ∈ Ω : x is a vertex of τ for any τ ∈ Th}. (1.1.1)

For a systematic study of error of the discrete approximations, we have to introduce some parameter
characterizing a triangulation, and the use this parameter in estimates. A standard choice is the
maximal diameter of mesh elements, denoted by h.
The intuition behind the error estimate is as follows. We have some domain Ω and a family of

triangulations {Th}. We would like to bound error depending on the parameter h, and we are generally
interested about asymptotics of this bound when h→ 0. While it is not necessary to have a mesh for
every h > 0 in this family {Th}h∈H, we would like 0 to be an accumulation point of H, so that the
limit h→ 0 is related to some sequence of meshes Th as h approaches zero.
To take h as a reasonable characteristic of a mesh, we have to impose additional constraints.

Otherwise some degenerate cases are possible, which makes it difficult to obtain useful results.
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Definition 1.1.5. Let {Th}h∈H be a family of meshes indexed by h ∈ H ⊂ (0, 1], where the set H
is a countable subset of positive real numbers having 0 as only accumulation point. For any element
τ ∈ Th, let hτ denote the diameter of τ and let ρτ denote the diameter of an inscribed circle of τ .
We say that {Th}h∈H is a shape regular family of meshes, or simply that Th is a shape regular

mesh, if there is a constant ρR > 0 such that

∀h ∈ H ∀τ ∈ Th
hτ
ρτ
≤ ρR. (1.1.2)

Definition 1.1.6. Let {Th}h∈H be a family of meshes indexed by h ∈ H ⊂ (0, 1], where the set H is
a countable subset of positive real numbers having 0 as only accumulation point.
We say that {Th}h∈H is a quasi-uniform family of meshes, or simply that Th is a quasi-uniform

mesh, if there is a constant ρQ > 0 such that

∀h ∈ H ∀τ ∈ Th ρτ ≥ ρQh. (1.1.3)

Conditions introduced in definitions 1.1.5, 1.1.6 assert that shapes of the mesh elements change in
a systematic manner as h→ 0. Let us provide some examples in R2. In this case, shape regularity of
a mesh family assures that area |τ | of any mesh element τ ∈ Th is proportional to h2τ . Such meshes do
not have “degenerate” elements, which shrink in one dimension much faster than in other dimensions.
On the other hand, quasi-uniformity indicates that mesh elements cannot be arbitrarily small (in
diameter) within a given h. Thus it ensures that all mesh elements have diameters proportional to
h and area proportional to h2, so they shrink rather uniformly with h. These estimates are useful in
establishing interpolation error bounds or discrete solution error bounds. On the other hand, they fit
into a natural concept of a mesh refinement, thus they do not pose significant problems in applications.
Now we pass to the definition of standard continuous FEM space of piecewise-linear functions.

Definition 1.1.7. Let Th be a triangulation of some polygon (or interval) Ω. We define a continuous
linear finite element space Vh(Ω) on the triangulation Th as

Vh(Ω) :=
{

vh ∈ C(Ω) : vh|τ ∈ P1(τ) ∀τ ∈ Th
}

. (1.1.4)

Assume that {x1, x2, . . . , xJ} = Nh are the nodes of the triangulation Th. Then we define a nodal base
{ϕ(1), ϕ(2), . . . , ϕ(J)} of space Vh(Ω) as a functions which satisfy

ϕ(j)(xk) :=

{

1, if j = k,

0, if j 6= k.
(1.1.5)

Examples of nodal basis elements are presented on figures 1.3, 1.4.

Definition 1.1.8. For a continuous linear finite element space Vh(Ω), we define the interpolation
operator Ih : C0(Ω) → Vh(Ω) by the following relationship: for any u ∈ C0(Ω) element Ihu is defined
as

Ihu :=

J
∑

j=1

u(xj)ϕ(j), (1.1.6)

where {xj} are the nodes of the triangulation Th and {ϕ(j)} is the nodal basis of Vh(Ω).
Note that by means of this definition, u(xj) = Ihu(xj) for all nodal points xj . For convenience,

we will denote
uI := Ihu. (1.1.7)

We would like to define the notion of affine-equivalence of two sets.
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Figure 1.3: Example of a nodal basis of the one-dimensional linear continuous finite element space.

Figure 1.4: Example of a nodal basis element of the two-dimensional linear continuous finite element
space.

Definition 1.1.9. We say that two sets τ, τ̂ ⊂ R
d are affine-equivalent if there is an affine invertible

mapping F : Rd → R
d such that F (τ) = τ̂ .

The following result allows for establishing useful trace theorems for finite element spaces

Theorem 1.1.10. Let τ, τ̂ ∈ R
d be affine-equivalent sets and let F (x) = Ax+a be the affine invertible

mapping between them.

Then there exists some constant C = C(s, d) such that for any u ∈ Hs(τ), s ≥ 0, s ∈ N function
û := u ◦ F belongs to Hs(τ̂ ) and

|û|2Hs(τ̂ ) ≤ C‖A−1‖2s2 |det(A)||u|2Hs(τ), (1.1.8)

|u|2Hs(τ) ≤ C‖A‖2s2 |det(A)|−1|û|2Hs(τ̂). (1.1.9)

Proof. This standard result is a special case of theorem 3.1.2 of [28].
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Establishing estimates on functions related to meshes and elements of these meshes is difficult in
general case, as these elements change with h it is hard to track the dependence of various constants on
their diameter and shape. The situation is much different if the mesh family has an affine-equivalent
reference element, for example when it is a triangulation. Many useful properties of such finite element
spaces may be demonstrated by transition to this reference element. This technique may be used to
prove the following standard result [19].

Proposition 1.1.11. Let {Vh}h be a family of continuous linear finite element spaces with triangu-
lations Th on a polygonal domain Ω. Let τ ∈ Th be some element of the triangulation and let eτ be
some edge of τ . Then for any function u ∈ H2(τ) the following estimates hold

‖u‖2L2(eτ )
≤ C|eτ ||τ |−1

(

‖u‖2L2(τ)
+ h2τ |u|2H1(τ)

)

,

‖∇u · ν‖2L2(eτ )
≤ C|eτ ||τ |−1

(

|u|2H1(τ) + h2τ |u|2H2(τ)

)

.
(1.1.10)

If additionally Th is quasi-uniform, then these estimates may be refined to

‖u‖2L2(eτ )
≤ Ch−1

(

‖u‖2L2(τ)
+ h2|u|2H1(τ)

)

,

‖∇u · ν‖2L2(eτ )
≤ Ch−1

(

|u|2H1(τ) + h2|u|2H2(τ)

)

.
(1.1.11)

Note that in one-dimensional case, where eτ is a point, we define |eτ | to be equal to one.

Proof. We prove estimates on ‖u‖L2(eτ ), proof of estimates on ‖∇u · ν‖L2(eτ ) is analogous.
Let τ̂ be some given reference element, an interval(d = 1) or a triangle (d = 2), independent of

h. Provided that τ̂ is not degenerated, any given τ of the triangulation Th is affine-equivalent to τ̂ .
Similarly any edge eτ is affine-equivalent to ê, which is some edge of τ̂ . We therefore use theorem
1.1.10 with s = 0 on eτ . Taking into account that the determinant of the linear part would be equal
to |ê|/|eτ | up to a sign, we obtain

‖u‖2L2(eτ )
≤ C|eτ |‖û‖2L2(ê)

. (1.1.12)

Coefficients related to |ê| are included in constant C, as there is a single reference element and they
do not depend on h. Then using the trace theorem on τ̂ we get

C|eτ |‖û‖2L2(ê)
≤ C|eτ |‖û‖2H1(τ̂) = C|eτ |

(

‖û‖2L2(τ̂ )
+ ‖∇û‖2L2(τ̂)

)

. (1.1.13)

Again using theorem 1.1.10 on τ̂ with s = 0 and s = 1 we obtain

‖û‖2L2(τ̂)
≤ C|τ |−1‖u‖2L2(τ)

,

‖∇u‖2L2(τ̂)
≤ C|τ |−1h2τ‖∇u‖2L2(τ)

.
(1.1.14)

Similarly as before, absolute value of determinant of the linear part is |τ̂ |/|τ | and 1/|τ̂ | is included
in the constant. Moreover we may estimate ‖A−1‖2 ≤ Chτ . Using these inequalities, we obtain first
estimate:

‖u‖2L2(eτ )
≤ C|eτ ||τ |−1

(

‖u‖2L2(τ)
+ h2τ‖∇u‖2L2(τ)

)

. (1.1.15)

If additionally Th is quasi-uniform, then ρτ > ρQh and |τ |−1 ≤ Ch−2. Naturally |eτ | ≤ hτ ≤ h and
the estimate reads

‖u‖2L2(eτ )
≤ Chh−2

(

‖u‖2L2(τ)
+ h2‖∇u‖2L2(τ)

)

= Ch−1
(

‖u‖2L2(τ)
+ h2‖∇u‖2L2(τ)

)

. (1.1.16)
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If the function u in the proposition above is in the finite element space, this result may be improved
due to equivalence of norms in finite-dimensional spaces used for the reference element space.

Corollary 1.1.12. Let {(Vh,Th)}h be a family of continuous linear finite element spaces on a polygonal
domain Ω. Let τ ∈ Th be some element of the triangulation and let eτ be some edge of τ . Then for
any function uh ∈ Vh the following estimates hold

‖uh‖2L2(eτ )
≤ C|eτ ||τ |−1‖uh‖2L2(τ)

,

‖∇uh · ν‖2L2(eτ )
≤ C|eτ ||τ |−1|uh|2H1(τ).

(1.1.17)

If additionally Th is quasi-uniform, then these estimates may be refined to

‖uh‖L2(eτ ) ≤ Ch−1‖uh‖2L2(τ)
,

‖∇uh · ν‖L2(eτ ) ≤ Ch−1|uh|2H1(τ).
(1.1.18)

In our analysis, we use the following standard corollary of a general interpolation estimates in
finite element spaces (see for example [28], theorem 3.2.1)

Corollary 1.1.13. Let u ∈ H2(Ω) be a given function and let Vh(Ω) be a continuous linear finite
element space of on a polygonal domain Ω ⊂ R

d, d ∈ {1, 2}. Then the following estimates on the
interpolation error in Vh(Ω) hold

‖u− Ihu‖L2(Ω) ≤ Ch2|u|H2(Ω),

|u− Ihu|H1(Ω) ≤ Ch|u|H2(Ω).
(1.1.19)

Example We would like to present an example. We show an application of the continuous Finite
Element Method to the Poisson equation on a rectangle. This is a reference for problems we introduce
further. We would like to show the discretization and present the error estimate. This is a standard
example, more information may be found in [19, 28].
Assume that Ω ⊂ R

2 is a rectangle. Consider Poisson’s equation

−∆u = f in Ω,

u = 0 on ∂Ω.
(1.1.20)

To establish a discrete problem, we need the weak formulation first. It is defined as follows:

Problem 1.1.14. Let Ω ⊂ R
2 be a rectangle and let f ∈ L2(Ω) be given. Find u

∗ ∈ H1
0 (Ω) such that

for every φ ∈ H1
0 (Ω)

∫

Ω
∇u∗ · ∇φdx =

∫

Ω
fφ dx, (1.1.21)

where

H1
0 (Ω) := closure of C

∞
0 (Ω) in H1(Ω),

C∞
0 (Ω) := {f ∈ C∞(Ω) : f |∂Ω ≡ 0}.

(1.1.22)

Note that in the weak formulation the Dirichlet boundary condition is encapsulated in the definition
of the space H1

0 (Ω). Thus it is called essential boundary condition. Then let us define a finite element
space suitable for this problem. We define

Vh,0(Ω) := {vh ∈ Vh(Ω) : vh|∂Ω ≡ 0}. (1.1.23)

We establish the following discrete problem for the Poisson equation.
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Problem 1.1.15. Let f ∈ L2(Ω) be given. Find u
∗
h ∈ Vh,0(Ω) such that for every φh ∈ Vh,0(Ω)

∫

Ω
∇u∗h · ∇φh dx =

∫

Ω
fφh dx. (1.1.24)

The following approximation error estimate may be derived [19, 28].

Proposition 1.1.16. Assume that Vh is a continuous linear finite element space. Assume that solution
u∗ of problem 1.1.14 is in H2(Ω). Then the following estimate holds

‖u∗ − u∗h‖2H1(Ω) ≤ Ch2|u|2H2(Ω). (1.1.25)

This result compared with corollary 1.1.13 shows that if the solution u∗ is sufficiently regular, the
estimate on approximation error of the discrete solution is similar to estimate on the interpolation
error.

1.1.2 Discontinuous Galerkin Method

The continuous Finite Element Method has the following key features:

• Discrete spaces Vh,0 are subspaces of the differential problem space.

• Discrete variational problem is the restriction of a differential variational problem to a subspace,
forms remain the same.

The Discontinuous Galerkin Method [94, 90] provides discretizations which is similar to continuous
FEM, but they do not have these features. In particular, they may be discontinuous on interfaces
between triangulation elements.
Continuing our example of the Poisson equation discretization with piecewise-linear functions, we

define the linear classic DGM space by

Xh(Ω) := {uh ∈ L2(Ω) : ∀τ ∈ Th uh|τ ∈ P1(τ)}. (1.1.26)

By definition Xh(Ω) ⊂ L2(Ω), but Xh(Ω) 6⊂ H1(Ω). While functions of Xh(Ω) are smooth on the
mesh elements, in general they are discontinuous. Thus, while Xh(Ω) is naturally much “smaller”
than H1(Ω), it contains a class of functions discontinuous on the triangulation edges, which is absent
in H1(Ω) as they do not have weak derivatives on Ω.
It is therefore not feasible to simply use this discrete space instead of the continuous space to obtain

a discrete problem from a differential problem. It is necessary to impose some additional constrains.
The nodal basis of Xh(Ω) is associated with the basis of continuous FEM space (figure 1.3, 1.4).

For any function in this basis, a restriction of this function to any mesh element contained in its
support is a base function of Xh(Ω) (cf. figure 1.5). Due to this property the number of basis elements
of the DGM space is higher in comparison to the continuous FEM space defined on the same mesh.
Naturally, functions of Xh(Ω) have multiple candidates for values in the nodal points, coming from
every mesh element adjacent to a given nodal point, and nodal basis elements are related to these
values.
Let us introduce some standard notation in DGMs. Assume that e is an edge of some element

τ ∈ Th. Since we restrict ourselves to conforming meshes, then either case is possible: e is an edge
between exactly two mesh elements τ1 := τ, τ2 ∈ Th, or e lies on the boundary, i.e. e ⊂ ∂Ω, and it is
adjacent only to element τ . We therefore define two operators, for a given e: the mean value operator

{u} :=
{

u|τ1+u|τ2
2 , if e = ∂τ1 ∩ ∂τ2,

u, if e = ∂τ ∩ ∂Ω,
(1.1.27)
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0

1

Figure 1.5: An example of nodal basis elements of a linear Discontinuous Galerkin Method space for a
two-dimensional domain related to some triangle τ ∈ Th (black). The nodal basis elements are plotted
in red, blue and green.

and the jump operator

[u] :=

{

u|τ1 − u|τ2 , if e = ∂τ1 ∩ ∂τ2,
u, if e = ∂τ ∩ ∂Ω.

(1.1.28)

The order of the elements τ1, τ2 in second definition is not important, but it must be consequent within
a given problem. For convenience, we define Γh to be the set of all interior edges of the mesh Th.
The discrete problem for DGM is given as follows.

Problem 1.1.17. Let f ∈ L2(Ω). Find u
∗
h ∈ Xh,0(Ω) such that for every φh ∈ Xh,0(Ω)

∫

Ω
∇u∗h · ∇φh dx−

∑

e∈Γh

∫

e
{∇u∗h · ν}[φh] ds

+ξ
∑

e∈Γh

∫

e
{∇φh · ν}[u∗h] ds+

∑

e∈Γh

σe
|e|

∫

e
[u∗h][φh] ds =

∫

Ω
fφh dx,

(1.1.29)

where
Xh,0(Ω) := {vh ∈ Xh(Ω) : vh|∂Ω ≡ 0}, (1.1.30)

and ξ ∈ {−1, 0, 1} and σe ≥ 0 are given, as discussed below.

Let us first discuss problem 1.1.17 with ξ = 0 and σe = 0 ∀e ∈ Γh. In this case, definition of this
problem differs from the definition of problem 1.1.15 by the second term: −∑e∈Γh

∫

e{∇u∗h · ν}[φh] ds.
Let us elaborate on the genesis of this term. To obtain the variational form of problem 1.1.14 from
equation (1.1.20), one has to multiply (1.1.20) by a test function and use the Green formula. To
do so, sufficiently high regularity must be assumed on u∗h, like u

∗
h ∈ H2(Ω), but then the problem

may be generalized to H1(Ω). In case of DGM space, the Green formulas may be used only on the
triangulation elements. Since the test functions are discontinuous, the boundary terms do not vanish.
They are included is the second term.
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At this point, the relation between solutions on adjacent mesh elements it too loose. While ∇u is
constrained by the second term, we can easily see that there is no restriction on function’s values. For
example, addition of an arbitrary constant to u∗h|τ if τ ∈ Th is not adjacent to ∂Ω do not broke the
discrete solution. To remedy this problem, fourth term

∑

e∈Γh

σe
|e|

∫

e[u
∗
h][φh] ds is added. It is called

the penalty term. It constrains the jumps of the solution, provided that penalty parameters σe are
chosen properly.
Finally we would like to comment on third term ξ

∑

e∈Γh

∫

e{∇φh · ν}[u∗h] ds. If ξ = −1, then
it makes the problem symmetric. The problem is then called Symmetric Interior Penalty Galerkin
(SIPG) method. This method converges if the penalty parameters σe > 0 are large enough [19]. If
ξ = 0, then the problem is then called Incomplete Interior Penalty Galerkin (IIPG) method. It is not
symmetric, and this method also converges if the penalty parameters σe > 0 are large enough [19].
For continuous FEM, we presented an error estimate in H1(Ω)-norm. This approach is not feasible

for DGMs, as discrete solutions do not belong to H1(Ω). It is a standard approach to estimate the
error in the broken norm (or energy norm)

‖uh‖2h :=
∑

τ∈Th

∫

τ
∇uh · ∇uh dx+

∑

e∈Γh

σe
|e|

∫

e
[uh][uh] ds. (1.1.31)

The following error estimate holds [19].

Proposition 1.1.18. Assume that Th is a triangulation. Assume that the exact solution u∗ of problem
1.1.14 belongs to H2(Th) (see equation 1.3.1 for the definition). Assume that the penalty parameters
σe > 0 are large enough.
Then there is a constant C independent of h, such that

‖u∗ − u∗h‖2h ≤ Ch2
∑

τ∈Th

‖u∗‖2H2(τ). (1.1.32)

1.1.3 Weakly Over-Penalized Symmetric Interior Penalty

The Weakly Over-Penalized Symmetric Interior Penalty (WOPSIP) method was introduced in [17].
The idea is similar as in SIPG or IIPG method, but the problem formulation is simpler, at cost of the
higher penalty term.

Problem 1.1.19. Let f ∈ L2(Ω). For any e ∈ Γh let Π
0 : L2(e)→ P0(e) be the orthogonal projection.

Find u∗h ∈ Xh,0(Ω) such that for every φh ∈ Xh,0(Ω)

∫

Ω
∇u∗h · ∇φh dx+

∑

e∈Γh

σ

|e|3
∫

e
Π0[u∗h]Π

0[φh] ds =

∫

Ω
fφh dx. (1.1.33)

As in SIPG/IIPG methods, the discrete space is not a subset of the variational problem space, so
some modification of the problem formulation was necessary. This formulation is simpler, as it only
contains the additional penalty term. In this case the broken norm is defined as

‖uh‖2h :=
∑

τ∈Th

∫

τ
∇uh · ∇uh dx+

∑

e∈Γh

|e|
∫

e
∇uh∇uh ds +

∑

e∈Γh

σ

|e|3
∫

e
Π0[uh]Π

0[uh] ds. (1.1.34)

We have the following error estimate [17].

Proposition 1.1.20. Assume that Th is a triangulation, and assume it is quasi-uniform. Assume
that the exact solution u∗ of problem 1.1.14 belongs to H2(Th).
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Then for any σ > 0 there is a constant C independent of h, such that

‖u∗ − u∗h‖2h ≤ Ch2
∑

τ∈Th

|u∗|2H2(τ). (1.1.35)

WOPSIP discrete solutions has therefore similar error estimates as SIPG/IIPG. However, simple
form comes at a price of increased conditioning of the stiffness matrix, leading to numerical problems.
For the Poisson equation, there is a preconditioner presented in [17].

1.2 Differential problem

In this section we would like to elaborate on the differential problem to be discretized. We present
general drift-diffusion system first, and then we pass to the equilibrium state, which is used extensively
in this chapter. Details on the physical justification of the drift-diffusion model are presented in section
2.5.

1.2.1 Drift-diffusion system

We start with the domain Ω of our problem. Luminescent semiconductor devices are generally made
of planar layers deposited one on another, which vary in composition of a semiconductor material
or number of impurities. At opposite ends of the device metal contacts are attached, to which the
current can be applied. If this is the case, it flows through the device perpendicular to the deposited
layers. We assume that Ω ⊂ R

d, d ∈ {1, 2}, is an interval or a polygon and that ∂Ω = ∂ΩD ∪ ∂ΩN .
The boundary of Ω may be either the electrical contact (∂ΩD) or a contact with insulator (∂ΩN ). If
Ω ⊂ R, then we assume that ∂ΩD = ∂Ω, which means that the device has two electrical contacts on
the opposite ends.
For analysis, we consider the following version of van Roosbroeck system [54]

−∇ · (ε(x)∇u∗(x)) + eu
∗(x)−v∗(x) − ew∗(x)−u∗(x) = k1(x),

−∇ · (µn(x)eu
∗(x)−v∗(x)∇v∗(x)) −Q(u∗(x), v∗(x), w∗(x))(ew

∗(x)−v∗(x) − 1) = 0,

−∇ · (µp(x)ew
∗(x)−u∗(x)∇w∗(x)) +Q(u∗(x), v∗(x), w∗(x))(ew

∗(x)−v∗(x) − 1) = 0.

(1.2.1)

We will refer the first equation in this set as the Poisson equation and the latter equations as (elec-
tron/hole) continuity equations. The weak formulation of this system is as follows.

Problem 1.2.1. Let Ω ⊂ R
d, d ∈ {1, 2} be an interval or polygon. Let û, v̂, ŵ ∈ H1(Ω) ∩ L∞(Ω) be

some given functions. We say that (u∗, v∗, w∗) ∈ (û, v̂, ŵ) +
(

H1
0 (Ω)

)3
is a weak solution of (1.2.1) if

∀φ ∈ H1
0 (Ω)

∫

Ω
ε(x)∇u∗(x)∇φ(x) dx =

∫

Ω

(

k1(x)− eu
∗(x)−v∗(x) + ew

∗(x)−u∗(x)
)

φ(x) dx,

∫

Ω
µn(x)e

u∗(x)−v∗(x)∇v∗(x)∇φ(x) dx =

∫

Ω
Q(u∗(x), v∗(x), w∗(x))(ew

∗(x)−v∗(x) − 1)φ(x) dx,

∫

Ω
µp(x)e

w∗(x)−u∗(x)∇w∗(x)∇φ(x) dx = −
∫

Ω
Q(u∗(x), v∗(x), w∗(x))(ew

∗(x)−v∗(x) − 1)φ(x) dx.

(1.2.2)

Let P (u, v, w) := Q(u, v, w)(ew−v − 1) for u, v, w ∈ R. We assume the following:

Assumption A1.
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1. Ω ⊂ R
d for d ∈ {1, 2}, and it is an interval (d = 1) or a polygon (d = 2).

2. 0 ≤ Q(u, v, w) ≤ QM for any u, v, w ∈ R.

3. P (u, v, w) is monotone decreasing in v for u, v, w ∈ R.

4. P (u, v, w) is monotone increasing in w for u, v, w ∈ R.

5. P is locally Lipschitz.

6. 0 < εm ≤ ε(x) ≤ εM for some εm, εM ∈ R.

7. k1 ∈ L∞(Ω).

8. µn, µp are Lipschitz continuous functions.

9. 0 < µm ≤ µn(x), µp(x) ≤ µM for some constants µm, µM ∈ R.

1.2.2 Equilibrium state

Equilibrium state is a physical state of a semiconductor device, where the device is disconnected from
a power source, so the current does not flow through it and the generation and recombination are in
balance. Then only the Poisson equation needs to be solved and the system reduce to the following
equation:

−∇ ·
(

ε(x)∇u∗
)

+ eu
∗−v̂ − eŵ−u∗ = k1,

u∗ = û on ∂ΩD,

∇u∗ · ν = 0 on ∂ΩN ,

(1.2.3)

where k1, v̂, ŵ are given. A weak formulation of (1.2.3) is as follows:

Problem 1.2.2. Let v̂, ŵ ∈ L∞(Ω) and k1 ∈ L2(Ω) be given. Find u
∗ ∈ û+H1(Ω), such that

a(u∗, φ) + b(u∗, φ) = f(φ) ∀φ ∈ H1
0,∂ΩD

(Ω), (1.2.4)

where

a(u, φ) :=

∫

Ω
ε(x)∇u(x) · ∇φ(x) dx,

b(u, φ) :=

∫

Ω

(

eu(x)−v̂(x) − eŵ(x)−u(x)
)

φ(x) dx,

f(φ) :=

∫

Ω
k1(x)φ(x) dx.

(1.2.5)

From the physical standpoint, in the equilibrium state v̂ = ŵ ≡ const. However, since existence
and uniqueness of the discrete problem related to this case may be also applied to non-equilibrium
case, we allow functions v̂, ŵ to be in L∞(Ω). A proof of the following result may be found in [54].

Lemma 1.2.3. Solution u∗ of problem 1.2.2 is bounded.
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1.3 Composite Discontinuous Galerkin Method

In this section we will introduce the Composite Discontinuous Galerkin Method variants, used in this
research in theoretical analysis and numerical simulations. First we describe the discrete functional
space, and then we introduce the discrete problems. These problems are formulated for a linear elliptic
equation first. Adjustment of these discretizations to our nonlinear problem is presented in section
1.4.

1.3.1 Discrete space

Let open set Ω ⊂ R
2 (R1) be a rectangle (interval), divided to disjoint rectangles (intervals) {Ωi}Ni=1 =:

E in such a manner that E is a conforming mesh of Ω. We will call this division a coarse mesh and we
assume that each external edge of any Ωi is contained either in ∂ΩD or in ∂ΩN .
On every Ωi we would like to introduce a mesh, which is in general independent of the meshes

of neighboring elements Ωj, i 6= j. Let us define Thi := Ti,hi(Ωi) to be triangulations of Ωi, where
hi := max{hτ : τ ∈ Thi}, and hτ := diam(τ). By Nhi we denote the nodes of the mesh Thi .

Assumption A2. {Ti,hi(Ω)}hi is a quasi-uniform family of meshes (see definition 1.1.6).

We will define Th :=
⋃N
i=1 Thi . Note that Th is a nonconforming mesh of Ω.

For s > 0, we define the broken Sobolev spaces Hs(E) and Hs(Th) (see [94]) as

Hs(E) := {v ∈ L2(Ω) : ∀i ∈ {1, . . . , N} vi := v|Ωi ∈ Hs(Ωi)} ⊂ L2(Ω),

Hs(Th) := {v ∈ L2(Ω) : ∀τ ∈ Th v|τ ∈ Hs(τ)} ⊂ L2(Ω),
(1.3.1)

equipped with the broken Sobolev norms

‖v‖Hs(E) :=

(

∑

Ωi∈E

‖v‖2Hs(Ωi)

)1/2

, ‖v‖Hs(Th) :=

(

∑

τ∈Th

‖v‖2Hs(τ)

)1/2

, (1.3.2)

and seminorms

|v|Hs(E) :=

(

∑

Ωi∈E

|v|2Hs(Ωi)

)1/2

, |v|Hs(Th) :=

(

∑

τ∈Th

|v|2Hs(τ)

)1/2

. (1.3.3)

Then on every Ωi we define a discrete space Xhi(Ωi) ⊂ C(Ωi) of piecewise linear functions on the
triangulation Thi:

Xhi := Xhi(Ωi) :=
{

uh,i ∈ C(Ωi) : ∀τ ∈ Thi uh,i
∣

∣

τ
∈ P1(τ)

}

. (1.3.4)

Space Xhi(Ωi) is a continuous linear finite element space (see definition 1.1.8) on Ωi.
Finally we define Xh(Ω) as

Xh(Ω) =
{

(uh,1, . . . , uh,N ) : uh,i ∈ Xhi(Ωi), i ∈ {1, . . . , N}
}

⊂ L2(Ω). (1.3.5)

Thus functions from Xh(Ω) are not continuous in general. In particular, while Xh(Ω) is a product of
continuous linear finite element spaces, it is not a continuous linear finite element space. Note that
Xh(Ω) 6⊂ H1(Ω) and Xh(Ω) 6⊂ H2(E), but Xh(Ω) ⊂ H1(E), H1(Ω) ⊂ H1(E) and Xh(Ω) ⊂ H2(Th).
By Γ we denote the set of all internal and boundary edges of subdomains Ωi ∈ E . We assume the

following:
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Assumption A3. The coarse mesh E is chosen in such a manner so that Γ is a sum of disjoint sets
ΓD, ΓN and ΓI , where

ΓD := {e ∈ Γ : e ⊂ ∂ΩD},
ΓN := {e ∈ Γ : e ⊂ ∂ΩN},
ΓI := {e ∈ Γ : e ⊂ int(Ω)}.

(1.3.6)

Therefore ΓD (resp. ΓN ) contains edges lying on the boundary where Dirichlet (resp. Neumann)
boundary conditions are imposed and in ΓI there are all internal edges, which we call interfaces, as
they frequently correspond to the physical interfaces between different semiconductor materials. We
also define

ΓDI := ΓD ∪ ΓI , Γi := {e ∈ Γ : e ⊂ ∂Ωi}. (1.3.7)

Let e ∈ Γ. Then two cases are possible. Either e ∈ ΓD ∪ ΓN , so there is a unique Ωi ∈ E such
that e is an edge of Ωi, or e ∈ ΓI and there are exactly two sets Ωi,Ωj ∈ E such that e is their
common edge. We will often refer to these two cases. We also define the set of neighboring domains
nb(Ωi) := {Ωk ∈ E : Γi ∩ Γk 6= ∅}.
Note that in one dimension, every e ∈ Γ is a point. In R2 we may consider functions f : e→ R for

any e ∈ Γ and integrals
∫

e f ds. However for one dimension any e ∈ Γ is a singleton of a point from Ω.
Thus if Ω ⊂ R and e ∈ Γ, then for convenience we denote

∫

e
f ds := f(e). (1.3.8)

For s > 1/2 we define operators [·] := [·]e : Hs(E)→ L2(e), {·} := {·}e : Hs(E)→ L2(e) as

[u] :=

{

ui − uj , if e ⊂ ΓI , e = ∂Ωi ∩ ∂Ωj , i < j,

ui, if e ⊂ ΓD ∪ ΓN , e = ∂Ωi ∩ ∂Ω,

{u} :=
{

1
2

(

ui + uj
)

, if e ⊂ ΓI , e = ∂Ωi ∩ ∂Ωj,
ui, if e ⊂ ΓD ∪ ΓN , e = ∂Ωi ∩ ∂Ω.

(1.3.9)

Similar notation is used in Discontinuous Galerkin Method (see section 1.1.2). Note that in this case,
these operators are related to interfaces of the coarse mesh E , which do not change with h.
For convenience, we will also use an analogous notation for triangulation parameters, i.e.

{h−r} :=
{ 1

hr

}

:=







1
2

(

1
hri

+ 1
hrj

)

, if e = ∂Ωi ∩ ∂Ωj,
1
hri
, if e = ∂Ωi ∩ ∂Ω.

(1.3.10)

For further analysis, we introduce broken norm ‖ · ‖h,Σr in Xh(Ω) [37] as

‖uh‖2h,Σr
:=

N
∑

i=1

∫

Ωi

ε(x)
(

∇uh,i
)2
dx+

∑

e∈ΓDI

ηr,e

∫

e
[uh]

2 ds. (1.3.11)

Here ηr,e is a penalty coefficient for e. It depends on the triangulation parameters and penalty
parameters σe > 0 [94]:

ηr,e := 2σe{h−r} =
{

σe

(

h−ri + h−rj

)

, if e ∈ ΓI , e ⊂ Ωi ∩Ωj ,

2σeh
−r
i , if e ∈ ΓD, e ⊂ Ωi.

(1.3.12)

Depending on the method, we will use r = 1 or r = 2.
To simplify the analysis, we assume the following:
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Assumption A4.

• ΓD 6= ∅.

• Th is a shape regular mesh (see definition 1.1.5).

We will use the following standard result for finite element spaces:

Lemma 1.3.1. For any uh ∈ Xh(Ω), Ωi ∈ E and e ∈ Γi, the following estimates hold

‖uh,i‖2L2(e)
≤ Ch−1

i ‖uh‖2L2(Ωi)
, (1.3.13)

‖∇uh,i · ν‖2L2(e)
≤ Ch−1

i |uh|2H1(Ωi)
. (1.3.14)

Constant C does not depend on hi.

Proof. These estimates are a consequence of the trace theorem for finite element spaces (see corol-
lary 1.1.12) used for Xhi(Ωi) and applied to each ∂τ ∩ e, where e ⊂ ∂Ωi, τ ∈ Th,i. Let Th,e := {τ ∈
Th : τ has an edge on e}. Then

‖uh,i‖2L2(e)
=

∑

τ∈Th,e∩Th,i

‖uh,i‖2L2(τ∩e)
≤

∑

τ∈Th,e∩Th,i

h−1
i ‖uh,i‖2L2(τ)

≤ h−1
i

∑

τ∈Th,e∩Th,i

‖uh,i‖2L2(τ)
≤ h−1

i ‖uh,i‖2L2(Ωi)
,

(1.3.15)

and analogously

‖∇uh,i · ν‖2L2(e)
=

∑

τ∈Th,e∩Th,i

‖∇uh,i · ν‖2L2(τ∩e)
≤ h−1

i

∑

τ∈Th,e∩Th,i

|uh,i|2H1(τ)

≤ h−1
i |uh,i|2H1(Ωi)

.

(1.3.16)

1.3.2 Composite Discontinuous Galerkin variants

We propose two variants of the Composite Discontinuous Galerkin discretization. First approach
is based on Weakly Over-Penalized Symmetric Interior Penalty (WOPSIP) method (cf. [17, 11] or
section 1.1.3). Second approach is derived from Symmetric Interior Penalty Galerkin (SIPG) method
(cf. [94, 90] or section 1.1.2). In each case we use the composite scheme (cf. [37]), i.e. inside every
Ωi we use a standard continuous linear Finite Element Method on the triangulation Thi , while on
boundaries e ∈ ΓDI we use the respective variant of the Discontinuous Galerkin Method. Thus we call
these methods Composite Weakly Over-Penalized Symmetric Interior Penalty (CWOPSIP) method
and Composite Symmetric Interior Penalty Galerkin (CSIPG) method, respectively.

1.3.2.1 Linear differential problem

The discretizations will be first constructed for the auxiliary linear problem.

Problem 1.3.2. Let Ω ⊂ R
d, d ∈ {1, 2} be a rectangle (interval) and let ∂Ω = ∂ΩD ∪ ∂ΩN , where

∂ΩD ∩ ∂ΩN = ∅. Let f ∈ L2(Ω). Find u
∗ ∈ û+H1

0,∂ΩD
(Ω) such that

a(u∗, φ) = f(φ) ∀φ ∈ H1
0,∂ΩD

(Ω), (1.3.17)
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where

a(u, φ) :=

∫

Ω
ε(x)∇u(x) · ∇φ(x) dx, f(φ) :=

∫

Ω
f(x)φ(x) dx, (1.3.18)

and

H1
0,∂ΩD

(Ω) := {u ∈ H1(Ω) : u|∂ΩD
= 0}. (1.3.19)

We assume that ε is positive and bounded, as indicated in assumptions A1.

Assumption A5. û ∈ H1(Ω) ∩ L∞(Ω).

1.3.2.2 Composite Weakly Over-Penalized Symmetric Interior Penalty (CWOPSIP)

This discretization has a simpler formulation of the two methods we introduce. The discrete problem
is defined as follows.

Problem 1.3.3. Find u∗h ∈ Xh(Ω) such that

ah,2(u
∗
h, φh) = fh,2(φh), ∀φh ∈ Xh(Ω), (1.3.20)

where

ah,2(uh, φh) =

N
∑

i=1

∫

Ωi

ε∇uh,i · ∇φh,i dx+
∑

e∈ΓDI

η2,e

∫

e
[uh] · [φh] ds,

fh,2(φh) =

∫

Ω
fφh dx+

∑

e∈ΓD

η2,e

∫

e
[û] · [φh] ds.

(1.3.21)

In the theoretical analysis, it is helpful that the broken norm can be expressed in terms of operator
ah,2, i.e.

‖uh‖2h,Σ2
= ah,2(uh, uh). (1.3.22)

1.3.2.3 Composite Symmetric Interior Penalty Galerkin (CSIPG)

This discrete problem is defined as follows.

Problem 1.3.4. Find u∗h ∈ Xh(Ω) such that

ah,1(u
∗
h, φh) = fh,1(φh), ∀φh ∈ Xh(Ω), (1.3.23)

where

ah,1(uh, φh) =

N
∑

i=1

∫

Ωi

ε∇uh,i · ∇φh,i dx−
∑

e∈ΓDI

∫

e
{ε∇uh · ν}[φh] ds

−
∑

e∈ΓDI

∫

e
{ε∇φh · ν}[uh] ds+

∑

e∈ΓDI

η1,e

∫

e
[uh] · [φh] ds,

fh,1(φh) =

∫

Ω
fφh dx−

∑

e∈ΓD

∫

e
{ε∇φh · ν}[û] ds

+
∑

e∈ΓD

η1,e

∫

e
[û][φh] ds.

(1.3.24)
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In this case, we cannot relate operator ah,1 to the broken norm ‖ · ‖h,Σ1 (defined in (1.3.11)) in
such a simple manner as in (1.3.22), because

‖uh‖2h,Σ1
= ah,1(uh, uh) + 2

∑

e∈ΓDI

∫

e
{ε∇uh · ν}[uh] ds. (1.3.25)

Instead we can establish the following lemma.

Lemma 1.3.5. For any α ∈ (0, 1) there exist σm > 0 and c > 0, such that for every σe ≥ σm and
uh, vh ∈ Xh(Ω)

2
∑

e∈ΓDI

∣

∣

∣

∫

e
{ε∇uh · ν}[vh] ds

∣

∣

∣
≤ α‖uh‖h,Σ1‖vh‖h,Σ1 , (1.3.26)

and
(1− α)‖uh‖2h,Σ1

≤ ah,1(uh, uh), (1.3.27)

where ‖ · ‖h,Σ1 is defined in (1.3.11).

Proof. First we prove estimate (1.3.26). Let us take any e = Ωj ∩Ωk. By the Schwarz inequality and
a triangle inequality

∣

∣

∣
2

∫

e
{ε∇uh · ν}[vh] ds

∣

∣

∣
≤
(

∥

∥ε|Ωj
∇uh,j · ν

∥

∥

L2(e)

+
∥

∥ε|Ωk
∇uh,k · ν

∥

∥

L2(e)

)

∥

∥[vh]
∥

∥

L2(e)
.

(1.3.28)

Taking Ωi ∈ {Ωj ,Ωk}, we use lemma 1.3.1
∥

∥ε|Ωi
∇uh,i · ν

∥

∥

L2(e)

∥

∥[vh]
∥

∥

L2(e)
≤ εM

∥

∥∇uh,i · ν
∥

∥

L2(e)

∥

∥[vh]
∥

∥

L2(e)

= εM
√

hi
∥

∥∇uh,i · ν
∥

∥

L2(e)

1√
hi

∥

∥[vh]
∥

∥

L2(e)

≤ εM
∥

∥∇uh,i
∥

∥

L2(Ωi)

1√
hi

∥

∥[vh]
∥

∥

L2(e)
.

(1.3.29)

Therefore we get
∣

∣

∣2

∫

e

{ε∇uh · ν}[uh] ds
∣

∣

∣ ≤ εM
∥

∥∇uh,i
∥

∥

L2(Ωi)

1√
hi

∥

∥[vh]
∥

∥

L2(e)
+ εM

∥

∥∇uh,j
∥

∥

L2(Ωi)

1
√

hj

∥

∥[vh]
∥

∥

L2(e)
. (1.3.30)

On the other hand, if e ∈ ΓD then e ∈ ∂Ωi ∩ ∂Ω and by similar arguments we have
∣

∣

∣2

∫

e
{ε∇uh · ν}[uh] ds

∣

∣

∣ ≤ εM
∥

∥∇uh,i
∥

∥

L2(Ωi)

1√
hi

∥

∥[vh]
∥

∥

L2(e)
. (1.3.31)

Summing these results up and using Cauchy’s inequality, for any α > 0

2
∑

e∈ΓDI

∣

∣

∣

∫

e
{ε∇uh · ν}[uh] ds

∣

∣

∣
≤ εM

∑

e∈ΓDI

∑

Γi∋e

∥

∥∇uh,i
∥

∥

L2(Ωi)

1√
hi

∥

∥[vh]
∥

∥

L2(e)

≤ εM
(

N
∑

i=1

∥

∥∇uh,i
∥

∥

2

L2(Ωi)

)1/2(
∑

e∈ΓDI

2{h−1
i }
∥

∥[vh]
∥

∥

2

L2(e)

)1/2

≤ α‖uh‖h,Σ1

(

∑

e∈ΓDI

2ε2M
εmα2

{h−1
i }
∥

∥[vh]
∥

∥

2

L2(e)

)1/2

≤ α‖uh‖h,Σ1

(

∑

e∈ΓDI

σe{h−1
i }
∥

∥[vh]
∥

∥

2

L2(e)

)1/2

,

(1.3.32)
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where the last inequality is true if we take for example σm(α) := 2ε2M/εmα
2. Thus we get

2
∑

e∈ΓDI

∣

∣

∣

∫

e
{ε∇uh · ν}[vh] ds

∣

∣

∣ ≤ α‖uh‖h,Σ1‖vh‖h,Σ1 . (1.3.33)

Thus estimate (1.3.26) is proven for any α > 0.
We now restrict to α ∈ (0, 1) and we pass to estimate (1.3.27). Due to definition of broken norm,

cf. equation (1.3.11), we have

ah,1(uh, uh) = ‖uh‖2h,Σ1
− 2

∑

e∈ΓDI

∫

e
{ε∇uh · ν}[uh] ds. (1.3.34)

Using (1.3.26) we get

ah,1(uh, uh) = ‖uh‖2h,Σ1
− 2

∑

e∈ΓDI

∫

e
{ε∇uh · ν}[uh] ds

≥ ‖uh‖2h,Σ1
− α‖uh‖2h,Σ1

≥ (1− α)‖uh‖2h,Σ1
.

(1.3.35)

1.3.3 Broken norm and the Poincare inequality

We would like to have an analogue of the Poincare inequality for the H1(E) space. To do so, we would
like to use the following result, which was proven in [18]

Lemma 1.3.6. There is some constant C > 0 such that for any u ∈ H1(E)

‖u‖2L2(Ω) ≤ C
[

∑

Ωi∈E

∫

Ωi

(

∇u
)2
dx+

∑

e∈ΓI

|e|−1

∫

e
[u]2 ds+

∫

∂ΩD

u2 ds
]

. (1.3.36)

Proof. This result is proven in [18]. We use results (8.1), (1.8) of [18] for one dimension and two
dimensions, respectively.

The Poincare inequality analogue is as follows.

Lemma 1.3.7. Let u ∈ Hs(E), s ≥ 1. Then for sufficiently small h = max{h1, . . . , hN} we have
‖u‖L2(Ω) ≤ c‖u‖h,Σr , where c is independent of h.

Proof. By definition of the broken norm (1.3.11), we have

‖u‖2h,Σr
:=
∑

Ωi∈E

∫

Ωi

ε
(

∇u
)2
dx+

∑

e∈ΓDI

ηr,e

∫

e
[u]2 ds. (1.3.37)

Using lemma 1.3.6

‖u‖2L2(Ω) ≤ C
[

∑

Ωi∈E

∫

Ωi

(

∇u
)2
dx+

∑

e∈ΓI

|e|−1

∫

e

(

[u]
)2
ds+

∫

∂ΩD

u2 ds
]

. (1.3.38)

Note that |e| does not depend on h and ηr,e → ∞ as h → 0. Thus we can find hM > 0, such that
ηr,e ≥ |e|−1 and ηr,e ≥ 1 for any 0 < h < hM ≤ 1 and then

C
[

∑

Ωi∈E

∫

Ωi

(

∇u
)2
dx+

∑

e∈ΓI

|e|−1

∫

e
[u]2 ds+

∑

e∈ΓD

∫

e
[u]2 ds

]

≤ C
[

ε−1
m

∑

Ωi∈E

∫

Ωi

ε
(

∇u
)2
dx+

∑

e∈ΓDI

ηr,e

∫

e
[u]2 ds

]

≤ C‖u‖2h,Σr
.

(1.3.39)
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Now we show that ‖ · ‖h,Σr is indeed a norm in H
1(E). In fact, we will prove slightly more general

lemma:

Lemma 1.3.8. The space H1(E) equipped with a scalar product

〈u|v〉h,Σr :=

N
∑

i=1

∫

Ωi

ε∇u · ∇v dx+
∑

e∈ΓDI

ηr,e

∫

e
[u][v] ds, (1.3.40)

is a Hilbert space.

Proof. Linearity and symmetry of this form is obvious, so we only demonstrate that

〈u|u〉h,Σr = 0 ⇔ u ≡ 0, (1.3.41)

for any u ∈ H1(E). Note that

〈u|u〉h,Σr :=
N
∑

i=1

∫

Ωi

ε(x)
(

∇u(x)
)2
dx+

∑

e∈ΓDI

ηe,r

∫

e

(

[u]
)2
ds ≥ 0, (1.3.42)

as ε(x) > 0 and ηe,r > 0. If u ≡ 0, then ∇u ≡ 0 and by definition (1.3.9) [u] = 0 for every e ∈ ΓDI ,
thus 〈u|u〉h,Σr = 0.
On the other hand, assume that 〈u|u〉h,Σr = 0. Then for any Ωi ∈ E we have |u|H1(Ωi) = 0, so

uh,i(x) := ci = const. For any adjacent Ωi,Ωj ∈ E with the common edge e

ηe,r|e|(ci − cj)2 ≤
∑

ẽ∈ΓDI

ηẽ,r

∫

ẽ

(

[u]
)2
ds = 0, (1.3.43)

and for any Ωi with an edge e ∈ ΓD

ηe,r|e|c2i ≤
∑

ẽ∈ΓDI

ηẽ,r

∫

ẽ

(

[u]
)2
ds = 0. (1.3.44)

Combining these two results, we obtain that ci = 0 for every Ωi ∈ E and thus u ≡ 0.
Still we have to prove that H1(E) with a broken norm is a complete space. Let {u(n)}n be a Cauchy

sequence in the broken norm. Then for every v ∈ H1(E)
N
∑

i=1

|vi|2H1(Ωi)
≤ εM‖v‖2h,Σr

. (1.3.45)

Also by lemma 1.3.7 we have
‖v‖L2(Ω) ≤ c‖v‖2h,Σr

. (1.3.46)

These estimates imply that for any i ∈ {1, . . . , N} the sequence {u(n),i}n is a Cauchy sequence in
H1(Ωi). Therefore u(n),i → ui in H

1(Ωi) for some ui ∈ H1(Ωi), as it is a closed space.
We will show that u(n) → u := (u1, . . . , uN ) in H

1(E). We have

‖u(n) − u‖2h,Σr
≤ εM

N
∑

i=1

|u(n),i − ui|2H1(Ωi)
dx+

∑

e∈ΓDI

ηr,e‖[u(n) − u]‖2L2(e)
ds. (1.3.47)

It is therefore clear that both elements of this sum goes to zero with n, as convergence if H1(Ωi)
implies convergence in seminorm and convergence of traces in L2(e) on any e ∈ ΓDI . Therefore
‖u(n) − u‖h,Σr → 0, so H1(E) with the broken norm is closed.
Then

(

H1(E), 〈·|·〉h,Σr

)

is a Hilbert space.
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1.3.4 Consistency

At this point we have two kind of problems. There is a differential problem 1.3.2:

Problem 1.3.2. Let Ω ⊂ R
d, d ∈ {1, 2} be a rectangle (interval) and let ∂Ω = ∂ΩD ∪ ∂ΩN , where

∂ΩD ∩ ∂ΩN = ∅. Let f ∈ L2(Ω). Find u
∗ ∈ û+H1

0,∂ΩD
(Ω) such that

a(u∗, φ) = f(φ) ∀φ ∈ H1
0,∂ΩD

(Ω), (1.3.17)

where

a(u, φ) :=

∫

Ω
ε(x)∇u(x) · ∇φ(x) dx, f(φ) :=

∫

Ω
f(x)φ(x) dx, (1.3.18)

and
H1

0,∂ΩD
(Ω) := {u ∈ H1(Ω) : u|∂ΩD

= 0}. (1.3.19)

We have also two related discrete problems 1.3.3, 1.3.4. There is a crucial difference in incorporating
of the Dirichlet boundary conditions in these problems. In the differential problem, they are imposed
strongly, by appropriate constrains on the problem’s domain and the test space. On the other hand, the
discrete problems impose Dirichlet boundary conditions weakly, by penalty terms in forms ah,r, fh,r.
For further analysis, we would like to formulate a variational problem, which is an analogue of the

differential problem 1.3.2 with Dirichlet boundary conditions imposed weakly. We therefore define the
following problem:

Problem 1.3.9. Find u∗ ∈ H2(E), such that ∀φ ∈ H1(E) ∩H2(Th)
∑

Ωi∈E

∫

Ωi

ε∇u∗ · ∇φdx−
∑

e∈ΓDI

∫

e

{

ε∇u∗ · ν
}

[φ] ds

+ ξr
∑

e∈ΓDI

∫

e

{

ε∇φ · ν
}

[u∗] ds+
∑

e∈ΓDI

ηr,e

∫

e
[u∗][φ] ds

=
∑

Ωi∈E

∫

Ωi

fφ dx+ ξr
∑

e∈ΓD

∫

e

{

ε∇φ · ν
}

[û] ds +
∑

e∈ΓD

ηr,e

∫

e
[û][φ] ds,

(1.3.48)

where ξ1 := −1 and ξ2 := 0.

Coefficients ξ1, ξ2 correspond to CSIPG and CWOPSIP, respectively.
To use problem 1.3.9 instead of problem 1.3.2, we have to show that under certain regularity

assumptions, these problems have the same solutions. At this point, we have to introduce some
assumptions on the domain Ω.

Assumption A6.

• Ω ⊂ R
d, d ∈ {1, 2}, is an interval (d = 1) or a polygon (d = 2).

• ∂Ω = ∂ΩD ∪ ∂ΩN .

• ∂ΩD has nonzero measure.

We would like to prove the following result, an analogue of proposition 2.9 of [94].

Theorem 1.3.10. Under assumptions A3, A6, suppose that the solution u of problem 1.3.2 belongs
to H1(Ω) ∩ H2(E) and ε∇u ∈ H1(E). Then u is a solution of problem 1.3.9. Conversely, if u ∈
H2(E) ∩H1(Ω) is a solution of problem 1.3.9 and ε∇u ∈ H1(E), then it is also a solution of problem
1.3.2.
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Before we prove this theorem, we would like to establish the following two lemmas.

Lemma 1.3.11. Under assumptions A3, A6, let u ∈ H1(Ω) ∩ H2(E), ε ∈ L∞(Ω), ε∇u ∈ H1(E),
0 < εm ≤ ε ≤ εM and f ∈ L2(Ω). Moreover let u satisfy:

∫

Ω
ε∇u · ∇φdx =

∫

Ω
fφ dx, ∀φ ∈ H1

0,∂ΩD
(Ω). (1.3.49)

Then for every e ∈ ΓI ∪ ΓN we have
[

ε∇u · ν
]∣

∣

∣

e
= 0. (1.3.50)

Proof. Take e ∈ ΓI , e = ∂Ωi ∩ ∂Ωj . Then take any φ̄ ∈ C∞
0 (e) (φ̄ ∈ R for one dimension). Since E

consists of rectangles (resp. intervals), we may extend φ̄ to φ ∈ C∞
0 (Ωi ∪ Ωj). The lemma conditions

imply
∫

Ω
ε∇u · ∇φdx =

∫

Ω
fφ dx, (1.3.51)

Then by Green’s formula (theorem 4.A.3) and assumptions on u and ε∇u we have on Ωi,Ωj
∫

Ωi

ε∇u · ∇φ = −
∫

Ωi

∇ ·
(

ε∇u
)

φdx+

∫

∂Ωi

ε∇u · νΩiφds,

∫

Ωj

ε∇u · ∇φ = −
∫

Ωj

∇ ·
(

ε∇u
)

φdx+

∫

∂Ωj

ε∇u · νΩjφds.
(1.3.52)

Let ν := νΩi = −νΩj on e. Summing up these equations and noting that boundary integrals are

nonzero only on e and supp(φ) ⊂ Ωi ∪ Ωj , we obtain

∫

Ω
fφ dx =

∫

Ω
ε∇u · ∇φdx = −

∫

Ω
∇ ·
(

ε∇u
)

φdx+

∫

e

[

ε∇u · ν
]

φds. (1.3.53)

Now take sequence {φε}ε ⊂ C∞
0 (Ωi ∪ Ωj), such that φε|e = φ̄ and ‖φε‖L2(Ω) −−−→

ε→0
0. Then we have

∣

∣

∣

∣

∣

∫

Ω
fφε dx

∣

∣

∣

∣

∣

≤ ‖f‖L2(Ω)‖φε‖L2(Ω) −−−→
ε→0

0, (1.3.54)

and
∣

∣

∣

∣

∣

∫

Ω
∇ ·
(

ε∇u
)

φε dx

∣

∣

∣

∣

∣

≤
∥

∥

∥∇ ·
(

ε∇u
)∥

∥

∥

L2(Ω)
‖φε‖L2(Ω) −−−→

ε→0
0, (1.3.55)

since ∇ ·
(

ε∇u
)

∈ L2(Ω). Thus due to

∫

Ω
fφε dx = −

∫

Ω
∇ ·
(

ε∇u
)

φε dx+

∫

e

[

ε∇u · ν
]

φ̄ ds, (1.3.56)

we obtain
∫

e

[

ε∇u · ν
]

φ̄ ds = 0. (1.3.57)

Since this is true for any φ̄ ∈ C∞
0 (e), we have that

[

ε∇u · ν
]

= 0 in L2(e). (1.3.58)
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Then let e ∈ ΓN , e ⊂ ∂Ωi for some Ωi ∈ E . Again we fix φ̄ ∈ C∞
0 (e) (in one dimension ΓN = ∅, so

this step is omitted) and we extend it to φ ∈ C∞(Ω), such that supp(φ) ∈ Ωi and φ∂Ωi\e ≡ 0. Then
by Green’s theorem, we obtain

∫

Ω
fφ dx =

∫

Ω
ε∇u · ∇φdx = −

∫

Ω
∇ ·
(

ε∇u
)

φdx+

∫

e
ε∇u · νφ ds. (1.3.59)

Taking sequence {φε}ε ⊂ C∞(Ω), such that φε|e = φ̄, supp(φ) ∈ Ωi, φ∂Ωi\e ≡ 0 and ‖φε‖L2(Ω) −−−→
ε→0

0,

using the above equation we get

∫

Ω
fφε dx = −

∫

Ω
∇ ·
(

ε∇u
)

φε dx+

∫

e
ε∇u · νφ̄ ds. (1.3.60)

By the same estimations as for e ∈ ΓI , we obtain

∫

e
ε∇u · νφ̄ ds = 0. (1.3.61)

Since this is true for any φ̄ ∈ C∞
0 (e), we have that

[ε∇u · ν]|e = ε∇u · ν|e = 0. (1.3.62)

Lemma 1.3.12. Under assumptions A3, A6, let u ∈ H1(Ω) ∩ H2(E), ε ∈ L∞(Ω), ε∇u ∈ H1(E),
0 < εm ≤ ε ≤ εM and f ∈ L2(Ω). The following conditions are equivalent:

(1). u satisfy:

∫

Ω
ε∇u · ∇φdx =

∫

Ω
fφ dx, ∀φ ∈ H1

0,∂ΩD
(Ω). (1.3.63)

(2). u satisfy:

−
∑

Ωi∈E

∫

Ωi

∇ ·
(

ε∇u
)

φdx =

∫

Ω
fφ dx, ∀φ ∈ L2(Ω),

[

ε∇u · ν
]∣

∣

∣

e
= 0 ∀e ∈ ΓI ,

∇u · ν = 0 on ∂ΩN .

(1.3.64)

Proof. (2)⇒ (1)

Take any φ ∈ H1
0,∂ΩD

(Ω). We have

−
∑

Ωi∈E

∫

Ωi

∇ ·
(

ε∇u
)

φdx =

∫

Ω
fφ dx. (1.3.65)

For a given Ωi ∈ E , conditions of this lemma imply u|Ωi ∈ H2(Ωi), ε∇u|Ωi ∈ H1(Ωi) and we have
φ|Ωi ∈ H1(Ωi), thus we may use Green’s formula (theorem 4.A.3) on Ωi

−
∫

Ωi

∇ ·
(

ε∇u
)

φdx =

∫

Ωi

ε∇u · ∇φdx−
∫

∂Ωi

ε∇u · νφ ds. (1.3.66)



44 CHAPTER 1. DISCRETIZATION OF VAN ROOSBROECK EQUATIONS

Summing up over Ωi ∈ E
∑

Ωi∈E

∫

Ωi

ε∇u · ∇φdx−
∑

e∈Γ

∫

e
[ε∇u · ν]φds =

∫

Ω
fφ dx. (1.3.67)

If e ∈ ΓD, then by definition φ|e = 0. On the other hand, for e ∈ ΓI we have [ε∇u · ν] = 0 and for
e ∈ ΓN we have ∇u · ν = 0, so [ε∇u · ν] = ε∇u · ν = 0. Thus the second sum is zero and we obtain
the result

∑

e∈E

∫

Ωi

ε∇u · ∇φdx =

∫

Ω
fφ dx. (1.3.68)

(1)⇒ (2)
Take any φ ∈ C∞

0 (Ω). Since C∞
0 (Ω) ⊂ H1

0,∂ΩD
(Ω), then by (1.3.63) we have

∫

Ω
ε∇u · ∇φdx =

∫

Ω
fφ dx. (1.3.69)

By Green’s formula, as above

∫

Ω
fφ dx =

∑

e∈E

∫

Ωi

ε∇u · ∇φdx = −
∑

Ωi∈E

∫

Ωi

∇ ·
(

ε∇u
)

φdx+
∑

e∈Γ

∫

e
[ε∇u · ν]φds. (1.3.70)

Since φ is zero on ∂Ω, we may rewrite last sum
∫

Ω
fφ = −

∑

Ωi∈E

∫

Ωi

∇ ·
(

ε∇u
)

φdx+
∑

e∈ΓI

∫

e
[ε∇u · ν]φds. (1.3.71)

Then by lemma 1.3.11 applied to (1.3.63), we have

∀e ∈ ΓI [ε∇u · ν] = 0, (1.3.72)

and we obtain

−
∑

Ωi∈E

∫

Ωi

∇ ·
(

ε∇u
)

φdx =

∫

Ω
fφ dx. (1.3.73)

But this is true for φ ∈ C∞
0 (Ω). To obtain this result for φ ∈ L2(Ω), we use lemma 4.B.2 with f := f ,

g := ∇ · (ε∇u). Note that we assume that ε∇u ∈ H1(E), so (ε∇u)|Ωi ∈ H1(Ωi) for every Ωi ∈ E and
thus ∇ · (ε∇u)|Ωi ∈ L2(Ωi). Therefore ∇ · (ε∇u) ∈ L2(Ω) and first statement of (1.3.64) is shown.
To shown remaining statements, we again use lemma 1.3.11

∀e ∈ ΓI ∪ ΓN [ε∇u · ν] = 0. (1.3.74)

For e ∈ ΓN we conclude that since ε > 0, and

[ε∇u · ν] def= ε∇u · ν = 0, (1.3.75)

then
∇u · ν = 0. (1.3.76)

We now give the proof of theorem 1.3.10.
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Proof. (Theorem 1.3.10)
Problem 1.3.2 ⇒ problem 1.3.9.
First assume that u is a solution of problem 1.3.2 and that it belongs to H1(Ω)∩H2(E). We have

by definition
∫

Ω
ε∇u · ∇φdx =

∫

Ω
fφ dx ∀φ ∈ H1

0,∂ΩD
(Ω). (1.3.77)

We use lemma 1.3.12 and we obtain that for any φ ∈ L2(Ω)

−
∑

Ωi∈E

∫

Ωi

∇ ·
(

ε∇u
)

φdx =

∫

Ω
fφ dx. (1.3.78)

Let us restrict to φ ∈ H1(E) ∩H2(Th). Then φi ∈ H1(Ωi) and by Green’s theorem we have
∫

Ωi

∇ ·
(

ε∇u
)

φdx =

∫

Ωi

ε∇u · ∇φdx−
∫

∂Ωi

ε∇u · νφ dx. (1.3.79)

Summing up these results over Ωi, we get

∑

Ωi∈E

∫

Ωi

ε∇u · ∇φdx−
∑

Ωi∈E

∫

∂Ωi

ε∇u · νφ dx =

∫

Ω
fφ dx. (1.3.80)

By lemma 1.3.12, we have that [ε∇u · ν] = 0 on every e ∈ ΓI , thus {ε∇u · ν} = ε∇u · ν on any ∂Ωi
and we have

∑

Ωi∈E

∫

Ωi

ε∇u · ∇φdx−
∑

e∈Γ

∫

e

{

ε∇u · ν
}

[φ] dx =

∫

Ω
fφ dx. (1.3.81)

By homogeneous Neumann boundary condition (lemma 1.3.12) on e ∈ ΓN we have {ε∇u · ν} = 0 and

∑

Ωi∈E

∫

Ωi

ε∇u · ∇φdx−
∑

e∈ΓDI

∫

e

{

ε∇u · ν
}

[φ] dx =

∫

Ω
fφ dx. (1.3.82)

Since u ∈ H1(Ω), then [u] = 0 for any e ∈ ΓI and, by assumption, on e ∈ ΓD we have u = û, so for
any φ ∈ H1(E) we get

∑

e∈ΓDI

ηr,e

∫

e
[u][φ] ds + ξr

∑

e∈ΓDI

∫

e

{

ε∇φ · ν
}

[u] ds

=
∑

e∈ΓI

ηr,e

∫

e
0 · [φ] ds + ξr

∑

e∈ΓI

∫

e

{

ε∇φ · ν
}

0 ds

+
∑

e∈ΓD

ηr,e

∫

e
[û][φ] ds + ξr

∑

e∈ΓD

∫

e

{

ε∇φ · ν
}

[û] ds

=
∑

e∈ΓD

ηr,e

∫

e
[û][φ] ds + ξr

∑

e∈ΓD

∫

e

{

ε∇φ · ν
}

[û] ds.

