
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Karol Węgrzycki

Provably Optimal Dynamic Programming
PhD disseratation

Supervisor:

dr hab. Marcin Mucha
Institute of Informatics

University of Warsaw

December 30, 2019

Author’s declaration:
I hereby declare that this dissertation is my own work.

December 30, 2019
date

. .
Karol Węgrzycki

Supervisor’s declaration:
The dissertation is ready to be reviewed.

December 30, 2019
date

. .
dr hab. Marcin Mucha

Abstract

In this thesis we study an application of dynamic programming tech-
nique to graph problems and approximation algorithms. We improve upon
state-of-the-art algorithms for All-Nodes Shortest Cycles, distance oracles,
approximate algorithm for Partition, weak approximation for Subset Sum,
and others.

We also present equivalence classes for certain problems, that admit al-
gorithms based on dynamic programming. Namely:

• (min,+)-convolution and knapsack problem,

• (min,max)-convolution and strongly polynomial approximate (min,max)-
convolution,

• (min,max)-product and strongly polynomial approximate all-pairs short-
est path.

Keywords: (min,+)-convolution; tropical products; knapsack problem;
dynamic programming; fine-grained complexity; strongly-polynomial algo-
rithms; All-Pairs Shortest Path; graph algorithms;

2012 ACM Subject Classification: Theory of computation → Dy-
namic programming; Complexity classes; Problems, reductions and com-
pleteness;

Streszczenie

W rozprawie przedstawiamy nowe techniki analizy algorytmów opartych
na programowaniu dynamicznym. Używamy ich do rozwiązywania prob-
lemów na grafach i przyśpieszeniu wybranych algorytmów aproksymacyjnych.
Zaproponowane przez nas metody pozwalają na usprawnienie obecnie znanych
algorytmów dla znajdywania najkrótszych cykli, wyroczni odległości, prob-
lemów aproksymacyjnych związanych z problemem plecakowym i innych.

W rozprawie proponujemy także klasy równoważności dla wybranych
problemów, które mają efektywne algorytmy oparte na programowaniu dy-
namicznym. W szczególności:

• (min,+)-konwolucji i problemu plecakowego,

• (min,max)-konwolucji i silnie wielomianowej aproksymacji dla (min,+)-
konwolucji,

• (min,max)-produktu i silnie wielomianowej aproksymacji dla znajdy-
wania najkrótszych ścieżek w grafie.

Słowa Kluczowe: (min,+)-konwolucja; produkty tropikalne; problem
plecakowy; programowanie dynamiczne; dokładna złożoność; algorytmy sil-
nie wielomianowe; problem najkrótszych ścieżek; algorytmy grafowe;

Tytuł rozprawy w języku polskim: Programowanie Dynamiczne z
Gwarancjami

Acknowledgment

In my life, I benefited tremendously from teachers and teachings of all kinds. I have met a
handful of people who spend their time to pass along what they have learned. My supervisor
Marcin Mucha is surely one of them. I learned from him more than I can count, but most
importantly he taught me how to enjoy doing research. Thank you!

Teaching can also be very successfully done by books and articles. There are two authors
that unwittingly inspired and taught me the most: Karl Bringmann and Jesper Nederlof.

I enjoy doing research – the rare thrill of excitement about a new discovery recompenses
the hours of tedious work. I was fortunate enough to meet and learn from yet unmentioned
friends who share the passion of doing research with me: Marek Cygan, Marvin Künnemann,
Piotr Sankowski, Michał Włodarczyk with whom I also discovered results that comprise this
thesis. Indeed, I feel very flattered that you chose to work and share your knowledge with me.

Warsaw, Poland Karol Węgrzycki

I was financially supported by the following institutions: Grants 2016/21/N/ST6/01468 and

2018/28/T/ST6/00084 of the Polish National Science Center; Project TOTAL that has received funding

from the European Research Council (ERC) under the European Union’s Horizon 2020 research and

innovation programme (grant agreement No 677651); Project PAAl-POC supported by European Research

Council (ERC) StG (grant agreement No 680912); Project PAAl supported by European Research Council

(ERC) (grant agreement No 259515); Project MULTIPLEX financed by European Commission through

FET-Proactive (grant agreement No 317532); Simons Institute for the Theory of Computing, Berkeley,

University of California; Institute of Informatics of Faculty of Mathematics, Informatics, and Mechanics

of University of Warsaw.

Articles comprising this thesis

The preliminary version of content in this thesis is published in the fol-
lowing conference proceedings:

• Improved Distance Queries and Cycle Counting by Frobenius Normal
Form, joint work with Piotr Sankowski, published at STACS 2017 [130].

• On Problems Equivalent to (min, +)-Convolution, joint work with Marek
Cygan, Marcin Mucha, Michał Włodarczyk, published at ICALP 2017 [50].

• A Subquadratic Approximation Scheme for Partition, joint work with
Marcin Mucha, Michał Włodarczyk, published at SODA 2019 [117].

• Approximating APSP without Scaling: Equivalence of Approximate Min-
Plus and Exact Min-Max, joint work with Karl Bringmann and Marvin
Künnemann, published at STOC 2019 [29].

The complete versions of selected articles are published in journal:

• Improved Distance Queries and Cycle Counting by Frobenius Normal
Form, joint work with Piotr Sankowski, invited to the Special Issue on
Theoretical Aspects of Computer Science (STACS 2017), published in
Theory of Computing Systems [131].

• On Problems Equivalent to (min, +)-Convolution, joint work with Marek
Cygan, Marcin Mucha, Michał Włodarczyk, published inACMTrans-
actions on Algorithms [51].

Foreword

In here, we explain the relationship between the results in this thesis and
ascertain its coherence. Initially, the main motivation to work on this thesis
was the following open problem:

Can we compute All-Pairs Shortest Paths (APSP) for directed,
unweighted graphs in time required to multiply matrices1 ?

For this problem, Zwick [170] proposed an algorithm running in Õ(n2.575)
time and the question is if we can improve it. In Chapter 3 (joint work
with Piotr Sankowski), we tried to use an efficient algorithm for comput-
ing the Frobenius normal form to solve this problem. It resulted in a fast
algorithm for distance oracles, improved algorithms for All-Nodes Shortest
Cycles (ANSC) on directed unweighted graphs, and others. However, no
improvement for APSP was within our reach.

Frustrated with lack of progress, we started to seek evidence that the
answer to the open problem may actually be no. At the time, we were par-
ticularly interested in the APSP hypothesis, i.e., a conjecture that no O(n3−δ)
algorithm for weighted APSP is possible. In Chapter 3, we extensively used
O(n log n) algorithm for Fast Fourier Transform (FFT) (i.e., convolution in
(+, ·)-ring). We wanted to somehow apply FFT to the APSP hypothesis,
hence we needed a way to generalize the convolution to the weighted case,
i.e., convolution in the (min,+)-semiring. Chapter 5 emerged by a scrupulous
research on Min-Plus Convolution (joint work with Marek Cygan, Marcin
Mucha and Michał Włodarczyk).

Then, with Marcin and Michał, we discovered that techniques developed
for approximate APSP by Zwick [170] give a Õ(n

ε
logW) approximation for

Min-Plus Convolution. Since, we earlier showed that Min-Plus Convolution
is equivalent to Knapsack, it seemed natural to work on approximation for
Knapsack-type problems. This research resulted in Chapter 4.

1Currently, one can multiply matrices in O(nω) ≤ O(n2.373) time [106]

ix

Approximation for Knapsack has a long line of improvements. For some
reasons unclear (to us) at that time, researchers in the late 70’ were averse
to weakly polynomial approximation algorithms. To our understanding, the
reason was that the algorithms with logW factors do not technically sat-
isfy the definition of fully polynomial time approximation scheme. This old
definition made us ask the following question:

Can we give an approximation algorithm for Min-Plus Convolution with no
dependence on W (even logarithmic)?

Initially, we hoped to get an optimal Õ(n+1/ε2) algorithm for Knapsack
(for which we proved a conditional lower bound, see Chapter 5). What we
discovered in Chapter 6 (joint work with Karl Bringmann and Marvin Künne-
mann) was even more interesting. First, we gave Õ(n3/2/

√
ε) approximation

for Min-Plus Convolution and almost immediately it turned out, that the
reasoning also applies to APSP. It improved (for large enough weights) an
upper bound for approximation of APSP due to Zwick [170]. This way, we
circled back to the original question. The question that initiated this journey
and connects all results in this thesis in unexpected cycle.

Contents

I Overview 5

1 Introduction 7
1.1 Algorithmic applications of Frobenius normal form 8

1.1.1 Our results . 9
1.1.2 Related work . 10

1.2 Dynamic programming & approximation 11
1.2.1 Our results . 13
1.2.2 Related work . 13

1.3 Fine-grained complexity of tropical convolution 15
1.3.1 Related work . 16
1.3.2 Our results . 21

1.4 Equivalence of approximate operations in (min,+)-semiring
with an exact operations in (min,max)-semiring 22
1.4.1 Our results . 25
1.4.2 Related work . 28

2 Notation and preliminaries 31
2.1 Fast matrix multiplication . 31
2.2 Frobenius normal from . 32
2.3 Subsums . 32
2.4 Technical rounding lemmas . 32
2.5 Reductions . 34
2.6 Machine model and input format 34

II Faster Dynamic Programming 37

3 Dynamic programming & Frobenius normal form 39
3.1 Introduction to cyclic subspaces and connection to Frobenius

matrices . 39
3.1.1 Consequences of Frobenius normal form 41

1

CONTENTS

3.1.2 Cyclic subspaces . 42
3.2 Matching distance queries on directed unweighted graphs . . . 43

3.2.1 Single invariant factor 44
3.2.2 Multiple invariant factors 46

3.3 Almost optimal query . 49
3.3.1 Hankel matrix . 49
3.3.2 Applying Hankel matrices 50

3.4 Applications . 52
3.4.1 Counting and determining the lengths of cycles 53

4 Dynamic programming meets approximation 57
4.1 Overview of the techniques . 58

4.1.1 Weak approximation for Subset Sum and application
to Partition . 58

4.1.2 Constructing weak approximation algorithms for Sub-
set Sum: a sketch . 59

4.1.3 Approximation via pseudo-polynomial time Subset Sum
algorithm . 60

4.1.4 Approximation via dense Subset Sum 61
4.1.5 A framework for efficient approximation 63

4.2 Preprocessing . 64
4.2.1 From multisets to sets 65
4.2.2 From n items to Õ(1/ε) items 66
4.2.3 From one instance to small and large instances 67
4.2.4 From exact solution to ε-close instance 70

4.3 The weak (1− ε)-approximation algorithm for Subset Sum . . 73
4.3.1 Large items . 73
4.3.2 Small items . 73
4.3.3 Applying additive combinatorics 74
4.3.4 Combining the algorithms 77

III Equivalences in the Tropical Semirings 81

5 On problems equivalent to (min,+)-convolution 83
5.1 Basic reductions . 85
5.2 The reduction from Knapsack to Max-Plus Convolution 89

5.2.1 Set of all subset sums 90
5.2.2 Sum of all sets for Knapsack 91
5.2.3 Retracing Bringmann’s steps 91

5.3 Other problems related to Min-Plus Convolution 95

2

CONTENTS

5.3.1 Maximum Consecutive Subsums Problem 95
5.3.2 Tree Sparsity . 96
5.3.3 l∞-Necklace Alignment 98

5.4 Nondeterministic algorithms 101
5.5 Reduction to 3SUM . 103
5.6 Nondeterministic algorithm for 3SUM 105
5.7 Approximate Min-Plus Convolution 106

5.7.1 State of the art . 106
5.7.2 Exact Õ(nW) algorithm 107
5.7.3 Approximation . 107

5.8 Approximate Tree Sparsity . 109
5.9 Õ(n+ 1/ε) approximation algorithm for 3SUM 111

5.9.1 Faster approximation algorithm for 3SUM 112
5.10 Conditional lower bounds for approximate Knapsack-type prob-

lems . 116
5.10.1 Conditional lower bound for approximate 3SUM 116

6 Approximate (min,+) is equivalent to (min,max) 119
6.1 Strongly polynomial approximation for directed APSP 120
6.2 Equivalence of approximate APSP and Min-Max Product . . . 122
6.3 Sum-To-Max-Covering . 124

6.3.1 Close Covering . 125
6.3.2 Distant Covering . 127
6.3.3 Proof of Sum-To-Max-Covering 134

6.4 Strongly polynomial approximation for undirected APSP . . . 135
6.4.1 Zwick’s approximation for APSP 135
6.4.2 Undirected APSP in strongly polynomial matrix-multiplication

time . 136
6.5 Strongly polynomial approximation for graph characteristics . 139
6.6 Strongly polynomial approximation for Min-Plus Convolution 140

6.6.1 Simple approximation algorithm 141
6.6.2 Equivalence of approximate Min-Plus and Exact Min-

Max Convolution . 142
6.6.3 Improved approximation algorithm 142
6.6.4 Applications for Tree Sparsity 146

IV Conclusion 149

7 Conclusion and future work 151
7.1 Exact graph algorithms . 151

3

CONTENTS

7.2 Connecting dynamic programming with approximation 152
7.3 Equivalences in tropical convolutions 152
7.4 Equivalence of approximate tropical product 153

4

Part I

Overview

5

Chapter 1

Introduction

There is nothing wrong with trying to prove that P=NP by
developing a polynomial-time algorithm for an NP-complete
problem. The point is that without an NP-completeness proof we
would be trying the same thing without knowing it!

Christos H. Papadimitriou

Designing an algorithm for a given problem is a laborious endeavour.
Sometimes, it demands abundance of attention and vast quantities of creative
acts. Despite of all that hard work, usually at the end of this process we still
are not sure if our algorithm can be improved. The basic goal of complexity
theory is to answer a simple question: can our algorithm be further improved?

To some extent, this question has been answered by the P,NP hypothesis.
However, for many problems, even the naive approach leads to a polynomial
algorithm, and the P,NP hypothesis does not seem to be particularly useful
for proving polynomial lower bounds. Inspired by the statement by Christos
H. Papadimitriou in the epigraph, our goal in this thesis is to show that there
really are not that many hard problems for natural problems in P.

In particular, we focus on dynamic programming. We analyse current
state-of-the-art algorithms for selected problems, that we find important and
identify potential bottlenecks of dynamic programming. It results in im-
proved upper bounds on the running time. Additionally, we prove that any
improvement to our algorithms is unlikely, i.e., refined algorithm would result
in a major, unexpected breakthrough in computational complexity.

Outline: The thesis is divided into 4 parts. In first part, we give an
overview of the results of the thesis and present related work. In the second
part, we present faster dynamic programming algorithms for selected prob-
lems. In the third part, we study equivalence classes for selected problems

7

CHAPTER 1. INTRODUCTION

that admit efficient dynamic programming algorithms. In the last part, we
summarize the results in the thesis and give possible future direction.

The rest of this Chapter is divided into 4 independent Sections. In Sec-
tion 1.1 we discuss improved dynamic programming approach for selected
graph problems. We explore fast matrix multiplication and use Frobenius
normal form. In Section 1.2 we give subquadratic approximation scheme for
Partition. We connect pseudo-polynomial algorithm for Subset Sum that is
based on dynamic programming and algorithms based on additive combina-
torics. In Section 1.3 we give an overview of the field hardness in P and
introduce the class of problems that are equivalent to Min-Plus Convolution.
It turns out that this class is particularly useful in proving optimality of
dynamic programming for Knapsack-type problems.

One of the best known example of essence of dynamic programming is
the O(n3) algorithm for All-Pairs Shortest Paths (APSP). In Section 1.4
we state our result regarding strongly polynomial approximation of APSP,
introduce the class of problems equivalent to the (min,max)-product and
give an overview of related work.

1.1 Algorithmic applications of Frobenius nor-
mal form

The All-Pairs Shortest Paths (APSP) problem asks to find distances between
all pairs of vertices in a graph. For a directed graphs with weights in R, there
is a classicalO(n3) time algorithm of Floyd [60] andWarshall [156]. Currently
the best upper bound for this problem is due to Williams [157] who showed
an O(n3

2Ω(logn)0.5) algorithm. It is asymptotically faster than O(n3/ logc n) for
any c > 0 (see survey [37] for earlier algorithms). Showing any algorithm that
would work in O(n3−ε) time for some ε > 0 is a major open problem [157].

For undirected graphs Seidel [137] presented the optimal Õ(nω) time al-
gorithm, where ω < 2.373 is the matrix multiplication exponent [106]. For
the directed case Zwick [170] presented an O(n2.575) time algorithm that is
based on the fast rectangular matrix multiplication. Moreover, if we are
interested in small integer weights from the set {−W, . . . ,W}, we have an
O(W 0.68n2.575) algorithm [170].

Because APSP in undirected graphs can be solved in Õ(nω), diameter,
radius, shortest cycle, etc. can be determined in Õ(nω) time as well. It is
surprising that for a directed case, where only anO(n2.575) algorithm is known
for APSP, there are also Õ(nω) algorithms for determining these properties.
After a long line of improvements Cygan, Gabow, and Sankowski [49] showed

8

CHAPTER 1. INTRODUCTION

an Õ(Wnω) time algorithms for finding minimum weight perfect matching,
shortest cycle, diameter and radius (some of these results were already known
[128]). Also, Cygan, Gabow, and Sankowski [49] showed an application of
their techniques that improves upon Yuster [164] Õ(Wnωt) time algorithm
for the following problem: determine the set of vertices that lie on some cycle
of length at most t. Cygan, Gabow, and Sankowski [49] managed to solve
this problem in Õ(Wnω) time using Baur-Strassen’s theorem.

All of these algorithms are effective only in the case of a dense graphs.
For graphs with a small number of edges there are more efficient algorithms
(e.g., APSP in Õ(|V ||E|) time [145]).

1.1.1 Our results
Consider an unweighted, directed graph G with diameter D <∞. In Chap-
ter 3, we introduce a framework for counting cycles and walks of given length
in matrix multiplication time Õ(nω). The framework is based on the fast de-
composition into Frobenius normal form and the Hankel matrix-vector mul-
tiplication. It allows us to solve the following problems efficiently:

• All Nodes Shortest Cycles – for every node, return the length of the
shortest cycle containing it. We give anO(nω) algorithm, that improves
upon Yuster [164] O(n(ω+3)/2) for unweighted digraphs.

• We present the following improvement over Cygan, Gabow, and Sankowski
[49] for unweighted directed graphs. Let S(c) denote the set of vertices
lying on cycles of length ≤ c. Cygan, Gabow, and Sankowski [49]
showed that for a fixed c ∈ {1, . . . , n}, the set S(c) can be computed
in Õ(nω) randomized time. Our algorithm in the same time returns all
S(1), S(2), . . . , S(D) with high probability.

• We present an Õ(nω) algorithm for counting non-simple cycles of all
lengths {1, . . . , D} and improve upon [12] in the special case of batch
counting ([12] counts only cycles of a fixed length).

• We improve Yuster and Zwick [167], who showed that a directed graph
can be preprocessed in time Õ(nω), so that in Õ(n) query time, we
can return the distance δ(u, v) between any pair of vertices. With the
same preprocessing time, our algorithm in Õ(n) query time, returns
D = O(n) numbers: wku,v for k ∈ {1, . . . , D}. Here, wku,v is the count
of distinct walks from u to v of length exactly k. The usual distance
queries [167] are easily reduced to this problem by linear scan.

9

CHAPTER 1. INTRODUCTION

• All Pairs All Walks – we show almost optimal Õ(n3) time algorithm
for all walks counting problem. The problem is to return O(n3) array
of numbers wku,v for all u, v ∈ G and k ∈ {1, . . . , D}. We improve upon
the naive Õ(Dnω) time algorithm.

In contrast to the other algorithms (e.g., [49, 164]), our framework counts
only cycles/walks up to the graph diameter D.

1.1.2 Related work
Distance queries

Yuster and Zwick [167] considered weighted, directed graphs with weights in
{−W, . . . ,W}. They showed an algorithm that needs Õ(Wnω) preprocessing
time. After preprocessing each distance δ(u, v) in the graph can be computed
exactly in O(n) query time. In the special case W = 1 they showed Õ(nω)
algorithm that solves Single Source Shortest Paths (SSSP). This is the best
known algorithm for a dense, weighted graph.

We match their bounds (up to the polylogarithmic factors) using Frobe-
nius normal form. Next we extend that approach so it return more informa-
tion about a graph in the same query/preprocessing time.

Counting cycles

For a given graph G and an integer k determining whether G contains a sim-
ple cycle of length exactly k is NP-hard (in particular determining whether
a graph contains a Hamiltonian cycle is NP-complete). However, for a fixed
k this problem can be solved in 2O(k)|V |ω [11].

Alon, Yuster, and Zwick [12] showed that for k ≤ 7 one can count the
number of cycles of length exactly k in a graph in Õ(|V |ω) time. In [166]
it is shown that for any even k, cycles of length k can be found in O(|V |2)
time in undirected graphs (if they contain such a cycle). Alon, Yuster, and
Zwick [12] showed more methods that depend only on the number of edges
in a graph. For example for odd k they showed O(E2− 2

k+1) algorithm for
finding cycles of length k. However, for dense graphs these results are worse
than Alon, Yuster, and Zwick [11].

On the other hand, to detect whether a non-simple cycle of length exactly
k exists one can use the folklore algorithm. It starts by taking the adjacency
matrix A of a graph G. Subsequently, in Õ(nω) time compute Ak by repeated
squaring. If Tr

[
Ak
]
> 0 then there exists a non-simple cycle of length k. 1

1Tr [A] denotes the trace of a matrix A, i.e., the sum of elements on the main diagonal.

10

CHAPTER 1. INTRODUCTION

Yuster [164] considered the following problem: for every vertex in a graph
find a shortest cycle that contains it. He called this problem All-Nodes Short-
est Cycle (ANSC). He showed a randomized algorithm that solves ANSC for
undirected graphs with weights {1, . . . ,W} in Õ(

√
Wn(ω+3)/2) time. He

noted that for simple digraphs (directed graphs with no anti-parallel edges)
it reduces to All-Pairs Shortest Path problem. The fastest known APSP algo-
rithm for unweighted, directed graphs runs inO(n2.575) due to [170]. Here, we
show how to solve ANSC in Õ(nω) for general, unweighted, directed graphs.
Unfortunately, our techniques allow us only to find the length of such a cy-
cle. But we can return the set of points, that lie on some cycle of a given
length. Independently to our work Agarwal and Ramachandran [9] proved
that ANSC can be solved in Õ(nω) for unweighted, undirected graphs using
a completely different technique.

Yuster [164] also considered following problem: given a graph and an in-
teger t. Let S(k) denote the set of all vertices lying in a cycle of length ≤ k.
Determine S(t). He considered directed graphs with weights in {−W, . . . ,W}
and showed Õ(Wnωt) algorithm. Recently, Cygan, Gabow, and Sankowski
[49] improved his algorithm. They showed that for a fixed t ∈ [0, nW] the set
S(t) can be computed in Õ(Wnω) randomized time. We show, that for un-
weighted (W = 1) directed graphs we can compute sets S(1), S(2), . . . , S(D)
in Õ(nω) time with high probability.

1.2 Dynamic programming & approximation
The Knapsack-type problems are among the most fundamental optimiza-
tion challenges. These problems have been studied for more than a century
already, as their origins can be traced back to the 1897’s paper by Math-
ews [112].

The Knapsack problem is defined as follows:

Definition 1.2.1 (Knapsack). Given a set of n items En = {1, . . . , n}, with
item j having a positive integer weight wj and value vj, together with knapsack
capacity t. Select a subset of items E ⊆ En, such that the corresponding total
weight w(E) = ∑

i∈E wi does not exceed the capacity t and the total value
v(E) = ∑

i∈E vi is maximized.

Knapsack is one of the 21 problems featured in Karp’s list of NP-complete
problems [96]. We also study the case where we are allowed to take each
element multiple times, called Unbounded Knapsack. Let Σ(S) denote the
sum of elements of S. Subset Sum is defined as follows:

11

CHAPTER 1. INTRODUCTION

Definition 1.2.2 (Subset Sum). Given a set S ⊂ N of n numbers (sometimes
referred to as items) and an integer t, find a subset S ′ ⊆ S with maximal
Σ(S ′) that does not exceed t.

Subset Sum is a special case of Knapsack, where item weights are equal
to item values. This problem is NP-hard as well. In fact, it remains NP-hard
even if we fix t to be Σ(S)/2. This problem is called the Number Partitioning
Problem (or Partition, as we will refer to it):

Definition 1.2.3 (Partition). Given a set S ⊂ N of n numbers, find a subset
S ′ ⊆ S with maximal Σ(S ′) not exceeding Σ(S)/2.

The practical applications of Partition problem range from scheduling [94]
to minimization of circuits sizes, cryptography [113], or even game theory [84,
114]. The decision version of this problem is sometimes humorously referred
to as “the easiest NP-complete problem” [84]. We will demonstrate that there
is a grain of truth in this claim.

All the aforementioned problems are weakly NP-hard and admit pseudo-
polynomial time algorithms. The first such an algorithm for the Knapsack
was proposed by Bellman [21] and runs in time O(nt). This bound was
improved for the Subset Sum [102] and the current best (randomized) time
complexity for this problem is Õ(n+ t), due to Bringmann [25] (for more on
these and related results see Section 4.1). The strong dependence on t in all
of these algorithms makes them impractical for a large t (note that t can be
exponentially larger than the size of the input). This dependence has been
shown necessary as an O

(
poly(n)t0.99

)
algorithm for the Subset Sum would

contradict both the SETH [3] and the SetCover conjecture [47].
One possible approach to avoid the dependence on t is to settle for ap-

proximate solutions. The notion of approximate solution we focus on in
this paper is that of a Polynomial Time Approximation Scheme (PTAS). A
PTAS for a maximization problem is an algorithm that, given an instance
of size n and a parameter ε > 0, returns a solution with value S, such that
OPT(1−ε) ≤ S ≤ OPT. It also needs to run in time polynomial in n, but not
necessarily in 1/ε (so, e.g., we allow time complexities like O(n1/ε)). A PTAS
is a Fully Polynomial Time Approximation Scheme (FPTAS) if it runs in time
polynomial in both n and 1/ε. Equivalently, one can require the running time
to be polynomial in (n+ 1/ε). For example, O(n2/ε4) = O((n+ 1/ε)6).

The first approximation scheme for Knapsack (as well as Subset Sum and
Partition as special cases) dates back to 1975 and is due to Ibarra and Kim
[89]. Its running time is O(n/ε2). After a long line of improvements [74,
75, 95, 98, 99, 105], the current best algorithms for each problem are: the
O(min{n/ε, n+1/ε2}) algorithm for Partition due to [76], theO(min{n/ε, n+

12

CHAPTER 1. INTRODUCTION

1/ε2 log (1/ε)}) algorithm for Subset Sum due to [100] and, a very recent
Õ(n+ 1/ε9/4) for Knapsack due to Jin [93].

Observe that all of these algorithms work in Ω((n+ 1/ε)2) time. In fact,
we are not aware of the existence of any FPTAS for an NP-hard problem
working in time O((n+ 1/ε)2−δ).

Open Question 1.2.1. Can we get an O((n + 1/ε)2−δ) FPTAS for any
Knapsack-type problem (or any other NP-hard problem) for some constant
δ > 0 or justify that it is unlikely?

In Chapter 4 we resolve this question positively, by presenting the first
such algorithm for the Partition problem. This improves upon almost 40
years old algorithm by Gens and Levner [76]. On the other hand, in Chapter 5
we provide a conditional lower bound suggesting that similar improvement
for the more general Knapsack problem is unlikely.

1.2.1 Our results
We design the mechanism that allows us to merge the pseudo-polynomial
time algorithms for Knapsack-type problems with algorithms on dense Subset
Sum instances. The most noteworthy application of these reductions is the
following.

Theorem 1.2.4. There is an Õ(n+1/ε 5
3) randomized time FPTAS for Par-

tition.

This improves upon the previous, bound of Õ(n+ 1/ε2) for this problem,
due to Gens and Levner [76]. Our algorithm also generalizes to a weak
(1− ε)-approximation for Subset Sum.2

Theorem 1.2.5. There is a randomized weak (1 − ε)-approximation algo-
rithm for Subset Sum running in Õ

(
n+ 1/ε 5

3
)
time.

1.2.2 Related work
To the best of our knowledge, the fastest approximation for Partition dates
back to 1980 [76] with Õ(min{n/ε, n + 1/ε2}) running time3. The majority
of later research focused on matching this running time for the Knapsack and
Subset Sum. In this section we will present an overview of the history of the
FPTAS for these problems.

2Weak approximation can break the capacity constraint by a small factor. Defini-
tion 4.1.1 specifies formally what weak (1− ε)-approximation for Subset Sum is.

3As is common for Knapsack-type problems, the Õ notation hides terms poly-
logarithmic in n and 1/ε, but not in t.

13

CHAPTER 1. INTRODUCTION

Table 1.1: Brief history of FPTAS for Knapsack-type problems. Since Par-
tition is a special case of Subset Sum, and Subset Sum is a special case of
Knapsack, an algorithm for Knapsack also works for Subset Sum and Parti-
tion. We omit redundant running time factors for clarity, e.g., [100] actually
runs in Õ(min{n/ε, n+ 1/ε2}) time but [73, 74] gave O(n/ε) algorithm ear-
lier. For a more robust history see [99, Section 4.6].

Year Reference Time Problem
1957 Bellman [21] [99] O(n2/ε) Knapsack
1975 Ibarra and Kim [89] and Karp [95] O(n/ε2) Knapsack
1978 Gens and Levner [73] O(n/ε) Subset Sum
1979 Lawler [105] O(n+ 1/ε4) Knapsack
1980 Gens and Levner [76] O(n+ 1/ε2) Partition
1994 Gens and Levner [75] O(n+ 1/ε3) Subset Sum
1997 Kellerer, Pferschy, and Speranza [100] Õ(n+ 1/ε2) Subset Sum
2018 Chan [38] Õ(n+ 1/ε2.4) Knapsack
2019 Jin [93] Õ(n+ 1/ε2.25) Knapsack

Chapter 4 Õ(n+ 1/ε1.67) Partition

The first published FPTAS for the Knapsack is due to Ibarra and Kim
[89]. This naturally gives approximations for the Subset Sum and Partition
as special cases. In their approach, the items were partitioned into large and
small classes. The profits are scaled down and then the problem is solved
optimally with dynamic programming. Finally, the remaining empty space
is filled up greedily with the small items. This algorithm has a complexity
O(n/ε2) and requires O(n + 1/ε3) space.4 Lawler [105] proposed a different
method of scaling and obtained O(n+ 1/ε4) running time.

Later, Gens and Levner [73] and Gens and Levner [74] obtained anO(n/ε)
algorithm for the Subset Sum based on a different technique. Then, in 1980
they proposed an even faster O(min{n/ε, n + 1/ε2}) algorithm [76] for the
Partition. To the best of our knowledge this algorithm remained the best.
Subsequently, Gens and Levner [75] managed to generalize their result to Sub-
set Sum with an increase of running time and obtainedO(min{n/ε, n+1/ε3})
time and O(min{n/ε, n + 1/ε2}) space algorithm [75]. Finally, Kellerer,
Pferschy, and Speranza [100] improved this algorithm for Subset Sum by
giving O(min{n/ε, n+1/ε2 log (1/ε)}) time and O(n+1/ε) space algorithm.
This result matched (up to the polylogarithmic factors) the running time
for Partition. For the Knapsack problem Kellerer and Pferschy [98] gave

4In [99, Section 4.6] there are claims, that 1975 Karp [95] also gives O(n/ε2) approxi-
mation for Subset Sum.

14

CHAPTER 1. INTRODUCTION

an O(n min{log n, log (1/ε)} +1/ε2 log (1/ε) min{n, 1/ε log (1/ε)}) time al-
gorithm (note that the exponent in the parameter (n+1/ε) is 3 here) and for
Unbounded Knapsack Jansen and Kraft [92] gave an O(n + 1/ε2 log3 (1/ε))
time algorithm (the exponent in (n+ 1/ε) is 2. Very recently Chan [38] pre-
sented the currently best Õ(n + 1/ε12/5) algorithm for the Knapsack which
was subsequently improved to Õ(n+ 1/ε9/4) by Jin [93].

More related work The naive algorithm for Knapsack works in O∗(2n)
time by simply enumerating all possible subsets. Horowitz and Sahni [86] in-
troduced the meet-in-the-middle approach and gave an exact O∗(2n/2) time
and space algorithm. Schroeppel and Shamir [135] improved the space com-
plexity of that algorithm to O∗(2n/4). Improving upon these algorithms is
a major open problem. Recently Bansal et al. [19] showed an O∗(20.86n)-
algorithm working in polynomial space. An interesting question (and very
relevant for applications in cryptography) is how hard Knapsack type prob-
lems are for random instances. For results in this line of research see [14–16,
87].

Another interesting variant of Partition is Equal-Subset-Sum problem
where one is given a set S of integers, and the task is to decide if there
exist two disjoint nonempty subsets A,B ⊆ S, such that Σ(A) = Σ(B).
Recently, Mucha et al. [116] improved upon a meet-in-the-middle approach
for Equal-Subset-Sum and used techniques by Bansal et al. [19] to propose a
nontrivial algorithm that works in polynomial space.

1.3 Fine-grained complexity of tropical con-
volution

In recent years, significant progress has been made in establishing bounds,
conditioned on conjectures other than P,NP. Each conjecture claims time
complexity lower bounds for a different problem. The main conjectures are
as follows. First, the conjecture that there is no O(n2−ε) algorithm for the
3SUM problem implies hardness for problems in computational geometry [67]
and dynamic algorithms [124]. Second, the conjecture that there is no algo-
rithm O(n3−ε) for All-Pairs Shortest Path (APSP) implies the hardness of
determining the graph radius and graph median and the hardness of some dy-
namic problems (see [159] for a survey of related results). Finally, the Strong
Exponential Time Hypothesis (SETH) introduced in [90, 91] has been used
extensively to prove the hardness of parametrized problems [48, 110] and has
recently led to polynomial lower bounds via the intermediate Orthogonal Vec-

15

CHAPTER 1. INTRODUCTION

tors problem (see [158]). These include bounds for the Edit Distance [17],
Longest Common Subsequence [1, 28], and others [159].

It is worth noting that in many cases, the results mentioned indicate not
only the hardness of the problem in question but also that it is computa-
tionally equivalent to the underlying hard problem. This leads to clusters
of equivalent problems being formed, each cluster corresponding to a single
hardness assumption (see [159, Figure 1]).

1.3.1 Related work
In this thesis, we propose yet another hardness assumption: the Min-Plus
Convolution conjecture.

Definition 1.3.1 (Min-Plus Convolution). In Min-Plus Convolution prob-
lem, one is given sequences (a[i])n−1

i=0 , (b[i])n−1
i=0 . The task is to output sequence

(c[i])n−1
i=0 , such that c[k] = mini+j=k(a[i] + b[j]).

This problem has previously been used as a hardness assumption for at
least two specific problems [18, 104], but to the best of our knowledge, no
attempts have been made to systematically study the neighborhood of this
problem in the polynomial complexity landscape.

To be more precise, in all problem definitions, we assume that the input
sequences consist of integers in the range [−W,W]. Following the design of
the APSP conjecture [160], we allow polylog(W) factors in the definition of
a subquadratic running time.

Conjecture 1.3.2. There is no O(n2−εpolylog(W)) algorithm for Min-Plus
Convolution when ε > 0.

Let us first look at the place occupied by Min-Plus Convolution in the
landscape of established hardness conjectures. Figure 1.1 shows known reduc-
tions between these conjectures and includes Min-Plus Convolution. Brem-
ner et al. [24] showed the reduction from Min-Plus Convolution to APSP.
It is also known [18] that Min-Plus Convolution can be reduced to 3SUM
by using reductions [124] and [161, Proposition 3.4, Theorem 3.3] (we pro-
vide the details in the Section 5.5). Note that a reduction from 3SUM or
APSP to Min-Plus Convolution would imply a reduction between 3SUM and
APSP, which is a major open problem in this area of study [159]. No relation
between Min-Plus Convolution and SETH or OV is known.

In this thesis, we study three broad categories of problems. The first cat-
egory consists of the classic Knapsack and its variants, which we show to be
essentially equivalent to Min-Plus Convolution. This is perhaps somewhat

16

CHAPTER 1. INTRODUCTION

APSP OV

SETH

3SUM

Min-Plus Convolution

[158]

×
[34]

×
[34]

[24]
[18, 124, 161]

Figure 1.1: The relationship between popular conjectures. A reduction from
OV to 3SUM or APSP contradicts the nondeterministic version of SETH [34,
159] (these arrows are striked out).

surprising given the recent progress of Bringmann [25] for Subset Sum, which
is a special case of Knapsack. However, note that Bringmann’s algorithm [25]
(as well as other efficient solutions for Subset Sum) is built upon the idea of
composing solutions using the (∨,∧)-convolution, which can be implemented
efficiently using a Fast Fourier Transform (FFT). The corresponding compo-
sition operation for Knapsack is Min-Plus Convolution (see Section 5.2 for
details).

The second category consists of problems directly related to Min-Plus
Convolution. This includes decision versions of Min-Plus Convolution and
problems related to the notion of subadditivity. Any subadditive sequence a
with a[0] = 0 is an idempotent of Min-Plus Convolution; thus, it is perhaps
unsurprising that these problems are equivalent to Min-Plus Convolution.

Finally, we investigate problems that have previously been shown to be
related to Min-Plus Convolution and then contribute some new reductions
or simplify existing ones.

3SUM

Definition 1.3.3 (3SUM). In 3SUM problem, one is given sets of integers
A,B,C, each of size n. The task is to decide whether there exist a ∈ A, b ∈
B, c ∈ C such that a+ b = c.

The 3SUM problem is the first problem that was considered as a hardness
assumption in P. It admits a simple O(n2 log n) algorithm, but the existence
of an O(n2−ε) algorithm remains a major open problem. The first lower
bounds based on the hardness of 3sum appeared in 1995 [67]; some other
examples can be found in [20, 124, 161]. The current best algorithm for 3sum
runs in slightly subquadratic expected time O

(
(n2/ log2 n)(log log n)2

)
[20].

17

CHAPTER 1. INTRODUCTION

An O (n1.5polylog(n)) algorithm is possible on a nondeterministic Turing
machine [34].

The 3sum problem is known to be subquadratically equivalent to its
convolution version in a randomized setting [124].

Definition 1.3.4 (3sumConv). In 3sumConv problem, one is given sequences
a, b, c of integers, each of length n. The task is to decide whether there exist
i, j such that a[i] + b[j] = c[i+ j].

Both problems are sometimes considered with real weights, but in this work,
we restrict them to only the integer setting.

Min-Plus Convolution

We have already defined the Min-Plus Convolution problem in Subsection 1.3.1.
Note that it is equivalent (just by negating elements) to the analogous Max-
Plus Convolution problem.

Definition 1.3.5 (Max-Plus Convolution). In Max-Plus Convolution prob-
lem, one is given sequences (a[i])n−1

i=0 , (b[i])n−1
i=0 . The task is to output sequence

(c[i])n−1
i=0 , such that c[k] = maxi+j=k(a[i] + b[j]).

We describe our contribution in terms of Min-Plus Convolution, as this ver-
sion has been already been heavily studied. However, in the theorems and
proofs, we use Max-Plus Convolution, as it is easier to work with. We also
work with a decision version of the problem. Herein, we will use a⊕max b to
denote the Max-Plus Convolution of two sequences a and b.

Definition 1.3.6 (Max-Plus Convolution UpperBound). In Max-Plus Con-
volution UpperBound problem, one is given sequences (a[i])n−1

i=0 , (b[i])n−1
i=0 ,

(c[i])n−1
i=0 . The task is to decide whether c[k] ≥ maxi+j=k(a[i] + b[j]) for all k.

If we replace the latter condition with c[k] ≤ maxi+j=k(a[i] + b[j]), we
obtain a similar problem Max-Plus Convolution LowerBound. Yet another
statement of a decision version asks whether a given sequence is a self upper
bound with respect to Max-Plus Convolution, i.e., if it is superadditive. From
the perspective of Min-Plus Convolution, we may ask an analogous question
about being subadditive (again, equivalent by negating elements). As far as
we know, the computational complexity of these problems has not yet been
studied.

Definition 1.3.7 (SuperAdditivity Testing). In SuperAdditivity Testing prob-
lem, one is given a sequence (a[i])n−1

i=0 . The task is to decide whether a[k] ≥
maxi+j=k(a[i] + a[j]) for all k.

18

CHAPTER 1. INTRODUCTION

In the standard (+, ·) ring, convolution can be computed in O(n log n)
time by the FFT. A natural way to approach Min-Plus Convolution would be
to design an analogue of FFT in the (min,+)-semi-ring, also called the tropi-
cal semi-ring5. However, due to the lack of an inverse for the min-operation,
it is unclear if such a transform exists for general sequences. When restricted
to convex sequences, one can use a tropical analogue of FFT, namely, the
Legendre-Fenchel transform [59], which can be performed in linear time [111].
[81] also considered sparse variants of convolutions and their connection with
3sum.

There has been a long line of research dedicated to improving upon the
O(n2) algorithm for Min-Plus Convolution. Bremner et al. [24] presented an
O(n2/ log n) algorithm for Min-Plus Convolution, as well as a reduction from
Min-Plus Convolution to APSP [24, Theorem 13]. Williams [157] developed
an O(n3/2Ω(logn)1/2) algorithm for APSP, which can also be used to obtain
an O(n2/2Ω(logn)1/2) algorithm for Min-Plus Convolution [39].

Truly subquadratic algorithms for Min-Plus Convolution exist for mono-
tone increasing sequences with integer values bounded by O(n). Chan and
Lewenstein [39] presented anO(n1.859) randomized algorithm and anO(n1.864)
deterministic algorithm for this case. They exploited ideas from additive
combinatorics. Bussieck et al. [32] showed that for a random input, Min-Plus
Convolution can be computed in O(n log n) expected and O(n2) worst-case
time.

Using the techniques of Carmosino et al. [34] and the reduction from
Max-Plus Convolution UpperBound to 3sum (see Section 5.5), one can con-
struct anO (n1.5polylog(n)) algorithm that works on nondeterministic Turing
machines for Max-Plus Convolution UpperBound (see Lemma 5.4.1). This
running time matches the O(n1.5) algorithm for Min-Plus Convolution in the
nonuniform decision tree model [24]. This result is based on the techniques
of Fredman [62, 63]. It remains unclear how to transfer these results to the
word-RAM model [24].

Knapsack

The decision versions of both Knapsack and Unbounded Knapsack problems
are known to be NP-hard [72], but there are classical algorithms based on
dynamic programming with a pseudo-polynomial running time O(nt) [21].
In fact, they are used to solve more general problems, i.e., 0/1 Knapsack+

and Unbounded Knapsack+, where we are asked to output answers for

5In this setting, Min-Plus Convolution is often called a (min, +)-convolution, inf-
convolution or epigraphic sum.

19

CHAPTER 1. INTRODUCTION

each 0 < t′ ≤ t.

