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Abstract

In this thesis we shall present some results concerning additive properties of finite sets in
abelian groups. It will be of primary importance to us to consider the sumsets

A+B = {a+ b : a ∈ A, b ∈ B}

for subsets A,B of an abelian group.
The problems considered are of two general flavors. One is a kind of a structure theory of

set addition that is primarily concerned with identifying sets characterized by some extremal
properties, e.g. small doubling. The doubling is defined, for any finite subset A of an abelian
group, to be |A + A|/|A|. In this respect we investigate the Green-Ruzsa theorem which
almost completely characterizes sets with this property. In particular, we prove the first
linear bound on the dimension of the resulting progression.

The other subject of our interest is analysis of linear equations: finding quantitative
conditions on solvability of non-invariant equations and counting the solutions thereof. In
this regard we prove the first tight upper bounds on Ramsey-type numbers for general linear
equations and prove Schinzel’s conjecture on the number of solutions to a linear equation in
cyclic groups.

Streszczenie

Praca prezentuje kilka wyników dotyczących addytywnych właściwości skończonych zbiorów
w grupach przemiennych. Obiektem naszego szczególnego zainteresowania będą zwłaszcza
zbiory sum (ang. sumsets) określone dla podzbiorów A,B dowolnej grupy przemiennej jako
A+B = {a+ b : a ∈ A, b ∈ B}.

Rozważane zagadnienia są dwojakiego rodzaju. Jedne stanowią rodzaj strukturalnej
teorii arytmetyki zbiorów i za cel stawiają sobie możliwie dokładną charakteryzację zbiorów
określonych poprzez pewne ekstremalne własności. W naszym wypadku będą to zbiory
o niewielkim współczynniku podwojenia (ang. doubling), który jest zdefiniowany dla dowol-
nego skończonego podzbioru A grupy przemiennej jakoK(A) = |A+A|/|A|. W związku z tym
zagadnieniem badamy twierdzenie Greena-Ruzsy, które niemal całkowicie charakteryzuje
zbiory o niewielkim współczynniku podwojenia. W szczególności, dowodzimy pierwszego
liniowego ograniczenia na wymiar ciągu w tym twierdzeniu.

Drugim obszarem naszego zainteresowania jest analiza równań liniowych w grupach prze-
miennych, a celem określenie warunków istnienia (nietrywialnych) rozwiązań tych równań
lub oszacowanie liczby tych rozwiązań. W pracy dowodzimy pierwszego wolno rosnącego
górnego ograniczenia na wielkość liczb typu Ramseya związanych z ogólnymi równaniami
liniowymi. Przedstawiamy również dowód hipotezy Schinzla, związanej z liczbą rozwiązań
równań liniowych w grupach cyklicznych.
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Notation

Here we present pieces of notation that can be ambiguous or rarely used, or have no standard
meaning at all.

C Absolute constants, that may differ between occurrences, will be occasionally
denoted by C.

arg, argument function For z ∈ C\{0}, arg(z) is the only ϕ ∈ (−π, π] such that z · e−iϕ ∈ R.
‖ · ‖R/Z ‖x‖R/Z = miny∈Z |x− y| for x ∈ R
‖ · ‖`1 ‖f‖`1(X) =

∑
x∈X |f(x)|. This definition makes sense for every countable X.

[n] [n] = {1, 2, . . . , n} for every n ∈ N
P P = {2, 3, 5, . . .}, the set of primes

G an abelian group

P1, P2, . . . arithmetic progressions, i.e. sets of the form {x0 + id}Li=0 in G

A±B, sumset A±B = {a± b : a ∈ A, b ∈ B} for any A,B ⊆ G
kA− lA, iterated sumset We extend the above definition in a natural way, i.e. we define 0A = {0} and

kA = A+ · · ·+A︸ ︷︷ ︸
k

for k ∈ N+.

a·A a·A = {ax : x ∈ A} for a ∈ Z and A ⊆ G

We emphasize the difference, that we shall constantly preserve, between the
two above notions.

K(A), doubling K(A) = |A+A|/|A| for a finite subset A ⊆ G
d(P ), progression’s dimension For a generalized arithmetic progression P = P1 + · · ·+Pd we write d(P ) = d.

Note that the above definition depends on particular representation of P .
Span(X) Span(X) =

{ ∑
x∈X

εxx : εx ∈ {−1, 0, 1}
}
. In particular, it is an |X|-dimensional

arithmetic progression
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A,A(·) We identify a set A ⊆ G with its indicator function A(x) = 1 if x ∈ A,
A(x) = 0 otherwise.

µX the uniform probability measure on a finite set X ⊆ G. If G is finite, we
identify discrete measures with their densities w.r.t. the uniform counting
measure on G.

Ĝ, dual group the group of characters of the group G. If G = Z/NZ, then Ĝ ' Z/NZ where
r ∈ {0, . . . , N − 1} is identified with the character x 7→ e2πixr/N .

f̂ , Fourier coefficient f̂(r) =
∑
x∈Z/NZ f(x)e−2πixr/N for any f : Z/NZ→ C and r ∈ Z/NZ

The inversion formula states that f(x) = 1
N

∑
r∈Z/NZ f̂(r)e2πixr/N .

f ∗ g, convolution (f ∗ g)(x) =
∑
t∈Z/NZ f(t)g(x− t) for any f, g : Z/NZ→ C and x ∈ Z/NZ

The convolution theorem states that ̂(A ∗B)(r) = Â(r)B̂(r).

In particular, the number of solutions to a1x1 + · · ·+ akxk = 0 in A ⊆ Z/NZ

is (a1A ∗ . . . ∗ akA)(0) = 1
N

∑
r∈Z/NZ

Â(a1r) · . . . · Â(akr)

Specη(A), large spectrum Specη(A) = {r ∈ Z/NZ : |Â(r)| > η|A|}

Bη For a Bohr set B = B(Γ, γ), see Definition 2.6, we write Bη = B(Γ, ηγ)

o(·), O(·),Ω(·),� For positive functions f, g we define the asymptotic notations f = o(g),
f = O(g), f = Ω(g) and f � g to mean lim f

g = 0, lim sup f
g < ∞, g = O(f)

and f = O(g), respectively.
Note that the precise meaning of these symbols depends on the particular limit
chosen. In our considerations it is usually in the infinity for natural-valued
parameters like n and in 0+ for real-valued δ, ε > 0. In every case either the
meaning is clear from context, or we explicitly point it out.
Also, the definition of the Ω notation follows complexity-theoretic definition of
Knuth [Knu76] rather than the definition of Hardy and Littlewood sometimes
used in analytic number theory.

6



Chapter 1

Introduction

In this thesis we shall present some results concerning additive properties of finite sets in
abelian groups. It will be of primary importance to us to consider the sumsets

A+B = {a+ b : a ∈ A, b ∈ B}

for subsets A,B of an abelian group.
The problems considered are of two general flavors. One is a kind of a structure theory of

set addition that is primarily concerned with identifying sets characterized by some extremal
properties, e.g. small doubling. The doubling is defined, for any finite subset A of an abelian
group, to be |A + A|/|A|. In this respect we investigate the Green-Ruzsa theorem which
almost completely characterizes sets with this property. In particular, we prove the first
linear bound on the dimension of the resulting progression.

The other subject of our interest is analysis of linear equations: finding quantitative
conditions on solvability of non-invariant equations and counting the solutions thereof. In
this regard we prove the first tight upper bounds on Ramsey-type numbers for general linear
equations and prove Schinzel’s conjecture on the number of solutions to a linear equation in
cyclic groups.

A huge part of the thesis touches upon a recently developed, and still rapidly developing
field of additive combinatorics that is of a substantially combinatorial nature, especially when
compared to more traditional number-theoretic approaches.

1.1. Additive problems and additive combinatorics

Additive problems are undoubtedly among the oldest ever considered. Let us now present
some of the many that were posed and successfully resolved years ago together with similarly
innocent-looking ones that proved much more difficult. Let us begin with the following two.

Theorem (Pythagorean triples, Euclid). Three positive integers a, b and c form a primitive
Pythagorean triple, i.e. are co-prime and satisfy the equation a2 +b2 = c2, if and only if there
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are two co-prime positive integers of different parity m > n such that a = m2 − n2, b = 2mn
and c = m2 + n2, or a = 2mn, b = m2 − n2 and c = m2 + n2.

Theorem (Fermat, Wiles). No three positive integers a, b, c satisfy the equation an+bn = cn

for any integer n greater than two.

Let the others be as follows.

Theorem (Diophantos, Lagrange’s four-square theorem). Every natural number n is a sum
of four squares, i.e. for every n ∈ N there are n1, . . . , n4 ∈ Z such that n = n2

1 + · · ·+ n2
4.

Theorem (Waring, Hilbert). For every positive integer k there is a natural number g(k)
such that every natural number n is a sum of g(k) kth powers, i.e. for every n ∈ N there are
naturals n1, . . . , ng(k) ∈ N such that n = nk1 + · · ·+ nkg(k).

Conjecture (Goldbach). Every even integer greater than 2 can be expressed as the sum of
two primes.

That the problems within the families above are substantially different one from another
is now well known. And it is not merely that it took hundreds of years before Fermat’s Last
Theorem has been proved, and that the Goldbach conjecture has not been settled yet. It is
also that the results obtained required methods more and more involved.

The existence of Pythagorean triples was confirmed in the antiquity by elementary,
purely number-theoretic considerations. Lagrange’s four-square theorem has many elemen-
tary proofs that already share an algebraic flavor that is present in abundance in Wiles’s
proof of Fermat’s Last Theorem. Waring’s problem required, on the other hand, invention
of the circle method, that gave rise to one of the basis of analytic number theory, before it
has been truly understood in the interesting regime of sufficiently large n’s. The Goldbach
conjecture is still waiting to be settled.

Among the methods introduced over the years to research on additive problems there is
some number that we could classify as combinatorial. We give the first impression of these
methods below.

1.1.1. Schur’s approach to Fermat’s Last Theorem

Let us consider Fermat’s equation for some integer k > 3. Quite a natural attempt to prove
that xk+yk = zk has no solutions in the integers is to show that the congruence xk+yk ≡ zk

(mod p) has no non-trivial solution for infinitely many primes p. Unfortunately, this approach
fails, as showed by Dickson [Dic09] who proved that such solutions exist for every sufficiently
large prime p. The proof was quite involved however.

In 1916 Schur proved Dickson’s result as a simple corollary to the following lemma, now
known as Schur’s theorem.

Lemma (Schur [Sch17]). If one partitions the numbers 1, 2, . . . , N arbitrarily into m parts
and N > m!e, then there are two numbers in one part such that their difference belongs to
the same part as well.
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The relation between the lemma and Fermat’s Last Theorem follows from partitioning
the elements of the multiplicative group (mod p) into cosets of the subgroup formed by the
kth powers. Because there is at most k cosets of this subgroup, the lemma proves existence
of a solution to the congruence if p > ek! + 1.

1.1.2. Schnirelmann’s approach to the Goldbach conjecture

While the Goldbach conjecture is still wide open, Schnirelmann proved in [Sch30] the following
theorem, which is a weak form of the Goldbach conjecture.

Theorem (Schnirelmann). There is a natural number k such that every natural number n is
a sum of at most k prime numbers.

Subsequent works by Hardy and Littlewood, Winogradow, and others culminated in a
recent result of Helfgott [Hel12, Hel13, HP13] where he claims to improve estimates on major
and minor arcs in the circle method enough to prove that every odd natural number greater
than 5 is a sum of three primes.

The idea followed by Schnirelmann was to first deduce from application of the Brun sieve
that the set 2P = {p1 + p2 : p1, p2 ∈ P} has positive lower density, i.e. d(2P) > 0, where

d(A) = lim inf
n→∞

|A ∩ [n]|
n

.

Subsequently he considered iterative sumsets of a general set to prove that whenever d(A) > 0
and 0, 1 ∈ A then kA = N for some k. The proof concludes if one can exclude 1 from
considerations, which quickly follows by first considering any partition of n− 2 into elements
of 2P ∪ {1}.

The above considerations are perfectly characteristic to modern additive combinatorics.
Solving (multidimensional) linear equations and investigating the rules governing set addition
in integers or other abelian groups, are two complementary areas of research in the domain.
This also reflects in us using the tools originating from the latter while aiming at the former.
To make this parallel between set addition and investigating solutions to an equation in a set
more explicit, let us observe that whether the density of A + A is significantly larger than
that of A, or not, should be highly correlated to the number of solutions of the equation

x+ y = x′ + y′

in the initial segments of the set A, i.e. in A ∩ [n] for all n.

1.2. The problems of our interest

In the thesis we deal with three problems whose origins are the two combinatorial methods
mentioned in the previous section.
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1.2.1. Sets with small doubling

The analogy described at the very end of the previous section establishes a rough equivalence
between the doubling of a set, and the number of solutions in it to the equation x+y = x′+y′.
To make it precise we would need to recall the Balog-Szemerédi(-Gowers) theorem [BS94],
[Gow01, Proposition 7.3], but for the sole purpose of introducing Freiman’s theorem we take
this equivalence for granted.

Now, the above problem clearly has two extremal cases. One is when there is no non-
trivial solution to the equation, or equivalently |A + A| =

(|A|+1
2
)
. These are the so-called

Sidon sets and it is well known that no Sidon set contained in [n] has more than (1+o(1))
√
n

elements and that Sidon sets of roughly this cardinality exist.
The other extreme case, which will be of interest to us, is when the doubling of a set is

small. One can immediately check that for any finite A ⊆ Z we have |A+A| > 2|A| − 1 and
that equality holds if and only if A is an arithmetic progression. Similarly, for any arithmetic
progressions P1, . . . , Pd and the set A = P1 + · · ·+ Pd we have |A+ A| 6 2d|A|. If d = O(1)
we can still consider it to be of small doubling. A set like above, a d-fold sum of arithmetic
progressions is called a d-dimensional arithmetic progression. Obviously any large subset of
a multidimensional arithmetic progression has small doubling as well.

It was a great contribution of Freiman [Fre73] to prove that there is essentially no other
way a set can have small doubling but to be a large subset of a multidimensional arithmetic
progressions. While the result of Freiman dates back to the 60s of the XX century, a gener-
alization of this result to the general abelian setting was proved by Green and Ruzsa [GR07]
only in 2006. At that time, control over the dimension of the progression was quite poor and
our aim is to improve it.

In Chapter 3 we manage to prove Theorem 3.5 which guarantees that in non-degenerated
cases, given a finite subset of an abelian group, the dimension of a structure containing this
set is linear in its doubling. This result was published in [CS13a].

1.2.2. Linear equations

The discussion above shows that interest in solving linear equations in subsets of integers can
go beyond pure curiosity and is sometimes motivated by more universal considerations. It
is not at all obvious, but some equations are more difficult to analyze than the others and
the division line goes between invariant equations, i.e. the ones with coefficients summing to
zero, and the rest.

From the combinatorial perspective this division can be easily explained by some clear
obstacles to solvability in non-invariant case. For example, non-zero residue classes are not
mapped to 0 by non-invariant linear forms, which explains why we cannot guarantee a non-
invariant equation to have a solution only based on its density. Also, the property of a set
having a solution to a non-invariant equation is not invariant with respect to translations of
this set, which excludes a multitude of typical combinatorial methods. On the other hand,
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from the analytic perspective the division can manifest itself by non-trivial conditions on
tininess of certain character sums. For example, if we identify a set A ⊆ Z/NZ and its
indicator function A(·), the equation a1x1 + · · ·+ akxk = 0 has a solution if and only if

∑
r 6=0

Â(a1r) · . . . · Â(akr) < |A|k.

Controlling this sum is significantly easier if the summands can be all made non-negative,
which is only imaginable for invariant equations and particularly easy for equation of higher
genus (see Definition 5.1), which reflects in Sidon’s equation x + y = x′ + y′ being easier to
handle than Roth’s x+ z = 2y.

All this contribute to the fact that results dealing with non-invariant equations are less
precise than similar ones for more structured equations. It also correlates with the order in
which more and more general equations were successfully dealt with. Ruzsa [Ruz93] proved
good non-trivial upper bounds for equations of genus at least 2 in the 1990s, but only recently
Sanders [San11, Blo12] succeeded in the general invariant case.

