
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Karol Kurach

Deep Neural Architectures for
Algorithms and Sequential Data

PhD dissertation

Supervisor
dr hab. Hung Son Nguyen, prof. UW

Institute of Informatics
University of Warsaw

June 2016

Author’s declaration:
I hereby declare that this dissertation is my own work.

June 13, 2016 .
Karol Kurach

Supervisor’s declaration:
The dissertation is ready to be reviewed.

June 13, 2016 .
dr hab. Hung Son Nguyen, prof. UW

Abstract

The first part of the dissertation describes two deep neural architectures with exter-
nal memories: Neural Random-Access Machine (NRAM) and Hierarchical Attentive
Memory (HAM). The NRAM architecture is inspired by Neural Turing Machines, but
the crucial difference is that it can manipulate and dereference pointers to its random-
access memory. This allows it to learn concepts that require pointers chasing, such as
“linked list” or “binary tree”. The HAM architecture is based on a binary tree with leaves
corresponding to memory cells. This enables the memory access in Θ(log n), which is
a significant improvement over Θ(n) access used in the standard attention mechanism.
We show that Long Short-Term Memory (LSTM) augmented with HAM can success-
fully learn to solve a number of challenging algorithmic problems. In particular, it is
the first architecture that learns from pure input/output examples to sort n numbers
in time Θ(n log n) and the solution generalizes well to longer sequences. We also show
that HAM is very generic and can be trained to act like classic data structures: a stack,
a FIFO queue and a priority queue.

The second part of the dissertation describes three novel systems based on deep
recurrent neural networks (RNNs). The first one is a framework for finding computa-
tionally efficient versions of symbolic math expressions. By using RNNs it can efficiently
search the state space and quickly find identities with significantly better time comple-
xity (e.g., Θ(n2) instead of exponential time). Then, we present an RNN-based system
for predicting dangerous events from multivariate, non-stationary time series data. It
requires almost no feature engineering and achieved very good results in two machine
learning competitions. Finally, we describe Smart Reply – an RNN-based end-to-end
system for suggesting automatic responses to e-mails. The system is capable of han-
dling hundreds of millions messages daily. Smart Reply was successfully deployed in
Google Inbox and currently generates 10% of responses on mobile devices.

Keywords

Neural Networks, Recurrent Neural Networks, Attention Mechanism, LSTM

ACM Computing Classification

Machine Learning, Machine Learning approaches, Neural Networks

Streszczenie

Pierwsza część pracy przedstawia dwie głębokie architektury neuronowe wykorzy-
stujące pamięć zewnętrzną: Neural Random-Access Machine (NRAM) oraz Hierarchical
Attentive Memory (HAM). Pomysł na architekturę NRAM jest inspirowany Neurono-
wymi Maszynami Turinga (NTM). NRAM, w przeciwieństwie do NTM, posiada me-
chanizmy umożliwiające wykorzystanie wskaźników do pamięci. To sprawia, że NRAM
jest w stanie nauczyć się pojęć wymagających użycia wskaźników, takich jak „lista
jednokierunkowa” albo „drzewo binarne”. Architektura HAM bazuje na pełnym drze-
wie binarnym, w którym liście odpowiadają elementom pamięci. Umożliwia to wyko-
nywanie operacji na pamięci w czasie Θ(log n), co jest znaczącą poprawą względem
dostępu w czasie Θ(n), standardowo używanym w implementacji mechanizmu „sku-
pienia uwagi” (ang. attention) w sieciach rekurencyjnych. Pokazujemy, że sieć LSTM
połączona z HAM jest w stanie rozwiązać wymagające zadania o charakterze algo-
rytmicznym. W szczególności, jest to pierwsza architektura, która mając dane jedynie
pary wejście/poprawne wyjście potrafi się nauczyć sortowania elementów działającego
w złożoności Θ(n log n) i dobrze generalizującego się do dłuższych ciągów. Pokazujemy
również, że HAM jest ogólną architekturą, która może zostać wytrenowana aby działa-
ła jak standardowe struktury danych, takie jak stos, kolejka lub kolejka priorytetowa.

Druga część pracy przedstawia trzy nowatorskie systemy bazujące na rekurencyj-
nych sieciach neuronowych (RNN). Pierwszy z nich to system do znajdowania wy-
dajnych obliczeniowo formuł matematycznych. Przy wykorzystaniu sieci rekurencyjnej
system jest w stanie efektywnie przeszukiwać przestrzeń stanów i szybko znajdować
tożsame formuły o istotnie lepszej złożoności asymptotycznej (przykładowo, Θ(n2) za-
miast złożoności wykładniczej). Następnie, prezentujemy oparty na RNN system do
przewidywania niebezpiecznych zdarzeń z wielowymiarowych, niestacjonarnych szere-
gów czasowych. Nasza metoda osiągnęła bardzo dobre wyniki w dwóch konkursach
uczenia maszynowego. Jako ostatni opisany został Smart Reply – bazujący na RNN
system do sugerowania automatycznych odpowiedzi na e-maile. Smart Reply został za-
implementowany w Google Inbox i codziennie przetwarza setki milionów wiadomości.
Aktualnie, 10% wiadomości wysłanych z urządzeń mobilnych jest generowana przez
ten system.

Słowa kluczowe

sieci neuronowe, rekurencyjne sieci neuronowe, mechanizm skupienia uwagi, LSTM

Klasyfikacja tematyczna ACM

Machine Learning, Machine Learning approaches, Neural Networks

To Anna,
my beloved wife

Deep Neural Architectures for
Algorithms and Sequential Data

PhD dissertation summary

Karol Kurach

June 2016

1 Introduction

My PhD thesis consists of 7 publications listed below1:

1. Neural Random-Access Machines, accepted to ICLR 2016 (Con-
ference Track) [1]

2. Learning Efficient Algorithms with Hierarchical Attentive Mem-
ory, in review for NIPS 2016 [2]

3. Adding Gradient Noise Improves Learning for Very Deep Net-
works, accepted to ICLR 2016 (Workshop Track) [3]

4. Learning to Discover Efficient Mathematical Identities, ac-
cepted to NIPS 2014 (as spotlight) [4]

5. Detecting Methane Outbreaks from Time Series Data with
Deep Neural Networks, accepted to IJCRS 2015 [5]

6. Detecting Dangerous Seismic Events with Recurrent Neural
Networks, accepted to AAIA 2016 [6]

7. Smart Reply: Automated Response Suggestion for Email, ac-
cepted to KDD 2016 (Research Track) with presentation at the ple-
nary session [7]

1For statistics and acceptance rates please see Appendix A.

1

The first three publications are related to deep neural architectures with
external memories. The next four publications describe novel systems based
on recurrent neural networks (both with “vanilla” and Long Short-Term
Memory cells) in domains of sequential data and finding efficient algorithms.

A brief introduction to Deep Learning is given in Section 2. Feedforward
neural networks are described in Section 3. A generalization of feedforward
networks to recurrent neural networks is presented in Section 4. Section 5 de-
scribes recently introduced attention mechanism. Finally, Section 6 contains
the results of this thesis.

Notation

x A vector or scalar

xt A vector or scalar at timestep t (for recurrent neural networks)

xi The i-th element from a set

X A matrix

x · y A scalar product of two vectors

x� y An element-wise multiplication of two vectors

x⊕ y An element-wise sum of two vectors

θ A vector of neural network’s trainable parameters (“weights”)

a(t) An activation function

f ◦ g A composition of functions f and g

ZM A ring of integers modulo M

sigm(β, t) The sigmoid function 1
1+e−βt

sigm(t) The sigmoid function with β = 1

tanh(β, t) The tanh function eβt−e−βt
eβt+e−βt

tanh(t) The tanh function with β = 1

2

2 Deep Learning

Machine Learning is an area of Artificial Intelligence focused on designing
systems that can learn from data. It is widely applied to a variety of prob-
lems, especially those too complex for a human software engineer to define
in terms of a fixed piece of software. Examples span wide range of topics,
including computer vision, signals recognition and text understanding.

Deep learning is a branch of machine learning that concentrates on find-
ing hierarchical representation of data, starting from low-level observations
towards high-level abstractions. Deep architectures are usually composed of
multiple layers of non-linear operations, such as neural networks with many
hidden layers.

Although neural networks are not new, they recently got a lot of trac-
tion in the researchers’ community. This is mostly because of three factors:
progress in understanding training, availability of big datasets and significant
increase in computing power. The first one is related to the fact that in the
late 90’s it was believed that training networks with more than few layers is
a very complex and practically impossible task. Recent work proved that,
with correct methods for initialization, careful selection of learning rates and
a pre-training, even networks with many layers can be successfully trained.

The other crucial component was progress in hardware, especially the
introduction of graphics processing units (GPUs). Being able to train few
orders of magnitude faster and on much larger datasets allowed to create
and train complex models, with millions of parameters. Deep neural networks
already proved to be very successful in representing complicated functions. In
some domains, like image or speech recognition, they overperformed previous
state of the art methods by a wide margin.

3 Feedforward Neural Networks

A feedforward neural network (FNN) is a basic example of an artificial neural
network. In essence, the goal of such network in supervised setting is to
approximate some function f(x), given only a noisy set of evaluations in
selected points {(xi, f(xi))}. The FNN can be interpreted as a function
f ∗(x; θ), where θ is a set of trainable parameters (“weights”) of the network.
The parameters θ are trained from the data to minimize selected cost (e.g.,
MSE, logistic loss) between f and f ∗.

3

x1

x2

x3

x4

h11

h12

h13

h14

h15

h21

h22

h23

Output

Hidden
layer 1

Input
Hidden
layer 2

Output
layer

Figure 1: A feedforward neural network with 4 inputs and 2 hidden layers
with 5 and 3 nodes respectively.

The simplest form of the feedforward network is a linear classifier, known
also as perceptron. In this case:

f ∗(x; θ) = a(x · θ + b) (1)

where b is the bias term and a(u) = [u > 0]. In a more general scenario,
f ∗(x; θ) is a composition of N functions H1, . . . , HN . That is:

f ∗(x) = HN ◦HN−1 ◦ . . . ◦H1(x) (2)

where HN computes the final output. Intuitively, each function H i represents
one transformation or layer of the neural network. The total number of layers
N is the depth of the neural network. This is why FNNs are also referred to as
multi-layer perceptrons (MLP). The FNN is feedforward because connections
between nodes of the network do not form cycles, i.e. it can be represented
as Direct Acyclic Graph (DAG).

An example feedforward network composed of N = 3 layers is presented
in Figure 1. The network consists of two hidden layers and an output layer.
The parameters θ are the weights on the edges. Let us denote by θluv the
weight on the edge going from the node u in the layer l to the node v in the
layer l + 1. Then, each node’s value hl+1

j can be computed using:

hl+1
j = al+1(

∑
i

hli ∗ θlij + bl+1
j) (3)

The term al+1 is known as activation function. It is applied to introduce
a non-linearity to the network computation. This is a crucial component –

4

if all of the hidden layers were linear transformations, the composition of N
hidden layers would be a linear transformation as well. A very deep network
would be then an equivalent of a simple perceptron. Popular examples of
activation functions are sigmoid, tanh and ReLu [8]. The bl+1

j is the bias
term for the jth node in the layer l + 1, which is also a trainable parameter
of the model. Usually, it is an edge from a special node hl0 = 1 in the layer
l, so that bl+1

j = θl0j.
The estimation of the parameters θ is frequently done using the backprop-

agation learning technique. For a given example pair (x, y) first the value
y′ = f ∗(x; θ) is computed. This is used to calculate the C = loss(y′, y)
value, where C is the “cost” we want to minimize and loss is a function
such as Mean Squared Error. Then, the backpropagation is used to compute
derivatives of the network parameters θ w.r.t. the cost. With derivatives
computed, one can use a standard optimization technique such as Stochastic
Gradient Descent or Adagrad [9] to adjust weights. After a sufficient number
of steps the network should usually converge to the parameters that achieve
low error score on a given training set.

4 Recurrent Neural Networks

The important limitation of feedforward networks is the ability to process
only inputs of a fixed size. However, many real-word problems are sequential
in nature – for instance, we may want to classify e-mails which can have
different number of words, translate sentences or predict stock price based
on the list of historical values. Moreover, for the FNN all input examples
are independent from each other. This means that, after processing one data
point, the network forgets everything from the previous step and starts from
scratch. This is clearly very different from the way people process data,
relying on the context of elements seen so far.

A recurrent neural network (RNN) is a type of neural network that can
overcome those limitations. In RNN, the dependencies between nodes can
form a cycle, which allows the network to preserve the state between subse-
quent timesteps. In the most general form, the RNN is a function that, in
timestep t, takes the current input (xt), the state from the previous timestep
(st−1) and produces the new state:

st = f ∗(xt, st−1; θ) (4)

RNNs process all elements from a sequence one-by-one, and the output
at every timestep depends on all previous inputs. This fact has an important
theoretical implication: RNNs are capable of approximating arbitrarily well

5

x

h

o

h1 h2 hN

x1 x2 xN

o1 o2 oN

Unroll

U

V

W
W W W

U U U

V V V

Figure 2: An example of unrolling recurrent neural network for N timesteps.

any measurable sequence-to-sequence mapping [10]. The state st can vary
depending on the specific RNN – for example, in the vanilla RNN the state
consists of one hidden state vector (h), while in, for example, LSTM the state
is represented by two vectors: h and memory cell vector c. Below those two
RNN variants are described in more details, as both are building blocks of
results obtained in this thesis.

4.1 Vanilla RNN

A basic version of the recurrent network is the vanilla RNN, which is pre-
sented in Figure 2. In this case, the Equation 4 can take the following form:

ht = tanh(U ∗ xt +W ∗ ht−1)
ot = output(V ∗ ht)

(5)

where U ,V , W are matrices and output is a function that produces final
values at timestep t from the hidden state (i.e. softmax). The tanh function
is frequently used as activation for vanilla RNN, but can be also replaced by
any other non-linear function.

Figure 2 presents also the idea of unrolling. Since RNNs contain loops,
we cannot directly apply the standard backpropagation algorithm to com-
pute gradients. Instead, we replicate the network N times and change the
recurrent connections. Every edge (u, v) is converted into a new edge con-
necting node u in layer k with node v in layer k + 1. Note that the matrices
U , V , W are the same for each timestep. This transforms the RNN into
a standard feedforward network, where we can apply backpropagation, and
average gradients from all timesteps. This method is called backpropagation
through time (BPTT) [11] and it is commonly used to train RNNs.

6

However, there are some important problems that arise when applying
BPTT. Notice that the unrolled network can be extremely deep. In this
case, the gradients of the activation functions will be multiplied at least N
times. For some activation functions, the maximal value of the derivative
is small. For example, the derivative of commonly used sigmoid function
is never bigger than 0.25. As a result, after N timesteps the gradient is
multiplied by a value less than or equal to 0.25N This leads to the problem
known as vanishing gradient, as the gradient signal quickly becomes too weak
to learn any dependency longer than few timesteps. Similarly, the exploding
gradient can occur when derivatives bigger than 1.0 are multiplied many
times.

Those two problems historically made people believe that RNNs are too
hard to train. To address them, various techniques were proposed, such as
gradient clipping (for exploding gradient), and architectures, such as Long
Short-Term Memory (for vanishing gradient).

4.2 Long Short-Term Memory

The Long Short-Term Memory (LSTM) is a neural architecture designed for
storing and accessing information better than standard RNN [12]. The LSTM
block consists of a self-connected memory cell and three gates named: input,
output and forget. The gates control the access to the cell and can be inter-
preted as “read”, “write” and “reset” operations in the standard computer’s
memory. The network learns to control the gates and decides to update
and/or use the value at any given timestep. Since all of the components are
built from differentiable functions, the gradients can be computed for the
whole system and it is possible to train it end-to-end using backpropagation.
There are several variants of LSTM that slightly differ in connectivity struc-
ture and activation functions. Below are described the definitions of input,
output and forget gates used in this work.

Let ht ∈ Rn be a hidden state, ct ∈ Rn be a vector of memory cells of the
network and let xt ∈ Rn be the input at the timestep t. Let Wi,Wf ,Wu,Wo

be matrices and bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht−1, ct−1, xt) and produces 2 outputs
(ht and ct). In all equations below � is element-wise multiplication and ⊕ is
is element-wise addition.

7

�
��ct

Cell

f×
�
��f Forget gate
6

� 	

���ht−1
AAK xt

�
��iInput
gate

AU

ht−1
���

xt

�
��oOutput
gate

AU

ht−1
���

xt

�
��g
Input

modulation
gate

f× --

J
J
Ĵ f×- -?

hltht−1

xt
��:
XXz

Figure 3: A graphical representation of LSTM memory cells. Figure adapted
with permission from [13].

The connections between all gates are presented in Figure 3. The forget gate
which decides how much of the information should be removed from the cell
is defined as:

ft = sigm(Wf ∗ [ht−1 ⊕ xt] + bf) (6)

The input modulation gate value it and the cell update ut are defined as:

it = sigm(Wi ∗ [ht−1 ⊕ xt] + bi)

ut = tanh(Wu ∗ [ht−1 ⊕ xt] + bu)
(7)

Intuitively, input modulation decides how much of the ut should be added to
the memory at step t. For example, if xt can be ignored, it will be close to
0. Knowing the values above, the new cell value ct is computed as:

ct = ft � ct−1 + it � gt (8)

The last step is to compute ht, the output passed to the next LSTM’s
timestep. It is controlled by the output gate ot:

ot = sigm(Wo ∗ [ht−1 ⊕ xt] + bo)

ht = ot � tanh(ct)
(9)

The LSTM networks have been successfully applied to real-world problems,
including language modeling [14], handwriting [15], speech recognition [16]
and machine translation [17].

8

hE1 hE2 hEN

hD1 hD2 hDM

o1 o2 oM

x1 x2 xN

Figure 4: Encoder-decoder scheme for Neural Machine Translation. The en-
coder is unrolled for N timesteps (marked in red) and the decoder is unrolled
for M timesteps (marked in blue).

5 Recurrent Networks with Attention

An important limitation of RNNs described in Section 4 is the size of their
internal state. It was observed that, the bigger the size of the LSTM memory,
the better the language modelling results [13]. It was also noticed that some
heuristics, like feeding the input twice or providing the network with both a
sequence and a reversed sequence, improve the performance [17]. To under-
stand why those techniques help, let us take a look at Figure 4 which presents
the standard encoder-decoder RNN setup used for Machine Translation.

The goal of the presented model is to translate sentences. For example,
the input could be a sentence in Polish (with x1, . . . , xN being words in
Polish) and we want to produce a translation into English (with o1, . . . , oM
being words in English). There is a special symbol for missing word, so
this model can translate any sentence consisting of up to N words into any
sentence consisting of up to M words.

The first, lower part of the model is the encoder, which reads an input
sequence word by word and update its internal state hE. After processing
the whole sequence, it passes its final state hEN to the decoder. The decoder’s
tasks is to predict the translation conditioned only on the input from the
encoder.

Notice, that in this setup the encoded state hEN has to preserve all informa-
tion about the initial sentence. This “compression” into a fixed-length vector

9

results in a dropping some information, and explains why giving the network
both input and the reversed input can sometimes improve the performance.

One obvious solution to this problem would be to just use a bigger mem-
ory. However, this can significantly increase the number of model’s param-
eters. For example, in LSTM the number of network’s parameters grows
quadratically with the memory size, making it harder to train and more
prone to overfitting.

Recently, there has been a significant interest in creating neural network
architectures that avoid the problem of memorization by employing the so-
called attention mechanism. Such networks can attend to parts of the (poten-
tially preprocessed) input sequence [18] while generating the output sequence.
It is implemented by giving the network as an auxiliary input a linear com-
bination of input symbols, where the weights of this linear combination can
be controlled by the network. This approach has already proven to be very
successful in areas of machine translation [18], speech recognition [19] and
syntactic parsing [20].

5.1 Learning algorithms

One of the important applications of attention mechanism was the highly
influential paper Neural Turing Machines (NTMs) [21], where the authors
presented a versatile neural network architecture capable of learning simple
algorithms from pure input-output examples. The main idea behind this type
of neural networks is to let the network operate on an “external” memory,
which size is independent of the number of the model parameters.

The NTM paper caused an outbreak of other neural network architectures
with a goal of learning algorithms and operating on external memory. They
usually fall into one of the categories:

• Memory architectures based on attention, such as Memory Net-
works [22] or Pointer Networks [23]

• Memory architectures based on data structures, such as Stack-
Augmented RNN [24] or LSTM extended with a stack, a FIFO queue
or double-eneded queue [25]

• Parallel memory architectures, such as Grid-LSTM [26] or Neural
GPU [27]

10

6 Main results

6.1 Neural Random-Access Machines

In the paper Neural Random-Access Machines [1] we propose a neural
architecture that has, as primitive operations, the ability to manipulate,
store in memory, and dereference pointers into its working memory. The
Neural Random-Access Machine (NRAM) is an computationally-universal
model employing an external memory, which size does not depend on the
number of model’s parameters.

By providing our model with dereferencing as a primitive, it becomes
possible to train it on problems whose solutions require pointer manipu-
lation and chasing. We were able to train the proposed model from pure
input/output pairs using the standard backpropagation algorithm. It has
learned to solve algorithmic tasks and is capable of learning the concept of
data structures that require pointers, like linked-lists and binary trees. For a
subset of tasks we show that the found solution can generalize to sequences of
arbitrary length. Moreover, memory access during inference can be done in
a constant time under some assumptions. The most important contributions
of the NRAM architecture include:

• A mechanism for location-based addressing using fuzzy pointers (prob-
ability distributions over ZM).

• A way of combining neural network with pre-defined modules.

• A differentiable mechanism for deciding when to terminate the compu-
tation.

• Novel training techniques, such as entropy term or way of enforcing
distribution constrains.

6.1.1 Noise addition

The NRAM model can be very deep (up to hundreds of layers after unrolling)
which makes the training very challenging. One of the important training
techniques that we employ is the addition of gaussian noise to gradients
during backpropagation. This technique was proposed in our paper Adding
Gradient Noise Improves Learning for Very Deep Networks [3], in
which we evaluate it on a number of modern neural architectures, including
Neural Programmer [28], End-To-End Memory Networks [29] and Neural
GPU [27]. We show that the noise addition can significantly improve the
training results as well as stability of the re-training.

11

6.2 Hierarchical Attentive Memory

One of the limitations of the standard attention mechanism (see Section 5)
is the fact, that the memory access complexity is O(n). This can make it
impractical for real-word problems, when the size of the input can be large
(e.g., attention over books or long DNA sequences). To address this problem,
in the paper Learning Efficient Algorithms with Hierarchical Atten-
tive Memory [2] we propose a novel memory module for neural networks,
called Hierarchical Attentive Memory (HAM).

The HAM module is generic and can be used as a building block of
larger neural architectures. Its crucial property is that it scales well with
the memory size — the memory access requires only Θ(log n) operations,
where n is the size of the memory. This complexity is achieved by using a
new attention mechanism based on a binary tree with leaves corresponding
to memory cells. The novel attention mechanism is not only faster than
the standard one commonly used in Deep Learning [18], but it also facilities
learning algorithms due to a built-in bias towards operating on intervals.

We show that an LSTM augmented with HAM is able to learn algorithms
for tasks like merging, sorting or binary searching. In particular, it is the
first neural network, that is able to learn sorting algorithm from pure input-
output examples and generalizes well to input sequences much longer than
the ones seen during the training. Moreover, the learned sorting algorithm
runs in time Θ(n log n). We also show that the HAM module itself can act as
a drop-in replacement for classic data structures, like a stack, a FIFO queue
or a priority queue.

6.3 RNN for efficient algorithms

The running time of a computer program can critically depend on the algo-
rithms used. For instance, one could solve a problem of sorting by using a
very natural algorithm known as selection sort, with a complexity of O(n2).
However, people discovered an alternative algorithm that can produce ex-
actly the same output with a complexity of O(n log n). It would be desirable
to have a system that, for given algorithm, can find the fastest drop-in re-
placement. That is, an algorithm providing exactly the same final result, but
with a low computational complexity.

In our work we restrict our domain of algorithms to mathematical ex-
pressions over matrices. The motivational example is presented in Fig-
ure 5. Assume we are given matrices A ∈ Rn×m, B ∈ Rm×p. We wish
to compute the sum of all elements of the matrix A ∗ B, i.e.

∑
n,pAB =∑n

i=1

∑m
j=1

∑p
k=1Ai,jBj,k which naively takes O(nmp) time. This formula

12

(a) The original expression.

(b) The efficient formula.

Figure 5: Two equivalent expressions. The bottom formula found by our
framework avoids the use of a matrix-matrix multiply operation, hence is
efficient to compute. The sum(X, 1) is a sum of matrix X along dimension
1 (a row vector containing the sum of each column) and ^T is the matrix
transposition.

could be expressed in matlab notation as sum(sum(A*B)). However, there
exists an efficient version of the formula, that computes the same result in
O(n(m+p)) time by avoiding matrix-matrix multiplication. It can be written
in matlab as sum((sum(A, 1) * B)’, 1).

In the paper Learning to Discover Efficient Mathematical Identi-
ties [4] we introduce a framework based on attribute grammars for finding
computationally efficient versions of symbolic math expressions. We show
how machine learning techniques can be integrated into this framework, and
demonstrate how training models on simpler expressions can help with the
discovery of more complex ones. In particular, we present a novel application
of an RNN to learn a continuous representation of mathematical structures.

We show how the exploration of the search space can be learned from pre-
viously successful solutions to simpler expressions. This allows us to discover
complex expressions that random or brute-force strategies cannot find. We
present examples of (i) O(n3) target expressions which can be computed in
O(n2) time and (ii) cases where naive evaluation of the target would require
exponential time, but can be computed in O(n2) or O(n3) time. The majority
of these examples are too complex to be found manually or by exhaustive
search and, as far as we are aware, are previously undiscovered.

13

6.4 RNN for monitoring systems

Monitoring systems that can predict dangerous events play a key role in
ensuring people’s safety. Recent data mining competitions: IJCRS’15 and
AAIA’16 presented problems related to ensuring the safety of the under-
ground coal mining workers. The IJCRS’15 competition was concerned with
predicting dangerous levels of methane concentration, that can lead to ex-
plosion. The task of the AAIA’16 competition was related to predicting
high-energy seismic events. Both problems are similar in nature: they were
an instance of a classification problem with unbalanced data provided in a
form of multivariate, non-stationary time series. The data was collected from
Polish coal mines using various sensors.

In our paper Detecting Methane Outbreaks from Time Series
Data with Deep Neural Networks [5] we propose a method based on
an RNN and an FNN for predicting the probability of dangerous methane
concentration. The method is further improved in our next paper, Predict-
ing Dangerous Seismic Activity with Recurrent Neural Networks
[6], where we rely solely on an RNN.

The important aspect of our solution is the fact, that it learns to pre-
dict from raw sensor values, with a very minimal preprocessing. Most of the
other top solutions relied heavily on feature engineering, either manual or
automatic, such as: automatic variable construction [30], window-based fea-
ture engineering [31], hand-crafted features [32] or thousands of automatically
generated features [33]. Such approach, while effective in the competition,
is less likely to generalize to a different setting, as well as more complex to
reproduce and deploy in a real production system.

Our method achieved a competitive score and placed 6th (out of 90) in
the IJCRS’15 and 5th (out of 203 teams) in the AAIA’16 competition. Top
performance in both competitions suggests that our approach is versatile and
can be successfully applied to different multivariate time series problems.

6.5 RNN for email responses

Email is the primary medium of communication for billions of users across
the world to connect and share information [34]. In our paper Smart Re-
ply: Automated Response Suggestion for Email [7] we propose and
implement a novel end-to-end system for generating short email responses.
The system was implemented in Google Inbox and is currently responsible for
generating 10% of responses on mobile. An example usage of Smart Reply
is presented in Figure 6. A user is presented with 3 short response options
available to use with just one tap.

14

Figure 6: Example Smart Reply suggestions.

The Smart Reply system is extremely high-throughput oriented and can
handle the processing of hundreds of messages daily. The system is based
on sequence-to-sequence LSTM trained on a larger scale than before. We
also present our solution to challenges that we faced while developing such
system, including:

• Quality How to ensure that our system produces good quality and
diverse set of responses.

• Scalability How to process hundreds of millions of messages and stay
within latency requirements for an email system.

• Privacy How to develop such system without ever inspecting the data.

15

Acknowledgements

First of all, I would like to thank my supervisor, Hung Son Nguyen for
introducing me to the area of Machine Learning and convincing me to focus
on it during my PhD studies.

I would also like to express my gratitude to Krzysztof Diks and Joanna
Śmigielska for being inspirational algorithms teachers at the beginning of my
programming career. The Machine Learning and algorithmic topics had a
huge impact on the direction of this thesis.

Special thanks go to my co-authors: Greg Corrado, Rob Fergus, Marina
Ganea, Andrzej Janusz, Lukasz Kaiser, Anjuli Kannan, Tobias Kaufmann,
Quoc V. Le, László Lukács, James Martens, Tomasz Michalak, Balint Miklos,
Arvind Neelakantan, Talal Rahwan, Vivek Ramavajjala, Sujith Ravi, Lukasz
Romaszko, Ilya Sutskever, Marcin Tatjewski, Andrew Tomkins, Luke Vilnis,
Peter Young and in particular to Marcin Andrychowicz, Krzysztof Paw lowski
and Wojciech Zaremba with whom I have worked the most.

Last but not least, I would like to thank my amazing family for the
support and constant encouragement. In particular, I would like to thank
my wife Anna, brother Kamil, parents Agnieszka & Krzysztof as well as all
relatives and friends who have been constantly asking me when I finish this
thesis.

16

Appendix A Acceptance rates

Below are detailed statistics (if available) for the relevant conferences.

1. ICLR 2016 Conference Track: acceptance rate is 24.5% (65 out of
265)

2. NIPS 2014 spotlight: acceptance rate for spotlight is 3.7% (62 out
of 1678)

3. IJCRS 2015: for the “Competition Track” the papers from the top 6
(out of 90) teams were accepted (6.7%)

4. AAIA 2016: for the “Competition Track” the papers from the top 8
(out of 203) teams were accepted (3.9%)

5. KDD 2016 Research Track: acceptance rate for presentation is
9.2% (72 out of 784)

Appendix B Other publications

During my PhD studies I also published the following two papers, which I
have decided not to include in this dissertation, because they are not related
to neural architectures.

1. Coalition structure generation with the graphics processing
unit, accepted to AAMAS 2016 [35]

2. An Ensemble Approach to Multi-label Classification of Tex-
tual Data, accepted to ADMA 2012 [36]

17

References

[1] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural
random-access machines. International Conference on Learning Rep-
resentations, 2016.

[2] Marcin Andrychowicz and Karol Kurach. Learning efficient algorithms
with hierarchical attentive memory. CoRR, abs/1602.03218, 2016.

[3] Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz
Kaiser, Karol Kurach, and James Martens. Adding gradient noise im-
proves learning for very deep networks. International Conference on
Learning Representations Workshop, 2016.

[4] Wojciech Zaremba, Karol Kurach, and Rob Fergus. Learning to discover
efficient mathematical identities. In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Pro-
cessing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 1278–1286, 2014.

[5] Krzysztof Pawlowski and Karol Kurach. Detecting methane outbreaks
from time series data with deep neural networks. In Rough Sets, Fuzzy
Sets, Data Mining, and Granular Computing - 15th International Con-
ference, RSFDGrC 2015, Tianjin, China, November 20-23, 2015, Pro-
ceedings, pages 475–484, 2015.

[6] Karol Kurach and Krzysztof Pawlowski. Detecting dangerous seismic
events with recurrent neural networks. 11th International Symposium
Advances in Artificial Intelligence and Applications, 2016.

[7] Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufmann, Andrew
Tomkins, Balint Miklos, Greg Corrado, László Lukács, Marina Ganea,
Peter Young, and Vivek Ramavajjala. Smart reply: Automated response
suggestion for email. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016.

[8] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 807–814, 2010.

[9] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. The Journal
of Machine Learning Research, 12:2121–2159, 2011.

18

[10] Barbara Hammer. On the approximation capability of recurrent neural
networks. Neurocomputing, 31(1):107–123, 2000.

[11] Paul J Werbos. Generalization of backpropagation with application to
a recurrent gas market model. Neural Networks, 1(4):339–356, 1988.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[13] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329, 2014.

[14] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural
networks for language modeling. In INTERSPEECH, 2012.

[15] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami,
Horst Bunke, and Jürgen Schmidhuber. A novel connectionist system for
unconstrained handwriting recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 31(5):855–868, 2009.

[16] Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference
on, pages 6645–6649. IEEE, 2013.

[17] Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence
learning with neural networks. In Advances in neural information pro-
cessing systems, pages 3104–3112, 2014.

[18] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[19] William Chan, Navdeep Jaitly, Quoc V Le, and Oriol Vinyals. Listen,
attend and spell. arXiv preprint arXiv:1508.01211, 2015.

[20] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever,
and Geoffrey Hinton. Grammar as a foreign language. arXiv preprint
arXiv:1412.7449, 2014.

[21] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines.
CoRR, abs/1410.5401, 2014.

[22] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks.
arXiv preprint arXiv:1410.3916, 2014.

19

[23] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks.
arXiv preprint arXiv:1506.03134, 2015.

[24] Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with
stack-augmented recurrent nets. arXiv preprint arXiv:1503.01007, 2015.

[25] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and
Phil Blunsom. Learning to transduce with unbounded memory. In
Advances in Neural Information Processing Systems, pages 1819–1827,
2015.

[26] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term
memory. arXiv preprint arXiv:1507.01526, 2015.

[27] Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv
preprint arXiv:1511.08228, 2015.

[28] Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural pro-
grammer: Inducing latent programs with gradient descent. CoRR,
abs/1511.04834, 2015.

[29] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus.
End-to-end memory networks. In NIPS, 2015.

[30] Marc Boullé. Prediction of methane outbreak in coal mines from his-
torical sensor data under distribution drift. In Rough Sets, Fuzzy Sets,
Data Mining, and Granular Computing, pages 439–451. Springer, 2015.

[31] Marek Grzegorowski and Sebastian Stawicki. Window-based feature
engineering for prediction of methane threats in coal mines. In Rough
Sets, Fuzzy Sets, Data Mining, and Granular Computing, pages 452–
463. Springer, 2015.

[32] Petre Lameski, Eftim Zdravevski, Riste Mingov, and Andrea Kulakov.
Svm parameter tuning with grid search and its impact on reduction
of model over-fitting. In Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing, pages 464–474. Springer, 2015.

[33] Adam Zagorecki. Prediction of methane outbreaks in coal mines from
multivariate time series using random forest. In Rough Sets, Fuzzy Sets,
Data Mining, and Granular Computing, pages 494–500. Springer, 2015.

[34] Ipsos Global Public Affairs. Interconnected world: Communication &
social networking. Press Release, March 2012. http://www.ipsos-na.
com/news-polls/pressrelease.aspx?id=5564.

20

http://www.ipsos-na.com/news-polls/pressrelease.aspx?id=5564
http://www.ipsos-na.com/news-polls/pressrelease.aspx?id=5564

[35] Krzysztof Pawlowski, Karol Kurach, Kim Svensson, Sarvapali D. Ram-
churn, Tomasz P. Michalak, and Talal Rahwan. Coalition structure gen-
eration with the graphics processing unit. In International conference
on Autonomous Agents and Multi-Agent Systems, AAMAS ’14, Paris,
France, May 5-9, 2014, pages 293–300, 2014.

[36] Karol Kurach, Krzysztof Pawlowski, Lukasz Romaszko, Marcin Tatjew-
ski, Andrzej Janusz, and Hung Son Nguyen. An ensemble approach
to multi-label classification of textual data. In Advanced Data Mining
and Applications, 8th International Conference, ADMA 2012, Nanjing,
China, December 15-18, 2012. Proceedings, pages 306–317, 2012.

21

Published as a conference paper at ICLR 2016

NEURAL RANDOM-ACCESS MACHINES

Karol Kurach∗ & Marcin Andrychowicz∗ & Ilya Sutskever
Google
{kkurach,marcina,ilyasu}@google.com

ABSTRACT

In this paper, we propose and investigate a new neural network architecture called
Neural Random Access Machine. It can manipulate and dereference pointers to
an external variable-size random-access memory. The model is trained from pure
input-output examples using backpropagation.
We evaluate the new model on a number of simple algorithmic tasks whose so-
lutions require pointer manipulation and dereferencing. Our results show that the
proposed model can learn to solve algorithmic tasks of such type and is capable
of operating on simple data structures like linked-lists and binary trees. For easier
tasks, the learned solutions generalize to sequences of arbitrary length. More-
over, memory access during inference can be done in a constant time under some
assumptions.

1 INTRODUCTION

Deep learning is successful for two reasons. First, deep neural networks are able to represent the
“right” kind of functions; second, deep neural networks are trainable. Deep neural networks can
be potentially improved if they get deeper and have fewer parameters, while maintaining train-
ability. By doing so, we move closer towards a practical implementation of Solomonoff induc-
tion (Solomonoff, 1964). The first model that we know of that attempted to train extremely deep
networks with a large memory and few parameters is the Neural Turing Machine (NTM) (Graves
et al., 2014) — a computationally universal deep neural network that is trainable with backprop-
agation. Other models with this property include variants of Stack-Augmented recurrent neural
networks (Joulin & Mikolov, 2015; Grefenstette et al., 2015), and the Grid-LSTM (Kalchbrenner
et al., 2015)—of which the Grid-LSTM has achieved the greatest success on both synthetic and real
tasks. The key characteristic of these models is that their depth, the size of their short term memory,
and their number of parameters are no longer confounded and can be altered independently — which
stands in contrast to models like the LSTM (Hochreiter & Schmidhuber, 1997), whose number of
parameters grows quadratically with the size of their short term memory.

A fundamental operation of modern computers is pointer manipulation and dereferencing. In this
work, we investigate a model class that we name the Neural Random-Access Machine (NRAM),
which is a neural network that has, as primitive operations, the ability to manipulate, store in mem-
ory, and dereference pointers into its working memory. By providing our model with dereferencing
as a primitive, it becomes possible to train models on problems whose solutions require pointer
manipulation and chasing. Although all computationally universal neural networks are equivalent,
which means that the NRAM model does not have a representational advantage over other models if
they are given a sufficient number of computational steps, in practice, the number of timesteps that
a given model has is highly limited, as extremely deep models are very difficult to train. As a result,
the model’s core primitives have a strong effect on the set of functions that can be feasibly learned
in practice, similarly to the way in which the choice of a programming language strongly affects the
functions that can be implemented with an extremely small amount of code.

Finally, the usefulness of computationally-universal neural networks depends entirely on the ability
of backpropagation to find good settings of their parameters. Indeed, it is trivial to define the “op-
timal” hypothesis class (Solomonoff, 1964), but the problem of finding the best (or even a good)

∗Equal contribution.

1

Published as a conference paper at ICLR 2016

function in that class is intractable. Our work puts the backpropagation algorithm to another test,
where the model is extremely deep and intricate.

In our experiments, we evaluate our model on several algorithmic problems whose solutions required
pointer manipulation and chasing. These problems include algorithms on a linked-list and a binary
tree. While we were able to achieve encouraging results on these problems, we found that standard
optimization algorithms struggle with these extremely deep and nonlinear models. We believe that
advances in optimization methods will likely lead to better results.

2 RELATED WORK

There has been a significant interest in the problem of learning algorithms in the past few years.
The most relevant recent paper is Neural Turing Machines (NTMs) (Graves et al., 2014). It was the
first paper to explicitly suggest the notion that it is worth training a computationally universal neural
network, and achieved encouraging results.

A follow-up model that had the goal of learning algorithms was the Stack-Augmented Recurrent
Neural Network (Joulin & Mikolov, 2015) This work demonstrated that the Stack-Augmented RNN
can generalize to long problem instances from short problem instances. A related model is the
Reinforcement Learning Neural Turing Machine (Zaremba & Sutskever, 2015), which attempted to
use reinforcement learning techniques to train a discrete-continuous hybrid model.