(1.3.83)

By adding this result side-by-side to (1.3.82) we obtain

∑

Ωi∈E

∫

Ωi

ε∇u · ∇φdx −
∑

e∈ΓDI

∫

e

{

ε∇u · ν
}

[φ] dx+ ξr
∑

e∈ΓDI

∫

e

{

ε∇φ · ν
}

[u] ds+
∑

e∈ΓDI

ηr,e

∫

e

[u][φ] ds

=

∫

Ω

fφ dx+ ξr
∑

e∈ΓD

∫

e

{

ε∇φ · ν
}

[û] ds+
∑

e∈ΓD

ηr,e

∫

e

[û][φ] ds.

(1.3.84)
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Since this is true for any φ ∈ H1(E) ∩H2(Th), we have (1.3.48).
Problem 1.3.9 ⇒ problem 1.3.2.
Conversely assume (1.3.48) is true for some u ∈ H2(E) ∩H1(Ω), i.e. ∀φ ∈ H1(E) ∩H2(Th)
∑

Ωi∈E

∫

Ωi

ε∇u · ∇φdx−
∑

e∈ΓDI

∫

e

{

ε∇u · ν
}

[φ] ds+ ξr
∑

e∈ΓDI

∫

e

{

ε∇φ · ν
}

[u] ds+
∑

e∈ΓDI

ηr,e

∫

e

[u][φ] ds

=

∫

Ω

fφ dx+ ξr
∑

e∈ΓD

∫

e

{

ε∇φ · ν
}

[û] ds+
∑

e∈ΓD

ηr,e

∫

e

[û][φ] ds,

(1.3.85)

and that ε∇u ∈ H1(E).
First we recover the Dirichlet boundary conditions. Take any e ∈ ΓD, such that e ⊂ ∂Ωi, and

φ̄ ∈ C∞
0 (e). Then let {φǫ} be a sequence of functions, such that

φǫ ∈ C∞(Ω), φǫ|e = φ̄, supp(φǫ) ⊂ Ωi ∪ e, φǫ|∂Ωi\e ≡ 0,

∇φǫ · ν
∣

∣

∣

∂Ωi

= 0, ‖φǫ‖L2(Ω) −−→
ǫ→0

0.
(1.3.86)

We can get such a functions by expanding functions obtained from lemma 4.B.4 by 0 to whole Ω.
Then φ ∈ H1(E) and (1.3.48) becomes

∫

Ωi

ε∇u · ∇φǫ dx−
∫

e
ε∇u · νφ̄ ds+ ξr

∫

e
ε∇φǫ · νu ds+ ηr,e

∫

e
uφ̄ ds =

∫

Ωi

fφǫ dx+ ξr

∫

e
ε∇φǫ · νû ds+ ηr,e

∫

e
ûφ̄ ds.

(1.3.87)

Due to definition of φǫ, ∇φǫ · ν|e = 0 and we have
∫

Ωi

ε∇u · ∇φǫ dx−
∫

e
ε∇u · νφ̄ ds + ηr,e

∫

e
uφ̄ ds =

∫

Ωi

fφǫ dx+ ηr,e

∫

e
ûφ̄ ds. (1.3.88)

By the Green formula
∫

Ωi

∇ ·
(

ε∇u
)

φǫ dx+ ηr,e

∫

e
uφ̄ ds =

∫

Ωi

fφǫ dx+ ηr,e

∫

e
ûφ̄ ds. (1.3.89)

Passing to the limit ǫ→ 0

ηr,e

∫

e
uφ̄ ds = ηr,e

∫

e
ûφ̄ ds. (1.3.90)

Since φ̄ ∈ C∞
0 (e) and e ∈ ΓD are arbitrary, we get

u|∂ΩD
= û|∂ΩD

, (1.3.91)

and the Dirichlet boundary conditions are satisfied.
Then take any φ ∈ C∞0,∂ΩD

(Ω). Thus

∑

e∈ΓDI

ηr,e

∫

e
[u][φ] ds =

∑

e∈ΓD

ηr,e

∫

e
[û][φ] ds = 0. (1.3.92)

as [φ] = 0 for any e ∈ ΓI since φ ∈ C∞0,∂ΩD
(Ω) and on e ∈ ΓD we have [φ] = φ ≡ 0. By the same

argument

−
∑

e∈ΓDI

∫

e

{

ε∇u · ν
}

[φ] ds = 0. (1.3.93)
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Then u ∈ H1(Ω), so [u] = 0 for any e ∈ ΓI while as we have already shown that u = û for e ∈ ΓD, so

ξr
∑

e∈ΓDI

∫

e

{

ε∇φ · ν
}

[u] ds = ξr
∑

e∈ΓD

∫

e

{

ε∇φ · ν
}

[û] ds. (1.3.94)

Thus we obtain
∑

Ωi∈E

∫

Ωi

ε∇u · ∇φdx =

∫

Ω
fφ dx. (1.3.95)

Since choice of φ ∈ C∞0,∂ΩD
(Ω) is arbitrary, this statement is also true for any φ ∈ H1

0,∂ΩD
(Ω) (see

lemma 4.B.3), so u satisfies equation (1.3.17).

1.4 Discretization of the equilibrium case

We would like to establish a discrete analogue of equation (1.2.4) using discretizations introduced in
sections 1.3.2. Then we will show existence and uniqueness of these nonlinear problems.
We would like to introduce additional assumptions, useful in context of error estimates.

Assumption A7.

• There is some 0 < hM ≤ 1 such that for any 0 < h < hM and for any e ∈ ΓDI we have
ηe,r ≥ |e|−1 and ηe,r ≥ 1 (cf. (1.3.12)).

• Constant hM is sufficiently small, so that for any 0 < h < hM lemma 1.3.7 holds.

• (CSIPG only) Constant σm > 0 is sufficiently large such that lemma 1.3.5 holds with α = 1/2.

• ε|Ωi ∈ C1(Ωi) for every Ωi ∈ E (this assumption could be weakened, but in semiconductor
simulations this function is normally constant or linear on Ωi).

• u∗ ∈ H1(Ω) ∩H2(E), where u∗ is a solution of problem 1.2.2.

• v̂, ŵ ∈ L2(Ω) ∩ L∞(Ω), where v̂, ŵ are defined in problem 1.2.2.

1.4.1 Composite Weakly Over-Penalized Symmetric Interior Penalty (CWOPSIP)

We start with CWOPSIP discretization, as it is simpler. We modify problem 1.3.3 by including the
nonlinear part of (1.2.4).

Problem 1.4.1. Find u∗h ∈ Xh(Ω) such that

ah,2(u
∗
h, φh) + b(u∗h, φh) = fh,2(φh), ∀φh ∈ Xh(Ω), (1.4.1)

where

ah,2(uh, φh) =
N
∑

i=1

∫

Ωi

ε∇uh,i · ∇φh,i dx+
∑

e∈ΓDI

η2,e

∫

e
[uh] · [φh] ds,

b(uh, φh) :=

∫

Ω

(

euh(x)−v̂(x) − eŵ(x)−uh(x)
)

φh(x) dx,

fh,2(φh) =

∫

Ω
k1φh dx+

∑

e∈ΓD

η2,e

∫

e
[û] · [φh] ds.

(1.4.2)
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1.4.2 Composite Symmetric Interior Penalty Galerkin (CSIPG)

Analogously as in case of CWOPSIP, we extend problem 1.3.4 by the nonlinear part.

Problem 1.4.2. Find u∗h ∈ Xh(Ω) such that

ah,1(u
∗
h, φh) + b(u∗h, φh) = fh,1(φh), ∀φh ∈ Xh(Ω), (1.4.3)

where

ah,1(uh, φh) =

N
∑

i=1

∫

Ωi

ε∇uh,i · ∇φh,i dx−
∑

e∈ΓDI

∫

e
{ε∇uh · ν}[φh] ds

−
∑

e∈ΓDI

∫

e
{ε∇φh · ν}[uh] ds+

∑

e∈ΓDI

η1,e

∫

e
[uh] · [φh] ds,

fh,1(φh) =

∫

Ω
k1φh dx−

∑

e∈ΓD

∫

e
{ε∇φh · ν}[û] ds

+
∑

e∈ΓD

η1,e

∫

e
[û][φh] ds,

(1.4.4)

and b is defined as in problem 1.4.1.

1.4.3 Existence and uniqueness

We would like to show that problems 1.4.1 and 1.4.2 are well-posed.

Proposition 1.4.3. Under assumptions A1 to A7, problems 1.4.1 and 1.4.2 have solutions and these
solutions are unique.

In the remainder of this section, we will prove this proposition.
We define P : Xh(Ω)→ X∗

h(Ω) as

P (uh)φh := ah,r
(

uh, φh
)

+ b
(

uh, φh
)

− fh,r
(

φh
)

. (1.4.5)

We would like to use the following consequence of the Brouwer theorem [44, 69]:

Theorem 1.4.4. Let P : X → X∗ be a continuous function on a finite-dimensional normed real
vector space X, such that for suitable ρ > 0 we have

P (x)x ≥ 0 ∀‖x‖ ≥ ρ. (1.4.6)

Then there exists x ∈ X such that
P (x) = 0. (1.4.7)

Also we would like to use the following result:

Lemma 1.4.5. Let Ω ⊂ Rd be bounded. Let f ∈ C1(R), g ∈ L∞(Ω). Let P : Xh(Ω) → X∗
h(Ω) be

defined as

P (uh)φh :=

∫

Ω
g(x)f

(

uh(x)
)

φh(x) dx. (1.4.8)

Then P is continuous.

For the sake of completeness, proofs of these results are presented in Appendix (see pages 194, 198).
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1.4.3.1 Existence for CWOPSIP method

By definition (1.4.5)

P (uh)uh := ah,2
(

uh, uh
)

+ b
(

uh, uh
)

− fh,2
(

uh
)

. (1.4.9)

Then we have that

ah,2
(

uh, uh
)

= ‖uh‖2h,Σ2
. (1.4.10)

Using Schwarz inequality for fh,2(uh), defined in equation (1.4.2), and then lemma 1.3.7 we get

∣

∣

∣

∫

Ω
k1(x)uh(x) dx

∣

∣

∣
≤ ‖k1‖L2(Ω)‖uh‖L2(Ω) ≤ c‖k1‖L2(Ω)‖uh‖h,Σr , (1.4.11)

and

∣

∣

∣

∑

e∈ΓD

ηr,e

∫

e
[û] · [uh] ds

∣

∣

∣ =
∣

∣

∣

∑

e∈ΓD

∫

e

√
ηr,e[û] ·

√
ηr,e[uh]ds

∣

∣

∣ =
∣

∣

∣

∫

∂ΩD

√
ηr,e[û] ·

√
ηr,e[uh]ds

∣

∣

∣

≤ ‖√ηr,e[û]‖L2(∂ΩD)‖
√
ηr,e[uh]‖L2(∂ΩD)

=

√

∑

e∈ΓD

ηr,e

∫

e
[û]2 ds

√

∑

e∈ΓD

ηr,e

∫

e
[uh]2 ds

≤ ‖û‖h,Σr‖uh‖h,Σr .

(1.4.12)

Thus

− fh,2
(

uh
)

≥ −c(û, k1, h)‖uh‖h,Σ2 , (1.4.13)

where

c(û, k1, h) = c̃× (‖û‖h,Σr + ‖k1‖L2(Ω)). (1.4.14)

Then let C := max{‖v̂‖L∞(Ω), ‖ŵ‖L∞(Ω)}. We may decompose b
(

uh, uh
)

to

b
(

uh, uh
)

=

∫

Ω

(

euh−v̂ − eŵ−uh
)

uhdx

=

∫

Ω

(

euh−v̂ − eŵ−uh
)

uh1{x∈Ω:|uh(x)|>C}dx

+

∫

Ω

(

euh−v̂ − eŵ−uh
)

uh1{x∈Ω:|uh(x)|≤C}dx.

(1.4.15)

The first integral is non-negative, and the latter we can estimate from below

∫

Ω

(

euh(x)−v̂(x) − eŵ(x)−uh(x)
)

uh(x)1{x∈Ω:|uh(x)|≤C}(x)dx ≥ −|Ω|2e2CC. (1.4.16)

In conclusion, we may use these estimations to obtain

P (uh)uh ≥ ‖uh‖2h,Σ2
− c1‖uh‖h,Σ2 − c2. (1.4.17)

Note that constants ci in this inequality depend on h. It is therefore clear that for ‖uh‖h,Σ2 large
enough we have P (uh)uh ≥ 0.
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Still we must show that P is continuous. The proof is elementary, we present it for the sake of
completeness. We decompose P (uh) into a sum P (uh) = Pa(uh) + Pb(uh) + Pf (uh). We start with
linear part, which we denote by Pa. By Schwarz inequality

|Pa(uh)φh| := |ah,2(uh, φh)| =
∣

∣

∣

N
∑

i=1

∫

Ωi

ε∇uh,i · ∇φh,i dx+
∑

e∈ΓDI

η2,e

∫

e
[uh] · [φh] ds

∣

∣

∣

≤ ‖uh‖h,Σ2‖φh‖h,Σ2 .

(1.4.18)

Thus

‖Pa(uh)‖ = sup
‖φh‖h,Σ2

=1
|Pa(uh)φh| ≤ sup

‖φh‖h,Σ2
=1
‖uh‖h,Σ2‖φh‖h,Σ2 = ‖uh‖h,Σ2 , (1.4.19)

so Pa is bounded and thus it is continuous. Then we have

Pf (uh)φh := −fh,2(φh), (1.4.20)

which is trivially continuous, as it does not depend on uh. Finally we have

Pb(uh)φh := b(uh, φh) =

∫

Ω

(

euh(x)−v̂(x) − eŵ(x)−uh(x)
)

φh(x) dx

=

∫

Ω
euh(x)−v̂(x)φh(x) dx −

∫

Ω
eŵ(x)−uh(x)φh(x) dx.

(1.4.21)

Pb is not linear, so we use lemma 1.4.5 with f(x) := ex, g(x) := e−v̂(x) and f(x) := e−x, g(x) := eŵ(x).
Conditions of the lemma are then satisfied as f is smooth and v̂, ŵ ∈ L∞(Ω) due to assumptions A7.
Thus Pb is continuous.

Then by theorem 1.4.4 we have that there exists some u∗h, such that P (u
∗
h) = 0.

1.4.3.2 Existence for CSIPG method

We proceed analogously to the CWOPSIP case. For b(uh, φh) the argumentation exactly the same.
Then fh,1(uh) has one additional term, which may be estimated using lemma 1.3.1 and the trace
inequality

∣

∣

∣

∑

e∈ΓD

∫

e
{ε∇uh · ν}[û] ds

∣

∣

∣ ≤
∑

e∈ΓD

‖{ε∇uh · ν}‖L2(e)‖[û]‖L2(e)

≤ cεM
N
∑

i=1

h
−1/2
i ‖∇uh‖L2(Ωi)‖û‖H1(Ωi)

≤ C‖uh‖h,Σ1‖û‖H1(Ω),

(1.4.22)

where C depends on εM and h.

Therefore

− fh,1
(

uh
)

≥ −c(û, k1, h)‖uh‖h,Σ1 . (1.4.23)

Then estimating ah,1(uh, uh) by lemma 1.3.5 with α = 1/2 (cf. assumption A7), we have

P (uh)uh ≥
1

2
‖uh‖2h,Σ1

− c1‖uh‖h,Σ1 − c2. (1.4.24)
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Finally we show that P is continuous. For Pb(uh)φh := b(uh, φh) and Pf (uh)φh := fh,1(uh, φh)
we use analogous argumentation as for CWOPSIP. Still we have to show that the linear operator
Pa(uh)φh := ah,1(uh, φh) is continuous.
Using lemma 1.3.5 with α = 1/2, lemma 1.3.8 and the Schwarz inequality we get

|ah,1(uh, φh)| =
∣

∣

∣

N
∑

i=1

∫

Ωi

ε∇uh,i · ∇φh,i dx−
∑

e∈ΓDI

∫

e
{ε∇uh · ν}[φh] ds

−
∑

e∈ΓDI

∫

e
{ε∇φh · ν}[uh] ds+

∑

e∈ΓDI

η1,e

∫

e
[uh] · [φh] ds

∣

∣

∣

=
∣

∣

∣

N
∑

i=1

∫

Ωi

ε∇uh,i · ∇φh,i dx+
∑

e∈ΓDI

η1,e

∫

e
[uh] · [φh] ds

−
∑

e∈ΓDI

∫

e
{ε∇uh · ν}[φh] ds−

∑

e∈ΓDI

∫

e
{ε∇φh · ν}[uh] ds

∣

∣

∣

≤ 2‖uh‖h,Σ1‖φh‖h,Σ1 .

(1.4.25)

Thus Pa is bounded and continuous.
The existence of u∗h is now proven.

1.4.3.3 Uniqueness

The uniqueness can be shown by contradiction for both cases. Assume that there exist two solutions
u∗h, u

†
h ∈ Xh(Ω) of problem 1.4.1 or problem 1.4.2. Thus we have

ah,r(u
∗
h, φh) + b(u∗h, φh) = fh,r(φh),

ah,r(u
†
h, φh) + b(u†h, φh) = fh,r(φh).

(1.4.26)

Then by taking φh := u∗h − u
†
h and subtracting these equations we obtain

ah,r(u
∗
h − u†h, u∗h − u

†
h) = b(u†h, u

∗
h − u†h)− b(u∗h, u∗h − u

†
h). (1.4.27)

Thus expanding operator b

ah,r(u
∗
h − u†h, u∗h − u

†
h) =

N
∑

i=1

∫

Ωi

e−v̂
(

eu
†
h − eu∗h

)(

u∗h − u†h
)

dx

+
N
∑

i=1

∫

Ωi

eŵ
(

e−u
∗
h − e−u†h

)(

u∗h − u†h
)

dx.

(1.4.28)

By monotonicity of the exponential function, the right hand side is nonpositive.
Therefore for CWOPSIP we simply have

0 < ‖u∗h − u†h‖2h,Σ2
= ah,2(u

∗
h − u†h, u∗h − u

†
h) ≤ 0, (1.4.29)

while for CSIPG we use lemma 1.3.5 (cf. assumption A7)

0 <
1

2
‖u∗h − u†h‖2h,Σ1

≤ ah,1(u∗h − u†h, u∗h − u
†
h) ≤ 0. (1.4.30)

Thus 0 < ‖u∗h − u
†
h‖2h,Σr

≤ 0 and we have the contradiction since u∗h 6= u†h. Therefore the uniqueness
is proven.
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1.5 Interpolation operator and interpolation error

In this section we would like to discuss interpolation error in discrete spaces Xh(Ω). While these
results are not specific to our problem, they are technical tools required by our convergence study in
sections 1.6 and 1.7.

First let us take any Ωi ∈ E and let us define interpolation operator Ihi : H2(Ωi) → Xhi(Ωi) ⊂
C0(Ωi) as follows

∀x ∈ Nhi Ihiui(x) = ui(x). (1.5.1)

Note that for Ωi ⊂ R
d, d ∈ {1, 2} we have H2(Ωi) ⊂ C0(Ωi) (see [94]), so this definition is not

ambiguous. Then we define Ih : H2(E)→ Xh by

∀Ωi ∈ E Ihu
∣

∣

∣

Ωi

:= Ihiui. (1.5.2)

For convenience, we define

uI := Ihu, u∗I := Ihu
∗. (1.5.3)

We would like to establish an estimate on ‖u− uI‖h,Σr , r ∈ {1, 2}, where u ∈ H2(E). We consider
Ω ⊂ R

d for d ∈ {1, 2}.

Theorem 1.5.1. Under assumptions A1 to A7, let u ∈ H1(Ω) ∩H2(E), Ω ⊂ R
d be a given function

and let the interpolation operator Ih : H2(E) → Xh be defined as in equation (1.5.2). The following
interpolation error estimates hold:

• If d = 1, r ∈ {1, 2}
‖u− Ihu‖2h,Σr

≤ Ch2
∑

Ωi∈E

|u|2H2(Ωi)
. (1.5.4)

• If d = 2

‖u− uI‖2h,Σ1
≤ C

∑

Ωi∈E

(

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

)

|u|2H2(Ωi)
,

‖u− uI‖2h,Σ2
≤ C

∑

Ωi∈E

(

hi +
∑

Ωj∈nb(Ωi)

h3i
h2j

)

|u|2H2(Ωi)
.

(1.5.5)

Note that this estimate is poor if hi/hj → ∞ as h → 0 for some adjacent Ωi,Ωj ∈ E . Such a
situation may occur if for example meshes Ti,hi(Ωi) and Tj,hj(Ωj) increase density disproportionately
with h. However if we increase destiny proportionally, i.e. hi := cih, we obtain the following estimates.

Remark 1.5.2. If in theorem 1.5.1 we additionally assume that hi := cih for i ∈ {1, . . . , N}, then for
d = 2 estimates may be improved to

‖u− uI‖2h,Σ1
≤ Ch2

∑

Ωi∈E

|u|2H2(Ωi)
,

‖u− uI‖2h,Σ2
≤ Ch

∑

Ωi∈E

|u|2H2(Ωi)
.

(1.5.6)
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The remaining of this section is devoted to proofs of theorem 1.5.1 and remark 1.5.2. We start
with the following proposition.

Proposition 1.5.3. Let ui ∈ H2(Ωi) be a given function, where Ωi ∈ E. Then the following estimates
on the interpolation error in Xhi(Ωi) hold

‖ui − Ihiui‖L2(Ωi) ≤ Ch2i |ui|H2(Ωi),

|ui − Ihiui|H1(Ωi) ≤ Chi|ui|H2(Ωi),
(1.5.7)

where the interpolation operator Ihi defined as in (1.5.1).

Proof. By definition (see equation (1.3.4)), Xhi(Ωi) is a continuous linear finite element space. Thus
this proposition is a direct consequence of corollary 1.1.13.

1.5.1 One dimension

We start the proof of theorem 1.5.1 in one dimension. This part is much simpler as the two-dimensional
case, as then u and Ihu are continuous on interfaces.
We see that for uI := Ihu

‖u− uI‖2h =

N
∑

i=1

∫

Ωi

ε(x)
(

∇ui −∇Ihiui
)2
dx+

∑

e∈ΓDI

ηr,e

∫

e
[u− Ihu]2 ds

≤ εM
∑

Ωi∈E

‖ui − Ihiui‖2H1(Ωi)
+
∑

e∈ΓDI

ηr,e

∫

e
[u− Ihu]2 ds

≤ εM‖u− uI‖2H1(Ω) +
∑

e∈ΓDI

ηr,e

∫

e
[u− Ihu]2 ds,

(1.5.8)

for u ∈ H1(Ω) ∩H2(E). In this case, by proposition 1.5.3 used for every Ωi ∈ E , we have

‖u− uI‖2H1(E) ≤ Ch2i
∑

Ωi∈E

|u|2H2(Ωi)
≤ Ch2

∑

Ωi∈E

|u|2H2(Ωi)
. (1.5.9)

Then for any e ∈ ΓDI , e ⊂ ∂Ωi is a real number, so we have
∫

e
u− Ihu ds = u(e)− Ihu(e) = u(e)− u(e) = 0. (1.5.10)

Thus the latter element of (1.5.8) is zero for any u ∈ H1(E). Therefore we can estimate

‖u− uI‖2h,Σr
≤ cεM‖u− uI‖2H1(Ω) ≤ CεMh2

∑

Ωi∈E

|u|2H2(Ωi)
. (1.5.11)

1.5.2 Two dimensions

The two-dimensional case is more problematic, as then even if u is continuous, Ihu may be discontin-
uous across interfaces (see figure 1.1). Due to this fact, we start jointly, but then we have to separate
cases r = 1 (CSIPG) and r = 2 (CWOPSIP).
For any Ωi ∈ E proposition 1.5.3 yields that

‖u− Ihu‖2H1(E) =
∑

Ωi∈E

‖ui − Ihiui‖2H1(Ωi)
≤
∑

Ωi∈E

C2
i h

2
i |ui|2H2(Ωi)

. (1.5.12)
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Therefore

‖u− uI‖2H1(E) ≤ C
∑

Ωi∈E

h2i |ui|2H2(Ωi)
. (1.5.13)

Note that

‖u− uI‖2h,Σr
=
∑

Ωi∈E

∫

Ωi

ε
(

∇u−∇uI
)2
dx+

∑

e∈ΓDI

ηr,e

∫

e
[u− uI ]2 ds, (1.5.14)

so the first element of this sum is estimated and we have to estimate the latter.

Then let us take any e ∈ ΓDI . For e ∈ ΓI we assume that e = ∂Ωi ∩ ∂Ωj for some Ωi,Ωj ∈ E and
we have

∫

e
[u− uI ]2 ds = ‖[u− uI ]‖2L2(e)

=
∥

∥

∥
ui − uI,i −

(

uj − uI,j
)

∥

∥

∥

2

L2(e)

≤ 2‖ui − uI,i‖2L2(e)
+ 2‖uj − uI,j‖2L2(e)

,

(1.5.15)

while for e ∈ ΓD we have e ⊂ ∂Ωi for some Ωi ∈ E and simply
∫

e
[u− uI ]2 ds =

∫

e

(

ui − uI,i
)2
ds = ‖ui − uI,i‖2L2(e)

. (1.5.16)

Therefore it is sufficient to estimate ‖ui − uI,i‖2L2(e)
for any e ∈ ΓDI , e ⊂ ∂Ωi. First using the

trace theorem for finite element functions (proposition 1.1.11), taking into account that Thi(Ωi) is a
quasi-uniform mesh (assumptions A2), and then error estimates of proposition 1.5.3, we get

‖ui − uI,i‖2L2(e)
≤ Ch−1

i

(

‖ui − uI,i‖2L2(τ)
+ h2i |ui − uI,i|2H1(τ)

)

≤ ch−1
i

(

h4i |ui|2H2(Ωi)
+ h4i |ui|2H2(Ωi)

)

= Ch3i |ui|2H2(Ωi)
.

(1.5.17)

To proceed further, we need to consider different form of ηr,e. Therefore we will distinguish two cases:
CSIPG (r = 1) and CWOPSIP (r = 2).

1.5.2.1 CSIPG

In this case, we have by definition (1.3.12)

η1,e = σe{h−1}. (1.5.18)

Therefore if e ∈ ΓD, we simply have

η1,e

∫

e

(

ui − uI,i
)2
ds = η1,e‖ui − uI,i‖2L2(e)

= σeh
−1
i ‖ui − uI,i‖2L2(e)

≤ Cσeh−1
i h3i |u|2H2(Ωi)

= Cσeh
2
i |u|2H2(Ωi)

.

(1.5.19)

On the other hand, if e ∈ ΓI then

η1,e

∫

e

(

ui − uI,i
)2
ds = η1,e‖ui − uI,i‖2L2(e)

= 0.5σe(h
−1
i + h−1

j )‖ui − uI,i‖2L2(e)

≤ Cσe(h−1
i + h−1

j )h3i |u|2H2(Ωi)
= Cσe

(

h2i +
h3i
hj

)

|u|2H2(Ωi)
.

(1.5.20)
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Then if we sum up over e ∈ ΓDI

∑

e∈ΓDI

η1,e

∫

e

(

[u− uI ]
)2
ds ≤

∑

Ωi∈E

C

(

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

)

|u|2H2(Ωi)
. (1.5.21)

Thus taking into account this estimate and the estimate for H1(Ω) interpolation error (1.5.12), we get

‖u− uI‖2h,Σ1
=
∑

Ωi∈E

ε

∫

Ωi

(

∇u− uI
)2
dx+

∑

e∈ΓDI

η1,e

∫

e

(

[u− uI ]
)2
ds

≤ C
∑

Ωi∈E

(

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

)

|u|2H2(Ωi)
.

(1.5.22)

Constants σe are included in constant C, as they do not change with h. If we increase destiny
proportionally (hi := cih), the result is as follows

‖u− uI‖2h,Σ1
≤ Ch2

∑

Ωi∈E

|u|2H2(Ωi)
. (1.5.23)

1.5.2.2 CWOPSIP

In this case, we have by definition (1.3.12)

η2,e = σe{h−2}. (1.5.24)

We proceed as in previous case, but with increased penalty term. For e ∈ ΓD

η2,e

∫

e

(

ui − uI,i
)2
ds = σeh

−2
i ‖ui − uI,i‖2L2(e)

≤ Cσeh−2
i h3i |u|2H2(Ωi)

= Cσehi|u|2H2(Ωi)
,

(1.5.25)

and for e ∈ ΓI

η2,e

∫

e

(

ui − uI,i
)2
ds = 0.5σe(h

−2
i + h−2

j )‖ui − uI,i‖2L2(e)

≤ Cσe(h−2
i + h−2

j )h3i |u|2H2(Ωi)
= Cσe

(

hi +
h3i
h2j

)

|u|2H2(Ωi)
.

(1.5.26)

Finally taking into account (1.5.12)

‖u− uI‖2h,Σ2
=
∑

Ωi∈E

ε

∫

Ωi

(

∇(u− uI)
)2
dx+

∑

e∈ΓDI

η2,e

∫

e

(

[u− uI ]
)2
ds

≤ C
∑

Ωi∈E

(

h2i + hi +
∑

Ωj∈nb(Ωi)

h3i
h2j

)

|u|2H2(Ωi)

≤ C
∑

Ωi∈E

(

hi +
∑

Ωj∈nb(Ωi)

h3i
h2j

)

|u|2H2(Ωi)
,

(1.5.27)

as 0 < hi ≤ 1.
Assuming additionally that hi := cih we obtain

‖u− uI‖2h,Σ2
≤ Ch

∑

Ωi∈E

|u|2H2(Ωi)
. (1.5.28)

Thus this estimate is weaker than for CSIPG.
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1.6 Error estimates for the equilibrium case for CWOPSIP

In this section we will present the analysis of discretization of the equilibrium state (problem 1.2.2)
with Composite Weakly Over-Penalized Interior Penalty method (see problem 1.4.1). We would like
to prove the following theorem

Theorem 1.6.1. Under assumptions A1 to A7, let u∗ ∈ H1(Ω) ∩H2(E) be a solution of differential
problem 1.2.2 and let u∗ ∈ Xh(Ω) be solutions of problem 1.4.1. Then the following error estimate
holds:

‖u∗ − u∗h‖h,Σ2 ≤C
(

N
∑

i=1

(

hi +
∑

Ωk∈nb(Ωi)

h3i
h2k

)

|u∗h,i|2H2(Ωi)

)1/2

+ Ch‖u∗‖H2(E). (1.6.1)

Remark 1.6.2. If additionally we assume that mesh parameters are proportional, i.e. hi := cih for
every Ωi ∈ E, then estimate (1.6.1) reduces to

‖u∗ − u∗h‖h,Σ2 ≤Ch1/2
(

N
∑

i=1

|u∗h,i|2H2(Ωi)

)1/2
+Ch‖u∗‖H2(E). (1.6.2)

Remark 1.6.3. If Ω ⊂ R, the estimate of remark 1.6.2 can be improved to

‖u∗ − u∗h‖h,Σ2 ≤Ch‖u∗‖H2(E). (1.6.3)

In the remainder of this section we prove these results.

1.6.1 Outline of the proof

The general idea standing behind this proof is as follows. We base on fact, as noted in section 1.3.2.2,
that the broken norm may be expressed in terms of ah,2, i.e.

‖uh‖2h,Σ2
= ah,2(uh, uh). (1.6.4)

Our goal is to estimate the discrete solution error by an interpolation error.

Let us assume, for the purpose of this sketch, that the differential problem may be written as

a(u∗, φ) = f(φ), (1.6.5)

and the discrete problems

a(u∗h, φh) = f(φh), (1.6.6)

where u∗, φ ∈ V , u∗h, φh ∈ Vh and Vh ⊂ V . We also assume that a is bilinear and elliptic and f is
linear and that

a(u, u) = ‖u‖2, (1.6.7)

for an appropriate norm. Example of such a problem is presented in section 1.1.1.
Then we could proceed as follows

1. Take φ := φh := Ihu
∗ − u∗h = u∗I − u∗h and subtract (1.6.6) from (1.6.5) to get

a(u∗ − u∗h, u∗I − u∗h) = 0. (1.6.8)
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2. Transform this result to

a(u∗I − u∗h, u∗I − u∗h) = a(u∗ − u∗I , u∗h − u∗I). (1.6.9)

3. Use boundedness property of a on the right-hand side to get

‖u∗I − u∗h‖2 = a(u∗I − u∗h, u∗I − u∗h) = a(u∗ − u∗I , u∗h − u∗I) ≤ C‖u∗ − u∗I‖‖u∗h − u∗I‖. (1.6.10)

4. Divide by ‖u∗h − u∗I‖ to obtain the estimate

‖u∗I − u∗h‖ ≤ C‖u∗ − u∗I‖. (1.6.11)

5. Use this estimate and the triangle inequality to get

‖u∗ − u∗h‖ ≤ ‖u∗ − u∗I‖+ ‖u∗I − u∗h‖ ≤ (1 + C)‖u∗ − u∗I‖. (1.6.12)

In our case, discrete spaces Xh(Ω) do not lie in the differential problem space H
1(Ω), so it is not

feasible to take Ihu
∗ − u∗h as a test function. Also discrete problems and the differential problem do

not share the same forms. To overcome these problems, we formulate another differential problem
1.6.4, which is consistent with problem 1.2.4 under additional assumptions (section 1.6.2). At the cost
of the regularity of solutions, problem 1.6.4 accounts for more general test functions.

At this moment, it is possible to get result similar to (1.6.8). Still the right-hand side will not be
zero due to differences in discrete/differential forms, and it must be estimated as well in (1.6.10) along
with ellipticity property of a. These estimates are demonstrated in section 1.6.3. The remaining steps
are performed in section 1.6.4.

1.6.2 Consistency

Our starting point is the problem defined in section 1.2.2:

Problem 1.2.2. Let v̂, ŵ ∈ L∞(Ω) and k1 ∈ L2(Ω) be given. Find u
∗ ∈ û+H1(Ω), such that

a(u∗, φ) + b(u∗, φ) = f(φ) ∀φ ∈ H1
0,∂ΩD

(Ω), (1.2.4)

where

a(u, φ) :=

∫

Ω
ε(x)∇u(x) · ∇φ(x) dx,

b(u, φ) :=

∫

Ω

(

eu(x)−v̂(x) − eŵ(x)−u(x)
)

φ(x) dx,

f(φ) :=

∫

Ω
k1(x)φ(x) dx.

(1.2.5)
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For convenience, we define the following operators

A(u, φ) :=
∑

Ωi∈E

∫

Ωi

ε∇u · ∇φdx,

B(u, φ) :=
∑

Ωi∈E

∫

Ωi

uφdx,

C(φ) :=
∑

Ωi∈E

∫

Ωi

k1φdx,

D(u, φ) := −
∑

e∈ΓDI

∫

e
{ε∇u · ν}[φ] ds,

F (φ) := −
∑

e∈ΓD

∫

e
{ε∇φ · ν}[û] ds,

Ir(φ) :=
∑

e∈ΓD

ηr,e

∫

e
[û] · [φ] ds,

Jr(u, φ) :=
∑

e∈ΓDI

ηr,e

∫

e
[u] · [φ] ds.

(1.6.13)

Note that for any uh ∈ Xh(Ω), r ∈ {1, 2}

‖uh‖2h,Σr
= A(uh, uh) + Jr(uh, uh). (1.6.14)

Using operators defined above, we may rewrite this problem as: find u∗ ∈ H1(Ω) such that

A(u∗, φ) +B(eu
∗−v̂, φ)−B(eŵ−u

∗
, φ) = C(φ) ∀φ ∈ H1

0,∂ΩD
(Ω),

u∗ = û on ∂Ω.
(1.6.15)

Second problem is a nonlinear variant of abstract problem 1.3.9 with r = 2:

Problem 1.6.4. Find u∗ ∈ H2(E), such that ∀φ ∈ H1(E) ∩H2(Th)

A(u∗, φ) +B(eu
∗−v̂, φ)−B(eŵ−u

∗
, φ) +D(u∗, φ) + J2(u

∗, φ) = C(φ) + I2(φ). (1.6.16)

As in general case covered by theorem 1.3.10, if the solution is sufficiently regular these problems
are consistent, i.e.

Theorem 1.6.5. Under assumptions A3, A6, A7, if u∗ is a solution of problem 1.2.2 then u∗ is a
solution of problem 1.6.4. Conversely, if u∗ is a solution of problem 1.6.4 then it is also a solution of
problem 1.2.2.

Proof. We use theorem 1.3.10 with r := 2 and f := k1 − eu
∗−v̂ + eŵ−u

∗
. By assumptions A7 we have

u∗ ∈ H1(Ω) ∩H2(E) and ε|Ωi ∈ C1(Ωi). They imply ε∇u∗ ∈ H1(E). Theorem 1.3.10 then concludes
the result.

1.6.3 Analysis

We would like to estimate a difference between solutions of two problems. A solution u∗ of differential
problem 1.6.4 satisfies ∀φ ∈ H1(E) ∩H2(Th)

A(u∗, φ) +B(eu
∗−v̂, φ)−B(eŵ−u

∗
, φ) +D(u∗, φ) + J2(u

∗, φ) = C(φ) + I2(φ). (1.6.17)
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On the other hand, a solution u∗h of discrete problem 1.4.1 depending on parameter h satisfies ∀φh ∈ Xh

A(u∗h, φh) +B(eu
∗
h−v̂, φh)−B(eŵ−u

∗
h , φh) + J2(u

∗
h, φh) = C(φh) + I2(φh). (1.6.18)

We take
φ := φh := u∗I − u∗h, (1.6.19)

where u∗I := Ihu
∗, and then we subtract equation (1.6.18) from equation (1.6.17). We obtain

A(u∗ − u∗h, u∗I − u∗h) +B(eu
∗−v̂ − eu∗h−v̂, u∗I − u∗h)−B(eŵ−u

∗ − eŵ−u∗h , u∗I − u∗h)
+ J2(u

∗ − u∗h, u∗I − u∗h) = −D(u∗, u∗I − u∗h).
(1.6.20)

We will estimate every element of this equation.
As accordance with assumptions A7, in this section u∗ ∈ H1(Ω) ∩H2(E).

1.6.3.1 Estimate of A(u∗ − u∗h, φh)
We have

A(u∗ − u∗h, u∗I−u∗h) = A(u∗ − u∗I + u∗I − u∗h, u∗I−u∗h) = A(u∗−u∗I , u∗I−u∗h)+A(u∗I−u∗h, u∗I−u∗h). (1.6.21)

By the Schwarz inequality, we have

|A(u∗ − u∗I , u∗I − u∗h)| =
∣

∣

∣

∣

∫

Ω
ε∇ (u∗ − u∗I) · ∇ (u∗I − u∗h) dx

∣

∣

∣

∣

≤ ‖u∗ − u∗I‖h,Σr‖u∗I − u∗h‖h,Σr . (1.6.22)

1.6.3.2 Estimate of B(eu
∗−v̂ − eu∗h−v̂, φh)

Similarly as in the previous case, we have

B(eu
∗−v̂ − eu∗h−v̂, u∗I − u∗h) =B(eu

∗−v̂ − eu∗I−v̂ + eu
∗
I−v̂ − eu∗h−v̂, u∗I − u∗h)

=B(eu
∗
I−v̂ − eu∗h−v̂, u∗I − u∗h) +B(eu

∗−v̂ − eu∗I−v̂, u∗I − u∗h)
=B(e−v̂

[

eu
∗
I − eu∗h

]

, u∗I − u∗h) +B(e−v̂
[

eu
∗ − eu∗I

]

, u∗I − u∗h).
(1.6.23)

First element of this sum is positive due to the definition of B and monotonicity of exponential
function. Note that the solution of the differential problem u∗ is bounded (lemma 1.2.3), also v̂, ŵ ∈
L∞(Ω). Due to our definition of interpolation operator, u∗I is also bounded by the same values as u

∗.
Then let us define Le to be a Lipschitz constant of exponential function in sufficiently large bounded
set, i.e

Le := inf
{

L > 0 : |ex − ey| ≤ L|x− y| ∀x, y ∈ [−M,M ],

where M := ‖u∗‖L∞(Ω) + ‖v̂‖L∞(Ω) + ‖ŵ‖L∞(Ω)

}

.
(1.6.24)

This definition allows for a bigger set than necessary, as we would like to use the constant Le also in
sections to follow. Then we may estimate

B(eu
∗−v̂ − eu∗I−v̂, u∗I − u∗h) ≤B(|eu∗−v̂ − eu∗I−v̂|, |u∗I − u∗h|)

≤LeB (|u∗ − v̂ − u∗I + v̂| , |u∗I − u∗h|)
=LeB (|u∗ − u∗I | , |u∗I − u∗h|)
≤Le‖u∗ − u∗I‖L2(Ω)‖u∗I − u∗h‖L2(Ω).

(1.6.25)
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1.6.3.3 Estimate of −B(eŵ−u
∗ − eŵ−u∗h , φh)

As in previous section

−B(eŵ−u
∗ − eŵ−u∗h , u∗I − u∗h) =−B(eŵ−u

∗ − eŵ−u∗I + eŵ−u
∗
I − eŵ−u∗h , u∗I − u∗h)

=−B(eŵ−u
∗ − eŵ−u∗I , u∗I − u∗h)−B(eŵ−u

∗
I − eŵ−u∗h , u∗I − u∗h)

=B(eŵ[e−u
∗
I − e−u∗ ], u∗I − u∗h) +B(eŵ[e−u

∗
h − e−u∗I ], u∗I − u∗h).

(1.6.26)

Second element of this sum is positive due to the definition of B and anti-monotonicity of function
exp(−x). First element we may estimate as

B(eŵ
[

e−u
∗
I − e−u∗

]

, u∗I − u∗h) ≤LeB (|u∗ − u∗I | , |u∗I − u∗h|)
≤Le‖u∗ − u∗I‖L2(Ω)‖u∗I − u∗h‖L2(Ω).

(1.6.27)

1.6.3.4 Estimate of −D(u∗, φh)

This element is in some way special, as it is absent in the discrete formulation. To estimate it, we use
Schwarz inequality.

∣

∣

∣
D(u∗, u∗I − u∗h)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∑

e∈ΓDI

∫

e
{ε∇u∗ · ν} [u∗I − u∗h] ds

∣

∣

∣

∣

∣

∣

≤
∑

e∈ΓDI

∫

e
|{ε∇u∗ · ν} [u∗I − u∗h]| ds

=
∑

e∈ΓDI

∫

e

∣

∣

∣

(

η
−1/2
2,e {ε∇u∗ · ν}

)(

η
1/2
2,e [u∗I − u∗h]

)
∣

∣

∣
ds

≤





∑

e∈ΓDI

∫

e
η−1
2,e {ε∇u∗ · ν}2 ds





1/2 



∑

e∈ΓDI

∫

e
η2,e ([u

∗
I − u∗h])

2 ds





1/2

≤





∑

e∈ΓD

∫

e
0.5σ−1

e h2i {ε∇u
∗ · ν}2 ds+

∑

e∈ΓI

∫

e
σ−1
e

1

h−2
i + h−2

j

{ε∇u∗ · ν}2 ds





1/2

‖u∗I − u∗h‖h,Σ2

≤





∑

e∈ΓD

∫

e
0.5σ−1

e h2i {ε∇u
∗ · ν}2 ds+

∑

e∈ΓI

∫

e
σ−1
e

(

h2i + h2j
)

{ε∇u∗ · ν}2 ds





1/2

‖u∗I − u∗h‖h,Σ2

≤





∑

Ωi∈E

h2i
∑

e∈ΓDI∩Γi

σ−1
e

∫

e
{ε∇u∗ · ν}2 ds





1/2

‖u∗I − u∗h‖h,Σ2

≤h





∑

Ωi∈E

∑

e∈ΓDI∩Γi

σ−1
e

∫

e
{ε∇u∗ · ν}2 ds





1/2

‖u∗I − u∗h‖h,Σ2

≤Ch





∑

e∈ΓDI

σ−1
e

∫

e
{ε∇u∗ · ν}2 ds





1/2

‖u∗I − u∗h‖h,Σ2
,

(1.6.28)

where the constant C depends on maximal number of edges of coarse mesh elements E .
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Then by trace inequality we have
∣

∣

∣

∣

∣

∑

e∈ΓDI

σ
−1
e

∫

e

{ε∇u
∗ · ν}

2
ds

∣

∣

∣

∣

∣

≤ σ
−1
m

∑

e∈ΓDI

‖{ε∇u
∗ · ν}‖2L2(e) ds

≤ σ
−1
m εM

(

∑

e∈ΓD

‖{∇u
∗ · ν}‖2L2(e) +

∑

e∈ΓI

0.5
∑

{Ωi:e∈Γi}

‖∇u
∗ · ν|Ωi

‖2L2(e)

)

≤ Cσ
−1
m εM

∑

Ωi∈E

‖u∗‖2H2(Ωi)
= Cσ

−1
m εM‖u∗‖2H2(E).

(1.6.29)

Therefore we have
∣

∣

∣
D(u∗, u∗I − u∗h)

∣

∣

∣
≤ Ch‖u∗‖H2(E)‖u∗I − u∗h‖h,Σ2 . (1.6.30)

1.6.3.5 Estimate of Jr(u
∗ − u∗h, φh)

Taking r = 2 has no advantage here, so we consider general case. We have

Jr(u
∗ − u∗h, u∗I − u∗h) =Jr(u∗ − u∗I + u∗I − u∗h, u∗I − u∗h)

=Jr(u
∗ − u∗I , u∗I − u∗h) + Jr(u

∗
I − u∗h, u∗I − u∗h).

(1.6.31)

Second element is nonnegative, and first one we may estimate as

∣

∣

∣Jr(u
∗ − u∗I , u∗I − u∗h)

∣

∣

∣ =
∣

∣

∣

∑

e∈ΓDI

∫

e
ηr,e[u

∗ − u∗I ][u∗I − u∗h]
∣

∣

∣

≤





∑

e∈ΓDI

∫

e
ηr,e[u

∗ − u∗I ]2




1/2

·





∑

e∈ΓDI

∫

e
ηr,e[u

∗
I − u∗h]2





1/2

≤‖u∗ − u∗I‖h,Σr‖u∗I − u∗h‖h,Σr .

(1.6.32)

1.6.4 Summary

Using results of the previous subsections, we may rewrite equation

A(u∗ − u∗h, u∗I − u∗h) +B(eu
∗−v̂ − eu∗h−v̂, u∗I − u∗h)−B(eŵ−u

∗ − eŵ−u∗h , u∗I − u∗h)
+ J2(u

∗ − u∗h, u∗I − u∗h) = −D(u∗, u∗I − u∗h),
(1.6.33)

as

LHS = RHS, (1.6.34)

where

LHS =A(u∗I − u∗h, u∗I − u∗h) +B(e−v̂
[

eu
∗

I − eu∗

h

]

, u∗I − u∗h) +B(eŵ[e−u∗

h − e−u∗

I ], u∗I − u∗h)
+ J2(u

∗
I − u∗h, u∗I − u∗h),

RHS =−A(u∗ − u∗I , u∗I − u∗h)−B(e−v̂
[

eu
∗ − eu∗

I

]

, u∗I − u∗h)−B(eŵ
[

e−u∗

I − e−u∗

]

, u∗I − u∗h)
− J2(u∗ − u∗I , u∗I − u∗h)−D(u∗, u∗I − u∗h).

(1.6.35)

We can estimate LHS from below by omitting nonnegative elements with operator B (cf. (1.6.23),
and (1.6.26)) to obtain

LHS ≥ A(u∗I − u∗h, u∗I − u∗h) + J2(u
∗
I − u∗h, u∗I − u∗h) = ‖u∗I − u∗h‖2h,Σ2

. (1.6.36)
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On the other hand, for RHS we may use estimates (1.6.22), (1.6.25), (1.6.27), (1.6.30) and (1.6.32) of
this section to get

RHS ≤‖u∗ − u∗I‖h,Σ2‖u∗I − u∗h‖h,Σ2 + Le‖u∗ − u∗I‖L2(Ω)‖u∗I − u∗h‖L2(Ω)

+ Le‖u∗ − u∗I‖L2(Ω)‖u∗I − u∗h‖L2(Ω) + ‖u∗ − u∗I‖h,Σ2‖u∗I − u∗h‖h,Σ2

+ Ch‖u∗‖H2(E)‖u∗I − u∗h‖h,Σ2 .

(1.6.37)

Therefore using LHS = RHS we obtain

‖u∗I − u∗h‖2h,Σ2
≤ 2‖u∗ − u∗I‖h,Σ2‖u∗I − u∗h‖h,Σ2 + 2Le‖u∗ − u∗I‖L2(Ω)‖u∗I − u∗h‖L2(Ω)

+ Ch‖u∗‖H2(E)‖u∗I − u∗h‖h,Σ2 .
(1.6.38)

Then if we divide both sides of this inequality by ‖u∗I − u∗h‖h,Σ2 > 0 we will have

‖u∗I − u∗h‖h,Σ2 ≤2‖u∗ − u∗I‖h,Σ2 + 2Le‖u∗ − u∗I‖L2(Ω)

‖u∗I − u∗h‖L2(Ω)

‖u∗I − u∗h‖h,Σ2

+Ch‖u∗‖H2(E). (1.6.39)

Then by lemma 1.3.7, we have ‖u∗I − u∗h‖L2(Ω) ≤ c‖u∗I − u∗h‖h,Σ2 as Xh(Ω) ⊂ H1(E), so

‖u∗I − u∗h‖L2(Ω)

‖u∗I − u∗h‖h,Σ2

≤ c‖u∗I − u∗h‖h,Σ2

‖u∗I − u∗h‖h,Σ2

= c. (1.6.40)

Thus

‖u∗I − u∗h‖h,Σ2 ≤2‖u∗ − u∗I‖h,Σ2 + 2Le‖u∗ − u∗I‖L2(Ω)

‖u∗I − u∗h‖L2(Ω)

‖u∗I − u∗h‖h,Σ2

+ Ch‖u∗‖H2(E)

≤2‖u∗ − u∗I‖h,Σ2 + 2cLe‖u∗ − u∗I‖H1(Ω) + Ch‖u∗‖H2(E)

≤(2 + 2cLe)‖u∗ − u∗I‖h,Σ2 + Ch‖u∗‖H2(E).

(1.6.41)

Therefore we obtain for some constant C

‖u∗I − u∗h‖h,Σ2 ≤ C
(

‖u∗ − u∗I‖h,Σ2 + h‖u∗‖H2(E)

)

. (1.6.42)

On the other hand, by the triangle inequality we have

‖u∗ − u∗h‖h,Σ2 ≤ ‖u∗ − u∗I‖h,Σ2 + ‖u∗I − u∗h‖h,Σ2 . (1.6.43)

Then we get in general in two dimensions for u∗ ∈ H2(E) the estimate

‖u∗ − u∗h‖h,Σ2 ≤ ‖u∗ − u∗I‖h,Σ2 + ‖u∗I − u∗h‖h,Σ2

≤ ‖u∗ − u∗I‖h,Σ2 + C
(

‖u∗ − u∗I‖h,Σ2 + h‖u∗‖H2(E)

)

≤ (1 + C)‖u∗ − u∗I‖h,Σ2 + Ch

≤ c
(

∑

Ωi∈E

(

hi +
∑

Ωj∈nb(Ωi)

h3i
h2j

)

|u∗|2H2(Ωi)

)1/2

+ Ch‖u∗‖H2(E).

(1.6.44)

With the additional assumption hi := cih for every Ωi ∈ E we can simplify this expression to

‖u∗ − u∗h‖h,Σ2 ≤ C
(

h1/2|u∗|H2(E) + h‖u∗‖H2(E)

)

. (1.6.45)

In one dimension, this estimate may be improved due to better interpolation error (1.5.11)

‖u∗ − u∗h‖h,Σ2 ≤ Ch‖u∗‖H2(E). (1.6.46)
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1.7 Error estimates for the equilibrium case for CSIPG

In this section we will present the analysis of discretization of the drift-diffusion system 1.2.1 with the
Composite Symmetric Interior Penalty Galerkin method [37]. Our analysis is similar to the CWOPSIP
case.

Theorem 1.7.1. Under assumptions A1 to A7, let u∗ ∈ H1(Ω) ∩H2(E) be a solution of differential
problem 1.2.2 and let u∗ ∈ Xh(Ω) be solutions of problem 1.4.2. Then the following error estimate
holds:

‖u∗ − u∗h‖h,Σ1 ≤ C
∑

Ωi∈E

([

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

]1/2)

|u∗|H2(Ωi). (1.7.1)

Remark 1.7.2. If additionally we assume that mesh parameters are proportional, i.e. hi := cih for
every Ωi ∈ E, then estimate (1.7.1) reduces to

‖u∗ − u∗h‖h,Σ1 ≤ Ch
∑

Ωi∈E

|u∗|H2(Ωi). (1.7.2)

The estimate for CSIPG is therefore optimal.
The rest of this section is devoted to proof of these estimates. The proof is analogous as in

CWOPSIP case. It follows the outline presented in section 1.6.1, with the consistency result concluded
in theorem 1.7.4. Additionally lemma 1.3.5 is used as analogue of equation (1.6.10). We will use
operators A,B,C,D,F, I1, J1, introduced in section 1.6.2 and some estimates of section 1.6.3.

1.7.1 Consistency

In a similar manner as before, we would like to relate the following problems. First is already defined:

Problem 1.2.2. Let v̂, ŵ ∈ L∞(Ω) and k1 ∈ L2(Ω) be given. Find u
∗ ∈ û+H1(Ω), such that

a(u∗, φ) + b(u∗, φ) = f(φ) ∀φ ∈ H1
0,∂ΩD

(Ω), (1.2.4)

where

a(u, φ) :=

∫

Ω
ε(x)∇u(x) · ∇φ(x) dx,

b(u, φ) :=

∫

Ω

(

eu(x)−v̂(x) − eŵ(x)−u(x)
)

φ(x) dx,

f(φ) :=

∫

Ω
k1(x)φ(x) dx.

(1.2.5)

Second problem is specific to CSIPG:

Problem 1.7.3. Find u∗ ∈ H2(E), such that ∀φ ∈ H1(E) ∩H2(Th)

A(u∗, φ)+B(eu
∗−v̂, φ)−B(eŵ−u

∗
, φ)+D(u∗, φ)+D(φ, u∗)+J1(u

∗, φ) = C(φ)+F (φ)+ I1(φ). (1.7.3)

As for CWOPSIP method, we introduce on the following consistency result:

Theorem 1.7.4. Under assumptions A3, A6, A7, if u∗ is a solution of problem 1.2.2 then u∗ is a
solution of problem 1.7.3. Conversely, if u∗ is a solution of problem 1.7.3 then it is also a solution of
problem 1.2.2.

Proof. The result follows directly from theorem 1.3.10 with r = 1 and f := k1 − eu∗−v̂ + eŵ−u
∗
.
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1.7.2 Analysis

The differential problem satisfies: for every φ ∈ H1(E) ∩H2(Th)

A(u∗, φ)+B(eu
∗−v̂, φ)−B(eŵ−u

∗
, φ)+D(u∗, φ)+D(φ, u∗)+J1(u

∗, φ) = C(φ)+F (φ)+ I1(φ). (1.7.4)

On the other hand, the family of discrete problems depending on parameter h is defined as: for every
φh ∈ Xh

A(u∗h, φh) +B(eu
∗
h−v̂, φh)−B(eŵ−u

∗
h , φh) +D(u∗h, φh)

+D(φh, u
∗
h) + J1(u

∗
h, φh) = C(φh) + F (φh) + I1(φh).

(1.7.5)

We proceed as in CWOPSIP case. As before, we subtract these equations from each other taking

φ := φh := u∗I − u∗h. (1.7.6)

C, F and I vanish, as they depend on the test function only, and we get

A(u∗ − u∗h, u∗I − u∗h) +B(eu
∗−v̂ − eu∗h−v̂, u∗I − u∗h)−B(eŵ−u

∗ − eŵ−u∗h , u∗I − u∗h)
+D(u∗ − u∗h, u∗I − u∗h) +D(u∗I − u∗h, u∗ − u∗h)
+ J1(u

∗ − u∗h, u∗I − u∗h) = 0.

(1.7.7)

We will discuss every element of the resulting equation separately.
For elements A(u∗−u∗h, φh), B(eu

∗−v̂− eu∗h−v̂, φh), −B(eŵ−u
∗ − eŵ−u∗h , φh), and J1(u∗−u∗h, φh) we

use estimates established already in section 1.6.3.

1.7.2.1 Estimate of D(u∗ − u∗h, φh)
Here we have

D(u∗ − u∗h, u∗I − u∗h) =D(u∗ − u∗I , u∗I − u∗h) +D(u∗I − u∗h, u∗I − u∗h). (1.7.8)

We start with the second element of this sum

D(u∗I − u∗h, u∗I − u∗h) = −
∑

e∈ΓDI

∫

e

{

ε∇(u∗I − u∗h) · ν
}

[u∗I − u∗h] ds. (1.7.9)

Using lemma 1.3.5 with α = 1/2 (cf. assumption A7) we obtain

−
∑

e∈ΓDI

∫

e

{

ε∇(u∗I − u∗h) · ν
}

[u∗I − u∗h] ds ≥ −
1

4
‖u∗I − u∗h‖2h,Σ1

. (1.7.10)

Then we have

D(u∗ − u∗I , u∗I − u∗h) = −
∑

e∈ΓDI

∫

e

{

ε∇(u∗ − u∗I) · ν
}

[u∗I − u∗h] ds. (1.7.11)

Let us take any e ∈ ΓI , e ∈ ∂Ωi ∩ ∂Ωj. Then
∫

e

{

ε∇(u∗ − u∗I) · ν
}

[u∗I − u∗h] ds ≤ εM‖{∇(u∗ − u∗I) · ν}‖L2(e)‖[u∗I − u∗h]‖L2(e)

≤ εMη−1/2
1,e ‖{∇(u∗ − u∗I) · ν}‖L2(e)η

1/2
1,e ‖[u∗I − u∗h]‖L2(e).