In Chapter 5 we prove the first reasonably good bounds on Ramsey-type numbers corre-
sponding to non-invariant equations with the climax in Theorem 5.4. The choice of Ramsey
setting, where we partition elements of [N ] into n groups and look for a solution contained
in any group, is natural if we recall that no density-based result is possible for non-invariant
equations.1 That these numbers exist at all is only conditional, by Rado’s theorem, to the
equation containing an invariant part2. For the details see Section 5.1. All results appearing
in this chapter has been submitted as [CS13b].

In Chapter 6 we consider a problem complementary to the one mentioned above. Rather
than look for solutions in subsets of a long initial segment of the naturals, we count the
solutions to general linear equations in small cyclic groups. This part was published in [CS12].
Minor changes in presentation, when compared to this paper, result from the appearance of
a brilliant and general Zakarczemny’s solution to the problem considered, which was however
subsequent to our result.

1.3. Additive combinatorics beyond our interest

Like all interesting problems in mathematics, the problems considered in the thesis are not
isolated and are related to many others in additive combinatorics. To give an impression
thereof we shall now briefly present some problems, very similar to those mentioned in the
previous section, yet very different from the perspective of the techniques employed in the
analysis.

1It is worth mentioning that this statement is true for particular choices of the notion of density, or
largeness, considered, which is in our case upper asymptotic density. There are other notions of largeness,
however, which are orthogonal to these and may allow a density based reasoning to prove existence of a
solution to a non-invariant equation. A typical example are elements of nilpotent ultrafilters, which can be
considered, in a sense, dense sets.

2It means that there is a subset of variables such that the linear form limited to these variables is invariant.
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1.3.1. Sum-product estimates

The family of Freiman-type results characterizes sets of integers with small doubling as big
subsets of multidimensional progressions. It is therefore reasonable to expect that a finite set
A ⊆ Z of small doubling should have a rather large product-set A · A = {a1a2 : a1, a2 ∈ A}
as arithmetic progressions seem to be incompatible with multiplication. From analogous
considerations it seems plausible that if |A ·A| 6 K|A| then A cannot have small doubling.

A classical theorem of Erdős and Szemerédi states a common generalization of the above.

Theorem (Erdős-Szemerédi [ES83]). There is a real ε > 0 such that for every finite set
A ⊆ Z we have

max(|A+A|, |A ·A|)� |A|1+ε.

It was conjectured by Erdős and Szemerédi that ε = 1 − o(1) and the current state-of-
the-art result due to Konyagin and Rudnev [KR13], developing on Solymosi’s [Sol05], asserts
that ε can be arbitrarily close to 1

3 . An analogous result also holds in prime fields, but the
first results of this type [BKT04, Kon03] appeared roughly 20 years after [ES83].

Theorem. There are positive reals ε, δ such that for every prime p and a subset A ⊆ Fp, if
|A| 6 pδ then

max{|A+A|, |A ·A|} � |A|1+ε.

The currently best form of the sum-product theorem in this setting is due to Rudnev
[Rud11] who proved that one can have ε = 1

11 − o(1) in the most interesting range |A| 6 √p.
Although these sum-product theorems seem to be natural companions to small-doubling

problems considered in the thesis, they are really very different. First of all, these problems
involve products and are therefore hardly susceptible to usual Fourier-based techniques so
effectively employed by Ruzsa and his followers. Also, the known proofs have more ad-
hoc flavor when compared with the well established approach of Ruzsa. A quite extreme
example is [Ele97] and works subsequent to it, where a sum-product theorem follows from
the Szemerédi-Trotter theorem on geometric incidences.

1.3.2. Relative results and higher order structures

As to our considerations on linear equations, a natural source of problems relating to non-
invariant equations could be looking for analogies with better studied invariant ones and
following those lines.

Let us then start with the simplest invariant equation of all, i.e. x + z = 2y, which
describes three-term arithmetic progressions (3-AP). It was proved in 1953 by Roth [Rot53]
that subsets A of [N ] of density at least δ(N), for some δ(N) = o(1), always contain a solution
to this equation, and therefore contain a 3-AP. It took twenty more years and brilliant ideas
of Szemerédi [Sze75] to prove that existence of longer APs, which are solutions to systems of
linear equations of the form xi−1 + xi+1 = 2xi and can be therefore regarded as higher order
structures, can also be guaranteed on density basis. While continuous progress on improving

12



bounds on density in Roth’s theorem can be observed, with the currently best |A| � N
log1−o(1) N

due to Sanders [San11], this is still not enough to directly prove that (relative) Roth’s theorem
holds for (relatively) dense subsets of the primes. A novel idea was needed instead and that
was the introduction of pseudorandom sets, distributed uniformly enough to allow conveying
more traditional arguments. This also somewhat explains why results of Green [Gre05c],
Green-Tao [GT08] and Gowers [Gow10] are so valuable and non-trivial.

Unfortunately the same lines could only partially be followed at all in case of non-invariant
equations, even with the obvious replacement of density results and conjectures by some
Ramsey-type ones, as was motivated in Subsection 1.2.2. In particular, by the same argument,
even the Schur equation x+ y = z can have no solutions in a 2-coloring of primes so relative
results seem to be too much to hope for. As for the higher order structures, which correspond
to systems of linear equations, there seem to be no natural obstruction of this kind, but the
corresponding condition on existence of Ramsey-type numbers, based on Rado’s theorem, is
significantly more complicated.

There is also one more question closely related to the subject of our interest that awaits
a solution, i.e. Rado’s boundedness conjecture. It says that for any linear equation in k

variables that contains no invariant equation, there exists an n(k)-coloring of N that is free
of monochromatic solutions to this equation. The emphasis here is put on the fact that n(k)
does not depend on the coefficients of the equation. Just until the recent result of Fox and
Kleitman [FK06] there has been no progress on this conjecture whatsoever.

1.3.3. Yet broader perspective

As mentioned at the very beginning of the Section, the problems considered in the thesis are
closely related with some important problems in additive combinatorics. In fact, existential
theorems of Ramsey/Szemerédi-type, which date back to the early years of XX century, and
sum-product theorems are the core of the now blossoming area of additive combinatorics.

Research following the proof of Szemerédi resulted in discovering connections between
combinatorial arithmetic and measure-preserving dynamical systems [Fur77], understand-
ing how higher-dimensional structures can be controlled by higher-order Fourier-like func-
tionals [Gow01] and developing regularity theories in graphs [Sze75, KS91], hypergraphs
[Gow07, Tao07] and in arithmetic [GT10]. There is currently at least seventeen distinct
proofs of Szemerédi’s theorem known and almost every one opened new perspectives on ad-
ditive combinatorics and, reciprocally, the areas of mathematics it originated in.

Also sum-product theorems gave rise to a number of methods. Since geometric methods,
via the Szemerédi-Trotter theorem on point-line incidences, appeared to be so fruitful in
treatment of the real setting, attempts to adapt it to the finite setting arose with the first
result of the type due to Bourgain, Katz and Tao [BKT04] and following quantitative ones
due to Helfgott and Rudnev [HR10] and Jones [Jon11]. The other direction investigated was
to translate results between the two settings, with Vu and Woods’ [VWW11] and Grosu’s
[Gro13] results on equivalence between the two for small sets. In a natural way, interest
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in sum-product phenomena extends to results on approximate algebraic structures with the
climax in Helfgott’s [Hel08] and Breuillard, Green and Tao’s [BGT12]. Sum-product theorems
find also a lot of more direct applications as similar phenomena can be naturally traced back
e.g. in analysis or PDEs.

All the links mentioned above between problems considered, or additive combinatorics in
general, and other areas of research may seem to be internal to mathematics but this is not
all so.

The graph removal lemma, descendant to Szemerédi’s graph regularity lemma, which
is itself a key ingredient in his proof of Szemerédi’s theorem, is a fundamental tool in a
fairly new area of computer science called property testing. Sum-product theorems and rele-
vant techniques, which basically prove that large-scale irregularities are unavoidable in many
arithmetic scenarios, found also many applications in theoretical computer science. They
allowed e.g. many hardness results in complexity theory and deterministic constructions of
cryptographic primitives like expanders and extractors.

For the last impression on numerous connections and applications of additive combina-
torics let us just mention that Bibak’s survey on additive combinatorics [Bib13] lists 350
bibliographic entries with roughly a half concerning applications.
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Chapter 2

Some basic concepts of theory of
set addition

In this short chapter we aim at introducing some of the concepts and elementary tools that
we shall rely on in Chapters 3 through 5.

As briefly explained in the introduction, we aim at investigating in Chapter 3 the case
when the doubling K(A) = |A+A|

|A| of a finite set A ⊆ G is small. Somewhat surprisingly,
the very basic results touching upon this setting will be important for our treatment of the
Schur-like numbers in Section 5.3. The following family of lemmas describes combinatorial
behavior of sets with a bounded doubling.

Lemma 2.1 (Plünnecke’s inequality). For any integers h′ > h > 0 and finite subsets A,B
of an abelian group G such that |B + hA| 6 K|B|, there is B′ ⊆ B such that

|B′ + h′A| 6 Kh′/h|B′| .

Lemma 2.2 (Ruzsa’s inequality). For every finite subsets U, V,W of an abelian group G we
have

|U + V ||U +W | > |U ||V −W | .

A simple combination of the above lemmas results in the following Plünnecke-Ruzsa’s
lemma.

Lemma 2.3 (Plünnecke-Ruzsa’s inequality). Suppose that A,B are finite subsets of an
abelian group and |A+B| 6 K|B|. Then for all natural numbers k, l > 0 we have

|kA− lA| 6 Kk+l|B|,

where kA and lA denote iterated sumsets.

Proof. If any of the numbers k, l equals 0 then either the result follows trivially if k = l = 0,
or by straightforward application of Lemma 2.1 in the other case.
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Therefore without loss of generality we may now assume that k > l > 1. Let us then
apply Lemma 2.1 to sets A,B and integers l and 1, so that one finds B′ ⊆ B such that
|B′ + lA| 6 K l|B′| 6 K l|B|. Subsequently, let us apply the same lemma to sets A,B′ and
integers k and l, so that for some B′′ ⊆ B′ we have |B′′ + kA| 6 Kk|B′′| 6 Kk|B|.

By Ruzsa’s inequality we conclude that

|kA− lA| 6 |B′′| · |kA− lA| 6 |B′′ + kA| · |B′′ + lA| 6 Kk+l|B| .

This is a very good combinatorial characterization of iterated sumsets of sets A with small
doubling1 but a structural information is more difficult to extract and this is exactly what
Freiman’s-type theorems, treated in the next chapter, are about.

A key concept in additive combinatorics that we shall often tacitly rely on is that of
Freiman’s homomorphisms. It is crafted in a manner that allows us to transfer an additive
problem (of a bounded complexity) from one group into another, that may behave better for
some purposes. A typical reason is to make a set under consideration become a relatively
dense subset of the underlying group.

Definition 2.4 (Freiman’s homomorphism). Let k > 1 be an integer, and let A ⊆ G and
A′ ⊆ G′ be two subsets of abelian groups G,G′. A Freiman homomorphism of order k from
A to A′ is any map ϕ : A→ A′ with the property that

a1 + · · ·+ ak = a′1 + · · ·+ a′k

implies
ϕ(a1) + · · ·+ ϕ(ak) = ϕ(a′1) + · · ·+ ϕ(a′k) .

If in addition there is an inverse map ϕ−1 : A′ → A which is a Freiman homomorphism of
order k from A′ to A, then we say that ϕ is a Freiman isomorphism of order k, and that A
and A′ are Freiman-isomorphic of order k.

While we shall only occasionally consider Freiman-isomorphic copies of a set, it will be
usual in the next chapter to require some objects to be proper. This will be the case for
generalized arithmetic progressions and convex progressions (see Definition 3.6) and in fact
properness will appear to be equivalent to being Freiman-isomorphic with some underlying
truly multidimensional set.

In the next chapter we shall deal with multidimensional arithmetic progressions.

Definition 2.5 (generalized arithmetic progression). Let P1, . . . , Pd be arithmetic progres-
sions. We call the sumset P = P1+· · ·+Pd a d-dimensional generalized arithmetic progression

1An elementary bound of the form |kA− lA| � (k + l)|A| is better, however, if k, l� |A|
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and write d(P ) = d and size(P ) = |P1| · . . . · |Pd|. We say that P is proper if its cardinality
equals its size.

Note that the above definition decides on the dimension of a progression based on the
structure that defines it, rather than on its properties as a subset of the underlying group.
Also, a generalized arithmetic progression is a Freiman 2-homomorphic copy of a hyper-
rectangle.

Although the ultimate goal of Freiman’s-type theorems is to show that A makes a big
part of a multidimensional (coset) progression, the arithmetic progressions are not the most
effective intermediate objects to work with. This is especially so because they do not behave
in a regular manner from analytical point of view, which is a dominant approach to problems
considered in the next chapters.

A remedy to these issues has been the introduction to additive combinatorics of the Bohr
sets: first by Ruzsa [Ruz94] in the context of Freiman’s theorem and later by Bourgain in his
work [Bou99] on Roth’s theorem.

Definition 2.6. Let G = Z/NZ be a cyclic group and its dual group be Ĝ w Z/NZ. We
define the Bohr set with frequency set Γ ⊆ Ĝ and width parameter γ ∈ (0, 1

2 ] to be the set

B(Γ, γ) =
{
x ∈ G : ∀t∈Γ

∥∥∥arg(t(x))
2π

∥∥∥
R/Z

6 γ
}

=
{
x ∈ G : ∀t∈Γ

∥∥∥ tx
N

∥∥∥
R/Z

6 γ
}
,

where the second formulation is valid for our case of cyclic groups only and follows the
identification of t ∈ {0, . . . , N − 1} with the character x 7→ e2πixt/N .

Also, we call dimB = |Γ| the dimension of the Bohr set B and γ its radius. Furthermore,
for η > 0 and a Bohr set B = B(Γ, γ) by Bη we mean the Bohr set B(Γ, ηγ).

An important property of Bohr sets to mention is that B(c−1·Γ, γ) = c·B(Γ, γ) ⊆ B(Γ, cγ)
for c ∈ N+ if only N is prime.

Remark. It is customary in the literature to call |Γ| the rank of the Bohr set B(Γ, γ) in order
to emphasize the difference between an underlying structure, and the Bohr set as a subset of
the underlying group. This latter, more geometric point of view, defines the dimension by the
scaling behavior of the mapping η 7→ |B1+η|. The two approaches are comparable, however,
hence our choice, which is compatible with our definition of the dimension for generalized
arithmetic progressions.
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Chapter 3

Freiman’s and Green-Ruzsa’s
theorems

The family of Freiman’s-type theorems deals with finite subsets A of integers or other abelian
group, of small doubling K = K(A), when compared with |A|. If this is the case then A

is proved to form a big part of a (proper) coset progression, i.e. a sumset P + H of a
d-dimensional arithmetic progression P and a subgroup H, of dimension d 6 d(K) and size
at most f(K)|A|. The aim of investigations in this area is to establish possibly good bounds
on d(K) and f(K) simultaneously.

As can be easily verified, the best possible bound for d(P ) is bK − 1c. Similarly, one
cannot hope to obtain anything better than size(P ) = exp(O(K))|A|.

Example. Let K be a positive integer, X = {ei}K−1
i=1 be a linearly independent family of

vectors in ZK and P = {0, v, . . . , Lv} for some vector v ⊥ X. Then X + P has doubling
K − oL→∞(1) and is clearly a (K − 1)-dimensional progression. The same holds for every set
A ⊆ Z that is k-isomorphic to X + P , for sufficiently large k.

3.1. Ruzsa’s approach to Freiman’s-type theorems

Freiman’s original result, which dates back to the late 1960s and the appearance of monograph
[Fre73], concerns torsion-free groups only and is very inefficient in bound for f(K). We owe
to Ruzsa’s ingenious approach [Ruz94] the series of advances to the theory that we witnessed
at the turn of the millennia. One of the factors that contribute the most to its robustness is
our ability to clearly distinguish four steps, which all subsequent proofs of the Freiman-type
theorems followed. Let us now present these steps.

Step 1: good modeling

The approach proposed by Ruzsa is not geometric in nature, like it is the original one of
Freiman, but heavily relies on Fourier analysis. To make it efficient, the set A under consid-
eration needs to be dense in the ambient group G, which does not need to be the case, or just
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cannot be in the original integral setting. Therefore, one looks for an appropriate Freiman
isomorphic set A′, dense in a group G′.