The memory network (Weston et al., 2014) is an early model that attempted to explicitly separate
the memory from computation in a neural network model. The followup work of Sukhbaatar et al.
(2015) combined the memory network with the soft attention mechanism, which allowed it to be
trained with less supervision.

The Grid-LSTM (Kalchbrenner et al., 2015) is a highly interesting extension of LSTM, which allows
to use LSTM cells for both deep and sequential computation. It achieves excellent results on both
synthetic, algorithmic problems and on real tasks, such as language modelling, machine translation,
and object recognition.

The Pointer Network (Vinyals et al., 2015) is somewhat different from the above models in that it
does not have a writable memory — it is more similar to the attention model of Bahdanau et al.
(2014) in this regard. Despite not having a memory, this model was able to solve a number of diffi-
cult algorithmic problems that include the convex hull and the approximate 2D travelling salesman
problem (TSP).

Finally, it is important to mention the attention model of Bahdanau et al. (2014). Although this
work is not explicitly aimed at learning algorithms, it is by far the most practical model that has
an “algorithmic bent”. Indeed, this model has proven to be highly versatile, and variants of this
model have achieved state-of-the-art results on machine translation (Luong et al., 2015), speech
recognition (Chan et al., 2015), and syntactic parsing (Vinyals et al., 2014), without the use of
almost any domain-specific tuning.

3 MODEL

In this section we describe the NRAM model. We start with a description of the simplified version
of our model which does not use an external memory and then explain how to augment it with a
variable-size random-access memory. The core part of the model is a neural controller, which acts
as a “processor”. The controller can be a feedforward neural network or an LSTM, and it is the only
trainable part of the model.

The model contains R registers, each of which holds an integer value. To make our model trainable
with gradient descent, we made it fully differentiable. Hence, each register represents an integer
value with a distribution over the set {0, 1, . . . ,M − 1}, for some constant M . We do not assume
that these distributions have any special form — they are simply stored as vectors p ∈ RM satisfying
pi ≥ 0 and

∑
i pi = 1. The controller does not have direct access to the registers; it can interact

with them using a number of prespecified modules (gates), such as integer addition or equality test.

2

Published as a conference paper at ICLR 2016

Let’s denote the modules m1,m2, . . . ,mQ, where each module is a function:

mi : {0, 1, . . . ,M − 1} × {0, 1, . . . ,M − 1} → {0, 1, . . . ,M − 1}.

On a high level, the model performs a sequence of timesteps, each of which consists of the following
substeps:

1. The controller gets some inputs depending on the values of the registers (the controller’s
inputs are described in Sec. 3.1).

2. The controller updates its internal state (if the controller is an LSTM).

3. The controller outputs the description of a “fuzzy circuit” with inputs r1, . . . , rR, gates
m1, . . . ,mQ and R outputs.

4. The values of the registers are overwritten with the outputs of the circuit.

More precisely, each circuit is created as follows. The inputs for the module mi are chosen by the
controller from the set {r1, . . . , rR, o1, . . . , oi−1}, where:

• rj is the value stored in the j-th register at the current timestep, and

• oj is the output of the module mj at the current timestep.

Hence, for each 1 ≤ i ≤ Q the controller chooses weighted averages of the values
{r1, . . . , rR, o1, . . . , oi−1} which are given as inputs to the module. Therefore,

oi = mi

(
(r1, . . . , rR, o1, . . . , oi−1)T softmax(ai), (r1, . . . , rR, o1, . . . , oi−1)T softmax(bi)

)
,

(1)
where the vectors ai, bi ∈ RR+i−1 are produced by the controller (Fig. 1).

r1 . . . rR o1 . . . oi−1

registers

outputs of
previous
modules

LSTM

〈·, ·〉

〈·, ·〉
s-m

s-m

mi oi

ai

bi

Figure 1: The execution of the module mi. Gates s-m represent the softmax function and 〈·, ·〉
denotes inner product. See Eq. 1 for details.

Recall that the variables rj represent probability distributions and therefore the inputs to mi, be-
ing weighted averages of probability distributions, are also probability distributions. Thus, as the
modules mi are originally defined for integer inputs and outputs, we must extend their domain to
probability distributions as inputs, which can be done in a natural way (and make their output also
be a probability distribution):

∀0≤c<M P (mi(A,B) = c) =
∑

0≤a,b<M

P(A = a)P(B = b)[mi(a, b) = c]. (2)

After the modules have produced their outputs, the controller decides which of the values
{r1, . . . , rR, o1, . . . , oQ} should be stored in the registers. In detail, the controller outputs the vec-
tors ci ∈ RR+Q for 1 ≤ i ≤ R and the values of the registers are updated (simultaneously) using
the formula:

ri := (r1, . . . , rR, o1, . . . , oQ)T softmax(ci). (3)

3

Published as a conference paper at ICLR 2016

3.1 CONTROLLER’S INPUTS

Recall that at the beginning of each timestep the controller receives some inputs, and it is an im-
portant design decision to decide where should these inputs come from. A naive approach is to
use the values of the registers as inputs to the controller. However, the values of the registers are
probability distributions and are stored as vectors p ∈ RM . If the entire distributions were given as
inputs to the controller then the number of the model’s parameters would depend on M . This would
be undesirable because, as will be explained in the next section, the value M is linked to the size of
an external random-access memory tape and hence it would prevent the model from generalizing to
different memory sizes.

Hence, for each 1 ≤ i ≤ R the controller receives, as input, only one scalar from each register,
namely P(ri = 0) — the probability that the value in the register is equal 0. This solution has
an additional advantage, namely it limits the amount of information available to the controller and
forces it to rely on the modules instead of trying to solve the problem on its own. Notice that this
information is sufficient to get the exact value of ri if ri ∈ {0, 1}, which is the case whenever ri is
an output of a ,,boolean” module, e.g. the inequality test module mi(a, b) = [a < b].

3.2 MEMORY TAPE

One could use the model described so far for learning sequence-to-sequence transformations by
initializing the registers with the input sequence, and training the model to produce the desired
output sequence in its registers after a given number of timesteps. The disadvantage of such model
is that it would be completely unable to generalize to longer sequences, because the length of the
sequence that the model can process is equal to the number of its registers, which is constant.

Therefore, we extend the model with a variable-size memory tape, which consists of M memory
cells, each of which stores a distribution over the set {0, 1, . . . ,M−1}. Notice that each distribution
stored in a memory cell or a register can be interpreted as a fuzzy address in the memory and used
as a fuzzy pointer. We will hence identify integers in the set {0, 1, . . . ,M − 1} with pointers to the
memory. Therefore, the value in each memory cell may be interpreted as an integer or as a pointer.
The exact state of the memory can be described by a matrixM ∈ RM

M , where the valueMi,j is the
probability that the i-th cell holds the value j.

The model interacts with the memory tape solely using two special modules:

• READ module: this module takes as the input a pointer1 and returns the value stored under
the given address in the memory. This operation is extended to fuzzy pointers similarly
to Eq. 2. More precisely, if p is a vector representing the probability distribution of the
input (i.e. pi is the probability that the input pointer points to the i-th cell) then the module
returns the valueMT p.

• WRITEmodule: this module takes as the input a pointer p and a value a and stores the value
a under the address p in the memory. The fuzzy form of the operation can be effectively
expressed using matrix operations 2.

The full architecture of the NRAM model is presented on Fig. 2

3.3 INPUTS AND OUTPUTS HANDLING

The memory tape also serves as an input-output channel — the model’s memory is initialized with
the input sequence and the model is expected to produce the output in the memory. Moreover, we
use a novel way of deciding how many timesteps should be executed. After each timestep we let
the controller decide whether it would like to continue the execution or finish it, in which case the
current state of the memory is treated as the output.

1Formally each module takes two arguments. In this case the second argument is simply ignored.
2The exact formula isM := (J − p)JT · M+ paT , where J denotes a (column) vector consisting of M

ones and · denotes coordinate-wise multiplication.

4

Published as a conference paper at ICLR 2016

r1
r2
r3
r4re

gi
st

er
s m1

m2

m3
r1
r2
r3
r4

LSTM finish?
binarized

memory tape

Figure 2: One timestep of the NRAM architecture with R = 4 registers. The LSTM controller gets
the ,,binarized” values r1, r2, . . . stored in the registers as inputs and outputs the description of the
circuit in the grey box and the probability of finishing the execution in the current timestep (See
Sec. 3.3 for more detail). The weights of the solid thin connections are outputted by the controller.
The weights of the solid thick connections are trainable parameters of the model. Some of the
modules (i.e. READ and WRITE) may interact with the memory tape (dashed connections).

More precisely, after the timestep t the controller outputs a scalar ft ∈ [0, 1]3, which denotes the
willingness to finish the execution in the current timestep. Therefore, the probability that the exe-
cution has not been finished before the timestep t is equal

∏t−1
i=1(1 − fi), and the probability that

the output is produced exactly at the timestep t is equal pt = ft ·
∏t−1

i=1(1 − fi). There is also
some maximal allowed number of timesteps T , which is a hyperparameter. The model is forced to
produce output in the last step if it has not done it yet, i.e. pT = 1−

∑T−1
i=1 pi regardless of the value

fT .

Let M(t) ∈ RM
M denote the memory matrix after the timestep t, i.e. M(t)

i,j is the probability that
the i-th memory cell holds the value j after the timestep t. For an input-output pair (x, y), where
x, y ∈ {0, 1, . . . ,M − 1}M we define the loss of the model as the expected negative log-likelihood
of producing the correct output, i.e., −

∑T
t=1

(
pt ·
∑M

i=1 log(M(t)
i,yi

)
)

assuming that the memory

was initialized with the sequence x4. Moreover, for all problems we consider the output sequence
is shorter than the memory. Therefore, we compute the loss only over memory cells, which should
contain the output.

3.4 DISCRETIZATION

Computing the outputs of modules, represented as probability distributions, is a computationally
costly operation. For example, computing the output of the READ module takes Θ(M2) time as it
requires the multiplication of the matrixM∈ RM

M and the vector p ∈ RM .

One may however suspect (and we empirically verify this claim in Sec. 4) that the NRAM model
naturally learns solutions in which the distributions of intermediate values have very low entropy.
The argument for this hypothesis is that fuzziness in the intermediate values would probably prop-
agate to the output and cause a higher value of the cost function. To test this hypothesis we trained
the model and then used its discretized version during interference. In the discretized version every
module gets as inputs the values from modules (or registers), which are the most probable to produce

3In fact, the controller outputs a scalar xi and fi = sigmoid(xi).
4One could also use the negative log-likelihood of the expected output, i.e. −

∑M
i=1 log

(∑T
t=1 pt · M

(t)
i,yi

)
as the loss function.

5

Published as a conference paper at ICLR 2016

the given input accordingly to the distribution outputted by the controller. More precisely, it corre-
sponds to replacing the function softmax in equations (1,3) with the function returning the vector
containing 1 on the position of the maximum value in the input and zeros on all other positions.

Notice that in the discretized NRAM model each register and memory cell stores an integer from
the set {0, 1, . . . ,M − 1} and therefore all modules may be executed efficiently (assuming that
the functions represented by the modules can be efficiently computed). In case of a feedforward
controller and a small (e.g. ≤ 20) number of registers the interference can be accelerated even
further. Recall that the only inputs to the controller are binarized values of the register. Therefore,
instead of executing the controller one may simple precompute the (discretized) controller’s output
for each configuration of the registers’ binarized values. Such algorithm would enjoy an extremely
efficient implementation in machine code.

4 EXPERIMENTS

4.1 TRAINING PROCEDURE

The NRAM model is fully differentiable and we trained it using the Adam optimization algorithm
(Kingma & Ba, 2014) with the negative log-likelihood cost function. Notice that we do not use any
additional supervised data (such as memory access traces) beyond pure input-output examples.

We used multilayer perceptrons (MLPs) with two hidden layers or LSTMs with a hidden layer
between input and LSTM cells as controllers. The number of hidden units in each layer was equal.
The ReLu nonlinearity (Nair & Hinton, 2010) was used in all experiments.

Below are some important techniques that we used in the training:

Curriculum learning As noticed in several papers (Bengio et al., 2009; Zaremba & Sutskever,
2014), curriculum learning is crucial for training deep networks on very complicated problems. We
followed the curriculum learning schedule from Zaremba & Sutskever (2014) without any modifi-
cations. The details can be found in Appendix B.

Gradient clipping Notice that the depth of the unfolded execution is roughly a product of the
number of timesteps and the number of modules. Even for moderately small experiments (e.g. 14
modules and 20 timesteps) this value easily exceeds a few hundreds. In networks of such depth,
the gradients can often “explode” (Bengio et al., 1994), what makes training by backpropagation
much harder. We noticed that the gradients w.r.t. the intermediate values inside the backpropagation
were so large, that they sometimes led to an overflow in single-precision floating-point arithmetic.
Therefore, we clipped the gradients w.r.t. the activations, within the execution of the backpropaga-
tion algorithm. More precisely, each coordinate is separately cropped into the range [−C1, C1] for
some constant C1. Before updating parameters, we also globally rescale the whole gradient vector,
so that its L2 norm is not bigger than some constant value C2.

Noise We added random Gaussian noise to the computed gradients after the backpropagation step.
The variance of this noise decays exponentially during the training. The details can be found in
Neelakantan et al. (2015).

Enforcing Distribution Constraints For very deep networks, a small error in one place can prop-
agate to a huge error in some other place. This was the case with our pointers: they are probability
distributions over memory cells and they should sum up to 1. However, after a number of operations
are applied, they can accumulate error as a result of inaccurate floating-point arithmetic.

We have a special layer which is responsible for rescaling all values (multiplying by the inverse of
their sum), to make sure they always represent a probability distribution. We add this layer to our
model in a few critical places (eg. after the softmax operation)5.

5We do not however backpropagate through these renormalizing operations, i.e. during the backward pass
we simply assume that they are identities.

6

Published as a conference paper at ICLR 2016

Entropy While searching for a solution, the network can fix the pointer distribution on some
particular value. This is advantageous at the end of training, because ideally we would like to be
able to discretize the model. However, if this happens at the begin of the training, it could force the
network to stay in a local minimum, with a small chance of moving the probability mass to some
other value. To address this problem, we encourage the network to explore the space of solutions by
adding an ”entropy bonus”, that decreases over time. More precisely, for every distribution outputted
by the controller, we subtract from the cost function the entropy of the distribution multiplied by
some coefficient, which decreases exponentially during the training.

Limiting the values of logarithms There are two places in our model where the logarithms are
computed — in the cost function and in the entropy computation. Inputs to whose logarithms can
be very small numbers, which may cause very big values of the cost function or even overflows in
floating-point arithmetic. To prevent this phenomenon we use log(max(x, ε)) instead of log(x) for
some small hyperparameter ε whenever a logarithm is computed.

4.2 TASKS

We now describe the tasks used in our experiments. For every task, the input is given to the network
in the memory tape, and the network’s goal is to modify the memory according to the task’s specifi-
cation. We allow the network to modify the original input. The final error for a test case is computed
as c

m , where c is the number of correctly written cells, and m represents the total number of cells
that should be modified.

Due to limited space, we describe the tasks only briefly here. The detailed memory layout of inputs
and outputs can be found in the Appendix A.

1. Access Given a value k and an array A, return A[k].

2. Increment Given an array, increment all its elements by 1.

3. Copy Given an array and a pointer to the destination, copy all elements from the array to
the given location.

4. Reverse Given an array and a pointer to the destination, copy all elements from the array
in reversed order.

5. Swap Given two pointers p, q and an array A, swap elements A[p] and A[q].

6. Permutation Given two arrays of n elements: P (contains a permutation of numbers
1, . . . , n) and A (contains random elements), permutate A according to P .

7. ListK Given a pointer to the head of a linked list and a number k, find the value of the k-th
element on the list.

8. ListSearch Given a pointer to the head of a linked list and a value v to find return a pointer
to the first node on the list with the value v.

9. Merge Given pointers to 2 sorted arrays A and B, merge them.

10. WalkBST Given a pointer to the root of a Binary Search Tree, and a path to be traversed
(sequence of left/right steps), return the element at the end of the path.

4.3 MODULES

In all of our experiments we used the same sequence of 14 modules: READ (described in Sec. 3.2),
ZERO(a, b) = 0, ONE(a, b) = 1, TWO(a, b) = 2, INC(a, b) = (a+1) mod M , ADD(a, b) = (a+b)
mod M , SUB(a, b) = (a−b) mod M , DEC(a, b) = (a−1) mod M , LESS-THAN(a, b) = [a <
b], LESS-OR-EQUAL-THAN(a, b) = [a ≤ b], EQUALITY-TEST(a, b) = [a = b], MIN(a, b) =
min(a, b), MAX(a, b) = max(a, b), WRITE (described in Sec. 3.2).

We also considered settings in which the module sequence is repeated many times, e.g. there are 28
modules, where modules number 1. and 15. are READ, modules number 2. and 16. are ZERO and so
on. The number of repetitions is a hyperparameter.

7

Published as a conference paper at ICLR 2016

Task Train Complexity Train error Generalization Discretization
Access len(A) ≤ 20 0 perfect perfect

Increment len(A) ≤ 15 0 perfect perfect
Copy len(A) ≤ 15 0 perfect perfect

Reverse len(A) ≤ 15 0 perfect perfect
Swap len(A) ≤ 20 0 perfect perfect

Permutation len(A) ≤ 6 0 almost perfect perfect
ListK len(list) ≤ 10 0 strong hurts performance

ListSearch len(list) ≤ 6 0 weak hurts performance
Merge len(A) + len(B) ≤ 10 1% weak hurts performance

WalkBST size(tree) ≤ 10 0.3% strong hurts performance

Table 1: Results of the experiments. The perfect generalization error means that the tested problem
had error 0 for complexity up to 50. Exact generalization errors are presented in Fig. 3 The perfect
discretization means that the discretized version of the model produced exactly the same outputs as
the original model on all test cases.

10 15 20 25 30
Max task complexity

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Te
st

 e
rro

r

Merge
WalkBST
ListK
ListSearch
Permutation

Figure 3: Generalization errors for hard tasks. The Permutation and ListSearch problems were
trained only up to complexity 6. The remaining problems were trained up to complexity 10. The
horizontal axis denotes the maximal task complexity, i.e., x = 20 denotes results with complexity
sampled uniformly from the interval [1, 20].

4.4 RESULTS

Overall, we were able to find parameters that achieved an error 0 for all problems except Merge and
WalkBST (where we got an error of ≤ 1%). As described in 4.2, our metric is an accuracy on the
memory cells that should be modified. To compute it, we take the continuous memory state produced
by our network, then discretize it (every cell will contain the value with the highest probability), and
finally compare with the expected output. The results of the experiments are summarized in Table 1.

Below we describe our results on all 10 tasks in more detail. We divide them into 2 categories:
”easy” and ”hard” tasks. Easy tasks is a category of tasks that achieved low error scores for many
sets of parameters and we did not have to spend much time trying to tune them. First 5 problems
from our task list belong to this category. Hard tasks, on the other hand, are problems that often
trained to low error rate only in a very small number of cases, eg. 1 out of 100.

4.4.1 EASY TASKS

This category includes the following problems: Access, Increment, Copy, Reverse, Swap. For
all of them we were able to find many sets of hyperparameters that achieved error 0, or close to it
without much effort.

8

Published as a conference paper at ICLR 2016

Step 0 1 2 3 4 5 6 7 8 9 10 11 r1 r2 r3 r4 READ WRITE
1 6 2 10 6 8 9 0 0 0 0 0 0 0 0 0 0 p:0 p:0 a:6
2 6 2 10 6 8 9 0 0 0 0 0 0 0 5 0 1 p:1 p:6 a:2
3 6 2 10 6 8 9 2 0 0 0 0 0 0 5 1 1 p:1 p:6 a:2
4 6 2 10 6 8 9 2 0 0 0 0 0 0 5 1 2 p:2 p:7 a:10
5 6 2 10 6 8 9 2 10 0 0 0 0 0 5 2 2 p:2 p:7 a:10
6 6 2 10 6 8 9 2 10 0 0 0 0 0 5 2 3 p:3 p:8 a:6
7 6 2 10 6 8 9 2 10 6 0 0 0 0 5 3 3 p:3 p:8 a:6
8 6 2 10 6 8 9 2 10 6 0 0 0 0 5 3 4 p:4 p:9 a:8
9 6 2 10 6 8 9 2 10 6 8 0 0 0 5 4 4 p:4 p:9 a:8
10 6 2 10 6 8 9 2 10 6 8 0 0 0 5 4 5 p:5 p:10 a:9
11 6 2 10 6 8 9 2 10 6 8 9 0 0 5 5 5 p:5 p:10 a:9

Table 2: State of memory and registers for the Copy problem at the start of every timestep. We also show
the arguments given to the READ and WRITE functions in each timestep. The argument “p:” represents the
source/destination address and “a:” represents the value to be written (for WRITE). The value 6 at position 0
in the memory is the pointer to the destination array. It is followed by 5 values (gray columns) that should be
copied.

We also tested how those solutions generalize to longer input sequences. To do this, for every
problem we selected a model that achieved error 0 during the training, and tested it on inputs with
lengths up to 506. To perform these tests we also increased the memory size and the number of
allowed timesteps.

In all cases the model solved the problem perfectly, what shows that it generalizes not only to longer
input sequences, but also to different memory sizes and numbers of allowed timesteps. Moreover,
the discretized version of the model (see Sec. 3.4 for details) also solves all the problems perfectly.
These results show that the NRAM model naturally learns “algorithmic” solutions, which generalize
well.

We were also interested if the found solutions generalize to sequences of arbitrary length. It is eas-
iest to verify in the case of a discretized model with a feedforward controller. That is because then
circuits outputted by the controller depend solely on the values of registers, which are integers. We
manually analysed circuits for problems Copy and Increment and verified that found solutions gen-
eralize to inputs of arbitrary length, assuming that the number of allowed timesteps is appropriate.

4.4.2 HARD TASKS

r1 r1'

r2

add

min

r2'

writep

r4'r3 inc

r4 readp

r3'

a

Figure 4: The circuit generated at every timestep
≥ 2. The values of the pointer (p) for READ,
WRITE and the value to be written (a) for WRITE
are presented in Table 2. The modules whose out-
puts are not used were removed from the picture.

This category includes: Permutation, ListK,
ListSearch, Merge and WalkBST. For all of
them we had to perform an extensive random
search to find a good set of hyperparameters.
Usually, most of the parameter combinations
were stuck on the starting curriculum level with
a high error of 50%− 70%. For the first 3 tasks
we managed to train the network to achieve er-
ror 0. For WalkBST and Merge the training er-
rors were 0.3% and 1% respectively. For train-
ing those problems we had to introduce addi-
tional techniques described in Sec. 4.1.

For Permutation, ListK and WalkBST our
model generalizes very well and achieves low
error rates on inputs at least twice longer than
the ones seen during the training. The exact
generalization errors are shown in Fig. 3.

The only hard problem on which our model
discretizes well is Permutation — on this task

6Unfortunately we could not test for lengths longer than 50 due to the memory restrictions.

9

Published as a conference paper at ICLR 2016

the discretized version of the model produces exactly the same outputs as the original model on all
cases tested. For the remaining four problems the discretized version of the models perform very
poorly (error rates≥ 70%). We believe that better results may be obtained by using some techniques
encouraging discretization during the training 7.

We noticed that the training procedure is very unstable and the error often raises from a few percents
to e.g. 70% in just one epoch. Moreover, even if we use the best found set of hyperparameters, the
percent of random seeds that converges to error 0 was usually equal about 11%. We observed that
the percent of converging seeds is much lower if we do not add noise to the gradient — in this case
only about 1% of seeds converge.

4.5 COMPARISON TO EXISTING MODELS

A comparison to other models is challenging because we are the first to consider problems with
pointers. The NTM can solve tasks like Copy or Reverse, but it suffers from the inability to naturally
store a pointer to a fixed location in the memory. This makes it unlikely that it could solve tasks such
as ListK, ListSearch or WalkBST since the pointers used in these tasks refer to absolute positions.

What distinguishes our model from most of the previous attempts (including NTMs, Memory Net-
works, Pointer Networks) is the lack of content-based addressing. It was a deliberate design deci-
sion, since this kind of addressing inherently slows down the memory access. In contrast, our model
— if discretized — can access the memory in a constant time.

The NRAM is also the first model that we are aware of employing a differentiable mechanism for
deciding when to finish the computation.

4.6 EXEMPLARY EXECUTION

We present one example execution of our model for the problem Copy. For the example, we use
a very small model with 12 memory cells, 4 registers and the standard set of 14 modules. The
controller for this model is a feedforward network, and we run it for 11 timesteps. Table 2 contains,
for every timestep, the state of the memory and registers at the begin of the timestep.

The model can execute different circuits at different timesteps. In particular, we observed that the
first circuit is slightly different from the rest, since it needs to handle the initialization. Starting from
the second step all generated circuits are the same. We present this circuit in Fig. 4. The register r2
is constant and keeps the offset between the destination array and the source array (6 − 1 = 5 in
this case). The register r3 is responsible for incrementing the pointer in the source array. Its value is
copied to r48, the register used by the READ module. For the WRITE module, it also uses r4 which
is shifted by r2. The register r1 is unused. This solution generalizes to sequences of arbitrary length.

5 CONCLUSIONS

In this paper we presented the Neural Random-Access Machine, which can learn to solve problems
that require explicit manipulation and dereferencing of pointers.

We showed that this model can learn to solve a number of algorithmic problems and generalize well
to inputs longer than ones seen during the training. In particular, for some problems it generalizes
to inputs of arbitrary length.

However, we noticed that the optimization problem resulting from the backpropagating through the
execution trace of the program is very challenging for standard optimization techniques. It seems
likely that a method that can search in an easier “abstract” space would be more effective at solving
such problems.

7One could for example add at later stages of training a penalty proportional to the entropy of the interme-
diate values of registers/memory.

8In our case r3 < r2, so the MIN module always outputs the value r3 + 1. It is not satisfied in the last
timestep, but then the array is already copied.

10

Published as a conference paper at ICLR 2016

REFERENCES

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo. Learning long-term dependencies with gra-
dient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166, 1994.

Bengio, Yoshua, Louradour, Jérôme, Collobert, Ronan, and Weston, Jason. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48. ACM,
2009.

Chan, William, Jaitly, Navdeep, Le, Quoc V, and Vinyals, Oriol. Listen, attend and spell. arXiv
preprint arXiv:1508.01211, 2015.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Grefenstette, Edward, Hermann, Karl Moritz, Suleyman, Mustafa, and Blunsom, Phil. Learning to
transduce with unbounded memory. arXiv preprint arXiv:1506.02516, 2015.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Joulin, Armand and Mikolov, Tomas. Inferring algorithmic patterns with stack-augmented recurrent
nets. arXiv preprint arXiv:1503.01007, 2015.

Kalchbrenner, Nal, Danihelka, Ivo, and Graves, Alex. Grid long short-term memory. arXiv preprint
arXiv:1507.01526, 2015.

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Luong, Minh-Thang, Pham, Hieu, and Manning, Christopher D. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–
814, 2010.

Neelakantan, Arvind, Vilnis, Luke, Le, Quoc V, Sutskever, Ilya, Kaiser, Lukasz, Kurach, Karol, and
Martens, James. Adding gradient noise improves learning for very deep networks. arXiv preprint
arXiv:1511.06807, 2015.

Solomonoff, Ray J. A formal theory of inductive inference. part i. Information and control, 7(1):
1–22, 1964.

Sukhbaatar, Sainbayar, Szlam, Arthur, Weston, Jason, and Fergus, Rob. End-to-end memory net-
works. arXiv preprint arXiv:1503.08895, 2015.

Vinyals, Oriol, Kaiser, Lukasz, Koo, Terry, Petrov, Slav, Sutskever, Ilya, and Hinton, Geoffrey.
Grammar as a foreign language. arXiv preprint arXiv:1412.7449, 2014.

Vinyals, Oriol, Fortunato, Meire, and Jaitly, Navdeep. Pointer networks. arXiv preprint
arXiv:1506.03134, 2015.

Weston, Jason, Chopra, Sumit, and Bordes, Antoine. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Zaremba, Wojciech and Sutskever, Ilya. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Zaremba, Wojciech and Sutskever, Ilya. Reinforcement learning neural turing machines. arXiv
preprint arXiv:1505.00521, 2015.

11

Published as a conference paper at ICLR 2016

A DETAILED TASKS DESCRIPTIONS

In this section we describe in details the memory layout of inputs and outputs for the tasks used in
our experiments. In all descriptions below, big letters represent arrays and small letters represents
pointers. NULL denotes the value 0 and is used to mark the end of an array or a missing next
element in a list or a binary tree.

1. Access Given a value k and an array A, return A[k]. Input is given as k,A[0], .., A[n −
1], NULL and the network should replace the first memory cell with A[k].

2. Increment Given an array A, increment all its elements by 1. Input is given as
A[0], ..., A[n− 1], NULL and the expected output is A[0] + 1, ..., A[n− 1] + 1.

3. Copy Given an array and a pointer to the destination, copy all elements from the array to
the given location. Input is given as p,A[0], ..., A[n−1] where p points to one element after
A[n−1]. The expected output isA[0], ..., A[n−1] at positions p, ..., p+n−1 respectively.

4. Reverse Given an array and a pointer to the destination, copy all elements from the array
in reversed order. Input is given as p,A[0], ..., A[n − 1] where p points one element after
A[n−1]. The expected output isA[n−1], ..., A[0] at positions p, ..., p+n−1 respectively.

5. Swap Given two pointers p, q and an array A, swap elements A[p] and A[q]. Input is
given as p, q, A[0], .., A[p], ..., A[q], ..., A[n − 1], 0. The expected modified array A is:
A[0], ..., A[q], ..., A[p], ..., A[n− 1].

6. Permutation Given two arrays of n elements: P (contains a permutation of numbers
0, . . . , n− 1) and A (contains random elements), permutate A according to P . Input is
given as a, P [0], ..., P [n − 1], A[0], ..., A[n − 1], where a is a pointer to the array A. The
expected output is A[P [0]], ..., A[P [n− 1]], which should override the array P .

7. ListK Given a pointer to the head of a linked list and a number k, find the value of the
k-th element on the list. List nodes are represented as two adjacent memory cells: a pointer
to the next node and a value. Elements are in random locations in the memory, so that
the network needs to follow the pointers to find the correct element. Input is given as:
head, k, out, ... where head is a pointer to the first node on the list, k indicates how many
hops are needed and out is a cell where the output should be put.

8. ListSearch Given a pointer to the head of a linked list and a value v to find return a pointer
to the first node on the list with the value v. The list is placed in memory in the same way
as in the task ListK. We fill empty memory with “trash” values to prevent the network from
“cheating” and just iterating over the whole memory.

9. Merge Given pointers to 2 sorted arrays A and B, and the pointer to the output o,
merge the two arrays into one sorted array. The input is given as: a, b, o, A[0], .., A[n −
1], G,B[0], ..., B[m− 1], G, where G is a special guardian value, a and b point to the first
elements of arrays A and B respectively, and o points to the address after the second G.
The n+m element should be written in correct order starting from position o.

10. WalkBST Given a pointer to the root of a Binary Search Tree, and a path to be traversed,
return the element at the end of the path. The BST nodes are represented as tripes (v, l,
r), where v is the value, and l, r are pointers to the left/right child. The triples are placed
randomly in the memory. Input is given as root, out, d1, d2, ..., dk, NULL, ..., where root
points to the root node and out is a slot for the output. The sequence d1...dk, di ∈ {0, 1}
represents the path to be traversed: di = 0 means that the network should go to the left
child, di = 1 represents going to the right child.

12

Published as a conference paper at ICLR 2016

B DETAILS OF CURRICULUM TRAINING

As noticed in several papers (Bengio et al., 2009; Zaremba & Sutskever, 2014), curriculum learning
is crucial for training deep networks on very complicated problems. We followed the curriculum
learning schedule from Zaremba & Sutskever (2014) without any modifications.

For each of the tasks we have manually defined a sequence of subtasks with increasing difficulty,
where the difficulty is usually measured by the length of the input sequence. During training the
input-output examples are sampled from a distribution that is determined by the current difficulty
level D. The level is increased (up to some maximal value) whenever the error rate of the model
goes below some threshold. Moreover, we ensure that successive increases of D are separated by
some number of batches.

In more detail, to generate an input-output example we first sample a difficulty d from a distribution
determined by the current level D and then draw the example with the difficulty d. The procedure
for sampling d is the following:

• with probability 10%: pick d uniformly at random from the set of all possible difficulties;
• with probability 25%: pick d uniformly from [1, D + e], where e is a sample from a geo-

metric distribution with a success probability 1/2;
• with probability 65%: set d = D + e, where e is sampled as above.

Notice that the above procedure guarantees that every difficulty d can be picked regardless of the
current level D, which has been shown to increase performance Zaremba & Sutskever (2014).

13

Published as a conference paper at ICLR 2016

C EXAMPLE CIRCUITS

Below are presented example circuits generated during training for all simple tasks (except Copy
which was presented in the paper). For modules READ and WRITE, the value of the first argument
(pointer to the address to be read/written) is marked as p. For WRITE, the value to be written
is marked as a and the value returned by this module is always 0. For modules LESS-THAN and
LESS-OR-EQUAL-THAN the first parameter is marked as x and the second one as y. Other modules
either have only one parameter or the order of parameters is not important.

For all tasks below (except Increment), the circuit generated at timestep 1 is different than circuits
generated at steps ≥ 2, which are the same. This is because the first circuit needs to handle the
initialization. We present only the ”main” circuits generated for timesteps ≥ 2.

C.1 ACCESS

r1

read
p

r1'

inc

write
a

ltx

r2'

min p

0
y

Figure 5: The circuit generated at every timestep ≥ 2 for the task Access.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 r1 r2
1 3 1 12 4 7 12 1 13 8 2 1 3 11 11 12 0 0 0
2 3 1 12 4 7 12 1 13 8 2 1 3 11 11 12 0 3 0
3 4 1 12 4 7 12 1 13 8 2 1 3 11 11 12 0 3 0

Table 3: Memory for task Access. Only the first memory cell is modified.

14

Published as a conference paper at ICLR 2016

C.2 INCREMENT

r5 readp

add

write

p

inc

min

r5'

max

r2'

r3 '

r1 '

a

r4'

1

Figure 6: The circuit generated at every timestep for the task Increment.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 r1 r2 r3 r4 r5
1 1 11 3 8 1 2 9 8 5 3 0 0 0 0 0 0 0 0 0 0 0
2 2 11 3 8 1 2 9 8 5 3 0 0 0 0 0 0 1 2 2 2 1
3 2 12 3 8 1 2 9 8 5 3 0 0 0 0 0 0 2 12 12 12 2
4 2 12 4 8 1 2 9 8 5 3 0 0 0 0 0 0 3 4 4 4 3
5 2 12 4 9 1 2 9 8 5 3 0 0 0 0 0 0 4 9 9 9 4
6 2 12 4 9 2 2 9 8 5 3 0 0 0 0 0 0 5 2 2 2 5
7 2 12 4 9 2 3 9 8 5 3 0 0 0 0 0 0 6 3 3 3 6
8 2 12 4 9 2 3 10 8 5 3 0 0 0 0 0 0 7 10 10 10 7
9 2 12 4 9 2 3 10 9 5 3 0 0 0 0 0 0 8 9 9 9 8
10 2 12 4 9 2 3 10 9 6 3 0 0 0 0 0 0 9 6 6 6 9
11 2 12 4 9 2 3 10 9 6 4 0 0 0 0 0 0 10 4 4 4 10

Table 4: Memory for task Increment.

15

Published as a conference paper at ICLR 2016

C.3 REVERSE

r1 add

r1'

sub

dec

write

pr3

read

p
inc

min max

r3'

a

r4

le

x

r2'

r4 '1
y

Figure 7: The circuit generated at every timestep ≥ 2 for the task Reverse.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 r1 r2 r3 r4
1 8 8 1 3 5 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0
2 8 8 1 3 5 1 1 2 0 0 0 0 0 0 0 0 8 0 1 1
3 8 8 1 3 5 1 1 2 0 0 0 0 0 0 8 0 8 1 2 1
4 8 8 1 3 5 1 1 2 0 0 0 0 0 1 8 0 8 1 3 1
5 8 8 1 3 5 1 1 2 0 0 0 0 3 1 8 0 8 1 4 1
6 8 8 1 3 5 1 1 2 0 0 0 5 3 1 8 0 8 1 5 1
7 8 8 1 3 5 1 1 2 0 0 1 5 3 1 8 0 8 1 6 1
8 8 8 1 3 5 1 1 2 0 1 1 5 3 1 8 0 8 1 7 1
9 8 8 1 3 5 1 1 2 2 1 1 5 3 1 8 0 8 1 8 1
10 8 8 1 3 5 1 1 2 2 1 1 5 3 1 8 0 8 1 9 1

Table 5: Memory for task Reverse.

16

Published as a conference paper at ICLR 2016

C.4 SWAP

For swap we observed that 2 different circuits are generated, one for even timesteps, one for odd
timesteps.

r1

read
p

max

readp

r2'

write
a

max

add

write

a

p

r2

p

r1'

Figure 8: The circuit generated at every even timestep for the task Swap.

r1 readp

eq

max

r1'

sub

write

a
write

a

ltx
r2

p

add

sub

y

le

y

p

r2'

0

inc
lt

x
x

1

y

2

Figure 9: The circuit generated at every odd timestep ≥ 3 for the task Swap.

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 r1 r2
1 4 13 6 10 5 4 6 3 7 1 1 11 13 12 0 0 0 0
2 5 13 6 10 5 4 6 3 7 1 1 11 13 12 0 0 1 4
3 5 13 6 10 12 4 6 3 7 1 1 11 13 12 0 0 0 13
4 5 13 6 10 12 4 6 3 7 1 1 11 13 5 0 0 5 1

Table 6: Memory for task Swap.

17

Learning Efficient Algorithms with Hierarchical
Attentive Memory

Marcin Andrychowicz∗
Google Deepmind

Karol Kurach∗
Google / University of Warsaw

Abstract

In this paper, we propose and investigate a novel memory architecture for neural1

networks called Hierarchical Attentive Memory (HAM). It is based on a binary2

tree with leaves corresponding to memory cells. This allows HAM to perform3

memory access in Θ(log n) complexity, which is a significant improvement over4

the standard attention mechanism that requires Θ(n) operations, where n is the5

size of the memory. We show that an LSTM network augmented with HAM can6

learn algorithms for problems like merging, sorting or binary searching from pure7

input-output examples. In particular, it learns to sort n numbers in time Θ(n log n)8

and generalizes well to input sequences much longer than the ones seen during the9

training. We also show that HAM can be trained to act like classic data structures:10

a stack, a FIFO queue and a priority queue.11

1 Intro12

Deep Recurrent Neural Networks (RNNs) have recently proven to be very successful in real-word13

tasks, e.g. machine translation (Sutskever et al., 2014) and computer vision (Vinyals et al., 2014).14

However, the success has been achieved only on tasks which do not require a large memory to15

solve the problem, e.g. we can translate sentences using RNNs, but we cannot produce reasonable16

translations of really long pieces of text, like books.17

A high-capacity memory is a crucial component necessary to deal with large-scale problems that18

contain plenty of long-range dependencies. Currently used RNNs do not scale well to larger memories,19

e.g. the number of parameters in an LSTM (Hochreiter & Schmidhuber, 1997) grows quadratically20

with the size of the network’s memory. In practice, this limits the number of used memory cells to21

few thousands.22

It would be desirable for the size of the memory to be independent of the number of model parameters.23

The first versatile and highly successful architecture with this property was Neural Turing Machine24

(NTM) proposed by Graves et al. (2014). The main idea behind the NTM is to split the network into25

a trainable “controller” and an “external” variable-size memory. It caused an outbreak of other neural26

network architectures with external memories (see Sec. 2).27

However, one aspect which has been usually neglected so far is the efficiency of the memory access.28

Most of the proposed memory architectures have the Θ(n) access complexity, where n is the size of29

the memory. It means that, for instance, copying a sequence of length n requires performing Θ(n2)30

operations, which is clearly unsatisfactory.31

1.1 Our contribution32

We propose a novel memory module for neural networks, called Hierarchical Attentive Memory33

(HAM). The HAM module is generic and can be used as a building block of larger neural architectures.34

∗Equal contribution.