Other problems related to Min-Plus Convolution

Definition 1.3.8 (Tree Sparsity). In Tree Sparsity problem, one is given a
rooted tree T with a weight function w : V (T)→ N≥0, parameter k. The task
is to find the maximum total weight of a rooted subtree of size k.

The Tree Sparsity problem admits an O(nk) algorithm, which was at
first invented for the restricted case of balanced trees [35] and then later
generalized [18]. There is also a nearly linear FPTAS based on the FPTAS
for Min-Plus Convolution [18]. It is known that an O(n2−ε) algorithm for
Tree Sparsity entails a subquadratic algorithm for Min-Plus Convolution [18].

Definition 1.3.9 (Maximum Consecutive Subsums Problem (MCSP)).
In Maximum Consecutive Subsums Problem (MCSP) problem, one is
given a sequence (a[i])n−1

i=0 . The task is to output the maximum sum of k
consecutive elements for each k.

There is a trivial O(n2) algorithm for MCSP and a nearly linear FP-
TAS based on the FPTAS for Min-Plus Convolution [43]. To the best of
our knowledge, this is the first problem to have been explicitly proven to be
subquadratically equivalent to MinConv [104]. Our reduction to SuperAddi-
tivity Testing allows us to significantly simplify the proof (see Section 5.3.1).

Definition 1.3.10 (lp-Necklace Alignment). In lp-Necklace Align-
ment problem, one is given sequences (x[i])n−1

i=0 , (y[i])n−1
i=0 ∈ [0, 1)n describing

locations of beads on a circle. The task is to output the cost of the best align-
ment in the p-norm, i.e., ∑n−1

i=0 d (x[i] + c, y[i+ s (mod n)])p, where c ∈ [0, 1)
is a circular offset, s ∈ {0, . . . , n− 1} is a shift, and d is a distance function
on a circle.

In the lp-Necklace Alignment problem, we are given two sorted se-
quences of real numbers (x[i])n−1

i=0 and (y[i])n−1
i=0 that represent two necklaces.

We assume that each number in the sequence represents a point on a circle
(we refer to this circle as the necklace and the points on it as the beads). The
distance between beads xi and yj is defined in [24] as:

d(xi, yj) = min{|xi − yj|, (1− |xi − yj|)}

to represent the minimum between the clockwise and counterclockwise
distances along the circular necklaces. The lp-Necklace Alignment is an
optimization problem where we can manipulate two parameters. The first

20

CHAPTER 1. INTRODUCTION

parameter is the offset c, which is the clockwise rotation of the necklace
(x[i])n−1

i=0 relative to the necklace (y[i])n−1
i=0 . The second parameter is the shift

s, which defines the perfect matching between beads from the first and second
necklaces, i.e., bead x[i] matches bead y[i+ s (mod n)] (see [24]).

For p =∞, we are interested in bounding the maximum distance between
any two matched beads. The problem initially emerged for p = 1 during re-
search on the geometry of musical rhythm [149]. The family of Necklace
Alignment problems was systematically studied by Bremner et al. [24] for
various values of p. For p = 2, they presented an O(n log n) algorithm
based on the FFT. For p = ∞, the problem was reduced to Min-Plus Con-
volution, which led to a slightly subquadratic algorithm. This makes l∞-
Necklace Alignment a natural problem to study in the context of Min-
Plus Convolution-based hardness. Interestingly, we are not able to show such
hardness, which presents an intriguing open problem. Instead we reduce l∞-
Necklace Alignment to a related problem.

Although it is more natural to state the problem with inputs from [0, 1),
we find it more convenient to work with integer sequences that describe a
necklace after scaling.

Fast o(n2) algorithms for Min-Plus Convolution have also found applica-
tions in text algorithms. Moosa and Rahman [115] reduced Indexed Permu-
tation Matching to Min-Plus Convolution and obtained an o(n2) algorithm.
Burcsi et al. [30] used Min-Plus Convolution to obtain faster algorithms for
Jumbled Pattern Matching and described how finding dominating pairs can
be used to solve Min-Plus Convolution. Later, Burcsi et al. [31] showed that
fast Min-Plus Convolution can also be used to obtain faster algorithms for
a decision version of Approximate Jumbled Pattern Matching over binary
alphabets.

1.3.2 Our results
Figure 1.2 illustrates the technical contributions of this thesis. The long ring
of reductions on the left side of the Figure 1.2 is summarized below.

Theorem 1.3.11. The following statements are equivalent:

1. There exists an O(n2−ε) algorithm for Max-Plus Convolution for some
ε > 0.

2. There exists an O(n2−ε) algorithm for Max-Plus Convolution Upper-
Bound for some ε > 0.

3. There exists an O(n2−ε) algorithm for SuperAdditivity Testing for some
ε > 0.

21

CHAPTER 1. INTRODUCTION

MaxConv

MaxConvUpper

SuperAdditivity Testing

Unbounded Knapsack

Knapsack

MCSP

MaxConvLower

Tree Sparsity

l∞-Necklace Alignment

5.1.5
5.1.4

5.1.3

5.1.1
5.2.5

5.3.3

5.3.4

[18]

[24]
[104]

[104]

Figure 1.2: Summary of reductions in the Min-Plus Convolution complexity
class. An arrow from problem A to B denotes a reduction from A to B.
Black dashed arrows were previously known, while red arrows correspond
to new results. Numbers next to the red arrows indicate the corresponding
theorems. The only randomized reduction is in the proof of Theorem 5.2.5.

4. There exists an O((n + t)2−ε) algorithm for Unbounded Knapsack for
some ε > 0.

5. There exists an O((n+ t)2−ε) algorithm for Knapsack for some ε > 0.

We allow randomized algorithms.

Additionally, we improve approximation schemes for Min-Plus Convolu-
tion. The techniques automatically yield a faster approximation for 3SUM,
and Tree Sparsity. Finally, we argue why breaking the quadratic barrier for
approximate Knapsack is unlikely by giving an Ω((n+1/ε)2−o(1)) conditional
lower bound.

1.4 Equivalence of approximate operations in
(min,+)-semiring with an exact operations
in (min,max)-semiring

Scaling is one of the most fundamental algorithmic techniques. For a prob-
lem involving weights from a range {1, . . . ,W}, the main idea of scaling is to

22

CHAPTER 1. INTRODUCTION

consider each of the logW bits one-by-one. Roughly speaking, in each phase
we only consider the current bit, which simplifies the weighted problem to an
unweighted problem. the previous phase. This allows to essentially focus on
the unweighted case. The scaling technique was particularly successful for
graph problems (e.g., [53, 65, 66, 80, 123]). For instance, a scaling-based al-
gorithm solves maximum weighted matching in time O(m

√
n log(nW)) [66],

which was recently improved to time O(m
√
n logW) [53].

However, in some situations scaling-based algorithms may be slower than
alternative approaches, since they naturally require a factor logW in the
running time. In particular, in practice weights are often given as floating-
point numbers, and thus logW can easily be as large as n, rendering most
scaling-based algorithms inferior to naive approaches. For this reason as well
as for the genuinely theoretical interest, research on strongly polynomial al-
gorithms received major attention (e.g., [122, 134, 144, 155]). We say that
an algorithm runs in strongly polynomial time if its number of arithmetic
operations does not depend on W . For example, the fastest strongly poly-
nomial algorithms for maximum weight matching run in time Õ(nm) [57,
146]. (Here and throughout the Chapter 6 we let Õ(T) = O(T polylogT), in
particular, Õ(nc) never hides a factor logW .)

The resulting challenge is to design improved strongly polynomial algo-
rithms whose running times come as close as possible to the best known
scaling-based algorithms, but without any logW -factors. We tackle this
challenge for a large class of approximation algorithms. This is achieved
in part by an algorithmic framework that allows us to switch between ap-
proximate problems over the (min,+)-semiring and exact problems over the
(min,max)-semiring.

Approximating APSP, matrix products, and graph characteristics
Here, we study the following problems:

• Shortest path problems: The All-Pairs Shortest Path problem (APSP)
asks to compute, given a directed graph with positive edge weights, the
length of the shortest path between any two vertices.

• Matrix products: Given matrices A,B ∈ Rn×n+ , their product over the
(⊕,⊗)-semiring is the matrix C ∈ Rn×n+ with C[i, j] = ⊕

1≤k≤n(A[i, k] ⊗
B[k, j]). In general, the product can be computed using O(n3) semiring
operations. Over the (+, ·)-ring, the problem is standard matrix multi-
plication and can be solved in time O(nω) ≤ O(n2.373) [106]. Min-Plus
Product is the problem of computing the matrix product over the (min,+)-
semiring.

23

CHAPTER 1. INTRODUCTION

• Graph characteristics: Specifically, we study graph characteristics such
as: Diameter, Radius, Median, Minimum-Weight Triangle, and Minimum-
Weight Cycle.

These graph characteristics and Min-Plus Product can be reduced to
APSP, and thus all of these problems can be solved in time O(n3) [60, 156]
and using a recent algorithm by Williams [157] in time n3/2Ω(

√
logn). More-

over, with the exception of Diameter, an O(n3−δ)-algorithm for one of these
graph characteristics, or for Min-Plus Product, or for APSP would yield an
O(n3−δ′)-algorithm for all of these problems [4, 160]. It is therefore conjec-
tured that none of them can be solved in truly subcubic time [4, 160].

Zwick designed a (1 + ε)-approximation algorithm for APSP running in
time Õ(nω

ε
logW) [170]. This yields approximation schemes with the same

guarantees for Min-Plus Product and the mentioned graph characteristics [4,
128]. Zwick’s running time is close to optimal6, except that it is open whether
the factor logW is necessary. To the best of our knowledge, no strongly poly-
nomial approximation scheme is known for any of the mentioned problems.
This leads to our main question:

Do APSP, Min-Plus Product, and the mentioned graph charac-
teristics have strongly polynomial approximation schemes running
in time Õ(nω

ε
)? Or at least in time Õ(n3−δ

ε
) for some δ > 0?

Note that in the setting of strongly polynomial algorithms, by time we mean
the number of arithmetic operations. However, there is also a corresponding
question that considers the bit complexity. In fact, variants of our main
question are reasonable and open in at least three different settings:

• Number of arithmetic operations: When we only count arithmetic op-
erations, then in particular we can add/multiply two logW -bit input
integers in constant time. Thus, it is not clear why the running time of
an algorithm should depend on logW at all. Nevertheless, Zwick’s al-
gorithm requires Õ(nω

ε
logW) arithmetic operations. It is open whether

this can be reduced to Õ(nω
ε

) (or even to Õ(n3−δ

ε
) for any δ > 0).

• Bit complexity with integers: In bit complexity, an arithmetic operation
on b-bit integers has cost Õ(b). Note that the input to APSP consists
of n2 many logW -bit integers, and suppose that we keep this number

6For APSP and Min-Plus Product, any (1 + ε)-approximation can be used to compute
the Boolean matrix product [45], and thus requires time Ω(nω). Moreover, the dependence
on 1

ε should be at least polynomial, since the hardness conjecture for APSP is stated for
W = poly(n) [160], and a setting of ε = 1/W yields an exact algorithm.

24

CHAPTER 1. INTRODUCTION

format throughout the algorithm. Running Zwick’s algorithm in this
setting results in a bit complexity of Õ(nω

ε
log2W), since each arith-

metic operation has bit complexity Õ(log(nW)). One logW -factor is
natural, since we operate on logW -bit integers. The question thus
becomes whether the second logW -factor of Zwick’s algorithm is nec-
essary, or whether it can be improved to bit complexity Õ(nω

ε
logW).

• Bit complexity with floating point approximations: One can improve
upon the bit complexity of Zwick’s algorithm as described above by
changing the number format to floating point. Note that changing any
input number by a factor in [1, 1+ε] changes the resulting distances by
at most 1 + ε and thus still yields a (1 +O(ε))-approximation. We can
therefore round any input integer in the range {1, . . . ,W} to a floating
point number with an O(log 1

ε
)-bit mantissa and an O(log logW)-bit

exponent. We argue that this is the natural input format of Approx-
imate APSP. In this format, arithmetic operations on input numbers
have bit complexity Õ(log 1

ε
+log logW), and thus a factor log logW in

the bit complexity would be natural. However, implementing Zwick’s
algorithm in this setting yields bit complexity Õ(nω

ε
logW). The ques-

tion now becomes whether this can be improved to Õ(nω
ε

log logW), af-
ter converting the input numbers to floating point in time Õ(n2 logW)
(we will ignore this conversion time throughout the thesis since it is
near-linear in the input size).

Note that in all three settings potentially Zwick’s algorithm could be
improved by a factor up to Õ(logW). We focus on the first setting, where
our goal is to design algorithms whose number of arithmetic operations is
independent of W . However, our algorithms also yield improvements in the
other two settings, which we will briefly mention below.

1.4.1 Our results
We answer our main question affirmatively for all listed problems (for Di-
rected APSP we need the relaxed form of the question).

For the mentioned graph characteristics, obtaining time Õ(nω
ε

) is an easy
exercise. Since the result is a single number, we can first compute a poly(n)-
approximation, round edge weights to obtain W = poly(n/ε), and then use
the Õ(nω

ε
logW)-time approximation scheme as a black box.

Theorem 1.4.1. Diameter, Radius, Median, Minimum-Weight Triangle,
and Minimum-Weight Cycle on directed and undirected graphs have approx-
imation schemes in strongly polynomial time Õ(nω

ε
).

25

CHAPTER 1. INTRODUCTION

For APSP restricted to undirected graphs, we also obtain time Õ(nω
ε

).
We augment an essentially standard scaling-based algorithm for APSP by
contracting light edges. This is more involved than our solution for graph
characteristics, and is inspired by an iterative algorithm of Tardos [144].
Similar edge contraction arguments have been used in the context of parallel
algorithms for approximate APSP on undirected graphs [44, 101].

Theorem 1.4.2. (1 + ε)-Approximate Undirected APSP is in strongly poly-
nomial time Õ(nω

ε
).

For APSP on directed graphs the ideas used above fail, since there are
n2 output numbers and we cannot contract directed edges. We obtain a
truly subcubic strongly polynomial approximation scheme for APSP; no such
algorithm was known before.

Theorem 1.4.3. (1 + ε)-Approximate Directed APSP is in strongly polyno-
mial time Õ(nω+3

2 /ε).

Our approximation scheme for (directed) APSP is, in fact, a reduction
from approximate APSP to the exact problem Min-Max Product, i.e., the
problem of computing the matrix product over the (min,max)-semiring. This
problem is closely related to the All-Pairs Bottleneck Path problem.7 Min-
Max Product and All-Pairs Bottleneck Path can be solved in time Õ(nω+3

2) [52],
which is why this term appears in our approximation scheme for APSP.

Furthermore, our reduction also works in the other direction, which yields
an equivalence of approximation schemes for APSP and exact algorithms for
Min-Max Product. In particular, for readers willing to believe that the best
known running time for Min-Max Product is essentially optimal, this can be
seen as a conditional lower bound for approximate APSP, showing that any
improvements upon our approximation scheme in terms of the exponent of
n is unlikely.

Theorem 1.4.4. For any c ≥ 2, if one of the following statements is true,
then all are:

• (1+ε)-Approximate Directed APSP can be solved in strongly polynomial
time Õ(nc/poly(ε)),

• (1 + ε)-Approximate Min-Plus Product can be solved in strongly poly-
nomial time Õ(nc/poly(ε)),

7In All-Pairs Bottleneck Path we are given a directed graph with capacities on its
edges, and want to determine for all vertices u, v the capacity of a single path for which a
maximum amount of flow can be routed from u to v.

26

CHAPTER 1. INTRODUCTION

• exact Min-Max Product can be solved in strongly polynomial time Õ(nc),

• exact All-Pairs Bottleneck Path can be solved in strongly polynomial
time Õ(nc).

Our techniques also transfer to other problems over the (min,+)-semiring.
In particular, we design a strongly polynomial Õ(n3/2

√
ε

)-time approximation
scheme for Min-Plus Convolution (see Theorem 6.6.3). As an application,
we obtain an approximation scheme with the same guarantees for the related
Tree Sparsity problem (see Theorem 6.6.6) Finally, we prove an equivalence
of approximating Min-Plus Convolution and exactly solving Min-Max Con-
volution (see Theorem 6.6.2).

Our main technical contribution is the following Sum-to-Max-Covering,
which yields a framework for reducing approximate problems over the (min,+)-
semiring to exact or approximate problems over the (min,max)-semiring.

Theorem 1.4.5 (Sum-to-Max-Covering). Given vectors A,B ∈ Rn+ and ε >
0, in time linear in the output size we can compute vectors A(1), . . . , A(s),
B(1), . . . , B(s) ∈ Rn+ with s = O((1

ε
+ log n) log 1

ε
) such that for all i, j ∈ [n]:

A[i] +B[j] ≤ min
`∈[s]

max{A(`)[i], B(`)[j]} ≤ (1 + ε)(A[i] +B[j]).

There are two main issues that make the proof of this statement non-
trivial.

For close pairs i, j, meaning A[i]
B[j] ∈ [ε, 1

ε
], the sum A[i] + B[j] and the

maximum max{A[i], B[j]} differ significantly. It is thus necessary to change
the values of the vectors A,B. Roughly speaking, we handle this issue by
splitting A into vectors A(`) such that all entries A(`)[i], A(`)[i′] differ by either
less than a factor 1 + ε or by more than a factor poly(1/ε). Then we can
choose B(`) such that B(`)[j] is approximately A[i] + B[j] for all close pairs
i, j. This ensures that for close pairs max{A(`)[i], B(`)[j]} is approximately
A[i] +B[j]. For details see Close Covering (Lemma 6.3.2).

For the distant pairs i, j, with A[i]
B[j] < [ε, 1

ε
], the sum A[i] + B[j] and the

maximum max{A[i], B[j]} differ by less than a factor 1+ε, so we do not have
to change any values. However, we need to remove some entries (by setting
them to∞) in order to not interfere with close pairs. We show how to cover all
distant pairs but no too-close pairs, via a recursive splitting into log n levels
of chunks and treating boundaries between chunks by introducing several
shifts of restricted areas. For details see Distant Covering (Lemma 6.3.3).

27

CHAPTER 1. INTRODUCTION

1.4.2 Related work
It is known that in general not every scaling-based algorithm can be made
strongly polynomial, see, e.g., Hochbaum’s work on the allocation prob-
lem [85].

APSP and Min-Plus Product The closest related work is by Vassilevska
and Williams [152], who considered the real-valued Min-Plus Product. They
proposed a method to compute the k most significant bits of each entry of
the Min-Plus Product in timeO(2kn2.687 log n), in the traditional comparison-
addition model of computation. This is similar to an additiveW/2k-approximation.
However, it is incomparable to a (1 + ε)-approximation algorithm for Min-
Plus Product, since (1) the k most significant bits might all be 0, in which
case they do not provide a multiplicative approximation, and (2) a (1 + ε)-
approximation not necessarily allows to determine any particular bit of the
result, e.g., if a number is very close to being a power of 2. Subsequently,
their dependence on n was improved to O(2kn2.684)[163], which was further
refined to O(20.96kn2.687) and to O(2ckn2.684) for some c < 1 [107]. Moreover,
Le Gall and Nishimura [107] claim to get improved bound O(2ckn2.684) for
some c < 1, however they did not express the value of c in a closed form.

For approximate APSP for real-valued graphs with weights in [−no(1), no(1)],
Yuster [165] presented an additive ε-approximation in time Õ(nω+3

2). More
recently, among other results, Roditty and Shapira [126] gave an algorithm
computing every distance dG(u, v) up to an additive error of dG(u, v)p in time
Õ(Wn2.575−p/(7.4−2.3p)). For very small W , this interpolates between Zwick’s
fastest exact algorithm and his approximation algorithm [170].

In this thesis we focus on the problem of (1 + ε)-approximating APSP
when ε is close to 0. For ε < 1 the problem is at least as hard as Boolean
matrix multiplication [45] and thus requires time Ω(nω). However, there are
more efficient algorithms in the regime ε ≥ 1 for undirected graphs, using
spanners and distance oracles [148].

For k ≥ 1 a graph that (2k − 1)-approximates all pairwise distances is
called a (2k − 1)-spanner. Thorup and Zwick [148] proved that (2k − 1)-
spanners of size Õ(n1+1/k) can be computed in Õ(mn1/k) time. For more
recent work on graph spanners see, e.g., [2].

Our covering techniques are related to techniques proposed at [27] to
compute a Min-Plus Product when a matrix has bounded differences and
division of intervals in [134].

All-Pairs Bottleneck Path and Min-Max Product The All-Pairs Bot-
tleneck Path (APBP) problem is, given an edge-weighted directed graph G,

28

CHAPTER 1. INTRODUCTION

to determine for all vertices u, v the maximal weight w such that there is a
path from u to v using only edges of weight at least w. It is known that APBP
is equivalent to Min-Max Product, up to lower order factors in running time.
The first truly subcubic algorithm for Min-Max Product was given by Vas-
silevska, Williams, and Yuster [153], which was improved to time O(nω+3

2)
by Duan and Pettie [52].

Theorem 1.4.6 ([52]). Given two matrices A,B ∈ Rn×n+ , the Min-Max Prod-
uct of A and B can be deterministically computed in Õ(nω+3

2).

Shapira, Yuster, and Zwick [139] proposed an O(n2.575)-time algorithm
for a vertex-weighted variant of APBP. Duan and Ren [54] introduced the
problem All-Pairs Shortest Path for All Flows (APSP-AF) and provided an
approximation algorithm in time Õ(nω+3

2 ε−3/2 logW). They also proved an
equivalence with Min-Max Product. However, in contrast to the equivalences
presented in Chapter 6, their equivalence loses a factor logW , and thus does
not work for strongly polynomial algorithms.

APSP and APBP can be easily computed in time O(n2.5) on quantum
computers [119]. Le Gall and Nishimura [107] designed the first quantum al-
gorithm for computing Min-Max Product in time O(n2.473), and noted that
every problem equivalent to APBP admits a nontrivial O(n2.5−ε)-time algo-
rithm in the quantum realm.

It is also worth mentioning that there are efficient algorithms for prod-
ucts in other algebraic structures, e.g., dominance product, (+,min)-product,
(min,≤)-product (see, e.g., [151]).

Hardness of Approximation in P There is a growing literature on hard-
ness of approximation in P (see, e.g., [6, 7, 36, 40, 97, 129]), building on
recent progress in fine-grained complexity theory. For readers that are will-
ing to believe that the current algorithms for Min-Max Product are close
to optimal, our equivalence of approximating APSP and exactly computing
Min-Max Product is a hardness of approximation result, and in fact it is one
of the first tight lower bounds for approximation algorithms for problems in
P (cf. [40]).

Convolutions Given two vectors a, b ∈ Rn+, the convolution problem in a
(⊗,⊕) semiring is to compute ci = ⊕

k(ak⊗bi−k) for all i ∈ [n]. In a standard
(·,+) ring the problem can be done in O(n log n) time by using Fast Fourier
Transform (FFT). The Min-Max Convolution is the problem of computing
convolution in min-max semiring and Min-Plus Convolution is the problem
of computing convolution in min-plus semiring.

29

CHAPTER 1. INTRODUCTION

To the best of our knowledge Kosaraju [103] was the first to giveO(n3/2√log n)
algorithm for Min-Max Convolution (computing convolution in min-max
semiring). He conjectured that his algorithm can be improved to Õ(n) but
so far no improvement was given.

Theorem 1.4.7 ([103]). Given two sequences a, b ∈ Rn+. The Min-Max
Convolution of a and b can be deterministically computed in O(n3/2√log n)
time.

Another related problem to Min-Max Convolution is Hamming Dis-
tance. Graf, Labib, and Uznanski [83] proposed a class of problems that
are equivalent to Hamming Distance.

30

Chapter 2

Notation and preliminaries

We state our results for both directed and undirected graphs. By default,
G denotes a graph, V the set of its vertices and E set of edges. In most
cases the graph is weighed with a function w : E → R+. Let dG(u, v) be
the length of the shortest path between vertices u and v in graph G (note
that dG(u, v) = ∞ if there is no path between u and v). When we talk
about graph algorithms, n denotes the number of vertices and m the number
of edges. For a given graph G we say that D = maxu,v∈V (G) dG(u, v) is a
diameter of a graph. If a graph is undirected and D < ∞ we say that the
graph is connected and for a directed graph with D < ∞ we say that it is
strongly connected.

We consider multiplicative (1 + ε)-approximation algorithms and assume
that ε > 0 is sufficiently small (ε < 1/10).

We use a ⊕max b to denote the Max-Plus Convolution of sequences a, b
(see Section 5.2.2). All logarithms are base 2.

2.1 Fast matrix multiplication
Let T (n) be the minimal number of algebraic operations needed to compute
the product of n × n matrix by an n × n matrix. For now, the best known
upper bound on matrix multiplication is due to Le Gall [106]:

Theorem 2.1.1 (Le Gall [106]). For every ε > 0, T (n) < O(nω+ε), where
ω < 2.37287.

We say, that ω is the exponent of square matrix multiplication. We omit
ε in definition and assume that we can multiply two matrices by using O(nω)
field operations.

The best lower bound for the exponent of matrix multiplication is ω ≥ 2.
For convenience, we assume, that ω > 2. Observe that ω+3

2 < 2.687.

31

CHAPTER 2. NOTATION AND PRELIMINARIES

2.2 Frobenius normal from
A comprehensive description of Frobenius normal form be presented in Sec-
tion 3.1.1. The properties of Frobenius normal form, needed in this thesis
are well known in literature [55, 141, 142].

Theorem 2.2.1 (Storjohann [142]). The Frobenius canonical-form of a ma-
trix can be computed deterministically, using Õ(nω) field operations.

There are also simpler probabilistic algorithms, that compute this form
in expected Õ(nω) with high probability over small fields [56].

2.3 Subsums
For a finite multiset Z ⊂ N we denote its size as |Z|, the number of distinct
elements as ||Z||, and the sum of its elements as Σ(Z). For a number x we
define pow(x) as the largest power of 2 not exceeding x. If x < 2 we set
pow(x) = 1. For sets A,B ⊂ N their bounded algebraic sum A⊕t B is a set
{a+ b : a ∈ {0} ∪ A, b ∈ {0} ∪B} ∩ [0, t].

Definition 2.3.1 (Subsums). For a finite multiset Z ⊂ N we define S(Z)k
as a set of all possible subset sums of Z of size at most k, i.e., x ∈ S(Z)k iff
there exists S ′ ⊆ Z, such that Σ(S ′) = x and |S ′| ≤ k. S(Z) is the set without
the constraint on the size of the subsets, i.e., S(Z) := S(Z)∞. The capped
version is defined as S(Z, t)k := S(Z)k ∩ [0, t] and S(Z, t) := S(Z) ∩ [0, t].

We call two multisets Z1, Z2 ⊂ N equivalent if S(Z1) = S(Z2).

Note that 0 ∈ S(Z, t)k for all sets Z and t, k > 0.

2.4 Technical rounding lemmas
Through the thesis we extensively use the following technical lemmas about
rounding integers.

Lemma 2.4.1. For k natural numbers x1, x2, . . . , xk and positive q, ε such
that q ≤ ∑k

i=1 xi and 0 < ε < 1, it holds:

k∑
i=1

xi ≤
qε

k

k∑
i=1

⌈
kxi
qε

⌉
< (1 + ε)

k∑
i=1

xi.

32

CHAPTER 2. NOTATION AND PRELIMINARIES

Proof. Let xi = qε
k
ci+di where 0 < di ≤ qε

k
and ci ∈ Z. We have

⌈
kxi
qε

⌉
= ci+1.

First, note that:

k∑
i=1

xi = qε

k

k∑
i=1

ci +
k∑
i=1

di ≤
qε

k

k∑
i=1

ci + qε = qε

k

k∑
i=1

(ci + 1),

what proves the left inequality. To handle the right inequality we take ad-
vantage of the assumption ∑k

i=1 xi ≥ q and get:

(1 + ε)
k∑
i=1

xi = ε
k∑
i=1

xi +
k∑
i=1

xi ≥ qε+
k∑
i=1

xi = qε+ qε

k

k∑
i=1

ci +
k∑
i=1

di =

qε

k

k∑
i=1

(ci + 1) +
k∑
i=1

di >
qε

k

k∑
i=1

(ci + 1).

�

Lemma 2.4.2. For k natural numbers x1, x2, . . . , xk and positive q, ε such
that q ≤ ∑k

i=1 xi and 0 < ε < 1, it holds:

(1− ε)
k∑
i=1

xi <
qε

k

k∑
i=1

⌊
kxi
qε

⌋
≤

k∑
i=1

xi.

Proof. The proof is very similar to the proof of Lemma 2.4.1, however now
we represent xi as qε

k
ci+di where 0 ≤ di <

qε
k
and ci ∈ Z. We have

⌊
kxi
qε

⌋
= ci.

The right inequality holds because:

k∑
i=1

xi = qε

k

k∑
i=1

ci +
k∑
i=1

di ≥
qε

k

k∑
i=1

ci.

The left inequality can be proven as follows:

(1− ε)
k∑
i=1

xi =
k∑
i=1

xi − ε
k∑
i=1

xi ≤
k∑
i=1

xi − qε =
(

k∑
i=1

qε

k
ci + di

)
− qε <

qε

k

k∑
i=1

ci.

�

33

CHAPTER 2. NOTATION AND PRELIMINARIES

2.5 Reductions
In the thesis, we present a series of results of the following form: if a problem
A admits an algorithm with running time T (n), then a problem B admits an
algorithm with running time T ′(n), where function T ′ depends on T and n is
the length of the input. For example, we will show that T (n) = O(n2−ε)⇒
T ′(n) = O(n2−ε′). Some problems, in particular Knapsack, have no simple
parametrization, and we allow function T to take multiple arguments.

As the size of the input may increase during our reductions, we restrict
ourselves to a class of functions satisfying T (cn) = O(T (n)) for a constant
c. This is justified, as we focus on functions of the form T (n) = nα. In some
reductions, the integers in the new instance may increase to O(nW). In these
cases, we multiply the running time by polylog(n) to take into account the
overhead of performing arithmetic operations.

We follow the convention of [34] and say that the decision problem L
admits a nondeterministic algorithm in time T (n) if L ∈ NTIME(T (n)) ∩
co-NTIME(T (n)).

2.6 Machine model and input format
Throughout this thesis, we will assume that for all approximate problems
input numbers are represented in floating-point, while for all exact prob-
lems input numbers are integers represented in the usual bit representation.
This choice of representation is not necessary for our new approximation
algorithms (they would also work on the Word RAM with input in bit rep-
resentation or on the Real RAM allowing only additions and comparisons);
however, it is necessary for our equivalences between approximate and exact
problems, as we discuss at the end of this section. We first describe the details
of these formats as well as why this choice is well-motivated and natural.

The reader is invited to skip over the machine model details and consider
an unrealistic, but significantly simpler model of computation throughout
this thesis: A Real RAM model where all logical and arithmetic operations
on real numbers have unit cost, including rounding operations. This model
is too powerful to be a realistic model of computation [133], but considering
our algorithms in this model captures the main ideas.

Representation for exact problems For exact problems, we assume that
numbers are given in the standard binary representation. Since W denotes
the largest input weight, to represent one number we will need O(logW) bits.
In Chapters 3 and 5 we will assume that Õ notation also hides polylogarith-

34

CHAPTER 2. NOTATION AND PRELIMINARIES

mic factors in W for clarity of presentation (in Chapter 4 we will consider
approximation problem, see next paragraph). However in Chapter 6 we ex-
plicitly focus on strongly polynomial approximation, therefore in Chapter 6
notation Õ will never hide factors in W .

Floating-point representation for approximate problems For all ap-
proximate problems considered in this thesis, we can change every input
weight by a factor 1+ ε

n
in a preprocessing step; this changes the result by at

most a factor 1 + ε. It therefore suffices to store for each input weight w its
rounded logarithm e = blog2wc, which requires only O(log logW) bits, and
a (1+ ε

n
)-approximation of w/2e ∈ [1, 2], which requires only O(log n log 1/ε)

bits. Observe that this is floating-point representation. Hence, floating-point
is the natural input format for the approximate problems studied in this the-
sis.

The necessity for rigorous models for floating-point numbers in theoretical
computer science was observed in [10, 23, 147]. Here we follow the format
proposed by Thorup [146], except that we slightly simplify it, since we only
want to represent positive reals. In floating-point representation, a positive
real number is given as a pair x = (e, f), where the exponent e is a κ-bit
integer and the mantissa f is a γ-bit string f1, . . . , fγ. The pair x represents
the real number

2e ·
(

1 +
γ∑
i=1

fi/2i
)
.

Here γ, κ are parameters of the model. Moreover, we assume that all arith-
metic operations on floating-point numbers can be performed in constant
time.

For all approximate problems considered in this thesis, we assume the
input weights to be given in floating-point format. In particular, if the input
weights are in the range [1,W], we assume floating-point representation with
Θ(log n)-bit mantissa and Θ(log n + log logW)-bit exponent. The unit-cost
assumption (that all arithmetic operations on floating-point numbers take
constant time) thus hides at most a factor Õ(log n + log logW) compared
to, e.g., the complexity of performing these operations by a device operating
on bits. Observe that many other formats can be efficiently converted into
floating-point, and thus our algorithms also work in other settings.

Using a fixed floating-point precision introduces inherent inaccuracies
when performing arithmetic operations. For simplicity of presentation, how-
ever, we shall assume that all arithmetic operations yield an exact result.
For the algorithms in this thesis, it is easy to see that this assumption can

35

CHAPTER 2. NOTATION AND PRELIMINARIES

be removed by increasing the precision slightly.

Necessity of our choice of input representation We crucially use our
choice of input formats in our equivalences of approximate Min-Plus and ex-
act Min-Max problems (see Theorem 1.4.4, Theorem 6.6.2): In the reduction
from exact Min-Max to approximate Min-Plus we need to exponentiate some
numbers. In usual bit representation, this would translate O(log n)-bit inte-
gers to poly(n)-bit integers and thus not be efficient enough. However, if m
is an O(log n)-bit integer in standard bit-representation, then we can store
2m in floating-point representation by storing m as the exponent; the re-
sulting floating-point number has an O(log n)-bit exponent (and an O(1)-bit
mantissa).

For the other direction, from approximate problems in floating-point to
exact problems in bit representation, we use that for Min-Max problems
we can replace input numbers by their ranks, which converts floating-point
numbers to O(log n)-bit integers in bit representation.

Observe that in the Min-Max type problems, one can replace all input
numbers by their ranks, i.e., their index in the sorted ordering of all in-
put numbers. Solving the problem by the ranks, we can then infer the re-
sult. Hence, up to additional near-linear time in the input size to determine
the ranks, we can assume that all input numbers are integers in the range
{1, . . . , poly(n)}, and thus all input numbers are O(log n)-bit integers. This
is the reason why for exact problems (studied in this thesis) bit represen-
tation is the natural input format, and not floating-point. As usual for the
Word RAM, we assume that each memory cell stores Ω(log n)-bit integers
(when input consists of n-bits), and thus operations on input numbers can
be performed in constant time.

36

Part II

Faster Dynamic Programming

37

Chapter 3

Dynamic programming &
Frobenius normal form

In this Chapter, we introduce the framework for counting cycles and walks of
given length in matrix multiplication time Õ(nω). The framework is based on
the fast decomposition into Frobenius normal form and the Hankel matrix-
vector multiplication. It allows us to solve the All-Nodes Shortest Cycles,
All-Pairs All Walks problems efficiently and also gives some improvement to
distance queries in unweighted graphs.

Outline: In Section 3.1 we give an introduction to the cyclic subspaces
and show connection with the Frobenius normal form. This gives a reader a
basic understanding of the techniques that we use. Then in Section 3.2 we
present an algorithm that matches the current state-of-the-art algorithm for
distance queries. In the remaining Sections we improve upon this algorithm
and present interesting consequences. Namely, in Section 3.3 we enrich the
output to the distance query oracle with some additional information. Then
in Section 3.4 we apply our observation to selected graph problems. The
results in this Chapter were presented at Symposium on Theoretical Aspects
of Computer Science (STACS 2017) [130]. The full version is published in
Theory of Computing Systems [131].

3.1 Introduction to cyclic subspaces and con-
nection to Frobenius matrices

We will start with a motivational example of application of cyclic subspaces.
We have a constant-recursive sequence

39

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

an + c0an−1 + c1an−2 + . . .+ cr−1an−r = 0

of order r, where all ci are constants and initial conditions a0, . . . , ar−1
are given. Perhaps, the most familiar example is the Fibonacci sequence
Fn = Fn−1 + Fn−2.

We can define the companion matrix of our general sequence as:

C =


0 . . . 0 −c0

1 . . . −c1
. . . 0 ...

0 1 −cr−1

 .

The crucial property of the matrix C is that we can generate the next
element of the sequence with multiplication by C:

CT


an−r
...

an−2
an−1

 =


an−r+1
...

an−1
an

 .

For example, for Fibonacci sequence we have Fn − Fn−1 − Fn−2 = 0 for
n ≥ 2, hence c0 = c1 = −1 and:

[
0 1
1 1

] [
Fn−2
Fn−1

]
=
[
Fn−1
Fn

]
.

To get a subsequent an+1, one can naively repeat the procedure for the
output. One can also square the companion matrix and get:

CTCT


an−r
...

an−2
an−1

 = CT


an−r+1
...

an−1
an

 =


an−r+2
...
an
an+1

 .

And analogously to get the an+k−1 element we need to compute the k-th
power of the matrix C. In linear algebra such transformations are known
as the cyclic subspaces generated by the vector a. In the next parts of this
chapter, we will restrict ourself to a conclusion, that some columns of a
companion matrix occur in its powers. These properties are well known in
the linear algebra theory (see [56, 71] for more cyclic properties).

40

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

3.1.1 Consequences of Frobenius normal form
Let F be a commutative field. For any matrix A ∈ Fn×n there exists an
invertible U over F such that:

U−1AU = F =



C1 0
C2

C3
. . .

0 Ck

 .

and F is the Frobenius-canonical-form 1 of A. The diagonal block Ci is
called the companion matrix:

Ci =



0 . . . 0 −c0
1 0 0 −c1

1 . . .
... −c2

. . . 0 ...
1 0 −cr−2

0 1 −cr−1


∈ Fr×r.

Each companion matrix corresponds to the monic polynomial Ci(x) =
xr + cr−1x

r−1 + . . .+ c0 ∈ F [x] (similarly to the sequence example) and this
polynomial is called the minimal polynomial of A. Each minimal polynomial
has a property that Ci(A) = 0. To guarantee that matrix has only one
decomposition into Frobenius normal form we require that every polynomial
must divide the next one, i.e., Ci(x)|Ci+1(x). The final list of polynomials is
called the invariant factors of matrix A [142]. Storjohann [142] proposed the
deterministic algorithm to compute the Frobenius canonical-form efficiently.

Theorem 3.1.1 (Storjohann [142]). The Frobenius canonical-form of a ma-
trix can be computed deterministically using Õ(nω) field operations.

Moreover, there are also probabilistic algorithms that compute this form
in expected Õ(nω) time over small fields [56]. In this Chapter, all algorithms
are deterministic if we the upper bound on the number of distinct walks is
W . Then, due to the time of a single field operation we need additional
O(logW) factor in the complexity. However, since we are mainly interested
in determining if a cycle/walk of a given length exists in a graph, we can set
a sufficiently small field Zp (p has O(log n) bits). This way when algorithm
returns nonzero we are sure that there exists some walk. If algorithm returns
zero, then with high probability there will be no such walk.

1Sometimes this form is called rational-canonical form.

41

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

3.1.2 Cyclic subspaces
Frobenius decomposition can be used to get the desired power of a matrix
(analogously to the diagonal decomposition):

Ak = (UFU−1)k = UF (U−1U)F · · ·F (U−1U)FU−1 = UF kU−1.

Moreover, we will use the property that the power of block diagonal ma-
trix F is block diagonal:

F k =



Ck
1 0

Ck
2

Ck
3

. . .

0 Ck
l

 .

Now, we need a property of companion matrices that will enable us to
power them efficiently.

Definition 3.1.2 (Cyclic Property). Let v1, . . . , vn be the columns of a matrix
C ∈ Fn×n. Let vn+1, . . . , v2n be the columns of matrix Cn+1. If, for every
1 ≤ k ≤ n the columns of matrix Ck are vk, vk+1, . . . , vk+n then the C has a
cyclic property.

M =

 v1 v2 . . . vk . . . vn vn+1 . . . vk+n−1 . . . v2n



C1 Cn+1

Ck

Figure 3.1: Visualisation of the cyclic property (Definition 3.1.2)

It turns out, that companion matrices have a cyclic property.

Theorem 3.1.3 (Folklore [71], see [108] for generalization). Every compan-
ion matrix has a cyclic property.

42

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

We will illustrate this property with an example:

C =


0 0 0 0 1
1 0 0 0 2
0 1 0 0 3
0 0 1 0 4
0 0 0 1 5

 , C
2 =


0 0 0 1 5
0 0 0 2 11
1 0 0 3 17
0 1 0 4 23
0 0 1 5 29

 , C
3 =


0 0 1 5 29
0 0 2 11 63
0 0 3 17 98
1 0 4 23 133
0 1 5 29 168

 ,

C4 =


0 1 5 29 168
0 2 11 63 365
0 3 17 98 567
0 4 23 133 770
1 5 29 168 973

 , C
5 =


1 5 29 168 973
2 11 63 365 2114
3 17 98 567 3284
4 23 133 770 4459
5 29 168 973 5635

 .

The matrix Ci has 4 columns identical to matrix Ci+1. C has coefficients
of order equal to dimension (dimension is 5 and maximum coefficient is 5).
After powering to the 5th power, the coefficients can be of order 55. Over a
finite field Zp, all those coefficients will have O(log p) bits.

3.2 Matching distance queries on directed un-
weighted graphs

In this section, we will present an algorithm that matches the best known
upper bounds of Yuster and Zwick [167] for distance queries in directed un-
weighted graphs and uses Frobenius matrices.

We take the adjacency matrix A of a graph G (i.e., n × n matrix with
au,v = 1 when (u, v) ∈ G and 0 otherwise). The k-th power of the adjacency
matrix of the graph G holds the number of walks, i.e., an au,v element of Ak
is the count of distinct walks from u to v of length k in the graph.

Observation 3.2.1 (Folklore, [42]). Let A ∈ {0, 1}n×n be the adjacency
matrix of a directed graph G. The (Ak)u,v is the number of distinct walks
from u to v of length exactly k in the graph G.

Hence, the shortest path between vertices u, v is the smallest k such that
Ak has nonzero element au,v. This will allow us to forget about graph theory
interpretation for a brief moment and focus only on finding such k with
algebraic tools.

In this section we will proof the following Lemma.

43

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

Lemma 3.2.2. Given a matrix A ∈ Fn×n. There exists an algorithm that
after some preprocessing, can answer queries for any given pair of indices
i, j ∈ {1, . . . , n} and integer k ∈ {1, . . . , n}, such that:

• query returns an element (Ak)i,j,

• preprocessing takes Õ(nω) field operations and query takes O(n) field
operations.