(1.7.12)
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Next we have

‖{∇(u∗ − u∗I)}‖L2(e) =

∥

∥

∥

∥

∥

∇(u∗ − u∗I) · ν
2

∣

∣

∣

Ωi

+
∇(u∗ − u∗I) · ν

2

∣

∣

∣

Ωj

∥

∥

∥

∥

∥

L2(e)

≤
∥

∥

∥

∥

∥

∇(u∗ − u∗I) · ν
2

∣

∣

∣

Ωi

∥

∥

∥

∥

∥

L2(e)

+

∥

∥

∥

∥

∥

∇(u∗ − u∗I) · ν
2

∣

∣

∣

Ωj

∥

∥

∥

∥

∥

L2(e)

.

(1.7.13)

For any Ωi ∈ E , e ⊂ ∂Ωi, we can estimate ‖∇(u∗ − u∗I) · ν
∣

∣

Ωi
‖L2(e) in the following manner. Let us

define
Ti,e = {τ ∈ T : τ ⊂ Ωi, |e ∩ ∂τ | > 0}. (1.7.14)

Then using proposition 1.1.11 on every τ ∈ Ti,e and taking into account assumption A2 we obtain
∥

∥

∥
∇u∗ · ν −∇u∗I · ν

∣

∣

∣

Ωi

∥

∥

∥

2

L2(e)
=
∑

τ∈Ti,e

∥

∥

∥
∇u∗ · ν −∇u∗I · ν

∣

∣

∣

Ωi

∥

∥

∥

2

L2(e∩∂τ)

≤ Ch−1
i

∑

τ∈Ti,e

(

|u∗ − u∗I |2H1(τ) + h2i |u∗ − u∗I |2H2(τ)

)

.
(1.7.15)

Note that also since u∗I
∣

∣

τ
∈ P1(τ), then ∇2u∗I

∣

∣

τ
≡ 0 and

|u∗ − u∗I |H2(τ) = |u∗|H2(τ). (1.7.16)

With aid of proposition 1.5.3 we obtain
∥

∥

∥
∇u∗ · ν −∇u∗I · ν

∣

∣

∣

Ωi

∥

∥

∥

2

L2(e)
≤ Ch−1

i

∑

τ∈Ti,e

(

|u∗ − u∗I |2H1(τ) + h2i |u∗ − u∗I |2H2(τ)

)

= Ch−1
i

∑

τ∈Ti,e

(

|u∗ − u∗I |2H1(τ) + h2i |u∗|2H2(τ)

)

= Ch−1
i

(

|u∗ − u∗I |2H1(Ωi)
+ h2i |u∗|2H2(Ωi)

)

≤ Ch−1
i

(

h2i |u∗|2H2(Ωi)
+ h2i |u∗|2H2(Ωi)

)

= 2Chi|u∗|2H2(Ωi)
.

(1.7.17)

Therefore
∥

∥

∥

∥

∥

{∇(u∗ − u∗I) · ν}
∥

∥

∥

∥

∥

L2(e)

≤
∥

∥

∥

∥

∥

∇(u∗ − u∗I) · ν
2

∣

∣

∣

Ωi

∥

∥

∥

∥

∥

L2(e)

+

∥

∥

∥

∥

∥

∇(u∗ − u∗I) · ν
2

∣

∣

∣

Ωj

∥

∥

∥

∥

∥

L2(e)

≤ c(h1/2i |u∗|H2(Ωi) + h
1/2
j |u∗|H2(Ωj))

≤ c(h1/2i + h
1/2
j )(|u∗|H2(Ωi) + |u∗|H2(Ωj))

≤ 2c(hi + hj)
1/2(|u∗|H2(Ωi) + |u∗|H2(Ωj)).

(1.7.18)

Thus we have

η−1
1,e‖{∇(u∗ − u∗I)}‖2L2(e)

= σ−1
e 2
(

h−1
i + h−1

j

)−1‖{∇(u∗ − u∗I)}‖2L2(e)

≤ σ−1
e 2
(

h−1
i + h−1

j

)−1
4c(hi + hj)(|u∗|H2(Ωi) + |u∗|H2(Ωj))

2

= Cσ−1
e

hihj
hi + hj

(hi + hj)(|u∗|H2(Ωi) + |u∗|H2(Ωj))
2

= Cσ−1
e hihj(|u∗|H2(Ωi) + |u∗|H2(Ωj))

2.

(1.7.19)
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If e ∈ ΓD, e ∈ ∂Ωi, then analogously

η−1
1,e‖{∇(u∗ − u∗I)}‖2L2(e)

≤ Cσ−1
e h2i |u∗|2H2(Ωi)

. (1.7.20)

Therefore by Cauchy-Schwarz inequality and the inequalities derived above

∣

∣D(u∗ − u∗I , u∗I − u∗h)
∣

∣ =
∑

e∈ΓDI

∫

e

{

ε∇(u∗ − u∗I)
}

[u∗I − u∗h] ds

≤ εM
∑

e∈ΓDI

η
−1/2
1,e ‖{∇(u∗ − u∗I)}‖L2(e)η

1/2
1,e ‖[u∗I − u∗h]‖L2(e)

≤ εM
(

∑

e∈ΓDI

η−1
1,e‖{∇(u∗ − u∗I)}‖2L2(e)

)1/2( ∑

e∈ΓDI

η1,e‖[u∗I − u∗h]‖2L2(e)

)1/2

≤ εM
(

∑

e∈ΓDI

η−1
1,e‖{∇(u∗ − u∗I)}‖2L2(e)

)1/2

‖u∗I − u∗h‖h,Σ1

≤ εM
(

∑

e∈ΓDI

Cσ−1
e hihj(|u∗|H2(Ωi) + |u∗|H2(Ωj))

2
)1/2

‖u∗I − u∗h‖h,Σ1

≤ CεM
(

∑

e∈ΓDI

Cσ−1
e hihj

)1/2 ∑

Ωi∈E

|u∗|H2(Ωi)‖u∗I − u∗h‖h,Σ1

≤ CεMσ−1/2
m h

∑

Ωi∈E

|u∗|H2(E)‖u∗I − u∗h‖h,Σ1
,

(1.7.21)

as number of elements of ΓDI does not depend on h. Here by Ωi,Ωj we denote elements of E adjacent
to e ∈ Γ, noting that Ωi = Ωj if e ⊂ ∂Ω.

1.7.2.2 Estimate of D(φh, u
∗ − u∗h)

As before

D(u∗I − u∗h, u∗ − u∗h) =D(u∗I − u∗h, u∗ − u∗I) +D(u∗I − u∗h, u∗I − u∗h). (1.7.22)

We have

D(u∗I − u∗h, u∗I − u∗h) ≥ −
1

4
‖u∗I − u∗h‖2h,Σ1

. (1.7.23)

Then we have

|D(u∗I − u∗h, u∗ − u∗I)| ≤
∑

e∈ΓDI

∫

e

∣

∣

∣

{

ε∇(u∗I − u∗h) · ν
}∣

∣

∣

∣

∣

∣
[u∗ − u∗I ]

∣

∣

∣
ds,

≤ εM
∑

e∈ΓDI

‖{∇(u∗I − u∗h) · ν}‖L2(e)‖[u∗ − u∗I ]‖L2(e).
(1.7.24)

We proceed in a similar way as for D(u∗ − u∗h, φh). Thus splitting this sum up, we have
∥

∥

∥{∇(u∗I − u∗h) · ν}
∥

∥

∥

L2(e)
≤
∥

∥

∥∇(u∗I − u∗h) · ν
∣

∣

∣

Ωi

∥

∥

∥

L2(e)
+
∥

∥

∥∇(u∗I − u∗h) · ν
∣

∣

∣

Ωj

∥

∥

∥

L2(e)
. (1.7.25)

Then using corollary 1.1.13 with assumption A2 we get

∥

∥

∥∇(u∗I − u∗h) · ν
∣

∣

∣

Ωi

∥

∥

∥

2

L2(e)
≤ ch−1

i

∑

τ∈Ti,e

|u∗I − u∗h)|2H1(τ)

≤ ch−1
i |u∗I − u∗h)|2H1(Ωi)

≤ ch−1
i ‖u∗I − u∗h‖2h,Σ1

.

(1.7.26)
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On the other hand we have

‖[u∗ − u∗I ]‖L2(e) ≤
∥

∥

∥u∗ − u∗I
∣

∣

Ωi

∥

∥

∥

L2(e)
+
∥

∥

∥u∗ − u∗I
∣

∣

Ωj

∥

∥

∥

L2(e)
. (1.7.27)

Then using proposition 1.1.11 with assumption A2 and proposition 1.5.3 we get

‖u∗ − u∗I
∣

∣

Ωi
‖2L2(e)

=
∑

τ∈Ti,e

∥

∥

∥u∗ − u∗I
∣

∣

∣

Ωi

∥

∥

∥

2

L2(e∩∂τ)

≤ ch−1
i

∑

τ∈Ti,e

(

‖u∗ − u∗I‖2L2(τ)
+ h2i |u∗ − u∗I |2H1(τ)

)

≤ ch−1
i

(

‖u∗ − u∗I‖2L2(Ωi)
+ h2i |u∗ − u∗I |2H1(Ωi)

)

≤ ch−1
i

(

h4i |u∗|2H2(Ωi)
+ h4i |u∗|2H2(Ωi)

)

= 2ch3i |u∗|2H2(Ωi)

(1.7.28)

Thus for any e = ∂Ωi ∩ ∂Ωj ∈ ΓI

‖{ε∇(u∗I − u∗h) · ν}‖2L2(e)
‖[u∗ − u∗I ]‖2L2(e)

≤ Cε2M (h−1
i + h−1

j )‖u∗I − u∗h‖2h,Σ1

(

h3i |u∗|2H2(Ωi)
+ h3j |u∗|2H2(Ωj)

)

= Cε2M

[

(

h2i +
h3i
hj

)

|u∗|2H2(Ωi)
+
(

h2j +
h3j
hi

)

|u∗|2H2(Ωj)

]

‖u∗I − u∗h‖2h,Σ1
.

(1.7.29)

So finally

|D(u∗I − u∗h, u∗ − u∗I)|2 ≤ Cε2M
∑

e∈ΓDI

‖{∇(u∗ − u∗I) · ν}‖2L2(e)
‖[u∗I − u∗h]‖2L2(e)

≤ Cε2M
∑

Ωi∈E

(

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

)

|u∗|2H2(Ωi)
‖u∗I − u∗h‖2h,Σ1

,

(1.7.30)

and

|D(u∗I − u∗h, u∗ − u∗I)| ≤ CεM
[

∑

Ωi∈E

(

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

)

|u∗|2H2(Ωi)

]1/2

‖u∗I − u∗h‖h,Σ1 . (1.7.31)

1.7.3 Summary

After re-arrangement of elements of (1.7.7) we obtain

LHS = RHS, (1.7.32)

where

LHS = A(u∗I − u∗h, u∗I − u∗h) +B(e−v̂
[

eu
∗
I − eu∗h

]

, u∗I − u∗h) +B(eŵ[e−u
∗
h − e−u∗I ], u∗I − u∗h)

+ 2D(u∗I − u∗h, u∗I − u∗h) + J1(u
∗
I − u∗h, u∗I − u∗h),

(1.7.33)

RHS = −A(u∗ − u∗I , u∗I − u∗h)−B(e−v̂
[

eu
∗ − eu∗

I

]

, u∗I − u∗h)−B(eŵ
[

e−u∗

I − e−u∗

]

, u∗I − u∗h)
−D(u∗ − u∗I , u∗I − u∗h)−D(u∗I − u∗h, u∗ − u∗I)− J1(u∗ − u∗I , u∗I − u∗h).

(1.7.34)
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As we noted, the elements of LHS with the operator B are nonnegative (cf. (1.6.23), and (1.6.26)),
and since

A(u∗I − u∗h, u∗I − u∗h) + J1(u
∗
I − u∗h, u∗I − u∗h) = ‖u∗I − u∗h‖2h,Σ1

, (1.7.35)

then by lemma 1.3.5 with α = 1/2 (cf. assumption A7)

LHS ≥ A(u∗I − u∗h, u∗I − u∗h) + 2D(u∗I − u∗h, u∗I − u∗h) + J1(u
∗
I − u∗h, u∗I − u∗h)

= ‖u∗I − u∗h‖2h,Σ1
+ 2D(u∗I − u∗h, u∗I − u∗h)

≥ ‖u∗I − u∗h‖2h,Σ1
− 1

2
‖u∗I − u∗h‖2h,Σ1

=
1

2
‖u∗I − u∗h‖2h,Σ1

.

(1.7.36)

On the other hand, using estimates (1.6.22), (1.6.25), (1.6.27), (1.6.32), (1.7.21) and (1.7.31) we
obtain

|RHS| ≤
(

(2 + 2Le)‖u∗ − u∗I‖h,Σ1 + ch
∑

Ωi∈E

|u∗|H2(Ωi)

+ c

[

∑

Ωi∈E

(

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

)

|u∗|2H2(Ωi)

]1/2)

‖u∗I − u∗h‖h,Σ1

≤ C
∑

Ωi∈E

[(

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

)1/2
+ h
]

|u∗|H2(Ωi).

(1.7.37)

Thus

1

2
‖u∗I−u∗h‖2h,Σ1

≤ LHS = RHS ≤ C
∑

Ωi∈E

([

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

]1/2
+h
)

|u∗|H2(Ωi)‖u∗I−u∗h‖h,Σ1 . (1.7.38)

Then dividing by 1
2‖u∗i − u∗h‖h,Σ1 we finally have

‖u∗I − u∗h‖h,Σ1 ≤ C
∑

Ωi∈E

([

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

]1/2
+ h
)

|u∗|H2(Ωi). (1.7.39)

Then we may estimate using this result and properties of the interpolation operator

‖u∗ − u∗h‖h,Σ1 ≤ ‖u∗ − u∗I‖h,Σ1 + ‖u∗I − u∗h‖h,Σ1

≤ C
∑

Ωi∈E

([

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

]1/2
+ h
)

|u∗|H2(Ωi)

≤ C
∑

Ωi∈E

([

h2i +
∑

Ωj∈nb(Ωi)

h3i
hj

]1/2)

|u∗|H2(Ωi).

(1.7.40)

If we assume that hi = cih for every Ωi ∈ E , then this expression simplifies to

‖u∗ − u∗h‖h,Σ1 ≤ Ch
∑

Ωi∈E

|u∗|H2(Ωi). (1.7.41)
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In this chapter we discuss simulations of semiconductor devices with the drift-diffusion method,
with particular emphasis on structures based on gallium nitride and its alloys with aluminum nitride
and indium nitride. Due to nature of this model, we focus on the electrical properties of these devices.

This chapter is organized as follows. In sections 2.1 and 2.2 we discuss elementary physical proper-
ties of the semiconductor material. We also present the Vegard rule, which allows to estimate material
parameters of alloys. Then in sections 2.3 and 2.4 elementary information on the luminescent semi-
conductor structures is given. The drift-diffusion model in formulation accounting for physical and
material properties is discussed in detail in section 2.5. In sections 2.6 and 2.7.1 we present recombi-
nation channels important form the standpoint of these simulations, along with appropriate formulas
to be used with the van Roosbroeck equations. To conclude, we present simulations of semiconductor
structures in sections 2.8 to 2.10.

2.1 Band structure of GaN, AlN and InN

2.1.1 Bandgap

The Free Electron Model provides basic understanding of electronic phenomena in solid metals. This
theory has however its limitations. In particular, it does not explain well all aspects of electron
transport in the semiconductors. Thus this theory is generalized to take into account periodic crystal
structures to the Near-Free Electron model. According to this model, electrons in crystal structures
are distributed in the energy bands, which are separated by the bandgaps with no energy levels. If
for some material in a given temperature all these bands are either full or empty, this material is an
insulator, as no electron transport is possible. On the other hand, if any energy band is filled only
partially, the material is an electric conductor.

Generally two bands are important in the conductance of the semiconductor material. In the
absolute zero temperature, these bands are characterized as follows: a lower one, called a valence
band, is the topmost fully occupied band and then the one right above, the first empty band, is called
a conduction band. There in no intermediate, partially occupied band in between, as in the absolute
zero temperature any pure semiconductor material is insulating. Then the energy gap between these
bands is called the bandgap of the semiconductor.

The focus of our interest are three semiconductor materials: gallium nitride (GaN), aluminum
nitride (AlN) and indium nitride (InN). All these semiconductors have so-called direct band gap,
which means that in the k-space the minimal energy of the conduction band and the maximal energy
of the valence band are for the same value of quasi-momentum vector. Thus in general the radiative
recombination does not need to be phonon-assisted, which allows photon emission to be quite effective
and makes these materials to be good candidates for a base of luminescent devices.

Material Bandgap [eV] Reference

AlN 6.1–6.2 [105]

GaN 3.4–3.5 [78, 122]

InN 0.7 [124]

Table 2.1: Approximate values for bandgaps of AlN, InN and GaN between absolute zero and room
temperature.
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Figure 2.1: Gallium nitride wurtzite structure schema. Green spheres — nitrogen atoms, violet spheres
— gallium atoms.

Bandgaps of AlN, GaN and InN are listed in table 2.1. They do not change considerably with
temperature. Relative change of these parameters between the absolute zero and the room temperature
(300 K) is less than 2 % [123].

2.1.2 Effective mass

Assume that Ω ∈ R
3 is some bounded, measurable set. Then according to the Free Electron Model,

a wavefunction of a free electron may be represented as

ψ(x, t) = C exp
(

i
(

kx− ωt
)

)

, (2.1.1)

where x ∈ Ω, t ∈ R is the time, ω ∈ R is the angular frequency of this particle and k ∈ R
3 is its

wavenumber. C is a normalizing constant, such that

∫

Ω
ψ(x, t)ψ∗(x, t)dx = 1. (2.1.2)

Angular frequency depends on k by the dispersion relation

ω(k) =
~k2

2m
, (2.1.3)

where m is the mass of electron. Such a particle can be found in every part of Ω with the same
probability, as its probability density of being found is constant:

ψ(x, t)ψ∗(x, t) = C2 exp
(

i
(

kx− ωt
)

− i
(

kx− ωt
)

)

= C2. (2.1.4)

Therefore the wavefunction ψ of a free electron is determined by the wavenumber k. Knowing k, we
can determine many corpuscular properties of the particle, for example
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• energy: E(k) = ~ω(k),

• momentum: p(k) = ~k,

• velocity: v(k) = ~k
m ,

and wave properties, for example

• wavelength: λ(k) = 2π
k .

Note that the momentum p is proportional to the wavenumber k, so we will call both p and k the
momentum unless it leads to confusion.
We emphasize a kinetic energy of a free electron is a parabolic function of the momentum:

E(k) =
~
2k2

2m
. (2.1.5)

In a crystal structure, the situation is much more complex as quasiparticles do interact with atoms
and such a simple dependence does not exist. On the other hand, we are interested in wide bandgap
semiconductors. We moreover assume that they are not degenerate, which means that the Fermi level
is in the bandgap. Then most of occupied electron states in a conduction band are distributed near
the energy minimum, and vacant states in the valence band are mostly near the energy maximum.
Only these states contribute to the current, as others are either fully vacant or occupied.
The approach to deal with this problem is to treat the mass of a quasiparticle as a function

dependent on k. The mass m(k) is chosen such that the classical motion equation is satisfied:

a = m−1(k)F. (2.1.6)

Here a is the acceleration vector and F denotes the force. If some force acts on the quasiparticle, its
state changes with time. Thus k = k(t). Assume that k is continuously twice differentiable. First we
note that

F =
dp

dt
(t) = ~

dk

dt
(t). (2.1.7)

Thus using dependencies introduced above (D = Dk)

a(t) =
d

dt
v
(

k(t)
)

=
d

dt
Dω
(

k(t)
)

= ~
−1 d

dt
DE

(

k(t)
)

= ~
−1D2E

(

k(t)
)dk

dt
(t)

= ~
−2D2E

(

k(t)
)

F (t).
(2.1.8)

Thus by comparison to (2.1.6) we define

m(k) := ~
2
[

D2E
(

k
)

]−1
, m−1(k) := ~

−2D2E
(

k
)

. (2.1.9)

Now we would like to establish some analogy to equation (2.1.5). First we assume that the band is
parabolic, i.e.

E(k) := C1k
2
1 + C2k

2
2 + C3k

2
3 =

3
∑

i=1

~
2

2m∗
i

k2i , (2.1.10)

where we define m∗
i :=

~2

2Ci
. Then

D2E(k) =









~
2

m∗
1

0 0

0 ~2

m∗
2

0

0 0 ~2

m∗
3









, (2.1.11)
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and we get

a(t) = m∗
1F1(t) +m∗

2F2(t) +m∗
3F3(t). (2.1.12)

We call m∗ = [m∗
1,m

∗
2,m

∗
3] the effective mass. Note that m

∗
i may be nonpositive. If m

∗
1 = m∗

2 = m∗
3,

then we say that the particle is isotropic. Then we treat m∗ as a real number and we obtain

E(k) =
~
2k2

2m∗
. (2.1.13)

Otherwise we say that the particle is anisotropic and it behaves as it would have different mass in
respective directions.

2.1.3 Current

Assume that some electric potential difference is applied to a piece of a semiconductor material. Then
the electrostatic force acts on electrons and their momenta change. As we mentioned already, two
kinds of electrons contribute to the electron flow: conduction band electrons being near the energy
minimum and valence band electrons near the energy maximum.

The conduction band is full of energy states, which are mostly empty as electrons are scarce. Thus
the electrons in this band can easily change their momenta and energy levels. On the other hand, in
the valence band most of the states are already occupied. Only small part of topmost energy states in
this band can be unoccupied and only there any movement of electrons is possible. In this regime it
is convenient to treat these scarce unoccupied states as virtual particles instead of electrons to obtain
similar behavior of carriers in both bands.

Then an unoccupied energy state in the valence band is called a hole. Such a quasi-particle is in
fact a virtualization of an unoccupied state and an ensemble of electrons, which are responsible of its
movement other physical properties. Thus charge of a hole is equal to the charge of an electron up to
a sign, which is positive. The same is true for momentum, energy and effective mass.

2.1.4 Carrier statistics

2.1.4.1 Electrons

Since electrons and holes contribute to the current, it is necessary to estimate their concentration.
First let us focus on electrons. In the absolute zero temperature, they tend to fill the lowest possible
energy states. On the other hand they are fermions, thus due to the Pauli exclusion principle, only
one electron can occupy a single state. Thus in absolute zero electrons fill up energy levels up to a
valence band edge. Then, above the valence band, there is a forbidden zone, where no energy states
are possible (in a pure semiconductor), and above there is a conduction band, which is full of empty
states. When the temperature increases, some electrons attain higher energy, which allows them to
cross the forbidden zone and occupy empty states in the conduction band.

It is important to evaluate the number of electrons, which are in the conduction band, as they
contribute to . To estimate the electron concentration, we can use a distribution of electrons depending
on energy level. To do so, we may use the Fermi-Dirac distribution:

fe,T (E) :=
1

1 + exp
(

E−µ
kBT

) . (2.1.14)

This is a probability density of the energy level E being occupied by some electron in the perfect
electron gas in thermodynamic equilibrium. kB is Boltzmann constant. µ is the Fermi level. This
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formula for T = 0 gives

fe,0(E) :=

{

1 if E ≤ µ,
0 if E > µ.

(2.1.15)

Function fe,T allows us to estimate the probability of an electron to be in some interval [E0, E1], but
there is one more concept to be introduced. In general, the number of available energy states is not
uniform in E. As we mentioned before, there is for example a forbidden zone, where there are no
energy states in pure semiconductor. Thus there is some distribution of states, which we call dN(E).
It is a probability measure, i.e.

∫ ∞

−∞
dN(E) = 1. (2.1.16)

Two particular examples of density of states measure are:

dN(E) := D(E)dE,

dN(E) :=

∞
∑

i=0

D(E)δ(E − Ei)dE,
(2.1.17)

where g : R→ [0,∞) is a measurable function. In the latter case, we say that we have discrete energy
levels. Thus the probability of an electron to have energy between E0 and E1 is

∫ E1

E0

cfe,T (E)dN(E), (2.1.18)

where c is a normalization constant, such that

∫ ∞

−∞
cfe,T (E)dN(E) = 1. (2.1.19)

Let us mention an important simplification. Assume that available energy states are bounded from

below by some E0 and that E0 > µ. Then if exp
(

E−µ
kBT

)

≫ 1, we can simplify

fe,T (E) =
1

1 + exp
(

E−µ
kBT

) ≈ exp
(µ− E
kBT

)

=: be,T (E). (2.1.20)

Function be,T is called the Boltzmann distribution. To use the Boltzmann statistics effectively, we
must assume that we deal with the non-degenerate semiconductor, i.e. that the Fermi level µ is in the
bandgap, between the conduction band and the valence band. Then indeed E − µ > 0 for the energy

states available to electrons, and thus exp
(

E−µ
kBT

)

> 1. On the other hand, a degenerate semiconductor

has the Fermi level in the conduction band or in the valence band, and it behaves more like a metal
than a semiconductor.

If a distribution of an ensemble of particles is governed by Boltzmann function, we say that they
are described by Boltzmann statistics. In the other case, we say they are described by Fermi-Dirac
statistics.

We would like to use these results in simulations of the semiconductor material. Schema of the
energetic bands in the semiconductor material is in figure 2.2. We assume that valence and conduction
band edges are denoted by Ev(x) and Ec(x), respectively. Let us denote by n(x) the concentration of
the electrons in conduction band in a given point x ∈ Ω, where Ω corresponds to the space inside the
semiconductor.
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Figure 2.2: Schema of the energetic bands in the semiconductor material in nonzero temperature.

The density of states in the conduction band is given by (see [100])

De(x,E) =
1

2π2

(2me

~2

)3/2√
E − Ec(x), (2.1.21)

whereme is the effective electron mass, ~ is the reduced Planck constant. Thus, using the distributions
above, we may calculate the concentration with the Boltzmann statistics

n(x) =

∫ ∞

Ec(x)
be,T (E)De(x,E)dE = 2

(mekBT

2π~2

)3/2
exp

(µ− Ec(x)
kBT

)

=: Nc exp
(µ−Ec(x)

kBT

)

,

(2.1.22)

where Nc := 2
(

mekBT
2π~2

)3/2
is called the effective density of states in the conduction band. In this

derivation, we could use Fermi-Dirac statistics to get more precise results. Unfortunately, in that case
the formula on n(x) is more complicated. Also we will use the formula presented above in derivation
of the drift-diffusion equations, what is not possible when Fermi-Dirac statistics are used.

Starting from equation (2.1.22), we would like to derive a form suitable for semiconductor simu-
lations. In equation (2.1.22), parameter µ is the Fermi level. Under certain conditions (equilibrium
state, see section 2.5.4), Fermi level for electrons and for holes is the same. If this is not the case,
there are two quasi-Fermi levels, for electrons Fn and for holes Fp. For convenience, we will use the
latter approach universally, even if Fn ≡ Fp. Thus we may substitute the Fermi level µ in (2.1.22)
with the electron quasi-Fermi level Fn.

Then we must also take into account the contribution of the electrostatic potential to the band
energies. Previously we generally ignored this contribution, which is equivalent to assuming ψ ≡ 0.
Thus let us assume that Ec (Ev) is the conduction (valence) band edge for ψ ≡ 0. The contribution
of ψ to the band edges is then as follows (see figure 2.3)

Ec,eff(x) := Ec(x)− qψ(x), Ev,eff(x) := Ev(x)− qψ(x). (2.1.23)

In conclusion, we obtain the following formula for the electron concentrations, by substituting (µ,Ec)
by (Fn, Ec,eff) in (2.1.22)

n(x) := Nc exp

(

Fn(x)− Ec(x) + qψ(x)

kBT

)

. (2.1.24)
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Figure 2.3: Schema of the energetic bands in the uniform semiconductor material subject to variation
of the electrostatic potential ψ. Left: zero potential, right: arbitrary non-zero potential. Band edges
(Ec, Ev) bend proportionally to −ψ.

2.1.4.2 Holes

By definition, a hole is a quasi-particle corresponding to empty electron state in the valence band.
Therefore we have

fh,T (E) := 1− 1

1 + exp
(

E−µ
kBT

) =
exp

(

E−µ
kBT

)

1 + exp
(

E−µ
kBT

) =
1

exp
(

µ−E
kBT

)

+ 1
. (2.1.25)

This distribution corresponds to Fermi-Dirac statistics, while for Boltzmann we have, analogously as
for electrons

bh,T (E) := exp
(E − µ
kBT

)

. (2.1.26)

Distribution of energy states is also similar, but here it goes from Ev(x) downwards

Dh(x,E) =
1

2π2

(2mh

~2

)3/2√
Ev(x)−E, (2.1.27)

where mh is the effective hole mass. Thus we obtain formula on concentration of holes p(x) analogous
to n(x)

p(x) =

∫ ∞

Ec(x)
bh,T (E)Dh(x,E)dE = 2

(mhkBT

2π~2

)3/2
exp

(Ev(x)− µ
kBT

)

=: Nv exp
(Ev(x)− µ

kBT

)

,

(2.1.28)

where Nv := 2
(

mhkBT
2π~2

)3/2
is called the effective density of states in the valence band.
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Figure 2.4: Schema of gallium nitride doped with magnesium (red sphere).

To derive a form used in simulations, we proceed analogously as for electrons, so substituting
(µ,Ev) by (Fp, Ev,eff ) we obtain

p(x) = Nv exp

(

Ev(x)− Fp(x)− qψ(x)
kBT

)

. (2.1.29)

2.1.5 Doping

In an intrinsic semiconductor, in absence of bias, concentration of electrons ni and holes pi are equal.
Using equations (2.1.22), (2.1.28) we have

ni(x)pi(x) = 4(mhme)
3/2
( kBT

2π~2

)3
exp

(Ev(x)− Ec(x)
kBT

)

. (2.1.30)

Thus

ni(x) = pi(x) = 2(mhme)
3/4
( kBT

2π~2

)3/2
exp

(Ev(x)− Ec(x)
2kBT

)

= 2(mhme)
3/4
( kBT

2π~2

)3/2
exp

(−Eg(x)
2kBT

)

,

(2.1.31)

where Eg is a bandgap defined as

Eg(x) := Ec(x)− Ev(x). (2.1.32)

Using these formula and GaN parameters from tables 2.1, 2.2, we may estimate the intrinsic electron
and hole concentration in room temperature as ni = pi ≈ 3 × 10−10 cm−3. For comparison, free
electron concentration in copper is approximately 1023 cm−3.

Thus we may easily conclude that pure gallium nitride is almost a perfect insulator (in room
temperature). In that case, there are another ways of introducing current carriers into semiconductor
material. One can increase the temperature, but this is a rather inefficient way. For example, in
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Figure 2.5: Schema of the band diagram of a doped semiconductor.

1000 ◦C, we have that ni = pi ≈ 1013 cm−3, which is still too small amount to provide well-enough
conductance, leaving aside for a moment that such temperature is unacceptable for a real device.

Much more efficient is to introduce defects in the crystal structure. These defects introduce ad-
ditional possible states in the bandgap. For example, in gallium nitride, some gallium atoms can be
replaced by silicon or magnesium. This method is called doping. In general, if we replace an atom
with an atom with one more valence electron, this electron can be easily detached and contribute to
the conduction band. Such dopant we call donor, as it gives an additional electron. On the other
hand, if the replaced atom has one less valence electron, it can easily bind some electron from the
valence band, introducing a hole in the valence band. This kind of impurity is called acceptor, as it
accepts an electron.

Atom substitution (doping) is only an example of acceptor or donor defect. Other crystal impurities
can also play similar role. Typical example is an atom vacancy. However, doping is widely used as
it can be easily controlled by special growth techniques. It must be noted that atom doping is only
possible up to certain concentration, approximately up to 0.1% of total substance (see figure 2.4),
but this limit strongly depends on impurity type and growth technique. Then the substance behaves
more like a mixed crystal (see section 2.2) or it can degenerate. We must emphasize that in a non-
degenerated semiconductor, the energy states associated with the impurities are local. It is very hard
or impossible for electrons to jump between these states, in contradiction to conduction band and
valence band, where electrons may move freely in the semiconductor material (unless the density of
defects is very high, which causes scattering of electrons). If the impurity concentration is high enough,
the energy states introduced by impurities delocalize and they can act as an additional band. It causes
a semiconductor to act more as a metal than a semiconductor, thus it is a degenerate semiconductor.
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Figure 2.6: Fermi level (red line) in pure semiconductor (left), donor-doped semiconductor (center),
acceptor-doped semiconductor (right).

Also not every atom makes a desired impurity. Generally proper impurities introduce new, discrete
energy levels in the bandgap. This level should be close to the conduction band edge for a donor and
close to the valence band edge for an acceptor (figure 2.5). Electrons from this level do not contribute
to overall current, as due to low concentration these impurities are distant from each other and they
form spatially localized states.
Let us focus on the effect of doping on the Fermi level in a semiconductor material in T > 0 (see

figure 2.6). As we noted, in pure semiconductor, concentrations of electrons ni and of holes pi are
equal. Thus we may easily calculate Fermi level µ comparing formulas (2.1.22), (2.1.28)

µ =
Ec + Ev

2
+

3

4
kBT log

(mh

me

)

≈ Ec + Ev
2

. (2.1.33)

In room temperature (300 K), the latter element is relatively small, so µ lies in vicinity of the middle
of the bandgap. It is in agreement with a fact, that for sufficiently low temperature, Fermi level value
is approximately equal to the arithmetic mean of last occupied level and first unoccupied level in
absolute zero.
Let us now discuss the position of Fermi level of semiconductor with donor doping. Donor-doped

semiconductor is called n-type semiconductor. Again assume that T > 0 and that the concentration
of doping is Nd. To estimate concentration of ionized donors N

+
d , we may use Fermi-Dirac function

(2.1.14). First we calculate the concentration of donor states occupied by electrons N0
d

N0
d := Nd

1

1 + g−1
d exp

(

Ec−Ed−µ
kBT

) , (2.1.34)
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where Ed is ionization energy. This is a difference between the conduction state edge and the donor
level. Additional parameter gd is called donor degeneracy level. If we take gd = 1, then the formula
above agrees with Fermi-Dirac function. This parameter allows to take into account certain devotion
of the donor level. Typical values are 0.5, 1, 2.
Then the concentration of donors which contribute their electron to the conduction band is

N+
d := Nd −N0

d = Nd

g−1
d exp

(

Ec−Ed−µ
kBT

)

1 + g−1
d exp

(

Ec−Ed−µ
kBT

) = Nd
1

gd exp
(

µ−Ec+Ed
kBT

)

+ 1

≈ Ndg
−1
d exp

(Ec − Ed − µ
kBT

)

.

(2.1.35)

This approximation is not essential for further analysis, but we will use it to approximate value of
Fermi level. Assume that the temperature T > 0 is sufficiently low, such that the thermal excitation
is negligible. Then n = N+

d . Thus

2
(mekBT

2π~2

)3/2
exp

(µ− Ec(x)
kBT

)

= Ndg
−1
d exp

(Ec − Ed − µ
kBT

)

. (2.1.36)

Let n0 := 2
(

mekBT
2π~2

)3/2
. Then we have

µ = Ec − 0.5Ed + kBT log

√

Nd

n0gd
≈ Ec − 0.5Ed. (2.1.37)

This result is consistent with our previous result for pure semiconductor.
Note that if a donor atom loses its electron, it gains positive charge q. Thus ionized donors

contribute also to total charge concentration.
Similar analysis may be performed for acceptors. In this case, ionized acceptor is simply acceptor

level with an electron, so

N−
a :=

Na

1 + g−1
a exp

(

Ev+Ea−µ
kBT

) ≈ Naga exp
(µ− Ev −Ea

kBT

)

, (2.1.38)

where Ea is the acceptor ionization energy and Na is the acceptor concentration. As for donors, we
assume that N−

a = p and using the above approximation

p0 exp
(Ev(x)− µ

kBT

)

= Naga exp
(µ− Ev − Ea

kBT

)

, (2.1.39)

where p0 := 2
(

mhkBT
2π~2

)3/2
. Thus

µ = Ev + 0.5Ea + kBT log

√

p0
Naga

≈ Ev + 0.5Ea. (2.1.40)

This is similar to analogous result for donors. Also note that ionized acceptors have charge of value
−q.
To obtain forms to be used in modelling, we have to substitute (µ,Ec) by (Fn, Ec,eff) in (2.1.35)

and (µ,Ev) by (Fp, Ev,eff) in (2.1.38), as explained in section 2.1.4. Then we obtain

N+
d =

Nd

1 + gd exp
(

Fn−Ec+qψ+Ed
kBT

) ,

N−
a =

Na

1 + g−1
a exp

(

Ev−qψ+Ea−Fp

kBT

) .

(2.1.41)
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Parameter Symbol AlN GaN InN

Relative permittivity εr 8.5 [2] 8.9 [68] 15.3 [27]

Acceptor degeneracy level ga 2 [79] 2 [79] 2 [79]

Donor degeneracy level gd 2 [79] 2 [79] 2 [79]

Band gap Ec − Ev 6.2 eV [121] 3.4 eV [77] 0.7 eV [119]

Acceptor level (Mg) Ea 0.78 eV [72] 0.17 eV [68] 0.2 eV [107]

Donor level (Si, hydrogen-like) Ed 0.064 eV [87] 0.02 eV [68] 0.013 eV [32]

Electron effective mass mn 0.33 [109] 0.2 [89, 68] 0.12 [42]

Hole effective mass mp 3.53 [109] 1.7 [41] 1.51 [120]

Electron mobility µn 300 cm2

Vs [27] 200
cm2

Vs [95] 250
cm2

Vs [50]

Hole mobility µp 14 cm2

Vs [39] 5 cm2

Vs [70] 39 cm2

Vs [26]

Table 2.2: Material parameters of aluminum nitride, gallium nitride and indium nitride in room
temperature (300K).

2.1.6 Energy distribution in a crystal structure

In nonzero temperature, energy of a crystal is divided into several degrees of freedom, including
electrons on their energy levels and vibrations of the crystal lattice. Quantum of energy of the lattice
vibration is called a phonon. Thus we consider electrons and phonons in the crystal and photons
outside of the crystal. All of them can carry some portion of energy.

The most simple energy transfer is involved in radiative generation/recombination process. In
the most simple case, during radiative recombination, an electron from the conduction band loses its
energy landing in the valence band. All the energy is transferred to a new photon, which is emitted
during the process. The opposite effect, where a photon is absorbed and its energy is transferred
to some valence band electron, which is then raised to the conduction band, is called a radiative
generation. The term generation here refers to an electron/hole pair, not to the photon.

In the nonradiative recombination process, some electron also loses its energy, but this energy
is transferred to phonons. From the point of view of the efficiency of a luminescent device, these
phenomena are harmful, as they increase the temperature of a device.

2.2 Properties of the mixed AlGaN and InGaN crystals

Blue and green optoelectronics is generally based on aluminum nitride, indium nitride and gallium
nitride. Selected physical properties of these materials is presented in table 2.2. These materials
crystallize in wurtzite structure (figure 2.7) with lattice parameters as in table 2.3.

However, almost every device contains also mixed compounds: AlxGa1−xN or InxGa1−xN (see

Material a [nm] c [nm]

AlN 0.31 0.50

GaN 0.32 0.52

InN 0.35 0.57

Table 2.3: Lattice parameters of wurtzite structure for AlN, InN and GaN [67].
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Figure 2.7: Primitive cell of a wurtzite structure (left) and projection of a wurtzite crystal to the
plane parallel to the base of the cell. Dimensions of the primitive cell are determined by length a of
base of the cell, which is a rhombus, and height c of the cell.

Figure 2.8: Schema of indium-gallium nitride (10% In). Yellow spheres — indium atoms.
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figure 2.8). To perform simulations of these devices, it is necessary to provide properties of such
materials. These properties may be obtained via physical experiments or numerical simulations.

While obtaining certain physical parameters of pure AlN, GaN and InN itself may be a hard prob-
lem, it is even more complicated in case of mixed compounds. For example, it is not easy to obtain
uniform concentrations of components, as they often tend to cluster in some regions, changing macro-
scopic properties of the material. On the other hand, it is experimentally observed that many attributes
of such compounds satisfy the following elementary rule. Let f : {Alx InyGa1−x−y N}x,y≥0,x+y≤1 → R

be some physical property. Let us fix Alx Iny Ga1−x−y N for a given x, y. Then f(Alx Iny Ga1−x−y N)
is approximately equal to a convex combination of respective properties of pure materials, i.e.

f(Alx InyGa1−x−y N) ≈ xf(AlN) + yf(InN) + (1− x− y)f(GaN). (2.2.1)

This result is called the Vegard rule. This general rule is related to the fact that mixed compounds,
Al or In atoms substitute Ga atoms. It is assumed that the concentration of compounds is big enough
so that the substitutions do not form isolated states, but they contribute to conduction band and
valence band.

If we assume that the Vegard rule is approximately true for the band gap, we conclude that
any energy gap in range 0.7–6.2 eV may be obtained for appropriate AlxGa1−xN or Iny Ga1−y N
compound. Thus the nitrides seems to be good candidates for optoelectronic devices, as they cover
full visible spectrum range.

It is sometimes beneficial to improve the Vegard rule with terms of higher order. For example, for
Iny Ga1−y N we can approximate

f(Iny Ga1−y N) ≈ yf(InN) + (1− y)f(GaN) + y(1− y)CInGaN, (2.2.2)

where CInGaN is fitted to the experimental data. Parameter CInGaN is called a bowing parameter.

Another problem is the temperature dependence of material parameters. For nitrides, however,
such dependence is often limited. For example, difference in band gap for 0 K and 300 K for AlN,
GaN and InN is less that 2% [123].

We must emphasize that in a realistic device there is always certain amount of impurities, both
acceptors and donors, which come from limitations of growth techniques, strain of material, environ-
ment, etc. These impurities may also act as recombination centers. More details will be presented in
section 2.6.3.

2.3 Geometry of luminescent semiconductor structures

2.3.1 p-n homojunction

This is a very simple device. It consists of two layers, which differ only by the doping type. Material
composition is the same for both layers. First layer is donor-doped and second layer is acceptor-doped.
Thus the device is divided into two regions, called n-type region and p-type region.

In vicinity of the interface between n-type region and p-type region, there is so-called depletion
region. It is formed in the following manner. Initially in the n-type region there are two types of
charge: negative mobile electrons and positive immobile ionized donors. Their concentrations are
equal and thus the net charge is zero. Analogously in p-type region there are positive mobile holes
and negative immobile ionized acceptors, and their concentrations are initially equal.

Then the interface between n-type region and p-type region is formed and mobile carriers diffuse.
Thus electrons approach p-type region, leaving uncompensated donors, and analogously holes enter
n-type region, leaving uncompensated acceptors. Finally they recombine and annihilate, so their
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concentrations descend. Therefore positive charge in n-type region and negative charge in p-type
region emerges. This charge creates an electric field, which acts on the carriers contrarily to the
diffusion. These effects continue until the drift due to electric field balances the diffusion. It leads to
depletion of the interface vicinity from the mobile carriers.

Then if some bias is applied to the device, two situations are possible. Under forward bias, holes are
injected to the p-type region and electrons are injected to the n-type region. These carriers contribute
to the charge concentration by balancing uncompensated immobile charge in the depletion zone and
they decrease the field in the depletion region. The overflow carriers recombine, mostly near the
interface between regions.

On the contrary, under reverse bias, number of the majority carriers descend and the depletion
region increases, as well as the field near the interface. It acts as an insulating layer, so the current
under the reverse bias is very small.

2.3.2 Laser diodes and electroluminescent diodes

In our simulations we focus our attention on optoelectronic devices. We have two types of such devices.
Electroluminescent diodes (LEDs) emit light simultaneously in wide range of directions. They operate
in relatively low voltage (up to 5 V). As in p-n homojunctions, they generally consist of two regions,
n-type region and p-type region.

Most of the light emitted by a device comes from the active region placed on a border between
the n-region and p-region. The active region structure is explained in detail in section 2.4.

LEDs consist of layers of semiconductor material deposited one on piled upon each other. These
layers are mostly cuboids, with a rectangular base. The base dimensions (e.g. 300 µm × 300 µm) are
greater than the cuboid’s height (1 nm–100 µm). Due to technological requirements LEDs may have
sophisticated shape, obtained by cutting, etching or cleaving of the deposited layers, but generally the
current flows mostly perpendicular to bases of cuboids-layers, parallel to the growth direction. Such
a structure make it feasible to use a one-dimensional model for simulation of LEDs.

On the other hand, laser diodes (LDs) operate in higher voltage (5–8 V) and they emit focused
beam in a given direction only. Their structure is similar to LED’s, but there are important differences.
There are two cladding layers, which confine the light to the active region of these devices. Also their
cross-section is a prolonged rectangle (e.g. 10 µm × 300 nm). In comparison to LEDs, where the
structure must be optimized to get good transport properties of electrons and holes, LDs’ structures
must also form an optical resonator when combined with mirrors situated on the faces.

2.4 Quantum structures: wells and barriers

The crucial part of a luminescent optoelectronic device is the active region. The active region is a
part of a luminescent device, which is dedicated to generate the light. It is located in the vicinity of
the border between the n-type region and the p-type region and, depending on a device, it may be
undoped or partially doped.

Due to proximity of both regions, it is possible to inject both electrons and holes to the active region,
when they recombine, preferably radiatively, emitting photons. To make the radiative recombination
most likely, and to obtain a given photon energy, this part of a device must be designed in a special
manner. In a direct bandgap material, an electron and a hole must have the same pseudo-momentum
value to recombine radiatively. In AlN, GaN and InN the conduction/valence band extremes are
achieved for zero pseudo-momentum. Thus to increase the radiative recombination rate, it is favorable
to stop the carriers in a small area.



2.5. DRIFT-DIFFUSION MODEL 85

Thus quantum wells (QWs) are introduced in the active region of luminescent devices. These
wells are narrow to localize the carriers in a possibly small area and they made of material with the
smaller band gap than surrounding layers. Then the band edges form potential wells for electrons
and holes, where separating layers act as potential barriers. In such a structure, two kinds of carrier
transport are possible: classic ballistic transport of highly energetic carriers over the barriers and
quantum tunneling through the barriers. The latter is unlikely in modern devices, as the barriers are
designed wide enough (≈ 8 nm) to prohibit quantum tunneling. The layers surrounding the quantum
wells/barriers region also act as barriers, making this region some kind of trap for the electrons and
holes.
In an efficient device, most of the recombination should occur in the quantum wells, and it should

be the radiative recombination. To promote the radiative recombination, quantum well layers should
be made of possibly high quality material. To improve the quality, it is often the case that these layers
are not doped as well as the rest of the active region.

2.5 Drift-diffusion model

2.5.1 Conservation laws and equations of motion

Let us focus on movement of the charge carriers in the semiconductor material. Take electrons as
an example. On the microscopic level, an electron travelling through the semiconductor material is
subjected to the periodic variation of the potential due to atomic cores superimposed on the macro-
scopic, slowly-varying potential. On the basis of quantum mechanics, we may mimic this microscopic
periodic changes by introducing an effective mass of the quasiparticle (see section 2.1.2) . Then we
may consider the macroscopic potential only, replacing mass of the particle with this effective mass.

In the drift-diffusion model, we are interested in statistical approach, thus instead of individual
particles, we would like to describe the evolution of concentrations of the quasiparticles in time.

It is convenient to express movement of current carriers in terms of electric current density. In
general, it is a vector J denoting the amount of charge flowing through the infinitesimal surface during
the infinitesimal time duration. In other words, having a given surface S and time interval [t1, t2], the
total amount of charge flowing through this surface in that time may be expressed as

∫ t2

t1

∫

S
J(x) · νdSdt, (2.5.1)

where ν is a normal vector to the surface S for a given x ∈ S. In the semiconductor, we may distinguish
two contributions to the total current density: electron current density Jn and hole current density
Jp (J = Jn + Jp).

First let us focus on electrons. In the semiconductor material, electrons accelerate due to electric
field. On the other hand, moving electrons collide with phonons and impurities and they lose momen-
tum. In presence of certain concentration of electrons, this phenomenon may be treated statistically
by introducing of mean free path between collisions and group velocity, defined as mean velocity of all
present electrons. Electrons accelerate during free path, then they collide and lose velocity, and then
they accelerate again. This argumentation leads to the conclusion that given an electric field E, we
have some group velocity vg,n proportional to E, i.e. vg = µnE. The proportionality constant µn is
called the electron mobility and it depends on the semiconductor material and temperature.

This effect is called a drift of electrons in the electric field. We may express it in therms of the
electron current density as a product of the concentration of electron charge concentration qn(x) by
the electron velocity, i.e.

Jn,drift(x) := qn(x)µnE(x). (2.5.2)
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On the other hand, electrons undergo the diffusion, which is proportional to their negative con-
centration gradient (Fick’s first law). Thus the electron diffusive flux is −Dnn, where Dn is called the
electron effective diffusivity. Then the diffusive part of the electron current density is

Jn,diff := qDn∇n(x). (2.5.3)

Note that the positive sign is due to negative charge of an electron.
Combining both drift and diffusion, we obtain

Jn = Jn,drift + Jn,diff = qn(x)µnE(x) + qDn∇n(x). (2.5.4)

By analogous argumentation for holes we obtain

Jp = Jp,drift + Jp,diff = qp(x)µpE(x)− qDp∇p(x), (2.5.5)

where µp is the hole mobility and Dp is the hole effective diffusivity. Note that there is a minus sign
before the latter element, which is due to positive charge of a hole. Positive sign before the first
element is due to both opposite drift direction of holes and the positive charge.
Let us simplify expressions for Jn and Jp. First note that E := −∇ψ, where ψ is an electric

potential. Then by Einstein relations

Dn = µn
kBT

q
, Dp = µp

kBT

q
. (2.5.6)

We assume that the semiconductor material is homogeneous, so the material parameters are constant.
Then note that

∇n(x) = Nc∇ exp
(Fn(x)− Ec + q∇ψ(x)

kBT

)

=
1

kBT
Nc exp

(Fn(x)− Ec + qψ(x)

kBT

)(

∇Fn(x) + q∇ψ(x)
)

=
1

kBT
n(x)

(

∇Fn(x) + q∇ψ(x)
)

.

(2.5.7)

Analogously

∇p(x) = Nv∇ exp
(Ev − Fp(x)− qψ(x)

kBT

)

= − 1

kBT
p(x)

(

∇Fp(x) + q∇ψ(x)
)

. (2.5.8)

Therefore we obtain

Jn = −qn(x)µn∇ψ(x) + µnn(x)
(

∇Fn(x) + q∇ψ(x)
)

= µnn(x)∇Fn(x),

Jp = −qp(x)µp∇ψ(x) + µpp(x)
(

∇Fp(x) + q∇ψ(x)
)

= µpp(x)∇Fp(x).
(2.5.9)

By virtue of Maxwell’s equations, if there is no magnetic field, then

∇ · J +
∂ρ

∂t
= 0, (2.5.10)

which represents the simple fact that in and out current densities are not in balance, the electrostatic
charge accumulates. In stationary case the latter term is zero, so we obtain

∇ · J = 0. (2.5.11)
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This argumentation cannot be extended to electron current density Jn and hole current density
Jp, as these currents are affected by variation of carrier concentrations n, p due to the genera-
tion/recombination effect.

Since J = Jn + Jp, then

∇ · Jn = −∇ · Jp. (2.5.12)

Change of the electron current density is proportional to the generation/recombination rate, so

∇ · Jn = qR, (2.5.13)

and thus using (2.5.12)

−∇ · Jp = qR. (2.5.14)

Combining these results with (2.5.9), we obtain two so-called continuity equations for electrons and
for holes:

−∇ ·
(

µnn∇Fn
)

= −qR,

−∇ ·
(

µpp∇Fp
)

= qR.
(2.5.15)

2.5.2 Electric field, electrostatic potential and polarization effect

Equations (2.5.9) serve as a starting point to two of the three van Roosbroeck equations, called the
continuity equations. Still we have to elaborate on the remaining equation, called the Poisson equation.

We start with the Gauss law for the electric displacement field D:

∇ ·D = ρ. (2.5.16)

Here ρ is the free electric charge. In case of semiconductors, the free electric charge consists of
electrons and holes, introduced in section 2.1.4, and the ionized impurities described in detail in
section 2.1.5. While the ionized impurities are not really “free” in the sense of spatial movement, they
can change their state during operation of a device and they do not contribute significantly to the
electric polarization. This brings us to the notion of the bound charge ρbd. The bound charge consists
of core protons and valence electrons, which do not contribute to the electrical conductivity. On the
other hand, they do contribute to the electric polarization, which we would like to briefly discuss.

Let us start with isotropic (“uniform in all orientations”) dielectric (insulating) material. If this is
the case, then the bound charge is distributed uniformly and the polarization is zero. If we, however,
apply some electric field to that material, positive atom cores and negative electrons will slightly
shift in opposite directions, leading to non-uniform distribution of the bound charge. This kind of
polarization is proportional to the applied electrical field.

Such a non-uniform distribution of the bound charge may occur also due to different reasons, like
temperature, strain, or it may be characteristic to a given material without any external stimulus
(spontaneous polarization Po).

The electric displacement is a sum of the electric field E scaled by the permittivity of vacuum ε0
and the polarization P , i.e.

D = ε0E + P. (2.5.17)

We assume that the polarization P , in case of semiconductor material, consists of a part proportional
to the electric field and of the part independent of the electric field:

P := ε0χE + Po. (2.5.18)
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Parameter χ is called the electric susceptibility of the medium and it indicates the response of the
material to the external electric field. Thus we have

ρ = ∇ ·D = ∇ · (ε0E + ε0χE + Po) = ∇ · (εrε0E + Po) = ∇ · (εE + Po), (2.5.19)

where εr := 1 + χ is called a relative permittivity. We also define

ε := εrε0. (2.5.20)

Under stationary conditions, the electric potential satisfies

−∇ψ := E. (2.5.21)

Combining this definition with equation (2.5.19), we obtain

∇ · (−ε∇ψ + Po) = ρ. (2.5.22)

Finally we pass the polarization term to the right hand side and we obtain

−∇ · (ε∇ψ) = ρ−∇ · Po. (2.5.23)

We will call this equation Poisson’s equation.

In this derivation, we assumed χ and ε to be real numbers. It is possible that these parameters are
different on different directions due to low symmetry of crystalic structure. Then these parameters
are represented by matrices instead of scalars, but the analysis is similar. Such materials are called
the anisotropic materials.

2.5.3 Differential problem

From the modelling standpoint, the drift-diffusion model consists of three elliptic nonlinear equations:
Poisson’s Equation (2.5.23) and two continuity equations (2.5.15).

−∇ · (ε∇ψ) = ρ−∇ · Po,
−∇ ·

(

µnn∇Fn
)

= −qR,

−∇ ·
(

µpp∇Fp
)

= qR.

(2.5.24)

This system is also known as van Roosbroeck equations [96]. In this form, the unknown functions
are: the electrostatic potential ψ, the electron quasi-Fermi level Fn and the hole quasi-Fermi level
Fp. If by Ω ∈ R

d, d ∈ {1, 2, 3} we denote the domain of a modelled semiconductor device, then
ψ,Fn, Fp : Ω → R. Functions µn, µp : Ω → R are the electron and hole mobilities. They are
the material parameters described earlier, and we assume they are piecewise-constant. Function
Po : Ω → R, the polarization parameter, is somewhat special. In some devices it is constant and
then it is irrelevant. If it is piecewise constant, then ∇ · P should be interpreted as a distributional
derivative, which corresponds to the concept of interfacial polarization charge, occurring at interfaces
between materials with different polarization.

Functions n, p : Ω→ R+ are the concentration of electrons and the concentration of holes. In this
form of van Roosbroeck equations, they are dependent functions.

Function ρ : Ω → R, the charge concentration, is a sum of contributions of localized charge, like
ionized donors and ionized acceptors (section 2.1.5), ionized traps (section 2.6.3), and delocalized
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charge, which consists of electrons and holes (section 2.1.4). Thus if trap contribution is negligible, it
reads

ρ = p− n+N+
d −N−

a , (2.5.25)

and if we take traps into account

ρ = p− n+N+
d −N−

a +
∑

t∈TL

±N±
t , (2.5.26)

where TL is a set of indices of trap levels and the sign for a given t ∈ TL depends on the trap’s
occupation.

Finally the generation/recombination rate R : Ω → R is a sum of elements corresponding to
different physical effects. More details on the recombination models are presented in section 2.6.

The drift-diffusion equations may be presented in several sets of unknown functions. Above we
presented the formulation using unknowns (ψ,Fn, Fp). Alternatively we could use carrier concentra-
tions (ψ, n, p) instead of the quasi-Fermi levels. Then using definitions (2.5.4), (2.5.4), E = −∇ψ, we
get the following formulation:

−∇ · (ε∇ψ) = ρ−∇ · Po,
−∇ ·

(

Dn∇n− µnn∇ψ
)

= −R,

−∇ ·
(

Dp∇p+ µpp∇ψ
)

= −R.
(2.5.27)

Different choices of unknown functions are possible, a detailed discussion is presented in [92]. Generally
ψ is present in every described set, while other two unknowns are subject to change. The difference
between these options is mostly in exponential character of the solutions and nonlinearity of the
equations.

In this study, the main emphasis in on the quasi-Fermi level formulation (2.5.24), as it keeps the
equations possibly simple and the unknowns (ψ,Fn, Fp) do not express the exponential character. On
the other hand, the carrier concentrations n, p are clearly exponential, e.g they may vary between
10−40–1020. This behavior poses a significant problem with numerical solution of these equations.

2.5.4 Equilibrium state and non-equilibrium state

In simulation on semiconductor devices, we distinguish between two states of a device.

The equilibrium state corresponds to thermodynamic equilibrium, with no net flow of energy
within a device or between a device and the environment. Under these conditions, the net genera-
tion/recombination is zero, so the recombination is in balance with generation. Otherwise there would
be some photons absorbed or generated, heat would be generated, etc. Zero recombination implies the
quasi-Fermi levels to be equal, so in fact there is a single Fermi level for both types of carriers. These
conditions are physically realized to some extent by a device disconnected from the power source, in
the dim light.

On the other hand, if we apply some voltage to such device, illuminate it, etc., then there
would be additional charge carriers injected through the contacts or generated, throwing the gen-
eration/recombination out of balance. The Fermi level would split up into quasi-Fermi levels, separate
for electrons and for holes. This is the non-equilibrium state, a natural state for operating devices.

From the modelling standpoint, the latter state is corresponding to a solution of the drift-diffusion
equations (2.5.24). Conversely, in the equilibrium state Fn ≡ Fp = const and only unknown is ψ.
Thus only Poisson’s equation (2.5.23) is necessary in this case.
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2.5.5 Built-in potential

Before the discussion of the boundary conditions, we would like to introduce the concept of built-in
potential. The physical phenomena occurring in semiconductor material may be classified as a bulk
property or a boundary property. A bulk property is associated with the interior of the material, and
it generally occur in the major part of the volume of the material and they are independent of the
boundary, while boundary properties are strongly correlated with the state of the boundary and they
do not penetrate deeply into the interior. The latter type of phenomena may also be present on the
interfaces between different semiconductor materials.
The bulk semiconductor material, in the natural state, without external forces, is charge-neutral

(in the macroscopic scale). The charged state over the substantial volume is hard to maintain, as
it generates large forces, attracting carriers of opposite value, which will accumulate with time and
balance the charge.
Note that while maintaining large volume of charged material is energetically costly, it is often

possible that existence of charge on interfaces of boundaries is energetically favorable.
Assume that we have some device in the equilibrium state, and assume that it is built of layers

of possibly different semiconductor material, homogeneous within every layer. Then there is single
constant Fermi level for electrons and holes in this structure, as explained in section 2.5.4. Then we
may define the built-in potential ψb : Ω→ R by condition of charge-neutrality:

ρ(x, ψ) = 0. (2.5.28)

We would like not to go into details whether this definition is well-posed or not, and we assume this
equation can be solved uniquely for almost every x ∈ Ω. Note that ψb is generally discontinuous, and
it is piecewise constant when the layers are homogeneous.