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

Its crucial property is that it scales well with the memory size — the memory access requires only35

Θ(log n) operations, where n is the size of the memory. This complexity is achieved by using a new36

attention mechanism based on a binary tree with leaves corresponding to memory cells. The novel37

attention mechanism is not only faster than the standard one used in Deep Learning (Bahdanau et al.,38

2014), but it also facilities learning algorithms due to a built-in bias towards operating on intervals.39

We show that an LSTM augmented with HAM is able to learn algorithms for tasks like merging,40

sorting or binary searching. In particular, it is the first neural network, which we are aware of, that is41

able to learn to sort from pure input-output examples and generalizes well to input sequences much42

longer than the ones seen during the training. Moreover, the learned sorting algorithm runs in time43

Θ(n log n). We also show that the HAM memory itself is capable of simulating different classic44

memory structures: a stack, a FIFO queue and a priority queue.45

2 Related work46

In this section we mention a number of recently proposed neural architectures with an external47

memory, which size is independent of the number of the model parameters.48

Memory architectures based on attention Attention is a recent but already extremely successful49

technique in Deep Learning. This mechanism allows networks to attend to parts of the (potentially50

preprocessed) input sequence (Bahdanau et al., 2014) while generating the output sequence. It is51

implemented by giving the network as an auxiliary input a linear combination of input symbols,52

where the weights of this linear combination can be controlled by the network. Attention mechanism53

was used to access the memory in Neural Turing Machines (NTMs) proposed by Graves et al. (2014).54

It was the first paper, that explicitly attempted to train a computationally universal neural network55

and achieved encouraging results.56

The Memory Network (Weston et al., 2014) is an early model that attempted to explicitly separate57

the memory from computation in a neural network model. The followup work of (Sukhbaatar et al.,58

2015) combined the memory network with the soft attention mechanism, which allowed it to be59

trained with less supervision. In contrast to NTMs, the memory in these models is non-writeable.60

Another model without writeable memory is the Pointer Network (Vinyals et al., 2015), which is61

very similar to the attention model of Bahdanau et al. (2014). Despite not having a memory, this62

model was able to solve a number of difficult algorithmic problems, like the Convex Hull and the63

approximate 2D TSP.64

All of the architectures mentioned so far use standard attention mechanisms to access the memory65

and therefore memory access complexity scales linearly with the memory size.66

Memory architectures based on data structures Stack-Augmented Recurrent Neural Network67

(Joulin & Mikolov, 2015) is a neural architecture combining an RNN and a differentiable stack.68

Grefenstette et al. (2015) consider extending an LSTM with a stack, a FIFO queue or a double-ended69

queue and show some promising results. The advantage of the latter model is that the presented data70

structures have a constant access time.71

Memory architectures based on pointers In two recent papers (Zaremba & Sutskever, 2015;72

Zaremba et al., 2015) authors consider extending neural networks with nondifferentiable memories73

based on pointers and trained using Reinforcement Learning. The big advantage of these models is74

that they allow a constant time memory access. They were however only successful on relatively75

simple tasks.76

Another model, which use a pointer-based memory and learns sub-procedures is the Neural77

Programmer-Interpreter (Reed & de Freitas, 2015). Unfortunately, it requires strong supervision78

in the form of execution traces. Different type of pointer-based memory was presented in Neural79

Random-Access Machine (Kurach et al., 2015), which is a neural architecture mimicking classic80

computers.81

Parallel memory architectures There are two recent memory architectures, which are especially82

suited for parallel computation. Grid-LSTM (Kalchbrenner et al., 2015) is an extension of LSTM to83

multiple dimensions. Another recent model of this type is Neural GPU (Kaiser & Sutskever, 2015),84

which can learn to multiply long binary numbers.85

2

3 Hierarchical Attentive Memory86

In this section we describe our novel memory module called Hierarchical Attentive Memory (HAM).87

The HAM module is generic and can be used as a building block of larger neural network architectures.88

For instance, it can be added to feedforward or LSTM networks to extend their capabilities. To make89

our description more concrete we will consider a model consisting of an LSTM “controller” extended90

with a HAM module.91

The high-level idea behind the HAM module is as follows. The memory is structured as a full binary92

tree with the leaves containing the data stored in the memory. The inner nodes contain some auxiliary93

data, which allows us to efficiently perform some types of “queries” on the memory. In order to94

access the memory, one starts from the root of the tree and performs a top-down descent in the tree,95

which is similar to the hierarchical softmax procedure (Morin & Bengio, 2005). At every node of96

the tree, one decides to go left or right based on the auxiliary data stored in this node and a “query”.97

Details are provided in the rest of this section.98

3.1 Notation99

The model takes as input a sequence x1, x2, . . . and outputs a sequence y1, y2, We assume that100

each element of these sequences is a binary vector of size b ∈ N, i.e. xi, yi ∈ {0, 1}b. Suppose for101

a moment that we only want to process input sequences of length ≤ n, where n ∈ N is a power of102

two (we show later how to process sequences of an arbitrary length). The model is based on the full103

binary tree with n leaves. Let V denote the set of the nodes in that tree (notice that |V | = 2n− 1)104

and let L ⊂ V denote the set of its leaves. Let l(e) for e ∈ V \ L be the left child of the node e and105

let r(e) be its right child. We will now present the inference procedure for the model and then discuss106

how to train it.107

3.2 Inference108
y1

LSTM

HAM

x1 . . . xm

y2

LSTM

HAM

y3

LSTM

HAM

. . .

Figure 1: The LSTM+HAM model consists of
an LSTM controller and a HAM module. The
execution of the model starts with the initializa-
tion of HAM using the whole input sequence
x1, x2, . . . , xm. At each timestep, the HAM mod-
ule produces an input for the LSTM, which then
produces an output symbol yt. Afterwards, the
hidden states of the LSTM and HAM are updated.

The high-level view of the model execution109

is presented in Fig. 1. The hidden state of110

the model consists of two components: the111

hidden state of the LSTM controller (denoted112

hLSTM ∈ Rl for some l ∈ N) and the hidden val-113

ues stored in the nodes of the HAM tree. More114

precisely, for every node e ∈ V there is a hidden115

value he ∈ Rd. These values change during the116

recurrent execution of the model, but we drop117

all timestep indices to simplify the notation.118

The parameters of the model describe the input-119

output behaviour of the LSTM, as well as the120

following 4 transformations, which describe the121

HAM module: EMBED : Rb → Rd, JOIN :122

Rd × Rd → Rd, SEARCH : Rd × Rl → [0, 1]123

and WRITE : Rd × Rl → Rd. These transfor-124

mations may be represented by arbitrary func-125

tion approximators, e.g. Multilayer Perceptrons126

(MLPs). Their meaning will be described soon.127

The details of the model are presented in 4 figures. Fig. 2a describes the initialization of the model.128

Each recurrent timestep of the model consists of three phases: the attention phase described in Fig. 2b,129

the output phase described in Fig. 2c and the update phase described in Fig. 2d. The whole timestep130

can be performed in time Θ(log n).131

The HAM parameters describe only the 4 mentioned transformations and hence the number of the132

model parameters does not depend on the size of the binary tree used. Thus, we can use the model to133

process the inputs of an arbitrary length by using big enough binary trees. It is not clear that the same134

set of parameters will give good results across different tree sizes, but we showed experimentally that135

it is indeed the case (see Sec. 4 for more details).136

3

h1

h2 h3

h4 h5 h6 h7

h8 h9 h10 h11 h12 h13 h14 h15

x1 x2 x3 x4 x5 x6

EMBED EMBED EMBED EMBED EMBED EMBED

JOIN

JOIN JOIN

JOIN JOIN JOIN JOIN

(a) Initialization of the model. The value in the i-th
leaf of HAM is initialized with EMBED(xi), where
EMBED is a trainable feed-forward network. If there
are more leaves than input symbols, we initialize the
values in the excessive leaves with zeros. Then, we
initialize the values in the inner nodes bottom-up
using the formula he = JOIN(hl(e), hr(e)). The
hidden state of the LSTM — hLSTM is initialized with
zeros.

h1

h2 h3

h4 h5 h6 h7

h8 h9 h10 h11 h12 ha h14 h15

SEARCH(h1, hLSTM) = 0.95

SEARCH(h3, hLSTM) = 0.1

SEARCH(h6, hLSTM) = 1

(b) Attention phase. In this phase the model performs
a top-down “search” in the tree starting from the root.
Suppose that we are currently at the node c ∈ V \ L.
We compute the value p = SEARCH(hc, hLSTM).
Then, with probability p the model goes right (i.e.
c := r(c)) and with probability 1 − p it goes left
(i.e. c := l(c)). This procedure is continued until
we reach one of the leaves. This leaf is called the
attended or accessed leaf and denoted a.

ha hLSTM yt

(c) Output phase. The value ha stored in the at-
tended leaf is given to the LSTM as an input. Then,
the LSTM produces an output symbol yt ∈ {0, 1}b.
More precisely, the value u ∈ Rb is computed by
a trainable linear transformation from hLSTM and
the distribution of yt is defined by the formula
p(yt,i = 1) = sigmoid(ui) for 1 ≤ i ≤ b. It
may be beneficial to allow the model to access the
memory a few times between producing each output
symbols. Therefore, the model produces an output
symbol only at timesteps with indices divisible by
some constant η ∈ N, which is a hyperparameter.

h1

h2 h3

h4 h5 h6 h7

h8 h9 h10 h11 h12 ha h14 h15

hLSTM
ha := WRITE(ha, hLSTM)

JOIN

JOIN

JOIN

(d) Update phase. In this phase the value in
the attended leaf a is updated. More precisely,
the value is modified using the formula ha :=
WRITE(ha, hLSTM). Then, we update the values
of the inner nodes encountered during the attention
phase (h6, h3 and h1 in the figure) bottom-up using
the equation he = JOIN(hl(e), hr(e)).

Figure 2: The model. One timestep consists of three phases presented in Figures (b)–(d).

We decided to represent the transformations defining HAM with MLPs with ReLU (Nair & Hinton,137

2010) activation function in all neurons except the output layer of SEARCH, which uses sigmoid138

activation function to ensure that the output may be interpreted as a probability. Moreover, the139

network for WRITE is enhanced in a similar way as Highway Networks (Srivastava et al., 2015),140

i.e. WRITE(ha, hLSTM) = T (ha, hLSTM) ·H(ha, hLSTM) + (1− T (ha, hLSTM)) · ha, where H and141

T are two MLPs with sigmoid activation function in the output layer. This allows the WRITE142

transformation to easily leave the value ha unchanged.143

3.3 Training144

In this section we describe how to train our model from purely input-output examples using REIN-145

FORCE (Williams, 1992). In Appendix C we also present a different variant of HAM which is fully146

differentiable and can be trained using end-to-end backpropagation.147

Let x, y be an input-output pair. Recall that both x and y are sequences. Moreover, let θ denote the
parameters of the model and let A denote the sequence of all decisions whetherto go left or right
made during the whole execution of the model. We would like to maximize the log-probability of
producing the correct output, i.e.

4

L = log p(y|x, θ) = log

(∑
A

p(A|x, θ)p(y|A, x, θ)

)
.

This sum is intractable, so instead of minimizing it directly, we minimize a variational lower bound
on it:

F =
∑
A

p(A|x, θ) log p(y|A, x, θ) ≤ L.

This sum is also intractable, so we approximate its gradient using the REINFORCE, which we briefly148

explain below. Using the identity ∇p(A|x, θ) = p(A|x, θ)∇ log p(A|x, θ), the gradient of the lower149

bound with respect to the model parameters can be rewritten as:150

∇F =
∑
A

p(A|x, θ)
[
∇ log p(y|A, x, θ) + log p(y|A, x, θ)∇ log p(A|x, θ)

]
(1)

We estimate this value using Monte Carlo approximation.For every x we sample Ã from p(A|x, θ)
and approximate the gradient for the input x as∇ log p(y|Ã, x, θ) + log p(y|Ã, x, θ)∇ log p(Ã|x, θ).
Notice that this gradient estimate can be computed using normal backpropagation if we substitute the
gradients in the nodes2 which sample whether we should go left or right during the attention phase by

log p(y|Ã, x, θ)︸ ︷︷ ︸
return

∇ log p(Ã|x, θ).

This term is called REINFORCE gradient estimate and the left factor is called a return in Rein-151

forcement Learning literature. This gradient estimator is unbiased, but it often has a high variance.152

Therefore, we employ two standard variance-reduction technique for REINFORCE: discounted153

returns and baselines (Williams, 1992). Discounted returns means that our return at the t-th timestep154

has the form
∑
t≤i γ

i−t log p(yi|Ã, x, θ) for some discount constant γ ∈ [0, 1], which is a hyperpa-155

rameter. This biases the estimator if γ < 1, but it often decreases its variance.156

For the lack of space we do not describe the baselines technique. We only mention that our baseline157

is case and timestep dependent: it is computed using a learnable linear transformation from hLSTM158

and trained using MSE loss function. The whole model is trained with the Adam (Kingma & Ba,159

2014) algorithm. We also employ the following three training techniques:160

Different reward function During our experiments we noticed that better results may be obtained161

by using a different reward function for REINFORCE. More precisely, instead of the log-probability162

of producing the correct output, we use the percentage of the output bits, which have the proba-163

bility of being predicted correctly (given Ã) greater than 50%, i.e. our discounted return is equal164 ∑
t≤i,1≤j≤b γ

i−t
[
p(yi,j |Ã, x, θ) > 0.5

]
. Notice that it corresponds to the Hamming distance be-165

tween the most probable outcome accordingly to the model (given Â) and the correct output.166

Entropy bonus term We add a special term to the cost function which encourages exploration.167

More precisely, for each sampling node we add to the cost function the term α
H(p) , where H(p) is168

the entropy of the distribution of the decision, whether to go left or right in this node and α is an169

exponentially decaying coefficient. This term goes to infinity, whenever the entropy goes to zero,170

what ensures some level of exploration. We noticed that this term works better in our experiments171

than the standard term of the form −αH(p) (Williams, 1992).172

Curriculum schedule We start with training on inputs with lengths sampled uniformly from [1, n]173

for some n = 2k and the binary tree with n leaves. Whenever the error drops below some threshold,174

we increment the value k and start using the bigger tree with 2n leaves and inputs with lengths175

sampled uniformly from [1, 2n].176

2 For a general discussion of computing gradients in computation graphs, which contain stochastic nodes see
(Schulman et al., 2015).

5

4 Experiments177

In this section, we evaluate two variants of using the HAM module. The first one is the model178

described in Sec. 3, which combines an LSTM controller with a HAM module (denoted by179

LSTM+HAM). Then, in Sec. 4.3 we investigate the “raw” HAM (without the LSTM controller) to180

check its capability of acting as classic data structures: a stack, a FIFO queue and a priority queue. It181

would be also interesting to get some insight into the algorithms learned by the model. In Appendix A182

we present an example execution on the Sort task.183

4.1 Test setup184

For each test that we perform, we apply the following procedure. First, we train the model with185

memory of size up to n = 32 using the curriculum schedule described in Sec. 3.3. The model is186

trained using the minibatch Adam algorithm with exponentially decaying learning rate. We use187

random search to determine the best hyper-parameters for the model. We use gradient clipping188

(Pascanu et al., 2012) with constant 5. The depth of our MLPs is either 1 or 2, the LSTM controller189

has l = 20 memory cells and the hidden values in the tree have dimensionality d = 20. Constant190

η determining a number of memory accesses between producing each output symbols (Fig. 2c) is191

equal either 1 or 2. We always train for 100 epochs, each consisting of 1000 batches of size 50. After192

each epoch we evaluate the model on 200 validation batches without learning. When the training is193

finished, we select the model parameters that gave the lowest error rate on validation batches and194

report the error using these parameters on fresh 2, 500 random examples.195

We report two types of errors: a test error and a generalization error. The test error shows how196

well the model is able to fit the data distribution and generalize to unknown cases, assuming that197

cases of similar lengths were shown during the training. It is computed using the HAM memory198

with n = 32 leaves, as the percentage of output sequences, which were predicted incorrectly. The199

lengths of test examples are sampled uniformly from the range [1, n]. Notice that we mark the whole200

output sequence as incorrect even if only one bit was predicted incorrectly, e.g. a hypothetical model201

predicting each bit incorrectly with probability 1% (and independently of the errors on the other bits)202

has an error rate of 96% on whole sequences if outputs consist of 320 bits.203

The generalization error shows how well the model performs with enlarged memory on examples204

with lengths exceeding n. We test our model with memory 4 times bigger than the training one. The205

lengths of input sequences are now sampled uniformly from the range [2n+ 1, 4n].206

During testing we make our model fully deterministic by using the most probable outcomes instead207

of stochastic sampling. More precisely, we assume that during the attention phase the model decides208

to go right iff p > 0.5 (Fig. 2b). Moreover, the output symbols (Fig. 2c) are computed by rounding to209

zero or one instead of sampling.210

4.2 LSTM+HAM211

We evaluate the model on a number of algorithmic tasks described below:212

1. Reverse: Given a sequence of 10-bit vectors, output them in the reversed order., i.e.213

yi = xm+1−i for 1 ≤ i ≤ m, where m is the length of the input sequence.214

2. Search: Given a sequence of pairs xi = keyi||valuei for 1 ≤ i ≤ m− 1 sorted by keys215

and a query xm = q, find the smallest i such that keyi = q and output y1 = valuei. Keys216

and values are 5-bit vectors and keys are compared lexicographically. The LSTM+HAM217

model is given only two timesteps (η = 2) to solve this problem, which forces it to use a218

form of binary search.219

3. Merge: Given two sorted sequences of pairs — (p1, v1), . . . , (pm, vm) and220

(p′1, v
′
1), . . . , (p′m′ , v′m′), where pi, p′i ∈ [0, 1] and vi, v

′
i ∈ {0, 1}5, merge them. Pairs221

are compared accordingly to their priorities, i.e. values pi and p′i. Priorities are unique222

and sampled uniformly from the set { 1
300 , . . . ,

300
300}, because neural networks cannot eas-223

ily distinguish two real numbers which are very close to each other. Input is encoded as224

xi = pi||vi for 1 ≤ i ≤ m and xm+i = p′i||v′i for 1 ≤ i ≤ m′. The output consists of the225

vectors vi and v′i sorted accordingly to their priorities3.226

3 Notice that we earlier assumed for the sake of simplicity that the input sequences consist of binary vectors
and in this task the priorities are real values. It does not however require any change of our model. We decided
to use real priorities in this task in order to diversify our set of problems.

6

4. Sort: Given a sequence of pairs xi = keyi||valuei sort them in a stable way4 accordingly227

to the lexicographic order of the keys. Keys and values are 5-bit vectors.228

5. Add: Given two numbers represented in binary, compute their sum. The input is represented229

as a1, . . . , am,+, b1, . . . , bm,= (i.e. x1 = a1, x2 = a2 and so on), where a1, . . . , am and230

b1, . . . , bm are bits of the input numbers and +,= are some special symbols. Input and output231

numbers are encoded starting from the least significant bits.232

Every example output shown during the training is finished by a special “End Of Output” symbol,233

which the model learns to predict. It forces the model to learn not only the output symbols, but also234

the length of the correct output.235

We compare our model with 2 strong baseline models: encoder-decoder LSTM (Sutskever et al.,236

2014) and encoder-decoder LSTM with attention (Bahdanau et al., 2014), denoted LSTM+A. The237

number of the LSTM cells in the baselines was chosen in such a way, that they have more parameters238

than the biggest of our models. We also use random search to select an optimal learning rate and some239

other parameters for the baselines and train them using the same curriculum scheme as LSTM+HAM.240

Table 1: Experimental results. The upper table
presents the error rates on inputs of the same
lengths as the ones used during training. The lower
table shows the error rates on input sequences 2
to 4 times longer than the ones encountered dur-
ing training. LSTM+A denotes an LSTM with the
standard attention mechanism. Each error rate is a
percentage of output sequences, which contained
at least one incorrectly predicted bit.

test error LSTM LSTM+
A

LSTM+
HAM

Reverse 73% 0% 0%
Search 62% 0.04% 0.12%
Merge 88% 16% 0%
Sort 99% 25% 0.04%
Add 39% 0% 0%

2-4x longer
inputs LSTM LSTM+

A
LSTM+
HAM

Reverse 100% 100% 0%
Search 89% 0.52% 1.68%
Merge 100% 100% 2.48%
Sort 100% 100% 0.24%
Add 100% 100% 100%

Complexity Θ(1) Θ(n) Θ(log n)

The results are presented in Table 1. Not only,241

does LSTM+HAM solve all the problems al-242

most perfectly, but it also generalizes very well243

to much longer inputs on all problems except244

Add. Recall that for the generalization tests we245

used a HAM memory of a different size than the246

ones used during the training, what shows that247

HAM generalizes very well to new sizes of the248

binary tree. We find this fact quite interesting,249

because it means that parameters learned from250

a small neural network (i.e. HAM based on a251

tree with 32 leaves) can be successfully used in252

a different, bigger network (i.e. HAM with 128253

memory cells).254

In comparison, the LSTM with attention does255

not learn to merge, nor sort. It also completely256

fails to generalize to longer examples, which257

shows that LSTM+A learns rather some statis-258

tical dependencies between inputs and outputs259

than the real algorithms.260

The LSTM+HAM model makes a few errors261

when testing on longer outputs than the ones262

encountered during the training. Notice how-263

ever, that we show in the table the percentage264

of output sequences, which contain at least one265

incorrect bit. For instance, LSTM+HAM on the266

problem Merge predicts incorrectly only 0.03% of output bits, which corresponds to 2.48% of267

incorrect output sequences. We believe that these rare mistakes could be avoided if one trained the268

model longer and chose carefully the learning rate schedule. One more way to boost generalization269

would be to simultaneously train the models with different memory sizes and shared parameters. We270

have not tried this as the generalization properties of the model were already very good.271

4.3 Raw HAM272

In this section, we evaluate “raw” HAM module (without the LSTM controller, see Appendix B for273

details) to see if it can act as a drop-in replacement for 3 classic data structures: a stack, a FIFO queue274

and a priority queue. For each task, the network is given a sequence of PUSH and POP operations in275

an online manner: at timestep t the network sees only the t-th operation to perform xt. This is a more276

realistic scenario for data structures usage as it prevents the network from cheating by peeking into277

the future. We evaluate raw HAM on the following tasks:278

4Stability means that pairs with equal keys should be ordered accordingly to their order in the input sequence.

7

1. Stack: The “PUSH x” operation places the element x (a 5-bit vector) on top of the stack,279

and the “POP” returns the last added element and removes it from the stack.280

2. Queue: The “PUSH x” operation places the element x (a 5-bit vector) at the end of the281

queue and the “POP” returns the oldest element and removes it from the queue.282

3. PriorityQueue: The “PUSH x p” operations adds the element x with priority p to283

the queue. The “POP” operation returns the value with the highest priority and remove it284

from the queue. Both x and p are represented as 5-bit vectors and priorities are compared285

lexicographically. To avoid ties we assume that all elements have different priorities.286

Table 2: Results of experiments with the raw ver-
sion of HAM (without the LSTM controller). Error
rates are measured as a percentage of operation se-
quences in which at least one POP query was not
answered correctly.

Task Test Error Generalization
Error

Stack 0% 0%
Queue 0% 0%

Priority
Queue

0.08% 0.2%

Model was trained with the memory of size up287

to n = 32 with operation sequences of length288

n. Sequences of PUSH/POP actions for train-289

ing were selected randomly. The t-th operation290

out of n operations in the sequence was POP291

with probability t
n and PUSH otherwise. To test292

generalization, we report the error rates with the293

memory of size 4n on sequences of operations294

of length 4n.295

The results presented in Table 2 show that HAM296

simulates a stack and a queue perfectly with no297

errors whatsoever even for memory 4 times big-298

ger. For the PriorityQueue task, the model299

generalizes almost perfectly to large memory, with errors only in 0.2% of output sequences.300

5 Comparison to other models301

As far as we know, our model is the first one which is able to learn a sorting algorithm from pure302

input-output examples. Although this problem was considered in the original NTM paper, the error303

rate achieved by the NTM is in fact quite high – the log-likelihood of the correct output was equal304

around 20 bits on outputs consisting of 128 bits. In comparison our model learns to solve almost305

perfectly - only 0.04% of the outputs produced by our model contain at least one incorrect bit.306

Reed & de Freitas (2015) shown that an LSTM is able to learn to sort short sequences, but it fails307

to generalize to inputs longer than the ones seen during the training. It is quite clear that an LSTM308

cannot learn a “real” sorting algorithm, because it uses a bounded memory independent of the length309

of the input. The Neural Programmer-Interpreter (Reed & de Freitas, 2015) is a neural network310

architecture, which is able to learn bubble sort, but it requires strong supervision in the form of311

execution traces. In comparison, our model can be trained from pure input-output examples, which is312

crucial if we want to use it to solve problems for which we do not know any algorithms.313

An important feature of neural memories is their efficiency. Our HAM module in comparison to314

many other recently proposed solutions is effective and allows to access the memory in Θ(log(n))315

complexity. In the context of learning algorithms it may sound surprising that among all the316

architectures mentioned in Sec. 2 the only ones, which can copy a sequence of length n without317

Θ(n2) operations are: Reinforcement-Learning NTM (Zaremba & Sutskever, 2015), the model from318

(Zaremba et al., 2015), Neural Random-Access Machine (Kurach et al., 2015), and Queue-Augmented319

LSTM (Grefenstette et al., 2015). However, the first three models have been only successful on320

relatively simple tasks. The last model was successful on some synthetic tasks from the domain of321

Natural Language Processing, which are very different from the tasks we tested our model on, so we322

cannot directly compare the two models.323

6 Conclusions324

We presented a new memory architecture for neural networks called Hierarchical Attentive Memory.325

Its crucial property is that it scales well with the memory size — the memory access requires only326

Θ(log n) operations. This complexity is achieved using a new attention mechanism based on a binary327

tree. The model proved to be successful on a number of algorithmic problems. The future work328

is to apply this or similar architecture to very long real-world sequential data like books or DNA329

sequences.330

8

References331

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. Neural machine translation by jointly learning to332

align and translate. arXiv preprint arXiv:1409.0473, 2014.333

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.334

Grefenstette, Edward, Hermann, Karl Moritz, Suleyman, Mustafa, and Blunsom, Phil. Learning to transduce335

with unbounded memory. In Advances in Neural Information Processing Systems, pp. 1819–1827, 2015.336

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term memory. Neural computation, 9(8):1735–1780,337

1997.338

Joulin, Armand and Mikolov, Tomas. Inferring algorithmic patterns with stack-augmented recurrent nets. arXiv339

preprint arXiv:1503.01007, 2015.340

Kaiser, Łukasz and Sutskever, Ilya. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228, 2015.341

Kalchbrenner, Nal, Danihelka, Ivo, and Graves, Alex. Grid long short-term memory. arXiv preprint342

arXiv:1507.01526, 2015.343

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,344

2014.345

Kurach, Karol, Andrychowicz, Marcin, and Sutskever, Ilya. Neural random-access machines. arXiv preprint346

arXiv:1511.06392, 2015.347

Li, Yujia, Tarlow, Daniel, Brockschmidt, Marc, and Zemel, Richard. Gated graph sequence neural networks.348

arXiv preprint arXiv:1511.05493, 2015.349

Morin, Frederic and Bengio, Yoshua. Hierarchical probabilistic neural network language model. In Aistats,350

volume 5, pp. 246–252. Citeseer, 2005.351

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units improve restricted boltzmann machines. In Proceedings352

of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814, 2010.353

Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua. Understanding the exploding gradient problem.354

Computing Research Repository (CoRR) abs/1211.5063, 2012.355

Reed, Scott and de Freitas, Nando. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279, 2015.356

Schulman, John, Heess, Nicolas, Weber, Theophane, and Abbeel, Pieter. Gradient estimation using stochastic357

computation graphs. In Advances in Neural Information Processing Systems, pp. 3510–3522, 2015.358

Srivastava, Rupesh Kumar, Greff, Klaus, and Schmidhuber, Jürgen. Highway networks. arXiv preprint359

arXiv:1505.00387, 2015.360

Sukhbaatar, Sainbayar, Szlam, Arthur, Weston, Jason, and Fergus, Rob. End-to-end memory networks. arXiv361

preprint arXiv:1503.08895, 2015.362

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc VV. Sequence to sequence learning with neural networks. In363

Advances in neural information processing systems, pp. 3104–3112, 2014.364

Vinyals, Oriol, Toshev, Alexander, Bengio, Samy, and Erhan, Dumitru. Show and tell: A neural image caption365

generator. arXiv preprint arXiv:1411.4555, 2014.366

Vinyals, Oriol, Fortunato, Meire, and Jaitly, Navdeep. Pointer networks. arXiv preprint arXiv:1506.03134, 2015.367

Weston, Jason, Chopra, Sumit, and Bordes, Antoine. Memory networks. arXiv preprint arXiv:1410.3916, 2014.368

Williams, Ronald J. Simple statistical gradient-following algorithms for connectionist reinforcement learning.369

Machine learning, 8(3-4):229–256, 1992.370

Zaremba, Wojciech and Sutskever, Ilya. Reinforcement learning neural turing machines. arXiv preprint371

arXiv:1505.00521, 2015.372

Zaremba, Wojciech, Mikolov, Tomas, Joulin, Armand, and Fergus, Rob. Learning simple algorithms from373

examples. arXiv preprint arXiv:1511.07275, 2015.374

9

A Example: HAM sorting375

We present some insights into the algorithms learned by the LSTM+HAM model, by investigating the376

hidden representations he learned for a variant of the problem Sort in which we sort 4-bit vectors377

lexicographically5. For demonstration purposes, we use a small tree with n = 8 leaves and each378

node’s hidden state has size d = 6 values.379

The trained network performs sorting perfectly. It attends to the leaves in the order corresponding to380

the order of the sorted input values, i.e. at every timestep HAM attends to the leaf corresponding to381

the smallest input value among the leaves, which have not been attended so far.382

It would be interesting to exactly understand the algorithm used by the network to perform this383

operation. A natural solution to this problem would be to store in each hidden node e the smallest384

input value among the (unattended so far) leaves below e together with the information whether the385

smallest value is in the right or the left subtree under e.386

In the Fig. 3 we present two timesteps of our model. The LSTM controller is not presented to simplify387

the exposition. The input sequence is presented on the left, below the tree: x1 = 0000, x2 =388

1110, x3 = 1101 and so on. The 2x3 grids in the nodes of the tree represent the values he ∈ R6.389

White cells correspond to value 0 and non-white cells correspond to values > 0.390

The lower-rightmost cells are presented in pink, because we managed to decipher the meaning of this391

coordinate for the inner nodes. This coordinate in the node e denotes whether the minimum in the392

subtree (among the values unattended so far) is in the right or left subtree of e. Value greater than 0393

(pink in the picture) means that the minimum is in the right subtree and therefore we should go right394

while visiting this node in the attention phase.395

In the first timestep the leftmost leaf (corresponding to the input 0000) is accessed. Notice that the396

last coordinates (shown in pink) are updated appropriately, e.g. the smallest unattended value at the397

beginning of the second timestep is 0101, which corresponds to the 6-th leaf. It is in the right subtree398

under the root and accordingly the last coordinate in the hidden value stored in the root is high (i.e.399

pink in the figure).400

(a) The first timestep (b) The second timestep

Figure 3: An exemplary input sequence and the state of HAM after initialization (left) and after first
timestep (right).

5 In the problem Sort considered in the experimental results, there are separate keys and values, which
forces the model to learn stable sorting. Here, for the sake of simplicity, we consider the simplified version of
the problem and do not use separate keys and values.

10

B Raw HAM details401

Raw HAM module differs from the LSTM+HAM model from Sec. 3 in the following way:402

• The HAM memory is initialized with zeros.403

• The t-th output symbol yt is computed using an MLP from the value in the accessed leaf ha.404

• Notice that in the LSTM+HAM model, hLSTM acted as a kind of “query” or “command”405

guiding the behaviour of HAM. We will now use the values xt instead. Therefore, at406

the t-th timestep we use xt instead of hLSTM whenever hLSTM was used in the original407

model, e.g. during the attention phase (Fig. 2b) we use p = SEARCH(hc, xt) instead of408

p = SEARCH(hc, hLSTM).409

C Using soft attention410

One of the open questions in the area of designing neural networks with attention mechanisms is411

whether to use a soft or hard attention. The model described in the paper belongs to the latter class of412

attention mechanisms as it makes hard, stochastic choices. The other solution would be to use a soft,413

differentiable mechanism, which attends to a linear combination of the potential attention targets414

and do not involve any sampling. The main advantage of such models is that their gradients can be415

computed exactly.416

We now describe how to modify the model to make it fully differentiable ("DHAM"). Recall that in417

the original model the leaf which is attended at every timestep is sampled stochastically. Instead of418

that, we will now at every timestep compute for every leaf e the probability p(e) that this leaf would419

be attended if we used the stochastic procedure described in Fig. 2b. The value p(e) can be computed420

by multiplying the probabilities of going in the right direction from all the nodes on the path from the421

root to e.422

As the input for the LSTM we then use the value
∑
e∈L p(e)·he. During the write phase, we update the423

values of all the leaves using the formula he := p(e)·WRITE(he, hROOT)+(1−p(e))·he. Then, in the424

update phase we update the values of all the inner nodes, so that the equation he = JOIN(hl(e), hr(e))425

is satisfied for each inner node e. Notice that one timestep of the soft version of the model takes time426

Θ(n) as we have to update the values of all the nodes in the tree. Our model may be seen as a special427

case of Gated Graph Neural Network (Li et al., 2015).428

This version of the model is fully differentiable and therefore it can be trained using end-to-end429

backpropagation on the log-probability of producing the correct output. We observed that training430

DHAM is slightly easier than the REINFORCE version. However, DHAM does not generalize as431

well as HAM to larger memory sizes.432

11

Workshop track - ICLR 2016

ADDING GRADIENT NOISE IMPROVES LEARNING
FOR VERY DEEP NETWORKS

Arvind Neelakantan∗, Luke Vilnis∗
College of Information and Computer Sciences
University of Massachusetts Amherst
{arvind,luke}@cs.umass.edu

Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach
Google Brain
{qvl,ilyasu,lukaszkaiser,kkurach}@google.com

James Martens
University of Toronto
{jmartens}@cs.toronto.edu

ABSTRACT

Deep feedforward and recurrent networks have achieved impressive results in
many perception and language processing applications. This success is partially
attributed to architectural innovations such as convolutional and long short-term
memory networks. A major reason for these architectural innovations is that they
capture better domain knowledge, and importantly are easier to optimize than
more basic architectures. Recently, more complex architectures such as Neural
Turing Machines and Memory Networks have been proposed for tasks including
question answering and general computation, creating a new set of optimization
challenges. In this paper, we discuss a low-overhead and easy-to-implement tech-
nique of adding gradient noise which we find to be surprisingly effective when
training these very deep architectures. The technique not only helps to avoid
overfitting, but also can result in lower training loss. This method alone allows
a fully-connected 20-layer deep network to be trained with standard gradient de-
scent, even starting from a poor initialization. We see consistent improvements
for many complex models, including a 72% relative reduction in error rate over
a carefully-tuned baseline on a challenging question-answering task, and a dou-
bling of the number of accurate binary multiplication models learned across 7,000
random restarts. We encourage further application of this technique to additional
complex modern architectures.

1 INTRODUCTION

Deep neural networks have shown remarkable success in diverse domains including image recog-
nition (Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012) and language processing
applications (Sutskever et al., 2014; Bahdanau et al., 2014). This broad success comes from a con-
fluence of several factors. First, the creation of massive labeled datasets has allowed deep networks
to demonstrate their advantages in expressiveness and scalability. The increase in computing power
has also enabled training of far larger networks with more forgiving optimization dynamics (Choro-
manska et al., 2015). Additionally, architectures such as convolutional networks (LeCun et al.,
1998) and long short-term memory networks (Hochreiter & Schmidhuber, 1997) have proven to be
easier to optimize than classical feedforward and recurrent models. Finally, the success of deep
networks is also a result of the development of simple and broadly applicable learning techniques
such as dropout (Srivastava et al., 2014), ReLUs (Nair & Hinton, 2010), gradient clipping (Pascanu

∗First two authors contributed equally. Work was done when all authors were at Google, Inc.

1

Workshop track - ICLR 2016

et al., 2013; Graves, 2013), optimization and weight initialization strategies (Glorot & Bengio, 2010;
Sutskever et al., 2013; He et al., 2015).

Recent work has aimed to push neural network learning into more challenging domains, such as
question answering or program induction. These more complicated problems demand more compli-
cated architectures (e.g., Graves et al. (2014); Sukhbaatar et al. (2015)) thereby posing new optimiza-
tion challenges. In order to achieve good performance, researchers have reported the necessity of
additional techniques such supervision in intermediate steps (Weston et al., 2014), warmstarts (Peng
et al., 2015), random restarts, and the removal of certain activation functions in early stages of train-
ing (Sukhbaatar et al., 2015).

A recurring theme in recent works is that commonly-used optimization techniques are not always
sufficient to robustly optimize the models. In this work, we explore a simple technique of adding
annealed Gaussian noise to the gradient, which we find to be surprisingly effective in training deep
neural networks with stochastic gradient descent. While there is a long tradition of adding random
weight noise in classical neural networks, it has been under-explored in the optimization of modern
deep architectures. In contrast to theoretical and empirical results on the regularizing effects of
conventional stochastic gradient descent, we find that in practice the added noise can actually help us
achieve lower training loss by encouraging active exploration of parameter space. This exploration
proves especially necessary and fruitful when optimizing neural network models containing many
layers or complex latent structures.

The main contribution of this work is to demonstrate the broad applicability of this simple method
to the training of many complex modern neural architectures. Furthermore, to the best of our knowl-
edge, our added noise schedule has not been used before in the training of deep networks. We
consistently see improvement from injected gradient noise when optimizing a wide variety of mod-
els, including very deep fully-connected networks, and special-purpose architectures for question
answering and algorithm learning. For example, this method allows us to escape a poor initializa-
tion and successfully train a 20-layer rectifier network on MNIST with standard gradient descent. It
also enables a 72% relative reduction in error in question-answering, and doubles the number of ac-
curate binary multiplication models learned across 7,000 random restarts. We hope that practitioners
will see similar improvements in their own research by adding this simple technique, implementable
in a single line of code, to their repertoire.

2 RELATED WORK

Adding random noise to the weights, gradient, or the hidden units has been a known technique
amongst neural network practitioners for many years (e.g., An (1996)). However, the use of gradient
noise has been rare and its benefits have not been fully documented with modern deep networks.

Weight noise (Steijvers, 1996) and adaptive weight noise (Graves, 2011; Blundell et al., 2015), which
usually maintains a Gaussian variational posterior over network weights, similarly aim to improve
learning by added noise during training. They normally differ slightly from our proposed method in
that the noise is not annealed and at convergence will be non-zero. Additionally, in adaptive weight
noise, an extra set of parameters for the variance must be maintained.

Similarly, the technique of dropout (Srivastava et al., 2014) randomly sets groups of hidden units to
zero at train time to improve generalization in a manner similar to ensembling.

An annealed Gaussian gradient noise schedule was used to train the highly non-convex Stochastic
Neighbor Embedding model in Hinton & Roweis (2002). The gradient noise schedule that we
found to be most effective is very similar to the Stochastic Gradient Langevin Dynamics algorithm
of Welling & Teh (2011), who use gradients with added noise to accelerate MCMC inference for
logistic regression and independent component analysis models. This use of gradient information
in MCMC sampling for machine learning to allow faster exploration of state space was previously
proposed by Neal (2011).