The algorithm is deterministic.

To proof this Lemma we decompose matrix A into the Frobenius normal
form. Storjohann [142] showed an algorithm that returns U and F deter-
ministically in Õ(nω) field operations (note that matrix inverse can also be
computed in Õ(nω) field operations).

To better explain the idea, in the next section we will consider a simple
case when a number of invariant factors of A is exactly 1. Then in Sec-
tion 3.2.2 we will show how to generalize it to multiple invariant factors.

3.2.1 Single invariant factor
In that situation, the matrix F is a companion matrix C ∈ Fn×n. First,
we compute the (n + 1)-th power of the companion matrix F n+1. This
can be done by using Õ(nω) field operations by repeated squaring (compute
F, F 2, F 4, . . . , F n+1 with O(log n) matrix multiplications).

Let v1, . . . , vn be the columns of matrix UF and vn+1, . . . , v2n be the
columns of matrix UF n+1. Note, that because matrix F has a cyclic property,
the columns vk, . . . , vk+n−1 construct UF k (see Figure 3.2).

UF k

v1 . . . vk . . . vn vn+1 . . . vk+n−1 . . . v2n

U =


u1
u2
...
un



Figure 3.2: Construction of UF k from matrices UF and UF n+1

This step took just two matrix multiplications, because we need to mul-
tiply U times F and F n+1. The preprocessing phase takes only Õ(nω) field
operations.

44

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

Now, if a query asks for the number of distinct walks from vertices u to
v of length exactly k we:

• select u-th row of matrix UF k (n numbers),

• select v-th column of matrix U−1,

• multiply them in by using O(n) multiplications (dot product of two
n-dimensional vectors).

This will give us the u, v element of matrix UF kU−1 = Ak. To get the
length of the shortest path (i.e., the minimal k such that (Ak)u,v > 0), we will
modify our matrices slightly to get the number of walks of length ≤ k. At
the end, we will use in Õ(n) query tim (by using binary search) and Õ(nω)
preprocessing time.

Basically, for a given k we need to get the u, v element of matrix A+A2 +
· · · + Ak. It suffices to add consecutive columns of matrix UF ⊕ UF n+1 =
v1 ⊕ v2 ⊕ . . .⊕ v2n in the following manner 2:

M ′ =
[
v1 v1 + v2 v1 + v2 + v3 . . .

∑k
i=1 vi . . .

∑2n
i=1 vi

]
∈ Fn×2n.

Now, to get A+A2 + · · ·+Ak one would need to multiply M ′
k,k+n−1U

−1

and subtract M ′
1,nU

−1 for a balance 3.
The naive algorithm can transform matrices U and F to matrix M ′ in

O(n2) field operations during preprocessing. During query, we will need to
compute two dot products (u-th row of M ′

k,k+n−1 times v-th column of U−1

and u-th row of M ′
1,n times v-th column of U−1) and subtract them.

We have an algorithm that for a given vertices u, v ∈ G and integer
k ∈ {1, . . . , n} can answer: how many walks from u to v of length less or
equal k are in the graph G in Õ(n) query time and Õ(nω) preprocessing
time.

Because the result of the query is increasing in k we can use binary search.
We can determine the first k for which the query will answer nonzero value
in O(log n) tries. Hence, in Õ(n) we can find the length of the shortest path.
This generalized query can also return the number of walks of length exactly
k, i.e., q(u, v, k)− q(u, v, k − 1).

We matched the result of Yuster and Zwick [167] for unweighted graphs
with a single invariant factor. In the next section, we will show how to
generalize this technique for graphs with any number of invariant factors.

2Operation ⊕ denotes concatenation.
3Xa,b denotes a matrix constructed by concatenating columns xa, xa+1, . . . , xb of a

matrix X.

45

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

3.2.2 Multiple invariant factors
Now, we will consider a case when k ≥ 1, i.e., matrix F has multiple invariant
factors. First of all, we need to note that this generalization is not perfect
and will allow to compute the number of walks of length up to D (the longest
distance in a graph, i.e., diameter).

In real world applications of our framework (detecting cycles, determining
distance between nodes, etc.) one does not need to consider walks longer than
the longest possible distance in a graph. It is natural that the diameter is
considered to be a bound of an output in graph problems [5, 8, 41, 49].

Relation of the graph diameter and Frobenius normal form

We begin with relating the graph diameter to the Frobenius normal form.
It turns out that the graph diameter is bounded by the degree of a smallest
invariant factor.

Lemma 3.2.3 ([42]). Given a directed, unweighted graph G with a diameter
D < ∞. Let µ denote the degree of the smallest invariant factor (i.e., the
dimension of the smallest block in the Frobenius matrix F) of an adjacency
matrix of the graph G. Then D ≤ µ.

This property is well known in literature [42]. We include the proof of
this theorem for completeness. Note, that in Lemma 3.2.3 we assume that
graph is strongly connected.

Proof. For a contradiction assume that D > µ and let u, v ∈ G be vertices
such that δ(u, v) = D. Let A be the adjacency matrix of G. We know, that
there is the minimal polynomial of degree µ (I denotes the identity matrix):

Aµ = a0I+ a1A+ a2A
2 + . . .+ aµ−1A

µ−1.

Term aki,j denotes the i, j element of the matrix Ak. Now, consider the
elements u, v of each matrix. The diameter D > µ and δ(u, v) = D, so for
every k ≤ µ the elements aku,v = 0 (because there is no walk of length less
than D from u to v). Now, if we multiply the minimal polynomial by the
matrix A we get:

Aµ+1 = a0A+ a1A
2 + a2A

3 + . . .+ aµ−1A
µ.

Hence aµ+1
u,v = 0, because every element in the sequence aku,v = 0 for k ≤ µ.

By repeating this reasoning, we get that for every k > 0 the element aku,v = 0.
So, for every achievable pair of vertices, there must be some k ≤ µ, such that
aku,v , 0 and diameter is bounded by µ. �

46

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

The bounds of this inequality are tight. There are graphs with diameter
D = µ and graphs with µ = n and arbitrary small diameter [42]. Our
algorithms are able to return walks up to the length µ. We use the bound on
D solely because it is easier to interpret diameter than the smallest degree of
the invariant factor.

Generalization to multiple invariant factors

Let k denote the number of blocks in the Frobenius matrix F and µ be the
number of columns of the smallest block. To multiply the matrix U by F we
can start by multiplying strips of matrix U by appropriate blocks of F and
concatenate them later (see Figure 3.3).

U−1

F1

F2

F3

U1F1 U2F2 U3F3U1 U2 U3

Figure 3.3: Multiplication of the UFU−1. Example for 3 invariant factors.
We know that matrix F is block and consists of F1, F2, F3. We divide matrix
U into strips U1, U2, U3 that corespond to blocks of F . The observation is
that we can compute U1 ·F1, U2 ·F2 and U3 ·F3 independently and concatenate
them into matrix UF .

We start by splitting the matrix U into k strips with rows correspond-
ing to the appropriate blocks of F (strip Ui has as many columns as block
Fi). Then we multiply UF and have k strips: U1F1, U2F2, . . . UkFk (each

47

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

with at least µ columns). Next, we multiply UF µ and also keep k strips:
U1F

µ
1 , U2F

µ
2 , . . . , UkF

µ
k . Our goal is to get a data structure such that if we

need UF k, we can quickly choose appropriate columns and append them.
The matrix UiFi has li columns: v1, . . . , vli . Because Fi is a compan-

ion matrix, the UiF µ
i has the cyclic property (Definition 3.1.2). And the

matrix UiF
µ
i has columns: vµ, . . . , vµ+li . Note, that there are some dupli-

cate columns in UiFi and UiF µ
i , when µ < li. Hence, we only need to keep

columns v1, . . . , vµ+li for this strip. We do this for all strips U1F1, . . . UkFk
(see Figure 3.4).

U1F1 U1F
µ
1 U2F2 U2F

µ
2 U3F3 U3F

µ
3

Figure 3.4: Combining strips into a single matrix. The height of the matrix
in the schema is scalled down. We computed U1F1 and U1F

µ
1 . Now we

noted that companion matrices have a cyclic property so some of the rows in
the strips are repeated. So in the single strip we can store only subsequent
columns.

We are left with a matrix that has at most 2n columns (because l1 +
µ + l2 + µ + . . . lk + µ = kµ + ∑n

i=1 li = n + kµ ≤ 2n). To generate it we
need to power F to µ and do multiplications U · F and U · F µ. This can
be computed in Õ(nω) field operations via fast matrix multiplication and
repeated squaring.

Queries with multiple invariant factors

When a query for the number of walks of length k from node u to v comes,
we do:

1. For each strip i take the u-th row of UiFi⊕UiF µ
i and concatenate them

(see Figure 3.5) into vector ū,

2. Take v-th column of U−1 matrix and denote it v̄,

3. Return the dot product ū · v̄.

Because l1 + l2 + . . .+ lk = n the vector ū ∈ Fn. Query needs O(n) field
operations.

Finally, this dot product is au,v element of the matrix UF kU−1, for a
fixed k ≤ µ because ū is the concatenation of original vector u. Analogously

48

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

U1F1 ⊕ U1F
µ
1

k k + l1

U2F2 ⊕ U2F
µ
2

k k + l2

U3F3 ⊕ U3F
µ
3

k k + l3

Figure 3.5: Schema of obtaining vector ū (marked red) from 3 strips. We are
given the row number and the power k and the lenghts li of each strip. At
the end we concatenate them.

to Section 3.2.1 one can extend this result to return the number of walks of
length less or equal k. This matches (up to the polylogarithmic factor) the
result of Yuster and Zwick [167]. We will omit the details of this observation
because in the next section we will extend this framework even further.

3.3 Almost optimal query
In the previous section, we showed how to preprocess a matrix A with Õ(nω)
field operations in such a way that in query that uses O(n) field operations
we can return a number (Ak)i,j. However, in linear time O(n) we return only
a single number. The goal of this section is to get far richer information in
Õ(n) query time (with extra factors from field operations).

Theorem 3.3.1. Let A ∈ {0, 1}n×n be a matrix such that the degree of
smallest invariant factor is µ. There exists a deterministic algorithm that
after some preprocessing can answer queries for any given i, j ∈ {1, . . . , n}:

• Query returns {ak | 1 ≤ k ≤ µ}, where ak = (Ak)i,j ,

• Preprocessing takes Õ(nω logW) and query takes Õ(n logW) time,

where W is an upper bound on ak for all k ∈ {1, . . . , µ}.

Note, that this theorem has some immediate application in graph algo-
rithms (see Section 3.4).

3.3.1 Hankel matrix
Now, we will focus on the proof of Theorem 3.3.1. First, we need to introduce
the Hankel matrix and its properties.

49

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

H =


c1 c2 . . . cn
c2 c3 . . . cn+1
...

...
...

cn cn+1 . . . c2n−1


Hankel matrix is defined by its first row and last column (2n−1 numbers

define n × n Hankel matrix). The numbers from the previous row are left-
shifted by one and the new number is added at the end. Hankel matrices
have some similarities to Topelitz and Circulant matrices.

The basic property we need is that the product of Hankel matrix and
vector can be computed in O(n log n) time (see [82, 143]) even though ex-
plicitly writing the Hankel matrix as n × n matrix takes O(n2) time. The
algorithm takes 2n− 1 parameters that define the Hankel matrix and n pa-
rameters that define the vector. The technique is based on the Fast Fourier
Transformation [82, 143].

3.3.2 Applying Hankel matrices
To proof the Theorem 3.3.1 we will modify only the last step in Section 3.2.2.
The algorithm from Section 3.2.2 concatenates the strips UiFi and builds a
single vector. Subsequently, that vector is multiplied by a column of matrix
U−1. But we can also do it in a different order: first we multiply the strip by
a section of matrix U−1 and sum the results at the end. Thus, we perform k
(number of strips) dot products of smaller vectors (see Figure 3.6).

U1F1 U2F2 U3F3

U−1

Figure 3.6: Multiplication of strips by U−1 matrix. As you can see, matrix
U−1 can be splited into sections, that multiply only UiFi strips.

Consider the query for a number of walks of length exactly k. The strips
in the matrix U−1 do not depend on k (vector (u0, . . . , ul)). However, the

50

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

vector taken from UiFi (vectors (xi, . . . , xi+l)) will be left shifted if we want
to compute the next one.

(x0 x1 x2 . . . xl)
(x1 x2 . . . xl xl+1)
(x2 . . . xl xl+1 xl+2)
...

...
(xµ . . . xµ+l)

×



u0

...

ul


As you can see, the subsequent rows can be written as the Hankel ma-

trix (we need to add zeros to get a square matrix, but it will not influence
asymptotic complexity since there will be at most O(n) of them). By using
the fast Hankel matrix-vector multiplication we can compute µ values for ev-
ery strip i in time O(li log li) (li was defined as the length of i-th strip). At
the end, we need to sum all results into a single array. Therefore, the number
of operations is O

(∑k
i=1 li log li

)
. Because

∑k
i=1 li = n the algorithm needs

O(n log n) field operations. This proves Theorem 3.3.1.
Here, we silently assumed that the number of walks is bounded by W .

Note, that for large W , the algorithm needs to output O(n2 logW) bits
and the complexity of every arithmetic operation needs to be multiplied by
logW . If one is only interested in the deciding if an entry of some power of
adjacency matrix is nonzero, we can use a standard randomization technique
to eliminate logW factors from the running time.

Corollary 3.3.2. Let A ∈ {0, 1}n×n be a matrix such that the degree of
smallest invariant factor is µ. There exists an algorithm that after some
preprocessing can answer queries for any given i, j ∈ {1, . . . , n}:

• Query returns {ak | 1 ≤ k ≤ µ}, where ak = 1 if (Ak)i,j is nonzero,

• Preprocessing takes Õ(nω) and query takes Õ(n) time.

The algorithm is randomized with one-sided bounded error.

Proof. At the beginning we will randomly select a prime number withO(log n)
bits. We can write the matrix A as a polynomial:

Ãi,j =

xi,j if Ai,j = 1
0 otherwise,

where xi,j are unique variables. Now we can apply Schwartz-Zippel
Lemma [136, 168]. The Ãki,j is the polynomial of degree at most n (because
k ≤ µ ≤ n) and if we compute it over Zp for p = O(n2) we can correctly

51

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

determine if Ãki,j is a nonzero polynomial with a constant probability. We
can repeat the above procedure O(log n) times to get a correct result in all
entries with high probability. �

3.4 Applications
In this section we will show how to use Theorem 3.3.1 to improve known
algorithms on graphs. First we will develop a data structure that returns a
number of distinct walks efficiently.

Lemma 3.4.1. Let G = (V,E) be a strongly connected, directed, unweighted
graph with n vertices and a diameter D <∞. There exists an deterministic
algorithm that after some preprocessing can answer queries for any given
u, v ∈ V :

• Query returns {wi | 1 ≤ i ≤ D}, where wi is the number of distinct
walks from u to v of length exactly i,

• Preprocessing takes Õ(nω logW) and query takes Õ(n logW) field op-
erations.

where W is the upper bound on wi for all i ∈ {1, . . . , D}.

Proof. We encode the graph G as an adjacency matrix A(G). We use the
Theorem 3.3.1 to construct the data structure that given a query (u, v) out-
puts (Ak)u,v for all 1 ≤ k ≤ µ. Finally, we use Observation 3.2.1 to note,
that (Ak)u,v is equal to the number of distinct walks from u to v of length
exactly k. Moreover we use Lemma 3.2.3 to bound the number D ≤ µ, so we
will always output more numbers (but we can truncate them in O(n) time).
Finally we note, that the preprocessing and query of Theorem 3.3.1 matches
the statement and construction of adjacency matrix is O(n2). �

This algorithm is a significant improvement over Yuster and Zwick [167]:

• One can use Lemma 3.4.1 to find the distance between u, v by linearly
scanning the array and returning the first k such that wk > 0,

• Lemma 3.4.1 can count cycles. In contrast the Yuster and Zwick [167]
cannot, because the distance from u to u is always 0 (see Section 3.4.1),

• Lemma 3.4.1 is almost optimal, i.e., when D = O(n) then query will
need to output O(n logW) bits.

52

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

From the other hand, Lemma 3.4.1 is merely a functional improvement
and it does not break the Õ(nω) of the Single Source Shortest Paths (SSSP)
for dense, directed graphs.

Now we will show the application of Lemma 3.4.1. We begin with almost
optimal algorithm to compute the number of all walks between all pairs of
vertices. We are not aware of any other research concerning this problem.

Definition 3.4.2 (All-Pairs All Walk problem). Given a strongly connected,
directed, unweighted graph G with a diameter D <∞. The task is to return
an array A, such that for every pair of vertices u, v ∈ G and every k ∈
{1, . . . , D} an element A[u, v, k] is the number of distinct walks from u to v
of length k.

The folklore solution to this needs O(Dnω logW) time (where W is an
upper bound on number of walks) and works as follows: take the adjacency
matrix A of graph G and save it in A[u, v, 1]. Then, square it to get A2

and save it in A[u, v, 2]. Continue until you fill out complete table. In the
worst case this algorithm needs D = O(n) matrix multiplications, thus it
needs O(Dnω) field operations. At the first glance it is surprising that we
can improve it to Õ(n3) field operations.

Theorem 3.4.3. All-Pairs All Walk problem admits an Õ(n3 logW) algo-
rithm (where W is upper bound on number of walks between every pair of
vertices).

Proof. We will apply the Lemma 3.4.1 algorithm. The preprocessing takes
Õ(nω) time. Then, for every pair of vertices u, v ask a query. A single query
takes Õ(n logW) time. Next we will save it in the table A[u, v] (query gives
D numbers w1, . . . , wD, such that wi is the number of walks of length i and
save it A[u, v, i] B wi).

Because there are O(n2) pairs and for each pair we need Õ(n logW)
time, the complexity of our solution is Õ(n3 logW). The algorithm is almost
optimal because the output in the worst case may be O(n3 logW) (we may
need O(logW) bits to encode a single entry in the table). �

3.4.1 Counting and determining the lengths of cycles
We will use Theorem 3.3.1 to solve All-Nodes Shortest Cycle (ANSC) problem
efficiently.

Definition 3.4.4 (All-Nodes Shortest Cycles [164]). Given a directed, un-
weighted graph G. The problem All-Nodes Shortest Cycle asks to output for
every vertex v the length of the shortest cycle that contains v.

53

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

Lemma 3.4.5. There exists a deterministic algorithm that for a given un-
weighted, directed G with a diameter D <∞:

• For every vertex u returns D numbers: c1
u, c

2
u, . . . c

D
u , where cku is the

number of non-simple cycles of length exactly k, that contain vertex u,

• Algorithm works in Õ(nω logW) time (where W is an upper bound on
cku).

Proof. We will use Theorem 3.3.1. We start by preprocessing the graph G
in time Õ(nω logW). Theorem 3.3.1 allows us to ask for a number of walks
from u to v and receive D numbers: wku,v. So, we ask for the number of walks
from vertex u to the same vertex u. This is exactly the number of non-simple
cycles of given length that contain vertex u.

Because we need to ask only n queries (it is the number of vertices in a
graph) and each query takes Õ(n logW) time we have Õ(nω logW+n2 logW)
= Õ(nω logW) algorithm.

�

If we are only interested in deciding if the numbers ciu are nonzero, instead
of Theorem 3.3.1 we can use Corollary 3.3.2. It introduces the one-sided
randomization but allows us to shave logW factors in the running time.

Corollary 3.4.6. There exists a randomized algorithm that for a given un-
weighted, directed G with a diameter D <∞:

• For every vertex u returns D numbers: c1
u, c

2
u, . . . c

D
u , where cku is 1 if

there exists a non-simple cycle of length exactly k, that contain vertex
u or 0 otherwise,

• Algorithm works in Õ(nω) time with one sided bounded error.

Now we will show how to improve upon Yuster [164] Õ(n(ω+3)/2) algorithm
with Corollary 3.4.6.

Theorem 3.4.7. All-Nodes Shortest Cycles admits an Õ(nω) randomized
time algorithm when underlying graph is strongly connected.

Proof. We use Lemma 3.4.6 to compute the table S[v]. For every vertex we
search for the first nonzero element linearly. This with high probability is
the length of the shortest cycle that contains it. Because the output contains
O(n2) numbers the complexity is equal to the preprocessing time Õ(nω). �

Also the Corollary 3.4.6 improves upon Cygan, Gabow, and Sankowski
[49, Theorem 45] for unweighted graphs.

54

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

Corollary 3.4.8. Given a directed, unweighted graph G with a diameter
D < ∞. Let S(c) denote the set of vertices that lie in the cycle of length
exactly c. In Õ(nω) time we can return the sets S(1), . . . , S(D) with constant
probability of success.

Proof. Similarly to the proof of Theorem 3.4.7, we can scan the output to
compute the set S(c) that contains all vertices that lie on some cycle of length
≤ c. Then, by linear scan we can return the sets S(1), . . . , S(D). �

55

CHAPTER 3. DYNAMIC PROGRAMMING & FROBENIUS NORMAL FORM

56

Chapter 4

Dynamic programming meets
approximation

In this Chapter we study the time complexity of approximating Knapsack,
Subset Sum, Partition, and some other related problems. The main result
is an Õ(n+ 1/ε5/3) time randomized FPTAS for Partition, which is derived
from a certain relaxed form of a randomized FPTAS for Subset Sum. To the
best of our knowledge, this is the first NP-hard problem that has been shown
to admit a subquadratic time approximation scheme, i.e., one with time
complexity of O((n+ 1/ε)2−δ) for some δ > 0. To put these developments in
context, note that a quadratic FPTAS for Partition has been known for 40
years.

Our main contribution lies in designing a mechanism that reduces an
instance of Subset Sum to several simpler instances, each with some special
structure, and keeps track of interactions between them. This allows us
to combine techniques from approximation algorithms, pseudo-polynomial
algorithms, and additive combinatorics.

Outline: In Section 4.1 we present the building blocks of our framework
and a sketch of the approximation scheme for Partition. The main proof is di-
vided into Sections 4.2 and 4.3. Preliminary version of results in this Chapter
was presented at Symposium on Discrete Algorithms (SODA 2019) [117].

The drawing illustrates an art of plate spinning. It depicts a careful balance between
the running time and approximation error that is preserved in this Chapter.

57

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

4.1 Overview of the techniques
In this Section we describe main building blocks of our framework. We also
briefly discuss the recent advances in the pseudo-polynomial algorithms for
Subset Sum and discuss how to use them. Then, we explain the intuition
behind the trade-off we exploit and give a sketch of the main algorithm. The
formal arguments are located in Section 4.3.

Difficulties with Rounding for Subset Sum There is a strong connec-
tion between approximation schemes and pseudo-polynomial algorithms [162].
For example, a common theme in approximating Knapsack is to reduce the
range of the values (while keeping the weights intact) and then apply a
pseudo-polynomial algorithm. Rounding the weights would be tricky be-
cause of the hard Knapsack constraint. In particular, if one rounds the
weights down, some feasible solutions to the rounded instance might corre-
spond to infeasible solutions in the original instance. On the other hand,
when rounding up, some feasible solutions might become infeasible in the
rounded instance.

Recently, new pseudo-polynomial algorithms have been proposed for Sub-
set Sum (see Koiliaris and Xu [102] and Bringmann [25]). A natural idea is
to use these to design an improved approximation scheme for Subset Sum.
However, this seems to be difficult due to rounding issues discussed above.
Shortly after this work was first published, Bringmann [26] explained this
difficulty by giving a conditional lower bound on a quadratic approximation
of Subset Sum.

4.1.1 Weak approximation for Subset Sum and appli-
cation to Partition

Because of these rounding issues, it seems hard to design a general rounding
scheme that, given a pseudo-polynomial algorithm for Subset Sum, produces
an FPTAS for Subset Sum. What we can do, however, is to settle for a
weaker notion of approximation.

Definition 4.1.1 (Weak apx for Subset Sum). Let Z∗ be the optimal value for
an instance (Z, t) of Subset Sum. Given (Z, t), a weak (1− ε)-approximation
algorithm for Subset Sum returns ZH such that (1− ε)Z∗ ≤ ZH < (1 + ε)t.

Compared to the traditional notion of approximation, here we allow a
small violation of the packing constraint. This notion of approximation is
interesting in itself. Indeed, it has been already considered in the stochastic
regime for Knapsack [22].

58

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

Before going into details of constructing the weak (1− ε)-approximation
algorithms for the Subset Sum, let us establish a relationship with the ap-
proximation for the Partition.

The key property of Partition here is its symmetric structure: If a subset
Z ′ violates the hard constraint (t ≤ Σ(Z ′) ≤ (1+ε)t), then the set Z−Z ′ is a
good approximation and does not violate it (recall that in Partition problem
we always have t = Σ(Z)/2).

Observation 4.1.2. If we can weakly (1−ε)-approximate Subset Sum in time
Õ(T (n, ε)), then we can (1−ε)-approximate Partition in the same Õ(T (n, ε))
time.

Proof. Let |Z| = n be the initial set of items. We run a weak (1 − ε)-
approximation algorithm for Subset Sum with target b = Σ(Z)/2. Let Z∗
denote the optimal partition of set Z:

Z∗ = arg max
Z′⊆Z,Σ(Z′)≤b

Σ(Z ′).

By the definition of weak (1− ε)-approximation for Subset Sum we get a
solution ZW such that:

(1− ε)Σ(Z∗) ≤ Σ(ZW) and Σ(ZW) < (1 + ε)b

If Σ(ZW) ≤ b then it is a correct solution for Partition. Otherwise we
take a set Z ′W = Z \ ZW . Because Σ(Z)/2 = b we know that Σ(Z ′W) < b.
Additionally we know, that Σ(ZW) < (1+ε)b, so (1−ε)b < Σ(Z ′W). Similarly,
because Z∗ ≤ b, we have:

(1− ε)Σ(Z∗) ≤ (1− ε)b < Σ(Z ′W) ≤ Σ(Z∗) ≤ b.

So Σ(Z ′W) follows the definition of approximation for Partition. The
running time follows because T (n, 1/ε) must be superlinear (algorithm needs
to read input at least) and we executed the weak (1 − ε)-approximation
Subset Sum algorithm only constant number of times. �

4.1.2 Constructing weak approximation algorithms for
Subset Sum: a sketch

Fact 4.1.3. Given an Õ(T (n, t)) exact algorithm for Subset Sum, we can
construct a weak (1− ε)-approximation algorithm for Subset Sum working in
time Õ(T (n, n2ε)).

59

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

Proof. We assume that the exact algorithm for the Subset Sum works also
for multisets. We will address this issue in more detail in Section 4.2.1.

Let Z = {v1, . . . , vn} and t constitute a Subset Sum instance. Let I be
the set of indices of elements of some optimal solution, and let OPT be their
sum. Let us also introduce a scaled approximation parameter ε′ = ε

4 .
Let k = 2ε′t

n
. Define a rounded instance as follows: the (multi)-set of Z̃

contains a copy of ṽi =
⌊
vi
k

⌋
for each i ∈ {1, . . . , n}, and t̃ =

⌊
t
k

⌋
.

Apply the exact algorithm A to the rounded instance (Z̃, t̃). Let I ′ be
the set of indices of elements of the solution found.

We claim that {vi : i ∈ I ′} is a weak (1− ε) approximation for Z and t.
First let us show that this solution is not much worse than OPT:

∑
i∈I′

vi ≥ k
∑
i∈I′

ṽi ≥ k
∑
i∈I

ṽi = k
∑
i∈I

⌊
vi
k

⌋
≥
∑
i∈I

(vi − k)

≥ OPT− nk = OPT− 2ε′t ≥ OPT(1− ε).

The last inequality holds because we can assume OPT ≥ t/2 (see Sec-
tion 4.2.3 for details).

Similarly, we can show that this solution does not violate the hard con-
straint by too much:∑
i∈I′

vi ≤
∑
i∈I′

(kṽi+k) ≤ nk+k
∑
i∈I′

ṽi ≤ nk+t̃k ≤ nk+k+t ≤ 3ε′t+t ≤ t(1+ε).

Finally, since the exact algorithm is applied to a (multi)-set of n items
with t̃ =

⌊
t
k

⌋
=
⌊
n

2ε′
⌋
, the resulting algorithm runs in the claimed time. �

We state the above proof only to give the flavour of the basic form of
reductions in this paper. Usually reductions that we will consider are more
complex for technical reasons. One thing to note in particular is that the
relation between k and ε is dictated by the fact, that there may be as many
as n items in the optimal solution. Given some control over the solution size,
one can improve this reasoning (see Lemma 4.2.10).

4.1.3 Approximation via pseudo-polynomial time Sub-
set Sum algorithm

Currently, the fastest pseudo-polynomial algorithm for Subset Sum runs in
time Õ(n + t), randomized. S(Z, t) denotes the set of all possible subsums
of set Z up to integer t.

60

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

Theorem 4.1.4 (Bringmann [25]). There is a randomized, one-sided error
algorithm with running time O(n+t log t log3 n

δ
log n), that returns a set Z ′ ⊆

S(Z, t), containing each element from S(Z, t) with probability at least 1− δ.

This suffices to solve Subset Sum exactly with high probability. Here
S(Z, t) is represented by a binary array which for a given index i tells whether
there is a subset that sums up to i. For our trade-off, we actually need
a probabilistic guarantee on all elements of S(Z, t) simultaneously. Fortu-
nately, this kind of bound holds for this algorithm as well (see Chapter 5 for
detailed analysis).

Corollary 4.1.5. There is a randomized Õ(n + t) algorithm that computes
S(Z, t) with a constant probability of success.

The first case where this routine comes in useful occurs when all items
are in the range [γt, t] (think of γ as a trade-off parameter set to ε−2/3).
Note, that any solution summing to at most t can consist of at most 1/γ
such elements. This observation allows us to round the elements with lower
precision and still maintain a good approximation ratio, as follows:

v′i =
⌊

2vi
γεt

⌋
, t′ =

⌊
2t
γεt

⌋
=
⌊

2
γε

⌋
.

Bringmann’s [25] algorithm on the rounded instance runs in time Õ(n+
t′) = Õ(n+ 1

γε
) and returns an array of solutions with an additive error ±εt

with high probability (see Lemma 4.3.1). Similar reasoning about sparseness
also applies if the number of items is bounded (i.e., when n = Õ(γ

ε
)). In that

case Bringmann’s [25] algorithm runs in time Õ(γ
ε2

) and provides the same
guarantees (see Lemma 4.3.2 and also the next section).

4.1.4 Approximation via dense Subset Sum
Now we need a tool to efficiently solve the instances where all items are in
range [0, γt), so-called dense instances. More formally, an instance consisting
ofm items is dense if all items are in the range [1,mO(1)]. Intuitively, rounding
does not work well for these instances since it introduces large rounding
errors. On the other hand, if an instance contains many distinct numbers on
a small interval, one can exploit its additive structure.

Theorem 4.1.6 (Galil and Margalit [69]). Let Z be a set of m distinct
numbers in the interval (0, `] such that

61

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

m > 1000 ·
√
` log `,

and let L := 100·Σ(Z)` log `
m2 .

Then in O(m+((`/m) log `)2) preprocessing time we can build a structure
that can answer the following queries in constant time. In a query the struc-
ture receives a target number t ∈ (L,Σ(Z)− L) and decides whether there is
a Z ′ ⊆ Z such that Σ(Z ′) = t. The structure is deterministic.

In fact we will use a more involved theorem that can also construct a
solution in O(log(l)) time but we omit it here to keep this section relatively
free of technicalities (see Section 4.3.2 for a discussion regarding these issues).

Observe that L = Õ(`1.5) (because Σ(Z) < m`) and the running time is
bounded by Õ(m+ `) (because `/m = O(

√
`)). We will apply this result for

the case ` = γt (see Lemma 4.3.5). Recall, that Bringmann’s [25] algorithm
runs in time Õ(m + t), which would be slower by the factor γ (the trade-
off parameter). For simplicity, within this overview we will assume, that
Theorem 4.1.6 provides a data structure that can answer queries with the
target numbers in [0,Σ(Z)]. In the actual proof, we need to overcome this
obstacle, by merging this data structure with other structures, responsible for
targets near the boundary, which we call marginal targets (see Lemma 4.3.3).

Suppose our instance consists of m elements in the range [0, γt]. We use
the straightforward rounding scheme, as in the proof of Fact 4.1.3.

v′i =
⌊2mvi
εt

⌋
, t′ =

⌊2mt
εt

⌋
=
⌊2m
ε

⌋
.

We chose γt as the upper bound on item size, so that `′ = mγ/ε is an
upper bound on v′i. Now, if the number of items satisfies the inequality
`′ < m2, then we can use the Theorem 4.1.6 with running time Õ(m+ `′) =
Õ(m+mγ/ε). This provides a data structure that can answer queries from
the range that is of our interest (for a careful proof see Section 4.3).

Still, it can happen that most of the items are in the sparse instance (i.e.,
`′ ≥ m2) and we cannot use the approach from [69]. In that case we use
Theorem 4.1.4 again, with running time Õ(m+ γ

ε2
) (see Lemma 4.3.2).

In the end, we are able to compute an array of solutions, for items in range
[0, γt] in time Õ(m+ γ

ε2
+ mγ2

ε2
) with additive error ±εt and high probability

(see Lemma 4.3.6). The last term in time complexity comes from handling
the marginal queries.

62

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

4.1.5 A framework for efficient approximation
In this section we will sketch the components of our mechanism (see Al-
gorithm 1). The mechanism combines pseudo-polynomial Bringmann’s [25]
algorithm with Galil and Margalit [69] algorithm for dense instances of Sub-
set Sum.

Algorithm 1 Roadmap for the weak (1− ε)-approximation for Subset Sum.
Input: item set Z, t, ε
1: ensure OPT ≥ t/2
2: reduce |Z| to Õ(1/ε)
3: repeat
4: partition items into Zlarge and Zsmall
5: divide [0, γt] into ` = O(γ log(n)/ε) · |Zsmall| segments
6: round down small items
7: remove item repetitions in Zsmall
8: until ` = O(γ log(n)/ε) · |Zsmall|
9: build a data structure for large items
10: if |Zsmall| = Õ(

√
`) then

11: build a data structure for small items
12: else
13: build data structures for marginals
14: exploit the density of the instance to cover the remaining case
15: end if
16: merge the data structures for large and small items

We begin by reducing the number of items in the instance Z to roughly
Õ(1/ε) items to get a near linear running time (see Lemma 4.2.5). After
that our goal is to divide items into small and large and process each part
separately, as described earlier.

However, Theorem 4.1.6 requires a lower bound on the number of dis-
tinct items. To control this parameter, we merge identical items into larger
ones, until each item appears at most twice. However, this changes the num-
ber of items, and so the procedure might have to be restarted. Lemma 4.2.7
guarantees that we require at most log n such refinement steps.

In the next phase we decide which method to use to solve the instance
depending on its density (line 10). We encapsulate these methods into
data structures (lines 11-14). Finally we will need to merge the solutions.
For this task we introduce the concept of membership oracles (see Defini-
tion 4.2.8) that are based on FFT and backtracking to retrieve solutions (see
Lemma 4.2.9). The simplified trade-off schema is presented on the Figure 4.1.

63

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

Dense Instance Sparse Instance

tγt

εt
m εγt

Galil and Margalit Õ(n+ `) Bringmann Õ(n+ t)

If m2 > ` m2 ≤ `

Bringmann Õ(n+ t)

Figure 4.1: Overall schema of trade-off and usage of building blocks. The
parameter m denotes number of items in the dense instance, n is the number
of all elements, γ is the trade-off parameter, ` is the upper bound on the
item size after rounding, t is the target sum. The buckets in the sparse/dense
instance depict the rounding scheme for small and large items.

The final running time of our framework is Õ(n+ 1
γε

+ γ
ε2

+ γ2

ε3
) with high

probability for any γ(n, ε) > 0 (see Lemma 4.3.9). For γ = ε−2/3, this gives
us an Õ(n+ε−5/3) time weak (1−ε)-approximation approximation for Subset
Sum.

4.2 Preprocessing
This section is devoted to simplifying the instance of Subset Sum to produce
a more readable proof of the main algorithm. In here we deal with:

• multiplicities of the items,

• division of the instance into large and small items,

• proving that rounding preserves ε-closeness,

• reducing the number of items from n to Õ(1/ε) items.

The solutions to these problems are rather technical and well known in the
community [25, 99, 100, 102]. We include it in here, because these properties
are used in approximation algorithms [99, 100] and exact pseudo-polynomial
algorithms [25, 102] communities separately. We expect that the reader may
not be familiar with both of these technical toolboxes simultaneously and
accompany this section with short historical references and pointers to the
original versions of proofs.

We start with definitions regarding closeness of two solutions.

64

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

Definition 4.2.1 ((ε, t)-closeness). We say that set B is (ε, t)-close to A if
there is a surjection φ : A→ B such that x− εt ≤ φ(x) ≤ x + εt. A Subset
Sum instance (Z2, t) is ε-close to (Z1, t) if S(Z2, t) is (ε, t)-close to S(Z1, t).

Sometimes, when there is no other notation on t, we use the notion of
ε-closeness as a (ε, t)-close.

Usually the surjection from the definitions come by rounding down the
item sizes and each item set get a moderately smaller total size. We also
apply the notion of (ε, t)-closeness to binary arrays having in mind the sets
they represent.

Fact 4.2.2. If A is (ε, t)-close to S(Z1, t) and B is (ε, t)-close to S(Z2, t)
then A⊕t B is (2ε, t)-close to S(Z1 ∪ Z2, t)

We also need to say, that there are no close elements in a set. It come in
useful to show, that after rounding down all the elements are distinct.

Definition 4.2.3 ((x)-distinctness). The set S is said to be (x)-distinct if
every interval of length x contains at most one item from S. The set S is
said to be (x, 2)-distinct if every interval of length x contains at most two
items from S.

4.2.1 From multisets to sets
The general instance of Subset Sum may consist of plenty of items with
equal size. Intuitively, these instances seem to be much simpler than in-
stances where almost all items are different. The next lemma enables us to
formally capture this intuition with the appropriate reduction. This lemma
was proposed in [102, Lemma 2.2] but was also used in [25].

Lemma 4.2.4 (cf. Lemma 2.2 from [102]). Given a multiset S of integers
from {1, . . . , t}, such that |S| = n and the number of distinct items ||S|| is
n′, one can compute, in O(n log n) time a multiset T , such that:

• S(S, t) = S(T, t)

• |T | ≤ |S|

• |T | = O(n′ log n)

• no element in T has multiplicity exceeding two.

65

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

Proof. We follow the proof from [102, Lemma 2.2], however the claimed
bound on |T | is only O(n′ log t) therein. Consider an element x with the
multiplicity 2k + 1. We can replace it with a single copy of x and k copies
of 2x while keeping the multiset equivalent. If the multiplicity is 2k + 2
we need 2 copies of x and k copies of 2x. We iterate over items from the
smallest one and for each with at least 3 copies we perform the replacement
as described above. Observe that this procedure generates only elements of
form 2ix where i ≤ dlog ne and x is an element from S. This yields the bound
on |T |. The routine can be implemented to take O(log n) time for creating
each new item using tree data structures. �

4.2.2 From n items to Õ(1/ε) items

To reduce number of items n to Õ(1/ε) Kellerer, Pferschy, and Speranza [100]
gave a very intuitive construction that later found applications in Knapsack-
type problems [99].

Intuitively, rounding scheme described in Section 4.1 could divide the
items into O(n/ε) intervals and this would result with an ε-close instance
to the original one. In here we start similarly but we want to get rid of
factor O(n). We divide an instance to k =

⌈
1
ε

⌉
intervals of length εt, i.e.,

Ij := (jt, (j + 1)t]. Next notice that for interval Ij we do not need to store
more than O(

⌈
k
j

⌉
) items, because their sum would exceed t (this is the step

where ε factor will come in). Finally, the number of items is upper bounded
(up to the constant factors):

k∑
j=1

⌈
k

j

⌉
≤ k

k∑
j=1

1
j
< k log k = O

(1
ε

log 1
ε

)
.

The last inequality is just an upper bound on harmonic numbers.

Lemma 4.2.5. Given a Subset Sum instance (Z, t), |Z| = n, one can find
an ε-close instance (Z2, t) such that |Z2| = O

(
1
ε

log(n
ε
) log(n)

)
. The running

time of this procedure is O(|Z|+ |Z2|).

Proof. We begin with constructing Z1 as follows. For i = 1, . . . , log(2n
ε

) we
round down each element in Z ∩ [t2i ,

t
2i−1) to the closest multiplicity of

⌊
εt

2i+1

⌋
.

We neglect elements smaller than εt
2n . Observe that ||Z1|| = O

(
1
ε

log(n
ε
)
)
.

We argue that (Z1, t) is ε-close to (Z, t). To see this, consider any subset
I ⊆ Z summing to at most t and its counterpart Y1 ⊆ Z1. We lose at most
n · εt2n = εt

2 by omitting items smaller than εt
2n . Let ki = |I ∩ [t2i ,

t
2i−1)| and ti

66

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

denote the sum of elements in I ∩ [t2i ,
t

2i−1). Since each element in [t2i ,
t

2i−1)
has been decreased by at most εt

2i+1 and ki · t2i ≤ ti, we have

Σ(I)− Σ(Y1) ≤ εt

2 +
log(2n

ε
)∑

i=1
ki ·

εt

2i+1 ≤
εt

2 +
log(2n

ε
)∑

i=1

εti
2 ≤ εt.

In the end we take advantage of Lemma 4.2.4 to transform Z1 into an
equivalent multiset Z2 such that |Z2| ≤ ||Z1|| log(|Z1|) = O

(
1
ε

log(n
ε
) log(n)

)
.
�

Note, that we discarded items smaller than εt
2n . We do this because the

sum of these elements is just too small to influence the worst case approxi-
mation factor. We do not consider them just for the simplicity of analysis.

4.2.3 From one instance to small and large instances
First, we need a standard technical assumption, that says that we can cheaply
transform an instance into one with a good bound on the solution. We need
it just to simplify the proofs (e.g., it enables us to use Rounding Lemma 2.4.2
multiple times).

Lemma 4.2.6. One may assume w.l.o.g. that for any Subset Sum instance
OPT ≥ t

2 .

Proof. Remove from the item set Z all elements exceeding t since they cannot
belong to any solution. If Σ(Z) ≤ t then the optimal solution consists of all
the items. Otherwise, consider a process in which Y1 = Z and in each turn,
we obtain Yk+1 by dividing Yk into two arbitrary non-empty parts and taking
the one with a larger sum. We terminate the process when Ylast contains only
one item. Since Σ(Y1) > t, Σ(Ylast) ≤ t, and in each step the sum decreases
by at most factor two, for some k it must be Σ(Yk) ∈ [t2 , t]. Because there is
a feasible solution of value at least t

2 , OPT cannot be lower. �

One of the standard techniques of solving Subset Sum is to separate the
large and small items [99]. Usually, these approximations consider items
greater and smaller than some trade-off parameter. Our techniques require
a bound on the multiplicities of small items, which is provided by the next
lemma.