Ruzsa [Ruz92] proves that such a (partial) embedding exists where A′ is an isomorphic
copy of a large subset of A. Since, in the following steps, Ruzsa considers the set 2A′ − 2A′,
the appropriate Freiman isomorphism needs to be of order at least 8.

Step 2: Bogolyubov-Ruzsa’s lemma

In the dense case, when |A′| > α|G′|, it turns out that 2A′− 2A′ contains a large Bohr set B
of a suitably bounded dimension.

Ruzsa’s proof suggests to consider B = B(Γ, γ) for Γ = Specη(A′), the large spectrum
of the indicator function of A′, in which case |Γ| 6 α−2. A brilliant idea of Chang [Cha02,
Lemma 3.1], the Chang spectral lemma, proves that choosing Γ ⊆ Specη(A′) to be maximal
dissociated1 guarantees |Γ| 6 α−1 logα−1. Finally, relatively recent result of Sanders proves
that one can have |Γ| = logO(1) α−1.

Step 3: elucidating structure of Bohr sets

Any Bohr set B(Γ, γ) contains a large |Γ|-dimensional generalized arithmetic progression P ′.
This is a usual geometry of numbers argument relying on Minkowski’s theorems and it

has hardly evolved at all since appearance of Ruzsa’s paper [Ruz94].

Step 4: pullback and covering

Having chosen the set A′ appropriately, we can now pull the progression P ′ back to P ⊆ G

and, under some reasonable conditions, it still makes a big part of the set 2A − 2A, i.e.
|P | > C(K)|A|. Then, a covering argument allows one to conclude that A itself is covered
by a few translates of P .

This last step devotes its current form to contributions of Ruzsa and Chang. The first
incarnation of the argument, due to Ruzsa [Ruz94], is so simple and beautiful at the same
time that it deserves presentation. Let us then have a progression P such that P ⊆ 2A− 2A
and |P | > C(K)|A|. Consider any maximal setX = {x1, . . . , xs} ⊆ A such that the translates
xi + P are pairwise disjoint. Then we have A ⊆ X + P − P ⊆ Span(X) + P − P and, since
X+P ⊆ 3A−2A, by Plünnecke’s inequality |X| 6 |3A−2A|/|P | 6 K5/C(K). Unfortunately
C(K)−1 can depend super-polynomially on K and for results on Bololyubov-Ruzsa’s lemma
prior to Sanders’s [San12] this dependance is exponential. This shortcoming was overcome
by Chang [Cha02] in her iterative covering procedure.

One further optimization of the dimension of the progression is still possible and it allows,
at the same time, to guarantee properness of the progression obtained. It origins in the work
of Freiman and was subsequently explained in Bilu’s [Bil99]. While this geometric method

1A set X is said to be dissociated if the only representation of 0 in Span(X) corresponds to the zero-vector
of coefficients.
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allows one to reduce the dimension to K, it imposes extra cost in terms of the size of the
progressions that is particularly prohibitive in case of the fine-tuned result of Sanders.

The following are the state-of-the-art versions of the Freiman theorem.

Theorem 3.1 (Sanders [San12, Theorem 11.4]). Suppose that G is a torsion-free abelian
group and A ⊆ G is finite with |A+A| 6 K|A|. Then A is contained in a d(K)-dimensional
generalized arithmetic progression P of size at most exp(h(K))|A|. Moreover, we may take
d(K), h(K) = O(K logO(1)K).

Like said above, it is possible to obtain an even sharper bound on the dimension, at
the cost of a higher degree of the polynomial in h(K), or equivalently in the exponent of f .
Moreover, some additional conditions on |A| must be imposed. On the other hand, those
weaknesses are counterbalanced by properness of the progression obtained, which is not
possible in Sanders’s theorem without complete loss of the so hardly earned sharp bound
on the size.

Theorem 3.2 (Chang [Cha02, Theorem 2]). Under the assumptions of Theorem 3.1, if
|A| > max(CK2 log2K, (K + ε)2/2ε), for some ε > 0, then there is a proper generalized arith-
metic progression P of dimension d(P ) 6 bK − 1 + εc and size(P ) = exp(O(K2 log3K))|A|,
such that A ⊆ P .

3.2. Green-Ruzsa’s theorem

We owe the generalization of Freiman’s theorem to the abelian setting to Green and Ruzsa’s
paper [GR07]. The proof closely follows the path suggested by Ruzsa but some care is needed.
First of all, it is crucial to appropriately formulate a hypothetical theorem. It follows from
consideration of the family of examples with A = G = Fd2 that the dimension cannot be
bounded by any function of the doubling, because in this case the doubling of A equals 1
independently of d.

It appears that the right hypothesis is to look for A contained in a progression of cosets
of some subgroup of G.

Definition 3.3. We define a coset progression to be any subset of G of the form P + H,
where H is a subgroup of G and P is a generalized arithmetic progression. The dimension
d(P +H) of the coset progression P +H is the dimension d(P ) of its underlying generalized
arithmetic progression P and size(P +H) is size(P )|H|. We say that a progression is proper
if its cardinality equals its size.

Observe that in the torsion-free setting every finite coset progression is in fact a generalized
arithmetic progression.

In their paper [GR07] Green and Ruzsa established a generalization of Freiman’s theorem
for arbitrary abelian groups that was subsequently improved by Sanders to the following
form.
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Theorem 3.4 (Sanders [San12, Theorem 11.4]). Let A ⊆ G be finite and |A + A| 6 K|A|.
Then A is contained in a coset progression P +H of dimension d(P +H) = O(K logO(1) 2K)
and size(P +H) = exp(O(K logO(1) 2K))|A|.

Like in the torsion-free case, one has to pay extra if one looks for proper progressions,
which deteriorates the bound on size to roughly size(P +H) = exp(O(K2+o(1)))|A|.

In what follows we show an analog of Theorem 3.2 in the general abelian groups setting,
which is this.

Theorem 3.5. Under the assumptions of Theorem 3.4, either there is a proper convex coset
progression X + H such that A ⊆ X + H, of dimension d(X + H) 6

(
2 + o(1)

)
K and

size(X + H) = exp(O(K logO(1) 2K))|A|, or A is fully contained in O(K2 logO(1)K) cosets,
whose total cardinality is bounded by exp(O(K logO(1) 2K))|A|, of some subgroup of G.

Moreover, the progression can be chosen to be a proper coset progression P +H, in which
case d(P +H) 6 2 bKc and size(P +H) = exp(O(K2 logO(1) 2K))|A|.

Here, we provide some necessary definitions.

Definition 3.6. Suppose that B ⊆ Rd is closed, centrally symmetric and convex, B ∩ Zd

spans Rd as a real vector space and φ : Zd → G is a homomorphism. Then we refer to
the image X = φ(B ∩ Zd) as a convex progression of dimension d. The size of X is simply
size(X) = |B ∩ Zd|, and the volume is vol(X) = vold(B), the d-dimensional volume of B in
Rd.

Definition 3.7. Let X be a convex progression and H be a subgroup of G. Then we call
X + H a convex coset progression. By analogy with coset progressions, we define size as
size(X +H) = size(X)|H|.

Let s > 1 be an integer. If φ(x1) − φ(x2) ∈ H implies x1 = x2 for all x1, x2 ∈ sB ∩ Zd,
then we say that X +H is s-proper.

Note that the above definition of properness, just like in the case of regular coset progres-
sions (see Definition 3.3) is equivalent to requiring X+H to be Freiman max(s, 2)-isomorphic
to the direct product of H and a d-dimensional set (either a hyper-rectangle or a convex body,
intersected with Zd). Here, we need the isomorphism to be of order at least 2 in order to
guarantee that it extends to a homomorphism at all.

Outline of the argument

The general idea behind the proof is to apply Green-Ruzsa’s Theorem 3.4 in order to obtain
an embedding A ⊆ P + H and to apply Chang’s Theorem 3.2 to the projection π(A) of A
onto P later on.

This approach is not applicable directly, however, because we need to work in the torsion-
free setting. To this end, by Lemma 3.8, we replace the coset progression P+H in Section 3.3
by some 2-proper convex coset progression X + H ′ of comparable dimension and size. The

22



2-properness of X + H ′, which implies slightly more than just properness, will allow us to
model a lack of torsion of an underlying group.

The last step remaining is to relate the doubling of A, appearing in the formulation
of Theorem 3.5, to that of its projection π(A), which will turn up in the aforementioned
application of Chang’s theorem. This, together with a precise definition of the projection,
will be presented at the beginning of Section 3.4.

In the final section we will tailor our approach to deal with the highly-tuned result of
Sanders. This will require from our part a proof of a slight variant of Chang’s Theorem 3.2.

3.3. Geometry of numbers

In this section, we aim to prove the following two lemmas. Basically, they state that coset
progressions are economically contained inside proper (convex) coset progressions.

Lemma 3.8. Suppose that X+H is a convex coset progression of dimension d. Let s > 1 be
an integer. Then there is an s-proper convex coset progression X ′ +H ′ of dimension d′ 6 d

and size(X ′ +H ′) = sd exp(O(d log d)) size(X +H), such that X +H ⊆ X ′ +H ′.

Lemma 3.9. Under the assumptions of Lemma 3.8, there is an s-proper coset progression
P ′ +H ′ of dimension d′ 6 d and size(P ′ +H ′) = sd exp(O(d2 log d)) size(X +H), such that
X +H ⊆ P ′ +H ′.

In order to relate the size of a progression to its volume we quote the following lemma.

Lemma 3.10 ([TV06, Lemma 3.26 and Inequality 3.14]). Suppose that X is a convex pro-
gression. Then

1
2d 6

size(X)
vol(X) 6

3dd!
2d .

Proof of Lemma 3.8. We proceed by induction on d, reducing the progression’s dimension
whenever it is not s-proper. Obviously, any zero-dimensional progression is so.

Fix s and let X = φ(B ∩Zd) for some d > 0. If X +H is not s-proper then there exists a
non-zero xh ∈ 2sB ∩Zd such that φ(xh) ∈ H. Consider xirr ∈ 2sB ∩Zd such that xh = mxirr

for m ∈ N as big as possible. Then, as an immediate consequence of [TV06, Lemma 3.4],
there exists a completion (x1, . . . , xd−1, xirr) of xirr to an integral basis of Zd.

Let ψ : Rd → Rd be the linear transformation satisfying ψ(xi) = ei, i = 1, . . . , d − 1 and
ψ(xirr) = ed for (ei) the canonical basis of Zd. For such transformation, ψ(Zd) = Zd and
vold(ψ(B)) = vold(B).

Let B′ = πRd−1×{0}(ψ(B)) and H ′ = 〈H,φ(xirr)〉 be, respectively, the projection of ψ(B)
onto the hyperplane Rd−1 × {0} and the subgroup of G generated by H and φ(xirr).

Since one can treat φ ◦ ψ−1|Rd−1×{0} as some φ′ : Rd−1 → G, we have X +H ⊆ X ′ +H ′

for X ′ = φ′(B′ ∩ Zd−1). Indeed, for an arbitrary element of X + H we have the following
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representation, with x ∈ Rd−1 ≡ Rd−1 × {0}, l ∈ Z and h ∈ H:

φ(ψ−1(x) + lxirr) + h = φ′(x) + (lφ(xirr) + h) ∈ X ′ +H ′.

Next, we estimate the size of X ′ + H ′ but, for technical reasons, we prefer to consider
vol(X ′)|H ′| instead. These two quantities are related by Lemma 3.10.

Since
mφ(xirr) = φ(xh) ∈ H,

it follows that

|H ′| = | 〈H,φ(xirr)〉 | = |H + {0, φ(xirr), . . . , (m− 1)φ(xirr)} | 6 m|H|.

In order to bound vol(X ′), consider the double-sided cone O spanned by B′ and by

±ψ(xh/2s) = ±mψ(xirr)/2s = ±m/2s · ed ∈ ψ(B),

the last stemming from xh ∈ 2sB. From

2
d

vold−1(B′) · m2s = vold(O) 6 vold(ψ(B)) = vold(B)

we conclude that

vold−1(B′) · |H ′| 6 sd

m
vold(B) ·m|H| = sd vold(B)|H|.

Notice that the inequality vold(O) 6 vold(ψ(B)) is a non-trivial one because, in general,

B′ = πRd−1×{0}(ψ(B)) 6⊆ ψ(B) ∩ (Rd−1 × {0})

and therefore O 6⊆ ψ(B). Instead, let us consider the convex set τ(ψ(B)), where

τ(x1, . . . , xd) = (x1, . . . , xd−1, xd − CMψ(B)(x1, ..., xd−1)),

CMψ(B)(·) denoting the center of mass of the corresponding fibre of ψ(B). Obviously, in the
spirit of Fubini’s theorem, vold(τ(ψ(B)) = vold(ψ(B)). Moreover,

B′ ⊂ τ(ψ(B)) and ± ψ(xh/2s) = ±m/2s · ed ∈ ψ(B) ∩ τ(ψ(B))

so O ⊆ τ(ψ(B)) and hence vold(O) 6 vold(ψ(B)).

By an inductive argument and by Lemma 3.10 we can obtain an s-proper convex coset
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progression X ′′ +H ′′ ⊃ X +H of dimension d′′ 6 d, such that

size(X ′′)|H ′′| 6
3dd!
2d vol(X ′′)|H ′′|

6
(3s

2
)d

(d!)2 vol(X)|H|

6 (3s)d(d!)2 size(X)|H|

= sd exp(O(d log d)) size(X)|H|.

We prove Lemma 3.9 in much the same way as Green proves [Gre05a, Theorem 2.5], with
an application of [Gre05a, Lemma 2.3] replaced by that of Lemma 3.8. Both proofs result in
the same asymptotic bounds on size(P ′ +H ′) as both [Gre05a, Lemma 2.3] and Lemma 3.8
establish them asymptotically the same.

To this end we need the following lemma.

Lemma 3.11 ([Gre05a, Lemma 1.5]). Let B be a symmetric convex body in Rd, and let
Λ ⊆ Rd be a lattice of dimension d. Then there is a generalized progression P ⊆ B ∩ Λ of
dimension d such that B ∩ Λ ⊆ d(d!)2P .

Now we just literally repeat Green’s proof of [Gre05a, Theorem 2.5].

Proof of Lemma 3.9. Apply Lemma 3.8 with the convex coset progression X + H and the
integer t = d(d!)2s. This gives us a t-proper convex coset progression X ′ + H ′ of dimension
d′ 6 d, such that X +H ⊆ X ′ +H ′ and

size(X ′ +H ′) = sd exp(O(d2 log d)) size(X +H).

WriteX ′ = φ′(B′∩Zd′). Now Lemma 3.11 implies that there is a progression P ⊆ B′∩Zd′ such
that B′∩Zd′ ⊆ d′(d′!)2P ⊆ d(d!)2P . Write P ′ = φ′(d(d!)2P ). ThenX+H ⊆ X ′+H ′ ⊆ P ′+H ′

and the fact that X ′ +H ′ is d(d!)2s-proper implies that P ′ +H ′ is s-proper.
It remains to bound the size of P ′ +H ′. Since P ′ ⊆ (d(d!)2X ′, we have

size(P ′ +H ′) 6
(
d(d!)2)d′ size(X ′ +H ′)

6
(
d(d!)2)d size(X ′ +H ′)

6 sd exp(O(d2 log d)) size(X +H)

and the result follows.

3.4. Projections, the main argument

Let us first introduce a notion of projection. For any s-proper convex coset progression
X + H we define the canonical projection πsX(·) of sX + H onto sX in the following way:
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πsX(x+h) = x for x ∈ sX and h ∈ H. SinceX+H is s-proper, this definition is unambiguous.
Of course any s-proper progression is so for all s′ 6 s and we can consider relevant projections
πs′X(·) for s′ 6 s.

We will now show an auxiliary lemma which roughly relates the doubling of a set to
additive properties of its projection.

Lemma 3.12. Let A ⊆ X + H, where X + H is a 2-proper convex coset progression and
Kmin = minY⊆πX(A) |Y + πX(A)|/|Y |. Then K(A) > Kmin.

Proof. Let y1, y2, . . . ∈ πX(A) be all elements of Y = πX(A) in decreasing order with respect
to the cardinality |AH(yi)| of AH(yi) = A ∩ (yi +H). Write Yi = {y1, . . . , yi}.