2.5.6 Boundary conditions

In this section, we would like to briefly discuss certain aspects of boundary conditions, in particular
ohmic contacts and contacts with insulators. A detailed analysis is presented in [101].

2.5.6.1 Contact with insulator

The basic aspect of the contact with insulator is that current does not flow through it. This statement
is equivalent to

Jn · ν = 0,

Jp · ν = 0.
(2.5.29)

In the above equations we also assumed that there is no surface recombination, as otherwise it would
be present on the right hand side of both equations (see [101]). By definition (2.5.9) of Jn and Jp, we
have

0 = Jn · ν = µnn(x)∇Fn(x) · ν = µnn(x)
∂Fn
∂ν

(x),

0 = Jp · ν = µpp(x)∇Fp(x) · ν = µpp(x)
∂Fp
∂ν

(x).

(2.5.30)

Since µn, µp, n, p > 0, then ∂Fn
∂ν =

∂Fp

∂ν = 0, and we get homogeneous Neumann boundary conditions
on Fn, Fp.
When it is also assumed that the electric field vanish in the insulator. When there is no boundary

charge, we can assume that ∂ψ∂ν = 0.
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Thus on the contact with insulator, we have homogeneous Neumann boundary conditions:

∂ψ

∂ν
=
∂Fn
∂ν

=
∂Fp
∂ν

= 0. (2.5.31)

2.5.6.2 Ohmic contact

Ohmic contact is an edge of a semiconductor device to which some metal is attached, which allows
the device to be connected to an electrical circuit. In simulations it is frequently assumed that the
ohmic contact is ideally conducting.

To derive boundary conditions, we must discuss some properties of a semiconductor device and
introduce some additional assumptions.

Let a device be given with ohmic contacts denoted as ∂ΩD,1, ∂ΩD,2, . . .. We start from the equi-
librium state. In this case, the quasi-Fermi levels are equal to the Fermi level (Fn = Fp = µ ≡ const),
and the bias is zero. We assume that there are no potential differences within a single ohmic contact.

Let us consider an ohmic contact ∂ΩD,1. In general, the electrostatic potential is relative and we
can only measure the difference. Thus without loss of generality, we may assume that ψ|∂ΩD,1

= 0. To
determine Fermi level µ, we assume that the charge ρ∂ΩD,1

= 0. To justify this assumption, we would
like to argue that it is a natural state of the bulk semiconductor material, as discussed in section 2.5.5.

Thus, having ψ|∂ΩD,1
= 0 we may determine Fn = Fp = µ, such that ρ|∂ΩD,1

= 0. The Fermi level
is determined for the whole device, but due to different doping, other contacts in general will not be
charge-neutral for zero electrostatic potential. Thus again from the charge-neutrality condition, we
can determine values ψb,i, such that for ψ|∂ΩD,i

= ψb,i we have ρ∂ΩD,i
= 0 for i > 1. In general, ψb,i

coincide with the built-in potential, introduced in section 2.5.5. If there are only two contacts, we will
denote ψb := ψb,2. We will also define ψb,1 := 0 to simplify the notation.

Thus we have the following conditions for the equilibrium state:

ψ|∂ΩD,i
= ψb,i,

Fn|∂ΩD,i
= µ,

Fp|∂ΩD,i
= µ.

(2.5.32)

To derive analogous conditions in the general case, we want to emphasize two effects. First, the quasi-
Fermi levels should be equal within a single contact, as in metal there is a single Fermi level. All these
levels are equal in a given contact. Then note that the bias is not equal to differences between the
electrostatic potential ψ on the contacts, but it is proportional to difference between Fermi levels in
contacts.

Therefore let ψDi for i > 1 denote the bias on contact i. For convenience we define ψD1 = 0. Then
the boundary conditions for ohmic contacts read

ψ|∂ΩD,i
= ψb,i + ψD,i,

Fn|∂ΩD,i
= µ− q−1ψD,i,

Fp|∂ΩD,i
= µ− q−1ψD,i.

(2.5.33)

2.6 Radiative and non-radiative recombination

2.6.1 Standard recombination models

In pure semiconductor material, electron energy levels are splitted into two bands, valence band with
lower energies and conduction band with higher energies. In between lies so-called forbidden zone,
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where no energy levels exist. When temperature goes to zero, all electrons tend to occupy low energy
states, in valence band, which is filled completely. When temperature is raised, energies of electrons
increase and some of them jump to conduction band.

Every electron jump to conduction band leaves an empty place in the valence band. Then, the
electron can move spatially through almost empty conduction band. On the other hand, in valence
band, another electron may move to the empty place left, creating another empty place. This is how a
hole can move spatially in valence band. A movement of electron or holes may then, under application
of voltage, create the current flowing through a device. Thus they are called carriers.

The case is slightly different when doped semiconductor is considered. Then, electron and hole
numbers are increased due to contribution of donors and acceptors respectively. The conduction of
current may be then due to mainly one type of carrier. Introduction of impurities may also create
additional allowed energy states in the forbidden zone.

Generation-recombination phenomena in semiconductor denotes two physical processes of energy
change of electrons:

Generation A jump of an electron from valence band to conduction band. Then, a hole in valence
band is created.

Recombination A jump of an electron from conduction band to valence band. There must be a hole
available, which is annihilated.

We may imagine that these phenomena could consist of single transfer of an electron from level
in one band to level in another one, what is called direct generation/recombination, or several steps
through energy states in forbidden zone, called indirect generation/recombination.

Note that generation involves an increase of energy of a given electron, therefore the energy must
be taken from an incident photon or phonon. On the contrary, in the recombination process electron
looses its energy, which may be emitted as photon or phonon. Since we are interested in simulations
of luminescent devices, we are concerned about recombination mechanism.

There is a set of usually exploited recombination models, available in many computer simulators of
semiconductor structures. Physical phenomena are represented rather coarsely, but resulting formulae
are simple and computationally cheap. Therefore we present an explanations and description of basic
recombination set.

For every generation/recombination mechanism short physical explanation and the formulae would
be given. An important fact, which leads to elimination of excess coefficients, is the the detailed balance
principle, which states that at equilibrium each process is balanced by its reverse process.

Presented analysis is based on the section 4.2 of the book [101]. For convenience, functions n0(x),
p0(x) denote concentrations of electrons and holes in the equilibrium state. Then intrinsic concentra-
tion ni(x) is defined as

ni(x) :=
√

n0(x)p0(x). (2.6.1)

If Boltzmann statistics for carrier concentrations are valid, i.e. for nondegenerate case, we may rewrite
ni as

ni(x) =
√

Nc(x)Nv(x) exp

(

Ev(x)− Ec(x)
2kT

)

. (2.6.2)

The derivation of formulae is carried out in the phenomenological way.

It must be explained that we will use the term electron in two different meanings. When the
electron is said to change its energy (jump between energy levels), the physical particle is meant. But
when we say that electron is generated or annihilated, we tend to use semiconductor nomenclature,
where electrons denote quasiparticles from the conduction band.
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2.6.1.1 Radiative recombination

Radiative generation/recombination is a direct mechanism, i.e. creation/annihilation of electron-hole
pair assisted only by photons. It consist of two processes. During radiative recombination, called also
band to band or photon recombination, the excess energy is emitted as a photon. During generation,
called also optical generation, necessary energy is taken from incident photon.

For radiative recombination to occur, there must be both electron and hole present in a given
position of space. Therefore it is proportional to the product of concentrations n(x)p(x). Thus the
recombination rate is

rrad(x, n, p) := Crad(x)n(x)p(x). (2.6.3)

We denote Crad as a capture coefficient.

Then we assume that in the valence band there are always electrons available and there are empty
states in the conduction band everywhere. Then optical generation process does not depend on any
carrier concentration. Therefore we assume the rate is constant

grad(x, n, p) := Crad
g (x), (2.6.4)

where Crad
g is called a emission coefficient.

Under equilibrium conditions we have grad(x, n0, p0) = rrad(x, n0, p0), thus

Crad
g (x) = Crad(x)n0(x)p0(x) = Crad(x)n2i (x). (2.6.5)

Thus the generation/recombination rate is

Rrad(x, n, p) = rrad(x, n, p)− grad(x, n, p) = Crad(x)[n(x)p(x) − n2i (x)]. (2.6.6)

Then capture coefficient for radiative recombination Crad would be just called radiative recombination
coefficient.

2.6.1.2 Shockley-Read-Hall recombination

Shockley-Read-Hall generation/recombination phenomena involve phonons, so may lead to change of
the temperature of a device. It is indirect mechanism, occurring when trap levels are available. Trap
levels are additional energy levels of energy in the bandgap. For simplicity it is assumed that there is
only one important level given, and other ones may be neglected. If for a given position an electron
occupies the trap level, we will say the trap is occupied, otherwise it is empty.

In the process, electrons move between the bands in two steps: first they jump onto the trap level,
and then jump again to the second band. We will therefore consider four types of the phenomena:

Electron emission Jump of an electron to the conduction band from occupied trap. In other words,
an electron in the conduction band is generated, and the trap becomes unoccupied.

Electron capture Jump of an electron to unoccupied trap from the conduction band. Thus an
electron in the conduction band is annihilated and the trap becomes occupied.

Hole emission Jump of electron to unoccupied trap from the valence band. A hole in the valence
band is generated and the trap becomes occupied.

Hole capture Jump of an electron into a hole in the valence band from occupied trap. A hole in the
valence band is annihilated and the trap becomes unoccupied.
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Figure 2.9: Schema of Shockley-Read-Hall generation/recombination. From the left: an electron
emission and a capture, a hole emission and a capture.

In this section we derive simple mathematical formulae describing the given process. More sophisti-
cated approach is presented in section 2.6.3.
Note that none of the above partial processes is a direct generation/recombination. For a generation

to occur, both an electron emission and a hole emission must arise. Similarly a recombination means
that the electron annihilation and hole annihilation occurred. The case then become complicated,
as we cannot easily write partial recombination forms, like we did before for radiative or Auger
recombination. However, we may try to establish rates for emissions and captures, what we denote
by letters E and P , respectively.
Let ft denote the fraction of occupied traps (by electrons). Then the fraction of unoccupied traps

is 1− ft. The rate of electron emission is proportional to rate of occupied traps ft only, as we assume
there are always unoccupied states in conduction band

ESRH
n (x, n, p, ft) = CSRH

en (x)ft(x). (2.6.7)

Analogously the hole emission is proportional to the fraction of unoccupied traps

ESRH
p (x, n, p, ft) = CSRH

ep (x)[1− ft(x)]. (2.6.8)

For electron capture, both electron in the conduction band and unoccupied trap must be available. It
is thus proportional to product n(x)[1− ft(x)]

P SRH
n (x, n, p, ft) = CSRH

cn (x)n(x)[1 − ft(x)]. (2.6.9)

Similarly for the hole capture we may write

P SRH
p (x, n, p, ft) = CSRH

cp (x)p(x)ft(x). (2.6.10)

Now we have four coefficients CSRH
·· and additional ratio ft. We would like to reduce the number to

two, and get rid of the ratio ft.
The trap level states are so-called localized states [117], what means that the carriers present there

cannot move in space. Now we can estimate the flux of the electrons arising from the conduction band
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into the trap level in a given point as a difference between electron capture and electron emission rates
P SRH
n (x, n, p, ft)− ESRH

n (x, n, p, ft). Analogously for flux of electrons from trap level to valence band
we have the difference P SRH

p (x, n, p, ft) − ESRH
p (x, n, p, ft). Any of the above amounts being nonzero

influences the fraction of occupied traps. In stationary case, the ratio ft must be constant in time.
Since the spatial movement of trapped electrons is not possible, both fluxes must balance. Therefore
we have

P SRH
n (x, n, p, ft)− ESRH

n (x, n, p, ft) = P SRH
p (x, n, p, ft)− ESRH

p (x, n, p, ft). (2.6.11)

From now on we will omit the arguments of functions. For transitional case, we should assume for
example that time of the stabilization of the fraction ft is much smaller than the time of essential
changes of concentrations n, p to get similar conclusion.
The point of equation (2.6.11) is that if the electron jumps from conduction band to trap level,

and do not go back, it will proceed to valence band. The same goes to electrons from valence band
entering trap level. The sense of above statement is statistical, because in fact electrons stay on the
trap level over nonzero time. It does not mean that time is diminished, but that one electron is going
in, and another out, in approximately the same moment. However, since in drift-diffusion theory the
electrons are not distinguishable, we may assume it was the same electron.
Then, since the expression P SRH

n − ESRH
n controls all the electrons, as well as the expression

P SRH
p − ESRH

p , we may write

RSRH(x, n, p, ft) := P SRH
n −ESRH

n = P SRH
p − ESRH

p . (2.6.12)

Under the equilibrium condition, the recombination is zero and we have

(P SRH
n − ESRH

n )(x, n0, p0, ft0) ≡ 0, (2.6.13)

(P SRH
p − ESRH

p )(x, n0, p0, ft0) ≡ 0, (2.6.14)

where the index 0 means the function in the equilibrium state. Thus we may compute constants CSRH
e·

to be

CSRH
en = CSRH

cn n0
1− ft0
ft0

=: CSRH
cn n1, (2.6.15)

CSRH
ep = CSRH

cp p0
ft0

1− ft0
=: CSRH

cp p1. (2.6.16)

The functions n1, p1 are introduced to simplify the notation. Using the above we may calculate
recombination rate twofold

RSRH(x, n, p, ft) = P SRH
n − ESRH

n = CSRH
cn n(1− ft)−CSRH

cn n1ft, (2.6.17)

RSRH(x, n, p, ft) = P SRH
p − ESRH

p = CSRH
cp pft − CSRH

cp p1(1− ft). (2.6.18)

Comparing both terms allows to determine function ft:

CSRH
cn nft + CSRH

cn n1ft + CSRH
cp pft + CSRH

cp p1ft = CSRH
cn n+ CSRH

cp p1, (2.6.19)

ft(x, n, p) =
CSRH
cn n+ CSRH

cp p1

CSRH
cn (n+ n1) + CSRH

cp (p+ p1)
. (2.6.20)

Inserting ft into equation (2.6.17) we obtain, after calculations

RSRH(x, n, p) = CSRH
cn CSRH

cp
np− n1p1

CSRH
cn (n+ n1) + CSRH

cp (p+ p1)
, (2.6.21)
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or in the simplified form

RSRH(x, n, p) =
np− n1p1

n+n1

CSRH
cp

+ p+p1
CSRH

cn

. (2.6.22)

Note that by definitions of functions n1, p1 (2.6.15),(2.6.16)

n1p1 = n0p0 = n2i . (2.6.23)

Then, defining electron lifetime τSRH
n and hole lifetime τSRH

p as a reciprocals of respective capture
rates

τSRH
n =

1

CSRH
cn

, τSRH
p =

1

CSRH
cp

. (2.6.24)

we obtain the formula

RSRH(x, n, p) =
np− n0p0

τSRH
p (n+ n1) + τSRH

n (p+ p1)
. (2.6.25)

Having this formula, one still have to compute ft0 to obtain fictitious concentrations n1, p1. On the
other hand, for p-n diode structures, one may use the observation that in the depleted region, the
SRH recombination is the highest and increasing bias increases concentrations n, p substantially, so
n1, p1 can be neglected for the bias high enough. Thus previous formula reduces to

RSRH(x, n, p) =
np− n0p0

τSRH
p n+ τSRH

n p
. (2.6.26)

We will return to the form (2.6.25) in the section 2.6.3.
To derive expressions on n1, p1, let us use the Fermi-Dirac distribution to estimate the trap level

occupation ft0

ft0 :=
1

1 + g exp
(

Et−µ−qψ0

kBT

) , (2.6.27)

where ψ0 is an electric potential in the equilibrium state, Et is the trap level energy and g > 0 is a
degeneracy coefficient.
Thus using equation (2.6.15) we have

n1 = n0
1− ft0
ft0

= n0
g exp

(

Et−µ−qψ0

kBT

)

1 + g exp
(

Et−µ−qψ0

kBT

)

[

1 + g exp
(Et − µ− qψ0

kBT

)]

= n0g exp
(Et − µ− qψ0

kBT

)

.

(2.6.28)

Using definitions (2.1.24), (2.1.29) we obtain

n0 = Nc exp
(µ− Ec + qψ0

kBT

)

, p0 = Nv exp
(Ev − µ− qψ0

kBT

)

, (2.6.29)

so

n1 = gNc exp
(µ− Ec + qψ0 + Et − µ− qψ0

kBT

)

= gNc exp
(Et − Ec

kBT

)

. (2.6.30)

Analogously using equation (2.6.16) we obtain

p1 = p0
ft0

1− ft0
= p0

1

1 + g exp
(

Et−µ−qψ0

kBT

)

1 + g exp
(

Et−µ−qψ0

kBT

)

g exp
(

Et−µ−qψ0

kBT

) = p0
1

g exp
(

Et−µ−qψ0

kBT

)

= p0g
−1 exp

(µ− Et + qψ0

kBT

)

= g−1Nv exp
(Ev − Et

kBT

)

.

(2.6.31)
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To sum up, we have the following formulas on n1, p1:

n1(x) := g(x)Nc(x) exp
(Et(x)− Ec(x)

kBT

)

, p1(x) := g−1(x)Nv(x) exp
(Ev(x)− Et(x)

kBT

)

, (2.6.32)

where g is the degeneracy coefficient and Et is the energy of the trap level (absolute).

2.6.2 Impact ionization

The impact ionization phenomena we will describe in limited length, as it is not so important mech-
anism in luminous structures. However, devices exploiting that effect, like thyristors, are typical
example for experimental evidence of a nonuniqueness of stationary solutions of the drift-diffusion
system. Thus the mechanism is worth of mentioning.

The impact ionization denotes the phenomena of jumping electrons from valence to conduction
band due to heavy electric field ∇ψ and currents Jn, Jp. There are two cases considered:

Electron assisted generation An electron from valence band gains energy and jumps into conduc-
tion band, energy is taken from incidental electron laying in conduction band.

Hole assisted generation Like above, but energy is taken from incidental hole in valence band.

Above descriptions are analogous as for Auger recombination, but there is no recombination mecha-
nisms. The effect consists of generation only. The physical explanation is that under strong enough
electric field and heavy current, new carriers are generated, what leads to lower resistance.

The rates are

GII
n (x, Jn, E) = αII

n (x)
|Jn(x)|
q

exp
(

−
EII
n,crit(x)

E(x)

)

,

GII
p (x, Jp, E) = αII

p (x)
|Jp(x)|
q

exp
(

−
EII
p,crit(x)

E(x)

)

,

(2.6.33)

where parameters αII
n,p are called maximal ionization rates and critical field strengths E

II
n,p. The

function E(x) denotes the electric field component in the direction of current flow. The formulation
above is so-called lucky drift model [74, 103]. More sophisticated formulations can be found in [101].

Therefore the formula for the recombination component is

RII(x,E, Jn, Jp) = −GII
n −GII

p = −αII
n

|Jn|
q

exp
(

−
EII
n,crit

E

)

−GII
p (x, Jp, E)

= αII
p

|Jp|
q

exp
(

−
EII
p,crit

E

)

.

(2.6.34)

As there is no recombination, we cannot eliminate constants like we did for another recombinations.
For equilibrium conditions the value is zero, since carrier currents Jn0, Jp0 ≡ 0.

In above notation we indicated the dependence of recombination RII on variables E, Jn, Jp. These
functions can be calculated from variables ψ, n, p, but that leads to differentiation and solution of
linear differential equation. Thus, computationally it is much more costly than other recombinations
presented in the document.
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Figure 2.10: Schema of Auger generation/recombination. From the left: an electron and a hole assisted
generations, then respective recombinations.

2.6.2.1 Auger recombination

The nature of the Auger effect is as follows. Assume that there is a electron vacancy in the inner shell
of a given atom. Normally this vacancy may be filled by an electron falling from a higher energy level,
where the energy difference is released as a photon. On the other hand, this excessive energy may be
transferred to the outer-orbit electron, which is then ejected from the atom. The latter phenomena is
known as the Auger effect [22].
The term Auger recombination describes the phenomena of jump of a electron through the band

gap, where the excessive energy is transferred to the third carrier, energy or hole (see figure 2.10).
This carrier then thermalizes generating phonons.
Therefore we will consider four possibilities:

Electron assisted generation An electron from valence band gains energy and jumps into conduc-
tion band, energy is taken from some electron in the conduction band.

Hole assisted generation Like above, but energy is taken from some hole in the valence band.

Electron assisted recombination An electron from conduction band comes down to valence band,
where a hole is annihilated. Excess energy is passed on incidental electron in conduction band.

Hole assisted recombination As before, but excess energy is passed on incident hole in valence
band.

It must be noted that the transition of a hole in the energy landscape is counter-intuitive. A hole
gaining the energy in fact means, that some valence band electron gained the energy and occupied
empty space above its initial position, leaving new empty space. Thus the hole energy diminish, even
though it have gained the energy. Similarly a hole losing energy means an electron losing energy, so
the hole is going up on the energy axis.
The cases are now similar to radiative recombination, but slightly more complicated. Let us begin

from electron assisted recombination. To occur, there must be an electron and a hole to recombine,
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and additional electron to take the energy. The rate is therefore proportional to n2(x)p(x). Similarly
for hole assisted recombination there must be two holes and an electron, so the rates are:

RAug
n (x, n, p) = CAug

n (x)n2(x)p(x), RAug
p (x, n, p) = CAug

p (x)n(x)p2(x). (2.6.35)

For generation the cases are more simple, because of the assumption that there is always an elec-
tron available in the valence band and empty space in conduction band, too. Thus only necessary
component is the carrier which loses the energy. We have then

GAug
n (x, n, p) = CAug

gn (x)n(x), GAug
p (x, n, p) = CAug

gp (x)p(x). (2.6.36)

Due to the detailed balance principle, in the equilibrium case generations must be in balance with
respective recombinations, thus

CAug
gn (x) = CAug

n (x)n2i (x), CAug
gp (x) = CAug

p (x)n2i (x). (2.6.37)

Therefore by summing up all the rates we obtain the formula for Auger recombination

RAug(x, n, p) = (RAug
n −GAug

n +RAug
p −GAug

p )(x, n, p)

= [CAug
n (x)n(x) + CAug

p (x)p(x)][n(x)p(x) − n2i (x)],
(2.6.38)

where CAug
n and CAug

p are called Auger capture coefficients for electrons and holes, respectively.

2.6.3 Trap levels

The generation-recombination on trap levels, called also Shockley-Read-Hall recombination, is sub-
stantial for modeling optoelectronic devices. The mechanism was described by Shockley and Read
[104], and by Hall [48]. The derivation presented in section 2.6.1.2 leads to most simple modifications
of drift-diffusion system. We want, however, to gain deeper insight of the physical phenomena and to
grasp extensions of classic formulae, available in the literature.
Better understanding of mechanisms governing the processes of SRH recombination should lead

to vital improvement of simulation results, as the mentioned recombination seems to be the biggest
in magnitude for certain devices. Nonetheless more complex formulae causes loss of computational
efficiency and increase of simulation’s time. Therefore it is advantageous to know which effects have
to be considered and in what extend.

2.6.3.1 Occupation of trap levels

Let us start from the pure semiconductor situation, far from the boundary. We have then crystalline
structure with given number of electrons and holes, contributing to the charge. Now we replace an
atom with impurity atom. We consider two cases, most frequently used. Introduced atom may have
one valence electron more or less than the original one. Therefore we have two possibilities

Electron trap Introduced atom has additional electron. If the electron is present on its level, so the
trap is occupied, the atom remains neutral, as original atom would be. Otherwise, if the trap
is unoccupied, the core charge is unbalanced and adds q to the total charge. Such a impurity is
called a donor, as it may give additional electron, and it is of neutral or positive charge.

Hole trap Introduced atom has one electron less. If the electron is absent, the atom is neutral, but
still there is a level for additional electron. If it is present, the trap level contributes −q to the
charge. The impurity is called an acceptor, as it takes electrons. It may be of neutral or negative
charge.
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The latter case may be explained also using the concept of hole. The atom has a level unoccupied by
electron, we say that it is occupied by a hole, and so on. Then, analogously as for the first case, if
trap is occupied by a hole, it is neutral, and it becomes negative if unoccupied.
In the section 2.6.1.2 we have derived the occupation rate of a given trap level to be

ft(x, n, p) =
CSRHcn n+ CSRHcp p1

CSRHcn (n+ n1) + CSRHcp (p+ p1)
. (2.6.39)

The above value is defined as fraction of traps which are occupied by electrons. Thus the number of
unoccupied traps, or traps occupied by holes is

1− ft(x, n, p) =
CSRHcp p+CSRHcn n1

CSRHcn (n+ n1) +CSRHcp (p + p1)
. (2.6.40)

Then, the standard nomenclature is as follows. When a hole (or electron) trap is said to be occupied,
it is occupied by hole (or electron, respectively). The term “occupation” is also considered in the sense
of hole (electron, respectively). Thus the occupation rate for hole trap level is 1− ft, and for electron
level it is ft.
Using the above reasoning we may write the number of unoccupied traps of both types, giving the

contribution to the charge:

N+
t (x, n, p) := Nt(x)(1 − ft(x, n, p)), N−

t (x, n, p) := Nt(x)ft(x, n, p). (2.6.41)

Using equations (2.6.39), (2.6.40) we finally obtain

N+
t (x, n, p) = Nt

CSRHcp p+CSRHcn n1

CSRHcn (n+ n1) +CSRHcp (p + p1)
, (2.6.42)

N−
t (x, n, p) = Nt

CSRHcn n+ CSRHcp p1

CSRHcn (n+ n1) +CSRHcp (p + p1)
. (2.6.43)

By plus sign we denote electron traps, and hole traps by minus, up to the sign of a charge contribution
they give.

2.6.3.2 Shallow and deep levels

Now when we have precise formulae for concentration of so-called ionized traps (2.6.41), we would
like to establish possible simplifications. Let us begin form the case of electron traps. By equations
(2.6.39), (2.6.41), the concentration of ionized electron traps read

N+
t (x, n, p) :=

CSRHcp p+ CSRHcn n1

CSRHcn (n+ n1) + CSRHcp (p+ p1)
. (2.6.44)

When a trap level is near the middle of the forbidden zone, the probability of an electron jump
between the level and any of bands is approximately the same. Thus the capture coefficients are
similar. However, when the level gets closer to the conduction band, the electron capture becomes
more plausible, on the contrary to hole capture. Thus the coefficient CSRHcn increases, while the
coefficient CSRHcp is getting small. For electron trap level close enough, we may assume CSRHcp ≈ 0.
Thus we have

N+
t (x, n, p) ≈ CSRHcn n1

CSRHcn (n+ n1)
=

1

n · n−1
1 + 1

. (2.6.45)



2.6. RADIATIVE AND NON-RADIATIVE RECOMBINATION 101

Then, by use of definition of concentration n and n1 (2.6.32), we obtain

N+
t (x, n, p) ≈ 1

1 + g−1(x)N−1
c (x) exp

(

−ESRH
t (x)+Ec(x)

kT

)

·Nc(x) exp
(

Fn(x)−Ec(x)+qψ(x)
kT

)

=
1

1 + g−1(x) exp
(

Fn(x)−ESRH
t (x)+qψ(x)
kT

) .
(2.6.46)

Analogous derivation we may present for hole traps, when the level is close to the valence band.
Then CSRHcn ≈ 0 and we obtain

N−
t (x, n, p) := Nt(x)

CSRHcn n+ CSRHcp p1

CSRHcn (n+ n1) + CSRHcp (p+ p1)
≈

CSRHcp p1

CSRHcp (p+ p1)
=

1

p · p−1
1 + 1

. (2.6.47)

By definitions of functions p and n1 (2.6.32) then

N−
t (x, n, p) ≈ Nt(x)

1

1 + g(x)N−1
v (x) exp

(

−Ev(x)+ESRH
t (x)

kT

)

·Nv(x) exp
(

Ev(x)−Fp(x)−qψ(x)
kT

)

= Nt(x)
1

1 + g(x) exp
(

ESRH
t (x)−Fp(x)−qψ(x)

kT

) .

(2.6.48)

Now we may explain the origin of formulae for singly ionized donor and acceptor concentrations N+
d ,

N−
a , by substitution Et ← Ec − Ed in equation (2.6.46) and Et ← Ev + Ea in equation (2.6.46),
respectively.

The above reasoning also reveals, that the recombination for shallow trap levels is small and
insignificant, since jump between any band and the level should occur for generation/recombination
to take place.

2.6.3.3 Estimation of carrier lifetimes

In section 2.6.1.2 we introduced, for a given trap level, electron lifetime τSRH
n and hole lifetime τSRH

p as
reciprocals of capture rates of these carriers. In this section, we would like to estimate these lifetimes
for a given trap concentration Nt and temperature T .

Let us assume that electrons and holes behave more or less like particles of the ideal gas. Due to
the law of equipartition, the kinetic energy Ekin of a particle of the ideal gas of mass m and velocity
v is given by

Ekin =
m|v|2
2

=
3

2
kBT. (2.6.49)

Thus

|v| =
√

kBT

m
. (2.6.50)

Let us fix some time τ and assume that κ is a capture cross section. Then the volume traversed by
the particle during time τ is equal to κ|v|τ . If the time τ is small enough, we may assume that these
volumes for the ideal gas particles do not overlap. Assume that there is N particles in the ideal gas.
Thus the total volume traversed by all particles is given by

V := κ|v|τN. (2.6.51)
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If the concentration of traps is Nt, then the number of collisions of particles with the traps may be
roughly estimated as

Ncoll := NtV = Ntκ|v|τN. (2.6.52)

Now let us fix on electron quasiparticles. If we fix some small volume Ṽ , then we can estimate number
of electrons in this volume as nṼ . Thus we can estimate number of electron captures in volume Ṽ in
time τ as

P SRH
n Ṽ τ = Ncoll[1− ft]. (2.6.53)

To capture an electron, a trap must be unoccupied before a collision, thus we have to multiply number
of collisions by the coefficient 1 − ft. Here we assume that the time τ and the volume Ṽ are both
small enough so that re-emission and change of trap occupancy are negligible. Therefore we have

P SRH
n =

Ncoll[1− ft]
Ṽ τ

=
Ntκn|vn|τnṼ [1− ft]

Ṽ τ
= Ntκn|vn|n[1− ft]. (2.6.54)

If we compare this result with the estimate of electron capture rate (2.6.9), we get

P SRH
n = CSRH

cn n[1− ft] = Ntκn|vn|n[1− ft]. (2.6.55)

Thus CSRH
cn is given by

CSRH
cn = Ntκn|vn|. (2.6.56)

By analogous analysis for holes and by estimate (2.6.9) we obtain

P SRH
p = CSRH

cp pft = Ntκp|vp|pft, (2.6.57)

so
CSRH
cp = Ntκp|vp|. (2.6.58)

We would like to roughly estimate coefficients CSRH
cn , CSRH

cp for a gallium nitride material in room
temperature (300K). Let us assume that a trap can capture a carrier within distance comparable to
the primitive cell diameter. Let us assume this distance to be equal to a lattice parameter (see table
2.3). Then the cross section is given as

κn = πa2 = π(0.32 nm)2 ≈ 3.22 × 10−19 m2. (2.6.59)

Also using (2.6.50)

|vn| =
√

kBT

mnm0
≈
√

1.38× 10−23 JK−1 × 300K

0.2 × 9.11 × 10−31 kg
≈ 1.51 × 105 ms−1. (2.6.60)

Assume that the concentration of traps is Nt = 1× 1016 cm−3 = 1× 1022 m−3. Then

CSRH
cn = Ntκn|vn| ≈ 1× 1022 m−3 × 3.22× 10−19 m2 × 1.51 × 105 ms−1 ≈ 4.86× 108 s−1. (2.6.61)

Therefore

τSRH
n =

1

CSRH
cn

= 2.06 × 10−9 s. (2.6.62)

For holes we assume the cross section is the same, i.e. κn = κp. Then

|vp| =
√

kBT

mpm0
≈
√

1.38 × 10−23 JK−1 × 300K

1.7× 9.11 × 10−31 kg
≈ 5.17 × 104 ms−1. (2.6.63)

Then

CSRH
cp = Ntκp|vp| ≈ 1× 1022 m−3 × 3.22 × 10−19 m2 × 5.17 × 104 ms−1 ≈ 1.66 × 108 s−1, (2.6.64)

and

τSRH
p =

1

CSRH
cp

= 6.01 × 10−9 s. (2.6.65)
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Figure 2.11: Schema of tunneling to the trap level. Transmission of electrons in the space proceeds
along horizontal arrows, and then in the energy along vertical arrows.

2.7 Tunneling quantum effect

2.7.1 Trap-assisted tunneling

The case of a tunneling described here quite particular, as it only concerns modification of trap
tunneling in strong electric field of certain shape. Such an approach is presented in article by Hurkx
et al. [51]. The derivation of results presented there is not so straightforward, so here we just describe,
how to modify already defined formulae to include tunneling effect.

The conditions under which an local modification of recombination form is valid, are severe and
some of them are obviously broken, like linearity of electrostatic potential and constant quasi-Fermi
levels. However, we assume that in the extent of a usage of tunneling modification, such conditions
are at least approximately good.

The theory covers a case similar to shown on picture 2.11. It is assumed that quasi-Fermi levels
and potential are approximately such as for basic p-n diode, at least locally. By Ecm and Evm we
denote boundary energy levels from which tunneling is possible.

Tunneling to the trap level may be then considered as a enhancement of standard SRH formula
(2.6.25), with electron and hole lifetimes τSRHn , τSRHp multiplied by coefficients:

τ tunn (x) =
τSRHn (x)

1 + Γn(x)
, τ tunp (x) =

τSRHp (x)

1 + Γp(x)
. (2.7.1)

Then functions Γn and Γp are defined as follows

Γn,p(x) =
Dn,p(x)

kT

∫ 1

0
exp

(Dn,p(x)

kT
u−Kn,p(x)u

3
2

)

du, (2.7.2)

where

Kn,p(x) =
4
√

2mtun
n,p (x)D

3
n,p(x)

3q~|ψ′(x)| . (2.7.3)



104 CHAPTER 2. NUMERICAL SIMULATIONS OF SEMICONDUCTOR DEVICES

The functions Kn and Kp are defined for one-dimensional case. In above equation m
tun
n (x) and

mtun
p (x) denote effective masses of electrons and holes for tunneling effect, which may be different
than respective masses in general. Function ψ′ denotes the electrostatic field. Functions Dn and Dp

represent the size of a range of energies, from which the tunneling is possible. For an electron, it reads
(compare Pic. 2.11)

Dn(x) =

{

Ec(x)− Ecm Et(x) ≤ Ecm,
Ec(x)− Et(x) Et(x) > Ecm.

(2.7.4)

Therefore it is assumed that the tunneling is possible only from energies laying in the conduction
band, above the trap level. Similarly for holes we have

Dp(x) =

{

Evm − Ev(x) Et(x) > Evm,

Et(x)− Ev(x) Et(x) ≤ Evm.
(2.7.5)

Having relations (2.7.1) and (2.6.24), we may also compute capture rates for tunneling modification:

Ctunn,p :=
1

τ tunn,p

=
1 + Γn,p(x)

τSRHn (x)
= CSRHn,p (1 + Γn,p(x)). (2.7.6)

Therefore we may write occupied trap concentration

N+
t (x, n, p) = Nt

Ctuncp p+Ctuncn n1

Ctuncn (n+ n1) +Ctuncp (p+ p1)
, (2.7.7)

N−
t (x, n, p) = Nt

Ctuncn n+ Ctuncp p1

Ctuncn (n+ n1) +Ctuncp (p+ p1)
, (2.7.8)

where sign index denotes sign of unoccupied trap. Then recombination rate is

Rtun(x, n, p) =
np− n0p0

τ tunp (n+ n1) + τ tunn (p+ p1)
. (2.7.9)

For shallow donors, the tunneling approach described here does not change any formula, as recom-
bination is assumed to be zero and neither capture rates nor lifetimes are present in occupied trap
concentrations.

2.8 P-N diode

The p-n homojunction (see section 2.3.1) is an elementary device in semiconductor electronics. While
it mostly does not generate the light alone, it is a basis for design of electroluminescent diodes or laser
diodes. In these devices, the luminescence comes from the radiative recombination of the electrons
and holes. This recombination takes place in active region, in quantum wells (see section 2.4), which
confine these carriers on small volume and allow them to recombine.
Through their way to the active zone, electrons and holes are subject to nonradiative recombi-

nation, to rogue radiative recombination and to energy loss. These effects can significantly reduce
efficiency of semiconductor devices. In particular, electrons (resp. holes) traversing regions abundant
in holes (resp. electrons) generate big losses due to recombination.
It is therefore beneficial to put an active region of a device between n-type region and p-type

region. Then the recombining carriers can be provided through the appropriate regions to minimize
the rogue recombination, i.e. electrons through n-type region and holes through p-type region.
Therefore to explain many physical mechanisms governing operation of the LEDs and LDs, the

phenomena taking place in the p-n homojunctions must be carefully studied. Therefore we start the
simulations with the p-n homojunctions. Then we move on to more complicated setting.
Apart from section 2.8.3, all simulations are performed with software pmicro, developed by us.
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Figure 2.12: Band diagram of a GaN p-n homojunction in equilibrium case. Quasi-Fermi electron
level Fn and quasi-Fermi hole level Fp coincide to the Fermi level, thus they are equal.
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Figure 2.13: Concentration of electrons n and holes p in a GaN p-n homojunction in equilibrium case.

2.8.1 p-n homojunctions

Simulations of the p-n homojunctions reveal basic features of the semiconductor devices. We focus
on the materials based on nitrides, as they are main compound of the blue and green optoelectronic
devices.

We start with the p-n homojunction, composed of 500 nm GaN n-type region doped with
1× 1018 cm−3 donors, and 500 nm GaN p-type region doped with 1× 1019 cm−3.

In figures 2.12, 2.13 we see the band diagram and carrier concentrations of this device in equilibrium
state. The potential barrier in the middle of the band diagram coincides with the depletion region. It
is clearly visible, as the total carrier concentration in this region is low. As shown in figure 2.14, width
of a depleted region is dependent on the level of the doping. Lower doping results in wider depleted
region.

The main property of a diode is that generally it conducts only in one direction. In semiconductor
diodes, we distinguish between forward bias, which corresponds to that direction, and reverse bias in
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Figure 2.14: Comparison of band diagram from figure 2.12 with band diagrams of a GaN p-n ho-
mojunctions in equilibrium case with doping levels 10 times lower and 100 times lower. Quasi-Fermi
electron level Fn and quasi-Fermi hole level Fp coincide to the Fermi level, thus they are equal.
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Figure 2.15: Comparison of band diagram of p-n homojunction for forward bias: 0V, 2V and 3.3V.
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Figure 2.16: Comparison of band diagram of p-n homojunction for reverse bias: −1V and −2V.

the opposite direction.
This phenomena is clearly visible in simulations. Comparison of band diagrams for increasing

forward bias is presented in figure 2.15. Injection of electrons to the p-type region and holes to the
n-type region leads to decrease of the potential barrier in the depleted region. When the forward
bias (in volts) is roughly close to the band gap (in electronvolts), then the potential barrier vanishes
almost completely, there is no depleted region anymore and the device behaves more or less as a linear
resistor. On the other hand, under the reverse bias the potential barrier increases, and the n-type
region and the p-type region become isolated from each other.
This behavior is clearly indicated by the I-V characteristic presented in figure 2.17. This figure

reveals three operating modes of a semiconductor diode. Under reverse bias (bias < 0V), the current
is very small and generally it does not increase with voltage. Then for the forward bias, there is an
exponential mode, when the current is small, but it increases exponentially in bias, and the linear
mode, when the current (and resistance) becomes linear in bias.
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Figure 2.17: Current-voltage (I-V) characteristic of a GaN p-n homojunction. Logarithmic and linear
scales are presented. Absolute value of current is plotted.

2.8.2 Homojunctions, p-i-n diodes and single quantum well structures

In this section, we simulate several GaN-based semiconductor devices, with different level of com-
plexity. We would like to determine basic properties of these devices, before proceeding to more
complicated structures.

2.8.2.1 Devices

The basic structure to simulate is a p-n homojunction made of GaN, referred by abbreviation N-P.
The doping is assumed to be Nd = 5 · 1018cm−3 in the n-type region and Na = 5 · 1019cm−3 in the
p-type region. The compensation is 2% of doping concentrations. Both regions are of 500 nm length.
The second structure we consider is a p-n junction with insulating layer in the middle. We consider

two lengths of the insulating layer: 20 nm and 200 nm. These devices are referred by abbreviations
N-I-P 20nm and N-I-P 200nm. It is assumed that in insulating layer, there are in fact donors with
concentration 5 · 1016 cm−3, as such impurity level is expected to be present in real devices due to the
nature of growth processes.
Next device is a single quantum well (QW) structure. The quantum well is 3 nm length, and we

assume n-type region and p-type region to be of length 499 nm and 498 nm, respectively. QW region
is made of In0.1Ga0.9N. As in N-I-P case, the quantum well is assumed to be donor-doped on level
5 · 1016 cm−3. This device will be abbreviated as N-W-P.
The most complex device in this simulation is the two quantum well and a barrier structure. The

layers of the device are as follows: a GaN n-type region 495 nm length, 3 nm quantum well, 5 nm
In0.015Ga0.985N donor doped barrier, 3 nm quantum well and 494 nm p-type region. Quantum wells’
properties are the same as in previous device. The barrier is doped with 5 · 1018cm−3 shallow donors,
as n-type region. This device would be referred as N-W-B-W-P.

2.8.2.2 Dopants in insulating layers

First we would like to study the impact of low impurity concentration in insulating layers and a
quantum wells. In theoretical considerations one can assume these parts of device to be perfectly pure,
but during the real semiconductor growth it is always possible to introduce some level of impurities.
From the computational point of view, removing any doping in certain layer results not only in zero
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Figure 2.18: Comparison of the I-V characteristics of devices with doped (impure, d) and undoped
(pure, i) insulating layers and quantum wells. Tunneling to trap level was not included into the
simulation.
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Figure 2.19: Plots of the band diagram, the recombination rates, the charge carrier concentrations,
and the potential of N-I-P 200nm device for pure (left) and doped (right) insulating layer. The applied
potential is 1.06V. Tunneling to trap level was not included into the simulation.
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Figure 2.20: Plots of the band diagram, the recombination rates, the charge carrier concentrations,
and the potential of N-I-P 20nm device for pure (left) and doped (right) insulating layer. Only the
middle of the device is shown. The applied potential is 0.16V and 1.06V for lower and upper plot,
respectively. Tunneling to trap level was not included into the simulation.
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Et[eV] −6.4 −4.5
Nt[cm

−3] 1015 1017 1018

τSRHn [s] 10−7 10−9 10−12

τSRHp [s] 10−9 10−11 10−10

Table 2.4: The electron and hole lifetimes for trap-level recombination for selected trap concentrations
and the energy level of the trap. It is assumed that energy band boundaries are similar as for GaN
material: the conduction band is Ec ≈ −4 eV and valence band is Ev ≈ −7.4 eV. Values presented in
the table are tentative.

acceptor/donor concentration, but also no recombination on trap level, thus may lead to considerable
change of I-V characteristic.

Since the recombination terms play vital role in a simulation of luminescent devices, we must
assume some parameters for it. For all devices the radiative recombination coefficient are Crad =
1.1× 10−10 cm3/s. The case is more complicated for SRH recombination. We assume that for a
donor-doped part, a corresponding acceptor compensating level is Et = −6.4 eV, and for an acceptor-
doped part compensating donor level is Et = −4.5 eV. The energy level and impurity concentration
affect carrier lifetimes. The assumed values are presented in table 2.4. Relative effective carrier masses
are assumed to be mn = 0.2 for electrons and mp = 1.7 for holes. In this section, we do not include
the trap-assisted tunneling, but level occupation and full SRH formula is used.

Having the parameters covered, we proceed to the simulation results. There are four devices
considered, as described in section 2.8.2.1, with insulating layers doped and undoped, what would
be denoted by additional letter d or i, respectively. We would like to verify to what extent small
concentration of impurities affects a device. Thus we assume the doping of insulating layers to be of
donor type, of magnitude 1% of the regular n-type region doping.

The comparison of I-V characteristics is presented in figure 2.18. We will start with N-I-P 200 nm
(figure 2.19). For bias in proximity of 3 V the currents are similar, for higher voltages the d-device has
bigger current, due to lower resistance. For bias lower than 2.5 V however, the characteristics differ
substantially. An explanation of such a behavior is lack of the SRH recombination for pure insulating
layer in the depleted region (see figure 2.19). The SRH recombination increases total current, as it
may be treated as a mean of electron transport through the potential barrier in the depleted region.
The recombination on the trap level rate, even with no tunneling effect, is significant there, so even
for small trap concentration it is important. For higher biases, the potential barrier is small and this
effect is negligible for the electric conductance, so the I-V characteristics are similar above 3 V bias.

The case of 20 nm length insulating layer is similar, however for bias around zero the difference of
currents diminish. Such a distinction results from the I -layer being too narrow to enclose the depleted
region of the device. When an applied potential is low, maximal rate of the SRH recombination is
reached in the n-type region, and the impurities in the undoped layer (figure 2.20). Nevertheless, for
moderate bias, still quite large difference of currents is observed.

For the device with one quantum well (N-W-P) the characteristics are almost the same. In this
case reason is that the region of maximal recombination is not in the middle of the device, but it is
slightly shifted, into the n-type region (figure 2.21). Thus, a doping in the quantum well does not
increase the recombination much and the difference in the charge is so small so it does not change the
behavior of the device.

In the case of the device with two quantum wells (N-W-B-W-P), there are differences in current
magnitudes in the range 1.5–2 V. The analysis is not so straightforward as before, as the recombination
maxima are in different positions for pure and doped quantum wells (figure 2.22). It seems that for
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Figure 2.21: Plots of the band diagram, the recombination rates, the charge carrier concentrations,
and the potential of N-W-P device for pure (left) and doped (right) quantum well. The applied
potential is 1.06V. Tunneling to trap level was not included into the simulation.

lower potentials, the current is approximately the same. On the other hand, for medium voltage, the
device with pure quantum wells has slightly bigger current. This effect is due to SRH recombination
in the barrier, which is smaller than SRH recombination in QWs, when it is present, but if there is no
trap levels in QWs, it becomes much larger.

The conclusion is that the impurities in insulating layers may change the I-V characteristic, but it
depends on the device. If an insulating layer is located in the region where there is significant SRH
recombination, then impact of impurities may be important. Otherwise it is negligible, as the charge
generated by additional concentrations of ionized traps is too small to affect the device. The impact is
observed for small and medium biases, up to 2.5–3 V. Above 3 V the rate of the SRH recombination
is not considerably larger near the p-n junction, as there is no potential barrier, thus its impact on
the I-V characteristic is negligible.

Nevertheless the above simulations reveal, that in general we cannot neglect the impact of impu-
rities in the active region on a device behavior, despite of their low concentration.

2.8.2.3 Tunneling

The the trap-assisted tunneling (see section 2.7.1) might be an important phenomenon governing
operation of a p-n junction. Therefore we would like to determine the impact of this mechanism on
I-V characteristic of the device. To perform simulations, one can utilize formulae from section 2.7.1.
Derivation of these formulae require rigorous assumptions, which are satisfied by an idealized device,
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Figure 2.22: Plots of the band diagram, the recombination rates, the charge carrier concentrations,
and the potential of N-W-B-W-P device for pure (left) and doped (right) quantum wells. The applied
potential is 0.16 V and 1.06 V for lower and upper plot, respectively. Tunneling to trap level was not
included into the simulation.
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Figure 2.23: Comparison of I-V characteristics of devices with trap-assisted tunneling (tun) and with
standard SRH recombination.

but they could fail in a real situation. Still, one can treat results of such simulations as some kind of
approximation.

We performed simulations of devices from section 2.8.2.1 with and without trap-assisted tunneling
and we compared the results. The I-V characteristics are shown on figure 2.23. The tunneling effect
has increased the current for all devices for biases below 3 V. For higher voltages, the differences are
negligible. Such a behavior is expected, as a high electric field is present for a small bias applied to a
device.

The smallest change we observe for the N-I-P 200nm device, and the greatest for N-P diode.
The explanation is that the latter device has the the shortest depleted region and it contains largest
concentration of impurities. On the contrary, N-I-P 200nm structure has the longest depleted region
and with low impurity concentration. Also the single quantum well structure N-W-P might be con-
sidered as an external case instead of N-P, since as shown in section 2.8.2.2, its insulating layer with
reduced recombination rate does not lie in the depleted region. For two other devices, N-I-P 20nm
and N-W-B-W-P, we also observe a considerable difference in the current magnitude. However it is
smaller, due to a longer depleted region and lower concentration of impurities present there.

The analysis of band diagrams reveals that the tunneling effect has considerable impact on devices
(see figures 2.24, 2.28). The electron quasi-Fermi level, which previously was almost constant in the
active part of the device, now varies rapidly in the depleted region and it aligns to hole quasi-Fermi
level. Thus the electron concentration in p-type region is much lower than the hole concentration in
the n-type region. This effect is observed for low potentials, and vanishes for high ones. The cause of
such a behavior is much greater recombination rate for the devices with tunneling effects.

The devices for which the mentioned effect is less significant are the N-I-P structures, where the
electrostatic field is lower than in other cases (see figures 2.26, 2.25). For N-I-P 200nm structure
an large field zone is about 200 nm long, as it enclosed in the insulating layer. It is much longer
than in other devices, where the depleted regions are of 20–30 nm length. Thus it slightly exceeds
the insulating layer for the diode N-I-P 20nm. In these cases, the tunneling effect is not sufficiently
significant for the device operation, as the potential in the depleted region is almost linear, so the
electric field is distributed almost equally, on contrary to previous examples, where it is stronger near
p-type region interface.

The observed result reveals also significant problem with the theory. Formulas presented in [51],
used in simulations, are valid under the assumption of constant quasi-Fermi levels in the active part
of the device. This assumption is obviously not valid, due to application of the very theory. Thus, the
results should probably be verified with more subtle approach.
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Figure 2.24: Plots of the band diagram, the recombination rates, the charge carrier concentrations,
and the potential of N-P device. The middle of the device is shown. The applied potential is 1.06 V.
Trap-assisted tunneling was included into the simulation.
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Figure 2.25: Plots of the band diagram, the recombination rates, the charge carrier concentrations,
and the potential of N-I-P 200nm device. The applied potential is 1.06 V. Trap-assisted tunneling
was included into the simulation.
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Figure 2.26: Plots of the band diagram, the recombination rates, the charge carrier concentrations,
and the potential of N-I-P 20nm device. Only the middle of the device is shown. The applied potential
is 1.06 V. Trap-assisted tunneling was included into the simulation.
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Figure 2.27: Plots of the band diagram, the recombination rates, the charge carrier concentrations,
and the potential of N-W-P device. Only the middle of the device is shown. The applied potential is
1.06 V. Trap-assisted tunneling was included into the simulation.
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Figure 2.28: Plots of the band diagram, the recombination rates, the charge carrier concentrations, and
the potential of N-W-B-W-P device. Only the middle of the device is shown. The applied potential
is 1.06 V. Trap-assisted tunneling was included into the simulation.

2.8.2.4 Occupation of a trap level

As we saw already in the section 2.8.2.2, small concentrations of impurities introduced unintentionally
may lead to a relevant change of a I-V characteristic of a device. The doping introduces two effects:
the SRH recombination and the charge generated by the trap occupation. We would like to determine
the impact of this charge.
Therefore we will compare two kinds of devices with insulating layers: with unintentionally doped

W and I layers, denoted as d-devices in section 2.8.2.2, and devices with recombination rate adjusted
as for doped insulating layers, but zero trap and dopant concentrations, what we denote as ir.
The I-V characteristics computed for structures N-I-P 200nm and N-W-P are similar for both

cases (figure 2.29). Let us study the N-I-P 200nm device more closely (figure 2.30). The quasi-Fermi
levels are quite similar, but the potentials in the insulating layer differ slightly. Thus the carrier
concentrations are different and the maximum of the SRH recombination is shifted a bit. However,
the magnitude of the recombination rate is almost the same, so the characteristics do not differ much.
For the N-W-P device, the differences are hardly noticeable (figure 2.31). The introduced charge is
too low to impact these devices, as it is relatively small in comparison with doping of n-type region
and p-type region.
The above simulations suggest the charge generated by the ionized traps in the insulating layer

to be a factor of low importance. The main impact is due to a recombination term, on which a I-V
characteristic is directly dependent.
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Figure 2.29: Comparison of I-V characteristics of devices with impure insulating layers: with no charge
generated by impurities in insulating layers, but a recombination taken into account (ir) and with
charge included (d). Tunneling to trap level was not simulated.
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Figure 2.30: Plots of the band diagram, the recombination rates, the charge carrier concentrations,
and the potential of N-I-P 200nm device for full trap level occupation (left,d) and recombination only
(right,ir) in the insulating layer. The applied potential is 1.06 V.
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Figure 2.31: Plots of the band diagram, the recombination rates, the charge carrier concentrations, and
the potential of N-W-P device for full trap level occupation (left,d) and recombination only (right,ir)
in insulating layer. The applied potential is 1.06 V.

2.8.2.5 Dopant compensation

Since the SRH recombination term seems to have considerable impact on the device operation, and
the charge concentration due to ionized traps in insulating layers are negligible, then maybe the charge
of ionized traps may be completely neglected? Perhaps one should compute only the recombination
term? Calculation of the ionized traps charge is not particularly computationally costly, but still
omitting it simplifies the model and it improves simulation time.
We consider an p-n diode in two variants: with the trap occupation term included (N-P) and

omitted (N-P oto). In both cases, the recombination generated by traps is taken into account.
The resulting characteristics are displayed on the figure 2.32. They generally agree, differences

can be hardly seen for voltages above 3 V. The same is true not only for the characteristics, but for
the potential and quasi-Fermi levels. Maximal difference potentials were |ψ(x) − ψoto(x)| < 0.02 V,
|Fn(x) − Fn,oto(x)| < 0.03 eV and |Fp(x) − Fp,oto(x)| < 0.03 eV. The simulation has been performed
also for more complex N-W-B-W-P device, and similar estimates hold.
The conclusion is then that the compensation at level of 2% of doping is important mainly due to

a SRH recombination it generates, as the ionized traps charge is negligible.
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Figure 2.32: Comparison of I-V characteristics of devices with the ionized traps charge omitted (oto)
and included. The recombination generated by traps are included into both cases. Differences are
hardly noticeable.

2.8.3 Comparison with available software

Simulations presented in other sections of this study were performed with our own software. There
are some free or commercial programs, which accounts for simulations of semiconductor devices either
with the drift-diffusion model or with more subtle methods. However, these applications come with
a certain set of features, like the physical phenomena accounted for. While this is natural for any
modelling setting, introducing additional effects is limited without a source code and appropriate
license.

The drift-diffusion model is not very sophisticated, thus to experiment with new features it is quite
viable to develop one’s own computer code. In our research we focus on GaN luminescent devices, and
therefore we are interested in additional effects affecting operation of such structures, not included in
standard drift-diffusion model. The available software offer simulations of wide range of devices. It is,
however, hard or impossible to add specific improvement, if it is not implemented already.

Before proceeding to the full-blown simulations of semiconductor devices, we would like to compare
our program with other software performing similar tasks, which are available to us. For comparison
we have chosen two programs: SimWindows (free) and SiLENSe (commercial). In these tests we
do not want to show effects of improvements of the model, but to compare results of simulations
accounting for similar physical phenomena.

2.8.3.1 SimWindows

SimWindows [118] is a free program for a numerical solution of the drift-diffusion system for one-
dimensional structures. This program is lightweight and fast, configurable with graphic user interface.
It incorporates some standard recombination models (SRH, radiative, Auger) and it is configurable
to some extent. However, there is no built-in support for extending the model. In particular, scope
of modeling SRH recombination is rather narrow. It is possible to use standard SRH formula with
fictitious concentrations n1, p1 assumed to be zero, thus independent of a trap energy. Extension
beyond that is not possible.

For the comparison we use already simulated devices: N-P and N-W-P d. Since we want to
compare the results, we simulate the same physical conditions in our code and in SimWindows. Thus
we modified the devices in such a way: we assume simple SRH recombination form from equation
2.6.26, and we assume that occupation of trap levels is like for shallow traps, but with respect of their
energies, and no trap-assisted tunneling. We take into account the incomplete ionization of acceptors
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Figure 2.33: Comparison of I-V characteristics of p-n diode and single quantum well structure com-
puted with our code(1) and SimWindows(2). The results are in good agreement.
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Figure 2.34: Comparison of quasi-Fermi levels, the recombination rates, the charge carrier concentra-
tions, and the potential of N-P (sw) device simulated in our code(1) and in SimWindows(2). The
applied potential is 1.0V. Results are in good agreement.

and donors. The Auger recombination is neglected. Devices simulated in such conditions would be
denoted as (sw).
The I-V characteristics of the devices N-P and N-W-P d are compared on figure 2.33. These

results generally agree.
The comparison of electrostatic potential, quasi-Fermi levels and other functions describing the

devices on figure 2.34,2.35, for applied potential 1.0 V. In both cases values from simulations performed
by our code and SimWindows are similar. In particular, good agreement in the depleted region of the
first device and near quantum well of the latter one is obtained, what implies the recombinations are
similar, and so are the currents.
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Figure 2.35: Comparison of quasi-Fermi levels, the recombination rates, the charge carrier concentra-
tions, and the potential of N-W-P d (sw) device in the proximity of quantum well simulated in our
code(1) and in SimWindows(2). The applied potential is 1.0V. Results are in good agreement.

2.8.3.2 SiLENSe

The second program we compare our code with is SiLENSe [1]. Full meaning of SiLENSe acronym
is Simulator of Light Emitters based on Nitride Semiconductors. It is a commercial software, which
in addition to simulation of electric properties, has also an optical module. It is supplied with the
database of common material parameters, in particular for GaN, InN and AlN crystals. Parameters for
InxGa1−xNmixed crystals are computed automatically by the program. SiLENSe uses one-dimensional
drift-diffusion model for simulations of electrical properties of semiconductor devices.

We will focus on the results for the following devices: N-P, N-I-P 200nm and N-W-P. SiLENSe
uses simple form of SRH recombination (2.6.26), like SimWindows. Also the SiLENSe database uses
slightly different material parameters. Thus, to perform a comparison, we have adjusted certain
parameters to be consistent with SiLENSe defaults. Such modified devices are denoted by (si) suffix.

The comparison of I-V characteristics are presented on figures 2.36,2.37. Differences between our
code and SiLENSe are marginal. However, when we compare band diagrams, the results do not
agree in general. For structure N-P (si) and low bias (figure 2.38) the electrostatic potentials agree,
but we observe considerable differences for quasi-Fermi levels: for the hole level in the n-type region
and for the electron level in the p-type region. Such inconsistency introduces also differences in the
carrier concentrations on respective parts, but since they are minority carriers, they do not affect
the charge. Nevertheless, the band diagrams are quite different. Note however, that in near the
depleted region the differences between quasi-Fermi functions are much smaller. Since it is a region
of maximal recombination rate, the total current is similar for both simulations, which explains why
the I-V characteristics are in good agreement despite this inconsistency in quasi-Fermi levels. It must
be noted that this inconsistency is observed only for low bias. For high bias, these differences become
rather small (see figure 2.39). Similar behavior is observed also for the device N-I-P 200nm (figure
2.40).
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Figure 2.36: Comparison of I-V characteristics of p-n diodes without and with 200 nm insulating
layer in the depleted region, computed with our code(1) and SiLENSe(2). The results are in good
agreement.
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Figure 2.37: Comparison of I-V characteristics of the single quantum well structure computed with
our code(1) and SiLENSe(2). The results are in good agreement.