Lemma 4.2.7 (Partition into Small / Large Items). Given an instance (Z, t)
of Subset Sum, an approximation factor ε, and a trade-off parameter γ, one
can deterministically transform the instance (Z, t), in time O(n log2 n), to
an ε-close instance (Zsmall ∪ Zlarge, t) such that:

67

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

• ∀zs ∈ Zsmall, it holds that zs < γt,

• ∀zl ∈ Zlarge, it holds that zl ≥ γt,

• The set Zsmall is (εt
m·logn , 2)-distinct where m = O(|Zsmall|), i.e., after

rounding there can be at most 2 occurrences of each item.

Proof. We call an item x large if x ≥ γt and small otherwise. Let Y0 be the
initial set of small items and m0 = |Y0|, q0 = pow(εt

m0 logn). We round down
the size of each small item to the closest multiplicity of q0. Then we apply
Lemma 4.2.4 to the set of small items to get rid of items with 3 or more
copies. Note that this operation might introduce additional large items. We
obtain a new set of small items Y1 and repeat this procedure with notation
mi = |Yi|, qi = pow(εt

mi logn). It holds that mi+1 ≤ mi and qi | qi+1. We
stop the process when mi+1 ≥ mi

2 , which means there can be at most log n
iterations. Let m denote the final number of small items and q ≥ εt

4m logn
– the last power of 2 used for rounding. All small items now occur with
multiplicities at most 2.

Let us fix Zsmall as the set of small items after the modification above
and likewise Zlarge. In the i-th rounding step values of mi items are being
decreased by at most εt

mi logn , so each new instance is ε
logn -close to the previous

one. There are at most log n steps and the removal of copies keeps the
instance equivalent, therefore (Zsmall ∪ Zlarge, t) is ε-close to (Z, t). �

Our algorithm works independently on these two instances and produces
two arrays ε-close to them. The construction below allows us to join these
solutions efficiently. We want to use them even if we have only access to them
by queries. We formalize this as an (ε, t)-membership-oracle. The asymmetry
of the definition below will become clear in Lemma 4.2.10.

Definition 4.2.8 ((ε, t)-membership-oracle). The (ε, t)-membership-oracle
of a set X is a data structure, that given an integer q answers yes/no
obeying following conditions:

1. if X contains an element in [q − εt, q + εt], then the answer is yes,

2. if the answer was yes, then X contains an element in [q−2εt, q+ 2εt].

A query to the oracle takes Õ(1) time. Moreover, if the oracle answers yes,
then it can return a witness x in Õ(1) time.

Below we present an algorithm that can efficiently join solutions. We
assume, that we have only (ε, t)-membership-oracle access to them and we
want to produce an (ε, t)-membership-oracle of the merged solution.

68

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

Lemma 4.2.9 (Merging solutions). Given S(Z1, t) and S(Z2, t) as (ε, t)-
membership-oracles

• S1 that is (ε, t)-close instance to S(Z1, t),

• S2 that is (ε, t)-close instance to S(Z2, t),

we can, deterministically in Õ(1
ε
) time, construct a (2ε, t)-membership-oracle

for S(Z1 ∪ Z2, t).

Proof. For an ease of presentation, only in this proof we will use interval
notation of inclusion, i.e., we will say that (a, b] u A iff ∃xx ∈ (a, b] ∧ x ∈ A.
Let p = O(εt). For each interval (ip, (i+1)p] where i ∈

{
0, . . .

⌊
t
p

⌋}
we query

oracles whether S(Z1, t) and S(Z2, t) contain some element in the interval,
having in mind that the answer is approximate. The number of intervals is
O(1

ε
).
We store the answers in arrays S1 and S2, namely Sj[i] = 1 if the oracle

for S(Zj, t) answers yes for interval (ip, (i+ 1)p].

S ′1[i] =

1 if the oracle for (ip, (i+ 1)p] u S1 or i = 0
0 otherwise

Then we perform a fast convolution on S1, S2 with FFT.
If x ∈ S(Z1 ∪ Z2, t) ∩ (kp, (k + 1)p], then there is some x1 ∈ S(Z1, t)

and x2 ∈ S(Z2, t) such that x = x1 + x2. We have (S1 ⊕FFT S2)[k] =∑k
i=0 S1[i]·S2[k−i] and thus (S1⊕FFTS2)[k′] is nonzero for k′ = k or k′ = k+1.

This defines the rule for the new oracle. The additive error of the oracle gets
doubled with the summation. On the other hand, if one of these fields is
nonzero, then there are corresponding indices i1, i2 summing to k or k + 1.
The second condition from Definition 4.2.8 allows the corresponding value x1
to lie within one of the intervals with indices i1− 1, i1, or i1 + 1 and likewise
for x2. Therefore, the additive error is O(p) = O(εt).

Now, we promised only oracle output to our array. When a query comes,
we scale down the query interval, then we check whether any of adjacent
interval in our structure is nonzero (we lose a constant factor ofO(ε) accuracy
here) and output yes if we found it or no otherwise.

With additional polylogarithmic factors, we can also retrieve the solution.
The idea is similar to backtracking from [100]. Namely, the fast convolution
algorithm can compute the table of indexes of witnesses(of only one). We
store an index of the witness if there is a solution or −1 otherwise. Then
we ask the oracles of S(Z1, t) and S(Z2, t) for a solution with proper indexes
and return the combination of those.

�

69

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

4.2.4 From exact solution to ε-close instance
In Section 4.1 we presented an overall approach of rounding elements and
explained why it gives us the weak approximation of Subset Sum. Here we
will focus on formally proving these claims.

In our subroutines, we round down the items, execute the exact algorithm
on the rounded instance, and retrieve the solution. We want to argue, that
in the end we lose only an additive factor of ±εt. We presented a sketch of
this reasoning in Fact 4.1.3. For our purposes we will describe the procedure
in the case, when the number of items in any solution is bounded by k (i.e.,
we are interested only in S(Z, t)k). We can always assume k ≤ n.

Lemma 4.2.10. Given an exact algorithm that outputs the set S(Z, t)k and
works in time T (n, t), where n = |Z|, we can construct an (ε, t)-membership-
oracle of set S(Z, t)k in time Õ(n+ T (n, k/ε)).

If the exact algorithm retrieves solution in Õ(1) time, then so does the
oracle.

Proof. For the sake of legibility, we assume that we are interested in S(Z, t)k−1.
This allows us to write simpler formulas. Let (zi) denote the items. We per-
form rounding in the following way:

z′i =
⌊
kzi
εt

⌋
, t′ =

⌊
kt

εt

⌋
=
⌊
k

ε

⌋
.

We run the exact algorithm on the rounded instance (Z ′, t′). It takes time
T (n, t′) = O(T (n, k/ε)). This algorithm returns S(Z ′, t′)k−1, which we store
in array Q[1, t′]. We construct (ε, t)-membership-oracle in array Q′[1, t′] as
follows: we set Q′[i] = 1 iff Q contains 1 in range (i−2k, i+k]. If we want to
be to able retrieve a solution, we need to also remember a particular index
j(i) ∈ (i − 2k, i + k] such that Q[j(i)] = 1. Such a data structure can be
constructed in linear time with a queue. Given a query q, the oracle returns
Q′[q′], where q′ =

⌊
kq
εt

⌋
. It remains to prove that Definition 4.2.8 is satisfied.

Let I ⊆ Z be a set of at most k − 1 items and I ′ be the set of their
counterparts after rounding. Since for all zi ∈ Z it holds

kzi
εt
− 1 ≤ z′i ≤

kzi
εt
,

we obtain

k · Σ(I)
εt

− k + 1 ≤ Σ(I ′) ≤ k · Σ(I ′)
εt

. (4.1)

Therefore, if Σ(I) ∈ [q − εt, q + εt], then

70

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

kq

εt
− 2k + 1 = k · (q − εt)

εt
− k + 1 ≤ Σ(I ′),

Σ(I ′) ≤ k · (q + εt)
εt

= kq

εt
+ k,

and Σ(I ′) ∈ (q′− 2k, q′+ k], because Σ(I ′) is integer. On the other hand, we
can invert relation (4.1) to obtain

εt

k
· Σ(I ′) ≤ Σ(I) ≤ εt

k
· (Σ(I ′) + k − 1) .

To satisfy the second condition we assume Σ(I ′) ∈ (q′− 2k, q′+ k] and check
that

q − 2εt = εt

k
·
(
kq

εt
− 2k

)
≤ εt

k
· (q′ − 2k + 1) ≤ Σ(I),

Σ(I) ≤ εt

k
· (q′ + 2k − 1) ≤ q + 2εt,

what finishes the proof. �

First let us restate Lemma 2.4.2 from Chapter 2.

Lemma 2.4.2. For k natural numbers x1, x2, . . . , xk and positive q, ε such
that q ≤ ∑k

i=1 xi and 0 < ε < 1, it holds:

(1− ε)
k∑
i=1

xi <
qε

k

k∑
i=1

⌊
kxi
qε

⌋
≤

k∑
i=1

xi.

We apply Lemma 2.4.2 with {z1, . . . , zk} = Y , q = t/2 and k and ε as in
the statement. It guarantees that:

(1− ε)Σ(Y) ≤ εt

2kΣ(Y ′).

And finally, (1 − ε)Σ(Y) ≥ Σ(Y) − εt (because we are only interested
in solutions smaller than t). So if Y is an optimal solution, then an exact
algorithm after rounding returns candidate solution greater or equal Σ(Y)−
εt.

Conversely, it can turn out that an exact algorithm finds candidate so-
lution with a sum greater than q (this is where we can violate the hard
constraint). We need to bound it as well (because the definition of (ε, t)-
membership-oracle requires that). Note, that analogous argument proves it.

71

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

Namely, the solution can consist of at most k items and each of them lose only
O(εt/k). Moreover, exact oracle gave us only the solution that its rounded
version sums up to exactly t′. Formally, we prove it again with Lemma 2.4.2
with the same parameters as before. By dividing both sides by (1 − ε) we
know that:

k∑
i=1

⌊
2kzi
tε

⌋
= bkc · ε.

Once again, we can use Lemma 2.4.2 with the same parameters (we di-
vided both sides by (1− ε) > 0):

k∑
i=1

xi ≤
(1

1− ε

)
εt

2k

k∑
i=1

⌊
2kzi
tε

⌋
.

The right side satisfies:

(1
1− ε

)
εt

2k

k∑
i=1

⌊
2kzi
tε

⌋
=
(1

1− ε

)
εt

2k

⌊
2k
ε

⌋
≤ 1

1− εt < (1 + 2ε)t.

The constant before ε does not change much since we only need (O(ε), t)-
membership-oracle (we can always rescale the approximation factor by set-
ting ε′ = ε/2 in the beginning).

The main obstacle with returning a solution that obeys the capacity con-
straint comes from the above lemma. If we could provide a reduction from an
exact algorithm without widening the interval [q−εt, q+εt], this would auto-
matically entail a strong approximation for Subset Sum. This seems unlikely
due to conditional hardness result for a strong subquadratic approximation
for Subset Sum [26].

In the end, we need to prove, that an (ε, t)-membership-oracle gives us
the correct solution for weak (1− ε)-approximation Subset Sum.

Lemma 4.2.11. Given an (ε, t)-membership-oracle of S(Z, t), we can read
the answer to the weak (1 − O(ε)) approximation for Subset Sum in time
Õ(1

ε
).

Proof. We query the oracle for q = i · εt for i = 0, . . . , 1
ε
. Each query takes

time Õ(1) and if the interval [q− εt, q+ εt] contains an x ∈ S(Z, t), then the
oracle returns an element within [x−O(εt), x+O(εt)]. If OPT < (1−O(ε))t,
then the oracle will return a witness within (OPT−O(εt),OPT]. Otherwise
the witness might belong to (t, (1 +O(ε))t].

By taking advantage of Lemma 4.2.6, we can assume that OPT ≥ t/2,
therefore the relative error gets bounded with respect to OPT. �

72

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

4.3 The weak (1−ε)-approximation algorithm
for Subset Sum

4.3.1 Large items
We plan to use Theorem 4.1.4 to compute S(Zlarge, t) on a large instance.
On that instance, this algorithm is more efficient than Kellerer et al. [100]
algorithm because one can round items less aggressively.

Lemma 4.3.1 (Algorithm for Large Items). Given a large instance (Zlarge, t)
of Subset Sum (i.e., all items are greater than γt), we can construct an
(ε, t)-membership-oracle of S(Zlarge, t) in randomized Õ(n + 1

γε
) time with a

constant probability of success.

Proof. We use Bringmann’s [25] algorithm, namely Corollary 4.1.5, that
solves the Subset Sum problem exactly. Since all elements are greater than
γt, any subset that sums up to at most t must contain at most 1

γ
items.

The parameter k in Lemma 4.2.10 is an upper bound on number of elements
in the solution, hence we set k = 1

γ
. The Bringmann’s [25] algorithm runs

in time Õ(n + t) and Lemma 4.2.10 guarantees that we can build an (ε, t)-
membership-oracle in time Õ(n + k/ε) = Õ(n + 1/(γε)), which is what we
needed.

�

4.3.2 Small items
Now we need an algorithm that solves the problem for small items. As
mentioned in Section 4.1 we consider two cases depending on the density of
instance. The initial Subset Sum instance consists of n elements. The m is
the number of elements in the small instance and letm′ = O(m log n) be as in
Lemma 4.2.7. For now, we assume that the set of elements is (εt/m′)-distinct
(we deal with multiplicities 2 in Lemma 4.3.7).

Let q = εt/m′ be the rounding parameter (the value by which we di-
vide) and ` = γm′/ε = O(γm logn

ε
) be the upper bound on items sizes in

the small instance after rounding. Parameter L = O(Σ(S) · l
m2) describes

the boundaries of Theorem 4.1.6. We deliberately use O notation to hide
constant factors (note that Galil and Margalit [69] algorithm requires that
m > 1000 ·

√
l log l).

Lemma 4.3.2 (Small items and m2 < ` log2 `). Suppose we are given an
instance (Zsmall, t) of Subset Sum (i.e., all items are smaller than γt) with

73

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

size satisfying m2 < ` log2 `. Then we can compute (ε, t)-membership-oracle
of S(Zsmall, t) in randomized Õ(m+ γ

ε2
) time.

Proof. In here we need to deal with the case, where small instance is sparse.
So just as in the proof of Lemma 4.3.1, we can use Bringmann’s [25] algo-
rithm.

We use the reduction from exact to weak (1−ε)-approximation algorithm
for Subset Sum from Lemma 4.2.10. We set m as the maximal number of
items in the solution, as there are at most m small items. Recall that ` is
Õ(mγ/ε). This gives us m2 = Õ(`) = Õ(mγ

ε
). After dividing both sides by

m we obtain m = Õ(γ
ε
).

Combining Corollary 4.1.5 and Lemma 4.2.10 allows us to construct an
(ε, t)-membership-oracle in Õ(m + T (m,m/ε)) = Õ(m + γ

ε2
) randomized

time. �

Finally, we have to handle the harder m2 ≥ ` log2 ` case. In this situation
we again consider two cases. The Galil and Margalit [69] algorithm allows
only to ask queries in the range (L, Σ(S)− L) where L = O(Σ(S) · l

m2). In
the next lemma we take care of ranges [0, L] and [Σ(S)−L,Σ(S)]. We focus
on the range [0, L], because the sums within [Σ(S)−L,Σ(S)] are symmetric
to [0, L].

Lemma 4.3.3 (Small items, range (0, L)). Given an instance (Zsmall, t) of
Subset Sum, such that |Zsmall| = m and the items’ sizes are at most γt, we
can compute an (ε, t)-membership-oracle for S(Zsmall, L) in time Õ(m+mγ2

ε2
).

Proof. We round down items with rounding parameter q = εt/m′ = Ω(εt
m logn)

and denote the set of rounded items as Z ′small. After scaling down we have
L′ = Σ(Z ′small) · c`m2 (note that we only replace Σ(Zsmall) with Σ(Z ′small) and `
remains the same). Recall that ` = O(mγ logn

ε
).

The total sum of items in Z ′small is smaller or equal to `m (because there
are m elements of size at most `). Hence ,L′ = O(`2/m) = O(γ2m log2 n

ε2
).

Therefore Bringmann’s [25] algorithm runs in time Õ(m + L′) = Õ(m +
mγ2

ε2
). Combining it with the analysis of the Lemma 4.2.10 gives us an (ε, t)-

membership-oracle for S(Zsmall, L). �

4.3.3 Applying additive combinatorics
Before we proceed forward, we need to present the full theorem of Galil and
Margalit [68, Theorem 6.1] (in Section 4.1.4 we presented only a short version
to keep it free from technicalities). We need a full running time complexity

74

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

(with dependence on `,m,Σ(S)). We stated it in here with a slight change
of notation (e.g., [68] use SA, however we use notation Σ(A) from [102]).

Theorem 4.3.4 (Theorem 6.1 from [68]). Let A be a set of m different
numbers in interval (0, `] such that

m > 1000 · `0.5 log2 `;

then we can build in O
(
m+ ((`/m) log l)2 + Σ(A)

m2 `
0.5 log2 `

)
preprocessing time

a structure which allows us to solve the Subset Sum problem for any given
integer N in the interval (L,Σ(A) − L). Solving means finding a subset
B ⊆ A, such that Σ(B) ≤ N and there is no subset C ⊆ A such that
Σ(B) < Σ(C) ≤ N . An optimal subset B is build in O(log `) time per target
number and is listed in time O(|B|). For finding the optimal sum Σ(B) only,
the preprocessing time is O

(
m+ ((`/m) log `)2

)
and only constant time is

needed per target number.

Galil and Margalit [68] defined L := 100·Σ(A)`0.5 log2 `
m

, however in different
version, [69] improved it to L := O(Σ(A) `

m2) without any change in the
running time [70]. We obtain a subquadratic algorithm for both of these
possible choices of L. We use the improved version [69] because it guarantees
a better running time.

Lemma 4.3.5 (Small items, range (L, Σ(S) − L)). Given a small instance
(Zsmall, t) of Subset Sum (i.e., all items are smaller than γt) such that Zsmall is
(εt/m′)-distinct (wherem′ = O(m log n)), we can compute an (ε, t)-membership-
oracle of S(Zsmall, t) ∩ (L, Σ(Zsmall)− L) in time Õ(n+

(
γ
ε

)2
+ γ

ε
·
(
γn
ε

)0.5
).

Proof. We round items to multiplicities of q = εt/m′. Precisely:

z′i =
⌊
zi
q

⌋
, t′ =

⌊
t

q

⌋
=
⌊
m′

ε

⌋
.

We know that zi < γt. Therefore

z′i ≤
zi
q
<
γt

q
= γm′

ε
= `.

By the same inequalities as in the proof of Lemma 4.2.10 we know that
if we compute S(Z ′small, t

′) and multiply all results by q, we obtain an (ε, t)-
membership-oracle for S(Zsmall, t).

75

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

Checking conditions of the algorithm Now, we check that we satisfy
all assumptions of Galil and Margalit [69] algorithm on the rounded instance
Z ′small. First, note that m2 < ` log2 `, ` is the upper bound on the items’
sizes in Z ′small, and we know that all items in Z ′small are distinct because we
assumed that Zsmall is (εt/m′)-distinct.

Preprocessing Next Galil and Margalit [69] algorithm constructs a data
structure on the set of rounded items Z ′small. The preprocessing of Galil and Mar-
galit [69] algorithm requires

O
(
m+ (`/m log `)2 + Σ(Z ′small)

m2 `0.5 log2 `

)

time. If we put it in terms of m, ε, t and hide polylogarithmic factors we see
that preprocessing runs in:

Õ
(
m+

(
γ

ε

)2
+ γ

ε

(
γm

ε

)0.5
)

because Σ(Z ′small) ≤ `m.

Queries With this data structure we need to compute a set ε-close to
S(Zsmall, t) ∩ (L, Σ(Z ′small)− L). After scaling down we have:

L′ = Õ
(

Σ(Z ′small) ·
`

m2

)
= Õ(`

2

m
) = Õ(γ

2m2

mε2) = Õ(mγ
2

ε2).

Naively, one could run queries for all elements in a range (L′,Σ(Z ′small)−
L′) and check if there is a subset of Z ′small that sums up to the query value.
However, this is too expensive. In order to deal with this issue, we take
advantage of the fact that each query returns the closest set whose sum is
smaller or equal to the query value.

Since we have rounded down items with q = εt
m′
, we only need to ask

εt
q

= Õ(m) queries in order to learn sufficient information. The queries
reveal if Zsmall contains at least one element in each range [iεt, (i + 1)εt),
what matches the definition of the (ε, t)-membership-oracle.

Retrieving the solution Galil and Margalit [69] algorithm can retrieve
the solution in time O(log `).

This finalizes the construction of the (ε, t)-membership-oracle. The run-
ning time is dominated by the preprocessing time.

�

76

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

4.3.4 Combining the algorithms
Here, we combine the algorithms for small items.

Lemma 4.3.6 (Small Items). Given a (Zsmall, t) instance of Subset Sum
(i.e., all elements in Zsmall are smaller than γt), such that the set Zsmall is
(εt/m)-distinct, we can compute an (ε, t)-membership-oracle of S(Zsmall, t)
in time Õ(m+ γ

ε2
+ mγ2

ε2
) with high probability.

Proof. We combine two cases:

Case When m2 < ` log2 `: use algorithm from Lemma 4.3.2 that runs in
Õ(m+ γ

ε2
) time.

Case When m2 ≥ ` log2 `: Lemma 4.3.5 returns an (ε, t)-membership-
oracle that answers queries within set S(Zsmall, t) ∩ (L,Σ(Zsmall) − L). It
requires Õ(nm+

(
γ
ε

)2
+ γ

ε
·
(
γm
ε

)0.5
) time.

We combine it (using Lemma 4.2.9) with the (ε, t)-membership-oracle
that gives us answers to a set S(Zsmall, t) ∩ [0, L] from Lemma 4.3.3. This
oracle can be constructed in time Õ(m + mγ2

ε2
). The oracle for interval set

[Σ(Zsmall)− L,Σ(Zsmall)] is obtained by symmetry.

Running Time: The running time of merging the solutions from Lemma 4.2.9
is Õ(1/ε) which is suppressed by the running time of Lemma 4.3.3 and
Lemma 4.3.5. Factor Õ(

(
γ
ε

)2
) is suppressed by Õ

((
mγ2

ε2

))
.

Term γ
ε
·
(
γm
ε

)0.5
is also suppressed by Õ(mγ2

ε2
). The randomization comes

from Lemma 4.3.3. �

The Lemma 4.2.7 allowed us to partition our instance into small and large
items. We additionally know that each interval of length εt/m′ contains at
most 2 items. However in the previous proofs we assumed there can be only
one such item, i.e., the set should be (εt/m′)-distinct.

Lemma 4.3.7 (Frommultiple to distinct items). Given an instance (Zsmall, t)
of Subset Sum, where |Zsmall| = m and zzsmall is (εt/m′, 2)-distinct for
m′ = O(m log n), we can compute an (ε, t)-membership-oracle for instance
(Zsmall, t) in Õ(n+ γ

ε2
+ nγ2

ε2
) time with high probability.

Proof. We divide the set Zsmall into two sets Z1
small and Z2

small such that
Zsmall = Z1

small ∪ Z2
small, the sets Z1

small,Z2
small are disjoint, (εt/m′)-distinct,

77

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

and have size Ω(m). This can be done by sorting Zsmall and dividing items
into odd-indexed and even-indexed . It takes Õ(m) time.

Next we use Lemma 4.3.6 to compute an (ε, t)-membership-oracle for
(Z1

small, t) and (Z2
small, t), and merge them using Lemma 4.2.9. �

Now, we combine the solution for small with solution for large items.

Theorem 4.3.8. Let 0 < γ be a trade-off parameter (that depends on n, ε).
Given an (Z, t) instance of Subset Sum, we can construct the (ε, t)-membership-
oracle of instance S(Z, t) in Õ(n+ 1

γε
+ γ

ε2
+ nγ2

ε2
) time with high probability.

Proof. We start with Lemma 4.2.7, that in O(n log2 n) time partitions the
set into Zlarge and Zsmall, such that Zsmall is (εt

m logn , 2)-distinct, where m =
|Zsmall|. To deal with small items, we use Lemma 4.3.7. The algorithm
for small items returns an (ε, t)-membership-oracle of S(Zsmall, t). For large
items we can use Lemma 4.3.1. It also returns an (ε, t)-membership-oracle
of S(Zlarge, t).

Finally, we use Lemma 4.2.9 to merge these oracles in time Õ(1/ε). All
the subroutines run with a constant probability of success. �

Finally, we have combined all the pieces and we can get a faster algorithm
for weak (1− ε)-approximation for Subset Sum.

Corollary 4.3.9 (Subset Sum with tradeoff). There is a randomized weak
(1−ε)-approximation algorithm for Subset Sum running in Õ(n+ 1

γε
+ γ
ε2

+nγ2

ε2
)

time with high probability for any γ(n, ε) > 0.

Proof. It follows from Lemma 4.2.11 and Theorem 4.3.8. �

The weak (1− ε)-approximation Subset Sum guarantess the approxima-
tion for Partition via Corollary 4.1.2.

Corollary 4.3.10 (Partition with trade-off). There is a randomized (1− ε)-
approximation algorithm for Partition running in Õ(n+ 1

γε
+ γ

ε2
+ nγ2

ε2
) time

with high probability for any γ(n, ε) > 0.

To get running time of form Õ(n + 1/εc) and prove our main result we
need to reduce the number of items from n to Õ(1/ε) and choose the optimal
γ.

Theorem 4.3.11 (Weak approximation for Subset Sum). There is a ran-
domized weak (1 − ε)-approximation algorithm for Subset Sum running in
Õ
(
n+ ε−

5
3
)
time.

78

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

Proof. We apply Lemma 4.2.5 to reduce the number of items to Õ
(

1
ε

)
and

guarantee that the instance is O(ε)-close. Then we use Corollary 4.3.9 with
γ = ε

2
3 . �

Finally, for Partition we get that:

Theorem 4.3.12 (Approximation for Partition). There is a randomized (1−
ε)-approximation algorithm for Partition running in Õ

(
n+ ε−

5
3
)
time.

Proof. We use Corollary 4.1.2 that reduces approximating Partition to weak
(1 − ε)-approximation of Subset Sum, and Theorem 4.3.11 to solve it effi-
ciently. �

79

CHAPTER 4. DYNAMIC PROGRAMMING MEETS APPROXIMATION

80

Part III

Equivalences in the Tropical
Semirings

81

Chapter 5

On problems equivalent to
(min,+)-convolution

In recent years, significant progress has been made in explaining the ap-
parent hardness of improving upon the naive solutions for many fundamen-
tal polynomially solvable problems. This progress has come in the form of
conditional lower bounds – reductions from a problem assumed to be hard.
The hard problems include 3SUM, All-Pairs Shortest Path, SAT, Orthogonal
Vectors, and others.

In the (min,+)-convolution problem, the goal is to compute a sequence
(c[i])n−1

i=0 , where c[k] = mini=0,...,k {a[i] + b[k − i]}, given sequences (a[i])n−1
i=0

and (b[i])n−1
i=0 . This can easily be done in O(n2) time, but no O(n2−ε) algo-

rithm is known for ε > 0. We undertake a systematic study of the (min,+)-
convolution problem as a hardness assumption.

First, we establish the equivalence of this problem to a group of other
problems, including variants of the classic knapsack problem and problems
related to subadditive sequences. The (min,+)-convolution problem has been
used as a building block in algorithms for many problems, notably problems
in stringology. It has also appeared as an ad hoc hardness assumption. Sec-
ond, we investigate some of these connections and provide new reductions
and other results. We also explain why replacing this assumption with the
SETH might not be possible for some problems.

We also prove several related results. Notably, we improve approxima-
tion schemes for 3SUM, Min-Plus Convolution, and Tree Sparsity. Finally,
we argue why breaking the quadratic barrier for approximate Knapsack is

The picture illustrates a convoluted ball of wool. It is an allusion to the name Min-Plus
Convolution and its applications in stringology.

83

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

unlikely by giving an Ω((n+ 1/ε)2−o(1)) conditional lower bound.

Outline: Theorem 1.3.11 is split into five implications, presented sepa-
rately as Theorems 5.1.1, 5.1.3, 5.1.4, 5.1.5 and 5.2.5. While Theorem 1.3.11
has a relatively short and simple statement, it is not the strongest possible
version of the equivalence. In particular, one can show analogous implica-
tions for subpolynomial improvements, such as the O(n2/2Ω(logn)1/2) algo-
rithm for Min-Plus Convolution presented by Williams [157]. The theorems
listed above contain stronger versions of the implications. The proof of The-
orem 5.1.5 has been independently given in [18]. We present it here because
it is the first step in the ring of reductions and introduces the essential tech-
nique of Vassilevska and Williams [154].

Section 5.3 is devoted to the remaining arrows in Figure 1.2. In Subsec-
tion 5.3.1, we show that by using Theorem 1.3.11, we can obtain an alter-
native proof of the equivalence of MCSP and Max-Plus Convolution (and
thus also Min-Plus Convolution), which is much simpler than that presented
in [104]. In Subsection 5.3.2, we show that Tree Sparsity reduces to Max-Plus
Convolution, complementing the opposite reduction shown in [18]. We also
provide some observations on the possible equivalence between l∞-Necklace
Alignment and Max-Plus Convolution in Subsection 5.3.3.

The relation between Max-Plus Convolution and 3sum implies that we
should not expect the new conjecture to follow from SETH. In Section 5.4, we
exploit the revealed connections between problems to show that it might also
not be possible to replace the hardness assumption for Unbounded Knapsack
with SETH. More precisely, we prove that there can be no deterministic
reduction from SAT to Unbounded Knapsack that would rule out running
time O(n1−εt) under the assumption of NSETH.

Then, in Section 5.7 we improve upon current state-of-the-art approxima-
tion for Min-Plus Convolution. As it turns out it gives an improved algorithm
for Tree Sparsity, which we discuss in Section 5.8. Also, it turns out that
our techniques automatically yield an improved approximation algorithm for
3SUM (see Section 5.9) which is optimal under some plausible assumption
(see Section 5.10).

The preliminary version of the results in this Chapter was presented at In-
ternational Colloquium on Automata, Languages, and Programming (ICALP
2019) [50]. The full version is published in ACM Transactions on Algo-
rithms [51].

84

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

5.1 Basic reductions
Theorem 5.1.1 (Unbounded Knapsack → Knapsack). A T (n, t) algorithm
for Knapsack implies an O (T (n log t, t)) algorithm for Unbounded Knapsack.

Proof. Consider an instance of Unbounded Knapsack with capacity t and the
set of items given as weight-value pairs ((wi, vi))i∈I . Construct an equivalent
Knapsack instance with the same t and the set of items ((2jwi, 2jvi))i∈I,0≤j≤log t.
Let X = (xi)i∈I be the list of multiplicities of items chosen in a solu-
tion to the Unbounded Knapsack problem. Of course, xi ≤ t. Define
(xji)0≤j≤log t, x

j
i ∈ {0, 1} to be the binary representation of xi. Then, the

vector (xji)i∈I,0≤j≤log t induces a solution to Knapsack with the same total
weight and value. The described mapping can be inverted. This implies the
equivalence between the instances and proves the claim. �

We now consider the SuperAdditivity Testing problem. We start by show-
ing that we can consider only the case of nonnegative monotonic sequences.
This is a useful, technical assumption that simplifies the proofs.

Lemma 5.1.2. Every sequence (a[i])i=0,...,n−1 can be transformed in linear
time to a nonnegative monotonic sequence (a′[i])i=0,...,n−1 such that a[i] is
superadditive iff a′[i] is superadditive.

Proof. First, note that if a[0] > 0, then the sequence is not superadditive for
n > 0 because a[0] + a[i] > a[i]. In the case where a[0] ≤ 0, the 0-th element
does not influence the result of the algorithm. Thus, we can set a′[0] = 0 to
ensure the nonnegativity of a′. Next, to guarantee monotonicity, we choose
C > 2 maxi{|a[i]|}. Let

a′[i] =

0, if i = 0
Ci+ a[i], otherwise.

Note that sequence a′[i] is strictly increasing and nonnegative. Moreover,
for i, j > 0,

a′[i] + a′[j] ≤ a′[i+ j] ⇐⇒
C · i+ a[i] + C · j + a[j] ≤ C(i+ j) + a[i+ j] ⇐⇒

a[i] + a[j] ≤ a[i+ j].

When i or j equals 0, then we have equality because a′[0] = 0. �

85

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Theorem 5.1.3 (SuperAdditivity Testing→ Unbounded Knapsack). If Un-
bounded Knapsack can be solved in time T (n, t), then SuperAdditivity Testing
admits an algorithm with running time O (T (n, n) log n).

Proof. Let (a[i])n−1
i=0 be a nonnegative monotonic sequence (see Lemma 5.1.2).

Set D = ∑n−1
i=0 a[i] + 1, and construct an Unbounded Knapsack instance

with the set of items ((i, a[i]))n−1
i=0 and ((2n− 1− i,D− a[i]))n−1

i=0 with target
t = 2n − 1. It is always possible to obtain D by taking two items (i, a[i]),
(2n− 1− i,D− a[i]) for any i. We claim that the answer to the constructed
instance equals D if and only if a is superadditive.

If a is not superadditive, then there are i, j such that a[i]+a[j] > a[i+ j].
Choosing (i, a[i]), (j, a[j]), (2n− 1− i− j,D− a[i+ j]) gives a solution with
a value exceeding D.

Now, assume that a is superadditive. Observe that any feasible knapsack
solution may contain at most one item with a weight exceeding n − 1. On
the other hand, the optimal solution has to include one such item because
the total value of the lighter ones is less than D. Therefore, the optimal
solution contains an item (2n − 1 − k,D − a[k]) for some k < n. The total
weight of the rest of the solution is at most k. As a is superadditive, we
can replace any pair (i, a[i]), (j, a[j]) with the item (i + j, a[i + j]) without
decreasing the value of the solution. By repeating this argument, we end up
with a single item lighter than n. The sequence a is monotonic; thus, it is
always profitable to replace these two items with the heavier one, as long as
the load does not exceed t. We conclude that every optimal solution must be
of the form ((k, a[k]), (2n− 1− k,D− a[k])), which completes the proof. �

Theorem 5.1.4 (Max-Plus Convolution UpperBound → SuperAdditivity
Testing). If SuperAdditivity Testing can be solved in time T (n), then Max-
Conv UpperBound admits an algorithm with running time O (T (n) log n).

Proof. We start by reducing the instance of MaxConv UpperBound to
the case of nonnegative monotonic sequences (analogous to Lemma 5.1.2).
Observe that condition a[i] + b[j] ≤ c[i + j] can be rewritten as (C + a[i] +
Di) + (C + b[j] + Dj) ≤ 2C + c[i + j] + D(i + j) for any constants C,D.
Hence, replacing sequences (a[i])n−1

i=0 , (b[i])n−1
i=0 , (c[i])n−1

i=0 with a′[i] = C+a[i]+
Di, b′[i] = C+b[i]+Di, c′[i] = 2C+c[i]+Di leads to an equivalent instance.
We can thus pick C,D of magnitude O(W) to ensure that all elements are
nonnegative and that the resulting sequences are monotonic. The values in
the new sequences may increase to a maximum of O(nW).

Herein, we can assume the given sequences to be nonnegative and mono-
tonic. Define K to be the maximum value occurring in given sequences
a, b, c. Construct a sequence e of length 4n as follows. For i ∈ [0, n− 1], set

86

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

x

y

0 n 2n 3n 4n

K + a[i]

4K + b[i]
5K + c[i]

K

Figure 5.1: Graphical interpretation of the sequence e in Theorem 5.1.4. The
height of rectangles equals K.

e[i] = 0, e[n + i] = K + a[i], e[2n + i] = 4K + b[i], e[3n + i] = 5K + c[i]. If
a[i]+b[j] > c[i+j] exists for some i, j, then e[n+ i]+e[2n+j] > e[3n+ i+j];
therefore, e is not superadditive. We now show that in any other case, e
must be superadditive.

Assume w.l.o.g. that there are i and j such that i ≤ j. The case i < n
can be ruled out because it implies e[i] = 0 and e[i] + e[j] ≤ e[i+ j] for any
j, as e is monotonic. If i ≥ 2n, then i + j ≥ 4n; thus, we can restrict to
i ∈ [n, 2n − 1]. For similar reasons, we can assume that j < 3n. Now, if
j ∈ [n, 2n− 1], then e[i] + e[j] ≤ 4K ≤ e[i+ j]. Finally, for j ∈ [2n, 3n− 1],
superadditivity clearly corresponds to MaxConv UpperBound’s defining
condition. �

The proof of the reduction from Max-Plus Convolution to Max-Plus Con-
volution UpperBound was recently independently given in [18]. The tech-
nique was introduced by Vassilevska and Williams [154] to show a subcubic
reduction from (min,+)-matrix multiplication for detecting a negative weight
triangle in a graph.

Theorem 5.1.5 (Max-Plus Convolution → Max-Plus Convolution Upper-
Bound). A T (n) algorithm for Max-Plus Convolution UpperBound implies
an O (T (

√
n)n log n) algorithm for Max-Plus Convolution.

Proof. Let us assume that we have access to an oracle solving the MaxConv
UpperBound, i.e., checking whether a⊕max b ≤ c. First, we argue that by
invoking this oracle log n times, we can find an index k for which there exists
a pair i, j violating the superadditivity constraint, i.e., satisfying a[i]+ b[j] >
c[k], where k = i+ j if such an index k exists. Let prek(s) be the k-element
prefix of a sequence s. The inequality prek(a) ⊕max prek(b) ≤ prek(c) holds
only for those k that are less than the smallest value of i + j with a broken
constraint. We can use binary search to find the smallest k for which the
inequality does not hold. This introduces an overhead of factor log n.

87

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Next, we want to show that by using an oracle that finds one violated
index, we can in fact find all violated indices. Let us divide [0, n − 1] into
m =

√
n+O(1) intervals I0, I2, . . . Im of equal length, except potentially for

the last one. For each pair Ix, Iy, we can check whether a[i] + b[j] ≤ c[i+ j]
for all i ∈ Ix, j ∈ Iy and find a violated constraint (if any exist) in time
T (
√
n) log n by translating the indices to [0, 2n/m] = [0, 2

√
n+O(1)]. After

finding a pair i, j that violates the superadditivity, we substitute c[i+j] := K,
where K is a constant exceeding all feasible sums, and continue analyzing the
same pair. Once anomalies are no longer detected, we move on to the next
pair. It is important to note that when an index k violating superadditivity
is set to c[k] := K, this value K is also preserved for further calls to the
oracle – in this way, we ensure that each violated index k is reported only
once.

For the sake of readability, we present a pseudocode (see Algorithm 2).
The subroutine MaxConvDetectSingle returns the value of i + j for
a broken constraint or −1 if none exist. The notation sx stands for the
subsequence of s in the interval Ix. We assume that c[i] = K for i ≥ n.

Algorithm 2 MaxConvDetectViolations(a, b, c)
1: for x = 0, . . . ,m− 1 do
2: for y = 0, . . . ,m− 1 do
3: k := 0
4: while k ≥ 0 do
5: k := MaxConvDetectSingle(ax, by, cx+y ∪ cx+y+1)
6: if k ≥ 0 then
7: c[k] := K
8: violated[k] := true
9: end if
10: end while
11: end for
12: end for
13: return violated[0, . . . , n− 1]

The number of considered pairs of intervals equals m2 = O(n). Further-
more, for each pair, every call to MaxConvDetectSingle except the last
one is followed by setting a value of some element of c to K. This can happen
only once for each element; hence, the total number of repetitions is at most
n. Therefore, the running time of the procedure MaxConvDetectViola-
tions is O (T (

√
n)n log n).

By running this algorithm, we learn for each k ∈ [0, n−1] whether c[k] >
maxi∈[0,k] a[i] + b[k − i]. Then, we can again use binary search for each

88

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

coordinate simultaneously. After running the presented procedure logW
times, the value of c[k] will converge to maxi∈[0,k] a[i] + b[k − i] for every
k. �

Corollary 5.1.6. If there exists a truly subquadratic algorithm for Max-Plus
Convolution, then it may be assumed to have Õ(n) space dependency.

Proof. Consider the Algorithm 2. It uses O(n) space to store the violated
table containing the answer. The only other place where additional space
might be required is the call to the MaxConvDetectSingle oracle. Note
that each call runs in time T (

√
n), as the parameters are tables with O(

√
n)

elements. If Max-Plus Convolution has a truly subquadratic algorithm, then
T (
√
n) = O(n1−ε/2), i.e., it is truly sublinear. Because the oracle cannot use

polynomially more space than its running time, the calls to the oracle require
at most linear space (up to polylogarithmic factors).

This means that the main space cost of Algorithm 2 is to store an answer
in the table violated and yields Õ(n) space dependency.

�

5.2 The reduction from Knapsack to Max-
Plus Convolution

We start with a simple observation: for Unbounded Knapsack (a single item
can be chosen multiple times), an Õ(t2 + n) time algorithm can be obtained
by using the standard dynamic programming O(nt) algorithm.

Theorem 5.2.1. There exists an Õ(t2+n) time algorithm for the Unbounded
Knapsack problem.

Proof. Our algorithm starts by discarding all items with weight larger than
t. Since we are considering the unbounded case, for a given weight, we can
ignore all items except the one with the highest value, as we can always
take more copies of the most valuable item among the ones of equal weight.
We are left with at most t items. Thus, using the standard O(nt) dynamic
programming leads to a running time of Õ(t2 + n). �

We show that from the perspective of the parameter t, this is the best we
can hope for, unless n appears in the complexity with an exponent higher
than 2 or there is a breakthrough for the Max-Plus Convolution problem. In
this section, we complement these results and show that a truly subquadratic
algorithm for Max-Plus Convolution implies an Õ(t2−ε + n) algorithm for

89

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Knapsack. We follow Bringmann’s [25] near-linear pseudo-polynomial time
algorithm for Subset Sum and adapt it to the Knapsack problem. To do
this, we need to introduce some concepts related to the Subset Sum problem
from previous works. The key observation is that we can substitute the FFT
in [25] with Max-Plus Convolution and consequently obtain an Õ(T (t) + n)
algorithm for Knapsack (where T (n) is the time needed to solve Max-Plus
Convolution).

5.2.1 Set of all subset sums
Let us recall that in the Subset Sum problem, we are given a set S of n
integers together with a target integer t. The goal is to determine whether
there exists a subset of S that sums up to t.

Horowitz and Sahni [86] introduced the notion of the set of all subset
sums that was later used by Eppstein [58] to solve the Dynamic Subset Sum
problem. More recently, Koiliaris and Xu [102] used it to develop an Õ(σ)
algorithm for Subset Sum (σ denotes the sum of all elements). Later, Bring-
mann [25] improved this algorithm to Õ(n+ t) (t denotes the target number
in the Subset Sum problem).

The set of all subset sums is defined as follows:

Σ(S) =
{∑
a∈A

a | A ⊆ S
}
.