Then, by the assumption, |Yi + Y | > iKmin and there are at least |AH(yi)| elements of
A+A in every H-coset of Yi + Y +H. By the fact that X +H is 2-proper, there are exactly
|Yi + Y | such cosets, hence

|A+A| >
∑
i

(|Yi + Y | − |Yi−1 + Y |) · |AH(yi)|

=
∑
i

|Yi + Y | ·
(
|AH(yi)| − |AH(yi+1)|

)
>

∑
i

iKmin ·
(
|AH(yi)| − |AH(yi+1)|

)
= Kmin

∑
i

(
i− (i− 1)

)
|AH(yi)|

= Kmin|A|

Notice that, as a direct consequence, this lemma allows us to prove some version of the
Green-Ruzsa theorem, provided that we can bound Kmin in terms of the doubling K(A).

In particular, by Lemma 2.1 we have for every Y ⊆ πX(A) and some Y ′ ⊆ Y

|πX(A) + πX(A)| 6 |Y ′ + πX(A) + πX(A)| 6 |Y ′|
( |Y + πX(A)|

|Y |

)2
6
|Y + πX(A)|2

|Y |
,

hence

|Y + πX(A)| >
√
|Y | · |πX(A) + πX(A)| >

√
|Y | · |πX(A)| ·

√
|πX(A) + πX(A)|

|πX(A)|

> |Y |
√
K(πX(A)) .

Therefore K(πX(A)) 6 K2
min 6 K(A)2, the second inequality stemming from the previous

lemma, and a variant of the Green-Ruzsa theorem follows with the dimension bounded by
K2.

In order to obtain a linear bound on the dimension, we need some more elaborate rea-
soning. Here we prove a slightly more general version of the second part of Theorem 3.5.
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Theorem 3.13. Let A ⊆ G satisfy |A + A| 6 K|A| and let s > 1 be an integer. Then
either there is an s-proper coset progression P + H of dimension d(P + H) 6 2 bKc and
size(P +H) 6 s2K exp(O(K2 log3 2K))|A|, such that A ⊆ P +H, or A is fully contained in
O(K3 log2K) cosets, whose total cardinality is bounded by exp(O(K logO(1) 2K))|A|, of some
subgroup of G.

Proof. By Theorem 3.4 and Lemma 3.8, A is contained in a 2-proper convex coset progression
X+H of dimension d = O(K logO(1) 2K) and size(X+H) = exp(O(K logO(1) 2K))|A|. Write
X = φ(B ∩ Zd).

Consider Z = φ−1(πX(A)) ∩B ⊂ Zd. Let

Kmin = min
T⊆πX(A)

|T + πX(A)|/|T |

= min
T⊆Z
|T + Z|/|T | = |S + Z|/|S|

for some S ⊆ Z. Here, the middle equality is a consequence of X + H being 2-proper.
Obviously, |S + S|/|S| 6 Kmin 6 K, where the last inequality stems from Lemma 3.12.
We distinguish now two cases: either |S| > CK2

min log2Kmin, and therefore S satisfies the
assumptions of Theorem 3.2, or S is too small.

In the first case, by Chang’s Theorem 3.2, there exists a generalized arithmetic progression
Q containing S, of dimension d(Q) 6 bKminc and size(Q) = exp(O(K2

min log3Kmin))|S|. By
Ruzsa’s covering lemma there exists a subset Z ′ ⊆ Z such that |Z ′| 6 |S + Z|/|S| = Kmin

and Z ⊆ Z ′+S−S ⊆ Span(Z ′)+Q−Q. Therefore, Z is contained in a generalized arithmetic
progression Q′ of dimension d(Q′) 6 |Z ′|+ d(Q) 6 2 bKminc and

size(Q′) 6 3|Z′|2d(Q′) size(Q) = exp(O(K2
min log3Kmin))|S|

= exp(O(K2
min log3Kmin))|X| ,

where the last equality follows from |S| 6 |Z| = |πX(A)| 6 |X|.
The case concludes by moving back by φ to G: for P = φ(Q′) we find A ⊆ P + H, the

coset progression P +H is of dimension d(P +H) 6 2 bKminc and

size(P +H) 6 exp(CK2
min log3Kmin)|X||H| = exp(O(K2 log3K))|A|.

An application of Lemma 3.9 gives the desired result.
On the other hand, if |S| < CK2

min log2Kmin, then A ⊆ πX(A) + H and the number of
cosets of H involved is at most

|πX(A)| = |Z| 6 |Z + S| = Kmin|S| = O(K3 log2K) .

Moreover, as established in the first paragraph of the proof,

|πX(A)||H| 6 size(X +H) = exp(O(K logO(1) 2K))|A| .
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3.5. Further refinement of the result

The bound on the size of the progression obtained in Theorem 3.13 might have been good
enough if the reasoning was based on the original result of Green and Ruzsa [GR07], in
which case the size was bounded by exp(O(K4 logO(1) 2K))|A|. However, a new version of
Bogolyubov-Ruzsa’s lemma, originated in [Sch11] and fully developed by Sanders [San12],
results in such good bounds in Green-Ruzsa’s theorem that our loss of control of size of the
progression is hardly justifiable. In this last section of the chapter we prove the promised
Theorem 3.5 that gives much finer control.

To this end we first recall Freiman’s lemma [TV06, Lemma 5.13].

Lemma 3.14 (Freiman’s lemma). Suppose that A ⊆ Rd is not contained in a proper affine
subspace. Then we have the lower bound

|A+A| > (d+ 1)|A| − d(d+ 1)
2 .

Now we formulate a slightly improved version of Chang’s Theorem 3.2

Theorem 3.15. Let A ⊆ G be a finite subset of a torsion-free group G such that 0 ∈ A
and |A+A| 6 K|A|. If |A| > CK logCK then there is a convex progression X of dimen-
sion d(X) 6

(
1 + o(1)

)
K and size(X) = exp(O(K logO(1)K))|A|, such that A ⊆ X. If,

additionally, |A| > (K + ε)2/2ε, for ε > 0, then d(X) 6 bK − 1 + εc.

Remark. The constants C making part of the condition on |A| are absolute and their precise
values follow from the proof below.

Proof. By Theorem 3.1, A ⊆ X where X = φ(B ∩ Zd) is a convex progression of dimension
d 6 d(K) = O(K logO(1)K) and size(X) is bounded by exp(O(K logO(1)K))|A|. For technical
reasons we additionally assume that d(K) = Ω(K logΩ(1)K) and substitute a suitable function
for d(K) if needed.

Let us denote by d′ the dimension of the affine space V ′ spanned by φ−1(A) ∩ B. If
d′ 6 K − 1, we can skip the next few steps, where we establish bounds on d′.

Otherwise, by Freiman’s lemma,

K|A| > |A+A| > (d′ + 1)|A| − d′(d′ + 1)/2

and |A| 6 r(d′) for a function r such that

r(x) = x(x+ 1)
2(x+ 1−K)

for x > K − 1.
Let us define d′′ as the second solution to the equation r(x) = r(d(K)) in the range
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x > K − 1, which is equivalent to

x2 − x
(d(K)

(
d(K) + 1

)
d(K) + 1−K − 1

)
+ (K − 1)

d(K)
(
d(K) + 1

)
d(K) + 1−K = 0.

By Viète’s formula

d′′ =
d(K)

(
d(K) + 1

)
d(K) + 1−K − 1− d(K) = d(K) + 1

d(K) + 1−K (K − 1) =
(
1 + o(1)

)
K ,

the last, asymptotic equality coming from our assumption about super-linear growth of
d(K). Note also that one can choose the constants C in the theorem’s hypothesis such
that |A| > CK logCK > r(d(K)).

Since r(x) is convex for x > K − 1 and r(d′) > |A| > r(d(K)), and d′ 6 d(K), we have

d′ 6 d′′ =
(
1 + o(1)

)
K.

If |A| > (K + ε)2/2ε > r(bK − 1 + εc), for ε > 0, we can conclude that d′ 6 bK − 1 + εc.
In any case φ−1(A) lies in an affine space V ′ of small dimension d′. Since 0 ∈ A this

space is not only affine but it is linear as well. It remains to show that A can be considered
to be a subset of a d′-dimensional convex progression X ′ = φ′(B′ ∩ Zd′). This is immediate
if we take an endomorphism T : V ′ → Rd′ such that T (V ′ ∩ Zd) = Zd′ . Now we just write
φ′ = φ|V ′ ◦ T−1 and B′ = T (B ∩ V ′).

A literal repetition of the proof of Theorem 3.13, with application of Chang’s Theorem 3.2
replaced by that of the above theorem, proves Theorem 3.5.

Note how the last paragraph of the proof above tacitly explains introduction of convex
(coset) progressions to the reasoning. While slicing a generalized arithmetic progression
usually results in a less regular object, a slice of a convex progression is once again a convex
progression. This leaves from us the burden of constant work on shaping our object as a
generalized progression.

It is also worth noting that the difference in our bounds for the sizes of X+H and P +H

is not simply caused by our inability to conduct the reasoning effectively, but it stems from
a fundamental difficulty of finding small generalized progressions covering convex ones. This
geometric problem is also reflected in a similar difference featuring in the pair of Lemmas 3.8
and 3.9.
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Chapter 4

Interlude

In the previous chapter we paid particular attention to good control over the dimension of
a generalized arithmetic progression obtained in Green-Ruzsa’s theorem. It is time now to
show limitations of this approach. An immediate one can be reduced to the following slogan:
Good characterization of sets with small doubling, promised by Freiman’s and Green-Ruzsa’s
theorems, is not that good.

To make the above remark clear, let us consider a finite set A such that |A+A| 6 K|A|.
By Freiman’s theorem there is a generalized arithmetic progression P of dimension d(K) and
size bounded by f(K), such that A ⊆ P . Therefore, we can conclude that

|A+A| 6 |P + P | 6 2d(K)|P | 6 2d(K)f(K)|A| .

However, the factor 2d(K)f(K), which is a good measure of accuracy of the characterization,
is exponential in K, as we know that we necessarily have d(K) = Ω(K) for any reasonable
choice of the functions d and f . We could make this measure merely polynomial in K, if
only we moved our interest from the problem investigated by Freiman toward another, highly
related one that we present in the following paragraphs.

Growing interest in Freiman’s theorem that followed in the beginning of the current
century was not only due to the new and ingenious Ruzsa’s proof, whose structure was roughly
followed by all subsequent refinements and generalizations mentioned in the previous chapter.
It was also due to its applications to some of the very most interesting problems in additive
combinatorics. To this respect we can mention Gower’s breakthrough proof [Gow98, Gow01]
of Szemerédi’s theorem as well as a new result [SSV05] on Erdős-Moser problem due to
Sudakov, Szemerédi and Vu.

However, the two proofs mentioned above did not quite rely on some additively structured
set being a subset of a generalized arithmetic progression. The key was rather that a huge
portion of this set made part of a low dimensional arithmetic progression, which is basically
a form of the Bogolyubov-Ruzsa lemma. While this is enough for the purpose of proving
Freiman’s theorem, the notion of low-dimensionality differs substantially for both statements.

As we have already mentioned several times, in case of the Freiman theorem, one cannot
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expect the relevant dimension to be anything less than at least Ω(K). On the other hand,
there is a priori no reason why a progression, whose existence postulates Bogolyubov-Ruzsa’s
lemma, should have to be so highly-dimensional. This belief goes actually much further and
is now know as the polynomial Freiman-Ruzsa conjecture.

Conjecture 4.1 (polynomial Freiman-Ruzsa conjecture, PFR). Let A ⊆ G be such that
|A + A| 6 K|A|. Then there is a coset progression P + H of dimension O(logK) and
size(P +H) 6 C1(K)|A| such that |A ∩ (P +H)| > C2(K)−1|A|. Both functions C1 and C2

can be taken polynomial.

The fundamental significance of the conjecture can be better understood in perspective
of the following theorem due to Ruzsa, which states it in several equivalent formulations for
a particular case of a dyadic group.

Theorem 4.2 (Ruzsa [Gre05b, Proposition 2.2]). The following five statements are equiva-
lent.

1. If A ⊆ F∞2 has |A + A| 6 K|A|, then there is A′ ⊆ A, |A′| > |A|/C1(K), which is
contained in a coset of some subspace of size at most C2(K)|A|.

2. If A ⊆ F∞2 has |A + A| 6 K|A|, then A may be covered by at most C3(K) cosets of
some subspace of size at most C4(K)|A|.

3. If A ⊆ F∞2 has |A+A| 6 K|A|, and if additionally there is a set B, |B| 6 K, such that
A + B = A + A, then A may be covered by at most C5(K) cosets of some subspace of
size at most C6(K)|A|.

4. Let f : Fm2 → F∞2 be a function such that |{f(x) + f(y)− f(x+ y) : x, y ∈ Fm2 }| 6 K.
Then f may be written as g + h, where g is linear and |Im(h)| 6 C7(K).

5. Let f : Fm2 → F∞2 be a function such that for at least 23m/K of the quadruples
(x1, x2, x3, x4) ∈ Fm2 with x1 + x2 = x3 + x4 we have f(x1) + f(x2) = f(x3) + f(x4).
Then there is an affine linear function g : Fm2 → F∞2 such that f(x) = g(x) for at least
2m/C8(K) values of x.

Furthermore if Ci(K) is bounded by a polynomial in K for all i ∈ I, where I is any of the
sets {1, 2}, {3, 4}, {5, 6}, {7} and {8} then in fact Ci(K) is bounded by a polynomial in K

for all i.

Spectrum of applications of the conjectured result is not limited to additive combinatorics
only. The exposition paper [Lov12] mentions several applications in theoretical computer
science, like e.g. effective constructions of some cryptographic primitives, linearity testing for
maps f : Fm2 → F∞2 and proving bound on complexity of some problems. The common source
of applicability of the PFR conjecture is that it allows to approximate arbitrary function φ
that is properly characterized combinatorially by a bounded number of affine functions. This
is crucial e.g. both to Gowers’s [Gow98, Gow01] and Aggarwal, Divesh and Dodis’s [ADL13].
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While the quest on the polynomial Freiman-Ruzsa conjecture is still on, the quasi-polynomial
Freiman-Ruzsa theorem, Theorem 3.4, has been proved recently by Sanders [San12], following
the first breakthrough result of Schoen [Sch11].

Although we are not interested in the details of Sanders’s proof, we shall incorporate
several results of his in the next chapter where we investigate upper bounds on Rado numbers.
We shall also follow the general approach of Bohr sets analysis. Here we only make some
remarks on why the Bohr sets prove to be such a useful tool in our investigations.

First of all, what is clearly present in Ruzsa’s approach to Freiman’s theorem, d-dimensional
Bohr sets are very much like d-dimensional generalized arithmetic progressions, and at the
same time they are defined in an analytic manner. This makes them a perfect intermediate
object to move back and forth between a structural and Fourier analytic worlds.

The second feature of the Bohr sets is that they play the role of subspaces very well
which facilitates translation of any methods from the easier final field setting to the general
one. While iterative approaches to problems in the next chapter are conceptually easy to
follow, the key idea thereof is finding a long arithmetic progression in a sumset, which is more
expensive to do than just find a proper Bohr set. The situation is very similar to the one that
we encounter in Lemmas 3.8 and 3.9, where guaranteeing existence of a proper generalized
progression and merely a proper convex progressions are very different in terms of cost. Note
also that actual subspaces of a linear space are themselves Bohr sets.

Finally, it should not be too much of a surprise that a tool that proves valuable in
considerations of one particular equation, i.e. x + y = x′ + y′ can be so for other equations
as well.
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Chapter 5

Rado numbers and solving linear
equations

In the last two chapters we investigate linear equations. We pay particular attention to
conditions of solvability of these equations.

5.1. Classification of linear equations

It has been a long studied question of when a Diophantine equation has a solution in a set
of integers and it has been known for long that not all equations are created equal to this
respect. The main division line goes between those which can be called invariant and those
which cannot. A great account of this is two-part Ruzsa’s work [Ruz93, Ruz95].

Definition 5.1. Given a linear equation of integer coefficients

a1x1 + · · ·+ akxk = 0 ,

for non-zero ai ∈ Z, we say that:

1. it is invariant if
∑k
i=1 ai = 0;

2. it is of genus g if g is the maximal number such that there are g pairwise disjoint
non-empty subsets I1, . . . , Ig ⊆ [k] such that

⋃g
j=1 Ij = [k] and

∑
i∈Ij ai = 0 for every

j = 1, . . . , g.