Similar behavior is observed for single quantum well structure N-W-P. While the quasi-Fermi levels
do not agree in general, the differences become small near the quantum well (figure 2.41). Thus the I-V
characteristics agree (figure 2.37). The examination of the electrostatic potential ψ in the quantum well
indicates polarization charges on the quantum well interfaces, which leads to non-smooth potentials.
These charges are present in our code and in SiLENSe.
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Figure 2.38: Comparison of quasi-Fermi levels, recombination rates, charge carrier concentrations, and
the potential of N-P (si) device simulated with our code(1) and with SiLENSe(2). The bias is 0.5 V
for the upper plot and 1.0 V for the lower plot. The maximal SRH recombination rates in (1) and (2)
simulations are similar, but the results do not agree in general.
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Figure 2.39: Comparison of quasi-Fermi levels, recombination rates, charge carrier concentrations, and
the potential of N-P (si) device simulated with our code(1) and with SiLENSe(2). The bias is 2.3 V
for the upper plot and 3.5 V for the lower plot. The results are in good agreement.
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Figure 2.40: Comparison of quasi-Fermi levels, recombination rates, charge carrier concentrations, and
the potential of N-I-P 200nm d (si) device simulated with our code(1) and with SiLENSe(2). The
bias is 1 V for the upper plot and 2 V for the lower one. The results are in good agreement for 2 V,
while for 1 V they do not agree. Still the unknown functions are similar in the depleted region.
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Figure 2.41: Comparison of quasi-Fermi levels, recombination rates, charge carrier concentrations,
and the potential near the quantum well of N-W-P d (si) device simulated with our code(1) and with
SiLENSe(2). The bias is 1 V for the upper plot and 3.5 V for the lower plot. The results are similar
in the presented region for lower voltage, but differences arise when the bias increases, especially for
the potential.
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2.8.4 Computing carrier currents

In simulations of semiconductor luminescent devices, it is important to estimate precisely the current
densities Jn, Jp, which contribute to the current density J . Current density is an important property
of a device, as it may be used to obtain I-V characteristics or L-I (light-current) characteristics, which
are measured experimentally. These characteristics allows to compare numerical results with real
devices, and they are important factor in design of the semiconductor devices.

In this section, we discuss main problems related to calculation of current densities Jn, Jp. As an
example, we simulate a p-n homojunction with 100 nm GaN n-type region, doped moderately with
1× 1018 cm−3 donors and 100 nm GaN p-type region, doped with 1× 1019 cm−3 acceptors. We will
apply forward bias to this simple structure.

Before analysis of the simulation results, we would like to briefly discuss our expectations, basing
on physical grounds. For low bias (figure 2.42), the built-in potential prohibits carriers from spatial
traverse across the device, but electrons and holes recombine in the depleted regions. These carriers
are constantly supplemented by carriers injected via contacts (see figure 2.43). Thus in the n-type
region we expect some electron current and negligible hole current, and quite the reverse in the p-type
region. Under high bias, the depleted region disperses and there is no potential barrier, thus the
current carriers can traverse across the device.

2.8.4.1 Using the definition

The most natural approach in calculating currents is to directly use definitions (2.5.9). Unfortunately
this simple method does not give satisfactory results, as it is demonstrated in figure 2.44). Let us
focus on electron current density first. These results indicate, that it is only present in the depleted
region and in the p-type region. In the n-type region it is nonexistent. This is in contradiction with
our discussion. Analogous effect is observed for the hole current density. Moreover the total current
density J is not constant, as it varies heavily between the depleted region and the rest of the device.
This effect is completely nonphysical.
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Figure 2.42: Band diagram and concentrations of carriers for a GaN diode, used in the simulations.
Bias is ψD = 1V.
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Figure 2.43: Schema of carrier transport in p-n junction under low bias. The meaning of symbols
is as follows: electrons — red circles, holes — green circles, recombination — vertical arrow, spatial
movement of carriers — horizontal arrows.

These numerical artifacts may be explained if we take into account the floating-point arithmetic.
To compute concentration of currents with definitions (2.5.9), the derivative of quasi-Fermi levels
Fn, Fp must be available. In our simulations, they were computed by finite differences from functions
Fn, Fp. On the n-type region, the electron quasi-Fermi level Fn is almost constant, as well as the
hole quasi-Fermi level on the p-type region (figure 2.42). In spite of huge variations of the carrier
concentrations n, p, it appears that relative difference of quasi-Fermi levels can be smaller that the
floating-point number precision, which leads to zero derivative on large regions of the device.
Therefore we cannot compute currents form definition, as this method fails even for such a simple

case as p-n junction.

2.8.4.2 Using continuity equations

Instead of definitions of Jn and Jp, we may use continuity equations (2.5.15). Then we obtain a first
order equations on Jn, Jp

∇ · Jn(x) = qR(x),

∇ · Jp(x) = −qR(x).
(2.8.1)

We assume that the van Roosbroeck equations are numerically solved and we have approximations of
ψ,Fn, Fp. Thus R is a known function.
Still we need to use definition (2.5.9) for boundary conditions. In figure 2.44 we clearly see, that

on large parts of the device these formulas give reasonable results. However, near the boundary there
are often some artifacts related to boundary values, as shown in figure 2.44. In one dimension, we can
easily solve equations (2.8.1 starting form an arbitrary x ∈ Ω. The solutions are given by

Jn(x) = Jn(x0) + q

∫ x

x0

R(ξ)dξ, Jp(x) = Jp(x1)− q
∫ x

x1

R(ξ)dξ, (2.8.2)
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Figure 2.44: Currents calculated from definition (2.5.9). Note subsets where currents become zero.
Total current J is definitely not constant.

where the choice of x0, x1 ∈ Ω is arbitrary.
In figure 2.45 currents calculated by the above method are presented. In comparison with results

of previous method, this result is more regular and it corresponds to our physical intuition (see figure
2.43), i.e. there is almost constant electron current in n-type region and hole current in p-type region,
and they switch in the depleted region due to recombination. Moreover the total current density J is
constant.
If we compare both methods (figure 2.46), we clearly see that both methods give similar results

on significant part of device. Differences emerge due to limitation of floating-point arithmetic, as
explained in section 2.8.4.1.
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Figure 2.45: Currents calculated by integration of the recombination.

0 50 100 150 200
Distance [nm]

10-40

10-37

10-34

10-31

10-28

10-25

10-22

10-19

10-16

10-13

10-10

C
u
rr
e
n
t 
d
e
n
si
ty
 m

o
d
u
lu
s 
[A
/c
m

2
]

Jn

Jp

Jn,def

Jp,def

Figure 2.46: Comparison of currents calculated from definition (2.5.9) Jn,def , Jp,def , and by integration
of recombination Jn, Jp.
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2.8.5 Trap-assisted tunneling effect on characteristics of gallium nitride diodes

In section 2.7.1 we described the trap-assisted tunneling effect, which increases the SRH recombination.
Then in section 2.8.2.3 we presented simulations, which indicates that depending on the length of the
depleted region, this effect may be more or less significant.

In this section, we would like to study in detail the impact of the trap-assisted tunneling on the
operation of the GaN p-n homojunction. In particular, we would like to present a comparison of
simulations with experiments.

2.8.5.1 Comparison with experiments

For the comparison, a realistic device suggested by Smalc-Koziorowska et al. was used [106]. The
diode was divided into three layers: 60 micron thick n-GaN substrate with donor concentration Nd =
2 × 1018 cm−3, 0.5 micron thick n-GaN layer with Nd = 1.4 × 1019 cm−3 and 0.5 micron thick p-
GaN layer with acceptor concentration Na = 5 × 1019 cm−3. Computations with and without the
trap-assisted tunneling modification were performed.

In this set of simulations we used material parameters from tables 2.5, 2.6. We assume that the
p-GaN is doped with shallow Mg acceptors, which do not play important role in the non-radiative
recombination. We expect the p-GaN deep trap level in Mg-doped GaN to be related to the nitrogen

Parameter Symbol Value Details

Relative permittivity εr 8.9 Ref. [68]

Acceptor degeneracy level ga 2 Ref. [110, 99]

Donor degeneracy level gd 2 Ref. [79]

Band gap Ec − Ev 3.4 eV Ref. [77]

Acceptor level (Mg, shallow) Ea 0.17 eV Ref. [68]

Donor level (Si, shallow) Ed 0.02 eV Ref. [68]

Electron effective mass mn,m
tun
n 0.2 Ref. [89, 68]

Hole effective mass mp,m
tun
p 1.7 Ref. [41]

Electron mobility µn 200 cm2

Vs Ref. [95]

Hole mobility µp 5 cm2

Vs Ref. [70]

Radiative recombination constant Crad 1.1 × 10−10 cm3

s fitting param.

Temperature T 300 K room temp.

Acceptor level (deep, n-GaN) Et − Ev 1.0 eV Sec. 2.8.5.1

Donor level (deep, p-GaN) Ec −Et 0.5 eV Sec. 2.8.5.1

Table 2.5: Material parameters of gallium nitride, used in our numerical simulations.

Impurity concentration Nt τn =
(

CSRHn

)−1
τp =

(

CSRHp

)−1

Nd = 1018cm−3 5× 1016cm−3 5× 10−8s 5× 10−10s

Nd = 5× 1019cm−3 2.5× 1018cm−3 10−9s 5× 10−11s

Na = 5× 1019cm−3 1018cm−3 7× 10−12s 7× 10−10s

Table 2.6: Trap concentrations and carrier lifetimes based on impurity concentrations, used in our
simulations. The values τn, τp were the fitting parameters.
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Figure 2.47: Comparison of the experimentally obtained I-V characteristics of p-n junctions from the
article [106] and simulation results with and without the trap-assisted tunneling. In the simulations,
the n-GaN donor concentration Nd = 1.4×1019 cm−3 with the trap concentration Nt = 7×1017 cm−3,
and the p-GaN acceptor concentration Na = 5×1019 cm−3 with the trap concentration Nt = 1018 cm−3

were assumed near the space charge region.

vacancies with energy level around 0.43 eV[85, 88] or nitrogen antisites at around 0.8 eV[111, 108].
Thus, the deep donor energy level Ec−Et = 0.5 eV is chosen. In the n-GaN the deep trap level may be
caused by the VGa-ON and VGa-SiGa complexes[86] with energy levels 1.1 eV and 0.9 eV, respectively,
or by Si[14] at 1.2 eV. Thus the deep acceptor energy level Et − Ev = 1.0 eV is taken in the n-GaN.
We assume trap concentrations to be about 2% of the p-GaN acceptor concentration and 5% of the
n-GaN donor concentration.

The comparison of the I-V characteristics of the simulated devices with the experimental data
from [106] is presented in figure 2.47. Both computed characteristics agree for bias above 3 V. On the
other hand, for lower bias the curves present substantially different behavior. The total current is up
to five orders of magnitude higher when the tunneling is taken into account. The agreement with the
experiment is much better for the tunneling case. In the comparison, we used the interval [1.5 V, 3 V].
The precision of the measurement is too low below about 1.5 V to get reliable values. Above 3 V the
resistance of contacts dominates over the resistance of the structure, that is not taken into account in
the simulations.

To identify the physical factors for the difference between tunneling included or not, the recom-
bination must be examined. The recombination rates for various potentials for both simulations are
presented in figure 2.48. Note that the recombination in the depleted region for the tunneling included
is much higher, especially for lower bias. When the potential increases, the difference is smaller. In
fact, this is what we should expect. The tunneling of carriers to the trap level increases the number of
electrons and holes participating in the non-radiative recombination, and therefore it increases SRH
recombination rate. Tunneling distances are larger for higher voltages, because of straightening the
bands. Thus a contribution of the tunneled carriers to the recombination decreases, as the tunneling
over the barrier becomes less probable.

2.8.5.2 Impact of n type doping level on I-V characteristic of a diode

The example presented in the previous section demonstrates that the tunneling to the trap level
may accelerate the non-radiative recombination, at least for low and moderate potentials. The effect
may be neglected for devices which are supposed to work in high biases, above 3 V, but it is very
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Figure 2.48: Rates of the non-radiative recombination on trap levels in the space charge region for
applied potentials 1 V, 2 V and 3 V taken from the simulations with and without the trap-assisted
tunneling. Increase of the bias leads to diminish of the effect of the tunneling. The concentration of
the impurities are the same as for figure 2.47.
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Figure 2.49: Simulation of the impact of a donor doping of one micron p-n junction with the p-GaN
acceptor concentration Na = 5 × 1019 cm−3 with the trap concentration of Nt = 1018 cm−3. The
trap concentration in the n-GaN is assumed to be 5% of the donor concentration. The trap-assisted
tunneling was active in the simulation. Increase of the donor doping significantly affects the current
for low biases.

disadvantageous for devices operating in low voltages.

As we have shown, the mentioned phenomena has a large impact on currents when a depleted
region is narrow and heavily-doped. We would like to verify whether an extension of the depleted
region, which renders the tunneling of electrons to be unlikely, leads to a decrease in the trap-assisted
recombination rate.

For simplicity, we would like to focus on a short p-n homojunction which has two layers: 0.5 micron
thick n-GaN and 0.5 micron thick p-GaN. To extend the space charge region, one can decrease the
doping of the layers. However, this is rather unfavorable in the p-GaN, as the common GaN acceptor,
magnesium, is not so shallow. Then the resistance of the p-GaN would increase greatly. This is not a
problem with the n-GaN, where the silicon donor is very shallow.

Therefore we performed a simulation of devices with the constant acceptor doping Na = 5 ×
1019 cm−3 and the donor concentration varying from 1018 cm−3 to 5 × 1019 cm−3. The resulting
I-V curves are presented in figure 2.49. We see that increase in the donor concentration leads to a
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Figure 2.50: Simulation of the impact of a donor doping of one micron p-n junction with the p-GaN
acceptor concentration Na = 5× 1019 cm−3 and the trap concentration of Nt = 1018 cm−3. The trap
concentration in n-GaN is assumed to be 5% of the donor concentration. The trap-assisted tunneling
was omitted in the simulation. There is no significant influence of the donor doping on the current.

significant increase in the current density for low and moderate voltages. For potentials above 3 V
the differences are barely visible.

The simulation results are a numerical evidence of the already presented theoretical considerations
about the tunneling distance. The simulations leads to the following conclusion: in order to reduce
the non-radiative recombination in a p-n junction, one should extend the space charge region. For
example, by reducing concentration of donors in the n-GaN.

We would like to ensure that the presented result is an effect of the depleted region narrowing
and the trap-assisted tunneling, not just an increase of the donor concentration. Therefore these
simulations were repeated with the tunneling inactive (figure 2.50). As we see, in this case the current
density do not change considerably with the doping.

For the sake of comparison, band diagrams of the devices with the donor concentration 1018 cm−3

and 5 × 1019 cm−3 are shown in figures 2.51, 2.52. Note that for low donor concentrations or high
currents, there is no significant difference between the case with the tunneling effect active or not.
Thus the potential in the depleted region remains almost parabolic and quasi-Fermi levels are almost
constant. The difference in the current densities follows just from the magnitude of the non-radiative
recombination.

On the other hand, for low biases and high donor doping, the recombination becomes so strong
that the quasi-Fermi level varies rapidly near the junction. This fluctuation poses a problem with
the theory presented by Hurkx et al. [51], as the expressions presented in the article and used in the
simulations are valid under the assumption of constant quasi-Fermi levels in the space charge region.
Therefore the calculations for this case should be revised with a more subtle approach in the future.
Nevertheless, such a high recombination is caused by the trap-assisted tunneling, not just the narrow
space charge region (cf. figure 2.52). Thus the increase of the current in comparison with no tunneling
case still is expected, but it may be misvalued by the model.

2.8.5.3 Discussion

Our simulations prove the trap-assisted tunneling plays an important role in the Shockley-Read-Hall
recombination. The results reveal that this effect may modify considerably I-V characteristics and
band diagrams of devices. The change of the total current density is natural, as it is directly dependent
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Figure 2.51: Comparison of band diagrams of the one micron p-n junction for potentials 1.7 V,
3 V, with the n-GaN donor doping concentration Nd = 1018 cm−3 and the p-GaN acceptor doping
concentration Na = 5 × 1019 cm−3. The respective trap concentrations are Nt = 5 × 1016 cm−3 and
Nt = 1018 cm−3. The simulations were performed in two variants: with the trap-assisted tunneling
active or not. In both cases changes of the band diagram are hardly noticeable.

on the recombination rate. However, the generated recombination is so big that the electron quasi-
Fermi level varies rapidly in the proximity of a recombination peak. It happens in a significant part
of luminescent devices.
The result implies that the assumptions made by Hurkx et al. [51] could be invalid, thus the

simulation with a more general method should be performed. On the other hand, the effect cannot
be considered as a small perturbation. It influences not only the current, but also the band diagram
and should be included in the computations.
The performed simulations of a p-n GaN junction demonstrates that a high doping of the junction

(above 1019 cm−3) leads to a significant increase of the non-radiative recombination. As the results
suggest, the issue may be settled by lengthening the space charge region by decreasing the doping of
the n-GaN layer.
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Figure 2.52: Comparison of the band diagrams of the one micron p-n junction for potentials 1.7 V,
3 V, with the n-GaN donor doping concentration Nd = 5× 1019 cm−3 and the p-GaN acceptor doping
concentration Na = 5× 1019 cm−3. The respective trap concentrations are Nt = 2.5× 1018 cm−3 and
Nt = 1018 cm−3. The simulations were performed in two variants: with the trap-assisted tunneling
active or not. Note a hole quasi-Fermi fluctuation for the tunneling included and the low bias.

2.9 Light-emitting diodes and laser diodes

2.9.1 Introduction

A light-emitting diode (LED) is a semiconductor light source. It is a device based on a p-n diode,
where upon application of a sufficient voltage the light is emitted, which is generated due to radiative
recombination of electrons and holes.

Emission of the photons occurs mainly in the quantum wells. As explained in section 2.4, QWs are
supposed to localize the quasiparticles of both species in large concentrations, to make the radiative
recombination efficient. Thus they are located generally in the proximity of the depleted region.

In theory this simple schema is sufficient, in practice structure of modern GaN-based LEDs is much
more complicated due to several issues. While holes generally do not escape the active region due to
low mobility, this is not the case for electrons. To prevent electron leakage, the electron blocking layer
(EBL) is introduced. It is a quantum barrier, localized typically between quantum wells and a p-type
region, made of AlGaN. This material is used, as the band offset between GaN and AlN is realized
mostly in the conduction band edge. Thus EBL mostly blocks electrons. For holes the barrier is much
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smaller.
On the other hand, quantum wells are made of InGaN. Its forbidden zone energy can be chosen

to match wide range of the visible light spectrum (violet, blue, green, . . . ) upon appropriate choice
the indium-to-gallium rate. The problem of growing quantum wells followed by the EBL is that while
InGaN is grown in approximately 800 ◦C, AlGaN is grown above 1400 ◦C. It is likely that neighboring
InGaN layers will be destroyed during the latter process. Thus intermediate layer is often introduced.
Blue optoelectronics is based on gallium nitride grown mostly in polar directions. In this case,

every interface between different materials (GaN, InGaN, AlGaN) introduces polarization charges,
which affect the band structure of a device. In particular, an electric field in quantum wells is present,
which leads to separation of electrons and holes to opposite sides of a quantum well, reducing the
probability of radiative recombination (quantum-confined Stark effect, QCSE).
An important problem in LEDs design is to prevent the nonradiative recombination. Nonradiative

recombination may occur due to material impurity in areas of large concentration of electrons and
holes. Main countermeasure is to grow possibly pure material. On the other hand, additional care
must be taken to eliminate areas of both carrier species aside from the active region.
In simulations of LEDs it is important to compare the optical power of devices. The drift diffusion

model simulates only electric properties, we do not simulate optical properties. However, we can
estimate the photon emission rate. A radiative recombination process results in emission of a photon
with energy approximately equal to the bandgap energy. The emitted photon may be reabsorbed by
the device, but we assume that reabsorption is already included in the radiative coefficient Crad (see
section 2.6.1.1). Then we should only account for photons emitted from the active region of a device,
from quantum wells. Photons emitted from outside of the quantum wells are are ignored, as they
typically have different wavelength, and thus they do not contribute to target light spectrum.
Thus assume that the recombination rate R of (2.5.24) decomposes to

R(x) = RL(x) +RN (x), (2.9.1)

where RL accounts for the radiative recombination rate in the quantum wells contributing to the
emitted light, while RN is the non-radiative recombination and radiative recombination outside of the
quantum wells.
Functions RL and RN may be extracted from simulation’s output. If we perform a simulation for

a given bias, we may then estimate the photon emission rate as

photon emission rate :=

∫

Ω
RL(x)dx. (2.9.2)

The optical power may be then estimated as

L =

∫

Ω
Eg(x)RL(x)dx. (2.9.3)

Similarly we can estimate power loss due to rogue recombination

recombination power loss =

∫

Ω
Eg(x)RN (x)dx. (2.9.4)

The power loss in LEDs is not only due to rogue recombination. Other causes are the electron (and
hole) thermalization and recombination of leakage carriers on the contacts. Power loss due to these
factors (combined) may be estimated by subtracting optical power and recombination loss from the
total power:

total power = V I, (2.9.5)
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Table 2.7: Simulation results of the laser structure (section 2.9.2) versus aluminum content in the
electron blocking layer for 5 V bias. I stands for the current. Optical power is estimated as the radiative
recombination amount in the QW multiplied by the band gap. Power loss accounts for the radiative
recombination outside the QW, non-radiative recombination on the whole device, recombination of
overflow carriers on contacts and the resistance.

EBL
Al

I [A] Power
loss
[W]

Opt.
power
[W]

Eff.

0% 0.364 1.713 0.108 6%

3% 0.528 2.471 0.167 6%

6% 0.373 1.551 0.313 17%

9% 0.235 0.740 0.435 37%

12% 0.169 0.411 0.435 51%

15% 0.155 0.349 0.424 55%

20% 0.147 0.328 0.408 55%

30% 0.134 0.298 0.369 55%

where I is the current and V is the voltage (bias). We define optical wall-plug efficiency as

efficiency :=
L

total power
. (2.9.6)

In this section, we also would like to present simulations of laser diodes (LDs). In contrast to
LEDs, light emission in laser diodes is due to stimulated emission effect. For this effect to occur,
the active part of a device must be supplemented with mirrors and additional reflecting layers, called
claddings. Model used in our work does not account for the optical properties. However, we are still
interested in electrical properties of these heterostructures. To simulate these devices to some extent
without subtle optic model, we assume that the stimulated emission increases greatly the radiative
recombination rate.

2.9.2 Aluminum content in EBL

Our first problem is to determine the optimal level of aluminum doping in the electron blocking layer.
Simulations presented in this section are based on the following example of the laser heterostructure.
It starts with one micron n-GaN layer, followed by 550 nm n-Al8%Ga92%N cladding and 100 nm n-
GaN waveguide. Then the active part consists of a 20 nm n-In1.5%Ga98.5%N layer, a 4 nm undoped
In17%Ga83%N quantum well and a 22 nm n-In1%Ga99%N cap. It is followed by a 20 nm p-AlGaN EBL,
a 100 nm p-GaN waveguide, a 400 nm p-Al8%Ga92%N cladding and a 30 nm p-GaN contact layer.
We performed simulations of this with aluminum content in the EBL varying from 0 to 30%. Results
are presented in tables 2.7, 2.8. Increasing aluminum content generally also increases efficiency of the
device, but only up to a certain level. For example, under 5 V bias we reach the maximum of 55%
efficiency for 15% Al in the EBL.
The explanation of this phenomena is as follows. Lower Al content decreases the barrier for

electrons, allowing them to escape from the active zone to the p-type. Then they either recombine
with abundant holes in p-type (recombination loss), or they reach the contact. In the latter case the
electrons generates energy loss not only at the contact, but also along its way through the p-type, as
the potential differences for biases > 4 V are quite significant there (conduction loss).
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Table 2.8: Simulation results of the laser structure (section 2.9.2) versus aluminum content in the
electron blocking layer for 6 V bias.

EBL
Al

I [A] Power
loss
[W]

Opt.
power
[W]

Eff.

0% 0.689 3.949 0.185 4%

3% 0.679 3.846 0.230 6%

6% 0.650 3.424 0.475 12%

9% 0.481 2.125 0.762 26%

12% 0.296 1.039 0.739 42%

15% 0.266 0.868 0.727 46%

20% 0.255 0.824 0.709 46%

30% 0.240 0.776 0.665 46%

Table 2.9: Simulation results for the laser structure (section 2.9.2) versus aluminum content in the
electron blocking layer for 5 V. Indium content in the cap was increased to 8%.

EBL
Al

I [A] Power
loss
[W]

Opt.
power
[W]

Eff.

0% 0.408 1.602 0.439 22%

3% 0.212 0.557 0.501 47%

6% 0.183 0.424 0.491 54%

9% 0.177 0.404 0.482 54%

12% 0.174 0.396 0.473 54%

It is also interesting why the conduction loss is much greater than the recombination loss for 5
V and 6 V bias. Intuitively we could expect any escaped electron to recombine in p-type due to
abundance of holes. However due to the electric field, the concentration of electrons is several orders
of magnitude smaller that the hole concentration and they move fast. And even if they recombine,
they still travel to the contact losing its energy, forming holes traveling in the opposite way.

For the optical power we observe a different pattern: it also increases rapidly up to a maximum
level, but then it slightly drops with the Al content. For example, under 5 V bias, the maximal optical
power is reached for 9-12% Al. This is an additional problem with a high Al content in EBL, as it also
creates a mild barrier for holes. It is disadvantageous, as it prohibits holes from reaching the active
zone. Note that in general increasing the EBL barrier leads to lower total current.

We have performed also simulations of the laser structure with 8% In in the cap (table 2.9), to
study a more general setting. Then the barrier on the cap/EBL interface is higher for the same
aluminum content in the EBL. The general trend is similar as for the previous case, but then the
maximal efficiency/optical power is reached for 3-6% Al in EBL.

These two examples leads to the conclusion that the aluminum content in EBL should be chosen
in accordance to the material in the n-type cap preceding the EBL. Higher indium content allows to
decrease Al in EBL.
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Table 2.10: Simulation results for the laser structure (section 2.9.3) versus magnesium concentration
in the p-type 5 V and 6 V bias.

Mg
conc.
[cm−3]

U [V] I [A] Power
loss
[W]

Opt.
power
[W]

Eff. Resist.
[Ohm]

1× 1018 5.0 0.004 0.008 0.010 54% 1355

5× 1018 5.0 0.046 0.105 0.125 54% 109

1× 1019 5.0 0.075 0.171 0.204 54% 67

3× 1019 5.0 0.137 0.313 0.374 54% 36

5× 1019 5.0 0.175 0.399 0.476 54% 29

Mg
conc.
[cm−3]

U [V] I [A] Power
loss
[W]

Opt.
power
[W]

Eff. Resist.
[Ohm]

1× 1018 6.0 0.016 0.052 0.043 45% 376

5× 1018 6.0 0.099 0.323 0.269 45% 61

1× 1019 6.0 0.155 0.509 0.423 45% 39

3× 1019 6.0 0.284 0.932 0.774 45% 21

5× 1019 6.0 0.365 1.198 0.995 45% 16

2.9.3 Mg doping of p-type

In this section we would like to discuss the magnesium acceptor doping on operation of laser structures.
In simulations we use the structure described in section 2.9.2 with variable Mg concentration in the
p-waveguide and p-cladding. Length of n-cap was also shortened to 2 nm to reduce impact of the
recombination loss on the simulation. The indium content in the quantum well is 25% and the
aluminum content in the EBL is 20%.

Results are presented in table 2.10. We observe that the optical power of the device increases
with the Mg doping. Such a result is expected, as generally it is a consequence of the high activation
energy of the magnesium acceptor. However, a more subtle reason is related to polarization charges
on interfaces of laser structures. Note the resistance in function of the Mg concentration. We observe
the decrease of the resistance of the structure when we increase the Mg concentration, but the most
spectacular difference is between concentrations 1 × 1018 cm−3 and 5 × 1018 cm−3. High resistance
for 1× 1018 cm−3 is caused by the polarization charge on the waveguide/cladding interface (see figure
2.53). It pushes out holes away from the interface deep into the waveguide and increasing greatly the
resistance of the depleted fragment. As a consequence, most of the potential difference is located in
the waveguide. If we increase the concentration of holes, this polarization charge will be screened and
its impact on the resistance can be significantly reduced.

Note that the resistance decrease has no noticeable influence on the efficiency of the device, as it
do not increase the carrier overflow.

The conclusion of this results is to use the highest possible magnesium concentration in the p-
type. Please note, however, that the numerical model used in this study do not account for increased
absorption in such case, which could make the device less efficient in real experiment. Also growth
of highly Mg-doped layers, depending on a growth method, may lead to severe problems, like the
polarization inversion or acceptor passivation. Therefore we suggest to make the concentration possibly
high, but the actual concentration level should be adjusted experimentally and may vary depending
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Figure 2.53: Band diagram of the p-type of the laser structure for Mg doping 1× 1018 cm−3 (left) and
1× 1019 cm−3 (right) for 6 V bias.

on the growth method.
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2.9.4 Number of quantum wells

We would like to discuss effect of number of quantum wells on the operation of the blue laser diodes.
The quantum wells are often very narrow, as they should localize quasiparticles. Also in gallium nitride
devices, quantum-confined Stark effect leads to spatial separation of electrons and holes due to electric
field, so the quantum wells cannot be too wide. Thus to increase the recombination volume, most
straightforward method is to simply increase number of quantum wells. We are interested whether
increasing number of QWs will improve the efficiency and optical power of a laser diode.

As before, in simulations we use our model device from section 2.9.2 with 17% indium content in
the quantum well is and 20% aluminum content in the EBL. Number of QWs is between 1 and 7.

The intuition behind increasing number of QWs suggests that increased volume should increase
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Figure 2.54: Comparison of band diagram of a laser structure with a single quantum well (left) against
a laser structure with 5 QWs for 5V bias.
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Figure 2.55: Comparison of radiative recombination rates in quantum wells for laser structures with
number of QWs between 1 and 7 for 5V bias.
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Table 2.11: Optical power of a laser structure for 5V bias versus number of quantum wells.

QWs I [A] Power loss [W] Opt. power [W] Eff. Resist. [Ohm]

1 0.063 0.130 0.185 59% 79

2 0.058 0.120 0.171 59% 86

3 0.055 0.113 0.160 59% 92

4 0.052 0.107 0.151 59% 97

5 0.049 0.101 0.143 59% 102

6 0.047 0.096 0.136 59% 107

7 0.044 0.092 0.130 59% 113

the optical output, at least to some extent. Our simulations indicate that this must not be the case.
In case of many quantum wells, the majority of the recombination takes place in a single quantum well
(see figure 2.55). In this case, it is always a quantum well closest to p-type region, but this behavior
depends on the balance between electron conductivity in n-type region and hole conductivity in p-type
region.

We computed efficiency and optical power of these structures for bias 5V (table 2.11). These results
indicate that efficiency of laser diodes does not increase or degrade substantially on the number of
quantum wells. However, increased amount of quantum wells increases resistance of a heterostructure.

We must emphasize that these simulations focus on the electrical properties of laser heterostruc-
tures. From this standpoint, a single QW is most favorable. However, increased number of quantum
wells may be beneficial to the optical properties. Some of the QWs may also degrade during EBL
growth, as mentioned earlier. Thus multiple QWs may be more practical in real experiment, as the
resistance does not grow considerably.

2.10 Optical excitation in quaternary alloy AlInGaN

Simulations discussed in this section were performed in collaboration with experiments. The aim of
this study was to determine the basic physical properties of quaternary AlInGaN alloys. AlInGaN
layers, embedded in InGaN layers, are a potential material for construction of the electron blocking
layers (EBLs) in LEDs and LDs. Results of this study may be found in [15].

We would like to focus on the simulations performed in the context of this research. Two structures
were simulated, sample 1839 with higher indium content in the quaternary alloy and sample 1844 with

Layer name Thickness [nm] Sample 1839 Sample 1844

GaN 1 110 GaN GaN

AlGaN 21 Al14%Ga86%N Al15%Ga85%N

GaN 2 10 GaN GaN

InGaN 1 40 In10.8%Ga89.2%N In6.8%Ga93.2%N

AlInGaN 18 Al18%In5.5%Ga76.5%N Al15%In2.5%Ga82.5%N

InGaN 2 18 In0.6%Ga99.4%N In7%Ga93%N

Table 2.12: Schemata of devices used for study of the quaternary AlInGaN alloys. All layers are
n-doped with 2× 1018 cm−3 donor concentration.
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Figure 2.56: Band diagrams of the low-In (1844 - upper diagram) and high-In (1839 - lower diagram)
samples under low (dashed lines) and high (solid lines) optical excitations. The blue and cyan lines
represent conduction and valence bands respectively. The red and green lined represent electron and
hole Fermi levels.
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Figure 2.57: Carrier concentration in the low-In (1844 - upper diagram) and high-In (1839 - lower
diagram) samples under low (dashed lines) and high (solid lines) optical excitations. The red and
green lines represent electrons and holes, respectively.

lower indium content (table 2.12).

The optical emission is proportional to combined density of the electrons and holes. In the classical
statistics used here, the carrier’s density is the inverse exponential function of the band energy and the
Fermi energy difference. Thus it is the lowest for the largest difference. As shown in figure 2.56, this
energy difference is relatively small for the uniform regions and it changes drastically in the structure
regions suggesting huge density changes there, thus it is useful to plot the density of carriers across
the samples. It is expected that the electron density dominates in n-doped bulk GaN. The relation
between densities in other regions may be compared using diagrams presented in figure 2.57.

The above diagrams indicate that in GaN bulk, the electron concentration dominates, and that
even relatively high excitation cannot compensate the difference, though the hole concentration is rel-
atively much higher for higher excitation. The electron concentration is virtually unchanged. In the
structural part, in the AlGaN and GaN layers, the hole concentration dominates, while the electrons
are swept away. The concentration difference is relatively weakly affected by the optical excitation.
The most complex behavior is observed for In-containing part. It is shown that in InGaN layers,
the electron concentration is relatively high, induced by polarization charges at InGaN/AlGaN in-
terfaces. The concentration is unaffected by the optical excitation. Naturally, as expected the holes
are swept away to the opposite side of the InGaN layer. These concentrations are much different in
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Figure 2.58: Optical recombination intensity normalized to unity, in the low-In (1844 - upper diagram)
and high-In (1839 - lower diagram) samples under low (dashed lines) and high (solid lines) optical
excitations.
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Figure 2.59: Electric field in the low-In (1844 - upper diagram) and high-In (1839 - lower diagram)
samples under low (dashed lines) and high (solid lines) optical excitations.

the majority of the sample volume. Thus it is expected that the optical recombination is controlled
by the minority carriers, with the majority carriers abundant. The recombination rate was therefore
calculated assuming that the minority carriers control the recombination rate. The recombination
intensity was calculated assuming classical model which could be affected by the quantum effects that
are not directly incorporated into the model used.

From these results it follows that the two regions contribute significantly to the optical emission
form the sample. The first is the GaN bulk, where the recombination is lower by two orders of
magnitude than the maximal but the extent of the region compensates that leading to considerable
emission form that region. The second, the maximum originates from the InGaN layer, close to GaN.
The emission region is shifted in function of the optical excitation power. It is unaffected by the
indium content.

The other features may be deduced from the distribution of the electric field within the samples,
presented in figure 2.59. As it is shown, the electric field is zero in the GaN bulk. Thus, the emission
should be intensive and short lived. The emission energy should be close to the bandgap, corrected
by the exciton energy. The second peak originates from the InGaN layer. Its energy should be lower
due to presence of indium, reducing the bandgap and also due to the electric field. The electric field
is considerable and strongly depends on the excitation (see also figure 2.60). Thus the emission is
characterized by long times, and also by considerable change with time. For longer time the redshift
should be observed due to increase of the electric field. The third emission source is located within the
InGaN layer, adjacent to the surface. The simulation result indicate that the main emission is form



148 CHAPTER 2. NUMERICAL SIMULATIONS OF SEMICONDUCTOR DEVICES

180 181 182 183 184 185
Distance [nm]

−0.14
−0.12
−0.10
−0.08
−0.06
−0.04
−0.02

0.00
0.02
0.04
0.06
0.08
0.10
0.12

Fi
e
ld

 [
M

V
/c

m
]

1017  cm−3  s−1

1018  cm−3  s−1

1019  cm−3  s−1

1020  cm−3  s−1

1021  cm−3  s−1

Figure 2.60: Electric field in the high-In (1839) samples near the InGaN1/AlInGaN interface for optical
excitations between 1× 1017 cm−3s−1 and 1× 1021 cm−3s−1.

the region close to AlGaInN, but this conclusion may be affected by the presence of surface related
field which may shift the carriers close to the surface. The emission is from the considerable field
region in case of low In content. In case of high-In content, the emission is from reduced field. Thus
the emission should be relatively shorter, but still quite long lived. The emission energy will show
moderate redshift for low In content. For the high-In sample the emission energy should not change.
From these data it follows that the light is emitted from GaN and InGaN layers. The quaternary

AlGaInN layer will not emit light in any of the studied cases. Thus such layer is not suitable for
quantum wells but it may be successfully used for construction of the EBL. These results are in
agreement with the results already suggested in [116].
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3.1 Linearization method

The van Roosbroeck equations (or drift-diffusion equations, see section 2.5.3), constitute a nonlinear
system. Therefore some kind of linearization must be used to numerically find approximate solutions
of these equations. The Banach iteration scheme for drift-diffusion equations is proposed in [76]. To
obtain linear equations, the algorithm uses the Picard method. Additionally convex combinations
are used to improve convergence, i.e. for a given approximation ui of i-th iteration, let T (ui) denote
approximate solution of a given equation with the Picard method (see (3.1.8) and (3.1.9)). Then ui+1

is given by

ui+1 = (1 − ω)ui + ωT (ui), (3.1.1)

where ω ∈ (0, 1]. The existence of fixed point is proven, and then it is shown that for sufficiently small
ω, the simple iteration scheme will converge under additional assumptions on boundary values.

In [30] similar method were proposed, which involves solving of decoupled system with quasi-
Newton method for Poisson equation (2.5.23) and simple iteration scheme for continuity equations
(2.5.15). The convergence is proven for small bias and zero recombination (see sections 2.3, 2.6
for physical details). Numerical simulations are presented, which demonstrate convergence of the
algorithm. In these simulations, abstract devices are used.

In early simulations, our first choice of a linearization was the Picard method. It is most straight-
forward choice, as to use it it is only necessary to implement a solver for linear elliptic equations, which

149
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is also needed for more sophisticated methods. Unfortunately our simulations with the Picard method
did not achieved satisfactory results. The method was successful, but to obtain convergence we used ω
as in (3.1.1) close to zero. The number of iterations was highly dependent on the length of device. For
example, for a short GaN p-n homojunction, 200 nm long, the iteration number was of order 103, while
for 2 µm p-n homojunction it is of order 106. Similar effect is discussed in [55]. We also observed the
dependence of iteration number on material parameters, like for example SRH quasiparticle lifetimes,
but with no clear pattern. These numbers of iterations are generally prohibitive. While this method
may be used to some extent in one dimension with low number of nodes, it is unfeasible otherwise.
In our numerical code, unknown functions and computations are performed in SI units, i.e. the

electrostatic potential in volts, quasi-Fermi levels in joules, distance in meters, concentrations in m−3,
etc. Naturally, some of the causes of the big iteration number may be mitigated by appropriate scaling
of the unknown functions or specific discretization schemes. However, this approach is feasible when
the equations are given, i.e. they shall not be altered. In our case, our fundamental assumption was
that the drift-diffusion equations should be altered to incorporate additional physical effects, specific
to gallium nitride devices, which would be gradually included. Examples of such effects, not initially
incorporated in our model, are: trap-assisted tunneling, ionization of traps, Auger recombination,
polarization charges, carrier generation due to illumination.
It is obvious that the discretization or linearization cannot account for an arbitrary generalization

of the model, but our aim was to make it possibly broad. The assumption here was that whether
the equations can change, they should remain elliptic differential equations, generally with the same
unknown variables. On the other hand, additional physical phenomena are often represented by
modifications of underlying equations. These modifications can be found in the literature, but there
is additional effort necessary to make appropriate scaling, if the scaled equations are used. This
approach, while simple in theory, is a tedious and error-prone task. There is no clear method of
debugging the modified code, especially due to lack of closed-form solutions of the van Roosbroeck
equations. Thus to diminish chances of introducing errors, we decided to use SI units for physical
variables, and we do not use scaling of variables. We also used quite general discretizations of elliptic
differential equations, discussed in detail in section 1.3.

3.1.1 Newton method

A natural choice for solution of a nonlinear system of algebraic equations is the Newton method [33, 59].
This method is originally intended to finding roots of the nonlinear functions. LetG : RJ → R

J . Vector
ξ∗ ∈ R

J , such that G(ξ∗) = 0 may be approximated by Newton method using the following iterative
process:

ξ0 — a given initial approximation of ξ
∗,

ξi = ξi−1 − [DG(ξi−1)]
−1G(ξi−1).

(3.1.2)

The main advantage of this method is fast, quadratic local convergence. On the other hand, good
initial approximation must be provided, otherwise the method does not have to converge at all.
To use the Newton iteration to our problem, we do the following. Let ψ,Fn, Fp ∈ Xh(Ω) be some

approximations of the potential and quasi-Fermi levels respectively. Let us denote

ψ = [ψ1, . . . , ψJ ], Fn = [Fn,1, . . . , Fn,J ], Fp = [Fp,1, . . . , Fp,J ], (3.1.3)

where ψj , Fn,j , Fp,j ∈ R are the coefficients of ψ,Fn, Fp ∈ Xh(Ω) in a basis of the discrete space Xh(Ω)
and J is a dimension of this space. We define ξ as

ξ = [ψ,Fn, Fp]. (3.1.4)



3.1. LINEARIZATION METHOD 151

p-GaN
Nd = 0

Na = 5 10
19
cm

-3

d = 300 nm

n-GaN

Nd = 5 10
18
cm

-3

Na = 0

d = 300 nm

n-GaN

Nd = 5 10
18
cm

-3

Na = 0

d = 499 nm

QW - In0.1Ga0.9N

Nd = 5 10
16
cm

-3

Na = 0

d = 3 nm

B - In0.015Ga0.9N

Nd =5 10
18
cm

-3

Na = 0

d = 5 nm

QW - In0.1Ga0.9N

Nd = 5 10
16
cm

-3

Na = 0

d = 3 nm

p-GaN
Nd = 0

Na = 5 10
19
cm

-3

d = 498 nm

Figure 3.1: Devices used in testing linearization algorithms: a p-n homojunction and a two quantum
well heterostructure.

We would like to use the Newton method to find an approximate solution of the discretized problem
(1.2.1). Therefore let aψ, fψ, an, fn, ap, fp denote discrete problem operators (Composite Discontinuous
Galerkin Method operators as in section 1.3.2) for left hand sides and right hand sides of the equations
(1.2.1). Then let us define residual functions

Gψ,j(ψ,Fn, Fp) := aψ(ψ,Fn, Fp, ϕ(j))− fψ(ψ,Fn, Fp, ϕ(j)),

Gn,j(ψ,Fn, Fp) := an(ψ,Fn, ϕ(j))− fn(ψ,Fn, Fp, ϕ(j)),

Gp,j(ψ,Fn, Fp) := ap(ψ,Fp, ϕ(j))− fp(ψ,Fn, Fp, ϕ(j)),

(3.1.5)

where {ϕ(j)}Jj=1 is the base of Xh(Ω). Note that operators fψ, an, fn, ap, fp are nonlinear in ψ, Fn, Fp,
and linear in ϕ(j).
Then we define coupled residual function G as:

G(ξ) := [Gψ(ξ), Gn(ξ), Gp(ξ)], (3.1.6)

where

Gψ(ξ) := [Gψ,1(ξ), . . . , Gψ,J (ξ)],

Gn(ξ) := [Gn,1(ξ), . . . , Gn,J (ξ)],

Gp(ξ) := [Gp,1(ξ), . . . , Gp,J(ξ)].

(3.1.7)

If G(ξ) is zero, then ξ is a discrete solution. We may then pick some initial approximation ξ0 and use
the Newton method to find the approximate solution.
The Newton method is very sensitive to the initial approximation. Unfortunately good initial

approximations for the drift-diffusion model are available only for devices in the equilibrium state (see
section 2.5.4). Thus the idea is to start a simulation from the equilibrium state, and then gradually
increase the bias to the given value, which corresponds to change of the boundary conditions. The
sketch of the algorithm is as follows:

ξ0 := initial approximation();
i := 1;
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for bias:=0 to bias max step bias step do
while ‖G(ξi−1)‖ is not small do
si := −[DG(ξi−1)]

−1G(ξi−1);
ξi := ξi−1 + si;
i := i+ 1;
end while
end for

In the above schema the bias max denotes the target voltage of the device. In this method we
clearly have two iterations. The inner iteration is based on the Newton method. The outer iteration
advances the bias. For example, to perform a simulation of device’s operation under 3V bias, we may
take 0.1V bias step and simulate series of biases: 0V, 0.1V, 0.2V, . . . , 3V. We assume that for no
bias there is a good initial approximation, and then the successive solutions are initial approximations
for steps to follow. Thus the outer loop is a sort of homotopy method.

As mentioned in section 2.5.6, the bias is introduced to van Roosbroeck equations by boundary
conditions. It is not explicitly denoted above, but change of the bias modifies the operator G. From
this perspective we see that the inner loop is the Newton method for the operator G and a given bias,
while the outer loop changes slightly the operator G by advancing the bias, i.e. setting appropriate
boundary conditions.

While this outer loop may seem as an unnecessary additional effort, in fact it is often beneficial. For
example, to simulate a current-voltage characteristic or a light-current characteristic, it is necessary
to have simulations for a range of biases.

Unfortunately this straightforward algorithm does not perform well for the drift-diffusion simula-
tions of GaN-based devices. While the iteration number (per inner loop) is mostly invariant in a device
length or material parameters, the step change in outer iteration must be small to prevent divergence.
The divergence is often a direct consequence of overflows or underflows, which emerge easily due to
the exponential character of coefficients of the continuity equations. Also taking very small bias step
increases the simulation time.

3.1.2 Newton method with backtracking

The convergence by may be improved by use the backtracking method for the Newton iteration [33].
The idea is to scale the Newton method step by a coefficient 0 < λ ≤ 1 in every iteration to ensure
decrease of the norm ‖G(ξ)‖ for some norm ‖·‖. It can be shown [33] that if the Jacobian is nonsingular,
then it is possible to find λ small enough to reduce the norm ‖G(ξ)‖. When the approximation ξ is
sufficiently close to the solution, λ equal to one may be taken and from then the convergence is as
good as for the standard Newton method.

The algorithm with very simple strategy of choosing λ may be written as follows (we omit the
outer iteration, as it does not change):

while ‖G(ξi−1)‖ is not small do
si := −[DG(ξi−1)]

−1G(ξi−1);
λi := 1;
ξi := ξi−1 + si;
while ‖G(ξi)‖ > ‖G(ξi−1)‖ do
λi := λi/2;
ξi := ξi−1 + λi · si;
end while
i := i+ 1;
end while
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Figure 3.2: An example of a simulation of the 600 nm GaN p-n diode simulated using the Newton
method with linear backtracking. The bias is 1.38 V.

There are naturally more subtle backtracking methods. For example, they look for a minimum of
function g(λ) := ‖G(ξi−1 + λsi)‖ approximating it by a polynomial function. In general, smaller λi
coefficients results in slower convergence.

The following example demonstrates that this modification still needs improvement. We present
a simulation of a p-n GaN diode, which is a fairly simple device (figure 3.1). The result of 11th outer
step of the simulation is shown in figure 3.2. Note the nonphysical fluctuations of the functions Fn,
Fp. However, the residuum size ‖G(ξi)‖ does not indicate any problems. For the initial approximation
(from the previous bias-step), the residuum was 1.8 × 1011, then four steps of the Newton method
were performed with λ = 1, which reduced the residuum as follows: 3.4 × 106, 6.5 × 103, 2.7 × 10−2,
6.6 × 10−4. Thus the magnitude of the residuum was reduced by 14 orders of magnitude, which is
close to the machine precision.

Unfortunately this iteration diverged few outer steps later due to underflow. However, this is not
a general behavior, sometimes such fluctuations vanish for a large bias and the iteration does not
diverge.

Still the question remains why such an nonphysical behavior may be present when the residuum
is so small. The reason is that n and p are the coefficients of the continuity equations, which formally
correspond to Fn and Fp, respectively. On the left part of this device, where the fluctuations of Fn
emerged, the coefficient n is very small, more than a 20 orders of magnitude smaller than on the other
side of the device. Therefore this error is completely neglected by this algorithm due to the precision
of the floating point arithmetic. Similar effect is observed for Fp and p.

This example is not a isolated case. We observed such an effect for many devices, varying from
simple p-n homojunctions to laser heterostructures. This behaviour is repetitive, as our code is
deterministic. Changing the discretization, number of steps, or device’s parameters may affect this
problem, either introducing or ceasing it.

This phenomenon indicates also an additional problem — due to the nature of floating-point
arithmetic, the residual norm alone is inadequate to evaluate whether a given approximation is close
to a discrete solution in practice. We will return to this problem in next section.
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Figure 3.3: Comparison of simulation results of the 600 nm GaN p-n diode simulated using: a) the
Newton method with linear backtracking, b) the Newton method with our modification. The bias is
1.38 V.

3.1.2.1 Modification of the Newton method

As we demonstrated, the weakness of the backtracking algorithm presented is the lack of good estimates
of the quality of discrete approximations, as the residuum alone is insufficient. In this section we would
like to show how to get such an estimate. Inspired by [56], we would like to rewrite the problem in
the Banach iteration manner.
Let (ψ0, Fn,0, Fp,0) be some initial approximation. Let us define function T as

ξi = T (ξi−1), (3.1.8)

where ξi = (ψi, Fn,i, Fp,i) is a solution of the discrete version of a following system of differential
equations

∇ ·
(

ε0ε∇ψi
)

= −qC(ψi−1, Fn,i−1, Fp,i−1),

∇ ·
(

µnn(ψi−1, Fn,i−1)∇Fn,i
)

= qR(ψi−1, Fn,i−1, Fp,i−1),

∇ ·
(

µpp(ψi−1, Fp,i−1)∇Fp,i
)

= −qR(ψi−1, Fn,i−1, Fp,i−1),

(3.1.9)

where ξi−1 = (ψi−1, Fn,i−1, Fp,i−1). If ξi = ξi−1, then ξi is a solution of the discrete problem. Note
that (3.1.9) is a system of three independent linear differential equations, so T (ξi−1) may be computed
easily.
We do not aim at finding a solution by Banach iteration for T , as generally it is not a contraction.

We would like to use T for estimate of the quality of solutions in a following manner. Let us define H
as

H(ξ) := T (ξ)− ξ. (3.1.10)

Assume that ξi−1 is close to the solution. Then ξi = T (ξi−1) ≈ ξi−1. Unlike n and p, functions ψ, Fn
and Fp do not express exponential behavior, and they are of similar order of magnitude in appropriate
choice of units (ψ in volts; Fn, Fp in electronvolts). Therefore elements of the vector H(ξi−1) do not
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vary by orders of magnitude and ‖H(ξi−1)‖ may be used as an estimate of an approximation ξi−1,
because it has no drawbacks of ‖G(ξi−1)‖.
Therefore we propose the following modification of the inner loop:

while ‖H(ξi−1)‖ is not small do
si := −[DG(ξi−1)]

−1G(ξi−1);
λi := 1;
ξi := ξi−1 + si;
while ‖H(ξi)‖ > (1 + c)‖H(ξi−1)‖ do
λi := λi/2;
ξi := ξi−1 + λi · si;
end while
i := i+ 1;
end while

Generally for c = 0 this modification tends to minimize ‖H(ξi)‖. Our observations show that it is
often favorable to allow limited growth of ‖H(ξi)‖ by setting c > 0. In contrast to the backtracking
method, here we have no guarantee that ‖H(ξi−1)‖ > ‖H(ξi)‖ for any choice of the parameter λ.
To illustrate usefulness of the function H, we revisit our example from the previous section (figure

3.2). The nonphysical solution had a residuum norm 6.6 × 10−4. However, in this case ‖H(ξ)‖ =
1.1× 1014. Therefore without question ξ 6≈ T (ξ), which is the information we expect to get.
We have therefore repeated this simulation, using the algorithm proposed in this section. The result

is presented on the figure 3.3b). In this case there are no fluctuations of Fn, Fp, ‖G(ξ)‖ ≈ 3.2× 10−5

and ‖H(ξ)‖ ≈ 4.6×10−6. Therefore the residuum is similar as for the nonphysical case, but the latter
value is much lower, which corresponds to better quality of this approximation.

3.1.3 Comparison

As we pointed out in Section 3.1.1, the backtracking strategy proposed in this paper may prevent
divergence and lead to the approximations, which are physically more favorable. Still we would like
to show that it is also more efficient than the standard Newton method in terms of iteration number
and computational time.

Therefore we compare simulation results for a two quantum well heterostructure presented on
figure 3.1. We take into account the classic Newton method, backtracking linesearch [33], and our
backtracking strategy (section 3.1.2.1). Simulations account for radiative recombination, Shockley-
Read-Hall recombination with trap-assisted tunneling [51], ionization of impurities and polarization
charges.

A goal of these simulations were to find an approximate solution of the drift-diffusion equations for
4 V bias. We have to point out that it is not feasible to compute the solution for nonzero bias with the
Newton method alone, or using the inner loop of the presented algorithms, as the initial approximations
are only available for so-called steady state of a device, when bias is zero. So to perform our simulations
we set bias max to 4 V. Every consecutive solution is used as initial approximation for next inner
loop. It is generally not a waste, as normally they are also used to compute a IV characteristic on
[0, bias max], which are used to compare results with physical experiments in real simulations. To
obtain a fine IV characteristic, it is enough to have 10–20 steps, as it generally should not fluctuate
much.

Since the Newton method is sensitive to an initial approximation, generally more steps should
improve the convergence of the considered methods (number of steps = 1 + bias max/bias step).
However, too much steps would increase the total iteration number and it is not very beneficial to the
IV characteristic.



156 CHAPTER 3. LINEARIZATION AND CONVERGENCE STUDY

Results of these simulations are presented in table 3.1. For each method we performed few simula-
tions with an outer iteration number varying from 21 to 331. Every method considered in this study
diverged if the number of steps was below 21.
In this setting, the most efficient was the Newton method with our backtracking strategy. The

simulation took 284 seconds and 174 iterations in 21 steps. Next one was the linear backtracking on
‖G(ξ)‖, with a stop condition on ‖H(ξ)‖, which took 482 seconds and 377 iterations in 101 steps. For
lower number of steps, the latter method generally did not return satisfactory results. In comparison,
results of standard linear backtracking were acceptable for 161 steps (714 iterations, 898 s). Note that
the classic Newton method with no backtracking was more efficient, so the linear backtracking did not
help.
Generally setting the number of outer steps to a number high enough leads to convergence of every

tested method. Then the number of iterations become similar, as methods need not backtrack due to
good initial approximations. Our simulations also reveal that imposing a stop condition on ‖H(ξ)‖
alone leads to slightly better efficiency.
We must mention also about another possibility, which is the application of the Newton method

directly to a problem H(ξ) = 0. However in this case Jacobian DH is dense [61], and the method is
inefficient.
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Table 3.1: Comparison of efficiency of our modification with linear backtracking and the classic Newton
method, with stop conditions imposed on ‖G(ξ)‖ or ‖H(ξ)‖. In this table we present an outer iterations
number (steps), total iteration number of the Newton method, computation time and average number
of iterations per one step. Simulations were performed on a standard desktop PC. In every simulation,
the Newton method is used for function G

Our backtracking strategy

allows slight increase of ‖H(ξi)‖
Steps Iter. Iter./steps Time (s) Result

21 174 8.29 284 Good

41 227 5.54 360 Good

91 378 4.15 610 Good

101 409 4.05 666 Good

161 566 3.52 919 Good

331 908 2.74 1516 Good

Linear backtracking

stop condition on ‖G(ξi)‖
Steps Iter. Iter./steps Time (s) Result

21 — — — Diverged

41 317 7.73 377 Nonphysical

91 544 5.98 670 Nonphysical

101 465 4.60 581 Nonphysical

161 714 4.43 898 Good

331 870 2.63 1189 Good

Linear backtracking

stop condition on ‖H(ξi)‖
Steps Iter. Iter./steps Time (s) Result

21 — — — Diverged

41 234 5.71 288 Nonphysical

91 354 3.89 452 Nonphysical

101 377 3.73 482 Good

161 519 3.22 676 Good

331 870 2.63 1190 Good

Classic Newton method

stop condition on ‖H(ξi)‖
Steps Iter. Iter./steps Time (s) Result

21 — — — Diverged

41 — — — Diverged

91 — — — Diverged

101 378 3.74 484 Nonphysical

161 510 3.17 665 Good

331 870 2.63 1189 Good

Classic Newton method

stop condition on ‖G(ξi)‖
Steps Iter. Iter./steps Time (s) Result

21 — — — Diverged

41 — — — Diverged

91 — — — Diverged

101 398 3.94 496 Nonphysical

161 612 3.80 762 Good

331 1197 3.62 1497 Good

3.2 Error analysis: numerical experiments

3.2.1 Introduction

In sections 1.6 and 1.7 we derived error estimates for the CWOPSIP discretization and CSIPG dis-
cretization. These estimates are shown for the equilibrium state in formulation presented in section
1.2.2, for one- and two-dimensional domains.

In this section, we would like to verify whether these theoretical estimates hold in simulations.
We start with the model problem as in section 1.2.2. Our simulations, however, are extended also
to non-equilibrium state, presented in section 1.2.1. These simulations are referred to as formulation
u, v, w. Parameters and device schemata used in these simulations are artificial, used for the purpose
of error analysis.

Then we pass to the physical-oriented formulation presented in section 2.5. In this case, we
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must provide simulation parameters, i.e. material parameters, temperature, physical constants, in
appropriate units. Here we present simulations of realistic semiconductor devices based on gallium
nitride. In general, our numerical code carries out calculations in SI units, but input and output
is provided in more natural units for semiconductor simulations, for example electronvolts instead
of joules, centimeters instead of meters, etc. We refer to this series of simulations as formulation
ψ,Fn, Fp.
In either case, we do not have closed-form solutions of the drift-diffusion equations except for the

trivial cases. Thus as a reference solution, we take a discrete approximation computed for a fine
discretization. In general, we use the following scheme. We take some parameter K, for example K ∈
{1, 2, 4, 8, . . .}, and we choose a discretization such that hi(K) := ciK

−1, h(K) := max{hi(K)}Ni=1.
Then we perform simulations for some range of parameters K.

For example, if simulations were performed for K ∈ {1, 2, 4, 8, 16, 32}, then K = 32 is treated as a
reference solution, and L2(Ω)- and H

1(E)-errors of uh are defined as

errorK,L2(Ω) := ‖uK − u32‖L2(Ω), errorK,H1(E) := ‖uK − u32‖H1(E), (3.2.1)

where uK := uh(K) for the grid parameter K ∈ {1, 2, 4, 8, 16}. For other functions (vh, wh, ψh, . . . )
errors are defined analogously. However, in ψ,Fn, Fp formulation, due to difference in magnitudes of
discussed functions it is more favorable to use relative errors defined as

errorK,L2(Ω) :=
‖ψK − ψ32‖L2(Ω)

‖ψ32‖L2(Ω)
, errorK,H1(E) :=

‖ψK − ψ32‖H1(E)

‖ψ32‖H1(E)
. (3.2.2)

In either case, it is convenient to analyze rate of convergence, which we define as

conv rate2K,L2(Ω) :=
errorK,L2(Ω)

error2K,L2(Ω)
, conv rate2K,H1(E) :=

errorK,H1(E)

error2K,H1(E)
. (3.2.3)

3.2.2 Formulation u, v, w

We would like to check whether the error estimate derived in sections 1.6 and 1.7 can be achieved
in numerical simulations. Therefore we present some examples. These examples are not directly
related to any specific semiconductor material. We present simulations of abstract devices mimicking
semiconductor p-n diodes. Our first example is a p-n diode consisting of two layers Ω1,Ω2 (see figure
3.4), corresponding to n-type layer and p-type layer of a p-n homojunction. It has two contacts with
metal electrodes, left and right, denoted by ∂ΩD,1 and ∂ΩD,2. Horizontal boundaries correspond to
the contact with insulator (e.g. air). Parameters of the device are presented in table 3.2. For K = 1,
we divide both layers into two pieces in horizontal direction, while in vertical direction Ω1 is divided
into two pieces, while Ω2 is divided into four pieces.