For two sets A,B ⊆ [0, u], the set A ⊕ B = {a + b | a ∈ A, b ∈ B} is
their join, and u is the upper bound of the elements A and B. This join can
be computed in time O(u log u) by using the FFT. Namely, we write A and
B as polynomials fA(x) = ∑

i∈A x
i and fB(x) = ∑

i∈B x
i, respectively. Then,

we can compute the polynomial g = f1 · f2 in O(u log u) time. Polynomial g
has a nonzero coefficient in front of the term xi iff i ∈ A ⊕ B. We can also
easily extract A⊕B.

Koiliaris and Xu [102] noticed that if we want to compute Σ(S) for a
given S, we can partition S into two sets: S1 and S2, recursively compute
Σ(S1) and Σ(S2), and then join them using the FFT. Koiliaris and Xu [102]
analyzed their algorithm using Lemma 5.2.2, which was later also used by
Bringmann [25].

Lemma 5.2.2 ([102], Observation 2.6). Let g be a positive, superadditive
(i.e., ∀x,yg(x+ y) ≥ g(x) + g(y)) function. For a function f(n,m) satisfying

f(n,m) = max
m1+m2=m

{
f
(
n

2 ,m1

)
+ f

(
n

2 ,m2

)
+ g(m))

}
we have that f(n,m) = O(g(m) log n).

90

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

5.2.2 Sum of all sets for Knapsack

We now adapt the notion of the sum of all sets to the Knapsack setting.
Here, we use a data structure that, for a given capacity, stores the value of
the best solution we can pack. This data structure can be implemented as
an array of size t that keeps the largest value in each cell (for comparison,
Σ(S) was implemented as a binary vector of size t). To emphasize that we
are working with Knapsack, we use Π(S) to denote the array of the values
for the set of items S.

If we have two partial solutions Π(A) and Π(B), we can compute their
join, denoted as Π(A) ⊕max Π(B). A valid solution in Π(A) ⊕max Π(B) of
weight t consists of a solution from Π(A) and one from Π(B) that sum up to
t (one of them can be 0). Hence, Π(A)⊕max Π(B)[k] = max0≤i≤k{Π(A)[k −
i] + Π(B)[i]}. This product is the Max-Plus Convolution of array Π(A) and
Π(B). We will use Π(A)⊕max

t Π(B) to denote the Max-Plus Convolution of
A and B for domain {0, . . . , t}.

To compute Π(S), we can split S into two equal-cardinality, disjoint sub-
sets S = S1∪S2, recursively compute Π(S1) and Π(S2), and finally join them
in O(T (σ)) time (σ is the sum of weights of all items). By Lemma 5.2.2, we
obtain an O(T (σ) log σ log n) time algorithm (recall that the naive algorithm
for Max-Plus Convolution works in O(n2) time).

5.2.3 Retracing Bringmann’s steps

In this section, we obtain an Õ(T (t) + n) algorithm for Knapsack, which
improves upon the Õ(T (σ)) algorithm from the previous section. In his
algorithm [25] for Subset Sum, Bringmann uses two key techniques. First,
layer splitting is based on a very useful observation that an instance (Z, t) can
be partitioned into O(log n) layers Li ⊆ (t/2i, t/2i−1] (for 0 < i < dlog ne)
and Ldlogne ⊆ [0, t/2dlogne−1]. With this partition, we may infer that for i > 0,
at most 2i elements from the set Li can be used in any solution (otherwise,
their cumulative sum would be larger than t). The second technique is an
application of color coding [11] that results in a fast, randomized algorithm
that can compute all solutions with a sum of at most t using no more than
k elements. By combining those two techniques, Bringmann [25] developed
an Õ(t+ n) time algorithm for Subset Sum. We now retrace both ideas and
use them in the Knapsack context.

91

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Color Coding

We modify Bringmann’s [25] color coding technique by using Max-Plus Con-
volution instead of FFT to obtain an algorithm for Knapsack. We first discuss
the Algorithm 3, which can compute all solutions in [0, t] that use at most k
elements with high probability. We start by randomly partitioning the set of
items into k2 disjoint sets Z = Z1∪ . . .∪Zk2 . Algorithm 3 succeeds in finding
a given solution if its elements are placed in different sets of the partition Z.

Lemma 5.2.3. There exists an algorithm that computes an array W in time
O(T (t)k2 log (1/δ)) such that, for any Y ⊆ Z with |Y | ≤ k and every weight
i ∈ [0, t], we have Π(Y)[i] ≤ W [i] ≤ Π(Z)[i] with probability ≥ 1 − δ for
any constant δ ∈ (0, 1) (where T (n) is the time needed to compute Max-Plus
Convolution).

Algorithm 3 ColorCoding(Z, t, k, δ) (cf. [25, Algorithm 1]).

1: for j = 1, . . . ,
⌈
log4/3(1/δ)

⌉
do

2: randomly partition Z = Z1 ∪ . . . ∪ Zk2

3: Pj = Z1 ⊕max
t . . .⊕max

t Zk2

4: end for
5: return W , where W [i] = maxj Pj[i]

Proof. We show split Z into k2 parts: Z1 ∪ . . . ∪Zk2 . Here, Zi is an array of
size t, and Zi[j] is the value of a single element (if one exists) with weight j
in Zi (in case of a conflict, we select a random one).

We claim that Z1⊕max
t . . .⊕max

t Zk2 contains solutions at least as good as
those that use k items (with high probability). We use the same argument
as in [25]. Assume that the best solution uses the set Y ⊆ Z of items and
|Y | ≤ k. The probability that all items of Y are in different sets of the
partition is the same as the probability that the second element of Y is in
a different set than the first one, the third element is in a different set than
the first and second item, etc. That is:

k2 − 1
k2 ·k

2 − 2
k2 . . .

k2 − (|Y | − 1)
k2 ≥

(
1−(|Y | − 1)

k2

)|Y |
≥
(

1−1
k

)k
≥
(

1
2

)2

= 1
4 .

By repeating this process O(log(1
δ
)) times, we obtain the correct solution

with a probability of at least 1 − δ. Also, to compute Max-Plus Convolu-
tion, we need k2 repetitions. Hence, we obtain an O(T (t)k2 log(1/δ)) time
algorithm. �

92

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Layer Splitting

We can split our items into log n layers. Layer Li is the set of items with
weights in (t/2i, t/2i−1] for 0 < i < dlog ne; the last layer Ldlogne has items
with weights in [0, t/2dlogne−1]. With this, we can be sure that only 2i items
from the layer i can be chosen for a solution. If we can quickly compute Π(Li)
for all i, then it suffices to compute their Max-Plus Convolution O(log n)
times. We now show how to compute Π(Li) in Õ(T (t) + n) time using color
coding.

Lemma 5.2.4. For all i, there exists an algorithm that, for Li ⊆ (t
2i ,

t
2i−1]

and for all δ ∈ (0, 1/4], computes Π(Li) in O(T (t log t log3(2i−1/δ))) time,
where each entry of Π(Li) is correct with a probability of at least 1− δ.

Algorithm 4 ColorCodingLayer(L, t, i, δ) (cf. [25, Algorithm 3]).
1: l = 2i
2: if l < log(l/δ) then return ColorCoding(L, t, l, δ)
3: m = l/ log(l/δ) rounded up to the next power of 2
4: randomly partition L = A1 ∪ . . . ∪ Am
5: γ = 6 log(l/δ)
6: for j = 1, . . . ,m do
7: Pj = ColorCoding(Aj, 2γt/l, γ, δ/l)
8: end for
9: for h = 1, . . . , logm do
10: for j = 1, . . . ,m/2h do
11: Pj = P2j−1 ⊕max

2h·2γt/l P2j
12: end for
13: end for
14: return P1

Proof. We use the same arguments as in [25, Lemma 3.2]. First, we split the
set L into m disjoint subsets L = A1 ∪ . . . ∪ Am (where m = l/ log(l/δ)).
Then, for every partition, we compute Π(Ai) using O(log(l/δ)) items and
probability δ/l using Lemma 5.2.3. For every Ai, O(T (log(l)t/l) log3(l/δ))
time is required. Hence, for all Ai, we need O(T (t) log3(l/δ)) time, as Min-
Plus Convolution needs at least linear time T (n) = Ω(n).

Ultimately, we need to combine arrays Π(Ai) in a “binary tree way”. In
the first round, we compute Π(A1)⊕maxΠ(A2),Π(A3)⊕maxΠ(A4), . . . ,Π(Am−1)⊕max

Π(Am). Then, in the second round, we join the products of the first round
in a similar way. We continue until we have joined all subsets. This process

93

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

yields us significant savings over just computing Π(A1)⊕max . . .⊕max Π(Am)
because in round h, we need to compute Max-Plus Convolution with num-
bers of order O(2ht log(l/δ)/l), and there are at most logm rounds. The
complexity of joining them is as follows:

logm∑
h=1

m

2hT (2h log(l/δ)t/l) log t) = O(T (t log t) logm).

Overall, we determine that the time complexity of the algorithm isO(T (t log t)
log3(l/δ)) (some logarithmic factors could be omitted if we assume that there
exists ε > 0 such that T (n) = Ω(n1+ε)).

The correctness of the algorithm is based on [25, Claim 3.3]. We take
a subset of items Y ⊆ L and let Yj = Y ∩ Aj. Claim 3.3 in [25] says that
P [[] |Yj| ≥ 6 log(l/δ)] ≤ δ/l. Thus, we can run ColorCoding procedure for
k = 6 log(l/δ) and still guarantee a sufficiently high probability of success.

�

Theorem 5.2.5 (Knapsack → Max-Plus Convolution). If Max-Plus Con-
volution can be solved in T (n) time, then Knapsack can be solved in time
O(T (t log t) log3(n/δ) log n) with a probability of at least 1− δ.

Algorithm 5 Knapsack(Z, t, δ) (cf. [25, Algorithm 2]).
1: split Z into Li = Z∩(t/2i, t/2i−1] for i = 1, . . . , dlog ne−1, and Ldlogne =
Z ∩ [0, t/2dlogne−1]

2: W = ∅
3: for i = 1, . . . , dlog ne do
4: Pi = ColorCodingLayer(Li, t, i, δ/ dlog ne)
5: W = W⊕max Pi

6: end for
7: return W

Proof. To obtain an algorithm for Knapsack, as mentioned before, we need
to split Z into disjoint layers Li = Z ∩ (t/2i, t/2i−1] and Ldlogne = Z ∩
[0, t/2dlogne−1]. Then, we compute Π(Li) for all i and join them using Max-
Plus Convolution. We present the pseudocode in Algorithm 5. It is based
on [25, Algorithm 2]. Overall, O(T (t log t) log3 (n/δ) log n + T (t) log n) =
O(T (t log t) log3(n/δ) log n) time is required. �

Koiliaris and Xu [102] considered a variant of Subset Sum where one needs
to check if there exists a subset that sums up to k for all k ∈ [0, t]. Here,

94

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

we note that a similar extension for Knapsack is also equivalent to Max-Plus
Convolution.

Corollary 5.2.6 (0/1Knapsack+ → Max-Plus Convolution). If Max-Plus
Convolution can be solved in T (n) time, then 0/1Knapsack+ can be solved
in O(T (t log t) log3(tn/δ) log n) time with a probability of at least 1− δ.

Algorithm 5 returns an array Π(Z), where each entry z ∈ Π(Z) is optimal
with probability 1− δ. Now, if we want to obtain the optimal solution for all
knapsack capacities in [1, t], we need to increase the success probability to
1− δ

t
so that we can use the union bound. Consequently, in this case, a single

entry is faulty with a probability of at most δ/t, and we can upper bound
the event, where at least one entry is incorrect by δ

t
t = δ. This introduces

an additional polylog(t) factor in the running time.
Finally, for completeness, we note that 0/1Knapsack+ is more general

than Knapsack. 0/1Knapsack+ returns a solution for all capacities ≤ t.
However, in the Knapsack problem, we are interested only in a capacity
equal to exactly t.

Corollary 5.2.7 (Knapsack → 0/1Knapsack+). If 0/1Knapsack+ can be
solved in T (t, n) time, then Knapsack can be solved in Õ(T (t, n)) time.

The next corollary follows from the ring of reductions.

Corollary 5.2.8. An Õ((n+ t)2−ε) time algorithm for Knapsack implies an
Õ(t2−ε′ + n) time algorithm for 0/1Knapsack+.

5.3 Other problems related to Min-Plus Con-
volution

5.3.1 Maximum Consecutive Subsums Problem
The Maximum Consecutive Subsums Problem (MCSP) is, to the best
of our knowledge, the first problem explicitly proven to be nontrivially sub-
quadratically equivalent to MinConv [104]. In this section, we show the
reduction from MCSP to Max-Plus Convolution for completeness. Moreover,
we present the reduction in the opposite direction, which, in our opinion, is
simpler than the original one.

Theorem 5.3.1 (MCSP → Max-Plus Convolution). If Max-Plus Convolu-
tion can be solved in time T (n), then MCSP admits an algorithm with running
time O (T (n)).

95

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Proof. Let (a[i])n−1
i=0 be the input sequence. Construct sequences of length

2n as follows: b[k] = ∑k
i=0 a[i] for k < n and c[k] = −∑n−k−1

i=0 a[i] for k ≤ n
(empty sum equals 0); otherwise, b[k] = c[k] = −D, where D is two times
larger than any partial sum. Observe that

(b⊕max c)[n+ k − 1] = max
0≤j<n

0≤n+k−j−1≤n

j∑
i=0

a[i]−
j−k∑
i=0

a[i] = max
k−1≤j<n

j∑
i=j−k+1

a[i].

(5.1)
Thus, we can determine the maximum consecutive sum for each length k
after performing Max-Plus Convolution. �

Theorem 5.3.2 (SuperAdditivity Testing→MCSP). If MCSP can be solved
in time T (n), then SuperAdditivity Testing admits an algorithm with running
time O (T (n)).

Proof. Let (a[i])n−1
i=0 be the input sequence and b[i] = a[i + 1] − a[i]. The

superadditivity condition a[k] ≤ a[k + j] − a[j] (for all possible k, j) can be
translated into a[k] ≤ min0≤j<n−k

∑k+j−1
i=j b[i] (for all k). Thus, computing the

MCSP vector on (−b[i])n−2
i=0 is sufficient to verify whether the above condition

holds. �

5.3.2 Tree Sparsity
Theorem 5.3.3 (Tree Sparsity→Max-Plus Convolution). If Max-Plus Con-
volution can be solved in time T (n) and the function T is superadditive, then
Tree Sparsity admits an algorithm with running time O

(
T (n) log2 n

)
.

Proof. We take advantage of the heavy-light decomposition introduced by Sleator
and Tarjan [140]. This technique has been utilized by Backurs et al. [18] to
transform a nearly linear PTAS for Max-Plus Convolution to a nearly linear
PTAS for Tree Sparsity.

We decompose a tree into a set of paths (which we call spines) that will
start from a head. First, we construct a spine with a head s1 at the root of the
tree. We define si+1 as the child of si for a larger subtree (in case of a draw,
we choose any child) and the last node in the spine as a leaf. The remaining
children of node si become heads for analogous spines such that the whole
tree is covered. Note that every path from a leaf to the root intersects at
most log n spines because each spine transition doubles the subtree size.

Similar to [18] for a node v with a subtree of size m, we want to compute
the sparsity vector U = (U [0], U [1], . . . , U [m]), where the index U [i] repre-
sents the weight of the heaviest subtree rooted at v with size i. We compute
sparsity vectors for all heads of spines in the tree recursively. Let (si)`i=1 be

96

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Max-Plus Convolution Data Structure

Figure 5.2: Schema of spine decomposition [18]. Blue edges represent edges
on the spine. For each spine, we build an efficient data structure that uses
Max-Plus Convolution (curly brackets). There are at most O(log n) different
spines on any path from a leaf to the root.

a spine with a head v, and for all i, let U i indicate the sparsity vector for the
child of si that is a head (i.e., the child with the smaller subtree). If si has
less than two children, then U i is a zero vector.

For an interval [a, b] ⊆ [1, `], let Ua,b = Ua⊕maxUa+1⊕max · · ·⊕maxU b, and
let Y a,b[k] be a vector such that for all k, Y a,b[k] is the weight of a subtree of
size k rooted at sa and not containing sb+1 (if it exists). Let c =

⌊
a+b

2

⌋
. The

⊕max operator is associative; hence, Ua,b = Ua,c ⊕max U c+1,b. To compute
the vector Y a,b, we consider two cases, depending on whether the optimal
subtree contains sc+1.

Y a,b[k] = max
[
Y a,c[k],

c∑
i=a

w(si) + max
k1+k2=k−(c−a+1)

(
Ua,c[k1] + Y c+1,b[k2]

)]

= max
[
Y a,c[k],

c∑
i=a

w(si) +
(
Ua,c ⊕max Y c+1,b

)[
k − (c− a+ 1)

]]

Recall, that w : V (T)→ N≥0 is the weight function from the definition of
the problem (see Section 1.3.1). Using the presented formulas, we reduce the
problem of computing Xv = Y 1,` to subproblems for intervals [1, `2] and [`2 +
1, `], and we merge the results with two (max,+)-convolutions. Proceeding
further, we obtain log ` levels of recursion, where the sum of convolution sizes
on each level is O(m), which results in a total running time of O (T (m) logm)
(recall that T is superadditive).

The heavy-light decomposition guarantees that there are at mostO(log n)

97

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

different spines on a path from a leaf to the root. Moreover, we compute spar-
sity vectors for all heads of the spine, with at most log n levels of recursion.
In each recursion, we execute the Max-Plus Convolution procedure. Hence,
we obtain a running time of O(T (n) log2 n). �

5.3.3 l∞-Necklace Alignment
In this section, we study the l∞-Necklace Alignment alignment problem,
which has been shown to be reducible to Min-Plus Convolution [24]. Even
though we were not able to prove it as equivalent to Min-Plus Convolution,
we have observed that l∞-Necklace Alignment is tightly connected to the
(min,+)-convolution, which leads to a reduction from a related problem –
Max-Plus Convolution LowerBound. This opens an avenue for expanding the
class of problems equivalent to Min-Plus Convolution; however, it turns out
that we first need to better understand the nondeterministic complexity of
Min-Plus Convolution. We elaborate on these issues in this and the following
section.

Theorem 5.3.4 (Max-Plus Convolution LowerBound→ l∞-Necklace Align-
ment). If l∞-Necklace Alignment can be solved in time T (n), then Max-Plus
Convolution LowerBound admits an algorithm with running time O (T (n) log n).

Proof. Let a, b, c be the input sequences for Max-Plus Convolution Lower-
Bound. A combination is the sum of any choice of m elements from these
sequences. More formally:

Definition 5.3.5 (combination). A combination of length m is a sum:

f1 · e1[k1] + f2 · e2[k2] + . . . fm · em[km],

where ei ∈ {a, b, c}, fi ∈ {−1, 1} and ki ∈ {0, . . . , n− 1}.
The order of this combination is as follows:

m∑
i=1

fi · ki.

We can assume the following properties of the input sequences w.l.o.g.

1. We may assume that the sequences are nonnegative and that a[i] ≤ c[i]
for all i. To guarantee this, we add C1 to a, C1 +C2 to b, and 2C1 +C2
to c for appropriate positive constants C1, C2.

2. We can assume that the combinations of order ≤ n that contain the last
element of sequence b with a positive coefficient are positive. We can

98

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

achieve this property by artificially appending any b[n] that is larger
than the sum of all elements. Note that since it is the last element, it
does not influence the result of the Max-Plus Convolution LowerBound
instance.

3. Any combination of positive order and length bounded by L has a non-
negative value. One can guarantee this by adding a linear function Di
to all sequences. As the order of the combination is positive, the factors
at D sum up to a positive value. It suffices to choose D equal to the
maximum absolute value of an element times a parameter L that will
be set to 10. Note that previous inequalities compare combinations of
the same order, and so they remain unaffected.

These transformations might increase the values of the elements toO(nWL2).
Let B = b[n], B1 = b[n − 1], B2 = b[n] − b[1]. We define necklaces x, y of
length 2B with N = 2n beads each.

x =
(

a[0], a[1], . . . , a[n− 1], B + c[0], B + c[1], . . . , B + c[n− 2], B + c[n− 1]
)
,

y =
(

B1 − b[n− 1], B1 − b[n− 2], . . . , B1 − b[0], B +B2 − b[n− 1], B +B2 − b[n− 2], . . . , B +B2 − b[1], 2B
)
.

Property (3) implies monotonicity of the sequences because for any 0 ≤
i < j ≤ n, the combination a[j]− a[i] is greater than zero.

Let d(x[i], y[j]) be the forward distance between x[i] and y[j], i.e., y[j]−
x[i] plus the length of the necklaces if j < i. For all k, define Mk to be
maxi∈[0,N) d

(
x[i], y[(k+i) (mod 2n)]

)
−mini∈[0,N) d

(
x[i], y[(k+i) (mod 2n)]

)
.

In this setting, [24, Fact 5] says that for a fixed k, the optimal solution has
a value of Mk

2 .
We want to show that for k ∈ [0, n), the following holds:

min
i∈[0,2n)

d
(
x[i], y[(k + i) (mod 2n)]

)
= B1 − max

i+j=n−k−1
(a[i] + b[j]),

max
i∈[0,2n)

d
(
x[i], y[(k + i) (mod 2n)]

)
= B − c[n− k − 1].

There are five types of connections between beads (see Figure 5.3).

d
(
x[i],y[(k + i) (mod 2n)]

)
=

B1 − a[i]− b[n− k − 1− i] i ∈ [0, n− k − 1], (I)
B +B2 − a[i]− b[2n− k − 1− i] i ∈ [n− k, n− 1], (II)
B2 − b[2n− k − 1− i]− c[i− n] i ∈ [n, 2n− k − 2], (III)
B − c[n− k − 1] i = 2n− k − 1, (IV)
B +B1 − b[3n− k − 1− i]− c[i− n] i ∈ [2n− k, 2n− 1]. (V)

99

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

b

b

a

c

I

II

III
IV

V

Figure 5.3: Five areas that correspond to the five types of connections be-
tween beads. The inner circle represents two repetitions of the sequence b.
The outer circle consists of the sequence a and then the sequence c.

All formulas form combinations of length bounded by 5; thus, we can
apply properties (2) and (3). Observe that the order of each combination
equals k, except for i = 2n− k− 1, where the order is k+ 1. Using property
(3), we reason that B− c[n− k− 1] is indeed the maximal forward distance.
We now show that the minimum lies within the group (I). First, note that
these are the only combinations with no occurrences of b[n]. We claim that
every distance in group (I) is upperbounded by all distances in other groups.
This is clear for group (IV) because the orders differ. For other groups, we
can use property (2), as the combinations in question have the same order
and only the one not in group (I) contains b[n].

For k < n, the condition Mk < B − B1 is equivalent to c[n − k − 1] >
maxi+j=n−k−1(a[i] + b[j]). If such a k exists, i.e., the answer to Max-Plus
Convolution LowerBound for sequences a, b, c is NO, then minkMk < B−B1
and the return value is less than 1

2(B −B1).
Finally, we need to prove that Mk ≥ B−B1 for all k if such a k does not

exist. We have already verified this to be true for k < n. Each matching for
k ≥ n can be represented as swapping sequences a and c inside the necklace
x, developed via an index shift of k − n. The two halves of the necklace x
are analogous; thus, all prior observations of the matching structure remain
valid.

If the answer to Max-Plus Convolution LowerBound for sequences a, b, c is
YES, then ∀k∈[0,n)∃i+j=ka[i]+b[j] ≥ c[k]. Property (1) guarantees that a ≤ c;
thus, we conclude that ∀k∈[0,n)∃i+j=kc[i] + b[j] ≥ a[i] + b[j] ≥ c[k] ≥ a[k],
and by the same argument as before, the cost of the solution is at least
1
2(B −B1). �

100

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Observe that both l∞-Necklace Alignment and Max-Plus Convolution
LowerBound admit simple linear nondeterministic algorithms. For Max-Plus
Convolution LowerBound, it is sufficient to either assign each k a single
condition a[i] + b[k − i] ≥ c[k] that is satisfied or to nondeterministically
guess a value of k for which no inequality holds. For l∞-Necklace Alignment,
we define a decision version of the problem by asking if there is an alignment
of the value bounded by K (the problem is self-reducible via binary search).
For positive instances, the algorithm simply nondeterministically guesses k,
inducing an optimal solution. For negative instances, Mk > 2K must hold
for all k. Therefore, it suffices to nondeterministically guess for each k a pair
i, j such that d

(
x[i], y[(k + i) (mod n)]

)
− d

(
x[j], y[(k + j) (mod n)]

)
> 2K.

In Section 5.4, we will show that Max-Plus Convolution UpperBound ad-
mits an O (n1.5polylog(n)) nondeterministic algorithm (see Lemma 5.4.1) so,
in fact, there is no obstacle to the existence of a subquadratic reduction from
Max-Plus Convolution LowerBound to Max-Plus Convolution UpperBound.
However, the nondeterministic algorithm for 3sum exploits techniques sig-
nificantly different from ours, including modular arithmetic. A potential re-
duction would probably need to rely on some different structural properties
of Max-Plus Convolution.

5.4 Nondeterministic algorithms
Recently, Abboud et al. [3] proved that the running time for the Subset
Sum problem cannot be improved to O(t1−ε2o(n)), assuming the SETH. It is
tempting to look for an analogous lower bound for Knapsack that would
make the O(nt)-time algorithm tight. In this section, we take advantage of
the nondeterministic lens introduced by Carmosino et al. [34] to argue that
the existence of this lower bound for Unbounded Knapsack is unlikely.

We recall that by a time complexity of a nondeterministic algorithm,
we refer to a bound on running times for both nondeterministic and co-
nondeterministic routines determining whether an instance belongs to the
language. Assuming the Nondeterministic Strong Exponential Time Hy-
pothesis (NSETH), we cannot break the O(2(1−ε)n) barrier for SAT even
with nondeterministic algorithms.

The informal reason to rely on the NSETH is that if we decide to base
lower bounds on the SETH, then we should believe that SAT is indeed a
very hard problem that does not admit any hidden structure that has eluded
researchers so far. On the other hand, the NSETH can be used to rule out
deterministic reductions from SAT to problems with nontrivial nondeter-
ministic algorithms. This allows us to argue that in some situations basing

101

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

a hardness theory on the SETH can be a bad idea. Moreover, disproving the
NSETH would imply nontrivial lower bounds on circuit sizes for ENP [34].

We present a nondeterministic algorithm for the decision version of Un-
bounded Knapsack with running time O(t

√
n log3(W)), where W is the tar-

get value. This means that a running time O(n1−εt) for Unbounded Knap-
sack cannot be ruled out with a deterministic reduction from SAT, under the
assumption of the NSETH (for small ε < 1

2).
We begin with an observation that a nontrivial nondeterministic algo-

rithm for 3sum entails a similar result for Max-Plus Convolution Upper-
Bound.

Lemma 5.4.1. Max-Plus Convolution UpperBound admits a nondetermin-
istic O (n1.5polylog(n))-time algorithm.

Proof. By combining Theorem 5.5.1 (which involves a reduction from Max-
Plus Convolution UpperBound to 3sumConv), the deterministic (i.e., nonran-
domized) reduction from 3sumConv to 3sum [124], and the nondeterministic
O (n1.5polylog(n))-time algorithm for 3sum from [34, Lemma 5.8], we obtain
an analogous algorithm for Max-Plus Convolution UpperBound. �

In the next step, we require a more careful complexity analysis of the non-
deterministic algorithm for 3um developed by Carmosino et al. [34, Lemma
5.8]. Essentially, we claim that the running time can be bounded byO(√n1n2n3
log2(W)), where n1, n2, n3 are sizes of the input sets. This is just a reformula-
tion of the original proof, where an O(n1.5) nondeterministic time algorithm
is given, which we have presented in the Section 5.6 for completeness.

In the decision version of Unbounded Knapsack, we are additionally given
a thresholdW , and we need to determine whether there is a multiset of items
with a total weight of at most t and a total value of at least W .

Theorem 5.4.2. The decision version of Unbounded Knapsack admits an
O(t
√
n log3(W)) nondeterministic algorithm.

Proof. We can assume that n ≤ t. If we are given a YES-instance, then we
can just nondeterministically guess the solution and verify it in O(t) time.

To show that an instance admits no solution, we nondeterministically
guess a proof involving an array (a[k])tk=0 such that a[k] is an upper bound
for the total value of items with weights summing to at most k. To verify
the proof, we need to check that a[0] = 0, a[t] < W , a is nondecreasing,
and, for each k and each item (wi, vi), a[k] + vi ≤ a[k + wi] holds. Let
(b[k])tk=0 be a sequence defined as follows: if there is an item with wi = k,
then we set b[k] = vi (if there are multiple items with the same weight,
we choose the most valuable one) and 0 otherwise. The latter condition is

102

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

equivalent to determining if a⊕max b ≤ a, which is an instance of MaxConv
UpperBound with elements bounded by W .

Note that the sequence b contains only n nonzero elements. After we have
verified (in O(t) time) that a is nondecreasing, we know that b[j] = 0 implies
a[i] + b[j] ≤ a[i + j]. This means that we can neglect the zero values in
sequence b when applying the reduction in Theorem 5.5.1. After performing
the reduction, we obtain O(logW) instances of 3sumConv with sequences
x, y, z of length t but with the additional knowledge that there are only n
indices j such that x[i] + y[j] > z[i+ j] might hold. In the end, we perform a
deterministic reduction from 3sumConv to 3sum in time O(t) [124]. Since
we can omit all but n indices in sequence y, we obtain O(logW) instances of
3sum with set sizes of t, n, and t. The claim follows by applying Lemma 5.6.1
and the fact that nonrandomized reductions preserve the nondeterministic
running time. �

From [34, Corollary 5.2] and the nondeterministic algorithm from The-
orem 5.4.2, it follows that the reduction from any SETH-hard problem to
Unbounded Knapsack is unlikely:

Corollary 5.4.3. Under the NSETH, there is no deterministic (fine-grained)
reduction from the SETH to solving Unbounded Knapsack in time O(n0.5+γ ·t)
for any γ > 0.

For a natural (but rather technical) definition of fine-grained reduction,
see [34, Definition 3.1].

5.5 Reduction to 3SUM
In this section, we show a connection between Max-Plus Convolution and
the 3sum conjecture.

So far, we showed an equivalence between Max-Plus Convolution and
Max-Plus Convolution UpperBound (see Theorem 1.3.11). Also, it is known
that the 3sumConv problem is subquadratically equivalent to 3sum [124].
Hence, the following theorem suffices.

Theorem 5.5.1 (Max-Plus Convolution UpperBound → 3sumConv). If
3sumConv can be solved in time T (n), then Max-Plus Convolution Upper-
Bound admits an algorithm with running time O (T (n)).

The proof heavily utilizes [161, Proposition 3.4, Theorem 3.3], which we
present here for completeness. prei(x) denotes the binary prefix of x of length

103

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

i, where the most significant bit is considered the first. In the original state-
ment (Proposition 3.4 [161]), the prefixes are alternately treated as integers
or strings. We modify the notation slightly to work only with integers.

Lemma 5.5.2 (Proposition 3.4 [161]). For three integers x, y, z, we have
that x+ y > z iff one of the following holds:

1. there exists a k such that prek(x) + prek(y) = prek(z) + 1,

2. there exists a k such that

prek+1(x) = 2 · prek(x) + 1, (5.2)
prek+1(y) = 2 · prek(y) + 1, (5.3)
prek+1(z) = 2 · prek(z), (5.4)

prek(z) = prek(x) + prek(y). (5.5)

Proof of Theorem 5.5.1. We translate the inequality a[i]+b[j] > c[i+j] from
Max-Plus Convolution UpperBound to an alternative of 2 logW equations.
For each 0 ≤ k ≤ logW , we construct two instances of 3sumConv related to
the conditions in Lemma 5.5.2. For the first condition, we create sequences
ak[j] = prek(a[j]), bk[j] = prek(b[j]), ck[j] = prek(c[j]) + 1. For the second
one, we choose a value of D that is two times larger than the absolute value
of any element and set

ãk[j] =

prek(a[j]) if prek+1(a[j]) = 2 · prek(a[j]) + 1,
−D otherwise,

b̃k[j] =

prek(b[j]) if prek+1(b[j]) = 2 · prek(b[j]) + 1,
−D otherwise,

c̃k[j] =

prek(c[j]) if prek+1(c[j]) = 2 · prek(c[j]),
D otherwise.

Observe that if any of the conditions 5.2 – 5.4 is not satisfied, then the
unrolled formula ãk[i] + b̃k[j] = c̃k[i + j] contains at least one summand D
and thus cannot be satisfied. Otherwise, it reduces to the condition 5.5.

The inequality a[i] + b[j] > c[i + j] holds for some i, j iff one of the
constructed instances of 3sumConv returns true. As the number of instances
is O(logW), the claim follows. The 3sumConv problem is subquadratically
equivalent to 3sum [124], which establishes a relationship between these two
classes of subquadratic equivalence. �

104

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

5.6 Nondeterministic algorithm for 3SUM
Carmosino et al. [34, Lemma 5.8] presented an O(n1.5) nondeterministic algo-
rithm for 3sum, i.e., the running time depends only on the size of the input.
However, in our application, we need a running time that is a function of
the sizes of sets A,B and C. In this section we analyze the running time of
Carmosino et al. in regard to these parameters.

Lemma 5.6.1. There is a nondeterministic algorithm for 3sum with running
time
O(√n1n2n3 log2(W)), where n1 = |A|, n2 = |B|, n3 = |C| and W is the
maximum absolute value of integers in A∪B ∪C (we assume that n1 +n2 +
n2 ≤ W).

Proof. If there is a triple (a ∈ A, b ∈ B, c ∈ C) such that a+ b = c, then we
can nondeterministically guess it and verify it in O(1) time. To prove that
there is no such triple, we nondeterministically guess the following:

1. a prime number p ≤ prime√n1n2n3 , where primei denotes the i-th prime
number,

2. an integer t(p) ≤ √n1n2n3 log(3W), which is the number of solutions
for sets
(A (mod p), B (mod p), C (mod p)),

3. a set S = {(a1, b1, c1), . . . , (at(p), bt(p), ct(p))}, where |S| = t(p) and each
triple (ai ∈ A, bi ∈ B, ci ∈ C) satisfies a1 + b1 ≡ c1(mod p).

To see that for each NO-instance there exists such a proof, consider the
number of false positives, that is, tuples (a ∈ A, b ∈ B, c ∈ C, p), where
p is a prime. For each triple (a ∈ A, b ∈ B, c ∈ C), the value |a + b − c|
has at most log(3W) distinct prime divisors. Therefore, the number of false
positives is bounded by n1n2n3 log(3W). Since there are √n1n2n3 candidates
for p, we can choose one such that t(p) ≤ √n1n2n3 log(3W).

To verify the proof, we need to verify whether S contains no true solution
and to compute the number of solutions for (A (mod p), B (mod p), C (mod p)).
If it equals to |S|, then we are sure that all solutions for the instance mod-
ulo p are indeed false positives for the original instance. Since the num-
bers are bounded by p, we can count the solutions using FFT in time
O(p log p) = O(√n1n2n3 log2(W)). �

105

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

5.7 Approximate Min-Plus Convolution
Definition 5.7.1 (Approximate Min-Plus Convolution). In approximate Min-
Plus Convolution problem we are given sequences A[0, . . . , n−1], B[0, . . . , n−
1] of positive integers and approximation parameter 0 < ε < 1. Let OPT[k] =
min0≤i≤k(A[i]+B[k−i]) be the Min-Plus Convolution of A and B. The task is
to find a sequence C[0, . . . , n−1] such that ∀iOPT[i] ≤ C[i] ≤ (1 + ε)OPT[i]

Backurs, Indyk, and Schmidt [18] described a (1 + ε)-approximation al-
gorithm for Min-Plus Convolution, that runs deterministically in time O(n

ε2

log n log2W). In their paper [18] it is used as a building block to show
a near-linear time approximation algorithm for Tree Sparsity. With the ap-
proximation algorithm for Min-Plus Convolution, they managed to solve Tree
Sparsity approximately in Õ(n

ε2
) time, which in practical applications may

be faster than solving this problem exactly in time Õ(n2).
In this Section we improve upon the Õ(n/ε2) approximation algorithm.

for Min-Plus Convolution. Similar techniques have been exploited to obtain
the Õ(nω/ε)-time approximation for APSP [169] and they have found use in
the approximate pattern matching over l∞ [109]. The basic idea is to propose
a fast exact algorithm depending on W (upper bound on the weights) and
apply it after rounding weights into smaller space. Our result also applies to
Max-Plus Convolution.

5.7.1 State of the art
In this Section we will shortly describe the Õ(n

ε2
) algorithm due to Backurs,

Indyk, and Schmidt [18, Section C.2]. The basic idea is to round elements
and then perform a fast convolution with FFT. For a sequence D[0, . . . , n−1]
and integer i, we define a binary vector λ(D, i):

λ(D, i)[k] :=

1 if (1 + ε)i ≤ D[k] ≤ (1 + ε)i+1,

0 otherwise

The vector λ(D, i) is nonzero in the bits that round the values of sequence
D. Let W be the largest value in both A and B. Then for all pairs of indices
0 ≤ i, j ≤ log1+εW we define a vector λi,j = λ(A, i) ⊕ λ(B, j) (⊕ stands
for convolution of the sequences). Computation of a single vector λi,j takes
O(n log n) time and there are O(log2

1+εW) such vectors. Hence the total
running time is O(n log n log2

1+εW) = O(n
ε2

log n log2W).
Finally we iterate over all entries and output

106

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

C[k] = min
(λi,j)k=1

(1 + ε)i+1 + (1 + ε)j+1,

which gives us the approximate answer for all entries.

5.7.2 Exact Õ(nW) algorithm
The Min-Plus Convolution admits a brute force O(n2)-algorithm. From the
other hand, when all values in sequences are binary, then applying FFT and
performing convolution yields an O(n log n)-algorithm. Our exact Õ(nW)
algorithm is an attempt to capture this trade-off. Note, that this algorithm
is worse than a brute force wheneverW > n which is often the case. However,
this algorithm turns out useful for approximation.

Lemma 5.7.2. The Min-Plus Convolution [Max-Plus Convolution] problem
can be solved deterministically in O(nW log (nW)) time and O(nW) space.

Proof. Given sequences A[0, . . . , n−1] and B[0, . . . , n−1] with values at most
W , we transform them into binary sequences of length 2nW . We encode
every number in the natural unary manner. For 0 ≤ i < n, 1 ≤ k ≤ W we
define:

ã[2Wi+ k] =

0 if A[i] , k
1 if A[i] = k

and similarly we define sequence B̃.
We compute convolution C̃ = Ã⊕B̃ using FFT in timeO(nW log n logW).

Since
C̃[2Wi+ k] =

∑
i1+i2=i
k1+k2=k

Ã[2Wi1 + k1] · B̃[2Wi2 + k2],

the first nonzero occurrence in the i-th block of length 2W encodes the value
of the i-th element of the requested Min-Plus Convolution. If we are inter-
ested in computing Max-Plus Convolution, we should similarly seek for last
nonzero value in each block.

The time complexity is dominated by performing convolution with FFT.
As the additional space we need O(nW) bits for the transformed sequences.

�

5.7.3 Approximation
We start with a lemma inspired by [169, Lemma 5.1] and [109, Lemma 1].

107

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Lemma 5.7.3 (Rounding Lemma). For natural numbers x, y and positive
q, ε satisfying q ≤ x+ y and 0 < ε < 1 it holds:

x+ y ≤
(⌈

2x
qε

⌉
+
⌈

2y
qε

⌉)
qε
2 < (x+ y)(1 + ε),

(x+ y)(1− ε) <
(⌊

2x
qε

⌋
+
⌊

2y
qε

⌋)
qε
2 ≤ x+ y.

The proof of above Lemma is a special case of Lemmas 2.4.1 and 2.4.2
for k = 2

Now we are ready to give a scaling based approximation algorithm for
Min-Plus Convolution.

Lemma 5.7.4. Assume the Min-Plus Convolution [Max-Plus Convolution]
can be solved exactly in time T (n,W). Then we can approximate Min-Plus
Convolution [Max-Plus Convolution] in time O((T (n, 4

ε
) + n) logW).

Algorithm 6 ApproximateMinConv(A,B). We use a simplified notation
to transform all elements in the sequences A[i] and B[i].
1: Output[i] =∞
2: for l = 2dlogW e, . . . , 0 do
3: q := 2l
4: A′[i] = d2A[i]

qε
e

5: if A′[i] > d4/εe then
6: A′[i] =∞
7: end if
8: B′[i] = d2B[i]

qε
e

9: if B′[i] > d4/εe then
10: B′[i] =∞
11: end if
12: V = runExact(A′, B′)
13: if V [i] <∞ then
14: Output[i] = V [i] · qε2
15: end if
16: end for
17: return Output[0, . . . , n− 1]

Proof. The idea is based on [109, Section 6.2]. We focus on the variant
with Min-Plus Convolution, however the proofs works alike for Max-Plus
Convolution.

108

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

We iterate the precision parameter q through 2W,W, . . . , 4, 2, 1. In each
iteration we apply the transform from Lemma 5.7.3 (x →

⌈
2x
qε

⌉
) to all ele-

ments in A,B, we set ∞ for each value exceeding
⌈

4
ε

⌉
, and launch the exact

algorithm on such input. We multiply all finite elements in the returned
array by qε

2 and store them in the output array C, possibly overwriting some
elements.

Assume the correct value of C[k] equals A[i]+B[k−i]. For some iteration
we get the precision parameter q such that q ≤ C[k] < 2q. The rounded
numbers

⌈
2A[i]
qε

⌉
,
⌈

2B[k−i]
qε

⌉
are at most

⌈
4
ε

⌉
, so we will update the k-th index

in the output array. On the other hand, the assumption of Lemma 5.7.3 is
satisfied, therefore the generated value lies between C[k] and C[k](1 + ε).
In the following iterations, we will still have q ≤ C[k], therefore any further
updates to the k-th index will remain valid.

The algorithm performs O(logW) iterations and in each step we run the
exact algorithm in time T (n, 4

ε
), thanks to the pruning procedure. Trans-

forming the sequences takes O(n) time in each step. �

Theorem 5.7.5 (Apx for Min-Plus Convolution/Max-Plus Convolution).
There is a deterministic algorithm for (1 + ε)-approximate Min-Plus Convo-
lution [Max-Plus Convolution] running in O

(
n
ε

log (n
ε
) logW

)
time.

Proof. From Lemma 5.7.2 the running time of exact algorithm is T (n,W) =
O(nW log n logW). This quantity dominates the additive term O(n logW).
Hence by replacing each W with 1/ε we get the claimed running time. �

5.8 Approximate Tree Sparsity
The approximation version of Tree Sparsity comes with two flavors: as a head
approximation where we are supposed to maximize the weight of the solution,
and as a tail approximation where we minimize the total weight of nodes that
do not belong to the solution. Note that a constant approximation for one of
the variants does not necessarily yield a constant approximation for the other
one. Backurs, Indyk, and Schmidt [18] proposed an O

(
n
ε2
· log12 n · log2W

)
running time for (1− ε)-head approximation, and an O

(
n
ε3
· log9 n · log3W

)
running time for (1 + ε)-tail approximation.