3. it contains an equation that satisfies property P if there is a subset I ⊆ [k] such that
the equation

∑
i∈I aixi = 0 satisfies P.

Remark. Note that in the above definition we do not deal with non-homogeneous equations,
i.e. the ones with non-zero constant on the right-hand side. This is so throughout the chapter
and we use the word linear to mean homogenous linear without any further explanation.
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While existence of non-trivial solutions to invariant equations can be guaranteed on den-
sity basis alone, it is no longer so for general non-invariant equations. A natural example is
the set of odd numbers, which is free of any solutions to Schur’s equation x+ y = z despite
of having density 1

2 . For this reason a study of non-invariant equations has to follow slightly
different lines, designated long ago by Schur [Sch17] and Rado [Rad33].

Definition 5.2. We say that an equation is (partition-)regular if for every finite coloring
N = A1 ∪ · · · ∪An there exists a monochromatic solution to it.

It follows by the compactness principle that, for any regular equation, there is the smallest
integer r(n) such that for every n-coloring of {1, . . . , r(n)} there is a monochromatic solution
to it.

Rado [Rad33] provided a convenient characterization of partition-regular systems of linear
equations. The following theorem is the single-equation version thereof.

Theorem 5.3 (Rado). A homogeneous linear equation is regular if and only if it contains
an invariant equation.

There is a particular weakness in the above theorem, however, namely invariant equations
always have trivial solutions with all xi’s equal. We denote by R(n) the least integer such that
for every n-coloring of {1, . . . ,R(n)} there is a non-trivial solutions to a given equation and
we are only interested in R(n) hereafter. It turns out that R(n) exists for regular invariant
equations in more than two variables.

Since known finintistic proofs of Rado’s theorem rely on finding long monochromatic
arithmetic progressions or similar arithmetic structures, the resulting upper bounds are rather
poor. A straightforward application of the van der Waerden theorem would result in an
Ackerman-type bound for the Rado numbers and application of the powerful result of Gowers
[Gow01, Theorem 18.2] cannot give anything better than roughly

R(n) 6 tower(5n) ,

where

tower(n) = 22.
. .2} n times .

As already mentioned, if a linear equation is invariant, then density results are highly
related to Rado numbers. It follows from Bloom’s [Blo12, Theorem 1.1] based on Sanders’s
work [San11] that for every k-variable invariant equation we have

R(n) 6 2O(n1/(k−2) log5 n) .

If, additionally, we assume that k > 6 then from [SS14, Theorem 1.1] one can deduce that

R(n) 6 2O(log7 n) .
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Furthermore, for equations with genus g > 2 we have

R(n) = n1+O(1/g) ,

see Ruzsa’s [Ruz93, Theorem 3.6].
As to the lower bound, we are about to introduce the only construction that is a source of

all strong lower bounds for convex equations, which form a particular class of invariant ones.
It is due to Behrend [Beh46] and in spite of its simplicity it has been only slightly improved
over the last sixty years.

The main idea behind it is a simple observation that any set of points all lying on a convex
surface is free of non-trivial solutions to convex equations, i.e. equations of the form

a1x1 + · · ·+ akxk = (a1 + · · ·+ ak)y ,

for a1, . . . , ak ∈ N. By an averaging argument, there is a sphere that contains a lot of lattice
points from [L]d ⊆ Rd and it requires only a slight effort to embed this set in [N ] so that
no non-trivial solution appears. This can be done in a way that the resulting set is of size
N exp(−O(

√
logN)).

It follows from Behrend’s construction composed with a probabilistic covering argument
that for every convex equation

R(n) > 2O(log2 n) .

Hence for all convex equations with k > 6 we have quite tight bounds on Rado numbers.
On the other hand, if a linear equation is non-invariant, then every set of integers contains

a subset proportional in size and free of solutions to this equation. Hence, by iterative
argument,

R(n)� Cn

for some C > 1 depending on the equation.

The above discussion shows that one of the most widely open questions concerning Rado
numbers is that of upper bounds for non-invariant equations. This chapter is devoted to these
equations only and our main results are the following three theorems proved in Section 5.2.
Many of the proofs presented share the same idea of identifying long monochromatic arith-
metic progressions or, in the more involved cases, large Bohr sets. The following results are
presented in the order of increasing strength of hypothesis. The more structured the equation
considered, the more efficient our methods will be. All implied constants depend only on the
equation.

Theorem 5.4. Let a1x1 + · · ·+akxk = 0 be a regular equation with integer coefficients. Then
for every n

R(n)� 2O(n4 log4 n).
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Theorem 5.5. Let a1x1 + · · ·+akxk = 0 be an equation with integer coefficients that contains
an invariant equation with at least 4 variables. Then for every n

R(n) 6 2O(n3 log5 n) .

Theorem 5.6. Let a1x1 + · · ·+akxk = 0 be an equation with integer coefficients that contains
an equation of genus 2, then

R(n) 6 2O(n2 log5 n) .

While the above results make a significant progress when compared with tower-like
bounds, the gap between lower and upper bounds is still wide. We will keep this issue in mind
in Section 5.3 when a particularly simple class of Schur-like equations will be considered.

A classical theorem of Schur [Sch17], prior to general Rado’s result [Rad33], asserts that
for every partitioning of the first ben!c positive integers into n classes one can always find
three numbers in one partition class satisfying the equation x + y = z. In other words, a
certain class is not sum-free.

Denote by S(n) the smallest integer N such that for every n-coloring of {1, . . . , N} there
is a monochromatic solution to x+ y = z. We know that

321n/5 � S(n) 6 b(e− 1/24)n!c .

For the lower bound see [Exo94]. The upper one stems from the relation S(n) < R(3, . . . , 3; 2)
between Schur and Ramsey numbers, from the classical recurrence relation

R(k1, . . . , kn; 2) 6 2− n+
n∑
i=1

R(. . . , ki−1, ki − 1, ki+1, . . . ; 2)

and the bound R(3, 3, 3, 3; 2) 6 65 proved in [Whi72]. Abbott and Moser [AM66] proved
that limn→∞ S(n)1/n, although not necessarily finite, does exist. Proving any significantly
stronger bound on S(n) would be highly appreciated but we will only manage to improve it
a little bit in a special case only.

We call a set A ⊆ Z k-sum-free if it contains no solution to the equation

x1 + · · ·+ xk+1 = y1 + · · ·+ yk .

Also we denote by Sk(n) the analogues of the Schur numbers for the above equation. Because
every (k + 1)-sum-free set is also k-sum-free, we have

S(n) = S1(n) > S2(n) > . . . .

It is easy to check that for every k we still have Sk(n) > Cnk , for some constant Ck > 1.
While such equation is easier to handle for larger k, because of the large number of summands
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involved, a straightforward application of Schur’s argument, which is sketched in the first
paragraph of Subsection 5.2.1, only gives Sk(n)� 1

kn!. Our result is the following.

Theorem 5.7. For some absolute positive constant c, we have

S2(n)� n
−c logn

log lognn! .

The sections that are about to follow can be read independently.

5.2. Rado numbers

This section consists of two parts. In the first one we describe the main ideas of our approach
to upper bounds for Rado numbers and compare it with a traditional one, based on identifying
long monochromatic arithmetic progressions in structured sets. Since sumsets, nor even sets
of the form 2A−2A do not have to contain sufficiently long progressions, the results obtained
will be rather poor, but still much better than previous bounds. In the second part we will
prove the main results of this chapter. To this end we will heavily rely on properties of Bohr
sets.

5.2.1. Sketch of the argument

To prove our results we try to adapt classical Schur’s method, which is originally designed
to prove upper bounds on partitions free of solutions to the equation x + y = z and can
be described as follows. Suppose that X0 = [N ] = A1 ∪ · · · ∪ An is a sum-free partition.
Then, iteratively, for Xk−1 ⊆ Ak ∪ · · · ∪ An and Xk−1 −Xk−1 disjoint with A1 ∪ · · · ∪ Ak−1

we may assume that Xk−1 ∩ Ak is the largest among Xk−1 ∩ Ak, . . . , Xk−1 ∩ An. Write
a = max(Xk−1 ∩Ak). Clearly Xk = a − (Xk−1 ∩ Ak \ {a}) satisfies the conditions imposed.
Iterating this process, after n steps we find a set Xn such that (Xn −Xn) ∩ [N ] = ∅ and of
size at least N/n!. This results in the bound N � n!.

Now, notice that it is enough in the general case to consider equations of the form

ax− ay + bz = 0

with a, b positive integers, because by Rado’s theorem every regular equation can be reduced
to a such one. It is immediate that Schur’s argument cannot be directly applied for the above
equations. To make it work one can try to locate in a·A1−a·A1 a long arithmetic progression
passing through 0. It has to be disjoint with b·A1 and we can iterate this procedure on the
subsequence of elements divisible by b, which is partitioned between at most n− 1 sets of the
initial partition. To express this idea we recall the following lemma.

Lemma 5.8 ([CRS07, Corollary 1]). Let A ⊆ [N ] with |A| > δN. Then there exist integers
d > 0 and l� logN

log(1/δ) such that d, 2d, . . . , ld ∈ A−A.
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Theorem 5.9. For a regular linear equation a1x1 + · · ·+ akxk = 0 with integer coefficients
we have

R(n) 6 tower((1 + o(1))n) ,

where the o(1) term depends only on the equation.

Proof. Let [R(n)−1] = A1∪· · ·∪An be a partition without a monochromatic solution to our
equation and set N = R(n)− 1. Also, following Rado’s characterization of regular equations,
let I be such that

∑
i∈I ai = 0. First, observe that there are no monochromatic solutions to

the equation
ax− ay + bz = 0 ,

where a = |ai0 | for some i0 ∈ I and b = |
∑
i 6∈I ai|. Suppose that |A1 ∩ {1, . . . , N/a}| > N/na

and let A ⊆ A1 be any set of elements of A1 belonging to the same residue class modulo b with
|A| > |A1|/b. We apply Lemma 5.8 to A, so that d, 2d, . . . , ld ∈ A− A for some l � logN

log(abn) .

Notice that d ≡ 0 (mod b) and ad/b, 2ad/b, . . . , lad/b 6∈ A1, so that

ad/b, 2ad/b, . . . , lad/b ∈ A2 ∪ · · · ∪An .

Whence R(n− 1)� logN
log(abn) or, equivalently,

R(n) 6 (abn)O(R(n−1))

and the assertion follows.

Next we show that Theorem 5.9 can be highly improved provided that the equation
considered contains an invariant component of at least three variables, i.e. there exists I
such that

∑
i∈I ai = 0 and |I| > 3. To this end we need some lemmas. The first one is a

deep result due to Sanders, proved in [San11, Theorem 1.1], see also [Blo12]. The other can
be extracted from the proof of [FHR92, Theorem 3].

Lemma 5.10. Let A ⊆ [N ] with |A| > δN. Then A contains exp(−O((1/δ) log5(1/δ))|A|k−1

solutions to any invariant equation with k > 3 variables.

Lemma 5.11. Let A,B,C ⊆ [N ] with |A|, |B|, |C| > δN. Then every x with at least
ε|A||B||C|/N representations in A+B +C is a middle term of an arithmetic progression of
length Ω(εδNΩ(ε2δ3)), fully contained in A+B + C.

Proof. Here we roughly follow the lines of the proof of [FHR92, Theorem 3]. First we embed
[N ] into Z/pZ for prime p > 6N . Since a relevant p < 12N exists we can assume that
A,B,C ⊆ Z/pZ with |A|, |B|, |C| > δ′p for δ′ = δ/12. Then we are interested in x’s that
have at least ε′|A||B||C|/p for ε′ = 6ε.
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Given that (A ∗B ∗C)(x) > ε′|A||B||C|/p we want to show, for some non-zero d ∈ Z/pZ
and j ∈ {−J, . . . , J}, that (A ∗B ∗ C)(x+ jd) 6= 0. Or, equivalently, that

∑
r

Â(r)B̂(r)Ĉ(r)
(
e2πirx/p − e2πir(x+jd)/p) < ε′|A||B||C| .

Since for y equal either x or x+ jd we have∣∣∣ ∑
r 6∈Specη(C)

Â(r)B̂(r)Ĉ(r)e2πiry/p
∣∣∣ 6 η|C|

∑
r∈Z/pZ

|Â(r)B̂(r)|

6 η|C|
√ ∑
r∈Z/pZ

|Â(r)|2 ·
√ ∑
r∈Z/pZ

|B̂(r)|2

= ηp
√
|A||B||C| 6 η

δ′
|A||B||C| ,

where η is to be fixed later, it is enough to prove that∣∣∣ ∑
r∈Specη(C)

Â(r)B̂(r)Ĉ(r)
(
e2πirx/p − e2πir(x+jd)/p)∣∣∣ < (ε′ − 2η

δ′
)
|A||B||C| .

Now, |Specη(C)| · η2|C|2 6 p|C| 6 δ′−1|C|2 so |Specη(C)| 6 η−2δ′−1 and by the box
principle there is non-zero d ∈ Z/pZ such that ‖dr/p‖R/Z 6 p−1/|Specη(C)| 6 p−η

2δ′ for all
r ∈ Specη(C). Since |1− e2πit| 6 2π‖t‖R/Z it follows that, for this particular d,

∣∣∣ ∑
r∈Specη(C)

Â(r)B̂(r)Ĉ(r)
(
e2πirx/p − e2πir(x+jd)/p)∣∣∣ 6 2π|C| · |j|p−η2δ′

∑
r∈Z/pZ

|Â(r)B̂(r)|

6
2π|j|
δ′

p−η
2δ′ |A||B||C| ,

which proves that a relevant arithmetic progression exists for J < δ′ε′−2η
2π · pη2δ′ .

The choice of η = δ′ε′/4 concludes the proof.

Having introduced the lemmas we can prove the following.

Theorem 5.12. Let a1x1 + · · ·+ akxk = 0 be an equation of integer coefficients and I ⊆ [k]
be such that

∑
i∈I ai = 0. Suppose that |I| > 3, then

R(n) 6 22O(n2 log6 n)
.

The implied constant depends only on the equation.

Proof. Let M =
∑
i∈I |ai|/2, N = R(n) − 1 and [N ] = A1 ∪ · · · ∪ An be a partition without

a monochromatic solution to our equation. Suppose that |A1 ∩ {1, . . . , N/M}| > N/Mn and
for b = |

∑
i 6∈I ai| let again A ⊆ A1 consist of all elements of A1 belonging to the same residue

class modulo b with |A| > |A1|
b > δN for δ = (Mbn)−1. Set also ε = exp(−Cδ−1 log5(δ−1)),

where C > 0 is the constant given by Lemma 5.10.
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We may assume that I = {a1, a2, a3} and observe that no Ai contains a solution to the
equation

a1x1 + a2x2 + a3x3 + by = 0 .

By Lemma 5.10 there are at least ε|A|2 solutions to the invariant equation

a1x1 + a2x2 + a3x3 = 0.

In other words, 0 has at least ε|A|2 representations in a1·A+a2·A+a3·A, hence by Lemma 5.11
there is a symmetric arithmetic progression P ⊆ a1·A+ a2·A+ a3·A ⊆ {1, . . . , N} of length
Ω(εδNΩ(ε2δ3)). Therefore 1

b ·P ⊆ A2 ∪ · · · ∪ An, because the set A1 is free of solutions to the
equation considered, and as a result R(n− 1)� εδ · R(n)Ω(ε2δ3).

The last inequality implies that R(1)� εδR(2)Ω(ε2δ3) � . . .� (εδ)nR(n)Ω(ε2δ3)n , hence

R(n)� (εδ)nΩ(ε2δ3)−n = 22O(n2 log6 n)

which proves the claim.

It is worth mentioning that one can obtain even better upper bound for all equations
containing an equation of genus 2. To get still further improvement, instead of arithmetic
progressions we make use of Bohr sets. This reduces roughly one exponent in our bounds,
but it makes all the proofs more complicated. A crucial additive property of dense sets
A ⊆ Z/NZ that influences our approach is that one can guarantee existence of a shift of a
large, low dimensional Bohr sets in A+A+A, but it is just not so for A+A. Therefore, we
cannot proceed as in the proof of Theorem 5.9. On the other hand, one can show that A+A

contains a large proportion of a shift of a low dimensional, large Bohr set, which allows us to
overcome this difficulty. Next subsections contain rigorous proofs based on the above ideas.