In these simulations we assume that the operator Q of problem 1.2.1 is some given piecewise-
constant function:

Q(x, u, v, w) := Crad(x). (3.2.4)

This form corresponds to the radiative recombination (see section 2.6.1.1).

We start with the equilibrium state. Then the boundary conditions are as follows: û|∂ΩD,1
= 0 and

û|∂ΩD,2
= ub, where ub is a built-in potential (see section 2.5.5). In context of the u, v, w-formulation,

functions n, p, ρ are defined as

n(x) := eu(x)−v(x), p(x) := ew(x)−u(x), ρ(x) := k1(x)− n(x) + p(x). (3.2.5)

Functions v,w are constant, such that ρ|∂ΩD,1
= 0.
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∂ΩD,1 ∂ΩD,2

∂ΩN

∂ΩN

Ω1 Ω2

Figure 3.4: Schema of the first device used in simulations. It has two layers, corresponding to n-type
layer and p-type layer. Grid for K = 1 is presented.

Table 3.2: Parameters of the first device used in simulations. Nx and Ny denote number of nodes in
horizontal and vertical direction, depending on parameter K.

Param. Ω1 Ω2

Length 1× 10−2 1× 10−2

Width 1× 10−2 1× 10−2

Nx 2K + 1 2K + 1

Ny 2K + 1 4K + 1

ε 3× 10−3 1× 10−3

µn 1× 103 3× 103

µp 1× 102 3× 102

k1 3× 102 −3× 102

Crad 1× 10−3 2× 10−3

Table 3.3: L2(Ω) and H
1(E)-error of uh in function of grid density parameter K for the first device in

equilibrium state. Numbers in brackets denote the rate of convergence. Solution for CSIPG method
with K = 32 is taken as a reference function.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

1 4.4× 10−3 3.3 4.4 × 10−3 3.3

2 1.1× 10−3 (4.0) 1.6 (2.0) 1.1 × 10−3 (4.0) 1.6 (2.0)

4 2.7× 10−4 (4.0) 8.2× 10−1 (2.0) 2.7 × 10−4 (4.0) 8.2× 10−1 (2.0)

8 6.5× 10−5 (4.1) 4.0× 10−1 (2.0) 6.5 × 10−5 (4.2) 4.0× 10−1 (2.0)

16 1.4× 10−5 (4.7) 1.8× 10−1 (2.2) 1.4 × 10−5 (4.7) 1.8× 10−1 (2.2)
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Figure 3.5: Function uh for the first example in the equilibrium state for K = 8. Note one-dimensional
character of the solution.

Results of these simulations are presented in table 3.3. We observe a linear reduction of the H1-
error, which is consistent with our theoretical result, as the H1-norm is bounded by the broken norm
up to a constant factor. We also note the quadratic L2-norm convergence rate. This behavior for
CSIPG method and CWOPSIP method is consistent. The error values are generally very close for
both methods.

The theory presented in sections 1.6 and 1.7 covers only the equilibrium state. Nevertheless
we performed the simulations also for the non-equilibrium state, to verify whether the discussed
discretizations are feasible for simulations of semiconductor devices in general.

Boundary conditions on the function u are similar as before, i.e. û|∂ΩD,1
= 0 and û|∂ΩD,2

=
ub + ubias, where ubias is a nonzero difference potential between the electrodes. On functions v,w we
impose two implicit conditions on ∂ΩD: v|∂ΩD

= w|∂ΩD
and ρ|∂ΩD

= 0, cf. (3.2.5). On ΩN we impose
homogeneous Neumann boundary condition.

Results of this simulation are presented in tables 3.4, 3.5, 3.6. Let us start from the bias of
magnitude 6. For the approximation of function u, results are similar to the equilibrium state. For
the functions v,w, the convergence is much worse. We may roughly estimate that the L2-error reduces
linearly, while the H1-error convergence rate is sublinear, hard to estimate precisely without the exact
solution. In the comparison, we included also the functions n, p. The van Roosbroeck equations
may be formulated in terms of functions u, v, w, but from the physical point of view there are other
logical choices possible [92]. Another choice is u, n, p, as the charge ρ and many recombination models
(radiative, Shockley-Read-Hall, Auger) can be easily expressed in terms of these functions (see sections
2.5 and 2.6).

We observe that the error convergence for n, p is faster than for v,w, and it is similar as for the
function u, although it starts slower for n. Thus simulation of many physical parameters may rely on
better precision of functions n, p despite the slow convergence of functions v,w.
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Table 3.4: L2(Ω) and H
1(E)-error of uh, vh, wh and dependent functions n, p in function of grid density

parameter K for the first device under bias of magnitude 6. Numbers in brackets denote the rate of
convergence. Solution for CSIPG method with K = 32 is taken as a reference function.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: u

1 6.2× 10−2 4.3× 10−1 6.2 × 10−2 4.3× 10−1

2 1.6× 10−2 (3.9) 2.2× 10−1 (2.0) 1.6 × 10−2 (3.9) 2.2× 10−1 (2.0)

4 4.0× 10−3 (4.0) 1.1× 10−1 (2.0) 4.0 × 10−3 (4.0) 1.1× 10−1 (2.0)

8 9.6× 10−4 (4.1) 5.4× 10−2 (2.0) 9.7 × 10−4 (4.2) 5.4× 10−2 (2.0)

16 2.1× 10−4 (4.7) 2.4× 10−2 (2.2) 2.1 × 10−4 (4.7) 2.4× 10−2 (2.2)

Function: v

1 1.9× 10−1 9.3× 10−1 1.9 × 10−1 9.3× 10−1

2 1.1× 10−1 (1.8) 8.8× 10−1 (1.1) 1.1 × 10−1 (1.8) 8.8× 10−1 (1.1)

4 6.0× 10−2 (1.8) 8.1× 10−1 (1.1) 6.0 × 10−2 (1.8) 8.1× 10−1 (1.1)

8 3.1× 10−2 (2.0) 7.0× 10−1 (1.2) 3.1 × 10−2 (2.0) 7.0× 10−1 (1.2)

16 1.2× 10−2 (2.5) 5.2× 10−1 (1.3) 1.2 × 10−2 (2.5) 5.2× 10−1 (1.3)

Function: w

1 1.4 9.3× 10−1 1.4 9.3× 10−1

2 8.1× 10−1 (1.8) 8.8× 10−1 (1.1) 8.1 × 10−1 (1.8) 8.8× 10−1 (1.1)

4 4.5× 10−1 (1.8) 8.1× 10−1 (1.1) 4.5 × 10−1 (1.8) 8.1× 10−1 (1.1)

8 2.3× 10−1 (2.0) 7.0× 10−1 (1.2) 2.3 × 10−1 (2.0) 7.0× 10−1 (1.2)

16 9.0× 10−2 (2.5) 5.2× 10−1 (1.3) 9.0 × 10−2 (2.5) 5.2× 10−1 (1.3)

Function: n

1 6.6× 10−2 3.8× 10−1 6.6 × 10−2 3.9× 10−1

2 3.0× 10−2 (2.2) 3.0× 10−1 (1.3) 3.0 × 10−2 (2.2) 3.0× 10−1 (1.3)

4 1.1× 10−2 (2.8) 1.9× 10−1 (1.5) 1.1 × 10−2 (2.8) 1.9× 10−1 (1.5)

8 3.0× 10−3 (3.6) 1.1× 10−1 (1.8) 3.0 × 10−3 (3.6) 1.1× 10−1 (1.8)

16 6.5× 10−4 (4.6) 5.0× 10−2 (2.2) 6.5 × 10−4 (4.6) 5.0× 10−2 (2.2)

Function: p

1 1.9× 10−1 5.5× 10−1 1.9 × 10−1 5.5× 10−1

2 3.7× 10−2 (5.3) 2.3× 10−1 (2.4) 3.7 × 10−2 (5.3) 2.3× 10−1 (2.4)

4 8.9× 10−3 (4.1) 1.1× 10−1 (2.1) 8.8 × 10−3 (4.2) 1.1× 10−1 (2.1)

8 2.1× 10−3 (4.1) 5.3× 10−2 (2.1) 2.1 × 10−3 (4.1) 5.3× 10−2 (2.1)

16 4.5× 10−4 (4.8) 2.4× 10−2 (2.2) 4.4 × 10−4 (4.8) 2.4× 10−2 (2.2)
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Table 3.5: L2(Ω) and H
1(E)-error of uh, vh, wh and dependent functions n, p in function of grid density

parameter K for the first device under bias of magnitude 10. Numbers in brackets denote the rate of
convergence. Solution for CSIPG method with K = 32 is taken as a reference function.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: u

1 1.4× 10−1 6.3× 10−1 1.2 × 10−1 6.3× 10−1

2 5.4× 10−2 (2.7) 3.6× 10−1 (1.7) 4.2 × 10−2 (3.0) 3.6× 10−1 (1.7)

4 2.3× 10−2 (2.3) 1.9× 10−1 (1.9) 1.8 × 10−2 (2.3) 1.9× 10−1 (1.9)

8 9.1× 10−3 (2.5) 9.3× 10−2 (2.0) 7.7 × 10−3 (2.4) 9.3× 10−2 (2.0)

16 2.7× 10−3 (3.4) 4.1× 10−2 (2.2) 2.3 × 10−3 (3.4) 4.1× 10−2 (2.2)

Function: v

1 3.8× 10−1 9.7× 10−1 3.8 × 10−1 9.7× 10−1

2 2.4× 10−1 (1.6) 9.4× 10−1 (1.0) 2.4 × 10−1 (1.6) 9.4× 10−1 (1.0)

4 1.5× 10−1 (1.6) 9.0× 10−1 (1.0) 1.5 × 10−1 (1.6) 9.0× 10−1 (1.0)

8 9.0× 10−2 (1.7) 8.2× 10−1 (1.1) 8.9 × 10−2 (1.7) 8.2× 10−1 (1.1)

16 4.0× 10−2 (2.2) 6.6× 10−1 (1.2) 4.0 × 10−2 (2.2) 6.6× 10−1 (1.2)

Function: w

1 5.1× 10−1 9.7× 10−1 5.1 × 10−1 9.7× 10−1

2 3.3× 10−1 (1.6) 9.5× 10−1 (1.0) 3.3 × 10−1 (1.6) 9.5× 10−1 (1.0)

4 2.1× 10−1 (1.6) 9.1× 10−1 (1.0) 2.1 × 10−1 (1.6) 9.1× 10−1 (1.0)

8 1.2× 10−1 (1.7) 8.3× 10−1 (1.1) 1.2 × 10−1 (1.7) 8.3× 10−1 (1.1)

16 5.5× 10−2 (2.2) 6.7× 10−1 (1.2) 5.5 × 10−2 (2.2) 6.7× 10−1 (1.2)

Function: n

1 1.5× 10−1 5.5× 10−1 1.3 × 10−1 5.8× 10−1

2 9.4× 10−2 (1.6) 4.1× 10−1 (1.3) 8.1 × 10−2 (1.6) 4.2× 10−1 (1.4)

4 4.9× 10−2 (1.9) 2.6× 10−1 (1.6) 4.4 × 10−2 (1.8) 2.6× 10−1 (1.6)

8 2.0× 10−2 (2.4) 1.4× 10−1 (1.9) 1.9 × 10−2 (2.3) 1.4× 10−1 (1.9)

16 6.0× 10−3 (3.4) 6.3× 10−2 (2.2) 5.6 × 10−3 (3.3) 6.3× 10−2 (2.2)

Function: p

1 1.6× 10−1 6.2× 10−1 1.4 × 10−1 6.1× 10−1

2 8.6× 10−2 (1.9) 3.1× 10−1 (2.0) 7.6 × 10−2 (1.9) 3.0× 10−1 (2.0)

4 4.6× 10−2 (1.9) 1.8× 10−1 (1.7) 4.3 × 10−2 (1.8) 1.8× 10−1 (1.6)

8 2.0× 10−2 (2.3) 1.1× 10−1 (1.7) 1.9 × 10−2 (2.3) 1.1× 10−1 (1.7)

16 5.9× 10−3 (3.3) 5.0× 10−2 (2.1) 5.7 × 10−3 (3.3) 5.0× 10−2 (2.1)
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Table 3.6: L2(Ω) and H
1(E)-error of uh, vh, wh and dependent functions n, p in function of grid density

parameter K for the first device under bias of magnitude 16. Numbers in brackets denote the rate of
convergence. Solution for CSIPG method with K = 32 is taken as a reference function.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: u

1 9.2× 10−2 4.2× 10−1 1.0 × 10−1 4.2× 10−1

2 1.3× 10−1 (0.7) 5.4× 10−1 (0.8) 1.3 × 10−1 (0.8) 5.2× 10−1 (0.8)

4 8.7× 10−2 (1.5) 4.2× 10−1 (1.3) 8.5 × 10−2 (1.5) 4.1× 10−1 (1.3)

8 3.4× 10−2 (2.6) 1.8× 10−1 (2.4) 3.4 × 10−2 (2.5) 1.8× 10−1 (2.3)

16 9.2× 10−3 (3.7) 5.1× 10−2 (3.5) 9.4 × 10−3 (3.6) 5.2× 10−2 (3.4)

Function: v

1 8.4× 10−1 9.7× 10−1 7.9 × 10−1 9.7× 10−1

2 6.4× 10−1 (1.3) 9.6× 10−1 (1.0) 5.7 × 10−1 (1.4) 9.6× 10−1 (1.0)

4 4.4× 10−1 (1.5) 9.2× 10−1 (1.0) 4.1 × 10−1 (1.4) 9.2× 10−1 (1.0)

8 2.5× 10−1 (1.8) 8.5× 10−1 (1.1) 2.4 × 10−1 (1.7) 8.5× 10−1 (1.1)

16 1.1× 10−1 (2.3) 6.9× 10−1 (1.2) 1.1 × 10−1 (2.3) 6.9× 10−1 (1.2)

Function: w

1 3.2× 10−1 9.7× 10−1 3.2 × 10−1 9.7× 10−1

2 2.3× 10−1 (1.4) 9.6× 10−1 (1.0) 2.3 × 10−1 (1.4) 9.6× 10−1 (1.0)

4 1.6× 10−1 (1.4) 9.3× 10−1 (1.0) 1.6 × 10−1 (1.4) 9.3× 10−1 (1.0)

8 9.4× 10−2 (1.7) 8.6× 10−1 (1.1) 9.4 × 10−2 (1.7) 8.6× 10−1 (1.1)

16 4.3× 10−2 (2.2) 7.0× 10−1 (1.2) 4.3 × 10−2 (2.2) 7.0× 10−1 (1.2)

Function: n

1 2.7 4.3 9.5 × 10−1 2.0

2 2.0 (1.4) 4.4 (1.0) 1.1 (0.8) 2.7 (0.7)

4 9.3× 10−1 (2.2) 2.7 (1.6) 7.0 × 10−1 (1.6) 2.2 (1.2)

8 3.0× 10−1 (3.1) 1.2 (2.3) 2.6 × 10−1 (2.7) 1.1 (2.0)

16 7.6× 10−2 (3.9) 4.7× 10−1 (2.5) 6.9 × 10−2 (3.7) 4.7× 10−1 (2.4)

Function: p

1 2.7 3.6 1.1 2.0

2 2.2 (1.2) 5.2 (0.7) 1.4 (0.8) 3.9 (0.5)

4 1.1 (1.9) 4.6 (1.1) 9.3 × 10−1 (1.5) 4.2 (0.9)

8 3.8× 10−1 (2.9) 2.5 (1.9) 3.6 × 10−1 (2.6) 2.4 (1.7)

16 1.0× 10−1 (3.8) 1.1 (2.3) 9.8 × 10−2 (3.6) 1.1 (2.3)



164 CHAPTER 3. LINEARIZATION AND CONVERGENCE STUDY

Length

0.000
0.005

0.010
0.015

0.020

W
id
th

0.000

0.002

0.004
0.006

0.008
0.010

u

−1

0

1

2

3

4

5

Figure 3.6: Function uh for the first example for the bias of magnitude 16. Note one-dimensional
character of the solution.

For higher biases (tables 3.5, 3.6) the trend is similar, however we observe slower start for u, n, p.
This effect may be due to the fact, that generally higher bias increases coupling between the van
Roosbroeck equations (1.2.1):

−∇ · (ε∇u∗) = k1 − n+ p,

−∇ · (µneu
∗−v∗∇v∗) = P (u∗, v∗, w∗),

−∇ · (µpew
∗−u∗∇w∗) = −P (u∗, v∗, w∗).

(3.2.6)

Let us take a closer look on this system. For small bias, the majority carrier concentrations (n in n-
type regions, p in p-type regions) do not increase considerably, thus the right-hand side of the Poisson
equation does not change much in comparison with the equilibrium case. Main difference in u is due
to the Dirichlet boundary conditions accounting for increased bias. The recombination rate P is also
small, so while v,w depends strongly on u due to the exponent in the coefficients, this is not the case
in the other direction. Also coupling between v and w is loose.

On the other hand, under high bias the recombination rate P is big, and the concentrations n, p
are both of similar order of magnitude. Thus coupling between unknown functions is strong, coming
both from the coefficients as well as from the right-hand sides of the respective equations. Errors of
discrete solutions thus accumulate and the convergence rate is worse.

As can be observed in figures 3.5, 3.6, in this case the solution has a one-dimensional nature. To
study more sophisticated behavior, we introduce a second device with a more complex structure (figure
3.7, see table 3.7 for “material” parameters). This is also a p-n diode, but it has contacts attached to
the horizontal edges of the device.

Plots of the functions uh, vh, wh for simulations with K = 8 are presented in figures 3.8, 3.9. For
the equilibrium state, the solutions uh preserve one-dimensional character despite of position of the
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Table 3.7: Parameters of second device used in simulations.
Param. Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

Length 5× 10−3 5× 10−3 1× 10−2 1× 10−2 5× 10−3 5× 10−3

Width 1× 10−2 1× 10−2 1× 10−2 1× 10−2 1× 10−2 1× 10−2

Nx 4K + 1 4K + 1 2K + 1 2K + 1 4K + 1 4K + 1

Ny 4K + 1 2K + 1 2K + 1 2K + 1 2K + 1 4K + 1

ε 3× 10−3 3× 10−3 1× 10−3 1× 10−3 3× 10−3 3× 10−3

µn 1× 103 1× 103 3× 103 3× 103 1× 103 1× 103

µp 1× 102 1× 102 3× 102 3× 102 1× 102 1× 102

k1 3× 102 3× 102 5× 102 −5× 102 −3× 102 −3× 102

Crad 1× 10−3 1× 10−3 2× 10−3 2× 10−3 1× 10−3 1× 10−3

∂ΩN ∂ΩN

∂ΩN

∂ΩN

∂ΩD,2

∂ΩD,1

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

Figure 3.7: Schema of the second device used in simulations. Left contact is attached to bottom edge
of Ω1 (gray color) and right contact is attached to top edge of Ω6. Grid for K = 1 is presented.

contacts. This behavior is generally preserved for small bias. For high bias, however, we clearly see
that this is not the case, especially near the contacts. On the other hand, functions vh, wh do not
vary much, besides of proximity of the contacts. Even for high biases we do not observe significant
variations.
As we see in table 3.8, the convergence rates are similar as for the first device for the equilibrium

state: linear convergence of H1(E)-error and quadratic convergence of L2(Ω)-error for functions u, n, p
and sublinear convergence of L2-error for functions v,w. We performed simulations also for bias 6,
10 and 16 (tables 3.9, 3.10, 3.11). We conclude that these results are in agreement with our previous
observations, i.e. the convergence starts slower if bias is higher.
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Figure 3.8: Function uh for the second example in the equilibrium state (left) and for bias equal to 16
(right) for K = 8.

Table 3.8: L2(Ω) and H
1(E)-error of uh in function of grid density parameter K for the second device

in equilibrium state. Numbers in brackets denote the rate of convergence.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

1 7.4× 10−3 5.9 7.4 × 10−3 5.9

2 2.0× 10−3 (3.8) 3.0 (2.0) 2.0 × 10−3 (3.8) 3.0 (2.0)

4 5.0× 10−4 (3.9) 1.5 (2.0) 5.0 × 10−4 (3.9) 1.5 (2.0)

8 1.2× 10−4 (4.1) 7.4× 10−1 (2.0) 1.2 × 10−4 (4.1) 7.4× 10−1 (2.0)

16 2.6× 10−5 (4.7) 3.3× 10−1 (2.2) 2.6 × 10−5 (4.7) 3.3× 10−1 (2.2)
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Table 3.9: L2(Ω) and H
1(E)-error of uh, vh, wh and dependent functions n, p in function of grid density

parameter K for the second device for ubias = 6. Numbers in brackets denote the rate of convergence.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: u

1 6.4× 10−2 5.7× 10−1 6.4 × 10−2 5.7× 10−1

2 1.8× 10−2 (3.5) 3.0× 10−1 (1.9) 1.8 × 10−2 (3.5) 3.0× 10−1 (1.9)

4 4.7× 10−3 (3.9) 1.5× 10−1 (2.0) 4.7 × 10−3 (3.9) 1.5× 10−1 (2.0)

8 1.2× 10−3 (4.1) 7.5× 10−2 (2.0) 1.2 × 10−3 (4.1) 7.5× 10−2 (2.0)

16 2.5× 10−4 (4.7) 3.4× 10−2 (2.2) 2.5 × 10−4 (4.7) 3.4× 10−2 (2.2)

Function: v

1 7.9× 10−2 9.9× 10−1 7.9 × 10−2 9.9× 10−1

2 3.9× 10−2 (2.0) 9.1× 10−1 (1.1) 3.9 × 10−2 (2.0) 9.1× 10−1 (1.1)

4 1.9× 10−2 (2.1) 8.0× 10−1 (1.1) 1.9 × 10−2 (2.1) 8.0× 10−1 (1.1)

8 8.4× 10−3 (2.2) 6.6× 10−1 (1.2) 8.4 × 10−3 (2.2) 6.6× 10−1 (1.2)

16 3.0× 10−3 (2.8) 4.6× 10−1 (1.4) 3.0 × 10−3 (2.8) 4.6× 10−1 (1.4)

Function: w

1 8.1× 10−1 9.9× 10−1 8.1 × 10−1 9.9× 10−1

2 4.0× 10−1 (2.0) 9.1× 10−1 (1.1) 4.0 × 10−1 (2.0) 9.1× 10−1 (1.1)

4 1.9× 10−1 (2.1) 8.0× 10−1 (1.1) 1.9 × 10−1 (2.1) 8.0× 10−1 (1.1)

8 8.6× 10−2 (2.2) 6.6× 10−1 (1.2) 8.6 × 10−2 (2.2) 6.6× 10−1 (1.2)

16 3.0× 10−2 (2.8) 4.6× 10−1 (1.4) 3.0 × 10−2 (2.8) 4.6× 10−1 (1.4)

Function: n

1 2.8× 10−1 1.0 2.8 × 10−1 1.0

2 4.2× 10−2 (6.6) 3.5× 10−1 (2.9) 4.2 × 10−2 (6.6) 3.5× 10−1 (2.9)

4 9.5× 10−3 (4.4) 1.7× 10−1 (2.1) 9.5 × 10−3 (4.4) 1.7× 10−1 (2.1)

8 2.3× 10−3 (4.2) 8.1× 10−2 (2.1) 2.3 × 10−3 (4.2) 8.1× 10−2 (2.1)

16 4.7× 10−4 (4.8) 3.6× 10−2 (2.2) 4.7 × 10−4 (4.8) 3.6× 10−2 (2.2)

Function: p

1 2.8× 10−1 1.0 2.8 × 10−1 1.0

2 4.2× 10−2 (6.6) 3.5× 10−1 (2.9) 4.2 × 10−2 (6.6) 3.5× 10−1 (2.9)

4 9.5× 10−3 (4.4) 1.7× 10−1 (2.1) 9.5 × 10−3 (4.4) 1.7× 10−1 (2.1)

8 2.3× 10−3 (4.2) 8.1× 10−2 (2.1) 2.3 × 10−3 (4.2) 8.1× 10−2 (2.1)

16 4.7× 10−4 (4.8) 3.6× 10−2 (2.2) 4.7 × 10−4 (4.8) 3.6× 10−2 (2.2)
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Table 3.10: L2(Ω) and H
1(E)-error of uh, vh, wh and dependent functions n, p in function of grid

density parameter K for the second device for ubias = 10. Numbers in brackets denote the rate of
convergence.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: u

1 1.1× 10−1 7.0× 10−1 1.1 × 10−1 7.0× 10−1

2 3.7× 10−2 (3.1) 4.1× 10−1 (1.7) 3.7 × 10−2 (3.1) 4.1× 10−1 (1.7)

4 1.0× 10−2 (3.7) 2.1× 10−1 (1.9) 1.0 × 10−2 (3.7) 2.1× 10−1 (1.9)

8 2.8× 10−3 (3.7) 1.1× 10−1 (2.0) 2.8 × 10−3 (3.6) 1.1× 10−1 (2.0)

16 7.0× 10−4 (3.9) 4.8× 10−2 (2.2) 7.9 × 10−4 (3.6) 4.8× 10−2 (2.2)

Function: v

1 1.6× 10−1 1.0 1.6 × 10−1 1.0

2 8.9× 10−2 (1.8) 9.8× 10−1 (1.0) 8.9 × 10−2 (1.8) 9.8× 10−1 (1.0)

4 5.1× 10−2 (1.7) 9.3× 10−1 (1.1) 5.1 × 10−2 (1.7) 9.3× 10−1 (1.1)

8 2.8× 10−2 (1.8) 8.5× 10−1 (1.1) 2.8 × 10−2 (1.8) 8.5× 10−1 (1.1)

16 1.2× 10−2 (2.3) 6.8× 10−1 (1.3) 1.2 × 10−2 (2.3) 6.8× 10−1 (1.3)

Function: w

1 2.1× 10−1 1.0 2.1 × 10−1 1.0

2 1.2× 10−1 (1.8) 9.8× 10−1 (1.0) 1.2 × 10−1 (1.8) 9.8× 10−1 (1.0)

4 7.0× 10−2 (1.7) 9.3× 10−1 (1.1) 7.0 × 10−2 (1.7) 9.3× 10−1 (1.1)

8 3.9× 10−2 (1.8) 8.5× 10−1 (1.1) 3.9 × 10−2 (1.8) 8.5× 10−1 (1.1)

16 1.7× 10−2 (2.3) 6.8× 10−1 (1.3) 1.7 × 10−2 (2.3) 6.8× 10−1 (1.3)

Function: n

1 1.8× 10−1 8.8× 10−1 1.8 × 10−1 8.8× 10−1

2 3.5× 10−2 (5.1) 3.5× 10−1 (2.6) 3.4 × 10−2 (5.2) 3.5× 10−1 (2.6)

4 1.0× 10−2 (3.4) 1.9× 10−1 (1.9) 1.0 × 10−2 (3.3) 1.9× 10−1 (1.9)

8 3.4× 10−3 (3.0) 9.7× 10−2 (1.9) 3.4 × 10−3 (3.0) 9.7× 10−2 (1.9)

16 9.5× 10−4 (3.5) 4.5× 10−2 (2.2) 1.0 × 10−3 (3.4) 4.5× 10−2 (2.2)

Function: p

1 1.8× 10−1 8.8× 10−1 1.7 × 10−1 8.8× 10−1

2 3.4× 10−2 (5.1) 3.5× 10−1 (2.6) 3.4 × 10−2 (5.2) 3.4× 10−1 (2.5)

4 1.0× 10−2 (3.4) 1.8× 10−1 (1.9) 1.0 × 10−2 (3.3) 1.8× 10−1 (1.9)

8 3.4× 10−3 (3.0) 9.7× 10−2 (1.9) 3.4 × 10−3 (3.0) 9.7× 10−2 (1.9)

16 9.6× 10−4 (3.5) 4.5× 10−2 (2.2) 1.0 × 10−3 (3.4) 4.5× 10−2 (2.2)



3.2. ERROR ANALYSIS: NUMERICAL EXPERIMENTS 169

Table 3.11: L2(Ω) and H
1(E)-error of uh, vh, wh and dependent functions n, p in function of grid

density parameter K for the second device for ubias = 16. Numbers in brackets denote the rate of
convergence.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: u

1 3.5× 10−3 2.2 3.8 × 10−3 2.2

2 2.0× 10−3 (1.7) 1.6 (1.4) 1.9 × 10−3 (2.0) 1.6 (1.4)

4 1.1× 10−3 (1.9) 9.8× 10−1 (1.6) 1.0 × 10−3 (1.8) 9.8× 10−1 (1.6)

8 4.8× 10−4 (2.2) 5.5× 10−1 (1.8) 4.5 × 10−4 (2.2) 5.6× 10−1 (1.8)

16 1.6× 10−4 (3.1) 2.8× 10−1 (2.0) 1.5 × 10−4 (3.0) 2.8× 10−1 (2.0)

Function: v

1 2.3× 10−2 7.5× 101 2.3 × 10−2 7.5× 101

2 1.5× 10−2 (1.6) 7.4× 101 (1.0) 1.4 × 10−2 (1.6) 7.4× 101 (1.0)

4 9.3× 10−3 (1.6) 7.1× 101 (1.0) 9.3 × 10−3 (1.5) 7.1× 101 (1.0)

8 5.4× 10−3 (1.7) 6.6× 101 (1.1) 5.5 × 10−3 (1.7) 6.6× 101 (1.1)

16 2.4× 10−3 (2.2) 5.3× 101 (1.2) 2.5 × 10−3 (2.2) 5.4× 101 (1.2)

Function: w

1 2.5× 10−2 7.6× 101 2.4 × 10−2 7.6× 101

2 1.6× 10−2 (1.6) 7.4× 101 (1.0) 1.5 × 10−2 (1.5) 7.4× 101 (1.0)

4 9.7× 10−3 (1.6) 7.2× 101 (1.0) 9.7 × 10−3 (1.6) 7.2× 101 (1.0)

8 5.5× 10−3 (1.8) 6.6× 101 (1.1) 5.5 × 10−3 (1.8) 6.6× 101 (1.1)

16 2.5× 10−3 (2.3) 5.4× 101 (1.2) 2.5 × 10−3 (2.3) 5.4× 101 (1.2)

Function: n

1 3.5 1.5× 103 1.9 1.0× 103

2 2.3 (1.5) 1.2× 103 (1.2) 1.9 (1.0) 1.0× 103 (1.0)

4 1.3 (1.8) 9.0× 102 (1.3) 1.3 (1.5) 9.1× 102 (1.2)

8 5.7× 10−1 (2.3) 6.0× 102 (1.5) 6.1 × 10−1 (2.1) 6.2× 102 (1.5)

16 1.8× 10−1 (3.1) 3.4× 102 (1.8) 2.1 × 10−1 (2.9) 3.5× 102 (1.8)

Function: p

1 3.6 1.8× 103 2.1 1.5× 103

2 2.4 (1.5) 1.4× 103 (1.3) 2.1 (1.0) 1.3× 103 (1.1)

4 1.3 (1.8) 9.8× 102 (1.4) 1.3 (1.6) 9.8× 102 (1.3)

8 5.8× 10−1 (2.3) 6.3× 102 (1.6) 6.1 × 10−1 (2.2) 6.3× 102 (1.5)

16 1.8× 10−1 (3.1) 3.5× 102 (1.8) 2.1 × 10−1 (2.9) 3.5× 102 (1.8)
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Figure 3.9: Functions vh, wh for the second example in the equilibrium state (left) and for bias equal
to 16 (right) for K = 8.

To this moment it is still not clear whether the slow start emerges mostly due to the coupling of
the equations, or do it also arise due to the two-dimensional character of the solutions. To study the
latter possibility, we introduce a device presented in figure 3.10 (see also table 3.12). This is also a p-n
diode, but this time the interface between a n-type region and a p-type region is not perpendicular to
any axis. The n-type region consists of subdomains Ω7,Ω4,Ω1,Ω2,Ω3, thus it forms a L-shape, and
the remaining subdomains belong to the square-shaped p-type region. The depleted region goes along
the internal boundary of the L-shape.
Simulation results are presented in figures 3.11, 3.12. In this case, function uh clearly exhibits

two-dimensional behaviour even in the equilibrium case.
Error and convergence rates for the equilibrium state is presented in tables 3.13, 3.14. These

results clearly indicate that there is no slow start of convergence for H1(E)-error in this case, despite
of the two-dimensional character of the unknown function.
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Figure 3.10: Schema of the second device used in simulations. Layers Ω1,Ω2,Ω3,Ω4,Ω7 correspond to
the n-type region, while the remainder correspond to the p-type region. Left contact is attached to
whole left edge, while right contact is attached to the boundary of Ω9. Grid for K = 1 is presented.

Table 3.12: Parameters of third device used in simulations.
Param. Ω1,Ω2,Ω3,Ω4,Ω7 Ω5,Ω6,Ω8,Ω9 Grid Nx Ny

Length 1× 10−2 1× 10−2 Ω1 2K + 1 2K + 1

Width 1× 10−2 1× 10−2 Ω2 2K + 1 2K + 1

ε 3× 10−3 1× 10−3 Ω3 2K + 1 2K + 1

µn 1× 103 3× 103 Ω4 2K + 1 2K + 1

µp 1× 102 3× 102 Ω5 4K + 1 4K + 1

k1 3× 102 −3× 102 Ω6 2K + 1 4K + 1

Crad 1× 10−3 2× 10−3 Ω7 2K + 1 2K + 1

Ω8 4K + 1 2K + 1

Ω9 2K + 1 2K + 1
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Figure 3.11: Function uh for the third example in the equilibrium state (left) and for bias of magnitude
8 (right) for K = 4.

Table 3.13: L2(Ω)- and H
1(Ω)-error of uh in function of grid density parameter K for the third device

in equilibrium state. Numbers in brackets denote the estimated rate of convergence.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

1 2.0× 10−2 1.9× 10−1 2.0 × 10−2 1.9× 10−1

2 5.2× 10−3 (3.8) 9.5× 10−2 (2.0) 5.2 × 10−3 (3.8) 9.5× 10−2 (2.0)

4 1.3× 10−3 (3.9) 4.8× 10−2 (2.0) 1.3 × 10−3 (3.9) 4.8× 10−2 (2.0)

8 3.5× 10−4 (3.8) 2.4× 10−2 (2.0) 3.5 × 10−4 (3.8) 2.4× 10−2 (2.0)

16 9.4× 10−5 (3.7) 1.2× 10−2 (2.0) 9.4 × 10−5 (3.7) 1.2× 10−2 (2.0)

32 2.3× 10−5 (4.0) 5.4× 10−3 (2.2) 2.3 × 10−5 (4.0) 5.4× 10−3 (2.2)
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Figure 3.12: Functions vh, wh for the third example in the equilibrium state (left) and for bias of
magnitude 8 (right) for K = 4.
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Table 3.14: L2(Ω)- and H
1(Ω)-error of uh, vh, wh and dependent functions n, p in function of grid

density parameter K for the third device for ubias = 8. Numbers in brackets denote the estimated
rate of convergence.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: u

1 1.9× 10−3 2.2 2.0× 10−3 2.2

2 5.3× 10−4 (3.6) 1.2 (1.9) 5.2× 10−4 (3.8) 1.2 (1.9)

4 1.6× 10−4 (3.3) 5.8× 10−1 (2.0) 1.5× 10−4 (3.5) 5.8× 10−1 (2.0)

8 6.0× 10−5 (2.7) 2.9× 10−1 (2.0) 5.7× 10−5 (2.6) 2.9× 10−1 (2.0)

16 2.4× 10−5 (2.5) 1.4× 10−1 (2.0) 2.2× 10−5 (2.5) 1.4× 10−1 (2.0)

32 8.0× 10−6 (3.1) 6.4× 10−2 (2.2) 4.4× 10−6 (5.0) 6.4× 10−2 (2.2)

Function: v

1 2.7× 10−2 4.6× 101 2.7× 10−2 4.6× 101

2 1.6× 10−2 (1.7) 4.5× 101 (1.0) 1.6× 10−2 (1.7) 4.5× 101 (1.0)

4 9.2× 10−3 (1.7) 4.3× 101 (1.0) 9.2× 10−3 (1.7) 4.3× 101 (1.0)

8 5.2× 10−3 (1.8) 4.0× 101 (1.1) 5.2× 10−3 (1.8) 4.0× 101 (1.1)

16 2.7× 10−3 (1.9) 3.5× 101 (1.1) 2.7× 10−3 (1.9) 3.5× 101 (1.1)

32 1.1× 10−3 (2.4) 2.7× 101 (1.3) 1.1× 10−3 (2.4) 2.7× 101 (1.3)

Function: w

1 3.6× 10−2 6.9× 101 3.6× 10−2 6.9× 101

2 2.2× 10−2 (1.6) 6.7× 101 (1.0) 2.2× 10−2 (1.6) 6.7× 101 (1.0)

4 1.3× 10−2 (1.6) 6.5× 101 (1.0) 1.3× 10−2 (1.6) 6.5× 101 (1.0)

8 7.8× 10−3 (1.7) 6.1× 101 (1.1) 7.8× 10−3 (1.7) 6.1× 101 (1.1)

16 4.2× 10−3 (1.9) 5.4× 101 (1.1) 4.2× 10−3 (1.9) 5.4× 101 (1.1)

32 1.8× 10−3 (2.4) 4.2× 101 (1.3) 1.8× 10−3 (2.4) 4.2× 101 (1.3)

Function: n

1 2.5× 10−1 2.7× 102 2.5× 10−1 2.7× 102

2 8.3× 10−2 (3.1) 1.6× 102 (1.7) 7.8× 10−2 (3.2) 1.6× 102 (1.7)

4 2.7× 10−2 (3.0) 8.8× 101 (1.8) 2.5× 10−2 (3.1) 8.8× 101 (1.8)

8 9.5× 10−3 (2.9) 4.5× 101 (2.0) 9.2× 10−3 (2.8) 4.5× 101 (2.0)

16 3.3× 10−3 (2.9) 2.2× 101 (2.0) 3.1× 10−3 (3.0) 2.2× 101 (2.0)

32 9.3× 10−4 (3.5) 1.0× 101 (2.2) 8.2× 10−4 (3.8) 1.0× 101 (2.2)

Function: p

1 1.6× 10−1 1.5× 102 1.4× 10−1 1.5× 102

2 5.3× 10−2 (3.0) 7.0× 101 (2.1) 4.7× 10−2 (2.9) 7.0× 101 (2.1)

4 2.2× 10−2 (2.4) 3.5× 101 (2.0) 2.1× 10−2 (2.3) 3.5× 101 (2.0)

8 9.2× 10−3 (2.4) 1.8× 101 (2.0) 9.1× 10−3 (2.3) 1.8× 101 (2.0)

16 3.4× 10−3 (2.7) 8.6 (2.0) 3.3× 10−3 (2.7) 8.6 (2.0)

32 9.6× 10−4 (3.5) 3.8 (2.3) 7.6× 10−4 (4.4) 3.8 (2.2)
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3.2.3 Formulation ψ, Fn, Fp: one dimension

After the study of theoretical setting in section 3.2.2, we would like to check whether the error estimates
holds also in simulations of realistic semiconductor devices.

We start from a simple device: a p-n diode. It consists of two physical layers (table 3.15). We
additionally divide these layers to introduce additional narrow layers near the interface of the n-type,
p-type and contacts of the device to improve the convergence. Then in every layer we setup K
equidistant nodes. Simulation is in one-dimension.

We start with the equilibrium case (table 3.16), where we present relative errors of CSIPG and
CWOPSIP numerical solutions for the potential ψ. These results indicate clearly that errors of all
these methods converge linearly to zero in H1(Ω) norm as h → 0. For L2(Ω) norm, the errors drop
quadratically in h. Also note that for given K errors are similar for both discretization methods.

Then we pass to non-equilibrium simulations for 1 V bias (table 3.17). For the potential ψ, the
conclusion is as in equilibrium case. On the other hand, for the quasi-Fermi levels the situation is much
worse. For CSIPG discretization, we observe sublinear convergence on both norms, and the H1(Ω)

Table 3.15: Schemata of devices used in the simulations.
p-n diode

Layer Material Donor doping Acceptor doping Length

n-type GaN 2× 1018 cm−3 0 100 nm

p-type GaN 0 2× 1019 cm−3 100 nm

Blue laser

Layer Material Donor doping Acceptor doping Length

n-base GaN 3× 1018 cm−3 0 1000 nm

n-cladding Al0.1Ga0.9 N 3× 1018 cm−3 0 500 nm

n-waveguide GaN 3× 1018 cm−3 0 100 nm

quantum well In0.2Ga0.8 N 0 0 4 nm

p-EBL Al0.2Ga0.8N 0 2× 1019 cm−3 20 nm

p-cladding Al0.1Ga0.9N 0 1× 1019 cm−3 500 nm

Table 3.16: Relative errors of the potential ψ. Simulation were performed for the p-n diode in the
equilibrium state.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

2 8.7× 10−2 4.6× 10−1 8.7× 10−2 4.6× 10−1

4 1.5× 10−2 (5.8) 2.3× 10−1 (2.0) 1.5× 10−2 (5.8) 2.3× 10−1 (2.0)

8 4.0× 10−3 (3.8) 1.2× 10−1 (1.9) 4.0× 10−3 (3.8) 1.2× 10−1 (1.9)

16 1.2× 10−3 (3.3) 5.8× 10−2 (2.0) 1.2× 10−3 (3.3) 5.8× 10−2 (2.0)

32 3.0× 10−4 (4.1) 2.9× 10−2 (2.0) 3.0× 10−4 (4.1) 2.9× 10−2 (2.0)

64 7.4× 10−5 (4.0) 1.4× 10−2 (2.0) 7.4× 10−5 (4.0) 1.4× 10−2 (2.0)

128 1.8× 10−5 (4.0) 7.2× 10−3 (2.0) 1.8× 10−5 (4.0) 7.2× 10−3 (2.0)

256 4.4× 10−6 (4.1) 3.5× 10−3 (2.0) 4.4× 10−6 (4.2) 3.5× 10−3 (2.0)
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Table 3.17: Relative error of ψ, Fn and Fp. Simulation were performed for the p-n diode under 1 V
bias.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: ψ

2 7.8× 10−2 4.8× 10−1 7.9× 10−2 4.8× 10−1

4 3.0× 10−2 (2.6) 2.7× 10−1 (1.8) 3.0× 10−2 (2.6) 2.7× 10−1 (1.8)

8 7.1× 10−3 (4.2) 1.3× 10−1 (2.0) 7.1× 10−3 (4.2) 1.3× 10−1 (2.0)

16 1.5× 10−3 (4.9) 6.7× 10−2 (2.0) 1.5× 10−3 (4.9) 6.7× 10−2 (2.0)

32 3.7× 10−4 (4.0) 3.4× 10−2 (2.0) 3.7× 10−4 (4.0) 3.4× 10−2 (2.0)

64 9.2× 10−5 (4.0) 1.7× 10−2 (2.0) 9.2× 10−5 (4.0) 1.7× 10−2 (2.0)

128 2.3× 10−5 (4.0) 8.3× 10−3 (2.0) 2.3× 10−5 (4.0) 8.3× 10−3 (2.0)

256 5.5× 10−6 (4.1) 4.1× 10−3 (2.0) 5.5× 10−6 (4.1) 4.1× 10−3 (2.0)

Function: Fn

2 3.0× 10−3 1.0 1.3× 10−2 1.0

4 2.2× 10−3 (1.4) 1.0 (1.0) 9.8× 10−3 (1.4) 1.0 (1.0)

8 1.5× 10−3 (1.4) 1.0 (1.0) 7.1× 10−3 (1.4) 1.0 (1.0)

16 1.1× 10−3 (1.4) 9.8× 10−1 (1.0) 5.1× 10−3 (1.4) 1.0 (1.0)

32 7.5× 10−4 (1.4) 9.6× 10−1 (1.0) 3.6× 10−3 (1.4) 1.1 (1.0)

64 5.1× 10−4 (1.5) 9.3× 10−1 (1.0) 2.6× 10−3 (1.4) 1.1 (0.9)

128 3.3× 10−4 (1.6) 8.7× 10−1 (1.1) 1.8× 10−3 (1.4) 1.3 (0.9)

256 1.9× 10−4 (1.7) 7.6× 10−1 (1.1) 1.3× 10−3 (1.4) 1.7 (0.8)

Function: Fp

2 2.0× 10−3 1.0 1.0× 10−2 1.0

4 1.6× 10−3 (1.3) 1.0 (1.0) 7.6× 10−3 (1.3) 1.0 (1.0)

8 1.2× 10−3 (1.3) 1.0 (1.0) 5.6× 10−3 (1.4) 1.0 (1.0)

16 8.5× 10−4 (1.4) 9.8× 10−1 (1.0) 4.1× 10−3 (1.4) 1.0 (1.0)

32 6.0× 10−4 (1.4) 9.6× 10−1 (1.0) 2.9× 10−3 (1.4) 1.1 (1.0)

64 4.0× 10−4 (1.5) 9.3× 10−1 (1.0) 2.1× 10−3 (1.4) 1.1 (0.9)

128 2.6× 10−4 (1.5) 8.7× 10−1 (1.1) 1.5× 10−3 (1.4) 1.3 (0.9)

256 1.5× 10−4 (1.7) 7.6× 10−1 (1.1) 1.0× 10−3 (1.4) 1.7 (0.8)
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Table 3.18: Relative error of the carrier concentrations n and p. Simulation were performed for the
p-n diode under 1 V bias.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: n

2 2.0× 10−1 8.3× 10−1 2.0× 10−1 8.3× 10−1

4 1.5× 10−1 (1.3) 7.9× 10−1 (1.1) 1.5× 10−1 (1.3) 7.9× 10−1 (1.1)

8 6.7× 10−2 (2.3) 5.7× 10−1 (1.4) 6.7× 10−2 (2.3) 5.7× 10−1 (1.4)

16 2.0× 10−2 (3.4) 3.1× 10−1 (1.9) 2.0× 10−2 (3.4) 3.1× 10−1 (1.9)

32 5.0× 10−3 (3.9) 1.5× 10−1 (2.1) 5.0× 10−3 (3.9) 1.5× 10−1 (2.1)

64 1.3× 10−3 (3.9) 7.3× 10−2 (2.0) 1.3× 10−3 (3.9) 7.3× 10−2 (2.0)

128 3.2× 10−4 (4.0) 3.7× 10−2 (2.0) 3.2× 10−4 (4.0) 3.7× 10−2 (2.0)

256 7.6× 10−5 (4.2) 1.8× 10−2 (2.0) 7.6× 10−5 (4.2) 1.8× 10−2 (2.0)

Function: p

2 9.7× 10−2 7.4× 10−1 9.8× 10−2 7.5× 10−1

4 4.9× 10−2 (2.0) 5.8× 10−1 (1.3) 4.9× 10−2 (2.0) 5.8× 10−1 (1.3)

8 1.8× 10−2 (2.7) 3.2× 10−1 (1.8) 1.8× 10−2 (2.7) 3.2× 10−1 (1.8)

16 5.2× 10−3 (3.5) 1.5× 10−1 (2.2) 5.2× 10−3 (3.5) 1.5× 10−1 (2.2)

32 1.4× 10−3 (3.7) 6.8× 10−2 (2.2) 1.4× 10−3 (3.7) 6.8× 10−2 (2.2)

64 3.6× 10−4 (3.9) 3.3× 10−2 (2.1) 3.6× 10−4 (3.9) 3.3× 10−2 (2.1)

128 8.9× 10−5 (4.0) 1.6× 10−2 (2.0) 8.9× 10−5 (4.0) 1.6× 10−2 (2.0)

256 2.1× 10−5 (4.2) 7.9× 10−3 (2.1) 2.1× 10−5 (4.2) 7.9× 10−3 (2.1)

convergence is much slower. For CWOPSIP, we observe L2(Ω) convergence only. Having in mind
that we do not have exact solution, it is hard to determine whether there is any H1(Ω) convergence
at all in any case. This behavior is analogous to slower convergence of v,w approximations reported
in section 3.2.2. Therefore we also present convergence results for derived functions n, p. For these
functions we observe that the convergence is linear in ‖ · ‖H1(Ω) and quadratic in ‖ · ‖L2(Ω). Errors are
similar for all the methods taken into account. This observation also explains, how could convergence
of ψ be as good as in equilibrium case while Fn, Fp convergence rates is much worse, as generally the
drift-diffusion equations’ coefficients and right hand sides are directly dependent on n, p, not on Fn,
Fp. This effect is consistent with analogous behavior for formulation u, v, w presented in section 3.2.2.

In second approach we proceed to more complex device - blue InGaN laser. The structure used
in this simulation (table 3.15) is simplified a little in comparison with the real laser structure, but
it resembles its essential features: a GaN base, AlGaN claddings, an InGaN quantum well and an
electron blocking layer.

The results are presented in table 3.19. Generally they agree with the conclusions drawn before,
i.e. quadratic L2(Ω) convergence and linear H

1(Ω) convergence of ψ, n, p, but the methods start
slower (from K above 64). Errors of both discretizations are similar for a given K.

Therefore we conclude that it is possible to achieve L2-convergence of the electrostatic potential
and carrier concentrations is quadratic and H1-convergence linear. We also observed sublinear L2-
convergence for the quasi-Fermi levels, while the H1-convergence is very slow and hard to estimate
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Table 3.19: Relative error of the potential ψ, n and p. Simulation were performed for the laser under
2 V bias.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: ψ

16 1.2× 10−3 1.1× 10−1 1.4× 10−3 1.1× 10−1

32 4.5× 10−4 (2.7) 5.8× 10−2 (1.9) 4.5× 10−4 (3.1) 5.8× 10−2 (1.9)

64 1.4× 10−4 (3.2) 2.9× 10−2 (2.0) 1.4× 10−4 (3.2) 2.9× 10−2 (2.0)

128 3.9× 10−5 (3.6) 1.4× 10−2 (2.0) 3.9× 10−5 (3.6) 1.4× 10−2 (2.0)

256 9.6× 10−6 (4.1) 7.0× 10−3 (2.1) 9.6× 10−6 (4.1) 7.0× 10−3 (2.1)

Function: n

16 6.8× 10−2 6.1× 10−1 6.6× 10−2 6.0× 10−1

32 2.9× 10−2 (2.3) 4.4× 10−1 (1.4) 2.9× 10−2 (2.2) 4.4× 10−1 (1.4)

64 1.0× 10−2 (2.9) 2.7× 10−1 (1.6) 1.0× 10−2 (2.9) 2.7× 10−1 (1.6)

128 2.8× 10−3 (3.5) 1.4× 10−1 (1.9) 2.8× 10−3 (3.5) 1.4× 10−1 (1.9)

256 7.3× 10−4 (3.9) 7.2× 10−2 (2.0) 7.3× 10−4 (3.9) 7.2× 10−2 (2.0)

Function: p

16 1.1× 10−3 1.8× 10−1 1.2× 10−3 1.8× 10−1

32 3.1× 10−4 (3.7) 8.8× 10−2 (2.0) 3.0× 10−4 (3.9) 8.8× 10−2 (2.0)

64 7.8× 10−5 (4.0) 4.4× 10−2 (2.0) 7.7× 10−5 (4.0) 4.4× 10−2 (2.0)

128 1.9× 10−5 (4.0) 2.2× 10−2 (2.0) 1.9× 10−5 (4.0) 2.2× 10−2 (2.0)

256 4.7× 10−6 (4.1) 1.1× 10−2 (2.0) 4.6× 10−6 (4.1) 1.1× 10−2 (2.0)

without a closed-form solution.
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3.2.4 Formulation ψ, Fn, Fp: two dimensions

Simulations presented in sections 3.2.2 and 3.2.3 shown that the methods CSIPG and CWOPSIP are
capable of performing simulations with van Roosbroeck equations. In this section, we would like to
conclude convergence testing with two-dimensional simulations of realistic semiconductor devices.

We start with a simulation of a p-n diode (figure 3.13). We use uniform mesh inside layers of the
device, which is nonmatching on the interface of the layers. It is formed by division of the layers to
K parts in the horizontal direction and then by dividing the first layer into 3K parts and dividing
the second part into 2K parts in the perpendicular direction. We start with initial grid for K = 2,
presented in figure 3.14. Since the exact solution is not known, as a reference we use the result of
one-dimensional simulation for K = 1024.

p-GaN
100 nm

n-GaN
100 nm

Figure 3.13: Schema of the n-p diode used in numerical simulations.

Figure 3.14: Initial grid used in numerical simulations of p-n diode.

Table 3.20: Relative errors of the potential ψ. Simulation were performed for the p-n diode in the
equilibrium state, in two dimensions.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

2 1.8 × 10−1 6.9× 10−1 2.3 × 10−1 9.8× 10−1

4 4.5 × 10−2 (4.0) 4.2× 10−1 (1.6) 1.2 × 10−1 (1.9) 5.9× 10−1 (1.7)

8 2.3 × 10−2 (1.9) 3.0× 10−1 (1.4) 3.8 × 10−2 (3.1) 3.2× 10−1 (1.9)

16 9.7 × 10−3 (2.4) 2.1× 10−1 (1.4) 7.7 × 10−3 (4.9) 2.1× 10−1 (1.5)

32 2.8 × 10−3 (3.4) 1.2× 10−1 (1.8) 1.5 × 10−3 (5.1) 1.2× 10−1 (1.8)

64 6.1 × 10−4 (4.6) 5.7× 10−2 (2.0) 4.8 × 10−4 (3.1) 5.7× 10−2 (2.0)

128 1.5 × 10−4 (4.2) 2.9× 10−2 (2.0) 1.3 × 10−4 (3.8) 2.9× 10−2 (2.0)

256 3.5 × 10−5 (4.2) 1.4× 10−2 (2.0) 3.3 × 10−5 (3.9) 1.4× 10−2 (2.0)
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p-GaN
110 nm

In0.1Ga0.9N
3 nm

n-GaN
120 nm

Figure 3.15: Schema of the quantum well structure used in numerical simulations.

Figure 3.16: Initial grid used in numerical simulations of the quantum well. To improve the conver-
gence, p-GaN and n-GaN were splitted into two layers to thicken the grid near the quantum well.

Table 3.21: Relative errors of the potential ψ. Simulation were performed for the single quantum well
in the equilibrium state, in two dimensions.

CSIPG CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

2 5.2× 10−2 3.8× 10−1 7.5× 10−2 4.6× 10−1

4 2.0× 10−2 (2.6) 2.3× 10−1 (1.7) 2.4× 10−2 (3.1) 2.6× 10−1 (1.8)

8 5.2× 10−3 (3.8) 1.1× 10−1 (2.0) 7.3× 10−3 (3.3) 1.2× 10−1 (2.2)

16 1.3× 10−3 (3.9) 5.8× 10−2 (1.9) 1.8× 10−3 (4.0) 5.9× 10−2 (2.0)

32 3.4× 10−4 (4.0) 2.9× 10−2 (2.0) 4.5× 10−4 (4.0) 3.0× 10−2 (2.0)

64 8.5× 10−5 (4.0) 1.5× 10−2 (2.0) 1.1× 10−4 (4.0) 1.5× 10−2 (2.0)

Results of these simulations are presented in table 3.20. Both methods start slowly, for K ≤ 32
error rate is smaller than 2. From K = 64 we observe convergence rate of approximately 2. The error
norms for CSIPG and CWOPSIP are similar.

Then we repeated our simulations for a single quantum well structure (figure 3.15). It is similar to
the p-n diode, but it has a narrow layer between n-type region and p-type region, the quantum well
(see section 2.4). In this case, we introduce five layers in our mesh, while two additional layers are
used to improve the grid in the n-type region and p-type region near the quantum well (figure 3.16).

Results of this simulation is presented in table 3.21 and they generally agree with our previous
simulations. Note that the slow start is absent in this case. This is due to additional layers introduced
near the quantum well, where the function changes are crucial.
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3.3 Discontinuities on interfaces

In this section we would like to generalize discretizations presented in section 1.3 to account for
discontinuities of unknown functions on interfaces. This generalization is necessary to introduce in-
terfacial charges. These charges emerge for example due to polarization effect, present in GaN-based
heterostructures.
Since we discuss the Discontinuous Galerkin Method, the discrete space accounts for discontinuous

functions, and we can introduce discontinuities in a natural way using techniques already established
for imposing continuity.
In this section, we derive one-dimensional discrete problems and we present numerical experiments

of one-dimensional model. However, these problems can be extended to two dimensional domains in
a natural way.

3.3.1 Differential problem

3.3.1.1 Classic formulation

We would like to focus on the one-dimensional problem. Let Ω denote an open interval. We define
nodes {di}Ni=0 such that d0 ≤ d1 ≤ . . . ≤ dN and Ω = (d0, dN ), and subsets Ωi := (di−1, di). Note that
Ω = Ω1 ∪ . . . ∪ ΩN .
Consider the following differential problem











































− d

dx

(

ρi(x)
d

dx
ui(x)

)

= f(x) ∀x ∈ Ωi,

u1(d0) = ū0,

uN (dN ) = ūN ,

ui+1(di)− ui(di) = ūi i ∈ {1, . . . , N − 1},

ρi+1(di)
dui+1

dx
(di)− ρi(di)

dui
dx

(di) = ri i ∈ {1, . . . , N − 1},

(3.3.1)

where f ∈ C(Ω), ρi ∈ C1(Ωi) and u ∈ C2(Ω). We may interpret u = (u1, . . . , uN ) as a piecewise
continuous function with undefined values at nodes. Then ūi for i ∈ {0, N} can be identified with
boundary values and for i ∈ {1, . . . , N − 1} with jumps of the function at the nodal points.

3.3.1.2 Derivation of weak formulation

We define spaces

B =
{

(v1, . . . , vn) : vi ∈ C1(Ωi), i ∈ {1, . . . , N}
}

,

B0 =
{

v ∈ B : v1(d0) = 0 = vN (dN )
}

.
(3.3.2)

Let v ∈ B. We then identify v with a function v : Ω\{d0, . . . , dN} 7→ R defined as

v(x) =

{

vi(x) x ∈ Ωi,

undefined x ∈ {d0, . . . , dN}.
(3.3.3)

Note that values v(di) are not defined, but the right and left limit is well-posed

v(d−i ) := lim
x→d−i

v(x) = vi(di), v(d+i ) := lim
x→d+i

v(x) = vi+1(di). (3.3.4)
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Now we would like to derive a weak formulation of the problem (3.3.1). For every Ωi we have

− d

dx

(

ρi(x)
d

dx
ui(x)

)

= f(x) ∀x ∈ Ωi. (3.3.5)

We multiply the above equation by v ∈ B and integrate it on Ωi

−
∫

Ωi

d

dx

(

ρi(x)
d

dx
ui(x)

)

v(x)dx =

∫

Ωi

f(x)v(x)dx. (3.3.6)

Then using the integration by parts
∫

Ωi

ρi(x)
dui
dx

(x)
dv

dx
(x)dx− ρi(di)

dui
dx

(di)vi(di) + ρi(di−1)
dui
dx

(di−1)vi(di−1) =

∫

Ωi

f(x)v(x)dx. (3.3.7)

If we add left hand sides of the equations (3.3.7) we obtain

N
∑

i=1

∫

Ωi

ρi(x)
dui
dx

(x)
dv

dx
(x)dx+

N
∑

i=1

(

− ρi(di)
dui
dx

(di)vi(di) + ρi(di−1)
dui
dx

(di−1)vi(di−1)
)

=

∫

Ω
f(x)v(x)dx.

(3.3.8)

After reordering of the components we obtain a new equation

N
∑

i=1

∫

Ωi

ρi(x)
dui
dx

(x)
dv

dx
(x)dx+ ρ1(d0)

du1
dx

(d0)v1(d0)− ρN (dN )
duN
dx

(dN )vN (dN )

+

N−1
∑

i=1

(

ρi+1(di)
dui+1

dx
(di)vi+1(di)− ρi(di)

dui
dx

(di)vi(di)
)

=

∫

Ω
f(x)v(x)dx.