In this section we improve the running times for both variants relying on
the Õ

(
n
ε

)
algorithm for approximating Min-Plus Convolution and Max-Plus

Convolution.
The following theorem, combined with our approximation for Min-Plus

Convolution yields an O
(
n
ε
· log(n/ε) · log3 n · logW

)
-time algorithm that

109

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

computes the maximal weights of rooted subtrees for each size k = 1, . . . , n
with a relative error at most ε in both head and tail variant.

Theorem 5.8.1. If (1 + ε)-approximate Min-Plus Convolution can be solved
in time T (n,W, ε), then (1 + ε)-approximate Tree Sparsity can be solved in
time O

((
n+ T (n,W, ε/ log2 n)

)
log n

)
.

Proof. We exploit the heavy-light decomposition introduced by Sleator and
Tarjan [140]. This technique has been utilized by Backurs, Indyk, and
Schmidt [18] in their work on Tree Sparsity approximation.

We construct a spine with a head s1 at the root of the tree. We define
si+1 to be the child of si with the larger subtree (in case of draw we choose
any child) and the last node in the spine is a leaf. The remaining children of
nodes si become heads for analogous spines so the whole tree gets covered.
Observe that every path from a leaf to the root intersects at most log n spines
because each spine transition doubles the subtree size.

At first we express the head variant in the convolutional paradigm. For
a node v with a subtree of size m we define the sparsity vector

(xv[0], xv[1], . . . , xv[m])
of weights of the heaviest subtrees rooted at v with fixed sizes. This vector

equals the Max-Plus Convolution of the sparsity vectors for the children of v.
We are going to compute sparsity vectors for all heads of spines in the tree
recursively. Having this performed we can read the solution from a sparsity
vector of the root. Let (si)`i=1 be a spine with a head v and let ui indicate
the sparsity vector for the child of si being a head (i.e., the child with the
smaller subtree). If si has less than two children we treat ui as a vector (0).

For an interval [a, b] ⊆ [1, `] let ua,b = ua ⊕max ua+1 ⊕max · · · ⊕max ub

and ya,b[k] be the maximum weight of a subtree of size k rooted at sa and
not containing sb+1. Let c =

⌊
a+b

2

⌋
. The ⊕max operator is associative so

ua,b = ua,c ⊕max uc+1,b. To compute the second vector we consider two cases:
whether the optimal subtree contains sc+1 or not.

ya,b[k] = max
[
ya,c[k],

c∑
i=a

x(si) + max
k1+k2=k−(c−a+1)

(
ua,c[k1] + yc+1,b[k2]

)]
(5.6)

= max
[
ya,c[k],

c∑
i=a

x(si) +
(
ua,c ⊕max yc+1,b

)[
k − (c− a+ 1)

]]

Using the presented formulas we reduce the problem of computing xv =
y1,` to subproblems for intervals [1, `2] and [`2 + 1, `] and results are merged

110

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

with two (max,+)-convolutions. Proceeding further we obtain log ` levels of
recursion. Since there are O(log n) spines on a path from a leaf to the root,
the whole computation tree has O(log2 n) layers, each node being expressed
as a pair of convolutions on vectors from its children. Each vertex of the
graph occurs in at most log n convolutions so the sum of convolution sizes is
O(n log n).

In order to deal with the tail variant we consider a dual sparsity vector
(xv[0], xv[1], . . . , xv[m]), where xv[i] stands for the total weight of the subtree
rooted at v minus xv[i]. The dual sparsity vector of v equals the Min-Plus
Convolution of the vectors for the children of v. We can use an analog of
equation (5.6) and also express the problem as a computation tree based on
convolutions.

We take advantage of Theorem 5.7.5 to perform each convolution with
a relative error δ. The formula (5.6) contains an additive term ∑c

i=a x(si)
but this can only decrease the relative error. The cumulative relative error is
bounded by (1− δ)log2 n for head approximation and (1 + δ)log2 n for tail ap-
proximation, therefore setting δ = Θ(ε/ log2 n) guarantees that the sparsity
vector for the root is burdened with relative error at most ε.

The sum of running times for all convolutions isO
(
T (n,W, δ) log n

)
, what

gives the postulated running time for the whole algorithm. In order to re-
trieve the solution for a given k, we need to find the pair of indices that pro-
duced the value of the k-th index of the last convolution. Then we proceed
recursively and traverse back the computation tree. Since finding arg max
and arg min can be performed in linear time, the total time of analyzing all
convolutions is O(n log n). �

5.9 Õ(n + 1/ε) approximation algorithm for
3SUM

In this section we will show an Õ(n+1/ε) approximation algorithm for 3SUM
and prove accompanying lower bound under a reasonable assumption.

Definition 5.9.1 (k-SUM). In k-SUM problem, one is given sets A1,A2,. . .,
Ak−1, S, each with cardinality at most n. The task is to decide if there is a
tuple (a1, . . . , ak−1, s) ∈ A1 × . . .× Ak−1 × S such that a1 + . . .+ ak−1 = s.

The 3SUM problem is a special case of k-SUM for k = 3. The 3SUM is
one of the most notorious problems with a quadratic running time and has
been widely accepted as a hardness assumption (see [159] for overview). The
fastest known algorithm for 3SUM is slightly subquadratic: Patrascu [124]

111

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

gave an O(n2(log log n/ log n)2/3)-time deterministic algorithm and then in-
dependently Gajentaan and Overmars [67] and Gold and Sharir [79] improved
this result by presenting an O(n2 log log n/ log n)-time algorithm.

The approximation variant for 3SUM was considered by Gfeller [77] who
showed a deterministic Õ(n

ε
) algorithm as a byproduct of finding longest

approximate periodic patterns. If we are not interested in exact solution,
the Gfeller [77] algorithm is polynomially faster than the best exact algorithm
for 3SUM. In this section we show how to solve 3SUM approximately in time
Õ(n+ 1/ε) time and prove this tight up to the polylogarithmic factors.

Definition 5.9.2 (Approximate 3SUM ([77])). In the approximate 3SUM
we are given three sets A, B, C of positive integers, each with cardinality at
most n. The algorithm that solves approximate 3SUM, either:

• it outputs a triple (a, b, c) ∈ A×B×C with a+ b ∈ [c/(1+ε), c(1+ε)],
or

• concludes that no triple (a, b, c) ∈ A×B × C with a+ b = c exists.

This definition generalizes to k-SUM, however we are unaware about any
previous works on approximate k-SUM.

5.9.1 Faster approximation algorithm for 3SUM
In this section we present an Õ(n + 1/ε)-time approximation scheme for
3SUM problem. We use a technique from Section 5.7, where we gave the
fast approximation algorithm for Min-Plus Convolution. As previously, we
start with a fast Õ(n+W) exact algorithm and then utilize rounding to get
an approximation algorithm. In the Section 5.10 we will show a conditional
optimality of this result.

Exact Õ(n+W) algorithm for 3SUM

Let W denote the upper bound on the integers in the sets A,B and C. The
exact Õ(n+W)-time algorithm for 3SUM is already well known [39, 46]. In
here we will place the proof for completeness. For formal reasons we need
to take care of the special symbol ∞. What is more, we will generalize this
result to k-SUM.

Theorem 5.9.3 (Based on [39, 46]). The k-SUM can be solved determinis-
tically in Õ(kn+ kW logW) time and Õ(kn+W) space.

112

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Proof. We will encode the numbers in the sets as binary arrays of size O(W)
and iteratively perform fast convolution using FFT. Because we will use only
O(1) tables at once, the space complexity will not depend on k. At the end
we will need to check if any entry in the final array is in S.

Encoding: We iterate for every set A1, . . . , Ak−1 and for l-th iteration en-
code it as a binary vector V of length W + 1, such that:

Vl[i] =

1 iff t ∈ Al
0 otherwise

to save space we will use only one Vl vector at the time. The encoding can
be done in O(n + W) time. If the special symbol ∞ ∈ Al appears then we
simply discard it.

FFT: We want to perform a convolution with FFT on all vectors Vl. We
do it one at a time and discard all elements larger than W . Let Ul be the
result of up to l-th iteration. Let the polynomial Ul be

Ul(x) =
∑

(a1,...,al)∈(A1×...×Al)
xa1+...al .

If we multiply it by the polynomial Vl+1 = ∑
al+1∈Al+1 x

al+1 , we get

Ul+1(x) =
∑

(a1,...,al+1)∈(A1×...×Al+1)
xa1+...al+1 .

In the end of that proces, we get the vector Vk−1 that encodes all the
sums of elements in subsets truncated up toW order.Then, we get the binary
vector for S and compare it with the resulting vector Vk−1.

Time and Space We did k iterations. In each of them we transformed a
set into a vector in time O(n). The fast convolution works in O(T log T) by
using FFT. Hence, the running time is O(kn+ kW logW). Algorithm needs
O(nk) space to encode input and O(W) space to store binary vectors. �

Approximation algorithm

Next we will use an exact algorithm to propose the fast approximation. We
will use the same reasoning as in Section 5.7.5.

Lemma 5.9.4. Assume the k-SUM can be solved exactly in T (n, k,W) time.
Then approximate k-SUM can be solved in O((T (n, k, k/ε)+nk) logW) time.

113

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Algorithm 7 ApproximateKSum(a1, a2, . . . , ak−1, s, ε). We use a shorten
notation to transform all elements in the sequences al[i] and s[i].
1: Output[i] =∞
2: for l = 2dlogW e, . . . , 0 do
3: q := 2l
4: for l = 1 . . . k − 1 do
5: a′l[i] =

⌈
kal[i]
qε

⌉
6: if a′l[i] > d4k/εe then
7: a′l[i] =∞
8: end if
9: end for
10: s′[i] =

⌈
ks[i]
qε

⌉
11: if s′[i] > d4k/εe then
12: s′[i] =∞
13: end if
14: if runExactKsum(a′1, . . . , a′k−1, s

′) then
15: return True
16: end if
17: end for
18: return False

114

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Proof of Lemma 5.9.4. We follow the Proof of Lemma 5.7.4. Assume, that
there is some number s, such that there exists a tuple (a1, a2, . . . , ak−1) ∈
A1 × . . . Ak−1, that s <

∑k
i=1 ai < s(1 + ε). Observe, that in Algorithm 7

we iterate over precision parameter q, hence there exists some q, such that
q ≤ s < 2q. From Lemma 2.4.1 we know, that we can round the numbers
a′i =

⌈
kai
qε

⌉
and then their sum is

k∑
i=1

ai ≤
k∑
i=1

⌈
kai
qε

⌉
< (1 + ε)

k∑
i=1

ai.

So if there is some number s ∈ S, then ApproximateKSum algorithm
finds a tuple, that sums up to s′ ∈ [s, (1 + ε)s]. Analogously, we can use
Lemma 2.4.2 and round up numbers to find a tuple, that sums up to s′ ∈
[(1− ε)s, s].

For completness, assume that for all s ∈ S no tuple sums up to s′ ∈
[(1−ε)s, (1+ε)s]. We need to prove that in such a case, ApproximateKSum
returns NO. However, for such s′ there always exists a precision parameter
q, that q ≤ s′ < 2q. Then rounding the numbers according to Lemma 2.4.1
and Lemma 2.4.2 guarantees (1 ± ε) error. Hence, numbers after rounding
cannot sum to

⌈
ks
qε

⌉
. So, if for all s ∈ S no tuple sums up to [(1−ε)s, (1+ε)s]

then our ApproximateKSum will return NO.
In the Definition 5.9.2 we need to return approximation of the form

OPT/(1 + ε) ≤ OPT’ ≤ OPT(1 + ε) but note that 1
1+ε ≈ 1 − ε so we

can take care of it by mulitplying ε by a constant. �

At the end we need to connect the exact algorithm from Lemma 5.9.3
and the reduction from Lemma 5.9.4.

Theorem 5.9.5. There is a deterministic algorithm for (1 + ε)-approximate
k-SUM running in O(nk logW + k2

ε
log k

ε
logW) time.

Proof. From Lemma 5.9.3 the running time of k-SUM is T (n, k,W) = O(nk+
kW logW). Applying this running time to the reduction in Lemma 5.9.4
results in the claimed running time, because the O(nk) term is dominated
by O(nk logW) term in the reduction. �

To get an approximate algorithm for 3SUM we set k = 3.

Corollary 5.9.6. The approximate 3SUM can be solved deterministically in
O((n+ 1

ε
log 1

ε
) logW)) time.

115

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

5.10 Conditional lower bounds for approxi-
mate Knapsack-type problems

Abboud et al. [3] showed that assuming SETH there can be noO(t1−δpoly(n))
algorithm for Subset Sum (Cygan et al. [47] obtained the same lower bound
before but assuming the SetCover conjecture).

Theorem 5.10.1 (Conditional Lower Bound for approximate Subset Sum).
For any constant δ > 0, a weak (1 − ε)-approximation for Subset Sum with
running time O

(
poly(n)

(
1
ε

)1−δ
)
would refute SETH and SetCover conjec-

ture.

Proof. We set ε = 2/t and obtain an algorithm that solves an exact Subset
Sum, because all numbers are integers and the absolute error is at most 1/2.
The running time is O(t1−δpoly(n)). This refutes SETH by the reduction
in [3] and the SetCover conjecture by the reduction in [47]. �

5.10.1 Conditional lower bound for approximate 3SUM
We have shown an approximate algorithm for 3SUM running in Õ(n+ 1/ε)
time. Is this the best we can hope for? Perhaps one could imagine an
Õ(n+1/

√
ε) time algorithm. In this subsection we rule out such a possibility

and prove the optimality of Theorem 5.9.6.
To show the conditional lower bound we will assume the hardness of

the exact 3SUM. The 3SUM conjecture says, that the Õ(n2) algorithm is
essentially the best we can hope for up to subpolynomial factors.

Conjecture 5.10.2 (3SUM conjecture [159]). In the Word RAM model with
O(log n) bit words, any algorithm requires Ω(n2−o(1)) time in expectation to
determine whether given set S ⊂ {−n3+o(1), . . . , n3+o(1)} of size n contains
three distinct elements a, b, c such that a+ b = c.

Solving 3SUM with polynomially bounded numbers can be reduced to
solving it with the upper bound W = O(n3+o(1)) [20]. 3SUM can be solved
in subquadratic time whenW = O(n2−δ) via FFT. Hsu and Umans [88] have
considered it as a yet another hardness assumption.

Conjecture 5.10.3 (Strong-3SUM conjecture [88]). 3SUM on a set of n
integers in the domain of {−n2, . . . , n2} requires time Ω(n2−o(1)).

Theorem 5.10.4. Assuming the Strong-3SUM conjecture, there is no Õ(n+
1/ε1−δ) algorithm for (1 + ε)-approximate 3SUM, for any constant δ > 0.

116

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

Proof. Consider the exact variant of 3SUM within the domain {−n2, . . . , n2}.
We can assume that the numbers are divided into sets A,B,C and we can
restrict ourselves to triples a ∈ A, b ∈ B, c ∈ C [20]. We add n2 + 1 to all
numbers in A ∪ B and likewise 2n2 + 2 to all numbers in C to obtain an
equivalent instance with all input numbers greater than 0 and W = O(n2).

Suppose, that for some small δ > 0 the approximate 3SUM admits an
Õ(n + 1/ε1−δ)-algorithm. We can use it to solve the constructed instance
exactly by setting ε = 1

2W = Ω(n 1
2). The running time of the exact algorithm

is strongly subquadratic, namely Õ(n+1/ε1−δ) = Õ(n2−2δ). This contradicts
the Strong-3SUM conjecture.

�

117

CHAPTER 5. ON PROBLEMS EQUIVALENT TO (MIN,+)-CONVOLUTION

118

Chapter 6

Approximate (min,+) is
equivalent to (min,max)

max
max

max
max

min

min
min

+
+

+

+
+

+

In this Chapter, we prove the equivalence of computing the approximate
Min-Plus Product of two n× n matrices with arbitrary values and Min-Max
Product. This yields a first subcubic strongly polynomial approximation for
the All-Pairs Shortest Path problem (APSP). The algorithm runs in time
O(nω+3

2 ε−1polylog(n, ε)) ≤ Õ(n2.69

ε
) on word RAM. In comparison, a scaling-

based approximation scheme for APSP runs in Õ(nω
ε

logW) time (where W
is the upper bound on the weight) and is not strongly polynomial.

The result is rather unexpected. For applications of APSP (i.e., diameter,
radius, minimum weight cycle, etc.) we show that the known algorithms can
be transformed into a strongly polynomial relatively easily. Additionally, for
undirected APSP we show that contracting edges and amortized analysis also
give the power to obtain a Õ(nω/ε) strongly polynomial time. However, for
APSP we cannot do such operations. In fact, this makes sense, as we prove
that approximate APSP is at least as hard as exact Min-Max Product for
which no O(nω) algorithm is known. This can be seen as a conditional lower
bound, although not based on a standard hypothesis. So we do not hope to
get strongly polynomial O(nω), but can break the cubic barrier? Yes we can!

Outline: Our main technical contribution is the following Sum-to-Max-
Covering, which yields a framework for reducing approximate problems over
the (min,+)-semiring to exact or approximate problems over the (min,max)-
semiring. The most intriguing results of this thesis (the approximation
scheme for directed APSP as well as the equivalence with Min-Max Prod-
uct) are essentially immediate consequences of Sum-to-Max-Covering, see
Sections 6.1 and 6.2.

119

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Theorem 6.0.1 (Sum-to-Max-Covering). Given vectors A,B ∈ Rn+ and ε >
0, in linear time in the output size we can compute vectors A(1), . . . , A(s),
B(1), . . . , B(s) ∈ Rn+ with s = O((1

ε
+ log n) log 1

ε
) such that for all i, j ∈ [n]:

A[i] +B[j] ≤ min
`∈[s]

max{A(`)[i], B(`)[j]} ≤ (1 + ε)(A[i] +B[j]).

There are two main issues that make the proof of this statement non-
trivial.

For close pairs i, j, meaning A[i]
B[j] ∈ [ε, 1

ε
], the sum A[i] + B[j] and the

maximum max{A[i], B[j]} differ significantly. It is thus necessary to change
the values of the vectors A,B. Roughly speaking, we handle this issue by
splitting A into vectors A(`) such that all entries A(`)[i], A(`)[i′] differ by either
less than a factor 1 + ε or by more than a factor poly(1/ε). Then we can
choose B(`) such that B(`)[j] is approximately A[i] + B[j] for all close pairs
i, j. This ensures that for close pairs max{A(`)[i], B(`)[j]} is approximately
A[i] +B[j]. For details see Close Covering (Lemma 6.3.2).

For the distant pairs i, j, with A[i]
B[j] < [ε, 1

ε
], the sum A[i] + B[j] and the

maximum max{A[i], B[j]} differ by less than a factor 1+ε, so we do not have
to change any values. However, we need to remove some entries (by setting
them to∞) in order to not interfere with close pairs. We show how to cover all
distant pairs but no too-close pairs, via a recursive splitting into log n levels
of chunks and treating boundaries between chunks by introducing several
shifts of restricted areas. For details see Distant Covering (Lemma 6.3.3).

We present our approximation scheme for APSP in Section 6.1 and the
equivalence with Min-Max Product in Section 6.2. The main technical re-
sult, Max-to-Sum-Covering, is proved in Section 6.3. In Section 6.4 we discuss
Undirected APSP, and in Section 6.5 we discuss certain graph characteris-
tics. Finally, in Section 6.6 we present approximation scheme for Min-Plus
Convolution and prove the equivalence with Min-Max Convolution.

The preliminary version of results in this Chapter was presented at Sym-
posium on Theory of Computing (STOC 2019) [29].

6.1 Strongly polynomial approximation for di-
rected APSP

We present a strongly polynomial (1+ε)-approximation algorithm for APSP
with running time Õ(nω+3

2 ε−1), proving Theorem 1.4.3. To this end, we
first recall the reduction from approximate APSP to approximate Min-Plus
Product from [170] (see Theorem 6.1.1). Then we observe that Sum-To-Max-
Covering yields a reduction from approximate Min-Plus Product to Min-Max

120

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Product. Using the known Õ(nω+3
2)-time algorithm for the latter shows the

result (see Theorem 6.1.2).

Theorem 6.1.1 (Implicit in [170]). If (1+ε)-Approximate Min-Plus Product
can be solved in time T (n, ε), then (1 + ε)-Approximate APSP can be solved
in time O

(
T (n, ε/ log n) · log n

)
.

Proof. For the sake of completeness, we repeat the argument of Zwick [170,
Theorem 8.1]. Let A be the adjacency matrix of a given edge-weighted di-
rected graph G, i.e., if there is an edge (i, j) ∈ E of weight w(i, j) then
A[i, j] = w(i, j), and A[i, j] = ∞ otherwise. We also add self-loops of
weight 0, i.e, we set A[i, i] = 0 for all i ∈ [n]. Given ε > 0, we set
ε′ := ln(1 + ε)/ dlog ne (where ln is the natural logarithm and log is base
2). We will perform dlog ne iterations of repeated squaring. In each iter-
ation, we execute (1 + ε′)-Approximate Min-Plus Product on the current
matrix A with itself, i.e., we square the current matrix A. An easy induc-
tive proof shows that after r iterations each entry A[i, j] is bounded from
below by the distance from i to j in G, and bounded from above by (1 + ε′)r
times the length of the shortest 2r-hop path from i to j. Since any shortest
path uses at most n edges, after dlog ne iterations each entry A[i, j] is an
approximation of the distance from i to j in G, by a multiplicative factor of

(1 + ε′)dlogne =
(

1 + ln(1 + ε)
dlog ne

)dlogne
≤ 1 + ε.

The direct running time of the reduction is O(n2 log n) and there are O(log n)
calls to (1 + ε′)-Approximate Min-Plus Product with ε′ = Θ(ε

logn). �

Theorem 6.1.2. (1 + ε)-Approximate Min-Plus Product can be solved in
time Õ(nω+3

2 ε−1).

Proof. We use Sum-To-Max-Covering to reduce approximate Min-Plus Prod-
uct to exact Min-Max Product and then use a known algorithm for the latter;
the pseudocode is shown in Algorithm 8.

Consider input matrices A,B ∈ Rn×n+ on which we want to compute
C ∈ Rn×n+ with C[i, j] = mink∈[n]{A[i, k] +B[k, j]} for all i, j ∈ [n]. We view
the matrices A,B as vectors in Rn2

+ , in order to apply Sum-To-Max-Covering
(Lemma 6.3.1). This yields vectors A(1), . . . , A(s), B(1), . . . , B(s) ∈ Rn2

+ , which
we re-interpret as matrices in Rn×n+ . We compute the Min-Max Product of
every layer A(`), B(`) and return the entry-wise minimum of the results, see
Algorithm 8. (Note that we can replace the entries of A(`), B(`) by their ranks
before computing the Min-Max Product and then infer the actual result —

121

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

this is necessary since our input format for approximate Min-Plus Product
is floating-point, but for Min-Max Product our input format is standard bit
representation.)

Algorithm 8 ApproximateMinProd(A,B, ε).
1: {(A(1), B(1)), . . . , (A(s), B(s))} = SumToMaxCovering(A,B, ε)
2: C(`) := MinMaxProd(A(`), B(`)) for all ` ∈ [s]
3: C̃[i, j] := min`∈[s] C

(`)[i, j] for all i, j ∈ [n]
4: return C̃

Let us prove that the output matrix C̃ is a (1 + ε)-approximation of C.
Sum-To-Max-Covering yields that for any i, j, k we have

A[i, k] +B[k, j] ≤ min
`∈[s]

max{A(`)[i, k], B(`)[k, j]} ≤ (1 + ε)(A[i, k] +B[k, j]).

In particular, since

C[i, j] = min
`∈[s]

C(`)[i, j] = min
`∈[s]

min
k∈[n]

max{A(`)[i, k], B(`)[k, j]},

and C[i, j] = mink∈[n](A[i, k] +B[k, j]), we obtain

C[i, j] ≤ C̃[i, j] ≤ (1 + ε)C[i, j].

Sum-To-Max-Covering runs in time Õ(n2/ε). Computing s times the
Min-Max Product runs in time Õ(snω+3

2). We conclude the proof by noting
that Sum-To-Max-Covering yields s = O(1

ε
polylog(n/ε)). �

Combining Theorems 6.1.1 and 6.1.2 yields a (1 + ε)-approximation for
APSP in time Õ(nω+3

2 ε−1).

6.2 Equivalence of approximate APSP and
Min-Max Product

We next prove our equivalence of approximating APSP, exactly computing
the Min-Max Product, and other problems. The theorem is restated here for
convenience.

Theorem 1.4.4. For any c ≥ 2, if one of the following statements is true,
then all are:

• (1+ε)-Approximate Directed APSP can be solved in strongly polynomial
time Õ(nc/poly(ε)),

122

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

• (1 + ε)-Approximate Min-Plus Product can be solved in strongly poly-
nomial time Õ(nc/poly(ε)),

• exact Min-Max Product can be solved in strongly polynomial time Õ(nc),

• exact All-Pairs Bottleneck Path can be solved in strongly polynomial
time Õ(nc).

Proof. Equivalence of (1 + ε)-Approximate APSP and (1 + ε)-Approximate
Min-Plus Product is essentially known. One direction is given by Theo-
rem 6.1.1. For the other direction, given matrices A,B we build a 3-layered
graph, with edge weights between the first two layers as in A, edge weights
between the last two layers as in B, and all edges directed from left to right.
Then we observe that the pairwise distances between the first and third lay-
ers are in one-to-one correspondence to Min-Plus Product on A,B, also in
an approximate setting.

Equivalence of Min-Max Product and All-Pairs Bottleneck Path is folk-
lore (see, e.g., [52]). Both directions of this equivalence work exactly as for
(approximate) Min-Plus Product vs. APSP.

Our main contribution is the equivalence of (1+ε)-Approximate Min-Plus
Product and exact Min-Max Product. Observe that if Min-Max Product can
be solved in time T (n) then the algorithm from Theorem 6.1.2 runs in time
Õ(T (n)/ε).

It remains to show a reduction fromMin-Max Product to (1+ε)-Approximate
Min-Plus Product. Fix any constant ε > 0. Given matrices A,B, denote
their Min-Max Product by C. Let r be the value of 4(1 + ε)2 rounded up to
the next power of 2, and consider the matrices A′, B′ with A′[i, j] := rA[i,j]

and B′[i, j] := rB[i,j]. (Recall that the input A,B for Min-Max Product is
in standard bit representation, so in constant time we can compute rA[i,j]

in floating-point representation, by writing A[i, j] · log r into the exponent.)
Let C ′ be the result of (1 + ε)-Approximate Min-Plus Product on A′, B′.

Claim 6.2.1. We have rC[i,j] ≤ C ′[i, j] ≤ rC[i,j]+1/2 for all i, j.

Using this claim, we can infer C from C ′ by computing C[i, j] = blogr C ′[i, j]c
(i.e., we simply read the most significant bits of the exponent of the floating-
point number C ′[i, j]). If (1 + ε)-Approximate Min-Plus Product can be
solved in time T (n) (recall that ε is fixed), then this yields an algorithm for
Min-Max Product running in time Õ(T (n)). �

Proof of Claim 6.2.1. We will use mink(A′[i, k] + B′[k, j]) ≤ C ′[i, j] ≤ (1 +
ε) mink(A′[i, k] + B′[k, j]) for all i, j ∈ [n]. For any i, j there exists k with

123

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

C[i, j] = max{A[i, k], B[k, j]}. Hence,

C ′[i, j] ≤ (1 + ε)(A′[i, k] +B′[k, j]) = (1 + ε)(rA[i,k] + rB[k,j])
≤ 2(1 + ε)rmax{A[i,k],B[k,j]} = 2(1 + ε)rC[i,j],

and by r ≥ 4(1 + ε)2 we obtain C ′[i, j] ≤ rC[i,j]+1/2. Moreover, for any i, j
there exists k with C ′[i, j] ≥ A′[i, k] +B′[k, j]. We thus obtain

C ′[i, j] ≥ A′[i, k] +B′[k, j] = rA[i,k] + rB[k,j] ≥ rmax{A[i,k],B[k,j]} ≥ rC[i,j]. �

We remark that for scaling algorithms this proof shows an equivalence of
the Õ(Wnω)-time exact algorithm for Min-Max Product and the Õ(nω

poly(ε) logW)-
time approximation scheme for Min-Plus Product.

6.3 Sum-To-Max-Covering
In this section, we prove the main technical result of this Chapter, which we
slightly reformulate here.

Theorem 6.3.1 (Sum-to-Max-Covering, Reformulated). Given vectors A,B ∈
Rn+ and a parameter ε > 0, there are vectors A(1), . . . , A(s), B(1), . . . , B(s) ∈
Rn+ with s = O(1

ε
log 1

ε
+ log n log 1

ε
) and:

(i) for all i, j ∈ [n] and all ` ∈ [s]:

max{A(`)[i], B(`)[j]} ≥ A[i] +B[j], and

(ii) for all i, j ∈ [n] there exists ` ∈ [s]:

max{A(`)[i], B(`)[j]} ≤ (1 + ε)(A[i] +B[j])

.

We can compute such vectors A(1), . . . , A(s), B(1), . . . , B(s) in time O(n
ε

log 1
ε
+

n log n log 1
ε
).

We split the construction into two parts, covering the pairs i, j with A[i]
B[j] ∈

[ε, 1/ε] (Close Covering Lemma, Section 6.3.1) and covering the remaining
pairs (Distant Covering Lemma, Section 6.3.2). We show how to combine
both cases in Section 6.3.3.

124

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

6.3.1 Close Covering
We first want to cover all pairs i, j with A[i]

B[j] ∈ [ε, 1/ε]. To get an intuition,
let d ∈ Z and consider only the entries A[i] in the range [(1 + ε)d−1, (1 + ε)d).
Remove all other entries of A by setting them to ∞, obtaining a vector A′.
Since we consider the close case, we are only interested in entries B[j] that
differ by at most a factor 1/ε from A[i], so consider the entries B[j] in the
range [ε(1+ε)d−1, 1

ε
(1+ε)d). Add (1+ε)d to all such entries B[j] and remove

all other entries of B by setting them to ∞, obtaining a vector B′. Then for
the considered entries we have max{A′[i], B′[j]} = B′[j] = B[j] + (1 + ε)d,
which is between A[i]+B[j] and (1+ε)(A[i]+B[j]). This covers all considered
pairs in the sense of Max-to-Sum-Covering.

However, naively we would need to repeat this construction for too many
values of d. The main observation of our construction is that we can perform
this construction in parallel for all values d ∈ D = {s, 2s, 3s, . . .}. That is,
we only remove an entry of A if it is irrelevant for all d ∈ D, and similarly
for the entries of B. For a sufficiently large integer s = Θ(1

ε
log 1

ε
), it turns

out that the considered entries for different d’s do not interfere. Performing
this construction for all shifts D + 1, D + 2, . . . , D + s covers all close pairs.
See Figure 6.1 for an illustration.

(1 + ε)d−s (1 + ε)d (1 + ε)d+s

A[i] B[j]

Figure 6.1: An illustration for Algorithm 9. Shown is the positive real line
in log-scale. Entries of A that lie outside the red/dark-shaded areas are set
to∞. Entries of B that lie outside the blue/light-shaded areas are set to∞.
We set A(`)[i] := (1 + ε)d and B(`)[j] := B[j] + (1 + ε)d. This guarantees the
approximation (1−ε)(A[i]+B[j]) ≤ max{A(`)[i], B(`)[j]} ≤ (1+ε)(A[i]+B[j])
for close pairs. Numbers in non-overlapping parts differ by so much that their
sum and their max are equal up to a factor 1 + ε. This ensures that they do
not interfere with the close pairs.

Lemma 6.3.2 (Close Covering). Given vectors A,B ∈ Rn+ and a parameter
ε > 0, there are vectors A(1), . . . , A(s), B(1), . . . , B(s) ∈ Rn+ with s = O(1

ε
log 1

ε
)

such that:

125

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

(i) for all i, j ∈ [n] and all ` ∈ [s] :

max{A(`)[i], B(`)[j]} ≥ (1− ε)(A[i] +B[j]), and

(ii) for all i, j ∈ [n] if A[i]
B[j] ∈ [ε, 1/ε] then ∃` ∈ [s] :

max{A(`)[i], B(`)[j]} ≤ (1 + ε)(A[i] +B[j]).

We can compute such vectors A(1), . . . , A(s), B(1), . . . , B(s) in time O(n
ε

log 1
ε
).

Proof. We choose s = Θ(1
ε

log 1
ε
) with sufficiently large hidden constant, and

for any ` ∈ {1, . . . , s} construct vectors A(`), B(`) as described in Algorithm 9.

Algorithm 9 CloseCovering(A,B, ε).
1: Set s := 1 + d2 log1+ε(1/ε)e . Note that s = Θ(1

ε
log 1

ε
).

2: for ` = 1, . . . , s do . Take care of A[i] ≈ (1 + ε)ks+` for any k.
3: D` := {ks+ ` | k ∈ Z}

4: A(`)[i] :=

(1 + ε)d if A[i] ∈
[
(1 + ε)d−1, (1 + ε)d

)
for d ∈ D`

∞ otherwise

5: B(`)[j] :=

B[j] + (1 + ε)d if B[j] ∈
[
ε(1 + ε)d−1, 1

ε
(1 + ε)d

)
for d ∈ D`

∞ otherwise
6: end for
7: return {(A(1), B(1)), . . . , (A(s), B(s))}

Note that the condition for B[j] is well-defined in the sense that it applies
for at most one d ∈ D`. To see this, since two consecutive values in D` differ
by s, we only need to show the inequality 1

ε
(1 + ε)d ≤ ε(1 + ε)d+s−1, which

holds since s ≥ 1 + log1+ε(1/ε2). The same can be immediately seen to hold
for A[i].

The size and time bounds are immediate. It remains to prove correctness.
For property (ii), consider any i, j with A[i]

B[j] ∈ [ε, 1/ε]. Note that there is
a unique ` ∈ {1, . . . , s} such that A(`)[i] , ∞. For this `, we have A(`)[i] =
(1+ε)d with (1+ε)d−1 ≤ A[i] < (1+ε)d, for some d ∈ D`. By the assumption
A[i]
B[j] ∈ [ε, 1/ε], we obtain ε(1 + ε)d−1 ≤ B[j] ≤ 1

ε
(1 + ε)d, and thus B(`)[j] is

not set to∞, and we have B(`)[j] = B[j]+(1+ε)d. We conclude by observing
that max{A(`)[i], B(`)[j]} = B(`)[j] = B[j] + (1 + ε)d ≤ (1 + ε)(B[j] + A[j]).

For property (i), consider any i, j and `. If one of A(`)[i], B(`)[j] is set to
∞, then the property holds trivially. Otherwise, we have A(`)[i] = (1 + ε)d
for some d ∈ D` and B(`)[j] = B[j] + (1 + ε)d′ for some d′ ∈ D`. We consider
two cases.

126

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Case 1: d ≤ d′. Then A[i] ≤ (1 + ε)d ≤ (1 + ε)d′ , and thus B(`)[j] =
B[j] + (1 + ε)d′ ≥ A[i] +B[j].

Case 2: d > d′. Then by definition of D` we have d ≥ d′ + s. We bound

B[j] ≤ 1
ε
(1 + ε)d′ ≤ 1

ε
(1 + ε)d−s ≤ 1

ε
(1 + ε)1−sA[i] ≤ εA[i], (6.1)

where the last inequality uses s ≥ 1 + log1+ε(1/ε2). This yields

A(`)[i] ≥ A[i]
(6.1)
≥ (1− ε)A[i] +B[j] ≥ (1− ε)(A[i] +B[j]).

In both cases we have max{A(`)[i], B(`)[j]} ≥ (1 − ε)(A[i] + B[j]), which
proves property (i). �

6.3.2 Distant Covering
We now want to cover all pairs i, j with A[i]

B[j] < [ε, 1/ε]. Our solution for this
case is similar to the well-known Well-Separated Pair Decomposition (see [13,
33]), which we use in a one-dimensional setting and in log-scale. The main
difference is that we unite sufficiently distant pairs of the decomposition that
lie on the same level.

Our constructed vectors A(`) will correspond to subsets of the entries of
A, i.e., we have A(`)[i] ∈ {A[i],∞}, and similarly for B. For this reason, we
switch to subset notation for the majority of this section, and then return to
our usual notation of vectors A(`), B(`) in Corollary 6.3.10.

For x, y ∈ R+, we define their distance as d(x, y) := max{x
y
, y
x
} if x, y <∞

and d(x,∞) = d(∞, x) =∞ otherwise. For sets X, Y ⊂ R+, we define their
distance as d(X, Y) := minx∈X,y∈Y d(x, y).

Lemma 6.3.3 (Distant Covering, Set Variant). Given a set Z ⊂ R+ of size
n and a parameter ε > 0, there are sets X1, . . . , Xs ⊆ Z and Y1, . . . , Ys ⊆ Z
with s = O(log n log 1

ε
) such that:

(i) for any ` ∈ [s] we have d(X`, Y`) > 1
ε
, and

(ii) for any x, y ∈ Z with d(x, y) ≥ 2
ε
and x < y there is ` ∈ [s] such

that x ∈ X` and y ∈ Y`.

We can compute sets X1, . . . , Xs and Y1, . . . , Ys satisfying (1) and (2) time
O(n log n log 1

ε
).

We will later use Z as the set of all entries of vectors A and B. Regard-
ing (i), observe that if d(x, y) > 1

ε
, then the sum x + y and the maximum

max{x, y} differ by less than a factor 1 + ε. This allows us to ensure point

127

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

(i) of Sum-to-Max-Covering. Property (ii) ensures that we cover all distant
pairs and thus corresponds to point (ii) of Sum-to-Max-Covering.

The proof outline is as follows, see also Algorithm 10 for pseudocode. To
simplify notation we assume n to be a power of 2 (this is without loss of
generality since we can fill up Z with arbitrary numbers). We first sort Z,
so from now on we assume that Z = {z1, . . . , zn} with z1 ≤ . . . ≤ zn. The
algorithm performs log n iterations. In iteration r, we split Z into chunks of
size n/2r, and we remove some chunks that are irrelevant for covering distant
pairs, see procedure SplitChunks and Figure 6.2. Then we separate the
resulting list of chunks into two sub-lists, see procedure SeparateChunks
and Figure 6.3. Finally, we handle the transition between any two chunks
by introducing a restricted area at their boundary, applied with O(log 1

ε
)

different shifts, see procedure ShiftedTransitions and Figure 6.4. In the
following subsections we describe the individual procedures in detail.

Algorithm 10 DistantCoveringLemma(Z, ε)
1: sort(Z) . Z = {z1 ≤ z2 ≤ . . . ≤ zn}
2: Set T0 as a list containing one element, T0[1] := Z
3: for r = 1, 2, . . . , dlog ne do
4: Tr := SplitChunks(Tr−1, ε)
5: Tr,1, Tr,2 := SeparateChunks(Tr)
6: Sr,1 := ShiftedTransitions(Tr,1, ε)
7: Sr,2 := ShiftedTransitions(Tr,2, ε)
8: end for
9: return ⋃r Sr,1 ∪ Sr,2

SplitChunks

Algorithm 11 describes the procedure of selecting chunks Tr in every level,
see also Figure 6.2 for an illustration. We start with a big chunk T0[1] = Z,
containing the whole input. Then we iterate over all levels r = 1, 2, . . . , log n
and construct refined chunks as follows. In iteration r, we iterate over all
previous chunks Tr−1[i]. If Tr−1[i] does not contain any two numbers in
distance greater than 1

ε
, then we can ignore it. Otherwise, we split Tr−1[i]

at the middle into two chunks of half the size and add them to the list of
chunks Tr. For any r, this yields a list of chunks Tr such that

(P1) every chunk Tr[i] is a subset of Z of the form {za, za+1, . . . , zb} and of
size |Tr[i]| = n/2r, and

128

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

(P2) every x ∈ Tr[i] is smaller than every y ∈ Tr[j], for any i < j.

Note that at the bottom level, chunks have size 1. Moreover, for any r > 0
the list Tr contains an even number of chunks; this will also hold for all lists
of chunks constructed later.

Algorithm 11 SplitChunks(Tr−1[1 . . . `], ε)
1: Initialize Tr as an empty list, and k := 1
2: for i = 1, 2, . . . , ` do
3: By construction, Tr−1[i] is of the form {za, za+1, . . . , zb} for some a ≤ b
4: if za < ε · zb then
5: Tr[2k − 1] := {za, . . . , z(a+b−1)/2}
6: . Split Tr−1[i] in the middle
7: Tr[2k] := {z(a+b+1)/2, . . . , zb}
8: k := k + 1
9: end if
10: end for
11: return Tr

< 1
ε

< 1
ε

< 1
ε

r = 1

r = 2

r = 3

r = 4

Figure 6.2: Illustration of the procedure SplitChunks, which splits and
selects chunks of the input numbers on different levels r.

Claim 6.3.4. We have d
(
Tr[2k], Tr[2k + 3]

)
> 1

ε
for any level r and any

index k.
Proof. Write the parent chunk Tr[2k+1]∪Tr[2k+2] in the form {za, za+1, . . . , zb}.
Since Tr[2k+ 1], Tr[2k+ 2] have been added, we have za < ε · zb. Since every
number in T [2k] is smaller than za and every number in T [2k + 3] is larger
than zb, the distance of T [2k], T [2k + 3] is greater than 1

ε
. �

The main property of our splitting procedure is that all x, y ∈ Z with
d(x, y) > 1

ε
eventually are contained in consecutive chunks (see Figure 6.2) –

note that we will only make use of consecutive chunks with indices 2k−1, 2k
for some k (as opposed to 2k, 2k + 1).

129

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Claim 6.3.5. For any x, y ∈ Z, if d(x, y) > 1
ε
and x < y, then there exist a

level r and index k such that x ∈ Tr[2k − 1] and y ∈ Tr[2k].

Proof. Consider the largest r such that x, y are contained in the same chunk
Tr[k′]. The chunk Tr[k′] contains at least two elements, so r < log n. Since
d(x, y) > 1

ε
, Algorithm 11 splits Tr[k′] into chunks Tr+1[2k− 1] and Tr+1[2k].

By maximality of r and by x < y, it follows that x ∈ Tr+1[2k − 1] and
y ∈ Tr+1[2k]. This proves the claim. �

SeparateChunks

The procedure SeparateChunks is given a list Tr of chunks and separates
it into two subsequences Tr,1 and Tr,2, where Tr,1 contains all chunks T [i]
with (i mod 4) ∈ {1, 2}, and Tr,2 contains the remaining chunks in T . See
Algorithm 12 for pseudocode and Figure 6.3 for an illustration.