5.2.2. Main results based on Bohr sets analysis

Proving the strongest results of ours requires recalling a more sophisticated concept of Bohr
sets, some extra notation and some lemmas. Bohr sets were introduced to modern additive
combinatorics, beyond the limited setting of the Freiman-type problems, by Bourgain [Bou99]
and since then have become a fundamental tool in additive combinatorics. Sanders [San08,
San12] further developed the theory of Bohr proving many important results.

Definition 2.6 of Bohr sets and the two lemmas below are pretty standard, hence we refer
the reader to [TV06] for a more complete account.

Lemma 5.13. For every γ > 0 we have

γ|Γ|N 6 |B(Γ, γ)| 6 8|Γ|+1|B(Γ, γ/2)| .

The size of Bohr sets can vary significantly even for small changes of the width parameter,
which is the motivation for the following definition.
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Definition 5.14. We call a Bohr set B(Γ, γ) regular if for every η, |η| 6 1/(100|Γ|), we have

(1− 100|Γ||η|)|B| 6 |B1+η| 6 (1 + 100|Γ||η|)|B|.

Bourgain [Bou99] showed that regular Bohr sets are ubiquitous.

Lemma 5.15. For every Bohr set B(Γ, γ) there exists 1
2γ 6 γ′ 6 γ such that B(Γ, γ′) is

regular.

The most important consequence of regularity of a Bohr set is expressed by the following
lemma. Here we denote by µX the uniform probability measure on a finite nonempty set X.

Lemma 5.16 ([Bou08, Lemma 3.16]). Let B ⊆ G be a d-dimensional, regular Bohr set.
Suppose that S ⊆ Bε and ε < κ/(100d) for some κ < 1. Then for every set A ⊆ B, we have

‖µB ·A− (µB ∗ µS) ·A‖`1(G) < 2κ ,

where µB ∗ µS denotes the convolution of relevant density functions as defined in Notation.

An immediate consequence of the above lemma is the following.

Lemma 5.17. Let B be a d-dimensional regular Bohr set, let A be a set and µB(A) = δ.
Suppose that S ⊆ Bε and ε < κδ/(200d) for κ < 1. Then

1
|B|

∑
x∈B

µS(A+ x) > (1− κ)δ .

Proof.

δ =
∑
x

µB(x)A(x)

6 ‖µB ·A− (µB ∗ µS) ·A‖`1 +
∑
x

(µB ∗ µS)(x)A(x)

6 κδ +
∑
a∈A

(µS ∗ µB)(a) = κδ +
∑
a∈A

∑
x∈B

µS(a+ x)
|B|

= κδ + 1
|B|

∑
x∈B

µS(A+ x) .

The above is pretty standard and we will refer to it in course of proving the theorems.

Proof of Theorem 5.4.

The following lemma is due to Sanders.

Lemma 5.18 ([San08, Lemma 6.4]). Let B = B(Γ, γ) be a d-dimensional regular Bohr
set and let A ⊆ B be such that µB(A) = δA > δ. Then either A − A contains (1 − α)
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fraction of a regular Bohr set Bρ, where ρ � δ4/d and ρ does not depend on A, or there is
a regular Bohr set B′ = B(Γ ∪ Λ, γ′) and x such that µB′(A + x) > 1.01δA. Furthermore,
|Λ| = O(δ−2 log(1/α)) and γ′ � γδ6/(d3 log(1/α)).

It is important to realize that the Bohr set mentioned in the first alternative of the lemma
can be chosen universally, i.e. independently of the set A. This follows from Sanders’s proof
of the lemma, although he does not state it this way.1 We will make use of this property
when we apply the lemma to several sets Ai simultaneously.

Proof of Theorem 5.4. Clearly, it is enough to consider an equation of the form

ax− ay + bz = 0

with a, b > 0. Suppose that [N ] = A1 ∪ · · · ∪An is a solution-free partition. Let p be a prime
between (2a+ b)N and 2(2a+ b)N . Then each color class is solution-free in Z/pZ.

Let M = max(a, b) and δ = 1/(3n), and ε = n−2. We build the proof around an
iterative procedure and during its execution we keep track of several variables: a subset
I ⊆ [n], a regular Bohr set B = B(Γ, γ) ⊆ Z/pZ, counters Counti and the aggregated value
Total =

∑
Counti. Also, we make the following invariants hold:

I0 ∀i 6∈I Counti = 0

I1 ∀i∈I µab·B(a·Ai + xi) > 1.01Counti · δ2 + (O(n logn)− Total)ε for some xi

I2 B = B(Γ, γ) is regular, |Γ| = O(Total · n2 logn) and γ � n−O(Total)

The aim that the procedure is supposed to pursue is to make the following conditions hold:

C1 ∀i∈I µab·B(a·Ai − a·Ai) > 1− δ

C2 ∀i 6∈I µab·B(b·Ai) < δ

To begin with let B = B0 = [−N/a,N/a], which is a one-dimensional regular Bohr set, I = ∅
and Counti = 0 for all i. We easily verify that the invariants hold in this case. Whenever
any of the conditions is violated we perform one of the two operations described below and
increase one of the counters by one.

By the invariant (I1) it is clear that this procedure stops after at most O(n logn) steps and,
when it stops, we must have both conditions satisfied. For this reason we allow ourselves to
plug the bound Total = O(n logn) into the calculations below. Since (a·Ai−a·Ai)∩ b·Ai = ∅,
by condition (C1) we have

∀i∈I µab·B(b·Ai) < δ .

1The claim basically follows from considering the second paragraph of Sanders’s proof, where he introduces
δ′, which corresponds to the product ργ in variables of the statement of Lemma 5.18, and considering the very
last paragraph of this proof, where conditions on δ′ are listed.
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When combined with condition (C2), we get

µab·B(b·[N ]) < nδ = 1
3 ,

which is a contradiction if |B| > 7, because by the initial choice

ab·B ⊆ ab·B0 ⊆ b·[−N,N ]

and therefore µab·B(b·[N ]) = 1
2 −

1
|B| >

1
3 . Hence |B| 6 6 which by invariant (I2) and

Lemma 5.13 implies
N = 2O(n4 log4 n) .

It is now enough to describe what operations are performed in case a condition does not
hold and to verify that the invariants are preserved.

If condition (C2) is violated, then there is i 6∈ I such that µab·B(b·Ai) > δ, which is
equivalent to µa·B(Ai) > δ. Therefore for η ∈ ( εδ

8000M |Γ| ,
εδ

4000M |Γ| ] = n−O(1) such that Bη is
regular, by Lemma 5.17 applied to the set Ai and the Bohr sets a·B and ab·Bη ⊆ a·Bε we
have

µab·Bη(Ai + xi) > 0.9δ > 1.01δ2 +O(n logn)ε

for some xi. The above implies, for a redefined xi, that

µab·(a·Bη)(a·Ai + xi) > 1.01δ2 +O(n logn)ε .

To finalize the operation we update our variables.

1. I ← I ∪ {i}

2. B ← a·Bη

3. Counti ← Counti + 1 = 1.

The only invariant that holds now in a not immediately obvious manner is (I1) for I\{i}.
However, we know that it held for the old value of B, of which the new one is a small subset.
Therefore, thanks to the choice of η sufficiently small, Lemma 5.17 guarantees that at the
expense of one ε we may have the invariant satisfied.

If condition (C2) is not violated but condition (C1) is so, we need to distinguish two cases.
The first is that, for ρ = Ω(δ4/|Γ|) = n−O(1), we have condition (C1) satisfied for the regular
Bohr set Bρ and the family (Ai)i∈I ; the second is the opposite, which by Lemma 5.18 implies
that some density increment is possible for one of the sets Ai for i ∈ I.

Let us now consider the first case. If condition (C2) remains satisfied for the resulting
Bohr set Bρ the whole iterative procedure stops with

1. B ← Bρ.
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Otherwise, for Bρ and some i 6∈ I, we repeat the operation described for the case of condition
(C2) being violated. This results in the following.

1. I ← I ∪ {i}

2. B ← a·Bηρ

3. Counti ← Counti + 1 = 1.

In the only case remaining there is some i ∈ I such that µab·Bρ(a·Ai − a·Ai) < 1 − δ. By
Lemma 5.18 there is a regular Bohr set B′ = B(Γ′, γ′) ⊆ Bη and x such that

µab·B′(a·Ai + x) > 1.01µab·B(a·Ai + xi) .

Furthermore,
dimB′ = dimB +O(δ−2 log(1/δ)) = dimB +O(n2 logn)

and
γ′ � γδ6/(|Γ|3 log(1/δ)) = γ · n−O(1).

Therefore, we update the variables accordingly:

1. B ← B′

2. Counti ← Counti + 1.

Again, like in the first case considered, Lemma 5.17 guarantees that the invariants keep being
satisfied.

Proof of Theorem 5.5.

While the proof of Theorem 5.4 dealt with many elements Ai of a solution-free partition in
parallel, proofs of Theorems 5.6 and 5.7 are more linear in structure. In this regard they
resemble exemplary proofs of Theorems 5.9 and 5.12.

The lemma below is what really stands behind proofs of upper bounds for equations with
many variables and we will also make use of it in the proof of Theorem 5.6. This is a local
variant of, established in [San12], Sanders’s effective version of Bogolyubov’s lemma.

Lemma 5.19 ([SS14, Theorem 5.2]). Let ε ∈ (0, 1] be a real number. Let A and S be subsets
of regular Bohr sets B and Bε, respectively, where ε 6 1/(100d) and d = dimB. Suppose
that µB(A), µBε(S) > δ. Then A− A+ S − S contains a regular Bohr set B̃ ⊆ B, such that
dimB̃ = d+O(log4(1/δ)) and

|B̃| > exp(−O(d log d+ d log(1/ε) + d log(1/δ) + log5(1/δ)))|B| .

This lemma is proved in [SS14] for pairs of possibly different sets A,A′ and S, S′. It is
precisely this that stands behind the resulting Bohr set B̃ being translated in the original
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statement of the lemma. One can check that in the symmetric case of ours a genuine non-
translated set B̃ can be found.

Next two lemmas will serve as a main iterative block of Lemma 5.22. The first one was
proved by Sanders and is a local version of the Heath-Brown-Szemerédi density increment
method.

Lemma 5.20 ([San11, Lemma 3.8]). Let 0 < η, ε 6 1. Let A ⊆ B and S ⊆ Bε be such that
µB(A) = δ and µBε(S) = τ for a d-dimensional regular Bohr set B. If

∑
r∈Specη(S)

|Â(r)|2 > (1 + ν)|A|2 ,

then there is a regular Bohr set B′ ⊆ Bε of dimension dimB′ = d + O(η−2 log(1/τ)) and
cardinality

|B′| >
(

η

2d log(1/τ)

)d+O(η−2 log(1/τ))
|Bε|

such that µB′(A+ x) > δ(1 + Ω(ν)) for some x.

Lemma 5.21. Let B ⊆ Z/NZ be a regular d-dimensional Bohr set and ε < c/100d for
1/64 < c < 1/32. If A,A′ ⊆ B and S, S′ ⊆ Bε, and

µB(A), µB(A′), µBε(S), µBε(S′) > δ ,

then either there is x ∈ B1+ε such that

(A ∗ S)(x), (A′ ∗ S′)(−x) > 1
10δ

2|Bε| ,

or there is a regular Bohr set B′ ⊆ Bε such that dimB′ = dimB +O(δ−1 log(1/δ)),

|B′| �
( δ

2d log(1/δ)
)d+O(δ−1 log(1/δ))

|Bε|

and µB′(A+ y) > (1 + Ω(1))δ or µB′(A′ + y) > (1 + Ω(1))δ for some y.

Proof. We have A+S,A′+S′ ⊆ B1+ε and, by regularity, |B1+ε| 6 (1 + c)|B|. Let us assume
that there is no x satisfying the property required, i.e. for all x ∈ B1+ε we have either

(A ∗ S)(x) < 1
10δ

2|Bε| or (A′ ∗ S′)(−x) < 1
10δ

2|Bε|.

By symmetry we may assume that (A ∗ S)(x) < 1
10δ

2|Bε| for at least 1
2 |B1+ε| elements

x ∈ B1+ε. Let us denote the set of these x’s by X.
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Therefore

∑
x∈B1+ε\X

(A ∗ S)(x) >
∑

x∈B1+ε

(A ∗ S)(x)− (δ2/10)|B1+ε||Bε|

> |A||S| − ((1 + c)/10)|A||S| > 4
5 |A||S| .

Here the second inequality stems from A+S ⊆ B1+ε and a combination of the following two
estimates: δ|B1+ε| 6 (1 + c)δ|B| 6 (1 + c)|A| and δ|Bε| 6 |S|. Hence

∑
x∈B1+ε\X

(A ∗ S)(x)2 >
(4

5 |A||S|)
2

1
2 |B1+ε|

>
(4

5 |A||S|)
2

1+c
2 |B|

>
6|A|2|S|2

5|B| .

It follows by Parseval’s formula that

1
N

N−1∑
r=0
|Â(r)|2|Ŝ(r)|2 >

∑
x∈B1+ε\X

(A ∗ S)(x)2 >
6|A|2|S|2

5|B|

and, by the definition of the large spectrum and Parseval’s formula,

1
N

∑
r 6∈Specη(S)

|Â(r)|2|Ŝ(r)|2 6 (η|S|)2 · 1
N

∑
r∈ZN

|Â(r)|2 = cδ|S|2|A| 6 c
|A|2|S|2

|B|
,

for η = (cδ)1/2. Therefore, as |Ŝ(r)| 6 |S|,

∑
r∈Specη(S)

|Â(r)|2 >
1
|S|2

∑
r∈Specη(S)

|Â(r)|2|Ŝ(r)|2 >
7|A|2N
|B|

>
7
6 |A|

2 .

The proof concludes with application of Lemma 5.20.

The following lemma constitutes the main iterative step of the proof of Theorem 5.5

Lemma 5.22. Let B be a regular d-dimensional Bohr set in Z/NZ such that dimB = d.
Suppose that A ⊆ Z/NZ is such that µB(A) = δ and it contains no solution to the equation

b1x1 + b2x2 + b3x3 + b4x4 + bx = 0

with b1 + b2 + b3 + b4 = 0. Then there exists a regular Bohr set T ⊆ B disjoint from A such
that

dimT = dimB +O(δ−1 log2(1/δ))

and
|T | > exp(−O(d log d log2(1/δ) + d log3(1/δ) + log5(1/δ)))|B| .

The implied constants depend only on the equation considered.

Proof. Let M = max |bi|, β = |b1b2b3b4| and 1 + c be the density increment factor given by
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Lemma 5.21, which we assume to be smaller than 2, and c1, c2 > 0 be constants small enough
for the argument below to work. Set ε1 = c1δ/(M3d) and ε2 = c2δ

2/(M3d).
Let us consider the Bohr sets

B1 = β

b1
·Bε1 , B

2 = β

b2
·Bε2 , B

3 = β

b3
·Bε1 , B

4 = β

b4
·Bε2 .

By a proper choice of constants c1 and c2 we may assume that they are all regular Bohr
sets of dimension d and, by Lemma 5.13, |Bi| = Ω(δ/d)6d+6|B|. These sets are all subsets of
Bc1δ/d, so by Lemma 5.17 we have

1
|B|

∑
x∈B

4∑
i=1

µBi(A+ x)(x) > (4− c

3)δ .

Therefore, either for some x ∈ B and for all i = 1, . . . , 4 we have

µβ·Bεi (bi·(A+ x)) = µBi(A+ x) > (1− c

2)δ ,

with the convention ε3 = ε1 and ε4 = ε2, or µBi(A+ x) > (1 + c
18)δ for some i. In the latter

case we repeat the above reasoning for the pair A+ x,Bi ⊆ B.
Since the density is naturally bounded from above, after at most O(log(1/δ)) iterative

steps we end up with some A+ x and some Bohr set B′ ⊆ B such that µB′(A+ x) > δ, and
for some y and all i = 1, . . . , 4 we have

µβ·B′εi
(bi·(A+ y)) = µB′i(A+ y) > (1− c

2)δ .

Also, dimB′ = d and
|B′| = Ω(δ/d)O(d log(1/δ))|B| .