Various optimization techniques have been proposed to improve the training of neural networks.
Most notable is the use of Momentum (Polyak, 1964; Sutskever et al., 2013; Kingma & Ba, 2014)
or adaptive learning rates (Duchi et al., 2011; Dean et al., 2012; Zeiler, 2012). These methods are
normally developed to provide good convergence rates for the convex setting, and then heuristically

2

Workshop track - ICLR 2016

applied to nonconvex problems. Injecting noise in the gradient is more suitable for nonconvex
problems. By adding even more stochasticity, this technique allows the model more chances to
escape local minima (see a similar argument in Bottou (1992)), or to traverse quickly through the
“transient” plateau phase of early learning (see a similar analysis for momentum in Sutskever et al.
(2013)). This is born out empirically in our observation that adding gradient noise can actually
result in lower training loss. In this sense, we suspect adding gradient noise is similar to simulated
annealing (Kirkpatrick et al., 1983) which exploits random noise to explore complex optimization
landscapes. This can be contrasted with well-known benefits of stochastic gradient descent as a
learning algorithm (Robbins & Monro, 1951; Bousquet & Bottou, 2008), where both theory and
practice have shown that the noise induced by the stochastic process aids generalization by reducing
overfitting.

3 METHOD

We consider a simple technique of adding time-dependent Gaussian noise to the gradient g at every
training step t:

gt ← gt +N(0, σ2
t)

Our experiments indicate that adding annealed Gaussian noise by decaying the variance works better
than using fixed Gaussian noise. We use a schedule inspired from Welling & Teh (2011) for most of
our experiments and take:

σ2
t =

η

(1 + t)γ
(1)

with η selected from {0.01, 0.3, 1.0} and γ = 0.55. Higher gradient noise at the beginning of
training forces the gradient away from 0 in the early stages.

4 EXPERIMENTS

In the following experiments, we consider a variety of complex neural network architectures: Deep
networks for MNIST digit classification, End-To-End Memory Networks (Sukhbaatar et al., 2015)
and Neural Programmer (Neelakantan et al., 2015) for question answering, Neural Random Access
Machines (Kurach et al., 2015) and Neural GPUs (Kaiser & Sutskever, 2015) for algorithm learning.
The models and results are described as follows.

4.1 DEEP FULLY-CONNECTED NETWORKS

For our first set of experiments, we examine the impact of adding gradient noise when training a
very deep fully-connected network on the MNIST handwritten digit classification dataset (LeCun
et al., 1998). Our network is deep: it has 20 hidden layers, with each layer containing 50 hidden
units. We use the ReLU activation function (Nair & Hinton, 2010).

In this experiment, we add gradient noise sampled from a Gaussian distribution with mean 0, and
decaying variance according to the schedule in Equation (1) with η = 0.01. We train with SGD
without momentum, using the fixed learning rates of 0.1 and 0.01. Unless otherwise specified, the
weights of the network are initialized from a Gaussian with mean zero, and standard deviation of
0.1, which we call Simple Init.

The results of our experiment are in Table 1. When trained from Simple Init we can see that adding
noise to the gradient helps in achieving higher average and best accuracy over 20 runs using each
learning rate for a total of 40 runs (Table 1, Experiment 1). We note that the average is closer to
50% because the small learning rate of 0.01 usually gives very slow convergence. We also try our
approach on a more shallow network of 5 layers, but adding noise does not improve the training in
that case.

Next, we experiment with clipping the gradients with two threshold values: 100 and 10 (Table 1,
Experiment 2, and 3). Here, we find training with gradient noise is insensitive to the gradient
clipping values. By tuning the clipping threshold, it is possible to get comparable accuracy without
noise for this problem.

3

Workshop track - ICLR 2016

In our fourth experiment (Table 1, Experiment 4), we use the analytically-derived ReLU initializa-
tion technique (which we term Good Init) recently-proposed by He et al. (2015) and find that adding
gradient noise does not help. Previous work has found that stochastic gradient descent with carefully
tuned initialization, momentum, learning rate, and learning rate decay can optimize such extremely
deep fully-connected ReLU networks (Srivastava et al., 2015). It would be harder to find such a
robust initialization technique for the more complex heterogeneous architectures considered in later
sections. Accordingly, we find in later experiments (e.g., Section 4.3) that random restarts and the
use of a momentum-based optimizer like Adam are not sufficient to achieve the best results in the
absence of added gradient noise.

To test how sensitive the methods are to poor initialization, in addition to the sub-optimal Simple
Init, we run an experiment where all the weights in the neural network are initialized at zero. The
results (Table 1, Experiment 5) show that if we do not add noise to the gradient, the networks fail to
learn. If we add some noise, the networks can learn and reach 94.5% accuracy.

Experiment 1: Simple Init, No Gradient Clipping
Setting Best Test Accuracy Average Test Accuracy
No Noise 89.9 43.1
With Noise 96.7 52.7
No Noise + Dropout 11.3 10.8

Experiment 2: Simple Init, Gradient Clipping = 100
No Noise 90.0 46.3
With Noise 96.7 52.3

Experiment 3: Simple Init, Gradient Clipping = 10
No Noise 95.7 51.6
With Noise 97.0 53.6

Experiment 4: Good Init (He et al., 2015) + Gradient Clipping = 10
No Noise 97.4 91.7
With Noise 97.2 91.7

Experiment 5: Bad Init (Zero Init) + Gradient Clipping = 10
No Noise 11.4 10.1
With Noise 94.5 49.7

Table 1: Average and best test accuracy on MNIST over 40 runs.

In summary, these experiments show that if we are careful with initialization and gradient clipping
values, it is possible to train a very deep fully-connected network without adding gradient noise.
However, if the initialization is poor, optimization can be difficult, and adding noise to the gradient
is a good mechanism to overcome the optimization difficulty.

The implication of this set of results is that added gradient noise can be an effective mechanism for
training very complex networks. This is because it is more difficult to initialize the weights properly
for complex networks. In the following, we explore the training of more complex networks such as
End-To-End Memory Networks and Neural Programmer, whose initialization is less well studied.

4.2 END-TO-END MEMORY NETWORKS

We test added gradient noise for training End-To-End Memory Networks (Sukhbaatar et al., 2015),
a new approach for Q&A using deep networks.1 Memory Networks have been demonstrated to
perform well on a relatively challenging toy Q&A problem (Weston et al., 2015).

1Code available at: https://github.com/facebook/MemNN

4

Workshop track - ICLR 2016

In Memory Networks, the model has access to a context, a question, and is asked to predict an
answer. Internally, the model has an attention mechanism which focuses on the right clue to answer
the question. In the original formulation (Weston et al., 2015), Memory Networks were provided
with additional supervision as to what pieces of context were necessary to answer the question. This
was replaced in the End-To-End formulation by a latent attention mechanism implemented by a
softmax over contexts. As this greatly complicates the learning problem, the authors implement a
two-stage training procedure: First train the networks with a linear attention, then use those weights
to warmstart the model with softmax attention.

In our experiments with Memory Networks, we use our standard noise schedule, using noise sam-
pled from a Gaussian distribution with mean 0, and decaying variance according to Equation (1) with
η = 1.0. This noise is added to the gradient after clipping. We also find for these experiments that
a fixed standard deviation also works, but its value has to be tuned, and works best at 0.001. We set
the number of training epochs to 200 because we would like to understand the behaviors of Memory
Networks near convergence. The rest of the training is identical to the experimental setup proposed
by the original authors. We test this approach with the published two-stage training approach, and
additionally with a one-stage training approach where we train the networks with softmax attention
and without warmstarting. Results are reported in Table 2. We find some fluctuations during each
run of the training, but the reported results reflect the typical gains obtained by adding random noise.

We find that warmstarting does indeed help the networks. In both cases, adding random noise to
the gradient also helps the network both in terms of training errors and validation errors. Added
noise, however, is especially helpful for the training of End-To-End Memory Networks without the
warmstarting stage.

Setting No Noise With Noise
One-stage training Training error: 10.5% Training error: 9.6%

Validation error: 19.5% Validation error: 16.6%
Two-stage training Training error: 6.2% Training error: 5.9%

Validation error: 10.9% Validation error: 10.8%

Table 2: The effects of adding random noise to the gradient on Neural Programmer. Adding ran-
dom noise to the gradient always helps the model. When the models are applied to these more
complicated tasks than the single column experiment, using dropout and noise together seems to be
beneficial in one case while using only one of them achieves the best result in the other case.

4.3 NEURAL PROGRAMMER

Neural Programmer is a neural network architecture augmented with a small set of built-in arithmetic
and logic operations that learns to induce latent programs. It is proposed for the task of question
answering from tables (Neelakantan et al., 2015). Examples of operations on a table include the sum
of a set of numbers, or the list of numbers greater than a particular value. Key to Neural Programmer
is the use of “soft selection” to assign a probability distribution over the list of operations. This
probability distribution weighs the result of each operation, and the cost function compares this
weighted result to the ground truth. This soft selection, inspired by the soft attention mechanism
of Bahdanau et al. (2014), allows for full differentiability of the model. Running the model for
several steps of selection allows the model to induce a complex program by chaining the operations,
one after the other. At convergence, the soft selection tends to become peaky (hard selection).
Figure 1 shows the architecture of Neural Programmer at a high level.

In a synthetic table comprehension task, Neural Programmer takes a question and a table (or
database) as input and the goal is to predict the correct answer. To solve this task, the model has
to induce a program and execute it on the table. A major challenge is that the supervision signal is
in the form of the correct answer and not the program itself. The model runs for a fixed number of
steps, and at each step selects a data segment and an operation to apply to the selected data segment.
Soft selection is performed at training time so that the model is differentiable, while at test time hard
selection is employed. Table 3 shows examples of programs induced by the model.

5

Workshop track - ICLR 2016

Controller Soft
Selection

Arithmetic and
logic operations

MemoryData Output

ApplyInput

t = 1, 2, …, TTimestep t

Figure 1: Neural Programmer, a neural network with built-in arithmetic and logic operations. At
every time step, the controller selectes an operation and a data segment. Figure reproduced with
permission from Neelakantan et al. (2015).

Question t Selected Selected
Op Column

greater 50.32 C and lesser 20.21 E sum H 1 Greater C
What is the sum of numbers in column H 2 Lesser E

whose field in column C is greater than 50.32 3 And -
and field in Column E is lesser than 20.21. 4 Sum H

Table 3: Example program induced by the model using T = 4 time steps. We show the selected
columns in cases in which the selected operation acts on a particular column.

Similar to the above experiments with Memory Networks, in our experiments with Neural Pro-
grammer, we add noise sampled from a Gaussian distribution with mean 0, and decaying variance
according to Equation (1) with η = 1.0 to the gradient after clipping. The model is optimized with
Adam (Kingma & Ba, 2014), which combines momentum and adaptive learning rates.

For our first experiment, we train Neural Programmer to answer questions involving a single column
of numbers. We use 72 different hyper-parameter configurations with and without adding annealed
random noise to the gradients. We also run each of these experiments for 3 different random ini-
tializations of the model parameters and we find that only 1/216 runs achieve 100% test accuracy
without adding noise while 9/216 runs achieve 100% accuracy when random noise is added. The
9 successful runs consisted of models initialized with all the three different random seeds, demon-
strating robustness to initialization. We find that when using dropout (Srivastava et al., 2014) none
of the 216 runs give 100% accuracy.

We consider a more difficult question answering task where tables have up to five columns contain-
ing numbers. We also experiment on a task containing one column of numbers and another column
of text entries. Table 4 shows the performance of adding noise vs. no noise on Neural Programmer.

Setting No Noise With Noise Dropout Dropout With Noise
Five columns 95.3% 98.7% 97.4% 99.2%
Text entries 97.6% 98.8% 99.1% 97.3%

Table 4: The effects of adding random noise to the gradient on Neural Programmer. Adding ran-
dom noise to the gradient always helps the model. When the models are applied to these more
complicated tasks than the single column experiment, using dropout and noise together seems to be
beneficial in one case while using only one of them achieves the best result in the other case.

Figure 2 shows an example of the effect of adding random noise to the gradients in our experiment
with 5 columns. The differences between the two models are much more pronounced than Table 4
indicates because that table reflects the results from the best hyperparameters. Figure 2 indicates a
more typical training run.

6

Workshop track - ICLR 2016

0 50 100 150 200 250 300
No. of epochs

1000

1500

2000

2500

3000

3500

T
ra

in
 L

os
s

Train Loss: Noise Vs. No Noise

no noise

noise

0 50 100 150 200 250 300
No. of epochs

0

20

40

60

80

100

T
es

t
A

cc
u
ra

cy

Test Accuracy: Noise Vs. No Noise

no noise

noise

Figure 2: Noise Vs. No Noise in our experiment with 5 columns. The models trained with noise
generalizes almost always better.

In all cases, we see that added gradient noise improves performance of Neural Programmer. Its
performance when combined with or used instead of dropout is mixed depending on the problem,
but the positive results indicate that it is worth attempting on a case-by-case basis.

4.4 NEURAL RANDOM ACCESS MACHINES

We now conduct experiments with Neural Random-Access Machines (NRAM) (Kurach et al., 2015).
NRAM is a model for algorithm learning that can store data, and explicitly manipulate and derefer-
ence pointers. NRAM consists of a neural network controller, memory, registers and a set of built-in
operations. This is similar to the Neural Programmer in that it uses a controller network to com-
pose built-in operations, but both reads and writes to an external memory. An operation can either
read (a subset of) contents from the memory, write content to the memory or perform an arithmetic
operation on either input registers or outputs from other operations. The controller runs for a fixed
number of time steps. At every step, the model selects a ”circuit” to be executed: both the operations
and its inputs. An example of such circuit is presented in Figure 4.

These selections are made using soft attention (Bahdanau et al., 2014) making the model end-to-end
differentiable. NRAM uses an LSTM (Hochreiter & Schmidhuber, 1997) controller. Figure 3 gives
an overview of the model.

For our experiment, we consider a problem of searching k-th element’s value on a linked list. The
network is given a pointer to the head of the linked list, and has to find the value of the k-th element.
Note that this is highly nontrivial because pointers and their values are stored at random locations in
memory, so the model must learn to traverse a complex graph for k steps.

Because of this complexity, training the NRAM architecture can be unstable, especially when the
number of steps and operations is large. We once again experiment with the decaying noise schedule
from Equation (1), setting η = 0.3. We run a large grid search over the model hyperparameters (de-
tailed in Kurach et al. (2015)), and use the top 3 for our experiments. For each of these 3 settings, we
try 100 different random initializations and look at the percentage of runs that give 100% accuracy
across each one for training both with and without noise.

As in our experiments with Neural Programmer, we find that gradient clipping is crucial when
training with noise. This is likely because the effect of random noise is washed away when gradients
become too large. For models trained with noise we observed much better reproduce rates, which
are presented in Table 5. Although it is possible to train the model to achieve 100% accuracy without
noise, it is less robust across multiple random restarts, with over 10x as many initializations leading
to a correct answer when using noise.

7

Workshop track - ICLR 2016

r1
r2
r3
r4re

gi
st

er
s m1

m2

m3
r1
r2
r3
r4

LSTM finish?
binarized

memory tape

Figure 3: One timestep of the NRAM architecture with R = 4 registers and a memory tape. m1,
m2 and m3 are example operations built-in to the model. The operations can read and write from
memory. At every time step, the LSTM controller softly selects the operation and its inputs. Figure
reproduced with permission from Kurach et al. (2015).

r1 r2'

r3
readp

add

inc

sub

min

writea

p

r3'

0 r1'

1

Figure 4: An example circuit generated by NRAM architecutre. The registers are represented by
circles and modules by rectangles. For modules where the order of parameters matter, we label the
edges with p (the address to be read/written) and a (the value to be written - only for write module).
This circuit solves the problem of incrementing given array of elements. Notice that only register r3
is used in the algorithm and the module ”min” could be removed. The register r3 is incremented in
every time step. The value of r3 is passed to read and write as the address (p). The value (a) for
write is the output from read module incremented by 1.

Hyperparameter-1 Hyperparameter-2 Hyperparameter-3 Average
No Noise 1% 0% 3% 1.3%

With Noise 5% 22% 7% 11.3%

Table 5: Comparison of reproducibility on k-th element task. All tests were performed with the
same set of 100 random initializations (seeds).

4.5 CONVOLUTIONAL GATED RECURRENT NETWORKS (NEURAL GPUS)

Convolutional Gated Recurrent Networks (CGRN) or Neural GPUs (Kaiser & Sutskever, 2015) are
a recently proposed model that is capable of learning arbitrary algorithms. CGRNs use a stack of
convolution layers, unfolded with tied parameters like a recurrent network. The input data (usually a
list of symbols) is first converted to a three dimensional tensor representation containing a sequence
of embedded symbols in the first two dimensions, and zeros padding the next dimension. Then,

8

Workshop track - ICLR 2016

multiple layers of modified convolution kernels are applied at each step. The modified kernel is a
combination of convolution and Gated Recurrent Units (GRU) (Cho et al., 2014). The use of con-
volution kernels allows computation to be applied in parallel across the input data, while the gating
mechanism helps the gradient flow. The additional dimension of the tensor serves as a working
memory while the repeated operations are applied at each layer. The output at the final layer is the
predicted answer.

The key difference between Neural GPUs and other architectures for algorithmic tasks (e.g., Neural
Turing Machines (Graves et al., 2014)) is that instead of using sequential data access, convolution
kernels are applied in parallel across the input, enabling the use of very deep and wide models. The
model is referred to as Neural GPU because the input data is accessed in parallel. Neural GPUs were
shown to outperform previous sequential architectures for algorithm learning on tasks such as binary
addition and multiplication, by being able to generalize from much shorter to longer data cases.

In our experiments, we use Neural GPUs for the task of binary multiplication. The input consists two
concatenated sequences of binary digits separated by an operator token, and the goal is to multiply
the given numbers. During training, the model is trained on 20-digit binary numbers while at test
time, the task is to multiply 200-digit numbers. Once again, we add noise sampled from Gaussian
distribution with mean 0, and decaying variance according to the schedule in Equation (1) with
η = 1.0, to the gradient after clipping. The model is optimized using Adam (Kingma & Ba, 2014).

Table 6 gives the results of a large-scale experiment using Neural GPUs with a 7290 grid search.
The experiment shows that models trained with added gradient noise are more robust across many
random initializations and parameter settings. As you can see, adding gradient noise both allows us
to achieve the best performance, with the number of models with < 1% error over twice as large as
without noise. But it also helps throughout, improving the robustness of training, with more models
training to higher error rates as well. This experiment shows that the simple technique of added
gradient noise is effective even in regimes where we can afford a very large numbers of random
restarts.

Setting Error < 1% Error < 2% Error < 3% Error < 5%
No Noise 28 90 172 387
With Noise 58 159 282 570

Table 6: Comparison of reproducibility on 7290 random restarts. Trained on length 20 and tested on
length 200.

5 CONCLUSION

In this paper, we discussed a set of experiments which show the effectiveness of adding noise to the
gradient. We found that adding noise to the gradient during training helps training and generalization
of complicated neural networks. We suspect that the effects are pronounced for complex models
because they have many local minima.

We believe that this surprisingly simple yet effective idea, essentially a single line of code, should be
in the toolset of neural network practitioners when facing issues with training neural networks. We
also believe that this set of empirical results can give rise to further formal analysis of why adding
noise is so effective for very deep neural networks.

Acknowledgements We sincerely thank Marcin Andrychowicz, Dmitry Bahdanau, Samy Bengio
for suggestions and the Google Brain team for help with the project.

REFERENCES

Guozhong An. The effects of adding noise during backpropagation training on a generalization
performance. Neural Computation, 1996.

9

Workshop track - ICLR 2016

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. ICLR, 2014.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. ICML, 2015.

Léon Bottou. Stochastic gradient learning in neural networks. In Neuro-Nı̈mes, 1992.

Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In NIPS, 2008.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In EMNLP, 2014.

Anna Choromanska, Mikael Henaff, Michaël Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. In AISTATS, 2015.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In NIPS, 2012.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 2011.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proc. AISTATS, pp. 249–256, 2010.

Alex Graves. Practical variational inference for neural networks. In NIPS, 2011.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arxiv:1308.0850,
2013.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. arXiv preprint
arXiv:1410.5401, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. ICCV, 2015.

Geoffrey Hinton and Sam Roweis. Stochastic neighbor embedding. In NIPS, 2002.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed, Navdeep Jaitly, An-
drew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury. Deep
neural networks for acoustic modeling in speech recognition. Signal Processing Magazine, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 1997.

Lukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. In Arxiv, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Scott Kirkpatrick, Mario P Vecchi, et al. Optimization by simulated annealing. Science, 1983.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep convo-
lutional neural networks. In NIPS, 2012.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random access machine. In Arxiv,
2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998.

Vinod Nair and Geoffrey Hinton. Rectified linear units improve Restricted Boltzmann Machines. In
ICML, 2010.

Radford M Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,
2011.

10

Workshop track - ICLR 2016

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural Programmer: Inducing latent programs
with gradient descent. In Arxiv, 2015.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. Proc. ICML, 2013.

Baolin Peng, Zhengdong Lu, Hang Li, and Kam-Fai Wong. Towards neural network-based reason-
ing. arXiv preprint arxiv:1508.05508, 2015.

Boris Teodorovich Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 1964.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, 1951.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. JMLR, 2014.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks.
NIPS, 2015.

Mark Steijvers. A recurrent network that performs a context-sensitive prediction task. In CogSci,
1996.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks.
In NIPS, 2015.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initializa-
tion and momentum in deep learning. In ICML, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In NIPS, 2014.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
ICML, 2011.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards AI-complete question
answering: a set of prerequisite toy tasks. In ICML, 2015.

Matthew D Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

11

Learning to Discover
Efficient Mathematical Identities

Wojciech Zaremba
Dept. of Computer Science

Courant Institute
New York Unviersity

Karol Kurach
Google &

Dept. of Computer Science
University of Warsaw

Rob Fergus
Dept. of Computer Science

Courant Institute
New York Unviersity

Abstract

In this paper we explore how machine learning techniques can be applied to the
discovery of efficient mathematical identities. We introduce an attribute gram-
mar framework for representing symbolic expressions. Given a grammar of math
operators, we build trees that combine them in different ways, looking for compo-
sitions that are analytically equivalent to a target expression but of lower compu-
tational complexity. However, as the space of trees grows exponentially with the
complexity of the target expression, brute force search is impractical for all but
the simplest of expressions. Consequently, we introduce two novel learning ap-
proaches that are able to learn from simpler expressions to guide the tree search.
The first of these is a simple n-gram model, the other being a recursive neural-
network. We show how these approaches enable us to derive complex identities,
beyond reach of brute-force search, or human derivation.

1 Introduction
Machine learning approaches have proven highly effective for statistical pattern recognition prob-
lems, such as those encountered in speech or vision. However, their use in symbolic settings has
been limited. In this paper, we explore how learning can be applied to the discovery of mathematical
identities. Specifically, we propose methods for finding computationally efficient versions of a given
target expression. That is, finding a new expression which computes an identical result to the target,
but has a lower complexity (in time and/or space).

We introduce a framework based on attribute grammars [14] that allows symbolic expressions to be
expressed as a sequence of grammar rules. Brute-force enumeration of all valid rule combinations
allows us to discover efficient versions of the target, including those too intricate to be discovered by
human manipulation. But for complex target expressions this strategy quickly becomes intractable,
due to the exponential number of combinations that must be explored. In practice, a random search
within the grammar tree is used to avoid memory problems, but the chance of finding a matching
solution becomes vanishingly small for complex targets.

To overcome this limitation, we use machine learning to produce a search strategy for the grammar
trees that selectively explores branches likely (under the model) to yield a solution. The training
data for the model comes from solutions discovered for simpler target expressions. We investigate
several different learning approaches. The first group are n-gram models, which learn pairs, triples
etc. of expressions that were part of previously discovered solutions, thus hopefully might be part
of the solution for the current target. We also train a recursive neural network (RNN) that operates
within the grammar trees. This model is first pretrained to learn a continuous representation for
symbolic expressions. Then, using this representation we learn to predict the next grammar rule to
add to the current expression to yield an efficient version of the target.

Through the use of learning, we are able to dramatically widen the complexity and scope of expres-
sions that can be handled in our framework. We show examples of (i) O

(
n3
)

target expressions
which can be computed in O

(
n2
)

time (e.g. see Examples 1 & 2), and (ii) cases where naive eval-

1

uation of the target would require exponential time, but can be computed in O
(
n2
)

or O
(
n3
)

time.
The majority of these examples are too complex to be found manually or by exhaustive search and,
as far as we are aware, are previously undiscovered. All code and evaluation data can be found at
https://github.com/kkurach/math_learning.

In summary our contributions are:

• A novel grammar framework for finding efficient versions of symbolic expressions.
• Showing how machine learning techniques can be integrated into this framework, and

demonstrating how training models on simpler expressions can help which the discovery
of more complex ones.

• A novel application of a recursive neural-network to learn a continuous representation of
mathematical structures, making the symbolic domain accessible to many other learning
approaches.

• The discovery of many new mathematical identities which offer a significant reduction in
computational complexity for certain expressions.

Example 1: Assume we are given matrices A ∈ Rn×m, B ∈ Rm×p. We wish to compute the
target expression: sum(sum(A*B)), i.e. :

∑
n,pAB =

∑n
i=1

∑m
j=1

∑p
k=1Ai,jBj,k which

naively takes O(nmp) time. Our framework is able to discover an efficient version of the
formula, that computes the same result in O(n(m+ p)) time: sum((sum(A, 1) * B)’, 1).
Our framework builds grammar trees that explore valid compositions of expressions from the
grammar, using a search strategy. In this example, the naive strategy of randomly choosing
permissible rules suffices and we can find another tree which matches the target expression in
reasonable time. Below, we show trees for (i) the original expression and (ii) the efficient
formula which avoids the use of a matrix-matrix multiply operation, hence is efficient to
compute.

———————
Example 2: Consider the target expression: sum(sum((A*B)k)), where k = 6. For an
expression of this degree, there are 9785 possible grammar trees and the naive strategy used in
Example 1 breaks down. We therefore learn a search strategy, training a model on successful
trees from simpler expressions, such as those for k = 2, 3, 4, 5. Our learning approaches capture
the common structure within the solutions, evident below, so can find an efficient O(nm)
expression for this target:
k = 2: sum((((((sum(A, 1)) * B) * A) * B)’), 1)

k = 3: sum((((((((sum(A, 1)) * B) * A) * B) * A) * B)’), 1)

k = 4: sum((((((((((sum(A, 1)) * B) * A) * B) * A) * B) * A) * B)’), 1)

k = 5: sum((((((((((((sum(A, 1)) * B) * A) * B) * A) * B) * A) * B) * A) * B)’), 1)

k = 6: sum(((((((((((((sum(A, 1) * B) * A) * B) *A) * B) * A) * B)* A) * B) * A) * B)’), 1)

1.1 Related work

The problem addressed in this paper overlaps with the areas of theorem proving [5, 9, 11], program
induction [18, 28] and probabilistic programming [12, 20]. These domains involve the challenging
issues of undecidability, the halting problem, and a massive space of potential computation. How-
ever, we limit our domain to computation of polynomials with fixed degree k, where undecidability
and the halting problem are not present, and the space of computation is manageable (i.e. it grows
exponentially, but not super-exponentially). Symbolic computation engines, such as Maple [6] and
Mathematica [27] are capable of simplifying expressions by collecting terms but do not explicitly
seek versions of lower complexity. Furthermore, these systems are rule based and do not use learn-
ing approaches, the major focus of this paper. In general, there has been very little exploration of
statistical machine learning techniques in these fields, one of the few attempts being the recent work
of Bridge et al. [4] who use learning to select between different heuristics for 1st order reasoning. In
contrast, our approach does not use hand-designed heuristics, instead learning them automatically
from the results of simpler expressions.

2

https://github.com/kkurach/math_learning

Rule Input Output Computation Complexity

Matrix-matrix multiply X ∈ Rn×m , Y ∈ Rm×p Z ∈ Rn×p Z = X * Y O(nmp)

Matrix-element multiply X ∈ Rn×m , Y ∈ Rn×m Z ∈ Rn×m Z = X .* Y O(nm)

Matrix-vector multiply X ∈ Rn×m , Y ∈ Rm×1 Z ∈ Rn×n Z = X * Y O(nm)

Matrix transpose X ∈ Rn×m Z ∈ Rm×n Z = XT O(nm)

Column sum X ∈ Rn×m Z ∈ Rn×1 Z = sum(X,1) O(nm)

Row sum X ∈ Rn×m Z ∈ R1×m Z = sum(X,2) O(nm)

Column repeat X ∈ Rn×1 Z ∈ Rn×m Z = repmat(X,1,m) O(nm)

Row repeat X ∈ R1×m Z ∈ Rn×m Z = repmat(X,n,1) O(nm)

Element repeat X ∈ R1×1 Z ∈ Rn×m Z = repmat(X,n,m) O(nm)

Table 1: The grammar G used in our experiments.

The attribute grammar, originally developed in 1968 by Knuth [14] in context of compiler construc-
tion, has been successfully used as a tool for design and formal specification. In our work, we
apply attribute grammars to a search and optimization problem. This has previously been explored
in a range of domains: from well-known algorithmic problems like knapsack packing [19], through
bioinformatics [26] to music [10]. However, we are not aware of any previous work related to dis-
covering mathematical formulas using grammars, and learning in such framework. The closest work
to ours can be found in [7] which involves searching over the space of algorithms and the grammar
attributes also represent computational complexity.

Classical techniques in natural language processing make extensive use of grammars, for example
to parse sentences and translate between languages. In this paper, we borrow techniques from NLP
and apply them to symbolic computation. In particular, we make use of an n-gram model over
mathematical operations, inspired by n-gram language models. Recursive neural networks have
also been recently used in NLP, for example by Luong et al. [15] and Socher et al. [22, 23], as well
as generic knowledge representation Bottou [2]. In particular, Socher et al. [23], apply them to parse
trees for sentiment analysis. By contrast, we apply them to trees of symbolic expressions. Our work
also has similarities to Bowman [3] who shows that a recursive network can learn simple logical
predicates.

Our demonstration of continuous embeddings for symbolic expressions has parallels with the em-
beddings used in NLP for words and sentence structure, for example, Collobert & Weston [8], Mnih
& Hinton [17], Turian et al. [25] and Mikolov et al. [16].

2 Problem Statement
Problem Definition: We are given a symbolic target expression T that combines a set of variables V
to produce an output O, i.e. O = T(V). We seek an alternate expression S, such that S(V) = T(V),
but has lower computational complexity, i.e. O(S) < O(T).

In this paper we consider the restricted setting where: (i) T is a homogeneous polynomial of degree
k∗, (ii) V contains a single matrix or vector A and (iii) O is a scalar. While these assumptions may
seem quite restrictive, they still permit a rich family of expressions for our algorithm to explore.
For example, by combining multiple polynomial terms, an efficient Taylor series approximation
can be found for expressions involving trigonometric or exponential operators. Regarding (ii), our
framework can easily handle multiple variables, e.g. Figure 1, which shows expressions using two
matrices, A and B. However, the rest of the paper considers targets based on a single variable. In
Section 8, we discuss these restrictions further.

Notation: We adopt Matlab-style syntax for expressions.

3 Attribute Grammar
We first define an attribute grammar G, which contains a set of mathematical operations, each with
an associated complexity (the attribute). Since T contains exclusively polynomials, we use the
grammar rules listed in Table 1.

Using these rules we can develop trees that combine rules to form expressions involving V , which
for the purposes of this paper is a single matrix A. Since we know T involves expressions of degree

∗I.e. It only contains terms of degree k. E.g. ab + a2 + ac is a homogeneous polynomial of degree 2, but
a2 + b is not homogeneous (b is of degree 1, but a2 is of degree 2).

3

k, each tree must use A exactly k times. Furthermore, since the output is a scalar, each tree must
also compute a scalar quantity. These two constraints limit the depth of each tree. For some targets
T whose complexity is only O(()n3), we remove the matrix-matrix multiply rule, thus ensuring
that if any solution is found its complexity is at most O(()n2) (see Section 7.2 for more details).
Examples of trees are shown in Fig. 1. The search strategy for determining which rules to combine
is addressed in Section 6.

4 Representation of Symbolic Expressions
We need an efficient way to check if the expression produced by a given tree, or combination of trees
(see Section 5), matches T. The conventional approach would be to perform this check symbolically,
but this is too slow for our purposes and is not amenable to integration with learning methods. We
therefore explore two alternate approaches.
4.1 Numerical Representation
In this representation, each expression is represented by its evaluation of a randomly drawn set of
N points, where N is large (typically 1000). More precisely, for each variable in V , N different
copies are made, each populated with randomly drawn elements. The target expression evaluates
each of these copies, producing a scalar value for each, so yielding a vector t of length N which
uniquely characterizes T. Formally, tn = T(Vn). We call this numerical vector t the descriptor
of the symbolic expression T. The size of the descriptor N , must be sufficiently large to ensure
that different expressions are not mapped to the same descriptor. Furthermore, when the descriptors
are used in the linear system of Eqn. 5 below, N must also be greater than the number of linear
equations. Any expression S formed by the grammar can be used to evaluate each Vn to produce
another N -length descriptor vector s, which can then be compared to t. If the two match, then
S(V) = T(V).
In practice, using floating point values can result in numerical issues that prevent t and s matching,
even if the two expressions are equivalent. We therefore use an integer-based descriptor in the form
of Zp

†, where p is a large prime number. This prevents both rounding issues as well as numerical
overflow.
4.2 Learned Representation
We now consider how to learn a continuous representation for symbolic expressions, that is learn a
projection φ which maps expressions S to l-dimensional vectors: φ(S) → Rl. We use a recursive
neural network (RNN) to do this, in a similar fashion to Socher et al. [23] for natural language
and Bowman et al. [3] for logical expressions. This potentially allows many symbolic tasks to be
performed by machine learning techniques, in the same way that the word-vectors (e.g.[8] and [16])
enable many NLP tasks to be posed a learning problems.

We first create a dataset of symbolic expressions, spanning the space of all valid expressions up to
degree k. We then group them into clusters of equivalent expressions (using the numerical represen-
tation to check for equality), and give each cluster a discrete label 1 . . . C. For example, A, (AT)T

might have label 1, and
∑

i

∑
j Ai,j ,

∑
j

∑
iAi,j might have label 2 and so on. For k = 6, the

dataset consists of C = 1687 classes, examples of which are show in Fig. 1. Each class is split
80/20 into train/test sets.

We then train a recursive neural network (RNN) to classify a grammar tree into one of theC clusters.
Instead of representing each grammar rule by its underlying arithmetic, we parameterize it by a
weight matrix or tensor (for operations with one or two inputs, respectively) and use this to learn
the concept of each operation, as part of the network. A vector a ∈ Rl, where l = 30‡ is used
to represent each input variable. Working along the grammar tree, each operation in S evolves this
vector via matrix/tensor multiplications (preserving its length) until the entire expression is parsed,
resulting in a single vector φ(S) of length l, which is passed to the classifier to determine the class
of the expression, and hence which other expressions it is equivalent to.

Fig. 2 shows this procedure for two different expressions. Consider the first expression S = (A. ∗
A)′ ∗ sum(A, 2). The first operation here is .∗, which is implemented in the RNN by taking the

†Integers modulo p
‡This was selected by cross-validation to control the capacity of the RNN, since it directly controls the

number of parameters in the model.

4

two (identical) vectors a and applies a weight tensor W3 (of size l × l × l, so that the output is
also size l), followed by a rectified-linear non-linearity. The output of this stage is this max((W3 ∗
a) ∗ a, 0). This vector is presented to the next operation, a matrix transpose, whose output is thus
max(W2 ∗ max((W3 ∗ a) ∗ a, 0), 0). Applying the remaining operations produces a final output:
φ(S) = max((W4 ∗max(W2 ∗max((W3 ∗ a) ∗ a, 0), 0)) ∗max(W1 ∗ a, 0)). This is presented to a
C-way softmax classifier to predict the class of the expression. The weights W are trained using a
cross-entropy loss and backpropagation.

(((sum((sum((A * (A’)), 1)), 2)) * ((A * (((sum((A’), 1)) * A)’))’)) * A)
(sum(((sum((A * (A’)), 2)) * ((sum((A’), 1)) * (A * ((A’) * A)))), 1))
(((sum(A, 1)) * (((sum(A, 2)) * (sum(A, 1)))’)) * (A * ((A’) * A)))
((((sum((sum((A * (A’)), 1)), 2)) * ((sum((A’), 1)) * (A * ((A’) * A))))’)’)
((sum(A, 1)) * (((A’) * (A * ((A’) * ((sum(A, 2)) * (sum(A, 1))))))’))
((sum((sum((A * (A’)), 1)), 2)) * ((sum((A’), 1)) * (A * ((A’) * A))))
(((sum((sum((A * (A’)), 1)), 2)) * ((sum((A’), 1)) * A)) * ((A’) * A))

(a) Class A

((A’) * ((sum(A, 2)) * ((sum((A’), 1)) * (A * (((sum((A’), 1)) * A)’)))))
(sum(((A’) * ((sum(A, 2)) * ((sum((A’), 1)) * (A * ((A’) * A))))), 2))
((((sum(A, 2)) * ((sum((A’), 1)) * A))’) * (A * (((sum((A’), 1)) * A)’)))
(((sum((A’), 1)) * (A * ((A’) * ((sum(A, 2)) * ((sum((A’), 1)) * A)))))’)
((((sum((A’), 1)) * A)’) * ((sum((A’), 1)) * (A * (((sum((A’), 1)) * A)’))))
(((A * ((A’) * ((sum(A, 2)) * ((sum((A’), 1)) * A))))’) * (sum(A, 2)))
(((A’) * ((sum(A, 2)) * ((sum((A’), 1)) * A))) * (sum(((A’) * A), 2)))

(b) Class B

Figure 1: Samples from two classes of degree k = 6 in our dataset of expressions, used to learn
a continuous representation of symbolic expressions via an RNN. Each line represents a different
expression, but those in the same class are equivalent to one another.

(a) (A. ∗A)′ ∗ sum(A, 2)
.

(b) (A′. ∗A′) ∗ sum(A, 2)
.

Figure 2: Our RNN applied to two expressions. The matrix A is represented by a fixed random
vector a (of length l = 30). Each operation in the expression applies a different matrix (for single
input operations) or tensor (for dual inputs, e.g. matrix-element multiplication) to this vector. After
each operation, a rectified-linear non-linearity is applied. The weight matrices/tensors for each
operation are shared across different expressions. The final vector is passed to a softmax classifier
(not shown) to predict which class they belong to. In this example, both expressions are equivalent,
thus should be mapped to the same class.

When training the RNN, there are several important details that are crucial to obtaining high classi-
fication accuracy:

• The weights should be initialized to the identity, plus a small amount of Gaussian noise
added to all elements. The identity allows information to flow the full length of the network,
up to the classifier regardless of its depth [21]. Without this, the RNN overfits badly,
producing test accuracies of ∼ 1%.

• Rectified linear units work much better in this setting than tanh activation functions.
• We learn using a curriculum [1, 30], starting with the simplest expressions of low degree

and slowly increasing k.
• The weight matrix in the softmax classifier has much larger (×100) learning rate than the

rest of the layers. This encourages the representation to stay still even when targets are
replaced, for example, as we move to harder examples.

• As well as updating the weights of the RNN, we also update the initial value of a (i.e we
backpropagate to the input also).

When the RNN-based representation is employed for identity discovery (see Section 6.3), the vector
φ(S) is used directly (i.e. the C-way softmax used in training is removed from the network).

5 Linear Combinations of Trees
For simple targets, an expression that matches the target may be contained within a single grammar
tree. But more complex expressions typically require a linear combination of expressions from
different trees.