(3.3.9)

We would like to use the internal boundary values to modify the components

ρi+1(di)
dui+1

dx
(di)vi+1(di)− ρi(di)

dui
dx

(di)vi(di). (3.3.10)

From now on, to improve readability, we would extract the argument out of expressions if it is the
same for all functions. Thus the internal boundary condition from the problem (3.3.1) reads

(

ρi+1
dui+1

dx
− ρi

dui
dx

)

(di) = ri, i ∈ {1, . . . , N − 1}. (3.3.11)

Therefore
(

ρi
dui
dx

)

(di) = −ri +
(

ρi+1
dui+1

dx

)

(di). (3.3.12)

We may then use these identities and rewrite the equation (3.3.10) as

(

ρi+1
dui+1

dx
vi+1 − ρi

dui
dx

vi

)

(di) =
1

2

(

[

2ρi+1
dui+1

dx

]

vi+1 −
[

2ρi
dui
dx

]

vi

)

(di) =

=
1

2

(

[

ρi+1
dui+1

dx
+ ri + ρi

dui
dx

]

vi+1 −
[

ρi
dui
dx
− ri + ρi+1

dui+1

dx

]

vi

)

(di)

=
1

2

(

ρi+1
dui+1

dx
vi+1

1

+ rivi+13
+ ρi

dui
dx

vi+1
2

− ρi
dui
dx

vi
2

+ rivi3 − ρi+1
dui+1

dx
vi

1

)

(di).

(3.3.13)
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Therefore we obtain
(

ρi+1
dui+1

dx
vi+1 − ρi

dui
dx

vi

)

(di) =
1

2

(

ρi+1
dui+1

dx
(vi+1 − vi) + ρi

dui
dx

(vi+1 − vi) + ri(vi+1 + vi)
)

(di)

=
1

2

([

ρi+1
dui+1

dx
+ ρi

dui
dx

]

(vi+1 − vi) + ri(vi+1 + vi)
)

(di).

(3.3.14)

Then we may reformulate equation (3.3.9) to obtain

N
∑

i=1

∫

Ωi

ρi(x)
dui
dx

(x)
dv

dx
(x)dx+

(

ρ1
du1
dx

v1

)

(d0)−
(

ρN
duN
dx

vN

)

(dN )

+
1

2

N−1
∑

i=1

([

ρi+1
dui+1

dx
+ ρi

dui
dx

]

(vi+1 − vi) + ri(vi+1 + vi)
)

(di)

=

∫

Ω
f(x)v(x)dx.

(3.3.15)

Moving the second component under the sum on the right hand side we obtain the equation

N
∑

i=1

∫

Ωi

ρi(x)
dui
dx

(x)
dv

dx
(x)dx+

(

ρ1
du1
dx

v1

)

(d0)−
(

ρN
duN
dx

vN

)

(dN )

+
1

2

N−1
∑

i=1

([

ρi+1
dui+1

dx
+ ρi

dui
dx

]

(vi+1 − vi)
)

(di)

=

∫

Ω
f(x)v(x)dx− 1

2

N−1
∑

i=1

ri

(

vi+1 + vi

)

(di).

(3.3.16)

We define

A(u, v) :=
N
∑

i=1

Ai(u, v), Ai(u, v) :=

∫

Ωi

ρi(x)
dui
dx

(x)
dv

dx
(x)dx, (3.3.17)

B(v) :=

N
∑

i=1

Bi(v), Bi(v) :=

∫

Ωi

f(x)vi(x)dx, (3.3.18)

C(u, v) :=
N
∑

i=0

Ci(u, v), Ci(u, v) :=



















(

ρ1
du1
dx v1

)

(d0), i = 0,

1
2

([

ρi+1
dui+1

dx + ρi
dui
dx

]

(vi+1 − vi)
)

(di), 0 < i < N,

−
(

ρN
duN
dx vN

)

(dN ), i = N,

(3.3.19)

D(v) :=
N−1
∑

i=1

Di(v), Di(v) :=−
1

2
ri

(

vi+1 + vi

)

(di). (3.3.20)

3.3.1.3 Weak formulation

The derivation from the section 3.3.1.2 suggests the following weak formulation of the problem (3.3.1).
Let us define spaces D, D0 as

D = H1(E),
D0 =

{

v ∈ D : v1(d0) = 0 = vN (dN )
}

.
(3.3.21)
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Then the weak problem is to find u ∈ D such that

A(u, v) + C(u, v) = B(v) +D(v) ∀v ∈ D0,

u1(d0) = ū0,

ui+1(di)− ui(di) = ūi i ∈ {1, . . . , N − 1},
uN (dN ) = ūN .

(3.3.22)

Thus in this formulation the discontinuities of the flux are imposed weakly, while the discontinuities
of the unknown function are still imposed strongly. Proceeding to discrete problems, we must take
care of the latter.

3.3.2 Discrete problems

We would derive discrete problems gradually. We start with the Composite Incomplete Interior Penalty
Galerkin method (CIIPG), based on Incomplete Interior Penalty Galerkin method [94], which is derived
from the weak problem (3.3.22) by adding the penalty terms. Then we proceed to the CSIPG method
by symmetrizing CIIPG, and then to CWOPSIP.

3.3.2.1 CIIPG

We would like to transform the weak problem into most straightforward Discontinuous Galerkin for-
mulation. In the weak form (3.3.22) the flux conditions are already present in the operators C and D,
but still we must impose the internal and external Dirichlet boundary conditions. To do so, we will
introduce the penalty term. Let σi > 0 be a parameter, called the penalty parameter for Dirichlet
boundary conditions. We define operators Gi : (Xh(Ω))

2 7→ R, Hi : Xh(Ω)→ R as

Gi(u, v) =















σ1
ρ1(d0)
h1

u1(d0)v1(d0), i = 0,

σi

(

ρi(di)
hi

+ ρi+1(di)
hi+1

)(

ui+1(di)− ui(di)
)(

vi+1(di)− vi(di)
)

, i = 1, . . . , N − 1,

σN
ρN (dN )
hN

uN (dN )vN (dN ), i = N,

(3.3.23)

Hi(v) =















σ1
ρ1(d0)
h1

ū0v1(d0), i = 0,

σi

(

ρi(di)
hi

+ ρi+1(di)
hi+1

)

ūi

(

vi+1(di)− vi(di)
)

, i = 1, . . . , N − 1,

σN
ρN (dN )
hN

ūNvN (dN ), i = N.

(3.3.24)

for any u, v ∈ Xh.

Then we define the operators G : (Xh)
2 → R, H : Xh → R as

G(u, v) :=
N
∑

i=0

Gi(u, v), H(v) :=
N
∑

i=0

Hi(v). (3.3.25)

Then the plain formulation would be posed as follows. Find u ∈ Xh such that

∀v ∈ Xh bCIIPG(u, v) = fCIIPG(v), (3.3.26)

where

bCIIPG(u, v) := A(u, v) + C(u, v) +G(u, v), (3.3.27)

fCIIPG(v) := B(v) +D(v) +H(v). (3.3.28)
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3.3.2.2 CSIPG

In this section we would like to use the approach similar to [37]. As a starting point we take the
operator bCIIPG, which we want to symmetrize. According to the definition (3.3.27)

bCIIPG(u, v) = A(u, v) + C(u, v) +G(u, v). (3.3.29)

Note that A and G are already symmetric, so to get a symmetric operator, we add C(v, u). By the
definition (3.3.19) we have

L(u, v) := C(v, u) =
(

ρ1
dv1
dx

u1

)

(d0)−
(

ρN
dvN
dx

uN

)

(dN )

+

N−1
∑

i=1

1

2

([

ρi+1
dvi+1

dx
+ ρi

dvi
dx

]

(ui+1 − ui)
)

(di) =

N
∑

i=0

Li(u, v),
(3.3.30)

where

Li(u, v) := Ci(v, u) =



















(

ρ1
dv1
dx u1

)

(d0), i = 0,

1
2

([

ρi+1
dvi+1

dx + ρi
dvi
dx

]

(ui+1 − ui)
)

(di), i ∈ {1, . . . , N − 1},
−
(

ρN
dvN
dx uN

)

(dN ), i = N,

(3.3.31)

for i ∈ {0, . . . , N}. Then we have to introduce an additional expression to fCIIPG. Referring to the
internal Dirichlet conditions (3.3.1) we define

M(v) :=
N−1
∑

i=1

1

2
ūi

[

ρi+1
dvi+1

dx
+ ρi

dvi
dx

]

(di), (3.3.32)

Finally, we can write the symmetric problem as

bCSIPG(u, v) := fCSIPG(v), (3.3.33)

where
bCSIPG(u, v) := A(u, v) + C(u, v) +G(u, v) + L(u, v), (3.3.34)

fCSIPG(v) := B(v) +D(v) +H(v) +M(v). (3.3.35)

3.3.2.3 CWOPSIP

For the CWOPSIP problem, we need over-penalized operators. We call them O,P and they are defined
as

O(u, v) :=

N
∑

i=0

Oi(u, v), (3.3.36)

P (v) :=

N
∑

i=0

Pi(v), (3.3.37)

where

Oi(u, v) =



















δ ρ1(d0)
h21

u1(d0)v1(d0), i = 0,

δ
(

ρi(di)
h2i

+ ρi+1(di)
h2i+1

)(

ui+1(di)− ui(di)
)(

vi+1(di)− vi(di)
)

, i = 1, . . . , N − 1,

δ ρN (dN )
h2N

uN (dN )vN (dN ), i = N,

(3.3.38)
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Pi(v) =



















δ ρ1(d0)
h21

ū0v1(d0), i = 0,

δ
(

ρi(di)
h2i

+ ρi+1(di)
h2i+1

)

ūi

(

vi+1(di)− vi(di)
)

, i = 1, . . . , N − 1,

δ ρN (dN )
h2N

ūNvN (dN ), i = N.

(3.3.39)

As before we start with CIIPG problem: find u ∈ Xh(Ω) such that

∀v ∈ Xh(Ω) bCIIPG(u, v) = fCIIPG(v). (3.3.40)

We have thus
A(u, v) + C(u, v) +G(u, v) = B(v) +D(v) +H(v). (3.3.41)

First we ignore operator C, as in CWOPSIP method introduced in section 1.3.2.2 and we replace the
penalty operators G,H with over-penalized operators O,P . We have

A(u, v) +O(u, v) = B(v) +D(v) + P (v). (3.3.42)

At the first glance it seems natural to remove also the operator D from the above equation, as it is
a right-hand-side counterpart of operator C. However, this is the only element imposing boundary
conditions on the flux. Also, while lack of the operator C is balanced by increased penalty, this is not
the case for the operator D.
Therefore we define CWOPSIP problem: find u ∈ Xh such that

∀v ∈ Xh bCWOPSIP(u, v) = fCWOPSIP(v), (3.3.43)

where

bCWOPSIP(u, v) := A(u, v) +O(u, v), fCWOPSIP(v) := B(v) +D(v) + P (v). (3.3.44)

3.3.3 Simulations

3.3.3.1 Examples

To test the formulations presented in the section 3.3.2, we have performed several simulations.
We used arbitrarily chosen set of five examples, where ρ|Ωi , f |Ωi ∈ C∞(Ωi), but in general

ρ, f 6∈ C0(Ω).
Example 1 is a reference, as the unknown function and fluxes are continuous at interfaces. In

example 3, fluxes are continuous, while the unknown function is not. In other examples, both unknown
functions as well as fluxes are discontinuous at interfaces. Examples 3, 4, 5 are chosen such that the
differential problem is nonlinear, with nonlinearities both in the coefficient ρ as well as in the right
hand side f . For comparison, we use these examples also for linear simulations with nonlinearities in
ρ, f substituted by known solutions.

3.3.3.2 Linear equations

The results of the computations for the linear case for the respective discrete formulations are presented
in tables 3.22, 3.23,3.24, for CIIPG, CSIPG and CWOPSIP, respectively. Except of the isolated cases,
error values are of similar order. We generally observe linear convergence of H1-error and quadratic
convergence in L2-error. Examples 2 and 4 exhibit quadratic convergence also for H

1-error, but this
is due to L2-norm dominating H

1-seminorm.
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1 2

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

3 5.0× 10−2 2.7× 10−1 3.1× 10−1 3.1× 10−1

6 1.0× 10−2 (4.9) 1.2× 10−1 (2.2) 7.9× 10−2 (3.9) 8.0× 10−2 (3.9)

12 2.3× 10−3 (4.5) 6.1× 10−2 (2.0) 2.0× 10−2 (3.9) 2.0× 10−2 (3.9)

24 5.3× 10−4 (4.3) 3.0× 10−2 (2.0) 5.1× 10−3 (4.0) 5.1× 10−3 (4.0)

48 1.3× 10−4 (4.1) 1.5× 10−2 (2.0) 1.3× 10−3 (4.0) 1.3× 10−3 (4.0)

96 3.1× 10−5 (4.1) 7.6× 10−3 (2.0) 3.2× 10−4 (4.0) 3.2× 10−4 (4.0)

192 7.7× 10−6 (4.0) 3.8× 10−3 (2.0) 8.0× 10−5 (4.0) 8.0× 10−5 (4.0)

384 1.9× 10−6 (4.0) 1.9× 10−3 (2.0) 2.0× 10−5 (4.0) 2.0× 10−5 (4.0)

3 4

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

3 2.9× 10−1 1.9 7.0× 104 7.2× 104

6 6.8× 10−2 (4.3) 9.4× 10−1 (2.1) 1.9× 104 (3.8) 1.9× 104 (3.8)

12 1.7× 10−2 (4.0) 4.6× 10−1 (2.0) 4.7× 103 (3.9) 4.8× 103 (3.9)

24 4.2× 10−3 (4.0) 2.3× 10−1 (2.0) 1.2× 103 (4.0) 1.2× 103 (4.0)

48 1.1× 10−3 (4.0) 1.2× 10−1 (2.0) 3.0× 102 (4.0) 3.1× 102 (4.0)

96 2.7× 10−4 (4.0) 5.8× 10−2 (2.0) 7.4× 101 (4.0) 7.8× 101 (3.9)

192 6.6× 10−5 (4.0) 2.9× 10−2 (2.0) 1.9× 101 (4.0) 2.1× 101 (3.7)

384 1.7× 10−5 (4.0) 1.4× 10−2 (2.0) 4.8 (3.9) 6.6 (3.2)

5

K L2(Ω) H1(Ω)

3 3.6× 10−1 1.5

6 1.0× 10−1 (3.6) 4.7× 10−1 (3.1)

12 2.6× 10−2 (3.9) 1.5× 10−1 (3.1)

24 6.6× 10−3 (4.0) 5.5× 10−2 (2.7)

48 1.6× 10−3 (4.0) 2.4× 10−2 (2.3)

96 4.1× 10−4 (4.0) 1.2× 10−2 (2.1)

192 1.0× 10−4 (4.0) 5.8× 10−3 (2.0)

384 2.6× 10−5 (4.0) 2.9× 10−3 (2.0)

Table 3.22: Absolute errors, approximated orders of the method and computation times for linear
equations solved using CIIPG.
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1 2

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

3 5.4× 10−2 3.5× 10−1 3.3× 10−1 3.3× 10−1

6 1.0× 10−2 (5.2) 1.5× 10−1 (2.4) 8.2× 10−2 (4.0) 8.3× 10−2 (4.0)

12 2.3× 10−3 (4.5) 6.8× 10−2 (2.2) 2.0× 10−2 (4.0) 2.1× 10−2 (4.0)

24 5.4× 10−4 (4.2) 3.2× 10−2 (2.1) 5.1× 10−3 (4.0) 5.2× 10−3 (4.0)

48 1.3× 10−4 (4.0) 1.6× 10−2 (2.1) 1.3× 10−3 (4.0) 1.3× 10−3 (4.0)

96 3.4× 10−5 (4.0) 7.7× 10−3 (2.0) 3.2× 10−4 (4.0) 3.2× 10−4 (4.0)

192 8.4× 10−6 (4.0) 3.8× 10−3 (2.0) 8.0× 10−5 (4.0) 8.1× 10−5 (4.0)

384 2.1× 10−6 (4.0) 1.9× 10−3 (2.0) 2.0× 10−5 (4.0) 2.0× 10−5 (4.0)

3 4

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

3 7.4× 10−1 2.6 7.0× 104 7.2× 104

6 1.7× 10−1 (4.4) 1.1 (2.5) 1.9× 104 (3.8) 1.9× 104 (3.8)

12 4.1× 10−2 (4.2) 4.9× 10−1 (2.2) 4.7× 103 (3.9) 4.8× 103 (3.9)

24 1.0× 10−2 (4.1) 2.4× 10−1 (2.1) 1.2× 103 (4.0) 1.2× 103 (4.0)

48 2.5× 10−3 (4.0) 1.2× 10−1 (2.0) 3.0× 102 (4.0) 3.1× 102 (4.0)

96 6.1× 10−4 (4.0) 5.8× 10−2 (2.0) 7.4× 101 (4.0) 7.8× 101 (3.9)

192 1.5× 10−4 (4.0) 2.9× 10−2 (2.0) 1.9× 101 (4.0) 2.1× 101 (3.7)

384 3.8× 10−5 (4.0) 1.4× 10−2 (2.0) 4.6 (4.1) 6.4 (3.3)

5

K L2(Ω) H1(Ω)

3 3.4× 10−1 1.4

6 9.8× 10−2 (3.5) 4.5× 10−1 (3.1)

12 2.5× 10−2 (3.8) 1.5× 10−1 (3.1)

24 6.4× 10−3 (4.0) 5.5× 10−2 (2.7)

48 1.6× 10−3 (4.0) 2.4× 10−2 (2.2)

96 4.0× 10−4 (4.0) 1.2× 10−2 (2.1)

192 1.0× 10−4 (4.0) 5.8× 10−3 (2.0)

384 2.5× 10−5 (4.0) 2.9× 10−3 (2.0)

Table 3.23: Absolute errors, approximated orders of the method and computation times for linear
equations solved using CSIPG.



3.3. DISCONTINUITIES ON INTERFACES 189

1 2

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

3 5.9× 10−2 3.1× 10−1 1.1× 101 1.1× 101

6 1.5× 10−2 (4.1) 1.3× 10−1 (2.3) 2.9 (4.0) 2.9 (4.0)

12 3.6× 10−3 (4.0) 6.2× 10−2 (2.1) 7.2× 10−1 (4.0) 7.2× 10−1 (4.0)

24 9.0× 10−4 (4.0) 3.0× 10−2 (2.0) 1.8× 10−1 (4.0) 1.8× 10−1 (4.0)

48 2.3× 10−4 (4.0) 1.5× 10−2 (2.0) 4.5× 10−2 (4.0) 4.5× 10−2 (4.0)

96 5.6× 10−5 (4.0) 7.6× 10−3 (2.0) 1.1× 10−2 (4.0) 1.1× 10−2 (4.0)

192 1.4× 10−5 (4.0) 3.8× 10−3 (2.0) 2.8× 10−3 (4.0) 2.8× 10−3 (4.0)

384 3.5× 10−6 (4.0) 1.9× 10−3 (2.0) 7.0× 10−4 (4.0) 7.0× 10−4 (4.0)

3 4

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

3 1.8 2.9 7.0× 104 7.2× 104

6 4.6× 10−1 (4.0) 1.1 (2.7) 1.9× 104 (3.8) 1.9× 104 (3.8)

12 1.1× 10−1 (4.0) 4.8× 10−1 (2.2) 4.7× 103 (3.9) 4.8× 103 (3.9)

24 2.9× 10−2 (4.0) 2.3× 10−1 (2.1) 1.2× 103 (4.0) 1.2× 103 (4.0)

48 7.1× 10−3 (4.0) 1.2× 10−1 (2.0) 3.0× 102 (4.0) 3.1× 102 (4.0)

96 1.8× 10−3 (4.0) 5.8× 10−2 (2.0) 7.4× 101 (4.0) 7.7× 101 (3.9)

192 4.5× 10−4 (4.0) 2.9× 10−2 (2.0) 2.0× 101 (3.7) 2.2× 101 (3.5)

384 1.1× 10−4 (4.0) 1.4× 10−2 (2.0) 1.5× 101 (1.3) 1.6× 101 (1.4)

5

K L2(Ω) H1(Ω)

3 3.6× 10−1 1.4

6 1.0× 10−1 (3.5) 4.6× 10−1 (3.1)

12 2.6× 10−2 (3.8) 1.5× 10−1 (3.1)

24 6.6× 10−3 (4.0) 5.5× 10−2 (2.7)

48 1.7× 10−3 (4.0) 2.4× 10−2 (2.2)

96 4.2× 10−4 (4.0) 1.2× 10−2 (2.1)

192 1.0× 10−4 (4.0) 5.8× 10−3 (2.0)

384 2.6× 10−5 (4.0) 2.9× 10−3 (2.0)

Table 3.24: Absolute errors, approximated orders of the method and computation times for linear
equations solved using CWOPSIP.
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3.3.3.3 Nonlinear equations

We specify three nonlinear tests. Results of simulations are presented in tables 3.25, 3.26 and 3.27.
Generally conclusions are similar as in the linear case, i.e. linear convergence of H1-error and quadratic
convergence in L2-error. There are some anomalies, probably due to the nonlinear solver. Also we note
that error values in example 4 are generally better in nonlinear setting, which is probably due to good
initial approximation. Since these numerical experiments were conducted to check the convergence
rate instead of to verify the nonlinear solver, we used initial approximations close to (known) solutions
to prevent divergence problems.

3 4

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

3 3.1× 10−1 1.9 3.2× 103 3.4× 103

6 6.6× 10−2 (4.7) 9.4× 10−1 (2.1) 1.1× 103 (2.8) 1.2× 103 (2.7)

12 1.7× 10−2 (4.0) 4.6× 10−1 (2.0) 3.1× 102 (3.7) 3.8× 102 (3.3)

24 4.3× 10−3 (3.9) 2.3× 10−1 (2.0) 5.4× 101 (5.7) 1.9× 102 (2.0)

48 1.1× 10−3 (3.9) 1.2× 10−1 (2.0) 9.6× 101 (0.6) 2.2× 102 (0.8)

96 2.7× 10−4 (4.0) 5.8× 10−2 (2.0) 4.6 (20.9) 1.9× 101 (12.0)

192 6.9× 10−5 (4.0) 2.9× 10−2 (2.0) 1.2 (3.8) 8.8 (2.1)

384 1.7× 10−5 (4.0) 1.4× 10−2 (2.0) 3.1× 10−1 (3.9) 4.3 (2.0)

5

K L2(Ω) H1(Ω)

3 2.5× 10−1 1.1

6 7.7× 10−2 (3.3) 3.9× 10−1 (2.8)

12 2.1× 10−2 (3.8) 1.3× 10−1 (2.9)

24 5.2× 10−3 (3.9) 5.3× 10−2 (2.5)

48 1.3× 10−3 (4.0) 2.4× 10−2 (2.2)

96 3.3× 10−4 (4.0) 1.2× 10−2 (2.1)

192 8.2× 10−5 (4.0) 5.8× 10−3 (2.0)

384 2.0× 10−5 (4.0) 2.9× 10−3 (2.0)

Table 3.25: Absolute errors, approximated orders of the method and computation times for nonlinear
equations solved using CIIPG.
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3 4

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

3 1.2 2.9 3.2 × 103 3.4 × 103

6 2.7 × 10−1 (4.5) 1.1 (2.7) 1.1 × 103 (2.8) 1.2 × 103 (2.7)

12 6.4 × 10−2 (4.2) 4.9 × 10−1 (2.2) 3.1 × 102 (3.7) 3.8 × 102 (3.3)

24 1.6 × 10−2 (4.1) 2.4 × 10−1 (2.1) 4.7 × 101 (6.6) 1.4 × 102 (2.8)

48 3.9 × 10−3 (4.1) 1.2 × 10−1 (2.0) 1.6 × 101 (2.9) 4.2 × 101 (3.2)

96 9.6 × 10−4 (4.0) 5.8 × 10−2 (2.0) 4.6 (3.5) 1.9 × 101 (2.3)

192 2.4 × 10−4 (4.0) 2.9 × 10−2 (2.0) 1.2 (3.8) 8.8 (2.1)

384 5.9 × 10−5 (4.0) 1.4 × 10−2 (2.0) 3.1 × 10−1 (3.9) 4.3 (2.0)

5

K L2(Ω) H1(Ω)

3 2.4× 10−1 1.0

6 7.4× 10−2 (3.2) 3.8× 10−1 (2.7)

12 2.0× 10−2 (3.7) 1.3× 10−1 (2.9)

24 5.1× 10−3 (3.9) 5.3× 10−2 (2.5)

48 1.3× 10−3 (4.0) 2.4× 10−2 (2.2)

96 3.2× 10−4 (4.0) 1.2× 10−2 (2.1)

192 8.0× 10−5 (4.0) 5.8× 10−3 (2.0)

384 2.0× 10−5 (4.0) 2.9× 10−3 (2.0)

Table 3.26: Absolute errors, approximated orders of the method and computation times for nonlinear
equations solved using CSIPG.
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3 4

K L2(Ω) H1(Ω) L2(Ω) H1(Ω)

3 4.0 5.1 3.2 × 103 3.4× 103

6 9.1 × 10−1 (4.4) 1.4 (3.6) 1.1 × 103 (2.8) 1.2× 103 (2.7)

12 2.2 × 10−1 (4.1) 5.3 × 10−1 (2.7) 3.1 × 102 (3.7) 3.8× 102 (3.3)

24 5.5 × 10−2 (4.0) 2.4 × 10−1 (2.2) 1.0 × 102 (3.1) 1.7× 102 (2.2)

48 1.4 × 10−2 (4.0) 1.2 × 10−1 (2.1) 2.2 × 101 (4.5) 1.3× 102 (1.3)

96 3.5 × 10−3 (4.0) 5.8 × 10−2 (2.0) 4.6 (4.9) 1.9× 101 (6.8)

192 8.6 × 10−4 (4.0) 2.9 × 10−2 (2.0) 1.2 (3.8) 8.8 (2.1)

384 2.2 × 10−4 (4.0) 1.4 × 10−2 (2.0) 3.1 × 10−1 (3.9) 4.3 (2.0)

5

K L2(Ω) H1(Ω)

3 2.4× 10−1 1.1

6 7.6× 10−2 (3.2) 3.8× 10−1 (2.7)

12 2.0× 10−2 (3.7) 1.3× 10−1 (2.9)

24 5.2× 10−3 (3.9) 5.3× 10−2 (2.5)

48 1.3× 10−3 (4.0) 2.4× 10−2 (2.2)

96 3.2× 10−4 (4.0) 1.2× 10−2 (2.1)

192 8.1× 10−5 (4.0) 5.8× 10−3 (2.0)

384 2.0× 10−5 (4.0) 2.9× 10−3 (2.0)

Table 3.27: Absolute errors, approximated orders of the method and computation times for nonlinear
equations solved using CWOPSIP.
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4.A Theorems

Theorem 4.A.1. (Schauder fixed point theorem) Let X be a topological vector space and let K be a
convex and compact subset of X. Let T : K 7→ K be a continuous function. Then there exists at least
one x ∈ K, so that T (x) = x.

Theorem 4.A.2. (Green’s formula) Let Ω be an open subset of Rn with a Lipschitz-continuous bound-
ary Γ. Let u ∈ H1(Ω) and v ∈ H1(Ω). Then

∫

Ω

∂u

∂xi
v dx =

∫

Γ
uvνi ds−

∫

Ω
u
∂v

∂xi
dx. (4.A.1)

Proof. See [84], special case of theorem 1.1, section 3.1.2.

Theorem 4.A.3. (Green’s formula) Let Ω be an open subset of Rn with a Lipschitz-continuous bound-
ary Γ. Let u ∈ H2(Ω), v ∈ H1(Ω) and aij : Ω → R such that aij

∂u
∂xi
∈ H1(Ω) (for example,

aij ∈ C1(Ω)). Then
∫

Ω

n
∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
dx = −

∫

Ω

n
∑

i,j=1

∂

∂xj

(

aij
∂u

∂xi

)

v dx+

∫

Γ

n
∑

i,j=1

aij
∂u

∂xi
vνj ds. (4.A.2)

For n = 1, Ω = [x0, x1], it has a simple form
∫ x1

x0

a(x)u′(x)v′(x) dx = −
∫ x1

x0

(

a(x)u′(x)
)′
v(x) dx+ a(x1)u

′(x1)v(x1)− a(x0)u′(x0)v(x0). (4.A.3)
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Proof. For statement, see [28], section 1.2, page 22.

Theorem 4.A.4. Let Ω be an open subset of Rn with a Lipschitz-continuous boundary. Then if
n
p < m, then Wm,p(Ω)

c⊂ C0(Ω).

Proof. For statement, see [28], section 3.1, page 114, equation (3.1.4).

Theorem 4.A.5. (a variant of the Brouwer theorem) Let P : Rn → R
n be a continuous function,

such that for suitable ρ > 0 we have

〈P (x)|x〉 ≥ 0 ∀‖x‖2 = ρ, (4.A.4)

where

〈x|y〉 :=
n
∑

i=0

xiyj, ‖x‖2 :=
√

〈x|x〉. (4.A.5)

Then there exists x ∈ R
n, ‖x‖ ≤ ρ such that

P (x) = 0. (4.A.6)

Proof. See [69], lemma 4.3.

Theorem 1.4.4. Let P : X → X∗ be a continuous function on a finite-dimensional normed real
vector space X, such that for suitable ρ > 0 we have

P (x)x ≥ 0 ∀‖x‖ ≥ ρ. (1.4.6)

Then there exists x ∈ X such that
P (x) = 0. (1.4.7)

Proof. Let {xi}ni=1 be a base of X. We define Q : Rn → R
n as

[Q(α)]j = P
(

n
∑

i=1

αixi

)

xj . (4.A.7)

Then Q is continuous as a composition of continuous operators. Note that ‖ · ‖ : Rn → R defined as

‖α‖ :=
∥

∥

∥

n
∑

i=1

αixi

∥

∥

∥

X
, (4.A.8)

is also a norm in Rn. Therefore there is some C > 0 such that

C−1‖α‖ ≤ ‖α‖2 ≤ C‖α‖. (4.A.9)

Take r := Cρ and let ‖α‖2 = r. Then

∥

∥

∥

n
∑

i=1

αixi

∥

∥

∥

X
= ‖α‖ ≥ C−1‖α‖2 = C−1r = ρ. (4.A.10)

So ‖∑n
i=1 αixi‖X ≥ ρ and by assumptions of this theorem, we have that

P
(

n
∑

i=1

αixi

)

n
∑

i=1

αixi ≥ 0, (4.A.11)
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for any α ∈ R
n such that ‖α‖2 = r. Thus we have

〈Q(α)|α〉 =
n
∑

j=1

αj [Q(α)]j =
n
∑

j=1

αjP
(

n
∑

i=1

αixi

)

xj . = P
(

n
∑

i=1

αixi

)

n
∑

j=1

αjxj ≥ 0, (4.A.12)

for any ‖α‖2 = r.
Using theorem 4.A.5 for Q we deduce that there is some α∗, ‖α∗‖2 ≤ r, such that Q(α∗) = 0. Note

that it implies for x∗ :=
∑n

i=1 α
∗
i xi that

P (x∗)xi = 0 ∀i = 1, . . . , n. (4.A.13)

Thus P (x∗) = 0. Note also that

‖x∗‖X =
∥

∥

∥

n
∑

i=1

α∗
i xi

∥

∥

∥

X
= ‖α∗‖ ≤ C‖α∗‖2 = C2ρ. (4.A.14)

4.B Lemmas

Lemma 4.B.1. Let f : R 7→ R be a monotone increasing function and c, d ∈ R, c ∈ im f . Then for
any y ∈ R we have

(

f(y)− c
)(

y − d
)

≥
(

f(d)− c
)(

f−1(c)− d
)

. (4.B.1)

Proof. A complete proof of this lemma may be found in article [60]. We will, however, present a
proof based on a different approach. First we prove the following: let a, b ∈ R. Then the following
inequalities are satisfied:

(

f(y)− f(a)
)

(b− y) ≤
(

f(b)− f(a)
)

(b− a), (4.B.2)
(

f(y)− f(b)
)

(a− y) ≤
(

f(b)− f(a)
)

(b− a). (4.B.3)

First we note that RHS ≥ 0 as f is monotone. Then without loss of generality we assume that a ≤ b
(otherwise we interchange a and b). Due to monotonicity

sign LHS1 = sign
(

f(y)− f(a)
)

(b− y) = sign(y − a)(b− y),

sign LHS2 = sign
(

f(y)− f(b)
)

(a− y) = sign(y − b)(a− y) = sign(b− y)(y − a).
(4.B.4)

Thus if y 6∈ [a, b] then LHS1,2 < 0 and then

LHS1,2 < 0 ≤ RHS . (4.B.5)

On the other hand, if y ∈ [a, b], then LHS1,LHS2 and RHS are nonnegative, and it is easy to observe
that they represent areas of rectangles (see figure 4.1) parallel to the Cartesian axes spanned by
vertices

(

a, f(y)
)

,
(

y, f(b)
)

(right-hatched rectangle),
(

y, f(a)
)

,
(

b, f(y)
)

(left-hatched rectangle) and
respectively

(

a, f(a)
)

,
(

b, f(b)
)

(gray rectangle). Since a ≤ y ≤ b, then first two rectangles are subsets
of the last rectangle and thus

LHS1,2 ≤ RHS . (4.B.6)

Returning to our original inequality (4.B.1), we take:

a := f−1(c), b := d, y := y. (4.B.7)
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a y b

f(a)

f(y)

f(b)

Figure 4.1: Geometric intuition for lemma 4.B.1. The blue line represents an example of a monotone
increasing real function. Description of rectangles is in the proof of the lemma.

Then by inequality (4.B.2) we have
(

f(y)− c
)

(d− y) ≤
(

f(d)− c
)(

d− f−1(c)
)

. (4.B.8)

Multiplying this inequality by −1 we obtain inequality (4.B.1)
(

f(y)− c
)

(y − d) ≥
(

f(d)− c
)(

f−1(c)− d
)

. (4.B.9)

Lemma 4.B.2. Let Ω ⊂ R
n be an open set and let f, g ∈ L2(Ω). Let k ∈ {1, 2, . . .}. Then the

following conditions are equivalent:

1.
∫

Ω fφ dx =
∫

Ω gφ dx ∀φ ∈ L2(Ω),

2.
∫

Ω fφ dx =
∫

Ω gφ dx ∀φ ∈ Hk(Ω),

3.
∫

Ω fφ dx =
∫

Ω gφ dx ∀φ ∈ C∞
0 (Ω).

Proof. Implications 1⇒ 2⇒ 3 are trivial, as C∞
0 (Ω) ⊂ Hk(Ω) ⊂ L2(Ω).

We will show 3⇒ 1. Assume 3 is true. Let us fix φ ∈ L2(Ω). C
∞
0 (Ω) is dense in L2(Ω), so let us

take {φi}i such that φi
L2(Ω)−−−−→
i→∞

φ. Then we have

∣

∣

∣

∫

Ω
(f − g)φdx

∣

∣

∣
≤
∣

∣

∣

∫

Ω
(f − g)φi dx

∣

∣

∣
+
∣

∣

∣

∫

Ω
(f − g)(φ− φi) dx

∣

∣

∣

=
∣

∣

∣

∫

Ω
(f − g)(φ− φi) dx

∣

∣

∣ ≤ ‖f − g‖L2(Ω)‖φ− φi‖L2(Ω) −−−→
i→∞

0,

(4.B.10)

as ‖φ− φi‖L2(Ω) → 0. Thus
∫

Ω
fφ dx =

∫

Ω
gφ dx. (4.B.11)

This is true for any φ ∈ L2(Ω), so 1 is proven.
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Lemma 4.B.3. Let Ω ⊂ R
n be an open set and let u ∈ H1(Ω), f ∈ L2(Ω), ε ∈ L∞(Ω), 0 < ε ≤ εM .

Let ∂ΩD ⊂ ∂Ω be a subset of positive boundary measure. Then the following conditions are equivalent:

1.
∫

Ω ε∇u · ∇φdx =
∫

Ω fφ dx ∀φ ∈ C∞0,∂ΩD
(Ω),

2.
∫

Ω ε∇u · ∇φdx =
∫

Ω fφ dx ∀φ ∈ H1
0,∂ΩD

(Ω).

Proof. Implication 1 ⇒ 2 is trivial. To prove implication 2 ⇒ 1, take any H1
0,∂ΩD

(Ω) and let {φi}i ⊂
C∞0,∂ΩD

(Ω), φi → φ in H1(Ω). Then using condition 1 for Ωi we obtain

∫

Ω
ε∇u · ∇φdx =

∫

Ω
ε∇u · ∇(φ− φi) dx+

∫

Ω
ε∇u · ∇φi dx

=

∫

Ω
ε∇u · ∇(φ− φi) dx+

∫

Ω
fφi dx

=

∫

Ω
ε∇u · ∇(φ− φi) dx+

∫

Ω
f(φi − φ) dx+

∫

Ω
fφ dx.

(4.B.12)

Then passing to the limit with i we get

∫

Ω
ε∇u · ∇φdx =

∫

Ω
fφ dx, (4.B.13)

as
∣

∣

∣

∣

∣

∫

Ω
ε∇u · ∇(φ− φi) dx

∣

∣

∣

∣

∣

≤ εM‖u‖H1(Ω)‖φ− φi‖H1(Ω) −−−→
i→∞

0, (4.B.14)

and
∣

∣

∣

∣

∣

∫

Ω
f(φi − φ) dx

∣

∣

∣

∣

∣

≤ ‖f‖L2(Ω)‖φ− φi‖L2(Ω) −−−→
i→∞

0. (4.B.15)

Lemma 4.B.4. Let U be a rectangle in R
2 or an interval in R. Let Γ1 ⊂ ∂U be some edge of that

rectangle (vertex in R). Let g ∈ C∞0 (Γ1)(g ∈ R in one dimension). Then there exists a family of
functions {φǫ}ǫ,0 < ǫ ≤ ǫ0, such that

• φǫ|e = g,

• supp(φǫ) ⊂ U ∪ Γ1,

• ∇φǫ · ν = 0 on ∂U ,

• µ
(

supp(φǫ)
)

≤ cǫ.

Proof. First let U = (0, 1) and Γ1 = {0}. In one dimension, Take

f(x) =



























1, if x ∈
[

0, 13

]

,

exp

(

(

1
3

)2
−x2

x2−
(

1
3

)2

)

, if x ∈
(

1
3 ,

2
3

)

,

0, if x ∈
[

2
3 , 1
]

.

(4.B.16)



198 CHAPTER 4. APPENDIX

Then define for 0 < ǫ ≤ 1

φǫ(x) :=

{

gf(x/ǫ) if x ≤ ǫ,
0 otherwise.

(4.B.17)

These functions satisfy conditions of the lemma.
It is clear by appropriately translating and scaling x in above definition we can get φǫ functions

for any U = (u0, u1). Also we can take −x to deal with the right vertex of the interval.
For U being a rectangle, let us initially assume that U = (0, 1)× (a, b) for some a < b and that Γ1

is the edge corresponding to x = 0. Then we take

φǫ(x) :=

{

g(y)f(x/ǫ, y), if x ≤ ǫ,
0, otherwise.

(4.B.18)

Since supp(g) ⋐ (a, b), then supp(g) ⊂ [e, f ] ⊂ (a, b) and

supp(ψǫ) ∈ [0, ǫ]× [e, f ] ⊂ [0, 1) × (a, b) = U ∪ Γ1. (4.B.19)

Therefore µ
(

supp(ψǫ)
)

≤ (a − b)ǫ. Also ∇φǫ · ν = 0 on ∂U , as φǫ is constant in x near Γ1 and it is
zero near ∂U\Γ1. Thus {ψǫ}ǫ satisfy conditions of the lemma.
Again it is clear that by appropriate scaling and rotation we can generalize this procedure to any

rectangle.

Lemma 1.4.5. Let Ω ⊂ R
d be bounded. Let f ∈ C1(R), g ∈ L∞(Ω). Let P : Xh(Ω) → X∗

h(Ω) be
defined as

P (uh)φh :=

∫

Ω
g(x)f

(

uh(x)
)

φh(x) dx. (1.4.8)

Then P is continuous.

Proof. For fixed uh ∈ Xh(Ω) the value P (uh)φh is well-defined, as g, uh, φh ∈ L∞(Ω). Thus P (uh) is
linear.
Take any uh, vh ∈ Xh(Ω). Then by equivalence of norms in finite-dimensional spaces

‖P (uh)− P (vh)‖X∗
h(Ω) = sup

‖φh‖h=1
|P (uh)φh − P (vh)φh| = sup

‖φh‖h=1

∣

∣

∣

∣

∣

∫

Ω
g(x)

(

f(uh)− f(vh)
)

φh dx

∣

∣

∣

∣

∣

≤ sup
‖φh‖h=1

‖g‖L∞(Ω)‖f(uh)− f(vh)‖L2(Ω)‖φh‖L2(Ω)

≤ c(h)‖g‖L∞(Ω)‖f(uh)− f(vh)‖L2(Ω).

(4.B.20)

Then by the mean value theorem

‖f(uh)− f(vh)‖2L2(Ω) =

∫

Ω

(

f
(

uh(x)
)

− f
(

vh(x)
)

)2
dx ≤

∫

Ω

(

f ′(ξx)
)2
(

uh(x)− vh(x)
)2
dx

≤ ‖f ′‖2L∞(I(uh,vh))
‖uh − vh‖2L2(Ω),

(4.B.21)

where
ξx ∈

(

uh(x), vh(x)
)

∪
(

vh(x), uh(x)
)

, (4.B.22)

and

I
(

uh, vh
)

:= [−M
(

uh, vh
)

,M
(

uh, vh
)

], M
(

uh, vh
)

:= max{‖uh‖L∞(Ω), ‖vh‖L∞(Ω)}. (4.B.23)
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Thus

‖P (uh)− P (vh)‖X∗
h(Ω) ≤ c(h)‖g‖L∞(Ω)‖f ′‖2L∞(I(uh,vh))

‖uh − vh‖2L2(Ω). (4.B.24)

Assume that a sequence u(n) → u in L2(Ω) as n → ∞. This sequence converges also in L∞(Ω), as
Xh(Ω) is finite-dimensional. Thus possibly ignoring some initial elements of {u(n)}n, for some ǫ > 0
we have

I
(

uh, uh,(n)
)

⊂ I(uh) :=
[

−
(

‖uh‖L∞(Ω) + ε
)

,
(

‖uh‖L∞(Ω) + ε
)

]

. (4.B.25)

So we obtain

‖P (uh)− P (vh)‖X∗
h(Ω) ≤ c(h)‖g‖L∞(Ω)‖f ′‖2L∞(I(uh))

‖uh − vh‖2L2(Ω). (4.B.26)

Therefore uh 7→ P (uh) is continuous.

4.C Existence of discrete solutions in one dimension

In this section, we would like to discuss existence of one-dimensional CWOPSIP discretization of all
equations of problem 1.2.1.

Problem 1.2.1. Let Ω ⊂ R
d, d ∈ {1, 2} be an interval or polygon. Let û, v̂, ŵ ∈ H1(Ω) ∩ L∞(Ω) be

some given functions. We say that (u∗, v∗, w∗) ∈ (û, v̂, ŵ) +
(

H1
0 (Ω)

)3
is a weak solution of (1.2.1) if

∀φ ∈ H1
0 (Ω)

∫

Ω
ε(x)∇u∗(x)∇φ(x) dx =

∫

Ω

(

k1(x)− eu
∗(x)−v∗(x) + ew

∗(x)−u∗(x)
)

φ(x) dx,

∫

Ω
µn(x)e

u∗(x)−v∗(x)∇v∗(x)∇φ(x) dx =

∫

Ω
Q(u∗(x), v∗(x), w∗(x))(ew

∗(x)−v∗(x) − 1)φ(x) dx,

∫

Ω
µp(x)e

w∗(x)−u∗(x)∇w∗(x)∇φ(x) dx = −
∫

Ω
Q(u∗(x), v∗(x), w∗(x))(ew

∗(x)−v∗(x) − 1)φ(x) dx.

(1.2.2)

In this section we use the following broken norm

‖uh‖2h,Σr
:=

N
∑

i=1

∫

Ωi

(

∇uh,i
)2
dx+

∑

e∈ΓDI

ηr,e

∫

e
[uh]

2 ds. (4.C.1)

In sections 4.C.2, 4.C.3, 4.C.4, we present discretization of the operator T (4.C.5), whose fixed
points coincide with solutions of the van Roosbroeck equations. In [54], the existence of weak solutions
is shown by the Schauder theorem. The idea behind the operator T is to decouple the drift-diffusion
equations and to look for the solution in a Banach iteration manner, starting from some initial approx-
imation. Then it is possible to decouple the equations by replacing unknown functions with solutions
obtained from a previous iteration.
This kind of Banach iterations may be used not only in theoretical analysis, but also in numerical

simulations. In the semiconductor nomenclature they are known as Gummel method [47, 101, 76], and
the operator T is referred to as the Gummel’s map. Theoretical results for convergence of Gummel’s
method are available for the drift-diffusion system when no recombination is assumed [62, 63, 30]. For
certain devices, like transistors, such approximation is reasonable and simulations agree with physical
experiments. However, this assumption is poor for light-emitting diodes and lasers, as the recom-
bination in those devices is the effect leading to emission of the light. Unfortunately, the Gummel’s
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method convergence rate may considerably drop due to large recombination term [97], as then coupling
between drift-diffusion equations increases.

Afterwards we pass to maximum principles for the discrete solutions which will be required for the
Schauder theorem. As opposed to the existence, the proof for the continuous case cannot be adopted
here. In general finite dimensional test space is too scarce to rule out extremes inside Ω such as for
the weak solutions. We will then proceed differently.

For Poisson equation, we take an approach such as in [60]. We therefore define a generalized weak
problem with severe assumptions, which are satisfied by the discretized Poisson equation. Then the
boundedness proof is based on the bound of H1(E)-seminorm of a solution. It is a consequence of
the ellipticity of the equation, lower bounds on the right hand side and nonnegativity of the discrete
part for certain choice of the test function. Then the bounds of the discrete solution is shown by
combination of explicit expressions for its derivatives with the | · |H1(E) bounds. Finally we obtain a
maximum principle for the discrete solution of the Poisson equation, which is however dependent not
only on the boundary conditions, but also on the L∞(Ω)-bounds on the solutions of the remaining
two equations.

Therefore it is crucial to get maximum principles for the continuity equations, which are indepen-
dent of the solution of the Poisson equation, as it is the case for the weak problem [54]. To do so, we
assume the recombination to be zero. It is a severe restraint, however it is frequently used in analysis
of the van Roosbroeck system [56, 76, 30]. This assumption is satisfied for a semiconductor device in
the equilibrium state, when there is no current. When the recombination is zero, the continuity equa-
tions (in the sense of operator T ) become linear elliptic equations with zero right hand side. Therefore
we have to deal with the linear elliptic part and the CDGM part only. Then we show that linear
systems corresponding to these problems have such a property that their solutions must be monotone:
increasing or decreasing. Therefore we obtain maximum principles for the continuity equations with
the bounding values dependent only on the boundary conditions.

Unfortunately this approach is not feasible for the CSIPG discretization or for CWOPSIP dis-
cretization in two dimensions. In these cases, we cannot prove the maximum principles analogous
to the instances discussed above. For this reason, this analysis is presented only for one-dimensional
CWOPSIP discretization.

Last step of this part is to show uniqueness of the decoupled equations. For the continuity equa-
tions, it follows from the diagonally-dominant form of the mentioned matrices. For the Poisson
equation, we get the uniqueness by standard argument, as we demonstrate that a difference of any
two hypothetical solutions must be zero. This may be achieved by subtraction of respective equations
with these solutions and appropriate choice of the test function.

Results discussed so far allows us to conclude that T is a well-defined L∞(Ω)-bounded operator.
Using these bounds we may establish a closed convex bounded set, which is T -invariant. Due to finite-
dimensionality of the discrete space, this set is automatically compact. To use the Schauder theorem,
we still need T to be continuous. The continuity of T is derived from the decoupled equations, by
taking appropriate test functions and by Schwarz inequality. The proof is technical, it also make use
of L∞(Ω)-estimates and equivalence of norms in discrete spaces. Finally, by the Schauder theorem, we
obtain a fixed point of operator T , which is also a solution of the CWOPSIP discrete var Roosbroeck
system.

4.C.1 Operator T

To prove the existence of a solution of problem 1.2.1, one can use the operator T defined as in [54].

Definition 4.C.1. Let ṽ, w̃ ∈ H1(Ω)∩L∞(Ω). We will define the operator T :
(

H1(Ω) ∩ L∞(Ω)
)2 →
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(

H1(Ω)
)2
in the following manner. First we define ũ ∈ H1(Ω) as a solution of the problem

∀φ ∈ H1(Ω)

∫

Ω
ε(x)∇ũ(x)∇φ(x) dx +

∫

Ω

(

eũ(x)−ṽ(x) − ew̃(x)−ũ(x) − k1(x)
)

φ(x) dx = 0. (4.C.2)

Then we define v,w ∈ H1(Ω) as solutions of problems

∀φ ∈ H1(Ω)

∫

Ω

µn(x)e
ũ(x)−ṽ(x)∇v(x)∇φ(x) dx −

∫

Ω

Q(ũ(x), v(x), w̃(x))(ew̃(x)−v(x) − 1)φ(x) dx = 0, (4.C.3)

∀φ ∈ H1(Ω)

∫

Ω

µp(x)e
w̃(x)−ũ(x)∇w(x)∇φ(x) dx+

∫

Ω

Q(ũ(x), ṽ(x), w(x))(ew(x)−ṽ(x)− 1)φ(x) dx = 0. (4.C.4)

The operator T is defined as

T (ṽ, w̃) := (v,w). (4.C.5)

It is shown in [54] that in fact T :
(

H1(Ω) ∩ L∞(Ω)
)2 →

(

H1(Ω) ∩ L∞(Ω)
)2
and it has a fixed

point. We will follow this way using discretized equations instead.

4.C.2 Discrete operator ũh(ṽh, w̃h)

To obtain a discretization of equation (4.C.2), we use discrete problem 1.3.3.

Problem 4.C.2. Let û ∈ H1(Ω) ∩ L∞(Ω) and ṽh, w̃h ∈ Xh(Ω) be some given functions. Find
ũh ∈ Xh(Ω) such that

au,h(ũh, ṽh, w̃h, φh) + bu(ũh, ṽh, w̃h, φh) = fu,h(ũh, ṽh, w̃h, φh), (4.C.6)

where

au,h(ũh, ṽh, w̃h, φh) =
N
∑

i=1

∫

Ωi

εi(x)∇ũh,i(x) · ∇φh,i(x) dx+
∑

e∈ΓDI

η2,e

∫

e
[ũh][φh] ds,

bu(ũh, ṽh, w̃h, φh) =

∫

Ω

(

eũh(x)−ṽh(x) − ew̃h(x)−ũh(x)
)

φh(x) dx,

fu,h(ũh, ṽh, w̃h, φh) =

∫

Ω
k1(x)φh(x) dx+

∑

e∈ΓD

η2,e

∫

e
[û][φh] ds.

(4.C.7)

Our aim is to show the existence of discrete solution of the drift-diffusion system. First we would
like to establish an existence theorem and maximum principles for solutions of problem 4.C.2.

Theorem 4.C.3. Let ṽh, w̃h ∈ Xh(Ω) be given functions. Assume that there exist αh, βh ∈ R, such
that

αh ≤ ṽh ≤ βh, αh ≤ w̃h ≤ βh. (4.C.8)

Then ũh of problem 4.C.2 is well-defined, i.e. it exists and it is unique. Moreover ũh is bounded
independently of ṽh, w̃h.

Existence and uniqueness of ũh is shown in section 1.4 if we perform the following substitutions

u∗h := ũh, v̂ := ṽh, ŵ := w̃h. (4.C.9)

Thus we would like to show boundedness.
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4.C.2.1 Bounds

In this section we would like to show that ũh(ṽh, w̃h) is bounded independently of ṽh, w̃h. To do so, we
will prove slightly more general lemma, as in [60], for the discrete problem defined in section 1.3.2.2.
Therefore we consider the following generalized problem.

4.C.2.1.1 Generalized problem

Problem 4.C.4. Let us consider the equation

A(uh, φh) + J(uh, φh) +B(uh, φh) = I(φh), (4.C.10)

for all φh ∈ Xh(Ω), where

A(uh, φh) :=

N
∑

i=1

∫

Ωi

ε(x)∇uh(x) · ∇φh(x) dx,

B(uh, φh) :=

∫

Ω

(

f
(

x, uh(x)
)

− g(x)
)

φh(x) dx,

J(uh, φh) :=
∑

e∈ΓDI

η2,e

∫

e
[uh][φh] ds,

I(φh) :=
∑

e∈ΓD

η2,e

∫

e
[û][φh] ds.

(4.C.11)

Moreover, we make the following assumptions related to problem 4.C.4

Assumption A8.

• f : Ω× R 7→ R.

• g ∈ L∞(Ω).

• Let f̃x(y) := f(x, y) for fixed x ∈ Ω. Then f̃x is a monotone increasing function for almost all
x ∈ Ω (thus f̃−1

x exists for a.e. x ∈ Ω and it is monotone increasing).

• rg(g) ⊂ dom f̃−1
x and f̃

−1
x

(

rg(g)
)

is uniformly bounded set for almost all x ∈ Ω.

• Let B be a bounded subset of R. Then f̃x(B) is uniformly bounded set for almost all x ∈ Ω.

• û ∈ H1(Ω) ∩Xh(Ω).

• P ≡ 0.

Note that in this case, since we consider one-dimensional domain Ω, function û is related to
boundary conditions on two extreme points. So the last assumption of A8 is not too restrictive, as
one can take linear function for example.

Theorem 4.C.5. Under assumptions A1 to A8, if uh ∈ Xh(Ω) is any solution of problem 4.C.4, then
it is bounded:

γh ≤ uh ≤ δh, (4.C.12)

where

γh := min{γ′h − c
√
h, inf
x∈δΩ

û(x)}, δh := max{δ′h + c
√
h, sup

x∈δΩ
û(x)}, (4.C.13)

γ′h := inf
x∈Ω

f̃−1
x

(

inf
x̃∈Ω

g(x̃)
)

, δ′h := sup
x∈Ω

f̃−1
x

(

sup
x̃∈Ω

g(x̃)
)

, (4.C.14)

and the constant c > 0 depends on û, εm, εM , f, g.



4.C. EXISTENCE OF DISCRETE SOLUTIONS IN ONE DIMENSION 203

For simplicity of notation, we will assume, relying on the above conditions, that there exist a
constant cg > 0, so that

−cg ≤ γ′h ≤ û ≤ δ′h ≤cg (a. e.),
−cg ≤ f̃x(û(x)) ≤cg (a. e.),
−cg ≤ g(x) ≤cg (a. e.),

−cg ≤ f̃−1
x (g(x)) ≤cg (a. e.),

0 < c−1
g ≤ εm ≤ ε(x) ≤ εM ≤cg (a. e.),

|û|H1(Ω) ≤cg,
|Ω| ≤c3g.

(4.C.15)

4.C.2.1.2 Lemmas

Lemma 4.C.6. If uh ∈ Xh(Ω) is any solution of problem 4.C.4, then

|uh|H1(E) ≤ c2, (4.C.16)

where c ≥ 0 depends on û, f, g,Ω, εm, εM .

Proof. Let uh be a solution of problem 4.C.4. Then we can define the test function to be

φh := uh − û. (4.C.17)

so

A(uh, uh) = I(uh − û)− J(uh, uh − û) +A(uh, û)−B(uh, uh − û). (4.C.18)

We have that A(uh, uh) ≥ εm|uh|2H1(E). Thus the lemma will be proven if we show that

I(uh − û)− J(uh, uh − û) +A(uh, û)−B(uh, uh − û) ≤ c|uh|H1(E). (4.C.19)

First, using the Schwarz inequality

A(uh, û) ≤
∫

Ω

∣

∣ε(x)∇uh(x) · ∇û(x)
∣

∣ dx

≤ εM |uh|H1(E)|û|H1(Ω) ≤ cg|uh|H1(E)|û|H1(Ω).

(4.C.20)

Then we have

I(uh − û)− J(uh, uh − û) =
∑

e∈ΓD

η2,e

∫

e
[û][uh − û] ds −

∑

e∈ΓDI

η2,e

∫

e
[uh][uh − û] ds

=
∑

e∈ΓDI

η2,e

∫

e
[û][uh − û] ds−

∑

e∈ΓDI

η2,e

∫

e
[uh][uh − û] ds

=
∑

e∈ΓDI

η2,e

∫

e
[û− uh][uh − û] ds ≤ 0,

(4.C.21)

as [û] = 0 for e ∈ ΓI since û ∈ H1(Ω). It is therefore clear that

A(uh, uh) = I(uh − û)− J(uh, uh − û) +A(uh, û)−B(uh, uh − û)
≤ cg|uh|H1(E)|û|H1(Ω) −B(uh, uh − û).

(4.C.22)
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Then B(uh, uh − û) may be negative or not. Assume first it is nonnegative. Then

εm|uh|2H1(E) ≤ A(uh, uh) ≤ cg|uh|H1(E)|û|H1(Ω) −B(uh, uh − û)
≤ cg|uh|H1(E)|û|H1(Ω),

(4.C.23)

so |uh|H1(E) ≤ c2 with c2 = cg|û|H1(Ω)/εm.
Otherwise using lemma 4.B.1, we can estimate almost everywhere in Ω

B(uh, uh − û) =
∫

Ω

(

f
(

x, uh(x)
)

− g(x)
)(

uh(x)− û(x)
)

dx

=

∫

Ω

(

f̃x
(

uh(x)
)

− g(x)
)(

uh(x)− û(x)
)

dx

≥
∫

Ω

(

f̃x
(

û(x)
)

− g(x)
)(

f̃−1
x

(

g(x)
)

− û(x)
)

dx.

(4.C.24)

The integrand of the latter expression is nonpositive, because f̃x is monotone increasing, and then for
almost all x ∈ Ω we have

(

f̃x
(

û(x)
)

− g(x)
)(

f̃−1
x

(

g(x)
)

− û(x)
)

= −
(

f̃x
(

û(x)
)

− f̃x
(

f̃−1
x

(

g(x)
))

)(

û(x)− f̃−1
x

(

g(x)
)

)

≤ 0.
(4.C.25)

By assumptions A8, functions û, g are bounded by cg, and f̃x and f̃
−1
x are also bounded uniformly by

cg for all x ∈ Ω, if their arguments are bounded. Then there exists c1 > 0, such that

(

f̃x
(

û(x)
)

− g(x)
)(

f̃−1
x

(

g(x)
)

− û(x)
)

≥ −
(

∣

∣f̃x
(

û(x)
)∣

∣+
∣

∣g(x)
∣

∣

)(

∣

∣f̃−1
x

(

g(x)
)∣

∣+
∣

∣û(x)
∣

∣

)

> −4c2g =: −c1.
(4.C.26)

Then we may conclude

B(uh, uh − û) ≥ −c1. (4.C.27)

So we may estimate

εm|uh|2H1(E) ≤ A(uh, uh) ≤ cg|uh|H1(E)|û|H1(Ω) + c1. (4.C.28)

Then again there are two possibilities: either |uh|H1(E) < c1 and then the lemma is proven with c2 = c1,
or c1 ≤ |uh|H1(E). In the latter case

εm|uh|2H1(E) ≤ cg|uh|H1(E)|û|H1(Ω) + c1 ≤ cg|uh|H1(E)|û|H1(Ω) + |uh|H1(E), (4.C.29)

so we obtain

εm|uh|H1(E) ≤ cg|û|H1(Ω) + 1. (4.C.30)

In this case c := ε−1
m (cg|û|H1(Ω) + 1) Summarizing all possibilities, the lemma is proven with

c2 := max{ε−1
m (cg|û|H1(Ω) + 1), 4c2g}. (4.C.31)
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4.C.2.1.3 Theorem

Proof. Outline of the proof:

1. For any adjacent grid nodes xj , xj+1 we have
(

uh(xj+1)− uh(xj)
)2 ≤ c22h.

2. Upper bound:

(a) If uh ∈ Xh(Ω) has a maximum in node xk, then
∑N

i=1

∫

Ωi

(

f
(

x, uh(x)
)

− g(x)
)

ϕ(k)(x) dx ≤
0.

(b) For some x ∈ Ω we have f
(

x, supy∈Ω uh(y)− c2
√
h
)

− supy∈Ω g(y) ≤ 0.