Algorithm 12 SeparateChunks(Tr[1 . . . 2`])
1: Initialize Tr,1, Tr,2 as empty lists, and b := 1
2: for k = 1, 2, . . . , ` do
3: Append Tr[2k − 1] and Tr[2k] to Tr,b
4: b := 3− b
5: end for
6: return Tr,1, Tr,2

Tr,1

> 1
ε

> 1
ε

Tr,2

> 1
ε

> 1
ε

Figure 6.3: Illustration of SeparateChunks, which separates the list of
chunks Tr on some level r into two sub-lists Tr,1 and Tr,2. The selected chunks
are marked in red/light-shaded and blue/dark-shaded. (In the next step, the
red/light-shaded chunks will form a set X`, and the blue/dark-shaded ones
will form a set Y`. Note that within Tr,1 every red chunk is ε-distant from
every blue chunk, except for its right neighbor. This will be used by the
procedure ShiftedTransitions.)

This construction ensures that consecutive chunks with indices 2k and
2k + 1 have distance at least 1

ε
, as shown in the following claim.

130

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Claim 6.3.6. We have d
(
Tr,b[2k], Tr,b[2k + 1]

)
> 1

ε
for any level r, index k,

and b ∈ {1, 2}.

Proof. Because of how Tr,1, Tr,2 are constructed, the chunks Tr,b[2k] and
Tr,b[2k + 1] correspond to chunks Tr[2k′] and Tr[2k′ + 3] for some k′. The
statement now follows from Claim 6.3.4. �

The following analogue of Claim 6.3.5 is immediate.

Claim 6.3.7. For any x, y ∈ Z, if d(x, y) > 1
ε
and x < y, then there exist a

level r, index k, and b ∈ {1, 2} such that x ∈ Tr,b[2k − 1] and y ∈ Tr,b[2k].

Proof. Consecutive chunks Tr[2k−1] and Tr[2k] are either both added to Tr,1
or both added to Tr,2. The statement thus follows from Claim 6.3.5. �

ShiftedTransitions

The procedure ShiftedTransitions is given a list of chunks T = Tr,b and
returnsO(log 1

ε
) many pairs (Xt, Yt) of the final covering (recall the statement

of Lemma 6.3.3). Naively, we would like to assign every odd chunk to Xt

and every even chunk to Yt, i.e., Xt = ⋃
k T [2k− 1] and Yt = ⋃

k T [2k]. From
Claim 6.3.6 we know that even chunks are distant from their right neighbors,
i.e., d(T [2k], T [2k+1]) > 1

ε
. This is not necessarily true for d(T [2k−1], T [2k]),

and therefore we introduce a restricted area at their boundary, applied with
O(log 1

ε
) different shifts, as illustrated in Figure 6.4. See Algorithm 13.

Algorithm 13 ShiftedTransitions(T [1, . . . 2`], ε)

1: for t = 0, 1, . . . ,
⌈
log2

1
ε

⌉
do

2: for k ∈ {1, . . . , `} do
3: let zmin be the minimal number in T [2k]
4: T ′[2k − 1] := {z ∈ T [2k − 1] | z ≤ ε2tzmin}
5: T ′[2k] := {z ∈ T [2k] | z > 2tzmin}
6: end for
7: Xt := ⋃

k T
′[2k − 1]

8: Yt := ⋃
k T
′[2k]

9: end for
10: return {(Xt, Yt) | 0 ≤ t ≤

⌈
log2

1
ε

⌉
}

Claim 6.3.8. For any output (Xt, Yt) by ShiftedTransitions(Tr,b, ε) we
have d(Xt, Yt) > 1

ε
.

131

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

T [2k − 1] T [2k]
1/ε

1/ε2

...
1/ε

Figure 6.4: Illustration of ShiftedTransitions in log-scale. Dashed areas
represent the added/removed numbers from iteration t to t + 1. In each
iteration, we shift to the right by a factor 2, resulting in at most

⌈
log2

1
ε

⌉
iterations. Note that in each iteration the red/light-shaded numbers are in
distance greater than 1

ε
from the blue/dark-shaded numbers. Moreover, the

distance between any two numbers in the dashed area is less than 2
ε
.

Proof. Let T = Tr,b. By Claim 6.3.6 and sortedness (see property (P2)), any
chunks T [i] and T [j] with j ≥ i + 2 have distance greater than 1

ε
. Since

Xt only contains numbers from odd chunks T [2k − 1], and Yt only contains
numbers from even chunks T [2k], we obtain that any x ∈ Xt, y ∈ Yt within
distance 1

ε
satisfy x ∈ T [2k−1], y ∈ T [2k] for some index k. However, in any

iteration t the subsets T ′[2k − 1] ⊆ T [2k − 1] and T ′[2k] ⊆ T [2k] are chosen
to have distance greater than 1

ε
, and hence d(Xt, Yt) > 1

ε
. �

Claim 6.3.9. For any x, y ∈ Z, if d(x, y) ≥ 2
ε
and x < y, then there exist a

level r and b ∈ {1, 2} such that ShiftedTransitions(Tr,b, ε) outputs a pair
(Xt, Yt) with x ∈ Xt, y ∈ Yt.

Proof. By Claim 6.3.7, there are r, k, b with x ∈ Tr,b[2k− 1] and y ∈ Tr,b[2k].
Let T = Tr,b and let zmin be the minimal number in T [2k]. If x ≤ ε·zmin, then
in iteration t = 0 we construct T ′[2k − 1] containing x, and T ′[2k] = T [2k]
contains y, so x ∈ X0 and y ∈ Y0. Otherwise, let t ∈ N be minimal with
x ≤ ε2t · zmin. By sortedness (see property (P2)) we have x < zmin and thus

132

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

t ≤
⌈
log2

1
ε

⌉
. Hence, in iteration t the set T ′[2k − 1] contains x. Moreover,

by minimality of t and d(x, y) ≥ 2
ε
we have ε2t−1 · zmin < x ≤ ε

2y, and thus
y > 2t · zmin, so y is contained in T ′[2k], yielding x ∈ Xt, y ∈ Yt. �

Proof of Distant Covering

Proof of Lemma 6.3.3. Properties (i) and (ii) follow immediately from Claims 6.3.8
and 6.3.9. The bound s = O(log n log 1

ε
) on the number of constructed

pairs (X`, Y`) is immediate from the loops in Algorithms 10 and 13. Fi-
nally, the running time of O(n log n log 1

ε
) is immediate from inspecting the

pseudocode. �

It remains to translate Lemma 6.3.3 to the vector notation of Sum-to-
Max-Covering.

Corollary 6.3.10 (Distant Covering, Vector Variant). Given vectors A,B ∈
Rn+ and a parameter ε > 0, there are vectors A(1), . . . , A(s), B(1), . . . , B(s) ∈
Rn+ with s = O(log n log 1

ε
) such that:

(i) for all i, j ∈ [n] and all ` ∈ [s] :

max{A(`)[i], B(`)[j]} ≥ (1− 2ε)(A[i] +B[j]), and

(ii) for all i, j ∈ [n] if A[i]
B[j] < [ε, 1/ε] then ∃` ∈ [s] :

max{A(`)[i], B(`)[j]} ≤ A[i] +B[j].

We can compute such vectors A(1), . . . , A(s), B(1), . . . , B(s) in time O(n log n log 1
ε
).

Proof. Set Z := {A[i], B[i] | i ∈ [n]} and run Lemma 6.3.3 on (Z, ε′)
with ε′ := 2ε to obtain subsets X1, . . . , Xs ⊆ Z and Y1, . . . , Ys ⊆ Z with
s = O(log n log 1

ε
). We only double the number of subsets by considering

(X ′1, . . . , X ′2s) := (X1, . . . , Xs, Y1, . . . , Ys) and (Y ′1 , . . . , Y ′2s) := (Y1, . . . , Ys, X1, . . . , Xs).
We construct vectors A(`), B(`) with ` ∈ [2s] by setting

A(`)[i] :=

A[i] if A[i] ∈ X ′`,
∞ otherwise,

B(`)[i] :=

B[i] if B[i] ∈ Y ′` ,
∞ otherwise.

The size and time bounds are immediate.
For any numbers x, y ∈ R+ with d(x, y) > 1

ε
we claim that max{x, y} ≥

(1 − ε)(x + y). Indeed, assume without loss of generality x < εy, then we
have max{x, y} = y > (1− ε)y + x ≥ (1− ε)(x+ y).

133

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Property (i) of Lemma 6.3.3 yields that d(A(`)[i], B(`)[j]) > 1
ε′

for any
i, j, `. Hence, we have

max{A(`)[i], B(`)[j]} ≥ (1− ε′)(A(`)[i] +B(`)[j])
≥ (1− ε′)(A[i] +B[j]) = (1− 2ε)(A[i] +B[j]),

proving property (i) of the corollary.
Note that by switching from X1, . . . , Xs and Y1, . . . , Ys to X ′1, . . . , X

′
2s

and Y ′1 , . . . , Y ′2s we made Lemma 6.3.3 symmetric, and thus the requirement
x < y of its property (ii) is removed. Thus, property (ii) of Lemma 6.3.3
yields that for any i, j with d(A[i], B[j]) ≥ 2

ε′
= 1

ε
there exists ` ∈ [2s] with

A(`)[i] = A[i] and B(`)[j] = B[j], and thus

max{A(`)[i], B(`)[j]} = max{A[i], B[j]} ≤ A[i] +B[j],

proving property (ii) of the corollary. �

6.3.3 Proof of Sum-To-Max-Covering
The following variant of Sum-To-Max-Covering follows immediately from
combining Close Covering (Lemma 6.3.2) and Distant Covering (Lemma 6.3.3).
Note that compared to Lemma 6.3.1 there is an additional factor 1 − 2ε on
the right hand side of property (i).

Lemma 6.3.11 (Weaker Sum-to-Max-Covering). Given vectors A,B ∈ Rn+
and a parameter ε > 0, there are vectors A(1), . . . , A(s), B(1), . . . , B(s) ∈ Rn+
with s = O(1

ε
log 1

ε
+ log n log 1

ε
) such that:

(i) for all i, j ∈ [n] and all ` ∈ [s] :

max{A(`)[i], B(`)[j]} ≥ (1− 2ε)(A[i] +B[j]), and

(ii) for all i, j ∈ [n] there exists ` ∈ [s] :

max{A(`)[i], B(`)[j]} ≤ (1 + ε)(A[i] +B[j]).

We can compute such vectors A(1), . . . , A(s), B(1), . . . , B(s) in time O(n
ε

log 1
ε
+

n log n log 1
ε
).

Proof of Lemma 6.3.11. Given vectors A,B ∈ Rn+ and a parameter ε > 0, we
simply run Close Covering and Distant Covering on (A,B, ε) and concatenate
the results, see Algorithm 14. Correctness as well as size and time bounds
are immediate consequences of Lemma 6.3.2 and Corollary 6.3.10. �

134

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Algorithm 14 WeakerSumToMaxCovering(A,B, ε).
1: return DistantCovering(A,B, ε) ∪CloseCovering(A,B, ε)

Proof of Lemma 6.3.1. To prove the stronger variant given in the beginning
of Section 6.3, we have to remove the factor 1 − 2ε on the right hand side
of property (i) in Lemma 6.3.11. To this end, given A,B, ε, we run the
construction from Lemma 6.3.11 on A,B, ε′ with ε′ := ε

5 , and we divide every
entry of the resulting vectors by 1 − 2ε′, see Algorithm 15. For correctness,
note that the division by 1−2ε′ removes the factor 1−2ε′ from property (i) in
Lemma 6.3.11, i.e., we obtain the claimed max{A(`)[i], B(`)[j]} ≥ A[i] +B[j]
for all i, j, `. For property (ii), note that the division by 1−2ε′ leaves us with
max{A(`)[i], B(`)[j]} ≤ 1+ε′

1−2ε′ (A[i] +B[j]) for all i, j and some `. Using ε′ = ε
5

and 1+ε/5
1−2ε/5 ≤ 1 + ε for any ε ∈ (0, 1] finishes the proof. �

Algorithm 15 SumToMaxCovering(A,B, ε).
1: return 1

1−2ε/5 ·WeakerSumToMaxCovering(A,B, ε5)

6.4 Strongly polynomial approximation for undi-
rected APSP

In this section, we present a strongly polynomial (1 + ε)-approximation for
APSP on undirected graphs that runs in time Õ(nω/ε). Our algorithm will
use the scaling technique, but we combine it with edge contractions and amor-
tized analysis to avoid the factor logW ; this is inspired by Tardos [144] and
uses similar edge contraction arguments as [44, 101]. We start by describ-
ing the previously fastest approximation algorithm for APSP (Section 6.4.1),
and then present our adaptations (Section 6.4.2).

6.4.1 Zwick’s approximation for APSP
Zwick [170] obtained an Õ(nω

ε
logW)-time (1 + ε)-approximation algorithm

for (directed or undirected) APSP as follows. The first step is to reduce
approximate APSP to approximate Min-Plus Product, see Theorem 6.1.1.
It is well-known that Min-Plus Product on n × n-matrices with entries in
{1, . . . ,W} can be solved exactly in time Õ(Wnω). Zwick utilized this fact
via adaptive scaling to realize his second step, as shown in Algorithm 17.

135

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Algorithm 16 scale(A, q, ε).

1: A′[i, j] =

dA[i, j]/(ε2q)e if A[i, j] ≤ 2q

∞ otherwise
2: return A′

Algorithm 17 Zwick-Apx-MinProd(A,B, ε).
1: Initialize C̃[i, j] :=∞ for all i, j
2: Let W be the largest entry of A,B
3: for q = 0, 1, 2, . . . , dlogW e+ 1 do
4: A′ = scale(A, q, ε) . Scale matrix A so entries are from {0, . . . ,

⌈
1
ε

⌉
}

5: B′ = scale(B, q, ε)
6: C ′ = MinPlusProd(A′, B′) . This works in time Õ(nω

ε
)

7: C̃[i, j] = min{C[i, j], ε2qC ′[i, j]} for all i, j
8: end for
9: return C̃

In each iteration q of Algorithm 17 the entries that are greater than 2q
are ignored (they are replaced by ∞). The remaining entries are scaled
and rounded to lie in the range {1, . . . ,

⌈
1
ε

⌉
} by Algorithm 16. This yields

scaled matrices A′, B′ with integer entries bounded by O(1
ε
), so their Min-

Plus Product C ′ can be computed in time Õ(nω
ε

). The output C̃ of the
algorithm is the entry-wise minimum of all computed products C ′ over all q.
The total running time is Õ(nω

ε
logW).

Since we always round up, one can see that each entry of C̃ is at least
the corresponding entry of the correct Min-Plus Product C of A,B. For the
other direction, for all i, j there is an iteration q such that 2q−1 < C[i, j] ≤ 2q.
Consider any k with C[i, j] = A[i, k] + B[k, j]. Then A[i, k], B[k, j] ≤ 2q,
so they are not set to ∞. We obtain that C ′[i, j] ≤ A′[i, k] + B′[k, j] ≤
A[i,k]+B[k,j]

ε2q +2, and thus C̃[i, j] ≤ ε2qC ′[i, j] ≤ C[i, j]+ε2q+1 ≤ (1+4ε)C[i, j].
Replacing ε by ε/4 yields the claimed approximation.

6.4.2 Undirected APSP in strongly polynomial matrix-
multiplication time

We now essentially remove the logW -factor from Zwick’s algorithm for undi-
rected graphs, proving the following restated theorem from the introduction.

136

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Theorem 1.4.2. (1 + ε)-Approximate Undirected APSP is in strongly poly-
nomial time1 Õ(nω

ε
).

Proof of Theorem 1.4.2. The algorithm proceeds in iterations q = 1, 2, 4, . . .
up to the largest power of 2 bounded by nW . In iteration q, the goal is to
find all shortest paths of length in [q, 2q). For this, all edges of G of weight
at least 2q are irrelevant. Therefore, in the first iteration we start with an
empty graph H, and in iteration q we add all edges of G with weight in [q, 2q)
to H. We then round down all edge weights to multiples of qε/n. This may
result in edges of weight 0, which we contract (this crucially uses that we
consider undirected graphs). Finally, we run Zwick’s algorithm on H and
update the corresponding distances. Specifically, if we compute a distance
d̃H(u, v) ∈ [(1− ε)q, (1 + ε)2q) in H, then we iterate over all vertices i in G
that were contracted to u in H, and similarly over all j that were contracted
to v, and we update our estimated distance D[i, j]. See Algorithm 18.

Algorithm 18 ApproximateUndirectedAPSP(G, ε).
1: Initialize H to be the graph with n isolated nodes, i.e., H = (V (G), ∅)
2: Initialize D[i, j] :=∞ for all i, j ∈ V (G)
3: for q = 1, 2, 4, . . . , 2blog(nW)c do . Find all shortest paths of length in

[q, 2q):
4: Add all edges of G with weight in [q, 2q) to H
5: Round down all edge weights of H to multiples of qε

n

6: Contract all edges of H with weight 0
7: Run Zwick’s (1 + ε)-approximation for APSP on H, obtaining dis-

tances d̃H(u, v)
8: for all nodes u, v of H with d̃H(u, v) ∈ [(1− ε)q, (1 + ε)2q) do
9: D[i, j] := min{D[i, j], d̃H(u, v)} for every node i (j) of G that was

contracted to u (v),
10: end for
11: end for
12: Return D

Correctness Denote by dG(i, j) the correct distance between i and j in
G, and by dH(., .) the correct distance in H. The computed approximation
satisfies dH(u, v) ≤ d̃H(u, v) ≤ (1 + ε)dH(u, v) for any u, v ∈ V (H).

1Here, by time we mean the number of arithmetic operations performed on a RAM
machine. The bit complexity of the algorithm is bounded by the number of arithmetic
operations times log log W (up to terms hidden by Õ).

137

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Claim 6.4.1. Consider i, j ∈ V (G) that have been contracted to u, v in H,
respectively. If we have d̃H(u, v) ≥ (1− ε)q then d̃H(u, v) ≥ (1− ε)dG(i, j).

Since we only update distances when d̃H(u, v) ∈ [(1− ε)q, (1 + ε)2q), by
this claim the output of Algorithm 18 satisfies D[i, j] ≥ (1− ε)dG(i, j) for all
i, j ∈ V (G).

Proof of Claim 6.4.1. Consider a path P from u to v in H realizing dH(u, v).
Uncontract all contracted edges of H to obtain a graph H ′. Since we only
contracted edges of (rounded) weight 0, the path P corresponds to a path
P ′ from i to j in H ′ of (rounded) length dH(u, v). Since we can assume P ′
to be a simple path and we rounded down edge weights to multiples of qε/n,
in the graph G path P ′ has length at most dH(u, v) + qε. Hence, we have
dG(i, j) ≤ dH(u, v) + qε.

Note that the claim is trivial if dG(i, j) ≤ q, so assume dG(i, j) > q.
Then we conclude by bounding d̃H(u, v) ≥ dH(u, v) ≥ dG(i, j) − qε > (1 −
ε)dG(i, j). �

It remains to show D[i, j] ≤ (1 + ε)dG(i, j) for all i, j ∈ V (G). Consider
the iteration q with dG(i, j) ∈ [q, 2q). Note that all edges of any shortest path
between i and j are added in or before iteration q. Let u, v be the nodes that
i, j have been contracted to in H in iteration q, respectively. Since rounding
down to multiples of qε/n reduces the distance by at most qε, and since
contracting edges of rounded weight 0 does not change any distances, we have
dH(u, v) ∈ [(1− ε)dG(i, j), dG(i, j)]. This yields dH(u, v) ∈ [(1− ε)q, 2q), and
in particular we have u , v. By the properties of the approximation (i.e.,
dH(u, v) ≤ d̃H(u, v) ≤ (1 + ε)dH(u, v)), we obtain d̃H(u, v) ∈ [(1 − ε)q, (1 +
ε)2q). This triggers the update of D[i, j], which yields D[i, j] ≤ d̃H(u, v) ≤
(1 + ε)dH(u, v) ≤ (1 + ε)dG(i, j).

In total, we obtain that (1 − ε)dG(i, j) ≤ D[i, j] ≤ (1 + ε)dG(i, j) for
all i, j ∈ V (G). By dividing all output entries D[i, j] by (1 − ε), we may
instead obtain a “one-sided” approximation of the form dG(i, j) ≤ D′[i, j] ≤
(1 +O(ε))dG(i, j).

Running Time We call an iteration q void if G has no edge with weight
in [q, 2q) and H is empty (i.e., H consists of isolated vertices). Observe that
void iterations do not change H or D. In order to avoid the logW -factor of
a naive implementation of Algorithm 18, we skip over all void iterations.

In iteration q, let Cq,1, . . . , Cq,k(q) be all connected components of H of
size at least 2, and let nq,1, . . . , nq,k(q) be their sizes (i.e., number of vertices).
Note that instead of running Zwick’s algorithm on H, it suffices to run it
on each Cq,i. Moreover, after rounding, the ratio of the largest to smallest

138

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

weight in H is O(n/ε), and thus the logW factor of Zwick’s algorithm is
O(log(n/ε)). Hence, we can bound the contribution of Zwick’s algorithm to
our running time by Õ

(∑
q,i(nωq,i/ε) log(n/ε)

)
.

The life-cycle of every pair of vertices u, v ∈ V (G) can be described by the
following states: (1) u and v are not connected inH; (2) u and v are connected
in H; (3) u and v are contracted into the same vertex of H. Observe that
each pair u, v ∈ V (G) can be in state (2) for at most O(log(n/ε)) iterations.
Indeed, if u and v are connected in iteration q, then in iteration q′ > n

ε
q they

have been contracted. It follows that ∑q,i n
2
q,i = O(n2 log(n/ε)), since the

former counts the pairs of connected nodes in H, summed over all iterations
q.

Combining this with our running time bound of Õ
(∑

q,i(nωq,i/ε) log(n/ε)
)
,

the fact ω ≥ 2, and Jensen’s inequality, yields a time bound of Õ(nω/ε). This
bounds the running time spent in calls to Zwick’s algorithm. Most other parts
of our algorithm can be seen to take time Õ(n2) in total.

A subtle point is the update of matrix entries D[i, j] in line 9 of Algo-
rithm 18. Consider any i, j and let u, v be the vertices that i, j have been
contracted to in H in iteration q, respectively. Note that D[i, j] can only
change if u , v and u and v are connected in H. This situation can only
happen for O(log(n/ε)) iterations, since then u and v will be contracted to
the same vertex. Hence, in total updating D takes time O(n2 log(n/ε)). This
finishes the proof. �

6.5 Strongly polynomial approximation for graph
characteristics

One of the fundamental challenges in network science is the identification of
“important” or “central” nodes in a network. Different graph characteristics
have been proposed to capture this notion [64]. For example the Median of a
graph is a node that minimizes the sum of the distances to all other nodes in
graph, the Center of a graph is a node that minimizes the maximum distance
to any other node (this distance is called Radius) and the Diameter of a
graph is the distance of the furthest pair of vertices in the graph. Centrality
measures are actively generalized to weighted graphs [121]. In this section,
we present a simple argument that yields strongly polynomial approximation
schemes for these problems. The following theorem is restated from the
introduction.

Theorem 1.4.1. Diameter, Radius, Median, Minimum-Weight Triangle,

139

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

and Minimum-Weight Cycle on directed and undirected graphs have approx-
imation schemes in strongly polynomial time Õ(nω

ε
).

Abboud, Grandoni, and Williams [4] observed that Diameter, Radius and
Median admit Õ(nω

ε
logW)-time approximation schemes via Zwick’s approx-

imation of APSP. Similarly, Roditty and Williams [128] observed that Min-
imum Weight Triangle admits an Õ(nω

ε
logW)-time approximation scheme.

They used this as a black-box to show that Minimum Weight Cycle (both in
directed and undirected graphs) admits an Õ(nω

ε
logW)-time approximation

scheme.

Proof of Theorem 1.4.1. Let G be a given graph. For any number w ∈ R+,
define Gw as the graph G where we remove all edges of weight > w and
change the weight of all remaining edges to w. On Gw we can compute a
2-approximation for each of the considered problems in time Õ(nω) (since
ε = 1 is constant and there are only two different edge weights, so also W is
constant). Note that if the result on Gw is infinite, then the solution value
on G is greater than w, as we need to include at least one edge of weight
greater than w. Moreover, if the solution value on Gw is finite, then it is at
most w · n2, since this is the total weight of all edges in Gw. In particular,
this means that the solution value of G is at most wn2.

We use this as follows. First, we sort all edge weights of G and perform
binary search to determine the smallest edge weight w of G such that the
solution value on Gw is finite. It follows that the solution value on G is in
[w,wn2], so we have an O(n2)-approximation. Now we round up all edge
weights of G to multiples of wε/n2. This changes the total edge weight of G
by at most εw, and thus also the weight of an optimal solution by at most a
multiplicative factor 1+ε. The ratio between the largest and smallest weight
in the resulting graph G′ is at most W ≤ n4

ε
. Hence the Õ(nω

ε
logW)-time

approximation scheme runs in time Õ(nω
ε

) on G′. �

6.6 Strongly polynomial approximation for Min-
Plus Convolution

In this section, we consider sequences A ∈ Rn+ and index their entries by
A[0], . . . , A[n− 1]. Recall, that given two sequences A,B ∈ Rn+, the convolu-
tion problem in the (⊗,⊕)-semiring is to compute the sequence C ∈ Rn+ with
C[k] = ⊕

i+j=k(A[i] ⊗ B[j]) for all 0 ≤ k < n. Clearly, the problem can be
solved using O(n2) ring operations. In the standard (·,+)-ring, the problem
can be solved in time O(n log n) by Fast Fourier Transform (FFT).

140

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

In this section, we start with a simple (1+ε)-approximation algorithm for
Min-Plus Convolution that directly follows from our Sum-To-Max-Covering
and runs in time Õ(n3/2/ε), see Theorem 6.6.1. This is the first strongly
polynomial (1+ε)-approximation algorithm for this problem (with a running
time of O(n2−δ) for any δ > 0). We then prove an equivalence of approximate
Min-Plus Convolution and exact Min-Max Convolution, see Theorem 6.6.2.
Finally, we use more problem-specific arguments to obtain an improved ap-
proximation algorithm running in time Õ(n3/2/ε1/2), see Theorem 6.6.3.

6.6.1 Simple approximation algorithm

Direct application of our Sum-to-Max-Covering yields the following strongly
polynomial approximation algorithm for Min-Plus Convolution, similarly as
for APSP.

Theorem 6.6.1. (1 + ε)-Approximate Min-Plus Convolution can be solved
in time Õ(n3/2/ε).

Proof. Consider input sequences (A[i])n−1
i=0 , (B[i])n−1

i=0 on which we want to
compute (C[k])n−1

k=0 with C[k] = mini+j=k(A[i] + B[j]). We view the se-
quences A,B as vectors in Rn+, in order to apply Sum-To-Max-Covering
(Lemma 6.3.1). This yields sequences A(1), . . . , A(s), B(1), . . . , B(s) ∈ Rn+ with
s = O(ε−1 polylog(n/ε)). We compute the Min-Max Convolution of every
layer A(`), B(`). (Note that we can first replace the entries of A(`), B(`) by their
ranks; this is necessary since the input format for approximate Min-Plus Con-
volution is floating-point, but Min-Max Convolution requires standard bit
representation of integers.) We then return the entry-wise minimum of the re-
sults, see Algorithm 19. The output sequence C̃ is a (1+ε)-approximation of
C; this follows from the properties of Sum-To-Max-Covering, analogously to
the proof of Theorem 6.1.2. Since Sum-To-Max-Covering takes time Õ(n/ε),
the running time is dominated by computing s times a Min-Max Convolution,
resulting in Õ(sn3/2) = Õ(n3/2/ε). �

Algorithm 19 ApproximateMinConv(A,B, ε)
1: {(A(1), B(1)), . . . , (A(s), B(s))} = SumToMaxCovering(A,B, ε)
2: C(`) := MinMaxConv(A(`), B(`)) for any ` ∈ [s]
3: C̃[k] := min`∈[s]{C(`)[k]} for any 0 ≤ k < n
4: return C̃

141

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

6.6.2 Equivalence of approximate Min-Plus and Exact
Min-Max Convolution

We next show an equivalence of approximate Min-Plus Convolution and exact
Min-Max Convolution, similarly to the equivalence for matrix products in
Theorem 1.4.4.

Theorem 6.6.2. For any c ≥ 1, if one of the following statements is true,
then all are:

• (1 + ε)-Approximate Min-Plus Convolution can be solved in strongly
polynomial time Õ(nc/poly(ε)),

• exact Min-Max Product can be solved in strongly polynomial time Õ(nc),

In particular, any further improvement on the exponent of n in Theo-
rem 6.6.1 would yield an improved algorithm for Min-Max Convolution.

Proof. For one direction, observe that if Min-Max Convolution can be solved
in time T (n) then the algorithm from Theorem 6.6.1 runs in time Õ(n/ε +
T (n)/ε), which is Õ(T (n)) for constant ε > 0.

For the other direction, on input A,B denote the result of Min-Max
Convolution by C. Set r := d4(1 + ε)2e and consider the sequences A′, B′
with A′[i] := rA[i] and B′[j] := rB[j]. (Note that the integers A[i], B[j]
are in standard bit representation, so we can compute floating-point rep-
resentations of rA[i], rB[j] in constant time, essentially by writing A[i], B[j]
into the exponent.) Let C ′ be the result of (1 + ε)-Approximate Min-Plus
Convolution on A′, B′. Then as in the proof of Theorem 1.4.4, we obtain
rC[k] ≤ C ′[k] ≤ rC[k]+1/2. Hence, we can infer the Min-Max Convolution C of
A,B by setting C[k] = blogr C ′[k]c (i.e., we essentially only read the exponent
of the floating-point number C ′[k]). If (1 + ε)-Approximate Min-Plus Con-
volution is in time T (n), this yields an algorithm for Min-Max Convolution
running in time Õ(n+ T (n)) = Õ(T (n)). �

6.6.3 Improved approximation algorithm
In the remainder of this section, we improve the simple approximation algo-
rithm of Theorem 6.6.1.

Theorem 6.6.3. (1 + ε)-Approximate Min-Plus Convolution can be solved
in time Õ(n3/2/

√
ε).

We will divide the algorithm for Min-Plus Convolution into two parts:
the first part will handle the case when summands are close and the second
will handle the distant case.

142

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Approximating Min-Plus Convolution for distant summands

First, we will simply use Distant Covering (Corollary 6.3.10) to correctly
compute Min-Plus Convolution for summands that differ by at least a factor
1
ε
.

Lemma 6.6.4. Given sequences A,B ∈ Rn+ and a parameter ε > 0, let C be
the result of Min-Plus Convolution on A,B. In O(n3/2 polylog(n

ε
)) time we

can compute a sequence C̃ such that:

(i) for any k ∈ [n] we have C̃[k] ≥ C[k], and

(ii) if there are i + j = k with C[k] = A[i] + B[j] and A[i]
B[j] < [ε4 ,

4
ε
] then

C̃[k] ≤ (1 + ε)C[k].

Algorithm 20 DistantMinConv(A,B, ε)
1: {(A(1), B(1)), . . . , (A(s), B(s))} = DistantCovering(A,B, ε/4)
2: C(`) := MinMaxConv(A(`), B(`)) for any ` ∈ [s]
3: C̃[k] := 1

1−ε/2 ·min`∈[s]{C(`)[k]} for any 0 ≤ k < n

4: return C̃

Proof of Lemma 6.6.4. We view the sequences A,B as vectors in Rn+, and
apply Distant Covering (Corollary 6.3.10) with ε′ := ε

4 . This yields sequences
A(1), . . . , A(s), B(1), . . . , B(s) ∈ Rn+ with s = O(polylog(n

ε
)). We compute the

Min-Max Convolution of every layer A(`), B(`). Then we compute the entry-
wise minimum of the results, scale it by a factor 1

1−2ε′ , and return the resulting
sequence C̃, see Algorithm 20.

For correctness, note that the scaling factor 1
1−2ε′ removes the factor 1−2ε′

from the right hand side of property (i) in Corollary 6.3.10. This yields
C̃[k] ≥ C[k]. Moreover, by property (ii) of Corollary 6.3.10, for any indices
i+j = k with A[i]

B[j] < [ε′, 1
ε′

] = [ε4 ,
4
ε
] there is an ` such that C(`)[k] ≤ A[i]+B[j].

Minimizing over all ` and multiplying by 1
1−2ε′ = 1

1−ε/2 < 1 + ε yields the
claimed property (ii).

Since Distant Covering takes time O(n polylog(n
ε
)), the running time is

dominated by computing s times Min-Max Convolution. Using the fastest
known algorithm for Min-Max Convolution [103], we obtain time Õ(n3/2s) =
O(n3/2 polylog(n

ε
)). �

143

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Approximating Min-Plus Convolution for close summands

We now use a variant of a known scaling-based approximation scheme for
Min-Plus Convolution to handle the close summands.

Lemma 6.6.5. Given sequences A,B ∈ Rn+ and a parameter ε > 0, let C
be the result of Min-Plus Convolution on A,B. In Õ(n3/2/

√
ε) time we can

compute a sequence C̃ such that:

(i) for any k ∈ [n] we have C̃[k] ≥ C[k], and

(ii) if there are i + j = k with C[k] = A[i] + B[j] and A[i]
B[j] ∈ [ε4 ,

4
ε
] then

C̃[k] ≤ (1 + ε)C[k].

Algorithm 21 Scale(A, q, ε).

1: A′[i] =


⌈

4
εq
· A[i]

⌉
if εq16 ≤ A[i] ≤ q

∞ otherwise
2: return A′

Algorithm 22 CloseMinConv(A,B, ε).
1: Initialize C̃[k] :=∞ for all k
2: for q = 1, 2, 4, . . . , 2dlog 2W e do
3: A′ := Scale(A, q, ε)
4: B′ := Scale(B, q, ε)
5: V := ExactMinConv(A′, B′)
6: C̃[k] := min{C̃[k], V [k] · qε4 } for all k
7: end for
8: return C̃

Proof. Consider the procedures Scale and CloseMinConv (Algorithms 21
and 22)We claim that this algorithm proves Lemma 6.6.5. Correctness is
based on the rounding lemma (we restate it here).
Lemma 5.7.3 (Rounding Lemma). For natural numbers x, y and positive
q, ε satisfying q ≤ x+ y and 0 < ε < 1 it holds:

x+ y ≤
(⌈

2x
qε

⌉
+
⌈

2y
qε

⌉)
qε
2 < (x+ y)(1 + ε),

(x+ y)(1− ε) <
(⌊

2x
qε

⌋
+
⌊

2y
qε

⌋)
qε
2 ≤ x+ y.

144

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Correctness Correctness of CloseMinConv can now be shown similarly
as in Section 5.7. Regarding property (i), the lower bound of Lemma 5.7.3
ensures that we have C̃[k] ≥ C[k] throughout the run of the algorithm.
Regarding property (ii), for any i+j = k with C[k] = A[i]+B[j] there exists
a precision parameter q with q/2 ≤ A[i] + B[j] ≤ q. In particular, we have
A[i], B[j] ≤ q and max{A[i], B[j]} ≥ q

4 . If we additionally have A[i]
B[j] ∈ [ε4 ,

4
ε
],

then
min{A[i], B[j]} ≥ ε

4 ·max{A[i], B[j]} ≥ εq
16 ,

and thus A′[i] and B′[j] both are not set to ∞ by the procedure Scale.
The upper bound of Lemma 5.7.3 now implies C̃[k] ≤ (1 + ε)(A[i] +B[j]) =
(1 + ε)C[k].

Running time For the running time analysis, denote by αq the number of
entries of A′ that are not set to ∞ in iteration q. Note that if an entry A[i]
is not set to ∞ in iteration q, then we have εq

16 ≤ A[i] ≤ q, or, equivalently,
A[i] ≤ q ≤ 16

ε
A[i]. Since q grows geometrically, there are O(log 1

ε
) iterations

q in which entry A[i] is not set to ∞. Hence, we obtain ∑q αq = O(n log 1
ε
).

We similarly define βq as the number of non-∞ entries of B′ in iteration q,
and obtain ∑

q

βq = O
(
n log 1

ε

)
. (6.2)

We argue in the following that procedure CloseMinConv can be im-
plemented in such a way that the running time for iteration q is

O(min{αqβq,
n

ε
} polylog(n

ε
)).

To this end, we use an event queue to be able to skip all iterations
with αq = 0 or βq = 0. Moreover, we can maintain all non-∞ entries
of A′, B′ in time O(αq + βq) per iteration q. Note that O(αq + βq) ≤
O(min{αqβq, nε }). This yields the claimed time bound for lines 3 and 4 of
procedure CloseMinConv.

For line 5 of procedure CloseMinConv, note that naively the exact Min-
Plus Convolution of A′ and B′ can be computed in time O(αqβq). Moreover,
since A′, B′ have entries in {1, . . . ,W} ∪ {∞} for W =

⌈
4
ε

⌉
, by Fast Fourier

Transform their Min-Plus Convolution can be computed in time Õ(Wn) =
Õ(n

ε
). Using the better of the two yields the claimed time bound.
Finally, line 6 of procedure CloseMinConv can be implemented in time

O(min{αqβq, n}), since this is an upper bound on the number of non-∞
entries of V .

145

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Altogether, we obtain time O(min{αqβq, nε } polylog(n
ε
)) per iteration q.

Hence, the total running time of procedure CloseMinConv is bounded by∑
q

min
{
αqβq,

n
ε

}
polylog(n

ε
).

We split this sum into the cases βq ≤ λ and βq > λ, and note that the second
case can occur at most O(n

λ
log 1

ε
) times due to (6.2). This yields a total

running time of at most((∑
q

αqλ
)

+ n
ε
· n
λ

log 1
ε

)
polylog(n

ε
) ≤

(
nλ+ n2

ελ

)
polylog(n

ε
).

Setting λ := (n/ε)1/2 yields the claimed total running time bound Õ(n3/2/ε1/2).
�

Proof of Theorem 6.6.3

Algorithm 23 ApxMinConv(A,B, ε).
1: C̃1 := DistantMinConv(A,B, ε)
2: C̃2 := CloseMinConv(A,B, ε)
3: C̃[k] := min{C̃1[k], C̃2[k]} for any 0 ≤ k < n
4: return C̃

Proof of Theorem 6.6.3. Given sequences A,B ∈ Rn+ and a parameter ε > 0,
we simply run our algorithms for approximating Min-Plus Convolution on
distant and close summands, and compute their entry-wise minimum (see
Algorithm 23). Correctness as well as size and time bounds are immediate
consequences of Lemmas 6.6.4 and 6.6.5. �

6.6.4 Applications for Tree Sparsity
A direct consequence of the strongly polynomial (1 + ε)-approximation for
Min-Plus Convolution is an analogous strongly polynomial (1+ε)-approximation
for Tree Sparsity. We will make use of the strongly polynomial reduction that
uses an approximation algorithm for Min-Plus Convolution as a black-box
that we have showed in Chapter 5.

Theorem 5.8.1. If (1 + ε)-approximate Min-Plus Convolution can be solved
in time T (n,W, ε), then (1 + ε)-approximate Tree Sparsity can be solved in
time O

((
n+ T (n,W, ε/ log2 n)

)
log n

)
.

146

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

Note, that this reduction runs in strongly polynomial time, and the logW -
factors in the running time of [18] come exclusively from the use of scaling
for approximating Min-Plus Convolution. In consequence, our strongly poly-
nomial (1 + ε)-approximation for Min-Plus Convolution yields a strongly
polynomial (1 + ε)-approximation for Tree Sparsity.

Corollary 6.6.6. (1 + ε)-Approximate Tree Sparsity can be solved in time
Õ(n3/2

√
ε

).

Tree Sparsity has applications in image processing, computational biol-
ogy [138] and machine learning [18]. The main issue of previous approxi-
mation schemes for this problem was that in applications the input consists
of real numbers and thus logW -factors significantly influence the running
time [132].

147

CHAPTER 6. APPROXIMATE (MIN,+) IS EQUIVALENT TO (MIN,MAX)

148

Part IV

Conclusion

149

Chapter 7

Conclusion and future work

In this chapter, we summarize the thesis and propose future research direc-
tions.

7.1 Exact graph algorithms
In Chapter 3, we introduced the framework based on Frobenius normal form
and used it to solve some problems on directed, unweighted graphs in matrix
multiplication time. The main open question is to use this framework to
prove that APSP on such graphs can be solved in Õ(nω) or at least O(n2.5).
The promising way is to use the algorithms that determine operators of
matrices of polynomials (e.g., determinant, solving linear system [78, 118]).
Additionally, algorithms for a black-box polynomial degree determination
seem to be a promising path.

Another interesting problem is to use this framework to obtain addi-
tive approximation for APSP. Currently, the best additive approximation of
APSP is due to [127]. However, no additive approximation of APSP is known
that would work in Õ(nω) time.

Application in dynamic algorithm also seems to be a promising approach.
Frandsen and Sankowski [61] showed an algorithm, that dynamically pre-
serves Frobenius normal form in O(kn2) time. Our algorithms use fast Han-
kel matrix-vector multiplication that is based on FFT. Reif and Tate [125]
presented an O(

√
n) time per request algorithm for FFT. Can we use these

approaches to obtain a faster dynamic algorithm?
Finally, it remains open how to apply the Frobenius normal form in the

weighted directed graphs with small, integer weights {−W, . . . ,W}. Cygan,
Gabow, and Sankowski [49] took degree W polynomials and used Mulders
and Storjohann [118] algorithms to get Õ(Wnω) time radius and diameter

151

CHAPTER 7. CONCLUSION AND FUTURE WORK

detection. We suspect that similar technique can be applied to Frobenius
normal form framework.

7.2 Connecting dynamic programming with
approximation

In Chapter 4, we mainly study the complexity of the Partition problem
(which is related to Knapsack and Subset Sum). In the exact setting, if we
are only concerned about the dependence on n, Knapsack and Subset Sum
were already known to be equivalent up to the polynomial factors. Nederlof,
Leeuwen, and Zwaan [120, Theorem 2] showed, that if there exists an exact al-
gorithm for Subset Sum working in O∗(T (n)) time and O∗(S(n)) space, then
we can construct an algorithm for Knapsack working in the same O∗(T (n))
time and O∗(S(n)) space. In contrast, in the realm of pseudo-polynomial
time complexity, Subset Sum seems to be simpler than Knapsack (see Bring-
mann [25]). We show similar separation for Knapsack and Partition in the
approximation setting.

The most important question is whether one can significantly improve
the running time of our algorithm for Partition to Õ(n+ 1/ε). One can also
ask whether randomization is necessary to obtain subquadratic FPTAS for
Partition. Perhaps, the randomized building blocks can be replaced with de-
terministic algorithms by Kellerer, Pferschy, and Speranza [100] and Koiliaris
and Xu [102].

7.3 Equivalences in tropical convolutions
In Chapter 5, we undertake a systematic study of Min-Plus Convolution as
a hardness assumption and prove the subquadratic equivalence of Min-Plus
Convolution with SuperAdditivity Testing, Unbounded Knapsack, Knapsack,
and Tree Sparsity. The Min-Plus Convolution conjecture is stronger than the
well-known conjectures APSP and 3SUM. Proving that Min-Plus Convolu-
tion is equivalent to either APSP or 3SUM would solve a long-standing open
problem. An intriguing question is to determine whether the Min-Plus Con-
volution conjecture is also stronger than OV.