5

To handle this, we can use the integer-based descriptors for each tree in a linear system and solve
for a match to the target descriptor (if one exists). Given a set of M trees, each with its own integer
descriptor vector f , we form an M by N linear system of equations and solve it:

Fw = t mod Zp

where F = [f1, . . . , fM] holds the tree representations, w is the weighting on each of the trees
and t is the target representation. The system is solved using Gaussian elimination, where addition
and multiplication is performed modulo p. The number of solutions can vary: (a) there can be no
solution, which means that no linear combination of the current set of trees can match the target
expression. If all possible trees have been enumerated, then this implies the target expression is
outside the scope of the grammar. (b) There can be one or more solutions, meaning that some
combination of the current set of trees yields a match to the target expression.

6 Search Strategy
So far, we have proposed a grammar which defines the computations that are permitted (like a
programming language grammar), but it gives no guidance as to how explore the space of possible
expressions. Neither do the representations we introduced help – they simply allow us to determine
if an expression matches or not. We now describe how to efficiently explore the space by learning
which paths are likely to yield a match.

Our framework uses two components: a scheduler, and a strategy. The scheduler is fixed, and tra-
verses space of expressions according to recommendations given by the selected strategy (e.g. “Ran-
dom” or “n-gram” or “RNN”). The strategy assesses which of the possible grammar rules is likely
to lead to a solution, given the current expression. Starting with the variables V (in our case a single
element A, or more generally, the elements A, B etc.), at each step the scheduler receives scores
for each rule from the strategy and picks the one with the highest score. This continues until the
expression reaches degree k and the tree is complete. We then run the linear solver to see if a linear
combination of the existing set of trees matches the target. If not, the scheduler starts again with
a new tree, initialized with the set of variables V . The n-gram and RNN strategies are learned in
an incremental fashion, starting with simple target expressions (i.e. those of low degree k, such as∑

ij AA
T). Once solutions to these are found, they become training examples used to improve the

strategy, needed for tackling harder targets (e.g.
∑

ij AA
TA).

6.1 Random Strategy
The random strategy involves no learning, thus assigns equal scores to all valid grammar rules,
hence the scheduler randomly picks which expression to try at each step. For simple targets, this
strategy may succeed as the scheduler may stumble upon a match to the target within a reasonable
time-frame. But for complex target expressions of high degree k, the search space is huge and the
approach fails.
6.2 n-gram
In this strategy, we simply count how often subtrees of depth n occur in solutions to previously
solved targets. As the number of different subtrees of depth n is large, the counts become very
sparse as n grows. Due to this, we use a weighted linear combination of the score from all depths
up to n. We found an effective weighting to be 10k, where k is the depth of the tree.
6.3 Recursive Neural Network
Section 4.2 showed how to use an RNN to learn a continuous representation of grammar trees. Recall
that the RNN φmaps expressions to continuous vectors: φ(S)→ Rl. To build a search strategy from
this, we train a softmax layer on top of the RNN to predict which rule should be applied to the current
expression (or expressions, since some rules have two inputs), so that we match the target.

Formally, we have two current branches b1 and b2 (each corresponding to an expression) and wish
to predict the root operation r that joins them (e.g. .∗) from among the valid grammar rules (|r|
in total). We first use the previously trained RNN to compute φ(b1) and φ(b2). These are then
presented to a |r|-way softmax layer (whose weight matrix U is of size 2l× |r|). If only one branch
exists, then b2 is set to a fixed random vector. The training data for U comes from trees that give
efficient solutions to targets of lower degree k (i.e. simpler targets). Training of the softmax layer
is performed by stochastic gradient descent. We use dropout [13] as the network has a tendency to
overfit and repeat exactly the same expressions for the next value of k. Thus, instead of training on
exactly φ(b1) and φ(b2), we drop activations as we propagate toward the top of the tree (the same

6

fraction for each depth), which encourages the RNN to capture more local structures. At test time,
the probabilities from the softmax become the scores used by the scheduler.

7 Experiments
We first show results relating to the learned representation for symbolic expressions (Section 4.2).
Then we demonstrate our framework discovering efficient identities. For brevity, the identities dis-
covered are listed in the supplementary material [29].
7.1 Expression Classification using Learned Representation
Table 2 shows the accuracy of the RNN model on expressions of varying degree, ranging from k = 3
to k = 6. The difficulty of the task can be appreciated by looking at the examples in Fig. 1. The low
error rate of ≤ 5%, despite the use of a simple softmax classifier, demonstrates the effectiveness of
our learned representation.

Degree k = 3 Degree k = 4 Degree k = 5 Degree k = 6
Test accuracy 100%± 0% 96.9%± 1.5% 94.7%± 1.0% 95.3%± 0.7%
Number of classes 12 125 970 1687
Number of expressions 126 1520 13038 24210

Table 2: Accuracy of predictions using our learned symbolic representation (averaged over 10 dif-
ferent initializations). As the degree increases tasks becomes more challenging, because number of
classes grows, and computation trees become deeper. However our dataset grows larger too (training
uses 80% of examples).

7.2 Efficient Identity Discovery

In our experiments we consider 5 different families of expressions, chosen to fall within the scope
of our grammar rules:

1. (
∑

AAT)k: A is an Rn×n matrix. The k-th term is
∑

i,j(AA
T)bk/2c for even k

and
∑

i,j(AA
T)bk/2cA , for odd k. E.g. for k = 2 :

∑
i,j AA

T ; for k = 3 :
∑

i,j AA
TA;

for k = 4 :
∑

i,j AA
TAAT etc. Naive evaluation is O

(
kn3

)
.

2. (
∑

(A. ∗A)AT)k: A is an Rn×n matrix and let B = A. ∗ A. The k-th term is∑
i,j(BA

T)bk/2c for even k and
∑

i,j(BA
TB)bk/2c , for odd k. E.g. for k = 2 :

∑
i,j(A.∗

A)AT ; for k = 3 :
∑

i,j(A. ∗A)AT (A. ∗A); for k = 4 :
∑

i,j(A. ∗A)AT (A. ∗A)AT etc.
Naive evaluation is O

(
kn3

)
.

3. Symk: Elementary symmetric polynomials. A is a vector in Rn×1. For k = 1 :
∑

iAi, for
k = 2 :

∑
i<j AiAj , for k = 3 :

∑
i<j<k AiAjAk, etc. Naive evaluation is O

(
nk
)
.

4. (RBM-1)k: A is a vector in Rn×1. v is a binary n-vector. The k-th term is:∑
v∈{0,1}n(v

TA)k. Naive evaluation is O(2n).
5. (RBM-2)k: Taylor series terms for the partition function of an RBM. A is a matrix in

Rn×n. v and h are a binary n-vectors. The k-th term is
∑

v∈{0,1}n,h∈{0,1}n(v
TAh)k.

Naive evaluation is O
(
22n
)
.

Note that (i) for all families, the expressions yield a scalar output; (ii) the families are ordered in
rough order of “difficulty”; (iii) we are not aware of any previous exploration of these expressions,
except for Symk, which is well studied [24]. For the (

∑
AAT)k and (

∑
(A. ∗A)AT)k families

we remove the matrix-multiply rule from the grammar, thus ensuring that if any solution is found
it will be efficient since the remaining rules are at most O

(
kn2

)
, rather than O

(
kn3

)
. The other

families use the full grammar, given in Table 1. However, the limited set of rules means that if any
solution is found, it can at most be O

(
n3
)
, rather than exponential in n, as the naive evaluations

would be. For each family, we apply our framework, using the three different search strategies
introduced in Section 6. For each run we impose a fixed cut-off time of 10 minutes§ beyond which
we terminate the search. At each value of k, we repeat the experiments 10 times with different
random initializations and count the number of runs that find an efficient solution. Any non-zero
count is deemed a success, since each identity only needs to be discovered once. However, in Fig. 3,
we show the fraction of successful runs, which gives a sense of how quickly the identity was found.

§Running on a 3Ghz 16-core Intel Xeon. Changing the cut-off has little effect on the plots, since the search
space grows exponentially fast.

7

We start with k = 2 and increase up to k = 15, using the solutions from previous values of k as
training data for the current degree. The search space quickly grows with k, as shown in Table 3.
Fig. 3 shows results for four of the families. We use n-grams for n = 1 . . . 5, as well as the RNN with
two different dropout rates (0.125 and 0.3). The learning approaches generally do much better than
the random strategy for large values of k, with the 3-gram, 4-gram and 5-gram models outperforming
the RNN.

For the first two families, the 3-gram model reliably finds solutions. These solutions involve repeti-
tion of a local patterns (e.g. Example 2), which can easily be captured with n-gram models. How-
ever, patterns that don’t have a simple repetitive structure are much more difficult to generalize. The
(RBM-2)k family is the most challenging, involving a double exponential sum, and the solutions
have highly complex trees (see supplementary material [29]). In this case, none of our approaches
performed better than the random strategy and no solutions were discovered for k > 5. However,
the k = 5 solution was found by the RNN consistently faster than the random strategy (100± 12 vs
438± 77 secs).

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

p(
Su

cc
es

s)

((AA T)) k

RNN0.3
RNN0.13

1−gram
2−gram
3−gram
4−gram
5−gram
Random

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

p(
Su

cc
es

s)

((A. * A) A T)) k

RNN0.3
RNN0.13

1−gram
2−gram
3−gram
4−gram
5−gram
Random

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

p(
Su

cc
es

s)

Sym k

RNN0.3
RNN0.13

1−gram
2−gram
3−gram
4−gram
5−gram
Random

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

p(
Su

cc
es

s)

(RBM-1) k

RNN0.3
RNN0.13

1−gram
2−gram
3−gram
4−gram
5−gram
Random

Figure 3: Evaluation on four different families of expressions. As the degree k increases, we
see that the random strategy consistently fails but the learning approaches can still find solutions
(i.e. p(Success) is non-zero). Best viewed in electronic form.

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 and higher
Terms≤ O

(
n2

)
39 171 687 2628 9785 Out of memory

Terms≤ O
(
n3

)
41 187 790 3197 10k+

Table 3: The number of possible expressions for different degrees k.

8 Discussion
We have introduced a framework based on a grammar of symbolic operations for discovering math-
ematical identities. Through the novel application of learning methods, we have shown how the
exploration of the search space can be learned from previously successful solutions to simpler ex-
pressions. This allows us to discover complex expressions that random or brute-force strategies
cannot find (the identities are given in the supplementary material [29]).

Some of the families considered in this paper are close to expressions often encountered in machine
learning. For example, dropout involves an exponential sum over binary masks, which is related to
the RBM-1 family. Also, the partition function of an RBM can be approximated by the RBM-2
family. Hence the identities we have discovered could potentially be used to give a closed-form
version of dropout, or compute the RBM partition function efficiently (i.e. in polynomial time).
Additionally, the automatic nature of our system naturally lends itself to integration with compilers,
or other optimization tools, where it could replace computations with efficient versions thereof.

Our framework could potentially be applied to more general settings, to discover novel formulae in
broader areas of mathematics. To realize this, additional grammar rules, e.g. involving recursion or
trigonometric functions would be needed. However, this would require a more complex scheduler
to determine when to terminate a given grammar tree. Also, it is surprising that a recursive neural
network can generate an effective continuous representation for symbolic expressions. This could
have broad applicability in allowing machine learning tools to be applied to symbolic computation.

The problem addressed in this paper involves discrete search within a combinatorially large space
– a core problem with AI. Our successful use of machine learning to guide the search gives hope
that similar techniques might be effective in other AI tasks where combinatorial explosions are
encountered.

Acknowledgements
The authors would like to thank Facebook and Microsoft Research for their support.

8

References
[1] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, 2009.
[2] L. Bottou. From machine learning to machine reasoning. Machine Learning, 94(2):133–149, 2014.
[3] S. R. Bowman. Can recursive neural tensor networks learn logical reasoning? arXiv preprint

arXiv:1312.6192, 2013.
[4] J. P. Bridge, S. B. Holden, and L. C. Paulson. Machine learning for first-order theorem proving. Journal

of Automated Reasoning, 53:141–172, August 2014.
[5] C.-L. Chang. Symbolic logic and mechanical theorem proving. Academic Press, 1973.
[6] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and S. M. Watt. Maple V library

reference manual, volume 199. Springer-verlag New York, 1991.
[7] G. Cheung and S. McCanne. An attribute grammar based framework for machine-dependent computa-

tional optimization of media processing algorithms. In ICIP, volume 2, pages 797–801. IEEE, 1999.
[8] R. Collobert and J. Weston. A unified architecture for natural language processing: deep neural networks

with multitask learning. In ICML, 2008.
[9] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM

symposium on Theory of computing, pages 151–158. ACM, 1971.
[10] M. Desainte-Catherine and K. Barbar. Using attribute grammars to find solutions for musical equational

programs. ACM SIGPLAN Notices, 29(9):56–63, 1994.
[11] M. Fitting. First-order logic and automated theorem proving. Springer, 1996.
[12] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and D. Tarlow. Church: a language for generative

models. arXiv:1206.3255, 2012.
[13] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural

networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012.
[14] D. E. Knuth. Semantics of context-free languages. Mathematical systems theory, 2(2):127–145, 1968.
[15] M.-T. Luong, R. Socher, and C. D. Manning. Better word representations with recursive neural networks

for morphology. In CoNLL, 2013.
[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector

space. arXiv:1301.3781, 2013.
[17] A. Mnih and G. E. Hinton. A scalable hierarchical distributed language model. In NIPS, 2009.
[18] P. Nordin. Evolutionary program induction of binary machine code and its applications. Krehl Munster,

1997.
[19] M. ONeill, R. Cleary, and N. Nikolov. Solving knapsack problems with attribute grammars. In Proceed-

ings of the Third Grammatical Evolution Workshop (GEWS04). Citeseer, 2004.
[20] A. Pfeffer. Practical probabilistic programming. In Inductive Logic Programming, pages 2–3. Springer,

2011.
[21] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in

deep linear neural networks. arXiv:1312.6120, 2013.
[22] R. Socher, C. D. Manning, and A. Y. Ng. Learning continuous phrase representations and syntactic

parsing with recursive neural networks. Proceedings of the NIPS-2010 Deep Learning and Unsupervised
Feature Learning Workshop, pages 1–9, 2010.

[23] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. P. Potts. Recursive deep
models for semantic compositionality over a sentiment treebank. In EMNLP, 2013.

[24] R. P. Stanley. Enumerative combinatorics. Number 49. Cambridge university press, 2011.
[25] J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general method for semi-

supervised learning. In ACL, 2010.
[26] J. Waldispühl, B. Behzadi, and J.-M. Steyaert. An approximate matching algorithm for finding (sub-)

optimal sequences in s-attributed grammars. Bioinformatics, 18(suppl 2):S250–S259, 2002.
[27] S. Wolfram. The mathematica book, volume 221. Wolfram Media Champaign, Illinois, 1996.
[28] M. L. Wong and K. S. Leung. Evolutionary program induction directed by logic grammars. Evolutionary

Computation, 5(2):143–180, 1997.
[29] W. Zaremba, K. Kurach, and R. Fergus. Learning to discover efficient mathematical identities.

arXiv:1406.1584, 2014.
[30] W. Zaremba and I. Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

9

9 Supplementary material
We present the efficient expressions discovered by our system, using Matlab-style syntax, and we
visualize computation trees. Each example contains: (i) code that computes the original target
formulas; (ii) the formulae derived by our system and (iii) code that verifies the correctness of the
expression. The size of matrices n, m can be chosen arbitrary.

Code for generating the expressions can be downloaded from https://github.com/
kkurach/math_learning. The source files for this paper are available at https://
github.com/kkurach/math_learning/paper/.

9.1 (
∑

AAT)k

k = 1
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (A, 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (sum (A, 2) , 1)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 2
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((A ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((sum (A, 1) ∗ A’) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 3
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((A ∗ A’) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ (sum (A, 2) ’ ∗ A) ’) , 1)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 4
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((A ∗ A’) ∗ A) ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (((sum (A, 1) ∗ A’) ∗ (sum (A, 1) ∗ A’) ’)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

1

k = 5
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((A ∗ A’) ∗ A) ∗ A’) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ ((A ∗ (sum (A, 2) ’ ∗ A) ’) ’ ∗ A) ’) , 1)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 6
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((((A ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ ((A ∗ ((sum (A, 1) ∗ A’) ∗ A) ’) ’ ∗ A) ’) , 1)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 7
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((((A ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ ((A ∗ ((A ∗ (sum (A, 2) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) , 1)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 8
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((((((A ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ ((A ∗ ((A ∗ ((sum (A, 1) ∗ A’) ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) , 1)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 9

2

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((((((A ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ ((A ∗ ((A ∗ ((A ∗ (sum (A, 2) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) , 1)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 10

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((((((((A ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((sum (A, 1) ∗ A’) ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) , 1)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 11

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((((((((A ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((A ∗ (sum (A, 2) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) , 1)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 12

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((((((((((A ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((sum (A, 1) ∗ A’) ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) , 1)
↪→) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 13

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((((((((((A ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((A ∗ (sum (A, 2) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗
↪→ A) ’) , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 14

3

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((((((((((((A ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) , 1) ,

↪→ 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((sum (A, 1) ∗ A’) ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A)
↪→ ’) ’ ∗ A) ’) , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 15

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((((((((((((A ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A) ∗ A’) ∗ A

↪→) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((A ∗ ((A ∗ (sum (A, 2) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A) ’) ’ ∗ A)
↪→ ’) ’ ∗ A) ’) ’ ∗ A) ’) , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

9.2 (
∑

AB)k

k = 1

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum (A, 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (sum (A, 1) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 2

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum ((A ∗ B) , 1) , 2) ;

o p t i m i z e d = 1 ∗ ((sum (A, 1) ∗ sum (B , 2))) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 3

4

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum (((A ∗ B) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (((sum (A, 1) ∗ B) ∗ A) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 4

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum ((((A ∗ B) ∗ A) ∗ B) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((((sum (A, 1) ∗ B) ∗ A) ∗ B) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 5

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum (((((A ∗ B) ∗ A) ∗ B) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (((((sum (A, 1) ∗ B) ∗ A) ∗ B) ∗ A) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 6

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum ((((((A ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((((((sum (A, 1) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

5

k = 7
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum (((((((A ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (((((((sum (A, 1) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 8
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum ((((((((A ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((((((((sum (A, 1) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 9
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum (((((((((A ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (((((((((sum (A, 1) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 10
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;

6

B = randn (m, n) ;
o r i g i n a l = sum (sum ((((((((((A ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((((((((((sum (A, 1) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 11
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum (((((((((((A ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (((((((((((sum (A, 1) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 12
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum ((((((((((((A ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((((((((((((sum (A, 1) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 13
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum (((((((((((((A ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (((((((((((((sum (A, 1) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) , 2)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

7

k = 14

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum ((((((((((((((A ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((((((((((((((sum (A, 1) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ,
↪→ 2)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 15

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
B = randn (m, n) ;
o r i g i n a l = sum (sum (((((((((((((((A ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) , 1) ,

↪→ 2) ;

o p t i m i z e d = 1 ∗ (sum (((((((((((((((sum (A, 1) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B) ∗ A) ∗ B)
↪→ ∗ A) , 2)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

9.3 (
∑

(A. ∗A)AT)k

k = 1

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (A, 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (sum (A, 1) ’ , 1)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 2

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((A ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ ((sum (A, 1) ∗ sum (A, 1) ’)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

8

k = 3
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((A ∗ A’) ∗ (A .∗ A)) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((sum ((A’ .∗ A’) , 1) ∗ (r epmat (sum (A, 1) ’ , 1 , n) .∗ A’) ’) ’ , 1)) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 4
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗ ((A’ .∗ A’) ’ .∗ r epmat (sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗
↪→ A’) , 1) ’ , 1 , m)) ’) , 1) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 5
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((sum ((A’ .∗ A’) , 1) ∗ (A’ .∗ r epmat ((sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗ A’) , 1) ∗ (A’ .∗ A
↪→ ’) ’) ’ , 1 , n)) ’) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 6
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗ ((A’ .∗ A’) ’ .∗ r epmat (sum ((A’ .∗ r epmat ((sum ((r epmat (
↪→ sum (A, 1) ’ , 1 , n) .∗ A’) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ’ , 1 , m)) ’) , 1) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

9

k = 7
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((sum ((A’ .∗ A’) , 1) ∗ (A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗
↪→ A’) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) ’) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 8
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗ ((A’ .∗ A’) ’ .∗ r epmat (sum ((A’ .∗ r epmat ((sum ((A’ .∗
↪→ r epmat ((sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗ A’) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) ,
↪→ 1) ’ , 1 , m)) ’) , 1) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 9
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((r epmat (sum (A, 1) ’ , 1 , n)
↪→ .∗ A’) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’
↪→ .∗ A’) ’) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 10
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((((((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ,

↪→ 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗ ((A’ .∗ A’) ’ .∗ r epmat (sum ((A’ .∗ r epmat ((sum ((A’ .∗
↪→ r epmat ((sum ((A’ .∗ r epmat ((sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗ A’) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’
↪→ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ’ , 1 , m)) ’) , 1) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

10

k = 11
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((((((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗

↪→ (A .∗ A)) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((r epmat (
↪→ sum (A, 1) ’ , 1 , n) .∗ A’) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ ,
↪→ 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 12
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((((((((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’)

↪→ ∗ (A .∗ A)) ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗
↪→ r epmat ((sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗ A’) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) ,
↪→ 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 13
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((((((((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’)

↪→ ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗
↪→ r epmat ((sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗ A’) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) ,
↪→ 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’)
↪→ ’) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 14
n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum ((((((((((((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A

↪→ ’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum (sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗
↪→ r epmat ((sum ((A’ .∗ r epmat ((sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗ A’) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’
↪→ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)
↪→) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 15

11

n = 1 00 ;
m = 2 00 ;
A = randn (n , m) ;
o r i g i n a l = sum (sum (((((((((((((((A ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A

↪→ ’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) ∗ A’) ∗ (A .∗ A)) , 1) , 2) ;

o p t i m i z e d = 1 ∗ (sum ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗ r epmat ((sum ((A’ .∗
↪→ r epmat ((sum ((A’ .∗ r epmat ((sum ((r epmat (sum (A, 1) ’ , 1 , n) .∗ A’) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’
↪→ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)
↪→) , 1) ∗ (A’ .∗ A’) ’) ’ , 1 , n)) , 1) ∗ (A’ .∗ A’) ’) ’ , 1)) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

9.4 Symk

k = 1
n = 1 ;
m = 1 8 ;
A = randn (1 , m) ;
sub = nchoosek (1 :m, 1) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (sub , 1)

o r i g i n a l = o r i g i n a l + prod (A(sub (i , :))) ;
end

o p t i m i z e d = (120 ∗ (sum (A’ , 1))) / 120 ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 2
n = 1 ;
m = 1 8 ;
A = randn (1 , m) ;
sub = nchoosek (1 :m, 2) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (sub , 1)

o r i g i n a l = o r i g i n a l + prod (A(sub (i , :))) ;
end

o p t i m i z e d = (60 ∗ (sum ((r epmat (sum (A’ , 1) , 1 , m) .∗ A) , 2)) + −60 ∗ (sum ((A .∗ A) ’ , 1))) / 120 ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 3
n = 1 ;
m = 1 8 ;
A = randn (1 , m) ;
sub = nchoosek (1 :m, 3) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (sub , 1)

o r i g i n a l = o r i g i n a l + prod (A(sub (i , :))) ;
end

o p t i m i z e d = (−60 ∗ (sum ((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) , 2)) + 40 ∗ (sum (((A’ .∗ A’) ’ .∗ A) , 2)) + 20
↪→ ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum (A’ , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1))) / 120 ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

12

k = 4
n = 1 ;
m = 1 8 ;
A = randn (1 , m) ;
sub = nchoosek (1 :m, 4) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (sub , 1)

o r i g i n a l = o r i g i n a l + prod (A(sub (i , :))) ;
end

o p t i m i z e d = (5 ∗ (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum (A’ , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗
↪→ A) , 2)) + −30 ∗ (sum ((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1)) + 15 ∗ (sum (((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m)
↪→ .∗ A) ’ .∗ A’) , 1)) + 40 ∗ (sum ((A’ .∗ r epmat (sum (((A’ .∗ A’) ’ .∗ A) , 2) , m, 1)) , 1)) + −30 ∗ (sum ((A’
↪→ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1))) / 120 ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 5
n = 1 ;
m = 1 8 ;
A = randn (1 , m) ;
sub = nchoosek (1 :m, 5) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (sub , 1)

o r i g i n a l = o r i g i n a l + prod (A(sub (i , :))) ;
end

o p t i m i z e d = (−10 ∗ (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) ,
↪→ 1 , m) .∗ A) , 2)) + −20 ∗ (sum ((((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) ’ .∗ A) , 2)) + 15 ∗ (
↪→ sum ((r epmat (sum (((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2)) + 24 ∗ (sum
↪→ (((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A) , 2)) + 20 ∗ (sum ((r epmat (sum ((A’ .∗ r epmat (sum (((A’ .∗ A’) ’ .∗ A
↪→) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2)) + 1 ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((
↪→ r epmat (sum (A’ , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + −30 ∗ (sum ((r epmat (sum
↪→ ((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2))) / 120 ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

13

k = 6

n = 1 ;
m = 1 8 ;
A = randn (1 , m) ;
sub = nchoosek (1 :m, 6) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (sub , 1)

o r i g i n a l = o r i g i n a l + prod (A(sub (i , :))) ;
end

o p t i m i z e d = (24 ∗ (sum ((A’ .∗ r epmat (sum (((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A) , 2) , m, 1)) , 1)) + −5 / 2 ∗ (sum
↪→ (((r epmat (sum (((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1)) + 20 / 3
↪→ ∗ (sum ((((A’ .∗ r epmat (sum (((A’ .∗ A’) ’ .∗ A) , 2) , m, 1)) ’ .∗ A) ’ .∗ A’) , 1)) + −20 ∗ (sum ((((((A’
↪→ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1)) + 15 ∗ (sum (((r epmat (sum ((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1) ,
↪→ 1 , m) .∗ A) ’ .∗ A’) , 1)) + −20 ∗ (sum ((A’ .∗ r epmat (sum ((((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗
↪→ A’) ’ .∗ A) , 2) , m, 1)) , 1)) + −15 ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) ,
↪→ 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + 15 / 2 ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum (((r epmat (sum ((A’ .∗ A
↪→ ’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + 1 / 6 ∗ (sum ((r epmat (sum ((A’ .∗
↪→ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum (A’ , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A)
↪→ , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2)) + 20 / 3 ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum (((
↪→ A’ .∗ A’) ’ .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + −5 / 2 ∗ (sum ((A’ .∗ r epmat (sum ((
↪→ r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2)
↪→ , m, 1)) , 1))) / 120 ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 7

n = 1 ;
m = 1 8 ;
A = randn (1 , m) ;
sub = nchoosek (1 :m, 7) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (sub , 1)

o r i g i n a l = o r i g i n a l + prod (A(sub (i , :))) ;
end

o p t i m i z e d = (20 / 3 ∗ (sum ((r epmat (sum ((((A’ .∗ r epmat (sum (((A’ .∗ A’) ’ .∗ A) , 2) , m, 1)) ’ .∗ A) ’ .∗ A’) , 1) ,
↪→ 1 , m) .∗ A) , 2)) + −10 ∗ (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A)
↪→ ’ .∗ A’) ’ .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2)) + 5 / 3 ∗ (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((
↪→ r epmat (sum ((A’ .∗ r epmat (sum (((A’ .∗ A’) ’ .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m)
↪→ .∗ A) , 2)) + −5 / 2 ∗ (sum ((r epmat (sum (((r epmat (sum (((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) ,
↪→ 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2)) + 15 ∗ (sum ((r epmat (sum (((r epmat (sum ((((A’ .∗ A’) ’ .∗
↪→ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2)) + −12 ∗ (sum ((((((r epmat (sum ((A’ .∗ A’) , 1)
↪→ , 1 , m) .∗ A) ’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A) , 2)) + 5 / 2 ∗ (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat
↪→ (sum (((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) ,
↪→ 2)) + 1 / 42 ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((
↪→ r epmat (sum (A’ , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) ,
↪→ 1)) + −5 ∗ (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗
↪→ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2)) + 5 ∗ (sum ((((r epmat (sum (((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A
↪→) ’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) ’ .∗ A) , 2)) + 120 / 7 ∗ (sum (((((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A)
↪→ ’ .∗ A’) ’ .∗ A) , 2)) + −10 ∗ (sum ((((r epmat (sum ((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) ’
↪→ .∗ A) , 2)) + 12 ∗ (sum ((r epmat (sum ((A’ .∗ r epmat (sum (((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A) , 2) , m, 1))
↪→ , 1) , 1 , m) .∗ A) , 2)) + −1 / 2 ∗ (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((
↪→ r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2))
↪→ + −20 ∗ (sum ((r epmat (sum ((((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2))) / 120 ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

14

k = 8

n = 1 ;
m = 1 8 ;
A = randn (1 , m) ;
sub = nchoosek (1 :m, 8) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (sub , 1)

o r i g i n a l = o r i g i n a l + prod (A(sub (i , :))) ;
end

o p t i m i z e d = (5 / 8 ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum (((r epmat (sum ((A’ .∗ A’) ,
↪→ 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + −5 / 4 ∗ (
↪→ sum ((A’ .∗ r epmat (sum ((r epmat (sum (((r epmat (sum (((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) ,
↪→ 1 , m) .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + 4 ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗
↪→ r epmat (sum (((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + −5 /
↪→ 4 ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1) ,
↪→ 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + 5 / 16 ∗ (sum (((r epmat (sum (((r epmat (sum
↪→ (((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) ,
↪→ 1)) + 15 / 2 ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum (((r epmat (sum ((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1) , 1 , m)
↪→ .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + 8 ∗ (sum ((((A’ .∗ r epmat (sum (((((A’ .∗ A’) ’ .∗ A) ’
↪→ .∗ A’) ’ .∗ A) , 2) , m, 1)) ’ .∗ A) ’ .∗ A’) , 1)) + 1 / 3 ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗
↪→ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum (((A’ .∗ A’) ’ .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) ,
↪→ 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + 120 / 7 ∗ (sum ((A’ .∗ r epmat (sum (((((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’
↪→ .∗ A) ’ .∗ A’) ’ .∗ A) , 2) , m, 1)) , 1)) + 5 ∗ (sum ((A’ .∗ r epmat (sum ((((r epmat (sum (((r epmat (sum ((A’ .∗
↪→ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) ’ .∗ A) , 2) , m, 1)) , 1)) + −10 ∗ (sum ((A’ .∗
↪→ r epmat (sum ((r epmat (sum ((((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1))
↪→ + −15 / 4 ∗ (sum (((r epmat (sum (((r epmat (sum ((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1) ,
↪→ 1 , m) .∗ A) ’ .∗ A’) , 1)) + 10 / 3 ∗ (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((((A’ .∗ r epmat (sum (((A’ .∗ A
↪→ ’) ’ .∗ A) , 2) , m, 1)) ’ .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + 15 / 4 ∗ (sum (((((r epmat (sum
↪→ ((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1)) + −1 / 12 ∗ (sum ((A’ .∗
↪→ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ A’) , 1) , 1 ,
↪→ m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + −15 ∗ (sum
↪→ ((((((((A’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1)) + −10 / 3 ∗ (sum ((A’ .∗ r epmat (
↪→ sum ((r epmat (sum ((A’ .∗ r epmat (sum ((((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) ’ .∗ A) , 2) , m, 1)
↪→) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1)) + −10 ∗ (sum ((A’ .∗ r epmat (sum ((((r epmat (sum ((((A’ .∗ A’) ’ .∗ A) ’
↪→ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) ’ .∗ A) , 2) , m, 1)) , 1)) + 10 ∗ (sum (((r epmat (sum ((((((A’ .∗ A’) ’ .∗
↪→ A) ’ .∗ A’) ’ .∗ A) ’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) , 1)) + −12 ∗ (sum ((A’ .∗ r epmat (sum ((((((r epmat (
↪→ sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) ’ .∗ A) ’ .∗ A’) ’ .∗ A) , 2) , m, 1)) , 1)) + 1 / 336 ∗ (sum ((
↪→ r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum ((A’ .∗ r epmat (sum ((r epmat (sum (
↪→ A’ , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m) .∗ A) , 2) , m, 1)) , 1) , 1 , m)
↪→ .∗ A) , 2)) + −10 / 3 ∗ (sum ((((A’ .∗ r epmat (sum ((((r epmat (sum ((A’ .∗ A’) , 1) , 1 , m) .∗ A) ’ .∗ A’) ’ .∗
↪→ A) , 2) , m, 1)) ’ .∗ A) ’ .∗ A’) , 1))) / 120 ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

15

9.5 (RBM-1)k
k = 1

n = 1 4 ;
m = 1 ;
A = randn (1 , n) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A’) ˆ 1 ;

end

o p t i m i z e d = 2 ˆ (n − 3) ∗ (4 ∗ (sum (A, 2))) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 2

n = 1 4 ;
m = 1 ;
A = randn (1 , n) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A’) ˆ 2 ;

end

o p t i m i z e d = 2 ˆ (n − 3) ∗ (2 ∗ (sum (sum ((A’ ∗ A) , 2) ’ , 2)) + 2 ∗ (sum ((A .∗ A) , 2))) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

16

k = 3

n = 1 4 ;
m = 1 ;
A = randn (1 , n) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A’) ˆ 3 ;

end

o p t i m i z e d = 2 ˆ (n − 4) ∗ (2 ∗ (((sum (A, 2) ∗ sum (A, 2)) ∗ sum (A, 2))) + 6 ∗ ((A ∗ (sum (A, 2) ∗ A) ’))) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 4

n = 1 4 ;
m = 1 ;
A = randn (1 , n) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A’) ˆ 4 ;

end

o p t i m i z e d = 2 ˆ (n − 5) ∗ (2 ∗ ((((sum (A, 2) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2))) + −4 ∗ (((A .∗ A) ∗ (A .∗ A
↪→) ’)) + 6 ∗ ((A ∗ (sum ((A .∗ A) , 2) ∗ A) ’)) + 12 ∗ (((sum (A, 2) ∗ sum (A, 2)) ∗ sum ((A .∗ A) , 2)))) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

17

k = 5
n = 1 4 ;
m = 1 ;
A = randn (1 , n) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A’) ˆ 5 ;

end

o p t i m i z e d = 2 ˆ (n − 6) ∗ (2 ∗ (((((sum (A, 2) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2))) + 20 ∗ ((((A
↪→ ∗ (sum (A, 2) ∗ A) ’) ∗ sum (A, 2)) ∗ sum (A, 2))) + −20 ∗ ((((A .∗ A) ∗ (A .∗ A) ’) ∗ sum (A, 2))) + 30 ∗
↪→ (((A ∗ (sum ((A .∗ A) , 2) ∗ A) ’) ∗ sum (A, 2)))) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 6
n = 1 4 ;
m = 1 ;
A = randn (1 , n) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A’) ˆ 6 ;

end

18

o p t i m i z e d = 2 ˆ (n − 7) ∗ (2 ∗ ((((((sum (A, 2) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2)))
↪→ + 30 ∗ (((((A ∗ (sum (A, 2) ∗ A) ’) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2))) + 30 ∗ (((A ∗ (sum ((A .∗ A
↪→) , 2) ∗ A) ’) ∗ sum ((A .∗ A) , 2))) + −60 ∗ ((((A .∗ A) ∗ (A .∗ A) ’) ∗ sum ((A .∗ A) , 2))) + 90 ∗ ((((A
↪→ ∗ (sum ((A .∗ A) , 2) ∗ A) ’) ∗ sum (A, 2)) ∗ sum (A, 2))) + −60 ∗ (((((A .∗ A) ∗ (A .∗ A) ’) ∗ sum (A, 2))
↪→ ∗ sum (A, 2))) + 32 ∗ (((A’ .∗ (A .∗ A) ’) ’ ∗ (A’ .∗ (A .∗ A) ’)))) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 7

n = 1 4 ;
m = 1 ;
A = randn (1 , n) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A’) ˆ 7 ;

end

o p t i m i z e d = 2 ˆ (n − 8) ∗ (42 ∗ ((((((A ∗ (sum (A, 2) ∗ A) ’) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2)))
↪→ + −420 ∗ (((((A .∗ A) ∗ (A .∗ A) ’) ∗ sum ((A .∗ A) , 2)) ∗ sum (A, 2))) + −140 ∗ ((((((A .∗ A) ∗ (A .∗
↪→ A) ’) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2))) + 2 ∗ (((((((sum (A, 2) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A
↪→ , 2)) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2))) + 210 ∗ ((((A ∗ (sum ((A .∗ A) , 2) ∗ A) ’) ∗ sum ((A .∗ A)
↪→ , 2)) ∗ sum (A, 2))) + 224 ∗ ((((A’ .∗ (A .∗ A) ’) ’ ∗ (A’ .∗ (A .∗ A) ’)) ∗ sum (A, 2))) + 210 ∗ (((((A ∗
↪→ (sum ((A .∗ A) , 2) ∗ A) ’) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2)))) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

19

k = 8

n = 1 4 ;
m = 1 ;
A = randn (1 , n) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A’) ˆ 8 ;

end

o p t i m i z e d = 2 ˆ (n − 9) ∗ (56 ∗ (((((((A ∗ (sum (A, 2) ∗ A) ’) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2))
↪→ ∗ sum (A, 2))) + 2 ∗ ((((((((sum (A, 2) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A,
↪→ 2)) ∗ sum (A, 2)) ∗ sum (A, 2))) + 210 ∗ ((((A ∗ (sum ((A .∗ A) , 2) ∗ A) ’) ∗ sum ((A .∗ A) , 2)) ∗ sum ((A
↪→ .∗ A) , 2))) + 896 ∗ (((((A’ .∗ (A .∗ A) ’) ’ ∗ (A’ .∗ (A .∗ A) ’)) ∗ sum (A, 2)) ∗ sum (A, 2))) + 420 ∗
↪→ ((((((A ∗ (sum ((A .∗ A) , 2) ∗ A) ’) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2))) + −544 ∗ (((A
↪→ .∗ A) ∗ ((A’ .∗ (A .∗ A) ’) ’ .∗ (A’ .∗ (A .∗ A) ’) ’) ’)) + 896 ∗ ((((A’ .∗ (A .∗ A) ’) ’ ∗ (A’ .∗ (A .∗ A
↪→) ’)) ∗ sum ((A .∗ A) , 2))) + −1680 ∗ ((((((A .∗ A) ∗ (A .∗ A) ’) ∗ sum ((A .∗ A) , 2)) ∗ sum (A, 2)) ∗ sum
↪→ (A, 2))) + 280 ∗ ((((A .∗ A) ∗ (A .∗ A) ’) ∗ ((A .∗ A) ∗ (A .∗ A) ’))) + 840 ∗ (((((A ∗ (sum ((A .∗ A) ,
↪→ 2) ∗ A) ’) ∗ sum ((A .∗ A) , 2)) ∗ sum (A, 2)) ∗ sum (A, 2))) + −280 ∗ (((((((A .∗ A) ∗ (A .∗ A) ’) ∗ sum (A
↪→ , 2)) ∗ sum (A, 2)) ∗ sum (A, 2)) ∗ sum (A, 2))) + −840 ∗ (((((A .∗ A) ∗ (A .∗ A) ’) ∗ sum ((A .∗ A) , 2))
↪→ ∗ sum ((A .∗ A) , 2)))) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

20

9.6 (RBM-2)k
k = 1
n = 7 ;
m = 8 ;