Hence, by application of Lemma 5.21 to the Bohr set β·Bε1 = β·Bε3 and the sets
A,A′, S, S′ of the lemma equal to the sets b1·(A + y), b3·(A + y), b2·(A + y) and b4·(A + y)
truncated to their relevant Bohr sets β·Bεi , respectively, we have either

µβ·B′ε2
(b2·(A+ y) ∩ (x− b1·(A+ y))) > 0.1((1− c

2)δ)2 > 0.01δ2

and
µβ·B′ε2

(b4·(A+ y) ∩ (−x− b3·(A+ y))) > 0.01δ2

for some x, or there is a regular Bohr set B′′ ⊆ β·B′ε2 ⊆ B with the following properties:

dimB′′ = dimB′ +O(δ−1 log(1/δ)),

|B′′| >
( δ

2d log(1/δ)
)d+O(δ−1 log(1/δ))

|B′ε2 | >
( δ

2d log(1/δ)
)O(d log(1/δ)+δ−1 log(1/δ))

|B| .

and, for some z, we have µB′′(A+ z) > (1 + c) · (1− c
2)δ = (1 + Ω(1))δ.
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Repetition of the above procedure at most O(log(1/δ)) times results in a translate A+ x

and a regular Bohr set B̃ ⊆ B such that

µβ·B̃ε2
(b2·(A+ y) ∩ (x− b1·(A+ y))) > 0.01δ2

and
µβ·B̃ε2

(b4·(A+ y) ∩ (−x− b3·(A+ y))) > 0.01δ2

for some x. Furthermore B̃ε2 is a regular Bohr set of dimB̃ = d+O(δ−1 log2(1/δ)), and

|B̃| >
(δ
d

)O((d+δ−1) log2(1/δ))
|B|

= exp(−O((d log d+ δ−1 log(1/δ)) log2(1/δ))|B| .

Let A′ = b2·(A+y)∩(x−b1·(A+y)) and S = b4·(A+y)∩(−x−b3·(A+y)). We are almost
done but we cannot yet apply Lemma 5.19. One last application of Lemma 5.17 shows that
there is some s such that µβ·B̃εs (S + s) > δ2/101 for εs = ε3

1. Write S′ = (S + s) ∩ β·B̃εs .
Applying Lemma 5.19 to the sets A′ ⊆ β·B̃ε2 and S′ ⊆ β·B̃εs we obtain a Bohr set T ′

such that
T ′ ⊆ A′ −A′ + S′ − S′ ⊆ 2(β·B̃ε2) + 2(β·B̃εs) ⊆ B

and
T ′ ⊆ A′ −A′ + S′ − S′ ⊆ b1A+ b2A+ b3A+ b4A .

In particular, the above implies that T = T ′1/b is disjoint from A, because A is free of solutions
to the equation by assumption and b·A is therefore disjoint from T ′.

The dimension of T is

dimT = dimB̃ +O(log4(1/δ)) = dimB +O(δ−1 log2(1/δ))

and its cardinality is

|T | > exp(−O(d log d+ d log(1/δ) + log5(1/δ))))|B̃ε2 |

= exp(−O(d log d log2(1/δ) + d log3(1/δ) + log5(1/δ)))|B| .

Proof of Theorem 5.5. Suppose that [N ] = A1∪· · ·∪An is a solution-free partition. Let p be
a prime between (|b1|+ |b2|+ |b3|+ |b4|+ b)N and 2(|b1|+ |b2|+ |b3|+ |b4|+ b)N . Then each
color class is solution-free in Z/pZ. We start with a one-dimensional Bohr set T0 = [−N,N ]
and let A1 be any class with µT 0(A1) > 1/(3n). Iterative application of Lemma 5.22 gives
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after k steps a Bohr set Tk ⊆ Tk−1 that is disjoint from A1 ∪ · · · ∪Ak and

|Tk| � exp(−O(kn log5 n))|Tk−1| � exp(−O(k2n log5 n))N .

Clearly, Tn does not contain any element from A1 ∪ · · · ∪An. In particular Tn = {0}, so that

1 = |Tn| � exp(−O(n3 log5 n))N,

and therefore
R(n)� 2Cn3 log5 n ,

which completes the proof.

Proof of Theorem 5.6.

A careful reader might have noticed that a proof of Theorem 5.6 can be deduced from that
of Theorem 5.5, because we get sets A and S for free in the genus 2 case when b2 = −b1 and
b4 = −b3. We extract these essentials here.

The lemma we are about to prove constitutes the main iterative step of the proof of
Theorem 5.6.

Lemma 5.23. Let b1, b2 and b be positive integers and let B = B(Γ, γ) be a regular Bohr
set of dimension d. Suppose that A ⊆ B,µB(A) = δ, does not contain any solution to the
equation

b1x1 − b1x2 + b2x3 − b2x4 + by = 0 .

Then there exists a regular Bohr set T ⊆ B disjoint from A such that

dimT = dimB +O(log4(1/δ))

and
|T | > exp(−O(d log d+ d log(1/δ) + log5(1/δ)))|B| .

The implied constants depend only on b1, b2 and b.

Proof. Choose a constant 1/64 6 c 6 1/32 such that Bε is a regular Bohr set, where
ε = cδ/(100b1b2d). Put Bi = bi·Bε for i = 1, 2 and B′ = b1b2·Bε. By Lemma 5.17 we
have

1
|B|

∑
x∈B

µB1(A+ x) > (1− 2c)δ > 1
2δ .

Therefore for some x
µB1(A+ x) > 1

2δ ,

hence
µB′(b2·(A+ x)) = µB1(A+ x) > 1

2δ .
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Again choose a constant 1/64 6 c′ 6 1/32 such that B′ε′ is a regular Bohr set, where
ε′ = c′δ/(100b1b2d). Using the same argument we find y such that

µB′
ε′

(b1·(A+ y)) > 1
2δ .

Therefore, by Lemma 5.19
b1·A− b1·A+ b2·A− b2·A

contains a Bohr set B̃ ⊆ B′ of dimension dimB +O(log4(1/δ)) such that

|B̃| > exp(−O(d log d+ d log(1/δ) + log5(1/δ)))|B′|

Since A is a solution-free set it follows that b·A is disjoint from B̃, hence A is disjoint from
T := B̃1/b. Observe that

T ⊆ B′ = b1b2·Bε ⊆ Bb1b2ε ⊆ B .

To finish the proof it is enough to establish the postulated lower bound on |T |. By Lemma 5.13,
which relates |T | and |B̃|, we have

|T | > exp(−O(d+ log4(1/δ)))|B̃|

> exp(−O(d log d+ d log(1/δ) + log5(1/δ)))|B′|

> exp(−O(d log d+ d log(1/δ) + log5(1/δ)))|B| .

Finally the assertion follows by application of Lemmas 5.15 and 5.13, which give regularity
of the resulting set and its comparability in size with |T |, respectively.

Proof of Theorem 5.6. We proceed similarly as in the proof of Theorem 5.5. Suppose that
[N ] = A1∪· · ·∪An is a solution-free partition and let p be a prime between (2b1+2b2+b)N and
2(2b1+2b2+b)N . Then each color class is solution-free in Z/pZ.We start with T 0 = [−N,N ],
which is a one-dimensional Bohr set, and let A1 be any class with µT 0(A1) > 1/(3n). Iterative
application of Lemma 5.23 gives after k steps a Bohr set Tk ⊆ Tk−1 of dimension O(k log4 n),
that is disjoint from A1 ∪ · · · ∪Ak and

|Tk| > exp(−O(k log5 n))|Tk−1| > exp(−O(k2 log5 n))N .

Since Tn ∩ (A1 ∪ · · · ∪An) = ∅ it follows that Tn = {0}. Hence

1 = |Tn| > exp(−O(n2 log5 n))N,

and the assertion follows.
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5.3. Schur-like numbers

In this section we prove Theorem 5.7, which lowers an upper bound on Schur-like numbers
below the threshold established by a natural argument presented in the beginning of Subsec-
tion 5.2.1.

To begin with we need the following two lemmas.

Lemma 5.24. Suppose that {1, . . . , N} = A1∪ · · ·∪An is a partition into sum-free sets such
that |A1| > . . . > |An| and set σk =

∑
i>k |Ai|. Then we have

|Ak| >
|A1|

(k − 1)! − 2(σk + 1).

Proof. We use a classical Schur’s argument. Let i1 = 1 and B1 = Ai1 = {a1, . . . , at} with
a1 < . . . < at and notice that all numbers a2 − a1, . . . , at − a1 belong to A2 ∪ · · · ∪ An. At
most σk of these elements belong to

⋃
i>k Ai, hence B2 = {a2 − a1, . . . , at − a1} ∩Ai2 has

|B2| >
|A1| − 1− σk

k − 1

elements for some 2 6 i2 6 k. Therefore, by repeated application of the above argument, we
get the family of sets Bk such that Bk and Bk − Bk are disjoint with Ai1 ∪ · · · ∪ Aik−1 and
Ai1 ∪ · · · ∪Aik respectively, and

|Bk| >
|A1|

(k − 1)! − (σk + 1)
k−1∑
i=1

1
i! >

|A1|
(k − 1)! − 2(σk + 1) ,

and the assertion follows, because |Ak| > |Bj | > |Bk| for j such that ij = k.

Lemma 5.25. Suppose that N < S2(n). Then there exists a partition [N ] = A1 ∪ · · · ∪ An
into 2-sum-free sets such that |A1| > . . . > |An| and⋃

i>k

Ai ⊆ (3Ak −Ak) ∪ (2Ak − 2Ak) ,

for every 1 6 k 6 n.

Proof. Let [N ] = A1 ∪ · · · ∪ An be any 2-sum-free partition maximal with respect to the
lexicographical order of (|A1|, . . . , |An|). Since no element a ∈

⋃
i>k Ai can be added to Ak

without spoiling the 2-sum-free property, we have
⋃
i>k Ai ⊆ (3Ak −Ak) ∪ (2Ak − 2Ak).

Below we prove the main result of this section.

Proof of Theorem 5.7. Assume that our partitioning satisfies the assertion of Lemma 5.25.
First, we show that there exist x2, . . . , xk such that

|(A1 −A1) ∩ (A2 −A2 + x2) ∩ · · · ∩ (Ak −Ak + xk)| =
(
Ω(n−

9
10 )
)k
N , (5.3.1)
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for some k � logn
log logn . To this end we shall prove that the sets Ai − Ai, for i = 1, . . . , k, are

large. The proof distinguishes two cases.
First, suppose that |A1| 6 N/nc, for some appropriate positive c. Then there are at least

1
2n

c classes with at least N/2n elements each. By Lemma 5.25, for every l, we have

|3Al −Al|+ |2Al − 2Al| >
∑
i>l

|Ai| > N − lN
nc
.

Since, by Plünnecke-Ruzsa’s Lemma 2.3, |3Al −Al|, |2Al − 2Al| 6
( |Al−Al|
|Al|

)4|Al|, we have

|Al −Al| >
(N

2 − l
N

2nc
)1/4
|Al|3/4 �

N

n3/4

for all l 6 k = 1
2n

c.

Next, we assume that |A1| > N/nc and we set k = c logn
log logn and σk =

∑
i>k |Ai|. If

σk < N/n3c, then by Lemma 5.24 |Ak| � N/n2c+o(1), and |Al −Al| > |Ak| � N/n2c+o(1) for
all l 6 k. If σk > N/n3c then it follows that |Ak| > |Ak+1| > σk/n > N/n1+3c. Thus, by
Lemma 5.25 for every 1 6 l 6 k we have

|3Al −Al|+ |2Al − 2Al| >
∑
i>k

|Ai| = σk �
N

n3c ,

so that, by the Plünnecke-Ruzsa inequality again we get

|Al −Al| > (N/n3c)1/4|Ak|3/4 �
N

n3/4+3c .

In either case we have |Al − Al| � N
n9/10 for l 6 k = c logn

log logn . Since the expected size of
the set

(A1 −A1) ∩ (A2 −A2 + x2) ∩ · · · ∩ (Ak −Ak + xk) ∩ [N ],

for xi chosen uniformly at random from {−2N +1, . . . , 2N −1}, is at least (Ω(n−
9

10 ))kN , one
obtains (5.3.1) for some choice of xi’s.

At this point we drop the indexes corresponding to setsAk+1, . . . , An (we will re-enumerate
them later on) and we follow Schur’s argument again, starting with the set

Ck = {c1, . . . , cq} = (A1 −A1) ∩ (A2 −A2 + x2) ∩ · · · ∩ (Ak −Ak + xk) ∩ [N ]

given by (5.3.1). Observe that cu − cv ∈ 2Ai − 2Ai, for all 1 6 u < v 6 q and 1 6 i 6 k.

Therefore, as all the sets A1, . . . , Ak are 2-sum-free and assuming that c1 = minCk, we have

c2 − c1, . . . , cq − c1 6∈ A1 ∪ · · · ∪Ak.

At least q′ > (q − 1)/(n− k) of the above elements, call them Ck+1 = {c′1, . . . , c′q′}, lie in the
same partition class, say Ak+1. Assuming again that c′1 = minCk+1, it follows by the above
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argument that
c′2 − c′1, . . . , c′q′ − c′1 6∈ A1 ∪ · · · ∪Ak+1

Iterating this procedure, we obtain in the last step a set Cn ⊆ An such that |Cn| � q/(n− k)!
and (Cn −minCn) ∩ (A1 ∪ · · · ∪An) = ∅. Thus |Cn| 6 1 and we infer that

N � n
9

10k(n− k)!

for some k � logn
log logn .
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Chapter 6

Schinzel’s problem

It seems natural that arithmetic Ramsey problems make most sense in the torsion free setting
so one may be tempted to look for a complementary problem in the torsion setting. One that
has been proposed quite recently is Schinzel’s problem [Sch08, Sch09] that asks for the number
of solutions of a homogenous linear equation. Although this is not a Ramsey problem like
the ones previously considered, they share a common core of ensuring existence of solutions
to an equation, or from this chapter’s perspective, counting them.

6.1. Statement of the problem

Let n, k be positive integers and a = (a1, . . . , ak) and b = (b1, . . . , bk) be sequences of integers
and naturals respectively. We are interested in the number of solutions to the congruence

a1x1 + · · ·+ akxk ≡ 0 (mod n),

for integers x1, . . . , xk satisfying 0 6 xi 6 bi. We denote this number by Nn(a, b).
Intuitively, by an averaging argument, we can hope to prove a bound of the form

Nn(a, b) > γ ·
k∏
i=1

(1 + bi),

for a suitably chosen γ. On the other hand, since for ai = bi = 1, for i = 1, . . . , k, and
k = n− 1 we have Nn(a, b) = Nn(1,1) = 1, we can see that γ(n) = 21−n would be the best
possible coefficient, provided we restricted ourselves to those dependent only on n.

Note, that the setting of our choice, where 0 6 xi 6 bi, is considerably different from the
symmetric case when we only require |xi| 6 bi. In the latter, by the box principle, we can
immediately deduce a non-trivial bound, i.e. that the number of solutions to the congruence
considered is at least

1
n

k∏
i=1

(1 + bi).
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We shall prove the following theorem conjectured by Schinzel [Sch08, SZ06]. We present it
here in the setting of the group Z/nZ, which is obviously equivalent to that of the congruence
(mod n).

Theorem 6.1. Let n, k be positive integers, sequences a = (a1, . . . , ak) and b = (b1, . . . , bk)
be such that ai ∈ Z/nZ and bi ∈ N for i = 1, . . . , k. Then

Nn(a, b) > 21−n
k∏
i=1

(1 + bi).

Schinzel and Zakarczemny [SZ06] proved this theorem in the case of a1, . . . , ak satisfying
for all i, j the following: gcd(n, ai)| gcd(n, aj) or gcd(n, aj)| gcd(n, ai), or n| lcm(ai, aj). Later
Schinzel [Sch09] established the following result.

Theorem 6.2 (Schinzel [Sch09, Theorem 1 and Corollary]). Let

n =
l∏

λ=1
qαλλ ,

where qλ are distinct primes, αλ > 0 and

l∑
λ=1

1
qλ

6 1 + min(l, 2l − 5)
n

.

Then, under the assumptions of Theorem 6.1,

Nn(a, b) > 21−n
k∏
i=1

(1 + bi).