By using the fast O(n2/2Ω(logn)1/2) algorithm for Max-Plus Convolution,
we automatically obtain o(n2)-time algorithms for all problems in the class.
This gives us the first (to the best of our knowledge) subquadratic algorithm
for SuperAdditivity Testing and improves exact algorithms for Tree Sparsity.

152

CHAPTER 7. CONCLUSION AND FUTURE WORK

One consequence of our results is a new lower bound on Knapsack. It
is known that an O(t1−εnO(1)) algorithm for Knapsack contradicts the Set-
Cover conjecture [47]. Here, we show that an O((n + t)2−ε) algorithm
contradicts the Min-Plus Convolution conjecture. This does not rule out an
O(t+ nO(1)) algorithm, which leads to another interesting open problem.

Recently, Abboud et al. [3] replaced the SetCover conjecture with the
SETH for Subset Sum. We have shown that one cannot exploit the SETH to
prove that the O(nt)-time algorithm for Unbounded Knapsack is tight. The
analogous question regarding Knapsack remains open.

Finally, it is open whether Max-Plus Convolution LowerBound is equiv-
alent to Min-Plus Convolution, which would imply an equivalence between
l∞-Necklace Alignment and Min-Plus Convolution.

7.4 Equivalence of approximate tropical prod-
uct

In Chapter 6, we prove the equivalence of computing the approximate Min-
Plus Product of two n×n matrices with arbitrary values and Min-Max Prod-
uct. This results in a subcubic strongly polynomial approximation for APSP.
Our algorithm runs in time O(nω+3

2 ε−1polylog(n, ε)) ≤ Õ(n2.69

ε
) on word

RAM. We also give efficient approximation algorithms for undirected APSP,
computing graph characteristic (e.g., radius, diameter, minimum weight cy-
cle, etc.) and show that our equivalence results also apply to convolutions.

The main open problem is to improve upon Õ(nω+3
2) algorithm for APBP

or give some evidence that O(n2.5−δ) is unlikely (for any constant δ > 0). An-
other interesting open problem is to improve upon O(n1.5√log n) algorithm
for Min-Max Convolution or prove thatO(n1.5−δ) is unlikely (for any constant
δ > 0).

153

CHAPTER 7. CONCLUSION AND FUTURE WORK

154

Bibliography

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams.
“Tight Hardness Results for LCS and Other Sequence Similarity Mea-
sures”. In: IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015.
Ed. by Venkatesan Guruswami. IEEE Computer Society, 2015, pp. 59–
78.

[2] Amir Abboud and Greg Bodwin. “The 4/3 Additive Spanner Expo-
nent Is Tight”. In: J. ACM 64.4 (2017), 28:1–28:20.

[3] Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay.
“SETH-Based Lower Bounds for Subset Sum and Bicriteria Path”. In:
arXiv preprint arXiv:1704.04546, to appear at SODA 2019 (2019).

[4] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams.
“Subcubic Equivalences Between Graph Centrality Problems, APSP
and Diameter”. In: Proc. 26th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA’15). 2015, pp. 1681–1697.

[5] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams.
“Subcubic Equivalences Between Graph Centrality Problems, APSP
and Diameter”. In: Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015. Ed. by Piotr Indyk. SIAM, 2015, pp. 1681–
1697.

[6] Amir Abboud and Aviad Rubinstein. “Fast and Deterministic Con-
stant Factor Approximation Algorithms for LCS Imply New Circuit
Lower Bounds”. In: Proc. 9th Innovations in Theoretical Computer
Science Conference (ITCS’18). Vol. 94. 2018, 35:1–35:14.

[7] Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. “Distributed
PCP Theorems for Hardness of Approximation in P”. In: Proc. 58th
IEEE Annual Symposium on Foundations of Computer Science (FOCS’17).
2017, pp. 25–36.

155

BIBLIOGRAPHY

[8] Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang.
“Approximation and Fixed Parameter Subquadratic Algorithms for
Radius and Diameter in Sparse Graphs”. In: Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016. Ed. by Robert Krauthgamer.
SIAM, 2016, pp. 377–391.

[9] Udit Agarwal and Vijaya Ramachandran. “Fine-grained complexity
for sparse graphs”. In: Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018. Ed. by Ilias Diakonikolas, David Kempe, and
Monika Henzinger. ACM, 2018, pp. 239–252.

[10] Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter
Bro Miltersen. “On the Complexity of Numerical Analysis”. In: SIAM
J. Comput. 38.5 (2009), pp. 1987–2006.

[11] Noga Alon, Raphael Yuster, and Uri Zwick. “Color-Coding”. In: J.
ACM 42.4 (1995), pp. 844–856.

[12] Noga Alon, Raphael Yuster, and Uri Zwick. “Finding and Counting
Given Length Cycles”. In: Algorithmica 17.3 (1997), pp. 209–223.

[13] Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and
Michiel H. M. Smid. “Euclidean spanners: short, thin, and lanky”.
In: Proc. 27th Annual ACM Symposium on Theory of Computing
(STOC’95). 1995, pp. 489–498.

[14] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jussi Määttä. “Space-
Time Tradeoffs for Subset Sum: An Improved Worst Case Algorithm”.
In: Automata, Languages, and Programming - 40th International Col-
loquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings,
Part I. Ed. by Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska,
and David Peleg. Vol. 7965. Lecture Notes in Computer Science.
Springer, 2013, pp. 45–56.

[15] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. “Sub-
set Sum in the Absence of Concentration”. In: 32nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2015,
March 4-7, 2015, Garching, Germany. Ed. by Ernst W. Mayr and
Nicolas Ollinger. Vol. 30. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015, pp. 48–61.

156

BIBLIOGRAPHY

[16] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. “Dense
Subset Sum May Be the Hardest”. In: 33rd Symposium on Theoretical
Aspects of Computer Science, STACS 2016, February 17-20, 2016, Or-
léans, France. Ed. by Nicolas Ollinger and Heribert Vollmer. Vol. 47.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016,
13:1–13:14.

[17] Arturs Backurs and Piotr Indyk. “Edit Distance Cannot Be Computed
in Strongly Subquadratic Time (unless SETH is false)”. In: Proceed-
ings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015. Ed.
by Rocco A. Servedio and Ronitt Rubinfeld. ACM, 2015, pp. 51–58.

[18] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. “Better Approxi-
mations for Tree Sparsity in Nearly-Linear Time”. In: Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. SIAM. 2017, pp. 2215–2229.

[19] Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. “Faster
space-efficient algorithms for subset sum and k-sum”. In: Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2017, Montreal, QC, Canada, June 19-23, 2017. Ed.
by Hamed Hatami, Pierre McKenzie, and Valerie King. ACM, 2017,
pp. 198–209.

[20] Ilya Baran, Erik D. Demaine, and Mihai Patrascu. “Subquadratic Al-
gorithms for 3SUM”. In: Algorithmica 50.4 (2008), pp. 584–596.

[21] Richard Bellman.Dynamic Programming. Princeton, NJ, USA: Prince-
ton University Press, 1957.

[22] Anand Bhalgat, Ashish Goel, and Sanjeev Khanna. “Improved Ap-
proximation Results for Stochastic Knapsack Problems”. In: Proceed-
ings of the Twenty-Second Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2011, San Francisco, California, USA, Jan-
uary 23-25, 2011. Ed. by Dana Randall. SIAM, 2011, pp. 1647–1665.

[23] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Com-
plexity and real computation. Springer Science & Business Media,
2012.

[24] David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erick-
son, Ferran Hurtado, John Iacono, Stefan Langerman, and Perouz
Taslakian. “Necklaces, Convolutions, and X + Y”. In: Algorithms –
ESA 2006: 14th Annual European Symposium, Zurich, Switzerland,
September 11-13, 2006. Proceedings. Ed. by Yossi Azar and Thomas

157

BIBLIOGRAPHY

Erlebach. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 160–
171.

[25] Karl Bringmann. “A near-linear pseudopolynomial time algorithm
for subset sum”. In: Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM. 2017, pp. 1073–
1084.

[26] Karl Bringmann. personal communication. April 2018.
[27] Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vas-

silevska Williams. “Truly Sub-cubic Algorithms for Language Edit
Distance and RNA-Folding via Fast Bounded-Difference Min-Plus
Product”. In: Proc. IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS’16). 2016, pp. 375–384.

[28] Karl Bringmann and Marvin Künnemann. “Quadratic Conditional
Lower Bounds for String Problems and Dynamic Time Warping”.
In: IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. Ed. by
Venkatesan Guruswami. IEEE Computer Society, 2015, pp. 79–97.

[29] Karl Bringmann, Marvin Künnemann, and Karol Wegrzycki. “Ap-
proximating APSP without scaling: equivalence of approximate min-
plus and exact min-max”. In: Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019. Ed. by Moses Charikar and Edith Cohen.
ACM, 2019, pp. 943–954.

[30] Peter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lip-
ták. “On Table Arrangements, Scrabble Freaks, and Jumbled Pattern
Matching”. In: Fun with Algorithms, 5th International Conference,
FUN 2010, Ischia, Italy, June 2-4, 2010. Proceedings. Ed. by Paolo
Boldi and Luisa Gargano. Vol. 6099. Lecture Notes in Computer Sci-
ence. Springer, 2010, pp. 89–101.

[31] Peter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lip-
ták. “On Approximate Jumbled Pattern Matching in Strings”. In:
Theory Comput. Syst. 50.1 (2012), pp. 35–51.

[32] Michael R. Bussieck, Hannes Hassler, Gerhard J. Woeginger, and Uwe
T. Zimmermann. “Fast algorithms for the maximum convolution prob-
lem”. In: Oper. Res. Lett. 15.3 (1994), pp. 133–141.

[33] Paul B. Callahan and S. Rao Kosaraju. “A Decomposition of Multi-
dimensional Point Sets with Applications to k-Nearest-Neighbors and
n-Body Potential Fields”. In: J. ACM 42.1 (1995), pp. 67–90.

158

BIBLIOGRAPHY

[34] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin,
Ramamohan Paturi, and Stefan Schneider. “Nondeterministic Exten-
sions of the Strong Exponential Time Hypothesis and Consequences
for Non-reducibility”. In: Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, Cambridge, MA, USA,
January 14-16, 2016. Ed. by Madhu Sudan. ACM, 2016, pp. 261–270.

[35] Coralia Cartis and Andrew Thompson. “An exact tree projection algo-
rithm for wavelets”. In: IEEE Signal Processing Letters 20.11 (2013),
pp. 1026–1029.

[36] Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit,
Pasin Manurangsi, Danupon Nanongkai, and Luca Trevisan. “From
Gap-ETH to FPT-Inapproximability: Clique, Dominating Set, and
More”. In: Proc. 58th IEEE Annual Symposium on Foundations of
Computer Science (FOCS’17). 2017, pp. 743–754.

[37] Timothy M. Chan. “More algorithms for all-pairs shortest paths in
weighted graphs”. In: Proceedings of the 39th Annual ACM Sympo-
sium on Theory of Computing, San Diego, California, USA, June
11-13, 2007. Ed. by David S. Johnson and Uriel Feige. ACM, 2007,
pp. 590–598.

[38] Timothy M. Chan. “Approximation Schemes for 0-1 Knapsack”. In:
1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7-
10, 2018, New Orleans, LA, USA. Ed. by Raimund Seidel. Vol. 61.
OASICS. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018,
5:1–5:12.

[39] Timothy M. Chan and Moshe Lewenstein. “Clustered Integer 3SUM
via Additive Combinatorics”. In: Proceedings of the Forty-seventh An-
nual ACM Symposium on Theory of Computing. STOC ’15. Portland,
Oregon, USA: ACM, 2015, pp. 31–40.

[40] Lijie Chen. “On The Hardness of Approximate and Exact (Bichro-
matic) Maximum Inner Product”. In: Proc. 33rd Computational Com-
plexity Conference (CCC’18). Vol. 102. 2018, 14:1–14:45.

[41] Fan R. K. Chung, V. Faber, and Thomas A. Manteuffel. “An Upper
Bound on the Diameter of a Graph from Eigenvalues Associated with
its Laplacian”. In: SIAM J. Discrete Math. 7.3 (1994), pp. 443–457.

[42] Fan RK Chung. Spectral graph theory. Vol. 92. American Mathemat-
ical Soc., 1997.

159

BIBLIOGRAPHY

[43] Ferdinando Cicalese, Eduardo Sany Laber, OrenWeimann, and Raphael
Yuster. “Approximating the maximum consecutive subsums of a se-
quence”. In: Theor. Comput. Sci. 525 (2014), pp. 130–137.

[44] Edith Cohen. “Using Selective Path-Doubling for Parallel Shortest-
Path Computations”. In: J. Algorithms 22.1 (1997), pp. 30–56.

[45] Edith Cohen and Uri Zwick. “All-Pairs Small-Stretch Paths”. In: J.
Algorithms 38.2 (2001), pp. 335–353.

[46] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.
[47] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dańiel Marx, Jesper

Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and
Magnus Wahlstrom. “On Problems As Hard As CNF-SAT”. In: Pro-
ceedings of the 2012 IEEE Conference on Computational Complexity
(CCC). CCC ’12. Washington, DC, USA: IEEE Computer Society,
2012, pp. 74–84.

[48] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Parameterized Algorithms. Springer, 2015.

[49] Marek Cygan, Harold N. Gabow, and Piotr Sankowski. “Algorithmic
Applications of Baur-Strassen’s Theorem: Shortest Cycles, Diameter,
and Matchings”. In: J. ACM 62.4 (2015), p. 28.

[50] Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodar-
czyk. “On Problems Equivalent to (min, +)-Convolution”. In: 44th In-
ternational Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland. Ed. by Ioannis Chatzi-
giannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl. Vol. 80.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017,
22:1–22:15.

[51] Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodar-
czyk. “On Problems Equivalent to (min, +)-Convolution”. In: ACM
Trans. Algorithms 15.1 (2019), 14:1–14:25.

[52] Ran Duan and Seth Pettie. “Fast algorithms for (max,min)-matrix
multiplication and bottleneck shortest paths”. In: Proc. 20th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’09). 2009,
pp. 384–391.

[53] Ran Duan, Seth Pettie, and Hsin-Hao Su. “Scaling Algorithms for
Weighted Matching in General Graphs”. In: Proc. 28th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’17). 2017, pp. 781–
800.

160

BIBLIOGRAPHY

[54] Ran Duan and Hanlin Ren. “Approximating All-Pair Bounded-Leg
Shortest Path and APSP-AF in Truly-Subcubic Time”. In: Proc. 45th
International Colloquium on Automata, Languages, and Programming
(ICALP’18). 2018, 42:1–42:12.

[55] David Steven Dummit and Richard M Foote. Abstract algebra. Vol. 3.
Wiley Hoboken, 2004.

[56] Wayne Eberly. “Black box Frobenius decompositions over small fields”.
In: Proceedings of the 2000 International Symposium on Symbolic and
Algebraic Computation, ISSAC 2000, St. Andrews, United Kingdom,
August 6-10, 2000. Ed. by Carlo Traverso. ACM, 2000, pp. 106–113.

[57] Jack Edmonds and Richard M. Karp. “Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems”. In: J. ACM 19.2
(1972), pp. 248–264.

[58] David Eppstein. “Minimum Range Balanced Cuts via Dynamic Subset
Sums”. In: J. Algorithms 23.2 (1997), pp. 375–385.

[59] Werner Fenchel. “On conjugate convex functions”. In: Canad. J. Math
1.73-77 (1949).

[60] Robert W. Floyd. “Algorithm 97: Shortest path”. In: Commun. ACM
5.6 (1962), p. 345.

[61] Gudmund Skovbjerg Frandsen and Piotr Sankowski. “Dynamic nor-
mal forms and dynamic characteristic polynomial”. In: International
Colloquium on Automata, Languages, and Programming. Springer Berlin
Heidelberg. 2008, pp. 434–446.

[62] Michael L. Fredman. “How Good is the Information Theory Bound in
Sorting?” In: Theor. Comput. Sci. 1.4 (1976), pp. 355–361.

[63] Michael L. Fredman. “New Bounds on the Complexity of the Shortest
Path Problem”. In: SIAM J. Comput. 5.1 (1976), pp. 83–89.

[64] Linton C Freeman. “Centrality in social networks conceptual clarifi-
cation”. In: Social networks 1.3 (1978), pp. 215–239.

[65] Harold N. Gabow and Robert Endre Tarjan. “Faster Scaling Algo-
rithms for Network Problems”. In: SIAM J. Comput. 18.5 (1989),
pp. 1013–1036.

[66] Harold N. Gabow and Robert Endre Tarjan. “Faster Scaling Algo-
rithms for General Graph-Matching Problems”. In: J. ACM 38.4 (1991),
pp. 815–853.

161

BIBLIOGRAPHY

[67] Anka Gajentaan and Mark H. Overmars. “On a Class of O(n2) Prob-
lems in Computational Geometry”. In: Comput. Geom. 5 (1995), pp. 165–
185.

[68] Zvi Galil and Oded Margalit. “An Almost Linear-Time Algorithm for
the Dense Subset-Sum Problem”. In: SIAM J. Comput. 20.6 (1991),
pp. 1157–1189.

[69] Zvi Galil and Oded Margalit. “An Almost Linear-Time Algorithm for
the Dense Subset-Sum Problem”. In: Automata, Languages and Pro-
gramming, 18th International Colloquium, ICALP91, Madrid, Spain,
July 8-12, 1991, Proceedings. Ed. by Javier Leach Albert, Burkhard
Monien, and Mario Rodríguez-Artalejo. Vol. 510. Lecture Notes in
Computer Science. Springer, 1991, pp. 719–727.

[70] Zvi Galil and Oded Margalit. personal communication. 2017.
[71] F.R. Gantmacher. The Theory of Matrices, Vol. 1. Chelsea, 1959.
[72] MR Garey and DS Johnson. “Computers and intractability: a guide

to the theory of NP-completeness”. In: (1979).
[73] GV Gens and EV Levner. “Approximation algorithm for some schedul-

ing problems”. In: Engrg. Cybernetics 6 (1978), pp. 38–46.
[74] George Gens and Eugene Levner. “Computational Complexity of Ap-

proximation Algorithms for Combinatorial Problems”. In: Mathemat-
ical Foundations of Computer Science 1979, Proceedings, 8th Sym-
posium, Olomouc, Czechoslovakia, September 3-7, 1979. Ed. by Jirí
Becvár. Vol. 74. Lecture Notes in Computer Science. Springer, 1979,
pp. 292–300.

[75] George Gens and Eugene Levner. “A fast approximation algorithm
for the subset-sum problem”. In: INFOR: Information Systems and
Operational Research 32.3 (1994), pp. 143–148.

[76] Georgii V Gens and Eugenii V Levner. “Fast approximation algo-
rithms for knapsack type problems”. In: Optimization Techniques.
Springer, 1980, pp. 185–194.

[77] Beat Gfeller. “Finding Longest Approximate Periodic Patterns”. In:
Algorithms and Data Structures - 12th International Symposium, WADS
2011, New York, NY, USA, August 15-17, 2011. Proceedings. Ed. by
Frank Dehne, John Iacono, and Jörg-Rüdiger Sack. Vol. 6844. Lecture
Notes in Computer Science. Springer, 2011, pp. 463–474.

162

BIBLIOGRAPHY

[78] Mark Giesbrecht, Michael J. Jacobson Jr., and Arne Storjohann. “Al-
gorithms for Large Integer Matrix Problems”. In: Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, 14th International
Symposium, AAECC-14, Melbourne, Australia November 26-30, 2001,
Proceedings. Ed. by Serdar Boztas and Igor E. Shparlinski. Vol. 2227.
Lecture Notes in Computer Science. Springer, 2001, pp. 297–307.

[79] Omer Gold and Micha Sharir. “Improved Bounds for 3SUM, k-SUM,
and Linear Degeneracy”. In: 25th Annual European Symposium on
Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria. Ed. by
Kirk Pruhs and Christian Sohler. Vol. 87. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017, 42:1–42:13.

[80] Andrew V. Goldberg. “Scaling Algorithms for the Shortest Paths
Problem”. In: SIAM J. Comput. 24.3 (1995), pp. 494–504.

[81] Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat.
“How Hard is it to Find (Honest) Witnesses?” In: 24th Annual Eu-
ropean Symposium on Algorithms, ESA 2016, August 22-24, 2016,
Aarhus, Denmark. Ed. by Piotr Sankowski and Christos D. Zaroliagis.
Vol. 57. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016, 45:1–45:16.

[82] Gene H. Golub and Charles F. Van Loan. Matrix computations (3.
ed.) Johns Hopkins University Press, 1996.

[83] Daniel Graf, Karim Labib, and Przemyslaw Uznanski. “Brief An-
nouncement: Hamming Distance Completeness and Sparse Matrix
Multiplication”. In: 45th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic. Ed. by Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella. Vol. 107. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2018, 109:1–109:4.

[84] Brian Hayes. “Computing science: The easiest hard problem”. In:
American Scientist 90.2 (2002), pp. 113–117.

[85] Dorit S. Hochbaum. “Lower and Upper Bounds for the Allocation
Problem and Other Nonlinear Optimization Problems”. In: Math.
Oper. Res. 19.2 (1994), pp. 390–409.

[86] Ellis Horowitz and Sartaj Sahni. “Computing Partitions with Appli-
cations to the Knapsack Problem”. In: J. ACM 21.2 (1974), pp. 277–
292.

163

BIBLIOGRAPHY

[87] Nick Howgrave-Graham and Antoine Joux. “New Generic Algorithms
for Hard Knapsacks”. In: Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, French Riviera, May 30 - June
3, 2010. Proceedings. Ed. by Henri Gilbert. Vol. 6110. Lecture Notes
in Computer Science. Springer, 2010, pp. 235–256.

[88] Chloe Ching-Yun Hsu and Chris Umans. “On Multidimensional and
Monotone k-SUM”. In: To appear at MFCS 2017 (2017).

[89] Oscar H. Ibarra and Chul E. Kim. “Fast Approximation Algorithms
for the Knapsack and Sum of Subset Problems”. In: J. ACM 22.4
(1975), pp. 463–468.

[90] Russell Impagliazzo and Ramamohan Paturi. “On the Complexity of
k-SAT”. In: J. Comput. Syst. Sci. 62.2 (2001), pp. 367–375.

[91] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which
Problems Have Strongly Exponential Complexity?” In: J. Comput.
Syst. Sci. 63.4 (2001), pp. 512–530.

[92] Klaus Jansen and Stefan Erich Julius Kraft. “A Faster FPTAS for the
Unbounded Knapsack Problem”. In: Combinatorial Algorithms - 26th
International Workshop, IWOCA 2015, Verona, Italy, October 5-7,
2015, Revised Selected Papers. Ed. by Zsuzsanna Lipták and William
F. Smyth. Vol. 9538. Lecture Notes in Computer Science. Springer,
2015, pp. 274–286.

[93] Ce Jin. “An Improved FPTAS for 0-1 Knapsack”. In: CoRR abs/1904.09562
(2019). arXiv: 1904.09562.

[94] Edward G. Coffman Jr. and George S. Lueker. Probabilistic analysis
of packing and partitioning algorithms. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, 1991.

[95] R.M. Karp. “The fast approximate solution to hard combinatorial
problems”. In: Proceedings of the 6th Southeastern Conference on
Combinatorics, Graph Theory and Computing (1975), pp. 15–31.

[96] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In:
Proceedings of a symposium on the Complexity of Computer Com-
putations, held March 20-22, 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York. Ed. by Raymond E.
Miller and James W. Thatcher. The IBM Research Symposia Series.
Plenum Press, New York, 1972, pp. 85–103.

164

https://arxiv.org/abs/1904.09562

BIBLIOGRAPHY

[97] Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. “On the
parameterized complexity of approximating dominating set”. In: Proc.
50th Annual Symposium on Theory of Computing (STOC’18). 2018,
pp. 1283–1296.

[98] Hans Kellerer and Ulrich Pferschy. “Improved Dynamic Programming
in Connection with an FPTAS for the Knapsack Problem”. In: J.
Comb. Optim. 8.1 (2004), pp. 5–11.

[99] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack prob-
lems. Springer, 2004.

[100] Hans Kellerer, Ulrich Pferschy, and Maria Grazia Speranza. “An Effi-
cient Approximation Scheme for the Subset-Sum Problem”. In: Algo-
rithms and Computation, 8th International Symposium, ISAAC ’97,
Singapore, December 17-19, 1997, Proceedings. Ed. by HonWai Leong,
Hiroshi Imai, and Sanjay Jain. Vol. 1350. Lecture Notes in Computer
Science. Springer, 1997, pp. 394–403.

[101] Philip N. Klein and S. Sairam. “A Parallel Randomized Approxima-
tion Scheme for Shortest Paths”. In: Proc. 24th Annual ACM Sympo-
sium on Theory of Computing (STOC’92). 1992, pp. 750–758.

[102] Konstantinos Koiliaris and Chao Xu. “A Faster Pseudopolynomial
Time Algorithm for Subset Sum”. In: Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA
’17. Barcelona, Spain: Society for Industrial and Applied Mathemat-
ics, 2017, pp. 1062–1072.

[103] S. Rao Kosaraju. “Efficient Tree Pattern Matching (Preliminary Ver-
sion)”. In: Proc. 30th Annual Symposium on Foundations of Computer
Science (FOCS’89). 1989, pp. 178–183.

[104] Eduardo Sany Laber, Wilfredo Bardales Roncalla, and Ferdinando
Cicalese. “On lower bounds for the Maximum Consecutive Subsums
Problem and the (min, +)-convolution”. In: 2014 IEEE International
Symposium on Information Theory, Honolulu, HI, USA, June 29 -
July 4, 2014. IEEE, 2014, pp. 1807–1811.

[105] Eugene L Lawler. “Fast approximation algorithms for knapsack prob-
lems”. In: Mathematics of Operations Research 4.4 (1979), pp. 339–
356.

[106] François Le Gall. “Powers of tensors and fast matrix multiplication”.
In: Proceedings of the 39th international symposium on symbolic and
algebraic computation. ACM. 2014, pp. 296–303.

165

BIBLIOGRAPHY

[107] François Le Gall and Harumich Nishimura. “Quantum Algorithms for
Matrix Products over Semirings”. In: Chicago J. Theor. Comput. Sci.
2017 (2017).

[108] Arthur Lim and Jialing Dai. “On product of companion matrices”. In:
Linear Algebra and its Applications 435.11 (2011), pp. 2921–2935.

[109] Ohad Lipsky and Ely Porat. “Approximate Pattern Matching with
the L1, L2 and L∞ Metrics”. In: Algorithmica 60.2 (2011), pp. 335–
348.

[110] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. “Known Algo-
rithms on Graphs of Bounded Treewidth Are Probably Optimal”. In:
ACM Trans. Algorithms 14.2 (2018), 13:1–13:30.

[111] Yves Lucet. “Faster than the Fast Legendre Transform, the Linear-
time Legendre Transform”. In: Numerical Algorithms 16.2 (1997),
pp. 171–185.

[112] George B Mathews. “On the partition of numbers”. In: Proceedings of
the London Mathematical Society 1.1 (1896), pp. 486–490.

[113] Ralph C. Merkle and Martin E. Hellman. “Hiding information and sig-
natures in trapdoor knapsacks”. In: IEEE Trans. Information Theory
24.5 (1978), pp. 525–530.

[114] Stephan Mertens. “The easiest hard problem: Number partitioning”.
In: Computational Complexity and Statistical Physics 125.2 (2006),
pp. 125–139.

[115] Tanaeem M. Moosa and M. Sohel Rahman. “Indexing permutations
for binary strings”. In: Inf. Process. Lett. 110.18-19 (2010), pp. 795–
798.

[116] Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz, and Karol We-
grzycki. “Equal-Subset-Sum Faster Than the Meet-in-the-Middle”. In:
ESA’19 (2019).

[117] Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. “A Sub-
quadratic Approximation Scheme for Partition”. In: Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019. Ed. by
Timothy M. Chan. SIAM, 2019, pp. 70–88.

166

BIBLIOGRAPHY

[118] Thom Mulders and Arne Storjohann. “Rational solutions of singular
linear systems”. In: Proceedings of the 2000 International Symposium
on Symbolic and Algebraic Computation, ISSAC 2000, St. Andrews,
United Kingdom, August 6-10, 2000. Ed. by Carlo Traverso. ACM,
2000, pp. 242–249.

[119] Aran Nayebi and Virginia VassilevskaWilliams. “Quantum algorithms
for shortest paths problems in structured instances”. In: CoRR (2014).
arXiv: 1410.6220.

[120] Jesper Nederlof, Erik Jan van Leeuwen, and Ruben van der Zwaan.
“Reducing a Target Interval to a Few Exact Queries”. In: Mathe-
matical Foundations of Computer Science 2012 - 37th International
Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012.
Proceedings. Ed. by Branislav Rovan, Vladimiro Sassone, and Peter
Widmayer. Vol. 7464. Lecture Notes in Computer Science. Springer,
2012, pp. 718–727.

[121] Tore Opsahl, Filip Agneessens, and John Skvoretz. “Node centrality
in weighted networks: Generalizing degree and shortest paths”. In:
Social Networks 32.3 (2010), pp. 245–251.

[122] James B. Orlin. “A Faster Strongly Polynomial Minimum Cost Flow
Algorithm”. In: Operations Research 41.2 (1993), pp. 338–350.

[123] James B. Orlin and Ravindra K. Ahuja. “New scaling algorithms for
the assignment and minimum mean cycle problems”. In: Math. Pro-
gram. 54 (1992), pp. 41–56.

[124] Mihai Patrascu. “Towards polynomial lower bounds for dynamic prob-
lems”. In: Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June
2010. Ed. by Leonard J. Schulman. ACM, 2010, pp. 603–610.

[125] John H. Reif and Stephen R. Tate. “On Dynamic Algorithms for Al-
gebraic Problems”. In: J. Algorithms 22.2 (1997), pp. 347–371.

[126] Liam Roditty and Asaf Shapira. “All-Pairs Shortest Paths with a
Sublinear Additive Error”. In: Proc. 35th International Colloquium on
Automata, Languages and Programming (ICALP’08). 2008, pp. 622–
633.

[127] Liam Roditty and Asaf Shapira. “All-pairs Shortest Paths with a Sub-
linear Additive Error”. In: ACM Trans. Algorithms 7.4 (Sept. 2011),
45:1–45:12.

167

https://arxiv.org/abs/1410.6220

BIBLIOGRAPHY

[128] Liam Roditty and Virginia Vassilevska Williams. “Minimum Weight
Cycles and Triangles: Equivalences and Algorithms”. In: IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011. Ed. by Rafail Ostro-
vsky. IEEE Computer Society, 2011, pp. 180–189.

[129] Aviad Rubinstein. “Hardness of approximate nearest neighbor search”.
In: Proc. 50th Annual Symposium on Theory of Computing (STOC’18).
2018, pp. 1260–1268.

[130] Piotr Sankowski and Karol Wegrzycki. “Improved Distance Queries
and Cycle Counting by Frobenius Normal Form”. In: 34th Symposium
on Theoretical Aspects of Computer Science, STACS 2017, March 8-
11, 2017, Hannover, Germany. Ed. by Heribert Vollmer and Brigitte
Vallée. Vol. 66. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2017, 56:1–56:14.

[131] Piotr Sankowski and Karol Węgrzycki. “Improved Distance Queries
and Cycle Counting by Frobenius Normal Form”. In: Theory of Com-
puting Systems (2018).

[132] Ludwig Schmidt. personal communication. 2017.
[133] Arnold Schönhage. “On the power of random access machines”. In:

Proc. 6th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP’79). Vol. 71. 1979, pp. 520–529.

[134] Alexander Schrijver. “A Combinatorial Algorithm Minimizing Sub-
modular Functions in Strongly Polynomial Time”. In: J. Comb. The-
ory, Ser. B 80.2 (2000), pp. 346–355.

[135] Richard Schroeppel and Adi Shamir. “A T=O(2n/2), S=O(2n/4) Al-
gorithm for Certain NP-Complete Problems”. In: SIAM J. Comput.
10.3 (1981), pp. 456–464.

[136] J. T. Schwartz. “Fast Probabilistic Algorithms for Verification of Poly-
nomial Identities”. In: J. ACM 27.4 (Oct. 1980), pp. 701–717.

[137] Raimund Seidel. “On the All-Pairs-Shortest-Path Problem”. In: Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Com-
puting, May 4-6, 1992, Victoria, British Columbia, Canada. Ed. by
S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis.
ACM, 1992, pp. 745–749.

[138] Oliver Serang. “A Fast Numerical Method for Max-Convolution and
the Application to Efficient Max-Product Inference in Bayesian Net-
works”. In: Journal of Computational Biology 22.8 (2015), pp. 770–
783.

168

BIBLIOGRAPHY

[139] Asaf Shapira, Raphael Yuster, and Uri Zwick. “All-pairs bottleneck
paths in vertex weighted graphs”. In: Proc. 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’07). 2007, pp. 978–985.

[140] Daniel D. Sleator and Robert Endre Tarjan. “A Data Structure for
Dynamic Trees”. In: J. Comput. Syst. Sci. 26.3 (June 1983), pp. 362–
391.

[141] Arne Storjohann. “An O(n3) Algorithm for the Frobenius Normal
Form”. In: Proceedings of the 1998 International Symposium on Sym-
bolic and Algebraic Computation, ISSAC ’98, Rostock, Germany, Au-
gust 13-15, 1998. Ed. by Volker Weispfenning and Barry M. Trager.
ACM, 1998, pp. 101–105.

[142] Arne Storjohann. “Deterministic Computation of the Frobenius Form”.
In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. IEEE
Computer Society, 2001, pp. 368–377.

[143] Zhihui Tang, Ramani Duraiswami, and Nail A. Gumerov. “Fast al-
gorithms to compute matrix-vector products for pascal matrices”. In:
Technical Reports from UMIACS UMIACS-TR-2004-08 (2004).

[144] Éva Tardos. “A strongly polynomial minimum cost circulation algo-
rithm”. In: Combinatorica 5.3 (1985), pp. 247–256.

[145] Mikkel Thorup. “Undirected Single-Source Shortest Paths with Posi-
tive Integer Weights in Linear Time”. In: J. ACM 46.3 (1999), pp. 362–
394.

[146] Mikkel Thorup. “Floats, Integers, and Single Source Shortest Paths”.
In: J. Algorithms 35.2 (2000), pp. 189–201.

[147] Mikkel Thorup. “Equivalence between Priority Queues and Sorting”.
In: Proc. 43rd Symposium on Foundations of Computer Science (FOCS’02).
2002, pp. 125–134.

[148] Mikkel Thorup and Uri Zwick. “Approximate distance oracles”. In: J.
ACM 52.1 (2005), pp. 1–24.

[149] Godfried Toussaint. “The Geometry of Musical Rhythm”. In: Discrete
and Computational Geometry: Japanese Conference, JCDCG 2004,
Tokyo, Japan, October 8-11, 2004, Revised Selected Papers. Ed. by Jin
Akiyama, Mikio Kano, and Xuehou Tan. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 198–212.

169

BIBLIOGRAPHY

[150] Carlo Traverso, ed. Proceedings of the 2000 International Symposium
on Symbolic and Algebraic Computation, ISSAC 2000, St. Andrews,
United Kingdom, August 6-10, 2000. ACM, 2000.

[151] Virginia Vassilevska. “Efficient algorithms for path problems in weighted
graphs”. In: Carnegie Mellon University (2008). PhD Thesis.

[152] Virginia Vassilevska and Ryan Williams. “Finding a maximum weight
triangle in O(n3−δ) time, with applications”. In: Proc. 38th Annual
ACM Symposium on Theory of Computing (STOC’06). 2006, pp. 225–
231.

[153] Virginia Vassilevska, Ryan Williams, and Raphael Yuster. “All Pairs
Bottleneck Paths and Max-Min Matrix Products in Truly Subcubic
Time”. In: Theory of Computing 5.1 (2009), pp. 173–189.

[154] Virginia Vassilevska and Williams Ryan Williams. “Subcubic equiva-
lences between path, matrix and triangle problems”. In: In Proceedings
of the 2010 IEEE 51st Annual Symposium on Foundations of Com-
puter Science (FOCS). 2010.

[155] László A. Végh. “A Strongly Polynomial Algorithm for Generalized
Flow Maximization”. In: Math. Oper. Res. 42.1 (2017), pp. 179–211.

[156] Stephen Warshall. “A Theorem on Boolean Matrices”. In: J. ACM
9.1 (1962), pp. 11–12.

[157] R. Ryan Williams. “Faster All-Pairs Shortest Paths via Circuit Com-
plexity”. In: SIAM J. Comput. 47.5 (2018), pp. 1965–1985.

[158] Ryan Williams. “A new algorithm for optimal 2-constraint satisfaction
and its implications”. In: Theor. Comput. Sci. 348.2-3 (2005), pp. 357–
365.

[159] Virginia Vassilevska Williams. “Hardness of Easy Problems: Basing
Hardness on Popular Conjectures such as the Strong Exponential
Time Hypothesis (Invited Talk)”. In: 10th International Symposium
on Parameterized and Exact Computation, IPEC 2015, September 16-
18, 2015, Patras, Greece. Ed. by Thore Husfeldt and Iyad A. Kanj.
Vol. 43. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015, pp. 17–29.

[160] Virginia VassilevskaWilliams and R. RyanWilliams. “Subcubic Equiv-
alences Between Path, Matrix, and Triangle Problems”. In: J. ACM
65.5 (2018), 27:1–27:38.

170

BIBLIOGRAPHY

[161] Virginia Vassilevska Williams and Ryan Williams. “Finding, minimiz-
ing, and counting weighted subgraphs”. In: SIAM Journal on Com-
puting 42.3 (2013), pp. 831–854.

[162] Gerhard J. Woeginger. “When Does a Dynamic Programming Formu-
lation Guarantee the Existence of a Fully Polynomial Time Approxi-
mation Scheme (FPTAS)?” In: INFORMS Journal on Computing 12.1
(2000), pp. 57–74.

[163] Raphael Yuster. “Efficient algorithms on sets of permutations, domi-
nance, and real-weighted APSP”. In: Proc. 20th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’09). 2009, pp. 950–957.

[164] Raphael Yuster. “A shortest cycle for each vertex of a graph”. In: Inf.
Process. Lett. 111.21-22 (2011), pp. 1057–1061.

[165] Raphael Yuster. “Approximate shortest paths in weighted graphs”.
In: J. Comput. Syst. Sci. 78.2 (2012), pp. 632–637.

[166] Raphael Yuster and Uri Zwick. “Finding Even Cycles Even Faster”.
In: Automata, Languages and Programming, 21st International Col-
loquium, ICALP94, Jerusalem, Israel, July 11-14, 1994, Proceedings.
Ed. by Serge Abiteboul and Eli Shamir. Vol. 820. Lecture Notes in
Computer Science. Springer, 1994, pp. 532–543.

[167] Raphael Yuster and Uri Zwick. “Answering distance queries in di-
rected graphs using fast matrix multiplication”. In: 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2005), 23-
25 October 2005, Pittsburgh, PA, USA, Proceedings. IEEE Computer
Society, 2005, pp. 389–396.

[168] Richard Zippel. “Probabilistic algorithms for sparse polynomials”. In:
Symbolic and Algebraic Computation. Ed. by Edward W. Ng. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1979, pp. 216–226.

[169] Uri Zwick. “All Pairs Shortest Paths in Weighted Directed Graphs –
Exact and Almost Exact Algorithms”. In: 39th Annual Symposium on
Foundations of Computer Science, FOCS ’98, November 8-11, 1998,
Palo Alto, California, USA. IEEE Computer Society, 1998, pp. 310–
319.

[170] Uri Zwick. “All pairs shortest paths using bridging sets and rectan-
gular matrix multiplication”. In: J. ACM 49.3 (2002), pp. 289–317.

171

	I Overview
	Introduction
	Algorithmic applications of Frobenius normal form
	Our results
	Related work

	Dynamic programming & approximation
	Our results
	Related work

	Fine-grained complexity of tropical convolution
	Related work
	Our results

	Equivalence of approximate operations in (min,+)-semiring with an exact operations in (min,max)-semiring
	Our results
	Related work

	Notation and preliminaries
	Fast matrix multiplication
	Frobenius normal from
	Subsums
	Technical rounding lemmas
	Reductions
	Machine model and input format

	II Faster Dynamic Programming
	Dynamic programming & Frobenius normal form
	Introduction to cyclic subspaces and connection to Frobenius matrices
	Consequences of Frobenius normal form
	Cyclic subspaces

	Matching distance queries on directed unweighted graphs
	Single invariant factor
	Multiple invariant factors

	Almost optimal query
	Hankel matrix
	Applying Hankel matrices

	Applications
	Counting and determining the lengths of cycles

	Dynamic programming meets approximation
	Overview of the techniques
	Weak approximation for Subset Sum and application to Partition
	Constructing weak approximation algorithms for Subset Sum: a sketch
	Approximation via pseudo-polynomial time Subset Sum algorithm
	Approximation via dense Subset Sum
	A framework for efficient approximation

	Preprocessing
	From multisets to sets
	From n items to O"0365O(1/) items
	From one instance to small and large instances
	From exact solution to -close instance

	The weak (1-)-approximation algorithm for Subset Sum
	Large items
	Small items
	Applying additive combinatorics
	Combining the algorithms

	III Equivalences in the Tropical Semirings
	On problems equivalent to (min,+)-convolution
	Basic reductions
	The reduction from Knapsack to Max-Plus Convolution
	Set of all subset sums
	Sum of all sets for Knapsack
	Retracing Bringmann's steps

	Other problems related to Min-Plus Convolution
	Maximum Consecutive Subsums Problem
	Tree Sparsity
	l-Necklace Alignment

	Nondeterministic algorithms
	Reduction to 3SUM
	Nondeterministic algorithm for 3SUM
	Approximate Min-Plus Convolution
	State of the art
	Exact O"0365O(nW) algorithm
	Approximation

	Approximate Tree Sparsity
	O"0365O(n+1/) approximation algorithm for 3SUM
	Faster approximation algorithm for 3SUM

	Conditional lower bounds for approximate Knapsack-type problems
	Conditional lower bound for approximate 3SUM

	Approximate (min,+) is equivalent to (min,max)
	Strongly polynomial approximation for directed APSP
	Equivalence of approximate APSP and Min-Max Product
	Sum-To-Max-Covering
	Close Covering
	Distant Covering
	Proof of Sum-To-Max-Covering

	Strongly polynomial approximation for undirected APSP
	Zwick's approximation for APSP
	Undirected APSP in strongly polynomial matrix-multiplication time

	Strongly polynomial approximation for graph characteristics
	Strongly polynomial approximation for Min-Plus Convolution
	Simple approximation algorithm
	Equivalence of approximate Min-Plus and Exact Min-Max Convolution
	Improved approximation algorithm
	Applications for Tree Sparsity

	IV Conclusion
	Conclusion and future work
	Exact graph algorithms
	Connecting dynamic programming with approximation
	Equivalences in tropical convolutions
	Equivalence of approximate tropical product