21

A = randn (n , m) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
mset = d e c 2 b i n (0 : (2 ˆ (m) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

f o r j = 1 : s i z e (mset , 1)
v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
h = l o g i c a l (mset (j , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A ∗ h ’) ˆ 1 ;

end
end

o p t i m i z e d = 2 ˆ (n + m− 5) ∗ (8 ∗ (sum (sum (A’ , 1) ’ , 1))) ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 2

n = 7 ;
m = 8 ;
A = randn (n , m) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
mset = d e c 2 b i n (0 : (2 ˆ (m) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

f o r j = 1 : s i z e (mset , 1)
v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
h = l o g i c a l (mset (j , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A ∗ h ’) ˆ 2 ;

end
end

o p t i m i z e d = 2 ˆ (n + m− 5) ∗ (2 ∗ (sum ((sum (A, 1) .∗ sum (A, 1)) , 2)) + 2 ∗ (sum (sum ((A .∗ A) , 1) , 2)) + 2 ∗ (
↪→ sum (sum ((A .∗ r epmat (sum (A, 2) , 1 , m)) , 1) ’ , 1)) + 2 ∗ (sum ((sum (A, 1) .∗ r epmat (sum (sum (A, 1) ’ , 1) ,
↪→ 1 , m)) , 2))) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

k = 3

n = 7 ;
m = 8 ;
A = randn (n , m) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
mset = d e c 2 b i n (0 : (2 ˆ (m) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

f o r j = 1 : s i z e (mset , 1)
v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
h = l o g i c a l (mset (j , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A ∗ h ’) ˆ 3 ;

end
end

o p t i m i z e d = 2 ˆ (n + m− 7) ∗ (12 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum (A’ , 2) ’ , n , 1)) , 2) , 1 , m)) , 1) ,
↪→ 2)) + 2 ∗ (sum (sum ((A .∗ r epmat (sum ((sum (A’ , 1) .∗ r epmat (sum (sum (A’ , 1) ’ , 1) , 1 , n)) , 2) , n , m)) , 1)
↪→ , 2)) + 6 ∗ (sum (sum ((A .∗ r epmat (sum ((sum (A’ , 1) .∗ sum (A’ , 1)) , 2) , n , m)) , 1) , 2)) + 6 ∗ (sum (sum
↪→ (((r epmat (sum (sum (A’ , 1) ’ , 1) , n , m) .∗ A) ’ .∗ A’) , 1) , 2)) + 6 ∗ (sum (sum ((A .∗ r epmat (sum ((r epmat (
↪→ sum (sum (A’ , 1) ’ , 1) , n , m) .∗ A) , 1) , n , 1)) , 1) , 2))) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

22

k = 4

n = 7 ;
m = 8 ;
A = randn (n , m) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
mset = d e c 2 b i n (0 : (2 ˆ (m) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

f o r j = 1 : s i z e (mset , 1)
v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
h = l o g i c a l (mset (j , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A ∗ h ’) ˆ 4 ;

end
end

o p t i m i z e d = 2 ˆ (n + m− 9) ∗ (24 ∗ ((sum (A, 1) ∗ sum ((r epmat (sum ((r epmat (sum (A, 1) , n , 1) .∗ A) ’ , 1) , m, 1) .∗
↪→ A’) , 2))) + 6 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((sum (A’ , 1) .∗ sum (A’ , 1)) , 2) , n , m)) , 2)
↪→ , 1 , m)) , 1) , 2)) + −24 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((A .∗ A) , 1) , n , 1)) , 1) , n , 1))
↪→ , 1) , 2)) + 8 ∗ (sum (sum (((A’ ’ .∗ (A .∗ A)) .∗ A) , 1) , 2)) + 12 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗
↪→ r epmat (sum (sum ((A .∗ A) , 1) , 2) , n , m)) , 2) , 1 , m)) , 1) , 2)) + −24 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗
↪→ r epmat (sum ((A .∗ A) , 2) , 1 , m)) , 2) , 1 , m)) , 1) , 2)) + 12 ∗ (sum (sum (((A ∗ A’) .∗ (A ∗ A’)) , 1) , 2))
↪→ + 12 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((sum (A, 1) .∗ r epmat (sum (sum (A, 1) ’ , 1) , 1 , m)) , 2)
↪→ , n , m)) , 2) , 1 , m)) , 1) , 2)) + −4 ∗ (sum (sum ((A .∗ r epmat (sum ((r epmat (sum (A, 1) , n , 1) .∗ (r epmat (
↪→ sum (A, 1) , n , 1) .∗ A)) , 1) , n , 1)) , 1) , 2)) + 24 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((A .∗
↪→ r epmat (sum (A, 2) , 1 , m)) , 1) , n , 1)) , 2) , 1 , m)) , 1) , 2)) + 2 ∗ (sum (sum ((A .∗ r epmat (sum (sum ((A .∗
↪→ r epmat (sum ((sum (A, 1) .∗ r epmat (sum (sum (A, 1) ’ , 1) , 1 , m)) , 2) , n , m)) , 1) , 2) , n , m)) , 1) , 2)) + 12
↪→ ∗ (sum ((r epmat (sum (sum (A, 1) , 2) , 1 , m) .∗ (r epmat (sum (sum (A, 1) ’ , 1) , 1 , m) .∗ sum ((A .∗ A) , 1))) ,
↪→ 2)) + 12 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum (sum ((A .∗ A) , 1) , 2) , n , m)) , 1) , n , 1)) , 1) ,
↪→ 2)) + 6 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((sum (A, 1) .∗ sum (A, 1)) , 2) , n , m)) , 1) , n , 1))
↪→ , 1) , 2)) + 6 ∗ (sum ((sum ((A .∗ A) , 2) .∗ r epmat (sum (sum ((A .∗ A) , 1) , 2) , n , 1)) , 1)) + 12 ∗ (sum (
↪→ sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((sum (A, 1) .∗ sum (A, 1)) , 2) , n , m)) , 2) , 1 , m)) , 1) , 2)) + 48
↪→ ∗ (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum (A, 2) , 1 , m)) , 1) , n , 1)) , 1) , 2) ,
↪→ n , m)) , 1) , 2)) + −12 ∗ (sum ((sum ((A .∗ A) , 2) .∗ sum ((A .∗ A) , 2)) , 1)) + −12 ∗ (sum ((sum ((A .∗ A) ,
↪→ 1) .∗ sum ((A .∗ A) , 1)) , 2)) + 12 ∗ (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum ((sum (A, 1) .∗ sum (
↪→ A, 1)) , 2) , n , m)) , 1) , 2) , n , m)) , 1) , 2)) + −4 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((A .∗
↪→ r epmat (sum (A, 2) , 1 , m)) , 2) , 1 , m)) , 2) , 1 , m)) , 1) , 2))) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

23

k = 5
n = 7 ;
m = 8 ;
A = randn (n , m) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
mset = d e c 2 b i n (0 : (2 ˆ (m) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

f o r j = 1 : s i z e (mset , 1)
v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
h = l o g i c a l (mset (j , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A ∗ h ’) ˆ 5 ;

end
end

o p t i m i z e d = 2 ˆ (n + m− 11) ∗ (20 ∗ (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((sum (A, 1)
↪→ .∗ r epmat (sum (sum (A, 1) ’ , 1) , 1 , m)) , 2) , n , m)) , 2) , 1 , m)) , 1) , 2) , n , m)) , 1) , 2)) + 60 ∗ (sum (sum
↪→ ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum (sum ((A .∗ A) , 1) , 2) , n , m)) , 2) , 1 , m)) , 1) ,
↪→ 2) , n , m)) , 1) , 2)) + 60 ∗ (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((sum (A,
↪→ 1) .∗ sum (A, 1)) , 2) , n , m)) , 2) , 1 , m)) , 1) , 2) , n , m)) , 1) , 2)) + 30 ∗ (sum (sum ((A .∗ r epmat (sum ((A
↪→ .∗ r epmat (sum (sum ((A .∗ r epmat (sum ((sum (A, 1) .∗ sum (A, 1)) , 2) , n , m)) , 1) , 2) , n , m)) , 1) , n , 1)) ,
↪→ 1) , 2)) + 20 ∗ (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ A) , 1) ,
↪→ 2) , n , m)) , 1) , 2) , n , m)) , 1) , 2) , n , m)) , 1) , 2)) + 240 ∗ (sum ((sum ((r epmat (sum ((r epmat (sum (A’ , 1)
↪→ , m, 1) .∗ A’) , 2) , 1 , n) .∗ A’) , 1) .∗ sum ((A ∗ A’) , 1)) , 2)) + −20 ∗ (sum (sum ((A .∗ r epmat (sum (sum
↪→ ((A .∗ r epmat (sum ((r epmat (sum (A, 1) , n , 1) .∗ (r epmat (sum (A, 1) , n , 1) .∗ A)) , 1) , n , 1)) , 1) , 2) , n ,
↪→ m)) , 1) , 2)) + −60 ∗ (sum (sum ((A .∗ r epmat (sum ((sum ((A .∗ A) , 1) .∗ sum ((A .∗ A) , 1)) , 2) , n , m)) ,
↪→ 1) , 2)) + −120 ∗ (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((A .∗ A) , 1) , n , 1))
↪→ , 1) , n , 1)) , 1) , 2) , n , m)) , 1) , 2)) + 60 ∗ (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum ((A .∗
↪→ r epmat (sum (sum ((A .∗ A) , 1) , 2) , n , m)) , 1) , n , 1)) , 1) , 2) , n , m)) , 1) , 2)) + 120 ∗ (sum (sum ((A .∗
↪→ r epmat (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum (sum ((A .∗ A) , 1) , 2) , n , m)) , 2) , 1 , m)) , 1) , n , 1)) , 1)
↪→ , 2)) + 20 ∗ (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum ((sum (A, 1) .∗ sum (A,
↪→ 1)) , 2) , n , m)) , 1) , 2) , n , m)) , 1) , 2) , n , m)) , 1) , 2)) + 120 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗
↪→ r epmat (sum ((A .∗ r epmat (sum ((sum (A, 1) .∗ sum (A, 1)) , 2) , n , m)) , 2) , 1 , m)) , 1) , n , 1)) , 1) , 2)) +
↪→ 120 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((sum (A’ , 1) .∗ sum (A’ , 1)) , 2) , n ,
↪→ m)) , 2) , 1 , m)) , 1) , n , 1)) , 1) , 2)) + 2 ∗ (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum (sum ((A .∗
↪→ r epmat (sum ((sum (A, 1) .∗ r epmat (sum (sum (A, 1) ’ , 1) , 1 , m)) , 2) , n , m)) , 1) , 2) , n , m)) , 1) , 2) , n , m)
↪→) , 1) , 2)) + −20 ∗ (sum (sum ((A .∗ r epmat (sum ((sum (((r epmat (sum (A’ , 1) , m, 1) .∗ A’) .∗ r epmat (sum (A’ ,
↪→ 1) , m, 1)) , 1) .∗ sum (A’ , 1)) , 2) , n , m)) , 1) , 2)) + −60 ∗ (sum (sum ((A .∗ r epmat (sum ((sum ((A .∗ A) ,
↪→ 2) .∗ sum ((A .∗ A) , 2)) , 1) , n , m)) , 1) , 2)) + −120 ∗ (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ r epmat (sum
↪→ ((A .∗ r epmat (sum ((A .∗ A) , 2) , 1 , m)) , 2) , 1 , m)) , 1) , 2) , n , m)) , 1) , 2)) + 30 ∗ (sum ((sum ((A .∗ A)

24

↪→ , 2) .∗ r epmat (sum (sum ((A .∗ r epmat (sum (sum ((A .∗ A) , 1) , 2) , n , m)) , 1) , 2) , n , 1)) , 1)) + 60 ∗ (sum
↪→ (sum ((A .∗ r epmat (sum (sum (((A ∗ A’) .∗ (A ∗ A’)) , 1) , 2) , n , m)) , 1) , 2)) + 40 ∗ (sum (sum ((A .∗
↪→ r epmat (sum (sum (((A .∗ A) .∗ (A .∗ A)) , 1) , 2) , n , m)) , 1) , 2)) + 30 ∗ (sum (sum ((A .∗ r epmat (sum (sum ((
↪→ A .∗ r epmat (sum ((A .∗ r epmat (sum ((sum (A’ , 1) .∗ sum (A’ , 1)) , 2) , n , m)) , 2) , 1 , m)) , 1) , 2) , n , m)) ,
↪→ 1) , 2)) + 120 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((r epmat (sum (A, 1) , n , 1) .∗ (r epmat (sum (
↪→ sum (A, 1) ’ , 1) , n , m) .∗ A)) , 2) , 1 , m)) , 1) , n , 1)) , 1) , 2)) + −80 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗
↪→ r epmat (sum ((r epmat (sum (A, 1) , n , 1) .∗ (r epmat (sum (A, 1) , n , 1) .∗ A)) , 1) , n , 1)) , 2) , 1 , m)) , 1) ,
↪→ 2)) + −80 ∗ ((sum (A, 1) ∗ sum (((r epmat (sum (A’ , 1) , m, 1) .∗ A’) .∗ r epmat ((sum (A’ , 1) .∗ sum (A’ , 1)) ,
↪→ m, 1)) , 2))) + −240 ∗ (sum (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((A .∗ A) , 2) , 1 , m
↪→)) , 2) , 1 , m)) , 1) , n , 1)) , 1) , 2)) + 120 ∗ (sum (sum ((A .∗ r epmat (sum ((r epmat (sum ((r epmat (sum (sum (A,
↪→ 1) ’ , 1) , n , m) .∗ A) ’ , 1) , n , 1) .∗ (A ∗ A’)) , 2) , 1 , m)) , 1) , 2)) + −240 ∗ (sum (sum ((A .∗ r epmat (sum
↪→ ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((A .∗ A) , 1) , n , 1)) , 1) , n , 1)) , 2) , 1 , m)) , 1) , 2)) + 120 ∗ (sum
↪→ (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((A .∗ r epmat (sum ((sum (A, 1) .∗ r epmat (sum (sum (A, 1) ’ , 1) , 1 , m
↪→)) , 2) , n , m)) , 2) , 1 , m)) , 1) , n , 1)) , 1) , 2)) + 160 ∗ (sum (sum (((r epmat (sum (A’ , 1) , m, 1) .∗ A’) .∗
↪→ ((r epmat (sum (A, 1) , n , 1) .∗ A) ’ .∗ A’)) , 1) , 2))) ;

n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

25

k = 6
n = 8 ;
m = 9 ;
A = randn (n , m) ;
n s e t = d e c 2 b i n (0 : (2 ˆ (n) − 1)) ;
mset = d e c 2 b i n (0 : (2 ˆ (m) − 1)) ;
o r i g i n a l = 0 ;
f o r i = 1 : s i z e (n s e t , 1)

f o r j = 1 : s i z e (mset , 1)
v = l o g i c a l (n s e t (i , :) − ’ 0 ’) ;
h = l o g i c a l (mset (j , :) − ’ 0 ’) ;
o r i g i n a l = o r i g i n a l + (v ∗ A ∗ h ’) ˆ 6 ;

end
end

o p t i m i z e d = 2 ˆ (n+m) ∗ (((sum (sum (((A .∗ A) .∗ ((r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1])) .∗ (
↪→ r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1])))) , 2) , 1) .∗ 360) . . .

+ (sum (sum (((A .∗ r epmat (sum (A, 2) , [1 , m])) .∗ ((A .∗ r epmat (sum (A, 2) , [1 , m])) .∗ r epmat (sum ((A .∗ A
↪→) , 1) , [n , 1]))) , 2) , 1) .∗ 360) . . .

+ (sum (((sum (A, 1) .∗ sum (A, 1)) .∗ ((sum (A, 1) .∗ sum (A, 1)) .∗ (sum (A, 1) .∗ sum (A, 1)))) , 2) .∗ 16)
↪→ . . .

+ ((sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ sum (((sum (A, 1) .∗ sum (A, 1)) .∗ (sum (A, 1) .∗ sum (A, 1))) , 2))
↪→ .∗ −30) . . .

+ (((sum (A, 1) ∗ ((A’) ∗ sum (A, 2))) ∗ (sum (A, 1) ∗ ((A’) ∗ sum (A, 2)))) .∗ 360) . . .
+ (((sum (A, 1) ∗ (A’)) ∗ ((A .∗ (A .∗ A)) ∗ (sum (A, 1) ’))) .∗ 480) . . .
+ (sum (((sum (A, 2) .∗ sum (A, 2)) .∗ ((sum (A, 2) .∗ sum (A, 2)) .∗ (sum (A, 2) .∗ sum (A, 2)))) , 1) .∗ 16)

↪→ . . .
+ (sum (sum (((A .∗ r epmat (sum (A, 1) , [n , 1])) .∗ ((A .∗ r epmat (sum (A, 1) , [n , 1])) .∗ r epmat (sum ((A .∗ A

↪→) , 2) , [1 , m]))) , 2) , 1) .∗ 360) . . .
+ ((sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ sum (((sum (A, 1) .∗ sum (A, 1)) .∗ sum ((A .∗ A) , 1)) , 2)) .∗

↪→ −180) . . .
+ (sum ((r epmat (sum (sum (A, 2) , 1) , [n , 1]) .∗ sum (((r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1])

↪→) .∗ (A .∗ (A .∗ A))) , 2)) , 1) .∗ 480) . . .
+ (sum ((r epmat (sum (sum (A, 2) , 1) , [n , 1]) .∗ (sum (A, 2) .∗ (sum (A, 2) .∗ sum (((r epmat (sum (A, 2) , [1 , m

↪→]) .∗ r epmat (sum (A, 1) , [n , 1])) .∗ A) , 2)))) , 1) .∗ −240) . . .
+ (sum ((sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗ (sum (A, 2) .∗ sum (r epmat (sum ((r epmat (sum (A, 2) , [1 , m

↪→]) .∗ (r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1]))) , 1) , [n , 1]) , 2))) , 1) .∗ 360)
↪→ . . .

+ (((sum (sum (A, 2) , 1) ∗ (sum (A, 1) ∗ (A’))) ∗ ((A ∗ (A’)) ∗ sum (A, 2))) .∗ 720) . . .
+ (((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) .∗ ((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) .∗ (sum (sum (A

↪→ , 2) , 1) .∗ sum (sum (A, 2) , 1)))) .∗ 1) . . .
+ ((sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ ((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) .∗ (sum (sum (A, 2) , 1)

↪→ .∗ sum (sum (A, 2) , 1)))) .∗ 15) . . .
+ (sum ((sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗ (sum (A, 2) .∗ r epmat ((sum (sum (A, 2) , 1) .∗ (sum (sum

↪→ (A, 2) , 1) .∗ sum (sum (A, 2) , 1))) , [n , 1]))) , 1) .∗ 120) . . .
+ ((sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ ((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) .∗ (sum (sum (A, 2) , 1)

↪→ .∗ sum (sum (A, 2) , 1)))) .∗ 15) . . .
+ ((sum (sum ((A .∗ A) , 2) , 1) .∗ ((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) .∗ (sum (sum (A, 2) , 1) .∗ sum (

↪→ sum (A, 2) , 1)))) .∗ 15) . . .
+ (sum (sum ((r epmat ((sum (A, 2) .∗ sum (A, 2)) , [1 , m]) .∗ ((r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) ,

↪→ [n , 1])) .∗ (r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1])))) , 1) , 2) .∗ −30) . . .
+ (sum ((sum ((r epmat (sum (A, 2) , [1 , m]) .∗ (r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1]))) , 1)

↪→ .∗ sum ((r epmat (sum (A, 2) , [1 , m]) .∗ (r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1]))) ,
↪→ 1)) , 2) .∗ 45) . . .

+ (sum ((sum ((A .∗ r epmat (sum (A, 2) , [1 , m])) , 1) .∗ (sum ((A .∗ r epmat (sum (A, 2) , [1 , m])) , 1) .∗ r epmat (
↪→ sum ((sum (A, 1) .∗ sum (A, 1)) , 2) , [1 , m]))) , 2) .∗ 180) . . .

+ (sum ((sum ((A .∗ r epmat (sum (A, 2) , [1 , m])) , 1) .∗ (sum (A, 1) .∗ sum (((r epmat (sum (A, 2) , [1 , m]) .∗
↪→ r epmat (sum (A, 1) , [n , 1])) .∗ A) , 1))) , 2) .∗ −360) . . .

+ ((sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ (sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ sum ((sum (A, 1) .∗ sum (A,
↪→ 1)) , 2))) .∗ 15) . . .

+ (sum ((sum ((r epmat (sum (A, 1) , [n , 1]) .∗ (r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1]))) , 1)
↪→ .∗ sum ((r epmat (sum (A, 1) , [n , 1]) .∗ (r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1]))) ,
↪→ 1)) , 2) .∗ −30) . . .

+ ((sum (sum (A, 2) , 1) .∗ (sum (sum (A, 2) , 1) .∗ (sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ sum ((sum (A, 1) .∗
↪→ sum (A, 1)) , 2)))) .∗ 45) . . .

+ (((sum (A, 1) .∗ sum (A, 1)) ∗ ((r epmat (sum (A, 1) , [m, 1]) ∗ (A’)) ∗ (A ∗ (sum (A, 1) ’)))) .∗ 180) . . .
+ (sum ((sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗ ((sum (A, 2) .∗ r epmat (sum (sum (A, 2) , 1) , [n , 1])) .∗

↪→ sum (r epmat ((sum (A, 1) .∗ sum (A, 1)) , [n , 1]) , 2))) , 1) .∗ 360) . . .
+ ((sum ((A .∗ A) , 1) ∗ (((A’) ∗ sum (A, 2)) .∗ ((A’) ∗ sum (A, 2)))) .∗ −360) . . .

26

+ (sum ((sum ((A .∗ A) , 1) .∗ ((sum (A, 1) .∗ sum (A, 1)) .∗ (sum (A, 1) .∗ sum (A, 1)))) , 2) .∗ 240) . . .
+ ((sum (sum ((A .∗ A) , 2) , 1) .∗ sum (((sum (A, 1) .∗ sum (A, 1)) .∗ (sum (A, 1) .∗ sum (A, 1))) , 2)) .∗

↪→ −30) . . .
+ ((sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ (sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ sum (sum ((A .∗ A) , 2) , 1)))

↪→ .∗ 45) . . .
+ ((sum (sum (A, 2) , 1) .∗ (sum (sum (A, 2) , 1) .∗ sum (((sum (A, 1) .∗ sum (A, 1)) .∗ sum ((A .∗ A) , 1)) , 2)))

↪→ .∗ −180) . . .
+ (((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) .∗ (sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ sum (sum ((A .∗ A) ,

↪→ 2) , 1))) .∗ 90) . . .
+ (sum (sum (((r epmat (sum ((A .∗ A) , 2) , [1 , m]) .∗ r epmat (sum ((A .∗ A) , 1) , [n , 1])) .∗ (A .∗ A)) , 2) , 1)

↪→ .∗ 360) . . .
+ (sum ((sum ((A .∗ A) , 1) .∗ (sum ((A .∗ A) , 1) .∗ r epmat (sum ((sum (A, 1) .∗ sum (A, 1)) , 2) , [1 , m]))) , 2)

↪→ .∗ −90) . . .
+ ((sum (sum ((A .∗ A) , 2) , 1) .∗ sum (((sum (A, 2) .∗ sum (A, 2)) .∗ (sum (A, 2) .∗ sum (A, 2))) , 1)) .∗

↪→ −30) . . .
+ ((sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ (sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ sum (sum ((A .∗ A) , 2) , 1)))

↪→ .∗ 45) . . .
+ (sum ((sum ((A .∗ r epmat (sum (A, 2) , [1 , m])) , 1) .∗ (sum ((A .∗ r epmat (sum (A, 2) , [1 , m])) , 1) .∗ r epmat (

↪→ sum (sum ((A .∗ A) , 2) , 1) , [1 , m]))) , 2) .∗ 180) . . .
+ (sum ((sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗ (sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗ r epmat (

↪→ sum (sum ((A .∗ A) , 2) , 1) , [n , 1]))) , 1) .∗ 180) . . .
+ (sum (((sum (A, 2) .∗ r epmat (sum (sum (A, 2) , 1) , [n , 1])) .∗ (sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗

↪→ r epmat (sum (sum ((A .∗ A) , 2) , 1) , [n , 1]))) , 1) .∗ 360) . . .
+ (sum ((sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗ sum ((r epmat ((sum (A, 1) .∗ sum (A, 1)) , [n , 1]) .∗ (A

↪→ .∗ r epmat (sum (A, 1) , [n , 1]))) , 2)) , 1) .∗ −240) . . .
+ (sum (sum ((A .∗ r epmat ((r epmat (sum (sum (A, 2) , 1) , [1 , m]) .∗ (sum (A, 1) .∗ sum (((r epmat (sum (A, 2) , [1 ,

↪→ m]) .∗ r epmat (sum (A, 1) , [n , 1])) .∗ A) , 1))) , [n , 1])) , 2) , 1) .∗ −240) . . .
+ ((sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ sum (((sum (A, 1) .∗ sum (A, 1)) .∗ (sum (A, 1) .∗ sum (A, 1))) , 2))

↪→ .∗ −30) . . .
+ (((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) .∗ sum (((sum (A, 2) .∗ sum (A, 2)) .∗ sum ((A .∗ A) , 2)) , 1))

↪→ .∗ −180) . . .
+ (((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) .∗ sum (sum (((A .∗ A) .∗ (A .∗ A)) , 2) , 1)) .∗ 60) . . .
+ (sum ((sum ((r epmat (sum (A, 2) , [1 , m]) .∗ (r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1]))) , 2)

↪→ .∗ sum ((r epmat (sum (A, 2) , [1 , m]) .∗ (r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1]))) ,
↪→ 2)) , 1) .∗ −30) . . .

+ ((sum (sum (A, 2) , 1) .∗ sum ((sum (r epmat ((sum (A, 2) .∗ sum (A, 2)) , [1 , m]) , 1) .∗ sum ((r epmat (sum (A, 2) ,
↪→ [1 , m]) .∗ (r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1]))) , 1)) , 2)) .∗ 45) . . .

+ (sum ((sum ((A .∗ r epmat (sum (A, 2) , [1 , m])) , 1) .∗ (sum ((A .∗ r epmat (sum (A, 2) , [1 , m])) , 1) .∗ r epmat
↪→ ((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) , [1 , m]))) , 2) .∗ 180) . . .

+ (((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) .∗ (sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ sum ((sum (A, 2) .∗
↪→ sum (A, 2)) , 1))) .∗ 90) . . .

+ (sum ((sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗ (sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗ r epmat
↪→ ((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) , [n , 1]))) , 1) .∗ 180) . . .

+ (((sum (A, 1) ∗ ((A’) ∗ A)) ∗ (((A’) ∗ A) ∗ (sum (A, 1) ’))) .∗ 360) . . .
+ (sum ((sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗ (sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗ r epmat (

↪→ sum ((sum (A, 2) .∗ sum (A, 2)) , 1) , [n , 1]))) , 1) .∗ 180) . . .
+ ((sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ (sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ sum ((sum (A, 2) .∗ sum (A,

↪→ 2)) , 1))) .∗ 45) . . .
+ ((((sum (A, 2) ’) ∗ A) ∗ (((A’) ∗ A) ∗ ((A’) ∗ sum (A, 2)))) .∗ 360) . . .
+ (sum ((sum ((A .∗ r epmat (sum (A, 2) , [1 , m])) , 1) .∗ sum ((r epmat ((sum (A, 2) .∗ sum (A, 2)) , [1 , m]) .∗ (A

↪→ .∗ r epmat (sum (A, 2) , [1 , m]))) , 1)) , 2) .∗ −240) . . .
+ ((((sum (A, 2) ’) ∗ A) ∗ ((A’) ∗ (r epmat (sum (A, 2) , [1 , n]) ∗ (sum (A, 2) .∗ sum (A, 2))))) .∗ 180) . . .
+ ((((sum (A, 2) ’) ∗ A) ∗ (((A .∗ (A .∗ A)) ’) ∗ sum (A, 2))) .∗ 480) . . .
+ ((sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ sum (((sum (A, 2) .∗ sum (A, 2)) .∗ (sum (A, 2) .∗ sum (A, 2))) , 1))

↪→ .∗ −30) . . .
+ ((sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ (sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ sum ((sum (A, 2) .∗ sum (A,

↪→ 2)) , 1))) .∗ 15) . . .
+ ((sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ sum (((sum (A, 2) .∗ sum (A, 2)) .∗ sum ((A .∗ A) , 2)) , 1)) .∗

↪→ −180) . . .
+ (sum (((sum ((A .∗ A) , 2) .∗ sum ((A .∗ A) , 2)) .∗ r epmat (sum ((sum (A, 2) .∗ sum (A, 2)) , 1) , [n , 1])) , 1)

↪→ .∗ −90) . . .
+ ((sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ (sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ sum (sum ((A .∗ A) , 2) , 1)))

↪→ .∗ 90) . . .
+ (sum (((sum (A, 1) .∗ sum (A, 1)) .∗ sum (((A .∗ A) .∗ (A .∗ A)) , 1)) , 2) .∗ −480) . . .
+ ((sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ sum (sum (((A .∗ A) .∗ (A .∗ A)) , 2) , 1)) .∗ 60) . . .
+ (sum ((sum ((A .∗ A) , 1) .∗ sum (((A .∗ A) .∗ (A .∗ A)) , 1)) , 2) .∗ −480) . . .
+ (sum ((sum (r epmat ((sum (A, 2) .∗ sum (A, 2)) , [1 , m]) , 1) .∗ sum (((A .∗ A) .∗ (A .∗ A)) , 1)) , 2) .∗ 60)

↪→ . . .
+ (((sum (A, 1) .∗ sum ((A .∗ A) , 1)) ∗ (((A’) ∗ A) ∗ (sum (A, 1) ’))) .∗ −720) . . .
+ ((sum (sum (A, 2) , 1) .∗ sum (sum ((((r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) , [n , 1])) .∗ A) .∗

↪→ r epmat (sum ((A .∗ A) , 1) , [n , 1])) , 2) , 1)) .∗ −720) . . .
+ ((sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ sum (((sum (A, 1) .∗ sum (A, 1)) .∗ sum ((A .∗ A) , 1)) , 2)) .∗

↪→ −180) . . .
+ ((sum (sum ((A .∗ A) , 2) , 1) .∗ sum (((sum (A, 1) .∗ sum (A, 1)) .∗ sum ((A .∗ A) , 1)) , 2)) .∗ −180) . . .
+ (sum (((sum (A, 1) .∗ sum (A, 1)) .∗ (sum ((A .∗ A) , 1) .∗ sum ((A .∗ A) , 1))) , 2) .∗ 720) . . .
+ (sum ((sum ((A .∗ A) , 1) .∗ (sum ((A .∗ A) , 1) .∗ sum ((A .∗ A) , 1))) , 2) .∗ 240) . . .
+ (sum (sum ((r epmat (sum ((A .∗ A) , 1) , [n , 1]) .∗ (r epmat ((sum (A, 2) .∗ r epmat (sum (sum (A, 2) , 1) , [n , 1])) ,

↪→ [1 , m]) .∗ r epmat (sum ((A .∗ A) , 1) , [n , 1]))) , 2) , 1) .∗ −90) . . .
+ (sum ((sum (r epmat ((sum (A, 2) .∗ sum (A, 2)) , [1 , m]) , 1) .∗ (sum ((A .∗ A) , 1) .∗ sum ((A .∗ A) , 1))) , 2)

↪→ .∗ −90) . . .
+ (sum ((sum ((A .∗ A) , 2) .∗ (sum ((A .∗ A) , 2) .∗ r epmat ((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) , [n ,

↪→ 1]))) , 1) .∗ −90) . . .
+ ((sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ (sum (sum ((A .∗ A) , 2) , 1) .∗ sum (sum ((A .∗ A) , 2) , 1))) .∗ 45)

↪→ . . .
+ (((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) .∗ (sum (sum ((A .∗ A) , 2) , 1) .∗ sum (sum ((A .∗ A) , 2) , 1)))

↪→ .∗ 45) . . .
+ (((sum (sum (A, 2) , 1) .∗ sum (sum (A, 2) , 1)) .∗ (sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ sum (sum ((A .∗ A) ,

↪→ 2) , 1))) .∗ 90) . . .
+ (sum ((sum ((A .∗ A) , 2) .∗ ((sum (A, 2) .∗ sum (A, 2)) .∗ (sum (A, 2) .∗ sum (A, 2)))) , 1) .∗ 240) . . .
+ (sum (((sum (A, 2) .∗ sum (A, 2)) .∗ sum (((A .∗ A) .∗ (A .∗ A)) , 2)) , 1) .∗ −480) . . .
+ (sum (((sum (A, 2) .∗ sum (A, 2)) .∗ (sum ((A .∗ A) , 2) .∗ sum ((A .∗ A) , 2))) , 1) .∗ 720) . . .

27

+ ((sum (sum (A, 2) , 1) .∗ sum ((sum ((A .∗ A) , 2) .∗ sum (((r epmat (sum (A, 2) , [1 , m]) .∗ r epmat (sum (A, 1) ,
↪→ [n , 1])) .∗ A) , 2)) , 1)) .∗ −720) . . .

+ ((((sum (A, 2) ’) ∗ (A ∗ (A’))) ∗ (sum (A, 2) .∗ sum ((A .∗ A) , 2))) .∗ −720) . . .
+ (sum ((sum ((A .∗ A) , 2) .∗ sum (((A .∗ A) .∗ (A .∗ A)) , 2)) , 1) .∗ −480) . . .
+ (sum ((sum ((A .∗ A) , 2) .∗ (sum ((A .∗ A) , 2) .∗ sum ((A .∗ A) , 2))) , 1) .∗ 240) . . .
+ ((sum ((sum (A, 1) .∗ sum (A, 1)) , 2) .∗ sum (((sum (A, 2) .∗ sum (A, 2)) .∗ sum ((A .∗ A) , 2)) , 1)) .∗

↪→ −180) . . .
+ ((sum (sum ((A .∗ A) , 2) , 1) .∗ sum (((sum (A, 2) .∗ sum (A, 2)) .∗ sum ((A .∗ A) , 2)) , 1)) .∗ −180) . . .
+ (sum ((sum ((A .∗ r epmat (sum (A, 1) , [n , 1])) , 2) .∗ (sum (A, 2) .∗ sum (((r epmat (sum (A, 2) , [1 , m]) .∗

↪→ r epmat (sum (A, 1) , [n , 1])) .∗ A) , 2))) , 1) .∗ −360) . . .
+ ((((sum (A, 1) ∗ (A’)) .∗ (sum (A, 1) ∗ (A’))) ∗ sum ((A .∗ A) , 2)) .∗ −360) . . .
+ (sum ((sum (r epmat ((sum (A, 1) .∗ sum (A, 1)) , [n , 1]) , 2) .∗ (sum ((A .∗ A) , 2) .∗ sum ((A .∗ A) , 2))) , 1)

↪→ .∗ −90) . . .
+ ((sum ((sum (A, 2) .∗ sum (A, 2)) , 1) .∗ (sum (sum ((A .∗ A) , 2) , 1) .∗ sum (sum ((A .∗ A) , 2) , 1))) .∗ 45)

↪→ . . .
+ (sum (sum (((A .∗ A) .∗ ((A .∗ A) .∗ (A .∗ A))) , 2) , 1) .∗ 256) . . .
+ ((sum (sum ((A .∗ A) , 2) , 1) .∗ sum (sum (((A .∗ A) .∗ (A .∗ A)) , 2) , 1)) .∗ 60) . . .
+ ((sum (sum ((A .∗ A) , 2) , 1) .∗ (sum (sum ((A .∗ A) , 2) , 1) .∗ sum (sum ((A .∗ A) , 2) , 1))) .∗ 15) . . .
+ (sum (sum ((r epmat (sum ((A .∗ A) , 1) , [n , 1]) .∗ (r epmat (sum ((A .∗ A) , 2) , [1 , m]) .∗ r epmat (sum ((A .∗ A

↪→) , 1) , [n , 1]))) , 1) , 2) .∗ −90) . . .
+ ((repmat (sum (sum (A, 2) , 1) , [1 , m]) ∗ ((((A’) ∗ A) .∗ ((A’) ∗ A)) ∗ r epmat (sum (sum (A, 2) , 1) , [m, 1])

↪→)) .∗ 90) . . .
+ (sum (sum ((r epmat (sum ((A .∗ A) , 2) , [1 , m]) .∗ (r epmat (sum ((A .∗ A) , 2) , [1 , m]) .∗ r epmat (sum ((A .∗ A

↪→) , 1) , [n , 1]))) , 2) , 1) .∗ −90) . . .
+ (sum ((((A ∗ (A’)) .∗ (A ∗ (A’))) ∗ (sum (A, 2) .∗ sum (A, 2))) , 1) .∗ −360) . . .
+ (sum ((((A ∗ (A’)) .∗ (A ∗ (A’))) ∗ sum ((A .∗ A) , 2)) , 1) .∗ −360) . . .
+ (sum ((((A ∗ (A’)) .∗ (A ∗ (A’))) ∗ sum (r epmat ((sum (A, 1) .∗ sum (A, 1)) , [n , 1]) , 2)) , 1) .∗ 90) . . .
+ (sum ((((A ∗ (A’)) .∗ (A ∗ (A’))) ∗ r epmat (sum ((sum (A, 2) .∗ sum (A, 2)) , 1) , [n , 1])) , 1) .∗ 90) . . .
+ (sum (((sum (A, 1) .∗ sum (A, 1)) ∗ (((A’) ∗ A) .∗ ((A’) ∗ A))) , 2) .∗ −360) . . .
+ (sum ((sum ((A .∗ A) , 1) ∗ (((A’) ∗ A) .∗ ((A’) ∗ A))) , 2) .∗ −360) . . .
+ ((repmat (sum (sum ((A .∗ A) , 2) , 1) , [1 , m]) ∗ sum ((((A’) ∗ A) .∗ ((A’) ∗ A)) , 2)) .∗ 90) . . .
+ (sum (sum ((A .∗ ((A ∗ (A’)) ∗ (A .∗ (A .∗ A)))) , 2) , 1) .∗ 480) + (sum (sum ((((A ∗ (A’)) ∗ A) .∗

↪→ ((A ∗ (A’)) ∗ A)) , 2) , 1) .∗ 120))) / 4096 ;
n o r m a l i z a t i o n = sum (abs (o r i g i n a l (:))) ;
a s s e r t (sum (abs (o r i g i n a l (:) − o p t i m i z e d (:))) / n o r m a l i z a t i o n < 1e−10) ;

28

Detecting Methane Outbreaks from Time Series Data
with Deep Neural Networks

Krzysztof Pawłowski? and Karol Kurach?

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
Banacha 2, 02-097 Warsaw, Poland

{kpawlowski236,kkurach}@gmail.com

Abstract. Hazard monitoring systems play a key role in ensuring people’s safety.
The problem of detecting dangerous levels of methane concentration in a coal
mine was a subject of IJCRS’15 Data Challenge competition. The challenge was
to predict, from multivariate time series data collected by sensors, if methane con-
centration reaches a dangerous level in the near future. In this paper we present
our solution to this problem based on the ensemble of Deep Neural Networks. In
particular, we focus on Recurrent Neural Networks with Long Short-Term Mem-
ory (LSTM) cells.
Keywords: Machine Learning, Recurrent Neural Networks, Ensemble Methods,
Time Series Forecasting, Hazard Monitoring Systems

1 Introduction

Working in a coal mine historically has been a very hazardous occupation. Over time
the conditions and safety improved substantially, in part thanks to advances in technol-
ogy. Despite remarkable progress, it is still one of the most dangerous professions[6].
One of the dangers present is a possibility of explosion caused by high concentration of
methane in the air. Therefore, it is of utmost importance to monitor methane concentra-
tion levels and to ensure they are within a safe range. If the concentration levels reach
a critical threshold, the production line needs to be shut down[23], which is a costly
interruption.

On the other hand, mining effectiveness positively depends on the pace of methane
emissions. Therefore, in order to maximize the efficiency, a fine balance needs to be
made between mining effectiveness and the safety. If one could predict methane con-
centration in the future and tell when it is likely to be dangerously high, one could
reduce the speed of the operation and try to avoid reaching dangerous levels. Design
of such an efficient prediction algorithm is a goal of IJCRS’15 Data Challenge: Min-
ing Data from Coal Mines competition[16]. The problem is an example of supervised
learning classification task, with data given in a form of non-stationary multivariate time
series. Between the training and test data sets there is a significant concept drift.

Different methods of tackling similar problems have been proposed in the liter-
ature. One of them is an application of Deep Neural Networks. While artificial neural

? Both authors contributed equally.