In particular, Schinzel’s conjecture holds for n < 60.

This theorem will serve us when proving Theorem 6.1 for n < 22.
In the appendix to the same paper Kaczorowski [Kac09] proposed an elegant, purely

combinatorial method, which allowed him to establish the bound

Nn(a, b) > 1
n
(n+k−1

k

) k∏
i=1

(1 + bi).

Our proof of the theorem will be founded on the idea of Kaczorowski.
If bi = 1 for i = 1, . . . , k, then Theorem 6.1 follows from a more general result of Olson.

We keep here, mutatis mutandis, the notation from the above theorems.

Definition 6.3. Let G be a finite abelian group. We define Davenport’s constant D(G) of
the group G to be the smallest integer s such that every s-element sequence of elements of
G has a non-trivial subsequence that sums to zero.
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Theorem 6.4 (Olson [Ols69, Theorem 2]). Let G be a finite abelian group, k be a positive
integer, 1 = (1)i=1,...,k be the sequence of k ones and a sequence a = (a1, . . . , ak) be such that
ai ∈ G for i = 1, . . . , k. Then

NG(a,1) > 21−D(G) · 2k.

A natural conjecture, which unifies these results, has been recently proved by Zakarczemny
[Zak12] and calls for the following.

Theorem 6.5 (Zakarczemny [Zak12]). Let G be a finite abelian group, k be a positive integer,
and sequences a = (a1, . . . , ak) and b = (b1, . . . , bk) be such that ai ∈ G and bi ∈ N for
i = 1, . . . , k. Then

NG(a, b) > 21−D(G)
k∏
i=1

(1 + bi).

Since still very little is known about D(G), the proof of Zakarczemny follows an indirect
approach and exploits Olson’s result.

6.2. Notation and a sketch of the argument

For brevity of notation, we write in this chapter Zn = Z/nZ. Also, we adapt the following
non-standard notation.

Definition 6.6. Let n be a positive integer, I be a set, and integer sequences b− = (b−i )i∈I ,
b+ = (b+i )i∈I satisfy 0 6 b−i 6 b+i . Let c and all the elements ai of a sequence a = (ai)i∈I
belong to Zn.

We define Nc;n(a, b−6 b+) as the number of integer solutions (xi)i∈I with b−i 6 xi 6 b+i ,
of the equation ∑

i∈I
aixi = c.

Likewise, for a sequence of naturals b = (bi)i∈I , we denote by Cn(a, b) the set

Cn(a, b) =
{∑
i∈I

aixi : 0 6 xi 6 bi
}
.

Also we denote by ej the sequence (ei)i∈I such that ej = 1 and ei = 0 for i 6= j. Finally,
0 and 1 denote the sequences consisting exclusively of zeros and ones respectively, while 1A
stands for the indicator sequence of a subset A ⊂ I.

Whenever we perform an arithmetic operation on two sequences this is meant to be
performed coordinatewise.

We identify an element with a one-element sequence. When the elements considered split
into subfamilies, we separate them by semicolons, e.g. Nc;n(a, t6 b;a′, t′6 b′). In all cases,
indexing sets will be given implicitly. Finally, we shall usually drop “zeros” from the notation,
therefore Nn(a, b) = N0;n(a,06 b).
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Let us now briefly sketch our argument. Following the idea of Kaczorowski [Kac09], which
is itself a clear attempt at adapting the box principle to our setting, we look for a sequence
t = (ti) such that Cn(a, t) = Cn(a, b) and the sum

∑
ti is possibly small (it can be easily

chosen to be at most n − 1). Obviously Nc;n(a, t6 b) > 1
n

∏
(1 + bi − ti) for some residue

class c. If
∑
ti is considerably smaller than n, then we can easily conclude that

Nn(a, b) > Nc;n(a, t6 b) > 21−n∏(1 + bi)

for sufficiently large n.
In the subsequent parts of the chapter we shall encounter various inequalities claimed

to hold for sufficiently large integers. In all cases an easy inductive argument proves the
claim. Similarly, we shall use several times a particular, yet well known, form of Bernoulli’s
inequality, i.e. (1 + a/x)x 6 2a for any real numbers 0 < x 6 a.

6.3. Boundary cases lemmas

Of course, it is sufficient to consider the problem if ai 66= 0 for all i. Similarly, we can assume
that gcd(a1, . . . , ak) = 1.

We can also restrict our attention to the case when 0 < bi < n for all i. It basically follows
from the observation that both the function Nn(·) and the bound requested are “additive”
as functions of bi for every i. Let us make this more explicit by the analysis of the case
b1 = Bn+ r. We assume here that the bound holds for b1 < n.

Nn(a1, b1;a′, b′) = Nn(a1, 06n−1;a′, b′) +Nn(a1, n6 2n−1;a′, b′) +

· · ·+Nn(a1, Bn6Bn+r;a′, b′)

= Nn(a1, n−1;a′, b′) +Nn(a1, n−1;a′, b′) +

· · ·+Nn(a1, r;a′, b′)

> 21−nn
∏
i 6=1

(1 + bi) + 21−nn
∏
i 6=1

(1 + bi) +

· · ·+ 21−n(1 + r)
∏
i 6=1

(1 + bi)

= 21−n(1 +Bn+ r)
∏
i 6=1

(1 + bi)

= 21−n∏(1 + bi).

We now show an easy lemma which will turn out useful in our proof of the theorem.
It also justifies the claim, appearing in the preceding section, saying that we can select a
sequence t = (ti) such that Cn(a, t) = Cn(a, b) and

∑
ti 6 n− 1.

Lemma 6.7. If we have 0 6 ti 6 bi and Cn(a, t) 6= Cn(a, b) then there exists some j such
that tj < bj and |Cn(a, t+ ej)| > |Cn(a, t)|.
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Proof. Observe that Cn(a, t+ ej) = Cn(a, t) + {0, aj}.
Let us now suppose that Cn(a, t+ ej) = Cn(a, t) + {0, aj} = Cn(a, t) for all j such that

tj < bj . Since the sumset operation is associative, we have the following:

Cn(a, b) = Cn(a, t) +
⊕

j:tj<bj

bj−tj⊕
l=0
{0, aj}

= Cn(a, t) ,

where
⊕

denotes the sumset operation iterated over a family of sets. The contradiction
proves the result.

The following lemma will allow us to deal with some structured cases in our proof of the
main result.

Lemma 6.8. Let α = (α1, . . . , αδ) and β = (β1, . . . , βδ) be sequences such that αi ∈ Zn and
βi ∈ N for i = 1, . . . , δ, and

δ 6
∑

βi 6 min(bn/2c , |Cn(α,β)| − 1).

Moreover, let a = (a1, . . . , ad) and b = (b1, . . . , bd) be such that aj generates Zn and bj ∈ N+

for j = 1, . . . , d. Then, if n > 9, Schinzel’s conjecture holds, i.e.

Nn(α,β;a, b) > 1
2n−1

∏
(1 + βi)

∏
(1 + bj).

Proof. First, we quote a lemma from Schinzel’s paper [Sch08].

Lemma ([Sch08, lemma 5]). For positive integers a and x 6 a we have

(
1 + a

x

)x+1
6 2a+1,

except for the pair a = 2, x = 1.

Now, if Cn(α,β;a, b) 6= Zn then, since every aj generates Zn, we have

∑
bj < n− |Cn(α,β)| 6 n−

∑
βi − 1.

Henceforth, in this case, by the arithmetic mean-geometric mean and Bernoulli’s inequalities,

∏
(1 + βi)

∏
(1 + bj) 6

(
1 +

∑
βi +

∑
bj

δ + d

)δ+d
6 2

∑
βi+
∑

bj 6 2n−1

6 2n−1 ·Nn(α,β;a, b).

Let us now assume that n > b1 > b2 > · · · and l 6 n− |Cn(α,β)| is the smallest number
such that Cn(α,β; a1, b1; . . . ; al, bl) = Zn.
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Since Cn(α,β; a1, b1; . . . ; al, bl) = Zn, every choice of 0 6 xj 6 bj for j = l+1, . . . , d leads
to at least one solution to the equation considered. Therefore

Nn(α,β;a, b) >
∏
j>l

(1 + bj)

and it is now sufficient to prove that

δ∏
i=1

(1 + βi)
l∏

j=1
(1 + bj) 6 2n−1.

If l = 1 then, using the same inequalities again, for n > 7,

δ∏
i=1

(1 + βi)
l∏

j=1
(1 + bj) 6

(
1 +

∑
βi
δ

)δ
(1 + b1)

6 2
∑

βi(1 + b1) 6 2bn/2c · n 6 2n−1.

If l > 1 then
∑
j<l bj 6 n − 1 − |Cn(α,β)|, because every aj generates Zn, and also

bl 6
(∑

j<l bj
)
/(l − 1). This leads, much the same way as above, to

δ∏
i=1

(1 + βi)
l∏

j=1
(1 + bj) =

δ∏
i=1

(1 + βi)
l−1∏
j=1

(1 + bj) · (1 + bl)

6
(
1 +

∑
βi
δ

)δ(
1 +

∑
j<l bj

l − 1
)l−1(

1 +
∑
j<l bj

l − 1
)

6
(
1 +

∑
βi
δ

)δ(
1 + n− 1− |Cn(α,β)|

l − 1
)l

6 2
∑

βi
(
1 + n− 1− |Cn(α,β)|

l − 1
)l
.

Now we can conclude, since either we can apply the aforementioned lemma of Schinzel, if its
assumptions hold, and then

2
∑

βi
(
1 + n− 1− |Cn(α,β)|

l − 1
)l

6 2
∑

βi · 2n−|Cn(α,β)| 6 2n−1

or, otherwise, l = 2, n− 1− |Cn(α,β)| = 2 and we just write for n > 9

2
∑

βi
(
1 + n− 1− |Cn(α,β)|

l − 1
)l

6 2bn/2c · 32 6 2n−1.

6.4. Proof of the theorem

In the following lemma we present the procedure that we use to find a suitable sequence t =
(ti). If this procedure fails the previous lemma applies and, therefore, Schinzel’s conjecture
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holds.

Lemma 6.9. Under the assumptions of Theorem 6.1, if gcd(a1, . . . , ak) = 1, then either there
exists some sequence t = (ti) such that 0 6 ti 6 bi,

∑
ti 6 3n/4 and Cn(a, t) = Cn(a, b), or

there exists some generator a of Zn such that

∑
i:ai 6=±a

bi 6 min(bn/2c , |Cn(a, b · 1{i:ai 6=±a})| − 1).

Proof. Choose t = (ti), 0 6 ti 6 bi, to be any sequence minimal with respect to
∑
ti among

the sequences maximal with respect to |Cn(a, t)| and satisfying |Cn(a, t)| > 2
∑
ti.

If Cn(a, t) = Cn(a, b) then

∑
ti 6 |Cn(a, b)|/2 6 n/2.

Similarly, by Lemma 6.7, if |Cn(a, t)| = |Cn(a, b)| − 1 then for some j such that tj < bj we
have Cn(a, t+ ej) = Cn(a, b) and

∑
ti + (ej)i = 1 +

∑
ti 6 1 + |Cn(a, t)|/2 6 (n+ 1)/2 6 3n/4

and we are done.
Let us now assume that none of the above cases holds. Hence, for some particular j∗, we

have tj∗ < bj∗ and |Cn(a, t+ ej∗)| = |Cn(a, t)|+ 1. Let us write a = aj∗ .
Cn(a, t) is therefore a union of cosets of some subgroup H of Zn and an arithmetic

progression P with common difference a, which is contained in another coset of H. In the
subsequent parts of this argument we shall call any coset of H involved an active one and
any such coset contained in Cn(a, t) a full one. Obviously, |H| > 2 and |Cn(a, t)| > 2. A
natural choice of H is simply a·Zn but we prefer to consider possibly large subgroup, so we
shall assume that H is maximal.

If P = Cn(a, t) then, because |P | = |Cn(a, t)| > 2, for any j such that tj < bj we
have aj ∈ a·Zn, as otherwise Cn(a, t + ej) would be the disjoint union of Cn(a, t) and
Cn(a, t) + {aj}. Since 0 ∈ P , necessarily Cn(a, t) ⊆ a·Zn and consequently Cn(a, b) ⊆ a·Zn.
Therefore

|Cn(a, t)| < |Cn(a, b)| − 1 6 |a·Zn| − 1,

so aj = ±a. Consequently, aj 6= ±a implies tj = bj and∑
i:ai 6=±a

bi =
∑

i:ai 6=±a
ti 6 min(bn/2c , |Cn(a, b · 1{i:ai 6=±a})| − 1).

Here, the first inequality stems from
∑
ti 6 bn/2c and the second, by Lemma 6.7, from

minimality of the chosen sequence t. Furthermore, a generates Zn by our assumption that
gcd(a1, . . . , ak) = 1.

In the case when P 6= Cn(a, t), every full coset of H is mapped onto some other such
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coset under the mapping x 7→ x+ aj for every j such that tj < bj . If it was not so, the above
would apply to the active cosets. Moreover, by maximality of t, we would have |P | = |H|−1.
This would, however, contradict the assumption that Cn(a, t) < Cn(a, b) − 1. Hence, by
maximality of H, we get aj ∈ H.

This allows us to invoke Lemma 6.7 in order to find a sequence τ = (τi) such that
Cn(a, t+ τ ) = Cn(a, b) with

∑
τi 6 |Cn(a, b)| − |Cn(a, t)| and 0 6 τi 6 bi− ti. In particular

∑
ti 6

1
2 |Cn(a, t)| 6 1

2(|Cn(a, b)| −
∑

τi) 6
1
2(n−

∑
τi).

Then, because |Cn(a, b)|− |Cn(a, t)| 6 |H|, we have
∑
τi 6 |H| and, by a simple calculation,

∑
ti +

∑
τi 6

1
2(n−

∑
τi) +

∑
τi

= n

2 + 1
2
∑

τi

6
n

2 + 1
2 · |H| 6

n

2 + 1
2 ·

n

2
= 3

4n.

The sequence t+ τ is just a one we look for.

Proof of Theorem 6.1. We deal with the cases when n < 22 by referring to Schinzel’s Theo-
rem 6.2. For n > 22 we apply Lemma 6.9. If the lemma results in some generator a of Zn,
we can apply Lemma 6.8, which readily shows the theorem.

In the other case, there is a sequence t = (ti), 0 6 ti 6 bi, such that
∑
ti 6 3n/4 and

Cn(a, t) = Cn(a, b). Moreover

Nc0;n(a, t6 b) >
∏

(1 + bi − ti)/n

for some c0 ∈ Cn(a, b) = Cn(a, t).
By subtracting one particular solution represented in Nc0;n(a, t) from all those counted

in Nc0;n(a, t6 b) we get at least
∏

(1 + bi − ti)/n solutions of the equation considered, so
Nn(a, b) >

∏
(1 + bi − ti)/n.

By Bernoulli’s inequality

1 + bi − ti > (1 + bi)1−ti/bi >
1 + bi

2ti

Hence, for n > 22,

Nn(a, b) >
1
n

∏
(1 + bi − ti) >

1
n

∏ 1 + bi
2ti

>

∏
(1 + bi)
n · 2

∑
ti

>

∏
(1 + bi)
n23n/4

> 21−n∏(1 + bi).
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6.5. Concluding remarks

The reasoning used in the proof of Lemma 6.9 can be easily adapted to the general abelian
case. We remark here that while we do not attempt to generalize Lemma 6.8, it is only applied
if Lemma 6.9 results in some generator of a cyclic subgroup. Consequently, a theorem follows.

Theorem 6.10. Let G be a finite abelian group, |G| > 22 or G cyclic, k be a positive integer,
a = (a1, . . . , ak) and b = (b1, . . . , bk) be sequences such that ai ∈ G and bi ∈ N for i = 1, . . . , k.
Then

NG(a, b) > 21−|G|
k∏
i=1

(1 + bi).

In an obvious manner this result is inferior to Theorem 6.5 and we could not even have
hoped to improve it by elementary means similar to ours. The brilliant idea of Zakarczemny
that stays behind his proof of Theorem 6.5 is very different and combinatorial in nature. It
basically relies on covering the box {0, . . . , b1} × · · · × {0, . . . , bk} uniformly by a family of
cubes of the form {0, l1} × . . . × {0, lk}. The latter can be successfully treated with Olson’s
Theorem 6.4 and the result follows.
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