(c) supy∈Ω uh(y) ≤ δ′h + c2
√
h ≤ δh.

3. Lower bound:

(a) If uh ∈ Xh(Ω) has a maximum in node xk, then
∑N

i=1

∫

Ωi

(

f
(

x, uh(x)
)

− g(x)
)

ϕ(k)(x) dx ≥
0.

(b) For some x ∈ Ω we have f
(

x, infy∈Ω uh(y) + c2
√
h
)

− infy∈Ω g(y) ≥ 0.

(c) infy∈Ω uh(y) ≥ γ′h − c2
√
h ≥ γh.

First note that using piecewise linearity of uh, for any τ ∈ T , τ =: (xj, xj+1) we may express ∇uh|τ
with the explicit formula

∇uh|τ =
uh(xj+1)− uh(xj)

xj+1 − xj
. (4.C.32)

Using lemma 4.C.6 we obtain

|uh|2H1(E) =

N
∑

i=1

∑

τ∈Thi

∫

τ

(

∇uh(x)
)2
dx ≤ c22. (4.C.33)

Note that all elements of the above sum are nonnegative, so for a fixed τ ∈ T we may estimate
∫

τ

(

∇uh
)2
dx =

(

uh(xj+1)− uh(xj)
)2

xj+1 − xj
≤ |uh|2H1(E) ≤ c22. (4.C.34)

Therefore we finally obtain
(

uh(xj+1)− uh(xj)
)2 ≤ c22h. (4.C.35)

We may rewrite the equation (4.C.10)

A(uh, φh) + J(uh, φh) +B(uh, φh) = I(φh), (4.C.36)

as

N
∑

i=1

∫

Ωi

(

f
(

x, uh(x)
)

− g(x)
)

φh(x) dx =

=−
N
∑

i=1

∫

Ωi

ε(x)∇uh(x) · ∇φh(x) dx −
∑

e∈ΓDI

η2,e

∫

e

[uh][φh] ds+
∑

e∈ΓD

η2,e

∫

e

[û][φh] ds

=−
N
∑

i=1

∫

Ωi

ε(x)∇uh(x) · ∇φh(x) dx −
∑

e∈ΓI

η2,e

∫

e

[uh][φh] ds−
∑

e∈ΓD

η2,e

∫

e

[uh − û][φh] ds.

(4.C.37)
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Since uh ∈ Xh(Ω) is a piecewise linear function, its extremes lie in the nodal points. Assume
xk ∈ N is such a point that uh(xk) = supx∈Ω uh(x). Then

∀xj∈Nh
uh(xk)− uh(xj) ≥ 0. (4.C.38)

Let us take ϕ(k) as a test function in (4.C.37). Therefore we obtain

N
∑

i=1

∫

Ωi

(

f
(

x, uh(x)
)

− g(x)
)

ϕ(k)(x) dx =

=−
N
∑

i=1

∫

Ωi

ε(x)∇uh(x) · ∇ϕ(k)(x) dx −
∑

e∈ΓI

η2,e

∫

e

[uh][ϕ(k)] ds−
∑

e∈ΓD

η2,e

∫

e

[uh − û][ϕ(k)] ds.

(4.C.39)

We will show that the right hand side of this equation is negative, and therefore so is the left hand
side.
Note that the support of ϕ(k) is contained within triangulation elements adjacent to the node xk.

Also ϕ(k) has a maximum in xk, as uh has. Therefore signs of ∇ϕ(k) and ∇uh agree in supp ϕ(k)

unless one of them is zero. Thus ∇uh · ∇ϕ(k) ≥ 0 in supp ϕ(k) a.e., and it is zero in Ω \ supp ϕ(k).
Then we may estimate

N
∑

i=1

∫

Ωi

ε(x)∇uh(x) · ∇ϕ(k)(x) dx ≥ εm
∫

suppϕ(k)

∇uh(x) · ∇ϕ(k)(x) dx ≥ 0. (4.C.40)

Then we deal with the expression
∑

e∈ΓI
η2,e

∫

e[uh][ϕ(k)]ds. For e ∈ ΓI , e ∈ ∂Ωi ∩ ∂Ωi−1 we have

[uh][ϕ(k)] ≥ 0, (4.C.41)

because either [ϕ(k)] = 0 when the maximum is not in e or it is there and we have

[uh][ϕ(k)] =
(

uh,i(e)− uh,i−1(e)
)

·
(

ϕ(k),i(e)− ϕ(k),i−1(e)
)

≥ 0, (4.C.42)

as both functions have maxima in the same node xk. Then since η2,e ≥ 0 for any e ∈ ΓDI , we obtain

∑

e∈ΓI

η2,e

∫

e
[uh][ϕ(k)] ds ≥ 0. (4.C.43)

Finally sum
∑

e∈ΓD
η2,e

∫

e[uh − û][ϕ(k)] ds is non-zero only if xk ∈ ΓD. Note that only [uh − û] =
uh(xk)− û(xk) may be negative. Therefore we have two possibilities:
1. uh(xk) ≥ û(xk). Then

∑

e∈ΓD
η2,e

∫

e[uh − û][ϕ(k)] ds ≥ 0.

2. uh(xh) < û(xk). Then uh(xk) = supΩ uh < û(xk) ≤ supδΩ û = δh.

So in the latter case the theorem is proven. We then follow the first possibility, where we have

∑

e∈ΓD

η2,e

∫

e
[uh − û][ϕ(k)] ds ≥ 0. (4.C.44)

On the other hand, since ϕ(k) is positive, we have

N
∑

i=1

∫

Ωi

(

f
(

x, uh(x)
)

− g(x)
)

ϕ(k)(x) dx ≥
N
∑

i=1

∫

Ωi

(

f
(

x, uh(x)
)

− sup
y∈Ω

g(y)
)

ϕ(k)(x) dx

≥
N
∑

i=1

∫

Ωi

(

f
(

x, sup
y∈Ω

uh(y)− c3
√
h
)

− sup
y∈Ω

g(y)
)

ϕ(k)(x) dx,

(4.C.45)
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where the latter inequality is explained as follows. Using inequality (4.C.35) for uh(xk), we obtain

(

uh(xk)− uh(xk±1)
)2 ≤ c22h, (4.C.46)

where we restrict to k ± 1 ∈ {1, . . . , J}. Taking square root of the both sides and using the fact that
uh(xk) is maximal, we obtain

uh(xk)− uh(xk±1) ≤ c2
√
h. (4.C.47)

Then by assumption A8 we have that f(x, ·) is monotonically increasing, and the integration may be
restricted to suppϕ(k), i.e. to the neighboring nodes. Since uh is piecewise linear,

uh|suppϕ(k)
≥ uh(xk)− c2

√
h = sup

y∈Ω
uh(y)− c2

√
h. (4.C.48)

Then using the monotonicity of f(x, ·) we obtain inequality (4.C.45).
Finally using inequalities (4.C.40), (4.C.43), (4.C.44), (4.C.45) we may estimate

N
∑

i=1

∫

Ωi

(

f
(

x, sup
y∈Ω

uh(y)− c2
√
h
)

− sup
y∈Ω

g(y)
)

ϕ(k)(x) dx ≤ 0. (4.C.49)

Since ϕ(k) is nonnegative, there exists x ∈ Ω, such that

f
(

x, sup
y∈Ω

uh(y)− c2
√
h
)

− sup
y∈Ω

g(y) ≤ 0. (4.C.50)

Rearranging the elements and using the notation f̃x(y) = f(x, y) we obtain

f̃x
(

sup
y∈Ω

uh(y)− c2
√
h
)

≤ sup
y∈Ω

g(y). (4.C.51)

By assumption A8 function f̃−1
x exists and it is also monotone increasing, so we may apply it to the

inequality to get

sup
y∈Ω

uh(y)− c2
√
h ≤ f̃−1

x

(

sup
y∈Ω

g(y)

)

. (4.C.52)

Therefore we finally obtain
sup
y∈Ω

uh(y) ≤ δ′h + c2
√
h ≤ δh. (4.C.53)

For the lower bound the analysis is similar, but we describe it for the completeness. Assume that
uh(xk) = infx∈Ω uh(x). Let us take ϕ(k) as a test function. Then ϕ(k) attains a maximum in xk and
uh attains a minimum. Therefore signs of ∇ϕ(k) and ∇uh do not agree in supp ϕ(k) unless one of
them is zero. Thus ∇uh · ∇ϕ(k) ≤ 0 in supp ϕ(k) a.e., and it is zero in Ω \ supp ϕ(k). Then we may
estimate

N
∑

i=1

∫

Ωi

ε(x)∇uh(x) · ∇ϕ(k)(x) dx ≤ εm
∫

suppϕ(k)

∇uh(x) · ∇ϕ(k)(x) dx ≤ 0. (4.C.54)

Then we deal with the expression
∑

e∈ΓI
η2,e

∫

e[uh][ϕ(k)] ds. For e ∈ ΓI , e = ∂Ωi ∩ ∂Ωi−1 we have

[uh][ϕ(k)] ≤ 0, (4.C.55)

because either [ϕ(k)] = 0 when xk 6= e or

[uh][ϕ(k)] =
(

uh,i(e)− uh,i−1(e)
)

·
(

ϕ(k),i(e)− ϕ(k),i−1(e)
)

≤ 0, (4.C.56)
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as both functions have extremes in the same node xk, but one is a minimum and the other is maximum.
Then since η2,e ≥ 0 for e ∈ ΓDI , we obtain

∑

e∈ΓI

η2,e

∫

e
[uh][ϕ(k)] ds ≤ 0. (4.C.57)

The last element
∑

e∈ΓD
η2,e

∫

e[uh − û][ϕ(k)] ds is not zero only if xk = e ∈ ΓD. Thus we have two
possibilities:

1. uh(xk) ≤ û(xk). Then
∑

e∈ΓD
η2,e

∫

e[uh − û][ϕ(k)] ds ≤ 0.

2. uh(xk) > û(xk). Then uh(xk) = infΩ uh > û(xk) ≥ infδΩ û = γh.

So in the latter case the theorem is proven. Otherwise we have

∑

e∈ΓD

η2,e

∫

e
[uh − û][ϕ(k)] ds ≤ 0. (4.C.58)

On the other hand, since ϕ(k) is positive, we have

N
∑

i=1

∫

Ωi

(

f
(

x, uh(x)
)

− g(x)
)

ϕ(k)(x) dx ≤
N
∑

i=1

∫

Ωi

(

f
(

x, uh(x)
)

− inf
y∈Ω

g(y)
)

ϕ(k)(x) dx

≤
N
∑

i=1

∫

Ωi

(

f
(

x, inf
y∈Ω

uh(y) + c2
√
h
)

− inf
y∈Ω

g(y)
)

ϕ(k)(x) dx,

(4.C.59)

where the latter inequality is explained as follows. We again use the inequality (4.C.35) for uh(xk)

(

uh(xk)− uh(xk±1)
)2 ≤ c22h, (4.C.60)

where we consider k ± 1 ∈ {1, . . . , J}. Taking square root of the both sides and using the fact that
uh(xk) is minimal, we obtain

− uh(xk) + uh(xk±1) ≤ c2
√
h, (4.C.61)

− uh(xk)− c2
√
h ≤ −uh(xk±1), (4.C.62)

uh(xk) + c2
√
h ≥ uh(xk±1). (4.C.63)

Then it is assumed that f(x, ·) is monotonically increasing, and the integration may be restricted to
suppϕ(k), so to the neighboring nodes. Since uh is piecewise linear,

uh|suppϕ(k)
≤ uh(xk) + c2

√
h = inf

y∈Ω
uh(y) + c2

√
h. (4.C.64)

Then using the monotonicity of f(x, ·) we obtain inequality (4.C.59).
Finally using inequalities (4.C.54), (4.C.57), (4.C.58), (4.C.59) we may estimate

N
∑

i=1

∫

Ωi

(

f
(

x, inf
y∈Ω

uh(y) + c2
√
h
)

− inf
y∈Ω

g(y)
)

ϕ(k)(x) dx ≥ 0. (4.C.65)

Since ϕ(k) is nonnegative, there exists x ∈ Ω, such that

f
(

x, inf
y∈Ω

uh(y) + c2
√
h
)

− inf
y∈Ω

g(y) ≥ 0. (4.C.66)
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Rearranging the elements and using the notation f̃x(y) = f(x, y) we obtain

f̃x
(

inf
y∈Ω

uh(y) + c2
√
h
)

≥ inf
y∈Ω

g(y). (4.C.67)

By assumptions f̃−1
x exists. Since f̃x is monotonically increasing, then f̃

−1
x is also monotonically

increasing and we may apply it to the inequality to get

inf
y∈Ω

uh(y) + c2
√
h ≥ f̃−1

x

(

inf
y∈Ω

g(y)

)

. (4.C.68)

Therefore we finally obtain
inf
y∈Ω

uh(y) ≥ γ′h − c2
√
h ≥ γh. (4.C.69)

Thus summarizing (4.C.53) and (4.C.69) we obtain

γh ≤ γ′h − 3c3g
√
h ≤ inf

x̃∈Ω
uh(x̃),

sup
x̃∈Ω

uh(x̃) ≤ δ′h + 3c3g
√
h ≤ δh.

(4.C.70)

4.C.2.1.4 Conclusions We want to apply theorem 4.C.5 to the problem (4.C.6) to obtain bounds
on ũh independent of ṽh, w̃h. Therefore we do the following substitutions in (4.C.10):

• f(x, y) := ey−ṽh(x) − ew̃h(x)−y,

• g ← k1,

• uh ← ũh,

• û← û.

We have to check the assumptions on f and f̃x. Let x ∈ Ω. Since assumptions on f̃x may be satisfied
almost everywhere, we assume that x 6∈ ΓI , as at these points there are two candidates for values of
ṽh, w̃h. We may then compute

f̃ ′x(y) = ey−ṽh(x) + ew̃h(x)−y > 0. (4.C.71)

Therefore f̃x is a differentiable function for a.e. x ∈ Ω and moreover it is monotone increasing.
Note that f̃x(y) is defined for every y ∈ R. By assumptions of the problem (4.C.6), we have that
αh ≤ ṽh, w̃h ≤ βh. Therefore we may estimate

f̃x(y) = ey−ṽh(x) − ew̃h(x)−y ≥ ey−βh − eβh−y =: f1(y),

f̃x(y) = ey−ṽh(x) − ew̃h(x)−y ≤ ey−αh − eαh−y =: f2(y).
(4.C.72)

So function f̃x is bounded a.e. by
f1 ≤ f̃x ≤ f2, (4.C.73)

where f1, f2 are independent of x.
Let B ⊂ R be a bounded set. Let us fix x. Then

inf f̃x(B) ≥ inf f1(B) > −∞, sup f̃x(B) ≤ sup f2(B) <∞, (4.C.74)
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as f1, f2 ∈ C(R), so they preserve boundedness. Thus f̃x(B) is bounded uniformly for almost all x.
Still we have to prove similar result for f−1. First goes the existence. Note that

lim
y→−∞

f̃x(y) = lim
y→−∞

ey−ṽh(x) − ew̃h(x)−y = [0−∞] = −∞,

lim
y→∞

f̃x(y) = lim
y→∞

ey−ṽh(x) − ew̃h(x)−y = [∞− 0] =∞,
(4.C.75)

so rg f̃x = R. Analogously rg f1 = rg f2 = R. We may therefore conclude that

f−1
2 ≤ f̃−1

x ≤ f−1
1 . (4.C.76)

Moreover rg f̃x = R = dom f̃−1
x , so rg g ⊂ dom f̃−1

x . Then analogously as for f̃x(B), we obtain that
for almost all x, f̃−1

x (rg g) is bounded uniformly, as rg g is a bounded set (because g ∈ L∞(Ω)).
Then γ′h, δ

′
h are finite, as k1 ∈ L∞(Ω), so are γh, δh. Therefore we apply theorem 4.C.5 and we get

bounds on ũh, independent of ṽh, w̃h, where

cg := max{|max
Ω

k1|, |min
Ω

k1|,max
Ω

ε,max
Ω

ε
−1

, ‖∇û‖L2(Ω), |f1(γ
′
h)|, |f1(δ

′
h)|, |f2(γ

′
h)|, |f2(δ

′
h)|,

|f−1
1 (min

Ω
k1(x))|, |f

−1
1 (max

Ω
k1(x))|, |f

−1
2 (min

Ω
k1(x))|, |f

−1
2 (max

Ω
k1(x))|, |γ

′
h|, |δ

′
h|, (|Ω|)

1/3}.
(4.C.77)

Note that functions f1, f2 depend on αh, βh. However none of the above values depend on γh, δh, so
the definitions of γh, δh (4.C.13) are well-posed and c(û, εm, εM , f, g) = c(cg) .

4.C.3 Discrete operator vh(ũh, ṽh, w̃h)

To obtain a discretization of the second equation (4.C.3), we also use the general discrete problem
1.3.3.

Problem 4.C.7. Let v̂ ∈ H1(Ω)∩L∞(Ω) and ũh, ṽh, w̃h ∈ Xh(Ω) be given functions. Find vh ∈ Xh(Ω)
such that

av,h(vh, ũh, ṽh, w̃h, φh) + bv(vh, ũh, ṽh, w̃h, φh) = fv,h(vh, ũh, ṽh, w̃h, φh), (4.C.78)

where

av,h(vh, ũh, ṽh, w̃h, φh) =
N
∑

i=1

∫

Ωi

µn(x)e
ũh,i(x)−ṽh,i(x)∇vh,i(x)∇φh,i(x) dx

+
∑

e∈ΓDI

η2,e

∫

e
[vh]e[φh]e ds,

bv(vh, ũh, ṽh, w̃h, φh) = −
∫

Ω
Q(ũh(x), vh(x), w̃h(x))(e

w̃h(x)−vh(x) − 1)φh(x) dx,

fv,h(vh, φh) =
∑

e∈ΓD

η2,e

∫

e
[v̂]e[φh]e ds.

(4.C.79)

We would like to show the existence and uniqueness of the solution of problem 4.C.7. We are going
to prove the following theorem.

Theorem 4.C.8. Under assumptions A1 to A8, let ũh, ṽh, w̃h ∈ Xh(Ω) be functions as in theorem
4.C.3. Then the solution vh of the problem 4.C.7 exists and it is unique. Moreover vh is bounded:

αh ≤ vh ≤ βh, (4.C.80)

where constants αh, βh ∈ R do not depend on ṽh, w̃h.
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4.C.3.1 Existence

We would like to show the existence of the function vh by Brouwer theorem 1.4.4. In this part we
do not need to assume that P ≡ 0, thus we will prove the existence in the general case. We define
P : Xh(Ω)→ X∗

h(Ω) as

P (vh)φh := av,h(vh, ũh, ṽh, w̃h, φh) + bv(vh, ũh, ṽh, w̃h, φh) + fv,h(φh). (4.C.81)

Then
P (vh)vh := av,h(vh, ũh, ṽh, w̃h, vh) + bv(vh, ũh, ṽh, w̃h, vh) + fv,h(vh). (4.C.82)

First we note that
av,h(vh, ũh, ṽh, w̃h, vh) ≥ c‖vh‖2h,Σ2

, (4.C.83)

where the constant c depends on αh, βh, γh, δh. By Schwarz inequality we have
∣

∣

∣
fv,h(vh)

∣

∣

∣
≤ ‖v̂‖h,Σ2‖vh‖h,Σ2 . (4.C.84)

Then

bv(vh, ũh, ṽh, w̃h, vh) = −
∫

Ω
Q(ũh(x), vh(x), w̃h(x))(e

w̃h(x)−vh(x) − 1)vh(x) dx

=

∫

Ω
Q(ũh(x), vh(x), w̃h(x))vh(x)dx

+

∫

Ω
Q(ũh(x), vh(x), w̃h(x))e

w̃h(x)
(

e−vh(x)
(

− vh(x)
)

)

dx.

(4.C.85)

We recall that 0 ≤ Q ≤ QM . Thus
∣

∣

∣

∫

Ω
Q(ũh(x), vh(x), w̃h(x))vh(x)dx

∣

∣

∣ ≤ QM‖vh‖L1(Ω) ≤ C‖vh‖h,Σ2 . (4.C.86)

On the other hand, note that ∀x ∈ R xex ≥ −e, so
∫

Ω
Q(ũh(x), vh(x), w̃h(x))e

w̃h(x)
(

e−vh(x)
(

− vh(x)
)

)

dx ≥ −QMeβh+1|Ω| ≥ −c. (4.C.87)

Therefore we have that
P (vh)vh ≥ c(‖vh‖2h,Σ2

− ‖vh‖h,Σ2 − 1), (4.C.88)

for some c > 0.
Then we show that P is continuous by element by element approach. Let

P (vh) = Pa(vh) + Pb(vh) + Pf (vh), (4.C.89)

where

Pa(vh)φh := av,h(vh, ũh, ṽh, w̃h, φh),

Pb(vh)φh := bv(vh, ũh, ṽh, w̃h, φh),

Pf (vh)φh := fv,h(φh).

(4.C.90)

By Schwarz inequality

|Pa(vh)φh| := |av,h(vh, φh)|

=
∣

∣

∣

N
∑

i=1

∫

Ωi

µn(x)e
ũh,i(x)−ṽh,i(x)∇vh,i(x)∇φh,i(x) dx +

∑

e∈ΓDI

η2,e

∫

e
[vh]e[φh]e ds

∣

∣

∣

≤ C‖vh‖h,Σ2‖φh‖h,Σ2

(4.C.91)
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Thus

‖Pa(vh)‖ = sup
‖φh‖h,Σ2

=1
|Pa(vh)φh| ≤ C sup

‖φh‖h,Σ2
=1
‖vh‖h,Σ2‖φh‖h,Σ2 = C‖vh‖h,Σ2 , (4.C.92)

so Pa is bounded. It is linear, so then it is continuous. For Pf we have

Pf (vh)φh := fv,h(φh), (4.C.93)

so it does not depend on vh, so trivially it is continuous. Finally we have

Pb(vh)φh := −
∫

Ω
Q(ũh(x), vh(x), w̃h(x))(e

w̃h(x)−vh(x) − 1)vh(x) dx. (4.C.94)

Take any vh,(n) → vh in Xh(Ω). We will show that P (vh,(n)) → P (vh). Since Xh(Ω) is a finite space,
{vh,(n)}n also converges in ‖ · ‖L2(Ω) and ‖ · ‖L∞(Ω). Therefore ‖vh,(n)‖L∞(Ω) are bounded uniformly.
Due to assumption A1, function P (u, v, w) = Q(u, v, w)(ew−v − 1) is locally Lipschitz-continuous.

Thus since ũh, w̃h, vh, vh,(n) are all bounded, we may use Lipschitz-continuity to estimate

∣

∣

∣[P (vh,(n))− P (vh)]φh
∣

∣

∣ =
∣

∣

∣

∫

Ω
Q(ũh(x), vh(x), w̃h(x))(e

w̃h(x)−vh(x) − 1)φh(x) dx

−
∫

Ω
Q(ũh(x), vh,(n)(x), w̃h(x))(e

w̃h(x)−vh,(n)(x) − 1)φh(x) dx
∣

∣

∣

≤
∫

Ω
C|vh(x)− vh,(n)||φh(x)| dx

≤ C‖vh(x)− vh,(n)‖L2(Ω)‖φh(x)‖L2(Ω).

(4.C.95)

Therefore

‖P (vh,(n))− P (vh)‖ = sup
‖φh‖h,Σ2

=1

∣

∣

∣
[P (vh,(n))− P (vh)]φh

∣

∣

∣
≤ C‖vh(x)− vh,(n)‖L2(Ω) → 0. (4.C.96)

Thus Pb is also continuous.
Therefore by theorem 1.4.4 there is some vh, such that P (vh) = 0. Existence is now proven.

4.C.3.2 Bounds and uniqueness

We begin with two abstract lemmas.

Lemma 4.C.9. Let n ∈ N, ŷ0, ŷn+1 ∈ R and a = [a1, . . . , an], b = [b1, . . . , bn] be given, so that
ai > 0, bi > 0 for every i ∈ {1, . . . , n}. Let y = [y1, . . . , yn] ∈ R

n be a solution of equation


























a1 + b1 −b1 0 0 0 . . . 0

−a2 a2 + b2 −b2 0 0 . . . 0

0 −a3 a3 + b3 −b3 0 . . . 0
...

. . .
. . .

. . .
. . . . . .

...

0 . . . 0 −an−2 an−2 + bn−2 −bn−2 0

0 . . . 0 0 −an−1 an−1 + bn−1 −bn−1

0 . . . 0 0 0 −an an + bn





















































y1

y2

y3
...

yn−2

yn−1

yn



























=



























a1ŷ0

0

0
...

0

0

bnŷn+1



























. (4.C.97)

Then either
ŷ0 ≤ y1 ≤ y2 ≤ . . . ≤ yn−1 ≤ yn ≤ ŷn+1, (4.C.98)

or
ŷ0 ≥ y1 ≥ y2 ≥ . . . ≥ yn−1 ≥ yn ≥ ŷn+1. (4.C.99)
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Proof. To simplify the syntax, let us define

y0 := ŷ0, yn+1 := ŷn+1. (4.C.100)

For any i ∈ {1, . . . , n} we will show that if yi−1 ≤ yi (resp. yi−1 ≥ yi), then yi ≤ yi+1 (yi ≥ yi+1). By
i-th line of the equation (4.C.97), we have

− aiyi−1 + (ai + bi)yi − biyi+1 = 0. (4.C.101)

Rearranging elements, we obtain

ai(yi − yi−1) + biyi = biyi+1. (4.C.102)

Dividing both sides by bi > 0 we obtain

yi+1 = yi +
ai
bi
(yi − yi−1). (4.C.103)

Note that aibi > 0. If yi−1 ≤ yi, then yi−yi−1 ≥ 0, so yi+1 is not less than yi. Similarly when yi−1 ≥ yi,
then yi − yi−1 ≤ 0, so yi+1 is not greater than yi.
We will proceed by induction. First let y0 ≤ y1. Then, as we have shown already, yi ≤ yi+1 for

any i ∈ {1, . . . , n}, so we obtain

y0 ≤ y1 ≤ y2 ≤ . . . ≤ yn−1 ≤ yn ≤ yn+1. (4.C.104)

On the other hand, if y0 ≥ y1, then yi ≥ yi+1 for any i ∈ {1, . . . , n} and we have

y0 ≥ y1 ≥ y2 ≥ . . . ≥ yn−1 ≥ yn ≥ yn+1. (4.C.105)

Substituting y0 ← ŷ0, yn+1 ← ŷn+1 proves the lemma.

Lemma 4.C.10. Let n ∈ N, a = [a2, . . . , an], b = [b1, . . . , bn−1], c = [c1, . . . , cn] be given, so that
ai 6= 0, bi 6= 0 for every i ∈ {2, . . . , n− 1} and

|ci| ≥ |ai|+ |bi| ∀i ∈ {2, . . . , n− 1}, (4.C.106)

|c1| ≥ |b1|, |cn| ≥ |an|, (4.C.107)

and

|c1| > |b1| or |cn| > |an|. (4.C.108)

Then the matrix A

A =





























c1 −b1 0 0 0 . . . 0

−a2 c2 −b2 0 0 . . . 0

0 −a3 c3 −b3 0 . . . 0
...
. . .

. . .
. . .

. . . . . .
...

0 . . . 0 −an−2 cn−2 −bn−2 0

0 . . . 0 0 −an−1 cn−1 −bn−1

0 . . . 0 0 0 −an cn





























, (4.C.109)

is non-singular.
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2.2× 1038 −9.2× 1029 0 0 0 0 0 0

−9.2× 1029 1.2× 1030 −3.2× 1029 0 0 0 0 0

0 −3.2× 1029 3.2× 1029 −1.2× 1020 0 0 0 0

0 0 −1.2× 1020 1.2× 1020 −1.2× 10−9 0 0 0

0 0 0 −1.2× 10−9 1.2× 10−9 −1.6× 10−18 0 0

0 0 0 0 −1.6× 10−18 1.6× 10−18 −4.1× 10−23 0

0 0 0 0 0 −4.1× 10−23 4.9× 10−23 −7.9× 10−24

0 0 0 0 0 0 −7.9× 10−24 9.7× 10−17





























Figure 4.2: Example of a matrix A constructed for a numerical solution of vh in a simulation of a
simple p-n GaN diode.

Proof. See [36], lemma 10.10.

Theorem 4.C.11. Let us consider the general CWOPSIP discretization (see problem 1.3.3) in one
dimension, with f ≡ 0:

ah(u
∗
h, φh) = fh(φh), ∀φh ∈ Xh(Ω), (4.C.110)

where

a(uh, φh) =

N
∑

i=1

∫

Ωi

a∇uh,i · ∇φh,i dx,

ah(uh, φh) =a(uh, φh) +
∑

e∈ΓDI

ηe

∫

e
[uh] · [φh] ds,

fh(φh) =
∑

e∈ΓD

ηe

∫

e
[û] · [φh] ds.

(4.C.111)

Then it has an unique solution u∗h ∈ Xh(Ω) such that

min{û(e0), û(e1)} ≤ u∗h ≤ max{û(e0), û(e1)}, (4.C.112)

for ΓD = {e0, e1}, Ω = (e0, e1).

Proof. Since the general discrete problem 1.3.3 is linear, then it can be written in a matrix form. We
will then use lemmas 4.C.10, 4.C.9. We make the following substitutions:

• n← J ,

• ŷ0 ← û(e0),

• ŷn+1 ← û(e1),

• y ← u∗h.

Then we will show that the matrix has the form required by the lemmas. Since f ≡ 0, we solve the
following problem: find uh ∈ Xh that for every φh ∈ Xh

ah(uh, φh) = a(uh, φh) +
∑

e∈ΓDI

η2,e

∫

e
[uh]e[φh]e ds =

∑

e∈ΓD

η2,e

∫

e
[û]e[φh]e ds, (4.C.113)
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where

a(uh, φh) :=

N
∑

i=1

∫

Ωi

a∇uh,i · ∇φh,i dx. (4.C.114)

Thus the matrix for this problem reads

A =
[

ah
(

ϕ(j), ϕ(k)

)

]

j,k∈{1,...,J}
. (4.C.115)

By definition, a
(

ϕ(j), ϕ(k)

)

may be non-zero only for k ∈ {j − 1, j, j + 1} ∩ {1, . . . , J}. Also
∑

e∈ΓDI
ηe[ϕ(j)]e[ϕ(k)]e is non-zero only for basis functions corresponding to the same interface, so

|j − k| ≤ 1. Thus A is tridiagonal. We will check it has the required form by row-by-row verification.
For j > 1 we define

aj := −ah(ϕ(j), ϕ(j−1)), (4.C.116)

and
a1 := ah(ϕ(1), ϕ(1))− a(ϕ(1), ϕ(1)). (4.C.117)

For j < J we define
bj := −ah(ϕ(j), ϕ(j+1)), (4.C.118)

and
bJ := ah(ϕJ , ϕJ )− a(ϕJ , ϕJ ). (4.C.119)

Take any j ∈ {2, . . . , J}. Then

ah(ϕ(j−1), ϕ(j)) = ah(ϕ(j), ϕ(j−1)) = a(ϕ(j), ϕ(j−1)) +
∑

e∈ΓDI

η2,e

∫

e
[ϕ(j)][ϕ(j−1)] ds. (4.C.120)

We have that

a(ϕ(j), ϕ(j−1)) =
∑

τ∈T

∫

τ
a
d

dx
ϕ(j)

d

dx
ϕ(j−1). (4.C.121)

Any element of this sum is zero unless τ = supp(ϕ(j)) ∩ supp(ϕ(j−1)) and then

−
∫

τ
a
d

dx
ϕ(j)

d

dx
ϕ(j−1) =

∫

τ
a
d

dx
ϕ(j)

d

dx
ϕ(j) =

∫

τ
a
d

dx
ϕ(j−1)

d

dx
ϕ(j−1). (4.C.122)

Note that this case may only happen if xj−1 and xj are nodes for some Ωi, and a(ϕ(j), ϕ(j−k)) =
a(ϕ(j−k), ϕ(j)) = 0 for any k > 1. On the other hand η2,e

∫

e[ϕ(j)][ϕ(j−1)] ds is nonzero only if ϕ(j) and
ϕ(j−1) correspond to interface between some Ωi and Ωi+1. In this case

− η2,e
∫

e
[ϕ(j)][ϕ(j−1)] ds = η2,e

∫

e
[ϕ(j)][ϕ(j)] ds = η2,e

∫

e
[ϕ(j−1)][ϕ(j−1)] ds. (4.C.123)

Note also that η2,e
∫

e[ϕ(j)][ϕ(j)] ds is nonzero only if xj lies on the boundary of some Ωi ∈ E .
It is therefore clear that aj + bj = ah(ϕ(j), ϕ(j)). Also note that for e = x1 ∈ ΓD

a1 = η2,e

∫

e
[ϕ(1)][ϕ(1)] ds = η2,e

∫

e
ϕ(1)(x1)ϕ(1)(x1) ds = η2,e. (4.C.124)

Thus

η2,e

∫

e
[û][ϕ(1)] ds = η2,e

∫

e
û(e) ds = a1û(e). (4.C.125)
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Analogously for e = xJ ∈ ΓD

η2,e

∫

e
[û][ϕJ ] ds = bJ û(e). (4.C.126)

Thus indeed we see that the matrix A has a desired form. Then by lemma 4.C.10 we have that A is
non-singular, as we substitute ci := ai+bi and ai, bi > 0, so the inequality c1 > b1 is obvious. Therefore
the solution is unique. Then by lemma 4.C.9 we have that uh is monotone and it is bounded by values
of û on ∂Ω, as stated in this theorem.

In section 4.C.3 we have defined the discrete problem on vh, as a special case of the general discrete
problem (1.3.20). Thus we can use theorem 4.C.11 to obtain bounds as in theorem 4.C.8.

4.C.4 Discrete operator wh(ũh, ṽh, w̃h)

In this case we proceed analogously to section 4.C.3. The discrete problem corresponding to equation
(4.C.4) is as follows.

Problem 4.C.12. Let ŵ ∈ H1(Ω) ∩ L∞(Ω) and ũh, ṽh, w̃h ∈ Xh(Ω) be given functions. Find wh ∈
Xh(Ω) such that

aw,h(wh, ũh, ṽh, w̃h, φh) + bw(wh, ũh, ṽh, w̃h, φh) = fw,h(wh, ũh, ṽh, w̃h, φh), (4.C.127)

where

aw,h(wh, ũh, ṽh, w̃h, φh) =

N
∑

i=1

∫

Ωi

µp(x)e
w̃h,i(x)−ũh,i(x)

d

dx
wh,i(x)

d

dx
φh,i(x) dx

+
∑

e∈ΓDI

η2,e

∫

e
[wh][φh] ds,

bw(wh, ũh, ṽh, w̃h, φh) =

∫

Ω
Q(ũh(x), ṽh(x), wh(x))(e

wh(x)−ṽh(x) − 1)φh(x) dx,

fw,h(wh, ũh, ṽh, w̃h, φh) =
∑

e∈ΓD

η2,e

∫

e
[ŵ][φh] ds.

(4.C.128)

Theorem 4.C.13. Under assumptions A1 to A8, let ũh, ṽh, w̃h ∈ Xh(Ω) be functions as in theorem
4.C.3. Then the solution wh of problem 4.C.127 exists and it is unique. Moreover wh is bounded by

αh ≤ wh ≤ βh. (4.C.129)

where constants αh, βh are the same as in theorem 4.C.8.

Proof of this theorem is completely analogous to the proof of theorem 4.C.8.

4.C.5 Discretization of the van Roosbroeck system

For the discretization of the coupled van Roosbroeck system (problem 1.2.1), we will use operators
introduced in sections 4.C.2, 4.C.3 and 4.C.4. Therefore the discrete problem is as follows.

Find (u∗h, v
∗
h, w

∗
h) ∈

(

Xh(Ω)
)3
, such that for every φh ∈ Xh(Ω) we have

au,h(u
∗
h, v

∗
h, w

∗
h, φh) + bu(u

∗
h, v

∗
h, w

∗
h, φh) = fu,h(v

∗
h, u

∗
h, v

∗
h, w

∗
h, φh),

av,h(v
∗
h, u

∗
h, v

∗
h, w

∗
h, φh) + bv(v

∗
h, u

∗
h, v

∗
h, w

∗
h, φh) = fv,h(v

∗
h, u

∗
h, v

∗
h, w

∗
h, φh),

aw,h(w
∗
h, u

∗
h, v

∗
h, w

∗
h, φh) + bw(w

∗
h, u

∗
h, v

∗
h, w

∗
h, φh) = fw,h(w

∗
h, u

∗
h, v

∗
h, w

∗
h, φh).

(4.C.130)
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We would like to prove existence of solutions of this system by arguing that operator T : X2
h(Ω)→

X2
h(Ω) defined as

T (ṽh, w̃h) =
(

vh
(

ũh(ṽh, w̃h), ṽh, w̃h
)

, wh
(

ũh(ṽh, w̃h), ṽh, w̃h
)

)

, (4.C.131)

has a fixed point.

4.C.6 Analysis

So far we have proven the following results. Assume there is no recombination (P ≡ 0). Then there
exist constants αh, βh, γh, δh such that if αh ≤ ṽh, w̃h ≤ βh, then αh ≤ vh, wh ≤ βh and γh ≤ ũh ≤ δh,
for (vh, wh) := T (ṽh, w̃h) and ũh = ũh(ṽh, w̃h). Thus if we define K := {(uh, vh) ∈ Xh(Ω) : αh ≤
uh, vh ≤ βh}, then we may state that T : K 7→ K.

K is a bounded closed subset of Xh(Ω), so it is compact as Xh(Ω) is a finite dimensional space.
Also it is convex. Therefore we would like to use the Schauder fixed point theorem (theorem 4.A.1)
to show that T has a fixed point. To do so, we must prove that T is a continuous function.

4.C.6.1 Continuity of ũh

First want to show that ũh = ũh(ṽh, w̃h) is a continuous operator.

Idea: let ũh := ũh(ṽh, w̃h) and uh := ũh(vh, wh). We will show that ‖ũh − uh‖ ≤ c
(

‖ṽh − vh‖ +
‖w̃h − wh‖

)

, where ‖ · ‖ will be an appropriate norm (not necessarily the same for all the elements).
Equivalence of norms in Xh(Ω) would be very helpful in these analysis.

Thus let ũh := ũh(ṽh, w̃h) and uh := ũh(vh, wh). By definition for every φh ∈ Xh(Ω) we have

∫

Ω
ε(x)∇ũh(x) · ∇φh(x) +

(

eũh(x)−ṽh(x) − ew̃h(x)−ũh(x)
)

φh(x)dx+
∑

e∈ΓDI

η2,e

∫

e
[ũh][φh] ds

=

∫

Ω
k1(x)φh(x) dx +

∑

e∈ΓD

η2,e

∫

e
[û][φh] ds,

∫

Ω
ε(x)∇uh(x) · ∇φh(x) +

(

euh(x)−vh(x) − ewh(x)−uh(x)
)

φh(x)dx+
∑

e∈ΓDI

η2,e

∫

e
[uh][φh] ds

=

∫

Ω
k1(x)φh(x) dx +

∑

e∈ΓD

η2,e

∫

e
[û][φh] ds.

(4.C.132)

Subtracting these equations we obtain

∫

Ω
ε(x)

(

∇ũh(x)−∇uh(x)
)

· ∇φh(x) dx

+

∫

Ω

(

eũh(x)−ṽh(x) − ew̃h(x)−ũh(x) − euh(x)−vh(x) + ewh(x)−uh(x)
)

φh(x) dx

+
∑

e∈ΓDI

η2,e

∫

e
[ũh − uh][φh] ds = 0.

(4.C.133)

If we then take φh := ũh − uh and we substitute it into (4.C.133)

‖ũh − uh‖
2
h,Σ2

=

∫

Ω

(

− e
ũh(x)−ṽh(x) + e

w̃h(x)−ũh(x) + e
uh(x)−vh(x) − e

wh(x)−uh(x)
)(

ũh(x)− uh(x)
)

dx. (4.C.134)
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Note that for any a, b, c, d ∈ R by monotonicity of the exponential function we have
(

exp(c− d)− exp(a− b)
)

(a− c) =
(

exp(c− d)− exp(a− b)
)(

(a− b)− (c− d)
)

+
(

exp(c− d)− exp(a− b)
)

(b− d)

≤
(

exp(c− d)− exp(a− b)
)

(b− d),

(4.C.135)

and
(

exp(c− d)− exp(a− b)
)

(d− b) =
(

exp(c− d)− exp(a− b)
)(

(a− b)− (c− d)
)

+
(

exp(c− d)− exp(a− b)
)

(c− a)

≤
(

exp(c− d)− exp(a− b)
)

(c− a).

(4.C.136)

Thus
∫

Ω

(

− eũh(x)−ṽh(x) + ew̃h(x)−ũh(x) + euh(x)−vh(x) − ewh(x)−uh(x)
)(

ũh(x)− uh(x)
)

dx

=

∫

Ω

(

euh(x)−vh(x) − eũh(x)−ṽh(x)
)(

ũh(x)− uh(x)
)

dx

+

∫

Ω

(

ew̃h(x)−ũh(x) − ewh(x)−uh(x)
)(

ũh(x)− uh(x)
)

dx

≤
∫

Ω

(

euh(x)−vh(x) − eũh(x)−ṽh(x)
)(

ṽh(x)− vh(x)
)

dx

+

∫

Ω

(

ew̃h(x)−ũh(x) − ewh(x)−uh(x)
)(

w̃h(x)− wh(x)
)

dx

≤‖euh−vh − eũh−ṽh‖L2(Ω)‖ṽh − vh‖L2(Ω) + ‖ew̃h−ũh − ewh−uh‖L2(Ω)‖w̃h − wh‖L2(Ω)

≤2max
{

‖eδh−αh‖L2(Ω), ‖eβh−γh‖L2(Ω)

}(

‖ṽh − vh‖L2(Ω) + ‖w̃h − wh‖L2(Ω)

)

.

(4.C.137)

Therefore together with (4.C.134) we obtain

‖ũh − uh‖2h,Σ2
≤ c
(

‖ṽh − vh‖L2(Ω) + ‖w̃h − wh‖L2(Ω)

)

, (4.C.138)

where c depends on Ω, αh, βh, δh, γh. Therefore due to equivalence of norms in Xh(Ω), we have that if
(vh, wh)→ (ṽh, w̃h), then uh → ũh. Therefore ũh : K 7→ Xh(Ω) is a continuous operator.

4.C.6.2 Continuity of vh and wh

To prove continuity of the operators vh(ũh, ṽh) and wh(ũh, w̃h) we will use some estimates derived for
the discrete operator of problem 1.3.3 with f ≡ 0.

4.C.6.2.1 Generalized case We would like to prove the following lemma.

Lemma 4.C.14. Let a, b ∈ L∞(Ω) ∩ L2(Ω). Let uh, vh ∈ Xh(Ω) be the solutions of
∫

Ω
a(x)

d

dx
uh

d

dx
φh +

∑

e∈ΓDI

η2,e

∫

e
[uh][φh] ds =

∑

e∈ΓD

η2,e

∫

e
[û][φh] ds, (4.C.139)

∫

Ω
b(x)

d

dx
vh

d

dx
φh +

∑

e∈ΓDI

η2,e

∫

e
[vh][φh] ds =

∑

e∈ΓD

η2,e

∫

e
[û][φh] ds, (4.C.140)
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for every φh ∈ Xh(Ω). If 0 < am ≤ a, b ≤ aM and ‖ ddxvh‖L∞(Ω) < c, where c is independent of b, and
b→ a in L2(Ω), then vh → uh in Xh(Ω).

Remark 4.C.15. In the above theorem in both cases û is a function used as a Dirichlet boundary
condition.

Proof. Subtracting (4.C.140) from (4.C.139) gives

∫

Ω

(

a(x)
d

dx
uh(x)− b(x)

d

dx
vh(x)

) d

dx
φh(x) dx +

∑

e∈ΓDI

η2,e

∫

e
[uh − vh][φh] ds = 0 (4.C.141)

We may rewrite first element of the left hand side as

∫

Ω

(

a(x)
d

dx
uh(x)− b(x)

d

dx
vh(x)

) d

dx
φh(x)dx =

∫

Ω
a(x)

d

dx

(

uh(x)− vh(x)
) d

dx
φh(x) dx

−
∫

Ω

(

b(x)− a(x)
) d

dx
vh(x)

d

dx
φh(x) dx

(4.C.142)

For the purposes of this proof, if we substitute ε := a in the definition of the broken norm (1.3.11),
then using above result in equation (4.C.141) and taking φh := uh − vh we obtain

‖uh − vh‖2h,Σ2
=

∫

Ω

(

b(x)− a(x)
) d

dx
vh(x)

d

dx

(

uh(x)− vh(x)
)

dx. (4.C.143)

Then we can estimate the right hand side using the Schwarz inequality

∫

Ω

(

b(x)− a(x)
) d

dx
vh(x)

d

dx

(

uh(x) − vh(x)
)

dx ≤ ‖b− a‖L2(Ω)

∥

∥

∥

d

dx
vh

∥

∥

∥

L∞(Ω)

∥

∥

∥

d

dx
uh −

d

dx
vh

∥

∥

∥

L2(Ω)
. (4.C.144)

Therefore we have

‖uh − vh‖2h,Σ2
≤ ‖b− a‖L2(Ω)

∥

∥

∥

d

dx
vh

∥

∥

∥

L∞(Ω)

∥

∥

∥

d

dx
uh −

d

dx
vh

∥

∥

∥

L2(Ω)

≤ a−1/2
m ‖b− a‖L2(Ω)

∥

∥

∥

d

dx
vh

∥

∥

∥

L∞(Ω)
‖uh − vh‖h,Σ2 ,

(4.C.145)

where we used inequality

‖wh‖2h,Σ2
=

∫

Ω
a(x)

( d

dx
wh

)2
+

N
∑

i=1

η2,e

∫

e
[wh]

2 ds ≥ am
∥

∥

∥

d

dx
wh

∥

∥

∥

2

L2(Ω)
. (4.C.146)

Assuming uh 6= vh and dividing by ‖uh − vh‖h,Σ2 we obtain

‖uh − vh‖h,Σ2 ≤ a−1/2
m ‖b− a‖L2(Ω)

∥

∥

∥

d

dx
vh

∥

∥

∥

L∞(Ω)
. (4.C.147)

Then if we fix a and thus also uh ∈ Xh(Ω) and if b→ a in L2(Ω) and if ‖ ddxvh‖L∞(Ω) is bounded, then
‖uh − vh‖h,Σ2 → 0, so vh → uh in Xh(Ω).
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4.C.6.2.2 Operator vh We would like to use lemma 4.C.14 to show the continuity of vh(ṽh, w̃h).
Assume then that we have two functions (ṽh, w̃h) ∈ K and a sequence (ṽh,(n), w̃h,(n)) ∈ K so that
ṽh,(n) → ṽh, w̃h,(n) → w̃h in Xh(Ω). Therefore we will do the following substitutions

• a← µn exp
(

ũh − ṽh
)

,

• b← µn exp
(

ũh,(n) − ṽh,(n)
)

,

• uh ← vh = vh(ṽh, w̃h),

• vh ← vh,(n) = vh(ṽh,(n), w̃h,(n)),

• ũh = ũh(ṽh, w̃h),

• ũh,(n) = ũh(ṽh,(n), w̃h,(n)),

• am ← µm exp(γh − βh),

• aM ← µM exp(δh − αh).

Then by definition of K and assumption A1 relative to µn (1.2.1), we have that am ≤ a ≤ aM and
am ≤ b ≤ aM .
Let hm := min{diam τ : τ ∈ T }. Then we have that

∥

∥

∥

d

dx
vh

∥

∥

∥

L2(Ω)
=
∥

∥

∥

d

dx
vh,(n)‖L2(Ω) ≤ 2h−1

m ‖vh,(n)‖L∞(Ω) ≤ 2h−1
m max{|αh|, |βh|}, (4.C.148)

thus the derivative of vh is bounded by a constant independent of b.

Also note that since the exponential function is Lipschitz-continuous on any finite interval, we have

‖a− b‖2L2(Ω) =

∫

Ω
µ2n(x)

(

eũh(x)−ṽh(x) − eũh,(n)(x)−ṽh,(n)(x)
)2
dx

≤
∫

Ω
µ2nL

2
e

(

ũh(x)− ṽh(x)− ũh,(n)(x) + ṽh,(n)(x)
)

dx

≤ L2
eµ

2
M‖ũh − ṽh − ũh,(n) + ṽh,(n)‖L2(Ω)

≤ L2
eµ

2
M

(

‖ũh − ũh,(n)‖L2(Ω) + ‖ṽh − ṽh,(n)‖L2(Ω)

)

,

(4.C.149)

where Le is a Lipschitz constant for exp on [γh−βh, δh−αh]. Then by the equivalence of norms inXh(Ω)
and continuity of operator ũh (section 4.C.6.1) we have the following result. If ṽh,(n) → ṽh, w̃h,(n) → w̃h
in Xh(Ω), then ũh,(n) → ũh in Xh(Ω), an therefore also in L2(Ω). Thus b→ a in L2(Ω).
Then all of the assumptions of lemma 4.C.14 are satisfied and therefore vh,(n) → vh, so the operator

vh(ṽh, w̃h) is continuous in K.

4.C.6.2.3 Operator wh We will proceed similarly to section 4.C.6.2.2. Therefore we will do the
following substitutions

• a← µp exp
(

w̃h − ũh
)

,

• b← µp exp
(

w̃h,(n) − ũh,(n)
)

,

• uh ← wh = wh(ṽh, w̃h),

• vh ← wh,(n) = wh(ṽh,(n), w̃h,(n)),
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• ũh = ũh(ṽh, w̃h),

• ũh,(n) = ũh(ṽh,(n), w̃h,(n)),

• am ← µm exp(αh − δh),

• aM ← µM exp(βh − γh).

Then by definition of K and assumption A1 relative to µp, we have that am ≤ a ≤ aM and
am ≤ b ≤ aM .
Then

∥

∥

∥

d

dx
vh

∥

∥

∥

L2(Ω)
=
∥

∥

∥

d

dx
wh,(n)

∥

∥

∥

L2(Ω)
≤ 2h−1

m ‖wh,(n)‖L∞(Ω) ≤ 2h−1
m max{|αh|, |βh|}, (4.C.150)

and analogously to section 4.C.6.2.2

‖a− b‖2L2(Ω) =

∫

Ω
µ2p(x)

(

ew̃h(x)−ũh(x) − ew̃h,(n)(x)−ũh,(n)(x)
)2
dx

≤
∫

Ω
µ2pL

2
e

(

w̃h(x)− ũh(x)− w̃h,(n)(x) + ũh,(n)(x)
)

dx

≤ L2
eµ

2
M‖w̃h − ũh − w̃h,(n) + ũh,(n)‖L2(Ω)

≤ L2
eµ

2
M

(

‖ũh − ũh,(n)‖L2(Ω) + ‖w̃h − w̃h,(n)‖L2(Ω)

)

.

(4.C.151)

Thus if ṽh,(n) → ṽh, w̃h,(n) → w̃h in Xh(Ω), then ũh,(n) → ũh in Xh(Ω), an therefore also in L2(Ω).
Thus b→ a in L2(Ω).

Then all of the assumptions of lemma 4.C.14 are satisfied and therefore wh,(n) → wh, so the
operator wh(ṽh, w̃h) is continuous in K.

4.C.6.3 Conclusions

In the previous subsections of these section we have proven that the operator T , defined as

T (ṽh, w̃h) :=
(

vh
(

ũh(ṽh, w̃h), ṽh
)

, wh
(

ũh(ṽh, w̃h), w̃h
)

)

=
(

vh ◦ ũh, wh ◦ ũh
)

(ṽh, w̃h), (4.C.152)

is a continuous mapping of convex compact K ⊂ Xh(Ω)
2 into itself, as it is a composition of the

continuous functions. Therefore using the Schauder fixed point theorem (theorem 4.A.1) we obtain
existence of such functions vh, wh that

T (vh, wh) = (vh, wh). (4.C.153)

Therefore functions uh := ũh(vh, wh) ∈ Xh(Ω), vh ∈ Xh(Ω) and wh ∈ Xh(Ω) are a possibly
non-unique solution of the system

au,h(uh, vh, wh, φh) = fu,h(uh, vh, wh, φh), (4.C.154)

av,h(vh, uh, vh, wh, φh) = fv,h(vh, uh, vh, wh, φh), (4.C.155)

aw,h(wh, uh, vh, wh, φh) = fw,h(wh, uh, vh, wh, φh). (4.C.156)

for every φh ∈ Xh(Ω).
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4.D List of assumptions

Assumption A1.

1. Ω ⊂ R
d for d ∈ {1, 2}, and it is an interval (d = 1) or a polygon (d = 2).

2. 0 ≤ Q(u, v, w) ≤ QM for any u, v, w ∈ R.

3. P (u, v, w) is monotone decreasing in v for u, v, w ∈ R.

4. P (u, v, w) is monotone increasing in w for u, v, w ∈ R.

5. P is locally Lipschitz.

6. 0 < εm ≤ ε(x) ≤ εM for some εm, εM ∈ R.

7. k1 ∈ L∞(Ω).

8. µn, µp are Lipschitz continuous functions.

9. 0 < µm ≤ µn(x), µp(x) ≤ µM for some constants µm, µM ∈ R.

Assumption A2. {Ti,hi(Ω)}hi is a quasi-uniform family of meshes (see definition 1.1.6).

Assumption A3. The coarse mesh E is chosen in such a manner so that Γ is a sum of disjoint sets
ΓD, ΓN and ΓI , where

ΓD := {e ∈ Γ : e ⊂ ∂ΩD},
ΓN := {e ∈ Γ : e ⊂ ∂ΩN},
ΓI := {e ∈ Γ : e ⊂ int(Ω)}.

(1.3.6)

Assumption A4.

• ΓD 6= ∅.

• Th is a shape regular mesh (see definition 1.1.5).

Assumption A5. û ∈ H1(Ω) ∩ L∞(Ω).

Assumption A6.

• Ω ⊂ R
d, d ∈ {1, 2}, is an interval (d = 1) or a polygon (d = 2).

• ∂Ω = ∂ΩD ∪ ∂ΩN .

• ∂ΩD has nonzero measure.

Assumption A7.

• There is some 0 < hM ≤ 1 such that for any 0 < h < hM and for any e ∈ ΓDI we have
ηe,r ≥ |e|−1 and ηe,r ≥ 1 (cf. (1.3.12)).

• Constant hM is sufficiently small, so that for any 0 < h < hM lemma 1.3.7 holds.

• (CSIPG only) Constant σm > 0 is sufficiently large such that lemma 1.3.5 holds with α = 1/2.

• ε|Ωi ∈ C1(Ωi) for every Ωi ∈ E (this assumption could be weakened, but in semiconductor
simulations this function is normally constant or linear on Ωi).
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• u∗ ∈ H1(Ω) ∩H2(E), where u∗ is a solution of problem 1.2.2.

• v̂, ŵ ∈ L2(Ω) ∩ L∞(Ω), where v̂, ŵ are defined in problem 1.2.2.

Assumption A8.

• f : Ω× R 7→ R.

• g ∈ L∞(Ω).

• Let f̃x(y) := f(x, y) for fixed x ∈ Ω. Then f̃x is a monotone increasing function for almost all
x ∈ Ω (thus f̃−1

x exists for a.e. x ∈ Ω and it is monotone increasing).

• rg(g) ⊂ dom f̃−1
x and f̃

−1
x

(

rg(g)
)

is uniformly bounded set for almost all x ∈ Ω.

• Let B be a bounded subset of R. Then f̃x(B) is uniformly bounded set for almost all x ∈ Ω.

• û ∈ H1(Ω) ∩Xh(Ω).

• P ≡ 0.

4.E Physical constants

Symbol Value Name

m0 9.109 382 15 × 10−31 kg electron rest mass

~ 1.054 571 80 × 10−34 J/s reduced Planck constant

kB 1.380 648 52 × 10−23 J/K Boltzmann constant

q 1.602 176 62 × 10−19 C elementary charge
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[79] H. Morkoç. Handbook of Nitride Semiconductors and Devices: Electronic and optical processes
in nitrides. Handbook of Nitride Semiconductors and Devices. Wiley-VCH, 2008.

[80] Abdeljalil Nachaoui. Iterative solution of the drift-diffusion equations. Numerical Algorithms,
21:323–341, 1999.

[81] Shuji Nakamura, Takashi Mukai, and Masayuki Senoh. Candela-class high-brightness In-
GaN/AlGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters,
64:1687–1689, 1994.

[82] Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio
Matsushita, Hiroyuki Kiyoku, and Yasunobu Sugimoto. InGaN-based multi-quantum-well-
structure laser diodes. Japanese Journal of Applied Physics, 35(1 B):L74, 1996.

[83] Marshall I. Nathan, William P. Dumke, Gerald Burns, Frederick H. Dill Jr. , and Gordon
Lasher. Stimulated emission of radiation from GaAs p-n junctions. Applied Physics Letters,
1(3):62–64, 1962.

[84] Jindrich Necas. Direct Methods in the Theory of Elliptic Equations. Springer-Verlag, Berlin
Heidelberg, 2012.

[85] J. Neugebauer and C. G. Van de Walle. Theory of point defects and complexes in GaN. Materials
Research Society Symposium Proceedings, 395:645, 1996.

[86] Jörg Neugebauer and Chris G. Van de Walle. Gallium vacancies and the yellow luminescence in
GaN. Applied Physics Letters, 69:503–505, 1996.

[87] B. Neuschl, K. Thonke, M. Feneberg, R. Goldhahn, T. Wunderer, Z. Yang, N. M. Johnson, J. Xie,
S. Mita, A. Rice, R. Collazo, and Z. Sitar. Direct determination of the silicon donor ionization
energy in homoepitaxial AlN from photoluminescence two-electron transitions. Applied Physics
Letters, 103(12):122105, 2013.

[88] H. Obloh, K. H. Bachem, U. Kaufmann, M. Kunzer, M. Maier, A. Ramakrishnan, and P. Schlot-
ter. Self-compensation in Mg doped p-type GaN grown by MOCVD. Journal of Crystal Growth,
195:270–273, 1998.

[89] P. Perlin, E. Litwin-Staszewska, B. Suchanek, W. Knap, J. Camassel, T. Suski, R. Piotrzkowski,
I. Grzegory, S. Porowski, E. Kaminska, and J. C. Chervin. Determination of the effective mass of
GaN from infrared reflectivity and Hall effect. Applied Physics Letters, 68(8):1114–1116, 1996.

[90] Daniele A. Di Pietro and Alexandre Ern. Mathematical aspects of Discontinuous Galerkin Meth-
ods. Springer, Berlin, 2012.

[91] S. J. Polak, C. den Heijer, and W. H. A. Schilders. Semiconductor device modelling from the
numerical point of view. International Journal for Numerical Methods in Engineering, 24:763–
838, 1987.

[92] S. J. Polak, C. den Heijer, W. H. A. Schilders, and P. Markowich. Semiconductor device mod-
elling from the numerical point of view. Journal for Numerical Methods in Engineering, 24:763–
838, 1987.



BIBLIOGRAPHY 231

[93] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport equation. Tech-
nical Report LA UR-73-479, Los Alamos Laboratory, 1973.

[94] Beatrice Riviere. Discontinuous Galerkin methods for solving elliptic and parabolic equations:
theory and implementation. Society for Industrial and Applied Mathematics, Philadelphia, 2008.

[95] D. L. Rode and D. K. Gaskill. Electron Hall mobility of n-GaN. Applied Physics Letters,
66(15):1972–1973, 1995.

[96] W. V. Van Roosbroeck. Theory of Flow of Electrons and Holes in Germanium and Other
Semiconductors. The Bell System Technical Journal, 29:560–607, 1950.

[97] R. Sacco S. Micheletti, A. Quarteroni. Current-Voltage Characteristics Simulation of Semicon-
ductor Devices Using Domain Decomposition. Journal of Computational Physics, 119:46–61,
1995.

[98] Konrad Sakowski, Leszek Marcinkowski, Stanislaw Krukowski, Szymon Grzanka, and Elzbieta
Litwin-Staszewska. Simulation of trap-assisted tunneling effect on characteristics of gallium
nitride diodes. Journal of Applied Physics, 111(12):123115, 2012.
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