2 Pawłowski and Kurach

networks have been known for a very long time, in recent years they have achieved spec-
tacular results in areas such as computer vision[17][18] or speech recognition[10][14],
in part due to advances in computing hardware, such as Graphics Processing Units. Re-
current Neural Network is an architecture well-suited for the processing of time series
data[4][8]. We aim to test how well such methods perform in the competition. In this
paper we present our solution which uses Recurrent Neural Network with Long Short-
Term Memory cells[15][27], Deep Feedforward Neural Network and ensembling[5]
techniques.

The rest of this paper is organized as follows. In Section 2 we present the problem
in detail. Section 3 describes the Recurrent Neural Network model we used. In Section
4 we present ensembling technique, detail Deep Feedforward Neural Network model
and analyse the results. Finally, in Section 5 we conclude the paper and propose future
work.

2 Problem Statement
In this section we describe the data used in the competition. Then, we document the
evaluation procedure, including the target measure to be optimized. Finally, we review
the most important challenges.

2.1 Data
The goal of IJCRS’15 Data Challenge competition is to predict dangerous level of
methane concentration in coal mines based on the readings of 28 sensors. It is an exam-
ple of supervised learning classification task. The data is split into training and test set,
where the training set contains 51700 records and test set contains 5076 records.

Each record is a collection of 28 time series – corresponding to 28 sensors that are
installed in the coal mine. The sensors record data such as level of methane concen-
tration, temperature, pressure, electric current of the equipment etc. Each of the time
series contains 600 readings, taken every second, for a total of 10 minutes of the same
time period for each sensor. The time periods described in the training data set overlap
and are given in a chronological order. For the test data, however, the time periods do
not overlap and are given in random order.

For each record in the training set, three labels are given. The test set is missing the
labels – it is the goal of the competition to predict those values. Each label instance can
be either normal or warning. Those levels signify the amount of methane concentration,
as recorded by the three known sensors, named MM263, MM264 and MM256. The
second-by-second readings of those sensors are described in time series mentioned in
the previous paragraph. The predictions are to be made about the methane level in the
future - that is during the period between three and six minutes after the end of the
training (time series) period. If the level of methane concentration reaches or exceeds
1.0, then the corresponding label should be warning. Otherwise, it should be normal.

2.2 Evaluation
The submissions consist of three predictions of label values, made for each of 5076
records in the test set. Each prediction is a number – a higher value denotes a higher
likelihood that the true label value is warning. The score is defined as a mean of area
under the ROC curve, averaged over the three labels.

Detecting Methane Outbreaks from Time Series Data with Deep Neural Networks 3

Participants may submit their predictions during the course of the competition. Until
the finish of the competition, the participants are aware only of the score computed over
preliminary test set – a subset of the whole test set that contains approximately 20%
of the records. This subset is picked at random by the organizers and is fixed for all
competitors but it is not revealed to the participants which of the test records belong to
it. The participants may choose a single final solution, possibly taking into the account
the scores obtained on the preliminary test set. However, the final score is computed
over the final test set – remaining approximately 80% of the test data. This score is
revealed only after the end of the competition and is used to calculate the final standings
– the team with the highest score is declared the winner.

2.3 Challenges

The problem presents the following challenges.

Imbalanced Data. Only about 2% of the labels in the training set belong to the warning
class, while the remaining belong to the normal class. A trivial solution that predicts
normal for every label achieves 98% accuracy, obviously without having any practi-
cal significance (and with a bad 0.5 mean-ROC score). Unless special precautions are
taken, methods that heavily optimize just the prediction accuracy can have significant
problems with this task.

Overlapping Training Periods. Almost all adjacent training records overlap by 9 out
of the total 10 minutes recorded in the time series. It clearly violates the assumption
of i.i.d. that underpins the theoretical justification of many learning algorithms. In ad-
dition, due to overlap, a classical cross-validation approach may result in splits very
„similar” data across different folds and in turn yield over-optimistic estimates of the
model performances.

Noisiness. Seemingly small „meaningful” changes in sensor readings happen at the 1-
second resolution. Most changes at this interval appear to be random fluctuations. That,
combined with a large amount (16800) of readings per record, poses a severe danger of
overfitting.

Large Data Size. The whole training set consists of over 868, 560, 000 values. Just
storing it in a computer memory requires 3.5 gigabytes of memory, when using 32-bit
floating point representation. Thus storage and computational costs can be a significant
constraint.

Concept Drift. Training and test data come from different time periods. The records in
the training set are sorted by time, so it’s easy to notice that there are very significant
trends in the data that change along with the time. With test data samples taken at times
belonging to a different interval than training samples, one can expect a severe concept
drift - and indeed exploratory tests showed that classifier performance degrades on the
test set, as compared to the same classifier’s performance when it is evaluated on the
interval of training data that was not used for its learning.

4 Pawłowski and Kurach

3 Long Short-Term Memory Model

This section describes the Recurrent Neural Network with Long Short-Term Memory
(LSTM)[15] model, which is a crucial part of our final solution.

First, we give some background about the recurrent networks and formally define
the dynamics of LSTM. Next, we describe how the data was preprocessed. Finally, we
present the network architecture and describe in more detail the training procedure.

3.1 Overview

Recurrent Neural Network (RNN) is a type of artificial neural network in which de-
pendencies between nodes form a directed cycle. This allows the network to preserve
a state between subsequent time steps. This kind of network is particularly suited for
modeling sequential data, where the length of the input is not fixed or can be very long.
Parameters in RNNs are shared between different parts of the model, which allows
better generalization.

LSTM is an RNN architecture designed to be better at storing and accessing infor-
mation than standard RNN [11]. LSTM block contains memory cells that can remember
a value for an arbitrary length of time and use it when needed. It also has a special for-
get gate that can erase the content of the memory when it is no longer useful. All the
described components are built from differentiable functions and trained during back-
propagation step.

�
��ctCell

f×
�
��f Forget gate
6

� 	

���
hl
t−1
AAK
hl−1
t

�
��iInput
gate

AU

hl
t−1

���

hl−1
t

�
��o Output
gate

AU

hl
t−1

���

hl−1
t

�
��g
Input

modulation
gate

f× --

J
J
Ĵ f×- -?

hl
t

hl
t−1

hl−1
t

��:
XXz

Fig. 1. A graphical representation of LSTM memory cells used in [27] and in our solution.

The LSTM networks recently achieved state of the art performance in many tasks,
including language modeling[21], handwriting[12] or speech[10] recognition, and ma-
chine translation[22]. There are several variants of LSTM that slightly differ in connec-
tivity structure and activation functions. Definition 1 describes the architecture that we
implemented based on the equations from [27].

Detecting Methane Outbreaks from Time Series Data with Deep Neural Networks 5

Definition 1. Let hl
t ∈ Rn be a hidden state in layer l of the network at step t. We

assume that h0
t is the input at time t. Similarly, let clt ∈ Rn be a vector of long term

memory cells in layer l at step t. We define Tn,m : Rn → Rm to be an affine transform
(x→Wx+ b for some W and b) and� be a element-wise multiplication. Then, LSTM
is a transformation that takes 3 inputs (hl

t−1, hl−1
t , clt−1) and computes 2 outputs (hl

t

and clt) as follows:


i
f
o
g

 =


sigm
sigm
sigm
tanh

T2n,4n

(
hl−1
t

hl
t−1

)

clt = f � clt−1 + i� g

hl
t = o� tanh(clt)

In these equations, i, f, o, g are input, forget, output and input modulation gates
respectively. The sigm and tanh functions are applied element-wise. This relationship
is presented in Figure 1.

3.2 Data Preprocessing

To address problems mentioned in Section 2.3, we apply several transformations to the
original data.

First, for every sensor we normalize all of its readings to mean 0 and variance 1.
This is a standard technique that improves convergence of gradient descent methods.
To reduce overfitting and prevent algorithm from getting stuck in local minima, we
shuffle training data after every epoch (one full pass over the data). We also address the
problem of unbalanced classes by up-sampling with repetition from the warning class.
It was done to ensure that at least 10% of training examples are from the warning class.

Finally, we address the problem of large data. We modify the 600 input values from
every sensor by grouping every 10 consecutive values and replacing them with their
average.

3.3 Network Architecture and Training

As described in section 3.2, we did not use the input sequence of 600 values directly but
instead we grouped them. The network was unfolded to 60 time steps and trained using
backpropagation through time[25]. This was mostly because of the practical purposes:
for the original size the training took 10 times longer, we often exceeded the GPU
memory and it was preventing us from testing bigger embedding or batch sizes. It could
also negatively affect backpropagation, as the gradient was propagated for much longer.
We tried other window sizes, but the value of 10 seemed to achieve a good trade-off
between learning speed and quality.

6 Pawłowski and Kurach

The sensor values go through the hidden layer, which in this case consist solely of
LSTM cells. At time step t ∈ 1, .., 60, the input for RNN are 28 average sensor values
from seconds [(t− 1) ∗ 10, t ∗ 10).

After processing the whole sequence, the network’s hidden state h1
n encodes all

sensor averages in the same order in which they were seen. On top of this we build
a standard supervised classifier (Multi-Layer Perceptron in this case) that predicts the
binary outcome. The warning class is assigned a value of 1.0 and normal class is as-
signed a value of 0.0. The loss function used in the final model was Mean Squared
Error. It performed better than Binary Cross Entropy loss which is typically used for
binary classification

The training is done using standard Stochastic Gradient Descent algorithm and
backpropagation through time. We initialize all the parameters by sampling from uni-
form distribution. To avoid exploding gradient problem, the gradients are scaled glob-
ally during training, so that their norm is not grater than 1% of parameters’ norm. All
models were trained using Torch[3] on a machine with a GPU card.

4 Final Ensemble Model

We improve the quality of our prediction by making an ensemble model. In this section
we give an overview of the ensemble technique, describe the extra base learner that was
used in conjunction with the method described in Section 3 and document the procedure
we used to obtain the final prediction.

4.1 Ensembling Methods

Ensemble methods combine results of multiple „base” learning algorithms, to form a
single prediction that often achieves a better performance than any of individual base
algorithm alone[5]. To give an example, one of the simplest forms of ensembling is to
average the predictions of base algorithms. Ensembling works the best when base algo-
rithms are accurate and, importantly, diverse. Diversity can mean that errors produced
by the base algorithms are slightly correlated. Intuitively, in the mentioned example
of ensembling by averaging, the prediction quality increases because uncorrelated er-
rors „average out”. The more sophisticated ensembling algorithms include bagging[2],
boosting[7] or stacking[26].

4.2 Deep Feedforward Neural Network as a Base Learner

Deep feedforward neural network (DFNN) is an artificial neural network with multiple
layers of hidden neurons. One notable difference between DFNN and LSTM network
(described in Section 3) is that DFNN architecture does not contain recursive connec-
tions – instead, every neuron of the previous layer is connected with every neuron of
the next layer. We use DFNN, together with LSTM, as base learners in an ensemble
model. We train the DFNN with a backpropagation algorithm[24] that uses stochastic
gradient descent (with mini-batch and momentum) as an optimization procedure to min-
imize the root mean squared error between numeric predictions and the target values.
To avoid overfitting to the training set we use two regularization[9] methods: ad-hoc
early stopping[19] and dropout[20].

Detecting Methane Outbreaks from Time Series Data with Deep Neural Networks 7

Feature Engineering To balance the impact of different features, further reduce over-
fitting and decrease the computational cost we preprocess the training and test data in
the following way:

1. we scale the readings (separately for each sensor) across all the records to have
mean equal 0 and standard deviation equal 1,

2. we transform the values with x→ log(1 + x) function,
3. we compute mean and standard deviation for every sensor, taken over the last 30

readings (30-second period),
4. we keep the last 20 readings for the sensor that corresponds to the target label,
5. we discard all the original features.

Such preprocessing reduces the number of features from 16800 (28 ∗ 600) to just 76
(28 ∗ 2 + 20).

We also preprocess the training target values in the way described below. As men-
tioned in Subsection 2.1, there are three labels for each training record with the nor-
mal class for future methane concentration levels under 1.0 and the warning class for
methane concentration levels at or above 1.0. Recall from Subsection 2.3, that an over-
whelming majority of adjacent training periods overlap by exactly 9 minutes. That two
facts together allow us to reconstruct the exact amount of methane concentration for a
given record – to that end, we simply peek sensors values a few records in advance.
We take reconstructed values as targets instead of the original label values, while also
discarding all the training records for which such reconstruction is not possible (it turns
out that less than 1000 records out of 51700 training records are discarded).

Training and Parameter Tuning For each target label we train a different DFNN
model and tune its parameters independently, to optimize the performance on:

– (initially) the validation set – created by us as 20% of original training data. We
train the model on the remainder of training data,

– (finally) the preliminary test set. See Subsection 4.4 for more discussion of model
selection challenges.

We describe the final values of the most important parameters in Table 1. Parameters
for the first target label (MM263) are omitted because for that label, the DFNN model
fails to generate quality predictions for all the parameter combinations we tried.

4.3 Ensembling in Our Solution

Our final solution is an ensemble of two base models - LSTM described in Section 3
and DFNN described in Subsection 4.2.

We decide to forgo the complex ensembling schemes that would require retraining
of the models and perhaps additional parameter tuning. Instead, we consider a few
simple averaging methods and finally we choose the method that gives the best AUC
score – that is averaging the ranks of the base models’ predictions. Table 2 illustrates
the scores of particular models that are achieved on the preliminary test set. As the final
submission we take the model that is a combination of the best-performing methods for
each target label value. That is, for label MM263 we use LSTM, for label MM264 we
use DFNN and for label MM256 we use the ensemble of LSTM and DFNN.

8 Pawłowski and Kurach

target label MM263 MM264 MM256
activation - sigmoid ReLU
layer sizes - 76-15-5-2-1 76-25-7-3-1
dropout - none .5
learning rate - 0.1 0.1
mini-batch size - 30 30
number of epochs - 550 233

Table 1. Tuned parameter values for DFNN

AUC score \ label MM263 MM264 MM256
LSTM 0.9599 0.9560 0.9605
DFFN - 0.9773 0.9602
ensemble - 0.9722 0.9683

Table 2. Model scores

4.4 Results and Discussion

Our final ensemble model achieved a score of 0.94 and the 6th place in the competition.
It is interesting to mention that on the preliminary test set, our method obtained much
higher score of 0.9685 which, if not decreased, would correspond to the 1st place.

Such a significant drop in score can be explained by overfitting. It was not a surprise,
as we deliberately chose to perform model selection on the preliminary test set – that
is, we submitted the model that achieved the best score on that set. Usually one would
perform a cross-validation on the training set to perform model selection. The reason we
decided not to, was because of the significant differences between the training and the
test distributions (concept drift), as mentioned in Subsection 2.3. We wanted to avoid
a situation when the model is overly tuned to the training test and as a result does not
generalize well on the test set. As we had only one shot for a final submission, it is not
clear if the traditional (cross-validation) approach would have worked better – it can be
an interesting topic for further research.

5 Conclusion
In this paper we presented our Deep Neural Network-based solution to IJCRS’15 Data
Challenge: Mining Data from Coal Mines contest. It achieved a competitive score of
0.94 and the 6th place. The approach we developed should generalize well to other
multivariate time series prediction problems. The obtained results confirm that methods
based on Deep Neural Networks are not only effective for processing time series data,
but also do not require extensive feature engineering to perform well. As expected,
ensembling improves the quality of the prediction.

It would be interesting to see, if more advanced artificial neural network architec-
tures, such as LSTMs with attention mechanism[1] or Neural Turing Machines[13],
could achieve even better results. Another topic worth exploring are methods of han-
dling the concept drift in context of parameter tuning and model selection, which was
one of the main challenges in this task.

Detecting Methane Outbreaks from Time Series Data with Deep Neural Networks 9

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate. CoRR abs/1409.0473 (2014), http://arxiv.org/abs/1409.0473

2. Breiman, L.: Bagging predictors. Machine learning 24(2), 123–140 (1996)
3. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment for machine

learning. In: BigLearn, NIPS Workshop. No. EPFL-CONF-192376 (2011)
4. Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust time series

prediction. Neural Networks, IEEE Transactions on 5(2), 240–254 (1994)
5. Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple classifier systems, pp.

1–15. Springer (2000)
6. Donoghue, A.: Occupational health hazards in mining: an overview. Occupational Medicine

54(5), 283–289 (2004)
7. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. Journal-Japanese Society

For Artificial Intelligence 14(771-780), 1612 (1999)
8. Giles, C.L., Lawrence, S., Tsoi, A.C.: Noisy time series prediction using recurrent neural

networks and grammatical inference. Machine learning 44(1-2), 161–183 (2001)
9. Girosi, F., Jones, M.B., Poggio, T.: Regularization theory and neural networks architectures.

Neural computation 7(2), 219–269 (1995)
10. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural net-

works. In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on. pp. 6645–6649. IEEE (2013)

11. Graves, A.: Generating sequences with recurrent neural networks. CoRR abs/1308.0850
(2013), http://arxiv.org/abs/1308.0850

12. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel
connectionist system for unconstrained handwriting recognition. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 31(5), 855–868 (2009)

13. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. CoRR abs/1410.5401 (2014),
http://arxiv.org/abs/1410.5401

14. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. Signal Processing Magazine, IEEE
29(6), 82–97 (2012)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–
1780 (1997)

16. Janusz, A., Ślęzak, D., Sikora, M., Wróbel, L., Stawicki, S., Grzegorowski, M., Wojtas,
P.: Mining data from coal mines: IJCRS’15 Data Challenge. In: Proceedings of IJCRS’15.
LNCS, Springer (2015), in print November 2015

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems. pp. 1097–1105
(2012)

18. Le, Q.V.: Building high-level features using large scale unsupervised learning. In: Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. pp. 8595–
8598. IEEE (2013)

19. Prechelt, L.: Early stopping-but when? In: Neural Networks: Tricks of the trade, pp. 55–69.
Springer (1998)

20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A sim-
ple way to prevent neural networks from overfitting. The Journal of Machine Learning Re-
search 15(1), 1929–1958 (2014)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1410.5401

10 Pawłowski and Kurach

21. Sundermeyer, M., Schlüter, R., Ney, H.: Lstm neural networks for language modeling. In:
INTERSPEECH (2012)

22. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Advances in neural information processing systems. pp. 3104–3112 (2014)

23. Szlązak, N., Obracaj, D., Borowski, M., Swolkień, J., Korzec, M.: Monitoring and control-
ling methane hazard in excavations in hard coal mines. AGH Journal of Mining and Geo-
engineering 37 (2013)

24. Werbos, P.: Beyond regression: New tools for prediction and analysis in the behavioral sci-
ences (1974)

25. Werbos, P.J.: Generalization of backpropagation with application to a recurrent gas market
model. Neural Networks 1(4), 339–356 (1988)

26. Wolpert, D.H.: Stacked generalization. Neural networks 5(2), 241–259 (1992)
27. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. CoRR

abs/1409.2329 (2014), http://arxiv.org/abs/1409.2329

http://arxiv.org/abs/1409.2329

Predicting Dangerous Seismic Activity with
Recurrent Neural Networks

Karol Kurach
University of Warsaw

Email: kk236085@mimuw.edu.pl

Krzysztof Pawlowski
University of Warsaw

Email: kpawlowski236@gmail.com

Abstract—In this paper we present a solution to the AAIA’16
Data Mining Challenge. The goal of the challenge was to
predict, from multivariate time series data, periods of increased
seismic activity which may cause life-threatening accidents in
underground coal mines. Our solution is based on Recurrent
Neural Network with Long Short-Term Memory cells. It requires
almost no feature engineering, which makes it easily applicable
to other domains with multivariate time series data. The method
achieved the 5th place in the AAIA’16 competition, out of 203
teams.

I. INTRODUCTION

UNDERGROUND coal mine workers are exposed to a
life-threatening danger in a form of seismic events. To

improve workers’ safety, it is crucial to predict those phenom-
ena in advance. However, knowledge-based safety monitoring
systems that are currently deployed in coal mines sometimes
fail to forecast such occurrences early enough. The goal of
the AAIA’16 Data Mining Challenge: Predicting Dangerous
Seismic Events in Active Coal Mines competition [12] was
to design methods that could improve reliability of seismic
activity prediction.

The task is an instance of a classification problem with
unbalanced data provided in a form of multivariate, non-
stationary time series. We present a solution based on Re-
current Neural Network with Long Short-Term Memory cells.
The proposed model is generic and does not rely on the domain
knowledge. It requires only minimal feature preprocessing and
no feature engineering or feature selection steps. The solution
achieved a competitive 5th place in the AAIA’16 competition.

The rest of the paper is organized as follows. In Section II
we give an overview of the related work. The details of the
AAIA’16 challenge are described in Section III. Section IV
gives a brief introduction to Recurrent Neural Networks and
Long Short-Term Memory cells. In Section V we describe
the details of our architecture, training and model selection.
Finally, Section VI summarizes the paper.

II. RELATED WORK

Seismic hazard and rock bursts pose a threat to miners’
lives and overall safety of the coal mining operation. One
of the techniques for addressing this problem is to monitor
the sensor readings’ with automated algorithms. Originally,
natural earthquake seismology approaches have been used
to deal with the problem[3]. Mine-induced seismicity can
be assessed using mechanisms of mine tremors, such as

magnitude, moment, stress drop and seismic efficiency[16]
or using seismic tomography[10]. More recently, typical ma-
chine learning approaches have been used – such as Random
Forests[4] and other nonlinear methods[5], including Support
Vector Machines or Naive Bayes Classifier.

The recent IJCRS 2015 Data Challenge competition[13]
provided an opportunity to compare different approaches on
the data set coming from coal mining. Although the goal
was a bit different (to predict dangerous levels of methane
concentration), the data shared similar characteristics – being
an example of a time series, multivariate prediction problem
with concept drift. Most of the top solutions relied heavily
on feature engineering, either manual or automatic, such
as: automatic variable construction[1], window-based feature
engineering[8], hand-crafted features[15] or thousands of au-
tomatically generated features[21].

III. CHALLENGE DESCRIPTION

A. Data

The aim of the AAIA’16 competition was to predict relative
likelihood of seismic events in coal mines based on the
recorded measurements. It is an instance of supervised learning
classification task, with most of the data given in a form
of non-stationary multivariate time series. The data is split
into 5 training sets and a single test set. All the training sets
together contain 133, 151 records, while the test set contains
3, 860 records. Each record describes a period of 24 hours and
consists of:

• an identifier of the main working site and 12 characteris-
tics related to the whole period of 24 hours, such as total
energy of seismic bumps registered in the last 24 hours,

• 22 times series with 24 numeric per-hour aggregated
measurements, such as energy of the strongest seismic
bump within a given hour.

Thus, in total each record contains 541 values. As men-
tioned previously, the records are grouped into 5 training sets
and a single test set. The subsequent training sets correspond
to later periods, adjacent records in them overlap by 1 hour
and are given in a chronological order. The test set contains
records that come from period later than the last training set,
its records are non-overlapping and given in random order.

A label is given for each record in the training set while
for the test set such label is missing – it is the goal of the

competition to forecast those values. The label is a categorical
variable that can be either normal or warning. Value warning
indicates that a total seismic energy measured within 8-hour
period after the time covered by the record exceeded the
warning threshold of 50, 000 Joules. For each record in the
test set, the numeric predictions are to be made about those
(hidden) values.

Additionally, there is an extra „meta-data” set that describes
main working sites included in the training and test sets. It
contains information such as the height of the main working
site or the latest geological assessment. We note that the
training and test sets are highly unbalanced, with respect to
both the main working site attribute (Figure 1) and the labels
(Table I).

B. Evaluation

The competition score is defined as an area under the ROC
curve. It is calculated based on predictions of label values,
made for all 3, 860 test set records. Each prediction is a
number, where a higher value denotes that the true label value
is more likely to be warning.

The contestants submit their predictions during the com-
petition. However, before the competition is concluded, the
contestants know only the score computed over preliminary
test set – a part of the whole test set that contains approxi-
mately 25% of the data. This subset is chosen randomly by
the organizers and is the same for all the contestants. It is not
revealed to the participants which of the test records belong to
it. The contestants can select a single final solution, possibly
guided by the scores obtained on the preliminary test set. The
final score, however, is computed over the final test set, which
consists of the remaining approximately 75% of the test data.
This score is shown only after the end of the contest and is
used to compute the final standings – the highest-scoring team
is declared the winner.

14
6

14
9

15
5

17
1

26
4

37
3

43
7

47
0

47
9

49
0

50
8

54
1

57
5

58
3

59
9

60
7

64
1

68
9

70
3

72
5

76
5

77
7

79
3

79
9

Main working site

F
re

qu
en

cy

0

5000

10000

15000

20000

25000

30000

Fig. 1. The frequencies of different main working sites in the training sets.
Some sites appear only in the test set.

TABLE I
DISTRIBUTION OF LABELS ACROSS THE TRAINING SETS

tr. set 1 tr. set 2 tr. set 3 tr. set 4 tr. set 5
normal 78722 13137 13047 12744 12538

warning 1171 181 269 568 774

IV. DEEP RECURRENT NEURAL NETWORK

A. Recurrent Neural Networks

Recurrent Neural Network (RNN) is a type of artificial
neural network in which dependencies between nodes form
a directed cycle. This allows the network to preserve a state
between subsequent time steps. We focus on a simple RNN
with a single, self-connected hidden layer.

RNNs process all elements from a sequence one-by-one,
and the output at every time step depends on all previous
inputs. This is a fundamental difference from feedforward net-
works, where the network’s output depend only on the current
element. It has an important theoretical implication: RNNs
are capable of approximating arbitrary well any measurable
sequence-to-sequence mapping[9].

Since RNNs contain loops, the standard backpropagation
algorithm does not work. Instead, a backpropagation through
time algorithm is used[20]. The idea behind this method is to
unroll the network over N time steps, and copy the parameters
N times. The RNN parameters are shared across all time steps,
which makes them trainable and allows generalization.

Since the number of unrolled steps can be arbitrary, RNNs
are particularly suited for modeling sequential data, where the
length of the input is not fixed or can be very long. Recurrent
nets have shown impressive results in many NLP tasks. One
particularly successful variant of RNN is a recurrent network
with LSTM cells, which we describe below.

B. Long Short-Term Memory

One important problem with training RNNs is the vanishing
gradient, which can occur when values smaller than 1.0
are multiplied at each time step during the backpropagation
through time. For some activation functions, the maximal
value of the derivative is small. For example, the derivative of
commonly used sigmoid function is never bigger than 0.25. As
a result, after N time steps the gradient is multiplied by a value
less than or equal to 0.25N , which quickly becomes very small
as N increases. While using some activation functions (eg.
ReLU[17]) can reduce the likelihood of vanishing gradients,
there is a special architecture designed to address this problem:
Long Short-Term Memory (LSTM).

The LSTM is better at storing and accessing information
than standard RNN [11]. The LSTM block consists of a self-
connected memory cell and 3 gates named: input, output and
forget. The gates control the access to the cell and can be
interpreted as "read", "write" and "reset" operations in the
standard computer’s memory. The network learns to control
the gates and decides to update and/or use the value at any
given time step. Since all the components are built from

differentiable functions, the gradients can be computed for
the whole system and it is possible to train it end-to-end
using backpropagation. There are several variants of LSTM
that slightly differ in connectivity structure and activation
functions. Below we describe the definitions of the input,
output and forget gates that we used.

Let ht ∈ Rn be a hidden state, ct ∈ Rn be a vector
of memory cells of the network and let xt be the input
at the time step t. Let Wi,Wf ,Wu,Wo be matrices and
bi, bf , bu, bo the respective bias terms. We define LSTM as
a transformation that takes 3 inputs (ht−1, ct−1, xt) and
produces 2 outputs (ht and ct). In all equations below � is
element-wise multiplication. We assume also that ⊕ is an
operation that aggregates ht−1 and xt. We used plain sum,
but concatenation of vectors is also commonly used.

The forget gate which decides how much of the information
should be removed from the cell is defined as:

ft = sigm(Wf ∗ [ht−1 ⊕ xt] + bf) (1)

The input modulation gate value it and the cell update ut are
defined as:

it = sigm(Wi ∗ [ht−1 ⊕ xt] + bi)

ut = tanh(Wu ∗ [ht−1 ⊕ xt] + bu)
(2)

Intuitively, input modulation decides how much of the ut
should be added to the memory at step t. For example, if
xt can be ignored, it will be close to 0. Knowing the values
above, the new cell value ct is computed as:

ct = ft � ct−1 + it � gt (3)

The last step is to compute ht, the output passed to the next
LSTM’s time step. It is controlled by the output gate ot:

ot = sigm(Wo ∗ [ht−1 ⊕ xt] + bo)

ht = ot � tanh(ct)
(4)

The LSTM networks have been successfully applied
to real-world problems, including language modeling[18],
handwriting[7] or speech[6] recognition, and machine
translation[19].

V. MODEL

A. Preprocessing

Recall from Section II that most of the solutions to the
previous challenge depend heavily on feature engineering.
Such approach, while effective in practice, makes the model
less generalizable as the feature engineering steps depend on
the problem at hand. Our goal was to create a model that
learns everything from the raw data and does not rely on the
domain knowledge. To this end, we limit our preprocessing
only to the following two operations:

• Data normalization, in regards to mean and standard de-
viation. This is a standard Machine Learning procedure,
and as such it should be applicable to almost any problem.
The normalization makes easier both optimization of the

LSTM 1 LSTM 2 LSTM N

Single values Site embeddings

Concatenate

Feedforward NN

x1
1 x1

2 . . . x1
M x2

1 x2
2 . . . x2

M xN
1 xN

2 . . . xN
M

hN

e

s

Fig. 2. Overview of the architecture. A core component is a single-
layer LSTM unrolled for N = 24 time steps that processes M = 22
per-hour measurements. The ith per-hour measurement is marked as xi.
After processing N time steps, the last hidden state hN ∈ R50 of the
LSTM encodes information about all per-hour measurements. Then, hN is
concatenated with vector s ∈ R12 of per-record characteristics and the vector
e ∈ R10 representing the working site id embedding.

loss function and the regularization, because all feature
values are at the same scale.

• Upsampling positive examples. As presented in Table I,
the ratio of positive to negative examples is highly
skewed. To make it more balanced, we sample with
repetition from the set of positive examples and add
them to the training set. We experimented with different
upsampling ratios and achieved best results for increasing
the number of positives by 10− 20 times.

B. Architecture

The overview of the architecture is presented in Fig. 2. We
use a single-layer LSTM model that is processing 24 hourly
aggregated measurements. At every time step, the hidden state
of the LSTM (hi ∈ R50) is connected to the previous state
hi−1 and the normalized measurement values from the ith
hour (xi in the picture). After processing the whole sequence,
the network’s final hidden state hN encodes all measurements
in the order in which they appeared.

The vector hN is concatenated with 2 other vectors: s and e.
The vector s contains 12 per-record characteristics described
in Section III-A. The vector e is an 10-dimensional embedding
of the working site id. The values of the embedding vectors
are initialized randomly and learned from the training data.

On top of the concatenation layer we build a standard super-
vised classifier (2-layer feedforward network in this case). We
apply sigmoid on the network’s output to ensure the predicted
value is in the range [0, 1] and can be interpreted as the
probability of the warning label. The Binary Cross Entropy
loss is used as the cost function.

C. Training

We initialize all model’s parameters by sampling uniformly
from [−0.1, 0.1]. The optimization of the loss function is done

TABLE II
WORKING SITES CHARACTERISTICS

site id region name bed name assessment mapped to
146 Partia F 416 a N/A
149 Partia F 418 b N/A
155 Partia H 502 b N/A
171 Partia F 409 a 146
264 Z 405/2 b N/A
373 G-1 707/2 b N/A
437 G-1 712/1-2 b N/A
470 Z 405/2 c 264
.

777 9 504 b N/A
793 0 405 b N/A
799 9 504 a 777

using Adam algorithm[14] with a learning rate of 0.0005 and
ε parameter equal to 10−10. The training is run for 5 full passes
(epochs) over the training data. After each epoch, the learning
rate is multiplied by 0.63 and the training set is randomly
shuffled.

We apply standard l2 regularization of the weights with λ =
0.01. To avoid exploding gradient problem, the gradients are
clipped globally to the value of 1. The model was implemented
in Torch[2] and trained using a single GPU.

D. Model selection

Model selection was a significant challenge in the AAIA’16
competition. Recall from Section III-A that the time periods
in the training data are overlapping. As a result, the standard
cross-validation on a random split of the data tends to be over-
optimistic. Also, there is a significant concept drift between
the 5 provided training sets. The k-th training set was collected
in a time period right after the set (k − 1)th. We also know
that the last training set was collected before the test set.

To address the problem of overlapping periods and to make
the local evaluation as close to the final one as we can, we
decided to use 5-fold cross-validation, with one training file
being one fold. The average of the AUC scores was the final
score we assigned to the model. We completely ignored the
leaderboard score, as it proved to be very misleading in the
past for this type of data[13].

E. Dealing with unknown sites

As described in Section V-B, our architecture computes
embedding vectors for every working site id. However, recall
from Fig. 1 that some of those identifiers exist only in the
test data and not in the training data. We used the following
method to fix this problem: we looked at the working site
metadata and manually mapped 8 missing ids to existing ids
that share similar characteristics. An example is presented in
Table II which contains a subset of the metadata file. The id
171 is mapped to 146 because the region name and geological
assessment is the same for those two sites. Similarly, id 799
is mapped to 777 because of the same region and bed names.

The above approach can be significantly improved by com-
puting separate embeddings for different categorical variables

from the metadata (region/bed name, etc). This would remove
the need of manual mapping of the missing ids and potentially
improve the quality as well. However, we did not manage to
try this approach during the competition.

F. Ensembling

From the begin of the competition, our main design decision
was to create a competitive solution that consist of only one
model trained from the raw data. However, the practice of
machine learning competitions shows that ensembling of many
different models is an easy way of improving the final score.
We decided to do a simple rank average ensembling with a
logistic regression model, which moved our solution one place
up on the leaderboard.

VI. CONCLUSION

In this paper we presented a solution to AAIA’16 data
mining challenge based on a Recurrent Neural Network with
LSTM cells. It achieved a competitive score of 0.934 and the
5th place in the competition.

Compared to other methods (see Section II), our solution
does not rely heavily on many hand-crafted features. Instead,
it learns feature representation from the raw sensor data with a
minimal feature engineering. It is a similar method to the one
that we used in the previous IJCRS’15 competition, where
our model achieved the 6th place. Top performance in both
competitions suggests that our approach is versatile and can
be successfully applied to different multivariate time series
problems.

REFERENCES

[1] Marc Boullé. Prediction of methane outbreak in coal mines from
historical sensor data under distribution drift. In Rough Sets, Fuzzy
Sets, Data Mining, and Granular Computing, pages 439–451. Springer,
2015.

[2] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7:
A matlab-like environment for machine learning. In BigLearn, NIPS
Workshop, number EPFL-CONF-192376, 2011.

[3] C Allin Cornell. Engineering seismic risk analysis. Bulletin of the
Seismological Society of America, 58(5):1583–1606, 1968.

[4] Long-jun Dong, Xi-bing Li, and PENG Kang. Prediction of rockburst
classification using random forest. Transactions of Nonferrous Metals
Society of China, 23(2):472–477, 2013.

[5] Longjun Dong, Xibing Li, and Gongnan Xie. Nonlinear methodologies
for identifying seismic event and nuclear explosion using random forest,
support vector machine, and naive bayes classification. In Abstract and
Applied Analysis, volume 2014. Hindawi Publishing Corporation, 2014.

[6] Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference
on, pages 6645–6649. IEEE, 2013.

[7] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami,
Horst Bunke, and Jürgen Schmidhuber. A novel connectionist system for
unconstrained handwriting recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 31(5):855–868, 2009.

[8] Marek Grzegorowski and Sebastian Stawicki. Window-based feature
engineering for prediction of methane threats in coal mines. In Rough
Sets, Fuzzy Sets, Data Mining, and Granular Computing, pages 452–
463. Springer, 2015.

[9] Barbara Hammer. On the approximation capability of recurrent neural
networks. Neurocomputing, 31(1):107–123, 2000.

[10] David R Hanson, Thomas L Vandergrift, Matthew J DeMarco, and
Kanaan Hanna. Advanced techniques in site characterization and mining
hazard detection for the underground coal industry. International journal
of coal geology, 50(1):275–301, 2002.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[12] Andrzej Janusz, Marek Sikora, Łukasz Wróbel, and Dominik Ślęzak.
Predicting Dangerous Seismic Events: AAIA16 Data Mining Challenge.
In Proceedings of FedCSIS 2016. IEEE, 2016. In print September 2016.

[13] Andrzej Janusz, Marek Sikora, Łukasz Wróbel, Sebastian Stawicki,
Marek Grzegorowski, Piotr Wojtas, and Dominik Ślęzak. Mining data
from coal mines: Ijcrs2̆01915 data challenge. In Rough Sets, Fuzzy Sets,
Data Mining, and Granular Computing, pages 429–438. Springer, 2015.

[14] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[15] Petre Lameski, Eftim Zdravevski, Riste Mingov, and Andrea Kulakov.
Svm parameter tuning with grid search and its impact on reduction
of model over-fitting. In Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing, pages 464–474. Springer, 2015.

[16] A McGarr. Some applications of seismic source mechanism studies to

assessing underground hazard. In Rockbursts and Seismicity in Mines.,
pages 199–208, 1984.

[17] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 807–814, 2010.

[18] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural
networks for language modeling. In INTERSPEECH, 2012.

[19] Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence
learning with neural networks. In Advances in neural information
processing systems, pages 3104–3112, 2014.

[20] Paul J Werbos. Generalization of backpropagation with application to a
recurrent gas market model. Neural Networks, 1(4):339–356, 1988.

[21] Adam Zagorecki. Prediction of methane outbreaks in coal mines from
multivariate time series using random forest. In Rough Sets, Fuzzy Sets,
Data Mining, and Granular Computing, pages 494–500. Springer, 2015.

Smart Reply: Automated Response Suggestion for Email

Anjuli KannanF Karol KurachF Sujith RaviF

Tobias KaufmannF Andrew Tomkins Balint Miklos

Greg Corrado László Lukács Marina Ganea

Peter Young Vivek Ramavajjala

Google
{anjuli, kkurach, sravi, snufkin}@google.com

ABSTRACT
In this paper we propose and investigate a novel end-to-end
method for automatically generating short email responses,
called Smart Reply. It generates semantically diverse sug-
gestions that can be used as complete email responses with
just one tap on mobile. The system is currently used in In-
box by Gmail and is responsible for assisting with 10% of
all mobile responses. It is designed to work at very high
throughput and process hundreds of millions of messages
daily. The system exploits state-of-the-art, large-scale deep
learning.

We describe the architecture of the system as well as the
challenges that we faced while building it, like response di-
versity and scalability. We also introduce a new method for
semantic clustering of user-generated content that requires
only a modest amount of explicitly labeled data.

Keywords
Email; LSTM; Deep Learning; Clustering; Semantics

1. INTRODUCTION
Email is one of the most popular modes of communica-

tion on the Web. Despite the recent increase in usage of
social networks, email continues to be the primary medium
for billions of users across the world to connect and share
information [2]. With the rapid increase in email overload, it
has become increasingly challenging for users to process and
respond to incoming messages. It can be especially time-
consuming to type email replies on a mobile device.

FEqual contribution.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’16, August 13–17, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4232-2/16/08..

DOI: http://dx.doi.org/XXXX.XXXX

An initial study covering several million email-reply pairs
showed that ∼25% of replies have 20 tokens or less. Thus
we raised the following question: can we assist users with
composing these short messages? More specifically, would
it be possible to suggest brief responses when appropriate,
just one tap away?

Figure 1: Example Smart Reply suggestions.

Preprocess
Email

Trigger
response?

No Smart
Reply

Response
selection
(LSTM)

Permitted
responses

and clusters

Diversity
selection

Smart
Reply

Suggested

no

yes

Figure 2: Life of a message. The figure presents the
overview of inference.

To address this problem, we leverage the sequence-to-
sequence learning framework [23], which uses long short-
term memory networks (LSTMs) [10] to predict sequences
of text. Consistent with the approach of the Neural Conver-
sation Model [24], our input sequence is an incoming mes-
sage and our output distribution is over the space of possible
replies. Training this framework on a large corpus of con-
versation data produces a fully generative model that can
produce a response to any sequence of input text. As [24]
demonstrated on a tech support chat corpus, this distribu-
tion can be used to decode coherent, plausible responses.

However, in order to deploy such a model into a product
used globally by millions, we faced several challenges not
considered in previous work:

• Response quality How to ensure that the individual
response options are always high quality in language
and content.

• Utility How to select multiple options to show a user
so as to maximize the likelihood that one is chosen.

• Scalability How to efficiently process millions of mes-
sages per day while remaining within the latency re-
quirements of an email delivery system.

• Privacy How to develop this system without ever in-
specting the data except aggregate statistics.

To tackle these challenges, we propose Smart Reply (Fig-
ure 1), a novel method and system for automated email
response suggestion. Smart Reply consists of the following
components, which are also shown in Figure 2:

1. Response selection: At the core of our system, an
LSTM neural network processes an incoming message,
then uses it to predict the most likely responses. LSTM
computation can be expensive, so we improve scalabil-
ity by finding only the approximate best responses. We
explain the model in detail in Section 3.

2. Response set generation: To deliver high response
quality, we only select responses from response space
which is generated offline using a semi-supervised graph
learning approach. This is discussed in Section 4.

3. Diversity: After finding a set of most likely responses
from the LSTM, we would like to choose a small set to
show to the user that maximize the total utility. We
found that enforcing diverse semantic intents is critical
to making the suggestions useful. Our method for this
is described further in Section 5.

4. Triggering model: A feedforward neural network de-
cides whether or not to suggest responses. This fur-
ther improves utility by not showing suggestions when
they are unlikely to be used. We break this out into
a separate component so that we have the option to
use a computationally cheaper architecture than what
is used for the scoring model; this keeps the system
scalable. This model is described in Section 6.

The combination of these components is a novel end-to-
end method for generating short, complete responses to emails,
going beyond previous works. For response selection it ex-
ploits state-of-the-art deep learning models trained on bil-
lions of words, and for response set generation it introduces
a new semi-supervised method for semantic understanding
of user-generated content.

Moreover, since it directly addresses all four challenges
mentioned above, it has been successfully deployed in Inbox.
Currently, the Smart Reply system is responsible for assist-
ing with 10% of email replies for Inbox on mobile.

Next, we discuss the related work in Section 2, followed by
a description of our core system components in Sections 3, 4,
5, and 6. We close by showing modeling results in Section 7
and our conclusions in Section 8.

2. RELATED WORK
As we consider related work, we note that building an

automated system to suggest email responses is not a task
for which there is existing literature or benchmarks, nor is
this a standard machine learning problem to which existing
algorithms can be readily applied. However, there is work
related to two of our core components which we will review
here: predicting responses and identifying a target response
space.

Predicting full responses. Much work exists on analyz-
ing natural language dialogues in public domains such as
Twitter, but it has largely focused on social media tasks like
predicting whether or not a response is made [3], predicting
next word only [14], or curating threads [4].

Full response prediction was initially attempted in [16],
which approached the problem from the perspective of ma-
chine translation: given a Twitter post, ”translate” it into
a response using phrase-based statistical machine transla-
tion (SMT). Our approach is similar, but rather than using

SMT we use the neural network machine translation model
proposed in [23], called ”sequence-to-sequence learning”.

Sequence-to-sequence learning, which makes use of long
short-term memory networks (LSTMs) [10] to predict se-
quences of text, was originally applied to Machine Trans-
lation but has since seen success in other domains such as
image captioning [25] and speech recognition [6].

Other recent works have also applied recurrent neural net-
works (RNNs) or LSTMs to full response prediction [21],
[20], [19], [24]. In [21] the authors rely on having an SMT
system to generate n-best lists, while [19] and [24], like this
work, develop fully generative models. Our approach is most
similar to the Neural Conversation Model [24], which uses
sequence-to-sequence learning to model tech support chats
and movie subtitles.

The primary difference of our work is that it was deployed
in a production setting, which raised the challenges of re-
sponse quality, utility, scalability, and privacy. These chal-
lenges were not considered in any of these related works and
led to our novel solutions explained in the rest of this paper.

Furthermore, in this work we approach a different domain
than [21], [20], [19], and [24], which primarily focus on social
media and movie dialogues. In both of those domains it can
be acceptable to provide a response that is merely related
or on-topic. Email, on the other hand, frequently expresses
a request or intent which must be addressed in the response.

Identifying a target response space. Our approach here
builds on the Expander graph learning approach [15], since
it scales well to both large data (vast amounts of email)
and large output sizes (many different underlying seman-
tic intents). While Expander was originally proposed for
knowledge expansion and classification tasks [26], our work
is the first to use it to discover semantic intent clusters from
user-generated content.

Other graph-based semi-supervised learning techniques have
been explored in the past for more traditional classification
problems [27, 5]. Other related works have explored tasks in-
volving semantic classification [12] or identifying word-level
intents [17] targeted towards Web search queries and other
forums [7]. However, the problem settings and tasks them-
selves are significantly different from what is addressed in
our work.

Finally, we note that Smart Reply is the first work to
address these tasks together and solve them in a single end-
to-end, deployable system.

3. SELECTING RESPONSES
The fundamental task of the Smart Reply system is to find

the most likely response given an original message. In other
words, given original message o and the set of all possible
responses R, we would like to find:

r∗ = argmax
r∈R

P (r|o)

To find this response, we will construct a model that can
score responses and then find the highest scoring response.

We will next describe how the model is formulated, trained,
and used for inference. Then we will discuss the core chal-
lenges of bringing this model to produce high quality sug-
gestions on a large scale.

3.1 LSTM model
Since we are scoring one sequence of tokens r, conditional

on another sequence of tokens o, this problem is a natural
fit for sequence-to-sequence learning [23]. The model itself
is an LSTM. The input is the tokens of the original message
{o1, ..., on}, and the output is the conditional probability
distribution of the sequence of response tokens given the
input:

P (r1, ..., rm|o1, ..., on)

As in [23], this distribution can be factorized as:

P (r1, ..., rm|o1, ..., on) =

m∏
i=1

P (ri|o1, ..., on, r1, ..., ri−1)

First, the sequence of original message tokens, including a
special end-of-message token on, are read in, such that the
LSTM’s hidden state encodes a vector representation of the
whole message. Then, given this hidden state, a softmax
output is computed and interpreted as P (r1|o1, ..., on), or
the probability distribution for the first response token. As
response tokens are fed in, the softmax at each timestep t
is interpreted as P (rt|o1, ..., on, r1, ..., rt−1). Given the fac-
torization above, these softmaxes can be used to compute
P (r1, ..., rm|o1, ..., on).

Training Given a large corpus of messages, the training
objective is to maximize the log probability of observed re-
sponses, given their respective originals:

∑
(o,r)

logP (r1, ..., rm|o1, ..., on)

We train against this objective using stochastic gradient
descent with AdaGrad [8]. Ten epochs are run over a mes-
sage corpus which will be described in Section 7.1. Due to
the size of the corpus, training is run in a distributed fashion
using the TensorFlow library [1].

Both our input and output vocabularies consist of the
most frequent English words in our training data after pre-
processing (steps described in Section 7.1). In addition to
the standard LSTM formulation, we found that the addition
of a recurrent projection layer [18] substantially improved
both the quality of the converged model and the time to
converge. We also found that gradient clipping (with the
value of 1) was essential to stable training.

Inference At inference time we can feed in an original mes-
sage and then use the output of the softmaxes to get a prob-
ability distribution over the vocabulary at each timestep.
These distributions can be used in a variety of ways:

1. To draw a random sample from the response distribu-
tion P (r1, ..., rm|o1, ..., on). This can be done by sam-
pling one token at each timestep and feeding it back
into the model.

2. To approximate the most likely response, given the
original message. This can be done greedily by taking
the most likely token at each time step and feeding it
back in. A less greedy strategy is to use a beam search,
i.e., take the top b tokens and feed them in, then retain
the b best response prefixes and repeat.

Query Top generated responses
Hi, I thought it would be I can do Tuesday.
great for us to sit down I can do Wednesday.
and chat. I am free How about Tuesday?
Tuesday and Wenesday. I can do Tuesday!
Can you do either of I can do Tuesday. What
those days? time works for you?

I can do Wednesday!
Thanks! I can do Tuesday or

Wednesday.
–Alice How about Wednesday?

I can do Wednesday. What
time works for you?
I can do either.

Table 1: Generated response examples.

3. To determine the likelihood of a specific response can-
didate. This can be done by feeding in each token of
the candidate and using the softmax output to get the
likelihood of the next candidate token.

Table 1 shows some example of generating the approxi-
mate most likely responses using a beam search.

3.2 Challenges
As described thus far, the model can generate coherent

and plausible responses given an incoming email message.
However, several key challenges arise when bringing this
model into production.

Response quality In order to surface responses to users,
we need to ensure that they are always high quality in style,
tone, diction, and content.

Given that the model is trained on a corpus of real mes-
sages, we have to account for the possibility that the most
probable response is not necessarily a high quality response.
Even a response that occurs frequently in our corpus may
not be appropriate to surface back to users. For example,
it could contain poor grammar, spelling, or mechanics (your
the best!); it could convey a familiarity that is likely to be
jarring or offensive in many situations (thanks hon!); it could
be too informal to be consistent with other Inbox intelligence
features (yup, got it thx); it could convey a sentiment that
is politically incorrect, offensive, or otherwise inappropriate
(Leave me alone).

While restricting the model vocabulary might address sim-
ple cases such as profanity and spelling errors, it would not
be sufficient to capture the wide variability with which, for
example, politically incorrect statements can be made. In-
stead, we use semi-supervised learning (described in detail
in Section 4) to construct a target response space R com-
prising only high quality responses. Then we use the model
described here to choose the best response in R, rather than
the best response from any sequence of words in its vocab-
ulary.

Utility Our user studies showed that suggestions are most
useful when they are highly specific to the original message
and express diverse intents. However, as column 1 in Table
2 shows, the raw output of the model tends to (1) favor com-
mon but unspecific responses and (2) have little diversity.

First, to improve specificity of responses, we apply some
light normalization that penalizes responses which are ap-
plicable to a broad range of incoming messages. The results
of this normalization can be seen in column 2 of Table 2.
For example, the very generic ”Yes!” has fallen out of the
top ten. Second, to increase the breadth of options shown
to the user, we enforce diversity by exploiting the semantic
structure of R, as we will discuss in Section 5. The results
of this are also shown at the bottom of Table 2.

We further improve the utility of suggestions by first pass-
ing each message through a triggering model (described in
Section 6) that determines whether suggestions should be
generated at all. This reduces the likelihood that we show
suggestions when they would not be used anyway.

Scalability Our model needs to be deployed in a production
setting and cannot introduce latency to the process of email
delivery, so scalability is critical.

Exhaustively scoring every response candidate r ∈ R,
would require O(|R|l) LSTM steps where l is the length of
the longest response. In previous work [23], this could be
afforded because computations were performed in a batch
process offline. However, in the context of an email deliv-
ery pipeline, time is a much more precious resource. Fur-
thermore, given the tremendous diversity with which people
communicate and the large number of email scenarios we
would like to cover, we can assume that R is very large and
only expected to grow over time. For example, in a uniform
sample of 10 million short responses (say, responses with at
most 10 tokens), more than 40% occur only once. There-
fore, rather than performing an exhaustive scoring of every
candidate r ∈ R, we would like to efficiently search for the
best responses such that complexity is not a function of |R|.

Our search is conducted as follows. First, the elements of
R are organized into a trie. Then, we conduct a left-to-right
beam search, but only retain hypotheses that appear in the
trie. This search process has complexity O(bl) for beam size
b and maximum response length l. Both b and l are typically
in the range of 10-30, so this method dramatically reduces
the time to find the top responses and is a critical element
of making this system deployable. In terms of quality, we
find that, although this search only approximates the best
responses in R, its results are very similar to what we would
get by scoring and ranking all r ∈ R, even for small b. At
b = 128, for example, the top scoring response found by this
process matches the true top scoring response 99% of the
time. Results for various beam sizes are shown in Figure 3.

Additionally, requiring that each message first pass through
a triggering model, as mentioned above, has the additional
benefit of reducing the total amount of LSTM computation.

Privacy Note that all email data (raw data, preprocessed
data and training data) was encrypted. Engineers could only
inspect aggregated statistics on anonymized sentences that
occurred across many users and did not identify any user.
Also, only frequent words are retained. As a result, verifying
model’s quality and debugging is more complex.

Our solutions for the first three challenges are described
further in Sections 4, 5, and 6.

0 20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1

Beam size

F
re

q
u
en

cy
o
f

m
a
tc

h
in

g
ex

h
a
u
st

iv
e

se
a
rc

h

Figure 3: Effectiveness of searching the response
space R. For a sample of messages we compute the fre-
quency with which the best candidate found by a beam
search over R matches the best candidate found by exhaus-
tively scoring all members of R. We compare various beam
sizes. At a beam size of 16, these two methods find the same
best response 93% of the time.

4. RESPONSE SET GENERATION
Two of the core challenges we face when building the end

to end automated response system are response quality and
utility. Response quality comes from suggesting “high qual-
ity” responses that deliver a positive user experience. Util-
ity comes from ensuring that we don’t suggest multiple re-
sponses that capture the same intent (for example, minor
lexical variations such as “Yes, I’ll be there.” and “I will be
there.”). We can consider these two challenges jointly.

We first need to define a target response space that com-
prises high quality messages which can be surfaced as sug-
gestions. The goal here is to generate a structured response
set that effectively captures various intents conveyed by peo-
ple in natural language conversations. The target response
space should capture both variability in language and in-
tents. The result is used in two ways downstream—(a) de-
fine a response space for scoring and selecting suggestions
using the model described in Section 3, and (b) promote di-
versity among chosen suggestions as discussed in Section 5.

We construct a response set using only the most frequent
anonymized sentences aggregated from the preprocessed data
(described in Section 7.1). This process yields a few million
unique sentences.

4.1 Canonicalizing email responses
The first step is to automatically generate a set of canon-

ical responses messages that capture the variability in lan-
guage. For example, responses such as“Thanks for your kind
update.”, “Thank you for updating!”, “Thanks for the status
update.” may appear slightly different on the surface but in
fact convey the same information. We parse each sentence
using a dependency parser and use its syntactic structure to
generate a canonicalized representation. Words (or phrases)
that are modifiers or unattached to head words are ignored.

4.2 Semantic intent clustering
In the next step, we want to partition all response mes-

sages into “semantic” clusters where a cluster represents a
meaningful response intent (for example, “thank you” type
of response versus “sorry” versus “cannot make it”). All mes-
sages within a cluster share the same semantic meaning but
may appear very different. For example, “Ha ha”, “lol” and
“Oh that’s funny!” are associated with the funny cluster.

This step helps to automatically digest the entire infor-
mation present in frequent responses into a coherent set of
semantic clusters. If we were to build a semantic intent pre-
diction model for this purpose, we would need access to a
large corpus of sentences annotated with their corresponding
semantic intents. However, this is neither readily available
for our task nor at this scale. Moreover, unlike typical ma-
chine learning classification tasks, the semantic intent space
cannot be fully defined a priori. So instead, we model the
task as a semi-supervised machine learning problem and use
scalable graph algorithms [15] to automatically learn this
information from data and a few human-provided examples.

4.3 Graph construction
We start with a few manually defined clusters sampled

from the top frequent messages (e.g., thanks, i love you,
sounds good). A small number of example responses are
added as “seeds” for each cluster (for example, thanks →
“Thanks!”, “Thank you.”).1

We then construct a base graph with frequent response
messages as nodes (VR). For each response message, we fur-
ther extract a set of lexical features (ngrams and skip-grams
of length up to 3) and add these as “feature” nodes (VF) to
the same graph. Edges are created between a pair of nodes
(u, v) where u ∈ VR and v ∈ VF if v belongs to the feature
set for response u. We follow the same process and create
nodes for the manually labeled examples VL. We make an
observation that in some cases an incoming original mes-
sage could potentially be treated as a response to another
email depending on the context. For example, consider the
following (original, response) message pairs:

Let us get together soon. → When should we meet?
When should we meet? → How about Friday?

Inter-message relations as shown in the above example can
be modeled within the same framework by adding extra
edges between the corresponding message nodes in the graph.

4.4 Semi-supervised learning
The constructed graph captures relationships between sim-

ilar canonicalized responses via the feature nodes. Next, we
learn a semantic labeling for all response nodes by propa-
gating semantic intent information from the manually la-
beled examples through the graph. We treat this as a semi-
supervised learning problem and use the distributed EX-
PANDER [15] framework for optimization. The learning
framework is scalable and naturally suited for semi-supervised
graph propagation tasks such as the semantic clustering
problem described here. We minimize the following objec-
tive function for response nodes in the graph:

1In practice, we pick 100 clusters and on average 3–5 labeled
seed examples per cluster.

Figure 4: Semantic clustering of response messages.

si||Ĉi − Ci||2 + µpp||Ĉi − U ||2

+ µnp

(∑
j∈NF (i)

wij ||Ĉi − Ĉj ||2 +
∑

j∈NR(i)

wik||Ĉi − Ĉk||2
)
(1)

where si is an indicator function equal to 1 if the node i is
a seed and 0 otherwise, Ĉi is the learned semantic cluster
distribution for response node i, Ci is the true label distri-
bution (i.e., for manually provided examples), NF (i) and
NR(i) represent the feature and message neighborhood of
node i, µnp is the predefined penalty for neighboring nodes

with divergent label distributions, Ĉj is the learned label
distribution for feature neighbor j, wij is the weight of fea-
ture j in response i, µpp is the penalty for label distribution
deviating from the prior, a uniform distribution U .

The objective function for a feature node is alike, except
that there is no first term, as there are no seed labels for
feature nodes:

µnp

∑
i∈N (j)

wij ||Ĉj − Ĉi||2 + µpp||Ĉj − U ||2 (2)

The objective function is jointly optimized for all nodes
in the graph.

The output from EXPANDER is a learned distribution of
semantic labels for every node in the graph. We assign the
top scoring output label as the semantic intent for the node,
labels with low scores are filtered out. Figure 4 illustrates
this process.

To discover new clusters which are not covered by the
labeled examples, we run the semi-supervised learning algo-
rithm in repeated phases. In the first phase, we run the label
propagation algorithm for 5 iterations. We then fix the clus-
ter assignment, randomly sample 100 new responses from
the remaining unlabeled nodes in the graph. The sampled
nodes are treated as potential new clusters and labeled with
their canonicalized representation. We rerun label propa-
gation with the new labeled set of clusters and repeat this
procedure until convergence (i.e., until no new clusters are
discovered and members of a cluster do not change between
iterations). The iterative propagation method thereby al-

lows us to both expand cluster membership as well as dis-
cover (up to 5X) new clusters, where each cluster has an
interpretable semantic interpretation.

4.5 Cluster Validation
Finally, we extract the top k members for each semantic

cluster, sorted by their label scores. The set of (response,
cluster label) pairs are then validated by human raters. The
raters are provided with a response Ri, a corresponding clus-
ter label C (e.g., thanks) as well as few example responses
belonging to the cluster (e.g., “Thanks!”, “Thank you.”) and
asked whether Ri belongs to C.

The result is an automatically generated and validated
set of high quality response messages labeled with semantic
intent. This is subsequently used by the response scoring
model to search for approximate best responses to an in-
coming email (described earlier in Section 3) and further
to enforce diversity among the top responses chosen (Sec-
tion 5).

5. SUGGESTION DIVERSITY
As discussed in Section 3, the LSTM first processes an

incoming message and then selects the (approximate) best
responses from the target response set created using the
method described in Section 4. Recall that we follow this
by some light normalization to penalize responses that may
be too general to be valuable to the user. The effect of this
normalization can be seen by comparing columns 1 and 2 of
Table 2. For example, the very generic ”Yes!” falls out of the
top ten responses.

Next, we need to choose a small number of options to
show the user. A straight-forward approach would be to just
choose the N top responses and present them to the user.
However, as column 2 of Table 2 shows, these responses tend
to be very similar.

The likelihood of at least one response being useful is
greatest when the response options are not redundant, so it
would be wasteful to present the user with three variations
of, say, I’ll be there. The job of the diversity component is
to select a more varied set of suggestions using two strate-
gies: omitting redundant responses and enforcing negative
or positive responses.

5.1 Omitting Redundant Responses
This strategy assumes that the user should never see two

responses of the same intent. An intent can be thought of as
a cluster of responses that have a common communication
purpose, e.g. confirming, asking for time or rejecting partic-
ipation. In Smart Reply, every target response is associated
with exactly one intent. Intents are defined based on auto-
matic clustering followed by human validation as discussed
in Section 4.

The actual diversity strategy is simple: the top responses
are iterated over in the order of decreasing score. Each re-
sponse is added to the list of suggestions, unless its intent
is already covered by a response on the suggestion list. The
resulting list contains only the highest-scored representative
of each intent, and these representatives are ordered by de-
creasing score.

5.2 Enforcing Negatives and Positives
We have observed that the LSTM has a strong tendency

towards producing positive responses, whereas negative re-
sponses such as I can’t make it or I don’t think so typically
receive low scores. We believe that this tendency reflects
the style of email conversations: positive replies may be
more common, and where negative responses are appropri-
ate, users may prefer a less direct wording.

Nevertheless, we think that it is important to offer nega-
tive suggestions in order to give the user a real choice. This
policy is implemented through the following strategy:

If the top two responses (after omitting redun-
dant responses) contain at least one positive re-
sponse and none of the top three responses are
negative, the third response is replaced with a
negative one.

A positive response is one which is clearly affirmative, e.g.
one that starts with Yes, Sure or Of course. In order to find
the negative response to be included as the third sugges-
tion, a second LSTM pass is performed. In this second pass,
the search is restricted to only the negative responses in the
target set (refer Table 2 for scored negative response exam-
ples). This is necessary since the top responses produced in
the first pass may not contain any negatives.

Even though missing negatives are more common, there
are also cases in which an incoming message triggers exclu-
sively negative responses. In this situation, we employ an
analogous strategy for enforcing a positive response.

The final set of top scoring responses (bottom row in Ta-
ble 2) are then presented to the user as suggestions.

6. TRIGGERING
The triggering module is the entry point of the Smart

Reply system. It is responsible for filtering messages that
are bad candidates for suggesting responses. This includes
emails for which short replies are not appropriate (e.g., con-
taining open-ended questions or sensitive topics), as well as
emails for which no reply is necessary at all (e.g., promo-
tional emails and auto-generated updates).

The module is applied to every incoming email just after
the preprocessing step. If the decision is negative, we finish
the execution and do not show any suggestions (see Fig-
ure 2). Currently, the system decides to produce a Smart

Unnormalized Responses Normalized Responses
Yes, I’ll be there. Sure, I’ll be there.
Yes, I will be there. Yes, I can.
I’ll be there. Yes, I can be there.
Yes, I can. Yes, I’ll be there.
What time? Sure, I can be there.
I’ll be there! Yeah, I can.
I will be there. Yeah, I’ll be there.
Sure, I’ll be there. Sure, I can.
Yes, I can be there. Yes. I can.
Yes! Yes, I will be there.

Normalized Negative Responses
Sorry, I won’t be able to make it tomorrow.
Unfortunately I can’t.
Sorry, I won’t be able to join you.
Sorry, I can’t make it tomorrow.
No, I can’t.
Sorry, I won’t be able to make it today.
Sorry, I can’t.
I will not be available tomorrow.
I won’t be available tomorrow.
Unfortunately, I can’t.

Final Suggestions
Sure, I’ll be there.
Yes, I can.
Sorry, I won’t be able to make it tomorrow.

Table 2: Different response rankings for the message
“Can you join tomorrow’s meeting?”

Reply for roughly 11% of messages, so this process vastly
reduces the number of useless sugestions seen by the users.
An additional benefit is to decrease the number of calls to
the more expensive LSTM inference, which translates into
smaller infrastructure cost.

There are two main requirements for the design of the
triggering component. First, it has to be good enough to
figure out cases where the response is not expected. Note
that this is a very different goal than just scoring a set of re-
sponses. For instance, we could propose several valid replies
to a newsletter containing a sentence “Where do you want
to go today?”, but most likely all of the responses would be
useless for our users. Second, it has to be fast: it processes
hundreds of millions of messages daily, so we aim to process
each message within milliseconds.

The main part of the triggering component is a feedfor-
ward neural network which produces a probability score for
every incoming message. If the score is above some thresh-
old, we trigger and run the LSTM scoring. We have adopted
this approach because feedforward networks have repeatedly
been shown to outperform linear models such as SVM or lin-
ear regression on various NLP tasks (see for example [9]).

6.1 Data and Features
In order to label our training corpus of emails, we use as

positive examples those emails that have been responded to.
More precisely, out of the data set described in Section 7.1,
we create a training set that consists of pairs (o, y), where
o is an incoming message and y ∈ {true, false} is a boolean
label, which is true if the message had a response and false
otherwise. For the positive class, we consider only messages
that were replied to from a mobile device, while for negative

we use a subset of all messages. We downsample the negative
class to balance the training set. Our goal is to model P (y =
true | o), the probability that message o will have a response
on mobile.

After preprocessing (described in Section 7.1), we extract
content features (e.g. unigrams, bigrams) from the mes-
sage body, subject and headers. We also use various so-
cial signals like whether the sender is in recipient’s address
book, whether the sender is in recipient’s social network and
whether the recipient responded in the past to this sender.

6.2 Network Architecture and Training
We use a feedforward multilayer perceptron with an em-

bedding layer (for a vocabulary of roughly one million words)
and three fully connected hidden layers. We use feature
hashing to bucket rare words that are not present in the
vocabulary. The embeddings are separate for each sparse
feature type (eg. unigram, bigram) and within one feature
type, we aggregate embeddings by summing them up. Then,
all sparse feature embeddings are concatenated with each
other and with the vector of dense features (those are real
numbers and boolean values mentioned in Section 6.1).

We use the ReLu [13] activation function for non-linearity
between layers. The dropout [22] layer is applied after each
hidden layer. We train the model using AdaGrad [8] opti-
mization algorithm with logistic loss cost function. Similarly
to the LSTM, the training is run in a distributed fashion us-
ing the TensorFlow library [1].

7. EVALUATION AND RESULTS
In this section, we describe the training and test data, as

well as preprocessing steps used for all messages. Then, we
evaluate different components of the Smart Reply system
and present overall usage statistics.

7.1 Data
To generate the training data for all Smart Reply models

from sampled accounts, we extracted all pairs of an incom-
ing message and the user’s response to that message. For
training the triggering model (see Section 6), we addition-
ally sampled a number of incoming personal messages which
the user didn’t reply to. At the beginning of Smart Reply
pipeline (Figure 2), data is preprocessed in the following
way:

Language detection The language of the message is iden-
tified and non-English messages are discarded.

Tokenization Subject and message body are broken into
words and punctuation marks.

Sentence segmentation Sentences boundaries are identi-
fied in the message body.

Normalization Infrequent words and entities like personal
names, URLs, email addresses, phone numbers etc. are
replaced by special tokens.

Quotation removal Quoted original messages and forwarded
messages are removed.

Salutation/close removal Salutations like Hi John and
closes such as Best regards, Mary are removed.

After the preprocessing steps, the size of the training set
is 238 million messages, which include 153 million messages
that have no response.

7.2 Results
The most important end-to-end metric for our system is

the fraction of messages for which it was used. This is cur-
rently 10% of all mobile replies. Below we describe in more
detail evaluation stats for different components of the sys-
tem. We evaluate all parts in isolation using both offline
analysis as well as online experiments run on a subset of
accounts.

7.2.1 Triggering results
In order to evaluate the triggering model, we split the

data set described in Section 6.1 into train (80%) and test
(20%) such that all test messages are delivered after train
messages. This is to ensure that the test conditions are
similar to the final scenario. We use a set of standard binary
classifier metrics: precision, recall and the area under the
ROC curve. The AUC of the triggering model is 0.854.
We also compute the fraction of triggered messages in the
deployed system, which is 11%. We observed that it may be
beneficial to slightly over-trigger, since the cost of presenting
a suggestion, even if it is not used, is quite low.

7.2.2 Response selection results
We evaluate the LSTM scoring model on three standard

metrics: Perplexity, Mean Reciprocal Rank and Precision@K.

Perplexity.
Perplexity is a measure of how well the model has fit the

data: a model with lower perplexity assigns higher likelihood
to the test responses, so we expect it to be better at pre-
dicting responses. Intuitively, a perplexity equal to k means
that when the model predicts the next word, there are on
average k likely candidates. In particular, for the ideal sce-
nario of perplexity equal to 1, we always know exactly what
should be the next word. The perplexity on a set of N test
samples is computed using the following formula:

Pr = exp(− 1

W

N∑
i=1

ln(P̂ (ri1, ..., r
i
m|oi1, ..., oin)))

where W is the total number of words in all N samples, P̂
is the learned distribution and ri, oi are the i-th response
and original message. Note that in the equation above only
response terms are factored into Pr. The perplexity of the
Smart Reply LSTM is 17.0. By comparison, an n-grams
language model with Katz backoff [11] and a maximum or-
der of 5 has a perplexity of 31.4 on the same data (again,
computed only from response terms).

Response ranking.
While perplexity is a quality indicator, it does not actually

measure performance at the scoring task we are ultimately
interested in. In particular, it does not take into account
the constraint of choosing a response in R. Therefore we
also evaluate the model on a response ranking task: for each
of N test message pairs (o, r) for which r ∈ R, we compute
s = P (r|o) and ∀ixi = P (wi|o), where wi is the i-th element
of R. Then we sort the set R = {s, x1, . . . , xN} in descending
order. Finally, we define ranki = argminj(Rj |Rj = s). Put
simply, we are finding the rank of the actual response with
respect to all elements in R.

Model Precision@10 Precision@20 MRR
Random 5.58e− 4 1.12e− 3 3.64e− 4

Frequency 0.321 0.368 0.155
Multiclass-BOW 0.345 0.425 0.197

Smart Reply 0.483 0.579 0.267

Table 3: Response ranking

Using this value, we can compute the Mean Reciprocal
Rank:

MRR =
1

N

N∑
i=1

1

ranki

Additionally we can compute Precision@K. For a given
value of K it is computed as the number of cases for which
target response r was within the topK responses that were
ranked by the model.

We compare the Smart Reply response selection model
to three baselines on the same ranking task. The Random
baseline ranks R randomly. The Frequency baseline ranks
them in order of their frequency in the training corpus. This
baseline captures the extent to which we can simply suggest
highly frequent responses without regard for the contents of
the original message. The Multiclass-BOW baseline ranks
R using a feedforward neural network whose input is the
original message, represented with bag of words features,
and whose output is a distribution over the elements of R
(a softmax).

As shown in Table 3, the Smart Reply LSTM significantly
improves on the Frequency baseline, demonstrating that con-
ditioning on the original message is effective; the model suc-
cessfully extracts information from the original message and
uses it to rank responses more accurately.

It also significantly outperforms the Multiclass-BOW base-
line. There are a few possible explanations for this. First,
the recurrent architecture allows the model to learn more
sophisticated language understanding than bag of words fea-
tures. Second, when we pose this as a mulitclass prediction
problem, we can only train on messages whose response is
in R, a small fraction of our data. On the other hand, the
sequence-to-sequence framework allows us to take advantage
of all data in our corpus: the model can learn a lot about
original-response relationships even when the response does
not appear in R exactly.

Note that an added disadvantage of the multiclass formu-
lation is that it tightly couples the training of the model
to the construction of R. We expect R to grow over time,
given the incredible diversity with which people communi-
cate. While a simpler application such as chat might only
need a small number of possible responses, we find that for
email we will need a tremendous number of possible sugges-
tions to really address users’ needs.

7.2.3 Diversity results
We justify the need for both the diversity component and

a sizable response space R by reporting statistics around
unique suggestions and clusters in Table 4. The Smart Re-
ply system generates daily 12.9k unique suggestions that
belong to 376 unique semantic clusters. Out of those, peo-
ple decide to use 4, 115, or 31.9% of, unique suggestions and
313, or 83.2% of, unique clusters. Note, however, that many
suggestions are never seen, as column 2 shows: the user may
not open an email, use the web interface instead of mobile

 0.0001

 0.001

 0.01

 0.1

 0 50 100 150 200 250 300 350 400 450 500

R
el

at
iv

e
us

ag
e

 (%
 o

f t
ot

al
 u

sa
ge

 c
ou

nt
 fo

r a
ll

su
gg

es
te

d
re

sp
on

se
s)

Rank of used responses

Figure 5: Usage distribution for top suggested re-
sponses.

Daily Count Seen Used
Unique Clusters 376 97.1% 83.2%

Unique Suggestions 12.9k 78% 31.9%

Table 4: Unique cluster/suggestions usage per day

or just not scroll down to the bottom of the message. Also,
only one of the three displayed suggestions will be selected
by the user. These statistics demonstrate the need to go
well beyond a simple system with 5 or 10 canned responses.

Figure 5 and Figure 6 present, respectively, the distribu-
tion of the rank for suggested responses and the distribution
of suggested clusters. The tail of the cluster distribution
is long, which explains the poor performance of Frequency
baseline described in Section 7.2.2.

We also measured how Smart Reply suggestions are used
based on their location on a screen. Recall that Smart Reply
always presents 3 suggestions, where the first suggestion is
the top one. We observed that, out of all used suggestions,
45% were from the 1st position, 35% from the 2nd position
and 20% from the 3rd position. Since usually the third po-
sition is used for diverse responses, we conclude that the
diversity component is crucial for the system quality.

Finally, we measured the impact of enforcing a diverse set
of responses (e.g., by not showing two responses from the
same semantic cluster) on user engagement: when we com-
pletely disabled the diversity component and simply sug-
gested the three suggestions with the highest scores, the
click-through rate decreased by roughly 7.5% relative.

8. CONCLUSIONS
We presented Smart Reply, a novel end-to-end system for

automatically generating short, complete email responses.
The core of the system is a state-of-the-art deep LSTM
model that can predict full responses, given an incoming
email message. To successfully deploy this system in Inbox
by Gmail, we addressed several challenges:

• We ensure that individual response options deliver qual-
ity by selecting them from a carefully constructed re-
sponse space. The responses are identified by a novel
method for semantic clustering.

• We increase the total utility of our chosen combina-

 0.01

 0.1

th
an

ks

w
ill

do

no
 i

di
d

nt

so
un

ds
 g

oo
d

th
an

ks
 fo

r t
he

 u
pd

at
e

i g
ot

 it

gr
ea

t t
ha

nk
s

se
e

yo
u

he
re

 y
ou

 g
o

lo
ve

 it

lo
ok

s
go

od

ye
s

i a
m

no
 p

ro
bl

em

th
an

ks
 fo

r t
he

 h
el

p

ok
 th

an
ks

i l
l b

e
th

er
e

th
at

 s
 fi

ne

gr
ea

t

no
te

d

th
an

ks
 fo

r e
m

ai
l

R
el

at
iv

e
us

ag
e

(%
 o

f t
ot

al
 u

sa
ge

 c
ou

nt
 fo

r s
em

an
tic

 c
lu

st
er

s)

Figure 6: Usage distribution for semantic clusters
corresponding to top suggested responses.

tion of suggestions by enforcing diversity among them,
and filtering traffic for which suggestions would not be
useful.

• We build a scalable system by efficiently searching the
target response space.

Our clearest metric of success is the fact that 10% of mo-
bile replies in Inbox are now composed with assistance from
the Smart Reply system. Furthermore, we have designed the
system in such a way that it is easily extendable to address
additional user needs; for instance, the architecture of our
core response scoring model is language agnostic, therefore
accommodates extension to other languages in addition to
English.

9. ACKNOWLEDGMENTS
The authors would like to thank Oriol Vinyals and Ilya

Sutskever for many helpful discussions and insights, as well
as Prabhakar Raghavan for his guidance and support.

10. REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, and et al. Tensorflow:

Large-scale machine learning on heterogeneous systems. 2015.

[2] I. G. P. Affairs. Interconnected world: Communication & social
networking. Press Release, March 2012. http:
//www.ipsos-na.com/news-polls/pressrelease.aspx?id=5564.

[3] Y. Artzi, P. Pantel, and M. Gamon. Predicting responses to
microblog posts. In Proceedings of the 2012 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
pages 602–606, Montréal, Canada, June 2012. Association for
Computational Linguistics.

[4] L. Backstrom, J. Kleinberg, L. Lee, and
C. Danescu-Niculescu-Mizil. Characterizing and curating
conversation threads: Expansion, focus, volume, re-entry. In
Proceedings of the Sixth ACM International Conference on
Web Search and Data Mining, WSDM ’13, pages 13–22, 2013.

[5] Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation
and quadratic criterion. In O. Chapelle, B. Schölkopf, and
A. Zien, editors, Semi-Supervised Learning, pages 193–216.
MIT Press, 2006.

[6] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals. Listen, attend,
and spell. arXiv:1508.01211, abs/1508.01211, 2015.

[7] Z. Chen, B. Liu, M. Hsu, M. Castellanos, and R. Ghosh.
Identifying intention posts in discussion forums. In Proceedings
of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, pages 1041–1050, Atlanta, Georgia, June 2013.
Association for Computational Linguistics.

[8] J. Duchi, E. Hazad, and Y. Singer. Adaptive subgradient
methods for online learning and stochastic optimization.
JMLR, 12, 2011.

[9] Y. Goldberg. A primer on neural network models for natural
language processing. CoRR, abs/1510.00726, 2015.

[10] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[11] S. M. Katz. Estimation of probabilities from sparse data for the
language model component of a speech recogniser. IEEE
Transactions on Acoustics, Speech, and Signal Processing,
35:400–401, 1987.

[12] X. Li. Understanding the semantic structure of noun phrase
queries. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics (ACL), pages
1337–1345, Uppsala, Sweden, July 2010. Association for
Computational Linguistics.

[13] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10),
pages 807–814, 2010.

[14] B. Pang and S. Ravi. Revisiting the predictability of language:
Response completion in social media. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language
Learning, pages 1489–1499, Jeju Island, Korea, July 2012.
Association for Computational Linguistics.

[15] S. Ravi and Q. Diao. Large scale distributed semi-supervised
learning using streaming approximation. In Proceedings of the
19th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2016.

[16] A. Ritter, C. Cherry, and W. B. Dolan. Data-driven response
generation in social media. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language
Processing, Edinburgh, UK, July 2011. Association for
Computational Linguistics.

[17] R. Saha Roy, R. Katare, N. Ganguly, S. Laxman, and
M. Choudhury. Discovering and understanding word level user
intent in web search queries. Web Semant., 30(C):22–38, Jan.
2015.

[18] H. Sak, A. Senior, and F. Beaufays. Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling. In Proceedings of the Annual Conference of
International Speech Communication Association
(INTERSPEECH), 2014.

[19] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and
J. Pineau. Hierarchical neural network generative models for
movie dialogues. In arXiv preprint arXiv:1507.04808, 2015.

[20] L. Shang, Z. Lu, and H. Li. Neural responding machine for
short-text conversation. In In Proceedings of ACL-IJCNLP,
2015.

[21] A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell,
J.-Y. Nie, J. Gao, and B. Dolan. A neural network approach to
context-sensitive generation of conversation responses. In In
Proceedings of NAACL-HLT, 2015.

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

[23] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. Advances in Neural
Information Processing Systems (NIPS), 2014.

[24] O. Vinyals and Q. V. Le. A neural conversation model. In
ICML Deep Learning Workshop, 2015.

[25] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell:
A neural image caption generator. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[26] J. B. Wendt, M. Bendersky, L. Garcia-Pueyo, V. Josifovski,
B. Miklos, I. Krka, A. Saikia, J. Yang, M.-A. Cartright, and
S. Ravi. Hierarchical label propagation and discovery for
machine generated email. In Proceedings of the International
Conference on Web Search and Data Mining (WSDM)
(2016), 2016.

[27] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In
Proceedings of the International Conference on Machine
Learning (ICML), pages 912–919, 2003.

